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Preface 

This book evolved from a set of notes written for a graduate course on Likelihood 
and Bayesian Computations held at Aarhus University in 2016 and 2018. The 
audience was life-science PhD students and post-docs with a background in either 
biology, agriculture, medicine or epidemiology, who wished to develop analytic 
skills to perform genomic research. This book is addressed to this audience of 
numerate biologists, who, despite an interest in quantitative methods, lack the 
formal mathematical background of the professional statistician. For this reason, 
I offer considerably more detail in explanations and derivations than may be needed 
for a more mathematically oriented audience. Nevertheless, some mathematical 
and statistical prerequisites are needed in order to extract maximum benefit from 
the book. These include introductory courses on calculus, linear algebra and 
mathematical statistics, as well as a grounding in linear and nonlinear regression and 
mixed models. Applied statistics and biostatistics students may also find the book 
useful, but may wish to browse hastily through the introductory chapters describing 
likelihood and Bayesian methods. 

I have endeavoured to write in a style that appeals to the quantitative biologist, 
while remaining concise and using examples profusely. The intention is to cover 
ground at a good pace, facilitating learning by interconnecting theory with examples 
and providing exercises with their solutions. Many exercises involve programming 
with the open-source package R, a statistical software that can be downloaded and 
used with the free graphical user interface RStudio. Most of today’s students 
are competent in R and there are many tutorials online for the uninitiated. The 
R-code needed to solve the exercises is provided in all cases and is written, 
with few exceptions, with the objective of being transparent rather than efficient. 
The reader has the opportunity to run the codes and to modify input parameters 
in an experimental fashion. This hands-on computing contributes to a better 
understanding of the underlying theory. 

The first objective of this introduction is to provide readers with an understanding 
of the techniques used for analysis of data, with emphasis on genetic data. The 
second objective is to teach them to implement these techniques. Meeting these 
objectives is an initial step towards acquiring the skills needed to perform data-
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driven genetics/genomics research. Despite the focus on genetic applications, the 
mathematics of the statistical models and their implementation are relevant for 
many other branches of quantitative methods. An appendix in the opening chapter 
provides an overview of basic quantitative genomic concepts, making the book more 
accessible to an audience of "non-geneticists". 

I have attempted to give a balanced account of frequentist/likelihood and 
Bayesian methods. Both approaches are used in classical quantitative genetic and 
modern genomic analyses and constitute essential ingredients in the toolkit of the 
well-trained quantitative biologist. 

The book is organised in three parts. Part I (Chaps. 2–5) presents an overview 
of likelihood and Bayesian inference. Chapter 2 introduces the basic elements 
of the likelihood paradigm, including the likelihood function, the score and the 
maximum likelihood estimator. Properties of the maximum likelihood estimator are 
summarised and several examples illustrate the construction of simple likelihood 
models, the derivation of the maximum likelihood estimators and their properties. 
Chapter 3 provides a review of three computational methods for fitting likelihood 
models: Newton-Raphson, the EM (expectation-maximisation) algorithm and gra-
dient descent. After a brief description of the methods and the essentials of their 
derivation, several examples (13 in all) are developed to illustrate their imple-
mentation. Chapter 4 covers the basics of the Bayesian approach, mostly through 
examples. The first set of examples illustrate the type of inferences that are possible 
(joint, conditional and marginal inferences), when the posterior distributions have 
known closed forms. In this case, inferences can be exact using analytical methods, 
or can be approximated using Monte Carlo draws from the posterior distribution. A 
number of options are available when the posterior distribution is only known up 
to proportionality. After a very brief account of Bayesian asymptotics, the chapter 
focuses on Markov chain Monte Carlo (McMC) methods. These are recipes for 
generating approximate draws from posterior distributions. Using these draws, one 
can obtain Monte Carlo estimates of the complete posterior distribution, or Monte 
Carlo estimates of summaries such as the mean, variance and posterior intervals. The 
chapter provides a description of the Gibbs sampling algorithm and of the joint and 
single-site updating of parameters based on the Metropolis-Hastings algorithm. An 
overview of the tools needed for analysis of the McMC output concludes the chapter. 
An appendix provides the mathematical details underlying the magic of McMC 
within the constraints imposed by the author’s limited mathematics. Chapter 5 
illustrates applications of McMC. Several of the examples discussed in connection 
with Newton-Raphson and the EM algorithm are revisited and implemented from a 
Bayesian McMC perspective. 

Part II of the book has the heading Prediction. The boundaries between Parts I 
and II should not be construed as rigid. However, the heading emphasises the main 
thread of Chaps. 6–11, with an important detour in Chap. 8 that discusses mul-
tiple testing. Chapter 6 introduces many important ingredients of prediction: best 
predictor, best linear predictor, overfitting, bias-variance trade-off, cross-validation. 
Among the topics discussed is the accuracy with which future observations can be 
predicted, how is this accuracy measured, the factors affecting it and importantly,
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how a measure of uncertainty can be attached to accuracy. The body of the chapter 
deals with prediction from a classical/frequentist perspective. Bayesian prediction 
is illustrated in several examples throughout the book and particularly in Chap. 10. 
In Chap. 6, many important ideas related to prediction are illustrated using a simple 
least-squares setting, where the number of records n is larger than the number of 
parameters p of the model; this is the .n > p setup. However, in many modern 
genetic problems, the number of parameters greatly exceeds the number of records; 
the .p � n setup. This calls for some form of regularisation, a topic introduced 
in Chap. 7 under the heading Shrinkage Methods. After an introduction to ridge 
regression, the chapter provides a description of the lasso (least absolute shrinkage 
and selection operator) and of a Bayesian spike and slab model. The spike and 
slab model can be used for both prediction and for discovery of relevant covariates 
that have an effect on the records. In a genetic context, these covariates could be 
observed genetic markers and the challenge is how to find as many promising mark-
ers among the hundreds of thousands available, while incurring a low proportion 
of false positives. This leads to the topic reviewed in Chap. 8: False Discovery 
Rate. The subject is first presented from a frequentist perspective as introduced 
by Benjamini and Hochberg in their highly acclaimed work, and is also discussed 
using empirical Bayesian and fully Bayesian approaches. The latter is implemented 
within an McMC environment using the spike and slab model as driving engine. 
The complete marginal posterior distribution of the false discovery rate can be 
obtained as a by-product of the McMC algorithm. Chapter 9 describes some of 
the technical details associated with prediction for binary data. The topics discussed 
include logistic regression for the analysis of case-control studies, where the data are 
collected in a non-random fashion, penalised logistic regression, lasso and spike and 
slab models implemented for the analysis of binary records, area under the curve 
(AUC) and prediction of a genetic disease of an individual, given information on 
the disease status of its parents. The chapter concludes with an appendix providing 
technical details for an approximate analysis of binary traits. The approximation 
can be useful as a first step, before launching the full McMC machinery of a more 
formal approach. Chapter 10 deals with Bayesian prediction, where many of the 
ideas scattered in various parts of the book are brought into focus. The chapter 
discusses the sources of uncertainty of predictors from a Bayesian and frequentist 
perspective and how they affect accuracy of prediction as measured by the Bayesian 
and frequentist expectations of the sample mean squared error of prediction. The 
final part of the chapter introduces, via an example, how specific aspects of a 
Bayesian model can be tested using posterior predictive simulations, a topic that 
combines frequentist and Bayesian ideas. Chapter 11 completes Part II and provides 
an overview of selected nonparametric methods. After an introduction of traditional 
nonparametric models, such as the binned estimator and kernel smoothing methods, 
the chapter concentrates on four more recent approaches: kernel methods using basis 
expansions, neural networks, classification and regression trees, and bagging and 
random forests. 

Part III of the book consists of exercises and their solutions. The exercises 
(Chap. 12) are designed to provide the reader with deeper insight of the subject
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discussed in the body of the book. A complete set of solutions, many involving 
programming, is available in Chap. 13. 

The majority of the datasets used in the book are simulated and intend to illustrate 
important features of real-life data. The size of the simulated data is kept within the 
limits necessary to obtain solutions in reasonable CPU time, using straightforward 
R-code, although the reader may modify size by changing input parameters. 
Advanced computational techniques required for the analysis of very large datasets 
are not addressed. This subject requires a specialised treatment beyond the scope of 
this book. 

The book has not had the benefit of having been used as material in repeated 
courses by a critical mass of students, who invariably stimulate new ideas, help with 
a deeper understanding of old ones and, not least, spot errors in the manuscript and 
in the problem sections. Despite these shortcomings, the book is completed and out 
of my hands. I hope the critical reader will make me aware of the errors. These 
will be corrected and listed on the web at https://github.com/SorensenD/SLGDS. 
The GitHub site also contains most of the R-codes used in the book, which can be 
downloaded, as well as notes that include comments, clarifications or additions of 
themes discussed in the book. 

Aarhus, Denmark Daniel Sorensen 
May 2023
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Chapter 1 
Overview 

1.1 Introduction 

Suppose there is a set of data consisting of observations in humans on forced 
expiratory volume (FEV, a measure of lung function; lung function is a predictor 
of health and a low lung function is a risk factor for mortality), or on the presence or 
absence of heart disease and that there are questions that could be answered using 
these data. For example, a statistical geneticist may wish to know: 

1. Is there a genetic component contributing to the total variance of these traits? 
A positive answer suggests that genetic factors are at play. The next step would 
be to investigate the following: 

2. Is the genetic component of the traits driven by a few genes located on 
a particular chromosome, or are there many genes scattered across many 
chromosomes? Howmany genes are involved and is this a scientifically sensible 
question? 

3. Are the genes detected protein-coding genes, or are there also noncoding genes 
involved in gene regulation? 

4. How is the strength of the signals captured in a statistical analysis related to the 
two types of genes? What fraction of the total genetic variation is allocated to 
both types of genes? 

5. What are the frequencies of the genes in the sample? Are the frequencies 
associated with the magnitude of their effects on the traits? 

6. What is the mode of action of the genes? 
7. What proportion of the genetic variance estimated in 1 can be explained by the 

discovered genes? 
8. Given the information on the set of genes carried by an individual, will a 

genetic score constructed before observing the trait help with early diagnosis 
and prevention? 

9. How should the predictive ability of the score be measured? 
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2 1 Overview

10. Are there other non-genetic factors that affect the traits, such as smoking 
behaviour, alcohol consumption, blood pressure measurements, body mass 
index and level of physical exercise? 

11. Could the predictive ability of the genetic score be improved by incorporation 
of these non-genetic sources of information, either additively or considering 
interactions? What is the relative contribution from the different sources of 
information? 

The first question has been the focus of quantitative genetics during many 
years long before the so-called genomic revolution, that is, before breakthroughs 
in molecular biology made technically and economically possible the sequencing of 
whole genomes, resulting in hundreds of thousands or millions of genetic markers 
(single nucleotide polymorphisms (SNPs)) for each individual in the data set. Until 
the end of the twentieth century before dense genetic marker data were available, 
genetic variation of a given trait was inferred using resemblance between relatives. 
This requires equating the expected proportion of genotypes shared identical 
by descent, given a pedigree, with the observed phenotypic correlation between 
relatives. The fitted models also retrieve “estimates of random effects”, the predicted 
genetic values that act as genetic scores and are used in selection programs of farm 
animals and plants. 

Answers to questions .2 − 7 would provide insight into genetic architecture and 
thereby, into the roots of many complex traits and diseases. This has important 
practical implications for drug therapies targeted to particular metabolic pathways, 
for personalised medicine and for improved prediction. These questions could not 
be sensibly addressed before dense marker data became available (perhaps with 
the exception provided by complex segregation analysis that allowed searching for 
single genes). 

Shortly after a timid start where use of low-density genetic marker information 
made its appearance, the first decade of the twenty-first century saw the construction 
of large biomedical databases that could be accessed for research purposes where 
health information was collected. One such database was the British .1958−cohort 
study including medical records from approximately 3000 individuals genotyped 
for one million SNPs. These data provided for the first time the opportunity to begin 
addressing questions .2 − 7. However, a problem had to be faced: how to fit and 
validate a model with one million unknowns to a few thousand records and how to 
find a few promising genetic markers from the million available avoiding a large 
proportion of false positives? This resulted in a burst of activity in the fields of 
computer science and statistics, leading to development of a methodology designed 
to meet the challenges posed by Big Data. 

In recent years, the amount of information in modern data sets has 
grown and become formidable and the challenges have not diminished. One 
example is the UK Biobank that provides a wealth of health information 
from half a million UK participants. The database is regularly updated and 
a team of scientists recently reported that the complete exome sequence was 
completed (about .2% of the genome involved in coding for proteins and



1.2 The Sampling Distribution of a Random Variable 3

considered to be important for identifying disease-causing or rare genetic 
variants). The study involved more than .150,000 individuals genotyped 
for more than 500 million SNPs (Halldorsson et al 2022). These data are 
paired with detailed medical information and constitute an unparalleled 
resource for linking human genetic variation to human biology and dis-
ease. 

An important task for the statistical geneticist is to adapt, develop and implement 
models that can extract information from these large-scale data and to contribute to 
finding answers to the 11 questions posed above. This is an exercise on inference 
(such as estimation of genetic variation), on gene detection (among the millions 
of genetic markers that may be included in a probability model, how to screen 
the “relevant” ones for further study?), on prediction (how does the quality of 
prediction of future records, for example, outcome of a disease, improve with this 
new knowledge about the trait?) and on how to fit the probability models. There are 
several areas of expertise that must be developed in order to fulfil this data-driven 
research task. An initial step is to understand the methodology that underlies the 
probability models and to learn the modern computer-intensive methods required 
for fitting these models. The objective of this book is to guide the reader to take this 
first step. 

This opening chapter gives an overview of the book’s content, omitting many 
technicalities that are revealed in later chapters, and is intended to give a flavour 
of the way ahead. The first part is about methodology and introduces, by means of 
an example, the concepts of probability distribution, likelihood and the maximum 
likelihood estimator. This is followed by a brief description of Bayesian methods 
indicating how prior knowledge can be incorporated in a probability model and 
how it can affect inferences. The second part of the chapter presents models 
for prediction and for detection of genes using parametric and nonparametric 
approaches. There is an appendix that offers a brief tour of the quantitative 
genetic/genomic model. The goal is to introduce the jargon and the basic quanti-
tative genetic/genomic concepts used in the book. 

1.2 The Sampling Distribution of a Random Variable 

A useful starting point is to establish the distinction between a probability distribu-
tion and a likelihood function. For example, assume a random variable X that has a 
Bernoulli probability distribution. This random variable can take 1 or 0 as possible 
values (more generally, it can have two modalities) with probabilities . θ and .1 − θ , 
respectively. The mean of the distribution is 

.E(X|θ) = 0 × Pr(X = 0|θ) + 1 × Pr(X = 1|θ) = θ
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and the variance is 

. Var(X|θ) = E(X2|θ) − [E(X|θ)]2

= θ − θ2 = θ (1 − θ) .

A binomial distribution arises from the sum of n mutually independent Bernoulli 
random variables all having the same probability . θ . Therefore, the expected value 
and the variance of a binomially distributed random variable are . nθ and .nθ (1 − θ), 
respectively. 

With this background, imagine that a sample of size n of unrelated haploid 
individuals is obtained from some population with the objective of estimating allele 
frequency at a biallelic locus. The sample contains x copies of allele A and . n − x

copies of allele a. The  n data points are draws assumed to be identically and 
independently distributed, and in each draw, the probability of observing an A allele 
is . θ . Since the random variable can take two modalities (A or a), the number of 
copies drawn, X, is binomially distributed with parameters n and . θ and probability 
mass function equal to 

. Pr (X = x|n, θ) =
(

n

x

)
θx (1 − θ)n−x , x = 0, 1, . . . , n, 0 < θ < 1.

(1.1) 

For fixed values of n and . θ , one can plot (1.1) as a function of  .x = 0, 1, . . . , n, 
and this defines the probability distribution of X. Figure 1.1 shows two different 
binomial distributions. Importantly in (1.1), the parameters n and . θ are fixed and 
the random variable is X, the number of A alleles drawn (here I distinguish between 
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Fig. 1.1 Left: binomial probability distribution with parameters .n = 20, θ = 0.1; right: binomial 
probability distribution with parameters .n = 100, θ = 0.1
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the random variable X and its realised value, x. This distinction is not necessarily 
followed throughout the book). 

The probability distribution in the right panel of Fig. 1.1 is more symmetrical 
than in the left panel. This is due to the different sample sizes n. As sample size 
increases further, X will approach its limiting distribution which is the normal 
distribution by virtue of the central limit theorem. 

1.3 The Likelihood and the Maximum Likelihood Estimator 

Consider now viewing (1.1) in a different manner, whereby x and n are fixed and 
. θ varies. To be specific, assume that the sample size is .n = 27 and the number 
of copies of allele A in the sample is .x = 11. One can plot the probability of 
obtaining .x = 11 copies of A in a sample of size .n = 27, for all permissible values 
of . θ as in Fig. 1.2. For example, for .θ = 0.1, . Pr (X = 11|n = 27, θ = 0.1) =
0.242× 10−4 and for .θ = 0.6, .Pr (X = 11|n = 27, θ = 0.6) = 0.203× 10−1. This  
plot is the likelihood function for . θ , .L (θ |x, n), and the value of . θ that maximises 
this function is known as the maximum likelihood estimate of . θ (I will use MLE 
short for maximum likelihood estimator or maximum likelihood estimate and ML 
for maximum likelihood). 

Fig. 1.2 Binomial model: 
likelihood function for . θ , 
given data . n = 27, x = 11
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One way of finding the maximum likelihood estimate of . θ is to differentiate 
(1.1) and find the maximiser. It is equivalent—but often easier—to maximise the 
logarithm of the likelihood function, the loglikelihood, denoted as .� (θ |x, n): 

. 
∂� (θ |x, n)

∂θ
= ∂

∂θ

[
log

(
n

x

)
+ x log (θ) + (n − x) log (1 − θ)

]
.

Carrying out the differentiation and setting the result equal to zero shows that the 
MLE of . θ must satisfy 

. 
x

θ
− n − x

1 − θ
= 0.

Solving for . θ yields the MLE 

.θ̂ = x

n
, (1.2) 

that in the case of the example, with .x = 11 and .n = 27, gives .θ̂ = 0.41. 

The Sampling Variance of the Maximum Likelihood Estimator 

Usually, one needs to quantify the degree of uncertainty associated with an estimate. 
In classical likelihood, the uncertainty is described by the sampling distribution of 
the MLE. In the case of the example, the sampling distribution of . θ̂ is the probability 
distribution of this estimator obtained by drawing repeated binomial samples of 
fixed size n, with the probability parameter fixed at its MLE, .θ = θ̂ . The  MLE is  
computed in each sample and the sampling distribution of the MLE is characterised 
by these estimates. 

In this binomial example, the sampling distribution of . θ̂ is known exactly; it is 
proportional to a binomial distribution (since X is binomial and n is fixed). The 
small sample variance of the maximum likelihood estimator is 

.Var
(
θ̂
)

= Var

(
X

n

)
= θ (1 − θ)

n
. (1.3) 

The parameter . θ is typically not known and is replaced by the MLE . θ̂ . Then 

. V̂ar
(
θ̂
)

=
θ̂

(
1 − θ̂

)
n

.

In many cases, the MLE does not have a closed form and the small sample 
variance is not known. One can then appeal to large sample properties of MLE; one
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Fig. 1.3 Left: histogram of the Monte Carlo distribution of the MLE for the binomial model, 
with .n = 27, θ = 0.41. Right: histogram of the Monte Carlo distribution of the MLE for the 
binomial model, with .n = 100, θ = 0.41. The overlaid normal curves represent the asymptotic 
approximation of the distribution of the MLE 

of these is that, asymptotically, the MLE is normally distributed, with mean equal 
to the parameter and variance given by minus the inverse of the second derivative 
of the loglikelihood evaluated at .θ = θ̂ . The second derivative of the loglikelihood 
is 

. 
∂2� (θ |x, n)

(∂θ)2
= ∂2

(∂θ)2

[
log

(
n

x

)
+ x log (θ) + (n − x) log (1 − θ)

]

= − x

θ2
− n − x

(1 − θ)2
.

In this expression, substituting . θ with the MLE . θ̂ and taking a reciprocal 
yields 

. −
(

∂2� (θ |x, n)

(∂θ)2

)−1
∣∣∣∣∣
θ=θ̂

= V̂ar
(
θ̂
)

=
θ̂

(
1 − θ̂

)
n

≈ 0.009. (1.4) 

In this simple example, the asymptotic variance agrees with the small sample
variance. An approximate .95% confidence interval for . θ based on asymptotic 
theory is 

.0.41 ± 1.96 × 0.095 = (0.22, 0.60) . (1.5) 

This means that there is a .95% probability that this interval contains the true 
parameter . θ . The “probability” is interpreted with respect to a set of hypothetical 
repetitions of the entire data collection and analysis procedure. These repetitions
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consist of many random samples of data drawn under the same conditions and 
where a confidence interval is computed for each sample. The random variable 
is the confidence interval that is computed for each sample; in 95 intervals out 
of 100 (in a .95% confidence interval), the interval will contain the unobserved 
. θ . 

Figure 1.3 (left) shows the result of simulating .100,000 times from a binomial 
distribution with .n = 27 and .θ = 0.41, computing the MLE in each replicate and 
plotting the distribution as a histogram. This represents the (small sample) Monte 
Carlo sampling distribution of the MLE. Overlayed is the asymptotic distribution of 
the MLE that is normal with mean .0.41 and variance given by (1.4) equal to .0.009. 
The right panel of Fig. 1.3 displays the result of a similar exercise with .n = 100 and 
.θ = 0.41. The fit of the asymptotic approximation is better with the larger sample 
size. 

A glance at a standard calculus book reveals that the curvature of a function f at 
a point . θ is given by 

. c (θ) = f ′′ (θ)[
1 + f ′ (θ)2

]3/2 .

In the present case, the function f is the loglikelihood . � whose first derivative 
evaluated at .θ = θ̂ is equal to zero. The curvature of the loglikelihood at . θ = θ̂

is 

. c
(
θ̂
)

= �′′ (θ̂
)

.

(I use the standard notation .�′′
(
θ̂
)
for .

(
∂2�(θ |x,n)

(∂θ)2

)∣∣∣
θ=θ̂

). 

Note As the loglikelihood increases or decreases, so does the likelihood; therefore, 
the value of the parameter that maximises one also maximises the other. Working 
with the loglikelihood is to be preferred to working with the likelihood function 
because it is easier to differentiate a sum than a product. The curvature of the 
loglikelihood at the MLE is related to the sample variance of the MLE. This last 
point is illustrated in Fig. 1.4. As  n increases from 27 to 100, the likelihood function 
becomes sharper and more concentrated about the MLE. 

1.4 Incorporating Prior Information 

Imagine that there is prior information about the frequency . θ of allele A from 
comparable populations. Bayesian methods provide a natural way of incorporating 
such prior information into the model. This requires eliciting a prior distribution 
for . θ that captures what is known about . θ before obtaining the data sample. 
This prior distribution is combined with the likelihood (which, given the model,
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Fig. 1.4 Circled line: 
likelihood function for . θ , 
given .n = 27, x = 11. Full  
line: likelihood function for 
. θ , given . n = 100, x = 41
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contains all the information arising from the data) to form the posterior dis-
tribution that is the basis for the Bayesian inference. Specifically using Bayes 
theorem: 

.Posterior ∝ Prior × Likelihood. (1.6) 

If the prior density of . θ is labelled .g (θ), (1.6) becomes 

.p (θ |x, n) ∝ g (θ) L (θ |x, n) , (1.7) 

indicating that the posterior density is proportional to the prior density times the
likelihood. Probability statements about . θ require scaling (1.7). This involves 
dividing the right-hand side of (1.7) by  

.

∑
i

g (θi) L (θi |x, n) , (1.8) 

if . θ is discrete (in which case g is a probability mass function), or by 

.

∫
g (θ) L (θ |x, n) dθ, (1.9)

if it is continuous (in which case g is a probability density function).
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Using a Discrete Prior 

This example is adapted from Albert (2009). Continuing with the binomial model, 
a simple approach to incorporate prior information on . θ is to write down possible 
values and to assign weights to these values. A list of possible values of . θ could be 

.0.05, 0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85, 0.95. (1.10) 

Based on previous knowledge, one is prepared to assign the weights

. 1.0, 5.2, 8.0, 7.2, 4.6, 2.1, 0.7, 0.1, 0.0, 0.0

that are converted to probabilities dividing each weight by the sum; this gives the 
prior probability distribution of . θ

.0.04, 0.18, 0.28, 0.25, 0.16, 0.07, 0.02, 0.00, 0.00, 0.00. (1.11) 

The likelihood for . θ is proportional to (1.1). The combinatorial term does not 
contain information about . θ , so one can write 

. L (θ |x = 11, n = 27) ∝ θ11 (1 − θ)27−11 .

Evaluating this expression for all the possible values of . θ in (1.10) yields a list of 
ten numbers (too small to be written down here). Label these ten numbers: 

.L (0.05) , L (0.15) , . . . , L (0.95) . (1.12) 

To obtain the posterior (1.7), the terms in (1.11) are multiplied by the corresponding 
term in (1.12). For example, 

. p (θ = 0.05|x = 11, n = 27) ∝ 0.04 × L (0.05) ,

p (θ = 0.15|x = 11, n = 27) ∝ 0.18 × L (0.15) ,

and so on with the remaining eight terms. After scaling with the sum 

. 0.04 × L (0.05) + 0.18 × L (0.15) + · · · + 0.00 × L (0.95) ,

posterior probabilities can be assigned to the ten possible values of . θ . These 
posterior probabilities are (rounded to two decimal places) 

. 0.00, 0.00, 0.13, 0.48, 0.33, 0.06, 0.00, 0.00, 0.00, 0.00.

Based on these posterior probabilities, the posterior mean of . θ is .0.38, and the 
probability that . θ falls in the set .{0.25, 0.35, 0.45} is .0.94.
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Using a Beta Prior: The Beta-Binomial Model 

Another possible prior is to assign a beta distribution to . θ with the appropriate 
parameters to reflect prior information. This is a continuous distribution with 
support between 0 and 1 and has two parameters denoted as a and b that determine 
the shape. When .a = b, the distribution is symmetric. 

One way of using a beta distribution that matches the prior probabilities (1.11) is  
as follows. Notice that the sum of the first three probabilities in (1.11) represents the 
probability that . θ is smaller than or equal to .0.25. This probability is equal to .0.50. 
Similarly, the sum of the first five probabilities is the probability that . θ is smaller 
than or equal to .0.45. This probability is equal to .0.91. The values of . θ equal to 
.0.25 and .0.45 are two quantiles. Let .F(0.25; a, b) and .F(0.45; a, b) represent the 
cumulative distribution functions (cdf) of the beta distribution for .θ = 0.25 and 
for .θ = 0.45, respectively (the cdf is .F(x; a, b) = Pr (X ≤ x; a, b)). Then the 
parameters a and b of the beta distribution that match the prior probabilities (1.11) 
can be found by minimising the function 

. (F (0.25; a, b) − 0.5)2 + (F (0.45; a, b) − 0.91)2

with respect to a and b. This can be achieved using the function OPTIM in R as 
indicated in the following code: 

mod <- function(par){ 
a <- par[1] 
b <- par[2] 
fct <- (pbeta(0.25,a,b)-0.5)^2 + (pbeta(0.45,a,b)-0.91)^2 
return(fct) 

} 
res <- optim(par=c(3,3),mod) 
res$par 

## [1] 2.89705 8.04717 

The function returns .a = 2.90, .b = 8.05. As a check, one can compute the 
cumulative distribution functions: 

pbeta(0.45,2.9,8.05) 

## [1] 0.9099298 

pbeta(0.25,2.9,8.05) 

## [1] 0.4995856 

Figure 1.5 displays the discrete prior defined by (1.10) and (1.11) and the prior 
based on .Be (2.90, 8.05).
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Fig. 1.5 Left: discrete prior distribution defined by (1.10) and  (1.11). Right: beta prior 
. Be(2.90, 8.05)

As mentioned above, the likelihood is proportional to (1.1); that is, 

.L (θ |x, n) ∝ θx (1 − θ)n−x . (1.13) 

Seen as a function of . θ , this is the kernel of a beta distribution with . a = x + 1
and .b = n − x + 1. The pdf (probability density function, sometimes referred to as 
density function) of the beta distribution is 

. p (θ) = � (a + b)

� (a) � (b)
θa−1 (1 − θ)b−1 , θ ∈ [0, 1] , a, b > 0,

where . � is the gamma function. The posterior distribution is obtained by combining 
this likelihood with the prior .Be (2.90, 8.05). This results in a posterior distribution 
that has the beta density with parameters .x +1+2.90−1 and .n−x +1+8.05−1. 
The posterior distribution has the form 

.p (θ |x = 11, n = 27) = Be (13.90, 24.05) . (1.14) 

Figure 1.6 displays plots of the prior, the likelihood and the posterior for the 
example. The posterior distribution is sharper than the prior distribution, and its 
probability mass is concentrated between that of the prior distribution and the 
likelihood. In Bayesian inference, the posterior distribution provides the necessary 
information for drawing conclusions about . θ . For example, the mean, mode and 
median of (1.14) are  .0.37, .0.36, .0.36. The  .95% posterior interval for the posterior 
mean is .(0.24, 0.50). The inference using the Bayesian approach is sharper than 
that based on the likelihood (1.5). Further, the frequentist confidence interval and 
the Bayesian posterior intervals have different interpretations. In the latter, the
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Fig. 1.6 The prior density .Be(2.90, 8.05), the likelihood .Be(12, 17) and the posterior density 
.Be(13.90, 24.05) of the probability . θ

confidence interval is fixed and the associated probability is the probability that 
the true parameter falls in the interval. 

Note If a prior for . θ is .Be (a, b), then .p (θ) ∝ θa−1 (1 − θ)b−1. The  
likelihood of the binomial model is proportional to .θx (1 − θ)n−x which is 
the kernel of .Be (x + 1, n − x + 1). The posterior is then proportional to 
.θa+x−1 (1 − θ)b+n−x−1 that is the kernel of .Be (a + x, b + n − x). 

Prior Influence on Inferences 

ABayesian analysis is seldom complete without investigating how prior information 
affects the conclusions. In this example, one can compare the inference about . θ
using either the discrete or the beta prior. With the former, the mean is .0.38 and the 
probability that . θ falls in the set .{0.25, 0.35, 0.45} is .0.94. The numerical values 
arrived at with the beta prior are quite similar. 

In a situation where no prior information is available about . θ , one could resort 
either to maximum likelihood or to a Bayesian approach with a non-informative 
prior. The development of non-informative (or reference) priors can become quite 
technical, especially in complex model scenarios; a pragmatic approach is often 
chosen along the following lines. In the absence of information about . θ , the  
investigator may consider three possible beta distributions as displayed in Fig. 1.7 
(taken from Carlin and Louis 1996). The so-called Jeffrey’s prior is transformation
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Beta(0.5,0.5) (Jefrreys prior) 

Beta(1,1) (Uniform prior) 

Beta(2,2) (Week prior) 

Fig. 1.7 The densities .Be(0.5, 0.5), .Be(1, 1) and .Be(2, 2) to model prior information about . θ

invariant; the .Be(1, 1) is a special case that retrieves a uniform distribution 
(assigning equal probabilities to all values of . θ ); the .Be(2, 2) is mildly informative 
assigning larger probabilities to intermediate values of . θ . The combination of these 
priors with the likelihood .θ11 (1 − θ)16 gives rise to the three posterior distributions 
shown in Fig. 1.8. 

In this particular example, three very different prior distributions give rise to 
very similar posterior distributions. This is often the case when the likelihood is 
very informative relative to the prior distribution. Using the uniform prior .Be(1, 1), 
the posterior is .Be(12, 17) with mean value (the mode and median are almost the 
same) and .95% posterior interval equal to .0.41 and .(0.24, 0.59), respectively. The 
posterior interval is a little wider than that based on the sharper prior . Be (2.90, 8.05)
and almost identical (numerically) to the one based on the normal approximation to 
the maximum likelihood estimator. The posterior probability that . θ is less than or 
equal to . 0.2 is 

.

θ=1∫
θ=0

I (θ ≤ 0.2) p (θ |y, n) dθ = 0.00496. (1.15)



1.4 Incorporating Prior Information 15

Fig. 1.8 The three posterior 
distributions corresponding to 
the three priors of Fig. 1.7 
when . n = 27, x = 11
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Posterior (Jefrreys prior) 
Posterior (Uniform prior) 
Posterior (Week prior) 

Simulating from the Posterior Distribution 

Inferences drawn in the examples above were exact. This is possible when the 
analytical form of the posterior distribution is known and features from it (such as 
probability intervals and moments) can be calculated. In principle, features from any 
posterior distribution can also be obtained using samples drawn from it, making use 
of standard theorems from the time series literature. For example, any function of 
the random variable X, .h (X) with finite expectation .E(h (X)) can be approximated 
by 

.E (h (X)) ≈
∑N

i=1 h (xi)

N
, (1.16) 

where N is the sample size. Using . R, a sample .(xi)
100,000
i=1 of size .100,000 from the 

posterior .Be(12, 17) results in a sample mean: 

. E (X) ≈
100,000∑

i=1

xi

100,000
= 0.41.

A .95% posterior interval for . θ can be estimated as the . 2.5th to .97.5th percentiles of 
the empirical distribution of the draws . xi using the R function quantile. If the  
original dataset is denoted dat, the  R code is:
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set.seed(7117) 
dat <- rbeta(100000,12,17) 
quantile(dat,c(0.025,0.975)) 

## 2.5% 97.5% 
## 0.2454898 0.5942647 

Finally, using the simulated values, a Monte Carlo estimate of the posterior 
probability that . θ is less than or equal to . 0.2 is obtained using 

. ̂Pr (θ ≤ 0.2) = 1

100,000

100,000∑
i=1

I (xi ≤ 0.2) = 0.00499,

which is a Monte Carlo estimator of (1.15). These figures are in good agreement 
with the exact results. 

In this example, it was straightforward to sample directly from the posterior 
distribution because the normalising constant (1.9) is known, and therefore the form 
of the posterior is fully specified. Often the normalising constant cannot be obtained 
in closed form, particularly when . θ contains many elements. Chapter 4 discusses 
how Monte Carlo draws from the approximate posterior distribution can still be 
obtained using Markov chain Monte Carlo (McMC) methods. 

An important issue with inferences based on Monte Carlo samples from posterior 
distributions is the accuracy of posterior summaries. The latter are subject to 
sampling uncertainty that depends on the size of the Monte Carlo sample and on 
the degree of autocorrelation of the samples. Methods to quantify this uncertainty 
are reviewed in Chap. 4. 

Estimating Moments Using (Correlated) Samples from Posterior 
Distributions 

Result (1.16) is extremely useful and is applied routinely in an McMC environment 
to estimate features from posterior distributions. Typically, the elements that 
constitute the sample are correlated. However, despite this correlation structure, 
consistent estimators of features of posterior distributions can be obtained. For 
example, the sample mean 

.μ̂ = 1

N

N∑
i=1

xi, (1.17)
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the lag-k sample autocovariance 

.γ̂ (k) = 1

N

N∑
i=1

(xi − μ̂) (xi+k − μ̂) (1.18) 

and the lag-k sample autocorrelation

.ρ̂ (k) = γ̂ (k)

γ̂ (0)
(1.19) 

are consistent estimators of the respective population parameters. In (1.19), .γ̂ (0) is 
the sample variance. 

As an example, consider generating draws from the lag-1 autoregressive model 

.xt = ρxt−1 + et , |ρ| < 1, et ∼ N
(
0, σ 2 = 1

)
, t = 1, . . . , N, (1.20) 

where the .e′s are iid (independently and identically distributed). Using R, I  
simulated .N = 1000, .10,000 and .100,000 observations from (1.20) using  . ρ = 0.8
and .σ 2 = 1, with the initial condition .x1 ∼ N (0, 1). This generates a strongly 
autocorrelated structure among the draws. The marginal mean and variance of this 
process are 

. E (xt ) = 0,

Var (xt ) = σ 2

1 − ρ2 .

The estimates of the mean (. 0.0), variance (.2.778) and correlation (. 0.8) with samples 
of size .N = 1000, .N = 10,000 and .N = 100,000 are .(−0.060, 2.731, 0.793), 
.(−0.046, 2.749, 0.797) and .(0.018, 2.774, 0.800), respectively. Despite the rather 
strong degree of autocorrelation, the estimates are quite acceptable and get closer to 
the true values as sample size increases. 

1.5 Frequentist or Bayesian? 

There has been much heated debate between frequentists and Bayesians about 
the advantages and shortcomings of both methods of inference. One can easily 
construct examples where one of the methods gives silly answers and the other 
performs fairly well. One such example is the following. Imagine that in the 
situation discussed above, rather than obtaining .x = 11 copies of allele A in a 
sample of size .n = 27, one obtained .x = 0. This outcome is not unlikely when 
. θ is small; for example, the probability of obtaining .x = 0 when .n = 27 and
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Posterior (Jefrreys prior) 
Posterior (Uniform prior) 
Posterior (Week prior) 

Fig. 1.9 The three posterior distributions corresponding to the three priors of Fig. 1.7 when . n =
27, x = 0

.θ = 0.04 is .Pr (x = 0|n = 27, θ = 0.04) = 0.33. In this situation, the maximum 
likelihood (ML) estimate (1.2) is 0 and its variance is also 0, which is clearly a silly 
result (classical maximum likelihood is problematic when the estimate lies on the 
boundary of the parameter space). 

How does the Bayesian approach behave in such a situation? The three posterior 
distributions corresponding to the three priors of Fig. 1.7 are shown in Fig. 1.9. 
Jeffrey’s prior and mathematical form as the likelihood, proportional to (.(1 − θ)27), 
lead to posterior distributions .Be (0.5, 27.5) and .Be (1, 28), respectively; these have 
modal values of 0. The weakly informative prior .Be (2, 2) yields a posterior of the 
form .Be (2, 29), which has a mode at .θ ≈ 0.034. The posterior means of these three 
distributions are .0.018, .0.034 and .0.065, respectively. The .95% posterior intervals 
are 

. 

(
0.18 × 10−4, 0.88 × 10−1

)
,

(
0.90 × 10−3, 0.12

)
,

(
0.81 × 10−2, 0.17

)
,

respectively. The posterior probabilities that . θ is less than or equal to .0.05 for 
.Be (0.5, 27.5), .Be (1, 28) and .Be (2, 29) are .0.91, .0.76 and .0.45, respectively. 
In this extreme situation, prior information plays an important role (certainly, 
compared to the case .n = 27, .x = 11, displayed in Fig. 1.8).
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Beta(2,52) (Posterior Distribution) 

Beta(2,25) (Prior Distribution) 

Fig. 1.10 A .Be(2, 25) prior distribution and a .Be(2, 52) posterior distribution when . n = 27, x =
0

One may consider other priors from the beta family that put strong probability 
mass in the neighbourhood of zero. One possibility is to use a .Be (2, 25) that has a 
mode at .θ = 0.04. With .n = 27 and .x = 0, this results in a posterior .Be (2, 52). 
The prior and posterior distributions are plotted in Fig. 1.10. The mean and the mode 
of the posterior distribution are .0.037 and .0.019, respectively. The .95% posterior 
interval is now .(0.005, 0.101) and .Pr (θ ≤ 0.05|n = 27, x = 0) = 0.75. 

The beta prior does not assign probability mass to .θ = 0, and this rules out 
the possibility that .θ = 0 in its posterior distribution. One way of including 0 as a 
possible value for . θ is to use a two-component mixture prior, where one component 
is a point mass at zero and the other is a beta prior. Mixture distributions are 
discussed in Chaps. 3, 7 and 9. 

There is flexibility associated with the Bayesian approach and a carefully chosen 
prior distribution will lead to stable inferences about . θ . The cost is a result which 
is partly affected by prior input. With small amount of data and when parameters 
lie in the border of the parameter space, there is little else to choose from. In 
such a situation, the most important role of prior distributions may well be to 
obtain inferences about . θ that are stable and that provide a fair picture of posterior 
uncertainty, conditional on the model. 

Frequentist and Bayesian 
There are situations where instead of choosing between frequentist or Bayesian, 
one could use frequentist and Bayesian tools in a meaningful way. This is the case 
with model checking where one is interested in studying the ability of a model to 
account for particular features of the data or to give reasonable predictions of future
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observations. Key literature is Rubin (1984), Gelman et al (1995) and Gelman et al 
(1996). Suppose that data vector . y (length n) are a realisation from the sampling 
model .p (y|θM,M), where . θM is a vector of parameters and M represents the 
assumed model. If this assumption is adequate, then one would expect that a new 
realisation from .p (·|θM,M) should result in a vector .yrep say, that resembles y. 
Instead of working in n dimensions, one can construct a scalar function T of the 
data and . θM , .T (y, θM), designed to study a particular feature of the data that is 
scientifically relevant. One can then compare the observed value of .T (y, θM) with 
its sampling distribution under .p (·|θM,M). An observed value that falls in the 
extreme tails of the sampling distribution indicates a potential failing of the model 
to account for T . Equivalently, one can study whether zero is an atypical value in 
the distribution of the difference .T (y, θM) − T

(
yrep, θM

)
. 

Parameter . θM is typically unknown. The frequentist proposition is to replace . θM

by some point estimator . θ̂M and then proceed as above treating . θM as known and 
equal to . θ̂M . 

A Bayesian rather than generating data .yrep from .p
(
yrep|θ̂M,M

)
does so from 

.p
(
yrep|y,M

)
, the density of the posterior predictive distribution, given by 

.p
(
yrep|y,M

) =
∫

p
(
yrep|θM, y,M

)
p (θM |y,M) dθM (1.21) 

where often, .p
(
yrep|θM, y,M

) = p
(
yrep|θM,M

)
. One then observes whether zero 

is an extreme value in the posterior predictive distribution .T (y, θM)−T
(
yrep, θM

)
, 

where . θM is generated from the posterior .[θM |y,M] and given . θM , .yrep is generated 
from .[yrep|θM,M]. This “Bayesian frequentist”, like the frequentist, accounts 
for the uncertainty in .yrep due to the sampling process from .p

(
yrep|θM, y,M

)
. 

However, unlike the frequentist, account is also taken of the uncertainty about 
. θM described by its posterior distribution .[θM |y,M]. Model checking applied in 
this manner, although embedded in the Bayesian paradigm, is frequentist in spirit 
because it decides whether the observed data look reasonable under the posterior 
predictive distribution based on repetitions of data that could have been generated 
by the model. All this is typically carried out using McMC methods that provide 
great flexibility to question models. 

Model checking using posterior predictive distributions is discussed in Chap. 10. 

1.6 Prediction 

The second part of the book provides an introductory overview of prediction. 
A stylised setup is as follows. Data matrix z has the structure .zi = (xi, yi), 
.i = 1, 2, . . . , n, where . xi is a p-dimensional vector of covariates (or predictor 
variables); . yi , a scalar, is a response variable; and the n vectors are independent 
and identically distributed realisations from some distribution. Examples of both
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parametric (frequentist and Bayesian) and nonparametric models are given here. In 
the case of parametric models where the response y is quantitative, a general form 
for the association between x and y is 

.yi = f (xi) + ei, (1.22) 

where f , the conditional mean, is a fixed unknown function of . xi and of parameters 
and . ei is a random error term, assumed independent of . xi , with mean zero. Using 
the data z, an estimate of  f labelled . f̂ is obtained by some method that leads to 
.Ê(y0|x0) = ŷ0, a point prediction of the average value of . y0, evaluated at a new 
value of the covariate .x = x0 (in a frequentist setting, conditional on estimates of 
parameters that index f ): 

.̂y0 = f̂ (z, x0) . (1.23) 

The notation emphasises that the estimation procedure inputs data z and yields a
prediction . ŷ0 for .x = x0. For example, in standard least squares regression . f (xi) =
E(yi |xi) = x′

ib, .f̂ (z, x0) = x′
0b̂, where .̂b = (

x′x
)−1

x′y and . x′
i is the ith row of 

matrix x. 
With binary responses, one may fit a logistic regression. Here, the modelling is at 

the level of the probability. Specifically, letting .Pr (yi = 1|xi) = π (xi), the logistic 
model can be written as 

. ln

[
π (xi)

1 − π (xi)

]
= x′

ib, i = 1, 2, . . . , n.

A maximum likelihood estimate . ̂b together with a new input . x0 results in a 
predicted probability .̂π (x0) that can be transformed into a predicted value according 
to the rule: 

.̂y0 =
{
1 if π̂ (x0) ≥ 0.5
0 if π̂ (x0) < 0.5.

(1.24) 

Measuring Prediction Performance 
The performance of the predictions can be evaluated measuring how well they match 
observed data. One measure of predictive performance is the sample mean squared 
error (.MSE) :  

.MSEt = 1

nt

nt∑
i=1

(yi − ŷi )
2 (1.25) 

where . nt is the number of records and .̂yi = f̂ (z, xi). When .MSEt (1.25) is  
computed using the data that was used to fit the model, the training data, it is  
known as the sample training mean squared error. If the objective is to study how 
well the model predicts a yet-to-be-observed record, .MSEt can be misleading as it
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Table 1.1 Training and validating mean squared errors for the prostate cancer data, as the 
number of covariates included in the linear predictor increases from 5 to 30. A standard logistic 
model is implemented, and the mean squared errors represent the proportion of misclassifications 
in the training and validating data 

No. of covariates 5 10 15 20 25 30 

.MSEt 0.29 0.31 0.16 0.12 0.06 0.00 

.MSEv 0.27 0.37 0.25 0.33 0.35 0.39 

overestimates predictive performance. In fact, it can be made arbitrarily small by 
including a large number of covariates. 

A more reliable measure of the prediction ability of the model is to test how well 
predictions match observations from a new sample of data . z0 (or hold-out data), the 
validating data, drawn from the same distribution as the training data. The validating 
data is .z0i = (y0i , x0i ), .i = 1, 2, . . . , nv and the sample validating mean squared 
error is 

.MSEv = 1

nv

nv∑
i=1

(y0i − ŷ0i )
2 . (1.26) 

In (1.26) . ̂y0i is the ith prediction computed using the training data z evaluated 
at the value of the ith covariate . x0i . That is, .̂y0i = f̂ (z, x0i ). With binary 
observations, (1.25) and (1.26) represent the proportion of cases where .̂y0i 	= y0i , 
or misclassification error . 

As an illustration of some of these concepts, I use data from a microarray study 
of prostate cancer from Singh et al (2002). The study includes 52 men with tumour, 
50 healthy men and a total of .n = 102 men. The genetic expression of a panel 
of .p = 6033 genes was measured for each man. The level of gene expression is 
associated with the level of activity of the gene. A larger number implies a more 
active gene. The .n × p matrix of covariates is then . x = {xij }, i = 1, 2, . . . , n =
102; j = 1, 2, . . . , p = 6033, with .p 
 n. 

Fitting Traditional Logistic Regression 
To illuminate some of the consequences of overfitting, a first analysis is undertaken 
with traditional logistic regression models involving .p < n. Data are divided 
into training and validating sets with equal numbers in each. The logistic models 
are fitted to the training data using maximum likelihood, and the estimates of the 
parameters are used to predict the outcome (healthy/not healthy) in the validating 
data. The models differed in the number of covariates included. The change in 
.MSEt and .MSEv as the number of covariates (columns in x) increases in the 
different models from .p = 5 to .p = 30 in steps of 5 is shown in Table 1.1 for 
one training/validating split. The covariates were arbitrarily chosen as the first 5 
columns of x, the first 10 and so on. The figures in the table show an increase in 
.MSEv as the number of covariates increases beyond 15 and a parallel increase of
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the overstatement of the model’s predictive ability, as judged by the steady fall in 
.MSEt when the number of covariates is larger than 10. 

The code below reads the data (singh2002), splits it into a training and a 
validating/testing set (y.test and y.train) and in the bottom part, 

• fits a logistic regression to the training data using the R-function GLM 
• using the ML estimates, computes the predicted liabilities in the training and 

validating data 
• based on these liabilities, computes .Pr(Y = 1|̂b), where . ̂b is the ML estimate 
• transforms the probabilities into the .0/1 scale 
• computes .MSE (misclassification error) in the training and validating data 

The figures in Table 1.1 were generated using this code. The code illustrates the 
case with 15 covariates (first 15 columns of matrix x). The output agrees with the 
figures in the third column of the table: 

# CODE0101 
# READING SINGH ET AL 2002 DATA 
rm(list=ls()) # CLEAR WORKSPACE 
# Lasso solutions using package glmnet 
#install.packages("glmnet", .libPaths()[1]) 
#install.packages("sda") 
library("sda") 

library(glmnet) 

data(singh2002) 
X<-singh2002$x 
y<-ifelse(singh2002$y=="cancer",1,0) 
n<-nrow(X) 
Xlasso<-X 
set.seed(3037) 
train=sample(1:nrow(X),nrow(X)/2) 
test=(-train) 
y.test=y[test] 
y.train<-y[train] 
# 
# RESAMPLES TRAIN/TEST DATA AND COMPUTES MSE 
# FOR EACH RESAMPLE/REPLICATE 
t1 <- seq(1,15,1) # CHOOSE THE FIRST 15 COLUMNS OF x 
X1 <-X[,t1] 
n <- length(t1) 
datarf <- data.frame(cbind(y,X)) 
nc <- 1 # EXAMPLE WITH 1 REPLICATE ONLY 
res <- matrix(data=NA, nrow=nc,ncol=3) 
for(i in 1:nc){ 

if(i > 1){train <- sample(1:nrow(datarf),nrow(datarf)/2)} 
glm.fit <- glm(y[train] ~ X1[train,] , 

family=binomial(link="logit"))
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# CALCULATE PREDICTED LIABILITY FOR THE TRAINING (liabT) AND THE 
# VALIDATING DATA (liabV) 

liabV <- X1[-train,1:n]%*%glm.fit$coefficients[2:(n+1)]+ 
glm.fit$coefficients[1] 

liabT <- X1[train,1:n]%*%glm.fit$coefficients[2:(n+1)]+ 
glm.fit$coefficients[1] 

# COMPUTE Pr(Y=1) BASED ON THESE LIABILITIES 
probT <- exp(liabT)/(1+exp(liabT)) 
probV <- exp(liabV)/(1+exp(liabV)) 

# COMPUTE PREDICTED VALUES IN TRAINING AND VALIDATING DATA 
# ON THE 0/1 SCALE 

predT <- ifelse(probT > 0.5, "1", "0") 
predV <- ifelse(probV > 0.5, "1", "0") 

# COMPUTE MISCLASSIFICATION ERROR 
predclassT <- mean((as.numeric(predT) - y.train)^2) 
predclassV <- mean((as.numeric(predV) - y.test)^2) 

# IF CURIOUS COMPUTE LOG-LIKELIHOOD, DEVIANCE, 
# AIC USING TRAINING DATA 

# ll <- sum(y.train*liabT) - sum(log(1+exp(liabT))) 
# dev <- -2*ll 
# AIC <- dev + 2*(n+1) 
# *********************************** 

res[i,] <- c(n,predclassT,predclassV) 
} 
res 

## [,1] [,2] [,3] 
## [1,] 15 0.1568627 0.254902 

Selection of Covariates for Prediction 
An objective of the experiment above is to find genes that may have an effect 
on prostate cancer. The data are typical of a genomic setup where the number of 
variables p (e.g. genetic markers) measured for each individual is considerably 
larger than the number of individuals n; the classical .p 
 n scenario. In the context 
of prediction, these variables enter as covariates in linear regression or logistic 
regression models, but only a subset are likely to contribute meaningfully. Inclusion 
of redundant variables may improve model fit (reflected in small values of training 
mean squared error, .MSEt ), but will definitely result in poor predictions. From the 
point of view of model implementation, when .p 
 n, some form of regularisation 
or shrinkage is needed. This constitutes an important topic of the book. Three 
examples are provided in this overview. The first is a parametric model; the other 
two are nonparametric approaches specifically developed, but not restricted to, to 
deal with the .p 
 n situation. Like many of the tools used for the analysis of the 
type of data sets commonly found in genomic studies, these models can be useful 
as guidance in the choice of predictors for further study. 

Fitting the Lasso 
The parametric example is based on the lasso (Tibshirani 1996 , “least absolute 
shrinkage and selection operator”) that is a regularisation method with a tuning 
parameter governing the amount of shrinkage of the regression parameters towards
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zero. Since the lasso solutions typically include many coefficients equal to zero 
when the tuning parameter is sufficiently large, it does model selection and 
shrinkage simultaneously. 

The lasso logistic regression model is fitted using the public package glmnet 
(Friedman et al 2009) implemented in R. Documentation about glmnet can be found 
in Hastie and Qian (2016) and in Friedman et al (2010). 

To obtain predictions, the code below executes first the function cv.glmnet on 
the training data in order to find the value of the tuning parameter (. λ) that optimises 
prediction ability measured by .MSE. In a second step, glmnet is executed again 
on the training data using this best . λ to obtain the final values of the regression 
parameters. The code then constructs the predictions from the output of this second 
run. The model is finally tested on the training and on the validating data. 

A more direct implementation of glmnet without the need to generate estimates 
of regression parameters is indicated at the bottom of the code. 

The lasso logistic regression was run on the prostate data including all 6033 
covariates representing the gene expression profiles. Lasso chooses 36 covariates 
and sets the remaining equal to zero. The model with these 36 covariates was used 
to classify the observations in the validating data and resulted in a .MSEv equal to 
.0.25. In other words, .51×0.25 ≈ 13 out of the 51 observations in the validating data 
are incorrectly classified. At face value, the result for .MSEv matches that obtained 
in Table 1.1 when the first 15 columns of x were included in the linear predictor. 
The latter can be interpreted as a logistic regression model where 15 out of 6033 
covariates are randomly chosen. The result based on the lasso is not encouraging: 

# CODE0102 
# READING SINGH ET AL 2002 DATA 
rm(list=ls()) # CLEAR WORKSPACE 
# Lasso solutions using package glmnet 
#install.packages("glmnet", .libPaths()[1]) 
#install.packages("sda") 
library("sda") 
library(glmnet) 
data(singh2002) 
X<-singh2002$x 
y<-ifelse(singh2002$y=="cancer",1,0) 
n<-nrow(X) 
Xlasso<-X 
set.seed(3037) 
train=sample(1:nrow(X),nrow(X)/2) 
test=(-train) 
y.test=y[test] 
y.train<-y[train] 
# 
# ********** FOR PREDICTION USING LASSO ***************** 
repl <- 1 # NUMBER OF REPLICATES 
# (RESAMPLES TRAINING / VALIDATING) 
result <- matrix(data=NA, nrow=repl,ncol=4) 
set.seed(3037) 
for (i in 1:repl){ 

if(i > 1){train <- sample(1:nrow(Xlasso),nrow(Xlasso)/2)} 
y.train <- y[train]
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y.test <- y[-train] 
# STEP 1: cross-validation; find best value of lambda 
# alpha=1: LASSO; alpha=0: RIDGE REGRESSION 

cv.out=cv.glmnet(Xlasso[train,],y[train],alpha=1, 
family="binomial",type = "class") 

#plot(cv.out) 
bestlam=cv.out$lambda.min 

#bestlam 

# Using best lambda, fit model on training data 
# to obtain final parameter estimates 

# STEP 2 
fm=glmnet(y=y[train],x=Xlasso[train,],alpha=1,lambda=bestlam, 

family="binomial",type.measure= "class") 
nzcf<-coef(fm) 
cf<-which(fm$beta[,1]!=0) 
if (length(cf) == 0){ 

out <-c(i,length(cf)) 
print(out) 
break 

} 
#length(cf) # NO. REGRESSION PARAMETERS IN FINAL MODEL 
# CONSTRUCT PREDICTIONS FROM OUTPUT OF fm 
# 1. VALIDATING DATA 

predglmnet<-fm$a0+Xlasso[-train,cf]%*%fm$beta[cf] 
probs <- exp(predglmnet)/(1+exp(predglmnet)) 
predclass_test <- as.numeric(ifelse(probs > 0.5, "1", "0")) 

# 2. TRAINING DATA 
predglmnet<-fm$a0+Xlasso[train,cf]%*%fm$beta[cf] 
probs <- exp(predglmnet)/(1+exp(predglmnet)) 
predclass_train <- as.numeric(ifelse(probs > 0.5, "1", "0")) 
result[i,] <- c(mean((predclass_train-y.train)^2), 

mean((predclass_test-y.test)^2),bestlam,length(cf)) 
} 
result 

## [,1] [,2] [,3] [,4] 
## [1,] 0 0.254902 0.01948886 36 

#NOTE: for prediction, GLMNET can be implemented more directly, 
# using in STEP2: 
############################################################### 
# fm.predclass=predict(cv.out,s=bestlam,newx=Xlasso[test,], 
# family="binomial",type="class") 
# mean((as.numeric(fm.predclass)-y.test)^2) # VALIDATION ERROR 
# RATE (BASED ON CLASS LABELS) 

############################################################### 

The somewhat disappointing performance of the lasso was investigated further 
by random splitting the training/testing data set 50 times. This provides a picture 
of the sampling variation of the .MSE over the joint distribution of training/testing 
data. The mean validating mean squared error, over the 50 replicates, was .0.30, 
with a minimum of .0.16 and a maximum of .0.53. The number of covariates not set 
equal to zero ranged from 2 to 41 with a median of 24. There is not a model that
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is consistently singled out as a good predictor over replications. This is a reflection 
of the ubiquitous multicollinearity in a multidimensional setting where covariates 
become highly correlated (a covariate can be expressed as a linear combination of 
others). Therefore, a different set of covariates is chosen in each replication. 

Fitting a Classification Tree 
The first of the two nonparametric models that are fitted to the data is a 
classification tree (Breiman et al 1984), that is described briefly via 
the example generated by the R-code below. The code executes the R function 
tree; this requires installation of the package tree. The data set singh2002 
includes 6033 covariates and the response variable is y: a binary classification 
variable with modalities “healthy” and “cancer”: 

# CODE0103 
rm(list=ls()) # CLEAR WORKSPACE 
set.seed(30331) 
#install.packages("tree") 
library(sda) 
library(tree) 
# library(glmnet) 
data(singh2002) 
d <- data.frame(singh2002$x) 
d$y <- singh2002$y 
nrep <- 1 # NUMBER OF REPLICATES 
res <- matrix(data=NA,nrow=nrep,ncol=3) 
ptm<-proc.time() 
for ( i  in 1:nrep ) { 

cat(i,"\n",sep="") 
train <- c(sample(1:50,25),sample(51:102,26)) 

# FIT THE TREE TO THE TRAINING DATA 
trees <- tree(y ~ . ,  data=d[train,]) 

# FIT FUNCTION PREDICT TO THE TRAINING AND VALIDATING DATA 
predtreev <- predict(trees,d[-train,],type="class") 
predtreet <- predict(trees,d[train,],type="class") 

# CLASSIFICATION ERROR IN TRAINIMG AND VALIDATING DATA 
predv <- sum(predtreev==d$y[-train])/length(d$y[-train]) 
predt <- sum(predtreet==d$y[train])/length(d$y[train]) 

# RECORD TRAINING / VALIDATING CLASSIFICATION ERROR AND 
# NUMBER OF COVARIATES IN TREE 

res[i,]<-c((1-predt),(1-predv),length(summary(trees)$used)) 
} 

## 1 

proc.time()-ptm 

## user system elapsed 
## 2.95 0.17 3.12 

res 

## [,1] [,2] [,3] 
## [1,] 0 0.1764706 2
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tab <- table(predtreev,d$y[-train]) 
tab 

## 
## predtreev cancer healthy 
## cancer 17 0 
## healthy 9 25 

# CHECK CLASSIFICATION ERROR 
(tab[1,2]+tab[2,1])/(length(d$y[-train])) 

## [1] 0.1764706 

#summary(res) 
#plot(trees) 
#text(trees,pretty=0) 

Figure 1.11 indicates that in the particular replicate, the algorithm isolated 2 
of the 6033 covariates, .X77 and .X237. Starting at the top of the tree, the 51 cases 
in the training data have been split into two groups: one, to the left, that shows 
expression profile for .X77 less than a threshold .t1 = −0.777 and those to the right 
with .t1 > −0.777. The group on the left is not split further and constitutes a terminal 
node. On the right side, a second split based on the profile of .X237 and a threshold 
.t2 = −0.855 gives rise to two terminal nodes. The result can be interpreted as an 
interaction between the two markers. 

Fig. 1.11 Output from a 
classification tree fitted to 
data singh2002 from 
Singh et al (2002) using the R 
function tree (R-code 
CODE0103). Results from 
one replicate 

| 
X77 < −0.777342 

X237 < −0.85516 

cancer 

cancer healthy
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A predicted value is attached to each terminal node. For a new individual, a 
predicted value is obtained by starting at the top of the tree and following the splits 
downwards until the terminal node with its predicted value is reached. The new 
individual is assigned the prediction given by that terminal node. In the example, 
if the new individual were to show a value for .X77 = −0.3 and for .X237 = −0.1, 
following the tree from top to bottom would lead to a prediction taking the modality 
“healthy”. 

Typing the tree object (in this case, trees) gives further details associated with the 
figure. Terminal nodes are indicated with asterisks. R prints output from each branch 
of the tree in the form of the node, split criterion t , the number of observations in the 
branch n, the  deviance, the classification for the branch (“cancer”/“healthy” in the 
present case) and the proportion of observations in the branch that take the values 
“cancer”/“healthy”: 

library(tree) 
trees 

## node), split, n, deviance, yval, (yprob) 
## * denotes terminal node 
## 
## 1) root 51 70.68 cancer ( 0.5098 0.4902 ) 
## 2) X77 < -0.777342 20 0.00 cancer ( 1.0000 0.0000 ) * 
## 3) X77 > -0.777342 31 30.46 healthy ( 0.1935 0.8065 ) 
## 6) X237 < -0.85516 6 0.00 cancer ( 1.0000 0.0000 ) * 
## 7) X237 > -0.85516 25 0.00 healthy ( 0.0000 1.0000 ) * 

The output above indicates that at the top of the tree at .X77 (which is the 
root since the tree is upside down), there are 51 records (the training data), and 
the proportion of “cancer” is .0.5098. After the first split, to the left, the split is 
.t1 < −0.777, and 20 observations are classified as “cancer” and 0 as “healthy” 
leading to proportions of (.1.00, 0.00). To the right, the split is .t1 > −0.777 that 
gives rise to 31 records, with a proportion of “healthy” equal to .0.8065 (25 out of 
the 31 records are "healthy, those whose .t2 > −0.855, associated with covariate 
.X237). 

Various algorithms are available to decide which variable to split and the 
splitting value t to use for the construction of the tree. Some of these topics 
are deferred to the chapter on nonparametric methods. Here, I concentrate on the 
predictive ability of the method. For the particular replicate, the classification error 
in the training and validating data is 0 and .0.18, respectively. Replicating the 
experiment 50 times gives a mean classification error in training and validating 
data equal to .0.016 and .0.197, respectively, with (minimum, maximum) values of 
(.0.000, 0.078) and (.0.098, 0.333), respectively. With the parameters for the utility 
function tree.control set at the default values, the number of covariates over 
the 50 replicates included in each tree fluctuates between 2 and 3, and these 
covariates vary over replicates. For these data, the classification tree performs 
considerably better than the lasso.
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Interestingly, in all the cases, the classification trees capture what can be 
interpreted as an interaction involving two or three covariates. These are not the 
same covariates for the 50 trees. Perhaps, this must not come as a surprise: 6033 
covariates give rise to more than 18 million different two-way interactions. There-
fore, predictors based on interacting covariates are prone to be highly correlated. 
More generally and as noted with the lasso, in the high-dimensional setting, the 
multicollinearity of the covariate matrix is often extreme, and any of the p covariates 
in the .n × p matrix can be written as a linear combination of the others. This means 
that there are likely many sets of pairs of covariates (other than .X77 and .X237) that 
could predict just as well. It does not follow that the model cannot be trusted as a 
prediction tool, but rather that one must not overstate the importance of .X77 and 
.X237 as the only genes associated with the response variable. As with the lasso, the 
analysis with the classification tree provides inconclusive evidence of specific genes 
affecting prostate cancer. 

Fitting a Random Forest 
A problem often mentioned with trees is that they exhibit high variability. Small 
changes in the data can result in the construction of very different trees and their 
predictions can be impaired. However, they are an integral part of another method 
known as random forest (Breiman 2001) whose prediction performance benefits by 
the process of averaging. The random forest consists of many classification trees 
and each is created as follows: 

• Create a sample of size . nv by drawing with replacement from the . nv data in the 
training data. Repeat this B times to generate B samples. (With random forests, 
there is an alternative way of estimating validating mean squared error using the 
entire data, without cross-validation. Details are discussed in Chap. 11). 

• For each sample, generate a classification tree. Each time a split in the tree is 
considered, a random sample of m unique predictors is chosen as split candidates 
from the p predictors. For classification, it is customary to use .m ≈ √

p. This  
step has the effect of decorrelating the ensemble of B trees (in classification 
trees, the construction of a split involves all the predictors). 

For classification, once the trees are available, the final prediction is obtained 
by a majority vote. Thus, for .B = 10, say, if for a particular observation in the 
validating data six or more trees classify it as . "1", the predicted value for this 
observation is . "1". The prediction obtained in this manner usually outperforms the 
prediction of classification trees. This improvement in performance arises from the 
fact that a prediction based on B predictors with very low correlation has smaller 
variance than a single prediction. The low correlation is ensured in the second 
step. The first step involving the bootstrapping of the training data is known as 
bagging, short for bootstrap aggregating, whereby the results of several bootstrap 
samples are averaged. (The mean squared error is a measure of the performance of 
a predictor, whose expectation includes the variance of the predictor, a squared bias 
term and a pure noise term associated with the variance of the predictand. Therefore, 
the performance of a predictor improves as its variance is reduced. This reduction
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Fig. 1.12 Average proportion of correct classifications in the validating data (in red) of a random 
forest over 200 replicates against the number of covariates included in the ensemble of trees. 
Maximum and minimum over replicates in blue 

is achieved by constructing a prediction averaged over several bootstrap samples 
whose variance is smaller than the variance of an estimate based on a single sample). 

To study prediction ability, the random forest was implemented on the singh2002 
data set using the R function RandomForest. I executed 200 replicates (200 splits 
of training/testing data), and in each replicate, the number of covariates included in 
the split of a particular tree ranged from 5 to 120 as indicated in the code below in the 
variable mtry <- c(5,20,50,80,120). The average proportion of correct 
classifications in the validating data (“cancer”, “healthy”), as well as the minimum 
and maximum over the 200 replicates as a function of the number of covariates 
(mtry in the . x− axis), is shown in Fig. 1.12. 

The results are quite impressive. The average proportion of correct classifications 
in the validating data is of the order of .97% with a minimum . −maximum in the 
range .84% − 100%. 

The code used to implement the random forest is shown below: 

# CODE0104 
#install.packages("randomForest") 
rm(list=ls()) # CLEAR WORKSPACE 
library(sda) 
library(randomForest) 
data(singh2002) 
d <- data.frame(X=singh2002$x) 
d$y <- singh2002$y 
n0 <- sum(d$y=="healthy") 
n1 <- sum(d$y=="cancer")
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set.seed(3037) 
p <- .5 
nrep <- 1 
mtry <- c(5,20,50,80,120) 
sumd <- data.frame() 
res <- rep(NA,nrep) 
ptm<-proc.time() 
for ( m  in mtry) { 

cat("mtry ",m,"\n",sep="") 
for ( rep in 1:nrep ) { 

cat("Replicate ",rep,"\n",sep="") 
train <- c(sample( 1:n0,floor(p*n0) ), 

sample( (n0+1):(n0+n1),floor(p*n1) )) 
rf.singh =randomForest(y ~., 

data=d, 
subset =train, 
mtry=m, 
importance =TRUE) 

predict <- predict(rf.singh,d[-train,]) 
observed <- d$y[-train] 
t <- table(observed,predict) 
print(t) 
res[rep] <- (t[1,1]+t[2,2])/sum(t) 

} 
sumd <- rbind(sumd,c(m,min(res),mean(res),median(res), 

max(res),var(res))) 
} 
proc.time()-ptm 
names(sumd) <- c("mtry","min","mean","median","max","var") 

with(sumd,plot(mtry,mean,type="l",col="red",ylim=c(min(min),1), 
ylab="1 - Mean Squared Error", 
xlab="Number of Predictors Considered at each Split")) 

with(sumd,lines(mtry,min,lty=2,col="blue")) 
with(sumd,lines(mtry,max,lty=2,col="blue")) 

While in this particular set of data the random forest was the clear winner among 
the prediction machines tested, it is important to mention that there is no uniformly 
best prediction machine. A different set of data may produce different results. Very 
marked differences among prediction methods ought to raise suspicion and warrant 
careful investigation of the data (Efron 2020). This is particularly important in this 
era of increasingly larger data sets where the consequence of bias due to non-random 
sampling is magnified. The point is elaborated in Meng (2018). Spurious results may 
be obtained by complex interactions between a prediction method and a particular 
structure in the training data at hand that may not be reproduced when the model is 
deployed using validating data. 

1.7 Appendix: A Short Overview of Quantitative Genomics 

I provide a brief and compact description of the quantitative genetics/genomics 
model and introduce terms used repeatedly in the book, such as allele, locus,
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diploid, haploid, genotype, Hardy-Weinberg law, single nucleotide polymorphisms 
(SNPs), genomewide association study (GWAS), allele content, quantitative trait 
loci (QTL), linkage, linkage disequilibrium, phenotype, genotype, genetic value, 
genetic variance, additive genetic value (breeding value), additive genetic effect 
(additive effect of a gene substitution), additive genetic variance, heritability, 
expected additive genetic relationship, additive genetic relationship matrix, genomic 
relationship matrix, genomic model, genomic value and genomic variance. 

The Classical Quantitative Genetics Model 

The starting point of the mathematical genetics model is the metaphor that describes 
chromosomes as strings of beads, with each bead representing a gene. Genes are the 
unit of inheritance. In mammals and many other groups, each cell carries two copies 
of each chromosome; they are said to be diploid. Most fungi, algae and human 
gametes have only one chromosome set and are haploid. 

The complete set of chromosomes of an organism includes sex chromosomes 
and autosomes. For example, in humans, there are 23 pairs of chromosomes and 
of these, 22 pairs are non-sex chromosomes known as autosomes. The majority of 
genes are located on the autosomes and in this book I consider autosomal loci only. 

In diploid organisms, at a specific location on the chromosome called the locus, 
each of the two copies of the chromosome carries a gene. The pair of genes 
constitute the genotype at the particular locus. Genes exist in different forms known 
as alleles. Here, I consider biallelic loci, so for a given locus in diploid individuals, 
if the two alleles are A and a, the three genotypes could be denoted, say AA, Aa 
and aa (no distinction is made between Aa and aA). For example, an individual 
with genotype Aa received one allele (say A) from the mother and the other from 
the father. 

The standard quantitative genetic model assumes that the expression of a trait 
value y (the phenotype, here centred with zero mean) in diploid individuals is 
determined by the additive contributions of a genetic value G and an environmental 
value e, 

. y = G + e,

where .e ∼ (0, σ 2) is often assumed independent of G. The genetic value is defined 
as the conditional mean of the phenotype, given genotype, .E (y|G) and is the result 
of the joint action of a typically unknown number q of quantitative trait loci (QTL). 

The Single Locus Model 

Consider first a trait affected by a single biallelic locus with the three genotypes 
labelled AA, Aa and aa. Let  p denote the frequency of allele A in the population
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(assumed to be the same in both sexes). In a large population, assuming random 
mating among parents and in the absence of random genetic drift, selection and 
mutation, in the offspring generation, the frequency of genotype AA is . p2, of  
genotype Aa is .2p(1 − p) and of genotype aa is .(1 − p)2. In this overview, gene 
frequencies p are treated as known constants that remain unchanged over repeated 
cycles of random mating. 

Define the random variable . z∗ as 

. z∗ =
⎧⎨
⎩
2, with probability p2,

1, with probability 2p (1 − p) ,

0, with probability (1 − p)2 ,

The random variable . z∗ is known as the allele content (here, allele A is arbitrarily 
taken as reference and .z∗ = 2 if the genotype has two  copies of allele A). 
For this locus, .E (z∗) = 2p, .Var (z∗) = 2p (1 − p) and for individuals k and 
j , .Cov

(
z∗
j , z

∗
k

)
= ajk2p (1 − p) where .ajk is the expected additive genetic 

relationship (given a pedigree) between k and j (e.g. .ajk = 0.5 if j and k are 
non-inbred full sibs or parent and an offspring), also interpreted as the expected 
proportion of alleles shared identical by descent between j and k (genes that are 
identical by descent (IBD) are copies of a specific gene carried by some ancestral 
individual). The note note0101.pdf at https://github.com/SorensenD/SLGDS has a 
derivation of these results. 

In a large (idealised) random mating population, in the absence of selection, 
mutation or migration, the relationship between gene frequency p and genotype 
frequency . p2 remains constant from generation to generation. The property is 
derived from a theorem known as the Hardy-Weinberg law that provides one expla-
nation for the maintenance of genetic variation in such idealised random mating 
population. In a population in Hardy-Weinberg equilibrium, genotype frequencies 
at a particular locus in the offspring generation depend on gene frequencies in the 
parent generation. 

From now on, the codes for the three genotypes are centred as . z = z∗ − E (z∗)
so that .E (z) = 0, .Var (z) = 2p (1 − p) and phenotypic values are also centred, so 
that .E(y) = 0. 

The genetic value .G(z) at the locus can take three modalities corresponding to 
the three genotypes at the biallelic locus and can be decomposed into two terms: 

.G(z) = αz + δ, (1.27) 

where . αz is the best linear predictor of genetic value. The best linear predictor 
. αz is also known as the additive genetic value or breeding value: the best linear 
approximation describing the relationship between genetic value and allele content 
z (best linear prediction is discussed on page 259; see also the example on page 261 
for more details on the concepts of additive genetic values and effects, where it is 
shown that . α, the additive genetic effect of the locus or average substitution effect

https://github.com/SorensenD/SLGDS
https://github.com/SorensenD/SLGDS
https://github.com/SorensenD/SLGDS
https://github.com/SorensenD/SLGDS
https://github.com/SorensenD/SLGDS
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at the locus is also the regression of y on z). The residual term . δ is orthogonal to z 
and includes deviations between .G(z) and . αz. 

The genetic variance contributed by the locus in the population (based on the law 
of total variance) 

.Var (G (z)) = Varz (E [G(z) |z]) + Ez (Var [G(z) |z]) (1.28) 

is orthogonally decomposed into an additive genetic component of variance . σ 2
a , the  

first term in the right-hand side and a residual or dominant component of genetic 
variance , .Var (δ), the second term. The additive genetic variance (variance of 
the additive genetic values) in this single locus model, assuming Hardy-Weinberg 
equilibrium, is 

. σ 2
a = Varz (E [G(z) |z]) = Var (αz|α) = 2α2p (1 − p) .

If the linear fit is perfect, the genetic variance is equal to the additive genetic 
variance. Importantly, additive genetic variation at the locus arises due to variation 
in allele content z among individuals at the locus. The substitution effect . α is treated 
as a fixed albeit unknown parameter (this is stressed by conditioning on . α). 

The (narrow sense) heritability of the trait is defined as the ratio of the additive 
genetic variance to the phenotypic variance : .h2 = σ 2

a

/
σ 2

y , where .σ
2
y = Var (y), 

the marginal variance of the phenotype. 

Models with Many Loci 

The extension to q biallelic loci involves a random vector .z = (
z1, . . . , zq

)′ of 
allele contents of the q genotypes. Under random mating, .Var (zk) = 2pk (1 − pk), 
.k = 1, . . . , q and .Cov (zk, zl) = 2Dkl , where the linkage disequilibrium (LD) 
parameter .Dkl between loci k and l is defined as follows. Choose the paternal (or 
maternal) gamete and let the random variable U take the value 1 if allele . Ak is 
present in the paternal gamete at locus k and zero otherwise; let the random variable 
V take the value 1 if allele . Al is present in the paternal gamete at locus l and zero 
otherwise. Then .Dkl is defined as the covariance between U and V : 

. Dkl = Cov (U, V ) ,

and .Cov (zk, zl) = 2Dkl since in the diploid model, the genotype results from 
the random union of two gametes. Covariances involving alleles of different loci 
between gametes are zero. Linkage disequilibrium is created by evolutionary forces 
such as selection, mutation and drift and is broken down by random mating, as a 
function of time (measured in generations) and of the distance that separates the 
intervening loci. Generally, loci that are physically close together show stronger 
LD.
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With random mating in a large population, the variance structure of vector z 
containing the q allele contents, a population parameter, is 

.z =

⎡
⎢⎢⎢⎣
2p1 (1 − p1) 2D12 · · · 2D1q

2D21 2p2 (1 − p2) · · · 2D2q
...

...
. . .

...

2Dq1 2Dq2 · · · 2pq

(
1 − pq

)

⎤
⎥⎥⎥⎦ . (1.29) 

The combined action of the q loci defines the genetic value .G(z). A useful 
starting point is to assume that the effects of the loci combine additively. A genetic 
value has the same structure as (1.27), .G(z) = α′z + δ, where now . α is the . q × 1
column vector of average substitution effects (or additive genetic effects) at the q 
loci. The additive genetic variance contributed by the q loci is 

.σ 2
a = Var

(
α′z|α) = α′zα. (1.30) 

Expanding (1.30) reveals that the additive genetic variance takes the form 

.σ 2
a = 2

q∑
i=1

α2
i pi (1 − pi) + 4

q−1∑
i=1

q∑
j=i+1

αiαjDij . (1.31) 

The first term in the right-hand side is the equilibrium additive genetic variance ,
and the second term is the contribution due to disequilibrium (Bulmer 1971). If the 
loci are in linkage equilibrium (.Dij = 0 for all . i, j ), genotypes in the population are 
uncorrelated, (1.29) is a diagonal matrix and the additive genetic variance reduces to 
the first term. Among the loci of neutral traits, some of the disequilibrium terms are 
positive and others negative. In contrast, among loci of selected traits, depending 
on the type of selection, in large populations, the disequilibrium terms are either 
positive (disruptive selection) or negative (optimising and directional selection) 
(Bulmer 1971). 

The phenotypic value y of an individual in the multilocus model can be written 
as 

. y = G(z) + e

= α′z + (δ + e)

= α′z + ε, (1.32) 

where the residual term . ε includes environmental effects e and non-additive genetic 
effects . δ. The genetic value is the conditional expected value of the phenotype given 
the genotype 

.G(z) = E [y|z] .
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Covariance Between Relatives 

Consider two related individuals i and j whose causal genotypes at q loci are 
described by the random vectors of allele contents . zi and . zj , where . zi =(
zi1, . . . , ziq

)′. While (1.29) describes associations within individuals, here we 
seek associations between individuals. The covariance between i and j at the 
same locus k is .Cov

(
zik, zjk

) = 2aijpk (1 − pk), where . aij is the coefficient of 
expected additive genetic relationship between i and j . The covariance involving 
two different loci k in i and l in j is .Cov

(
zik, zjl

) = 2aijDkl . The contribution to 
the covariance between the additive genetic values of i and j from loci k and l is 
then 

. Cov
(
α′zi, z

′
jα|α

)
= α′ Cov

(
zi, z

′
j

)
α

= 2aij

∑
m=k,l

α2
m pm (1 − pm) + 4aijαkαlDkl, (1.33) 

that has the same form as (1.31) except for the factor . aij . 
Expression (1.33) generalises to n individuals displaying a family structure given 

by a pedigree. Based on the pedigree, the .n × n matrix A can be constructed. This 
matrix, known as the additive genetic relationship matrix, has elements . aij that 
denote the expected additive genetic relationship between individuals i and j . 

Let . Zα represent the vector of n additive genetic values, where Z is the . n × q

matrix of genotypic codes and . α is the .q×1 vector of additive genetic effects for the 
q loci. Then the variance-covariance matrix of the n additive genetic values, treating 
Z as random and . α as a fixed parameter, is 

. Var (Zα|α) =

⎡
⎢⎢⎢⎣

a11α
′zα a12α

′zα . . . a1nα
′zα

a21α
′zα a22α

′zα . . . a2nα
′zα

...
...

. . .
...

an1α
′zα . . . . . . annα

′zα

⎤
⎥⎥⎥⎦

= A

⎡
⎣ q∑

k=1

α2
k 2pk (1 − pk) +

q−1∑
k=1

q∑
l=k+1

4αkαlDkl

⎤
⎦

= Aσ 2
a , (1.34) 

where . σ 2
a is given by (1.31) and is equal to the term in square brackets. 

Expressions (1.33) and (1.34) assume that the (large) population is maintained 
in a steady state of gene frequency and linkage disequilibrium from generation to 
generation resulting in constant . σ 2

a and that the computation of the expected additive 
genetic relationship between individuals i and j involving loci k and l is tracing i 
and j to the most recent common ancestor. The constancy of . σ 2

a is an approximation
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that can also be justified by considering cohorts spanning one or two generations as 
often found in human pedigrees. 

The covariance between relatives in multilocus systems is part of a subject of 
difficult entry. An exact general treatment involving only pairs of loci constitutes 
a formidable challenge leading to unwieldy expressions, as shown by Weir and 
Cockerham (1977). The curious reader may wish to glance with awe at formula 
(6) for the genetic variance in their article that is almost two pages long! Results 
assuming lack of inbreeding, epistasis and assortative mating, but accounting for 
dominance, linkage and the dynamics of the linkage disequilibrium parameter over 
generations, lead to simpler expressions and are given by Weir et al (1980). Further 
details and an informal derivation of the covariance between allele contents of 
two individuals at different loci are in the note note0101.pdf at https://github.com/ 
SorensenD/SLGDS. 

Expected Value of the Genomic Relationship Matrix 

In the population with n related individuals and q causal loci, the centred matrix Z 
contains the coded genotypes of the causal loci, . zij , .i = 1, . . . , n; j = 1, . . . , q. 
These are realisations from a random Mendelian process. The expectation . E

(
ZZ′)

is proportional to the expected additive genetic relationship matrix, as sketched 
below. 

The ij th element of .ZZ′ involving individuals i and j is computed using the 
inner product .z′

izj , where . z′
i is the ith row of Z, containing the causal genotypes of 

individual i. The expectation of the inner product .z′
izj involves only the diagonal 

elements of the matrix . z in (1.29). Then conditional on gene frequencies, 

. E
(
z′
izj

) = aij

q∑
k=1

2pk (1 − pk)

and 

.E
(
ZZ′) = A

q∑
k=1

2pk (1 − pk) , (1.35) 

proportional to A, as in Habier et al (2007). This expectation, here derived for 
causal (QTL) genotypes, holds for any set of randomly drawn autosomal genotypes, 
including genetic marker loci.

https://github.com/SorensenD/SLGDS
https://github.com/SorensenD/SLGDS
https://github.com/SorensenD/SLGDS
https://github.com/SorensenD/SLGDS
https://github.com/SorensenD/SLGDS
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The Genomic Model 

The description so far is in essence the standard model of quantitative genetics. 
It is viewed as the model that generates the data, the true model. “True” must 
be interpreted in a statistical sense and not as a mechanistic description of the 
complex biological process that results in an observed phenotype. It is perhaps 
best understood relative to an operational model that by its very nature cannot 
be viewed as having generated the data. A genomic model is such an operational 
model. A genomic model incorporates genetic markers in a regression equation, 
often assuming a linear association between the phenotype and the genetic markers. 
This association arises as a result of the correlation (linkage disequilibrium) between 
the observed genetic markers and the unobserved causal loci (QTL). The genetic 
markers are DNA sequences with a known location on a chromosome. One type 
is single-base pairs (single nucleotide polymorphisms (SNPs)), that give rise to 
different alleles containing alternative bases at a given position. SNPs are most often 
phenotypically neutral, but sometimes they can affect the phenotype, for example, 
by causing a change in the amino acid sequence of a gene product, or by affecting 
gene regulation in noncoding sequences. In this case, the SNP becomes a causal 
locus and has a direct effect on phenotype. 

The use of genetic markers as covariates instead of causal loci induces a new set 
of parameters that must be defined: the genomic value, the  genomic variance and 
the genomic heritability. 

At the population level, using p markers with centred marker genotype codes 
. xi in vector .x = (

x1, . . . , xp

)′, the genomic value (the part of the genetic value 
explained by the linear regression on markers) is defined as 

. E [G(z) |x] = Ez|x [E (G (z) |z, x)]

= Ez|x [E (G (z) |z)]
= α′ E (z|x)

= α′zx
−1
x x = α ′̂z

= β ′x. (1.36) 

In this expression, the marker effects .β = −1
x xzα are population parameters, 

defined as the vector of coefficients in a multiple linear regression of additive genetic 
values on marker genotypes. In the fourth line, .̂z = zx

−1
x x is the best linear 

predictor of allele contents at the QTL, z, given allele content at markers x. The  
parameter .zx is the covariance matrix involving marker and QTL genotypes, and 
the parameter . x is the variance covariance matrix of marker genotypes that has a 
structure similar to (1.29).
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The genomic variance or variance of genomic values . β ′x is the part of the genetic 
variance explained by the linear regression on marker genotypes: 

.Varx (E [G(z) |x]) = β ′xβ = α′zx
−1
x xzα. (1.37) 

The genomic heritability is the ratio of genomic variance to phenotypic variance,
also a population parameter. These are the parameters to be inferred when the
statistical models are fitted to the data.

There are a couple of details to note in relation to (1.37). The first and obvious 
one is that the proportion of the additive genetic variance captured by the marker 
genotypes depends on the strength of the association between the markers and 
the QTL genotypes (defined by the degree of linkage disequilibrium between 
marker loci and causal loci). This is dictated by . zx . When LD between marker 
genotypes and causal genotypes is perfect, .zx = z, .x = z and the genomic 
variance is equal to the additive genetic variance. In this situation, the genomic 
heritability achieves its upper bound, equal to the heritability of the trait. The 
second is that when the QTL genotypes are part of the marker panel (e.g. with 
full genome sequence), the (population parameter) genomic variance (1.37) is equal 
to the (population parameter) additive genetic variance (1.30). In other words, 
.Var(β ′x) = α′zα. The proof of this result involves a little manipulation with the 
inverse of partitioned matrices and can be found in de los Campos et al (2015). It 
does not follow that implementing a statistical model that incorporates full genome 
sequence will automatically uncover the additive genetic variance of the trait. This 
depends on the input data and on the properties of the estimator of the genomic 
variance of the statistical model. 

In several examples used in the book, I generate a matrix of genotypic markers 
drawing independent samples from a binomial distribution and a proportion is 
assigned as QTL. Since the QTL are part of the marker panel, the variance of the 
independent marker genotypes fully accounts for the equilibrium additive genetic 
variance. 

Further details on these subjects can be found in Gianola et al (2009) and de los 
Campos et al (2015) who lay the background for most of what is written here. 

Fitting Models Incorporating Marker Genotypes 

When marker genotypes are fitted one at a time, the analysis is known as 
genomewide association study (GWAS). GWAS exploits the association, at the 
population level, between observed genetic markers scattered across the genome 
and unobserved causal loci. The significance of markers is assessed by regressing 
the phenotype on each marker in turn. This is based on a simple . t−test using often 
a Bonferroni adjustment to correct for multiple testing (see Chap. 8). GWAS have
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identified thousands of genetic variants associated with human complex traits and 
diseases. Despite this success, the significant SNPs explain a small proportion of the 
genetic variation estimated from pedigrees. This has been known as the “missing 
heritability” problem and indicates that most of the genetic variation uncovered 
by GWAS remains unexplained. Part of the explanation lies in the multiple testing 
procedure, in the method’s attempt to avoid false discoveries, on the size of the 
effects and frequency of the causal genes affecting the complex trait and on the 
incomplete degree of association between marker and causal genotypes. Many 
loci contributing to genetic variation do not reach the stringent significance level 
imposed and are missed. Despite the limitations, the success of GWAS as a gene 
discovery tool cannot be denied, particularly when used together with a number of 
refinements designed to partially overcome some of its shortcomings (Yang et al 
2012). In 2008, a GWAS study involving several thousand individuals detected 
approximately 40 genetic variants associated with height that account for about . 5%
of the heritability (Visscher 2008). In 2022, with larger size of testing populations 
(resulting in higher power) and larger number of genetic markers (leading to larger 
amounts of linkage disequilibrium), the number of discovered SNPs increased to 
approximately .12, 000, explaining .40% of the heritability of height (Yengo et al 
2022). 

An alternative to fitting one marker at a time is to use a genomic model that incor-
porates all the markers simultaneously in a multiple linear regression disregarding 
statistical significance and in contrast with traditional GWAS, accounting for the 
structure among marker genotypes. A specification could be 

.y|X ∼ N
(
1μ + Xb, Iσ 2

)
, (1.38) 

where 1 is an .n×1 vector of . 1′s, . μ is a scalar, y is .n×1 vector of observed records, 
X is a centred matrix of observed marker genotypes of order .n × p and b is an 
unobserved .p × 1 vector of marker effects at the level of the fitted model. When 
typically .p > n, some additional structure must be incorporated to fit the p marker 
effects b to the n data points. One common approach is to treat b as the random 
variable 

.b|σ 2
b ∼ N

(
0, Iσ 2

b

)
, (1.39) 

where . σ 2
b can be interpreted as quantifying prior uncertainty about the genetic 

marker effects b. The specification of marker effects as random variables is 
in contrast with their definition in (1.36) and has a direct consequence on the 
relationship between the genomic variance defined in (1.37) and the genomic 
variance of the fitted model. To see this, define the vector of genomic values (at 
the level of this operational model) as .g = Xb. The genomic variance of the fitted
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model is defined as the unconditional variance: 

. σ 2
g = Var

(
b′X

) = Eb

[
Var

(
b′X|b)] + Varb

[
E

(
b′X|b)]

= Eb

(
b′Xb

) + 0

= σ 2
b tr (X) = σ 2

b

p∑
j=1

2pj

(
1 − pj

)
. (1.40) 

In this expression, .Varb
[
E

(
b′X|b)] = 0 because with centred X, . E(b′X|b) =

b′E(X) = 0. A glance at the genomic variance of the fitted model (1.40) and at 
the parameter defined in (1.37) reveals a lack of correspondence between the two. 
This is elaborated a little further in the first Comment on page 44 and a deeper 
discussion is in de los Campos et al (2015). 

Let .k = ∑p

j=1 2pj

(
1 − pj

)
. An alternative parametrisation in terms of g that is 

useful when .p > n is 

.y|X ∼ N
(
1μ + g, Iσ 2

)
, . (1.41a) 

g|X ∼ N
(
0,Ggσ

2 
g

)
, (1.41b) 

where the genomic relationship matrix .Gg = 1
k
XX′ has rank at most .n − 1 if X is 

centred and if .p > n. This is equivalent to constructing the genomic relationship 
matrix from .Gg = XX′, when the elements of X are centred and scaled by 
.
√

(k). In this parametrisation, .σ 2
g = σ 2

b , independent of the number of markers. 
In general, when X is centred, the vector of genomic values g has a singular normal 
distribution. 

The model of marker effects defined in (1.39) shrinks all marker effects 
homogeneously towards zero and is therefore not ideal for discovery. It is best 
deployed for inferences of genomic variance . σ 2

g and for prediction of genomic 
values g. An early application of a version of this genomic model in humans to 
infer genomic heritability (Yang et al 2010) incorporated .294, 831 SNPs genotyped 
on 3925 unrelated individuals (meaning distantly related) and reported that . 45%
of the variance of height could be accounted for by considering all the SNPs 
simultaneously. The increase in variance explained relative to the GWAS analysis 
is attributed to the many SNPs with small effects that do not pass the significant 
threshold in GWAS. This was still considerably less than the .70%− 80% explained 
by traditional methods using pedigrees. The authors conjectured that most of the 
unaccounted variance could be due to causal variants at low frequency, leading to 
very low correlations between markers and causal variants. Genetic markers are 
typically at intermediate frequencies, and the disparity of gene frequencies between 
markers and causal variants results in low correlations. Support for this conjecture
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was obtained years later using whole genome sequence data and larger population 
sizes, leading to an estimate of the proportion of variance of height attributed to 
SNPs (the genomic heritability) of .68% (Wainschtein et al 2022), quite close to the 
estimate based on pedigrees. 

The picture that is emerging is interpreted in a paradigm in which complex 
traits are driven by a very large number of loci spread along the genome. However, 
complex traits are affected not only by protein-coding genes but also by noncoding 
variants, perhaps related to gene regulation that plays a direct role in the expression 
of the trait. Despite their relevance, the noncoding variants show weak signals in 
GWAS studies and are difficult to detect. Most of the genetic variation of complex 
trait seems to be driven by a very large number of peripheral genes of small effect 
(Boyle et al 2017). 

The new insights of the genetics of complex traits stimulated further develop-
ments and refinements of the genomic model for estimation of genomic parameters 
and for prediction. For example, prior knowledge can be incorporated to partition 
genomic variance across groups defined by allele frequency of genetic markers, 
linkage disequilibrium and genotype certainty and accounting for SNP function and 
metabolic pathways (Speed et al 2017, 2021; Patxot et al 2021). 

The genomic model (1.41) is revisited several times in the book. A likelihood 
model using Newton-Raphson and using the EM algorithm is described in Chap. 3 
and in the Problems section on pages 553 and 609. A Bayesian model is presented 
in Chap. 5 and in the Problems section on pages 560 and 645. 

The genomic model (1.41) can be extended for use in simultaneous inference, 
prediction and gene discovery. An early review is provided by de los Campos 
et al (2013a). One approach is based on modifying the prior distribution of SNP 
effects (1.39) and adopting instead a mixture prior of two densities: one with small 
variance (the spike) and one with large variance (the slab). These are known as spike 
and slab models. For example, if a two component mixture is chosen, these could 
be two Gaussian densities (George and McCulloch 1993) or one Gaussian and a 
point mass at zero (Mitchell and Beauchamp 1988; Meuwissen et al 2001; Habier 
et al 2011). If two Gaussian distributions are used, they are often parametrised 
such that one has a mean of zero and a very small user-tuned variance, generating 
very small SNP effects and the other a mean of zero and a larger variance, 
allowing for larger effects. For gene discovery, the idea is to obtain an estimate 
of the posterior probability that a genetic marker is drawn from either mixture 
component, for all genetic markers. An example of a spike and slab model with 
a point mass at zero applied to gene discovery can be found in Chap. 8. Chapter 7 
provides a detailed Bayesian-McMC implementation of this model for the analysis 
of continuous traits, and Chap. 9 extends the algorithm for the analysis of binary 
data.
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Comments on the Genomic Variance and the Genomic 
Relationship Matrix 

• The genomic variance σ 2 
g (1.40) of the fitted model has a tenuous correspondence 

with the genomic variance of the genomic model defined in (1.37). An approach 
that results in an estimate of genomic variance that is better aligned with 
parameter (1.37) can be derived drawing from Sorensen et al (2001) as follows. 
Consider a group or cohort consisting of n individuals; the genomic value of 
individual i is gi . This is a random variable that can take n possible values 
each with probability n−1. By definition, the variance of gi conditional on the 
statistical model adopted and on the particular group of the n individuals is 

.σ 2
gen = E

(
g2

i

)
− [E (gi)]

2 = 1

n

n∑
i=1

g2
i − g2, (1.42) 

where g = n−1 ∑
i gi . Let gi = β ′xi , where xi is the column vector of the

p centred marker genotypes of individual i and β = −1
x xzα is the column

vector of p marker effects (the parameters of a multiple regression of additive
genetic values α′z on marker genotypes x). Then if β is known and the elements
of x are centred, g = 0 and the genomic variance in the cohort is

. σ 2
gen = n−1

n∑
i=1

β ′xix
′
iβ

= β ′ [n−1X′X
]
β. (1.43) 

This expression has the same form as (1.37) with x replaced by its method of 
moments estimator n−1X′X. The marker effects β are not observed, and adopting 
a Bayesian approach can be inferred from their marginal posterior distribution 
[β|y]. The posterior mean of the distribution of the resulting genomic variance is 
then 

. E
(
σ 2

gen|y
)

= E
(
β ′Qβ|y)

= tr (QVar (β|y)) + E (β|y)′ QE (β|y)

= tr
[
Q

(
E

(
ββ ′|y) − E (β|y)E (β|y)′

)] + tr
[
E (β|y)′ QE (β|y)

]
= tr

[
QE

(
ββ ′|y)]

, (1.44) 

where Q = n−1X′X (the equality in the final line stems from applying the cyclic 
property of the trace operator in the second trace of the third line). All this is 
typically implemented using McMC. A Monte Carlo estimate of the posterior 
distribution of the genomic variance in the cohort σ 2 

gen is easily obtained by
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calculating the variance among the draws from [g|y], without the need to infer 
the marker effects. A draw from this posterior distribution at round t of an McMC 
implementation is 

. σ 2[t]
gen = 1

n

n∑
i=1

(
g
2[t]
i − g2[t]

)
,

where g[t] 
i is sampled from [gi |y] belonging to the ith individual in the cohort. 

The posterior mean of the genomic variance under the parametrisation g = Xβ 
takes the form 

.E
(
σ 2

gen|y
)

= 1

n
tr

[
E

(
gg′|y)]

. (1.45) 

The subject is elaborated a little further on page 233 where an McMC implemen-
tation is shown to involve computations using scalar quantities. 

• The genomic relationship matrix constructed using genetic markers describes 
realised patterns of inheritance in a particular sample of individuals in the 
region of the genome defined by the marker loci. There are a number of ways 
of constructing the genomic relationship matrix and most use moment-based 
estimators (VanRaden 2008; de los Campos et al 2013a). Here, it was defined 
in connection with (1.41b) 

.Gg = 1

k
XX′, k =

p∑
i=1

2pi (1 − pi) , (1.46) 

where the elements of X (observed marker genotypes) are centred. Provided the
model includes an intercept as in (1.41a), centring does not affect predictions or 
inferences of variances. However, standardising the elements of X may affect 
predictions, depending on the degree of similarity between the distributions of 
observed marker genotypes and of unobserved causal loci genotypes. Inferences, 
such as estimation of genomic heritability, are also sensitive to the way the 
genomic relationship matrix is constructed (Speed et al 2012). In a prediction 
context, the choice of a method can be evaluated by cross-validation. 

• The genomic model builds on the incorporation of a large number of genetic 
marker loci spread along the genome of individuals from which Gg is con-
structed. These genetic marker loci are not necessarily causal, but are correlated 
with the causal loci. The latter are typically unobserved while the genetic markers 
are observed and can provide information about the genetics of a trait. The ability 
of the genomic model to separate true signal (the genetic value at the causal loci) 
from noise depends on how well the genomic relationship matrix Gg describes 
relationships realised at causal loci. Realised relationships in different regions of 
the genome are the result of a random process, with expected value dictated by 
the pedigree and variation due to Mendelian sampling. This creates variability
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in the patterns of genetic similarity across the genome; this pattern can be 
very different for marker genotypes and for causal genotypes. The variability is 
accentuated for data composed of nominally unrelated individuals (Hill and Weir 
2011), often seen in human data and plays a smaller role when pedigrees display 
strong family relationships as in livestock. With distantly related individuals, 
fitting a large number of markers, many of which are potentially uncorrelated 
with genotypes at causal loci, can lead to an incorrect specification of the 
covariance structure, and this can affect inferences of variance parameters of the 
model (de los Campos et al 2015). This problem can be partly addressed fitting 
mixture models (spike and slab models) where inferences of variance parameters 
and model selection are performed simultaneously. These models are introduced 
in Chap. 7. 

• Genomic models that incorporate dense marker genotypes, particularly in 
humans, typically include phenotypes on nominally unrelated individuals (to be 
understood as distantly related). These models are often used to estimate genomic 
heritability. Inference about genomic heritability is driven by quantifying the 
proportion of the phenotypic resemblance between distant relatives explained by 
the short genome segments they share (which is tagged by the observed marker 
loci via the genomic relationship matrix). In such a situation, there is a need to 
avoid bias due to non-genetic effects, such as common environment among close 
relatives, that inflates the phenotypic resemblance between relatives. Also, by 
excluding close relatives such as twins, full-sibs and parent and offspring that 
would explain most of the phenotypic resemblance, the estimate obtained reflects 
the proportion of the short genome sequences shared among the distantly related 
individuals. These short shared sequences transmitted from remote common 
ancestors generate linkage disequilibrium; this LD is exploited via dense marker 
genotyping by capturing contributions from unobserved causal loci. In so doing, 
a proportion of the additive genetic variation is unmasked: the genomic variation. 

• A decomposition that has attractive computational properties introduced in 
Chap. 3 is the eigenvalue or spectral decomposition of XX′

. XX′ = U�U ′

=
∑n

i=1
λiUiU

′
i ,

where X, here centred and scaled, has dimension n × m, (m being the number 
of marker genotypes), U = [U1, U2, . . . , Un], of dimension n × n (n being 
the number of individuals) is the matrix of eigenvectors of XX′, Uj is the j th 
column (dimension n × 1) and � is a diagonal matrix with elements equal to 
the eigenvalues λ1, λ2, . . . , λn associated with the n eigenvectors. Since XX′
must be non-negative definite, the eigenvalues are λi ≥ 0, i = 1, 2, . . . , n. The  
eigenvectors satisfy U ′U = UU ′ = I . Then an alternative representation of the 
genomic relationship matrix (when X is centred and scaled) is
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Fig. 1.13 Left: plot of the first two eigenvectors for homogeneous matrix composed of draws from 
Bi (x; n = 2, q  = 0.5); right: plot of the first two eigenvectors for heterogeneous matrix composed 
of draws from Bi (x; n = 2, q  = 0.5) and draws from Bi (x; n = 2, q  = 0.3) 

. Gg = 1

m
XX′

= 1

m
U�U ′.

This decomposition can be used to investigate the presence of unobserved 
substructure in X, which can cause spurious associations between marker 
genotypes and phenotypes and also artefact genomic variation. As an illustra-
tion, the R-code below constructs two genomic relationship matrices draw-
ing independent samples from binomial distributions. In the first genomic 
relationship matrix, each x representing a marker genotype is a draw from 
Bi (x; n = 2, q  = 0.5), where x can take values 0, 1, 2 and q is the probability 
of drawing allele A. The draws are elements of X that in the example is of 
order 500 × 1300. The second relationship matrix is generated by appending 
two submatrices one on top of the other, where the first (order 250 × 1300) has 
elements drawn from Bi (x; n = 2, q  = 0.5) and the second (order 250 × 1300) 
has elements drawn from Bi (x; n = 2, q  = 0.3). This matrix displays fairly 
strong substructure caused by the difference of allele frequencies. The eigenvalue 
decomposition is performed on both matrices and Fig. 1.13 shows the plot of 
the first two eigenvectors. The left subfigure corresponding to the homogeneous 
matrix does not reveal any form of structure, but the right subfigure does. 
Estimation of marker effects without accounting for population structure can be 
a problem when they are used to predict records of a sample that has a different 
structure: 

# CODE0105 
# EIGEN DECOMPOSITION 
rm(list=ls()) # CLEAR WORKSPACE
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set.seed(30371171) 
# SIMULATE Z FROM AN UNSTRUCTURED POPULATION 
Z <- matrix(nrow= 500,ncol= 1300,rbinom(500*1300,size=2,p=.5)) 
Gz <- tcrossprod(scale(Z)) # CENTRING AND SCALING 
EVD <- eigen(Gz) 
U <- EVD$vector 
tU<-t(U) 
val <- EVD$values 
#qr(Gz)$rank 
#plot(U[,1],U[,2],xlab=’U1’,ylab=’U2’) 

# SIMULATE Z FROM TWO POPULATIONS WITH 
# DIFFERENT GENE FREQUENCIES 
Z1 <- matrix(nrow= 250,ncol= 1300,rbinom(250*1300,size=2,p=.5)) 
Z2 <- matrix(nrow= 250,ncol= 1300,rbinom(250*1300,size=2,p=.3)) 
Z <- rbind(Z1,Z2) 
Gz <- tcrossprod(scale(Z)) 
EVD <- eigen(Gz) 
U <- EVD$vector 
tU<-t(U) 
val <- EVD$values 
qr(Gz)$rank 
#plot(U[,1],U[,2],xlab=’U1’,ylab=’U2’)
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Fitting Likelihood and Bayesian Models



Chapter 2 
Likelihood 

A central problem in statistics is the estimation of parameters that index a probability 
model proposed to describe aspects of the state of nature. In the classical approach 
to inference, these parameters have a “true” but unknown value and given the 
model, can be estimated from a set of observations. A firmly entrenched inferential 
approach in statistics is the method of maximum likelihood proposed and termed 
by Fisher (1922), although, as is often the case in science, the subject had been in 
the air long before Fisher disguised in the terminology of inverse probability. An 
excellent account is in Hald (1998). 

This chapter starts by providing an intuition for the concept of likelihood empha-
sising the conceptual difference between a likelihood function and a probability 
function. This is followed by a summary of the basic results needed for classical 
likelihood inference. Proofs of most of the results presented here are not difficult 
and can be found, for example, in Sorensen and Gianola (2002). The final part of 
the chapter consists of examples that illustrate the construction of simple likelihood 
models, the derivation of the maximum likelihood estimators and some of their 
properties. 

Readers that require a quick brush up of concepts of basic probability distribu-
tions and random variables may consider browsing through the first two chapters of 
Sorensen and Gianola (2002) that cover what is necessary of the subject to follow 
comfortably the material in this book. 

2.1 A Little Intuition 

Imagine that you are given the following iid (independently and identically dis-
tributed) data y sampled from a normal distribution .N

(
μ, σ 2 = 2

)
with unknown 

mean . μ and known variance .σ 2 = 2: 

. y = (y1 = 11.8, y2 = 6.1, y3 = 7.1, y4 = 11.1, y5 = 5.8) .
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You will agree that 10 is a better candidate for . μ than 20, given the sample y 
(in fact, the sample was drawn from .N

(
μ = 10, σ 2 = 2

)
using the R function 

rnorm(5,10,sqrt(2))). In a general setting, suppose that a sample y from the 
distribution of Y is drawn, given the true (typically unknown) value of the parameter 
. μ and the true known .σ 2 = 2. This sample drawn with a certain probability is to 
provide information about . μ. For fixed .Y = y, compute . p

(
Y = y|μ = μ1, σ

2 = 2
)

and .p
(
Y = y|μ = μ2, σ

2 = 2
)
, in order to choose between .μ1 and .μ2 as two 

possible values of . μ. Viewed as a function of . μ, .p
(
Y = y|μ, σ 2 = 2

)
is the 

likelihood function. If .p
(
Y = y|μ1, σ

2 = 2
)

> p
(
Y = y|μ2, σ

2 = 2
)

we would 
choose .μ = μ1 on the grounds that, given the sample y, this is a “more likely” 
value than .μ = μ2. In fact, it is possible that if the true value of . μ is . μ2, 
we could still observe for the particular sample y, that . p

(
Y = y|μ1, σ

2 = 2
)

>

p
(
Y = y|μ2, σ

2 = 2
)
, but this occurs with small probability and this probability 

approaches zero as sample size tends to infinity (Lehmann and Casella 1998). 
This is what is meant by “more likely”. The value of the likelihood function 
.p
(
Y = y|μ, σ 2 = 2

)
evaluated at .μ = μ1 agrees with the probability of observing 

.Y = y only when the true value of the parameter . μ is in fact . μ1 (this is so if  
Y is discrete; otherwise, for continuous Y , the likelihood evaluated at . μ = μ1
is proportional to the probability that Y takes values in a small set containing y). 
However, the likelihood function is not a probability distribution. To quote Fisher 
(Fisher 1922): “The likelihood that any parameter (or set of parameters) should 
have any assigned value (or set of values) is proportional to the probability that if 
this were so, the totality of observations should be that observed”. 

Irrespective of the true value of the parameter, the value of . μ that maximises the 
likelihood function is the maximum likelihood estimator of . μ, . ̂μ. The great appeal 
of the method is mostly due to the desirable statistical properties of the maximum 
likelihood estimator, many of which hold asymptotically. To be specific, given that 
the true value of . μ is 10, the probability of observing .Y = y1 = 11.8 is proportional 
to .N

(
11.8|μ = 10, σ 2 = 2

)
: 

. Pr (Y = 11.8) ∝ dnorm(11.8,10,sqrt(2)) = 0.1255.

The probability of observing .Y = y is proportional to 

. 

5∏

i=1

N
(
yi |μ = 10, σ 2 = 2

)
= prod(dnorm(y,10,sqrt(2)))

= 1.9457 × 10−8.

On the other hand, the contribution to the likelihood function of .Y = y1 is 

.N
(

11.8|μ, σ 2 = 2
)

= (2π2)−
1
2 exp

(
− 1

2 × 2
(11.8 − μ)2

)



2.1 A Little Intuition 53

and in view of the iid nature of the data, the contribution from the whole data y to 
the likelihood function is 

.

5∏

i=1

N
(
yi |μ, σ 2 = 2

)
= (2π2)−

5
2 exp

(

− 1

2 × 2

5∑

i=1

(yi − μ)2

)

. (2.1) 

The value of . μ that maximises (2.1) is .μ̂ = 8.38. This is the maximum likelihood 
estimate. 

Notation

• The shorthand used for probability density function is pdf, for probability mass 
function is pmf and for cumulative distribution function is cdf.

• The shorthand used for independent and identically distributed is iid.
• MLE is shorthand for maximum likelihood estimator or maximum likelihood 

estimate and ML for maximum likelihood
• Often I use EX [T (X)], where T (X)  is some function of the random variable X 

with probability density function p(x|θ). By this I mean “integration over the 
distribution of X”: 

. EX [T (X)] =
∫

T (x) p (x|θ) dx

where θ is a parameter that indexes the probability density of the random variable 
X.

• The notation X ∼ N(μ,  σ 2) stands for X is distributed as N(μ,  σ 2), a normal 
distribution with mean μ and variance σ 2.

• The notation N(x|μ, σ 2) is used to specify the probability density function of X 
at the value X = x, whenX ∼ N(μ,  σ 2).

• If λ is a k × 1 vector and θ is a p × 1 vector, then the j th row of the k × p matrix 
∂λ/∂θ ′ is 

. 
[
∂λj /∂θ1 ∂λj/∂θ2 · · · ∂λj/∂θp

]

and the j th row of the p × k matrix ∂λ′/∂θ = (
∂λ/∂θ ′)′ is 

.
[
∂λ1/∂θj ∂λ2/∂θj · · · ∂λk/∂θj

]
.

• When f is a function of several variables f (x) = f (x1, x2, . . . , xn), the  

gradient of f is the column vector of n partial derivatives
(

∂f 
∂x1 

, ∂f 
∂x12 

, . . . ,  ∂f 
∂xn

)′

and is denoted ∇f .
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• I use [θ |y] (with or without square brackets) to represent the distribution of the 
random variable θ given y. This may be a posterior distribution.

• Random variables, say, Y , are not consistently distinguished in notation from 
their realised values y, unless the need to avoid confusion demands it. For 
example, I may write the distribution of y given x (symbolised as [y|x]), rather 
than the distribution of Y given X = x (symbolised as [Y |X = x]) , or  
for the probability mass function, Pr(y = 1|x) rather than Pr(Y = 1|X = 
x).

• I do not use boldface to distinguish matrices or vectors from scalars. Depending 
on context, matrices may be denoted with capital letters X or with lower-
case letters x. In both cases, I make clear the dimension of the quantity at 
hand.

• The transpose of a matrix X (or of matrix x) is denoted by X′ (or by 
x′). 

2.2 Summary of Likelihood Results 

Let .p (y|θ) represent the sampling density or mass function of the data vector y 
indexed by a parameter vector . θ with p elements. The likelihood of the parameter . θ

given the data y, .L (θ |y) is equal to .p (y|θ): 

.L (θ |y) = p (y|θ) . (2.2) 

If the elements of .y = (y1, . . . , yn)
′ are iid, 

.L (θ |y) =
n∏

i=1

p (yi |θ) . (2.3) 

The loglikelihood (also known as support) is  

. ln L (θ |y) = � (θ |y) =
n∑

i=1

ln p (yi |θ) . (2.4) 

The maximum likelihood estimator . θ̂ is the value of . θ that maximises (2.4) (or (2.3)) 
over the parameter space of . θ . Formally, this involves a constrained maximisation. 
Often an unconstrained maximisation is performed; therefore, one must check 
that the resulting maximum likelihood estimate is within the allowed parameter 
space. 

One may always multiply a likelihood function by a constant c independent of . θ . 
Therefore likelihood functions .L(θ |y) and .cL(θ |y) are equivalent in the sense that 
both lead to the same maximum likelihood estimate. Similarly, two loglikelihood
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functions that differ only by an additive constant lead to the same maximum 
likelihood estimate. 

The first derivative of . � with respect to the vector . θ is known as the score function, 
.S (θ). Letting p be the number of components in . θ and using . � for .� (θ |y), 

.S (θ) = ∂

∂θ
� (θ |y) =

⎛

⎜
⎝

∂�/∂θ1
...

∂�/∂θp

⎞

⎟
⎠ , (2.5) 

so the score is an .p × 1 vector. It can be shown (Sorensen and Gianola 2002 pages 
132–133) that the score has zero mean and variance given by Fisher’s expected 
information matrix (see (2.9)); that is, 

.S (θ) ∼ [
0, Ey

[
S (θ) S (θ)′

]]
. (2.6) 

Evaluated at the maximum . θ̂

. S
(
θ̂
)

= 0

when . θ̂ is in the interior of the parameter space. 
The matrix of second derivatives of the loglikelihood is known as the Hessian, 

.H (θ |y). For example, if .p = 2, .H (θ |y) takes the form 

. H (θ |y) = ∂2

∂θ∂θ ′ � (θ |y) =
[

∂2�/ (∂θ1)
2 ∂2�/ (∂θ1∂θ2)

∂2�/ (∂θ2∂θ1) ∂2�/ (∂θ2)
2

]
.

The observed information matrix (of dimension .p × p) is given by 

.I (θ |y) = − ∂2

∂θ∂θ ′ � (θ |y) = −H (θ |y) (2.7) 

which involves second derivatives and is a function of both . θ and y. An approxima-
tion that uses first derivatives only is given by the outer product of the vector of first 
derivatives of the score: 

.
(
S (θ) S (θ)′

)
. (2.8) 

For example, if .p = 2, 

.S (θ) S (θ)′ =
[

∂�/∂θ1

∂�/∂θ2

]
[
∂�/∂θ1 ∂�/∂θ2

]

=
[

(∂�/∂θ1)
2 (∂�/∂θ1) (∂�/∂θ2)

(∂�/∂θ2) (∂�/∂θ1) (∂�/∂θ2)
2

]
.
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Fisher’s expected information matrix is defined to be the average of (2.7) or (2.8) 
over conceptual repetitions of y: 

.i (θ) = Ey

[(
∂

∂θ
� (θ |y)

)(
∂

∂θ
� (θ |y)

)′]
= − Ey

(
∂2

∂θ∂θ ′ � (θ |y)

)
(2.9) 

and is a function of . θ only. Typically, these information matrices are evaluated at 
.θ = θ̂ . 

Let . θ0 denote the true value of . θ . A standard result says that the sampling 
distribution of the MLE has a limiting normal distribution 

.̂θ → N
(
θ0, i (θ0)

−1
)

(2.10) 

as sample size goes to infinity. This sampling distribution may be approximated
using

.N
(
θ̂ , i

(
θ̂
)−1
)

or N
(
θ̂ , I

(
θ̂
)−1
)

. (2.11) 

Estimates of standard errors are obtained from

.

√

i
(
θ̂
)−1
jj

or

√

I
(
θ̂
)−1
jj

. (2.12) 

Cramér-Rao Theorem Given certain regularity conditions, the variance of any 
unbiased estimator of a parameter . θ (scalar or vector) must be at least as large as 

. Var
(
θ̂
) ≥ i (θ)−1 . (2.13) 

When . θ is a vector, the above inequality implies that 

. Var
(
θ̂
)− i (θ)−1

is positive semidefinite. Any unbiased estimator that achieves this lower bound is 
efficient and no better unbiased estimator can be found. It follows from (2.10) that 
the ML estimator satisfies the Cramér-Rao lower bound, asymptotically; therefore, 
the asymptotic variance is the smallest possible. 

An important property of ML is functional invariance. If . θ̂ is the MLE of . θ and 
if .λ = g (θ) is a one-to-one transformation such that .θ = g−1 (λ) exists, then the 
MLE of .g (θ) is .g

(
θ̂
)
. 

If . θ is a scalar, under the new parametrisation, the score can be written as 

.
d�
(
g−1 (λ) |y)

dλ
= d� (θ |y)

dθ

dθ

dλ
(2.14)
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and if . θ and . λ are vectors 

.
∂�
(
g−1 (λ) |y)

∂λ
= ∂θ ′

∂λ

∂� (θ |y)

∂θ
. (2.15) 

If . θ is a scalar, the expected information about the new parameter . λ contained in 
the sample is 

.i (λ) = i (θ)

(
dθ

dλ

)2

= i
(
g−1 (λ)

) [dg−1 (λ)

dλ

]2

(2.16) 

and the asymptotic variance is

. Var
(
λ̂
) = [i (λ)]−1 = i (θ)−1

(
dλ

dθ

)2

= Var
(
θ̂
) (dλ

dθ

)2

. (2.17) 

When . θ and . λ are .p × 1 vectors, the expected information matrix is 

.i (λ) = ∂θ ′

∂λ
i (θ)

∂θ

∂λ′ = ∂
[
g−1 (λ)

]′

∂λ
i
(
g−1 (λ)

) ∂
[
g−1 (λ)

]

∂λ′ , (2.18) 

where .
∂θ ′
∂λ

and .i(θ) are .p × p matrices. The asymptotic variance evaluated at . λ = λ̂

is 

. Var
(
g
(
θ̂
))

=
[
i
(
λ̂
)]−1

= ∂λ

∂θ ′

∣∣∣∣
θ=θ̂

Var
(
θ̂
) ∂λ′

∂θ

∣∣∣∣
θ=θ̂

(2.19) 

where . ∂λ
∂θ ′ and .Var

(
θ̂
)

are .p × p matrices. Expression (2.19) is the multiparameter 
extension of (2.17) that can also be derived using the “delta method” (Sorensen and 
Gianola 2002, page 95). The derivation based on the delta method does not require 
that vectors . θ and . λ have the same number of elements. An application of (2.19) is  
in the Exercises on page 612. 

Also asymptotically, for scalar . θ and .g(θ), 

.g
(
θ̂
)

∼ N

(

g (θ) , i (θ)−1
(

dg (θ)

dθ

)2
)

. (2.20) 

If .g
(
θ̂
)

is a .p×1 vector, a similar results holds, except that the asymptotic variance 

in (2.20) is replaced by the .p×p matrix given by (2.19). In applications . θ is replaced 
by . θ̂ .
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The MLE is also invariant to transformations of the data that do not depend on 
the parameter . θ . If data X that have density function .pX (x|θ) are transformed to 
.Y = f (X) so that the inverse transformation is .f −1 (Y ) = X exists, then the 
density of the transformed data Y is 

. pY (y|θ) = pX

(
f −1 (y) |θ

) ∣∣∣∣
df −1 (y)

dy

∣∣∣∣

= pX (x|θ)

∣∣
∣∣
dx

dy

∣∣
∣∣ (2.21) 

and therefore the likelihood function based on X and Y differ only by a factor (the 
Jacobian of the transformation) that does not depend on the parameter . θ . 

Note 
The equality in the second line of (2.19) is based on the following two results. 
Firstly, for full-rank square matrices A, B, C, 

. [ABC]−1 = C−1B−1A−1.

Secondly, 

. 

[
∂θ

∂λ′

]−1

=
[

∂λ

∂θ ′

]
.

The derivation holds when the transformation .λ = g (θ) is one-to-one. 

When the dimension of . λ is .k ×1 and of . θ is .p×1, direct application of the delta 
method yields 

. Var
(
g
(
θ̂
)) = ∂λ

∂θ ′

∣
∣∣∣
θ=θ̂

Var
(
θ̂
) ∂λ′

∂θ

∣
∣∣∣
θ=θ̂

as in (2.19), but now .
∂λ
∂θ ′ is a .k × p matrix. The stronger assumption of normality of 

the asymptotic distribution of .g
(
θ̂
)

arrived at using the delta method requires that 

.k ≤ p and that the rank of . ∂λ
∂θ ′ is equal to k. 

Summary of Properties of Maximum Likelihood Estimators 

Little is known about small sample properties of MLE. In many situations, it is 
known that MLE are not unbiased in small samples.
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In large samples, MLE 

(i) are consistent 
(ii) are asymptotically normal (i.e. (2.10)) 

(iii) in a well-specified model, the MLE achieves the Cramér-Rao lower bound 

Things to be aware of : 

(i) The MLE may not be a turning point (the likelihood increases continuously). 
(ii) The MLE may not be unique (the maximum is found over a flat region spanning 

a wide interval comprising the parameter—“flat” likelihood functions). 
(iii) If iterative procedures are used to find a maximum, rate of convergence may be 

extremely slow, particularly in complex multiparameter models. 
(iv) An iterative procedure may converge to a local maximum, not necessarily to a 

global maximum. 
(v) Asymptotic normality of the MLE is compromised if the parameter lies on the 

border of the parameter space. 
(vi) The zeroes of the first derivatives only locate extreme points in the interior of 

the domain of a function. If extrema only occur on the boundaries or corners, 
first derivatives may not be zero at those points. 

2.3 Example: The Likelihood Function of Transformed Data 

An example of (2.21) is the following. Let X have density 

.p (x) = 1√
2π

exp

[
−1

2
(x − μ)2

]
(2.22) 

which is the density of the normal process .N (μ, 1). Assume that X is transformed 
to .Y = f (X) = exp (X). The inverse transformation is .X = f −1 (Y ) = ln (Y ). 
The density function of Y is then, using (2.21), 

. p (y) = p
(
f −1 (y)

) ∣∣∣
∣

d

dy
f −1 (y)

∣∣∣
∣

= 1

y
√

2π
exp

[
−1

2
(ln y − μ)2

]
, (2.23) 

where .1/y enters through the Jacobian of the transformation. Then .Y = exp (X) is 
said to have a lognormal distribution with density as given above. The likelihood 
based on Y is proportional to this density. Inspection of (2.22) and (2.23) reveals 
that the two likelihoods are maximised when the exponential term is equal to 1. 
Therefore, the MLE of . μ based on X is x and based on Y is .ln y. In other words, the 
MLE of the lognormal likelihood is the same as that of the normal likelihood fitted 
to the logarithm of the data.
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2.4 Example: Linear Regression 

Linear regression is one of the most widely adopted statistical methods and its use in 
genetics probably dates back to Galton (1885). For example, a simple approach for 
estimating heritability of quantitative traits is based on regressing offspring records 
on the records of their fathers and mothers, or regressing offspring records on mid-
parental records. 

This example, taken from Sorensen and Gianola (2002), is based on such a linear 
regression model where observations (e.g. the offspring records) are postulated to 
be linked to an intercept . β0 and to a slope parameter . β1 via the relationship 

. yi = β0 + β1xi + ei .

In this expression, the scalars . xi .(i = 1, 2, ..., n) are known values of an explanatory 
variable (e.g. the mid-parental values), and .ei ∼ N

(
0, σ 2

)
is an unobserved random 

residual term. The n residuals are assumed to be iid. The parameter vector is 
.[β0, β1, σ

2]. In a genetic context, . β1 (the regression of offspring on mid-parents) is 
interpreted as the heritability of the quantitative trait (Falconer and Mackay 1996). 

The likelihood function can be written as 

. L
(
β0, β1, σ

2|y
)

∝
(
σ 2
)− n

2
exp

[

− 1

2σ 2

n∑

i=1

(yi − β0 − β1xi)
2

]

and the corresponding loglikelihood, apart from an additive constant, is 

. l
(
β0, β1, σ

2|y
)

= −n

2
ln
(
σ 2
)

− 1

2σ 2

n∑

i=1

(yi − β0 − β1xi)
2 .

The score vector is given by 

. 

⎡

⎢⎢
⎣

∂l
∂β0

∂l
∂β1

∂l
∂σ 2

⎤

⎥⎥
⎦ =

⎡

⎢
⎣

1
σ 2

∑n
i=1 (yi − β0 − β1xi)

1
σ 2

∑n
i=1 xi (yi − β0 − β1xi)

− n
2σ 2 + 1

2σ 4

∑n
i=1 (yi − β0 − β1xi)

2

⎤

⎥
⎦ .

Setting the score vector equal to zero and solving simultaneously for the 
unknown parameters gives explicit solutions to the ML equations. The MLEs are 

.̂σ 2 =

n∑

i=1
(yi − β̂0 − β̂1xi)

2

n
,
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where . β̂0 and . β̂1 are the solutions to the matrix equation: 

. 

[
n

∑n
i=1 xi∑n

i=1 xi

∑n
i=1 x2

i

] [
β̂0

β̂1

]
=
[ ∑n

i=1 yi∑n
i=1 xiyi

]
.

Explicitly, 

. β̂0 = y − β̂1x

and 

. ̂β1 =
∑n

i=1 xiyi − 1

n

∑n
i=1 xi

∑n
i=1 yi

∑n
i=1 x2

i − 1

n

(∑n
i=1 xi

)2
.

The first two columns of the .3 × 3 matrix of the negative of second derivatives 
of the loglikelihood with respect to the parameters, or observed information matrix, 
are 

. 

⎡

⎣
σ−2n σ−2∑n

i=1 xi

σ−2∑n
i=1 xi σ−2∑n

i=1 x2
i

σ−4∑n
i=1 (yi − β0 − β1xi) σ−4∑n

i=1 xi (yi − β0 − β1xi)

⎤

⎦

and the last column is 

. 

⎡

⎢
⎣

σ−4∑n
i=1 (yi − β0 − β1xi)

σ−4∑n
i=1 xi (yi − β0 − β1xi)

− (2σ 4
)−1

n + σ−6∑n
i=1 (yi − β0 − β1xi)

2

⎤

⎥
⎦ .

It is easy to verify that the expected value of each of the elements of the score 
vector is null. For example, 

. E

(
∂l

∂β1

)
= 1

σ 2

n∑

i=1

xi E (yi − β0 − β1xi) = 0

and 

. E

(
∂l

∂σ 2

)
= − n

2σ 2
+ 1

2σ 4

n∑

i=1

E (yi − β0 − β1xi)
2

= − n

2σ 2
+ 1

2σ 4
nσ 2 = 0.
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Further, the expected information matrix is given by 

. i (θ) = σ−2

⎡

⎢
⎣

n
∑n

i=1 xi 0∑n
i=1 xi

∑n
i=1 x2

i 0

0 0
(
2σ 2

)−1
n

⎤

⎥
⎦ .

Note that the elements .(1, 2) and .(2, 1) of this matrix are not null. This illustrates 
that in a multiparameter model, it is often more sensible to speak about joint 
information on a set of parameters rather than about information on individual 
parameters themselves. 

Invariance 

The original parametrisation was in terms of .θ = [β0, β1, σ
2]′. Imagine that there 

is interest in a new parametrisation consisting of the vector 

. η =
⎡

⎣
η1

η2

η3

⎤

⎦ =
⎡

⎣
β0/β1

β1

σ 2

⎤

⎦

with inverse 

. θ = f −1 (η) =
⎡

⎣
η1η2

η2

η3

⎤

⎦ .

The .3 × 3 matrix defined after (2.15) would be 

.
∂θ ′

∂η
=
⎡

⎣
∂θ1/∂η1 ∂θ2/∂η1 ∂θ3/∂η1

∂θ1/∂η2 ∂θ2/∂η2 ∂θ3/∂η2

∂θ1/∂η3 ∂θ2/∂η3 ∂θ3/∂η3

⎤

⎦ =
⎡

⎣
η2 0 0
η1 1 0
0 0 1

⎤

⎦ . (2.24) 

Differentiating the loglikelihood twice under the new parametrisation, multiplying
by .−1 and taking expectations yields the information matrix: 

. I (η) = 1

η3

⎡

⎢
⎢
⎣

nη2
2 η2

(
nη1 +∑n

i=1 xi

)
0

η2
(
nη1 +∑n

i=1 xi

) ∑n
i=1 (η1 + xi)

2 0

0 0
n

2η3

⎤

⎥
⎥
⎦ .

It can be verified that the same result is obtained from the matrix product given in 
(2.18), employing the matrix (2.24).
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2.5 Example: Bivariate Normal Model with Missing Records 

Consider a data set consisting of two rows; the first has phenotypic records on fathers 
.(x) and the second on sons . (y), one son per father. Some of the records of the sons 
are missing. The ordered data can be represented as 

. x1, x2, . . . , xm, xm+1, . . . , xn,

y1, y2, . . . , ym. (2.25) 

There are m complete bivariate observations .(xi, yi) , i = 1, 2, . . . , m, and . (n − m)

univariate records from fathers without sons. Each father that left offspring is 
assumed to have mated with a randomly chosen unknown female and produced 
one son. At this stage, it is assumed that the observed pattern of missing records 
may depend on the observed . x′s but not on the missing values themselves. In other 
words, the missing data (.ym+1, . . . , yn) are  missing at random (Rubin 1976, 2002), 
and the missing data mechanism is ignorable, in the sense that this mechanism does 
not have to be incorporated as part of the likelihood model for correct inferences. 

The data could represent LDL cholesterol levels in humans collected with the 
objective of estimating the parameters of a probability model entertained by the 
data analyst. The parameters could be mean levels of LDL cholesterol and variance 
components and functions thereof, such as heritability. Information on the latter 
indicates whether genetic factors may affect LDL cholesterol. 

Assume that a record of a father and his son is a draw from the bivariate normal 
model: 

. 
[
(yi, xi) |μy,μx, σxy, σyy, σxx

] ∼ N

([
μy

μx

]
,

[
σyy σxy

σxy σxx

])
, i = 1, . . . , n,

(2.26) 

and assume that the pairs .(yi, xi) are iid. The covariance term is usually interpreted 
as .σxy = σxxh

2/2, where . h2 is the heritability (twice the regression of sons on 
fathers) in the population from which fathers were sampled (with assumptions, such 
as absence of common environmental effects between parents and offspring). The 
correlation coefficient is .ρ = σxy/

√
σyyσxx and is equal to .h2/2 when .σxx = σyy . 

In the absence of missing records (if the .(n − m) . y′s were not missing), the joint 
density of the n pairs .(yi, xi) is 

. p
(
y, x|μy,μx, ρ, σyy, σxx

) =
(

2πσyyσxx

(
1 − ρ2

))− n
2

exp

[

− 1

2
(
1 − ρ2

)

(∑n
i=1 (xi − μx)

2

σxx

+
∑n

i=1

(
yi − μy

)2

σyy

− 2ρ

∑n
i=1 (xi − μx)

(
yi − μy

)

(
σxxσyy

) 1
2

⎞

⎠

⎤

⎦ , (2.27)
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and the likelihood is proportional to (2.27). In this situation (no missing records), 
the ML estimators are in closed form and are given by 

. ̂μx = 1

n

n∑

i=1

xi, μ̂y = 1

n

n∑

i=1

yi,

σ̂xx = 1

n

n∑

i=1

(xi − μ̂x)
2 , σ̂yy = 1

n

n∑

i=1

(
yi − μ̂y

)2
, (2.28)

σ̂xy = 1

n

n∑

i=1

(xi − μ̂x)
(
yi − μ̂y

)
,

ρ̂ = σ̂xy

(
σ̂xx σ̂yy

) 1
2

.

However, with the present pattern of missing records, the likelihood is proportional 
to 

. p
(
y, x|μy,μx, ρ, σyy, σxx

) =
(

2πσyyσxx

(
1 − ρ2

))− m
2

exp

[

− 1

2
(
1 − ρ2

)

(∑m
i=1 (xi − μx)

2

σxx

+
∑m

i=1

(
yi − μy

)2

σyy

− 2ρ

∑m
i=1 (xi − μx)

(
yi − μy

)

(
σxxσyy

) 1
2

⎞

⎠

⎤

⎦ (2πσxx)
− (n−m)

2

exp

[

−
∑n

i=m+1 (xi − μx)
2

2σxx

]

. (2.29) 

The likelihood equations derived from this likelihood function are difficult to solve
analytically.

Rather than expressing the likelihood as in (2.29), an alternative strategy can be 
followed. The normal density of the joint distribution (2.26) can be factorised as the 
product of two normal densities: 

. p
(
yi, xi |μy,μx, σxy, σyy, σxx

) = p (xi |μx, σxx) p
(
yi |xi, μy, μx, σxy, σyy, σxx

)
.

(2.30) 

The parameters of the two terms in the right-hand side of (2.30) are not distinct 
because .(μx, σxx) are common to both factors. Therefore, a global maximisation 
of the likelihood requires that the two terms of the right-hand side of (2.30) are  
maximised jointly. The resulting algebra is quite messy.
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Considering all the records, the first term in the right hand side of (2.30) is  

. (2πσxx)
− n

2 exp

[

−
∑n

i=1 (xi − μx)
2

2σxx

]

(2.31) 

and the second term is (2.30) and 

.
(
2πσy.x

)− m
2 exp

⎡

⎢
⎣−

∑m
i=1

(
yi − μy − σxy

σxx
(xi − μx)

)2

2σy.x

⎤

⎥
⎦ , (2.32) 

where

. σy.x = σyy −
(
σxy

)2

σxx

,

is the variance of the conditional distribution of y given x. The mean and 
variance of the distribution .[xi |μx, σxx] are then . μx and . σxx , respectively, and the 
corresponding parameters of .

[
yi |xi, μy, μx, σxy, σyy, σxx

]
are 

. E
(
yi |xi, μy, μx, σxy, σyy, σxx

) = μy + σxy

σxx

(xi − μx) ,

Var
(
yi |xi, μy, μx, σxy, σyy, σxx

) = σyy −
(
σxy

)2

σxx

.

Consider using the factorised likelihood (2.30) but rather than parametrising 
with .θ = (

μy,μx, σxy, σyy, σxx

)
, use instead .φ = (

μx, σxx, β0, β1, σy.x

)
, where 

.(μx, σxx) are common to both parametrisations and the other components of . φ are 
given by the following functions of the components of . θ : 

. β0 = μy − β1μx,

β1 = σxy

σxx

,

σy.x = σyy −
(
σxy

)2

σxx

.

Under this parametrisation, the density of the pair .(yi, xi) becomes 

. p
(
yi, xi |μy,μx, σxy, σyy, σxx

) = p (xi |μx, σxx) p
(
yi |xi, β0, β1, σy.x

)
.

(2.33)
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The form of the first term in the right-hand side of (2.33) is the same as in (2.31) 
and the form of the second term is 

. p
(
yi |xi, β0, β1, σy.x

) = (
2πσy.x

)− m
2 exp

[

−
∑m

i=1 (yi − β0 − β1xi)
2

2σy.x

]

.

(2.34) 

The mean and variance of the distribution corresponding to (2.34) are  

. E (yi |xi, β0, β1) = β0 + β1xi

(= μy + β1 (xi − μx)
)
,

Var
(
yi |xi, σy.x

) = σy.x .

The parameters in the two terms of the right-hand side of (2.33) are distinct; the 
global maximisation of the likelihood can proceed by maximising the likelihood 
of each term separately. Each of the two terms corresponds to the likelihood 
of a straightforward problem: .p (xi |μx, σxx) is the likelihood of .N (μx, σxx), 
the marginal distribution of . xi , and .p

(
yi |xi, β0, β1, σy.x

)
is the likelihood of 

.N
(
β0 + β1xi, σy.x

)
, the likelihood of the regression of father on son. This devel-

opment was apparently first given by Anderson (1957). 

2.6 Example: Likelihood Inferences Using Selected Records 

Consider the following problem discussed in Lush and Shrode (1950) and in 
Henderson et al (1959). One is to obtain an estimate of the difference in milk 
production between years. The data on which inferences are to be based are selected: 
second year records are obtained only from those cows that had the highest first year 
records. The lowest producers of first year records are not allowed to produce in 
year 2 and are culled from the herd. The pattern of missing records in this example 
is identical to the pattern displayed in (2.25): the missing data mechanism is only 
a function of the observed data (the first lactation records in this example) and 
therefore the data are missing at random (Rubin 2002) and the selection process does 
not have to be incorporated as part of the likelihood model; the selection mechanism 
is ignorable. A heuristic conditional argument provides an alternative explanation. 
Given a data structure of the form in (2.25), the likelihood can be factorised as 

. p (x1, x2, . . . , xm, xm+1, . . . , xn, y1, y2, . . . , ym; θ)

= p (y1, y2, . . . , ym|x1, x2, . . . , xm; θ1) p (x1, x2, . . . , xm, xm+1, . . . , xn; θ2) ,

where the . θ ’s are parameters of the respective densities. The conditional likelihood, 
given x (the first term on the right-hand side), is unaffected by selection on x and 
the second term includes all the parental data. Therefore, selection is ignorable.
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Let .yi1 and .yi2 be age-adjusted records of the ith cow in years 1 and 2, 
respectively, with 

.yi1 = μ + ci + ei1, i = 1, 2, . . . , N (2.35) 

and

.yi2 = μ + ci + δ + ei2, i = 1, 2, . . . , n, (2.36) 

where . ci is an effect of cow assumed .N
(
0, σ 2

c

)
, . ei1 and .ei2 ∼ N

(
0, σ 2

e

)
and . δ is the 

difference between second and first year records that one wishes to estimate. There 
are N cows that have a first lactation record and n have a second lactation record. 
In the absence of culling, .n = N . With culling based on first lactation information, 
.n < N . 

From the models, 

. E (yi1) = μ

E (yi2) = μ + δ

E (yi2) − E (yi1) = δ

Var (yi1) = Var (yi2) = σ 2 = σ 2
c + σ 2

e

Cov (yi1, yi2) = σ 2
c = ρσ 2

Corr (yi1, yi2) = ρ = Cov (yi1, yi2)√
Var (yi1)

√
Var (yi2)

= σ 2
c

σ 2 .

Above, . ρ is the repeatability or correlation between . yi1 and . yi2. Assume that, in the 
absence of selection, . yi1 and . yi2 are bivariate normally distributed. Then, 

.

[
yi1

yi2

]
∼ N

[[
μ

μ + δ

]
,

[
σ 2 ρσ 2

ρσ 2 σ 2

]]
. (2.37) 

Therefore,

.yi2|yi1 ∼ N
[
μ + δ + ρ (yi1 − μ) , σ 2

(
1 − ρ2

)]
(2.38) 

and

.yi1 ∼ N
(
μ, σ 2

)
. (2.39) 

If the conditional expectation of a second year record, given the first year record

. E (yi2|yi1) = μ + δ + ρ (yi1 − μ) , (2.40)
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is averaged over all cows that have a year 1 record 

. Eyi1 [E (yi2|yi1)] = E (yi2) = μ + δ + ρ Eyi1 [(yi1 − μ)]

= μ + δ, (2.41) 

as expected from the model. However, only the best cows in year 1 are allowed 
to produce in year 2. This means that, with selection, the expected value of year 1 
records is not . μ but 

. E (yi1|yi1 ∈ S) = μs �= μ, (2.42) 

where S is the set of cows with records in year 1 that are allowed to produce a
second record in year 2 and . μs is the mean of the selected records of year 1. Then 
we have 

. Eyi1 [E (yi2|yi1 ∈ S)] = μ + δ + ρ Eyi1 [(yi1 − μ) |yi1 ∈ S]

= μ + δ + ρ (μs − μ) . (2.43) 

Estimation by Least Squares 

This section presents properties of the least squares estimator of . δ, the difference 
between milk production in year 1 and 2. A least squares estimator of this difference, 
including only cows that have a record on both years, is 

. ̂d1 = y.2 − y.1, yi1 ∈ S.

The expected value of . ̂d1 is 

. E
(
d̂1
) = Eyi1

[
E
(
y.2 − y.1|yi1 ∈ S

)] = (μ + δ + ρ (μs − μ)) − μs

= δ − (1 − ρ) (μs − μ) . (2.44) 

Since .μs > μ, the estimator of the difference is biased downwards. With selected 
data, least squares estimates of year effects based on (2.44) give the impression of 
negative environmental trend with time. 

Another possibility would be to estimate . δ by taking the average of all year 2 
records minus all year 1 records. The expected value of this second estimator is 

. E
(
d̂2
) = Eyi1

[
E
(
y.2|yi1 ∈ S

)]− E
(
y.1
) = (μ + δ + ρ (μs − μ)) − μ

= δ + ρ (μs − μ) , (2.45)
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which is biased unless .ρ = 0, in which case selection would not be effective in 
changing milk production. 

The conclusion is that with this type of selection (culling type), the least 
squares estimate of the difference in milk production is biased. On the other 
hand, BLUP (best linear unbiased predictor) yields unbiased estimates of genetic 
and environmental trends under certain types of selection. The paper where this 
is discussed at length is Henderson (1975). The following subsection describes 
in a simplified manner estimation of year effects using maximum likelihood. An 
important paper on the topic is the one by Curnow (1961). 

Estimation by Maximum Likelihood 

The parameters of the model defined by (2.38) and (2.39) are  

. θ ′ =
(
μ, δ, σ 2, ρ

)
.

However, in this simplified problem, it will be assumed that . ρ and . σ 2 are known. In 
view of (2.38) and (2.39), the likelihood is 

. L (θ |y) ∝
(

2πσ 2
)− N

2
exp

[

−
∑N

i=1 (yi1 − μ)2

2σ 2

]

×
(

2π
(

1 − ρ2
)

σ 2
)− n

2
exp

[

−
∑n

i=1 (yi2 − μ − δ − ρ (yi1 − μ))2

2
(
1 − ρ2

)
σ 2

]

. (2.46) 

With . ρ and . σ 2 assumed known, the loglikelihood, apart from an additive constant, 
is 

. l (μ, δ|y) = −
(
1 − ρ2

)∑N
i=1 (yi1 − μ)2 +∑n

i=1 (yi2 − μ − δ − ρ (yi1 − μ))2

2
(
1 − ρ2

)
σ 2

.

(2.47) 

This loglikelihood can be written as 

. l (μ, δ|y) = k − N (y − μ)2

2σ 2

−n
(
y2 − μ − δ − ρ

(
y1 − μ

))2

2
(
1 − ρ2

)
σ 2

, (2.48)
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where k is a constant that does not depend on .(μ, δ) and 

. y =
∑N

i=1 yi1

N

y1 =
∑n

i=1 yi1

n

y2 =
∑n

i=1 yi2

n
.

With . ρ and . σ 2 assumed known, the loglikelihood (2.48) is a function of . μ and 
. δ only. To obtain the maximum likelihood estimates of . μ and . δ, (2.48) must be  
maximised with respect to . μ and . δ. One way of doing this is to take partial 
derivatives of (2.48) with respect to . μ and . δ, to set the resulting two equations equal 
to zero and to solve for . μ and . δ. The resulting maximum likelihood estimators of . μ
and . δ are 

.μ̂ = y, (2.49) 

and

.̂δ = y2 − y − ρ
(
y1 − y

)
. (2.50) 

If all first lactation cows produce a second lactation (i.e. no selection), then . y1 = y

and the maximum likelihood estimator of . δ reduces to .y2−y, the difference between 
mean production in years 2 and 1. 

To study whether (2.49) and (2.50) are biased, I compute their expectations. From 
(2.39), 

. E (μ̂) = E (y) = μ. (2.51) 

Using (2.42), (2.51) and (2.43), the expected value of (2.50) is  

. E
(
δ̂
) = Eyi1

[
E
(
y2|yi1 ∈ S

)]− E (y) − ρ
[
E
(
y1|yi1 ∈ S

)− E (y)
]

= μ + δ + ρ (μs − μ) − μ − ρ (μs − μ)

= δ. (2.52) 

Therefore, the maximum likelihood estimators of . μ and . δ are unbiased by selection 
of the records, despite the fact that the selection mechanism is not accounted for in 
the computation of the likelihood (2.47). This holds in the present example because 
the data are missing at random in the sense defined by Rubin (1976) and therefore 
the selection mechanism is ignorable. If this is not the case, inferences based on the 
likelihood require incorporating the selection process as part of the model. This is 
illustrated in the next example.
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2.7 Example: The Likelihood Function with Truncated Data 

Consider data collected on n individuals with the objective of inferring the mean 
and variance of some trait. For some reason beyond the control of the analyst, only 
those individuals that exceed a known threshold become available for analysis. Can 
the mean and variance of the (unselected) trait be correctly inferred using these 
data? The example is presented in a stylised fashion, but the data structure is not 
uncommon for field data in animal breeding, where records of culled individuals 
are typically excluded. 

As a reminder, let X have probability density function .p (x) and cumulative 
distribution function .F (x) = Pr (X ≤ x). Let  a and b be constants lying within 
the support of the distribution of X (the support of the distribution is the set of 
values of x where the pdf (or pmf) is positive). Then, 

.p (x|a < X ≤ b) = p (x)

F (b) − F (a)
, . (2.53a) 

p (x|X >  a) = 
p (x) 

1 − F (a) 
, . (2.53b) 

p (x|X ≤ b) = 
p (x) 
F (b) 

. (2.53c) 

In each case, the unconditional density is adjusted by a scaling constant so 
that the conditional density still integrates to unity. In other words, the selection 
mechanism is taken into account. 

With this detail in place, consider data vector .Y = (Yo, Ym) of length n from a 
normal distribution with mean . μ and variance . σ 2 that consist of r observed records 
. Yo and .n− r missing records . Ym. The .n− r missing records were discarded because 
they were smaller than an observed threshold T . In this particular case, the missing 
data mechanism involves the complete data (the observed and the missing data). 
Therefore, the missing data mechanism must be incorporated in the likelihood for 
correct inferences. 

The contribution to the likelihood function from each element of . Yo is 

. LYo

(
μ, σ 2|yi > T

)
∝ p

(
yi |μ, σ 2

)

∫∞
T

p
(
yi |μ, σ 2

)
dyi

= p
(
yi |μ, σ 2

)

1 − (z)
, i = 1, . . . , r;

z = T − μ

σ
,

where .p
(
yi |μ, σ 2

)
, in this example, is the density of .N

(
μ, σ 2

)
and .(·) is the 

distribution function (or cumulative distribution function) of the standard normal.
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Concerning the .n − r missing records, the only information available is that they 
are smaller than T . Therefore, the contribution to the likelihood function from each 
missing record is 

. LYm

(
μ, σ 2|yi < T

)
= Pr

(
yi < T |μ, σ 2

)
= (z) , i = r + 1, . . . , n.

Assuming the records are iid, after ordering, the likelihood becomes 

. 
∏r

i=1
LYo

(
μ, σ 2|yi ≥ T

)∏n

i=r+1
LYm

(
μ, σ 2|yi < T

)
∝

∏r
i=1 p

(
yi |μ, σ 2

)

(1 − (z))r
( (z))n−r , (2.54) 

where z is a function of . μ and . σ . Maximisation over . μ and . σ 2 provides inferences 
of the base (untruncated) population parameters. This would not be the case if the 
selection mechanism had been ignored and if inferences of . μ and . σ 2 had instead 
been based on the likelihood constructed assuming .Yo ∼ N

(
μ, σ 2

)
. The resulting 

estimators would be biased. 
Likelihood (2.54) is a nonlinear function of . μ and . σ 2 and no analytic form for 

the estimators exists. However, solutions using the method of moments, the EM 
(expectation maximisation) algorithm or McMC are easily available as shown in the 
chapters ahead. 

A slightly different situation arises if information is restricted to the r observed 
records only, known to have been selected because each was larger than T . There is 
no information about how many records were discarded. In this case, the likelihood 
is equal to (2.54) with the second term .( (z))n−r omitted. 

The Exercises section, pages 547 and 592, introduces a censored model where 
data are drawn from an exponential distribution. 

2.8 Example: The Likelihood Function of a Genomic Model 

So far no distinction has been made between the model assumed to generate the 
data, the true model, and the model used for analysis, the operational model. When 
the likelihood based on an operational model differs meaningfully from that based 
on the true model, the likelihood is misspecified and inferences can be affected. 
I underline inferences because in the context of prediction, this is not necessarily 
a problem. The true model may constitute a poorer prediction machinery than an 
operational alternative. 

I revisit (see page 39) a model that is used repeatedly in this book: the genomic 
model that has its origins in the influential work of Meuwissen et al (2001). 
Advances in molecular genetic techniques have allowed genotyping vast numbers of 
markers spread across the whole genome of individuals. These genetic marker loci
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are not necessarily causal but are correlated (they are in linkage disequilibrium) with 
the causal loci, the so-called quantitative trait loci (QTL). The latter are typically 
unobserved, and the genetic markers are observed and can provide information 
about the genetics of a trait. 

Genetic marker information on a large number of loci allows the assessment 
of kinship (additive genetic relationships) among nominally unrelated individuals 
(meaning distantly related). However, due to Mendelian sampling, the patterns of 
allele sharing at markers and at causal loci may be very different (Hill and Weir 
2011). As a consequence, the variance structure specified by the operational model 
can differ from that of the true model, leading to misspecification. This disparity 
between the true model and the operational model may affect inferences but is not 
necessarily a problem in the context of prediction. The topic is elaborated in de los 
Campos et al (2015). 

With this warning in mind, I introduce the (operational) likelihood function of a 
genomic model. Consider, first in general terms, the following mixed model: 

.y|α, g, σ 2
e ∼ N

(
Zα + g, Iσ 2

e

)
, . (2.55a) 

g|G, σ 2 
g ∼ N

(
0,Gσ 2 

g

)
. (2.55b) 

The first line specifies that the conditional distribution of the data y (vector of 
order .n × 1), given all the parameters, is normal with conditional mean . Zα + g

and conditional variance .Iσ 2
e . The scalar .σ 2

e is the residual variance, Z is an 
observed matrix and . α is an unobserved vector of systematic effects. The second 
line describes the model for the random variable g given parameters. This is again 
normal with mean 0 and variance .Gσ 2

g . The system described by (2.55) is an  
example of a hierarchical model. Vector g could represent genomic or additive 
genetic values, G could represent a genomic or additive genetic relationship matrix 
and . σ 2

g , a scalar, can be a genomic or an additive genetic variance component. 
When g is a vector of additive genetic values, taken to be equal to the sum of the 
contributions from a very large number of unobserved loci, the model is known 
as the infinitesimal model (Bulmer 1980). This has been the standard model for 
analysis of many quantitative traits in the pre-genomics era. Matrix G specifies the 
conditional expected value of allele sharing between individuals, given an observed 
pedigree, also known as the additive genetic relationship matrix. 

In the genomic model, where g is a vector of genomic values, it takes the form 
.g = Wb, where b is a vector of p unobserved genetic marker effects, often assigned 
the normal distribution: 

. b|σ 2
b ∼ N

(
0, Iσ 2

b

)
.

The scalar parameter . σ 2
b can be interpreted as the prior variance associated with 

each element of the .p×1 vector b. The observed matrix W , of order .n×p, consists
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of marker labels .Xij (often centred and scaled, in which case the rank of W is at 
most .n − 1 if .p > n): 

. Wij = Xij − E
(
Xij

)

√
Var

(
Xij

) .

When the rank of W is smaller than n, g in (2.55b) has a singular normal 
distribution. The random variable .Xij can take values .0, 1, 2 according to the 
number of the arbitrarily chosen allele of marker locus j of individual i. Therefore, 
.E
(
Wij

) = 0, .Var
(
Wij

) = 1. Matrix  W is a random variable that takes a particular 
realised value in the data at hand. Inferences based on genomic models are typically 
conditional on W . Parametrising in terms of g rather than in terms of b is useful 
when .p > n. 

The vector g of genomic values is a proxy for the true additive genetic values 
determined by the causal QTL. The conditional variance of g given W is 

. Var (g|W) = WW ′σ 2
b

= 1

m
WW ′σ 2

g ,

where the genomic relationship matrix .Gg = (1/m) WW ′ is the average (over 
marker loci) realised observed matrix of genetic relationships among the n indi-
viduals, and .σ 2

g = mσ 2
b is the unconditional (with respect to W ) variance of an 

element of g, interpreted as the amount of additive genetic variance captured by 
marker loci, or genomic variance at the level of the operational model. The equality 
.σ 2

g = mσ 2
b stems from the fact that 

. Var (gi) = E [Var (gi |Wi)] + Var [E (gi |Wi)]

= E [Var (gi |Wi)]

because .E (gi |Wi) = 0. Labelling .W ′
i as the ith row of matrix W, the ith diagonal 

term .WW ′ is .W ′
iWi = ∑p

j=1 W 2
ij . Then 

. Var (gi) = E

⎡

⎣
p∑

j=1

W 2
ij

⎤

⎦ = mσ 2
b = σ 2

g

because .E
(
W 2

ij

)
= 1. A genomic heritability or proportion of variance accounted 

for by the genetic markers is defined as 

.h2
g = σ 2

g

σ 2
g + σ 2

e

. (2.56)
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The construction of the likelihood involves integration over g: 

.L
(
α, σ 2

g , σ 2
g |y,Gg

)
=
∫

g

p
(
y|α, g, σ 2

e

)
p
(
g|Gg, σ

2
g

)
dg, (2.57) 

which in view of the normality assumptions is the likelihood of the normal
distribution:

. N
(
Zα,Ggσ

2
g + Iσ 2

e

)
.

In a classical likelihood setup, the . g′s are not “parameters” but latent variables 
that do not feature in the likelihood. The only parameters are . α, . σ 2

g and . σ 2
e . 

In this example, the likelihood is explicit but the maximum likelihood estimators 
do not have a closed form. Numerical methods are needed to obtain solutions. This 
is the subject of the next chapter. In most non-Gaussian setups, the integration in 
(2.57) cannot be written in closed form, and therefore neither the likelihood function 
nor the maximum likelihood estimators can be obtained explicitly.



Chapter 3 
Computing the Likelihood 

Estimation using the likelihood function proceeds by solving for . θ the equation 
.S(θ) = 0 where .S(θ) is the score. In many cases, there may be no explicit solution, 
either because the system of equations is not linear or because the likelihood 
cannot be written explicitly. Therefore, numerical methods must be employed to 
obtain the maximum likelihood estimates. There is a large number of optimisation 
algorithms for nonlinear problems (see, e.g. Dahlquist and Björck 1974). The 
chapter provides an outline of two classical approaches that are used for fitting 
models using maximum likelihood and a third one that is often used in high-
dimensional settings such as neural networks. The first two are Newton-Raphson 
and the the EM algorithm and the third is gradient descent. Examples illustrate 
implementation of the methods. 

3.1 Newton-Raphson and the Method of Scoring 

Newton-Raphson is a general procedure to solve .g (x) = 0. Newton-Raphson finds 
the root of a function and therefore it is applied to the derivative of the loglikelihood. 
To illustrate, assume that x is a scalar. The starting point is a Taylor expansion 
around an initial estimate of x labelled . x0

.g (x) ≈ g (x0) + g′ (x0) (x − x0) = 0, (3.1) 

where

. g′ (x0) = dg (x)

dx

∣
∣
∣
∣
x=x0

.
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From (3.1), 

. x = x0 − g (x0)

g′ (x0)

and the iterative process is 

.xt+1 = xt − g (xt )

g′ (xt )
. (3.2) 

ML estimation involves finding the value of . θ that satisfies .S (θ) = 0, where . θ is 
a vector of p parameters and .S (θ) is the score function, the first derivative of the 
loglikelihood with respect to the parameters. The vectorial expression equivalent to 
(3.1) is  

.S (θ) = S (θ0) + S′ (θ0) (θ − θ0) (3.3) 

where

. S′ (θ0) = ∂2� (θ |y)

∂θ∂θ ′

∣
∣
∣
∣
θ=θ0

.

The component ij of the .p × p matrix of second derivatives .S′ (θ) (the Hessian) is  

. 
∂2� (θ |y)

∂θi∂θj

and .−S′ (θ0) = I (θ0|y) is the observed information. After setting (3.3) equal to 
zero and solving for . θ , the iterative process is 

.θt+1 = θt − [

S′ (θt )
]−1

S (θt ) . (3.4) 

The method of scoring replaces the inverse of the observed information in (3.4) 
by the expected information matrix and the iterative process is now 

.θt+1 = θt − [

Ey

(

S′ (θt )
)]−1

S (θt ) . (3.5) 

The expected information is

. Ey

(

S′ (θt )
) = −

[

Ey

(
∂2

∂θ∂θ ′ � (θ |y)

)]∣
∣
∣
∣
θ=θt

= −
∫

∂2� (θ |y)

∂θ∂θ ′ p (y|θ) dy.

Typically, the method of scoring requires fewer calculations in each iteration 
because many expressions vanish or simplify in the process of taking expectations.
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However, it may converge at a slower rate. The two methods may not converge at all 
and, even if they do, there is no assurance that a global maximum would be reached. 
This is not surprising, as the methods search for stationarity without reference to the 
possible existence of multiple maxima. This is a potential problem in models having 
many parameters, and it is expected to occur more frequently when sample sizes are 
small, as the likelihood may have several “peaks and valleys”. Both methods involve 
calculating the matrix of second derivatives of the loglikelihood. 

A third variant (and there are others) of this iterative procedure avoids the use of 
second derivatives and is implemented with first derivatives only as 

.θt+1 = θt − [(

S (θ) S (θ)′
)]−1

S (θt ) . (3.6) 

This is known as the BHHH algorithm and was proposed by Berndt, Hall, Hall and
Hausman (Berndt et al, 1974). The performance of this method can be more erratic 
than the previous two. 

All these methods are based on a linear approximation to the score function that 
is equivalent to a quadratic approximation to the likelihood. 

Example: Estimation of Gene Frequencies from ABO Blood 
Group Phenotypes 

The ABO blood group antigens in man are encoded by one genetic locus on 
chromosome 9, the ABO locus that has three allelic forms: A, B and O. A child 
receives one of the three alleles from each parent, giving rise to six possible 
genotypes but only four phenotypic classes (blood types) can be observed. 

Consider the blood group data in Table 3.1. The expected frequency of each 
genotype in the last column is derived assuming Hardy-Weinberg equilibrium. The 
problem at hand is to infer . pA, .pB and . pO , the frequency of alleles A, B and O, 
respectively, subject to the constraint .pA + pB + pO = 1. The observed data are 
.(nA, nAB, nB, nO). 

Before writing the likelihood corresponding to this problem, imagine that all six 
phenotypes were observed (one for each genotype). This would lead to the classical 
multinomial likelihood. To illustrate, assume that the complete data were instead 

Table 3.1 Frequency of 
genotypes and phenotypes of 
ABO blood group data 

Genotype Phenotype Observed counts Frequency 

AA A .nA . p2
A

AO A . 2pApO

AB AB .nAB . 2pApB

BB B .nB . p2
B

BO B . 2pBpO

OO O .nO .p2
O
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.
(

nAA, nAO, nAB, nBB, nBO,nOO

)

associated with the six phenotypes and the total 
number of observations is 

. N = nAA + nAO + nAB + nBB + nBO + nOO.

The four phenotypic classes (blood types) are .nA = nAA+nAO , .nAB = nAB , . nB =
nBB + nBO and .nO = nOO . Under multinomial sampling, the joint probability 
function of the complete data is 

. Pr
(

nAA, nAO, nAB, nBB, nBO,nOO |pA, pB

)

= N !
(

p2
A

)nAA

nAA!
(2pApO)nAO

nAO !
(2pApB)nAB

nAB !
(

p2
B

)nBB

nBB !
(2pBpO)nBO

nBO !
(

p2
O

)nOO

nOO ! .

