
Statistics for Biology and Health

Daniel Sorensen

Statistical
Learning in
Genetics
An Introduction Using R

Statistics for Biology and Health

Series Editors

Mitchell Gail, Division of Cancer Epidemiology and Genetics, National Cancer
Institute, Rockville, MD, USA

Jonathan M. Samet, Department of Environmental & Occupational Health,
University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, USA

Statistics for Biology and Health (SBH) includes monographs and advanced
textbooks on statistical topics relating to biostatistics, epidemiology, biology, and
ecology.

Daniel Sorensen

Statistical Learning
in Genetics
An Introduction Using R

Daniel Sorensen
Aarhus University
Aarhus, Denmark

ISSN 1431-8776 ISSN 2197-5671 (electronic)
Statistics for Biology and Health
ISBN 978-3-031-35850-0 ISBN 978-3-031-35851-7 (eBook)
https://doi.org/10.1007/978-3-031-35851-7

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland
AG 2023
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

https://doi.org/10.1007/978-3-031-35851-7
https://doi.org/10.1007/978-3-031-35851-7
https://doi.org/10.1007/978-3-031-35851-7
https://doi.org/10.1007/978-3-031-35851-7
https://doi.org/10.1007/978-3-031-35851-7
https://doi.org/10.1007/978-3-031-35851-7
https://doi.org/10.1007/978-3-031-35851-7
https://doi.org/10.1007/978-3-031-35851-7
https://doi.org/10.1007/978-3-031-35851-7
https://doi.org/10.1007/978-3-031-35851-7

Til min elskede Pia

Preface

This book evolved from a set of notes written for a graduate course on Likelihood
and Bayesian Computations held at Aarhus University in 2016 and 2018. The
audience was life-science PhD students and post-docs with a background in either
biology, agriculture, medicine or epidemiology, who wished to develop analytic
skills to perform genomic research. This book is addressed to this audience of
numerate biologists, who, despite an interest in quantitative methods, lack the
formal mathematical background of the professional statistician. For this reason,
I offer considerably more detail in explanations and derivations than may be needed
for a more mathematically oriented audience. Nevertheless, some mathematical
and statistical prerequisites are needed in order to extract maximum benefit from
the book. These include introductory courses on calculus, linear algebra and
mathematical statistics, as well as a grounding in linear and nonlinear regression and
mixed models. Applied statistics and biostatistics students may also find the book
useful, but may wish to browse hastily through the introductory chapters describing
likelihood and Bayesian methods.

I have endeavoured to write in a style that appeals to the quantitative biologist,
while remaining concise and using examples profusely. The intention is to cover
ground at a good pace, facilitating learning by interconnecting theory with examples
and providing exercises with their solutions. Many exercises involve programming
with the open-source package R, a statistical software that can be downloaded and
used with the free graphical user interface RStudio. Most of today’s students
are competent in R and there are many tutorials online for the uninitiated. The
R-code needed to solve the exercises is provided in all cases and is written,
with few exceptions, with the objective of being transparent rather than efficient.
The reader has the opportunity to run the codes and to modify input parameters
in an experimental fashion. This hands-on computing contributes to a better
understanding of the underlying theory.

The first objective of this introduction is to provide readers with an understanding
of the techniques used for analysis of data, with emphasis on genetic data. The
second objective is to teach them to implement these techniques. Meeting these
objectives is an initial step towards acquiring the skills needed to perform data-

vii

viii Preface

driven genetics/genomics research. Despite the focus on genetic applications, the
mathematics of the statistical models and their implementation are relevant for
many other branches of quantitative methods. An appendix in the opening chapter
provides an overview of basic quantitative genomic concepts, making the book more
accessible to an audience of "non-geneticists".

I have attempted to give a balanced account of frequentist/likelihood and
Bayesian methods. Both approaches are used in classical quantitative genetic and
modern genomic analyses and constitute essential ingredients in the toolkit of the
well-trained quantitative biologist.

The book is organised in three parts. Part I (Chaps. 2–5) presents an overview
of likelihood and Bayesian inference. Chapter 2 introduces the basic elements
of the likelihood paradigm, including the likelihood function, the score and the
maximum likelihood estimator. Properties of the maximum likelihood estimator are
summarised and several examples illustrate the construction of simple likelihood
models, the derivation of the maximum likelihood estimators and their properties.
Chapter 3 provides a review of three computational methods for fitting likelihood
models: Newton-Raphson, the EM (expectation-maximisation) algorithm and gra-
dient descent. After a brief description of the methods and the essentials of their
derivation, several examples (13 in all) are developed to illustrate their imple-
mentation. Chapter 4 covers the basics of the Bayesian approach, mostly through
examples. The first set of examples illustrate the type of inferences that are possible
(joint, conditional and marginal inferences), when the posterior distributions have
known closed forms. In this case, inferences can be exact using analytical methods,
or can be approximated using Monte Carlo draws from the posterior distribution. A
number of options are available when the posterior distribution is only known up
to proportionality. After a very brief account of Bayesian asymptotics, the chapter
focuses on Markov chain Monte Carlo (McMC) methods. These are recipes for
generating approximate draws from posterior distributions. Using these draws, one
can obtain Monte Carlo estimates of the complete posterior distribution, or Monte
Carlo estimates of summaries such as the mean, variance and posterior intervals. The
chapter provides a description of the Gibbs sampling algorithm and of the joint and
single-site updating of parameters based on the Metropolis-Hastings algorithm. An
overview of the tools needed for analysis of the McMC output concludes the chapter.
An appendix provides the mathematical details underlying the magic of McMC
within the constraints imposed by the author’s limited mathematics. Chapter 5
illustrates applications of McMC. Several of the examples discussed in connection
with Newton-Raphson and the EM algorithm are revisited and implemented from a
Bayesian McMC perspective.

Part II of the book has the heading Prediction. The boundaries between Parts I
and II should not be construed as rigid. However, the heading emphasises the main
thread of Chaps. 6–11, with an important detour in Chap. 8 that discusses mul-
tiple testing. Chapter 6 introduces many important ingredients of prediction: best
predictor, best linear predictor, overfitting, bias-variance trade-off, cross-validation.
Among the topics discussed is the accuracy with which future observations can be
predicted, how is this accuracy measured, the factors affecting it and importantly,

Preface ix

how a measure of uncertainty can be attached to accuracy. The body of the chapter
deals with prediction from a classical/frequentist perspective. Bayesian prediction
is illustrated in several examples throughout the book and particularly in Chap. 10.
In Chap. 6, many important ideas related to prediction are illustrated using a simple
least-squares setting, where the number of records n is larger than the number of
parameters p of the model; this is the .n > p setup. However, in many modern
genetic problems, the number of parameters greatly exceeds the number of records;
the .p � n setup. This calls for some form of regularisation, a topic introduced
in Chap. 7 under the heading Shrinkage Methods. After an introduction to ridge
regression, the chapter provides a description of the lasso (least absolute shrinkage
and selection operator) and of a Bayesian spike and slab model. The spike and
slab model can be used for both prediction and for discovery of relevant covariates
that have an effect on the records. In a genetic context, these covariates could be
observed genetic markers and the challenge is how to find as many promising mark-
ers among the hundreds of thousands available, while incurring a low proportion
of false positives. This leads to the topic reviewed in Chap. 8: False Discovery
Rate. The subject is first presented from a frequentist perspective as introduced
by Benjamini and Hochberg in their highly acclaimed work, and is also discussed
using empirical Bayesian and fully Bayesian approaches. The latter is implemented
within an McMC environment using the spike and slab model as driving engine.
The complete marginal posterior distribution of the false discovery rate can be
obtained as a by-product of the McMC algorithm. Chapter 9 describes some of
the technical details associated with prediction for binary data. The topics discussed
include logistic regression for the analysis of case-control studies, where the data are
collected in a non-random fashion, penalised logistic regression, lasso and spike and
slab models implemented for the analysis of binary records, area under the curve
(AUC) and prediction of a genetic disease of an individual, given information on
the disease status of its parents. The chapter concludes with an appendix providing
technical details for an approximate analysis of binary traits. The approximation
can be useful as a first step, before launching the full McMC machinery of a more
formal approach. Chapter 10 deals with Bayesian prediction, where many of the
ideas scattered in various parts of the book are brought into focus. The chapter
discusses the sources of uncertainty of predictors from a Bayesian and frequentist
perspective and how they affect accuracy of prediction as measured by the Bayesian
and frequentist expectations of the sample mean squared error of prediction. The
final part of the chapter introduces, via an example, how specific aspects of a
Bayesian model can be tested using posterior predictive simulations, a topic that
combines frequentist and Bayesian ideas. Chapter 11 completes Part II and provides
an overview of selected nonparametric methods. After an introduction of traditional
nonparametric models, such as the binned estimator and kernel smoothing methods,
the chapter concentrates on four more recent approaches: kernel methods using basis
expansions, neural networks, classification and regression trees, and bagging and
random forests.

Part III of the book consists of exercises and their solutions. The exercises
(Chap. 12) are designed to provide the reader with deeper insight of the subject

x Preface

discussed in the body of the book. A complete set of solutions, many involving
programming, is available in Chap. 13.

The majority of the datasets used in the book are simulated and intend to illustrate
important features of real-life data. The size of the simulated data is kept within the
limits necessary to obtain solutions in reasonable CPU time, using straightforward
R-code, although the reader may modify size by changing input parameters.
Advanced computational techniques required for the analysis of very large datasets
are not addressed. This subject requires a specialised treatment beyond the scope of
this book.

The book has not had the benefit of having been used as material in repeated
courses by a critical mass of students, who invariably stimulate new ideas, help with
a deeper understanding of old ones and, not least, spot errors in the manuscript and
in the problem sections. Despite these shortcomings, the book is completed and out
of my hands. I hope the critical reader will make me aware of the errors. These
will be corrected and listed on the web at https://github.com/SorensenD/SLGDS.
The GitHub site also contains most of the R-codes used in the book, which can be
downloaded, as well as notes that include comments, clarifications or additions of
themes discussed in the book.

Aarhus, Denmark Daniel Sorensen
May 2023

https://github.com/SorensenD/SLGDS
https://github.com/SorensenD/SLGDS
https://github.com/SorensenD/SLGDS
https://github.com/SorensenD/SLGDS
https://github.com/SorensenD/SLGDS

Acknowledgements

Many friends and colleagues have assisted in a variety of ways. Bernt Guldbrandtsen
(University of Copenhagen) has been a stable helping hand and helping mind.
Bernt has generously shared his deep biological and statistical knowledge with
me on many, many occasions, and provided also endless advice with LaTeX and
MarkDown issues, with programming details, always with good spirits and patience.
I owe much to him. Ole Fredslund Christensen (Aarhus University) read several
chapters and wrote a meticulous list of corrections and suggestions. I am very
grateful to him for this effort. Gustavo de los Campos (Michigan State University)
has shared software codes and tricks and contributed with insight in many parts
of the book, particularly in Prediction and Kernel Methods. I have learned much
during the years of our collaboration. Parts of the book were read by Andres Legarra
(INRA), Miguel Pérez Enciso (University of Barcelona), Bruce Walsh (University
of Arizona), Rasmus Waagepetersen (Aalborg University), Peter Sørensen (Aarhus
University), Kenneth Enevoldsen (Aarhus University), Agustín Blasco (Universidad
Politécnica de Valencia), Jens Ledet Jensen (Aarhus University), Fabio Morgante
(Clemson University), Doug Speed (Aarhus University), Bruce Weir (University
of Washington), Rohan Fernando (retired from Iowa State University) and Daniel
Gianola (retired from the University of Wisconsin-Madison). I received many
helpful comments, suggestions and corrections from them. However, I am the only
responsible for the errors that escaped scrutiny. I would be thankful if I could be
made aware of these errors.

I acknowledge Eva Hiripi, Senior Editor, Statistics Books, Springer, for consis-
tent support during this project.

I am the grateful recipient of many gifts from my wife Pia. One has been essential
for concentrating on my task: happiness.

xi

Contents

1 Overview . 1
1.1 Introduction . 1
1.2 The Sampling Distribution of a Random Variable 3
1.3 The Likelihood and the Maximum Likelihood Estimator 5
1.4 Incorporating Prior Information . 8
1.5 Frequentist or Bayesian? . 17
1.6 Prediction . 20
1.7 Appendix: A Short Overview of Quantitative Genomics. 32

Part I Fitting Likelihood and Bayesian Models

2 Likelihood . 51
2.1 A Little Intuition . 51
2.2 Summary of Likelihood Results . 54
2.3 Example: The Likelihood Function of Transformed Data. 59
2.4 Example: Linear Regression . 60
2.5 Example: Bivariate Normal Model with Missing Records 63
2.6 Example: Likelihood Inferences Using Selected Records. 66
2.7 Example: The Likelihood Function with Truncated Data 71
2.8 Example: The Likelihood Function of a Genomic Model 72

3 Computing the Likelihood . 77
3.1 Newton-Raphson and the Method of Scoring . 77
3.2 Gradient Descent and Stochastic Gradient Descent 98
3.3 The EM Algorithm . 102

4 Bayesian Methods . 141
4.1 Example: Estimating the Mean and Variance of a Normal

Distribution . 143
4.2 Posterior Predictive Distribution for a New Observation 151
4.3 Example: Monte Carlo Inferences of the Joint Posterior

Distribution of Mean and Variance . 153

xiii

xiv Contents

4.4 Approximating a Marginal Distribution . 155
4.5 Example: The Normal Linear Mixed Model . 156
4.6 Example: Inferring a Variance Component from a

Marginal Posterior Distribution. 160
4.7 Example: Bayesian Learning—Inheritance of Haemophilia 162
4.8 Example: Bayesian Learning—Updating Additive

Genetic Values . 165
4.9 A Brief Account of Bayesian Asymptotics . 170
4.10 An Overview of Markov Chain Monte Carlo . 171
4.11 The Metropolis-Hastings Algorithm . 172
4.12 The Gibbs Sampling Algorithm . 180
4.13 Output Analysis . 183
4.14 Appendix: A Closer Look at the McMC Machinery 194

5 McMC in Practice . 207
5.1 Example: Estimation of Gene Frequencies from ABO

Blood Group Phenotypes . 207
5.2 Example: A Regression Model for Binary Data . 213
5.3 Example: A Regression Model for Correlated Binary Data 220
5.4 Example: A Genomic Model . 227
5.5 Example: A Mixture Model of Two Gaussian Components 234
5.6 Example: An Application of the EM Algorithm

in a Bayesian Context—Estimation of SNP Effects 239
5.7 Example: Bayesian Analysis of the Truncated Normal Model. 244
5.8 A Digression on Model Comparison . 247

Part II Prediction

6 Fundamentals of Prediction . 257
6.1 Best Predictor and Best Linear Predictor. 257
6.2 Estimating the Regression Function in Practice: Least Squares . . . 263
6.3 Overview of Things to Come . 275
6.4 The Bias-Variance Trade-Off . 277
6.5 Estimation of Validation MSE of Prediction in Practice 280
6.6 On Average Training MSE Underestimates Validation MSE 284
6.7 Least Squares Prediction . 290

7 Shrinkage Methods . 299
7.1 Ridge Regression . 300
7.2 The Lasso . 310
7.3 An Extension of the Lasso: The Elastic Net . 319
7.4 Example: Prediction Using Ridge Regression and Lasso 319
7.5 A Bayesian Spike and Slab Model . 321

8 Digression on Multiple Testing: False Discovery Rates. 333
8.1 Introduction . 335
8.2 Preliminaries. 336

Contents xv

8.3 The Benjamini-Hochberg False Discovery Rate . 338
8.4 A Bayesian Approach for a Simple Two-Group Mixture

Model . 341
8.5 Empirical Bayes Estimation . 344
8.6 Local False Discovery Rates . 347
8.7 Storey’s q-Values . 349
8.8 Fully Bayesian McMC False Discovery Rate . 350
8.9 Example: A Two-Component Gaussian Mixture 352
8.10 Example: The Spike and Slab Model with Genetic Markers 361

9 Binary Data . 369
9.1 Prediction for Binary Observations. 370
9.2 Mean Squared Error . 371
9.3 Logistic Regression with Non-random Sampling. 375
9.4 Penalised Logistic Regression . 377
9.5 The Lasso with Binary Records . 379
9.6 A Bayesian Spike and Slab Model for Binary Records 380
9.7 Area Under the Curve . 389
9.8 Prediction of Disease Status of Individual Given Disease

Status of relatives. 402
9.9 Appendix: Approximate Analysis of Binary Traits 411

10 Bayesian Prediction and Model Checking . 417
10.1 Levels of Uncertainty . 418
10.2 Prior and Posterior Predictive Distributions. 419
10.3 Bayesian Expectations of MSE . 428
10.4 Example: Bayesian and Frequentist Measures of Uncertainty 430
10.5 Model Checking Using Posterior Predictive Distributions 435

11 Nonparametric Methods: A Selected Overview . 445
11.1 Local Kernel Smoothing . 446
11.2 Kernel Methods Using Basis Expansions . 460
11.3 Neural Networks . 489
11.4 Classification and Regression Trees . 511
11.5 Bagging and Random Forests. 521
11.6 Appendix . 533

Part III Exercises and Solutions

12 Exercises . 543
12.1 Likelihood Exercises I . 543
12.2 Likelihood Exercises II . 549
12.3 Bayes Exercises I . 555
12.4 Bayes Exercises II . 556
12.5 Prediction Exercises . 562

xvi Contents

13 Solution to Exercises . 575
13.1 Likelihood Exercises I . 575
13.2 Likelihood Exercises II . 594
13.3 Bayes Exercises I . 614
13.4 Bayes Exercises II . 631
13.5 Prediction Exercises . 651

References . 675

Author Index . 683

Subject Index . 687

Chapter 1
Overview

1.1 Introduction

Suppose there is a set of data consisting of observations in humans on forced
expiratory volume (FEV, a measure of lung function; lung function is a predictor
of health and a low lung function is a risk factor for mortality), or on the presence or
absence of heart disease and that there are questions that could be answered using
these data. For example, a statistical geneticist may wish to know:

1. Is there a genetic component contributing to the total variance of these traits?
A positive answer suggests that genetic factors are at play. The next step would
be to investigate the following:

2. Is the genetic component of the traits driven by a few genes located on
a particular chromosome, or are there many genes scattered across many
chromosomes? Howmany genes are involved and is this a scientifically sensible
question?

3. Are the genes detected protein-coding genes, or are there also noncoding genes
involved in gene regulation?

4. How is the strength of the signals captured in a statistical analysis related to the
two types of genes? What fraction of the total genetic variation is allocated to
both types of genes?

5. What are the frequencies of the genes in the sample? Are the frequencies
associated with the magnitude of their effects on the traits?

6. What is the mode of action of the genes?
7. What proportion of the genetic variance estimated in 1 can be explained by the

discovered genes?
8. Given the information on the set of genes carried by an individual, will a

genetic score constructed before observing the trait help with early diagnosis
and prevention?

9. How should the predictive ability of the score be measured?

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Sorensen, Statistical Learning in Genetics, Statistics for Biology and Health,
https://doi.org/10.1007/978-3-031-35851-7_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35851-7protect T1	extunderscore 1&domain=pdf
https://doi.org/10.1007/978-3-031-35851-7_1
https://doi.org/10.1007/978-3-031-35851-7_1
https://doi.org/10.1007/978-3-031-35851-7_1
https://doi.org/10.1007/978-3-031-35851-7_1
https://doi.org/10.1007/978-3-031-35851-7_1
https://doi.org/10.1007/978-3-031-35851-7_1
https://doi.org/10.1007/978-3-031-35851-7_1
https://doi.org/10.1007/978-3-031-35851-7_1
https://doi.org/10.1007/978-3-031-35851-7_1
https://doi.org/10.1007/978-3-031-35851-7_1
https://doi.org/10.1007/978-3-031-35851-7_1

2 1 Overview

10. Are there other non-genetic factors that affect the traits, such as smoking
behaviour, alcohol consumption, blood pressure measurements, body mass
index and level of physical exercise?

11. Could the predictive ability of the genetic score be improved by incorporation
of these non-genetic sources of information, either additively or considering
interactions? What is the relative contribution from the different sources of
information?

The first question has been the focus of quantitative genetics during many
years long before the so-called genomic revolution, that is, before breakthroughs
in molecular biology made technically and economically possible the sequencing of
whole genomes, resulting in hundreds of thousands or millions of genetic markers
(single nucleotide polymorphisms (SNPs)) for each individual in the data set. Until
the end of the twentieth century before dense genetic marker data were available,
genetic variation of a given trait was inferred using resemblance between relatives.
This requires equating the expected proportion of genotypes shared identical
by descent, given a pedigree, with the observed phenotypic correlation between
relatives. The fitted models also retrieve “estimates of random effects”, the predicted
genetic values that act as genetic scores and are used in selection programs of farm
animals and plants.

Answers to questions .2 − 7 would provide insight into genetic architecture and
thereby, into the roots of many complex traits and diseases. This has important
practical implications for drug therapies targeted to particular metabolic pathways,
for personalised medicine and for improved prediction. These questions could not
be sensibly addressed before dense marker data became available (perhaps with
the exception provided by complex segregation analysis that allowed searching for
single genes).

Shortly after a timid start where use of low-density genetic marker information
made its appearance, the first decade of the twenty-first century saw the construction
of large biomedical databases that could be accessed for research purposes where
health information was collected. One such database was the British .1958−cohort
study including medical records from approximately 3000 individuals genotyped
for one million SNPs. These data provided for the first time the opportunity to begin
addressing questions .2 − 7. However, a problem had to be faced: how to fit and
validate a model with one million unknowns to a few thousand records and how to
find a few promising genetic markers from the million available avoiding a large
proportion of false positives? This resulted in a burst of activity in the fields of
computer science and statistics, leading to development of a methodology designed
to meet the challenges posed by Big Data.

In recent years, the amount of information in modern data sets has
grown and become formidable and the challenges have not diminished. One
example is the UK Biobank that provides a wealth of health information
from half a million UK participants. The database is regularly updated and
a team of scientists recently reported that the complete exome sequence was
completed (about .2% of the genome involved in coding for proteins and

1.2 The Sampling Distribution of a Random Variable 3

considered to be important for identifying disease-causing or rare genetic
variants). The study involved more than .150,000 individuals genotyped
for more than 500 million SNPs (Halldorsson et al 2022). These data are
paired with detailed medical information and constitute an unparalleled
resource for linking human genetic variation to human biology and dis-
ease.

An important task for the statistical geneticist is to adapt, develop and implement
models that can extract information from these large-scale data and to contribute to
finding answers to the 11 questions posed above. This is an exercise on inference
(such as estimation of genetic variation), on gene detection (among the millions
of genetic markers that may be included in a probability model, how to screen
the “relevant” ones for further study?), on prediction (how does the quality of
prediction of future records, for example, outcome of a disease, improve with this
new knowledge about the trait?) and on how to fit the probability models. There are
several areas of expertise that must be developed in order to fulfil this data-driven
research task. An initial step is to understand the methodology that underlies the
probability models and to learn the modern computer-intensive methods required
for fitting these models. The objective of this book is to guide the reader to take this
first step.

This opening chapter gives an overview of the book’s content, omitting many
technicalities that are revealed in later chapters, and is intended to give a flavour
of the way ahead. The first part is about methodology and introduces, by means of
an example, the concepts of probability distribution, likelihood and the maximum
likelihood estimator. This is followed by a brief description of Bayesian methods
indicating how prior knowledge can be incorporated in a probability model and
how it can affect inferences. The second part of the chapter presents models
for prediction and for detection of genes using parametric and nonparametric
approaches. There is an appendix that offers a brief tour of the quantitative
genetic/genomic model. The goal is to introduce the jargon and the basic quanti-
tative genetic/genomic concepts used in the book.

1.2 The Sampling Distribution of a Random Variable

A useful starting point is to establish the distinction between a probability distribu-
tion and a likelihood function. For example, assume a random variable X that has a
Bernoulli probability distribution. This random variable can take 1 or 0 as possible
values (more generally, it can have two modalities) with probabilities . θ and .1 − θ ,
respectively. The mean of the distribution is

.E(X|θ) = 0 × Pr(X = 0|θ) + 1 × Pr(X = 1|θ) = θ

4 1 Overview

and the variance is

. Var(X|θ) = E(X2|θ) − [E(X|θ)]2

= θ − θ2 = θ (1 − θ) .

A binomial distribution arises from the sum of n mutually independent Bernoulli
random variables all having the same probability . θ . Therefore, the expected value
and the variance of a binomially distributed random variable are . nθ and .nθ (1 − θ),
respectively.

With this background, imagine that a sample of size n of unrelated haploid
individuals is obtained from some population with the objective of estimating allele
frequency at a biallelic locus. The sample contains x copies of allele A and . n − x

copies of allele a. The n data points are draws assumed to be identically and
independently distributed, and in each draw, the probability of observing an A allele
is . θ . Since the random variable can take two modalities (A or a), the number of
copies drawn, X, is binomially distributed with parameters n and . θ and probability
mass function equal to

. Pr (X = x|n, θ) =
(

n

x

)
θx (1 − θ)n−x , x = 0, 1, . . . , n, 0 < θ < 1.

(1.1)

For fixed values of n and . θ , one can plot (1.1) as a function of .x = 0, 1, . . . , n,
and this defines the probability distribution of X. Figure 1.1 shows two different
binomial distributions. Importantly in (1.1), the parameters n and . θ are fixed and
the random variable is X, the number of A alleles drawn (here I distinguish between

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

X

P
ro
ba

bi
lit
y

0 1 2 3 4 5 6 7 8 9

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

X

P
ro
ba

bi
lit
y

0 2 4 6 8 10 12 14 16 18 20 22 24

Fig. 1.1 Left: binomial probability distribution with parameters .n = 20, θ = 0.1; right: binomial
probability distribution with parameters .n = 100, θ = 0.1

1.3 The Likelihood and the Maximum Likelihood Estimator 5

the random variable X and its realised value, x. This distinction is not necessarily
followed throughout the book).

The probability distribution in the right panel of Fig. 1.1 is more symmetrical
than in the left panel. This is due to the different sample sizes n. As sample size
increases further, X will approach its limiting distribution which is the normal
distribution by virtue of the central limit theorem.

1.3 The Likelihood and the Maximum Likelihood Estimator

Consider now viewing (1.1) in a different manner, whereby x and n are fixed and
. θ varies. To be specific, assume that the sample size is .n = 27 and the number
of copies of allele A in the sample is .x = 11. One can plot the probability of
obtaining .x = 11 copies of A in a sample of size .n = 27, for all permissible values
of . θ as in Fig. 1.2. For example, for .θ = 0.1, . Pr (X = 11|n = 27, θ = 0.1) =
0.242× 10−4 and for .θ = 0.6, .Pr (X = 11|n = 27, θ = 0.6) = 0.203× 10−1. This
plot is the likelihood function for . θ , .L (θ |x, n), and the value of . θ that maximises
this function is known as the maximum likelihood estimate of . θ (I will use MLE
short for maximum likelihood estimator or maximum likelihood estimate and ML
for maximum likelihood).

Fig. 1.2 Binomial model:
likelihood function for . θ ,
given data . n = 27, x = 11

0.0 0.2 0.4 0.6 0.8 1.0

�

Li
ke

lih
oo

d

6 1 Overview

One way of finding the maximum likelihood estimate of . θ is to differentiate
(1.1) and find the maximiser. It is equivalent—but often easier—to maximise the
logarithm of the likelihood function, the loglikelihood, denoted as .� (θ |x, n):

.
∂� (θ |x, n)

∂θ
= ∂

∂θ

[
log

(
n

x

)
+ x log (θ) + (n − x) log (1 − θ)

]
.

Carrying out the differentiation and setting the result equal to zero shows that the
MLE of . θ must satisfy

.
x

θ
− n − x

1 − θ
= 0.

Solving for . θ yields the MLE

.θ̂ = x

n
, (1.2)

that in the case of the example, with .x = 11 and .n = 27, gives .θ̂ = 0.41.

The Sampling Variance of the Maximum Likelihood Estimator

Usually, one needs to quantify the degree of uncertainty associated with an estimate.
In classical likelihood, the uncertainty is described by the sampling distribution of
the MLE. In the case of the example, the sampling distribution of . θ̂ is the probability
distribution of this estimator obtained by drawing repeated binomial samples of
fixed size n, with the probability parameter fixed at its MLE, .θ = θ̂ . The MLE is
computed in each sample and the sampling distribution of the MLE is characterised
by these estimates.

In this binomial example, the sampling distribution of . θ̂ is known exactly; it is
proportional to a binomial distribution (since X is binomial and n is fixed). The
small sample variance of the maximum likelihood estimator is

.Var
(
θ̂
)

= Var

(
X

n

)
= θ (1 − θ)

n
. (1.3)

The parameter . θ is typically not known and is replaced by the MLE . θ̂ . Then

. V̂ar
(
θ̂
)

=
θ̂

(
1 − θ̂

)
n

.

In many cases, the MLE does not have a closed form and the small sample
variance is not known. One can then appeal to large sample properties of MLE; one

1.3 The Likelihood and the Maximum Likelihood Estimator 7

MLE of �

D
en

si
ty

0.0 0.2 0.4 0.6 0.8

MLE of �

D
en

si
ty

0.2 0.3 0.4 0.5 0.6

0
1

2
3

4
5

6

0
2

4
6

8

Fig. 1.3 Left: histogram of the Monte Carlo distribution of the MLE for the binomial model,
with .n = 27, θ = 0.41. Right: histogram of the Monte Carlo distribution of the MLE for the
binomial model, with .n = 100, θ = 0.41. The overlaid normal curves represent the asymptotic
approximation of the distribution of the MLE

of these is that, asymptotically, the MLE is normally distributed, with mean equal
to the parameter and variance given by minus the inverse of the second derivative
of the loglikelihood evaluated at .θ = θ̂ . The second derivative of the loglikelihood
is

.
∂2� (θ |x, n)

(∂θ)2
= ∂2

(∂θ)2

[
log

(
n

x

)
+ x log (θ) + (n − x) log (1 − θ)

]

= − x

θ2
− n − x

(1 − θ)2
.

In this expression, substituting . θ with the MLE . θ̂ and taking a reciprocal
yields

. −
(

∂2� (θ |x, n)

(∂θ)2

)−1
∣∣∣∣∣
θ=θ̂

= V̂ar
(
θ̂
)

=
θ̂

(
1 − θ̂

)
n

≈ 0.009. (1.4)

In this simple example, the asymptotic variance agrees with the small sample
variance. An approximate .95% confidence interval for . θ based on asymptotic
theory is

.0.41 ± 1.96 × 0.095 = (0.22, 0.60) . (1.5)

This means that there is a .95% probability that this interval contains the true
parameter . θ . The “probability” is interpreted with respect to a set of hypothetical
repetitions of the entire data collection and analysis procedure. These repetitions

8 1 Overview

consist of many random samples of data drawn under the same conditions and
where a confidence interval is computed for each sample. The random variable
is the confidence interval that is computed for each sample; in 95 intervals out
of 100 (in a .95% confidence interval), the interval will contain the unobserved
. θ .

Figure 1.3 (left) shows the result of simulating .100,000 times from a binomial
distribution with .n = 27 and .θ = 0.41, computing the MLE in each replicate and
plotting the distribution as a histogram. This represents the (small sample) Monte
Carlo sampling distribution of the MLE. Overlayed is the asymptotic distribution of
the MLE that is normal with mean .0.41 and variance given by (1.4) equal to .0.009.
The right panel of Fig. 1.3 displays the result of a similar exercise with .n = 100 and
.θ = 0.41. The fit of the asymptotic approximation is better with the larger sample
size.

A glance at a standard calculus book reveals that the curvature of a function f at
a point . θ is given by

. c (θ) = f ′′ (θ)[
1 + f ′ (θ)2

]3/2 .

In the present case, the function f is the loglikelihood . � whose first derivative
evaluated at .θ = θ̂ is equal to zero. The curvature of the loglikelihood at . θ = θ̂

is

. c
(
θ̂
)

= �′′ (θ̂
)

.

(I use the standard notation .�′′
(
θ̂
)
for .

(
∂2�(θ |x,n)

(∂θ)2

)∣∣∣
θ=θ̂

).

Note As the loglikelihood increases or decreases, so does the likelihood; therefore,
the value of the parameter that maximises one also maximises the other. Working
with the loglikelihood is to be preferred to working with the likelihood function
because it is easier to differentiate a sum than a product. The curvature of the
loglikelihood at the MLE is related to the sample variance of the MLE. This last
point is illustrated in Fig. 1.4. As n increases from 27 to 100, the likelihood function
becomes sharper and more concentrated about the MLE.

1.4 Incorporating Prior Information

Imagine that there is prior information about the frequency . θ of allele A from
comparable populations. Bayesian methods provide a natural way of incorporating
such prior information into the model. This requires eliciting a prior distribution
for . θ that captures what is known about . θ before obtaining the data sample.
This prior distribution is combined with the likelihood (which, given the model,

1.4 Incorporating Prior Information 9

Fig. 1.4 Circled line:
likelihood function for . θ ,
given .n = 27, x = 11. Full
line: likelihood function for
. θ , given . n = 100, x = 41

0.0 0.2 0.4 0.6 0.8 1.0

�

Li
ke

lih
oo

d

contains all the information arising from the data) to form the posterior dis-
tribution that is the basis for the Bayesian inference. Specifically using Bayes
theorem:

.Posterior ∝ Prior × Likelihood. (1.6)

If the prior density of . θ is labelled .g (θ), (1.6) becomes

.p (θ |x, n) ∝ g (θ) L (θ |x, n) , (1.7)

indicating that the posterior density is proportional to the prior density times the
likelihood. Probability statements about . θ require scaling (1.7). This involves
dividing the right-hand side of (1.7) by

.

∑
i

g (θi) L (θi |x, n) , (1.8)

if . θ is discrete (in which case g is a probability mass function), or by

.

∫
g (θ) L (θ |x, n) dθ, (1.9)

if it is continuous (in which case g is a probability density function).

10 1 Overview

Using a Discrete Prior

This example is adapted from Albert (2009). Continuing with the binomial model,
a simple approach to incorporate prior information on . θ is to write down possible
values and to assign weights to these values. A list of possible values of . θ could be

.0.05, 0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85, 0.95. (1.10)

Based on previous knowledge, one is prepared to assign the weights

. 1.0, 5.2, 8.0, 7.2, 4.6, 2.1, 0.7, 0.1, 0.0, 0.0

that are converted to probabilities dividing each weight by the sum; this gives the
prior probability distribution of . θ

.0.04, 0.18, 0.28, 0.25, 0.16, 0.07, 0.02, 0.00, 0.00, 0.00. (1.11)

The likelihood for . θ is proportional to (1.1). The combinatorial term does not
contain information about . θ , so one can write

. L (θ |x = 11, n = 27) ∝ θ11 (1 − θ)27−11 .

Evaluating this expression for all the possible values of . θ in (1.10) yields a list of
ten numbers (too small to be written down here). Label these ten numbers:

.L (0.05) , L (0.15) , . . . , L (0.95) . (1.12)

To obtain the posterior (1.7), the terms in (1.11) are multiplied by the corresponding
term in (1.12). For example,

. p (θ = 0.05|x = 11, n = 27) ∝ 0.04 × L (0.05) ,

p (θ = 0.15|x = 11, n = 27) ∝ 0.18 × L (0.15) ,

and so on with the remaining eight terms. After scaling with the sum

. 0.04 × L (0.05) + 0.18 × L (0.15) + · · · + 0.00 × L (0.95) ,

posterior probabilities can be assigned to the ten possible values of . θ . These
posterior probabilities are (rounded to two decimal places)

. 0.00, 0.00, 0.13, 0.48, 0.33, 0.06, 0.00, 0.00, 0.00, 0.00.

Based on these posterior probabilities, the posterior mean of . θ is .0.38, and the
probability that . θ falls in the set .{0.25, 0.35, 0.45} is .0.94.

1.4 Incorporating Prior Information 11

Using a Beta Prior: The Beta-Binomial Model

Another possible prior is to assign a beta distribution to . θ with the appropriate
parameters to reflect prior information. This is a continuous distribution with
support between 0 and 1 and has two parameters denoted as a and b that determine
the shape. When .a = b, the distribution is symmetric.

One way of using a beta distribution that matches the prior probabilities (1.11) is
as follows. Notice that the sum of the first three probabilities in (1.11) represents the
probability that . θ is smaller than or equal to .0.25. This probability is equal to .0.50.
Similarly, the sum of the first five probabilities is the probability that . θ is smaller
than or equal to .0.45. This probability is equal to .0.91. The values of . θ equal to
.0.25 and .0.45 are two quantiles. Let .F(0.25; a, b) and .F(0.45; a, b) represent the
cumulative distribution functions (cdf) of the beta distribution for .θ = 0.25 and
for .θ = 0.45, respectively (the cdf is .F(x; a, b) = Pr (X ≤ x; a, b)). Then the
parameters a and b of the beta distribution that match the prior probabilities (1.11)
can be found by minimising the function

. (F (0.25; a, b) − 0.5)2 + (F (0.45; a, b) − 0.91)2

with respect to a and b. This can be achieved using the function OPTIM in R as
indicated in the following code:

mod <- function(par){
a <- par[1]
b <- par[2]
fct <- (pbeta(0.25,a,b)-0.5)^2 + (pbeta(0.45,a,b)-0.91)^2
return(fct)

}
res <- optim(par=c(3,3),mod)
res$par

[1] 2.89705 8.04717

The function returns .a = 2.90, .b = 8.05. As a check, one can compute the
cumulative distribution functions:

pbeta(0.45,2.9,8.05)

[1] 0.9099298

pbeta(0.25,2.9,8.05)

[1] 0.4995856

Figure 1.5 displays the discrete prior defined by (1.10) and (1.11) and the prior
based on .Be (2.90, 8.05).

12 1 Overview

0.2 0.4 0.6 0.8

�

P
rio

r
P

ro
ba

bi
lit

y

0.0 0.2 0.4 0.6 0.8 1.0

�

P
rio

r
D

en
si

ty

Fig. 1.5 Left: discrete prior distribution defined by (1.10) and (1.11). Right: beta prior
. Be(2.90, 8.05)

As mentioned above, the likelihood is proportional to (1.1); that is,

.L (θ |x, n) ∝ θx (1 − θ)n−x . (1.13)

Seen as a function of . θ , this is the kernel of a beta distribution with . a = x + 1
and .b = n − x + 1. The pdf (probability density function, sometimes referred to as
density function) of the beta distribution is

. p (θ) = � (a + b)

� (a) � (b)
θa−1 (1 − θ)b−1 , θ ∈ [0, 1] , a, b > 0,

where . � is the gamma function. The posterior distribution is obtained by combining
this likelihood with the prior .Be (2.90, 8.05). This results in a posterior distribution
that has the beta density with parameters .x +1+2.90−1 and .n−x +1+8.05−1.
The posterior distribution has the form

.p (θ |x = 11, n = 27) = Be (13.90, 24.05) . (1.14)

Figure 1.6 displays plots of the prior, the likelihood and the posterior for the
example. The posterior distribution is sharper than the prior distribution, and its
probability mass is concentrated between that of the prior distribution and the
likelihood. In Bayesian inference, the posterior distribution provides the necessary
information for drawing conclusions about . θ . For example, the mean, mode and
median of (1.14) are .0.37, .0.36, .0.36. The .95% posterior interval for the posterior
mean is .(0.24, 0.50). The inference using the Bayesian approach is sharper than
that based on the likelihood (1.5). Further, the frequentist confidence interval and
the Bayesian posterior intervals have different interpretations. In the latter, the

1.4 Incorporating Prior Information 13

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6

�

D
en

si
ty

Prior
Likelihood
Posterior

Fig. 1.6 The prior density .Be(2.90, 8.05), the likelihood .Be(12, 17) and the posterior density
.Be(13.90, 24.05) of the probability . θ

confidence interval is fixed and the associated probability is the probability that
the true parameter falls in the interval.

Note If a prior for . θ is .Be (a, b), then .p (θ) ∝ θa−1 (1 − θ)b−1. The
likelihood of the binomial model is proportional to .θx (1 − θ)n−x which is
the kernel of .Be (x + 1, n − x + 1). The posterior is then proportional to
.θa+x−1 (1 − θ)b+n−x−1 that is the kernel of .Be (a + x, b + n − x).

Prior Influence on Inferences

ABayesian analysis is seldom complete without investigating how prior information
affects the conclusions. In this example, one can compare the inference about . θ
using either the discrete or the beta prior. With the former, the mean is .0.38 and the
probability that . θ falls in the set .{0.25, 0.35, 0.45} is .0.94. The numerical values
arrived at with the beta prior are quite similar.

In a situation where no prior information is available about . θ , one could resort
either to maximum likelihood or to a Bayesian approach with a non-informative
prior. The development of non-informative (or reference) priors can become quite
technical, especially in complex model scenarios; a pragmatic approach is often
chosen along the following lines. In the absence of information about . θ , the
investigator may consider three possible beta distributions as displayed in Fig. 1.7
(taken from Carlin and Louis 1996). The so-called Jeffrey’s prior is transformation

14 1 Overview

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

�

D
en

si
ty

Beta(0.5,0.5) (Jefrreys prior)

Beta(1,1) (Uniform prior)

Beta(2,2) (Week prior)

Fig. 1.7 The densities .Be(0.5, 0.5), .Be(1, 1) and .Be(2, 2) to model prior information about . θ

invariant; the .Be(1, 1) is a special case that retrieves a uniform distribution
(assigning equal probabilities to all values of . θ); the .Be(2, 2) is mildly informative
assigning larger probabilities to intermediate values of . θ . The combination of these
priors with the likelihood .θ11 (1 − θ)16 gives rise to the three posterior distributions
shown in Fig. 1.8.

In this particular example, three very different prior distributions give rise to
very similar posterior distributions. This is often the case when the likelihood is
very informative relative to the prior distribution. Using the uniform prior .Be(1, 1),
the posterior is .Be(12, 17) with mean value (the mode and median are almost the
same) and .95% posterior interval equal to .0.41 and .(0.24, 0.59), respectively. The
posterior interval is a little wider than that based on the sharper prior . Be (2.90, 8.05)
and almost identical (numerically) to the one based on the normal approximation to
the maximum likelihood estimator. The posterior probability that . θ is less than or
equal to . 0.2 is

.

θ=1∫
θ=0

I (θ ≤ 0.2) p (θ |y, n) dθ = 0.00496. (1.15)

1.4 Incorporating Prior Information 15

Fig. 1.8 The three posterior
distributions corresponding to
the three priors of Fig. 1.7
when . n = 27, x = 11

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6

�

D
en

si
ty

Posterior (Jefrreys prior)
Posterior (Uniform prior)
Posterior (Week prior)

Simulating from the Posterior Distribution

Inferences drawn in the examples above were exact. This is possible when the
analytical form of the posterior distribution is known and features from it (such as
probability intervals and moments) can be calculated. In principle, features from any
posterior distribution can also be obtained using samples drawn from it, making use
of standard theorems from the time series literature. For example, any function of
the random variable X, .h (X) with finite expectation .E(h (X)) can be approximated
by

.E (h (X)) ≈
∑N

i=1 h (xi)

N
, (1.16)

where N is the sample size. Using . R, a sample .(xi)
100,000
i=1 of size .100,000 from the

posterior .Be(12, 17) results in a sample mean:

. E (X) ≈
100,000∑

i=1

xi

100,000
= 0.41.

A .95% posterior interval for . θ can be estimated as the . 2.5th to .97.5th percentiles of
the empirical distribution of the draws . xi using the R function quantile. If the
original dataset is denoted dat, the R code is:

16 1 Overview

set.seed(7117)
dat <- rbeta(100000,12,17)
quantile(dat,c(0.025,0.975))

2.5% 97.5%
0.2454898 0.5942647

Finally, using the simulated values, a Monte Carlo estimate of the posterior
probability that . θ is less than or equal to . 0.2 is obtained using

. ̂Pr (θ ≤ 0.2) = 1

100,000

100,000∑
i=1

I (xi ≤ 0.2) = 0.00499,

which is a Monte Carlo estimator of (1.15). These figures are in good agreement
with the exact results.

In this example, it was straightforward to sample directly from the posterior
distribution because the normalising constant (1.9) is known, and therefore the form
of the posterior is fully specified. Often the normalising constant cannot be obtained
in closed form, particularly when . θ contains many elements. Chapter 4 discusses
how Monte Carlo draws from the approximate posterior distribution can still be
obtained using Markov chain Monte Carlo (McMC) methods.

An important issue with inferences based on Monte Carlo samples from posterior
distributions is the accuracy of posterior summaries. The latter are subject to
sampling uncertainty that depends on the size of the Monte Carlo sample and on
the degree of autocorrelation of the samples. Methods to quantify this uncertainty
are reviewed in Chap. 4.

Estimating Moments Using (Correlated) Samples from Posterior
Distributions

Result (1.16) is extremely useful and is applied routinely in an McMC environment
to estimate features from posterior distributions. Typically, the elements that
constitute the sample are correlated. However, despite this correlation structure,
consistent estimators of features of posterior distributions can be obtained. For
example, the sample mean

.μ̂ = 1

N

N∑
i=1

xi, (1.17)

1.5 Frequentist or Bayesian? 17

the lag-k sample autocovariance

.γ̂ (k) = 1

N

N∑
i=1

(xi − μ̂) (xi+k − μ̂) (1.18)

and the lag-k sample autocorrelation

.ρ̂ (k) = γ̂ (k)

γ̂ (0)
(1.19)

are consistent estimators of the respective population parameters. In (1.19), .γ̂ (0) is
the sample variance.

As an example, consider generating draws from the lag-1 autoregressive model

.xt = ρxt−1 + et , |ρ| < 1, et ∼ N
(
0, σ 2 = 1

)
, t = 1, . . . , N, (1.20)

where the .e′s are iid (independently and identically distributed). Using R, I
simulated .N = 1000, .10,000 and .100,000 observations from (1.20) using . ρ = 0.8
and .σ 2 = 1, with the initial condition .x1 ∼ N (0, 1). This generates a strongly
autocorrelated structure among the draws. The marginal mean and variance of this
process are

. E (xt) = 0,

Var (xt) = σ 2

1 − ρ2 .

The estimates of the mean (. 0.0), variance (.2.778) and correlation (. 0.8) with samples
of size .N = 1000, .N = 10,000 and .N = 100,000 are .(−0.060, 2.731, 0.793),
.(−0.046, 2.749, 0.797) and .(0.018, 2.774, 0.800), respectively. Despite the rather
strong degree of autocorrelation, the estimates are quite acceptable and get closer to
the true values as sample size increases.

1.5 Frequentist or Bayesian?

There has been much heated debate between frequentists and Bayesians about
the advantages and shortcomings of both methods of inference. One can easily
construct examples where one of the methods gives silly answers and the other
performs fairly well. One such example is the following. Imagine that in the
situation discussed above, rather than obtaining .x = 11 copies of allele A in a
sample of size .n = 27, one obtained .x = 0. This outcome is not unlikely when
. θ is small; for example, the probability of obtaining .x = 0 when .n = 27 and

18 1 Overview

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
 10

 12

�

D
en

si
ty

Posterior (Jefrreys prior)
Posterior (Uniform prior)
Posterior (Week prior)

Fig. 1.9 The three posterior distributions corresponding to the three priors of Fig. 1.7 when . n =
27, x = 0

.θ = 0.04 is .Pr (x = 0|n = 27, θ = 0.04) = 0.33. In this situation, the maximum
likelihood (ML) estimate (1.2) is 0 and its variance is also 0, which is clearly a silly
result (classical maximum likelihood is problematic when the estimate lies on the
boundary of the parameter space).

How does the Bayesian approach behave in such a situation? The three posterior
distributions corresponding to the three priors of Fig. 1.7 are shown in Fig. 1.9.
Jeffrey’s prior and mathematical form as the likelihood, proportional to (.(1 − θ)27),
lead to posterior distributions .Be (0.5, 27.5) and .Be (1, 28), respectively; these have
modal values of 0. The weakly informative prior .Be (2, 2) yields a posterior of the
form .Be (2, 29), which has a mode at .θ ≈ 0.034. The posterior means of these three
distributions are .0.018, .0.034 and .0.065, respectively. The .95% posterior intervals
are

.

(
0.18 × 10−4, 0.88 × 10−1

)
,

(
0.90 × 10−3, 0.12

)
,

(
0.81 × 10−2, 0.17

)
,

respectively. The posterior probabilities that . θ is less than or equal to .0.05 for
.Be (0.5, 27.5), .Be (1, 28) and .Be (2, 29) are .0.91, .0.76 and .0.45, respectively.
In this extreme situation, prior information plays an important role (certainly,
compared to the case .n = 27, .x = 11, displayed in Fig. 1.8).

1.5 Frequentist or Bayesian? 19

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20

�

D
en

si
ty

Beta(2,52) (Posterior Distribution)

Beta(2,25) (Prior Distribution)

Fig. 1.10 A .Be(2, 25) prior distribution and a .Be(2, 52) posterior distribution when . n = 27, x =
0

One may consider other priors from the beta family that put strong probability
mass in the neighbourhood of zero. One possibility is to use a .Be (2, 25) that has a
mode at .θ = 0.04. With .n = 27 and .x = 0, this results in a posterior .Be (2, 52).
The prior and posterior distributions are plotted in Fig. 1.10. The mean and the mode
of the posterior distribution are .0.037 and .0.019, respectively. The .95% posterior
interval is now .(0.005, 0.101) and .Pr (θ ≤ 0.05|n = 27, x = 0) = 0.75.

The beta prior does not assign probability mass to .θ = 0, and this rules out
the possibility that .θ = 0 in its posterior distribution. One way of including 0 as a
possible value for . θ is to use a two-component mixture prior, where one component
is a point mass at zero and the other is a beta prior. Mixture distributions are
discussed in Chaps. 3, 7 and 9.

There is flexibility associated with the Bayesian approach and a carefully chosen
prior distribution will lead to stable inferences about . θ . The cost is a result which
is partly affected by prior input. With small amount of data and when parameters
lie in the border of the parameter space, there is little else to choose from. In
such a situation, the most important role of prior distributions may well be to
obtain inferences about . θ that are stable and that provide a fair picture of posterior
uncertainty, conditional on the model.

Frequentist and Bayesian
There are situations where instead of choosing between frequentist or Bayesian,
one could use frequentist and Bayesian tools in a meaningful way. This is the case
with model checking where one is interested in studying the ability of a model to
account for particular features of the data or to give reasonable predictions of future

20 1 Overview

observations. Key literature is Rubin (1984), Gelman et al (1995) and Gelman et al
(1996). Suppose that data vector . y (length n) are a realisation from the sampling
model .p (y|θM,M), where . θM is a vector of parameters and M represents the
assumed model. If this assumption is adequate, then one would expect that a new
realisation from .p (·|θM,M) should result in a vector .yrep say, that resembles y.
Instead of working in n dimensions, one can construct a scalar function T of the
data and . θM , .T (y, θM), designed to study a particular feature of the data that is
scientifically relevant. One can then compare the observed value of .T (y, θM) with
its sampling distribution under .p (·|θM,M). An observed value that falls in the
extreme tails of the sampling distribution indicates a potential failing of the model
to account for T . Equivalently, one can study whether zero is an atypical value in
the distribution of the difference .T (y, θM) − T

(
yrep, θM

)
.

Parameter . θM is typically unknown. The frequentist proposition is to replace . θM

by some point estimator . θ̂M and then proceed as above treating . θM as known and
equal to . θ̂M .

A Bayesian rather than generating data .yrep from .p
(
yrep|θ̂M,M

)
does so from

.p
(
yrep|y,M

)
, the density of the posterior predictive distribution, given by

.p
(
yrep|y,M

) =
∫

p
(
yrep|θM, y,M

)
p (θM |y,M) dθM (1.21)

where often, .p
(
yrep|θM, y,M

) = p
(
yrep|θM,M

)
. One then observes whether zero

is an extreme value in the posterior predictive distribution .T (y, θM)−T
(
yrep, θM

)
,

where . θM is generated from the posterior .[θM |y,M] and given . θM , .yrep is generated
from .[yrep|θM,M]. This “Bayesian frequentist”, like the frequentist, accounts
for the uncertainty in .yrep due to the sampling process from .p

(
yrep|θM, y,M

)
.

However, unlike the frequentist, account is also taken of the uncertainty about
. θM described by its posterior distribution .[θM |y,M]. Model checking applied in
this manner, although embedded in the Bayesian paradigm, is frequentist in spirit
because it decides whether the observed data look reasonable under the posterior
predictive distribution based on repetitions of data that could have been generated
by the model. All this is typically carried out using McMC methods that provide
great flexibility to question models.

Model checking using posterior predictive distributions is discussed in Chap. 10.

1.6 Prediction

The second part of the book provides an introductory overview of prediction.
A stylised setup is as follows. Data matrix z has the structure .zi = (xi, yi),
.i = 1, 2, . . . , n, where . xi is a p-dimensional vector of covariates (or predictor
variables); . yi , a scalar, is a response variable; and the n vectors are independent
and identically distributed realisations from some distribution. Examples of both

1.6 Prediction 21

parametric (frequentist and Bayesian) and nonparametric models are given here. In
the case of parametric models where the response y is quantitative, a general form
for the association between x and y is

.yi = f (xi) + ei, (1.22)

where f , the conditional mean, is a fixed unknown function of . xi and of parameters
and . ei is a random error term, assumed independent of . xi , with mean zero. Using
the data z, an estimate of f labelled . f̂ is obtained by some method that leads to
.Ê(y0|x0) = ŷ0, a point prediction of the average value of . y0, evaluated at a new
value of the covariate .x = x0 (in a frequentist setting, conditional on estimates of
parameters that index f):

.̂y0 = f̂ (z, x0) . (1.23)

The notation emphasises that the estimation procedure inputs data z and yields a
prediction . ŷ0 for .x = x0. For example, in standard least squares regression . f (xi) =
E(yi |xi) = x′

ib, .f̂ (z, x0) = x′
0b̂, where .̂b = (

x′x
)−1

x′y and . x′
i is the ith row of

matrix x.
With binary responses, one may fit a logistic regression. Here, the modelling is at

the level of the probability. Specifically, letting .Pr (yi = 1|xi) = π (xi), the logistic
model can be written as

. ln

[
π (xi)

1 − π (xi)

]
= x′

ib, i = 1, 2, . . . , n.

A maximum likelihood estimate . ̂b together with a new input . x0 results in a
predicted probability .̂π (x0) that can be transformed into a predicted value according
to the rule:

.̂y0 =
{
1 if π̂ (x0) ≥ 0.5
0 if π̂ (x0) < 0.5.

(1.24)

Measuring Prediction Performance
The performance of the predictions can be evaluated measuring how well they match
observed data. One measure of predictive performance is the sample mean squared
error (.MSE) :

.MSEt = 1

nt

nt∑
i=1

(yi − ŷi)
2 (1.25)

where . nt is the number of records and .̂yi = f̂ (z, xi). When .MSEt (1.25) is
computed using the data that was used to fit the model, the training data, it is
known as the sample training mean squared error. If the objective is to study how
well the model predicts a yet-to-be-observed record, .MSEt can be misleading as it

22 1 Overview

Table 1.1 Training and validating mean squared errors for the prostate cancer data, as the
number of covariates included in the linear predictor increases from 5 to 30. A standard logistic
model is implemented, and the mean squared errors represent the proportion of misclassifications
in the training and validating data

No. of covariates 5 10 15 20 25 30

.MSEt 0.29 0.31 0.16 0.12 0.06 0.00

.MSEv 0.27 0.37 0.25 0.33 0.35 0.39

overestimates predictive performance. In fact, it can be made arbitrarily small by
including a large number of covariates.

A more reliable measure of the prediction ability of the model is to test how well
predictions match observations from a new sample of data . z0 (or hold-out data), the
validating data, drawn from the same distribution as the training data. The validating
data is .z0i = (y0i , x0i), .i = 1, 2, . . . , nv and the sample validating mean squared
error is

.MSEv = 1

nv

nv∑
i=1

(y0i − ŷ0i)
2 . (1.26)

In (1.26) . ̂y0i is the ith prediction computed using the training data z evaluated
at the value of the ith covariate . x0i . That is, .̂y0i = f̂ (z, x0i). With binary
observations, (1.25) and (1.26) represent the proportion of cases where .̂y0i 	= y0i ,
or misclassification error .

As an illustration of some of these concepts, I use data from a microarray study
of prostate cancer from Singh et al (2002). The study includes 52 men with tumour,
50 healthy men and a total of .n = 102 men. The genetic expression of a panel
of .p = 6033 genes was measured for each man. The level of gene expression is
associated with the level of activity of the gene. A larger number implies a more
active gene. The .n × p matrix of covariates is then . x = {xij }, i = 1, 2, . . . , n =
102; j = 1, 2, . . . , p = 6033, with .p
 n.

Fitting Traditional Logistic Regression
To illuminate some of the consequences of overfitting, a first analysis is undertaken
with traditional logistic regression models involving .p < n. Data are divided
into training and validating sets with equal numbers in each. The logistic models
are fitted to the training data using maximum likelihood, and the estimates of the
parameters are used to predict the outcome (healthy/not healthy) in the validating
data. The models differed in the number of covariates included. The change in
.MSEt and .MSEv as the number of covariates (columns in x) increases in the
different models from .p = 5 to .p = 30 in steps of 5 is shown in Table 1.1 for
one training/validating split. The covariates were arbitrarily chosen as the first 5
columns of x, the first 10 and so on. The figures in the table show an increase in
.MSEv as the number of covariates increases beyond 15 and a parallel increase of

1.6 Prediction 23

the overstatement of the model’s predictive ability, as judged by the steady fall in
.MSEt when the number of covariates is larger than 10.

The code below reads the data (singh2002), splits it into a training and a
validating/testing set (y.test and y.train) and in the bottom part,

• fits a logistic regression to the training data using the R-function GLM
• using the ML estimates, computes the predicted liabilities in the training and

validating data
• based on these liabilities, computes .Pr(Y = 1|̂b), where . ̂b is the ML estimate
• transforms the probabilities into the .0/1 scale
• computes .MSE (misclassification error) in the training and validating data

The figures in Table 1.1 were generated using this code. The code illustrates the
case with 15 covariates (first 15 columns of matrix x). The output agrees with the
figures in the third column of the table:

CODE0101
READING SINGH ET AL 2002 DATA
rm(list=ls()) # CLEAR WORKSPACE
Lasso solutions using package glmnet
#install.packages("glmnet", .libPaths()[1])
#install.packages("sda")
library("sda")

library(glmnet)

data(singh2002)
X<-singh2002$x
y<-ifelse(singh2002$y=="cancer",1,0)
n<-nrow(X)
Xlasso<-X
set.seed(3037)
train=sample(1:nrow(X),nrow(X)/2)
test=(-train)
y.test=y[test]
y.train<-y[train]

RESAMPLES TRAIN/TEST DATA AND COMPUTES MSE
FOR EACH RESAMPLE/REPLICATE
t1 <- seq(1,15,1) # CHOOSE THE FIRST 15 COLUMNS OF x
X1 <-X[,t1]
n <- length(t1)
datarf <- data.frame(cbind(y,X))
nc <- 1 # EXAMPLE WITH 1 REPLICATE ONLY
res <- matrix(data=NA, nrow=nc,ncol=3)
for(i in 1:nc){

if(i > 1){train <- sample(1:nrow(datarf),nrow(datarf)/2)}
glm.fit <- glm(y[train] ~ X1[train,] ,

family=binomial(link="logit"))

24 1 Overview

CALCULATE PREDICTED LIABILITY FOR THE TRAINING (liabT) AND THE
VALIDATING DATA (liabV)

liabV <- X1[-train,1:n]%*%glm.fit$coefficients[2:(n+1)]+
glm.fit$coefficients[1]

liabT <- X1[train,1:n]%*%glm.fit$coefficients[2:(n+1)]+
glm.fit$coefficients[1]

COMPUTE Pr(Y=1) BASED ON THESE LIABILITIES
probT <- exp(liabT)/(1+exp(liabT))
probV <- exp(liabV)/(1+exp(liabV))

COMPUTE PREDICTED VALUES IN TRAINING AND VALIDATING DATA
ON THE 0/1 SCALE

predT <- ifelse(probT > 0.5, "1", "0")
predV <- ifelse(probV > 0.5, "1", "0")

COMPUTE MISCLASSIFICATION ERROR
predclassT <- mean((as.numeric(predT) - y.train)^2)
predclassV <- mean((as.numeric(predV) - y.test)^2)

IF CURIOUS COMPUTE LOG-LIKELIHOOD, DEVIANCE,
AIC USING TRAINING DATA

ll <- sum(y.train*liabT) - sum(log(1+exp(liabT)))
dev <- -2*ll
AIC <- dev + 2*(n+1)

res[i,] <- c(n,predclassT,predclassV)
}
res

[,1] [,2] [,3]
[1,] 15 0.1568627 0.254902

Selection of Covariates for Prediction
An objective of the experiment above is to find genes that may have an effect
on prostate cancer. The data are typical of a genomic setup where the number of
variables p (e.g. genetic markers) measured for each individual is considerably
larger than the number of individuals n; the classical .p
 n scenario. In the context
of prediction, these variables enter as covariates in linear regression or logistic
regression models, but only a subset are likely to contribute meaningfully. Inclusion
of redundant variables may improve model fit (reflected in small values of training
mean squared error, .MSEt), but will definitely result in poor predictions. From the
point of view of model implementation, when .p
 n, some form of regularisation
or shrinkage is needed. This constitutes an important topic of the book. Three
examples are provided in this overview. The first is a parametric model; the other
two are nonparametric approaches specifically developed, but not restricted to, to
deal with the .p
 n situation. Like many of the tools used for the analysis of the
type of data sets commonly found in genomic studies, these models can be useful
as guidance in the choice of predictors for further study.

Fitting the Lasso
The parametric example is based on the lasso (Tibshirani 1996 , “least absolute
shrinkage and selection operator”) that is a regularisation method with a tuning
parameter governing the amount of shrinkage of the regression parameters towards

1.6 Prediction 25

zero. Since the lasso solutions typically include many coefficients equal to zero
when the tuning parameter is sufficiently large, it does model selection and
shrinkage simultaneously.

The lasso logistic regression model is fitted using the public package glmnet
(Friedman et al 2009) implemented in R. Documentation about glmnet can be found
in Hastie and Qian (2016) and in Friedman et al (2010).

To obtain predictions, the code below executes first the function cv.glmnet on
the training data in order to find the value of the tuning parameter (. λ) that optimises
prediction ability measured by .MSE. In a second step, glmnet is executed again
on the training data using this best . λ to obtain the final values of the regression
parameters. The code then constructs the predictions from the output of this second
run. The model is finally tested on the training and on the validating data.

A more direct implementation of glmnet without the need to generate estimates
of regression parameters is indicated at the bottom of the code.

The lasso logistic regression was run on the prostate data including all 6033
covariates representing the gene expression profiles. Lasso chooses 36 covariates
and sets the remaining equal to zero. The model with these 36 covariates was used
to classify the observations in the validating data and resulted in a .MSEv equal to
.0.25. In other words, .51×0.25 ≈ 13 out of the 51 observations in the validating data
are incorrectly classified. At face value, the result for .MSEv matches that obtained
in Table 1.1 when the first 15 columns of x were included in the linear predictor.
The latter can be interpreted as a logistic regression model where 15 out of 6033
covariates are randomly chosen. The result based on the lasso is not encouraging:

CODE0102
READING SINGH ET AL 2002 DATA
rm(list=ls()) # CLEAR WORKSPACE
Lasso solutions using package glmnet
#install.packages("glmnet", .libPaths()[1])
#install.packages("sda")
library("sda")
library(glmnet)
data(singh2002)
X<-singh2002$x
y<-ifelse(singh2002$y=="cancer",1,0)
n<-nrow(X)
Xlasso<-X
set.seed(3037)
train=sample(1:nrow(X),nrow(X)/2)
test=(-train)
y.test=y[test]
y.train<-y[train]

********** FOR PREDICTION USING LASSO *****************
repl <- 1 # NUMBER OF REPLICATES
(RESAMPLES TRAINING / VALIDATING)
result <- matrix(data=NA, nrow=repl,ncol=4)
set.seed(3037)
for (i in 1:repl){

if(i > 1){train <- sample(1:nrow(Xlasso),nrow(Xlasso)/2)}
y.train <- y[train]

26 1 Overview

y.test <- y[-train]
STEP 1: cross-validation; find best value of lambda
alpha=1: LASSO; alpha=0: RIDGE REGRESSION

cv.out=cv.glmnet(Xlasso[train,],y[train],alpha=1,
family="binomial",type = "class")

#plot(cv.out)
bestlam=cv.out$lambda.min

#bestlam

Using best lambda, fit model on training data
to obtain final parameter estimates

STEP 2
fm=glmnet(y=y[train],x=Xlasso[train,],alpha=1,lambda=bestlam,

family="binomial",type.measure= "class")
nzcf<-coef(fm)
cf<-which(fm$beta[,1]!=0)
if (length(cf) == 0){

out <-c(i,length(cf))
print(out)
break

}
#length(cf) # NO. REGRESSION PARAMETERS IN FINAL MODEL
CONSTRUCT PREDICTIONS FROM OUTPUT OF fm
1. VALIDATING DATA

predglmnet<-fm$a0+Xlasso[-train,cf]%*%fm$beta[cf]
probs <- exp(predglmnet)/(1+exp(predglmnet))
predclass_test <- as.numeric(ifelse(probs > 0.5, "1", "0"))

2. TRAINING DATA
predglmnet<-fm$a0+Xlasso[train,cf]%*%fm$beta[cf]
probs <- exp(predglmnet)/(1+exp(predglmnet))
predclass_train <- as.numeric(ifelse(probs > 0.5, "1", "0"))
result[i,] <- c(mean((predclass_train-y.train)^2),

mean((predclass_test-y.test)^2),bestlam,length(cf))
}
result

[,1] [,2] [,3] [,4]
[1,] 0 0.254902 0.01948886 36

#NOTE: for prediction, GLMNET can be implemented more directly,
using in STEP2:

fm.predclass=predict(cv.out,s=bestlam,newx=Xlasso[test,],
family="binomial",type="class")
mean((as.numeric(fm.predclass)-y.test)^2) # VALIDATION ERROR
RATE (BASED ON CLASS LABELS)

The somewhat disappointing performance of the lasso was investigated further
by random splitting the training/testing data set 50 times. This provides a picture
of the sampling variation of the .MSE over the joint distribution of training/testing
data. The mean validating mean squared error, over the 50 replicates, was .0.30,
with a minimum of .0.16 and a maximum of .0.53. The number of covariates not set
equal to zero ranged from 2 to 41 with a median of 24. There is not a model that

1.6 Prediction 27

is consistently singled out as a good predictor over replications. This is a reflection
of the ubiquitous multicollinearity in a multidimensional setting where covariates
become highly correlated (a covariate can be expressed as a linear combination of
others). Therefore, a different set of covariates is chosen in each replication.

Fitting a Classification Tree
The first of the two nonparametric models that are fitted to the data is a
classification tree (Breiman et al 1984), that is described briefly via
the example generated by the R-code below. The code executes the R function
tree; this requires installation of the package tree. The data set singh2002
includes 6033 covariates and the response variable is y: a binary classification
variable with modalities “healthy” and “cancer”:

CODE0103
rm(list=ls()) # CLEAR WORKSPACE
set.seed(30331)
#install.packages("tree")
library(sda)
library(tree)
library(glmnet)
data(singh2002)
d <- data.frame(singh2002$x)
d$y <- singh2002$y
nrep <- 1 # NUMBER OF REPLICATES
res <- matrix(data=NA,nrow=nrep,ncol=3)
ptm<-proc.time()
for (i in 1:nrep) {

cat(i,"\n",sep="")
train <- c(sample(1:50,25),sample(51:102,26))

FIT THE TREE TO THE TRAINING DATA
trees <- tree(y ~ . , data=d[train,])

FIT FUNCTION PREDICT TO THE TRAINING AND VALIDATING DATA
predtreev <- predict(trees,d[-train,],type="class")
predtreet <- predict(trees,d[train,],type="class")

CLASSIFICATION ERROR IN TRAINIMG AND VALIDATING DATA
predv <- sum(predtreev==d$y[-train])/length(d$y[-train])
predt <- sum(predtreet==d$y[train])/length(d$y[train])

RECORD TRAINING / VALIDATING CLASSIFICATION ERROR AND
NUMBER OF COVARIATES IN TREE

res[i,]<-c((1-predt),(1-predv),length(summary(trees)$used))
}

1

proc.time()-ptm

user system elapsed
2.95 0.17 3.12

res

[,1] [,2] [,3]
[1,] 0 0.1764706 2

28 1 Overview

tab <- table(predtreev,d$y[-train])
tab

predtreev cancer healthy
cancer 17 0
healthy 9 25

CHECK CLASSIFICATION ERROR
(tab[1,2]+tab[2,1])/(length(d$y[-train]))

[1] 0.1764706

#summary(res)
#plot(trees)
#text(trees,pretty=0)

Figure 1.11 indicates that in the particular replicate, the algorithm isolated 2
of the 6033 covariates, .X77 and .X237. Starting at the top of the tree, the 51 cases
in the training data have been split into two groups: one, to the left, that shows
expression profile for .X77 less than a threshold .t1 = −0.777 and those to the right
with .t1 > −0.777. The group on the left is not split further and constitutes a terminal
node. On the right side, a second split based on the profile of .X237 and a threshold
.t2 = −0.855 gives rise to two terminal nodes. The result can be interpreted as an
interaction between the two markers.

Fig. 1.11 Output from a
classification tree fitted to
data singh2002 from
Singh et al (2002) using the R
function tree (R-code
CODE0103). Results from
one replicate

|
X77 < −0.777342

X237 < −0.85516

cancer

cancer healthy

1.6 Prediction 29

A predicted value is attached to each terminal node. For a new individual, a
predicted value is obtained by starting at the top of the tree and following the splits
downwards until the terminal node with its predicted value is reached. The new
individual is assigned the prediction given by that terminal node. In the example,
if the new individual were to show a value for .X77 = −0.3 and for .X237 = −0.1,
following the tree from top to bottom would lead to a prediction taking the modality
“healthy”.

Typing the tree object (in this case, trees) gives further details associated with the
figure. Terminal nodes are indicated with asterisks. R prints output from each branch
of the tree in the form of the node, split criterion t , the number of observations in the
branch n, the deviance, the classification for the branch (“cancer”/“healthy” in the
present case) and the proportion of observations in the branch that take the values
“cancer”/“healthy”:

library(tree)
trees

node), split, n, deviance, yval, (yprob)
* denotes terminal node

1) root 51 70.68 cancer (0.5098 0.4902)
2) X77 < -0.777342 20 0.00 cancer (1.0000 0.0000) *
3) X77 > -0.777342 31 30.46 healthy (0.1935 0.8065)
6) X237 < -0.85516 6 0.00 cancer (1.0000 0.0000) *
7) X237 > -0.85516 25 0.00 healthy (0.0000 1.0000) *

The output above indicates that at the top of the tree at .X77 (which is the
root since the tree is upside down), there are 51 records (the training data), and
the proportion of “cancer” is .0.5098. After the first split, to the left, the split is
.t1 < −0.777, and 20 observations are classified as “cancer” and 0 as “healthy”
leading to proportions of (.1.00, 0.00). To the right, the split is .t1 > −0.777 that
gives rise to 31 records, with a proportion of “healthy” equal to .0.8065 (25 out of
the 31 records are "healthy, those whose .t2 > −0.855, associated with covariate
.X237).

Various algorithms are available to decide which variable to split and the
splitting value t to use for the construction of the tree. Some of these topics
are deferred to the chapter on nonparametric methods. Here, I concentrate on the
predictive ability of the method. For the particular replicate, the classification error
in the training and validating data is 0 and .0.18, respectively. Replicating the
experiment 50 times gives a mean classification error in training and validating
data equal to .0.016 and .0.197, respectively, with (minimum, maximum) values of
(.0.000, 0.078) and (.0.098, 0.333), respectively. With the parameters for the utility
function tree.control set at the default values, the number of covariates over
the 50 replicates included in each tree fluctuates between 2 and 3, and these
covariates vary over replicates. For these data, the classification tree performs
considerably better than the lasso.

30 1 Overview

Interestingly, in all the cases, the classification trees capture what can be
interpreted as an interaction involving two or three covariates. These are not the
same covariates for the 50 trees. Perhaps, this must not come as a surprise: 6033
covariates give rise to more than 18 million different two-way interactions. There-
fore, predictors based on interacting covariates are prone to be highly correlated.
More generally and as noted with the lasso, in the high-dimensional setting, the
multicollinearity of the covariate matrix is often extreme, and any of the p covariates
in the .n × p matrix can be written as a linear combination of the others. This means
that there are likely many sets of pairs of covariates (other than .X77 and .X237) that
could predict just as well. It does not follow that the model cannot be trusted as a
prediction tool, but rather that one must not overstate the importance of .X77 and
.X237 as the only genes associated with the response variable. As with the lasso, the
analysis with the classification tree provides inconclusive evidence of specific genes
affecting prostate cancer.

Fitting a Random Forest
A problem often mentioned with trees is that they exhibit high variability. Small
changes in the data can result in the construction of very different trees and their
predictions can be impaired. However, they are an integral part of another method
known as random forest (Breiman 2001) whose prediction performance benefits by
the process of averaging. The random forest consists of many classification trees
and each is created as follows:

• Create a sample of size . nv by drawing with replacement from the . nv data in the
training data. Repeat this B times to generate B samples. (With random forests,
there is an alternative way of estimating validating mean squared error using the
entire data, without cross-validation. Details are discussed in Chap. 11).

• For each sample, generate a classification tree. Each time a split in the tree is
considered, a random sample of m unique predictors is chosen as split candidates
from the p predictors. For classification, it is customary to use .m ≈ √

p. This
step has the effect of decorrelating the ensemble of B trees (in classification
trees, the construction of a split involves all the predictors).

For classification, once the trees are available, the final prediction is obtained
by a majority vote. Thus, for .B = 10, say, if for a particular observation in the
validating data six or more trees classify it as . "1", the predicted value for this
observation is . "1". The prediction obtained in this manner usually outperforms the
prediction of classification trees. This improvement in performance arises from the
fact that a prediction based on B predictors with very low correlation has smaller
variance than a single prediction. The low correlation is ensured in the second
step. The first step involving the bootstrapping of the training data is known as
bagging, short for bootstrap aggregating, whereby the results of several bootstrap
samples are averaged. (The mean squared error is a measure of the performance of
a predictor, whose expectation includes the variance of the predictor, a squared bias
term and a pure noise term associated with the variance of the predictand. Therefore,
the performance of a predictor improves as its variance is reduced. This reduction

1.6 Prediction 31

20 40 60 80 100 120

0.
85

0.
90

0.
95

1.
00

Number of Predictors/Split

1−
V

al
id

at
in

g
M

S
E

Fig. 1.12 Average proportion of correct classifications in the validating data (in red) of a random
forest over 200 replicates against the number of covariates included in the ensemble of trees.
Maximum and minimum over replicates in blue

is achieved by constructing a prediction averaged over several bootstrap samples
whose variance is smaller than the variance of an estimate based on a single sample).

To study prediction ability, the random forest was implemented on the singh2002
data set using the R function RandomForest. I executed 200 replicates (200 splits
of training/testing data), and in each replicate, the number of covariates included in
the split of a particular tree ranged from 5 to 120 as indicated in the code below in the
variable mtry <- c(5,20,50,80,120). The average proportion of correct
classifications in the validating data (“cancer”, “healthy”), as well as the minimum
and maximum over the 200 replicates as a function of the number of covariates
(mtry in the . x− axis), is shown in Fig. 1.12.

The results are quite impressive. The average proportion of correct classifications
in the validating data is of the order of .97% with a minimum . −maximum in the
range .84% − 100%.

The code used to implement the random forest is shown below:

CODE0104
#install.packages("randomForest")
rm(list=ls()) # CLEAR WORKSPACE
library(sda)
library(randomForest)
data(singh2002)
d <- data.frame(X=singh2002$x)
d$y <- singh2002$y
n0 <- sum(d$y=="healthy")
n1 <- sum(d$y=="cancer")

32 1 Overview

set.seed(3037)
p <- .5
nrep <- 1
mtry <- c(5,20,50,80,120)
sumd <- data.frame()
res <- rep(NA,nrep)
ptm<-proc.time()
for (m in mtry) {

cat("mtry ",m,"\n",sep="")
for (rep in 1:nrep) {

cat("Replicate ",rep,"\n",sep="")
train <- c(sample(1:n0,floor(p*n0)),

sample((n0+1):(n0+n1),floor(p*n1)))
rf.singh =randomForest(y ~.,

data=d,
subset =train,
mtry=m,
importance =TRUE)

predict <- predict(rf.singh,d[-train,])
observed <- d$y[-train]
t <- table(observed,predict)
print(t)
res[rep] <- (t[1,1]+t[2,2])/sum(t)

}
sumd <- rbind(sumd,c(m,min(res),mean(res),median(res),

max(res),var(res)))
}
proc.time()-ptm
names(sumd) <- c("mtry","min","mean","median","max","var")

with(sumd,plot(mtry,mean,type="l",col="red",ylim=c(min(min),1),
ylab="1 - Mean Squared Error",
xlab="Number of Predictors Considered at each Split"))

with(sumd,lines(mtry,min,lty=2,col="blue"))
with(sumd,lines(mtry,max,lty=2,col="blue"))

While in this particular set of data the random forest was the clear winner among
the prediction machines tested, it is important to mention that there is no uniformly
best prediction machine. A different set of data may produce different results. Very
marked differences among prediction methods ought to raise suspicion and warrant
careful investigation of the data (Efron 2020). This is particularly important in this
era of increasingly larger data sets where the consequence of bias due to non-random
sampling is magnified. The point is elaborated in Meng (2018). Spurious results may
be obtained by complex interactions between a prediction method and a particular
structure in the training data at hand that may not be reproduced when the model is
deployed using validating data.

1.7 Appendix: A Short Overview of Quantitative Genomics

I provide a brief and compact description of the quantitative genetics/genomics
model and introduce terms used repeatedly in the book, such as allele, locus,

1.7 Appendix: A Short Overview of Quantitative Genomics 33

diploid, haploid, genotype, Hardy-Weinberg law, single nucleotide polymorphisms
(SNPs), genomewide association study (GWAS), allele content, quantitative trait
loci (QTL), linkage, linkage disequilibrium, phenotype, genotype, genetic value,
genetic variance, additive genetic value (breeding value), additive genetic effect
(additive effect of a gene substitution), additive genetic variance, heritability,
expected additive genetic relationship, additive genetic relationship matrix, genomic
relationship matrix, genomic model, genomic value and genomic variance.

The Classical Quantitative Genetics Model

The starting point of the mathematical genetics model is the metaphor that describes
chromosomes as strings of beads, with each bead representing a gene. Genes are the
unit of inheritance. In mammals and many other groups, each cell carries two copies
of each chromosome; they are said to be diploid. Most fungi, algae and human
gametes have only one chromosome set and are haploid.

The complete set of chromosomes of an organism includes sex chromosomes
and autosomes. For example, in humans, there are 23 pairs of chromosomes and
of these, 22 pairs are non-sex chromosomes known as autosomes. The majority of
genes are located on the autosomes and in this book I consider autosomal loci only.

In diploid organisms, at a specific location on the chromosome called the locus,
each of the two copies of the chromosome carries a gene. The pair of genes
constitute the genotype at the particular locus. Genes exist in different forms known
as alleles. Here, I consider biallelic loci, so for a given locus in diploid individuals,
if the two alleles are A and a, the three genotypes could be denoted, say AA, Aa
and aa (no distinction is made between Aa and aA). For example, an individual
with genotype Aa received one allele (say A) from the mother and the other from
the father.

The standard quantitative genetic model assumes that the expression of a trait
value y (the phenotype, here centred with zero mean) in diploid individuals is
determined by the additive contributions of a genetic value G and an environmental
value e,

. y = G + e,

where .e ∼ (0, σ 2) is often assumed independent of G. The genetic value is defined
as the conditional mean of the phenotype, given genotype, .E (y|G) and is the result
of the joint action of a typically unknown number q of quantitative trait loci (QTL).

The Single Locus Model

Consider first a trait affected by a single biallelic locus with the three genotypes
labelled AA, Aa and aa. Let p denote the frequency of allele A in the population

34 1 Overview

(assumed to be the same in both sexes). In a large population, assuming random
mating among parents and in the absence of random genetic drift, selection and
mutation, in the offspring generation, the frequency of genotype AA is . p2, of
genotype Aa is .2p(1 − p) and of genotype aa is .(1 − p)2. In this overview, gene
frequencies p are treated as known constants that remain unchanged over repeated
cycles of random mating.

Define the random variable . z∗ as

. z∗ =
⎧⎨
⎩
2, with probability p2,

1, with probability 2p (1 − p) ,

0, with probability (1 − p)2 ,

The random variable . z∗ is known as the allele content (here, allele A is arbitrarily
taken as reference and .z∗ = 2 if the genotype has two copies of allele A).
For this locus, .E (z∗) = 2p, .Var (z∗) = 2p (1 − p) and for individuals k and
j , .Cov

(
z∗
j , z

∗
k

)
= ajk2p (1 − p) where .ajk is the expected additive genetic

relationship (given a pedigree) between k and j (e.g. .ajk = 0.5 if j and k are
non-inbred full sibs or parent and an offspring), also interpreted as the expected
proportion of alleles shared identical by descent between j and k (genes that are
identical by descent (IBD) are copies of a specific gene carried by some ancestral
individual). The note note0101.pdf at https://github.com/SorensenD/SLGDS has a
derivation of these results.