The likelihood function is 

. L
(

pA, pB |nAA, nAO, nAB, nBB, nBO,nOO

)

∝
(

p2
A

)nAA

(2pApO)nAO (2pApB)nAB

(

p2
B

)nBB

(2pBpO)nBO

(

p2
O

)nOO

,

(3.7) 

and the loglikelihood, up to an additive constant, is

. l
(

pA, pB |nAA, nAO, nAB, nBB, nBO,nOO

)

= 2nAA ln (pA) + nAO ln (2pApO) + nAB ln (2pApB) + 2nBB ln (pB)

+nBO ln (2pBpO) + 2nOO ln (pO) . (3.8) 

Substituting .pO = 1 − pA − pB , taking partial derivatives with respect to .pA and 
. pB and setting these equal to zero leads to the equations: 

. 
2nAA + nAB + nAO

pA

− 2nOO + nAO + nBO

1 − pA − pB

= 0,

2nBB + nAB + nBO

pB

− 2nOO + nAO + nBO

1 − pA − pB

= 0.

The unique solutions are the closed-form ML estimators: 

.p̂A = 2nAA + nAB + nAO

2N
, . (3.9a)

p̂B = 
2nBB + nAB + nBO 

2N 
. (3.9b)
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In the case of the data in Table 3.1, .nAO and .nBO are not observed and the 
likelihood becomes nonlinear. Given the data in Table 3.1, the loglikelihood is 

. l (pA, pB |nA, nAB, nB, nO) ∝ nA ln [pA (2 − pA − 2pB)] + nAB ln [2pApB ]

+ nB ln [pB (2 − pB − 2pA)] + 2nO ln [(1 − pA − pB)] . (3.10) 

Differentiating with respect to . pA and . pB yields the nonlinear system of equations: 

. 
∂l (pA, pB |nA, nAB, nB, nO)

∂pA

= nAB

pA

+ nA (2 − 2pA − 2pB)

pA (2 − pA − 2pB)
− 2nB

2 − 2pA − pB

− 2nO

1 − pA − pB

, (3.11) 

. 
∂l (pA, pB |nA, nAB, nB, nO)

∂pB

= nAB

pB

+ nB (2 − 2pA − 2pB)

pB (2 − 2pA − pB)
− 2nA

2 − pA − 2pB

− 2nO

1 − pA − pB

. (3.12) 

A solution can be obtained using Newton-Raphson. This requires the following
second derivatives:

. 
∂2l (pA, pB |nA, nAB, nB, nO)

(∂pA)2 = nA (2 − 2pA − 2pB)

pA (2 − pA − 2pB)2 − 2nA

pA (2 − pA − 2pB)

− nA (2 − 2pA − 2pB)

p2
A (2 − pA − 2pB)

− nAB

p2
A

− 2nO

(1 − pA − pB)2

− 4nB

(2 − 2pA − pB)2
,

. 
∂2l (pA, pB |nA, nAB, nB, nO)

(∂pB)2
= nB (2 − 2pA − 2pB)

pB (2 − 2pA − pB)2
− 2nB

pB (2 − 2pA − pB)

− nB (2 − 2pA − 2pB)

p2
B (2 − 2pA − pB)

− nAB

p2
B

− 2nO

(1 − pA − pB)2

− 4nA

(2 − pA − 2pB)2 ,

.
∂2l (pA, pB |nA, nAB, nB, nO)

∂pA∂pB

= − 2nA

(2 − pA − 2pB)2 − 2nB

(2 − 2pA − pB)2

− 2nO

(1 − pA − pB)2
.
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Suppose the data are .nA = 725, .nAB = 72, .nB = 258, .nO = 1073. This example 
is discussed in Weir (1996) where references to the original source of the data can 
be found. Using these expressions in (3.4) yields, at convergence, the ML estimates: 
.p̂A = 0.2091 and .p̂B = 0.0808. The observed information matrix evaluated at the 
ML estimates is 

. I (p̂A, p̂B |nA, nAB, nB, nO) =
[

23, 210.6 5031.56
5031.56 56, 008.53

]

,

resulting in an estimate of the asymptotic covariance matrix equal to 

. Var (p̂A, p̂B |nA, nAB, nB, nO) = [I (p̂A, p̂B |nA, nAB, nB, nO)]−1

= 10−6
[

43.939 −3.947
−3.947 18.209

]

.

The R-code for the Newton-Raphson computations, spelled out line by line, is 
as follows: 

# CODE0301 
rm(list=ls()) 
set.seed(30371) 
fd<-matrix(data=NA,nrow=2,ncol=1) 
sd<-matrix(data=NA,nrow=2,ncol=2) 
freq<-matrix(data=NA,nrow=2,ncol=1) 
niter<-20 
# DATA 
n_A<-725 
n_AB<-72 
n_B<-258 
n_O<-1073 
# INITIALISE GENE FREQ 
freq[1,1]<-0.3 
freq[2,1]<-0.2 
p_A<-freq[1,1] 
p_B<-freq[2,1] 
# ITERATION LOOP 
for (i in 1:niter){ 

fd[1,1] <- n_AB/p_A+n_A*(2-2*p_A-2*p_B)/(p_A*(2-p_A-2*p_B))-
2*n_B/(2-2*p_A-p_B)-2*n_O/(1-p_A-p_B) 

fd[2,1] <- n_AB/p_B+n_B*(2-2*p_A-2*p_B)/(p_B*(2-2*p_A-p_B))-
2*n_A/(2-p_A-2*p_B) - 2*n_O/(1-p_A-p_B) 

s11a <- -n_AB/((p_A)^2) 
s11b <- (n_A*(2-2*p_A-2*p_B))/((p_A*(2-p_A-2*p_B)^2)) 
s11c <- - (2*n_A)/((p_A*(2-p_A-2*p_B))) 
s11d <- - (n_A*(2-2*p_A-2*p_B))/((p_A^2*(2-p_A-2*p_B))) 
s11e <- - (4*n_B)/((2-2*p_A-p_B)^2) 
s11f <- - (2*n_O)/((1-p_A-p_B)^2) 
sd[1,1] <- s11a + s11b + s11c + s11d + s11e + s11f 
s22a <- - n_AB/((p_B)^2) 
s22b <- n_B*(2-2*p_A-2*p_B)/(((2-2*p_A-p_B)^2) * p_B) 
s22c <- - (2*n_B)/(p_B*(2-2*p_A-p_B)) 
s22d <- - (n_B*(2-2*p_A-2*p_B))/((p_B^2*(2-2*p_A-p_B))) 
s22e <- -(4*n_A)/((2-p_A-2*p_B)^2)
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s22f <- -(2*n_O)/((1-p_A-p_B)^2) 
sd[2,2] <- s22a + s22b + s22c + s22d + s22e + s22f 
sd[1,2] <- -2*n_A/((2-p_A-2*p_B)^2) - 2*n_O/((1-p_A-p_B)^2) -

2*n_B/((2-2*p_A-p_B)^2) 
sd[2,1] <- sd[1,2] 
freq<-freq-solve(sd)%*%fd 
p_A<-freq[1,1] 
p_B<-freq[2,1] 

} 
# ML ESTIMATES ARE 
freq 

## [,1] 
## [1,] 0.20913065 
## [2,] 0.08080101 

# OBSERVED INFORMATION IS
-sd 

## [,1] [,2] 
## [1,] 23210.614 5031.559 
## [2,] 5031.559 56008.529 

# ASYMPTOTIC VAR-COVAR MATRIX IS
-solve(sd) 

## [,1] [,2] 
## [1,] 4.393943e-05 -3.947325e-06 
## [2,] -3.947325e-06 1.820903e-05 

A computationally simpler alternative is to use the R function OPTIM to solve 
minimisation problems (to maximise a function such as the loglikelihood (3.10), the 
function multiplied by .−1 must be supplied). The code is as follows: 

# CODE0302 
rm(list=ls()) # CLEAR WORKSPACE 
fr<-function(par){ 

p_A <- par[1] 
p_B <- par[2]
-(725*log(p_A*(2 - p_A - 2* p_B)) + 72*log(2*p_A*p_B) + 
258*log(p_B*(2 - p_B - 2*p_A)) + 2*1073*log(1 - p_A - p_B))} 

result <- optim(par=c(0.3,0.2),fr,hessian=TRUE) 
result$par 

## [1] 0.20913767 0.08081225 

solve(result$hessian)
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## [,1] [,2] 
## [1,] 4.393974e-05 -3.947440e-06 
## [2,] -3.947440e-06 1.820851e-05

-result$value 

## [1] -2303.55 

The value of the loglikelihood at convergence can be extracted from OPTIM and 
is equal to .−2303.55. 

Example: A Regression Model for Binary Data 

Categorical data are ubiquitous in genetics and arise when the outcome is an 
assignment into one of several mutually exclusive classes. A distinction is made 
based on whether the classes are unordered or ordered. The ABO blood groups 
illustrate the former. Another example is hair colour. In these cases, there is no clear 
ordering from lowest to highest. In contrast, the degree of severity of a disease can 
be meaningfully classified into several categories, ranging from very low severity to 
very high severity. 

Only two categories are assumed here, so the response is said to be binary. If 
. yi denotes the response, without loss of generality, the two possible values may be 
coded as 1 and 0. Therefore, 

. E(yi) = 1 Pr(yi = 1) + 0 Pr(yi = 0) = Pr(yi = 1). (3.13) 

This section describes methods to study how covariates or explanatory variables 
influence .Pr(yi = 1). Later sections will consider joint inferences of explanatory 
variables and of components of variance of random effects as factors related to 
.Pr(yi = 1). The variance of the random effects in such a mixed model could, for 
example, inform on the existence of genetic variation underlying disease data. 

Assume that binary records are available on .i = 1, 2, . . . , N individuals 
.(y1, x1) , (y2, x2) , . . . , (yN , xN), where .yi = 0, 1, and . xi is a vector with p 
elements representing covariates. The objective is to construct a model to study the 
influence of the covariates on the observations y. A possible choice is the regression 
model 

.yi = x′
iβ + ei (3.14) 

and to estimate the .p×1 vector of regression coefficients . β using least squares. The 
problem with this approach is as follows. Taking expected values of (3.14) 

. E (yi |xi) = x′
iβ.
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From (3.13) this expectation is equal to .Pr(yi = 1|xi). This probability must satisfy 

.0 ≤ Pr(yi = 1|xi) ≤ 1 (3.15) 

but the prediction using .E (yi |xi) = x′
iβ may yield outcomes outside the constraint 

(3.15). 
A way of building a model in which the constraint (3.15) is automatically satis-

fied is to use a transformation of the output y, generating a nonlinear relationship 
between it and the covariate. This is achieved by defining the probability that . yi = 1
as a nonlinear function of . xi of the form 

. Pr(yi = 1|xi) = F
(

x′
iβ
)

, (3.16) 

where F is any distribution function (cumulative distribution function). Two
common choices for F are the normal distribution, leading to the probit model,
and the logistic distribution, leading to the logistic model.

For the probit model, .F = � and 

. Pr(yi = 1|xi) = �
(

x′
iβ
)

, (3.17) 

where . � is the standard normal integral 

. �(t) = 1√
2π

∫ t

−∞
exp

(

−1

2
u2
)

du.

The relationship (3.17) is linearised by the inverse normal transformation: 

.�−1 (x′
iβ
) = x′

iβ. (3.18) 

For the probit model, 

. F (t) =
∫ t

−∞
p (u) du =

∫ t

−∞
exp (u)

[

1 + exp (u)
]2

du

= exp (t)

1 + exp (t)
, (3.19) 

where .p (u) is the pdf of the standard logistic distribution, with .E (u) = 0 and 
.Var (u) = π2/3. Therefore, for the logistic model, 

. Pr(yi = 1|xi) = exp
(

x′
iβ
)

1 + exp
(

x′
iβ
) , . (3.20a) 

Pr(yi = 0|xi) = 1 

1 + exp
(

x′
iβ
) . (3.20b)
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The relationship is linearised by the logit transformation: 

. ln

[
Pr(yi = 1|xi)

Pr(yi = 0|xi)

]

= x′
iβ. (3.21) 

The Liability Model 

Ordered categorical data and binary data are often analysed using a threshold 
model, first used by Wright (1934) to study the number of digits in guinea pigs 
and introduced in human genetics in a more modern version by Falconer (1965). 
This model assumes that there is an underlying or latent unobservable variable, u, 
in genetics of disease often called the liability after Falconer (1965). The categories 
of response result from the value of u relative to a fixed unobserved threshold t . The  
liability u is often assumed to follow a normal distribution or a logistic distribution. 
The objective is to show that in the first case, the liability model is equivalent to the 
probit model (3.17) and in the second case to the logistic model (3.20). 

Let the dichotomy be say “survival” versus “death”. If .u > t then the individual 
survives and the binary variable (the observed datum) takes the value . y = 1. If . u ≤ t

the individual dies and the observed datum is .y = 0. Denote the liability associated 
with datum i as . ui and suppose that it is related to an unknown parameter vector . β
of order .p × 1 via the linear structure: 

.ui = x′
iβ + ei, i = 1, 2, ..., N, (3.22) 

where . x′
i is the ith row of a known .N × p matrix x of explanatory variables 

(covariates) and . ei is a random residual with pdf .p (ei). Assume that the residuals 
are independent and identically distributed. The probability of survival of individual 
i (which is the pmf of the random variable . yi) is  

. Pr (yi = 1|β, x) = Pr (ui > t |β, x) = Pr
(

ui − x′
iβ > t − x′

iβ|β, x
)

= Pr
(

ei > t − x′
iβ|β, x

) =
∫ ∞

t−x′
iβ

p (ei) dei

=
∫ −(t−x′

iβ)

−∞
p (ei) dei =

∫ x′
iβ−t

−∞
p (ei) dei . (3.23) 

The equality in the third line requires . ei to be symmetrically distributed around 0. 
The liabilities cannot be observed and a convenient origin is to set the value of the 
threshold t equal to 0. Hence, the scale is one of deviations from the threshold. 
This constraint makes the likelihood model identifiable and the Hessian becomes 
negative definite. Then, 

. Pr (yi = 1|β, x) =
∫ x′

iβ

−∞
p (ei) dei = F

(

x′
iβ
)

, (3.24)
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as in (3.16), where F is the cdf of the random variable . ei , indicating the equivalence 
between the liability model and the original formulation of the model (3.16). 

The use of an underlying liability is a computational trick. However, the liability 
can have an intrinsic mechanistic significance. For example, in the case of twinning 
in cattle or humans, the liability can be thought of as levels of hormones, which 
play a central role in factors determining monozygotic twinning. The liability 
formulation has also advantages in Gibbs sampling computations and provides a 
simple framework for extensions of the model to include hierarchical structures and 
for analysis of ordered categorical traits. 

A Digression on Parameter Interpretation 

The liability . ui changes with . xi at a constant rate, but this is not so at the level of 
the probabilities. This is verified by noting that 

. 
∂ui

∂xi

= β,

whereas from expression (3.24) 

. 
∂ Pr (y = 1|β, x)

∂xi

= ∂

∂xi

[
∫ x′

iβ

−∞
p (ei) dei

]

= ∂

∂x′
iβ

[
∫ x′

iβ

−∞
p (ei) dei

]

∂x′
iβ

∂xi

= F
(

x′
iβ
)

β. (3.25) 

The change is not constant and depends on the value of the explanatory vector . xi . 
In the Bernoulli distribution, .E (y|β, x) = Pr (y = 1|β, x). The model at the 

level of the expectation of y is nonlinear, in contrast with the standard linear 
regression model, where .E (y|β, x) = μ + βx. According to (3.25), a unit change 
in the covariate x leads to a nonlinear change in the probability . E (y|β, x) =
Pr (y = 1|β, x). 

To get a little insight into the meaning of . β in the case of binary responses, 
consider the odds ratio 

.
Pr (y = 1|β, x)

Pr (y = 0|β, x)
= exp

(

x′β
)

(3.26) 

or the logit or logodds

. ln

[
Pr (y = 1|β, x)

Pr (y = 0|β, x)

]

= x′β, (3.27)
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showing that . β describes the linear change per unit change of x at the level of 
the logit. To be specific, imagine that y denotes disease or absence of disease and 
.(x1, x2) denotes level of exposure to two conditions. Let .x′

iβ = μ + β1x1i + β2x2i . 
Then in terms of (3.26), 

.
Pr (yi = 1|β, x)

Pr (yi = 0|β, x)
= exp [(μ + β1x1i + β2x2i )] . (3.28) 

The parameter .exp (μ) is the odds of disease for an unexposed individual (.x = 0). 
How does the odds ratio change when one of the conditions, say . x2, changes by 

one unit? 

. 
Pr (yi = 1|β, xi)

Pr (yi = 0|β, xi)
= exp [(μ + β1x1i + β2 (x2i + 1))]

= exp [(μ + β1x1i + β2x2i )] exp (β2) .

The increase in . x2 by one unit to .x2 + 1 while keeping . x1 fixed multiplies the odds 
ratio by .exp (β2). In terms of the logit we have 

. ln

[
Pr (yi = 1|β, xi)

Pr (yi = 0|β, xi)

]

= (μ + β1x1i + β2x2i ) + β2,

indicating that increasing . x2 by one unit to .x2 + 1 while keeping . x1 constant 
increases the logit by . β2. 

Likelihood Function 

Assuming the logistic model, the pmf of a datum using (3.20) is  

. Pr (Yi = yi |xi) =
[

exp
(

x′
iβ
)

1 + exp
(

x′
iβ
)

]yi
[

1

1 + exp
(

x′
iβ
)

]1−yi

, yi = 1, 0.

For N independent binary observations collected in the vector y and the covariates 
in matrix x, the pmf is 

. Pr (Y = y|x) =
N
∏

i=1

[

exp
(

x′
iβ
)

1 + exp
(

x′
iβ
)

]yi
[

1

1 + exp
(

x′
iβ
)

]1−yi

. (3.29) 

This is the likelihood function when viewed as a function of . β. The loglikelihood is 
obtained taking natural logarithms: 

.l (β|y, x) =
N
∑

i=1

{

yix
′
iβ − ln

[

1 + exp
(

x′
iβ
)]}

. (3.30)
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The Iterative System 

To obtain ML estimators using Newton-Raphson, first and second derivatives of the 
loglikelihood are needed. The score vector is 

. l′ (β|y) =
N
∑

i=1

∂

∂β

{

(1 − yi) x′
iβ − ln

[

1 + exp
(

x′
iβ
)]}

=
N
∑

i=1

{

yixi − exp
(

x′
iβ
)

1 + exp
(

x′
iβ
)xi

}

=
N
∑

i=1

[

yi − π
(

x′
iβ
)]

xi, (3.31) 

where

. Pr(yi = 1|xi) = exp
(

x′
iβ
)

1 + exp
(

x′
iβ
) = π

(

x′
iβ
)

.

Let the .N × 1 vector of probabilities of survival for the N individuals be 

. π (Xβ) = [

π
(

x′
1β
)

, . . . , π
(

x′
Nβ
)]′

and observe that the score vector can be written as 

. 

N
∑

i=1

[

yi − π
(

x′
iβ
)]

xi = {

x1
[

y1 − π
(

x′
1β
)]+ ... + xN

[

yN − π
(

x′
Nβ
)]}

= X′ [y − π (Xβ)] .

The vector .y − π (Xβ) consists of deviations of the observations from their 
expectations. Using this representation in (3.31), it can be seen that the first-order 
condition for a maximum is satisfied if 

.X′ π
(

Xβ̂
) = X′y, (3.32) 

where .π
(

Xβ̂
)

is the vector of probabilities of survival for the N individuals 
evaluated at the ML estimator . ̂β, if this exists. The estimating equations (3.32) are
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not explicit in . ̂β and must be solved iteratively. To obtain second derivatives, an 
additional differentiation of the loglikelihood with respect to the parameters gives 

. l′′ (β|y) = ∂2l (β|y)

∂β ∂β ′ = ∂

∂β ′

{
N
∑

i=1

[

yi − π
(

x′
iβ
)]

xi

}

= −
N
∑

i=1

xi

∂

∂β ′ π
(

x′
iβ
)

. (3.33) 

Now,

. 
∂

∂β ′ π
(

x′
iβ
) = ∂

∂β ′
[

1 + exp
(−x′

iβ
)]−1

= [

1 + exp
(

x′
iβ
)]−2 exp

(−x′
iβ
)

x′
i

= π
(

x′
iβ
) [

1 − π
(

x′
iβ
)]

x′
i .

Using this in (3.33), 

.l′′ (β|y) = −
N
∑

i=1

xiπ
(

x′
iβ
) [

1 − π
(

x′
iβ
)]

x′
i = −X′D (β) X, (3.34) 

where .D (β) is an .N × N diagonal matrix with the ith diagonal element 
.π
(

x′
iβ
) [

1 − π
(

x′
iβ
)]

. Because the second derivatives do not depend on the 
observations, the expected information is equal to the observed information in 
this case. Hence, the Newton-Raphson and the scoring algorithms are identical. 
From (3.4), multiplying by .

[

X′D
(

β[t]
)

X
]

, the iteration can be represented as 

.

[

X′D
(

β[t]
)

X
]

β[t+1] =
[

X′D
(

β[t]
)

X
]

β[t] + X′v
(

β[t]
)

, (3.35) 

where the vector .v
(

β[t]
) = y − π

(

Xβ[t]
)

. Now let  

. y∗ (β[t]
)

= Xβ[t] + D−1
(

β[t]
)

v
(

β[t]
)

be a pseudo-data vector evaluated at iteration . [t]. Then the system (3.35) can be 
written as 

.

[

X′D
(

β[t]
)

X
]

β[t+1] = X′D
(

β[t]
)

y∗ (β[t]
)

. (3.36)
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This is an iterative reweighted least squares system with the matrix of weights equal 
to .D

(

β[t]
)

, with ith diagonal element 

. π
(

x′
iβ

[t]
) [

1 − π
(

x′
iβ

[t]
)]

.

The Newton-Raphson algorithm is iterated until the change in successive rounds 
is negligible. If convergence is to a global maximum, . ̂β is the ML estimate. The 
asymptotic variance-covariance matrix is estimated as 

.V̂ar
(

β̂
) = [

X′D
(

β̂
)

X
]−1

. (3.37) 

The variance of the maximum likelihood estimator is larger at extreme probabilities
of survival.

Example: A Genomic Model 

The genomic model was introduced on page 39 and discussed briefly on page 72. 
In the present likelihood setting, one may be interested in estimating the proportion 
of trait variance explained by marker information. This would give a first indication 
that genetic factors are influencing the trait. The justification for this conjecture 
is that marker genotypes are correlated (in LD) with unobserved causal genotypes 
and/or that causal genotypes are part of the marker panel. 

In this example, the genomic model is implemented with Newton-Raphson using 
a decomposition of the genomic relationship matrix that simplifies computations. 
This decomposition is used repeatedly in the book. 

For simplicity, here it is assumed that the data are centred and have zero mean. 
The genomic model is 

.y|g, σ 2
e ∼ N

(

g, Iσ 2
e

)

, . (3.38a) 

g|W, σ 2 
g ∼ SN

(

0,Gσ 2 
g

)

, . (3.38b) 

G = 
1 

m 
WW ′, . (3.38c) 

W = {

Wij

}

. (3.38d) 

In these expressions, g is the vector of genomic values, .σ 2
g is the genomic 

variance at the level of this operational model, SN is a shorthand for singular 
normal, m is the number of SNPs (single nucleotide polymorphisms) and .Wij is 
a label for the j th marker in individual i, .(i = 1, . . . n; j = 1, . . . , m;m > n): 

.Wij = Xij − E
(

Xij

)

SD
(

Xij

) , Xij = 0, 1, 2,
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where SD stands for standard deviation. Due to the centring, .Wij has rank .(n − 1), 
matrix G is singular and .(g|W,σ 2

g ) is singular normally distributed. In practice the 
expectation and the standard deviation are replaced by their sample estimates. 

Background 

The following results are useful for deriving the likelihood for the genomic model. 
The eigenvalue decomposition of .WW ′ is 

. WW ′ = U	U ′

=
n
∑

i=1

λiUiU
′
i ,

where .U = [U1, U2, . . . , Un], of order .n × n is the matrix of eigenvectors of .WW ′, 
. Uj is the j th column (dimension .n × 1) and . 	 is a diagonal matrix with elements 
equal to the eigenvalues .λ1, λ2, . . . , λn associated with the n eigenvectors. Since 
.WW ′ is non-negative definite, the eigenvalues are .λi ≥ 0, .i = 1, 2, . . . , n. The  
eigenvectors satisfy .U ′U = UU ′ = I . 

In general, I work with the genomic relationship matrix G, defined as 

. G = 1

m
WW ′

= 1

m
U	U ′

= UDU ′

where 

. D = 1

m
	.

The following result on determinants will be used: 

.
∣
∣UDU ′k + I

∣
∣ = ∣

∣U (Dk + I ) U ′∣∣

= |U | |Dk + I | ∣∣U ′∣∣

= |Dk + I |

=
n
∏

i=1

(λik + 1) ,
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where .k = σ 2
g

σ 2
e

and .|U | = ±1, a property of orthogonal matrices (.UU ′ = I implies 

.|U |2 = 1). 
Due to centring, the rank of G is typically .n − 1 and the singular normal density 

is 

.p
(

g|W,σ 2
g

)

= 1

(2π)
n−1

2

(

λ1σ 2
g . . . λn−1σ 2

g

) 1
2

exp

(

−g′G−g

2σ 2
g

)

(3.39) 

where the .λ′s are the non-zero eigenvalues of G and .G− is any generalised inverse 
of G (Mardia et al, 1979). One choice of generalised inverse of G is 

.G− = UD−U ′, (3.40) 

where

.D− =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1
λ1

0 . . . 0

0
. . . . . . 0

...
... 1

λn−1
0

0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=
[

D−1
1 0c

0′
c 0

]

. (3.41) 

Above, .D1 = diag (λi)
n−1
i=1 , a diagonal matrix of dimension .n − 1 × n − 1 that 

contains non-zero eigenvalues, after removing the last row and column of D, . 0c is 
a column vector of zeroes of size .(n − 1 × 1) and the element in the last row and 
column of D is the scalar 0. 

A Probabilistically Equivalent Reparametrisation 

Define a random variable . α with distribution: 

.α|U, σ 2
g ∼ SN

(

0,Dσ 2
g

)

. (3.42) 

Since the last diagonal element of D is 0, the last element of vector . α is equal to 
zero (with probability 1), and therefore . α has the singular normal distribution with 
density: 

. 

(

λ1σ
2
g . . . λn−1σ

2
g

)− 1
2

exp

[

− 1

2σ 2
g

α′D−α

]

∝
(

σ 2
g

)−
(

n−1
2

)

exp

[

− 1

2σ 2
g

[

(α1, α0)
′ D− (α1, α0)

]

]

, (3.43)



94 3 Computing the Likelihood

In this expression, .α′ = (

α′
1, α

′
0

)

, where . α1 is a column vector with .n − 1 elements 
and the scalar .α0 = 0 with probability 1. It is simpler to work with vector . α1 that 
has probability density function: 

.p
(

α1|U, σ 2
g

)

∝
(

σ 2
g

)−
(

n−1
2

)

exp

[

− 1

2σ 2
g

α′
1D

−1
1 α1

]

. (3.44) 

This is the density of the .n − 1 dimensional multivariate normal distribution 

.N
(

0,D1σ
2
g

)

. Notice that .α′D−α = α′
1D

−1
1 α1. 

Writing the Likelihood 

The vector of genomic values .g = Uα and the model defined in (3.38) can be 
written as 

.y|α, σ 2
e ∼ N

(

Uα, Iσ 2
e

)

, . (3.45a) 

α|U, σ 2 
g ∼ SN

(

0,Dσ 2 
g

)

, . (3.45b) 

G = UDU ′, . (3.45c) 

y|σ 2 
g , σ

2 
e ∼ N

(

0, UDU ′σ 2 
g + Iσ 2 

e

)

. (3.45d) 

Then the likelihood takes the form 

. p
(

σ 2
g , σ 2

e |y,W
)

∝
∣
∣
∣UDU ′σ 2

g + Iσ 2
e

∣
∣
∣

− 1
2

exp

(

−1

2
y′ (UDU ′σ 2

g + Iσ 2
e

)−1
y

)

.

(3.46) 
Write

. UDU ′σ 2
g + Iσ 2

e = σ 2
e

(

UDU ′k + I
)

, k = σ 2
g

σ 2
e

.

Then 

.

∣
∣
∣UDU ′σ 2

g + Iσ 2
e

∣
∣
∣ =

∣
∣
∣σ

2
e

(

UDU ′k + I
)
∣
∣
∣

=
∣
∣
∣σ

2
e U (Dk + I ) U ′

∣
∣
∣

=
(

σ 2
e

)n ∣
∣U (Dk + I ) U ′∣∣
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=
(

σ 2 
e

)n |Dk + I | 

=
(

σ 2 
e

)n n
∏

i=1 

(λik + 1) . 

Also, 

. 

(

UDU ′σ 2
g + Iσ 2

e

)−1 = 1

σ 2
e

U (Dk + I )−1 U ′,

using .U−1 = U ′. The likelihood is 

. p
(

σ 2
g , σ 2

e |y,W
)

∝
(

σ 2
e

)− n
2

n
∏

i=1

(λik + 1) exp

[

− 1

2σ 2
e

y′U (Dk + I )−1 U ′y
]

=
(

σ 2
e

)− n
2

n
∏

i=1

(λik + 1)−
1
2 exp

[

− 1

2σ 2
e

ỹ′ (Dk + I )−1 ỹ

]

=
(

σ 2
e

)− n
2

n
∏

i=1

(λik + 1)−
1
2 exp

[

− 1

2σ 2
e

n
∑

i=1

ỹ2
i

λik + 1

]

, (3.47) 

where .̃y = U ′y, a column vector of length n whose ith element is . ̃yi . 
The loglikelihood, up to an additive constant, is 

. ln p
(

k, σ 2
e |y,W

)

= −1

2

{

n ln σ 2
e +

n
∑

i=1

ln (λik + 1) + 1

σ 2
e

n
∑

i=1

ỹ2
i

λik + 1

}

.

(3.48) 

It can be informative to plot contours of (3.48) as a function of the two variance 
components. 

***NOTE: it may be numerically useful to parametrise in terms of the one-to-one 
transformation 

. νe = ln σ 2
e ,

νg = ln σ 2
g ,

with inverse function 

.σ 2
e = exp(νe),

σ 2
g = exp(νg),

k = σ 2
g

σ 2
e

= exp
(

νg − νe

)

.
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Then the loglikelihood (3.48) takes the form 

. ln p
(

νg, νe|y,W
) =

−1

2

{

nνe +
n
∑

i=1

ln
(

λi exp
(

νg − νe

)+ 1
)+ 1

exp(νe)

n
∑

i=1

ỹ2
i

λi exp
(

νg − νe

)+ 1

}

.

(3.49) 

This avoids negative values of the variance components under unconstrained
maximisation.

Implementation Using Newton-Raphson 

To fit the model using Newton-Raphson, first and second derivatives are needed. It 
is easier to work with (3.48). 

First Derivatives 

.
∂

∂σ 2
e

ln p
(

k, σ 2
e |y,W

)

= −1

2

(

n

σ 2
e

− 1
(

σ 2
e

)2

∑

i

ỹ2
i

1 + kλi

)

. (3.50) 

.
∂

∂k
ln p

(

k, σ 2
e |y,W

)

= −1

2

(
∑

i

λi

1 + kλi

− 1

σ 2
e

∑

i

λi ỹ
2
i

(1 + kλi)
2

)

. (3.51) 

Second Derivatives 

.
∂2

(

∂σ 2
e

)2 ln p
(

k, σ 2
e |y,W

)

= −1

2

(

2
(

σ 2
e

)3

∑

i

ỹ2
i

1 + kλi

− n
(

σ 2
e

)2

)

. (3.52) 

. 
∂2

(∂k)2 ln p
(

k, σ 2
e |y,W

)

= −1

2

(

1

σ 2
e

∑

i

2λ2
i ỹ

2
i

(1 + kλi)
3 −

∑

i

λ2
i

(1 + kλi)
2

)

.

(3.53) 

.
∂2

∂k ∂σ 2
e

ln p
(

k, σ 2
e |y,W

)

= − 1

2
(

σ 2
e

)2

∑

i

ỹ2
i λi

(1 + kλi)
2
. (3.54)
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The iterative system is 

. 

[

σ 2
e

k

]

t+1

=
[

σ 2
e

k

]

t

−
⎡

⎣

∂2

(∂σ 2
e )

2 ln p
(

k, σ 2
e |y,W

)
∂2

∂k ∂σ 2
e

ln p
(

k, σ 2
e |y,W

)

∂2

∂k ∂σ 2
e

ln p
(

k, σ 2
e |y,W

)
∂2

(∂k)2 ln p
(

k, σ 2
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(3.55) 

The partial derivatives in (3.55) are evaluated at .σ 2
e = σ

2[t]
e , k = k[t]. 

An R-code That Performs the Eigenvalue Decomposition 

As an example, an R-code that performs the eigenvalue decomposition of the 
genomic relationship matrix is shown below. First, matrix X of dimension equal 
to the number of individuals times the number of markers . (nindiv × nmark)

is generated by allocating marker codes drawn from a binomial distribution 
.Bi (2, p = 0.5). The matrix of standardised marker genotypes W is obtained by 
centring and scaling X. Using  W the code generates the genomic relationship 
matrix G .(nindiv × nindiv), and the eigen decomposition is performed on G. 
This decomposition gives rise to matrix U .(nindiv × nindiv) and to the vector of 
eigenvalues val, from which the diagonal matrix D .(nindiv×nindiv) is produced. 

The last line of the code checks whether G and .UDU ′ are equal: they are within 
the limits of numerical precision: 

# CODE0303 
# DATA BASED ON GENOMIC MODEL; OBTAIN THE SVD OF WW’(1/m) 
rm(list=ls()) # CLEAR WORKSPACE 
set.seed(1953) 
nindiv<-10 
nmark<-20 
X<-matrix(nrow= nindiv,ncol= nmark, 

rbinom(n=nindiv*nmark,size=2,p=.5)) 
W <- matrix(data=NA,nrow= nindiv,ncol=nmark) 
U <- matrix(data=NA,nrow= nindiv,ncol= nindiv) 
G<-matrix(data=NA,nrow= nindiv,ncol= nindiv) 
cm <- colMeans(X) 
# CREATE MATRIX OF STANDARDISED MARKER GENOTYPE CODES 
for (i in 1:nmark) 
{ 

W[,i] <-( X[,i]-cm[i]) / sd(X[,i]) 
} 
# THIS IS MORE EFFICIENT THAN THE LOOP: 
# W <- scale(X, center=TRUE, scale=TRUE) 
qr(X)$rank 

## [1] 10
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qr(W)$rank 

## [1] 9 

# GENOMIC RELATIONSHIP MATRIX G 
G <- (1/nmark)*W%*%t(W) 
# THIS IS MORE EFFICIENT THAN THE LINE ABOVE: 
# G <- (1/nmark)*tcrossprod(W) 
# SVD OF G 
EVD <- eigen(G) 
names(EVD) 

## [1] "values" "vectors" 

head(EVD$values[1:5]) 

## [1] 2.3596077 1.8733148 1.3984700 1.0492670 0.7181604 

U <- EVD$vector 
val <- EVD$values 
val[nindiv] <-0 
D <- diag(val,nrow=nindiv) 
# CHECK THAT G = UDU’: 
identical(G, U%*%D%*%t(U)) 

## [1] FALSE 

max(abs(G - U%*%D%*%t(U))) 

## [1] 2.88658e-15 

3.2 Gradient Descent and Stochastic Gradient Descent 

Gradient descent is a first-order iterative optimisation algorithm for finding a local 
minimum of a differentiable function. This is achieved by taking repeated steps in 
the opposite sign of the gradient of the function at the current point, because this is 
the direction of greatest rate of decrease of the function. The method does not rely 
on matrix inversions and is often used in high-dimensional settings as encountered 
in machine learning.
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Let . θt be the value of a parameter .θ ∈ Rd at step t and let the column vector 
.	θ ∈ Rd be the move taken at step t . Consider the first-order Taylor expansion of 
the function f to be minimised around . θt : 

. f (θt + 	θ) ≈ f (θt ) + 	θ ′ ∇f |θt

where .∇f |θt
is the gradient of f at . θt , i.e. a column vector in .Rd whose ith 

coordinate is the partial derivative of f with respect to element i of . θ evaluated 
at .θ = θt . Since the objective is to find a minimum of the function f , the move must 
result in 

. f (θt + 	θ) ≤ f (θt )

and therefore .	θ ′ ∇f |θt
≤ 0. This suggests setting 

.	θ = −α ∇f |θt
, α > 0 (3.56) 

where . α is a small positive number known as the learning rate. If  

.θt+1 = θt − α ∇f |θt
(3.57) 

then

.f (θt+1) = f (θt ) − α
((∇f |θt

)′ ∇f |θt

)

< f (θt ) (3.58) 

since .
(∇f |θt

)′ ∇f |θt
> 0. 

In the case of Newton’s method, .α = [

S′ (θt )
]−1, which involves the inverse 

of second derivatives. The attraction of gradient descent is that it only uses first 
derivatives and does not require matrix inversions. The downside is that it can be 
slow to converge and the appropriate choice of . α can be quite challenging, especially 
in high-dimensional settings where the gradients differ markedly among the . θ ′s. In  
such cases, one may consider using a diagonally scaled gradient descent where . α is 
replaced by a diagonal matrix with elements tuned to each gradient. Alternatively, 
one can scale the features . xi so that they fall approximately in the range . ±1. 
Centring and scaling the features by their standard deviation is yet another option. 
It can also help to change . α as a function of t , with larger values at the start of the 
iterative process. 

A popular modification, especially with very large data sets, is stochastic 
gradient descent. At each iteration, the actual gradient is replaced by an estimate 
obtained from a randomly selected subset of the data. An extreme version uses 
a single data point at a time (see example below). These versions of gradient 
descent are also known as mini batch gradient descent as opposed to batch gradient 
descent when the complete set of data is used. In common with many optimisation 
algorithms, when data sets are very large, stochastic gradient descent converges
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faster in terms of total computation by rapidly calculating approximate values rather 
than exact values of the gradient. Stochastic gradient descent does not converge 
exactly to a local minimum of the cost function (negative of the loglikelihood) as 
classical gradient descent in theory does. It rather may oscillate around the local 
minimum. Recent theoretical and empirical results indicate that this does not seem 
to be an issue in large networks (LeCun et al, 2015). The noise associated with 
stochastic gradient descent can be beneficial to escape local minima, particularly in 
complex networks with non-convex loss functions. 

There are several refinements to gradient descent as well as rules guiding the 
choice of . α. A useful reference is Bottou (2012) and an overview of numerical 
computations for machine learning algorithms can be found in Goodfellow et al 
(2016). 

If the cost function is concave such as many likelihood functions, the sign in 
(3.57) becomes positive in order to move towards a maximum, and this turns into a 
gradient ascent algorithm. 

Note 
The maximum likelihood estimator of a parameter . θ involves the maximisation of 
the likelihood function with respect to . θ , or the minimisation of the negative of 
the likelihood function with respect to . θ . Both are tasks on optimisation. When 
minimisation is involved, the function can be referred to as a cost function. The cost 
function may include a penalty term, as, for example, in penalised logistic regression 
discussed on page 377. 

A Toy Example 

As an illustration, the R-code below applies classical gradient descent to find the 
minimum of a cost function (negative loglikelihood) of a simple linear model . y =
Xb where b includes an intercept. The result is compared to the exact least squares 
solution .b̂ = (X′X)−1X′y at the bottom of the code. The code immediately below 
implements stochastic gradient descent: 

# CODE0304 
# GRADIENT DESCENT WITH A LINEAR NODEL 
rm(list=ls()) # Clear the workspace 
set.seed(195021) 
N<-100 
x<-seq(from=0,to=5,length=N) 
signal<-10 + 0.2*x 
error<-rnorm(N) 
y<-signal+error 
one <- rep(1,N) 
X <- cbind(one,x) 
LHS <- crossprod(X) # LEFT HAND SIDE 
RHS <- crossprod(X,y) # RIGHT HAND SIDE 
bhat<- solve(LHS,RHS) # SOLUTION TO THE LEAST SQUARES EQUATIONS
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################################ 
nit <- 200 
alfa <- 0.002 
miu <- matrix(data=NA, nrow=nit+1,ncol=1) 
b <- matrix(data=NA, nrow=nit+1,ncol=1) 
c <- matrix(data=NA, nrow=nit+1,ncol=1) 
cost <- function(miu,b){sum(y-miu-b*x)^2} 

miu[1] <- 5 
b[1] <- 1 
c[1] <- cost(miu[1],b[1]) 
for(i in 1:nit) { 

fdmiu <- -sum(y - miu[i] - b[i] * x) 
fdbeta <- -sum((y - miu[i] - b[i] * x) * x) 
fd <- matrix(c(fdmiu, fdbeta), nrow = 2, ncol = 1) 
sol0 <- matrix(c(miu[i], b[i]), nrow = 2, ncol = 1) 
alfa <- 0.002 
sol1 <- sol0 - alfa * fd 
miu[i + 1] <- sol1[1, 1] 
b[i + 1] <- sol1[2, 1] 

} 
## CHECK ###################### 
beta <- c(miu[i],b[i]) 
beta # GRADIENT DESCENT SOLUTION 

## [1] 10.1511233 0.1727193 

bhat # LEAST SQUARES SOLUTION 

## [,1] 
## one 10.1515028 
## x 0.1726028 

cost(miu[i],b[i]) # COST FUNCTION AFTER nit ITERATIONS 

## [1] 7.781174e-05 

The following R-code implements stochastic gradient descent with a decaying 
learning rate . α. The implementation is based on two loops. The internal loop 
computes the gradient and updates parameters one record at a time, for all records. 
The external loop repeats the procedure nit times. Each internal loop that defines 
a pass through the data is known as an epoch in the machine learning literature. 

As implemented below, the algorithm does not reshuffle the data at the start. 
Some versions of the mini batch algorithm do this to achieve better behaviour and 
to break down structures in the data that may affect the results: 

# STOCHASTIC GRADIENT DESCENT WITH A LINEAR NODEL 
# CODE0305 
rm(list=ls()) # Clear the workspace 
set.seed(195021) 
N <- 1000
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x<-seq(from=0,to=5,length=N) 
signal<-10 + 0.2*x 
error<-rnorm(N) 
y<-signal+error 
one <- rep(1,N) 
X <- cbind(one,x) 
LHS <- crossprod(X) # LEFT HAND SIDE 
RHS <- crossprod(X,y) # RIGHT HAND SIDE 
bh<- solve(LHS,RHS) # SOLUTION TO THE LEAST SQUARES EQUATIONS 

################################ 
nit <- 10 
alfa_0 <- 0.0038 
c <- matrix(data=NA, nrow=nit+1,ncol=1) 
cost <- function(miu,b){sum(y-miu-b*x)^2} 

miu <- 5 
b <- 1 
c[1] <- cost(miu,b) 
for(j in 1:nit){ 

alfa <- (1-(j/nit))*alfa_0 + ((j/nit)*alfa_0*0.01) 
for(i in 1:length(y)) { 

# cat(i, "\n",sep="") 
fdmiu <- -2*(y[i] - miu - b * x[i]) 
fdbeta <- -2*((y[i] - miu - b * x[i]) * x[i]) 
fd <- matrix(c(fdmiu, fdbeta), nrow = 2, ncol = 1) 
sol0 <- matrix(c(miu, b), nrow = 2, ncol = 1) 
sol1 <- sol0 - alfa * fd 
miu <- sol1[1, 1] 
b <- sol1[2, 1] 

} 
} 
## CHECK ###################### 
beta <- c(miu,b) 
beta # STOCHASTIC GRADIENT DESCENT SOLUTION 

## [1] 10.0067857 0.1833919 

bh # LEAST SQUARES SOLUTION 

## [,1] 
## one 10.0305748 
## x 0.1859502 

Gradient descent is revisited in the chapter on nonparametric methods where it is 
applied to solve more demanding problems. 

3.3 The EM Algorithm 

An overview is provided of one of the most versatile iterative algorithms for com-
puting maximum likelihood and posterior modes: the expectation-maximisation, or 
EM, algorithm. More details can be found in Sorensen and Gianola (2002) and
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considerably more in McLachlan and Krishnan (1997) and of course a tour de force 
is the celebrated paper by Dempster et al (1977). The algorithm is conceptually 
simple, at least in its basic form, and brings considerable insight into the statistical 
structure of a maximum likelihood or posterior mode problem, contrary to Newton-
Raphson or scoring that are based primarily on numerical considerations. The basic 
idea behind the method is to transform an incomplete into a complete data problem 
for which the required maximisation is computationally more tractable. Also, the 
algorithm is numerically stable: each iteration increases the likelihood or posterior 
density and convergence is nearly always to a local maximum. 

The concept of missing data is fairly broad. It includes, for example, missing data 
in an unbalanced layout, but it extends to observations from truncated distributions, 
censored data and latent variables. In these cases, one can view the complete data 
. x as consisting of the vectors .(y, z), where . y is the observed data or incomplete 
data and . z is the missing data. More generally, many statistical problems that at 
first glance do not appear to involve missing data can be reformulated into missing 
data problems by judicious augmentation of the data set with unobserved values. 
As such, one can view the observations at hand and the parameters of the posed 
model as data: part of these data is observed (the records) and another part is 
missing (the parameters). Mixed effects models, hierarchical models and models 
with latent variables, such as the threshold model, are typically amenable to an 
EM formulation. An example is an additive genetic model where inference may 
focus on .θ = (

β ′, σ 2
a , σ 2

e

)′
, where . β is a vector of location parameters and . 

(

σ 2
a , σ 2

e

)

are variance components. Here, one may augment the observed data . y, with the 
missing data . a, the unobserved vector of additive genetic values. As shown later, 
this simplifies the computations involved in finding the ML estimates of . θ , or the  
maximum of .p

(

β, σ 2
a , σ 2

e |y), or mode of the posterior distribution .
[

β, σ 2
a , σ 2

e |y]. 
On the other hand, if one wishes to find the mode of the distribution with density 
.p
(

σ 2
a , σ 2

e |y), an EM strategy is to consider .(β, a) as the missing data. 

Derivation 

The EM algorithm is derived here from a likelihood (as opposed to a posterior 
distribution) perspective. Conceptually, there is no difference. Consider the identity 

. p (y|θ) = p (y, z|θ)

p (z|y, θ)
,

where y is the observed data and z is the missing data. Taking logarithms on both 
sides leads to 

. ln p (y|θ) = ln p (y, z|θ) − ln p (z|y, θ) , (3.59)
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where the first term on the right-hand side is known as the complete data 
loglikelihood (there is an equivalent complete data logposterior). The next step is 
to take expectations of both sides with respect to .[z|θ [t], y], where .θ [t] is the current 
guess of . θ . The left-hand side of (3.59) does not depend on z, so averaging over z, 
providing the integrals exist, gives 

. ln p (y|θ) =
∫

ln p (y, z|θ) p
(

z|θ [t], y
)

dz −
∫

ln p (z|y, θ) p
(

z|θ [t], y
)

dz.

(3.60) 

The first term on the right-hand side of (3.60) is a function of . θ for fixed y 
and fixed .θ [t] and is denoted as .Q(θ |θ [t]) in the EM literature. The second term is 
denoted .H(θ |θ [t]). Thus, 

. ln p (y|θ) = Q
(

θ |θ [t]
)

− H
(

θ |θ [t]
)

. (3.61) 

The EM algorithm involves working with the first term only, .Q(θ |θ [t]), disregarding 
.H(θ |θ [t]). The two steps are: 

1. E-step: calculation of .Q(θ |θ [t]), the expectation of the complete data loglike-
lihood (logposterior) with respect to the conditional distribution of the missing 
data, given the observed data and the current guess for . θ . 

2. M-step: maximisation of .Q(θ |θ [t]) with respect to . θ , solving for . θ and setting 
the result equal to .θ [t+1], the new value of the parameter. If .θ [t+1] maximises 
.Q(θ |θ [t]), the M-step is such that 

.Q
(

θ [t+1]|θ [t]
)

≥ Q
(

θ |θ [t]
)

, for all θ ∈ Ω, (3.62) 

which implies that .θ [t+1] is a solution to the equation: 

.
∂Q

(

θ |θ [t]
)

∂θ
= 0. (3.63) 

The two steps are repeated iteratively until convergence is reached. 
An important property of EM (not of Newton-Raphson) is that the iterative 

sequence leads to a monotonic increase of the loglikelihood .ln p(y|θ). Therefore, 

. ln p
(

y|θ [t+1]
)

� ln p
(

y|θ [t]
)

. (3.64) 

Since the loglikelihood increases in each step, the EM algorithm, with few
exceptions, converges to a local mode.

In some models, the calculation of .Q(θ |θ [t]) in the E-step may be difficult. Wei 
and Tanner (1990) propose a Monte Carlo approach for overcoming this difficulty.
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This consists of simulating .z1, z2, . . . , zm from .p(z|θ [t], y) and then forming the 
simulation consistent estimator: 

. Q̂(θ |θ [t]) ≈ 1

m

m
∑

i=1

ln p(y, zi |θ).

In its original formulation, the EM algorithm does not yield estimates of 
asymptotic variances. However, several approaches have been suggested to remedy 
this and some are described and illustrated in Sorensen and Gianola (2002). 

A Digression on a Multivariate Transformation for Discrete 
Random Variables 

Before going through the examples, I present a result of the theory of transforma-
tions that is relevant for the next example. A multinomial distribution with three 
distinctive classes is considered. 

Let . ni be the number of observations falling into the ith class and let . pi be the 
probability that an observation falls in the ith class, for .i = 1, 2, 3, with . p1 + p2 +
p3 = 1. Then .n = n1 + n2 + n3 and the joint probability mass function of . (n1, n2)

is (the dependence on parameters . p1, . p2 and n is omitted) 

.p (n1, n2) = n!
n1! n2! (n − n1 − n2)!p

n1
1 p

n2
2 (1 − p1 − p2)

n−n1−n2 . (3.65) 

Let .(n1, n2) = (X, Y ) and .(n1, n1 + n2) = (U, V ). Suppose that one needs to find 
the conditional probability distribution of . n1, given .n1 + n2: 

.p (n1|n1 + n2) = p (n1, n1 + n2)

p (n1 + n2)
= p (U, V )

p (V )
. (3.66) 

To derive the numerator in (3.66), .p(n1, n1 + n2) = p(U, V ), note that the 
transformation .(X, Y ) → (U, V ) can be written as 

.

[

U

V

]

= f (X, Y ) =
[

1 0
1 1

] [

X

Y

]

=
[

X

X + Y

]

(3.67) 

with inverse transformation

.

[

X

Y

]

= f −1 (U, V ) =
[

1 0
−1 1

] [

U

V

]

=
[

U

V − U

]

.
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Therefore, 

.pU,V (U, V ) = n!
U ! (V − U)! (n − V )!p

U
1 pV −U

2 (1 − p1 − p2)
n−V . (3.68) 

To obtain .p (n1|n1 + n2), (3.68) must be divided by .p(V ). The random variable 
.V = n1 + n2 is binomially distributed: 

. V ∼ Bi (p1 + p2, n) .

This is so because the three classes can be regrouped into two “wider” categories, 
one where the counts .(n1 + n2) are observed to fall and the other involving the 
third original category with counts . n3. In view of the independence of the draws, it 
follows that .(n1 + n2) is binomially distributed. Dividing .pU,V (U, V ) in (3.68) by  
the marginal probability mass function .pV (V ) yields 

. p (n1|n1 + n2) = p (U |V )

= p (U, V )

p (V )

= V !
U ! (V − U)!

pU
1 pV −U

2

(p1 + p2)
V

= (n1 + n2)!
n1! n2!

p
n1
1 p

n2
2

(p1 + p2)
n1+n2

= (n1 + n2)!
n1! n2!

(
p1

p1 + p2

)n1
(

p2

p1 + p2

)n2

.

This implies that 

. [n1|n1 + n2] ∼ Bi

(
p1

p1 + p2
, n1 + n2

)

. (3.69) 

Hence, the conditional distribution .[n1|n1 + n2] has mean, 

. E (n1|n1 + n2) = (n1 + n2)
p1

p1 + p2

and variance 

.V ar (n1|n1 + n2) = (n1 + n2)
p1

p1 + p2

p2

p1 + p2
.
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Example: Estimation of Gene Frequencies from ABO Blood 
Group Phenotypes 

The ABO blood groups’ problem introduced on page 79 is studied using the EM 
algorithm. Let .n = (nA, nAB, nB, nO)′ be the observed data, with .nA = 725, 
.nAB = 72, .nB = 258 and .nO = 1073. It is sensible to treat the unobserved counts 
.nAO , .nAA, .nBB and .nBO as missing data. The resulting complete data vector is 

. nc = (nAA, nAO, nAB, nBB, nBO, nO)′ .

The complete data loglikelihood, excluding an additive constant, is 

. ln f (pA, pB |nc) = 2nAA ln (pA) + nAO ln (2pApO) + nAB ln (2pApB)

+ 2nBB ln (pB) + nBO ln (2pBpO) + 2nO ln (pO) ,

where .pO = (1 − pA − pB). The E-step consists of computing the expected value 
of the complete data loglikelihood, conditional on the observed counts . n and on the 

value of the parameters at iteration t , .
(

p
[t]
A , p

[t]
B

)

. Explicitly, this is 

. Q
(

pA,pB |p[t]
A , p

[t]
B

)

= E [{2nAA ln (pA) + nAO ln (2pApO) + nAB ln (2pApB)

+ 2nBB ln (pB) + nBO ln (2pBpO) + 2nO ln (pO)} |p[t]
A , p

[t]
B , n

]

= 2̃nAA ln (pA) + ñAO ln (2pApO) + nAB ln (2pApB) + 2̃nBB ln (pB)

+ ñBO ln (2pBpO) + 2nO ln (pO) , (3.70) 

where

. ̃nAA = E
(

nAA|p[t]
A , p

[t]
B , n

)

,

ñAO = E
(

nAO |p[t]
A , p

[t]
B , n

)

,

ñBB = E
(

nBB |p[t]
A , p

[t]
B , n

)

,

ñBO = E
(

nBO |p[t]
A , p

[t]
B , n

)

.

The M-step consists of maximizing (3.70) with respect to .pA and . pB . This yields 
the following closed-form solution for . pA and . pB at a round .(t + 1): 

.p
[t+1]
A = 2̃nAA + nAB + ñAO

2 (nA + nAB + nB + nO)
, (3.71)
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.p
[t+1]
B = 2̃nBB + nAB + ñBO

2 (nA + nAB + nB + nO)
. (3.72) 

The unobserved counts at iteration t are imputed via their expected values, given . n

and .
(

p
[t]
A , p

[t]
B

)

. Using (3.69), the unobserved counts are distributed binomially as 

follows: 

. nAA ∼ Bi

(

p2
A

p2
A + 2pA (1 − pA − pB)

, nA

)

,

. nAO ∼ Bi

(

2pA (1 − pA − pB)

p2
A + 2pA (1 − pA − pB)

, nA

)

,

. nBB ∼ Bi

(

p2
B

p2
B + 2pB (1 − pA − pB)

, nB

)

,

and 

. nBO ∼ Bi

(

2pB (1 − pA − pB)

p2
B + 2pB (1 − pA − pB)

, nB

)

.

Hence, expectations can be computed immediately. For example, 

. ̃nAA = nA

p
2[t]
A

p
2[t]
A + 2p

[t]
A

(

1 − p
[t]
A − p

[t]
B

) ,

and similarly for the other components of the missing data. Using starting values 
for the gene frequencies, the missing counts .̃nij are imputed, and the next round 
of gene frequency values are computed from (3.71) and (3.72). In the case of the 
present example, starting with .p[0]

A = p
[0]
B = 0.2, nine EM iterations result in 

.p̂A = 0.2091 and .p̂B = 0.0808 (with .p̂0 = 1 − p̂A − p̂B ). 
The R-code below fits the EM algorithm to the ABO data. The third column of 

the output below displays the increasing values of the loglikelihood function with 
each EM iteration. This compares well with the output from OPTIM on page 84: 

# CODE0306 
#### EM algorithm ########################## 
rm(list=ls()) 
set.seed(30371) 
niter<-9 
result <- matrix(data=NA,nrow=niter,ncol=3) 

# DATA 
n_A<-725
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n_AB<-72 
n_B<-258 
n_0<-1073 
# START VALUES FOR P_A and p_B 
p_A <- 0.2 
p_B <- 0.2 
for (i in 1:niter){ 
# E-step 
n_AA <- n_A * p_A^2/(p_A^2 + 2*p_A*(1-p_A-p_B)) 
n_A0 <- n_A * (2*p_A*(1-p_A-p_B))/(p_A^2 + 2*p_A*(1-p_A-p_B)) 
n_BB <- n_B * p_B^2/(p_B^2 + 2*p_B*(1-p_A-p_B)) 
n_B0 <- n_B * (2*p_B*(1-p_A-p_B))/(p_B^2 + 2*p_B*(1-p_A-p_B)) 
# M-step 
p_A <- (2*n_AA + n_AB + n_A0)/(2*(n_A + n_AB + n_B + n_0)) 
p_B <- (2*n_BB + n_AB + n_B0)/(2*(n_A + n_AB + n_B + n_0)) 
loglik <- (725*log(p_A*(2 - p_A - 2* p_B)) + 72*log(2*p_A*p_B) + 

258*log(p_B*(2 - p_B - 2*p_A)) + 2*1073*log(1 - p_A - p_B)) 
result[i,] <- c(p_A,p_B,loglik) 

} 
result 

## [,1] [,2] [,3] 
## [1,] 0.2116004 0.08619764 -2304.473 
## [2,] 0.2095705 0.08104311 -2303.555 
## [3,] 0.2091891 0.08081323 -2303.551 
## [4,] 0.2091379 0.08080178 -2303.550 
## [5,] 0.2091315 0.08080107 -2303.550 
## [6,] 0.2091308 0.08080101 -2303.550 
## [7,] 0.2091307 0.08080101 -2303.550 
## [8,] 0.2091307 0.08080101 -2303.550 
## [9,] 0.2091307 0.08080101 -2303.550 

Example: A Regression Model for Binary Data 

I return to the likelihood of the logit model fitted using Newton-Raphson. Here, a 
probit model is implemented with the EM algorithm. 

The binary data y is interpreted as arising from the following process involving 
the unobserved liability (or latent variable) u: 

.yi =
{

1 if ui < 0,

0 if ui > 0.
(3.73) 

The liability is modelled as 

.ui = x′
iβ + ei, i = 1, 2, . . . , N, (3.74)
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where in the probit model, the error terms are iid .N (0, 1) and therefore . [ui |xi, β] ∼
N
(

x′
iβ, 1

)

. The row vector . x′
i contains observed covariates with p elements and . β

is an .p × 1 vector of unknown regression coefficients. In the probit model specified 
by (3.73), 

. Pr (yi = 1|β, xi) = Pr (ui < 0|β, xi)

= Pr
(

x′
iβ + ei < 0|β, xi

)

= Pr
(

ei < −x′
iβ |β, xi

)

= 1 − �
(

x′
iβ
)

and 

. Pr (yi = 0|β, xi) = Pr (ui > 0|β, xi)

= �
(

x′
iβ
)

.

The probit likelihood is 

.L (β|x, y) ∝
N
∏

i=1

[(

1 − �
(

x′
iβ
))yi

(

�
(

x′
iβ
))1−yi

]

. (3.75) 

Augmenting the observed data y with the missing data u, the complete data for 
the ith observation is .(yi, ui). The joint density of the complete data can be written 
as 

. Pr (Yi = yi |ui) p (ui |β, xi) ∝
{

N
(

ui |x′
iβ, 1

)

I (ui < 0) , for yi = 1,

N
(

ui |x′
iβ, 1

)

I (ui > 0) , for yi = 0,
(3.76) 

where the results follow from (3.73) and (3.74). The term .Pr (Yi = yi |ui) is a 
degenerate probability mass function: given the model specified by (3.73), once 
. ui is observed, . Yi is not stochastic; it is known with certainty. This translates into 
the indicator functions in the right-hand side of (3.76). However, these indicator 
functions will be omitted because they become additive constants of the complete 
data loglikelihood; they are not a function of . β and vanish in the computation of 
the M-step (the form of the complete data likelihood including indicator functions 
is given in Eq. (5.26) on page 217 that is an alternative way of expressing the right-
hand side of (3.76)). Therefore, the complete data likelihood for the ith observation 
is proportional to .p (ui |β, xi). 

The complete data likelihood is proportional to the joint distribution of the 
liabilities. Due to independence, the density of this joint distribution is 

.p (u|β, x) =
∏N

i=1
p (ui |β, xi) (3.77)
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where each term in (3.77) is  

.p (ui |β, xi) = N
(

ui |x′
iβ, 1

)

. (3.78) 

The complete data loglikelihood (excluding additive terms that do not include . β) is  

.� (β|u, x) =
N
∑

i=1

ln (p (ui |β, xi)) . (3.79) 

The E-step consists of averaging (3.79) over the conditional distribution 
.
[

u|x, β[t], y
]

; that is, 

. Q
(

β, β[t]
)

=
∫

� (β|u, x) p
(

u|x, β[t], y
)

du

=
∫ N
∑

i=1

ln (p (ui |β, xi)) p
(

ui |xi, β
[t], yi

)

dui

=
N
∑

i=1

∫

ln (p (ui |β, xi)) p
(

ui |xi, β
[t], yi

)

dui. (3.80) 

E-step 

The calculation of (3.80) needs the following results. For .yi = 0: 

. E (ui |β, xi, yi = 0) = x′
iβ + E (ei |yi = 0)

= x′
iβ + E

(

ei |x′
iβ + ei > 0

)

= x′
iβ + E

(

ei |ei > −x′
iβ
)

= x′
iβ + 1

�
(

x′
iβ
)

∫ ∞

−x′
iβ

ei (2π)−
1
2 exp

(

−e2
i

2

)

dei

= x′
iβ + φ

(

x′
iβ
)

�
(

x′
iβ
) . (3.81) 

For .yi = 1: 

. E (ui |β, xi, yi = 1) = x′
iβ + E (ei |yi = 1)

= x′
iβ + E

(

ei |x′
iβ + ei < 0

)

= x′
iβ + E

(

ei |ei < −x′
iβ
)
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= x′
iβ + 1

�
(−x′

iβ
)

∫ −x′
iβ 

−∞ 
ei (2π)−

1 
2 exp

(

−e2 
i 
2

)

dei 

= x′
iβ − 

φ
(

x′
iβ
)

1 − �
(

x′
iβ
) . (3.82) 

In these expressions, .φ (z) is the density of .N (0, 1) at .Z = z and . �(t) =
Pr (U ≤ t), the cumulative distribution function of the standard normal distribution. 
The ratios .φ

(

x′
iβ
)

/�
(

x′
iβ
)

and .−φ
(

x′
iβ
)

/(1 − �
(

x′
iβ
)

) are known as the 
intensity of selection in the quantitative genetics literature (for normally distributed 
characters). To arrive at the last line in (3.81) and (3.82), use 

. 

∫ ∞

−x′
iβ

ei (2π)−
1
2 exp

(

−e2
i

2

)

dei = −
∫ −x′

iβ

−∞
ei (2π)−

1
2 exp

(

−e2
i

2

)

dei = φ
(

x′
iβ
)

.

With these results, one proceeds with the evaluation of (3.80). Each term 
.ln (p (ui |β, xi)) is equal to (excluding an additive constant) 

. ln (p (ui |β, xi)) = −
(

ui − x′
iβ
)2

2
= −u2

i − 2uix
′
iβ + β ′xix

′
iβ

2
.

For the ith term of (3.80), the expectation over the distribution .
[

ui |x′
iβ

[t], yi

]

is 

. Qi

(

β, β[t]
)

= E [ln (p (ui |β, xi))]

= −1

2

[

E
(

u2
i |xi, β

[t], yi

)

− 2x′
iβ E

(

ui |xi, β
[t], yi

)

+ β ′xix
′
iβ
]

.

(3.83) 

M-step 

The M-step involves a differentiation of (3.80) with respect to . β, setting the result 
equal to zero and solving for . β. The solution leads to .β[t+1]. 

Since the first term in (3.83) .E
(

u2
i |x′

iβ
[t], yi

)

does not involve . β, the partial 
derivative is 

.
∂

∂β

{

−1

2

[

E
(

u2
i |xi, β

[t], yi

)

− 2x′
iβ E

(

ui |xi, β
[t], yi

)

+ β ′xix
′
iβ
]}

= −1

2

[

−2xi E
(

ui |xi, β
[t], yi

)

+ 2xix
′
iβ
]

,
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where .E
(

ui |xi, β
[t], yi

)

is given by (3.81) or by (3.82). Setting equal to zero yields 

. xi

[

E
(

ui |xi, β
[t], yi

)

− x′
iβ
]

= 0.

For the N records, we obtain 

. 

N
∑

i=1

xix
′
iβ =

N
∑

i=1

xi E
(

ui |xi, β
[t], yi

)

.

The resulting iterative system is 

.β[t+1] =
[

N
∑

i=1

(

xix
′
i

)

]−1 N
∑

i=1

xi E
(

ui |xi, β
[t], yi

)

. (3.84) 

This solution is used back again in (3.80) to start a new iteration round that requires 
calculation of .E

(

ui |xi, β
[t+1], yi

)

using (3.81) or (3.82) depending on whether 
.yi = 1 or .yi = 0. Therefore, the implementation of EM for the probit model is 
as follows: 

1. Start with a guess value .β[0]. 
2. Compute .E

(

ui |xi, β
[0], yi

)

using (3.81) or (3.82). 
3. Solve for . β using (3.84) and obtain .β[1]. 
4. Go back to 2, update using .β[1] and continue iterating until convergence. 

Notes 

If u denotes the .N × 1 vector of liabilities, then the model for the missing data can 
be written as 

.u = Xβ + e, (3.85) 

where X is an .N ×p observed matrix of covariates whose ith row is . x′
i . The  ith row 

of this linear system is given by (3.74). With this formulation, in (3.84), 

. 

N
∑

i=1

(

xix
′
i

) = X′X.

Let .Ẽ[t] denote the .N ×1 vector whose ith element is .E
(

ui |xi, β
[t], yi

)

. Then (3.84) 
can be written as 

.β[t+1] = (

X′X
)−1

X′Ẽ[t].
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Example: A Binomial Regression Model 

An extension of the binary probit regression model is the binomial probit regression 
model. The unobserved original observations .yij are independent binary .(0, 1) as 
before, but now the observed records . ni are counts of one class and .(Ni − ni) counts 
of the other class associated with covariate . xi , where . Ni is the total number of counts 
in covariate . xi . There are .i = 1, 2, . . . , C levels of the covariate and the total number 
of counts is .

∑C
i=1 Ni = N . In other words, the observed counts . ni are the result of 

adding the unobserved original records . yij : 

. ni =
Ni∑

j=1

yij .

The binomial likelihood is 

.L (β|x, y) ∝
∏C

i=1

[(

1 − �
(

x′
iβ
))ni

(

�
(

x′
iβ
))Ni−ni

]

(3.86) 

and the loglikelihood, up to an additive constant, is 

.� (β|x, y) =
C
∑

i=1

[

ni ln
(

1 − φ(x′
iβ)
)+ (Ni − ni) ln

(

�
(

x′
iβ
))]

. (3.87) 

The extension of the EM algorithm to accommodate the binomial model consists 
of associating the liability defined in (3.74) to each of the .

∑C
i=1 Ni = N binary 

outcomes. The complete data loglikelihood takes the form 

.� (β|u, x) =
C
∑

i=1

Ni∑

j=1

ln
(

p
(

uij |β, xi

))

, (3.88) 

where

.p
(

uij |β, xi

) = N
(

uij |x′
iβ, 1

)

, j = 1, . . . , Ni. (3.89) 

For example, . xi can represent the level i of a drug administered to . Ni mice, . ni is 
the number of mice that are observed dead and .Ni − ni are the number alive. The 
liability for all the . Ni mice has the same form given by (3.89). The E-step of the 
algorithm is now 

.Q
(

β, β[t]
)

=
∫

� (β|u, x) p
(

u|x, β[t], y
)

du

=
∫ C
∑

i=1

Ni∑

j=1

ln
(

p
(

uij |β, xi

)) [

I
(

yij = 1
)

p
(

uij |β[t], xi, yij

)
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+I
(

yij = 0
)

p
(

uij |β[t], xi, yij

)]

duij 

= 
C
∑

i=1

{

ni E[y=1] ln
(

p
(

uij |β, xi

))+ (Ni − ni) E[y=0] ln
(

p
(

uij |β, xi

))}

(3.90) 

where .E[y=1] indicates expectation over .
[

uij |β[t], xi, yij = 1
]

and .E[y=0] indicates 
expectation over .

[

uij |β[t], xi, yij = 0
]

. These two expectations are given by (3.81) 
and (3.82); that is, 

. E
(

uij |β, xi, yij = 1
) = x′

iβ − φ
(

x′
iβ
)

1 − �
(

x′
iβ
) , . (3.91a) 

E
(

uij |β, xi, yij = 0
) = x′

iβ + φ
(

x′
iβ
)

�
(

x′
iβ
) . (3.91b) 

The term .ln
(

p
(

uij |β, xi

))

, up to an additive constant, is equal to 

. −
(

uij − x′
iβ
)2

2
= −u2

ij − 2uij x
′
iβ + β ′xix

′
iβ

2

and 

. E[y=1] ln
(

p
(

uij |β, xi

)) = −1

2

[

E[y=1]

(

u2
ij |xi, β

[t], yij

)

−2x′
iβ E[y=1]

(

uij |xi, β
[t], yij

)

+ β ′xix
′
iβ
]

with a similar structure for .E[y=0]. 
The M-step involves differentiation of (3.90) with respect to . β. For the  ith term 

in (3.90) this gives, after a little simplification, 

. nixi E[y=1]

(

uij |xi, β
[t], yij

)

− nixix
′
iβ + (Ni − ni)xi

E[y=0]

(

uij |xi, β
[t], yij

)

− (Ni − ni)xix
′
iβ

= nixi E[y=1]

(

uij |xi, β
[t], yij

)

+ (Ni − ni)xi

E[y=0]

(

uij |xi, β
[t], yij

)

− Nixix
′
iβ.
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Therefore differentiation of (3.90) with respect to . β is equal to 

. 
∂Q

(

β, β[t]
)

∂β
=

C
∑

i=1

nixi E[y=1]

(

uij |xi, β
[t], yij

)

+
C
∑

i=1

(Ni − ni)xi E[y=0]

(

uij |xi, β
[t], yij

)

−
C
∑

i=1

Nixix
′
iβ

Setting equal to zero yields 

. 

C
∑

i=1

Nixix
′
iβ =

C
∑

i=1

nixi E[y=1]

(

uij |xi, β
[t], yij

)

+
C
∑

i=1

(Ni − ni)xi E[y=0]

(

uij |xi, β
[t], yij

)

and the iterative system becomes 

. β[t+1] =
[

C
∑

i=1

Nixix
′
i

]−1 { C
∑

i=1

nixi E[y=1]

(

uij |xi, β
[t], yij

)

+
C
∑

i=1

(Ni − ni)xi E[y=0]

(

uij |xi, β
[t], yij

)
}

. (3.92) 

Let . DN , .Dn and . Dδ denote .C × C diagonal matrices with diagonal elements . Ni , 
. ni and .(Ni − ni), respectively. Let .Ẽ[t]

[y=1] be the .C × 1 vector whose ith element 

(.i = 1, . . . , C) is .E
(

uij |xi, β
[t], yij = 1

)

and let .Ẽ[t]
[y=0] be the .C × 1 vector whose 

ith element is .E
(

uij |xi, β
[t], yij = 0

)

. Then (3.92) can be written more compactly 
as 

.β[t+1] = (

X′DNX
)−1

[

X′DnẼ
[t]
[y=1] + X′DδẼ

[t]
[y=0]

]

. (3.93) 

A Digression on Some Matrix Algebra Results 

I outline results that are useful for the examples that follow. 
Assume that the joint distribution of the vector of data y and the vector of additive 

genetic values a is multivariate normal 

.
y

a

∣
∣
∣
∣
θ ∼ N

([

Xβ

0

]

,

[

V ZAσ 2
a

AZ′σ 2
a Aσ 2

a

])

,
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with .V = ZAZ′σ 2
a + Iσ 2

e , .θ = (

β, σ 2
a , σ 2

e

)

, . β is a location vector of “fixed” 
effects, A is the additive genetic relationship matrix, X and Z are observed incidence 
matrices and . σ 2

a , . σ 2
e are components of variance.

• Conditional mean. From properties of the multivariate normal distribution 

. a|θ, y ∼N (E (a|θ, y) , Var (a|θ, y)) ,

where 

. E (a|θ, y) = AZ′V −1 (y − Xβ) σ 2
a .

Let .k = σ 2
e /σ 2

a . Substituting .V −1 with 

. V −1 = 1

σ 2
e

I − 1

σ 2
e

Z
(

Z′Z + A−1k
)−1

Z′

leads to the following expression for the conditional mean: 

. E (a|θ, y)

= AZ′
[

1

σ 2
e

I − 1

σ 2
e

Z
(

Z′Z + A−1k
)−1

Z′
]

(y − Xβ) σ 2
a

=
[

A
1

k
− 1

k
AZ′Z

(

Z′Z + A−1k
)−1

]

Z′ (y − Xβ)

=
(

Z′Z + A−1k
)−1

Z′ (y − Xβ) . (3.94) 

The last line follows because

. A
1

k
− 1

k
AZ′Z

(

Z′Z + A−1k
)−1 =

(

Z′Z + A−1k
)−1

.

This can be verified by post-multiplying the left-hand side by the inverse of the 
right-hand side, which recovers . I .

• Conditional variance. The conditional variance is 

. Var (a|θ, y) =
(

Z′Z + A−1k
)−1

σ 2
e . (3.95) 

This is obtained using properties of the multivariate normal distribution:

. Var (a|θ, y) = Aσ 2
a − AZ′σ 2

a V −1ZAσ 2
a

= Aσ 2
a −

[

A
1

k
− 1

k
AZ′Z

(

Z′Z + A−1k
)−1

]

Z′ZAσ 2
a
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= Aσ 2 
a −

(

Z′Z + A−1k
)−1 

Z′ZAσ 2 
a 

=
(

Z′Z + A−1k
)−1 

σ 2 
e . 

The last line can be verified by premultiplying the third line by 

. 

(

Z′Z + A−1k
)

,

that recovers .Iσ 2
e . 

An alternative derivation from a Bayesian perspective (that implies assigning a 
uniform, improper prior distribution to the location vector . β) is to start from  

.
β

a

∣
∣
∣
∣
σ 2

a , σ 2
e , y ∼N

([

β̂

â

]

,

[

C11 C12

C21 C22

]

σ 2
e

)

(3.96) 

where

. 

[

C11 C12

C21 C22

]

is the inverse of the coefficient matrix of the mixed model equations and .
(

β̂, â
)

is 
the posterior mean vector: 

.

[

β̂

â

]

=
[

C11 C12

C21 C22

] [

X′y
Z′y

]

. (3.97) 

Using results outlined on page 158 or in Example 1.18 of Chapter 1 in Sorensen 
and Gianola (2002), one can show that the mean vector of .

[

a|β, σ 2
a , σ 2

e , y
]

is equal 
to 

. 

(

Z′Z + A−1k
)−1

Z′ (y − Xβ) ,

and its covariance matrix is equal to (3.95). 

Example: ML Estimation in the Mixed Linear Model 

This example illustrates the derivation of the iterative EM equations for ML estima-
tion of fixed effects and of variance components in the univariate Gaussian mixed 
linear model with two  variance components. A classical quantitative genetics setup 
is the mixed linear model that includes fixed and random effects entering linearly 
into the conditional (given the random effects) expectation of the observations. 
Fixed effects could, for example, represent systematic sex differences or breed
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differences, and the random effects could represent additive genetic values. In this 
case, the two variance components involve the residual variance and the component 
of the variance-covariance structure of the vector of additive genetic values. The 
implicit assumption of the model is that variance components are the same in the 
two sexes and breeds. 

Specifically, assume that the data . y (vector of dimension .n × 1) is a realisation 
from 

. y|β, a, σ 2
e ∼ N

(

Xβ + Za, Iσ 2
e

)

,

and the unobserved .q × 1 vector of the additive genetic values is multivariate 
normally distributed: 

. a|Aσ 2
a ∼ N

(

0, Aσ 2
a

)

.

The vector of fixed effects . β has order .p×1; . X and . Z are known incidence matrices 
and the unknown variance components are the scalars . σ 2

a and . σ 2
e . The matrix . A is 

known; it describes expected additive genetic relationships among individuals, given 
a known pedigree. The focus of inference is .θ = (

β ′, σ 2
a , σ 2

e

)′
. The observed data 

likelihood is 

. L (θ |y) =
∫

p
(

y|β, a, σ 2
e

)

p
(

a|Aσ 2
a

)

da

∝ |V |− 1
2 exp

[

−1

2
(y − Xβ)′ V −1 (y − Xβ)

]

, (3.98) 

where .V = ZAZ′σ 2
a + Iσ 2

e is the unconditional variance-covariance matrix of the 
observed data . y. Rather than working with (3.98), the ML estimate of . θ is obtained 
using the EM algorithm. 

Treating the random effects a as the missing data, the complete data likelihood 
is 

. L (θ, a|y) =
∣
∣
∣Iσ 2

e

∣
∣
∣

− 1
2

exp

[

− 1

2σ 2
e

(y − Xβ − Za)′ (y − Xβ − Za)

]

×
∣
∣
∣Aσ 2

a

∣
∣
∣

− 1
2

exp

[

− 1

2σ 2
a

a′A−1a

]

, (3.99) 

and the corresponding loglikelihood is

. ln p (θ, a|y) = constant − n

2
ln σ 2

e − q

2
ln σ 2

a − 1

2σ 2
a

a′A−1a

− 1

2σ 2
e

(y − Xβ − Za)′ (y − Xβ − Za) . (3.100)
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The E-step is 

. Q
(

θ |θ [t]
)

=
∫

ln p (θ, a|y) p
(

a|θ [t], y
)

da

= −n

2
ln σ 2

e − q

2
ln σ 2

a − 1

2σ 2
a

Ea|θ [t],y

[

a′A−1a
]

− 1

2σ 2
e

Ea|θ [t],y (y − Xβ − Za)′ (y − Xβ − Za) .

Let 

. Ea|θ [t],y

[

a|θ [t], y
]

= ã[t], (3.101) 

and

. Vara|θ [t],y

[

a|θ [t], y
]

= Ṽ [t]
a . (3.102) 

Using results for expectation of quadratic forms (Searle, 1971) (see also NOTE on  
page 134), 

. Q
(

θ |θ [t]
)

= −n

2
ln σ 2

e − q

2
ln σ 2

a − 1

2σ 2
a

[

ã[t]′A−1ã[t] + tr
(

A−1Ṽ [t]
a

)]

− 1

2σ 2
e

[(

y − Xβ − Zã[t]
)′ (

y − Xβ − Zã[t]
)

+ tr
(

Z′ZṼ [t]
a

)]

.

The M-step consists of setting the following equations equal to zero: 

. 
∂Q

(

θ |θ [t]
)

∂β
= 1

σ 2
e

X′ (y − Xβ − Zã[t]
)

,

. 
∂Q

(

θ |θ [t]
)

∂σ 2
a

= − q

2σ 2
a

+ 1

2
(

σ 2
a

)2

[

ã[t]′A−1ã[t] + tr
(

A−1Ṽ [t]
a

)]

,

and 

.
∂Q

(

θ |θ [t]
)

∂σ 2
e

= − n

2σ 2
e

+ 1

2
(

σ 2
e

)2

[(

y − Xβ − Zã[t]
)′ (

y − Xβ − Zã[t]
)

+ tr
(

Z′ZṼ [t]
a

)]

.
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Solving for . θ , one obtains the iterative system 

.β[t+1] = (

X′X
)−1

X′ (y − Zã[t]
)

, (3.103) 

.σ 2[t+1]
a = 1

q

[

ã[t]′A−1ã[t] + tr
(

A−1Ṽ [t]
a

)]

, (3.104) 

and

. σ 2[t+1]
e = 1

n

[(

y − Xβ[t+1]−Zã[t]
)′ (

y − Xβ[t+1]−Zã[t]
)

+ tr
(

Z′ZṼ [t]
a

)]

. (3.105) 

Explicit expressions for .̃a[t] and .Ṽ [t]
a were given in (3.94) and (3.95). 

Example: REML (Restricted Maximum Likelihood) Estimation 
in the Mixed Linear Model 

The model is as in the preceding example, but now the focus of inference is 
.θ = (

σ 2
a , σ 2

e

)

, with . β ans a viewed as nuisance parameters. The restricted maximum 
likelihood (REML) equations are derived using a Bayesian perspective, and the 
mode of the posterior distribution with density .p

(

σ 2
a , σ 2

e |y) is chosen as the 
“REML” point estimator (Patterson and Thompson, 1971). You may want to return 
to this example after reading Chapter 4. 

Assigning improper uniform prior distributions to each of .
(

σ 2
a , σ 2

e

)

and to . β, then 

. p
(

σ 2
a , σ 2

e |y
)

∝
∫

p
(

y|β, a, σ 2
e

)

p
(

a|A, σ 2
a

)

da dβ.

In this setting, the mode of the posterior distribution of the variance components 
is identical to the REML estimator (Harville, 1977). Joint maximisation of this 
expression is difficult. However, it is relatively easy to structure an EM algorithm, 
where the missing data are now .z = (

β ′, a′)′. The complete data posterior 
distribution .p

(

σ 2
a , σ 2

e , z|y) is identical to (3.100) and the E-step is now 

. Q
(

θ |θ [t]
)

=
∫

ln p (θ, β, a|y) p
(

β, a|θ [t], y
)

da dβ

= −n

2
ln σ 2

e − q

2
ln σ 2

a − 1

2σ 2
a

Eβ,a|θ [t],y

[

a′A−1a
]

− 1

2σ 2
e

Eβ,a|θ [t],y (y − Xβ − Za)′ (y − Xβ − Za) . (3.106)
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Taking expectations over the quadratic forms leads to 

. Q
(

θ |θ [t]
)

= −n

2
ln σ 2

e − q

2
ln σ 2

a

− 1

2σ 2
a

[

â[t]′A−1â[t] + tr
(

A−1C22[t]
)

σ 2[t]
e

]

− 1

2σ 2
e

[

ê[t]′̂e[t] + tr
[

[X,Z] C−1[t] [X,Z]′
]

σ 2[t]
e

]

,

where .ê[t] =
(

y − Xβ̂[t] − Zâ[t]
)

, . ̂a is defined in (3.97) and 

. C−1 =
[

C11 C12

C21 C22

]

.

Since the missing data are now .z = (

β ′, a′)′, expectations in (3.106) are taken with 
respect to .

[

β, a|θ [t], y
]

, displayed in (3.96). The M-step is 

. 
∂Q

(

θ |θ [t]
)

∂σ 2
a

= − q

2σ 2
a

+ 1

2
(

σ 2
a

)2

[

â[t]′A−1â[t] + tr
(

A−1C22[t]
)

σ 2[t]
e

]

,

and 

. 
∂Q

(

θ |θ [t]
)

∂σ 2
e

= − n

2σ 2
e

+ 1

2
(

σ 2
e

)2

[

ê[t]′̂e[t] + tr
[

[X,Z] C−1[t] [X,Z]′
]

σ 2[t]
e

]

.

Setting to zero yields the iterative system: 

.σ 2[t+1]
a = â[t]′A−1â[t] + tr

(

A−1C22[t]
)

σ
2[t]
e

q
, (3.107) 

.σ 2[t+1]
e = ê[t]′̂e[t] + tr

[

[X,Z] C−1[t] [X,Z]′
]

σ
2[t]
e

n
. (3.108) 

Contrary to ML estimation, REML estimation or inference via the posterior mode
of .
[

σ 2
a , σ 2

e |y] requires inverting the entire coefficient matrix . C (in each iteration). 

Example: Bivariate Normal Model with Missing Records 

The example on page 63 is revisited and maximum likelihood inferences are drawn 
using the EM algorithm. The data consist of records of fathers and of their sons, with
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a number of the latter missing. As was discussed in connection with the example, 
the construction of the likelihood does not require incorporation of the missing data 
mechanism for correct inferences. The ordered data are represented as 

. x1, x2, . . . , xm, xm+1, . . . , xn,

y1, y2, . . . , ym.

To derive the EM equations, an obvious choice for the missing data is . y∗ =
ym+1, . . . , yn. Then the complete data loglikelihood, ignoring an additive constant 
is 

. l
(

μy,μx, ρ, σyy, σxx |x, y, y∗
) = −n

2

[

ln σyy + ln σxx + ln
(

1 − ρ2
)]

− 1

2
(

1 − ρ2
)

[∑n
i=1 (xi − μx)

2

σxx

+
∑n

i=1

(

yi − μy

)2

σyy

−2ρ

∑n
i=1 (xi − μx)

(

yi − μy

)

(σxx)
1
2
(

σyy

) 1
2

⎤

⎦ (3.109) 

As mentioned before, if .ym+1, . . . , yn were observed, the ML estimators have a 
simple closed form. 

Expanding the quadratic forms in (3.109), 

. l
(

μy,μx, ρ, σyy, σxx |x, y, y∗
) = −n

2

[

ln σyy + ln σxx + ln
(

1 − ρ2
)]

− 1

2
(

1 − ρ2
)

(∑n
i=1 x2

i + nμ2
x − 2μx

∑n
i=1 xi

σxx

+
∑n

i=1 y2
i + nμ2

y − 2μy

∑n
i=1 yi

σyy

−2ρ

∑n
i=1 xiyi − μx

∑n
i=1 yi − μy

∑n
i=1 xi + nμxμy

(σxx)
1
2
(

σyy

) 1
2

⎞

⎠ . (3.110) 

In this expression, the following equalities hold: 

.

n
∑

i=1

y2
i =

m
∑

i=1

y2
i +

n
∑

i=m+1

y2∗,i ,

n
∑

i=1

xiyi =
m
∑

i=1

xiyi +
n
∑

i=m+1

xiy∗,i , (3.111)

n
∑

i=1

yi =
m
∑

i=1

yi +
n
∑

i=m+1

y∗,i ,
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where .y∗,i is the ith missing observation. The computation of .Q
(

θ |θ [t]) requires 
the expectations of (3.110) with respect to the distribution of the missing data, given 
the parameters evaluated at round . [t] and given the observed data .(x, y). Thus, 

. Q
(

θ |θ [t]
)

=
∫

l
(

μy,μx, ρ, σyy, σxx |x, y, y∗
)

p
(

y∗|θ [t], x, y
)

dy∗.

This calculation involves expectations of (3.111): 

. E

[
n
∑

i=1

y2
i |θ [t], x, y

]

=
m
∑

i=1

y2
i + E

[
n
∑

i=m+1

y2∗,i |θ [t], x, y

]

,

E

[
n
∑

i=1

xiyi |θ [t], x, y

]

=
m
∑

i=1

xiyi + E

[
n
∑

i=m+1

xiy∗,i |θ [t], x, y

]

,

E

[
n
∑

i=1

yi |θ [t], x, y

]

=
m
∑

i=1

yi + E

[
n
∑

i=m+1

y∗,i |θ [t], x, y

]

.

Using properties of the bivariate normal distribution, the following results are easily 
derived: 

. E
(

y∗,i |θ [t], x, y
)

= E
(

y∗,i |θ [t], xi

)

= μ[t]
y + σ

[t]
xy

σ
[t]
xx

(

xi − μ[t]
x

)

= μ[t]
y + ρ[t]

[

σ
[t]
yy

] 1
2

[

σ
[t]
xx

] 1
2

(

xi − μ[t]
x

)

,

. E
(

xiy∗,i |θ [t], x, y
)

= xi E
(

y∗,i |θ [t], x, y
)

,

and 

. E
(

y2∗,i |θ [t], x, y
)

= σ [t]
yy −

(

σ
[t]
xy

)2

σ
[t]
xx

+
[

E
(

y∗,i |θ [t], x, y
)]2

= σ [t]
yy

(

1 −
(

ρ[t]
)2
)

+
[

E
(

y∗,i |θ [t], x, y
)]2

.



3.3 The EM Algorithm 125

Then the E-step is 

. Q
(

θ |θ [t]
)

= −n

2

[

ln σyy + ln σxx + ln
(

1 − ρ2
)]

− 1

2
(

1 − ρ2
)

(∑n
i=1 x2

i + nμ2
x − 2μx

∑n
i=1 xi

σxx

+E
[∑n

i=1 y2
i |θ [t], x, y

]+ nμ2
y − 2μy E

[∑n
i=1 yi |θ [t], x, y

]

σyy

−2ρ
E
[∑n

i=1 xiyi |θ [t], x, y
]−μx E

[∑n
i=1 yi |θ [t], x, y

]−μy

∑n
i=1 xi + nμxμy

(σxx)
1
2
(

σyy

) 1
2

⎞

⎠,

(3.112) 

and the M-step consists of finding the value of .θ = (

μy,μx, ρ, σyy, σxx

)

that 
maximises (3.112); this maximiser becomes .θ [t+1]. To find this maximiser, first 
derivatives are needed: 

. 
∂Q

(

θ |θ [t]
)

∂μx

= n

(σxx)
1
2
(

1 − ρ2
)

⎡

⎣

∑n
i=1 xi

n
− μx

(σxx)
1
2

− ρ

E
[∑n

i=1 yi |θ [t],x,y
]

n
− μy

(

σyy

) 1
2

⎤

⎦ ,

(3.113) 

. 
∂Q

(

θ |θ [t]
)

∂μy

= n
(

σyy

) 1
2
(

1 − ρ2
)

⎡

⎣

E
[∑n

i=1 yi |θ [t],x,y
]

n
− μy

(

σyy

) 1
2

− ρ

∑n
i=1 xi

n
− μx

(σxx)
1
2

⎤

⎦ ,

(3.114) 

. 
∂Q

(

θ |θ [t]
)

∂σxx

= − 1

2σxx

(

1 − ρ2
)

[

n
(

1 − ρ2
)

−
∑n

i=1 (xi − μx)
2

σxx

+ρ
E
[∑n

i=1 xiyi |θ [t], x, y
]−μx E

[∑n
i=1 yi |θ [t], x, y

]−μy

∑n
i=1 xi + nμxμy

(σxx)
1
2
(

σyy

) 1
2

⎤

⎦ ,

(3.115) 

. 
∂Q

(

θ |θ [t]
)

∂σyy

= − 1

2σyy

(

1 − ρ2
)

[

n
(

1 − ρ2
)

−E
[∑n

i=1 y2
i |θ [t], x, y

]+ nμ2
y − 2μy E

[∑n
i=1 yi |θ [t], x, y

]

σyy

+ρ
E
[∑n

i=1 xiyi |θ [t], x, y
]− μx E

[∑n
i=1 yi |θ [t], x, y

]− μy

∑n
i=1 xi + nμxμy

(σxx)
1
2
(

σyy

) 1
2

⎤

⎦

(3.116)
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and 

. 
∂Q

(

θ |θ [t]
)

∂ρ
= 1
(

1 − ρ2
)

{

nρ − 1
(

1 − ρ2
)

[

ρ

(∑n
i=1 (xi − μx)

2

σxx

+ E
[∑n

i=1 y2
i |θ [t], x, y

]+ nμ2
y − 2μy E

[∑n
i=1 yi |θ [t], x, y

]

σyy

)

− (1 + ρ)2

E
[∑n

i=1 xiyi |θ [t], x, y
]− μx E

[∑n
i=1 yi |θ [t], x, y

]− μy

∑n
i=1 xi + nμxμy

(σxx)
1
2
(

σyy

) 1
2

⎤

⎦

⎫

⎬

⎭
.

(3.117) 

These equations must be solved simultaneously. After setting derivatives equal 
to zero, Eqs. (3.113) and (3.114) reduce to 

. 

∑n
i=1 xi

n
− μx

(σxx)
1
2

= ρ

E
[∑n

i=1 yi |θ [t],x,y
]

n
− μy

(

σyy

) 1
2

and 

. 

E
[∑n

i=1 yi |θ [t],x,y
]

n
− μy

(

σyy

) 1
2

= ρ

∑n
i=1 xi

n
− μx

(σxx)
1
2

.

The only solution is 

.μ̂[t+1]
x = μ̂x =

∑n
i=1 xi

n
, (3.118) 

.μ̂[t+1]
y = E

[∑n
i=1 yi |θ [t], x, y

]

n
. (3.119) 

Since x is completely observed, the solution for . μ̂x is explicit. 
Expressions for . σxx , .σyy and . ρ involve (3.115), (3.116) and (3.117). A little 

algebra results in 

.̂σxx = 1

n

n
∑

i=1

(xi − μ̂x)
2 , (3.120)



3.3 The EM Algorithm 127

. ̂σ [t+1]
yy = 1

n

{

E

[
n
∑

i=1

y2
i |θ [t], x, y

]

+ n
(

μ̂[t+1]
y

)2 − 2μ̂[t+1]
y E

[
n
∑

i=1

yi |θ [t], x, y

]}

= 1

n
E

[
n
∑

i=1

y2
i |θ [t], x, y

]

−
(

μ̂[t+1]
y

)2
. (3.121) 

and 

.ρ̂[t+1] =
1
n

E
[∑n

i=1 xiyi |θ [t], x, y
]− μ̂xμ̂

[t+1]
y

(̂σxx)
1
2

(

σ̂
[t+1]
yy

) 1
2

. (3.122) 

The EM iterations involve computation of . μ̂x using (3.118) and of .σ̂xx using (3.120) 
and then looping over (3.119), (3.121) and (3.122) to update .μ̂[t+1]

y , .σ̂ [t+1]
yy and 

.ρ̂[t+1]. 

Example: A Two-Component Mixture Model 

Finite mixtures constitute a very flexible modelling tool that arise in practice when 
measurements are assumed to be drawn from several subpopulations or mixture 
components, where the component to which an observation belongs is not identified. 
Mixture models have a long history; perhaps the first major analysis involving the 
use of mixtures was undertaken in 1894 by Karl Pearson (Pearson, 1894) that fitted 
a mixture of two normal probability densities with different means and variances to 
data on crabs. 

This example also assumes that the data are realisations from two subpopulations. 
A classical scenario in genomics is to decide which of the thousands or millions of 
genetic markers scattered along the genome has or has not an effect on a particular 
trait. The trait could have a binary expression, such as presence or absence of a 
disease, or it could be continuously distributed, such as height in humans. The model 
poses that each genetic marker effect (an unobserved quantity) is drawn from either 
a component that generates very small values or from the component that allows for 
larger values. The objective is to allocate each marker to one of the two components. 
In the example discussed here, the mixture operates at the level of the observed data. 

Let . zi be the (unobserved) binary variable that assigns an observation . yi to a 
specific mixture component. Assume the marginal probability that . Zi is a draw from 
the mixture component j is 

. Pr
(

Zi = j |πj

) = πj .
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Conditional on .zi = j , .j = 1, 0, assume . yi has density .pj

(

yi |θj

)

. That is, 

. p (yi, zi |θ, π) = pj

(

yi |zi = j, θj

)

Pr
(

Zi = j |πj

)

= pj

(

yi |zi = j, θj

)

πj .

Treating z as missing data, let .x = (z, y) denote the complete data. The complete 
data loglikelihood is 

. � (θ |x) =
∑

i
� (θ |xi) ,

where .� (θ |xi) is the loglikelihood of the ith complete datum that takes the form 

.� (θ |xi) =
∑1

j=0

[

I (zi = j) ln pj

(

yi |θj

)+ I (zi = j) ln πj

]

. (3.123) 

E-step 

The E-step for the ith observation consists of averaging (3.123) over the conditional 
distribution .

[

zi |π [t], θ [t], y
]

. The contribution from the ith complete datum is 

. Qi

(

π, θ, π [t], θ [t]
)

= E

{
∑1

j=0

[

I (zi = j) ln pj

(

yi |θj

)+ I (zi = j) ln πj

]
}

(3.124) 
and the contribution from the entire data,

. Q
(

π, θ, π [t], θ [t]
)

= E

{
∑n

i=1

∑1

j=0

{

I (zi = j)
[

ln pj

(

yi |θj

)+ ln πj

]}
}

=
∑n

i=1

∑1

j=0

{

E
[

I (zi = j) |π [t], θ [t], y
]

× [

ln pj

(

yi |θj

)+ ln πj

]}

=
∑n

i=1

∑1

j=0

{

p̂ij

[

ln pj

(

yi |θj

)+ ln πj

]}

, (3.125) 

where the term in squared brackets .
[

ln pj

(

yi |θj

)+ ln πj

]

is a constant with respect 
to .
[

zi |π [t], θ [t], y
]

and 

. ̂pij = E
[

I (Zi = j) |π [t], θ [t], y
]

= Pr
(

Zi = j |π [t], θ [t], y
)

(3.126)
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to be derived shortly. At this point, note that .
∑

j πj = 1, .
∑

j p̂ij = 1 and therefore 
.
∑n

i=1
∑

j p̂ij = ∑n
i=1 1 = n. 

M-step 

The Q function must be maximised with respect to the two sets of parameters, 
the .θ ′s and . πj . The derivation of . πj requires a constrained maximisation using 
Lagrange multipliers. Maximising (3.125) with respect to . πj subject to . 

∑

j πj = 1
gives 

. 
∂

∂πj

⎡

⎣
∑n

i=1

∑1

j=0
p̂ij

[

ln pj

(

yi |θj

)+ ln πj

]+ λ

⎛

⎝
∑

j

πj − 1

⎞

⎠

⎤

⎦ = 0

or 

. 
1

πj

∑n

i=1
p̂ij + λ = 0.

Therefore, 

. − 1

λ

∑n

i=1
p̂ij = πj . (3.127) 

Summing over j on both sides

. − 1

λ

∑n

i=1

∑1

j=0
p̂ij =

∑1

j=0
πj

leading to 

. − 1

λ

∑n

i=1
1 = 1

which gives .λ = −n. Substituting in (3.127) leads to the iterate 

.π
[t+1]
j = 1

n

∑n

i=1
p̂ij . (3.128) 

The derivation of . θj requires maximisation of (3.125) with respect to . θj : 

.
∂

∂θj

[
∑n

i=1

∑1

j=0
p̂ij

[

ln pj

(

yi |θj

)+ ln πj

]
]

= 0



130 3 Computing the Likelihood

or 

.

∑n

i=1
p̂ij

∂

∂θj

ln pj

(

yi |θj

) = 0. (3.129) 

To be specific, assume that .pj

(

yi |θj

) = N
(

yi |θj , σ
2
)

and that observations are 
identically and independently distributed. Then ignoring terms that do not contain 
. θj , 

. 
∑n

i=1
p̂ij

∂

∂θj

ln pj

(

yi |θj

) =
∑n

i=1
p̂ij

∂

∂θj

[

−
(

yi − θj

)2

2σ 2

]

=
∑n

i=1
p̂ij

(

yi − θj

)

σ 2 = 0.

Multiplying out by . σ 2 yields 

.θ
[t+1]
j =

∑n
i=1 p̂ij yi
∑n

i=1 p̂ij

. (3.130) 

Similarly, for . σ 2

. 
∂Q

∂σ 2
=
∑n

i=1

∑1

j=0
p̂ij

∂

∂σ 2

[

−1

2
ln σ 2 −

(

yi − θj

)2

2σ 2

]

=
∑n

i=1

∑1

j=0
p̂ij

[

− 1

2σ 2
+
(

yi − θj

)2

2
(

σ 2
)2

]

= 0.

Multiplying out by .2σ 2, 

. 
∑n

i=1

∑1

j=0

[

−p̂ij + p̂ij

(

yi − θj

)2

σ 2

]

= 0.

Then 

. 
∑n

i=1

∑1

j=0

p̂ij

(

yi − θj

)2

σ 2 =
∑n

i=1

∑1

j=0
p̂ij =

∑n

i=1
1 = n

and finally 

.σ 2[t+1] = 1

n

∑n

i=1

∑1

j=0
p̂ij

(

yi − θj

)2
. (3.131)
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An expression for .p̂ij defined in (3.126) is obtained as follows: 

. ̂p
[t+1]
ij = Pr

(

Zi = j |π [t], θ
[t]
j , yi

)

=
pj

(

yi, Zi = j |θ [t]
j , π [t]

)

∑

j pj

(

yi, Zi = j |θ [t]
j , π [t]

)

=
pj

(

yi |θ [t]
j

)

Pr
(

Zi = j |π [t]
)

∑

j pj

(

yi |θ [t]
j

)

Pr
(

Zi = j |π [t]
)

=
pj

(

yi |θ [t]
j

)

π
[t]
j

∑

j pj

(

yi |θ [t]
j

)

π
[t]
j

. (3.132) 

A Bayesian implementation of this mixture model is on page 234, and examples 
using likelihood and Bayesian models are illustrated on pages 352 and 356. 

Example: Genomic Model 

This model was implemented using Newton-Raphson and here the EM algorithm 
is used instead. The focus of inference is the variance components with a view to 
learning how much of the total variance of the trait is explained by the regression on 
marker information. Full details of the hierarchical model are specified in (3.38). 

If 

. y|U, α, σ 2
e ∼ N

(

Uα, Iσ 2
e

)

,

α|U, σ 2
g ∼ SN

(

0,Dσ 2
g

)

,

then the distribution .[α|y, σ 2
e , σ 2

g ] is singular normal, with conditional mean 

. E
(

α|y, σ 2
e , σ 2

g

)

= α̃ = σ 2
g DU ′ (UDU ′σ 2

g + Iσ 2
e

)−1
y

= kD (Dk + I )−1 ỹ (3.133) 

where .ỹ = U ′y and .k = σ 2
g /σ 2

e . The conditional variance is 

. Var
(

α|y, σ 2
e , σ 2

g

)

= Ṽα = Dσ 2
g − σ 2

g DU ′ (UDU ′σ 2
g + Iσ 2

e

)−1
UDσ 2

g

= Dσ 2
g − σ 2

g kD (Dk + I )−1 D. (3.134)
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Both (3.133) and (3.134) have a diagonal structure. Simple operations on these 
expressions reveal that for the ith element, 

. E
(

αi |y, σ 2
e , σ 2

g

)

= α̃i = λik

λik + 1
ỹi , . (3.135a) 

Var
(

αi |y, σ 2 
e , σ

2 
g

)

= Ṽαi = σ 2 
g 

λi 
λik + 1 

, i  = 1, . . . , n  − 1, (3.135b) 

and when .i = n both terms are equal to zero. 
The joint density of y and . α, given the variance components, is 

. p
(

y|α, σ 2
e

)

p
(

α|σ 2
g

)

=
∣
∣
∣Iσ 2

e

∣
∣
∣

− 1
2

exp

[

− 1

2σ 2
e

(y − Uα)′ (y − Uα)

] (

σ 2
g

)−
(

n−1
2

)

exp

[

− 1

2σ 2
g

α′D−α

]

. (3.136) 

The full data likelihood (where . α acts as the missing data) is proportional to (3.136), 
and the full data loglikelihood, up to an additive constant, is given by 

. �
(

σ 2
e , σ 2

g , α|y
)

= −n

2
ln σ 2

e −
(

n − 1

2

)

σ 2
g − 1

2σ 2
e

(y − Uα)′ (y − Uα)−

− 1

2σ 2
g

α′D−α. (3.137) 

The Q function that defines the E-step of the algorithm is

. Q
(

σ 2
e , σ 2

g |σ 2[t]
e , σ 2[t]

g

)

=

−n

2
ln σ 2

e −
(

n − 1

2

)

σ 2
g − 1

2σ 2
e

E
[

(y − Uα)′ (y − Uα)
]− 1

2σ 2
g

E
[

α′D−α
]

(3.138) 

Using results from expectations of quadratic forms (see NOTE at the end of the
example) and the notation defined in (3.133) and (3.134) yields 

. Q
(

σ 2
e , σ 2

g |σ 2[t]
e , σ 2[t]

g

)

= −n

2
ln σ 2

e −
(

n − 1

2

)

σ 2
g −

− 1

2σ 2
e

[(

y − Uα̃[t]
)′ (

y − Uα̃[t]
)

+ tr
(

Ṽ [t]
α

)]

− 1

2σ 2
g

[

α̃[t]′D−α̃[t] + tr
(

D−Ṽ [t]
α

)]

. (3.139)
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Differentiation with respect to . σ 2
e and . σ 2

g constitutes the M-step. This gives 

. 
∂

∂σ 2
e

Q
(

σ 2
e , σ 2

g |σ 2[t]
e , σ 2[t]

g

)

= − n

2σ 2
e

+ 1

2
(

σ 2
e

)2

[(

y − Uα̃[t]
)′ (

y − Uα[t]
)

+ tr
(

Ṽ [t]
α

)]

,

∂

∂σ 2
g

Q
(

σ 2
e , σ 2

g |σ 2[t]
e , σ 2[t]

g

)

= −n − 1

2σ 2
g

+ 1

2
(

σ 2
g

)2

[

α̃[t]′D−α̃[t] + tr
(

D−Ṽ [t]
α

)]

.

Setting these two equations equal to zero leads to the EM iterative system: 

.σ 2[t+1]
g =

α̃[t]′D−α̃[t] + tr
(

D−Ṽ
[t]
α

)

n − 1
, . (3.140a) 

σ 2[t+1] 
e =

(

y − Uα̃[t]
)′ (

y − Uα̃[t]
)+ tr

(

Ṽ [t] α

)

n 
. (3.140b) 

This system is computationally easy to implement because all operations involve 
diagonal matrices. Specifically, 

. ̃α[t]′D−α̃[t] = k2[t]
n
∑

i=1

ỹ2
i

λi
(

λik[t] + 1
)2 ,

tr
(

D−Ṽ [t]
α

)

= σ 2[t]
g

n
∑

i=1

1

λik[t] + 1
I (λi �= 0) ,

(

y − Uα̃[t]
)′ (

y − Uα̃[t]
)

=
n
∑

i=1

y2
i − 2

n
∑

i=1

α̃
[t]
i ỹi +

n
∑

i=1

α̃
2[t]
i ,

tr
(

Ṽ [t]
α

)

= σ 2[t]
g

n
∑

i=1

λi

λik[t] + 1
,

where .α̃[t]
i is computed using (3.135a). The iterative system consists of cycling 

through the loop: 

1. Compute expectations (3.135). 
2. Compute (3.140) and return to 1.
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Note 

The step from (3.138) to (3.139) requires knowledge of expectations of quadratic 
forms. The standard result is that if the vector x has mean . μ and variance V , then 

. E
(

x′Ax
) = μ′Aμ + tr (AV ) . (3.141) 

We need 

. E
[

(y − Uα)′ (y − Uα) |y, σ 2[t]
e , σ 2[t]

g

]

.

Now, 

. E
(

(y − Uα) |y, σ 2[t]
e , σ 2[t]

g

)

= y − Uα̃

and 

. Var
(

(y − Uα) |y, σ 2[t]
e , σ 2[t]

g

)

= UṼ [t]
α U ′.

Then using (3.141) results in 

. E
[

(y − Uα)′ (y − Uα) |y, σ 2[t]
e , σ 2[t]

g

]

=
(

y − Uα̃[t]
)′ (

y − Uα̃[t]
)

+ tr
(

Ṽ [t]
α

)

,

where, for the second term in the right-hand side, I used 

. tr
(

UṼ [t]
α U ′) = tr

(

U ′UṼ [t]
α

)

= tr
(

Ṽ [t]
α

)

.

Finally, direct application of (3.141) gives  

. E
[(

α′D−α
) |y, σ 2[t]

e , σ 2[t]
g

]

= α̃[t]′D−α̃[t] + tr
(

D−Ṽ [t]
α

)

.

Example: Likelihood Inferences with Truncated Data and Using 
the Method of Moments 

The likelihood function for truncated data was introduced in the previous chapter 
on page 71. Here, I indicate how to derive ML estimates of parameters using the 
EM algorithm. The example concludes with a short outline of estimation using the 
method of moments. 

The focus of inference is the parameters of the original, untruncated distribution, 
assumed in this example to be the Gaussian distribution .N

(

μ, σ 2
)

. The information 
available is as follows: from the original sample of size N (drawn randomly from
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.N
(

μ, σ 2
)

), m observations were discarded because they were smaller than an 
observed threshold C. The observed data consist of n records larger than the 
threshold C. The complete data z consist of .N = m + n records, . z = (y∗, y)

where . y∗ are the m unobserved missing records and y are the n observed records. 
Let .θ = (

μ, σ 2
)

. The complete data loglikelihood excluding an additive constant 
is 

. ln p
(

y∗, y|θ) = −1

2
(m + n) ln

(

σ 2
)

−
∑m

i=1

(

y∗
i − μ

)2

2σ 2
−
∑n

i=1 (yi − μ)2

2σ 2
.

(3.142) 

The E. −step consists of computing expectations of this complete data loglikelihood, 
conditional on the current value of . θ , .θ [t] (remembering that the random variable is 
the unobserved missing data): 

. Q
(

θ |θ [t]
)

= −1

2
(m + n) ln

(

σ 2
)

−
∑m

i=1 E
[(

y∗
i − μ

)2 |θ [t]
]

2σ 2 −
∑n

i=1 (yi − μ)2

2σ 2 .

(3.143) 

The M. −step needs .∂Q
(

θ |θ [t]
)/

∂μ and .∂Q
(

θ |θ [t]
)/

∂σ 2. A little algebra shows 
that 

. 
∂Q

(

θ |θ [t]
)

∂μ
= 1

σ 2

[

m E
(

y∗
i |θ [t]

)

− mμ +
n
∑

i=1

(yi − μ)

]

,

. 
∂Q

(

θ |θ [t]
)

∂σ 2
= 1

2

(

σ 2
)−2

[
m
∑

i=1

E
[(

y∗
i − μ

)2 |θ [t]
]

+
n
∑

i=1

(yi − μ)2 − (m + n)

]

.

This leads to the iterative system: 

.μ[t+1] = m E
(

y∗
i |θ [t]

)+∑n
i=1 yi

m + n
, . (3.144a) 

σ 2[t+1] =
∑m 

i=1 E
[(

y∗
i − μ[t+1]

)2 |θ [t]
]

+∑n 
i=1

(

yi − μ[t+1]
)2 

m + n 
.(3.144b) 

Using results from the conditional expectations of truncated normal variables 
spelled out on page 407, one finds 

. E
(

y∗
i |θ [t]

)

= μ[t] − σ [t] φ
(

c[t]
)

�
(

c[t]
) ,

E
[(

y∗
i − μ

)2 |θ [t]
]

= mσ 2[t]

(

1 − c[t] φ
(

c[t]
)

�
(

c[t]
)

)

,
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where .φ (·) is the pdf of .N (0, 1) and .c = (C − μ)
/

σ . The two expressions above 
replace the expectations in (3.144). 

The R-code below illustrates details of the EM computations. The first part 
generates .N = 50, 000 records from .N(10, 3) (the complete data), and those larger 
than .C = μ+1.5σ are kept, and the remaining are discarded. Using these truncated 
records, one has to draw inferences about the parameters of the original distribution, 
.μ = 10 and .σ 2 = 3. 

# CODE0307 
# EM FOR TRUNCATED DATA; ESTIMATE MEAN OF UNTRUNCATED 
# GENERATE Y ~ N(MEAN,VAR) 
# TRUNCATE AT T SO THAT Z = Y > T ARE OBSERVED 
# Y < T ARE MISSING (KNOWN INFORMATION) 
rm(list=ls()) # CLEAR WORKSPACE 
set.seed(12371) 
nindiv<-50000 
mean <- 10 
var <- 3 
T <- mean + 1.5*sqrt(var) 
# CREATE DATA 
y <- rnorm(nindiv,mean,sqrt(var)) 
z <- y[y>T] 
length(z) 

## [1] 3462 

m <- length(y)-length(z) 
mean(y) 

## [1] 10.00188 

mean(z) 

## [1] 13.37054 

var(z) 

## [1] 0.4728943 

# START VALUES FOR MEAN (mu) AND VARIANCE (sigmasq) 
mu <- 0 
sigmasq <- 2 
sigma <- sqrt(sigmasq) 
iter <- 1000 
res <- matrix(data=NA, nrow=iter,ncol=2)
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### EM LOOP ########################## 
for (i in 1:iter){ 

T_star <- (T-mu)/sigma 
expymiss <- mu - (sigma * dnorm(T_star))/(pnorm((T_star))) 
mu <- (sum(z)+m*expymiss)/length(y) 
e <- z-mu 
sigmasq <-(m*sigmasq*(1-T_star*dnorm(T_star)/pnorm(T_star))+ 

sum(e*e))/length(y) 
sigma <- sqrt(sigmasq) 
res[i,] <- c(mu,sigmasq) 

} 
tail(res) 

## [,1] [,2] 
## [995,] 9.998747 3.077332 
## [996,] 9.998747 3.077332 
## [997,] 9.998747 3.077332 
## [998,] 9.998747 3.077332 
## [999,] 9.998747 3.077332 
## [1000,] 9.998747 3.077332 

emmu <- res[iter,1] 
emmu 

## [1] 9.998747 

emsigmasq <- res[iter,2] 
emsigmasq 

## [1] 3.077332 

emsel <- mu + sigma*dnorm(T_star)/(1-pnorm(T_star)) 
emsel 

## [1] 13.37243 

i <- dnorm(T_star)/(1-pnorm(T_star)) 
varsel <- sigmasq*(1-i*(i-T_star)) 
varsel 

## [1] 0.4649044 

The ML estimates are .μ̂ = 9.999 and .σ̂ 2 = 3.077, in good agreement with the 
parameters of the unselected population (10 and 3).
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Ignoring the selection process and basing inferences on the likelihood of . Yi ∼
N
(

μ, σ 2
)

, i = 1, . . . , n, one obtains 

.μ̂ = 1

n

n
∑

i=1

yi = 13.4, . (3.145a) 

σ̂ 2 = 
1 

n 

n
∑

i=1

(

yi − μ̂
)2 = 0.47, (3.145b) 

quite off the mark from the unselected population parameters. Notwithstanding, 
in this simple setting (no systematic effects other than a common mean, absence 
of clustering and variance heterogeneity), (3.145) are consistent estimators of the 
parameters of the selected population, of which the present data are a random draw. 
As indicated on page 407, 

. E (y|y > C) = μ + σ
φ (c)

1 − �(c)
,

Var (y|y > C) = σ 2
[

1 − φ (c)

1 − �(c)

(
φ (c)

1 − �(c)
− c

)]

.

Likelihood properties sketched in the previous chapter indicate that MLE of these 
parameters are 

. ̂E (y|y > C) = μ̂ + σ̂
φ (̂c)

1 − � (̂c)
,

V̂ar (y|y > C) = σ̂ 2
[

1 − φ (̂c)

1 − � (̂c)

(
φ (̂c)

1 − � (̂c)
− ĉ

)]

.

Substituting in these expressions the converged values .μ̂ = 10.000 and . ̂σ 2 = 3.077
yields the ML estimates 

. ̂E (y|y > C) = 13.37,

V̂ar (y|y > C) = 0.46,

in good agreement with (3.145). 

Estimation Using the Method of Moments 

There is a simple alternative to the EM algorithm using the method of moments 
and properties of the normal distribution. A known truncation point . C = 12.59808
leads to a “proportion selected” P=length(y[y>C])/50,000=0.06924 (see 
R-code CODE0307 that uses T for the known truncation point). Then the “. z−value”
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corresponding to P is qnorm(1-P)=1.481475; the pdf of the standard normal 
at this . z−value is .φ (z) =dnorm(z)=0.1331442 and the “intensity of selection” 
is (the difference between the mean of the truncated group and the mean of the 
original population, measured in units of standard deviation) . i =dnorm(z)/P = 
1.922937. 

The method of moments consists of equating sample moments with population 
moments. The moment estimators of . μ and . σ 2 are obtained by solving the two linear 
equations (the right-hand sides represent the mean and variance of truncated normal 
variables derived on page 407): 

. 
1

n

n
∑

i=1

yi = μ + iσ,

1

n

n
∑

i=1

(yi − y)2 = σ 2 (1 − i (i − z)) .

This yields .μ̂ ≈ 9.97 and .σ̂ 2 ≈ 3.13.



Chapter 4 
Bayesian Methods 

In classical likelihood, an important goal is to learn about a parameter . θ regarded 
as a fixed unknown quantity. This is accomplished by collecting data y assumed 
to be a realisation from a probability model .p(y|θ) indexed by . θ . This probability 
model gives rise to the likelihood, a function of . θ conditional on the realised y, 
from which the maximum likelihood estimate . θ̂ is obtained. The ML estimator is a 
random variable (a function of y), whose distribution is characterised by conceptual 
replications of y. This distribution describes the (sampling) uncertainty of . θ̂ and is 
typically unknown. It can be approximated using resampling techniques or one can 
appeal to asymptotic results so, informally, 

.̂θ ∼ N
(

θ, I (θ)−1
)

, (4.1) 

as explained before. Probability statements involving . θ̂ (such as confidence intervals 
for . θ ) can be retrieved from this sampling distribution. 

The Bayesian approach is radically different. First of all, the concept of 
probability is linked to a person’s degree of belief. The goal is again to learn 
about . θ , but Bayesians regard . θ as a random variable, in the sense that there is 
uncertainty about the range of values it may take. This uncertainty is characterised 
by the probability distribution of . θ . Before data are available and based on 
previous knowledge, mechanistic considerations or mathematical convenience, a 
prior probability distribution is elicited. The prior probability distribution has 
density .p(θ). During the learning process, data are collected; these data are regarded 
as a realisation from a probability model .p(y|θ), with . θ random and unknown and 
y fixed and observed. This is often labelled as the likelihood. The final stage of 
the learning process consists of constructing the posterior probability distribution 
of . θ , given data y, with density .p(θ |y), using  .p(θ) and .p(y|θ). This posterior 
probability distribution of . θ is a description of the new (posterior) uncertainty about 
. θ in the light of y. It mirrors how prior beliefs have been modified after observing the 
evidence: data y. During this process, the data have remained fixed and the inference 
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is conditional on the particular realisation of these data. Specifically, Bayes theorem 
takes the form 

.p (θ |y) = p (y|θ) p (θ)

p (y)
∝ p (y|θ) p (θ) (4.2) 

The contentious part of the Bayesian approach is the elicitation of the prior
probability .p(θ) and how it may affect the conclusions of the analysis. 

This chapter provides an introduction to Bayesian analysis mostly through 
examples. The objective of the first examples is to show the type of inferences 
that can be drawn (joint inferences, conditional inferences, marginal inferences) 
when the posterior distribution is known. In this case, inferences can be exact 
using analytical methods or can be estimated using Monte Carlo draws from the 
appropriate distribution. The Gaussian distribution .N(μ, σ 2) is chosen as a classical 
example where all the necessary distributions can be obtained in closed form. 

The normal linear model is heavily used for the analysis of continuous data. 
The chapter includes an example where the conditional distribution of location 
parameters is derived, given dispersion parameters. The fully conditional poste-
rior distributions of location parameters are also derived; these are an essential 
ingredient for a Gibbs sampling implementation. A further example based on a 
classical regression model shows how the variance component can be inferred from 
its marginal posterior distribution. The modal value coincides with the restricted 
maximum likelihood estimator and the marginal posterior distribution has the form 
of a restricted likelihood. 

The concept of Bayesian learning is the subject of two examples taken from 
Sorensen and Gianola (2002). This is a process by which prior information (with 
uncertainty described by the prior distribution) is modified by new data (generated 
with uncertainty under a sampling model), to become a posterior distribution, 
reflecting posterior uncertainty. If data accrue sequentially, at a particular stage i 
of the learning process, this posterior distribution acts as prior for stage .i + 1. 
A single Bayesian analysis carried out at the end leads to the same inferences as 
one carried out sequentially. The two examples illustrate this probability-driven 
inductive process for discrete and for continuous data. 

Most often the exact form of the posterior distribution is not known or only 
known up to proportionality. A large number of options are available to arrive 
at approximate results. After a very brief account of Bayesian asymptotics, the 
chapter focuses on Markov chain Monte Carlo (McMC) methods. These are 
recipes that make use of Markov chain theory to generate approximate draws from 
posterior distributions. Using these draws, one can obtain Monte Carlo estimates 
of expectations to construct summaries of the posterior distribution such as the 
posterior mean, variance and posterior intervals, or one can compute a posterior 
mode. Joint and single site updating of parameters using Metropolis-Hastings are 
explained and illustrated in the simple setting of the .N(μ, σ 2) model. The same 
model is used to introduce the Gibbs sampler. The chapter concludes with an
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overview of tools needed for the analysis of the output from a Markov chain Monte 
Carlo. 

An appendix provides the mathematical details of the McMC machinery. 

4.1 Example: Estimating the Mean and Variance of a 
Normal Distribution 

Consider the scalar random variable y that is normally distributed with probability 
density function: 

. p
(

yi |μ, σ 2
)

=
(

2πσ 2
)− 1

2
exp

(

− (yi − μ)2

2σ 2

)

,

σ 2 > 0, −∞ < μ < ∞, −∞ < yi < ∞.

The central limit theorem provides a justification for the wide use of the normal 
distribution. It states that under very general conditions, the sum or the mean of 
a set of random variables is approximately normally distributed. Data that can 
be approximated using a continuous function and that result from the sum of the 
additive effects of a large number of factors fall into this category. The distribution 
has two parameters, the mean . μ and the variance . σ 2, and is denoted by .N

(

μ, σ 2
)

. 
This example illustrates the type of posterior inferences that can be drawn when 

the forms of the posterior distributions are known. 

Posterior Distribution of . μ and . σ 2

Consider now data vector .y = {yi}ni=1. Direct application of Bayes theorem leads 
to the posterior density of . μ and . σ 2: 

.p
(

μ, σ 2|y
)

∝ p
(

μ, σ 2
)

p
(

y|μ, σ 2
)

. (4.3) 

The second term in (4.3), the contribution from the n data points or likelihood, is 

. p
(

y|μ, σ 2
)

=
(

2πσ 2
)− n

2
exp

(

−
∑n

i=1 (yi − μ)2

2σ 2

)

=
(

2πσ 2
)− n

2
exp

(

− 1

2σ 2

[

n
∑

i=1

(yi − y)2 + n (y − μ)2

])

=
(

2πσ 2
)− n

2
exp

(

− 1

2σ 2

[

(n − 1) S2 + n (y − μ)2
]

)

, (4.4)
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where 

. S2 =
∑n

i=1 (yi − y)2

n − 1
,

y =
∑n

i=1 yi

n
,

are the sample variance and mean, respectively. 
The term .p

(

μ, σ 2
) = p

(

μ|σ 2
)

p
(

σ 2
)

is the joint prior density. The choice for 
the form of this density is dictated by prior knowledge, by the nature of the scientific 
problem and/or by mathematical/computational convenience. The latter is less of an 
issue if the model is fit with Markov chain Monte Carlo (McMC) methods. For 
the time being, I settle for mathematical convenience and choose a set of conjugate 
priors. As in Gelman et al (1995), one possibility is to assume prior distributions: 

.

[

μ|σ 2
]

∼ N
(

μ0, σ
2/n0

)

, . (4.5a)

[

σ 2
]

∼ χ−2
(

v0, S
2 
0

)

. (4.5b) 

The form of (4.5a) indicates an a priori dependence between . μ and . σ 2. The  
parameter . n0 can be regarded as prior sample size. The density is 

.p
(

μ|σ 2
)

=
(

2π
σ 2

n0

)− 1
2

exp

(

−1

2

n0 (μ − μ0)
2

σ 2

)

. (4.6) 

The prior (4.5b) is a scaled inverted chi-square distribution with scale . S2
0 and degrees 

of freedom . v0. The density is 

. p
(

σ 2
)

=
(

v0S
2
0

2

)
v0
2 (

�
(v0

2

))−1 (

σ 2
)−

(

v0
2 +1

)

exp

(

−v0S
2
0

2σ 2

)

, v0, S0 > 0.

(4.7) 

The term . S2
0 can be regarded as a prior variance component, so that .v0S2

0 is a prior 
sum of average squared deviations. The density of the joint prior distribution is 

. p
(

μ, σ 2
)

∝
(

σ 2
)− 1

2
(

σ 2
)−

(

v0
2 +1

)

exp

(

− 1

2σ 2

[

v0S
2
0 + n0 (μ − μ0)

2
]

)

,

(4.8)

proportional to a normal-inverse-chi-square density. As shown below, the assign-
ment of a normal-inverse-chi-square prior distribution combined with a normal
likelihood results in a normal-inverse-chi-square posterior. The property that the
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posterior distribution follows the same parametric form as the prior distribution is 
called conjugacy. 

The joint posterior distribution is obtained replacing (4.4) and (4.8) in (4.3). This 
gives 

. p
(

μ, σ 2|y
)

∝
(

σ 2
)− n

2
exp

(

− 1

2σ 2

[

(n − 1) S2 + n (y − μ)2
]

)

×

×
(

σ 2
)− 1

2
(

σ 2
)−

(

v0
2 +1

)

exp

(

− 1

2σ 2

[

v0S
2
0 + n0 (μ − μ0)

2
]

)

=
(

σ 2
)−

(

n+v0+3
2

)

exp

(

− 1

2σ 2

[

v0S
2
0 + n0 (μ− μ0)

2 + (n− 1) S2 + n (y − μ)2
]

)

.

(4.9) 

This expression is proportional to a normal-inverse-chi-square density confirming
the conjugacy of the prior distribution.

Conditional Posterior Distribution of . μ Given . σ 2

The joint posterior distribution .
[

μ, σ 2|y] can be factorised as follows: 

. p
(

μ, σ 2|y
)

= p
(

μ|σ 2, y
)

p
(

σ 2|y
)

.

The densities of these two components are derived in turn. The distribution 
.
[

μ|y, σ 2
]

can be obtained either by extracting from (4.9) those terms that are 
function of . μ or by direct use of (4.2): 

.p
(

μ|σ 2, y
)

∝ p
(

μ|σ 2
)

p
(

y|μ, σ 2
)

, (4.10) 

where .p
(

μ|σ 2
)

is the prior density of the conditional distribution .
[

μ|σ 2
]

. In both 
cases, this leads to (including terms in . μ only) 

. p
(

μ|σ 2, y
)

∝ exp

(

− 1

2σ 2

[

n0 (μ − μ0)
2 + n (y − μ)2

]

)

.

There is an identity for combining quadratic forms (Box and Tiao 1973, page 74 
and page 418) stating that 

. A (z − a)2 + B (z − b)2 = (A + B) (z − c)2 + AB

A + B
(a − b)2 ,

c = 1

A + B
(Aa + Bb) . (4.11)
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With 

. A = n0,

B = n,

z = μ,

a = μ0,

b = y,

c =
(

n0μ0 + ny

n0 + n

)

,

then 

. exp

(

− 1

2σ 2

[

n0 (μ − μ0)
2 + n (y − μ)2

]

)

=

= exp

(

− 1

2σ 2

[

(n0 + n)

(

μ − n0μ0 + ny

n0 + n

)2

+ n0n

n0 + n
(y − μ0)

2

])

∝ exp

(

−n0 + n

2σ 2

[

(

μ − n0μ0 + ny

n0 + n

)2
])

, (4.12) 

where the third line includes the only terms that are function of . μ. This is the kernel 
of the normal distribution: 

.

[

μ|σ 2, y
]

∼ N
(

μ1, σ
2
1

)

. (4.13) 

where

.E
(

μ|σ 2, y
)

= μ1 = n0μ0 + ny

n0 + n
(4.14) 

is the posterior mean and

.Var
(

μ|σ 2, y
)

= σ 2
1 = σ 2

n0 + n
(4.15) 

is the posterior variance. Dividing numerator and denominator of (4.14) by  . σ 2, 
defining .π0 = n0/σ

2 as the prior precision, .πn = n/σ 2 as the precision arising 
from the data, then (4.14 ) can also be written in the form of the shrunk estimator: 

.μ1 = y − (y − μ0)
π0

π0 + πn

. (4.16)
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Expressions (4.14) and (4.16) express the posterior mean as a compromise between 
the prior mean . μ0 and the mean of the data . y. 

Marginal Posterior Distribution of . σ 2

There are two ways to obtain .p
(

σ 2|y). The  first is to compute the integral 

. p
(

σ 2|y
)

=
∫

p
(

μ, σ 2|y
)

dμ

where .p
(

μ, σ 2|y) is given up to proportionality in (4.9). Then 

. p
(

σ 2|y
)

∝
∫

(

σ 2
)−

(

n+v0+3
2

)

exp

(

− 1

2σ 2

[

v0S
2
0 + (n − 1) S2 + n0 (μ − μ0)

2 + n (y − μ)2
])

dμ =

=
(

σ 2
)−

(

n+v0+3
2

)

exp

(

− 1

2σ 2

[

v0S
2
0 + (n − 1) S2

]

)

∫

exp

(

− 1

2σ 2

[

n0 (μ − μ0)
2 + n (y − μ)2

]

)

dμ =
(

σ 2
)−

(

n+v0+3
2

)

exp

(

− 1

2σ 2

[

v0S
2
0 + (n − 1) S2 + n0n

n0 + n
(y − μ0)

2
])

∫

exp

(

−n0 + n

2σ 2

[

(

μ − n0μ0 + ny

n0 + n

)2
])

dμ. (4.17) 

The results in the last two lines are derived using equality (4.12), and the 
expression in the last line has a simple solution since it involves integration over 
a normal distribution. In general, 

. 

∫

exp

(

− (μ − μ1)
2

2σ 2
1

)

dμ =
(

2πσ 2
1

) 1
2 ∝

(

σ 2
) 1

2
.

Substituting in (4.17), 

. p
(

σ 2|y
)

∝
(

σ 2
)−

(

n+v0
2 +1

)

exp

⎛

⎝−
[

v0S
2
0 + (n − 1) S2 + n0n

n0+n
(y − μ0)

2
]

2σ 2

⎞

⎠

=
(

σ 2
)−

(

ṽ
2+1

)

exp

(

− ṽS̃2

2σ 2

)

, (4.18)
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where 

. ˜S2 = v0S
2
0 + (n − 1) S2 + n0n

n0+n
(y − μ0)

2

ṽ
,

ṽ = n + v0.

This is proportional to the pdf of a scaled inverted chi-square distribution, with . ̃v
degrees of freedom and scale parameter . S̃2. This is symbolised as 

.

[

σ 2|y
]

∼ χ−2
(

ṽ, S̃2
)

. (4.19) 

For example, to draw samples from (4.19), first draw from a chi-square distribution 
with . ̃v degrees of freedom, invert this number and multiply by 

.̃vS̃2 = v0S
2
0 + (n − 1) S2 + n0n

n0 + n
(y − μ0)

2 . (4.20) 

A second way of arriving at .p
(

σ 2|y) is to use the identity 

.p
(

σ 2|y
)

= p
(

μ, σ 2|y)

p
(

μ|σ 2, y
) . (4.21) 

Using (4.9) 

. p
(

μ, σ 2|y
)

∝
(

σ 2
)−

(

n+v0+3
2

)

exp

(

− 1

2σ 2

[

v0S
2
0 + (n − 1) S2 + n0 (μ − μ0)

2 + n (y − μ)2
])

=

=
(

σ 2
)−

(

n+v0+3
2

)

exp

(

− 1

2σ 2

[

v0S
2
0 + (n − 1) S2 + (n0 + n) (μ − μ1)

2 + n0n

n0 + n
(y − μ0)

2
])

(4.22) 

and

. p
(

μ|σ 2, y
)

∝
(

σ 2
)− 1

2
exp

(

−n0 + n

2σ 2

[

(μ − μ1)
2
]

)

.

Substituting in (4.21) yields (4.19). 

Marginal Posterior Distribution of . μ

The distribution .[μ|y] is easily obtained regarding the t-distribution as a mixture 
of normal distributions with a common mean and variances distributed as scaled
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inverse chi-square random variables. For example, if .[yi |Vi] ∼ N (μ, Vi) and . Vi ∼
χ−2

(

v, σ 2
)

, then .yi ∼ t
(

v, μ, σ 2
)

, a  t-distribution with v degrees of freedom, 
mean . μ and scale . σ 2. 

In the present case, 

.

[

μ|σ 2, y
]

∼ N

(

μ1,
σ 2

n0 + n

)

(4.23) 

and

.

[

σ 2|y
]

∼ χ−2
(

ṽ,˜S2
)

. (4.24) 

Therefore,

.p (μ|y) =
∫

p
(

μ|σ 2, y
)

p
(

σ 2|y
)

dσ 2 ∼ t

(

ṽ, μ1,
˜S2

n0 + n

)

, (4.25) 

a t-distribution with . ̃v degrees of freedom, mean . μ1 and scale .S̃2/(n0 + n). The  
density is 

. p (μ|y) =
�
(

ṽ+1
2

)

�
(

ṽ
2

)√
πṽ

(

S̃2

n0 + n

)− 1
2 (

1 + n0 + n

ṽS̃2
(μ − μ1)

2
)−

(

ṽ+1
2

)

.

(4.26) 

The mean and mode are given by

. E (μ|y) = μ1,

and the variance is 

. Var (μ|y) =
(

S̃2

n0 + n

)

(

ṽ

ṽ − 2

)

, ṽ > 2.

The proof of this result is as follows. Using (4.22) and (4.20), the joint posterior 
of . μ and . σ 2 is 

.p
(

μ, σ 2|y
)

=

= K
(

σ 2
)−

(

n+v0+3
2

)

exp

(

− 1

2σ 2

[

v0S
2
0 + (n − 1) S2 + (n0 + n) (μ − μ1)

2 + n0n

n0 + n
(y − μ0)

2
])
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= K
(

σ 2
)−

(

ṽ+1 
2 +1

)

exp

(

− 
1 

2σ 2

[

ṽ˜S2 + (n0 + n) (μ − μ1)
2
]

)

= K
(

σ 2
)−α−1 

exp

(

− 
1 

2σ 2

[

ṽ˜S2 + (n0 + n) (μ − μ1)
2
]

)

where K is the constant of integration and .α = ṽ+1
2 . Then 

. p (μ|y) =
∫ ∞

0
K
(

σ 2
)−α−1

exp

(

− 1

2σ 2

[

ṽ˜S2 + (n0 + n) (μ − μ1)
2
]

)

dσ 2.

(4.27) 

Let

. A = ṽ˜S2 + (n0 + n) (μ − μ1)
2 ,

x = A

2σ 2 ,

dσ 2 = −A

2
x−2dx

Therefore, (4.27) can be written as 

. p (μ|y) = −
(

A

2

)∫ ∞

0
K

(

A

2x

)−α−1

exp (−x) x−2dx

= −
(

A

2

)(

A

2

)−α−1 ∫ ∞

0
Kxα−1 exp (−x) dx

∝ A−α

∫ ∞

0
xα−1 exp (−x) dx

∝ A−α,

where the last line results from the fact that the integral, known as the Gamma 
function, is 

. 

∫ ∞

0
xα−1 exp (−x) dx = � (α) , α > 0,

a constant with respect to . μ. Then 

.p (μ|y) ∝
(

ṽ˜S2 + (n0 + n) (μ − μ1)
2
)−

(

ṽ+1
2

)



4.2 Posterior Predictive Distribution for a New Observation 151

∝
(

1 + 
(n0 + n) (μ − μ1)

2

ṽ˜S2

)−
(

ṽ+1 
2

)

, 

which is the kernel of (4.26). 

4.2 Posterior Predictive Distribution for a New Observation 

Anticipating a topic that will be discussed later in the book, I outline the derivation 
of the posterior predictive distribution for a new to-be-observed observation . ỹi . A  
natural application of this distribution is in Bayesian prediction problems, discussed 
in Chapter 10. In the context of the above Gaussian setup, . ỹi , given  . μ and . σ 2, 
is  assumed to be a draw  from  .N(μ, σ 2). The density of the posterior predictive 
distribution of . ỹi is 

. p (ỹ|y) =
∫∫

p
(

ỹ|μ, σ 2, y
)

p
(

μ, σ 2|y
)

dμdσ 2

=
∫∫

p
(

ỹ|μ, σ 2
)

p
(

μ|σ 2, y
)

p
(

σ 2|y
)

dμdσ 2. (4.28) 

The first term in the integrand of the second line follows from the fact that, given 
.
(

μ, σ 2
)

, . ̃y is independent of y. 
A first integration with respect to . μ results in 

.p
(

ỹ|σ 2, y
)

=
∫

p
(

ỹ|μ, σ 2
)

p
(

μ|σ 2, y
)

dμ. (4.29) 

Before deriving the density of .
[

ỹ|σ 2, y
]

, one can easily derive the conditional mean 
and variance. First note that a future observation and a data point have the same 
sampling distribution. That is, 

. ̃y|μ, σ 2 ∼ N
(

μ, σ 2
)

.

Then the desired mean and variance are 

. E
[

ỹ|σ 2, y
]

= Eμ|σ 2,y

[

E
(

ỹ|μ, σ 2
)]

= Eμ|σ 2,y (μ)

= n0μ0 + ny

n0 + n
= μ1 (4.30)
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using (4.14) and 

. Var
(

ỹ|σ 2, y
)

= Varμ|σ 2,y

[

E
(

ỹ|μ, σ 2
)]

+ Eμ|σ 2,y

[

Var
(

ỹ|μ, σ 2
)]

= Varμ|σ 2,y (μ) + σ 2

= σ 2

n0 + n
+ σ 2 = σ 2

2 (4.31) 

using (4.15). There are two sources of uncertainty in the posterior predictive 
distribution. The term . σ 2 is the variance of the sampling model. The second 
represents uncertainty about . μ as a result of the finiteness of the sample y. This  
term vanishes with large n but the first source of predictive uncertainty remains. 

The form of the distribution .
[

ỹ|σ 2, y
]

is readily obtained noting that the 
integrand in (4.29) involves two Gaussian distributions. That is, 

. p
(

ỹ|σ 2, y
)

=
∫

N
(

μ, σ 2
)

N
(

μ1, σ
2
1

)

dμ

Using the identity (4.11), it follows that 

.̃y|σ 2, y ∼ N
(

μ1, σ
2
2

)

. (4.32) 

To arrive at the desired result, we need a second integration: 

. p (ỹ|y) =
∫

p
(

ỹ|σ 2, y
)

p
(

σ 2|y
)

dσ 2.

Using (4.24) and (4.32), this involves 

. p (ỹ|y) =
∫

N
(

μ1, σ
2
2

)

χ−2
(

ṽ,˜S2
)

dσ 2,

the integration of a normal distribution and a scaled inverse chi-square distribution. 
It follows from the result spelled out in (4.23) that .

[

ỹ|y] has the density of a t-
distribution with . ̃v degrees of freedom, mean . μ1 and scale .˜S2

(

1 + 1
n0+n

)

. That 

is, 

.̃y|y ∼ t

(

ṽ, μ1,˜S
2
(

1 + 1

n0 + n

))

. (4.33)
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4.3 Example: Monte Carlo Inferences of the Joint Posterior 
Distribution of Mean and Variance 

In the previous example, the forms of the joint posterior distribution .
[

μ, σ 2|y] and 
the marginal posterior distributions of .[μ|y] and .

[

σ 2|y] are known. Therefore, infer-
ences can be obtained directly using these distributions. These “exact” inferences 
are compared with those based on Monte Carlo draws from the posterior distribution 
.
[

μ, σ 2|y]. 
A simple way of drawing samples from .

[

μ, σ 2|y] is based on the method of 
composition (Tanner 1996): 

1. First draw .σ 2∗
i from .

[

σ 2|y]. 
2. Then draw . μ∗

i from .
[

μ|σ 2∗
i , y

]

. 
Repeating this loop n times generates .

(

μ∗
1, σ

2∗
1

)

, . . . ,
(

μ∗
n, σ

2∗
n

)

which are n 
realisations from .

[

μ, σ 2|y]. Further, .(μ∗
1

)

, . . . ,
(

μ∗
n

)

and .
(

σ 2∗
1

)

, . . . ,
(

σ 2∗
n

)

are n 
realisations from the marginal distributions .[μ|y] and .

[

σ 2|y], respectively. There 
are no issues of convergence with the method of composition. The first extraction 
.
(

μ∗
1, σ

2∗
1

)

is a draw from .
[

μ, σ 2|y]. 

The following data y mimic .n = 9 bristle number measurements of male 
Drosophila flies which are assumed to be a realisation from .N

(

μ, σ 2
)

. 

. y = (35.14, 37.01, 30.97, 34.42, 38.22, 34.04, 30.79, 42.31, 33.78)′

The sample mean and variance are .y = 35.19 and .S2 = 13.03. As a first 
approximation, one may wish to compute a .95% confidence interval for . μ based 
on .
[

μ|σ 2, y
]

. From previous knowledge about the trait you are willing to assign, a 
value to .μ0 = 34 and you choose .n0 = 1. Using  .σ 2 = S2 = 13.03, from (4.14) 
and (4.15), 

. μ1 = n0μ0 + ny

n0 + n
= 1 × 34 + 9 ∗ 35.19

1 + 9
= 35.07,

σ 2
1 = σ 2

n0 + n
= 13.03

10
= 1.303.

Then 

. 

[

μ|σ 2 = 13.03, y
]

∼ N (35.07, 1.303) .

A .95% quantile-based confidence interval for . μ based on this conditional posterior 
distribution (given . σ 2) gives .(32.88; 37.31). This is obtained using the R-code
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ci <- qnorm(c(0.0275,0.975),35.07,sqrt(1.303)) 

that yields (32.88, 37.31). This interval ignores the uncertainty about . σ 2 since it 
assumes .σ 2 = S2, exactly. 

To account properly for uncertainty, the method of composition is implemented 
drawing samples from .

[

μ, σ 2|y]. This requires to specify (4.23) and (4.24). Based 
on previous knowledge of the trait, one may assign .S2

0 = 11.22 and the parameters 
of (4.23) and (4.24) are  

. μ1 = 35.07,

σ 2

n0 + n
= σ 2

1 + 9
,

ṽ = v0 + n = 1 + 9 = 10,

˜S2 = v0S
2
0 + (n − 1) S2 + n0n

n0+n
(y − μ0)

2

ṽ
=

= 1 × 11.22 + (9 − 1) 13.03 + 1×9
1+9 (35.19 − 34)2

10
= 11.67

With these values, one can repeatedly draw 

1. .σ 2∗
i from . χ−2 (10, 11.67)

2. . μ∗
i from . N

(

35.07,
σ 2∗

i

1+9

)

The R-code to perform these calculations is 

set.seed(377) 
s <-(11.67*10)/rchisq(10000,10) 
m <- rnorm(10000,35.07,sqrt(s/10)) 
quantile(m,c(0.025,0.975)) 

## 2.5% 97.5% 
## 32.64573 37.45952 

quantile(s,c(0.05,0.95)) 

## 5% 95% 
## 6.403362 29.220816 

The .95% quantile-based confidence interval for . μ is now a little broader than 
before because the joint inference accounts for uncertainty about . σ 2.
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4.4 Approximating a Marginal Distribution 

The conditional posterior distribution .
[

μ|σ 2 = 13.03, y
]

can be regarded as an 
approximation to 

. p (μ|y) =
∫

p
(

μ|σ 2, y
)

p
(

σ 2|y
)

dσ 2.

The explanation lies in the following result. Assume a model that has two parame-
ters, . θ1 and . θ2. Then 

.p (θ1|y) =
∫

p (θ1|θ2, y) p (θ2|y) dθ2. (4.34) 

Define . θ̂2 as the mode of .[θ2|y] and expand .p (θ1|θ2, y) in a Taylor series about . ̂θ2: 

. p (θ1|θ2, y) ≈ p
(

θ1|̂θ2, y
)+ (

θ2 −̂θ2
) ∂p (θ1|θ2, y)

∂θ2

∣

∣

∣

∣

θ2=̂θ2
.

Let 

. f
(

̂θ2
) = ∂p (θ1|θ2, y)

∂θ2

∣

∣

∣

∣

θ2=̂θ2

and substitute in (4.34) 

. p (θ1|y) ≈
∫

[

p
(

θ1|̂θ2, y
)+ (

θ2 −̂θ2
)

f
(

̂θ2
)]

p (θ2|y) dθ2

= p
(

θ1|θ̂2, y
)

∫

p (θ2|y) dθ2 + f
(

θ̂2

)

∫

θ2 p (θ2|y) dθ2 − f
(

θ̂2

)

θ̂2

∫

p (θ2|y) dθ2

= p
(

θ1|θ̂2, y
)

+ f
(

θ̂2

)

[

E (θ |y) −̂θ2
]

. (4.35) 

When the posterior mode . θ̂2 is equal to the posterior mean .E (θ |y), the second term 
drops out and 

.p (θ1|y) ≈ p
(

θ1|θ̂2, y
)

(4.36) 

In the example above, the mean and the mode are markedly different and both 
are different from the value conditioned upon .σ 2 = 13.03. The mean is 

.E
(

σ 2|y
)

= ṽ

ṽ − 2
˜S2

= 10

8
11.67 = 14.59
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and the mode is 

. argmaxp
(

σ 2|y
)

= ṽ

ṽ + 2
˜S2

= 10

12
11.67 = 9.73,

so in this case, the approximation is rather coarse. 

4.5 Example: The Normal Linear Mixed Model 

The mixed linear model, or (co)variance components model (Henderson 1953), 
includes fixed and random effects entering linearly into the conditional expectation 
of the observations (given the random effects). These effects are the location 
parameters of the model. Typically, random effects and model residuals are assigned 
Gaussian distributions which depend on components of variance or covariance. 
A classical example in animal genetics is modelling continuous data, where 
explanatory variables are “fixed” effects such as sex and breed and random effects 
are additive genetic values. In this setup, variance components could include the 
additive genetic variance and the residual variance. This example describes the 
computation of the posterior distribution of the location parameters, conditional on 
the variance components, and indicates the connection with the classic mixed model 
equations (Henderson et al 1959). 

The second part of the example provides the derivation of the so-called fully con-
ditional posterior distribution of location parameters; these are essential ingredients 
of Gibbs sampling algorithms. 

Assume that the variance components are known and let b, of dimension .p × 1, 
and a, of dimension .q × 1, represent vectors of “fixed” and random effects, 
respectively. The conditional distribution (or sampling model) of data vector y, of  
dimension, .n × 1 is 

. y|b, a, σ 2 ∼ N
(

Xb + Za, Iσ 2
)

,

where X, of dimension .n × p, and Z, of dimension .n × q, are observed incidence 
matrices. Assume .p (b) ∝ constant and invoking an infinitesimal model, the prior 
distribution of a is 

. a|σ 2
a ∼ N

(

0, Aσ 2
a

)

,

where A is the .q ×q additive genetic relationship matrix. The scalars . σ 2 and . σ 2
a are 

the residual and the additive genetic variances, respectively.
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• This section provides the derivation of the posterior distribution of the location 
parameters .(b, a). A benchmark paper is by Lindley and Smith (1972). 

Using Bayes theorem, the density of the posterior distribution of the parame-
ters is 

. p
(

b, a|y, σ 2, σ 2
a

)

∝ p
(

y|b, a, σ 2
)

p
(

a|σ 2
a

)

∝ exp

[

− 1

2σ 2 (y − Xb − Za)′ (y − Xb − Za)

]

exp

[

− 1

2σ 2
a

a′A−1a

]

= exp

[

− 1

2σ 2

(

(y − Xb − Za)′ (y − Xb − Za) + a′A−1a k
)

]

with .k = σ 2
/

σ 2
a . Let  .W = (X Z), .θ ′ = (

b′, a′) and write the mixed model 
equations as 

.
(

W ′W + 	
)

̂θ = W ′y (4.37) 

where

. 	 =
[

0 0
0 A−1k

]

.

The two quadratic forms in the exponential term can be combined as follows: 

. (y − Xb − Za)′ (y − Xb − Za) + a′A−1a k

= (y − Wθ)′ (y − Wθ) + θ ′	θ

= y′y − 2θ ′W ′y + θ ′ (W ′W + 	
)

θ

= y′y − 2θ ′ (W ′W + 	
)

̂θ + θ ′ (W ′W + 	
)

θ.

Adding and subtracting .θ̂ ′ (W ′W + 	
)

θ̂ and rearranging yields 

. (y − Xb − Za)′ (y − Xb − Za) + a′A−1a k

= y′y −̂θ ′ (W ′W + 	
)

̂θ + (

θ −̂θ)′ (W ′W + 	
) (

θ −̂θ) .

This trick that I use here for combining the two quadratic forms is used 
repeatedly in the book, as well as formulas given in Box and Tiao (1973), page 
418 (reproduced on page 145). 

Since the first two terms do not depend on . θ , 

.p
(

θ |y, σ 2, σ 2
a

)

∝ exp

[

− 1

2σ 2

(

θ −̂θ)′ (W ′W + 	
) (

θ −̂θ)
]

,
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which is the kernel of the normal distribution: 

.

[

θ |y, σ 2, σ 2
a

]

∼ N
(

̂θ,
(

W ′W + 	
)−1

σ 2
)

. (4.38) 

In a normal linear model with known variances, the vector element . b̂ in . θ̂ can be 
shown to be the maximum likelihood estimator of the vector of fixed effects, and 
the vector element . ̂a is the best linear unbiased predictor (BLUP) of a (Henderson 
et al 1959). 

In the classical frequentist setting with b “fixed” and a “random”, the 
inverse of the coefficient matrix of the mixed model equations (4.37) times . σ 2

corresponds to 

. Var

[

̂b

â − a

]

= (

W ′W + 	
)−1

σ 2

where .Var
(

b̂
)

is the variance (in repeated sampling of y) of BLUE. (b) (best 

linear unbiased estimator of b) and .Var (̂a − a) is the prediction error variance of 
the predicted additive genetic values. 

• Let .
(

W ′W + 	
) = C, .W ′y = r and write the mixed model equations (4.37) as  

. Ĉθ = r.

Partition .θ ′ = (θ1, θ2) arbitrarily, such that . θ1 can be scalar or vector. What is 
the conditional posterior distribution of .

(

θ1|θ2, σ 2, σ 2
a , y

)

? From multivariate 
normal theory, 

. θ1, θ2|y, σ 2, σ 2
a ∼ N

[(

̂θ1
̂θ2

)

,

(

C11 C12

C21 C22

)

σ 2
]

where 

. C−1 =
(

C11 C12

C21 C22

)−1

=
(

C11 C12

C21 C22

)

.

Since .
(

θ1, θ2|y, σ 2, σ 2
a

)

is multivariate normal, so is the conditional distribution 
.
(

θ1|θ2, y, σ 2, σ 2
a

)

. 
Define .r ′ = (

r ′
1, r

′
2

)

. The conditional expected value of .
[

θ1|θ2, y, σ 2, σ 2
a

]

is 

.E
(

θ1|θ2, y, σ 2, σ 2
a

)

= ̂θ1 + C12
(

C22
)−1 (

θ2 −̂θ2
)

.
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Using the mixed model equations, write 

. ̂θ1 = C11r1 + C12r2,

̂θ2 = C21r1 + C22r2.

Substituting above 

. E
(

θ1|θ2, y, σ 2, σ 2
a

)

= C11r1 + C12r2 + C12
(

C22
)−1 (

θ2 − C21r1 − C22r2

)

=
(

C11 − C12
(

C22
)−1

C21
)

r1 + C12
(

C22
)−1

θ2

= C−1
11

(

r1 + C11C
12
(

C22
)−1

θ2

)

= C−1
11 (r1 − C12θ2) . (4.39) 

The derivation above uses the partition matrix results: 

. C11 − C12
(

C22
)−1

C21 = C−1
11 ,

C11C
12
(

C22
)−1 = −C12.

The conditional variance is 

. Var
(

θ1|θ2, y, σ 2, σ 2
a

)

=
(

C11 − C12
(

C22
)−1

C21
)

σ 2

= C−1
11 σ 2.

Therefore, the conditional posterior distribution is 

.

[

θ1|θ2, y, σ 2, σ 2
a

]

∼ N
[

C−1
11 (r1 − C12θ2) , C−1

11 σ 2
]

. (4.40) 

These results play a key role in the implementation of McMC methods that
rely on conditional posterior distributions such as the Gibbs sampler. Notice that
even if vector . θ contains many parameters and C is a very large matrix, the 
conditional posterior distribution .

(

θ1|θ2, y, σ 2, σ 2
a

)

involves inverse of matrices 
of the order of the number of elements in . θ1. For example, if . θ1 is a scalar, only 
the inverse of the appropriate scalar element is needed.
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4.6 Example: Inferring a Variance Component from a 
Marginal Posterior Distribution 

Let the sampling distribution of the .n × 1 data vector y be 

.y|b, σ 2 ∼ N
(

Xb, Iσ 2
)

, (4.41) 

where X is an observed .n × p matrix of full rank, b is a .p × 1 vector of unobserved 
regressions, I is the .n×n identity matrix and the unobserved scalar . σ 2 is the residual 
variance. On assigning independent improper prior distributions to the parameters of 
the model .

(

b, σ 2
)

, the posterior distribution is proportional to the likelihood (4.41): 

.p
(

b, σ 2|y
)

∝ p
(

y|b, σ 2
)

. (4.42) 

This example differs from the example on page 143 by extending the location 
parameter of the normal distribution to a vector b, by assuming improper prior 
distributions for .

(

b, σ 2
)

and by focusing the inference on . σ 2. The vector b is 
regarded as a nuisance parameter that must be integrated out of the joint posterior 
distribution .p(b, σ 2|y). This leads to the marginal posterior distribution .

[

σ 2|y]. It  
will be shown that the modal value has the same form as the restricted maximum 
likelihood (REML) estimator. 

The marginal posterior distribution of . σ 2 requires computation of 

. p
(

σ 2|y
)

=
∫

p
(

b, σ 2|y
)

db

=
∫

(

2πσ 2
)− n

2
exp

[

− 1

2σ 2 (y − Xb)′ (y − Xb)

]

db. (4.43) 

Defining .̂b = (

X′X
)−1

X′y, adding and subtracting . X̂b in each term of the quadratic 
form and carrying out the expansion leads to 

. (y − Xb)′ (y − Xb) = (

y − X̂b
)′ (

y − X̂b
)+ (

b −̂b)′ X′X
(

b −̂b) .

This is so because the term .
(

b −̂b)′ X′ (y − X̂b
) = 0. Then 

. p
(

σ 2|y
)

=
(

2πσ 2
)− n

2
exp

[

− 1

2σ 2

(

y − X̂b
)′ (

y − X̂b
)

]

∫

exp

[

− 1

2σ 2

(

b −̂b)′ X′X
(

b −̂b)
]

db. (4.44)
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The integration over the kernel of the normal distribution recovers the integration 
constant: 

. 

∣

∣

∣2π
(

X′X
)−1

σ 2
∣

∣

∣

1
2 =

∣

∣

∣

(

X′X
)−1
∣

∣

∣

1
2
(

2πσ 2
)

p
2

.

Substituting in (4.44) yields 

.p
(

σ 2|y
)

∝
(

σ 2
)− (n−p)

2
exp

[

− 1

2σ 2

(

y − X̂b
)′ (

y − X̂b
)

]

(4.45) 

that is recognised (up to proportionality) as a scaled inverse chi-square distri-
bution with .v = n − p − 2 degrees of freedom and scale parameter . S2 =
1
v

(

y − X̂b
)′ (

y − X̂b
)

. That is, 

.p
(

σ 2|y
)

∝
(

σ 2
)−( v

2+1)
exp

(

−vS2

2σ 2

)

. (4.46) 

Inferences about . σ 2 or of functions thereof can be performed analytically from this 
marginal posterior distribution. It is also possible to draw samples from the posterior 
distribution of . σ 2 and to use the samples to construct a Monte Carlo estimate of the 
posterior distribution of any function. To obtain a sample from this distribution, 
draw a chi-square variable with v degrees of freedom, invert this number and 
multiply by .

(

y − X̂b
)′ (

y − X̂b
)

. 
The modal value of this marginal posterior distribution is obtained by maximis-

ing (4.45) or (4.46) over . σ 2 that leads to 

. argmax
σ 2

p
(

σ 2|y
)

= v

v + 2
S2 =

(

y − X̂b
)′ (

y − X̂b
)

n − p
. (4.47) 

In this particular example where .(b, σ 2) have a priori an improper uniform distribu-
tion, (4.47) has the same exact form as the REML estimator of . σ 2 and the marginal 
distribution (4.45) has the form of a restricted likelihood, here, arrived at by 
marginalising over the “fixed” effects b. The REML estimator for unbalanced data 
was originally derived from a frequentist perspective by maximising a likelihood 
that is invariant to the “fixed effects” in the highly cited work of Patterson and 
Thompson (1971). 

It is revealing to compare the marginal posterior distribution .
[

σ 2|y] with the 
conditional posterior distribution .

[

σ 2|b, y
]

. The latter takes the form 

.p
(

σ 2|b, y
)

∝
(

σ 2
)− n

2
exp

[

− 1

2σ 2 (y − Xb)′ (y − Xb)

]

, (4.48)
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proportional to a scaled inverse chi square distribution with .v = n − 2 degrees of 
freedom. Maximising over . σ 2 leads to 

. argmax
σ 2

p
(

σ 2|b, y
)

= (y − Xb)′ (y − Xb)

n
. (4.49) 

A comparison with (4.47) shows how marginalisation “accounts for the loss of 
degrees of freedom” associated with the p unknowns in b. 

4.7 Example: Bayesian Learning—Inheritance of 
Haemophilia 

This and the example below (both taken from Sorensen and Gianola 2002) illustrate 
the sequential nature of Bayesian inference. In this first example, data are discrete; 
continuous data involving additive genetic values (assumed to be multivariate 
normally distributed) are discussed in the next example. 

The following is adapted from Gelman et al (1995). Haemophilia is a genetic 
disease in humans. The locus responsible for its expression is located on the sex 
chromosomes (these are denoted as XX in women and XY in men). The condition 
is observed in women only in double recessive individuals .(aa) and in men that are 
carriers of the a allele on the X chromosome. Suppose there is a nonhaemophiliac 
woman whose father and mother are not affected by the disease, but her brother is 
known to be haemophiliac. This implies that her nonhaemophiliac mother must be 
heterozygote, a carrier of a. What is the probability that the propositus woman is 
also a carrier of the gene? Let . θ be a random variable taking one of two mutually 
exclusive and exhaustive values. Either .θ = 1 if the woman is a carrier or . θ = 0
otherwise. Since it is known that the mother of the woman must be a carrier (this 
constitutes part of the system within which probabilities are assigned), the prior 
distribution of . θ is 

. Pr (θ = 1) = Pr (θ = 0) = 1

2
.

In the absence of additional information, it is not possible to make a very sharp 
probability assignment. Suppose now that the woman has two sons, none of which 
is affected. Let . Yi be a binary random variable taking the value 0 if son i is not 
affected, or 1 if he has the disease. The values taken by . Y1 and . Y2 constitute the 
evidence. Given that .θ = 1, the probability of the observed data is 

. Pr (Y1 = 0, Y2 = 0|θ = 1)

= Pr (Y1 = 0|θ = 1) Pr (Y2 = 0|θ = 1) =
(

1

2

)2

= 1

4
.
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This follows because: 

(a) the observations are assumed to be independent, conditionally on . θ and 
(b) if the woman is a carrier .(θ = 1), there is a .50% probability that she will not 

transmit the allele. 

On the other hand, if she is not a carrier .(θ = 0): 

. Pr (Y1 = 0, Y2 = 0|θ = 0)

= Pr (Y1 = 0|θ = 0) Pr (Y2 = 0|θ = 0) = 1 × 1 = 1,

this being so because it is impossible for a son to have the disease unless the mother 
is a carrier (ignoring mutation). Hence, the data confer four times more likelihood 
to the hypothesis that the mother is not a carrier. Using the information that none of 
the sons is diseased, the posterior distribution of . θ is then 

. Pr (θ = 1|Y1 = 0, Y2 = 0) = Pr (θ = 1) Pr (Y1 = 0, Y2 = 0|θ = 1)

Pr (Y1 = 0, Y2 = 0)

= Pr (θ = 1) Pr (Y1 = 0, Y2 = 0|θ = 1)
1
∑

i=0
Pr (θ = i)Pr (Y1 = 0, Y2 = 0|θ = i)

=
1
2
1
4

1
21 + 1

2
1
4

= 1

5

and 

. Pr (θ = 0|Y1 = 0, Y2 = 0) = 1 − 1

5
= 4

5
.

A sharper probability assignment can be made now, and the combination of prior 
information with the evidence suggests that the mother is probably not a carrier. 
The latter possibility cannot be ruled out, however, as there is a .20% probability 
that the mother is heterozygote. The posterior odds in favour of the hypothesis that 
the mother is not a carrier is given by the ratio 

. 
Pr (θ = 0|Y1 = 0, Y2 = 0)

Pr (θ = 1|Y1 = 0, Y2 = 0)
= Pr (Y1 = 0, Y2 = 0|θ = 0)

Pr (Y1 = 0, Y2 = 0|θ = 1)

Pr (θ = 0)

Pr (θ = 1)

= 1
1
4

1
2
1
2

= 4,

where the ratio 

.
Pr (θ = 0)

Pr (θ = 1)
= 1
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is called the prior odds in favour of the hypothesis. Further, 

. B01 = Pr (Y1 = 0, Y2 = 0|θ = 0)

Pr (Y1 = 0, Y2 = 0|θ = 1)
= 4

is called the Bayes factor, the factor by which the prior odds about the hypotheses 
are modified by the evidence and converted into posterior odds. In this example, the 
odds in favour of the hypothesis that .θ = 0 relative to .θ = 1 increase by a factor 
of 4 after observing two sons that are not affected by the disease. Suppose that the 
woman suspected of being a carrier has n children. The posterior distribution of . θ
can be represented as 

. Pr (θ = i|y) = Pr (θ = i) Pr (y|θ = i)

Pr (θ = i) Pr (y|θ = i) + Pr (θ 	= i) Pr (y|θ 	= i)
, i = 0, 1,

where .y = [Y1, Y2, ..., Yn]′. Partition the data as .y = [

y′
Ay′

B

]′, with . yA being the 
records on the presence or absence of the disease for the first m progeny and with 
. yB containing data on the last .n − m children. The posterior distribution is 

. Pr (θ = i|y) = Pr (θ = i) p (yA|θ = i) p (yB |yA, θ = i)

1
∑

i=0
Pr (θ = i) p (yA|θ = i) p (yB |yA, θ = i)

.

Dividing the numerator and denominator by the marginal probability of observing 
.yA, .p (yA), gives  

. Pr (θ = i|y) =
Pr (θ = i) p (yA|θ = i)

p (yA)
p (yB |yA, θ = i)

1
∑

i=0

Pr (θ = i) p (yA|θ = i)

p (yA)
p (yB |yA, θ = i)

.

Note, however, that 

. 
Pr (θ = i) p (yA|θ = i)

p (yA)
= Pr (θ = i|yA)

is the posterior probability after observing . yA,which acts as a prior before observing 
. yB. Then, it follows that 

.Pr (θ = i|y) = Pr (θ = i|yA) p (yB |yA, θ = i)

1
∑

i=0
Pr (θ = i|yA) p (yB |yA, θ = i)
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illustrating the ”memory” property of Bayes theorem. If the observations are 
conditionally independent, as assumed in this example, then 

. p (yB |yA, θ = i) = p (yB |θ = i) .

Suppose now that the woman has a third, unaffected son. The prior distribution 
now assigns probabilities of . 45 and . 15 to the events “not being a carrier” and “carrying 
the allele”, respectively. The posterior probability of the woman being a carrier, after 
observing a third, unaffected child, is 

. Pr (θ = 1|Y1 = 0, Y2 = 0, Y3 = 0)

=
1
5 Pr (Y3 = 0|θ = 1)

1
5 Pr (Y3 = 0|θ = 1) + 4

5 Pr (Y3 = 0|θ = 0)

=
1
5
1
2

1
5
1
2 + 4

51
= 1

9
.

The same result is obtained starting from the prior before observing any children: 

. Pr (θ = 1|Y1 = 0, Y2 = 0, Y3 = 0) =
1
2 .
(

1
2

)3

1
2 .
(

1
2

)3 + 1
2 . (1)

3

= 1

9
.

4.8 Example: Bayesian Learning—Updating Additive 
Genetic Values 

The setting is in the same spirit as in the preceding example. Here, the vector of data 
.y = (

y′
1, y

′
2

)′ is collected first at stage 1, . y1, and then at stage 2, . y2. Suppose that 
at stage 1 . (2), measurements .y1 .(y2) are taken on .n1 .(n2) different individuals (so 
that an individual measured at any stage is not recorded at the other stage) and that 
the objective is to infer their additive genetic effects .a1 .(a2). The protocol for the 
evaluation in stages is as follows: 

• Using data at stage 1, . y1, infer . a1 and . a2 and derive the marginal posterior 
distributions .[ai |y1], .i = 1, 2. From .[a2|y1] obtain the mean and variance: 

.ã2 = E (a2|y1) , C̃2 = Var (a2|y1) .
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(dropping here the conditioning on the location parameters and variances to avoid 
cluttering the notation). 

• At stage 2, using as prior for . a2 the posterior from stage 1, obtain 

. p (a2|y2, y2) ∝ p (y2|a2) p
(

a2|ã2, C̃2

)

and finally, with knowledge of the posterior density, obtain .E (a2|y2, y2) and 
.Var (a2|y2, y2). 
Consider the following linear model: 

.

[

y1

y2

]

=
[

11μ1

12μ2

]

+
[

a1

a2

]

+
[

e1

e2

]

, (4.50) 

where . μi , .i = 1, 2, is a known location parameter common to records collected in 
stages i, . 1i , .i = 1, 2, is a vector of . 1′s for stage i records and 

. 

[

e1

e2

]∣

∣

∣

∣

σ 2
e ∼ N

([

0
0

]

,

[

I1 0
0 I2

]

σ 2
e

)

is a vector of independently distributed residual effects, where . σ 2
e is the (known) 

residual variance; . Ii is an identity matrix of order .ni × ni , .(i = 1, 2). 
In the classical infinitesimal model of inheritance, the additive genetic effects 

are assumed to follow the multivariate normal distribution (acting as a prior in the 
Bayesian sense): 

.

[

a1

a2

]∣

∣

∣

∣

σ 2
a ∼ N

([

0
0

]

,

[

A11 A12

A21 A22

]

σ 2
a

)

(4.51) 

where . σ 2
a is the additive genetic variance in the population (also assumed known) 

and 

. A =
[

A11 A12

A21 A22

]

is the matrix of additive genetic relationships between individuals, or twice the 
matrix of coefficients of coancestry. This matrix is assumed to have full rank; clones 
or identical twins are not encountered. 

The standard treatment using all the data y is presented first, where data 
collection at stage 2 has been completed and additive genetic values are inferred for 
all individuals. The posterior density of the additive genetic values can be obtained
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using results for the linear model derived in the example of page 156 and is given 
by 

. p
(

a1, a2|y1, y2, μ1, μ2, σ
2
e , σ 2

a

)

∝ exp

{

− 1

2σ 2
e

[

(a−â)′
(

I + A−1 σ 2
e

σ 2
a

)

(a−â)

]}

, (4.52) 

which is the kernel of a normal process with mean

.̂a =
(

I + A−1 σ 2
e

σ 2
a

)−1 [
y1 − 11μ1

y2 − 12μ2

]

=
(

I + A−1 σ 2
e

σ 2
a

)−1

w, (4.53) 

and variance-covariance matrix:

.Var
(

a1, a2|y1, y2, μ1, μ2, σ
2
e , σ 2

a

)

=
(

I + A−1 σ 2
e

σ 2
a

)−1

σ 2
e . (4.54) 

Using (4.53) and (4.54), the posterior density of . a1 of the “first-stage” distribution 

. 

[

a1|y1, μ1, σ
2
e , σ 2

a

]

is immediately found to be 

. p
(

a1|y1, μ1, σ
2
e , σ 2

a

)

∝ exp

{

− 1

2σ 2
e

[

(a1 − ã1)
′
(

I1 + A−1
11

σ 2
e

σ 2
a

)

(a1 − ã1)

]}

. (4.55) 

The posterior mean at stage 1 is then

.̃a1 =
(

I1 + A−1
11

σ 2
e

σ 2
a

)−1

(y1 − 11μ1) =
(

I1 + A−1
11

σ 2
e

σ 2
a

)−1

w1 (4.56) 

and the posterior covariance is

.Var
(

a1|y1, μ1, σ
2
e , σ 2

a

)

=
(

I1 + A−1
11

σ 2
e

σ 2
a

)−1

σ 2
e = ˜C1. (4.57) 

The analysis in stages proceeds as follows. What can be said about all additive
genetic effects at stage 1? The joint posterior at stage 1 is

.p
(

a1, a2|y1, μ1, σ
2
e , σ 2

a

)

∝
[

p
(

y1|μ1, a1, σ
2
e

)

p
(

a1|σ 2
a

)]

p
(

a2|a1, σ 2
a

)

.
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Noting that the expression in square brackets is the posterior of . a1 after stage . 1,
.p
(

a1|y1, μ1, σ
2
e , σ 2

a

)

, one can write 

. p
(

a1, a2|y1, μ1, σ
2
e , σ 2

a

)

∝ p
(

a2|a1, σ 2
a

)

p
(

a1|y1, μ1, σ
2
e , σ 2

a

)

and this is the density of a normal process because the two intervening densities are 
in normal forms. Hence, the marginal distribution of . a2 at stage 1 is normal as well, 
with marginal density: 

. p
(

a2|y1, μ1, σ
2
e , σ 2

a

)

=
∫

p
(

a2|a1, σ 2
a

)

p
(

a1|y1, μ1, σ
2
e , σ 2

a

)

da1.

Therefore, the mean of the posterior distribution of . a2 at stage 1 is 

. E
(

a2|y1, μ1, σ
2
e , σ 2

a

)

=
∫ [∫

a2p
(

a2|a1, σ 2
a

)

da2

]

p
(

a1|y1, μ1, σ
2
e , σ 2

a

)

da1

= Ea1|y1 [E (a2|a1)]
= A21A

−1
11 ã1

= A21A
−1
11

(

I1 + A−1
11

σ 2
e

σ 2
a

)−1

w1. (4.58) 

This has the form of 

. E (a2|a1) = E (a2) + A21A
−1
11 [a1 − E (a1)]

= A21A
−1
11 a1

but with . a1 replaced by its posterior expectation . ̃a1. Likewise, 

. ˜C2 = Var
(

a2|y1, μ1, σ
2
e , σ 2

a

)

= Ea1|y1 [Var (a2|a1)] + Vara1|y1 [E (a2|a1)]
= Ea1|y1

[

A22σ
2
a − A21A

−1
11 A12σ

2
a

]

+ Vara1|y1
(

A21A
−1
11 a1

)

= A22σ
2
a − A21A

−1
11 A12σ

2
a + A21A

−1
11
˜C1A

−1
11 A12. (4.59) 

The first term represents the variance of . a2 before observing anything; the second 
term is the reduction in variance that would be obtained if . a1 were known and the 
third term is a penalty that results from having to infer . a1 from . y1. Thus, the prior 
distribution of . a2 at stage 2 (which is the posterior distribution of . a2 at stage 1) is
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a normal process with mean vector (4.58) and covariance matrix (4.59). Label this 

distribution .

[

a2|ã2, C̃2

]

. Finally, at stage . 2, the posterior density of . a2 is 

. p
(

a2|y1, y2, μ1, μ2, σ
2
e , σ 2

a

)

∝ p
(

y2|μ2, a2, σ
2
e

)

p
(

a2 |̃a2, ˜C2
)

∝ exp

[

− (y2 − 12μ2 − a2)
′ (y2 − 12μ2 − a2)

2σ 2
e

− (a2 − ã2)
′
˜C−1
2 σ 2

e (a2 − ã2)

2σ 2
e

]

. (4.60) 

We know that the density is in a normal form, so the quadratics on . a2 can be 
combined in the usual manner, to arrive at the mean vector and covariance matrix 
of the distribution. Alternatively, noting that a normal distribution is unimodal (so 
the mean is identical to the mode), the posterior mean at stage 2 can be found by 
maximizing the logarithm of (4.60). Let 

. F (a2) = −
[

(y2 − 12μ2 − a2)
′ (y2 − 12μ2 − a2)

2σ 2
e

+ (a2 − ã2)
′
˜C−1
2 σ 2

e (a2 − ã2)

2σ 2
e

]

so 

. 
∂F (a2)

∂a2
= (−1)

−2 (y2 − 12μ2 − a2) + 2˜C−1
2 σ 2

e (a2 − ã2)

2σ 2
e

.

Setting to . 0 and solving for . a2 yields 

.̂a2 =
(

I2 + ˜C−1
2 σ 2

e

)−1 (

y2 − 12μ2 + ˜C−1
2 σ 2

e ã2

)

(4.61) 

as mean of the posterior distribution of . a2, after stages 1 and 2. This is a matrix 
weighted average of . ̃a2 and of .y2 − 12μ2. The variance-covariance matrix of the 
distribution is given by 

.Var
(

a2|y1, y2, μ1, μ2, σ
2
e , σ 2

a

)

=
(

I2 + ˜C−1
2 σ 2

e

)−1
σ 2

e . (4.62) 

It can be verified that this is equal to the inverse of minus the matrix of second
derivatives of .F (a2) with respect to . a2. Using tedious algebra, one can also verify 
that (4.61) is identical to the .a2-component of the solution to (4.53).
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4.9 A Brief Account of Bayesian Asymptotics 

When the form of the posterior distribution is unknown or when limiting results 
are of interest, a simple alternative is to obtain approximate Bayesian inferences 
appealing to asymptotic arguments. A result from Bayesian asymptotics (first-
order approximations, and assuming a number of regularity conditions) says that 
as sample size n increases, the posterior distribution of a parameter . θ converges to 
a normal distribution with mean equal to the mode of .[θ |y] and asymptotic variance 
equal to the inverse of minus the second derivative of the logposterior (inverse of 
the observed information) evaluated at the mode . θ , 

. [θ |y] ∼ N
(

̂θ,
[

I
(

̂θ
)]−1

)

, (4.63) 

where the observed information evaluated at the mode of scalar . θ is 

. I
(

̂θ
) = −∂2 log (p (θ |y))

(∂θ)2

∣

∣

∣

∣

θ=̂θ
.

For large n, the amount of prior information will tend to be small compared with the 
information provided by the data and is ignored in this development. The posterior 
mode . ̂θ is now the ML estimator and the variance can be replaced by the inverse of 
either .I (θ |y) or .i (θ) defined in (2.9) and (2.7). 

A heuristic proof of (4.63) is as follows. Write .p (θ |y) = exp
[

log (p (θ |y))
]

and 

expand in a Taylor series about the posterior mode of .[θ |y], . θ̂ . Consider first the 
case where . θ is a scalar. This gives 

. p(θ |y) = exp

[

log
(

p
(

θ̂ |y
))

+
(

θ − θ̂
)

[

∂ log (p (θ |y))

∂θ

]

θ=̂θ

+1

2

(

θ −̂θ)2
[

∂2 log (p (θ |y))

(∂θ)2

]

θ=̂θ
+ R

]

,

where R is of smaller order than .
(

θ −̂θ)2. At the mode, the first derivative is zero, 
the term .log

(

p
(

̂θ |y)) does not depend of . θ and is absorbed into the normalising 
constant. Then 

. p (θ |y) ∝ exp

[

−1

2

(

θ −̂θ)2
[−∂2 log (p (θ |y))

(∂θ)2

]

θ=̂θ
+ R

]

In the neighbourhood of . ̂θ as .n → ∞, R becomes negligible and .p (θ |y) is 
proportional to the kernel of the normal distribution (4.63). Alternatively, Fisher’s 
expected information .i (θ) defined in (2.9) could be used in place of the observed 
information .I (θ |y) in (4.63).
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The quality of the approximation can be improved by applying a transformation 
to . θ so that the transformed parameter looks more normal (see Likelihood exercises 
I, problem 2). The approximation can be accurate when the number of parameters 
is small relative to the number of data points, when there are no boundary problems 
associated with . θ , and of course it requires the posterior distribution to be proper. 

When . θ is a vector, the same result (4.63) holds. Now . θ̂ is the vector of posterior 
modes and the variance is the inverse of the matrix: 

. − ∂2

∂θ∂θ ′ p (θ |y) .

The reader is referred to Bernardo and Smith (1994) and references therein for a 
discussion of this delicate subject. 

4.10 An Overview of Markov Chain Monte Carlo 

The examples discussed so far do not pose computational challenges because 
the posterior distributions have standard forms. As a consequence, one can draw 
inferences analytically or using Monte Carlo methods by simulating directly from 
these posterior distributions. The posterior distributions of more complex models 
have seldom standard forms and so alternative methods are required. A very general 
method to obtain approximate samples from posterior distributions that does not 
require knowledge of their integration constant is Markov chain Monte Carlo 
(McMC). McMC has been successfully applied in many branches of science since 
its introduction to the statistical community in the early 1990s. 

McMC algorithms are recipes for constructing a Markov chain that has the 
posterior distribution of interest as its stationary distribution. The goal is to obtain 
draws from this posterior distribution. Since doing this directly may be very 
complicated or impossible, a Markov chain . Xi , .i = 1, 2, . . ., is constructed so 
that its stationary distribution is the posterior distribution. To achieve this, the 
variables . Xi are drawn from a proposal distribution, but because this is not the 
same distribution as the posterior distribution, the drawn value is accepted in a 
stochastic manner by means of an acceptance probability. The derivation of this 
acceptance probability guarantees that the . Xi’s are an approximate Monte Carlo 
sample from the stationary distribution. To meet this, the Markov chain must satisfy 
a number of conditions which hold in most cases (but not always!). The samples 
can be used for Monte Carlo estimation of various expectations with respect to 
the stationary distribution. Thus, Monte Carlo estimates of the mean, variance or 
posterior intervals can be obtained using the draws from the Markov chain. 

In what follows, two algorithms are described that are special cases of a third 
very general McMC algorithm. The focus is on examples that illustrate how the 
algorithms are applied. Technical details, including the derivation of the acceptance
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probability of the standard and general McMC algorithms, can be found in the 
appendix at the end of the chapter. 

The algorithms are motivated with a simple example based on the normal linear 

model .yi
iid∼ N

(

μ, σ 2
)

, where the vector of observations .y = {yi} has n elements. 
The likelihood is proportional to 

.y|μ, σ 2 ∼ N
(

1μ, Iσ 2
)

, (4.64) 

where 1 is a vector of ones with n elements and I is an .n × n identity matrix. Is is 
assumed that the prior distribution of the parameters factorises into two independent 
prior distributions of the form 

.μ ∝ constant, . (4.65a) 

σ 2 ∝ 1

σ 2 . (4.65b) 

The prior for the variance is equivalent to assuming an improper uniform prior for
. ln σ . The resulting joint posterior is 

. p
(

μ, σ 2|y
)

∝ p
(

y|μ, σ 2
)

p
(

σ 2
)

p (μ)

∝ exp

⎡

⎢

⎢

⎣

−

n
∑

i=1
(yi − μ)2

2σ 2

⎤

⎥

⎥

⎦

(

σ 2
)−( n

2+1)
. (4.66) 

For this particular model, there is no need to use McMC because explicit solutions
for .p (μ|y) and for .p

(

σ 2|y) are available. However, an McMC approach will be 
followed here. 

4.11 The Metropolis-Hastings Algorithm 

Two strategies are described. In the first, all the parameters of the model are updated 
simultaneously, while in the other, parameters are updated one at a time. 

Joint Updating 

Denote the target distribution by . π (this is typically the posterior distribution) and 
let x be the current realisation of the chain. In the Metropolis-Hastings algorithm, 
a proposal Y is extracted from an arbitrary density .q (·|x) that may depend on x.
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Then the proposal Y is accepted with probability .α (x, Y ) given by (4.67). More 

specifically, given that at cycle t , .X(t) = x =
(

x
(t)
1 , x

(t)
2 , . . . , x

(t)
m

)

, one cycle of the 

algorithm is as follows: 

1. Generate Y from the proposal density .q (·|x). 
2. Generate a uniform number U on .[0, 1]. 
3. If 

.U < α (x, Y ) = min

{

1,
π (Y ) q (x|Y )

π (x) q (Y |x)

}

(4.67) 

then .X[t+1] = Y . Otherwise .X[t+1] = x. 

This is repeated until enough samples from the posterior distribution have been 
collected. I return shortly to evaluate what is “enough”. 

In this formulation of the Metropolis-Hastings algorithm, all the components of 
.X(t) are updated if the proposal is accepted. 

Joint Updating: Example Using the Normal Model (4.64) and (4.65) 

Let . Yμ and .Yσ 2 denote the proposed values for . μ and for . σ 2, so that 

. Y = (

Yμ, Yσ 2

)

,

and the state of the chain at stage t is 

. X(t) =
(

μ(t), σ 2(t)
)

= x.

Then, 

. π (Y ) = exp

⎡

⎢

⎢

⎣

−

n
∑

i=1

(

yi − Yμ

)2

2Yσ 2

⎤

⎥

⎥

⎦

(

Yσ 2

)−( n
2+1)

,

π (x) = exp

⎡

⎢

⎢

⎣

−

n
∑

i=1

(

yi − μ(t)
)2

2σ 2(t)

⎤

⎥

⎥

⎦

(

σ 2(t)
)−( n

2+1)
.

Assume that a .N (m,D) random walk proposal is used for generating 

.
(

lnYσ 2 , Yμ

)

,
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with 

. m =
(

ln σ 2, μ
)

,

. D =
[

kσ 2 0
0 kμ

]

,

and where .kσ 2 and . kμ are user-tuned variance parameters for . σ 2 and for . μ. Then 
(see NOTE below: if . σ 2 (a variance) is a variable that is restricted to be positive and 
.ln σ 2 is normally distributed, then . σ 2 lognormally distributed), 

. q (x|Y ) = q
(

μ(t), σ 2(t)|Yμ, Yσ 2

)

= q
(

μ(t)|Yu

)

q
(

σ 2(t)|Yσ 2

)

,

where 

. q
(

σ 2(t)|Yσ 2

)

= (

2πkσ 2

)− 1
2 exp

[

−
(

ln σ 2(t) − lnYσ 2

)2

2kσ 2

]

,

q
(

μ(t)|Yμ

)

= (

2πkμ

)− 1
2 exp

[

−
(

μ(t) − Yμ

)2

2kμ

]

.

Similarly, 

. q (Y |x) = q
(

Yμ, Yσ 2 |μ(t), σ 2(t)
)

= q
(

Yu|μ(t)
)

q
(

Yσ 2 |σ 2(t)
)

,

where 

.q
(

Yσ 2 |σ 2(t)
)

= (

2πkσ 2

)− 1
2 exp

[

−
(

lnYσ 2 − ln σ 2(t)
)2

2kσ 2

]

1

Yσ 2
, . (4.68) 

q
(

Yu|μ(t)
)

= (

2πkμ

)− 1
2 exp

[

−
(

Yμ − μ(t)
)2

2kμ

]

. (4.69) 

Manipulating these expressions shows that the proposal .Y = (

Yμ, Yσ 2

)

is accepted 
with probability given by (4.67), equal to 

. 
π (Y ) q (x|Y )

π (x) q (Y |x)
=

= exp

[
∑n

i=1

(

yi − μ(t)
)2

2σ 2(t)
−
∑n

i=1

(

yi − Yμ

)2

2Yσ 2

]

(

Yσ 2

σ 2(t)

)− n
2

. (4.70)
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In a programming environment in order to avoid under- or overflows, one computes 

. ln
π (Y ) q (Y ; x)

π (x) q (x;Y )
=

=
[
∑n

i=1

(

yi − μ(t)
)2

2σ 2(t)
−
∑n

i=1

(

yi − Yμ

)2

2Yσ 2

]

+ n

2

(

ln σ 2(t) − lnYσ 2

)

and in the final stage 

. 
π (Y ) q (x|Y )

π (x) q (Y |x)

is calculated. 
The user must choose the tuning parameters judiciously because this has a strong 

influence on the behaviour of the chain. 

NOTE on the Theory of Transformations of Random Variables 

Let .X = ln σ 2. Assume 

.X ∼ N (μ, v) . (4.71) 

Then .Y = σ 2 = expX follows a lognormal distribution 

. Y = σ 2 = expX ∼ lnN (μ, v) , 0 < Y < ∞, −∞ < μ < ∞, v > 0,
(4.72) 

with density

.p (y) = (2πv)−
1
2 exp

(

− 1

2v
(ln y − μ)2

)

1

y
. (4.73) 

To show this, I use the theory of transformation of random variables. If X has 
probability density function .pX (x), that is 

. X ∼ pX (x) ,

and .Y = f (X) such that the inverse function .f −1 exists, from which X can be 
retrieved 

.X = f −1 (Y ) ,
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then the probability density function of Y , .pY (y) is 

.pY (y) = pX

(

f −1 (Y )
)

∣

∣

∣

∣

df −1 (Y )

dY

∣

∣

∣

∣

, (4.74) 

where .
∣

∣df −1 (Y ) /dY
∣

∣ is the absolute value of the Jacobian of the transformation. 
The notation .pX

(

f −1 (Y )
)

implies that one uses the form of the density of X (in the 
example, a .N (μ, v)) and replaces in this density, x by .f −1 (y). In the present case, 
the objective is to derive the distribution of the random variable .Y = expX = σ 2. 
Then, 

. Y = f (X) = exp (X) �⇒ X = f −1 (Y ) = lnY,

∣

∣

∣

∣

df −1 (Y )

dY

∣

∣

∣

∣

= 1

Y
.

Using (4.74) 

. pY (y) = (2πv)−
1
2 exp

[

− (ln y − μ)2

2v

]

1

y
, 0 < Y < ∞, −∞ < μ < ∞,

v > 0, (4.75) 

which is the density of the lognormal distribution with parameters . μ and v. 

Single-Site Updating 

For a single-site updating Metropolis-Hastings algorithm, the components . x
(t)
1 , x

(t)
2 ,

. . . , x
(t)
m are updated individually in a random or systematic order. Typically, a 

systematic order is chosen starting with . x(t)
1 , then .x(t)

2 and so on, until the last 

component .x(t)
m is updated. 

Assume that the current state is .X(t) =
(

x
(t)
1 , x

(t)
2 , . . . , x

(t)
m

)

= x and that the 

j th component is to be updated. Then the next stage of the chain .X(t+1) only differs 
from .X(t) on the j th component that is generated as follows: 

1. Generate a proposal . Yj from the proposal density .qj (·|x). Let  

. Y =
(

x
(t)
1 , x

(t)
2 , . . . , x

(t)
j−1, Yj , x

(t)
j+1, . . . , x

(t)
m

)

.

2. Generate a uniform number U on .[0, 1].
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3. If 

.U < αj (x, Y ) = min

{

1,
π (Y ) qj

(

xj |Y
)

π (x) qj

(

Yj |x
)

}

, (4.76) 

then .X(t+1) = Y . Otherwise .X(t+1) = x. 

Single-Site Updating: Example Using the Normal Model (4.64), (4.65) 

1. Updating σ 2. 
As before, the state of the chain at stage t is 

. X(t) =
(

μ(t), σ 2(t)
)

= x,

but now 

. Y =
(

μ(t), Yσ 2

)

.

Then, 

. π (Y ) ∝ exp

(

−
∑n

i=1

(

yi − μ(t)
)2

2Yσ 2

)

(

Yσ 2

)−( n
2+1)

,

and 

. π (x) ∝ exp

(

−
∑n

i=1

(

yi − μ(t)
)2

2σ 2(t)

)

(

σ 2(t)
)−( n

2+1)
.

The proposal density of Yσ 2 is 

.qj

(

Yj |x
)

= qσ 2

(

Yσ 2 |σ 2(t)
)

= (

2πkσ 2

)− 1
2 exp

[

−
(

lnYσ 2 − ln σ 2(t)
)2

2kσ 2

]

1

Yσ 2
.
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Likewise, 

. qj

(

xj |Y
) =

qσ 2

(

σ 2(t)|Yσ 2

)

= (

2πkσ 2

)− 1
2 exp

[

−
(

ln σ 2(t) − lnYσ 2

)2

2kσ 2

]

1

σ 2(t)
.

Manipulating these expressions, it is easy to show that the proposal is accepted 
with probability (4.76), where 

. 
π (Y ) qj

(

xj |Y
)

π (x) qj

(

Yj |x
)

= exp

[
∑n

i=1

(

yi − μ(t)
)2

2σ 2(t)
−
∑n

i=1

(

yi − μ(t)
)2

2Yσ 2

]

(

Yσ 2

σ 2(t)

)− n
2

. (4.77) 

In practice and in order to avoid under- or overflows, one computes

. ln
π (Y ) qj

(

xj |Y
)

π (x) qj

(

Yj |x
)

=
[
∑n

i=1

(

yi − μ(t)
)2

2σ 2(t)
−
∑n

i=1

(

yi − μ(t)
)2

2Yσ 2

]

+ n

2

(

ln σ 2(t) − lnYσ 2

)

and at the final stage 

. 
π (Y ) qj

(

xj |Y
)

π (x) qj

(

Yj |x
)

is calculated. 
2. Updating μ. 

The state of the chain at stage t is again 

. X(t) =
(

μ(t), σ 2(t)
)

= x,

but now, 

.Y =
(

Yμ, σ 2(t)
)

,

π (Y ) ∝ exp

[

−
∑n

i=1

(

yi − Yμ

)2

2σ 2(t)

]

(

σ 2(t)
)−( n

2+1)
,
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π (x) ∝ exp

[

−
∑n 

i=1

(

yi − μ(t)
)2 

2σ 2(t)

]

(

σ 2(t)
)−( n 

2+1) 
. 

The proposal densities are 

. qj

(

Yj |x
)

= qμ

(

Yμ|μ(t)
)

= (

2πkμ

)− 1
2 exp

[

−
(

Yμ − μ(t)
)2

2kμ

]

,

and 

. qj

(

xj |Y
)

= qμ

(

μ(t)|Yμ

)

= (

2πkμ

)− 1
2 exp

[

−
(

μ(t) − Yμ

)2

2kμ

]

.

These densities are symmetric and therefore cancel each other in the ratio. The 
proposal is accepted with probability (4.76), where 

. 
π (Y ) qj

(

xj |Y
)

π (x) qj

(

Yj |x
)

= exp

[
∑n

i=1

(

yi − μ(t)
)2

2σ 2(t)
−
∑n

i=1

(

yi − Yμ

)2

2σ 2(t)

]

.

NOTE: A slightly different implementation of the algorithm is to parametrise the 
model in terms of ln σ 2. Then the posterior is now proportional to 

. exp

[

−
∑n

i=1

(

yi − μ(t)
)2

2σ 2

]

(

σ 2
)− n

2
,

qσ 2

(

Yσ 2 | ln σ 2(t)
)

is given by 

. 
(

2πkσ 2

)− 1
2 exp

[

−
(

lnYσ 2 − ln σ 2(t)
)2

2kσ 2

]

,

and one can verify that the acceptance probability for Yσ 2 is the same as in (4.77).
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4.12 The Gibbs Sampling Algorithm 

The Gibbs sampler is a very popular McMC algorithm because of its computational 
simplicity. The mechanics is as follows. Consider the vector of parameters of a 
model .

(

θ1, θ2, . . . , θp

)

, with posterior density .p
(

θ1, θ2, . . . , θp|y) known up to 
proportionality. Assume that the user supplies “legal” starting values 

. 

(

θ
(0)
1 , θ

(0)
2 , . . . , θ (0)

p

)

,

in the sense that .p
(

θ
(0)
1 , θ

(0)
2 , . . . , θ

(0)
p |y

)

> 0. The implementation of the Gibbs 

sampler consists of iterating through the loop: 

. draw θ
(1)
1 from p

(

θ1|θ(0)
2 , . . . , θ (0)

p , y
)

,

draw θ
(1)
2 from p

(

θ2|θ(1)
1 , θ

(0)
3 , . . . , θ (0)

p , y
)

,

draw θ
(1)
3 from p

(

θ3|θ(1)
1 , θ

(1)
2 , θ

(0)
4 , . . . , θ (0)

p , y
)

,

...

draw θ(1)
p from p

(

θp|θ(1)
1 , . . . , θ

(1)
p−1, y

)

,

draw θ
(2)
1 from p

(

θ1|θ(1)
2 , . . . , θ (1)

p , y
)

,

...

and so on.

After an initial period during which samples are dependent on the starting 
value (burn-in period), the draws .θ(i)

1 , θ
(i)
2 , . . . , θ

(i)
p , for sufficiently large i, when 

the sampler converges, are regarded as samples from the normalised posterior 
distribution with density 

. p
(

θ1, θ2, . . . , θp|y)/
∫

p
(

θ1, θ2, . . . , θp|y) dθ1 . . . dθp.

The coordinate .θ(i)
j is regarded as a draw from its marginal posterior distribution 

with density 

. p
(

θj |y
)/

∫

p
(

θj |y
)

dθj .
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In more general terms, let 

. θ−i = (

θ1, . . . , θi−1, θi+1, . . . , θp

)

be the vector of dimension .(p − r), .p > r , .r ≥ 1, which is equal to . θ with its ith 
component, . θi , deleted and where r is the number of elements in . θi . The density of 
the fully conditional posterior distribution (fcpd) of . θi is 

. p (θi |θ−i , y) = p
(

θ1, . . . , θi−1, θi , θi+1, . . . , θp|y)
∫

p
(

θ1, . . . , θi−1, θi , θi+1, . . . , θp|y) dθi

∝ p
(

θ1, . . . , θi−1, θi , θi+1, . . . , θp|y) . (4.78) 

In many applications, .r = 1 and parameters are updated one at a time. In general, 
single-site updating leads to moves along each coordinate, whereas updating several 
components in a block allows for more general moves. Joint updating, which 
incorporates information on the correlation structure among the components in 
the joint conditional posterior distribution, can result in faster convergence when 
correlations are strong (Liu et al 1994). A computational strategy that makes it 
feasible to draw the entire vector . θ for some Gaussian linear models is described 
in Sorensen and Gianola (2002), page 584, originally proposed by García-Cortés 
and Sorensen (1996). 

The Gibbs sampler is a special case of the more general Metropolis-Hastings 
algorithm. In the Gibbs sampler, the proposals (drawn from the fully conditional 
posterior distributions) are always accepted (see the NOTE below). It is simpler 
to implement than the Metropolis-Hastings algorithm because it does not require 
tuning parameters. However, it requires knowledge of the form of the fully 
conditional posterior distributions. 

Example Using the Normal Model 
Consider the normal model defined by the Eqs. (4.64) and (4.65). The fully 
conditional posterior distributions with densities .p

(

μ|σ 2, y
)

and .p
(

σ 2|μ, y
)

are 
derived using the posterior distribution (4.66) as the starting point. To obtain 
.
[

μ|σ 2, y
]

, one extracts from the posterior distribution (4.66) those terms that 
include . μ. This results in 

.p
(

μ|σ 2, y
)

∝ exp

⎛

⎜

⎜

⎝

−

n
∑

i=1
(yi − μ)2

2σ 2

⎞

⎟

⎟

⎠

= exp

(

− 1

2σ 2

[

n (y − μ)2
]

)
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which is the kernel of a normal distribution with mean . y and variance . σ 2/n.

Therefore, 

.μ|σ 2, y ∼ N

(

y,
σ 2

n

)

. (4.79) 

To obtain .
[

σ 2|μ, y
]

, one extracts from the posterior distribution (4.66) those 
terms that include . σ 2. This results in 

. p
(

σ 2|μ, y
)

∝ exp

⎛

⎜

⎜

⎝

−

n
∑

i=1
(yi − μ)2

2σ 2

⎞

⎟

⎟

⎠

(

σ 2
)−( n

2+1)

which seen as a function of . σ 2 is the kernel of a scale-inverted chi-square 
distribution with n degrees of freedom and scale 

. s2 =

n
∑

i=1
(yi − μ)2

n
.

Therefore, 

.σ 2|μ, y ∼ ns2χ−2
n . (4.80) 

NOTE: The Acceptance Probability of the Gibbs Sampler Is Equal to 1 
Let the state of the chain at stage t be 

. Xt =
(

μ(t), σ 2(t)
)

= x

and let 

. Y =
(

μ(t), Yσ 2

)

.

Then 

. π (Y ) = π
(

μ(t), Yσ 2 |y
)

∝ exp

(

−
∑n

i=1

(

yi − μ(t)
)2

2Yσ 2

)

(

Yσ 2

)−( n
2+1)

,

and 

.π (x) = π
(

μ(t), σ 2(t)|y
)

∝ exp

(

−
∑n

i=1

(

yi − μ(t)
)2

2σ 2(t)

)

(

σ 2(t)
)−( n

2+1)
.
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The proposal density of .Yσ 2 is 

. q
(

Yσ 2 |x) = π
(

Yσ 2 |μ(t), y
)

and 

. q
(

x|Yσ 2

) = π
(

σ 2(t)|μ(t), y
)

.

Then the acceptance probability for updating . σ 2 is 

. 
π (Y ) q

(

x|Yσ 2

)

π (x) q
(

Yσ 2 |x) = π (Y )

π (x)

π
(

σ (t), μ(t)|y)

π
(

μ(t)|y)
π
(

μ(t)|y)

π
(

Yσ 2 , μ(t)|y)

= π (Y )

π (x)

π (x)

π
(

μ(t)|y)
π
(

μ(t)|y)
π (Y )

= 1.

A similar result is obtained for the acceptance probability for updating . μ. 

4.13 Output Analysis 

McMC is used to obtain approximate samples from posterior distributions. The 
information about unknowns contained in these samples depends on their size 
(length of the chain) and on the degree of autocorrelation among sampled values. 
When a particular feature from a posterior distribution is estimated from the 
samples, the uncertainty associated with the McMC estimate is the Monte Carlo 
error of estimation. This is a classical frequentist sampling uncertainty that depends 
on the length of the chain and on the degree of autocorrelation among the samples. 
In contrast, the posterior uncertainty, given the model, depends on the data. It is 
important to distinguish between these two sources of uncertainty. 

There is a large literature on McMC convergence diagnosis and output analysis. 
A useful practical reference is Kass et al (1998). Here, the focus is on a few 
important issues of output analysis. 

The first is to determine the length of the so-called burn-in period. This is related 
to the question of convergence of the sampled values to the target distribution. 
The chain is initialised with values of parameters that are not drawn from the 
posterior distribution. Since convergence, if reached, to the posterior distribution 
is gradual, one must decide how many of the initial values must be discarded in 
order to include only representative ones to draw Monte Carlo inferences. Figure 4.1 
provides an illustration. The figure displays traceplots from the simulated values 
from .[μ|y] (left panel) and from .

[

σ 2|y] (right panel) obtained with the single-
site Metropolis-Hastings algorithm applied to model (4.64), (4.65a), (4.65b). Such 
a traceplot discloses information about the burn-in period and at the same time
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Fig. 4.1 Draws from the posterior distribution .[μ|y] (left panel) and from .
[

σ 2|y] (right panel) 
obtained from the single-site Metropolis-Hastings algorithm 

provides an informal check for convergence. The values of . μ and . σ 2 start far 
away from the support of the respective marginal posterior distributions but seem to 
reach convergence after a few iterations (burn-in). There are a number of methods 
that attempt to provide more formal checks of convergence than the “eye-balling” 
approach displayed by traceplots. None can guarantee convergence but can flag lack 
of convergence. A useful reference is Cowles and Carlin (1996). 

A second concern is to determine the degree of autocorrelation of the sampled 
values and the so-called effective chain length or effective sample size. These 
determine the McMC-sample variance or MC variance of estimates of features of 
posterior distributions. Because the number of sampled values from the estimated 
posterior distribution is finite, there is always sampling uncertainty associated 
with an estimator of features of posterior distributions. In principle, the sampling 
uncertainty can be made as small as desired by taking a sufficiently large number of 
samples. 

The MC variance can be estimated by running several independent chains and 
then calculating the empirical, between-chain variance of the estimates obtained for 
each chain. Since this is often computationally expensive, one resorts to theoretical 
estimators of MC variance. These estimators account for the autocorrelation among 
the samples taken from the target distribution. Useful references are Ripley (1987), 
Geyer (1992) and Chen et al (2000). 

Consider the output of a Markov chain consisting of m samples . X(1), X(2), . . . ,

X(m), where the .X(i) are approximate draws from the posterior distribution .[X|y], 
where X is a vector of parameters, y is a vector of data and m is the length of 
the chain. The goal is to estimate the mean of some function of X, .h(X), over the 
posterior distribution of X, with density .p(x|y): 

.E [h (X) |y] =
∫

h (x) p (x|y) dx
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using 

.μ̂m = 1

m

m
∑

i=1

h
(

X(i)
)

. (4.81) 

Here, .h(X) is any function of X with finite expectation. If h is the identity 
function, (4.81) retrieves an estimator of the mean. 

A central limit theorem asserts 

.
√

m (μ̂m − E [h (X) |y]) D→ N
(

0, Vasymp
)

, (4.82) 

where .Vasymp is the asymptotic variance of X. A little more informally, this can be 
written as 

. ̂μm ∼ N
(

E [h (X) |y] , Vasymp /m
)

.

From (4.82) an approximate .95% confidence interval for the unknown true value 
.E [h (X) |y] is .μ̂m ± 1.96

√

Vasymp/
√

m. With independent sampling, measures of 
sampling uncertainty are obtained by replacing the unknown .Vasymp by the sample 
variance of X. 

The sampling variance of the estimator (4.81) is .Vasymp/m where 

. Vasymp = lim
m→∞Var

(√
mμ̂m

)

= Var [h (X) |y]
⎛

⎝1 + 2
∞
∑

j=1

ρj

⎞

⎠ . (4.83) 

(see NOTE 2 below) and .Var [h (X) |y] is the posterior variance of .h (X) under the 
limiting distribution. Above, 

. ρj = Cov
[(

h
(

X(i)
)

, h
(

X(i+j)
)) |y]

Var
[

h
(

X(i)
) |y]

= γ (j)

γ (0)
, j = 1, 2, . . .

for all i, where i refers to the ith draw and .ρj is the lag.−j autocor-
relation of .X(1), X(2), . . . , X(m). The above assumes that, under stationar-
ity, the lag-covariance is constant for constant lag j (e.g. for .j = 2, 
.γ (2) = Cov

[(

h
(

X(1)
)

, h
(

X(3)
)) |y] = Cov

[(

h
(

X(2)
)

, h
(

X(4)
)) |y]) and that 

.Cov
[(

h
(

X(i)
)

, h
(

X(i)
)) |y] = Var

[

h
(

X(i)
) |y] = γ (0).
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NOTE 1 

The important property defined by expression (4.81) is used repeatedly in the book. 
For example, (4.81) is an estimator of 

• the posterior mean if .h (X) = X; 
• the posterior variance if .h (X) = [X − E (X|y)]2. The estimator of the posterior 

variance is 

. 
1

m

m
∑

i=1

[

X(i)2 − [

̂E (X|y)
]2
]

,

where .̂E (X|y) = 1
m

∑

i X(i); 
• the posterior probability that .X ∈ A, if .h (X) = I (X ∈ A), such that 

. Pr (X ∈ A|) =
∫

I (X ∈ A)p (X|y) dX.

Here, the estimator is .
∑m

i=1 I
(

X(i) ∈ A
)

/m. As a special case, the cumulative 
distribution function is estimated: 

. ̂F (t) = 1

m

n
∑

i=1

I
(

X(i) < t
)

.

Therefore, the estimator of the posterior probability that .t1 < X < t2 is 

. ̂Pr (t1 < X < t2|y) = 1

m

[

m
∑

i=1

I
(

t1 < X(i) < t2

)

]

;

• the posterior predictive density: 

. p (z|y) =
∫

p (z|X, y) p (X|y) dX,

where, usually, the form of the problem is such that .p (z|X, y) = p (z|X). In  
this setting, .h (X) = p (z|X), and the estimator of the predictive density is 
.
∑m

i=1 p
(

z|X(i)
)

/m. 

This important property of McMC is used to obtain Monte Carlo estimates of the 
marginal posterior distribution of mean squared errors and of false discovery rate.
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NOTE 2 

To arrive at (4.83), one writes 

. mVar (μ̂m) = m−1
∑

i,j

Cov
[(

h
(

X(i)
)

, h
(

X(j)
))

|y
]

= Var [h (X) |y]
⎡

⎣1 + 2
m−1
∑

j=1

(

1 − j

m

)

ρj

⎤

⎦ . (4.84) 

When .ρj = 0 for all j , 

. Var (μ̂m) = Var [h (X) |y]
m

the familiar equation for the variance of the sample mean (assuming independent 

samples). The term in square brackets in (4.84) converges to .
[

1 + 2
∑∞

j=1 ρj

]

as 

.m → ∞, in which case 

. mVar (μ̂m)
lim m→∞

= Vasymp

= Var [h (X) |y]
⎡

⎣1 + 2
∞
∑

j=1

ρj

⎤

⎦

= Var [h (X) |y] τ,

where .Var
[

h
(

X(i)
) |y] = Var [h (X) |y] for all i, the posterior variance that, 

given the model, depends on data y and .τ = 1 + 2
∑∞

j=1 ρj is the integrated 
autocorrelation that is modulated by the McMC method used. The effective sample 
size is 

. meff = m

τ
,

which is equal to m if the draws from .[X|y] are uncorrelated. It is important to dis-
tinguish between .Var [h (X) |y], the variance of .h (X) under the limiting distribution 
.[X|y] and .Var (√mμ̂m

)

the limiting variance of .
√

mμ̂m, equal to .Var [h (X) |y] τ . 
The former is associated with the posterior uncertainty of .h(X), while the latter 
is associated with the sampling scheme from the posterior distribution. Under 
independent sampling, .τ = 1 and therefore both are equal to .Var [h (X) |y]. 

There are a number of methods that can be used to estimate the Monte Carlo 
variance of features from posterior distributions, two of which are sketched below.
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Geyer’s Estimator of the Monte Carlo Variance 

Geyer (1992) suggests the following estimator of Var
(

μ̂m

)

based on time-series 
theory (a classical reference is Priestley 1981). The lag−t autocovariance is 

. γ (t) = Cov
[(

h
(

X(i)
)

, h
(

X(i+t)
))

|y
]

,

which under stationarity is the same for all i. The estimator is 

. ̂γ (t) = 1

m

m−t
∑

i=1

{[

h
(

X(i)
)

− μ̂m

] [

h
(

X(i+t)
)

− μ̂m

]}

.

A Monte Carlo estimator of the asymptotic variance is 

.̂Vasymp = γ̂ (0) + 2
i=2δ+1
∑

i=1

γ̂ (i) (4.85) 

and a Monte Carlo estimator of the variance of (4.81) is  

.̂Var (μ̂m) = 1

m

[

γ̂ (0) + 2
i=2δ+1
∑

i=1

γ̂ (i)

]

(4.86) 

where δ is chosen such that it is the largest integer satisfying

. ̂γ
(

2δ′)+ γ̂
(

2δ′ + 1
)

> 0, δ′ = 0, 1, . . . , δ.

Above, 

. ̂γ (0) = ̂Var
[

h
(

X(i)|y
)]

= ̂Var [h (X) |y] , for all i.

An estimator of the integrated autocorrelation is obtained from (4.86) as follows: 

. ̂Var (μ̂m) = γ̂ (0)

m

[

1 + 2
i=2δ+1
∑

i=1

γ̂ (i)

γ̂ (0)

]

= γ̂ (0)

m

[

1 + 2
i=2δ+1
∑

i=1

ρ̂ (i)

]

. (4.87)
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Therefore, 

. ̂τ = 1 + 2
i=2δ+1
∑

i=1

ρ̂ (i)

= m̂Var (μ̂m)

γ̂ (0)
. (4.88) 

The estimator of effective sample size is 

. ̂meff = m

τ̂

= γ̂ (0)
̂Var (μ̂m)

. (4.89) 

The Method of Batching 

A popular method of estimating Monte Carlo variances that is easy to implement 
is known as “batching” (Hastings 1970). It is based on the idea that if individual 
draws .X(j) are correlated, grouping successive draws into b batches or groups of 
size s each and computing the raw averages will lead to b batch means that are less 
strongly inter-correlated than the original draws. This can be so, provided that s is 
chosen appropriately. The larger the autocorrelation among samples, the larger s 
must be. Suppose that a chain of total length m is divided into b batches each of size 
s. Let the average of the ith batch be 

. xi = 1

s

s
∑

j=1

X(j), i = 1, 2, . . . , b.

Here, .h
(

X(j)
)

is some feature of the posterior distribution evaluated at the sampled 
value .X(j). The batch estimator of the variance of (4.81), assuming that s is large 
enough so that the . x′

is are uncorrelated, is equal to 

.̂Varb (μ̂m) =

b
∑

i=1
(xi − μ̂m)2

b (b − 1)
. (4.90) 

An estimate of the batch-effective chain length can be obtained as

.m̂eff_b =

m
∑

i=1

[

X(i) − μ̂m

]2

(m − 1) ̂Varb (μ̂m)
. (4.91)
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Fig. 4.2 Left: autocorrelations between samples of . yi versus lag; right: autocorrelations between 
batch means 

When the samples are independent, .s = 1, .b = m, .xi = X(i) for all i and . m̂eff_b =
m. 

If the autocorrelation among the samples of the chain is very high (.> 0.95), 
estimator (4.86) seems to be preferred over (4.90). 

Example: A Simulated Autoregressive Process 

These concepts are illustrated with an autoregressive model that generates draws 
(vector y) of length .10,000 mimicking the correlated structure of a Monte Carlo 
Markov chain. A plot of the autocorrelations among the elements of y versus lag 
gives a visual impression of the output. The R function acf(y) (see the bottom of 
the second R-code below) is used to generate Fig. 4.2 (left panel). The figure 
indicates that at a lag of approximately 20, the autocorrelation among the . y′s
vanishes. 

The R-code below has two  sections. The first generates the .10,000 correlated 
samples y using an autocorrelation equal to . 0.8. The second section computes the 
Monte Carlo variance of the mean of y, based on (4.86), the effective chain length 
based on (4.89) and the integrated autocorrelation based on (4.88). 

The R-code is as follows: 

# CODE0401 
# CODE FOR THE MC VARIANCE TESTED ON 
#A FIRST-ORDER AUTOREGRESSIVE PROCESS WITH CORRELATION RHO 
rm(list=ls()) # Clear the workspace 
set.seed(1237) 
#GENERATE DATA: AUTOREGRESSIVE PROCESS WITH CORRELATION RHO
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ns <- 10000 
y <- rep(NA,ns) 
rho<-0.8 
sum <- 0 
y[1] <- rnorm(1,0,1) 
for(i in 2:ns) 
{ 

y[i] <- rho*y[i-1] + rnorm(1,0,1) 
sum <- sum + y[i]*y[i-1] 

} 
cov <- sum/ns 
rhohat <- cov/var(y) 
muhat <- mean(y) 
gama0 <- var(y) 
rhohat 

## [1] 0.7971166 

# CODE FOR THE MC VARIANCE BASED ON GEYER 
svar<-var(y)*(ns-1)/ns 
tau<-1 
tausum<-0 
ptm <- proc.time() 
for(i in 0:ns) 
{ 

gamaj<-0.0 
gamak<-0.0 
j<-2*i 
k<-(2*i)+1 

# FASTER CODE: JUMP THE LOOP AND USE FUNCTION ACF 
# for (ii in 1:(ns-j)) 
# {  
# cov<-(y[ii]*y[ii+j]-mean(y)*(y[ii]+y[ii+j])+mean(y)*mean(y)) 
# gamaj<-gamaj+cov 
# }  
# for(ii in 1:(ns-k)) 
# {  
# gamak<-gamak+(y[ii]*y[ii+k]-mean(y)*(y[ii]+y[ii+k])+ 

# mean(y)*mean(y)) 
# }  
# gamaj<-gamaj/ns 
# gamak<-gamak/ns 

lag1<-j 
lag2<-k 
#USE THE R-FUNCTION ACF TO COMPUTE AUTOCORRELATIONS 
cov1<-acf(y,type="covariance",lag.max=lag1,plot=FALSE) 
cov2<-acf(y,type="covariance",lag.max=lag2,plot=FALSE) 
gamaj<-cov1$acf[lag1+1] gamak<-cov2$acf[lag2+1] 
tau<-gamaj+gamak 
if(tau<0) 
{ 

break 
} 
tausum<-tausum+tau 

} 
proc.time()-ptm
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## user system elapsed 
## 0.06 0.02 0.08 

muhat 

## [1] -0.003605249 

gama0 

## [1] 2.723108 

varch<- -svar+2*tausum 
varch 

## [1] 26.93673 

mcvar<-varch/ns 
mcvar 

## [1] 0.002693673 

efchsize<-svar/mcvar 
efchsize 

## [1] 1010.826 

integrautoc<-varch/svar 
integrautoc 

## [1] 9.892896 

The estimated feature is the mean of the distribution: 

. μ̂m = 1

m

m
∑

i=1

X(i) = −0.0036

where .m = 10,000 is the length of the Markov chain. Using the method of Geyer, 

.̂Vasymp = ̂Var
(

X(i)|y
)

τ̂ = 2.72 × 9.89 = 26.94,
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̂Var
(

μ̂m

) = 0.0027,

m̂eff = 1011,

τ̂ = 9.89. 

where .̂Var
(

X(i)|y) is the Monte Carlo estimate of the variance of the posterior 
distribution .[X|y]. 

The R-code below uses the method of batching to compute the Monte Carlo 
variance of the mean of y, based on (4.90) and the effective chain length based 
on (4.91). The batch size was set equal to 100. Figure 4.2, right panel, is generated 
using acf(avrb) and shows that batch means are effectively uncorrelated. The 
output is printed at the bottom of the code and compares well with the previous 
results: 

#CODE FOR THE MC VARIANCE BASED ON BATCHING 
#choose size of batch s 
s<-100 
x<-matrix(y,ncol=s, byrow=FALSE) 
avrb<-apply(x,2,mean) 
mcvarb<-var(avrb)/length(avrb) 
efchsizebatch<-var(y)/mcvarb 
mcvarb 

## [1] 0.002656311 

efchsizebatch 

## [1] 1025.147 

#PLOT THE AUTOCORRELATION VS LAG USING R-FUNCTION acf 
#require(graphics) 
#acf(y) 
#acf(avrb) 

The top code was also executed simulating again .10,000 samples with an 
autocorrelation now of .ρ = 0.5. The Geyer statistics for this run are 

.̂Vasymp = 3.97

τ̂ = 3.03

̂Var
(

μ̂m

) = 0.0004,

m̂eff = 3294,

τ̂ = 3.03.
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4.14 Appendix: A Closer Look at the McMC Machinery 

The appendix provides a brief description of the Metropolis-Hastings algorithm 
in its standard and general form. The intention is to provide an intuition for the 
rationale behind the form of the algorithm. The material may seem a little daunting 
at first sight, particularly due to the nature of the ideas than the mathematics. In fact, 
the appendix uses nuts and bolts mathematics and basic theory of transformation of 
random variables. Much of what is written below is taken from Waagepetersen and 
Sorensen (2001), where more details and an example can be found. A benchmark 
paper for the general Metropolis-Hastings algorithm is Green (1995); the paper 
is technical and its detailed understanding requires command of measure theory. 
An accessible overview of discrete and continuous Markov chains can be found in 
Chapters 10 and 11 of Sorensen and Gianola (2002). 

The Standard Metropolis-Hastings Ratio 

Consider a finite-state discrete Markov chain with state space S. The Markov chain 
is defined by a sequence of discrete random variables . Xi , .i = 1, 2, . . . each of which 
can take one of N values in the finite set S. The subscript i in . Xi can be interpreted 
as stages or time periods, and the initial stage is .i = 0. These random variables . Xi

satisfy the Markov property: 

. Pr (Xi |Xi−1, Xi−2, . . . , X0) = Pr (Xi |Xi−1) . (4.92) 

Stationarity 

A probability density . π is stationary or invariant, if  .Xi ∼ π implies .Xi+1 ∼ π , 
.i ≥ 0. Notationally, I often use x for the current value of the Markov chain and 
. x′ for the value at the following stage (not to be confused with the same symbol 
“. ′” used elsewhere to denote the transpose of a matrix or vector). A definition of 
stationarity is 

.

∑

x
π (x) Pr

(

X′ = x′|X = x
) = π

(

x′) . (4.93) 

The idea behind stationarity is as follows. Consider the relationship

. Pr
(

X′ = x′|X0 = x0
) =

∑

x
Pr
(

X′ = x′|X = x
)

Pr (X = x|X0 = x0) .

(4.94)
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If the chain converges to a stationary distribution . π that is independent of the starting 
point . x0, then 

. Pr
(

X′ = x′|X0 = x0
) = π

(

x′) ,

Pr (X = x|X0 = x0) = π (x)

and (4.94) reduces to (4.93). 
The Metropolis-Hastings (MH) algorithm is a recipe for constructing a Markov 

chain that has . π as its stationary or invariant distribution. The goal is to obtain 
draws from . π which could be a posterior distribution. Since doing this directly may 
be very complicated or impossible, a draw from a proposal distribution (denoted 
here as .q (·|x) that may depend on x) is taken instead, and because this is not 
the same distribution as . π , the drawn value is accepted in a stochastic manner by 
means of an acceptance probability. This acceptance probability is derived in a way 
ensuring that the sequence .X0, X1, . . ., is an approximate Monte Carlo sample from 
the stationary distribution . π . In order for this to hold, the Markov chain must be 
aperiodic and irreducible and hence, ergodic (an aperiodic chain does not return 
to the same state at regular time intervals; in an irreducible chain, every state is 
reachable from every other state in a finite number of transitions). An ergodic chain 
is one that converges to the stationary distribution, regardless of the starting value. 
This Markov chain can be used for Monte Carlo estimation of various expectations 
with respect to the stationary distribution. Before showing how the algorithm works, 
I define the concept of detailed balance on which the MH algorithm builds. 

Detailed Balance 

Let .T
(

x′|x) = Pr
(

X′ = x′|X = x
)

be the conditional probability that .X′ = x′, 
given that .X = x. This conditional pmf is known as a transition probability that has 
the standard property: 

.

∑

x′ T
(

x′|x) = 1. (4.95) 

In the case of finite-state discrete Markov chains, .T
(

x′|x) is an element in an . N ×N

stochastic matrix (transition probability matrix) and (4.95) indicates that the sum 
of the elements of the rows of the stochastic matrix adds to one. Then . π satisfies 
detailed balance with respect to T , if  

.π (x) T
(

x′|x) = π
(

x′) T
(

x|x′) . (4.96) 

Note that when .x = x′, (4.96) holds trivially because 

.π
(

x′) T
(

x′|x′) = π
(

x′) T
(

x′|x′) . (4.97)
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The detailed balance equation can also be written as 

. Pr
(

X = x,X′ = x′) = Pr
(

X = x′, X′ = x
)

, (4.98) 

provided .X ∼ π . 
A Markov chain that has stationary distribution . π that satisfies detailed balance 

with respect to T is said to be a reversible Markov chain. 
An intuition for expression (4.96) is that the total probability mass in the move 

from x to . x′ is equal to that of the reverse move, from . x′ to x. In the left-hand side, 
the probability mass at x is .π (x) and only a proportion .T

(

x′|x) moves to the right-
hand side. The total probability mass in the move from x to . x′ is the product of these 
two quantities. Likewise, the probability mass on the right-hand side at .X′ = x′ is 
.π
(

x′) that may be different from .π (x). A proportion of .π
(

x′) equal to . T
(

x|x′)

moves from . x′ to x. The total probability mass for this pair of states .
(

x, x′) is the 
same. This holds for all possible pairs x and . x′ that belong in S. 

An important consequence of imposing the strong condition of detailed bal-
ance (4.96) is that the ergodic Markov chain is reversible and when it converges, 
has . π as its stationary distribution. To show this, start with (4.96) and sum over x 
on both sides (if (4.96) holds, the equality still holds if we sum both sides over x): 

. 
∑

x
π (x) T

(

x′|x) =
∑

x
π
(

x′) T
(

x|x′)

= π
(

x′)∑
x
T
(

x|x′)

= π
(

x′) , (4.99) 

that is the definition of a stationary distribution. In the case of a Markov chain in 
continuous space with transition kernel p, the equivalent to (4.99) is obtained by 
integrating both sides with respect to x: 

. 

∫

π (x) p
(

x′|x) dx =
∫

π
(

x′)p
(

x|x′) dx

= π
(

x′)
∫

p
(

x|x′) dx

= π
(

x′)

that again is the definition of a stationary distribution. This means that if . (Xi,Xi+1)

has stationary distribution . π , then the time-reversed subchain .(Xi+1, Xi) has the 
same stationary distribution, whenever . Xi has density . π . 

The acceptance probability of the MH algorithm is derived assuming that the 
Markov chain satisfies detailed balance. If the Markov chain is ergodic, when it 
converges, detailed balance guarantees that . π is the stationary distribution.
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The Acceptance Probability of the Metropolis-Hastings Algorithm 

Consider a move from x to . x′. In the MH algorithm, a proposed value . xp for . x′
is drawn from the proposal distribution .q (xp|x). If the proposed value is accepted, 
.x′ = xp and if its is rejected, .x′ = x, the value at the previous stage of the chain. 
There are two ways in which the state in the next stage is equal to . x′. One is to draw 
the proposal . xp and to accept it with probability .a

(

x′|x). The other way in which 
the state at the next stage can take the value . x′ is to reject the proposal, to set . x′ = x

but X was already equal to . x′. Let  

.s (x) = Pr
(

xp rejected |X = x
)

(4.100) 

Then

. T
(

x′|x) = Pr
(

X′ = x′|X = x
)

= q
(

x′|x) a (x′|x)+ s (x) I
(

x = x′) .

The left-hand side of (4.96) can now be written as 

.π (x) T
(

x′|x) = π (x) q
(

x′|x) a (x′|x)+ π (x) s (x) I
(

x = x′) , (4.101) 

and by symmetry, replacing x by . x′, the right-hand side is equal to 

.π
(

x′) T
(

x|x′) = π
(

x′) q
(

x|x′) a
(

x|x′)+ π
(

x′) s
(

x′) I
(

x′ = x
)

. (4.102) 

The second terms in the right-hand side of (4.101) and (4.102) are equal, both in 
the case when .x 	= x′ in which case they are zero because the indicator function is 
zero, or trivially when .x = x′. Therefore, detailed balance is satisfied if 

.π (x) q
(

x′|x) a (x′|x) = π
(

x′) q
(

x|x′) a
(

x|x′) . (4.103) 

Then,

.
a
(

x′|x)
a (x|x′)

= π
(

x′) q
(

x|x′)

π (x) q (x′|x)
. (4.104) 

Relationship (4.104) is satisfied if .a(x′|x) = π
(

x′) q
(

x|x′) /b
(

x′|x), for  some  
.b
(

x′|x) ≥ π
(

x′) q
(

x|x′), to ensure that the acceptance probability .a
(

x′|x) ≤ 1 (a 
similar argument holds for .a

(

x|x′) due to symmetry). A valid .b(x′|x) is 

.b(x′|x) = max(π
(

x′) q
(

x|x′) , π (x) q
(

x′|z)) (4.105)

but other choices are possible and these have an impact on the properties of
the Markov chain. The subject is rather technical and is discussed by Hastings
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(1970) and Peskun (1973), where it is shown that (4.105) leads to a Markov chain 
with the largest possible acceptance probabilities resulting in minimum asymptotic 
variances of moment estimates. This choice translates into the most commonly cited 
expression for the Metropolis-Hastings acceptance probability, given by 

.a
(

x′|x) = min

(

1,
π
(

x′) q
(

x|x′)

π (x) q (x′|x)

)

, (4.106) 

that gives rise to the following algorithm:

• Initialise setting .X = x, so that .π (x) > 0. 
• Choose the proposal distribution q 

Given current state .Xi = x, go through the loop. 
• Draw . xp from the proposal .q (·|x). 
• Draw u from .Un (0, 1). 
• If .u < a (xp|x), accept . xp and set .Xi+1 = xp; otherwise, .Xi+1 = x. 

The original idea of using Markov chain simulation of probability distributions 
is often attributed to Metropolis et al (1953). 

The General Metropolis-Hastings Ratio 

In the standard Metropolis-Hastings algorithm, the next state . x′ is obtained by 
drawing the candidate . xp from q. A more general mechanism to generate the move 
to . x′ is to construct a proposal y by applying a deterministic mapping to x and to 
a random component u that has density .qU (u|x), which may depend on x (Green 
1995). The proposal y (if the proposal is accepted, .x′ = y) is  

. y = g1 (x, u) .

To ensure dimension matching in the move from .(x, u) to . x′, if  x is of size . nx and 
u of size . nu, it may be necessary to include a random variable . u′ of size . nu′ with 
density .qU ′

(

u′|x′) so that 

.nx + nu = nx′ + nu′ . (4.107) 

Then the vectors of Markov chain states and proposal random variables .(x, u) and 
.
(

x′, u′) are of equal dimension, and the densities .π (x) qU (u|x) in the move from 
.(x, u) to .

(

x′, u′) and .π
(

x′) qU ′
(

u′|x′) in the move from .
(

x′, u′) to .(x, u) are joint 
densities on spaces of equal dimension. The mapping is then 

.
(

x′, u′) = g (x, u) = (g1 (x, u) , g2 (x, u)) (4.108)
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and the move in the opposite direction is 

. (x, u) = g−1 (x′, u′) =
(

g−1
1

(

x′, u′) , g−1
2

(

x′, u′)) . (4.109) 

A necessary condition for the existence of the one-to-one mapping is that (4.107) is  
satisfied. 

An important detail that becomes obvious in the derivation (more below) is that 
there is a constraint in the form of the deterministic function. The constraint is that 

.g = g−1. (4.110) 

Therefore, we need

. 
(

x′, u′) = g (x, u) = (g1 (x, u) , g2 (x, u)) ,

(x, u) = g−1 (x′, u′) = g
(

x′, u′) = (

g1
(

x′, u′) , g2
(

x′, u′)) . (4.111) 

The general Metropolis-Hastings acceptance ratio takes the form 

.a
(

x′|x) = min

{

1,
π
(

x′) qU ′
(

u′|x′)

π (x) qU (u|x)
|J |
}

(4.112) 

where .|J | =
∣

∣

∣det ∂g(x,u)
∂(x,u)

∣

∣

∣ is the absolute value of the Jacobian of the transformation 

g. A detailed derivation is given below. 

Stationarity 

The Markov chain in continuous space is specified in terms of the distribution for 
the initial state . X0 and the transition kernel .P (·, ·) which specifies the conditional 
distribution of .Xt+1 given the previous state . Xt . If the current state is .Xt = x, then 
the probability that .Xt+1 is in a set .B ⊆ Rd is given by 

.P (x, B) = Pr (Xt+1 ∈ B|Xt = x) . (4.113) 

Assume that . π is a complex target distribution for a stochastic vector Z. Since 
expectations with respect to . π cannot be evaluated analytically or by using tech-
niques for numerical integration, a Markov chain . Xi , .i = 1, 2, . . ., is constructed 
whose stationary distribution is . π . If the chain is ergodic, then it can be used for 
Monte Carlo estimation of expectations .E (h (Z)) for any function h, with respect 
to the invariant density . π . That is, 

.E (h (Z)) =
∫

h (z) π (z) dz ≈ 1

n

∑n

i=1
h (Xi) (4.114)
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as n tends to infinity. Thus, .E (h (Z)) can be approximated by the sample average for 
large n, the length of the chain. The autocorrelation among the draws of the chain 
implies that the size of the Markov chain must be larger than when the draws are 
independent, in order to achieve a given level of accuracy. 

For a continuous space Markov chain, the definition of stationarity is 

.

∫

P (x, B) π (x) dx =
∫

B

π (x) dx = Pr (X ∈ B) (4.115) 

The distribution . π is invariant (or stationary) for the Markov chain, if the transition 
kernel .P (·, ·) of the Markov chain preserves . π , so that .Xt ∼ π implies .Xt+1 ∼ π . 
In order to verify that . π is the invariant density, using (4.115) is an infeasible task, 
since this involves integration with respect to . π . The difficulty of doing this was the 
reason for using McMC in the first place. However, choosing a kernel that imposes 
the stronger condition of reversibility with respect to . π is sufficient to guarantee that 
. π is the invariant density of the ergodic Markov chain. 

Reversibility 

For a continuous state space Markov chain, the reversibility condition 

.Pt,t+1 (A,B) = Pt,t+1 (B,A) (4.116) 

requires that the equilibrium probability that the state of the chain is in a general set
A and moves to a general setB to be the same withA andB reversed. In other words,
expression (4.116) states that the joint probability that .Xt ∈ A and .Xt+1 ∈ B (left-
hand side) is the same as the joint probability that .Xt ∈ B and .Xt+1 ∈ A (right-hand 
side). The left-hand side describes the move from, say, X to . X′, and the left-hand 
side the opposite move. The above can be written as 

. 

∫∫

I
(

x ∈ A, x′ ∈ B
)

p
(

x, x′) dxdx′ =
∫∫

I
(

x ∈ B, x′ ∈ A
)

p
(

x, x′) dxdx′.

(4.117) 

The right-hand side is equal to the left-hand side with A and B reversed.
Since .

(

x, x′) in the integrals are dummy variables, one could relabel arbitrar-
ily; for example, set .x = v, .x′ = w and write the right-hand side as 

.

∫ ∫

I
(

v ∈ B,w′ ∈ A
)

p (v,w) dvdw.
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The reversibility condition (4.117) can also be written in terms of the transition 
kernel: 

.

∫

A

P (x, B) π (x) dx =
∫

B

P (x,A) π (x) dx. (4.118) 

Reversibility (4.118) implies (4.115) by taking .A = Rd . Then . P (x,A) = 1
and (4.118) reduces to 

. 

∫

P (x, B) π (x) dx =
∫

B

π (x) dx

which is equal to (4.115). Therefore, an ergodic Markov chain that satisfies (4.118) 
has stationary distribution . π . 

The Acceptance Probability for a General Metropolis-Hastings Algorithm 

In a general setting, instead of generating . X′ from .q (·|x) as is practised in the 
standard Metropolis-Hastings algorithm, . X′ can be defined in terms of a stochastic 
component .U ∼ q (u|x) and a deterministic mapping g. As explained in connection 
with (4.108) and (4.109), in the move from X to . X′, the mapping is 

.
(

x′, u′) = g (x, u) = (g1 (x, u) , g2 (x, u)) (4.119) 

and in the reverse move

. (x, u) = g−1 (x′, u′) =
(

g−1
1

(

x′, u′) , g−1
2

(

x′, u′)) . (4.120) 

The transition kernel in the move from X to . X′

. P (x, B) = Pr
(

X′ ∈ B|X = x
) =

∫

I
(

x′ ∈ B
)

p
(

x′|x) dx′

is now constructed in three steps. According to the Metropolis-Hastings protocol, a 
transition from x to . x′ is accomplished by first drawing u from .q (·|x). Secondly, 
constructing .x′ = g1 (x, u) and thirdly accepting it with probability .a (g1 (x, u) |x). 
Then 

. Pr
(

X′ ∈ B|X = x
) =

∫

I (g1 (x, u) ∈ B) q (u|x) a (g1 (x, u) |x) dxdu

+I (x ∈ B)

∫

q (u|x) [1 − a (g1 (x, u) |xt )] du, (4.121)
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where the second term in the right-hand side accounts for the probability of 
rejection, but the current state already belongs in B. The left-hand side of (4.117) 
takes the form 

. 

∫ ∫

I (x ∈ A, g1 (x, u) ∈ B) π (x) q (u|x) a (g1 (x, u) |x) dxdu

+
∫

I (x ∈ A ∩ B)

∫

π (x) q (u|x) [1 − a (g1 (x, u) |x)] dxdu. (4.122) 

The right-hand side of (4.117) can be expressed by interchanging A and B 
in (4.122). That is, 

. 

∫ ∫

I (x ∈ B, g1 (x, u) ∈ A) π (x) q (u|x) a (g1 (x, u) |x) dxdu

+
∫

I (x ∈ B ∩ A)

∫

π (x) q (u|x) [1 − a (g1 (x, u) |x)] dxdu. (4.123) 

The second terms in (4.122) and (4.123) are equal and therefore a sufficient 
condition for (4.117) to hold is 

. 

∫ ∫

I (x ∈ A, g1 (x, u) ∈ B) π (x) q (u|x) a (g1 (x, u) |x) dxdu

=
∫ ∫

I (x ∈ B, g1 (x, u) ∈ A)π (x) q (u|x) a (g1 (x, u) |x) dxdu. (4.124) 

The final step is to find a way to equalise the indicator functions of both sides
of Eq. (4.124). This is accomplished in two steps. First note that since .(x, u) are 
dummy variables of integration, they can be relabelled arbitrarily. Setting . x = x′
and .u = u′, the right-hand side of (4.124) becomes 

. 

∫ ∫

I
(

x′ ∈ B, g1
(

x′, u′) ∈ A
)

π
(

x′) q
(

u′|x′) a
(

g1
(

x′, u′) |x′) dx′du′.

(4.125) 

Secondly, note that by applying the deterministic mapping

. x = g1
(

x′, u′) ,

x′ = g1 (x, u)

and more generally 

.g−1 (x′, u′) = g
(

x′, u′) , (4.126)
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and substituting in the argument of the indicator function in (4.125), both indicator 
functions are equalised. It is at this point of the derivation that the constraint (4.110) 
or (4.126), in the form of the deterministic mapping, becomes relevant (see 
also (4.111)). Using this transformation and the change-of-variable formula (from 
.
(

x′, u′) to .(x, u)), then .dx′du′ = |J | dxdu, and (4.125) takes the form 

. 

∫∫

I (g1 (x, u) ∈ B, x ∈ A) π (g1 (x, u))

q (g2 (x, u) |g1 (x, u)) a (x|g1 (x, u)) |J | dxdu (4.127) 

where 

. J = ∂g (x, u)

∂ (x, u)
= ∂

(

x′, u′)

∂ (x, u)
.

Examination of the left-hand side of (4.124) and of (4.127) shows that the 
reversibility condition (4.117) is satisfied if 

. π (x) q (u|x) a (g1 (x, u) |x) = π (g1 (x, u)) q (g2 (x, u) |g1 (x, u)) a (x|g1 (x, u)) |J | .

In view of (4.111), .g1(x, u) = x′, .g2(x, u) = u′ and a valid choice for .a
(

x′|x) is 

.a
(

x′|x) = min

[

1,
π
(

x′) q
(

u′|x′)

π (x) q (u|x)
|J |
]

. (4.128) 

A Toy Example 

The model is .[y|μ, λ] ∼ N (μ, λ). Assume . μ is known and a Metropolis-Hastings 
algorithm is constructed to update the variance . λ. 

Strategy 1 

This is accomplished generating .u ∼ Un (a, b) and letting .λ′ = λu. The current state 
of the Markov chain is .(z, u) = (λ, u) and the move is to 

.

(

z
′
, u′) = g (λ, u)

= ((λu) , 1/u)
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where .u = 1/u′. The inverse function that makes the move in the opposite direction 
possible is 

. (z, u) = g−1
(

z
′
, u′)

= g
(

λ′, u′)

= ((

λ′u′) , 1/u′)

where .u′ = 1/u is also generated from .Un (a, b). The Jacobian of the transformation 
.g (λ, u) = (λu, 1/u) is 

. J =
∣

∣

∣

∣

det

[

∂g (λ, u)

∂ (λ, u)

]∣

∣

∣

∣

=
∣

∣

∣

∣

∣

det

[

u λ

0 −u−2

]∣

∣

∣

∣

∣

= u−1.

Since u and . u′ are drawn from .Un (a, b), .1/(b − a) cancels in the ratio 
.qU ′

(

u′|z′) /qU (u|z) in (4.112) and the Metropolis-Hastings acceptance probability 
is 

.min

{

1,
p
(

μ, λ′|y)
p (μ, λ|y)

u−1

}

, u ∈ (a, b) . (4.129) 

NOTE 

The above strategy satisfies the constraint (4.110) which in the example takes the 
form 

. 
(

z′, u′) =
(

(zu) ,
1

u

)

(z, u) =
(

(

z′u′) , 1

u′
)

with .u = 1/u′. This is so because (recall, .g1 (a, b) = a×b, is a function that multiplies 
its arguments) 

.z′ = g1 (z, u)

= g1
(

g1
(

z′, u′) , u
)

= g1
(

z′, u′)× u

= (

z′ × u′)× u
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and therefore .u = 1/u′. 

Strategy 2 

An alternative way of arriving at (4.129) is to use as the Metropolis-Hastings ratio 

.
p (μ, λu|y)

p (μ, λ|y)

p
(

λ|λ′)

p
(

λ′|λ) . (4.130) 

This is the standard form of the Metropolis-Hastings ratio, using the proposal for 
the parameter rather than the auxiliary variables .

(

u, u′). Then with .λ′ = uλ, 

. p
(

λ′|λ) = qU (u)

∣

∣

∣

∣

du

dλ′
∣

∣

∣

∣

= 1

b − a

1

λ
, λ′ ∈ (λa, λb) .

By symmetry, 

. p
(

λ|λ′) = 1

b − a

1

λ′ , λ ∈ (λ′a, λb
)

.

The bounds .λ ∈ (λ′a, λ′b
)

imply 

. λu′a < λ < λu′a,

a <
1

u′ < b.

The Metropolis-Hastings ratio is now 

. 
p (μ, λu|y)

p (μ, λ|y)

p
(

λ|λ′)

p
(

λ′|λ) = p (μ, λu|y)

p (μ, λ|y)

λ

λ′

= p (μ, λu|y)

p (μ, λ|y)

1

u
, u ∈ (a, b) . (4.131) 

and the resulting acceptance probability is 

.min

{

1,
p
(

μ, λ′|y)
p (μ, λ|y)

1

u

}

, u ∈ (a, b) . (4.132)
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Strategy 3 

The third strategy consists of updating the variance using a random walk proposal 
density on the logvariance. That is, 

. ln λ′ ∼ N (ln λ, k) ,

a normal distribution with mean equal to the natural logarithm of the previous 
realisation of . λ and variance given by k, a user-tuned parameter. 

As a reminder, if X has density .p (x) = N (m, k) and .Y = f (X) = exp (X), such 
that the inverse function .f −1 exists and results in .X = f −1 (Y ) = lnY , then the 
Jacobian of the transformation from X to Y is . 1/y and .p (y) = p

(

f −1 (y)
)

1
y . In this  

particular case, in the move from . λ to . λ′, we have  .X = ln λ′; .Y = exp
(

ln λ′) = λ′; 
.f −1 (Y ) = ln λ′. Therefore, if 

. q
(

ln λ′| ln λ, k
) = N (ln λ, k) ,

then 

. q
(

λ′| ln λ, k
) = q

(

ln λ′| ln λ, k
) 1

λ′

= N (ln λ, k)
1

λ′ , (4.133) 

which is the density of the lognormal distribution with parameters .(ln λ, k). In these 
expressions, the variance of the normal distribution k is a user-tuned parameter. 
Then (4.133) is the proposal density evaluated at . λ′ and by symmetry, 

. q (λ| ln λ, k) = q
(

ln λ| ln λ′, k
) 1

λ
.

Since .q
(

ln λ′| ln λ, k
) = q

(

ln λ| ln λ′, k
)

, the Metropolis-Hastings ratio is 

. 
p
(

μ, λ′|y)
p (μ, λ|y)

q (λ| ln λ, k)

q
(

λ′| ln λ, k
) = p

(

μ, λ′|y)
p (μ, λ|y)

λ′
λ

,

different from (4.131).



Chapter 5 
McMC in Practice 

This chapter illustrates applications of McMC in a Bayesian context. The treatment 
is mostly schematic; the objective is to present the mechanics of McMC in different 
modelling scenarios. Many of the examples, discussed in connection with the 
implementation of maximum likelihood (using Newton-Raphson and EM), are 
revisited from a Bayesian McMC perspective. These include the analysis of ABO 
blood group data, the binary regression, the genomic model, the two-component 
mixture model, and the Bayesian analysis of truncated data. Further examples are 
discussed in the second part of the book on Prediction and in the Exercise sections, 
including their solutions, at the end of the book. 

5.1 Example: Estimation of Gene Frequencies from ABO 
Blood Group Phenotypes 

The ABO blood group data discussed in Chap. 3 is reproduced in Table 5.1. The  
problem is to infer . pA, . pB and . p0, the frequency of the three alleles, A, B and 
0, respectively, subject to .pA + pB + p0 = 1. Three alleles give rise to six 
genotypes but only four phenotypic classes are observed. The observed data are 
.n = (nA, nAB, nB, n0), and the multinomial likelihood is proportional to the pmf 
.f (n|pA, pB, p0): 

. L (pA, pB |n) ∝ f (n|pA, pB, p0)

=
(
p2

A + 2pApB

)nA

(2pApB)nAB

(
p2

B + 2pBp0

)nB
(
p2
0

)n0
. (5.1) 

A Dirichlet prior will be chosen as distribution for the gene frequencies 
.pA, pB, andp0. The Dirichlet is a multivariate generalisation of the univariate beta 
distribution and is symbolised .Di (α) where . α is a vector of positive real numbers. 
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Table 5.1 Frequency of 
genotypes and phenotypes of 
ABO blood group data 

Genotype Phenotype Observed counts Frequency 

AA A .nA . p2
A

AO A . 2pApO

AB AB .nAB . 2pApB

BB B .nB . p2
B

BO B . 2pBpO

OO O .nO . p2
O

The pdf is 

. f (x1, . . . , xk|α1, . . . , αk) = 1

B (α)

∏k

i=1
x

αi−1
i ,

x1, . . . , xk−1 > 0,

x1 + . . . + xk−1 < 1,

xk = 1 − x1 − · · · − xk−1

and the normalising constant 

. B (α) =
∏k

i=1 � (αi)

�
(∑k

i=1 αi

)

is the multinomial beta function. A common special case is the symmetric Dirichlet 
distribution where all the elements of vector . α have the same value. The pdf 
simplifies to 

.f (x1, . . . , xk|α) = � (αk)

� (α)k

∏k

i=1
xα−1
i . (5.2) 

When .α = 1, this becomes a uniform distribution in .k − 1 dimensions. In this 
example, the Dirichlet prior is 

.f (pA, pB, p0) ∝ (pA)αA−1 (pB)αB−1 (p0)
αB−1 . (5.3) 

The likelihood (5.1) and the Dirichlet prior give rise to the posterior density 

. f (pA, pB, p0|n) ∝
(
p2

A + 2pApB

)nA

(2pApB)nAB

(
p2

B + 2pBp0

)nB
(
p2
0

)n0

(pA)αA−1 (pB)αB−1 (p0)
α0−1 . (5.4) 

The fully conditional posterior distributions do not have a closed form. An McMC 
approach requires a Metropolis-Hastings algorithm or using data augmentation that
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may lead to standard conditional posterior distributions. In the present example, data 
augmentation facilitates a computationally simple Gibbs sampling implementation, 
and I explore this alternative. First, data augmentation is described in general terms. 

Data Augmentation 

Imagine that there is an interest in obtaining the posterior distribution of a parameter 
. θ . Due to analytical intractability, one chooses to approximate .p (θ |y) using McMC. 
Often, the fully conditional posterior distribution .p (θ |y) does not have a standard 
form, and the McMC algorithm can be difficult to implement. The idea of data 
augmentation is to augment with the so-called latent data or missing data . ϕ, in  
order to exploit the simplicity of the resulting conditional posterior distribution 
.p (θ |ϕ, y). This is in the same spirit as in the EM algorithm: by increasing the 
dimensionality of the problem, possibly at the expense of extra computing time, 
although this is not always the case (Swendsen and Wang 1987), the problem is 
simplified algorithmically. The focus of inference is 

. p (θ |y) =
∫

p(θ |ϕ, y)p(ϕ|y)dϕ,

and this marginalisation is carried out via McMC. A key paper is Tanner and Wong 
(1987). 

The mechanics works as follows: Start with an initial legal value of . ϕ[0]. Given  
.ϕ[t] at iteration t , 

1. Draw .θ [t+1] from .
[
θ |ϕ[t], y

]
. 

2. Draw .ϕ[t+1] from .
[
ϕ|θ [t+1], y

]
. 

At convergence, the iterative procedure results in draws from the posterior 
distribution .[θ, ϕ|y], and the margins correspond to draws from .[θ |y] and .[ϕ|y]. 

To apply data augmentation to the ABO blood group data, one can define . nA =
nAA + nA0 and .nB = nBB + nB0. Then the missing data is 

. nm = (nA0, nAA, nBB, nB0) .

If the missing data were observed, 

.f (n, nm|pA, pB, p0)

=
(
p2

A

)nAA

(2pAp0)
nA0 (2pApB)nAB

(
p2

B

)nBB

(2pBp0)
nB0

(
p2
0

)n0
.
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This is the pmf of the standard multinomial distribution. The augmented posterior 
can be written 

. f (nm, pA, pB, p0|n) ∝ f (nm, pA, pB, p0) f (n|nm, pA, pB, p0)

= f (n, nm, pA, pB, p0)

= f (n, nm|pA, pB, p0) f (pA, pB, p0)

=
(
p2

A

)nAA

(2pAp0)
nA0 (2pApB)nAB

(
p2

B

)nBB

(2pBp0)
nB0

(
p2
0

)n0
(pA)αA−1 (pB)αB−1 (p0)

α0−1 . (5.5) 

This is proportional to 

. f (nm, pA, pB, p0|n) ∝ (pA)2nAA (pA)nA0 (pA)nAB (pA)αA−1

(pB)2nBB (pB)nB0 (pB)nAB (pB)αB−1

(p0)
2n0 (p0)

nB0 (p0)
nA0 (p0)

α0−1

= (pA)2nAA+nA0+nAB+αA−1 (pB)2nBB+nB0+nAB+αB−1

(p0)
2n0+nA0+nB0+α0−1 . (5.6) 

The Gibbs sampling algorithm requires extracting the fully conditional posterior
distributions

. f (pA, pB, p0|n, nm) , . (5.7a) 

f (nAA|pA, pB, p0, nA, n) , . (5.7b) 

f (nBB |pA, pB, p0, nB, n) (5.7c) 

from (5.5) or (5.6). The derivation of (5.7a) is straightforward: direct inspection of 
(5.6) indicates that the required fully conditional is 

. [pA, pB, p0|n, nm] ∼ Di (a, b, c) , (5.8) 

a Dirichlet distribution with parameters

.a = 2nAA + nA0 + nAB + αA,

b = 2nBB + nB0 + nAB + αB,

c = 2n0 + nA0 + nB0 + α0.



5.1 Example: Estimation of Gene Frequencies from ABO Blood Group. . . 211

To derive (5.7b) first replace in (5.5), .nA0 = nA − nAA. Extracting terms in . nAA

only yields 

. f (nAA|pA, pB, p0, nA, n) ∝
(
p2

A

)nAA

(2pAp0)
nA−nAA ,

which is the kernel of the binomial distribution 

. [nAA|pA, pB, p0, nA, n] ∼ Bi

(
p2

A

p2
A + 2pAp0

, nA

)
. (5.9) 

Similarly, after replacing .nBO = nB − nBB , 

. f (nBB |pA, pB, p0, nB, n) ∝
(
p2

B

)nBB

(2pBp0)
nB−nBB

which is the kernel of the binomial distribution 

. [nBB |pA, pB, p0, nB, n] ∼ Bi

(
p2

B

p2
B + 2pBp0

, nB

)
. (5.10) 

The Gibbs Sampling Implementation 

The data in Weir (1996) used in Chap. 3 is .nA = 725, .nAB = 72, .nB = 258, 
and .n0 = 1073. The  R-code below implements the Bayesian model with a Gibbs 
sampler, assuming .αA = αB = α0 = α = 2, start values .pA = 0.33, .pB = 0.33: 

# CODE0501 
# ABO BLOOD GROUP DATA - GIBBS SAMPLING 
rm(list=ls()) # Clear the workspace 
set.seed(1237) 
#install.packages("MCMCpack", .libPaths()[1]) 
# to access function rdirichlet 
library(MCMCpack) 
#CHOOSE LENGTH OF GIBBS CHAIN rep 
rep<-3000 
result<-matrix(data=NA,nrow=rep,ncol=4) 
# INITIALISE PARAMETERS 
p_A<-0.33 
p_B<-0.33 
p_0<-1-p_A-p_B 
alfa<-2 
# DATA
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n_A<-725 
n_AB<-72 
n_B<-258 
n_0<-1073 
#START WITH THE GIBBS LOOP 
for (i in 1:rep) 
{ 

# SAMPLE n_AA AND n_BB 
n_AA<-rbinom(1,n_A,p_A^2/(p_A^2+2*p_A*p_0)) 
n_BB<-rbinom(1,n_B,p_B^2/(p_B^2+2*p_B*p_0)) 
n_A0<-n_A-n_AA 
n_B0<-n_B-n_BB 
# SAMPLE p_A,p_B,p_0 
a<-2*n_AA+n_A0+n_AB+alfa 
b<-2*n_BB+n_B0+n_AB+alfa 
c<-2*n_0+n_A0+n_B0+alfa 
draws<- rdirichlet(1,c(a,b,c)) 
p_A<-draws[1,1] 
p_B<-draws[1,2] 
p_0<-draws[1,3] 
result[i, ]<-c(i,p_A,p_B,p_0) 

} 
# END OF GIBBS LOOP 
meanp_A<-mean(result[,2]) 
meanp_A 

## [1] 0.2092435 

varp_A<-var(result[,2]) 
cip_A<- quantile(result[,2],c(0.025,0.975)) 
cip_A 

## 2.5% 97.5% 
## 0.1967966 0.2220510 

meanp_B<-mean(result[,3]) 
meanp_B 

## [1] 0.0811496 

varp_B<-var(result[,3]) 
cip_B<- quantile(result[,3],c(0.025,0.975)) 
cip_B
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## 2.5% 97.5% 
## 0.07306027 0.08997164 

covp_Ap_B<-cov(result[,2],result[,3]) 

These results are in good agreement with those from previous analyses. 

5.2 Example: A Regression Model for Binary Data 

The binary regression discussed in Chap. 3 was parametrised as 

. Pr
(
yi = 1|x′

iβ
) = Pr (ui < 0|xi, β) ,

Pr
(
yi = 0|x′

iβ
) = Pr (ui > 0|xi, β) ,

where . ui is the unobserved liability. The logistic loglikelihood shown in (3.30) is  

.l (β|y, x) =
N∑

i=1

{
(1 − yi) x′

iβ − ln
[
1 + exp

(
x′
iβ
)]}

. (5.11) 

At the level of the liability u, the linear model for the ith datum is

.ui = x′
iβ + ei, i = 1, 2, ..., N, (5.12) 

where . x′
i is the ith row of the known non-stochastic .N × p matrix of explanatory 

variables (covariates), . β is an unknown parameter vector .(of order p × 1), and the 
residuals . ei are iid variables drawn from a standard logistic distribution with mean 
0 and variance .π2/3. 

A Bayesian implementation requires assigning a prior specification for . β. One  
possibility is to assume a uniform prior. In this case, the posterior .p (β|y, x) is 
proportional to the likelihood, and therefore the logposterior takes the same form as 
the loglikelihood (5.11). 

Note: The notation for the posterior density .p (β|y, x) indicates that conditioning 
is on the observations (. 1′s and . 0′s) and the covariates (.x1, . . . , xN ) where N is the 
number of individuals. Hyperparameters are not included, and often, covariates are 
also omitted from the notation. When this is the case, the posterior density is written 
as .p (β|y).
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Metropolis-Hastings Algorithm 

An implementation with the Metropolis-Hastings algorithm requires a proposal 
density for . β. A possibility is a normal distribution centred at the current value . β[t]

and covariance matrix . λC. Let the proposed value be .Y = Yβ , and let the current 
state of the chain be .X[t] = x = β[t]. Then the algorithm is as follows: 

1. Set .t = 0 and choose a starting value for . β equal to . β[0]; choose C and the tuning 
parameter . λ. 

2. Let .t = t + 1. 
3. Draw .Yβ ∼ N

(
β[t], λC

)
. The density of this normal distribution evaluated at the 

proposed value . Yβ is .q
(
Yβ |β[t], λC

)
. 

4. Draw .u ∼ Un (0, 1). 
5. If .u < α, .β[t+1] = Yβ . Otherwise .β[t+1] = β[t]. 
6. Go to 2. 

This is repeated until a chain of sufficient length is obtained. The decision is 
based on computation of effective chain length and Monte Carlo standard errors of 
estimates of features from the posterior distribution of . β. The tuning parameter . λ is 
used to obtain acceptance ratios in the range .(0.25; 0.50). 

The acceptance probability in step 5 is 

.α = p
(
Yβ |y, x

)

p
(
β[t]|y, x

) q
(
β[t]|Yβ, λC

)

q
(
Yβ |β[t], λC

) . (5.13) 

In contrast with the general notation used in (4.67), here, a notation specific to the 
model is used. Comparing with (4.67), 

. π (Y ) = p
(
Yβ |y, x

)
,

π (x) = p
(
β[t]|y, x

)
,

q (x|Y ) = q
(
β[t]|Yβ, λC

)
,

q (Y |x) = q
(
Yβ |β[t], λC

)
.

The notation .q
(
β[t]|Yβ, λC

)
agrees with that used for .q (·|Y ) in (4.67). The 

proposal density .q (·|Y ) is evaluated at . β[t], and .YβandλC are, respectively, the 
mean and variance of the distribution. Due to the symmetry properties of the normal 
distribution, the second ratio in the right-hand side of (5.13) is equal to 1, and the 
acceptance probability reduces to the ratio of the posterior distributions . p (·|y, x)

evaluated at .β = Yβ and at .β = β[t], respectively. The acceptance probability is 

.α = p
(
Yβ |y, x

)

p
(
β[t]|y, x

) . (5.14)
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An alternative approach is to use a probit model. The probit likelihood was given 
in (3.75): 

.L (β|x, y) ∝
∏N

i=1

[(
1 − 	

(
x′
iβ
))yi

(
	
(
x′
iβ
))1−yi

]
. (5.15) 

Assuming a uniform prior for . β results in a posterior distribution proportional to the 
likelihood. The logposterior is obtained by taking logarithms of (5.15). This gives, 
up to an additive constant, 

. lnp (β|x, y) =
N∑

i=1

[
yi ln

(
1 − 	

(
x′
iβ
)) + (1 − yi) ln

(
	
(
x′
iβ
))]

. (5.16) 

The Metropolis-Hastings algorithm based on the probit model follows along the
same lines as with the logistic model. In the problems section Bayes Exercises II,
you are asked to fit a logistic and a probit Bayesian model to binary data.

Gibbs Sampling Algorithm 

The Gibbs sampling algorithm requires knowledge of the fully conditional posterior 
distributions (fcpd). The logposteriors (5.11) and (5.16) do not lead to fcpd that have 
a standard form. An alternative strategy is to augment the posterior distribution with 
the unobserved liability u. This is illustrated using the probit model. At the level of 
the liability, the linear model for the ith record is 

.ui = x′
iβ + ei , ei

iid∼ N (0, 1) , i = 1, . . . , N. (5.17) 

As before, assume

. Pr (yi = 1|β, xi) = Pr (ui < 0|β, xi) (5.18) 

and

.Pr (yi = 0|β, xi) = Pr (ui > 0|β, xi) . (5.19) 

The density of the augmented posterior is

. p (u, β|y) ∝ p (u, β) p (y|u, β) Bayes theorem

= p (u|β) p (β) p (y|u) given u, y is independent of β

∝ p (u|β) p (y|u) assuming a uniform prior for β. (5.20)
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In this expression, .p (y|u) is a degenerate density: if u is observed, y is not 
stochastic because its value is known unambiguously as indicated in (5.18) and 
(5.19). That is, 

. Pr (yi = 1|ui > 0) = Pr (yi = 0|ui < 0) = 0,

Pr (yi = 1|ui < 0) = Pr (yi = 0|ui > 0) = 1.

Therefore, the joint density of vector y, given  u, is  

.p (y|u) =
∏N

i=1

[
I (ui < 0)yi + I (ui > 0)1−yi

]
. (5.21) 

It is important to realise that the focus of inference here is 

. p (β|y) =
∫

p (u, β|y) du

and not necessarily the augmented posterior .[u, β|y]. When the system converges to 
the stationary distribution, the Gibbs sampler, in general, McMC, generates Monte 
Carlo draws from the joint posterior .[u, β|y]; the margins are draws from .[β|y] and 
from .[u|y]. In this sense, McMC is an automatic algorithm that performs the desired 
marginalisations. The draws from .[u, β|y] are obtained by sampling repeatedly from 
.[β|u, y] and .[u|β, y]. 

The fully conditional posterior distributions .[β|u, y] and .[u|β, y] are derived 
from (5.20) as follows:  

• The fcpd .[β|u, y] is obtained by extracting from (5.20) the terms containing . β. 
This yields 

. p (β|u, y) ∝ p (u|β)

∝ exp

(
−1

2
(u − Xβ)′ (u − Xβ)

)
. (5.22) 

As a function of . β, this density does not have a recognisable form. A little more 
work is needed. The quadratic form can be written as 

. (u − Xβ)′ (u − Xβ) = u′u − 2u′Xβ + β ′X′Xβ.

Define 

.X′Xβ̂ = X′u. (5.23)
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Then, 

. u′X = β̂ ′X′X,

u′Xβ = β̂ ′X′Xβ.

Now, replace .−2u′Xβ by .−2β̂ ′X′Xβ in the quadratic form 

. (u − Xβ)′ (u − Xβ) = u′u − 2β̂ ′X′Xβ + β ′X′Xβ.

Adding and subtracting .β̂ ′X′Xβ̂ and keeping terms containing . β yield 

. (u − Xβ)′ (u − Xβ) = (
β − β̂

)′
X′X

(
β − β̂

) + k,

where k is a constant that does not depend on . β. Substituting in (5.22) gives  

. p (β|u, y) ∝ exp

(
−1

2

(
β − β̂

)′
X′X

(
β − β̂

))

which is the kernel of a normal distribution with mean . ̂β and variance .
(
X′X

)−1. 
Therefore, 

. [β|u, y] ∼ N
(
β̂,

(
X′X

)−1
)

. (5.24) 

• The fcpd .[u|β, y] is obtained by extracting from (5.20) those terms that include 
u. This results in 

. p (u|β, y) ∝ p (u|β) p (y|u) .

The first term, seen as a function of u, is obtained directly from (5.17). This gives 

. [u|β] ∼ N (Xβ, I) . (5.25) 

The term .p (y|u) is given in (5.21). Therefore, the density of the fcpd . [ui |β, y]
can be written 

.p (ui |β, y) ∝ N
(
ui |x′

iβ, 1
) [

I (ui < 0)yi + I (ui > 0)1−yi

]
. (5.26) 

This means that if .yi = 1, .ui < 0, and the full conditional posterior 
distribution of . ui is a truncated normal, with mean . x′

iβ, variance 1, and support 
.(−∞, 0). If  .yi = 0, then .ui > 0 and the fully conditional posterior distribution 
of . ui is a truncated normal, with mean . x′

iβ, variance 1 and support .(0,∞).
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In Bayes Exercises II, problem 3, you are asked to analyse binary data with 
a Bayesian probit model implemented with a Gibbs sampler using the data 
augmentation algorithm. 

Drawing Samples from Truncated Distributions 

An efficient algorithm to sample from univariate truncated distributions is as 
follows: Let Y be a random variable from a normal distribution truncated between 
a (lower bound) and b (upper bound). To obtain a draw from the truncated normal 
.T N(a,b)

(
μ, σ 2

)
, where . μ and . σ 2 are the mean and variance before truncation, 

• Simulate U from a uniform distribution .Un (p1, p2), where . p1 =
	 [(a − μ) /σ ] and .p2 = 	 [(b − μ) /σ ]. 

• The truncated normal is 

. y = μ + σ	−1 (U) ,

where .	(·) is the cdf and .	−1 (·) is the inverse cdf of the standard normal 
distribution. 

A more general method to sample from any univariate distribution truncated in 
the interval .[a, b] is as follows: If the cdf of the untruncated variate is F , then a 
draw from the truncated distribution is (Devroye 1986, page 38 Example 10) 

.y = F−1 {F (a) + U [F (b) − F (a)]} , (5.27) 

where U is a draw from a uniform distribution in the interval .[0, 1]. If  . 	 is the 
distribution function of the standard normal, then to draw from .T N(a,b)

(
μ, σ 2

)
, 

application of (5.27) yields 

.y = μ +
{
σ	−1 [	(�) + U (	 (u) − 	(�))]

}
(5.28) 

where the lower bound is .� = (a − μ) /σ , the upper bound is .u = (b − μ) /σ , and 
U is a draw from a uniform distribution in the interval .[0, 1]. With binary data and 
.u ∼ N (μ, 1), if .y = 1, .a = −∞, .b = 0, and 

. 
	(�) = 0,

	 (u) = 	(−μ)

}
if y = 1.

If .y = 0, .a = 0, .b = ∞, and 

.
	(�) = 	(−μ) ,

	 (u) = 1

}
if y = 0.
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An R-code below generates N samples from (5.26) using algorithm (5.28): 

# CODE0502 
rm(list=ls()) # CLEAR WORKSPACE 
########### DRAWING ALL U’s IN ONE GO 
### REQUIRES TO GENERATE BINARY RECORDS y 
## USING PARAMETRISATION A OR B BELOW 
# A  
##### y = 0 -> TN(mean,1)(0,Infinity) 
##### y = 1 -> TN(mean,1)(-Infinity,0) 
########## OR ################# 
# B  
##### y = 1 -> TN(mean,1)(0,Infinity) 
##### y = 0 -> TN(mean,1)(-Infinity,0) 
##################### 
set.seed(237777) 
nrow <- 10 
ncol <- 5 
mu <- 0 
# GENERATE X MATRIX 
X<-matrix(nrow= nrow,ncol= ncol,rbinom(nrow*ncol,size=2,p=.5)) 
# GENERATE VECTOR b 
b <- rnorm(ncol,0.5,1) 
xb<-X%*%b 
# LOGIT MODEL 
#p1<-exp(mu+xb)/(1+exp(mu+xb)) # IF B 
#p1 <- 1 - exp(mu+xb)/(1+exp(mu+xb)) # IF A 
# PROBIT MODEL- GENERAte VECTOR OF DATA y 
#p1 <- pnorm(mu+xb) # IF B 
p1 <- 1 - pnorm(mu+xb) # IF A  
y <- rbinom(nrow,1,p1) 
mean <- mu+xb 
sd <- 1 

interm<-(1-y)*pnorm(0,mean=mean,sd=sd)+runif(length(y))* 
(pnorm(0,mean=mean,sd=sd)*(y)+ 
(1-pnorm(0,mean=mean,sd=sd))*(1-y)) 

u <- qnorm(interm,mean=mean,sd=sd) 
p1[1:5] 

## [1] 0.70255823 0.82055114 0.05872622 0.52202695 0.37241559 

p1[6:nrow] 

## [1] 0.04796642 0.56227502 0.37241559 0.05222701 0.89662931 

y[1:5] 

##  [1]  1 1 0 0 0  

y[6:nrow] 

##  [1]  0 1 1 0 1
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u[1:5] 

## [1] -0.4976322 -0.6461563 3.8849389 0.4510179 1.1993790 

u[6:nrow] 

## [1] 1.962061 -1.652975 -1.563791 1.138155 -2.003726 

As a more transparent case, consider drawing a sample y of size 1 from a 
normal distribution, with mean 10 and variance 4, that is truncated in the interval 
.[11.0, 11.5]. Then application of (5.28) leads to the following algorithm: 

rm(list=ls()) # CLEAR WORKSPACE 
set.seed(1237) 
l <- (11-10)/2 
u <- (11.5-10)/2 
y <- 10 + (2*qnorm(pnorm(l) + runif(1)*(pnorm(u) - pnorm(l)))) 
y 

## [1] 11.15587 

5.3 Example: A Regression Model for Correlated Binary 
Data 

Very often data cluster in groups where members of the same group are correlated 
and groups can be uncorrelated. An example consists of independent full-sib 
families. In this setup, the model must be extended to account for the correlated 
structure of the observations (see Likelihood Exercises II, Problem 3 iii). This 
section illustrates a probit Bayesian model that can handle this situation. 

The first step is to include a term in (5.17) that accounts for the correlated 
structure. The standard approach is to use a random variable f that represents a 
family effect: 

.uij = x′
ij β + fi + eij , (5.29)

fi |σ 2
f

iid∼ N
(
0, σ 2

f

)
, σ 2

f ∈ [0, 1] ,

eij
iid∼ N (0, 1) ,

i = 1, . . . , nf , j = 1, . . . , n.
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Assume that 

. Pr (yi = 1|β, xi, fi) = Pr (ui < 0|β, xi, fi)

= Pr
(
x′
ij β + fi + eij < 0|β, xi, fi

)

= Pr
(
eij < −x′

ij β − fi |β, xi, fi

)

= 1 − 	
(
x′
ij β + fi

)

and 

. Pr (yi = 0|β, xi, fi) = Pr (ui > 0|β, xi)

= 	
(
x′
ij β + fi

)
.

In this specification, . x′
ij is a row vector with p columns (number of elements 

in . β) corresponding to individual j of family i, . fi is the effect of the ith full-sib 
family, . σ 2

f is the variance between families (or covariance between full-sibs), . nf is 
the number of full-sib families, n is the number of full-sibs per family (here assumed 
to be the same for all families), and the total number of records is .N = nf ×n. Since 
according to quantitative genetic theory, in the absence of common environmental 
effects and assuming an additive genetic model, the heritability at the level of the 
liability is equal to 

. h2 = 2σ 2
f

σ 2
f + 1

, 0 < h2 < 1,

then it follows that .σ 2
f ∈ [0, 1]. The heritability on the liability scale does not depend 

on the prevalence of the disease in the population. 

Gibbs Sampling Implementation 

Using the data augmentation strategy, the parameters of the model are .

[
u, β, f, σ 2

f

]
. 

The density of the prior distribution is assumed to admit the following factorisation: 

.p
(
u, β, f, σ 2

f

)
∝ p (u|β, f ) p

(
f |σ 2

f

)
p
(
σ 2

f

)

∝ p (u|β, f ) p
(
f |σ 2

f

)
.
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It is assumed that .p (β) and .p
(
σ 2

f

)
are proportional to constants. The augmented 

posterior is 

. p
(
u, β, f, σ 2

f |y
)

∝p
(
u, β, f, σ 2

f

)
p
(
y|u, β, f, σ 2

f

)

∝p
(
f |σ 2

f

)∏
ij

p
(
uij |β, fi

)
p
(
yij |uij

)
, σ 2

f ∈ [0, 1] . (5.30) 

The Bayesian model can be implemented with a variety of McMC algorithms. 
One possibility that is explored here is to use data augmentation and update the 
parameters one at a time. The required fcpd are 

. [β|D] ; [u|D] ; [f |D] ;
[
σ 2

f |D
]
,

where D is a vector containing the observations y and all the parameters of the 
model except the one to be updated. 

Deriving [β|D] 

Extracting from (5.30) the terms that depend on . β yields 

. p (β|D) ∝
∏

ij
p
(
uij |β, fi

)

∝ exp

(
−1

2
(u − Xβ − Zf )′ (u − Xβ − Zf )

)

= exp

(
−1

2
(̃u − Xβ)′ (̃u − Xβ)

)
, (5.31) 

where .̃u = u − Zf . This has the same form as (5.22). Then it is easy to see that 

. [β|D] ∼ N
(
β̂,

(
X′X

)−1
)

, (5.32) 

where here

.β̂ = (
X′X

)−1
X′ (u − Zf ) .
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Deriving [u|D] 

Inspection of (5.30) and (5.20) reveals that .[u|D] = [u|y]. Therefore, since the . uij

are conditionally independent, given . fi , 

.
[
uij |β, f, y

] ∼ N
(
x′
ij β + fi, 1

) [
I
(
uij < 0

)yij + I
(
uij > 0

)1−yij
]
. (5.33) 

Deriving [f |D] 

The fcpd .[f |D] is obtained by extracting from (5.30) those terms that depend on f . 
This gives 

. p (f |D) ∝ p
(
f |σ 2

f

)∏
ij

p
(
uij |β, fi

)

∝ exp

(
− 1

2σ 2
f

f ′f
)
exp

(
−1

2
(u − Xβ − Zf )′ (u − Xβ − Zf )

)

= exp

(
−1

2

[
(̃u − Zf )′ (̃u − Zf ) + kf ′f

])
(5.34) 

where .ũ = u − Xβ and .k = σ−2
f . The quadratic form can be written as 

. (̃u − Zf )′ (̃u − Zf ) + kf ′f = ũ′ũ − 2f ′Z′ũ + f ′Z′Zf + kf ′f

= constant − 2f ′Z′ũ + f ′ (Z′Z + Ik
)
f.

Define 

.
(
Z′Z + Ik

)
f̂ = Z′ũ (5.35) 

and substitute .Z′ũ by .
(
Z′Z + Ik

)
f̂ . Then 

. (̃u − Zf )′ (̃u − Zf ) + kf ′f = constant − 2f ′ (Z′Z + Ik
)
f̂ + f ′ (Z′Z + Ik

)
f.

Adding and subtracting .f̂ ′ (Z′Z + Ik
)
f̂ and keeping terms in f only yield 

. (ũ − Zf )′ (ũ − Zf ) + kf ′f = constant + (
f − f̂

)′ (
Z′Z + Ik

) (
f − f̂

)
.

Substituting the above in the exponential of (5.34) reveals that the fully conditional 
is 

.

[
f |σ 2

f ,D
]

∼ N
(
f̂ ,

(
Z′Z + Ik

)−1
)

(5.36)
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where . f̂ is given in (5.35). In this simple model with unrelated families, the term 
.Z′Z is diagonal, and computations are straightforward. 

Deriving
[
σ 2 

f
|D

]

Finally, the term .

[
σ 2

f |D
]
is obtained from 

. p
(
σ 2

f |D
)

∝ p
(
f |σ 2

f

)

∝
(
σ 2

f

)− nf
2
exp

(
− 1

2σ 2
f

f ′f
)

=
(
σ 2

f

)−
(

vf
2 +1

)
exp

(
−vf Sf

2σ 2
f

)
, σ 2

f ∈ [0, 1] , (5.37) 

which is the kernel of the density of a truncated scaled inverted chi-square 
distribution with scale .Sf = f ′f/vf and .vf = nf − 2 degrees of freedom. A 
draw .σ 2∗

f from this distribution is 

. σ 2∗
f ∼ f ′f

χ2
(
vf

) , σ 2∗
f ∈ [0, 1] .

where .χ2
(
vf

)
is a draw from a chi-square distribution with . vf degrees of freedom. 

One must confirm that the draw is within the constraint .σ 2∗
f ∈ [0, 1]. 

A Metropolis Within Gibbs Implementation: Case 1 

In the Gibbs sampling implementation, the bound on . h2 imposes the constraint . σ 2
f ∈

[0, 1], but this was not incorporated in the prior distribution of . σ 2
f . An unbounded 

uniform prior for . σ 2
f was chosen instead, even though the posterior is defined within 

the constraint .σ 2
f ∈ [0, 1]. The code of the McMC implementation must account for 

this constraint. In certain cases, this may require the need to draw from truncated 
distributions. 

One may wish to incorporate the constraint on . σ 2
f assuming a beta prior. 

However, depending on how the algorithm is tailored, there may still be a need 
to confirm that the McMC samples are within the bounds imposed by the model. 

A detail to observe is that the beta density does not assign a probability to .σ 2
f = 0. 

This implies that a value of exactly 0 is excluded in the posterior distribution of . σ 2
f .
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A mixture prior with a component that has a probability mass of 1 for .σ 2
f = 0 would 

remedy this shortcoming. 
With this reservation in mind, one may explore using a beta prior distribution 

that may lead to more stable inferences when the likelihood is not very informative. 
Assuming a beta prior for . σ 2

f causes the density of the posterior distribution to 
change from (5.30) to  

. p
(
u, β, f, σ 2

f |y
)

∝ p
(
u, β, f, σ 2

f

)
p
(
y|u, β, f, σ 2

f

)

∝ p
(
f |σ 2

f

)
p
(
σ 2

f

)∏
ij

p
(
uij |β, fi

)
p
(
yij |uij

)
, (5.38) 

σ 2
f ∈ [0, 1]

where 

.p
(
σ 2

f

)
∝
(
σ 2

f

)a−1 (
1 − σ 2

f

)b−1
, σ 2

f ∈ [0, 1] , a > 0, b > 0. (5.39) 

As in Scenario 1, the fcpd are

. [β|D] ; [u|D] ; [f |D] ;
[
σ 2

f |D
]

which, with the exception of .

[
σ 2

f |D
]
, are unchanged. The fcpd of . σ 2

f is obtained by 

extracting from (5.38) the terms that are a function of . σ 2
f . This gives 

. p
(
σ 2

f |D
)

∝ p
(
f |σ 2

f

)
p
(
σ 2

f

)

∝
(
σ 2

f

)− nf
2
exp

(
− 1

2σ 2
f

f ′f
)(

σ 2
f

)a−1 (
1 − σ 2

f

)b−1

=
(
σ 2

f

)−
(

vf
2 +1

)
exp

(
−vf Sf

2σ 2
f

)(
σ 2

f

)a−1 (
1 − σ 2

f

)b−1
. (5.40) 

Above, .vf = nf − 2 and .Sf = f ′f/vf where f is the vector with the sampled 
values of family effects. This density does not have a distinguishable closed form. 
Therefore, a Metropolis-Hastings step can be used to update . σ 2

f . 

Let .Yσ 2
f
denote the proposed value of . σ 2

f drawn from the proposal distribution 

with density .q
(
·|σ 2

f

)
that may depend on . σ 2

f (it does not have to). Then the 

Metropolis-Hastings step at iteration t is as follows: 

1. At iterate .t = 0, choose a start value for . σ 2
f ; label it .σ

2[0]
f . 

2. Set .t = t + 1.



226 5 McMC in Practice

3. Draw .Yσ 2
f
from proposal distribution. If .Yσ 2

f
> 0.999, then set .Yσ 2

f
= σ

2[t]
f , and 

go to 7. 
4. Draw .u ∼ Un (0, 1). 
5. Compute acceptance probability . α. 
6. If .u < α, .σ 2[t+1]

f = Yσ 2
f
. Otherwise, . σ 2[t+1]

f = σ
2[t]
f

7. Continue with the Gibbs sampling step, and when completed, go to 2 

where 

. α =
p
(
Yσ 2

f
|y, x

)

p
(
σ
2[t]
f |y, x

)
q
(
σ
2[t]
f |Yσ 2

f

)

q
(
Yσ 2

f
|σ 2[t]

f

)

=

(
Yσ 2

f

)−
(

vf
2 +1

)
exp

(
− vf Sf

2Y
σ2
f

)(
Yσ 2

f

)a−1 (
1 − Yσ 2

f

)b−1

(
σ
2[t]
f

)−
(

vf
2 +1

)
exp

(
− vf Sf

2σ 2[t]
f

)(
σ
2[t]
f

)a−1 (
1 − σ

2[t]
f

)b−1

q
(
σ
2[t]
f |Yσ 2

f

)

q
(
Yσ 2

f
|σ 2[t]

f

)

(5.41) 

The behaviour of the algorithm is influenced by the choice of the proposal
distribution q. One possibility is to use a scaled inverted chi-square distribution
(that does not depend on . σ 2

f ) of the form 

. q
(
Yσ 2

f

)
∝
(
Yσ 2

f

)−
(

vf
2 +1

)
exp

(
−vf Sf

2Yσ 2
f

)
.

The ratio of the proposal terms is 

. 

q
(
σ
2[t]
f |σ 2[p]

f

)

q
(
Yσ 2

f
|σ 2[t]

f

) =

(
σ
2[t]
f

)−
(

vf
2 +1

)
exp

(
− vf Sf

2σ 2[t]
f

)

(
Yσ 2

f

)−
(

vf
2 +1

)
exp

(
− vf Sf

2Y
σ2
f

)

and the Metropolis-Hastings acceptance ratio (5.41) reduces to 

.α =
(
Yσ 2

f

)a−1 (
1 − Yσ 2

f

)b−1

(
σ
2[t]
f

)a−1 (
1 − σ

2[t]
f

)b−1
. (5.42)

This acceptance probability must be set equal to 0 if the proposed value is outside
the permissible interval.
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A Metropolis Within Gibbs Implementation: Case 2 

Another possibility is to draw at cycle t the proposed value .Yσ 2
f
from a lognormal 

distribution centred at .ln σ
2[t]
f . The lognormal density is 

. q
(
Yσ 2

f
|σ 2[t]

f

)
= (2πk)−

1
2 exp

⎡
⎢⎣−

(
lnYσ 2

f
− ln σ

2[t]
f

)2

2k

⎤
⎥⎦ 1

Yσ 2
f

,

where k is a tuning parameter chosen by the user. The ratio of the proposal terms is 

. 

q
(
σ
2[t]
f |Yσ 2

f

)

q
(
Yσ 2

f
|σ 2[t]

f

) =
Yσ 2

f

σ
2[t]
f

and the Metropolis-Hastings acceptance ratio (5.41) is given by 

.α =

(
Yσ 2

f

)−
(

vf
2 +1

)
exp

(
− vf Sf

2Y
σ2
f

)(
Yσ 2

f

)a−1 (
1 − Yσ 2

f

)b−1

(
σ
2[t]
f

)−
(

vf
2 +1

)
exp

(
− vf Sf

2σ 2[t]
f

)(
σ
2[t]
f

)a−1 (
1 − σ

2[t]
f

)b−1

Yσ 2
f

σ
2[t]
f

. (5.43) 

This acceptance probability must be set equal to 0 if the proposed value is outside 
the permissible interval. 

5.4 Example: A Genomic Model 

The genomic model was implemented in a likelihood setting with Newton-Raphson 
and with the EM algorithm. Here, the model is fitted using a Bayesian McMC 
approach. 

To recapitulate, in its original parametrisation, the initial hierarchy of the 
genomic model is defined by the expressions 

.y|μ, b, σ 2
e ∼ N

(
1μ + Wb, Iσ 2

e

)
,

b|σ 2
b ∼ N

(
0, Iσ 2

b

)
,
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where the matrix of marker genotype codes W of dimension .n × m is centred and 
scaled and the vector of marker effects b has m elements. The genomic values are 
defined as .g = Wb. 

The reparametrised model uses the decomposition 

. G = 1

m
WW ′

= 1

m
UU ′

= U�U ′, � = 1

m
.

The diagonal matrix . � contains the (scaled) eigenvalues . λi of U , .i = 1, . . . , n. The  
last eigenvalue is .λn = 0. 

On defining .α ∼ N
(
0,�σ 2

g

)
, where .σ 2

g = mσ 2
b , the alternative parametrisation 

as defined on page 93 is 

. y|μ, α, σ 2
e ∼ N

(
1μ + Uα, Iσ 2

e

)
,

α|U, σ 2
g ∼ SN

(
0,�σ 2

g

)
,

G = U�U ′,

y|μ, σ 2
g , σ 2

e ∼ N
(
1μ,U�U ′σ 2

g + Iσ 2
e

)
.

In contrast with (3.38), here, a scalar mean . μ is included. In the reparametrised 
model, the column vector of genomic values is .g = Uα, where . α is the regression 
of genomic values on eigenvectors. 

The vector 

. α′ = (α1, . . . , αn−1, αn)
′

= (
α′−nαn

)

of dimension n has its first .n−1 elements different from zero (the vector .α−n above) 
and the last element .αn = 0. As mentioned before, the marginal density of . αn is a 

point mass at zero, because .λn = 0 and therefore .
[
α|U, σ 2

g

]
has the form of a 

singular normal distribution.
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The parameters of the Bayesian model are .

(
μ, α, σ 2

g , σ 2
e

)
, and the density of the 

posterior distribution is 

. p
(
μ, α, σ 2

g , σ 2
e |y

)
∝ p

(
μ, α, σ 2

g , σ 2
e

)
p
(
y|μ, α, σ 2

g , σ 2
e

)

∝ p
(
α|σ 2

g

)
p
(
y|μ, α, σ 2

e

)
(5.44) 

where it is assumed that 

. p
(
μ, σ 2

g , σ 2
e

)
∝ constant.

A Gibbs sampling algorithm requires to update the parameters from the fcpd’s 

. [μ|D] ; [α|D] ;
[
σ 2

g |D
]
;
[
σ 2

e |D
]
.

Deriving [μ|D] 

Extracting from (5.44) those terms that include . μ gives 

. p (μ|D) ∝ p
(
y|μ, α, σ 2

e

)

∝ exp

[
− 1

2σ 2
e

(y − 1μ − Uα)′ (y − 1μ − Uα)

]

= exp

[
− 1

2σ 2
e

(
y∗ − 1μ

)′ (
y∗ − 1μ

)]
,

where .y∗ = y − Uα. This has the same form as (5.31) and therefore 

. [μ|D] ∼ N
(
μ̂,

(
1′1

)−1
σ 2

e

)
, (5.45a) 

where

.μ̂ = (
1′1

)−1 1′ (y − Uα) .
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Deriving [α|D] 

Extracting from (5.44) those terms that include . α gives 

. p (α|D) ∝ p
(
α|σ 2

g

)
p
(
y|μ, α, σ 2

e

)

∝ exp

[
− 1

2σ 2
g

α′�−α

]
exp

[
− 1

2σ 2
e

(y − 1μ − Uα)′ (y − 1μ − Uα)

]
.

In this expression, 

. �− =
[

(�−n)
−1
(n−1)×(n−1) 0(n−1)×1

01×(n−1) 01×1

]

n×n

and .(�−n)
−1 is the .(n − 1) × (n − 1) diagonal matrix whose diagonal elements 

are the inverse of the non-zero eigenvalues .λ1, . . . , λn−1. The two terms in the 
exponentials can be brought together to obtain 

. p (α|D) ∝ exp

[
− 1

2σ 2
e

{
(y − 1μ − Uα)′ (y − 1μ − Uα) + kα′�−α

}]
,

(5.46) 

where .k = σ 2
e /σ 2

g . The term in curly brackets that only contains terms in . α is 

. 
{
(y − 1μ − Uα)′ (y − 1μ − Uα) + kα′�−α

} =
= −2α′U ′y + 2α′U ′1μ + α′U ′Uα + kα′�−α

= −2α′U ′ (y − 1μ) + α′α + kα′�−α

= −2α′U ′ (y − 1μ) + α′ (I + �−k
)
α,

excluding an additive constant. Defining 

.
(
I + �−k

)
α̂ = U ′ (y − 1μ) (5.47) 

and replacing .−2U ′ (y − 1μ) by the left-hand side of this expression gives 

.
{
(y − 1μ − Uα)′ (y − 1μ − Uα) + kα′�−α

} ∝
∝ −2α′ (I + �−k

)
α̂ + α′ (I + �−k

)
α.
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excluding an additive constant. Adding and subtracting .̂α′ (I + �−k
)
α̂ and keeping 

only terms that contain . α lead to (excluding an additive constant) 

. 
{
(y − 1μ − Uα)′ (y − 1μ − Uα) + kα′�−α

} =
= (α − α̂)′

(
I + �−k

)
(α − α̂) .

Substituting in (5.46), 

. p (α|D) ∝ exp

[
− 1

2σ 2
e

(α − α̂)′
(
I + �−k

)
(α − α̂)

]

which is the kernel of the normal distribution 

. [α|D] ∼ N
(
α̂,

(
I + �−k

)−1
σ 2

e

)
. (5.48) 

In practice, one implements the Gibbs sampler updating the non-zero .n−1 elements 
.α−n from the .(n − 1) dimensional normal distribution 

.α−n|D ∼ N

(
α̂−n,

(
I + �−1−nk

)−1
σ 2

e

)
(5.49) 

where .̂α−n contains the first .(n − 1) non-zero elements of . ̂α defined in (5.47). The 
the nth element of . ̂α is equal to zero. 

The update is computationally straightforward since the .α′s are conditionally 
independent. A little manipulation with (5.48) or (5.49) shows that 

. E (αi |D) = α̂i = λi

λi + k
U ′

i (y − 1μ) ,

V ar (αi |D) = λiσ
2
e

λi + k
, i = 1, . . . , n − 1

and therefore each . αi is updated from .N (E (αi |D) , V ar (αi |D)). These expres-
sions make it clear that when .λn = 0, the mean and variance are zero, and the 
density collapses to a point mass at zero.
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Deriving
[
σ 2 

g |D
]

The fcpd of the genomic variance component defined at the level of this operational 
model is obtained by extracting from (5.44) those terms that include . σ 2

g . This results 
in 

. p
(
σ 2

g |D
)

∝ p
(
α|σ 2

g

)

∝
(
σ 2

g

)−
(

n−1
2

)
exp

(
−α′�−α

2σ 2
g

)
, (5.50) 

that is proportional to the kernel of a scaled inverse chi-square distribution with 
.vα = n − 3 degrees of freedom and scale .Sα = (

α′�−α/vα

)
. The density up to 

proportionality is equal to 

.p
(
σ 2

g |D
)

∝
(
σ 2

g

)−( vα
2 +1)

exp

(
−vαSα

2σ 2
g

)
. (5.51) 

To extract a sample from (5.51), draw from a chi-square distribution with . vα degrees 
of freedom 

. χ2 (vα)

and then compute 

. 
α′−n(�−n)

−1α−n

χ2 (vα)
.

Deriving
[
σ 2 

e |D]

Extracting from (5.44) those terms that include . σ 2
e gives 

.p
(
σ 2

e |D
)

∝ p
(
y|μ, α, σ 2

e

)

∝
(
σ 2

e

)− n
2
exp

[
− 1

2σ 2
e

(y − 1μ − Uα)′ (y − 1μ − Uα)

]
.



5.4 Example: A Genomic Model 233

Regarded as a function of . σ 2
e , this is proportional to a scaled inverted chi-square 

density, with scale 

. Se = (y − 1μ − Uα)′ (y − 1μ − Uα)

ve

and with .ve = n − 2 degrees of freedom. That is, 

.p
(
σ 2

e |D
)

∝
(
σ 2

e

)−( ve
2 +1)

exp

(
−veSe

2σ 2
e

)
. (5.52) 

To extract a sample from (5.52), draw from a chi-square distribution with . ve degrees 
of freedom 

. χ2 (ve)

and compute 

. 
(y − 1μ − Uα)′ (y − 1μ − Uα)

χ2 (ve)
.

An Alternative Definition of Genomic Variance 

The Appendix of Chap. 1 discusses the distinction between the parameters defined 
at the level of the quantitative genetic model, regarded as the data-generating 
mechanism and the parameters defined at the level of the operational model used to 
analyse the data. The genomic model is such an operational model. It was noted that 
the genomic variance of the genomic operational model (1.40), that is a parameter 
corresponding to . σ 2

g in the present example (here, the matrix of marker genotypes 
W is centred and scaled; in (1.40), it is centred), has an unclear connection with the 
parameter (1.37), that is argued, is the real focus of inference. 

An alternative estimator of genomic variance (1.42) was defined on page 44, 
which is better aligned with (1.37). This subsection shows that estimator (1.42) can 
be obtained with one line of extra code, when the Bayesian model is implemented 
in an McMC computing environment. 

The .n × 1 vector of genomic values is .g = Wb = Uα, where W is the . n × p

centred and scaled matrix of marker genotypes, b is the .p × 1 vector of genetic 
marker effects, and . α is the regression of genomic value on eigenvectors. The 
genomic variance or variance of genomic values was defined in (1.42) and in terms
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of the reparametrised model can be written as 

. σ 2
G = 1

n
g′g −

(
1

n
1′g

)2

= 1

n
α′U ′Uα

= 1

n

n∑
i=1

α2
i . (5.53) 

The equality in the second line follows because when matrix W is column-centred, 
.1′g = 1′Wb = 0. Vector . α is unknown and is therefore inferred from its 
marginal posterior distribution. When the Markov chain converges to its stationary 
distribution, extractions from this distribution are given by (5.49). For example, if 
. α[t] is the vector of draws from (5.49) at round t of the McMC sampler, an extraction 
of . σ 2

G from its marginal posterior distribution is .σ 2[t]
G = 1

n
α[t]′α[t]. The  R-code is 

mean(alpha*alpha), where alpha is the vector . α[t]. 

5.5 Example: A Mixture Model of Two Gaussian 
Components 

An EM algorithm to obtain maximum likelihood estimates for the mixture model of 
two Gaussian components was presented on page 127. Here, the mixture model 
is implemented with McMC in a Bayesian setup. Let . zi , .i = 1, . . . , n, be the  
(unobserved) binary random variable that indicates which of the two mixture 
components observation i comes from. Assume that the marginal probability of . Zi

is Bernoulli . Br (π1)

. Pr (Zi = zi |π1) = π
zi

1 (1 − π1)
1−zi , zi = 0, 1,

with 

. Pr (Zi = 1|π1) = π1,

Pr (Zi = 0|π0) = π0 = 1 − π1.

An McMC data augmentation strategy is to use the unobserved Z to generate an 
augmented posterior distribution. Conditional on .zi = j , .j = 1, 0, assume . yi has 
density .pj

(
yi |θj , zj

)
. The pairs .(Yi, Zi) are assumed to be  iid with joint density 

.p (yi, zi |θ, π) = pj

(
yi |zi = j, θj

)
Pr
(
Zi = j |πj

)

= pj

(
yi |zi = j, θj

)
πj .
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To be specific, let .pj

(
yi |θj , σ

2
)

be the density of the normal distribution 
.N
(
θj , σ

2
)
. The parameters of the model are .θ0, θ1, σ

2, π0, zi , .i = 1, . . . , n. 
Assume that the priors for the . θ ′s are improper uniforms and that the density of 

the prior distribution of the remaining parameters factorises as follows: 

. p
(
θj , σ

2, π1, z
)

∝ p
(
σ 2

)
p (z|π1) p (π1) ,

where .p (z|π1) = ∏n
i=1 Pr (Zi = zi |π1). The probability . π1 is assigned a beta prior 

distribution with user-tuned hyperparameters . α and . β, 

.π1|α, β ∼ Be (α, β) (5.54) 

and the conditional variance of the data is a scaled inverted chi-square prior
distribution

.σ 2|S, v ∼ Sχ−2 (S, v) , (5.55) 

where S and the v are user-tuned hyperparameters. The density of the augmented
posterior distribution takes the form

.p
(
θj , σ

2, π1, z|y
)

∝ p
(
y|z, θj , σ

2
)

p
(
σ 2

)
p (z|π1) p (π1) . (5.56) 

The McMC Gibbs sampling algorithm for this model is straightforward and can
be implemented extracting the fully conditional posterior distributions (fcpd) from
(5.56). 

Deriving [θ1|D] 

From (5.56), the fcpd of . θj is 

. p
(
θj |D

) ∝ p
(
y|z, θj , σ

2
)

∝ exp

[
− 1

2σ 2

∑n

i=1

{
I (zi = j)

(
yij − θj

)2}]
.

A little algebra leads to 

.
[
θj |D

] ∼ N

(
θ̂j ,

σ 2

nj

)
. (5.57)
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In this expression, 

. ̂θj = 1

nj

∑n

i=1
yiI (zi = j) ,

nj =
∑n

i=1
I (zi = j) .

Deriving [zi|D] 

From (5.56), the fcpd of . zi is 

. Pr (Zi = j |D) ∝ p
(
yi |zi, θj , σ

2
)
Pr
(
zi = j |πj

)
.

When .j = 0, 

. p
(
yi |zi = 0, θj , σ

2
)

∝ exp

[
− 1

2σ 2 (yi − θ0)
2
]

and 

. Pr (Zi = 0|D) ∝ exp

[
− 1

2σ 2 (yi − θ0)
2
]

(1 − π1) .

When .j = 1, 

. p
(
yi |zi = 1, θj , σ

2
)

∝ exp

[
− 1

2σ 2 (yi − θ1)
2
]

and 

. Pr (Zi = 1|D) ∝ exp

[
− 1

2σ 2 (yi − θ1)
2
]

π1.

The fcpd is then the Bernoulli process 

. Pr (Zi = 1|D) =
exp

[
− 1

2σ 2 (yi − θ1)
2
]
π1

exp
[
− 1

2σ 2 (yi − θ1)
2
]
π1 + exp

[
− 1

2σ 2 (yi − θ0)
2
]
(1 − π1)

(5.58)



5.5 Example: A Mixture Model of Two Gaussian Components 237

and the logodds are given by 

. ln

[
Pr (Zi =1|D)

Pr (Zi =0|D)

]
= 1

2σ 2

[
(yi − θ0)

2 − (yi − θ1)
2
]

− [ln (1 − π1) − lnπ1] = Ki.

(5.59) 

In a computing environment, an extraction from (5.58) can be obtained efficiently 
as follows: Let un be a realisation from 

. un ∼ Un (0, 1) .

Then 

.zi =
{
1, if ln

(
un

1−un

)
≤ ln

[
Pr(Zi=1|D)
Pr(Zi=0|D)

]
,

0, otherwise.
(5.60) 

There are two ways of characterising .Pr (Zi = 1|y). One is using the McMC 
draws . z[j ]i , the  j th sample from .Pr (Zi = 1|D). When the system converges, these 
are McMC draws from marginal posterior distribution .[Zi = 1|y], and their average 
is a Monte Carlo point estimate of the marginal posterior distribution 

. ϕi = Pr (Zi = 1|y) .

The estimator is 

.ϕ̂i = P̂r (Zi = 1|y) = 1

l

l∑
j=1

z
[j ]
i , (5.61) 

where l is the length of the Gibbs chain.
The second way of characterising .Pr (Zi = 1|y) is by constructing . ϕi at each 

round of the McMC chain. Using the logodds (5.59), 

.ϕi = exp (Ki)

1 + exp (Ki)
. (5.62) 

When the McMC algorithm converges the value constructed from (5.62) at iteration 
j , .ϕ[j ]

i is an extraction from the marginal posterior distribution .[ϕi |y]. The draws 
. ϕ

[j ]
i , .j = 1, . . . , l, provide a Monte Carlo description of the complete marginal 

posterior distribution .[ϕi |y].
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Deriving
[
σ 2|D]

From (5.56), the fcpd . σ 2 is 

. p
(
σ 2|D

)
∝ p

(
σ 2

)
p
(
y|z, θj , σ

2
)

∝
(
σ 2

)−(1+ v
2 )

exp

[
− vS

2σ 2

] (
σ 2

)− n
2
exp

⎡
⎣−

∑n
i=1

∑1
j=0 I (zi =j)

{(
yi −θj

)2}

2σ 2

⎤
⎦

=
(
σ 2

)−
(
1+ ṽ

2

)
exp

[
− ṽS̃

2σ 2

]
,

where .̃v = v+n and .̃S =
[{∑n

i=1
∑1

j=0

[
I (zi = j)

(
yi − θj

)2]} + vS
]/

ṽ. This  

is the kernel of a scaled inverted chi-square distribution with parameters . ̃v and . ̃S: 

.

[
σ 2|D

]
∼ ṽS̃χ−2 (̃v) . (5.63) 

To obtain a sample from (5.63), draw a chi-square distribution with . ̃v degrees of 
freedom, and the reciprocal of this number is multiplied by . ̃vS̃. 

Deriving [π1|D] 

From (5.56), the fcpd of . π1 is 

. p (π1|D) ∝ p (z|π1) p (π1)

= πα−1
1 (1 − π1)

β−1
∏n

i=1
Pr (Zi = 1|π1)

zi (1 − Pr (Zi = 1|π1))
1−zi

= π

∑n
i=1 zi+α−1

1 (1 − π1)
n−∑n

i=1 zi+β−1 (5.64) 

which is the kernel of a beta distribution with parameters .
∑n

i=1 zi + α and . n −∑n
i=1 zi + β. Thus, 

. [π1|D] ∼ Be
(∑n

i=1
zi + α, n −

∑n

i=1
zi + β

)
. (5.65) 

An implementation of this Bayesian model is discussed on page 356.
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5.6 Example: An Application of the EM Algorithm 
in a Bayesian Context—Estimation of SNP Effects 

A classical parametrisation of the genomic model is based on the multiple linear 
regression 

.y = Zα + Xβ + e, (5.66) 

where Z is an observed incidence matrix of dimension .n × p that associates fixed 
effects . α with the data y (a column vector of length n) and matrix X, of dimension 
.n × m, is an observed matrix of SNP genotypes where each element takes the value 
0, 1 or 2. Row i of X contains the marker genotypes of the m SNPs of individual i. 
Column vector . β (of length m) represents unobserved SNP effects, and e is a vector 
of residuals with iid elements .N

(
0, σ 2

e

)
. 

Sun et al (2012) present an interesting application of the EM algorithm for 
estimation of SNP effects in a Bayesian framework. In contrast with model (1.39) on  
page 41 that poses a single variance parameter for all SNP effects, Sun et al (2012) 
assume that the vector of SNP effects can be represented with the normal structure 

.β|σ 2 ∼ N (0,D) , σ 2 =
(
σ 2
1 , σ 2

2 , . . . , σ 2
m

)
, (5.67) 

where

.D = diag
{
σ 2

j

}
, j = 1, . . . , m, (5.68) 

and

.σ 2
j

iid∼ vβSβχ−2 (vβ

)
, for all j. (5.69) 

The SNP model assumes that a priori, SNP effects . β are conditionally (given D) 
independent and normally distributed and that each SNP has its own variance . σ 2

j . 
The variances of the m SNPs are iid realisations from a common scaled inverse chi-
square distribution .vβSβχ−2

(
vβ

)
with hyperparameters . vβ (the degrees of freedom) 

and scale . Sβ . It follows that the density of the marginal distribution of an SNP effect 
is 

. p
(
βj |vβ, Sβ

) =
∫

p
(
βj |σ 2

j

)
p
(
σ 2

j |vβ, Sβ

)
dσ 2

j ,

the density of a . t−distribution with . vβ degrees of freedom and scale . Sβ (see page 
149 for a characterisation of a . t−distributed random variable as a mixture).
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The EM algorithm proposed by Sun et al (2012) treats the variance of each SNP 
effect . σ 2

j as missing data and maximises the resulting Q function with respect to . α, 

. β and . σ 2
e . The objective is to find the joint modal value of .α, β and . σ 2

e . 

Preliminaries 

Before deriving the EM equations, a little background is needed. The Q function 
involves expectation of . lnp (y, β, σ, σe) = ln

[
p
(
y|α, β, σ 2

e

)
p
(
β|σ 2

)
p
(
σ 2

)]
with respect to the distribution .

[
σ 2|β[t], y

]
. First, the form of the conditional 

posterior distribution .
[
σ 2

j |β[t], y
]
is needed. The posterior density is proportional 

to .p (y|α, β, σe) p
(
β|σ 2

)
p
(
σ 2

)
, and extracting terms including . σ 2

j yields 

. p
(
σ 2

j |β, y
)

∝ p
(
βj |σ 2

j

)
p
(
σ 2

j

)

=
(
σ 2

j

)− 1
2
exp

(
− β2

j

2σ 2
j

)(
σ 2

j

)−
(

vβ
2 +1

)
exp

(
−vβSβ

2σ 2
j

)

=
(
σ 2

j

)−
(

vβ
2 + 3

2

)
exp

(
−β2

j + vβSβ

2σ 2
j

)

=
(
σ 2

j

)−
(

v∗
β
2 +1

)

exp

(
−v∗

βS∗
β

2σ 2
j

)
(5.70) 

that is the kernel of a scaled inverse chi-square density with . v∗
β degrees of freedom 

and scale parameter . S∗
β where 

. v∗
β = v + 1,

S∗
β = β2

j + vβSβ

v∗
β

.

As shown below, evaluation of the Q function involves the expected value of 
.

(
σ 2

j

)−1
. Using the theory of transformation of random variables, the pdf of . w = 1

σ 2
j

,

from (5.70), is 

. p (w|β, y) ∝
(
w−1

)−
(

v∗
β
2 +1

)

exp

(
−v∗

βS∗
βw

2

)
w−2

= w
v∗
β
2 −1 exp

(
−v∗

βS∗
βw

2

)
. (5.71)
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Defining .a = v∗
β/2 and .b = v∗

βS∗
β/2, (5.71) can be written as 

.wa−1 exp (−bw) , (5.72) 

which is the kernel of a Gamma distribution whose mean is

.E (w|β, y) = a

b
= 1

S∗
β

=
(

β2
j + vβSβ

v∗
β

)−1

. (5.73) 

E-Step 

The Q function involved in the E step is 

. Q = E
(
ln
[
p (y|α, β, σe) p

(
β|σ 2

)
p
(
σ 2

)])

where integration is with respect to .
[
σ 2|β[t], y

]
. Taking logarithms and noting that 

the first term is a constant with respect to .
[
σ 2|β[t], y

]
yield 

.Q = lnp (y|α, β, σe) + E
[
lnp

(
β|σ 2

)]
+ E

[
lnp

(
σ 2

)]
. (5.74) 

The last term in the right-hand side does not involve .α, β, σ 2
e and therefore does 

not need to be evaluated (it drops out in the .M−step). Working with the middle 
term of the right-hand side, due to independence, the expectation can be computed 
element-wise yielding 

. E
[
lnp

(
β|σ 2

)]
=

m∑
i=1

E

(
ln

[(
2πσ 2

i

)− 1
2
exp

(
− β2

i

2σ 2
i

)])

= −1

2

m∑
i=1

E

(
ln 2π + ln σ 2

i + β2
i

1

σ 2
i

)

= −1

2

m∑
i=1

E

(
β2

i

1

σ 2
i

)
+ R

= −1

2

m∑
i=1

β2
i

(
β
2[t]
i + vβSβ

v∗
β

)−1

+ R, (5.75) 

where R includes terms that do not involve .α, β, σ 2
e . The expectation in the third 

line is obtained from (5.73) where . β2
i is factored out as a constant, and this operation
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leads to the fourth line. Then the Q function ignoring an additive constant reduces 
to 

. Q= lnp
(
y|α, β, σ 2

e

)
− 1

2

m∑
i=1

β2
i

(
β
2[t]
i + vβSβ

v∗
β

)−1

+ R

= ln

{(
σ 2

e

)− n
2
exp

[
− 1

2σ 2
e

(y − Zα − Xβ)′ (y − Zα − Xβ)

]}
− 1

2
β ′D[t]β + R

=−n

2
ln σ 2

e − 1

2σ 2
e

(y − Zα − Xβ)′ (y − Zα − Xβ) − 1

2
β ′D[t]β + R (5.76) 

where 

. D[t] = diag

⎡
⎣
(

β
2[t]
i + vβSβ

v∗
β

)−1
⎤
⎦ , i = 1, . . . , m.

M-Step 

The M-step involves maximisation of (5.76) with respect to . σ 2
e , . α and . β. Maximis-

ing with respect to . σ 2
e , setting the derivative equal to zero, and solving for . σ 2

e yield 

.σ 2[t+1]
e = 1

n

(
y − Zα[t+1] − Xβ[t+1]

)′ (
y − Zα[t+1] − Xβ[t+1]

)
. (5.77) 

Similarly for . α

. 
∂Q

∂α
= 1

σ 2
e

Z′ (y − Zα − Xβ) = 0,

Z′Zα + Z′Xβ = Z′y, (5.78) 

and for . β

. 
∂Q

∂β
= 1

σ 2
e

X′ (y − Zα − Xβ) − D[t]β = 0,

X′Zα +
[
X′X + σ 2

e D[t]
]
β = X′y. (5.79) 

Equations (5.78) and (5.79) result in the system 

.

[
Z′Z Z′X
X′Z X′X + σ

2[t]
e D[t]

][
α[t+1]

β[t+1]

]
=
[

Z′y
X′y

]
. (5.80)
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These equations have the same structure as those that originate from a mixed model 
where the random effect . β has variance 

.

(
D[t]

)−1 = diag

[(
β
2[t]
i + vβSβ

v∗
β

)]
, i = 1, . . . , m. (5.81) 

An Alternative Parametrisation 

The system of Eqs. (5.80) has dimension .(p + m) × (p + m). When the number of 
individuals . (n) is smaller than the number of markers .(m) the following strategy is 
computationally more attractive. Define genomic values as .g = Xβ and assume that 

. g|X ∼ N

(
0, X

(
D[t]

)−1
X′
)

,

where .
(
D[t]

)−1
is defined in (5.81). Secondly, find the maximiser of 

.p
(
y|α, g, σ 2

e

)
p
(
g|D[t]

)
. This requires 

. 
∂p

(
y|α, g, σ 2

e

)
p
(
g|D[t]

)

∂α
= 0,

∂p
(
y|α, g, σ 2

e

)
p
(
g|D[t]

)

∂g
= 0.

The maximisation involves the following operations: 

. 

∂
[
− 1

2σ 2
e

(y − Xα − g)′ (y − Xα − g) − 1
2g

′G−1g
]

∂α
= 0,

∂
[
− 1

2σ 2
e

(y − Xα − g)′ (y − Xα − g) − 1
2g

′G−1g
]

∂g
= 0,

where .G = X
(
D[t]

)−1
X′. This yields 

.

[
Z′Z Z′
I I + σ 2

e G−1

] [
α[t+1]

g[t+1]

]
=
[

Z′y
y

]
. (5.82) 

The system of equations is of dimension .(p + n) × (p + n). To retrieve marker 
effects from (5.82), use (5.81), and write 

.

[
β[t+1]

g[t+1]

]
∼ SN

([
0
0

]
,

[ (
D[t]

)−1 (
D[t]

)−1
X′

X
(
D[t]

)−1
X
(
D[t]

)−1
X′

])
.
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Then 

.E
(
β[t+1]|g[t+1]

)
=
(
D[t]

)−1
X′

(
X
(
D[t]

)−1
X′
)−1

g[t+1]. (5.83) 

5.7 Example: Bayesian Analysis of the Truncated Normal 
Model 

The setup here is the same as on page 134 where a likelihood analysis was 
implemented with the EM algorithm. To recapitulate, the data available originates 
from an initial draw of N records from the normal distribution .N(μ, σ 2). In a  
second stage, only records larger than an observed threshold C are kept, and those 
smaller than C are discarded. After this procedure, one can confirm that there are n 
observable records and thatm are missing. The complete data z consist of . N = m+n

records, .z′ = (
(y∗)′, y′) where . y∗ are the m (unobserved) missing records and y are 

the n observed records. 
A Bayesian McMC analysis can be easily implemented augmenting the parame-

ter space with the missing data. An observed datum is conceptually generated from 

. yi |μ, σ 2 ∼ N

(
μ, σ 2

)
I (zi > C)

and a missing datum from 

. y∗
i |μ, σ 2 ∼ N

(
μ, σ 2

)
I (zi ≤ C)

where .I (x ∈ A) is the indicator function that takes the value 1 if .x ∈ A and zero 
otherwise. Assuming independence, the conditional density of the complete data is 

.p
(
z|μ, σ 2

)
∝
∏N

i=1
N(z|μ, σ 2) [I (zi > C) + I (zi ≤ C)] . (5.84) 

The augmented posterior density is

. p
(
μ, σ 2, y∗|y

)
∝ p

(
μ, σ 2, y∗)p

(
y|μ, σ 2, y∗)

= p
(
μ, σ 2

)
p
(
y, y∗|μ, σ 2

)
. (5.85) 

Assuming independent uniform prior distributions for . μ and . σ 2, this augmented 
posterior is proportional to (5.84). The parameters of the augmented Bayesian 
model are .

(
μ, σ 2, y∗), and a Gibbs sampling implementation requires drawing 

from .
[
y∗|D]

, .[μ|D] and .
[
σ 2|D]

, where, as before, D is a vector containing the 
observations y and all the parameters of the model except the one to be updated.



5.7 Example: Bayesian Analysis of the Truncated Normal Model 245

The update of . y∗ requires choosing the terms that include . y∗ from the augmented 
posterior (5.84). The resulting fully conditional posterior distribution is 

. 
[
y∗|D] ∝

∏m

i=1
p
(
y∗
i |μ, σ 2

)
I
(
y∗
i ≤ C

)

that is in the form of a truncated normal distribution with mean . μ and variance . σ 2

with probability density function 

. p
(
y∗
i |μ, σ 2, y∗

i ≤ C
)

= p
(
y∗
i |μ, σ 2

)

	(c)
, c = C − μ

σ
,

where .	(·) is the cdf of the .N(0, 1). An efficient algorithm to draw from truncated 
distributions was given in (5.27). 

The update for . σ 2 is again based on the construction of its fully conditional 
distribution .

[
σ 2|D]

. From (5.84), this takes the form 

. 

[
σ 2|D

]
∝
∏N

i=1
p
(
zi |μ, σ 2

)
.

The density is proportional to 

. 

(
σ 2

)− N
2
exp

[
−
∑N

i=1 (zi − μ)2

2σ 2

]
.

This is in the form of a scaled inverted chi-square distribution with scale parameter 
.S = ∑N

i=1 (zi − μ)2 and .N − 2 degrees of freedom. Therefore, 

. 

[
σ 2|D

]
∼ χ−2 (N − 2, S) .

To obtain a draw first sample from a chi-square distribution with .N − 2 degrees of 
freedom, invert this number, and multiply by S. 

The final update requires drawing from .[μ|D]. This distribution is proportional 

to (5.84), now seen as a function of . μ. Adding a subtracting .z = ∑N
i=1 zi

/
N in 

the squared term and dropping the terms that do not contain . μ result in 

. 

∑N
i=1 [(zi − z) + (z − μ)]2

2σ 2
= N (z − μ)2

2σ 2
+ k,

where k is an additive constant. Regarded as a function of . μ, this expression is 
recognised as the logarithm of the kernel of .N

(
z, σ 2

/
N
)
. Therefore, 

. [μ|D] ∼ N
(
z, σ 2

/
N
)
.
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The R-code below executes a Gibbs sampler using the same data as used on page 
134: 

# CODE0503 
# EM FOR TRUNCATED DATA; ESTIMATE MEAN OF UNTRUNCATED 
# GENERATE Y ~ N(MEAN,VAR) 
# TRUNCATE AT T SO THAT Z = Y > T ARE OBSERVED 
# Y < T ARE MISSING (KNOWN INFORMATION) 
rm(list=ls()) # CLEAR WORKSPACE 
set.seed(12371) 
nindiv<-50000 
mean <- 10 
var <- 3 
T <- mean + 1.5*sqrt(var) # ASSUMED KNOWN 
# CREATE COMPLETE DATA 
y <- rnorm(nindiv,mean,sqrt(var)) 
# TRUNCATE: OBSERVED DATA 
z <- y[y>T] 
#length(z) 
m <- length(y)-length(z) 
#mean(y) 
#mean(z) 
#var(z) 
##################### McMC ###################### 
nrep <- 1000 
resmc <- matrix(data=NA,nrow=nrep,ncol=2) 
w <- rep(0,m) 
# START VALUES FOR MEAN (mu) AND VARIANCE (sigmasq) 
mu <- 0 
sigmasq <- 2 
sigma <- sqrt(sigmasq) 
ptm <- proc.time() 
for (j in 1:nrep){ 
# print(j) 

T_star <- (T-mu)/sigma 
std <- sqrt(var) 

# sample m missing records in one go (left from threshold T) 
w <- mu  + std*qnorm(runif(m)*pnorm(T_star)) 

# sample the variance 
scale <- sum((w-mu)^2) + sum((z-mu)^2) 
sigmasq <- scale/rchisq(1,length(y)-2) 
sigma <- sqrt(sigmasq) 

# sample the mean 
xbar <- (sum(w)+sum(z))/(length(w)+length(z)) 
disp <- sigmasq/(length(w)+length(z)) 
mu <- rnorm(1,xbar,sqrt(disp)) 
resmc[j,] <- c(mu,sigmasq) 

} 
proc.time()-ptm 

## user system elapsed 
## 2.81 0.14 2.96 

postmean <- mean(resmc[100:nrep,1]) 
postvar <- mean(resmc[100:nrep,2]) 
postmean
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## [1] 10.03055 

postvar 

## [1] 3.005774 

# 95% POSTERIOR INTERVAL FOR THE MEAN 
pimean <- quantile(resmc[100:nrep,1],c(0.025,0.975)) 
# 95% POSTERIOR INTERVALFOR THE VARIANCE 
pivar <- quantile(resmc[100:nrep,2],c(0.025,0.975)) 
pimean 

## 2.5% 97.5% 
## 10.00086 10.06202 

pivar 

## 2.5% 97.5% 
## 2.953886 3.059747 

The MC estimates of the posterior mean and variance are 10.031 and 3.006, in 
good agreement with the parameters of the untruncated distribution (and with the 
ML estimates introduced on page 134). The sampler generates the complete joint 
posterior distribution of .(μ, σ 2, y�), and the margins correspond to the marginal 
posterior distribution of each variable in turn. MC estimates of posterior intervals 
are obtained from the nrep draws (here I exclude the first 100 draws as burn-in). 
The MC estimate of the .95% posterior interval for the posterior mean is (10.001, 
10.062) and for the posterior variance (2.954, 3.06). 

5.8 A Digression on Model Comparison 

The general problem of model criticism and model choice occupies a vast literature 
including classical and Bayesian approaches. Here, the topic is visited briefly, and it 
is shown that within an McMC environment, a few extra calculations lead to a useful 
and versatile measure of model comparison: the pseudo-log-marginal probability of 
the data. The basic ideas are summarised and an example is provided. 

The pseudo-log-marginal probability of the data is a standard measure of model 
comparison (Gelfand 1996) and is defined and computed as follows: Consider data 
vector .y′ = (

yi, y
′−i

)
, .i = 1, · · · , n, where . yi is the ith datum and .y−i is the vector 

of data with the ith datum deleted. The conditional predictive distribution of . yi has 
density 

.p (yi |y−i ) =
∫

p (yi |θ, y−i ) f (θ |y−i ) dθ, (5.86)
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where . θ is the vector of parameters of the model. This density can be interpreted 
as the probability of each data point given the remainder of the data; a low value 
indicates that the datum is poorly fit by the model. The actual value of . p (yi |y−i )

is known as the conditional predictive ordinate (CPO) for the ith observation. A 
plot of the CPOs versus the index for the observations can serve as a useful tool 
for outlier detection. The pseudo-log-marginal probability of the data or pseudo-
marginal likelihood is given by 

.

∑
i

lnp (yi |y−i ) . (5.87) 

The pseudo-Bayes factor for comparing two models . M1 and . M2 (Gelfand et al 1992; 
Gelfand 1996) is  

.PBF12 =
n∏

i=1

Pr (Yi = yi |y−i ,M1)

Pr (Yi = yi |y−i ,M2)
. (5.88) 

A Monte Carlo approximation of the CPO (5.86) for observation i is given by 
(Gelfand 1996) 

.p̂ (yi |y−i ,Mk) = N

⎡
⎣

N∑
j=1

1

p
(
yi |y−i , θ (j),Mk

)
⎤
⎦

−1

, (5.89) 

where N is the number of McMC draws, . Mk is a label for model k and .θ(j) is the 
j th draw from the posterior of . θ under model . Mk . Often, the . yis are conditionally 
independent given . θ ; then the term .p

(
yi |y−i , θ

(j),Mk

)
in (5.89) simplifies to 

.p
(
yi |θ(j),Mk

)
. 

The so-called LogCPOs are based on 

.

∑
i

ln p̂ (yi |y−i ,Mk) . (5.90) 

Larger values indicate a relative better fit.
An appealing side of (5.89) is that only one analysis is required, rather than n (n 

is sample size), where one out of n observations is left out in each of the n analyses. 
A very useful property is that .p (yi |y−i ) is always a proper density, provided the 

posterior density is proper. The models under comparison do not need to be nested, 
and since asymptotics are not involved, there is no problem with testing values of 
parameters that lie on the border of the parameter space.
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The derivation of (5.89) is instructive and straightforward. The details are as 
follows (Gelfand 1996): 

. p (yi |y−i ,Mr) = p (y|Mr)

p (y−i |Mr)

= 1
p(y−i |Mr)
p(y|Mr)

= 1∫
p (y−i , θr |Mr)

1
p(y|Mr)

dθr

= 1∫
p (y−i , θr |Mr)

p(θr |y,Mr )
p(θr ,y|Mr)

dθr

= 1∫ p(θr ,y|Mr)
p(yi |y−i ,θr ,Mr )

p(θr |y,Mr )
p(θr ,y|Mr)

dθr

= 1∫ 1
p(yi |y−i ,θr ,Mr )

p (θr |y,Mr) dθr

, (5.91) 

where the fifth line is a consequence of the equality

. p (yi |y−i , θr ,Mr) = p (θr , y|Mr)

p (y−i , θr |Mr)
.

A Monte Carlo estimator of (5.91) is (5.89). 

Example 

Data are available from the following “true” model 

. yij |μ, fi
iid∼ N

(
μ + fi, σ

2
e

)
,

fi |σ 2
f

iid∼ N
(
0, σ 2

f

)
,

i = 1, . . . , nf , j = 1, . . . , n.

There are . nf full-sib families, with n full-sibs per family and a total of . N = nf × n

records. In matrix notation, the model is 

.y = 1μ + Zf + e,
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where 1 is a vector of ones of length N , Z is of dimension .N × nf and f and e 
contain family and residual effects, respectively. 

The data set is analysed using the “true” model and using a “wrong” model that 
assumes .σ 2

f = 0. This model is 

. yi |μ iid∼ N
(
μ, σ 2

ε

)
,

i = 1, . . . , N.

The two Bayesian models will be implemented with the Gibbs sampler and the 
pseudo-marginal likelihood (5.90) will be calculated for each. 

The values of n and . nf are set equal to 3 and 400, respectively, leading to . N =
1200 records. Variance components are assumed to be .σ 2

f = 10 and .σ 2
e = 50. 

A Gibbs Sampler for the “True” Model 

The Bayesian model assumes improper, uniform prior distributions for .
(
μ, σ 2

f , σ 2
e

)
. 

The posterior density is 

. p
(
μ, σ 2

f , σ 2
e |y

)
∝ p

(
f |σ 2

f

)
p
(
y|μ, σ 2

f , σ 2
e

)

∝
(
σ 2

e

)− N
2
(
σ 2

f

)− nf
2
exp

(
− 1

2σ 2
f

f ′f
)
exp

(
− 1

2σ 2
e

(y−1μ−Zf )′ (y − 1μ − Zf )

)

=
(
σ 2

e

)− N
2
(
σ 2

f

)− nf
2
exp

[
− 1

2σ 2
e

{
(y − 1μ − Zf )′ (y − 1μ − Zf ) + kf ′f

}]
,

where .k = σ 2
e /σ 2

f . The Gibbs sampler is implemented drawing from the following 
fully conditional posterior distributions: 

. [μ|D] ∼ N
(
μ̂,

(
1′1

)−1
σ 2

e

)
,

μ̂ = (
1′1

)−1 1′ (y − Zf ) ,

[f |D] ∼ N
(
f̂ ,

(
Ik + Z′Z

)−1
σ 2

e

)
,

f̂ = (
Ik + Z′Z

)−1
Z′ (y − 1μ) ,

[
σ 2

f |D
]

∼ f ′f
χ2

(
nf − 2

) ,
[
σ 2

e |D
]

∼ (y − 1μ − Zf )′ (y − 1μ − Zf )

χ2 (N − 2)
.
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The computation of (5.90) requires a few intermediate calculations. In each 
Gibbs round, one first calculates 

. p
(
yi |μ[j ], f [j ], σ

2[j ]
e ,Mcorrect

)
i = 1, . . . , N.