In a large (idealised) random mating population, in the absence of selection,
mutation or migration, the relationship between gene frequency p and genotype
frequency . p2 remains constant from generation to generation. The property is
derived from a theorem known as the Hardy-Weinberg law that provides one expla-
nation for the maintenance of genetic variation in such idealised random mating
population. In a population in Hardy-Weinberg equilibrium, genotype frequencies
at a particular locus in the offspring generation depend on gene frequencies in the
parent generation.

From now on, the codes for the three genotypes are centred as . z = z∗ − E (z∗)
so that .E (z) = 0, .Var (z) = 2p (1 − p) and phenotypic values are also centred, so
that .E(y) = 0.

The genetic value .G(z) at the locus can take three modalities corresponding to
the three genotypes at the biallelic locus and can be decomposed into two terms:

.G(z) = αz + δ, (1.27)

where . αz is the best linear predictor of genetic value. The best linear predictor
. αz is also known as the additive genetic value or breeding value: the best linear
approximation describing the relationship between genetic value and allele content
z (best linear prediction is discussed on page 259; see also the example on page 261
for more details on the concepts of additive genetic values and effects, where it is
shown that . α, the additive genetic effect of the locus or average substitution effect

https://github.com/SorensenD/SLGDS
https://github.com/SorensenD/SLGDS
https://github.com/SorensenD/SLGDS
https://github.com/SorensenD/SLGDS
https://github.com/SorensenD/SLGDS

1.7 Appendix: A Short Overview of Quantitative Genomics 35

at the locus is also the regression of y on z). The residual term . δ is orthogonal to z
and includes deviations between .G(z) and . αz.

The genetic variance contributed by the locus in the population (based on the law
of total variance)

.Var (G (z)) = Varz (E [G(z) |z]) + Ez (Var [G(z) |z]) (1.28)

is orthogonally decomposed into an additive genetic component of variance . σ 2
a , the

first term in the right-hand side and a residual or dominant component of genetic
variance , .Var (δ), the second term. The additive genetic variance (variance of
the additive genetic values) in this single locus model, assuming Hardy-Weinberg
equilibrium, is

. σ 2
a = Varz (E [G(z) |z]) = Var (αz|α) = 2α2p (1 − p) .

If the linear fit is perfect, the genetic variance is equal to the additive genetic
variance. Importantly, additive genetic variation at the locus arises due to variation
in allele content z among individuals at the locus. The substitution effect . α is treated
as a fixed albeit unknown parameter (this is stressed by conditioning on . α).

The (narrow sense) heritability of the trait is defined as the ratio of the additive
genetic variance to the phenotypic variance : .h2 = σ 2

a

/
σ 2

y , where .σ
2
y = Var (y),

the marginal variance of the phenotype.

Models with Many Loci

The extension to q biallelic loci involves a random vector .z = (
z1, . . . , zq

)′ of
allele contents of the q genotypes. Under random mating, .Var (zk) = 2pk (1 − pk),
.k = 1, . . . , q and .Cov (zk, zl) = 2Dkl , where the linkage disequilibrium (LD)
parameter .Dkl between loci k and l is defined as follows. Choose the paternal (or
maternal) gamete and let the random variable U take the value 1 if allele . Ak is
present in the paternal gamete at locus k and zero otherwise; let the random variable
V take the value 1 if allele . Al is present in the paternal gamete at locus l and zero
otherwise. Then .Dkl is defined as the covariance between U and V :

. Dkl = Cov (U, V) ,

and .Cov (zk, zl) = 2Dkl since in the diploid model, the genotype results from
the random union of two gametes. Covariances involving alleles of different loci
between gametes are zero. Linkage disequilibrium is created by evolutionary forces
such as selection, mutation and drift and is broken down by random mating, as a
function of time (measured in generations) and of the distance that separates the
intervening loci. Generally, loci that are physically close together show stronger
LD.

36 1 Overview

With random mating in a large population, the variance structure of vector z
containing the q allele contents, a population parameter, is

.z =

⎡
⎢⎢⎢⎣
2p1 (1 − p1) 2D12 · · · 2D1q

2D21 2p2 (1 − p2) · · · 2D2q
...

...
. . .

...

2Dq1 2Dq2 · · · 2pq

(
1 − pq

)

⎤
⎥⎥⎥⎦ . (1.29)

The combined action of the q loci defines the genetic value .G(z). A useful
starting point is to assume that the effects of the loci combine additively. A genetic
value has the same structure as (1.27), .G(z) = α′z + δ, where now . α is the . q × 1
column vector of average substitution effects (or additive genetic effects) at the q
loci. The additive genetic variance contributed by the q loci is

.σ 2
a = Var

(
α′z|α) = α′zα. (1.30)

Expanding (1.30) reveals that the additive genetic variance takes the form

.σ 2
a = 2

q∑
i=1

α2
i pi (1 − pi) + 4

q−1∑
i=1

q∑
j=i+1

αiαjDij . (1.31)

The first term in the right-hand side is the equilibrium additive genetic variance ,
and the second term is the contribution due to disequilibrium (Bulmer 1971). If the
loci are in linkage equilibrium (.Dij = 0 for all . i, j), genotypes in the population are
uncorrelated, (1.29) is a diagonal matrix and the additive genetic variance reduces to
the first term. Among the loci of neutral traits, some of the disequilibrium terms are
positive and others negative. In contrast, among loci of selected traits, depending
on the type of selection, in large populations, the disequilibrium terms are either
positive (disruptive selection) or negative (optimising and directional selection)
(Bulmer 1971).

The phenotypic value y of an individual in the multilocus model can be written
as

. y = G(z) + e

= α′z + (δ + e)

= α′z + ε, (1.32)

where the residual term . ε includes environmental effects e and non-additive genetic
effects . δ. The genetic value is the conditional expected value of the phenotype given
the genotype

.G(z) = E [y|z] .

1.7 Appendix: A Short Overview of Quantitative Genomics 37

Covariance Between Relatives

Consider two related individuals i and j whose causal genotypes at q loci are
described by the random vectors of allele contents . zi and . zj , where . zi =(
zi1, . . . , ziq

)′. While (1.29) describes associations within individuals, here we
seek associations between individuals. The covariance between i and j at the
same locus k is .Cov

(
zik, zjk

) = 2aijpk (1 − pk), where . aij is the coefficient of
expected additive genetic relationship between i and j . The covariance involving
two different loci k in i and l in j is .Cov

(
zik, zjl

) = 2aijDkl . The contribution to
the covariance between the additive genetic values of i and j from loci k and l is
then

. Cov
(
α′zi, z

′
jα|α

)
= α′ Cov

(
zi, z

′
j

)
α

= 2aij

∑
m=k,l

α2
m pm (1 − pm) + 4aijαkαlDkl, (1.33)

that has the same form as (1.31) except for the factor . aij .
Expression (1.33) generalises to n individuals displaying a family structure given

by a pedigree. Based on the pedigree, the .n × n matrix A can be constructed. This
matrix, known as the additive genetic relationship matrix, has elements . aij that
denote the expected additive genetic relationship between individuals i and j .

Let . Zα represent the vector of n additive genetic values, where Z is the . n × q

matrix of genotypic codes and . α is the .q×1 vector of additive genetic effects for the
q loci. Then the variance-covariance matrix of the n additive genetic values, treating
Z as random and . α as a fixed parameter, is

. Var (Zα|α) =

⎡
⎢⎢⎢⎣

a11α
′zα a12α

′zα . . . a1nα
′zα

a21α
′zα a22α

′zα . . . a2nα
′zα

...
...

. . .
...

an1α
′zα annα

′zα

⎤
⎥⎥⎥⎦

= A

⎡
⎣ q∑

k=1

α2
k 2pk (1 − pk) +

q−1∑
k=1

q∑
l=k+1

4αkαlDkl

⎤
⎦

= Aσ 2
a , (1.34)

where . σ 2
a is given by (1.31) and is equal to the term in square brackets.

Expressions (1.33) and (1.34) assume that the (large) population is maintained
in a steady state of gene frequency and linkage disequilibrium from generation to
generation resulting in constant . σ 2

a and that the computation of the expected additive
genetic relationship between individuals i and j involving loci k and l is tracing i
and j to the most recent common ancestor. The constancy of . σ 2

a is an approximation

38 1 Overview

that can also be justified by considering cohorts spanning one or two generations as
often found in human pedigrees.

The covariance between relatives in multilocus systems is part of a subject of
difficult entry. An exact general treatment involving only pairs of loci constitutes
a formidable challenge leading to unwieldy expressions, as shown by Weir and
Cockerham (1977). The curious reader may wish to glance with awe at formula
(6) for the genetic variance in their article that is almost two pages long! Results
assuming lack of inbreeding, epistasis and assortative mating, but accounting for
dominance, linkage and the dynamics of the linkage disequilibrium parameter over
generations, lead to simpler expressions and are given by Weir et al (1980). Further
details and an informal derivation of the covariance between allele contents of
two individuals at different loci are in the note note0101.pdf at https://github.com/
SorensenD/SLGDS.

Expected Value of the Genomic Relationship Matrix

In the population with n related individuals and q causal loci, the centred matrix Z
contains the coded genotypes of the causal loci, . zij , .i = 1, . . . , n; j = 1, . . . , q.
These are realisations from a random Mendelian process. The expectation . E

(
ZZ′)

is proportional to the expected additive genetic relationship matrix, as sketched
below.

The ij th element of .ZZ′ involving individuals i and j is computed using the
inner product .z′

izj , where . z′
i is the ith row of Z, containing the causal genotypes of

individual i. The expectation of the inner product .z′
izj involves only the diagonal

elements of the matrix . z in (1.29). Then conditional on gene frequencies,

. E
(
z′
izj

) = aij

q∑
k=1

2pk (1 − pk)

and

.E
(
ZZ′) = A

q∑
k=1

2pk (1 − pk) , (1.35)

proportional to A, as in Habier et al (2007). This expectation, here derived for
causal (QTL) genotypes, holds for any set of randomly drawn autosomal genotypes,
including genetic marker loci.

https://github.com/SorensenD/SLGDS
https://github.com/SorensenD/SLGDS
https://github.com/SorensenD/SLGDS
https://github.com/SorensenD/SLGDS
https://github.com/SorensenD/SLGDS

1.7 Appendix: A Short Overview of Quantitative Genomics 39

The Genomic Model

The description so far is in essence the standard model of quantitative genetics.
It is viewed as the model that generates the data, the true model. “True” must
be interpreted in a statistical sense and not as a mechanistic description of the
complex biological process that results in an observed phenotype. It is perhaps
best understood relative to an operational model that by its very nature cannot
be viewed as having generated the data. A genomic model is such an operational
model. A genomic model incorporates genetic markers in a regression equation,
often assuming a linear association between the phenotype and the genetic markers.
This association arises as a result of the correlation (linkage disequilibrium) between
the observed genetic markers and the unobserved causal loci (QTL). The genetic
markers are DNA sequences with a known location on a chromosome. One type
is single-base pairs (single nucleotide polymorphisms (SNPs)), that give rise to
different alleles containing alternative bases at a given position. SNPs are most often
phenotypically neutral, but sometimes they can affect the phenotype, for example,
by causing a change in the amino acid sequence of a gene product, or by affecting
gene regulation in noncoding sequences. In this case, the SNP becomes a causal
locus and has a direct effect on phenotype.

The use of genetic markers as covariates instead of causal loci induces a new set
of parameters that must be defined: the genomic value, the genomic variance and
the genomic heritability.

At the population level, using p markers with centred marker genotype codes
. xi in vector .x = (

x1, . . . , xp

)′, the genomic value (the part of the genetic value
explained by the linear regression on markers) is defined as

. E [G(z) |x] = Ez|x [E (G (z) |z, x)]

= Ez|x [E (G (z) |z)]
= α′ E (z|x)

= α′zx
−1
x x = α ′̂z

= β ′x. (1.36)

In this expression, the marker effects .β = −1
x xzα are population parameters,

defined as the vector of coefficients in a multiple linear regression of additive genetic
values on marker genotypes. In the fourth line, .̂z = zx

−1
x x is the best linear

predictor of allele contents at the QTL, z, given allele content at markers x. The
parameter .zx is the covariance matrix involving marker and QTL genotypes, and
the parameter . x is the variance covariance matrix of marker genotypes that has a
structure similar to (1.29).

40 1 Overview

The genomic variance or variance of genomic values . β ′x is the part of the genetic
variance explained by the linear regression on marker genotypes:

.Varx (E [G(z) |x]) = β ′xβ = α′zx
−1
x xzα. (1.37)

The genomic heritability is the ratio of genomic variance to phenotypic variance,
also a population parameter. These are the parameters to be inferred when the
statistical models are fitted to the data.

There are a couple of details to note in relation to (1.37). The first and obvious
one is that the proportion of the additive genetic variance captured by the marker
genotypes depends on the strength of the association between the markers and
the QTL genotypes (defined by the degree of linkage disequilibrium between
marker loci and causal loci). This is dictated by . zx . When LD between marker
genotypes and causal genotypes is perfect, .zx = z, .x = z and the genomic
variance is equal to the additive genetic variance. In this situation, the genomic
heritability achieves its upper bound, equal to the heritability of the trait. The
second is that when the QTL genotypes are part of the marker panel (e.g. with
full genome sequence), the (population parameter) genomic variance (1.37) is equal
to the (population parameter) additive genetic variance (1.30). In other words,
.Var(β ′x) = α′zα. The proof of this result involves a little manipulation with the
inverse of partitioned matrices and can be found in de los Campos et al (2015). It
does not follow that implementing a statistical model that incorporates full genome
sequence will automatically uncover the additive genetic variance of the trait. This
depends on the input data and on the properties of the estimator of the genomic
variance of the statistical model.

In several examples used in the book, I generate a matrix of genotypic markers
drawing independent samples from a binomial distribution and a proportion is
assigned as QTL. Since the QTL are part of the marker panel, the variance of the
independent marker genotypes fully accounts for the equilibrium additive genetic
variance.

Further details on these subjects can be found in Gianola et al (2009) and de los
Campos et al (2015) who lay the background for most of what is written here.

Fitting Models Incorporating Marker Genotypes

When marker genotypes are fitted one at a time, the analysis is known as
genomewide association study (GWAS). GWAS exploits the association, at the
population level, between observed genetic markers scattered across the genome
and unobserved causal loci. The significance of markers is assessed by regressing
the phenotype on each marker in turn. This is based on a simple . t−test using often
a Bonferroni adjustment to correct for multiple testing (see Chap. 8). GWAS have

1.7 Appendix: A Short Overview of Quantitative Genomics 41

identified thousands of genetic variants associated with human complex traits and
diseases. Despite this success, the significant SNPs explain a small proportion of the
genetic variation estimated from pedigrees. This has been known as the “missing
heritability” problem and indicates that most of the genetic variation uncovered
by GWAS remains unexplained. Part of the explanation lies in the multiple testing
procedure, in the method’s attempt to avoid false discoveries, on the size of the
effects and frequency of the causal genes affecting the complex trait and on the
incomplete degree of association between marker and causal genotypes. Many
loci contributing to genetic variation do not reach the stringent significance level
imposed and are missed. Despite the limitations, the success of GWAS as a gene
discovery tool cannot be denied, particularly when used together with a number of
refinements designed to partially overcome some of its shortcomings (Yang et al
2012). In 2008, a GWAS study involving several thousand individuals detected
approximately 40 genetic variants associated with height that account for about . 5%
of the heritability (Visscher 2008). In 2022, with larger size of testing populations
(resulting in higher power) and larger number of genetic markers (leading to larger
amounts of linkage disequilibrium), the number of discovered SNPs increased to
approximately .12, 000, explaining .40% of the heritability of height (Yengo et al
2022).

An alternative to fitting one marker at a time is to use a genomic model that incor-
porates all the markers simultaneously in a multiple linear regression disregarding
statistical significance and in contrast with traditional GWAS, accounting for the
structure among marker genotypes. A specification could be

.y|X ∼ N
(
1μ + Xb, Iσ 2

)
, (1.38)

where 1 is an .n×1 vector of . 1′s, . μ is a scalar, y is .n×1 vector of observed records,
X is a centred matrix of observed marker genotypes of order .n × p and b is an
unobserved .p × 1 vector of marker effects at the level of the fitted model. When
typically .p > n, some additional structure must be incorporated to fit the p marker
effects b to the n data points. One common approach is to treat b as the random
variable

.b|σ 2
b ∼ N

(
0, Iσ 2

b

)
, (1.39)

where . σ 2
b can be interpreted as quantifying prior uncertainty about the genetic

marker effects b. The specification of marker effects as random variables is
in contrast with their definition in (1.36) and has a direct consequence on the
relationship between the genomic variance defined in (1.37) and the genomic
variance of the fitted model. To see this, define the vector of genomic values (at
the level of this operational model) as .g = Xb. The genomic variance of the fitted

42 1 Overview

model is defined as the unconditional variance:

. σ 2
g = Var

(
b′X

) = Eb

[
Var

(
b′X|b)] + Varb

[
E

(
b′X|b)]

= Eb

(
b′Xb

) + 0

= σ 2
b tr (X) = σ 2

b

p∑
j=1

2pj

(
1 − pj

)
. (1.40)

In this expression, .Varb
[
E

(
b′X|b)] = 0 because with centred X, . E(b′X|b) =

b′E(X) = 0. A glance at the genomic variance of the fitted model (1.40) and at
the parameter defined in (1.37) reveals a lack of correspondence between the two.
This is elaborated a little further in the first Comment on page 44 and a deeper
discussion is in de los Campos et al (2015).

Let .k = ∑p

j=1 2pj

(
1 − pj

)
. An alternative parametrisation in terms of g that is

useful when .p > n is

.y|X ∼ N
(
1μ + g, Iσ 2

)
, . (1.41a)

g|X ∼ N
(
0,Ggσ

2
g

)
, (1.41b)

where the genomic relationship matrix .Gg = 1
k
XX′ has rank at most .n − 1 if X is

centred and if .p > n. This is equivalent to constructing the genomic relationship
matrix from .Gg = XX′, when the elements of X are centred and scaled by
.
√

(k). In this parametrisation, .σ 2
g = σ 2

b , independent of the number of markers.
In general, when X is centred, the vector of genomic values g has a singular normal
distribution.

The model of marker effects defined in (1.39) shrinks all marker effects
homogeneously towards zero and is therefore not ideal for discovery. It is best
deployed for inferences of genomic variance . σ 2

g and for prediction of genomic
values g. An early application of a version of this genomic model in humans to
infer genomic heritability (Yang et al 2010) incorporated .294, 831 SNPs genotyped
on 3925 unrelated individuals (meaning distantly related) and reported that . 45%
of the variance of height could be accounted for by considering all the SNPs
simultaneously. The increase in variance explained relative to the GWAS analysis
is attributed to the many SNPs with small effects that do not pass the significant
threshold in GWAS. This was still considerably less than the .70%− 80% explained
by traditional methods using pedigrees. The authors conjectured that most of the
unaccounted variance could be due to causal variants at low frequency, leading to
very low correlations between markers and causal variants. Genetic markers are
typically at intermediate frequencies, and the disparity of gene frequencies between
markers and causal variants results in low correlations. Support for this conjecture

1.7 Appendix: A Short Overview of Quantitative Genomics 43

was obtained years later using whole genome sequence data and larger population
sizes, leading to an estimate of the proportion of variance of height attributed to
SNPs (the genomic heritability) of .68% (Wainschtein et al 2022), quite close to the
estimate based on pedigrees.

The picture that is emerging is interpreted in a paradigm in which complex
traits are driven by a very large number of loci spread along the genome. However,
complex traits are affected not only by protein-coding genes but also by noncoding
variants, perhaps related to gene regulation that plays a direct role in the expression
of the trait. Despite their relevance, the noncoding variants show weak signals in
GWAS studies and are difficult to detect. Most of the genetic variation of complex
trait seems to be driven by a very large number of peripheral genes of small effect
(Boyle et al 2017).

The new insights of the genetics of complex traits stimulated further develop-
ments and refinements of the genomic model for estimation of genomic parameters
and for prediction. For example, prior knowledge can be incorporated to partition
genomic variance across groups defined by allele frequency of genetic markers,
linkage disequilibrium and genotype certainty and accounting for SNP function and
metabolic pathways (Speed et al 2017, 2021; Patxot et al 2021).

The genomic model (1.41) is revisited several times in the book. A likelihood
model using Newton-Raphson and using the EM algorithm is described in Chap. 3
and in the Problems section on pages 553 and 609. A Bayesian model is presented
in Chap. 5 and in the Problems section on pages 560 and 645.

The genomic model (1.41) can be extended for use in simultaneous inference,
prediction and gene discovery. An early review is provided by de los Campos
et al (2013a). One approach is based on modifying the prior distribution of SNP
effects (1.39) and adopting instead a mixture prior of two densities: one with small
variance (the spike) and one with large variance (the slab). These are known as spike
and slab models. For example, if a two component mixture is chosen, these could
be two Gaussian densities (George and McCulloch 1993) or one Gaussian and a
point mass at zero (Mitchell and Beauchamp 1988; Meuwissen et al 2001; Habier
et al 2011). If two Gaussian distributions are used, they are often parametrised
such that one has a mean of zero and a very small user-tuned variance, generating
very small SNP effects and the other a mean of zero and a larger variance,
allowing for larger effects. For gene discovery, the idea is to obtain an estimate
of the posterior probability that a genetic marker is drawn from either mixture
component, for all genetic markers. An example of a spike and slab model with
a point mass at zero applied to gene discovery can be found in Chap. 8. Chapter 7
provides a detailed Bayesian-McMC implementation of this model for the analysis
of continuous traits, and Chap. 9 extends the algorithm for the analysis of binary
data.

44 1 Overview

Comments on the Genomic Variance and the Genomic
Relationship Matrix

• The genomic variance σ 2
g (1.40) of the fitted model has a tenuous correspondence

with the genomic variance of the genomic model defined in (1.37). An approach
that results in an estimate of genomic variance that is better aligned with
parameter (1.37) can be derived drawing from Sorensen et al (2001) as follows.
Consider a group or cohort consisting of n individuals; the genomic value of
individual i is gi . This is a random variable that can take n possible values
each with probability n−1. By definition, the variance of gi conditional on the
statistical model adopted and on the particular group of the n individuals is

.σ 2
gen = E

(
g2

i

)
− [E (gi)]

2 = 1

n

n∑
i=1

g2
i − g2, (1.42)

where g = n−1 ∑
i gi . Let gi = β ′xi , where xi is the column vector of the

p centred marker genotypes of individual i and β = −1
x xzα is the column

vector of p marker effects (the parameters of a multiple regression of additive
genetic values α′z on marker genotypes x). Then if β is known and the elements
of x are centred, g = 0 and the genomic variance in the cohort is

. σ 2
gen = n−1

n∑
i=1

β ′xix
′
iβ

= β ′ [n−1X′X
]
β. (1.43)

This expression has the same form as (1.37) with x replaced by its method of
moments estimator n−1X′X. The marker effects β are not observed, and adopting
a Bayesian approach can be inferred from their marginal posterior distribution
[β|y]. The posterior mean of the distribution of the resulting genomic variance is
then

. E
(
σ 2

gen|y
)

= E
(
β ′Qβ|y)

= tr (QVar (β|y)) + E (β|y)′ QE (β|y)

= tr
[
Q

(
E

(
ββ ′|y) − E (β|y)E (β|y)′

)] + tr
[
E (β|y)′ QE (β|y)

]
= tr

[
QE

(
ββ ′|y)]

, (1.44)

where Q = n−1X′X (the equality in the final line stems from applying the cyclic
property of the trace operator in the second trace of the third line). All this is
typically implemented using McMC. A Monte Carlo estimate of the posterior
distribution of the genomic variance in the cohort σ 2

gen is easily obtained by

1.7 Appendix: A Short Overview of Quantitative Genomics 45

calculating the variance among the draws from [g|y], without the need to infer
the marker effects. A draw from this posterior distribution at round t of an McMC
implementation is

. σ 2[t]
gen = 1

n

n∑
i=1

(
g
2[t]
i − g2[t]

)
,

where g[t]
i is sampled from [gi |y] belonging to the ith individual in the cohort.

The posterior mean of the genomic variance under the parametrisation g = Xβ
takes the form

.E
(
σ 2

gen|y
)

= 1

n
tr

[
E

(
gg′|y)]

. (1.45)

The subject is elaborated a little further on page 233 where an McMC implemen-
tation is shown to involve computations using scalar quantities.

• The genomic relationship matrix constructed using genetic markers describes
realised patterns of inheritance in a particular sample of individuals in the
region of the genome defined by the marker loci. There are a number of ways
of constructing the genomic relationship matrix and most use moment-based
estimators (VanRaden 2008; de los Campos et al 2013a). Here, it was defined
in connection with (1.41b)

.Gg = 1

k
XX′, k =

p∑
i=1

2pi (1 − pi) , (1.46)

where the elements of X (observed marker genotypes) are centred. Provided the
model includes an intercept as in (1.41a), centring does not affect predictions or
inferences of variances. However, standardising the elements of X may affect
predictions, depending on the degree of similarity between the distributions of
observed marker genotypes and of unobserved causal loci genotypes. Inferences,
such as estimation of genomic heritability, are also sensitive to the way the
genomic relationship matrix is constructed (Speed et al 2012). In a prediction
context, the choice of a method can be evaluated by cross-validation.

• The genomic model builds on the incorporation of a large number of genetic
marker loci spread along the genome of individuals from which Gg is con-
structed. These genetic marker loci are not necessarily causal, but are correlated
with the causal loci. The latter are typically unobserved while the genetic markers
are observed and can provide information about the genetics of a trait. The ability
of the genomic model to separate true signal (the genetic value at the causal loci)
from noise depends on how well the genomic relationship matrix Gg describes
relationships realised at causal loci. Realised relationships in different regions of
the genome are the result of a random process, with expected value dictated by
the pedigree and variation due to Mendelian sampling. This creates variability

46 1 Overview

in the patterns of genetic similarity across the genome; this pattern can be
very different for marker genotypes and for causal genotypes. The variability is
accentuated for data composed of nominally unrelated individuals (Hill and Weir
2011), often seen in human data and plays a smaller role when pedigrees display
strong family relationships as in livestock. With distantly related individuals,
fitting a large number of markers, many of which are potentially uncorrelated
with genotypes at causal loci, can lead to an incorrect specification of the
covariance structure, and this can affect inferences of variance parameters of the
model (de los Campos et al 2015). This problem can be partly addressed fitting
mixture models (spike and slab models) where inferences of variance parameters
and model selection are performed simultaneously. These models are introduced
in Chap. 7.

• Genomic models that incorporate dense marker genotypes, particularly in
humans, typically include phenotypes on nominally unrelated individuals (to be
understood as distantly related). These models are often used to estimate genomic
heritability. Inference about genomic heritability is driven by quantifying the
proportion of the phenotypic resemblance between distant relatives explained by
the short genome segments they share (which is tagged by the observed marker
loci via the genomic relationship matrix). In such a situation, there is a need to
avoid bias due to non-genetic effects, such as common environment among close
relatives, that inflates the phenotypic resemblance between relatives. Also, by
excluding close relatives such as twins, full-sibs and parent and offspring that
would explain most of the phenotypic resemblance, the estimate obtained reflects
the proportion of the short genome sequences shared among the distantly related
individuals. These short shared sequences transmitted from remote common
ancestors generate linkage disequilibrium; this LD is exploited via dense marker
genotyping by capturing contributions from unobserved causal loci. In so doing,
a proportion of the additive genetic variation is unmasked: the genomic variation.

• A decomposition that has attractive computational properties introduced in
Chap. 3 is the eigenvalue or spectral decomposition of XX′

. XX′ = U�U ′

=
∑n

i=1
λiUiU

′
i ,

where X, here centred and scaled, has dimension n × m, (m being the number
of marker genotypes), U = [U1, U2, . . . , Un], of dimension n × n (n being
the number of individuals) is the matrix of eigenvectors of XX′, Uj is the j th
column (dimension n × 1) and � is a diagonal matrix with elements equal to
the eigenvalues λ1, λ2, . . . , λn associated with the n eigenvectors. Since XX′
must be non-negative definite, the eigenvalues are λi ≥ 0, i = 1, 2, . . . , n. The
eigenvectors satisfy U ′U = UU ′ = I . Then an alternative representation of the
genomic relationship matrix (when X is centred and scaled) is

1.7 Appendix: A Short Overview of Quantitative Genomics 47

−0.10 −0.05 0.00 0.05 0.10

−
0.

10

−
0.

05

0.
00

0.

05

0.
10

U1

U
2

−0.06 −0.04 −0.02 0.00 0.02 0.04 0.06

−
0.

15
 −

0.
10

 −
0.

05

0.
00

0.

05

0.
10

0.

15

U1

U
2

Fig. 1.13 Left: plot of the first two eigenvectors for homogeneous matrix composed of draws from
Bi (x; n = 2, q = 0.5); right: plot of the first two eigenvectors for heterogeneous matrix composed
of draws from Bi (x; n = 2, q = 0.5) and draws from Bi (x; n = 2, q = 0.3)

. Gg = 1

m
XX′

= 1

m
U�U ′.

This decomposition can be used to investigate the presence of unobserved
substructure in X, which can cause spurious associations between marker
genotypes and phenotypes and also artefact genomic variation. As an illustra-
tion, the R-code below constructs two genomic relationship matrices draw-
ing independent samples from binomial distributions. In the first genomic
relationship matrix, each x representing a marker genotype is a draw from
Bi (x; n = 2, q = 0.5), where x can take values 0, 1, 2 and q is the probability
of drawing allele A. The draws are elements of X that in the example is of
order 500 × 1300. The second relationship matrix is generated by appending
two submatrices one on top of the other, where the first (order 250 × 1300) has
elements drawn from Bi (x; n = 2, q = 0.5) and the second (order 250 × 1300)
has elements drawn from Bi (x; n = 2, q = 0.3). This matrix displays fairly
strong substructure caused by the difference of allele frequencies. The eigenvalue
decomposition is performed on both matrices and Fig. 1.13 shows the plot of
the first two eigenvectors. The left subfigure corresponding to the homogeneous
matrix does not reveal any form of structure, but the right subfigure does.
Estimation of marker effects without accounting for population structure can be
a problem when they are used to predict records of a sample that has a different
structure:

CODE0105
EIGEN DECOMPOSITION
rm(list=ls()) # CLEAR WORKSPACE

48 1 Overview

set.seed(30371171)
SIMULATE Z FROM AN UNSTRUCTURED POPULATION
Z <- matrix(nrow= 500,ncol= 1300,rbinom(500*1300,size=2,p=.5))
Gz <- tcrossprod(scale(Z)) # CENTRING AND SCALING
EVD <- eigen(Gz)
U <- EVD$vector
tU<-t(U)
val <- EVD$values
#qr(Gz)$rank
#plot(U[,1],U[,2],xlab=’U1’,ylab=’U2’)

SIMULATE Z FROM TWO POPULATIONS WITH
DIFFERENT GENE FREQUENCIES
Z1 <- matrix(nrow= 250,ncol= 1300,rbinom(250*1300,size=2,p=.5))
Z2 <- matrix(nrow= 250,ncol= 1300,rbinom(250*1300,size=2,p=.3))
Z <- rbind(Z1,Z2)
Gz <- tcrossprod(scale(Z))
EVD <- eigen(Gz)
U <- EVD$vector
tU<-t(U)
val <- EVD$values
qr(Gz)$rank
#plot(U[,1],U[,2],xlab=’U1’,ylab=’U2’)

Part I
Fitting Likelihood and Bayesian Models

Chapter 2
Likelihood

A central problem in statistics is the estimation of parameters that index a probability
model proposed to describe aspects of the state of nature. In the classical approach
to inference, these parameters have a “true” but unknown value and given the
model, can be estimated from a set of observations. A firmly entrenched inferential
approach in statistics is the method of maximum likelihood proposed and termed
by Fisher (1922), although, as is often the case in science, the subject had been in
the air long before Fisher disguised in the terminology of inverse probability. An
excellent account is in Hald (1998).

This chapter starts by providing an intuition for the concept of likelihood empha-
sising the conceptual difference between a likelihood function and a probability
function. This is followed by a summary of the basic results needed for classical
likelihood inference. Proofs of most of the results presented here are not difficult
and can be found, for example, in Sorensen and Gianola (2002). The final part of
the chapter consists of examples that illustrate the construction of simple likelihood
models, the derivation of the maximum likelihood estimators and some of their
properties.

Readers that require a quick brush up of concepts of basic probability distribu-
tions and random variables may consider browsing through the first two chapters of
Sorensen and Gianola (2002) that cover what is necessary of the subject to follow
comfortably the material in this book.

2.1 A Little Intuition

Imagine that you are given the following iid (independently and identically dis-
tributed) data y sampled from a normal distribution .N

(
μ, σ 2 = 2

)
with unknown

mean . μ and known variance .σ 2 = 2:

. y = (y1 = 11.8, y2 = 6.1, y3 = 7.1, y4 = 11.1, y5 = 5.8) .

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Sorensen, Statistical Learning in Genetics, Statistics for Biology and Health,
https://doi.org/10.1007/978-3-031-35851-7_2

51

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35851-7protect T1	extunderscore 2&domain=pdf
https://doi.org/10.1007/978-3-031-35851-7_2
https://doi.org/10.1007/978-3-031-35851-7_2
https://doi.org/10.1007/978-3-031-35851-7_2
https://doi.org/10.1007/978-3-031-35851-7_2
https://doi.org/10.1007/978-3-031-35851-7_2
https://doi.org/10.1007/978-3-031-35851-7_2
https://doi.org/10.1007/978-3-031-35851-7_2
https://doi.org/10.1007/978-3-031-35851-7_2
https://doi.org/10.1007/978-3-031-35851-7_2
https://doi.org/10.1007/978-3-031-35851-7_2
https://doi.org/10.1007/978-3-031-35851-7_2

52 2 Likelihood

You will agree that 10 is a better candidate for . μ than 20, given the sample y
(in fact, the sample was drawn from .N

(
μ = 10, σ 2 = 2

)
using the R function

rnorm(5,10,sqrt(2))). In a general setting, suppose that a sample y from the
distribution of Y is drawn, given the true (typically unknown) value of the parameter
. μ and the true known .σ 2 = 2. This sample drawn with a certain probability is to
provide information about . μ. For fixed .Y = y, compute . p

(
Y = y|μ = μ1, σ

2 = 2
)

and .p
(
Y = y|μ = μ2, σ

2 = 2
)
, in order to choose between .μ1 and .μ2 as two

possible values of . μ. Viewed as a function of . μ, .p
(
Y = y|μ, σ 2 = 2

)
is the

likelihood function. If .p
(
Y = y|μ1, σ

2 = 2
)

> p
(
Y = y|μ2, σ

2 = 2
)

we would
choose .μ = μ1 on the grounds that, given the sample y, this is a “more likely”
value than .μ = μ2. In fact, it is possible that if the true value of . μ is . μ2,
we could still observe for the particular sample y, that . p

(
Y = y|μ1, σ

2 = 2
)

>

p
(
Y = y|μ2, σ

2 = 2
)
, but this occurs with small probability and this probability

approaches zero as sample size tends to infinity (Lehmann and Casella 1998).
This is what is meant by “more likely”. The value of the likelihood function
.p
(
Y = y|μ, σ 2 = 2

)
evaluated at .μ = μ1 agrees with the probability of observing

.Y = y only when the true value of the parameter . μ is in fact . μ1 (this is so if
Y is discrete; otherwise, for continuous Y , the likelihood evaluated at . μ = μ1
is proportional to the probability that Y takes values in a small set containing y).
However, the likelihood function is not a probability distribution. To quote Fisher
(Fisher 1922): “The likelihood that any parameter (or set of parameters) should
have any assigned value (or set of values) is proportional to the probability that if
this were so, the totality of observations should be that observed”.

Irrespective of the true value of the parameter, the value of . μ that maximises the
likelihood function is the maximum likelihood estimator of . μ, . ̂μ. The great appeal
of the method is mostly due to the desirable statistical properties of the maximum
likelihood estimator, many of which hold asymptotically. To be specific, given that
the true value of . μ is 10, the probability of observing .Y = y1 = 11.8 is proportional
to .N

(
11.8|μ = 10, σ 2 = 2

)
:

. Pr (Y = 11.8) ∝ dnorm(11.8,10,sqrt(2)) = 0.1255.

The probability of observing .Y = y is proportional to

.

5∏

i=1

N
(
yi |μ = 10, σ 2 = 2

)
= prod(dnorm(y,10,sqrt(2)))

= 1.9457 × 10−8.

On the other hand, the contribution to the likelihood function of .Y = y1 is

.N
(

11.8|μ, σ 2 = 2
)

= (2π2)−
1
2 exp

(
− 1

2 × 2
(11.8 − μ)2

)

2.1 A Little Intuition 53

and in view of the iid nature of the data, the contribution from the whole data y to
the likelihood function is

.

5∏

i=1

N
(
yi |μ, σ 2 = 2

)
= (2π2)−

5
2 exp

(

− 1

2 × 2

5∑

i=1

(yi − μ)2

)

. (2.1)

The value of . μ that maximises (2.1) is .μ̂ = 8.38. This is the maximum likelihood
estimate.

Notation

• The shorthand used for probability density function is pdf, for probability mass
function is pmf and for cumulative distribution function is cdf.

• The shorthand used for independent and identically distributed is iid.
• MLE is shorthand for maximum likelihood estimator or maximum likelihood

estimate and ML for maximum likelihood
• Often I use EX [T (X)], where T (X) is some function of the random variable X

with probability density function p(x|θ). By this I mean “integration over the
distribution of X”:

. EX [T (X)] =
∫

T (x) p (x|θ) dx

where θ is a parameter that indexes the probability density of the random variable
X.

• The notation X ∼ N(μ, σ 2) stands for X is distributed as N(μ, σ 2), a normal
distribution with mean μ and variance σ 2.

• The notation N(x|μ, σ 2) is used to specify the probability density function of X
at the value X = x, whenX ∼ N(μ, σ 2).

• If λ is a k × 1 vector and θ is a p × 1 vector, then the j th row of the k × p matrix
∂λ/∂θ ′ is

.
[
∂λj /∂θ1 ∂λj/∂θ2 · · · ∂λj/∂θp

]

and the j th row of the p × k matrix ∂λ′/∂θ = (
∂λ/∂θ ′)′ is

.
[
∂λ1/∂θj ∂λ2/∂θj · · · ∂λk/∂θj

]
.

• When f is a function of several variables f (x) = f (x1, x2, . . . , xn), the

gradient of f is the column vector of n partial derivatives
(

∂f
∂x1

, ∂f
∂x12

, . . . , ∂f
∂xn

)′

and is denoted ∇f .

54 2 Likelihood

• I use [θ |y] (with or without square brackets) to represent the distribution of the
random variable θ given y. This may be a posterior distribution.

• Random variables, say, Y , are not consistently distinguished in notation from
their realised values y, unless the need to avoid confusion demands it. For
example, I may write the distribution of y given x (symbolised as [y|x]), rather
than the distribution of Y given X = x (symbolised as [Y |X = x]) , or
for the probability mass function, Pr(y = 1|x) rather than Pr(Y = 1|X =
x).

• I do not use boldface to distinguish matrices or vectors from scalars. Depending
on context, matrices may be denoted with capital letters X or with lower-
case letters x. In both cases, I make clear the dimension of the quantity at
hand.

• The transpose of a matrix X (or of matrix x) is denoted by X′ (or by
x′).

2.2 Summary of Likelihood Results

Let .p (y|θ) represent the sampling density or mass function of the data vector y
indexed by a parameter vector . θ with p elements. The likelihood of the parameter . θ

given the data y, .L (θ |y) is equal to .p (y|θ):

.L (θ |y) = p (y|θ) . (2.2)

If the elements of .y = (y1, . . . , yn)
′ are iid,

.L (θ |y) =
n∏

i=1

p (yi |θ) . (2.3)

The loglikelihood (also known as support) is

. ln L (θ |y) = � (θ |y) =
n∑

i=1

ln p (yi |θ) . (2.4)

The maximum likelihood estimator . θ̂ is the value of . θ that maximises (2.4) (or (2.3))
over the parameter space of . θ . Formally, this involves a constrained maximisation.
Often an unconstrained maximisation is performed; therefore, one must check
that the resulting maximum likelihood estimate is within the allowed parameter
space.

One may always multiply a likelihood function by a constant c independent of . θ .
Therefore likelihood functions .L(θ |y) and .cL(θ |y) are equivalent in the sense that
both lead to the same maximum likelihood estimate. Similarly, two loglikelihood

2.2 Summary of Likelihood Results 55

functions that differ only by an additive constant lead to the same maximum
likelihood estimate.

The first derivative of . � with respect to the vector . θ is known as the score function,
.S (θ). Letting p be the number of components in . θ and using . � for .� (θ |y),

.S (θ) = ∂

∂θ
� (θ |y) =

⎛

⎜
⎝

∂�/∂θ1
...

∂�/∂θp

⎞

⎟
⎠ , (2.5)

so the score is an .p × 1 vector. It can be shown (Sorensen and Gianola 2002 pages
132–133) that the score has zero mean and variance given by Fisher’s expected
information matrix (see (2.9)); that is,

.S (θ) ∼ [
0, Ey

[
S (θ) S (θ)′

]]
. (2.6)

Evaluated at the maximum . θ̂

. S
(
θ̂
)

= 0

when . θ̂ is in the interior of the parameter space.
The matrix of second derivatives of the loglikelihood is known as the Hessian,

.H (θ |y). For example, if .p = 2, .H (θ |y) takes the form

. H (θ |y) = ∂2

∂θ∂θ ′ � (θ |y) =
[

∂2�/ (∂θ1)
2 ∂2�/ (∂θ1∂θ2)

∂2�/ (∂θ2∂θ1) ∂2�/ (∂θ2)
2

]
.

The observed information matrix (of dimension .p × p) is given by

.I (θ |y) = − ∂2

∂θ∂θ ′ � (θ |y) = −H (θ |y) (2.7)

which involves second derivatives and is a function of both . θ and y. An approxima-
tion that uses first derivatives only is given by the outer product of the vector of first
derivatives of the score:

.
(
S (θ) S (θ)′

)
. (2.8)

For example, if .p = 2,

.S (θ) S (θ)′ =
[

∂�/∂θ1

∂�/∂θ2

]
[
∂�/∂θ1 ∂�/∂θ2

]

=
[

(∂�/∂θ1)
2 (∂�/∂θ1) (∂�/∂θ2)

(∂�/∂θ2) (∂�/∂θ1) (∂�/∂θ2)
2

]
.

56 2 Likelihood

Fisher’s expected information matrix is defined to be the average of (2.7) or (2.8)
over conceptual repetitions of y:

.i (θ) = Ey

[(
∂

∂θ
� (θ |y)

)(
∂

∂θ
� (θ |y)

)′]
= − Ey

(
∂2

∂θ∂θ ′ � (θ |y)

)
(2.9)

and is a function of . θ only. Typically, these information matrices are evaluated at
.θ = θ̂ .

Let . θ0 denote the true value of . θ . A standard result says that the sampling
distribution of the MLE has a limiting normal distribution

.̂θ → N
(
θ0, i (θ0)

−1
)

(2.10)

as sample size goes to infinity. This sampling distribution may be approximated
using

.N
(
θ̂ , i

(
θ̂
)−1
)

or N
(
θ̂ , I

(
θ̂
)−1
)

. (2.11)

Estimates of standard errors are obtained from

.

√

i
(
θ̂
)−1
jj

or

√

I
(
θ̂
)−1
jj

. (2.12)

Cramér-Rao Theorem Given certain regularity conditions, the variance of any
unbiased estimator of a parameter . θ (scalar or vector) must be at least as large as

. Var
(
θ̂
) ≥ i (θ)−1 . (2.13)

When . θ is a vector, the above inequality implies that

. Var
(
θ̂
)− i (θ)−1

is positive semidefinite. Any unbiased estimator that achieves this lower bound is
efficient and no better unbiased estimator can be found. It follows from (2.10) that
the ML estimator satisfies the Cramér-Rao lower bound, asymptotically; therefore,
the asymptotic variance is the smallest possible.

An important property of ML is functional invariance. If . θ̂ is the MLE of . θ and
if .λ = g (θ) is a one-to-one transformation such that .θ = g−1 (λ) exists, then the
MLE of .g (θ) is .g

(
θ̂
)
.

If . θ is a scalar, under the new parametrisation, the score can be written as

.
d�
(
g−1 (λ) |y)

dλ
= d� (θ |y)

dθ

dθ

dλ
(2.14)

2.2 Summary of Likelihood Results 57

and if . θ and . λ are vectors

.
∂�
(
g−1 (λ) |y)

∂λ
= ∂θ ′

∂λ

∂� (θ |y)

∂θ
. (2.15)

If . θ is a scalar, the expected information about the new parameter . λ contained in
the sample is

.i (λ) = i (θ)

(
dθ

dλ

)2

= i
(
g−1 (λ)

) [dg−1 (λ)

dλ

]2

(2.16)

and the asymptotic variance is

. Var
(
λ̂
) = [i (λ)]−1 = i (θ)−1

(
dλ

dθ

)2

= Var
(
θ̂
) (dλ

dθ

)2

. (2.17)

When . θ and . λ are .p × 1 vectors, the expected information matrix is

.i (λ) = ∂θ ′

∂λ
i (θ)

∂θ

∂λ′ = ∂
[
g−1 (λ)

]′

∂λ
i
(
g−1 (λ)

) ∂
[
g−1 (λ)

]

∂λ′ , (2.18)

where .
∂θ ′
∂λ

and .i(θ) are .p × p matrices. The asymptotic variance evaluated at . λ = λ̂

is

. Var
(
g
(
θ̂
))

=
[
i
(
λ̂
)]−1

= ∂λ

∂θ ′

∣∣∣∣
θ=θ̂

Var
(
θ̂
) ∂λ′

∂θ

∣∣∣∣
θ=θ̂

(2.19)

where . ∂λ
∂θ ′ and .Var

(
θ̂
)

are .p × p matrices. Expression (2.19) is the multiparameter
extension of (2.17) that can also be derived using the “delta method” (Sorensen and
Gianola 2002, page 95). The derivation based on the delta method does not require
that vectors . θ and . λ have the same number of elements. An application of (2.19) is
in the Exercises on page 612.

Also asymptotically, for scalar . θ and .g(θ),

.g
(
θ̂
)

∼ N

(

g (θ) , i (θ)−1
(

dg (θ)

dθ

)2
)

. (2.20)

If .g
(
θ̂
)

is a .p×1 vector, a similar results holds, except that the asymptotic variance

in (2.20) is replaced by the .p×p matrix given by (2.19). In applications . θ is replaced
by . θ̂ .

58 2 Likelihood

The MLE is also invariant to transformations of the data that do not depend on
the parameter . θ . If data X that have density function .pX (x|θ) are transformed to
.Y = f (X) so that the inverse transformation is .f −1 (Y) = X exists, then the
density of the transformed data Y is

. pY (y|θ) = pX

(
f −1 (y) |θ

) ∣∣∣∣
df −1 (y)

dy

∣∣∣∣

= pX (x|θ)

∣∣
∣∣
dx

dy

∣∣
∣∣ (2.21)

and therefore the likelihood function based on X and Y differ only by a factor (the
Jacobian of the transformation) that does not depend on the parameter . θ .

Note
The equality in the second line of (2.19) is based on the following two results.
Firstly, for full-rank square matrices A, B, C,

. [ABC]−1 = C−1B−1A−1.

Secondly,

.

[
∂θ

∂λ′

]−1

=
[

∂λ

∂θ ′

]
.

The derivation holds when the transformation .λ = g (θ) is one-to-one.

When the dimension of . λ is .k ×1 and of . θ is .p×1, direct application of the delta
method yields

. Var
(
g
(
θ̂
)) = ∂λ

∂θ ′

∣
∣∣∣
θ=θ̂

Var
(
θ̂
) ∂λ′

∂θ

∣
∣∣∣
θ=θ̂

as in (2.19), but now .
∂λ
∂θ ′ is a .k × p matrix. The stronger assumption of normality of

the asymptotic distribution of .g
(
θ̂
)

arrived at using the delta method requires that

.k ≤ p and that the rank of . ∂λ
∂θ ′ is equal to k.

Summary of Properties of Maximum Likelihood Estimators

Little is known about small sample properties of MLE. In many situations, it is
known that MLE are not unbiased in small samples.

2.3 Example: The Likelihood Function of Transformed Data 59

In large samples, MLE

(i) are consistent
(ii) are asymptotically normal (i.e. (2.10))

(iii) in a well-specified model, the MLE achieves the Cramér-Rao lower bound

Things to be aware of :

(i) The MLE may not be a turning point (the likelihood increases continuously).
(ii) The MLE may not be unique (the maximum is found over a flat region spanning

a wide interval comprising the parameter—“flat” likelihood functions).
(iii) If iterative procedures are used to find a maximum, rate of convergence may be

extremely slow, particularly in complex multiparameter models.
(iv) An iterative procedure may converge to a local maximum, not necessarily to a

global maximum.
(v) Asymptotic normality of the MLE is compromised if the parameter lies on the

border of the parameter space.
(vi) The zeroes of the first derivatives only locate extreme points in the interior of

the domain of a function. If extrema only occur on the boundaries or corners,
first derivatives may not be zero at those points.

2.3 Example: The Likelihood Function of Transformed Data

An example of (2.21) is the following. Let X have density

.p (x) = 1√
2π

exp

[
−1

2
(x − μ)2

]
(2.22)

which is the density of the normal process .N (μ, 1). Assume that X is transformed
to .Y = f (X) = exp (X). The inverse transformation is .X = f −1 (Y) = ln (Y).
The density function of Y is then, using (2.21),

. p (y) = p
(
f −1 (y)

) ∣∣∣
∣

d

dy
f −1 (y)

∣∣∣
∣

= 1

y
√

2π
exp

[
−1

2
(ln y − μ)2

]
, (2.23)

where .1/y enters through the Jacobian of the transformation. Then .Y = exp (X) is
said to have a lognormal distribution with density as given above. The likelihood
based on Y is proportional to this density. Inspection of (2.22) and (2.23) reveals
that the two likelihoods are maximised when the exponential term is equal to 1.
Therefore, the MLE of . μ based on X is x and based on Y is .ln y. In other words, the
MLE of the lognormal likelihood is the same as that of the normal likelihood fitted
to the logarithm of the data.

60 2 Likelihood

2.4 Example: Linear Regression

Linear regression is one of the most widely adopted statistical methods and its use in
genetics probably dates back to Galton (1885). For example, a simple approach for
estimating heritability of quantitative traits is based on regressing offspring records
on the records of their fathers and mothers, or regressing offspring records on mid-
parental records.

This example, taken from Sorensen and Gianola (2002), is based on such a linear
regression model where observations (e.g. the offspring records) are postulated to
be linked to an intercept . β0 and to a slope parameter . β1 via the relationship

. yi = β0 + β1xi + ei .

In this expression, the scalars . xi .(i = 1, 2, ..., n) are known values of an explanatory
variable (e.g. the mid-parental values), and .ei ∼ N

(
0, σ 2

)
is an unobserved random

residual term. The n residuals are assumed to be iid. The parameter vector is
.[β0, β1, σ

2]. In a genetic context, . β1 (the regression of offspring on mid-parents) is
interpreted as the heritability of the quantitative trait (Falconer and Mackay 1996).

The likelihood function can be written as

. L
(
β0, β1, σ

2|y
)

∝
(
σ 2
)− n

2
exp

[

− 1

2σ 2

n∑

i=1

(yi − β0 − β1xi)
2

]

and the corresponding loglikelihood, apart from an additive constant, is

. l
(
β0, β1, σ

2|y
)

= −n

2
ln
(
σ 2
)

− 1

2σ 2

n∑

i=1

(yi − β0 − β1xi)
2 .

The score vector is given by

.

⎡

⎢⎢
⎣

∂l
∂β0

∂l
∂β1

∂l
∂σ 2

⎤

⎥⎥
⎦ =

⎡

⎢
⎣

1
σ 2

∑n
i=1 (yi − β0 − β1xi)

1
σ 2

∑n
i=1 xi (yi − β0 − β1xi)

− n
2σ 2 + 1

2σ 4

∑n
i=1 (yi − β0 − β1xi)

2

⎤

⎥
⎦ .

Setting the score vector equal to zero and solving simultaneously for the
unknown parameters gives explicit solutions to the ML equations. The MLEs are

.̂σ 2 =

n∑

i=1
(yi − β̂0 − β̂1xi)

2

n
,

2.4 Example: Linear Regression 61

where . β̂0 and . β̂1 are the solutions to the matrix equation:

.

[
n

∑n
i=1 xi∑n

i=1 xi

∑n
i=1 x2

i

] [
β̂0

β̂1

]
=
[∑n

i=1 yi∑n
i=1 xiyi

]
.

Explicitly,

. β̂0 = y − β̂1x

and

. ̂β1 =
∑n

i=1 xiyi − 1

n

∑n
i=1 xi

∑n
i=1 yi

∑n
i=1 x2

i − 1

n

(∑n
i=1 xi

)2
.

The first two columns of the .3 × 3 matrix of the negative of second derivatives
of the loglikelihood with respect to the parameters, or observed information matrix,
are

.

⎡

⎣
σ−2n σ−2∑n

i=1 xi

σ−2∑n
i=1 xi σ−2∑n

i=1 x2
i

σ−4∑n
i=1 (yi − β0 − β1xi) σ−4∑n

i=1 xi (yi − β0 − β1xi)

⎤

⎦

and the last column is

.

⎡

⎢
⎣

σ−4∑n
i=1 (yi − β0 − β1xi)

σ−4∑n
i=1 xi (yi − β0 − β1xi)

− (2σ 4
)−1

n + σ−6∑n
i=1 (yi − β0 − β1xi)

2

⎤

⎥
⎦ .

It is easy to verify that the expected value of each of the elements of the score
vector is null. For example,

. E

(
∂l

∂β1

)
= 1

σ 2

n∑

i=1

xi E (yi − β0 − β1xi) = 0

and

. E

(
∂l

∂σ 2

)
= − n

2σ 2
+ 1

2σ 4

n∑

i=1

E (yi − β0 − β1xi)
2

= − n

2σ 2
+ 1

2σ 4
nσ 2 = 0.

62 2 Likelihood

Further, the expected information matrix is given by

. i (θ) = σ−2

⎡

⎢
⎣

n
∑n

i=1 xi 0∑n
i=1 xi

∑n
i=1 x2

i 0

0 0
(
2σ 2

)−1
n

⎤

⎥
⎦ .

Note that the elements .(1, 2) and .(2, 1) of this matrix are not null. This illustrates
that in a multiparameter model, it is often more sensible to speak about joint
information on a set of parameters rather than about information on individual
parameters themselves.

Invariance

The original parametrisation was in terms of .θ = [β0, β1, σ
2]′. Imagine that there

is interest in a new parametrisation consisting of the vector

. η =
⎡

⎣
η1

η2

η3

⎤

⎦ =
⎡

⎣
β0/β1

β1

σ 2

⎤

⎦

with inverse

. θ = f −1 (η) =
⎡

⎣
η1η2

η2

η3

⎤

⎦ .

The .3 × 3 matrix defined after (2.15) would be

.
∂θ ′

∂η
=
⎡

⎣
∂θ1/∂η1 ∂θ2/∂η1 ∂θ3/∂η1

∂θ1/∂η2 ∂θ2/∂η2 ∂θ3/∂η2

∂θ1/∂η3 ∂θ2/∂η3 ∂θ3/∂η3

⎤

⎦ =
⎡

⎣
η2 0 0
η1 1 0
0 0 1

⎤

⎦ . (2.24)

Differentiating the loglikelihood twice under the new parametrisation, multiplying
by .−1 and taking expectations yields the information matrix:

. I (η) = 1

η3

⎡

⎢
⎢
⎣

nη2
2 η2

(
nη1 +∑n

i=1 xi

)
0

η2
(
nη1 +∑n

i=1 xi

) ∑n
i=1 (η1 + xi)

2 0

0 0
n

2η3

⎤

⎥
⎥
⎦ .

It can be verified that the same result is obtained from the matrix product given in
(2.18), employing the matrix (2.24).

2.5 Example: Bivariate Normal Model with Missing Records 63

2.5 Example: Bivariate Normal Model with Missing Records

Consider a data set consisting of two rows; the first has phenotypic records on fathers
.(x) and the second on sons . (y), one son per father. Some of the records of the sons
are missing. The ordered data can be represented as

. x1, x2, . . . , xm, xm+1, . . . , xn,

y1, y2, . . . , ym. (2.25)

There are m complete bivariate observations .(xi, yi) , i = 1, 2, . . . , m, and . (n − m)

univariate records from fathers without sons. Each father that left offspring is
assumed to have mated with a randomly chosen unknown female and produced
one son. At this stage, it is assumed that the observed pattern of missing records
may depend on the observed . x′s but not on the missing values themselves. In other
words, the missing data (.ym+1, . . . , yn) are missing at random (Rubin 1976, 2002),
and the missing data mechanism is ignorable, in the sense that this mechanism does
not have to be incorporated as part of the likelihood model for correct inferences.

The data could represent LDL cholesterol levels in humans collected with the
objective of estimating the parameters of a probability model entertained by the
data analyst. The parameters could be mean levels of LDL cholesterol and variance
components and functions thereof, such as heritability. Information on the latter
indicates whether genetic factors may affect LDL cholesterol.

Assume that a record of a father and his son is a draw from the bivariate normal
model:

.
[
(yi, xi) |μy,μx, σxy, σyy, σxx

] ∼ N

([
μy

μx

]
,

[
σyy σxy

σxy σxx

])
, i = 1, . . . , n,

(2.26)

and assume that the pairs .(yi, xi) are iid. The covariance term is usually interpreted
as .σxy = σxxh

2/2, where . h2 is the heritability (twice the regression of sons on
fathers) in the population from which fathers were sampled (with assumptions, such
as absence of common environmental effects between parents and offspring). The
correlation coefficient is .ρ = σxy/

√
σyyσxx and is equal to .h2/2 when .σxx = σyy .

In the absence of missing records (if the .(n − m) . y′s were not missing), the joint
density of the n pairs .(yi, xi) is

. p
(
y, x|μy,μx, ρ, σyy, σxx

) =
(

2πσyyσxx

(
1 − ρ2

))− n
2

exp

[

− 1

2
(
1 − ρ2

)

(∑n
i=1 (xi − μx)

2

σxx

+
∑n

i=1

(
yi − μy

)2

σyy

− 2ρ

∑n
i=1 (xi − μx)

(
yi − μy

)

(
σxxσyy

) 1
2

⎞

⎠

⎤

⎦ , (2.27)

64 2 Likelihood

and the likelihood is proportional to (2.27). In this situation (no missing records),
the ML estimators are in closed form and are given by

. ̂μx = 1

n

n∑

i=1

xi, μ̂y = 1

n

n∑

i=1

yi,

σ̂xx = 1

n

n∑

i=1

(xi − μ̂x)
2 , σ̂yy = 1

n

n∑

i=1

(
yi − μ̂y

)2
, (2.28)

σ̂xy = 1

n

n∑

i=1

(xi − μ̂x)
(
yi − μ̂y

)
,

ρ̂ = σ̂xy

(
σ̂xx σ̂yy

) 1
2

.

However, with the present pattern of missing records, the likelihood is proportional
to

. p
(
y, x|μy,μx, ρ, σyy, σxx

) =
(

2πσyyσxx

(
1 − ρ2

))− m
2

exp

[

− 1

2
(
1 − ρ2

)

(∑m
i=1 (xi − μx)

2

σxx

+
∑m

i=1

(
yi − μy

)2

σyy

− 2ρ

∑m
i=1 (xi − μx)

(
yi − μy

)

(
σxxσyy

) 1
2

⎞

⎠

⎤

⎦ (2πσxx)
− (n−m)

2

exp

[

−
∑n

i=m+1 (xi − μx)
2

2σxx

]

. (2.29)

The likelihood equations derived from this likelihood function are difficult to solve
analytically.

Rather than expressing the likelihood as in (2.29), an alternative strategy can be
followed. The normal density of the joint distribution (2.26) can be factorised as the
product of two normal densities:

. p
(
yi, xi |μy,μx, σxy, σyy, σxx

) = p (xi |μx, σxx) p
(
yi |xi, μy, μx, σxy, σyy, σxx

)
.

(2.30)

The parameters of the two terms in the right-hand side of (2.30) are not distinct
because .(μx, σxx) are common to both factors. Therefore, a global maximisation
of the likelihood requires that the two terms of the right-hand side of (2.30) are
maximised jointly. The resulting algebra is quite messy.

2.5 Example: Bivariate Normal Model with Missing Records 65

Considering all the records, the first term in the right hand side of (2.30) is

. (2πσxx)
− n

2 exp

[

−
∑n

i=1 (xi − μx)
2

2σxx

]

(2.31)

and the second term is (2.30) and

.
(
2πσy.x

)− m
2 exp

⎡

⎢
⎣−

∑m
i=1

(
yi − μy − σxy

σxx
(xi − μx)

)2

2σy.x

⎤

⎥
⎦ , (2.32)

where

. σy.x = σyy −
(
σxy

)2

σxx

,

is the variance of the conditional distribution of y given x. The mean and
variance of the distribution .[xi |μx, σxx] are then . μx and . σxx , respectively, and the
corresponding parameters of .

[
yi |xi, μy, μx, σxy, σyy, σxx

]
are

. E
(
yi |xi, μy, μx, σxy, σyy, σxx

) = μy + σxy

σxx

(xi − μx) ,

Var
(
yi |xi, μy, μx, σxy, σyy, σxx

) = σyy −
(
σxy

)2

σxx

.

Consider using the factorised likelihood (2.30) but rather than parametrising
with .θ = (

μy,μx, σxy, σyy, σxx

)
, use instead .φ = (

μx, σxx, β0, β1, σy.x

)
, where

.(μx, σxx) are common to both parametrisations and the other components of . φ are
given by the following functions of the components of . θ :

. β0 = μy − β1μx,

β1 = σxy

σxx

,

σy.x = σyy −
(
σxy

)2

σxx

.

Under this parametrisation, the density of the pair .(yi, xi) becomes

. p
(
yi, xi |μy,μx, σxy, σyy, σxx

) = p (xi |μx, σxx) p
(
yi |xi, β0, β1, σy.x

)
.

(2.33)

66 2 Likelihood

The form of the first term in the right-hand side of (2.33) is the same as in (2.31)
and the form of the second term is

. p
(
yi |xi, β0, β1, σy.x

) = (
2πσy.x

)− m
2 exp

[

−
∑m

i=1 (yi − β0 − β1xi)
2

2σy.x

]

.

(2.34)

The mean and variance of the distribution corresponding to (2.34) are

. E (yi |xi, β0, β1) = β0 + β1xi

(= μy + β1 (xi − μx)
)
,

Var
(
yi |xi, σy.x

) = σy.x .

The parameters in the two terms of the right-hand side of (2.33) are distinct; the
global maximisation of the likelihood can proceed by maximising the likelihood
of each term separately. Each of the two terms corresponds to the likelihood
of a straightforward problem: .p (xi |μx, σxx) is the likelihood of .N (μx, σxx),
the marginal distribution of . xi , and .p

(
yi |xi, β0, β1, σy.x

)
is the likelihood of

.N
(
β0 + β1xi, σy.x

)
, the likelihood of the regression of father on son. This devel-

opment was apparently first given by Anderson (1957).

2.6 Example: Likelihood Inferences Using Selected Records

Consider the following problem discussed in Lush and Shrode (1950) and in
Henderson et al (1959). One is to obtain an estimate of the difference in milk
production between years. The data on which inferences are to be based are selected:
second year records are obtained only from those cows that had the highest first year
records. The lowest producers of first year records are not allowed to produce in
year 2 and are culled from the herd. The pattern of missing records in this example
is identical to the pattern displayed in (2.25): the missing data mechanism is only
a function of the observed data (the first lactation records in this example) and
therefore the data are missing at random (Rubin 2002) and the selection process does
not have to be incorporated as part of the likelihood model; the selection mechanism
is ignorable. A heuristic conditional argument provides an alternative explanation.
Given a data structure of the form in (2.25), the likelihood can be factorised as

. p (x1, x2, . . . , xm, xm+1, . . . , xn, y1, y2, . . . , ym; θ)

= p (y1, y2, . . . , ym|x1, x2, . . . , xm; θ1) p (x1, x2, . . . , xm, xm+1, . . . , xn; θ2) ,

where the . θ ’s are parameters of the respective densities. The conditional likelihood,
given x (the first term on the right-hand side), is unaffected by selection on x and
the second term includes all the parental data. Therefore, selection is ignorable.

2.6 Example: Likelihood Inferences Using Selected Records 67

Let .yi1 and .yi2 be age-adjusted records of the ith cow in years 1 and 2,
respectively, with

.yi1 = μ + ci + ei1, i = 1, 2, . . . , N (2.35)

and

.yi2 = μ + ci + δ + ei2, i = 1, 2, . . . , n, (2.36)

where . ci is an effect of cow assumed .N
(
0, σ 2

c

)
, . ei1 and .ei2 ∼ N

(
0, σ 2

e

)
and . δ is the

difference between second and first year records that one wishes to estimate. There
are N cows that have a first lactation record and n have a second lactation record.
In the absence of culling, .n = N . With culling based on first lactation information,
.n < N .

From the models,

. E (yi1) = μ

E (yi2) = μ + δ

E (yi2) − E (yi1) = δ

Var (yi1) = Var (yi2) = σ 2 = σ 2
c + σ 2

e

Cov (yi1, yi2) = σ 2
c = ρσ 2

Corr (yi1, yi2) = ρ = Cov (yi1, yi2)√
Var (yi1)

√
Var (yi2)

= σ 2
c

σ 2 .

Above, . ρ is the repeatability or correlation between . yi1 and . yi2. Assume that, in the
absence of selection, . yi1 and . yi2 are bivariate normally distributed. Then,

.

[
yi1

yi2

]
∼ N

[[
μ

μ + δ

]
,

[
σ 2 ρσ 2

ρσ 2 σ 2

]]
. (2.37)

Therefore,

.yi2|yi1 ∼ N
[
μ + δ + ρ (yi1 − μ) , σ 2

(
1 − ρ2

)]
(2.38)

and

.yi1 ∼ N
(
μ, σ 2

)
. (2.39)

If the conditional expectation of a second year record, given the first year record

. E (yi2|yi1) = μ + δ + ρ (yi1 − μ) , (2.40)

68 2 Likelihood

is averaged over all cows that have a year 1 record

. Eyi1 [E (yi2|yi1)] = E (yi2) = μ + δ + ρ Eyi1 [(yi1 − μ)]

= μ + δ, (2.41)

as expected from the model. However, only the best cows in year 1 are allowed
to produce in year 2. This means that, with selection, the expected value of year 1
records is not . μ but

. E (yi1|yi1 ∈ S) = μs �= μ, (2.42)

where S is the set of cows with records in year 1 that are allowed to produce a
second record in year 2 and . μs is the mean of the selected records of year 1. Then
we have

. Eyi1 [E (yi2|yi1 ∈ S)] = μ + δ + ρ Eyi1 [(yi1 − μ) |yi1 ∈ S]

= μ + δ + ρ (μs − μ) . (2.43)

Estimation by Least Squares

This section presents properties of the least squares estimator of . δ, the difference
between milk production in year 1 and 2. A least squares estimator of this difference,
including only cows that have a record on both years, is

. ̂d1 = y.2 − y.1, yi1 ∈ S.

The expected value of . ̂d1 is

. E
(
d̂1
) = Eyi1

[
E
(
y.2 − y.1|yi1 ∈ S

)] = (μ + δ + ρ (μs − μ)) − μs

= δ − (1 − ρ) (μs − μ) . (2.44)

Since .μs > μ, the estimator of the difference is biased downwards. With selected
data, least squares estimates of year effects based on (2.44) give the impression of
negative environmental trend with time.

Another possibility would be to estimate . δ by taking the average of all year 2
records minus all year 1 records. The expected value of this second estimator is

. E
(
d̂2
) = Eyi1

[
E
(
y.2|yi1 ∈ S

)]− E
(
y.1
) = (μ + δ + ρ (μs − μ)) − μ

= δ + ρ (μs − μ) , (2.45)

2.6 Example: Likelihood Inferences Using Selected Records 69

which is biased unless .ρ = 0, in which case selection would not be effective in
changing milk production.

The conclusion is that with this type of selection (culling type), the least
squares estimate of the difference in milk production is biased. On the other
hand, BLUP (best linear unbiased predictor) yields unbiased estimates of genetic
and environmental trends under certain types of selection. The paper where this
is discussed at length is Henderson (1975). The following subsection describes
in a simplified manner estimation of year effects using maximum likelihood. An
important paper on the topic is the one by Curnow (1961).

Estimation by Maximum Likelihood

The parameters of the model defined by (2.38) and (2.39) are

. θ ′ =
(
μ, δ, σ 2, ρ

)
.

However, in this simplified problem, it will be assumed that . ρ and . σ 2 are known. In
view of (2.38) and (2.39), the likelihood is

. L (θ |y) ∝
(

2πσ 2
)− N

2
exp

[

−
∑N

i=1 (yi1 − μ)2

2σ 2

]

×
(

2π
(

1 − ρ2
)

σ 2
)− n

2
exp

[

−
∑n

i=1 (yi2 − μ − δ − ρ (yi1 − μ))2

2
(
1 − ρ2

)
σ 2

]

. (2.46)

With . ρ and . σ 2 assumed known, the loglikelihood, apart from an additive constant,
is

. l (μ, δ|y) = −
(
1 − ρ2

)∑N
i=1 (yi1 − μ)2 +∑n

i=1 (yi2 − μ − δ − ρ (yi1 − μ))2

2
(
1 − ρ2

)
σ 2

.

(2.47)

This loglikelihood can be written as

. l (μ, δ|y) = k − N (y − μ)2

2σ 2

−n
(
y2 − μ − δ − ρ

(
y1 − μ

))2

2
(
1 − ρ2

)
σ 2

, (2.48)

70 2 Likelihood

where k is a constant that does not depend on .(μ, δ) and

. y =
∑N

i=1 yi1

N

y1 =
∑n

i=1 yi1

n

y2 =
∑n

i=1 yi2

n
.

With . ρ and . σ 2 assumed known, the loglikelihood (2.48) is a function of . μ and
. δ only. To obtain the maximum likelihood estimates of . μ and . δ, (2.48) must be
maximised with respect to . μ and . δ. One way of doing this is to take partial
derivatives of (2.48) with respect to . μ and . δ, to set the resulting two equations equal
to zero and to solve for . μ and . δ. The resulting maximum likelihood estimators of . μ
and . δ are

.μ̂ = y, (2.49)

and

.̂δ = y2 − y − ρ
(
y1 − y

)
. (2.50)

If all first lactation cows produce a second lactation (i.e. no selection), then . y1 = y

and the maximum likelihood estimator of . δ reduces to .y2−y, the difference between
mean production in years 2 and 1.

To study whether (2.49) and (2.50) are biased, I compute their expectations. From
(2.39),

. E (μ̂) = E (y) = μ. (2.51)

Using (2.42), (2.51) and (2.43), the expected value of (2.50) is

. E
(
δ̂
) = Eyi1

[
E
(
y2|yi1 ∈ S

)]− E (y) − ρ
[
E
(
y1|yi1 ∈ S

)− E (y)
]

= μ + δ + ρ (μs − μ) − μ − ρ (μs − μ)

= δ. (2.52)

Therefore, the maximum likelihood estimators of . μ and . δ are unbiased by selection
of the records, despite the fact that the selection mechanism is not accounted for in
the computation of the likelihood (2.47). This holds in the present example because
the data are missing at random in the sense defined by Rubin (1976) and therefore
the selection mechanism is ignorable. If this is not the case, inferences based on the
likelihood require incorporating the selection process as part of the model. This is
illustrated in the next example.

2.7 Example: The Likelihood Function with Truncated Data 71

2.7 Example: The Likelihood Function with Truncated Data

Consider data collected on n individuals with the objective of inferring the mean
and variance of some trait. For some reason beyond the control of the analyst, only
those individuals that exceed a known threshold become available for analysis. Can
the mean and variance of the (unselected) trait be correctly inferred using these
data? The example is presented in a stylised fashion, but the data structure is not
uncommon for field data in animal breeding, where records of culled individuals
are typically excluded.

As a reminder, let X have probability density function .p (x) and cumulative
distribution function .F (x) = Pr (X ≤ x). Let a and b be constants lying within
the support of the distribution of X (the support of the distribution is the set of
values of x where the pdf (or pmf) is positive). Then,

.p (x|a < X ≤ b) = p (x)

F (b) − F (a)
, . (2.53a)

p (x|X > a) =
p (x)

1 − F (a)
, . (2.53b)

p (x|X ≤ b) =
p (x)
F (b)

. (2.53c)

In each case, the unconditional density is adjusted by a scaling constant so
that the conditional density still integrates to unity. In other words, the selection
mechanism is taken into account.

With this detail in place, consider data vector .Y = (Yo, Ym) of length n from a
normal distribution with mean . μ and variance . σ 2 that consist of r observed records
. Yo and .n− r missing records . Ym. The .n− r missing records were discarded because
they were smaller than an observed threshold T . In this particular case, the missing
data mechanism involves the complete data (the observed and the missing data).
Therefore, the missing data mechanism must be incorporated in the likelihood for
correct inferences.

The contribution to the likelihood function from each element of . Yo is

. LYo

(
μ, σ 2|yi > T

)
∝ p

(
yi |μ, σ 2

)

∫∞
T

p
(
yi |μ, σ 2

)
dyi

= p
(
yi |μ, σ 2

)

1 − (z)
, i = 1, . . . , r;

z = T − μ

σ
,

where .p
(
yi |μ, σ 2

)
, in this example, is the density of .N

(
μ, σ 2

)
and .(·) is the

distribution function (or cumulative distribution function) of the standard normal.

72 2 Likelihood

Concerning the .n − r missing records, the only information available is that they
are smaller than T . Therefore, the contribution to the likelihood function from each
missing record is

. LYm

(
μ, σ 2|yi < T

)
= Pr

(
yi < T |μ, σ 2

)
= (z) , i = r + 1, . . . , n.

Assuming the records are iid, after ordering, the likelihood becomes

.
∏r

i=1
LYo

(
μ, σ 2|yi ≥ T

)∏n

i=r+1
LYm

(
μ, σ 2|yi < T

)
∝

∏r
i=1 p

(
yi |μ, σ 2

)

(1 − (z))r
((z))n−r , (2.54)

where z is a function of . μ and . σ . Maximisation over . μ and . σ 2 provides inferences
of the base (untruncated) population parameters. This would not be the case if the
selection mechanism had been ignored and if inferences of . μ and . σ 2 had instead
been based on the likelihood constructed assuming .Yo ∼ N

(
μ, σ 2

)
. The resulting

estimators would be biased.
Likelihood (2.54) is a nonlinear function of . μ and . σ 2 and no analytic form for

the estimators exists. However, solutions using the method of moments, the EM
(expectation maximisation) algorithm or McMC are easily available as shown in the
chapters ahead.

A slightly different situation arises if information is restricted to the r observed
records only, known to have been selected because each was larger than T . There is
no information about how many records were discarded. In this case, the likelihood
is equal to (2.54) with the second term .((z))n−r omitted.

The Exercises section, pages 547 and 592, introduces a censored model where
data are drawn from an exponential distribution.

2.8 Example: The Likelihood Function of a Genomic Model

So far no distinction has been made between the model assumed to generate the
data, the true model, and the model used for analysis, the operational model. When
the likelihood based on an operational model differs meaningfully from that based
on the true model, the likelihood is misspecified and inferences can be affected.
I underline inferences because in the context of prediction, this is not necessarily
a problem. The true model may constitute a poorer prediction machinery than an
operational alternative.

I revisit (see page 39) a model that is used repeatedly in this book: the genomic
model that has its origins in the influential work of Meuwissen et al (2001).
Advances in molecular genetic techniques have allowed genotyping vast numbers of
markers spread across the whole genome of individuals. These genetic marker loci

2.8 Example: The Likelihood Function of a Genomic Model 73

are not necessarily causal but are correlated (they are in linkage disequilibrium) with
the causal loci, the so-called quantitative trait loci (QTL). The latter are typically
unobserved, and the genetic markers are observed and can provide information
about the genetics of a trait.

Genetic marker information on a large number of loci allows the assessment
of kinship (additive genetic relationships) among nominally unrelated individuals
(meaning distantly related). However, due to Mendelian sampling, the patterns of
allele sharing at markers and at causal loci may be very different (Hill and Weir
2011). As a consequence, the variance structure specified by the operational model
can differ from that of the true model, leading to misspecification. This disparity
between the true model and the operational model may affect inferences but is not
necessarily a problem in the context of prediction. The topic is elaborated in de los
Campos et al (2015).

With this warning in mind, I introduce the (operational) likelihood function of a
genomic model. Consider, first in general terms, the following mixed model:

.y|α, g, σ 2
e ∼ N

(
Zα + g, Iσ 2

e

)
, . (2.55a)

g|G, σ 2
g ∼ N

(
0,Gσ 2

g

)
. (2.55b)

The first line specifies that the conditional distribution of the data y (vector of
order .n × 1), given all the parameters, is normal with conditional mean . Zα + g

and conditional variance .Iσ 2
e . The scalar .σ 2

e is the residual variance, Z is an
observed matrix and . α is an unobserved vector of systematic effects. The second
line describes the model for the random variable g given parameters. This is again
normal with mean 0 and variance .Gσ 2

g . The system described by (2.55) is an
example of a hierarchical model. Vector g could represent genomic or additive
genetic values, G could represent a genomic or additive genetic relationship matrix
and . σ 2

g , a scalar, can be a genomic or an additive genetic variance component.
When g is a vector of additive genetic values, taken to be equal to the sum of the
contributions from a very large number of unobserved loci, the model is known
as the infinitesimal model (Bulmer 1980). This has been the standard model for
analysis of many quantitative traits in the pre-genomics era. Matrix G specifies the
conditional expected value of allele sharing between individuals, given an observed
pedigree, also known as the additive genetic relationship matrix.

In the genomic model, where g is a vector of genomic values, it takes the form
.g = Wb, where b is a vector of p unobserved genetic marker effects, often assigned
the normal distribution:

. b|σ 2
b ∼ N

(
0, Iσ 2

b

)
.

The scalar parameter . σ 2
b can be interpreted as the prior variance associated with

each element of the .p×1 vector b. The observed matrix W , of order .n×p, consists

74 2 Likelihood

of marker labels .Xij (often centred and scaled, in which case the rank of W is at
most .n − 1 if .p > n):

. Wij = Xij − E
(
Xij

)

√
Var

(
Xij

) .

When the rank of W is smaller than n, g in (2.55b) has a singular normal
distribution. The random variable .Xij can take values .0, 1, 2 according to the
number of the arbitrarily chosen allele of marker locus j of individual i. Therefore,
.E
(
Wij

) = 0, .Var
(
Wij

) = 1. Matrix W is a random variable that takes a particular
realised value in the data at hand. Inferences based on genomic models are typically
conditional on W . Parametrising in terms of g rather than in terms of b is useful
when .p > n.

The vector g of genomic values is a proxy for the true additive genetic values
determined by the causal QTL. The conditional variance of g given W is

. Var (g|W) = WW ′σ 2
b

= 1

m
WW ′σ 2

g ,

where the genomic relationship matrix .Gg = (1/m) WW ′ is the average (over
marker loci) realised observed matrix of genetic relationships among the n indi-
viduals, and .σ 2

g = mσ 2
b is the unconditional (with respect to W) variance of an

element of g, interpreted as the amount of additive genetic variance captured by
marker loci, or genomic variance at the level of the operational model. The equality
.σ 2

g = mσ 2
b stems from the fact that

. Var (gi) = E [Var (gi |Wi)] + Var [E (gi |Wi)]

= E [Var (gi |Wi)]

because .E (gi |Wi) = 0. Labelling .W ′
i as the ith row of matrix W, the ith diagonal

term .WW ′ is .W ′
iWi = ∑p

j=1 W 2
ij . Then

. Var (gi) = E

⎡

⎣
p∑

j=1

W 2
ij

⎤

⎦ = mσ 2
b = σ 2

g

because .E
(
W 2

ij

)
= 1. A genomic heritability or proportion of variance accounted

for by the genetic markers is defined as

.h2
g = σ 2

g

σ 2
g + σ 2

e

. (2.56)

2.8 Example: The Likelihood Function of a Genomic Model 75

The construction of the likelihood involves integration over g:

.L
(
α, σ 2

g , σ 2
g |y,Gg

)
=
∫

g

p
(
y|α, g, σ 2

e

)
p
(
g|Gg, σ

2
g

)
dg, (2.57)

which in view of the normality assumptions is the likelihood of the normal
distribution:

. N
(
Zα,Ggσ

2
g + Iσ 2

e

)
.

In a classical likelihood setup, the . g′s are not “parameters” but latent variables
that do not feature in the likelihood. The only parameters are . α, . σ 2

g and . σ 2
e .

In this example, the likelihood is explicit but the maximum likelihood estimators
do not have a closed form. Numerical methods are needed to obtain solutions. This
is the subject of the next chapter. In most non-Gaussian setups, the integration in
(2.57) cannot be written in closed form, and therefore neither the likelihood function
nor the maximum likelihood estimators can be obtained explicitly.

Chapter 3
Computing the Likelihood

Estimation using the likelihood function proceeds by solving for . θ the equation
.S(θ) = 0 where .S(θ) is the score. In many cases, there may be no explicit solution,
either because the system of equations is not linear or because the likelihood
cannot be written explicitly. Therefore, numerical methods must be employed to
obtain the maximum likelihood estimates. There is a large number of optimisation
algorithms for nonlinear problems (see, e.g. Dahlquist and Björck 1974). The
chapter provides an outline of two classical approaches that are used for fitting
models using maximum likelihood and a third one that is often used in high-
dimensional settings such as neural networks. The first two are Newton-Raphson
and the the EM algorithm and the third is gradient descent. Examples illustrate
implementation of the methods.