This can be accomplished for all the data (vector y) in one go using the R function: 

dnorm(y,mean=mu+Z%*%f,sd=sqrt(ve)) 

Specifically, for each round, compute 

pyinvt <- -1/(dnorm(y,mean=mu+Z%*%f,sd=sqrt(ve))) 
sumpyinvt <- sumpyinvt+pyinvt 

Once all the iterations have been executed, one computes (5.89) and finally 
(5.90). The code is 

phatyt <- rep*(sumpyinvt)^(-1)} 
logcpot <- sum(log(phatyt)) 

A Gibbs Sampler for the “Wrong” Model 

Using improper uniform priors for .
(
μ, σ 2

ε

)
, the posterior density under the incorrect 

model is 

. p
(
μ, σ 2

ε |y
)

∝ p
(
y|μ, σ 2

ε

)

∝
(
σ 2

ε

)− N
2
exp

(
− 1

2σ 2
ε

(y − 1μ)′ (y − 1μ)

)
.

It is straightforward to derive the fully conditional posterior distributions. These are 

. [μ|D] ∼ N
(
μ̂,

(
1′1

)−1
σ 2

e

)
,

μ̂ = (
1′1

)−1 1′y,

[
σ 2

e |D
]

∼ (y − 1μ)′ (y − 1μ)

χ2 (N − 2)
.

The R-code below generates data under the true model and then runs a Gibbs 
sampler with the two models. The pseudo-marginal likelihoods (5.90) are calculated 
for each model. The code is spelled out line by line avoiding the use of more efficient 
and more compact programming that is to be preferred with more demanding 
computations:
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# CODE0504 
#CPO EXAMPLE 
rm(list=ls()) # Clear the workspace 
set.seed(123771) 
ptm<-proc.time() 
require(graphics) 
# GENERATE CORRELATED (FULL-SIBS DATA 
#install.packages("MCMCpack", .libPaths()[1]) 
#install.packages("mvtnorm", .libPaths()[1]) 
library(MCMCpack) 
# INITIALISE PARAMETERS 
mus<-10 # MEAN 
vfs<-10 #VARIANCE BETWEEN FULL-SIBS 
# RESIDUAL VARIANCE 
ves<-50 
nf<-400 # NUMBER OF FULL-SIB FAMILIES 
n<-3 #FULL-SIB FAMILY SIZE 
N<-nf*n 
y<-matrix(data=0,nrow=nf*n,ncol=1) 
# z IS COLUMN MATRIX WITH FAMILY ID (ID=1,.,nfs) 
z<-matrix(data=0,nrow=nf*n,ncol=1) 
# GENERATE nf FULL-SIB EFFECTS f 
fs<-rnorm(nf,mean=0,sd=sqrt(vfs)) 
# GENERATE nf*n RESIDUAL EFFECTS f 
es<-rnorm(nf*n,mean=0,sd=sqrt(ves)) 
# GENERATE FULL SIBS (CAN CHOOSE MORE TRANSPARENT LOOP ABOVE) 
z <- rep(1:nf,each=n) 
y <- mus+fs[z]+es 
d<-data.frame(y,z) 
# GENERATE INCIDENCE MATRIX Z 
family<-z 
family <- as.factor(family) 
Z<-model.matrix(~0+family) 
# WITH INDEPENDENT FAMILIES Z’Z IS DIAGONAL 
ztz<-rep(n,nf) 
#END OF GENERATION OF DATA Y 
#CHOOSE LENGTH OF CHAIN 
rep<-1000 
resultt<-matrix(data=NA,nrow=rep,ncol=4) 
resultw<-matrix(data=NA,nrow=rep,ncol=3) 
#INITIALISE THE VECTOR OF FAMILY EFFECTS f 
f<-rep(0,nf) 
# INITIALISE BETWEEN FAMILY VARIANCE COMPONENT vf 
vf<-5 
# INITIALISE RESIDUAL VARIANCE 
ve<-5 
# INITIALISE k 
k<-ve/vf 
# INITIALISE THE MEAN 
mu<-0 
sumpyinvt<-0 
#START GIBBS LOOP TRUE MODEL 
for (i in 1:rep) 
{ 

# SAMPLE mu 
meanmu<-sum(y-Z%*%f)/(nf*n) 
mu<-rnorm(1,mean=meanmu,sd=sqrt(ve/(nf*n))) 
# SAMPLE FAMILY EFFECTS f 
varf<-(k+n)^(-1)
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fmean<- varf*(t(Z)%*%(y-mu)) 
f<-rnorm(nf,mean=fmean, sd=sqrt(varf*ve)) 
#SAMPLE vf 
#COMPUTE SCALE 
ftf<-sum(f*f) 
vfx<-ftf/rchisq(1,nf-2) 
vf<-as.numeric(vfx) 
# SAMPLE ve 
# COMPUTE SCALE 
e<-(y-mu-Z%*%f) 
ete<-t(e)%*%e 
vex<-ete/rchisq(1,N-2) 
ve<-as.numeric(vex) 
k<-ve/vf 
resultt[i,]<-c(i,mu,vf,ve) 

# print(resultt[i,]) 
# COMPUTE CPOs FOR TRUE MODEL 
pyinvt<-1/(dnorm(y,mean=mu+Z%*%f,sd=sqrt(ve))) 
sumpyinvt<-sumpyinvt+pyinvt 

} 
phatyt<-rep*(sumpyinvt)^(-1) 
logcpot<-sum(log(phatyt)) 
proc.time()-ptm 

## user system elapsed 
## 14.14 0.41 3.67 

#START GIBBS LOOP WRONG MODEL 
vew<-20 
sumpyinvw<-0 
for (i in 1:rep) 
{ 

# SAMPLE muw 
meanmuw<-sum(y)/N 
muw<- rnorm(1,mean=meanmuw,sd=sqrt(vew/(N))) 
# SAMPLE vew 
vew<-sum((y-muw)*(y-muw))/rchisq(1,N-2) 
resultw[i,]<-c(i,muw,vew) 
# COMPUTE CPOs FOR WRONG MODEL 
pyinvw<-1/(dnorm(y,mean=mu,sd=sqrt(vew))) 
sumpyinvw<-sumpyinvw+pyinvw 

} 
phatyw<- rep*(sumpyinvw)^(-1) 
logcpow<-sum(log(phatyw)) 
# PRINT OUTPUT 
# LOG CPO TRUE MODEL 
logcpot 

## [1] -4176.398
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# 95% POSTERIOR INTERVALS FOR THE MEAN AND THE TWO VARIANCES 
quantile(resultt[,2],c(0.025,0.975)) 

## 2.5% 97.5% 
## 9.344941 10.410468 

quantile(resultt[,3],c(0.025,0.975)) 

## 2.5% 97.5% 
## 5.504737 13.107484 

quantile(resultt[,4],c(0.025,0.975)) 

## 2.5% 97.5% 
## 49.94121 60.39323 

# LOG CPO FOR WRONG MODEL 
logcpow 

## [1] -4194.195 

# 95% POSTERIOR INTERVALS FOR THE MEAN AND VARIANCE 
quantile(resultw[,2],c(0.025,0.975)) 

## 2.5% 97.5% 
## 9.422171 10.308375 

quantile(resultw[,3],c(0.025,0.975)) 

## 2.5% 97.5% 
## 58.87403 69.06082 

McMC estimates of .95% posterior intervals for the parameters of both models 
are printed at the bottom of the code. The .lnCPO based on (5.90) for the true model 
is .−4176 and for the incorrect model is .−4194. The difference in favour of the true 
model is very large. This may not be the case if . σ 2

f is small. For example, running 

the program with .σ 2
f = 5 results in a .lnCPO for the true model equal to . −4045

and for the wrong model, .LogCPO = −4048. The difference is markedly smaller.



Part II 
Prediction



Chapter 6 
Fundamentals of Prediction 

This chapter provides an overview of prediction with examples taken from quanti-
tative genetics. The first part summarises best prediction and best linear prediction 
and offers a brief tour of the standard linear least squares regression. Many important 
ideas related to prediction can be introduced using the simple least squares setting. 
The more specific topics on prediction are introduced in Sect. 6.4, where the 
central question that dominates the remaining of the chapter is posed: suppose that 
observations in the form of .(y1, x1) , (y2, x2) , . . . , (yn, xn) are available, where 
scalars . yi are outcomes or responses and vectors .xi ∈ Rp are signals, covariates 
or features that constitute the feature space. The goal is to construct a predictor 
that specifies the form of the relationship between the response and the covariate 
and generates a prediction for a future y given an observed x. The construction 
of the predictor involves estimation of parameters of the model that describes the 
relationship between y and x. Among the topics discussed is the accuracy with 
which future observations can be predicted, how this accuracy is measured and what 
are the factors affecting it. A distinction is made between the ability to predict (or 
to fit) those same observations that were used for estimation of parameters or for 
prediction of new, yet-to-be observed outcomes. 

The body of the chapter deals with prediction from a classical/frequentist 
perspective. Bayesian prediction is illustrated in several examples in the coming 
chapters and particularly in Chap. 10. 

6.1 Best Predictor and Best Linear Predictor 

Consider a scalar random variable y that can represent data such as height 
measurements in humans and a scalar or vector random variable x that can represent 
explanatory variables or covariates such as genetic marker genotypes. One may wish 
to establish the form of the association between y and x either to make inferences 
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of the parameters that describe this association or to make predictions of a yet-
to-be observed . y0 using a predictor .f (x), a function of x. One way of deriving 
the predictor f is by minimising the expected value of the mean squared error of 
prediction over the joint distribution .[y0, x]: 

. Ey0x [MSE (f (x))] = Ey0x

[
(y0 − f (x))2

]

= Ex

[
Ey0|x (y0 − f (x))2 |x

]

= Ex

[
Var (y0|x) + (E(y0|x) − f (x))2

]
, (6.1) 

where the notation .Ey0x means expectation over the joint distribution .[y0, x]. 
Adding and subtracting .E (y0|x) in .(y0 − f (x)) in the second line, expanding the 
square and taking expectations lead to the third line. The first term in the right-hand 
side does not depend on f and therefore (6.1) is minimised when 

.f (x) = E (y0|x) . (6.2) 

This is the best predictor; it minimises .Ey0x [MSE (f (x))] with respect to both, 
the joint distribution of .(x, y0) and the conditional distribution of . y0 given x. In  
Gaussian linear models, the conditional distribution of . y0 given x depends on x 
only through the conditional mean. In the case of other distributions, such as the 
Bernoulli where independent binary data are drawn with probability .p (x), both 
the conditional mean .E (y0|x) = p (x) and the conditional variance . Var (y0|x) =
p (x) [1 − p (x)] depend on x. 

The error of prediction is 

. e = y0 − E (y0|x)

that motivates the model for . y0

. y0 = E (y0|x) + e.

Therefore, by construction, 

.E (e|x) = E [(y0 − E (y0|x) |x)] = 0. (6.3) 

It does not follow that the distribution of e is independent of x unless it is imposed
by assumption.

Using the law of iterated expectations reveals that the unconditional mean is also 
zero: 

.E (e) = Ex [E (e|x)] = 0. (6.4)
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The conditional expectation is typically not available and neither is the form of 
the joint distribution of .(x, y0). To make progress requires choice of a model. If the 
choice falls on a linear relationship, whereby the scalar . y0 is predicted using . α+x′β
where . α is an intercept, . β is the .(p−1)×1 column vector of population coefficients 
and x is the .(p − 1) × 1 column vectors of covariates, then, minimising 

.Ey0,x

[(
y0 − α − β ′x

)2] (6.5) 

with respect to . α and . β yields the population parameters 

.β = Var (x)−1 Cov (y0, x) , α = E (y0) − β ′ E (x) . (6.6) 

The dimensions are as follows: .Var (x) is .(p−1)×(p−1), .Cov (y0, x) is .(p−1)×1, 
. β is .(p − 1) × 1, and .E (x) is .(p − 1) × 1. 

The resulting best linear predictor is 

.ŷ0 = E (y0) + Cov
(
y0, x

′) [Var (x)]−1 (x − E (x)) (6.7) 

that is in the best linear approximation of . y0 given x. Writing 

.y0 = ŷ0 + ε, (6.8) 

then the following properties can be derived:

.E (ε) = E(y0) − E(ŷ0) = 0, . (6.9a) 

Cov
(
ε, ŷ0

) = Cov
(
y0, ŷ0

) − Var
(
ŷ0

) = 0, . (6.9b) 

Var (ε) = Var (y0) − Var
(
ŷ0

)
. (6.9c) 

In (6.9), expectations are taken over .[y0, x]. The first equality (6.9a) indicates 
that the marginal expectation of . ε over .[y0, x] is zero, but using (6.8) and writing 
.E(ε|x) = E(y0|x) − E(ŷ0|x) reveals that in contrast to (6.3), the expectation of . ε
given x is not zero in general, unless .E(y0|x) is linear. 

The best linear predictor shares properties (6.9) with the best predictor as 
indicated below in (6.10). 

A classical animal breeding setup where some of these concepts are illustrated is 
in Part . III, on pages 563 and 651.
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Properties of the Best Predictor 

Let .E (y0|x) = ỹ0. Properties of the best predictor are 

.Ex[ỹ0] = Ex[E(y0|x)] = E(y0).. (6.10a) 

Covy0x

[
y0, ỹ0

] = Varx
[
ỹ0

]
.. (6.10b) 

PEV (ỹ0) = Var (ỹ0 − y0)

= Ex

{
Var

[
(ỹ0 − y0) |x]} + Varx

{
E

[
(ỹ0 − y0) |x]}

= Ex [Var (y0|x)] (6.10c) 

where .PEV is the prediction error variance, the variance of the deviation between 
the predictand and the conditional mean. The corresponding term in (6.9c) is the  
variance of the deviation between the predictand and its best linear approximation. 

The top  line (6.10a) indicates that the expectation of the predictor is equal to the 
expectation of the predictand, the classical frequentist definition of unbiasedness for 
“prediction of random variables”. 

The proof of (6.10b) is based on the equality 

. Covy0x [y0,E (y0|x)] = Ex [Cov (y0,E (y0|x) |x)] + Covx [E (y0|x) ,E (y0|x)]

= Varx
[
ỹ0

]
.

The squared correlation between predictand and predictor is 

. r2y0ỹ0 =
[
Covy0x (y0, ỹ0)

]2
Var (y0)Var (ỹ0)

= Varx (ỹ0)

Var (y0)

= 1 − PEV (ỹ0)

Var (y0)
. (6.11) 

For simplicity, take x to be a scalar. Then 

. Ey0x (y0x) = Ex

[
Ey0|x (y0x|x)

]

= Ex

[
x Ey0|x (y0|x)

]

= Ex (ỹ0x) .

When the equality .Ey0x (y0x) = Ex (ỹ0x) is written as 

. Ey0x

[
x (y0 − ỹ0)

] = 0

it takes the form of an orthogonality condition indicating that the prediction errors 
.(y0 − ỹ0) are uncorrelated with the covariate x.
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Example: Additive Genetic Values as Best Linear Predictors 

Consider a continuously distributed trait such as height in humans, . yi , .i = 1, . . . , n, 
measured on n individuals. Assume that the trait is genetically determined by q 
biallelic loci coded as . zij , .j = 1, . . . , q, and that the genotypic codes are centred 
so that .E

(
zij

) = 0 for all individuals and loci. The genetic value of individual 
i is the deviation between the expected phenotypic value . yi , given  . zi and the 
population mean, where .E (yi |zi) = μ + G(zi), . μ is the population mean, . G(zi)

is the genetic value and .z′
i = (

zi1, . . . , ziq

)
is the row vector of genotype codes 

for individual i. The centred genotype codes are discrete random variables denoted 
allele contents. The genetic values of each of the q biallelic loci can take three 
modalities corresponding to the three possible genotypes. 

The phenotype is assumed to be the result of the additive contribution of a mean, 
the genetic value and an environmental effect 

.yi = μ + G(zi) + ei (6.12) 

where the continuously distributed environmental effect has mean zero and variance
.σ 2; ei ∼ (

0, σ 2
)
. 

The conditional expectation .μ+G(zi) may not be linear on . zi due to the genetic 
mechanism operating within and across loci. However, one can always define a 
linear relationship of the form 

.μ + α′zi . (6.13) 

Then . μ and . α are obtained minimising 

. E
[(

yi − μ − α′zi

)2]

with respect to . μ and . α. The expected squared error is a minimum with 

. α = [Var (zi)]
−1 Cov (yi, zi)

= [Var (zi)]
−1 Cov (zi,G (zi)) (6.14) 

and 

.μ = E (yi) − α′ E (zi) . (6.15) 

The equality in the second line of (6.14) is the result of the following: 

.Cov (yi, zi) = E (yizi)

= Ezi [E (yizi |zi)]
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= Ezi [zi E (yi |zi)] 

= Ezi [zi (μ + G (zi))] 

= Cov (zi,G  (zi)) . 

Substituting (6.14) and (6.15) in (6.13) yields the best linear predictor of the 
phenotypic value 

. ŷi = E (yi) + Cov (zi,G (zi)) [Var (zi)]
−1 (zi − E (zi))

= μ + α′zi

because .E (zi) = 0. The column vector . α has q elements representing the multiple 
regression coefficients of phenotype on allele content. They are the additive genetic 
effects of the causal loci or effects of gene substitutions for each of the q loci 
affecting the trait (Falconer and Mackay 1996), and .α′zi is the additive genetic value 
of individual i, also known as the breeding value, the best linear approximation 
describing the relationship between genetic value and allele content. 

Using a Biased Predictor 

Imagine that a biased predictor is used instead of the best predictor .E (y0|x) = ỹ0. 
It is not unusual that a best predictor cannot be derived, and compromises must be 
sought. Assume that the biased predictor is equal to . bỹ0, .0 ≤ b ≤ 1, proportional to 
the best predictor . ỹ0. How does this affect prediction error variance and the squared 
correlation between predictand and predictor? The prediction error variance is 

. Var (y0 − bỹ0) = Var (y0) + b2 Var (ỹ0) − 2bCov (y0, ỹ0) .

Using .Cov (y0, ỹ0) = Var (ỹ0) shows that the prediction error variance using the 
biased predictor increases to 

. Var (y0 − bỹ0) = PEV (ỹ0) + Var (ỹ0) (1 − b)2 .

Similar algebra yields 

. r2y0,bỹ0
= r2y0ỹ0

[
1 − (1 − b)2

]
,

indicating that the squared correlation between predictor and predictand is reduced 
by a factor .

[
1 − (1 − b)2

]
. The topic is elaborated in de los Campos et al (2013b).



6.2 Estimating the Regression Function in Practice: Least Squares 263

6.2 Estimating the Regression Function in Practice: 
Least Squares 

The population parameters of the best linear predictor (6.7) are typically estimated 
using a sample. Anticipating a terminology to be used later in the book, this 
sample used to estimate parameters is labelled training data. This may consist of 
independent draws .{yi, xi}ni=1 from some distribution, where .xi ∈ Rp, and in this 
section, they are assumed to have mean zero for all i. Collecting the responses onto 
the vector .y = {yi}ni=1 ∈ Rn and the vector of predictors onto the rows of a full rank 
matrix x, 

. x =

⎡
⎢⎢⎢⎣

x′
1

x′
2
...

x′
n

⎤
⎥⎥⎥⎦ ∈ Rn×p,

the linear regression model can be written as 

.y = 1α + xβ + e, e ∼
(
0, σ 2I

)
, (6.16) 

where . α is an intercept, e is independent of x (here an assumption) and 1 is an . n×1
column vector of ones. In (6.16), x is a matrix of dimension .n × (p − 1). Including 
the intercept in . β and taking the first column of x to be the vector of ones, the model 
is 

.y = xβ + e (6.17) 

and now, including the vector of 1s, x has dimension .n×p and . β is a column vector 
with dimension .p × 1. The sum of squared errors is 

.

n∑
i=1

(
yi − x′

iβ
)2

. (6.18) 

The sample regression coefficient (or least squares estimator) is obtained by
minimising (6.18): 

. β̂ = (
x′x

)−1
x′y

= (
x′x

)−1
x′ (xβ + e)

= β + (
x′x

)−1
x′e (6.19)
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provided the relationship (6.17) holds. From (6.3), e has conditional mean zero, and 
the conditional expectation is 

. E
(
β̂|x

)
= β + (

x′x
)−1

x′ E (e|x)

= β

and therefore, unconditionally, .E
(
β̂
)

= β. 

A fitted value is defined as 

. ŷi = x′
i β̂

and the estimated residual is 

. ̂ei = yi − ŷi = yi − x′
i β̂.

Each datum can also be expressed as 

. yi = x′
i β̂ + êi .

The conditional variance-covariance of the least squares estimator is readily seen 
to be 

. Var
(
β̂|x

)
= σ 2 (

x′x
)−1

= σ 2

n

(
1

n
x′x

)−1

.

As the number of observations increases, the term inside the brackets converges 
to a finite nonsingular matrix. Then the variance of the estimates of the regression 
coefficients will . (1) decrease as sample size n increases, . (2) increase with larger 
. σ 2 indicating a poor fit of the linear regression, and . (3) decrease as the predictor 
variables x have larger sampling variances and are uncorrelated with each other. 
This latter point can be illustrated for the case of two covariates. Let 

. X′X = J =
[

J11 J12

J12 J22

]
.

If the covariables are uncorrelated, .J12 = 0, and the variance of the estimator of 
the first regression is proportional to .(J11)−1. When the covariates are correlated, 
.J12 �= 0, and the variance of the estimator of the first regression is proportional to 
.J22/� where 

.
(
X′X

)−1 = J−1 = 1

�

[
J22 −J12

−J12 J11

]
.
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The determinant .� = J11J22 − (J12)
2 > 0 because .X′X is positive definite. This 

implies that .J11J22 > �. Dividing both sides by . � and multiplying by .(J11)
−1, we  

get 

. 
J22

�
> (J11)

−1

indicating that when the covariables are correlated the uncertainty increases. When 
.J12 = 0, .J22/� = (J11)

−1. 
If x is allowed to vary, then by the law of total variance 

. Var
(
β̂
)

= Ex

[
Var

(
β̂|x

)]
+ Varx

[
E

(
β̂|x

)]

= Ex

[
Var

(
β̂|x

)]

= Ex

[
σ 2

n

(
1

n
x′x

)−1
]

= σ 2

n
Ex

[(
n−1x′x

)−1
]

.

Omitting the intercept, as .n → ∞, .n−1x′x → Var (x) and (see note0602.pdf at 
https://github.com/SorensenD/SLGDS) 

.Var
(
β̂
)

→ n−1σ 2 (Var (x))−1 . (6.20) 

The conditional variance of . yi in the linear model specified in (6.16), given x, is  

. Var (yi |xi) = E
[
(yi − E (yi |xi))

2
]

= E
(
e2i |xi

)

that by assumption, is independent of x and therefore . Var (yi |xi) = E
(
e2i |xi

) =
σ 2, for all i. This defines a homoscedastic error. In a heteroscedastic model, the 
conditional variance depends on the covariate x. 

A more general approach to study factors affecting the conditional variance is to 
specify a model of the form 

. yi |xi ∼ N
(
x′
iβ, σ 2 (xi)

)
,

ln
(
σ 2 (xi)

)
= x′

iβ
∗

where the logerror variance is modelled explicitly as in San Cristobal-Gaudy et al 
(1998). When .ln

(
σ 2 (xi)

) = β∗, a parameter in . R, the model reduces to its
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homoscedastic form (6.16). This is a fruitful area of research in quantitative and 
evolutionary genetics that is briefly revisited in Chapter 10 on page 435. 

The unconditional error variance is, by construction, independent of x. Indeed, 
the unconditional variance is 

. E
(
e2i

)
= Exi

[
E

(
e2i |xi

)]
,

the average conditional variance. 

Least Squares Linear Regression and the “Hat” Matrix 

The fitted value of y (a column vector with n elements) is 

. ŷ = xβ̂

= x
(
x′x

)−1
x′y

= Hy (6.21) 

where the .n × n idempotent, symmetric, positive semidefinite matrix . H =
x

(
x′x

)−1
x′ is known as the “hat” matrix (an idempotent matrix is a matrix which, 

when multiplied by itself, yields itself) and matrix x, whose first column is a vector 
of 1s to accommodate the constant term, is of dimension .n × p, where .p − 1 is 
the number of covariates. Since H is positive semidefinite, its ith diagonal element 
.hii ≥ 0. Other properties of H are 

1. .Hx = x. 
2. Partition x as .x = (x1 x2). Then .Hx1 = x1. 
3. If matrix x contains a constant term, .H1 = 1, where 1 is a column vector of 1s. 

It follows that .
∑n

j=1 hij = ∑n
i=1 hij = 1. 

4. If matrix x contains a constant term, .n−1 ≤ hii ≤ 1, and in general, .0 ≤ hii ≤ 1. 

Writing 

.y = xβ̂ + ê = ŷ + ê, (6.22) 

then

. x′ê = x′ (y − ŷ
) = x′ (y − Hy) = x′y − x′x

(
x′x

)−1
x′y = 0

and therefore, the estimated residuals . ̂e are orthogonal to the covariable x. 
The estimated residuals are also orthogonal to the predicted values. Indeed, 

.ê′ŷ = ((I − H) y)′ Hy = y′Hy − y′HHy = 0,
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because H is idempotent and therefore .HH = H . The estimated residuals . ̂e = y−ŷ

can be generated using 

. ̂e = (I − H) y

= (I − H) (xβ + e)

= (I − H) e, (6.23) 

because .Hx = x. For the homoscedastic model, the variance of the vector of 
estimated residuals is 

. Var
(
ê|x) = Var ((I − H) e|x) = σ 2 (I − H)

because .I −H is idempotent, indicating that estimated residuals are heteroscedastic 
and correlated despite homoscedasticity of the uncorrelated errors e. In particular 
for record i, 

.Var
(
êi |x

) = σ 2 (1 − hii) (6.24) 

where . hii is the ith diagonal element of H . 
An estimator of the conditional variance given x is 

. σ̂ 2 = 1

n
ê′ê

= 1

n
y′ (I − H) (I − H) y

= 1

n
y′ (I − H) y,

because .(I − H) is idempotent. This is a method of moment estimator equal to the 
maximum likelihood estimator in the normal regression model. Using .Hx = x and 
the formula for the expectation of a quadratic form (see Note on page 134), one can 
show that the expected value of the estimator is 

. E
(
σ̂ 2

)
= n − p

n
σ 2,

indicating that there is a downward bias. The usual unbiased estimator is .
1

n−p
ê′ê. 

Using the hat matrix, it is easy to show that 

. E
(
ŷ|x) = E (y|x)

and that 

.Var
(
ŷ|x) = Var (Hy|x) = HV ar (y|x) H = σ 2H. (6.25)
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Also, 

.Cov
(
y, ŷ′|x) = Cov

(
y, y′H |x) = σ 2H. (6.26) 

For the ith record,

. Cov
(
yi, ŷi |x

) = Cov
(
yi,

∑n

j=1
hij yj |x

)

= Cov (yi, hiiyi |x) = hiiσ
2, (6.27) 

where . hij is the element in row i and column j of the hat matrix H , known as the 
leverage. The equality in the second line follows because . Cov

(
yi, hij yj |x

) = 0
for .i �= j . This covariance can be interpreted as the influence that a datum has 
on its own prediction. It plays an important role in understanding the relationship 
between overfitting and the model’s prediction ability and is related to the concept 
of effective number of parameters of a model (Hastie et al 2009). 

Also, 

.Var
(
ŷi |x

) = hiiσ
2. (6.28) 

Then it follows that conditional on x,

.r2
yi ,ŷi

=
[
Cov

(
yi, ŷi |x

)]2
Var (yi |x)Var

(
ŷi |x

) = Var
(
ŷi |x

)

Var (yi |x)
= hii, (6.29) 

indicating the two related interpretations of .r2
yi ,ŷi

: (i) as the proportion of the 
variance in y explained by the linear predictor and (ii) the squared correlation 
between predictor . ŷi and predictand . yi . The ratio of variances in the second equality 
emphasises that .r2

yi ,ŷi
is a measure of how much the full model (6.16) improves on 

the reduced model that only includes an intercept, and not on how good the full 
model is in an absolute sense. It also indicates that the full and reduced models are 
nested. 

The correlation can be regarded as a parameter of the joint (bivariate) distribution 
of fitted values . ŷi and the data . yi used to obtain the fitted values (the training data). 
Indeed, assuming normality 

.

(
ŷi

yi
|x

)
∼ N

[(
x′
iβ

x′
iβ

)
,

(
hiiσ

2 hiiσ
2

hiiσ
2 σ 2

)]
(6.30) 

with correlation between . ŷi and . yi equal to .
√

hii and with regression of . ŷi on . yi

equal to . hii .
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With n records, the average squared correlation in a model with intercept is 

. 

∑n
i=1 hii

n
= tr (H)

n
= p

n
,

indicating that the regression and the squared correlation increase towards 1 as p 
increases towards n reflecting overfitting. The proportion of variance explained of 
the training records or squared correlation between . ŷi and . yi depends only on the 
structure of the covariates for a particular data set and is a poor reflection of the 
model’s ability to predict records from an independent set of data. 

The sum of squared deviations between the observations and their fitted values 
(the residual sum of squares) is 

. 

n∑
i=1

(
yi − ŷi

)2 = (
y − ŷ

)′ (
y − ŷ

)

= y′ (I − H) y

=
n∑

i=1

y2
i (1 − hii) −

∑
i �=j

yiyjhij .

As p increases towards . n, . hii increases towards 1, and . hij , .(i �= j) and the residual 
sum of squares decrease towards 0. 

The estimator (6.19) was obtained by minimising the residual sum of squares 
(6.18), here with .f (xi) = x′

iβ, a linear function of the parameters. In principle, any 
arbitrary function passing through the data points .(xi, yi) may represent a solution 
to the minimisation problem. However, we shall see that such solutions yielding 
perfect or nearly perfect fits obtained using a given sample of data may be poor 
predictors of data points from a new sample of data. 

Prediction of Out-of-Sample Values 

Given a value of the covariate . x0, one may wish to obtain a prediction of a yet-to-
be-observed scalar . y0 (the validating data). The model for . y0 is 

. y0 = x′
0β + e0,

where . e0 is homoscedastic with variance . σ 2 and assumed to be independent of . x0. 
This new datum is assumed to be independent of the data used to estimate . β, the  
training data and drawn from the same distribution. The model for the training data
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is .y = xβ + e. The classical approach is to use an estimate of the conditional mean 
as predictor 

. ŷ0 = E
(
y0|x0, β = β̂

)
= x′

0β̂

where . β̂ is estimated using the training data. This is a point prediction of the average 
value of yet-to-be-observed data evaluated at . x0. It does not account for any form 
for uncertainty, but can be applied in an initial stage to compare predictors derived 
from different models. Conditional on training and validating data, the predictor is 
a point mass at . x′

0β̂. The variance of the predictor over conceptual replications of 
training data is 

. Var
(
ŷ0|x0

) = Var
β̂

[
E

(
ŷ0|x0, β̂

)]

= x′
0

(
x′x

)−1
x0σ

2.

Averaging over conceptual replications of validating data as well, the variance of 
the error of prediction is 

. Var
(
y0 − ŷ0|x0

) = Var (y0|x0) + Var
(
ŷ0|x0

)

= σ 2
[
1 + x′

0

(
x′x

)−1
x0

]
. (6.31) 

The covariance term cancels due to the independence of . y0 and . ŷ0. This expression 
has an extra term compared to (6.10c) accounting for the use of an estimate of the 
conditional expectation. 

A Justification for the Choice of a Linear Relationship 

The conditional expectation was approximated using the linear function . xβ. While 
this may appear arbitrary, some justification can be found in the following argument. 
If f is a smooth function, a first-order Taylor expansion about a chosen point . x∗
results in 

. f (x) = f
(
x∗) +

p∑
i=1

(
∂f

∂xi

∣∣∣∣
x=x∗

) (
xi − x∗

i

) + higher-order terms in
(
xi − x∗

i

)
,

where the partial derivatives of the function become the regression coefficients. If . x∗
is close to x, higher-order terms are small, and the linear approximation is (locally) 
acceptable.
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Some Caveats of the Linear Regression Model 

Several issues arise when the linear regression model is a poor description of the 
model that generated the data: 

• The first issue is concerned with the dependence of the population regression 
coefficients (6.6) on the distribution of the input variables x. Specifically, 

. Var (x)−1 Cov (x, y)

= Var (x)−1 Cov
(
x, x′β + e

)

= Var (x)−1 (Var (x) β + Cov (x, e))

= β,

if the true model is linear and the error terms are uncorrelated with x. If this is  
not the case, the coefficient . β is sensitive to changes in the input variable x. 

• Another potential problem arises when the regression model omits variables that 
are part of the true model. If one postulates, 

.y = xβ + e (6.32) 

where e has zero mean and is independent of x, when the true model is

.y = xβ + zγ + ε (6.33) 

where . ε has zero mean and is independent of x and z, then the residual of the 
postulated model is .e = zγ + ε. This residual may depend on x if z and x are 
associated. A consequence is that the estimator (6.19) is biased with respect to 
. β. Indeed, 

. β̂ = (
x′x

)−1
x′y

= (
x′x

)−1
x′ (xβ + zγ + ε)

and 

. E
(
β̂|x, z

)
= β + (

x′x
)−1

x′zγ + E (ε|x, z)

= β + (
x′x

)−1
x′zγ

which is biased unless .x′z = 0. 
• On the other hand, if . γ in (6.33) is a random variable with zero mean so that 

.E(y) = xβ and the fitted model is (6.32) (that ignores the random variable . γ ), 
then .E(β̂|x) = (x′x)−1x′ E(y) = β, an unbiased estimator. The variance of
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this estimator is larger than the variance of the correct, generalised least squares 
estimator (the blue, best linear unbiased estimator). 

• Adding superfluous variables to a linear regression model does not introduce bias 
but increases the variance of estimation. Specifically, consider now that the true 
model is defined in (6.32), but we fit 

.y = xβ1 + zβ2 + ε. (6.34) 

Above, z is redundant when .β2 = 0. I sketch the proof that including z in the 
model does not bias the estimator of . β1, which has the same form as the estimator 
of . β based on the true model (6.32). The least squares equations based on (6.34) 
are 

.

[
x′x x′z
z′x z′z

] [
β̂1

β̂2

]
=

[
x′y
z′y

]
. (6.35) 

Carrying out the matrix multiplication yields after simple algebra

.β̂1 = (
x′x

)−1
x′ (y − zβ̂2

)
. (6.36) 

A little more effort (involving substituting . β̂1 in terms of . β̂2) leads to 

.β̂2 = [
z′ (I − H) z

]−1
z′ (I − H) y (6.37) 

where the hat matrix defined in (6.21) is  

. H = x
(
x′x

)−1
x′.

Taking expectation under the true model in (6.32) yields as the .E
(
β̂2|x

)
, 

. E
{[

z′ (I − H) z
]−1

z′ (I − H) y|x
}

= [
z′ (I − H) z

]−1
z′ (I − H) xβ

= [
z′ (I − H) z

]−1
z′ (x − x

(
x′x

)−1
x′x

)
β = 0.

Therefore, the expectation of . β̂1 in (6.36) is  

.E
[(

x′x
)−1

x′ (y − zβ̂2

)
|x

]
= (

x′x
)−1

x′xβ = β, (6.38) 

showing that . β̂1 is an unbiased estimator. 
The sampling variance of . β̂1 under (6.34) is proportional to the upper left hand 

block of the inverse of the coefficient matrix constructed on the basis of (6.34). 
Using results from partitioned matrices, it is easy to show that this variance is
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larger than the variance under the true model (6.32) (which is proportional to 
.
(
x′x

)−1), unless .x′z = 0. 
• Finally, consider fitting the operational model to data y (a vector with n 

elements), 

.y = zγ + ε (6.39) 

where the regression parameter .γ = 0 (a scalar), when the true model is 

. y = xβ + e, E (y|x) = xβ.

Assume that . ε has mean 0 and is independent of z and assume e is independent 
of z. 

The least squares estimator of . γ is 

. γ̂ = (
z′z

)−1
z′y =

(
1

n
z′z

)−1 1

n
z′y

As n increases, .n−1z′z → σ 2
z , .n

−1z′y → βσxz, and the least squares estimator 
converges to 

.γ̂ → σxz

σ 2
z

β. (6.40) 

This situation mimics a GWAS study, where the effects of multiple marker loci
are studied by fitting one marker at a time. In this case, the causal locus is x, and
z is a marker genotype that is correlated with x (.σxz �= 0; the marker is in linkage 
disequilibrium with x and does not have a direct effect on the dependent variable 
y). The consequence of the single marker regression is that neutral markers that 
are correlated with causal loci may be assigned phantom significant . p−values, 
a problem that is aggravated with sample size (large sample increases the power 
of detection). This issue is briefly revisited on page 365 in connection with the 
computation of false discovery rates. 

Least Squares Prediction as an Approximation to Best Linear 
Prediction 

Let .(x, y, e) be a random vector, where y and e are scalars on the real line . R, 
and vector x, of order .((p + 1) × 1), takes values in .Rp+1. The first component 
of .x = (

x0, x1, . . . , xp

)′ is the constant .x0 = 1. The conditional expectation of 
y given x, .E (y|x), may not be linear, but as mentioned in connection with (6.7), 
one can find the best linear approximation of the form .x′b for some choice of
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.b = (
b0, b1, . . . , bp

)′. This can be achieved by minimising the expected squared 
error 

. E
[(

y − x′b
)2]

with respect to b. Differentiating with respect to b shows that the solution . b∗ must 
satisfy 

. E
[
x

(
y − x′b∗)] = 0

and 

. b∗ = E
(
xx′)−1 E (xy)

provided . xx′ is invertible. The scalar .x′b∗ is the best linear predictor. 
Consider an iid sequence of random vectors .(x1, y1) , . . . , (xn, yn) drawn from 

the same distribution as the random variable .(x, y). If one postulates a linear model 

. y = x′b + e,

then the least squares estimator of b, . b̂, is the minimiser of 

. 
1

n

n∑
i=1

(
yi − x′

i b̂
)2

.

Carrying out the minimisation yields 

. b̂ =
(
1

n

n∑
i=1

xix
′
i

)−1 (
1

n

n∑
i=1

xiyi

)
.

Results from asymptotic theory tell us that as .n → ∞ sample moments converge 
to their population expectations and .b̂ → b∗. The message is that regardless of the 
form of the relationship between y and x, the least squares predictor . x′b̂ approaches 
the best linear predictor .x′b∗ when sample size n is large. 

The Linear Regression as a Linear Smoother 

Consider the case where . xi is a scalar and assume the regression through the origin 
model 

.yi = βxi + ei .
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Then 

. β̂ =
∑N

i=1 xiyi∑N
i=1 x2

i

and 

. f̂ (xi) = xiβ̂

= xi

∑N
j=1 xjyj∑N
j=1 x2

j

=
∑N

j=1
hij yj , (6.41) 

where . hij is the element in the ith row and j th column of the hat matrix H . 
Expression (6.41) indicates that the prediction based on least squares, .f̂ (xi), is a  
smoothing of the data whereby the prediction is a weighted average of the output 
variables . yj with weights proportional to . xj . 

The influence that output . yj has on the smoother’s fitted value .f̂ (xi) is . hij . In  
general for a linear smoother, the influence that each data point . yi has on its own 
predicted value . ŷi is equal to .hiiσ

2. For the case of this regression through the origin 
model .hii = x2

i /
∑

i x2
i , .i = 1, 2, . . . , N . 

To summarise, the general form for a linear smoother or a linear fitting method 
is given by 

.f̂ (x) = Hy, (6.42) 

where the .n × n hat matrix H depends on x but not on y. 

6.3 Overview of Things to Come 

In this chapter, models are regarded as prediction machines as opposed to descrip-
tions of the real world. Having collected data and obtained a predictor, one may 
wish to know how accurate it is for predicting future observations. The estimation 
of parameters used to construct the predictor is accomplished using training data 
consisting of N iid observations .{yi, xi}Ni=1 drawn from some joint distribution. 
The conditional mean and variance of the distribution of a training datum .[yi |xi] are 
.f (xi) and . σ 2, respectively. Clearly, the predictor is a function of the training data 
.(y, x); its quality can be studied in a second stage using the validating or testing 
data .

{
yv,i , xi

}N

i=1. The validating data are an independent sample from the same 
distribution that generated the training data (here, training and validating data are of 
the same length N but need not be, and the subscript v is omitted in the covariate
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. xi). Let .f̂ (xi) be the predictor of the ith data point evaluated at . xi , .i = 1, 2, . . . , N , 
obtained using the training data y. How good is .f̂ (xi) to predict the validating 
datum . yv,i? A common measure of prediction ability is the expected validating 
squared error of prediction, which evaluated at . xi is given by 

.E [MSEv (xi)] = Eyvy

((
yv,i − f̂ (xi)

)
|xi

)2
. (6.43) 

(Expectations are conditional on covariables x but this is not mandatory). It will be
shown that when the expectation is taken over both training and validating data, this
measure of prediction ability of a future record has three terms:

.E [MSEv (xi)] = Var
(
yv,i |xi

) + Var
(
f̂ (xi) |xi

)
+ bias2, (6.44) 

where the squared bias is defined as .

(
Eyv

(
yv,i |xi

) − Ey

(
f̂ (xi)

))2
. The first term, 

.Var
(
yv,i |xi

)
, is the conditional variance of a future record, also labelled irreducible 

variance since it reflects sampling variation beyond the control of the experimenter. 

The second term .Var
(
f̂ (xi) |xi

)
is the variance of the predictor. It describes 

sampling uncertainty associated with estimation of . f̂ due to finite size of the training 
data. The bias term reflects average systematic discrepancy between the predictor 
and the predictand. Increasing the number of parameters of a model tends to reduce 
bias and to increase the variance of the predictor. The choice of a prediction model 
often involves a trade-off involving these two terms. 

Expression (6.44) cannot be obtained directly because parameters are not known. 
In practice, the sample mean squared error is computed. For a particular realisation 
of validating data, the sample validating mean squared error is 

.MSEv = 1

N

N∑
i=1

(
yv,i − f̂ (xi)

)2
, (6.45) 

where . f̂ is the predictor calculated using the training data. The expected mean 
squared error in the validating data is 

.Eyvy (MSEv) , (6.46) 

with a corresponding expression for the expected mean squared error in the training
data

.Ey (MSEt ) = Ey

[
1

N

N∑
i=1

(
yi − f̂ (xi) |xi

)2]
. (6.47)
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The expectation in (6.46) is taken over conceptual replications of training and 
validating data and in (6.47) over the training data. Monte Carlo estimates of 
these expectations can be obtained using the bootstrap or simulating the data, 
given a parametric model. Monte Carlo methods generate estimates of the complete 
sampling distribution of MSE. An example is discussed on page 430. 

An important theme of this chapter is the distinction between the predictive 
ability of .f̂ (xi) quantified using either the training data used to estimate . f̂ (xi)

or the validating data. It will be shown that the former overestimates predictive 
performance in the validating data, on average, as reflected in the expectations (6.46) 
and (6.47). These are given by 

. Eyvy (MSEv) = Var
(
yv,i |xi

) + bias2 + 1

N
Var

(
f̂ (xi) |xi

)

and 

. Eyvy (MSEt ) = Eyvy (MSEv) − 2

N

∑
i

Cov
(
yi, f̂ (xi)

)
.

The covariance term in the second equation was introduced in (6.27) and reflects 
the influence that observation i has on its own prediction. It is the amount by which, 
on average, the training mean squared error underestimates the validating mean 
squared error and is labelled expected optimism by Efron (1986). The following 
section elaborates on these ideas. 

6.4 The Bias-Variance Trade-Off 

Consider two random variables .(Y,X) that have a joint distribution and suppose 
that one wishes to predict Y from X using a function evaluated at .X = x, .f (x). 
This unknown function specifies the true association between Y and X and is 
estimated using N training observations giving rise to the predictor . f̂ . The  N 
training observations are realisations from the joint distribution .[Y,X]. The model 
for datum i in the training data is 

. yi = f (xi) + ei, ei
iid∼ (0, σ 2), i = 1, 2, . . . , N,

where residuals e have mean zero and variance . σ 2 independent of x. The assumption 
of normality at this stage is not required. According to the model, .E (yi |xi) = f (xi). 

Consider another sample .(y0, x0) drawn independently from the same joint 
distribution .[Y,X]. This constitutes the validating data. How well does the function 
. f̂ constructed using the training data .(y1, x1) , . . . , (yN , xN) predict the new test 
point . y0 at the input point . x0? The predicted value is .ŷ0 = f̂ (x0). For a particular
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datum and its prediction, the validating mean squared error is 

.MSEv = (
y0 − ŷ0

)2 = y2
0 + ŷ2

0 − 2y0ŷ0, (6.48) 

and the measure of prediction ability of . ŷ0 under enquiry is the expected validating 
mean squared error evaluated at .X = x0, denoted .E [MSEv (x0)]. 

The expected validating mean squared error is studied in three scenarios. 
These determine whether sampling uncertainty of the predictor and/or sampling 
uncertainty of new records contribute to the expectation of the validating mean 
squared error. 

Training Data Treated as Fixed and Validating Data as Random 
The first scenario accounts for variation of single records; expectations are taken 
over the distribution of validating data, conditional on the training data y. Therefore, 
the predictor . ŷ0 is regarded as a fixed constant. In this case, 

. Ey0 [MSEv (x0)] = E
(
y2
0

)
+ ŷ2

0 − 2ŷ0 E (y0)

= Var (y0) + (E (y0))
2 + ŷ2

0 − 2ŷ0 E (y0)

= Var (y0) + (
E (y0) − ŷ0

)2
. (6.49) 

The first term accounts for the conditional sampling variance (given covariates) 
of new validating data, and the second reflects the squared discrepancy between 
the predictor . ŷ0 and the mean of the distribution of validating data. The squared 
discrepancy term depends on the particular realisation of the training data used to 
obtain . ŷ0. 

The focus is on the quality of a predictor, measured by .E(MSEv), computed from 
a single sample of training data, measured over conceptual replications of validating 
data. Single observations are predicted accounting for their sampling uncertainty but 
ignoring sampling uncertainty of the parameters that index the predictor. 

Training Data Treated as Random and Validating Data as Fixed 
The second scenario accounts for variation of the predictor, and the mean validating 
squared error is averaged over conceptual replications of training data, keeping 
validating data fixed. Using similar algebra leads to 

.Ey [MSEv (x0)] = Var
(
ŷ0

) + (
E

(
ŷ0

) − y0
)2 (6.50) 

indicating that there is a component from the sampling variation of the predictor
over conceptual replications of training data and a squared discrepancy between the
validating data . y0 and the mean of the predictor (averaged over training data). 

The focus here is on the quality of a predictor, computed repeatedly from 
conceptual replications of training data, measured in a single sample of validating
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data. Average values of new observations, all evaluated at .X = x0, are predicted, 
accounting for sampling variation of the parameters that index the predictor. 

Training and Validating Data Are Treated as Random 
The third scenario accounts for variation of single records and of the predictor, and 
the average performance of the .MSEv is studied over conceptual replications of 
training and validating data, given .X = x0, as in (6.44): 

. Eyy0 [MSEv (x0)] = Ey0

(
y2
0

)
+ Ey

(
ŷ2
0

)
− 2Eyy0

(
y0ŷ0

)

= Var (y0) + (E (y0))
2 + Var

(
ŷ0

) + (
E

(
ŷ0

))2 − 2E (y0)E
(
ŷ0

)

= Var (y0) + Var
(
ŷ0

) + (
E (y0) − E

(
ŷ0

))2 (6.51) 

where the second line is the result of using .Eyy0

(
y0ŷ0

) = E (y0)E
(
ŷ0

)
due to the 

independence of training and validating data in this simple least squares setting. 

The focus here is on the quality of a predictor, computed repeatedly from 
conceptual replications of training data and measured over conceptual replications 
of validating data. Single observations are predicted, accounting for their sampling 
uncertainty and also accounting for sampling uncertainty of the parameters that 
index the predictor. 

Expression (6.51) indicates how the expected validating mean squared error 
.Eyy0 [MSEv (x0)] evaluated at . x0 is affected by the inherent variation of . y0, by  
the variance of the predictor .Var

(
ŷ0

)
that describes how the values of . ŷ0 for the 

different training data sets vary around their average and the squared bias of the 
predictor. As the complexity of a model increases, the variance of the predictor 
tends to increase, and the bias term tends to decrease. In practice, most operational 
models are distortions of the true state of nature and hence are biased. In a prediction 
setup, one often chooses the degree of complexity of a predictive model to trade bias 
off with variance in such a way as to minimise .E [MSEv (x0)]. Therefore, choosing 
a predictive model amounts to striking a balance between bias and variance. This is 
particularly relevant with the advent of new technologies that allows vast amounts 
of covariates to be collected. Even when the covariates are relevant, the variance 
incurred in estimating their effects may outweigh the reduction in bias. The “true 
model” may not lead to the best predictive tool. 

For a given number of observations, positively correlated data due to underlying 
random effects, such as family effects, lead to a similar decomposition as (6.51) 
except that the terms .Var (y0) (conditional on covariates but averaged over the 
distribution of random effects) and .Var

(
ŷ0

)
are larger, and often validating and 

training data are correlated resulting in .Eyy0

(
y0ŷ0

) = Cov
(
y0, ŷ0

) + E (y0)E
(
ŷ0

)
. 

The three scenarios described above, developed from a frequentist perspective, 
have a Bayesian counterpart where all expectations are conditional on training and 
validating data. The topic is discussed in Chapter 10, in the Exercises on Prediction 
on pages 562 and 651 and also on page 430. Bayesian expectations of mean squared 
error are derived on page 428.



280 6 Fundamentals of Prediction

Briefly, with . y0 representing validating data, y representing training data and . θ
the parameter of the model used to construct the predictor . ŷ0 of the validating data, 

the Bayesian scenario 1 corresponds to drawing the predictor . ŷ0 from .

[
y0|θ̂ , y, x0

]
, 

where . θ̂ is some point estimate of . θ . In this situation, account is taken of sampling 
variation of the predictor of single records . ŷ0, and this variation is one of the 
components of the Bayesian expected validating mean squared error. By replicating 

data from .
[
y0|θ̂ , y, x0

]
, we are studying the frequency properties of the Bayesian 

procedure. 
The second scenario corresponds to constructing the predictor of an average of 

records using a function f , .ŷ0 = f (θ�, x0), where . θ� is a draw from the posterior 
distribution .[θ |y]. In this case, account is taken of posterior uncertainty of . θ , and 
this uncertainty is a component of the Bayesian expected validating mean squared 
error. 

The third scenario takes care of uncertainty of . θ and of sampling variation of 
a new record . ŷ0. In this case, . θ� is drawn from .[θ |y], and given . θ�, . ŷ0 is drawn 
from .

[
y0|θ�, y, x0

]
. Both sources of uncertainty are incorporated in the Bayesian 

expected validating mean squared error. 
An alternative description of the three scenarios is as follows: Each scenario 

gives rise to a predictor that is characterised by its distribution. The mean squared 
errors are transformations with their own distributions that here are summarised by 
their expected value. This general narrative holds for the frequentist and Bayesian 
approaches with the obvious caveat that what is considered random and uncertain 
and what is considered non-random is peculiar to each approach to inference. 

An attraction of the Bayesian approach implemented in an McMC environment is 
the ease with which the marginal posterior distribution of MSE can be estimated. If 
two models are evaluated in terms of their predictive ability, the computation of the 
marginal posterior distribution of the difference in MSE between the models only 
requires a few extra lines of code. This can be particularly relevant when the merits 
of different prediction machines are to be judged on the basis of relatively small 
differences. However, a usual way of comparing models is to estimate parameters 
and to use these to construct the point predictor ignoring uncertainty. 

6.5 Estimation of Validation MSE of Prediction in Practice 

The measure of prediction ability often used in practice is the sample mean squared 
error. A possibility is to use the same training data .{yi, xi}Ni=1, from which the 
predictions .f̂ (xi) were estimated, in order to compute the sample training mean 
squared error : 

.MSEt = 1

N

N∑
i=1

(
yi − f̂ (xi)

)2
. (6.52)



6.5 Estimation of Validation MSE of Prediction in Practice 281

This is the average squared discrepancy between observations and their predictions. 
The training mean squared error is not a good measure of prediction ability because 
it has the property of decreasing consistently with model complexity. A model with 
close to zero training squared error is overfit to the training data, as it captures not 
only true signal but also the noise peculiar to the training data and will predict new, 
independent observations poorly. 

A better proposition for model validation or model selection would be to study 
the predictive ability of . f̂ , computed using the training data, in an independent 
set of data: the testing or validating data .

{
yv,i , xv,i

}N

i=1. This validating data is 
conceptually a new realisation from the same distribution that generated the training 
data. Using the validating data, one can compute 

.MSEv = 1

N

N∑
i=1

(
yv,i − f̂

(
xv,i

))2
, (6.53) 

the sample testing or validating mean squared error. However, with limited data
or without access to real validating data, one must resort to alternative procedures.
These consist of artificially splitting the data into training and validating sets or to
use approximations derived from theory without splitting the available data.

One possibility is to use leave-one-out cross-validation. Each of the N obser-
vations .(yi, xi) is held out in turn, and the function .f̂ (−i) is estimated with the 
remaining .N − 1 records from the training data, with the ith pair .(yi, xi) omitted. 
Then the squared discrepancy between . yi and .f̂ (−i) (xi) is computed, and this 
is repeated N times. The resulting estimate of the leave-one-out prediction mean 
squared error is 

.MSE1 = 1

N

N∑
i=1

(
yi − f̂ (−i) (xi)

)2
. (6.54) 

A more common practice is to use . K−fold cross-validation whereby the 
complete set of N records is divided into K groups or folds of approximately equal 
size. For the kth fold, the model is fitted to the other .K − 1 folds of the data (this 
yields .f̂ (−k) the estimate of the predictive function based on the .K − 1 folds of the  
data with the kth fold excluded), and the prediction mean squared error of the fitted 
model is estimated using data from the kth fold. This is repeated for the K groups, 
and the K estimates of prediction mean squared error are combined to obtain the 
cross-validation estimate of prediction mean squared error. Specifically, . K−fold 
cross-validation proceeds as follows: 

1. Divide the N records into K folds of approximately equal size . nk; .N = ∑K
k=1 nk . 

2. Fit the model to the remaining .K − 1 parts of the data (with fold k excluded), 
and obtain the estimate .f̂ (−k)
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3. Using the records from the kth fold only, estimate the mean squared error: 

. MSEk

(
f̂ (−k)

)
= 1

nk

∑
i∈kth f old

(
yi − f̂ (−k) (xi)

)2

4. Repeat using all the K folds to obtain .MSE1

(
f̂ (−1)

)
. . .MSEK

(
f̂ (−K)

)
. 

5. Obtain the . K−fold cross-validation combined (weighted according to fold size 
. nk) estimate of mean squared error: 

.MSEK = 1

N

K∑
k=1

nk MSEk

(
f̂ (−k)

)
. (6.55) 

If all groups are of equal size n, .N = Kn, and this reduces to 

.MSEK = 1

K

K∑
k=1

MSEk

(
f̂ (−k)

)
. (6.56) 

Common choices for K are .K = 5 or .K = 10. If .n = 1, the procedure recovers 
leave-one-out cross-validation. The  . K−fold cross-validation may be repeated 
several times by reconstructing the folds at random to obtain estimates of the 
distribution of .MSEK . 

Compared to . K−fold cross-validation, leave-one-out cross-validation can suffer 
from highly correlated out-of-sample predictions. Indeed, with N observations, 
there are N forecasts, and any two training sets share .N−2 points. Therefore, despite 
averaging N forecasts, these tend to be highly correlated, and therefore the leave-
one-out estimator tends to have high variance (taken over conceptual replications 
of training data). With . K−fold cross-validation, the folds share relatively fewer 
observations and are less correlated. This tends to reduce the variance of the 
estimator. However, a relatively small number of the observations in the training 
data are included to estimate parameters, and the . K−fold estimator may be biased 
upwards with respect to the squared error obtained using the entire data set. This is 
not the case for leave-one-out cross-validation, since the method repeatedly trains 
the model on .N − 1 observations, almost as many as in the entire training data. 

Implementation Shortcut for Leave-One-Out Cross-Validation 

For linear smoothers or linear fitting methods as defined in connection with (6.21), a 
computational advantage of leave-one-out cross-validation is that it requires running 
through the training data only once, rather than N times (Seber and Lee 2003). This
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relies on a little trick that works as follows: From (6.21), the ith predicted value at 
. xi is 

. ŷi = hi1y1 + · · · + hiiyi + · · · + hiNyN

with .
∑N

j=1 hij = 1 when the model includes an intercept. Eliminating the ith datum 
and rescaling so that the .N − 1 weights sum to one yield 

. ŷ−i = ŷi − hiiyi

1 − hii

.

A more formal proof of this identity can be found in Seber and Lee (2003). 
The leave-one-out residual or prediction error is 

. ri = yi − ŷ−i

= yi − ŷi − hiiyi

1 − hii

= yi (1 − hii) − (
ŷi − hiiyi

)

1 − hii

= yi − ŷi

1 − hii

(6.57) 

and the leave-one-out cross-validation prediction mean squared error (6.54) reduces 
to 

.MSE1 = 1

N

N∑
i=1

(
yi − ŷ−i

)2 = 1

N

N∑
i=1

(
yi − ŷi

1 − hii

)2

, (6.58) 

that also holds when the model does not have an intercept (Seber and Lee 2003). 
The calculation of (6.58) requires one to pass through the training data rather than 
the N implied in the left-hand side. 

A computationally faster approximation, known as the generalised cross-
validation, is  

.
1

N

N∑
i=1

(
yi − ŷ−i

)2 = 1

N
(
1 − N−1 tr (H)

)2
N∑

i=1

(
yi − ŷi

)2 (6.59) 

whereby rather than weighting each term by 1 minus the ith diagonal element of
the hat matrix H , all terms are given the same weight (1 minus the average of the
diagonal elements of H ). The generalised cross-validation can be a numerically
more robust alternative to (6.58) in cases where a few records may have a strong 
influence due to the terms .1 − hii in the denominator.
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Using the approximation 

. 
1

(1 − x)2
≈ 1 + 2x

allows expressing (6.59) as  

.
1

N

N∑
i=1

(
yi − ŷ−i

)2 ≈
∑N

i=1

(
yi − ŷi

)2
N

(
1 + 2

tr (H)

N

)
. (6.60) 

For the least squares linear regression with p parameters, .tr (H) = p, and (6.60) 
reduces to 

.
1

N

N∑
i=1

(
yi − ŷ−i

)2 ≈
∑N

i=1

(
yi − ŷi

)2
N

(
1 + 2

p

N

)
(6.61) 

which establishes a connection between leave-one-out cross-validation and Mal-
lows’ . Cp (Mallows 1973; see  (6.75) below). 

This is an instance where prediction ability is evaluated using training data only, 
without using cross-validation. 

6.6 On Average Training MSE Underestimates Validation 
MSE 

The within sample prediction ability based on . f̂ will be overstated, in expectation, 
relative to the out-of-sample prediction, leading to .MSEt < MSEv . The algebra 
underlying this result is simple and illuminating and is described in this section. 

Independently Distributed Data 

Let .{yi, xi}Ni=1 and .
{
yv,i , xv,i

}N

i=1 denote the N observations in the training and 
validating data, respectively. Assume that under the true model, the observations 
have means .f (xi) and variance . σ 2; that is, 

.yi = f (xi) + ei , ei ∼
(
0, σ 2

)
,

yv,i = f
(
xv,i

) + ev,i , ev,i ∼
(
0, σ 2

)
.
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In the derivation that follows, .(yi, xi) and .
(
yv,i , xv,i

)
are different realisations 

from the same probability model. The random quantities are .
(
yi, yv,i

)
, whereas the 

covariates x are treated as fixed and known. Importantly, records are assumed to be 
independent. The modification needed for correlated data is discussed below. 

The true model is unknown, and a number of operational or instrumental models 
may be available to choose as prediction machines. The prediction ability will be 
studied specifically as follows: 

1. Fit the operational model to the training data .{yi, xi}, and obtain predictive values 
for the validating data .ŷv,i = f̂

(
xv,i

)
, .i = 1, 2, . . . , N . 

2. Obtain predictions for the training records .ŷi = f̂ (xi), .i = 1, 2, . . . , N , and 
compute the training mean squared error 

.MSEt = 1

N

∑
i

(
yi − ŷi

)2 (6.62) 

3. Use the validating data .
{
yv,i , xv,i

}
to compute the testing or validating mean 

squared error: 

.MSEv = 1

N

∑
i

(
yv,i − ŷv,i

)2 (6.63) 

The expected value of .MSEv is derived first. Taking expectations of (6.63) with 
respect to the distribution of . (y, yv)

.Ey,yv

[
1

N

∑
i

(
yv,i − ŷv,i

)2
]

= 1

N

∑
i

Eyiyv,i

(
yv,i − ŷv,i

)2 (6.64) 

The squared term is expanded as in (6.48) and going through the same algebra used 
in the derivation of (6.51) leads to the expected validating mean squared error: 

. Ey,yv (MSEv) = Ey,yv

[
1

N

∑
i

(
yv,i − ŷv,i

)2
]

= 1

N

∑
i

σ 2 + 1

N

∑
i

bias2 (i) + 1

N

∑
i

Var
(
ŷv,i

)

= σ 2 + bias2 + 1

N

∑
i

Var
(
ŷv,i

)
, (6.65) 

where .bias2 (i) = (
E

(
yv,i

) − E
(
ŷv,i

))2.
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The expected value of the training mean squared error is derived in a similar 
manner. Taking expectations of (6.62) with y random and covariates x fixed yields 

. Ey (MSEt ) = Ey

[
1

N

∑
i

(
yi − ŷi

)2
]

= 1

N

∑
i

Eyi

(
yi − ŷi

)2
.

Expanding the square results in 

. Eyi

(
yi − ŷi

)2 = Eyi

(
y2
i + ŷ2

i − 2yi ŷi

)2

= Var (yi) + (E (yi))
2 + Var

(
ŷi

) + (
E

(
ŷi

))2 − 2Cov
(
yi, ŷi

) − 2E (yi)E
(
ŷi

)

= Var (yi) + Var
(
ŷi

) + (
E (yi) − E

(
ŷi

))2 − 2Cov
(
yi, ŷi

)
.

Therefore, 

.Ey (MSEt ) = σ 2 + 1

N

∑
i

Var
(
ŷi

) + bias2 − 2

N

∑
i

Cov
(
yi, ŷi

)
(6.66) 

and from (6.65) 

.Ey (MSEt ) = Eyyv (MSEv) − 2

N

∑
i

Cov
(
yi, ŷi

)
, (6.67) 

Efron (1986) indicating that on average, the training .MSEt underestimates vali-
dating .MSEv especially if . yi and . ŷi are highly correlated. This happens when the 
operational model has a large number of parameters that result in a very close 
fit, with little discrepancy between observations . yi and fitted values . ŷi . The  term  
.Cov

(
yi, ŷi

)
is not observable and unless an analytic form is available (as for linear 

smoothers) must be estimated using, for example, the bootstrap or Monte Carlo. 
This subject is revisited in the Examples Section, page 570. 

The form of (6.67) encompasses two terms, reflecting model fit, .Ey(MSEt ) and 
model complexity, .

∑
i Cov

(
yi, ŷi

)
. The second term on the right-hand side of (6.67) 

is labelled expected optimism by Efron (1986) :  

.Eyyv (MSEv)−Ey (MSEt ) = 2

N

∑
i

Cov
(
yi, ŷi

) = 2

N
tr

(
Cov

(
y, ŷ′)) , (6.68)

the difference between the expected validating mean squared error and the expected
training mean squared error.
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Invoking the law of large numbers, a natural estimate of the expected validating 
mean squared error obtained using the training data is 

.Ê (MSEv) = 1

N

N∑
i=1

(
yi − ŷi

)2 + 2

N

N∑
i=1

Ĉov
(
yi, ŷi

)
. (6.69) 

The first term on the right-hand side is a sample estimate of .Eyyv (MSEt ), and 
.Ĉov

(
yi, ŷi

)
is some estimate obtained using Monte Carlo simulation or the 

bootstrap. Expression (6.69) obviates estimation of . σ 2 and is simple to compute 
if an analytic form is available for .Cov

(
yi, ŷi

)
. Otherwise, one incurs the cost of 

a bootstrap or a Monte Carlo analysis. An important issue with estimator (6.69) is  
that the rate of convergence to its expectation depends on the ratio .p/N . 

An estimate of expected optimism provides an approximation to the evaluation 
of prediction ability without incurring the cost of cross-validation. 

Correlated Data 

Often, data are correlated such as in genetic studies where family structure is a 
classical source of correlation. The correlation structure can be patterned and simple 
as in independent full-sib families, where correlation arises between members of the 
same family, or can be highly complex with pedigrees spanning several overlapping 
generations. 

With correlated data, the expected training mean squared error (6.66) is parti-
tioned into the same four components, while the expectation of the validating mean 
squared error (6.65) has an extra term that describes the covariance between an 
observation in the validating set and its predictor. The degree of this association 
depends on the correlation structure in the data. With highly correlated data as found 
in animal breeding, a predicted value is constructed using information in the training 
data from many related individuals, and the validating datum correlates with these 
training data. The expected value of the validating mean squared error takes the 
form 

.Ey,yv (MSEv) = σ 2 +bias2 + 1

N

∑
i

Var
(
ŷv,i

)− 2

N

N∑
i=1

Cov
(
yv,i , ŷv,i

)
(6.70)
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and the expected optimism is 

. Ey,yv (MSEv) − Ey (MSEt ) = 2

N

[
N∑

i=1

Cov
(
yi, ŷi

) −
N∑

i=1

Cov
(
yv,i , ŷv,i

)
]

.

(6.71) 

Here, it is assumed that training and validating data are of size N . 

Estimating Optimism of the Training Sample 

Often, the covariance term .Cov
(
yi, ŷi

)
cannot be obtained analytically due to the 

nature of the fitting procedure but can be estimated either using the nonparametric 
or the (model dependent) parametric bootstrap (Efron and Hastie 2016). The 
parametric approach is easier to use when data are correlated. In the parametric 
bootstrap, repeated samples of the vector of data are drawn from the parametric 
model used to analyse the original observations, conditional on parameter estimates. 
The latter are obtained using these original observations. 

If a nonparametric bootstrap is chosen, at least one of two strategies can 
be followed. Assume that the training data consist of independent samples 
.(x1, y1) , (x2, y2) , . . . , (xN , yN). Then a first bootstrap strategy is to cycle through 
a loop from .b = 1 to B (.B = 1000, say) 

1. Draw N bootstrap samples (i.e., sampling with replacement from the data) 

. 

(
xb
i , yb

i

)
, i = 1, . . . , N,

calculate the regression function . f̂ b using .
(
xb
i , yb

i

)
, i = 1, . . . , N , and obtain 

the fitted values .ŷb
i = f̂ b

(
xb
i

)
, i = 1, . . . , N . 

2. Store .yb
i , i = 1, . . . , N and . ŷb

i , i = 1, . . . , N
3. After B cycles, calculate the empirical covariance between . yi and . ŷi

. ̂Cov
(
yi, ŷi

) = 1

B

B∑
b=1

(
yb
i − yb

i

) (
ŷb
i − ŷ

b

i

)
,

where 

.yb
i = 1

B

B∑
b=1

yb
i , ŷ

b

i = 1

B

B∑
b=1

ŷb
i .
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4. Finally, sum these over .i = 1, . . . , N to obtain the bootstrap estimate 

. 

N∑
i=1

Ĉov
(
yi, ŷi

)
.

For continuous data, a second bootstrap strategy is to use the residual bootstrap 
that proceeds as follows: 

1. Using the training data .(x1, y1) , (x2, y2) , . . . , (xN , yN), calculate . ŷi =
f̂ (xi) , i = 1, . . . , N , and compute the empirical residuals 

. ̂ei = yi − ŷi , i = 1, . . . , N.

Then cycle through the loop from .b = 1 to B: 
2. Draw N samples with replacement of the empirical residuals 

.êb
i , i = 1, . . . , N. (6.72) 

3. Using the N boostrap residuals (6.72), calculate 

. yb
i = ŷi + êb

i , i = 1, . . . , N.

4. Using .
(
xi, y

b
i

)
, i = 1, . . . , N , calculate the regression function . f̂ b, and obtain 

the fitted values .ŷb
i = f̂ b

(
xb
i

)
, i = 1, . . . , N . Notice that the . xi are not 

sampled; only the residuals are sampled to compute .yb
i = ŷi + êb

i . 
5. Store .yb

i , i = 1, . . . , N and . ŷb
i , i = 1, . . . , N

6. After B cycles, calculate the empirical covariance between . yb
i and . ŷb

i

. ̂Cov
(
yb
i , ŷb

i

)
= 1

B

B∑
b=1

(
yb
i − yb

i

) (
ŷb
i − ŷ

b

i

)

where 

. yb
i = 1

B

B∑
b=1

yb
i , ŷ

b

i = 1

B

B∑
b=1

ŷb
i

7. Finally, sum these over .i = 1, . . . , N to obtain the bootstrap estimate 

.

N∑
i=1

Ĉov
(
yi, ŷi

)
. (6.73)
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An alternative approach to use when data are correlated or have a complicated 
structure is the parametric bootstrap. In the Prediction Exercises, page 570, you are 
asked to derive an expression for the expected optimism for a hierarchical model, to 
obtain numerical results using simulated data and to write a code to obtain a Monte 
Carlo estimate of expected optimism. 

The two nonparametric bootstrap strategies described in this section are drawn 
from lecture notes of the course Advanced Methods for Data Analysis (R. Tibshi-
rani) and can be found at https://www.stat.cmu.edu/~ryantibs/advmethods/. 

6.7 Least Squares Prediction 

The form of covariance penalty .Cov
(
yi, ŷi

)
depends on the operational model used 

for prediction. Suppose that the operational model takes the standard regression 
form (6.17) and that . β (of dimension p) is estimated by least squares. In this case 
as indicated in (6.26) 

. Cov
(
yi, ŷi

) = hiiσ
2

where . hii is the ith diagonal element of the hat matrix H . Then the penalty term is 

. 
2

N

∑
i

Cov
(
yi, ŷi

) = 2

N
tr (H) σ 2

= 2

N
tr

(
X

(
X′X

)−1
X′) σ 2

= 2

N
tr

((
X′X

)−1
X′X

)
σ 2

= 2
p

N
σ 2

and (6.67) takes the form 

.Eyyv (MSEt ) = Eyyv (MSEv) − 2
p

N
σ 2. (6.74) 

In view of this result and (6.69), a natural unbiased estimator of the validating mean 
squared error for the standard regression model, using the training mean squared 
error, could be 

. ̂E (MSEv) = 1

N

N∑
i=1

(
yi − ŷi

)2 + 2

N
tr (H) σ 2

= 1

N

N∑
i=1

(
yi − ŷi

)2 + 2
p

N
σ 2 (6.75)

https://www.stat.cmu.edu/~ryantibs/advmethods/
https://www.stat.cmu.edu/~ryantibs/advmethods/
https://www.stat.cmu.edu/~ryantibs/advmethods/
https://www.stat.cmu.edu/~ryantibs/advmethods/
https://www.stat.cmu.edu/~ryantibs/advmethods/
https://www.stat.cmu.edu/~ryantibs/advmethods/
https://www.stat.cmu.edu/~ryantibs/advmethods/
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which is a version of Mallows’ . Cp (Mallows 1973). When . σ 2 is not known, it must 
be replaced by an estimate. The unbiased property holds if an unbiased estimator of 
. σ 2 is available. 

Example: Prediction Ability of the Least Squares Estimator 

Some of the ideas discussed so far are illustrated using simulated data. These consist 
of .N = 55 observations from a training set and .N = 55 from a testing or validating 
set. The structure of the simulated data (not its size!) is representative of a genomic 
data set. A matrix X of genetic marker genotypes of dimension .N × pmax (centred 
and scaled) was generated representing genotype codes whose elements consist of 
iid (identically and independently distributed) draws from a binomial distribution 
with parameters .n = 2 and probability 0.5. The number of columns of X in the 
example is set to .pmax = 50, and the first .p� = 10 columns are assigned as 
quantitative trait loci (QTL) affecting the trait. 

Since this is the first example where marker genotypes are simulated, a comment 
is in order. In a typical situation, matrix X consists of correlated observed marker 
genotypes that are not themselves causal. The idea is that the correlation structure 
induces a correlation between the marker loci and the unobserved causal loci. In 
this way, the marker genotypes may inform on the underlying genetics of a trait. 
Here, the simulated marker genotypes are uncorrelated, on average, but importantly, 
the “unobserved” causal loci are part of the marker panel. As mentioned in the 
appendix of Chap. 1, when the causal loci are included in the marker panel, the 
genetic markers capture the genetic variation of the trait. Including information from 
non-causal markers inflates the validating mean squared error, and the prediction 
ability of the model is compromised. 

The true model for the training data is 

.yt = X�b� + e, (6.76) 

where . yt is an .N ×1 vector of training observations, . X� is the .N ×p� matrix of QTL 
genotype codes and . b� is an .p� ×1 vector of allele substitution effects of causal loci 
with elements set equal to 0.5. Due to centring and scaling, the elements of X are 
random variables with mean 0 and variance 1. The resulting equilibrium additive 
genetic variance is equal to .Var(x′

i,�b�|b�) = 10 × (1 × 0.52) = 2.5 squared units, 
where .x′

i,� is the ith row of matrix . X�. The vector e consists of random residuals 
.e∼N (0, I 5) and is of dimension .N × 1. The proportion of variance of y explained 
by the true model (the . R2 or equilibrium heritability) is expected to be 33% (. (10 ×
1 × 0.52/7.5) × 100). Training and validating data are generated using the same 
model and different samples of X and of e. 

Training data . yt are analysed using operational models that regress . yt on marker 
genotypes X as covariates. Ten operational linear models are used to analyse . yt of
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Fig. 6.1 Left panel, red: training mean squared error (6.52). Right panel, blue: validating mean 
squared error (6.53) of the least squares predictor using simulated data generated with the linear 
model. Results from 2000 training/validating replicates; black lines, average over replicates 

the form 

.yt = Xjbj + εj , j = 1, 2, . . . , 10 (6.77) 

that differ in the number of markers included. This is reflected in the number of
columns of . Xj and the number of elements of . bj , which range from 5 to 50 in 
increments of 5, and the subscript j indexes the model. When .j = 2, the operational 
model is the same as the true model including ten covariates (the 10 QTL). 

Figure 6.1 displays the training (left panel, red) and validating (right panel, blue) 
sample mean squared errors (6.52) and (6.53) using data analysed with the ten 
linear models (6.77) with increasing number of covariates. The figures show the 
behaviour of individual replicates (2000 replications of training/validating records, 
with genetic marker covariates X fixed at the initial simulated value) as well as the 
average .MSE over replicate lines that is a Monte Carlo estimate of the expected 
.MSE. The training mean squared errors (left panel) show a marked decline as the 
number of covariates increases from 5 to 10. At this point, the true model and 
the operational model are identical. As more covariates are included, the training 
squared error falls, albeit at a lower rate. The validating squared error decreases 
slightly from its initial value, reaches a minimum when the number of covariates 
is 10 and increases subsequently as additional covariates are included. The rate 
of increase is very pronounced when 40 or more covariates are included in the 
operational models. 

The figures emphasise an important feature of the training-testing split as a 
tool to monitor prediction ability: the large variation among replications. A correct 
specification of this variation may be especially relevant in a situation where the goal 
is to learn how well a given statistical model will perform on independent data. On 
the other hand, one may be interested in comparing models, and therefore locating
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Fig. 6.2 The expected 
validating mean squared error 
(green) and its three 
components (6.51): expected 
squared bias (red), variance 
of predictor (blue) and 
residual variance (dashed 
lines). Data simulated with 
the linear model 
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the minimum of the .MSE curve may be an adequate goal, rather than the actual value 
of the .MSE. The curves of the different replicates in Fig. 6.1, right panel, seem to 
identify the correct model with ten covariates despite the fact that each replicate 
may deviate quite markedly from the average .MSE. 

The expected validating mean squared error and its three components (6.65) are  
shown in Fig. 6.2. The expected validating mean squared error agrees well with 
the simulated value displayed in the right panel of Fig. 6.1. The variance of the 
predictor increases with the number of covariates, particularly when this exceeds 20 
and the increase becomes very pronounced with 40 or more covariates. The expected 
squared bias is positive when the number of covariates is equal to 5. When this 
number is equal to 10, the true model and the operational model are the same, and 
the bias falls to zero. As the number of covariates increases beyond 10, the expected 
squared bias remains zero because in the case of the present example, the least 
squares estimator using models with ten or more covariates is unbiased (see (6.38)). 
The dashed line represents the true residual variance of the observations. 

Quantifying Optimism 

The simulation example compares the expected optimism (6.68) with its estimate 
based on (6.75). When the number of records in training and validating data is 
equal to 55, the average difference between the validating (6.63) and training (6.62) 
mean squared errors (over 500 Monte Carlo replicates) is as follows: Using an 
operational model with 10, 15, 25 or 35 covariates, the observed average difference 
(O) and the predicted (P) based on .2(σ̂ 2/N)p, where .σ̂ 2 = 4.99 and .σ 2 = 5, is  
(O; P): .(3.1; 1.8), .(3.5; 2.7) , .(6.9; 4.5), .(12.7; 6.6). When instead of 55 records,
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Fig. 6.3 Regression of predicted versus observed values in training (left) and validating (right) 
data 

550 are used, with .σ̂ 2 = 5.00, these figures are (O; P): .(0.18, 0.18), .(0.27; 0.28), 
.(0.46; 0.45), .(0.63; 0.64). This illustrates the influence of the ratio .p/N on the 
convergence of estimator .

2
N

∑N
i=1 Ĉov

(
yi, ŷi

)
to its expectation. 

Another way of visualising optimism is illustrated in Fig. 6.3 that shows the 
regression of predictions versus observations in the training and validating data (55 
observations) for a randomly chosen simulation replicate, using 50 covariates. In 
the validating data, the regression is not significantly different from 0, and the linear 
model explains 1.5% of the variance of the predicted values. In contrast, in the 
training data, the regression is equal to 0.97 (not significantly different from 1), and 
the linear model explains 97% of the variance of the predicted values. 

Example: What Measure of Prediction Error Does 
Leave-One-Out Estimate? 

This example illustrates the ability of leave-one-out cross-validation to estimate 
either the conditional validating mean squared error (6.49) (averaging .MSEv over 
validating data, with training data fixed) or the unconditional validating squared 
error (6.51) (averaging .MSEv over training and validating data). The setup is the 
same as in the previous example, with 55 observations in training and testing data, 
ten covariates assigned as loci affecting the trait and ten operational models that 
differ in the number of covariates used for analysis. 

The conditional validating squared error (6.49) has two terms: the irreducible 
error (equal to five in the simulation) and the squared term representing systematic 
difference between predictor and the expectation of the predictand. In least squares 
linear regression, this last quantity is zero on average over replications of training 
data, but it is not zero in any one realisation. For a given realisation of training data,
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Fig. 6.4 Left: components of Monte Carlo estimates of .E(MSE) obtained by averaging over 
replications of validating data, given a single sample of training data. Dashed horizontal black 
line: conditional variance of a datum based on the true model (five squared units). Solid black 
line: average (over 1000 replicated validating data sets; a single training data is simulated) 
squared discrepancies between predictor and the expectation of the predictand . y0, obtained using 
operational models with increasing number of covariates. Solid red line: average (over 1000 
replicated validating data sets) conditional validating mean squared error, given training data. 
Dashed blue line: leave-one-out cross-validation estimate based on the single training data. Right, 
blue: validating mean squared errors for each of the 1000 replicated training and testing data sets; 
solid black line, average validating mean squared error over the 1000 replicated training and testing 
data sets; solid line red, average leave-one-out estimate of mean squared error over 1000 replicated 
training data sets 

as the number of covariates in the model increases, the variance of the predictor 
becomes larger and so does the size of the second term in (6.49). This is illustrated 
in the left panel of Fig. 6.4. The setup is one where there is a single realisation of 
training data and 1000 simulation replicates of validating data. The average (over 
1000 simulation replicates of validating data) conditional validating squared error, 
shown in red, is equal to the conditional variance of the record (5 squared units), plus 
the average (over the 55 observations and 1000 simulation replicates of validating 
data) of the squared discrepancies between predictor and average predictand (shown 
in black). The figure also shows that the leave-one-out estimate of squared error 
(dashed line, blue) based on the single realisation of training data overestimates the 
conditional validating mean squared error (6.49). 

The right panel of Fig. 6.4 displays the validating squared error for each of the 
1000 replications of training and testing data (blue); the average validating squared 
error over the 1000 replicates (thick black line); which is an estimate of (6.51); 
and the average leave-one-out estimate of squared error over the 1000 replications 
of training data (red line). The average leave-one-out estimator follows closely the 
average unconditional validating squared error (6.51), with a little overestimation 
particularly as the number of markers approaches the size of the training data.
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Example: Variation of Leave-One-Out Cross-Validation 

This example illustrates the variation of the leave-one out estimator (6.58) in  
conceptual replications of training data, in the context of least squares. This implies 
that the number of markers is smaller than the number of records. 

Three scenarios are illustrated. In the first scenario, the amount of data is quite 
large relative to the number of covariates of the operational model (.N = 200, . p =
50). In the second, it is intermediate (.N = 100), and the third is an extreme example 
where the number of covariates in the most complex operational model is large 
relative to the number of records (.N = 55, .p = 50). 

The setup is as before, with ten covariates assigned as loci affecting the 
observations (the true model) and ten operational models that differ in the number 
of covariates used for analysis, ranging from 5 to 50 in steps of 5. The leave-one-
out cross-validation estimate of .MSE (6.58) for the 1000 simulation replicates of 
training data is shown in Fig. 6.5. With .N = 55 records the degree of uncertainty 
is very large and it explodes as p approaches N . The variance of the leave-one-out 
cross-validation estimate of .MSE decreases as the ratio number of makers (p) to  
size of training data (N ) decreases (centre and right panels of Fig. 6.5). 

Table 6.1 displays the average validating .MSE over 2000 simulated training 
and validating data sets and the average leave-one-out estimates of .MSE based 
on expression (6.58) over 2000 simulated training data for various combinations 
of number of records N and covariates p. The leave-one-out estimates use the N 
training records, whereas computation of the validating mean squared error requires 
the N training and N validating records. 

In general, the leave-one-out estimates have a tendency to overpredict the average 
validating mean squared error when the ratio .p/N approaches 1. This is not a 
restriction when leave-one-out cross-validation is used with linear smoothers that 
use shrinkage, the topic of the next chapter. 
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Fig. 6.5 Leave-one-out cross-validation estimates of mean squared error (6.58) for three sizes of 
training data (left panel, .N = 55; centre panel, .N = 100; right panel, .N = 200) and operational 
models with increasing number of covariates, ranging from 5 to 50 in steps of 5. The average 
over 1000 simulation replicates of training and validating data is shown as solid black lines. The 
environmental variance, equal to 5 squared units, is shown as horizontal dashed lines
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Table 6.1 Average (over 2000 simulated training data sets) leave-one-out estimate of MSE (X) 
and average over training and validating data of the validating MSE (Y ), for three sizes of training 
and validating records N . Figures in the body of table correspond to . X; Y

Number of covariates (p) 

N 10 20 50 

55 6.3; 6.3 8.3; 8.0 100.8; 59.2 

100 5.6; 5.6 6.4; 6.2 10.4; 10.1 

200 5.3; 5.3 5.6; 5.6 6.7; 6.7



Chapter 7 
Shrinkage Methods 

Expression (6.51) indicates how prediction ability is governed by bias and variance. 
As models become more complex, local noise can be captured, but coefficient 
estimates suffer from higher variance as more terms are included in the model. In the 
context of the traditional regression model .y = Xb + e, .e ∼ N

(
0, Iσ 2

)
, when the 

number of covariates (number of columns of X) p is large relative to the number of 
records/individuals n (number of rows of X), the columns of matrix X may become 
rank-deficient (X may not be or is close to not being of full column rank). In this 
case, even when .p < n, it is difficult to separate the effect of individual covariates. 

Shrinkage methods are typically used to confront this problem that emerges in 
highly dimensional models. Shrinkage estimators are obtained as the solution to 
an optimisation problem that balances bias and variance or model complexity. The 
general form of the optimisation problem is 

.b̂ =
argmin b

{L (y, b) + λC (b)} , (7.1) 

where .L (y, b) is a function that measures the lack of fit of the model to the data, 
.C (b) is a measure of model complexity and .λ ≥ 0 is a regularisation parameter 
controlling the trade-off between model fit and model complexity. This chapter starts 
by describing one of the simplest shrinkage estimators known as ridge regression. 
The balance between model fit and model complexity is achieved by shrinking all 
coefficients towards a common point; none is set to zero, and coefficients tend to 
resemble each other. 

The second shrinkage estimator described in this chapter is the lasso (least 
absolute shrinkage and selection operator). Lasso solves a critically different 
optimisation problem (lasso and ridge regression use different expressions for the 
model complexity parameter) and generates solutions where some of the regression 
estimates are exactly zero. Efficient algorithms have been developed that allow 
application of the lasso in models with a vast number of variables (typically larger 
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than the number of records). The lasso can be used for both prediction and model 
selection. 

The chapter concludes with a description of a fully Bayesian-McMC spike and 
slab model. The model assigns a two-component prior mixture distribution to the 
covariate parameters. One of the components is a point mass at zero; the other is 
a normal distribution with mean zero and unknown variance. The model outputs 
the posterior probability that a covariate has no effect on the observations for each 
covariate. The spike and slab model can be used for prediction and as a tool to isolate 
a handful of promising covariates for further study, among thousands or hundred 
of thousands present. Examples with simulated data mimicking genomic models 
illustrate various features of these models. 

7.1 Ridge Regression 

Ridge regression (Hoerl and Kennard 1970b,a) is a particular case of (7.1) with 
.L (y, b) = (y − Xb)′ (y − Xb) and .C (b) = ∑

j∈S b2j , where S is the set of 
coefficients to be penalised. Typically, some of the regression coefficients such as 
the intercept are not penalised. The ridge coefficients are obtained as 

.b̂rr =
argmin b

(y − Xb)′ (y − Xb) + λb′�b. (7.2) 

Here, . � is a diagonal matrix whose entries are 1 for .j ∈ S and zero elsewhere. 
Taking first derivatives of (7.2) with respect to b, setting the linear system equal to 
zero, and solving for b yields 

.b̂rr = (
X′X + λ�

)−1
X′y, (7.3) 

a linear function of y. An equivalent way of writing (7.2) is  

. b̂rr =
argmin b

(y − Xb)′ (y − Xb)

subject to 

. b′�b ≤ t, t ≥ 0,

showing the size constraint on the parameters. There is a one-to-one correspondence 
between t and . λ. The constrained minimisation uses Lagrange multipliers. 

Relative to least squares, shrinkage adds a constant . λ to the diagonal entries of 
.X′X which guarantees that the inverse in (7.3) exists even when .X′X is singular; 
there is always a unique solution to . b̂rr . The form of the solution shows that as . λ →
∞, all the coefficients tend to zero .b̂rr → 0 and when .λ → 0, . b̂rr approaches the
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least squares estimator. The coefficients are shrunk towards zero at a rate depending 
of . λ that controls the size of the coefficients. 

The relationship between the ridge estimator and the least squares estimator . b̂ is 

. b̂rr =
[
I + λ(X′X)−1�

]−1
b̂

that can be verified by replacing above .b̂ = (X′X)−1X′y and using . B−1A−1 =
(AB)−1. Here, .X′X is assumed to be non-singular. 

The ridge solutions depend on the scaling of the inputs, and therefore, X is 
typically standardised (to have sample variance 1) and centred, so that .1′X = 0, 
.
1
n
x′
ixi = 1, .i = 1, 2, . . . , p and .X′X is in “correlation form”. Also, in order to 

avoid fitting the intercept but leaving it unpenalised (Brown 1977), y is often also 
centred. When this is the case, matrix X is .n × p instead of .n × (p + 1) when the 
intercept is included and .� = I . If  X is orthonormal such that .X′X = I and in 
models without the intercept, 

. b̂rr = [I + λI ]−1 b̂ = [(1 + λ) I ]−1 b̂ = 1

1 + λ
b̂

showing that in this situation, the ridge estimator is a downweighted version of the 
least squares estimator . b̂. 

Ridge estimation leads to biased estimators of b. With .E (y|X) = Xb and .� = I , 
using (7.3), 

. E
(
b̂rr |X

)
= (

X′X + λI
)−1

X′Xb

= (
X′X + λI

)−1 (
X′X + λI − λI

)
b

= b − λ
(
X′X + λI

)−1
b

with bias 

. E
(
b̂rr |X

)
− b = λ

(
X′X + λI

)−1
b,

proportional to . λ. On the other hand, the ridge estimator has smaller variance than 
the least squares estimator. Let .X = UDV ′ be the singular value decomposition 
(SVD) of X of dimension .n × p. In the SVD, for .n > p, U is .n × p, .U ′U = I , 
.D = diag

(
d1, d2, . . . , dp

)
, .di > 0, i = 1, . . . , p is a diagonal matrix with positive 

eigenvalues (when X is of full column rank), and V is .p×p, .V ′V = I . The variance 
of the least squares estimator is 

.Var
(
b̂|X

)
= σ 2 (

X′X
)−1

= σ 2 (
V DU ′UDV ′)−1
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= σ 2
(
V D2V ′)−1 

= σ 2V D−2V ′, 

where D is a diagonal matrix with elements .1/d2
i . To go from the third to the fourth 

line use .(ABC)−1 = C−1B−1A−1 and .V −1 = V ′. On the other hand, the variance 
of the ridge estimator is 

. Var
(
b̂rr |X

)
= σ 2 (

X′X + λI
)−1

X′X
(
X′X + λI

)−1 (7.4)

= σ 2
(
V D2V ′ + λI

)−1
V D2V ′ (V D2V ′ + λI

)−1

= σ 2
[
V

(
D2 + λI

)
V ′]−1

V D2V ′ [V
(
D2 + λI

)
V ′]−1

= σ 2V
(
D2 + λI

)−1
D2

(
D2 + λI

)−1
V ′

= σ 2V WV ′,

where .W = (
D2 + λI

)−1
D2

(
D2 + λI

)−1
is a diagonal matrix with elements 

.d2
i /(d2

i + λ)2 indicating that .Var
(
b̂
)

≥ Var
(
b̂rr

)
, with equality if .λ = 0 in the 

absence of shrinkage. The variance decreases with . λ and vanishes as .λ → ∞. 
Ridge regression performs particularly well in terms of mean squared error 

(or prediction error variance) relative to standard regression when some of the 
regression parameters are small or even zero. This advantage is less marked when 
the true parameters take larger values. 

A Toy Example 

This example is elaborated from a version in unpublished notes by G. de los 
Campos, Michigan State University. 

Consider a simple one way classification with two levels parametrised as a linear 
regression model 

. yi = x1ib1 + x2ib2 + ei,

where .x1i = 1 if record i belongs in treatment 1 and 0 otherwise and .x2i = 1− x1i . 
The treatment effects are . b1 and . b2, respectively. The least squares equations are 

.

[ ∑
i x2

1i

∑
i x1ix2i∑

i x1ix2i
∑

i x2
2i

] [
b̂1

b̂2

]
=

[∑
i x1iyi∑
i x2iyi

]
.
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Since .
∑

i x2
1i and .

∑
i x2

2i are the number of records in treatments 1 and 2 (denoted 
. n1 and . n2), .

∑
i x1ix2i = 0, and .

∑
i x1iyi and .

∑
i x2iyi are the sum of records in 

treatments 1 and 2, the least squares estimators are 

. 

[
b̂1

b̂2

]
=

[
n1 0
0 n2

]−1 [ ∑
x1iyi∑

i x2iyi

]
.

The least squares estimators of the treatment effects are the treatment means 

. 

[
b̂1

b̂2

]
=

[ ∑
x1i yi

n1∑
i x2i yi

n2

]

with sampling variance 

.Var
(
b̂j |nj

)
= σ 2

nj

, j = 1, 2. (7.5) 

The ridge regression estimates are 

. 

[
b̂rr1

b̂rr2

]
=

[
n1 + λ 0

0 n2 + λ

]−1 [∑
i x1iyi∑
i x2iyi

]

=
[ ∑

i x1i yi

n1+λ∑
i x2i yi

n2+λ

]

=
[

n1
n1+λ

b̂1
n2

n2+λ
b̂2

]

.

Adding . λ on the diagonal shrinks the estimates towards zero. The extent of 
shrinkage depends on the value of . λ relative to the sample size. 

The ridge estimator is biased: 

.E
(
b̂rrj |nj

)
= nj

nj + λ
E
(
b̂j |nj

)
= nj

nj + λ
bj (7.6) 

because .E
(
b̂j |nj

)
= bj . The bias is 

.E
(
b̂rrj |nj

)
− bj = bj

(
nj

nj + λ
− 1

)
. (7.7) 

The sampling variance is

.Var
(
b̂rrj |nj

)
= nj

(
nj + λ

)2 σ 2, (7.8)
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Fig. 7.1 Mean squared error 
of the ridge regression 
estimator versus the 
shrinkage parameter . λ. The  
population size is .n = 20 and 
the variance .σ 2 = 1. Red,  
.bj = 0.5; dot dashed, 
.bj = 1.0; dashed, MSE of the 
least squares estimator 
(.λ = 0), Eq. (7.5) 
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which reduces to the variance of the least squares estimator when .λ = 0. For .λ > 0, 

.Var
(
b̂rri

)
< Var

(
b̂j

)
. The smoothing process will reduce mean squared error if it 

gets rid of more variance than it adds bias. Specifically, the mean squared error is 
given by adding the square of (7.7) and (7.8). This gives 

.E

[(
b̂rrj − bj

)2 |nj

]
= b2j

(
nj

nj + λ
− 1

)2

+ nj
(
nj + λ

)2 σ 2. (7.9) 

In the absence of shrinkage, .λ = 0, the first term vanishes, and the second term is 
equal to (7.5). When . λ is very large, the variance term approaches zero, and the bias 
achieves its maximum value at . b2j (when the ridge coefficients are strongly regressed 
towards zero). 

Figure 7.1 illustrates the trade-off variance versus bias of the ridge regression 
using (7.9). For a given population size, the MSE (7.9) has a minimum at . λ =
σ 2/b2. The figure shows for .n = 20, .σ 2 = 1, that MSE of the ridge estimator, for 
a true  .bj = 0.5, outperforms the MSE of the least squares estimator up to .λ < 10. 
For a true .bj = 1.0, the ridge estimator does better up to .λ ≈ 2, with a minimum 
MSE at .λ = 1. 

Choice of Shrinkage Parameter 

A natural choice of . λ could be based on minimising the mean squared error of the 
estimator. Glancing at (7.6) and (7.8) and recalling that mean squared error is a 
function of the bias and the variance indicate that the optimal choice of . λ depends 
on the values of b and . σ 2. In a prediction context, since these are typically unknown, 
. λ can be chosen using cross-validation.
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Bayesian View of Ridge Regression 

In a Bayesian framework, assume the regression coefficients are assigned the prior 
distribution .b|σ 2

b ∼ N
(
0, Iσ 2

b

)
and the sampling model for the data is the normal 

process 

. y|X, b, σ 2
e ∼ N

(
Xb, Iσ 2

e

)
.

A standard result (Lindley and Smith 1972) sketched below states that the condi-
tional posterior distribution of b is 

.b|X, σ 2
b , σ 2

e , y ∼ N
(
b̂rr ,

(
X′X + λI

)−1
σ 2

e

)
, (7.10) 

where . b̂rr is the ridge regression estimator 

.b̂rr = (
X′X + λI

)−1
X′y (7.11) 

and .λ = σ 2
e /σ 2

b . Therefore, the ridge regression estimator is equivalent to the 
posterior mode (or mean, given normality) of the regression coefficients in the 
following Bayesian model: 

. Likelihood: y|X, b, σ 2
e ∼ N

(
Xb, Iσ 2

e

)

Prior: b|σ 2
b ∼ N

(
0, Iσ 2

b

)
.

Numerically, the solution (7.11) is also the best linear unbiased predictor (BLUP) 
of b. 

The ratio .σ 2
e /σ 2

b is equivalent to . λ in the ridge regression context. In a fully 
Bayesian analysis, the variance components are assigned prior distributions and can 
be inferred jointly with b. 

Note 

The proof of (7.10) is based on combining two quadratic forms, used repeatedly in 
the book (see also page 145). Using Bayes theorem, the posterior distribution of b 
is 

.p
(
b|X, σ 2

b , σ 2
e , y

)
∝ p

(
y|X, b, σ 2

e

)
p

(
b|σ 2

b

)

∝ exp

[
− 1

2σ 2
e

(y − Xb)′ (y − Xb)

]
exp

[

− 1

2σ 2
b

b′b
]
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= exp

[
− 

1 

2σ 2 
e

{
(y − Xb)′ (y − Xb) + λb′b

}
]

∝ exp
[
− 

1 

2σ 2 
e

(−2b′X′y + b′X′Xb + λb′b
)]

= exp

[
− 

1 

2σ 2 
e

(−2b′X′y + b′ (X′X + λI
))

b

]
(7.12) 

where .λ = σ 2
e /σ 2

b . Let  

.
(
X′X + λI

)
b̂ = X′y, (7.13) 

and replace .X′y in (7.12) by  .
(
X′X + λI

)
b̂. Add and subtract .b̂′ (X′X + λI

)
b̂ and 

keep terms in b only. Then a little manipulation yields 

. p
(
b|X, σ 2

b , σ 2
e , y

)
∝ exp

[
− 1

2σ 2
e

(
b − b̂

)′ (
X′X + λI

) (
b − b̂

)]

which is the kernel of a normal distribution with mean . b̂ and variance 
.
(
X′X + λI

)−1
σ 2

e , as in (7.10). 
There is a difference between the posterior variance of the Bayesian model and 

the variance of the ridge estimator (7.4). Using the singular value decomposition of 
X, it is easy to show that 

. 
(
X′X + λI

)−1
σ 2

e = V W̃V ′σ 2
e ,

where . W̃ is a .p × p diagonal matrix with elements .
(
d2
i + λ

)−1
. On the other hand, 

as indicated in (7.4), the ridge regression estimator has sampling variance .σ 2V WV ′, 
where W is a .p × p diagonal matrix with elements .d2

i /(d2
i + λ)2. 

Example: Prediction Ability of the Ridge Estimator 

The prediction ability of the ridge estimator is illustrated with simulated data (. n =
55 observations) similar in structure to the one used in the example of page 291. In  
contrast to that example, the substitution effects . b� of the .p� = 10 QTL are drawn 
from .N(0, σ 2

b = 0.25) leading to a genomic variance (at the level of the operational 
model) equal to . 2.5 squared units as explained below. 

The data are analysed with two sets of operational models. In the first set, the 
QTL are part of the marker panel. In the second set, the QTL are not part of the 
marker panel. In the latter scenario, observations and covariates are uncorrelated. 
This creates an extreme case where the operational model has no prediction ability.
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The genomic value of individual i is .gi = x′
i,�b�, were  .x′

i,� is the ith row of the 
.n × p� matrix . X� of QTL genotypes. Due to centring and scaling, the elements of 
X are random variables with mean 0 and variance 1. 

At the level of the operational models, 

. Var (gi |xi) = x′
ixiσ

2
b

and the genomic variance is 

. Var (gi) = σ 2
g = Exi [Var (gi |xi)] + Varxi [E (gi |xi)]

= Exi [Var (gi |xi)]

= σ 2
b Exi

(
x′
ixi

)

= pσ 2
b , (7.14) 

where p is the number of markers of the operational model. When .p = p� = 10, 
.σ 2

g = 10 × 0.25 = 2.5. 
In view of (7.14), the shrinkage parameter in (7.13) is  

.λ = σ 2
e

σ 2
b

= σ 2
e

σ 2
g

p. (7.15) 

When . σ 2
e and . σ 2

g are assumed known and fixed with values 5 and . 2.5, respectively, 
the shrinkage parameter is therefore set to increase linearly with the number of 
markers .p = 5, 10, . . . , 45, 50 included in the operational model (7.13) with slope 
.σ 2

e /σ 2
g . 

The prediction ability of the ridge estimator using data simulated with the 
linear model is displayed in Fig. 7.2. When the operational model includes the 
first 10 covariates, it coincides with the true model, and the validating mean 
squared error reaches its minimum. Relative to the least squares predictor, the 
increase in the validating mean squared error of the ridge predictor as a function 
of the number of covariates included in the operational model is attenuated by the 
shrinkage parameter that also increases as more covariates are included as indicated 
in (7.15). The training mean squared error shows a decline with increasing number 
of covariates. This decline is less pronounced than the one displayed in Fig. 6.1 for 
the least squares predictor. 

Figure 7.3 displays the three components of the expected validating mean 
squared error. The variance of the ridge regression predictor of the validating record 
shows a steady increase as the number of covariates increases despite the increase of 
the penalty parameter that cannot compensate with increasing dimensionality of the 
predictive model. The bias of the predictor has a minimum when the operational 
model and the true model coincide and increases steadily when the operational 
model has more than ten  covariates. As the penalty parameter increases, the ridge
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Fig. 7.2 Left (red): training mean squared error (6.52). Right (blue): validating mean squared error 
(6.53) of the ridge estimator using simulated data generated with a linear model with ten  causal 
loci and analysed with operational linear models with increasing number of covariates that include 
the causal loci. Results from 2000 replicates; black lines, average over replicates 

Fig. 7.3 The expected 
validating mean squared error 
(green) and its three 
components: expected 
squared bias (red), variance of 
predictor (blue) and residual 
variance (dashed lines). Data 
simulated using a linear 
model with ten  causal loci 
and analysed with operational 
linear models with increasing 
number of covariates, which 
include the causal loci 
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regression estimates are shrunk more heavily towards zero with a consequent 
increment in the bias. There is good agreement with the expected validating mean 
squared error and the mean validating mean squared error over the 2000 simulation 
replicated in Fig. 7.2. 

The mean squared errors computed using validating and training data that result 
from fitting operational models with increasing number of covariates that do not 
include the causal loci are shown in Fig. 7.4. This is an example that mimics a trait 
whose expression is not affected by a genetic component: marker genotypes are 
uninformative about phenotype. Despite the lack of association between phenotypes
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Fig. 7.4 Left (red), training mean squared error (6.52). Right (blue), validating mean squared error 
(6.53) of the ridge estimator using simulated data generated with a linear model with ten  causal 
loci and analysed with operational linear models with increasing number of covariates that do not 
include the causal loci. Results from 2000 replicates; black lines, average over replicates 

Fig. 7.5 The expected 
validating mean squared error 
(green) and its three 
components: expected 
squared bias (red), variance 
of predictor (blue) and 
residual variance (dashed 
lines). Data simulated with 
the linear model, ten  causal 
loci and analysed with 
operational ridge regression 
models with increasing 
number of covariates that do 
not include the causal loci 
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and covariates the training mean squared errors show the expected decline due to 
overfitting. The validating mean squared errors increase steadily as more covariates 
are added to the operational model. There is a slight squared bias contribution to 
this increase, but most of it is driven by larger variances as the dimension of the 
operational model increases. Figure 7.5 illustrates this setup.
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Table 7.1 Average (over 2000 simulated training data sets) for the leave-one-out estimate of . MSE
(A) and average of 2000 training and validating records for the validating .MSE (B) for three sizes 
of training and validating records, n, and three different number of covariates included in the 
operational model, p. Figures in the body of table correspond to . A; B

Number of Covariates (p) 

n 20 40 200 

55 .7.8; 7.5 .10.4; 10.0 . 15.9; 15.4
100 .6.5; 6.4 .8.1; 8.0 . 11.1; 10.6
200 .5.5; 5.5 .6.1; 6.1 . 9.5; 9.1

Example: Leave-One-Out Cross-Validation and Shrinkage 

This example illustrates the behaviour of expression (6.58), the leave-one-out cross 
validation mean squared error, as an estimator of the validating mean squared error, 
averaged over training and validating data, when it is applied using ridge regression. 

The setup is similar to the one used to construct Table 6.1 on page 297. The  
number of training and validating records is .n = 55,100 or 200, and the number 
of markers included in the operational model is .p = 20, 40 or 200. The shrinkage 
parameter of the ridge regression estimator increases linearly with p, as indicated in 
expression (7.15). Table 7.1 displays the average over 2000 replications of training 
records for the estimates of leave-one-out cross-validation and the average over 
training and validating records for the validating mean squared errors. 

There is a good agreement between the average estimates of leave-one-out 
cross-validation and the average validating mean squared error, even in situations 
where .p > n (in contrast with results in Table 6.1), with a slight tendency to 
overprediction. 

7.2 The Lasso 

Shrinkage estimators were shown to be obtained as the solution to an optimisation 
problem whose general form is 

.b̂ =
argmin b

{L (y, b) + λC (b)} (7.16) 

where .L (y, b) is a function that measures the lack of fit of the model to the data, 
.C (b) is a measure of model complexity and .λ ≥ 0 is a regularisation parameter 
controlling the trade-off between fitness and model complexity.
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Let .b = (β0, β) ∈ Rp+1. In ridge regression, 

.L (y, b) =
n∑

i=1

⎛

⎝yi − β0 −
p∑

j=1

xijβj

⎞

⎠

2

, i = 1, . . . , n (7.17) 

and

.λC (b) = λ

p∑

j=1

β2
j (7.18) 

so that the ridge regression estimator is the solution (linear in y) to

.b̂rr =
argmin β

⎧
⎪⎨

⎪⎩

n∑

i=1

⎛

⎝yi − β0 −
p∑

j=1

xijβj

⎞

⎠

2

+ λ

p∑

j=1

β2
j

⎫
⎪⎬

⎪⎭
. (7.19) 

The term .
∑p

j=1 β2
j (which does not include . β0) is known as the . L2 penalty. Relative 

to the classical least squares estimator, ridge regression reduces variability but can 
potentially cloud interpretation, as shrinkage is applied to all coefficients simulta-
neously. In ridge regression, all coefficients “resemble each other” (shrinkage is to 
the same point or distribution, when interpreted from a Bayesian perspective), and 
none of the coefficients is set to 0. 

The lasso (Tibshirani 1996, “least absolute shrinkage and selection operator”) 
has (7.17) in common with ridge regression but the . L2 penalty is replaced by the . L1
penalty, given by .

∑p

j=1

∣∣βj

∣∣, and the lasso coefficients are the solutions (nonlinear 
in y) to  

.β̂lasso =
argmin β

⎧
⎪⎨

⎪⎩

n∑

i=1

⎛

⎝yi − β0 −
p∑

j=1

xijβj

⎞

⎠

2

+ λ

p∑

j=1

∣∣βj

∣∣

⎫
⎪⎬

⎪⎭
. (7.20) 

In contrast with ridge regression, there is no closed form expression for the
lasso.

The tuning parameter . λ in (7.20) also controls the extent of the penalty. When 
.λ = 0, the least squares solutions are obtained, and when .λ = ∞, .βj = 0 for all j . In  
between these two extremes, coefficients are shrunk, but the effect of the . L1 penalty 
is to set some coefficients exactly to zero. As . λ increases, more coefficients are set 
to zero (less variables are selected), and among the non-zero coefficients, shrinkage 
is stronger. The lasso is an attempt at combining features of subset selection and 
ridge regression simultaneously.
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The lasso coefficients can also be obtained solving 

. β̂lasso =
argmin β

n∑

i=1

⎛

⎝yi − β0 −
p∑

j=1

xijβj

⎞

⎠

2

subject to 

. 

p∑

j=1

∣
∣βj

∣
∣ < t,

where .t ≥ 0 acts now as the tuning parameter. If t is chosen larger than .
∑p

j=1

∣∣∣β̂j

∣∣∣, 

where . β̂j is the least squares estimate, then the lasso estimates are the . β̂ ′
j s. If  t is 

smaller than .
∑p

j=1

∣∣
∣β̂j

∣∣
∣, shrinkage takes place, and some . β ′s are set to zero. 

In the context of prediction where the lasso is typically deployed, the shrinkage 
parameter . λ is chosen using cross-validation. 

If the columns of x are centred, the estimator of the intercept is .β̂0 = y. When y is 
also centred, the model does not include an intercept term. In (7.20), the constraint 
treats all the coefficients equally, and therefore it makes sense to scale x, as with 
ridge regression. For centred and scaled x, .

∑
i xij = 0, .

∑
i x2

ij = n. 

The Subdifferential 

A number of algorithms are available to obtain the solution to (7.20) that is a 
quadratic programming problem with linear inequality constraints. Before sketching 
one of the algorithms, the notion of the subderivative or subdifferential is briefly 
introduced. The subdifferential generalises the derivative to convex functions that 
may not be differentiable. This is necessary because the (convex) function defined 
by (7.20) does not have a derivative at the point .

∣∣βj

∣∣ for .βj = 0. 
To illustrate, consider the (convex, i.e., “holds water”) absolute value function 

.f (x) = |x|, .x ∈ R, where 

. |x| =
{

x, x ≥ 0,
−x, x < 0.

(7.21) 

For .x �= 0, the derivative of f with respect to x is . +1 if .x > 0 and . −1 if .x < 0. 
However, for .x = 0 (that defines the point where f achieves its absolute minimum), 
the derivative does not exist. However, at .x = 0, one can draw (many) lines that 
touch the function at .(0, f (0)) that are everywhere below f except at the point
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.x = 0. This collection of slopes tangent to the function at the point .x = 0 is the 
subdifferential of f at the point .x = 0. 

One can proceed a little more formally as follows: A scalar c is a subgradient of 
a function f at the point . x0 if for all points x the following holds: 

. f (x) ≥ f (x0) + c (x − x0)

for .x ∈ R (the real line) and belonging to the domain of f . Then 

.c (x − x0) ≤ f (x) − f (x0) , (7.22) 

and the collection of all slopes c of subtangent lines is called the subdifferential of f

at the point .x = x0. The set of subdifferentials c at . x0 is a nonempty closed interval 
.[a, b] where a and b are the one-sided limits approached from the left and right of 
x, respectively, defined as 

.a = lim
x→x−

0

f (x) − f (x0)

x − x0
, . (7.23a) 

b = lim 
x→x+ 

0 

f (x) − f (x0) 
x − x0 

, (7.23b) 

that satisfy .a ≤ b. Any  c belonging in .[a, b] satisfies (7.22) and is a subdifferential 
of f at the point .x = x0, denoted .∂f (x0). 

I return to the absolute value function .f (x) = |x| and find the set of 
subdifferentials at .x0 = 0. One way of approaching this is to use definition (7.22). 
Here, .f (x) = |x|, .f (x0) = |0| = 0 and using (7.22) with . x0 = 0

. cx ≤ |x| , for all x ∈ R.

Since the inequality holds for all .x ∈ R, it also holds for .x = ±1. Then for . x = +1

. c (1) ≤ |1| = 1,

c ≤ 1

and for . x = −1

.c (−1) ≤ |−1| = 1,

−c ≤ 1,

c > −1.
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Therefore, c is any number defined in the closed interval 

. c ∈ [−1, 1]

and more generally, the subdifferential of f at .x = 0 is written 

. ∂f (0) ⊂ [−1, 1] .

For any x 

. ∂x |x| =
⎧
⎨

⎩

−1, if x < 0
[−1, 1] , if x = 0

1, if x > 0.

The limits of the closed set can also be obtained using (7.23). For the lower limit 
as x approaches 0 from the left, 

. a = lim
x→0−

f (x) − f (x0)

x − x0
= lim

x→0−
|x| − |0|
x − 0

= lim
x→0−

|x|
x

= lim
x→0−

x

−x
= lim

x→0− − 1 = −1

and for the upper limit, as x approaches 0 from the right, 

. b = lim
x→0+

f (x) − f (x0)

x − x0
= lim

x→0+
|x|
x

= lim
x→0+

x

x
= lim

x→0+1 = 1,

where both cases make use of the fact that the limit of a constant (here the number 
. −1 or 1) is the constant itself. 

An Example with a Single Regression Parameter 

Drawing from Friedman et al (2007), to get a little intuition for the behaviour of 
the lasso, consider a linear model with p covariates, where .(p − 1) are fixed at 
some value and . βj (a scalar) is the only parameter to be estimated. The vector of 
covariates x is scaled and centred, so that .x′

j xj = n, and the observations y are 
expressed as deviations from the mean, so that .y = 0. Therefore, the model does
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not include an intercept. Expression (7.20) now takes the form 

. f
(
βj

) = 1

n

n∑

i=1

(
ri − xijβj

)2 + λ
∑

k �=j

|βk| + λ
∣∣βj

∣∣

= 1

n

(
r − xjβj

)′ (
r − xjβj

) + λ
∑

k �=j

|βk| + λ
∣∣βj

∣∣ (7.24) 

where .ri = yi − ∑
k �=j xikβk and the . β ′

ks, .k �= j , are fixed at some value. The lasso 
estimate of . βj is the value of . βj that minimises (7.24). This gives 

. ∂f
(
βj

) =

⎧
⎪⎨

⎪⎩

βj − x′
j r/n + λ, βj > 0,

βj − x′
j r/n − λ, βj < 0,

[−λ, λ] − x′
j r/n, βj = 0.

Using .β̂j = x′
j r/n as the least squares estimate treating the residuals r as “data” 

and setting these equations equal to zero lead to the lasso estimate of . βj

. βL
j =

⎧
⎨

⎩

β̂j − λ, β̂j > λ,

β̂j + λ, β̂j < −λ,

0, −λ ≤ β̂j ≤ λ,

or more compactly 

.βL
j =

⎧
⎨

⎩

0, if
∣∣
∣β̂j

∣∣
∣ ≤ λ,

sign
(
β̂j

) (∣∣∣β̂j

∣∣∣ − λ
)

, if
∣∣∣β̂j

∣∣∣ ≥ λ.
(7.25) 

The system (7.25) indicates that the smallest value for . λ, such that all regression 

solutions .βL = 0, is  .maxj

∣∣∣β̂j

∣∣∣, .j = 1, . . . , p, the largest least squares estimate. 

Clearly, the choice of the tuning parameter . λ has a strong influence on the behaviour 
of the lasso. The choice can be guided using cross-validation. 

A General Algorithm to Obtain Lasso Solutions 

The following general algorithm can be implemented to obtain lasso solutions in 
models with p correlated covariates. The algorithm is known as the path-wise 
coordinate descent algorithm (Friedman et al 2007, 2010; Efron and Hastie 2016) 
and is based on updating regression coefficients one at a time as in the previous 
example. This is performed in an iterative fashion, and the process is repeated until 
it converges to the lasso solution.
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The algorithm has an external loop that runs over the number of iterates and an 
internal loop that runs over the number of covariates, updating one covariate at a 
time. This requires updating the residuals. A computationally efficient manner of 
updating residuals is as follows (Friedman et al 2010): Consider a linear model with 
p covariates and write .Xb = (Xi,X−i )(bi, b−i )

′. The residual including these p 
covariates is .r1 = (y − Xibi − X−ib−i ) and the residual excluding the ith covariate 
is .r0 = (y − X−ib−i ). Therefore, 

. r0 = r1 + Xibi,

r1 = r0 − Xibi.

The kernel of the internal loop is simply 

. 

INITIALISE r1 = y − y, b = 0
LOOP OVER NUMBER COVARIATES i = 1, . . . , p

r0 = r1 + Xibi this updates (y − 1μ − X−ib−i )

UPDATE bi involves (7.25) 
r1 = r0 − Xibi this updates (y − 1μ − Xb) 

END LOOP 

The following R-code illustrates the implementation of the algorithm with a toy 
example. The bottom of the code includes a call to the package GLMNET (Hastie 
and Qian 2016) as a test on the output. Details regarding this package are deferred 
to the Example on page 319: 

# CODE0701 
# AN EXAMPLE USING SIMULATED CORRELATED X 
rm(list=ls()) # CLEAR WORKSPACE 
set.seed(3711) 
#install.packages("glmnet", .libPaths()[1]) 
library(glmnet) 
n <- 100 
p <- 100 
X <- matrix(rnorm(p*n),ncol=p) 
X <- X*0.8 + X[,1]*0.3 # GENERATE CORRELATED COVARIATES 
X <- scale(X)*sqrt(n)/sqrt(n-1) 
beta <- rep(0,p) 
betac <- rep(0,p) 
beta <- sample(0:1,p,replace=TRUE,prob=c(2,1)) 
length(which(beta!=0)) 

## [1] 42



7.2 The Lasso 317

y <- X%*%beta + rnorm(n,sd=0.4) 
y <- y - mean(y) 
for(i in 1:p){ betac[i]=coef(lm(y~X[,i]))[2]} 
lambda=max(abs(betac))*.1 
lambda 

## [1] 1.457124 

niter <- 100 
bL=matrix(nrow=niter,ncol=p) 
bL[1,]=0 # initial lasso estimates set to zero 
r1 <- y-mean(y) 
for (i in 2:niter) { 

for(j in 1:p){ 
r0 <- r1+X[,j]*bL[i-1,j] 
bLS <- crossprod(X[,j],r0)/n # LEAST SQUARES ESTIMATE 
if (abs(bLS) >= lambda){bL[i,j]<-sign(bLS)*(abs(bLS)-lambda) 
} else{ 

bL[i,j] <- 0 
} 
r1 <- r0-X[,j]*bL[i,j] 

} 
} 
fm=glmnet(y=y,x=X,alpha=1,lambda=lambda) 
# alpha=1: LASSO; alpha=0: RIDGE; 0<alpha<1: ELASTIC NET 
# Number covariates included with GLMNET: 
length(which(fm$beta!=0)) 

## [1] 13 

# Number included with present code 
length(which(bL[niter,]!=0)) 

## [1] 13 

# PRINT A FEW ESTIMATES OBTAINED WITH GLMNET 
round(fm$beta[which(fm$beta!=0)][1:7],3) 

## [1] 11.162 0.311 1.345 0.028 0.355 0.620 1.256 

# AND THE SAME WITH PRESENT CODE 
round(bL[niter,which(bL[niter,]!=0)][1:7],3) 

## [1] 11.16 0.312 1.344 0.028 0.355 0.620 1.256 

Out of the .p = 100 covariates in the full model, lasso retains 13.
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A Bayesian Interpretation of the Lasso 

Tibshirani (1996) indicated that Lasso estimates of the elements of β can be 
interpreted as posterior mode estimates, when these regression parameters have 
independent and identical Laplace (i.e., double exponential) priors of the form 

.p
(
βj

) = τ

2
exp

(−τ
∣
∣βj

∣
∣) (7.26) 

and observations are realisations from a normal process. More specifically, assume
that centred data (no intercept required in the model) arise from

.y|β, σ 2 ∼ N
(
Xβ, Iσ 2

)
(7.27) 

and

.p (β|τ) =
(τ

2

)p

exp
(
−τ

∑p

j=1

∣∣βj

∣∣
)

. (7.28) 

In (7.27), y is a column vector with n elements, X is n×p matrix, and β is a column 
vector with p elements. Then the posterior density of β takes the form 

. p
(
β|σ 2, τ, y

)
=

(
2πσ 2

)− n
2
exp

[
− 1

2σ 2 (y − Xβ)′ (y − Xβ)

] (τ

2

)p

exp
(
−τ

∑p

j=1

∣∣βj

∣∣
)

and the logposterior density, including only those terms that contain β, is given by 

. ln
(
p

(
β|σ 2, τ, y

))
= − 1

2σ 2 (y − Xβ)′ (y − Xβ) − τ
∑p

j=1

∣∣βj

∣∣ . (7.29a) 

Multiplying out by 2σ 2 the posterior mode results in the lasso solution

. β̂L =
argmax b

− (y − Xβ)′ (y − Xβ) − λ
∑p

j=1

∣∣βj

∣∣

=
argmin b

(y − Xβ)′ (y − Xβ) + λ
∑p

j=1

∣
∣βj

∣
∣

where λ = 2σ 2τ . It is important to stress that the equivalence between the 
Bayesian lasso and the standard lasso occurs at the level of the modal value of 
the posterior distribution. The posterior mean is not equal to the posterior mode and 
does not produce the same lasso shrinkage of coefficients to zero. A fully Bayesian 
implementation of the lasso can be found in Park and Casella (2008).
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7.3 An Extension of the Lasso: The Elastic Net 

Some of the properties of the lasso are seen as shortcomings. For example, in the 
.p > n situation (n is the number of records and p is the number of covariates), lasso 
selects at most n covariates. This is not desirable when the analysis involves few 
observations and many predictors contribute to the response. Also, in models with 
many highly correlated predictors, lasso tends to pick one arbitrarily and ignores 
the rest. On the other hand, ridge regression tends to shrink coefficients towards 
each other, but all will be included in the model; none is set to zero. In the context 
of genomic models, there may be many highly correlated SNPs that cloud around 
unobserved causal variants. In such cases, lasso tends to choose one among the 
correlated set and eliminate the remaining predictors. Arguably, more of the signal 
can be captured by a linear combination of correlated predictors than by inclusion 
of only one. In contrast, ridge regression includes all the coefficients in the model 
despite the shrinkage, including the superfluous ones. The elastic net proposed by 
Zou and Hastie (2005) is a compromise between ridge regression and lasso and 
circumvents some of these limitations. The elastic net solves the following problem 
(Zou and Hastie 2005): 

. min
(β0,β)∈Rp+1

Rλ (β0, β) = min
(β0,β)∈Rp+1

[
1

2N

N∑

i=1

(
yi − β0 − x′

iβ
)2 + λPα (β)

]

(7.30) 

where

. Pα (β) =
p∑

i=1

[
1

2
(1 − α) β2

j + α
∣∣βj

∣∣
]

.

.Pα (β) is the elastic net penalty and is a compromise between ridge regression 
penalty .(α = 0) and the lasso penalty .(α = 1). The quadratic part of the penalty 
removes the limitation on the number of variables selected and encourages grouping 
effects. The . L1 penalty associated with the lasso generates a sparse model. The 
public package glmnet (Friedman et al 2009) implemented in R allows the user to 
choose among ridge regression, lasso or elastic net and is illustrated as part of the 
example below. 

7.4 Example: Prediction Using Ridge Regression and Lasso 

This simulation example illustrates the prediction ability of ridge regression and 
lasso using two data sets that mimic two different genetic scenarios. The data in 
both scenarios consist of 1500 individuals and 1500 correlated marker genotypes at
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intermediate gene frequencies. The 1500 marker genotypes are in 75 independent 
blocks with 20 marker genotypes in each block. Marker genotypes are correlated 
within blocks and uncorrelated among blocks. The correlation between adjacent 
markers is approximately .0.60 and decays with marker distance. 

The two data sets differ in the number of QTL. In the first set, 25 out of the 1500 
markers are randomly chosen as QTL, and in the second set, this number is 250. The 
substitution effects are the same for all QTL within sets of data and are chosen such 
that the equilibrium additive genetic variance (defined as .2

∑
QT L pi (1 − pi) β2

i , 
where . βi is the allele substitution effect of the ith QTL, the same for all i) is equal 
to 10 squared units in both sets of data. The environmental variance is equal to 30 
squared units, and therefore the trait heritability is equal to .0.25. In the first data set, 
each of the 25 QTL explains . 1% of the phenotypic variance; in the second, each of 
the 250 QTL explains .0.1% of the phenotypic variance. 

The 1500 individuals were divided into a training set of size 750, and a validating 
or testing set of size 750 and a ridge regression or lasso was fitted using the package 
glmnet. The performance of the predictive models was measured by the sample 
validating mean squared error (MSE) and the correlation between the predicted 
phenotypes (using estimates of substitution effects obtained using the training data) 
and observed phenotypes (from the validating data). In the data set with 25 QTL, 
the lasso is expected to outperform ridge regression as the latter includes all 1500 
markers in the model, including the redundant ones. In the data with 250 QTL, the 
lasso limits the choice of the number of markers to be included in the predictive 
model within the block of correlated loci, failing in this way to capture an important 
part of the QTL (causal) additive genetic variance. This will lead to a relatively 
larger bias in the predictions. On the other hand, ridge regression includes all 
markers in the predictive model and captures a larger proportion of the QTL additive 
genetic variance. The possible increase in variance of the predictions is attenuated 
by a diminution of the squared bias, leading to a better predictive performance as 
measured by the MSE. 

These expectations are borne out by the results, albeit drawn from one replica-
tion. With 25 QTL, the MSE (correlation) of the lasso is .34.6 .(0.30) and of the ridge 
regression .36.4 .(0.20). The lasso includes 112 QTL in the model. With 250 QTL, 
the MSE (correlation) of the lasso is .43.6 .(0.27) and of the ridge regression . 40.9
.(0.35). In this case, the lasso includes 145 QTL. 

These numbers can be put in perspective using the true value of the QTL 
substitution effects .βtrue, as predictions of the phenotypes in the validating (or test) 
data. The predictions are .Xtestβtrue, where .Xtest is the matrix of QTL genotypes 
in the test or validating data. The MSE (correlation) is .28.5 .(0.48). In this case, the 
MSE and the correlation measure, respectively, the .Var (y|X) and the heritability of 
the trait realised in the training sample of 750 individuals. In the population, these 
parameters are 30 square units and .

√
0.25 = 0.5, respectively. This is as good a 

prediction as it gets! 
An extract of the . R-code (adapted from James et al 2017, pages 251–255) used 

in the implementation of glmnet is shown below. Documentation about glmnet can 
be found in Hastie and Qian (2016) and in Friedman et al (2010). In this example,
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the function cv.glmnet is executed in a first step on the training data in order to find 
the value of the tuning parameter (best value of . λ) of the lasso (using .α = 1 as an 
argument) or of the ridge regression (using .α = 0 as an argument) that optimises 
prediction ability measured by MSE. Execution of predict in a second step yields 
predictions of phenotypes in the testing data and the associated validation MSE 
(mean((fm.pred-y.test). 2)): 

# Lasso solutions using package glmnet 
#install.packages("glmnet", .libPaths()[1]) 
library(glmnet) 
# UPLOAD MATRIX OF MARKER GENOTYPES X AND RECORDS y 
n<-nrow(X) 
Xlasso<- X 
train=sample(1:nrow(Xlasso),nrow(Xlasso)/2) 
test=(-train) 
y.test=y[test] # y is the phenotypic data generated separately 

# ********** FOR PREDICTION ***************** 
# STEP 1 

cv.out=cv.glmnet(Xlasso[train,],y[train],alpha=1) 

plot(cv.out) 
bestlam=cv.out$lambda.min 
bestlam 

# TO OBTAIN THE NUMBER OF NON-ZERO COEFFICIENTS CAN EXECUTE: 

length(which(as.vector(coef(cv.out, s=bestlam))!=0)) 

# STEP 2 

# Having obtained the best lambda fit the model 
# on the testing data using this lambda to obtain predictions 

fm.pred=predict(cv.out,s=bestlam,newx=Xlasso[test,]) 
mean((fm.pred-y.test)^2) # VALIDATION MSE 
correl<-cov(fm.pred,y.test)/sqrt((var(fm.pred)*var(y.test))) 
# AS GOOD AS IT GETS: 
predtrue<-Xlasso[test,]%*%be # PREDICTION BASED ON TRUE MODEL 
mean((predtrue-y.test)^2) # MSE USING TRUE MODEL 
denominator <- sqrt(var(predtrue)*var(y[test])) 
correltrue<-cov(predtrue,y[test])/denominator) 

7.5 A Bayesian Spike and Slab Model 

The example on page 127, A two-component mixture model, assumes that records 
are realisations from either of two unobserved mixture components and the objective
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is to assign each observed data point to a specific component. The mixture 
components are both Gaussian with a common variance that differ in mean value. 

In the hierarchical setup discussed here, conditional on marker effects, records 
are realisations from a Gaussian distribution, but at the second level of the hierarchy, 
marker effects arise from either of two unobserved mixture components. In contrast 
with the example of page 127, here, the objective is to allocate unobserved genetic 
marker effects to each mixture component. Genetic marker effects drawn from one 
of the components have an influence on the trait of interest, while those drawn from 
the alternative mixture component have no detectable influence. The allocation is 
not unambiguous: it uses the laws of probability. 

There are a variety of alternatives to model mixture components. One option 
is to assume that the mixtures are two Gaussians that differ in their means and/or 
variances. In this case, the marker effects do not take the value zero, exactly, but their 
posterior means can be very small depending on the parameters of the Gaussian 
components. This makes it possible to distinguish the two mixture components. 
Another option takes the two-component mixture to be made up of a normal 
distribution and a degenerate distribution with a point mass at zero. This modelling 
option sets a number of marker effects exactly equal to zero, as in the lasso. An 
example of the first option implemented using Gibbs sampling is presented in 
George and McCulloch (1993), and an McMC implementation of the second can 
be found in Habier et al (2011). 

In the context of prediction, mixtures involving Gaussian distributions are likely 
to outperform the alternative that sets marker effects exactly equal to zero. This 
is so because a larger proportion of small effects variants that contribute to the 
phenotype are bound to be included in the final prediction model. On the other 
hand, the model that includes a point mass at zero constitutes arguably a better 
detection tool. However, this statement, particularly in a prediction setup, must be 
interpreted in the light of the variance-bias trade-off, where the size of the training 
sample, statistical properties of the prediction model, covariance structure of the 
marker/causal genotypes and genetic architecture of the trait play important roles in 
defining the best choice (Hayes et al 2010). 

In the so-called spike and slab model that is considered here, the SNP effects are a 
priori mutually independent and drawn from a two-component mixture distribution 
made up of a normal distribution with mean zero and variance . σ 2

b (the slab), 
.N

(
0, σ 2

b

)
and a degenerate distribution with a point mass at zero, . �0 (the spike). 

Specifically, if . bi is the ith SNP effect and . π denotes the a priori probability that 
this effect is non-zero, then 

.p
(
bi |σ 2

b , π
)

= N
(
0, σ 2

b

)
π + �0 (1 − π) , (7.31) 

where . �0 represents a point probability mass at zero. 
This section provides a detailed development of a Bayesian-McMC implemen-

tation of the spike and slab model and concludes with an example in the context of
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prediction. The problem of detection of genetic markers that have an effect on the 
trait is deferred to an example on page 361. 

The Mixture Model 

A description of the model involves first the assumption that observed records y 
(vector of dimension .n × 1) are a realisation from the Gaussian process 

.y|μ, b, σ 2 ∼ N
(
1μ + Xb, Iσ 2

)
, (7.32) 

where 1 is a vector of ones of dimension .n×1, . μ is a scalar, X is an observed matrix 
of dimension .n × m representing genotypic codes of the SNPs (originally scored as 
.0, 1 or 2) and . σ 2 is the conditional variance of y, given the location parameters of 
the model . μ and b. 

As a reminder, in the standard model ignoring the mixture, the m SNP effects are 
elements of the vector b (dimension .m× 1) that are iid realisations from a common 
distribution, assumed to be Gaussian with mean zero and variance . σ 2

b . Therefore, 

.b|σ 2
b ∼ N

(
0, Iσ 2

b

)
. (7.33) 

The parameter . σ 2
b represents prior uncertainty about the SNP effect, the same for 

each SNP. The columns of matrix X are centred but not standardised. Then for each 
element of .X = {

xij

}
, we have  

. xij |pj ∼ (
0,Var

(
xij |pj

))
, Var

(
xij |pi

) = 2pj

(
1 − pj

)
.

A genomic variance is often associated with (7.32) and (7.33) and in the absence of 
a mixture is defined as (conditional on gene frequencies .pj , j = 1, . . . , m) 

. σ 2
g = Var

(
X′

ib
)

= E[Var (X′
ib|Xi

) + Var
[
E
(
X′

ib|Xi

)]

= E
[
X′

iXi

]
σ 2

b

= σ 2
b

∑

j=1

E
(
x2
ij

)
, with E

(
x2
ij

)
= Var

(
xij

) = 2pj

(
1 − pj

)
. (7.34) 

In these expressions, . X′
i is the ith row of matrix X, corresponding to the ith genomic 

value.
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From (7.34), 

.σ 2
b = σ 2

g∑
j=1 2pj

(
1 − pj

) . (7.35) 

The term .2pj

(
1 − pj

)
can be approximated by computing the sampling variance 

among the elements of the j th column of X. 
In order to introduce the mixture, it is convenient to define the ith SNP effect as 

.bi = αiδi, i = 1, . . . , m, (7.36) 

where the random variable . αi is distributed as .αi |σ 2
b

iid∼ N
(
0, σ 2

b

)
, independent 

of the binary .(0, 1) indicator variable . δi that is a priori Bernoulli distributed with 
probability . π : 

. δi |π iid∼ Br (π) , , i = 1, . . . , m,

Pr (δi = 1|π) = π, Pr (δi = 0|π) = 1 − π. (7.37) 

This binary indicator variable with its associated distribution .Pr (δi = 1|π) specifies 
the a priori probability that a marker effect . bi is non-zero; this prior probability is 
the same for all markers. As indicated below, this is in contrast with the posterior 
probability that marker effect . bi is non-zero, .Pr (δi = 1|y), distinct for each marker. 
One Monte Carlo estimator of this probability is given by the sampling average of 
the draws of . δi from their posterior distribution. 

The marginal prior density of . bi (marginalised over .[δi |π ]) is  

. p
(
bi |σ 2

b , π
)

=
∑

δ
p

(
bi, δi |σ 2

b , π
)

= p
(
bi |δi = 1, σ 2

b , π
)
Pr (δi = 1|π)

+p
(
bi |δi = 0, σ 2

b , π
)
Pr (δi = 0|π)

= N
(
0, σ 2

b

)
π + �0 (1 − π) . (7.38) 

retrieving (7.31). The mixture model specifies that when the unobserved indicator 
variable . δi takes the value of 1, . bi is a realisation from a normal prior with mean 
zero and variance . σ 2

b ; when .δi = 0, .bi = 0 with probability 1. The probability 
. π can be interpreted as the a priori proportion of marker loci with non-null 
effects.
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The genomic variance under the mixture model is 

. σ 2
g = Var

(∑m

j=1
xijαj δj

)

= Exδ

[
Var

(∑m

j=1
xijαj δj |xij , δj

)]
+ Varxδ

[
E
(∑m

j=1
xijαj δj |xij , δj

)]

= Exδ

[
σ 2

b

∑m

j=1
x2
ij δ

2
j

]

=
[
σ 2

b

∑m

j=1
E
(
x2
ij

)
E
(
δ2j

)]

= σ 2
b π

∑m

j=1
2pj

(
1 − pj

)
. (7.39) 

Therefore, along the same lines as in (7.35), 

.σ 2
b = σ 2

g

π
∑

j=1 2pj

(
1 − pj

) . (7.40) 

The conditional distribution of the data takes the form 

.y|μ, α, δ, σ 2 ∼ N
(
1μ +

∑m

i=1
Xi (αiδi) , Iσ 2

)
, , i = 1, . . . , m (7.41) 

where . Xi is the ith column of X. 
The probability . π can be assumed to follow a beta distribution, a priori, with 

user-tuned hyperparameters . α and . β, 

.π |α, β ∼ Be (α, β) . (7.42) 

The hyperparameters can be chosen in order to assign a relatively higher probability
mass to low values of . π , reflecting prior information about the proportion of genetic 
markers likely to be associated with the trait. 

The scalar . μ can be assumed to follow an improper uniform distribution, a priori. 
The two variance parameters can be assigned, a priori, scaled inverted chi-square 

distributions: 

. σ 2
b |Sb, vb ∼ Sbχ

−2 (Sb, vb) ,

σ 2|S, v ∼ Sχ−2 (S, v) ,

where the . S′s and the . v′s are user-tuned hyperparameters. 
With the above specification, the prior density factorises as follows: 

.p
(
μ, α, δ, π, σ 2

b , σ 2
)

∝ p
(
α|σ 2

b

)
p (δ|π) p (π) p

(
σ 2

b

)
p

(
σ 2

)
(7.43)
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and the posterior density takes the form 

. p
(
μ, α, δ, π, σ 2

b , σ 2|y
)

∝ p
(
y|μ, α, δ, σ 2

)
p

(
α|σ 2

b

)
p (δ|π) p (π) p

(
σ 2

b

)
p

(
σ 2

)
. (7.44) 

McMC Implementation 

The fully conditional posterior distributions (fcpd) are of standard form, and the 
model can be implemented using Gibbs sampling. The required fcpd are 

. [μ|D] , [α|D] , [δ|D] , [π |D] ,
[
σ 2

b |D
]
,
[
σ 2|D

]
,

where, as before (see page 222), D is a vector containing the observations y and all 
the parameters of the model except the one to be updated. 

Updating [μ|D] 

From (7.44), the fcpd of the scalar . μ is proportional to 

. p (μ|D) ∝ p
(
y|μ, α, δ, σ 2

)

∝ exp

[
− 1

2σ 2 (y − 1μ − Xb)′ (y − 1μ − Xb)

]

The quadratic form in this expression, as a function of . μ, can be manipulated into 

. (y − 1μ − Xb)′ (y − 1μ − Xb) ∝ μ1′1μ − 2μ1′ (y − Xb) . (7.45) 

Defining

.
(
1′1

)
μ̂ = 1′ (y − Xb) (7.46) 

and replacing .1′ (y − Xb) in (7.45) by .
(
1′1

)
μ̂, 

. (y − 1μ − Xb)′ (y − 1μ − Xb) ∝ μ1′1μ − 2μ
(
1′1

)
μ̂.

Adding and subtracting .μ̂
(
1′1

)
μ̂ and keeping terms containing . μ only, 

. (y − 1μ − Xb)′ (y − 1μ − Xb) ∝ (
μ − μ̂

) (
1′1

) (
μ − μ̂

)
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and therefore, 

. p (μ|D) ∝ exp

[
− 1

2σ 2

(
μ − μ̂

) (
1′1

) (
μ − μ̂

)]
,

leading to the final result 

. [μ|D] ∼ N
(
μ̂, σ 2/n

)
. (7.47) 

Updating [αi|D] 

From (7.44), the fcpd is proportional to .p
(
y|μ, α, δ, σ 2

)
p

(
α|σ 2

b

)
where the first 

term is given by (7.41). There are two cases to consider. When .δi = 0, the product 
.αiδi in (7.41) is equal to zero, the conditional distribution of the data is not a function 
of . αi , and . αi is updated from 

. p (αi |D) ∝ p
(
αi |σ 2

b

)

the density of the normal distribution 

. [αi |D] ∼ N
(
0, σ 2

b

)
. (7.48) 

In this case, . αi is updated from its prior distribution. When .δi = 1, 

. p (αi |D) ∝ p
(
y|μ, α, δ, σ 2

)
p

(
α|σ 2

b

)

which is the product of two normal densities: (7.41) and .N
(
0, σ 2

b

)
. This fcpd has the 

same form as in (5.34), Example 5.3, A regression model for correlated binary data 
on page 220. Then, following the steps in that example involving the combination 
of two quadratic forms leads to 

. [αi |D] ∼ N
(
α̂i ,

(
X′

iXi + k
)−1

σ 2
)

, (7.49) 

where .k = σ 2/σ 2
b , . Xi is the ith column of X and . ̂αi satisfies 

.
(
X′

iXi + k
)
α̂i = X′

i (y − 1μ − X−ib−i ) . (7.50) 

In (7.50), .X−i is matrix X with the ith column deleted, and .b−i is vector b (whose 
elements are . αiδi) with the ith element deleted.
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Updating [δi|D] 

From (7.44), the fcpd of . δi is proportional to .p
(
y|μ, α, δ, σ 2

)
p (δ|π). when .δi = 0, 

.αiδi = bi = 0, .p (δ|π) = Pr (δi = 0|π) = (1 − π) and 

. Pr (δi = 0|D) ∝ exp

[
− 1

2σ 2 (y − 1μ − X−ib−i )
′ (y − 1μ − X−ib−i )

]
(1 − π) .

(7.51) 

When .δi = 1, .αiδi = αi , .p (δ|π) = Pr (δi = 1|π) = π and 

.Pr (δi = 1|D) ∝ exp

[
− 1

2σ 2 (y − 1μ − Xb)′ (y − 1μ − Xb)

]
π. (7.52) 

Let .(y − 1μ − X−ib−i )
′ (y − 1μ − X−ib−i ) = RSS0, the residual sum of squares 

of the model without the ith SNP, and let . (y − 1μ − Xb)′ (y − 1μ − Xb) = RSS1
denote the residual sum of squares of the model with all the m SNPs. Then the fcpd 
of the probability that .δi = 0 is the Bernoulli process with probabilities 

.Pr (δi = 0|D) =
exp

[
− 1

2σ 2 RSS0
]
(1 − π)

exp
[
− 1

2σ 2 RSS0
]
(1 − π) + exp

[
− 1

2σ 2 RSS1
]
π

(7.53) 

and the complement

. Pr (δi = 1|D) =
exp

[
− 1

2σ 2 RSS1
]
π

exp
[
− 1

2σ 2 RSS0
]
(1 − π) + exp

[
− 1

2σ 2 RSS1
]
π

. (7.54) 

A Monte Carlo estimator of the (marginal) posterior probability that marker i is 
non-zero is given by 

.ϕ̂i = P̂r (δi = 1|y) = 1

l

l∑

j=1

δij , (7.55) 

where . δij is the sampled value of . δ for marker i at iterate j of the Gibbs sampler 

and l is the length of the Gibbs chain. To draw .δ[t]
ij at round t of the McMC 

sampler, compute (7.53), and draw a random variable u from a uniform distribution 
in .(0, 1). If  u is less than or equal to (7.53), set .δ[t]

ij = 1; otherwise, set . δ[t]
ij =

0.
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Remarks 

1. Residuals RSS0 and RSS1 are efficiently updated as indicated on page 316. 
2. In a computing environment, (7.53) and (7.54) can be obtained as follows: Let 

θi = Pr (δi = 1|D) denote the fully conditional posterior distribution that marker 
i is non-zero. Then 

. ln

(
θi

1 − θi

)
= 1

2σ 2 (RSS0 − RSS1) − (ln (1 − π) − ln (π)) = Ki (7.56) 

and

.θi = exp (Ki)

1 + exp (Ki)
. (7.57) 

When the McMC algorithm converges, the draw at iteration j , θ
[j ]
i , is an

extraction from the marginal posterior distribution Pr (δi = 1|y). Therefore, the
algorithm provides two characterisations of Pr (δi = 1|y): one in terms of the
mean of the Monte Carlo samples δij , ϕ̂i defined in (7.55) that yields a Monte 
Carlo point estimator of the mean of the posterior distribution Pr (δi = 1|y) 
and the other in terms of a Monte Carlo description of its complete posterior 
distribution through the samples θ [j ] 

i via (7.57). Estimator (7.57) can be used to 
construct a Monte Carlo estimator of the marginal posterior distribution of the 
false discovery rate, a topic discussed in the next chapter on page 351. 

Updating [π |D] 

From (7.44), the density of the fcpd of . π is proportional to .p (δ|π) p (π) given by 

. p (π |D) ∝ π
∑m

i=1 δi (1 − π)m−∑m
i=1 δi πη−1 (1 − π)β−1

= π
∑m

i=1 δi+η−1 (1 − π)m−∑m
i=1 δi+β−1 ,

which is the kernel of the density of a beta distribution with shape parameters 
.
∑m

i=1 δi + η and .m − ∑m
i=1 δi + β. Specifically, 

. [π |D] ∼ Be

(
m∑

i=1

δi + η,m −
m∑

i=1

δi + β

)

. (7.58)
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Updating
[
σ 2 

b
|D

]

From (7.44), density of the fcpd of . σ 2
b is proportional to .p

(
α|σ 2

b

)
p

(
σ 2

b

)
, 

. p
(
σ 2

b |D
)

∝
(
σ 2

b

)− m
2
exp

[

− α′α
2σ 2

b

]
(
σ 2

b

)−
(
1+ vb

2

)

exp

[

−vbSb

2σ 2
b

]

=
(
σ 2

b

)−
(

vb+m

2 +1
)

exp

[

−α′α + vbSb

2σ 2
b

]

=
(
σ 2

b

)−
(

ṽb
2 +1

)

exp

[

− ṽbS̃b

2σ 2
b

]

, (7.59) 

where .̃vb = vb + m and .̃Sb = (
α′α + vbSb

)
/̃vb. This is the kernel of a scaled 

inverse chi-square distribution with hyperparameters . ̃vb and . ̃Sb

.

[
σ 2

b |D
]

∼ ṽbS̃bχ
−2 (̃vb) . (7.60) 

To obtain a sample from (7.60), draw from a chi-square distribution with . ̃vb degrees 
of freedom and the reciprocal of this number is multiplied by .̃vbS̃b = α′α + vbSb. 

Updating
[
σ 2|D]

From (7.44), the density of the fcpd of . σ 2 is proportional to .p
(
y|μ, α, δ, σ 2

)
p

(
σ 2

)
, 

. p
(
σ 2|D

)
∝

(
σ 2

)− n
2
exp

[
− (y − 1μ − Xb)′ (y − 1μ − Xb)

2σ 2

] (
σ 2

)−(1+ v
2 )

exp

[
− vS

2σ 2

]

=
(
σ 2

)−( v+n
2 +1)

exp

[
− (y − 1μ − Xb)′ (y − 1μ − Xb) + vS

2σ 2

]

=
(
σ 2

)−
(

ṽ
2+1

)

exp

[
− ṽS̃

2σ 2

]
,

where .̃v = v + n and .̃S = (
(y − 1μ − Xb)′ (y − 1μ − Xb) + vS

)
/̃v. This is the  

kernel of a scaled inverse chi-square distribution with hyperparameters . ̃v and . ̃S, 

.

[
σ 2|D

]
∼ ṽS̃χ−2 (̃v) . (7.61)
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To obtain a sample from (7.61), draw from a chi-square distribution with . ̃v
degrees of freedom and the reciprocal of this number is multiplied by . ̃vS̃ =
(y − 1μ − Xb)′ (y − 1μ − Xb) + vS. 

Example: Spike and Slab Model 

Using the example described on page 319, the spike and slab model is fitted to the 
same two data sets. As before, each data set is divided into 750 training (t) records 
and 750 validating (v) records. Let 

. W = (1X) ,

θ ′ = (
μ, b′) .

Using obvious notation, a predictor of the validating records based on the spike and 
slab model is 

.ŷv = Wvθ̂, (7.62) 

where .θ̂ = Ê (θ |Xv, yt ), the Monte Carlo estimate of the marginal posterior 
mean using the training data . yt . In common with the examples used for the ridge 
regression and the lasso, this is also a point prediction that does not account for 
uncertainty but is useful for comparing the prediction ability of various models. It 
addresses the general question: Given the model, what is the predicted mean value 
of future data given . θ̂ , at the value of the covariates . Xv? 

In the first data set with 25 QTL, the MSE (correlation) obtained fitting the 
spike and slab model is .34.1 .(0.29). In the second data set with 250 QTL, the 
MSE (correlation) is .41.3 .(0.34). The predictive performance of the spike and slab 
model is very similar to the lasso in the first data set and slightly better than the 
lasso and similar to the ridge regression in the second data set. The spike and slab 
model involves inferring the f our  parameters (over and above the SNP effects): 
the mean . μ, the probability . π and the two variance components . σ 2

b and . σ 2. These 
were estimated using the training data and not using cross-validation, as was the 
case with lasso and ridge regression. Arguably, a better predictive performance can 
be expected if these parameters were chosen via cross-validation. 
One can exploit the flexibility afforded by the McMC environment to compute 
the marginal posterior distribution of functions of the parameters of the model. 
Two such functions are mean squared errors that account for particular sources of 
uncertainty. An example is displayed in Fig. 7.6. The left panel is a histogram of 
the marginal posterior distribution of the validating mean squared error reflecting 
posterior uncertainty in the parameters of the Bayesian model. It is obtained by 
computing .ŷ

[t]
v = Wvθ

[t] for each McMC cycle t and the associated validation 
MSE.
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Fig. 7.6 Left: histogram of the Monte Carlo estimate of the marginal posterior distribution of the 
validating mean squared error accounting for posterior uncertainty of the parameters of the spike 
and slab model. Right: histogram of the Monte Carlo estimate of the marginal posterior distribution 
of the validating mean squared error accounting for posterior uncertainty of the parameters of the 
spike and slab model and for sampling variation of new validating data 

The right panel of Fig. 7.6 shows the Monte Carlo estimate of the validating mean 
squared error calculated in yet another way. Here, predictions of single validating 
records are drawn from 

. ŷ[t]
v ∼ N

(
Wvθ

[t], Iσ 2[t]
)

and in this manner, account is taken of the uncertainty in (.θ, σ 2) and of the sampling 
variation of new observations. The issue of prediction uncertainty is revisited in 
Chap. 10. 

An attractive property of the spike and slab model is that it may be useful for 
detection of QTL. Before illustrating this property, I take a detour from prediction 
and provide an overview of the concept of false discovery rate in the next chapter. 
In general terms, the problem at hand is how to go about finding as many promising 
genetic markers as possible among thousands or millions observed while incurring 
a relatively low proportion of false positives.



Chapter 8 
Digression on Multiple Testing: False 
Discovery Rates 

A classical single hypothesis test proceeds by specifying . α, the probability of a 
significant result, given the null hypothesis .(H = 0) is true. This is also known 
as the probability of a false discovery and more commonly of a type I error. 
If m independent hypotheses . Hi are tested, the so-called family wise error rate 
(FWER) is the probability of making one or more type I errors among the family of 
hypothesis tests is 

. Pr(at least 1 false positive result in m tests|H1 = 0, . . . , Hm = 0) =
1 − Pr(no false positive results in m tests|H1 = 0, . . . , Hm = 0)

= 1 − (1 − α)m. (8.1) 

With .α = 0.05 and .m = 50, this yields 

. Pr(at least 1 significant result in m tests|H1 = 0, . . . , Hm = 0) = 0.92

by chance alone. In terms of p-values, a p-value threshold of .0.05 guarantees that 
the expected number of false positives over the whole family of m tests is less  
than or equal to .0.05m, far too large for modern genomewide studies. Traditional 
methods for dealing with multiple testing call for adjusting . α in some manner so 
that the FWER remains below a desired level. A popular method is the Bonferroni 
correction: for m hypothesis tests, each test is controlled so that the probability of a 
false positive is less than or equal to .α/m. Then for the m tests, the overall FWER 
is less than or equal to . α. This is a global test that addresses the question: Is there 
any null hypothesis that is rejected? 

The Bonferroni result is readily derived using Boole’s inequality and makes 
no assumptions about the degree of dependence among the tests (see Note 1). 
Therefore, in the example above with .m = 50 tests, the (global) null hypothesis 
is rejected if the p-value for any particular hypothesis is less than . (0.05/50) =
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0.001. Controlling FWER is useful when the number of hypotheses tested is small. 
However, in many modern genomewide studies where many hypotheses are tested, 
the Bonferroni correction can lead to a high rate of type II  errors or false negatives 
(missing good candidates). The method tries too hard to make it unlikely that even 
one false rejection of the null is made. 

An alternative that is particularly attractive for large-scale multiple testing is to 
identify as many significant features as possible while keeping the proportion of 
false discoveries as low as possible among these significant features. This is the 
goal of the false discovery rate (FDR) that was first proposed from a frequentist 
perspective in a much celebrated paper by Benjamini and Hochberg (1995). Since 
its publication, the method has played a very important role in multiple testing and 
has undergone a number of refinements. 

This chapter provides an overview of FDR starting with the classical approach 
proposed by Benjamini and Hochberg (1995). The method can also be anchored in 
a Bayesian framework and two approaches are presented. The first is an empirical 
Bayes approach (Efron et al 2001) that uses as input summary statistics (such as 
p-values or z-values) embedded in a two-component mixture model. Secondly, a 
fully Bayesian hierarchical model is described and implemented with McMC. One 
output of this Bayesian model is a Monte Carlo estimate of the marginal posterior 
distribution of FDR. 

The application of these methods is illustrated with two examples: one is based 
on the Gaussian, two-component mixture model introduced on page 127; the other 
is based on the spike and slab model introduced on page 321. 

Note 1 
The Bonferroni correction can be derived using Boole’s inequality (Casella and 
Berger 1990). Assume that .H1,H2, . . . , Hm hypotheses are to be tested, and 
let .p1, p2, . . . , pm be their p-values. Assume that .m0 are unknown true null 
hypotheses. The Bonferroni correction rejects the ith null hypothesis when . pi ≤
α/m and, in so doing, controls the FWER at level .≤ α. The proof is as follows 
(recall that .P(A ∪ B) = P(A) + P(B) − P(A ∩ B), where . ∪ is the union symbol 
and . ∩ is the intersection symbol): 

. FWER = Pr
[
∪m0

i=1

(
pi ≤ α

m

)]
≤

m0∑
i=1

Pr
(
pi ≤ α

m

)
= m0

α

m
≤ m

α

m
= α.

This result does not require knowledge of the number of true null hypotheses, nor 
does it assume independence of the tests. 

An interesting alternative proof is as follows (Benjamini 2013, Selective Infer-
ence and False Discovery Rate, Public Lecture at UC Berkeley): The starting point 
is as above, where m hypotheses are to be tested, and among these, . m0 (unknown) 
are true null hypotheses. Let . Ri , .i = 1, 2, . . . , m denote the binary random variable 
equal to 1 if . Hi is rejected (a discovery is made) or 0 if it is not rejected. Let 
.Vi = 1 if .Ri = 1 but . Hi is true (a false discovery is made or a type I error) and 0 
otherwise. Then .R = ∑

Ri is the number of hypotheses rejected and .V = ∑
Vi
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is the number of null hypotheses rejected in error (number of false discoveries). 
Consider a procedure that tests each of the m hypotheses separately at some level 
. αB . Then .Pr(Vi = 1) = E(Vi) ≤ αB , and the expected number of false discoveries 
over the m tests V , also known as the per family error rate (PFER), is 

. E(V ) = E
(∑m

i=1
Vi

)
=

∑m

i=1
E(Vi) ≤ m0αB ≤ mαB.

Therefore, to achieve a level of the expected number of false discoveries for the 
family of tests, .E(V ), smaller than or equal to . α, it is sufficient to choose . αB =
α/m. Interestingly, the Bonferroni correction ensures that achieving .E(V ) ≤ α also 
guarantees that the .FWER = Pr(V ≥ 1) ≤ α. Indeed, 

. E(V ) = 0 Pr(V = 0) + 1 Pr(V = 1) + 2 Pr(V = 2) + · · · + mPr(V = m)

≥ 0 + 1 Pr(V = 1) + 1 Pr(V = 2) + · · · + 1 Pr(V = m)

= 0 + Pr(V ≥ 1) ≤ α.

Therefore, when using .αB = α/m for individual tests 

. FWER = Pr(V ≥ 1) ≤ E(V ) ≤ α.

8.1 Introduction 

Consider an experiment where m hypotheses are tested. This could be a GWAS 
experiment designed to isolate a few SNPs with an effect on a trait of interest out 
of a very large number m tested. Let . δ represent the unobserved binary random 
variable that takes the value .δi = 0 if the ith hypothesis is a true null hypothesis 
.(Hi = 0) (e.g., the ith SNP has no effect on the trait), or .δi = 1 if the alternative 
hypothesis is true .(Hi = 1) (the ith SNP has an effect on the trait) .i = 1, . . . , m. 
Let the observed binary random variable .ri = 1 if the ith hypothesis is rejected 
and 0 otherwise according to a particular rule. Given observation . yi , the decision to 
reject the null could be based on the rule .ri = I (yi ≥ yt ) for some threshold value 
. yt or more commonly using “z-values”. More generally, the rule can be to reject 
the null if a test statistic z falls in a rejection region A, .ri = I (zi ∈ A). The total 
number of rejections (an observed random variable) depends on the rule chosen and 
is .R = ∑m

i=1 ri (equal to the number of discoveries or number of significant results 
and constitutes the discovery set). The number of true discoveries is .

∑m
i=1 riδi . The  

number of false discoveries or number of rejections in error is 

.V =
m∑

i=1

I (δi = 0) × I (ri = 1) =
m∑

i=1

(1 − δi)ri . (8.2)
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The FWER is equal to .Pr(V ≥ 1) and the false discovery proportion, the proportion 
of false discoveries among the discoveries, is 

.Q = V

R
, R > 0, . (8.3a) 

= 0, R  = 0. (8.3b) 

Q is unobservable because V is unknown. It involves the unobserved parameters 
. δi , the decisions taken on the basis of rule . ri and the data indirectly through the 
decisions. 

A variety of approaches have been suggested to infer Q and three of these 
are outlined below. The first uses a frequentist paradigm and is the original false 
discovery rate of Benjamini and Hochberg (1995). It is defined as the expectation 
of (8.3). It treats hypotheses as not random. The second and third are based on the 
Bayesian paradigm where hypotheses are treated as unobserved random quantities. 
This chapter reviews an empirical Bayes approach (Efron et al 2001) and presents a 
fully Bayesian model driven with McMC. 

8.2 Preliminaries 

Before embarking on the subject, two standard results are described; these will be 
used in the coming sections. The first concerns the distribution of p-values and the 
second the use of the inverse transform method to generate a random variable with 
a desired distribution: 

1. Consider a random variable .X ∈ R with probability density function . fX(x) =
d
dx

F (x), and let .y = F(x), such that .x = F−1(y), where the continuous function 
F (a cumulative distribution function, invertible and differentiable) maps x from 
the real line . R to the .(0, 1) interval; .F : R →(0, 1), and .F−1 is the inverse 
transformation, .F−1 : (0, 1) → R. The probability density function of Y , .fY (y), 
is obtained using the theory of transformations. This gives 

.fY (y) = fX

(
F−1(y)

)∣∣∣∣
dF−1(y)

dy

∣∣∣∣, Y ∈ (0, 1). (8.4) 

Noting that . dF−1(y)
dy

in (8.4) can be written 

.
dx

dF(x)
=

(
dF(x)

dx

)−1

= 1

fX(x)
, x = F−1(y),
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and substituting in (8.4): 

.fY (y) = fX

(
F−1(y)

) 1

fX

(
F−1(y)

) = 1, Y ∈ (0, 1) (8.5) 

which is the uniform distribution .Un(0, 1). 
The classical application of this result concerns the distribution of p-values 

under a null hypothesis. When the alternative hypothesis corresponds to small 
values of the test statistic X, the  p-value is .F(x), where x is the observed value of 
the test statistic. The p-values are then uniformly distributed in the interval .(0, 1), 
whatever the (continuous) distribution of X might be. A similar argument holds 
when the alternative hypothesis corresponds to large values of the test statistic X. 

2. The following algorithm generates a random variable with desired distribution 
F : 

• Generate . U ∼ Un(0, 1)
• Set . X = F−1

X (U)

and X has the desired distribution .FX(·). To see this, note that 

. Pr(X ≤ x) = Pr
(
F−1

X (U) ≤ x
)

= Pr(U ≤ FX(x))

=
∫ FX(x)

0
1 du

= FX(x). (8.6) 

This method of generating the random variable is known as the inverse transform. 
An illustration is the computation of z-values from uniformly distributed p-

values. Assume two samples drawn from independent normally distributed popu-
lations with unknown means . μi , .i = 1, 2 and a common, unknown variance. Let 
. xi and . ˆV ar(xi) denote the sample mean and an estimate of the variance of the 
sample mean, respectively, calculated using . ni records, .i = 1, 2. Then the observed 
so-called t-value is 

. t = x1 − x2√
V̂ar(x1 − x2)

.

Given .H0 : μ1 = μ2, the random variable T whose realised value is t has a student-
t distribution with .n1+n2−2 degrees of freedom. For a level . α = Pr(reject H0|H0)

test, the null hypothesis is rejected if the p-value 

• 

.p = Pr(T ≥ t |H0) = 1 − F0(t) ≤ α (8.7) 

in favour of .H1 : μ1 > μ2,
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• if 

.p = Pr(T ≤ t |H0) = F0(t) ≤ α (8.8) 

in favour of .H1 : μ1 < μ2 and 
• if 

.p = 2(1 − Pr(T ≤ |t | |H0)) = 2(1 − F0(|t |)) ≤ α (8.9) 

in favour of .H1 : μ1 	= μ2, where . F0 is the cumulative distribution function of T 
under . H0. In the last case, .Pr(T ≤ −t |H0) = Pr(T ≥ t |H0) = 1

2α. Using  (8.5), 
given . H0, the random variable p is uniformly distributed .Un(0, 1). Now, compute 
the z-value 

.z = �−1(p) (8.10) 

where . � is the cumulative distribution function of the standard normal. It follows 
from (8.6) that 

.z ∼ N(0, 1). (8.11) 

8.3 The Benjamini-Hochberg False Discovery Rate 

Benjamini and Hochberg (1995) define the false discovery rate (FDR-BH) as the 
expectation of the false discovery proportion. From (8.3), 

. FDR = E(Q) = E

[
V

R
|R > 0

]
Pr(R > 0) + 0 Pr(R = 0)

= E

[
V

R
|R > 0

]
Pr(R > 0), (8.12) 

where the expectation is taken over replications of the experiment. A decision rule 
rq controls FDR at level q, with q a pre-chosen value between 0 and 1 if 

. FDR
(
rq

) ≤ q. (8.13)

In other words, the expected proportion of false discoveries among the hypothe-
ses rejected is less than or equal to q. This is in contrast with multiple testing
based on the traditional p-values, which leads to an expected proportion of false
discoveries among all the tests performed less than or equal to q.
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Benjamini and Hochberg (1995) show that the decision rule is as follows: Let pi 
be the ith element (i = 1, 2, . . .  ,m) among the ordered p-values p1 ≤ p2 ≤ . . .  ≤ 
pm corresponding to the m hypotheses Hi . Let  

.rq = max{i : pi ≤ (i/m)q}, then,. (8.14a) 

Reject H1,H2, . . . , Hrq . (8.14b) 

The realised V and R depend on the random outcome of the p-values in 
repeated realisations of the experiment. The rule (8.14) can be implemented as 
follows: Choose q. Start from the largest p-value with i = m and check whether 
inequality (8.14a) holds. Move towards decreasing values of i one step at a time, 
checking for the inequality at each i. Stop at the  ith value the first time pi ≤ (i/m)q 
and set rq = i. This is the largest i for which the inequality holds. Any i smaller 
than rq for which the inequality holds is ignored. Then reject H1,H2, . . . , Hrq . If no  
p-value satisfies inequality (8.14a), then no hypothesis test is declared significant. 
Common choices for q are 0.05 and 0.10. 

Benjamini and Hochberg (1995) prove that if the p-values are independent of 
each other, then the rule rq controls the expected false discovery proportion at level 

.FDR
(
rq

) = π0q ≤ q, (8.15) 

where π0 = m0
/
m is the proportion of null hypotheses (the true proportion of

SNP that do not have an effect on the trait). Therefore, the FDR-BH controls the
expected false discovery rate exactly at level π0q and conservatively at level q.
Since the number of null hypotheses m0 is not known, it is usual to specify the
inequality in terms of expression (8.13). In most modern applications, the ratio π0 is 
close to 1, but it can be estimated as in Storey (2002) and Benjamini et al (2006) or  
adopting a likelihood or fully Bayesian approach. Benjamini and Yekutieli (2001) 
proved that the above theorem holds under certain type of stochastic dependence 
among the p-values, and Storey and Tibshirani (2007) argued that the theorem holds 
asymptotically as m becomes large, under any form of dependence. 

For any given set of data, Q may or may not be less than or equal to q. Rather, it 
is the expectation of Q that is smaller than or equal to q over conceptual replications 
of the experiment. 

Expression (8.14a) can be written as 

.rq = max
{
i : mpi

i
≤ q

}
, (8.16) 

where mpi is the expected number of false discoveries and i is the number rejected.
The ratio mpi/i is an intuitive expression for the false discovery proportion.
However, the ratio is not monotonically related to the p-values, and moving to a
lower p-value may result in a highermpi/i. Therefore, the discovery sets for a given
FDR obtained using the rule (8.14) and (8.16) may differ. In order to align both 
and enforce monotonicity, Yekutieli and Benjamini (1999) suggest the following
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procedure: Let k = max{i : pi ≤ (i/m)q}. If such k exists, reject H1, . . . , Hk , as  
in (8.14a). The so-called q∗, the FDR-BH p-value adjustment, is 

.q∗
i = q(pi) = min

i≤k

(
pk

m

k

)
, reject Hi if q∗

i ≤ q, (8.17) 

which leads to the same decision as that based on (8.14a). In order to use the p-
value adjustment, one can proceed as follows: First, order all p-values from small 
to large, multiply each p-value by the total number of tests m, and divide by the 
rank order i, i = 1, . . . , m. Start from the largest pim/i at the bottom of the 
sequence, and move upwards towards smaller values. Second, make sure that the 
resulting sequence is non-increasing: if it increases, set the increased value equal to 
the preceding value (repeatedly, until the whole sequence becomes non-increasing). 
Label the ith element of the sequence q∗

i . If  q
∗
i is smaller than or equal to q, reject 

H1, . . . , Hi . The kernel of the R−code to implement the algorithm is shown below: 

# pv are the sorted p-values used as input 
# smallest at the top 
q=0.15 # SET FDR 
qstar[m] <- pv[m] # Initialise qstar = largest p-value 
minqstar <- qstar[m] # Initialise the minimum qstar 
startloop <- m-1 
for(i in startloop:1){ # loop towards smaller p-values 

qstar[i] <- pv[i]*(m/i) 
if(qstar[i]>=minqstar){ 
qstar[i] <- minqstar # If new qstar (moving upwards towards 

# smaller p-values) is larger than the 
# previous qstar, set new qstar = old qstar 

} 
minqstar <- qstar[i] # update the minimum qstar 
if(minqstar <= q){break} 

} 
discovset <- i # SIZE OF DISCOVERY SET 

As a simple illustration, consider the computation of q∗ and of the traditional 
FDR-BH rule (8.14) using as input a list of sorted p- values. A small subset of the 
relevant records is shown in Table 8.1. 

A total of m = 100 hypotheses are tested, and the FDR-BH rule is applied for a 
value of q = 0.15 in (8.14). Starting from the largest p-value at i = m = 100, check 
rule (8.14) for  H100,H99,H98 . . .. At  i = 19, pi is smaller than (i/m)q (coloured 
row in the table). Then reject H1, . . . , H19. This rule controls FDR at level q = 0.15. 
Exactly the same discovery set is obtained if one chooses to use q∗. For i = 19, 
q∗
19 ≤ q = 0.15 which leads to the same rejection of H1, . . . , H19. These constitute 
the discovery set that is expected to include 19 ∗ 0.15 ≈ 3 false discoveries. 

The use of (8.16) in column 4 of the table generates a value of pi(m/i) for i = 17 
that is larger than for i = 18. This is remedied in the computation of q∗

i shown in 
the fifth column of the table where q∗

17 is set equal to q
∗
18.
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Table 8.1 A subset of m = 100 hypotheses indicating control of FDR at level q = 0.15. The 
columns are the index for the hypothesis (i, i = 1, . . . , m), the sorted p-values (pi ), rule (8.14) 
((i/m)q), the values of (8.17), (pi(m/i)) and the computation of q∗ in column 5, (q∗

i ) 

8.4 A Bayesian Approach for a Simple Two-Group Mixture 
Model 

Much of the material in this and the coming section has been adapted from Efron 
and Hastie (2016). 

When the multiple testing problem is embedded in a Bayesian framework, the 
false discovery rate is expressed in terms of a posterior probability, rather than as 
the expectation (8.12) over repeated sampling of the data. 

This section starts by considering a simple two-group mixture model involving m 
identical hypotheses, of which . m0 are null .(H = 0) with probability . Pr(H = 0) =
π0 = m0/m and .m − m0 are non-null .(H = 1) with probability .π1 = 1 − π0. The  
probability . π0 is the a priori probability of null for each of the m hypotheses. The 
quantity m is observed, but . m0 is unknown. In this simple setup, H is the only 
unknown random variable and the focus of enquiry. In modern genomewide studies, 
involving million of genetic markers . π0 is much bigger than . π1, say, .π0 > 0.95. 

The random binary quantity H is Bernoulli distributed, 

. H ∼ Bernoulli(π1).

This is in contrast to the frequentist approach where H is considered non-random. 
In the simple two-group mixture model considered here, the data are m test statistics 
such as “z values” associated with the m hypotheses. The density functions under 
the null and non-null hypotheses are 

. p(z|H = 0) = p0(z),

p(z|H = 1) = p1(z).

Marginally, Z has the mixture distribution 

.p(z) = π0p0(z) + π1p1(z).
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The mixture model is equivalent to the hierarchical model 

. pj (z) = p(z|δ = j), Pr(δ = j) = πj , j = 0, 1,

where . δ is a binary random variable representing the true state of nature. 
Consider a fixed rejection region A. Let  

. F0(A) = Pr(Z ∈ A|H = 0) =
∫

A

p0(z)dz,

F (A) = Pr(Z ∈ A) =
∫

A

p(z)dz

denote probabilities of a set A under the null or marginal distributions. 
Often, a critical value . zc is chosen, and A takes one of the following forms: 

. [zc,∞), (−∞, zc] ∪ [zc,∞), (−∞, zc].

For example, for .A = [zc,∞), .F0(A) = Pr(Z ≥ zc|H0) = 1−F0(zc) where . F0(zc)

is the cumulative distribution function of Z. 
When .Z = z is observed to belong in this region .(z ∈ A), the hypothesis is 

declared as non-null, flagging a discovery. Then the probability that a false discovery 
has been made is 

.BFDR(A) = Pr(H = 0|z ∈ A). (8.18) 

.BFDR(A) is the Bayes false discovery rate for A. The subscript i denoting the ith 
hypothesis is not used because under the setup considered here . Pr(Hi = 0|zi ∈ A)

is the same for all .i = 1, . . . , m. A straightforward application of Bayes theorem 
yields 

. Pr(H = 0|z ∈ A) = Pr(Z ∈ A|H = 0) Pr(H = 0)

Pr(Z ∈ A)

= F0(A)π0

F(A)
, (8.19) 

where 

. F(A) = Pr(Z ∈ A) = Pr(Z ∈ A|H = 0) Pr(H = 0)

+Pr(Z ∈ A|H = 1) Pr(H = 1). (8.20) 

Expression (8.19) can be written as 

. Pr(H = 0|z ∈ A) = Pr(Type I error of A)π0

Pr(Type I error of A)π0 + (Power of A)π1
, (8.21)
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indicating that .BFDR(A) increases with increasing type I errors and decreases with 
power (Storey 2003). 

Storey (2003) shows that under the assumptions outlined in this section (m 
identical hypotheses . Hi and test statistics . Zi arising from a random mixture of null 
and alternative distributions, with .(Hi, Zi) i.i.d. random variables, a fixed significant 
region A), the BFDR(A) (8.18) can be written as 

.pBFDR(A) = E

[
V (A)

R(A)
|R(A) > 0

]
(8.22) 

that he calls the positive false discovery rate and is a departure from (8.12) in that 
the expectation is conditional on the fact that at least one discovery has been made. 
One proof is simple and instructive, and it goes as follows (Storey 2003): 

. E

[
V (A)

R(A)
|R(A) > 0

]
=

m∑
k=1

E

[
V (A)

R(A)
|R(A) = k

]
Pr(R(A) = k|R(A) > 0)

=
m∑

k=1

E

[
V (A)

k
|R(A) = k

]
Pr(R(A) = k|R(A) > 0),

where k depends on the particular outcome of the p-values in any one replication of 
the experiment. With the independence assumption, the number of false discoveries 
.V (A), given  k hypotheses have been rejected, .R(A) = k, is binomially distributed 
.Bi(k,Pr(H = 0|z ∈ A)) with expectation .k Pr(H = 0|z ∈ A). Therefore, the last 
line is 

. E

[
V (A)

R(A)
|R(A) > 0

]
= Pr(H = 0|z ∈ A)

m∑
k=1

Pr(R(A) = k|R(A) > 0)

= Pr(H = 0|z ∈ A) (8.23) 

since the last term sums to 1. The positive false discovery rate works by first fixing 
the rejection region A and then estimating the FDR, which is the opposite of the 
Benjamini and Hochberg’s FDR-BH. 

The .BFDR (8.19) can also be interpreted as the expected proportion of false dis-
coveries among all features declared significant. Indeed, the number of hypotheses 
rejected in error V is binomial .Bi(R,Pr(H = 0|z ∈ A)). Therefore, the expected 
number rejected in error is .R Pr(H = 0|z ∈ A), and the number rejected is R. The  
ratio of the expected number rejected in error to the number rejected is the expected 
proportion of false discoveries among all features declared significant, equal to 
.Pr(H = 0|z ∈ A). As such, the .BFDR is a global measure and does not provide 
information about each hypothesis. This is taken care of by the local false discovery 
rate (Efron and Tibshirani 2002) discussed below.
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8.5 Empirical Bayes Estimation 

Empirical Bayes estimation of false discovery rate is introduced in the rather 
idealised framework of the two-group mixture model presented above, with m genes 
that either are null (an unknown number . m0 among these m have no effect on a 
response variable) with a priori probability .π0 = m0/m or non-null with a priori 
probability . π1. In the setting considered here, m is very large, . m0 is large, and the 
objective is to reduce this vast set to a handful of scientifically interesting genes for 
further study. 

A glance at (8.19) and (8.20) reveals that computation of .BFDR requires 
knowledge of . π0, . F0 and F . With very large datasets, these quantities can be 
estimated from the data, and then the estimates can be used to approximate (8.19). 
This is the essence of the empirical Bayes approach, that in the context of false 
discovery was proposed by Efron et al (2001) and summarised in Efron (2010). 
Efron and Tibshirani (2002) show the connection with the Benjamini and Hochberg 
FDR. 

The method proceeds as follows: The starting point is the availability of simple 
t-tests for the m genes. These t-values represent the “data”. One assumes 

• . F0 is known and assumed to be the normal distribution .N(0, 1) that can 
be justified by transforming p-values derived from t-tests for each of the m 
hypotheses to z-values, as indicated in (8.11). Using the z-values as transformed 
“data”, 

.F0(A) = Pr(Z ∈ A|H = 0) =
∫

A

N(0, 1). (8.24) 

• . π0 is “almost known” and in practice can be set equal to 1. 
• F is unknown but can be consistently estimated as follows: 

. F(A) = Pr(Z ∈ A) =
∫

A

p(z)dz

=
∫ ∞

−∞
I (z ∈ A)p(z)dz

= E[I (z ∈ A)], (8.25) 

and then the empirical estimator of .E[I (z ∈ A)] is 

.F̂ (A) = P̂r(Z ∈ A) = 1

m

∑m

i=1
I (zi ∈ A) (8.26) 

(does not depend on i and is a consistent estimator also when the .Z′s are 
correlated).
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The empirical Bayes estimator is 

.B̂FDR(A) = π̂0F0(A)

F̂ (A)
(8.27) 

where . π̂0 is some estimate of .π0 = m0/m (e.g., using maximum likelihood, 
unless it is set equal to 1 as a first approximation). This is an estimator of the 
posterior probability of false discoveries among the features whose z-values fall 
in the rejection region A; these constitute the discovery set. 

One can also use p-values as “data”. When a fixed threshold .pt , .0 < pt ≤ 1 is 
chosen, the features whose p-values are less than or equal to the fixed . pt are called 
significant and constitute the discovery set. Then following the same reasoning as 
above, with (8.24) now replaced by the uniform .U(0, 1) distribution 

. F0(pt ) = Pr(Pi ≤ pt |Hi = 0) =
∫ pt

0
U(0, 1) = pt

with 

. F(pt ) = Pr(P ≤ pt )

results in the Bayes FDR 

.BFDR(pt ) = Pr(H = 0|p ≤ pt ) = π0F0(pt )

F (pt )
. (8.28) 

An empirical Bayes estimator is obtained using

. ̂F(pt ) = P̂r(P ≤ pt ) = 1

m

∑m

i=1
I (pi ≤ pt ).

Then the empirical Byes estimator of the posterior probability of a false discovery 
is 

.B̂FDR(pt ) = P̂r(H = 0|P ≤ pt ) = π̂0F0(pt )

F̂ (pt )
(8.29) 

as in (8.27). A quantity closely related to (8.28), where the fixed threshold . pt is 
replaced by . pi corresponding to hypothesis i, is  

.BFDR(pi) = Pr(H = 0|P ≤ pi) = π0F0(pi)

F (pi)
(8.30) 

that corresponds to Storey’s q-value (Storey 2003) discussed below. 
In contrast to the frequentist counterpart of Benjamini and Hochberg (1995), the 

derivation of the .BFDR does not require independence of the hypotheses (Efron 
2010). However, correlation among test statistics increases the (sampling) variance 
of .B̂FDR(pt ) (Efron 2010).
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Connection with Benjamini-Hochberg False Discovery Rate 

In order to establish a connection between (8.27) and FDR-BH, following Storey 
(2002) and Efron and Tibshirani (2002), assume that rather than a fixed rejection 
region A, ordered p-values .p1 < p2 < · · · < pm are available. This may require 
first mapping the z-values to p-values using (8.7) with z instead of t . The numerator 
of (8.27) is  

. pi = 1 − F0(zi) = Pr(Z ≥ zi |H = 0)

=
∫ ∞

zi

N(0, 1).

Using the ordered p-values from smallest to largest, the denominator of (8.27) is  

. ̂Pr(Pi ≤ pi) = 1

m

m∑
k=1

I (pk ≤ pi) = i

m

and 

.B̂FDR(pi) = pi

P̂r(Pi ≤ pt )
π̂0 =

(mpi

i

)
π̂0. (8.31) 

The threshold condition (8.16) of the FDR-BH can be written in terms of the 
empirical Bayes estimate 

. 
B̂FDR(pi)

π̂0
= mpi

i
≤ q

or 

.B̂FDR(pi) = π̂0q ≤ q, (8.32) 

as in (8.15). Expression (8.32) indicates that rule (8.16) generates a discovery set 
that includes those cases where the empirical Bayes posterior probability that the 
hypothesis is a true null is smaller than q. 

Under the assumption of a fixed significant threshold . pt , there is another way of 
connecting BFDR with (8.12). The marginal probability of a rejection is 

.Pr(ri = 1) = Pr(ri = 1|δi = 0) Pr(δi = 0) + Pr(ri = 1|δi = 1) Pr(δi = 1)

= Pr(Pi ≥ pt |δi = 0) Pr(δi = 0) + Pr(Pi ≥ pt |δi = 1)Pr(δi = 1)

= Pr(Pi ≥ pt ).
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The first term in the right-hand side of the first line represents the probability of a 
false discovery (rejection in error), and the second term is the probability of a true 
discovery. The total expected number of hypotheses rejected is then 

. mPr(Pi ≥ pt ) = mPr(Pi ≥ pt |δi = 0) Pr(δi = 0)

+mPr(Pi ≥ pt |δi = 1) Pr(δi = 1)

where the expected number of hypotheses rejected in error is 

.mPr(Pi ≥ pt |δi = 0) Pr(δi = 0) = mPr(Pi ≥ pt |δi = 0)π0. (8.33) 

In any one experiment, the false discovery proportion is

. Q = V

R
.

Replacing V and R by their expectation yields 

. 
E(V )

E(R)
= Pr(Pi ≥ pt |δi = 0)π0

Pr(Pi ≥ pt )
= BFDR(pt ),

indicating the close connection between the empirical Bayes false discovery rate 
and (8.12). Indeed for large m, 

.
E[V ]

E[R]
≈ E

[
V

R

]
, (8.34) 

(Storey and Tibshirani 2007). Efron (2010) shows that .BFDR(pt ) is conservative, 
in the sense that, on average, it is upwardly biased for estimating .E[V/R]. 

8.6 Local False Discovery Rates 

The Benjamini and Hochberg FDR-BH and the Bayesian FDR (8.19) are concerned 
with identifying a discovery set. Efron and Tibshirani (2002) define the local false 
discovery rate 

. fdr
(
yj

) = Pr
(
Hj = 0|yj

)
(8.35) 

that gives a probabilistic assessment of a false positive for the specific feature
j given that . yj was observed, instead of providing a measure of the expected 
proportion of nulls among all rejections. The specificity issue is important here: 
the significance of the feature depends on the value . yj rather than on its inclusion 
in the significant region A as in (8.18). Although data y are used here, the common
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setup is to consider test statistics for each feature. In the context of the two-group 
mixture model with densities . p0 and . p1 for the null and non-null densities of the 
test statistics, using Bayes theorem 

.Pr
(
Hj = 0|yj

) = p0
(
yj |Hj = 0

)
π0

p
(
yj

) (8.36) 

where

.p
(
yj

) = p0
(
yj |Hj = 0

)
π0 + p1

(
yj |Hj = 1

)
(1 − π0). (8.37) 

While the BFDR involves ratios of distribution functions as shown in (8.19), the 
local false discovery rate (8.36) involves ratios of densities. Therefore, the local false 
discovery rate can be interpreted as the BFDR for an infinitesimal rejection region 
around . yj . There is a relationship between BFDR and the local false discovery rate 
given by 

.BFDR(yt ) = E[fdr(y)|y ≥ yt ]. (8.38a) 

= π0

∫ ∞
yt

p0
(
yj |Hj = 0

)
dyj∫ ∞

yt
p
(
yj

)
dyj

. (8.38b) 

= F0(A)π0

F(A)
, (8.38c) 

as in (8.27), with .A = [yt ,∞) and where . yt is some chosen threshold value, 
so .BFDR(yt ) is the mean value of .fdr(y) for .y ≥ yt . As before, there is an 
implicit conditioning on .p0, p1 and . π0, whereby these parameters can be estimated 
parametrically or nonparametrically as in Efron et al (2001). 

Empirical Bayes approach requires estimation of the terms in the right-hand side 
of (8.36). Under the simple two-group mixture model, when the . y′s are interpreted 
as z-values, . p0 is simply the value of the standard normal density at . yj , and . π0
can be set equal to 1 as an approximation. Getting a hand on the denominator is a 
little more delicate and requires density estimation. The topic is discussed in Efron 
(2010). In the example below, I illustrate estimation by maximum likelihood and 
using a more general approach based on McMC-Bayes. 

The information supplied by FDR-BH can be combined with fdr, with the former 
identifying a discovery set and the latter providing specific probabilities of false 
discovery for each feature in the discovery set.
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8.7 Storey’s q-Values 

Consider an experiment where the estimator of the Bayes false discovery rate (8.18) 
together with a rejection region give rise to a discovery set. A particular feature (e.g., 
a marker genotype) is included in the discovery set if the observed test statistic . T =
t associated with this feature falls in the rejection region .A = (−∞, c] ∪ [c,∞), 
.−∞ ≤ c ≤ ∞, for a threshold c. The estimator of the Bayes false discovery rate 
provides a global measure informing on a whole set of significant features. For 
example, for a threshold .c = 3, say, the pBFDR involves tests based on an entire 
rejection region .|ti | ≥ 3. However, within the discovery set, a feature with . ti = 5
will be more significant than a feature with .ti = 3.5. One may be interested in a 
measure of significance attached to each feature in the discovery set that accounts 
for the fact that, within the discovery set, some features are more significant than 
others. 

The q-value is designed to give each test statistic a measure of its significance in 
terms of the positive false discovery rate pBFDR. For a fixed rejection region A and 
an observed test statistic .T = t , the  q-value is formally defined as 

.q(t) = min{A:t∈A}
[
pBFDR(A)

]
, (8.39) 

(Storey 2002, 2003). The q-value is the smallest pBFDR over all regions that reject 
. Hi . It can be interpreted as the expected proportion of false positives among all 
features as or more extreme than the one observed. 

The computations of .q∗′s defined in (8.17) and of Storey’s q-values are closely 
related, as shown in (8.32). The empirical Bayes estimates of the q-values can 
be obtained using the same calculations as those for . q∗ except for the term 
. π0. If an estimate . π̂0 is available, .qi-value .= .q∗

i π̂0, and this aligns it with 
the BFDR (8.29) (the same code as shown below (8.17) can be used, with the 
modification immediately below the do-loop: 

qstar[i] <- pv[i] * (m/i) * pi_0hat 

where pi_0hat is an estimate of . π0). 
In the example of Table 8.1, where the test statistics are sorted p-values starting 

from the largest at the bottom of the list, the . q∗
i is numerically equal to .qi-

value.(1/π̂0). The regions that reject .H19 (p-values .≥ 0.02844954) involve all the 
.qi-values .

(
1/π̂0

)
, .i = 19, . . . , 100, and .q19-value.(1/π̂0) = 0.14973443 is the 

smallest such BFDR. Alternatively, . ̂π0 can be set equal to 1, and then . q∗
i and .qi-

value are numerically identical quantities. In this case, if the null hypotheses is 
rejected for features .i = 15, 14, . . . , 1, then the figures in Table 8.1 indicate that 
.q∗
15 = 0.083. This is the estimate of BFDR for .i = 15 and for the set comprising all 
the features that are this significant or more. 

Incorporation of . ̂π0 in the calculations leads to a larger discovery set for the same 
expected proportion of false positives.
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The q-value is a pBFDR analogue of the p-value. The latter is a measure of 
significance in terms of the false positive rate, whereas the former is a measure of 
significance in terms of the pBFDR. This conceptual difference is readily seen by 
writing 

. p-value = Pr(Test Positive | H0) = False positive rate

q-value = Pr(H0 | Test Positive) = False discovery rate.

A .q = 0.05, say, means that an estimated .5% of the significant results in the 
discovery set are false discoveries. In contrast, in classical hypothesis testing, a 
rejection of . H0 at .α = 0.05 in a single test does not mean that there is a . 95%
probability that a discovery has been made. It rather means that an estimated . 5% of 
all the tests performed are false discoveries. Further and also in contrast with the 
p-value, the q-value provides a measure of each markers’ significance automatically 
accounting for multiple testing. 

There is a qvalue package in . R that performs FDR estimation from a collection 
of p-values or test statistics. The package outputs estimates of q-values, proportion 
of true null hypotheses . π0 and local false discovery rates (Storey and Bass 2021). 

The false discovery rate, the local false discovery rate and the q-values can be 
obtained using a fully parametrised Bayesian model. This is the subject of the next 
section. 

8.8 Fully Bayesian McMC False Discovery Rate 

The Bayesian FDR (8.18) was derived within the stylised example of the two-
group mixture model and using z-values as data. The only unknown in this setting 
is the random quantity H and its associated “parameters”. Here, an alternative 
development is followed that consists of inferring the parameters of (8.3) from 
their posterior distribution using the McMC implementation of the spike and slab 
model of Sect. 7.5. This allows more flexibility in modelling at the cost of heavier 
computations and parametrisation. Flexibility is important, particularly with sets of 
data involving a large number of highly correlated covariates and other explanatory 
variables found in modern genomic studies. 

The spike and slab model is used for focusing the presentation, but the approach 
remains valid for many massive multiple comparison problems. The indicator . δ is 
an ingredient of one estimator of the Bayesian FDR; it is inferred from its marginal 
posterior distribution .Pr(δi = 1|y), with the remaining parameters integrated out 
from the joint posterior distribution of the Bayesian model.



8.8 Fully Bayesian McMC False Discovery Rate 351

From (8.2) and (8.3), 

. 
V

R
=

∑m
i=1(1 − δi)ri∑m

i=1 ri

= 1 −
∑m

i=1 δiri

R
. (8.40) 

Conditionally on the data (indirectly, via the rule r), the only unknown quantity 
in (8.40) is  . δ that appears in the numerator, in contrast with the frequentist 
counterpart (8.12) that involves the expectation of a ratio of random variables. On 
taking expectations over the Bernoulli random variable .[δi |y], given acceptance or 
rejection based on r , the fully Bayesian FDR is immediately obtained as 

.
E(V |r)

R
= 1 −

∑m
i=1 Pr(δi = 1|y)ri

R
. (8.41a) 

=
∑m 

i=1 Pr(δi = 0|y)ri 
R 

(8.41b) 

(Müller et al 2007; Whittemore 2007). The ith term in the numerator 
.Pr(δi = 0|y)ri is the (fully) Bayesian local false discovery rate for the ith marker 
in the discovery set, so the Bayesian FDR is seen to be an average of the local false 
discovery rates in the discovery set, as in (8.38). It can also be interpreted as the 
expected proportion of false discoveries among the features in the discovery set 
which aligns it with (8.19). 

In these expressions and the ones that follow, y represents the complete data. 
When the conditional distribution of . δi given . yi is not independent of the remaining 
. y′s, the fully Bayesian local false discovery rate .Pr(δi = 0|y)ri can differ from 
.Pr(δi = 0|yi)ri as defined in (8.35). 

The marginalisations required to obtain terms .Pr(δi = 0|y) can be approximated 
using McMC. An McMC-based estimator of the Bayesian FDR is obtained using 
the McMC output as follows: First, calculate 

.ϕ̂i = P̂r(δi = 1|y) = 1

l

l∑
j=1

δij , (8.42) 

where . δij is the sampled value of . δ for marker i at iterate j of the Gibbs sampler and 
l is the length of the Gibbs chain. This yields a Monte Carlo estimator of the mean 
of the posterior distribution .P̂r(δi = 1|y). Then the Bayesian-McMC estimator of 
FDR is 

.
Ê
(
V |r, P̂r(δi = 0|y)

)

R
=

∑m
i=1 P̂r(δi = 0|y)ri

R
, (8.43) 

where .P̂r(δi = 0|y) = 1 − P̂r(δi = 1|y). Expression (8.43) is a point estimator of 
the Bayesian FDR.
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Posterior Distribution of False Discovery Rate 

An alternative approach provides a Monte Carlo estimator of the complete pos-
terior distribution of the fully Bayesian FDR. This distribution reflects posterior 
uncertainty of the parameters of the Bayesian model that propagates on to the FDR. 
The protocol is as follows: First, execute the McMC sampler, and store the draws 
from (7.57) at each cycle. On completion, choose a discovery set; an informal 
approach could be based on selecting the marker genotypes whose Monte Carlo 
estimates of the posterior probability of non-zero effects are larger than a chosen 
value . θ�. These posterior probabilities could be obtained from . ϕ in (8.42) or from  
the average of the draws from (7.57). The resulting discovery set includes R marker 
genotypes. Then, from the stored draws .θ [j ]i obtained from (7.57) belonging to the 
discovery set, where i refers to the marker genotype and j to the McMC cycle, 
compute at each McMC cycle the average local false discovery rate for all the 
marker genotypes in this discovery set. For example, at round j , compute 

.

∑m
i=1

(
1 − θ

[j ]
i

)
ri

R
(8.44) 

where m is the number of markers. The quantity (8.44) is the  j th McMC draw from 
the posterior distribution of the Bayesian FDR for the discovery set chosen, here 
based on .ri = I (θi ≥ θ∗). Importantly, the discovery set is chosen only once and 
used repeatedly across all the draws of the McMC chain. 

In the case of the two-component normal mixture model, rules of the type . ri =
I (yi ≥ yt ) or .ri = I (θi ≥ θt ) are illustrated in the examples below, where . θi is the 
marginal probability that . δi is equal to 1, as in (7.57). 

A recent McMC implementation of the Bayesian FDR has been described by 
de los Campos et al (2022). 

8.9 Example: A Two-Component Gaussian Mixture 

I return to the two-component mixture model of the example on page 127. 
Data are realisations from two unobserved normal mixture components, and the 
purpose of the analysis is to infer parameters and to allocate each data point to 
a specific component. The data could represent levels of a physiological marker 
in blood samples, and one wishes to isolate those individuals that were exposed 
to a particular condition from those that were not. This condition is known to 
generate a higher mean level of the physiological marker. Data are simulated from 
a two-component Gaussian mixture, where the first component has a mean of zero 
.(9000 observations), the second .(1000 observations) a mean of . 2.5 units and both a 
standard deviation of 1. Figure 8.1 shows a histogram of the .10,000 records (left)
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Fig. 8.1 Left: histogram of data. Right: plots of N(0, 1), N(2.5, 1) 

and plots the mixture distribution involving .N(0, 1) and .N(2.5, 1). The histogram 
reveals a certain amount of skewness due to the underlying mixture. 

Information will be extracted from these data using five approaches: 

1. A simple unadjusted test of the null hypothesis that each record is not different 
from zero 

2. A test of the null hypothesis that each record is not different from zero using a 
Bonferroni correction 

3. The classical Benjamini and Hochberg false discovery rate (FDR-BH) 
4. An analysis of the two-component mixture model using maximum likelihood via 

de EM algorithm described on page 127 
5. A Bayesian McMC analysis of the two-component mixture model described on 

page 234 

The last two analyses use fully parametrised models, while the first three use p- or  
z-values as input. 

The results of the simple test and of the Bonferroni test are shown in Fig. 8.2 
for a nominal probability of type I error equal to .α = 0.05. The left plot displays 
the p-values against the .10,000 records, and the threshold for rejecting the null 
hypothesis at .α = 0.05 is indicated by the horizontal line in red. This simple 
analysis, uncorrected for multiple testing, rejects . H0 for 1278 records out of which 
470 are false discoveries. For .α = 0.10, . H0 is rejected for 1829 records, of which 
928 are false discoveries. The plot on the right panel shows the results based on 
the Bonferroni correction using a per datum significant level equal to .0.05/10,000. 
Only 35 records are declared significant with zero false discoveries among them. 
When the per datum significant level is .0.10/10,000, the size of the discovery set 
increases to 41 with zero false discoveries. 

It is interesting to look more closely at the type I and type II errors in these 
cases. A total of 9000 records were drawn from . H0 and 1000 from . H1. The  simple  
uncorrected test using .α = 0.05 results in 470 rejections of . H0, given that . H0 is
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Fig. 8.2 Left, .−Log10p-values corresponding to .10,000 records for testing the null hypothesis 
that each record is a draw from a single normal distribution with null mean. The horizontal red 
line is the .−Log10p-value threshold corresponding to .p = 0.05. Right: similar output where the 
horizontal red line is the Bonferroni threshold corresponding to . p = 0.05/10,000

true. This yields a proportion of type I error equal to .470/9000 = 0.052, very close  
to the nominal value of .0.05. The number of type II errors (false negatives) is 192 
out of 1000 records drawn from .N(2.5, 1) or a power of the test of .81%. 

For the Bonferroni test using a per datum significant level equal to .0.05/10,000, 
the number of type I errors is now 0 out of 9000, but the number of observed false 
negatives (type II errors) is 965 out of 1000 and a power of .3.5%! (not too far off 
from the expected power of .pnorm(4.42, 2.5, 1, lower.tail = F) = 0.028). 

Maximum Likelihood via EM 
The likelihood analysis of this problem implemented via the EM algorithm is based 
on the iterative system described in connection with the mixture model on page 127: 

. ̂p
[t+1]
ij = Pr

(
Zi = j |π [t], θ

[t]
j , yi

)

=
pj

(
yi |θ [t]j

)
π
[t]
j

∑
j pj

(
yi |θ [t]j

)
π
[t]
j

, . (8.45a) 

π
[t+1]
j = 1

n

n∑
i=1

p̂ij , . (8.45b) 

θ
[t+1]
j =

∑n
i=1 p̂ij yi∑n
i=1 p̂ij

, . (8.45c) 

σ 2[t+1] = 1

n

n∑
i=1

j=1∑
j=0

p̂ij

(
yi − θj

)2
. (8.45d)
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The loop is over the number of iterates (t), and within each iterate, there is a loop 
over the number of records (i). 

In this example, the true value of the parameters of the mixture model is θ0 = 0, 
θ1 = 2.5, σ 2 = 1 and π = 0.1. When the system converges after approximately 
70 iterations, the ML estimates are θ̂0 = 0.01, θ̂1 = 2.5, σ̂ 2 = 1.02 and π̂ = 
0.10. A useful off-shot of the EM implementation are the terms p̂ij that assign 
the probability that each datum i belongs to mixture component j ; this allows the 
calculation of a local false discovery rate along the lines in (8.36). 

There is a connection between (8.45a) and the Bayesian counterpart. In a 
likelihood setting, (8.45a) is a conditional posterior probability, given ML estimates
θ̂ and π̂ . This can be regarded as an approximation to the Bayesian marginal 
posterior probability Pr(Zi = j |y) (see page 155 for an explanation). 

The kernel of the R-code to implement the EM iterates is shown below: 

CREATE DATA SET AND INITIALISE PARAMETERS 
prob<-vector() 
# INITIALISE THETA1 AND THETA0 
y0<-which(y < mean(y)) 
theta0<-mean(y[y0]) 
y1<-which(y > mean(y)) 
theta1<-mean(y[y1]) 
iter<-100 
resultML<-matrix(data=NA,nrow=iter,ncol=n+4) 
for (i in 1:iter){ 

for (j in 1:n){ 
denom<-(dnorm(y[j],theta1,sqrt(v))*pi) 
+(dnorm(y[j],theta0,sqrt(v))*(1-pi)) 
prob[j]<-(dnorm(y[j],theta1,sqrt(v))*pi)/denom 

} 
pi<-(sum(prob))/n 
theta1<-(sum(prob*y))/sum(prob) 
theta0<-(sum((1-prob)*y))/sum(1-prob) 
v<-(sum(prob*(y-theta1)^2))/n+(sum((1-prob)*(y-theta0)^2))/n 
resultML[i,]<-c(v,pi,theta1,theta0,prob) 

} 

# COMPUTE FDR FOR ML ANALYSIS 
cumavr<-rep(0,n) 
fdr<-rep(0,n) 
sortprob<--sort(-prob) 
true<-which(dataset$label==T) 
fals<-which(dataset$label==F) 
for (i in 1:n){ 

cumavr[i]<-mean(sortprob[1:i]) 
fdr[i]<-1-cumavr[i] # THIS COMPUTES THE (CUMULATIVE) EXPECTED 

# PROPORTION OF BFDR FOR EACH DISCOVERY SET OF SIZE 1 TO n 
} 

In the example, it is assumed that all the non-null observations arise from a 
common distribution. This may not be the case, particularly if the “observations” 
are expression of genes or gene effects. Accounting for this requires adding extra 
distributions for the alternative hypotheses.
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Bayesian McMC Implementation 
The Bayesian computation of (8.41) is based on the McMC algorithm detailed in 
Sect. 5.5 on page 234. The true value of the parameters of the mixture model are 
θ0 = 0, θ1 = 2.5, σ 2 = 1 and π1 = 0.1. The Monte Carlo estimates of the posterior 
means are θ̂0 = 0.01, θ̂1 = 2.49, σ̂ 2 = 1.03, π̂1 = 0.10, in very close agreement 
with the true values and with the likelihood estimates. 

The kernel of the R-code to implement theMcMC-based Bayesian mixture model 
is shown below: 

CREATE DATA SET AND INITIALISE PARAMETERS 
# READ CHAIN LENGTH 
rep <- 1000 
resmcmc <-matrix(data=NA,nrow=rep,ncol=5) 
acprob <- rep(0,rep) 
avr<-rep(0,n) 
fd<-rep(0,n) 
# READ HYPERPARAMETERS OF SCALE INVERSE CHI-SQUARE PRIOR FOR v 
nu_v <- 4.5 
Sv <- 1 
# READ HYPERPARAMETERS OF THE BETA PRIOR FOR pi 
a1 <- 1.5 
a2 <- 10 
#################### GIBBS LOOP ##################### 
for (i in 1:rep) { 

# print(i) 
# UPDATE THETA j 
theta1hat <- mean(y[z == 1]) 
theta0hat <- mean(y[z == 0]) 
v1 <- v / sum(z == 1) 
v0 <- v / sum(z == 0) 
theta1 <- rnorm(1, theta1hat, sqrt(v1)) 
theta0 <- rnorm(1, theta0hat, sqrt(v0)) 
# UPDATE THE n z’s 
K <-

(((y-theta0)^2-(y-theta1)^2)/(2*v))-(log(1-pi)-log(pi)) 
un <- runif(n, 0, 1) 
z <- ifelse(log(un / (1 - un)) <= K, 1, 0) 
prob <- exp(K) / (1 + exp(K)) 
acprob <- acprob + prob 
# UPDATE v 
# ft <- sum(((y - theta1)  ̂ 2)[which(z == 1)]) 
ft <- sum(((y - theta1) ^ 2)[z == 1]) 
st <- sum(((y - theta0) ^ 2)[z == 0]) 
Sc <- ft + st + (nu_v * Sv) 
df <- nu_v + n 
v <- Sc  / rchisq(1, df) 
# UPDATE pi 
a1ny <- a1 + sum(z) 
a2ny <- n - sum(z) + a2 
pi <- rbeta(1, a1ny, a2ny) 
resprob[i,] <- prob 
resmcmc[i,] <- c(i, v, pi, theta1, theta0) 

}
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########################################################### 
postprob <- acprob/rep 
########################################################### 
# COMPUTE FALSE DISCOVERY RATE USING McMC OUTPUT 

ordpp<-order(-postprob) 
sortpp<-postprob[ordpp] 
localfdr <- 1-sortpp 

for (i in 1:n){ 
avr[i]<-mean(sortpp[1:i]) 
fd[i]<-1-avr[i] # THIS IS THE FDR 

### ALTERNATIVELY MORE COMPACTLY: MEAN OF LOCAL FDR 
# IN DISCOVERY SET OF SIZE i 

fdloc[i] <- mean(localfdr[1:i]) 
# fd[] = fdloc[] 
} 

A summary of the main results using the five approaches is displayed in Table 8.2. 
The number and proportion of false discoveries reported in the table are true values 
based on the particular realisation of the simulated data. ML and Bayes-McMC give 
very similar results for all the features in the table. Increasing the nominal false 
discovery q from 0.05 to 0.20 leads to a larger discovery set (from 356 and 353 
to 799 for FDR-ML and FDR-Bayes) and of course to a larger FDR. Notice that 
this increase in FDR is a consequence of a large increase in type I errors (almost 
a tenfold increase) and a relatively smaller increase in power (almost twofold from 
34% to 64%, approximately), as revealed by inspection of expression (8.21). 

For the given nominal FDR, FDR-BH is expected to lead to a little smaller size 
of discovery set for the same FDR than the other two implementations because it 
uses a more conservative approach (π0 is set equal to one in expression (8.15), 
whereas it is included in the computations of the FDR in the likelihood and Bayesian 
approaches). This is only vaguely noticeable for a nominal q = 0.20, but the 

Table 8.2 Proportion of type I and type II errors, size of discovery set/true number of false 
discoveries (SizeDiscov/FD) and true proportion of false discoveries (FDR) for (1) the uncor-
rected p-values (uncorrect) and (2) the Bonferroni correction (Bonferroni). In (1), the figures in 
brackets correspond to nominal probability of type I errors (α = 0.05; α = 0.10); in (2), these are 
(α = 0.05/10,000; α = 0.10/10,000), (3) the Benjamini-Hochberg FDR (FDR-BH), (4) the EM-
likelihood analysis of the two-component mixture model (FDR-ML) and (5) the McMC Bayesian 
analysis of the two-component mixture model (FDR-Bayes). In (3), (4) and (5), the figures in 
brackets correspond to nominal FDR q = 0.05; q = 0.20). Simulated data: 1000 records from 
N(0, 1) and 9000 records from N(2.5, 1) 

Type I Type II SizeDiscov / FD FDR 

Uncorrect (0.052; 0.10) (0.19; 0.10) (1278/470); (1829/928) (0.37; 0.51) 

Bonferroni (0; 0) (0.97; 0.96) (35/0); (41/0) (0; 0) 

FDR-BH (0.002; 0.016) (0.65; 0.36) (364/14); (781/144) (0.04; 0.18) 

FDR-ML (0.002; 0.017) (0.66; 0.35) (356/14); (799/154) (0.04; 0.19) 

FDR-Bayes (0.002; 0.017) (0.66; 0.35) (353/14); (799/155) (0.04; 0.19)
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Fig. 8.3 Histograms of Monte Carlo estimates of posterior distributions of FDR. Left: nominal 
FDR of 0.05. Right: nominal FDR of 0.20. The vertical red lines are the true FDR (based on the 
simulation) for the particular realisation of the data 

reverse is the case for q = 0.05. The explanation lies in the small overstatement 
of the true FDR by FDR-ML and FDR-Bayes observed at low FDR values. This 
is illustrated in Fig. 8.4, centre and rightmost panels. Moreover, the FDR estimated 
using likelihood or Bayesian methods are subject to the uncertainty (frequentist for 
ML and posterior for the Bayesian methods) of the estimates of parameters that 
feature in the computation of FDR. 

The Bayesian McMC implementation provides a measure of uncertainty for 
the FDR (conditional on the realisation of the data at hand and on the discovery 
set) using the draws from the Monte Carlo estimate of the posterior distribution 
of FDR (8.44). The Monte Carlo estimates of the posterior distributions of the 
FDR-Bayes for q = 0.05 and q = 0.20 are shown in Fig. 8.3 in the form of 
histograms. These lead to discovery sets of size 353 and 799, respectively. For 
the particular realisation of the data and discovery sets, the red vertical lines show 
the true (realised in the simulation) FDR. The Monte Carlo estimates of posterior 
means and of 95% posterior intervals of the FDR-Bayes estimates for q = 0.05 are 
0.050(0.036; 0.065) and for q = 0.20 0.200(0.163; 0.239). 

In the case of FDR-BH, for the particular realisation of the data, the true FDR is 
0.04 and 0.18 for q = 0.05 and q = 0.20, respectively (Table 8.2), column 5). 

Over repeated sampling of the data, FDR-BH controls FDR at level smaller than 
or equal to q as indicated by expression (8.15). 

Results of a little closer comparison between the Benjamini-Hochberg FDR-BH 
and the fully parametric likelihood or Bayesian analyses are shown in Table 8.3. 
The data are analysed with the FDR-BH approach using as input the 10,000 sorted 
p-values. In the top half of the table, that corresponds to an expected FDR equal to 
q = 0.05, at i = 364 condition (8.16) is satisfied (equivalent to condition (8.17)) 
and hypotheses H1, . . . , H364 are rejected leading to a discovery set of size 364. In 
the bottom half of the table that corresponds to an expected FDR equal to q = 0.20,
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Table 8.3 A subset of results obtained by applying the Benjamini-Hochberg FDR-BH approach 
testing m = 10,000 hypotheses Hi with a false discovery rate set at level q = 0.05 (top five rows) 
or q = 0.20 (bottom five rows). The top coloured row corresponds to H364 (a discovery set of size 
i = 364) where condition (8.14) is satisfied and where q�

i=364 ≤ q = 0.05. The bottom coloured 
row corresponds to H781 (a discovery set of size 781) where condition (8.14) is satisfied and where 
q�
i=781 ≤ q = 0.20. The column headings are i, the index for the sorted p-values; Label=TRUE 
if the record is a draw from N(2.5, 1) or FALSE from N(0, 1); Pr(Z  = 1|y) the ML estimate of 
the conditional probability that the record is a draw from N(2.5, 1); FDR-ML, the ML estimate 
of the false discovery rate for the particular discovery set i and the remaining three columns as in 
Table 8.1 

Label Record Pr FDR-ML value 
362 TRUE 2.913 0.8612 0.05130 0.001789 0.0018 0.04936 
363 TRUE 2.912 0.8609 0.05154 0.001794 0.0018 0.04936 
364 TRUE 2.911 0.8608 0.05178 0.001796 0.0018 0.04936 
365 TRUE 2.903 0.8583 0.05202 0.001846 0.0018 0.05058 
366 TRUE 2.901 0.8579 0.05227 0.001855 0.0018 0.05068 

779 TRUE 2.157 0.4978 0.1918 0.015491 0.016 0.1988 
780 FALSE 2.156 0.4971 0.1922 0.01553 0.016 0.1991 
781 TRUE 2.154 0.4960 0.1926 0.01560 0.016 0.1998 
782 TRUE 2.151 0.4942 0.1930 0.01571 0.016 0.2007 
783 FALSE 2.151 0.4942 0.1934 0.01572 0.016 0.2007 

the Benjamini-Hochberg FDR-BH rejects H1, . . . , H781. These rejection thresholds 
are coloured in green. The two columns with headings Pr(Z = 1|y) and FDR-
ML are derived from the maximum likelihood analysis (the corresponding figures 
from the Bayesian analysis are very similar). Column Pr(Z = 1|y) displays the 
estimated probability that record i is a draw from N(2.5, 1) and 1 − Pr(Z = 1|y) 
is the ML estimate of the local false discovery rate for record i. For example, for 
record yi=364 = 2.911798, the local false discovery rate is 1 − 0.8608679 ≈ 0.14, 
but the FDR (the average local false discovery rate in the discovery set of size 364 
comprising y1, . . . , y364) is 0.052. The corresponding figures for q = 0.20 in the 
bottom half of the table are 1 − 0.4960449 ≈ 0.50 for the local FDR for record 
i = 781 and 0.19 for the FDR in the discovery set y1, . . . , y781. The last column 
of the table, q�

i , is the Benjamini-Hochberg adjusted p-value (8.17) that in view of 
equivalence (8.31) is numerically identical to the empirical Bayes estimate of the 
FDR when π0 is set equal to 1. 

Knowledge of the true mixture proportions allows computation of the Bayesian 
FDR and the Bayesian local FDR. The following R−code can be used with the 
values in the table for y364 = 2.911798 and y781 = 2.154387: 

# For q = 0.05: 
FDR_THEOR05 <- (pnorm(2.911798,lower.tail=F)*0.9)/ 

(pnorm(2.911798,lower.tail=F)*0.9 + 
pnorm(2.911798,2.5,lower.tail=F)*0.1) 

LOCAL_THEOR05 <- (dnorm(2.911798)*0.9)/(dnorm(2.911798)*0.9 +
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dnorm(2.911798,mean=2.5,sd=1)*0.1) 
FDR_THEOR05 

## [1] 0.04537123 

LOCAL_THEOR05 

## [1] 0.1237628 

# For q = 0.20: 
FDR_THEOR20 <- (pnorm(2.154387,lower.tail=F)*0.9)/ 

(pnorm(2.154387,lower.tail=F)*0.9 + 
pnorm(2.154387,2.5,lower.tail=F)*0.1) 

LOCAL_THEOR20 <- (dnorm(2.154387)*0.9)/(dnorm(2.154387)*0.9 + 
dnorm(2.154387,mean=2.5,sd=1)*0.1) 
FDR_THEOR20 

## [1] 0.1810718 

LOCAL_THEOR20 

## [1] 0.4840697 

This compares well with the ML estimates of the local FDR≈ 0.14 and 
BFDR=0.052 for q = 0.05 and local FDR≈ 0.50 and BFDR=0.19 for q = 0.20 
reported in Table 8.3. 

Examples of other output are shown in Fig. 8.4 for the likelihood analysis. The 
corresponding output from the Bayesian implementation is almost identical and is 
not shown. The panel on the left shows ML estimates of Pr

(
Zi = 1|π̂ , θ̂j , σ̂

2, yi

)
for each of the 10,000 data points. Values of the data below 1 and larger than 3 are 
easily allocated to the correct mixture component since estimated probabilities are 
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Fig. 8.4 Left: ML estimates of p̂i1 = Pr
(
Zi = 1|π̂ , θ̂j , σ̂ 2, yi

)
versus the sorted records. Centre: 

ML estimates of FDR (light blue) and true FDR (red) against size of discovery set. Right: plot of 
ML estimates of false discovery rates versus true false discovery rates. The 45◦ line is shown in 
black
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extreme, but there is ambiguity where the two components overlap. The panel on 
the centre shows FDR-ML (in light blue) and true FDR (in black) versus size of 
discovery set. The panel reveals a slight overestimation for low FDR values. This is 
also confirmed in the rightmost panel that displays a plot of FDR-ML versus true 
FDR. 

In the example, the level q of the FDR-BH is set to either 0.05 or 0.20. This 
gives rise to a particular size of the discovery set. A similar strategy can be applied 
for a likelihood or Bayesian-McMC implementation. An alternative is to choose 
various discovery sets based on Monte Carlo estimates of Pr(Zi = j |y), obtain 
the associated FDR for each and decide which discovery set to keep based on this 
information. 

The conclusion from this example based on independent data is that all three 
methods show similar performance. One attraction of the McMC Bayesian approach 
is the possibility to fit complex hierarchical models capable of accounting for 
various sources of variation and to generate marginal posterior distributions of the 
parameters of interest, or of functions of these such as FDR, in a single coherent 
analysis. This comes at the cost of more elaborate computations. 

The following example introduces a new problem. How do computations of false 
discovery rate are affected when input data are correlated? A classical example is the 
problem of distinguishing signals from noise in genome studies involving multiple 
testing of genetic markers that are in linkage disequilibrium with putative causal 
loci. The first part of the example deals with uncorrelated marker genotypes. 

8.10 Example: The Spike and Slab Model with Genetic 
Markers 

The problem discussed in this example concerns the detection of unobserved causal 
loci that have an effect on an observed continuous trait. This is studied in a variety of 
scenarios where in all cases the data consist of 1500 individuals and 1500 markers, 
and among these, 25 are randomly assigned as causal QTL. The phenotypic value 
for a datum is simulated by adding the contributions of a common mean, the effects 
of the 25 QTL and a normally distributed residual term. The operational models 
used for analysing the data included the 1500 marker genotypes. 

The protocol is as follows: 

1. The 1500 loci are independent (in linkage equilibrium): 

a. Heritability (. h2) is .0.10. 
b. Heritability is .0.25. 
c. Heritability is .0.50. 

2. The 1500 loci are correlated (in linkage disequilibrium): 

a. Heritability is .0.10.
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b. Heritability is .0.25. 
c. Heritability is .0.50. 

The 25 loci identified as QTL differ between the independent and the correlated 
groups but are the same for the three heritability levels within each group. 

The three levels of . h2 result in different levels of power to detect marker effects. 
This is achieved by setting the additive genetic variance of the trait equal to 4, 10 
and 20 squared units and keeping the phenotypic variance (variance of the records, 
y) constant at 40 squared units. This results in effects for each of the 25 QTL (in 
standard deviation units of y) equal to .0.09, .0.14 and .0.20, for the three heritability 
levels. 

The 1500 independent marker genotypes were generated by drawing each marker 
genotype from a binomial distribution .Bi(2, 0.5). 

The 1500 correlated marker genotypes are in 75 independent blocks of size 20 
each, where markers are correlated within blocks and uncorrelated among blocks. 
The correlation between adjacent markers is approximately .0.60 and decays with 
marker distance. 

For all scenarios, the data are first analysed using a GWAS approach (one marker 
at a time) using a Bonferroni correction for the probability of a false discovery per 
test set equal to .0.05/1500. 

The p-values from the GWAS were used to compute false discovery rates (FDR) 
based on the standard Benjamini-Hochberg algorithm (FDR-BH). The levels of 
FDR were set equal to .q = 0.10, .q = 0.05, .q = 0.01 for .h2 = 0.10, .h2 = 0.25 and 
.h2 = 0.50, respectively, that give rise to discovery sets of a given size. 

Finally, the data were analysed with a fully Bayesian spike and slab model 
that outputs the marginal posterior distribution of FDR. In the Bayesian approach, 
the discovery sets were constructed either by including those markers for which 
.Pr(Zi = 1|y) > 0.5 or by choosing a particular size of discovery set. In the latter 
case, the size chosen was equal to that found in the FDR-BH approach to allow 
comparison between both methods of computation. In all cases, the true FDR 
realised in the simulated sample was compared to the result obtained from each 
of the three approaches. 

Independent Marker Genotypes 

The results of the GWAS using the Bonferroni correction are displayed in Fig. 8.5 
for the three heritability levels and in the left block of Table 8.4. The number of loci 
correctly classified in the simulated sample is 1, 11 and 23 out of 25 QTL for . h2

equal to .0.10, .0.25 and .0.50, respectively, with zero false positive results. 
The FDR-BH approach identifies a larger number of QTL than the Bonferroni 

approach at low heritability values (8 and 20, for . h2 equal to .0.10 and .0.25, 
respectively), as expected due to higher power, albeit at the expense of incurring 
on three false positive results. At .h2 = 0.5, in the simulated sample, both methods
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Fig. 8.5 GWAS analysis of 1500 individuals, 1500 uncorrelated marker genotypes with 25 causal 
loci and h2 = 0.10 (left), h2 = 0.25 (centre), h2 = 0.50 (right). The Y -axes show −log10 p-values 
and the X-axes the marker labels. The markers that reach −log10 p-values beyond the Bonferroni 
threshold—horizontal line in red, set at −log10(0.05/1500)—are declared as discoveries (1, 11 
and 23 out of 1500 markers in the left, centre and right panels, respectively) 

Table 8.4 Size of discovery set/true (observed) number of false discoveries, in one simulated 
sample, for uncorrelated and correlated marker genotypes, using (1) the Bonferroni correction 
(Bonferroni) with nominal probability of type I error per marker (.α = 0.05/1500, (2)  the  
Benjamini-Hochberg FDR (FDR-BH) and (3) the McMC Bayesian analysis (FDR-Bayes). The 
nominal FDR for FDR-BH is .q = 0.10 for .h2 = 0.10, .q = 0.05 for .h2 = 0.25 and .q = 0.01 for 
. h2 = 0.50

Uncorrelated Correlated 

.h2 .0.10 .0.25 .0.50 .0.10 .0.25 . 0.50

Bonferroni .1/0 .11/0 .23/0 .4/0 .27/12 . 50/25

FDR-BH .8/3 .20/3 .23/0 .27/14 .50/27 . 70/45

FDR-Bayesa .8/3 .20/2 .23/0 .27/14 .50/25 . 70/45

FDR-Bayesb .10/5 .25/5 .28/3 .13/4 .20/1 . 27/2
a FDR-Bayes: The discovery set for FDR-Bayes is set equal to that of FDR-BH 
b FDR-Bayes: the discovery set is obtained by choosing the markers with . P̂r(Zi = 1|y) > 0.5

perform equally well, with 23 loci detected out of the 25 QTL and zero false 
positives (Table 8.4). 

Figure 8.6 shows output from the Bayesian implementation for the three 
heritability levels, where MC estimates of .Pr(Zi = 1|y) for each marker are plotted 
against marker labels (see also Table 8.4). The discovery set is here arbitrarily 
defined by the group of markers that satisfy .Pr(Zi = 1|y) > 0.5. The choice 
of threshold would typically not be fixed but would rather depend on an eyeball 
judgement of the particular plot, and several thresholds would be explored. Given 
the chosen threshold of . 0.5, the size of discovery sets for . h2 equal to .0.10, . 0.25
and .0.50 are 10, 25 and 28 markers with, respectively, 5, 5 and 3 false discoveries. 
The rightmost figure indicates that many markers reach .Pr(Zi = 1|y) ≈ 1. If for  
this heritability level the threshold is set equal to .Pr(Zi = 1|y) > 0.9, then 25 
markers are chosen with 0 false positives. Similarly, for the figure in the centre 
panel corresponding to .h2 = 025, if the threshold is .Pr(Zi = 1|y) > 0.7, then 23 
markers are chosen as part of the discovery set with three false discoveries.
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Fig. 8.6 Bayes-McMC implementation of a model with 1500 individuals, 1500 uncorrelated 
genetic markers of which 25 are chosen as QTL. The heritability is .10% (left), .25% (centre) and 
.50% (right). The figures display the MC estimates of .Pr(Zi = 1|yi) against marker labels 
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Fig. 8.7 Uncorrelated marker genotypes. The histograms are MC estimates of the marginal 
posterior distributions of false discovery rates for the three heritability levels. The vertical lines 
indicate the true number of false discoveries realised in the simulated sample. The heritability 
is .10% (left), .25% (centre) and .50% (right). Discovery set defined by those markers that satisfy 
. Pr(Zi = 1|y) > 0.5

When the size of the discovery set of the Bayesian approach is set equal to that 
generated by FDR-BH, both methods yield almost identical results (Table 8.4). 

The figures for FDR in Table 8.4 are based on the true quantities obtained for the 
sample of simulated data at hand. With real data, this information is not available. In 
such a situation, for the FDR-BH approach, one must draw conclusions based on the 
nominal values of q set by the user. In a discovery set of size N say, on average, one 
expects qN false discoveries. For the three heritability levels, the expected number 
of FD for the FDR-BH are .8 × 0.1 ≈ 1, .20 × 0.05 = 1 and .23 × 0.01 ≈ 0, not too 
far from the true realisations. 

The Bayesian implementation yields the marginal posterior distribution of the 
FDR. Figure 8.7 displays histograms of MC estimates of these distributions for the 
three heritability levels, using the threshold corresponding to .Pr(Zi = 1|y) > 0.5. 
The vertical lines indicate the true number of false discoveries realised in the 
simulated sample.
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Fig. 8.8 GWAS analysis of 1500 individuals and 1500 correlated marker genotypes with 25 loci 
and h2 = 0.10 (left), h2 = 0.25 (centre), h2 = 0.50 (right). The Y -axes shows −log10 p-values 
and the X-axes the marker labels. The markers that reach −log10 p-values beyond the Bonferroni 
threshold—horizontal line in red, set at −log10(0.05/1500)—are declared as discoveries (4, 27 
and 50 out of 1500 markers in the left, centre and right panels, respectively) 

Correlated Marker Genotypes 

In this case, account is taken of the more realistic situation where the 1500 genetic 
markers are in linkage disequilibrium (marker genotypes are correlated). This has 
important consequences for detection of QTL and on the behaviour of single marker 
regressions (GWAS). 

The results of GWAS using the Bonferroni correction are displayed in Fig. 8.8 
and in the right block of Table 8.4 for the three heritability levels. When .h2 = 0.10, 
f our  markers reach the significant threshold. When .h2 = 0.25, 27 markers are 
declared significant, and 12 of these are false positive calls. At .h2 = 0.5, 50 markers  
are declared significant and 25 are false positive results. The FDR-BH approach 
declares 27, 50 and 70 markers as significant for .h2 = 0.10, .h2 = 0.25 and . h2 =
0.50, respectively, with 14, 27 and 45 false positives. These results are far from the 
expectations. The Bonferroni test should lead to 0 false positive results on average 
and FDR-BH, given the size of the discovery sets, to .27 × 0.1 ≈ 3, . 50 × 0.05 ≈ 3
and .70 × 0.01 ≈ 1 false positive results, for the three heritability levels, the three 
values of q (equal to .0.1, 0.05, 0.01) and for the three heritability levels. 

In contrast, the results based on the FDR-Bayes are more in line with those of the 
uncorrelated markers, as reflected in the bottom row of Table 8.4 and in Fig. 8.9. 

The different behaviour of FDR-Bayes and FDR-BH is due to the consequence 
of fitting one marker at a time in situations where loci are correlated. As indicated 
on page 273, expression (6.40), fitting a single marker that has no direct effect on 
the dependent variable and that is correlated with a causal marker not included in 
the model, generates a bias that can result in a phantom significant p-value. When 
thousands of tests are performed in this way, the phantom p-values that are fed 
into the FDR-BH lead to incorrect inferences. This is not an inherent problem of 
FDR-BH; it is rather the single marker regression that cannot be used in this manner 
in conjunction with FDR-BH. The problem is well understood by practitioners of
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Fig. 8.9 Bayes-McMC implementation of a model with 1500 individuals, 1500 correlated genetic 
markers of which 25 are chosen as QTL. The heritability is .10% (left), .25% (centre) and . 50%
(right). The figures display the MC estimates of .Pr(Zi = 1|yi) against marker labels 
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Fig. 8.10 Correlated marker genotypes. The histograms are MC estimates of the marginal 
posterior distributions of false discovery rates for the three heritability levels. The vertical lines 
indicate the true number of false discoveries realised in the simulated sample. The heritability is 
.10% (LEFT), .25% (CENTRE) and .50% (RIGHT). Discovery set defined by those markers that 
satisfy . Pr(Zi = 1|y) > 0.5

genome studies, and several approximate solutions have been proposed (Yang et al 
2012, Brzyski et al 2017). 

On the other hand, a method that fits all the markers simultaneously such as the 
spike and slab model should retrieve more appropriate inferences and provides a 
unified approach for estimation, prediction and detection of promising covariates. 
In practice, the computational burden of the implementation of such a model using 
large data sets with millions of correlated covariates poses serious challenges. Many 
of these challenges are being met (Patxot et al 2021, de los Campos et al 2022), and 
very likely these are going to become the methods of choice in a not too distant 
future. 

The MC estimates of the marginal posterior distributions of FDR obtained using 
FDR-Bayes are displayed in Fig. 8.10.
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The R-code below shows the computation of the Bayesian FDR based on (8.44), 
the construction of the histograms in Figs. 8.7 and 8.10, and Monte Carlo estimates 
of posterior means and posterior intervals : 

# FUNCTION TO COMPUTE BAYESIAN FDR AND TO DRAW HISTOGRAM OF FDR 
# INPUT: 
# 1. resultprobtheta: A FILE WITH DRAWS FROM (7.57) 
# 2. truefd: THE TRUE PROPORTION OF FALSE DISCOVERIES OBSERVED 
# IN THE SAMPLE (USED TO DRAW VERTICAL LINE IN HISTOGRAM) 
# 3. prob: CHOSEN THRESHOLD THAT DEFINES THE DISCOVERY SET 
# 4. postprob: VECTOR OF POSTERIOR PROBABILITIES 
# FOR EACH GENETIC MARKER 
fdrhist <- function(resultprobtheta,truefd,prob){ 

discset <- which(postprob > prob) 
fdisc <- apply(1-(resultprobtheta[,discset]),1,mean) 

# BAYESIAN FDR POSTERIOR MEAN AND POSTERIOR INTERVAL: 
avfdis <- mean(fdisc) 
quantilefdis <- quantile(fdisc,c(0.025,0.975)) 

# HISTOGRAM OF BAYESIAN FDR: 
hist(fdisc,breaks=30,xlab=’McMC-Bayes FDR’, 

main=NULL,freq=FALSE) 
abline(v=truefd[length(discset)],col="red",lwd=2) 

# RETURNS: MC average of Bayesian FDR; posterior interval, 
# size of discovery set, number of false discoveries 

return<-c(avfdis,quantilefdis,length(discset), 
truefd[length(discset)]*length(discset)) 

} 
out <- fdrhist(resultprobtheta,truefd,0.5) 
out



Chapter 9 
Binary Data 

Many of the results derived under the assumption that observations are continuously 
distributed extend to dichotomous and categorical responses. There are some 
technical details that must be observed that are specific to discontinuous data. The 
chapter starts by illustrating the behaviour of training and validating mean squared 
error applied to binary records using operational logistic regression models with 
increasing number of covariates. 

As the number of covariates in a prediction model increases relative to the 
number of records, the bias-variance trade-off calls for the introduction of shrinkage. 
Three modelling scenarios that incorporate shrinkage are described: penalised 
logistic regression, logistic lasso and the Bayesian-McMC driven spike and slab 
model introduced on page 321, extended here to deal with binary records. 

The performance of a classifier can be gauged by studying the true positive rate 
and false positive rate. The  receiver operating characteristic curve is often used 
to compare the performance of different binary classifiers and is the subject of 
Sect. 9.7. 

A topic that is peculiar to data falling into discrete and mutually exclusive 
categories is the computation of the probability that a future observation falls 
in a given category, given some previous information. An application to binary 
occurrences discussed in Sect. 9.8 is the prediction of disease status of a genetic 
disease for an individual, given information on the disease status of its relatives. 

The chapter ends with an appendix describing an approximate analysis of binary 
traits that can be useful as an initial investigating tool, before developing the full 
machinery needed for a more sophisticated approach. 

A general framework for the analysis of binary data is introduced on page 84. 
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9.1 Prediction for Binary Observations 

Consider data .(Y1, x1) , . . . , (Yn, xn) where . Y ′
i s are binary random variables and 

.xi ∈ Rp covariates. A binary classifier is a function .s(xi) that transforms inputs . xi

into a value between 0 and 1 interpreted as a probability. This can be expressed as a 
prediction . Ŷi that takes the values either 0 or 1, according to 

.̂Yi =
{

1 if s (xi) > t

0 if s (xi) ≤ t,
(9.1) 

where .t ∈ [0, 1] is some threshold. When .s (xi) = E (Yi |xi) and .t = 0.5, 
this is known as Bayes rule (poor choice of terminology, commonly used, not 
to be confused with Bayes theorem) that minimises the overall probability of a 
misclassification .Pr

(

̂Yi �= Yi

)

. For Bernoulli data we have 

.s (xi) = E (Yi |xi) = Pr (Yi = 1|xi) (9.2) 

and given data and the threshold t , one predicts . ̂Yi according to the rule 

.̂Yi =
{

1 if ŝ (xi) = ̂Pr (Yi = 1|xi) > t

0 if ŝ (xi) = ̂Pr (Yi = 1|xi) ≤ t,
(9.3) 

where .̂s (xi) = ̂Pr (Yi = 1|xi) is an estimate of .s (xi). 
In the logistic model, the object of the modelling is the probability that Y is equal 

to 1, parametrised as 

.s (xi) = Pr (Yi = 1|xi) = exp
(

x′
iβ
)

1 + exp
(

x′
iβ
) , (9.4) 

or alternatively, as the logit or log odds

. ln

[

Pr (Yi = 1|xi)

Pr (Yi = 0|xi)

]

= x′
iβ.

In these expressions . β includes an intercept, and the first element of the .(p+1) row 
vector . x′

i is a 1. 
Imagine that estimates . ̂β of the logistic coefficients are available. These yield 

estimates of the probability 

.̂Pr (Yi = 1|xi) = exp
(

x′
i
̂β
)

1 + exp
(

x′
i
̂β
) .
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If the choice falls on .t = 0.5, we would predict .̂Yi = 1 if . ̂Pr (Yi = 1|xi) >
̂Pr (Yi = 0|xi), that  is, if  .̂Pr (Yi = 1|xi) > 0.5 or if .x′

i β̂ > 0. The latter is readily 
derived as follows. Choose .̂Yi = 1 if 

. 
̂Pr (Yi = 1|xi)

̂Pr (Yi = 0|xi)
> 1.

Taking logarithms on both sides, 

. ln
[

̂Pr (Yi = 1|xi)
]− ln

[

̂Pr (Yi = 0|xi)
]

> 0.

This gives 

. ln

⎡

⎣

exp
(

x′
i β̂
)

1 + exp
(

x′
i β̂
)

⎤

⎦− ln

⎡

⎣

1

1 + exp
(

x′
i β̂
)

⎤

⎦ > 0,

x′
i β̂ > 0.

Prediction of binary outcomes is often known as classification. 

9.2 Mean Squared Error 

As indicated in (6.69), the estimate of the expected validating mean squared error 
using independent training data is 

.Ê (MSEv) = 1

N

N
∑

i=1

(yi − ŷi )
2 + 2

N

N
∑

i=1

̂Cov (yi, ŷi ) , (9.5) 

where the second term is an estimate of the expected optimism. With binary
observations

. (yi − ŷi )
2 =

{

1 if yi �= ŷi ,

0 if yi = ŷi .
(9.6) 

Therefore, the first term in the right hand side of (9.5) is the observed proportion of 
misclassifications (or error rate) in the training data. To compute the second term, 
proceed as follows: 

.Cov (yi, ŷi ) = E (yi ŷi ) − E (yi)E (ŷi) , (9.7)
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where .E (yi) = Pr (yi = 1) and all expectations are conditional on x. In addition, 
we have 

. E (ŷi) = Eyi [E (ŷi |yi)]

= Pr (ŷi = 1|yi = 0) Pr (yi = 0) + Pr (ŷi = 1|yi = 1) Pr (yi = 1) ,

and 

. E (yi ŷi ) = Eyi [E (yi ŷi |yi)]

= Eyi [yi E (ŷi |yi)]

= Pr (yi = 1) Pr (ŷi = 1|yi = 1) .

Substituting these expressions in (9.7) gives  

. Cov (yi, ŷi ) = Pr (yi = 1) (1 − Pr (yi = 1))

[Pr (ŷi = 1|yi = 1) − Pr (ŷi = 1|yi = 0)] .

The estimator of the expected validating mean squared error (9.5) for binary data 
takes the form 

. ̂E (MSEv) = # (yi �= ŷi )

N
+ 2

N

N
∑

i=1

̂Pr (yi = 1)
(

1 − ̂Pr (yi = 1)
)

[

̂Pr (ŷi = 1|yi = 1) − ̂Pr (ŷi = 1|yi = 0)
]

(9.8) 

where .# (yi �= ŷi ) is the total number of misclassifications in the training data and 
the “hats” are estimates of the various probabilities. Expression (9.8) is compared 
to MC estimates of the expected validating mean squared error in the simulation 
example that follows. The second term in (9.8) is an estimator of expected optimism. 
Much of the material in this section is taken from Efron and Hastie (2016) where 
more details on the subject can be found. 

Example: Training and Validation MSE with Binary Data 

This example illustrates in the context of binary data, how training and validating 
mean squared errors are affected as the number of covariates of the operational 
models increases. The example is in the same spirit as that on page 291.
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Binary data are simulated using the logistic model (9.4) and consist of . N = 400
records divided in equal numbers into training and validating data. The matrix X of 
genetic marker codes is generated as in the Example on page 291, here with . p� = 10
loci and includes a column vector of 1s to accommodate an intercept. 

Training data are analysed with 5 operational models with numbers of covariates 
equal to 5, 10, 15, 20 or 25. Model 2 with 10 covariates is the true model. 
The regression coefficients of the true effects of the 10 loci were sampled from 
.N (0, 0.1). The intercept . μ was chosen to generate either . Pr (Yi = 1|μ) = 0.5
or .Pr (Yi = 1|μ) = 0.2. In all, 400 replicates are simulated of both training and 
validating data. 

Figure 9.1 displays the mean squared errors for the validating and the training 
data for each replicate, as well as the average over replications. The top panel 
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Fig. 9.1 Mean squared error (MSE) per replicate (400 Monte Carlo simulations) and average MSE 
shown as bold black lines. True marker effects drawn from N (0, 0.1). Top panel, Pr (Yi = 1|μ) = 
0.5; bottom panel, Pr (Yi = 1|μ) = 0.2. The left panels correspond to the training data and the 
right to the validating data
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corresponds to .Pr (Yi = 1|μ) = 0.5 and the bottom panel to .Pr (Yi = 1|μ) = 0.2. 
In the training data, the mean squared error decreases with increasing number of 
parameters. For .Pr (Yi = 1|μ) = 0.5 the rate of decline is largest up to 10 markers 
(the true model) and thereafter becomes markedly smaller. 

In the validating data, the pattern of the evolution of the mean squared error with 
increasing number of parameters depends on the true distribution of the data. At 
intermediate probability of success, the average mean squared error in the validating 
data decreases from .0.50 using a model with intercept only to .0.396 using a model 
with 10 covariates (the true model). Beyond 10 covariates there is a slight increase 
up to a value of .0.403 with 25 covariates. The observed optimism (difference 
between the average validating .MSEv and average training .MSEt over Monte Carlo 
replicates) is .0.0623 in a model with 10 covariates and the estimate based on (9.8) 
is .0.0617. 

At the low probability of success, the average mean squared error in the training 
data decreases from .0.24, fitting a model with intercept only, to .0.20 when the 
model has 25 covariates. On the other hand, in the validating data, the average 
mean squared error increases from .0.23, for a model with intercept only, to . 0.27
for a model with 25 covariates. The model with only an intercept provides the 
best predictions. At extreme probability of success, the mean squared error is 
overwhelmed by the increase in the variance of the estimates of the regression 
coefficients as more covariates are added (see the expression for the asymptotic 
variance (3.37), where conditional on X the diagonal matrix D governs the 
magnitude of the variance). The validating mean squared error .MSEv increases 
slightly from .0.232 using a model with intercept only to .0.236 using a model with 
10 covariates (the true model). As the number of covariates increases beyond 10, 
the rate of increase is more pronounced. 

In a model with 10 covariates, the observed optimism (difference between the 
average .MSEv and average training mean squared error .MSEt over Monte Carlo 
replicates) is .0.0415; the estimate based on (9.8) is .0.0477. 

At a low probability of success, when the regression coefficients of the true 
effects of the 10 loci are sampled from .N (0, 0.25) instead of from .N (0, 0.1), thus 
allowing for larger absolute values that are easier to detect, the evolution of the mean 
squared error with increasing number of parameters in the validating data shows the 
more familiar pattern of a decline from an initial value when the model contains 
only an intercept, towards a minimum value with models with 10 covariates (the 
true model), followed by an increase as more covariates are added (see Fig. 9.2). 

In a model with 10 covariates, the observed optimism (difference between the 
average .MSEv and average .MSEt over Monte Carlo replicates) is .0.0253; the  
estimate based on (9.8) is .0.0273. 

The figures display clearly the rather large variability in .MSE across replications 
of training and validating data.
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Fig. 9.2 Mean squared error (.MSE) per replicate (400 Monte Carlo simulations) and average . MSE
in black, bold. Probability of success is .Pr (Yi = 1|μ) = 0.2. True marker effects drawn from 
.N (0, 0.25). The left panel corresponds to the training data and the right to the validating data 

9.3 Logistic Regression with Non-random Sampling 

A major concern in epidemiological studies is to determine factors that are linked 
to a condition or disease in a population. A variety of designs can be considered. 
When the condition is at very low frequency in the population, a common study 
design is to over-sample individuals with the condition (known as successes or 
cases) and then sample a control group (failures or controls) from a similar segment 
of the population. This type of design is known as a case-control study. A typical 
example might involve recording relevant covariates from people who died from 
a certain condition and from other patients who act as controls. If sampling is at 
random, the relationship between the variables in the dataset would be representative 
of the same relationships in the population, but this may not be the case with 
non-random samples of a case-control design. Correct inferences require that the 
statistical analysis accounts for the non-random sampling mechanism (Prentice and 
Pyke 1979). 

Consider a population of individuals .i = 1, . . . , n with disease status . Yi , covari-
ate vector . Xi and marker genotypes . Wi . Assume that the conditional distribution of 
. Yi given .(Xi,Wi) = (xi, wi) is the logistic regression 

. Pr (Yi = 1|xi, wi) = exp (ηi)

1 + exp (ηi)
(9.9) 

where

.ηi = α + xiβ + wib
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is the linear predictor depending on covariate and marker effects. The parameters 
of the logistic model are .(α, β, b) and if data were randomly sampled, they could 
be inferred from a likelihood constructed from (9.9) as starting point. With non-
random sampling, one can instead proceed as follows. Suppose (conceptually) all 
individuals are observed. Each individual is assigned a binary random variable 
. Si that takes the value 1 if the individual is sampled and 0 otherwise, with 
.Pr (Si = 1|Yi = 0) = p0 and .Pr (Si = 1|Yi = 1) = p1. Typically, . p1 is much 
larger than . p0. Given  .Si = 1, sample .(Xi,Wi) from the conditional distribution 
.[Xi,Wi |Yi] and if .Si = 0, .(Xi,Wi) is not sampled. In the approach to be followed, 
inference is based on the conditional distribution of . Yi , given  .(Xi,Wi) and .Si = 1. 
The part of the sample for which .Si = 0 is ignored. As shown below this leads to the 
same inferences about .(β, b) as an analysis using (9.9) to construct the likelihood. 

The conditional distribution of . Yi given .(Xi,Wi) and .Si = 1 is 

. Pr (Yi = 1|xi, wi, Si = 1) =
Pr (Si = 1|Yi = 1, xi, wi)Pr (Yi = 1|xi, wi)

Pr (Si = 1|xi, wi)
.

Now make the important assumption that . Pr (Si = 1|Yi = 1, xi, wi) =
Pr (Si = 1|Yi = 1), that is, . Si and .(Xi,Wi) are conditionally independent given 
. Yi . In a missing data framework, .(Xi,Wi) are missing at random, in the sense 
defined by Rubin (1976). Given this assumption the above can be written 

. Pr (Yi = 1|xi, wi, Si = 1) = p1 exp (ηi)

p1 exp (ηi) + p0

=
(

p1
/

p0
)

exp (ηi)
(

p1
/

p0
)

exp (ηi) + 1
. (9.10) 

Since 

. 
(

p1
/

p0
)

exp (ηi) = exp
(

α∗ + xiβ + wib
)

where .α∗ = α + ln
(

p1
/

p0
)

, we have  

. Pr (Yi = 1|xi, wi, Si = 1) = exp (α∗ + xiβ + wib)

1 + exp (α∗ + xiβ + wib)

as in (9.9) but with a new intercept. Therefore, the fact that the data were not sampled 
at random (they were collected retrospectively) can be ignored in logistic regression 
analyses, provided that the linear predictor contains an intercept and the sampling 
mechanism is independent of the explanatory variables. This is a property peculiar 
to the logistic link and does not carry over to other link functions.
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9.4 Penalised Logistic Regression 

Logistic regression can be modified in the same spirit as ridge regression to deal 
with the .p > n case (number of covariates p larger than the number of records 
n), by maximisation of a concave penalised loglikelihood (or, equivalently, by 
minimisation of a convex penalised cost function). Here details are provided for 
a Newton-Raphson implementation; a full discussion can be found in a study by 
Park and Hastie (2008). 

The logistic regression model for the n binary responses y is parametrised as 

. Pr (yi = 1|xi, μ, β) = exp
(

μ + x′
iβ
)

1 + exp
(

μ + x′
iβ
) , i = 1, . . . , n. (9.11) 

In this expression, . μ is a scalar intercept, . x′
i is a row vector of p covariates and . β is 

a column vector with p regression parameters. The convex function is the negative 
of the loglikelihood subject to a size constraint on the . L2 norm of . β; the intercept . μ
is not penalised. Then . μ and . β are obtained as the minimisation of the cost function 

. J (μ, β) = −� (μ, β|y, x) + λ

2
β ′β,

where . λ is the regularisation parameter and 

. − � (μ, β|y, x) = −
n
∑

i=1

{

yi

(

μ + x′
iβ
)− ln

[

1 + exp
(

μ + x′
iβ
)]}

(9.12) 

is the negative of the loglikelihood.
I shall use 

. f (xi) = μ + x′
iβ

and 

. πi = Pr (yi = 1|xi, μ, β) = exp (f (xi))

1 + exp (f (xi))
.

The first derivatives are 

.
∂J

∂μ
= −

n
∑

i=1

(yi − πi) = −1′ (y − π) , . (9.13a) 

∂J 
∂β 

= −  
n
∑

i=1 

(yi − πi) xi + λβ = −X′ (y − π) + λβ, (9.13b)
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where . 1′ is a .(1 × n) row vector of ones, y and . π are .n × 1 column vectors with 
elements . yi and . πi , respectively, and X is an .n × p matrix of covariates with row 
vectors . x′

i . 
The computation of second derivatives uses 

. 
∂πi

∂μ
= ∂πi

∂f (xi)

∂f (xi)

∂μ
,

∂πi

∂β
= ∂πi

∂f (xi)

∂f (xi)

∂β
.

Application of the chain rule yields 

. 
∂2J

(∂μ)2
=

n
∑

i=1

πi (1 − πi) = 1′W1,

∂2J

∂μ∂β ′ =
n
∑

i=1

πi (1 − πi) xi = 1′WX,

∂2J

∂β∂β ′ =
n
∑

i=1

xix
′
iπi (1 − πi) + Iλ = X′WX + Iλ,

where I is the .p × p identity matrix and 

. W = diag {πi (1 − πi)} , i = 1, . . . , n,

a diagonal matrix of dimension .n × n. The matrix of second derivatives is 

. H =
⎡

⎣

∂2J

(∂μ)2
∂2J

∂μ∂β ′
∂2J

∂β∂μ
∂2J

∂β∂β ′

⎤

⎦

(p+1)×(p+1)

=
[

1′W1 1′WX

X′W1 X′WX + Iλ

]

= Z′WZ + 	

(9.14) 

of order .(p + 1) × (p + 1), where 

. Z = [1, X] .

This is an .n × (p + 1) matrix whose first column is a vector of ones and 

. 	 = diag {0, λ, λ, . . . , λ} ,

is a .(p + 1) × (p + 1) diagonal matrix. Let .θ = (

μ, β ′)′. The Newton-Raphson 
algorithm is 

.θt+1 = θt − (H)−1 S (θt ) (9.15)
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where, from (9.13), 

.S (θt ) = −Z′ (y − π) + 	θt . (9.16) 

Using (9.14) and (9.16) in (9.15) yields 

. θt+1 = θt − (Z′WZ + 	
)−1 (−Z′ (y − π) + 	θt

)

= H−1 (Z′WZ + 	
)

θt + H−1
(

Z′WW−1 (y − π) − 	θt

)

= H−1Z′W (Zθt ) + H−1	θt + H−1Z′W
(

W−1 (y − π)
)

− H−1	θt

= H−1Z′W
(

Zθt + W−1 (y − π)
)

= H−1Z′Wr, (9.17) 

where .r = Zθt + W−1 (y − π) and .H−1 = (Z′WZ + 	
)−1. This implementation 

of the Newton-Raphson algorithm is the iteratively reweighted ridge regression 
algorithm and requires inversion of the Hessian, an .(p + 1) × (p + 1) matrix. In 
highly dimensional settings with .p � n, alternative strategies must be sought. The 
aim could be either to avoid matrix inversion or to reduce the dimensionality of the 
system from order p to order n. An example of the first type is the use of gradient 
descent that uses first derivatives of the cost function. An approach that works in 
an n-dimensional space involves kernel methods discussed on page 482. It is shown  
that use of a particular kernel known as the linear kernel allows a reparametrisation 
of the penalised logistic regression model that leads to an iterative system along the 
lines of (9.17), while operating in an .n + 1-dimensional space. 

9.5 The Lasso with Binary Records 

The use of the lasso is illustrated for the case of binary responses parametrised as 
in (9.4). In this formulation the loglikelihood takes the form 

. � (β0, β|x, y) =
∑n

i=1
yi

(

β0 + x′
iβ
)− ln

[

1 + exp
(

β0 + x′
iβ
)]

where here, contrary to (9.4), . x′
i is .(1 × p) and . β is .(p × 1). The lasso coefficients 

are the solutions to 

.max
β0,β

[

n
∑

i=1

yi

(

β0 + x′
iβ
)− ln

[

1 + exp
(

β0 + x′
iβ
)]

]

− λ

p
∑

j=1

∣

∣βj

∣

∣ . (9.18)
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As before in (7.19), the intercept term is not penalised and the predictors x are 
standardised. An efficient computational algorithm is the path-wise coordinate 
descent described in connection with the linear model, with modifications to 
accommodate the lack of piece-wise linearity of the coefficients of the logistic 
likelihood (Efron and Hastie 2016). 

9.6 A Bayesian Spike and Slab Model for Binary Records 

An alternative to the penalised logistic regression and the lasso is the spike and 
slab model that postulates a two-component mixture distribution for the SNP effects 
consisting of a normal distribution and a point mass at zero. Section 7.5 provides 
a full description of the model and an McMC implementation for continuous data. 
Here, I indicate the modification of the McMC algorithm required for the analysis 
of binary responses. 

The binary records are described with the probit model that assumes an under-
lying unobserved liability u. For  the  ith record, the liability is normally distributed 
.ui |μ, xi, b ∼ N

(

μ + x′
ib, σ 2 = 1

)

. The linear model for the liability of record i 
can be written 

. ui = μ + x′
ib + ei .

Above, . μ is an intercept, .xi ∈ Rp is a column vector of p observed marker 
genotypes, b is a .p × 1 column vector of unobserved marker effects and residuals 

are .ei
iid∼ N (0, 1). For  the  ith record . (i = 1, 2, . . . , n)

. Pr (yi = 1|μ, xi, b) = Pr (ui > 0|μ, xi, b)

= Pr
(

ei < μ + x′
ib
)

= �
(

μ + x′
ib
)

, (9.19) 

where .�(t) is the distribution function of the standard normal distribution and I used 
the symmetry of the normal distribution to go from line 1 to line 2. The conditional 
likelihood function for record i, given  .μ, xi, b, is proportional to (9.19). The prior 
distributions for the binary case are assumed to be identical to those in (7.43) on  
page 321, except for . σ 2, that here takes the fixed value .σ 2 = 1. As in the continuous 
case, the SNP effects are expressed as 

.bi = αiδi, i = 1, . . . , p, (9.20)
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where .αi |σ 2
b

iid∼ N
(

0, σ 2
b

)

is independent of the binary .(0, 1) indicator variable . δi

that has an a priori Bernoulli distribution with probability . π : 

. δi |π iid∼ Br (π) , , i = 1, . . . , m,

Pr (δi = 1|π) = π, Pr (δi = 0|π) = 1 − π.

This binary indicator variable with its associated distribution .Pr (δi = 1|π) specifies 
the a priori probability that a marker effect . bi is non-zero, and this prior probability 
is the same for all markers. The variance component . σ 2

b , that describes the prior 
uncertainty of the SNP effect drawn from the slab component is assumed to have 
the scaled inverse chi-square prior distribution 

. σ 2
b |Sb, vb ∼ Sbχ

−2 (Sb, vb) ,

where the . Sb and the . vb are user-tuned hyperparameters. 
It is computationally convenient to augment the vector of parameters with the 

unobserved liabilities u (see page 215). The a priori distribution of the random 
vector u is 

. u|μ, b ∼ N (1μ + Xb, 1)

and the conditional pmf of the data, given u, takes the degenerate form (see page 
216) 

. Pr (Yi = yi |ui) = I (ui > 0)yi + I (ui < 0)1−yi .

The posterior density for the binary case is 

. p
(

u,μ, α, δ, π, σ 2
b |y
)

∝ p (y|u) p (u|μ, b) p
(

α|σ 2
b

)

p (δ|π) p (π) p
(

σ 2
b

)

(9.21) 

with the b’s defined in (9.20). 
The fully conditional posterior distributions for the Gibbs sampling implemen-

tation are derived from (9.21) and with the exception of the fully conditional of u, 
.[u|D] (see page 222 for definition of D) and of the fact that the conditional variance 
of the liability is fixed to .σ 2 = 1, are identical to those for the continuous data and 
will not be repeated here. 

The fully conditional posterior density of the liability is obtained by extracting 
those terms in the posterior density (9.21) that contain u. That is, 

. p (ui |D) ∝ p (ui |μ, b) p (yi |ui)

= N (ui |1μ + Xb, 1)
[

I (ui > 0)yi + I (ui < 0)1−yi

]

. (9.22)
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This expression indicates that when .yi = 1, .ui > 0 and the fully conditional 
posterior density of . ui is a truncated normal distribution, with mean . x′

iβ, variance 1 
and support .(0,∞). When .yi = 0, then .ui < 0 and the fully conditional posterior 
density of . ui is a truncated normal distribution, with mean . x′

iβ, variance 1 and 
support .(−∞, 0). 

A general method to sample the variable u from any univariate distribution 
truncated in the interval .[a, b] can be found in Devroye (1986), page 38, Example 
10: 

.u = F−1 {F (a) + U [F (b) − F (a)]} , (9.23) 

where F is the distribution function of the untruncated variable and U is a draw
from a uniform distribution in the interval .[0, 1]. 

An R-code to draw all the . U ′s in one pass is as follows. Assume that the mean 
of the vector of untruncated liability is given by mu+Xb, the variance is the identity 
matrix I and y represents the complete binary data vector. Then the code is 

mean <- mu+Xb 
sd <- 1 
intermediate <- y*pnorm(0,mean=mean,sd=sd)+ 

runif(length(y))*(pnorm(0,mean=mean,sd=sd)*(1-y) + 
(1-pnorm(0,mean=mean,sd=sd))*y) 

u <- qnorm(intermediate,mean=mean,sd=sd) 

The general algorithm to execute the Gibbs sampler for binary records is identical 
to that described on page 321, except that the liability u has to be generated with 
each new cycle of the Gibbs sampler. This is achieved by executing the code above. 
Further, the residuals have to be defined appropriately at the level of the liability, 
and . σ 2 is fixed at the value 1. 

Example: Prediction and QTL Detection Using Genetic Marker 
Information 

This example investigates the predictive ability of the penalised logistic regression, 
the logistic lasso and the binary spike and slab model, using 2000 simulated 
binary records representing nominally unrelated individuals. The package glmnet 
described in Example 7.4 on page 319 was used to perform the computations for the 
logistic lasso. 

The data are generated using a probit model where the unobserved liability . ui for 
the ith record has the linear structure 

.ui = μ + z′
ib + ei, i = 1, 2, . . . , 2000. (9.24)
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Above, .μ = −0.67 is chosen to generate a proportion of . 1′s of approximately 
.0.25, . zi is the column vector for individual i of 50 centred QTL genotype codes, 
b is the column vector of the 50 substitution effects and the . e′

is are  . N (0, 1)
independent residual effects. The additive genetic variance in the underlying scale 
is .σ 2

a = V ar(z′
ib|b). This variance was set equal to 1 and the substitution effects . bi

were chosen accordingly, the same value for the 50 loci (.≈ 0.23 units). 
The binary records are analysed with an operational probit model involving 1500 

centred genotypic marker codes. The 50 loci of the true model in (9.24) were  
randomly sampled from these 1500 and were assigned as QTL. For individual i, 
the operational model of the underlying liability is 

. ui = m + x′
iβ + εi, i = 1, 2, . . . , 2000,

where m is an intercept, . xi is the (observed) column vector for individual i of the 
1500 centred marker genotypic codes, . β is the (unobserved) vector with the 1500 
unknown marker effects and the . ε′

i s are independently distributed standard normal 
random variables. 

QTL Detection 

Before studying prediction ability, we look into the performance of the spike and 
slab model as a QTL detection tool and compare it with a simple GWAS approach 
based on a probit likelihood, one marker at a time. Having generated the binary data 
vector y of length 2000 and the matrix of centred marker genotypes Xc, the kernel 
of the R-code for the GWAS analysis is shown below: 

# PERFORM A GWAS ON THE DATA USING A PROBIT REGRESSION 
# Xc is the 2,000 by 1,5000 matrix of centred marker 
# genotype codes 
GWAS=matrix(nrow=ncol(Xc),ncol=4) 
colnames(GWAS)=c(’estimate’,’SE’,’t-value’,’p-value’) 
for(i in 1:ncol(Xc)){ 
fm=glm(y~Xc[,i],family = binomial(link = "probit")) 
GWAS[i,]= summary(fm)$coef[2,] 
} 
plot(-log10(GWAS[,4]),type=’o’,ylab=’-log10-pValue’, 

cex=.5,col=4) 
abline(h=-log10(0.05/nmark),lty=2,col=2) 
# log Bonferroni bound: 
cat(’Bonferroni’,-log10(0.05/nmark),’\n’) 
GWASdetct<-which(-log10(GWAS[,4]) > -log10(0.05/nmark)) 
length(GWASdetct) # SIZE OF DISCOVERY SET
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The computation of the p-values is obtained appealing to the asymptotic 
properties of the likelihood estimator of marker effects; this leads to approximate 
t-distributed test statistics and uniformly distributed p-values .Un(0, 1) under . H0
(see page 337). 

The result for the GWAS based on a Bonferroni bound for an individual test 
equal to .0.05/1500 is shown in the left panel of Fig. 9.3. Only 13 of the 50 QTL 
are declared significant, and in this discovery set, there are no false discoveries. The 
classical test without the Bonferroni correction declares 133 markers as significant, 
and among these, 86 are false discoveries. 

The size of the discovery set based on the Benjamini and Hochberg FDR 
rule (8.14b), setting the level of the FDR .q = 0.15, is equal to 50, and among these, 
the realised number of false discoveries is 11, leading to a realised false discovery 
proportion equal to .11/50 = 0.22. The  R-code that implements this computation is 
shown on page 340. 

The right panel of Fig. 9.3 shows McMC estimates of the posterior probabilities 
that each marker effect is not equal to zero, generated from the Bayesian McMC 
spike and slab model using the 2000 binary records. A discovery set was obtained 
by arbitrarily choosing the markers with non-zero posterior probabilities larger 
than . 0.8. The ensuing discovery set included 44 genetic markers, and among 
these, 2 were true false positives, leading to a true FDR equal to .2/44 = 0.045. 
The McMC estimate of the mean of the posterior distribution of the Bayes-FDR 
for this discovery set of size 44 is .0.033, based on (8.43) or on (8.44) on page 
351. The  .95% posterior interval obtained from the McMC draws from (8.44) is  
.(4.56 ∗ 10−5; 9.11 ∗ 10−2). 
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Fig. 9.3 Analysis of 2000 binary records. Left: .− log10 p-values for testing the null hypothesis 
that each of 1500 marker effects is equal to zero. The horizontal red line is the Bonferroni threshold 
corresponding to .− log10(0.05/1500). Right: posterior probabilities that marker effects are not 
zero, for each of the 1500 markers, based on the Bayesian McMC spike and slab model. The 
horizontal line is the threshold corresponding to a posterior probability equal to 0.8
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Fig. 9.4 Histograms of the McMC Bayes posterior distribution of the Bayes-FDR choosing as 
discovery set the set of markers whose marginal posterior probability of non-zero effects is larger 
than .0.80 (LEFT) or larger than .0.56 (RIGHT). The vertical lines show the true FDR realised in 
the simulated data 

For a discovery set of size 50, obtained by choosing the markers with non-zero 
posterior probabilities larger than .0.56, the Bayes-FDR estimate is .0.072 with a . 95%
posterior interval equal to .(0.013; 0.142). The true number of false discoveries is 7, 
resulting in a true FDR realised in the sample equal to .0.14. Figure 9.4 displays the 
histograms of the McMC posterior distribution of these Bayes-FDR. The vertical 
lines show the realised (true) FDR obtained in the particular simulation for each 
discovery set. 

The R-code to produce the histograms and Monte Carlo estimates of posterior 
means and posterior intervals of the false discovery rates is shown on page 367. 

Several other pieces of information can be extracted from the Bayesian model. 
For each marker one can extract the probability of a non-zero effect conditional on 
observed data, and the draws from (7.57) retrieve a Monte Carlo estimate of the 
posterior probability distribution of this probability of non-zero effect. For instance, 
the Monte Carlo estimate of the mean of the posterior probability that marker 141 
is non-zero is .0.83, and the Monte Carlo estimate that this probability is larger than 
. 0.6, say, is  .0.96. A similar picture can be obtained for the local false discovery rate 
for each marker genotype in the discovery set. 

Prediction 

The 2000 binary records are divided in equal proportions into training and validating 
sets. The criterion to evaluate predictive ability is the proportion of mistaken 
predictions in the validating data or error rate, given by 

.MSEv = 1

Nv

Nv
∑

i=1

(yi − ŷi )
2
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where .Nv = 1000 is the number of records in the validating set, . yi is the ith record 
in the validating set (0 or 1) and . ̂yi is the predicted value computed using (9.3) using  
.t = 0.5. I also used the Brier score 

.MSEB
v = 1

Nv

Nv
∑

i=1

(

yi − π̂i

)2 (9.25) 

that uses additional information from the predicted probabilities . ̂Pr (Yi = 1|μ) =
π̂i . 

The validating .MSEv of the spike and slab model, the penalised logistic 
regression and the logistic lasso are .0.35, .0.35 and .0.30, respectively. For the Brier 
score (9.25), the corresponding figures are .0.25, .0.30 and .0.20. 

The Bayesian McMC implementation produces automatically a Monte Carlo 
estimate of the marginal posterior distribution of the validating .MSEv . The McMC 
estimate of the .95% posterior interval of the validating .MSEv is .(0.321; 0.386) and 
for the Brier score .(0.227; 0.275). This quantifies the uncertainty in the measures of 
.MSE due to uncertainty in the predictors, conditional on the data. 

In order to have a point of reference, these error rates can be compared to the 
error rate of the null model, defined as 

. ui = μ + εi, i = 1, 2, . . . , 2000,

that results in a loglikelihood equal to 

. � (μ|y) =
∑

i=1

yiμ − n ln
[

1 + exp (μ)
]

,

where n is the number of records in the dataset. A differentiation yields 

. 
d � (μ|y)

dμ
=
∑

i=1

yi − n
exp (μ)

1 + exp (μ)

=
∑

i=1

yi − nPr (Yi = 1|μ) .

On setting the derivative equal to zero, 

. ̂Pr (Yi = 1|μ) =
∑

j=1

yj /n = π̂ , for all i,

equal to the proportion of . 1′s in the data. The predicted value is 

.̂yi =
{

1 if π̂ > 0.5
0 if π̂ ≤ 0.5

for all i.
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Depending on the value of . π̂ , this amounts to setting all the predictions to either 0 
or 1. Therefore, the error rate of the null model is . π̂ or .1 − π̂ , whichever is smaller. 
In this example, the null model leads to an error rate equal to .0.35, identical to that 
obtained for the spike and slab model and a little higher than the value obtained 
using the logistic lasso. The Brier score for the null model is . 1

nv

∑

i (yi − 0.35)2 =
0.23. 

When the data are more informative, things look a little better. For instance, 
increasing the total number of records to 5000 and keeping 1500 markers, . MSEv

for the spike and slab model, the penalised logistic regression and the logistic lasso 
are .0.29, .0.38 and .0.27, respectively. Using the Brier score, the values for . MSEB

v

are .0.19, .0.35 and .0.18. 
The kernel of the R-code for running the logistic lasso using the package glmnet 

is shown below. 

# THE TRAINING DATA y AND MATRIX OF COVARIATES X 
# BOTH CREATED IN A SECTION OF THE CODE NOT SHOWN 
library(glmnet) 
train=sample(1:nrow(X),nrow(X)/2) 
test=(-train) 
y.test=y[test] 

# STEP 1 

cv.out=cv.glmnet(X[train,],y[train],alpha=1,intercept=TRUE, 
family="binomial",type = "class") 
plot(cv.out) 
bestlam=cv.out$lambda.min 
bestlam 
#NUMBER NON-ZERO COVARIATES: 
length(which(as.vector(coef(cv.out,s=bestlam))!=0)) 

# STEP 2 

# OBTAIN PREDICTIONS BASED ON CLASS LABELS 
fm.predclass=predict(cv.out,s=bestlam,newx=X[test,], 
family="binomial",type="class") 

# OBTAIN PREDCTIONS BASED ON PROBABILITIES (Brier score) 
fm.predresp=predict(cv.out,s=bestlam,newx=X[test,], 
family="binomial",type="response") 
#ERROR RATE (CLASS LABELS): 

mean((as.numeric(fm.predclass)-y.test)^2 
#ERROR RATE (FITTED PROBS): 

mean((as.numeric(fm.predresp)-y.test)^2) 

# ERROR RATE OF NULL MODEL: liability = mu + e 
mean(y.test) 

The kernel of the R-code for executing the penalised logistic regression using 
gradient descent is shown below.
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nit <- 1500 # Number of gradient descent iterations 

nrep <- 5 # Number of replications 
# (To compute variability of MSE across replicates) 

#lambda <- 0.0 # ZERO PENALTY !!!!!!!! 
lambda <- 0.4 

gama <- 0.008 # Learning rate 
c <- rep(0,nit) 
newcost <- rep(0,nit) 
newcostv <- rep(0,nrep) 

result <- matrix(data=NA, nrow=nit,ncol=8) 
resulttv <- matrix(data=NA, nrow=nit,ncol=8) 
resulttvnr <- matrix(data=NA, nrow=nitnr,ncol=8) 

res <- matrix(data=NA, nrow=nrep,ncol=9) 
resnr <- matrix(data=NA, nrow=nrep,ncol=8) 

msev <- rep(NA,nrep) 
msevnr <- rep(NA,nrep) 

################################################# 
# FUNCTION TO COMPUTE Pr[Y = 1] 
prob1 <- function(miu,beta,X){ 

pr <- exp(miu+X%*%beta)/(1+exp(miu+X%*%beta)) 
} 
# FUNCTION TO COMPUTE THE LOSS FUNCTION 
cost <- function(miu,beta,X,y) 

{-sum(y*(miu+X%*%beta) - log(1 + exp(miu+X%*%beta))) 
+ crossprod(beta)*(lambda/2)} 

c[1]<- cost(miu,beta,X,y) 
ptm <- proc.time() 

####################################################### 
######### GRADIENT DESCENT ############# 
### FIT MODEL TO TRAINING DATA; TEST IN VALIDATING DATA 

set.seed(771311) 
numone <- sum(y) 
numzero <- length(y) - numone 
nindiv <- length(y) 
ptm <- proc.time() 
for (i in 1:nrep){ 

cat(i, "\n",sep="") 
train=sample(1:nrow(X),floor(0.5*nrow(X))) 
Xtrain <- X[train,] 
Xval <- X[-train,] 
ytrain <- y[train] 
yval <- y[-train] 
miu <- 0.0 
beta <- rep(0.0,ncol(Xtrain)) 
for(j in 1:nit){ 

fdmiu <- -sum(ytrain - prob1(miu, beta,Xtrain)) 
fdbeta <- -t(Xtrain) %*% 

(ytrain - prob1(miu, beta,Xtrain)) + lambda * beta 
fd <- matrix(c(fdmiu,fdbeta),nrow=length(beta)+1,ncol=1) 
sol0 <- matrix(c(miu,beta),nrow=length(beta)+1,ncol = 1)
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sol1 <- sol0 - gama * fd 
miu <- sol1[1,1] 
beta <- sol1[-1,1] 
newcostv[j] <- cost(miu, beta,Xtrain,ytrain) 
resulttv[j,] <- c(j,newcostv[j],miu,beta[1:5]) 

} 
probval <- prob1(miu,beta,Xval) 
y_predval <- as.numeric(ifelse(probval > 0.5,1,0)) 
msev[i] <- mean((y_predval-yval)^2) 
res[i,] <- c(i,j,newcostv[j],miu,beta[1:5]) 
} 
proc.time()-ptm 
tail(resulttv) 
tail(res) 
summary(msev) # SUMMARY MISCLASSIFICATION ACROSS REPLICATES 

The complete R-code that performs the computations of this example is on the 
GitHub site in the folder named “.codes”. The web address is https://github.com/ 
SorensenD/SLGDS/codes. The specific R-code is labelled code0901.R. 

9.7 Area Under the Curve 

Consider binary data and a classifier such as logistic regression that generates 
predictions or classifications . Ŷ taking values 0 or 1 according to the rule (9.3), given 
covariates x. The result of applying the classifier depends critically on the threshold 
t used. In the case of (9.3), setting .t = 0.5 leads to Bayes’ rule that minimises 

.Pr
(

Ŷ �= Y
)

, the  overall error rate. 

The outcome of the binary classifier can be displayed in the so-called confusion 
matrix shown in Table 9.1. For a particular experiment, the proportions that fall 
in the body of the table are empirical realisations of the 4 joint probabilities that 
provide 3 independent pieces of information. Different ways of summarising these 
joint probabilities give rise to different methods of classification. 

Table 9.1 A typical confusion matrix for a binary classifier with the 4 joint probabilities in the 
body of the table 

True status 

.Y = 1 .Y = 0 Marginal 

Predicted .Ŷ = 1 .Pr
(

Ŷ = 1, Y = 1
)

.Pr
(

Ŷ = 1, Y = 0
)

. Pr
(

Ŷ = 1
)

Status .Ŷ = 0 .Pr
(

Ŷ = 0, Y = 1
)

.Pr
(

Ŷ = 0, Y = 0
)

. Pr
(

Ŷ = 0
)

Marginal .Pr (Y = 1) . Pr (Y = 0)

.Pr
(

Ŷ = k|Y = k
)

.k = 1: Sensitivity .k = 0: Specificity

https://github.com/SorensenD/SLGDS/codes
https://github.com/SorensenD/SLGDS/codes
https://github.com/SorensenD/SLGDS/codes
https://github.com/SorensenD/SLGDS/codes
https://github.com/SorensenD/SLGDS/codes
https://github.com/SorensenD/SLGDS/codes
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One way of summarising the 4 joint probabilities in the body of the table is by 
the following 2 conditional probabilities and 1 marginal probability: 

1. .Pr
(

Ŷ = 1|Y = 0
)

known as the false positive rate (FPR) (type I error) or 

false discovery rate. In epidemiology the term . 1 − Pr
(

Ŷ = 1|Y = 0
)

=
Pr
(

Ŷ = 0|Y = 0
)

(true negative) is referred to as specificity 

2. .Pr
(

Ŷ = 1|Y = 1
)

known as the true positive rate (TPR) (power) or sensitivity in 

epidemiology. The term .1 − Pr
(

Ŷ = 1|Y = 1
)

= Pr
(

Ŷ = 0|Y = 1
)

is known 

as the false negative rate (FNR). These conditional probabilities depend on the 
threshold t . 

3. .Pr (Y = 1) is sometimes known as prevalence or incidence if 1 means having the 
condition. 

The overall probability of misclassification or overall error rate is 

. Pr
(

̂Y �= Y
) = Pr

(

̂Y = 1|Y = 0
)

Pr (Y = 0) + Pr
(

̂Y = 0|Y = 1
)

Pr (Y = 1)

= FPR (1 − Pr (Y = 1)) + FNRPr (Y = 1) , (9.26) 

equal to the sum of the off-diagonal cells in the body of Table 9.1. Given  the  
incidence in the population, the two components of the overall error rate, FPR and 
FNR, are critically dependent on the threshold t and they are complementary. As 
the threshold t is reduced, FPR increases and FNR decreases. A classifier that uses 
.t = 0.5 is known to have the lowest overall error rate, but depending on the case at 
hand, one may choose a threshold to reduce FNR. A typical example is a rule used to 
classify individuals as diseased or not diseased, where one is more concerned about 
the error of classifying a diseased individual as not diseased than about the error 
of classifying a not diseased individual as diseased. The optimal threshold must be 
chosen on the basis of the “cost” associated with the disease. 

The receiver operating characteristic curve (ROC) for data Y is a graphic 
often used in engineering, psychology and medicine to assess the performance of 
diagnostic systems for simultaneously displaying the two types of errors for all 
possible thresholds. A ROC curve is constructed by plotting true positive rate (or 
sensitivity), .TPR (t) = Pr (s (x) > t |Y = 1) (equal to .1 − FNR) versus the false 
positive rate (or 1-specificity), .FPR (t) = Pr (s (x) > t |Y = 0), for all possible 
values of the threshold t that defines disease status, where the scoring rule . s (x) =
Pr (Y = 1|x) is defined in (9.2). The plot is displayed on the unit square, and the area 
under the curve (AUC) represents one measure of the performance of the classifier. 
Values of AUC close to 1 denote a good classifier, and one that performs not better 
than chance has an AUC of . 0.5. When a ROC curve has an AUC close to 1, there is 
a high probability that a diseased individual will be correctly classified and a small 
probability that a healthy individual will be misdiagnosed as diseased. ROC curves 
for two classifiers display their ability to detect disease status.
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An important detail is that .TPR is computed using data from the diseased 
fraction only, and .FPR is computed using data from the non-diseased fraction 
only. These quantities are conditional probabilities. Therefore, the ROC plot is 
independent of the prevalence of the disease in the population. This is in marked 
contrast to the so-called predicted values that involve the conditional probabilities 

.Pr
(

Y = y|Ŷ = ŷ
)

, reflecting the clinical value of the test. The predicted values 

depend on the prevalence of the disease in the population, .Pr (Y = y), as illustrated 
below. 

Predicted Disease Status 

Sensitivity and specificity are often used to describe test performance. From a 
diagnostic point of view, one is interested in knowing how well a test result predicts 
disease status. The positive predicted value is equal to the conditional probability 

that an individual has the disease, given a positive test: .Pr
(

Y = 1|Ŷ = 1
)

. An  

important quantity is .Pr
(

Y = 1|Ŷ = 0
)

, the conditional probability that the disease 

is present given that the test is negative. These conditional probabilities are obtained 
using Bayes theorem 

.Pr
(

Y = 1|Ŷ = 1
)

=
Pr
(

Ŷ = 1|Y = 1
)

Pr (Y = 1)

Pr
(

Ŷ = 1
) , (9.27) 

where

. Pr
(

Ŷ = 1
)

= Pr
(

Ŷ = 1|Y = 1
)

Pr (Y = 1)

+Pr
(

Ŷ = 1|Y = 0
)

Pr (Y = 0) .

Similarly, 

.Pr
(

Y = 0|Ŷ = 0
)

=
Pr
(

Ŷ = 0|Y = 0
)

Pr (Y = 0)

Pr
(

Ŷ = 0
) , (9.28) 

where

. Pr
(

Ŷ = 0
)

= Pr
(

Ŷ = 0|Y = 0
)

Pr (Y = 0)

+Pr
(

Ŷ = 0|Y = 1
)

Pr (Y = 1) .
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As a specific application, consider a test that has a specificity equal to 

.Pr
(

Ŷ = 0|Y = 0
)

= 1 and a sensitivity equal to .Pr
(

Ŷ = 1|Y = 1
)

= 0.95. 

Consider a person who feels who has been exposed to an infected relative and 
who is evaluated as having a pre-test probability of contracting the disease (prior 
probability) equal to .Pr (Y = 1) = 0.2. Using the complement of (9.28), the post-
test probability (posterior probability) of infection, given a negative test result, is 

.Pr
(

Y = 1|Ŷ = 0
)

= 0.012. With a prior probability equal to .Pr (Y = 1) = 0.5, 

this changes to .Pr
(

Y = 1|Ŷ = 0
)

= 0.048. 

On the other hand, if sensitivity of the test is .Pr
(

Ŷ = 1|Y = 1
)

= 0.70, with 

.Pr (Yi = 1) = 0.2, the posterior probability is .Pr
(

Y = 1|Ŷ = 0
)

= 0.07 and with 

a prior equal to .Pr (Y = 1) = 0.5, the posterior probability is . Pr
(

Y = 1|Ŷ = 0
)

=
0.23. 

Infection Prevalence 

The prevalence of a disease is the proportion of individuals in the population that 
have the disease, .Pr (Y = 1). Imagine that in a random sample, n individuals are 
tested, that predictions . Ŷ are generated using some rule .s(x) and that T are declared 
positive. Then the ratio 

.P̂r
(

Ŷ = 1
)

= T

n
(9.29) 

is taken as an estimator of prevalence .Pr (Y = 1). However, this estimate is biased 
unless the test is perfect with specificity and sensitivity equal to 1. To see this, 
let .Pr

(

̂Y = 1
)

be the expected value of .P̂r
(

̂Y = 1
)

. The relationship between 

.Pr
(

Ŷ = 1
)

and .Pr (Y = 1) is given by 

. Pr
(

Ŷ = 1
)

= Pr
(

Ŷ = 1|Y = 1
)

Pr (Y = 1) + Pr
(

Ŷ = 1|Y = 0
)

Pr (Y = 0)

= senPr (Y = 1) + (1 − spe) (1 − Pr (Y = 1))

= (1 − spe) + (sen + spe − 1) Pr (Y = 1) ,

(Diggle 2011) where .sen = Pr
(

Ŷ = 1|Y = 1
)

and .1 − spe = Pr
(

Ŷ = 1|Y = 0
)

. 

If the test is perfect, .spe = sen = 1, and substituting above, yields . Pr
(

Ŷ = 1
)

=
Pr (Y = 1). Otherwise, with an imperfect test, .Pr

(

Ŷ = 1
)

is a linear, increasing 

function of .Pr(Y = 1) (if .sen + spe > 1, implying that the test is superior to the
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toss of a coin). An unbiased estimator of incidence (given n, sen, spe and bounded 
between 0 and 1) is 

.
Pr
(

̂Y = 1
)− (1 − spe)

sen + spe − 1
= T − n (1 − spe)

n (sen + spe − 1)
. (9.30) 

Example: Estimation of Prevalence Using an Imperfect Test 

As an illustration assume that an imperfect test is implemented on . n = 10,000
individuals and that .T = 900 show a positive result. If this test has a sensitivity 
equal to .0.85 and a specificity equal to .0.95, then the estimate of prevalence based 
on (9.30) is .̂Pr (Y = 1) = 0.05. 

Given n, spe and sen, a confidence interval for this estimator of prevalence is 
readily obtained from the fact that T is binomially distributed. Using R, the  lower  
and the upper bounds for a .95% confidence interval for T are 

lb <- qbinom(0.025,n,(T/n)) 
up <- qbinom(0.975,n,(T/n)) 

and the corresponding .95% (frequentist) confidence interval for .Pr (Y = 1) is 

. Pr

[

lb − n (1 − spe)

n (sen + spe − 1)
< Pr (Y = 1) <

ub − n (1 − spe)

n (sen + spe − 1)

]

= 0.95.

For instance, for .T = 900 tested positive out of .n = 10,000 with .spe = 0.95 and 
.sen = 0.85, the above gives 

.Pr (0.043 < Pr (Y = 1) < 0.057) = 0.95. (9.31) 

This calculation assumes that spe and sen are known without error. Incorporation 
of uncertainty in these parameters can be accommodated in a straightforward 
manner adopting a Bayesian approach and is expected to result in a confidence 
interval wider than that given by (9.31). 

As shown below it is quite simple to implement a Monte Carlo-based Bayesian 
approach. Let .Pr (Y = 1) = θ and .Pr

(

̂Y = 1
) = φ. The strategy adopted is to 

parametrise the model in terms of .(φ, sen, spe), to draw posterior samples from 
.[φ, sen, spe|t, n] and to construct . θ from these draws using (9.30) at each round. 
These are draws from the desired posterior distribution .[θ |t, n]. This Monte Carlo 
method is known as composition (see page 153). The Bayesian model is 

.p (φ, sen, spe|t, n) ∝ p (φ, sen, spe) p (t |n, φ) . (9.32)
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Assume that .φ, sen and spe are a priori independent, with .φ ∼ Un (0, 1), . sen ∼
Un (0.8, 1) and .spe ∼ Un (0.925, 1). Thus, sen is constrained in the interval 
.[0.8, 1] and spe in the interval .[0.925, 1]. With these assumptions, 

.p (φ, sen, spe|t, n) ∝ p (sen) p (spe) p (t |n, φ) (9.33) 

where the binomial likelihood is of the form

.p (t |n, φ) ∝ φt (1 − φ)n−t . (9.34) 

Viewed as a function of . φ, this is the kernel of a beta distribution .Be (t+1, n−t+1). 
For .n = 10,000 and .t = 900, this is a very peaked (informative) likelihood. The 
algorithm proceeds as follows: 

1. Draw sen from . Un (0.8, 1)
2. Draw spe from . Un (0.925, 1)
3. Draw . φ from . Be (t + 1, n − t + 1)
4. Calculate . θ from (9.30) and repeat from 1 until the desired chain length is 

achieved. 

Steps 1 and 2 could be replaced with scaled beta distributions .Be (a, b) where a 
and b are chosen to generate the appropriate mode (e.g. .0.85 for sen and .0.95 for 
spe). The scaling is chosen to guarantee that the draws are within specific intervals 
(e.g. .[0.8, 1] for sen and .[0.925, 1] for spe and the lower limit .0.925 guarantees that 
the estimator of . θ is positive). The code uses an algorithm due to Devroye (1986) to  
sample from truncated distributions (see page 218). 

It is clear from (9.33) and (9.34) that the data contain information neither about 
sen nor about spe. The choice of the range of values from which these parameters 
are sampled propagates into the posterior uncertainty of .[θ |t, n]. 

The R-code below implements the algorithm. 

# CODE0902 
rm(list=ls()) # CLEAR WORKSPACE 
set.seed(3033) 
rep<-10000 
se<-0.85 
sp<-0.95 
a_se<-4 
b_se<-1.5 
a_sp<-10 
b_sp<-1.5 

# THEORETICAL MODE OF BETA PRIORS 
theoretmodese<-(a_se-1)/(a_se+b_se-2) 
theoretmodesp<-(a_sp-1)/(a_sp+b_sp-2) 
resultg<-matrix(data=NA,nrow=rep,ncol=4) 

# NUMBER OF TESTS: n 
n<-10000 
# NUMBER OF POSITIVE TESTS: t 
t<-900
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for (i in 1:rep){ 
psi<-rbeta(1,(t+1),(n-t+1)) 
a<-1-sp 
b<-se+sp-1 
if((psi-a) > 0) 

{ 
theta <- (psi-a)/b 
} 
else {theta <- 0} 

# DRAW SE SP FROM TRUNCATED BETA’S USING DEVROYE’S ALGORITHM 
se<-qbeta(runif(1,pbeta(0.8,a_se,b_se),pbeta(1,a_se,b_se)), 
a_se,b_se) 

sp<-qbeta(runif(1,pbeta(0.925,a_sp,b_sp),pbeta(1,a_sp,b_sp)), 
a_sp,b_sp) 

#se <- 0.85 
#sp <- 0.95 
# OR  
# DRAW SE AND SP FROM APPROPRIATE UNIFORM DISTRIBUTIONS 
#se<-runif(1,0.8,1) 
#sp<-runif(1,0.925,1) 
resultg[i,]<-c(i,theta,se,sp) 
} 
# BAYESIAN POSTERIOR MEAN OF THETA AND POSTERIOR INTERVAL 
postmean <- mean(resultg[,2]) 
postinterval <- quantile(resultg[,2],c(0.025,0.975)) 
postmean 

## [1] 0.05754302 

postinterval 

## 2.5% 97.5% 
## 0.01928466 0.09916501 

Execution of the code choosing the scaled beta distributions for sen and spe 
leads to a Monte Carlo estimate of the posterior mean of . θ equal to .0.058, with 
a .95% Bayesian posterior interval .(0.019, 0.099). This is wider than the classical 
interval generated by (9.31) and reflects the prior uncertainty in spe and sen. When 
sen and spe are fixed at .0.85 and .0.95, respectively, the Monte Carlo output yields 
an estimate of the posterior mean of . θ equal to .0.050 and a .95% Bayesian posterior 
interval .(0.043, 0.057), in agreement with the classical interval (9.31). 

Probabilistic Interpretation of AUC 

Given an observation .Yi = 1 (class 1) and an observation .Y ′
i = 0 (class 0), the AUC 

can be interpreted as the probability that the classification .s = s (xi) will assign a 
higher score to . Yi than to . Y ′

i (assuming that 1’s rank higher than 0’s, so that if the 
score .s(xi) is larger than a threshold t , a prediction based on . xi will be classified
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as a member of class 1. The classification score s can be defined at the level of the 
liability as in (3.74) on page 109). 

It will be convenient to define the following quantities: 

• T PR: . Pr (s > t |Y = 1) = 1 − Pr (s ≤ t |Y = 1) = 1 − F1 (t)

• FPR: . Pr (s > t |Y = 0) = 1 − Pr (s ≤ t |Y = 0) = 1 − F0 (t)

• .ε = 1 − F0 (t) �⇒ F0 (t) = 1 − ε �⇒ t = F−1
0 (1 − ε), where .F−1

0 is the 
inverse cumulative distribution function that maps a FPR to a given threshold 

• .f0 (t) = dF0(t)
dt

= p (t |Y = 0), the probability density function of s for . Y = 0
(class 0) 

• . dε
dt

= −f0 (t) �⇒ dε = −f0 (t) dt

• .f1 (t) = dF1(t)
dt

= p (t |Y = 1), the probability density function of s for . Y = 1
(class 1) 

Using this notation the ROC curve can be written as a function of . ε = 1− F0 (t)

as follows: 

.ROC(ε) = 1 − F1

(

F−1
0 (1 − ε)

)

. (9.35) 

The area under the ROC curve (AUC) is defined as .
∫ 1
0 ROC(ε) dε. Substitut-

ing (9.35) yields 

. AUC =
∫ 1

0

(

1 − F1

(

F−1
0 (1 − ε)

))

dε

=
∫ −∞

∞

[

1 − F1

[

F−1
0 (F0 (t))

]]

(−f0 (t)) dt

=
∫ ∞

−∞
[1 − F1 (t)] f0 (t) dt. (9.36) 

In the second line, the integration is from . ∞ to .−∞ because .F−1
0 (1) = ∞ and 

.F−1
0 (0) = −∞. The third line changes the sign of . f0 and the limits of integration 

are reversed. Substituting 

. 1 − F1 (t) =
∫ ∞

t

f1 (u) du,

results in 

. AUC =
∫ ∞

−∞

∫ ∞

t

f1 (u) f0 (t) du dt

=
∫ ∞

−∞

∫ ∞

−∞
I (u > t) f1 (u) f0 (t) du dt (9.37)
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that can be read as the probability that the score assigned to a draw Y from class 1 
is larger than the score assigned to a draw . Y ′ from class 0. 

Example: ROC Curves 

ROC curves and AUC are illustrated with two simulated binary datasets that differ in 
the level of heritability on the underlying scale. These are .h2 = 0.5 and .h2 = 0.23. 
In both sets of data, there are 2000 phenotypes and 500 genetic markers, out of 
which 20 are causal (have an effect on the value of liability). The proportion of 
1’s is approximately .0.30, and this is controlled by setting the mean . μ at the level 
of liability equal to .−0.67. The effects of causal loci are obtained to ensure that 
the additive variance on the underlying scale is either . 0.3 (for .h2 = 0.23) or 1 
(for .h2 = 0.5). The residual effects at the level of liability are iid .N (0, 1) and 
phenotypes are simulated using a probit model. The . R−code below generates the 
data for .h2 = 0.23. 

# ******* GENERATE BINARY DATA - PROBIT MODEL ******* 
# CODE0903 
rm(list=ls()) # CLEAR WORKSPACE 
library(glmnet) 
set.seed(30337) 
va<-0.3 
#va <- 1 
p<-0.25 
#p <- 0.5 
mu <- qnorm(p) 
ve <- 1 
nindiv<-2000 
nloci<-20 
nmarker<-500 
be<-matrix(data=0.0,nrow=nmarker,ncol=1) # parameter true model 
IDq<-sample(1:nmarker,nloci,replace=F) # choose nloci as QTL 
WT<-matrix(nrow=nindiv,ncol= nmarker, 

rbinom(n=nindiv*nmarker,size=2,p=.5)) 
XT<-matrix(data=NA,nrow=nindiv,ncol=nmarker) # NO INTERCEPT 
XTi<-matrix(data=NA,nrow=nindiv,ncol=nmarker+1) # INTERCEPT 
# CENTER MARKER MATRIX 
cm<-colMeans(WT) 
for (i in 1:nmarker) 
{ 

XT[,i]<-(WT[,i]-cm[i]) 
} 
meanXT <- apply(XT,2,mean) 
varXT<-apply(XT,2,var) 
# Compute 2*Sum(p(1-p)); Sum over nqtl QTL: 
sumvar<-sum(varXT[IDq]) 
QTLeff<-sqrt(va/sumvar) # QTL effect 
# so that genetic variance is VA 
be[IDq] <- QTLeff # QTL EFFECT 
xb<-XT%*%be 
p1 <- pnorm(mu+xb) # PROBIT MODEL
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be[IDq]<-QTLeff # TRUE MARKER EFFECT = QTLeff; REST ARE ZERO 
var(XT%*%be) 

## [,1] 
## [1,] 0.3103757 

y<-rep(0,nindiv) 
y <- rbinom(nindiv,1,p1) 
mean(y) 

## [1] 0.288 

Two models are fitted to the binary data. The first is a logistic lasso implemen-
tation and the second is a standard logistic likelihood that includes the full set of 
500 genetic markers (referred to as the full model). Both models are fitted using the 
package GLMNET. The full model is retrieved including .s = 0 as an argument to 
the call of the function GLMNET. The code to run GLMNET, for  .h2 = 0.23, is as  
follows: 

#CODE0903(cont) 
####### FITTING FULL MODEL AND LASSO MODEL WITH GLMNET ######## 
set.seed(3337) 
#library(glmnet) 

train=sample(1:nrow(XTi),nrow(XTi)/2) 
test=(-train) 
y.test=y[test] 
y.train<-y[train] 
# ********** FIT GLMNET TO FIND THE BEST LAMBDA *************** 
# STEP 1 
cv.out=cv.glmnet( 
XT[train,],y[train],alpha=1,standardize=TRUE,family="binomial") 
#plot(cv.out) 
bestlam=cv.out$lambda.min 
length(which(as.vector(coef(cv.out,s=bestlam))!=0)) 

## [1] 56 

# STEP 2 

fm.pred0=predict( 
cv.out,s=0,newx=XT[test,],family="binomial",type="class") 

fm.pred=predict( 
cv.out,s=bestlam,newx=XT[test,],family="binomial", 
type="class") 

mean((as.numeric(fm.pred)-y.test)^2) # VALIDATION MSE: LASSO 

## [1] 0.273
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# VALIDATION MSE: FULL MODEL: 

mean((as.numeric(fm.pred0)-y.test)^2) 

## [1] 0.374 

# ERROR RATE OF NULL MODEL: y = mu + e 
pnull<-mean(y.test) 
pnull 

## [1] 0.296 

ynull<-rep(0,length(y.test)) 
if(pnull > 0.5){ynull<-1} 
mean((ynull-y.test)^2) # VALIDATION MSE BASED ON NULL MODEL 

## [1] 0.296 

ROC curves can be generated using the package pROC. This package can use 
the output from GLMNET (step 2, fm or fm0). Various pieces of information can 
be extracted and one of these is displayed in Fig. 9.5. The curves illustrate that the 
classifiers’ performance is higher at heritability .h2 = 0.5 than at .h2 = 0.23 due to 
an increase in power. The lasso classifier is consistently superior to the full model 
classifier (which includes the 500 marker covariates) over the full range of the values 
of the threshold t . 

The R-code below generates Fig. 9.5 using the package pROC. 
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Fig. 9.5 ROC curves using simulated data. Left: .h2 = 0.50. Right: .h2 = 0.23. Blue line, lasso 
regression; green line, full likelihood model with all 500 covariates
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# CODE0903(cont) 
#install.packages("pROC", .libPaths()[1]) 
library(pROC) 
set.seed(420) 
par(pty="s") # GENERATES "PRETTY" FIGURES 

fm.pred=predict( 
cv.out,s=bestlam,newx=XT[test,],family="binomial", 
type="response") 
fm.pred0=predict( 
cv.out,s=0,newx=XT[test,],family="binomial",type="response") 

pred<-as.numeric(fm.pred) 
pred0<-as.numeric(fm.pred0) 
roc.info<-roc(y.test, pred,plot=FALSE,legacy.axes=TRUE) # LASSO 

## Setting levels: control = 0, case = 1 

## Setting direction: controls < cases 

# FULL MODEL: 
roc.info0<-roc(y.test, pred0,plot=FALSE,legacy.axes=TRUE) 

## Setting levels: control = 0, case = 1 
## Setting direction: controls < cases 

s <-roc(y.test, pred,plot=FALSE,legacy.axes=TRUE,percent=TRUE, 
xlab="False Positive Percentage", 
ylab="True Positive Percentage", 
col="blue",print.auc=TRUE,cex.lab=1.3) 

## Setting levels: control = 0, case = 1 
## Setting direction: controls < cases 

# CREATE DATA FRAME TO BE USED IN THE NEXT CODE 
# THAT CONTAINS TPOS, FPOS FOR THE COMPLETE RANGE 
# OF THRESHOLDS t 
roc.df<-data.frame(tpos=roc.info$sensitivities*100, 

fpos=(1-roc.info$specificities)*100, 
thresholds=roc.info$thresholds) 

roc.df0<-data.frame(tpos0=roc.info0$sensitivities*100, 
fpos0=(1-roc.info0$specificities)*100, 
thresholds0=roc.info0$thresholds) 

head(roc.df) 

## tpos fpos thresholds 
## 1 100.00000 100.00000 -Inf 
## 2 100.00000 99.85795 0.04341405 
## 3 100.00000 99.71591 0.06056188 
## 4 99.66216 99.71591 0.06751315 
## 5 99.66216 99.57386 0.06976092 
## 6 99.66216 99.43182 0.07345414
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f50<-roc.df[min(which(roc.df$thresholds > 0.49995)),] 
f50_0<-roc.df0[min(which(roc.df0$thresholds > 0.49995)),] 
par(pty="m") 
f50 

## tpos fpos thresholds 
## 950 12.5 1.988636 0.5000075 

mean(y.test) 

## [1] 0.296 

The estimate of AUC can be retrieved typing s$auc. This yields 66.597 in 
agreement with the value displayed in the right panel of Fig. 9.5 corresponding 
to the lasso regression. 

Estimates of AUC can also be obtained by numerical integration of the AUC 
curve. The following code performs this operation using the trapezoid rule: 

# CODE0903(cont) 
# ********** COMPUTE AUC BY NUMERICAL INTEGRATION ****** 
tpos <- roc.df$tpos/100 
fpos <- roc.df$fpos/100 
n<-length(tpos) 
sum((tpos[-1]+tpos[-n])/2*(fpos[-n]-fpos[-1])) 

## [1] 0.6659724 

# OR AS A FUNCTION 
auc <- function(fpos,tpos){ 

n <- length(tpos) 
abs(sum((tpos[-1]+tpos[-n])/2*(fpos[-n]-fpos[-1]))) 

} 
with(roc.df,auc(fpos/100,tpos/100)) # AUC FOR LASSO 

## [1] 0.6659724 

with(roc.df0,auc( 
fpos0/100,tpos0/100)) # AUC FULL MODEL: glmnet: LAMBDA=0 

## [1] 0.5932389 

A threshold t equal to . 0.5 minimises the overall (validation) error rate (9.26). 
This can be confirmed by extracting the necessary information from data frames 
generated by the package pROC, executed by the section of R-code CODE0903 
starting on page 399. The last two lines of this code output the proportion of true 
positives, false positives for the complete range of values of the thresholds, t , for
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the LASSO (f50) and for the full model (f50_0). For example, using the output 
linked to f50, the estimate of the validating mean squared error or error rate is 

. (100 − 12.5) × 0.296 + 1.988636 × (1 − 0.296) = 27.3

where the proportion of . 1′s in the validating data is .0.296. The result is in agreement 
with mean((as.numeric(fm.pred)-y.test)ˆ2)=.0.273 in the R-code 
starting on page 398. 

9.8 Prediction of Disease Status of Individual Given Disease 
Status of relatives 

The question addressed here is how to compute the probability that an individual 
will show a genetic disease, given sources of information that can be incorporated 
in a probability model. This could include family history and known susceptibility 
loci (So et al 2011). In the development that follows, information is restricted to the 
disease status of the individual’s father and mother. 

The Model 

A simple binary trait (disease/not-disease) and a threshold probit model are 
assumed. In the parametrisation used (see page 109 for the alternative parametri-
sation), if . ui exceeds the threshold t , then the individual shows the disease and 
.Yi = 1; otherwise, if . ui is smaller than t , .Yi = 0. Assume the linear model for the 
liability 

.ui = μ + gi + ei, (9.38) 

where .gi ∼ N
(

0, σ 2
g

)

is the additive genetic value of individual i, . σ 2
g is the 

additive genetic variance, .ei ∼ N (0, 1) is the environmental deviation and . μ is 
the population mean. The phenotypic variance of the marginal distribution of the 

liability is .σ 2 = σ 2
g +1, and the heritability on the underlying scale is .h2 = σ 2

g

/

σ 2. 

Calculation of Disease Status 

The general result is motivated with a specific case. Consider the joint distribution 
of the liabilities of an offspring .(uo) and of its unrelated parents . (uf , um)

.
(

uo, uf , um

) ∼ N

⎛

⎝

⎡

⎣

μ

μ

μ

⎤

⎦ ,

⎡

⎣

1 0.5h2 0.5h2

0.5h2 1 0
0.5h2 0 1

⎤

⎦ σ 2

⎞

⎠ . (9.39)
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An additive genetic model is assumed, where the covariance of the offspring with 
each parent is .σ 2

g /2 = h2σ 2/2. 
Given this model, what is the probability that the offspring will show the 

disease, given the disease status of father and mother? This conditional probability 
model, given information on parents, will be referred to as the selection model, 
introduced by the set of Eqs. (2.53) on page 71. Two approaches are described. One 
uses standard probability theory where computations rely on multivariate normal 
numerical integration. The other is an approximation that avoids the numerical 
computation of multiple integrals; it is based on results of truncation selection of 
normal variates dating back to Pearson (1903) and Aitken (1934). The essentials of 
the latter approach are summarised in NOTE 2 on page 411. 

Consider the case where the father has the disease and the mother does not. 
The conditional probability that the offspring is affected by the disease, given this 
information, is 

. Pr
(

Yo = 1|Yf = 1, Ym = 0
) = Pr

(

Yo = 1, Yf = 1, Ym = 0
)

Pr
(

Yf = 1, Ym = 0
)

= Pr
(

uo > t |uf > t, um < t
)

=
∫∞
t

∫∞
t

∫ t

−∞ p
(

uo, uf , um

)

dumduf duo
∫∞
−∞
∫∞
t

∫ t

−∞ p
(

uo, uf , um

)

dumduf duo

=
∫∞
t

∫∞
t

∫ t

−∞ p
(

uo, uf , um

)

dumduf duo
∫∞
t

∫ t

−∞ p
(

uf , um

)

dumduf

. (9.40) 

In these expressions, .p
(

uo, uf , um

)

is the joint probability density function of 
the distribution defined in (9.39), and .p

(

uf , um

) = ∫∞
−∞ p

(

uo, uf , um

)

du0. The  
evaluation of (9.40) requires multivariate normal numerical integration. Several 
software routines are available to compute the numerical integration; here I use the 
R function pmvnorm that is part of the library mvtnorm. 

A little insight into expression (9.40) can be gained as follows. Under the 
selection model, the joint probability density function of the trivariate normal 
distribution is 

. ps
(

uo, uf , um

) = p
(

uo, uf , um

)

∫∞
−∞
∫∞
t

∫ t

−∞ p
(

uo, uf , um

)

dumduf duo

and the marginal density of . uo under the selection model is 

. ps (uo) =
∫ ∞

t

∫ t

−∞
ps
(

uo, uf , um

)

dumduf .

Integration of .ps (uo) over the interval .(t < uo < ∞) yields (9.40).
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To compute the marginal probability (under the selection model) that . Yo = 1
using the Pearson-Aitken formula (see NOTE 2 on page 411), proceed as follows. 
In terms of expression (9.58), let .x = (

uf , um

)

and .y = uo. Then using (9.54) 
and (9.56) 

.μ∗
x = E

[(

uf , um

) |uf > t, um < t
] =

[

μ + σ
φ(α)

1−�(α)

μ − σ
φ(β)
�(β)

]

(9.41) 

and using (9.55) and (9.57), 

. V ∗
x = Var

[(

uf , um

) |uf > t, um < t
] =

=
⎡

⎣

σ 2
[

1 − φ(α)
1−�(α)

(

φ(α)
1−�(α)

− α
)]

0

0 σ 2
[

1 − φ(β)
�(β)

(

φ(β)
�(β)

+ β
)]

⎤

⎦ . (9.42) 

(see NOTE 1 on page 407 for the definition of . α and . β). Then using (9.59) the mean 
of the offspring in the selection model is 

.E
(

u0|uf > t, um < t
) = μ∗

y = μy + CyxV
−1
x

(

μ∗
x − μx

)

, (9.43) 

and using the block in the second row and second column of (9.60), the variance of 
the offspring in the selection model is 

.Var
(

u0|uf > t, um < t
) = Vy − Cyx

(

V −1
x − V −1

x V ∗
x V −1

x

)

Cxy. (9.44) 

Finally, the marginal probability that the offspring is affected (in the selection
model) is obtained by numerically integrating the (univariate) normal distribution
with mean given by (9.43) and variance given by (9.44) over the range: lower limit 
. = t , upper limit . = infinity. 

It is important to notice that results (9.41) and (9.42) are exact. However, due 
to the correlation of . u0 with the truncated variables . uf and . um, the marginal 
distribution of . uo after truncation is not normal. The Pearson-Aitken formula is 
used to compute the mean and variance of this distribution and then integrate over 
the normal distribution with this mean and variance. The assumption of normality in 
this last step is an approximation that works remarkably well in the example below, 
despite the rather extreme incidence for one of the cases considered. 

Example: Prediction of a Genetic Disease 

The computations are illustrated with a binary trait whose heritability on the 
underlying scale is .h2 = 1/3 and the phenotypic variance is .σ 2 = 3/2. The
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objective is to predict the disease status of an offspring, given knowledge of the 
disease status of the father and the mother. The incidence in the population is either 
. 2% or .0.2%. 

The R-code to perform the “exact” computations and the Pearson-Aitken 
formula is shown below. The code is divided in two parts; the first part performs 
numerical integration and outputs the conditional probability that an offspring shows 
the disease given 

1. CASE 1: father affected, mother affected 
2. CASE 2: father affected, mother not affected 
3. CASE 3: father unaffected, mother unaffected 

# CODE0904 
# NUMERICAL INTEGRALS 
rm(list=ls()) # CLEAR WORKSPACE 
library(mvtnorm) 
# EXAMPLE: FATHER-MOTHER-CHILD 
p<-0.02 # INCIDENCE IN THE POPULATION 
# p <- 0.002 
mean<-c(0,0,0) # MEAN OF THE THREE LIABILITIES 
her <- 1/3 # heritability 
var <- 1.5 # variance of liability 
cov <- 0.5*her*var # covariance single parent-child 
t<-qnorm((1-p),mean=0,sd=sqrt(1.5)) # THRESHOLD 
# # VAR-COV MATRIX OF LIABILITY: 
sigma <- matrix(c(var,cov,cov,cov,var,0,cov,0,var),3,3) 
sigma 

## [,1] [,2] [,3] 
## [1,] 1.50 0.25 0.25 
## [2,] 0.25 1.50 0.00 
## [3,] 0.25 0.00 1.50 

# CASE 1: FATHER AFFECTED, MOTHER AFFECTED 
den<-pmvnorm(lower=c(-Inf,t,t),upper=c(Inf,Inf,Inf), 

mean=mean,sigma=sigma) 
num<-pmvnorm(lower=c(t,t,t),upper=c(Inf,Inf,Inf), 

mean=mean,sigma=sigma) 
proboffsprcase1 <- num/den 
#proboffsprcase1 
# CASE 2: FATHER AFFECTED, MOTHER UNAFFECTED 
den<-pmvnorm(lower=c(-Inf,t,-Inf),upper=c(Inf,Inf,t), 

mean=mean,sigma=sigma) 
num<-pmvnorm(lower=c(t,t,-Inf),upper=c(Inf,Inf,t), 

mean=mean,sigma=sigma) 
proboffsprcase2 <- num/den
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#proboffsprcase2 
# CASE 3: FATHER UNAFFECTED, MOTHER UNAFFECTED 
den<-pmvnorm(lower=c(-Inf,-Inf,-Inf),upper=c(Inf,t,t), 

mean=mean,sigma=sigma) 
num<-pmvnorm(lower=c(t,-Inf,-Inf),upper=c(Inf,t,t), 

mean=mean,sigma=sigma) 
proboffsprcase3 <- num/den 
#proboffsprcase3 

The three conditional probabilities are as follows: CASE 1, .0.101; CASE 2,  
.0.046; and CASE 3, .0.019. 

The second part computes the same conditional probabilities using the Pearson-
Aitken formula. 

# CODE0905 
# Pearson-Aitken formula 
# Input 
mean<-0 # marginal mean of liability 
var<-1.5 # marginal variance of liability 
varg<-0.5 # additive genetic variance 
p<-0.02 # Incidence in population 
t<-qnorm((1-p),mean=0,sd=sqrt(1.5)) # THRESHOLD 
varfm<-var*diag(2) # VAR-COV PARENTS 
covop<-matrix(0.5*varg,nrow=1,ncol=2) # COV OFFS-PARENTS 
# CASE 1: FATHER AFFECTED, MOTHER AFFECTED 
# FATHER: 
alfa<-(t-mean)/sqrt(var) # LOWER TRUNCATION 
p_alfa<-dnorm(alfa) # PDF AT LOWER TRUNCATION POINT 
cum_alfa<-pnorm(alfa) # CUM. DIST. FUNCTION AT LOWER TRUNCATION 
intsel<-p_alfa/(1-cum_alfa) # "INTENSITY OF SELECTION" 
# MEAN AND VARIANCE OF (SELECTED) FATHER (MOTHER BELOW) 
minfather<-mean+sqrt(var)*intsel 
varfather<-var*(1-intsel*(intsel-alfa)) 
# MOTHER 
minmother<-minfather 
varmother<-varfather 
# MEAN AND VARIANCE OF SELECTED FATHER AND MOTHER 
expcase1 <- matrix(c(minfather,minmother),2,1) 
varcase1 <- matrix(c(varfather,0,0,varmother),2,2) 
# CONDITIONAL MEAN AND VARIANCE OF LIABILITY OF OFFSPRING 
condmin<-mean+covop%*%solve(varfm)%*%(expcase1) 
int1<-solve(varfm)-(solve(varfm)%*%varcase1%*%solve(varfm)) 
condvar<-var-(covop%*%(int1)%*%t(covop)) 
proboffPAcase1<-1-pnorm(t,mean=condmin,sd=sqrt(condvar)) 
# ********************************************************* 
# CASE 2: FATHER AFFECTED, MOTHER UNAFFECTED 
# FATHER: AS IN CASE 1 
beta<-(t-mean)/sqrt(var) # upper TRUNCATION 
p_beta<-dnorm(beta) 
cum_beta<-pnorm(beta) 
# MOTHER MEAN AND VARIANCE 
minmother<-mean-sqrt(var)*(p_beta/cum_beta) 
varmother<-var*(1-(p_beta/cum_beta)*((p_beta/cum_beta)+beta)) 
expcase2 <- matrix(c(minfather,minmother),2,1) 
varcase2 <- matrix(c(varfather,0,0,varmother),2,2)
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# CONDITIONAL MEAN AND VARIANCE OF LIABILITY OF OFFSPRING 
condmin<-mean+covop%*%solve(varfm)%*%(expcase2) 
int2<-solve(varfm)-(solve(varfm)%*%varcase2%*%solve(varfm)) 
condvar<-var-(covop%*%(int2)%*%t(covop)) 
proboffPAcase2<-1-pnorm(t,mean=condmin,sd=sqrt(condvar)) 
# ******************************************************** 
# CASE 3: FATHER UNAFFECTED, MOTHER UNAFFECTED 
# FATHER: AS MOTHER IN CASE 2 
expcase3 <- matrix(c(minmother,minmother),2,1) 
varcase3 <- matrix(c(varmother,0,0,varmother),2,2) 

# CONDITIONAL MEAN AND VARIANCE OF LIABILITY OF OFFSPRING 
condmin<-mean+covop%*%solve(varfm)%*%(expcase3) 
int3<-solve(varfm)-(solve(varfm)%*%varcase3%*%solve(varfm)) 
condvar<-var-(covop%*%(int3)%*%t(covop)) 
proboffPAcase3<-1-pnorm(t,mean=condmin,sd=sqrt(condvar)) 

The three conditional probabilities are as follows: CASE 1, . 0.1; CASE 2,  
.0.046; and CASE 3, .0.019, in good agreement with the results based on numerical 
integration. 

The results are summarised in Table 9.2. The results show that, for this example, 
both ways of computing the probabilities lead to identical results, to 3 decimal 
digits. Moving through the rows from right to left indicates that the probability 
of disease status of the offspring increases from a value that corresponds to the 
population incidence, when neither parent is affected, to a value that is 5 times larger 
or 15 times larger, for incidences in the population of .2% or .0.2%, respectively, 
when both parents are affected. 

Note 1: Mean and Variance of the Truncated Normal Distribution 

The pdf of the normal distribution with mean . μ and variance . σ 2 truncated between 
a and b, .a < b, is  

.p (y|a < y < b) =
(

2πσ 2
)− 1

2 exp
(

− (y−μ)2

2σ 2

)

Pr (a < y < b)
(9.45) 

Table 9.2 Probability of disease of an offspring, given the disease status of its parents 

.Pr(Y = 1) .(Yf = 1; Ym = 1) (.Yf = 1; Ym = 0).a (.Yf = 0; Ym = 0) 

.0.02 PA .0.100 .0.046 . 0.019

N .0.100 .0.046 . 0.019

.0.002 PA .0.031 .0.0086 . 0.002

N .0.031 .0.0086 . 0.002

.Pr(Y = 1) incidence in population, PA  computation with the Pearson-Aitken formula, N 
numerical integration 

a Disease status of parents: for example, (.Yf = 1; Ym = 0) symbolises the case where the father 
shows the disease (.Yf = 1) and the mother does not (.Ym = 0)
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where 

. Pr (a < y < b) = Pr

(

a − μ

σ
<

y − μ

σ
<

b − μ

σ

)

= Pr (α < z < β) , α = a − μ

σ
;β = b − μ

σ
; z = y − μ

σ

= �(β) − �(α) .

The expected value is 

.E (y|a < y < b) =
(

2πσ 2
)− 1

2

�(β) − �(α)

∫ b

a

y exp

(

− (y − μ)2

2σ 2

)

dy. (9.46) 

Since .y = μ + σz and .dy = σdz, this can be written as 

. E (y|a < y < b) =
(

2πσ 2
)− 1

2

�(β) − �(α)

∫ β

α

(μ + σz) exp

(

−z2

2

)

σdz

= (2π)− 1
2

�(β) − �(α)
μ

∫ β

α

exp

(

−z2

2

)

dz

+ (2π)− 1
2

�(β) − �(α)
σ

∫ β

α

z exp

(

−z2

2

)

dz

= μ + (2π)− 1
2

�(β) − �(α)
σ

∫ β

α

z exp

(

−z2

2

)

dz. (9.47) 

Let .f (z) = exp
(

− z2

2

)

; then .f ′ (z) = −z exp
(

− z2

2

)

and . 
∫ β

α
z exp

(

− z2

2

)

dz =
− ∫ β

α
f ′ (z) dz = − (f (β) − f (α)). Expression (9.47) can be written as 

. E (y|a < y < b) = μ + (2π)− 1
2

�(β) − �(α)
σ

[

exp

(

−α2

2

)

− exp

(

−β2

2

)]

= μ + σ
φ (α) − φ (β)

� (β) − �(α)
, (9.48) 

where .φ (x) is the pdf of the standard normal distribution evaluated at x. 
The conditional variance is 

. Var (y|a < y < b) = Var (μ + σz|α < z < β)

= σ 2V ar (z|α < z < β) . (9.49)
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Then 

. Var (z|α < z < β) = E
[

z2|α < z < β
]

− [E (z|α < z < β)]2 ,

where .E (z|α < z < β) = φ(α)−φ(β)
�(β)−�(α)

. The first term is 

.E
[

z2|α < z < β
]

= (2π)− 1
2

�(β) − �(α)

∫ β

α

z2 exp

(

−z2

2

)

dz. (9.50) 

A simple way of computing the integration is to note that

. (2π)−
1
2 z2 exp

(

−z2

2

)

= φ′′ (z) + φ (z) ,

where .φ′′ (z) is the second derivative of the pdf of the standard normal random 
variable z with respect to z. Then (9.50) can be written as 

. E
[

z2|α < z < β
]

= 1

�(β) − �(α)

∫ β

α

[

φ′′ (z) + φ (z)
]

dz

= 1

�(β) − �(α)

[

φ′ (z)
∣

∣

β

α
+ (� (β) − �(α))

]

. (9.51) 

Using 

. φ′ (z)
∣

∣

β

α
= (2π)−

1
2 α exp

(

−α2

2

)

− (2π)−
1
2 β exp

(

−β2

2

)

= αφ (α) − βφ (β) ,

and substituting in (9.51), yields 

. E
[

z2|α < z < β
]

= αφ (α) − βφ (β)

� (β) − �(α)
+ 1.

Then 

.Var (z|α < z < β) = 1 + αφ (α) − βφ (β)

� (β) − �(α)
−
(

φ (α) − φ (β)

� (β) − �(α)

)2
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and 

. Var (y|a < y < b) = σ 2

[

1 + αφ (α) − βφ (β)

� (β) − �(α)
−
(

φ (α) − φ (β)

� (β) − �(α)

)2
]

.

(9.52) 

As a special case of (9.48) and (9.52), consider first .y > t . Then .a = t and 
.b = +∞. Use the following result: 

. lim
z−>∞z exp

(

−z2

2

)

= 0. (9.53) 

Then .φ (β) = 0, .�(β) = 1 and using (9.53), .βφ (β) = 0. The conditional 
expectation is 

.E (y|y > t) = μ + σ
φ (α)

1 − �(α)
, (9.54) 

where .1 − �(α) is the proportion larger than t (the proportion selected, in 
quantitative genetic parlance) and .φ (α) /(1 − �(α)) is known as the intensity of 
selection. The conditional variance is 

. Var (y|y > t) = σ 2

[

1 + αφ (α)

1 − �(α)
−
(

φ (α)

1 − �(α)

)2
]

= σ 2
[

1 − φ (α)

1 − �(α)

(

φ (α)

1 − �(α)
− α

)]

. (9.55) 

As a second case, assume .y < t . Then .a = −∞, .b = t , .φ (α) = 0, .�(α) = 0, 
.αφ (α) = 0. The conditional expectation is 

. E (y|y < t) = μ + σ
−φ (β)

� (β)

= μ − σ
φ (β)

� (β)
. (9.56) 

The conditional variance is 

. Var (y|y < t) = σ 2

[

1 − βφ (β)

� (β)
−
(

φ (β)

� (β)

)2
]

= σ 2
[

1 − φ (β)

� (β)

(

φ (β)

� (β)
+ β

)]

. (9.57)
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Note 2: The Pearson-Aitken Formula 

The Pearson-Aitken formula describes how a mean vector and a covariance matrix 
of a set of variables are affected by selection on a subset of variables. It has 
been much used in animal breeding, notably by Henderson (1975). The normally 
distributed random variables are the vectors x and y with joint distribution 

. (x, y) ∼ N

[(

μx

μy

)

,

(

Vx Cxy

Cyx Vy

)]

. (9.58) 

If selection operates on x and its expected mean changes to . μ∗
x , then the expected 

mean of vector y changes to 

.μ∗
y = μy + CyxV

−1
x

(

μ∗
x − μx

)

. (9.59) 

If selection changes the variance of x to . V ∗
x , then the covariance matrix of .(x, y) is 

changed to 

.

(

V ∗
x V ∗

x V −1
x Cxy

CyxV
−1
x V ∗

x Vy − Cyx

(

V −1
x − V −1

x V ∗
x V −1

x

)

Cxy

)

. (9.60) 

In the absence of selection (or with random selection), .V ∗
x = Vx , and the 

covariance (9.60) reduces to the covariance structure of (9.58). 

9.9 Appendix: Approximate Analysis of Binary Traits 

Binary traits can be analysed ignoring their discrete nature using a linear model. 
This can be a useful approximation for an initial analysis that may work adequately 
in large datasets, where the proportion of . 1′s is not extreme. Here, I provide the 
rationale for such an approximation and establish the relationship between the 
parameters of the Bayesian linear (approximate) model and the Bayesian (true) 
probit model, where parameters are defined on the unobserved underlying scale. 

As before the binary datum is classified as “survival” versus “death”, say. Let u 
represent the unobserved liability and t the threshold. If .u > t then the individual 
survives and the binary variable (the observed datum) takes the value .y = 1. If 
.u ≤ t the individual dies and the observed datum is .y = 0. The liability associated 
with datum ij is . uij ; expressed in terms of the linear model, it takes the form 

. uij = μ + fi + eij , i = 1, 2, ..., nf , j = 1, . . . , n,

fi |σ 2
f

iid∼ N
(

0, σ 2
f

)

, eij
iid∼ N (0, 1) , (9.61)
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where . μ is the mean, . fi is a random full-sib family effect and . eij is a random 
residual .N (0, 1). There are . nf full-sib families and n full-sibs per family. The 
probability of survival of individual ij (which is the pmf of the random variable 
. Yij ) is  

. Pr
(

yij = 1|μ, fi

) = Pr
(

uij > t |μ, fi

) = Pr
(

uij − μ − fi > t − μ − fi |μ, fi

)

= Pr (ei > t − μ − fi |μ, fi) =
∫ ∞

t−μ−fi

p
(

eij

)

deij

=
∫ μ+fi−t

−∞
p
(

eij

)

deij = �(μ + fi − t) . (9.62) 

The liabilities cannot be observed and a convenient origin is to set the value of the
threshold to .t = 0. Hence, 

. Pr
(

yij = 1|μ, fi

) = �(μ + fi) . (9.63) 

This constraint makes the likelihood model identifiable and the Hessian becomes 
negative definite. For the ij th datum, the conditional pmf is 

. [�(μ + fi)]
yij [1 − �(μ + fi)]

1−yij .

To derive the approximation, the following is needed: 

. �(μ + fi)|fi=0 = �(μ) ,

∂� (μ + fi)

∂fi

∣

∣

∣

∣

fi=0
= (2π)−

1
2 exp

(

−μ2

2

)

= φ (μ) ,

where . � and . φ are the cumulative distribution function and the density function 
of the standard normal distribution, respectively. Expanding the conditional likeli-
hood (9.63) using a first-order Taylor series about .fi = 0, one obtains 

. Pr
(

yij = 1|μ, fi

) ≈ �(μ) + fi

∂� (μ + fi)

∂fi

∣

∣

∣

∣

fi=0

= �(μ) + φ (μ) fi. (9.64) 

Since the data stem from a binary process, 

. E
(

Yij |μ, fi

) = Pr
(

yij = 1|μ, fi

) ≈ �(μ) + φ (μ) fi,

Var
(

Yij |μ, fi

) = Pr
(

yij = 1|μ, fi

) (

1 − Pr
(

yij = 1|μ, fi

))

≈ [�(μ) + φ (μ) fi] [(1 − �(μ)) − φ (μ) fi]

= �(μ) (1 − �(μ)) + φ (μ) fi − φ (μ)2 f 2
i − 2�(μ) φ (μ) fi. (9.65)
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Also, 

. Cov
(

Yij , Yik|μ, fi

) = 0.

Marginally with respect to . fi , 

.E
(

Yij |μ
) = Efi

[

E
(

Yij |μ, fi

)] ≈ �(μ) . (9.66) 

. Var
(

Yij |μ
) = Varfi

(

E
(

Yij |μ, fi

))+ Efi

(

Var
(

Yij |μ, fi

))

The first term in the right-hand side is 

. Varfi

(

E
(

Yij |μ, fi

)) ≈ Varfi [�(μ) + φ (μ) fi] = φ (μ)2 σ 2
f .

The second term in the right-hand side is 

. Efi

(

Var
(

Yij |μ, fi

)) ≈ Efi

[

�(μ) (1 − �(μ)) − φ (μ) fi − φ (μ)2 f 2
i

]

= �(μ) (1 − �(μ)) − φ (μ)2 σ 2
f .