3.1 Newton-Raphson and the Method of Scoring

Newton-Raphson is a general procedure to solve .g (x) = 0. Newton-Raphson finds
the root of a function and therefore it is applied to the derivative of the loglikelihood.
To illustrate, assume that x is a scalar. The starting point is a Taylor expansion
around an initial estimate of x labelled . x0

.g (x) ≈ g (x0) + g′ (x0) (x − x0) = 0, (3.1)

where

. g′ (x0) = dg (x)

dx

∣
∣
∣
∣
x=x0

.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Sorensen, Statistical Learning in Genetics, Statistics for Biology and Health,
https://doi.org/10.1007/978-3-031-35851-7_3

77

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35851-7protect T1	extunderscore 3&domain=pdf
https://doi.org/10.1007/978-3-031-35851-7_3
https://doi.org/10.1007/978-3-031-35851-7_3
https://doi.org/10.1007/978-3-031-35851-7_3
https://doi.org/10.1007/978-3-031-35851-7_3
https://doi.org/10.1007/978-3-031-35851-7_3
https://doi.org/10.1007/978-3-031-35851-7_3
https://doi.org/10.1007/978-3-031-35851-7_3
https://doi.org/10.1007/978-3-031-35851-7_3
https://doi.org/10.1007/978-3-031-35851-7_3
https://doi.org/10.1007/978-3-031-35851-7_3
https://doi.org/10.1007/978-3-031-35851-7_3

78 3 Computing the Likelihood

From (3.1),

. x = x0 − g (x0)

g′ (x0)

and the iterative process is

.xt+1 = xt − g (xt)

g′ (xt)
. (3.2)

ML estimation involves finding the value of . θ that satisfies .S (θ) = 0, where . θ is
a vector of p parameters and .S (θ) is the score function, the first derivative of the
loglikelihood with respect to the parameters. The vectorial expression equivalent to
(3.1) is

.S (θ) = S (θ0) + S′ (θ0) (θ − θ0) (3.3)

where

. S′ (θ0) = ∂2� (θ |y)

∂θ∂θ ′

∣
∣
∣
∣
θ=θ0

.

The component ij of the .p × p matrix of second derivatives .S′ (θ) (the Hessian) is

.
∂2� (θ |y)

∂θi∂θj

and .−S′ (θ0) = I (θ0|y) is the observed information. After setting (3.3) equal to
zero and solving for . θ , the iterative process is

.θt+1 = θt − [

S′ (θt)
]−1

S (θt) . (3.4)

The method of scoring replaces the inverse of the observed information in (3.4)
by the expected information matrix and the iterative process is now

.θt+1 = θt − [

Ey

(

S′ (θt)
)]−1

S (θt) . (3.5)

The expected information is

. Ey

(

S′ (θt)
) = −

[

Ey

(
∂2

∂θ∂θ ′ � (θ |y)

)]∣
∣
∣
∣
θ=θt

= −
∫

∂2� (θ |y)

∂θ∂θ ′ p (y|θ) dy.

Typically, the method of scoring requires fewer calculations in each iteration
because many expressions vanish or simplify in the process of taking expectations.

3.1 Newton-Raphson and the Method of Scoring 79

However, it may converge at a slower rate. The two methods may not converge at all
and, even if they do, there is no assurance that a global maximum would be reached.
This is not surprising, as the methods search for stationarity without reference to the
possible existence of multiple maxima. This is a potential problem in models having
many parameters, and it is expected to occur more frequently when sample sizes are
small, as the likelihood may have several “peaks and valleys”. Both methods involve
calculating the matrix of second derivatives of the loglikelihood.

A third variant (and there are others) of this iterative procedure avoids the use of
second derivatives and is implemented with first derivatives only as

.θt+1 = θt − [(

S (θ) S (θ)′
)]−1

S (θt) . (3.6)

This is known as the BHHH algorithm and was proposed by Berndt, Hall, Hall and
Hausman (Berndt et al, 1974). The performance of this method can be more erratic
than the previous two.

All these methods are based on a linear approximation to the score function that
is equivalent to a quadratic approximation to the likelihood.

Example: Estimation of Gene Frequencies from ABO Blood
Group Phenotypes

The ABO blood group antigens in man are encoded by one genetic locus on
chromosome 9, the ABO locus that has three allelic forms: A, B and O. A child
receives one of the three alleles from each parent, giving rise to six possible
genotypes but only four phenotypic classes (blood types) can be observed.

Consider the blood group data in Table 3.1. The expected frequency of each
genotype in the last column is derived assuming Hardy-Weinberg equilibrium. The
problem at hand is to infer . pA, .pB and . pO , the frequency of alleles A, B and O,
respectively, subject to the constraint .pA + pB + pO = 1. The observed data are
.(nA, nAB, nB, nO).

Before writing the likelihood corresponding to this problem, imagine that all six
phenotypes were observed (one for each genotype). This would lead to the classical
multinomial likelihood. To illustrate, assume that the complete data were instead

Table 3.1 Frequency of
genotypes and phenotypes of
ABO blood group data

Genotype Phenotype Observed counts Frequency

AA A .nA . p2
A

AO A . 2pApO

AB AB .nAB . 2pApB

BB B .nB . p2
B

BO B . 2pBpO

OO O .nO .p2
O

80 3 Computing the Likelihood

.
(

nAA, nAO, nAB, nBB, nBO,nOO

)

associated with the six phenotypes and the total
number of observations is

. N = nAA + nAO + nAB + nBB + nBO + nOO.

The four phenotypic classes (blood types) are .nA = nAA+nAO , .nAB = nAB , . nB =
nBB + nBO and .nO = nOO . Under multinomial sampling, the joint probability
function of the complete data is

. Pr
(

nAA, nAO, nAB, nBB, nBO,nOO |pA, pB

)

= N !
(

p2
A

)nAA

nAA!
(2pApO)nAO

nAO !
(2pApB)nAB

nAB !
(

p2
B

)nBB

nBB !
(2pBpO)nBO

nBO !
(

p2
O

)nOO

nOO ! .

The likelihood function is

. L
(

pA, pB |nAA, nAO, nAB, nBB, nBO,nOO

)

∝
(

p2
A

)nAA

(2pApO)nAO (2pApB)nAB

(

p2
B

)nBB

(2pBpO)nBO

(

p2
O

)nOO

,

(3.7)

and the loglikelihood, up to an additive constant, is

. l
(

pA, pB |nAA, nAO, nAB, nBB, nBO,nOO

)

= 2nAA ln (pA) + nAO ln (2pApO) + nAB ln (2pApB) + 2nBB ln (pB)

+nBO ln (2pBpO) + 2nOO ln (pO) . (3.8)

Substituting .pO = 1 − pA − pB , taking partial derivatives with respect to .pA and
. pB and setting these equal to zero leads to the equations:

.
2nAA + nAB + nAO

pA

− 2nOO + nAO + nBO

1 − pA − pB

= 0,

2nBB + nAB + nBO

pB

− 2nOO + nAO + nBO

1 − pA − pB

= 0.

The unique solutions are the closed-form ML estimators:

.p̂A = 2nAA + nAB + nAO

2N
, . (3.9a)

p̂B =
2nBB + nAB + nBO

2N
. (3.9b)

3.1 Newton-Raphson and the Method of Scoring 81

In the case of the data in Table 3.1, .nAO and .nBO are not observed and the
likelihood becomes nonlinear. Given the data in Table 3.1, the loglikelihood is

. l (pA, pB |nA, nAB, nB, nO) ∝ nA ln [pA (2 − pA − 2pB)] + nAB ln [2pApB]

+ nB ln [pB (2 − pB − 2pA)] + 2nO ln [(1 − pA − pB)] . (3.10)

Differentiating with respect to . pA and . pB yields the nonlinear system of equations:

.
∂l (pA, pB |nA, nAB, nB, nO)

∂pA

= nAB

pA

+ nA (2 − 2pA − 2pB)

pA (2 − pA − 2pB)
− 2nB

2 − 2pA − pB

− 2nO

1 − pA − pB

, (3.11)

.
∂l (pA, pB |nA, nAB, nB, nO)

∂pB

= nAB

pB

+ nB (2 − 2pA − 2pB)

pB (2 − 2pA − pB)
− 2nA

2 − pA − 2pB

− 2nO

1 − pA − pB

. (3.12)

A solution can be obtained using Newton-Raphson. This requires the following
second derivatives:

.
∂2l (pA, pB |nA, nAB, nB, nO)

(∂pA)2 = nA (2 − 2pA − 2pB)

pA (2 − pA − 2pB)2 − 2nA

pA (2 − pA − 2pB)

− nA (2 − 2pA − 2pB)

p2
A (2 − pA − 2pB)

− nAB

p2
A

− 2nO

(1 − pA − pB)2

− 4nB

(2 − 2pA − pB)2
,

.
∂2l (pA, pB |nA, nAB, nB, nO)

(∂pB)2
= nB (2 − 2pA − 2pB)

pB (2 − 2pA − pB)2
− 2nB

pB (2 − 2pA − pB)

− nB (2 − 2pA − 2pB)

p2
B (2 − 2pA − pB)

− nAB

p2
B

− 2nO

(1 − pA − pB)2

− 4nA

(2 − pA − 2pB)2 ,

.
∂2l (pA, pB |nA, nAB, nB, nO)

∂pA∂pB

= − 2nA

(2 − pA − 2pB)2 − 2nB

(2 − 2pA − pB)2

− 2nO

(1 − pA − pB)2
.

82 3 Computing the Likelihood

Suppose the data are .nA = 725, .nAB = 72, .nB = 258, .nO = 1073. This example
is discussed in Weir (1996) where references to the original source of the data can
be found. Using these expressions in (3.4) yields, at convergence, the ML estimates:
.p̂A = 0.2091 and .p̂B = 0.0808. The observed information matrix evaluated at the
ML estimates is

. I (p̂A, p̂B |nA, nAB, nB, nO) =
[

23, 210.6 5031.56
5031.56 56, 008.53

]

,

resulting in an estimate of the asymptotic covariance matrix equal to

. Var (p̂A, p̂B |nA, nAB, nB, nO) = [I (p̂A, p̂B |nA, nAB, nB, nO)]−1

= 10−6
[

43.939 −3.947
−3.947 18.209

]

.

The R-code for the Newton-Raphson computations, spelled out line by line, is
as follows:

CODE0301
rm(list=ls())
set.seed(30371)
fd<-matrix(data=NA,nrow=2,ncol=1)
sd<-matrix(data=NA,nrow=2,ncol=2)
freq<-matrix(data=NA,nrow=2,ncol=1)
niter<-20
DATA
n_A<-725
n_AB<-72
n_B<-258
n_O<-1073
INITIALISE GENE FREQ
freq[1,1]<-0.3
freq[2,1]<-0.2
p_A<-freq[1,1]
p_B<-freq[2,1]
ITERATION LOOP
for (i in 1:niter){

fd[1,1] <- n_AB/p_A+n_A*(2-2*p_A-2*p_B)/(p_A*(2-p_A-2*p_B))-
2*n_B/(2-2*p_A-p_B)-2*n_O/(1-p_A-p_B)

fd[2,1] <- n_AB/p_B+n_B*(2-2*p_A-2*p_B)/(p_B*(2-2*p_A-p_B))-
2*n_A/(2-p_A-2*p_B) - 2*n_O/(1-p_A-p_B)

s11a <- -n_AB/((p_A)^2)
s11b <- (n_A*(2-2*p_A-2*p_B))/((p_A*(2-p_A-2*p_B)^2))
s11c <- - (2*n_A)/((p_A*(2-p_A-2*p_B)))
s11d <- - (n_A*(2-2*p_A-2*p_B))/((p_A^2*(2-p_A-2*p_B)))
s11e <- - (4*n_B)/((2-2*p_A-p_B)^2)
s11f <- - (2*n_O)/((1-p_A-p_B)^2)
sd[1,1] <- s11a + s11b + s11c + s11d + s11e + s11f
s22a <- - n_AB/((p_B)^2)
s22b <- n_B*(2-2*p_A-2*p_B)/(((2-2*p_A-p_B)^2) * p_B)
s22c <- - (2*n_B)/(p_B*(2-2*p_A-p_B))
s22d <- - (n_B*(2-2*p_A-2*p_B))/((p_B^2*(2-2*p_A-p_B)))
s22e <- -(4*n_A)/((2-p_A-2*p_B)^2)

3.1 Newton-Raphson and the Method of Scoring 83

s22f <- -(2*n_O)/((1-p_A-p_B)^2)
sd[2,2] <- s22a + s22b + s22c + s22d + s22e + s22f
sd[1,2] <- -2*n_A/((2-p_A-2*p_B)^2) - 2*n_O/((1-p_A-p_B)^2) -

2*n_B/((2-2*p_A-p_B)^2)
sd[2,1] <- sd[1,2]
freq<-freq-solve(sd)%*%fd
p_A<-freq[1,1]
p_B<-freq[2,1]

}
ML ESTIMATES ARE
freq

[,1]
[1,] 0.20913065
[2,] 0.08080101

OBSERVED INFORMATION IS
-sd

[,1] [,2]
[1,] 23210.614 5031.559
[2,] 5031.559 56008.529

ASYMPTOTIC VAR-COVAR MATRIX IS
-solve(sd)

[,1] [,2]
[1,] 4.393943e-05 -3.947325e-06
[2,] -3.947325e-06 1.820903e-05

A computationally simpler alternative is to use the R function OPTIM to solve
minimisation problems (to maximise a function such as the loglikelihood (3.10), the
function multiplied by .−1 must be supplied). The code is as follows:

CODE0302
rm(list=ls()) # CLEAR WORKSPACE
fr<-function(par){

p_A <- par[1]
p_B <- par[2]
-(725*log(p_A*(2 - p_A - 2* p_B)) + 72*log(2*p_A*p_B) +
258*log(p_B*(2 - p_B - 2*p_A)) + 2*1073*log(1 - p_A - p_B))}

result <- optim(par=c(0.3,0.2),fr,hessian=TRUE)
result$par

[1] 0.20913767 0.08081225

solve(result$hessian)

84 3 Computing the Likelihood

[,1] [,2]
[1,] 4.393974e-05 -3.947440e-06
[2,] -3.947440e-06 1.820851e-05

-result$value

[1] -2303.55

The value of the loglikelihood at convergence can be extracted from OPTIM and
is equal to .−2303.55.

Example: A Regression Model for Binary Data

Categorical data are ubiquitous in genetics and arise when the outcome is an
assignment into one of several mutually exclusive classes. A distinction is made
based on whether the classes are unordered or ordered. The ABO blood groups
illustrate the former. Another example is hair colour. In these cases, there is no clear
ordering from lowest to highest. In contrast, the degree of severity of a disease can
be meaningfully classified into several categories, ranging from very low severity to
very high severity.

Only two categories are assumed here, so the response is said to be binary. If
. yi denotes the response, without loss of generality, the two possible values may be
coded as 1 and 0. Therefore,

. E(yi) = 1 Pr(yi = 1) + 0 Pr(yi = 0) = Pr(yi = 1). (3.13)

This section describes methods to study how covariates or explanatory variables
influence .Pr(yi = 1). Later sections will consider joint inferences of explanatory
variables and of components of variance of random effects as factors related to
.Pr(yi = 1). The variance of the random effects in such a mixed model could, for
example, inform on the existence of genetic variation underlying disease data.

Assume that binary records are available on .i = 1, 2, . . . , N individuals
.(y1, x1) , (y2, x2) , . . . , (yN , xN), where .yi = 0, 1, and . xi is a vector with p
elements representing covariates. The objective is to construct a model to study the
influence of the covariates on the observations y. A possible choice is the regression
model

.yi = x′
iβ + ei (3.14)

and to estimate the .p×1 vector of regression coefficients . β using least squares. The
problem with this approach is as follows. Taking expected values of (3.14)

. E (yi |xi) = x′
iβ.

3.1 Newton-Raphson and the Method of Scoring 85

From (3.13) this expectation is equal to .Pr(yi = 1|xi). This probability must satisfy

.0 ≤ Pr(yi = 1|xi) ≤ 1 (3.15)

but the prediction using .E (yi |xi) = x′
iβ may yield outcomes outside the constraint

(3.15).
A way of building a model in which the constraint (3.15) is automatically satis-

fied is to use a transformation of the output y, generating a nonlinear relationship
between it and the covariate. This is achieved by defining the probability that . yi = 1
as a nonlinear function of . xi of the form

. Pr(yi = 1|xi) = F
(

x′
iβ
)

, (3.16)

where F is any distribution function (cumulative distribution function). Two
common choices for F are the normal distribution, leading to the probit model,
and the logistic distribution, leading to the logistic model.

For the probit model, .F = � and

. Pr(yi = 1|xi) = �
(

x′
iβ
)

, (3.17)

where . � is the standard normal integral

. �(t) = 1√
2π

∫ t

−∞
exp

(

−1

2
u2
)

du.

The relationship (3.17) is linearised by the inverse normal transformation:

.�−1 (x′
iβ
) = x′

iβ. (3.18)

For the probit model,

. F (t) =
∫ t

−∞
p (u) du =

∫ t

−∞
exp (u)

[

1 + exp (u)
]2

du

= exp (t)

1 + exp (t)
, (3.19)

where .p (u) is the pdf of the standard logistic distribution, with .E (u) = 0 and
.Var (u) = π2/3. Therefore, for the logistic model,

. Pr(yi = 1|xi) = exp
(

x′
iβ
)

1 + exp
(

x′
iβ
) , . (3.20a)

Pr(yi = 0|xi) = 1

1 + exp
(

x′
iβ
) . (3.20b)

86 3 Computing the Likelihood

The relationship is linearised by the logit transformation:

. ln

[
Pr(yi = 1|xi)

Pr(yi = 0|xi)

]

= x′
iβ. (3.21)

The Liability Model

Ordered categorical data and binary data are often analysed using a threshold
model, first used by Wright (1934) to study the number of digits in guinea pigs
and introduced in human genetics in a more modern version by Falconer (1965).
This model assumes that there is an underlying or latent unobservable variable, u,
in genetics of disease often called the liability after Falconer (1965). The categories
of response result from the value of u relative to a fixed unobserved threshold t . The
liability u is often assumed to follow a normal distribution or a logistic distribution.
The objective is to show that in the first case, the liability model is equivalent to the
probit model (3.17) and in the second case to the logistic model (3.20).

Let the dichotomy be say “survival” versus “death”. If .u > t then the individual
survives and the binary variable (the observed datum) takes the value . y = 1. If . u ≤ t

the individual dies and the observed datum is .y = 0. Denote the liability associated
with datum i as . ui and suppose that it is related to an unknown parameter vector . β
of order .p × 1 via the linear structure:

.ui = x′
iβ + ei, i = 1, 2, ..., N, (3.22)

where . x′
i is the ith row of a known .N × p matrix x of explanatory variables

(covariates) and . ei is a random residual with pdf .p (ei). Assume that the residuals
are independent and identically distributed. The probability of survival of individual
i (which is the pmf of the random variable . yi) is

. Pr (yi = 1|β, x) = Pr (ui > t |β, x) = Pr
(

ui − x′
iβ > t − x′

iβ|β, x
)

= Pr
(

ei > t − x′
iβ|β, x

) =
∫ ∞

t−x′
iβ

p (ei) dei

=
∫ −(t−x′

iβ)

−∞
p (ei) dei =

∫ x′
iβ−t

−∞
p (ei) dei . (3.23)

The equality in the third line requires . ei to be symmetrically distributed around 0.
The liabilities cannot be observed and a convenient origin is to set the value of the
threshold t equal to 0. Hence, the scale is one of deviations from the threshold.
This constraint makes the likelihood model identifiable and the Hessian becomes
negative definite. Then,

. Pr (yi = 1|β, x) =
∫ x′

iβ

−∞
p (ei) dei = F

(

x′
iβ
)

, (3.24)

3.1 Newton-Raphson and the Method of Scoring 87

as in (3.16), where F is the cdf of the random variable . ei , indicating the equivalence
between the liability model and the original formulation of the model (3.16).

The use of an underlying liability is a computational trick. However, the liability
can have an intrinsic mechanistic significance. For example, in the case of twinning
in cattle or humans, the liability can be thought of as levels of hormones, which
play a central role in factors determining monozygotic twinning. The liability
formulation has also advantages in Gibbs sampling computations and provides a
simple framework for extensions of the model to include hierarchical structures and
for analysis of ordered categorical traits.

A Digression on Parameter Interpretation

The liability . ui changes with . xi at a constant rate, but this is not so at the level of
the probabilities. This is verified by noting that

.
∂ui

∂xi

= β,

whereas from expression (3.24)

.
∂ Pr (y = 1|β, x)

∂xi

= ∂

∂xi

[
∫ x′

iβ

−∞
p (ei) dei

]

= ∂

∂x′
iβ

[
∫ x′

iβ

−∞
p (ei) dei

]

∂x′
iβ

∂xi

= F
(

x′
iβ
)

β. (3.25)

The change is not constant and depends on the value of the explanatory vector . xi .
In the Bernoulli distribution, .E (y|β, x) = Pr (y = 1|β, x). The model at the

level of the expectation of y is nonlinear, in contrast with the standard linear
regression model, where .E (y|β, x) = μ + βx. According to (3.25), a unit change
in the covariate x leads to a nonlinear change in the probability . E (y|β, x) =
Pr (y = 1|β, x).

To get a little insight into the meaning of . β in the case of binary responses,
consider the odds ratio

.
Pr (y = 1|β, x)

Pr (y = 0|β, x)
= exp

(

x′β
)

(3.26)

or the logit or logodds

. ln

[
Pr (y = 1|β, x)

Pr (y = 0|β, x)

]

= x′β, (3.27)

88 3 Computing the Likelihood

showing that . β describes the linear change per unit change of x at the level of
the logit. To be specific, imagine that y denotes disease or absence of disease and
.(x1, x2) denotes level of exposure to two conditions. Let .x′

iβ = μ + β1x1i + β2x2i .
Then in terms of (3.26),

.
Pr (yi = 1|β, x)

Pr (yi = 0|β, x)
= exp [(μ + β1x1i + β2x2i)] . (3.28)

The parameter .exp (μ) is the odds of disease for an unexposed individual (.x = 0).
How does the odds ratio change when one of the conditions, say . x2, changes by

one unit?

.
Pr (yi = 1|β, xi)

Pr (yi = 0|β, xi)
= exp [(μ + β1x1i + β2 (x2i + 1))]

= exp [(μ + β1x1i + β2x2i)] exp (β2) .

The increase in . x2 by one unit to .x2 + 1 while keeping . x1 fixed multiplies the odds
ratio by .exp (β2). In terms of the logit we have

. ln

[
Pr (yi = 1|β, xi)

Pr (yi = 0|β, xi)

]

= (μ + β1x1i + β2x2i) + β2,

indicating that increasing . x2 by one unit to .x2 + 1 while keeping . x1 constant
increases the logit by . β2.

Likelihood Function

Assuming the logistic model, the pmf of a datum using (3.20) is

. Pr (Yi = yi |xi) =
[

exp
(

x′
iβ
)

1 + exp
(

x′
iβ
)

]yi
[

1

1 + exp
(

x′
iβ
)

]1−yi

, yi = 1, 0.

For N independent binary observations collected in the vector y and the covariates
in matrix x, the pmf is

. Pr (Y = y|x) =
N
∏

i=1

[

exp
(

x′
iβ
)

1 + exp
(

x′
iβ
)

]yi
[

1

1 + exp
(

x′
iβ
)

]1−yi

. (3.29)

This is the likelihood function when viewed as a function of . β. The loglikelihood is
obtained taking natural logarithms:

.l (β|y, x) =
N
∑

i=1

{

yix
′
iβ − ln

[

1 + exp
(

x′
iβ
)]}

. (3.30)

3.1 Newton-Raphson and the Method of Scoring 89

The Iterative System

To obtain ML estimators using Newton-Raphson, first and second derivatives of the
loglikelihood are needed. The score vector is

. l′ (β|y) =
N
∑

i=1

∂

∂β

{

(1 − yi) x′
iβ − ln

[

1 + exp
(

x′
iβ
)]}

=
N
∑

i=1

{

yixi − exp
(

x′
iβ
)

1 + exp
(

x′
iβ
)xi

}

=
N
∑

i=1

[

yi − π
(

x′
iβ
)]

xi, (3.31)

where

. Pr(yi = 1|xi) = exp
(

x′
iβ
)

1 + exp
(

x′
iβ
) = π

(

x′
iβ
)

.

Let the .N × 1 vector of probabilities of survival for the N individuals be

. π (Xβ) = [

π
(

x′
1β
)

, . . . , π
(

x′
Nβ
)]′

and observe that the score vector can be written as

.

N
∑

i=1

[

yi − π
(

x′
iβ
)]

xi = {

x1
[

y1 − π
(

x′
1β
)]+ ... + xN

[

yN − π
(

x′
Nβ
)]}

= X′ [y − π (Xβ)] .

The vector .y − π (Xβ) consists of deviations of the observations from their
expectations. Using this representation in (3.31), it can be seen that the first-order
condition for a maximum is satisfied if

.X′ π
(

Xβ̂
) = X′y, (3.32)

where .π
(

Xβ̂
)

is the vector of probabilities of survival for the N individuals
evaluated at the ML estimator . ̂β, if this exists. The estimating equations (3.32) are

90 3 Computing the Likelihood

not explicit in . ̂β and must be solved iteratively. To obtain second derivatives, an
additional differentiation of the loglikelihood with respect to the parameters gives

. l′′ (β|y) = ∂2l (β|y)

∂β ∂β ′ = ∂

∂β ′

{
N
∑

i=1

[

yi − π
(

x′
iβ
)]

xi

}

= −
N
∑

i=1

xi

∂

∂β ′ π
(

x′
iβ
)

. (3.33)

Now,

.
∂

∂β ′ π
(

x′
iβ
) = ∂

∂β ′
[

1 + exp
(−x′

iβ
)]−1

= [

1 + exp
(

x′
iβ
)]−2 exp

(−x′
iβ
)

x′
i

= π
(

x′
iβ
) [

1 − π
(

x′
iβ
)]

x′
i .

Using this in (3.33),

.l′′ (β|y) = −
N
∑

i=1

xiπ
(

x′
iβ
) [

1 − π
(

x′
iβ
)]

x′
i = −X′D (β) X, (3.34)

where .D (β) is an .N × N diagonal matrix with the ith diagonal element
.π
(

x′
iβ
) [

1 − π
(

x′
iβ
)]

. Because the second derivatives do not depend on the
observations, the expected information is equal to the observed information in
this case. Hence, the Newton-Raphson and the scoring algorithms are identical.
From (3.4), multiplying by .

[

X′D
(

β[t]
)

X
]

, the iteration can be represented as

.

[

X′D
(

β[t]
)

X
]

β[t+1] =
[

X′D
(

β[t]
)

X
]

β[t] + X′v
(

β[t]
)

, (3.35)

where the vector .v
(

β[t]
) = y − π

(

Xβ[t]
)

. Now let

. y∗ (β[t]
)

= Xβ[t] + D−1
(

β[t]
)

v
(

β[t]
)

be a pseudo-data vector evaluated at iteration . [t]. Then the system (3.35) can be
written as

.

[

X′D
(

β[t]
)

X
]

β[t+1] = X′D
(

β[t]
)

y∗ (β[t]
)

. (3.36)

3.1 Newton-Raphson and the Method of Scoring 91

This is an iterative reweighted least squares system with the matrix of weights equal
to .D

(

β[t]
)

, with ith diagonal element

. π
(

x′
iβ

[t]
) [

1 − π
(

x′
iβ

[t]
)]

.

The Newton-Raphson algorithm is iterated until the change in successive rounds
is negligible. If convergence is to a global maximum, . ̂β is the ML estimate. The
asymptotic variance-covariance matrix is estimated as

.V̂ar
(

β̂
) = [

X′D
(

β̂
)

X
]−1

. (3.37)

The variance of the maximum likelihood estimator is larger at extreme probabilities
of survival.

Example: A Genomic Model

The genomic model was introduced on page 39 and discussed briefly on page 72.
In the present likelihood setting, one may be interested in estimating the proportion
of trait variance explained by marker information. This would give a first indication
that genetic factors are influencing the trait. The justification for this conjecture
is that marker genotypes are correlated (in LD) with unobserved causal genotypes
and/or that causal genotypes are part of the marker panel.

In this example, the genomic model is implemented with Newton-Raphson using
a decomposition of the genomic relationship matrix that simplifies computations.
This decomposition is used repeatedly in the book.

For simplicity, here it is assumed that the data are centred and have zero mean.
The genomic model is

.y|g, σ 2
e ∼ N

(

g, Iσ 2
e

)

, . (3.38a)

g|W, σ 2
g ∼ SN

(

0,Gσ 2
g

)

, . (3.38b)

G =
1

m
WW ′, . (3.38c)

W = {

Wij

}

. (3.38d)

In these expressions, g is the vector of genomic values, .σ 2
g is the genomic

variance at the level of this operational model, SN is a shorthand for singular
normal, m is the number of SNPs (single nucleotide polymorphisms) and .Wij is
a label for the j th marker in individual i, .(i = 1, . . . n; j = 1, . . . , m;m > n):

.Wij = Xij − E
(

Xij

)

SD
(

Xij

) , Xij = 0, 1, 2,

92 3 Computing the Likelihood

where SD stands for standard deviation. Due to the centring, .Wij has rank .(n − 1),
matrix G is singular and .(g|W,σ 2

g) is singular normally distributed. In practice the
expectation and the standard deviation are replaced by their sample estimates.

Background

The following results are useful for deriving the likelihood for the genomic model.
The eigenvalue decomposition of .WW ′ is

. WW ′ = U	U ′

=
n
∑

i=1

λiUiU
′
i ,

where .U = [U1, U2, . . . , Un], of order .n × n is the matrix of eigenvectors of .WW ′,
. Uj is the j th column (dimension .n × 1) and . 	 is a diagonal matrix with elements
equal to the eigenvalues .λ1, λ2, . . . , λn associated with the n eigenvectors. Since
.WW ′ is non-negative definite, the eigenvalues are .λi ≥ 0, .i = 1, 2, . . . , n. The
eigenvectors satisfy .U ′U = UU ′ = I .

In general, I work with the genomic relationship matrix G, defined as

. G = 1

m
WW ′

= 1

m
U	U ′

= UDU ′

where

. D = 1

m
	.

The following result on determinants will be used:

.
∣
∣UDU ′k + I

∣
∣ = ∣

∣U (Dk + I) U ′∣∣

= |U | |Dk + I | ∣∣U ′∣∣

= |Dk + I |

=
n
∏

i=1

(λik + 1) ,

3.1 Newton-Raphson and the Method of Scoring 93

where .k = σ 2
g

σ 2
e

and .|U | = ±1, a property of orthogonal matrices (.UU ′ = I implies

.|U |2 = 1).
Due to centring, the rank of G is typically .n − 1 and the singular normal density

is

.p
(

g|W,σ 2
g

)

= 1

(2π)
n−1

2

(

λ1σ 2
g . . . λn−1σ 2

g

) 1
2

exp

(

−g′G−g

2σ 2
g

)

(3.39)

where the .λ′s are the non-zero eigenvalues of G and .G− is any generalised inverse
of G (Mardia et al, 1979). One choice of generalised inverse of G is

.G− = UD−U ′, (3.40)

where

.D− =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1
λ1

0 . . . 0

0
. 0

...
... 1

λn−1
0

0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=
[

D−1
1 0c

0′
c 0

]

. (3.41)

Above, .D1 = diag (λi)
n−1
i=1 , a diagonal matrix of dimension .n − 1 × n − 1 that

contains non-zero eigenvalues, after removing the last row and column of D, . 0c is
a column vector of zeroes of size .(n − 1 × 1) and the element in the last row and
column of D is the scalar 0.

A Probabilistically Equivalent Reparametrisation

Define a random variable . α with distribution:

.α|U, σ 2
g ∼ SN

(

0,Dσ 2
g

)

. (3.42)

Since the last diagonal element of D is 0, the last element of vector . α is equal to
zero (with probability 1), and therefore . α has the singular normal distribution with
density:

.

(

λ1σ
2
g . . . λn−1σ

2
g

)− 1
2

exp

[

− 1

2σ 2
g

α′D−α

]

∝
(

σ 2
g

)−
(

n−1
2

)

exp

[

− 1

2σ 2
g

[

(α1, α0)
′ D− (α1, α0)

]

]

, (3.43)

94 3 Computing the Likelihood

In this expression, .α′ = (

α′
1, α

′
0

)

, where . α1 is a column vector with .n − 1 elements
and the scalar .α0 = 0 with probability 1. It is simpler to work with vector . α1 that
has probability density function:

.p
(

α1|U, σ 2
g

)

∝
(

σ 2
g

)−
(

n−1
2

)

exp

[

− 1

2σ 2
g

α′
1D

−1
1 α1

]

. (3.44)

This is the density of the .n − 1 dimensional multivariate normal distribution

.N
(

0,D1σ
2
g

)

. Notice that .α′D−α = α′
1D

−1
1 α1.

Writing the Likelihood

The vector of genomic values .g = Uα and the model defined in (3.38) can be
written as

.y|α, σ 2
e ∼ N

(

Uα, Iσ 2
e

)

, . (3.45a)

α|U, σ 2
g ∼ SN

(

0,Dσ 2
g

)

, . (3.45b)

G = UDU ′, . (3.45c)

y|σ 2
g , σ

2
e ∼ N

(

0, UDU ′σ 2
g + Iσ 2

e

)

. (3.45d)

Then the likelihood takes the form

. p
(

σ 2
g , σ 2

e |y,W
)

∝
∣
∣
∣UDU ′σ 2

g + Iσ 2
e

∣
∣
∣

− 1
2

exp

(

−1

2
y′ (UDU ′σ 2

g + Iσ 2
e

)−1
y

)

.

(3.46)
Write

. UDU ′σ 2
g + Iσ 2

e = σ 2
e

(

UDU ′k + I
)

, k = σ 2
g

σ 2
e

.

Then

.

∣
∣
∣UDU ′σ 2

g + Iσ 2
e

∣
∣
∣ =

∣
∣
∣σ

2
e

(

UDU ′k + I
)
∣
∣
∣

=
∣
∣
∣σ

2
e U (Dk + I) U ′

∣
∣
∣

=
(

σ 2
e

)n ∣
∣U (Dk + I) U ′∣∣

3.1 Newton-Raphson and the Method of Scoring 95

=
(

σ 2
e

)n |Dk + I |

=
(

σ 2
e

)n n
∏

i=1

(λik + 1) .

Also,

.

(

UDU ′σ 2
g + Iσ 2

e

)−1 = 1

σ 2
e

U (Dk + I)−1 U ′,

using .U−1 = U ′. The likelihood is

. p
(

σ 2
g , σ 2

e |y,W
)

∝
(

σ 2
e

)− n
2

n
∏

i=1

(λik + 1) exp

[

− 1

2σ 2
e

y′U (Dk + I)−1 U ′y
]

=
(

σ 2
e

)− n
2

n
∏

i=1

(λik + 1)−
1
2 exp

[

− 1

2σ 2
e

ỹ′ (Dk + I)−1 ỹ

]

=
(

σ 2
e

)− n
2

n
∏

i=1

(λik + 1)−
1
2 exp

[

− 1

2σ 2
e

n
∑

i=1

ỹ2
i

λik + 1

]

, (3.47)

where .̃y = U ′y, a column vector of length n whose ith element is . ̃yi .
The loglikelihood, up to an additive constant, is

. ln p
(

k, σ 2
e |y,W

)

= −1

2

{

n ln σ 2
e +

n
∑

i=1

ln (λik + 1) + 1

σ 2
e

n
∑

i=1

ỹ2
i

λik + 1

}

.

(3.48)

It can be informative to plot contours of (3.48) as a function of the two variance
components.

***NOTE: it may be numerically useful to parametrise in terms of the one-to-one
transformation

. νe = ln σ 2
e ,

νg = ln σ 2
g ,

with inverse function

.σ 2
e = exp(νe),

σ 2
g = exp(νg),

k = σ 2
g

σ 2
e

= exp
(

νg − νe

)

.

96 3 Computing the Likelihood

Then the loglikelihood (3.48) takes the form

. ln p
(

νg, νe|y,W
) =

−1

2

{

nνe +
n
∑

i=1

ln
(

λi exp
(

νg − νe

)+ 1
)+ 1

exp(νe)

n
∑

i=1

ỹ2
i

λi exp
(

νg − νe

)+ 1

}

.

(3.49)

This avoids negative values of the variance components under unconstrained
maximisation.

Implementation Using Newton-Raphson

To fit the model using Newton-Raphson, first and second derivatives are needed. It
is easier to work with (3.48).

First Derivatives

.
∂

∂σ 2
e

ln p
(

k, σ 2
e |y,W

)

= −1

2

(

n

σ 2
e

− 1
(

σ 2
e

)2

∑

i

ỹ2
i

1 + kλi

)

. (3.50)

.
∂

∂k
ln p

(

k, σ 2
e |y,W

)

= −1

2

(
∑

i

λi

1 + kλi

− 1

σ 2
e

∑

i

λi ỹ
2
i

(1 + kλi)
2

)

. (3.51)

Second Derivatives

.
∂2

(

∂σ 2
e

)2 ln p
(

k, σ 2
e |y,W

)

= −1

2

(

2
(

σ 2
e

)3

∑

i

ỹ2
i

1 + kλi

− n
(

σ 2
e

)2

)

. (3.52)

.
∂2

(∂k)2 ln p
(

k, σ 2
e |y,W

)

= −1

2

(

1

σ 2
e

∑

i

2λ2
i ỹ

2
i

(1 + kλi)
3 −

∑

i

λ2
i

(1 + kλi)
2

)

.

(3.53)

.
∂2

∂k ∂σ 2
e

ln p
(

k, σ 2
e |y,W

)

= − 1

2
(

σ 2
e

)2

∑

i

ỹ2
i λi

(1 + kλi)
2
. (3.54)

3.1 Newton-Raphson and the Method of Scoring 97

The iterative system is

.

[

σ 2
e

k

]

t+1

=
[

σ 2
e

k

]

t

−
⎡

⎣

∂2

(∂σ 2
e)

2 ln p
(

k, σ 2
e |y,W

)
∂2

∂k ∂σ 2
e

ln p
(

k, σ 2
e |y,W

)

∂2

∂k ∂σ 2
e

ln p
(

k, σ 2
e |y,W

)
∂2

(∂k)2 ln p
(

k, σ 2
e |y,W

)

⎤

⎦

−1 [
∂

∂σ 2
e

ln p
(

k, σ 2
e |y,W

)

∂
∂k

ln p
(

k, σ 2
e |y,W

)

]

.

(3.55)

The partial derivatives in (3.55) are evaluated at .σ 2
e = σ

2[t]
e , k = k[t].

An R-code That Performs the Eigenvalue Decomposition

As an example, an R-code that performs the eigenvalue decomposition of the
genomic relationship matrix is shown below. First, matrix X of dimension equal
to the number of individuals times the number of markers . (nindiv × nmark)

is generated by allocating marker codes drawn from a binomial distribution
.Bi (2, p = 0.5). The matrix of standardised marker genotypes W is obtained by
centring and scaling X. Using W the code generates the genomic relationship
matrix G .(nindiv × nindiv), and the eigen decomposition is performed on G.
This decomposition gives rise to matrix U .(nindiv × nindiv) and to the vector of
eigenvalues val, from which the diagonal matrix D .(nindiv×nindiv) is produced.

The last line of the code checks whether G and .UDU ′ are equal: they are within
the limits of numerical precision:

CODE0303
DATA BASED ON GENOMIC MODEL; OBTAIN THE SVD OF WW’(1/m)
rm(list=ls()) # CLEAR WORKSPACE
set.seed(1953)
nindiv<-10
nmark<-20
X<-matrix(nrow= nindiv,ncol= nmark,

rbinom(n=nindiv*nmark,size=2,p=.5))
W <- matrix(data=NA,nrow= nindiv,ncol=nmark)
U <- matrix(data=NA,nrow= nindiv,ncol= nindiv)
G<-matrix(data=NA,nrow= nindiv,ncol= nindiv)
cm <- colMeans(X)
CREATE MATRIX OF STANDARDISED MARKER GENOTYPE CODES
for (i in 1:nmark)
{

W[,i] <-(X[,i]-cm[i]) / sd(X[,i])
}
THIS IS MORE EFFICIENT THAN THE LOOP:
W <- scale(X, center=TRUE, scale=TRUE)
qr(X)$rank

[1] 10

98 3 Computing the Likelihood

qr(W)$rank

[1] 9

GENOMIC RELATIONSHIP MATRIX G
G <- (1/nmark)*W%*%t(W)
THIS IS MORE EFFICIENT THAN THE LINE ABOVE:
G <- (1/nmark)*tcrossprod(W)
SVD OF G
EVD <- eigen(G)
names(EVD)

[1] "values" "vectors"

head(EVD$values[1:5])

[1] 2.3596077 1.8733148 1.3984700 1.0492670 0.7181604

U <- EVD$vector
val <- EVD$values
val[nindiv] <-0
D <- diag(val,nrow=nindiv)
CHECK THAT G = UDU’:
identical(G, U%*%D%*%t(U))

[1] FALSE

max(abs(G - U%*%D%*%t(U)))

[1] 2.88658e-15

3.2 Gradient Descent and Stochastic Gradient Descent

Gradient descent is a first-order iterative optimisation algorithm for finding a local
minimum of a differentiable function. This is achieved by taking repeated steps in
the opposite sign of the gradient of the function at the current point, because this is
the direction of greatest rate of decrease of the function. The method does not rely
on matrix inversions and is often used in high-dimensional settings as encountered
in machine learning.

3.2 Gradient Descent and Stochastic Gradient Descent 99

Let . θt be the value of a parameter .θ ∈ Rd at step t and let the column vector
.	θ ∈ Rd be the move taken at step t . Consider the first-order Taylor expansion of
the function f to be minimised around . θt :

. f (θt + 	θ) ≈ f (θt) + 	θ ′ ∇f |θt

where .∇f |θt
is the gradient of f at . θt , i.e. a column vector in .Rd whose ith

coordinate is the partial derivative of f with respect to element i of . θ evaluated
at .θ = θt . Since the objective is to find a minimum of the function f , the move must
result in

. f (θt + 	θ) ≤ f (θt)

and therefore .	θ ′ ∇f |θt
≤ 0. This suggests setting

.	θ = −α ∇f |θt
, α > 0 (3.56)

where . α is a small positive number known as the learning rate. If

.θt+1 = θt − α ∇f |θt
(3.57)

then

.f (θt+1) = f (θt) − α
((∇f |θt

)′ ∇f |θt

)

< f (θt) (3.58)

since .
(∇f |θt

)′ ∇f |θt
> 0.

In the case of Newton’s method, .α = [

S′ (θt)
]−1, which involves the inverse

of second derivatives. The attraction of gradient descent is that it only uses first
derivatives and does not require matrix inversions. The downside is that it can be
slow to converge and the appropriate choice of . α can be quite challenging, especially
in high-dimensional settings where the gradients differ markedly among the . θ ′s. In
such cases, one may consider using a diagonally scaled gradient descent where . α is
replaced by a diagonal matrix with elements tuned to each gradient. Alternatively,
one can scale the features . xi so that they fall approximately in the range . ±1.
Centring and scaling the features by their standard deviation is yet another option.
It can also help to change . α as a function of t , with larger values at the start of the
iterative process.

A popular modification, especially with very large data sets, is stochastic
gradient descent. At each iteration, the actual gradient is replaced by an estimate
obtained from a randomly selected subset of the data. An extreme version uses
a single data point at a time (see example below). These versions of gradient
descent are also known as mini batch gradient descent as opposed to batch gradient
descent when the complete set of data is used. In common with many optimisation
algorithms, when data sets are very large, stochastic gradient descent converges

100 3 Computing the Likelihood

faster in terms of total computation by rapidly calculating approximate values rather
than exact values of the gradient. Stochastic gradient descent does not converge
exactly to a local minimum of the cost function (negative of the loglikelihood) as
classical gradient descent in theory does. It rather may oscillate around the local
minimum. Recent theoretical and empirical results indicate that this does not seem
to be an issue in large networks (LeCun et al, 2015). The noise associated with
stochastic gradient descent can be beneficial to escape local minima, particularly in
complex networks with non-convex loss functions.

There are several refinements to gradient descent as well as rules guiding the
choice of . α. A useful reference is Bottou (2012) and an overview of numerical
computations for machine learning algorithms can be found in Goodfellow et al
(2016).

If the cost function is concave such as many likelihood functions, the sign in
(3.57) becomes positive in order to move towards a maximum, and this turns into a
gradient ascent algorithm.

Note
The maximum likelihood estimator of a parameter . θ involves the maximisation of
the likelihood function with respect to . θ , or the minimisation of the negative of
the likelihood function with respect to . θ . Both are tasks on optimisation. When
minimisation is involved, the function can be referred to as a cost function. The cost
function may include a penalty term, as, for example, in penalised logistic regression
discussed on page 377.

A Toy Example

As an illustration, the R-code below applies classical gradient descent to find the
minimum of a cost function (negative loglikelihood) of a simple linear model . y =
Xb where b includes an intercept. The result is compared to the exact least squares
solution .b̂ = (X′X)−1X′y at the bottom of the code. The code immediately below
implements stochastic gradient descent:

CODE0304
GRADIENT DESCENT WITH A LINEAR NODEL
rm(list=ls()) # Clear the workspace
set.seed(195021)
N<-100
x<-seq(from=0,to=5,length=N)
signal<-10 + 0.2*x
error<-rnorm(N)
y<-signal+error
one <- rep(1,N)
X <- cbind(one,x)
LHS <- crossprod(X) # LEFT HAND SIDE
RHS <- crossprod(X,y) # RIGHT HAND SIDE
bhat<- solve(LHS,RHS) # SOLUTION TO THE LEAST SQUARES EQUATIONS

3.2 Gradient Descent and Stochastic Gradient Descent 101

################################
nit <- 200
alfa <- 0.002
miu <- matrix(data=NA, nrow=nit+1,ncol=1)
b <- matrix(data=NA, nrow=nit+1,ncol=1)
c <- matrix(data=NA, nrow=nit+1,ncol=1)
cost <- function(miu,b){sum(y-miu-b*x)^2}

miu[1] <- 5
b[1] <- 1
c[1] <- cost(miu[1],b[1])
for(i in 1:nit) {

fdmiu <- -sum(y - miu[i] - b[i] * x)
fdbeta <- -sum((y - miu[i] - b[i] * x) * x)
fd <- matrix(c(fdmiu, fdbeta), nrow = 2, ncol = 1)
sol0 <- matrix(c(miu[i], b[i]), nrow = 2, ncol = 1)
alfa <- 0.002
sol1 <- sol0 - alfa * fd
miu[i + 1] <- sol1[1, 1]
b[i + 1] <- sol1[2, 1]

}
CHECK ######################
beta <- c(miu[i],b[i])
beta # GRADIENT DESCENT SOLUTION

[1] 10.1511233 0.1727193

bhat # LEAST SQUARES SOLUTION

[,1]
one 10.1515028
x 0.1726028

cost(miu[i],b[i]) # COST FUNCTION AFTER nit ITERATIONS

[1] 7.781174e-05

The following R-code implements stochastic gradient descent with a decaying
learning rate . α. The implementation is based on two loops. The internal loop
computes the gradient and updates parameters one record at a time, for all records.
The external loop repeats the procedure nit times. Each internal loop that defines
a pass through the data is known as an epoch in the machine learning literature.

As implemented below, the algorithm does not reshuffle the data at the start.
Some versions of the mini batch algorithm do this to achieve better behaviour and
to break down structures in the data that may affect the results:

STOCHASTIC GRADIENT DESCENT WITH A LINEAR NODEL
CODE0305
rm(list=ls()) # Clear the workspace
set.seed(195021)
N <- 1000

102 3 Computing the Likelihood

x<-seq(from=0,to=5,length=N)
signal<-10 + 0.2*x
error<-rnorm(N)
y<-signal+error
one <- rep(1,N)
X <- cbind(one,x)
LHS <- crossprod(X) # LEFT HAND SIDE
RHS <- crossprod(X,y) # RIGHT HAND SIDE
bh<- solve(LHS,RHS) # SOLUTION TO THE LEAST SQUARES EQUATIONS

################################
nit <- 10
alfa_0 <- 0.0038
c <- matrix(data=NA, nrow=nit+1,ncol=1)
cost <- function(miu,b){sum(y-miu-b*x)^2}

miu <- 5
b <- 1
c[1] <- cost(miu,b)
for(j in 1:nit){

alfa <- (1-(j/nit))*alfa_0 + ((j/nit)*alfa_0*0.01)
for(i in 1:length(y)) {

cat(i, "\n",sep="")
fdmiu <- -2*(y[i] - miu - b * x[i])
fdbeta <- -2*((y[i] - miu - b * x[i]) * x[i])
fd <- matrix(c(fdmiu, fdbeta), nrow = 2, ncol = 1)
sol0 <- matrix(c(miu, b), nrow = 2, ncol = 1)
sol1 <- sol0 - alfa * fd
miu <- sol1[1, 1]
b <- sol1[2, 1]

}
}
CHECK ######################
beta <- c(miu,b)
beta # STOCHASTIC GRADIENT DESCENT SOLUTION

[1] 10.0067857 0.1833919

bh # LEAST SQUARES SOLUTION

[,1]
one 10.0305748
x 0.1859502

Gradient descent is revisited in the chapter on nonparametric methods where it is
applied to solve more demanding problems.

3.3 The EM Algorithm

An overview is provided of one of the most versatile iterative algorithms for com-
puting maximum likelihood and posterior modes: the expectation-maximisation, or
EM, algorithm. More details can be found in Sorensen and Gianola (2002) and

3.3 The EM Algorithm 103

considerably more in McLachlan and Krishnan (1997) and of course a tour de force
is the celebrated paper by Dempster et al (1977). The algorithm is conceptually
simple, at least in its basic form, and brings considerable insight into the statistical
structure of a maximum likelihood or posterior mode problem, contrary to Newton-
Raphson or scoring that are based primarily on numerical considerations. The basic
idea behind the method is to transform an incomplete into a complete data problem
for which the required maximisation is computationally more tractable. Also, the
algorithm is numerically stable: each iteration increases the likelihood or posterior
density and convergence is nearly always to a local maximum.

The concept of missing data is fairly broad. It includes, for example, missing data
in an unbalanced layout, but it extends to observations from truncated distributions,
censored data and latent variables. In these cases, one can view the complete data
. x as consisting of the vectors .(y, z), where . y is the observed data or incomplete
data and . z is the missing data. More generally, many statistical problems that at
first glance do not appear to involve missing data can be reformulated into missing
data problems by judicious augmentation of the data set with unobserved values.
As such, one can view the observations at hand and the parameters of the posed
model as data: part of these data is observed (the records) and another part is
missing (the parameters). Mixed effects models, hierarchical models and models
with latent variables, such as the threshold model, are typically amenable to an
EM formulation. An example is an additive genetic model where inference may
focus on .θ = (

β ′, σ 2
a , σ 2

e

)′
, where . β is a vector of location parameters and .

(

σ 2
a , σ 2

e

)

are variance components. Here, one may augment the observed data . y, with the
missing data . a, the unobserved vector of additive genetic values. As shown later,
this simplifies the computations involved in finding the ML estimates of . θ , or the
maximum of .p

(

β, σ 2
a , σ 2

e |y), or mode of the posterior distribution .
[

β, σ 2
a , σ 2

e |y].
On the other hand, if one wishes to find the mode of the distribution with density
.p
(

σ 2
a , σ 2

e |y), an EM strategy is to consider .(β, a) as the missing data.

Derivation

The EM algorithm is derived here from a likelihood (as opposed to a posterior
distribution) perspective. Conceptually, there is no difference. Consider the identity

. p (y|θ) = p (y, z|θ)

p (z|y, θ)
,

where y is the observed data and z is the missing data. Taking logarithms on both
sides leads to

. ln p (y|θ) = ln p (y, z|θ) − ln p (z|y, θ) , (3.59)

104 3 Computing the Likelihood

where the first term on the right-hand side is known as the complete data
loglikelihood (there is an equivalent complete data logposterior). The next step is
to take expectations of both sides with respect to .[z|θ [t], y], where .θ [t] is the current
guess of . θ . The left-hand side of (3.59) does not depend on z, so averaging over z,
providing the integrals exist, gives

. ln p (y|θ) =
∫

ln p (y, z|θ) p
(

z|θ [t], y
)

dz −
∫

ln p (z|y, θ) p
(

z|θ [t], y
)

dz.

(3.60)

The first term on the right-hand side of (3.60) is a function of . θ for fixed y
and fixed .θ [t] and is denoted as .Q(θ |θ [t]) in the EM literature. The second term is
denoted .H(θ |θ [t]). Thus,

. ln p (y|θ) = Q
(

θ |θ [t]
)

− H
(

θ |θ [t]
)

. (3.61)

The EM algorithm involves working with the first term only, .Q(θ |θ [t]), disregarding
.H(θ |θ [t]). The two steps are:

1. E-step: calculation of .Q(θ |θ [t]), the expectation of the complete data loglike-
lihood (logposterior) with respect to the conditional distribution of the missing
data, given the observed data and the current guess for . θ .

2. M-step: maximisation of .Q(θ |θ [t]) with respect to . θ , solving for . θ and setting
the result equal to .θ [t+1], the new value of the parameter. If .θ [t+1] maximises
.Q(θ |θ [t]), the M-step is such that

.Q
(

θ [t+1]|θ [t]
)

≥ Q
(

θ |θ [t]
)

, for all θ ∈ Ω, (3.62)

which implies that .θ [t+1] is a solution to the equation:

.
∂Q

(

θ |θ [t]
)

∂θ
= 0. (3.63)

The two steps are repeated iteratively until convergence is reached.
An important property of EM (not of Newton-Raphson) is that the iterative

sequence leads to a monotonic increase of the loglikelihood .ln p(y|θ). Therefore,

. ln p
(

y|θ [t+1]
)

� ln p
(

y|θ [t]
)

. (3.64)

Since the loglikelihood increases in each step, the EM algorithm, with few
exceptions, converges to a local mode.

In some models, the calculation of .Q(θ |θ [t]) in the E-step may be difficult. Wei
and Tanner (1990) propose a Monte Carlo approach for overcoming this difficulty.

3.3 The EM Algorithm 105

This consists of simulating .z1, z2, . . . , zm from .p(z|θ [t], y) and then forming the
simulation consistent estimator:

. Q̂(θ |θ [t]) ≈ 1

m

m
∑

i=1

ln p(y, zi |θ).

In its original formulation, the EM algorithm does not yield estimates of
asymptotic variances. However, several approaches have been suggested to remedy
this and some are described and illustrated in Sorensen and Gianola (2002).

A Digression on a Multivariate Transformation for Discrete
Random Variables

Before going through the examples, I present a result of the theory of transforma-
tions that is relevant for the next example. A multinomial distribution with three
distinctive classes is considered.

Let . ni be the number of observations falling into the ith class and let . pi be the
probability that an observation falls in the ith class, for .i = 1, 2, 3, with . p1 + p2 +
p3 = 1. Then .n = n1 + n2 + n3 and the joint probability mass function of . (n1, n2)

is (the dependence on parameters . p1, . p2 and n is omitted)

.p (n1, n2) = n!
n1! n2! (n − n1 − n2)!p

n1
1 p

n2
2 (1 − p1 − p2)

n−n1−n2 . (3.65)

Let .(n1, n2) = (X, Y) and .(n1, n1 + n2) = (U, V). Suppose that one needs to find
the conditional probability distribution of . n1, given .n1 + n2:

.p (n1|n1 + n2) = p (n1, n1 + n2)

p (n1 + n2)
= p (U, V)

p (V)
. (3.66)

To derive the numerator in (3.66), .p(n1, n1 + n2) = p(U, V), note that the
transformation .(X, Y) → (U, V) can be written as

.

[

U

V

]

= f (X, Y) =
[

1 0
1 1

] [

X

Y

]

=
[

X

X + Y

]

(3.67)

with inverse transformation

.

[

X

Y

]

= f −1 (U, V) =
[

1 0
−1 1

] [

U

V

]

=
[

U

V − U

]

.

106 3 Computing the Likelihood

Therefore,

.pU,V (U, V) = n!
U ! (V − U)! (n − V)!p

U
1 pV −U

2 (1 − p1 − p2)
n−V . (3.68)

To obtain .p (n1|n1 + n2), (3.68) must be divided by .p(V). The random variable
.V = n1 + n2 is binomially distributed:

. V ∼ Bi (p1 + p2, n) .

This is so because the three classes can be regrouped into two “wider” categories,
one where the counts .(n1 + n2) are observed to fall and the other involving the
third original category with counts . n3. In view of the independence of the draws, it
follows that .(n1 + n2) is binomially distributed. Dividing .pU,V (U, V) in (3.68) by
the marginal probability mass function .pV (V) yields

. p (n1|n1 + n2) = p (U |V)

= p (U, V)

p (V)

= V !
U ! (V − U)!

pU
1 pV −U

2

(p1 + p2)
V

= (n1 + n2)!
n1! n2!

p
n1
1 p

n2
2

(p1 + p2)
n1+n2

= (n1 + n2)!
n1! n2!

(
p1

p1 + p2

)n1
(

p2

p1 + p2

)n2

.

This implies that

. [n1|n1 + n2] ∼ Bi

(
p1

p1 + p2
, n1 + n2

)

. (3.69)

Hence, the conditional distribution .[n1|n1 + n2] has mean,

. E (n1|n1 + n2) = (n1 + n2)
p1

p1 + p2

and variance

.V ar (n1|n1 + n2) = (n1 + n2)
p1

p1 + p2

p2

p1 + p2
.

3.3 The EM Algorithm 107

Example: Estimation of Gene Frequencies from ABO Blood
Group Phenotypes

The ABO blood groups’ problem introduced on page 79 is studied using the EM
algorithm. Let .n = (nA, nAB, nB, nO)′ be the observed data, with .nA = 725,
.nAB = 72, .nB = 258 and .nO = 1073. It is sensible to treat the unobserved counts
.nAO , .nAA, .nBB and .nBO as missing data. The resulting complete data vector is

. nc = (nAA, nAO, nAB, nBB, nBO, nO)′ .

The complete data loglikelihood, excluding an additive constant, is

. ln f (pA, pB |nc) = 2nAA ln (pA) + nAO ln (2pApO) + nAB ln (2pApB)

+ 2nBB ln (pB) + nBO ln (2pBpO) + 2nO ln (pO) ,

where .pO = (1 − pA − pB). The E-step consists of computing the expected value
of the complete data loglikelihood, conditional on the observed counts . n and on the

value of the parameters at iteration t , .
(

p
[t]
A , p

[t]
B

)

. Explicitly, this is

. Q
(

pA,pB |p[t]
A , p

[t]
B

)

= E [{2nAA ln (pA) + nAO ln (2pApO) + nAB ln (2pApB)

+ 2nBB ln (pB) + nBO ln (2pBpO) + 2nO ln (pO)} |p[t]
A , p

[t]
B , n

]

= 2̃nAA ln (pA) + ñAO ln (2pApO) + nAB ln (2pApB) + 2̃nBB ln (pB)

+ ñBO ln (2pBpO) + 2nO ln (pO) , (3.70)

where

. ̃nAA = E
(

nAA|p[t]
A , p

[t]
B , n

)

,

ñAO = E
(

nAO |p[t]
A , p

[t]
B , n

)

,

ñBB = E
(

nBB |p[t]
A , p

[t]
B , n

)

,

ñBO = E
(

nBO |p[t]
A , p

[t]
B , n

)

.

The M-step consists of maximizing (3.70) with respect to .pA and . pB . This yields
the following closed-form solution for . pA and . pB at a round .(t + 1):

.p
[t+1]
A = 2̃nAA + nAB + ñAO

2 (nA + nAB + nB + nO)
, (3.71)

108 3 Computing the Likelihood

.p
[t+1]
B = 2̃nBB + nAB + ñBO

2 (nA + nAB + nB + nO)
. (3.72)

The unobserved counts at iteration t are imputed via their expected values, given . n

and .
(

p
[t]
A , p

[t]
B

)

. Using (3.69), the unobserved counts are distributed binomially as

follows:

. nAA ∼ Bi

(

p2
A

p2
A + 2pA (1 − pA − pB)

, nA

)

,

. nAO ∼ Bi

(

2pA (1 − pA − pB)

p2
A + 2pA (1 − pA − pB)

, nA

)

,

. nBB ∼ Bi

(

p2
B

p2
B + 2pB (1 − pA − pB)

, nB

)

,

and

. nBO ∼ Bi

(

2pB (1 − pA − pB)

p2
B + 2pB (1 − pA − pB)

, nB

)

.

Hence, expectations can be computed immediately. For example,

. ̃nAA = nA

p
2[t]
A

p
2[t]
A + 2p

[t]
A

(

1 − p
[t]
A − p

[t]
B

) ,

and similarly for the other components of the missing data. Using starting values
for the gene frequencies, the missing counts .̃nij are imputed, and the next round
of gene frequency values are computed from (3.71) and (3.72). In the case of the
present example, starting with .p[0]

A = p
[0]
B = 0.2, nine EM iterations result in

.p̂A = 0.2091 and .p̂B = 0.0808 (with .p̂0 = 1 − p̂A − p̂B).
The R-code below fits the EM algorithm to the ABO data. The third column of

the output below displays the increasing values of the loglikelihood function with
each EM iteration. This compares well with the output from OPTIM on page 84:

CODE0306
EM algorithm ##########################
rm(list=ls())
set.seed(30371)
niter<-9
result <- matrix(data=NA,nrow=niter,ncol=3)

DATA
n_A<-725

3.3 The EM Algorithm 109

n_AB<-72
n_B<-258
n_0<-1073
START VALUES FOR P_A and p_B
p_A <- 0.2
p_B <- 0.2
for (i in 1:niter){
E-step
n_AA <- n_A * p_A^2/(p_A^2 + 2*p_A*(1-p_A-p_B))
n_A0 <- n_A * (2*p_A*(1-p_A-p_B))/(p_A^2 + 2*p_A*(1-p_A-p_B))
n_BB <- n_B * p_B^2/(p_B^2 + 2*p_B*(1-p_A-p_B))
n_B0 <- n_B * (2*p_B*(1-p_A-p_B))/(p_B^2 + 2*p_B*(1-p_A-p_B))
M-step
p_A <- (2*n_AA + n_AB + n_A0)/(2*(n_A + n_AB + n_B + n_0))
p_B <- (2*n_BB + n_AB + n_B0)/(2*(n_A + n_AB + n_B + n_0))
loglik <- (725*log(p_A*(2 - p_A - 2* p_B)) + 72*log(2*p_A*p_B) +

258*log(p_B*(2 - p_B - 2*p_A)) + 2*1073*log(1 - p_A - p_B))
result[i,] <- c(p_A,p_B,loglik)

}
result

[,1] [,2] [,3]
[1,] 0.2116004 0.08619764 -2304.473
[2,] 0.2095705 0.08104311 -2303.555
[3,] 0.2091891 0.08081323 -2303.551
[4,] 0.2091379 0.08080178 -2303.550
[5,] 0.2091315 0.08080107 -2303.550
[6,] 0.2091308 0.08080101 -2303.550
[7,] 0.2091307 0.08080101 -2303.550
[8,] 0.2091307 0.08080101 -2303.550
[9,] 0.2091307 0.08080101 -2303.550

Example: A Regression Model for Binary Data

I return to the likelihood of the logit model fitted using Newton-Raphson. Here, a
probit model is implemented with the EM algorithm.

The binary data y is interpreted as arising from the following process involving
the unobserved liability (or latent variable) u:

.yi =
{

1 if ui < 0,

0 if ui > 0.
(3.73)

The liability is modelled as

.ui = x′
iβ + ei, i = 1, 2, . . . , N, (3.74)

110 3 Computing the Likelihood

where in the probit model, the error terms are iid .N (0, 1) and therefore . [ui |xi, β] ∼
N
(

x′
iβ, 1

)

. The row vector . x′
i contains observed covariates with p elements and . β

is an .p × 1 vector of unknown regression coefficients. In the probit model specified
by (3.73),

. Pr (yi = 1|β, xi) = Pr (ui < 0|β, xi)

= Pr
(

x′
iβ + ei < 0|β, xi

)

= Pr
(

ei < −x′
iβ |β, xi

)

= 1 − �
(

x′
iβ
)

and

. Pr (yi = 0|β, xi) = Pr (ui > 0|β, xi)

= �
(

x′
iβ
)

.

The probit likelihood is

.L (β|x, y) ∝
N
∏

i=1

[(

1 − �
(

x′
iβ
))yi

(

�
(

x′
iβ
))1−yi

]

. (3.75)

Augmenting the observed data y with the missing data u, the complete data for
the ith observation is .(yi, ui). The joint density of the complete data can be written
as

. Pr (Yi = yi |ui) p (ui |β, xi) ∝
{

N
(

ui |x′
iβ, 1

)

I (ui < 0) , for yi = 1,

N
(

ui |x′
iβ, 1

)

I (ui > 0) , for yi = 0,
(3.76)

where the results follow from (3.73) and (3.74). The term .Pr (Yi = yi |ui) is a
degenerate probability mass function: given the model specified by (3.73), once
. ui is observed, . Yi is not stochastic; it is known with certainty. This translates into
the indicator functions in the right-hand side of (3.76). However, these indicator
functions will be omitted because they become additive constants of the complete
data loglikelihood; they are not a function of . β and vanish in the computation of
the M-step (the form of the complete data likelihood including indicator functions
is given in Eq. (5.26) on page 217 that is an alternative way of expressing the right-
hand side of (3.76)). Therefore, the complete data likelihood for the ith observation
is proportional to .p (ui |β, xi).

The complete data likelihood is proportional to the joint distribution of the
liabilities. Due to independence, the density of this joint distribution is

.p (u|β, x) =
∏N

i=1
p (ui |β, xi) (3.77)

3.3 The EM Algorithm 111

where each term in (3.77) is

.p (ui |β, xi) = N
(

ui |x′
iβ, 1

)

. (3.78)

The complete data loglikelihood (excluding additive terms that do not include . β) is

.� (β|u, x) =
N
∑

i=1

ln (p (ui |β, xi)) . (3.79)

The E-step consists of averaging (3.79) over the conditional distribution
.
[

u|x, β[t], y
]

; that is,

. Q
(

β, β[t]
)

=
∫

� (β|u, x) p
(

u|x, β[t], y
)

du

=
∫ N
∑

i=1

ln (p (ui |β, xi)) p
(

ui |xi, β
[t], yi

)

dui

=
N
∑

i=1

∫

ln (p (ui |β, xi)) p
(

ui |xi, β
[t], yi

)

dui. (3.80)

E-step

The calculation of (3.80) needs the following results. For .yi = 0:

. E (ui |β, xi, yi = 0) = x′
iβ + E (ei |yi = 0)

= x′
iβ + E

(

ei |x′
iβ + ei > 0

)

= x′
iβ + E

(

ei |ei > −x′
iβ
)

= x′
iβ + 1

�
(

x′
iβ
)

∫ ∞

−x′
iβ

ei (2π)−
1
2 exp

(

−e2
i

2

)

dei

= x′
iβ + φ

(

x′
iβ
)

�
(

x′
iβ
) . (3.81)

For .yi = 1:

. E (ui |β, xi, yi = 1) = x′
iβ + E (ei |yi = 1)

= x′
iβ + E

(

ei |x′
iβ + ei < 0

)

= x′
iβ + E

(

ei |ei < −x′
iβ
)

112 3 Computing the Likelihood

= x′
iβ + 1

�
(−x′

iβ
)

∫ −x′
iβ

−∞
ei (2π)−

1
2 exp

(

−e2
i
2

)

dei

= x′
iβ −

φ
(

x′
iβ
)

1 − �
(

x′
iβ
) . (3.82)

In these expressions, .φ (z) is the density of .N (0, 1) at .Z = z and . �(t) =
Pr (U ≤ t), the cumulative distribution function of the standard normal distribution.
The ratios .φ

(

x′
iβ
)

/�
(

x′
iβ
)

and .−φ
(

x′
iβ
)

/(1 − �
(

x′
iβ
)

) are known as the
intensity of selection in the quantitative genetics literature (for normally distributed
characters). To arrive at the last line in (3.81) and (3.82), use

.

∫ ∞

−x′
iβ

ei (2π)−
1
2 exp

(

−e2
i

2

)

dei = −
∫ −x′

iβ

−∞
ei (2π)−

1
2 exp

(

−e2
i

2

)

dei = φ
(

x′
iβ
)

.

With these results, one proceeds with the evaluation of (3.80). Each term
.ln (p (ui |β, xi)) is equal to (excluding an additive constant)

. ln (p (ui |β, xi)) = −
(

ui − x′
iβ
)2

2
= −u2

i − 2uix
′
iβ + β ′xix

′
iβ

2
.

For the ith term of (3.80), the expectation over the distribution .
[

ui |x′
iβ

[t], yi

]

is

. Qi

(

β, β[t]
)

= E [ln (p (ui |β, xi))]

= −1

2

[

E
(

u2
i |xi, β

[t], yi

)

− 2x′
iβ E

(

ui |xi, β
[t], yi

)

+ β ′xix
′
iβ
]

.

(3.83)

M-step

The M-step involves a differentiation of (3.80) with respect to . β, setting the result
equal to zero and solving for . β. The solution leads to .β[t+1].

Since the first term in (3.83) .E
(

u2
i |x′

iβ
[t], yi

)

does not involve . β, the partial
derivative is

.
∂

∂β

{

−1

2

[

E
(

u2
i |xi, β

[t], yi

)

− 2x′
iβ E

(

ui |xi, β
[t], yi

)

+ β ′xix
′
iβ
]}

= −1

2

[

−2xi E
(

ui |xi, β
[t], yi

)

+ 2xix
′
iβ
]

,

3.3 The EM Algorithm 113

where .E
(

ui |xi, β
[t], yi

)

is given by (3.81) or by (3.82). Setting equal to zero yields

. xi

[

E
(

ui |xi, β
[t], yi

)

− x′
iβ
]

= 0.

For the N records, we obtain

.

N
∑

i=1

xix
′
iβ =

N
∑

i=1

xi E
(

ui |xi, β
[t], yi

)

.

The resulting iterative system is

.β[t+1] =
[

N
∑

i=1

(

xix
′
i

)

]−1 N
∑

i=1

xi E
(

ui |xi, β
[t], yi

)

. (3.84)

This solution is used back again in (3.80) to start a new iteration round that requires
calculation of .E

(

ui |xi, β
[t+1], yi

)

using (3.81) or (3.82) depending on whether
.yi = 1 or .yi = 0. Therefore, the implementation of EM for the probit model is
as follows:

1. Start with a guess value .β[0].
2. Compute .E

(

ui |xi, β
[0], yi

)

using (3.81) or (3.82).
3. Solve for . β using (3.84) and obtain .β[1].
4. Go back to 2, update using .β[1] and continue iterating until convergence.

Notes

If u denotes the .N × 1 vector of liabilities, then the model for the missing data can
be written as

.u = Xβ + e, (3.85)

where X is an .N ×p observed matrix of covariates whose ith row is . x′
i . The ith row

of this linear system is given by (3.74). With this formulation, in (3.84),

.

N
∑

i=1

(

xix
′
i

) = X′X.

Let .Ẽ[t] denote the .N ×1 vector whose ith element is .E
(

ui |xi, β
[t], yi

)

. Then (3.84)
can be written as

.β[t+1] = (

X′X
)−1

X′Ẽ[t].

114 3 Computing the Likelihood

Example: A Binomial Regression Model

An extension of the binary probit regression model is the binomial probit regression
model. The unobserved original observations .yij are independent binary .(0, 1) as
before, but now the observed records . ni are counts of one class and .(Ni − ni) counts
of the other class associated with covariate . xi , where . Ni is the total number of counts
in covariate . xi . There are .i = 1, 2, . . . , C levels of the covariate and the total number
of counts is .

∑C
i=1 Ni = N . In other words, the observed counts . ni are the result of

adding the unobserved original records . yij :

. ni =
Ni∑

j=1

yij .

The binomial likelihood is

.L (β|x, y) ∝
∏C

i=1

[(

1 − �
(

x′
iβ
))ni

(

�
(

x′
iβ
))Ni−ni

]

(3.86)

and the loglikelihood, up to an additive constant, is

.� (β|x, y) =
C
∑

i=1

[

ni ln
(

1 − φ(x′
iβ)
)+ (Ni − ni) ln

(

�
(

x′
iβ
))]

. (3.87)

The extension of the EM algorithm to accommodate the binomial model consists
of associating the liability defined in (3.74) to each of the .

∑C
i=1 Ni = N binary

outcomes. The complete data loglikelihood takes the form

.� (β|u, x) =
C
∑

i=1

Ni∑

j=1

ln
(

p
(

uij |β, xi

))

, (3.88)

where

.p
(

uij |β, xi

) = N
(

uij |x′
iβ, 1

)

, j = 1, . . . , Ni. (3.89)

For example, . xi can represent the level i of a drug administered to . Ni mice, . ni is
the number of mice that are observed dead and .Ni − ni are the number alive. The
liability for all the . Ni mice has the same form given by (3.89). The E-step of the
algorithm is now

.Q
(

β, β[t]
)

=
∫

� (β|u, x) p
(

u|x, β[t], y
)

du

=
∫ C
∑

i=1

Ni∑

j=1

ln
(

p
(

uij |β, xi

)) [

I
(

yij = 1
)

p
(

uij |β[t], xi, yij

)

3.3 The EM Algorithm 115

+I
(

yij = 0
)

p
(

uij |β[t], xi, yij

)]

duij

=
C
∑

i=1

{

ni E[y=1] ln
(

p
(

uij |β, xi

))+ (Ni − ni) E[y=0] ln
(

p
(

uij |β, xi

))}

(3.90)

where .E[y=1] indicates expectation over .
[

uij |β[t], xi, yij = 1
]

and .E[y=0] indicates
expectation over .

[

uij |β[t], xi, yij = 0
]

. These two expectations are given by (3.81)
and (3.82); that is,

. E
(

uij |β, xi, yij = 1
) = x′

iβ − φ
(

x′
iβ
)

1 − �
(

x′
iβ
) , . (3.91a)

E
(

uij |β, xi, yij = 0
) = x′

iβ + φ
(

x′
iβ
)

�
(

x′
iβ
) . (3.91b)

The term .ln
(

p
(

uij |β, xi

))

, up to an additive constant, is equal to

. −
(

uij − x′
iβ
)2

2
= −u2

ij − 2uij x
′
iβ + β ′xix

′
iβ

2

and

. E[y=1] ln
(

p
(

uij |β, xi

)) = −1

2

[

E[y=1]

(

u2
ij |xi, β

[t], yij

)

−2x′
iβ E[y=1]

(

uij |xi, β
[t], yij

)

+ β ′xix
′
iβ
]

with a similar structure for .E[y=0].
The M-step involves differentiation of (3.90) with respect to . β. For the ith term

in (3.90) this gives, after a little simplification,

. nixi E[y=1]

(

uij |xi, β
[t], yij

)

− nixix
′
iβ + (Ni − ni)xi

E[y=0]

(

uij |xi, β
[t], yij

)

− (Ni − ni)xix
′
iβ

= nixi E[y=1]

(

uij |xi, β
[t], yij

)

+ (Ni − ni)xi

E[y=0]

(

uij |xi, β
[t], yij

)

− Nixix
′
iβ.

116 3 Computing the Likelihood

Therefore differentiation of (3.90) with respect to . β is equal to

.
∂Q

(

β, β[t]
)

∂β
=

C
∑

i=1

nixi E[y=1]

(

uij |xi, β
[t], yij

)

+
C
∑

i=1

(Ni − ni)xi E[y=0]

(

uij |xi, β
[t], yij

)

−
C
∑

i=1

Nixix
′
iβ

Setting equal to zero yields

.

C
∑

i=1

Nixix
′
iβ =

C
∑

i=1

nixi E[y=1]

(

uij |xi, β
[t], yij

)

+
C
∑

i=1

(Ni − ni)xi E[y=0]

(

uij |xi, β
[t], yij

)

and the iterative system becomes

. β[t+1] =
[

C
∑

i=1

Nixix
′
i

]−1 { C
∑

i=1

nixi E[y=1]

(

uij |xi, β
[t], yij

)

+
C
∑

i=1

(Ni − ni)xi E[y=0]

(

uij |xi, β
[t], yij

)
}

. (3.92)

Let . DN , .Dn and . Dδ denote .C × C diagonal matrices with diagonal elements . Ni ,
. ni and .(Ni − ni), respectively. Let .Ẽ[t]

[y=1] be the .C × 1 vector whose ith element

(.i = 1, . . . , C) is .E
(

uij |xi, β
[t], yij = 1

)

and let .Ẽ[t]
[y=0] be the .C × 1 vector whose

ith element is .E
(

uij |xi, β
[t], yij = 0

)

. Then (3.92) can be written more compactly
as

.β[t+1] = (

X′DNX
)−1

[

X′DnẼ
[t]
[y=1] + X′DδẼ

[t]
[y=0]

]

. (3.93)

A Digression on Some Matrix Algebra Results

I outline results that are useful for the examples that follow.
Assume that the joint distribution of the vector of data y and the vector of additive

genetic values a is multivariate normal

.
y

a

∣
∣
∣
∣
θ ∼ N

([

Xβ

0

]

,

[

V ZAσ 2
a

AZ′σ 2
a Aσ 2

a

])

,

3.3 The EM Algorithm 117

with .V = ZAZ′σ 2
a + Iσ 2

e , .θ = (

β, σ 2
a , σ 2

e

)

, . β is a location vector of “fixed”
effects, A is the additive genetic relationship matrix, X and Z are observed incidence
matrices and . σ 2

a , . σ 2
e are components of variance.

• Conditional mean. From properties of the multivariate normal distribution

. a|θ, y ∼N (E (a|θ, y) , Var (a|θ, y)) ,

where

. E (a|θ, y) = AZ′V −1 (y − Xβ) σ 2
a .

Let .k = σ 2
e /σ 2

a . Substituting .V −1 with

. V −1 = 1

σ 2
e

I − 1

σ 2
e

Z
(

Z′Z + A−1k
)−1

Z′

leads to the following expression for the conditional mean:

. E (a|θ, y)

= AZ′
[

1

σ 2
e

I − 1

σ 2
e

Z
(

Z′Z + A−1k
)−1

Z′
]

(y − Xβ) σ 2
a

=
[

A
1

k
− 1

k
AZ′Z

(

Z′Z + A−1k
)−1

]

Z′ (y − Xβ)

=
(

Z′Z + A−1k
)−1

Z′ (y − Xβ) . (3.94)

The last line follows because

. A
1

k
− 1

k
AZ′Z

(

Z′Z + A−1k
)−1 =

(

Z′Z + A−1k
)−1

.

This can be verified by post-multiplying the left-hand side by the inverse of the
right-hand side, which recovers . I .

• Conditional variance. The conditional variance is

. Var (a|θ, y) =
(

Z′Z + A−1k
)−1

σ 2
e . (3.95)

This is obtained using properties of the multivariate normal distribution:

. Var (a|θ, y) = Aσ 2
a − AZ′σ 2

a V −1ZAσ 2
a

= Aσ 2
a −

[

A
1

k
− 1

k
AZ′Z

(

Z′Z + A−1k
)−1

]

Z′ZAσ 2
a

118 3 Computing the Likelihood

= Aσ 2
a −

(

Z′Z + A−1k
)−1

Z′ZAσ 2
a

=
(

Z′Z + A−1k
)−1

σ 2
e .

The last line can be verified by premultiplying the third line by

.

(

Z′Z + A−1k
)

,

that recovers .Iσ 2
e .

An alternative derivation from a Bayesian perspective (that implies assigning a
uniform, improper prior distribution to the location vector . β) is to start from

.
β

a

∣
∣
∣
∣
σ 2

a , σ 2
e , y ∼N

([

β̂

â

]

,

[

C11 C12

C21 C22

]

σ 2
e

)

(3.96)

where

.

[

C11 C12

C21 C22

]

is the inverse of the coefficient matrix of the mixed model equations and .
(

β̂, â
)

is
the posterior mean vector:

.

[

β̂

â

]

=
[

C11 C12

C21 C22

] [

X′y
Z′y

]

. (3.97)

Using results outlined on page 158 or in Example 1.18 of Chapter 1 in Sorensen
and Gianola (2002), one can show that the mean vector of .

[

a|β, σ 2
a , σ 2

e , y
]

is equal
to

.

(

Z′Z + A−1k
)−1

Z′ (y − Xβ) ,

and its covariance matrix is equal to (3.95).

Example: ML Estimation in the Mixed Linear Model

This example illustrates the derivation of the iterative EM equations for ML estima-
tion of fixed effects and of variance components in the univariate Gaussian mixed
linear model with two variance components. A classical quantitative genetics setup
is the mixed linear model that includes fixed and random effects entering linearly
into the conditional (given the random effects) expectation of the observations.
Fixed effects could, for example, represent systematic sex differences or breed

3.3 The EM Algorithm 119

differences, and the random effects could represent additive genetic values. In this
case, the two variance components involve the residual variance and the component
of the variance-covariance structure of the vector of additive genetic values. The
implicit assumption of the model is that variance components are the same in the
two sexes and breeds.

Specifically, assume that the data . y (vector of dimension .n × 1) is a realisation
from

. y|β, a, σ 2
e ∼ N

(

Xβ + Za, Iσ 2
e

)

,

and the unobserved .q × 1 vector of the additive genetic values is multivariate
normally distributed:

. a|Aσ 2
a ∼ N

(

0, Aσ 2
a

)

.

The vector of fixed effects . β has order .p×1; . X and . Z are known incidence matrices
and the unknown variance components are the scalars . σ 2

a and . σ 2
e . The matrix . A is

known; it describes expected additive genetic relationships among individuals, given
a known pedigree. The focus of inference is .θ = (

β ′, σ 2
a , σ 2

e

)′
. The observed data

likelihood is

. L (θ |y) =
∫

p
(

y|β, a, σ 2
e

)

p
(

a|Aσ 2
a

)

da

∝ |V |− 1
2 exp

[

−1

2
(y − Xβ)′ V −1 (y − Xβ)

]

, (3.98)

where .V = ZAZ′σ 2
a + Iσ 2

e is the unconditional variance-covariance matrix of the
observed data . y. Rather than working with (3.98), the ML estimate of . θ is obtained
using the EM algorithm.

Treating the random effects a as the missing data, the complete data likelihood
is

. L (θ, a|y) =
∣
∣
∣Iσ 2

e

∣
∣
∣

− 1
2

exp

[

− 1

2σ 2
e

(y − Xβ − Za)′ (y − Xβ − Za)

]

×
∣
∣
∣Aσ 2

a

∣
∣
∣

− 1
2

exp

[

− 1

2σ 2
a

a′A−1a

]

, (3.99)

and the corresponding loglikelihood is

. ln p (θ, a|y) = constant − n

2
ln σ 2

e − q

2
ln σ 2

a − 1

2σ 2
a

a′A−1a

− 1

2σ 2
e

(y − Xβ − Za)′ (y − Xβ − Za) . (3.100)

120 3 Computing the Likelihood

The E-step is

. Q
(

θ |θ [t]
)

=
∫

ln p (θ, a|y) p
(

a|θ [t], y
)

da

= −n

2
ln σ 2

e − q

2
ln σ 2

a − 1

2σ 2
a

Ea|θ [t],y

[

a′A−1a
]

− 1

2σ 2
e

Ea|θ [t],y (y − Xβ − Za)′ (y − Xβ − Za) .

Let

. Ea|θ [t],y

[

a|θ [t], y
]

= ã[t], (3.101)

and

. Vara|θ [t],y

[

a|θ [t], y
]

= Ṽ [t]
a . (3.102)

Using results for expectation of quadratic forms (Searle, 1971) (see also NOTE on
page 134),

. Q
(

θ |θ [t]
)

= −n

2
ln σ 2

e − q

2
ln σ 2

a − 1

2σ 2
a

[

ã[t]′A−1ã[t] + tr
(

A−1Ṽ [t]
a

)]

− 1

2σ 2
e

[(

y − Xβ − Zã[t]
)′ (

y − Xβ − Zã[t]
)

+ tr
(

Z′ZṼ [t]
a

)]

.

The M-step consists of setting the following equations equal to zero:

.
∂Q

(

θ |θ [t]
)

∂β
= 1

σ 2
e

X′ (y − Xβ − Zã[t]
)

,

.
∂Q

(

θ |θ [t]
)

∂σ 2
a

= − q

2σ 2
a

+ 1

2
(

σ 2
a

)2

[

ã[t]′A−1ã[t] + tr
(

A−1Ṽ [t]
a

)]

,

and

.
∂Q

(

θ |θ [t]
)

∂σ 2
e

= − n

2σ 2
e

+ 1

2
(

σ 2
e

)2

[(

y − Xβ − Zã[t]
)′ (

y − Xβ − Zã[t]
)

+ tr
(

Z′ZṼ [t]
a

)]

.

3.3 The EM Algorithm 121

Solving for . θ , one obtains the iterative system

.β[t+1] = (

X′X
)−1

X′ (y − Zã[t]
)

, (3.103)

.σ 2[t+1]
a = 1

q

[

ã[t]′A−1ã[t] + tr
(

A−1Ṽ [t]
a

)]

, (3.104)

and

. σ 2[t+1]
e = 1

n

[(

y − Xβ[t+1]−Zã[t]
)′ (

y − Xβ[t+1]−Zã[t]
)

+ tr
(

Z′ZṼ [t]
a

)]

. (3.105)

Explicit expressions for .̃a[t] and .Ṽ [t]
a were given in (3.94) and (3.95).

Example: REML (Restricted Maximum Likelihood) Estimation
in the Mixed Linear Model

The model is as in the preceding example, but now the focus of inference is
.θ = (

σ 2
a , σ 2

e

)

, with . β ans a viewed as nuisance parameters. The restricted maximum
likelihood (REML) equations are derived using a Bayesian perspective, and the
mode of the posterior distribution with density .p

(

σ 2
a , σ 2

e |y) is chosen as the
“REML” point estimator (Patterson and Thompson, 1971). You may want to return
to this example after reading Chapter 4.

Assigning improper uniform prior distributions to each of .
(

σ 2
a , σ 2

e

)

and to . β, then

. p
(

σ 2
a , σ 2

e |y
)

∝
∫

p
(

y|β, a, σ 2
e

)

p
(

a|A, σ 2
a

)

da dβ.

In this setting, the mode of the posterior distribution of the variance components
is identical to the REML estimator (Harville, 1977). Joint maximisation of this
expression is difficult. However, it is relatively easy to structure an EM algorithm,
where the missing data are now .z = (

β ′, a′)′. The complete data posterior
distribution .p

(

σ 2
a , σ 2

e , z|y) is identical to (3.100) and the E-step is now

. Q
(

θ |θ [t]
)

=
∫

ln p (θ, β, a|y) p
(

β, a|θ [t], y
)

da dβ

= −n

2
ln σ 2

e − q

2
ln σ 2

a − 1

2σ 2
a

Eβ,a|θ [t],y

[

a′A−1a
]

− 1

2σ 2
e

Eβ,a|θ [t],y (y − Xβ − Za)′ (y − Xβ − Za) . (3.106)

122 3 Computing the Likelihood

Taking expectations over the quadratic forms leads to

. Q
(

θ |θ [t]
)

= −n

2
ln σ 2

e − q

2
ln σ 2

a

− 1

2σ 2
a

[

â[t]′A−1â[t] + tr
(

A−1C22[t]
)

σ 2[t]
e

]

− 1

2σ 2
e

[

ê[t]′̂e[t] + tr
[

[X,Z] C−1[t] [X,Z]′
]

σ 2[t]
e

]

,

where .ê[t] =
(

y − Xβ̂[t] − Zâ[t]
)

, . ̂a is defined in (3.97) and

. C−1 =
[

C11 C12

C21 C22

]

.

Since the missing data are now .z = (

β ′, a′)′, expectations in (3.106) are taken with
respect to .

[

β, a|θ [t], y
]

, displayed in (3.96). The M-step is

.
∂Q

(

θ |θ [t]
)

∂σ 2
a

= − q

2σ 2
a

+ 1

2
(

σ 2
a

)2

[

â[t]′A−1â[t] + tr
(

A−1C22[t]
)

σ 2[t]
e

]

,

and

.
∂Q

(

θ |θ [t]
)

∂σ 2
e

= − n

2σ 2
e

+ 1

2
(

σ 2
e

)2

[

ê[t]′̂e[t] + tr
[

[X,Z] C−1[t] [X,Z]′
]

σ 2[t]
e

]

.

Setting to zero yields the iterative system:

.σ 2[t+1]
a = â[t]′A−1â[t] + tr

(

A−1C22[t]
)

σ
2[t]
e

q
, (3.107)

.σ 2[t+1]
e = ê[t]′̂e[t] + tr

[

[X,Z] C−1[t] [X,Z]′
]

σ
2[t]
e

n
. (3.108)

Contrary to ML estimation, REML estimation or inference via the posterior mode
of .
[

σ 2
a , σ 2

e |y] requires inverting the entire coefficient matrix . C (in each iteration).

Example: Bivariate Normal Model with Missing Records

The example on page 63 is revisited and maximum likelihood inferences are drawn
using the EM algorithm. The data consist of records of fathers and of their sons, with

3.3 The EM Algorithm 123

a number of the latter missing. As was discussed in connection with the example,
the construction of the likelihood does not require incorporation of the missing data
mechanism for correct inferences. The ordered data are represented as

. x1, x2, . . . , xm, xm+1, . . . , xn,

y1, y2, . . . , ym.

To derive the EM equations, an obvious choice for the missing data is . y∗ =
ym+1, . . . , yn. Then the complete data loglikelihood, ignoring an additive constant
is

. l
(

μy,μx, ρ, σyy, σxx |x, y, y∗
) = −n

2

[

ln σyy + ln σxx + ln
(

1 − ρ2
)]

− 1

2
(

1 − ρ2
)

[∑n
i=1 (xi − μx)

2

σxx

+
∑n

i=1

(

yi − μy

)2

σyy

−2ρ

∑n
i=1 (xi − μx)

(

yi − μy

)

(σxx)
1
2
(

σyy

) 1
2

⎤

⎦ (3.109)

As mentioned before, if .ym+1, . . . , yn were observed, the ML estimators have a
simple closed form.

Expanding the quadratic forms in (3.109),

. l
(

μy,μx, ρ, σyy, σxx |x, y, y∗
) = −n

2

[

ln σyy + ln σxx + ln
(

1 − ρ2
)]

− 1

2
(

1 − ρ2
)

(∑n
i=1 x2

i + nμ2
x − 2μx

∑n
i=1 xi

σxx

+
∑n

i=1 y2
i + nμ2

y − 2μy

∑n
i=1 yi

σyy

−2ρ

∑n
i=1 xiyi − μx

∑n
i=1 yi − μy

∑n
i=1 xi + nμxμy

(σxx)
1
2
(

σyy

) 1
2

⎞

⎠ . (3.110)

In this expression, the following equalities hold:

.

n
∑

i=1

y2
i =

m
∑

i=1

y2
i +

n
∑

i=m+1

y2∗,i ,

n
∑

i=1

xiyi =
m
∑

i=1

xiyi +
n
∑

i=m+1

xiy∗,i , (3.111)

n
∑

i=1

yi =
m
∑

i=1

yi +
n
∑

i=m+1

y∗,i ,

124 3 Computing the Likelihood

where .y∗,i is the ith missing observation. The computation of .Q
(

θ |θ [t]) requires
the expectations of (3.110) with respect to the distribution of the missing data, given
the parameters evaluated at round . [t] and given the observed data .(x, y). Thus,

. Q
(

θ |θ [t]
)

=
∫

l
(

μy,μx, ρ, σyy, σxx |x, y, y∗
)

p
(

y∗|θ [t], x, y
)

dy∗.

This calculation involves expectations of (3.111):

. E

[
n
∑

i=1

y2
i |θ [t], x, y

]

=
m
∑

i=1

y2
i + E

[
n
∑

i=m+1

y2∗,i |θ [t], x, y

]

,

E

[
n
∑

i=1

xiyi |θ [t], x, y

]

=
m
∑

i=1

xiyi + E

[
n
∑

i=m+1

xiy∗,i |θ [t], x, y

]

,

E

[
n
∑

i=1

yi |θ [t], x, y

]

=
m
∑

i=1

yi + E

[
n
∑

i=m+1

y∗,i |θ [t], x, y

]

.

Using properties of the bivariate normal distribution, the following results are easily
derived:

. E
(

y∗,i |θ [t], x, y
)

= E
(

y∗,i |θ [t], xi

)

= μ[t]
y + σ

[t]
xy

σ
[t]
xx

(

xi − μ[t]
x

)

= μ[t]
y + ρ[t]

[

σ
[t]
yy

] 1
2

[

σ
[t]
xx

] 1
2

(

xi − μ[t]
x

)

,

. E
(

xiy∗,i |θ [t], x, y
)

= xi E
(

y∗,i |θ [t], x, y
)

,

and

. E
(

y2∗,i |θ [t], x, y
)

= σ [t]
yy −

(

σ
[t]
xy

)2

σ
[t]
xx

+
[

E
(

y∗,i |θ [t], x, y
)]2

= σ [t]
yy

(

1 −
(

ρ[t]
)2
)

+
[

E
(

y∗,i |θ [t], x, y
)]2

.

3.3 The EM Algorithm 125

Then the E-step is

. Q
(

θ |θ [t]
)

= −n

2

[

ln σyy + ln σxx + ln
(

1 − ρ2
)]

− 1

2
(

1 − ρ2
)

(∑n
i=1 x2

i + nμ2
x − 2μx

∑n
i=1 xi

σxx

+E
[∑n

i=1 y2
i |θ [t], x, y

]+ nμ2
y − 2μy E

[∑n
i=1 yi |θ [t], x, y

]

σyy

−2ρ
E
[∑n

i=1 xiyi |θ [t], x, y
]−μx E

[∑n
i=1 yi |θ [t], x, y

]−μy

∑n
i=1 xi + nμxμy

(σxx)
1
2
(

σyy

) 1
2

⎞

⎠,

(3.112)

and the M-step consists of finding the value of .θ = (

μy,μx, ρ, σyy, σxx

)

that
maximises (3.112); this maximiser becomes .θ [t+1]. To find this maximiser, first
derivatives are needed:

.
∂Q

(

θ |θ [t]
)

∂μx

= n

(σxx)
1
2
(

1 − ρ2
)

⎡

⎣

∑n
i=1 xi

n
− μx

(σxx)
1
2

− ρ

E
[∑n

i=1 yi |θ [t],x,y
]

n
− μy

(

σyy

) 1
2

⎤

⎦ ,

(3.113)

.
∂Q

(

θ |θ [t]
)

∂μy

= n
(

σyy

) 1
2
(

1 − ρ2
)

⎡

⎣

E
[∑n

i=1 yi |θ [t],x,y
]

n
− μy

(

σyy

) 1
2

− ρ

∑n
i=1 xi

n
− μx

(σxx)
1
2

⎤

⎦ ,

(3.114)

.
∂Q

(

θ |θ [t]
)

∂σxx

= − 1

2σxx

(

1 − ρ2
)

[

n
(

1 − ρ2
)

−
∑n

i=1 (xi − μx)
2

σxx

+ρ
E
[∑n

i=1 xiyi |θ [t], x, y
]−μx E

[∑n
i=1 yi |θ [t], x, y

]−μy

∑n
i=1 xi + nμxμy

(σxx)
1
2
(

σyy

) 1
2

⎤

⎦ ,

(3.115)

.
∂Q

(

θ |θ [t]
)

∂σyy

= − 1

2σyy

(

1 − ρ2
)

[

n
(

1 − ρ2
)

−E
[∑n

i=1 y2
i |θ [t], x, y

]+ nμ2
y − 2μy E

[∑n
i=1 yi |θ [t], x, y

]

σyy

+ρ
E
[∑n

i=1 xiyi |θ [t], x, y
]− μx E

[∑n
i=1 yi |θ [t], x, y

]− μy

∑n
i=1 xi + nμxμy

(σxx)
1
2
(

σyy

) 1
2

⎤

⎦

(3.116)

126 3 Computing the Likelihood

and

.
∂Q

(

θ |θ [t]
)

∂ρ
= 1
(

1 − ρ2
)

{

nρ − 1
(

1 − ρ2
)

[

ρ

(∑n
i=1 (xi − μx)

2

σxx

+ E
[∑n

i=1 y2
i |θ [t], x, y

]+ nμ2
y − 2μy E

[∑n
i=1 yi |θ [t], x, y

]

σyy

)

− (1 + ρ)2

E
[∑n

i=1 xiyi |θ [t], x, y
]− μx E

[∑n
i=1 yi |θ [t], x, y

]− μy

∑n
i=1 xi + nμxμy

(σxx)
1
2
(

σyy

) 1
2

⎤

⎦

⎫

⎬

⎭
.

(3.117)

These equations must be solved simultaneously. After setting derivatives equal
to zero, Eqs. (3.113) and (3.114) reduce to

.

∑n
i=1 xi

n
− μx

(σxx)
1
2

= ρ

E
[∑n

i=1 yi |θ [t],x,y
]

n
− μy

(

σyy

) 1
2

and

.

E
[∑n

i=1 yi |θ [t],x,y
]

n
− μy

(

σyy

) 1
2

= ρ

∑n
i=1 xi

n
− μx

(σxx)
1
2

.

The only solution is

.μ̂[t+1]
x = μ̂x =

∑n
i=1 xi

n
, (3.118)

.μ̂[t+1]
y = E

[∑n
i=1 yi |θ [t], x, y

]

n
. (3.119)

Since x is completely observed, the solution for . μ̂x is explicit.
Expressions for . σxx , .σyy and . ρ involve (3.115), (3.116) and (3.117). A little

algebra results in

.̂σxx = 1

n

n
∑

i=1

(xi − μ̂x)
2 , (3.120)

3.3 The EM Algorithm 127

. ̂σ [t+1]
yy = 1

n

{

E

[
n
∑

i=1

y2
i |θ [t], x, y

]

+ n
(

μ̂[t+1]
y

)2 − 2μ̂[t+1]
y E

[
n
∑

i=1

yi |θ [t], x, y

]}

= 1

n
E

[
n
∑

i=1

y2
i |θ [t], x, y

]

−
(

μ̂[t+1]
y

)2
. (3.121)

and

.ρ̂[t+1] =
1
n

E
[∑n

i=1 xiyi |θ [t], x, y
]− μ̂xμ̂

[t+1]
y

(̂σxx)
1
2

(

σ̂
[t+1]
yy

) 1
2

. (3.122)

The EM iterations involve computation of . μ̂x using (3.118) and of .σ̂xx using (3.120)
and then looping over (3.119), (3.121) and (3.122) to update .μ̂[t+1]

y , .σ̂ [t+1]
yy and

.ρ̂[t+1].

Example: A Two-Component Mixture Model

Finite mixtures constitute a very flexible modelling tool that arise in practice when
measurements are assumed to be drawn from several subpopulations or mixture
components, where the component to which an observation belongs is not identified.
Mixture models have a long history; perhaps the first major analysis involving the
use of mixtures was undertaken in 1894 by Karl Pearson (Pearson, 1894) that fitted
a mixture of two normal probability densities with different means and variances to
data on crabs.

This example also assumes that the data are realisations from two subpopulations.
A classical scenario in genomics is to decide which of the thousands or millions of
genetic markers scattered along the genome has or has not an effect on a particular
trait. The trait could have a binary expression, such as presence or absence of a
disease, or it could be continuously distributed, such as height in humans. The model
poses that each genetic marker effect (an unobserved quantity) is drawn from either
a component that generates very small values or from the component that allows for
larger values. The objective is to allocate each marker to one of the two components.
In the example discussed here, the mixture operates at the level of the observed data.

Let . zi be the (unobserved) binary variable that assigns an observation . yi to a
specific mixture component. Assume the marginal probability that . Zi is a draw from
the mixture component j is

. Pr
(

Zi = j |πj

) = πj .

128 3 Computing the Likelihood

Conditional on .zi = j , .j = 1, 0, assume . yi has density .pj

(

yi |θj

)

. That is,

. p (yi, zi |θ, π) = pj

(

yi |zi = j, θj

)

Pr
(

Zi = j |πj

)

= pj

(

yi |zi = j, θj

)

πj .

Treating z as missing data, let .x = (z, y) denote the complete data. The complete
data loglikelihood is

. � (θ |x) =
∑

i
� (θ |xi) ,

where .� (θ |xi) is the loglikelihood of the ith complete datum that takes the form

.� (θ |xi) =
∑1

j=0

[

I (zi = j) ln pj

(

yi |θj

)+ I (zi = j) ln πj

]

. (3.123)

E-step

The E-step for the ith observation consists of averaging (3.123) over the conditional
distribution .

[

zi |π [t], θ [t], y
]

. The contribution from the ith complete datum is

. Qi

(

π, θ, π [t], θ [t]
)

= E

{
∑1

j=0

[

I (zi = j) ln pj

(

yi |θj

)+ I (zi = j) ln πj

]
}

(3.124)
and the contribution from the entire data,

. Q
(

π, θ, π [t], θ [t]
)

= E

{
∑n

i=1

∑1

j=0

{

I (zi = j)
[

ln pj

(

yi |θj

)+ ln πj

]}
}

=
∑n

i=1

∑1

j=0

{

E
[

I (zi = j) |π [t], θ [t], y
]

× [

ln pj

(

yi |θj

)+ ln πj

]}

=
∑n

i=1

∑1

j=0

{

p̂ij

[

ln pj

(

yi |θj

)+ ln πj

]}

, (3.125)

where the term in squared brackets .
[

ln pj

(

yi |θj

)+ ln πj

]

is a constant with respect
to .
[

zi |π [t], θ [t], y
]

and

. ̂pij = E
[

I (Zi = j) |π [t], θ [t], y
]

= Pr
(

Zi = j |π [t], θ [t], y
)

(3.126)

3.3 The EM Algorithm 129

to be derived shortly. At this point, note that .
∑

j πj = 1, .
∑

j p̂ij = 1 and therefore
.
∑n

i=1
∑

j p̂ij = ∑n
i=1 1 = n.

M-step

The Q function must be maximised with respect to the two sets of parameters,
the .θ ′s and . πj . The derivation of . πj requires a constrained maximisation using
Lagrange multipliers. Maximising (3.125) with respect to . πj subject to .

∑

j πj = 1
gives

.
∂

∂πj

⎡

⎣
∑n

i=1

∑1

j=0
p̂ij

[

ln pj

(

yi |θj

)+ ln πj

]+ λ

⎛

⎝
∑

j

πj − 1

⎞

⎠

⎤

⎦ = 0

or

.
1

πj

∑n

i=1
p̂ij + λ = 0.

Therefore,

. − 1

λ

∑n

i=1
p̂ij = πj . (3.127)

Summing over j on both sides

. − 1

λ

∑n

i=1

∑1

j=0
p̂ij =

∑1

j=0
πj

leading to

. − 1

λ

∑n

i=1
1 = 1

which gives .λ = −n. Substituting in (3.127) leads to the iterate

.π
[t+1]
j = 1

n

∑n

i=1
p̂ij . (3.128)

The derivation of . θj requires maximisation of (3.125) with respect to . θj :

.
∂

∂θj

[
∑n

i=1

∑1

j=0
p̂ij

[

ln pj

(

yi |θj

)+ ln πj

]
]

= 0

130 3 Computing the Likelihood

or

.

∑n

i=1
p̂ij

∂

∂θj

ln pj

(

yi |θj

) = 0. (3.129)

To be specific, assume that .pj

(

yi |θj

) = N
(

yi |θj , σ
2
)

and that observations are
identically and independently distributed. Then ignoring terms that do not contain
. θj ,

.
∑n

i=1
p̂ij

∂

∂θj

ln pj

(

yi |θj

) =
∑n

i=1
p̂ij

∂

∂θj

[

−
(

yi − θj

)2

2σ 2

]

=
∑n

i=1
p̂ij

(

yi − θj

)

σ 2 = 0.

Multiplying out by . σ 2 yields

.θ
[t+1]
j =

∑n
i=1 p̂ij yi
∑n

i=1 p̂ij

. (3.130)

Similarly, for . σ 2

.
∂Q

∂σ 2
=
∑n

i=1

∑1

j=0
p̂ij

∂

∂σ 2

[

−1

2
ln σ 2 −

(

yi − θj

)2

2σ 2

]

=
∑n

i=1

∑1

j=0
p̂ij

[

− 1

2σ 2
+
(

yi − θj

)2

2
(

σ 2
)2

]

= 0.

Multiplying out by .2σ 2,

.
∑n

i=1

∑1

j=0

[

−p̂ij + p̂ij

(

yi − θj

)2

σ 2

]

= 0.

Then

.
∑n

i=1

∑1

j=0

p̂ij

(

yi − θj

)2

σ 2 =
∑n

i=1

∑1

j=0
p̂ij =

∑n

i=1
1 = n

and finally

.σ 2[t+1] = 1

n

∑n

i=1

∑1

j=0
p̂ij

(

yi − θj

)2
. (3.131)

3.3 The EM Algorithm 131

An expression for .p̂ij defined in (3.126) is obtained as follows:

. ̂p
[t+1]
ij = Pr

(

Zi = j |π [t], θ
[t]
j , yi

)

=
pj

(

yi, Zi = j |θ [t]
j , π [t]

)

∑

j pj

(

yi, Zi = j |θ [t]
j , π [t]

)

=
pj

(

yi |θ [t]
j

)

Pr
(

Zi = j |π [t]
)

∑

j pj

(

yi |θ [t]
j

)

Pr
(

Zi = j |π [t]
)

=
pj

(

yi |θ [t]
j

)

π
[t]
j

∑

j pj

(

yi |θ [t]
j

)

π
[t]
j

. (3.132)

A Bayesian implementation of this mixture model is on page 234, and examples
using likelihood and Bayesian models are illustrated on pages 352 and 356.

Example: Genomic Model

This model was implemented using Newton-Raphson and here the EM algorithm
is used instead. The focus of inference is the variance components with a view to
learning how much of the total variance of the trait is explained by the regression on
marker information. Full details of the hierarchical model are specified in (3.38).

If

. y|U, α, σ 2
e ∼ N

(

Uα, Iσ 2
e

)

,

α|U, σ 2
g ∼ SN

(

0,Dσ 2
g

)

,

then the distribution .[α|y, σ 2
e , σ 2

g] is singular normal, with conditional mean

. E
(

α|y, σ 2
e , σ 2

g

)

= α̃ = σ 2
g DU ′ (UDU ′σ 2

g + Iσ 2
e

)−1
y

= kD (Dk + I)−1 ỹ (3.133)

where .ỹ = U ′y and .k = σ 2
g /σ 2

e . The conditional variance is

. Var
(

α|y, σ 2
e , σ 2

g

)

= Ṽα = Dσ 2
g − σ 2

g DU ′ (UDU ′σ 2
g + Iσ 2

e

)−1
UDσ 2

g

= Dσ 2
g − σ 2

g kD (Dk + I)−1 D. (3.134)

132 3 Computing the Likelihood

Both (3.133) and (3.134) have a diagonal structure. Simple operations on these
expressions reveal that for the ith element,

. E
(

αi |y, σ 2
e , σ 2

g

)

= α̃i = λik

λik + 1
ỹi , . (3.135a)

Var
(

αi |y, σ 2
e , σ

2
g

)

= Ṽαi = σ 2
g

λi
λik + 1

, i = 1, . . . , n − 1, (3.135b)

and when .i = n both terms are equal to zero.
The joint density of y and . α, given the variance components, is

. p
(

y|α, σ 2
e

)

p
(

α|σ 2
g

)

=
∣
∣
∣Iσ 2

e

∣
∣
∣

− 1
2

exp

[

− 1

2σ 2
e

(y − Uα)′ (y − Uα)

] (

σ 2
g

)−
(

n−1
2

)

exp

[

− 1

2σ 2
g

α′D−α

]

. (3.136)

The full data likelihood (where . α acts as the missing data) is proportional to (3.136),
and the full data loglikelihood, up to an additive constant, is given by

. �
(

σ 2
e , σ 2

g , α|y
)

= −n

2
ln σ 2

e −
(

n − 1

2

)

σ 2
g − 1

2σ 2
e

(y − Uα)′ (y − Uα)−

− 1

2σ 2
g

α′D−α. (3.137)

The Q function that defines the E-step of the algorithm is

. Q
(

σ 2
e , σ 2

g |σ 2[t]
e , σ 2[t]

g

)

=

−n

2
ln σ 2

e −
(

n − 1

2

)

σ 2
g − 1

2σ 2
e

E
[

(y − Uα)′ (y − Uα)
]− 1

2σ 2
g

E
[

α′D−α
]

(3.138)

Using results from expectations of quadratic forms (see NOTE at the end of the
example) and the notation defined in (3.133) and (3.134) yields

. Q
(

σ 2
e , σ 2

g |σ 2[t]
e , σ 2[t]

g

)

= −n

2
ln σ 2

e −
(

n − 1

2

)

σ 2
g −

− 1

2σ 2
e

[(

y − Uα̃[t]
)′ (

y − Uα̃[t]
)

+ tr
(

Ṽ [t]
α

)]

− 1

2σ 2
g

[

α̃[t]′D−α̃[t] + tr
(

D−Ṽ [t]
α

)]

. (3.139)

3.3 The EM Algorithm 133

Differentiation with respect to . σ 2
e and . σ 2

g constitutes the M-step. This gives

.
∂

∂σ 2
e

Q
(

σ 2
e , σ 2

g |σ 2[t]
e , σ 2[t]

g

)

= − n

2σ 2
e

+ 1

2
(

σ 2
e

)2

[(

y − Uα̃[t]
)′ (

y − Uα[t]
)

+ tr
(

Ṽ [t]
α

)]

,

∂

∂σ 2
g

Q
(

σ 2
e , σ 2

g |σ 2[t]
e , σ 2[t]

g

)

= −n − 1

2σ 2
g

+ 1

2
(

σ 2
g

)2

[

α̃[t]′D−α̃[t] + tr
(

D−Ṽ [t]
α

)]

.

Setting these two equations equal to zero leads to the EM iterative system:

.σ 2[t+1]
g =

α̃[t]′D−α̃[t] + tr
(

D−Ṽ
[t]
α

)

n − 1
, . (3.140a)

σ 2[t+1]
e =

(

y − Uα̃[t]
)′ (

y − Uα̃[t]
)+ tr

(

Ṽ [t] α

)

n
. (3.140b)

This system is computationally easy to implement because all operations involve
diagonal matrices. Specifically,

. ̃α[t]′D−α̃[t] = k2[t]
n
∑

i=1

ỹ2
i

λi
(

λik[t] + 1
)2 ,

tr
(

D−Ṽ [t]
α

)

= σ 2[t]
g

n
∑

i=1

1

λik[t] + 1
I (λi �= 0) ,

(

y − Uα̃[t]
)′ (

y − Uα̃[t]
)

=
n
∑

i=1

y2
i − 2

n
∑

i=1

α̃
[t]
i ỹi +

n
∑

i=1

α̃
2[t]
i ,

tr
(

Ṽ [t]
α

)

= σ 2[t]
g

n
∑

i=1

λi

λik[t] + 1
,

where .α̃[t]
i is computed using (3.135a). The iterative system consists of cycling

through the loop:

1. Compute expectations (3.135).
2. Compute (3.140) and return to 1.

134 3 Computing the Likelihood

Note

The step from (3.138) to (3.139) requires knowledge of expectations of quadratic
forms. The standard result is that if the vector x has mean . μ and variance V , then

. E
(

x′Ax
) = μ′Aμ + tr (AV) . (3.141)

We need

. E
[

(y − Uα)′ (y − Uα) |y, σ 2[t]
e , σ 2[t]

g

]

.

Now,

. E
(

(y − Uα) |y, σ 2[t]
e , σ 2[t]

g

)

= y − Uα̃

and

. Var
(

(y − Uα) |y, σ 2[t]
e , σ 2[t]

g

)

= UṼ [t]
α U ′.

Then using (3.141) results in

. E
[

(y − Uα)′ (y − Uα) |y, σ 2[t]
e , σ 2[t]

g

]

=
(

y − Uα̃[t]
)′ (

y − Uα̃[t]
)

+ tr
(

Ṽ [t]
α

)

,

where, for the second term in the right-hand side, I used

. tr
(

UṼ [t]
α U ′) = tr

(

U ′UṼ [t]
α

)

= tr
(

Ṽ [t]
α

)

.

Finally, direct application of (3.141) gives

. E
[(

α′D−α
) |y, σ 2[t]

e , σ 2[t]
g

]

= α̃[t]′D−α̃[t] + tr
(

D−Ṽ [t]
α

)

.

Example: Likelihood Inferences with Truncated Data and Using
the Method of Moments

The likelihood function for truncated data was introduced in the previous chapter
on page 71. Here, I indicate how to derive ML estimates of parameters using the
EM algorithm. The example concludes with a short outline of estimation using the
method of moments.

The focus of inference is the parameters of the original, untruncated distribution,
assumed in this example to be the Gaussian distribution .N

(

μ, σ 2
)

. The information
available is as follows: from the original sample of size N (drawn randomly from

3.3 The EM Algorithm 135

.N
(

μ, σ 2
)

), m observations were discarded because they were smaller than an
observed threshold C. The observed data consist of n records larger than the
threshold C. The complete data z consist of .N = m + n records, . z = (y∗, y)

where . y∗ are the m unobserved missing records and y are the n observed records.
Let .θ = (

μ, σ 2
)

. The complete data loglikelihood excluding an additive constant
is

. ln p
(

y∗, y|θ) = −1

2
(m + n) ln

(

σ 2
)

−
∑m

i=1

(

y∗
i − μ

)2

2σ 2
−
∑n

i=1 (yi − μ)2

2σ 2
.

(3.142)

The E. −step consists of computing expectations of this complete data loglikelihood,
conditional on the current value of . θ , .θ [t] (remembering that the random variable is
the unobserved missing data):

. Q
(

θ |θ [t]
)

= −1

2
(m + n) ln

(

σ 2
)

−
∑m

i=1 E
[(

y∗
i − μ

)2 |θ [t]
]

2σ 2 −
∑n

i=1 (yi − μ)2

2σ 2 .

(3.143)

The M. −step needs .∂Q
(

θ |θ [t]
)/

∂μ and .∂Q
(

θ |θ [t]
)/

∂σ 2. A little algebra shows
that

.
∂Q

(

θ |θ [t]
)

∂μ
= 1

σ 2

[

m E
(

y∗
i |θ [t]

)

− mμ +
n
∑

i=1

(yi − μ)

]

,

.
∂Q

(

θ |θ [t]
)

∂σ 2
= 1

2

(

σ 2
)−2

[
m
∑

i=1

E
[(

y∗
i − μ

)2 |θ [t]
]

+
n
∑

i=1

(yi − μ)2 − (m + n)

]

.

This leads to the iterative system:

.μ[t+1] = m E
(

y∗
i |θ [t]

)+∑n
i=1 yi

m + n
, . (3.144a)

σ 2[t+1] =
∑m

i=1 E
[(

y∗
i − μ[t+1]

)2 |θ [t]
]

+∑n
i=1

(

yi − μ[t+1]
)2

m + n
.(3.144b)

Using results from the conditional expectations of truncated normal variables
spelled out on page 407, one finds

. E
(

y∗
i |θ [t]

)

= μ[t] − σ [t] φ
(

c[t]
)

�
(

c[t]
) ,

E
[(

y∗
i − μ

)2 |θ [t]
]

= mσ 2[t]

(

1 − c[t] φ
(

c[t]
)

�
(

c[t]
)

)

,

136 3 Computing the Likelihood

where .φ (·) is the pdf of .N (0, 1) and .c = (C − μ)
/

σ . The two expressions above
replace the expectations in (3.144).

The R-code below illustrates details of the EM computations. The first part
generates .N = 50, 000 records from .N(10, 3) (the complete data), and those larger
than .C = μ+1.5σ are kept, and the remaining are discarded. Using these truncated
records, one has to draw inferences about the parameters of the original distribution,
.μ = 10 and .σ 2 = 3.

CODE0307
EM FOR TRUNCATED DATA; ESTIMATE MEAN OF UNTRUNCATED
GENERATE Y ~ N(MEAN,VAR)
TRUNCATE AT T SO THAT Z = Y > T ARE OBSERVED
Y < T ARE MISSING (KNOWN INFORMATION)
rm(list=ls()) # CLEAR WORKSPACE
set.seed(12371)
nindiv<-50000
mean <- 10
var <- 3
T <- mean + 1.5*sqrt(var)
CREATE DATA
y <- rnorm(nindiv,mean,sqrt(var))
z <- y[y>T]
length(z)

[1] 3462

m <- length(y)-length(z)
mean(y)

[1] 10.00188

mean(z)

[1] 13.37054

var(z)

[1] 0.4728943

START VALUES FOR MEAN (mu) AND VARIANCE (sigmasq)
mu <- 0
sigmasq <- 2
sigma <- sqrt(sigmasq)
iter <- 1000
res <- matrix(data=NA, nrow=iter,ncol=2)

3.3 The EM Algorithm 137

EM LOOP ##########################
for (i in 1:iter){

T_star <- (T-mu)/sigma
expymiss <- mu - (sigma * dnorm(T_star))/(pnorm((T_star)))
mu <- (sum(z)+m*expymiss)/length(y)
e <- z-mu
sigmasq <-(m*sigmasq*(1-T_star*dnorm(T_star)/pnorm(T_star))+

sum(e*e))/length(y)
sigma <- sqrt(sigmasq)
res[i,] <- c(mu,sigmasq)

}
tail(res)

[,1] [,2]
[995,] 9.998747 3.077332
[996,] 9.998747 3.077332
[997,] 9.998747 3.077332
[998,] 9.998747 3.077332
[999,] 9.998747 3.077332
[1000,] 9.998747 3.077332

emmu <- res[iter,1]
emmu

[1] 9.998747

emsigmasq <- res[iter,2]
emsigmasq

[1] 3.077332

emsel <- mu + sigma*dnorm(T_star)/(1-pnorm(T_star))
emsel

[1] 13.37243

i <- dnorm(T_star)/(1-pnorm(T_star))
varsel <- sigmasq*(1-i*(i-T_star))
varsel

[1] 0.4649044

The ML estimates are .μ̂ = 9.999 and .σ̂ 2 = 3.077, in good agreement with the
parameters of the unselected population (10 and 3).

138 3 Computing the Likelihood

Ignoring the selection process and basing inferences on the likelihood of . Yi ∼
N
(

μ, σ 2
)

, i = 1, . . . , n, one obtains

.μ̂ = 1

n

n
∑

i=1

yi = 13.4, . (3.145a)

σ̂ 2 =
1

n

n
∑

i=1

(

yi − μ̂
)2 = 0.47, (3.145b)

quite off the mark from the unselected population parameters. Notwithstanding,
in this simple setting (no systematic effects other than a common mean, absence
of clustering and variance heterogeneity), (3.145) are consistent estimators of the
parameters of the selected population, of which the present data are a random draw.
As indicated on page 407,

. E (y|y > C) = μ + σ
φ (c)

1 − �(c)
,

Var (y|y > C) = σ 2
[

1 − φ (c)

1 − �(c)

(
φ (c)

1 − �(c)
− c

)]

.

Likelihood properties sketched in the previous chapter indicate that MLE of these
parameters are

. ̂E (y|y > C) = μ̂ + σ̂
φ (̂c)

1 − � (̂c)
,

V̂ar (y|y > C) = σ̂ 2
[

1 − φ (̂c)

1 − � (̂c)

(
φ (̂c)

1 − � (̂c)
− ĉ

)]

.

Substituting in these expressions the converged values .μ̂ = 10.000 and . ̂σ 2 = 3.077
yields the ML estimates

. ̂E (y|y > C) = 13.37,

V̂ar (y|y > C) = 0.46,

in good agreement with (3.145).

Estimation Using the Method of Moments

There is a simple alternative to the EM algorithm using the method of moments
and properties of the normal distribution. A known truncation point . C = 12.59808
leads to a “proportion selected” P=length(y[y>C])/50,000=0.06924 (see
R-code CODE0307 that uses T for the known truncation point). Then the “. z−value”

3.3 The EM Algorithm 139

corresponding to P is qnorm(1-P)=1.481475; the pdf of the standard normal
at this . z−value is .φ (z) =dnorm(z)=0.1331442 and the “intensity of selection”
is (the difference between the mean of the truncated group and the mean of the
original population, measured in units of standard deviation) . i =dnorm(z)/P =
1.922937.

The method of moments consists of equating sample moments with population
moments. The moment estimators of . μ and . σ 2 are obtained by solving the two linear
equations (the right-hand sides represent the mean and variance of truncated normal
variables derived on page 407):

.
1

n

n
∑

i=1

yi = μ + iσ,

1

n

n
∑

i=1

(yi − y)2 = σ 2 (1 − i (i − z)) .

This yields .μ̂ ≈ 9.97 and .σ̂ 2 ≈ 3.13.

Chapter 4
Bayesian Methods

In classical likelihood, an important goal is to learn about a parameter . θ regarded
as a fixed unknown quantity. This is accomplished by collecting data y assumed
to be a realisation from a probability model .p(y|θ) indexed by . θ . This probability
model gives rise to the likelihood, a function of . θ conditional on the realised y,
from which the maximum likelihood estimate . θ̂ is obtained. The ML estimator is a
random variable (a function of y), whose distribution is characterised by conceptual
replications of y. This distribution describes the (sampling) uncertainty of . θ̂ and is
typically unknown. It can be approximated using resampling techniques or one can
appeal to asymptotic results so, informally,

.̂θ ∼ N
(

θ, I (θ)−1
)

, (4.1)

as explained before. Probability statements involving . θ̂ (such as confidence intervals
for . θ) can be retrieved from this sampling distribution.

The Bayesian approach is radically different. First of all, the concept of
probability is linked to a person’s degree of belief. The goal is again to learn
about . θ , but Bayesians regard . θ as a random variable, in the sense that there is
uncertainty about the range of values it may take. This uncertainty is characterised
by the probability distribution of . θ . Before data are available and based on
previous knowledge, mechanistic considerations or mathematical convenience, a
prior probability distribution is elicited. The prior probability distribution has
density .p(θ). During the learning process, data are collected; these data are regarded
as a realisation from a probability model .p(y|θ), with . θ random and unknown and
y fixed and observed. This is often labelled as the likelihood. The final stage of
the learning process consists of constructing the posterior probability distribution
of . θ , given data y, with density .p(θ |y), using .p(θ) and .p(y|θ). This posterior
probability distribution of . θ is a description of the new (posterior) uncertainty about
. θ in the light of y. It mirrors how prior beliefs have been modified after observing the
evidence: data y. During this process, the data have remained fixed and the inference

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Sorensen, Statistical Learning in Genetics, Statistics for Biology and Health,
https://doi.org/10.1007/978-3-031-35851-7_4

141

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35851-7protect T1	extunderscore 4&domain=pdf
https://doi.org/10.1007/978-3-031-35851-7_4
https://doi.org/10.1007/978-3-031-35851-7_4
https://doi.org/10.1007/978-3-031-35851-7_4
https://doi.org/10.1007/978-3-031-35851-7_4
https://doi.org/10.1007/978-3-031-35851-7_4
https://doi.org/10.1007/978-3-031-35851-7_4
https://doi.org/10.1007/978-3-031-35851-7_4
https://doi.org/10.1007/978-3-031-35851-7_4
https://doi.org/10.1007/978-3-031-35851-7_4
https://doi.org/10.1007/978-3-031-35851-7_4
https://doi.org/10.1007/978-3-031-35851-7_4

142 4 Bayesian Methods

is conditional on the particular realisation of these data. Specifically, Bayes theorem
takes the form

.p (θ |y) = p (y|θ) p (θ)

p (y)
∝ p (y|θ) p (θ) (4.2)

The contentious part of the Bayesian approach is the elicitation of the prior
probability .p(θ) and how it may affect the conclusions of the analysis.

This chapter provides an introduction to Bayesian analysis mostly through
examples. The objective of the first examples is to show the type of inferences
that can be drawn (joint inferences, conditional inferences, marginal inferences)
when the posterior distribution is known. In this case, inferences can be exact
using analytical methods or can be estimated using Monte Carlo draws from the
appropriate distribution. The Gaussian distribution .N(μ, σ 2) is chosen as a classical
example where all the necessary distributions can be obtained in closed form.

The normal linear model is heavily used for the analysis of continuous data.
The chapter includes an example where the conditional distribution of location
parameters is derived, given dispersion parameters. The fully conditional poste-
rior distributions of location parameters are also derived; these are an essential
ingredient for a Gibbs sampling implementation. A further example based on a
classical regression model shows how the variance component can be inferred from
its marginal posterior distribution. The modal value coincides with the restricted
maximum likelihood estimator and the marginal posterior distribution has the form
of a restricted likelihood.

The concept of Bayesian learning is the subject of two examples taken from
Sorensen and Gianola (2002). This is a process by which prior information (with
uncertainty described by the prior distribution) is modified by new data (generated
with uncertainty under a sampling model), to become a posterior distribution,
reflecting posterior uncertainty. If data accrue sequentially, at a particular stage i
of the learning process, this posterior distribution acts as prior for stage .i + 1.
A single Bayesian analysis carried out at the end leads to the same inferences as
one carried out sequentially. The two examples illustrate this probability-driven
inductive process for discrete and for continuous data.

Most often the exact form of the posterior distribution is not known or only
known up to proportionality. A large number of options are available to arrive
at approximate results. After a very brief account of Bayesian asymptotics, the
chapter focuses on Markov chain Monte Carlo (McMC) methods. These are
recipes that make use of Markov chain theory to generate approximate draws from
posterior distributions. Using these draws, one can obtain Monte Carlo estimates
of expectations to construct summaries of the posterior distribution such as the
posterior mean, variance and posterior intervals, or one can compute a posterior
mode. Joint and single site updating of parameters using Metropolis-Hastings are
explained and illustrated in the simple setting of the .N(μ, σ 2) model. The same
model is used to introduce the Gibbs sampler. The chapter concludes with an

4.1 Example: Estimating the Mean and Variance of a Normal Distribution 143

overview of tools needed for the analysis of the output from a Markov chain Monte
Carlo.

An appendix provides the mathematical details of the McMC machinery.

4.1 Example: Estimating the Mean and Variance of a
Normal Distribution

Consider the scalar random variable y that is normally distributed with probability
density function:

. p
(

yi |μ, σ 2
)

=
(

2πσ 2
)− 1

2
exp

(

− (yi − μ)2

2σ 2

)

,

σ 2 > 0, −∞ < μ < ∞, −∞ < yi < ∞.

The central limit theorem provides a justification for the wide use of the normal
distribution. It states that under very general conditions, the sum or the mean of
a set of random variables is approximately normally distributed. Data that can
be approximated using a continuous function and that result from the sum of the
additive effects of a large number of factors fall into this category. The distribution
has two parameters, the mean . μ and the variance . σ 2, and is denoted by .N

(

μ, σ 2
)

.
This example illustrates the type of posterior inferences that can be drawn when

the forms of the posterior distributions are known.

Posterior Distribution of . μ and . σ 2

Consider now data vector .y = {yi}ni=1. Direct application of Bayes theorem leads
to the posterior density of . μ and . σ 2:

.p
(

μ, σ 2|y
)

∝ p
(

μ, σ 2
)

p
(

y|μ, σ 2
)

. (4.3)

The second term in (4.3), the contribution from the n data points or likelihood, is

. p
(

y|μ, σ 2
)

=
(

2πσ 2
)− n

2
exp

(

−
∑n

i=1 (yi − μ)2

2σ 2

)

=
(

2πσ 2
)− n

2
exp

(

− 1

2σ 2

[

n
∑

i=1

(yi − y)2 + n (y − μ)2

])

=
(

2πσ 2
)− n

2
exp

(

− 1

2σ 2

[

(n − 1) S2 + n (y − μ)2
]

)

, (4.4)

144 4 Bayesian Methods

where

. S2 =
∑n

i=1 (yi − y)2

n − 1
,

y =
∑n

i=1 yi

n
,

are the sample variance and mean, respectively.
The term .p

(

μ, σ 2
) = p

(

μ|σ 2
)

p
(

σ 2
)

is the joint prior density. The choice for
the form of this density is dictated by prior knowledge, by the nature of the scientific
problem and/or by mathematical/computational convenience. The latter is less of an
issue if the model is fit with Markov chain Monte Carlo (McMC) methods. For
the time being, I settle for mathematical convenience and choose a set of conjugate
priors. As in Gelman et al (1995), one possibility is to assume prior distributions:

.

[

μ|σ 2
]

∼ N
(

μ0, σ
2/n0

)

, . (4.5a)

[

σ 2
]

∼ χ−2
(

v0, S
2
0

)

. (4.5b)

The form of (4.5a) indicates an a priori dependence between . μ and . σ 2. The
parameter . n0 can be regarded as prior sample size. The density is

.p
(

μ|σ 2
)

=
(

2π
σ 2

n0

)− 1
2

exp

(

−1

2

n0 (μ − μ0)
2

σ 2

)

. (4.6)

The prior (4.5b) is a scaled inverted chi-square distribution with scale . S2
0 and degrees

of freedom . v0. The density is

. p
(

σ 2
)

=
(

v0S
2
0

2

)
v0
2 (

�
(v0

2

))−1 (

σ 2
)−

(

v0
2 +1

)

exp

(

−v0S
2
0

2σ 2

)

, v0, S0 > 0.

(4.7)

The term . S2
0 can be regarded as a prior variance component, so that .v0S2

0 is a prior
sum of average squared deviations. The density of the joint prior distribution is

. p
(

μ, σ 2
)

∝
(

σ 2
)− 1

2
(

σ 2
)−

(

v0
2 +1

)

exp

(

− 1

2σ 2

[

v0S
2
0 + n0 (μ − μ0)

2
]

)

,

(4.8)

proportional to a normal-inverse-chi-square density. As shown below, the assign-
ment of a normal-inverse-chi-square prior distribution combined with a normal
likelihood results in a normal-inverse-chi-square posterior. The property that the

4.1 Example: Estimating the Mean and Variance of a Normal Distribution 145

posterior distribution follows the same parametric form as the prior distribution is
called conjugacy.

The joint posterior distribution is obtained replacing (4.4) and (4.8) in (4.3). This
gives

. p
(

μ, σ 2|y
)

∝
(

σ 2
)− n

2
exp

(

− 1

2σ 2

[

(n − 1) S2 + n (y − μ)2
]

)

×

×
(

σ 2
)− 1

2
(

σ 2
)−

(

v0
2 +1

)

exp

(

− 1

2σ 2

[

v0S
2
0 + n0 (μ − μ0)

2
]

)

=
(

σ 2
)−

(

n+v0+3
2

)

exp

(

− 1

2σ 2

[

v0S
2
0 + n0 (μ− μ0)

2 + (n− 1) S2 + n (y − μ)2
]

)

.

(4.9)

This expression is proportional to a normal-inverse-chi-square density confirming
the conjugacy of the prior distribution.

Conditional Posterior Distribution of . μ Given . σ 2

The joint posterior distribution .
[

μ, σ 2|y] can be factorised as follows:

. p
(

μ, σ 2|y
)

= p
(

μ|σ 2, y
)

p
(

σ 2|y
)

.

The densities of these two components are derived in turn. The distribution
.
[

μ|y, σ 2
]

can be obtained either by extracting from (4.9) those terms that are
function of . μ or by direct use of (4.2):

.p
(

μ|σ 2, y
)

∝ p
(

μ|σ 2
)

p
(

y|μ, σ 2
)

, (4.10)

where .p
(

μ|σ 2
)

is the prior density of the conditional distribution .
[

μ|σ 2
]

. In both
cases, this leads to (including terms in . μ only)

. p
(

μ|σ 2, y
)

∝ exp

(

− 1

2σ 2

[

n0 (μ − μ0)
2 + n (y − μ)2

]

)

.

There is an identity for combining quadratic forms (Box and Tiao 1973, page 74
and page 418) stating that

. A (z − a)2 + B (z − b)2 = (A + B) (z − c)2 + AB

A + B
(a − b)2 ,

c = 1

A + B
(Aa + Bb) . (4.11)

146 4 Bayesian Methods

With

. A = n0,

B = n,

z = μ,

a = μ0,

b = y,

c =
(

n0μ0 + ny

n0 + n

)

,

then

. exp

(

− 1

2σ 2

[

n0 (μ − μ0)
2 + n (y − μ)2

]

)

=

= exp

(

− 1

2σ 2

[

(n0 + n)

(

μ − n0μ0 + ny

n0 + n

)2

+ n0n

n0 + n
(y − μ0)

2

])

∝ exp

(

−n0 + n

2σ 2

[

(

μ − n0μ0 + ny

n0 + n

)2
])

, (4.12)

where the third line includes the only terms that are function of . μ. This is the kernel
of the normal distribution:

.

[

μ|σ 2, y
]

∼ N
(

μ1, σ
2
1

)

. (4.13)

where

.E
(

μ|σ 2, y
)

= μ1 = n0μ0 + ny

n0 + n
(4.14)

is the posterior mean and

.Var
(

μ|σ 2, y
)

= σ 2
1 = σ 2

n0 + n
(4.15)

is the posterior variance. Dividing numerator and denominator of (4.14) by . σ 2,
defining .π0 = n0/σ

2 as the prior precision, .πn = n/σ 2 as the precision arising
from the data, then (4.14) can also be written in the form of the shrunk estimator:

.μ1 = y − (y − μ0)
π0

π0 + πn

. (4.16)

4.1 Example: Estimating the Mean and Variance of a Normal Distribution 147

Expressions (4.14) and (4.16) express the posterior mean as a compromise between
the prior mean . μ0 and the mean of the data . y.

Marginal Posterior Distribution of . σ 2

There are two ways to obtain .p
(

σ 2|y). The first is to compute the integral

. p
(

σ 2|y
)

=
∫

p
(

μ, σ 2|y
)

dμ

where .p
(

μ, σ 2|y) is given up to proportionality in (4.9). Then

. p
(

σ 2|y
)

∝
∫

(

σ 2
)−

(

n+v0+3
2

)

exp

(

− 1

2σ 2

[

v0S
2
0 + (n − 1) S2 + n0 (μ − μ0)

2 + n (y − μ)2
])

dμ =

=
(

σ 2
)−

(

n+v0+3
2

)

exp

(

− 1

2σ 2

[

v0S
2
0 + (n − 1) S2

]

)

∫

exp

(

− 1

2σ 2

[

n0 (μ − μ0)
2 + n (y − μ)2

]

)

dμ =
(

σ 2
)−

(

n+v0+3
2

)

exp

(

− 1

2σ 2

[

v0S
2
0 + (n − 1) S2 + n0n

n0 + n
(y − μ0)

2
])

∫

exp

(

−n0 + n

2σ 2

[

(

μ − n0μ0 + ny

n0 + n

)2
])

dμ. (4.17)

The results in the last two lines are derived using equality (4.12), and the
expression in the last line has a simple solution since it involves integration over
a normal distribution. In general,

.

∫

exp

(

− (μ − μ1)
2

2σ 2
1

)

dμ =
(

2πσ 2
1

) 1
2 ∝

(

σ 2
) 1

2
.

Substituting in (4.17),

. p
(

σ 2|y
)

∝
(

σ 2
)−

(

n+v0
2 +1

)

exp

⎛

⎝−
[

v0S
2
0 + (n − 1) S2 + n0n

n0+n
(y − μ0)

2
]

2σ 2

⎞

⎠

=
(

σ 2
)−

(

ṽ
2+1

)

exp

(

− ṽS̃2

2σ 2

)

, (4.18)

148 4 Bayesian Methods

where

. ˜S2 = v0S
2
0 + (n − 1) S2 + n0n

n0+n
(y − μ0)

2

ṽ
,

ṽ = n + v0.

This is proportional to the pdf of a scaled inverted chi-square distribution, with . ̃v
degrees of freedom and scale parameter . S̃2. This is symbolised as

.

[

σ 2|y
]

∼ χ−2
(

ṽ, S̃2
)

. (4.19)

For example, to draw samples from (4.19), first draw from a chi-square distribution
with . ̃v degrees of freedom, invert this number and multiply by

.̃vS̃2 = v0S
2
0 + (n − 1) S2 + n0n

n0 + n
(y − μ0)

2 . (4.20)

A second way of arriving at .p
(

σ 2|y) is to use the identity

.p
(

σ 2|y
)

= p
(

μ, σ 2|y)

p
(

μ|σ 2, y
) . (4.21)

Using (4.9)

. p
(

μ, σ 2|y
)

∝
(

σ 2
)−

(

n+v0+3
2

)

exp

(

− 1

2σ 2

[

v0S
2
0 + (n − 1) S2 + n0 (μ − μ0)

2 + n (y − μ)2
])

=

=
(

σ 2
)−

(

n+v0+3
2

)

exp

(

− 1

2σ 2

[

v0S
2
0 + (n − 1) S2 + (n0 + n) (μ − μ1)

2 + n0n

n0 + n
(y − μ0)

2
])

(4.22)

and

. p
(

μ|σ 2, y
)

∝
(

σ 2
)− 1

2
exp

(

−n0 + n

2σ 2

[

(μ − μ1)
2
]

)

.

Substituting in (4.21) yields (4.19).

Marginal Posterior Distribution of . μ

The distribution .[μ|y] is easily obtained regarding the t-distribution as a mixture
of normal distributions with a common mean and variances distributed as scaled

4.1 Example: Estimating the Mean and Variance of a Normal Distribution 149

inverse chi-square random variables. For example, if .[yi |Vi] ∼ N (μ, Vi) and . Vi ∼
χ−2

(

v, σ 2
)

, then .yi ∼ t
(

v, μ, σ 2
)

, a t-distribution with v degrees of freedom,
mean . μ and scale . σ 2.

In the present case,

.

[

μ|σ 2, y
]

∼ N

(

μ1,
σ 2

n0 + n

)

(4.23)

and

.

[

σ 2|y
]

∼ χ−2
(

ṽ,˜S2
)

. (4.24)

Therefore,

.p (μ|y) =
∫

p
(

μ|σ 2, y
)

p
(

σ 2|y
)

dσ 2 ∼ t

(

ṽ, μ1,
˜S2

n0 + n

)

, (4.25)

a t-distribution with . ̃v degrees of freedom, mean . μ1 and scale .S̃2/(n0 + n). The
density is

. p (μ|y) =
�
(

ṽ+1
2

)

�
(

ṽ
2

)√
πṽ

(

S̃2

n0 + n

)− 1
2 (

1 + n0 + n

ṽS̃2
(μ − μ1)

2
)−

(

ṽ+1
2

)

.

(4.26)

The mean and mode are given by

. E (μ|y) = μ1,

and the variance is

. Var (μ|y) =
(

S̃2

n0 + n

)

(

ṽ

ṽ − 2

)

, ṽ > 2.

The proof of this result is as follows. Using (4.22) and (4.20), the joint posterior
of . μ and . σ 2 is

.p
(

μ, σ 2|y
)

=

= K
(

σ 2
)−

(

n+v0+3
2

)

exp

(

− 1

2σ 2

[

v0S
2
0 + (n − 1) S2 + (n0 + n) (μ − μ1)

2 + n0n

n0 + n
(y − μ0)

2
])

150 4 Bayesian Methods

= K
(

σ 2
)−

(

ṽ+1
2 +1

)

exp

(

−
1

2σ 2

[

ṽ˜S2 + (n0 + n) (μ − μ1)
2
]

)

= K
(

σ 2
)−α−1

exp

(

−
1

2σ 2

[

ṽ˜S2 + (n0 + n) (μ − μ1)
2
]

)

where K is the constant of integration and .α = ṽ+1
2 . Then

. p (μ|y) =
∫ ∞

0
K
(

σ 2
)−α−1

exp

(

− 1

2σ 2

[

ṽ˜S2 + (n0 + n) (μ − μ1)
2
]

)

dσ 2.

(4.27)

Let

. A = ṽ˜S2 + (n0 + n) (μ − μ1)
2 ,

x = A

2σ 2 ,

dσ 2 = −A

2
x−2dx

Therefore, (4.27) can be written as

. p (μ|y) = −
(

A

2

)∫ ∞

0
K

(

A

2x

)−α−1

exp (−x) x−2dx

= −
(

A

2

)(

A

2

)−α−1 ∫ ∞

0
Kxα−1 exp (−x) dx

∝ A−α

∫ ∞

0
xα−1 exp (−x) dx

∝ A−α,

where the last line results from the fact that the integral, known as the Gamma
function, is

.

∫ ∞

0
xα−1 exp (−x) dx = � (α) , α > 0,

a constant with respect to . μ. Then

.p (μ|y) ∝
(

ṽ˜S2 + (n0 + n) (μ − μ1)
2
)−

(

ṽ+1
2

)

4.2 Posterior Predictive Distribution for a New Observation 151

∝
(

1 +
(n0 + n) (μ − μ1)

2

ṽ˜S2

)−
(

ṽ+1
2

)

,

which is the kernel of (4.26).

4.2 Posterior Predictive Distribution for a New Observation

Anticipating a topic that will be discussed later in the book, I outline the derivation
of the posterior predictive distribution for a new to-be-observed observation . ỹi . A
natural application of this distribution is in Bayesian prediction problems, discussed
in Chapter 10. In the context of the above Gaussian setup, . ỹi , given . μ and . σ 2,
is assumed to be a draw from .N(μ, σ 2). The density of the posterior predictive
distribution of . ỹi is

. p (ỹ|y) =
∫∫

p
(

ỹ|μ, σ 2, y
)

p
(

μ, σ 2|y
)

dμdσ 2

=
∫∫

p
(

ỹ|μ, σ 2
)

p
(

μ|σ 2, y
)

p
(

σ 2|y
)

dμdσ 2. (4.28)

The first term in the integrand of the second line follows from the fact that, given
.
(

μ, σ 2
)

, . ̃y is independent of y.
A first integration with respect to . μ results in

.p
(

ỹ|σ 2, y
)

=
∫

p
(

ỹ|μ, σ 2
)

p
(

μ|σ 2, y
)

dμ. (4.29)

Before deriving the density of .
[

ỹ|σ 2, y
]

, one can easily derive the conditional mean
and variance. First note that a future observation and a data point have the same
sampling distribution. That is,

. ̃y|μ, σ 2 ∼ N
(

μ, σ 2
)

.

Then the desired mean and variance are

. E
[

ỹ|σ 2, y
]

= Eμ|σ 2,y

[

E
(

ỹ|μ, σ 2
)]

= Eμ|σ 2,y (μ)

= n0μ0 + ny

n0 + n
= μ1 (4.30)

152 4 Bayesian Methods

using (4.14) and

. Var
(

ỹ|σ 2, y
)

= Varμ|σ 2,y

[

E
(

ỹ|μ, σ 2
)]

+ Eμ|σ 2,y

[

Var
(

ỹ|μ, σ 2
)]

= Varμ|σ 2,y (μ) + σ 2

= σ 2

n0 + n
+ σ 2 = σ 2

2 (4.31)

using (4.15). There are two sources of uncertainty in the posterior predictive
distribution. The term . σ 2 is the variance of the sampling model. The second
represents uncertainty about . μ as a result of the finiteness of the sample y. This
term vanishes with large n but the first source of predictive uncertainty remains.

The form of the distribution .
[

ỹ|σ 2, y
]

is readily obtained noting that the
integrand in (4.29) involves two Gaussian distributions. That is,

. p
(

ỹ|σ 2, y
)

=
∫

N
(

μ, σ 2
)

N
(

μ1, σ
2
1

)

dμ

Using the identity (4.11), it follows that

.̃y|σ 2, y ∼ N
(

μ1, σ
2
2

)

. (4.32)

To arrive at the desired result, we need a second integration:

. p (ỹ|y) =
∫

p
(

ỹ|σ 2, y
)

p
(

σ 2|y
)

dσ 2.

Using (4.24) and (4.32), this involves

. p (ỹ|y) =
∫

N
(

μ1, σ
2
2

)

χ−2
(

ṽ,˜S2
)

dσ 2,

the integration of a normal distribution and a scaled inverse chi-square distribution.
It follows from the result spelled out in (4.23) that .

[

ỹ|y] has the density of a t-
distribution with . ̃v degrees of freedom, mean . μ1 and scale .˜S2

(

1 + 1
n0+n

)

. That

is,

.̃y|y ∼ t

(

ṽ, μ1,˜S
2
(

1 + 1

n0 + n

))

. (4.33)

4.3 Example: Monte Carlo Inferences of the Joint Posterior Distribution of. . . 153

4.3 Example: Monte Carlo Inferences of the Joint Posterior
Distribution of Mean and Variance

In the previous example, the forms of the joint posterior distribution .
[

μ, σ 2|y] and
the marginal posterior distributions of .[μ|y] and .

[

σ 2|y] are known. Therefore, infer-
ences can be obtained directly using these distributions. These “exact” inferences
are compared with those based on Monte Carlo draws from the posterior distribution
.
[

μ, σ 2|y].
A simple way of drawing samples from .

[

μ, σ 2|y] is based on the method of
composition (Tanner 1996):

1. First draw .σ 2∗
i from .

[

σ 2|y].
2. Then draw . μ∗

i from .
[

μ|σ 2∗
i , y

]

.
Repeating this loop n times generates .

(

μ∗
1, σ

2∗
1

)

, . . . ,
(

μ∗
n, σ

2∗
n

)

which are n
realisations from .

[

μ, σ 2|y]. Further, .(μ∗
1

)

, . . . ,
(

μ∗
n

)

and .
(

σ 2∗
1

)

, . . . ,
(

σ 2∗
n

)

are n
realisations from the marginal distributions .[μ|y] and .

[

σ 2|y], respectively. There
are no issues of convergence with the method of composition. The first extraction
.
(

μ∗
1, σ

2∗
1

)

is a draw from .
[

μ, σ 2|y].

The following data y mimic .n = 9 bristle number measurements of male
Drosophila flies which are assumed to be a realisation from .N

(

μ, σ 2
)

.

. y = (35.14, 37.01, 30.97, 34.42, 38.22, 34.04, 30.79, 42.31, 33.78)′

The sample mean and variance are .y = 35.19 and .S2 = 13.03. As a first
approximation, one may wish to compute a .95% confidence interval for . μ based
on .
[

μ|σ 2, y
]

. From previous knowledge about the trait you are willing to assign, a
value to .μ0 = 34 and you choose .n0 = 1. Using .σ 2 = S2 = 13.03, from (4.14)
and (4.15),

. μ1 = n0μ0 + ny

n0 + n
= 1 × 34 + 9 ∗ 35.19

1 + 9
= 35.07,

σ 2
1 = σ 2

n0 + n
= 13.03

10
= 1.303.

Then

.

[

μ|σ 2 = 13.03, y
]

∼ N (35.07, 1.303) .

A .95% quantile-based confidence interval for . μ based on this conditional posterior
distribution (given . σ 2) gives .(32.88; 37.31). This is obtained using the R-code

154 4 Bayesian Methods

ci <- qnorm(c(0.0275,0.975),35.07,sqrt(1.303))

that yields (32.88, 37.31). This interval ignores the uncertainty about . σ 2 since it
assumes .σ 2 = S2, exactly.

To account properly for uncertainty, the method of composition is implemented
drawing samples from .

[

μ, σ 2|y]. This requires to specify (4.23) and (4.24). Based
on previous knowledge of the trait, one may assign .S2

0 = 11.22 and the parameters
of (4.23) and (4.24) are

. μ1 = 35.07,

σ 2

n0 + n
= σ 2

1 + 9
,

ṽ = v0 + n = 1 + 9 = 10,

˜S2 = v0S
2
0 + (n − 1) S2 + n0n

n0+n
(y − μ0)

2

ṽ
=

= 1 × 11.22 + (9 − 1) 13.03 + 1×9
1+9 (35.19 − 34)2

10
= 11.67

With these values, one can repeatedly draw

1. .σ 2∗
i from . χ−2 (10, 11.67)

2. . μ∗
i from . N

(

35.07,
σ 2∗

i

1+9

)

The R-code to perform these calculations is

set.seed(377)
s <-(11.67*10)/rchisq(10000,10)
m <- rnorm(10000,35.07,sqrt(s/10))
quantile(m,c(0.025,0.975))

2.5% 97.5%
32.64573 37.45952

quantile(s,c(0.05,0.95))

5% 95%
6.403362 29.220816

The .95% quantile-based confidence interval for . μ is now a little broader than
before because the joint inference accounts for uncertainty about . σ 2.

4.4 Approximating a Marginal Distribution 155

4.4 Approximating a Marginal Distribution

The conditional posterior distribution .
[

μ|σ 2 = 13.03, y
]

can be regarded as an
approximation to

. p (μ|y) =
∫

p
(

μ|σ 2, y
)

p
(

σ 2|y
)

dσ 2.

The explanation lies in the following result. Assume a model that has two parame-
ters, . θ1 and . θ2. Then

.p (θ1|y) =
∫

p (θ1|θ2, y) p (θ2|y) dθ2. (4.34)

Define . θ̂2 as the mode of .[θ2|y] and expand .p (θ1|θ2, y) in a Taylor series about . ̂θ2:

. p (θ1|θ2, y) ≈ p
(

θ1|̂θ2, y
)+ (

θ2 −̂θ2
) ∂p (θ1|θ2, y)

∂θ2

∣

∣

∣

∣

θ2=̂θ2
.

Let

. f
(

̂θ2
) = ∂p (θ1|θ2, y)

∂θ2

∣

∣

∣

∣

θ2=̂θ2

and substitute in (4.34)

. p (θ1|y) ≈
∫

[

p
(

θ1|̂θ2, y
)+ (

θ2 −̂θ2
)

f
(

̂θ2
)]

p (θ2|y) dθ2

= p
(

θ1|θ̂2, y
)

∫

p (θ2|y) dθ2 + f
(

θ̂2

)

∫

θ2 p (θ2|y) dθ2 − f
(

θ̂2

)

θ̂2

∫

p (θ2|y) dθ2

= p
(

θ1|θ̂2, y
)

+ f
(

θ̂2

)

[

E (θ |y) −̂θ2
]

. (4.35)

When the posterior mode . θ̂2 is equal to the posterior mean .E (θ |y), the second term
drops out and

.p (θ1|y) ≈ p
(

θ1|θ̂2, y
)

(4.36)

In the example above, the mean and the mode are markedly different and both
are different from the value conditioned upon .σ 2 = 13.03. The mean is

.E
(

σ 2|y
)

= ṽ

ṽ − 2
˜S2

= 10

8
11.67 = 14.59

156 4 Bayesian Methods

and the mode is

. argmaxp
(

σ 2|y
)

= ṽ

ṽ + 2
˜S2

= 10

12
11.67 = 9.73,

so in this case, the approximation is rather coarse.

4.5 Example: The Normal Linear Mixed Model

The mixed linear model, or (co)variance components model (Henderson 1953),
includes fixed and random effects entering linearly into the conditional expectation
of the observations (given the random effects). These effects are the location
parameters of the model. Typically, random effects and model residuals are assigned
Gaussian distributions which depend on components of variance or covariance.
A classical example in animal genetics is modelling continuous data, where
explanatory variables are “fixed” effects such as sex and breed and random effects
are additive genetic values. In this setup, variance components could include the
additive genetic variance and the residual variance. This example describes the
computation of the posterior distribution of the location parameters, conditional on
the variance components, and indicates the connection with the classic mixed model
equations (Henderson et al 1959).

The second part of the example provides the derivation of the so-called fully con-
ditional posterior distribution of location parameters; these are essential ingredients
of Gibbs sampling algorithms.

Assume that the variance components are known and let b, of dimension .p × 1,
and a, of dimension .q × 1, represent vectors of “fixed” and random effects,
respectively. The conditional distribution (or sampling model) of data vector y, of
dimension, .n × 1 is

. y|b, a, σ 2 ∼ N
(

Xb + Za, Iσ 2
)

,

where X, of dimension .n × p, and Z, of dimension .n × q, are observed incidence
matrices. Assume .p (b) ∝ constant and invoking an infinitesimal model, the prior
distribution of a is

. a|σ 2
a ∼ N

(

0, Aσ 2
a

)

,

where A is the .q ×q additive genetic relationship matrix. The scalars . σ 2 and . σ 2
a are

the residual and the additive genetic variances, respectively.

4.5 Example: The Normal Linear Mixed Model 157

• This section provides the derivation of the posterior distribution of the location
parameters .(b, a). A benchmark paper is by Lindley and Smith (1972).

Using Bayes theorem, the density of the posterior distribution of the parame-
ters is

. p
(

b, a|y, σ 2, σ 2
a

)

∝ p
(

y|b, a, σ 2
)

p
(

a|σ 2
a

)

∝ exp

[

− 1

2σ 2 (y − Xb − Za)′ (y − Xb − Za)

]

exp

[

− 1

2σ 2
a

a′A−1a

]

= exp

[

− 1

2σ 2

(

(y − Xb − Za)′ (y − Xb − Za) + a′A−1a k
)

]

with .k = σ 2
/

σ 2
a . Let .W = (X Z), .θ ′ = (

b′, a′) and write the mixed model
equations as

.
(

W ′W + 	
)

̂θ = W ′y (4.37)

where

. 	 =
[

0 0
0 A−1k

]

.

The two quadratic forms in the exponential term can be combined as follows:

. (y − Xb − Za)′ (y − Xb − Za) + a′A−1a k

= (y − Wθ)′ (y − Wθ) + θ ′	θ

= y′y − 2θ ′W ′y + θ ′ (W ′W + 	
)

θ

= y′y − 2θ ′ (W ′W + 	
)

̂θ + θ ′ (W ′W + 	
)

θ.

Adding and subtracting .θ̂ ′ (W ′W + 	
)

θ̂ and rearranging yields

. (y − Xb − Za)′ (y − Xb − Za) + a′A−1a k

= y′y −̂θ ′ (W ′W + 	
)

̂θ + (

θ −̂θ)′ (W ′W + 	
) (

θ −̂θ) .

This trick that I use here for combining the two quadratic forms is used
repeatedly in the book, as well as formulas given in Box and Tiao (1973), page
418 (reproduced on page 145).

Since the first two terms do not depend on . θ ,

.p
(

θ |y, σ 2, σ 2
a

)

∝ exp

[

− 1

2σ 2

(

θ −̂θ)′ (W ′W + 	
) (

θ −̂θ)
]

,

158 4 Bayesian Methods

which is the kernel of the normal distribution:

.

[

θ |y, σ 2, σ 2
a

]

∼ N
(

̂θ,
(

W ′W + 	
)−1

σ 2
)

. (4.38)

In a normal linear model with known variances, the vector element . b̂ in . θ̂ can be
shown to be the maximum likelihood estimator of the vector of fixed effects, and
the vector element . ̂a is the best linear unbiased predictor (BLUP) of a (Henderson
et al 1959).

In the classical frequentist setting with b “fixed” and a “random”, the
inverse of the coefficient matrix of the mixed model equations (4.37) times . σ 2

corresponds to

. Var

[

̂b

â − a

]

= (

W ′W + 	
)−1

σ 2

where .Var
(

b̂
)

is the variance (in repeated sampling of y) of BLUE. (b) (best

linear unbiased estimator of b) and .Var (̂a − a) is the prediction error variance of
the predicted additive genetic values.

• Let .
(

W ′W + 	
) = C, .W ′y = r and write the mixed model equations (4.37) as

. Ĉθ = r.

Partition .θ ′ = (θ1, θ2) arbitrarily, such that . θ1 can be scalar or vector. What is
the conditional posterior distribution of .

(

θ1|θ2, σ 2, σ 2
a , y

)

? From multivariate
normal theory,

. θ1, θ2|y, σ 2, σ 2
a ∼ N

[(

̂θ1
̂θ2

)

,

(

C11 C12

C21 C22

)

σ 2
]

where

. C−1 =
(

C11 C12

C21 C22

)−1

=
(

C11 C12

C21 C22

)

.

Since .
(

θ1, θ2|y, σ 2, σ 2
a

)

is multivariate normal, so is the conditional distribution
.
(

θ1|θ2, y, σ 2, σ 2
a

)

.
Define .r ′ = (

r ′
1, r

′
2

)

. The conditional expected value of .
[

θ1|θ2, y, σ 2, σ 2
a

]

is

.E
(

θ1|θ2, y, σ 2, σ 2
a

)

= ̂θ1 + C12
(

C22
)−1 (

θ2 −̂θ2
)

.

4.5 Example: The Normal Linear Mixed Model 159

Using the mixed model equations, write

. ̂θ1 = C11r1 + C12r2,

̂θ2 = C21r1 + C22r2.

Substituting above

. E
(

θ1|θ2, y, σ 2, σ 2
a

)

= C11r1 + C12r2 + C12
(

C22
)−1 (

θ2 − C21r1 − C22r2

)

=
(

C11 − C12
(

C22
)−1

C21
)

r1 + C12
(

C22
)−1

θ2

= C−1
11

(

r1 + C11C
12
(

C22
)−1

θ2

)

= C−1
11 (r1 − C12θ2) . (4.39)

The derivation above uses the partition matrix results:

. C11 − C12
(

C22
)−1

C21 = C−1
11 ,

C11C
12
(

C22
)−1 = −C12.

The conditional variance is

. Var
(

θ1|θ2, y, σ 2, σ 2
a

)

=
(

C11 − C12
(

C22
)−1

C21
)

σ 2

= C−1
11 σ 2.

Therefore, the conditional posterior distribution is

.

[

θ1|θ2, y, σ 2, σ 2
a

]

∼ N
[

C−1
11 (r1 − C12θ2) , C−1

11 σ 2
]

. (4.40)

These results play a key role in the implementation of McMC methods that
rely on conditional posterior distributions such as the Gibbs sampler. Notice that
even if vector . θ contains many parameters and C is a very large matrix, the
conditional posterior distribution .

(

θ1|θ2, y, σ 2, σ 2
a

)

involves inverse of matrices
of the order of the number of elements in . θ1. For example, if . θ1 is a scalar, only
the inverse of the appropriate scalar element is needed.

160 4 Bayesian Methods

4.6 Example: Inferring a Variance Component from a
Marginal Posterior Distribution

Let the sampling distribution of the .n × 1 data vector y be

.y|b, σ 2 ∼ N
(

Xb, Iσ 2
)

, (4.41)

where X is an observed .n × p matrix of full rank, b is a .p × 1 vector of unobserved
regressions, I is the .n×n identity matrix and the unobserved scalar . σ 2 is the residual
variance. On assigning independent improper prior distributions to the parameters of
the model .

(

b, σ 2
)

, the posterior distribution is proportional to the likelihood (4.41):

.p
(

b, σ 2|y
)

∝ p
(

y|b, σ 2
)

. (4.42)

This example differs from the example on page 143 by extending the location
parameter of the normal distribution to a vector b, by assuming improper prior
distributions for .

(

b, σ 2
)

and by focusing the inference on . σ 2. The vector b is
regarded as a nuisance parameter that must be integrated out of the joint posterior
distribution .p(b, σ 2|y). This leads to the marginal posterior distribution .

[

σ 2|y]. It
will be shown that the modal value has the same form as the restricted maximum
likelihood (REML) estimator.

The marginal posterior distribution of . σ 2 requires computation of

. p
(

σ 2|y
)

=
∫

p
(

b, σ 2|y
)

db

=
∫

(

2πσ 2
)− n

2
exp

[

− 1

2σ 2 (y − Xb)′ (y − Xb)

]

db. (4.43)

Defining .̂b = (

X′X
)−1

X′y, adding and subtracting . X̂b in each term of the quadratic
form and carrying out the expansion leads to

. (y − Xb)′ (y − Xb) = (

y − X̂b
)′ (

y − X̂b
)+ (

b −̂b)′ X′X
(

b −̂b) .

This is so because the term .
(

b −̂b)′ X′ (y − X̂b
) = 0. Then

. p
(

σ 2|y
)

=
(

2πσ 2
)− n

2
exp

[

− 1

2σ 2

(

y − X̂b
)′ (

y − X̂b
)

]

∫

exp

[

− 1

2σ 2

(

b −̂b)′ X′X
(

b −̂b)
]

db. (4.44)

4.6 Example: Inferring a Variance Component from a Marginal Posterior. . . 161

The integration over the kernel of the normal distribution recovers the integration
constant:

.

∣

∣

∣2π
(

X′X
)−1

σ 2
∣

∣

∣

1
2 =

∣

∣

∣

(

X′X
)−1
∣

∣

∣

1
2
(

2πσ 2
)

p
2

.

Substituting in (4.44) yields

.p
(

σ 2|y
)

∝
(

σ 2
)− (n−p)

2
exp

[

− 1

2σ 2

(

y − X̂b
)′ (

y − X̂b
)

]

(4.45)

that is recognised (up to proportionality) as a scaled inverse chi-square distri-
bution with .v = n − p − 2 degrees of freedom and scale parameter . S2 =
1
v

(

y − X̂b
)′ (

y − X̂b
)

. That is,

.p
(

σ 2|y
)

∝
(

σ 2
)−(v

2+1)
exp

(

−vS2

2σ 2

)

. (4.46)

Inferences about . σ 2 or of functions thereof can be performed analytically from this
marginal posterior distribution. It is also possible to draw samples from the posterior
distribution of . σ 2 and to use the samples to construct a Monte Carlo estimate of the
posterior distribution of any function. To obtain a sample from this distribution,
draw a chi-square variable with v degrees of freedom, invert this number and
multiply by .

(

y − X̂b
)′ (

y − X̂b
)

.
The modal value of this marginal posterior distribution is obtained by maximis-

ing (4.45) or (4.46) over . σ 2 that leads to

. argmax
σ 2

p
(

σ 2|y
)

= v

v + 2
S2 =

(

y − X̂b
)′ (

y − X̂b
)

n − p
. (4.47)

In this particular example where .(b, σ 2) have a priori an improper uniform distribu-
tion, (4.47) has the same exact form as the REML estimator of . σ 2 and the marginal
distribution (4.45) has the form of a restricted likelihood, here, arrived at by
marginalising over the “fixed” effects b. The REML estimator for unbalanced data
was originally derived from a frequentist perspective by maximising a likelihood
that is invariant to the “fixed effects” in the highly cited work of Patterson and
Thompson (1971).

It is revealing to compare the marginal posterior distribution .
[

σ 2|y] with the
conditional posterior distribution .

[

σ 2|b, y
]

. The latter takes the form

.p
(

σ 2|b, y
)

∝
(

σ 2
)− n

2
exp

[

− 1

2σ 2 (y − Xb)′ (y − Xb)

]

, (4.48)

162 4 Bayesian Methods

proportional to a scaled inverse chi square distribution with .v = n − 2 degrees of
freedom. Maximising over . σ 2 leads to

. argmax
σ 2

p
(

σ 2|b, y
)

= (y − Xb)′ (y − Xb)

n
. (4.49)

A comparison with (4.47) shows how marginalisation “accounts for the loss of
degrees of freedom” associated with the p unknowns in b.