Therefore, 

. Var
(

Yij |μ
) = φ (μ)2 σ 2

f + �(μ) (1 − �(μ)) − φ (μ)2 σ 2
f

= �(μ) (1 − �(μ)) . (9.67) 

Similarly, 

. Cov
(

Yij , Yik|μ
) = Cov

[

E
(

Yij |μ, fi

)

,E (Yik|μ, fi)
]+ E

[

Cov
(

Yij , Yik|μ, fi

)]

= φ (μ)2 σ 2
f . (9.68) 

Invoking the normal approximation to the likelihood, the hierarchical model 
becomes 

. Yij |μ, fi ∼ N
(

[�(μ) + φ (μ) fi] ,
[

�(μ) (1 − �(μ)) − φ (μ)2 σ 2
f

])

,

fi |σ 2
f ∼ N

(

0, σ 2
f

)

,

that can be expressed as 

.Yij |μ, fi ∼ N
(

μ∗ + f ∗
i , σ 2∗

e

)

,

f ∗
i |σ 2

f ∼ N
(

0, σ 2∗
f

)

,
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where 

.

μ∗ = �(μ) ,

f ∗
i = φ (μ) fi,

σ 2∗
e = �(μ) (1 − �(μ)) − σ 2∗

f ,

σ 2∗
f = φ (μ)2 σ 2

f ,

h2o = 2σ 2∗
f

σ 2∗
f + σ 2∗

e

= 2φ (μ)2 σ 2
f

� (μ) (1 − �(μ))
.

(9.69) 

These equations establish the association between the parameters of the linear 
approximation and those of the probit model on the underlying scale. 

Assuming improper uniform prior distributions for .
(

μ, σ 2
f

)

, the approximate 

posterior density is 

. p
(

μ, σ 2
f

)

∝ p
(

y|μ, σ 2
f

)

p
(

f |σ 2
f

)

∝
(

σ 2∗
e

)− N
2
exp

[

− 1

2σ 2∗
e

(

y − 1μ∗ − Zf ∗)′ (y − 1μ∗ − Zf ∗)
]

(

σ 2∗
f

)− nf
2
exp

(

− 1

2σ 2∗
f

f ∗′
f ∗
)

, N = nf n, (9.70) 

where . f ∗ is the column vector with . nf elements . f ∗
i . 

Example 

The approximation is implemented to analyse simulated binary data with a full-sib 
family structure. There are 1000 full-sib families, 3 offspring per family. On the 
underlying scale of the true model, the intraclass correlation between full-sibs is 
.0.15 leading to a heritability on the underlying scale equal to .0.30. The proportion 
of . 1′s among the 3000 binary records is approximately .0.16. The true model is 
executed using the R-code on page 642. Based on a single chain of length 2000, the 
Gibbs sampler generated the following estimates of posterior means: 

.̂E (μ|y) = −1.07,

̂E
(

σ 2
f |y
)

= 0.173,

̂E
(

h2|y
)

= 0.293.
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The analysis based on the normal approximation generates the following estimates 
of posterior means of parameters on the observed scale: 

. ̂E (μ|y) = 0.160,

̂E
(

σ 2
f |y
)

= 0.0102,

̂E
(

σ 2
e |y
)

= 0.126,

̂E
(

h2|y
)

= 0.149.

These can be transformed to the estimates on the underlying scale using (9.69): 

. ̂E (μ|y) = −0.995,

̂E
(

σ 2
f |y
)

= 0.174,

̂E
(

h2|y
)

= 0.291.

in good agreement with the results of the exact analysis. However, uncertainty is 
a little underestimated with the normal model. For instance, for .[σ 2

f |y], the  . 95%
posterior interval obtained with the exact analysis is .(0.090; 0.276) and with the 
approximation .(0.106; 0.268). This is probably because the approximation is based 
on a first-order Taylor expansion and the variance is a second-order term. In general, 
the approximation deteriorates when the proportion of . 1′s is more extreme and 
datasets are smaller. 

The R-code below fits the normal approximation: 

# CODE0906 
# GAUSSIAN FULL SIB-FAMILY MODEL; SINGLE-SITE GIBBS SAMPLING 
# AS AN APPROXIMATION TO THE TRUE PROBIT MODEL 
rm(list=ls()) # Clear the workspace 
set.seed(12345) 
require(graphics) 
# GENERATE CORRELATED (FULL-SIBS DATA 
#install.packages("MCMCpack", .libPaths()[1]) 
#install.packages("mvtnorm", .libPaths()[1]) 
library(MCMCpack) 
# INITIALISE PARAMETERS 
p0 <- 0.15 
mu <- qnorm(p0) 
iccfs<-0.15 #INTRACLASS CORRELATION FS 
# VARIANCE BETWEEN FAMILIES: iccfs /(1- iccfs) 
vfs <- iccfs/(1-iccfs) 
nfs<-1000 # NUMBER OF FULL-SIB FAMILIES 

fs<-3 #FULL-SIB FAMILY SIZE 
N<-nfs*fs 

c<-0 
##########################################################
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#### GENERATE BINARY RECORDS Y 
f<-rnorm(nfs,mean=0,sd=sqrt(vfs)) 
p <- pnorm(mu+f) 
y <- rbinom(N,1,rep(p,each=fs)) 
w <- rep(1:nfs,each=fs) 
d<-data.frame(w,y) 
family <- as.factor(w) 
Z<-model.matrix(~0+family) 
########################################################## 
ztz<-t(Z)%*%Z 
rep<-2000 
resultap<-matrix(data=NA,nrow=rep,ncol=5) 
transf<-matrix(data=NA,nrow=rep,ncol=4) 

#INITIALISE THE VECTOR OF FAMILIY EFFECTS fe 
# (Not to be confused with the TRUE family effects f) 
fe<-rep(0,nfs) 
# INITIALISE BETWEEN FAMILY VARIANCE COMPONENT vf 
vf<-1 
# INITILISE RESIDUAL VARIANCE 
ve<-1 
# INITIALISE k 
k<-ve/vf 
# INITIALISE THE MEAN 
mu<-0 
sumpyinvt<-0 
#START GIBBS LOOP NORMAL MODEL 
ptm <- proc.time() 
for (i in 1:rep) 
{ 

print(i) 
# SAMPLE mu 
meanmu<-sum(y-Z%*%fe)/(nfs*fs) 
mu<-rnorm(1,mean=meanmu,sd=sqrt(ve/(nfs*fs))) 
# SAMPLE FAMILY EFFECTS f 
varf<-(k+fs)^(-1) 
fmean<- varf*(t(Z)%*%(y-mu)) 
fe<-rnorm(nfs,mean=fmean, sd=sqrt(varf*ve)) 
#SAMPLE vf 
#COMPUTE SCALE 
ftf<-sum(fe*fe) 
vfx<-ftf/rchisq(1,nfs-2) 
vf<-as.numeric(vfx) 
# SAMPLE ve 
# COMPUTE SCALE 
e<-(y-mu-Z%*%fe) 
ete<-t(e)%*%e 
vex<-ete/rchisq(1,N-2) 
ve<-as.numeric(vex) 
k<-ve/vf 
her <- (2*vf)/(vf+ve) 
resultap[i,]<-c(i,mu,vf,ve,her) 
# TRANSFORM TO PARAMETERS IN UNDERLYING SCALE 
mut <- qnorm(mu) 
vft <- vf/(dnorm(mut)**2) 
hert <- (2*vft)/(vft+1) 
transf[i,] <- c(i,mut,vft,hert) 

} 
proc.time()-ptm



Chapter 10 
Bayesian Prediction and Model Checking 

Aspects of Bayesian prediction have been addressed in previous chapters. In 
particular, Chaps. 7 and 9 show a Bayesian implementation of the spike and slab 
model for continuous and binary records, respectively, and illustrate how the 
marginal posterior distribution of validating mean squared errors can easily be 
computed in an McMC environment (pages 331 and 386). 

This chapter brings several elements of Bayesian prediction into focus. After a 
brief discussion of the type of uncertainty accounted for by different predictors, the 
chapter introduces the prior and the posterior predictive distributions that are key 
ingredients of Bayesian prediction. Two examples, one using count data and the 
other continuous data, illustrate the kind of predictive inferences that are possible 
when posterior distributions are known. One example uses an analytical approach, 
whereas the other extracts Monte Carlo samples from known distributions using the 
method of composition. The Monte Carlo samples drawn from either the marginal 
posterior distributions of the parameters used to construct the predictor or from 
the posterior predictive distribution of the predictor are used to generate Monte 
Carlo estimates of the complete marginal posterior distributions of validating mean 
squared errors. This makes use of the important property of ergodic averages 
mentioned on page 186. 

Section 10.3 offers a breakdown of the Bayesian expectation of training and 
validating mean squared errors of prediction. The concept of expected optimism, 
previously introduced in Chap. 6 in the frequentist framework, is given a Bayesian 
interpretation. 

This is followed by an example of a logistic model using Bayesian-McMC 
and maximum likelihood implementations. The predictive ability of the model 
quantified using validating mean squared errors is obtained with both approaches. 
The uncertainty associated with the mean squared errors is also illustrated with both 
methods of inference. The chapter concludes with the topic of model checking using 
posterior predictive simulations with an application in an McMC environment. 
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10.1 Levels of Uncertainty 

One of the attractions of Bayesian methods is the natural manner of accounting for 
uncertainty and the possibility of doing so in a single, coherent analysis. Consider 
the classical regression model with the .n × 1 training data vector y modelled as 

.y|b, σ 2 ∼ N
(
xb, Iσ 2

)
, (10.1) 

where b is a .p×1 vector of unknown regression coefficients, x is an observed . n×p

matrix of covariates, I is the identity matrix of dimension .n× n and the scalar . σ 2 is 
the unknown conditional variance component of a datum, the same for all data. 

Data are divided into training and validating sets, fitting the model using the 
former and evaluating its predictive performance with the latter. 

Let . b̂ represent an estimator of b using training data y and covariates x. One  
possible predictor (given the sampling model (10.1)) evaluated at .x = x0 (here a 
.p × 1 vector) that has been explored in previous chapters is 

.̂y0 = x′
0b̂. (10.2) 

This predictor represents a point estimate of the average value of . y0 (evaluated at 
.x = x0) and ignores uncertainty. 

A second possibility is to construct a predictor that accounts for the uncertainty 
associated with the unknown b. A Bayesian could do this in an McMC environment 
by replicating the following two steps: 

1. Draw . b∗ from . [b|y]
2. Construct the predictor . ŷ0 = x′

0b
∗

Rather than a point prediction as in the previous case, the draws from . [b|y]
and the derived . ŷ0’s generate a distribution of . ŷ0. This distribution represents the 
propagated posterior uncertainty of b on to . ŷ0, but as (10.2), .ŷ0 = x′

0b
∗ predicts an 

average value . y0, given covariate . x0 and . b∗. 
The predictor can be used to compute posterior distributions of any function, such 

as validating mean squared errors. The inferential uncertainty in b is a component 
of the expected validating mean squared error. 

A third possibility is to construct a predictor of new validating records . y0 that 
accounts for uncertainty about b and now also for sampling uncertainty of the 
new records. Again in an McMC environment, this is achieved by repeating the 
following: 

1. Draw . b∗ from . [b|y]
2. Draw the predictor . ŷ∗

0 from . 
[
y0|b∗, x0, y

]

This generates draws from the joint posterior distribution .[y0, b|x0, y]. In this  
case, both sources of uncertainty are components of the expected validating 
mean squared error. Generation of new data from .

[
y0|b∗, x0, y

]
is accounting for
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sampling variation, and therefore, frequency properties of the Bayesian procedure 
are implicitly incorporated. 

The Bayesian approach leads to a partitioning of the expected validating mean 
squared error in line with the frequentist counterpart. However, the interpretation 
is different. For instance, in the third case in the Bayesian context, the expectation 
is taken over the posterior predictive distribution of predicted data, with training 
and validating data fixed. This results in three terms contributing to the expected 
validating mean squared error. In common with the frequentist approach shown 
in (6.51) on page 279, the first term represents sampling uncertainty of replicated 
(validating) data. The second represents posterior uncertainty of the predictor (see 
expression (10.4b) below) and the third is the average (over the posterior predictive 
distribution) squared discrepancy between the predictor and the observed validating 
data that is held fixed. 

In a frequentist setting, the sampling uncertainty of the estimate . ̂b can be quan-
tified by replicating simulation of data, estimating b, and constructing a prediction 
. ̂y0 for each replicate. Using the . ̂y0’s in the construction of the mean squared error 
accounts for the sampling uncertainty of . ̂b. An alternative to simulating new data is 
to resample the observed data. When a simulation strategy is chosen, parameters are 
replaced by their estimated values obtained from the original training data. Under 
both strategies, the sampling uncertainty of a new datum can be accounted for by 
adding an extra step consisting of drawing the predictors . ̂y∗

0 from .
[
y0 |̂b, x0, y

]
. 

The concept of uncertainty and its propagation in the computation of validating 
mean squared errors, from a Bayesian and from a frequentist perspective, is 
illustrated with the logistic model example on page 430. Details of the algebra of 
the Bayesian expectation can be found on page 428 and in the prediction problems 
on pages 562, 651 and 654. 

10.2 Prior and Posterior Predictive Distributions 

In the standard setup, we observe an . n−dimensional response vector y and the 
associated .(n × p) matrix of covariates x. The conditional mean of y is .f (x) for 
some function f and the objective could be to obtain a prediction for a yet-to-
be-observed response . y0, a scalar drawn from the same distribution as y, using  
the estimated function evaluated at a value of the covariate equal to . x0. The  
classical solution to this problem has been to use the training data .zi = (xi, yi), 
.i = 1, 2, . . . , n and to construct the predictor .̂y0 = f̂ (z, x0), where . f̂ is some 
estimate of f . For instance, in standard least squares linear regression, .f (xi) = x′

ib, 

.f̂ (z, x0) = x′
0b̂, where .̂b = (

x′x
)−1

x′y and . x′
i is the ith row of the . (n × p)

matrix x. In other words, the frequentist solution is to use .̂y0 = E
(
y0|x0, b̂

)
as the 

predictor, where the parameter b that indexes the conditional distribution is replaced 
by its least squares estimator . ̂b in this case. This prediction can be regarded as a point 
estimate of the average response in the population, conditional on . x0 and . ̂b.



420 10 Bayesian Prediction and Model Checking

In a more general formulation, given a vector of unknown parameters . θ , the  
Bayesian solution to this prediction problem is to construct the posterior predictive 
density of . y0

. p (y0|y, x0) =
∫

p (y0, θ |y, x0) dθ

=
∫

p (y0|θ, y, x0) p (θ |y) dθ

=
∫

p (y0|θ, x0) p (θ |y) dθ, (10.3) 

wherein, going from line 2 to line 3, it is assumed that given . θ , . y0 is conditionally 
independent of y and that . θ and . x0 are independent. Notice that even though . y0 is 
conditionally independent of y, they are not marginally independent. If in the last 
line, .p (θ |y) is replaced by the prior density .p (θ), (10.3) is known as the prior 
predictive distribution of . y0. 

Having obtained (10.3), one may wish to use the mean or the mode as the 
point predictor . ̂y0. Consider the linear regression example, where . y0|b, x0, σ

2 ∼
N

(
x′
0b, σ 2

)
. Assume that the variance . σ 2 is known and that there is a prior 

distribution for b which is left unspecified. The mean and variance of the posterior 
predictive distribution are 

.E
(
y0|y, x0, σ

2
)

= Eb|y,σ 2 [E(y0|b, x0)] = Eb|y,σ 2

(
x′
0b

)
, . (10.4a) 

Var
(
y0|y, x0, σ 2

)
= Eb|y,σ 2

[
Var

(
y0|b, x0, σ 2

)]
+ Varb|y,σ 2 [E (y0|b, x0)] 

= σ 2 + Varb|y,σ 2

(
x′
0b

)
. (10.4b) 

The mean can be seen to be an average, over the posterior distribution of b (given 
. σ 2 since this variance is assumed known), of the conditional mean of . y0 given b. 
The variance contains two terms: one representing the sampling uncertainty of the 
new record and the other the posterior uncertainty of . x′

0b. As the dimension of y 
increases and that of b remains constant, the second term in the last line (the variance 
of the posterior distribution of . x′

0b) vanishes but the first term does not. 
Posterior predictive distributions account for sampling uncertainty of records that 

could have been observed, given a model. In this sense, frequency properties of 
the Bayesian procedure are implicitly incorporated. This applies to any function of 
replicated data, such as mean squared errors. 

The classical frequentist approach to prediction can be regarded as an approxi-
mation to a Bayesian prediction based on the posterior predictive density. Details 
are found in the Note on page 155 where it is shown that in large samples, 

.p (y0|y, x0) ≈ p
(
y0|θ̂ , x0

)
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and therefore 

. E (y0|y, x0) =
∫

y0p (y0|y, x0) dy0

≈
∫

y0p
(
y0|θ̂ , x0

)
dy0

= E
[
y0|θ̂ , x0

]

= x′
0θ̂ ,

where . ̂θ is the maximum likelihood estimator of . θ (or the least squares estimator in 
this linear regression setting). 

Example: Binary Data 

The following stylised example based on binary records (.y ∈ 0, 1) illustrates 
properties of the prior and posterior predictive distributions. 

Before data Y are observed, the distribution of a future binary observation, 
given its prior distribution, takes the form .Pr (Y = y|θ) = θy (1 − θ)1−y , where 
.E (Y |θ) = Pr (Y = 1|θ) = θ is the probability that the outcome is equal to 1. Then 
the pmf of the prior predictive distribution of the future record is 

. Pr (Y = y) =
∫ 1

0
p (y, θ) dθ

=
∫ 1

0
p (y|θ) p (θ) dθ

=
∫ 1

0
θy (1 − θ)1−y p (θ) dθ. (10.5) 

I will assign a beta distribution with hyperparameters a and b as the prior for . θ , 
.Be (θ |a, b). These hyperparameters define how the probability mass is allocated 
through the support of the distribution and define its moments. The pdf of 
.Be (θ |a, b) is 

. p (θ |a, b) = � (a + b)

� (a) � (b)
θa−1 (1 − θ)b−1 ∝ θa−1 (1 − θ)b−1 , θ ∈ [0, 1] ,

(10.6)
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where .� (x + 1) = x! is the gamma function that generalises the factorial function 
to all real numbers .x > 0. The mean and variance are 

. E (θ |a, b) = a

a + b
,

Var (θ |a, b) = ab

(a + b)2 (a + b + 1)
.

When .a = 1, .b = 1, the beta distribution becomes a proper uniform distribution in 
.[0, 1]. 

Using the beta distribution as prior, (10.5) becomes 

. Pr (Y = y) = � (a+b)

� (a) � (b)

∫ 1

0
θy+a−1 (1−θ)b−y dθ

= � (a+b)

� (a) � (b)

∫ 1

0
θa∗−1 (1−θ)b

∗−1 dθ, a∗ = a+y, b∗ = 1+b−y,

= � (a+b)

� (a) � (b)

� (a∗) � (b∗)
� (a∗+b∗)

∫ 1

0

� (a∗+b∗)
� (a∗) � (b∗)

θa∗−1 (1−θ)b
∗−1 dθ

= � (a+b)

� (a) � (b)

� (a∗) � (b∗)
� (a∗+b∗)

= � (a+b)

� (a) � (b)

� (a+y) � (b+1−y)

� (a+b+1)
.

(10.7) 

wherein going from the second to the third line, I multiplied and divided by the 
constant of integration and the fourth line follows because the integral is over a 
proper pdf and equals 1. Expression (10.7) is a special case of the beta-binomial 
distribution .Bb (x|a, b, n) that is generated by the mixture 

.Bb (x|a, b, n) =
∫ 1

0
Bi (x|n, θ) Be (θ |a, b) dθ, (10.8) 

where .n = 1 for the case of the Bernoulli trial. 
The probability that .Y = 1 derived from the prior predictive distribution is 

obtained from (10.7), setting .y = 1 and using .� (x + 1)
/

� (x) = x� (x), 

. Pr (Y = 1) = � (a + b)

� (a) � (b)

� (a + 1) � (b)

� (a + b + 1)

= a

a + b
,

which is equal to the prior mean, as expected, since the prior is the only source of 
information. This result can also be arrived at more expediently using the mixture
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formulation (10.8), 

. Pr (Y = 1) = E (y) = Eθ [E (y|θ)]

= Eθ (nθ) = na

a + b
,

where .n = 1 in the case of the Bernoulli random variable. Since the Bernoulli 
distribution is completely characterised by knowledge of .Pr (Y = 1) (from which 
.Pr (Y = 0) = 1 − Pr (Y = 1) is obtained), one can also write 

. Pr (Y = 1) =
∫ 1

0
Pr (Y = 1|θ) p (θ) dθ

=
∫ 1

0
θp (θ) dθ = E (θ) , (10.9) 

again indicating the dependence of the prior prediction on the prior distribution. 
Imagine now that m binary responses .y = (y1, y2, . . . , ym)′ have been observed 

in a first sample. What is the posterior predictive distribution for a scalar .ym+1 in a 
second sampling? With y representing the .m × 1 data vector from the first sample, 
the posterior predictive pmf for the Bernoulli example is characterised by computing 

. Pr (Ym+1 = 1|y) =
∫ 1

0
Pr (Ym+1 = 1|θ) p (θ |y) dθ

=
∫ 1

0
θp (θ |y) dθ = E (θ |y) , (10.10) 

equal to the posterior mean. In addition, using (10.8) 

. E (Ym+1|y) = Eθ |y [E (Ym+1|θ)] = E (θ |y) .

Applying Bayes theorem, the posterior density is 

. p (θ |y) = p (y|θ) p (θ)

p (y)

= 1

p (y)

∏m

i=1
θyi (1 − θ)1−yi

� (a + b)

� (a) � (b)
θa−1 (1 − θ)b−1

= K θ
∑m

i=1 yi (1 − θ)m−∑m
i=1 yi θa−1 (1 − θ)b−1

∝ θa+∑m
i=1 yi−1 (1 − θ)b+m−∑m

i=1 yi−1 ,

K = � (a + b)

p (y) � (a) � (b)
, (10.11)
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which is the kernel of a .Be
(̃
a, b̃

)
distribution, where 

. ̃a = a +
m∑

i=1

yi,

b̃ = b + m −
m∑

i=1

yi .

Then (10.10) is  

. Pr (Y = 1) = E (θ |y)

= ã

ã + b̃
= a + ∑m

i=1 yi

a + b + m
. (10.12) 

Given the model, the predictive posterior distribution is affected by the prior input 
through a and b, but the influence dissipates as sample size m increases, since a and 
b are usually small numbers relative to m and .

∑m
i=1 yi . 

Example: Continuous Data 

This example considers the linear regression model 

.y|b, σ 2 ∼ N
(
xb, Iσ 2

)
(10.13) 

with independent improper uniform prior distributions associated with the parame-
ters .

(
b, σ 2

)
. 

The objective of this example is to illustrate Monte Carlo estimation of the 
distribution of 3 different validating mean squared errors that account for different 
sources of uncertainty of the predictor. The example is essentially an illustration of 
the construction of the distribution of one random variable (the mean squared error) 
using the known distribution of another random variable (the predicted values) and 
how easily this is accomplished using Monte Carlo methods. 

The data (a vector with 2000 records) are simulated as follows: 

• the vector b of regression coefficients, of dimension .150 × 1, is drawn  from  a  
normal distribution . b ∼ N (0, 4 × I )

• the elements of the full rank matrix x of covariates, of dimension .2000 × 151, 
are drawn from a binomial distribution .x ∼ Bin (2, 0.5), with an extra column 
vector of . 1′s added to account for an intercept which is set equal to . μ = 10

• vector of records y, of dimension the .2000 × 1, is drawn from a normal 
distribution .y ∼ N (xb, 20 × I )
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The 2000 records are divided into a training (t) and a validating (v) set of equal 
size, so that .y = (

y′
t , y

′
v

)′. 
The parameters of the model are drawn from the appropriate posterior distri-

bution, given training data . yt , using the method of composition (see page 153) as  
follows: 

• Draw .σ 2∗ from the marginal posterior distribution 

. 

[
σ 2|yt

]
∼ χ−2(v, S),

a scale inverted chi-square distribution with .n − (p + 1) − 2 degrees of freedom 
and scale parameter 

. 
1

v

(
y − xb̂

)′ (
y − xb̂

)
,

where .̂b = (
x′x

)−1
x′y, as in (4.46) on page 161 and . p = 150

• Draw . b∗ from the conditional posterior distribution 

. 

[
b|σ 2∗, yt

]
∼ N

(
b̂,

(
x′x

)−1
σ 2∗) ,

a normal distribution (see page 156 for a derivation) 
• Draw .y∗

v,pred , the  .1000 × 1 vector of predicted validating records from the 
conditional posterior distribution 

. 

[
yv,pred |b∗, σ 2∗] ∼ N

(
xvb

∗, Iσ 2∗) ,

a normal distribution (given .
(
b∗, σ 2∗), .yv,pred is independent of . yt ). 

These steps are repeated 1000 times to obtain the required sample. In each cycle, 
.
(
σ 2∗, b∗, y∗

v

)
is a sample from the joint posterior distribution .

[
σ 2, b, yv|yt

]
, while 

. y∗
v is a sample from the posterior predictive distribution .

[
yv,pred |yt

]
. 

Using the draws from the joint posterior distribution, the following functions are 
calculated. First, 

.MSEv,1 = 1

750

(
yv − xvb

∗)′ (
yv − xvb

∗)
, (10.14) 

a point estimator of the validating mean squared error of average predictions,
where .b

∗ = Ê (b|y), the Monte Carlo estimate of the posterior mean of b obtained 
using the Monte Carlo draws . b∗ from the marginal posterior distribution .[b|y].
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Fig. 10.1 Left: histogram of the marginal posterior distribution of .MSEv,2; the validating mean 
squared error accounting for posterior uncertainty of the parameters of the Bayesian model. Right: 
histogram of the marginal posterior distribution of .MSEv,3; the validating mean squared error 
accounting for posterior uncertainty of the parameters of the Bayesian model and for sampling 
uncertainty of new validating records 

Second, for each of the 1000 cycles using the draws . b∗, compute 

.MSEv,2 = 1

750

(
yv − xvb

∗)′ (
yv − xvb

∗) . (10.15) 

The elements of (10.15) constructed in this way constitute extractions from the 
Monte Carlo estimate of the marginal posterior distribution of .MSEv,2. This  
posterior distribution reflects the propagated posterior uncertainty of b. 

Third, for each of the 1000 cycles, compute 

.MSEv,3 = 1

750

(
yv − y∗

v,pred

)′ (
yv − y∗

v,pred

)
, (10.16) 

This estimator of validating mean squared error of predictions of individual data
points accounts for posterior uncertainty of the parameters of the Bayesian model
and for sampling uncertainty of the new data. The draws (10.16) constitute 
extractions from the Monte Carlo estimate of the marginal posterior distribution 
of .MSEv,3. The Monte Carlo estimates of the marginal posterior distributions of 
.MSEv.2 and .MSEv,3 are displayed as histograms in Fig. 10.1. 

The R-code below simulates the data, executes the method of composition and 
computes the validating mean squared errors. 

# CODE1001 
rm(list=ls()) # CLEAR WORKSPACE 
set.seed(123) 

nindiv <- 2000 
nmark <- 150
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nsamples <- nindiv*nmark 
# GENERATE COVARIATE MATRIX FROM BINOMIAL DISTRIBUTION 
X<-matrix(nrow=nindiv,ncol=nmark, 

rbinom(n=nsamples,size=2,p=.5)) 
######################################################### 
# CHOOSE VALUE FOR MEAN mu 
mu <- 10 
# CHOOSE VALUE FOR ENVIRONMENTAL VARIANCE ves 
ves<-20 
b<-matrix(data=0.0,nrow=nmark,ncol=1) # b from operational model 

et<- rnorm(nindiv,mean=0,sd=sqrt(ves)) 
b <- rnorm(nmark,mean=0,sd=2) 
y <- mu  + X %*%b + et 
train <- sample(1:nrow(X),floor(0.5*nrow(X))) 
Xt <- X[train,] 
yt <- y[train] 
Xv <- X[-train,] 
yv <- y[-train] 
Zt <- cbind(1,Xt) 
Zv <- cbind(1,Xv) 
################################################## 
##### coefficient matrix LHSt, rhs & solution solt 
RHSt <- crossprod(Zt,yt) 
LHSt <- crossprod(Zt) 
solt <- solve(LHSt,RHSt) 
e <- yt-Zt%*%solt 
################################################## 
rep <- 5000 # NUMBER OF DRAWS USING COMPOSITION 
ystartrain <- matrix(data=NA,nrow=length(yt),ncol=1) 
ystarval <- matrix(data=NA,nrow=length(yt),ncol=1) 

resMSE <- matrix(data=NA,nrow=rep,ncol=3) 
res <- matrix(data=NA,nrow=rep,ncol=(nmark+2)) 

scale <- sum(e^2) 
Cinv <- solve(LHSt) 
ch <- chol(Cinv) 
ptm<-proc.time() 

for (i in 1:rep){ 
# print(i) 

df <- length(yt)-(nmark+1)-2 
# DRAW RESIDUAL VARIANCE 

varstar <- scale/rchisq(1,df) 
resid <- rnorm(length(solt),0,1) 

# DRAW LOCATION PARAMETERS 
bstar <- solt + t(ch)%*% resid*sqrt(varstar) 
ystartrain <- Zt%*%bstar + 

rnorm(length(ystartrain),0,sd=sqrt(varstar)) 
# # DRAW VALIDATING DATA 

ystarval <- Zv%*%bstar + 
rnorm(length(ystarval),0,sd=sqrt(varstar)) 

msevalystar <- mean((ystarval-yv)^2) # MSE_3 
msetrainystar <- mean((ystartrain-yt)^2) 
msevalbstar <- mean((Zv%*%bstar-yv)^2) # MSE_2 
resMSE[i,] <- c(msetrainystar,msevalystar,msevalbstar) 
res[i,] <- c(varstar,bstar) 

} 
proc.time()-ptm
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## user system elapsed 
## 17.62 0.02 4.23 

av <- apply(res,2,mean) 
bstarhat <- av[2:(nmark+2)] 
ystarhatval <- Zv%*%bstarhat 
mse_1 <- mean((ystarhatval-yv)^2) # POINT PREDICTOR 
mserrors <- apply(resMSE,2,mean) 
mse_2 <- mserrors[3] 
mse_3 <- mserrors[2] 
ci_2 <- quantile(resMSE[,3],c(0.025,0.975)) 
ci_3 <- quantile(resMSE[,2],c(0.025,0.975)) 

The Monte Carlo estimate of the point estimator .MSEv,1 is equal to .23.2. The  
mean of the marginal posterior distributions of .MSEv,2 and the .95% posterior 
interval is .26.5 .(24.6, 28.5), and the corresponding figures for .MSEv,3 are 45, 
.(41, 49.4), the latter reflecting, as expected, the extra uncertainty contributed by 
sampling of new records .yv,pred . 

10.3 Bayesian Expectations of MSE 

In the Bayesian setting, the expected values of the validating mean squared errors 
are composed of terms that generate a structure similar to the frequentist counterpart 
discussed on page 278. The expectations of (10.15) and (10.16) can be obtained as 
follows. The focus is on single terms of the sum, since the expectation of the sum is 
equal to the sum of the expectations of each record. From (10.15) for  the  ith record, 

.Eb|y
(
MSEi,v,2

) = Eb|y
(
yi,v − ŷi,v

)2 (10.17) 

where the predictor is .ŷi,v = x′
i,vb, .Eb|y stands for the expectation over the posterior 

distribution .[b|y] and y includes the vector of training .(yt ) and validating . (yv)

records. The random variable in (10.17) is . ŷi,v , a function of the random variable b. 
Expanding the square and taking expectations yields 

. Eb|y
(
MSEi,v,2

) = y2
i,v + Varb|yt

(
ŷi,v

) + (
Eb|yt

(
ŷi,v

))2 − 2yi,v Eb|yt

(
ŷi,v

)

= Varb|yt

(
ŷi,v

) + (
yi,v − Eb|yt

(
ŷi,v

))2

= Varb|yt

(
x′
i,vb

) +
(
yi,v − x′

i,vb̂
)2

, (10.18) 

where .b̂ = E(b|yt ). The first term is the contribution from the posterior variance 
of the predictor; the second term is the squared discrepancy between the validating 
datum and the posterior mean of the predictor.
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Using similar algebra, the expectation of single terms in (10.16) is  

. Ey∗
v |y

(
MSEi,v,3

) = Vary∗
v |yt

(
y∗
i,v

) + (
yi,v − Ey∗

v |yt

(
y∗
i,v

))2

= σ 2 + Varb|yt

(
x′
i,vb

) +
(
yi,v − x′

i,vb̂
)2

, (10.19) 

where I used . y∗
i,v instead of .y

∗
i,v,pred to simplify the notation. The random variable in 

this case is the posterior predicted value of a future validating record . y∗
i,v . The step 

from the first to the second line uses the decomposition of the posterior predictive 
variance (10.4b). The first term in (10.19) is the irreducible error: the sampling 
variance of the future validating datum; the second is the contribution from the 
variance of the conditional mean of . y∗

v under its sampling model (due to posterior 
uncertainty of b); and the third term, equal to the second term in (10.18) as revealed 
by (10.4a) is the squared discrepancy between the validating datum . yv and the mean 
of the posterior predictive distribution of . y∗

v . 
Let . y∗

i,t represent the ith draw from the posterior predictive distribution . [·|yt , xt ]
involving the training data. The Bayesian expectation of the training mean squared 
error takes the form 

. Ey∗
t |yt

(
MSE3,t,i

) = Vary∗
t |yt

(
y∗
i,t

) + (
yt − Ey∗

t |yt

(
y∗
i,t

))2

= σ 2 + Varb|yt

(
x′
i,t b

) +
(
yi,t − x′

i,t b̂
)2

. (10.20) 

This has exactly the same structure as (10.19) with . xv and . yv replaced by . xt and 
. yt . The important difference between (10.19) and (10.20) is in their third terms. 
In (10.20), prediction and estimation use the same training data. On the other hand, 
in (10.19), estimation is based on training data and prediction on validating data. 
Consequently, the squared term corresponding to the training mean squared error 
is smaller than the squared term of the validating mean squared error, reflecting 
overfitting. 

A little more specifically, overfitting is reflected in the in-sample correlation 
between the vectors of data (considered fixed in the Bayesian framework) and 
the means of the draws from the posterior predictive distributions. The in-sample 
correlation is a component of the third terms of (10.19) and (10.20). It contributes 
negatively to these third terms and is larger in the training data than in the validating 
data. 

In summary, the difference between the expected values of training and validating 
mean squared errors is due to the third terms and constitutes the Bayesian version 
of the expected optimism.
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10.4 Example: Bayesian and Frequentist Measures of 
Uncertainty 

This example illustrates the computation of two measures of validating mean 
squared error for binary predictions. The first accounts only for uncertainty of 
the estimated parameters and is labelled .MSE1. The second accounts for both, 
uncertainty of the estimated parameters and uncertainty due to sampling of single 
records and is labelled .MSE2. 

Bayesian and frequentist approaches are used for inferences; the Bayesian 
approach is implemented with McMC (Metropolis-Hastings) and the frequentist 
with classical likelihood using the R-function GLM. The objective is to show how 
uncertainty can be accounted for using both schools of inference and to make a 
comparison within the settings of the example. 

Binary data .(2000 records) are simulated using a logistic model with two 
covariates, . x1 and . x2. The parameters of the logistic model are .θ = (β0, β1, β2). 
Specifically for the ith datum, .yi ∼ Br (pi), where 

. pi = Pr (yi = 1|x1i , x2i )
= exp (β0 + β1x1i + β2x2i )

1 + exp (β0 + β1x1i + β2x2i )
. (10.21) 

The covariates are simulated from uniform distributions .x1i ∼ Un (−1, 1), . x2i ∼
Un (−1, 1) and the three regression parameters are set equal to .β0 = −1.3863, 
.β1 = 2, .β2 = 2. The intercept . β0 is chosen to generate a proportion of . 1′s in the 
vicinity of .20%. The 2000 records were randomly divided into two sets of 1000 
records each corresponding to training and validating data. 

The R-code below generates the binary data. 

# CODE1002 
######### SIMULATE BINARY RECORDS FROM LOGISTIC MODEL 
### AND FIT LOGISTIC MODEL (2 COVARIATES) WITH M-H 
#### CREATE TRAINING AND TESTING/VALIDATING DATA 
rm(list=ls()) # CLEAR WORKSPACE 
set.seed(77111) 
require(graphics) 
# THE CODE WILL USE THE PACKAGE MVTNORM; IT IS INSTALLED BELOW 
#install.packages("mvtnorm", .libPaths()[1]) 
library(mvtnorm) 
library(MASS) 
#CHOOSE LENGTH OF CHAIN rep 
rep<-6000 
result<-matrix(data=NA,nrow=rep,ncol=6) 
nindiv <- 2000 
x1 <- rep(0,nindiv) 
x2 <- rep(0,nindiv) 
y <- rep(0,nindiv) 
p<-0.2 
x1 <- runif(nindiv,-1,1) 
x2 <- runif(nindiv,-1,1)
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b_0 <- log(p/(1-p)) 
b_1 <- 2 
b_2 <- 2 
z <- b_0 + b_1*x1 + b_2*x2 
p1 <- exp(z)/(1+exp(z)) 
## GENERATE THE BINARY RECORDS 
y <- rbinom(length(p1),1,p1) 
# CONSTRUCT THE DATA SET 
dat1 <- matrix(c(y,x1,x2),nrow = nindiv, ncol = 3) 
colnames(dat1) <- c("Y", "X1", "X2") 
d<-data.frame(dat1) 
#attach(d) 
Y <- d$Y 
X1 <- d$X1 
X2 <- d$X2 
set.seed(771) 
train=sample(1:length(X1),length(X1)/2) 
test=(-train) 
y.test=Y[test] 
y.train<-Y[train] 
length(y.train) 

## [1] 1000 

The Bayesian approach is implemented using Metropolis-Hastings. The algo-
rithm is very similar to the one used on page 631, with a modification to account for 
the extra covariate. 

The R-code to implement the Metropolis-Hastings algorithm is shown below: 

# CODE1002 (cont) 
# CHOOSE TUNING PARAMETER LAMBDA AND COVARIANCE MATRIX C 
# OF THE METROPOLIS-HASTINGS ALGORITHM 
lambda<-0.015 
c <- diag(c(1.5,0.6,0.6)) 
# INITIALISE THE MEAN OF THE TRIVARIATE DISTRIBUTION 
theta<-c(-5,1.0,1.0) 

## FUNCTION TO COMPUTE THE LOG-POSTERIOR 
logpost <- function(data,theta) 
{ 

interm <- theta[1] + theta[2]*data$X1 + theta[3]*data$X2 
with(data=data,sum(Y*( interm )-log(1+exp(interm)))) 

} 
#START M-H LOOP 
ptm <- proc.time() 
accept<-0 
for (i in 1:rep) 
{ 
# print(i) 

#SAMPLE PROPOSAL FOR THETA (Ytheta) FROM N(theta,lamdaC) 
Ytheta<- rmvnorm(1,mean=theta,sigma=lambda*c) 
logalfa<-logpost(d[train,],Ytheta) - logpost(d[train,],theta) 
unif<-runif(1) 
if (unif<exp(logalfa)) 
{ 

theta[1]<-Ytheta[1]
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theta[2]<-Ytheta[2] 
theta[3]<-Ytheta[3] 
interm <- theta[1] + theta[2]*X1[test] + theta[3]*X2[test] 

proby1 <- exp(interm)/(1+exp(interm)) 
yhat <- rbinom(length(Y[test]),1,proby1) 
yhatBR <- ifelse(proby1 > 0.5, 1, 0) 
accept<-accept+1 

} 
else 
{ 

interm <- theta[1] + theta[2]*X1[test] + theta[3]*X2[test] 
proby1 <- exp(interm)/(1+exp(interm)) 
yhat <- rbinom(length(Y[test]),1,proby1) 
yhatBR <- ifelse(proby1 > 0.5, 1, 0) 

} 
misclas <- mean((yhat-Y[test])**2) 
misclasBR <- mean((yhatBR-Y[test])**2) 
brier <- mean((Y[test]-proby1)**2) 
vyhat <- var(yhat) 
logscYV <- sum(Y[test]*log(proby1)+(1-Y[test])*log(1-proby1)) 
result[i, ]<-c(i,theta[1],theta[2],theta[3],misclas,misclasBR) 

} 
proc.time()-ptm 

## user system elapsed 
## 5.77 0.09 5.86 

acceptratio <- accept/rep 
# PRINT ACCEPTANCE RATIO OF THE JOINT UPDATING 
acceptratio 

## [1] 0.454 

# PRINT THE McMC ESTIMATES OF POSTERIOR MEANS 
apply(result[501:rep,5:6],2,mean) 

## [1] 0.2933327 0.2184742 

# PRINT 95% POSTERIOR INTERVALS FOR THE MISCLASSIFICATION RATES 
misclasQ <- quantile(result[500:rep,5],c(0.025,0.975)) 
misclasQ 

## 2.5% 97.5% 
## 0.268 0.320 

misclasBRQ <- quantile(result[500:rep,6],c(0.025,0.975)) 
misclasBRQ 

## 2.5% 97.5% 
## 0.212 0.229
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# THE McMC ESTIMATES OF MEAN OF POSTERIOR DISTRIBUTION OF 
# REGRESSION PARAMETERS ARE 
meanbetas <- apply(result[500:rep,2:4],2,mean) 
meanbetas 

## [1] -1.470091 2.037410 2.063063 

# AND THE 95% POSTERIOR INTERVALS ARE 
quantile(result[500:rep,2],c(0.025,0.975)) 

## 2.5% 97.5% 
## -1.678812 -1.272822 

quantile(result[500:rep,3],c(0.025,0.975)) 

## 2.5% 97.5% 
## 1.716287 2.389274 

quantile(result[500:rep,4],c(0.025,0.975)) 

## 2.5% 97.5% 
## 1.688001 2.393371 

The Monte Carlo estimates of posterior means of . β0, . β1 and .β2 . (−1.47,
2.04, 2.06) are in good agreement with the simulated values (.β0 = −1.39, .β1 = 2, 
.β2 = 2). 

The frequentist implementation maximises the logistic loglikelihood 

.� (θ |yt , x) =
nt∑

i=1

{
yt,i x′

iθ − ln
(
1 + exp(x′

iθ)
)}

(10.22) 

with respect to . θ . In (10.22), . yt is the vector of .nt = 1000 training records and 
. x′

i is the ith row of the .nt × 3 matrix of covariates x with a column vector of 1’s 
to account for . β0. The  R function glm is used to perform the likelihood analysis. 
Frequentist uncertainty is incorporated generating 1000 bootstrap replications of 
training/validating splits. The R-code shown below implements the logistic likeli-
hood: 

# CODE1002 (cont) 
# FIT MODEL BY ML 
set.seed(771) 
nrepl <- 1000 
resLik <- matrix(data=NA,nrow=nrepl,ncol=3) 
ptm <- proc.time()
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for (i in 1:nrepl){ 
train=sample(1:nrow(d),nrow(d)/2) 
f<-glm(Y ~.,data=d[train,],family="binomial") 
# summary(f) 
#f<-glm(Y ~1,data=d[train,],family="binomial") 
# summary(f) 
# PRED PROBABILITIES: 
predV <- predict(f,d[-train,],type="response") 
BrierFreq <- mean((predV-d$Y[-train])^2) 
# ASSIGN Y TO ITS CLASS ACCORDING TO BAYES RULE 
yhatBR <- ifelse(predV > 0.5, 1, 0) 
mseBR <- mean((yhatBR-d$Y[-train])^2) # MSE_1 
## OR SAMPLE Y FROM ITS PREDICTIVE DISTRIBUTION 
## CONDITIONAL ON ML ESTIMATES - THIS MAKES 
## IT COMPARABLE TO THE McMC APPROACH 
yhatPpd <- rbinom(length(Y[-train]),1,predV) 
msePpd <- mean((yhatPpd-d$Y[-train])^2) # MSE_2 
resLik[i,] <- c(i,mseBR,msePpd) 

} 
proc.time()-ptm 

## user system elapsed 
## 4.44 0.09 4.53 

apply(resLik[,2:3],2,mean) 

## [1] 0.210431 0.288090 

quantile(resLik[,2],c(0.025,0.975)) 

## 2.5% 97.5% 
## 0.192 0.229 

quantile(resLik[,3],c(0.025,0.975)) 

## 2.5% 97.5% 
## 0.264 0.313 

Results are shown in Table 10.1 that includes in the bottom row the predictive 
performance of the null model with the intercept . β0 as the only parameter of the 
loglikelihood (10.22). 

The uncertainty in . θ contributes to .MSE1 whereas both uncertainty in . θ and 
sampling variation of validating records . y∗

v contribute to .MSE2. This is reflected in 
the difference in mean values of .MSE1 and .MSE2.
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Table 10.1 Posterior means (for the Bayesian model), means over bootstrap replicates (for the 
likelihood model) and .95% intervals (in brackets; Monte Carlo estimates of posterior intervals for 
the Bayesian model; bootstrap frequentist intervals for the likelihood model) of validating mean 
squared errors .MSE1 and .MSE2, obtained from a Bayesian McMC implementation (Bayesian 
McMC) and from a frequentist, maximum likelihood implementation (ML), for a logistic model 
with two predictors. The corresponding results obtained fitting the null model (a model containing 
only a mean at the level of the logit) are displayed in the row labelled Null model. The null model 
acts as a benchmark 

.MSE1 . MSE2

Bayesian McMC 0.22 0.29 

(0.21; 0.23) (0.27; 0.32) 

ML 0.21 0.29 

(0.19; 0.23) (0.26; 0.31) 

Null model 0.30 0.42 

(0.28; 0.32) (0.39; 0.44) 

The figures in the table show that the full model does better than the null model 
on all accounts. Both methods of inference produce very similar results, not only 
in terms of point estimates but also in terms of measures of uncertainty. This is not 
a general conclusion. In more complicated hierarchical models, marginalisation of 
nuisance parameters as part of the standard Bayesian machinery leads to larger (and 
more appropriate) measures of uncertainty than the standard likelihood approach. 
This often translates into larger values of .MSE and larger uncertainty intervals. 

The exercises section on page 562 includes several examples of the computation 
of mean squared errors, from a frequentist and Bayesian perspective, accounting for 
different sources of uncertainty. 

10.5 Model Checking Using Posterior Predictive 
Distributions 

Predicted data .ypred drawn from posterior predictive distributions were used 
to compute validating mean squared errors, by comparing the average squared 
difference between predicted (or simulated) data and observed validating data . yv . 
The .MSE is a function of the parameters of the model . θ (conditional on training data 
. yt ); its distribution reflects the propagated posterior uncertainty of these parameters 
and of the sampling uncertainty of the predicted data. 

Predicted data can also be used for inferences by checking whether a particular 
model properly accounts for aspects of the data that may be of scientific relevance. 
Let M denote the model that is to be questioned and that is presumed to have 
generated observed data y. The basic idea is to compare a function of y to the same 
function of predicted (or replicated) data generated under model M . These functions 
are constructed to address the specific feature of the model under enquiry; they
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depend on the observed data and often also on the parameters of the model. In the 
literature they are known as discrepancy measures (Gelman et al 1995) and labelled 
.T (y, θM), a function of data and parameters, where . θM is the parameter vector under 
model M . The discrepancy measure .T (y, θM) based on observed data is compared 
to .T (ypred , θM), based on predicted data .ypred generated under model M . If zero is 
an atypical value in the posterior predictive distribution of .T (y, θM)−T (ypred , θM), 
then model M is making predictions that do not fit that aspect of the data described 
by the discrepancy measure. Model checking performed in this way is a diagnostic 
tool for assessing the usefulness of a model for a specific purpose rather than for 
studying its global fit. Key literature on the subject is Rubin (1984), Gelman et al 
(1995) and Gelman et al (1996). 

An Example with a Genetically Structured Heterogeneous 
Variance Model 

The use of posterior predictive model checking is explained using an example 
adapted from Sorensen and Waagepetersen (2003). Imagine that unknown to the 
experimenter, observed data had been generated by the following model. At a first 
stage, the sampling model is Gaussian of the form 

.yij |μ, fi, σ
2
i ∼ N

(
μ + fi, σ

2
i

)
, i = 1, . . . , nf ; j = 1, . . . , n. (10.23) 

In (10.23) . yij is a record, . μ is the mean, . fi is a random family effect and there is a 
structured residual term that gives rise to a different residual variance . σ 2

i for each of 
the . nf families; there are n offspring per family. The pattern of data generated by 
this model is quite common in animal breeding, where a family could represent a 
cohort of half-sibs produced by sires that mate each to n randomly chosen females, 
which in turn have each one offspring. 

The model for the residual variances takes the form 

.σ 2
i = exp

(
μ∗ + f ∗

i

)
, (10.24) 

where . μ∗ is a parameter in . R and . f ∗
i is a random family effect acting on the variance. 

When the elements of . f ∗ are all zero, the residual variance reduces to the usual 
homogeneous variance .σ 2 = exp (μ∗). 

The random variables .
(
fi, f

∗
i

)
, .i = 1, . . . , nf , are  iid draws from 

.

(
fi, f

∗
i |σ 2

f , σ 2
f ∗ , ρ

)
∼ N

[(
0
0

)
,

(
σ 2

f ρσf σf ∗

ρσf σf ∗ σ 2
f ∗

)]
, (10.25)
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where . σ 2
f is the variance between half-sibs acting at the level of the mean, .σ 2

f ∗ is the 
variance between half-sibs acting at the level of the variance and . ρ is the coefficient 
of correlation. 

The model defined by (10.23), (10.24) and (10.25) postulates that the residual 
variance has a genetic component because it varies across families. In the half-sib 
model assumed, variation between half-sib families is entirely genetic and explains 
.25% of the additive genetic variance. 

This model induces a relationship between mean and variance through (10.25). 
Write 

. f ∗
i = E

(
f ∗

i |fi

) + (
f ∗

i − E
(
f ∗

i |fi

))

= ρ
σf ∗

σf

fi + u (10.26) 

where u is independent of . fi . Then 

.u|σf ∗ , ρ ∼ N
(
0,

(
1 − ρ2

)
σ 2

f ∗
)

. (10.27) 

Therefore, the distribution .

[
fi, f

∗
i |σ 2

f , σ 2
f ∗ , ρ

]
is the same as the distribution 

.

[
fi,

(
ρ

σf ∗

σf

fi + u

)
|σ 2

f , σ 2
f ∗ , ρ

]
. (10.28) 

When .ρ = 1 the relationship between mean and variance is deterministic; when 
.ρ = 0 the variance is genetically determined and homogeneous, independent of the 
mean. Otherwise, the relationship between mean and variance is controlled by the 
sign and size of . ρ. 

The focus of enquiry in this example is to study whether the data provide 
evidence of a relationship between residual variance and family mean, supporting 
case 1 or 3. 

Taking expectations of (10.23) over the distribution .
[
fi, f

∗
i |σ 2

f , σ 2
f ∗ , ρ

]
, the  

marginal distribution of the data is 

.yij |μ,μ∗, σ 2
f , σ 2

f ∗ ∼ N

(
μ, σ 2

f + exp

[
μ∗ + σ 2

f ∗

2

])
, (10.29) 

using the fact that if .x ∼ N
(
μ, σ 2

)
, .exp (x) is lognormally distributed with mean 

.E
[
exp (x)

] = exp
(
μ + σ 2

2

)
.
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Consider regressing .
(
μ∗ + f ∗

i

)
, the log-residual variance of family i, on  

.(μ + fi), the mean of family i. The regression coefficient is 

.β = Covfi ,f
∗
i

(
μ∗ + f ∗

i , μ + fi

)

Varfi (fi)
= ρ

σf ∗

σf

. (10.30) 

The choice of discrepancy measure described below aimed at establishing an asso-
ciation between family effects and within family variance is motivated by (10.30). 

Constructing Discrepancy Measures 

The mechanism that generated a particular set of data is seldom known. The closest 
one may come to knowing this mechanism is when data originate from a carefully 
designed and controlled experiment. 

In the specific situation considered here, we imagine that using field records 
y, there is interest in investigating a possible genetic source of residual variation 
inducing a relationship between within family variance and family effect. Before 
committing resources to the development of the software needed to fit the model 
defined by (10.23), (10.24) and (10.25), one may start by fitting a model labelled 
M that assumes homogeneity of residual variance. In a second stage, one can define 
a discrepancy measure designed to reveal whether the lack of association between 
family mean and within family variance implied by model M holds. Given model 
M , replicated or predicted data .ypred are generated, .T

(
ypred , θM

)
is constructed 

and compared to .T (y, θM). If zero is an atypical value in the posterior predictive 
distribution of .T (y, θM)−T

(
ypred , θM

)
, then there is justification to extend model 

M , because model’s M assumption of lack of association between family mean and 
within family variance is not supported. 

The starting point is to fit model M of homogeneous variance to data y, 

.yij |μ, fi, σ
2,M ∼ N

(
μ + fi, σ

2
)

, i = 1, . . . , nf ; j = 1, . . . , n, . 

(10.31a) 

fi |σ 2
f ∼ N

(
0, σ 2

f

)
. (10.31b) 

The model is implemented using McMC; one may assign improper prior 

distributions to .

(
μ, σ 2

f , σ 2
)
. 

The discrepancy measure to check for an association between family mean and 
within family variance in the observed data y is constructed as follows:
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1. Using observed data first compute for each family 

.Si

(
yij , θi

) = 1

n

∑n

i=j

(
yij − μ − fi

)2
, θi = (μ, fi) . (10.32) 

The quantity . Si is the average squared residual for family i. 
2. Second, fit a simple linear regression of .log Si

(
yij , θi

)
on . fi , .i = 1, . . . , nf , 

leading to the discrepancy measure 

.T (y, θ) = β (y, θ) , (10.33) 

where . β is the regression coefficient which is a function of data y and . θ . 
3. Repeat using predicted data generated using the homogeneous variance model 

. 

[
ypred,ij |μ, fi, σ

2
]

∼ N
(
μ + fi, σ

2
)

.

Regress .log Si

(
ypred,ij , θi

)
on . fi , .i = 1, . . . , nf , leading to the discrepancy 

measure 

.T
(
ypred , θ

) = β
(
ypred , θ

)
, (10.34) 

the regression coefficient based on predicted data.
4. Compute 

.T (y, θ) − T
(
ypred , θ

)
. (10.35) 

These steps are conducted using McMC. At round t the algorithm outputs
draw .θ [t] and .y[t]

pred from .
[
θ, ypred |y,M

]
based on model M of homogeneous 

variance. These draws are used to construct a Monte Carlo estimate of the posterior 
distribution of the discrepancy measure (10.35). If zero is excluded from the 
posterior distribution or is very unlikely, then the conjecture of an association 
between family mean and within family variance in the observed data is supported. 

Generating Data Based on the Genetic Heterogeneous Variance 
Model 

Data available for analysis are generated using the model defined in (10.23), (10.24) 
and (10.25). This model is not known to the researcher. 

To create the data, the following set of parameters are used: 

1. Number of half-sib families .nf = 400; number of records per family .n = 30, 
the same for all families
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2. .μ = 10; .μ∗ = 3; .σ 2
f = 5; .σ 2

f ∗ = 1.8; .ρ = 0.15. Based on these input 
parameters, the marginal mean and variance of a datum are expected to be 10 
and .exp (3 + 0.9) = 49.4, respectively. 

The R-code used to generate the data is shown below: 

# HETVARMODEL MODEL CHECKING 
rm(list=ls()) # Clear the workspace 
require(graphics) 
# GENERATE CORRELATED (FULL-SIB/HALF-SIB) DATA 

# INITIALISE PARAMETERS 
mu<-10 # MEAN 
mu_v <- 3 # MEAN VAR 

#VARIANCE BETWEEN FULL-SIBS/HALF-SIBS 
vfs <- 5 # mimicking half-sibs 
vfs_v <- 1.8 # VARIANCE BETWEEN FULL-SIBS/HALF-SIBS 
# AT THE LEVEL OF THE VAR 
rho <- 0.15 # CORRELATION BETWEEN FAMILY EFFECTS (fs,fs_v) 
### AT THE LEVEL OF MEAN AND VARIANCE 
# RESIDUAL VARIANCE (NOT USED) 
ves<-exp(log(50)) 
nf<-400 # NUMBER OF FULL-SIB/HALF-SIB FAMILIES 
n<-30 #FULL-SIB/HALF-SIB FAMILY SIZE 
N<-nf*n 
y<-matrix(data=0,nrow=nf*n,ncol=1) 
# z IS COLUMN MATRIX WITH FAMILY ID (ID=1,.,nfs) 
z<-matrix(data=0,nrow=nf*n,ncol=1) 
# GENERATE nf FULL-SIB/HALF-SIB EFFECTS f 
fs<-rnorm(nf,mean=0,sd=sqrt(vfs)) 
################################################ 
## GENERATING A FULL-SIB/HALF-SIB STRUCTURE 
## VIA z 
z <- rep(1:nf,each=n) 
############################################### 
u <- rnorm(nf,0,sqrt((1-rho^2)*vfs_v)) 
## SIB EFFECTS AT THE LEVEL OF VARIANCE 
fs_v <- (rho*sqrt(vfs_v)/sqrt(vfs))*fs + u 
# GENERATE nf*n RESIDUAL EFFECTS 
es<-rnorm(nf*n,mean=0,sd=sqrt(exp(mu_v + fs_v[z]))) 
mean(es) 
var(es) 
y <- mu  + fs[z] + es 
f <- as.factor(z) 
d <- data.frame(y,f) 

################################################ 
#### USE THE FUNCTION AGGREGATE TO COMPUTE MEANS AND 
#### VARIANCES FOR EACH FAMILY 
agm <- aggregate(y~f,d,FUN=function(y){mean(y)}) 
agv <- aggregate(y~f,d,FUN=function(y){var(y)})
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Detecting a Relationship Between Within Family Variance and 
Family Mean Using Observed Data 

What does a simple analysis based on observed data reveal? Figure 10.2 displays 
the relationship between the logarithm of the estimated within family variance of the 
400 families and the family means based on 30 records per family using the observed 
(simulated) data (generated under the heterogeneous variance model). A simple 
least squares regression of log variance within families on family means yields an 
estimate of the regression coefficient equal to .0.038 with a standard error equal to 
.0.025. This analysis based on raw averages discloses considerable heterogeneity of 
residual variance but provides a very tenuous and inconclusive relationship between 
mean and variance, despite a reasonably sized and well-structured dataset. The 
question is whether inferences of association between mean and variance are sharper 
using posterior predictive model checking. 

Detecting a Relationship Between Within Family Variance and 
Family Mean Using Discrepancy Measures 

The dataset generated under the genetically heterogeneous variance model defined 
in (10.23), (10.24) and (10.25) is analysed using a homogeneous variance model. A 
Gibbs sampling implementation of the homogeneous variance model is described 
in Chap. 5, page 249. In the current application, the code generates 5000 draws 

Fig. 10.2 The relationship 
between the logarithm of the 
variance within families and 
the family means induced by 
the heterogeneous variance 
model 
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Fig. 10.3 Left: Monte Carlo estimate of posterior distribution of discrepancy measure (10.34) 
based on predicted data .ypred generated using a model of homogeneous variance across families 
(the reference distribution). Right: Monte Carlo estimate of posterior distribution of discrepancy 
measure (10.35). The vertical red lines at zero are indicative of a lack of association between family 
mean and within family variance 

from the McMC estimates of the posterior distribution of discrepancies (10.34) 
and (10.35). 

The Monte Carlo estimates of the marginal posterior distributions of the two dis-
crepancy measures (10.34) and (10.35) are  shown in Fig.  10.3. The left panel shows 
that the Monte Carlo estimate of the reference distribution, based on predicted data 
generated with the homogeneous variance model (discrepancy measure (10.34)), is 
centred at zero. This is evidence of no signs of association between family mean and 
within family variance in the replicated data .ypred , as expected. The panel on the 
right displays the Monte Carlo estimate of the posterior distribution of discrepancy 
measure (10.35). A value of zero is very unlikely under this distribution, supporting 
the conjecture of a relationship between family mean and within family variance in 
the observed data y. 

This posterior prediction-based analysis, given the model, reveals an association 
between within family variance and family effects in the observed data that could 
not be revealed by the analysis based on simple means displayed in Fig. 10.2. 
Does this provide convincing evidence for a genetically structured residual variance 
in the data? No, it does not. One can only conclude that the results are not in 
conflict with a model posing genetic control of residual variance and justify further 
experimentation. 

I conclude with a remark that is particularly relevant in an inferential frame-
work. Modern computing tools allow fitting complex models to investigate subtle 
structures in large observational datasets that may be scientifically relevant. The 
heterogeneous variance model can serve as an illustration. The coefficient of 
skewness generated by this model is directly proportional to . ρ, the correlation 
coefficient between family effects acting on mean and variance (Ros et al 2004). 
Therefore, if the observed data have a skewed distribution in either direction
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not necessarily due to genetically structured variance heterogeneity, a model that 
postulates variance heterogeneity will result in a better fit than the simple alternative 
assuming homogeneous variance. The analysis would even output an estimate of the 
non-existent correlation . ρ, leading to spurious inference. This makes it strikingly 
clear that an attempt to understand the state of nature via a statistical analysis of 
data, particularly observational data, must be regarded only as a first step until more 
fundamental knowledge becomes available. Model checking using a well-designed 
discrepancy measure is a contribution to this process. 

Identifiability of parameters is also an important consideration. In highly com-
plex models, there is always the pitfall that parameters may be unidentified or very 
weakly identified and it may not always be possible to check lack of identifiability. 
Often for convenience, one chooses prior distributions of parameters that are 
improper (as practised repeatedly in this book!). Such prior assumptions can lead to 
improper posterior distributions that may go undetected in an McMC environment. 
This can lead to misleading inferences. An interesting example, initially taken from 
Carlin and Louis (1996), can be found on page 543 of Sorensen and Gianola 
(2002) and a useful reference is Natarajan and Kass (2000). The use of proper 
prior distributions will dispose of the potential problem of posterior impropriety and 
unidentifiability and, if chosen judiciously, may lead to Bayesian learning. However, 
the problem of the influence of prior information on posterior inference still needs 
to be addressed. 

It is important to learn as much as possible about the model by experimenting 
with it before launching a full analysis using modern computational tools.



Chapter 11 
Nonparametric Methods: A Selected 
Overview 

Throughout this book a phrase like “assume the data have been generated by 
the following probability model” has been abundantly used. Indeed, the standard 
parametric assumption is that observed data represent one realisation from some 
given probability model and the goal can be to infer the parameters of the 
model. Alternatively and from a classical frequentist setting, conditionally on esti-
mated parameters, the goal may be to predict future observations. For quantitative 
responses the parametric model can be written as 

.yi = m (xi, θ) + ei, i = 1, 2, . . . , n, (11.1) 

where m is some function that relates observations . yi (outputs) to observed 

covariates . xi (inputs, also referred to as features) constituting the dataset . zi
iid=

(yi, xi) , i = 1, 2, . . . , n. The function .m(xi, θ) = E(yi |xi, θ), a conditional 
expectation, will be referred to as the regression function or the prediction function: 
its estimate uses as input the feature x and produces an output . ̂y. The residual terms 
. ei are iid from some distribution and . θ is a vector of parameters. The form of 
m is often simple, as in linear regression, and when the model is approximately 
correct, inferences about . θ are straightforward and efficient. If . ̂θ is an estimate of 
. θ , a predicted value given . x0i is .̂y0i = m

(

x0i ,̂θ
)

. For instance, in linear regression, 
.m (xi, b) = x′

ib, .̂y0i = x′
0i
̂b, where . ̂b is the estimated value of b. For data arising 

from binary trials, modelling takes place at the level of .Pr (yi = 1|xi, θ) as in logistic 
regression. 

Nonparametric models, on the other hand, do not commit to a specific form for 
m and instead regard m as an algorithm that for future . x0 leads to a good predictor 
of . y0. The prediction algorithm is constructed or trained in the training set of 
observations, and its predictive ability is studied in the validating or testing set. 
Nonparametric theory focuses on the properties of the algorithms, their predictive 
power, and convergence properties if they are iterative and on factors that affect 
their accuracy. There is a distinction between supervised learning problems, where 
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the objective is typically to make a prediction (or a classification in the case of 
discrete data), and unsupervised learning, where the aim is to explore how the data 
fall into different clusters. The latter is not dealt with here. 

Nonparametric methodology offers a great deal of flexibility and can han-
dle model complexities such as a large number of feature variables, complex 
interactions involving the feature variables and unknown nonlinear relationships 
between the feature variables and the response. Nonparametric methods have tuning 
parameters that control their adaptation to the data and therefore the degree of 
overfitting via the bias-variance trade-off. These tuning parameters can be set by 
the user or can be estimated from the data. 

Prediction algorithms are largely the product of research in fields outside of 
statistics, especially computer science, and a vast number have been developed. This 
chapter provides an overview and examples including nonparametric regression 
methods, kernel methods using basis expansions, a special kind of neural networks 
known as multilayer perceptrons, decision trees and random forests. 

11.1 Local Kernel Smoothing 

The first part of this section provides a description of some selected traditional 
nonparametric methods that possess great flexibility for the estimation of the 
regression function. The objective is to predict the regression function m at some 
target value x. The examples and motivation in this first part assume that the 
response y is a function of a scalar predictor x. 

All the nonparametric models described here are of the form .ŷ = Hy, where . ŷ
is the prediction and H is a hat matrix (i.e. page 266), not a function of y. 

The Binned Estimator 

A convenient starting point is nonparametric estimation of the conditional expecta-
tion of a random variable Y , .E (Y |X = x) = m (x) using a random sample (training 
data) .(y1, x1) , (y2, x2) , . . . , (yn, xn), without assuming a specific form for m. The  
estimate at the point .X = x is the mean of the observations y for which .Xi = x, 
.i = 1, 2, . . .. An approximate result is to average the observations y associated 
with . X′s close to x, such that .|xi − x| ≤ h for a small .h > 0 called the bandwidth. 
Essentially, the X axis is divided into bins, and the estimate for the bin is the average 
of the y’s belonging to the bin. The value of the bandwidth determines the width of 
the bins: large size with more observations produces a smoother fit as a function
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of X. When .x ± h defines the bin, the estimator of the regression function can be 
written as 

. ̂m (x) =
∑n

i=1 I (|xi − x| ≤ h) yi
∑n

i=1 I (|xi − x| ≤ h)

=
n
∑

i=1

wi (x) yi, wi (x) = I (|xi − x| ≤ h)
∑n

i=1 I (|xi − x| ≤ h)
, (11.2) 

where .I (u) is the indicator function equal to 1 if the argument holds and 0 other-
wise. For a given x, the sum in the denominator is the number of observations that 
fall in the corresponding bin. Since .

∑n
i=1 wi (x) = 1, (11.2) is a weighted average 

of the training observations . yi and the ith weight determines the contribution of . yi

to the estimator .m̂ (x). 
The .n × 1 column vector of fitted values is 

. ̂m = (m̂ (x1) , m̂ (x2) , . . . , m̂ (xn))
′ ,

and it follows that 

.m̂ = Wy, (11.3) 

where .y = (y1, y2, . . . , yn)
′ is the training data and W is the .n×n matrix whose ith 

row contains the weights given to . yi to estimate .m̂ (xi). Expression (11.3) highlights 
that the estimate is linear in the data. The ith row of W is 

. w (xi)
′ =

[

I (|x1−xi |≤h)
∑n

j=1 I(|xj −xi |≤h)
I(|x2−xi |≤h)

∑n
j=1 I(|xj −xi |≤h)

· · · I (|xn−xi |≤h)
∑n

j=1 I(|xj −xi |≤h)

]

.

(11.4) 

The matrix W is the hat matrix encountered in (6.21), page 266. 
To illustrate suppose that .n = 7, .xi = i/7, .i = 1, 2, . . . , 7 and .h = 1/7. Then 

for .i = 1 and .x = 1/7, the denominator in (11.2) is 2, the first row of W is 

. 
[

1
2

1
2 0 0 0 0 0

]

,

and .m̂ (x1 = 1/7) = 1
2y1 + 1

2y2. For .i = 2, .x = 2/7, the denominator in (11.2) is  
3, the second row of W is 

.
[

1
3

1
3

1
3 0 0 0 0

]

,
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and .m̂ (x2 = 2/7) = 1
3y1 + 1

3y2 + 1
3y3, and so on. The hat matrix for this example 

is 

.W =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
2

1
2 0 0 0 0 0

1
3

1
3

1
3 0 0 0 0

0 1
3

1
3

1
3 0 0 0

0 0 1
3

1
3

1
3 0 0

0 0 0 1
3

1
3

1
3 0

0 0 0 0 1
3

1
3

1
3

0 0 0 0 0 1
2

1
2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (11.5) 

If instead .h = 2/7 is used, the hat matrix is 

.W =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
3

1
3

1
3 0 0 0 0

1
4

1
4

1
4

1
4 0 0 0

1
5

1
5

1
5

1
5

1
5 0 0

0 1
5

1
5

1
5

1
5

1
5 0

0 0 1
5

1
5

1
5

1
5

1
5

0 0 0 1
4

1
4

1
4

1
4

0 0 0 0 1
3

1
3

1
3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (11.6) 

Note that as h increases, more observations enter into the bin and smoothing is said
to be more “global”. Conversely, as h decreases, the neighbourhood size is smaller
and the smoothing is more “local”.

The R-code below displays an example of a binned estimator. Figure 11.1 shows 
that as the number of bins increases from 6 (blue line) to 19 (green line), the fit 
becomes more jagged leading to overfitting. The dots represent the response. 

# CODE1101 
rm(list=ls()) # CLEAR WORKSPACE 
set.seed(195021) 
x<-seq(from=0, to=2*pi,by=0.2) 
f0<-function(x){ 100+sin(2*x)+cos(x/2) }  
R2<-2/3 
y<-f0(x)+rnorm(n=length(x),sd=sqrt(var(f0(x))*(1-R2)/R2)) 
z1 <- cut(x,breaks=seq(from=min(x),to=max(x+.01), 

length=7),right=F) 
f1 <- lm(y~z1) 
z2 <- cut(x,breaks=seq(from=min(x),to=max(x+.01), 

length=20),right=F) 
f2 <- lm(y~z2) 

plot(y~x,main=’Binned estimator’) 
lines(x=x,y=predict(f1),col=’blue’,lwd=2) 
lines(x=x,y=predict(f2),col=’green’,lwd=2) 
legend(5, 103, legend=c("6 bins", "19 bins"), 

col=c("blue", "green"), lty=1:1, cex=0.8)
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Fig. 11.1 An example of a 
binned estimator illustrating 
how the smoothness of the fit 
is controlled by the number of 
bins. The dots represent the 
response 
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Other Kernel Smoothing Methods 

Estimator (11.2) is a step function, discontinuous at each .x = xi , due to the weights 
given by the indicator functions. If the indicator function in (11.2) is replaced by a 
kernel function, .K(·), then the estimator can be written as 

.m̂ (x) =
∑n

i=1 K
(

xi−x
h

)

yi
∑n

i=1 K
(

xi−x
h

) . (11.7) 

This is the form of a kernel regression estimator, known as the Nadaraya-Watson
estimator that does not necessarily eliminate the discontinuity unless the kernel
function used is continuous. For instance, the uniform density .K(u) = 1/2 for 
.u = (xi − x)/h in the support .[−1, 1] is a kernel function that is a proper 
probability density function symmetric at zero. The uniform kernel in particular 
is an alternative representation of the binned estimator (11.2) and suffers from the 
same discontinuity. 

A kernel function satisfies .0 ≤ K (u) < ∞, .
∫∞
−∞ K (u) du = 1, or equal to a 

constant, .K (u) = K (−u), .
∫∞
−∞ uK (u) du = 0 and .σ 2

K = ∫∞
−∞ u2K (u) du < ∞. 

A normalised kernel function satisfies .
∫∞
−∞ u2K (u) du = 1. 

The size of  h in (11.7) plays a central role in the degree of smoothness of .m̂ (x). 
As h approaches 0, . xi approaches x, .m̂ (xi) approaches . yi and the fitted values 
go through the observed data. This is an extreme case of overfitting. When h is 
very large, the computation of .m̂ (x) involves all the . x′

is and the estimator .m̂ (x)
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Fig. 11.2 An example of a 
binned estimator generated 
using a uniform kernel on a 
grid of values of x. The  
degree of smoothness is 
controlled by the smoothing 
parameter. The dots represent 
the response 
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approaches the mean of the observations for all i, an extreme case of underfitting. 
The R-code below illustrates this using a uniform kernel on a grid of values of x 
and the result is displayed in Fig. 11.2. 

# CODE1102 
rm(list=ls()) # CLEAR WORKSPACE 
set.seed(195021) 
x<-seq(from=0, to=2*pi,by=0.2) 
f0<-function(x){ 100+sin(2*x)+cos(x/2) }  
R2<-2/3 
y<-f0(x)+rnorm(n=length(x),sd=sqrt(var(f0(x))*(1-R2)/R2)) 
d <- as.matrix(dist(x)) 
h <- 0.2 
d2 <- ifelse(d <= h,1,0) 
div <- apply(d2,1,sum) 
rx <- d2%*%y/div 

h <- 0.8 
d2 <- ifelse(d <= h,1,0) 
div <- apply(d2,1,sum) 
rx <- d2%*%y/div 

As indicated, the construction of (11.2), either as expressed in terms of indicator 
functions or in terms of the uniform kernel, places equal weights to those points 
within a distance h and those outside h are ignored. This generates a discontinuity 
when the .x′s are grouped in bins, although a smoother graph results if a grid of 
values of the .x′s is chosen instead.
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One may wish to place more weights to those observations that are close to x. 
There are a number of continuous kernel functions that can be used with (11.7) that 
address these issues and a common one is the Gaussian kernel 

. K

(

xi − x

h

)

= (2π)−
1
2 exp

(

− (xi − x)2

2h2

)

.

The constant term .(2π)− 1
2 is typically omitted, and the term in the denominator of 

the exponential function can be replaced by h. The fitted value at .x1 = 1/7 is given 
by 

.m̂ (x1 = 1/7) =
∑7

i=1 exp
[

− (1/7−xi )
2

2h2

]

yi

∑7
i=1 exp

[

− (1/7−xi )
2

2h2

] =
7
∑

i=1

wi (x) yi (11.8) 

that has the form given by (11.7). A prediction for a new scalar value of the covariate 
.x = x∗ is 

.m̂
(

x = x∗) =
∑7

i=1 exp

[

− (x∗−xi)
2

2h2

]

yi

∑7
i=1 exp

[

− (x∗−xi )
2

2h2

] =
7
∑

i=1

wi

(

x∗) yi, (11.9) 

where the weight function is

.wi

(

x∗) =
exp

[

− (x∗−xi)
2

2h2

]

∑7
i=1 exp

[

− (x∗−xi )
2

2h2

] . (11.10) 

An example of the implementation of a Gaussian kernel applied to the same data 
used in Figs. 11.1 and 11.2 is shown in the R-code below that produces Fig. 11.3 as 
output. Compared to the uniform kernel, the Gaussian kernel generates a smoother 
fit. As shown in the figure, a higher degree of smoothness is associated with larger 
values of the bandwidth h. 

# CODE1103 
# GAUSSIAN KERNEL REGRESSION 
rm(list=ls()) # CLEAR WORKSPACE 
set.seed(195021) 
# GENERATE DATA 
x<-seq(from=0, to=2*pi,by=0.2) 
#x<-seq(from=0, to=2*pi,length.out=33) 

f0<-function(x){ 100+sin(2*x)+cos(x/2) }  
R2<-2/3 
y<-f0(x)+rnorm(n=length(x),sd=sqrt(var(f0(x))*(1-R2)/R2)) 
# CHOOSE h
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h <- 0.25 
# CONSTRUCT DISTANCE MATRIX AND GAUSSIAN KERNEL 
d <- as.matrix(dist(x))^2 
Kh25 <- exp(-(1/(2*h^2))*d) 
sc25 <- apply(Kh25,1,sum) 
mhgaus25 <- Kh25%*%y/sc25 
plot(y~x,main=’Gaussian kernel regression’) 
lines(x,mhgaus25,col="red") 
# CHOOSE h 
h <- 0.10 
Kh10 <- exp(-(1/(2*h^2))*d) 
sc10 <- apply(Kh10,1,sum) 
mhgaus10 <- Kh10%*%y/sc10 
lines(x,mhgaus10,col="blue") 
legend(5, 103, legend=c("h=0.25", "h=0.10"), 

col=c("red", "blue"),lty=1:1, lwd=c(1.5,1.5), cex=0.8) 

Kernel smoothing methods discussed so far suffer from boundary bias. For 
instance, an estimate for a decreasing function on the left boundary includes points 
to the right of the boundary, and since the function is decreasing, this creates a 
downward bias. Bias can also occur in the interior of the function if it has substantial 
curvature and is aggravated when covariates are multidimensional or unequally 
spaced. These problems can be alleviated using a generalisation of kernel regression: 
local polynomial regression. 

Fig. 11.3 The Gaussian 
kernel estimator computed 
with the R-code CODE1103, 
using two values for the 
bandwidth parameter
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Local Polynomial Regression 

The Nadaraya-Watson kernel regression estimator of the conditional expectation 
.m(x) can be framed in terms of a weighted regression. Given the weight function 
like the one defined in (11.10), choose .μ = m̂ (x) to minimise the weighted sum of 
squares 

.

n
∑

i=1

wi (x) (yi − μ)2 . (11.11) 

Setting the derivative with respect to . μ equal to zero and solving for . μ recovers the 
kernel estimator 

.m̂(x) =
∑

i w (xi) yi
∑

i w (xi)
. (11.12) 

This is a weighted regression with a mean only implying the approximation . m (x) ≈
μ. A generalisation is to replace the local constant . μ by a local polynomial of 
degree p. This polynomial is fitted to each target value x and generates estimates of 
regression parameters by minimising the weighted sum of squares along the same 
lines as in (11.11) 

.

n
∑

i=1

wi (x)

⎛

⎝yi −
p
∑

j=0

bjx (xi − x)j

⎞

⎠

2

. (11.13) 

This weighted sum of squares can be written

. 

n
∑

i=1

wi (x)

⎛

⎝yi −
p
∑

j=0

bjx (xi − x)j

⎞

⎠

2

= (y − Xxbx)
′ Wx (y − Xxbx) .

Minimisation of this expression with respect to . bx gives the standard weighted least 
squares estimator 

.̂bx = (

X′
xWxXx

)−1
X′

xWxy, (11.14) 

where

.Xx =
⎡

⎢

⎣

1 (x1 − x) · · · (x1 − x)p

...
...

. . .
...

1 (xn − x) · · · (xn − x)p

⎤

⎥

⎦ (11.15)
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is an .n × (p + 1) matrix and 

.Wx = diag [w1 (x) · · ·wn (x)] (11.16) 

is an .n × n diagonal matrix of weights . wi (x). In (11.14) the dependence on the 

target value x has been made explicit by writing .b̂x =
(

b̂0x, b̂1x, . . . , b̂px

)′
. At the  

target value . xi = x, the terms in .(xi − x) drop out and the fitted value is 

.m̂ (x) = z′
1

(

X′
xWxXx

)−1
X′

xWxy. (11.17) 

= Hxy. (11.18) 

= ̂b0x, (11.19) 

where . z1 is the .(p + 1)×1 column vector with 1’s in the first entry and 0’s elsewhere 
and . Hx is a hat vector. It is important to notice that the complete regression function 
must be computed for each target value, despite the fact that at .xi = x, . m̂ (x) =
b̂0 (x). Setting .p = 0 yields the kernel regression estimator (11.7). 

The same result is obtained if (11.13) is replaced by 

. 

n
∑

i=1

wi (x)

⎛

⎝yi −
p
∑

j=0

bjxx
j
i

⎞

⎠

2

= (y − Xbx)
′ Wx (y − Xbx) ,

where now 

. X =
⎡

⎢

⎣

1 x1 · · · x1
p

...
...

. . .
...

1 xn · · · xn
p

⎤

⎥

⎦

n×(p+1)

.

A predicted value at the target .x∗ = (

x∗, x∗2, . . . x∗p
)

is 

. ̂m
(

x∗) = (

1, x∗) (X′Wx∗X
)−1

X′Wx∗y

= ̂b0x∗ +
p
∑

j=1

̂bjx∗
(

x∗)j ,

where .(1, x∗) is .(p × 1) × 1 and the weight function .Wx∗ is an .n × n diagonal 
matrix with ith diagonal element 

.wi

(

x∗) =
exp

[

− (x∗−xi)
2

2h2

]

∑n
i=1 exp

[

− (x∗−xi )
2

2h2

] .
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Fig. 11.4 A local linear 
regression estimator 
computed with the R-code 
CODE1104, using two values 
for the bandwidth parameter 
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The R-code below implements a local linear regression (.p = 1) and the output 
is displayed in Fig. 11.4. 

# CODE1104 
rm(list=ls()) # CLEAR WORKSPACE 
set.seed(195021) 
# LOCAL LINEAR REGRESSION SETS p = 1 
p <- 1 
x<-seq(from=0, to=2*pi,by=0.2) 
f0<-function(x){ 100+sin(2*x)+cos(x/2) }  
R2<-2/3 
y<-f0(x)+rnorm(n=length(x),sd=sqrt(var(f0(x))*(1-R2)/R2)) 

w <- matrix(data=NA,nrow=length(x),ncol=length(x)) 
X <- matrix(data=NA, nrow=length(y), ncol=(p+1)) 
W <- matrix(data=NA, nrow=length(y), ncol=length(y)) 

one <- rep(1,length(y)) 

X <- cbind(one,x) 
Xt <- t(X) 
k <- seq(1:length(x)) 

mhx <- function(k,w,one,X){ 
W <- diag(w[k,]) 
Xt <- t(X) 
solve(Xt%*%W%*%X,Xt%*%W%*%y) 

} 

mpred <- function(k,estx,x){ 
estx[1,k]+estx[2,k]*x[k] 

}
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# CONSTRUCT DISTANCE MATRIX 
dst <- as.matrix(dist(x)) 
d <- as.matrix(dist(x))^2 

# CONSTRUCT GAUSSIAN KERNEL 
# CHOOSE h 
h <- 0.2 
Kh25 <- exp(-(1/(2*h^2))*d) 
div <- apply(Kh25,1,sum) 

# SCALE GAUSSIAN KERNEL: PLACE RESULT IN w 
for( i  in 1:nrow(Kh25)){ 

w[i,] <- Kh25[i,]/div[i] 
} 

estx <- sapply(k,mhx,w,one,X) 

fitx <- sapply(k,mpred,estx,x) 
## APPROX PREDICTION FOR A NEW X=5.12: 
fitx[which.min(abs(x-5.12))] 
fitx[which.min(abs(x-5.0))] ## FIT FOR X=5.0 

plot(x,y,main=’Local linear regression’) 
lines(x,fitx,lty=1,col="blue") 

h <- 0.5 
Kh25 <- exp(-(1/(2*h^2))*d) 
div <- apply(Kh25,1,sum) 

# SCALE GAUSSIAN KERNEL: PLACE RESULT IN w 
for( i  in 1:nrow(Kh25)){ 

w[i,] <- Kh25[i,]/div[i] 
} 

estx <- sapply(k,mhx,w,one,X) 

fitx <- sapply(k,mpred,estx,x) 
## APPROX PREDICTION FOR A NEW X=5.12: 
fitx[which.min(abs(x-5.12))] 
fitx[which.min(abs(x-5.0))] ## FIT FOR X=5.0 

lines(x,fitx,lty=1,col="red") 
legend(5, 103, legend=c("h=0.20", "h=0.50"), 

col=c("blue", "red"),lty=1:1, lwd=c(1.5,1.5), cex=0.8) 

The R-code below computes a prediction based on the local linear regression for 
a new value of the feature .x = z. 

# CODE1105 
rm(list=ls()) # CLEAR WORKSPACE 
set.seed(195021) 
# LOCAL LINEAR REGRESSION SETS p = 1 
p <- 1 
x<-seq(from=0, to=2*pi,by=0.2) 
f0<-function(x){ 100+sin(2*x)+cos(x/2) }  
R2<-2/3 
y<-f0(x)+rnorm(n=length(x),sd=sqrt(var(f0(x))*(1-R2)/R2))
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z <- 5.12 
bz <- matrix(c(1,z),nrow=2) 
bzt <- t(bz) 
one <- rep(1,length(y)) 

X <- matrix(data=NA, nrow=length(y), ncol=(p+1)) 
Wz <- matrix(data=NA, nrow=length(y), ncol=length(y)) 

X <- cbind(one,x) 
Xt <- t(X) 
# CHOOSE h 
h <- 0.2 
d <- x-z 
ele <- exp(-(d^2)/(2*h^2)) 
sm <- sum(ele) 
Wz <- diag(ele/sm) 
pred_z <- bzt%*%solve(Xt%*%Wz%*%X,Xt%*%Wz%*%y) 
cat("x =",z,"\n") 

## x = 5.12 

cat("Prediction =", pred_z,"\n") 

## Prediction = 98.37111 

Choice of Bandwidth Parameter 

Leave-one-out cross-validation can be used to choose the bandwidth parameter h. 
Since the methods described here are linear smoothers, use can be made of the 
exact expression (6.58) or of the approximate but more robust generalised cross-
validation estimator (6.59). The R-code below computes both for a range of values 
of h. Figure 11.5 illustrates that for the present data, both estimators produce very 
similar values of leave-one-out mean squared error (.0.64 vs .0.66) and choose a 
similar amount of smoothing (.h = 0.35 for (6.58) and .h = 0.325 for (6.59)). 

# CODE1106 
# COMPUTE HAT MATRIX FOR THE LOCAL LINEAR REGRESSION 
rm(list=ls()) # CLEAR WORKSPACE 
set.seed(195021) 

x<-seq(from=0, to=3*pi,by=0.05) 

f0<-function(x){ 100+sin(2*x)+cos(x/2) }  
noise <- rnorm(n=length(x),sd=sqrt(var(f0(x))*0.5)) 
y<- f0(x) + noise 

one <- rep(1,length(x)) 

X <- matrix(data=NA, nrow=length(y), ncol=(2)) 
W <- matrix(data=NA, nrow=length(y), ncol=length(y))
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HatMat <- matrix(data=NA, nrow=length(x), ncol=length(x)) 

h <- seq(from = 0.1, to = 1.5, by = 0.025) 
GCV <- rep(0,length(h)) 
LOOCV <- rep(0,length(h)) 
form40 <- rep(0,length(h)) 
dsq <- rep(0,length(h)) 

tr <- rep(0,length(h)) 
Trmse <- rep(0,length(h)) 

j <- seq(1:length(x)) 

X <- cbind(one,x) 
Xt <- t(X) 

Hat <- function(j,h,k,x,X){ 
d <- x - x[j] 
ele <- exp(-(d^2)/(2*h[k]^2)) 
sm <- sum(ele) 
w <- diag(ele)/sm 
X[j,]%*%solve(Xt%*%w%*%X)%*%Xt%*%w 
} 

for (k in 1:length(h)) { 
HatMat<- t(sapply(1:length(x),Hat,h,k,x,X)) 
predy <- HatMat %*% y 
tr[k] <- sum(diag(HatMat)) 
Trmse[k] <- mean((predy - y) ^ 2) 
dsq[k] <- (1 - mean(diag(HatMat))) ^ 2 
GCV[k] <- Trmse[k] / dsq[k] # generalised LOOCV 
omd <- 1 - diag(HatMat) 
LOOCV[k] <- mean(((predy - y) / omd) ^ 2) # LOOCV 

} 

h[which.min(LOOCV)] 

## [1] 0.35 

h[which.min(GCV)] 

## [1] 0.325 

min(LOOCV) 

## [1] 0.660054 

min(GCV) 

## [1] 0.639314
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Fig. 11.5 Computation of 
leave-one-out mean squared 
error for a range of values of 
the smoothing parameter h 
using the generalised 
cross-validation estimator 
(6.59) and using estimator 
(6.58). The former chooses 
.h = 0.325 and the latter 
. h = 0.35
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Extension to Several Dimensions 

Kernel smoothing methods such as the Nadaraya-Watson estimator and local 
regression estimators can be extended to deal beyond the one-dimensional case 
.(d = 1) discussed so far. For instance, for .d = 2 and .p = 1 (polynomial of degree 
one for each of the two coordinates, a linear regression), terms of the form . (xi − x)

in the kernel (11.7) are replaced by 

. (xi − x) = (x1i − x1) (x2i − x2) .

When a single bandwidth parameter h is used, the kernel reduces to the product of 
the kernels of each component 

.K

(

(xi − x)′ (xi − x)

h

)

= K1

(

x1i − x1

h

)

K2

(

x2i − x2

h

)

(11.20) 

for target values .(x1, x2). However, a multivariate kernel of the form 

. K

(

(xi − x)′ A (xi − x)

h

)

,

for some positive semidefinite matrix A can also be used. For diagonal A, this would 
allow to control the influence of certain predictors by assigning different values to h
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in (11.20). The fit at the target values .x = (x1, x2) requires minimising with respect 
to . α, b1, b2

. 

n
∑

i=1

wi (yi − α (x1, x2) − b1 (x1, x2) x1i − b2 (x1, x2) x2i )
2 .

The fitted value at the target becomes 

. m̂ (x1, x2) = (1, x1, x2)
′ b̂ (x1, x2)

where .b̂′ (x1, x2) =
(

α̂ (x1, x2) , b̂1 (x1, x2) , b̂1 (x1, x2)
)

and 

. wi (x) =
K
(

(xi−x)′(xi−x)
h

)

∑n
i=1 K

(

(xi−x)′(xi−x)
h

) .

Local polynomials become less attractive when the dimension exceeds beyond 
.d = 2 or 3. Other nonparametric approaches are required to deal with higher 
dimensions. 

11.2 Kernel Methods Using Basis Expansions 

The nonparametric methods discussed so far provide flexibility by fitting a model 
repeatedly for each target value x. The model could be a simple mean model 
(polynomial of degree zero: the binned estimator), or polynomials of any degree, 
such as the simple linear regression, a polynomial of degree one. The contribution 
that the data features . xi , .i = 1, . . . , n make to the fit at the target x is controlled by 
a kernel function. 

This section introduces kernel methodology where kernel functions expand the 
original set of features into an implicitly high-dimensional space. The method can 
involve regularisation, in a similar spirit as in ridge regression, and can capture the 
effect on the data of complex interactions and nonlinear terms involving the original 
features, without explicit modelling. Here the treatment is heuristic and based on 
examples. An authoritative reference is Wahba (1990). The topic is also discussed 
at length in the books of Bishop (2006) and Hastie et al (2009). 

Preliminaries 

I review briefly the concepts of dual representation, basis functions and kernel 
functions and note how a dual representation leads to kernel functions. These
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provide flexible mechanisms to implicitly expand the feature space of a regression 
model. Kernels are introduced using ridge regression as an example. 

The following notation and definitions will be needed.

• The p-norm of a vector .x ∈ Rn is .
(|x1|p + · · · + |xn|p

) 1
p = ‖x‖p

• For . p = 1, the .�1-norm is .‖x‖1 = |x1| + · · · + |xn|
• For . p = 2, the .�2-norm or Euclidean norm or length of vector x is . ‖x‖2 =

(

x2
1 + · · · + x2

n

) 1
2 = 〈x, x〉 1

2 = √
x′x ≥ 0. The Euclidean norm is sometimes 

denoted without any subscript: .‖x‖
• For vectors .x ∈ Rn and .y ∈ Rn, the squared distance between x and y is 

. ‖x − y‖2
2 = ‖x‖2

2 + ‖y‖2
2 − 2x′y.

For instance, for .x = (x1, x2) and .y = (y1, y2), 

. ‖x − y‖2
2 = [(x1 − y1) , (x2 − y2)] [(x1 − y1) , (x2 − y2)]

′

= (x1 − y1)
2 + (x2 − y2)

2

= x2
1 + x2

2 + y2
1 + y2

2 − 2x1y1 − 2x2y2

= ‖x‖2
2 + ‖y‖2

2 − 2x′y.

and if x and y are orthogonal, .x′y = 0.
• A vector whose length is 1 is called the unit vector. If a non-zero vector x is 

divided by its length (or multiplied by .1/ ‖x‖), a unit vector results because 

. ‖u‖ = 1

‖x‖ ‖x‖ = 1

• The inner product of vectors x and y is a function that can be represented as 
.
∑n

i=1 xiyi = x′y = y′x = 〈x, y〉 = 〈y, x〉 (the inner product is symmetrical).
• As noted in the following sections, vectors can be infinitely dimensional. Such 

infinitely dimensional vector spaces (Hilbert spaces) must be endowed with 
certain structure in order to derive mathematically useful results. This structure 
guarantees that properties of Hilbert spaces apply also to finite dimensional 
settings. Technical details are omitted in this overview, and I draw instead on 
a result based on the representer theorem on page 472 that has far-reaching 
applications. A similar result can be arrived at informally using the concept 
of dual representation. The general idea is to express the solution of a linear 
system in terms of kernel functions. A variety of kernel functions can be used. 
This provides a flexible mechanism to expand the feature space without explicit 
modelling. In this way, nonlinear associations between the covariates and the 
records can be explored.
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Dual Representation 

Linear models admit a dual representation where kernel functions arise naturally. 
For instance, consider a training dataset .S = {(x1, y1) , . . . , (xnyn)} where . xi ∈ Rp

are p-dimensional feature vectors and .yi ∈ R are responses. The regression model 
can be written 

.y = 1μ + Xb + e, e ∼
(

0, Iσ 2
)

. (11.21) 

In ridge regression . μ and b are obtained as the solution to the minimisation of the 
cost function 

.J (μ, b) = (y − 1μ − Xb)′ (y − 1μ − Xb) + λ ‖b‖2 , (11.22) 

where the scalar .λ ≥ 0 is a parameter that controls the amount of shrinkage. 
Differentiation with respect to . μ and b gives 

.

[

1′1 1′X
X′X X′X + λI

] [

μ̂
̂b

]

=
[

1′y
X′y

]

(11.23) 

that results in the closed-form solution

.̂b = (

X′X + Iλ
)−1

X′ (y − 1μ̂) . (11.24) 

A scalar prediction at some target value x (a .p × 1 column vector) is equal to 

.m (x) = μ̂ + x′b̂. (11.25) 

Matrix .X′X+Iλ is of dimension . p×p. If .λ > 0 the matrix .X′X+Iλ is positive 
definite, and therefore the solution . ̂b is unique. 

Solution (11.24) can be expressed in what is known as the dual form. The partial 
derivative of .J (μ, b) with respect to b results in 

. − X′y + X′1μ + X′Xb + λb = 0

Multiplying by .λ−1 and rearranging yields 

.̂b = λ−1X′ (y − 1μ̂ − X̂b
) = X′α̂ =

n
∑

i=1

α̂ixi (11.26)
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where . xi is the ith column of . X′ with p entries and the dual variable . ̂α is equal to 

. ̂α = λ−1 (y − 1μ̂ − X̂b
)

⇒ λα̂ = (

y − 1μ̂ − XX′α̂
)

⇒ α̂ = (

XX′ + Iλ
)−1

(y − 1μ̂) . (11.27) 

Expression (11.26) indicates that . b̂ can be expressed as a linear combination of 
the training features . xi and . ̂α. The dual variable . ̂α involves the solution of a linear 
system of n equations. In contrast, (11.24) requires the solution of a linear system of 
p equations. The choice between both depends on the relative sizes of n and p. An  
important observation is that the dual solution of the ridge regression (11.27) uses  
inner products between data points . xi via .XX′. Indeed, the ij th element of .XX′ is 

. 
[

XX′]
i,j

= x′
ixj ,

where . x′
i is the ith row of X and . xj is the j th column of . X′. A predicted value at the 

target x is of the form 

. m (x) = μ̂ + x′
̂b = μ̂ + x′

n
∑

i=1

α̂ixi

= μ̂ +
n
∑

i=1

α̂ix
′xi

= μ̂ +
n
∑

i=1

α̂i 〈x, xi〉 , (11.28) 

again involving the inner product between the training features . xi and the target 
x. In general, a method will be referred to as kernelised, if the training features x 
appear only inside inner products of functions of x, the basis functions. These are 
dealt with on page 465. The inner product .〈x, xi〉 is the simplest example of a kernel 
function, often referred to as linear kernel. 

Kernelised Predictions 

Consider representing the inner product .〈x, xi〉 in the last line of (11.28) by .k (x, xi), 
a kernel function. This kernel function takes the form 

.k (x, xi) = (

x1, . . . , xp

)

⎛

⎜

⎝

xi1
...

xip

⎞

⎟

⎠ .
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The kernelised prediction formulation of (11.28) at the target x becomes 

.m (x) = μ̂ +
n
∑

i=1

α̂ik (x, xi) , (11.29) 

a linear combination of .k (x, x1) , . . . , k
(

x, xp

)

considered as a function of x. The  
predicted values for new features . x′

i , .i = 1, . . . , m, can be written as 

.

⎡

⎢

⎣

m
(

x′
1

)

...

m
(

x′
m

)

⎤

⎥

⎦ = 1μ̂+
⎡

⎢

⎣

α̂1k
(

x′
1, x1

)+ · · · +α̂nk
(

x′
1, xn

)

...
...

...

α̂1k
(

x′
m, x1

)+ · · · +α̂nk
(

x′
m, xn

)

⎤

⎥

⎦ = 1μ̂+Kα̂ (11.30) 

generalising expression (11.29). Matrix .K = XX′ = (k
(

xi, xj

)

ij
∈ Rn×n, which is 

symmetric and positive semidefinite, is known as the kernel matrix or Gram matrix 
for any kernel k in the set .{x1, . . . , xn}. More details on this matrix follow shortly. 
At this point note that the Gram matrix contains the evaluation of the kernel function 
on all pairs of feature points . xi . All the information about the data x is contained 
in K . New predictions require the input of the complete feature points . xi of the 
training data. 

Kernelised Cost Functions 

The cost function (11.22) can be written in terms of the .n × n symmetric kernel 
matrix K . Using (11.26), 

. (y − 1μ − Xb) = (

y − 1μ − XX′α
)

= (y − 1μ − Kα) .

Therefore, the residual sum of squares takes the form 

. ‖y − 1μ − Xb‖2 = ‖y − 1μ − Kα‖2 .

The penalised term .λ ‖b‖2 can be expressed as 

.λ ‖b‖2 = λ
∥

∥X′α
∥

∥

2

= λα′XX′α

= λα′Kα.
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Therefore, the cost function (11.22) is equal to the convex and differentiable cost 
function 

. (y − 1μ − Kα)′ (y − 1μ − Kα) + λα′Kα. (11.31) 

Setting the partial derivatives with respect to . μ and . α equal to zero yields 

.

[

1′1 1′K
K1 K (K + λI)

] [

μ̂

α̂

]

=
[

1′y
Ky

]

. (11.32) 

Rearranging the second equation results in .K (K + λI) α = K (y − 1μ̂). One  
solution is 

.̂α = (K + λI)−1 (y − 1μ̂) , (11.33) 

as can be confirmed by replacing (11.33) in the partial derivative of the cost function 
with respect to . α. If  K is positive definite, (11.33) is the only solution to the 
minimisation of (11.31). The vector of n fitted values is given by (11.30) 

. ̂y = 1μ̂ + Kα̂

= 1μ̂ + K (K + λI)−1 (y − 1μ̂) . (11.34) 

The vector of fitted values . ̂y is invariant to whatever solution of . K (K + λI) α =
K (y − 1μ̂) is used. The right-hand side of (11.34) can be written as 

. 
[

1 K
]

[

1′1 1′K
K1 K (K + λI)

]−1 [
1′
K

]

y = Hy

where H is not a function of y, so this is a linear smoother in the observations. 
The subsection concludes with two important messages. First, the algorithm for 

solving (11.31) involves only the computation of inner products of feature vectors 
x. All the information about the training data is contained in the matrix K and 
the output vector y. Second, the kernelised cost function (11.31) with solution 
(11.33) can be used with a variety of kernel matrices K , providing flexibility. Kernel 
functions automatically incorporate nonlinear associations between the features x 
and the records y, without explicit modelling, as discussed in the next subsection. 

Nonlinear Feature Mappings Using Kernel Functions 

Consider a regression function 

.m (x) = α + bx, (11.35)
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where b is a scalar parameter and feature .x ∈ R is also a scalar. One may 
wish to expand the model to explore nonlinear structures in the training data 
and, to this end, a basis function .φ (x) is used that maps x onto . φ (x) =
(

x, x2, x3
) ∈ R3, a three-dimensional space. The effect of . φ is to recode the data 

from .
{(

x1,y1
)

, . . . , (xn, yn)
}

to .{(φ (x1) , y1) , . . . , (φ (xn) , yn)}. The regression 
function in the new space is now 

. m (φ (x)) = α + b1x + b2x
2 + b3x

3 = α + b′φ (x) ,

where now b is a vector of parameters with three elements. This operation allows 
the output y to be represented by a nonlinear function of the original features x, 
but y is still linear in the parameters b in the expanded model. The only difference 
with (11.35) is that .φ (x) is substituted for x. This linearity in the parameters greatly 
simplifies the analysis of this class of models. As we shall see, these models lead 
to convex functions that are relatively easy to optimise. The algorithm that solves 
(11.31) proceeds in exactly the same manner as in the standard linear model, with x 
replaced by .φ (x). This requires computation of the inner products .φ (x)′ φ (x). 

A more general case is to consider a feature vector . x = (

x1, . . . , xp

)′ ∈ Rp

involving p variables, where the basis function . φ transforms x into the product of 
all monomial terms. The notation .(x, z) denotes two different values of the feature 
x, .
(

xi, xj

)

and therefore .x, z ∈ Rp. The basis function is 

. φ (x) = (

x1x1, x1x2, . . . , x1xn, . . . , xpxp

)′ ∈ Rp2
,

φ (z) = (

z1z1, z1z2, . . . , z1zn, . . . , zpzp

)′ ∈ Rp2
. (11.36) 

The time required to compute .φ (x) or the inner product .φ (x)′ φ (z) is of order . p2

(because there are . p2 terms and . p2 products), while the time required to compute the 
inner product in the original feature space .x′z is of order p (there are p products). 
So the complexity of the evaluation of the inner products is proportional to the 
dimension of the feature space. The function that for all .x, z computes the inner 
products .φ (x)′ φ (z) is a kernel function k. Specifically, 

.k (x, z) = 〈φ (x) , φ (z)〉 = φ (x)′ φ (z) =
p
∑

i=1

p
∑

j=1

(

xixj

) (

zizj

)

. (11.37) 

The kernel function involves . p2 products, where . φ is a mapping from X to an inner 
product feature space F . When . φ is the identity mapping and the new feature space 
involves the covariates .xi ∈ Rp of the training set, .K = XX′. The  ij th element of 
.XX′ is .

(

XX′)
ij

= 〈

xi, xj

〉 = x′
ixj , where . x′

i is the ith row of the incidence matrix 

.X ∈ Rn×p; this particular kernel is known as the linear kernel. The kernel matrix K 
has dimension .n × n.
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At face value, it seems that use of the basis function . φ to explore a higher 
dimensional space comes at the cost of increased computation. The next section 
shows that this is not the case. 

The Kernel Trick 

As indicated above, the computation of inner products involving . φ in (11.37) can 
be very demanding when the inner product feature space F is high dimensional. 
In the case of (11.37), there are . p2 products. As shown below, regardless of the 
dimension of F , the use of kernel functions allows computation of .φ (x)′ φ (z) using 
the original features .(x, z) without explicitly computing the mapping . φ. The claim is 
that the inner product (11.37) involving the basis function (11.36) can be computed 
using 

.k (x, z) = φ (x)′ φ (z) = (

x′z
)2 (11.38) 

requiring p products. To prove the claim, write

. k (x, z) = (

x′z
)2

=
(

p
∑

i=1

xizi

)

⎛

⎝

p
∑

j=1

xj zj

⎞

⎠

=
p
∑

i=1

p
∑

j=1

xixj zizj

=
p
∑

i=1

p
∑

j=1

(

xixj

) (

zizj

)

= φ (x)′ φ (z) . (11.39) 

The first line in (11.39) requires order p computations involving the inner product 
of vectors x and z, each with p elements, while the last line requires order . p2. The  
inner product between the new feature space (high dimensional) has been computed 
without explicitly evaluating the new feature space, using the original (lower 
dimensional) feature space. The function that performs this direct computation is 
the kernel function k, and the operation of swapping the linear kernel with the new 
kernel is known as the kernel trick.
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Choice of Kernel Functions 

The use of kernel functions provides flexibility: the same algorithm can be applied 
replacing one kernel function with another. In addition, very high-dimensional fea-
ture spaces involving nonlinear terms among the features and complex interactions 
can be explored, without their explicit evaluation. The question is, how should a 
kernel be chosen and what function qualifies as a kernel function? 

A function .k (x, z) can be used as a kernel function if there exists some . φ such 
that .k (x, z) = φ (x)′ φ (z). For a given set of feature vectors .{x1, . . . , xn}, .xi ∈ Rp, 
define the symmetric matrix .K ∈ Rn×n to be the Gram matrix or kernel matrix such 
that .

[

Kij

]

i,j=1,...,n
where, .Kij = 〈

φ (zi) , φ
(

zj

)〉

. Then 

. z′Kz =
n
∑

i=1

n
∑

j=1

zizjKij

=
n
∑

i=1

n
∑

j=1

zizj

〈

φ (zi) , φ
(

zj

)〉

=
〈

n
∑

i=1

ziφ (zi) ,

n
∑

j=1

zjφ
(

zj

)

〉

=
∥

∥

∥

∥

∥

n
∑

i=1

ziφ (zi)

∥

∥

∥

∥

∥

2

≥ 0

and therefore K is a positive semidefinite matrix. This result indicates that the 
construction of a valid kernel involves first finding a feature mapping . φ and then 
computing its inner product to generate K . There is a powerful result known as 
Mercer’s theorem that allows going the other way: choose an appropriate K and do 
not worry about . φ. An appropriate K is simply any symmetric, positive semidefinite 
matrix. 

A few examples of commonly used kernels are

• the linear kernel .k (x, z) = 〈x, z〉
• the polynomial kernel of degree d, .k (x, z) = (〈x, z〉 + 1)d

• the Laplacian radial basis kernel .k (x, z) = exp
[

−‖x−z‖1
2σ 2

]

• the Gaussian or radial basis function kernel . k (x, z) = exp

[

−‖x−z‖2
2

2σ 2

]

.

(Above, the term .2σ 2 is often replaced by the positive scalar h, the bandwidth 
parameter). 

Any of these kernel functions and many others can be used to minimise (11.31) 
with solution given by (11.33).
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An observation regarding the Gaussian kernel is that, in order to express it as 
.k (x, z) = 〈φ (x) , φ (z)〉, the new feature vector .φ (x) must be of infinite dimension. 
The inner product space of this infinitely dimensional feature vector is referred to as 
a reproducing kernel Hilbert space (RKHS). The finite dimensional inner product 
space . Rp is a special case. The Gaussian kernel is a square, positive definite matrix 
of dimension .p ×p, where the original feature space is . Rp, despite the fact that . φ ∈
R∞. To illustrate, assume a single scalar feature per response. The basis function 
.φ (x) corresponding to the Gaussian kernel is an implicitly infinite vector with the 
form 

. φ (x) = exp

[

− x2

2σ 2

] [

1,
x

σ
√

1! ,
x2

σ 2
√

2! ,
x3

σ 3
√

3! , . . .
]′

and .〈φ (x) , φ (z)〉 is a series that converges to .k (x, z). Indeed, 

. 〈φ (x) , φ (z)〉 =
∞
∑

j=0

1

j ! exp

[

−
(

x2 + z2
)

2σ 2

]

xj zj

(

σ 2
)j

= exp

[

−
(

x2 + z2
)

2σ 2

] ∞
∑

j=0

(xz)j

(

σ 2
)j

j !

= exp

[

−
(

x2 + z2
)

2σ 2

]

exp
[ xz

σ 2

]

= exp

[

− (x − z)2

2σ 2

]

= k (x, z)

where the step from the second to third line follows from the characterisation of the 
exponential function as a Maclaurin series. 

Interestingly, the finite dimensional cost function (11.31) with solution (11.33) 
can be used despite the infinite dimensionality of the inner product space associated 
with the Gaussian kernel. Positive definite kernel functions give rise to implicitly 
infinite dimensional feature spaces. 

NOTE 

The term .2σ 2 in the Laplacian basis kernel and in the Gaussian kernel is the 
bandwidth parameter and can be replaced by the customary notation h.
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Kernel Matrices as Similarity Matrices 

Kernel matrices are also known as similarity matrices or covariance functions. For  
instance, consider two p dimensional vectors . xi and . xj , where p could represent 
the number of features, while i and j could represent two individuals. The Gaussian 
kernel function is 

. k
(

xi, xj

) = exp

(

−
∥

∥xi − xj

∥

∥

2

σ 2

)

,

where 

.
∥

∥xi − xj

∥

∥ =
[

(

xi1 − xj1
)2 + (

xi2 − xj2
)2 + · · · + (

xip − xjp

)2
] 1

2
(11.40) 

is the Euclidean distance and . σ 2 (or written also as h) is the bandwidth of the 
kernel. The kernel function .k

(

xi, xj

)

evaluates to 1 if . xi and . xj are identical and 
approaches 0 as . xi and . xj become increasingly different. In a genomics context 
when x represents SNPs, the elements of the kernel matrix are larger for pairs of 
individuals that are more genetically alike. 

The bandwidth parameter controls how fast the Euclidean distance falls with 
increasing difference between features . xi and . xj . The choice of the bandwidth 
parameter has important consequences on inference and prediction. Large values 
of . σ 2 lead to entries of the Gaussian kernel approaching 1 resulting in underfitting. 
Small values of . σ 2 generate entries approaching 0. In this case, in a model including 
a random effect and a residual term, the random effect associated with the kernel 
matrix becomes confounded with the residual term. The bandwidth parameter can 
be chosen using cross-validation. 

A few remarks are in order.

• Kernel matrices are dense and in large datasets can be computationally challeng-
ing to construct.

• Concerning the influence of the bandwidth parameter on predictions based 
on (11.30): If the elements of K are very small, the predicted values are all 
approximately equal to . ̂μ. Such a kernel model has little or no predictive power.

• On the other hand, if all elements of K are very close to 1, the predicted values 
are very similar and again, predictive power is compromised.

• Kernels can be used for many types of inputs such as strings, discrete structures, 
images, time series and more, provided the kernel matrices corresponding to any 
finite training set are positive semidefinite. They are an extremely flexible tool.

• A new kernel can be generated from existing kernels by addition, element-wise 
multiplication, or by multiplication by a positive scalar. The requirement is that 
these operations result in a symmetric, positive semidefinite matrix. This property 
provides great flexibility. In a genetics context, a new kernel can be constructed 
from the sum of existing covariance matrices derived from specific parametric
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assumptions. The resulting kernel can be used to exploit potential contributions 
from, for example, non-additive genetic sources of variation or from SNP . ×
environment interactions, despite the fact that the nonparametric model is not 
explicitly built upon specific mechanistic considerations (Gianola and de los 
Campos 2008; de los Campos et al 2009).

• The bandwidth parameter of a Gaussian kernel can be selected by cross-
validation or can be inferred as in Perez-Elizalde et al (2015).

• As illustrated on page 476, kernels can be viewed as prior information describing 
covariance structures in the data. The choice of kernel should reflect prior 
knowledge, but this may be difficult to accomplish. One may want to consider 
instead a family of kernels weighted by parameters inferred from the data (e.g. 
de los Campos et al 2010), or attempt to infer the kernel from the data (e.g. 
Duvenaud et al 2013 and Gianola et al 2020).

• As is clear from (11.40) diagonal elements of the Euclidean distance can become 
very large when the number of features p is large. In such a situation, the 
Gaussian kernel matrix is diagonally dominant and the model may predict poorly. 
Typically, this calls for some form of standardisation at the level of the inputs and 
perhaps at the level of the Euclidean distance leading to different kernel matrices. 
This may impinge on the predictive capacity of the model and can be gauged 
using cross-validation

• Kernel methods are essentially prediction tools. The kernel function expands 
the original feature space into a new, high-dimensional feature space via inner 
products of basis functions that are not explicitly constructed. It is therefore 
not straightforward to measure the importance of a specific feature in the new 
feature space, contrary to parametrised regression models. However, there are 
kernels that are constructed in a manner that resemble known parameters of fully 
parametric models, and this provides a framework for interpretation. An example 
on page 476 is the linear kernel that takes the form of a genomic relationship 
matrix, and the smoothing or regularisation parameter is interpreted as a ratio of 
variance components. 

It becomes clear that the linear kernel can be viewed as a similarity matrix if it 
is transformed into a correlation matrix where the diagonal elements, equal to 1, 
describe the similarity between the individual with itself. 

A genomic relationship matrix is also a linear kernel that can be scaled in a 
variety of ways. A standard approach is to transform the marker genotype . xij into 
.wij ∼ (0, 1), where i refers to individual (row of X) and j to marker genotype 
(column of X). The genomic variance under such a model is .pσ 2

b (this is the 
marginal variance of .w′

ib, where vector .b ∈ Rp has iid elements representing p 
marker effects distributed as .N

(

0, Iσ 2
b

)

). 

Another approach is to centre .xij and divide by .
(

∑p

j=1 Var
(

xj

)

) 1
2
, where 

.Var(xj ) is the variance of marker j , equal to .2pj (1 − pj ). In practice the variance 
of marker j is replaced by the empirical variance of the elements of column j of
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matrix X. With this scaling and centring of . xij , the genomic variance is equal to . σ 2
b , 

independent of the number of markers. 

Reducing Infinitely Dimensional Problems to Finite 
Dimensional Problems 

This short tour of kernel methods using basis expansions took ridge regression as 
starting point from which a number of results were derived. The model is specified in 
(11.21) with solution (11.23). The dual representation allows to express the solution 
and predictions in terms of inner products involving the original feature data, as 
indicated in (11.26) and (11.30). Kernel functions, with associated kernel matrices, 
are defined as inner products of basis functions. The basis functions expand the 
original feature space. In this way, one can explore the effects of nonlinear terms of 
the original feature space, on the observations. Kernel methodology creates a very 
flexible setup, because the same algorithm to solve the linear system can be applied 
with different kernel matrices. 

A more rigorous approach to arrive at the same result invokes the repre-
senter theorem (Kimeldorf and Wahba 1971). Consider a training dataset . S =
{(x1, y1) , . . . , (xnyn)} where .xi ∈ Rp are p-dimensional feature vectors, .yi ∈ R are 
responses. Assume a regression function .m (xi) = μ + g (xi), where, for example, 
.g (xi) = x′

ib as in the linear model, but could also accommodate other nonlinear 
structures. A flexible general formulation for estimating m when it belongs to some 
possibly infinite dimensional Hilbert space . H of functions is to minimise the cost 
function 

.J = min
m∈H

n
∑

i=1

� (yi,m (xi)) + λ ‖m‖2
H

(11.41) 

where . � is some function measuring goodness of fit to data such as . � (y,m) =
(y − m)2, a quadratic function, although other functions (such as the negative of 
the log-likelihood) can be used, . λ is the smoothing or regularisation parameter 
and the last term .‖m‖2

H
is a norm in the space of functions . H generated by a 

positive definite kernel .K
(

xi, xj

)

. Solving for m directly from (11.41) involves an  
optimisation in a possibly infinite dimension; this is a difficult task. 

The representer theorem finds a solution of an equivalent problem in a finite 
dimension of the form 

.g (x) =
n
∑

i=1

αik (xi, x) , (11.42)
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that requires finding the values of n scalar coefficients . αi (and of the intercept . μ). 
Writing 

. m (xi) = μ + g (xi)

= μ +
n
∑

i=1

αik (xi, x) , (11.43) 

this translates into solving 

. min
μ,α

n
∑

i=1

� (yi, μ + g (xi)) + λ ‖g‖2 =

min
μ,α

n
∑

i=1

�

⎛

⎝yi, μ +
n
∑

j=1

αik
(

xi, xj

)

⎞

⎠ + λ

n
∑

i=1

n
∑

j=1

αiαj k
(

xi, xj

)

. (11.44) 

For instance, in the case of ridge regression, the cost function is 

. J =
n
∑

i=1

(yi − m (xi))
2 + λ ‖g‖2 .

Plugging (11.43) into J and writing .‖g‖2 = α′Kα yield the finite dimensional 
optimisation problem of the form 

. J = ‖y − 1μ − Kα‖2 + λα′Kα,

as in (11.31), where .[K]i,j = k
(

xi, xj

)

is an .n × n Gram matrix. The minimiser 
over . α is (11.33) and the fitted values are given by (11.34); these are obtained by 
direct application of the representer theorem, without the need for a dual form. 

A couple of examples follow, starting with a toy example that highlights details 
of some of the matrix operations and illustrates how the Gaussian kernel regression 
can cope with strong nonlinear relationships between the feature x and the output y. 

Example: Classical, Kernelised, and Gaussian Kernel Ridge 
Regression 

The R-code below generates a scalar covariate x and a vector of responses y of 
dimension .N = 100, nonlinearly associated with x. In a first stage, it performs 
an analysis using standard ridge scalar regression solving the linear system (11.23). 
Model (11.21) includes an intercept . μ and a regression parameter b, so the left-hand 
side of the system (11.23) is of dimension .2×2. The fitted values are obtained from
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Fig. 11.6 Left: fitted values using a classical linear ridge regression. Right: fitted values using a 
Gaussian kernel 

. Xb̂, where . b̂ is the solution to (11.23). The estimate of the regression parameter 
is .b̂ = 0.399 and the code prints the first 10 fitted values. Figure 11.6, left panel, 
displays the output y as a function of the feature vector x and the fitted values. 

# CODE1107 
rm(list=ls()) # CLEAR WORKSPACE 
set.seed(195021) 
library(MASS) 
N <- 100 
# GENERATE DATA 
x<-seq(from=1, to=2.2*pi,length=N) 
signal <- cos(1.5*x)+ exp(-0.4*x) 
noise <- rnorm(N,0,0.25) 
y <- signal + noise 
lambda <- 0.01 
X <- cbind(1,x) 
RHS <- crossprod(X,y) 
LHS <- crossprod(X) 
LHS[-1,-1] <- LHS[-1,-1]+diag(c(rep(1,1)))*lambda # assumes 
# one covariate x 
#### Classical LS solution 
bh1 <- solve(LHS,RHS) 
bh1 

## [,1] 
## 0.46692087 
## x -0.09918769 

yhatclassic <- X%*%bh1 
yhatclassic[1:5] 

## [1] 0.3677332 0.3618105 0.3558878 0.3499650 0.3440423
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yhatclassic[6:10] 

## [1] 0.3381196 0.3321969 0.3262742 0.3203515 0.3144288 

The R-code below fits the same model in dual form with .K = XX′. The left-
hand side of the system (11.32) is now .101×101, and the code prints out the first 10 
fitted values, which are identical to those generated with the classical representation. 
The estimates of the intercept and of the regression parameter are the same as in the 
classical parametrisation. 

# CODE1107 (cont) 
#### kernelised (dual) solution with kernel matrix XX’ 
K <- x%*%t(x) # LINEAR KERNEL 
X <- cbind(1,K) 
RHS <- crossprod(X,y) 
LHS <- crossprod(X) 
LHS[-1,-1] <- LHS[-1,-1]+K*lambda 
diag(LHS) <- diag(LHS) + c(0,rep(1e-8,N)) 
sol <- as.matrix(solve(LHS,RHS)) 
yhatkernellin <- sol[1]+K%*%sol[-1] 
yhatkernellin[1:5] 

## [1] 0.3677332 0.3618105 0.3558878 0.3499650 0.3440423 

yhatkernellin[6:10] 

## [1] 0.3381196 0.3321969 0.3262742 0.3203515 0.3144288 

alfa <- sol[-1] 
bhkernellin <- sum(alfa*x) 
bhkernellin 

## [1] -0.09918769 

muhatkernellin <- sol[1] 
muhatkernellin 

## [1] 0.4669209 

Finally, I fit the Gaussian kernel regression using the R-code below. The same 
system of equations (11.32) is solved, where now K represents the Gaussian kernel 
with .σ 2 = h = 0.7. The fitted values are displayed in Fig. 11.6, right panel. The 
nonlinear relationship between the covariate and the data is well captured by the 
Gaussian kernel.
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# CODE1107(cont) 
####### GAUSSIAN KERNEL SOLUTION ##################### 
# CONSTRUCT GAUSSIAN KERNEL 
#w <- matrix(data=NA,nrow=length(x),ncol=length(x)) 
K <- matrix(data=NA,nrow=length(x),ncol=length(x)) 

d <- as.matrix(dist(x))^2 
# CHOOSE h and lambda 
h <- 0.7 
lambda <- 0.5 

K <- exp(-(1/(2*h^2))*d) 

X <- cbind(1,K) 
RHS <- crossprod(X,y) 
LHS <- crossprod(X) 
LHS[-1,-1] <- LHS[-1,-1]+K*lambda 

diag(LHS) <- diag(LHS)+c(0,rep(1e-8,N)) 

sol <- solve(LHS,RHS) 
fgaus <- sol[1]+K%*%sol[-1] 
alfa <- sol[-1] 

Bayesian View of Kernelised Regression 

Consider the derivation of BLUP (best linear unbiased predictor) that can be found 
in Henderson et al (1959), based on finding the maximiser of the joint density of y 
(vector of dimension .n × 1) and a (vector of dimension .q × 1) with respect to b 
(vector of dimension .p × 1) and a, under the assumption of normality. When vector 
a represents additive genetic values, this probability model is known as the additive 
genetic model. With known covariances matrices R and G, the logarithm of the joint 
distribution takes the form (ignoring an additive constant and multiplying by . −1) 

. log [p (y, a|b,R,G)] = log [p (y|a, b, R)] + log [p (a|G)]

∝ (y − Xb − Za)′ R−1 (y − Xb − Za) + a′G−1a. (11.45)
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Differentiating with respect to b and a leads to the linear system, which arranged in 
the usual mixed model format is 

.

[

X′R−1X X′R−1Z

Z′R−1X Z′R−1X + G−1

] [

̂b

â

]

=
[

X′R−1y

Z′R−1y

]

. (11.46) 

An alternative interpretation based on a Bayesian argument is to write the joint 
posterior density .p (b, a|y,G,R) as 

. p (b, a|y,G,R) ∝ p (y|a, b, R) p (a, b|G)

= p (y|a, b, R) p (a|G) (11.47) 

assuming .p (a, b|G) ∝ p (a|G). Then .
[

b̂, â
]

is the mode (and the mean under 

normality) of the posterior distribution .[b, a|y,G,R]. 
This same structure (11.45) can be applied to the kernel function (replacing 

vector b with scalar . μ) 

.
1

σ 2
e

(y − 1μ − Kα)′ (y − 1μ − Kα) + 1

σ 2
a

α′Kα (11.48) 

which implies .
[

y|μ, α, σ 2
e

] ∼ N
(

1μ + Kα, Iσ 2
e

)

and .
[

α|K, σ 2
α

] ∼ N
(

0,K−1σ 2
α

)

, 
where . σ 2

α is the variance captured by the specific kernel adopted. Differentiation 
with respect to . μ and . α leads to the linear system 

.

[

1′1 1′K
K ′1 K ′K + λK

] [

μ̂

α̂

]

=
[

1′y
K ′y

]

, (11.49) 

where .λ = σ 2
e /σ 2

α . This system is identical to (11.32). One can argue that this 
interpretation brings us back to the parametric setup and offers a framework to infer 
the regularisation parameter . λ from data, using likelihood or Bayesian methods. 
Parameter . λ is expressed as a ratio of the two variance components, i.e., .λ = σ 2

e /σ 2
α . 

Genetic Models Using Kernelised Regressions 

The classical additive genetic model assumes that, in (11.45), .G = Aσ 2
a where A 

is a positive definite .q × q matrix of additive genetic relationships among additive 
genetic values of q individuals, given a pedigree, and the scalar . σ 2

a is the additive 
genetic variance of some trait.
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In the kernel model (11.48), consider the transformation .g = Kα. Since . α is 
normal with mean zero and variance . K−1σ 2

α , it follows that .g ∼ N
(

0,Kσ 2
α

)

. The  
cost function to be minimised along the same lines as in (11.48) is now  

.
1

σ 2
e

(y − 1μ − g)′ (y − 1μ − g) + 1

σ 2
α

g′K−1g. (11.50) 

Differentiation with respect to . μ and g leads to the linear system 

.

[

1′1 1′
1 I + λK−1

] [

μ̂

ĝ

]

=
[

1′y
y

]

(11.51) 

where .λ = σ 2
e

/

σ 2
α is the regularisation parameter. If .K = A and .σ 2

α = σ 2
a , 

the linear system (11.51) becomes identical to that of the classical (infinitesimal) 
additive genetic model using the numerator relationship matrix as kernel (de los 
Campos et al 2009). In this case the random variable g represents additive genetic 
values. Of course the solution for . ̂g in (11.51) is identical to the solution for .Kα̂ in 
(11.49). To see this, write the second equation in (11.49) as  

. K ′ (K + λI) α̂ = K ′ (y − 1μ̂) .

Multiplying both sides by .K−1 and using .K ′ = K due to symmetry, gives 

. (K + λI) α̂ = (y − 1μ̂) . (11.52) 

Similarly from (11.51), 

. 

(

I + λK−1
)

ĝ = (y − 1μ̂)

and replacing . ̂g by .Kα̂ recovers (11.52). A similar result applies to the equations 
for . ̂μ. 

This development was based on the classical infinitesimal model; a genomic 
model incorporating a large number of markers leads to the same results. In this 
case, g are genomic values, . σ 2

a is interpreted as the genomic variance and K as a 
genomic relationship matrix. 

Example: A Bayesian Kernelised Regression 

A Bayesian implementation of a RKHS (reproducing kernel Hilbert space) model is 
applied to the wheat dataset downloaded from BGLR (Perez and de los Campos 
2014) consisting of grain yields from .n = 599 wheat inbred lines genotyped
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for 1279 genetic markers. A Gaussian kernel with three values of the bandwidth 
parameter h is used to illustrate the effect on inferences. 

The Bayesian RKHS model assumes the following hierarchical structure: 

. y|μ, g, σ 2
e ∼ N

(

1μ + g, Iσ 2
e

)

,

with 

. g|Kh, σ
2
g ∼ N

(

0,Khσ
2
g

)

,

and improper uniform prior distributions for . μ, . σ 2
e and . σ 2

g . The positive definite 
.n × n matrix .Kh is the Gaussian kernel with bandwidth parameter h. 

In order to improve computational efficiency, K is expressed as 

.K = UDU ′, (11.53) 

(de los Campos et al 2010) using the eigenvalue decomposition shown on page 91. 
Details of the Gibbs sampling implementation can be found on page 227 (here, K 
is positive definite, whereas in the example of page 227, G is singular; this requires 
a very slight modification of the McMC implementation). In (11.53) U is the . n × n

orthogonal matrix of eigenvectors of K and D is an .n × n diagonal matrix with 
eigenvalues .di > 0, for all i. 

A chain of length .25,000 was run and the Monte Carlo estimates of posterior 
means of . σ 2

g , . σ 2
e and .λ = σ 2

e /σ 2
g for .h = 0.5, .h = 1 and .h = 3 are shown in 

Table 11.1. 
Inferences about the components of variance are sensitive to the chosen value of 

the bandwidth parameter h, but the regularisation parameter . λ is less affected. The 
impact on prediction varying h for constant . λ is illustrated in an example on page 
509. 

The R-code to execute the Gibbs sampler is shown below. The lines at the bottom 
compute the Monte Carlo (sampling) error of features of the posterior samples based 
on the method of batching. 

Table 11.1 McMC-based Bayesian inferences of the components of variance conditional on three 
values of the bandwidth parameters h for grain yield data of 599 wheat inbred lines from the BGLR 
package, using a Gaussian kernel RKHS regression. The regularisation parameter . λ is the ratio of 
the variance components . σ 2

e and . σ 2
g . The elements in brackets in the fourth column show the . 95%

posterior intervals for the MC estimates of the posterior distribution of the regularisation parameter 
. λ. The Monte Carlo standard error of the posterior mean of the .λ′s is approximately 0.002 

h .σ 2
g .σ 2

e . λ

0.5 1.20 0.33 0.28 (0.17;0.45) 

1.0 0.83 0.27 0.33 (0.20;0.52) 

3.0 0.72 0.20 0.28 (0.15;0.46)
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# CODE1108 
# BAYESIAN KERNELISED REGRESSION 
# WHEAT DATA FROM BGLR 

# CODE ASSUMES K IS OF FULL RANK 
# THEREFORE IT DOES NOT WORK WITH CENTRED G. 
# IT WORKS WITH GAUSSIAN KERNEL 

rm(list=ls()) # CLEAR WORKSPACE 
set.seed(37111) 
library(BGLR) 
data(wheat) 
### USE BGLR MATRIX X 
X <- wheat.X 
y<- wheat.Y[,1] 
nindiv<-length(y) 
nmark<-ncol(X) 

#### A GAUSSIAN KERNEL ################ 

kgaus <- function(X,h){ 
X <- scale(X,center=TRUE,scale=FALSE) 
S=sqrt(sum(apply(FUN=var, X=X,MARGIN=2))) 
X <- X/S 
D <- as.matrix(dist(X))^2 
K <- exp(-h*D) 

} 
############ CHOOSE GAUSSIAN KERNEL ############## 
#h <- 0.5 
h <- 1 
#h <- 3.0 

K <- kgaus(X,h) 
dim(K) 
qr(K)$rank 
G<-K 
################################################### 
# EIGEN DECOMPOSITION OF G 
EVD <- eigen(G) 
names(EVD) 
head(EVD$values) 
U <- EVD$vector
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tU<-t(U) 
val <- EVD$values 
summary(val) 
D <- diag(val,nrow=nindiv) 
#Dp IS A VECTOR WITH NON-ZERO EIGENVALUES 
Dp<-c(val[1:nindiv]) 
#INITIALISE Ve 
Ve<-0.5 
#INITIALISE Vg 
Vg<-0.5 
#INITIALISE k 
k<-Ve/Vg 
#INITIALISE VECTOR ALFA 
alfa<-rep(0,nindiv) 
# CHOOSE LENGTH OF GIBBS CHAIN 
rep<-25000 
#INITIALISE result 
result<-matrix(data=NA,nrow=rep,ncol=5) 
# START GIBBS CHAIN 
ptm <- proc.time() 
for (i in 1:rep) 
{ 

cat(i, "\n",sep="") 
# SAMPLE mu 
avmu<-sum(y-U%*%alfa)/nindiv 
varmu<-Ve/nindiv 
mu<-rnorm(1,mean=avmu,sd=sqrt(varmu)) 
# SAMPLE alfa1 (VECTOR OF LENGTH nindiv) 
meanalfa1<-(Dp/(Dp+k))*tU%*%(y-mu) 
varalfa1<-((Dp)/(Dp+k))*Ve 
alfa1<-rnorm(nindiv,meanalfa1,sqrt(varalfa1)) 
alfa<-alfa1 
# SAMPLE Vg 
# COMPUTE SCALE 
scVg<-sum(alfa1*alfa1*(1/Dp)) 
Vg<-scVg/rchisq(1,nindiv-2) 
#Vg<-0.0001 
# SAMPLE Ve 
# COMPUTE SCALE 
ystar<-y-mu-U%*%alfa 
scVe<-sum(ystar*ystar) 
Ve<-scVe/rchisq(1,nindiv-2) 
k<-Ve/Vg 
ualfa <- U%*%alfa
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result[i,]<-c(i,mu,Vg,Ve,k) 
# print(result[i,]) 
} 
proc.time()-ptm 
apply(result[2000:rep,2:5],2,mean) 
############################################### 
#CODE FOR THE MC VARIANCE BASED ON BATCHING 
y <- result[,5] # READS IN ALL DRAWS STORED IN RESULT 
#choose number of batches b 
b<-500 
batch_size <- length(y)/b 
batch_size 
x<-matrix(y,ncol=b, byrow=FALSE) 
avrb<-apply(x,2,mean) 
mcvarb<-var(avrb)/length(avrb) 
sqrt(mcvarb) 
efchsizebatch<-var(y)/mcvarb 
efchsizebatch 
############################################# 
### PLOT AUTOCORRELATION VERSUS LAG USING 
### R-FUNCTION acf 
require(graphics) 
acf(y) ## AUTOCORRELATION OF McMC DRAWS 
acf(avrb) ## AUTOCORRELATION OF BATCH MEANS 

Kernel Logistic Regression 

Section 9.4 introduced penalised logistic regression, where regression coefficients 
are shrunk as in ridge regression allowing the analysis when .p > n, where p is the 
number of features and n is the length of the vector of binary records y. Kernel 
methods also make use of a penalisation and work instead in an n-dimensional 
space that can be an advantage when .p � n. Additionally, kernel methods extend 
the feature space exploring complicated associations among the original features 
without explicit modelling. Here I describe an application to logistic regression. 
The starting point is to use .f (xi) = μ + x′

iβ in the negative of the log-likelihood 
(9.12) 

. − � (μ, β|y, x) = −
n
∑

i=1

{

yi (f (xi)) − ln
[

1 + exp (f (xi))
]}

,
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and use the representer theorem result (11.43) replacing .f (xi) by 

.f (xi) = μ +
n
∑

j=1

αjk
(

xi, xj

)

. (11.54) 

The next step is to minimise the convex cost function with respect to . μ and . αi , 
. i = 1, 2, . . . , n

. J (μ, α|λ)=−
n
∑

i=1

{

yi (f (xi))−ln
[

1 + exp (f (xi))
]}+ λ

2

n
∑

i=1

n
∑

j=1

αiαj k
(

xi, xj

)

.

(11.55) 

Using similar algebra as in Sect. 9.4, the expressions for the first derivatives are 

.
∂J

∂μ
= −1′ (y − π) , . (11.56a) 

∂J 
∂α 

= −K (y − π) + λKα, (11.56b) 

where . 1′ is a row vector of n ones, .y = {yi} is a column vector with the n responses 
. yi , .i = 1, . . . , n, .π = {πi} is a column vector with the n terms having the form 

. πi = Pr (yi = 1|x, μ, α) = exp (f (xi))

1 + exp (f (xi))
,

and .K = {

k
(

xi, xj

)}

is an .n × n Gram matrix whose ij th element is the kernel 
function .k

(

xi, xj

)

. The second derivatives are 

. 
∂2J

(∂μ)2
=

n
∑

i=1

πi (1 − πi) = 1′W1,

∂2J

∂α∂α′ = KWK + λK,

∂2J

∂α∂μ
= KW1.

The matrix of second derivatives can be written as 

.H =
[

1′W1 1′WK

KW1 KWK + λK

]

,
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where .W = diag {πi (1 − πi)}, .i = 1, 2, . . . , n, an .n × n diagonal matrix. Let 

. Z = [1,K] , of dimension n × (n + 1) ,

M =
[

0 0
0 K

]

, of dimension (n + 1) × (n + 1) ,

� = diag {0, λ, λ, . . . , λ} , of dimension (n + 1) × (n + 1) ,

θ = (

μ, α′)′ , of dimension (n + 1) × 1.

The matrix of second derivatives can be compactly expressed as 

. H = Z′WZ + �M

and the vector of first derivatives as 

. S (θ) = −Z′ (y − π) + �Mθ.

The iterative system of the Newton-Raphson algorithm is 

. θt+1 = θt − HS (θt )

= θt − (

Z′WZ + �M
)−1 (−Z′ (y − π) + �Mθt

)

= H−1 (Z′WZ + �M
)

θt + H−1
(

Z′WW−1 (y − π) − �Mθt

)

= H−1Z′W (Zθt ) + H−1�Mθt + H−1Z′W
(

W−1 (y − π)
)

− H−1�Mθt

= H−1Z′W
(

Zθt + W−1 (y − π)
)

= H−1Z′Wr, (11.57) 

where .H−1 = (

Z′WZ + �M
)−1 and .r = Zθt + W−1 (y − π). This implemen-

tation of Newton-Raphson is the iteratively reweighted ridge regression algorithm 
that has a similar structure as (9.17) and at face value requires inversion of the 
.(n + 1) × (n + 1) matrix of second derivatives. 

In connection with the penalised logistic regression model described on page 
377, it was indicated that use of the linear kernel .K = XX′ generates a 
reparametrised penalised logistic regression model that operates in the .n + 1-
dimensional space. This kernel leads to a dual representation of the original logistic 
regression model (9.11), which operates in the .p + 1-dimensional space. To see this 
multiply the second line of (9.17) by . H = (

Z′WZ + �
)

.
(

Z′WZ + �
)

θt+1 = (

Z′WZ + �
)

θt − (−Z′ (y − π) + �θt

)

, (11.58)
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where .Z = [1, X] and .θ ′ = [

μ, β ′]′ as in the penalised logistic regression of page 
377. This system can be written as 

. 

[

1′W1 1′WX

X′W1 X′WX + Iλ

] [

μt+1

βt+1

]

=
[

1′W1 1′WX

X′W1 X′WX + Iλ

] [

μt

βt

]

+
[

1′ (y − π)

X′ (y − π) − λβt

]

.

Expanding yields 

.
(

1′W1
)

μt+1 + (

1′WX
)

βt+1 = (

1′W1
)

μt + (

1′WX
)

βt + 1′ (y − π) , . 

(11.59) 
(

X′W1
)

μt+1 + (

X′WX + Iλ
)

βt+1 = (

X′W1
)

μt + (

X′WX + Iλ
)

βt

+X′ (y − π) − λβt . (11.60) 

Now perform the following:

• Replace .βt = X′αt

• Premultiply (11.60) by  X and let . K = XX′

This results in the iterative system 

.

[

μt+1

αt+1

]

=
[

μt

αt

]

+
[

1′W1 1′WK

KW1 KWK + λK

]−1 [
1′ (y − π)

K (y − π) − λKαt

]

, (11.61) 

the same as the second line of (11.57). This is a dual representation of the penalised 
logistic regression model of Sect. 9.4. 

Example: Analysis of Binary Observations Using Kernelised 
Logistic Regression, Penalised Logistic Regression, and Logistic 
Lasso 

The performance of the kernelised logistic regression (KLR) using a Gaussian 
kernel, the penalised logistic regression (PLR) and logistic lasso (LL) is compared 
for a particular simulated dataset consisting of 599 binary records. The binary 
records were simulated using a logistic model. Genetic marker data from 599 
wheat inbred lines genotyped for 1279 genetic markers were downloaded from 
the statistical package BGLR described in Perez and de los Campos (2014). The 
simulated “true” model on an underlying scale involves 20 loci randomly sampled 
from these 1279 markers and assigned as QTL. The substitution effects of these 
QTL were chosen so that the additive genetic variance between lines . σ 2

a on the
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underlying scale was equal to 1 squared unit. The underlying liability for line i has 
the linear structure 

. ui = m + z′
ib + ei, i = 1, 2, . . . , 599,

where .m = 0.0, . zi is the column vector for line i of the 20 scaled and standardised 
QTL genotypes and b is the column vector of the 20 substitution effects. Vector . z′

i of 
dimension .1 × 20 has .(0, 1) elements for each of the two homozygote genotypes of 
line i and the .e′

i s are independently distributed standard logistic random variables. 
The heritability . h2 between lines on the underlying scale (.σ 2

a /
(

σ 2
a + π2/3

)

) is equal 
to .0.23 and the proportion of 1’s in the data is approximately . 0.5. 

The three operational models used to analyse the data assumed that the liability 
can be written in terms of the linear structure 

. ui = μ + x′
iβ + εi, i = 1, 2, . . . , 1, 279,

where . x′
i is the .1 × 1279 row vector for line i of the 1279 marker genotypes, . β is 

the vector with the 1279 marker effects and the .ε′
i s are independently distributed 

standard logistic random variables. 
The 599 lines were divided into training and validating sets of sizes 299 and 300, 

respectively. The logistic regression model using the 1279 markers was fitted to the 
training data using KLR, PLR and LL, and the estimates of the marker effects were 
used to predict the binary phenotypes of the validating dataset. The package glmnet 
described in Example 7.4 was used to fit the logistic lasso. 

The criterion used to evaluate prediction ability was the proportion of misclassi-
fications in the validating data or error rate, given by 

.
1

Nv

Nv
∑

i=1

(yi − ŷi )
2 (11.62) 

where .Nv = 300 is the number of records in the validating set, . yi is the ith record 
in the validating set (0 or 1) and . ̂yi is the predicted value computed using (9.3) with 
.t = 0.5. 

The average proportion of misclassifications (min, max) over 10 random repli-
cates of training/testing samples was .0.33 .(0.30, 0.37) for LL, .0.40 . (0.38, 0.43)

for PLR and .0.33 .(0.28, 0.37) for KLR. In principle, LL has the advantage of 
performing model selection. However, in this particular dataset, the number of 
covariates not set to zero was highly variable across replicates ranging from 1 to 
52 with an average of 14. Therefore, little inferential meaning can be assigned to 
the choice of covariate.
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The R-code to fit the KLR to the wheat dataset using the Newton-Raphson 
algorithm is shown below: 

# CODE1109 
# SIMULATING BINARY DATA TO BE ANALYSED WITH KLR 
# USES THE X MATRIX FROM WHEAT IN BGLR 
rm(list=ls()) # CLEAR WORKSPACE 
library(BGLR) 
data(wheat) 
X <- wheat.X 
set.seed(371) 
#################################################### 
### USE BGLR MATRIX X 
nindiv <-nrow(X) 
nmark <- ncol(X) 
################################################### 
nloci<-20 
p<-0.5 
mu<-log(p/(1-p)) 

##### GENERATE LIABILITY ################### 
va<-1.0 # additive variance of liability 
Xc<-matrix(data=NA,nrow=nindiv,ncol= nmark) 
# parameter from true model: 
be<-matrix(data=0.0,nrow=nmark,ncol=1) 
y<-rep(0,nindiv) 
cm<-colMeans(X) 
### CENTER AND SCALE X ################# 
for (i in 1:nmark) 
{Xc[,i]<- (X[,i]-cm[i])/sd(X[,i]) 
} 
QTLeff<-sqrt(va/nloci)# calculate the QTL effect so that the 
# total genetic variance is VA 
IDq<-sample(1:nmark,nloci,replace=F) # from the nmark markers, 
# choose nloci as QTL 
be[IDq]<-QTLeff # the only b’s that are not zero are those 
# associated with QTL. 
########### GENERATE PHENOTYPIC BINARY DATA ################### 
xb<-Xc%*%be 
pr <- exp(mu+xb)/(1+exp(mu+xb)) 
y <- rbinom(nindiv,1,pr) 
#sum(y)/length(y) # OBSERVED PROPORTION OF 1’S IN SAMPLE 
mean(y) 

## [1] 0.5025042 

nitnr <- 10 # NUMBER OF N-R ITERATIONS 
nrep <- 10 # NUMBER OF TRAINING / TESTING REPLICATES 

#lambda <- 0.0 # ZERO PENALTY !!!!!!!! 
lambda <- 0.4 

newcostvnr <- rep(0,nrep) 
res <- matrix(data=NA, nrow=nrep,ncol=9) 
resulttvnr <- matrix(data=NA, nrow=nitnr,ncol=8) 

msev <- rep(NA,nrep) 
msevnr <- rep(NA,nrep)
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#### A GAUSSIAN KERNEL ################ 
kgaus <- function(X,h){ 
X <- scale(X,center=TRUE,scale=FALSE) 
S=sqrt(sum(apply(FUN=var, X=X,MARGIN=2))) 
X <- X/S 
D <- as.matrix(dist(X))^2 
K <- exp(-h*D) 

} 
############ CHOOSE KERNEL ############## 
h <- 0.5 
K <- kgaus(Xc,h) 
#dim(K) 
#qr(K)$rank 
######################################## 
prob1 <- function(miu,alfa,K){ 

pr <- exp(miu+K%*%alfa)/(1+exp(miu+K%*%alfa)) 
} 
cost <- function(miu,alfa,K,y){-sum(y*(miu+K%*%alfa) -

log(1 + exp(miu+K%*%alfa))) + lambda*crossprod(alfa)} 

######### ########### NEWTON-RAPHSON #################### 
### FIT MODEL TO TRAINING DATA AND TEST IN VALIDATING DATA ### 
set.seed(77131111) 
ptm <- proc.time() 
for (i in 1:nrep) { 
# cat(i, "\n",sep="") 

train=sample(1:nrow(K),floor(0.5*nrow(K))) 
Ktrain <- K[train,train] 
Kval <- K[-train,train] 
ytrain <- y[train] 
yval <- y[-train] 

delta <- diag(c(0,rep(lambda,ncol(Ktrain)))) 
M <- cbind(0,Ktrain) 
M <- rbind(0,M) 
###### START VALUES FOR MIU AND ALFA ################ 
miu <- 0.0 
alfa <- rep(0.0, ncol(Ktrain)) 
W <- matrix(data = 0,nrow = ncol(Ktrain),ncol = ncol(Ktrain)) 
for (j in 1:nitnr) { 

fdmiu <- -sum(ytrain - prob1(miu, alfa, Ktrain)) 
fdalfa <-

-Ktrain %*% (ytrain - prob1(miu, alfa, Ktrain)) + 
lambda * Ktrain %*% alfa 

fd <- matrix(c(fdmiu, fdalfa), nrow = length(alfa) + 
1, ncol = 1) 

W <-
diag(c(prob1(miu, alfa, Ktrain) * 
(1 - prob1(miu, alfa, Ktrain)))) 

Z <- cbind(1, Ktrain) 
zwz <- t(Z) %*% W %*% Z 
LHS <- zwz + lambda * M 
RHS <- -fd 
sol0 <- matrix(c(miu, alfa), nrow = 

length(alfa) + 1, ncol = 1) 
sol1 <- sol0 + solve(LHS,RHS) 
miu <- sol1[1, 1] 
alfa <- sol1[-1, 1] 
newcostvnr[j] <- cost(miu, alfa, Ktrain, ytrain)
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resulttvnr[j, ] <- c(j, newcostvnr[j], miu, alfa[1:5]) 
} 
probval <- prob1(miu, alfa, Kval) 
y_predval <- as.numeric(ifelse(probval > 0.5, 1, 0)) 
msev[i] <- mean((y_predval - yval) ^ 2) 
res[i,] <- c(i,j,newcostvnr[j],miu,alfa[1:5]) 
} 

proc.time()-ptm 

## user system elapsed 
## 2.11 0.11 0.58 

tail(resulttvnr[,2:6]) 

## [,1] [,2] [,3] [,4] [,5] 
## [5,] 236.2372 0.1062297 -0.9584729 0.685112 0.8690137 
## [6,] 236.2372 0.1062297 -0.9584729 0.685112 0.8690137 
## [7,] 236.2372 0.1062297 -0.9584729 0.685112 0.8690137 
## [8,] 236.2372 0.1062297 -0.9584729 0.685112 0.8690137 
## [9,] 236.2372 0.1062297 -0.9584729 0.685112 0.8690137 
## [10,] 236.2372 0.1062297 -0.9584729 0.685112 0.8690137 

#tail(res) 
summary(msev) 

## Min. 1st Qu. Median Mean 3rd Qu. Max. 
## 0.2833 0.3233 0.3283 0.3310 0.3442 0.3700 

The program outputs the last six iterations of the Newton-Raphson algorithm 
and replicates 10, for the value of the cost function, . μ and the estimates of first three 
elements of . α. The summary function at the end displays summary statistics of the 
misclassification rate over the ten replicates. 

11.3 Neural Networks 

Neural networks (NN) have a long history (McCulloch and Pitts 1943) and have 
become the state of the art technique for many machine learning problems involving 
complex nonlinear data. The subject has been rebranded along its development, 
and presently it is also known as machine learning or deep learning and it is 
being successfully applied in many software areas including object, image and 
speech processing, robotics, video games and search engines. This section provides 
a very basic introduction to the subject concentrating exclusively on fully connected 
NN, also known as multilayer perceptrons and illustrates, via examples, how they 
can be used for classification and regression. Useful references are the books by 
Bishop (2006), Goodfellow et al (2016) and Bernard (2021) and a review by LeCun
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et al (2015), where other types of more modern networks, including convolutional 
NN, recurrent NN and transformer networks, are discussed. A very comprehensive 
reference is López et al (2022) that also provides detailed descriptions and imple-
mentation of many methods used for genomic prediction with special emphasis on 
plant breeding. An early Bayesian perspective on the subject can be found in Neal 
(1996) and a recent neural network Bayesian McMC implementation in Zhao et al 
(2021). 

I motivate the subject by interpreting logistic regression as a special case of a 
fully connected NN. Multilayer perceptrons (MLP) or fully connected networks 
are the oldest and classic neural architecture invented in the 1960s. MLP are used 
today as components of other neural network architectures, such as convolutional 
neural networks, transformers, Bayesian neural networks, variational autoeconders 
and others. 

Preliminaries: A Logistic Regression 

Consider binary observations y and features x that constitute training records 
.{(x1, y1) , . . . , (xn, yn)}, .xi ∈ Rp, .yi ∈ {0, 1} and assume the model adopted is 

.E (yi |zi) = Pr (yi = 1|zi) = m(xi) = exp (zi)

1 + exp (zi)
. (11.63) 

The linear transformation .zi = w′xi + b consists of the input (vector x with 
p features (covariates)), parameters (w (a .(p × 1) vector of unknown regression 
coefficients)) and b (a scalar intercept). In machine learning the parameters w are 
known as weights, the intercept b is known as the bias and the training records are 
known as training examples. Both  w and b are unknown. 

In Chap. 3 maximum likelihood estimates of the parameters of the logistic 
model w and b were obtained using the Newton-Raphson and the EM algorithms. 
Chapter 5 discusses a Bayesian implementation. Here the problem is approached 
regarding the logistic model as a special case of a NN, and the cost function (nega-
tive of the loglikelihood, a convex function) is minimised using a gradient descent 
algorithm. In what follows, unless otherwise stated, the subscript i identifying the 
ith training record will be omitted. 

Figure 11.7 displays a logistic regression model represented as a neural network. 
The .x′s are the .p = 2 features (covariates). These constitute the first layer. A linear 
function .z(2) of the features and parameters is fed into what is known as neuron or 
node (the superscript denotes the layer). The neuron is activated by an activation 
function . σ that results in an output of layer 2, .a(2), known as an activation unit. For
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Fig. 11.7 Logistic regression model represented as a two-layered neural network for a single 
training record (.y, x1, x2). The first layer (outer circles) corresponds to the input: .p = 2 covariates 
.xj , j = 1, 2, plus 1 for the intercept. A linear transformation of the input, .z(2) = w′x + b, 
where .w′ = (w1, w2), is fed into a neuron on the second layer. The neuron is activated by the 
activation function . σ (here, the sigmoid function), producing an output .a(2), the activation unit 
.a(2) = σ(z(2)). In this simple example of a shallow network, the output or prediction .hθ (x) = ỹ is 
equal to .a(2). This output is evaluated using the loss function L that indicates how well . ̃y = a(2)

compares with the observation y 

the logistic regression, the activation function is the logistic or sigmoid function . σ
(11.63) 

.σ
(

z(2)
)

= exp
(

z(2)
)

1 + exp
(

z(2)
) = 1

1 + exp
(−z(2)

) , (11.64) 

where the linear function .z(2) = w′x + b. In Fig.  11.7 there are two layers: an input 
layer (layer 1), where the activation unit is just the input, .a(1)

1 = x1, .a(1)
2 = x2, and 

a layer 2 that includes a single activation unit .a(2) = σ
(

z(2)
) = ỹ, the output. The 

output is here a predicted or estimated value of the probability .m(xi) in (11.63). With 
some abuse of notation, this output will also be denoted by .h(x) or .hθ (x), where . θ
is a vector of parameters of the NN and x represents the vector of covariates. 

In linear models the regression function takes the form .m (x) = w′x. Kernels 
introduce nonlinear functions of the features x, via basis functions .φ(x) that 
could capture more complex structures leading to .m (x) = w′φ (x). Kernel 
methods require the user to supply the form of the kernel function. In the present 
representation of logistic regression as a NN, .φ (x) = σ

(

w′x + b
)

, where w and b 
are estimated from the training data and . σ is a given nonlinear function such as the 
sigmoid. If . σ is the identity function, the neural network reduces to a linear model.
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Training the Neural Network 

Training the NN in Fig. 11.7 requires first, a forward propagation step that runs 
from left to right. It starts by feeding the features x and the parameters . (w, b), via  
a linear transformation, into a neuron that gets activated by the activation function 
. σ generating a prediction or output .a(2) = h(x) = ỹ (the notation distinguishes 
the regression function or conditional expectation of the data m, from the output 
of a forward propagation step that results in a prediction .h = ỹ). Second, a 
back propagation step (Rumelhart et al 1986) is used to compute the gradient of 
the cost function with respect to all parameters of the neural network. The back 
propagation step involves the chain rule of calculus. Once gradients are computed, 
the cost function can be minimised using, for example, gradient descent or stochastic 
gradient descent, yielding estimates of parameters. This is an iterative process 
which, on completion, outputs a prediction. 

Notation 

The simple NN of Fig. 11.7 can be made more complex by increasing the number 
of layers and the number of neurons per layer. Identification of parameters in such 
a complex system requires a more involved notation. In general, let

• .n� : number of neurons in layer . �. For the input layer, .� = 1, .n1 = p, the number 
of features in the input datum

• .a
(j)
i : activation unit i (or output produced by the activation function) in layer 

j . For the input layer .j = 1, there is no activation function and the notation is 
interpreted as .a(1)

i = xi

• .a(j) : layer j . This is a column vector with number of elements equal to the 
number of neurons in layer j

• .W(j) : matrix of weights (parameters) of the function that controls the mapping 
from layer j to layer .j + 1. The number of rows of .W(j) is equal to the number 
of neurons in layer .j + 1, and the number of columns is equal to the number of 
neurons in layer j . If a network has . nj neurons in layer j and .nj+1 neurons in 
layer .j + 1, .W(j) is of dimension .nj+1 × nj

• .b(j) : column vector of intercept terms of the function that controls the mapping 
from layer j to layer .j + 1, with number of elements equal to the number of 
neurons in layer . j + 1

Forward Propagation 

The logistic regression example displayed in Fig. 11.7 considers a single training 
datum consisting of the two covariates .(x1, x2) and the observation y. A scheme of 
forward propagation is displayed in Fig. 11.8.
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Fig. 11.8 Forward propagation scheme for the logistic regression model interpreted as a neural 
network. The linear function of parameters .W, b and feature vector .x = a(1), . z(2), is fed into 
the activation function . σ (the logistic function). This activation function outputs the prediction 
.a(2) = ỹ. The loss function L quantifies the discrepancy between .a(2) and the observed record y 

The variable .z(2) is a linear function of the input features (the two covariates 
.x1 = a

(1)
1 , x2 = a

(1)
2 ) and is fed into the activation function . σ , which generates 

the output .a(2) = ỹ (a predicted probability). The forward propagation step can be 
written as 

.z(2) = W
(1)
11 a

(1)
1 + W

(1)
12 a

(1)
2 + b(1), . (11.65a) 

a(2) = σ
(

z(2)
)

= ỹ. (11.65b) 

The dimension of .W(1) = (W
(1)
11 ,W

(1)
12 ) is .1 × 2 because this network has two 

features in layer 1 .(i.e., x1 and x2) and one single neuron in layer 2 (the output . a(2) =
ỹ). The parameters .W(1) and .b(1) must be initialised to start the iteration. 

Loss Function 

The loss function L measures the degree to which the output . ỹ matches the 
observation y (following the machine learning tradition, here cost function is a 
measure involving an entire dataset that may or may not include a regularisation 
term; loss function involves a single datum). The overall objective is to minimise 
the cost function by minimising the sum of the loss functions for each datum. 
This requires computation of the gradients .∂L/∂W(1), .∂L/∂b(1) that can be 
accomplished using back propagation. The present simple example provides the 
background for dealing with more complex situations. 

Back propagation is an application of the chain rule of calculus applied in a 
computationally efficient manner. This efficiency is achieved in part by reusing 
derivatives computed for higher layers of the network, in the computation of 
derivatives of the lower layers. 

The contribution of the datum .(y, x) to the (convex) loss function (i.e., the 
negative of the loglikelihood) to be minimised with respect to .(W, b) follows from 
the Bernoulli distribution and is 

.L (ỹ, y) = − (y log ỹ + (1 − y) log (1 − ỹ)) . (11.66)
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An intuition for the loss function is as follows. For .y = 1, when the predicted 
probability (the output of the forward propagation step) is .a(2) = ỹ = 1, the loss  
function is zero, and when the predicted probability is .ỹ = 0, the loss function is 
infinity. Similarly, for .y = 0, when .ỹ = 0 the loss function is zero and when . ỹ = 1
the loss function is infinity. 

Although hidden from the notation, L depends not only on y but also on the input 

. 

(

b(1),W
(1)
11 ,W

(1)
12 , a

(1)
1 , a

(1)
2

)

.

Some of this input, .
(

a
(1)
1 , a

(1)
2

)

, is given (in this simple example, .a(1)
i = xi), but 

the parameters .
(

b(1),W
(1)
11 ,W

(1)
12

)

are not observed and must be initialised to begin 

iteration. 

Chain Rule 

Before deriving the back propagation algorithm for the simple example of Fig. 11.7, 
I consider a general application of the chain rule of calculus. Figure 11.9 shows a 
flowchart where input .a ∈ Rp is fed into a function g that outputs .b ∈ Rn. In turn, b 
is fed into a function f that outputs .c ∈ Rm. Specifically, 

. a = (

a1, a2, . . . , ap

)

,

b = g (a) = (b1, b2, . . . , bn) ,

c = f (b) = (c1, c2, . . . , cm) .

The function g performs a mapping from . Rp to . Rn and the function f a mapping 
from . Rn to . Rm. Consider the computation of the change in . ci due to a change in . aj . 

Fig. 11.9 Flowchart where input a is fed into a function g that outputs b. This output is fed into a 
function f that outputs c
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A change in . aj may induce a change in .(b1, b2, . . . , bn), which in turn induces a 
change in each . ci . The chain rule states that to first order, the net change in . ci due 
to a change in . aj is given by the sum of the changes induced along each path from 
. aj to . ci . Letting k denote one of the m paths, 

.
∂ci

∂aj

=
n
∑

k=1

∂ci

∂bk

∂bk

∂aj

. (11.67) 

Back Propagation 

The back propagation step computes the gradient of the cost function with respect 
to the parameters of the NN. Once the gradient is available, the cost function can be 
minimised using gradient descent. 

Minimisation of the cost function involves minimising the sum of the loss 
functions for each datum (11.66). Using (11.65), this takes the form 

. 
∂L

a(2)
: (1 × 1) ,

∂L

∂z(2)
= ∂L

∂a(2)

∂a(2)

∂z(2)
: (1 × 1) ,

∂L

∂W(1)
= ∂L

∂z(2)

∂z(2)

∂W(1)
: (2 × 1) ,

∂L

∂b(1)
= ∂L

∂z(2)

∂z(2)

∂b(1)
: (1 × 1) .