4.7 Example: Bayesian Learning—Inheritance of
Haemophilia

This and the example below (both taken from Sorensen and Gianola 2002) illustrate
the sequential nature of Bayesian inference. In this first example, data are discrete;
continuous data involving additive genetic values (assumed to be multivariate
normally distributed) are discussed in the next example.

The following is adapted from Gelman et al (1995). Haemophilia is a genetic
disease in humans. The locus responsible for its expression is located on the sex
chromosomes (these are denoted as XX in women and XY in men). The condition
is observed in women only in double recessive individuals .(aa) and in men that are
carriers of the a allele on the X chromosome. Suppose there is a nonhaemophiliac
woman whose father and mother are not affected by the disease, but her brother is
known to be haemophiliac. This implies that her nonhaemophiliac mother must be
heterozygote, a carrier of a. What is the probability that the propositus woman is
also a carrier of the gene? Let . θ be a random variable taking one of two mutually
exclusive and exhaustive values. Either .θ = 1 if the woman is a carrier or . θ = 0
otherwise. Since it is known that the mother of the woman must be a carrier (this
constitutes part of the system within which probabilities are assigned), the prior
distribution of . θ is

. Pr (θ = 1) = Pr (θ = 0) = 1

2
.

In the absence of additional information, it is not possible to make a very sharp
probability assignment. Suppose now that the woman has two sons, none of which
is affected. Let . Yi be a binary random variable taking the value 0 if son i is not
affected, or 1 if he has the disease. The values taken by . Y1 and . Y2 constitute the
evidence. Given that .θ = 1, the probability of the observed data is

. Pr (Y1 = 0, Y2 = 0|θ = 1)

= Pr (Y1 = 0|θ = 1) Pr (Y2 = 0|θ = 1) =
(

1

2

)2

= 1

4
.

4.7 Example: Bayesian Learning—Inheritance of Haemophilia 163

This follows because:

(a) the observations are assumed to be independent, conditionally on . θ and
(b) if the woman is a carrier .(θ = 1), there is a .50% probability that she will not

transmit the allele.

On the other hand, if she is not a carrier .(θ = 0):

. Pr (Y1 = 0, Y2 = 0|θ = 0)

= Pr (Y1 = 0|θ = 0) Pr (Y2 = 0|θ = 0) = 1 × 1 = 1,

this being so because it is impossible for a son to have the disease unless the mother
is a carrier (ignoring mutation). Hence, the data confer four times more likelihood
to the hypothesis that the mother is not a carrier. Using the information that none of
the sons is diseased, the posterior distribution of . θ is then

. Pr (θ = 1|Y1 = 0, Y2 = 0) = Pr (θ = 1) Pr (Y1 = 0, Y2 = 0|θ = 1)

Pr (Y1 = 0, Y2 = 0)

= Pr (θ = 1) Pr (Y1 = 0, Y2 = 0|θ = 1)
1
∑

i=0
Pr (θ = i)Pr (Y1 = 0, Y2 = 0|θ = i)

=
1
2
1
4

1
21 + 1

2
1
4

= 1

5

and

. Pr (θ = 0|Y1 = 0, Y2 = 0) = 1 − 1

5
= 4

5
.

A sharper probability assignment can be made now, and the combination of prior
information with the evidence suggests that the mother is probably not a carrier.
The latter possibility cannot be ruled out, however, as there is a .20% probability
that the mother is heterozygote. The posterior odds in favour of the hypothesis that
the mother is not a carrier is given by the ratio

.
Pr (θ = 0|Y1 = 0, Y2 = 0)

Pr (θ = 1|Y1 = 0, Y2 = 0)
= Pr (Y1 = 0, Y2 = 0|θ = 0)

Pr (Y1 = 0, Y2 = 0|θ = 1)

Pr (θ = 0)

Pr (θ = 1)

= 1
1
4

1
2
1
2

= 4,

where the ratio

.
Pr (θ = 0)

Pr (θ = 1)
= 1

164 4 Bayesian Methods

is called the prior odds in favour of the hypothesis. Further,

. B01 = Pr (Y1 = 0, Y2 = 0|θ = 0)

Pr (Y1 = 0, Y2 = 0|θ = 1)
= 4

is called the Bayes factor, the factor by which the prior odds about the hypotheses
are modified by the evidence and converted into posterior odds. In this example, the
odds in favour of the hypothesis that .θ = 0 relative to .θ = 1 increase by a factor
of 4 after observing two sons that are not affected by the disease. Suppose that the
woman suspected of being a carrier has n children. The posterior distribution of . θ
can be represented as

. Pr (θ = i|y) = Pr (θ = i) Pr (y|θ = i)

Pr (θ = i) Pr (y|θ = i) + Pr (θ 	= i) Pr (y|θ 	= i)
, i = 0, 1,

where .y = [Y1, Y2, ..., Yn]′. Partition the data as .y = [

y′
Ay′

B

]′, with . yA being the
records on the presence or absence of the disease for the first m progeny and with
. yB containing data on the last .n − m children. The posterior distribution is

. Pr (θ = i|y) = Pr (θ = i) p (yA|θ = i) p (yB |yA, θ = i)

1
∑

i=0
Pr (θ = i) p (yA|θ = i) p (yB |yA, θ = i)

.

Dividing the numerator and denominator by the marginal probability of observing
.yA, .p (yA), gives

. Pr (θ = i|y) =
Pr (θ = i) p (yA|θ = i)

p (yA)
p (yB |yA, θ = i)

1
∑

i=0

Pr (θ = i) p (yA|θ = i)

p (yA)
p (yB |yA, θ = i)

.

Note, however, that

.
Pr (θ = i) p (yA|θ = i)

p (yA)
= Pr (θ = i|yA)

is the posterior probability after observing . yA,which acts as a prior before observing
. yB. Then, it follows that

.Pr (θ = i|y) = Pr (θ = i|yA) p (yB |yA, θ = i)

1
∑

i=0
Pr (θ = i|yA) p (yB |yA, θ = i)

4.8 Example: Bayesian Learning—Updating Additive Genetic Values 165

illustrating the ”memory” property of Bayes theorem. If the observations are
conditionally independent, as assumed in this example, then

. p (yB |yA, θ = i) = p (yB |θ = i) .

Suppose now that the woman has a third, unaffected son. The prior distribution
now assigns probabilities of . 45 and . 15 to the events “not being a carrier” and “carrying
the allele”, respectively. The posterior probability of the woman being a carrier, after
observing a third, unaffected child, is

. Pr (θ = 1|Y1 = 0, Y2 = 0, Y3 = 0)

=
1
5 Pr (Y3 = 0|θ = 1)

1
5 Pr (Y3 = 0|θ = 1) + 4

5 Pr (Y3 = 0|θ = 0)

=
1
5
1
2

1
5
1
2 + 4

51
= 1

9
.

The same result is obtained starting from the prior before observing any children:

. Pr (θ = 1|Y1 = 0, Y2 = 0, Y3 = 0) =
1
2 .
(

1
2

)3

1
2 .
(

1
2

)3 + 1
2 . (1)

3

= 1

9
.

4.8 Example: Bayesian Learning—Updating Additive
Genetic Values

The setting is in the same spirit as in the preceding example. Here, the vector of data
.y = (

y′
1, y

′
2

)′ is collected first at stage 1, . y1, and then at stage 2, . y2. Suppose that
at stage 1 . (2), measurements .y1 .(y2) are taken on .n1 .(n2) different individuals (so
that an individual measured at any stage is not recorded at the other stage) and that
the objective is to infer their additive genetic effects .a1 .(a2). The protocol for the
evaluation in stages is as follows:

• Using data at stage 1, . y1, infer . a1 and . a2 and derive the marginal posterior
distributions .[ai |y1], .i = 1, 2. From .[a2|y1] obtain the mean and variance:

.ã2 = E (a2|y1) , C̃2 = Var (a2|y1) .

166 4 Bayesian Methods

(dropping here the conditioning on the location parameters and variances to avoid
cluttering the notation).

• At stage 2, using as prior for . a2 the posterior from stage 1, obtain

. p (a2|y2, y2) ∝ p (y2|a2) p
(

a2|ã2, C̃2

)

and finally, with knowledge of the posterior density, obtain .E (a2|y2, y2) and
.Var (a2|y2, y2).
Consider the following linear model:

.

[

y1

y2

]

=
[

11μ1

12μ2

]

+
[

a1

a2

]

+
[

e1

e2

]

, (4.50)

where . μi , .i = 1, 2, is a known location parameter common to records collected in
stages i, . 1i , .i = 1, 2, is a vector of . 1′s for stage i records and

.

[

e1

e2

]∣

∣

∣

∣

σ 2
e ∼ N

([

0
0

]

,

[

I1 0
0 I2

]

σ 2
e

)

is a vector of independently distributed residual effects, where . σ 2
e is the (known)

residual variance; . Ii is an identity matrix of order .ni × ni , .(i = 1, 2).
In the classical infinitesimal model of inheritance, the additive genetic effects

are assumed to follow the multivariate normal distribution (acting as a prior in the
Bayesian sense):

.

[

a1

a2

]∣

∣

∣

∣

σ 2
a ∼ N

([

0
0

]

,

[

A11 A12

A21 A22

]

σ 2
a

)

(4.51)

where . σ 2
a is the additive genetic variance in the population (also assumed known)

and

. A =
[

A11 A12

A21 A22

]

is the matrix of additive genetic relationships between individuals, or twice the
matrix of coefficients of coancestry. This matrix is assumed to have full rank; clones
or identical twins are not encountered.

The standard treatment using all the data y is presented first, where data
collection at stage 2 has been completed and additive genetic values are inferred for
all individuals. The posterior density of the additive genetic values can be obtained

4.8 Example: Bayesian Learning—Updating Additive Genetic Values 167

using results for the linear model derived in the example of page 156 and is given
by

. p
(

a1, a2|y1, y2, μ1, μ2, σ
2
e , σ 2

a

)

∝ exp

{

− 1

2σ 2
e

[

(a−â)′
(

I + A−1 σ 2
e

σ 2
a

)

(a−â)

]}

, (4.52)

which is the kernel of a normal process with mean

.̂a =
(

I + A−1 σ 2
e

σ 2
a

)−1 [
y1 − 11μ1

y2 − 12μ2

]

=
(

I + A−1 σ 2
e

σ 2
a

)−1

w, (4.53)

and variance-covariance matrix:

.Var
(

a1, a2|y1, y2, μ1, μ2, σ
2
e , σ 2

a

)

=
(

I + A−1 σ 2
e

σ 2
a

)−1

σ 2
e . (4.54)

Using (4.53) and (4.54), the posterior density of . a1 of the “first-stage” distribution

.

[

a1|y1, μ1, σ
2
e , σ 2

a

]

is immediately found to be

. p
(

a1|y1, μ1, σ
2
e , σ 2

a

)

∝ exp

{

− 1

2σ 2
e

[

(a1 − ã1)
′
(

I1 + A−1
11

σ 2
e

σ 2
a

)

(a1 − ã1)

]}

. (4.55)

The posterior mean at stage 1 is then

.̃a1 =
(

I1 + A−1
11

σ 2
e

σ 2
a

)−1

(y1 − 11μ1) =
(

I1 + A−1
11

σ 2
e

σ 2
a

)−1

w1 (4.56)

and the posterior covariance is

.Var
(

a1|y1, μ1, σ
2
e , σ 2

a

)

=
(

I1 + A−1
11

σ 2
e

σ 2
a

)−1

σ 2
e = ˜C1. (4.57)

The analysis in stages proceeds as follows. What can be said about all additive
genetic effects at stage 1? The joint posterior at stage 1 is

.p
(

a1, a2|y1, μ1, σ
2
e , σ 2

a

)

∝
[

p
(

y1|μ1, a1, σ
2
e

)

p
(

a1|σ 2
a

)]

p
(

a2|a1, σ 2
a

)

.

168 4 Bayesian Methods

Noting that the expression in square brackets is the posterior of . a1 after stage . 1,
.p
(

a1|y1, μ1, σ
2
e , σ 2

a

)

, one can write

. p
(

a1, a2|y1, μ1, σ
2
e , σ 2

a

)

∝ p
(

a2|a1, σ 2
a

)

p
(

a1|y1, μ1, σ
2
e , σ 2

a

)

and this is the density of a normal process because the two intervening densities are
in normal forms. Hence, the marginal distribution of . a2 at stage 1 is normal as well,
with marginal density:

. p
(

a2|y1, μ1, σ
2
e , σ 2

a

)

=
∫

p
(

a2|a1, σ 2
a

)

p
(

a1|y1, μ1, σ
2
e , σ 2

a

)

da1.

Therefore, the mean of the posterior distribution of . a2 at stage 1 is

. E
(

a2|y1, μ1, σ
2
e , σ 2

a

)

=
∫ [∫

a2p
(

a2|a1, σ 2
a

)

da2

]

p
(

a1|y1, μ1, σ
2
e , σ 2

a

)

da1

= Ea1|y1 [E (a2|a1)]
= A21A

−1
11 ã1

= A21A
−1
11

(

I1 + A−1
11

σ 2
e

σ 2
a

)−1

w1. (4.58)

This has the form of

. E (a2|a1) = E (a2) + A21A
−1
11 [a1 − E (a1)]

= A21A
−1
11 a1

but with . a1 replaced by its posterior expectation . ̃a1. Likewise,

. ˜C2 = Var
(

a2|y1, μ1, σ
2
e , σ 2

a

)

= Ea1|y1 [Var (a2|a1)] + Vara1|y1 [E (a2|a1)]
= Ea1|y1

[

A22σ
2
a − A21A

−1
11 A12σ

2
a

]

+ Vara1|y1
(

A21A
−1
11 a1

)

= A22σ
2
a − A21A

−1
11 A12σ

2
a + A21A

−1
11
˜C1A

−1
11 A12. (4.59)

The first term represents the variance of . a2 before observing anything; the second
term is the reduction in variance that would be obtained if . a1 were known and the
third term is a penalty that results from having to infer . a1 from . y1. Thus, the prior
distribution of . a2 at stage 2 (which is the posterior distribution of . a2 at stage 1) is

4.8 Example: Bayesian Learning—Updating Additive Genetic Values 169

a normal process with mean vector (4.58) and covariance matrix (4.59). Label this

distribution .

[

a2|ã2, C̃2

]

. Finally, at stage . 2, the posterior density of . a2 is

. p
(

a2|y1, y2, μ1, μ2, σ
2
e , σ 2

a

)

∝ p
(

y2|μ2, a2, σ
2
e

)

p
(

a2 |̃a2, ˜C2
)

∝ exp

[

− (y2 − 12μ2 − a2)
′ (y2 − 12μ2 − a2)

2σ 2
e

− (a2 − ã2)
′
˜C−1
2 σ 2

e (a2 − ã2)

2σ 2
e

]

. (4.60)

We know that the density is in a normal form, so the quadratics on . a2 can be
combined in the usual manner, to arrive at the mean vector and covariance matrix
of the distribution. Alternatively, noting that a normal distribution is unimodal (so
the mean is identical to the mode), the posterior mean at stage 2 can be found by
maximizing the logarithm of (4.60). Let

. F (a2) = −
[

(y2 − 12μ2 − a2)
′ (y2 − 12μ2 − a2)

2σ 2
e

+ (a2 − ã2)
′
˜C−1
2 σ 2

e (a2 − ã2)

2σ 2
e

]

so

.
∂F (a2)

∂a2
= (−1)

−2 (y2 − 12μ2 − a2) + 2˜C−1
2 σ 2

e (a2 − ã2)

2σ 2
e

.

Setting to . 0 and solving for . a2 yields

.̂a2 =
(

I2 + ˜C−1
2 σ 2

e

)−1 (

y2 − 12μ2 + ˜C−1
2 σ 2

e ã2

)

(4.61)

as mean of the posterior distribution of . a2, after stages 1 and 2. This is a matrix
weighted average of . ̃a2 and of .y2 − 12μ2. The variance-covariance matrix of the
distribution is given by

.Var
(

a2|y1, y2, μ1, μ2, σ
2
e , σ 2

a

)

=
(

I2 + ˜C−1
2 σ 2

e

)−1
σ 2

e . (4.62)

It can be verified that this is equal to the inverse of minus the matrix of second
derivatives of .F (a2) with respect to . a2. Using tedious algebra, one can also verify
that (4.61) is identical to the .a2-component of the solution to (4.53).

170 4 Bayesian Methods

4.9 A Brief Account of Bayesian Asymptotics

When the form of the posterior distribution is unknown or when limiting results
are of interest, a simple alternative is to obtain approximate Bayesian inferences
appealing to asymptotic arguments. A result from Bayesian asymptotics (first-
order approximations, and assuming a number of regularity conditions) says that
as sample size n increases, the posterior distribution of a parameter . θ converges to
a normal distribution with mean equal to the mode of .[θ |y] and asymptotic variance
equal to the inverse of minus the second derivative of the logposterior (inverse of
the observed information) evaluated at the mode . θ ,

. [θ |y] ∼ N
(

̂θ,
[

I
(

̂θ
)]−1

)

, (4.63)

where the observed information evaluated at the mode of scalar . θ is

. I
(

̂θ
) = −∂2 log (p (θ |y))

(∂θ)2

∣

∣

∣

∣

θ=̂θ
.

For large n, the amount of prior information will tend to be small compared with the
information provided by the data and is ignored in this development. The posterior
mode . ̂θ is now the ML estimator and the variance can be replaced by the inverse of
either .I (θ |y) or .i (θ) defined in (2.9) and (2.7).

A heuristic proof of (4.63) is as follows. Write .p (θ |y) = exp
[

log (p (θ |y))
]

and

expand in a Taylor series about the posterior mode of .[θ |y], . θ̂ . Consider first the
case where . θ is a scalar. This gives

. p(θ |y) = exp

[

log
(

p
(

θ̂ |y
))

+
(

θ − θ̂
)

[

∂ log (p (θ |y))

∂θ

]

θ=̂θ

+1

2

(

θ −̂θ)2
[

∂2 log (p (θ |y))

(∂θ)2

]

θ=̂θ
+ R

]

,

where R is of smaller order than .
(

θ −̂θ)2. At the mode, the first derivative is zero,
the term .log

(

p
(

̂θ |y)) does not depend of . θ and is absorbed into the normalising
constant. Then

. p (θ |y) ∝ exp

[

−1

2

(

θ −̂θ)2
[−∂2 log (p (θ |y))

(∂θ)2

]

θ=̂θ
+ R

]

In the neighbourhood of . ̂θ as .n → ∞, R becomes negligible and .p (θ |y) is
proportional to the kernel of the normal distribution (4.63). Alternatively, Fisher’s
expected information .i (θ) defined in (2.9) could be used in place of the observed
information .I (θ |y) in (4.63).

4.10 An Overview of Markov Chain Monte Carlo 171

The quality of the approximation can be improved by applying a transformation
to . θ so that the transformed parameter looks more normal (see Likelihood exercises
I, problem 2). The approximation can be accurate when the number of parameters
is small relative to the number of data points, when there are no boundary problems
associated with . θ , and of course it requires the posterior distribution to be proper.

When . θ is a vector, the same result (4.63) holds. Now . θ̂ is the vector of posterior
modes and the variance is the inverse of the matrix:

. − ∂2

∂θ∂θ ′ p (θ |y) .

The reader is referred to Bernardo and Smith (1994) and references therein for a
discussion of this delicate subject.

4.10 An Overview of Markov Chain Monte Carlo

The examples discussed so far do not pose computational challenges because
the posterior distributions have standard forms. As a consequence, one can draw
inferences analytically or using Monte Carlo methods by simulating directly from
these posterior distributions. The posterior distributions of more complex models
have seldom standard forms and so alternative methods are required. A very general
method to obtain approximate samples from posterior distributions that does not
require knowledge of their integration constant is Markov chain Monte Carlo
(McMC). McMC has been successfully applied in many branches of science since
its introduction to the statistical community in the early 1990s.

McMC algorithms are recipes for constructing a Markov chain that has the
posterior distribution of interest as its stationary distribution. The goal is to obtain
draws from this posterior distribution. Since doing this directly may be very
complicated or impossible, a Markov chain . Xi , .i = 1, 2, . . ., is constructed so
that its stationary distribution is the posterior distribution. To achieve this, the
variables . Xi are drawn from a proposal distribution, but because this is not the
same distribution as the posterior distribution, the drawn value is accepted in a
stochastic manner by means of an acceptance probability. The derivation of this
acceptance probability guarantees that the . Xi’s are an approximate Monte Carlo
sample from the stationary distribution. To meet this, the Markov chain must satisfy
a number of conditions which hold in most cases (but not always!). The samples
can be used for Monte Carlo estimation of various expectations with respect to
the stationary distribution. Thus, Monte Carlo estimates of the mean, variance or
posterior intervals can be obtained using the draws from the Markov chain.

In what follows, two algorithms are described that are special cases of a third
very general McMC algorithm. The focus is on examples that illustrate how the
algorithms are applied. Technical details, including the derivation of the acceptance

172 4 Bayesian Methods

probability of the standard and general McMC algorithms, can be found in the
appendix at the end of the chapter.

The algorithms are motivated with a simple example based on the normal linear

model .yi
iid∼ N

(

μ, σ 2
)

, where the vector of observations .y = {yi} has n elements.
The likelihood is proportional to

.y|μ, σ 2 ∼ N
(

1μ, Iσ 2
)

, (4.64)

where 1 is a vector of ones with n elements and I is an .n × n identity matrix. Is is
assumed that the prior distribution of the parameters factorises into two independent
prior distributions of the form

.μ ∝ constant, . (4.65a)

σ 2 ∝ 1

σ 2 . (4.65b)

The prior for the variance is equivalent to assuming an improper uniform prior for
. ln σ . The resulting joint posterior is

. p
(

μ, σ 2|y
)

∝ p
(

y|μ, σ 2
)

p
(

σ 2
)

p (μ)

∝ exp

⎡

⎢

⎢

⎣

−

n
∑

i=1
(yi − μ)2

2σ 2

⎤

⎥

⎥

⎦

(

σ 2
)−(n

2+1)
. (4.66)

For this particular model, there is no need to use McMC because explicit solutions
for .p (μ|y) and for .p

(

σ 2|y) are available. However, an McMC approach will be
followed here.

4.11 The Metropolis-Hastings Algorithm

Two strategies are described. In the first, all the parameters of the model are updated
simultaneously, while in the other, parameters are updated one at a time.

Joint Updating

Denote the target distribution by . π (this is typically the posterior distribution) and
let x be the current realisation of the chain. In the Metropolis-Hastings algorithm,
a proposal Y is extracted from an arbitrary density .q (·|x) that may depend on x.

4.11 The Metropolis-Hastings Algorithm 173

Then the proposal Y is accepted with probability .α (x, Y) given by (4.67). More

specifically, given that at cycle t , .X(t) = x =
(

x
(t)
1 , x

(t)
2 , . . . , x

(t)
m

)

, one cycle of the

algorithm is as follows:

1. Generate Y from the proposal density .q (·|x).
2. Generate a uniform number U on .[0, 1].
3. If

.U < α (x, Y) = min

{

1,
π (Y) q (x|Y)

π (x) q (Y |x)

}

(4.67)

then .X[t+1] = Y . Otherwise .X[t+1] = x.

This is repeated until enough samples from the posterior distribution have been
collected. I return shortly to evaluate what is “enough”.

In this formulation of the Metropolis-Hastings algorithm, all the components of
.X(t) are updated if the proposal is accepted.

Joint Updating: Example Using the Normal Model (4.64) and (4.65)

Let . Yμ and .Yσ 2 denote the proposed values for . μ and for . σ 2, so that

. Y = (

Yμ, Yσ 2

)

,

and the state of the chain at stage t is

. X(t) =
(

μ(t), σ 2(t)
)

= x.

Then,

. π (Y) = exp

⎡

⎢

⎢

⎣

−

n
∑

i=1

(

yi − Yμ

)2

2Yσ 2

⎤

⎥

⎥

⎦

(

Yσ 2

)−(n
2+1)

,

π (x) = exp

⎡

⎢

⎢

⎣

−

n
∑

i=1

(

yi − μ(t)
)2

2σ 2(t)

⎤

⎥

⎥

⎦

(

σ 2(t)
)−(n

2+1)
.

Assume that a .N (m,D) random walk proposal is used for generating

.
(

lnYσ 2 , Yμ

)

,

174 4 Bayesian Methods

with

. m =
(

ln σ 2, μ
)

,

. D =
[

kσ 2 0
0 kμ

]

,

and where .kσ 2 and . kμ are user-tuned variance parameters for . σ 2 and for . μ. Then
(see NOTE below: if . σ 2 (a variance) is a variable that is restricted to be positive and
.ln σ 2 is normally distributed, then . σ 2 lognormally distributed),

. q (x|Y) = q
(

μ(t), σ 2(t)|Yμ, Yσ 2

)

= q
(

μ(t)|Yu

)

q
(

σ 2(t)|Yσ 2

)

,

where

. q
(

σ 2(t)|Yσ 2

)

= (

2πkσ 2

)− 1
2 exp

[

−
(

ln σ 2(t) − lnYσ 2

)2

2kσ 2

]

,

q
(

μ(t)|Yμ

)

= (

2πkμ

)− 1
2 exp

[

−
(

μ(t) − Yμ

)2

2kμ

]

.

Similarly,

. q (Y |x) = q
(

Yμ, Yσ 2 |μ(t), σ 2(t)
)

= q
(

Yu|μ(t)
)

q
(

Yσ 2 |σ 2(t)
)

,

where

.q
(

Yσ 2 |σ 2(t)
)

= (

2πkσ 2

)− 1
2 exp

[

−
(

lnYσ 2 − ln σ 2(t)
)2

2kσ 2

]

1

Yσ 2
, . (4.68)

q
(

Yu|μ(t)
)

= (

2πkμ

)− 1
2 exp

[

−
(

Yμ − μ(t)
)2

2kμ

]

. (4.69)

Manipulating these expressions shows that the proposal .Y = (

Yμ, Yσ 2

)

is accepted
with probability given by (4.67), equal to

.
π (Y) q (x|Y)

π (x) q (Y |x)
=

= exp

[
∑n

i=1

(

yi − μ(t)
)2

2σ 2(t)
−
∑n

i=1

(

yi − Yμ

)2

2Yσ 2

]

(

Yσ 2

σ 2(t)

)− n
2

. (4.70)

4.11 The Metropolis-Hastings Algorithm 175

In a programming environment in order to avoid under- or overflows, one computes

. ln
π (Y) q (Y ; x)

π (x) q (x;Y)
=

=
[
∑n

i=1

(

yi − μ(t)
)2

2σ 2(t)
−
∑n

i=1

(

yi − Yμ

)2

2Yσ 2

]

+ n

2

(

ln σ 2(t) − lnYσ 2

)

and in the final stage

.
π (Y) q (x|Y)

π (x) q (Y |x)

is calculated.
The user must choose the tuning parameters judiciously because this has a strong

influence on the behaviour of the chain.

NOTE on the Theory of Transformations of Random Variables

Let .X = ln σ 2. Assume

.X ∼ N (μ, v) . (4.71)

Then .Y = σ 2 = expX follows a lognormal distribution

. Y = σ 2 = expX ∼ lnN (μ, v) , 0 < Y < ∞, −∞ < μ < ∞, v > 0,
(4.72)

with density

.p (y) = (2πv)−
1
2 exp

(

− 1

2v
(ln y − μ)2

)

1

y
. (4.73)

To show this, I use the theory of transformation of random variables. If X has
probability density function .pX (x), that is

. X ∼ pX (x) ,

and .Y = f (X) such that the inverse function .f −1 exists, from which X can be
retrieved

.X = f −1 (Y) ,

176 4 Bayesian Methods

then the probability density function of Y , .pY (y) is

.pY (y) = pX

(

f −1 (Y)
)

∣

∣

∣

∣

df −1 (Y)

dY

∣

∣

∣

∣

, (4.74)

where .
∣

∣df −1 (Y) /dY
∣

∣ is the absolute value of the Jacobian of the transformation.
The notation .pX

(

f −1 (Y)
)

implies that one uses the form of the density of X (in the
example, a .N (μ, v)) and replaces in this density, x by .f −1 (y). In the present case,
the objective is to derive the distribution of the random variable .Y = expX = σ 2.
Then,

. Y = f (X) = exp (X) �⇒ X = f −1 (Y) = lnY,

∣

∣

∣

∣

df −1 (Y)

dY

∣

∣

∣

∣

= 1

Y
.

Using (4.74)

. pY (y) = (2πv)−
1
2 exp

[

− (ln y − μ)2

2v

]

1

y
, 0 < Y < ∞, −∞ < μ < ∞,

v > 0, (4.75)

which is the density of the lognormal distribution with parameters . μ and v.

Single-Site Updating

For a single-site updating Metropolis-Hastings algorithm, the components . x
(t)
1 , x

(t)
2 ,

. . . , x
(t)
m are updated individually in a random or systematic order. Typically, a

systematic order is chosen starting with . x(t)
1 , then .x(t)

2 and so on, until the last

component .x(t)
m is updated.

Assume that the current state is .X(t) =
(

x
(t)
1 , x

(t)
2 , . . . , x

(t)
m

)

= x and that the

j th component is to be updated. Then the next stage of the chain .X(t+1) only differs
from .X(t) on the j th component that is generated as follows:

1. Generate a proposal . Yj from the proposal density .qj (·|x). Let

. Y =
(

x
(t)
1 , x

(t)
2 , . . . , x

(t)
j−1, Yj , x

(t)
j+1, . . . , x

(t)
m

)

.

2. Generate a uniform number U on .[0, 1].

4.11 The Metropolis-Hastings Algorithm 177

3. If

.U < αj (x, Y) = min

{

1,
π (Y) qj

(

xj |Y
)

π (x) qj

(

Yj |x
)

}

, (4.76)

then .X(t+1) = Y . Otherwise .X(t+1) = x.

Single-Site Updating: Example Using the Normal Model (4.64), (4.65)

1. Updating σ 2.
As before, the state of the chain at stage t is

. X(t) =
(

μ(t), σ 2(t)
)

= x,

but now

. Y =
(

μ(t), Yσ 2

)

.

Then,

. π (Y) ∝ exp

(

−
∑n

i=1

(

yi − μ(t)
)2

2Yσ 2

)

(

Yσ 2

)−(n
2+1)

,

and

. π (x) ∝ exp

(

−
∑n

i=1

(

yi − μ(t)
)2

2σ 2(t)

)

(

σ 2(t)
)−(n

2+1)
.

The proposal density of Yσ 2 is

.qj

(

Yj |x
)

= qσ 2

(

Yσ 2 |σ 2(t)
)

= (

2πkσ 2

)− 1
2 exp

[

−
(

lnYσ 2 − ln σ 2(t)
)2

2kσ 2

]

1

Yσ 2
.

178 4 Bayesian Methods

Likewise,

. qj

(

xj |Y
) =

qσ 2

(

σ 2(t)|Yσ 2

)

= (

2πkσ 2

)− 1
2 exp

[

−
(

ln σ 2(t) − lnYσ 2

)2

2kσ 2

]

1

σ 2(t)
.

Manipulating these expressions, it is easy to show that the proposal is accepted
with probability (4.76), where

.
π (Y) qj

(

xj |Y
)

π (x) qj

(

Yj |x
)

= exp

[
∑n

i=1

(

yi − μ(t)
)2

2σ 2(t)
−
∑n

i=1

(

yi − μ(t)
)2

2Yσ 2

]

(

Yσ 2

σ 2(t)

)− n
2

. (4.77)

In practice and in order to avoid under- or overflows, one computes

. ln
π (Y) qj

(

xj |Y
)

π (x) qj

(

Yj |x
)

=
[
∑n

i=1

(

yi − μ(t)
)2

2σ 2(t)
−
∑n

i=1

(

yi − μ(t)
)2

2Yσ 2

]

+ n

2

(

ln σ 2(t) − lnYσ 2

)

and at the final stage

.
π (Y) qj

(

xj |Y
)

π (x) qj

(

Yj |x
)

is calculated.
2. Updating μ.

The state of the chain at stage t is again

. X(t) =
(

μ(t), σ 2(t)
)

= x,

but now,

.Y =
(

Yμ, σ 2(t)
)

,

π (Y) ∝ exp

[

−
∑n

i=1

(

yi − Yμ

)2

2σ 2(t)

]

(

σ 2(t)
)−(n

2+1)
,

4.11 The Metropolis-Hastings Algorithm 179

π (x) ∝ exp

[

−
∑n

i=1

(

yi − μ(t)
)2

2σ 2(t)

]

(

σ 2(t)
)−(n

2+1)
.

The proposal densities are

. qj

(

Yj |x
)

= qμ

(

Yμ|μ(t)
)

= (

2πkμ

)− 1
2 exp

[

−
(

Yμ − μ(t)
)2

2kμ

]

,

and

. qj

(

xj |Y
)

= qμ

(

μ(t)|Yμ

)

= (

2πkμ

)− 1
2 exp

[

−
(

μ(t) − Yμ

)2

2kμ

]

.

These densities are symmetric and therefore cancel each other in the ratio. The
proposal is accepted with probability (4.76), where

.
π (Y) qj

(

xj |Y
)

π (x) qj

(

Yj |x
)

= exp

[
∑n

i=1

(

yi − μ(t)
)2

2σ 2(t)
−
∑n

i=1

(

yi − Yμ

)2

2σ 2(t)

]

.

NOTE: A slightly different implementation of the algorithm is to parametrise the
model in terms of ln σ 2. Then the posterior is now proportional to

. exp

[

−
∑n

i=1

(

yi − μ(t)
)2

2σ 2

]

(

σ 2
)− n

2
,

qσ 2

(

Yσ 2 | ln σ 2(t)
)

is given by

.
(

2πkσ 2

)− 1
2 exp

[

−
(

lnYσ 2 − ln σ 2(t)
)2

2kσ 2

]

,

and one can verify that the acceptance probability for Yσ 2 is the same as in (4.77).

180 4 Bayesian Methods

4.12 The Gibbs Sampling Algorithm

The Gibbs sampler is a very popular McMC algorithm because of its computational
simplicity. The mechanics is as follows. Consider the vector of parameters of a
model .

(

θ1, θ2, . . . , θp

)

, with posterior density .p
(

θ1, θ2, . . . , θp|y) known up to
proportionality. Assume that the user supplies “legal” starting values

.

(

θ
(0)
1 , θ

(0)
2 , . . . , θ (0)

p

)

,

in the sense that .p
(

θ
(0)
1 , θ

(0)
2 , . . . , θ

(0)
p |y

)

> 0. The implementation of the Gibbs

sampler consists of iterating through the loop:

. draw θ
(1)
1 from p

(

θ1|θ(0)
2 , . . . , θ (0)

p , y
)

,

draw θ
(1)
2 from p

(

θ2|θ(1)
1 , θ

(0)
3 , . . . , θ (0)

p , y
)

,

draw θ
(1)
3 from p

(

θ3|θ(1)
1 , θ

(1)
2 , θ

(0)
4 , . . . , θ (0)

p , y
)

,

...

draw θ(1)
p from p

(

θp|θ(1)
1 , . . . , θ

(1)
p−1, y

)

,

draw θ
(2)
1 from p

(

θ1|θ(1)
2 , . . . , θ (1)

p , y
)

,

...

and so on.

After an initial period during which samples are dependent on the starting
value (burn-in period), the draws .θ(i)

1 , θ
(i)
2 , . . . , θ

(i)
p , for sufficiently large i, when

the sampler converges, are regarded as samples from the normalised posterior
distribution with density

. p
(

θ1, θ2, . . . , θp|y)/
∫

p
(

θ1, θ2, . . . , θp|y) dθ1 . . . dθp.

The coordinate .θ(i)
j is regarded as a draw from its marginal posterior distribution

with density

. p
(

θj |y
)/

∫

p
(

θj |y
)

dθj .

4.12 The Gibbs Sampling Algorithm 181

In more general terms, let

. θ−i = (

θ1, . . . , θi−1, θi+1, . . . , θp

)

be the vector of dimension .(p − r), .p > r , .r ≥ 1, which is equal to . θ with its ith
component, . θi , deleted and where r is the number of elements in . θi . The density of
the fully conditional posterior distribution (fcpd) of . θi is

. p (θi |θ−i , y) = p
(

θ1, . . . , θi−1, θi , θi+1, . . . , θp|y)
∫

p
(

θ1, . . . , θi−1, θi , θi+1, . . . , θp|y) dθi

∝ p
(

θ1, . . . , θi−1, θi , θi+1, . . . , θp|y) . (4.78)

In many applications, .r = 1 and parameters are updated one at a time. In general,
single-site updating leads to moves along each coordinate, whereas updating several
components in a block allows for more general moves. Joint updating, which
incorporates information on the correlation structure among the components in
the joint conditional posterior distribution, can result in faster convergence when
correlations are strong (Liu et al 1994). A computational strategy that makes it
feasible to draw the entire vector . θ for some Gaussian linear models is described
in Sorensen and Gianola (2002), page 584, originally proposed by García-Cortés
and Sorensen (1996).

The Gibbs sampler is a special case of the more general Metropolis-Hastings
algorithm. In the Gibbs sampler, the proposals (drawn from the fully conditional
posterior distributions) are always accepted (see the NOTE below). It is simpler
to implement than the Metropolis-Hastings algorithm because it does not require
tuning parameters. However, it requires knowledge of the form of the fully
conditional posterior distributions.

Example Using the Normal Model
Consider the normal model defined by the Eqs. (4.64) and (4.65). The fully
conditional posterior distributions with densities .p

(

μ|σ 2, y
)

and .p
(

σ 2|μ, y
)

are
derived using the posterior distribution (4.66) as the starting point. To obtain
.
[

μ|σ 2, y
]

, one extracts from the posterior distribution (4.66) those terms that
include . μ. This results in

.p
(

μ|σ 2, y
)

∝ exp

⎛

⎜

⎜

⎝

−

n
∑

i=1
(yi − μ)2

2σ 2

⎞

⎟

⎟

⎠

= exp

(

− 1

2σ 2

[

n (y − μ)2
]

)

182 4 Bayesian Methods

which is the kernel of a normal distribution with mean . y and variance . σ 2/n.

Therefore,

.μ|σ 2, y ∼ N

(

y,
σ 2

n

)

. (4.79)

To obtain .
[

σ 2|μ, y
]

, one extracts from the posterior distribution (4.66) those
terms that include . σ 2. This results in

. p
(

σ 2|μ, y
)

∝ exp

⎛

⎜

⎜

⎝

−

n
∑

i=1
(yi − μ)2

2σ 2

⎞

⎟

⎟

⎠

(

σ 2
)−(n

2+1)

which seen as a function of . σ 2 is the kernel of a scale-inverted chi-square
distribution with n degrees of freedom and scale

. s2 =

n
∑

i=1
(yi − μ)2

n
.

Therefore,

.σ 2|μ, y ∼ ns2χ−2
n . (4.80)

NOTE: The Acceptance Probability of the Gibbs Sampler Is Equal to 1
Let the state of the chain at stage t be

. Xt =
(

μ(t), σ 2(t)
)

= x

and let

. Y =
(

μ(t), Yσ 2

)

.

Then

. π (Y) = π
(

μ(t), Yσ 2 |y
)

∝ exp

(

−
∑n

i=1

(

yi − μ(t)
)2

2Yσ 2

)

(

Yσ 2

)−(n
2+1)

,

and

.π (x) = π
(

μ(t), σ 2(t)|y
)

∝ exp

(

−
∑n

i=1

(

yi − μ(t)
)2

2σ 2(t)

)

(

σ 2(t)
)−(n

2+1)
.

4.13 Output Analysis 183

The proposal density of .Yσ 2 is

. q
(

Yσ 2 |x) = π
(

Yσ 2 |μ(t), y
)

and

. q
(

x|Yσ 2

) = π
(

σ 2(t)|μ(t), y
)

.

Then the acceptance probability for updating . σ 2 is

.
π (Y) q

(

x|Yσ 2

)

π (x) q
(

Yσ 2 |x) = π (Y)

π (x)

π
(

σ (t), μ(t)|y)

π
(

μ(t)|y)
π
(

μ(t)|y)

π
(

Yσ 2 , μ(t)|y)

= π (Y)

π (x)

π (x)

π
(

μ(t)|y)
π
(

μ(t)|y)
π (Y)

= 1.

A similar result is obtained for the acceptance probability for updating . μ.

4.13 Output Analysis

McMC is used to obtain approximate samples from posterior distributions. The
information about unknowns contained in these samples depends on their size
(length of the chain) and on the degree of autocorrelation among sampled values.
When a particular feature from a posterior distribution is estimated from the
samples, the uncertainty associated with the McMC estimate is the Monte Carlo
error of estimation. This is a classical frequentist sampling uncertainty that depends
on the length of the chain and on the degree of autocorrelation among the samples.
In contrast, the posterior uncertainty, given the model, depends on the data. It is
important to distinguish between these two sources of uncertainty.

There is a large literature on McMC convergence diagnosis and output analysis.
A useful practical reference is Kass et al (1998). Here, the focus is on a few
important issues of output analysis.

The first is to determine the length of the so-called burn-in period. This is related
to the question of convergence of the sampled values to the target distribution.
The chain is initialised with values of parameters that are not drawn from the
posterior distribution. Since convergence, if reached, to the posterior distribution
is gradual, one must decide how many of the initial values must be discarded in
order to include only representative ones to draw Monte Carlo inferences. Figure 4.1
provides an illustration. The figure displays traceplots from the simulated values
from .[μ|y] (left panel) and from .

[

σ 2|y] (right panel) obtained with the single-
site Metropolis-Hastings algorithm applied to model (4.64), (4.65a), (4.65b). Such
a traceplot discloses information about the burn-in period and at the same time

184 4 Bayesian Methods

0 2000 4000 6000 8000 10000

10
20

30
40

50

Sample Number

0 2000 4000 6000 8000 10000

0
50

0
10

00
15

00

Sample Number

Fig. 4.1 Draws from the posterior distribution .[μ|y] (left panel) and from .
[

σ 2|y] (right panel)
obtained from the single-site Metropolis-Hastings algorithm

provides an informal check for convergence. The values of . μ and . σ 2 start far
away from the support of the respective marginal posterior distributions but seem to
reach convergence after a few iterations (burn-in). There are a number of methods
that attempt to provide more formal checks of convergence than the “eye-balling”
approach displayed by traceplots. None can guarantee convergence but can flag lack
of convergence. A useful reference is Cowles and Carlin (1996).

A second concern is to determine the degree of autocorrelation of the sampled
values and the so-called effective chain length or effective sample size. These
determine the McMC-sample variance or MC variance of estimates of features of
posterior distributions. Because the number of sampled values from the estimated
posterior distribution is finite, there is always sampling uncertainty associated
with an estimator of features of posterior distributions. In principle, the sampling
uncertainty can be made as small as desired by taking a sufficiently large number of
samples.

The MC variance can be estimated by running several independent chains and
then calculating the empirical, between-chain variance of the estimates obtained for
each chain. Since this is often computationally expensive, one resorts to theoretical
estimators of MC variance. These estimators account for the autocorrelation among
the samples taken from the target distribution. Useful references are Ripley (1987),
Geyer (1992) and Chen et al (2000).

Consider the output of a Markov chain consisting of m samples . X(1), X(2), . . . ,

X(m), where the .X(i) are approximate draws from the posterior distribution .[X|y],
where X is a vector of parameters, y is a vector of data and m is the length of
the chain. The goal is to estimate the mean of some function of X, .h(X), over the
posterior distribution of X, with density .p(x|y):

.E [h (X) |y] =
∫

h (x) p (x|y) dx

4.13 Output Analysis 185

using

.μ̂m = 1

m

m
∑

i=1

h
(

X(i)
)

. (4.81)

Here, .h(X) is any function of X with finite expectation. If h is the identity
function, (4.81) retrieves an estimator of the mean.

A central limit theorem asserts

.
√

m (μ̂m − E [h (X) |y]) D→ N
(

0, Vasymp
)

, (4.82)

where .Vasymp is the asymptotic variance of X. A little more informally, this can be
written as

. ̂μm ∼ N
(

E [h (X) |y] , Vasymp /m
)

.

From (4.82) an approximate .95% confidence interval for the unknown true value
.E [h (X) |y] is .μ̂m ± 1.96

√

Vasymp/
√

m. With independent sampling, measures of
sampling uncertainty are obtained by replacing the unknown .Vasymp by the sample
variance of X.

The sampling variance of the estimator (4.81) is .Vasymp/m where

. Vasymp = lim
m→∞Var

(√
mμ̂m

)

= Var [h (X) |y]
⎛

⎝1 + 2
∞
∑

j=1

ρj

⎞

⎠ . (4.83)

(see NOTE 2 below) and .Var [h (X) |y] is the posterior variance of .h (X) under the
limiting distribution. Above,

. ρj = Cov
[(

h
(

X(i)
)

, h
(

X(i+j)
)) |y]

Var
[

h
(

X(i)
) |y]

= γ (j)

γ (0)
, j = 1, 2, . . .

for all i, where i refers to the ith draw and .ρj is the lag.−j autocor-
relation of .X(1), X(2), . . . , X(m). The above assumes that, under stationar-
ity, the lag-covariance is constant for constant lag j (e.g. for .j = 2,
.γ (2) = Cov

[(

h
(

X(1)
)

, h
(

X(3)
)) |y] = Cov

[(

h
(

X(2)
)

, h
(

X(4)
)) |y]) and that

.Cov
[(

h
(

X(i)
)

, h
(

X(i)
)) |y] = Var

[

h
(

X(i)
) |y] = γ (0).

186 4 Bayesian Methods

NOTE 1

The important property defined by expression (4.81) is used repeatedly in the book.
For example, (4.81) is an estimator of

• the posterior mean if .h (X) = X;
• the posterior variance if .h (X) = [X − E (X|y)]2. The estimator of the posterior

variance is

.
1

m

m
∑

i=1

[

X(i)2 − [

̂E (X|y)
]2
]

,

where .̂E (X|y) = 1
m

∑

i X(i);
• the posterior probability that .X ∈ A, if .h (X) = I (X ∈ A), such that

. Pr (X ∈ A|) =
∫

I (X ∈ A)p (X|y) dX.

Here, the estimator is .
∑m

i=1 I
(

X(i) ∈ A
)

/m. As a special case, the cumulative
distribution function is estimated:

. ̂F (t) = 1

m

n
∑

i=1

I
(

X(i) < t
)

.

Therefore, the estimator of the posterior probability that .t1 < X < t2 is

. ̂Pr (t1 < X < t2|y) = 1

m

[

m
∑

i=1

I
(

t1 < X(i) < t2

)

]

;

• the posterior predictive density:

. p (z|y) =
∫

p (z|X, y) p (X|y) dX,

where, usually, the form of the problem is such that .p (z|X, y) = p (z|X). In
this setting, .h (X) = p (z|X), and the estimator of the predictive density is
.
∑m

i=1 p
(

z|X(i)
)

/m.

This important property of McMC is used to obtain Monte Carlo estimates of the
marginal posterior distribution of mean squared errors and of false discovery rate.

4.13 Output Analysis 187

NOTE 2

To arrive at (4.83), one writes

. mVar (μ̂m) = m−1
∑

i,j

Cov
[(

h
(

X(i)
)

, h
(

X(j)
))

|y
]

= Var [h (X) |y]
⎡

⎣1 + 2
m−1
∑

j=1

(

1 − j

m

)

ρj

⎤

⎦ . (4.84)

When .ρj = 0 for all j ,

. Var (μ̂m) = Var [h (X) |y]
m

the familiar equation for the variance of the sample mean (assuming independent

samples). The term in square brackets in (4.84) converges to .
[

1 + 2
∑∞

j=1 ρj

]

as

.m → ∞, in which case

. mVar (μ̂m)
lim m→∞

= Vasymp

= Var [h (X) |y]
⎡

⎣1 + 2
∞
∑

j=1

ρj

⎤

⎦

= Var [h (X) |y] τ,

where .Var
[

h
(

X(i)
) |y] = Var [h (X) |y] for all i, the posterior variance that,

given the model, depends on data y and .τ = 1 + 2
∑∞

j=1 ρj is the integrated
autocorrelation that is modulated by the McMC method used. The effective sample
size is

. meff = m

τ
,

which is equal to m if the draws from .[X|y] are uncorrelated. It is important to dis-
tinguish between .Var [h (X) |y], the variance of .h (X) under the limiting distribution
.[X|y] and .Var (√mμ̂m

)

the limiting variance of .
√

mμ̂m, equal to .Var [h (X) |y] τ .
The former is associated with the posterior uncertainty of .h(X), while the latter
is associated with the sampling scheme from the posterior distribution. Under
independent sampling, .τ = 1 and therefore both are equal to .Var [h (X) |y].

There are a number of methods that can be used to estimate the Monte Carlo
variance of features from posterior distributions, two of which are sketched below.

188 4 Bayesian Methods

Geyer’s Estimator of the Monte Carlo Variance

Geyer (1992) suggests the following estimator of Var
(

μ̂m

)

based on time-series
theory (a classical reference is Priestley 1981). The lag−t autocovariance is

. γ (t) = Cov
[(

h
(

X(i)
)

, h
(

X(i+t)
))

|y
]

,

which under stationarity is the same for all i. The estimator is

. ̂γ (t) = 1

m

m−t
∑

i=1

{[

h
(

X(i)
)

− μ̂m

] [

h
(

X(i+t)
)

− μ̂m

]}

.

A Monte Carlo estimator of the asymptotic variance is

.̂Vasymp = γ̂ (0) + 2
i=2δ+1
∑

i=1

γ̂ (i) (4.85)

and a Monte Carlo estimator of the variance of (4.81) is

.̂Var (μ̂m) = 1

m

[

γ̂ (0) + 2
i=2δ+1
∑

i=1

γ̂ (i)

]

(4.86)

where δ is chosen such that it is the largest integer satisfying

. ̂γ
(

2δ′)+ γ̂
(

2δ′ + 1
)

> 0, δ′ = 0, 1, . . . , δ.

Above,

. ̂γ (0) = ̂Var
[

h
(

X(i)|y
)]

= ̂Var [h (X) |y] , for all i.

An estimator of the integrated autocorrelation is obtained from (4.86) as follows:

. ̂Var (μ̂m) = γ̂ (0)

m

[

1 + 2
i=2δ+1
∑

i=1

γ̂ (i)

γ̂ (0)

]

= γ̂ (0)

m

[

1 + 2
i=2δ+1
∑

i=1

ρ̂ (i)

]

. (4.87)

4.13 Output Analysis 189

Therefore,

. ̂τ = 1 + 2
i=2δ+1
∑

i=1

ρ̂ (i)

= m̂Var (μ̂m)

γ̂ (0)
. (4.88)

The estimator of effective sample size is

. ̂meff = m

τ̂

= γ̂ (0)
̂Var (μ̂m)

. (4.89)

The Method of Batching

A popular method of estimating Monte Carlo variances that is easy to implement
is known as “batching” (Hastings 1970). It is based on the idea that if individual
draws .X(j) are correlated, grouping successive draws into b batches or groups of
size s each and computing the raw averages will lead to b batch means that are less
strongly inter-correlated than the original draws. This can be so, provided that s is
chosen appropriately. The larger the autocorrelation among samples, the larger s
must be. Suppose that a chain of total length m is divided into b batches each of size
s. Let the average of the ith batch be

. xi = 1

s

s
∑

j=1

X(j), i = 1, 2, . . . , b.

Here, .h
(

X(j)
)

is some feature of the posterior distribution evaluated at the sampled
value .X(j). The batch estimator of the variance of (4.81), assuming that s is large
enough so that the . x′

is are uncorrelated, is equal to

.̂Varb (μ̂m) =

b
∑

i=1
(xi − μ̂m)2

b (b − 1)
. (4.90)

An estimate of the batch-effective chain length can be obtained as

.m̂eff_b =

m
∑

i=1

[

X(i) − μ̂m

]2

(m − 1) ̂Varb (μ̂m)
. (4.91)

190 4 Bayesian Methods

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C
F

Series y

0 5 10 15 20

−
0.
2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag
A
C
F

Series avrb

Fig. 4.2 Left: autocorrelations between samples of . yi versus lag; right: autocorrelations between
batch means

When the samples are independent, .s = 1, .b = m, .xi = X(i) for all i and . m̂eff_b =
m.

If the autocorrelation among the samples of the chain is very high (.> 0.95),
estimator (4.86) seems to be preferred over (4.90).

Example: A Simulated Autoregressive Process

These concepts are illustrated with an autoregressive model that generates draws
(vector y) of length .10,000 mimicking the correlated structure of a Monte Carlo
Markov chain. A plot of the autocorrelations among the elements of y versus lag
gives a visual impression of the output. The R function acf(y) (see the bottom of
the second R-code below) is used to generate Fig. 4.2 (left panel). The figure
indicates that at a lag of approximately 20, the autocorrelation among the . y′s
vanishes.

The R-code below has two sections. The first generates the .10,000 correlated
samples y using an autocorrelation equal to . 0.8. The second section computes the
Monte Carlo variance of the mean of y, based on (4.86), the effective chain length
based on (4.89) and the integrated autocorrelation based on (4.88).

The R-code is as follows:

CODE0401
CODE FOR THE MC VARIANCE TESTED ON
#A FIRST-ORDER AUTOREGRESSIVE PROCESS WITH CORRELATION RHO
rm(list=ls()) # Clear the workspace
set.seed(1237)
#GENERATE DATA: AUTOREGRESSIVE PROCESS WITH CORRELATION RHO

4.13 Output Analysis 191

ns <- 10000
y <- rep(NA,ns)
rho<-0.8
sum <- 0
y[1] <- rnorm(1,0,1)
for(i in 2:ns)
{

y[i] <- rho*y[i-1] + rnorm(1,0,1)
sum <- sum + y[i]*y[i-1]

}
cov <- sum/ns
rhohat <- cov/var(y)
muhat <- mean(y)
gama0 <- var(y)
rhohat

[1] 0.7971166

CODE FOR THE MC VARIANCE BASED ON GEYER
svar<-var(y)*(ns-1)/ns
tau<-1
tausum<-0
ptm <- proc.time()
for(i in 0:ns)
{

gamaj<-0.0
gamak<-0.0
j<-2*i
k<-(2*i)+1

FASTER CODE: JUMP THE LOOP AND USE FUNCTION ACF
for (ii in 1:(ns-j))
{
cov<-(y[ii]*y[ii+j]-mean(y)*(y[ii]+y[ii+j])+mean(y)*mean(y))
gamaj<-gamaj+cov
}
for(ii in 1:(ns-k))
{
gamak<-gamak+(y[ii]*y[ii+k]-mean(y)*(y[ii]+y[ii+k])+

mean(y)*mean(y))
}
gamaj<-gamaj/ns
gamak<-gamak/ns

lag1<-j
lag2<-k
#USE THE R-FUNCTION ACF TO COMPUTE AUTOCORRELATIONS
cov1<-acf(y,type="covariance",lag.max=lag1,plot=FALSE)
cov2<-acf(y,type="covariance",lag.max=lag2,plot=FALSE)
gamaj<-cov1$acf[lag1+1] gamak<-cov2$acf[lag2+1]
tau<-gamaj+gamak
if(tau<0)
{

break
}
tausum<-tausum+tau

}
proc.time()-ptm

192 4 Bayesian Methods

user system elapsed
0.06 0.02 0.08

muhat

[1] -0.003605249

gama0

[1] 2.723108

varch<- -svar+2*tausum
varch

[1] 26.93673

mcvar<-varch/ns
mcvar

[1] 0.002693673

efchsize<-svar/mcvar
efchsize

[1] 1010.826

integrautoc<-varch/svar
integrautoc

[1] 9.892896

The estimated feature is the mean of the distribution:

. μ̂m = 1

m

m
∑

i=1

X(i) = −0.0036

where .m = 10,000 is the length of the Markov chain. Using the method of Geyer,

.̂Vasymp = ̂Var
(

X(i)|y
)

τ̂ = 2.72 × 9.89 = 26.94,

4.13 Output Analysis 193

̂Var
(

μ̂m

) = 0.0027,

m̂eff = 1011,

τ̂ = 9.89.

where .̂Var
(

X(i)|y) is the Monte Carlo estimate of the variance of the posterior
distribution .[X|y].

The R-code below uses the method of batching to compute the Monte Carlo
variance of the mean of y, based on (4.90) and the effective chain length based
on (4.91). The batch size was set equal to 100. Figure 4.2, right panel, is generated
using acf(avrb) and shows that batch means are effectively uncorrelated. The
output is printed at the bottom of the code and compares well with the previous
results:

#CODE FOR THE MC VARIANCE BASED ON BATCHING
#choose size of batch s
s<-100
x<-matrix(y,ncol=s, byrow=FALSE)
avrb<-apply(x,2,mean)
mcvarb<-var(avrb)/length(avrb)
efchsizebatch<-var(y)/mcvarb
mcvarb

[1] 0.002656311

efchsizebatch

[1] 1025.147

#PLOT THE AUTOCORRELATION VS LAG USING R-FUNCTION acf
#require(graphics)
#acf(y)
#acf(avrb)

The top code was also executed simulating again .10,000 samples with an
autocorrelation now of .ρ = 0.5. The Geyer statistics for this run are

.̂Vasymp = 3.97

τ̂ = 3.03

̂Var
(

μ̂m

) = 0.0004,

m̂eff = 3294,

τ̂ = 3.03.

194 4 Bayesian Methods

4.14 Appendix: A Closer Look at the McMC Machinery

The appendix provides a brief description of the Metropolis-Hastings algorithm
in its standard and general form. The intention is to provide an intuition for the
rationale behind the form of the algorithm. The material may seem a little daunting
at first sight, particularly due to the nature of the ideas than the mathematics. In fact,
the appendix uses nuts and bolts mathematics and basic theory of transformation of
random variables. Much of what is written below is taken from Waagepetersen and
Sorensen (2001), where more details and an example can be found. A benchmark
paper for the general Metropolis-Hastings algorithm is Green (1995); the paper
is technical and its detailed understanding requires command of measure theory.
An accessible overview of discrete and continuous Markov chains can be found in
Chapters 10 and 11 of Sorensen and Gianola (2002).

The Standard Metropolis-Hastings Ratio

Consider a finite-state discrete Markov chain with state space S. The Markov chain
is defined by a sequence of discrete random variables . Xi , .i = 1, 2, . . . each of which
can take one of N values in the finite set S. The subscript i in . Xi can be interpreted
as stages or time periods, and the initial stage is .i = 0. These random variables . Xi

satisfy the Markov property:

. Pr (Xi |Xi−1, Xi−2, . . . , X0) = Pr (Xi |Xi−1) . (4.92)

Stationarity

A probability density . π is stationary or invariant, if .Xi ∼ π implies .Xi+1 ∼ π ,
.i ≥ 0. Notationally, I often use x for the current value of the Markov chain and
. x′ for the value at the following stage (not to be confused with the same symbol
“. ′” used elsewhere to denote the transpose of a matrix or vector). A definition of
stationarity is

.

∑

x
π (x) Pr

(

X′ = x′|X = x
) = π

(

x′) . (4.93)

The idea behind stationarity is as follows. Consider the relationship

. Pr
(

X′ = x′|X0 = x0
) =

∑

x
Pr
(

X′ = x′|X = x
)

Pr (X = x|X0 = x0) .

(4.94)

4.14 Appendix: A Closer Look at the McMC Machinery 195

If the chain converges to a stationary distribution . π that is independent of the starting
point . x0, then

. Pr
(

X′ = x′|X0 = x0
) = π

(

x′) ,

Pr (X = x|X0 = x0) = π (x)

and (4.94) reduces to (4.93).
The Metropolis-Hastings (MH) algorithm is a recipe for constructing a Markov

chain that has . π as its stationary or invariant distribution. The goal is to obtain
draws from . π which could be a posterior distribution. Since doing this directly may
be very complicated or impossible, a draw from a proposal distribution (denoted
here as .q (·|x) that may depend on x) is taken instead, and because this is not
the same distribution as . π , the drawn value is accepted in a stochastic manner by
means of an acceptance probability. This acceptance probability is derived in a way
ensuring that the sequence .X0, X1, . . ., is an approximate Monte Carlo sample from
the stationary distribution . π . In order for this to hold, the Markov chain must be
aperiodic and irreducible and hence, ergodic (an aperiodic chain does not return
to the same state at regular time intervals; in an irreducible chain, every state is
reachable from every other state in a finite number of transitions). An ergodic chain
is one that converges to the stationary distribution, regardless of the starting value.
This Markov chain can be used for Monte Carlo estimation of various expectations
with respect to the stationary distribution. Before showing how the algorithm works,
I define the concept of detailed balance on which the MH algorithm builds.

Detailed Balance

Let .T
(

x′|x) = Pr
(

X′ = x′|X = x
)

be the conditional probability that .X′ = x′,
given that .X = x. This conditional pmf is known as a transition probability that has
the standard property:

.

∑

x′ T
(

x′|x) = 1. (4.95)

In the case of finite-state discrete Markov chains, .T
(

x′|x) is an element in an . N ×N

stochastic matrix (transition probability matrix) and (4.95) indicates that the sum
of the elements of the rows of the stochastic matrix adds to one. Then . π satisfies
detailed balance with respect to T , if

.π (x) T
(

x′|x) = π
(

x′) T
(

x|x′) . (4.96)

Note that when .x = x′, (4.96) holds trivially because

.π
(

x′) T
(

x′|x′) = π
(

x′) T
(

x′|x′) . (4.97)

196 4 Bayesian Methods

The detailed balance equation can also be written as

. Pr
(

X = x,X′ = x′) = Pr
(

X = x′, X′ = x
)

, (4.98)

provided .X ∼ π .
A Markov chain that has stationary distribution . π that satisfies detailed balance

with respect to T is said to be a reversible Markov chain.
An intuition for expression (4.96) is that the total probability mass in the move

from x to . x′ is equal to that of the reverse move, from . x′ to x. In the left-hand side,
the probability mass at x is .π (x) and only a proportion .T

(

x′|x) moves to the right-
hand side. The total probability mass in the move from x to . x′ is the product of these
two quantities. Likewise, the probability mass on the right-hand side at .X′ = x′ is
.π
(

x′) that may be different from .π (x). A proportion of .π
(

x′) equal to . T
(

x|x′)

moves from . x′ to x. The total probability mass for this pair of states .
(

x, x′) is the
same. This holds for all possible pairs x and . x′ that belong in S.

An important consequence of imposing the strong condition of detailed bal-
ance (4.96) is that the ergodic Markov chain is reversible and when it converges,
has . π as its stationary distribution. To show this, start with (4.96) and sum over x
on both sides (if (4.96) holds, the equality still holds if we sum both sides over x):

.
∑

x
π (x) T

(

x′|x) =
∑

x
π
(

x′) T
(

x|x′)

= π
(

x′)∑
x
T
(

x|x′)

= π
(

x′) , (4.99)

that is the definition of a stationary distribution. In the case of a Markov chain in
continuous space with transition kernel p, the equivalent to (4.99) is obtained by
integrating both sides with respect to x:

.

∫

π (x) p
(

x′|x) dx =
∫

π
(

x′)p
(

x|x′) dx

= π
(

x′)
∫

p
(

x|x′) dx

= π
(

x′)

that again is the definition of a stationary distribution. This means that if . (Xi,Xi+1)

has stationary distribution . π , then the time-reversed subchain .(Xi+1, Xi) has the
same stationary distribution, whenever . Xi has density . π .

The acceptance probability of the MH algorithm is derived assuming that the
Markov chain satisfies detailed balance. If the Markov chain is ergodic, when it
converges, detailed balance guarantees that . π is the stationary distribution.

4.14 Appendix: A Closer Look at the McMC Machinery 197

The Acceptance Probability of the Metropolis-Hastings Algorithm

Consider a move from x to . x′. In the MH algorithm, a proposed value . xp for . x′
is drawn from the proposal distribution .q (xp|x). If the proposed value is accepted,
.x′ = xp and if its is rejected, .x′ = x, the value at the previous stage of the chain.
There are two ways in which the state in the next stage is equal to . x′. One is to draw
the proposal . xp and to accept it with probability .a

(

x′|x). The other way in which
the state at the next stage can take the value . x′ is to reject the proposal, to set . x′ = x

but X was already equal to . x′. Let

.s (x) = Pr
(

xp rejected |X = x
)

(4.100)

Then

. T
(

x′|x) = Pr
(

X′ = x′|X = x
)

= q
(

x′|x) a (x′|x)+ s (x) I
(

x = x′) .

The left-hand side of (4.96) can now be written as

.π (x) T
(

x′|x) = π (x) q
(

x′|x) a (x′|x)+ π (x) s (x) I
(

x = x′) , (4.101)

and by symmetry, replacing x by . x′, the right-hand side is equal to

.π
(

x′) T
(

x|x′) = π
(

x′) q
(

x|x′) a
(

x|x′)+ π
(

x′) s
(

x′) I
(

x′ = x
)

. (4.102)

The second terms in the right-hand side of (4.101) and (4.102) are equal, both in
the case when .x 	= x′ in which case they are zero because the indicator function is
zero, or trivially when .x = x′. Therefore, detailed balance is satisfied if

.π (x) q
(

x′|x) a (x′|x) = π
(

x′) q
(

x|x′) a
(

x|x′) . (4.103)

Then,

.
a
(

x′|x)
a (x|x′)

= π
(

x′) q
(

x|x′)

π (x) q (x′|x)
. (4.104)

Relationship (4.104) is satisfied if .a(x′|x) = π
(

x′) q
(

x|x′) /b
(

x′|x), for some
.b
(

x′|x) ≥ π
(

x′) q
(

x|x′), to ensure that the acceptance probability .a
(

x′|x) ≤ 1 (a
similar argument holds for .a

(

x|x′) due to symmetry). A valid .b(x′|x) is

.b(x′|x) = max(π
(

x′) q
(

x|x′) , π (x) q
(

x′|z)) (4.105)

but other choices are possible and these have an impact on the properties of
the Markov chain. The subject is rather technical and is discussed by Hastings

198 4 Bayesian Methods

(1970) and Peskun (1973), where it is shown that (4.105) leads to a Markov chain
with the largest possible acceptance probabilities resulting in minimum asymptotic
variances of moment estimates. This choice translates into the most commonly cited
expression for the Metropolis-Hastings acceptance probability, given by

.a
(

x′|x) = min

(

1,
π
(

x′) q
(

x|x′)

π (x) q (x′|x)

)

, (4.106)

that gives rise to the following algorithm:

• Initialise setting .X = x, so that .π (x) > 0.
• Choose the proposal distribution q

Given current state .Xi = x, go through the loop.
• Draw . xp from the proposal .q (·|x).
• Draw u from .Un (0, 1).
• If .u < a (xp|x), accept . xp and set .Xi+1 = xp; otherwise, .Xi+1 = x.

The original idea of using Markov chain simulation of probability distributions
is often attributed to Metropolis et al (1953).

The General Metropolis-Hastings Ratio

In the standard Metropolis-Hastings algorithm, the next state . x′ is obtained by
drawing the candidate . xp from q. A more general mechanism to generate the move
to . x′ is to construct a proposal y by applying a deterministic mapping to x and to
a random component u that has density .qU (u|x), which may depend on x (Green
1995). The proposal y (if the proposal is accepted, .x′ = y) is

. y = g1 (x, u) .

To ensure dimension matching in the move from .(x, u) to . x′, if x is of size . nx and
u of size . nu, it may be necessary to include a random variable . u′ of size . nu′ with
density .qU ′

(

u′|x′) so that

.nx + nu = nx′ + nu′ . (4.107)

Then the vectors of Markov chain states and proposal random variables .(x, u) and
.
(

x′, u′) are of equal dimension, and the densities .π (x) qU (u|x) in the move from
.(x, u) to .

(

x′, u′) and .π
(

x′) qU ′
(

u′|x′) in the move from .
(

x′, u′) to .(x, u) are joint
densities on spaces of equal dimension. The mapping is then

.
(

x′, u′) = g (x, u) = (g1 (x, u) , g2 (x, u)) (4.108)

4.14 Appendix: A Closer Look at the McMC Machinery 199

and the move in the opposite direction is

. (x, u) = g−1 (x′, u′) =
(

g−1
1

(

x′, u′) , g−1
2

(

x′, u′)) . (4.109)

A necessary condition for the existence of the one-to-one mapping is that (4.107) is
satisfied.

An important detail that becomes obvious in the derivation (more below) is that
there is a constraint in the form of the deterministic function. The constraint is that

.g = g−1. (4.110)

Therefore, we need

.
(

x′, u′) = g (x, u) = (g1 (x, u) , g2 (x, u)) ,

(x, u) = g−1 (x′, u′) = g
(

x′, u′) = (

g1
(

x′, u′) , g2
(

x′, u′)) . (4.111)

The general Metropolis-Hastings acceptance ratio takes the form

.a
(

x′|x) = min

{

1,
π
(

x′) qU ′
(

u′|x′)

π (x) qU (u|x)
|J |
}

(4.112)

where .|J | =
∣

∣

∣det ∂g(x,u)
∂(x,u)

∣

∣

∣ is the absolute value of the Jacobian of the transformation

g. A detailed derivation is given below.

Stationarity

The Markov chain in continuous space is specified in terms of the distribution for
the initial state . X0 and the transition kernel .P (·, ·) which specifies the conditional
distribution of .Xt+1 given the previous state . Xt . If the current state is .Xt = x, then
the probability that .Xt+1 is in a set .B ⊆ Rd is given by

.P (x, B) = Pr (Xt+1 ∈ B|Xt = x) . (4.113)

Assume that . π is a complex target distribution for a stochastic vector Z. Since
expectations with respect to . π cannot be evaluated analytically or by using tech-
niques for numerical integration, a Markov chain . Xi , .i = 1, 2, . . ., is constructed
whose stationary distribution is . π . If the chain is ergodic, then it can be used for
Monte Carlo estimation of expectations .E (h (Z)) for any function h, with respect
to the invariant density . π . That is,

.E (h (Z)) =
∫

h (z) π (z) dz ≈ 1

n

∑n

i=1
h (Xi) (4.114)

200 4 Bayesian Methods

as n tends to infinity. Thus, .E (h (Z)) can be approximated by the sample average for
large n, the length of the chain. The autocorrelation among the draws of the chain
implies that the size of the Markov chain must be larger than when the draws are
independent, in order to achieve a given level of accuracy.

For a continuous space Markov chain, the definition of stationarity is

.

∫

P (x, B) π (x) dx =
∫

B

π (x) dx = Pr (X ∈ B) (4.115)

The distribution . π is invariant (or stationary) for the Markov chain, if the transition
kernel .P (·, ·) of the Markov chain preserves . π , so that .Xt ∼ π implies .Xt+1 ∼ π .
In order to verify that . π is the invariant density, using (4.115) is an infeasible task,
since this involves integration with respect to . π . The difficulty of doing this was the
reason for using McMC in the first place. However, choosing a kernel that imposes
the stronger condition of reversibility with respect to . π is sufficient to guarantee that
. π is the invariant density of the ergodic Markov chain.

Reversibility

For a continuous state space Markov chain, the reversibility condition

.Pt,t+1 (A,B) = Pt,t+1 (B,A) (4.116)

requires that the equilibrium probability that the state of the chain is in a general set
A and moves to a general setB to be the same withA andB reversed. In other words,
expression (4.116) states that the joint probability that .Xt ∈ A and .Xt+1 ∈ B (left-
hand side) is the same as the joint probability that .Xt ∈ B and .Xt+1 ∈ A (right-hand
side). The left-hand side describes the move from, say, X to . X′, and the left-hand
side the opposite move. The above can be written as

.

∫∫

I
(

x ∈ A, x′ ∈ B
)

p
(

x, x′) dxdx′ =
∫∫

I
(

x ∈ B, x′ ∈ A
)

p
(

x, x′) dxdx′.

(4.117)

The right-hand side is equal to the left-hand side with A and B reversed.
Since .

(

x, x′) in the integrals are dummy variables, one could relabel arbitrar-
ily; for example, set .x = v, .x′ = w and write the right-hand side as

.

∫ ∫

I
(

v ∈ B,w′ ∈ A
)

p (v,w) dvdw.

4.14 Appendix: A Closer Look at the McMC Machinery 201

The reversibility condition (4.117) can also be written in terms of the transition
kernel:

.

∫

A

P (x, B) π (x) dx =
∫

B

P (x,A) π (x) dx. (4.118)

Reversibility (4.118) implies (4.115) by taking .A = Rd . Then . P (x,A) = 1
and (4.118) reduces to

.

∫

P (x, B) π (x) dx =
∫

B

π (x) dx

which is equal to (4.115). Therefore, an ergodic Markov chain that satisfies (4.118)
has stationary distribution . π .

The Acceptance Probability for a General Metropolis-Hastings Algorithm

In a general setting, instead of generating . X′ from .q (·|x) as is practised in the
standard Metropolis-Hastings algorithm, . X′ can be defined in terms of a stochastic
component .U ∼ q (u|x) and a deterministic mapping g. As explained in connection
with (4.108) and (4.109), in the move from X to . X′, the mapping is

.
(

x′, u′) = g (x, u) = (g1 (x, u) , g2 (x, u)) (4.119)

and in the reverse move

. (x, u) = g−1 (x′, u′) =
(

g−1
1

(

x′, u′) , g−1
2

(

x′, u′)) . (4.120)

The transition kernel in the move from X to . X′

. P (x, B) = Pr
(

X′ ∈ B|X = x
) =

∫

I
(

x′ ∈ B
)

p
(

x′|x) dx′

is now constructed in three steps. According to the Metropolis-Hastings protocol, a
transition from x to . x′ is accomplished by first drawing u from .q (·|x). Secondly,
constructing .x′ = g1 (x, u) and thirdly accepting it with probability .a (g1 (x, u) |x).
Then

. Pr
(

X′ ∈ B|X = x
) =

∫

I (g1 (x, u) ∈ B) q (u|x) a (g1 (x, u) |x) dxdu

+I (x ∈ B)

∫

q (u|x) [1 − a (g1 (x, u) |xt)] du, (4.121)

202 4 Bayesian Methods

where the second term in the right-hand side accounts for the probability of
rejection, but the current state already belongs in B. The left-hand side of (4.117)
takes the form

.

∫ ∫

I (x ∈ A, g1 (x, u) ∈ B) π (x) q (u|x) a (g1 (x, u) |x) dxdu

+
∫

I (x ∈ A ∩ B)

∫

π (x) q (u|x) [1 − a (g1 (x, u) |x)] dxdu. (4.122)

The right-hand side of (4.117) can be expressed by interchanging A and B
in (4.122). That is,

.

∫ ∫

I (x ∈ B, g1 (x, u) ∈ A) π (x) q (u|x) a (g1 (x, u) |x) dxdu

+
∫

I (x ∈ B ∩ A)

∫

π (x) q (u|x) [1 − a (g1 (x, u) |x)] dxdu. (4.123)

The second terms in (4.122) and (4.123) are equal and therefore a sufficient
condition for (4.117) to hold is

.

∫ ∫

I (x ∈ A, g1 (x, u) ∈ B) π (x) q (u|x) a (g1 (x, u) |x) dxdu

=
∫ ∫

I (x ∈ B, g1 (x, u) ∈ A)π (x) q (u|x) a (g1 (x, u) |x) dxdu. (4.124)

The final step is to find a way to equalise the indicator functions of both sides
of Eq. (4.124). This is accomplished in two steps. First note that since .(x, u) are
dummy variables of integration, they can be relabelled arbitrarily. Setting . x = x′
and .u = u′, the right-hand side of (4.124) becomes

.

∫ ∫

I
(

x′ ∈ B, g1
(

x′, u′) ∈ A
)

π
(

x′) q
(

u′|x′) a
(

g1
(

x′, u′) |x′) dx′du′.

(4.125)

Secondly, note that by applying the deterministic mapping

. x = g1
(

x′, u′) ,

x′ = g1 (x, u)

and more generally

.g−1 (x′, u′) = g
(

x′, u′) , (4.126)

4.14 Appendix: A Closer Look at the McMC Machinery 203

and substituting in the argument of the indicator function in (4.125), both indicator
functions are equalised. It is at this point of the derivation that the constraint (4.110)
or (4.126), in the form of the deterministic mapping, becomes relevant (see
also (4.111)). Using this transformation and the change-of-variable formula (from
.
(

x′, u′) to .(x, u)), then .dx′du′ = |J | dxdu, and (4.125) takes the form

.

∫∫

I (g1 (x, u) ∈ B, x ∈ A) π (g1 (x, u))

q (g2 (x, u) |g1 (x, u)) a (x|g1 (x, u)) |J | dxdu (4.127)

where

. J = ∂g (x, u)

∂ (x, u)
= ∂

(

x′, u′)

∂ (x, u)
.

Examination of the left-hand side of (4.124) and of (4.127) shows that the
reversibility condition (4.117) is satisfied if

. π (x) q (u|x) a (g1 (x, u) |x) = π (g1 (x, u)) q (g2 (x, u) |g1 (x, u)) a (x|g1 (x, u)) |J | .

In view of (4.111), .g1(x, u) = x′, .g2(x, u) = u′ and a valid choice for .a
(

x′|x) is

.a
(

x′|x) = min

[

1,
π
(

x′) q
(

u′|x′)

π (x) q (u|x)
|J |
]

. (4.128)

A Toy Example

The model is .[y|μ, λ] ∼ N (μ, λ). Assume . μ is known and a Metropolis-Hastings
algorithm is constructed to update the variance . λ.

Strategy 1

This is accomplished generating .u ∼ Un (a, b) and letting .λ′ = λu. The current state
of the Markov chain is .(z, u) = (λ, u) and the move is to

.

(

z
′
, u′) = g (λ, u)

= ((λu) , 1/u)

204 4 Bayesian Methods

where .u = 1/u′. The inverse function that makes the move in the opposite direction
possible is

. (z, u) = g−1
(

z
′
, u′)

= g
(

λ′, u′)

= ((

λ′u′) , 1/u′)

where .u′ = 1/u is also generated from .Un (a, b). The Jacobian of the transformation
.g (λ, u) = (λu, 1/u) is

. J =
∣

∣

∣

∣

det

[

∂g (λ, u)

∂ (λ, u)

]∣

∣

∣

∣

=
∣

∣

∣

∣

∣

det

[

u λ

0 −u−2

]∣

∣

∣

∣

∣

= u−1.

Since u and . u′ are drawn from .Un (a, b), .1/(b − a) cancels in the ratio
.qU ′

(

u′|z′) /qU (u|z) in (4.112) and the Metropolis-Hastings acceptance probability
is

.min

{

1,
p
(

μ, λ′|y)
p (μ, λ|y)

u−1

}

, u ∈ (a, b) . (4.129)

NOTE

The above strategy satisfies the constraint (4.110) which in the example takes the
form

.
(

z′, u′) =
(

(zu) ,
1

u

)

(z, u) =
(

(

z′u′) , 1

u′
)

with .u = 1/u′. This is so because (recall, .g1 (a, b) = a×b, is a function that multiplies
its arguments)

.z′ = g1 (z, u)

= g1
(

g1
(

z′, u′) , u
)

= g1
(

z′, u′)× u

= (

z′ × u′)× u

4.14 Appendix: A Closer Look at the McMC Machinery 205

and therefore .u = 1/u′.

Strategy 2

An alternative way of arriving at (4.129) is to use as the Metropolis-Hastings ratio

.
p (μ, λu|y)

p (μ, λ|y)

p
(

λ|λ′)

p
(

λ′|λ) . (4.130)

This is the standard form of the Metropolis-Hastings ratio, using the proposal for
the parameter rather than the auxiliary variables .

(

u, u′). Then with .λ′ = uλ,

. p
(

λ′|λ) = qU (u)

∣

∣

∣

∣

du

dλ′
∣

∣

∣

∣

= 1

b − a

1

λ
, λ′ ∈ (λa, λb) .

By symmetry,

. p
(

λ|λ′) = 1

b − a

1

λ′ , λ ∈ (λ′a, λb
)

.

The bounds .λ ∈ (λ′a, λ′b
)

imply

. λu′a < λ < λu′a,

a <
1

u′ < b.

The Metropolis-Hastings ratio is now

.
p (μ, λu|y)

p (μ, λ|y)

p
(

λ|λ′)

p
(

λ′|λ) = p (μ, λu|y)

p (μ, λ|y)

λ

λ′

= p (μ, λu|y)

p (μ, λ|y)

1

u
, u ∈ (a, b) . (4.131)

and the resulting acceptance probability is

.min

{

1,
p
(

μ, λ′|y)
p (μ, λ|y)

1

u

}

, u ∈ (a, b) . (4.132)

206 4 Bayesian Methods

Strategy 3

The third strategy consists of updating the variance using a random walk proposal
density on the logvariance. That is,

. ln λ′ ∼ N (ln λ, k) ,

a normal distribution with mean equal to the natural logarithm of the previous
realisation of . λ and variance given by k, a user-tuned parameter.

As a reminder, if X has density .p (x) = N (m, k) and .Y = f (X) = exp (X), such
that the inverse function .f −1 exists and results in .X = f −1 (Y) = lnY , then the
Jacobian of the transformation from X to Y is . 1/y and .p (y) = p

(

f −1 (y)
)

1
y . In this

particular case, in the move from . λ to . λ′, we have .X = ln λ′; .Y = exp
(

ln λ′) = λ′;
.f −1 (Y) = ln λ′. Therefore, if

. q
(

ln λ′| ln λ, k
) = N (ln λ, k) ,

then

. q
(

λ′| ln λ, k
) = q

(

ln λ′| ln λ, k
) 1

λ′

= N (ln λ, k)
1

λ′ , (4.133)

which is the density of the lognormal distribution with parameters .(ln λ, k). In these
expressions, the variance of the normal distribution k is a user-tuned parameter.
Then (4.133) is the proposal density evaluated at . λ′ and by symmetry,

. q (λ| ln λ, k) = q
(

ln λ| ln λ′, k
) 1

λ
.