More specifically, 

1. For the output .a(2) = ỹ in layer 2, compute 

. δ(2) = ∂L

∂z(2)
= ∂L

∂a(2)

da(2)

dz(2)

= ∂L

∂a(2)
σ ′ (z(2)

)

. (11.68) 

2. The partial derivatives with respect to .W(1)
11 ,W

(1)
12 are 

. 
∂L

W
(1)
11

= ∂L

∂z(2)

∂z(2)

∂W
(1)
11

= δ(2)a
(1)
1 , (11.69)
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. 
∂L

W
(1)
12

= ∂L

∂z(2)

∂z(2)

∂W
(1)
12

= δ(2)a
(1)
2 , (11.70) 

. 
∂L

b(1)
= ∂L

∂z(2)

∂z(2)

∂b(1)

= δ(2). (11.71) 

3. For the sigmoid function in (11.68) 

. σ ′ (z(2)
)

= σ
(

z(2)
) (

1 − σ
(

z(2)
))

= a(2)
(

1 − a(2)
)

,

and 

.
∂L

∂a(2)
= − y

a(2)
+ 1 − y

1 − a(2)
. (11.72) 

Therefore, substituting in (11.68), 

.δ(2) = a(2) − y. (11.73) 

Cost Function 

The above computations and the loss function (11.66) pertain to a single training 
record. For n records the cost function is 

. J (θ) = 1

n

n
∑

i=1

L (ỹi, yi) = −1

n

n
∑

i=1

(yi − log ỹi + (1 − yi) log (1 − ỹi )) ,

(11.74) 

an average of the loss functions over the n records (scaling by .1/n does not change 
the optimisation of J but avoids numerical problems during the computations). In 
this equation . θ is the vector of parameters .

(

W(1), b(1)
)

. Minimisation of the cost 
function requires computation of the gradients with respect to .

(

W(1), b(1)
)

. These 
are the average of the gradients of each datum calculated using (11.69), (11.70) and 
(11.71). For instance, for .W(1)

11 , 

.
∂J (θ)

∂W
(1)
11

= 1

n

n
∑

i=1

∂L (ỹi , yi)

∂W
(1)
11

,
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where now .∂L (ỹi , yi) /∂W
(1)
11 is the partial derivative of the loss function for the ith 

record with respect to .W(1)
11 . 

The general form of a gradient descent update is given by expression (3.57) on  
page 99. In the present case, once the partial derivatives are available, the gradient 
descent update is 

. W
(1)
11 : = W

(1)
11 − α

∂J

W
(1)
11

,

W
(1)
12 : = W

(1)
12 − α

∂J

W
(1)
12

,

b(1) : = b(1) − α
∂J

b(1)
,

for a user chosen value of the learning rate . α. 

A Single Hidden Layer Neural Network 

Figure 11.10 shows an example of a neural network with three layers: the input layer 
showing a single training example, a hidden layer and an output layer with a single 
output node. The input layer has three nodes .(xi, i = 1, 2, 3) plus an extra node 1 
for the bias term. The hidden layer has also three nodes representing activation units 

.

(

a
(2)
i , i = 1, 2, 3

)

, plus a node 1 to account for the bias. Finally, the output layer 

has a single node .a(3), the prediction. For this example, the hidden layer is generated 
with the sigmoid function, but other activation functions can be used instead, as 
discussed on page 500. 

The single node output layer applied here is appropriate for a regression model 
where the output is a real number, or for a binary .(1/0) outcome. Here the latter 
is assumed and the sigmoid function (11.64) is used in the generation of the final 
layer. For a continuous variable, the output is typically generated using the identity 
function. For a K class classification, the final output can be generated using the 
softmax function 

.a
(L)
k = g (zk) = exp (zk)

∑k=K
k=1 exp (zk)

, (11.75) 

also used for a multilogit model and interpreted as a probability. In this expression
L denotes the number of layers in the network, so that .a

(L)
k is the kth node of the 

last layer corresponding to class k. The number of nodes in the final layer is K and 
the sum of terms (11.75) equals 1.
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Fig. 11.10 A neural network diagram with three layers: an input layer representing the feature 
vector with three predictors x = (x1, x2, x3), with 1 to account for the bias term; a hidden layer 
with three nodes representing activation units (a (2) 

1 , a (2) 
2 , a (2) 

3 ), with the extra node 1 to account for 
the bias term and an output layer a(3) = hθ (x) = ỹ that yields a prediction 

Reverting to the NN of Fig. 11.10 and following the notation defined above, 
consider the forward propagation step. For a single training datum, the step can 
be represented by the equations below where input predictors x output the scalar 
prediction . ỹ

.a(1) =
(

a
(1)
1 , a

(1)
2 , a

(1)
3

)′ = (x1, x2, x3)
′ ,

z
(2)
1 = W

(1)
11 a

(1)
1 + W

(1)
12 a

(1)
2 + W

(1)
13 a

(1)
3 + b

(1)
1 ,

z
(2)
2 = W

(1)
21 a

(1)
1 + W

(1)
22 a

(1)
2 + W

(1)
23 a

(1)
3 + b

(1)
2 ,

z
(2)
3 = W

(1)
31 a

(1)
1 + W

(1)
32 a

(1)
2 + W

(1)
33 a

(1)
3 + b

(1)
3 , (11.76)

a
(2)
i = σ

(

z
(2)
i

)

, i = 1, 2, 3,

z(3) = W
(2)
11 a

(2)
1 + W

(2)
12 a

(2)
2 + W

(2)
13 a

(2)
3 + b

(2)
1 ,

a(3) = σ
(

z(3)
)

= ỹ.
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The forward propagation can be written more compactly in vectorised form along 
the lines in (11.65), yielding 

.

z(2) = W(1)a(1) + b(1), z(2) =
[

z
(2)
1 , z

(2)
2 , z

(2)
3

]′
,

W(1) : (3 × 3) , a(1) : (3 × 1) , b(1) : (3 × 1) ,

a(2) = σ
(

z(2)
)

, a(2) : (3 × 1) ,

z(3) = W(2)a(2) + b(2),

W(2) : (1 × 3) , a(2) : (3 × 1) , b(2) : (1 × 1) ,

a(3) = σ
(

z(3)
)

, a(3) : (1 × 1) .

(11.77) 

The logistic regression model was interpreted as a two-layered neural network of
the form .f (x) = Pr (Y = y|x). The three-layered neural network represented by 
the system (11.77) can be written as 

. f (x) = f (2)
(

f (1) (x)
)

,

with a straightforward extension for a deeper layered network. Above, .f (1) is the 
activation function from the first layer and .f (2) is the activation function of the 
second layer. Each of these functions is indexed by parameters that are learned by 
the network in order to output/predict a value as close as possible to the observed 
record. The effectiveness with which this is achieved is measured by the cost 
function. 

From a prediction perspective, closeness between predictions and outputs may 
be the result of overfitting. This suggests the need for regularisation. 

The Cost Function 

The cost function (11.74) for the logistic regression is a convex function easy to 
minimise. In the example there are p parameters and n data points, and when . n � p

there are no issues with the computation. Typically, neural networks are very heavily 
parametrised and prone to overfitting. One way to avoid overfitting is to include a 
regularisation term as part of the cost function. 

Consider a neural network with m training records .(x1, y1) , . . . , (xm, ym) and 
assume an output with K classes, so that the output .hW,b (x) ∈ RK (with binary
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outcomes .K = 1). Let .
(

hW,b

(

x(i)
))

k
be the kth output corresponding to datum i. 

The cost function is 

. J (θ) = − 1

m

[

m
∑

i=1

K
∑

k=1

y
(i)
k log

(

hW,b

(

x(i)
))

k

+
(

1 − y
(i)
k

)

log
(

1 −
(

hW,b

(

x(i)
))

k

)

]

+λ

2

L−1
∑

l=1

nl
∑

i=1

nl+1
∑

j=1

(

W
(l)
ji

)2
. (11.78) 

In this expression, L is the number of layers, . nl is the number of nodes in 
layer l, .nl+1 the number of nodes in layer .l + 1 and . λ is the regularisation or 
tuning parameter. The bias term is not regularised. Expression (11.78) features the 
quadratic penalisation, but other penalties such as the lasso penalty are also used. 

Contrary to what has been the case so far, the cost function (11.78) and 
of most neural networks are not convex but typically have multiple optima. 
Global minimisation of such a multidimensional surface is an insurmountable task. 
Notwithstanding, finding near local optima is not difficult. Recent theoretical and 
empirical results appear to indicate that, in general, the many local optima found 
using mini-batch gradient descent or stochastic gradient descent do not constitute 
an issue in neural network optimisation (LeCun et al 2015). 

Minimisation of the cost function requires the gradients .∂J (θ) /∂W
(l)
j i , 

.∂J (θ) /∂b
(l)
j . This is achieved in a computationally efficient manner using back 

propagation along the same lines as indicated for the simple logistic regression 
model. Details are a little laborious and are relegated to an Appendix on page 533. 
The Appendix also discusses vectorisation of back propagation to optimise matrix 
multiplications and provides an example of back propagation in the presence of 
multiple connected paths. 

Activation Functions 

Activation functions are a fundamental building block of neural networks. They turn 
the neural network model into a highly nonlinear function of the input variables 
whose parameters are learned as the network is implemented. It is easy to see that 
use of an identity function (rather than of a nonlinear activation function) in the 
hidden layer and output layer of the neural network of Fig. 11.10 transforms the
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neural network into a linear model. Indeed, setting in (11.77) 

. a2 = z(2) = W(1)a(1) + b(1)

a(3) = W(2)a(2) + b(2)

= W(2)
[

W(1)a(1) + b(1)
]

+ b(2)

= W(2)W(1)a(1) +
(

W(2)b(1) + b(2)
)

= ˜Wa(1) +˜b, (11.79) 

transforms the network into a linear function of the input .a(1). This lacks the ability 
to extract nonlinear patterns from the input data. 

The examples discussed so far included as activation functions the sigmoid 
function, the softmax function and the identity function. The sigmoid function can 
be used in the hidden layers of a neural network and is used in the outer layer for 
binary classifiers. It transforms the input to values in .(0, 1). For multiclass problems 
the outer layer uses the softmax function, and for regression the outer layer uses the 
identity function. 

Another activation function is the tanh function or hyperbolic function 

. tanh (z) = exp (z) − exp (−z)

exp (z) + exp (−z)
,

that outputs values in .(−1, 1). The range of values of z generated by this function 
has the same effect as standardising the output. This often leads to better behaviour 
of the neural network relative to that of the sigmoid function. The derivative is 

. 
∂

∂z
tanh (z) = 1 − (tanh (z))2 .

One disadvantage of the sigmoid function and of the tanh function is that if 
z becomes a very large positive number or a very small negative number, the 
derivatives are very close to zero. This can slow down gradient descent. An 
activation function that does not suffer from this property is the ReLU (rectified 
linear unit) function that outputs positive values. It takes the form 

. ReLU (z) = max (0, z) =
{

0, z ≤ 0,

z, z > 0,

with derivative 

.
dReLU (z)

dz
= I (z > 0) .
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This derivative does not exist at .z = 0, but a computer implementation is not 
sensitive to this since numerically z is never exactly equal to zero. Despite the fact 
that the derivative is close to zero when .z < 0, there are enough z values larger than 
zero so that gradient descent moves at an acceptable pace. A variant is the leaky 
ReLU 

. leaky ReLU (z) = max (cz, z) ,

where c is a small number (e.g. .c = 0.01) with derivative 

. 
∂leaky ReLU (z)

∂z
=
{

1, z > 0,

c, z < 0,

so the derivative, numerically speaking, is never zero. 
In modern neural networks, hidden layers often use the ReLU or the leaky 

ReLU functions rather than the sigmoid function because they often lead to better 
numerical behaviour and are cheaper to compute. Several other activation functions 
can be found in the literature but the ones mentioned here are the most commonly 
used. 

Remarks on Fitting Neural Networks 

Neural networks are characterised by having many parameters: the weights and 
biases, the choice of activation functions, the regularisation parameter, the learning 
rate and the number of hidden layers and neurons per layer. For good performance 
neural networks require fine tuning of these parameters. This calls for considerable 
experimentation and expertise. In addition, back propagation, a central operation 
of the NN, can become very challenging in real-world implementations and is an 
area with many subtleties. The following is a minimal list of issues that require 
attention:

• Standardising the features/covariates to mean zero and variance one is particu-
larly advisable when the inputs have different distributions. The standardisation 
has the effect of speeding up gradient descent and simplifies computations since 
a common learning rate can be applied.

• Starting values of covariates, parameters and regularisation parameter. The range 
of values of the covariates has a direct effect on the values of the parameters. 
Standardisation of the covariates facilitates initialising the parameters; a general 
advice is to choose starting values at random in the proximity of zero (e.g. 
random uniform weights over the range .[−0.7,+0.7] (Hastie et al 2009), or 
smaller). Weights (parameters) are typically initialised drawing randomly from 
Gaussian or uniform distributions. The choice of scale of the initial distribution 
may require considerable experimentation. One suggestion for initialising .W(�)
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is to use .Un (−k, k), .k = 1
/√

n�, or .N (0, 1)∗ 1
/√

n� (where . n� is the number 
of columns of .W(�)) and if a ReLU activation function is used, . N (0, 1)∗ 2

/√
n�

(Hu et al 2021). It is important not to set the initial value of the .W ′s exactly equal 
to zero. If this is the case, the activation units and the . δ terms of each layer take 
the same values and this symmetry cannot be broken. This creates a redundancy 
(irrespective of the number of neurons per layer, this would be equivalent to a 
network with only one neuron per layer since all neurons take the same value) 
and poor behaviour of the neural network. Judicious choice of starting values for 
the parameters of a neural network reduces the problem of exploding or vanishing 
gradients that may arise in deep neural networks (Glorot and Bengio 2010). The 
value of the regularisation parameter is very influential, with larger values of . λ
leading to smaller values of the parameters tending to reduce overfitting but to 
increase bias. An interesting case arises in connection with the use of tanh or 
sigmoid. Small weights lead to small values of z. Within a fairly broad range of 
values of z, the relationship between tanh and sigmoid with z is almost linear. In 
this situation the neural network reduces to a linear model (see (11.79)) and may 
perform poorly if there are complex nonlinearities in the data

• Number of hidden layers/number of neurons per layer. For any given problem, 
it is difficult to know in advance how deep (how many layers) a neural network 
must be. The number of hidden layers is best considered as a hyperparameter to 
be determined via experimentation and cross-validation. The number of neurons 
per layer is also a model feature to be determined by experimentation. It is 
common to use in the order of tens or hundreds of neurons, with this number 
increasing with the number of features. Shallow (few layers) neural networks 
would typically require more neurons per layer in order to fit the same function.

• Tuning gradient descent. Depending on the size of the dataset, gradient descent 
can be applied to the complete data (batch gradient descent), or to mini-batches 
of the data (mini-batch gradient desdent). For datasets of the order of say 
up to 3000 features, batch gradient descent should be a reasonable choice. 
For larger sizes the features can be divided into mini-batches of size 1024, 
or 512 features. Within each mini-batch, a single step of gradient descent is 
computed (as if the whole training set consisted of this unique mini-batch). This 
requires computation of forward propagation, computation of the cost function, 
computation of back propagation to obtain the gradients of the cost function with 
respect to the parameters and finally updating of parameters. This completes 
the processing of the mini-batch. The calculations are repeated for each mini-
batch, until the complete training data have been processed leading to a single 
pass of the complete training set. The cost function changes for each mini-batch, 
and the algorithm will never reach a minimum; it will rather fluctuate around a 
(local) minimum. In contrast with batch gradient descent where a pass through 
the training data leads to one updating step of the parameters, in mini-batch 
gradient descent many updating steps are performed, one for each mini-batch. 
The complete mini-batch algorithm has an outer loop allowing many passes 
through the complete training data or until satisfactory convergence is reached.



504 11 Nonparametric Methods: A Selected Overview

For very large datasets, mini-batch gradient descent is considerably faster than 
batch gradient descent. The noise associated with mini-batch gradient descent is 
beneficial in avoiding that the algorithm gets stuck in local minima.

• Gradient checking. During the debugging phase of the development of an 
algorithm, it is good practice to check the results from the coded gradient 
with those obtained with numerical derivatives. The latter are easily obtained as 
follows. Let .θ ∈ Rp be the parameters of the neural network and let .J (θ) be the 
cost function. Then for small . ε (e.g. .ε = 10−4), the numerical partial derivatives 
are approximated by 

. 
∂

∂θ1
J (θ) ≈ J

(

(θ1 + ε) , θ2, . . . , θp

) − J
(

(θ1 − ε) , θ2, . . . , θp

)

2ε
,

...

∂

∂θp

J (θ) ≈ J
(

θ1, θ2, . . . ,
(

θp + ε
)) − J

(

θ1, θ2, . . . ,
(

θp − ε
))

2ε
.

Eyeballing a plot of the exact versus the numerical derivatives should give a first 
impression (a straight line with slope 1 passing through the origin should be a 
good indication) or more precisely checking the size of 

. 

∥

∥∂θapprox − ∂θ
∥

∥

2
∥

∥∂θapprox
∥

∥

2 + ‖∂θ‖2

which for .ε = 10−6 should be .10−6 or .10−5, though this will depend on the 
number of iterations.

• Software. There is a wealth of software available to fit neural networks. For the 
simple multilayer perceptron, neuralnet proved straightforward to use in the 
small datasets of the examples below. Other popular choices include deepnet, 
h20, and for more ambitious users, Google released the open-source software 
TensorFlow with the friendly user interface Keras. 

Example: Analysis of Binary Observations Using a Neural 
Network 

The objective is to study the predictive ability of a neural network and to make 
a comparison with the kernelised logistic regression, the logistic lasso and the 
penalised logistic regression. 

The data consist of 599 binary records simulated with a logistic model using the 
wheat inbred lines genotyped for 1279 binary genetic markers, as in the example 
on page 485. The true (simulated) model on the underlying scale involves 20 loci
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randomly sampled from these 1279 markers and assigned as QTL. The proportion 
of . 1′s in the observations is approximately .50%. A neural network with one hidden 
layer is implemented in R with the vectorised code described on page 537. The  
neural network is also fitted using the R software neuralnet as a comparison. 
The single layered neural network has five neurons in the hidden layer, and the 

sigmoid function is used in the hidden and output layers. An .� − 2 regularisation 
term is added to the logistic loss function, and the regularisation parameter is 
set to .0.002. The learning rate of the gradient descent is set to .0.008, and for 
each of 20 replicates of training/validating splits, the number of gradient descent 
iterations is 5000. The predictive ability of the neural network was quantified using 
the validation MSE (proportion of misclassifications in the validation data, after 
transforming the predicted probabilities into predicted observations on the .0, 1 scale 
using Bayes rule, as defined on page 370). 

Over the 20 replications, the minimum, median, mean and maximum values of 
the validating MSE were .0.32, .0.36, .0.36 and .0.40, respectively. The corresponding 
figures for the training MSE were .0.08, .0.10, .0.10 and .0.15. The analysis was 
repeated using the R software neuralnet, and the results for the minimum, 
median, mean and maximum values of the validation MSE over 20 splits were .0.31, 
.0.36, .0.36 and .0.41. For the training MSE, the corresponding results were .0.01, 
.0.03, .0.04 and .0.10. 

The predictive performance of the neural work for these data quantified as the 
average (over 20 replications) validating .MSE, was similar to that obtained by the 
penalised logistic regression (.0.40), the kernelised logistic regression (.0.33) and the 
logistic lasso (.0.33), as reported on page 485. 

Increasing the number of neurons in the hidden layer from 5 to 10 and to 
50 deteriorated prediction performance. The same was noted by increasing the 
number of layers to two and three (with five neurons per layer) using the software 
neuralnet. These were exploratory modifications to the original architecture 
without aiming at a proper optimisation of the neural network. 

The R-code to fit the neural network to the simulated wheat data set is shown 
below. The first code represents the vectorised version, and the second code 
describes the implementation with neuralnet. 

# CODE1110 
# FIT THE NEURAL NETWORK TO SIMULATED BINARY PHENOTYPES 
# USING THE WHEAT INBRED LINES WITH THE 1,279 GENETIC MARKERS 

rm(list=ls()) # CLEAR WORKSPACE 
set.seed(37111) 

library(BGLR) 
data(wheat) 
#################################################### 
### USE BGLR MATRIX X 

X <- wheat.X 
nindiv <-nrow(X) 
nmark <- ncol(X) 
###################################################
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# NUMBER OF LOCI AFFECTING THE SIMULATED DATA 
nloci<-20 
p<-0.5 
mu<-log(p/(1-p)) # BIAS TERM FOR SIMULATED DATA 

##### INITIALISE PARAMETERS AND ALLOCATE MATRICES ############## 
va<-1.0 # additive variance of liability 
ve<-1.0 # environmental variance 
Xc<-matrix(data=NA,nrow=nindiv,ncol= nmark) 
be<-matrix(data=0.0,nrow=nmark,ncol=1) # parameter of true model 
y<-rep(0,nindiv) 
cm<-colMeans(X) 
for (i in 1:nmark) 
{Xc[,i]<- (X[,i]-cm[i])/sd(X[,i]) 
} 
QTLeff<-sqrt(va/nloci)# QTL effect so that the total 
# genetic variance is VA 
IDq<-sample(1:nmark,nloci,replace=F) # from the nmark markers, 
# choose nloci as QTL 
be[IDq]<-QTLeff # the only b’s that are not zero are those 
# associated with QTL. 
########### GENERATE BINARY DATA y ################### 
xb<-Xc%*%be 
pr <- exp(mu+xb)/(1+exp(mu+xb)) 
y <- rbinom(nindiv,1,pr) 
###################################################### 
df = data.frame(cbind(X,y)) 
m <- length(y) 
# BIG X! 
X <- t(X) 
p <- nrow(X) 

Y <- matrix(y,nrow=1,ncol=length(y)) 

n_1 <- p # NUMBER OF FEATURES IN INPUT DATA 
# READ NUMBER OF NEURONS IN LAYER 2 
n_2 <- 5 
# READ NUMBER OF NEURONS IN LAYER 3 
n_3 <- 1 
######################################### 
### FUNCTIONS: 
# SIGMOID FUNCTION 
sigm <- function(par){ 

1/(1+exp(-par)) 
} 
# COST FUNCTION EXCLUDING REGULARISATION TERM 
cost <- function(A,Y){-(tcrossprod(Y,log(A))+ 

tcrossprod((1-Y),(log(1-A))))/m} 
############################################# 

# READ REGULARISATION PARAMETER delta 

delta <- 0.02 

# READ GD LEARNING RATE (HERE LABELLED gamma) 
gamma <- 0.08 

# eps: range of initial values of elements of W_1: (-eps,eps) 
eps <- 0.85
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# READ NUMBER OF GRADIENT DESCENT ITERATIONS 
nit <- 5000 
# READ NUMBER OF TRAINING / VALIDATING REPS 
nitval <- 20 

resultval <- matrix(data=NA, nrow=nitval,ncol=3) 
result <- matrix(data=NA, nrow=nit,ncol=8+n_2) 

ptm<-proc.time() 

for (j in 1:nitval) { 
# INITIALISE MATRIX OF WEIGHT W_1 (n_2 x n_1), n_1=p=rows of X 
# INITIALISE MATRIX OF WEIGHT W_2 (n_3 x n_2) 
W_1 <- matrix(nrow=n_2,ncol=n_1,runif(n_2*n_1,-eps,eps)) 
W_2 <- matrix(nrow=n_3,ncol=n_2,runif(n_3*n_2,-eps,eps)) 
train=sample(1:ncol(X),floor(0.5*ncol(X))) 

Yt <- matrix(Y[train],nrow=1,ncol=length(Y[train])) 
Yv <- matrix(Y[-train],nrow=1,ncol=length(Y[-train])) 
Xt <- X[ ,train] 
Xv <- X[,-train] 
b_1 <- matrix(0,nrow=n_2,ncol=ncol(Xt)) 
b_2 <- matrix(0,nrow=n_3,ncol=ncol(Xt)) 

for (i in 1:nit) { 
cat("j=",j, " ","i=",i, "\n", sep = "") 
# FORWARD PROPAGATION 
Z_2 <- W_1 %*% Xt + b_1 
A_2 <- sigm(Z_2) # SIGMOID FUNCTION 

# A_2 <- pmax(Z_2,0.01*Z_2) # Leaky ReLU function 
Z_3 <- W_2 %*% A_2 + b_2 
A_3 <- sigm(Z_3) 

# A_3 <- Z_3 # USE THE IDENTITY FUNCTION FOR CONTINUOUS DATA 
# BACK PROPAGATION 
DZ_3 <- A_3 - Yt 
DW_2 <- (DZ_3 %*% t(A_2) / m) + delta * W_2 
Db_2 <- mean(DZ_3) 
DZ_2 <- t(W_2) %*% DZ_3 * A_2 * (1 - A_2) # sigmoid function 
# Leaky ReLU function: 

# DZ_2 <- t(W_2)%*%DZ_3 * ifelse(Z_2 > 0,1,0.01) 

DW_1 <- (DZ_2 %*% t(Xt) / m) + delta * W_1 
Db_1 <- apply(DZ_2, 1, mean) 
# GRADIENT DESCENT ON TRAINING DATA Xt 
W_1 <- W_1 - gamma * DW_1 
W_2 <- W_2 - gamma * DW_2 
b_1 <- b_1 - gamma * Db_1 
b_2 <- b_2 - gamma * Db_2 

# BELOW: ADD PENALTY TERM TO THE LOSS FUNCTION 
newcost <- cost(A_3, Yt) + (delta/2)*(sum(W_2^2)+sum(W_1^2)) 
result[i,] <- c(i,newcost,DW_2[1:5],W_1[1],W_2) 

} 
ytrain <- as.numeric(ifelse(A_3 > 0.5, 1, 0)) 
msetrain <- mean((ytrain - Yt) ^ 2) 

# print(table(yh, Y)) 
# VALIDATION STAGE WITH DATA Xv 
# A LITTLE TWIST: IN LINES 400-404 b_1 & b_2 MUST BE ADJUSTED 
# BECAUSE/IF # TRAINING RECORDS < # VALIDATING RECORDS !!!!!! 
a <- floor(0.5*ncol(X)) 
b <- 0.5*ncol(X)
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bind <- function(b){cbind(b,b[,1])} 
b_1 <- if(a<b) {bind(b_1)} 
b_2 <- if(a<b) {bind(b_2)} 
Z_2 <- W_1 %*% Xv + b_1 
A_2 <- sigm(Z_2) 
Z_3 <- W_2 %*% A_2 + b_2 
A_3 <- sigm(Z_3) 
yval <- as.numeric(ifelse(A_3 > 0.5, 1, 0)) 
mseval <- mean((yval - Yv) ^ 2) 
resultval[j, ] <- c(j, msetrain,mseval) 

} 
proc.time() - ptm 
print(table(yval,Yv)) 
plot(resultval[,2],type="l",ylim=c(min(resultval[,2]), 
max(resultval[,3]))) 
lines(resultval[,3],col="red") 
summary(resultval[,3]) 

R-code to fit the neural network using neuralnet is shown below: 

# CODE1110 (cont) 
# FIT \texttt{neuralnet} ON TRAINING DATA AND 
# TEST ON VALIDATING DATA 
# REPEAT nrepnn TIMES 
set.seed(371111) 
library(neuralnet) 

nrepnn <- 20 

resmsenn <- matrix(data=NA,nrow=nrepnn,ncol=3) 

for (i in 1:nrepnn){ 
cat(i, "\n",sep="") 
train=sample(1:ncol(X),floor(0.5*ncol(X))) # ASSUMES X 

# HAS BEEN TRANSPOSED! 
# SETTING BELOW hidden = c(5,6) FITS TWO LAYERS OF 5 NEURONS 
# IN LAYER 1 AND 6 NEURONS IN LAYER 2. hidden =c(5) FITS 
# A SINGLE LAYER WITH 5 NEURONS 

nn=neuralnet(y~.,data=df[train,],hidden=c(5),linear.output= 
FALSE,act.fct="logistic") 
pnv <- as.numeric(predict(nn,df[-train,])) 
predv <- ifelse(pnv > 0.5, 1, 0) 
msev <- mean((pnv-Y[-train])^2) 
pnt <- as.numeric(predict(nn,df[train,])) 
predt <- ifelse(pnt > 0.5, 1, 0) 
mset <- mean((pnt-Y[train])^2) 
resmsenn[i,] <- c(i,msev,mset) 

} 
plot(resmsenn[,2],type="l",ylim=c(min(resmsenn[,3]), 
max(resmsenn[,2]))) 
lines(resmsenn[,3],col="red") 
summary(resmsenn[,2])
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Example: Prediction Using a Neural Network, a RKHS 
Regression and a Genomic BLUP Model 

In this second example, prediction ability is evaluated for the neural network and for 
the RKHS (reproducing kernel Hilbert space) regression with a Gaussian kernel. A 
genomic BLUP model is also fitted, which is a special case of the RKHS regression 
with a linear kernel appropriately scaled. In contrast with the previous two models, 
the genomic BLUP model captures only linear relationships of the feature space. 

Grain yields (centred and standardised to unit variance) from the 599 inbred lines 
were downloaded from the BGLR package and, as was the case in the previous 
example, 1279 binary genetic markers were available as input features for each 
line. The neural network architecture was as in the previous example, with the only 
difference that the output neuron was generated using the identity function since 
grain yield data are continuous. The cost function for this example has terms of the 
form .(y − a(3))2 rather than the logistic likelihood employed for the binary records. 
The expression for .z(3) on page 537 is unchanged. 

The analysis of grain yield using the RKHS regression was based on the model 
described in the example on page 478. The Bayesian RKHS model used . λ = 0.3
and three values of the bandwidth parameter h were entertained. The best prediction 
result (reported in Table 11.2) was obtained using .h = 1. 

The prediction ability of the models was quantified using the validating . MSE
(average sum of squared differences between observed and predicted validating 
records) and the correlation between observed and predicted validating phenotypes, 
over 20 replicates of training/validating splits. For the RKHS regression, predictions 
were obtained from expression (11.30), and details are disclosed in the R-code 
below. Results in the form of Minimum Mean and Maximum over the 20 replicates, 
for the validating MSE and for the correlation between observed and predicted 
validating phenotypes, are displayed in Table 11.2. 

For these data the RKHS regression with the Gaussian kernel was a slightly better 
prediction machine than the neural network and the BLUP model, both of which 
performed similarly. The RKHS regression model was also implemented using . λ =
0.3, .h = 0.5 and .λ = 0.3, .h = 3.0. The mean validation MSE and correlations 

Table 11.2 Grain yield of 599 inbred lines for wheat data from the BGLR package. Prediction 
ability quantified as the minimum, mean and maximum over 20 random training/validating splits 
(.50% of each) for the validation MSE (X; e.g. for the first entry, .X = 0.72) and for the correlation 
between observed and predicted validating phenotypes (Y ; e.g. for the first entry, .Y = 0.36) for the  
neural network model (NN), the RKHS regression model (RKHS) and the genomic BLUP model. 
The results in the table are in the form . X/Y

Minimum Mean Maximum 

NN 0.72/0.36 0.83/0.43 0.91/0.51 

RKHS 0.68/0.42 0.78/0.49 0.90/0.56 

BLUP 0.70/0.35 0.83/0.43 0.93/0.51
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between observed and predicted validation phenotypes for these two RKHS variants 
were (.0.79; .0.47) and (.0.86; .0.42), respectively. 

The R-code used to fit the RKHS model is shown below: 

# CODE1111 
# TRAINING AND TESTING OF GRAIN YIELD -
# WHEAT INBRED LINES FROM BGLR PACKAGE 
rm(list=ls()) # CLEAR WORKSPACE 
set.seed(37111) 
library(BGLR) 
data(wheat) 
#################################################### 
### USE BGLR MATRIX X 
x <- wheat.X 
y<- wheat.Y[,4] 
#### A GAUSSIAN KERNEL ################ 

kgaus <- function(X,h){ 
X <- scale(X,center=TRUE,scale=FALSE) 
S=sqrt(sum(apply(FUN=var, X=x,MARGIN=2))) 
X <- X/S 
D <- as.matrix(dist(X))^2 
K <- exp(-h*D) 

} 
############################################ 
##### A LINEAR KERNEL ################# 
klin1 <- function(X){ 

X=scale(X,center=TRUE,scale=FALSE) 
S=sqrt(sum(apply(FUN=var, X=X,MARGIN=2))) 
X=X/S 
K=tcrossprod(X) 

} 
############ CHOOSE GAUSSIAN KERNEL ############## 

#h <- 0.5 
h <- 1 
# <- 3  

K <- kgaus(x,h) 
#dim(K) 
#qr(K)$rank 

############## CHOOSE LINEAR KERNEL ############### 
#K <- klin1(x) 
#dim(K) 
#qr(K)$rank 
################################################## 
# READ NUMBER OF TRAINING / VALIDATING SPLITS nitval 
nitval <- 20 
# READ REGULARISATION PARAMETER lambda 
lambda <- 0.3 

result <- matrix(data=NA, nrow=nitval,ncol=5) 

ptm <- proc.time() 
for (j in 1:nitval) { 

cat(j, "\n",sep="") 
train = sample(1:nrow(x), floor(0.5 * nrow(x))) 
xt <- x[train, ]
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yt <- y[train] 
xv <- x[-train, ] 
yv <- y[-train] 
YHATt <- matrix(nrow = length(yt), ncol = 1) 
YHATv <- matrix(nrow = length(yv), ncol = 1) 
Ktrain <- K[train, train] 
Kval <- K[-train, train] 
Xt <- cbind(1, Ktrain) 
RHSt <- crossprod(Xt, yt) 
LHSt <- crossprod(Xt) 
LHSt[-1, -1] <- LHSt[-1, -1] + Ktrain * lambda 

# diag(LHSt) <- diag(LHSt) + c(0, rep(1e-8,ncol(Xt)-1)) 
solt <- solve(LHSt, RHSt) 
YHATt <- solt[1] + Ktrain %*% solt[-1] 
YHATv <- solt[1] + Kval %*% solt[-1] 
mset <- mean((YHATt - yt) ^ 2) 
msev <- mean((YHATv - yv) ^ 2) 
cort <- cor(YHATt, yt) 
corv <- cor(YHATv, yv) 
result[j, ] <- c(j, mset, msev, cort, corv) 

} 
proc.time() - ptm 
summary(result[,3]) 
summary(result[,5]) 

11.4 Classification and Regression Trees 

This section describes an approach to modelling where the feature space is 
partitioned into regions within which the responses are relatively homogeneous. 
The partitioning of the feature space follows a set of binary splitting rules that 
gives rise to a decision tree. Decision trees can be used for continuous as well as 
for categorical variables. In the former they are known as regression trees and in 
the latter as classification trees. The tree has terminal nodes or leaves that arise 
when a stopping criterion for further partitioning has been met. Finally, a prediction 
associated with a particular terminal node is obtained based on the mean or mode 
of the training output in the terminal node, in the case of regression trees, or, based 
on the most frequent class, in the case of classification tress. The method lends 
itself to a graphical representation that possesses pedagogical quality and ease of 
interpretation. 

This section shows how to build a tree and how to apply it with the South African 
Heart Disease Data (Rousseauw et al 1983) used also in Hastie et al (2009), where 
a more detailed account can be found. The data is a subset of a larger dataset 
and includes 462 males in a high-risk heart disease region of the Western Cape 
in South Africa. There are .p = 9 sources of information (features or covariates or 
inputs) available on each patient: systolic blood pressure (sbp), cumulative tobacco 
(tobacco), low-density lipoprotein cholesterol (ldl), adiposity, family history of heart 
disease (famhist), type A behaviour (type-a), obesity, alcohol and age. The output 
or response is coronary heart disease (chd). Adiposity is a measure of percent body
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Fig. 11.11 Classification tree fit to the South African Heart Disease data. The goal is to predict 
the health status of a patient (“Healthy” or "Diseased, “H” and “D”, respectively), based on nine 
features or covariates. The split at the top of the tree results in two branches: one on the left for 
age .< 31.5 years and one on the right for age .> 31.5 years. The left split does not undergo further 
subdivision and the group is classified as “Healthy”. The split on the right undergoes a further split 
whereby those with age .< 50.5 years are moved to the left and those over .50.5 years to the right. 
The split on the left has a further split governed by type a score whereby those .< 68.5 are moved 
to the left and are classified as “Healthy” and those scoring .> 68.5 are moved to the right and are 
classified as “Diseased”. The final tree has six terminal nodes or leaves with a certain number of 
observations in each terminal node (not shown in the figure). The predictions “D” or “H” at each 
terminal node depend on the proportion of observations falling into each category 

fat, whereas obesity is measured as body mass index (bmi). Type-A refers to a 
behaviour pattern characterised by an excessive competitive drive, impatience and 
anger/hostility. Coronary heart disease (chd) is a classification variable that takes 
values “Diseased” and “Healthy”. Out of the 462 patients, 160 are classified as 
“Diseased”. 

Figure 11.11 shows the output of a classification tree fitted to these data. The 
tree arises from questions associated with the inputs/covariates. These questions are 
known as splits. Starting at the top of the tree, the first split assigns observations 
to the left if age is less than .31.5 years. These observations do not undergo further 
splits and constitute a terminal node or leaf. Observations whose age is older than 
.31.5 years are moved to the right. This branch undergoes a further split, again based 
on age, where the threshold now is .50.5 years; those younger define a left branch and 
those older a right branch. The left branch has a split according to scoring for type-a 
behaviour. Those scoring less than .68.5 are moved to the left and constitute another 
terminal node; those scoring higher than .68.5 are moved to the right and give rise
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to a third terminal node. Observations whose age is older than .50.5 years undergo a 
split due to family history, (absent/present), a categorical variable. The left branch 
includes observations that do not show family history for chd, while the right branch 
includes those observations that do. These constitute a terminal node. The branch 
on the left has a further split according to tobacco: less than an accumulated amount 
of .7.605 go to the left and give rise to a terminal node. Those with a value larger 
than .7.605 comprise another terminal node. The tree has 6 terminal nodes. 

The shape of the final tree is governed by the splits. The data consist of p 
variables or features (in the case of the heart data, .p = 9) and a response that is 
.(xi, yi), .i = 1, 2, . . . , n, with .xi = (

xi1, xi2, . . . , xip

)

. For each split, the algorithm 
must decide which of the p variables to choose and then must perform a search to 
find the optimal point to split (the first split in the tree of Fig. 11.11 is based on the 
feature age and the split occurs at .31.5 years). One must also decide how deep the 
tree must be, that is, when to stop splitting and thereby declaring the records from 
this last split as belonging to a terminal node. The predictions for each terminal 
node shown in Fig. 11.11 arise by counting the number of . D′s and . H ′s among 
the observations in the terminal node and choosing as the predicted value the most 
frequent. 

Among the 462 observations, the proportion “Diseased” is .0.346. Consider the 
first decision at the top of the tree (actually, the root, since the tree is upside down). 
For each of the nine covariates, the algorithm finds the binary partition that optimises 
one of two criteria (Gini index or deviance, described at the end of this subsection) 
that measure the impurity among the response in the binary partition (if all the 
observations in the partition belong to the same class, the impurity is zero and it 
is maximum when .50% belong to each class). The aim is ideally to find a partition 
of the covariate within which the responses have the same label. For the tree in 
Fig. 11.11, the choice falls on age. There are 49 “age classes” among the 462 
records and the age .31.5 years minimises the impurity. At this point there are 117 
observations whose age is less than .31.5 years, and among these, 10 are classified as 
“Diseased” resulting in a proportion of “Healthy” equal to .0.915 and in a prediction 
equal to H . This constitutes the first terminal node of the tree. After this split the 
algorithm works with those observations on the right, and a new split is found by 
the same procedure. The same covariate, age, now at the point .50.5 years is chosen 
as the one minimising impurity. Those records whose age is less than .50.5 years are 
moved to the left. Among these records, 119 are “Healthy” and 54 are “Diseased” 
resulting in a prediction at this stage of H . 

A characteristic of decision trees is that optimality is defined locally for each 
split, one at a time, and the algorithm searches for all possible splitting points for 
each covariate. The process is repeated until a stopping criterion is reached (based on 
the number of observations in a splitting region, or on the reduction of impurity). A 
compromise must be found between growing very deep trees, leading to overfitting, 
or shallow trees that do not capture enough of the variability of the response. 
The common practice is first to grow a deep tree stopping when the number of 
observations in a node reaches a minimum (5, say). This tree will typically overfit 
the data. This is then followed by tree pruning which requires cross-validation: the



514 11 Nonparametric Methods: A Selected Overview

bottom branches of the tree are removed until the cross-validation error increases. 
The tree in Fig. 11.11 is a result of this pruning procedure. The original tree had 15 
terminal nodes and included seven of the nine predictors. The pruned tree has only 
six terminal nodes and four predictors. Both trees were fitted to the complete set of 
462 observations. The misclassification rate of these trees using the complete data 
was .0.21 and .0.23 for the complete and pruned tree, respectively. 

Regression trees follow the same rationale as the classification trees, except that 
the residual sum of squares is used instead of the Gini index or the deviance as 
criteria to split the nodes or to prune the tree. The response y now is quantitative 
and, initially, the residual sum of squares before the first split is . 

∑n
i=1 (yi − y)2

where . y is the mean of the n responses. For a first partition around a splitting point 
s, the . nl observations falling on the left of s have mean . ̂μl and those . nr falling on 
the right of s, . ̂μr . These means constitute the predicted values for the first partition. 
The residual sum of squares for this node for this value of s is reduced to 

.

∑

i:xij ≤s

(yi − μ̂l)
2 +

∑

i:xij >s

(yi − μ̂r )
2 . (11.80) 

The algorithm searches the covariate j and the split point s that minimises
Eq. (11.80). For each branch a new split is carried out to refine predictions. Once 
a final tree has been constructed, there will be a predicted value attached to each 
terminal node given by the node’s mean. For a new set of covariates for a new 
individual, a predicted value is obtained by starting at the top of the tree and 
following the splits downwards until the terminal node with its predicted value is 
reached. For a regression tree, the new individual is assigned the prediction given 
by that terminal node’s mean. 

The Gini Index and the Deviance 

Let . Rj denote the j th node and let .njk denote the number of observations of class 
k, .k = 1, 2, . . . , K in node j . The estimate of the probability of observing class k 
in node j is the proportion of observations y that fall in class k 

. ̂pjk = 1

njk

∑

i:xi∈Rj

I (yi = k) ,

and the class assigned to node j is the class with the largest estimated probability, 
.arg max p̂jk . The  Gini index associated with node j is 

.Gj =
K
∑

k=1

p̂jk

(

1 − p̂jk

)

. (11.81)
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G takes on small values when the estimated probabilities are extreme and reaches a 
maximum when estimated probabilities are intermediate. 

An alternative to the Gini index is the deviance or entropy given by 

.Dj = −
K
∑

k=1

p̂jk log p̂jk. (11.82) 

Since . lim
p−>0

p log p = 0, we take .p̂jk log p̂jk = 0 whenever .p̂jk = 0. Therefore, 

entropy is at a minimum value of 0 when one of the .p̂jk = 1 and all other equal to 
0, and it attains a maximum when all .p̂jk in node j are equal and .p̂jk = 1/K for 
all k. 

As shown in the examples that follow, for classification trees, the function tree 
in R uses .2njDj = −2

∑K
k=1 njk log p̂jk instead of (11.82), where . nj is the number 

of responses in node j . 

Evaluating Prediction Performance with Cross-Validation 

The misclassification rates of the full and pruned trees quoted above (.21% and .23%, 
respectively) were estimated using the complete data. This is likely to underestimate 
the misclassification rate when evaluated on new data. Here the predicted ability of 
the classification tree is investigated further using cross-validation. The approach is 
as follows: 

1. Split the data into training and validating sets (.50% of the observations in each) 
2. Construct a full tree using the training data 
3. Compute the misclassification rate for this full tree in the training and validating 

data 
4. Prune the full tree 
5. Compute the misclassification rate of this pruned tree in the validating data 

For a particular replicate, the full tree from step 2 has 25 terminal nodes and 
includes 7 of the 9 variables (dropped famhist and alcohol). The training and 
validating misclassification rates of this tree are .14% and .38% respectively. The 
misclassification rate of the null model obtained by classifying all the observations 
in the complete data as healthy is .34.6% (equal to the proportion of diseased 
individuals). The result is not encouraging. 

The pruned tree from step 4 has three terminal nodes and includes only age 
and ldl, a remarkable simplification from the full tree. The training and validating 
misclassification rates of this pruned tree are .24% and .34.2% respectively, better 
than the full tree but not an improvement over the performance of the null model.
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Example: Analysis of the Heart Data Using a Classification Tree 

The code below reads the South African Heart Disease dataset and executes the 
function tree in R. The presentation follows closely the format in James et al 
(2017), pages 323–327. We look a little more closely into the output of the tree 
function and of other related functions that reveal some of the mechanics of the 
constructed trees. 

# CODE1112 
# READ SOUTH AFRICAN HEART DISEASE DATA 
rm(list=ls()) # CLEAR WORKSPACE 
library(sda) 
library(tree) 
library(glmnet) 
library(randomForest) 
library(loon.data) # MUST INSTALL PACKAGE loon.data 
data("SAheart") 
sahd <- SAheart 
sahd$chd <- factor(as.numeric(sahd$chd),levels=c(2,1), 

labels=c("D","H")) 
#length(which(sahd$chd=="H")) # NO HEART DISEASE 
#length(which(sahd$chd=="D")) # HEART DISEASE 
############################################################# 
# FUNCTION "ACCURACY": 
accuracy = function(actual, predicted) { 

mean(actual == predicted) 
} 
# FIT TREE TO TRAINING AND VALIDATING HEART DATA 
replicate <- 1 
result <- matrix(data=NA, nrow=replicate,ncol=2) 
# REPLICATION 
for(i in 1:replicate){ 

# SPLIT DATA INTO TRAINING / VALIDATING SET 
set.seed(31) 
train=sample(1:nrow(sahd),nrow(sahd)/2) 
treetrain <- sahd[train,] 
treevalid <- sahd[-train,] 
# FIT TREE TO THE TRAINING DATA 
treetr <- tree(sahd$chd[train] ~. ,data=treetrain) 
trtrpred <- predict(treetr,treetrain,type="class") 
trvapred <- predict(treetr,treevalid,type="class") 
table(predicted = trvapred, actual = sahd$chd[-train] ) 
table(predicted = trtrpred, actual = sahd$chd[train] ) 
acval <- accuracy(actual=sahd$chd[-train],predicted=trvapred) 
actst <- accuracy(actual=sahd$chd[train],predicted=trtrpred) 
result[i,] <- c(1-acval,1-actst) 

} 
summary(treetr) 

## 
## Classification tree: 
## tree(formula = sahd$chd[train] ~ ., data = treetrain) 
## Variables actually used in tree construction: 
## [1] age, typea, tobacco, obesity, ldl, sbp, 
## [7] adiposity 
## Number of terminal nodes: 25
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## Residual mean deviance: 0.5449 = 112.2 / 206 
## Misclassification error rate: 0.1342 = 31 / 231 

result 

## [,1] [,2] 
## [1,] 0.3809524 0.1385281 

The code reads the 462 records and randomly samples two sets of 231 records 
that constitute the training and validating data. The tree function is fit to the 
training data (treetrain) and creates the object treetr. The  summary function 
displays information about the resulting tree. I discuss this function below in 
connection with the pruned tree. At this stage we note that the resulting tree has 
25 terminal nodes and includes 7 out of the 9 features of the dataset. The reported 
misclassification error rate of .13% corresponds to the training data; it is therefore 
likely to be underestimated. This is confirmed applying the predict function 
using as arguments the training and validating data. The misclassification error rate 
using the validating data is .38% and using the training data slightly under . 14%
(showing a mild discrepancy with the result of a little over .13% reported in the 
summary function). 

The next step is to investigate whether a pruned tree leads to a better prediction 
performance. The code below fits the function cv.tree using as one of the 
arguments the object generated by fitting the tree to the training data. It uses 
cross-validation in order to find the size of the tree that produces the smallest 
misclassification rate. Size here refers to the number of terminal nodes. 

# CODE1112 (cont) 
# PRUNE TREE FROM TRAINING RUN 
set.seed(33) 
treetr_cv <- cv.tree(treetr, FUN = prune.misclass) 
#treetr_cv 
# index of tree with minimum error 
min_idx = which.min(treetr_cv$dev) 
#min_idx 
# number of terminal nodes in that tree 
treetr_cv$size[min_idx] 

## [1] 3 

# misclassification rate of each tree 
#treetr_cv$dev / length(train) 
# IT APPEARS THAT A TREE WITH treetr_cv$size[min_idx] 
# TERMINAL NODES HAS THE SMALLER MISCLASSIFICATION 
# EXECUTE PRUNE.MISCLASS: TREE WITH LOWEST C-V ERROR RATE 
# SET best = TO NR TERMINAL NODES FROM THIS BEST TREE 
tree_prune<-prune.misclass(treetr,best=treetr_cv$size[min_idx]) 
#summary(tree_prune)
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# OBTAIN PREDICTIONS USING THIS PRUNED TREE 
tree_prune_trn <- predict(tree_prune, sahd[train,],type="class") 
table(predict = tree_prune_trn, actual = sahd$chd[train] ) 

## actual 
## predict D H 
## D 35 10  
## H 45 141 

1-accuracy (predict = tree_prune_trn, actual = sahd$chd[train]) 

## [1] 0.2380952 

tree_prune_val<-predict(tree_prune,sahd[-train,],type="class") 
table(predict = tree_prune_val, actual = sahd$chd[-train] ) 

## actual 
## predict D H 
## D 20 19  
## H 60 132 

1-accuracy (predict = tree_prune_val, actual = sahd$chd[-train]) 

## [1] 0.3419913 

tree_prune 

## node), split, n, deviance, yval, (yprob) 
## * denotes terminal node 
## 
## 1) root 231 298.10 H ( 0.3463 0.6537 ) 
## 2) age < 51.5 149 155.00 H ( 0.2148 0.7852 ) * 
## 3) age > 51.5 82 111.30 D ( 0.5854 0.4146 ) 
## 6) ldl < 4.92 37 47.97 H ( 0.3514 0.6486 ) * 
## 7) ldl > 4.92 45 47.67 D ( 0.7778 0.2222 ) * 

The training and validating misclassification rates (.1 − accuracy) of this pruned 
tree (that has three terminal nodes only) are .24% and .34.2% respectively. The 
function table displays the number of misclassifications in the off-diagonals 
and the correctly classified records in the diagonals. For instance, in the case 
of the training data, the first table, the number of misclassified observations is 
.10+45 = 55, and the number of correctly classified observations is .35+141 = 176, 
out of a total of 231 observations. 

Turning attention to the output from the pruned tree and typing the tree object 
tree_prune disclose details about each branch of the tree. The first branch of 
the tree (the split at age .< 51.5 years; corresponds to the second node) has . n =
149 observations. The deviance for the split is .155.00 and the predicted value is 
.yval = H , because the proportion of H ’s, .0.7852, is larger than the proportion of
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D’s, .0.2148. This split is a terminal node as indicated by the asterisk . ∗. As a check 
on the reported proportions, compute: 

# CODE1112 (cont) 
# A LITTLE CALCULATION: PROPORTION OF H’s IN LEFT BRANCH 
# OF THE FIRST SPLIT OF THE PRUNED TREE 
trtrlt <- treetrain[which(treetrain$age < 51.5),] 
dim(trtrlt) 

## [1] 149 10 

trtrltH <- trtrlt[which(trtrlt$chd == "H"),] 
dim(trtrltH)[1]/dim(trtrlt)[1] 

## [1] 0.7852349 

The reported deviance for the split equal to .155.00 results from the following 
computation. The starting point is the entropy (11.82); for .j = 2, the second node, 

. D2 = −(0.7852 × log(0.7852) + 0.2148 × log(0.2148))

= 0.5202

and the printed deviance is .2(149)(0.5202) = 155.02. 
It is also possible to obtain the deviance of the pruned tree by executing: 

summary(tree_prune) 

## 
## Classification tree: 
## snip.tree(tree = treetr, nodes = c(6L, 7L, 2L)) 
## Variables actually used in tree construction: 
## [1] "age" "ldl" 
## Number of terminal nodes: 3 
## Residual mean deviance: 1.099 = 250.7 / 228 
## Misclassification error rate: 0.2381 = 55 / 231 

The numerator of the printed residual mean deviance is 

. 2
∑

j

njDj = −2 × 149 × (0.7852 × log(0.7852) + 0.2148 × log(0.2148)) +

−2 × 37 × (0.6486 × log(0.6486) + 0.3514 × log(0.3514)) +
−2 × 45 × (0.2222 × log(0.2222) + 0.7778 × log(0.7778))

= 250.68,

where .Dj is given by expression (11.82), . nj is the number of observations in 
terminal node j and there are three terminal nodes in the pruned tree. The residual
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mean deviance is obtained by dividing the numerator by the number of observations 
in the data minus the number of terminal nodes. In the example, this gives 
.250.68/(231 − 3) = 1.099. 

Variability of Estimated Trees 

Figure 11.12 shows the number of features and the validating misclassification 
error rate versus replicate number for 10 pruned trees obtained by resampling the 
complete data to construct ten training/ validating sets of data, fitting a tree to the 
training data in each replicate, pruning the tree obtained from the training data and 
obtaining predictions on the validating data. The number of features included in the 
final pruned tree ranged from 8 in replicate 1, with .MSE = 0.35, to 1 in replicate 6,  
with a .MSE = 0.32. The smallest .MSE = 0.29 was observed in replicates 7 and 9, 
with 5 and 2 features, respectively. The figures display large variation, particularly 
in the number of features included in the final pruned tree. 

There are two sources of variability at play here. One is the data. The number 
of records, the relative contribution of each covariate and the correlation structure 
among covariates make it difficult to find the “best” predictive model. More than 
one combination of covariates leads to similar predictive ability. The other important 
source of variability is methodological: trees are known to be non-robust, such that 
small changes in the data cause large changes in the final estimated tree. The large 
variability of decision trees makes them relatively poor prediction machines. This 
limitation is in contrast to other attractive properties such as ease of interpretation, 

Fig. 11.12 Left y-axis: 
number of features included 
in the pruned tree (in blue). 
Right y-axis: 
misclassification error 
(.MSE ∗10) (dashed red), 
versus replicate number. The 
smallest .MSE = 0.29 over 
the 10 replicates was for 
replicates 7 and 9. The pruned 
trees for these replicates 
included 5 and 2 features, 
respectively. The smallest 
number of features is 1 (age 
.< 49.5 years) for replicate 6, 
with a .MSE = 0.32
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coupled with a highly pedagogic graphical display. As indicated in the next section, 
the non-robustness issue can be improved upon by constructing many trees and 
averaging the final predictions. 

11.5 Bagging and Random Forests 

As indicated in (6.51), the variance of the predictor is one of the three terms 
that influence the expected validation prediction error. Bootstrap aggregation or 
bagging (Breiman 1996) improves prediction ability by reducing this variance. This 
is achieved by constructing a prediction averaged over several bootstrap samples 
whose variance is smaller than the variance of an estimate based on a single sample. 

The idea of bagging is illustrated here with decisions trees, but it can be used 
with other approaches. The algorithm is quite straightforward: create B bootstrap 
samples of training data each of size . nt (sampling the . nt rows of the training data 
.(yi, xi), .i = 1, 2, . . . , nt with replacement . nt times) and grow a tree from each. Let 
.̂fb (x0) be the prediction from the bth bootstrap sample at the prediction point . x0 and 
let .̂fB (x0) be the prediction obtained using the B samples. In the case of regression 
trees, . ̂fB is a simple average over the B samples, and for classification trees . ̂fB is 
based on a majority vote: the most frequent class is chosen as the label for . ̂fB . Each 
tree is grown deep and not pruned. This ensures low bias, and by averaging the B 
predictions, the large variance of each tree is substantially reduced. Specifically, we 
have 

. Var
(

̂fB (x0)
) = Var

[

1

B

B
∑

b=1

̂fb (x0)

]

= 1

B2

[

B Var
(

̂fb (x0)
) + B (B − 1) Cov

(

̂fb (x0) , ̂f ′
b (x0)

)]

= (1 − ρ)

B
Var

(

̂fb (x0)
) + ρ Var

(

̂fb (x0)
)

(11.83) 

where . ρ is the pairwise correlation between predictors from the different trees. With 
large number of bootstrap samples B, the first term in the right-hand side is reduced, 
while the second depends on the correlation between the predictor functions. 

The initial use of bagging with decision trees is based on inclusion of all the p 
features each time a split is considered. The trees fitted to the bootstrap samples 
constructed in this way tend to be correlated because the same feature is likely to 
be chosen in the different trees, particularly at the top of the tree. In a random forest 
(Breiman 2001), only .m < p features are randomly selected (without replacement) 
as candidates for splitting and a different set of m features is selected at each split. 
This has the effect of reducing the correlation between the trees and the second 
term in (11.83). Typical values for m are .p/3 for regression trees and .

√
p for 

classification. The essentials of a random forest construction are that each tree is
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based on a random subset of the observations (the bootstrapping step) and each split 
is based on a random subset of candidate features. 

Out-of-Bag Error Estimates 

The use of bagging provides an opportunity to study the prediction ability of a model 
without resorting to cross-validation. Consider data .zi = (yi, xi), .i = 1, 2, . . . , n. 
The probability of selecting a particular observation in each of the B bootstrap 
samples is .1/n, and the probability of not selecting it is .(1 − 1/n). When n random 
samples are taken with replacement to form the bootstrap sample, the probability 
of not selecting the observation in the n samples is .(1 − 1/n)n, which in the limit 
when .n → ∞, is equal to .exp(−1) ≈ 0.37. Therefore, the observation is absent 
in approximately one third of the B bootstrap samples, on average (the number 
of bootstrap samples with the missing observation is binomially distributed, with 
parameters B and .exp(−1)). In random forests, out-of-bag error estimates for 
classification or regression are obtained by constructing random forest predictors 
of each observation . yi , by averaging the predictors from trees grown in which . zi is 
absent. The error estimates obtained in this manner agree well with those obtained 
using cross-validation. 

Variable Importance 

Although the primary objective of random forests is prediction, it may be of interest 
to obtain an overall summary of the importance of each predictor or feature. There 
are two popular measures of importance of the predictor variables. One is based on 
recording the decrease of the residual sum of squares, in the case of regression trees, 
or of the Gini index in the case of classification trees, each time a particular predictor 
is used in a split. Averaging this decrease over the B trees reveals the important 
predictors as those leading to large decreases. The other approach addresses the 
contribution of a feature to prediction more directly: it considers the decrease 
in prediction accuracy when the feature is randomly permuted in the out-of-bag 
samples, thereby removing its association with the response. The rationale is that 
a permutation is supposed to mimic the absence of the predictor variable from the 
model. When the permuted predictor, together with the remaining non-permuted 
predictors, is used to predict the response with these out-of-bag observations, the 
prediction accuracy (proportion of observations classified correctly) decreases if 
the permuted predictor is associated with the response. In regression problems, 
classification rate is replaced by mean squared error. The difference between the two 
prediction accuracies (permuted/non-permuted) associated with a particular feature 
averaged over the B trees constitutes its variable importance score.
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Example: Analysis of the Heart Data Using a Random Forest 

The R-code below fits a random forest to the heart data using the function 
randomForest. In order to look more closely into the output, the argument mtry 
that specifies the number of features randomly selected in each split is set to a single 
value (3 in the example; setting mtry.= 9 chooses bagging). 

# CODE1113 
# RANDOM FOREST WITH HEART DATA 
#rm(list=ls()) # CLEAR WORKSPACE 
library(sda) 
library(tree) 
library(glmnet) 
library(randomForest) 
# sahd <- read.table( 
# "http://www-stat.stanford.edu/~tibs/ElemStatLearn/ 
# datasets/SAheart.data", sep=",",head=T,row.names=1) 
# FUNCTION ACCURACY: 
accuracy = function(actual, predicted) { 

mean(actual == predicted) 
} 

# CHANGE RESPONSE VARIABLE AND FAMHIST TO FACTOR 
#sahd$chd<-as.factor(ifelse(sahd$chd == 1, 
# "Disease","Healthy")) 
#sahd$famhist <- as.factor(sahd$famhist) 

#head(sahd) 
#str(sahd) 
sumd <- data.frame() 
nrep <- 1 
reslt <- rep(NA,nrep) 
mtry <- c(1,3,5,9) 
mtry <- 3 
set.seed(2) 
for (m in mtry){ 

cat("mtry ",m,"\n",sep="") 
for ( rep in 1:nrep ) { 

cat("Replicate ",rep,"\n",sep="") 
train=sample(1:nrow(sahd),nrow(sahd)/2) 
rf <- randomForest(sahd$chd ~.,data=sahd, 

subset=train,mtry=m,importance=TRUE) 
predict <- predict(rf,sahd[-train,]) 
observed <- sahd$chd[-train] 
t <- table(observed,predict) 
print(t) 
reslt[rep]<-1-accuracy(predicted=predict,actual=observed) 

} 
sumd <- rbind( 

sumd,c(m,min(reslt),mean(reslt),median(reslt),max(reslt), 
var(reslt))) 

} 

## mtry 3 
## Replicate 1 
## predict
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## observed D H 
## D 30 47 
## H 25 129 

names(sumd) <- c("mtry","min","mean","median","max","var") 
sumd[3] 

## mean 
## 1 0.3116883 

The data are divided into a training and a validating set (each of 231 observa-
tions), the random forest is fitted to the training set and the resulting validating mean 
squared error is .MSE ≈ 0.31 (misclassification rate: .(47+25)/(30+47+25+129)). 
This is a little improvement over the validating MSE of the pruned tree, with 
.MSE = 0.34, reported on page 518. 

When randomForest is executed on the complete data, details of the output 
can be displayed typing the object rf (not shown). 

# CODE1113 (cont) 
library(randomForest) 
rf <- randomForest(sahd$chd ~.,data=sahd,mtry=3,importance=TRUE) 
rf$mtry 

## [1] 3 

rf$ntree 

## [1] 500 

rf$confusion 

## D H class.error 
## D 68 92 0.5750000 
## H 54 248 0.1788079 

Particular elements of the output file can be extracted. The output indicates that 3 
variables are used per split (mtry) and that by default .B = 500 trees are constructed 
(ntree). The estimate of the out-of-bag error rate computed from the complete 
data (.(92 + 54)/(92 + 54 + 248 + 68) ≈ 0.32) is in good agreement with the 
misclassification error rate using cross-validation reported above (.31%). 

The importance of each feature can be obtained using the importance 
function: 

# CODE1113 (cont) 
importance(rf,type=1)
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## MeanDecreaseAccuracy 
## sbp 3.869507 
## tobacco 13.272608 
## ldl 4.080764 
## adiposity 4.032976 
## famhist 7.679644 
## typea 1.714666 
## obesity -3.309007 
## alcohol -3.556895 
## age 17.041426 

The output indicates that on average over the 500 trees, age, tobacco and family 
history are the three most important features affecting prediction accuracy. 

Variability of Random Forests 

Variation over repeated samples of training/testing data can be obtained using the 
code above by modification of the parameter nrep. The performance of random 
forest for different choices of the number of features sampled per split can be studied 
setting mtry <- c(1,3,5,9). The code above was run setting nrep=100, and 
the prediction accuracy (misclassification rate) is shown in Table 11.3. 

For this particular dataset, the results are similar across scenarios with a slight 
advantage for the choice mtry=1. 

Example: An Analysis Involving Genetic Epistatic Interactions 

An attractive property of decision trees and random forests is their potential ability 
to capture interactions involving covariables. This is examined here with a stylised 
example in the context of gene discovery and genomic prediction. 

A matrix of genotypic markers (of order number of individuals (sample 
size)} . × number of markers . = 1000) is generated from a binomial distribution 
.Bi (n = 2, p = 0.5). These marker data are part of the operational models used for 

Table 11.3 Prediction accuracy of random forests over 100 samples of training/testing splits and 
for 4 different numbers of features sampled out of 9 per split (mtry; mtry=9 indicates bagging). 
The figures in the table display the minimum, mean and maximum prediction accuracy over 100 
replicates 

mtry min mean max 

1 0.22 0.30 0.35 

3 0.27 0.32 0.36 

5 0.26 0.32 0.40 

9 0.26 0.32 0.38
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inferences and prediction. Three sample sizes are studied: .1000, 5000 and . 10,000
observations. 

Observations are simulated using two models that differ in their genetic archi-
tectures. In the first model, the additive model, 10 marker genotypes are randomly 
sampled from the 1000 genotypic markers and designated as QTL. The 10 QTL 
are assigned additive genetic effects equal to .0.22σ each, where .σ = √

5 is the 
standard deviation of the phenotypic distribution. The 10 QTL combine additively 
to determine genetic values. This model generates an additive genetic variance equal 
to .1.25 squared units. Setting the environmental variance equal to .(5 − 1.25) results 
in a heritability or proportion of variance of the observations captured by the linear 
regression on QTL genotypes equal to .0.25. 

In the second model, the interaction model, the genetic values are the result of 
the following process. First, one locus contributing to additive genetic variation is 
randomly chosen among the 10 QTL. This additive locus contributes an additive 
genetic variance equal to .0.125 squared units. Second, among the 45 possible 
combinations of two loci taken from the 10 QTL, 10 are randomly sampled to 
generate additive . × additive epistatic interactions. The interaction effects are all set 
equal to .0.44σ where, as before, .σ = √

5. When gene frequencies are intermediate 
and loci are in linkage equilibrium, the epistatic part of the interaction model 
constructed in this example does not generate additive genetic variation; the only 
source of additive genetic variation stems from the single additive locus. The genetic 
variance arising from the interacting genotypes is of additive . × additive type only 
and equal to .2.5 squared units. As in the first model, the phenotypic variance is 
equal to 5 squared units. Details of the interaction model are described below in the 
NOTE: The epistatic model. 

Three operational models used for analysis of the data are compared. The first 
two are fully parametric models and include the lasso and a Bayesian spike and slab 
mixture described on page 321. In both, the conditional mean of the data is assumed 
to be linearly related to the 1000 marker genotypes. The third is a nonparametric 
model: a random forest. The three models are fitted to data generated using both 
genetic architectures (the additive and the interaction models) and to the 3 sample 
sizes. 

The two parametric models assume a multiple linear regression of the response 
y on the 1000 marker genotypes. It follows that, for the additive model, the 10 
QTL are a subset of the marker panel of the operational model. For the interaction 
model, only the single QTL is a subset of the marker panel. The interaction terms 
that define the remaining proportion of the true genotypic values are not members 
of the operational models. 

The models do not intend to mimic any particular trait. Rather, the intention is to 
examine the following conjectures: 

1. with a purely additive genetic model, genomic operational models that postulate 
a linear regression of response on marker genotypes (encoded additively) should 
perform as well as or better than random forests, in terms of prediction ability 
and in terms of QTL detection.
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2. In the presence of genetic interactions between QTL, random forests should 
outperform linear models, both in prediction ability and in QTL detection 
because linear models do not account for interactions. 

The justification for point 1 is that operational models that postulate a linear 
regression of data on additively encoded marker genotypes are in close agreement 
with the true model. In such a setup, the linear models should be difficult to 
outperform. While the exact location of QTL is unknown, their detection depends on 
size of the effects and on the amount of data. In the case of point 2, the linear models 
are at a disadvantage: there are no interaction terms in the operational models. On 
the other hand, the building process of a decision tree (which is an integral part of 
the random forests) is designed to capture interactions provided signals are strong 
enough. 

The R-code below generates the data for .10,000 individuals and for the 
interaction model. The  additive model is retrieved by minor changes of the code. 

# CODE1114 
# GENERATING AN EPISTATIC MODEL AND FIT RANDOM FOREST, 
# LASSO, BAYESIAN MIXTURE 
rm(list=ls()) # CLEAR WORKSPACE 
set.seed(303371) 
nindiv<-10000 
nmark <- 1000 
nqtl <- 10 
nintqtl <- 10 
mu_y<-0 
Xq<-matrix(data=NA,nrow= nindiv,ncol= nqtl) 
######## GENETIC MARKERS Xm ######################### 
Xm<-matrix(nrow= nindiv,ncol= nmark, 

rbinom(nindiv*nmark,size=2,p=.5)-1) 
# from the nmark markers, choose nqtl as QTL: 
IDq<-sample(1:nmark,nqtl,replace=F) 
Xq <- Xm[,IDq] # QTL GENOTYPIC MATRIX 
# INTERACTION GENOTYPIC MATRIX: 
Xi<-matrix(data=NA,nrow= nindiv,ncol= nintqtl) 
b <- rep(0,nmark+nintqtl) 
nr <- ncol(Xq) 
i1 <- combn(nr,2) 
i2 <- sample(ncol(i1),nintqtl,replace=FALSE) 
i3 <- as.matrix(i1[,i2]) 
for (i in 1:nintqtl){ 

Xi[,i] <- Xq[,i3[1,i]]*Xq[,i3[2,i]]+1 
} 
# GENERATE GENOTYPIC VALUES g 
b[IDq] <- 0.5
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# ####################### 
# BELOW: ZERO OUT length(idzero) ADDITIVE EFFECTS 
idzero <- sample(IDq,floor(0.9*nqtl),replace=FALSE) 
b[idzero] <- 0 
# ######################### 
lb <- nmark+1 
ub <- nmark+nintqtl 
b[lb:ub] <- 1.0 
gi <-Xi%*%b[lb:ub] 
ga <- Xq%*%b[IDq] 
g <- ga  + gi 
va <- var(ga) 
vi <- var(gi) 
vg <- var(g) 
y <- ga+gi+rnorm(nindiv,0,sqrt(5-va-vi)) 
vy <- var(y) 
her_a <- va/vy 
her_i <- vi/vy 
V <- vy*(1-her_a-her_i) # CONDITIONAL VARIANCE 
cov(ga,gi) 

## [,1] 
## [1,] -0.0001627963 

va 

## [,1] 
## [1,] 0.1254941 

vi 

## [,1] 
## [1,] 2.553642 

vy 

## [,1] 
## [1,] 4.922617 

The results for the additive Model are displayed in Table 11.4. In terms of 
prediction ability quantified by the validating mean squared error (MSE), there is 
little difference between the lasso and the Bayesian mixture although the latter is 
consistently superior. Both outperformed the random forest. In terms of detection 
of causal loci, the proportion of true and false positives in the discovery set 
differs markedly among methods and population sizes (see the table legend for the
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Table 11.4 Additive model. Validating mean square error (MSE), true positive calls (TP) and false 
positive calls (FP) among flagged loci in the discovery set (TP+FP) using lasso, the Bayesian 
mixture and the random forest for three sample sizes (n). The discovery set was arbitrarily defined 
as follows. For lasso, the set of regression estimates not set equal to zero. For the Bayesian mixture, 
the loci whose McMC estimate of the probability of belonging to the non-zero mixture component 
is larger than . 0.5. For random forest, the 10 loci that had the highest importance score. NULL 
MODEL refers to the validation MSE of predictions based on the mean of the training observations, 
a benchmark 

MSE TP / FP 

n 1000 5000 10,000 1000 5000 10,000 

LASSO 4.59 3.98 3.96 9 / 10 10 / 17 10 / 33 

MIXTURE 4.12 3.89 3.71 7 / 0 10 / 0 10 / 0 

R FOREST 5.25 4.53 4.32 4 / 6 9 / 1 10 / 0 

NULL MODEL 5.55 5.03 5.03 

Table 11.5 Interaction Model. Validating mean square error (MSE), true positive calls (TP) and 
false positive calls (FP) among flagged loci in the discovery set (TP+FP) using lasso, the Bayesian 
mixture and the random forest for three sets of number of individuals (n). The discovery set was 
arbitrarily defined as follows. For lasso, the set of regression estimates not set equal to zero. 
For the Bayesian mixture, the loci whose McMC estimate of the probability of belonging to 
the non-zero mixture component is larger than . 0.5. For random forest, the 10 loci that had the 
highest importance score. As point of reference, NULL MODEL refers to the validation MSE of 
predictions based on the mean of the training observations, a benchmark 

MSE TP / FP 

n 1000 5000 10,000 1000 5000 10,000 

LASSO 4.47 5.04 4.89 1 / 15  1 / 2 1 / 0  

MIXTURE 4.46 5.03 4.87 1 / 1 1 / 0 1 / 0  

R FOREST 4.61 4.95 4.69 1 / 9 4 / 6 8 / 2  

NULL MODEL 4.61 5.16 5.01 

definition of discovery set). With .n = 1000 observations the random forest and 
the Bayesian mixture detect four and seven of the ten causal loci, respectively. The 
random forest flags six false positives and the Bayesian mixture none. Lasso on the 
other hand detects nine of the ten causal loci and generates ten false positives. With 
the two largest population sizes, the three methods successfully detect the ten causal 
loci (with the exception of the random forest that detects nine out of the ten with 
one false positive when fitted to .n = 5000 observations). However, lasso, in contrast 
with the other two methods, flags a considerable number of false positive calls with 
the larger population sizes. 

The results for the interaction Model are displayed in Table 11.5. The prediction 
ability of lasso and Bayesian mixture is slightly better to that of the random forest 
for .n = 1000, but the reverse is true for the two larger sample sizes. 

When .n = 1000, all three methods detect the single additive QTL. Lasso and 
random forest produce a substantial amount of false positive calls, but the Bayesian 
mixture produces only 1. When .n = 5000 or .10,000, lasso and the Bayesian mixture 
detect the single additive QTL. On the other hand, the random forest detects not
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only the single additive QTL but also flags 4 and 8 of the 10 genotypes involved 
in epistatic interactions, for sample sizes .n = 5000 or .10,000, respectively. The 
number of false positive results in the random forest discovery set is 6 and 2, for 
.n = 5000 and .n = 10,000, respectively. 

We conclude the example with a few remarks:

• The analysis confirms both conjectures in terms of prediction ability. When 
it comes to identification of causal loci involved in epistatic interactions, the 
conjecture holds provided .n > p.

• When the relationship between signal and noise is unfavourable for detection of 
loci involved in epistatic interactions, a possible strategy is to fit a random forest 
locally, in specific chromosome segments, searching for loci that are not captured 
by a regression based on linear terms.

• A common way of searching for interactions is, first, to fit a regression based 
on linear terms and, second, using the detected marker loci fit for the quadratic 
terms. This strategy does not work when the QTL emit signals only through 
epistatic combinations.

• The random forest, as implemented in the example, can potentially capture 
individual QTL that are involved in epistatic interactions but does not flag the 
interaction itself. A simple discovery strategy, particularly when the number of 
single loci discovered is not large relative to n, is to include these individual 
loci in a second step constructing all possible interaction combinations using, for 
example, simple least squares regression, or alternatively, a Bayesian mixture. 

NOTE: The Epistatic Model 

The epistatic model used in the example induces additive genetic variation through 
the single additive QTL. The 10 epistatic loci generate additive . × additive epistatic 
variance only. This is stylised and holds provided that loci are in linkage equilibrium 
and gene frequencies are all intermediate. 

The details of the model for a specific interaction genotype are as follows. 
Each biallelic locus with genotypes .A1A1, .A1A2 and .A2A2 is coded as .X11 = 1, 
.X12 = X21 = 0 and .X22 = −1, respectively. Then the quadratic term is obtained 
as .XijXkl + 1, .i, j, k, l = 1, 2. This generates the following genotypic codes for the 
additive . × additive epistatic model: 

.A1A1 .A1A2 . A2A2

.B1B1 2 1 0 

.B1B2 1 1 1 

.B2B2 0 1 2 

The R-code below provides an example with .106 individuals in the sample and 
a single additive . × additive genotype.
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# CODE1115 
### GENETIC MODELS 
rm(list=ls()) # CLEAR WORKSPACE 
set.seed(303371) 
nindiv<-1000000 
nqtl <- 2 
nintqtl <- 1 
ba <- rep(1,nqtl) 
bi <- rep(1,nintqtl) 
mu_y<-0 
# INTERACTION GENOTYPIC MATRIX 
Xi<-matrix(data=NA,nrow= nindiv,ncol= nintqtl) 
Xq<-matrix(nrow= nindiv,ncol= nqtl, 

rbinom(nindiv*nqtl,size=2,p=.5)-1) # LINEAR TERMS 
nr <- ncol(Xq) 
i1 <- combn(nr,2) 
i2 <- sample(ncol(i1),nintqtl,replace=FALSE) 
i3 <- as.matrix(i1[,i2]) 
# CONSTRUCT INTERACTION GENOTYPE 
for (i in 1:nintqtl){ 

Xi[,i] <- Xq[,i3[1,i]]*Xq[,i3[2,i]]+1 
} 
gi <-Xi%*%bi # INTERACTION GENETIC VALUES 
ga <- Xq%*%ba # ADDITIVE GENETIC VALUES 
g <- ga  + gi # TOTAL GENETIC VALUES 
va <- var(ga) 
vi <- var(gi) 
vg <- var(g) 
y_i <- gi+rnorm(nindiv,0,sqrt(5-vi)) 
y_ai <- ga + gi+rnorm(nindiv,0,sqrt(5-va-vi)) 
vy <- var(y_i) 
cor(Xq) 

## [,1] [,2] 
## [1,] 1.0000000000 0.0003593763 
## [2,] 0.0003593763 1.0000000000 

vy 

## [,1] 
## [1,] 4.982423
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vi 

## [,1] 
## [1,] 0.2497092 

va 

## [,1] 
## [1,] 0.9998697 

vg 

## [,1] 
## [1,] 1.249443 

# FIT LINEAR REGRESSION OF 
# INTERACTION GENETIC VALUES ON QTL LOCI 
fa <- lm(gi ~ Xq) 
# CONFIRM THAT THE MODEL DOES NOT CAPTURE ANY 
# (ADDITIVE GENETIC) VARIATION 
res <- summary(fa) 
res$r.squared 

## [1] 9.507938e-07 

res$coefficients[,1:3] 

## Estimate Std. Error t value 
## (Intercept) 1.0001798275 0.0004997101 2001.5199827 
## Xq1 -0.0005506352 0.0007067582 -0.7790999 
## Xq2 0.0004147291 0.0007069803 0.5866204 

The .2 × 2 correlation matrix of the QTL genotypes indicates virtually no linkage 
disequilibrium. The output of the summary indicates that the linear regression of 
epistatic genetic values on the two QTL genotypes fails to capture epistatic variation 
and, in agreement with this, the two linear regression coefficients do not differ from 
zero. In other words, for these data the additive genetic variance is zero. This is 
no longer the case if matrix Xq of QTL genotypes is generated from a binomial 
distribution with .n = 2 and .p �= 0.5. The subject is further explored by, for example, 
Hill et al (2008) and Mäki-Tanila and Hill (2014).
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11.6 Appendix 

This appendix provides the details of back propagation for the single hidden layer 
neural network described on page 497. It is shown how matrix multiplications can be 
optimised computationally by means of vectorisation. The last subsection provides 
an example of minimisation of a cost function, when the architecture of the NN 
requires computation of partial derivatives following more than a single path. 

Minimisation of the Cost Function: Back Propagation 

Finding local minima of (11.78) requires the gradients .∂J (θ) /∂W
(l)
j i , .∂J (θ) /∂b

(l)
j . 

For the neural network of Fig. 11.10, .K = 1, .L = 3, .n1 = 3, .n2 = 3, .n3 = 1, and 
the predicted value for the ith datum is .hW,b

(

x(i)
) = a

(3)
i . Then (11.78) reduces to 

. J (θ) = − 1

m

[

m
∑

i=1

y(i) log a
(3)
i +

(

1 − y(i)
)

log
(

1 − a
(3)
i

)

]

+λ

2

2
∑

l=1

nl
∑

i=1

nl+1
∑

j=1

(

W
(l)
ji

)2
. (11.84) 

In this neural network, as indicated in (11.77), the dimension of the matrix of 
parameters is 

. W(1) = (3 × 3) ,

W(2) = (1 × 3) ,

b(1) = (3 × 1) ,

b(2) = (1 × 1) .

There are a total of 16 parameters including four bias terms. 
The back propagation for this neural network is derived in detail. The different 

steps pertain to Fig. 11.13 that displays a flowchart of the operations and make 

Fig. 11.13 Scheme of back propagation for the neural network displayed in Fig. 11.10, moving  
from right to left. Forward propagation moves from left to right. Back propagation computes partial 
derivatives of the cost function J with respect to .W(2), b(2),W(1), b(1). This involves 16 parameters
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reference to Eqs. (11.76). In a first stage, I start with a single record/example and 
the computations involve only the first term on the right-hand side of (11.84) (partial 
derivatives for the regularisation term are of the form .λW

(�)
ji ).

• Step 1. Start from the last layer (layer 3) and compute .δ(3) in two steps 

. δ(3) = ∂J

∂z(3)
= ∂J

∂a(3)

∂a(3)

∂z(3)

= −∂
[

y log a(3) + (1 − y) log
(

1 − a(3)
)]

∂a(3)

∂a(3)

∂z(3)
.

From the first term in (11.84), dropping the superscript . (i) denoting the record 

. 
∂J

∂a(3)
= − y

a(3)
+ (1 − y)

(

1 − a(3)
) ,

∂a(3)

∂z(3)
= a(3)

(

1 − a(3)
)

,

⇒ δ(3) = a(3) − y.

These partial derivatives take the same form as (11.72) and (11.73).

• Step 2. Compute partial derivatives of J with respect to . W(2) =
[

W
(2)
11 ,W

(2)
12 ,

.W
(2)
13

]

, . b(2),

. 
∂J

∂W(2)′ = ∂J

∂z(3)

∂z(3)

∂W(2)′ ,

∂z(3)

∂W
(2)
11

= a
(2)
1 ,

∂z(3)

∂W
(2)
12

= a
(2)
2 ,

∂z(3)

∂W
(2)
13

= a
(2)
3 ,

and therefore 

.
∂J

∂W(2)
= δ(3)a(2), (11.85) 

where .δ(3) = ∂J/∂z(3) is a scalar and .a(2) =
[

a
(2)
1 , a

(2)
2 , a

(2)
3

]

is a . (3 × 1)

column vector. Above, .W(2) is a matrix with a single row and three columns
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consistent with the definition given for .W(j). We need also 

.
∂J

∂b(2)
= ∂J

z(3)

∂z(3)

∂b(2)
= δ(3) (11.86) 

because .∂z(3)/∂b(2) = 1.
• Step 3. Compute .δ(2) in two steps. The first step is 

. δ(2) = ∂J

∂z(2)
= ∂J

∂a(2)

∂a(2)

∂z(2)
,

∂J

∂a(2)
= ∂J

∂z(3)

∂z(3)

∂a(2)
,

∂z(3)

∂a
(2)
1

= W
(2)
11 ,

∂z(3)

∂a
(2)
2

= W
(2)
12 ,

∂z(3)

∂a
(2)
3

= W
(2)
13 .

The second step is 

. 
∂a(2)

z(2)
= σ ′ (z(2)

)

=

⎡

⎢

⎢

⎢

⎣

a
(2)
1

(

1 − a
(2)
1

)

a
(2)
2

(

1 − a
(2)
2

)

a
(2)
3

(

1 − a
(2)
3

)

⎤

⎥

⎥

⎥

⎦

= a(2) ·
(

1 − a(2)
)

,

where . · denotes the Hadamard (or elementwise) product and 1 is a column vector 
with three elements. Finally, 

. δ(2) = W(2)′δ(3) · σ ′ (z(2)
)

.

This can be written compactly as follows: 

.δ(2) = ∂J

∂z(2)
=
⎡

⎢

⎣

δ
(2)
1

δ
(2)
2

δ
(2)
3

⎤

⎥

⎦ = δ(3)

⎡

⎢

⎣

W
(2)
11

W
(2)
12

W
(2)
13

⎤

⎥

⎦ ·

⎡

⎢

⎢

⎢

⎣

a
(2)
1

(

1 − a
(2)
1

)

a
(2)
2

(

1 − a
(2)
2

)

a
(2)
3

(

1 − a
(2)
3

)

⎤

⎥

⎥

⎥

⎦

.
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• Step 4. Compute partial derivatives of J with respect to .W(1), .b(1). 

. 
∂J

∂W
(1)
11

= ∂J

∂z
(2)
1

∂z
(2)
1

∂W
(1)
11

= δ
(2)
1 a

(1)
1 ,

∂J

∂W
(1)
12

= ∂J

∂z
(2)
1

∂z
(2)
1

∂W
(1)
12

= δ
(2)
1 a

(1)
2 ,

...

∂J

∂W
(1)
33

= ∂J

∂z
(2)
3

∂z
(2)
3

∂W
(1)
33

= δ
(2)
3 a

(1)
3 ,

and 

. 
∂J

∂b
(1)
1

= ∂J

∂z
(2)
1

∂z
(2)
1

∂b(1)
= δ

(2)
1 ,

∂J

∂b
(1)
2

= ∂J

∂z
(2)
2

∂z
(2)
2

∂b
(1)
2

= δ
(2)
1 ,

∂J

∂b
(1)
3

= ∂J

∂z
(2)
3

∂
(2)
3

∂b
(1)
3

= δ
(2)
3 .

For the ij th element of W of layer . � and for the ith bias term b of layer . �, we  
have 

. 
∂J

∂W
(�)
ij

= δ
(�+1)
i a

(�)
j ,

∂J

∂b
(�)
i

= δ
(�+1)
i .

In vectorised form, for any matrix .W(�), vector .b(�) in layer . � and activation 
function g, the back propagation for a single record, in standard multilayer neural 
networks, reduces to the following three equations: 

.δ(�) =
(

W(�)′δ(�+1)
)

· g′ (z(�)
)

,

∂J

∂W(�)
= δ(�+1)a(�)′ + λW(�), (11.87)

∂J

∂b(�)
= δ(�+1).
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For instance, 

. 
∂J

∂W(1)
=

⎡

⎢

⎣

δ
(2)
1

δ
(2)
2

δ
(2)
3

⎤

⎥

⎦
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(1)
1 a
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3
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⎢
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2 δ
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1 δ
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(1)
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⎥

⎦ + λW(1),

and in particular 

. 
∂J

∂W
(1)
23

= δ
(2)
2 a

(1)
3 + λW

(1)
23 .

With the gradients available from (11.87) and averaging the gradients over the m 
training records, implementation of gradient descent to find a local minimum of J 
requires the updating steps 

. W(�) : W(�) − α
∂J

W(�)
,

b(�) : b(�) − α
∂J

∂b(�)
,

where gradients are interpreted as averages over the m training records. 

Vectorising Forward and Back Propagation for the Complete 
Training Data 

Much of the material in this section is guided by Andrew Ng’s course on Machine 
Learning, Stanford University. 

Most neural network computations involve matrix multiplications. This can be 
exploited in order to improve computational efficiency by means of vectorisation. 

The system of equations (11.77) for forward propagation and (11.87) for back 
propagation involves vectorised forms for a single-input datum. Therefore, the 
complete propagation requires a loop over all the training records. Such a loop is 
computationally inefficient and can be avoided by vectorising over the complete set 
of training records. 

The complete vectorisation of forward propagation is achieved as follows. 
Assume that the m training records are .

(

x(1), y(1)
)

, . . . ,
(

x(m), y(m)
)

, where . x(i) ∈
Rp and .y(i) ∈ R. First, stack the input feature vectors column-wise and generate the
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matrix X of dimension .p × m, 

. X = [

x(1) x(2) · · · x(m)
]

where each .x(i) is a column vector with p elements. I illustrate with the neural 
network of Fig. 11.10, with .p = n1 = 3, .n2 = 3, .n3 = 1 and X is .n1 × m. Then the 
complete forward propagation involves computation of 

1. . Z(2) = W(1)X+b(1), Z(2) : n2 ×m = 3×m; W(1) : n2 ×n1 = 3×3; X :
n1 × m = 3 × m; b(1) : n2 × m = 3 × m

2. . A(2) = σ
(

Z(2)
)

, A(2) : n2 × m = 3 × m

3. . Z(3) = W(2)A(2) + b(2), Z(3) : n3 × m = 1 × m; W(2) : n3 × n2 =
1 × 3; b(2) : n3 × m = 1 × m

4. . A(3) = σ
(

Z(3)
)

, A(3) : n3 × m = 1 × m

In step 1, .b(1) is the original .3 × 1 column vector with the single column 
repeated m times. Similarly in step 3, .b(2) is the original scalar, repeated column-
wise m times. Computation of the 4 steps generates the forward propagation for the 
complete training data. The activation function . σ in steps 2 and 4 can be arbitrary, 
but in the present example, it is the sigmoid function. 

To compute back propagation in vectorised form, define

• .�Z(�): vectorised version of .δ(�) = ∂J
/

∂z(�)

• .�W(�): vectorised version of .∂J
/

∂W(�)

• .�b(�): vectorised version of .∂J
/

∂b(�)

• .Y = (

y(1), y(2), . . . , y(m)
)

: .1 × m vector of observed records 

The complete back propagation involves computation of 

1. . �Z(3) = A(3) − Y, �Z(3) : 1 × m

2. . �W(2) = 1
m

�Z(3)A(2)′ + λW(2), �W(2) : 1 × 3; A(2)′ : m × 3; W(2) :
1 × 3

3. .�b(2) = 1
m

�Z(3)1, �b(2) : 1×1 and 1 is a .m×1 column vector of . 1′s (. �b(2)

is the result of averaging the elements of the row vector .�Z(3) over the number 
of training records) 

4. . �Z(2) = W(2)′�Z(3) · σ ′ (Z(2)
)

, �Z(2) : 3 × m; W(2)′ : 3 × 1; �Z(3) :
1 × m;
. σ ′ (Z(2)

) : 3 × m

5. . �W(1) = 1
m

�Z(2)X′+λW(1), �W(1) : 3×3; �Z(2) : 3×m; X′ : m×3;
λW(1) : 3 × 3

6. .�b(1) = 1
m

�Z(2)1, �b(1) : 3 × 1; 1 is a .m × 1 column vector of . 1′s (. �b(1)

is the result of averaging the elements of each of the three rows of matrix . �Z(2)

over the number of columns). 

Computation of the six steps generate the back propagation for the complete 
training data, and as in the case of forward propagation, the activation function in
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Fig. 11.14 A three-layer neural network with 2 output classes, .a (3) 
1 , .a (3) 

2 . The computation of the 

partial derivative of the cost function J with respect to .z (2) 
1 must trace two paths (marked in red), 

since a change in .z (2) 
1 has an effect on J via .z (3) 

1 and via . z (3) 
2 

step 4 is arbitrary. The result in step 1 is specific for the sigmoid function used in 
the output layer. 

Back Propagation with Multiple Paths 

Neither of the two examples of back propagation discussed so far involved the 
computation of partial derivatives following more than one path along the lines 
indicated in (11.67). To illustrate a case where this is necessary, consider the 3-
layer neural network displayed in Fig. 11.14 with two output classes rather than the 
single output class neural network of Fig. 11.10 (another example could involve a 
neural network with a single output neuron and more than 3 layers). 

The forward propagation for a single data point for this network generates 

. z
(2)
i = W

(1)
i1 x1 + W

(1)
i2 x2 + b

(1)
i , i = 1, 2,

z
(3)
i = W

(2)
i1 a

(2)
1 + W

(1)
i2 a

(2)
2 + b

(2)
i , i = 1, 2,

a
(2)
i = σ

(

z
(2)
i

)

i = 1, 2,

a
(3)
i = σ

(

z
(3)
i

)

i = 1, 2.

Consider the computation of .∂J
/

∂z
(2)
1 = δ

(2)
1 . This requires 

. 
∂J

∂z
(2)
1

= ∂J

∂a
(2)
1

∂a
(2)
1

∂z
(2)
1

=
[

∂J

∂z
(3)
1

∂z
(3)
1

∂a
(2)
1

+ ∂J

∂z
(3)
2

∂z
(3)
2

∂a
(2)
1

]

∂a
(2)
1

∂z
(2)
1

=
[

δ
(3)
1 W

(2)
11 + δ

(3)
2 W

(2)
21

]

a
(2)
1

(

1 − a
(2)
1

)

. (11.88)
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This can be generated directly using (11.87). Indeed, for this example, .� = 2, 

. W(2) =
[

W
(2)
11 W

(2)
12

W
(2)
21 W

(2)
21

]

; δ(3) =
[

δ
(3)
1

δ
(3)
2

]

; g′ (Z(2)
)

=
⎡

⎣

a
(2)
1

(

1 − a
(2)
1

)

a
(2)
2

(

1 − a
(2)
2

)

⎤

⎦

and substituting in 

. δ(l) =
(

W(�)′δ(�+1)
)

· g′ (z(�)
)

yields 

.δ(2) = ∂J

∂z(2)
=
[

δ
(2)
1

δ
(2)
2

]

=
[

δ
(3)
1 W

(2)
11 + δ

(3)
2 W

(2)
21

δ
(3)
1 W

(2)
12 + δ

(3)
2 W

(2)
22

]

·
⎡

⎣

a
(2)
1

(

1 − a
(2)
1

)

a
(2)
2

(

1 − a
(2)
2

)

⎤

⎦ .
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Exercises and Solutions



Chapter 12 
Exercises 

12.1 Likelihood Exercises I 

Exercise 1 

In a binomial experiment with n trials and probability of success . θ , x successes 
are observed. The setup could represent a trial designed to estimate the proportion 
of individuals in a population that suffer from a particular disease. A sample of n 
randomly selected individuals is taken and the number diseased, x, is recorded: 

(a) Write down the probability mass function of the data 
(b) Write down the likelihood function and the loglikelihood function of . θ . 
(c) Derive the maximum likelihood estimator of . θ . Assume .n = 10 and .x = 8. 

What is the maximum likelihood estimate of . θ? 
(d) Derive a .95% confidence interval for . θ using the asymptotic approximation to 

the ML estimator of . θ . 

Exercise 2 

In the above experiment, use the transformation (known as the logit or logodds): 

.β = g (θ) = ln

(
θ

1 − θ

)
. (12.1) 

The inverse transformation is 

.θ = g−1 (β) = exp (β)

1 + exp (β)
. (12.2) 
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(a) Write the likelihood based on . β. 
(b) Plot the likelihood based on . β and the likelihood based on . θ and compare both. 
(c) Derive the ML estimator and the ML estimate of . β based on the likelihood (a). 
(d) What is the .95% confidence interval for . β? 
(e) Finally, transform the confidence interval obtained in (d) back in terms of . θ . 

How does this confidence interval compare with that obtained in (1d)? Which 
do you believe is more reliable? 

Exercise 3 

Suppose you observe the following .n = 10 iid records each from .N
(
μ, σ 2

)
: 

. 0.88; 1.07; 1.27; 1.54; 1.91; 2.27; 3.84; 4.50; 4.64; 5.41,

.
∑n

i=1 yi = 27.33; .
∑n

i=1 (yi − μ̂)2 = 25.8052 where .μ̂ = 1
n

∑n
i=1 yi , .n = 10. 

(a) Write down the likelihood and the loglikelihood of .
(
μ, σ 2

)
. 

(b) Derive the ML estimators and the ML estimates of . μ and . σ 2. 
(c) Derive the observed information matrix .I (μ, σ 2) and evaluate it at the ML 

estimates. 
(d) Derive the asymptotic variance of .

(
μ̂, σ̂ 2

)
based on 3c. 

(e) Derive Fisher’s (expected) information of .
(
μ, σ 2

)
and evaluate it at the ML 

estimates. 
(f) Find the asymptotic variance of .

(
μ̂, σ̂ 2

)
based on Fisher’s (expected) informa-

tion obtained in 3e. 
(g) According to asymptotic theory, . ̂σ 2 is normally distributed with mean equal to 

. σ 2 and variance given by the result you derived in 3f. What is the exact (small 
sample) distribution of . ̂σ 2 and what is its mean and variance? 

(h) Compute an exact (small sample) .95% confidence interval for . σ 2 and an 
approximate .95% confidence interval based on asymptotic results. 

Exercise 4 

Consider the following hypothetical data collected from the field: 

. x1, x2, . . . , xm, xm+1, . . . , xn,

y1, y2, . . . , ym.

There are m bivariate observations .{(xi, yi) , i = 1, 2, . . . , m} and .(n − m) univari-
ate records. However sampling is not at random: the structure of the data mimics 
records on first and second lactation, where only individuals with the highest
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first lactation records (.x1, . . . , xm) were allowed to produce a second lactation 
(.y1, . . . , ym). 

Using these data, the analyst wishes to estimate various parameters associated 
with milk production, such as the mean and variance of first and second lactation 
records, their correlation and the regression coefficient of second lactation records 
on first lactation records. The objective of the example is to show how the construc-
tion of the “correct” likelihood model avoids the potential problem associated with 
the non-random sampling mechanism that generated the data. 

Let .θ = (μy, μx, σxy, σyy, σxx). Ignoring the selection mechanism and the . n−m

univariate records .xm+1, . . . , xn, one can assume that each of the m pairs of records 
is bivariate normal: 

. (yi, xi)| θ ∼ N

([
μy

μx

]
,

[
σyy = 4 σyx = 2.4

σyx = 2.4 σxx = 4

])
, (12.3) 

i = 1, 2, . . . , m,

with .μy = 10, .μx = 15 and the pairs .(yi, xi) are iid. A standard result is that, given 
(12.3), 

. yi | xi, θ ∼ N (E (yi |xi, θ) ,Var (yi |xi, θ)) , (12.4) 

where

. E (yi |xi, θ) = μy + σyx

σxx

(xi − μx)

= 10 + 0.6 (xi − 15)

and 

. Var (yi |xi, θ) = σyy − σyx (σxx)
−1 σyx

= 4 − 2.42/4.

For the m pair of records, the joint pdf is 

.p
(
x, y|μy, θ

) =
(
2πσyyσxx

(
1 − ρ2

))− m
2

. (12.5) 

exp

[
− 1

2
(
1 − ρ2

) . (12.6) 

⎛
⎝
∑m

i=1 (xi − μx)
2

σxx

+
∑m

i=1

(
yi − μy

)2
σyy

− 2ρ

∑m
i=1 (xi − μx)

(
yi − μy

)
(σxx)

1
2
(
σyy

) 1
2

⎞
⎠
⎤
⎦ ,

(12.7)
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where the coefficient of correlation .ρ = σxy/(σxxσyy)
0.5. Ignoring the sampling 

mechanism that gave rise to the data, the likelihood is proportional to (12.7) and the 
closed form likelihood estimators are given by 

.μ̂x = 1

m

n∑
i=1

xi, μ̂y = 1

m

m∑
i=1

yi, . (12.8a)

σ̂xx = 
1 

m 

m∑
i=1 

(xi − μ̂x)
2 , σ̂yy = 

1 

m 

m∑
i=1

(
yi − μ̂y

)2 
, . (12.8b)

ρ̂ = σ̂xy√
σ̂xx σ̂yy 

, σ̂xy = 
1 

m 

m∑
i=1

(
yi − μ̂y

)
(xi − μ̂x) . (12.8c) 

The R-code below generates bivariate observations where some of the records in 
one of the variables are missing. The strategy makes use of the factorisation: 

. p (x, y) = p (y|x) p (x) .

rm(list=ls()) # Clear the workspace 
set.seed(772231) 
n <- 5000 # Number of records generated for Y_1 
p <- 0.20 # Proportion to be selected 
m <- round(p*n) # Number of records selected 
y1 <- rnorm(n,mean=10,sd=2) # Generate random variable Y_1 
y1_sort <-sort(y1,decreasing=TRUE) # Sort Y_1 
y1s <- y1_sort[1:m] # The highest m Y_1 records are kept 
#length(y1) # Number of records in Y_1 
#length(y1s) # Number of records in the selected subset of Y_1 
# Generate Y_2 
y2<-rnorm(length(y1s),mean=15+0.6*(y1s-10),sd=sqrt(4-(2.4^2)/4)) 

(a) Using only the fraction of the data that has no missing offspring (i.e. the m 
pairs .(yi, xi)), estimate the parameters with estimators in (12.8). From the same 
subset of data, estimate also the regression of y on x, using  

.̂byx = σ̂xy

σ̂xx

. (12.9) 

The regression is a parameter that can be directly derived from the set of
parameters in likelihood (12.7) or from (12.3). That is 

. byx = σxy

σxx

= 0.6.

Similarly, the correlation coefficient is 

.ρ = σxy

σxxσyy

= 0.6. (12.10)
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How do the estimates obtained using this approach compare with the parameters 
defined in (12.3)? An eyeball evaluation is adequate at this stage. 

(b) Write down the correct likelihood and loglikelihood accounting for the observed 
pattern of data based on parametrisation .

(
μx, σxx, β0, β1, σy.x

)
. 

(c) Using the likelihood in (b), obtain ML estimators and ML estimates of 
.φ = (

μx, σxx, β0, β1, σy.x

)
by analytical maximisation of the loglikelihood. 

Backtransform these estimates in terms of .θ = (
μy,μx, σxy, σyy, σxx

)
. How  

do the estimates obtained using this second approach compare with the true 
value of the parameters defined in (12.3)? 

Exercise 5 

This is a theoretical exercise designed to train the skills necessary to construct and to 
maximise a likelihood function in the absence of random sampling. An exponential 
distribution is used often applied to study waiting times until the next event. For 
example, in a clinical trial, one may be interested in studying how a new drug affects 
time until a relapse of the disease. At the end of the trial, some patients may not have 
shown signs of relapse; this gives rise to censoring. 

In the simple exponential sampling model used here, expectations can be 
obtained in closed form. The censoring mechanism is as follows: each observation 
is compared to a censoring or truncation point c (the termination time of the clinical 
trial). If it is smaller than or equal to c, it is registered as such; if it is larger than c 
(no relapse observed), it is set equal to c. Since selection depends on the censored 
records, it is not ignorable and must be incorporated in the likelihood in order to 
draw inferences correctly. To set the background, the first part of the example deals 
with standard inferences based on a random sample from an exponential distribution 
in the absence of censoring. 

1. A random sample of size n is obtained from iid draws from an exponential 
distribution. The pdf of one observation is 

. p (yi |b) = b exp (−byi) , b, yi > 0.

The parameter b is known as the rate, the focus of inference. 
It can readily be verified that 

. 

∫ ∞

0
p (yi |b) dyi = 1.

The mean and variance of . Yi are 

.E (Yi |b) = 1

b
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and 

. Var (Yi |b) = 1

b2
,

respectively (here I distinguish the random variable Y from its realised value 
y). The expression for the mean indicates that mean relapse time is inversely 
proportionately to the rate, as expected. 

The pdf associated with the n independent observations is 

. p (y|b) =
n∏

i=1

p (yi |b)

= bn exp

(
−b

n∑
i=1

yi

)
. (12.11) 

(a) Write the loglikelihood 
(b) Write the score 
(c) Derive the maximum likelihood estimator of b 
(d) Derive Fisher’s information from . −E

[
l
′′
(b|Y )

]

2. Assume that after the random sample of size n has been drawn, . (n − r)

observations larger than a known point c are censored. Clearly, .r ≤ n. There 
are r observed records which happen to be smaller than c, and .(n − r) records 
whose values are equal to c. 

The data-generating mechanism can be written as follows. To derive the pdf 
of a single observation, define a latent variable . Xi whose density is . p (xi |b) =
b exp (−bxi), .b, xi > 0 and let the data be the observed values of the random 
variable: 

. Yi =
{

c if Xi ≥ c

Xi if Xi < c.

Note that 

.Pr (Xi ≥ c) = 1 −
∫ c

0
p (xi |b) dxi

= exp (−bc)

= 1 − F (c) ,

Pr (Xi < c) =
∫ c

0
p (xi |b) dxi

= 1 − exp (−bc)

= F (c) .
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Then the pdf of . Yi is 

. pYi (yi |b) = pXi (yi |Yi<c, b) Pr (Yi<c|b) +Pr (Yi = c|b, Yi = c) Pr (Yi = c|b)

= I (yi < c) pXi (yi |b) + I (yi = c) Pr (Yi = c|b)

= I (yi < c) b exp (−byi) + I (yi = c) exp (−bc) , (12.12) 

and due to independence, .p (y|b) = ∏n
i=1 p (yi |b). Expression (12.12) is a  

proper pdf. Indeed, 

. 

∫
p (yi |b) dyi =

∫
I (yi < c) b exp (−byi) dyi + exp (−bc)

= 1 − exp (−bc) + exp (−bc) = 1.

(a) Write the loglikelihood 
(b) Write the score (loglikelihood) 
(c) Derive the maximum likelihood estimator of b 
(d) Derive Fisher’s information from . −E

[
l
′′
(b|Y )

]

12.2 Likelihood Exercises II 

Exercise 1 

The R-code below generates 30 binary records mimicking the presence-1/absence-
0 of disease among subjects exposed to (scaled) levels of a drug, the covariate. The 
analyst could be interested in learning how the probability of the disease is affected 
by the levels of the drug: 

rm(list=ls()) # Clear the workspace 
set.seed(12371) 
# CREATE BINARY DATA 
mu <- -2 
beta <- 0.7 
cov <- rnorm(30,2,3) # GENERATE THE COVARIATE 
xb <- cov*beta 
p1 <- pnorm(mu+xb) # PROBABILITIES ACCORDING TO PROBIT MODEL 
#p1 <- rbeta(30,2,2) 
dat1 <- cbind(rbinom(30,1,p1),round(cov,digits=0)) # CREATE DATA 
colnames(dat1) <- c("Y", "X") 
d <- data.frame(dat1) 
head(d)
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## Y X 
##  1 1 7  
##  2 1 6  
##  3 1 3  
##  4 0 1  
##  5 1 4  
##  6 0 0  

In an initial analysis, one can study the following approximate relationship 
between the probability of disease and the level of the drug. Let 

. θi = Pr (Yi = 1|μ, β, xi) ,

be the probability that the ith individual shows the disease, given the covariate and 
parameters . μ and . β: 

(a) Sort the covariate x and then create f ive  groups where group 1 includes the 
six individuals exposed to the lowest levels of the drug and group 5 includes 
individuals exposed to the highest levels of the drug. Plot the proportion of 
individuals that show the disease in each group versus the mean level of the 
group. Does the relationship look approximately linear? 

(b) Fit a model of the form 

.Yi = μ + βxi + ei, (12.13) 

and estimate . μ and . β by least squares. In this expression . Yi is a proxy for . θi and 
represents the number of cases that show the disease in group i, divided by the 
number of cases in group i (i.e. six cases) and . xi is the average level of the drug 
in group i over the six cases. What is the probability that a future individual 
will show the disease when exposed to a scaled drug level equal to . −3, 1 or 9? 

(c) Fit the logistic regression: 

.logit (θi) = ln

(
θi

1 − θi

)
= μ + βxi. (12.14) 

From this expression, solving for the probability . θi (the probability that .Yi = 1) 

.logit−1 (θi) = θi = exp (μ + βxi)

1 + exp (μ + βxi)
. (12.15) 

The parametrisation used is

.Yi =
{
1 if ui > 0,
0 if ui < 0,

ui = μ + βxi + ei,
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where the independent errors . ei follow the standard logistic distribution. Therefore, 

. Pr (Yi = 1|μ, β, xi) = Pr (ui > 0|μ, β, xi)

= Pr (μ + βxi + ei > 0|μ, β, xi)

= Pr (ei > −μ − βxi |μ, β, xi)

= Pr (ei < μ + βxi |μ, β, xi)

=
∫ μ+βxi

−∞
p (ei) dei

=
∫ μ+βxi

−∞
exp (ei)[

1 + exp (ei)
]2 dei

= exp (μ + βxi)

1 + exp (μ + βxi)
(12.16) 

as in (12.15), indicating that in the binary case, the logit and the threshold are 
equivalent models. 

With the present parametrisation, the joint density of the data is 

. p (y|μ, β, x) =
∏30

i=1

[
exp (μ + βxi)

1 + exp (μ + βxi)

]yi
[

1

1 + exp (μ + βxi)

]1−yi

.

(12.17) 

(c1) Write the loglikelihood of the parameters 
(c2) Calculate first and second derivatives of the loglikelihood 
(c3) Fit the model (12.14) using Newton-Raphson and obtain ML estimates of . μ

and of . β. 
(c4) What is the asymptotic variance covariance matrix of the ML estimators of . μ

and of . β? 
(c5) What is the probability that a future individual will show the disease when 

exposed to a scaled drug level equal to . −3, 1 or 9? Compare with what you 
obtained in 1b. 

Exercise 2 

Fit the probit regression model to the previous data using the EM algorithm.
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Exercise 3 

Table 12.1, taken from Gelman et al 1995, shows data from a bioassay experiment. 
Four different doses of a drug (measured as .ln(g/ml)) are administered to 20 
animals, 5 in each dose, and the number of deaths is recorded. The objective of 
the experiment is to study the toxicity of the drug and how it varies with dose. 

Let . yi represent the number of deaths observed out of . ni with dose level . xi . It  
will be assumed that . yi is binomial .Bi (ni, θi), where . θi is modelled with the logistic 
regression: 

.logit (θi) = ln

(
θi

1 − θi

)
= β0 + β1xi, i = 1, . . . , 4. (12.18) 

The inverse function yields:

.logit−1 (θi) = θi = exp (β0 + β1xi)

1 + exp (β0 + β1xi)
. (12.19) 

The likelihood takes the form

. L (β0, β1|n, x) ∝
∏4

i=1

[
exp (β0 + β1xi)

1 + exp (β0 + β1xi)

]yi
[
1 − exp (β0 + β1xi)

1 + exp (β0 + β1xi)

]ni−yi

(12.20) 

where .n = (n1, . . . , n4)
′, .x = (x1, . . . , x4)

′. The loglikelihood, after a little 
simplification, reduces to 

.� (β0, β1|n, x) =
4∑

i=1

{yi (β0 + β1xi) − ni ln (1 + exp(β0 + β1xi))} . (12.21) 

(i) Obtain ML estimates of . β0 and . β1 for the logit model using Newton-Raphson. 
(ii) ObtainML estimates of . β0 and . β1 for the probit model using the EM algorithm. 
(iii) Suppose that within each dose, the five animals happen to be full-sibs. What 

modifications to the loglikelihood (12.20) are necessary to account for the 
correlated structure of the data? 

Table 12.1 Data from a 
bioassay experiment 

Dose Deaths Sample size 

−0.86 0 5 

−0.30 1 5 

−0.05 3 5 

0.73 5 5
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Example 4 

The R-code below generates genomic data: 2000 nominally unrelated individuals 
(meaning distantly related) with .20,000 genetic markers available for each indi-
vidual. Modern datasets include of the order of .200,000 individuals and 2 million 
marker genotypes per individual. This example scales down by factor 100. The 
simulated data assumes that all the genetic markers have an effect on the trait of 
the same magnitude. 

In a preliminary analysis, one could be interested in fitting a classic genomic 
model to estimate the genomic variance. 

Assuming that records have zero mean, the genomic model is 

.y|g, σ 2
e ∼ N

(
g, Iσ 2

e

)
, . (12.22a) 

g|W, σ 2 
g ∼ SN

(
0,Gσ 2 

g

)
, . (12.22b) 

G = 
1 

m 
WW ′, . (12.22c) 

W = {
Wij

}
. (12.22d) 

In these expressions, m is the number of SNPs, and .Wij is the label for the j th 
maker in individual i, .(i = 1, . . . n; j = 1, . . . , m;m > n): 

. Wij = Xij − E
(
Xij

)
√
Var

(
Xij

) , Xij = 0, 1, 2.

The eigenvalue decomposition of .WW ′ is 

. WW ′ = U	U ′

=
∑n

i=1
λiUiU

′
i ,

where .U = [U1, U2, . . . , Un], of order .n × n is the matrix of eigenvectors of .WW ′, 
. Uj is the j th column (dimension .n × 1) and . 	 is a diagonal matrix with elements 
equal to the eigenvalues .λ1, λ2, . . . , λn associated with the n eigenvectors. 

The loglikelihood, up to an additive constant, is 

. lnp
(
k, σ 2

e |y,W
)

= −1

2

{
n ln σ 2

e +
n∑

i=1

ln (λik + 1)

+ 1

σ 2
e

n∑
i=1

ỹ2
i

λik + 1

}
, (12.23)
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where . ỹi is the ith element of the .n × 1 column vector .ỹ = U ′y. 

(i) Obtain ML estimates of . σ 2
e and k using Newton-Raphson. 

(ii) Obtain ML estimates using the R-function OPTIM and compare with the 
Newton-Raphson computations. 

(iii) The loglikelihood (12.23) is parametrised in terms of . σ 2
e and .k = σ 2

g /σ 2
e . 

Obtain the ML estimate of . σ 2
g and its asymptotic variance from the Newton-

Raphson output in (i). 
(iv) Obtain ML estimates of . σ 2

e , k and . σ 2
g using the EM algorithm. 

# LIKELIHOOD PROBLEMS II QUESTION 4 
# DATA BASED ON GENOMIC MODEL; OBTAIN SVD OF WW’(1/m) 
rm(list=ls()) # CLEAR WORKSPACE 
set.seed(1327) 
nindiv<-2000 
nmark<-20000 
nt <- nindiv*nmark 
X<-matrix(nrow=nindiv,ncol=nmark,rbinom(n=nt,size=2,p=.5)) 
stdev <- matrix(data=NA,nrow= nmark,ncol=1) 
W <- matrix(data=NA,nrow= nindiv,ncol=nmark) 
U <- matrix(data=NA,nrow= nindiv,ncol= nindiv) 
G<-matrix(data=NA,nrow= nindiv,ncol= nindiv) 
cm <- colMeans(X) 
# MATRIX OF STANDARDISED MARKER GENOTYPE CODES 
for (i in 1:nmark) 
{ 

W[,i] <-( X[,i]-cm[i]) / sd(X[,i]) 
} 
# COULD USE INSTEAD: 
# W <- scale(X) 
#qr(X)$rank 
#qr(W)$rank 
# GENERATE nindiv GENOMIC VALUES N(0,(1/nmark)WW’*10); Vg=10 
g <- (1/sqrt(nmark))*W%*%rnorm(nmark,mean=0,sd=sqrt(10)) 
# GENERATE nindiv PHENOTYPES WITH MEAN 0, VAR=10+15, 
# HERITABILITY=10/(10+15)=0.4 
#PARAMETER k = Vg/Ve = 10/15 =0.67 
y <- g+rnorm(nindiv,mean=0,sd=sqrt(15)) 
# GENOMIC RELATIONSHIP MATRIX G 
G <- (1/nmark)*W%*%t(W) 
# SVD OF G 
EVD <- eigen(G) 
names(EVD) 
head(EVD$values) 
U <- EVD$vector 
val <- EVD$values 
val[length(y)] <-0 
D <- diag(val,nrow=nindiv) 
ytilde <- t(U)%*%y 
dim(ytilde) 
#END OF GENERATION OF DATA
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12.3 Bayes Exercises I 

Exercise 1 

You are given the following data y drawn from a normal distribution: 

. y = (45.83, 50.37, 50.06, 51.59, 48.43, 52.75, 42.92, 48.57, 46.18, 50.20)′.

Assuming the likelihood is proportional to 

. y|μ, σ 2 ∼ N
(
1μ, Iσ 2

)
,

that . μ and . σ 2 are a priori independent and their prior distributions are 

.[μ] ∝ constant, . (12.24a) 

[σ 2] ∝ 1

σ 2 , (12.24b) 

then the posterior distribution can be written 

. p
(
μ, σ 2|y

)
∝ p

(
y|μ, σ 2

)
p
(
σ 2

)
p (μ)

∝ exp

⎡
⎢⎢⎣−

n∑
i=1

(yi − μ)2

2σ 2

⎤
⎥⎥⎦
(
σ 2

)−( n
2+1)

. (12.25) 

(i) Derive analytically the marginal distributions .[μ|y] and .[σ 2|y]. 
(ii) From these marginal distributions, obtain .E[μ|y], .Var[μ|y] , .E[σ 2|y], 

.Var
[
σ 2|y] and the mode of .[σ 2|y]. 

(iii) Compute .95% posterior intervals for . μ and . σ 2. 
(iv) Derive the asymptotic posterior distribution . [μ, σ 2|y]
(v) Obtain the .95% posterior intervals for . μ and . σ 2 based on the asymptotic 

posterior distribution .[μ, σ 2|y]. 

Exercise 2 

Using data y in Exercise 1, write a computer programme to implement the above 
model with:
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(i) A Metropolis-Hastings, single-site updating of . μ and .σ 2. From the output 
obtain Monte Carlo estimates of .E[μ|y], .Var[μ|y], .E[σ 2|y], .Var [σ 2|y] and 
.95% posterior intervals for . μ and . σ 2. 

(ii) A Metropolis-Hastings, joint updating of . μ and . σ 2. From the output obtain 
Monte Carlo estimates of .E[μ|y], .Var[μ|y], .E[σ 2|y], .Var [σ 2|y] and . 95%
posterior intervals for . μ and . σ 2. 

(iii) For the Metropolis-Hastings single-site updating algorithm, use two sets of 
tuning parameters. In the first set, try .kμ = 0.19, .kσ 2 = 1. In the second 
set, try .kμ = 19, .kσ 2 = 9. Compute the Monte Carlo variance, the effective 
chain length (effective sample size) and the integrated autocorrelation for . μ
and for . σ 2 for both strategies. What do you observe? Can you provide an 
explanation? 

Exercise 3 

Use the vector of records y from Exercise 1 and write a computer programme to 
implement the model using Gibbs sampling: 

(i) From the output of the Gibbs sampler, compute Monte Carlo estimates of 
.E[μ|y], .E[σ 2|y] and .95% posterior intervals for . μ and . σ 2. Calculate also Monte 
Carlo variances of the estimator of .E[μ|y] and .E[σ 2|y]. 

(ii) Compute the effective chain length and the integrated autocorrelation for . μ and 
for . σ 2. 

12.4 Bayes Exercises II 

Exercise 1 

Consider the data generated in Likelihood Exercises II, Exercise 1, on page 549. As  
before, let 

. θi = Pr (Yi = 1|μ, β, xi) ,

be the probability that the ith individual shows the disease, given the covariate and 
parameters . μ and . β. 

The logistic regression model is 

.logit (θi) = ln

(
θi

1 − θi

)
= μ + βxi. (12.26)



12.4 Bayes Exercises II 557

Solving for . θi gives 

. θi = logit−1 (θi) = exp (μ + βxi)

1 + exp (μ + βxi)
.

This model can be interpreted directly as a non-linear model for the probability . θi or 
also, indirectly, in terms of an unobserved latent variable (or underlying variable) . ui . 
In this second formulation, the discrete observation . Yi is associated with the latent 
variable . ui as follows: 

. Yi =
{
1 if ui > 0
0 if ui < 0

, and

ui = μ + βxi + ei,

where the . e′s are iid residuals from a logistic probability distribution. Therefore in 
this case, 

. θi = Pr (Yi = 1|μ, β, xi) = Pr (ui > 0|μ, β, xi)

= exp (μ + βxi)

1 + exp (μ + βxi)
, (12.27) 

as in (12.16). The likelihood is proportional to 

. p (μ, β|y, x) =
∏30

i=1

[
exp (μ + βxi)

1 + exp (μ + βxi)

]yi
[

1

1 + exp (μ + βxi)

]1−yi

(12.28) 

and assuming a uniform prior for .(μ, β), (12.28) is also proportional to the posterior 
distribution of .(μ, β). 

(i) Write a programme to implement this logistic model using the Metropolis-
Hastings algorithm with joint updating for .(μ, β). 

(ii) Compute MC estimators of the mean, variance and .95% posterior intervals of 
.[μ|y] and .[β|y]. 

(iii) Compute MC standard errors and effective chain lengths of .Ê (μ|y) and 
.Ê (β|y). 

(iv) Compute a MC estimate of .Pr(Y = 1|x = 3, y).
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Exercise 2 

Fit the probit regression model to the previous data using the Metropolis-Hastings 
algorithm with joint updating for .(μ, β): 

(i) Write a programme to implement this probit model using the Metropolis-
Hastings algorithm with joint updating of .(μ, β). 

(ii) Compute MC estimators of the mean, variance and .95% posterior intervals of 
.[μ|y] and .[β|y]. 

(iii) Compute MC standard errors and effective chain lengths of .Ê (μ|y) and 
.Ê (β|y). 

(iv) Compute the MC estimate of .Pr(Y = 1|x = 3, y). How does this estimate 
differ from the one computed in Exercise 1, iv ? 

Exercise 3 

Fit the probit regression model to the previous data using a Gibbs sampling 
algorithm and data augmentation: 

(i) Write a programme to implement this probit model using the Gibbs sampling 
algorithm. 

(ii) Compute MC estimators of the mean, variance and .95% posterior intervals of 
.[μ|y] and .[β|y]. 

(iii) Compute MC standard errors and effective chain lengths of .Ê (μ|y) and 
.Ê (β|y). 

Exercise 4 

The R-code below generates correlated binary data based on a probit threshold 
model. A full-sib family structure is assumed: nf s full-sib families with f s  full-
sibs per family. At the level of liability, the (true) hierarchical model is 

.uij = fi + eij , , i = 1, . . . , nf s, j = 1, . . . , f s,

fi |σ 2
f

iid∼ N
(
0, σ 2

f

)
,

eij
iid∼ N (0, 1) .



12.4 Bayes Exercises II 559

#SINGLE-SITE GIBBS - CORRELATED PROBIT MODEL 
# DOES NOT USE THE SVD OF ZZ’ 
rm(list=ls()) # Clear the workspace 
set.seed(7713) 

require(graphics) 
# GENERATE CORRELATED (FULL-SIBS) BINARY DATA (THRESHOLD MODEL) 
# THE CODE WILL USE THE PACKAGE MVTNORM; IT IS INSTALLED BELOW 
#install.packages("MCMCpack", .libPaths()[1]) 
#install.packages("mvtnorm", .libPaths()[1]) 
library(mvtnorm) 
#library(MCMCpack) 
# INITIALISE PARAMETERS 
#p0<-0.2 
p0 <- 0.5 
mu <- qnorm(p0) 
iccfs<-0.25 #INTRACLASS CORRELATION FS 
# VARIANCE BETWEEN FAMILIES: iccfs /(1- iccfs) 
# PHENOTYPIC VARIANCE: 1/(1-iccfs) 
nfs<- 400 # NUMBER OF FULL-SIB FAMILIES 
fs<-3 #FULL-SIB FAMILY SIZE 
y<-matrix(data=0,nrow=fs*nfs,ncol=1) 
x<-matrix(data=0,nrow=fs*nfs,ncol=1) 
# GENERATE NFS FULL-SIB EFFECTS f 
f<-rnorm(nfs,mean=0,sd=sqrt(iccfs/(1-iccfs))) 
########################################################## 
#### GENERATE BINARY RECORDS Y 
f<-rnorm(nfs,mean=0,sd=sqrt(iccfs/(1-iccfs))) 
p <- pnorm(mu+f) 
y <- rbinom(nfs*fs,1,rep(p,each=fs)) 
w <- rep(1:nfs,each=fs) 
d<-data.frame(w,y) 
family <- w 
family <- as.factor(family) 
Z<-model.matrix(~0+family) 
head(d) 

## w y 
##  1 1 1  
##  2 1 1  
##  3 1 0  
##  4 2 0  
##  5 2 0  
##  6 2 0  

The Bayesian model used to analyse the data assumes 

.uij = μ + fi + eij , , i = 1, . . . , nf s, j = 1, . . . , f s,

fi |σ 2
f

iid∼ N
(
0, σ 2

f

)
,

eij
iid∼ N (0, 1) .
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The prior distributions for . μ and . σ 2
f are assumed to be proportional to constants. In 

matrix notation the model for the vector of liabilities is 

. u = Xμ + Zf + e

where X (a column vector of . 1′s) and Z are observed incidence matrices. 

(i) Write a computer programme to draw inferences about . μ and . σ 2
f using a 

single-site updating Gibbs sampling algorithm and data augmentation. 
(ii) Compute MC estimators of the mean and .95% posterior intervals of .[μ|y], 

.

[
σ 2

f |y
]
and .

[
h2|y]. 

(iii) Compute MC standard errors and effective chain lengths for .Ê (μ|y), 

.Ê
(
σ 2

f |y
)
and .Ê

(
h2|y). 

Exercise 5 

The R-code below generates genomic data: 500 nominally unrelated individuals 
with 1000 genetic markers available for each individual. The genomic model is 

.y|μ, g, σ 2
e ∼ N

(
1μ + g, Iσ 2

e

)
, . (12.29a) 

g|W, σ 2 
g ∼ SN

(
0,Gσ 2 

g

)
, . (12.29b) 

G = 
1 

m 
WW ′, . (12.29c) 

W = {
Wij

}
. (12.29d) 

In these expressions, m is the number of SNPs, and .Wij is the label for the j th 
marker genotype of individual i, .(i = 1, . . . n; j = 1, . . . , m;m > n): 

. Wij = Xij − E
(
Xij

)
√
Var

(
Xij

) , Xij = 0, 1, 2.

The eigenvalue decomposition of G is 

. G = U	U ′

=
∑n

i=1
λiUiU

′
i ,

where .U = [U1, U2, . . . , Un], of order .n × n is the matrix of eigenvectors of G, . Uj

is the j th column (dimension .n×1) and . 	 is a diagonal matrix with elements equal 
to the eigenvalues .λ1, λ2, . . . , λn associated with the n eigenvectors.
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The loglikelihood, up to an additive constant, is (see expression (3.48) on page 
95) 

. lnp
(
μ, k, σ 2

e |y,W
)

= −1

2

{
n ln σ 2

e +
n∑

i=1

ln (λik + 1)

+ 1

σ 2
e

(y − 1μ)′ U (	k + I )−1 U ′ (y − 1μ)

}
, (12.30) 

where .k = σ 2
g /σ 2

e . 

# BAYES PROBLEMS II. GENOMIC MODEL 
# DATA BASED ON GENOMIC MODEL; OBTAIN SVD OF WW’(1/m) 
rm(list=ls()) # CLEAR WORKSPACE 
nindiv<-500 
nmark<-1000 
nt <- nindiv*nmark 
X<-matrix(nrow=nindiv,ncol=nmark,rbinom(n=nt,size=2,p=.5)) 
stdev <- matrix(data=NA,nrow= nmark,ncol=1) 
W <- matrix(data=NA,nrow= nindiv,ncol=nmark) 
U <- matrix(data=NA,nrow= nindiv,ncol= nindiv) 
G<-matrix(data=NA,nrow= nindiv,ncol= nindiv) 
cm <- colMeans(X) 
#CHOOSE VALUE FOR GENOMIC VARIANCE vgs 
vgs<-10 
#CHOOSE VALUE FOR ENVIRONMENTAL VARIANCE ves 
ves<-25 
# CREATE MATRIX OF STANDARDISED MARKER GENOTYPE CODES 
for (i in 1:nmark) 
{ 

W[,i] <-( X[,i]-cm[i]) / sd(X[,i]) 
} 
# CAN USE INSTEAD: 
# W <- scale(X) 
# GENERATE nindiv GENOMIC VALUES FROM N(0,(1/nmark)WW’*vgs,) 
# nmark MARKER VALUES: REALISATIONS FROM N(0,I sqrt(vgs/nmark)) 
g <- (1/sqrt(nmark))*W%*%rnorm(nmark,mean=0,sd=sqrt(vgs)) 
# GENERATE nindiv PHENOTYPES WITH MEAN 0, VAR=vgs+ves, 
# HERITABILITY=vgs/(vgs+ves) 
e<- rnorm(nindiv,mean=0,sd=sqrt(ves)) 
y <- g+ e 
# GENOMIC RELATIONSHIP MATRIX G 
G <- (1/nmark)*W%*%t(W) 
# SVD OF G 
EVD <- eigen(G) 
#names(EVD) 
#head(EVD$values) 
U <- EVD$vector 
tU<-t(U) 
val <- EVD$values 
val[length(y)] <-0 
D <- diag(val,nrow=nindiv) 
# Dp IS A VECTOR WITH NON-ZERO EIGENVALUES 
Dp<-c(val[1:nindiv-1])
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(i) Write a computer programme to draw inferences about . μ, . σ 2
e and . σ 2

g using a 
single-site updating Gibbs sampling algorithm. 

(ii) Compute MC estimators of the mean and .95% posterior intervals of .[μ|y], 
.

[
σ 2

g |y
]
, .
[
σ 2

e |y] and .
[
h2|y]. 

(iii) Compute MC standard errors and effective chain lengths for .̂E (μ|y), 

.̂E
(
σ 2

g |y
)
, .̂E

(
σ 2

e |y) and .̂E
(
h2|y). 

(iv) Obtain ML estimates of . μ, . σ 2
e and . σ 2

g using the R-function OPTIM to 
compare with the Bayesian results. Obtain the asymptotic covariance matrix 
and compare the .95% frequentist interval with the .95% Bayesian posterior 
interval of . σ 2

g . 

12.5 Prediction Exercises 

The expectations of the validating mean squared errors on pages 278 and 428 were 
obtained by simple expansion of the squared term of the .MSEv . The same results can 
be obtained by expressing the .MSE as a quadratic form. It is quite simple to check 
whether the quadratic form is chi-square distributed, and therefore an analytical 
form of the complete distribution of .MSE becomes available. The result rests on the 
assumption of normality. 

The following result is used (used also on page 584): 

• If the random vector .x ∼ N (μ, V ), then the random variable . x′Ax ∼
χ2 (r (A) , λ), a chi-square distribution with .r(A) degrees of freedom and non-
centrality parameter . λ, if  AV is idempotent, where .r(A) denotes the rank of 
matrix A. The non-centrality parameter . λ is equal to 

. λ = μ′Aμ.

The mean and variance are 

.E
(
x′Ax

) = μ′Aμ + tr (AV ) , . (12.31a) 

Var
(
x′Ax

) = 4μ′AV Aμ + 2 tr  (AV )2 . (12.31b) 

In the special case when .μ = 0, then .E
(
x′Ax

) = tr (AV ) and . Var
(
x′Ax

) =
2 tr (AV )2 = 2 tr (AV ). Typically, .r(A) < r(V ) and .tr (AV ) = r(AV ) = r(A). 
Then for .μ = 0, .E(x′Ax) = r(A) and .Var(x′Ax) = 2r(A). 

• For a symmetric matrix A and a random vector .x ∼ (μ, V ), the quadratic form 
.x′Ax has mean given by 

.E
(
x′Ax

) = μ′Aμ + tr (AV ) . (12.32)
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If x is normally distributed 

. Var
(
x′Ax

) = 4μ′AV Aμ + 2 tr (AV )2 .

In the above expressions, expectations are taken with respect to .[x|u, V ]. 

Exercise 1 

A classical problem in quantitative genetics is to predict a future phenotypic value 
or an unobserved genetic value, given available information. The starting point is 
to construct a model of the joint distribution of observables and unobservables. To 
be specific, consider a training-validating scenario where the training data consist 
of . n1 observed phenotypic records . y1 and the scalar to be predicted could be either 
a hold-out phenotypic record . y2 or an unobserved genetic value . g2. A hierarchical 
genetic model assumes 

.

[
y1

y2

]
=

[
1μ1

μ2

]
+

[
g1

g2

]
+

[
e1

e2

]
, (12.33) 

where . y1 is the vector of observed phenotypic records in the training set with . n1
elements. The scalar . y2 is a hold-out validating datum, . μ1 and . μ2 are unobserved 
means, and . g1 (a column vector with . n1 elements) and . g2 (a scalar) are normally 
distributed unobserved (additive) genetic values 

.

[
g1

g2

]
σ 2

g ∼ N

[(
0
0

)
,

(
G11 G12

G21 G22

)
σ 2

g

]
, (12.34) 

where . σ 2
g is the additive genetic variance (here, assumed known). In (12.34) .G11 is 

the matrix of dimension .n1 × n1 of expected additive genetic relationships in the 
training data constructed on the basis of a given pedigree. The dimensions of the 
remaining blocks are 

. G12 : n1 × 1,

G21 : 1 × n1,

G22 : 1 × 1.

The off-diagonal block . G12, a column vector, specifies the coefficient of additive 
genetic relationships between the . n1 individuals in the training data and the 
individual in the validating data. The scalar .G22 is the coefficient of additive 
genetic relationship of the individual in the validating data with itself, equal to 1, 
in the absence of inbreeding. Residual terms are assumed to follow the independent
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normal distributions: 

. 

[
e1

e2

]∣∣∣∣ σ 2
e ∼ N

[(
0
0

)
,

(
I 0
0 1

)
σ 2

e

]
,

where . σ 2
e is a residual variance .Var (yi |μ, gi) (assumed known) and I is the . n1 ×n1

identity matrix. 
The purpose of the exercise is to obtain predictors of . y2 and of . g2, given  the  

observable . y1, the training data. Assume that the predictors take the form of the 
conditional means: 

. ̂y2 = E (y2|y1) ,

ĝ2 = E (g2|y1) .

1. Derive .Var (ŷ2), .Cov (y2, ŷ2), .Var (ĝ2), .Cov (g2, ĝ2). 
2. Derive the prediction error variances .Var (y2 − ŷ2), . Var (g2 − ĝ2)

3. Derive the squared correlations .R2 (y2, ŷ2), .R2 (g2, ĝ2), where 

. R2 (x, y) = [Cov (x, y)]2

Var (x)Var (y)

Show that 

. R2 (y2, ŷ2) = h2R2 (g2, ĝ2) , h2 = Var (g2)

Var (y2)

4. Argue that as . n1 increases, .R2 (g2, ĝ2) approaches 1 and .R2 (y2, ŷ2) approaches 
. h2. 

5. Using the hold-out single data point . y2, derive the expected value of the 
validating mean squared error: 

. E (MSEv) = Ey1y2 (y2 − ŷ2)
2

Exercise 2 

The components of the expected validating mean squared error .MSEv were dis-
cussed on page 277. From a classical frequentist point of view, when the expectation 
is taken over the distribution of training and validating data, three components 
contribute to the expected validating mean squared error as indicated in (6.51) on  
page 279.
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Let y denote training data, . y0 validating data and let .ŷ0 = x′
0θ̂ denote a 

frequentist point prediction of the validating datum . y0, where . x′
0 is a row vector 

of p covariates and . θ̂ is some estimate based on the training data of parameter . θ that 
indexes the linear model. Then, given . x0

. Eyy0 (MSEv) = Eyy0

(
y0 − ŷ0

)2
= Ey0

(
y2
0

)
+ Ey

(
ŷ2
0

)
− 2Eyy0

(
y0 ŷ0

)
. (12.35) 

1. Obtain an analytical expression for (12.35) by calculating the expectations of its 
three terms and, in so doing, reproduce result (6.51). Expectations are taken over 
the distributions of training and validating data. 

2. Adopt a Bayesian perspective. Conceptually, this involves drawing . θ∗ from . [θ |y]
and given . θ∗, drawing a predicted validating datum . ŷ∗

0 from .
[
ŷ0|θ∗, y, x0

]
that 

has the same distribution as the validating datum .
[
y0|θ∗, y, x0

]
. The draws 

.
(
θ∗, ŷ∗

0

)
are extractions from .

[
θ, ŷ0|y, xo

]
, while the margins are draws from 

.[θ |y] and from .
[
ŷ0|y, x0

]
. The latter is the posterior predictive distribution of 

the Bayesian predictor. The mean (dropping the conditioning on . x0 to avoid 
cluttering the notation) is 

. E
(
ŷ0|y

) = Eθ |y
[
E
(
ŷ0|θ, y

)] = Eθ |y
(
x′
0θ

)
and the variance 

. Var
(
ŷ0|y

) = σ 2 + Varθ |y
(
x′
0θ

)

where . σ 2 represents sampling uncertainty of the draws from .
[
ŷ0|θ∗, y, x0

]
, as  

explained in (10.4) on page 420. Obtain an analytical expression for the Bayesian 
expected validating mean squared error: 

. E (MSEv |y, y0) = E
(
y0 − ŷ0|y, y0

)2
= y2

0 + E
(
ŷ2
0 |y

)
− 2y0 E

(
ŷ0|y

)
.

that involves expectations over the posterior predictive distribution of . ŷ0. 

Exercise 3 

Let the .n × 1 vector of observations y be a realisation from the probability model: 

.y|μ ∼ N
(
1μ, Iσ 2

)
. (12.36) 

In what follows . σ 2 is assumed known and . μ is the only unknown parameter.
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Partition .y′ = (
y′
t , y

′
v

)
into training and validating sets of lengths .nt , nv . Let  

.μ̂ = 1′yt

nt

(12.37) 

be the ML estimate of . μ based on the training records, where 1 is a column vector 
of . 1′s with . nt elements. The sampling distribution of the ML estimator is 

.μ̂ ∼ N

(
μ,

σ 2

nt

)
. (12.38) 

A vector of predicted validating records . ŷv is 

. ŷv = 1μ̂

and the validating .MSEv is 

. MSEv = 1

nv

(
ŷv − yv

)′ (
ŷv − yv

)
.

1. Derive the expected value of .MSEv under the following three scenarios: 

(a) Case 1: the training data . yt are treated as fixed and the validating data . yv

as random. Here the .MSEv quantifies the ability of the model to predict 
new records accounting for their sampling variation, without accounting for 
sampling variation of . μ̂. 

(b) Case 2: the training data . yt are treated as random and the validating data 
. yv as fixed. Here the .MSEv quantifies the ability of the model to predict an 
average validating datum, accounting for sampling variation of . μ̂. 

2. Case 3: Derive the expected value of .MSEv and of .MSEt when training data . yt

and validating data . yv are treated as random. Here the .MSEv quantifies the ability 
of the model to predict a new record accounting for its sampling variation and 
also for sampling variation of . μ̂. 

Obtain an expression for .E (MSEv) −E (MSEt ). Formulate any insights from 
this calculation, perhaps with help from a glance at expression (6.68). 

Exercise 4 

A Bayesian perspective is adopted extending model (12.36) by assigning an 
improper uniform prior distribution to . μ. Bayesian inferences are conditional on 
the data, and therefore . yt and . yv are treated as fixed observed quantities:
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1. Derive the expected value of the validating mean squared error under the 
following three scenarios: 

(a) Compute the mean of the posterior distribution of .[μ|yt ] that takes the same 
form as the ML estimator (12.37); label this mean . ̂μ. Generate validating 
predictions . y∗

v drawing from .
[
yv|μ̂, yt

]
. Define the validating mean squared 

error: 

.MSEv = 1

nv

(
y∗
v − yv

)′ (
y∗
v − yv

)
. (12.39) 

Show that .MSEv has a scaled chi-square distribution. 
This approach does not account for the posterior uncertainty of . μ but 

accounts for sampling uncertainty of . y�
v . 

(b) Account for the uncertainty about . μ that is fully captured by its posterior 
distribution. Given the likelihood (12.36) and an improper uniform prior 
distribution for . μ, the posterior distribution is 

. μ|yt ∼ N

(
μ̂,

σ 2

nt

)
.

Construct the vector of predicted validating records 

. ŷv = 1nvμ

and using these, calculate 

.MSEv = 1

nv

(
ŷv − yv

)′ (
ŷv − yv

)
(12.40) 

and its expectation.
(c) Account for the uncertainty about . μ and for sampling uncertainty of new 

validating data . y�
v (the predictors), fitting the hierarchical Bayesian model: 

.μ|yt ∼ N

(
μ̂,

σ 2

nt

)
, . (12.41a) 

yv|μ, yt ∼ N
(
1μ, Iσ 2

)
, (12.41b) 

where . ̂μ is the posterior mean; obtain an analytical expression for .E(MSEv). 
A Monte Carlo approach based on the method of composition is to draw 

the pairs .
(
μ∗
1, y

∗
v1

)
, . . . ,

(
μ∗

N, y∗
vN

)
, where . μ∗

i is a draw from the distribution 
.[μ|yt ] and . y∗

vi is a draw from the distribution .
[
yv|μ∗

i , yt

]
. The quantities 

.y∗
v1, . . . , y

∗
vN are an iid sample from the posterior predictive distribution 

.[yv|yt ] and can be used to compute the validating mean squared error (12.39).
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2. Discuss the results obtained using a, b and c. Provide an interpretation of the 
distribution of the .MSEv under the Bayesian and frequentist perspectives. 

Exercise 5 

This exercise is in the same spirit as the previous one; the model is a little more 
parametrised. 

The R-code below generates n individuals each genotyped for p covariates 
(genetic markers). Among these genetic markers nqtl are defined as causal 
genotypes. The size of gene substitution effects of these causal loci is chosen to 
generate an additive genetic variance equal to 10 squared units, and the heritability 
of the continuous trait is set equal to . 0.5. The data vector y with n elements is 
divided into a training set . yt and a validating set . yv , each of size . n/2. Let  W 
represent the centred and scaled matrix X, where .X = {

Xij

}
is an .n/2 .×p observed 

matrix with genotypic codes .Xij equal to .0, 1, 2 according to the number of the 
arbitrarily chosen allele of individual i and marker j . 

The operational statistical model is as follows: 

.yt |μ, b, σ 2
e ∼ N

(
1μ + Wb, Iσ 2

e

)
, . (12.42a) 

b|σ 2 
b ∼ N

(
0, Iσ 2 

b

)
, (12.42b) 

where . yt is the vector of training records of length . n/2, . μ is an unobserved mean, 
b is a vector of unknown genetic marker effects of length p, 1 is a vector of . 1′s of  
length . n/2, . σ 2

e is the residual variance and . σ 2
b reflects prior uncertainty for each 

element of b. In other words, . σ 2
b is the prior variance of the effect of one marker, the 

same for all p markers. These two variance components are assumed known: 

# PREDICTION EXERCISE 5 
rm(list=ls()) # CLEAR WORKSPACE 
set.seed(123) 
nindiv<-100 
nmark <- 50 
nt <- nindiv*nmark 
# NUMBER QTL 
nqtl <- 50 

# GENERATE MARKER MATRIX FROM BINOMIAL DISTRIBUTION 
X<-matrix(nrow= nindiv,ncol= nmark,rbinom(n=nt,size=2,p=.5)) 
######################################################### 
# CHOOSE VALUE FOR MEAN mu AND GENOMIC VARIANCE vgs 
mu <- 10 
vgs<-10 
# CHOOSE VALUE FOR ENVIRONMENTAL VARIANCE ves 
ves<-20 
her <- vgs/(vgs+ves)
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btrue<-matrix(data=0.0,nrow=nmark,ncol=1) # parameter from 
# true model 
IDq<-sample(1:nmark,nqtl,replace=F) # from nmark markers, choose 
# nqtl as QTL 
QTLeff<-sqrt(vgs/nqtl)# QTL effect so that the total genetic 
# variance is VA 
btrue[IDq]<-QTLeff # QTL b’s are not zero 
W <- matrix(data=NA,nrow= nindiv,ncol=nmark) 
cm <- colMeans(X) 
# CREATE MATRIX OF STANDARDISED MARKER GENOTYPE CODES 
for (i in 1:nmark) 
{ 

W[,i] <-( X[,i]-cm[i]) / sd(X[,i]) 
} 
# can use more compactly: 
# W <- scale(X) 
# GENERATE nindiv PHENOTYPES 
e<- rnorm(nindiv,mean=0,sd=sqrt(ves)) 
y <- mu  + W%*%btrue+ e 
k <- (ves/vgs)*nmark # ratio of residual to genomic variance 
# Vb = vgs/nmark 
train <- sample(1:nrow(W),floor(0.5*nrow(W))) 
Xt <- W[train,] 
yt <- y[train] 
Xv <- W[-train,] 
yv <- y[-train] 
Zt <- cbind(1,Xt) 
Zv <- cbind(1,Xv) 
##################### 
## ridge regression coefficient matrix, rhs & solution solt 
RHSt <- crossprod(Zt,yt) 
LHSt <- crossprod(Zt) 
LHSt[-1,-1] <- LHSt[-1,-1]+diag(k,nrow=nrow(LHSt)-1) 
solt <- solve(LHSt,RHSt) 
# PREDICTION, CONDITIONAL ON ESTIMATED PARAMETERS (solt) 
predval <- Zv%*%solt # VALIDATING 
predtrain <- Zt%*%solt # TRAINING 

A standard ridge regression is fitted to the training data . yt and assuming known 
dispersion parameters, the posterior mean of .

[
μ, b|yt , σ

2
e , σ 2

b

]
satisfies the linear 

system 

.

[
1′1 1′Wt

W ′
t 1 W ′

t Wt + Iλ

] [
μ̂

b̂

]
=

[
1′yt

W ′yt

]
, (12.43) 

where .λ = σ 2
e

σ 2
b

and matrix W has been appropriately partitioned into training and 
validating blocks: 

. W =
[

Wt

Wv

]
,

each of dimension .n/2 . ×p.
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In a Bayesian setting, predictors . y∗
v of validating records are drawn from the 

posterior predictive distribution .[yv|yt ], and the validating mean squared error is 
computed with the usual expression: 

.MSEv = 1

nv

(
y∗
v − yv

)′ (
y∗
v − yv

)
, (12.44) 

1. Derive the exact distribution of .MSEv (12.44) conditional on the solutions . 

(
μ̂, b̂

)

from (12.43). In this case, . y∗
v is a draw from .

[
yv|yt , μ̂, b̂

]
. Write a computer 

programme to generate a Monte Carlo estimate of the posterior distribution of 

.MSEv , drawing validating predictions . y�
v from .

[
yv|yt , μ̂, b̂

]
. Compare with the 

analytic results. 
2. Derive an analytic expression for the expected value of (12.44) based on the 

hierarchical Bayesian model (12.42), using the formula for the expected value of 
a quadratic form (12.32). This provides a description of MSE based on a single 
point: its mean. Here, as in . 1. above, account is taken of the contribution from 
sampling variation of new records, but in contrast with . 1., account is also taken 
of the posterior uncertainty of .[μ, b]. 

3. Allowing for uncertainty in .(μ, b), write a code that uses the method of 
composition to obtain draws .

(
y∗
v , μ∗, b∗), by sampling repeatedly from 

. 
(
μ∗, b∗) ∼ [μ, b|yt ] ,

y∗
v ∼ [

yv|μ∗, b∗, yt

]
,

from which the validating mean squared error (12.44) is calculated. This 
generates a second MC estimate of the posterior distribution of .MSEv . In contrast 
with 2. above, this provides a complete description of the marginal posterior 
distribution of MSE. Compute the Monte Carlo estimates of the mean and 
variance and compare the mean with the exact result obtained in 2. 

Exercise 6 

The exercise involves estimation of validating mean squared error using training 
data only. This entails obtaining an expression for the expected optimism followed 
by use of expression (6.69). 

Consider the hierarchical linear model: 

.y|b, f, σ 2 ∼ N
(
Xb + Zf, Iσ 2

)
, . (12.45a) 

f |σ 2 
f ∼ N

(
0, Iσ 2 

f

)
. (12.45b)
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Above, y is the vector of observed training data with n elements, X and Z are 
observed incidence matrices of dimension .(n × p), and .

(
n × nf

)
, b is a vector of 

unobserved p elements representing fixed effects and f is a vector of unobserved iid 
random effects with . nf elements. Assume that there are . no records in each of the . nf

random effects, so that the total number of records is .n = nf no. A typical example 
arises when data cluster in full-sib families, where f is a vector of random family 
effects (here, assumed to be unrelated across families) and there are . no offspring per 
family. Given known variance components . σ 2 and . σ 2

f , BLUP of f and BLUE of b 
are obtained solving the linear system: 

.

[
X′X X′Z
Z′X Z′Z + Ik

] [
b̂

f̂

]
=

[
X′y
Z′y

]
, k = σ 2

σ 2
f

. (12.46) 

The vector of predictors (fitted values, linear in y) is  

. ŷ = Wθ̂

where .W = [X Z], .θ̂ ′ =
[
b̂′, f̂ ′

]
and . θ̂ is the solution to the linear system 

. 
[
W ′W + 

]
θ̂ = W ′y

with 

.  =
[
0 0
0 Ik

]
.

The R-code below generates data based on the model, with .nf = 500 full-
sib families, .no = 2 full-sibs per family and .n = nf no = 1000 records. The 
vector of fixed effects b has .p = 2 elements, here mimicking 2 breeds. The variance 
components . σ 2 and . σ 2

f are set equal to 5 and 1 squared units, respectively, leading 
to a heritability equal to . 1/3. 

The code below constructs and solves the mixed model equations: 

#FULL-SIB CONTINUOUS DATA 
rm(list=ls()) # Clear the workspace 
set.seed(123771) 
ptm<-proc.time() 
require(graphics) 
# INITIALISE PARAMETERS 
mus<-10 # MEAN 
vfs<-1 #VARIANCE BETWEEN FULL-SIBS 
#vfs<-0.5 #VARIANCE BETWEEN FULL-SIBS 
#vfs <- 0.1 
# RESIDUAL VARIANCE
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ves<-5 
k <- ves/vfs 
nf<-500 # NUMBER OF FULL-SIB FAMILIES 
n<-2 # FULL-SIB FAMILY SIZE 
nb <- 2 # NUMBER OF BREEDS 
N<-nf*n # TOTAL NUMBER OF RECORDS 
y<-matrix(data=0,nrow=nf*n,ncol=1) 
z<-matrix(data=0,nrow=nf*n,ncol=1) 
# GENERATE nf FULL-SIB EFFECTS fs 
fs<-rnorm(nf,mean=0,sd=sqrt(vfs)) 
# BREED EFFECTS 
br <- rep(0,nb) 
br[1] <- 5 
br[2] <- 8 
# GENERATE nf*n RESIDUAL EFFECTS 
es<-rnorm(nf*n,mean=0,sd=sqrt(ves)) 
################################################ 
## GENERATING A FULL-SIB STRUCTURE 
b <- rep(1:nb,each=N/2) 
z <- rep(1:nf,each=n) 
y <- br[b] + fs[z] + es 
d <- data.frame(y,z) 
################################################ 
d<-data.frame(y,z) 
# GENERATE INCIDENCE MATRICES X & Z 
family <- z 
breed <- b 
family <- as.factor(family) 
breed <- as.factor(breed) 
X<-model.matrix(~0+breed) 
Z<-model.matrix(~0+family) 
W <- cbind(X,Z) 
LHS <- crossprod(W) # LHS OF MME 
LHS[-(1:2),-(1:2)] <- LHS[-(1:2),-(1:2)]+ 

diag(k,nrow=nrow(LHS)-2) 
RHS <- crossprod(W,y) # RHS OF MME 
SOL <- solve(LHS,RHS) # SOLUTION 

1. Derive the analytical form for the expected optimism: 

.
2

n

n∑
i=1

Cov (yi, ŷi ) . (12.47)
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Data are correlated within the training and validating data due to the full-
sib structure. However training and validating data are independent because it is 
assumed that different iid families are assigned to both. Therefore the expression 
for expected optimism given in (6.68) is valid. 

2. Write a computer programme to obtain a Monte Carlo estimate of (12.47) using  
a parametric bootstrap and compare with the exact result obtained in 1.



Chapter 13 
Solution to Exercises 

13.1 Likelihood Exercises I 

Exercise 1 

(a) The probability mass function of the data x is 

.p (x|n, θ) =
(

n

x

)
θx (1 − θ)n−x , x = 0, 1, . . . , n (13.1) 

where

. 

(
n

x

)
= n!

(n − x)!x!

is the binomial coefficient. In (13.1) the random variable is x, for fixed values 
of n and θ . 

(b) The likelihood function is proportional to (13.1) and can be written 

.L (θ |n, x) ∝ θx (1 − θ)n−x , 0 < θ < 1. (13.2) 

which is a function of θ , for fixed values of n and x.

The loglikelihood is obtained by taking the natural logarithm of (13.2): 

.� (θ |n, x) = x ln θ + (n − x) ln (1 − θ) , 0 < θ < 1. (13.3) 

(c) The ML estimator of θ is obtained by maximising (13.3). Taking the first 
derivative of �(θ |n, x) with respect to θ and setting the resulting expression 
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equal to zero yields: 

.
∂� (θ |n, x)

∂θ
= x

θ
− n − x

1 − θ
= 0. (13.4) 

The ML estimator of θ is

.̂θ = x

n
. (13.5) 

With n = 10 and x = 8, the ML estimate is

. ̂θ = 8

10
= 0.8.

(d) First-order asymptotic theory asserts that 

.̂θ ∼ N
(
θ, i (θ)−1

)
, (13.6) 

where Fisher’s expected information is

. i (θ) = −Ex

[
∂2� (θ |n, x)

(∂θ)2

]

= −Exx

[
− x

θ2
− n − x

(1 − θ)2

]

= nθ

θ2
+ n − nθ

(1 − θ)2

= n

θ (1 − θ)
.

The asymptotic variance of the ML estimator is obtained using 

. i
(
θ̂
)−1 = θ̂

(
1 − θ̂
)

n
= 0.016.

The asymptotic 95% confidence interval for θ is 

. Pr
(
0.8 − 1.96 × √

0.016 < θ < 0.8 + 1.96 × √
0.016
)

= 0.95,

equal to 

.Pr (0.55 < θ < 1.05) = 0.95. (13.7)
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In repeated sampling, the random interval (13.7) includes θ with probability 95%. 
The asymptotic confidence interval (13.7) includes values of θ outside its bounds. 

Exercise 2 

(a) The transformation is 

.β = g (θ) = ln

(
θ

1 − θ

)
. (13.8) 

with inverse transformation

.θ = g−1 (β) = exp (β)

1 + exp (β)
. (13.9) 

Under the transformation (13.8), the likelihood is 

. L (θ |n, x) = L
(
g−1 (β) |n, x

)
∝
[

exp (β)

1 + exp (β)

]x (
1 − exp (β)

1 + exp (β)

)n−x

,

=
[

exp (β)

1 + exp (β)

]x [ 1

1 + exp (β)

]n−x

− ∞ < β < ∞. (13.10) 

(b) The result of using the transformed parameter (13.8) translates into a more 
symmetric likelihood function, as displayed in Fig. 13.1. This in turn has 
consequences for the quality of inferences. 

(c) There are two ways of deriving the MLE of β. The simplest is using the 
invariance property of the MLE. The MLE of β is 

.β̂ = ln

(
θ̂

1 − θ̂

)
= ln

0.8

0.2
= 1.386. (13.11) 

0.2 0.4 0.6 0.8 1.0 
q 

Likelihood 

2 0 2 4 6 
b 

Fig. 13.1 Left panel: plot of L (θ |n, x) (13.2). Right panel: plot of L
(
g−1 (β)

)
(13.10)
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The asymptotic variance of β̂ is 

. Var
(
β̂
)

= Var
(
θ̂
) (dg (θ)

dθ

)∣∣∣∣
2

θ=θ̂

= 0.016

⎛
⎝ 1

θ̂
(
1 − θ̂
)
⎞
⎠

2

= 0.625. (13.12) 

A longer calculation requires maximising (13.10) with respect to β. It is easier 
to work with the loglikelihood. A simple calculation shows that the loglikelihood is 

.�
(
g−1 (β) |n, x

)
= xβ − n ln

[
1 + exp (β)

]
. (13.13) 

Then,

. 
∂

∂β
�
(
g−1 (β) |n, x

)
= x − n exp (β)

1 + exp (β)
,

whose root is 

. ̂β = − ln

(
n − x

x

)
= 1.386

as in (13.11). 
To compute the asymptotic variance of β̂, take second derivatives of the 

loglikelihood with respect to β. This gives: 

. 
∂2

(∂β)2
�
(
g−1 (β) |n, x

)
= ∂

∂β

[
x − n exp (β)

1 + exp (β)

]

= − n exp (β)

(1 + exp (β))2
.

Evaluated at β = β̂, taking the reciprocal and multiplying by −1 yields the 
asymptotic variance: 

. Var
(
β̂
) = (1 + exp (β))2

n exp (β)

∣∣∣∣∣
β=β̂

= (1 + exp (1.386))2

10 exp (1.386)
= 0.625

as in (13.12).
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(d) The asymptotic 95% confidence interval (CI) for β is 

. Pr
(
1.386 − 1.96 × √

0.625 < β < 1.386 + 1.96 × √
0.625
)

= 0.95,

equal to 

. Pr (−0.16 < β < 2.94) = 0.95. (13.14) 

(e) Using (13.9), interval (13.14) can be transformed back in terms of θ : 

. Pr
(
g−1 (−0.16) < g−1 (β) < g−1 (2.94)

)

yielding 

. Pr (0.46 < θ < 0.95) . (13.15) 

This interval based on the more regular likelihood function (13.10) is more  
reliable than that obtained with the original likelihood function (13.2). Interval 
(13.15) includes values of θ within the permissible parameter space. 

Note 

There is a (pure) likelihood-based confidence interval. Useful references from two 
advocates of the method are Edwards (1992) and Royall (1997), and a tutorial is 
given by Meeker and Escobar (1995). In this approach to inference, the likelihood 
function is regarded as conveying a complete measure of uncertainty about the 
parameter of interest, without the need to invoke sampling distributions (like in 
inferences based on a posterior distribution). In the present example of the binomial 
model with .x = 8 successes out of .n = 10 trials, the value of the loglikelihood 
(13.3) evaluated at .θ = θ̂ is equal to .−5.004024. In the words of Edwards (1992), 
this is the maximum support, at .θ̂ = 0.8. The pure likelihood approach considers the 
values of . θ which lie within, for example, two units of support of the best supported 
value (the choice of “two” units is arbitrary, like the choice of two units of standard 
deviations of the “best” estimate in conventional analyses). Then the MLE and the 
“confidence interval” that arises from such an exercise in the present example are 
.0.8 (0.494; 0.965), quite close to the value reported in (13.15). 

The R-code below evaluates first, the loglikelihood when the parameter is 
replaced by its MLE. Second, the code executes the function OPTIM twice, with 
judicious choice of the parameter lower and upper, generating the two values 
of . θ that define the lower and upper limits within two units of support of the best 
supported value.
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In multiparameter settings this approach is less transparent, in contrast with 
Bayesian methods that handle multidimensional parameters in a natural way via 
marginalisation. In general, this is a vast subject with considerable statistical and 
philosophical controversy: 

rm(list=ls()) # Clear the workspace 
set.seed(123771) 
n <- 10 
x <- 8 
loglik<-function(n,x,theta) 
{ 

llik <- (x*log(theta)+(n-x)*log(1-theta)) 
} 
LL <- loglik(10,8,0.8) # loglikelihood at ML of theta 
LL 

## [1] -5.004024 

# The value "-7" below, is the (approximate) value of 
# the loglikelihood two units of support from its value 
# at the MLE (which is approx, -5) 
fn <- function(theta){ 
(-7-(8*log(theta)+(10-8)*log(1-theta)))^2 

} 
# EXECUTE OPTIM TWICE, ADJUSTING LOWER AND UPPER LIMITS 
# TO GENERATE THE TWO ROOTS 
lower<-optim(0.4,fn,method="Brent",lower=0.01,upper=0.8)$par 
upper<-optim(0.4,fn,method="Brent",lower=0.8,upper=0.999)$par 
# LOWER BOUND OF CI 
lower 

## [1] 0.4943429 

# UPPER BOUND OF CI 
upper 

## [1] 0.9652074 

As a closing comment, from a Bayesian perspective, (13.3) is the logarithm of 
the beta density .Be(a, b), with .a = x + 1 and .b = n − x + 1. Therefore this “pure 
likelihood” approach in this unidimensional example leads to the same inferences 
about . θ as those drawn from the beta posterior .Be(x + 1, n − x + 1). To illustrate, 
the .95% posterior interval for . θ from .Be(x + 1, n − x + 1) using R is obtained 
executing qbeta(c(0.025,0.975),9,3) that yields .(0.482, 0.940).
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Exercise 3 

(a) First write the model using the more general formulation: 

. y = Xb + e,

where X is a column vector of ones of length n = 10, b is a vector with a single 
element equal to μ and the random vector e ∼ N

(
0, Iσ 2

)
. With this notation 

the likelihood is proportional to 

. L
(
b, σ 2|y

)
∝
(
2πσ 2
)− n

2
exp

[
− 1

2σ 2 (y − Xb)′ (y − Xb)

]
,

and the loglikelihood, up to an additive constant is equal to 

.�
(
b, σ 2|y

)
= −n

2
ln
(
σ 2
)

− 1

2σ 2 (y − Xb)′ (y − Xb) . (13.16) 

(b) Derivation of the ML estimators of b and of σ 2 requires a joint maximisation of 
(13.16) with respect to b and σ 2. The partial derivative with respect to b is 

. 
∂

∂b
�
(
b, σ 2|y

)
= ∂

∂b

[
− 1

2σ 2

(
y′y − 2y′Xb + b′X′Xb

)]

= 1

2σ 2

(
2X′y − 2X′Xb

)

= 1

σ 2

(
X′y − X′Xb

)
.