Since .q
(

ln λ′| ln λ, k
) = q

(

ln λ| ln λ′, k
)

, the Metropolis-Hastings ratio is

.
p
(

μ, λ′|y)
p (μ, λ|y)

q (λ| ln λ, k)

q
(

λ′| ln λ, k
) = p

(

μ, λ′|y)
p (μ, λ|y)

λ′
λ

,

different from (4.131).

Chapter 5
McMC in Practice

This chapter illustrates applications of McMC in a Bayesian context. The treatment
is mostly schematic; the objective is to present the mechanics of McMC in different
modelling scenarios. Many of the examples, discussed in connection with the
implementation of maximum likelihood (using Newton-Raphson and EM), are
revisited from a Bayesian McMC perspective. These include the analysis of ABO
blood group data, the binary regression, the genomic model, the two-component
mixture model, and the Bayesian analysis of truncated data. Further examples are
discussed in the second part of the book on Prediction and in the Exercise sections,
including their solutions, at the end of the book.

5.1 Example: Estimation of Gene Frequencies from ABO
Blood Group Phenotypes

The ABO blood group data discussed in Chap. 3 is reproduced in Table 5.1. The
problem is to infer . pA, . pB and . p0, the frequency of the three alleles, A, B and
0, respectively, subject to .pA + pB + p0 = 1. Three alleles give rise to six
genotypes but only four phenotypic classes are observed. The observed data are
.n = (nA, nAB, nB, n0), and the multinomial likelihood is proportional to the pmf
.f (n|pA, pB, p0):

. L (pA, pB |n) ∝ f (n|pA, pB, p0)

=
(
p2

A + 2pApB

)nA

(2pApB)nAB

(
p2

B + 2pBp0

)nB
(
p2
0

)n0
. (5.1)

A Dirichlet prior will be chosen as distribution for the gene frequencies
.pA, pB, andp0. The Dirichlet is a multivariate generalisation of the univariate beta
distribution and is symbolised .Di (α) where . α is a vector of positive real numbers.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Sorensen, Statistical Learning in Genetics, Statistics for Biology and Health,
https://doi.org/10.1007/978-3-031-35851-7_5

207

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35851-7protect T1	extunderscore 5&domain=pdf
https://doi.org/10.1007/978-3-031-35851-7_5
https://doi.org/10.1007/978-3-031-35851-7_5
https://doi.org/10.1007/978-3-031-35851-7_5
https://doi.org/10.1007/978-3-031-35851-7_5
https://doi.org/10.1007/978-3-031-35851-7_5
https://doi.org/10.1007/978-3-031-35851-7_5
https://doi.org/10.1007/978-3-031-35851-7_5
https://doi.org/10.1007/978-3-031-35851-7_5
https://doi.org/10.1007/978-3-031-35851-7_5
https://doi.org/10.1007/978-3-031-35851-7_5
https://doi.org/10.1007/978-3-031-35851-7_5

208 5 McMC in Practice

Table 5.1 Frequency of
genotypes and phenotypes of
ABO blood group data

Genotype Phenotype Observed counts Frequency

AA A .nA . p2
A

AO A . 2pApO

AB AB .nAB . 2pApB

BB B .nB . p2
B

BO B . 2pBpO

OO O .nO . p2
O

The pdf is

. f (x1, . . . , xk|α1, . . . , αk) = 1

B (α)

∏k

i=1
x

αi−1
i ,

x1, . . . , xk−1 > 0,

x1 + . . . + xk−1 < 1,

xk = 1 − x1 − · · · − xk−1

and the normalising constant

. B (α) =
∏k

i=1 � (αi)

�
(∑k

i=1 αi

)

is the multinomial beta function. A common special case is the symmetric Dirichlet
distribution where all the elements of vector . α have the same value. The pdf
simplifies to

.f (x1, . . . , xk|α) = � (αk)

� (α)k

∏k

i=1
xα−1
i . (5.2)

When .α = 1, this becomes a uniform distribution in .k − 1 dimensions. In this
example, the Dirichlet prior is

.f (pA, pB, p0) ∝ (pA)αA−1 (pB)αB−1 (p0)
αB−1 . (5.3)

The likelihood (5.1) and the Dirichlet prior give rise to the posterior density

. f (pA, pB, p0|n) ∝
(
p2

A + 2pApB

)nA

(2pApB)nAB

(
p2

B + 2pBp0

)nB
(
p2
0

)n0

(pA)αA−1 (pB)αB−1 (p0)
α0−1 . (5.4)

The fully conditional posterior distributions do not have a closed form. An McMC
approach requires a Metropolis-Hastings algorithm or using data augmentation that

5.1 Example: Estimation of Gene Frequencies from ABO Blood Group. . . 209

may lead to standard conditional posterior distributions. In the present example, data
augmentation facilitates a computationally simple Gibbs sampling implementation,
and I explore this alternative. First, data augmentation is described in general terms.

Data Augmentation

Imagine that there is an interest in obtaining the posterior distribution of a parameter
. θ . Due to analytical intractability, one chooses to approximate .p (θ |y) using McMC.
Often, the fully conditional posterior distribution .p (θ |y) does not have a standard
form, and the McMC algorithm can be difficult to implement. The idea of data
augmentation is to augment with the so-called latent data or missing data . ϕ, in
order to exploit the simplicity of the resulting conditional posterior distribution
.p (θ |ϕ, y). This is in the same spirit as in the EM algorithm: by increasing the
dimensionality of the problem, possibly at the expense of extra computing time,
although this is not always the case (Swendsen and Wang 1987), the problem is
simplified algorithmically. The focus of inference is

. p (θ |y) =
∫

p(θ |ϕ, y)p(ϕ|y)dϕ,

and this marginalisation is carried out via McMC. A key paper is Tanner and Wong
(1987).

The mechanics works as follows: Start with an initial legal value of . ϕ[0]. Given
.ϕ[t] at iteration t ,

1. Draw .θ [t+1] from .
[
θ |ϕ[t], y

]
.

2. Draw .ϕ[t+1] from .
[
ϕ|θ [t+1], y

]
.

At convergence, the iterative procedure results in draws from the posterior
distribution .[θ, ϕ|y], and the margins correspond to draws from .[θ |y] and .[ϕ|y].

To apply data augmentation to the ABO blood group data, one can define . nA =
nAA + nA0 and .nB = nBB + nB0. Then the missing data is

. nm = (nA0, nAA, nBB, nB0) .

If the missing data were observed,

.f (n, nm|pA, pB, p0)

=
(
p2

A

)nAA

(2pAp0)
nA0 (2pApB)nAB

(
p2

B

)nBB

(2pBp0)
nB0

(
p2
0

)n0
.

210 5 McMC in Practice

This is the pmf of the standard multinomial distribution. The augmented posterior
can be written

. f (nm, pA, pB, p0|n) ∝ f (nm, pA, pB, p0) f (n|nm, pA, pB, p0)

= f (n, nm, pA, pB, p0)

= f (n, nm|pA, pB, p0) f (pA, pB, p0)

=
(
p2

A

)nAA

(2pAp0)
nA0 (2pApB)nAB

(
p2

B

)nBB

(2pBp0)
nB0

(
p2
0

)n0
(pA)αA−1 (pB)αB−1 (p0)

α0−1 . (5.5)

This is proportional to

. f (nm, pA, pB, p0|n) ∝ (pA)2nAA (pA)nA0 (pA)nAB (pA)αA−1

(pB)2nBB (pB)nB0 (pB)nAB (pB)αB−1

(p0)
2n0 (p0)

nB0 (p0)
nA0 (p0)

α0−1

= (pA)2nAA+nA0+nAB+αA−1 (pB)2nBB+nB0+nAB+αB−1

(p0)
2n0+nA0+nB0+α0−1 . (5.6)

The Gibbs sampling algorithm requires extracting the fully conditional posterior
distributions

. f (pA, pB, p0|n, nm) , . (5.7a)

f (nAA|pA, pB, p0, nA, n) , . (5.7b)

f (nBB |pA, pB, p0, nB, n) (5.7c)

from (5.5) or (5.6). The derivation of (5.7a) is straightforward: direct inspection of
(5.6) indicates that the required fully conditional is

. [pA, pB, p0|n, nm] ∼ Di (a, b, c) , (5.8)

a Dirichlet distribution with parameters

.a = 2nAA + nA0 + nAB + αA,

b = 2nBB + nB0 + nAB + αB,

c = 2n0 + nA0 + nB0 + α0.

5.1 Example: Estimation of Gene Frequencies from ABO Blood Group. . . 211

To derive (5.7b) first replace in (5.5), .nA0 = nA − nAA. Extracting terms in . nAA

only yields

. f (nAA|pA, pB, p0, nA, n) ∝
(
p2

A

)nAA

(2pAp0)
nA−nAA ,

which is the kernel of the binomial distribution

. [nAA|pA, pB, p0, nA, n] ∼ Bi

(
p2

A

p2
A + 2pAp0

, nA

)
. (5.9)

Similarly, after replacing .nBO = nB − nBB ,

. f (nBB |pA, pB, p0, nB, n) ∝
(
p2

B

)nBB

(2pBp0)
nB−nBB

which is the kernel of the binomial distribution

. [nBB |pA, pB, p0, nB, n] ∼ Bi

(
p2

B

p2
B + 2pBp0

, nB

)
. (5.10)

The Gibbs Sampling Implementation

The data in Weir (1996) used in Chap. 3 is .nA = 725, .nAB = 72, .nB = 258,
and .n0 = 1073. The R-code below implements the Bayesian model with a Gibbs
sampler, assuming .αA = αB = α0 = α = 2, start values .pA = 0.33, .pB = 0.33:

CODE0501
ABO BLOOD GROUP DATA - GIBBS SAMPLING
rm(list=ls()) # Clear the workspace
set.seed(1237)
#install.packages("MCMCpack", .libPaths()[1])
to access function rdirichlet
library(MCMCpack)
#CHOOSE LENGTH OF GIBBS CHAIN rep
rep<-3000
result<-matrix(data=NA,nrow=rep,ncol=4)
INITIALISE PARAMETERS
p_A<-0.33
p_B<-0.33
p_0<-1-p_A-p_B
alfa<-2
DATA

212 5 McMC in Practice

n_A<-725
n_AB<-72
n_B<-258
n_0<-1073
#START WITH THE GIBBS LOOP
for (i in 1:rep)
{

SAMPLE n_AA AND n_BB
n_AA<-rbinom(1,n_A,p_A^2/(p_A^2+2*p_A*p_0))
n_BB<-rbinom(1,n_B,p_B^2/(p_B^2+2*p_B*p_0))
n_A0<-n_A-n_AA
n_B0<-n_B-n_BB
SAMPLE p_A,p_B,p_0
a<-2*n_AA+n_A0+n_AB+alfa
b<-2*n_BB+n_B0+n_AB+alfa
c<-2*n_0+n_A0+n_B0+alfa
draws<- rdirichlet(1,c(a,b,c))
p_A<-draws[1,1]
p_B<-draws[1,2]
p_0<-draws[1,3]
result[i,]<-c(i,p_A,p_B,p_0)

}
END OF GIBBS LOOP
meanp_A<-mean(result[,2])
meanp_A

[1] 0.2092435

varp_A<-var(result[,2])
cip_A<- quantile(result[,2],c(0.025,0.975))
cip_A

2.5% 97.5%
0.1967966 0.2220510

meanp_B<-mean(result[,3])
meanp_B

[1] 0.0811496

varp_B<-var(result[,3])
cip_B<- quantile(result[,3],c(0.025,0.975))
cip_B

5.2 Example: A Regression Model for Binary Data 213

2.5% 97.5%
0.07306027 0.08997164

covp_Ap_B<-cov(result[,2],result[,3])

These results are in good agreement with those from previous analyses.

5.2 Example: A Regression Model for Binary Data

The binary regression discussed in Chap. 3 was parametrised as

. Pr
(
yi = 1|x′

iβ
) = Pr (ui < 0|xi, β) ,

Pr
(
yi = 0|x′

iβ
) = Pr (ui > 0|xi, β) ,

where . ui is the unobserved liability. The logistic loglikelihood shown in (3.30) is

.l (β|y, x) =
N∑

i=1

{
(1 − yi) x′

iβ − ln
[
1 + exp

(
x′
iβ
)]}

. (5.11)

At the level of the liability u, the linear model for the ith datum is

.ui = x′
iβ + ei, i = 1, 2, ..., N, (5.12)

where . x′
i is the ith row of the known non-stochastic .N × p matrix of explanatory

variables (covariates), . β is an unknown parameter vector .(of order p × 1), and the
residuals . ei are iid variables drawn from a standard logistic distribution with mean
0 and variance .π2/3.

A Bayesian implementation requires assigning a prior specification for . β. One
possibility is to assume a uniform prior. In this case, the posterior .p (β|y, x) is
proportional to the likelihood, and therefore the logposterior takes the same form as
the loglikelihood (5.11).

Note: The notation for the posterior density .p (β|y, x) indicates that conditioning
is on the observations (. 1′s and . 0′s) and the covariates (.x1, . . . , xN) where N is the
number of individuals. Hyperparameters are not included, and often, covariates are
also omitted from the notation. When this is the case, the posterior density is written
as .p (β|y).

214 5 McMC in Practice

Metropolis-Hastings Algorithm

An implementation with the Metropolis-Hastings algorithm requires a proposal
density for . β. A possibility is a normal distribution centred at the current value . β[t]

and covariance matrix . λC. Let the proposed value be .Y = Yβ , and let the current
state of the chain be .X[t] = x = β[t]. Then the algorithm is as follows:

1. Set .t = 0 and choose a starting value for . β equal to . β[0]; choose C and the tuning
parameter . λ.

2. Let .t = t + 1.
3. Draw .Yβ ∼ N

(
β[t], λC

)
. The density of this normal distribution evaluated at the

proposed value . Yβ is .q
(
Yβ |β[t], λC

)
.

4. Draw .u ∼ Un (0, 1).
5. If .u < α, .β[t+1] = Yβ . Otherwise .β[t+1] = β[t].
6. Go to 2.

This is repeated until a chain of sufficient length is obtained. The decision is
based on computation of effective chain length and Monte Carlo standard errors of
estimates of features from the posterior distribution of . β. The tuning parameter . λ is
used to obtain acceptance ratios in the range .(0.25; 0.50).

The acceptance probability in step 5 is

.α = p
(
Yβ |y, x

)

p
(
β[t]|y, x

) q
(
β[t]|Yβ, λC

)

q
(
Yβ |β[t], λC

) . (5.13)

In contrast with the general notation used in (4.67), here, a notation specific to the
model is used. Comparing with (4.67),

. π (Y) = p
(
Yβ |y, x

)
,

π (x) = p
(
β[t]|y, x

)
,

q (x|Y) = q
(
β[t]|Yβ, λC

)
,

q (Y |x) = q
(
Yβ |β[t], λC

)
.

The notation .q
(
β[t]|Yβ, λC

)
agrees with that used for .q (·|Y) in (4.67). The

proposal density .q (·|Y) is evaluated at . β[t], and .YβandλC are, respectively, the
mean and variance of the distribution. Due to the symmetry properties of the normal
distribution, the second ratio in the right-hand side of (5.13) is equal to 1, and the
acceptance probability reduces to the ratio of the posterior distributions . p (·|y, x)

evaluated at .β = Yβ and at .β = β[t], respectively. The acceptance probability is

.α = p
(
Yβ |y, x

)

p
(
β[t]|y, x

) . (5.14)

5.2 Example: A Regression Model for Binary Data 215

An alternative approach is to use a probit model. The probit likelihood was given
in (3.75):

.L (β|x, y) ∝
∏N

i=1

[(
1 − 	

(
x′
iβ
))yi

(
	
(
x′
iβ
))1−yi

]
. (5.15)

Assuming a uniform prior for . β results in a posterior distribution proportional to the
likelihood. The logposterior is obtained by taking logarithms of (5.15). This gives,
up to an additive constant,

. lnp (β|x, y) =
N∑

i=1

[
yi ln

(
1 − 	

(
x′
iβ
)) + (1 − yi) ln

(
	
(
x′
iβ
))]

. (5.16)

The Metropolis-Hastings algorithm based on the probit model follows along the
same lines as with the logistic model. In the problems section Bayes Exercises II,
you are asked to fit a logistic and a probit Bayesian model to binary data.

Gibbs Sampling Algorithm

The Gibbs sampling algorithm requires knowledge of the fully conditional posterior
distributions (fcpd). The logposteriors (5.11) and (5.16) do not lead to fcpd that have
a standard form. An alternative strategy is to augment the posterior distribution with
the unobserved liability u. This is illustrated using the probit model. At the level of
the liability, the linear model for the ith record is

.ui = x′
iβ + ei , ei

iid∼ N (0, 1) , i = 1, . . . , N. (5.17)

As before, assume

. Pr (yi = 1|β, xi) = Pr (ui < 0|β, xi) (5.18)

and

.Pr (yi = 0|β, xi) = Pr (ui > 0|β, xi) . (5.19)

The density of the augmented posterior is

. p (u, β|y) ∝ p (u, β) p (y|u, β) Bayes theorem

= p (u|β) p (β) p (y|u) given u, y is independent of β

∝ p (u|β) p (y|u) assuming a uniform prior for β. (5.20)

216 5 McMC in Practice

In this expression, .p (y|u) is a degenerate density: if u is observed, y is not
stochastic because its value is known unambiguously as indicated in (5.18) and
(5.19). That is,

. Pr (yi = 1|ui > 0) = Pr (yi = 0|ui < 0) = 0,

Pr (yi = 1|ui < 0) = Pr (yi = 0|ui > 0) = 1.

Therefore, the joint density of vector y, given u, is

.p (y|u) =
∏N

i=1

[
I (ui < 0)yi + I (ui > 0)1−yi

]
. (5.21)

It is important to realise that the focus of inference here is

. p (β|y) =
∫

p (u, β|y) du

and not necessarily the augmented posterior .[u, β|y]. When the system converges to
the stationary distribution, the Gibbs sampler, in general, McMC, generates Monte
Carlo draws from the joint posterior .[u, β|y]; the margins are draws from .[β|y] and
from .[u|y]. In this sense, McMC is an automatic algorithm that performs the desired
marginalisations. The draws from .[u, β|y] are obtained by sampling repeatedly from
.[β|u, y] and .[u|β, y].

The fully conditional posterior distributions .[β|u, y] and .[u|β, y] are derived
from (5.20) as follows:

• The fcpd .[β|u, y] is obtained by extracting from (5.20) the terms containing . β.
This yields

. p (β|u, y) ∝ p (u|β)

∝ exp

(
−1

2
(u − Xβ)′ (u − Xβ)

)
. (5.22)

As a function of . β, this density does not have a recognisable form. A little more
work is needed. The quadratic form can be written as

. (u − Xβ)′ (u − Xβ) = u′u − 2u′Xβ + β ′X′Xβ.

Define

.X′Xβ̂ = X′u. (5.23)

5.2 Example: A Regression Model for Binary Data 217

Then,

. u′X = β̂ ′X′X,

u′Xβ = β̂ ′X′Xβ.

Now, replace .−2u′Xβ by .−2β̂ ′X′Xβ in the quadratic form

. (u − Xβ)′ (u − Xβ) = u′u − 2β̂ ′X′Xβ + β ′X′Xβ.

Adding and subtracting .β̂ ′X′Xβ̂ and keeping terms containing . β yield

. (u − Xβ)′ (u − Xβ) = (
β − β̂

)′
X′X

(
β − β̂

) + k,

where k is a constant that does not depend on . β. Substituting in (5.22) gives

. p (β|u, y) ∝ exp

(
−1

2

(
β − β̂

)′
X′X

(
β − β̂

))

which is the kernel of a normal distribution with mean . ̂β and variance .
(
X′X

)−1.
Therefore,

. [β|u, y] ∼ N
(
β̂,

(
X′X

)−1
)

. (5.24)

• The fcpd .[u|β, y] is obtained by extracting from (5.20) those terms that include
u. This results in

. p (u|β, y) ∝ p (u|β) p (y|u) .

The first term, seen as a function of u, is obtained directly from (5.17). This gives

. [u|β] ∼ N (Xβ, I) . (5.25)

The term .p (y|u) is given in (5.21). Therefore, the density of the fcpd . [ui |β, y]
can be written

.p (ui |β, y) ∝ N
(
ui |x′

iβ, 1
) [

I (ui < 0)yi + I (ui > 0)1−yi

]
. (5.26)

This means that if .yi = 1, .ui < 0, and the full conditional posterior
distribution of . ui is a truncated normal, with mean . x′

iβ, variance 1, and support
.(−∞, 0). If .yi = 0, then .ui > 0 and the fully conditional posterior distribution
of . ui is a truncated normal, with mean . x′

iβ, variance 1 and support .(0,∞).

218 5 McMC in Practice

In Bayes Exercises II, problem 3, you are asked to analyse binary data with
a Bayesian probit model implemented with a Gibbs sampler using the data
augmentation algorithm.

Drawing Samples from Truncated Distributions

An efficient algorithm to sample from univariate truncated distributions is as
follows: Let Y be a random variable from a normal distribution truncated between
a (lower bound) and b (upper bound). To obtain a draw from the truncated normal
.T N(a,b)

(
μ, σ 2

)
, where . μ and . σ 2 are the mean and variance before truncation,

• Simulate U from a uniform distribution .Un (p1, p2), where . p1 =
	 [(a − μ) /σ] and .p2 = 	 [(b − μ) /σ].

• The truncated normal is

. y = μ + σ	−1 (U) ,

where .	(·) is the cdf and .	−1 (·) is the inverse cdf of the standard normal
distribution.

A more general method to sample from any univariate distribution truncated in
the interval .[a, b] is as follows: If the cdf of the untruncated variate is F , then a
draw from the truncated distribution is (Devroye 1986, page 38 Example 10)

.y = F−1 {F (a) + U [F (b) − F (a)]} , (5.27)

where U is a draw from a uniform distribution in the interval .[0, 1]. If . 	 is the
distribution function of the standard normal, then to draw from .T N(a,b)

(
μ, σ 2

)
,

application of (5.27) yields

.y = μ +
{
σ	−1 [(�) + U ((u) − 	(�))]

}
(5.28)

where the lower bound is .� = (a − μ) /σ , the upper bound is .u = (b − μ) /σ , and
U is a draw from a uniform distribution in the interval .[0, 1]. With binary data and
.u ∼ N (μ, 1), if .y = 1, .a = −∞, .b = 0, and

.
	(�) = 0,

	 (u) = 	(−μ)

}
if y = 1.

If .y = 0, .a = 0, .b = ∞, and

.
	(�) = 	(−μ) ,

	 (u) = 1

}
if y = 0.

5.2 Example: A Regression Model for Binary Data 219

An R-code below generates N samples from (5.26) using algorithm (5.28):

CODE0502
rm(list=ls()) # CLEAR WORKSPACE
########### DRAWING ALL U’s IN ONE GO
REQUIRES TO GENERATE BINARY RECORDS y
USING PARAMETRISATION A OR B BELOW
A
y = 0 -> TN(mean,1)(0,Infinity)
y = 1 -> TN(mean,1)(-Infinity,0)
########## OR #################
B
y = 1 -> TN(mean,1)(0,Infinity)
y = 0 -> TN(mean,1)(-Infinity,0)
#####################
set.seed(237777)
nrow <- 10
ncol <- 5
mu <- 0
GENERATE X MATRIX
X<-matrix(nrow= nrow,ncol= ncol,rbinom(nrow*ncol,size=2,p=.5))
GENERATE VECTOR b
b <- rnorm(ncol,0.5,1)
xb<-X%*%b
LOGIT MODEL
#p1<-exp(mu+xb)/(1+exp(mu+xb)) # IF B
#p1 <- 1 - exp(mu+xb)/(1+exp(mu+xb)) # IF A
PROBIT MODEL- GENERAte VECTOR OF DATA y
#p1 <- pnorm(mu+xb) # IF B
p1 <- 1 - pnorm(mu+xb) # IF A
y <- rbinom(nrow,1,p1)
mean <- mu+xb
sd <- 1

interm<-(1-y)*pnorm(0,mean=mean,sd=sd)+runif(length(y))*
(pnorm(0,mean=mean,sd=sd)*(y)+
(1-pnorm(0,mean=mean,sd=sd))*(1-y))

u <- qnorm(interm,mean=mean,sd=sd)
p1[1:5]

[1] 0.70255823 0.82055114 0.05872622 0.52202695 0.37241559

p1[6:nrow]

[1] 0.04796642 0.56227502 0.37241559 0.05222701 0.89662931

y[1:5]

[1] 1 1 0 0 0

y[6:nrow]

[1] 0 1 1 0 1

220 5 McMC in Practice

u[1:5]

[1] -0.4976322 -0.6461563 3.8849389 0.4510179 1.1993790

u[6:nrow]

[1] 1.962061 -1.652975 -1.563791 1.138155 -2.003726

As a more transparent case, consider drawing a sample y of size 1 from a
normal distribution, with mean 10 and variance 4, that is truncated in the interval
.[11.0, 11.5]. Then application of (5.28) leads to the following algorithm:

rm(list=ls()) # CLEAR WORKSPACE
set.seed(1237)
l <- (11-10)/2
u <- (11.5-10)/2
y <- 10 + (2*qnorm(pnorm(l) + runif(1)*(pnorm(u) - pnorm(l))))
y

[1] 11.15587

5.3 Example: A Regression Model for Correlated Binary
Data

Very often data cluster in groups where members of the same group are correlated
and groups can be uncorrelated. An example consists of independent full-sib
families. In this setup, the model must be extended to account for the correlated
structure of the observations (see Likelihood Exercises II, Problem 3 iii). This
section illustrates a probit Bayesian model that can handle this situation.

The first step is to include a term in (5.17) that accounts for the correlated
structure. The standard approach is to use a random variable f that represents a
family effect:

.uij = x′
ij β + fi + eij , (5.29)

fi |σ 2
f

iid∼ N
(
0, σ 2

f

)
, σ 2

f ∈ [0, 1] ,

eij
iid∼ N (0, 1) ,

i = 1, . . . , nf , j = 1, . . . , n.

5.3 Example: A Regression Model for Correlated Binary Data 221

Assume that

. Pr (yi = 1|β, xi, fi) = Pr (ui < 0|β, xi, fi)

= Pr
(
x′
ij β + fi + eij < 0|β, xi, fi

)

= Pr
(
eij < −x′

ij β − fi |β, xi, fi

)

= 1 − 	
(
x′
ij β + fi

)

and

. Pr (yi = 0|β, xi, fi) = Pr (ui > 0|β, xi)

= 	
(
x′
ij β + fi

)
.

In this specification, . x′
ij is a row vector with p columns (number of elements

in . β) corresponding to individual j of family i, . fi is the effect of the ith full-sib
family, . σ 2

f is the variance between families (or covariance between full-sibs), . nf is
the number of full-sib families, n is the number of full-sibs per family (here assumed
to be the same for all families), and the total number of records is .N = nf ×n. Since
according to quantitative genetic theory, in the absence of common environmental
effects and assuming an additive genetic model, the heritability at the level of the
liability is equal to

. h2 = 2σ 2
f

σ 2
f + 1

, 0 < h2 < 1,

then it follows that .σ 2
f ∈ [0, 1]. The heritability on the liability scale does not depend

on the prevalence of the disease in the population.

Gibbs Sampling Implementation

Using the data augmentation strategy, the parameters of the model are .

[
u, β, f, σ 2

f

]
.

The density of the prior distribution is assumed to admit the following factorisation:

.p
(
u, β, f, σ 2

f

)
∝ p (u|β, f) p

(
f |σ 2

f

)
p
(
σ 2

f

)

∝ p (u|β, f) p
(
f |σ 2

f

)
.

222 5 McMC in Practice

It is assumed that .p (β) and .p
(
σ 2

f

)
are proportional to constants. The augmented

posterior is

. p
(
u, β, f, σ 2

f |y
)

∝p
(
u, β, f, σ 2

f

)
p
(
y|u, β, f, σ 2

f

)

∝p
(
f |σ 2

f

)∏
ij

p
(
uij |β, fi

)
p
(
yij |uij

)
, σ 2

f ∈ [0, 1] . (5.30)

The Bayesian model can be implemented with a variety of McMC algorithms.
One possibility that is explored here is to use data augmentation and update the
parameters one at a time. The required fcpd are

. [β|D] ; [u|D] ; [f |D] ;
[
σ 2

f |D
]
,

where D is a vector containing the observations y and all the parameters of the
model except the one to be updated.

Deriving [β|D]

Extracting from (5.30) the terms that depend on . β yields

. p (β|D) ∝
∏

ij
p
(
uij |β, fi

)

∝ exp

(
−1

2
(u − Xβ − Zf)′ (u − Xβ − Zf)

)

= exp

(
−1

2
(̃u − Xβ)′ (̃u − Xβ)

)
, (5.31)

where .̃u = u − Zf . This has the same form as (5.22). Then it is easy to see that

. [β|D] ∼ N
(
β̂,

(
X′X

)−1
)

, (5.32)

where here

.β̂ = (
X′X

)−1
X′ (u − Zf) .

5.3 Example: A Regression Model for Correlated Binary Data 223

Deriving [u|D]

Inspection of (5.30) and (5.20) reveals that .[u|D] = [u|y]. Therefore, since the . uij

are conditionally independent, given . fi ,

.
[
uij |β, f, y

] ∼ N
(
x′
ij β + fi, 1

) [
I
(
uij < 0

)yij + I
(
uij > 0

)1−yij
]
. (5.33)

Deriving [f |D]

The fcpd .[f |D] is obtained by extracting from (5.30) those terms that depend on f .
This gives

. p (f |D) ∝ p
(
f |σ 2

f

)∏
ij

p
(
uij |β, fi

)

∝ exp

(
− 1

2σ 2
f

f ′f
)
exp

(
−1

2
(u − Xβ − Zf)′ (u − Xβ − Zf)

)

= exp

(
−1

2

[
(̃u − Zf)′ (̃u − Zf) + kf ′f

])
(5.34)

where .ũ = u − Xβ and .k = σ−2
f . The quadratic form can be written as

. (̃u − Zf)′ (̃u − Zf) + kf ′f = ũ′ũ − 2f ′Z′ũ + f ′Z′Zf + kf ′f

= constant − 2f ′Z′ũ + f ′ (Z′Z + Ik
)
f.

Define

.
(
Z′Z + Ik

)
f̂ = Z′ũ (5.35)

and substitute .Z′ũ by .
(
Z′Z + Ik

)
f̂ . Then

. (̃u − Zf)′ (̃u − Zf) + kf ′f = constant − 2f ′ (Z′Z + Ik
)
f̂ + f ′ (Z′Z + Ik

)
f.

Adding and subtracting .f̂ ′ (Z′Z + Ik
)
f̂ and keeping terms in f only yield

. (ũ − Zf)′ (ũ − Zf) + kf ′f = constant + (
f − f̂

)′ (
Z′Z + Ik

) (
f − f̂

)
.

Substituting the above in the exponential of (5.34) reveals that the fully conditional
is

.

[
f |σ 2

f ,D
]

∼ N
(
f̂ ,

(
Z′Z + Ik

)−1
)

(5.36)

224 5 McMC in Practice

where . f̂ is given in (5.35). In this simple model with unrelated families, the term
.Z′Z is diagonal, and computations are straightforward.

Deriving
[
σ 2

f
|D

]

Finally, the term .

[
σ 2

f |D
]
is obtained from

. p
(
σ 2

f |D
)

∝ p
(
f |σ 2

f

)

∝
(
σ 2

f

)− nf
2
exp

(
− 1

2σ 2
f

f ′f
)

=
(
σ 2

f

)−
(

vf
2 +1

)
exp

(
−vf Sf

2σ 2
f

)
, σ 2

f ∈ [0, 1] , (5.37)

which is the kernel of the density of a truncated scaled inverted chi-square
distribution with scale .Sf = f ′f/vf and .vf = nf − 2 degrees of freedom. A
draw .σ 2∗

f from this distribution is

. σ 2∗
f ∼ f ′f

χ2
(
vf

) , σ 2∗
f ∈ [0, 1] .

where .χ2
(
vf

)
is a draw from a chi-square distribution with . vf degrees of freedom.

One must confirm that the draw is within the constraint .σ 2∗
f ∈ [0, 1].

A Metropolis Within Gibbs Implementation: Case 1

In the Gibbs sampling implementation, the bound on . h2 imposes the constraint . σ 2
f ∈

[0, 1], but this was not incorporated in the prior distribution of . σ 2
f . An unbounded

uniform prior for . σ 2
f was chosen instead, even though the posterior is defined within

the constraint .σ 2
f ∈ [0, 1]. The code of the McMC implementation must account for

this constraint. In certain cases, this may require the need to draw from truncated
distributions.

One may wish to incorporate the constraint on . σ 2
f assuming a beta prior.

However, depending on how the algorithm is tailored, there may still be a need
to confirm that the McMC samples are within the bounds imposed by the model.

A detail to observe is that the beta density does not assign a probability to .σ 2
f = 0.

This implies that a value of exactly 0 is excluded in the posterior distribution of . σ 2
f .

5.3 Example: A Regression Model for Correlated Binary Data 225

A mixture prior with a component that has a probability mass of 1 for .σ 2
f = 0 would

remedy this shortcoming.
With this reservation in mind, one may explore using a beta prior distribution

that may lead to more stable inferences when the likelihood is not very informative.
Assuming a beta prior for . σ 2

f causes the density of the posterior distribution to
change from (5.30) to

. p
(
u, β, f, σ 2

f |y
)

∝ p
(
u, β, f, σ 2

f

)
p
(
y|u, β, f, σ 2

f

)

∝ p
(
f |σ 2

f

)
p
(
σ 2

f

)∏
ij

p
(
uij |β, fi

)
p
(
yij |uij

)
, (5.38)

σ 2
f ∈ [0, 1]

where

.p
(
σ 2

f

)
∝
(
σ 2

f

)a−1 (
1 − σ 2

f

)b−1
, σ 2

f ∈ [0, 1] , a > 0, b > 0. (5.39)

As in Scenario 1, the fcpd are

. [β|D] ; [u|D] ; [f |D] ;
[
σ 2

f |D
]

which, with the exception of .

[
σ 2

f |D
]
, are unchanged. The fcpd of . σ 2

f is obtained by

extracting from (5.38) the terms that are a function of . σ 2
f . This gives

. p
(
σ 2

f |D
)

∝ p
(
f |σ 2

f

)
p
(
σ 2

f

)

∝
(
σ 2

f

)− nf
2
exp

(
− 1

2σ 2
f

f ′f
)(

σ 2
f

)a−1 (
1 − σ 2

f

)b−1

=
(
σ 2

f

)−
(

vf
2 +1

)
exp

(
−vf Sf

2σ 2
f

)(
σ 2

f

)a−1 (
1 − σ 2

f

)b−1
. (5.40)

Above, .vf = nf − 2 and .Sf = f ′f/vf where f is the vector with the sampled
values of family effects. This density does not have a distinguishable closed form.
Therefore, a Metropolis-Hastings step can be used to update . σ 2

f .

Let .Yσ 2
f
denote the proposed value of . σ 2

f drawn from the proposal distribution

with density .q
(
·|σ 2

f

)
that may depend on . σ 2

f (it does not have to). Then the

Metropolis-Hastings step at iteration t is as follows:

1. At iterate .t = 0, choose a start value for . σ 2
f ; label it .σ

2[0]
f .

2. Set .t = t + 1.

226 5 McMC in Practice

3. Draw .Yσ 2
f
from proposal distribution. If .Yσ 2

f
> 0.999, then set .Yσ 2

f
= σ

2[t]
f , and

go to 7.
4. Draw .u ∼ Un (0, 1).
5. Compute acceptance probability . α.
6. If .u < α, .σ 2[t+1]

f = Yσ 2
f
. Otherwise, . σ 2[t+1]

f = σ
2[t]
f

7. Continue with the Gibbs sampling step, and when completed, go to 2

where

. α =
p
(
Yσ 2

f
|y, x

)

p
(
σ
2[t]
f |y, x

)
q
(
σ
2[t]
f |Yσ 2

f

)

q
(
Yσ 2

f
|σ 2[t]

f

)

=

(
Yσ 2

f

)−
(

vf
2 +1

)
exp

(
− vf Sf

2Y
σ2
f

)(
Yσ 2

f

)a−1 (
1 − Yσ 2

f

)b−1

(
σ
2[t]
f

)−
(

vf
2 +1

)
exp

(
− vf Sf

2σ 2[t]
f

)(
σ
2[t]
f

)a−1 (
1 − σ

2[t]
f

)b−1

q
(
σ
2[t]
f |Yσ 2

f

)

q
(
Yσ 2

f
|σ 2[t]

f

)

(5.41)

The behaviour of the algorithm is influenced by the choice of the proposal
distribution q. One possibility is to use a scaled inverted chi-square distribution
(that does not depend on . σ 2

f) of the form

. q
(
Yσ 2

f

)
∝
(
Yσ 2

f

)−
(

vf
2 +1

)
exp

(
−vf Sf

2Yσ 2
f

)
.

The ratio of the proposal terms is

.

q
(
σ
2[t]
f |σ 2[p]

f

)

q
(
Yσ 2

f
|σ 2[t]

f

) =

(
σ
2[t]
f

)−
(

vf
2 +1

)
exp

(
− vf Sf

2σ 2[t]
f

)

(
Yσ 2

f

)−
(

vf
2 +1

)
exp

(
− vf Sf

2Y
σ2
f

)

and the Metropolis-Hastings acceptance ratio (5.41) reduces to

.α =
(
Yσ 2

f

)a−1 (
1 − Yσ 2

f

)b−1

(
σ
2[t]
f

)a−1 (
1 − σ

2[t]
f

)b−1
. (5.42)

This acceptance probability must be set equal to 0 if the proposed value is outside
the permissible interval.

5.4 Example: A Genomic Model 227

A Metropolis Within Gibbs Implementation: Case 2

Another possibility is to draw at cycle t the proposed value .Yσ 2
f
from a lognormal

distribution centred at .ln σ
2[t]
f . The lognormal density is

. q
(
Yσ 2

f
|σ 2[t]

f

)
= (2πk)−

1
2 exp

⎡
⎢⎣−

(
lnYσ 2

f
− ln σ

2[t]
f

)2

2k

⎤
⎥⎦ 1

Yσ 2
f

,

where k is a tuning parameter chosen by the user. The ratio of the proposal terms is

.

q
(
σ
2[t]
f |Yσ 2

f

)

q
(
Yσ 2

f
|σ 2[t]

f

) =
Yσ 2

f

σ
2[t]
f

and the Metropolis-Hastings acceptance ratio (5.41) is given by

.α =

(
Yσ 2

f

)−
(

vf
2 +1

)
exp

(
− vf Sf

2Y
σ2
f

)(
Yσ 2

f

)a−1 (
1 − Yσ 2

f

)b−1

(
σ
2[t]
f

)−
(

vf
2 +1

)
exp

(
− vf Sf

2σ 2[t]
f

)(
σ
2[t]
f

)a−1 (
1 − σ

2[t]
f

)b−1

Yσ 2
f

σ
2[t]
f

. (5.43)

This acceptance probability must be set equal to 0 if the proposed value is outside
the permissible interval.

5.4 Example: A Genomic Model

The genomic model was implemented in a likelihood setting with Newton-Raphson
and with the EM algorithm. Here, the model is fitted using a Bayesian McMC
approach.

To recapitulate, in its original parametrisation, the initial hierarchy of the
genomic model is defined by the expressions

.y|μ, b, σ 2
e ∼ N

(
1μ + Wb, Iσ 2

e

)
,

b|σ 2
b ∼ N

(
0, Iσ 2

b

)
,

228 5 McMC in Practice

where the matrix of marker genotype codes W of dimension .n × m is centred and
scaled and the vector of marker effects b has m elements. The genomic values are
defined as .g = Wb.

The reparametrised model uses the decomposition

. G = 1

m
WW ′

= 1

m
UU ′

= U�U ′, � = 1

m
.

The diagonal matrix . � contains the (scaled) eigenvalues . λi of U , .i = 1, . . . , n. The
last eigenvalue is .λn = 0.

On defining .α ∼ N
(
0,�σ 2

g

)
, where .σ 2

g = mσ 2
b , the alternative parametrisation

as defined on page 93 is

. y|μ, α, σ 2
e ∼ N

(
1μ + Uα, Iσ 2

e

)
,

α|U, σ 2
g ∼ SN

(
0,�σ 2

g

)
,

G = U�U ′,

y|μ, σ 2
g , σ 2

e ∼ N
(
1μ,U�U ′σ 2

g + Iσ 2
e

)
.

In contrast with (3.38), here, a scalar mean . μ is included. In the reparametrised
model, the column vector of genomic values is .g = Uα, where . α is the regression
of genomic values on eigenvectors.

The vector

. α′ = (α1, . . . , αn−1, αn)
′

= (
α′−nαn

)

of dimension n has its first .n−1 elements different from zero (the vector .α−n above)
and the last element .αn = 0. As mentioned before, the marginal density of . αn is a

point mass at zero, because .λn = 0 and therefore .
[
α|U, σ 2

g

]
has the form of a

singular normal distribution.

5.4 Example: A Genomic Model 229

The parameters of the Bayesian model are .

(
μ, α, σ 2

g , σ 2
e

)
, and the density of the

posterior distribution is

. p
(
μ, α, σ 2

g , σ 2
e |y

)
∝ p

(
μ, α, σ 2

g , σ 2
e

)
p
(
y|μ, α, σ 2

g , σ 2
e

)

∝ p
(
α|σ 2

g

)
p
(
y|μ, α, σ 2

e

)
(5.44)

where it is assumed that

. p
(
μ, σ 2

g , σ 2
e

)
∝ constant.

A Gibbs sampling algorithm requires to update the parameters from the fcpd’s

. [μ|D] ; [α|D] ;
[
σ 2

g |D
]
;
[
σ 2

e |D
]
.

Deriving [μ|D]

Extracting from (5.44) those terms that include . μ gives

. p (μ|D) ∝ p
(
y|μ, α, σ 2

e

)

∝ exp

[
− 1

2σ 2
e

(y − 1μ − Uα)′ (y − 1μ − Uα)

]

= exp

[
− 1

2σ 2
e

(
y∗ − 1μ

)′ (
y∗ − 1μ

)]
,

where .y∗ = y − Uα. This has the same form as (5.31) and therefore

. [μ|D] ∼ N
(
μ̂,

(
1′1

)−1
σ 2

e

)
, (5.45a)

where

.μ̂ = (
1′1

)−1 1′ (y − Uα) .

230 5 McMC in Practice

Deriving [α|D]

Extracting from (5.44) those terms that include . α gives

. p (α|D) ∝ p
(
α|σ 2

g

)
p
(
y|μ, α, σ 2

e

)

∝ exp

[
− 1

2σ 2
g

α′�−α

]
exp

[
− 1

2σ 2
e

(y − 1μ − Uα)′ (y − 1μ − Uα)

]
.

In this expression,

. �− =
[

(�−n)
−1
(n−1)×(n−1) 0(n−1)×1

01×(n−1) 01×1

]

n×n

and .(�−n)
−1 is the .(n − 1) × (n − 1) diagonal matrix whose diagonal elements

are the inverse of the non-zero eigenvalues .λ1, . . . , λn−1. The two terms in the
exponentials can be brought together to obtain

. p (α|D) ∝ exp

[
− 1

2σ 2
e

{
(y − 1μ − Uα)′ (y − 1μ − Uα) + kα′�−α

}]
,

(5.46)

where .k = σ 2
e /σ 2

g . The term in curly brackets that only contains terms in . α is

.
{
(y − 1μ − Uα)′ (y − 1μ − Uα) + kα′�−α

} =
= −2α′U ′y + 2α′U ′1μ + α′U ′Uα + kα′�−α

= −2α′U ′ (y − 1μ) + α′α + kα′�−α

= −2α′U ′ (y − 1μ) + α′ (I + �−k
)
α,

excluding an additive constant. Defining

.
(
I + �−k

)
α̂ = U ′ (y − 1μ) (5.47)

and replacing .−2U ′ (y − 1μ) by the left-hand side of this expression gives

.
{
(y − 1μ − Uα)′ (y − 1μ − Uα) + kα′�−α

} ∝
∝ −2α′ (I + �−k

)
α̂ + α′ (I + �−k

)
α.

5.4 Example: A Genomic Model 231

excluding an additive constant. Adding and subtracting .̂α′ (I + �−k
)
α̂ and keeping

only terms that contain . α lead to (excluding an additive constant)

.
{
(y − 1μ − Uα)′ (y − 1μ − Uα) + kα′�−α

} =
= (α − α̂)′

(
I + �−k

)
(α − α̂) .

Substituting in (5.46),

. p (α|D) ∝ exp

[
− 1

2σ 2
e

(α − α̂)′
(
I + �−k

)
(α − α̂)

]

which is the kernel of the normal distribution

. [α|D] ∼ N
(
α̂,

(
I + �−k

)−1
σ 2

e

)
. (5.48)

In practice, one implements the Gibbs sampler updating the non-zero .n−1 elements
.α−n from the .(n − 1) dimensional normal distribution

.α−n|D ∼ N

(
α̂−n,

(
I + �−1−nk

)−1
σ 2

e

)
(5.49)

where .̂α−n contains the first .(n − 1) non-zero elements of . ̂α defined in (5.47). The
the nth element of . ̂α is equal to zero.

The update is computationally straightforward since the .α′s are conditionally
independent. A little manipulation with (5.48) or (5.49) shows that

. E (αi |D) = α̂i = λi

λi + k
U ′

i (y − 1μ) ,

V ar (αi |D) = λiσ
2
e

λi + k
, i = 1, . . . , n − 1

and therefore each . αi is updated from .N (E (αi |D) , V ar (αi |D)). These expres-
sions make it clear that when .λn = 0, the mean and variance are zero, and the
density collapses to a point mass at zero.

232 5 McMC in Practice

Deriving
[
σ 2

g |D
]

The fcpd of the genomic variance component defined at the level of this operational
model is obtained by extracting from (5.44) those terms that include . σ 2

g . This results
in

. p
(
σ 2

g |D
)

∝ p
(
α|σ 2

g

)

∝
(
σ 2

g

)−
(

n−1
2

)
exp

(
−α′�−α

2σ 2
g

)
, (5.50)

that is proportional to the kernel of a scaled inverse chi-square distribution with
.vα = n − 3 degrees of freedom and scale .Sα = (

α′�−α/vα

)
. The density up to

proportionality is equal to

.p
(
σ 2

g |D
)

∝
(
σ 2

g

)−(vα
2 +1)

exp

(
−vαSα

2σ 2
g

)
. (5.51)

To extract a sample from (5.51), draw from a chi-square distribution with . vα degrees
of freedom

. χ2 (vα)

and then compute

.
α′−n(�−n)

−1α−n

χ2 (vα)
.

Deriving
[
σ 2

e |D]

Extracting from (5.44) those terms that include . σ 2
e gives

.p
(
σ 2

e |D
)

∝ p
(
y|μ, α, σ 2

e

)

∝
(
σ 2

e

)− n
2
exp

[
− 1

2σ 2
e

(y − 1μ − Uα)′ (y − 1μ − Uα)

]
.

5.4 Example: A Genomic Model 233

Regarded as a function of . σ 2
e , this is proportional to a scaled inverted chi-square

density, with scale

. Se = (y − 1μ − Uα)′ (y − 1μ − Uα)

ve

and with .ve = n − 2 degrees of freedom. That is,

.p
(
σ 2

e |D
)

∝
(
σ 2

e

)−(ve
2 +1)

exp

(
−veSe

2σ 2
e

)
. (5.52)

To extract a sample from (5.52), draw from a chi-square distribution with . ve degrees
of freedom

. χ2 (ve)

and compute

.
(y − 1μ − Uα)′ (y − 1μ − Uα)

χ2 (ve)
.

An Alternative Definition of Genomic Variance

The Appendix of Chap. 1 discusses the distinction between the parameters defined
at the level of the quantitative genetic model, regarded as the data-generating
mechanism and the parameters defined at the level of the operational model used to
analyse the data. The genomic model is such an operational model. It was noted that
the genomic variance of the genomic operational model (1.40), that is a parameter
corresponding to . σ 2

g in the present example (here, the matrix of marker genotypes
W is centred and scaled; in (1.40), it is centred), has an unclear connection with the
parameter (1.37), that is argued, is the real focus of inference.

An alternative estimator of genomic variance (1.42) was defined on page 44,
which is better aligned with (1.37). This subsection shows that estimator (1.42) can
be obtained with one line of extra code, when the Bayesian model is implemented
in an McMC computing environment.

The .n × 1 vector of genomic values is .g = Wb = Uα, where W is the . n × p

centred and scaled matrix of marker genotypes, b is the .p × 1 vector of genetic
marker effects, and . α is the regression of genomic value on eigenvectors. The
genomic variance or variance of genomic values was defined in (1.42) and in terms

234 5 McMC in Practice

of the reparametrised model can be written as

. σ 2
G = 1

n
g′g −

(
1

n
1′g

)2

= 1

n
α′U ′Uα

= 1

n

n∑
i=1

α2
i . (5.53)

The equality in the second line follows because when matrix W is column-centred,
.1′g = 1′Wb = 0. Vector . α is unknown and is therefore inferred from its
marginal posterior distribution. When the Markov chain converges to its stationary
distribution, extractions from this distribution are given by (5.49). For example, if
. α[t] is the vector of draws from (5.49) at round t of the McMC sampler, an extraction
of . σ 2

G from its marginal posterior distribution is .σ 2[t]
G = 1

n
α[t]′α[t]. The R-code is

mean(alpha*alpha), where alpha is the vector . α[t].

5.5 Example: A Mixture Model of Two Gaussian
Components

An EM algorithm to obtain maximum likelihood estimates for the mixture model of
two Gaussian components was presented on page 127. Here, the mixture model
is implemented with McMC in a Bayesian setup. Let . zi , .i = 1, . . . , n, be the
(unobserved) binary random variable that indicates which of the two mixture
components observation i comes from. Assume that the marginal probability of . Zi

is Bernoulli . Br (π1)

. Pr (Zi = zi |π1) = π
zi

1 (1 − π1)
1−zi , zi = 0, 1,

with

. Pr (Zi = 1|π1) = π1,

Pr (Zi = 0|π0) = π0 = 1 − π1.

An McMC data augmentation strategy is to use the unobserved Z to generate an
augmented posterior distribution. Conditional on .zi = j , .j = 1, 0, assume . yi has
density .pj

(
yi |θj , zj

)
. The pairs .(Yi, Zi) are assumed to be iid with joint density

.p (yi, zi |θ, π) = pj

(
yi |zi = j, θj

)
Pr
(
Zi = j |πj

)

= pj

(
yi |zi = j, θj

)
πj .

5.5 Example: A Mixture Model of Two Gaussian Components 235

To be specific, let .pj

(
yi |θj , σ

2
)

be the density of the normal distribution
.N
(
θj , σ

2
)
. The parameters of the model are .θ0, θ1, σ

2, π0, zi , .i = 1, . . . , n.
Assume that the priors for the . θ ′s are improper uniforms and that the density of

the prior distribution of the remaining parameters factorises as follows:

. p
(
θj , σ

2, π1, z
)

∝ p
(
σ 2

)
p (z|π1) p (π1) ,

where .p (z|π1) = ∏n
i=1 Pr (Zi = zi |π1). The probability . π1 is assigned a beta prior

distribution with user-tuned hyperparameters . α and . β,

.π1|α, β ∼ Be (α, β) (5.54)

and the conditional variance of the data is a scaled inverted chi-square prior
distribution

.σ 2|S, v ∼ Sχ−2 (S, v) , (5.55)

where S and the v are user-tuned hyperparameters. The density of the augmented
posterior distribution takes the form

.p
(
θj , σ

2, π1, z|y
)

∝ p
(
y|z, θj , σ

2
)

p
(
σ 2

)
p (z|π1) p (π1) . (5.56)

The McMC Gibbs sampling algorithm for this model is straightforward and can
be implemented extracting the fully conditional posterior distributions (fcpd) from
(5.56).

Deriving [θ1|D]

From (5.56), the fcpd of . θj is

. p
(
θj |D

) ∝ p
(
y|z, θj , σ

2
)

∝ exp

[
− 1

2σ 2

∑n

i=1

{
I (zi = j)

(
yij − θj

)2}]
.

A little algebra leads to

.
[
θj |D

] ∼ N

(
θ̂j ,

σ 2

nj

)
. (5.57)

236 5 McMC in Practice

In this expression,

. ̂θj = 1

nj

∑n

i=1
yiI (zi = j) ,

nj =
∑n

i=1
I (zi = j) .

Deriving [zi|D]

From (5.56), the fcpd of . zi is

. Pr (Zi = j |D) ∝ p
(
yi |zi, θj , σ

2
)
Pr
(
zi = j |πj

)
.

When .j = 0,

. p
(
yi |zi = 0, θj , σ

2
)

∝ exp

[
− 1

2σ 2 (yi − θ0)
2
]

and

. Pr (Zi = 0|D) ∝ exp

[
− 1

2σ 2 (yi − θ0)
2
]

(1 − π1) .

When .j = 1,

. p
(
yi |zi = 1, θj , σ

2
)

∝ exp

[
− 1

2σ 2 (yi − θ1)
2
]

and

. Pr (Zi = 1|D) ∝ exp

[
− 1

2σ 2 (yi − θ1)
2
]

π1.

The fcpd is then the Bernoulli process

. Pr (Zi = 1|D) =
exp

[
− 1

2σ 2 (yi − θ1)
2
]
π1

exp
[
− 1

2σ 2 (yi − θ1)
2
]
π1 + exp

[
− 1

2σ 2 (yi − θ0)
2
]
(1 − π1)

(5.58)

5.5 Example: A Mixture Model of Two Gaussian Components 237

and the logodds are given by

. ln

[
Pr (Zi =1|D)

Pr (Zi =0|D)

]
= 1

2σ 2

[
(yi − θ0)

2 − (yi − θ1)
2
]

− [ln (1 − π1) − lnπ1] = Ki.

(5.59)

In a computing environment, an extraction from (5.58) can be obtained efficiently
as follows: Let un be a realisation from

. un ∼ Un (0, 1) .

Then

.zi =
{
1, if ln

(
un

1−un

)
≤ ln

[
Pr(Zi=1|D)
Pr(Zi=0|D)

]
,

0, otherwise.
(5.60)

There are two ways of characterising .Pr (Zi = 1|y). One is using the McMC
draws . z[j]i , the j th sample from .Pr (Zi = 1|D). When the system converges, these
are McMC draws from marginal posterior distribution .[Zi = 1|y], and their average
is a Monte Carlo point estimate of the marginal posterior distribution

. ϕi = Pr (Zi = 1|y) .

The estimator is

.ϕ̂i = P̂r (Zi = 1|y) = 1

l

l∑
j=1

z
[j]
i , (5.61)

where l is the length of the Gibbs chain.
The second way of characterising .Pr (Zi = 1|y) is by constructing . ϕi at each

round of the McMC chain. Using the logodds (5.59),

.ϕi = exp (Ki)

1 + exp (Ki)
. (5.62)

When the McMC algorithm converges the value constructed from (5.62) at iteration
j , .ϕ[j]

i is an extraction from the marginal posterior distribution .[ϕi |y]. The draws
. ϕ

[j]
i , .j = 1, . . . , l, provide a Monte Carlo description of the complete marginal

posterior distribution .[ϕi |y].

238 5 McMC in Practice

Deriving
[
σ 2|D]

From (5.56), the fcpd . σ 2 is

. p
(
σ 2|D

)
∝ p

(
σ 2

)
p
(
y|z, θj , σ

2
)

∝
(
σ 2

)−(1+ v
2)

exp

[
− vS

2σ 2

] (
σ 2

)− n
2
exp

⎡
⎣−

∑n
i=1

∑1
j=0 I (zi =j)

{(
yi −θj

)2}

2σ 2

⎤
⎦

=
(
σ 2

)−
(
1+ ṽ

2

)
exp

[
− ṽS̃

2σ 2

]
,

where .̃v = v+n and .̃S =
[{∑n

i=1
∑1

j=0

[
I (zi = j)

(
yi − θj

)2]} + vS
]/

ṽ. This

is the kernel of a scaled inverted chi-square distribution with parameters . ̃v and . ̃S:

.

[
σ 2|D

]
∼ ṽS̃χ−2 (̃v) . (5.63)

To obtain a sample from (5.63), draw a chi-square distribution with . ̃v degrees of
freedom, and the reciprocal of this number is multiplied by . ̃vS̃.

Deriving [π1|D]

From (5.56), the fcpd of . π1 is

. p (π1|D) ∝ p (z|π1) p (π1)

= πα−1
1 (1 − π1)

β−1
∏n

i=1
Pr (Zi = 1|π1)

zi (1 − Pr (Zi = 1|π1))
1−zi

= π

∑n
i=1 zi+α−1

1 (1 − π1)
n−∑n

i=1 zi+β−1 (5.64)

which is the kernel of a beta distribution with parameters .
∑n

i=1 zi + α and . n −∑n
i=1 zi + β. Thus,

. [π1|D] ∼ Be
(∑n

i=1
zi + α, n −

∑n

i=1
zi + β

)
. (5.65)

An implementation of this Bayesian model is discussed on page 356.

5.6 Example: An Application of the EM Algorithm in a Bayesian Context—. . . 239

5.6 Example: An Application of the EM Algorithm
in a Bayesian Context—Estimation of SNP Effects

A classical parametrisation of the genomic model is based on the multiple linear
regression

.y = Zα + Xβ + e, (5.66)

where Z is an observed incidence matrix of dimension .n × p that associates fixed
effects . α with the data y (a column vector of length n) and matrix X, of dimension
.n × m, is an observed matrix of SNP genotypes where each element takes the value
0, 1 or 2. Row i of X contains the marker genotypes of the m SNPs of individual i.
Column vector . β (of length m) represents unobserved SNP effects, and e is a vector
of residuals with iid elements .N

(
0, σ 2

e

)
.

Sun et al (2012) present an interesting application of the EM algorithm for
estimation of SNP effects in a Bayesian framework. In contrast with model (1.39) on
page 41 that poses a single variance parameter for all SNP effects, Sun et al (2012)
assume that the vector of SNP effects can be represented with the normal structure

.β|σ 2 ∼ N (0,D) , σ 2 =
(
σ 2
1 , σ 2

2 , . . . , σ 2
m

)
, (5.67)

where

.D = diag
{
σ 2

j

}
, j = 1, . . . , m, (5.68)

and

.σ 2
j

iid∼ vβSβχ−2 (vβ

)
, for all j. (5.69)

The SNP model assumes that a priori, SNP effects . β are conditionally (given D)
independent and normally distributed and that each SNP has its own variance . σ 2

j .
The variances of the m SNPs are iid realisations from a common scaled inverse chi-
square distribution .vβSβχ−2

(
vβ

)
with hyperparameters . vβ (the degrees of freedom)

and scale . Sβ . It follows that the density of the marginal distribution of an SNP effect
is

. p
(
βj |vβ, Sβ

) =
∫

p
(
βj |σ 2

j

)
p
(
σ 2

j |vβ, Sβ

)
dσ 2

j ,

the density of a . t−distribution with . vβ degrees of freedom and scale . Sβ (see page
149 for a characterisation of a . t−distributed random variable as a mixture).

240 5 McMC in Practice

The EM algorithm proposed by Sun et al (2012) treats the variance of each SNP
effect . σ 2

j as missing data and maximises the resulting Q function with respect to . α,

. β and . σ 2
e . The objective is to find the joint modal value of .α, β and . σ 2

e .

Preliminaries

Before deriving the EM equations, a little background is needed. The Q function
involves expectation of . lnp (y, β, σ, σe) = ln

[
p
(
y|α, β, σ 2

e

)
p
(
β|σ 2

)
p
(
σ 2

)]
with respect to the distribution .

[
σ 2|β[t], y

]
. First, the form of the conditional

posterior distribution .
[
σ 2

j |β[t], y
]
is needed. The posterior density is proportional

to .p (y|α, β, σe) p
(
β|σ 2

)
p
(
σ 2

)
, and extracting terms including . σ 2

j yields

. p
(
σ 2

j |β, y
)

∝ p
(
βj |σ 2

j

)
p
(
σ 2

j

)

=
(
σ 2

j

)− 1
2
exp

(
− β2

j

2σ 2
j

)(
σ 2

j

)−
(

vβ
2 +1

)
exp

(
−vβSβ

2σ 2
j

)

=
(
σ 2

j

)−
(

vβ
2 + 3

2

)
exp

(
−β2

j + vβSβ

2σ 2
j

)

=
(
σ 2

j

)−
(

v∗
β
2 +1

)

exp

(
−v∗

βS∗
β

2σ 2
j

)
(5.70)

that is the kernel of a scaled inverse chi-square density with . v∗
β degrees of freedom

and scale parameter . S∗
β where

. v∗
β = v + 1,

S∗
β = β2

j + vβSβ

v∗
β

.

As shown below, evaluation of the Q function involves the expected value of
.

(
σ 2

j

)−1
. Using the theory of transformation of random variables, the pdf of . w = 1

σ 2
j

,

from (5.70), is

. p (w|β, y) ∝
(
w−1

)−
(

v∗
β
2 +1

)

exp

(
−v∗

βS∗
βw

2

)
w−2

= w
v∗
β
2 −1 exp

(
−v∗

βS∗
βw

2

)
. (5.71)

5.6 Example: An Application of the EM Algorithm in a Bayesian Context—. . . 241

Defining .a = v∗
β/2 and .b = v∗

βS∗
β/2, (5.71) can be written as

.wa−1 exp (−bw) , (5.72)

which is the kernel of a Gamma distribution whose mean is

.E (w|β, y) = a

b
= 1

S∗
β

=
(

β2
j + vβSβ

v∗
β

)−1

. (5.73)

E-Step

The Q function involved in the E step is

. Q = E
(
ln
[
p (y|α, β, σe) p

(
β|σ 2

)
p
(
σ 2

)])

where integration is with respect to .
[
σ 2|β[t], y

]
. Taking logarithms and noting that

the first term is a constant with respect to .
[
σ 2|β[t], y

]
yield

.Q = lnp (y|α, β, σe) + E
[
lnp

(
β|σ 2

)]
+ E

[
lnp

(
σ 2

)]
. (5.74)

The last term in the right-hand side does not involve .α, β, σ 2
e and therefore does

not need to be evaluated (it drops out in the .M−step). Working with the middle
term of the right-hand side, due to independence, the expectation can be computed
element-wise yielding

. E
[
lnp

(
β|σ 2

)]
=

m∑
i=1

E

(
ln

[(
2πσ 2

i

)− 1
2
exp

(
− β2

i

2σ 2
i

)])

= −1

2

m∑
i=1

E

(
ln 2π + ln σ 2

i + β2
i

1

σ 2
i

)

= −1

2

m∑
i=1

E

(
β2

i

1

σ 2
i

)
+ R

= −1

2

m∑
i=1

β2
i

(
β
2[t]
i + vβSβ

v∗
β

)−1

+ R, (5.75)

where R includes terms that do not involve .α, β, σ 2
e . The expectation in the third

line is obtained from (5.73) where . β2
i is factored out as a constant, and this operation

242 5 McMC in Practice

leads to the fourth line. Then the Q function ignoring an additive constant reduces
to

. Q= lnp
(
y|α, β, σ 2

e

)
− 1

2

m∑
i=1

β2
i

(
β
2[t]
i + vβSβ

v∗
β

)−1

+ R

= ln

{(
σ 2

e

)− n
2
exp

[
− 1

2σ 2
e

(y − Zα − Xβ)′ (y − Zα − Xβ)

]}
− 1

2
β ′D[t]β + R

=−n

2
ln σ 2

e − 1

2σ 2
e

(y − Zα − Xβ)′ (y − Zα − Xβ) − 1

2
β ′D[t]β + R (5.76)

where

. D[t] = diag

⎡
⎣
(

β
2[t]
i + vβSβ

v∗
β

)−1
⎤
⎦ , i = 1, . . . , m.

M-Step

The M-step involves maximisation of (5.76) with respect to . σ 2
e , . α and . β. Maximis-

ing with respect to . σ 2
e , setting the derivative equal to zero, and solving for . σ 2

e yield

.σ 2[t+1]
e = 1

n

(
y − Zα[t+1] − Xβ[t+1]

)′ (
y − Zα[t+1] − Xβ[t+1]

)
. (5.77)

Similarly for . α

.
∂Q

∂α
= 1

σ 2
e

Z′ (y − Zα − Xβ) = 0,

Z′Zα + Z′Xβ = Z′y, (5.78)

and for . β

.
∂Q

∂β
= 1

σ 2
e

X′ (y − Zα − Xβ) − D[t]β = 0,

X′Zα +
[
X′X + σ 2

e D[t]
]
β = X′y. (5.79)

Equations (5.78) and (5.79) result in the system

.

[
Z′Z Z′X
X′Z X′X + σ

2[t]
e D[t]

][
α[t+1]

β[t+1]

]
=
[

Z′y
X′y

]
. (5.80)

5.6 Example: An Application of the EM Algorithm in a Bayesian Context—. . . 243

These equations have the same structure as those that originate from a mixed model
where the random effect . β has variance

.

(
D[t]

)−1 = diag

[(
β
2[t]
i + vβSβ

v∗
β

)]
, i = 1, . . . , m. (5.81)

An Alternative Parametrisation

The system of Eqs. (5.80) has dimension .(p + m) × (p + m). When the number of
individuals . (n) is smaller than the number of markers .(m) the following strategy is
computationally more attractive. Define genomic values as .g = Xβ and assume that

. g|X ∼ N

(
0, X

(
D[t]

)−1
X′
)

,

where .
(
D[t]

)−1
is defined in (5.81). Secondly, find the maximiser of

.p
(
y|α, g, σ 2

e

)
p
(
g|D[t]

)
. This requires

.
∂p

(
y|α, g, σ 2

e

)
p
(
g|D[t]

)

∂α
= 0,

∂p
(
y|α, g, σ 2

e

)
p
(
g|D[t]

)

∂g
= 0.

The maximisation involves the following operations:

.

∂
[
− 1

2σ 2
e

(y − Xα − g)′ (y − Xα − g) − 1
2g

′G−1g
]

∂α
= 0,

∂
[
− 1

2σ 2
e

(y − Xα − g)′ (y − Xα − g) − 1
2g

′G−1g
]

∂g
= 0,

where .G = X
(
D[t]

)−1
X′. This yields

.

[
Z′Z Z′
I I + σ 2

e G−1

] [
α[t+1]

g[t+1]

]
=
[

Z′y
y

]
. (5.82)

The system of equations is of dimension .(p + n) × (p + n). To retrieve marker
effects from (5.82), use (5.81), and write

.

[
β[t+1]

g[t+1]

]
∼ SN

([
0
0

]
,

[(
D[t]

)−1 (
D[t]

)−1
X′

X
(
D[t]

)−1
X
(
D[t]

)−1
X′

])
.

244 5 McMC in Practice

Then

.E
(
β[t+1]|g[t+1]

)
=
(
D[t]

)−1
X′

(
X
(
D[t]

)−1
X′
)−1

g[t+1]. (5.83)

5.7 Example: Bayesian Analysis of the Truncated Normal
Model

The setup here is the same as on page 134 where a likelihood analysis was
implemented with the EM algorithm. To recapitulate, the data available originates
from an initial draw of N records from the normal distribution .N(μ, σ 2). In a
second stage, only records larger than an observed threshold C are kept, and those
smaller than C are discarded. After this procedure, one can confirm that there are n
observable records and thatm are missing. The complete data z consist of . N = m+n

records, .z′ = (
(y∗)′, y′) where . y∗ are the m (unobserved) missing records and y are

the n observed records.
A Bayesian McMC analysis can be easily implemented augmenting the parame-

ter space with the missing data. An observed datum is conceptually generated from

. yi |μ, σ 2 ∼ N

(
μ, σ 2

)
I (zi > C)

and a missing datum from

. y∗
i |μ, σ 2 ∼ N

(
μ, σ 2

)
I (zi ≤ C)

where .I (x ∈ A) is the indicator function that takes the value 1 if .x ∈ A and zero
otherwise. Assuming independence, the conditional density of the complete data is

.p
(
z|μ, σ 2

)
∝
∏N

i=1
N(z|μ, σ 2) [I (zi > C) + I (zi ≤ C)] . (5.84)

The augmented posterior density is

. p
(
μ, σ 2, y∗|y

)
∝ p

(
μ, σ 2, y∗)p

(
y|μ, σ 2, y∗)

= p
(
μ, σ 2

)
p
(
y, y∗|μ, σ 2

)
. (5.85)

Assuming independent uniform prior distributions for . μ and . σ 2, this augmented
posterior is proportional to (5.84). The parameters of the augmented Bayesian
model are .

(
μ, σ 2, y∗), and a Gibbs sampling implementation requires drawing

from .
[
y∗|D]

, .[μ|D] and .
[
σ 2|D]

, where, as before, D is a vector containing the
observations y and all the parameters of the model except the one to be updated.

5.7 Example: Bayesian Analysis of the Truncated Normal Model 245

The update of . y∗ requires choosing the terms that include . y∗ from the augmented
posterior (5.84). The resulting fully conditional posterior distribution is

.
[
y∗|D] ∝

∏m

i=1
p
(
y∗
i |μ, σ 2

)
I
(
y∗
i ≤ C

)

that is in the form of a truncated normal distribution with mean . μ and variance . σ 2

with probability density function

. p
(
y∗
i |μ, σ 2, y∗

i ≤ C
)

= p
(
y∗
i |μ, σ 2

)

	(c)
, c = C − μ

σ
,

where .	(·) is the cdf of the .N(0, 1). An efficient algorithm to draw from truncated
distributions was given in (5.27).

The update for . σ 2 is again based on the construction of its fully conditional
distribution .

[
σ 2|D]

. From (5.84), this takes the form

.

[
σ 2|D

]
∝
∏N

i=1
p
(
zi |μ, σ 2

)
.

The density is proportional to

.

(
σ 2

)− N
2
exp

[
−
∑N

i=1 (zi − μ)2

2σ 2

]
.

This is in the form of a scaled inverted chi-square distribution with scale parameter
.S = ∑N

i=1 (zi − μ)2 and .N − 2 degrees of freedom. Therefore,

.

[
σ 2|D

]
∼ χ−2 (N − 2, S) .

To obtain a draw first sample from a chi-square distribution with .N − 2 degrees of
freedom, invert this number, and multiply by S.

The final update requires drawing from .[μ|D]. This distribution is proportional

to (5.84), now seen as a function of . μ. Adding a subtracting .z = ∑N
i=1 zi

/
N in

the squared term and dropping the terms that do not contain . μ result in

.

∑N
i=1 [(zi − z) + (z − μ)]2

2σ 2
= N (z − μ)2

2σ 2
+ k,

where k is an additive constant. Regarded as a function of . μ, this expression is
recognised as the logarithm of the kernel of .N

(
z, σ 2

/
N
)
. Therefore,

. [μ|D] ∼ N
(
z, σ 2

/
N
)
.

246 5 McMC in Practice

The R-code below executes a Gibbs sampler using the same data as used on page
134:

CODE0503
EM FOR TRUNCATED DATA; ESTIMATE MEAN OF UNTRUNCATED
GENERATE Y ~ N(MEAN,VAR)
TRUNCATE AT T SO THAT Z = Y > T ARE OBSERVED
Y < T ARE MISSING (KNOWN INFORMATION)
rm(list=ls()) # CLEAR WORKSPACE
set.seed(12371)
nindiv<-50000
mean <- 10
var <- 3
T <- mean + 1.5*sqrt(var) # ASSUMED KNOWN
CREATE COMPLETE DATA
y <- rnorm(nindiv,mean,sqrt(var))
TRUNCATE: OBSERVED DATA
z <- y[y>T]
#length(z)
m <- length(y)-length(z)
#mean(y)
#mean(z)
#var(z)
##################### McMC ######################
nrep <- 1000
resmc <- matrix(data=NA,nrow=nrep,ncol=2)
w <- rep(0,m)
START VALUES FOR MEAN (mu) AND VARIANCE (sigmasq)
mu <- 0
sigmasq <- 2
sigma <- sqrt(sigmasq)
ptm <- proc.time()
for (j in 1:nrep){
print(j)

T_star <- (T-mu)/sigma
std <- sqrt(var)

sample m missing records in one go (left from threshold T)
w <- mu + std*qnorm(runif(m)*pnorm(T_star))

sample the variance
scale <- sum((w-mu)^2) + sum((z-mu)^2)
sigmasq <- scale/rchisq(1,length(y)-2)
sigma <- sqrt(sigmasq)

sample the mean
xbar <- (sum(w)+sum(z))/(length(w)+length(z))
disp <- sigmasq/(length(w)+length(z))
mu <- rnorm(1,xbar,sqrt(disp))
resmc[j,] <- c(mu,sigmasq)

}
proc.time()-ptm

user system elapsed
2.81 0.14 2.96

postmean <- mean(resmc[100:nrep,1])
postvar <- mean(resmc[100:nrep,2])
postmean

5.8 A Digression on Model Comparison 247

[1] 10.03055

postvar

[1] 3.005774

95% POSTERIOR INTERVAL FOR THE MEAN
pimean <- quantile(resmc[100:nrep,1],c(0.025,0.975))
95% POSTERIOR INTERVALFOR THE VARIANCE
pivar <- quantile(resmc[100:nrep,2],c(0.025,0.975))
pimean

2.5% 97.5%
10.00086 10.06202

pivar

2.5% 97.5%
2.953886 3.059747

The MC estimates of the posterior mean and variance are 10.031 and 3.006, in
good agreement with the parameters of the untruncated distribution (and with the
ML estimates introduced on page 134). The sampler generates the complete joint
posterior distribution of .(μ, σ 2, y�), and the margins correspond to the marginal
posterior distribution of each variable in turn. MC estimates of posterior intervals
are obtained from the nrep draws (here I exclude the first 100 draws as burn-in).
The MC estimate of the .95% posterior interval for the posterior mean is (10.001,
10.062) and for the posterior variance (2.954, 3.06).

5.8 A Digression on Model Comparison

The general problem of model criticism and model choice occupies a vast literature
including classical and Bayesian approaches. Here, the topic is visited briefly, and it
is shown that within an McMC environment, a few extra calculations lead to a useful
and versatile measure of model comparison: the pseudo-log-marginal probability of
the data. The basic ideas are summarised and an example is provided.

The pseudo-log-marginal probability of the data is a standard measure of model
comparison (Gelfand 1996) and is defined and computed as follows: Consider data
vector .y′ = (

yi, y
′−i

)
, .i = 1, · · · , n, where . yi is the ith datum and .y−i is the vector

of data with the ith datum deleted. The conditional predictive distribution of . yi has
density

.p (yi |y−i) =
∫

p (yi |θ, y−i) f (θ |y−i) dθ, (5.86)

248 5 McMC in Practice

where . θ is the vector of parameters of the model. This density can be interpreted
as the probability of each data point given the remainder of the data; a low value
indicates that the datum is poorly fit by the model. The actual value of . p (yi |y−i)

is known as the conditional predictive ordinate (CPO) for the ith observation. A
plot of the CPOs versus the index for the observations can serve as a useful tool
for outlier detection. The pseudo-log-marginal probability of the data or pseudo-
marginal likelihood is given by

.

∑
i

lnp (yi |y−i) . (5.87)

The pseudo-Bayes factor for comparing two models . M1 and . M2 (Gelfand et al 1992;
Gelfand 1996) is

.PBF12 =
n∏

i=1

Pr (Yi = yi |y−i ,M1)

Pr (Yi = yi |y−i ,M2)
. (5.88)

A Monte Carlo approximation of the CPO (5.86) for observation i is given by
(Gelfand 1996)

.p̂ (yi |y−i ,Mk) = N

⎡
⎣

N∑
j=1

1

p
(
yi |y−i , θ (j),Mk

)
⎤
⎦

−1

, (5.89)

where N is the number of McMC draws, . Mk is a label for model k and .θ(j) is the
j th draw from the posterior of . θ under model . Mk . Often, the . yis are conditionally
independent given . θ ; then the term .p

(
yi |y−i , θ

(j),Mk

)
in (5.89) simplifies to

.p
(
yi |θ(j),Mk

)
.

The so-called LogCPOs are based on

.

∑
i

ln p̂ (yi |y−i ,Mk) . (5.90)

Larger values indicate a relative better fit.
An appealing side of (5.89) is that only one analysis is required, rather than n (n

is sample size), where one out of n observations is left out in each of the n analyses.
A very useful property is that .p (yi |y−i) is always a proper density, provided the

posterior density is proper. The models under comparison do not need to be nested,
and since asymptotics are not involved, there is no problem with testing values of
parameters that lie on the border of the parameter space.

5.8 A Digression on Model Comparison 249

The derivation of (5.89) is instructive and straightforward. The details are as
follows (Gelfand 1996):

. p (yi |y−i ,Mr) = p (y|Mr)

p (y−i |Mr)

= 1
p(y−i |Mr)
p(y|Mr)

= 1∫
p (y−i , θr |Mr)

1
p(y|Mr)

dθr

= 1∫
p (y−i , θr |Mr)

p(θr |y,Mr)
p(θr ,y|Mr)

dθr

= 1∫ p(θr ,y|Mr)
p(yi |y−i ,θr ,Mr)

p(θr |y,Mr)
p(θr ,y|Mr)

dθr

= 1∫ 1
p(yi |y−i ,θr ,Mr)

p (θr |y,Mr) dθr

, (5.91)

where the fifth line is a consequence of the equality

. p (yi |y−i , θr ,Mr) = p (θr , y|Mr)

p (y−i , θr |Mr)
.

A Monte Carlo estimator of (5.91) is (5.89).

Example

Data are available from the following “true” model

. yij |μ, fi
iid∼ N

(
μ + fi, σ

2
e

)
,

fi |σ 2
f

iid∼ N
(
0, σ 2

f

)
,

i = 1, . . . , nf , j = 1, . . . , n.

There are . nf full-sib families, with n full-sibs per family and a total of . N = nf × n

records. In matrix notation, the model is

.y = 1μ + Zf + e,

250 5 McMC in Practice

where 1 is a vector of ones of length N , Z is of dimension .N × nf and f and e
contain family and residual effects, respectively.

The data set is analysed using the “true” model and using a “wrong” model that
assumes .σ 2

f = 0. This model is

. yi |μ iid∼ N
(
μ, σ 2

ε

)
,

i = 1, . . . , N.

The two Bayesian models will be implemented with the Gibbs sampler and the
pseudo-marginal likelihood (5.90) will be calculated for each.

The values of n and . nf are set equal to 3 and 400, respectively, leading to . N =
1200 records. Variance components are assumed to be .σ 2

f = 10 and .σ 2
e = 50.

A Gibbs Sampler for the “True” Model

The Bayesian model assumes improper, uniform prior distributions for .
(
μ, σ 2

f , σ 2
e

)
.

The posterior density is

. p
(
μ, σ 2

f , σ 2
e |y

)
∝ p

(
f |σ 2

f

)
p
(
y|μ, σ 2

f , σ 2
e

)

∝
(
σ 2

e

)− N
2
(
σ 2

f

)− nf
2
exp

(
− 1

2σ 2
f

f ′f
)
exp

(
− 1

2σ 2
e

(y−1μ−Zf)′ (y − 1μ − Zf)

)

=
(
σ 2

e

)− N
2
(
σ 2

f

)− nf
2
exp

[
− 1

2σ 2
e

{
(y − 1μ − Zf)′ (y − 1μ − Zf) + kf ′f

}]
,

where .k = σ 2
e /σ 2

f . The Gibbs sampler is implemented drawing from the following
fully conditional posterior distributions:

. [μ|D] ∼ N
(
μ̂,

(
1′1

)−1
σ 2

e

)
,

μ̂ = (
1′1

)−1 1′ (y − Zf) ,

[f |D] ∼ N
(
f̂ ,

(
Ik + Z′Z

)−1
σ 2

e

)
,

f̂ = (
Ik + Z′Z

)−1
Z′ (y − 1μ) ,

[
σ 2

f |D
]

∼ f ′f
χ2

(
nf − 2

) ,
[
σ 2

e |D
]

∼ (y − 1μ − Zf)′ (y − 1μ − Zf)

χ2 (N − 2)
.

5.8 A Digression on Model Comparison 251

The computation of (5.90) requires a few intermediate calculations. In each
Gibbs round, one first calculates

. p
(
yi |μ[j], f [j], σ

2[j]
e ,Mcorrect

)
i = 1, . . . , N.

This can be accomplished for all the data (vector y) in one go using the R function:

dnorm(y,mean=mu+Z%*%f,sd=sqrt(ve))

Specifically, for each round, compute

pyinvt <- -1/(dnorm(y,mean=mu+Z%*%f,sd=sqrt(ve)))
sumpyinvt <- sumpyinvt+pyinvt

Once all the iterations have been executed, one computes (5.89) and finally
(5.90). The code is

phatyt <- rep*(sumpyinvt)^(-1)}
logcpot <- sum(log(phatyt))

A Gibbs Sampler for the “Wrong” Model

Using improper uniform priors for .
(
μ, σ 2

ε

)
, the posterior density under the incorrect

model is

. p
(
μ, σ 2

ε |y
)

∝ p
(
y|μ, σ 2

ε

)

∝
(
σ 2

ε

)− N
2
exp

(
− 1

2σ 2
ε

(y − 1μ)′ (y − 1μ)

)
.

It is straightforward to derive the fully conditional posterior distributions. These are

. [μ|D] ∼ N
(
μ̂,

(
1′1

)−1
σ 2

e

)
,

μ̂ = (
1′1

)−1 1′y,

[
σ 2

e |D
]

∼ (y − 1μ)′ (y − 1μ)

χ2 (N − 2)
.

The R-code below generates data under the true model and then runs a Gibbs
sampler with the two models. The pseudo-marginal likelihoods (5.90) are calculated
for each model. The code is spelled out line by line avoiding the use of more efficient
and more compact programming that is to be preferred with more demanding
computations:

252 5 McMC in Practice

CODE0504
#CPO EXAMPLE
rm(list=ls()) # Clear the workspace
set.seed(123771)
ptm<-proc.time()
require(graphics)
GENERATE CORRELATED (FULL-SIBS DATA
#install.packages("MCMCpack", .libPaths()[1])
#install.packages("mvtnorm", .libPaths()[1])
library(MCMCpack)
INITIALISE PARAMETERS
mus<-10 # MEAN
vfs<-10 #VARIANCE BETWEEN FULL-SIBS
RESIDUAL VARIANCE
ves<-50
nf<-400 # NUMBER OF FULL-SIB FAMILIES
n<-3 #FULL-SIB FAMILY SIZE
N<-nf*n
y<-matrix(data=0,nrow=nf*n,ncol=1)
z IS COLUMN MATRIX WITH FAMILY ID (ID=1,.,nfs)
z<-matrix(data=0,nrow=nf*n,ncol=1)
GENERATE nf FULL-SIB EFFECTS f
fs<-rnorm(nf,mean=0,sd=sqrt(vfs))
GENERATE nf*n RESIDUAL EFFECTS f
es<-rnorm(nf*n,mean=0,sd=sqrt(ves))
GENERATE FULL SIBS (CAN CHOOSE MORE TRANSPARENT LOOP ABOVE)
z <- rep(1:nf,each=n)
y <- mus+fs[z]+es
d<-data.frame(y,z)
GENERATE INCIDENCE MATRIX Z
family<-z
family <- as.factor(family)
Z<-model.matrix(~0+family)
WITH INDEPENDENT FAMILIES Z’Z IS DIAGONAL
ztz<-rep(n,nf)
#END OF GENERATION OF DATA Y
#CHOOSE LENGTH OF CHAIN
rep<-1000
resultt<-matrix(data=NA,nrow=rep,ncol=4)
resultw<-matrix(data=NA,nrow=rep,ncol=3)
#INITIALISE THE VECTOR OF FAMILY EFFECTS f
f<-rep(0,nf)
INITIALISE BETWEEN FAMILY VARIANCE COMPONENT vf
vf<-5
INITIALISE RESIDUAL VARIANCE
ve<-5
INITIALISE k
k<-ve/vf
INITIALISE THE MEAN
mu<-0
sumpyinvt<-0
#START GIBBS LOOP TRUE MODEL
for (i in 1:rep)
{

SAMPLE mu
meanmu<-sum(y-Z%*%f)/(nf*n)
mu<-rnorm(1,mean=meanmu,sd=sqrt(ve/(nf*n)))
SAMPLE FAMILY EFFECTS f
varf<-(k+n)^(-1)

5.8 A Digression on Model Comparison 253

fmean<- varf*(t(Z)%*%(y-mu))
f<-rnorm(nf,mean=fmean, sd=sqrt(varf*ve))
#SAMPLE vf
#COMPUTE SCALE
ftf<-sum(f*f)
vfx<-ftf/rchisq(1,nf-2)
vf<-as.numeric(vfx)
SAMPLE ve
COMPUTE SCALE
e<-(y-mu-Z%*%f)
ete<-t(e)%*%e
vex<-ete/rchisq(1,N-2)
ve<-as.numeric(vex)
k<-ve/vf
resultt[i,]<-c(i,mu,vf,ve)

print(resultt[i,])
COMPUTE CPOs FOR TRUE MODEL
pyinvt<-1/(dnorm(y,mean=mu+Z%*%f,sd=sqrt(ve)))
sumpyinvt<-sumpyinvt+pyinvt

}
phatyt<-rep*(sumpyinvt)^(-1)
logcpot<-sum(log(phatyt))
proc.time()-ptm

user system elapsed
14.14 0.41 3.67

#START GIBBS LOOP WRONG MODEL
vew<-20
sumpyinvw<-0
for (i in 1:rep)
{

SAMPLE muw
meanmuw<-sum(y)/N
muw<- rnorm(1,mean=meanmuw,sd=sqrt(vew/(N)))
SAMPLE vew
vew<-sum((y-muw)*(y-muw))/rchisq(1,N-2)
resultw[i,]<-c(i,muw,vew)
COMPUTE CPOs FOR WRONG MODEL
pyinvw<-1/(dnorm(y,mean=mu,sd=sqrt(vew)))
sumpyinvw<-sumpyinvw+pyinvw

}
phatyw<- rep*(sumpyinvw)^(-1)
logcpow<-sum(log(phatyw))
PRINT OUTPUT
LOG CPO TRUE MODEL
logcpot

[1] -4176.398

254 5 McMC in Practice

95% POSTERIOR INTERVALS FOR THE MEAN AND THE TWO VARIANCES
quantile(resultt[,2],c(0.025,0.975))

2.5% 97.5%
9.344941 10.410468

quantile(resultt[,3],c(0.025,0.975))

2.5% 97.5%
5.504737 13.107484

quantile(resultt[,4],c(0.025,0.975))

2.5% 97.5%
49.94121 60.39323

LOG CPO FOR WRONG MODEL
logcpow

[1] -4194.195

95% POSTERIOR INTERVALS FOR THE MEAN AND VARIANCE
quantile(resultw[,2],c(0.025,0.975))

2.5% 97.5%
9.422171 10.308375

quantile(resultw[,3],c(0.025,0.975))

2.5% 97.5%
58.87403 69.06082

McMC estimates of .95% posterior intervals for the parameters of both models
are printed at the bottom of the code. The .lnCPO based on (5.90) for the true model
is .−4176 and for the incorrect model is .−4194. The difference in favour of the true
model is very large. This may not be the case if . σ 2

f is small. For example, running

the program with .σ 2
f = 5 results in a .lnCPO for the true model equal to . −4045

and for the wrong model, .LogCPO = −4048. The difference is markedly smaller.

Part II
Prediction

Chapter 6
Fundamentals of Prediction

This chapter provides an overview of prediction with examples taken from quanti-
tative genetics. The first part summarises best prediction and best linear prediction
and offers a brief tour of the standard linear least squares regression. Many important
ideas related to prediction can be introduced using the simple least squares setting.
The more specific topics on prediction are introduced in Sect. 6.4, where the
central question that dominates the remaining of the chapter is posed: suppose that
observations in the form of .(y1, x1) , (y2, x2) , . . . , (yn, xn) are available, where
scalars . yi are outcomes or responses and vectors .xi ∈ Rp are signals, covariates
or features that constitute the feature space. The goal is to construct a predictor
that specifies the form of the relationship between the response and the covariate
and generates a prediction for a future y given an observed x. The construction
of the predictor involves estimation of parameters of the model that describes the
relationship between y and x. Among the topics discussed is the accuracy with
which future observations can be predicted, how this accuracy is measured and what
are the factors affecting it. A distinction is made between the ability to predict (or
to fit) those same observations that were used for estimation of parameters or for
prediction of new, yet-to-be observed outcomes.

The body of the chapter deals with prediction from a classical/frequentist
perspective. Bayesian prediction is illustrated in several examples in the coming
chapters and particularly in Chap. 10.

6.1 Best Predictor and Best Linear Predictor

Consider a scalar random variable y that can represent data such as height
measurements in humans and a scalar or vector random variable x that can represent
explanatory variables or covariates such as genetic marker genotypes. One may wish
to establish the form of the association between y and x either to make inferences

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Sorensen, Statistical Learning in Genetics, Statistics for Biology and Health,
https://doi.org/10.1007/978-3-031-35851-7_6

257

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35851-7protect T1	extunderscore 6&domain=pdf
https://doi.org/10.1007/978-3-031-35851-7_6
https://doi.org/10.1007/978-3-031-35851-7_6
https://doi.org/10.1007/978-3-031-35851-7_6
https://doi.org/10.1007/978-3-031-35851-7_6
https://doi.org/10.1007/978-3-031-35851-7_6
https://doi.org/10.1007/978-3-031-35851-7_6
https://doi.org/10.1007/978-3-031-35851-7_6
https://doi.org/10.1007/978-3-031-35851-7_6
https://doi.org/10.1007/978-3-031-35851-7_6
https://doi.org/10.1007/978-3-031-35851-7_6
https://doi.org/10.1007/978-3-031-35851-7_6

258 6 Fundamentals of Prediction

of the parameters that describe this association or to make predictions of a yet-
to-be observed . y0 using a predictor .f (x), a function of x. One way of deriving
the predictor f is by minimising the expected value of the mean squared error of
prediction over the joint distribution .[y0, x]:

. Ey0x [MSE (f (x))] = Ey0x

[
(y0 − f (x))2

]

= Ex

[
Ey0|x (y0 − f (x))2 |x

]

= Ex

[
Var (y0|x) + (E(y0|x) − f (x))2

]
, (6.1)

where the notation .Ey0x means expectation over the joint distribution .[y0, x].
Adding and subtracting .E (y0|x) in .(y0 − f (x)) in the second line, expanding the
square and taking expectations lead to the third line. The first term in the right-hand
side does not depend on f and therefore (6.1) is minimised when

.f (x) = E (y0|x) . (6.2)

This is the best predictor; it minimises .Ey0x [MSE (f (x))] with respect to both,
the joint distribution of .(x, y0) and the conditional distribution of . y0 given x. In
Gaussian linear models, the conditional distribution of . y0 given x depends on x
only through the conditional mean. In the case of other distributions, such as the
Bernoulli where independent binary data are drawn with probability .p (x), both
the conditional mean .E (y0|x) = p (x) and the conditional variance . Var (y0|x) =
p (x) [1 − p (x)] depend on x.

The error of prediction is

. e = y0 − E (y0|x)

that motivates the model for . y0

. y0 = E (y0|x) + e.

Therefore, by construction,

.E (e|x) = E [(y0 − E (y0|x) |x)] = 0. (6.3)

It does not follow that the distribution of e is independent of x unless it is imposed
by assumption.

Using the law of iterated expectations reveals that the unconditional mean is also
zero:

.E (e) = Ex [E (e|x)] = 0. (6.4)

6.1 Best Predictor and Best Linear Predictor 259

The conditional expectation is typically not available and neither is the form of
the joint distribution of .(x, y0). To make progress requires choice of a model. If the
choice falls on a linear relationship, whereby the scalar . y0 is predicted using . α+x′β
where . α is an intercept, . β is the .(p−1)×1 column vector of population coefficients
and x is the .(p − 1) × 1 column vectors of covariates, then, minimising

.Ey0,x

[(
y0 − α − β ′x

)2] (6.5)

with respect to . α and . β yields the population parameters

.β = Var (x)−1 Cov (y0, x) , α = E (y0) − β ′ E (x) . (6.6)

The dimensions are as follows: .Var (x) is .(p−1)×(p−1), .Cov (y0, x) is .(p−1)×1,
. β is .(p − 1) × 1, and .E (x) is .(p − 1) × 1.

The resulting best linear predictor is

.ŷ0 = E (y0) + Cov
(
y0, x

′) [Var (x)]−1 (x − E (x)) (6.7)

that is in the best linear approximation of . y0 given x. Writing

.y0 = ŷ0 + ε, (6.8)

then the following properties can be derived:

.E (ε) = E(y0) − E(ŷ0) = 0, . (6.9a)

Cov
(
ε, ŷ0

) = Cov
(
y0, ŷ0

) − Var
(
ŷ0

) = 0, . (6.9b)

Var (ε) = Var (y0) − Var
(
ŷ0

)
. (6.9c)

In (6.9), expectations are taken over .[y0, x]. The first equality (6.9a) indicates
that the marginal expectation of . ε over .[y0, x] is zero, but using (6.8) and writing
.E(ε|x) = E(y0|x) − E(ŷ0|x) reveals that in contrast to (6.3), the expectation of . ε
given x is not zero in general, unless .E(y0|x) is linear.

The best linear predictor shares properties (6.9) with the best predictor as
indicated below in (6.10).

A classical animal breeding setup where some of these concepts are illustrated is
in Part . III, on pages 563 and 651.

260 6 Fundamentals of Prediction

Properties of the Best Predictor

Let .E (y0|x) = ỹ0. Properties of the best predictor are

.Ex[ỹ0] = Ex[E(y0|x)] = E(y0).. (6.10a)

Covy0x

[
y0, ỹ0

] = Varx
[
ỹ0

]
.. (6.10b)

PEV (ỹ0) = Var (ỹ0 − y0)

= Ex

{
Var

[
(ỹ0 − y0) |x]} + Varx

{
E

[
(ỹ0 − y0) |x]}

= Ex [Var (y0|x)] (6.10c)

where .PEV is the prediction error variance, the variance of the deviation between
the predictand and the conditional mean. The corresponding term in (6.9c) is the
variance of the deviation between the predictand and its best linear approximation.

The top line (6.10a) indicates that the expectation of the predictor is equal to the
expectation of the predictand, the classical frequentist definition of unbiasedness for
“prediction of random variables”.

The proof of (6.10b) is based on the equality

. Covy0x [y0,E (y0|x)] = Ex [Cov (y0,E (y0|x) |x)] + Covx [E (y0|x) ,E (y0|x)]

= Varx
[
ỹ0

]
.

The squared correlation between predictand and predictor is

. r2y0ỹ0 =
[
Covy0x (y0, ỹ0)

]2
Var (y0)Var (ỹ0)

= Varx (ỹ0)

Var (y0)

= 1 − PEV (ỹ0)

Var (y0)
. (6.11)

For simplicity, take x to be a scalar. Then

. Ey0x (y0x) = Ex

[
Ey0|x (y0x|x)

]

= Ex

[
x Ey0|x (y0|x)

]

= Ex (ỹ0x) .

When the equality .Ey0x (y0x) = Ex (ỹ0x) is written as

. Ey0x

[
x (y0 − ỹ0)

] = 0

it takes the form of an orthogonality condition indicating that the prediction errors
.(y0 − ỹ0) are uncorrelated with the covariate x.

6.1 Best Predictor and Best Linear Predictor 261

Example: Additive Genetic Values as Best Linear Predictors

Consider a continuously distributed trait such as height in humans, . yi , .i = 1, . . . , n,
measured on n individuals. Assume that the trait is genetically determined by q
biallelic loci coded as . zij , .j = 1, . . . , q, and that the genotypic codes are centred
so that .E

(
zij

) = 0 for all individuals and loci. The genetic value of individual
i is the deviation between the expected phenotypic value . yi , given . zi and the
population mean, where .E (yi |zi) = μ + G(zi), . μ is the population mean, . G(zi)

is the genetic value and .z′
i = (

zi1, . . . , ziq

)
is the row vector of genotype codes

for individual i. The centred genotype codes are discrete random variables denoted
allele contents. The genetic values of each of the q biallelic loci can take three
modalities corresponding to the three possible genotypes.

The phenotype is assumed to be the result of the additive contribution of a mean,
the genetic value and an environmental effect

.yi = μ + G(zi) + ei (6.12)

where the continuously distributed environmental effect has mean zero and variance
.σ 2; ei ∼ (

0, σ 2
)
.

The conditional expectation .μ+G(zi) may not be linear on . zi due to the genetic
mechanism operating within and across loci. However, one can always define a
linear relationship of the form

.μ + α′zi . (6.13)

Then . μ and . α are obtained minimising

. E
[(

yi − μ − α′zi

)2]

with respect to . μ and . α. The expected squared error is a minimum with

. α = [Var (zi)]
−1 Cov (yi, zi)

= [Var (zi)]
−1 Cov (zi,G (zi)) (6.14)

and

.μ = E (yi) − α′ E (zi) . (6.15)

The equality in the second line of (6.14) is the result of the following:

.Cov (yi, zi) = E (yizi)

= Ezi [E (yizi |zi)]

262 6 Fundamentals of Prediction

= Ezi [zi E (yi |zi)]

= Ezi [zi (μ + G (zi))]

= Cov (zi,G (zi)) .

Substituting (6.14) and (6.15) in (6.13) yields the best linear predictor of the
phenotypic value

. ŷi = E (yi) + Cov (zi,G (zi)) [Var (zi)]
−1 (zi − E (zi))

= μ + α′zi

because .E (zi) = 0. The column vector . α has q elements representing the multiple
regression coefficients of phenotype on allele content. They are the additive genetic
effects of the causal loci or effects of gene substitutions for each of the q loci
affecting the trait (Falconer and Mackay 1996), and .α′zi is the additive genetic value
of individual i, also known as the breeding value, the best linear approximation
describing the relationship between genetic value and allele content.

Using a Biased Predictor

Imagine that a biased predictor is used instead of the best predictor .E (y0|x) = ỹ0.
It is not unusual that a best predictor cannot be derived, and compromises must be
sought. Assume that the biased predictor is equal to . bỹ0, .0 ≤ b ≤ 1, proportional to
the best predictor . ỹ0. How does this affect prediction error variance and the squared
correlation between predictand and predictor? The prediction error variance is

. Var (y0 − bỹ0) = Var (y0) + b2 Var (ỹ0) − 2bCov (y0, ỹ0) .

Using .Cov (y0, ỹ0) = Var (ỹ0) shows that the prediction error variance using the
biased predictor increases to

. Var (y0 − bỹ0) = PEV (ỹ0) + Var (ỹ0) (1 − b)2 .

Similar algebra yields

. r2y0,bỹ0
= r2y0ỹ0

[
1 − (1 − b)2

]
,

indicating that the squared correlation between predictor and predictand is reduced
by a factor .

[
1 − (1 − b)2

]
. The topic is elaborated in de los Campos et al (2013b).

6.2 Estimating the Regression Function in Practice: Least Squares 263

6.2 Estimating the Regression Function in Practice:
Least Squares

The population parameters of the best linear predictor (6.7) are typically estimated
using a sample. Anticipating a terminology to be used later in the book, this
sample used to estimate parameters is labelled training data. This may consist of
independent draws .{yi, xi}ni=1 from some distribution, where .xi ∈ Rp, and in this
section, they are assumed to have mean zero for all i. Collecting the responses onto
the vector .y = {yi}ni=1 ∈ Rn and the vector of predictors onto the rows of a full rank
matrix x,

. x =

⎡
⎢⎢⎢⎣

x′
1

x′
2
...

x′
n

⎤
⎥⎥⎥⎦ ∈ Rn×p,

the linear regression model can be written as

.y = 1α + xβ + e, e ∼
(
0, σ 2I

)
, (6.16)

where . α is an intercept, e is independent of x (here an assumption) and 1 is an . n×1
column vector of ones. In (6.16), x is a matrix of dimension .n × (p − 1). Including
the intercept in . β and taking the first column of x to be the vector of ones, the model
is

.y = xβ + e (6.17)

and now, including the vector of 1s, x has dimension .n×p and . β is a column vector
with dimension .p × 1. The sum of squared errors is

.

n∑
i=1

(
yi − x′

iβ
)2

. (6.18)

The sample regression coefficient (or least squares estimator) is obtained by
minimising (6.18):

. β̂ = (
x′x

)−1
x′y

= (
x′x

)−1
x′ (xβ + e)

= β + (
x′x

)−1
x′e (6.19)

264 6 Fundamentals of Prediction

provided the relationship (6.17) holds. From (6.3), e has conditional mean zero, and
the conditional expectation is

. E
(
β̂|x

)
= β + (

x′x
)−1

x′ E (e|x)

= β

and therefore, unconditionally, .E
(
β̂
)

= β.

A fitted value is defined as

. ŷi = x′
i β̂

and the estimated residual is

. ̂ei = yi − ŷi = yi − x′
i β̂.

Each datum can also be expressed as

. yi = x′
i β̂ + êi .

The conditional variance-covariance of the least squares estimator is readily seen
to be

. Var
(
β̂|x

)
= σ 2 (

x′x
)−1

= σ 2

n

(
1

n
x′x

)−1

.

As the number of observations increases, the term inside the brackets converges
to a finite nonsingular matrix. Then the variance of the estimates of the regression
coefficients will . (1) decrease as sample size n increases, . (2) increase with larger
. σ 2 indicating a poor fit of the linear regression, and . (3) decrease as the predictor
variables x have larger sampling variances and are uncorrelated with each other.
This latter point can be illustrated for the case of two covariates. Let

. X′X = J =
[

J11 J12

J12 J22

]
.

If the covariables are uncorrelated, .J12 = 0, and the variance of the estimator of
the first regression is proportional to .(J11)−1. When the covariates are correlated,
.J12 �= 0, and the variance of the estimator of the first regression is proportional to
.J22/� where

.
(
X′X

)−1 = J−1 = 1

�

[
J22 −J12

−J12 J11

]
.

6.2 Estimating the Regression Function in Practice: Least Squares 265

The determinant .� = J11J22 − (J12)
2 > 0 because .X′X is positive definite. This

implies that .J11J22 > �. Dividing both sides by . � and multiplying by .(J11)
−1, we

get

.
J22

�
> (J11)

−1

indicating that when the covariables are correlated the uncertainty increases. When
.J12 = 0, .J22/� = (J11)

−1.
If x is allowed to vary, then by the law of total variance

. Var
(
β̂
)

= Ex

[
Var

(
β̂|x

)]
+ Varx

[
E

(
β̂|x

)]

= Ex

[
Var

(
β̂|x

)]

= Ex

[
σ 2

n

(
1

n
x′x

)−1
]

= σ 2

n
Ex

[(
n−1x′x

)−1
]

.

Omitting the intercept, as .n → ∞, .n−1x′x → Var (x) and (see note0602.pdf at
https://github.com/SorensenD/SLGDS)

.Var
(
β̂
)

→ n−1σ 2 (Var (x))−1 . (6.20)

The conditional variance of . yi in the linear model specified in (6.16), given x, is

. Var (yi |xi) = E
[
(yi − E (yi |xi))

2
]

= E
(
e2i |xi

)

that by assumption, is independent of x and therefore . Var (yi |xi) = E
(
e2i |xi

) =
σ 2, for all i. This defines a homoscedastic error. In a heteroscedastic model, the
conditional variance depends on the covariate x.

A more general approach to study factors affecting the conditional variance is to
specify a model of the form

. yi |xi ∼ N
(
x′
iβ, σ 2 (xi)

)
,

ln
(
σ 2 (xi)

)
= x′

iβ
∗

where the logerror variance is modelled explicitly as in San Cristobal-Gaudy et al
(1998). When .ln

(
σ 2 (xi)

) = β∗, a parameter in . R, the model reduces to its

 -2016 29265
a -2016 29265 a

266 6 Fundamentals of Prediction

homoscedastic form (6.16). This is a fruitful area of research in quantitative and
evolutionary genetics that is briefly revisited in Chapter 10 on page 435.

The unconditional error variance is, by construction, independent of x. Indeed,
the unconditional variance is

. E
(
e2i

)
= Exi

[
E

(
e2i |xi

)]
,

the average conditional variance.

Least Squares Linear Regression and the “Hat” Matrix

The fitted value of y (a column vector with n elements) is

. ŷ = xβ̂

= x
(
x′x

)−1
x′y

= Hy (6.21)

where the .n × n idempotent, symmetric, positive semidefinite matrix . H =
x

(
x′x

)−1
x′ is known as the “hat” matrix (an idempotent matrix is a matrix which,

when multiplied by itself, yields itself) and matrix x, whose first column is a vector
of 1s to accommodate the constant term, is of dimension .n × p, where .p − 1 is
the number of covariates. Since H is positive semidefinite, its ith diagonal element
.hii ≥ 0. Other properties of H are

1. .Hx = x.
2. Partition x as .x = (x1 x2). Then .Hx1 = x1.
3. If matrix x contains a constant term, .H1 = 1, where 1 is a column vector of 1s.

It follows that .
∑n

j=1 hij = ∑n
i=1 hij = 1.

4. If matrix x contains a constant term, .n−1 ≤ hii ≤ 1, and in general, .0 ≤ hii ≤ 1.

Writing

.y = xβ̂ + ê = ŷ + ê, (6.22)

then

. x′ê = x′ (y − ŷ
) = x′ (y − Hy) = x′y − x′x

(
x′x

)−1
x′y = 0

and therefore, the estimated residuals . ̂e are orthogonal to the covariable x.
The estimated residuals are also orthogonal to the predicted values. Indeed,

.ê′ŷ = ((I − H) y)′ Hy = y′Hy − y′HHy = 0,

6.2 Estimating the Regression Function in Practice: Least Squares 267

because H is idempotent and therefore .HH = H . The estimated residuals . ̂e = y−ŷ

can be generated using

. ̂e = (I − H) y

= (I − H) (xβ + e)

= (I − H) e, (6.23)

because .Hx = x. For the homoscedastic model, the variance of the vector of
estimated residuals is

. Var
(
ê|x) = Var ((I − H) e|x) = σ 2 (I − H)

because .I −H is idempotent, indicating that estimated residuals are heteroscedastic
and correlated despite homoscedasticity of the uncorrelated errors e. In particular
for record i,

.Var
(
êi |x

) = σ 2 (1 − hii) (6.24)

where . hii is the ith diagonal element of H .
An estimator of the conditional variance given x is

. σ̂ 2 = 1

n
ê′ê

= 1

n
y′ (I − H) (I − H) y

= 1

n
y′ (I − H) y,

because .(I − H) is idempotent. This is a method of moment estimator equal to the
maximum likelihood estimator in the normal regression model. Using .Hx = x and
the formula for the expectation of a quadratic form (see Note on page 134), one can
show that the expected value of the estimator is

. E
(
σ̂ 2

)
= n − p

n
σ 2,

indicating that there is a downward bias. The usual unbiased estimator is .
1

n−p
ê′ê.

Using the hat matrix, it is easy to show that

. E
(
ŷ|x) = E (y|x)

and that

.Var
(
ŷ|x) = Var (Hy|x) = HV ar (y|x) H = σ 2H. (6.25)

268 6 Fundamentals of Prediction

Also,

.Cov
(
y, ŷ′|x) = Cov

(
y, y′H |x) = σ 2H. (6.26)

For the ith record,

. Cov
(
yi, ŷi |x

) = Cov
(
yi,

∑n

j=1
hij yj |x

)

= Cov (yi, hiiyi |x) = hiiσ
2, (6.27)

where . hij is the element in row i and column j of the hat matrix H , known as the
leverage. The equality in the second line follows because . Cov

(
yi, hij yj |x

) = 0
for .i �= j . This covariance can be interpreted as the influence that a datum has
on its own prediction. It plays an important role in understanding the relationship
between overfitting and the model’s prediction ability and is related to the concept
of effective number of parameters of a model (Hastie et al 2009).

Also,

.Var
(
ŷi |x

) = hiiσ
2. (6.28)

Then it follows that conditional on x,

.r2
yi ,ŷi

=
[
Cov

(
yi, ŷi |x

)]2
Var (yi |x)Var

(
ŷi |x

) = Var
(
ŷi |x

)

Var (yi |x)
= hii, (6.29)

indicating the two related interpretations of .r2
yi ,ŷi

: (i) as the proportion of the
variance in y explained by the linear predictor and (ii) the squared correlation
between predictor . ŷi and predictand . yi . The ratio of variances in the second equality
emphasises that .r2

yi ,ŷi
is a measure of how much the full model (6.16) improves on

the reduced model that only includes an intercept, and not on how good the full
model is in an absolute sense. It also indicates that the full and reduced models are
nested.

The correlation can be regarded as a parameter of the joint (bivariate) distribution
of fitted values . ŷi and the data . yi used to obtain the fitted values (the training data).
Indeed, assuming normality

.

(
ŷi

yi
|x

)
∼ N

[(
x′
iβ

x′
iβ

)
,

(
hiiσ

2 hiiσ
2

hiiσ
2 σ 2

)]
(6.30)

with correlation between . ŷi and . yi equal to .
√

hii and with regression of . ŷi on . yi

equal to . hii .

6.2 Estimating the Regression Function in Practice: Least Squares 269

With n records, the average squared correlation in a model with intercept is

.

∑n
i=1 hii

n
= tr (H)

n
= p

n
,

indicating that the regression and the squared correlation increase towards 1 as p
increases towards n reflecting overfitting. The proportion of variance explained of
the training records or squared correlation between . ŷi and . yi depends only on the
structure of the covariates for a particular data set and is a poor reflection of the
model’s ability to predict records from an independent set of data.

The sum of squared deviations between the observations and their fitted values
(the residual sum of squares) is

.

n∑
i=1

(
yi − ŷi

)2 = (
y − ŷ

)′ (
y − ŷ

)

= y′ (I − H) y

=
n∑

i=1

y2
i (1 − hii) −

∑
i �=j

yiyjhij .

As p increases towards . n, . hii increases towards 1, and . hij , .(i �= j) and the residual
sum of squares decrease towards 0.

The estimator (6.19) was obtained by minimising the residual sum of squares
(6.18), here with .f (xi) = x′

iβ, a linear function of the parameters. In principle, any
arbitrary function passing through the data points .(xi, yi) may represent a solution
to the minimisation problem. However, we shall see that such solutions yielding
perfect or nearly perfect fits obtained using a given sample of data may be poor
predictors of data points from a new sample of data.

Prediction of Out-of-Sample Values

Given a value of the covariate . x0, one may wish to obtain a prediction of a yet-to-
be-observed scalar . y0 (the validating data). The model for . y0 is

. y0 = x′
0β + e0,

where . e0 is homoscedastic with variance . σ 2 and assumed to be independent of . x0.
This new datum is assumed to be independent of the data used to estimate . β, the
training data and drawn from the same distribution. The model for the training data

270 6 Fundamentals of Prediction

is .y = xβ + e. The classical approach is to use an estimate of the conditional mean
as predictor

. ŷ0 = E
(
y0|x0, β = β̂

)
= x′

0β̂

where . β̂ is estimated using the training data. This is a point prediction of the average
value of yet-to-be-observed data evaluated at . x0. It does not account for any form
for uncertainty, but can be applied in an initial stage to compare predictors derived
from different models. Conditional on training and validating data, the predictor is
a point mass at . x′

0β̂. The variance of the predictor over conceptual replications of
training data is

. Var
(
ŷ0|x0

) = Var
β̂

[
E

(
ŷ0|x0, β̂

)]

= x′
0

(
x′x

)−1
x0σ

2.

Averaging over conceptual replications of validating data as well, the variance of
the error of prediction is

. Var
(
y0 − ŷ0|x0

) = Var (y0|x0) + Var
(
ŷ0|x0

)

= σ 2
[
1 + x′

0

(
x′x

)−1
x0

]
. (6.31)

The covariance term cancels due to the independence of . y0 and . ŷ0. This expression
has an extra term compared to (6.10c) accounting for the use of an estimate of the
conditional expectation.

A Justification for the Choice of a Linear Relationship

The conditional expectation was approximated using the linear function . xβ. While
this may appear arbitrary, some justification can be found in the following argument.
If f is a smooth function, a first-order Taylor expansion about a chosen point . x∗
results in

. f (x) = f
(
x∗) +

p∑
i=1

(
∂f

∂xi

∣∣∣∣
x=x∗

) (
xi − x∗

i

) + higher-order terms in
(
xi − x∗

i

)
,

where the partial derivatives of the function become the regression coefficients. If . x∗
is close to x, higher-order terms are small, and the linear approximation is (locally)
acceptable.

6.2 Estimating the Regression Function in Practice: Least Squares 271

Some Caveats of the Linear Regression Model

Several issues arise when the linear regression model is a poor description of the
model that generated the data:

• The first issue is concerned with the dependence of the population regression
coefficients (6.6) on the distribution of the input variables x. Specifically,

. Var (x)−1 Cov (x, y)

= Var (x)−1 Cov
(
x, x′β + e

)

= Var (x)−1 (Var (x) β + Cov (x, e))

= β,

if the true model is linear and the error terms are uncorrelated with x. If this is
not the case, the coefficient . β is sensitive to changes in the input variable x.

• Another potential problem arises when the regression model omits variables that
are part of the true model. If one postulates,

.y = xβ + e (6.32)

where e has zero mean and is independent of x, when the true model is

.y = xβ + zγ + ε (6.33)

where . ε has zero mean and is independent of x and z, then the residual of the
postulated model is .e = zγ + ε. This residual may depend on x if z and x are
associated. A consequence is that the estimator (6.19) is biased with respect to
. β. Indeed,

. β̂ = (
x′x

)−1
x′y

= (
x′x

)−1
x′ (xβ + zγ + ε)

and

. E
(
β̂|x, z

)
= β + (

x′x
)−1

x′zγ + E (ε|x, z)

= β + (
x′x

)−1
x′zγ

which is biased unless .x′z = 0.
• On the other hand, if . γ in (6.33) is a random variable with zero mean so that

.E(y) = xβ and the fitted model is (6.32) (that ignores the random variable . γ),
then .E(β̂|x) = (x′x)−1x′ E(y) = β, an unbiased estimator. The variance of

272 6 Fundamentals of Prediction

this estimator is larger than the variance of the correct, generalised least squares
estimator (the blue, best linear unbiased estimator).

• Adding superfluous variables to a linear regression model does not introduce bias
but increases the variance of estimation. Specifically, consider now that the true
model is defined in (6.32), but we fit

.y = xβ1 + zβ2 + ε. (6.34)

Above, z is redundant when .β2 = 0. I sketch the proof that including z in the
model does not bias the estimator of . β1, which has the same form as the estimator
of . β based on the true model (6.32). The least squares equations based on (6.34)
are

.

[
x′x x′z
z′x z′z

] [
β̂1

β̂2

]
=

[
x′y
z′y

]
. (6.35)

Carrying out the matrix multiplication yields after simple algebra

.β̂1 = (
x′x

)−1
x′ (y − zβ̂2

)
. (6.36)

A little more effort (involving substituting . β̂1 in terms of . β̂2) leads to

.β̂2 = [
z′ (I − H) z

]−1
z′ (I − H) y (6.37)

where the hat matrix defined in (6.21) is

. H = x
(
x′x

)−1
x′.

Taking expectation under the true model in (6.32) yields as the .E
(
β̂2|x

)
,

. E
{[

z′ (I − H) z
]−1

z′ (I − H) y|x
}

= [
z′ (I − H) z

]−1
z′ (I − H) xβ

= [
z′ (I − H) z

]−1
z′ (x − x

(
x′x

)−1
x′x

)
β = 0.

Therefore, the expectation of . β̂1 in (6.36) is

.E
[(

x′x
)−1

x′ (y − zβ̂2

)
|x

]
= (

x′x
)−1

x′xβ = β, (6.38)

showing that . β̂1 is an unbiased estimator.
The sampling variance of . β̂1 under (6.34) is proportional to the upper left hand

block of the inverse of the coefficient matrix constructed on the basis of (6.34).
Using results from partitioned matrices, it is easy to show that this variance is

6.2 Estimating the Regression Function in Practice: Least Squares 273

larger than the variance under the true model (6.32) (which is proportional to
.
(
x′x

)−1), unless .x′z = 0.
• Finally, consider fitting the operational model to data y (a vector with n

elements),

.y = zγ + ε (6.39)

where the regression parameter .γ = 0 (a scalar), when the true model is

. y = xβ + e, E (y|x) = xβ.

Assume that . ε has mean 0 and is independent of z and assume e is independent
of z.

The least squares estimator of . γ is

. γ̂ = (
z′z

)−1
z′y =

(
1

n
z′z

)−1 1

n
z′y

As n increases, .n−1z′z → σ 2
z , .n

−1z′y → βσxz, and the least squares estimator
converges to

.γ̂ → σxz

σ 2
z

β. (6.40)

This situation mimics a GWAS study, where the effects of multiple marker loci
are studied by fitting one marker at a time. In this case, the causal locus is x, and
z is a marker genotype that is correlated with x (.σxz �= 0; the marker is in linkage
disequilibrium with x and does not have a direct effect on the dependent variable
y). The consequence of the single marker regression is that neutral markers that
are correlated with causal loci may be assigned phantom significant . p−values,
a problem that is aggravated with sample size (large sample increases the power
of detection). This issue is briefly revisited on page 365 in connection with the
computation of false discovery rates.

Least Squares Prediction as an Approximation to Best Linear
Prediction

Let .(x, y, e) be a random vector, where y and e are scalars on the real line . R,
and vector x, of order .((p + 1) × 1), takes values in .Rp+1. The first component
of .x = (

x0, x1, . . . , xp

)′ is the constant .x0 = 1. The conditional expectation of
y given x, .E (y|x), may not be linear, but as mentioned in connection with (6.7),
one can find the best linear approximation of the form .x′b for some choice of

274 6 Fundamentals of Prediction

.b = (
b0, b1, . . . , bp

)′. This can be achieved by minimising the expected squared
error

. E
[(

y − x′b
)2]

with respect to b. Differentiating with respect to b shows that the solution . b∗ must
satisfy

. E
[
x

(
y − x′b∗)] = 0

and

. b∗ = E
(
xx′)−1 E (xy)

provided . xx′ is invertible. The scalar .x′b∗ is the best linear predictor.
Consider an iid sequence of random vectors .(x1, y1) , . . . , (xn, yn) drawn from

the same distribution as the random variable .(x, y). If one postulates a linear model

. y = x′b + e,

then the least squares estimator of b, . b̂, is the minimiser of

.
1

n

n∑
i=1

(
yi − x′

i b̂
)2

.

Carrying out the minimisation yields

. b̂ =
(
1

n

n∑
i=1

xix
′
i

)−1 (
1

n

n∑
i=1

xiyi

)
.

Results from asymptotic theory tell us that as .n → ∞ sample moments converge
to their population expectations and .b̂ → b∗. The message is that regardless of the
form of the relationship between y and x, the least squares predictor . x′b̂ approaches
the best linear predictor .x′b∗ when sample size n is large.

The Linear Regression as a Linear Smoother

Consider the case where . xi is a scalar and assume the regression through the origin
model

.yi = βxi + ei .

6.3 Overview of Things to Come 275

Then

. β̂ =
∑N

i=1 xiyi∑N
i=1 x2

i

and

. f̂ (xi) = xiβ̂

= xi

∑N
j=1 xjyj∑N
j=1 x2

j

=
∑N

j=1
hij yj , (6.41)

where . hij is the element in the ith row and j th column of the hat matrix H .
Expression (6.41) indicates that the prediction based on least squares, .f̂ (xi), is a
smoothing of the data whereby the prediction is a weighted average of the output
variables . yj with weights proportional to . xj .

The influence that output . yj has on the smoother’s fitted value .f̂ (xi) is . hij . In
general for a linear smoother, the influence that each data point . yi has on its own
predicted value . ŷi is equal to .hiiσ

2. For the case of this regression through the origin
model .hii = x2

i /
∑

i x2
i , .i = 1, 2, . . . , N .

To summarise, the general form for a linear smoother or a linear fitting method
is given by

.f̂ (x) = Hy, (6.42)

where the .n × n hat matrix H depends on x but not on y.

6.3 Overview of Things to Come

In this chapter, models are regarded as prediction machines as opposed to descrip-
tions of the real world. Having collected data and obtained a predictor, one may
wish to know how accurate it is for predicting future observations. The estimation
of parameters used to construct the predictor is accomplished using training data
consisting of N iid observations .{yi, xi}Ni=1 drawn from some joint distribution.
The conditional mean and variance of the distribution of a training datum .[yi |xi] are
.f (xi) and . σ 2, respectively. Clearly, the predictor is a function of the training data
.(y, x); its quality can be studied in a second stage using the validating or testing
data .

{
yv,i , xi

}N

i=1. The validating data are an independent sample from the same
distribution that generated the training data (here, training and validating data are of
the same length N but need not be, and the subscript v is omitted in the covariate

276 6 Fundamentals of Prediction

. xi). Let .f̂ (xi) be the predictor of the ith data point evaluated at . xi , .i = 1, 2, . . . , N ,
obtained using the training data y. How good is .f̂ (xi) to predict the validating
datum . yv,i? A common measure of prediction ability is the expected validating
squared error of prediction, which evaluated at . xi is given by

.E [MSEv (xi)] = Eyvy

((
yv,i − f̂ (xi)

)
|xi

)2
. (6.43)

(Expectations are conditional on covariables x but this is not mandatory). It will be
shown that when the expectation is taken over both training and validating data, this
measure of prediction ability of a future record has three terms:

.E [MSEv (xi)] = Var
(
yv,i |xi

) + Var
(
f̂ (xi) |xi

)
+ bias2, (6.44)

where the squared bias is defined as .

(
Eyv

(
yv,i |xi

) − Ey

(
f̂ (xi)

))2
. The first term,

.Var
(
yv,i |xi

)
, is the conditional variance of a future record, also labelled irreducible

variance since it reflects sampling variation beyond the control of the experimenter.

The second term .Var
(
f̂ (xi) |xi

)
is the variance of the predictor. It describes

sampling uncertainty associated with estimation of . f̂ due to finite size of the training
data. The bias term reflects average systematic discrepancy between the predictor
and the predictand. Increasing the number of parameters of a model tends to reduce
bias and to increase the variance of the predictor. The choice of a prediction model
often involves a trade-off involving these two terms.

Expression (6.44) cannot be obtained directly because parameters are not known.
In practice, the sample mean squared error is computed. For a particular realisation
of validating data, the sample validating mean squared error is

.MSEv = 1

N

N∑
i=1

(
yv,i − f̂ (xi)

)2
, (6.45)

where . f̂ is the predictor calculated using the training data. The expected mean
squared error in the validating data is

.Eyvy (MSEv) , (6.46)

with a corresponding expression for the expected mean squared error in the training
data

.Ey (MSEt) = Ey

[
1

N

N∑
i=1

(
yi − f̂ (xi) |xi

)2]
. (6.47)

6.4 The Bias-Variance Trade-Off 277

The expectation in (6.46) is taken over conceptual replications of training and
validating data and in (6.47) over the training data. Monte Carlo estimates of
these expectations can be obtained using the bootstrap or simulating the data,
given a parametric model. Monte Carlo methods generate estimates of the complete
sampling distribution of MSE. An example is discussed on page 430.

An important theme of this chapter is the distinction between the predictive
ability of .f̂ (xi) quantified using either the training data used to estimate . f̂ (xi)

or the validating data. It will be shown that the former overestimates predictive
performance in the validating data, on average, as reflected in the expectations (6.46)
and (6.47). These are given by

. Eyvy (MSEv) = Var
(
yv,i |xi

) + bias2 + 1

N
Var

(
f̂ (xi) |xi

)

and

. Eyvy (MSEt) = Eyvy (MSEv) − 2

N

∑
i

Cov
(
yi, f̂ (xi)

)
.

The covariance term in the second equation was introduced in (6.27) and reflects
the influence that observation i has on its own prediction. It is the amount by which,
on average, the training mean squared error underestimates the validating mean
squared error and is labelled expected optimism by Efron (1986). The following
section elaborates on these ideas.

6.4 The Bias-Variance Trade-Off

Consider two random variables .(Y,X) that have a joint distribution and suppose
that one wishes to predict Y from X using a function evaluated at .X = x, .f (x).
This unknown function specifies the true association between Y and X and is
estimated using N training observations giving rise to the predictor . f̂ . The N
training observations are realisations from the joint distribution .[Y,X]. The model
for datum i in the training data is

. yi = f (xi) + ei, ei
iid∼ (0, σ 2), i = 1, 2, . . . , N,

where residuals e have mean zero and variance . σ 2 independent of x. The assumption
of normality at this stage is not required. According to the model, .E (yi |xi) = f (xi).

Consider another sample .(y0, x0) drawn independently from the same joint
distribution .[Y,X]. This constitutes the validating data. How well does the function
. f̂ constructed using the training data .(y1, x1) , . . . , (yN , xN) predict the new test
point . y0 at the input point . x0? The predicted value is .ŷ0 = f̂ (x0). For a particular

278 6 Fundamentals of Prediction

datum and its prediction, the validating mean squared error is

.MSEv = (
y0 − ŷ0

)2 = y2
0 + ŷ2

0 − 2y0ŷ0, (6.48)

and the measure of prediction ability of . ŷ0 under enquiry is the expected validating
mean squared error evaluated at .X = x0, denoted .E [MSEv (x0)].

The expected validating mean squared error is studied in three scenarios.
These determine whether sampling uncertainty of the predictor and/or sampling
uncertainty of new records contribute to the expectation of the validating mean
squared error.

Training Data Treated as Fixed and Validating Data as Random
The first scenario accounts for variation of single records; expectations are taken
over the distribution of validating data, conditional on the training data y. Therefore,
the predictor . ŷ0 is regarded as a fixed constant. In this case,

. Ey0 [MSEv (x0)] = E
(
y2
0

)
+ ŷ2

0 − 2ŷ0 E (y0)

= Var (y0) + (E (y0))
2 + ŷ2

0 − 2ŷ0 E (y0)

= Var (y0) + (
E (y0) − ŷ0

)2
. (6.49)

The first term accounts for the conditional sampling variance (given covariates)
of new validating data, and the second reflects the squared discrepancy between
the predictor . ŷ0 and the mean of the distribution of validating data. The squared
discrepancy term depends on the particular realisation of the training data used to
obtain . ŷ0.

The focus is on the quality of a predictor, measured by .E(MSEv), computed from
a single sample of training data, measured over conceptual replications of validating
data. Single observations are predicted accounting for their sampling uncertainty but
ignoring sampling uncertainty of the parameters that index the predictor.

Training Data Treated as Random and Validating Data as Fixed
The second scenario accounts for variation of the predictor, and the mean validating
squared error is averaged over conceptual replications of training data, keeping
validating data fixed. Using similar algebra leads to

.Ey [MSEv (x0)] = Var
(
ŷ0

) + (
E

(
ŷ0

) − y0
)2 (6.50)

indicating that there is a component from the sampling variation of the predictor
over conceptual replications of training data and a squared discrepancy between the
validating data . y0 and the mean of the predictor (averaged over training data).

The focus here is on the quality of a predictor, computed repeatedly from
conceptual replications of training data, measured in a single sample of validating

6.4 The Bias-Variance Trade-Off 279

data. Average values of new observations, all evaluated at .X = x0, are predicted,
accounting for sampling variation of the parameters that index the predictor.

Training and Validating Data Are Treated as Random
The third scenario accounts for variation of single records and of the predictor, and
the average performance of the .MSEv is studied over conceptual replications of
training and validating data, given .X = x0, as in (6.44):

. Eyy0 [MSEv (x0)] = Ey0

(
y2
0

)
+ Ey

(
ŷ2
0

)
− 2Eyy0

(
y0ŷ0

)

= Var (y0) + (E (y0))
2 + Var

(
ŷ0

) + (
E

(
ŷ0

))2 − 2E (y0)E
(
ŷ0

)

= Var (y0) + Var
(
ŷ0

) + (
E (y0) − E

(
ŷ0

))2 (6.51)

where the second line is the result of using .Eyy0

(
y0ŷ0

) = E (y0)E
(
ŷ0

)
due to the

independence of training and validating data in this simple least squares setting.

The focus here is on the quality of a predictor, computed repeatedly from
conceptual replications of training data and measured over conceptual replications
of validating data. Single observations are predicted, accounting for their sampling
uncertainty and also accounting for sampling uncertainty of the parameters that
index the predictor.

Expression (6.51) indicates how the expected validating mean squared error
.Eyy0 [MSEv (x0)] evaluated at . x0 is affected by the inherent variation of . y0, by
the variance of the predictor .Var

(
ŷ0

)
that describes how the values of . ŷ0 for the

different training data sets vary around their average and the squared bias of the
predictor. As the complexity of a model increases, the variance of the predictor
tends to increase, and the bias term tends to decrease. In practice, most operational
models are distortions of the true state of nature and hence are biased. In a prediction
setup, one often chooses the degree of complexity of a predictive model to trade bias
off with variance in such a way as to minimise .E [MSEv (x0)]. Therefore, choosing
a predictive model amounts to striking a balance between bias and variance. This is
particularly relevant with the advent of new technologies that allows vast amounts
of covariates to be collected. Even when the covariates are relevant, the variance
incurred in estimating their effects may outweigh the reduction in bias. The “true
model” may not lead to the best predictive tool.

For a given number of observations, positively correlated data due to underlying
random effects, such as family effects, lead to a similar decomposition as (6.51)
except that the terms .Var (y0) (conditional on covariates but averaged over the
distribution of random effects) and .Var

(
ŷ0

)
are larger, and often validating and

training data are correlated resulting in .Eyy0

(
y0ŷ0

) = Cov
(
y0, ŷ0

) + E (y0)E
(
ŷ0

)
.

The three scenarios described above, developed from a frequentist perspective,
have a Bayesian counterpart where all expectations are conditional on training and
validating data. The topic is discussed in Chapter 10, in the Exercises on Prediction
on pages 562 and 651 and also on page 430. Bayesian expectations of mean squared
error are derived on page 428.

280 6 Fundamentals of Prediction

Briefly, with . y0 representing validating data, y representing training data and . θ
the parameter of the model used to construct the predictor . ŷ0 of the validating data,

the Bayesian scenario 1 corresponds to drawing the predictor . ŷ0 from .

[
y0|θ̂ , y, x0

]
,

where . θ̂ is some point estimate of . θ . In this situation, account is taken of sampling
variation of the predictor of single records . ŷ0, and this variation is one of the
components of the Bayesian expected validating mean squared error. By replicating

data from .
[
y0|θ̂ , y, x0

]
, we are studying the frequency properties of the Bayesian

procedure.
The second scenario corresponds to constructing the predictor of an average of

records using a function f , .ŷ0 = f (θ�, x0), where . θ� is a draw from the posterior
distribution .[θ |y]. In this case, account is taken of posterior uncertainty of . θ , and
this uncertainty is a component of the Bayesian expected validating mean squared
error.

The third scenario takes care of uncertainty of . θ and of sampling variation of
a new record . ŷ0. In this case, . θ� is drawn from .[θ |y], and given . θ�, . ŷ0 is drawn
from .

[
y0|θ�, y, x0

]
. Both sources of uncertainty are incorporated in the Bayesian

expected validating mean squared error.
An alternative description of the three scenarios is as follows: Each scenario

gives rise to a predictor that is characterised by its distribution. The mean squared
errors are transformations with their own distributions that here are summarised by
their expected value. This general narrative holds for the frequentist and Bayesian
approaches with the obvious caveat that what is considered random and uncertain
and what is considered non-random is peculiar to each approach to inference.

An attraction of the Bayesian approach implemented in an McMC environment is
the ease with which the marginal posterior distribution of MSE can be estimated. If
two models are evaluated in terms of their predictive ability, the computation of the
marginal posterior distribution of the difference in MSE between the models only
requires a few extra lines of code. This can be particularly relevant when the merits
of different prediction machines are to be judged on the basis of relatively small
differences. However, a usual way of comparing models is to estimate parameters
and to use these to construct the point predictor ignoring uncertainty.

6.5 Estimation of Validation MSE of Prediction in Practice

The measure of prediction ability often used in practice is the sample mean squared
error. A possibility is to use the same training data .{yi, xi}Ni=1, from which the
predictions .f̂ (xi) were estimated, in order to compute the sample training mean
squared error :

.MSEt = 1

N

N∑
i=1

(
yi − f̂ (xi)

)2
. (6.52)

6.5 Estimation of Validation MSE of Prediction in Practice 281

This is the average squared discrepancy between observations and their predictions.
The training mean squared error is not a good measure of prediction ability because
it has the property of decreasing consistently with model complexity. A model with
close to zero training squared error is overfit to the training data, as it captures not
only true signal but also the noise peculiar to the training data and will predict new,
independent observations poorly.

A better proposition for model validation or model selection would be to study
the predictive ability of . f̂ , computed using the training data, in an independent
set of data: the testing or validating data .

{
yv,i , xv,i

}N

i=1. This validating data is
conceptually a new realisation from the same distribution that generated the training
data. Using the validating data, one can compute

.MSEv = 1

N

N∑
i=1

(
yv,i − f̂

(
xv,i

))2
, (6.53)

the sample testing or validating mean squared error. However, with limited data
or without access to real validating data, one must resort to alternative procedures.
These consist of artificially splitting the data into training and validating sets or to
use approximations derived from theory without splitting the available data.

One possibility is to use leave-one-out cross-validation. Each of the N obser-
vations .(yi, xi) is held out in turn, and the function .f̂ (−i) is estimated with the
remaining .N − 1 records from the training data, with the ith pair .(yi, xi) omitted.
Then the squared discrepancy between . yi and .f̂ (−i) (xi) is computed, and this
is repeated N times. The resulting estimate of the leave-one-out prediction mean
squared error is

.MSE1 = 1

N

N∑
i=1

(
yi − f̂ (−i) (xi)

)2
. (6.54)

A more common practice is to use . K−fold cross-validation whereby the
complete set of N records is divided into K groups or folds of approximately equal
size. For the kth fold, the model is fitted to the other .K − 1 folds of the data (this
yields .f̂ (−k) the estimate of the predictive function based on the .K − 1 folds of the
data with the kth fold excluded), and the prediction mean squared error of the fitted
model is estimated using data from the kth fold. This is repeated for the K groups,
and the K estimates of prediction mean squared error are combined to obtain the
cross-validation estimate of prediction mean squared error. Specifically, . K−fold
cross-validation proceeds as follows:

1. Divide the N records into K folds of approximately equal size . nk; .N = ∑K
k=1 nk .

2. Fit the model to the remaining .K − 1 parts of the data (with fold k excluded),
and obtain the estimate .f̂ (−k)

282 6 Fundamentals of Prediction

3. Using the records from the kth fold only, estimate the mean squared error:

. MSEk

(
f̂ (−k)

)
= 1

nk

∑
i∈kth f old

(
yi − f̂ (−k) (xi)

)2

4. Repeat using all the K folds to obtain .MSE1

(
f̂ (−1)

)
. . .MSEK

(
f̂ (−K)

)
.

5. Obtain the . K−fold cross-validation combined (weighted according to fold size
. nk) estimate of mean squared error:

.MSEK = 1

N

K∑
k=1

nk MSEk

(
f̂ (−k)

)
. (6.55)

If all groups are of equal size n, .N = Kn, and this reduces to

.MSEK = 1

K

K∑
k=1

MSEk

(
f̂ (−k)

)
. (6.56)

Common choices for K are .K = 5 or .K = 10. If .n = 1, the procedure recovers
leave-one-out cross-validation. The . K−fold cross-validation may be repeated
several times by reconstructing the folds at random to obtain estimates of the
distribution of .MSEK .

Compared to . K−fold cross-validation, leave-one-out cross-validation can suffer
from highly correlated out-of-sample predictions. Indeed, with N observations,
there are N forecasts, and any two training sets share .N−2 points. Therefore, despite
averaging N forecasts, these tend to be highly correlated, and therefore the leave-
one-out estimator tends to have high variance (taken over conceptual replications
of training data). With . K−fold cross-validation, the folds share relatively fewer
observations and are less correlated. This tends to reduce the variance of the
estimator. However, a relatively small number of the observations in the training
data are included to estimate parameters, and the . K−fold estimator may be biased
upwards with respect to the squared error obtained using the entire data set. This is
not the case for leave-one-out cross-validation, since the method repeatedly trains
the model on .N − 1 observations, almost as many as in the entire training data.

Implementation Shortcut for Leave-One-Out Cross-Validation

For linear smoothers or linear fitting methods as defined in connection with (6.21), a
computational advantage of leave-one-out cross-validation is that it requires running
through the training data only once, rather than N times (Seber and Lee 2003). This

6.5 Estimation of Validation MSE of Prediction in Practice 283

relies on a little trick that works as follows: From (6.21), the ith predicted value at
. xi is

. ŷi = hi1y1 + · · · + hiiyi + · · · + hiNyN

with .
∑N

j=1 hij = 1 when the model includes an intercept. Eliminating the ith datum
and rescaling so that the .N − 1 weights sum to one yield

. ŷ−i = ŷi − hiiyi

1 − hii

.

A more formal proof of this identity can be found in Seber and Lee (2003).
The leave-one-out residual or prediction error is

. ri = yi − ŷ−i

= yi − ŷi − hiiyi

1 − hii

= yi (1 − hii) − (
ŷi − hiiyi

)

1 − hii

= yi − ŷi

1 − hii

(6.57)

and the leave-one-out cross-validation prediction mean squared error (6.54) reduces
to

.MSE1 = 1

N

N∑
i=1

(
yi − ŷ−i

)2 = 1

N

N∑
i=1

(
yi − ŷi

1 − hii

)2

, (6.58)

that also holds when the model does not have an intercept (Seber and Lee 2003).
The calculation of (6.58) requires one to pass through the training data rather than
the N implied in the left-hand side.

A computationally faster approximation, known as the generalised cross-
validation, is

.
1

N

N∑
i=1

(
yi − ŷ−i

)2 = 1

N
(
1 − N−1 tr (H)

)2
N∑

i=1

(
yi − ŷi

)2 (6.59)

whereby rather than weighting each term by 1 minus the ith diagonal element of
the hat matrix H , all terms are given the same weight (1 minus the average of the
diagonal elements of H). The generalised cross-validation can be a numerically
more robust alternative to (6.58) in cases where a few records may have a strong
influence due to the terms .1 − hii in the denominator.

284 6 Fundamentals of Prediction

Using the approximation

.
1

(1 − x)2
≈ 1 + 2x

allows expressing (6.59) as

.
1

N

N∑
i=1

(
yi − ŷ−i

)2 ≈
∑N

i=1

(
yi − ŷi

)2
N

(
1 + 2

tr (H)

N

)
. (6.60)

For the least squares linear regression with p parameters, .tr (H) = p, and (6.60)
reduces to

.
1

N

N∑
i=1

(
yi − ŷ−i

)2 ≈
∑N

i=1

(
yi − ŷi

)2
N

(
1 + 2

p

N

)
(6.61)

which establishes a connection between leave-one-out cross-validation and Mal-
lows’ . Cp (Mallows 1973; see (6.75) below).

This is an instance where prediction ability is evaluated using training data only,
without using cross-validation.

6.6 On Average Training MSE Underestimates Validation
MSE

The within sample prediction ability based on . f̂ will be overstated, in expectation,
relative to the out-of-sample prediction, leading to .MSEt < MSEv . The algebra
underlying this result is simple and illuminating and is described in this section.

Independently Distributed Data

Let .{yi, xi}Ni=1 and .
{
yv,i , xv,i

}N

i=1 denote the N observations in the training and
validating data, respectively. Assume that under the true model, the observations
have means .f (xi) and variance . σ 2; that is,

.yi = f (xi) + ei , ei ∼
(
0, σ 2

)
,

yv,i = f
(
xv,i

) + ev,i , ev,i ∼
(
0, σ 2

)
.

6.6 On Average Training MSE Underestimates Validation MSE 285

In the derivation that follows, .(yi, xi) and .
(
yv,i , xv,i

)
are different realisations

from the same probability model. The random quantities are .
(
yi, yv,i

)
, whereas the

covariates x are treated as fixed and known. Importantly, records are assumed to be
independent. The modification needed for correlated data is discussed below.

The true model is unknown, and a number of operational or instrumental models
may be available to choose as prediction machines. The prediction ability will be
studied specifically as follows:

1. Fit the operational model to the training data .{yi, xi}, and obtain predictive values
for the validating data .ŷv,i = f̂

(
xv,i

)
, .i = 1, 2, . . . , N .

2. Obtain predictions for the training records .ŷi = f̂ (xi), .i = 1, 2, . . . , N , and
compute the training mean squared error

.MSEt = 1

N

∑
i

(
yi − ŷi

)2 (6.62)

3. Use the validating data .
{
yv,i , xv,i

}
to compute the testing or validating mean

squared error:

.MSEv = 1

N

∑
i

(
yv,i − ŷv,i

)2 (6.63)

The expected value of .MSEv is derived first. Taking expectations of (6.63) with
respect to the distribution of . (y, yv)

.Ey,yv

[
1

N

∑
i

(
yv,i − ŷv,i

)2
]

= 1

N

∑
i

Eyiyv,i

(
yv,i − ŷv,i

)2 (6.64)

The squared term is expanded as in (6.48) and going through the same algebra used
in the derivation of (6.51) leads to the expected validating mean squared error:

. Ey,yv (MSEv) = Ey,yv

[
1

N

∑
i

(
yv,i − ŷv,i

)2
]

= 1

N

∑
i

σ 2 + 1

N

∑
i

bias2 (i) + 1

N

∑
i

Var
(
ŷv,i

)

= σ 2 + bias2 + 1

N

∑
i

Var
(
ŷv,i

)
, (6.65)

where .bias2 (i) = (
E

(
yv,i

) − E
(
ŷv,i

))2.

286 6 Fundamentals of Prediction

The expected value of the training mean squared error is derived in a similar
manner. Taking expectations of (6.62) with y random and covariates x fixed yields

. Ey (MSEt) = Ey

[
1

N

∑
i

(
yi − ŷi

)2
]

= 1

N

∑
i

Eyi

(
yi − ŷi

)2
.

Expanding the square results in

. Eyi

(
yi − ŷi

)2 = Eyi

(
y2
i + ŷ2

i − 2yi ŷi

)2

= Var (yi) + (E (yi))
2 + Var

(
ŷi

) + (
E

(
ŷi

))2 − 2Cov
(
yi, ŷi

) − 2E (yi)E
(
ŷi

)

= Var (yi) + Var
(
ŷi

) + (
E (yi) − E

(
ŷi

))2 − 2Cov
(
yi, ŷi

)
.

Therefore,

.Ey (MSEt) = σ 2 + 1

N

∑
i

Var
(
ŷi

) + bias2 − 2

N

∑
i

Cov
(
yi, ŷi

)
(6.66)

and from (6.65)

.Ey (MSEt) = Eyyv (MSEv) − 2

N

∑
i

Cov
(
yi, ŷi

)
, (6.67)

Efron (1986) indicating that on average, the training .MSEt underestimates vali-
dating .MSEv especially if . yi and . ŷi are highly correlated. This happens when the
operational model has a large number of parameters that result in a very close
fit, with little discrepancy between observations . yi and fitted values . ŷi . The term
.Cov

(
yi, ŷi

)
is not observable and unless an analytic form is available (as for linear

smoothers) must be estimated using, for example, the bootstrap or Monte Carlo.
This subject is revisited in the Examples Section, page 570.

The form of (6.67) encompasses two terms, reflecting model fit, .Ey(MSEt) and
model complexity, .

∑
i Cov

(
yi, ŷi

)
. The second term on the right-hand side of (6.67)

is labelled expected optimism by Efron (1986) :

.Eyyv (MSEv)−Ey (MSEt) = 2

N

∑
i

Cov
(
yi, ŷi

) = 2

N
tr

(
Cov

(
y, ŷ′)) , (6.68)

the difference between the expected validating mean squared error and the expected
training mean squared error.

6.6 On Average Training MSE Underestimates Validation MSE 287

Invoking the law of large numbers, a natural estimate of the expected validating
mean squared error obtained using the training data is

.Ê (MSEv) = 1

N

N∑
i=1

(
yi − ŷi

)2 + 2

N

N∑
i=1

Ĉov
(
yi, ŷi

)
. (6.69)

The first term on the right-hand side is a sample estimate of .Eyyv (MSEt), and
.Ĉov

(
yi, ŷi

)
is some estimate obtained using Monte Carlo simulation or the

bootstrap. Expression (6.69) obviates estimation of . σ 2 and is simple to compute
if an analytic form is available for .Cov

(
yi, ŷi

)
. Otherwise, one incurs the cost of

a bootstrap or a Monte Carlo analysis. An important issue with estimator (6.69) is
that the rate of convergence to its expectation depends on the ratio .p/N .

An estimate of expected optimism provides an approximation to the evaluation
of prediction ability without incurring the cost of cross-validation.

Correlated Data

Often, data are correlated such as in genetic studies where family structure is a
classical source of correlation. The correlation structure can be patterned and simple
as in independent full-sib families, where correlation arises between members of the
same family, or can be highly complex with pedigrees spanning several overlapping
generations.

With correlated data, the expected training mean squared error (6.66) is parti-
tioned into the same four components, while the expectation of the validating mean
squared error (6.65) has an extra term that describes the covariance between an
observation in the validating set and its predictor. The degree of this association
depends on the correlation structure in the data. With highly correlated data as found
in animal breeding, a predicted value is constructed using information in the training
data from many related individuals, and the validating datum correlates with these
training data. The expected value of the validating mean squared error takes the
form

.Ey,yv (MSEv) = σ 2 +bias2 + 1

N

∑
i

Var
(
ŷv,i

)− 2

N

N∑
i=1

Cov
(
yv,i , ŷv,i

)
(6.70)

288 6 Fundamentals of Prediction

and the expected optimism is

. Ey,yv (MSEv) − Ey (MSEt) = 2

N

[
N∑

i=1

Cov
(
yi, ŷi

) −
N∑

i=1

Cov
(
yv,i , ŷv,i

)
]

.

(6.71)

Here, it is assumed that training and validating data are of size N .

Estimating Optimism of the Training Sample

Often, the covariance term .Cov
(
yi, ŷi

)
cannot be obtained analytically due to the

nature of the fitting procedure but can be estimated either using the nonparametric
or the (model dependent) parametric bootstrap (Efron and Hastie 2016). The
parametric approach is easier to use when data are correlated. In the parametric
bootstrap, repeated samples of the vector of data are drawn from the parametric
model used to analyse the original observations, conditional on parameter estimates.
The latter are obtained using these original observations.

If a nonparametric bootstrap is chosen, at least one of two strategies can
be followed. Assume that the training data consist of independent samples
.(x1, y1) , (x2, y2) , . . . , (xN , yN). Then a first bootstrap strategy is to cycle through
a loop from .b = 1 to B (.B = 1000, say)

1. Draw N bootstrap samples (i.e., sampling with replacement from the data)

.

(
xb
i , yb

i

)
, i = 1, . . . , N,

calculate the regression function . f̂ b using .
(
xb
i , yb

i

)
, i = 1, . . . , N , and obtain

the fitted values .ŷb
i = f̂ b

(
xb
i

)
, i = 1, . . . , N .

2. Store .yb
i , i = 1, . . . , N and . ŷb

i , i = 1, . . . , N
3. After B cycles, calculate the empirical covariance between . yi and . ŷi

. ̂Cov
(
yi, ŷi

) = 1

B

B∑
b=1

(
yb
i − yb

i

) (
ŷb
i − ŷ

b

i

)
,

where

.yb
i = 1

B

B∑
b=1

yb
i , ŷ

b

i = 1

B

B∑
b=1

ŷb
i .

6.6 On Average Training MSE Underestimates Validation MSE 289

4. Finally, sum these over .i = 1, . . . , N to obtain the bootstrap estimate

.

N∑
i=1

Ĉov
(
yi, ŷi

)
.

For continuous data, a second bootstrap strategy is to use the residual bootstrap
that proceeds as follows:

1. Using the training data .(x1, y1) , (x2, y2) , . . . , (xN , yN), calculate . ŷi =
f̂ (xi) , i = 1, . . . , N , and compute the empirical residuals

. ̂ei = yi − ŷi , i = 1, . . . , N.

Then cycle through the loop from .b = 1 to B:
2. Draw N samples with replacement of the empirical residuals

.êb
i , i = 1, . . . , N. (6.72)

3. Using the N boostrap residuals (6.72), calculate

. yb
i = ŷi + êb

i , i = 1, . . . , N.

4. Using .
(
xi, y

b
i

)
, i = 1, . . . , N , calculate the regression function . f̂ b, and obtain

the fitted values .ŷb
i = f̂ b

(
xb
i

)
, i = 1, . . . , N . Notice that the . xi are not

sampled; only the residuals are sampled to compute .yb
i = ŷi + êb

i .
5. Store .yb

i , i = 1, . . . , N and . ŷb
i , i = 1, . . . , N

6. After B cycles, calculate the empirical covariance between . yb
i and . ŷb

i

. ̂Cov
(
yb
i , ŷb

i

)
= 1

B

B∑
b=1

(
yb
i − yb

i

) (
ŷb
i − ŷ

b

i

)

where

. yb
i = 1

B

B∑
b=1

yb
i , ŷ

b

i = 1

B

B∑
b=1

ŷb
i

7. Finally, sum these over .i = 1, . . . , N to obtain the bootstrap estimate

.

N∑
i=1

Ĉov
(
yi, ŷi

)
. (6.73)

290 6 Fundamentals of Prediction

An alternative approach to use when data are correlated or have a complicated
structure is the parametric bootstrap. In the Prediction Exercises, page 570, you are
asked to derive an expression for the expected optimism for a hierarchical model, to
obtain numerical results using simulated data and to write a code to obtain a Monte
Carlo estimate of expected optimism.

The two nonparametric bootstrap strategies described in this section are drawn
from lecture notes of the course Advanced Methods for Data Analysis (R. Tibshi-
rani) and can be found at https://www.stat.cmu.edu/~ryantibs/advmethods/.

6.7 Least Squares Prediction

The form of covariance penalty .Cov
(
yi, ŷi

)
depends on the operational model used

for prediction. Suppose that the operational model takes the standard regression
form (6.17) and that . β (of dimension p) is estimated by least squares. In this case
as indicated in (6.26)

. Cov
(
yi, ŷi

) = hiiσ
2

where . hii is the ith diagonal element of the hat matrix H . Then the penalty term is

.
2

N

∑
i

Cov
(
yi, ŷi

) = 2

N
tr (H) σ 2

= 2

N
tr

(
X

(
X′X

)−1
X′) σ 2

= 2

N
tr

((
X′X

)−1
X′X

)
σ 2

= 2
p

N
σ 2

and (6.67) takes the form

.Eyyv (MSEt) = Eyyv (MSEv) − 2
p

N
σ 2. (6.74)

In view of this result and (6.69), a natural unbiased estimator of the validating mean
squared error for the standard regression model, using the training mean squared
error, could be

. ̂E (MSEv) = 1

N

N∑
i=1

(
yi − ŷi

)2 + 2

N
tr (H) σ 2

= 1

N

N∑
i=1

(
yi − ŷi

)2 + 2
p

N
σ 2 (6.75)

https://www.stat.cmu.edu/~ryantibs/advmethods/
https://www.stat.cmu.edu/~ryantibs/advmethods/
https://www.stat.cmu.edu/~ryantibs/advmethods/
https://www.stat.cmu.edu/~ryantibs/advmethods/
https://www.stat.cmu.edu/~ryantibs/advmethods/
https://www.stat.cmu.edu/~ryantibs/advmethods/
https://www.stat.cmu.edu/~ryantibs/advmethods/

6.7 Least Squares Prediction 291

which is a version of Mallows’ . Cp (Mallows 1973). When . σ 2 is not known, it must
be replaced by an estimate. The unbiased property holds if an unbiased estimator of
. σ 2 is available.

Example: Prediction Ability of the Least Squares Estimator

Some of the ideas discussed so far are illustrated using simulated data. These consist
of .N = 55 observations from a training set and .N = 55 from a testing or validating
set. The structure of the simulated data (not its size!) is representative of a genomic
data set. A matrix X of genetic marker genotypes of dimension .N × pmax (centred
and scaled) was generated representing genotype codes whose elements consist of
iid (identically and independently distributed) draws from a binomial distribution
with parameters .n = 2 and probability 0.5. The number of columns of X in the
example is set to .pmax = 50, and the first .p� = 10 columns are assigned as
quantitative trait loci (QTL) affecting the trait.

Since this is the first example where marker genotypes are simulated, a comment
is in order. In a typical situation, matrix X consists of correlated observed marker
genotypes that are not themselves causal. The idea is that the correlation structure
induces a correlation between the marker loci and the unobserved causal loci. In
this way, the marker genotypes may inform on the underlying genetics of a trait.
Here, the simulated marker genotypes are uncorrelated, on average, but importantly,
the “unobserved” causal loci are part of the marker panel. As mentioned in the
appendix of Chap. 1, when the causal loci are included in the marker panel, the
genetic markers capture the genetic variation of the trait. Including information from
non-causal markers inflates the validating mean squared error, and the prediction
ability of the model is compromised.

The true model for the training data is

.yt = X�b� + e, (6.76)

where . yt is an .N ×1 vector of training observations, . X� is the .N ×p� matrix of QTL
genotype codes and . b� is an .p� ×1 vector of allele substitution effects of causal loci
with elements set equal to 0.5. Due to centring and scaling, the elements of X are
random variables with mean 0 and variance 1. The resulting equilibrium additive
genetic variance is equal to .Var(x′

i,�b�|b�) = 10 × (1 × 0.52) = 2.5 squared units,
where .x′

i,� is the ith row of matrix . X�. The vector e consists of random residuals
.e∼N (0, I 5) and is of dimension .N × 1. The proportion of variance of y explained
by the true model (the . R2 or equilibrium heritability) is expected to be 33% (. (10 ×
1 × 0.52/7.5) × 100). Training and validating data are generated using the same
model and different samples of X and of e.

Training data . yt are analysed using operational models that regress . yt on marker
genotypes X as covariates. Ten operational linear models are used to analyse . yt of

292 6 Fundamentals of Prediction

10 20 30 40 50

0
2

4
6

8
 10

Number of Markers

Tr
ai

ni
ng

 M
S

E

10 20 30 40 50

0
 2

0
40

60
80

 10
0

12
0

14
0

Number of Markers

V
al

id
at

in
g

M
S

E

Fig. 6.1 Left panel, red: training mean squared error (6.52). Right panel, blue: validating mean
squared error (6.53) of the least squares predictor using simulated data generated with the linear
model. Results from 2000 training/validating replicates; black lines, average over replicates

the form

.yt = Xjbj + εj , j = 1, 2, . . . , 10 (6.77)

that differ in the number of markers included. This is reflected in the number of
columns of . Xj and the number of elements of . bj , which range from 5 to 50 in
increments of 5, and the subscript j indexes the model. When .j = 2, the operational
model is the same as the true model including ten covariates (the 10 QTL).

Figure 6.1 displays the training (left panel, red) and validating (right panel, blue)
sample mean squared errors (6.52) and (6.53) using data analysed with the ten
linear models (6.77) with increasing number of covariates. The figures show the
behaviour of individual replicates (2000 replications of training/validating records,
with genetic marker covariates X fixed at the initial simulated value) as well as the
average .MSE over replicate lines that is a Monte Carlo estimate of the expected
.MSE. The training mean squared errors (left panel) show a marked decline as the
number of covariates increases from 5 to 10. At this point, the true model and
the operational model are identical. As more covariates are included, the training
squared error falls, albeit at a lower rate. The validating squared error decreases
slightly from its initial value, reaches a minimum when the number of covariates
is 10 and increases subsequently as additional covariates are included. The rate
of increase is very pronounced when 40 or more covariates are included in the
operational models.

The figures emphasise an important feature of the training-testing split as a
tool to monitor prediction ability: the large variation among replications. A correct
specification of this variation may be especially relevant in a situation where the goal
is to learn how well a given statistical model will perform on independent data. On
the other hand, one may be interested in comparing models, and therefore locating

6.7 Least Squares Prediction 293

Fig. 6.2 The expected
validating mean squared error
(green) and its three
components (6.51): expected
squared bias (red), variance
of predictor (blue) and
residual variance (dashed
lines). Data simulated with
the linear model

10 20 30 40 50

0
20

 40
 60

Number of Markers

V
ar

P
re

di
ct

or
/S

qB
ia

s

 80

the minimum of the .MSE curve may be an adequate goal, rather than the actual value
of the .MSE. The curves of the different replicates in Fig. 6.1, right panel, seem to
identify the correct model with ten covariates despite the fact that each replicate
may deviate quite markedly from the average .MSE.

The expected validating mean squared error and its three components (6.65) are
shown in Fig. 6.2. The expected validating mean squared error agrees well with
the simulated value displayed in the right panel of Fig. 6.1. The variance of the
predictor increases with the number of covariates, particularly when this exceeds 20
and the increase becomes very pronounced with 40 or more covariates. The expected
squared bias is positive when the number of covariates is equal to 5. When this
number is equal to 10, the true model and the operational model are the same, and
the bias falls to zero. As the number of covariates increases beyond 10, the expected
squared bias remains zero because in the case of the present example, the least
squares estimator using models with ten or more covariates is unbiased (see (6.38)).
The dashed line represents the true residual variance of the observations.

Quantifying Optimism

The simulation example compares the expected optimism (6.68) with its estimate
based on (6.75). When the number of records in training and validating data is
equal to 55, the average difference between the validating (6.63) and training (6.62)
mean squared errors (over 500 Monte Carlo replicates) is as follows: Using an
operational model with 10, 15, 25 or 35 covariates, the observed average difference
(O) and the predicted (P) based on .2(σ̂ 2/N)p, where .σ̂ 2 = 4.99 and .σ 2 = 5, is
(O; P): .(3.1; 1.8), .(3.5; 2.7) , .(6.9; 4.5), .(12.7; 6.6). When instead of 55 records,

294 6 Fundamentals of Prediction

−5 0 5 10

−
5

0
5

10

Observed Training

P
re

di
ct

ed
 T

ra
in

in
g

−5 0 5 10 15 20

−
5

0
5

 10
15

20

Observed Validating

P
re

di
ct

ed
 V

al
id

at
in

g
Fig. 6.3 Regression of predicted versus observed values in training (left) and validating (right)
data

550 are used, with .σ̂ 2 = 5.00, these figures are (O; P): .(0.18, 0.18), .(0.27; 0.28),
.(0.46; 0.45), .(0.63; 0.64). This illustrates the influence of the ratio .p/N on the
convergence of estimator .

2
N

∑N
i=1 Ĉov

(
yi, ŷi

)
to its expectation.

Another way of visualising optimism is illustrated in Fig. 6.3 that shows the
regression of predictions versus observations in the training and validating data (55
observations) for a randomly chosen simulation replicate, using 50 covariates. In
the validating data, the regression is not significantly different from 0, and the linear
model explains 1.5% of the variance of the predicted values. In contrast, in the
training data, the regression is equal to 0.97 (not significantly different from 1), and
the linear model explains 97% of the variance of the predicted values.

Example: What Measure of Prediction Error Does
Leave-One-Out Estimate?

This example illustrates the ability of leave-one-out cross-validation to estimate
either the conditional validating mean squared error (6.49) (averaging .MSEv over
validating data, with training data fixed) or the unconditional validating squared
error (6.51) (averaging .MSEv over training and validating data). The setup is the
same as in the previous example, with 55 observations in training and testing data,
ten covariates assigned as loci affecting the trait and ten operational models that
differ in the number of covariates used for analysis.

The conditional validating squared error (6.49) has two terms: the irreducible
error (equal to five in the simulation) and the squared term representing systematic
difference between predictor and the expectation of the predictand. In least squares
linear regression, this last quantity is zero on average over replications of training
data, but it is not zero in any one realisation. For a given realisation of training data,

6.7 Least Squares Prediction 295

10 20 30 40 50

40
0

 1
0

20
30

50

60

Number of Markers

A
v

S
q

B
ia

s
/ V

al
 M

S
E

 /
LO

O
C

V

10 20 30 40 50

0
20

40
60

80
10

0

Number of Markers

V
al

id
at

in
g

M
S

E
 /

LO
O

C
V

Fig. 6.4 Left: components of Monte Carlo estimates of .E(MSE) obtained by averaging over
replications of validating data, given a single sample of training data. Dashed horizontal black
line: conditional variance of a datum based on the true model (five squared units). Solid black
line: average (over 1000 replicated validating data sets; a single training data is simulated)
squared discrepancies between predictor and the expectation of the predictand . y0, obtained using
operational models with increasing number of covariates. Solid red line: average (over 1000
replicated validating data sets) conditional validating mean squared error, given training data.
Dashed blue line: leave-one-out cross-validation estimate based on the single training data. Right,
blue: validating mean squared errors for each of the 1000 replicated training and testing data sets;
solid black line, average validating mean squared error over the 1000 replicated training and testing
data sets; solid line red, average leave-one-out estimate of mean squared error over 1000 replicated
training data sets

as the number of covariates in the model increases, the variance of the predictor
becomes larger and so does the size of the second term in (6.49). This is illustrated
in the left panel of Fig. 6.4. The setup is one where there is a single realisation of
training data and 1000 simulation replicates of validating data. The average (over
1000 simulation replicates of validating data) conditional validating squared error,
shown in red, is equal to the conditional variance of the record (5 squared units), plus
the average (over the 55 observations and 1000 simulation replicates of validating
data) of the squared discrepancies between predictor and average predictand (shown
in black). The figure also shows that the leave-one-out estimate of squared error
(dashed line, blue) based on the single realisation of training data overestimates the
conditional validating mean squared error (6.49).

The right panel of Fig. 6.4 displays the validating squared error for each of the
1000 replications of training and testing data (blue); the average validating squared
error over the 1000 replicates (thick black line); which is an estimate of (6.51);
and the average leave-one-out estimate of squared error over the 1000 replications
of training data (red line). The average leave-one-out estimator follows closely the
average unconditional validating squared error (6.51), with a little overestimation
particularly as the number of markers approaches the size of the training data.

296 6 Fundamentals of Prediction

Example: Variation of Leave-One-Out Cross-Validation

This example illustrates the variation of the leave-one out estimator (6.58) in
conceptual replications of training data, in the context of least squares. This implies
that the number of markers is smaller than the number of records.

Three scenarios are illustrated. In the first scenario, the amount of data is quite
large relative to the number of covariates of the operational model (.N = 200, . p =
50). In the second, it is intermediate (.N = 100), and the third is an extreme example
where the number of covariates in the most complex operational model is large
relative to the number of records (.N = 55, .p = 50).

The setup is as before, with ten covariates assigned as loci affecting the
observations (the true model) and ten operational models that differ in the number
of covariates used for analysis, ranging from 5 to 50 in steps of 5. The leave-one-
out cross-validation estimate of .MSE (6.58) for the 1000 simulation replicates of
training data is shown in Fig. 6.5. With .N = 55 records the degree of uncertainty
is very large and it explodes as p approaches N . The variance of the leave-one-out
cross-validation estimate of .MSE decreases as the ratio number of makers (p) to
size of training data (N) decreases (centre and right panels of Fig. 6.5).