Setting this equal to zero and solving for b yields the ML estimator: 

.̂b = (X′X
)−1

X′y. (13.17) 

The partial derivative of (13.16) with respect to σ 2 is 

.
∂

∂σ 2 �
(
b, σ 2|y

)
= ∂

∂σ 2

[
−n

2
ln
(
σ 2
)

− 1

2σ 2 (y − Xb)′ (y − Xb)

]

= − n

2σ 2
+ 1

2σ 4 (y − Xb)′ (y − Xb) .
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On setting this equation equal to zero and multiplying out by 2σ 2 yields the MLE 
of σ 2: 

.̂σ 2 =
(
y − Xb̂

)′ (
y − Xb̂

)
n

(13.18) 

where Xb̂ = ŷ is the predicted or fitted value of y.
In the special case of this simple model with the n × 1 matrix X = 1 and b = μ,

the MLE (13.17) is  

. ̂μ = (1′1
)−1 1′y

= 1

10

10∑
i=1

yi = y = 2.733

and (13.18) is  

. ̂σ 2 = (y − 1μ̂)′ (y − 1μ̂)

n

=
∑10

i=1 (yi − μ̂)2

10
= 2.581.

(c) Let θ ′ = (b, σ 2
)
. The observed information is equal to minus the Hessian : 

.I (b, σ 2) = −∂2�
(
b, σ 2|y)

∂θ∂θ ′ . (13.19) 

The Hessian requires 

. 
∂2�
(
b, σ 2|y)

∂b∂b′ ,
∂2�
(
b, σ 2|y)

∂b∂σ 2 ,
∂2�
(
b, σ 2|y)(

∂σ 2
)2 .

These second derivatives are 

.
∂2�
(
b, σ 2|y)

∂b∂b′ =
∂
[

1
σ 2

(
X′y − X′Xb

)]
∂b

= −X′X
σ 2 ,

∂2�
(
b, σ 2|y)

∂b∂σ 2 =
∂
[

1
σ 2

(
X′y − X′Xb

)]
∂σ 2 = −X′ (y − Xb)

σ 2 ,
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∂2�
(
b, σ 2|y)(

∂σ 2
)2 = 

∂
[
− n 

2σ 2 + 1 
2σ 4 (y − Xb)′ (y − Xb)

]
∂σ 2 

= 
n 
2

(
σ 2
)−2 − (y − Xb)′ (y − Xb)

(
σ 2
)−3 

. 

Therefore the observed information matrix is 

. I (b, σ 2) =
⎡
⎣ X′X

σ 2 −X′(y−Xb)

σ 2

− (y−Xb)′X
σ 2 − n

2(σ 2)
2 + (y−Xb)′(y−Xb)

(σ 2)
3

⎤
⎦

=
⎡
⎣ n

σ 2

∑n
i=1(yi−μ)

σ 2∑n
i=1(yi−μ)

σ 2 − n

2(σ 2)
2 +
∑n

i=1(yi−μ)2

(σ 2)
3

⎤
⎦ , (13.20) 

which evaluated at the ML estimates μ̂ = 2.733 and σ̂ 2 = 2.581 is equal to 

. I (μ̂, σ̂ 2) =
[
3.874 0
0 0.7503

]
.

(d) The asymptotic variance of
(
μ̂, σ̂ 2
)
based on (13.19) is  

. Var
(
μ̂, σ̂ 2
)

= I (μ̂, σ̂ 2)−1

=
[
3.874−1 0
0 0.7503−1

]

=
[
0.258 0
0 1.333

]
. (13.21) 

(e) The expected information is 

. i
(
b, σ 2
)

= Ey

[
−∂2�
(
b, σ 2|y)

∂θ∂θ ′

]
,

which requires the expectation of each of the f our  elements of (13.20). These 
are 

.Ey

( n

σ 2

)
= n

σ 2
,

Ey

(∑n
i=1 (yi − μ)

σ 2

)
= 0,
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Ey

(
− n 
2
(
σ 2
)2 +
∑n 

i=1 (yi − μ)2(
σ 2
)3

)
= − n 

2
(
σ 2
)2 + 

nσ 2

(
σ 2
)3 

= n 
2
(
σ 2
)2 . 

Therefore, 

. i
(
μ̂, σ̂ 2
)

=
[

n
σ̂ 2 0
0 n

2(σ̂ 2)
2

]

=
[
3.874 0
0 0.7503

]
,

the same as (13.21). 
(f) The asymptotic variance of

(
μ̂, σ̂ 2
)
based on Fisher’s (expected) information is 

the same as (13.21). The form of the expression is 

.Var
(
μ̂, σ̂ 2
)

=
[

σ̂ 2

n
0

0
2
(
σ̂ 2
)2

n

]
. (13.22) 

(g) The following results are useful: 

(i) If vector x is N (μ, V ), then x′Ax is χ2
(
r (A) , μ′Aμ

)
, a chi-square distribu-

tion with r(A) degrees of freedom and non-centrality parameter μ′Aμ, if  AV is 
idempotent. An idempotent matrix is a matrix which, when multiplied by itself, 
yields itself. If K is idempotent, K2 = K and rank (K) = r (K) = tr (K). 

(ii) Write
∑n 

i=1(yi−μ)2 

σ 2 = 1 
σ 2 (y − 1μ)′ (y − 1μ). Given  y ∼ N

(
1μ, Iσ 2

)
, then 

. E (y − 1μ) = 0; V = Var (y − 1μ) = Iσ 2; A = 1

σ 2
I

and AV = I which is idempotent. It follows that 1 
σ 2 (y − 1μ)′ (y − 1μ) ∼ 

χ2 [n, 0] because r
(

1 
σ 2 I
)

= n. The mean and variance are 

.E

(
1

σ 2 (y − 1μ)′ (y − 1μ)

)
= n

Var

(
1

σ 2 (y − 1μ)′ (y − 1μ)

)
= 2n.
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Given the linear model y = Xb + e, with e ∼ N
(
0, Iσ 2

)
, the  MLE of  b is 

. ̂b = (X′X
)−1

X′y.

and the MLE of σ 2 is 

. ̂σ 2 =
(
y − Xb̂

)′ (
y − Xb̂

)
n

.

Write 

. y − Xb̂ = y − X
(
X′X
)−1

X′y

=
(
I − X

(
X′X
)−1

X′) y.

Therefore, 

. 
(
y − Xb̂

)′ (
y − Xb̂

) = y′ (I − X
(
X′X
)−1

X′) y
= y′Py

where P is idempotent. Then 

. 
1

σ 2

(
y − Xb̂

)′ (
y − Xb̂

) = 1

σ 2 y′Py.

Since V = Var (y) = Iσ 2 and A = 1 
σ 2 P , AV = P , and idempotent matrix . 

Therefore, 

. 
1

σ 2

(
y − Xb̂

)′ (
y − Xb̂

) ∼ χ2
(

r (P ) , b′X′PXb
1

2σ 2

)

= χ2 (n − r (X)) , (13.23) 

and the exact sampling distribution of the MLE of σ 2 is 

.

(
y − Xb̂

)′ (
y − Xb̂

)
n

∼ σ 2

n
χ2 (n − r (X)) , (13.24) 

which is proportional to a chi-square distribution. The second line follows because

PX = 0 and r (P ) = r
(
I − X

(
X′X
)−1

X′
)

= r (I ) − r
(
X
(
X′X
)−1

X′
)

=
n − r (X). In view of (13.24), since X = 1 (a vector of ones whose rank is 1) and 
b = μ, a scalar, the expected value and variance of σ̂ 2 are
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. E

[(
y − Xb̂

)′ (
y − Xb̂

)
n

]
= σ 2

n
(n − 1) ,

Var

[(
y − Xb̂

)′ (
y − Xb̂

)
n

]
=
(

σ 2

n

)2
2 (n − 1) . (13.25) 

Therefore the MLE of σ 2 is biased. The small sample variance of σ̂ 2 using (13.25) 
evaluated at σ 2 = σ̂ 2 is 

. 2

(
σ̂ 2

n

)2
(n − 1) =

(
2.581

10

)2
2 (9) = 1.199,

a little smaller than the asymptotic value 2
(
σ̂ 2
)2/

n reported in (13.22). 

Exercise 4 

The R-code that generates the data is reproduced below: 

rm(list=ls()) # Clear the workspace 
set.seed(772231) 
n <- 5000 # Number of records generated for Y_1 
p <- 0.20 # Proportion to be selected 
m <- round(p*n) # Number of records selected 
y1 <- rnorm(n,mean=10,sd=2) # Generate random variable Y_1 
y1_sort <-sort(y1,decreasing=TRUE) # Sort Y_1 
y1s <- y1_sort[1:m] # The highest m Y_1 records are kept 
#length(y1) # Number of records in Y_1 
#length(y1s) # Number of records in the selected subset of Y_1 
# Generate Y_2 
y2<-rnorm(length(y1s),mean=15+0.6*(y1s-10),sd=sqrt(4-(2.4^2)/4)) 

Let .θ = (μy, μx, σxy, σyy, σxx). If the selection mechanism is (incorrectly) 
ignored and only the m bivariate records are considered, these can be assumed to be 
a realisation from 

. (yi, xi)| θ ∼ N

([
μy

μx

]
,

[
σyy = 4 σyx = 2.4

σyx = 2.4 σxx = 4

])
, (13.26) 

i = 1, 2, . . . , m,

with .μy = 10, .μx = 15. The closed forms of the ML estimators are 

.μ̂x = 1

m

m∑
i=1

xi, μ̂y = 1

m

m∑
i=1

yi, . (13.27a)
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σ̂xx = 
1 

m 

m∑
i=1 

(xi − μ̂x)
2 , σ̂yy = 

1 

m 

m∑
i=1

(
yi − μ̂y

)2 
, . (13.27b)

ρ̂ = σ̂xy√
σ̂xx σ̂yy 

, σ̂xy = 
1 

m 

m∑
i=1

(
yi − μ̂y

)
(xi − μ̂x) . (13.27c) 

(a) The ML estimates based on (13.27) can be computed with the R-code below: 

m <- length(y2) 
n <- length(y1) 
round(mean(y1s),digits=2) 

## [1] 12.8 

round(mean(y2),digits=2) 

## [1] 16.56 

round(mean((y1s-mean(y1s))^2),digits=2) 

## [1] 0.91 

round(mean((y2-mean(y2))^2),digits=2) 

## [1] 2.85 

round((cov(y1s,y2)*(m-1)/m),digits=2) 

## [1] 0.54 

round(cov(y1s,y2)/(sqrt(var(y1s)*var(y2))),digits=2) 

## [1] 0.34 

round(cov(y1s,y2)/var(y1s),digits=2) 

## [1] 0.59
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The ML estimates (13.27) are  

. μ̂x = 12.8,

μ̂y = 16.56,

σ̂xx = 0.91,

σ̂yy = 2.85,

σ̂xy = 0.54,

ρ̂ = 0.34,

b̂yx = 0.59.

With the exception of . b̂yx , these estimates are in very poor agreement with the 
true parameter values defined in (13.26). 

If the individuals that produced a second lactation had been randomly selected, 
this approach using a subset of the data would have performed adequately. The 
topic of inferences under selection is a delicate one; important references are Rubin 
(1976) and Little and Rubin (1987). 

(b) The density function of the complete data under parametrisation . φ =(
μx, σxx, β0, β1, σy.x

)
is 

. p (x, y|φ) =
∏m

i=1
p (xi, yi |φ)

∏n

i=1+m
p (xi |φ)

=
[∏m

i=1
p (yi |xi, φ) p (xi |φ)

] [∏n

i=1+m
p (xi |φ)

]

=
∏n

i=1
p (xi |μx, σxx)

∏m

i=1
p
(
yi |xi, β0 + β1xi, σy.x

)

= (2πσxx)
− n

2 exp

[
−
∑n

i=1 (xi − μx)
2

2σxx

] (
2πσy.x

)− m
2

exp

[
−
∑m

i=1 (yi − β0 − β1xi)
2

2σy.x

]
(13.28) 

where 

.σy.x = σyy −
(
σxy

)2
σxx

, (13.29)
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is the variance of the conditional distribution of Y given X. The likelihood is 
proportional to (13.28) and the loglikelihood is 

. �
(
μx, σxx, β0, β1, σy.x |x, y

) = −n

2
ln σxx −

∑n
i=1 (xi − μx)

2

2σxx

− m

2
ln σy.x

−
∑m

i=1 (yi − β0 − β1xi)
2

2σy.x

. (13.30) 

(c) The first two terms in the right-hand side of (13.30) are the loglikelihood of 
the .N

(
μ, σ 2
)
linear model. The ML estimates of . μ and . σ 2 are given for the 

general case in (13.17) and (13.18), which in this example with .X = 1 (a vector 
of ones) and .b = μx reduce to 

.μ̂x =
∑n

i=1 xi

n
, . (13.31a)

σ̂xx =
∑n 

i=1 (xi − μ̂)2 

n 
. (13.31b) 

To obtain the MLE of . σy.x , . β0 and . β1, differentiate (13.30) with respect to 
. σy.x , . β0 and . β1. After a little simplification, the three equations with the three 
unknowns are 

. − m +
∑m

i=1 (yi − β0 − β1xi)
2

σy.x

= 0,

m∑
i=1

(yi − β0 − β1xi) = 0,

m∑
i=1

xi (yi − β0 − β1xi) = 0.

From the second equation 

.β̂0 = y − β̂1x
∗, (13.32) 

where

.y =
∑m

i=1 yi

m
,

x∗ =
∑m

i=1 xi

m
,
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In these expressions, . x∗ is the mean of the selected first lactation records. From the 
third equation 

.β̂1 =
∑m

i=1 xiyi − mx∗ y∑m
i=1 x2

i − mx∗2 = Sxy

Sxx

. (13.33) 

Finally from the first equation,

.̂σy.x =
∑m

i=1

(
yi − β̂0 − β̂1xi

)2
m

. (13.34) 

Substituting (13.32) and (13.33) in (13.34) leads to the alternative form (see NOTE 
below): 

.m σ̂y.x = Syy − S2
xy

Sxx

(13.35) 

which is more in line with the parameter (13.29), where 

. Syy =
m∑

i=1

(yi − y)2 .

Note 

Substituting (13.32) in (13.34) gives:  

. 

m∑
i=1

(
yi − β̂0 − β̂1xi

)2 =
m∑

i=1

(
yi − (y − β̂1x

∗)− β̂1xi

)2

=
m∑

i=1

(
(yi − y) − β̂1

(
xi − x∗))2

=
m∑

i=1

(yi − y)2 − 2β̂1

m∑
i=1

(yi − y)
(
xi − x∗)+ β̂

2
1

m∑
i=1

(
xi − x∗)2

= Syy − 2β̂1Sxy + β̂
2
1Sxx

= Syy − S2
xy

Sxx

,

where the last line is obtained by replacing .β̂1 = Sxy/Sxx in the 4th line.
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These MLEs of .φ = (μx, σxx, β0, β1, σy.x

)
can be expressed in terms of the 

MLEs of .θ = (μy,μx, σxy, σyy, σxx

)
. First, MLEs of . μx and .σxx are displayed in 

(13.31). The remaining MLEs of the parameters in . φ are obtained as follows. Recall 
that 

. β0 = μy − β1μx = 1,

β1 = σxy

σxx

= 0.6,

σy.x = σyy −
(
σxy

)2
σxx

= 2.56.

Then from the first equation 

. ̂μy = β̂0 + β̂1μ̂x = 14.9.

From the second equation 

. ̂σxy = β̂1σ̂xx = 2.36,

and from the third 

. ̂σyy = σ̂y.x +
(
σ̂xy

)2
σ̂xx

= σ̂y.x + β̂2
1 σ̂xx = 4.25.

The R-code that performs the computations is shown below: 

sxy <- cov(y1s,y2)/var(y1s) 
syy <- sum((y2-mean(y2))^2) 
sxx <- mean((y1-mean(y1))^2) 
beta1hat <- cov(y1s,y2)/var(y1s) 
sigmaxxhat <- mean((y1-mean(y1))^2) 
sigmaxyhat <- beta1hat*sigmaxxhat 
beta0hat <- mean(y2)-beta1hat*mean(y1s) 
muxhat <- mean(y1) 
muyhat <- beta0hat+beta1hat*muxhat 
sigmay.xhat <- (syy-sxy^2/sxx)/length(y2) 
sigmayyhat <- sigmay.xhat +( (sigmaxyhat^2)/sigmaxxhat) 
rhohat <- sigmaxyhat/sqrt(sigmaxxhat*sigmayyhat) 
byxhat <- cov(y1s,y2)/var(y1s) 

and generates the ML estimates: 

.μ̂x = 10,

μ̂y = 14.9,
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σ̂xx = 3.97, 

σ̂yy = 4.25, 

σ̂xy = 2.36, 

ρ̂ = 0.57, 

b̂yx = 0.59. 

These estimates are all in good agreement with the true value of the parameters 
defined in (13.26). 

Exercise 5 

1. Uncensored model: 

(a) The loglikelihood is obtained taking logarithms of (12.11): 

.l (b|y) = n ln b − b

n∑
i=1

yi. (13.36) 

(b) The score is  

.l′ (b|y) = n

b
−

n∑
i=1

yi. (13.37) 

(c) The maximum likelihood estimator is obtained setting the derivative with 
respect to b equal to zero and solving for b. This results in 

.̂b = n∑n
i=1 yi

. (13.38) 

(d) Fisher’s information is computed from 

. l
′′
(b|y) = − n

b2
,

that yields 

. I (b) = −E
[
l
′′
(b|Y )
]

= n

b2
. (13.39)
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2. Censored model: 

(b) From (12.12), the contribution to the loglikelihood from one observation is 

.l (b|yi) = I (yi < c) (ln b − byi) − I (yi = c) bc. (13.40) 

(c) Associated first and second derivatives are 

.l′ (b|yi) = I (yi < c)

(
1

b
− yi

)
− I (yi = c) c (13.41) 

and

.l
′′
(b|yi) = −I (yi < c)

1

b2
. (13.42) 

The score based on all the data is

. 

n∑
i=1

l′ (b|yi) =
n∑

i=1

{
I (yi < c)

(
1

b
− yi

)
− I (yi = c) c

}

= r

b
−

r∑
i=1

yi − (n − r) c. (13.43) 

(d) Setting to zero and solving leads to MLE of b : 

.b̂ = r∑r
i=1 yi + (n − r) c

. (13.44) 

In the absence of censoring, r = n and (13.44) is equal to (13.38). 
a. Information is computed using (13.42): 

. I (b) = −E

{
n∑

i=1

[
l
′′
(b|Yi)
]}

= E

{
n∑

i=1

[
I (Yi < c)

1

b2

]}

=
n∑

i=1

1

b2
Pr (Yi < c)

= n

b2
− n exp (−bc)

b2

= n

b2
Pr (Yi < c) . (13.45)
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In the absence of censoring c = ∞, Pr  (Yi < c) = 1 and (13.45) is equal 
to (13.39). Also, nPr (Yi < c) = E (r) (the number of non-censored records, 
r , is binomially distributed, i.e. r ∼ Bi (n,Pr (Yi < c))). 

Censoring reduces the amount of information in the data to infer b. 

13.2 Likelihood Exercises II 

Exercise 1 

(a) 
(b) Figure 13.2 depicts the relationship between Y (the rough measure of θ ) and X, 

the covariate (average drug level). A linear fit seems like a good approximation. 
Here, Y is an 5 × 1 vector with the averages of the 5 groups of the 0/1 
observations, and X is an 5 × 1 vector with the average drug level of the 5 
groups. The linear fit is based on the model E(Yi |xi) = μ + βxi . 

The least squares estimates of μ and β are 

. β̂ = ˆCov (X, Y )

V̂ar (X)
= 1.07

8.35
= 0.13

μ̂ = X − β̂ Y = 0.47 − β̂ 2.33 = 0.17.

Fig. 13.2 Plot of Y versus 
X—the data collected in five 
groups with six observations 
in each group
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In these expressions, ˆCov (X, Y ) is the sample covariance between the elements of 
vectors X and Y , V̂ar (X) is the sample variance among the f ive  observations in 
X, X is the mean of the f ive  observations in X and Y is the mean of the f ive  
observations in Y . 

According to the linear approximation, the estimated probabilities that future 
individuals will show the disease when exposed to a drug level equal to −3, 1, 9 are 

. ̂μ + β̂ (−3) = −0.22

μ̂ + β̂ 1 = 0.30

μ̂ + β̂ 9 = 1.32.

With the exception of the second, the probabilities do not lie within the interval 
(0, 1). 

c1. Taking logarithms of the likelihood results in the loglikelihood 

. � (μ, β|y, x) =
30∑
i=1

{
yi ln

[
exp (μ + βxi)

1 + exp (μ + βxi)

]

+ (1 − yi) ln

[
1

1 + exp (μ + βxi)

]}

=
30∑
i=1

{yi (μ + βxi) − ln (1 + exp (μ + βxi))} . (13.46) 

c2. The first derivatives of � (μ, β|y, x) with respect to μ and β are 

. 
∂� (μ, β|y, x)

∂μ
=

30∑
i=1

(
yi − exp (μ + βxi)

1 + exp (μ + βxi)

)
,

∂� (μ, β|y, x)

∂β
=

30∑
i=1

(
xiyi − xi exp (μ + βxi)

1 + exp (μ + βxi)

)
.

The second derivatives are 

.
∂2� (μ, β|y, x)

(∂μ)2
= −

30∑
i=1

exp (μ + βxi)

(1 + exp (μ + βxi))
2
,

∂2� (μ, β|y, x)

(∂β)2
= −

30∑
i=1

x2
i exp (μ + βxi)

(1 + exp (μ + βxi))
2
,

∂2� (μ, β|y, x)

∂β∂μ
= −

30∑
i=1

xi exp (μ + βxi)

(1 + exp (μ + βxi))
2 .
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c3. The iterative system based on Newton-Raphson is 

. 

[
μ

β

]
t+1

=
[

μ

β

]
t

+
⎡
⎣
∑30

i=1
exp(μ+βxi)

(1+exp(μ+βxi))
2

∑30
i=1

xi exp(μ+βxi)

(1+exp(μ+βxi))
2∑30

i=1
xi exp(μ+βxi)

(1+exp(μ+βxi))
2

∑30
i=1

x2i exp(μ+βxi)

(1+exp(μ+βxi))
2

⎤
⎦

−1

μ=μt
β=βt⎡

⎣
∑30

i=1

(
yi − exp(μ+βxi)

1+exp(μ+βxi)

)
∑30

i=1

(
xiyi − xi exp(μ+βxi)

1+exp(μ+βxi)

)
⎤
⎦

μ=μt
β=βt

. (13.47) 

The following R-code implements the Newton-Raphson algorithm: 

# CODE1301 
rm(list=ls()) # Clear the workspace 
set.seed(12371) 
# CREATE BINARY DATA 
mu <- -2 
beta <- 0.7 
cov <- rnorm(30,2,3) # GENERATE THE COVARIATE 
xb <- cov*beta 
p1 <- pnorm(mu+xb) # PROBABILITIES ACCORDING TO PROBIT MODEL 
# CREATE DATA: 
dat1 <- cbind(rbinom(30,1,p1),round(cov,digits=0)) 
colnames(dat1) <- c("Y", "X") 
### END OF GENERATION OF DATA 
nit <- 10 # NUMBER OF N-R ITERATIONS 
miu <- matrix(data=NA, nrow=nit+1,ncol=1) 
beta <- matrix(data=NA, nrow=nit+1,ncol=1) 
resultnr <- matrix(data=NA,nrow=nit,ncol=3) 
# START VALUES FOR MIU AND BETA 
miu [1]<- 0.17 
beta[1] <- 0.13 
for (i in 1:nit) 
{ 

vc11 <- - sum(exp(miu[i]+beta[i]*dat1[,2])/((1+exp(miu[i]+ 
beta[i]*dat1[,2]))^2)) 

vc22 <- - sum(dat1[,2]^2*exp(miu[i]+ beta[i]*dat1[,2])/ 
((1+exp(miu[i]+ beta[i]*dat1[,2]))^2)) 

vc12 <- - sum(dat1[,2]*exp(miu[i]+ beta[i]*dat1[,2])/ 
((1+exp(miu[i]+beta[i]*dat1[,2]))^2)) 

vcmat <- matrix(c(vc11,vc12,vc12,vc22),nrow=2,ncol=2) 
vcmatinv <- solve(vcmat) 
fd1 <- sum((dat1[,1]-(exp(miu[i]+ beta[i]*dat1[,2]))/ 

(1+exp(miu[i]+beta[i]*dat1[,2])))) 

fd2 <- sum(((dat1[,1]*dat1[,2])-(dat1[,2]*exp(miu[i]+ 
beta[i]*dat1[,2]))/(1+exp(miu[i]+beta[i]*dat1[,2])))) 

fd <- matrix(c(fd1,fd2),nrow=2,ncol=1) 
sol0 <- matrix(c(miu[i], beta[i]),nrow=2,ncol=1) 
sol1 <- sol0+(-vcmatinv%*%fd) 
miu[i+1] <-sol1[1]
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beta[i+1] <- sol1[2] 
resultnr[i,] <- c(i,sol1[1],sol1[2]) 

} 
resultnr 

## [,1] [,2] [,3] 
## [1,] 1 -1.366182 0.5567651 
## [2,] 2 -2.014602 0.7949203 
## [3,] 3 -2.278267 0.8957553 
## [4,] 4 -2.314792 0.9096833 
## [5,] 5 -2.315397 0.9099107 
## [6,] 6 -2.315397 0.9099107 
## [7,] 7 -2.315397 0.9099107 
## [8,] 8 -2.315397 0.9099107 
## [9,] 9 -2.315397 0.9099107 
## [10,] 10 -2.315397 0.9099107 

# ASYMPTOTIC COVARIANCE MATRIX
-vcmatinv 

## [,1] [,2] 
## [1,] 0.8641485 -0.2427031 
## [2,] -0.2427031 0.1003475 

## COMPUTE PROBABILITIES THAT Y=1, GIVEN X = -3, 1, 9 
p1<-exp(miu[i+1]+beta[i+1]*(-3))/(1+exp(miu[i+1]+ 

beta[i+1]*(-3))) 
p1 

## [1] 0.006399413 

p2<-exp(miu[i+1]+beta[i+1]*1)/(1+ exp(miu[i+1]+beta[i+1]*1)) 
p2 

## [1] 0.196947 

p3<-exp(miu[i+1]+beta[i+1]*9)/(1+ exp(miu[i+1]+beta[i+1]*9)) 
p3 

## [1] 0.9971957 

After a few iterations, the Newton-Raphson method converges to μ̂ = −2.32 and 
β̂ = 0.91 

c4. The asymptotic covariance matrix of the ML estimators is shown above. The 
95% confidence interval for β based on the asymptotic variance is 

.Pr
(
0.91 − 1.96 × √

0.100 < β < 0.91 + 1.96 × √
0.100
)

= 0.95,
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equal to 

. Pr (0.29 < β < 1.53) = 0.95. (13.48) 

c5. The three probabilities (also displayed at the bottom of the code) are

. Pr
(
Y = 1|μ̂, β̂, x = −1

)
= 0.006,

Pr
(
Y = 1|μ̂, β̂, x = 3

)
= 0.20,

Pr
(
Y = 1|μ̂, β̂, x = 9

)
= 0.99,

all within the allowed range (0, 1). 
As a comparison, the following code uses the R function OPTIM to maximise 

the loglikelihood and to obtain asymptotic variances (OPTIM minimises the cost 
function defined as the negative of the loglikelihood). The bottom part of the code 
presents the simplest solution to this problem using the standard R function glm: 

# CODE1301 (cont) 
### USE THE R-FUNCTION OPTIM TO COMPARE WITH THIS PROGRAMME 
dat <- data.frame(dat1) 
logl <- function(data,par) 
{ 

with(data,-sum(Y*(par[1]+par[2]*X)-
log(1+exp(par[1]+par[2]*X)))) 

} 
result<-optim(par=c(-3.5,0.05),logl,data=dat, 

hessian=TRUE,method="BFGS") 
# IF METHOD IS NOT INCLUDED IN THE CALL, OPTIM USES 
# THE NELDER-MEAD ALGORITHM 
# result <- optim(par=c(-3.5,0.05),logl,data=dat,hessian=TRUE, 
# method="BFGS", control=list(trace=1,REPORT=1)) 
# THIS CALL INCLUDES control=list(trace=1,REPORT=1) WHICH 
# PROVIDES THE PROGRESS OF THE ITERATION 
result$par 

## [1] -2.3154794 0.9099291 

solve(result$hessian) 

## [,1] [,2] 
## [1,] 0.8641949 -0.2427165 
## [2,] -0.2427165 0.1003514 

############################################## 
########### USE GLM in R 
d <- data.frame(dat1) 
logreg <- glm(d$Y~d$X, data=d, family=binomial(link="logit")) 
resglm <- summary(logreg) 
pred <- predict(logreg,d,type="response")
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logscore <- sum(d$Y*log(pred)+(1-d$Y)*log(1-pred)) # LogLik of 
# full model evaluated at ML estimates
-2*logscore # DEVIANCE FULL MODEL 

## [1] 22.81623 

resglm$deviance 

## [1] 22.81623 

resglm$coefficients[,1:3] 

## Estimate Std. Error z value 
## (Intercept) -2.3153968 0.9295501 -2.490879 
## d$X 0.9099107 0.3167592 2.872563 

# NULL MODEL 
logregnull <- glm(d$Y~1,data=d,family=binomial(link="logit")) 
resglmnull <- summary(logregnull) 
prednull <- predict(logregnull,d,type="response") 
logscorenull <- sum(d$Y*log(prednull)+(1-d$Y)*log(1-prednull)) 
# LogLik of null model evaluated at ML estimate
-2*logscorenull # DEVIANCE NULL MODEL 

## [1] 41.4554 

resglmnull$deviance 

## [1] 41.4554 

resglmnull$coefficients[1:3] 

## [1] -0.1335314 0.3659621 -0.3648776 

Exercise 2 

The model is paramatrised as 

. Pr (Yi = 1|xi, β) = Pr (ui > 0|xi, β)

= �
(
x′
iβ
)

(13.49) 

and 

. Pr (Yi = 0|xi, β) = 1 − �
(
x′
iβ
)
. (13.50)
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The conditional expectations are 

. E (ui |β, xi, yi = 1) = x′
iβ + φ

(
x′
iβ
)

�
(
x′
iβ
) ,

E (ui |β, xi, yi = 0) = x′
iβ − φ

(
x′
iβ
)

1 − �
(
x′
iβ
) .

The likelihood is 

. L (β|x, y) ∝
∏N

i=1

[(
�
(
x′
iβ
))yi
(
1 − �

(
x′
iβ
))1−yi
]

and the loglikelihood 

. � (β|x, y) =
N∑

i=1

[
yi ln�

(
x′
iβ
)+ (1 − yi) ln

(
1 − �

(
x′
iβ
))]

.

The R-code below implements the EM algorithm using the probit model. The 
result is in good agreement with that obtained with the R function OPTIM shown at 
the bottom: 

# CODE1302 
# LikIIQ2 EM algorithm with probit model 
rm(list=ls()) # Clear the workspace 
set.seed(12371) 
# CREATE BINARY DATA 
mu <- -2 
beta <- 0.7 
cov <- rnorm(30,2,3) # GENERATE THE COVARIATE 
xb <- cov*beta 
p1 <- pnorm(mu+xb) # PROBABILITIES ACCORDING TO PROBIT MODEL 
#p1 <- rbeta(30,2,2) 
dat1 <- cbind(rbinom(30,1,p1),round(cov,digits=0)) # CREATE DATA 
colnames(dat1) <- c("Y", "X") 
d <- data.frame(dat1) 
attach(d) 
m <- cbind(1,X) 
mt <- t(m) 
mtm <- mt%*%m 
miu <- -1 
beta <- 1 
# FUNCTION expu THAT COMPUTES CONDITIONAL EXPECTATIONS 
# HERE WE ASSUME THAT Y=1 IF u>0 
expu <- function(data,par,i) 
{ 

miu <- par[1] 
beta <- par[2] 
if(Y[i]==1) 
{ 
with(data,miu+beta*X[i]+ 

(dnorm(miu+beta*X[i])/pnorm(miu+beta*X[i]))) 
} else
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{ 
with(data,miu+beta*X[i]-

(dnorm(miu+beta*X[i])/(1-pnorm(miu+beta*X[i])))) 
} 

} 
## FUNCTION loglik TO COMPUTE THE LOG-LIKELIHOOD 
loglik <- function(data,par) 
{ 

miu <-par[1] 
beta <- par[2] 
with(data,sum(Y*log(pnorm(miu+beta*X))+ 

(1-Y)*log(1-pnorm(miu+beta*X)))) 
} 
iter <- 100 
euvec <- matrix(data=NA, nrow=30,ncol=1) 
sol <- matrix(data=NA, nrow=iter, ncol=2) 
llik <- matrix(data=NA,nrow=iter,ncol=1) 
result <- matrix(data=NA,nrow=iter,ncol=3) 
# PLACE 30 CONDITIONAL EXPECTATIONS IN euvec AND ITERATE 
for (i in 1:iter) 
{ 

for (j in 1:length(X)) 
{ 

euvec[j] <- expu(d,c(miu,beta),j) 
} 
sol[i,] <- t(solve(mtm)%*%mt%*%euvec) 
miu <- sol[i,1] 
beta <- sol[i,2] 
llik[i] <-loglik(d,c(miu,beta)) 
result[i,] <- c(miu,beta,llik[i]) 

} 
# FINAL ITERATES OF THE EM ALGORITHM 
tail(result) 

## [,1] [,2] [,3] 
## [95,] -1.386253 0.5462922 -11.22912 
## [96,] -1.386253 0.5462921 -11.22912 
## [97,] -1.386253 0.5462921 -11.22912 
## [98,] -1.386253 0.5462920 -11.22912 
## [99,] -1.386253 0.5462920 -11.22912 
## [100,] -1.386253 0.5462919 -11.22912 

########################################################### 
### USE THE R-FUNCTION OPTIM TO COMPARE WITH THIS PROGRAMME 
logl <- function(data,par) 
{ 

miu <- par[1] 
beta <- par[2] 
with(data,-sum(Y*log(pnorm(miu+beta*X))+ 

(1-Y)*log(1-pnorm(miu+beta*X)))) 
} 
result1<-optim(par=c(-1,1),logl,data=d,hessian=TRUE, 

method="BFGS") 
# ML ESTIMATES USING OPTIM 
result1$par 

## [1] -1.386252 0.546292
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Exercise 3 

(i) To implement the Newton-Raphson algorithm, first and second derivatives of 
the loglikelihood are needed. These are 

. 
∂� (β0, β1|n, x)

∂β0
=

30∑
i=1

(
yi − ni exp (β0 + β1xi)

1 + exp (β0 + β1xi)

)
,

∂� (β0, β1|n, x)

∂β
=

30∑
i=1

(
xiyi − nixi exp (β0 + β1xi)

1 + exp (β0 + β1xi)

)
.

and 

. 
∂2� (β0, β1|n, x)

(∂β0)
2 = −

30∑
i=1

ni exp (β0 + β1xi)

(1 + exp (β0 + β1xi))
2 ,

∂2� (β0, β1|n, x)

(∂β)2
= −

30∑
i=1

nix
2
i exp (β0 + β1xi)

(1 + exp (β0 + β1xi))
2 ,

∂2� (β0, β1|n, x)

∂β∂β0
= −

30∑
i=1

nixi exp (β0 + β1xi)

(1 + exp (β0 + β1xi))
2
.

Therefore the iterative system based on Newton-Raphson is 

. 

[
β0

β

]
t+1

=
[

β0

β

]
t

+
⎡
⎣
∑30

i=1
ni exp(β0+β1xi )

(1+exp(β0+β1xi ))
2

∑30
i=1

nixi exp(β0+β1xi )

(1+exp(β0+β1xi ))
2∑30

i=1
nixi exp(β0+β1xi )

(1+exp(β0+β1xi ))
2

∑30
i=1

x2i exp(β0+β1xi )

(1+exp(β0+β1xi ))
2

⎤
⎦

−1

β0=β0t
β=βt⎡

⎣
∑30

i=1

(
yi − ni exp(β0+β1xi )

1+exp(β0+β1xi )

)
∑30

i=1

(
xiyi − nixi exp(β0+β1xi )

1+exp(β0+β1xi )

)
⎤
⎦

β0=β0t
β=βt

. (13.51) 

To obtain start values for the iteration, rough estimates of β0 and β1 can be 
obtained from θi ≈ yi/ni . Then, 

.logit (θi) = ln

(
θi

1 − θi

)
= β0 + β1xi, i = 1, . . . , 4. (13.52) 

and

.logit (yi/ni) = z = β0 + β1xi + ei, i = 1, . . . , 4. (13.53)
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The logits of 0 and 1 are not defined, so for the purpose of this approximation, 
change y1 = 0.5 and y4 = 4.5. Writing (13.53) as  z = Xb + e, the least squares 
estimates are 

. ̂β0 = 0.1; β̂1 = 2.9.

The R-code below fits the likelihood using Newton-Raphson. As before, the 
function OPTIM is included as a check. 

# CODE1303 
## NEWTON-RAPHSON IMPLEMENTATION OF LIKELIHOOD PROBLEM II, 
rm(list=ls()) # Clear the workspace 
set.seed(771133) 
## BINOMIAL DATA SET (Y "successes" out of n=5 "trials") 
dat1 <-
matrix(c(0,-0.86,5,1,-0.3,5,3,-0.05,5,5,0.73,5), 

nrow=4,ncol=3,byrow=T) 
colnames(dat1) <-c("Y","X","n") 
dat1 

## Y X n 
## [1,] 0 -0.86 5 
## [2,] 1 -0.30 5 
## [3,] 3 -0.05 5 
## [4,] 5 0.73 5 

nit <- 10 
miu <- matrix(data=NA, nrow=nit+1,ncol=1) 
beta <- matrix(data=NA, nrow=nit+1,ncol=1) 
resultnr <- matrix(data=NA, nrow=nit,ncol=2) 

miu [1]<- 0.1 
beta[1] <- 2.9 
for (i in 1:nit) 
{ 

vc11 <- - sum(5*exp(miu[i]+beta[i]*dat1[,2])/ 
((1+exp(miu[i]+ beta[i]*dat1[,2]))^2)) 

vc22 <- - sum(5*dat1[,2]^2*exp(miu[i]+ beta[i]*dat1[,2])/ 
((1+exp(miu[i]+ beta[i]*dat1[,2]))^2)) 

vc12 <- - sum(5*dat1[,2]*exp(miu[i]+ beta[i]*dat1[,2])/ 
((1+exp(miu[i]+ beta[i]*dat1[,2]))^2)) 

vcmat <- matrix(c(vc11,vc12,vc12,vc22),nrow=2,ncol=2) 
vcmatinv <- solve(vcmat) 
fd1 <- sum((dat1[,1]-(5*exp(miu[i]+ beta[i]*dat1[,2]))/ 

(1+exp(miu[i]+ beta[i]*dat1[,2])))) 
fd2 <- sum(((dat1[,1]*dat1[,2])-(5*dat1[,2]*exp(miu[i]+ 

beta[i]*dat1[,2]))/(1+exp(miu[i]+ beta[i]*dat1[,2])))) 

fd <- matrix(c(fd1,fd2),nrow=2,ncol=1) 
sol0 <- matrix(c(miu[i], beta[i]),nrow=2,ncol=1) 
sol1 <- sol0+(-vcmatinv%*%fd) 
miu[i+1] <-sol1[1] 
beta[i+1] <- sol1[2] 
resultnr[i,] <- c(miu[i+1],beta[i+1]) 

} 
resultnr
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## [,1] [,2] 
## [1,] 0.3048018 4.425389 
## [2,] 0.5560914 5.914432 
## [3,] 0.7610883 7.169775 
## [4,] 0.8394160 7.696086 
## [5,] 0.8465271 7.748401 
## [6,] 0.8465802 7.748817 
## [7,] 0.8465802 7.748817 
## [8,] 0.8465802 7.748817 
## [9,] 0.8465802 7.748817 
## [10,] 0.8465802 7.748817

-vcmatinv 

## [,1] [,2] 
## [1,] 1.038535 3.545987 
## [2,] 3.545987 23.743865 

### USE THE R-FUNCTION OPTIM TO COMPARE WITH THIS PROGRAMME 
dat <- data.frame(dat1) 
logl <- function(data,par) 
{ 

with(data,-sum(Y*(par[1]+par[2]*X)-
5*log(1+exp(par[1]+par[2]*X)))) 

} 
result <- optim(par=c(0.1,2.9),logl,data=dat, 

hessian=TRUE,method="BFGS") 
# IF METHOD NOT INCLUDED, OPTIM USES NELDER-MEAD ALGORITHM 
# THIS CALL INCLUDES control=list(trace=1,REPORT=1): 
# PROVIDES THE PROGRESS OF THE ITERATION 
result$par 

## [1] 0.8468243 7.7496258 

solve(result$hessian) 

## [,1] [,2] 
## [1,] 1.038684 3.546793 
## [2,] 3.546793 23.748757 

(ii) The EM algorithm is constructed assuming the probit model : 

. Pr (Yi = 1|xi, β) = Pr (ui > 0|xi, β)

= Pr
(
x′
iβ + ei > 0|xi, β

)
= Pr
(
ei > −x′

iβ|xi, β
)

= �
(
x′
iβ
)
,

. Pr (Yi = 0|xi, β) = 1 − �
(
x′
iβ
)
,
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where ei ∼ N (0, 1) and �(z) is the cdf of the standard normal distribution 
evaluated at z. The binomial likelihood is proportional to 

. L (β|n,N, x) ∝
∏C

i=1

[
�
(
x′
iβ
)]ni
[
1 − �

(
x′
iβ
)]Ni−ni

and the loglikelihood is 

. � (β|n,N, x) =
C∑

i=1

ni ln�
(
x′
iβ
)+ (Ni − ni) ln

(
1 − �

(
x′
iβ
))

where C is the number of levels of the covariate (in the example, C = 4). 
After 950 iterations the system converges to β̂0 = 0.484 and β̂1 = 4.459. At this 

point the loglikelihood is equal to −5.869818. The R-code below fits the likelihood 
using the EM algorithm based on the iterative system (3.93) on page 116. The  R-
function OPTIM is included as a comparison. It provides the same estimates and, in 
addition, an estimate of the asymptotic covariance matrix. This is 

. Var
(
β̂0, β̂1
) =
[
0.434 1.575
1.575 9.733

]
.

Based on Var
(
β̂0, β̂1
)
, the 95% confidence intervals for β0 and β1 are 

. Pr (−0.807 < β0 < 1.775) = 0.95,

Pr (−1.655 < β0 < 10.574) = 0.95,

reflecting large uncertainty in the inference. 

# CODE1304 
## EM PROBIT MODEL; LIKELIHOOD PROBLEMS II, QUESTION 3ii 
rm(list=ls()) # Clear the workspace 
set.seed(12371) 
### BINOMIAL DATA (Y successes out of n=5 trials) 
dat1 <-
matrix(c(0,-0.86,5,1,-0.3,5,3,-0.05,5,5,0.73,5), 

nrow=4,ncol=3,byrow=T) 
colnames(dat1) <-c("n","X","N") 
dat1 

## n X N 
## [1,] 0 -0.86 5 
## [2,] 1 -0.30 5 
## [3,] 3 -0.05 5 
## [4,] 5 0.73 5
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nit <- 1000 
miu <- 0.1 
beta <- 2.9 
dat <- data.frame(dat1) 
col1 <- matrix(rep(1:1,length(dat1[,1])), 

nrow=length(dat1[,1]),ncol=1) 
m <- matrix(c(col1,dat1[,2]),nrow=length(dat1[,1]),ncol=2) 
mt <- t(m) 
dN <- diag(dat$N) 
dn <- diag(dat$n) 
dd <- dN-dn 
## FUNCTION loglik TO COMPUTE THE LOG-LIKELIHOOD 
loglik <- function(data,par) 
{ 

miu <-par[1] 
beta <- par[2] 
with(data, sum(n*log(pnorm(miu+beta*X))+ 

(N-n)*log(1-pnorm(miu+beta*X)))) 
} 
# CONSTRUCT FUNCTIONS expu0 and expu1 THAT COMPUTE 
# CONDITIONAL EXPECTATIONS 
# ASSUME: Y=1 IF u>0; THEREFORE Pr[Y=1]=F (CDF of std. normal) 
expu1 <- function(data,par,i) 
{ 

miu <- par[1] 
beta <- par[2] 
with(data,(miu+beta*X[i]+ 

dnorm(miu+beta*X[i])/pnorm(miu+beta*X[i]))) 
} 
expu0 <- function(data,par,i) 
{ 

miu <- par[1] 
beta <- par[2] 
with(data,(miu+beta*X[i]-

dnorm(miu+beta*X[i])/(1-pnorm(miu+beta*X[i])))) 
} 
sol <- matrix(data=NA, nrow=nit, ncol=2) 
e1 <- matrix(data=NA,nrow=length(dat1[,1]),ncol=1) 
e0 <- matrix(data=NA,nrow=length(dat1[,1]),ncol=1) 
llik <- matrix(data=NA,nrow=nit,ncol=1) 
result <- matrix(data=NA,nrow=nit,ncol=3) 
for (i in 1:nit) 
{ 

for (j in 1:length(dat1[,1])) 
{ 

e1[j] <- expu1(data=dat,c(miu,beta),j) 
e0[j] <- expu0(data=dat,c(miu,beta),j) 

} 
sol[i,] <- t(solve(mt%*%dN%*%m)%*%(mt%*%dn%*%e1+mt%*%dd%*%e0)) 
miu <- sol[i,1] 
beta <- sol[i,2] 
llik[i] <-loglik(dat,c(miu,beta)) 
result[i,] <- c(miu,beta,llik[i]) 

} 
tail(result) 

## [,1] [,2] [,3] 
## [995,] 0.4839674 4.45866 -5.869818 
## [996,] 0.4839674 4.45866 -5.869818
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## [997,] 0.4839674 4.45866 -5.869818 
## [998,] 0.4839674 4.45866 -5.869818 
## [999,] 0.4839674 4.45866 -5.869818 
## [1000,] 0.4839674 4.45866 -5.869818 

### USE THE R-FUNCTION OPTIM TO COMPARE WITH THIS PROGRAMME 
logl <- function(data,par) 
{ 

miu <- par[1] 
beta <- par[2] 
with(data,-sum(n*log(pnorm(miu+beta*X))+ 

(N-n)*log(1-pnorm(miu+beta*X)))) 
} 
result1 <- optim(par=c(0.1,2.9),logl,data=dat, 

hessian=TRUE,method= "BFGS") 
result2 <- optim(par=c(0.1,2.9),logl,data=dat, 

hessian=TRUE) 
result1$par 

## [1] 0.4839727 4.4587022 

solve(result1$hessian) 

## [,1] [,2] 
## [1,] 0.4343711 1.575394 
## [2,] 1.5753937 9.732975 

Figure 13.3 displays the trajectory of the EM iterates for μ. The corresponding 
plot for β shows a similar pattern. 
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Fig. 13.3 Trajectory of the EM iterates for μ
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(ii) Data (number of deaths) are assumed to be binomially distributed. This 
requires that the binary observations contributing to the number of deaths are 
independent. This will not be the case if the data consist of related individuals: 
in the presence of genetic variation or of effects of common environment 
records of relatives are correlated. 

When observations within a class consist of full-sibs, the liability for a given 
individual (assume the probit model for the example) can be written 

.uij = x′
iβ + fi + eij , . . . j = 1, . . . , Ni (13.54) 

where now fi is the effect of the ith full-sib family common to the Ni records that

belong to covariate level i and eij
iid∼ N (0, 1). Assume that fi

iid∼ N
(
0, σ 2

f

)
, where

σ 2
f is the covariance between full-sibs. Then,

. Cov
(
uij , uik

) = σ 2
f .

Conditioning on fi , [ui |xi, β, fi] 
iid∼ N
(
x′
iβ + fi, 1

)
and 

. Pr
(
Yij = 1, Yik = 1|xi, β, fi

) = Pr
(
uij > 0, uik > 0|xi, β, fi

)
= Pr
(
uij > 0|xi, β, fi

)
Pr (uik > 0|xi, β, fi)

= Pr
(
Yij = 1|xi, β, fi

)
Pr (Yik = 1|xi, β, fi) .

In view of the conditional independence of Yij , given  fi , the sum of independent 

binary random variables ni = ∑Ni 
j=1 Yij is binomial. In the probit model, the 

probability that Yij = 1 is  

. Pr
(
Yij = 1|xi, β, fi

) = Pr (ui > 0|xi, β, fi)

= Pr
(
x′
iβ + fi + eij > 0|xi, β, fi

)
= Pr
(
eij > −x′

iβ − fi |xi, β, fi

)
= �
(
x′
iβ + fi

)

and 

. Pr
(
Yij = 0|xi, β, fi

) = 1 − �
(
x′
iβ + fi

)
.

The conditional distribution of the data n = {ni}C 
i=1 given vector f = {fi}C 

i=1 is 
binomial and takes the form: 

.Pr (n|xi, β, f ) =
∏C

i=1

[
�
(
x′
iβ + fi

)]ni
[
1 − �

(
x′
iβ + fi

)]Ni−ni
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and the marginal distribution of the data is obtained averaging over the distribution[
f |σ 2 

f

]

. Pr (n|xi, β) =
∫ ∏C

i=1

[
�
(
x′
iβ + fi

)]ni
[
1 − �

(
x′
iβ + fi

)]Ni−ni p
(
f |σ 2

f

)
df

=
∏C

i=1

∫ [
�
(
x′
iβ + fi

)]ni
[
1 − �

(
x′
iβ + fi

)]Ni−ni p
(
fi |σ 2

f

)
dfi (13.55) 

where the equality in the second line holds if the full-sib families are independent.
The likelihood is proportional to (13.55) whose construction requires the solution of 
univariate integrals. In such univariate cases, numerical methods such as Gaussian 
quadrature work well, and the problem does not pose a computational obstacle. A 
benchmark paper pre McMC is Anderson and Aitkin (1985). 

Exercise 4 

The first R-code below generates genomic data (assumes genomic variance is 10 
and residual variance is 15): 

# CODE1305 
# LIKELIHOOD PROBLEMS II QUESTION 4 
# DATA BASED ON GENOMIC MODEL AND OBTAIN THE SVD OF WW’(1/m) 
rm(list=ls()) # CLEAR WORKSPACE 
set.seed(1327) 
nindiv<-2000 
nmark<-20000 
nt<-nindiv*nmark 
X<-matrix(nrow= nindiv,ncol= nmark,rbinom(n=nt,size=2,p=.5)) 
stdev <- matrix(data=NA,nrow= nmark,ncol=1) 
W <- matrix(data=NA,nrow= nindiv,ncol=nmark) 
U <- matrix(data=NA,nrow= nindiv,ncol= nindiv) 
G<-matrix(data=NA,nrow= nindiv,ncol= nindiv) 
cm <- colMeans(X) 
# CREATE MATRIX OF STANDARDISED MARKER GENOTYPE CODES 
for (i in 1:nmark) 
{ 

W[,i] <-( X[,i]-cm[i]) / sd(X[,i]) 
} 
# COULD USE INSTEAD: 
# W <- scale(X) 
#qr(X)$rank 
#qr(W)$rank 
#nmark MARKER VALUES: REALISATIONS FROM N(0,I sqrt(0.001)) 
g <- (1/sqrt(nmark))*W%*%rnorm(nmark,mean=0,sd=sqrt(10)) 
# GENERATE nindiv PHENOTYPES WITH MEAN 0, VAR=10+15, 
# GENOMIC HERITABILITY=10/(10+15)=0.4 
#PARAMETER k = Vg/Ve = 10/15 =0.67 
y <- g+rnorm(nindiv,mean=0,sd=sqrt(15)) 
# GENOMIC RELATIONSHIP MATRIX G 
G <- (1/nmark)*W%*%t(W)
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# SVD OF G 
EVD <- eigen(G) 
names(EVD) 

## [1] "values" "vectors" 

head(EVD$values) 

## [1] 1.731427 1.724233 1.722874 1.715446 1.710233 1.707764 

U <- EVD$vector 
val <- EVD$values 
val[length(y)] <-0 
D <- diag(val,nrow=nindiv) 
ytilde <- t(U)%*%y 
dim(ytilde) 

## [1] 2000 1 

#END OF GENERATION OF DATA 

(i) The R-code below performs the Newton-Raphson computations and the top 
part includes a call to OPTIM as a check: 

############################################################### 
# CODE1305(cont) 
# FUNCTIONS loglik AND logliktransf TO COMPUTE LOG-LIKELIHOODS 
loglik <- function(data,par) 
{ 

ve <- par[1] 
k <- par[2] 
ll <- -0.5*(length(ytilde)*log(ve)+sum(log(val*k+1))+ 

(1/ve)*sum(ytilde^2/(val*k+1))) 
return(-ll) 

} 
# FUNCTION logliktransf TO COMPUTE TRANSFORMED LOG-LIKELIHOOD 
logliktransf <- function(data,par) 
{ 
nue <- par[1] 
nug <- par[2] 
lltransf<--0.5*(length(ytilde)*nue+sum(log(val*exp(nug-nue)+1))+ 

(1/exp(nue))*sum(ytilde^2/(val*exp(nug-nue)+1))) 

return(-lltransf) 
} 
############################################################## 
# FUNCTION OTPIM TO COMPARE WITH RESULTS TO COME 
result1 <-optim(par=c(5,0.5),loglik,data =ytilde,hessian=TRUE) 
result1$par 

## [1] 18.2720286 0.2991165
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# OBTAIN ASYMPTOTIC VARIANCES BY INVERSION OF THE -HESSIAN 
solve(result1$hessian) 

## [,1] [,2] 
## [1,] 5.6228947 -0.38289962 
## [2,] -0.3828996 0.02772035 

# USE OPTIM TO MAXIMIZE TRANSFORMED LOG-LIKELIHOOD 
result2 <-
optim(par=c(exp(5),exp(0.5)),logliktransf, 

data=ytilde,hessian=TRUE) 
result2$par 

## [1] 2.901324 1.714862 

solve(result2$hessian) 

## [,1] [,2] 
## [1,] 0.01619379 -0.04998708 
## [2,] -0.04998708 0.17211488 

############################################################ 
# NEWTON-RAPHSON COMPUTATIONS 
nit <- 20 
resultnr<-matrix(data=NA,nrow=nit,ncol=3) 
llike<-matrix(data=NA,nrow=nit,ncol=1) 
ve <- matrix(data=NA, nrow=nit+1,ncol=1) 
k <- matrix(data=NA, nrow=nit+1,ncol=1) 
ve[1] <- 7 
k[1] <- 0.4 
llike[1] <- -loglik(ytilde,c(ve[1],k[1])) 
for (i in 1:nit) 
{ 

vc11 <- - 0.5*((2/ve[i]^3)*sum(ytilde^2/(1+k[i]*val))-
length(ytilde)/ve[i]^2) 

vc12 <- -0.5*(1/ve[i]^2)*sum(val*ytilde^2/(1+k[i]*val)^2) 
vc22 <- -0.5*((1/ve[i])*sum(2*val^2*ytilde^2/(1+k[i]*val)^3)-

sum(val^2/(1+k[i]*val)^2)) 
vcmat <- matrix(c(vc11,vc12,vc12,vc22),nrow=2,ncol=2) 
vcmatinv <- solve(vcmat) 
fd1 <- -0.5*((length(ytilde)/ve[i])-

(1/ve[i]^2)*sum(ytilde^2/(1+k[i]*val))) 
fd2<--0.5*(sum(val/(1+k[i]*val))-

(1/ve[i])*sum(val*ytilde^2/((1+k[i]*val)^2))) 
fd <- matrix(c(fd1,fd2),nrow=2,ncol=1) 
sol0 <- matrix(c(ve[i],k[i]),nrow=2,ncol=1) 
sol1 <- sol0 - (vcmatinv%*%fd) 
ve[i+1] <- sol1[1] 
k[i+1] <- sol1[2] 
llike[i+1] <- loglik(ytilde,c(ve[i+1],k[i+1])) 
resultnr[i,] <- c(sol1[1],sol1[2],llike[i]) 

} 
#PRINT RESULTS 
tail(resultnr)
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## [,1] [,2] [,3] 
## [15,] 18.2763 0.2986934 4164.218 
## [16,] 18.2763 0.2986934 4164.218 
## [17,] 18.2763 0.2986934 4164.218 
## [18,] 18.2763 0.2986934 4164.218 
## [19,] 18.2763 0.2986934 4164.218 
## [20,] 18.2763 0.2986934 4164.218

-vcmatinv 

## [,1] [,2] 
## [1,] 5.6031133 -0.38126712 
## [2,] -0.3812671 0.02758818 

(i) After 8-10 iterations the Newton-Raphson algorithm converges to . ̂σ 2
e = 18.28

and .̂k = 0.30. The asymptotic variance-covariance matrix is 

. Var
(
σ̂ 2

e , k̂
)

=
[

5.603 −0.381
−0.381 0.028

]
.

(ii) The values obtained using OPTIM are .̂σ 2
e = 18.27 and .̂k = 0.30 with 

asymptotic variances: 

. Var
(
σ̂ 2

e , k̂
)

=
[

5.622 −0.383
−0.383 0.028

]
.

(iii) 

The ML estimate of .σ 2
g = kσ 2

e is .̂kσ̂ 2
e = 5.48. The asymptotic variance is 

.Var
(
g
(
θ̂
)) = ∂λ

∂θ ′

∣∣∣∣
θ=θ̂

Var
(
θ̂
) ∂λ′

∂θ

∣∣∣∣
θ=θ̂

. (13.56) 

In this expression, the original parameters are .θ ′ = (σ 2
e , k) and we are interested in 

. λ = g (θ) =
(
σ 2

e , kσ 2
e

)′
,

where .kσ 2
e = σ 2

g . Now,  

.
∂λ

∂θ ′ =
⎡
⎣

∂σ 2
e

∂σ 2
e

∂σ 2
e

∂k

∂kσ 2
e

∂σ 2
e

∂kσ 2
e

∂k

⎤
⎦ =
[
1 0
k σ 2

e

]
.
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Therefore (13.56) is  

. Var
(
σ̂ 2

e , k̂σ̂ 2
e

)
=
[

1 0
0.30 18.28

] [
5.603 −0.381

−0.381 0.028

] [
1 0.30
0 18.28

]

=
[

5.603 −5.266
−5.266 5.693

]

and .Var
(
σ̂ 2

g

)
= 5.693. 

(iv) The R-code below performs the EM computations based on the iterative 
system (3.140): 

# CODE1305 (cont) 
# EM COMPUTATIONS 
emiter<-1000 
vgem<-5 
veem<-10 
kem<-vgem/veem 
resultem<-matrix(data=NA,nrow=emiter,ncol=4) 
for (i in 1:emiter) 
{ 
expalfa<-kem*(val/(val*kem+1))*ytilde 
tol<-0.00001 
trdiv<-vgem*sum(1/(val[val>tol]*kem+1)) 
trv<- vgem*sum(val/(val*kem+1)) 
vgem<-((kem^2)*sum(ytilde^2*val/(val*kem+1)^2)+trdiv)/(nindiv-1) 
veem<-(sum(y^2)-2*sum(expalfa*ytilde)+sum(expalfa^2)+trv)/nindiv 
kem<-vgem/veem 
loglike<-loglik(ytilde,c(veem,kem)) 
resultem[i,]<-c(vgem,veem,kem,-loglike) 
} 
tail(resultem) 

## [,1] [,2] [,3] [,4] 
## [995,] 5.464388 18.27113 0.2990722 -4164.218 
## [996,] 5.464361 18.27116 0.2990703 -4164.218 
## [997,] 5.464335 18.27118 0.2990684 -4164.218 
## [998,] 5.464308 18.27121 0.2990666 -4164.218 
## [999,] 5.464282 18.27124 0.2990647 -4164.218 
## [1000,] 5.464256 18.27126 0.2990629 -4164.218 

After approximately 950 iterations, the EM algorithm converges to the same 
estimates obtained using Newton-Raphson (to 2 decimal places). These are . σ̂ 2

g =
5.46, .̂σ 2

e = 18.27 and .k̂ = 0.30.
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13.3 Bayes Exercises I 

Exercise 1 

Start by reading in the data: 

y <- c(45.83,50.37,50.06,51.59,48.43,52.75,42.92,48.57, 
46.18,50.20) 

ybar <- mean(y) 
ssq <- var(y) 

The sample mean . ȳ and the sample variance .S2 =
n∑

i=1
(yi−y)2

n−1 are 48.69 and 8.859, 
respectively, with sample size .n = 10: 

(i) Derivation of the density of .[μ|y] requires integration of (12.25) with respect to 
. σ 2. Using  

. 

n∑
i=1

(yi − μ)2 = (n − 1) S2 + n (y − μ)2 ,

where 

. S2 =

n∑
i=1

(yi − y)2

n − 1
,

leads to 

. p
(
μ, σ 2|y

)
∝
(
σ 2
)−( n

2+1)
exp

(
− 1

2σ 2

[
(n − 1) S2 + n (y − μ)2

])
.

(13.57) 

Let .α = n/2. Then 

. p (μ|y) =
∫ ∞

0
K
(
σ 2
)−α−1

exp

(
− 1

2σ 2

[
(n − 1) S2 + n (y − μ)2

])
dσ 2,

(13.58) 

where K is a constant of integration. Let

.A = (n − 1) S2 + n (y − μ)2 ,

x = A

2σ 2 ,

dσ 2 = −A

2
x−2dx.
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Substituting in (13.58) 

. p (μ|y) = −A

2

∫ ∞

0
K

(
A

2x

)−α−1

exp (−x) x−2dx

= −
(

A

2

)(
A

2

)−α−1 ∫ ∞

0
K

(
1

x

)−α−1

exp (−x) x−2dx

∝ A−α

∫ ∞

0
xα−1 exp (−x) dx

∝ A−α

where the last line results from the fact that the integral, known as the Gamma 
function is 

. 

∫ ∞

0
xα−1 exp (−x) dx = Γ (α) , α > 0,

a constant with respect to . μ. Then, 

. p (μ|y) ∝
(
(n − 1) S2 + n (y − μ)2

)− n
2

=
(
(n − 1) S2 + n (y − μ)2

)−( v+1
2

)
,

where .v = n − 1. Finally, 

.p (μ|y) ∝
(
1 + n (y − μ)2

vS2

)−
(

v+1
2

)

, (13.59) 

that is the kernel of the density of a . t−distribution with .v = n − 1 degrees of 
freedom, mean . y and scale .S2/n; that is 

. [μ|y] ∼ t

(
n − 1, y,

S2

n

)
. (13.60) 

The mean and variance are

.E (μ|y) = y,

Var (μ|y) = S2

n

n − 1

n − 3
.
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Derivation of the density of .
[
σ 2|y] requires the following integration of (12.25) 

with respect to . μ: 

. p
(
σ 2|y
)
∝
∫ ∞

−∞

(
σ 2
)−( n

2+1)
exp

(
− 1

2σ 2

[
(n − 1) S2 + n (y − μ)2

])
dμ

=
(
σ 2
)−( n

2+1)
exp

(
− 1

2σ 2 (n − 1) S2
)∫ ∞

−∞

× exp

(
− 1

2σ 2
n (y − μ)2

)
dμ

=
(
σ 2
)−( n

2+1)
exp

(
− 1

2σ 2 (n − 1) S2
)(

2π
σ 2

n

) 1
2

∝
(
σ 2
)−( n

2+1) (
σ 2
) 1

2
exp

(
− 1

2σ 2 (n − 1) S2
)

=
(
σ 2
)−( n−1

2 +1
)
exp

(
− 1

2σ 2 (n − 1) S2
)

, (13.61) 

which is the kernel of the density of a scaled inverted chi-square distribution with 
.(n − 1) degrees of freedom and scale . S2. Therefore, 

.

[
σ 2|y
]

∼ χ−2
(
n − 1, S2

)
. (13.62) 

(ii) The expected value and variance of the . t−distribution (13.60) are  given by  

. E (μ|y) = y = 48.69,

Var (μ|y) = n − 1

n − 3

S2

n
= 9

7

8.859

10
= 1.139.

The modal value is equal to the mean. 

The mean, variance and mode of the scale inverted chi-square distribution (13.62) 
are 

.E
(
σ 2|y
)

= n − 1

n − 3
S2 = 11.39,

Var
(
σ 2|y
)

= 2(n − 1)2

(n − 3)2 (n − 5)
S4 = 162

49 × 5
8.862 = 51.91,

argmax
[
σ 2|y
]

= n − 1

n + 1
S2 = 9

11
8.86 = 7.25.
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(iii) To compute confidence intervals for the . t−distribution, it is easiest to trans-
form . μ to the standard . t−distribution as follows. 

Let 

. t = f (μ) = μ − y

S
/√

n
;

μ = f −1 (t) = S√
n
t + y;

df −1 (t)

t
= S
/√

n ; not a function of t;

⇒ p (t) ∝
⎛
⎜⎝1 +

n
(
y − S√

n
t − y
)2

vS2

⎞
⎟⎠

−
(

v+1
2

)

=
(
1 + t2

v

)−
(

v+1
2

)

which is the kernel of the density of a standard . t−distribution .t (v), with .v = n− 1. 
Then using the R-function qt(c(.025, .975), df=9), the higher and lower 
bounds are 

. h = 2.262157,

� = −2.262157

which in the original scale (obtained as .
(
h × S√

n

)
+ y and .

(
� × S√

n

)
+ y) results 

in the .95% posterior interval 

. Pr (46.56 < μ < 50.82|y) = 0.95. (13.63) 

To compute the .95% posterior interval of . σ 2, it seems easy to use the function 
igamma in R. First recall that the relationship between the scaled inverse chi-square 
and the inverse gamma distributions is 

. χ−2
(
v, S2
)

= IG

(
v

2
,
vS2

2

)
.

Therefore in terms of (13.62) requires working with 

.IG

(
n − 1

2
,
(n − 1) S2

2

)
.
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The R function qigamma is part of the pscl package that must be downloaded 
and installed. The R-code below does this and computes the .95% posterior interval: 

#install.packages("pscl", .libPaths()[1]) 
library(pscl) 
a <- (length(y)-1)/2 
b <- (length(y)-1)*var(y)/2 
qigamma(c(0.025,0.975),a,b) 

## [1] 4.191167 29.524482 

The .95% posterior interval is 

.Pr
(
4.19 < σ 2 < 29.52|y

)
= 0.95. (13.64) 

(iv) According to (first order) asymptotic theory, the posterior distribution of 
.[μ, σ 2|y] is 

. 

[
μ, σ 2|y

]
∼ N

⎛
⎜⎜⎝
[

μ̂

σ̂ 2

]
,−

⎡
⎢⎢⎣

(
∂2p
(
μ,σ 2|y)

(∂μ)2

) (
∂2p
(
μ,σ 2|y)

∂μ∂σ 2

)
(

∂2p
(
μ,σ 2|y)

∂μ∂σ 2

) (
∂2p
(
μ,σ 2|y)

(∂σ 2)
2

)
⎤
⎥⎥⎦

−1⎞
⎟⎟⎠ ,

(13.65) 

where . μ̂ and . σ̂ 2 are the mode of .
[
μ, σ 2|y]. 

The density of the joint posterior distribution was given in (13.57): 

. p
(
μ, σ 2|y

)
∝
(
σ 2
)−( n

2+1)
exp

(
− 1

2σ 2

[
(n − 1) S2 + n (y − μ)2

])
,

and the logposterior density, up to an additive constant, is 

. lnp
(
μ, σ 2|y

)
= −
(n
2

+ 1
)
ln σ 2− 1

2σ 2

[
(n − 1) S2 + n (y − μ)2

]
. (13.66) 

First derivatives are

.
∂ lnp
(
μ, σ 2|y)
∂μ

= n (y − μ)

σ 2 ,

∂ lnp
(
μ, σ 2|y)

∂σ 2 = −n + 2

2σ 2 + (n − 1) S2 + n (y − μ)2

2σ 4 .
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Setting these equations equal to zero and solving for . μ and . σ 2 gives: 

.

[
μ̂

σ̂ 2

]
=
[

y
n−1
n+2S

2

]
=
[

y∑
(yi−y)2

n+2

]
. (13.67) 

Second derivatives are

. 
∂2p
(
μ, σ 2|y)

(∂μ)2
= − n

σ 2
,

∂2p
(
μ, σ 2|y)(

∂σ 2
)2 = n + 2

2σ 4
− (n − 1) S2 + n (y − μ)2

σ 6
,

∂2p
(
μ, σ 2|y)

∂μ∂σ 2
= −n (y − μ)

σ 4
.

Evaluated at the mode, these second derivatives are (and substituting . (n − 1) S2 =
(n + 2) σ̂ 2) 

. 
∂2p
(
μ, σ 2|y)

(∂μ)2

∣∣∣∣∣
μ=μ̂,σ 2=σ̂ 2

= − n

σ̂ 2 ,

∂2p
(
μ, σ 2|y)(

∂σ 2
)2
∣∣∣∣∣
μ=μ̂,σ 2=σ̂ 2

= n + 2

2σ̂ 4 − n + 2

σ̂ 4 = −n + 2

2σ̂ 4 ,

∂2p
(
μ, σ 2|y)

∂μ∂σ 2

∣∣∣∣∣
μ=μ̂,σ 2=σ̂ 2

= 0.

Therefore the asymptotic approximation to .
[
μ, σ 2|y] is 

.

[
μ, σ 2|y

]
∼ N

([
y∑

(yi−y)2

n+2

]
,

[
σ̂ 2

n
0

0 2σ̂ 4

n+2

])
(13.68) 

Another approximation based on the likelihood function is

. [θ |y] ∼ N

(
θ̂ , I (θ)−1

∣∣∣
θ=θ̂

)
(13.69)



620 13 Solution to Exercises

where . ̂θ is the ML estimator and .I (θ) is the observed information. I derive this 
approximation and compare it to (13.68). Ignoring the prior, write 

. p
(
μ, σ 2|y

)
∝ p
(
y|μ, σ 2

)

∝ exp

⎡
⎢⎢⎣−

n∑
i=1

(yi − μ)2

2σ 2

⎤
⎥⎥⎦
(
σ 2
)−( n

2 )

= exp

[
− (n − 1) S2 + n (y − μ)2

2σ 2

](
σ 2
)−( n

2 )
,

and the logposterior is 

. lnp
(
μ, σ 2|y

)
= −
(n
2

)
ln σ 2 − 1

2σ 2

[
(n − 1) S2 + n (y − μ)2

]
.

First derivatives are 

. 
∂ lnp
(
μ, σ 2|y)
∂μ

= n (y − μ)

σ 2 ,

∂ lnp
(
μ, σ 2|y)

∂σ 2 = − n

2σ 2 + (n − 1) S2 + n (y − μ)2

2σ 4 .

Setting these equations equal to zero and solving for . μ and . σ 2 gives 

. 

[
μ̂

σ̂ 2

]
=
[

y
n−1
n

S2

]
=
[

y∑
(yi−y)2

n

]
.

Second derivatives are 

.
∂2p
(
μ, σ 2|y)

(∂μ)2
= − n

σ 2 ,

∂2p
(
μ, σ 2|y)(

∂σ 2
)2 = n

2σ 4
− (n − 1) S2 + n (y − μ)2

σ 6
,

∂2p
(
μ, σ 2|y)

∂μ∂σ 2 = −n (y − μ)

σ 4 .
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Evaluated at the mode, these second derivatives are (substituting .(n − 1) S2 = nσ̂ 2) 
are 

. 
∂2p
(
μ, σ 2|y)

(∂μ)2

∣∣∣∣∣
μ=μ̂,σ 2=σ̂ 2

= − n

σ̂ 2 ,

∂2p
(
μ, σ 2|y)(

∂σ 2
)2
∣∣∣∣∣
μ=μ̂,σ 2=σ̂ 2

= n

2σ̂ 4 − n

σ̂ 4 = − n

2σ̂ 4 ,

∂2p
(
μ, σ 2|y)

∂μ∂σ 2

∣∣∣∣∣
μ=μ̂,σ 2=σ̂ 2

= 0.

Therefore the asymptotic approximation to .
[
μ, σ 2|y] is now 

.

[
μ, σ 2|y

]
∼ N

([
y∑

(yi−y)2

n

]
,

[
σ̂ 2

n
0

0 2σ̂ 4

n

])
(13.70) 

As n increases, (13.68) and (13.70) approach the same value. 

(v) The approximate .95% posterior intervals for . μ and . σ 2 based on (13.68) can be 
obtained using the R functions : 

qnorm(c(0.025,0.975),48.69,sqrt(6.644/10)) 

## [1] 47.09242 50.28758 

qnorm(c(0.025,0.975),6.644,sqrt(7.357)) 

## [1] 1.327835 11.960165 

that yield 

. Pr (47.09 < μ < 50.28|y) = 0.95

Pr
(
1.33 < σ 2 < 11.96|y

)
= 0.95.

The approximate .95% posterior intervals for . μ and . σ 2 based on (13.70) are  
obtained using the R functions: 

qnorm(c(0.025,0.975),48.69,sqrt(7.973/10)) 

## [1] 46.93992 50.44008
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qnorm(c(0.025,0.975),7.973,sqrt(12.714)) 

## [1] 0.9844159 14.9615841 

that yield 

. Pr (46.94 < μ < 50.44|y) = 0.95,

Pr
(
0.98 < σ 2 < 14.96|y

)
= 0.95.

Comparison with the exact results (13.63) and (13.64) shows that the interval for 
. μ is well approximated by the normal distribution, but this is not the case for . σ 2. 
Clearly a sample size of .n = 10 is not big enough for the normal approximation to 
hold in the case of . σ 2. 

Exercise 2 

(i) The R-code below implements the Bayesian model with the Metropolis-
Hastings single-site updating algorithm: 

# CODE1306 
#METROPOLIS-HASTINGS SINGLE-SITE UPDATING - USES ACF 
rm(list=ls()) # Clear the workspace 
set.seed(123456) 
require(graphics) 
y<-c(45.83,50.37,50.06,51.59,48.43,52.75,42.92,48.57, 

46.18,50.20) 
# SET LENGTH OF CHAIN rep 
rep<-10000 
result<-matrix(data=NA,nrow=rep,ncol=3) 

mu<- 15 
v<- 10 
#CHOOSE TUNING PARAMETERS kmu AND kv 
#kmu<-0.19 
#kv<-0.1 
kmu<-19 
kv<-9 
acceptv<-0 
acceptmu<-0 
ptm <- proc.time() 
for (i in 1:rep) 
{
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#UPDATING THE VARIANCE 
logYv<-rnorm(1,mean=log(v),sd=sqrt(kv)) 
logalfav <-sum((y-mu)^2)/(2*v)-sum((y-mu)^2)/ 

(2*exp(logYv))+(length(y)/2)*(log(v)-logYv) 
unif<-runif(1) 
if (unif<exp(logalfav)) 
{ 

v<-exp(logYv) 
acceptv<-acceptv+1 

} 
#UPDATING THE MEAN 
Ymu<-rnorm(1,mean=mu,sd=sqrt(kmu)) 
logalfamu<- sum((y-mu)^2)/(2*v)-sum((y-Ymu)^2)/(2*v) 
unif<-runif(1) 
if (unif<exp(logalfamu)) 
{ 

mu<-Ymu 
acceptmu<-acceptmu+1 
result[i, ]<-c(i,mu,v) 

} 
else { 

result[i, ]<-c(i,mu,v) 
} 

} 
proc.time()-ptm 

## user system elapsed 
## 0.15 0.00 0.19 

acceptratiomu<-acceptmu/rep 
acceptratiov<-acceptv/rep 
# DISCARD THE FIRST 1500 DRAWS 
mu<-result[1501:rep,2] 
v<-result[1501:rep,3] 
meanmus<-mean(mu) 
meanmus 

## [1] 48.67492 

varmus<-var(mu) 
varmus 

## [1] 1.315822
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cimus<-quantile(mu,c(0.025,0.975)) 
cimus 

## 2.5% 97.5% 
## 46.35049 50.93522 

meanvs<-mean(v) 
meanvs 

## [1] 12.15146 

varvs<- var(v) 
varvs 

## [1] 66.8197 

civs<-quantile(v,c(0.025,0.975)) 
civs 

## 2.5% 97.5% 
## 4.29519 32.92001 

The single-site updating algorithm generates the following output. The chain 
length is 10, 000, and the first 1, 500 samples are discarded: 

. ̂E (μ|y) = 48.67

V̂ar (μ|y) = 1.32

P̂r (46.35 < μ < 50.94|y) = 0.95

Ê
(
σ 2|y
)

= 12.15

V̂ar
(
σ 2|y
)

= 66.82

P̂r
(
4.3 < σ 2 < 32.92|y

)
= 0.95.

(ii) The R-code below implements the Bayesian model with the Metropolis-
Hastings joint updating algorithm: 

# CODE1307 
#METROPOLIS-HASTINGS JOINT UPDATING 
rm(list=ls()) # Clear the workspace 
set.seed(123456) 
require(graphics)
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y<-c(45.83,50.37,50.06,51.59,48.43,52.75,42.92,48.57, 
46.18,50.20) 

# SET LENGTH OF CHAIN rep 
rep<-10000 
result<-matrix(data=NA,nrow=rep,ncol=3) 
#INITIALISE mu AND v 
mu<-15 
v<-10 
#CHOOSE TUNING PARAMETERS kmu AND kv 
kmu<-0.15 
kv<-0.08 
accept<-0 
ptm <- proc.time() 
for (i in 1:rep) 
{ 

Ymu<-rnorm(1,mean=mu,sd=sqrt(kmu)) 
logYv<-rnorm(1,mean=log(v),sd=sqrt(kv)) 
logalfa <-sum((y-mu)^2)/(2*v)-sum((y-Ymu)^2)/ 

(2*exp(logYv))+(length(y)/2)*(log(v)-logYv) 
unif<-runif(1) 
if (unif<exp(logalfa)) 
{ 

mu<-Ymu 
v<-exp(logYv) 
result[i, ]<-c(i,mu,v) 
accept<-accept+1 

} 
else 
{ 

result[i, ]<-c(i,mu,v) 
} 

} 
proc.time()-ptm 

## user system elapsed 
## 0.13 0.00 0.13 

acceptratio<-accept/rep 
mu<-result[1501:rep,2] 
v<-result[1501:rep,3] 
meanmuj<-mean(mu) 
meanmuj 

## [1] 48.62203
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varmuj<-var(mu) 
varmuj 

## [1] 1.175362 

cimuj<-quantile(mu,c(0.025,0.975)) 
cimuj 

## 2.5% 97.5% 
## 46.34522 50.69246 

meanvj<-mean(v) 
meanvj 

## [1] 11.91832 

varvj<- var(v) 
varvj 

## [1] 55.73139 

civj<-quantile(v,c(0.025,0.975)) 
civj 

## 2.5% 97.5% 
## 4.242654 30.864260 

The joint updating algorithm produces the following output. The chain length is 
10, 000, and the first 1, 500 samples are discarded: 

.Ê (μ|y) = 48.62

V̂ar (μ|y) = 1.18

P̂r (46.35 < μ < 50.69|y) = 0.95

Ê
(
σ 2|y
)

= 11.92

V̂ar
(
σ 2|y
)

= 55.73

P̂r
(
4.24 < σ 2 < 30.86|y

)
= 0.95.
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A glance at these figures confirms that they are in good agreement with the exact 
results. 

(iii) 

For kμ = 0.19, kσ 2 = 0.1, the following results are obtained: 

(a) acceptance ratios for μ and σ 2 are 0.87 and 0.47, respectively; 
(b) The MC variances for μ and σ 2 are 0.0095 and 0.63, respectively; 
(c) effective chain length for μ and σ 2 are 160 and 194, respectively; 
(d) integrated autocorrelations for μ and σ 2 are 53 and 43, respectively. 

For kμ = 19, kσ 2 = 9, the following results are obtained: 

(a) acceptance ratios for μ and σ 2 are 0.29 and 0.19, respectively; 
(b) The MC variances for μ and σ 2 are 0.00097 and 0.093, respectively; 
(c) effective chain length for μ and σ 2 are 1357 and 720, respectively; 
(d) integrated autocorrelations for μ and σ 2 are 6.3 and 11.8, respectively. 

When the tuning parameters (variances) are very small, the proposed values differ 
very little from the previous values and are accepted with high probability; this 
generates a highly correlated chain. When the tuning parameters are larger, proposed 
values differ, on average, relatively more from previous values, are accepted with 
smaller probability and the degree of autocorrelations is relatively smaller. This 
is also illustrated in Fig. 13.4 that displays autocorrelations versus lag. The left 
panel corresponds to kμ = 0.19, kσ 2 = 0.1 that generates high autocorrelations 
decreasing at a low rate with lag. The right panel corresponds to kμ = 19, kσ 2 = 9; 
the autocorrelations fall at a higher rate. 
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Fig. 13.4 Plots of autocorrelations versus lag of draws from [μ|y] using kμ = 0.19, kσ 2 = 0.1 
(left panel) and kμ = 19, kσ 2 = 9 (right panel)
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Exercise 3 

(i) The R- code below implements the Bayesian model with the single-site Gibbs 
sampling algorithm: 

# CODE1308 
#GIBBS SAMPLING ALGORITHM 
rm(list=ls()) # Clear the workspace 
set.seed(12345) 
require(graphics) 
dat<-c(45.83,50.37,50.06,51.59,48.43,52.75,42.92,48.57, 

46.18,50.20) 
# SET LENGTH OF CHAIN rep 
rep<-10000 
result<-matrix(data=NA,nrow=rep,ncol=3) 
#INITIALISE mu AND v 
#mu<-mean(dat) 
#v<-var(dat) 
mu<-1 
v<-2 
n<-length(dat) 
# START GIBBS CHAIN 
ptm <- proc.time() 
for (i in 1:rep) 
{ 

# GENERATE MIU 
mu<-rnorm(1,mean=mean(dat),sd=sqrt(v/n)) 
# COMPUTE SCALE 
s<-((n-1)*var(dat)+n*(mean(dat)-mu)^2)/n 
# GENERATE V 
v<-n*s/rchisq(1,n) 
result[i,]<-c(i,mu,v) 

} 
proc.time()-ptm 

## user system elapsed 
## 0.45 0.00 0.46 

# END OF GIBBS CHAIN 
#mu<-result[1000:rep,2] 
mu<-result[,2] 

#v<-result[1000:rep,3] 
v<-result[,3]
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meanmu<-mean(mu) 
meanmu 

## [1] 48.70177 

varmu<-var(mu) 
varmu 

## [1] 1.132319 

cimu<-quantile(mu,c(0.025,0.975)) 
cimu 

## 2.5% 97.5% 
## 46.59150 50.84902 

meanv<-mean(v) 
meanv 

## [1] 11.35799 

varv<- var(v) 
varv 

## [1] 48.91507 

civ<-quantile(v,c(0.025,0.975)) 
civ 

## 2.5% 97.5% 
## 4.184609 29.596819 

The Gibbs sampling algorithm yields the following estimates: 

.Ê (μ|y) = 48.7

V̂ar (μ|y) = 1.13

Ê
(
σ 2|y
)

= 11.36

V̂ar
(
σ 2|y
)

= 48.92

P̂r (46.59 < μ < 50.85|y) = 0.95

P̂r
(
4.18 < σ 2 < 29.6|y

)
= 0.95,
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in good agreement with those obtained with the Metropolis-Hastings algorithms. 
The Monte Carlo variances are 

. V̂ar
[̂
E (μ|y)

] = 0.0001,

V̂ar
[
Ê
(
σ 2|y
)]

= 0.0070.

(ii) The effective chain lengths for μ and σ 2 are 9, 931 and 7, 512, respectively. 

The integrated autocorrelations μ and σ 2 are 1.0 and 1.33, respectively. 
The R-code that computes these quantities is shown below: 

# CODE1308 (cont) 
#POST-McMC ANALYSIS 
# CODE FOR THE MC VARIANCE BASED ON GEYER 

# CHOOSE MU OR V AND PLACE IN VECTOR Y 
y<-result[,2] # READS IN mu 
#y <- result[,3] # READS IN v 
ns <- length(y) 
svar<-var(y)*(ns-1)/ns 
tau<-1 
tausum<-0 
for(i in 0:ns) 
{ 

gamaj<-0.0 
gamak<-0.0 
j<-2*i 
k<-(2*i)+1 
lag1<-j 
lag2<-k 
#USE THE R-FUNCTION ACF TO COMPUTE AUTOCORRELATIONS 
cov1<-acf(y,type="covariance",lag.max=lag1,plot=FALSE) 
cov2<-acf(y,type="covariance",lag.max=lag2,plot=FALSE) 
gamaj<-cov1$acf[lag1+1] 
gamak<-cov2$acf[lag2+1] 
tau<-gamaj+gamak 
if(tau<0) 
{ 

break 
} 
tausum<-tausum+tau 

} 

varch<- -svar+2*tausum 
mcvar<-varch/ns 
mcvar 

## [1] 0.0001140094 

efchsize<-svar/mcvar 
efchsize 

## [1] 9930.804
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Fig. 13.5 Plots of autocorrelations versus lag of draws from
[
σ 2|y] using the Gibbs sampler 

integrautoc<-varch/svar 
integrautoc 

## [1] 1.006968 

For this toy model and dataset, the draws from the McMC chain generated by the 
Gibbs sampler have very small autocorrelation. This is illustrated in Fig. 13.5. 

13.4 Bayes Exercises II 

Exercise 1 

(i) The R-code below fits the Bayesian logistic regression model implemented 
with a Metropolis-Hastings algorithm with joint updating of (μ, β): 

# CODE1309 
#BINARY DATA - M-H JOINT UPDATING - LOGISTIC MODEL 
rm(list=ls()) # Clear the workspace 
set.seed(123) 
#require(graphics) 
# THE CODE WILL USE THE PACKAGE MVTNORM; IT IS INSTALLED BELOW 
#install.packages("mvtnorm", .libPaths()[1]) 
library(mvtnorm) 
#CHOOSE LENGTH OF CHAIN rep
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rep<-10000 
result<-matrix(data=NA,nrow=rep,ncol=4) 
################################################ 
# CREATE BINARY DATA 
mu <- -2 
beta <- 0.7 
nrec <- 30 
cov <- rnorm(nrec,2,3) # GENERATE THE COVARIATE 
xb <- cov*beta 
p1 <- pnorm(mu+xb) # PROBABILITIES ACCORDING TO PROBIT MODEL 
# CREATE DATA: 
d <- data.frame(Y=rbinom(nrec,1,p1),X=round(cov,digits=0)) 
mean(d$Y) 

## [1] 0.3 

# CHOOSE TUNING PARAMETER LAMBDA AND COVARIANCE MATRIX C 
lambda<-1 
c<-matrix(c(1,0.0,0.0,0.1),nrow=2,ncol=2,byrow=T) 

# INITIALISE THE MEAN OF THE BIVARIATE DISTRIBUTION 
theta<-c(-2,1) 
accept<-0 
## FUNCTION TO COMPUTE THE LOG-POSTERIOR 
logpost <- function(data,par) 
{ 

theta[1] <-par[1] 
theta[2] <- par[2] 
with(data=d,sum(Y*(theta[1]+theta[2]*X)-log(1+exp(theta[1]+ 

theta[2]*X)))) 
} 
#START MH LOOP 
ptm <- proc.time() 
for (i in 1:rep) 
{ 

#SAMPLE PROPOSAL FOR THETA (Ytheta) FROM N(theta,lamdaC) 
Ytheta<- rmvnorm(1,mean=theta,sigma=lambda*c) 
logalfa<-logpost(d,c(Ytheta[1],Ytheta[2])) -

logpost(d,c(theta[1],theta[2])) 
unif<-runif(1) 
if (unif<exp(logalfa)) 
{ 

theta[1]<-Ytheta[1] 
theta[2]<-Ytheta[2] 
result[i, ]<-c(i,theta[1],theta[2],exp(theta[1]+3*theta[2])/ 

(1+exp(theta[1]+3*theta[2]))) 
accept<-accept+1 

} 
else 
{ 

result[i, ]<-c(i,theta[1],theta[2],exp(theta[1]+3*theta[2])/ 
(1+exp(theta[1]+3*theta[2]))) 

} 
} 
proc.time()-ptm
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## user system elapsed 
## 2.56 0.03 2.59 

acceptratio<-accept/rep 
acceptratio 

## [1] 0.4313 

meanmu<-mean(result[,2]) 
meanmu 

## [1] -3.996897 

varmu<-var(result[,2]) 
varmu 

## [1] 1.986835 

cimu<-quantile(result[,2],c(0.025,0.975)) 
cimu 

## 2.5% 97.5% 
## -7.311877 -1.717778 

meanbeta<-mean(result[,3]) 
meanbeta 

## [1] 1.168351 

varbeta<- var(result[,3]) 
varbeta 

## [1] 0.1899689 

cibeta<-quantile(result[,3],c(0.025,0.975)) 
cibeta 

## 2.5% 97.5% 
## 0.4968853 2.1923000 

meanprob <- mean(result[,4]) 
meanprob 

## [1] 0.3901256
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ciprob <- quantile(result[,4],c(0.025,0.975)) 
ciprob 

## 2.5% 97.5% 
## 0.1421850 0.6921409 

(ii) The following features of the posterior distribution are obtained from the 
output: 

. ̂E (μ|y) = −3.997,

Ê (β|y) = 1.168,

V̂ar (μ|y) = 1.987,

V̂ar (β|y) = 0.19,

P̂r (−7.312 < μ < −1.718|y) = 0.95,

P̂r (0.497 < β < 2.192|y) = 0.95,

P̂r (Y = 1|x = 3, y) = 0.39,

where in the last line, P̂r (Y = 1|x = 3, y) is the mean of the McMC draws from 
Pr (Y = 1|x = 3, y). The McMC estimate of the 95% posterior interval of the 
distribution of Pr(Y = 1|x = 3, y)  is (0.142; 0.692). Given x, this probability 
is only a function of (μ, β), and the confidence interval reflects the posterior 
uncertainty associated with (μ, β). 

Figure 13.6 displays histograms of MC estimates of the marginal posterior 
distributions [μ|y] (left panel) and of [β|y] (right panel). Both histograms reveal 
considerable asymmetry. 
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Fig. 13.6 Histograms of MC estimates of [μ|y] (left panel) and of [β|y] (right panel)
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It is interesting to compare the output from the Bayesian implementation with 
that derived from a maximum likelihood analysis. The R-function below fits the 
OPTIM function : 

# CODE1309 (cont) 
### USE THE R-FUNCTION OPTIM TO COMPARE WITH THIS PROGRAMME 
## FUNCTION TO COMPUTE THE NEGATIVE OF THE LOG-POSTERIOR 
logpostoptim <- function(data,par) 
{ 

theta[1] <-par[1] 
theta[2] <- par[2] 
with(data=d,-sum(Y*(theta[1]+theta[2]*X)-log(1+exp(theta[1]+ 

theta[2]*X)))) 
} 
result1 <- optim(par=c(-3,1),logpostoptim, 

data=d,hessian=TRUE,method="BFGS") 
result1$par 

## [1] -3.2918405 0.9354898 

solve(result1$hessian) 

## [,1] [,2] 
## [1,] 1.3069454 -0.3367133 
## [2,] -0.3367133 0.1197200 

The ML estimates of uncertainty are based on asymptotic results that do not quite 
hold in the small sample setting of this example. There is considerable difference 
between the uncertainty reported by both methods of inference. 

The ML estimates of μ and β are -3.292 and 0.935, respectively. These differ 
from the McMC estimates of posterior means due, in part, to the asymmetry 
referred to above that results in different values for mean and mode. Further, the 
likelihood approach relies on a joint maximisation of the loglikelihood function, 
whereas marginal inferences are reported with the Bayesian method. One can bring 
both approaches a little closer by computing the modal value of the estimates of 
the marginal posterior distributions [μ|y] and [β|y]. The  R-code below uses the 
function modeest and calculates these modal values using a kernel estimator: 

# CODE1309 (cont) 
# computing MODE with package modeest 
# and via density estimation 
#install.packages("modeest", .libPaths()[1]) 
y<- result[,2] 
x<-result[,3] 
library(modeest) 
myDensity<-density(y) 
modeEstmu <- mlv(y,method = "kernel", kernel = "gaussian") 
modeEstmu 

## [1] -3.498042
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modeEstbeta <- mlv(x,method = "kernel", kernel = "gaussian") 
modeEstbeta 

## [1] 0.9147319 

The estimate of the posterior mode of [μ|y] is seen to be -3.498 and of [β|y], 
0.915, more in line with the results reported from the likelihood approach. 

(iii) The R-code below calculates MC variances, effective chain lengths and 
integrated autocorrelations: 

# CODE1309 (cont) 
#POST-McMC ANALYSIS 
# CODE FOR THE MC VARIANCE BASED ON GEYER 
ns<-rep 
# CHOOSE MU OR V AND PLACE IN VECTOR Y 
y<- result[,2] 
#y<-result[,3] 
svar<-var(y)*(ns-1)/ns 
tau<-1 
tausum<-0 
for(i in 0:ns) 
{ 

gamaj<-0.0 
gamak<-0.0 
j<-2*i 
k<-(2*i)+1 
lag1<-j 
lag2<-k 
#USE THE R-FUNCTION ACF TO COMPUTE AUTOCORRELATIONS 
cov1<-acf(y,type="covariance",lag.max=lag1,plot=FALSE) 
cov2<-acf(y,type="covariance",lag.max=lag2,plot=FALSE) 
gamaj<-cov1$acf[lag1+1] 
gamak<-cov2$acf[lag2+1] 
tau<-gamaj+gamak 
if(tau<0) 
{ 

break 
} 
tausum<-tausum+tau 

} 
varch<- -svar+2*tausum 
mcvar<-varch/ns 
mcvar 

## [1] 0.009202506 

efchsize<-svar/mcvar 
efchsize 

## [1] 215.88
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integrautoc<-varch/svar 
integrautoc 

## [1] 46.32203 

The MC variance of the estimated mean of [μ|y], the effective chain length and 
integrated autocorrelation of the draws from [μ|y] obtained from the output are 
0.0092, 215.88 and 46.32, respectively. For [β|y] the respective values are 0.00088, 
213.57 and 46.82, respectively. These figures indicate that the McMC samples 
display a relatively high degree of autocorrelation. 

Exercise 2 

(i) The R-code below fits the probit regression model with theMetropolis-Hastings 
joint updating algorithm: 

# CODE1310 
#BINARY DATA - METROPOLIS-HASTINGS JOINT UPDATING - PROBIT MODEL 
rm(list=ls()) # Clear the workspace 
set.seed(123) 
#require(graphics) 
# CODE USES PACKAGE MVTNORM; IT IS INSTALLED BELOW 
#install.packages("mvtnorm", .libPaths()[1]) 
library(mvtnorm) 
#CHOOSE LENGTH OF CHAIN rep 
rep<-10000 
result<-matrix(data=NA,nrow=rep,ncol=4) 
################################################ 
# CREATE BINARY DATA BASED ON PROBIT MODEL 
mu <- -2 
beta <- 0.7 
nrec <- 30 
cov <- rnorm(nrec,2,3) # GENERATE THE COVARIATE 
xb <- cov*beta 
p1 <- pnorm(mu+xb) # PROBABILITIES ACCORDING TO PROBIT MODEL 
# CREATE DATA: 
d <- data.frame(Y=rbinom(nrec,1,p1),X=round(cov,digits=0)) 
mean(d$Y) 

## [1] 0.3 

############################################################## 
# CHOOSE TUNING PARAMETER LAMBDA AND COVARIANCE MATRIX C 
lambda<-0.25 
c<-matrix(c(1,0.0,0.0,0.1),nrow=2,ncol=2,byrow=T) 

# INITIALISE THE MEAN OF THE BIVARIATE DISTRIBUTION 
theta<-c(-2,1) 

accept<-0 
## FUNCTION TO COMPUTE THE LOG-POSTERIOR
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logpost <- function(data,par) 
{ 

theta[1] <-par[1] 
theta[2] <- par[2] 
with(data=d,sum(Y*log(pnorm(theta[1]+theta[2]*X))+ 

(1-Y)*log(1.000001-pnorm(theta[1]+theta[2]*X)))) 
} 
#START MH LOOP 
ptm <- proc.time() 
for (i in 1:rep) 
{ 

#SAMPLE PROPOSAL FOR THETA (Ytheta) FROM N(theta,lamdaC) 
Ytheta<- rmvnorm(1,mean=theta,sigma=lambda*c) 
lp1<- logpost(d,c(Ytheta[1],Ytheta[2])) 
lp2<- logpost(d,c(theta[1],theta[2])) 
logalfa<-lp1-lp2 
unif<-runif(1) 
if (unif<exp(logalfa)) 
{ 

theta[1]<-Ytheta[1] 
theta[2]<-Ytheta[2] 
result[i, ]<-c(i,theta[1],theta[2], 

pnorm(theta[1]+3*theta[2])) 
accept<-accept+1 

} 
else 
{ 

result[i, ]<-c(i,theta[1],theta[2], 
pnorm(theta[1]+3*theta[2])) 

} 
} 
proc.time()-ptm 

## user system elapsed 
## 2.73 0.06 2.80 

acceptratio<-accept/rep 
meanmu<-mean(result[,2]) 
meanmu 

## [1] -2.230753 

varmu<-var(result[,2]) 
varmu 

## [1] 0.4690703 

cimu<-quantile(result[,2],c(0.025,0.975)) 
cimu 

## 2.5% 97.5% 
## -3.696849 -1.062495
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meanbeta<-mean(result[,3]) 
meanbeta 

## [1] 0.6450377 

varbeta<- var(result[,3]) 
varbeta 

## [1] 0.04395467 

cibeta<-quantile(result[,3],c(0.025,0.975)) 
cibeta 

## 2.5% 97.5% 
## 0.2879808 1.0886044 

meanprob <- mean(result[,4]) 
meanprob 

## [1] 0.3900007 

ciprob <- quantile(result[,4],c(0.025,0.975)) 
ciprob 

## 2.5% 97.5% 
## 0.1653514 0.6497098 

(iii) The following features of the posterior distribution are obtained from the 
output: 

. ̂E (μ|y) = −2.231,

Ê (β|y) = 0.645,

V̂ar (μ|y) = 0.469,

V̂ar (β|y) = 0.044,

P̂r (−3.697 < μ < −1.062|y) = 0.95,

P̂r (0.288 < β < 1.089|y) = 0.95,

P̂r (Y = 1|x = 3, y) = 0.39,

where in the last line, P̂r (Y = 1|x = 3, y) is the mean of the McMC draws 
from Pr (Y = 1|x = 3, y). The McMC estimate of the 95% posterior interval
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of the distribution of Pr(Y = 1|x = 3, y)  is (0.165; 0.65). Given x this 
probability is only a function of (μ, β) and the confidence interval reflects 
the posterior uncertainty associated with (μ, β). Despite the difference in 
estimates of the parameters between the logit and the probit models, the 
estimates of the posterior probability Pr(Y = 1|x = 3, y)  are in good 
agreement. 

(iii) The MC variance of the mean of [μ|y], the effective chain length and 
integrated autocorrelation of the draws from [μ|y] are  0.0018, 264.0 and 
37.9, respectively. For [β|y] these figures are 0.00017, 264.92 and 37.75, 
respectively. 

Exercise 3 

(i) The R-code below generates the same 30 binary records used in the previous 
examples and fits a probit model implemented with a single-site updating Gibbs 
sampling algorithm: 

# CODE1311 
# BINARY DATA; GIBBS WITH DATA AUGMENTATION PROBIT MODEL 
# LIABILITIES SAMPLED IN ONE GO AFTER JA pg 241 
rm(list=ls()) # Clear the workspace 
set.seed(123) 
#require(graphics) 
# THE CODE WILL USE THE PACKAGE MVTNORM; IT IS INSTALLED BELOW 
#install.packages("mvtnorm", .libPaths()[1]) 
library(mvtnorm) 
#CHOOSE LENGTH OF CHAIN rep 
rep<-10000 
result<-matrix(data=NA,nrow=rep,ncol=3) 
################################################ 
# CREATE BINARY DATA 
mu <- -2 
beta <- 0.7 
nrec <- 30 
cov <- rnorm(nrec,2,3) # GENERATE THE COVARIATE 
xb <- cov*beta 
p1 <- pnorm(mu+xb) # COMPUTE PROBABILITIES FOR PROBIT MODEL 
#p1 <- rbeta(30,2,2) 
# CREATE DATA: 
d <- data.frame(Y=rbinom(nrec,1,p1),X=round(cov,digits=0)) 
mean(d$Y) 

## [1] 0.3 

############################################################## 
One<-rep(1,nrec) 
X<-matrix(c(One,d[,2]),nrow=nrec,ncol=2) 
Y<-matrix(d[,1],nrow=length(d[,1]),ncol=1) 
#INITIALISE THETA (THE VECTOR WITH MU AND BETA)
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theta<-matrix(data=0,nrow=2,ncol=1) 
# INITIALISE VECTOR u 
u<-rep(0,nrec) 
#COMPUTE XTX INVERSE 
xtxinv<-solve(t(X)%*%X) 
#START GIBBS LOOP 
ptm <- proc.time() 
for (i in 1:rep) 
{ 

thetahat<-xtxinv%*%t(X)%*%u 
#SAMPLE THETA FROM MVN(thetahat,xtxinv) 
theta<- t(rmvnorm(1,mean=thetahat,sigma= xtxinv)) 
# SAMPLE LIABILITIES u_j FROM A TN(beta+Uf,1) 

av<-X%*%theta # MEAN OF UNTRUNCATED NORMAL(mu+U[j,]alfa,1) 
cutoff<-pnorm(-av) 
interm<-(cutoff*(1-Y)+(1-cutoff)*Y)*runif(length(Y))+cutoff*Y 
interm[interm==1]<-0.999 
u<-qnorm(interm)+av 
# END SAMPLING LIABILITIES u 
result[i,]<-c(i,t(theta)) 

} 
proc.time() - ptm 

## user system elapsed 
## 2.64 0.09 2.73 

meanmu<-mean(result[,2]) 
meanmu 

## [1] -2.177854 

varmu<-var(result[,2]) 
varmu 

## [1] 0.4747578 

cimu<-quantile(result[,2],c(0.025,0.975)) 
cimu 

## 2.5% 97.5% 
## -3.728438 -1.014262 

meanbeta<-mean(result[,3]) 
meanbeta 

## [1] 0.6290715
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varbeta<- var(result[,3]) 
varbeta 

## [1] 0.04445811 

cibeta<-quantile(result[,3],c(0.025,0.975)) 
cibeta 

## 2.5% 97.5% 
## 0.2846762 1.1175002 

(ii) The following features of the posterior distribution are obtained from the 
output: 

. ̂E (μ|y) = −2.178,

Ê (β|y) = 0.629,

V̂ar (μ|y) = 0.475,

V̂ar (β|y) = 0.044,

P̂r (−3.728 < μ < −1.014|y) = 0.95,

P̂r (0.285 < β < 1.118|y) = 0.95,

that can be seen to be in good agreement with the output in Exercise 13.4. 

(iii) The MC variance of the estimated mean of [μ|y], the effective chain length 
and integrated autocorrelation of the draws from [μ|y] are  0.0014, 340.8 
and 29.3, respectively. For [β|y] these figures are 0.00013, 336.3 and 29.7, 
respectively. A comparison with Exercise 13.4 indicates that the Gibbs sampler 
generated slightly less correlated draws from [μ, β|y] than the Metropolis-
Hastings algorithm, as implemented in this example. The latter can be tuned to 
improve its behaviour; this was not attempted here. 

Exercise 4 

(i) The R-code below generates binary data from 500 full-sib families each with 
2 full-sibs and fits a probit threshold model implemented via a Gibbs sampling 
algorithm using a single chain of length 2, 000. 

# CODE1312 
#SINGLE-SITE GIBBS - CORRELATED PROBIT MODEL 
# DOES NOT USE THE SVD OF ZZ’
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rm(list=ls()) # Clear the workspace 
set.seed(7713) 

require(graphics) 
# GENERATE CORRELATED (FULL-SIBS) BINARY DATA (THRESHOLD MODEL) 
#install.packages("MCMCpack", .libPaths()[1]) 
#install.packages("mvtnorm", .libPaths()[1]) 
library(mvtnorm) 
#library(MCMCpack) 
# INITIALISE PARAMETERS 
p0 <- 0.5 
mu <- qnorm(p0) 
iccfs<-0.15 #INTRACLASS CORRELATION FS 
# VARIANCE BETWEEN FAMILIES: iccfs /(1- iccfs) 
# PHENOTYPIC VARIANCE: 1/(1-iccfs) 
nfs<-500 # NUMBER OF FULL-SIB FAMILIES 
fs<-2 #FULL-SIB FAMILY SIZE 
# SET DATA Y= 0 
y<-matrix(data=0,nrow=fs*nfs,ncol=1) 
# x IS COLUMN MATRIX WITH FAMILY ID (ID=1,.,nfs) 
x<-matrix(data=0,nrow=fs*nfs,ncol=1) 
# GENERATE NFS FULL-SIB EFFECTS f 
f<-rnorm(nfs,mean=0,sd=sqrt(iccfs/(1-iccfs))) 
# SET COUNTER c EQUAL TO ZERO 
# (c = nfs*fs IS EQUAL TO THE LENGTH OF BINARY DATA VECTOR y) 
c<-0 
########################################################## 
#### GENERATE BINARY RECORDS Y 
f<-rnorm(nfs,mean=0,sd=sqrt(iccfs/(1-iccfs))) 
p <- pnorm(mu+f) 
y <- rbinom(nfs*fs,1,rep(p,each=fs)) 
w <- rep(1:nfs,each=fs) 
d<-data.frame(w,y) 
family <- w 
family <- as.factor(family) 
Z<-model.matrix(~0+family) 
# WITH INDEPENDENT FAMLIES Z’Z IS DIAGONAL 
ztz<-rep(fs,nfs) 
#CHOOSE LENGTH OF CHAIN rep 
rep<-2000 
result<-matrix(data=NA,nrow=rep,ncol=3) 
# INITIALISE LIABILITY VECTOR u 
u<-rep(0,fs*nfs) 
#INITIALISE THE VECTOR OF FAMILIY EFFECTS fam 
fam<-rep(0,nfs) 
# INITIALISE BETWEEN FAMILY VARIANCE COMPONENT vf 
vf<-0.2 
# INITIALISE THE MEAN (HERE BETA, A SCALAR) 
beta<-0 
#START GIBBS LOOP 
ptm<-proc.time() 
for (i in 1:rep) 
{ 

zfam <- Z%*%fam 
# SAMPLE BETA 
betahat<-sum(u-zfam)/(fs*nfs) 
beta<-rnorm(1,mean=betahat,sd=sqrt(1/(fs*nfs))) 
# SAMPLE LIABILITIES u FROM A TN(beta+Zf,1) 
av<-beta+ zfam # MEAN OF UNTRUNCATED NORMAL(mu+Zf,1)
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prob<-pnorm(-av) 
interm<-( prob *(1-y)+(1- prob)*y)*runif(fs*nfs)+ prob*y 
interm[interm==1]<-0.999 
u<-qnorm(interm)+av 
# END SAMPLING LIABILITIES u 
# SAMPLE FAMILY EFFECTS fam 
varfam<-1/(fs+(1/vf)) 
fammean<-varfam*(t(Z)%*%(u-beta)) 
fam<-rnorm(nfs,mean=fammean, sd=sqrt(varfam)) 
#SAMPLE vf 
#COMPUTE SCALE 
ftf<-sum(fam*fam) 
vf<-ftf/rchisq(1,nfs-2) 
result[i,]<-c(i,beta,vf) 

} 
proc.time()-ptm 

## user system elapsed 
## 25.33 0.64 6.52 

# CONSTRUCT THE DERIVED PARAMETER "HERITABILITY" herit 
herit <- 2*result[,3]/(result[,3]+1) 
meanbeta <- mean(result[,2]) 
meanbeta 

## [1] -0.05565647 

meanvf <- mean(result[,3]) 
meanvf 

## [1] 0.377655 

meanher <- mean(herit) 
meanher 

## [1] 0.5408147 

cibeta <- quantile(result[,2],c(0.025,0.975)) 
cibeta 

## 2.5% 97.5% 
## -0.15785926 0.03703906 

civf <- quantile(result[,3],c(0.025,0.975)) 
civf 

## 2.5% 97.5% 
## 0.2110779 0.5870883
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ciher <- quantile(herit,c(0.025,0.975)) 
ciher 

## 2.5% 97.5% 
## 0.3485786 0.7398306 

(ii) The code outputs the following results: 

. ̂E (μ|y) = −0.06,

Ê
(
σ 2

f |y
)

= 0.38,

Ê
(
h2|y
)

= 0.54,

P̂r (−0.158 < μ < 0.037|y) = 0.95,

P̂r
(
0.211 < σ 2

f < 0.587|y
)

= 0.95,

P̂r
(
0.349 < h2 < 0.74|y

)
= 0.95.

The parameter h2, the heritability on the underlying scale, is constructed from 
the output of the McMC, using σ 2 

f , the variance component between families and 

the variance of the residual term of the liability, equal to 1: h2 = 2σ 2 
f /(σ

2 
f + 1). 

(iii) Execution of the R-code on page 636 generates the following results. 

The MC variances of the estimate of the mean of [μ|y], the mean of [σ 2 
f |y] and 

the mean of [h2|y] are 5.74 × 10−6, 2.3 × 10−4 and 2.6 × 10−4, respectively. 
The effective chain lengths of [μ|y], [σ 2 

f |y] and [h2|y] are 448.2, 42.2 and 40.2, 
respectively. 

The integrated autocorrelations of [μ|y], [σ 2 
f |y] and [h2|y] are 4.46, 47.4 and 

49.8, respectively. 
Due to the considerable degree of autocorrelation among samples, particularly 

for [σ 2 
f |y] and [h2|y], a chain of length 2, 000 results in effective chain lengths 

equivalent to approximately 40 independent draws. 

Exercise 5 

(i) The R-code below fits the genomic model using a single-site Gibbs sampling 
algorithm: 

# CODE1313 
# BAYES PROBLEMS II Exercise 5. GENOMIC MODEL
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# DATA BASED ON GENOMIC MODEL; OBTAIN SVD OF WW’(1/m) 
rm(list=ls()) # CLEAR WORKSPACE 
set.seed(12345) 
nindiv<-500 
nmark<-1000 
nt <- nindiv*nmark 

# GENERATE MARKER MATRIX FROM BINOMIAL DISTRIBUTION 
X<-matrix(nrow= nindiv,ncol= nmark,rbinom(n=nt,size=2,p=.5)) 
stdev <- matrix(data=NA,nrow= nmark,ncol=1) 
W <- matrix(data=NA,nrow= nindiv,ncol=nmark) 
U <- matrix(data=NA,nrow= nindiv,ncol= nindiv) 
G<-matrix(data=NA,nrow= nindiv,ncol= nindiv) 
cm <- colMeans(X) 
#CHOOSE VALUE FOR GENOMIC VARIANCE vgs 
vgs<-10 
#CHOOSE VALUE FOR ENVIRONMENTAL VARIANCE ves 
ves<-25 
# CREATE MATRIX OF STANDARDISED MARKER GENOTYPE CODES 
for (i in 1:nmark) 
{ 

W[,i] <-( X[,i]-cm[i]) / sd(X[,i]) 
} 
# GENERATE nindiv GENOMIC VAL FROM N(0,(1/nmark)WW’*vgs) 
#NOTE: MARKER VALUES ARE DRAWS FROM N(0,I sqrt(vgs/nmark)) 
g <- (1/sqrt(nmark))*W%*%rnorm(nmark,mean=0,sd=sqrt(vgs)) 
# GENERATE nindiv PHENOTYPES WITH MEAN 0, 
# VAR=vgs+ves, HERITABILITY=vgs/(vgs+ves) 
e<- rnorm(nindiv,mean=0,sd=sqrt(ves)) 
y <- g+ e 
# GENOMIC RELATIONSHIP MATRIX G 
G <- (1/nmark)*W%*%t(W) 
# SVD OF G 
EVD <- eigen(G) 
names(EVD) 

## [1] "values" "vectors" 

#head(EVD$values) 
U <- EVD$vector 
tU<-t(U) 
val <- EVD$values 
val[length(y)] <-0 
D <- diag(val,nrow=nindiv) 
#Dp IS A VECTOR WITH NON-ZERO EIGENVALUES 
Dp<-c(val[1:nindiv-1]) 
#INITIALISE Ve 
Ve<-5 
#INITIALISE Vg 
Vg<-5 
#INITIALISE k 
k<-Ve/Vg 
#INITIALISE VECTOR ALFA 
alfa<-rep(0,nindiv) 
# CHOOSE LENGTH OF GIBBS CHAIN 
rep<-4000 
#INITIALISE result 
result<-matrix(data=NA,nrow=rep,ncol=7)
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# START GIBBS CHAIN 
ptm<-proc.time() 

for (i in 1:rep) 
{ 
# print (i) 
# SAMPLE mu 
avmu<-sum(y-U%*%alfa)/nindiv 
varmu<-Ve/nindiv 
mu<-rnorm(1,mean=avmu,sd=sqrt(varmu)) 
#mu<-0 
# SAMPLE alfa1 (VECTOR OF LENGTH nindiv-1) 
meanalfa1<-(Dp/(Dp+k))*tU[1:nindiv-1,]%*%(y-mu) 
varalfa1<-((Dp)/(Dp+k))*Ve 
alfa1<-rnorm(nindiv-1,meanalfa1,sqrt(varalfa1)) 
alfa<-c(alfa1,0) 
# SAMPLE Vg 
# COMPUTE SCALE 
scVg<-sum(alfa1*alfa1*(1/Dp)) 
Vg<-scVg/rchisq(1,nindiv-3) 
#Vg<-0.0001 
# SAMPLE Ve 
# COMPUTE SCALE 
ystar<-y-mu-U%*%alfa 
scVe<-sum(ystar*ystar) 
Ve<-scVe/rchisq(1,nindiv-2) 
#Ve<-25 
k<-Ve/Vg 
result[i,]<-c(i,mu,Vg,Ve,Vg/(Vg+Ve),1/k,mean(alfa*alfa)) 

# print(result[i,]) 
} 
proc.time()-ptm 

## user system elapsed 
## 28.87 0.67 7.39 

# FUNCTION LOGLIK TO CONSTRUCT THE LOGLIKELIHOOD 
# TO COMPARE THE BAYESIAN RESULTS WITH OPTIM 
#NOTE: k IN THE LOGLIKELIHOOD IS Vg/Ve 
loglik<-function(data,par) 
{ 

mu<-par[1] 
ve<-par[2] 
k<-par[3] 
dkiinv<-diag(1/((val*k)+1),nrow=nindiv,ncol=nindiv) 
ll<- -0.5*(length(y)*log(ve)+sum(log((val*k)+1))+ 

(1/ve)*t(y-mu)%*%U%*%dkiinv%*%tU%*%(y-mu)) 
return(-ll) 

} 
result1<-optim(par=c(0.5,12,2),loglik,data=y,hessian=TRUE) 
result1$par 

## [1] -0.02250109 28.28775687 0.32911418 

vgml <- result1$par[2]*result1$par[3] 
solve(result1$hessian)
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## [,1] [,2] [,3] 
## [1,] 5.657552e-02 0.0003634452 -1.420182e-05 
## [2,] 3.634452e-04 13.2109992444 -5.162269e-01 
## [3,] -1.420182e-05 -0.5162269466 2.661989e-02 

meanmu <- mean(result[,2]) 
meanmu 

## [1] -0.02252344 

#apply(result[,2:6],2,mean) 
cimu <- quantile(result[,2],c(0.025,0.975)) 
cimu 

## 2.5% 97.5% 
## -0.4810972 0.4374214 

meanvg <- mean(result[,3]) 
meanvg 

## [1] 10.11903 

civg <- quantile(result[,3],c(0.025,0.975)) 
civg 

## 2.5% 97.5% 
## 3.210285 16.971752 

meanve <- mean(result[,4]) 
meanve 

## [1] 28.27113 

cive <- quantile(result[,4],c(0.025,0.975)) 
cive 

## 2.5% 97.5% 
## 22.05225 35.56460 

meanher <- mean(result[,5]) 
meanher 

## [1] 0.2624171
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ciher <- quantile(result[,5],c(0.025,0.975)) 
ciher 

## 2.5% 97.5% 
## 0.08389514 0.41867397 

meank <- mean(result[,6]) 
meank 

## [1] 0.3749238 

cik <- quantile(result[,6],c(0.025,0.975)) 
cik 

## 2.5% 97.5% 
## 0.09157809 0.72020512 

meanalfasq <- mean(result[,7]) 
meanalfasq 

## [1] 9.928053 

cialfasq <- quantile(result[,7],c(0.025,0.975)) 
cialfasq 

## 2.5% 97.5% 
## 3.17666 15.95473 

(ii) The code outputs the following quantities: 

.Ê (μ|y) = −0.02,

Ê
(
σ 2

g |y
)

= 10.12,

Ê
(
σ 2

e |y
)

= 28.27,

Ê
(
h2|y
)

= 0.26,

P̂r (−0.481 < μ < 0.437|y) = 0.95,

P̂r
(
3.21 < σ 2

g < 16.972|y
)

= 0.95,

P̂r
(
22.052 < σ 2

e < 35.565|y
)

= 0.95,

P̂r
(
0.084 < h2 < 0.419|y

)
= 0.95.
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The last lines at the bottom of the code (meanalfasq and cialfasq) show  
the Monte Carlo estimate of the mean and posterior interval of the genomic variance 
defined in (5.53) on page 234. 

(iii) Execution of the R-code on page 636 yields MC variances of Ê (μ|y), 

Ê
(
σ 2 

g |y
)
, Ê
(
σ 2 

e

)
and Ê

(
h2|y). These are 1.47 × 10−5, 0.23, 0.14 and 

1.41 × 10−4, respectively. The associated effective chain lengths are 3, 758, 
55, 84 and 54, revealing a high degree of autocorrelation for the draws from 
σ 2 

e |y, σ 2 
g |y and from the posterior distribution h2|y. A longer chain length 

than the one used here would result in less noisy estimates of MC estimates 
of posterior means. For example, executing the code setting the length of the 

Gibbs chain to 40, 000 results in a MC variance of Ê
(
σ 2 

g |y
)
equal to 0.04 and 

an effective chain length of 326, an increase of factor 6 for the latter. This leads 
to more precise estimates of features of posterior distributions. 

(iv) The likelihood is parametrised in terms of θ ′ = (μ, σ 2 
e , k). In order to 

derive the ML estimate of σ 2 
g , one proceeds as follows. Let λ

′ = g (θ)′ =(
μ, σ 2 

e , kσ 2 
e

)
, where kσ 2 

e = σ 2 
g . Using the transformation invariance property 

(see page 56) 

. ̂σ 2
g = k̂σ̂ 2

e = 9.31.

The asymptotic variance of λ is 

.Var
(̂
λ
) = ∂λ

∂θ ′

∣∣∣∣
θ=θ̂

Var
(
θ̂
) ∂λ′

∂θ

∣∣∣∣
θ=θ̂

. (13.71) 

In this expression (see page 54) 

. 
∂λ′

∂θ
=

⎡
⎢⎢⎣

∂μ
∂μ

∂σ 2
e

∂μ

∂kσ 2
e

∂μ

∂μ

∂σ 2
e

∂σ 2
e

∂σ 2
e

∂kσ 2
e

∂σ 2
e

∂μ
∂k

∂σ 2
e

∂k

∂kσ 2
e

∂k

⎤
⎥⎥⎦ =
⎡
⎣1 0 0
0 1 k

0 0 σ 2
e

⎤
⎦ .

When evaluated at the ML estimates, this gives: 

.
∂λ′

∂θ

∣∣∣∣
θ=θ̂

=
⎡
⎣ 1 0 0
0 1 0.3291142
0 0 28.2877569

⎤
⎦ .
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Using Var
(
θ̂
)
from the OPTIM output, (13.71) is  

. Var
(
μ̂, σ̂ 2

e , σ̂ 2
g

)
=
⎡
⎣ 0.00566 0.00036 −0.00028

0.00036 13.21010 −10.25614
−0.00028 −10.25614 13.12319

⎤
⎦ .

The frequentist 95% confidence interval for σ 2 
g is 

. Pr
(
9.31 − 1.96

√
13.12319 < σ 2

g < 9.31 + 1.96
√
13.12319

)

= Pr
(
2.21 < σ 2

g < 16.41
)

= 0.95

that is numerically in reasonable agreement with the McMC estimate of the 
Bayesian posterior interval. The chain of length 40, 000 leads to the 95% Bayesian 

posterior interval P̂r
(
2.25 < σ 2 

g < 16.92|y
)

= 0.95, quite in line with the frequen-
tist confidence interval. 

13.5 Prediction Exercises 

Exercise 1 

The following results are useful: 

.E (ŷ2) = E [E (y2|y1)] = E (y2) , (13.72) 

and

. Cov (ŷ2, y2) = E (ŷ2y2) − E (ŷ2)E (y2) , (13.73)

E (ŷ2y2) = E [E (ŷ2y2|y1)]
= E [̂y2 E (y2|y1)]
= E
(
ŷ2
2

)
.

Using (13.72) in (13.73) 

.Cov (ŷ2, y2) = Var (ŷ2) . (13.74) 

Similar algebra yields

.Cov (ĝ2, g2) = Var (ĝ2) .
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1. Given the model, the variance in the training data is 

. Var (y1) = σ 2
g (G11 + Iλ) = σ 2

g T , λ = σ 2
e

σ 2
g

, T = (G11 + Iλ) .

. ̂y2 = E (y2|y1) = μ2 + G21T
−1 (y1 − 1μ1) .

Then, 

. Var (ŷ2) = G21T
−1
(
T σ 2

g

)
T −1G12

= G21T
−1G12σ

2
g ,

Also, given the model, 

. ̂g2 = E (g2|y1) = G21T
−1 (y1 − 1μ1) .

Then 

. Var (ĝ2) = G21T
−1G12σ

2
g

= Var (ŷ2) .

2. The prediction error variances are 

. Var (y2 − ŷ2) = Var (y2) − Var (ŷ2) = E [Var (y2|y1)] = Var (y2|y1) ,

Similarly, 

. Var (g2 − ĝ2) = Var (g2) − Var (ĝ2) = E [Var (g2|y1)] = Var (g2|y1) ,

where the last equalities in the right-hand sides hold in the Gaussian setup 
because the conditional variances do not depend on y. 

3. The squared correlations or prediction accuracies are 

.R2 (g2, ĝ2) = [Cov (g2, ĝ2)]2

Var (g2)Var (ĝ2)

= Var (ĝ2)

Var (g2)
,
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equal to the proportion of the additive genetic variance captured by the linear 
predictor . ̂g2. Similarly 

. R2 (y2, ŷ2) = [Cov (y2, ŷ2)]2

Var (y2)Var (ŷ2)

= Var (ŷ2)

Var (y2)

= Var (ĝ2)

Var (y2)

Var (g2)

Var (g2)

= h2R2 (g2, ĝ2) . (13.75) 

4. .R2 (g2, ĝ2) can be written as 

. R2 (g2, ĝ2) = Var (ĝ2)

Var (g2)

= Var (g2) − E [Var (g2|y1)]
Var (g2)

.

As the size of the training data . n1 increases, given that the data structure is such 
that this leads to a steady increase of information about the scalar . g2, the posterior 
variance .Var (g2|y1) decreases and .R2 (g2, ĝ2)will increase towards 1. Therefore 
in (13.75), the upper limit of .R2 (y2, ŷ2) is equal to . h2. 

5. 

. E (MSEv) = Ey1y2 (y2 − ŷ2)
2

= Ey1y2

(
y2
2 + ŷ2

2 − 2y2ŷ2
)

= Ey2

(
y2
2

)
+ Ey1

(
ŷ2
2

)
− 2Ey1y2 (y2ŷ2)

= Var (y2) + [E (y2)]
2 + Var (ŷ2) + [E (ŷ2)]

2

−2 [Cov (y2, ŷ2) + E (y2)E (ŷ2)]

= Var (y2) + Var (ŷ2) + [E (y2) − E (ŷ2)]
2 − 2Cov (y2, ŷ2)

= Var (y2) − Var (ŷ2)

because .E (y2) = E (ŷ2) and .Cov (y2, ŷ2) = Var (ŷ2). This expression is equal 
to .Var (y2 − ŷ2), the prediction error variance. The equality holds when the
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predictor is based on the conditional mean. Indeed, by definition of variance 

. Var (y2 − ŷ2) = E
[
(y2 − ŷ2)

2
]

− [E (y2 − ŷ2)]
2

= E(MSE) − [E (y2) − E (ŷ2)]
2

= E(MSE)

when .E (y2) = E (ŷ2). 

The assumption throughout is that expectations are computed over the true 
model. For example, the conditional mean is 

. ̂y2 = E (y2|y1) =
∫

y2p (y2|y1) dy2

and this requires knowledge of .[y2|y1], not only its form but also of the parameters 
that index this distribution. 

Exercise 2 

1. The frequentist expectation of the validating mean squared error (12.35), given 
x0, is  

. Eyy0 (MSEv) = Ey0

(
y2
0

)
+ Ey

(
ŷ2
0

)
− 2Ey0 (y0)Ey

(
ŷ0
)

= Var (y0) + (E (y0))
2 + Var

(
ŷ0
)+ (E (ŷ0))2

−2Ey0 (y0)Ey

(
ŷ0
)

= Var (y0) + Var
(
ŷ0
)+ (E (y0 − ŷ0

))2
as in (6.51). Due to independence, Eyy0

(
y0 ŷ0
) = Ey0 (y0)Ey

(
ŷ0
)
. The first term 

represents sampling variation of a new record; the second accounts for variation 
of the predictor over replications of training data, and the third is an average 
squared bias. 

2. The algebra of the Bayesian calculation (given x0) is based on taking expecta-
tions over the posterior predictive distribution of ŷ0, [ŷ0|y]: 

. E (MSEv |y, y0) = y2
0 + E
(
ŷ2
0 |y
)

− 2y0 E
(
ŷ0|y
)

= y2
0 + σ 2 + Varθ |y

(
x′
0θ
)+ (E (ŷ0|y))2

−2y0 E
(
ŷ0|y
)

= σ 2 + Varθ |y
(
x′
0θ
)+ (y0 − E

(
ŷ0|y
))2

. (13.76)
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The first term accounts for sampling variation of a new validating datum; 
the second represents the propagated posterior uncertainty of parameter θ to 
the conditional mean of the predictor ŷ0, given  θ (the sharper the posterior 
distribution of θ , the smaller the size of this term); the third is the squared 
discrepancy between the observed validating datum y0 and the expected value 
of the predictor, taken over its posterior predictive distribution (see (10.4a)). In 
the second line, I used (see (10.4b)) 

. Var
(
ŷ0|y
) = E

(
ŷ2
0 |y
)

− (E (ŷ0|y))2
= σ 2 + Varθ |y

(
x′
0θ
)
,

E
(
ŷ2
0 |y
)

= σ 2 + Varθ |y
(
x′
0θ
)+ (E (ŷ0|y))2 .

On the other hand, if instead of predicting single records, a Bayesian predictor 
ŷ0 = x′

0θ
∗ is constructed drawing θ∗ from the posterior distribution [θ |y], then, 

taking expectations over [θ |y] 

. E (MSEv |y, y0) = y2
0 + E
((

x′
0θ
)2 |y
)

− 2y0 E
(
x′
0θ |y)

= Varθ |y
(
x′
0θ
)+ (y0 − E

(
x′
0θ |y))2 ,

which is equal to the last two terms in (13.76). This is so because in the linear model, 
with ŷ0 = x′

0θ 

. Ey0|y
(
ŷ0|y
) = Eθ |y

(
x′
0θ |y)

(see (10.4a)). The expectation of MSEv in (13.76) has an extra term accounting for 
the sampling variance of the draw of the predictor from

[
ŷ0|θ,  y

]
. 

Exercise 3 

Case 1. When training data . yt are treated as fixed, .E(ŷv − yv) = ŷv − E(yv), 
.Var(ŷv − yv) = Var(yv) and 

.E
(
ŷv − yv

) = 1μ̂ − 1μ.

Var
(
ŷv − yv

) = V = Iσ 2.
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Let .A = 1
σ 2 I . Then .AV = I , an  .nv × nv identity matrix (idempotent). It follows 

that 

. 
1

σ 2

(
ŷv − yv

)′ (
ŷv − yv

) ∼ χ2 (r (A) , λ) .

Since .r (A) = nv , .λ = 1
σ 2 (1μ̂ − 1μ)′ (1μ̂ − 1μ), then, 

. MSEv = σ 2

nv

χ2 (nv, λ) .

Using (12.31a) 

. E (MSEv) = σ 2

nv

(
nv + 1

σ 2 (1μ̂ − 1μ)′ (1μ̂ − 1μ)

)

= σ 2 + (μ̂ − μ)2. (13.77) 

The first term in the right-hand side of (13.77) represents sampling uncertainty of 
. yv , and the second represents the squared difference between the predictor and the 
expected value of the predictand. 

Using (12.31b) the variance is 

.Var (MSEv) =
(

σ 2

nv

)2 (
2nv + 4

σ 2 (1μ̂ − 1μ)′ (1μ̂ − 1μ)

)
. (13.78) 

Case 2. When training data are treated as random and validating data as fixed 

. E
(
ŷv − yv

) = 1nvμ − yv

Var
(
ŷv − yv

) = 1nv1
′
nv

σ 2

nt

,

where . 1nv is a column vector of . 1′s with . nv elements. 
Consider the quadratic form: 

. 
1

σ 2

(
ŷv − yv

)′
(ŷv − yv) = (ŷv − yv

)′
A
(
ŷv − yv

)

where .A = I 1
σ 2 . Then AV is idempotent, as shown below: 

.AV AV =
(
11′ 1

nt

)(
11′ 1

nt

)

=
(
11′ 1

nt

)
.
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It follows that 

. 
1

σ 2 (ŷv − yv)
′ (ŷv − yv) ∼ χ2

(
r (A) ,

1

σ 2 (1μ − yv)
′ (1μ − yv) ,

)

a chi-square distribution with .r (A) = nv degrees of freedom and non-centrality 
parameter . 1

σ 2 (1μ − yv)
′ (1μ − yv). Then the sample validating mean squared error 

is a draw from 

. MSEv = σ 2

nv

χ2
(

r (A) ,
1

σ 2 (1μ − yv)
′ (1μ − yv)

)

and has expected value 

. E (MSEv) = σ 2

nv

[
nv

nt

+ 1

σ 2 (1μ − yv)
′ (1μ − yv)

]

= σ 2

nt

+ 1

nv

nv∑
i=1

(
yvi

− μ
)2

.

The first term represents sampling variance of . μ̂ and the second is the average 
squared difference between the validating records and the expected value of their 
predictions. 

Case 3. When both the training and the validating data are treated as random, the 
mean squared error is not proportional to a chi-square distribution. However, its 
expected value can be computed using (12.32). 

In this case 

. E
(
ŷv − yv

) = E
(
1nv μ̂ − 1nvμ

)
= (1nvμ − 1nvμ) = 0,

Var
(
ŷv − yv

) = 1nv1
′
nv

σ 2

nt

+ Invσ
2.

Then, 

. E (MSEv) = 1

nv

tr
[
Var
(
ŷv − yv

)]

= σ 2

nv

(
nv

nt

+ nv

)

= σ 2
(
1

nt

+ 1

)
. (13.79)
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The first term accounts for the sampling variance of theML estimator and the second 
for the sampling variance of the validating records. There is no third term because 
the expectation of .

(
ŷv − yv

)
over the distribution of .(yv, yt ) is zero. 

To compute .E (MSEt ), I use  

. ̂yt = 1nt

(
1nt 1

′
nt

)−1 1nt yt

= Hyt

where H is idempotent. Then with . H1nt = 1nt

. E
(
ŷt − yy

) = 0.

The variance is 

. Var
(
Hyt − yy

) = Hσ 2 + Iσ 2 − 2Hσ 2

= (Int − H
)
σ 2.

Therefore, 

. E (MSEt ) = σ 2

nt

tr
(
Int − H

)

= σ 2

nt

(nt − 1) .

The average difference between validating and training mean squared errors 

. E (MSEv) − E (MSEt ) = σ 2
(
1

nt

+ 1

)
− σ 2

nt

(nt − 1)

= 2
σ 2

nt

.

This is the expected optimism (see (6.68)) as coined by Efron (1986), the extent 
by which, the .MSE based on training data underestimates the validating .MSE, on  
average. 

Exercise 4 

1. 

(a) In the first scenario, assuming y∗
v is a draw from yv|μ̂, yt ∼ N

(
1μ̂, Iσ 2

)

.E
(
y∗
v − yv

) = 1μ̂ − yv.
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Let 

. z = 1

σ

(
y∗
v − yv

)
.

Then, 

. z|yv ∼ N

(
1

σ

(
1μ̂ − yv

)
, I

)

and therefore, 

. z′z|yv ∼ χ2 (nv, λ) ,

where the non-centrality parameter is 

. λ = E (z|yv)
′ E (z|yv) = 1

σ 2

(
1μ̂ − yv

)′ (1μ̂ − yv

)
.

In terms of z, the validating MSEv is 

. MSEv = σ 2

nv

z′z

and therefore, using (12.31), 

.E (MSEv) = σ 2

nv

(
nv + 1

σ 2

(
1μ̂ − yv

)′ (1μ̂ − yv

))
, . (13.80a) 

Var (MSEv) =
(

σ 2 

nv

)2 (
2nv + 

4 

σ 2

(
1μ̂ − yv

)′ (1μ̂ − yv

))
. (13.80b) 

The first term in the right-hand side of (13.80a) accounts for the sampling 
variance associated with the generation of predicted validating records y�

v . 
(b) In this second scenario, the posterior distribution of μ is 

. μ|yt ∼ N

(
μ̂,

σ 2

nt

)
,

where in this model, the posterior mean μ̂ takes the same form as the ML 
estimator. The vector of predicted validating records is 

.̂yv = 1nvμ.
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The computation of MSEv requires 

. E
(
ŷv|yt

) = Eμ|yt

[
E
(
ŷv|μ
)]

= Eμ|yt

[
1nvμ
] = 1nv μ̂

and 

. Var
(
ŷv|yt

) = Eμ|yt

[
Var
(
ŷv|μ
)]+ Varμ|yt

[
E
(
ŷv|μ
)]

= Varμ|yt

(
1nvμ
) = 1nv1

′
nv

σ 2

nt

.

Therefore, 

. E
(
ŷv − yv

) = 1nv μ̂ − yv,

Var
(
ŷv − yv

) = 1nv1
′
nv

σ 2

nt

,

and 

. E (MSEv) = 1

nv

E
[
(ŷv − yv)

′ (ŷv − yv)
]

= 1

nv

[
σ 2

nt

tr
(
1′
nv
1nv

)+ (1nv μ̂ − yv

)′ (1nv μ̂ − yv

)]

= σ 2

nt

+ 1

nv

(
1nv μ̂ − yv

)′ (1nv μ̂ − yv

)
. (13.81) 

The first term on the right-hand side is the contribution from the posterior 
uncertainty of μ, and the second term is the average squared discrepancy 
between the validating observations and the validating mean predictions. 

(c) The third scenario is based on the hierarchical model defined in (12.41). 
Under this model, the validating mean squared error does not reduce to a 
chi-square variable. An analytic expression for the expected value of MSEv 
is derived using the formula for the expectation of a quadratic form (12.32). 
Under the hierarchy defined in (12.41), dropping the subscript nv in 1nv 

.E (yv|yt ) = Eμ|yt [E (yv|μ, yt )]

= Eμ|yt (1μ) = 1μ̂
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and 

. Var (yv|yt ) = E [Var (yv|μ, yt )] + Var [E (yv|μ, yt )]

= Iσ 2 + 11′ σ 2

nt

.

Then, 

. E
(
y�
v − yv

) = (1μ̂ − yv

)
,

Var
(
y�
v − yv

) = Iσ 2 + 11′ σ 2

nt

,

where the random variable y�
v , the vector of predicted validating records, is 

drawn from the posterior predictive distribution [yv|yt ]. Since A = I , using  
(12.32), it follows that the expected value of the validating mean squared 
error is 

. E (MSEv) = 1

nv

[
(1μ̂ − yv)

′ (1μ̂ − yv) + σ 2
(
tr

(
Inv + 1

nt

tr
(
11′)))]

= σ 2 + σ 2

nt

+ 1

nv

(1μ̂ − yv)
′ (1μ̂ − yv) . (13.82) 

2. The difference in MSEv between (13.80) and (13.82) is the  term  σ
2 

nt 
that reflects 

posterior uncertainty of μ. 
As indicated in (13.79), the frequentist expectation of MSEv taken over the 

distribution of training and validating data generates a term that accounts for the 

sampling uncertainty of μ̂ (the term σ
2 

nt 
). The estimator is unbiased and therefore 

there is no third term contributing the E(MSEv). 
Exercises 1 and 2 illustrate that the expectation of MSE derived either from 

frequentist or from Bayesian perspectives contain similar terms. The distribution 
over which the expectation is computed determines the breakdown of E(MSE). 
In the frequentist approach, expectations are taken over the training data, or 
the validating data, or both. The Bayesian counterpart conditions on training 
and validating data; expectations are computed over the posterior distribution 
of parameters, or over the conditional distribution of simulated records, given 
parameters. These are draws from the same distribution as the validating records. 
Alternatively and to account for both sources of uncertainty, one resorts to 
the hierarchical model (12.41), and expectations are taken over the posterior 
predictive distribution of predicted values of validating data.
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Exercise 5 

All computations are conditional on the variance components that are assumed 
known. 

1. The exact distribution of .MSEv when validating predictions . y∗
v are drawn from 

the distribution .[yv|μ̂, b̂, yt ] can be obtained as follows. Let 

. z = 1

σe

(
y∗
v − yv

)
,

⇒ z|μ̂, b̂, yv ∼ N

(
1

σe

(
1vμ̂ + Wvb̂ − yv

)
, I

)
.

Then, 

. z′z ∼ χ2 (nv, λ) ,

because .A = Iσ−2
e , .V = Iσ 2

e and .AV = I , an idempotent matrix. The non-
centrality parameter is 

. λ = E
(
z|μ̂, b̂, yv

)′
E
(
z|μ̂, b̂, yv

)

= 1

σ 2
e

(
1vμ̂ + Wvb̂ − yv

)′ (
1vμ̂ + Wvb̂ − yv

)
.

In terms of z, the validating mean squared error is 

. MSEv = σ 2
e

nv

z′z.

Using (12.31), it follows that 

. E (MSEv) =

=
(

σ 2
e

nv

)(
nv + 1

σ 2
e

(
1vμ̂ + Wvb̂ − yv

)′ (
1vμ̂ + Wvb̂ − yv

))
. (13.83a) 

Var (MSEv) =

=
(

σ 2
e

nv

)2 (
2nv + 4

σ 2
e

(
1vμ̂ + Wvb̂ − yv

)′ (
1vμ̂ + Wvb̂ − yv

))
. (13.83b)

The R-code below generates n individuals each genotyped for p covariates
(genetic markers). Among these genetic markers, nqtl are chosen as causal
genotypes. The gene substitution effects of these causal loci are chosen to generate
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an additive genetic variance equal to 10 squared units, and the heritability of the 
continuous trait is set equal to . 0.5. The data y are divided into a training . yt and a 
validating set . yv , each of size . n/2. Let  W represent the centred and scaled matrix 
X, where .X = {Xij

}
is an .n/2×p observed matrix with genotypic codes . Xij equal 

to .0, 1, 2 according to the number of the arbitrarily chosen allele of individual i and 
marker j . 

The operational model is defined in terms of the following distributions: 

.yt |μ, b, σ 2
e ∼ N

(
1μ + Wb, Iσ 2

e

)
, . (13.84a) 

b|σ 2 
b ∼ N

(
0, Iσ 2 

b

)
, (13.84b) 

where . yt is a vector of records of length . n/2, . μ is an unobserved mean, b is a vector 
of unknown genetic marker effects of length p, 1 is a vector of . 1′s of length . n/2, . σ 2

e

is the residual variance and . σ 2
b reflects prior uncertainty for each element of b. The  

two variance components are assumed known: 

# CODE1314 
# PREDICTION EXERCISE 5 
rm(list=ls()) # CLEAR WORKSPACE 
set.seed(123) 
nindiv<-100 
nmark <- 500 
nt <- nindiv*nmark 
# NUMBER QTL 
nqtl <- 50 

# GENERATE MARKER MATRIX FROM BINOMIAL DISTRIBUTION 
X<-matrix(nrow=nindiv,ncol=nmark,rbinom(n=nt,size=2,p=.5)) 
######################################################### 
# CHOOSE VALUE FOR MEAN mu AND GENOMIC VARIANCE vgs 
mu <- 10 
vgs<-10 
# CHOOSE VALUE FOR ENVIRONMENTAL VARIANCE ves 
ves<-20 
her <- vgs/(vgs+ves) 

btrue<-matrix(data=0.0,nrow=nmark,ncol=1) # parameter from 
# true model 
IDq<-sample(1:nmark,nqtl,replace=F) # from the nmark markers, 
# choose nqtl as QTL 
QTLeff<-sqrt(vgs/nqtl)# calculate the QTL effect so that the 
# total genetic variance is VA 
btrue[IDq]<-QTLeff # the only b’s that are not zero are those 
# associated with QTL. 
W <- matrix(data=NA,nrow= nindiv,ncol=nmark) 
cm <- colMeans(X) 
# CREATE MATRIX OF STANDARDISED MARKER GENOTYPE CODES 
for (i in 1:nmark) 
{ 

W[,i] <-( X[,i]-cm[i]) / sd(X[,i]) 
} 
# more efficiently, could use: 
# W <- scale(X)
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# GENERATE nindiv PHENOTYPES WITH MEAN 0, VAR=vgs+ves, 
# HERITABILITY=vgs/(vgs+ves) 
e<- rnorm(nindiv,mean=0,sd=sqrt(ves)) 
y <- mu  + W%*%btrue+ e 
k <- (ves/vgs)*nmark # ratio of residual to 
# genomic variance Vb = vgs/nmark 
train <- sample(1:nrow(W),floor(0.5*nrow(W))) 
Xt <- W[train,] 
yt <- y[train] 
Xv <- W[-train,] 
yv <- y[-train] 
Zt <- cbind(1,Xt) 
Zv <- cbind(1,Xv) 
##################### 
# ridge regression coefficient matrix, rhs & solution solt 
RHSt <- crossprod(Zt,yt) 
LHSt <- crossprod(Zt) 
LHSt[-1,-1] <- LHSt[-1,-1]+diag(k,nrow=nrow(LHSt)-1) 
solt <- solve(LHSt,RHSt) 
# PREDICTION, CONDITIONAL ON ESTIMATED PARAMETERS (solt) 
predval <- Zv%*%solt # VALIDATING 
predtrain <- Zt%*%solt # TRAINING 

The R-code below generates a MC estimate of the posterior distribution 
of the .MSEv , where the validating predictions are drawn from the distribution 
.[yv|μ̂, b̂, yt ]. 
# CODE1314 (cont) 
# COMPUTE SAMPLING DISTRIBUTION OF MSE, CONDITIONAL ON 
# (mu_hat,b_hat) AND VARIANCES 
rep <- 10000 
res1 <- matrix(data=NA, nrow=rep,ncol=1) 

meany <- predval 
vary <- diag(ves,nrow=length(yv)) 
ptm <- proc.time() 
for (i in 1:rep){ 

yrep <- rnorm(length(yv),meany,sqrt(ves)) 
mse1 <- mean((yrep-yv)^2) 
ztz <- (1/ves)*sum((yrep-yv)^2) 
res1[i,] <- mse1 

} 
proc.time()-ptm 

## user system elapsed 
## 0.70 0.01 0.21 

meanmsev <- apply(res1,2,mean) 
meanmsev 

## [1] 52.34182
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varmsev <- apply(res1,2,var) 
varmsev 

## [1] 67.52094 

ncp <- sum((yv-meany)^2)/ves 
expmse <- (ves/length(yv))*(length(yv)+ncp) 
expmse 

## [1] 52.35257 

varmse <- (2* length(yv) + 4*ncp)*(ves/length(yv))^2 
varmse 

## [1] 67.76411 

expQF <- ves + (mean((yv-meany)^2)) 
expQF 

## [1] 52.35257 

The MC estimates of the mean and variance are 52.342 and 67.521. These agree 
well with the exact results, 52.353 and 67.764 obtained from (13.83). The last line of 
the code computes the expected value of .MSEv using the formula for the expectation 
of a quadratic form, which, of course, agrees with the mean of the scaled chi-square 
distribution. 

2. The validating mean squared error arising from this model does not reduce to 
a chi-square variable. However an analytic expression for the expected value of 
.MSEv based on the expectation of a quadratic form can be derived as follows. 
First express the hierarchical model as 

. θ∗|yt ∼ N
(
θ̂ , C−1

t σ 2
e

)
,

y∗
v |θ∗, yt ∼ N

(
Zvθ

∗, Iσ 2
e

)
,

where 

. θ = (μ, b) ,

Zv = (1Wv) .

The solution to the linear system, . θ̂ , is  

.Ct θ̂ = Z′
t yt ,
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and 

. Ct =
[
1′1 1′Wt

W ′
t 1 W ′

t Wt + Ik

]
, k = σ 2

e

σ 2
b

.

Then 

. E
(
y∗
v |yt

) = Eθ∗|yt

[
E
(
y∗
v |θ∗, yt

)] = Eθ∗|yt

(
Zvθ

∗) = Zvθ̂,

and 

. Var
(
y∗
v |yt

) = Eθ∗|yt

[
Var
(
y∗
v |θ∗, yt

)]+ Varθ∗|yt

[
E
(
y∗
v |θ∗, yt

)]
= Iσ 2

e + ZvC
−1
t Z′

vσ
2
e .

Therefore, conditional on the complete data .y′ = (y′
t , y

′
v

)
, 

. E (MSEv) = 1

nv

E
[(

y∗
v − yv

)′ (
y∗
v − yv

)]

= 1

nv

[
tr
(
σ 2

e

(
I + ZvC

−1
t Z′

v

))
+ (Zvθ̂ − yv

)′ (
Zvθ̂ − yv

)]

= σ 2
e + σ 2

e

nv

tr
(
ZvC

−1
t Z′

v

)
+ 1

nv

(
Zvθ̂ − yv

)′ (
Zvθ̂ − yv

)
.(13.85) 

The first term is the contribution from sampling variation of validating predic-
tions, the second reflects the propagated posterior uncertainty of . θ , and the third 
is an average squared discrepancy between the observed validating records and the 
predictions. 

3. The R-code below applies the method of composition to obtain draws from 
the posterior predictive distribution of . yv and constructs the validating mean 
squared error based on these draws: 

# CODE1314 (cont) 
# METHOD OF COMPOSITION: 
# (ACCOUNTING FOR UNKNOWN LOCATION PARAMETERS) 
# 1. USING TRAINING DATA Yt, SAMPLE THETA* ~ THETA|Yt 
# 2. SAMPLE VALIDATING DATA Yv* ~ Yv|THETA* 
# 3. COMPUTE VALIDATION MSEv = MEAN((Yv*-Yv)^2) 
# 4. GOTO 1 UNTIL ENOUGH SAMPLES 
rep <- 1000 
res2 <- matrix(data=NA, nrow=rep,ncol=2) 
theta <- solt 
Cinv <- solve(LHSt)
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ch <- chol(Cinv*ves) 
varcov <- Cinv*ves 
ptm <- proc.time() 
for (i in 1:rep){ 
# print(i) 

theta <- solt + t(ch)%*%rnorm(length(theta),0,1) 
# DRAWS FROM THE VALIDATING DATA: 

ystarval <- rnorm(length(yv),Zv%*%theta,sqrt(ves)) 
# DRAWS FROM THE TRAINING DATA: 

ystartrain <- rnorm(length(yt),Zt%*%theta,sqrt(ves)) 

mse2val <- mean((ystarval-yv)^2) # VALIDATION MSE 
mse2train <- mean((ystartrain-yt)^2) # TRAINING MSE 
res2[i,] <- c(mse2val,mse2train) 

} 
proc.time()-ptm 

## user system elapsed 
## 6.51 0.15 1.50 

# hist(res2[,1]) 
apply(res2,2,mean) 

## [1] 62.99294 43.39716 

meanmse2val <- mean(res2[,1]) 
varmse2val <- var(res2[,1]) 
interm <- Zv%*%Cinv%*%t(Zv) 
expQF <- ves + (ves*sum(diag(interm)))/length(yv) + 

mean((predval-yv)^2) 
expQF 

## [1] 62.65027 

The MC estimate of the mean validating mean squared error 62.993 agrees well 
with the theoretical result 62.65 obtained from (13.85). The posterior uncertainty 
of .[θ |yt ] propagates onto the distribution of the validating mean squared error. As a 
consequence, the mean validating mean squared error is larger than the one obtained 
when the calculation is conditional on .θ = θ̂ . The posterior variance of .MSEv , equal 
to 116.464, is also considerably larger. 

The attraction of the Monte Carlo approach is that it generates an estimate of the 
complete marginal posterior distribution of MSE.
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Exercise 6 

1. The linear predictor is 

. ̂y = W
[
W ′W + Σ

]−1
W ′y

= Hy.

Contrary to the non-hierarchical case the “hat” matrix H is not idempotent: 

The expected optimism is 

. 
2

n
tr
[
Cov
(
y, ŷ′)] = 2

n
tr
(
Cov
(
y, ŷ′))

= 2

n
tr
(
Cov
(
y, y′H ′))

2

n
tr
[
Cov
(
y, y′W

[
W ′W + Σ

]−1
W ′)]

= 2

n
tr
[
V W
[
W ′W + Σ

]−1
W ′] (13.86) 

where V = Var (y) = ZZ′σ 2 
f + Iσ 2 = σ 2

(
ZZ′ σ 2 

f 
σ 2 + I

)
= σ 2Ṽ . An additive 

genetic model without non-genetic sources of covariation between full-sibs imposes 
the constraint 0 < σ 2 

f ≤ σ 2. 
The R-code below generates the full-sib family data, constructs the mixed model 

equations, the predictor (fitted values), and obtains an expression for expected 
optimism. The bottom part of the code generates a Monte Carlo estimate of expected 
optimism: 

# CODE1315 
#FULL-SIB CONTINUOUS DATA 
rm(list=ls()) # Clear the workspace 
set.seed(123771) 
ptm<-proc.time() 
require(graphics) 
# INITIALISE PARAMETERS 
mus<-10 # MEAN 
vfs<-1 #VARIANCE BETWEEN FULL-SIBS 
#vfs<-0.5 #VARIANCE BETWEEN FULL-SIBS 
#vfs <- 0.1 
# RESIDUAL VARIANCE 
ves<-5 
k <- ves/vfs 
nf<-500 # NUMBER OF FULL-SIB FAMILIES 
n<-2 # FULL-SIB FAMILY SIZE 
nb <- 2 # NUMBER OF BREEDS 
N<-nf*n # TOTAL NUMBER OF RECORDS 
y<-matrix(data=0,nrow=nf*n,ncol=1) 
z<-matrix(data=0,nrow=nf*n,ncol=1)
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# GENERATE nf FULL-SIB EFFECTS fs 
fs<-rnorm(nf,mean=0,sd=sqrt(vfs)) 
# BREED EFFECTS 
br <- rep(0,nb) 
br[1] <- 5 
br[2] <- 8 
# GENERATE nf*n RESIDUAL EFFECTS 
es<-rnorm(nf*n,mean=0,sd=sqrt(ves)) 
################################################ 
## GENERATING A FULL-SIB STRUCTURE 
b <- rep(1:nb,each=N/2) 
z <- rep(1:nf,each=n) 
y <- br[b] + fs[z] + es 
d <- data.frame(y,z) 
################################################ 
d<-data.frame(y,z) 
# GENERATE INCIDENCE MATRICES X & Z 
family <- z 
breed <- b 
family <- as.factor(family) 
breed <- as.factor(breed) 
X<-model.matrix(~0+breed) 
Z<-model.matrix(~0+family) 
W <- cbind(X,Z) 
LHS <- crossprod(W) # LHS OF MME 
LHS[-(1:2),-(1:2)]<-LHS[-(1:2),-(1:2)]+diag(k,nrow=nrow(LHS)-2) 
RHS <- crossprod(W,y) # RHS OF MME 
SOL <- solve(LHS,RHS) # SOLUTION 
HAT <- W%*%solve(LHS)%*%t(W) 
V <- Z%*%t(Z)*vfs + diag(ves,nrow=length(y)) 
COVyyhat <- sum(diag(V%*%t(HAT))) 
lambda <- 1/k 
Vtilde <- (Z%*%t(Z)*lambda + diag(1,nrow=length(y))) 
df <- sum(diag(Vtilde%*%HAT)) 
yhat <- HAT%*%y 
MSEt <- mean((y-yhat)^2) 
MSEt 

## [1] 4.754883 

optim1 <- 2*COVyyhat/length(y) 
optim1 

## [1] 2.02 

MSEv <- MSEt + optim1 
MSEv 

## [1] 6.774883 

The analytical results yield an expression for expected optimism (parameter 
optim1 in the bottom of the code) based on (13.86) equal to 2.02. The sample
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training mean squared error is 

. MSEt = 1

n

N∑
i=1

(yi − ŷi )
2

equal to 4.75. Therefore the estimate of the validating mean square error is 

. MSEv = MSEt +2

n
tr
(
Cov
(
y, ŷ′))

equal to 6.77 (parameter MSEv at the bottom of the code). 

2. The R-code below generates a Monte Carlo estimate of expected optimism 
using a parametric bootstrap: 

# CODE1315 (cont) 
# MONTE CARLO ESTIMATE OF OPTIMISM 
## SIMULATE DATA & STORE Y, YHAT 
rep <- 1000 
gemY <- matrix(data=NA,nrow=rep,ncol=length(y)) 
gemYHAT <- matrix(data=NA,nrow=rep,ncol=length(y)) 

br[1] <- SOL[1] 
br[2] <- SOL[2] 
for (i in 1:rep){ 

fs<-rnorm(nf,mean=0,sd=sqrt(vfs)) 
es<-rnorm(nf*n,mean=0,sd=sqrt(ves)) 
y <- br[b] + fs[z] + es 
RHS <- crossprod(W,y) 
SOL <- solve(LHS,RHS) 
yhat <- W%*%SOL 
gemY[i,] <- y 
gemYHAT[i,] <- yhat 

} 
sumcov <- 0 
## COMPUTE SUM(COV(Y,YHAT)) 
for (i in 1:length(y)){ 

sumcov <- sumcov + cov(gemY[,i],gemYHAT[,i]) 
} 
##################################### 
## A MORE EFFICIENT AND LESS TRANSPARENT CODE IS 
# sumcov <-
# sum(sapply(1:length(y),FUN=function(i) 
# {cov(gemY[,i],gemYHAT[,i])})) 
##################################### 
sumcov
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## [1] 1010.313 

optim2 <- 2*sumcov/length(y) 
optim2 

## [1] 2.020626 

The Monte Carlo estimate of expected optimism, conditional on the model 
(parameter optim2 in the bottom of the code), based on 1, 000 replications of 
data, is equal to 2.0206. This compares well with the analytical result. 

Degrees of Freedom 

An expression for the model’s degrees of freedom (or effective number of parame-
ters) is  

.df = 1

σ 2 tr
(
Cov
(
y, ŷ′)) , (13.87) 

(Hastie et al 2009) that for the present setup gives 

. df = tr
[
Ṽ W
[
W ′W + Σ

]−1
W ′] .

Setting .σ 2
f = 1 and .σ 2 = 5 results in an estimate of the model’s degrees of 

freedom or effective number of parameters based on (13.87) equal 202 (parameter 
df in the code). 

This estimate depends on the ratio .σ 2
f

/
σ 2. To illustrate, setting . σ 2

f to a very 

small number in the code above (say, .σ 2
f = 10−5) produces an estimate of the 

model’s degrees of freedom of .2.00 (rounded off to two decimal places). This is 
equal to the number of breeds. A simple way to understand this result is by studying 
the linear system (12.46). The model for a scalar record can be written 

. yijk = bi + fij + eijk,

where . bi is the fixed effect of breed i, . fij is the random effect of family j nested 
in breed i and .eijk is the residual associated with record k of family j in breed i. A  
closer look at the mixed model equations (12.46) reveals that the equation for the 
ij th family is 

.nob̂i +
(

no + σ 2
f

σ 2

)
f̂ij = yij.
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where . yij. is the sum of the records belonging to the ij th family. A little algebra 
shows that for the data structure of the example 

. f̂ij = (yij. − nob̂i

)− (no − 1) σ 2
f + σ 2

noσ
2
f + σ 2

(
yij. − nob̂i

)
.

When .σ 2
f → 0, .f̂ij → 0 and when .σ 2

f → σ 2 (its maximum value, given the 
constraint), 

. f̂ij → 1

(no + 1)

(
yij. − nob̂i

)
.

The first case, .σ 2
f → 0, sets family effects equal to zero, and the model’s degrees of 

freedom correspond to the number of breeds, equal to 2. 
Imagine that instead of parametrising the model as in (12.45), the random family 

effects are integrated out yielding the alternative form: 

. y|b ∼ N
(
Xb, σ 2Ṽ

)
.

The generalised least squares estimator of b is 

. ̂b =
(
X′Ṽ −1X

)−1
X′Ṽ −1y.

The vector of fitted values is .̂y = Xb̂ and the degrees of freedom of the integrated 
parametrisation are 

. df = 1

σ 2 tr
[
Cov
(
y, ŷ′)]

= 1

σ 2
tr

[
Cov

(
y, y′Ṽ −1X

(
X′Ṽ −1X

)−1
X′
)]

= 1

σ 2 tr

[
σ 2Ṽ Ṽ −1X

(
X′Ṽ −1X

)−1
X′
]

= tr

[
X′X
(
X′Ṽ −1X

)−1
]

.

Setting .σ 2
f = 1 and .σ 2 = 5 results in an estimate of the model’s degrees of freedom 

equal to . 2.8, which differs from the estimate 202 obtained with the alternative 
parametrisation. Different parametrisations of the model result in different measures 
of its complexity, as pointed out by Spiegelhalter et al (2002). On the other 
hand, when .σ 2

f → 0, .Ṽ → I and the model’s degree of freedom approaches 

.tr
[
X′X
(
X′X
)−1
]

= 2, the number of breeds, as with the previous parametrisation.
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The concept of degrees of freedom has not been discussed in the book and is 
not pursued further. The example illustrates that the topic deserves considerable 
reflection (see Janson et al 2015). The definition used here is based on the optimism 
of the training mean squared error as an estimate of validating error and is due to 
Efron (1986). Spiegelhalter et al (2002, 2014) discuss the subject and propose an 
alternative expression. Further elaborations of the concept can be found in Gelman 
et al (2014).
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