Table 6.1 displays the average validating .MSE over 2000 simulated training
and validating data sets and the average leave-one-out estimates of .MSE based
on expression (6.58) over 2000 simulated training data for various combinations
of number of records N and covariates p. The leave-one-out estimates use the N
training records, whereas computation of the validating mean squared error requires
the N training and N validating records.

In general, the leave-one-out estimates have a tendency to overpredict the average
validating mean squared error when the ratio .p/N approaches 1. This is not a
restriction when leave-one-out cross-validation is used with linear smoothers that
use shrinkage, the topic of the next chapter.

10 20 30 40 50

10
0

Number of Markers

LO
O

 M
S

E

10 20 30 40 50

10
0

Number of Markers

LO
O

 M
S

E

10 20 30 40 50

0
20

 40
 60

 80

0
20

 40
 60

 80

0
20

40
60

80

10
0

Number of Markers

LO
O

 M
S

E

Fig. 6.5 Leave-one-out cross-validation estimates of mean squared error (6.58) for three sizes of
training data (left panel, .N = 55; centre panel, .N = 100; right panel, .N = 200) and operational
models with increasing number of covariates, ranging from 5 to 50 in steps of 5. The average
over 1000 simulation replicates of training and validating data is shown as solid black lines. The
environmental variance, equal to 5 squared units, is shown as horizontal dashed lines

6.7 Least Squares Prediction 297

Table 6.1 Average (over 2000 simulated training data sets) leave-one-out estimate of MSE (X)
and average over training and validating data of the validating MSE (Y), for three sizes of training
and validating records N . Figures in the body of table correspond to . X; Y

Number of covariates (p)

N 10 20 50

55 6.3; 6.3 8.3; 8.0 100.8; 59.2

100 5.6; 5.6 6.4; 6.2 10.4; 10.1

200 5.3; 5.3 5.6; 5.6 6.7; 6.7

Chapter 7
Shrinkage Methods

Expression (6.51) indicates how prediction ability is governed by bias and variance.
As models become more complex, local noise can be captured, but coefficient
estimates suffer from higher variance as more terms are included in the model. In the
context of the traditional regression model .y = Xb + e, .e ∼ N

(
0, Iσ 2

)
, when the

number of covariates (number of columns of X) p is large relative to the number of
records/individuals n (number of rows of X), the columns of matrix X may become
rank-deficient (X may not be or is close to not being of full column rank). In this
case, even when .p < n, it is difficult to separate the effect of individual covariates.

Shrinkage methods are typically used to confront this problem that emerges in
highly dimensional models. Shrinkage estimators are obtained as the solution to
an optimisation problem that balances bias and variance or model complexity. The
general form of the optimisation problem is

.b̂ =
argmin b

{L (y, b) + λC (b)} , (7.1)

where .L (y, b) is a function that measures the lack of fit of the model to the data,
.C (b) is a measure of model complexity and .λ ≥ 0 is a regularisation parameter
controlling the trade-off between model fit and model complexity. This chapter starts
by describing one of the simplest shrinkage estimators known as ridge regression.
The balance between model fit and model complexity is achieved by shrinking all
coefficients towards a common point; none is set to zero, and coefficients tend to
resemble each other.

The second shrinkage estimator described in this chapter is the lasso (least
absolute shrinkage and selection operator). Lasso solves a critically different
optimisation problem (lasso and ridge regression use different expressions for the
model complexity parameter) and generates solutions where some of the regression
estimates are exactly zero. Efficient algorithms have been developed that allow
application of the lasso in models with a vast number of variables (typically larger

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Sorensen, Statistical Learning in Genetics, Statistics for Biology and Health,
https://doi.org/10.1007/978-3-031-35851-7_7

299

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35851-7protect T1	extunderscore 7&domain=pdf
https://doi.org/10.1007/978-3-031-35851-7_7
https://doi.org/10.1007/978-3-031-35851-7_7
https://doi.org/10.1007/978-3-031-35851-7_7
https://doi.org/10.1007/978-3-031-35851-7_7
https://doi.org/10.1007/978-3-031-35851-7_7
https://doi.org/10.1007/978-3-031-35851-7_7
https://doi.org/10.1007/978-3-031-35851-7_7
https://doi.org/10.1007/978-3-031-35851-7_7
https://doi.org/10.1007/978-3-031-35851-7_7
https://doi.org/10.1007/978-3-031-35851-7_7
https://doi.org/10.1007/978-3-031-35851-7_7

300 7 Shrinkage Methods

than the number of records). The lasso can be used for both prediction and model
selection.

The chapter concludes with a description of a fully Bayesian-McMC spike and
slab model. The model assigns a two-component prior mixture distribution to the
covariate parameters. One of the components is a point mass at zero; the other is
a normal distribution with mean zero and unknown variance. The model outputs
the posterior probability that a covariate has no effect on the observations for each
covariate. The spike and slab model can be used for prediction and as a tool to isolate
a handful of promising covariates for further study, among thousands or hundred
of thousands present. Examples with simulated data mimicking genomic models
illustrate various features of these models.

7.1 Ridge Regression

Ridge regression (Hoerl and Kennard 1970b,a) is a particular case of (7.1) with
.L (y, b) = (y − Xb)′ (y − Xb) and .C (b) = ∑

j∈S b2j , where S is the set of
coefficients to be penalised. Typically, some of the regression coefficients such as
the intercept are not penalised. The ridge coefficients are obtained as

.b̂rr =
argmin b

(y − Xb)′ (y − Xb) + λb′�b. (7.2)

Here, . � is a diagonal matrix whose entries are 1 for .j ∈ S and zero elsewhere.
Taking first derivatives of (7.2) with respect to b, setting the linear system equal to
zero, and solving for b yields

.b̂rr = (
X′X + λ�

)−1
X′y, (7.3)

a linear function of y. An equivalent way of writing (7.2) is

. b̂rr =
argmin b

(y − Xb)′ (y − Xb)

subject to

. b′�b ≤ t, t ≥ 0,

showing the size constraint on the parameters. There is a one-to-one correspondence
between t and . λ. The constrained minimisation uses Lagrange multipliers.

Relative to least squares, shrinkage adds a constant . λ to the diagonal entries of
.X′X which guarantees that the inverse in (7.3) exists even when .X′X is singular;
there is always a unique solution to . b̂rr . The form of the solution shows that as . λ →
∞, all the coefficients tend to zero .b̂rr → 0 and when .λ → 0, . b̂rr approaches the

7.1 Ridge Regression 301

least squares estimator. The coefficients are shrunk towards zero at a rate depending
of . λ that controls the size of the coefficients.

The relationship between the ridge estimator and the least squares estimator . b̂ is

. b̂rr =
[
I + λ(X′X)−1�

]−1
b̂

that can be verified by replacing above .b̂ = (X′X)−1X′y and using . B−1A−1 =
(AB)−1. Here, .X′X is assumed to be non-singular.

The ridge solutions depend on the scaling of the inputs, and therefore, X is
typically standardised (to have sample variance 1) and centred, so that .1′X = 0,
.
1
n
x′
ixi = 1, .i = 1, 2, . . . , p and .X′X is in “correlation form”. Also, in order to

avoid fitting the intercept but leaving it unpenalised (Brown 1977), y is often also
centred. When this is the case, matrix X is .n × p instead of .n × (p + 1) when the
intercept is included and .� = I . If X is orthonormal such that .X′X = I and in
models without the intercept,

. b̂rr = [I + λI]−1 b̂ = [(1 + λ) I]−1 b̂ = 1

1 + λ
b̂

showing that in this situation, the ridge estimator is a downweighted version of the
least squares estimator . b̂.

Ridge estimation leads to biased estimators of b. With .E (y|X) = Xb and .� = I ,
using (7.3),

. E
(
b̂rr |X

)
= (

X′X + λI
)−1

X′Xb

= (
X′X + λI

)−1 (
X′X + λI − λI

)
b

= b − λ
(
X′X + λI

)−1
b

with bias

. E
(
b̂rr |X

)
− b = λ

(
X′X + λI

)−1
b,

proportional to . λ. On the other hand, the ridge estimator has smaller variance than
the least squares estimator. Let .X = UDV ′ be the singular value decomposition
(SVD) of X of dimension .n × p. In the SVD, for .n > p, U is .n × p, .U ′U = I ,
.D = diag

(
d1, d2, . . . , dp

)
, .di > 0, i = 1, . . . , p is a diagonal matrix with positive

eigenvalues (when X is of full column rank), and V is .p×p, .V ′V = I . The variance
of the least squares estimator is

.Var
(
b̂|X

)
= σ 2 (

X′X
)−1

= σ 2 (
V DU ′UDV ′)−1

302 7 Shrinkage Methods

= σ 2
(
V D2V ′)−1

= σ 2V D−2V ′,

where D is a diagonal matrix with elements .1/d2
i . To go from the third to the fourth

line use .(ABC)−1 = C−1B−1A−1 and .V −1 = V ′. On the other hand, the variance
of the ridge estimator is

. Var
(
b̂rr |X

)
= σ 2 (

X′X + λI
)−1

X′X
(
X′X + λI

)−1 (7.4)

= σ 2
(
V D2V ′ + λI

)−1
V D2V ′ (V D2V ′ + λI

)−1

= σ 2
[
V

(
D2 + λI

)
V ′]−1

V D2V ′ [V
(
D2 + λI

)
V ′]−1

= σ 2V
(
D2 + λI

)−1
D2

(
D2 + λI

)−1
V ′

= σ 2V WV ′,

where .W = (
D2 + λI

)−1
D2

(
D2 + λI

)−1
is a diagonal matrix with elements

.d2
i /(d2

i + λ)2 indicating that .Var
(
b̂
)

≥ Var
(
b̂rr

)
, with equality if .λ = 0 in the

absence of shrinkage. The variance decreases with . λ and vanishes as .λ → ∞.
Ridge regression performs particularly well in terms of mean squared error

(or prediction error variance) relative to standard regression when some of the
regression parameters are small or even zero. This advantage is less marked when
the true parameters take larger values.

A Toy Example

This example is elaborated from a version in unpublished notes by G. de los
Campos, Michigan State University.

Consider a simple one way classification with two levels parametrised as a linear
regression model

. yi = x1ib1 + x2ib2 + ei,

where .x1i = 1 if record i belongs in treatment 1 and 0 otherwise and .x2i = 1− x1i .
The treatment effects are . b1 and . b2, respectively. The least squares equations are

.

[∑
i x2

1i

∑
i x1ix2i∑

i x1ix2i
∑

i x2
2i

] [
b̂1

b̂2

]
=

[∑
i x1iyi∑
i x2iyi

]
.

7.1 Ridge Regression 303

Since .
∑

i x2
1i and .

∑
i x2

2i are the number of records in treatments 1 and 2 (denoted
. n1 and . n2), .

∑
i x1ix2i = 0, and .

∑
i x1iyi and .

∑
i x2iyi are the sum of records in

treatments 1 and 2, the least squares estimators are

.

[
b̂1

b̂2

]
=

[
n1 0
0 n2

]−1 [∑
x1iyi∑

i x2iyi

]
.

The least squares estimators of the treatment effects are the treatment means

.

[
b̂1

b̂2

]
=

[∑
x1i yi

n1∑
i x2i yi

n2

]

with sampling variance

.Var
(
b̂j |nj

)
= σ 2

nj

, j = 1, 2. (7.5)

The ridge regression estimates are

.

[
b̂rr1

b̂rr2

]
=

[
n1 + λ 0

0 n2 + λ

]−1 [∑
i x1iyi∑
i x2iyi

]

=
[∑

i x1i yi

n1+λ∑
i x2i yi

n2+λ

]

=
[

n1
n1+λ

b̂1
n2

n2+λ
b̂2

]

.

Adding . λ on the diagonal shrinks the estimates towards zero. The extent of
shrinkage depends on the value of . λ relative to the sample size.

The ridge estimator is biased:

.E
(
b̂rrj |nj

)
= nj

nj + λ
E
(
b̂j |nj

)
= nj

nj + λ
bj (7.6)

because .E
(
b̂j |nj

)
= bj . The bias is

.E
(
b̂rrj |nj

)
− bj = bj

(
nj

nj + λ
− 1

)
. (7.7)

The sampling variance is

.Var
(
b̂rrj |nj

)
= nj

(
nj + λ

)2 σ 2, (7.8)

304 7 Shrinkage Methods

Fig. 7.1 Mean squared error
of the ridge regression
estimator versus the
shrinkage parameter . λ. The
population size is .n = 20 and
the variance .σ 2 = 1. Red,
.bj = 0.5; dot dashed,
.bj = 1.0; dashed, MSE of the
least squares estimator
(.λ = 0), Eq. (7.5)

0 2 4 6 8 10

�

0.06

0.08

0.10

0.12

MSE

which reduces to the variance of the least squares estimator when .λ = 0. For .λ > 0,

.Var
(
b̂rri

)
< Var

(
b̂j

)
. The smoothing process will reduce mean squared error if it

gets rid of more variance than it adds bias. Specifically, the mean squared error is
given by adding the square of (7.7) and (7.8). This gives

.E

[(
b̂rrj − bj

)2 |nj

]
= b2j

(
nj

nj + λ
− 1

)2

+ nj
(
nj + λ

)2 σ 2. (7.9)

In the absence of shrinkage, .λ = 0, the first term vanishes, and the second term is
equal to (7.5). When . λ is very large, the variance term approaches zero, and the bias
achieves its maximum value at . b2j (when the ridge coefficients are strongly regressed
towards zero).

Figure 7.1 illustrates the trade-off variance versus bias of the ridge regression
using (7.9). For a given population size, the MSE (7.9) has a minimum at . λ =
σ 2/b2. The figure shows for .n = 20, .σ 2 = 1, that MSE of the ridge estimator, for
a true .bj = 0.5, outperforms the MSE of the least squares estimator up to .λ < 10.
For a true .bj = 1.0, the ridge estimator does better up to .λ ≈ 2, with a minimum
MSE at .λ = 1.

Choice of Shrinkage Parameter

A natural choice of . λ could be based on minimising the mean squared error of the
estimator. Glancing at (7.6) and (7.8) and recalling that mean squared error is a
function of the bias and the variance indicate that the optimal choice of . λ depends
on the values of b and . σ 2. In a prediction context, since these are typically unknown,
. λ can be chosen using cross-validation.

7.1 Ridge Regression 305

Bayesian View of Ridge Regression

In a Bayesian framework, assume the regression coefficients are assigned the prior
distribution .b|σ 2

b ∼ N
(
0, Iσ 2

b

)
and the sampling model for the data is the normal

process

. y|X, b, σ 2
e ∼ N

(
Xb, Iσ 2

e

)
.

A standard result (Lindley and Smith 1972) sketched below states that the condi-
tional posterior distribution of b is

.b|X, σ 2
b , σ 2

e , y ∼ N
(
b̂rr ,

(
X′X + λI

)−1
σ 2

e

)
, (7.10)

where . b̂rr is the ridge regression estimator

.b̂rr = (
X′X + λI

)−1
X′y (7.11)

and .λ = σ 2
e /σ 2

b . Therefore, the ridge regression estimator is equivalent to the
posterior mode (or mean, given normality) of the regression coefficients in the
following Bayesian model:

. Likelihood: y|X, b, σ 2
e ∼ N

(
Xb, Iσ 2

e

)

Prior: b|σ 2
b ∼ N

(
0, Iσ 2

b

)
.

Numerically, the solution (7.11) is also the best linear unbiased predictor (BLUP)
of b.

The ratio .σ 2
e /σ 2

b is equivalent to . λ in the ridge regression context. In a fully
Bayesian analysis, the variance components are assigned prior distributions and can
be inferred jointly with b.

Note

The proof of (7.10) is based on combining two quadratic forms, used repeatedly in
the book (see also page 145). Using Bayes theorem, the posterior distribution of b
is

.p
(
b|X, σ 2

b , σ 2
e , y

)
∝ p

(
y|X, b, σ 2

e

)
p

(
b|σ 2

b

)

∝ exp

[
− 1

2σ 2
e

(y − Xb)′ (y − Xb)

]
exp

[

− 1

2σ 2
b

b′b
]

306 7 Shrinkage Methods

= exp

[
−

1

2σ 2
e

{
(y − Xb)′ (y − Xb) + λb′b

}
]

∝ exp
[
−

1

2σ 2
e

(−2b′X′y + b′X′Xb + λb′b
)]

= exp

[
−

1

2σ 2
e

(−2b′X′y + b′ (X′X + λI
))

b

]
(7.12)

where .λ = σ 2
e /σ 2

b . Let

.
(
X′X + λI

)
b̂ = X′y, (7.13)

and replace .X′y in (7.12) by .
(
X′X + λI

)
b̂. Add and subtract .b̂′ (X′X + λI

)
b̂ and

keep terms in b only. Then a little manipulation yields

. p
(
b|X, σ 2

b , σ 2
e , y

)
∝ exp

[
− 1

2σ 2
e

(
b − b̂

)′ (
X′X + λI

) (
b − b̂

)]

which is the kernel of a normal distribution with mean . b̂ and variance
.
(
X′X + λI

)−1
σ 2

e , as in (7.10).
There is a difference between the posterior variance of the Bayesian model and

the variance of the ridge estimator (7.4). Using the singular value decomposition of
X, it is easy to show that

.
(
X′X + λI

)−1
σ 2

e = V W̃V ′σ 2
e ,

where . W̃ is a .p × p diagonal matrix with elements .
(
d2
i + λ

)−1
. On the other hand,

as indicated in (7.4), the ridge regression estimator has sampling variance .σ 2V WV ′,
where W is a .p × p diagonal matrix with elements .d2

i /(d2
i + λ)2.

Example: Prediction Ability of the Ridge Estimator

The prediction ability of the ridge estimator is illustrated with simulated data (. n =
55 observations) similar in structure to the one used in the example of page 291. In
contrast to that example, the substitution effects . b� of the .p� = 10 QTL are drawn
from .N(0, σ 2

b = 0.25) leading to a genomic variance (at the level of the operational
model) equal to . 2.5 squared units as explained below.

The data are analysed with two sets of operational models. In the first set, the
QTL are part of the marker panel. In the second set, the QTL are not part of the
marker panel. In the latter scenario, observations and covariates are uncorrelated.
This creates an extreme case where the operational model has no prediction ability.

7.1 Ridge Regression 307

The genomic value of individual i is .gi = x′
i,�b�, were .x′

i,� is the ith row of the
.n × p� matrix . X� of QTL genotypes. Due to centring and scaling, the elements of
X are random variables with mean 0 and variance 1.

At the level of the operational models,

. Var (gi |xi) = x′
ixiσ

2
b

and the genomic variance is

. Var (gi) = σ 2
g = Exi [Var (gi |xi)] + Varxi [E (gi |xi)]

= Exi [Var (gi |xi)]

= σ 2
b Exi

(
x′
ixi

)

= pσ 2
b , (7.14)

where p is the number of markers of the operational model. When .p = p� = 10,
.σ 2

g = 10 × 0.25 = 2.5.
In view of (7.14), the shrinkage parameter in (7.13) is

.λ = σ 2
e

σ 2
b

= σ 2
e

σ 2
g

p. (7.15)

When . σ 2
e and . σ 2

g are assumed known and fixed with values 5 and . 2.5, respectively,
the shrinkage parameter is therefore set to increase linearly with the number of
markers .p = 5, 10, . . . , 45, 50 included in the operational model (7.13) with slope
.σ 2

e /σ 2
g .

The prediction ability of the ridge estimator using data simulated with the
linear model is displayed in Fig. 7.2. When the operational model includes the
first 10 covariates, it coincides with the true model, and the validating mean
squared error reaches its minimum. Relative to the least squares predictor, the
increase in the validating mean squared error of the ridge predictor as a function
of the number of covariates included in the operational model is attenuated by the
shrinkage parameter that also increases as more covariates are included as indicated
in (7.15). The training mean squared error shows a decline with increasing number
of covariates. This decline is less pronounced than the one displayed in Fig. 6.1 for
the least squares predictor.

Figure 7.3 displays the three components of the expected validating mean
squared error. The variance of the ridge regression predictor of the validating record
shows a steady increase as the number of covariates increases despite the increase of
the penalty parameter that cannot compensate with increasing dimensionality of the
predictive model. The bias of the predictor has a minimum when the operational
model and the true model coincide and increases steadily when the operational
model has more than ten covariates. As the penalty parameter increases, the ridge

308 7 Shrinkage Methods

10 20 30 40 50

Number of Markers

Tr
ai

ni
ng

 M
S

E

10 20 30 40 50

2
4

6
8

 10

5
10

 15
 20

Number of Markers

V
al

id
at

in
g

M
S

E

Fig. 7.2 Left (red): training mean squared error (6.52). Right (blue): validating mean squared error
(6.53) of the ridge estimator using simulated data generated with a linear model with ten causal
loci and analysed with operational linear models with increasing number of covariates that include
the causal loci. Results from 2000 replicates; black lines, average over replicates

Fig. 7.3 The expected
validating mean squared error
(green) and its three
components: expected
squared bias (red), variance of
predictor (blue) and residual
variance (dashed lines). Data
simulated using a linear
model with ten causal loci
and analysed with operational
linear models with increasing
number of covariates, which
include the causal loci

10 20 30 40 50

2
4

6
8

Number of Markers

V
ar

P
re

di
ct

or
/S

qB
ia

s

 10

regression estimates are shrunk more heavily towards zero with a consequent
increment in the bias. There is good agreement with the expected validating mean
squared error and the mean validating mean squared error over the 2000 simulation
replicated in Fig. 7.2.

The mean squared errors computed using validating and training data that result
from fitting operational models with increasing number of covariates that do not
include the causal loci are shown in Fig. 7.4. This is an example that mimics a trait
whose expression is not affected by a genetic component: marker genotypes are
uninformative about phenotype. Despite the lack of association between phenotypes

7.1 Ridge Regression 309

10 20 30 40 50

2
4

6
8

 10

Number of Markers

Tr
ai

ni
ng

 M
S

E

10 20 30 40 50

5
10

 15
 20

 25
 30

Number of Markers

V
al

id
at

in
g

M
S

E

Fig. 7.4 Left (red), training mean squared error (6.52). Right (blue), validating mean squared error
(6.53) of the ridge estimator using simulated data generated with a linear model with ten causal
loci and analysed with operational linear models with increasing number of covariates that do not
include the causal loci. Results from 2000 replicates; black lines, average over replicates

Fig. 7.5 The expected
validating mean squared error
(green) and its three
components: expected
squared bias (red), variance
of predictor (blue) and
residual variance (dashed
lines). Data simulated with
the linear model, ten causal
loci and analysed with
operational ridge regression
models with increasing
number of covariates that do
not include the causal loci

10 20 30 40 50

2
4

6
8

10
12

Number of Markers

V
ar

P
re

di
ct

or
/S

qB
ia

s

and covariates the training mean squared errors show the expected decline due to
overfitting. The validating mean squared errors increase steadily as more covariates
are added to the operational model. There is a slight squared bias contribution to
this increase, but most of it is driven by larger variances as the dimension of the
operational model increases. Figure 7.5 illustrates this setup.

310 7 Shrinkage Methods

Table 7.1 Average (over 2000 simulated training data sets) for the leave-one-out estimate of . MSE
(A) and average of 2000 training and validating records for the validating .MSE (B) for three sizes
of training and validating records, n, and three different number of covariates included in the
operational model, p. Figures in the body of table correspond to . A; B

Number of Covariates (p)

n 20 40 200

55 .7.8; 7.5 .10.4; 10.0 . 15.9; 15.4
100 .6.5; 6.4 .8.1; 8.0 . 11.1; 10.6
200 .5.5; 5.5 .6.1; 6.1 . 9.5; 9.1

Example: Leave-One-Out Cross-Validation and Shrinkage

This example illustrates the behaviour of expression (6.58), the leave-one-out cross
validation mean squared error, as an estimator of the validating mean squared error,
averaged over training and validating data, when it is applied using ridge regression.

The setup is similar to the one used to construct Table 6.1 on page 297. The
number of training and validating records is .n = 55,100 or 200, and the number
of markers included in the operational model is .p = 20, 40 or 200. The shrinkage
parameter of the ridge regression estimator increases linearly with p, as indicated in
expression (7.15). Table 7.1 displays the average over 2000 replications of training
records for the estimates of leave-one-out cross-validation and the average over
training and validating records for the validating mean squared errors.

There is a good agreement between the average estimates of leave-one-out
cross-validation and the average validating mean squared error, even in situations
where .p > n (in contrast with results in Table 6.1), with a slight tendency to
overprediction.

7.2 The Lasso

Shrinkage estimators were shown to be obtained as the solution to an optimisation
problem whose general form is

.b̂ =
argmin b

{L (y, b) + λC (b)} (7.16)

where .L (y, b) is a function that measures the lack of fit of the model to the data,
.C (b) is a measure of model complexity and .λ ≥ 0 is a regularisation parameter
controlling the trade-off between fitness and model complexity.

7.2 The Lasso 311

Let .b = (β0, β) ∈ Rp+1. In ridge regression,

.L (y, b) =
n∑

i=1

⎛

⎝yi − β0 −
p∑

j=1

xijβj

⎞

⎠

2

, i = 1, . . . , n (7.17)

and

.λC (b) = λ

p∑

j=1

β2
j (7.18)

so that the ridge regression estimator is the solution (linear in y) to

.b̂rr =
argmin β

⎧
⎪⎨

⎪⎩

n∑

i=1

⎛

⎝yi − β0 −
p∑

j=1

xijβj

⎞

⎠

2

+ λ

p∑

j=1

β2
j

⎫
⎪⎬

⎪⎭
. (7.19)

The term .
∑p

j=1 β2
j (which does not include . β0) is known as the . L2 penalty. Relative

to the classical least squares estimator, ridge regression reduces variability but can
potentially cloud interpretation, as shrinkage is applied to all coefficients simulta-
neously. In ridge regression, all coefficients “resemble each other” (shrinkage is to
the same point or distribution, when interpreted from a Bayesian perspective), and
none of the coefficients is set to 0.

The lasso (Tibshirani 1996, “least absolute shrinkage and selection operator”)
has (7.17) in common with ridge regression but the . L2 penalty is replaced by the . L1
penalty, given by .

∑p

j=1

∣∣βj

∣∣, and the lasso coefficients are the solutions (nonlinear
in y) to

.β̂lasso =
argmin β

⎧
⎪⎨

⎪⎩

n∑

i=1

⎛

⎝yi − β0 −
p∑

j=1

xijβj

⎞

⎠

2

+ λ

p∑

j=1

∣∣βj

∣∣

⎫
⎪⎬

⎪⎭
. (7.20)

In contrast with ridge regression, there is no closed form expression for the
lasso.

The tuning parameter . λ in (7.20) also controls the extent of the penalty. When
.λ = 0, the least squares solutions are obtained, and when .λ = ∞, .βj = 0 for all j . In
between these two extremes, coefficients are shrunk, but the effect of the . L1 penalty
is to set some coefficients exactly to zero. As . λ increases, more coefficients are set
to zero (less variables are selected), and among the non-zero coefficients, shrinkage
is stronger. The lasso is an attempt at combining features of subset selection and
ridge regression simultaneously.

312 7 Shrinkage Methods

The lasso coefficients can also be obtained solving

. β̂lasso =
argmin β

n∑

i=1

⎛

⎝yi − β0 −
p∑

j=1

xijβj

⎞

⎠

2

subject to

.

p∑

j=1

∣
∣βj

∣
∣ < t,

where .t ≥ 0 acts now as the tuning parameter. If t is chosen larger than .
∑p

j=1

∣∣∣β̂j

∣∣∣,

where . β̂j is the least squares estimate, then the lasso estimates are the . β̂ ′
j s. If t is

smaller than .
∑p

j=1

∣∣
∣β̂j

∣∣
∣, shrinkage takes place, and some . β ′s are set to zero.

In the context of prediction where the lasso is typically deployed, the shrinkage
parameter . λ is chosen using cross-validation.

If the columns of x are centred, the estimator of the intercept is .β̂0 = y. When y is
also centred, the model does not include an intercept term. In (7.20), the constraint
treats all the coefficients equally, and therefore it makes sense to scale x, as with
ridge regression. For centred and scaled x, .

∑
i xij = 0, .

∑
i x2

ij = n.

The Subdifferential

A number of algorithms are available to obtain the solution to (7.20) that is a
quadratic programming problem with linear inequality constraints. Before sketching
one of the algorithms, the notion of the subderivative or subdifferential is briefly
introduced. The subdifferential generalises the derivative to convex functions that
may not be differentiable. This is necessary because the (convex) function defined
by (7.20) does not have a derivative at the point .

∣∣βj

∣∣ for .βj = 0.
To illustrate, consider the (convex, i.e., “holds water”) absolute value function

.f (x) = |x|, .x ∈ R, where

. |x| =
{

x, x ≥ 0,
−x, x < 0.

(7.21)

For .x �= 0, the derivative of f with respect to x is . +1 if .x > 0 and . −1 if .x < 0.
However, for .x = 0 (that defines the point where f achieves its absolute minimum),
the derivative does not exist. However, at .x = 0, one can draw (many) lines that
touch the function at .(0, f (0)) that are everywhere below f except at the point

7.2 The Lasso 313

.x = 0. This collection of slopes tangent to the function at the point .x = 0 is the
subdifferential of f at the point .x = 0.

One can proceed a little more formally as follows: A scalar c is a subgradient of
a function f at the point . x0 if for all points x the following holds:

. f (x) ≥ f (x0) + c (x − x0)

for .x ∈ R (the real line) and belonging to the domain of f . Then

.c (x − x0) ≤ f (x) − f (x0) , (7.22)

and the collection of all slopes c of subtangent lines is called the subdifferential of f

at the point .x = x0. The set of subdifferentials c at . x0 is a nonempty closed interval
.[a, b] where a and b are the one-sided limits approached from the left and right of
x, respectively, defined as

.a = lim
x→x−

0

f (x) − f (x0)

x − x0
, . (7.23a)

b = lim
x→x+

0

f (x) − f (x0)
x − x0

, (7.23b)

that satisfy .a ≤ b. Any c belonging in .[a, b] satisfies (7.22) and is a subdifferential
of f at the point .x = x0, denoted .∂f (x0).

I return to the absolute value function .f (x) = |x| and find the set of
subdifferentials at .x0 = 0. One way of approaching this is to use definition (7.22).
Here, .f (x) = |x|, .f (x0) = |0| = 0 and using (7.22) with . x0 = 0

. cx ≤ |x| , for all x ∈ R.

Since the inequality holds for all .x ∈ R, it also holds for .x = ±1. Then for . x = +1

. c (1) ≤ |1| = 1,

c ≤ 1

and for . x = −1

.c (−1) ≤ |−1| = 1,

−c ≤ 1,

c > −1.

314 7 Shrinkage Methods

Therefore, c is any number defined in the closed interval

. c ∈ [−1, 1]

and more generally, the subdifferential of f at .x = 0 is written

. ∂f (0) ⊂ [−1, 1] .

For any x

. ∂x |x| =
⎧
⎨

⎩

−1, if x < 0
[−1, 1] , if x = 0

1, if x > 0.

The limits of the closed set can also be obtained using (7.23). For the lower limit
as x approaches 0 from the left,

. a = lim
x→0−

f (x) − f (x0)

x − x0
= lim

x→0−
|x| − |0|
x − 0

= lim
x→0−

|x|
x

= lim
x→0−

x

−x
= lim

x→0− − 1 = −1

and for the upper limit, as x approaches 0 from the right,

. b = lim
x→0+

f (x) − f (x0)

x − x0
= lim

x→0+
|x|
x

= lim
x→0+

x

x
= lim

x→0+1 = 1,

where both cases make use of the fact that the limit of a constant (here the number
. −1 or 1) is the constant itself.

An Example with a Single Regression Parameter

Drawing from Friedman et al (2007), to get a little intuition for the behaviour of
the lasso, consider a linear model with p covariates, where .(p − 1) are fixed at
some value and . βj (a scalar) is the only parameter to be estimated. The vector of
covariates x is scaled and centred, so that .x′

j xj = n, and the observations y are
expressed as deviations from the mean, so that .y = 0. Therefore, the model does

7.2 The Lasso 315

not include an intercept. Expression (7.20) now takes the form

. f
(
βj

) = 1

n

n∑

i=1

(
ri − xijβj

)2 + λ
∑

k �=j

|βk| + λ
∣∣βj

∣∣

= 1

n

(
r − xjβj

)′ (
r − xjβj

) + λ
∑

k �=j

|βk| + λ
∣∣βj

∣∣ (7.24)

where .ri = yi − ∑
k �=j xikβk and the . β ′

ks, .k �= j , are fixed at some value. The lasso
estimate of . βj is the value of . βj that minimises (7.24). This gives

. ∂f
(
βj

) =

⎧
⎪⎨

⎪⎩

βj − x′
j r/n + λ, βj > 0,

βj − x′
j r/n − λ, βj < 0,

[−λ, λ] − x′
j r/n, βj = 0.

Using .β̂j = x′
j r/n as the least squares estimate treating the residuals r as “data”

and setting these equations equal to zero lead to the lasso estimate of . βj

. βL
j =

⎧
⎨

⎩

β̂j − λ, β̂j > λ,

β̂j + λ, β̂j < −λ,

0, −λ ≤ β̂j ≤ λ,

or more compactly

.βL
j =

⎧
⎨

⎩

0, if
∣∣
∣β̂j

∣∣
∣ ≤ λ,

sign
(
β̂j

) (∣∣∣β̂j

∣∣∣ − λ
)

, if
∣∣∣β̂j

∣∣∣ ≥ λ.
(7.25)

The system (7.25) indicates that the smallest value for . λ, such that all regression

solutions .βL = 0, is .maxj

∣∣∣β̂j

∣∣∣, .j = 1, . . . , p, the largest least squares estimate.

Clearly, the choice of the tuning parameter . λ has a strong influence on the behaviour
of the lasso. The choice can be guided using cross-validation.

A General Algorithm to Obtain Lasso Solutions

The following general algorithm can be implemented to obtain lasso solutions in
models with p correlated covariates. The algorithm is known as the path-wise
coordinate descent algorithm (Friedman et al 2007, 2010; Efron and Hastie 2016)
and is based on updating regression coefficients one at a time as in the previous
example. This is performed in an iterative fashion, and the process is repeated until
it converges to the lasso solution.

316 7 Shrinkage Methods

The algorithm has an external loop that runs over the number of iterates and an
internal loop that runs over the number of covariates, updating one covariate at a
time. This requires updating the residuals. A computationally efficient manner of
updating residuals is as follows (Friedman et al 2010): Consider a linear model with
p covariates and write .Xb = (Xi,X−i)(bi, b−i)

′. The residual including these p
covariates is .r1 = (y − Xibi − X−ib−i) and the residual excluding the ith covariate
is .r0 = (y − X−ib−i). Therefore,

. r0 = r1 + Xibi,

r1 = r0 − Xibi.

The kernel of the internal loop is simply

.

INITIALISE r1 = y − y, b = 0
LOOP OVER NUMBER COVARIATES i = 1, . . . , p

r0 = r1 + Xibi this updates (y − 1μ − X−ib−i)

UPDATE bi involves (7.25)
r1 = r0 − Xibi this updates (y − 1μ − Xb)

END LOOP

The following R-code illustrates the implementation of the algorithm with a toy
example. The bottom of the code includes a call to the package GLMNET (Hastie
and Qian 2016) as a test on the output. Details regarding this package are deferred
to the Example on page 319:

CODE0701
AN EXAMPLE USING SIMULATED CORRELATED X
rm(list=ls()) # CLEAR WORKSPACE
set.seed(3711)
#install.packages("glmnet", .libPaths()[1])
library(glmnet)
n <- 100
p <- 100
X <- matrix(rnorm(p*n),ncol=p)
X <- X*0.8 + X[,1]*0.3 # GENERATE CORRELATED COVARIATES
X <- scale(X)*sqrt(n)/sqrt(n-1)
beta <- rep(0,p)
betac <- rep(0,p)
beta <- sample(0:1,p,replace=TRUE,prob=c(2,1))
length(which(beta!=0))

[1] 42

7.2 The Lasso 317

y <- X%*%beta + rnorm(n,sd=0.4)
y <- y - mean(y)
for(i in 1:p){ betac[i]=coef(lm(y~X[,i]))[2]}
lambda=max(abs(betac))*.1
lambda

[1] 1.457124

niter <- 100
bL=matrix(nrow=niter,ncol=p)
bL[1,]=0 # initial lasso estimates set to zero
r1 <- y-mean(y)
for (i in 2:niter) {

for(j in 1:p){
r0 <- r1+X[,j]*bL[i-1,j]
bLS <- crossprod(X[,j],r0)/n # LEAST SQUARES ESTIMATE
if (abs(bLS) >= lambda){bL[i,j]<-sign(bLS)*(abs(bLS)-lambda)
} else{

bL[i,j] <- 0
}
r1 <- r0-X[,j]*bL[i,j]

}
}
fm=glmnet(y=y,x=X,alpha=1,lambda=lambda)
alpha=1: LASSO; alpha=0: RIDGE; 0<alpha<1: ELASTIC NET
Number covariates included with GLMNET:
length(which(fm$beta!=0))

[1] 13

Number included with present code
length(which(bL[niter,]!=0))

[1] 13

PRINT A FEW ESTIMATES OBTAINED WITH GLMNET
round(fm$beta[which(fm$beta!=0)][1:7],3)

[1] 11.162 0.311 1.345 0.028 0.355 0.620 1.256

AND THE SAME WITH PRESENT CODE
round(bL[niter,which(bL[niter,]!=0)][1:7],3)

[1] 11.16 0.312 1.344 0.028 0.355 0.620 1.256

Out of the .p = 100 covariates in the full model, lasso retains 13.

318 7 Shrinkage Methods

A Bayesian Interpretation of the Lasso

Tibshirani (1996) indicated that Lasso estimates of the elements of β can be
interpreted as posterior mode estimates, when these regression parameters have
independent and identical Laplace (i.e., double exponential) priors of the form

.p
(
βj

) = τ

2
exp

(−τ
∣
∣βj

∣
∣) (7.26)

and observations are realisations from a normal process. More specifically, assume
that centred data (no intercept required in the model) arise from

.y|β, σ 2 ∼ N
(
Xβ, Iσ 2

)
(7.27)

and

.p (β|τ) =
(τ

2

)p

exp
(
−τ

∑p

j=1

∣∣βj

∣∣
)

. (7.28)

In (7.27), y is a column vector with n elements, X is n×p matrix, and β is a column
vector with p elements. Then the posterior density of β takes the form

. p
(
β|σ 2, τ, y

)
=

(
2πσ 2

)− n
2
exp

[
− 1

2σ 2 (y − Xβ)′ (y − Xβ)

] (τ

2

)p

exp
(
−τ

∑p

j=1

∣∣βj

∣∣
)

and the logposterior density, including only those terms that contain β, is given by

. ln
(
p

(
β|σ 2, τ, y

))
= − 1

2σ 2 (y − Xβ)′ (y − Xβ) − τ
∑p

j=1

∣∣βj

∣∣ . (7.29a)

Multiplying out by 2σ 2 the posterior mode results in the lasso solution

. β̂L =
argmax b

− (y − Xβ)′ (y − Xβ) − λ
∑p

j=1

∣∣βj

∣∣

=
argmin b

(y − Xβ)′ (y − Xβ) + λ
∑p

j=1

∣
∣βj

∣
∣

where λ = 2σ 2τ . It is important to stress that the equivalence between the
Bayesian lasso and the standard lasso occurs at the level of the modal value of
the posterior distribution. The posterior mean is not equal to the posterior mode and
does not produce the same lasso shrinkage of coefficients to zero. A fully Bayesian
implementation of the lasso can be found in Park and Casella (2008).

7.4 Example: Prediction Using Ridge Regression and Lasso 319

7.3 An Extension of the Lasso: The Elastic Net

Some of the properties of the lasso are seen as shortcomings. For example, in the
.p > n situation (n is the number of records and p is the number of covariates), lasso
selects at most n covariates. This is not desirable when the analysis involves few
observations and many predictors contribute to the response. Also, in models with
many highly correlated predictors, lasso tends to pick one arbitrarily and ignores
the rest. On the other hand, ridge regression tends to shrink coefficients towards
each other, but all will be included in the model; none is set to zero. In the context
of genomic models, there may be many highly correlated SNPs that cloud around
unobserved causal variants. In such cases, lasso tends to choose one among the
correlated set and eliminate the remaining predictors. Arguably, more of the signal
can be captured by a linear combination of correlated predictors than by inclusion
of only one. In contrast, ridge regression includes all the coefficients in the model
despite the shrinkage, including the superfluous ones. The elastic net proposed by
Zou and Hastie (2005) is a compromise between ridge regression and lasso and
circumvents some of these limitations. The elastic net solves the following problem
(Zou and Hastie 2005):

. min
(β0,β)∈Rp+1

Rλ (β0, β) = min
(β0,β)∈Rp+1

[
1

2N

N∑

i=1

(
yi − β0 − x′

iβ
)2 + λPα (β)

]

(7.30)

where

. Pα (β) =
p∑

i=1

[
1

2
(1 − α) β2

j + α
∣∣βj

∣∣
]

.

.Pα (β) is the elastic net penalty and is a compromise between ridge regression
penalty .(α = 0) and the lasso penalty .(α = 1). The quadratic part of the penalty
removes the limitation on the number of variables selected and encourages grouping
effects. The . L1 penalty associated with the lasso generates a sparse model. The
public package glmnet (Friedman et al 2009) implemented in R allows the user to
choose among ridge regression, lasso or elastic net and is illustrated as part of the
example below.

7.4 Example: Prediction Using Ridge Regression and Lasso

This simulation example illustrates the prediction ability of ridge regression and
lasso using two data sets that mimic two different genetic scenarios. The data in
both scenarios consist of 1500 individuals and 1500 correlated marker genotypes at

320 7 Shrinkage Methods

intermediate gene frequencies. The 1500 marker genotypes are in 75 independent
blocks with 20 marker genotypes in each block. Marker genotypes are correlated
within blocks and uncorrelated among blocks. The correlation between adjacent
markers is approximately .0.60 and decays with marker distance.

The two data sets differ in the number of QTL. In the first set, 25 out of the 1500
markers are randomly chosen as QTL, and in the second set, this number is 250. The
substitution effects are the same for all QTL within sets of data and are chosen such
that the equilibrium additive genetic variance (defined as .2

∑
QT L pi (1 − pi) β2

i ,
where . βi is the allele substitution effect of the ith QTL, the same for all i) is equal
to 10 squared units in both sets of data. The environmental variance is equal to 30
squared units, and therefore the trait heritability is equal to .0.25. In the first data set,
each of the 25 QTL explains . 1% of the phenotypic variance; in the second, each of
the 250 QTL explains .0.1% of the phenotypic variance.

The 1500 individuals were divided into a training set of size 750, and a validating
or testing set of size 750 and a ridge regression or lasso was fitted using the package
glmnet. The performance of the predictive models was measured by the sample
validating mean squared error (MSE) and the correlation between the predicted
phenotypes (using estimates of substitution effects obtained using the training data)
and observed phenotypes (from the validating data). In the data set with 25 QTL,
the lasso is expected to outperform ridge regression as the latter includes all 1500
markers in the model, including the redundant ones. In the data with 250 QTL, the
lasso limits the choice of the number of markers to be included in the predictive
model within the block of correlated loci, failing in this way to capture an important
part of the QTL (causal) additive genetic variance. This will lead to a relatively
larger bias in the predictions. On the other hand, ridge regression includes all
markers in the predictive model and captures a larger proportion of the QTL additive
genetic variance. The possible increase in variance of the predictions is attenuated
by a diminution of the squared bias, leading to a better predictive performance as
measured by the MSE.

These expectations are borne out by the results, albeit drawn from one replica-
tion. With 25 QTL, the MSE (correlation) of the lasso is .34.6 .(0.30) and of the ridge
regression .36.4 .(0.20). The lasso includes 112 QTL in the model. With 250 QTL,
the MSE (correlation) of the lasso is .43.6 .(0.27) and of the ridge regression . 40.9
.(0.35). In this case, the lasso includes 145 QTL.

These numbers can be put in perspective using the true value of the QTL
substitution effects .βtrue, as predictions of the phenotypes in the validating (or test)
data. The predictions are .Xtestβtrue, where .Xtest is the matrix of QTL genotypes
in the test or validating data. The MSE (correlation) is .28.5 .(0.48). In this case, the
MSE and the correlation measure, respectively, the .Var (y|X) and the heritability of
the trait realised in the training sample of 750 individuals. In the population, these
parameters are 30 square units and .

√
0.25 = 0.5, respectively. This is as good a

prediction as it gets!
An extract of the . R-code (adapted from James et al 2017, pages 251–255) used

in the implementation of glmnet is shown below. Documentation about glmnet can
be found in Hastie and Qian (2016) and in Friedman et al (2010). In this example,

7.5 A Bayesian Spike and Slab Model 321

the function cv.glmnet is executed in a first step on the training data in order to find
the value of the tuning parameter (best value of . λ) of the lasso (using .α = 1 as an
argument) or of the ridge regression (using .α = 0 as an argument) that optimises
prediction ability measured by MSE. Execution of predict in a second step yields
predictions of phenotypes in the testing data and the associated validation MSE
(mean((fm.pred-y.test). 2)):

Lasso solutions using package glmnet
#install.packages("glmnet", .libPaths()[1])
library(glmnet)
UPLOAD MATRIX OF MARKER GENOTYPES X AND RECORDS y
n<-nrow(X)
Xlasso<- X
train=sample(1:nrow(Xlasso),nrow(Xlasso)/2)
test=(-train)
y.test=y[test] # y is the phenotypic data generated separately

********** FOR PREDICTION *****************
STEP 1

cv.out=cv.glmnet(Xlasso[train,],y[train],alpha=1)

plot(cv.out)
bestlam=cv.out$lambda.min
bestlam

TO OBTAIN THE NUMBER OF NON-ZERO COEFFICIENTS CAN EXECUTE:

length(which(as.vector(coef(cv.out, s=bestlam))!=0))

STEP 2

Having obtained the best lambda fit the model
on the testing data using this lambda to obtain predictions

fm.pred=predict(cv.out,s=bestlam,newx=Xlasso[test,])
mean((fm.pred-y.test)^2) # VALIDATION MSE
correl<-cov(fm.pred,y.test)/sqrt((var(fm.pred)*var(y.test)))
AS GOOD AS IT GETS:
predtrue<-Xlasso[test,]%*%be # PREDICTION BASED ON TRUE MODEL
mean((predtrue-y.test)^2) # MSE USING TRUE MODEL
denominator <- sqrt(var(predtrue)*var(y[test]))
correltrue<-cov(predtrue,y[test])/denominator)

7.5 A Bayesian Spike and Slab Model

The example on page 127, A two-component mixture model, assumes that records
are realisations from either of two unobserved mixture components and the objective

322 7 Shrinkage Methods

is to assign each observed data point to a specific component. The mixture
components are both Gaussian with a common variance that differ in mean value.

In the hierarchical setup discussed here, conditional on marker effects, records
are realisations from a Gaussian distribution, but at the second level of the hierarchy,
marker effects arise from either of two unobserved mixture components. In contrast
with the example of page 127, here, the objective is to allocate unobserved genetic
marker effects to each mixture component. Genetic marker effects drawn from one
of the components have an influence on the trait of interest, while those drawn from
the alternative mixture component have no detectable influence. The allocation is
not unambiguous: it uses the laws of probability.

There are a variety of alternatives to model mixture components. One option
is to assume that the mixtures are two Gaussians that differ in their means and/or
variances. In this case, the marker effects do not take the value zero, exactly, but their
posterior means can be very small depending on the parameters of the Gaussian
components. This makes it possible to distinguish the two mixture components.
Another option takes the two-component mixture to be made up of a normal
distribution and a degenerate distribution with a point mass at zero. This modelling
option sets a number of marker effects exactly equal to zero, as in the lasso. An
example of the first option implemented using Gibbs sampling is presented in
George and McCulloch (1993), and an McMC implementation of the second can
be found in Habier et al (2011).

In the context of prediction, mixtures involving Gaussian distributions are likely
to outperform the alternative that sets marker effects exactly equal to zero. This
is so because a larger proportion of small effects variants that contribute to the
phenotype are bound to be included in the final prediction model. On the other
hand, the model that includes a point mass at zero constitutes arguably a better
detection tool. However, this statement, particularly in a prediction setup, must be
interpreted in the light of the variance-bias trade-off, where the size of the training
sample, statistical properties of the prediction model, covariance structure of the
marker/causal genotypes and genetic architecture of the trait play important roles in
defining the best choice (Hayes et al 2010).

In the so-called spike and slab model that is considered here, the SNP effects are a
priori mutually independent and drawn from a two-component mixture distribution
made up of a normal distribution with mean zero and variance . σ 2

b (the slab),
.N

(
0, σ 2

b

)
and a degenerate distribution with a point mass at zero, . �0 (the spike).

Specifically, if . bi is the ith SNP effect and . π denotes the a priori probability that
this effect is non-zero, then

.p
(
bi |σ 2

b , π
)

= N
(
0, σ 2

b

)
π + �0 (1 − π) , (7.31)

where . �0 represents a point probability mass at zero.
This section provides a detailed development of a Bayesian-McMC implemen-

tation of the spike and slab model and concludes with an example in the context of

7.5 A Bayesian Spike and Slab Model 323

prediction. The problem of detection of genetic markers that have an effect on the
trait is deferred to an example on page 361.

The Mixture Model

A description of the model involves first the assumption that observed records y
(vector of dimension .n × 1) are a realisation from the Gaussian process

.y|μ, b, σ 2 ∼ N
(
1μ + Xb, Iσ 2

)
, (7.32)

where 1 is a vector of ones of dimension .n×1, . μ is a scalar, X is an observed matrix
of dimension .n × m representing genotypic codes of the SNPs (originally scored as
.0, 1 or 2) and . σ 2 is the conditional variance of y, given the location parameters of
the model . μ and b.

As a reminder, in the standard model ignoring the mixture, the m SNP effects are
elements of the vector b (dimension .m× 1) that are iid realisations from a common
distribution, assumed to be Gaussian with mean zero and variance . σ 2

b . Therefore,

.b|σ 2
b ∼ N

(
0, Iσ 2

b

)
. (7.33)

The parameter . σ 2
b represents prior uncertainty about the SNP effect, the same for

each SNP. The columns of matrix X are centred but not standardised. Then for each
element of .X = {

xij

}
, we have

. xij |pj ∼ (
0,Var

(
xij |pj

))
, Var

(
xij |pi

) = 2pj

(
1 − pj

)
.

A genomic variance is often associated with (7.32) and (7.33) and in the absence of
a mixture is defined as (conditional on gene frequencies .pj , j = 1, . . . , m)

. σ 2
g = Var

(
X′

ib
)

= E[Var (X′
ib|Xi

) + Var
[
E
(
X′

ib|Xi

)]

= E
[
X′

iXi

]
σ 2

b

= σ 2
b

∑

j=1

E
(
x2
ij

)
, with E

(
x2
ij

)
= Var

(
xij

) = 2pj

(
1 − pj

)
. (7.34)

In these expressions, . X′
i is the ith row of matrix X, corresponding to the ith genomic

value.

324 7 Shrinkage Methods

From (7.34),

.σ 2
b = σ 2

g∑
j=1 2pj

(
1 − pj

) . (7.35)

The term .2pj

(
1 − pj

)
can be approximated by computing the sampling variance

among the elements of the j th column of X.
In order to introduce the mixture, it is convenient to define the ith SNP effect as

.bi = αiδi, i = 1, . . . , m, (7.36)

where the random variable . αi is distributed as .αi |σ 2
b

iid∼ N
(
0, σ 2

b

)
, independent

of the binary .(0, 1) indicator variable . δi that is a priori Bernoulli distributed with
probability . π :

. δi |π iid∼ Br (π) , , i = 1, . . . , m,

Pr (δi = 1|π) = π, Pr (δi = 0|π) = 1 − π. (7.37)

This binary indicator variable with its associated distribution .Pr (δi = 1|π) specifies
the a priori probability that a marker effect . bi is non-zero; this prior probability is
the same for all markers. As indicated below, this is in contrast with the posterior
probability that marker effect . bi is non-zero, .Pr (δi = 1|y), distinct for each marker.
One Monte Carlo estimator of this probability is given by the sampling average of
the draws of . δi from their posterior distribution.

The marginal prior density of . bi (marginalised over .[δi |π]) is

. p
(
bi |σ 2

b , π
)

=
∑

δ
p

(
bi, δi |σ 2

b , π
)

= p
(
bi |δi = 1, σ 2

b , π
)
Pr (δi = 1|π)

+p
(
bi |δi = 0, σ 2

b , π
)
Pr (δi = 0|π)

= N
(
0, σ 2

b

)
π + �0 (1 − π) . (7.38)

retrieving (7.31). The mixture model specifies that when the unobserved indicator
variable . δi takes the value of 1, . bi is a realisation from a normal prior with mean
zero and variance . σ 2

b ; when .δi = 0, .bi = 0 with probability 1. The probability
. π can be interpreted as the a priori proportion of marker loci with non-null
effects.

7.5 A Bayesian Spike and Slab Model 325

The genomic variance under the mixture model is

. σ 2
g = Var

(∑m

j=1
xijαj δj

)

= Exδ

[
Var

(∑m

j=1
xijαj δj |xij , δj

)]
+ Varxδ

[
E
(∑m

j=1
xijαj δj |xij , δj

)]

= Exδ

[
σ 2

b

∑m

j=1
x2
ij δ

2
j

]

=
[
σ 2

b

∑m

j=1
E
(
x2
ij

)
E
(
δ2j

)]

= σ 2
b π

∑m

j=1
2pj

(
1 − pj

)
. (7.39)

Therefore, along the same lines as in (7.35),

.σ 2
b = σ 2

g

π
∑

j=1 2pj

(
1 − pj

) . (7.40)

The conditional distribution of the data takes the form

.y|μ, α, δ, σ 2 ∼ N
(
1μ +

∑m

i=1
Xi (αiδi) , Iσ 2

)
, , i = 1, . . . , m (7.41)

where . Xi is the ith column of X.
The probability . π can be assumed to follow a beta distribution, a priori, with

user-tuned hyperparameters . α and . β,

.π |α, β ∼ Be (α, β) . (7.42)

The hyperparameters can be chosen in order to assign a relatively higher probability
mass to low values of . π , reflecting prior information about the proportion of genetic
markers likely to be associated with the trait.

The scalar . μ can be assumed to follow an improper uniform distribution, a priori.
The two variance parameters can be assigned, a priori, scaled inverted chi-square

distributions:

. σ 2
b |Sb, vb ∼ Sbχ

−2 (Sb, vb) ,

σ 2|S, v ∼ Sχ−2 (S, v) ,

where the . S′s and the . v′s are user-tuned hyperparameters.
With the above specification, the prior density factorises as follows:

.p
(
μ, α, δ, π, σ 2

b , σ 2
)

∝ p
(
α|σ 2

b

)
p (δ|π) p (π) p

(
σ 2

b

)
p

(
σ 2

)
(7.43)

326 7 Shrinkage Methods

and the posterior density takes the form

. p
(
μ, α, δ, π, σ 2

b , σ 2|y
)

∝ p
(
y|μ, α, δ, σ 2

)
p

(
α|σ 2

b

)
p (δ|π) p (π) p

(
σ 2

b

)
p

(
σ 2

)
. (7.44)

McMC Implementation

The fully conditional posterior distributions (fcpd) are of standard form, and the
model can be implemented using Gibbs sampling. The required fcpd are

. [μ|D] , [α|D] , [δ|D] , [π |D] ,
[
σ 2

b |D
]
,
[
σ 2|D

]
,

where, as before (see page 222), D is a vector containing the observations y and all
the parameters of the model except the one to be updated.

Updating [μ|D]

From (7.44), the fcpd of the scalar . μ is proportional to

. p (μ|D) ∝ p
(
y|μ, α, δ, σ 2

)

∝ exp

[
− 1

2σ 2 (y − 1μ − Xb)′ (y − 1μ − Xb)

]

The quadratic form in this expression, as a function of . μ, can be manipulated into

. (y − 1μ − Xb)′ (y − 1μ − Xb) ∝ μ1′1μ − 2μ1′ (y − Xb) . (7.45)

Defining

.
(
1′1

)
μ̂ = 1′ (y − Xb) (7.46)

and replacing .1′ (y − Xb) in (7.45) by .
(
1′1

)
μ̂,

. (y − 1μ − Xb)′ (y − 1μ − Xb) ∝ μ1′1μ − 2μ
(
1′1

)
μ̂.

Adding and subtracting .μ̂
(
1′1

)
μ̂ and keeping terms containing . μ only,

. (y − 1μ − Xb)′ (y − 1μ − Xb) ∝ (
μ − μ̂

) (
1′1

) (
μ − μ̂

)

7.5 A Bayesian Spike and Slab Model 327

and therefore,

. p (μ|D) ∝ exp

[
− 1

2σ 2

(
μ − μ̂

) (
1′1

) (
μ − μ̂

)]
,

leading to the final result

. [μ|D] ∼ N
(
μ̂, σ 2/n

)
. (7.47)

Updating [αi|D]

From (7.44), the fcpd is proportional to .p
(
y|μ, α, δ, σ 2

)
p

(
α|σ 2

b

)
where the first

term is given by (7.41). There are two cases to consider. When .δi = 0, the product
.αiδi in (7.41) is equal to zero, the conditional distribution of the data is not a function
of . αi , and . αi is updated from

. p (αi |D) ∝ p
(
αi |σ 2

b

)

the density of the normal distribution

. [αi |D] ∼ N
(
0, σ 2

b

)
. (7.48)

In this case, . αi is updated from its prior distribution. When .δi = 1,

. p (αi |D) ∝ p
(
y|μ, α, δ, σ 2

)
p

(
α|σ 2

b

)

which is the product of two normal densities: (7.41) and .N
(
0, σ 2

b

)
. This fcpd has the

same form as in (5.34), Example 5.3, A regression model for correlated binary data
on page 220. Then, following the steps in that example involving the combination
of two quadratic forms leads to

. [αi |D] ∼ N
(
α̂i ,

(
X′

iXi + k
)−1

σ 2
)

, (7.49)

where .k = σ 2/σ 2
b , . Xi is the ith column of X and . ̂αi satisfies

.
(
X′

iXi + k
)
α̂i = X′

i (y − 1μ − X−ib−i) . (7.50)

In (7.50), .X−i is matrix X with the ith column deleted, and .b−i is vector b (whose
elements are . αiδi) with the ith element deleted.

328 7 Shrinkage Methods

Updating [δi|D]

From (7.44), the fcpd of . δi is proportional to .p
(
y|μ, α, δ, σ 2

)
p (δ|π). when .δi = 0,

.αiδi = bi = 0, .p (δ|π) = Pr (δi = 0|π) = (1 − π) and

. Pr (δi = 0|D) ∝ exp

[
− 1

2σ 2 (y − 1μ − X−ib−i)
′ (y − 1μ − X−ib−i)

]
(1 − π) .

(7.51)

When .δi = 1, .αiδi = αi , .p (δ|π) = Pr (δi = 1|π) = π and

.Pr (δi = 1|D) ∝ exp

[
− 1

2σ 2 (y − 1μ − Xb)′ (y − 1μ − Xb)

]
π. (7.52)

Let .(y − 1μ − X−ib−i)
′ (y − 1μ − X−ib−i) = RSS0, the residual sum of squares

of the model without the ith SNP, and let . (y − 1μ − Xb)′ (y − 1μ − Xb) = RSS1
denote the residual sum of squares of the model with all the m SNPs. Then the fcpd
of the probability that .δi = 0 is the Bernoulli process with probabilities

.Pr (δi = 0|D) =
exp

[
− 1

2σ 2 RSS0
]
(1 − π)

exp
[
− 1

2σ 2 RSS0
]
(1 − π) + exp

[
− 1

2σ 2 RSS1
]
π

(7.53)

and the complement

. Pr (δi = 1|D) =
exp

[
− 1

2σ 2 RSS1
]
π

exp
[
− 1

2σ 2 RSS0
]
(1 − π) + exp

[
− 1

2σ 2 RSS1
]
π

. (7.54)

A Monte Carlo estimator of the (marginal) posterior probability that marker i is
non-zero is given by

.ϕ̂i = P̂r (δi = 1|y) = 1

l

l∑

j=1

δij , (7.55)

where . δij is the sampled value of . δ for marker i at iterate j of the Gibbs sampler

and l is the length of the Gibbs chain. To draw .δ[t]
ij at round t of the McMC

sampler, compute (7.53), and draw a random variable u from a uniform distribution
in .(0, 1). If u is less than or equal to (7.53), set .δ[t]

ij = 1; otherwise, set . δ[t]
ij =

0.

7.5 A Bayesian Spike and Slab Model 329

Remarks

1. Residuals RSS0 and RSS1 are efficiently updated as indicated on page 316.
2. In a computing environment, (7.53) and (7.54) can be obtained as follows: Let

θi = Pr (δi = 1|D) denote the fully conditional posterior distribution that marker
i is non-zero. Then

. ln

(
θi

1 − θi

)
= 1

2σ 2 (RSS0 − RSS1) − (ln (1 − π) − ln (π)) = Ki (7.56)

and

.θi = exp (Ki)

1 + exp (Ki)
. (7.57)

When the McMC algorithm converges, the draw at iteration j , θ
[j]
i , is an

extraction from the marginal posterior distribution Pr (δi = 1|y). Therefore, the
algorithm provides two characterisations of Pr (δi = 1|y): one in terms of the
mean of the Monte Carlo samples δij , ϕ̂i defined in (7.55) that yields a Monte
Carlo point estimator of the mean of the posterior distribution Pr (δi = 1|y)
and the other in terms of a Monte Carlo description of its complete posterior
distribution through the samples θ [j]

i via (7.57). Estimator (7.57) can be used to
construct a Monte Carlo estimator of the marginal posterior distribution of the
false discovery rate, a topic discussed in the next chapter on page 351.

Updating [π |D]

From (7.44), the density of the fcpd of . π is proportional to .p (δ|π) p (π) given by

. p (π |D) ∝ π
∑m

i=1 δi (1 − π)m−∑m
i=1 δi πη−1 (1 − π)β−1

= π
∑m

i=1 δi+η−1 (1 − π)m−∑m
i=1 δi+β−1 ,

which is the kernel of the density of a beta distribution with shape parameters
.
∑m

i=1 δi + η and .m − ∑m
i=1 δi + β. Specifically,

. [π |D] ∼ Be

(
m∑

i=1

δi + η,m −
m∑

i=1

δi + β

)

. (7.58)

330 7 Shrinkage Methods

Updating
[
σ 2

b
|D

]

From (7.44), density of the fcpd of . σ 2
b is proportional to .p

(
α|σ 2

b

)
p

(
σ 2

b

)
,

. p
(
σ 2

b |D
)

∝
(
σ 2

b

)− m
2
exp

[

− α′α
2σ 2

b

]
(
σ 2

b

)−
(
1+ vb

2

)

exp

[

−vbSb

2σ 2
b

]

=
(
σ 2

b

)−
(

vb+m

2 +1
)

exp

[

−α′α + vbSb

2σ 2
b

]

=
(
σ 2

b

)−
(

ṽb
2 +1

)

exp

[

− ṽbS̃b

2σ 2
b

]

, (7.59)

where .̃vb = vb + m and .̃Sb = (
α′α + vbSb

)
/̃vb. This is the kernel of a scaled

inverse chi-square distribution with hyperparameters . ̃vb and . ̃Sb

.

[
σ 2

b |D
]

∼ ṽbS̃bχ
−2 (̃vb) . (7.60)

To obtain a sample from (7.60), draw from a chi-square distribution with . ̃vb degrees
of freedom and the reciprocal of this number is multiplied by .̃vbS̃b = α′α + vbSb.

Updating
[
σ 2|D]

From (7.44), the density of the fcpd of . σ 2 is proportional to .p
(
y|μ, α, δ, σ 2

)
p

(
σ 2

)
,

. p
(
σ 2|D

)
∝

(
σ 2

)− n
2
exp

[
− (y − 1μ − Xb)′ (y − 1μ − Xb)

2σ 2

] (
σ 2

)−(1+ v
2)

exp

[
− vS

2σ 2

]

=
(
σ 2

)−(v+n
2 +1)

exp

[
− (y − 1μ − Xb)′ (y − 1μ − Xb) + vS

2σ 2

]

=
(
σ 2

)−
(

ṽ
2+1

)

exp

[
− ṽS̃

2σ 2

]
,

where .̃v = v + n and .̃S = (
(y − 1μ − Xb)′ (y − 1μ − Xb) + vS

)
/̃v. This is the

kernel of a scaled inverse chi-square distribution with hyperparameters . ̃v and . ̃S,

.

[
σ 2|D

]
∼ ṽS̃χ−2 (̃v) . (7.61)

7.5 A Bayesian Spike and Slab Model 331

To obtain a sample from (7.61), draw from a chi-square distribution with . ̃v
degrees of freedom and the reciprocal of this number is multiplied by . ̃vS̃ =
(y − 1μ − Xb)′ (y − 1μ − Xb) + vS.

Example: Spike and Slab Model

Using the example described on page 319, the spike and slab model is fitted to the
same two data sets. As before, each data set is divided into 750 training (t) records
and 750 validating (v) records. Let

. W = (1X) ,

θ ′ = (
μ, b′) .

Using obvious notation, a predictor of the validating records based on the spike and
slab model is

.ŷv = Wvθ̂, (7.62)

where .θ̂ = Ê (θ |Xv, yt), the Monte Carlo estimate of the marginal posterior
mean using the training data . yt . In common with the examples used for the ridge
regression and the lasso, this is also a point prediction that does not account for
uncertainty but is useful for comparing the prediction ability of various models. It
addresses the general question: Given the model, what is the predicted mean value
of future data given . θ̂ , at the value of the covariates . Xv?

In the first data set with 25 QTL, the MSE (correlation) obtained fitting the
spike and slab model is .34.1 .(0.29). In the second data set with 250 QTL, the
MSE (correlation) is .41.3 .(0.34). The predictive performance of the spike and slab
model is very similar to the lasso in the first data set and slightly better than the
lasso and similar to the ridge regression in the second data set. The spike and slab
model involves inferring the f our parameters (over and above the SNP effects):
the mean . μ, the probability . π and the two variance components . σ 2

b and . σ 2. These
were estimated using the training data and not using cross-validation, as was the
case with lasso and ridge regression. Arguably, a better predictive performance can
be expected if these parameters were chosen via cross-validation.
One can exploit the flexibility afforded by the McMC environment to compute
the marginal posterior distribution of functions of the parameters of the model.
Two such functions are mean squared errors that account for particular sources of
uncertainty. An example is displayed in Fig. 7.6. The left panel is a histogram of
the marginal posterior distribution of the validating mean squared error reflecting
posterior uncertainty in the parameters of the Bayesian model. It is obtained by
computing .ŷ

[t]
v = Wvθ

[t] for each McMC cycle t and the associated validation
MSE.

332 7 Shrinkage Methods

F
re

qu
en

cy

35 40 45 50 55

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00

F
re

qu
en

cy

55 60 65 70 75 80 85

0
20

0
40

0
60

0
80

0
10

00

Fig. 7.6 Left: histogram of the Monte Carlo estimate of the marginal posterior distribution of the
validating mean squared error accounting for posterior uncertainty of the parameters of the spike
and slab model. Right: histogram of the Monte Carlo estimate of the marginal posterior distribution
of the validating mean squared error accounting for posterior uncertainty of the parameters of the
spike and slab model and for sampling variation of new validating data

The right panel of Fig. 7.6 shows the Monte Carlo estimate of the validating mean
squared error calculated in yet another way. Here, predictions of single validating
records are drawn from

. ŷ[t]
v ∼ N

(
Wvθ

[t], Iσ 2[t]
)

and in this manner, account is taken of the uncertainty in (.θ, σ 2) and of the sampling
variation of new observations. The issue of prediction uncertainty is revisited in
Chap. 10.

An attractive property of the spike and slab model is that it may be useful for
detection of QTL. Before illustrating this property, I take a detour from prediction
and provide an overview of the concept of false discovery rate in the next chapter.
In general terms, the problem at hand is how to go about finding as many promising
genetic markers as possible among thousands or millions observed while incurring
a relatively low proportion of false positives.

Chapter 8
Digression on Multiple Testing: False
Discovery Rates

A classical single hypothesis test proceeds by specifying . α, the probability of a
significant result, given the null hypothesis .(H = 0) is true. This is also known
as the probability of a false discovery and more commonly of a type I error.
If m independent hypotheses . Hi are tested, the so-called family wise error rate
(FWER) is the probability of making one or more type I errors among the family of
hypothesis tests is

. Pr(at least 1 false positive result in m tests|H1 = 0, . . . , Hm = 0) =
1 − Pr(no false positive results in m tests|H1 = 0, . . . , Hm = 0)

= 1 − (1 − α)m. (8.1)

With .α = 0.05 and .m = 50, this yields

. Pr(at least 1 significant result in m tests|H1 = 0, . . . , Hm = 0) = 0.92

by chance alone. In terms of p-values, a p-value threshold of .0.05 guarantees that
the expected number of false positives over the whole family of m tests is less
than or equal to .0.05m, far too large for modern genomewide studies. Traditional
methods for dealing with multiple testing call for adjusting . α in some manner so
that the FWER remains below a desired level. A popular method is the Bonferroni
correction: for m hypothesis tests, each test is controlled so that the probability of a
false positive is less than or equal to .α/m. Then for the m tests, the overall FWER
is less than or equal to . α. This is a global test that addresses the question: Is there
any null hypothesis that is rejected?

The Bonferroni result is readily derived using Boole’s inequality and makes
no assumptions about the degree of dependence among the tests (see Note 1).
Therefore, in the example above with .m = 50 tests, the (global) null hypothesis
is rejected if the p-value for any particular hypothesis is less than . (0.05/50) =

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Sorensen, Statistical Learning in Genetics, Statistics for Biology and Health,
https://doi.org/10.1007/978-3-031-35851-7_8

333

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35851-7protect T1	extunderscore 8&domain=pdf
https://doi.org/10.1007/978-3-031-35851-7_8
https://doi.org/10.1007/978-3-031-35851-7_8
https://doi.org/10.1007/978-3-031-35851-7_8
https://doi.org/10.1007/978-3-031-35851-7_8
https://doi.org/10.1007/978-3-031-35851-7_8
https://doi.org/10.1007/978-3-031-35851-7_8
https://doi.org/10.1007/978-3-031-35851-7_8
https://doi.org/10.1007/978-3-031-35851-7_8
https://doi.org/10.1007/978-3-031-35851-7_8
https://doi.org/10.1007/978-3-031-35851-7_8
https://doi.org/10.1007/978-3-031-35851-7_8

334 8 Digression on Multiple Testing: False Discovery Rates

0.001. Controlling FWER is useful when the number of hypotheses tested is small.
However, in many modern genomewide studies where many hypotheses are tested,
the Bonferroni correction can lead to a high rate of type II errors or false negatives
(missing good candidates). The method tries too hard to make it unlikely that even
one false rejection of the null is made.

An alternative that is particularly attractive for large-scale multiple testing is to
identify as many significant features as possible while keeping the proportion of
false discoveries as low as possible among these significant features. This is the
goal of the false discovery rate (FDR) that was first proposed from a frequentist
perspective in a much celebrated paper by Benjamini and Hochberg (1995). Since
its publication, the method has played a very important role in multiple testing and
has undergone a number of refinements.

This chapter provides an overview of FDR starting with the classical approach
proposed by Benjamini and Hochberg (1995). The method can also be anchored in
a Bayesian framework and two approaches are presented. The first is an empirical
Bayes approach (Efron et al 2001) that uses as input summary statistics (such as
p-values or z-values) embedded in a two-component mixture model. Secondly, a
fully Bayesian hierarchical model is described and implemented with McMC. One
output of this Bayesian model is a Monte Carlo estimate of the marginal posterior
distribution of FDR.

The application of these methods is illustrated with two examples: one is based
on the Gaussian, two-component mixture model introduced on page 127; the other
is based on the spike and slab model introduced on page 321.

Note 1
The Bonferroni correction can be derived using Boole’s inequality (Casella and
Berger 1990). Assume that .H1,H2, . . . , Hm hypotheses are to be tested, and
let .p1, p2, . . . , pm be their p-values. Assume that .m0 are unknown true null
hypotheses. The Bonferroni correction rejects the ith null hypothesis when . pi ≤
α/m and, in so doing, controls the FWER at level .≤ α. The proof is as follows
(recall that .P(A ∪ B) = P(A) + P(B) − P(A ∩ B), where . ∪ is the union symbol
and . ∩ is the intersection symbol):

. FWER = Pr
[
∪m0

i=1

(
pi ≤ α

m

)]
≤

m0∑
i=1

Pr
(
pi ≤ α

m

)
= m0

α

m
≤ m

α

m
= α.

This result does not require knowledge of the number of true null hypotheses, nor
does it assume independence of the tests.

An interesting alternative proof is as follows (Benjamini 2013, Selective Infer-
ence and False Discovery Rate, Public Lecture at UC Berkeley): The starting point
is as above, where m hypotheses are to be tested, and among these, . m0 (unknown)
are true null hypotheses. Let . Ri , .i = 1, 2, . . . , m denote the binary random variable
equal to 1 if . Hi is rejected (a discovery is made) or 0 if it is not rejected. Let
.Vi = 1 if .Ri = 1 but . Hi is true (a false discovery is made or a type I error) and 0
otherwise. Then .R = ∑

Ri is the number of hypotheses rejected and .V = ∑
Vi

8.1 Introduction 335

is the number of null hypotheses rejected in error (number of false discoveries).
Consider a procedure that tests each of the m hypotheses separately at some level
. αB . Then .Pr(Vi = 1) = E(Vi) ≤ αB , and the expected number of false discoveries
over the m tests V , also known as the per family error rate (PFER), is

. E(V) = E
(∑m

i=1
Vi

)
=

∑m

i=1
E(Vi) ≤ m0αB ≤ mαB.

Therefore, to achieve a level of the expected number of false discoveries for the
family of tests, .E(V), smaller than or equal to . α, it is sufficient to choose . αB =
α/m. Interestingly, the Bonferroni correction ensures that achieving .E(V) ≤ α also
guarantees that the .FWER = Pr(V ≥ 1) ≤ α. Indeed,

. E(V) = 0 Pr(V = 0) + 1 Pr(V = 1) + 2 Pr(V = 2) + · · · + mPr(V = m)

≥ 0 + 1 Pr(V = 1) + 1 Pr(V = 2) + · · · + 1 Pr(V = m)

= 0 + Pr(V ≥ 1) ≤ α.

Therefore, when using .αB = α/m for individual tests

. FWER = Pr(V ≥ 1) ≤ E(V) ≤ α.

8.1 Introduction

Consider an experiment where m hypotheses are tested. This could be a GWAS
experiment designed to isolate a few SNPs with an effect on a trait of interest out
of a very large number m tested. Let . δ represent the unobserved binary random
variable that takes the value .δi = 0 if the ith hypothesis is a true null hypothesis
.(Hi = 0) (e.g., the ith SNP has no effect on the trait), or .δi = 1 if the alternative
hypothesis is true .(Hi = 1) (the ith SNP has an effect on the trait) .i = 1, . . . , m.
Let the observed binary random variable .ri = 1 if the ith hypothesis is rejected
and 0 otherwise according to a particular rule. Given observation . yi , the decision to
reject the null could be based on the rule .ri = I (yi ≥ yt) for some threshold value
. yt or more commonly using “z-values”. More generally, the rule can be to reject
the null if a test statistic z falls in a rejection region A, .ri = I (zi ∈ A). The total
number of rejections (an observed random variable) depends on the rule chosen and
is .R = ∑m

i=1 ri (equal to the number of discoveries or number of significant results
and constitutes the discovery set). The number of true discoveries is .

∑m
i=1 riδi . The

number of false discoveries or number of rejections in error is

.V =
m∑

i=1

I (δi = 0) × I (ri = 1) =
m∑

i=1

(1 − δi)ri . (8.2)

336 8 Digression on Multiple Testing: False Discovery Rates

The FWER is equal to .Pr(V ≥ 1) and the false discovery proportion, the proportion
of false discoveries among the discoveries, is

.Q = V

R
, R > 0, . (8.3a)

= 0, R = 0. (8.3b)

Q is unobservable because V is unknown. It involves the unobserved parameters
. δi , the decisions taken on the basis of rule . ri and the data indirectly through the
decisions.

A variety of approaches have been suggested to infer Q and three of these
are outlined below. The first uses a frequentist paradigm and is the original false
discovery rate of Benjamini and Hochberg (1995). It is defined as the expectation
of (8.3). It treats hypotheses as not random. The second and third are based on the
Bayesian paradigm where hypotheses are treated as unobserved random quantities.
This chapter reviews an empirical Bayes approach (Efron et al 2001) and presents a
fully Bayesian model driven with McMC.

8.2 Preliminaries

Before embarking on the subject, two standard results are described; these will be
used in the coming sections. The first concerns the distribution of p-values and the
second the use of the inverse transform method to generate a random variable with
a desired distribution:

1. Consider a random variable .X ∈ R with probability density function . fX(x) =
d
dx

F (x), and let .y = F(x), such that .x = F−1(y), where the continuous function
F (a cumulative distribution function, invertible and differentiable) maps x from
the real line . R to the .(0, 1) interval; .F : R →(0, 1), and .F−1 is the inverse
transformation, .F−1 : (0, 1) → R. The probability density function of Y , .fY (y),
is obtained using the theory of transformations. This gives

.fY (y) = fX

(
F−1(y)

)∣∣∣∣
dF−1(y)

dy

∣∣∣∣, Y ∈ (0, 1). (8.4)

Noting that . dF−1(y)
dy

in (8.4) can be written

.
dx

dF(x)
=

(
dF(x)

dx

)−1

= 1

fX(x)
, x = F−1(y),

8.2 Preliminaries 337

and substituting in (8.4):

.fY (y) = fX

(
F−1(y)

) 1

fX

(
F−1(y)

) = 1, Y ∈ (0, 1) (8.5)

which is the uniform distribution .Un(0, 1).
The classical application of this result concerns the distribution of p-values

under a null hypothesis. When the alternative hypothesis corresponds to small
values of the test statistic X, the p-value is .F(x), where x is the observed value of
the test statistic. The p-values are then uniformly distributed in the interval .(0, 1),
whatever the (continuous) distribution of X might be. A similar argument holds
when the alternative hypothesis corresponds to large values of the test statistic X.

2. The following algorithm generates a random variable with desired distribution
F :

• Generate . U ∼ Un(0, 1)
• Set . X = F−1

X (U)

and X has the desired distribution .FX(·). To see this, note that

. Pr(X ≤ x) = Pr
(
F−1

X (U) ≤ x
)

= Pr(U ≤ FX(x))

=
∫ FX(x)

0
1 du

= FX(x). (8.6)

This method of generating the random variable is known as the inverse transform.
An illustration is the computation of z-values from uniformly distributed p-

values. Assume two samples drawn from independent normally distributed popu-
lations with unknown means . μi , .i = 1, 2 and a common, unknown variance. Let
. xi and . ˆV ar(xi) denote the sample mean and an estimate of the variance of the
sample mean, respectively, calculated using . ni records, .i = 1, 2. Then the observed
so-called t-value is

. t = x1 − x2√
V̂ar(x1 − x2)

.

Given .H0 : μ1 = μ2, the random variable T whose realised value is t has a student-
t distribution with .n1+n2−2 degrees of freedom. For a level . α = Pr(reject H0|H0)

test, the null hypothesis is rejected if the p-value

•

.p = Pr(T ≥ t |H0) = 1 − F0(t) ≤ α (8.7)

in favour of .H1 : μ1 > μ2,

338 8 Digression on Multiple Testing: False Discovery Rates

• if

.p = Pr(T ≤ t |H0) = F0(t) ≤ α (8.8)

in favour of .H1 : μ1 < μ2 and
• if

.p = 2(1 − Pr(T ≤ |t | |H0)) = 2(1 − F0(|t |)) ≤ α (8.9)

in favour of .H1 : μ1 	= μ2, where . F0 is the cumulative distribution function of T
under . H0. In the last case, .Pr(T ≤ −t |H0) = Pr(T ≥ t |H0) = 1

2α. Using (8.5),
given . H0, the random variable p is uniformly distributed .Un(0, 1). Now, compute
the z-value

.z = �−1(p) (8.10)

where . � is the cumulative distribution function of the standard normal. It follows
from (8.6) that

.z ∼ N(0, 1). (8.11)

8.3 The Benjamini-Hochberg False Discovery Rate

Benjamini and Hochberg (1995) define the false discovery rate (FDR-BH) as the
expectation of the false discovery proportion. From (8.3),

. FDR = E(Q) = E

[
V

R
|R > 0

]
Pr(R > 0) + 0 Pr(R = 0)

= E

[
V

R
|R > 0

]
Pr(R > 0), (8.12)

where the expectation is taken over replications of the experiment. A decision rule
rq controls FDR at level q, with q a pre-chosen value between 0 and 1 if

. FDR
(
rq

) ≤ q. (8.13)

In other words, the expected proportion of false discoveries among the hypothe-
ses rejected is less than or equal to q. This is in contrast with multiple testing
based on the traditional p-values, which leads to an expected proportion of false
discoveries among all the tests performed less than or equal to q.

8.3 The Benjamini-Hochberg False Discovery Rate 339

Benjamini and Hochberg (1995) show that the decision rule is as follows: Let pi
be the ith element (i = 1, 2, . . . ,m) among the ordered p-values p1 ≤ p2 ≤ . . . ≤
pm corresponding to the m hypotheses Hi . Let

.rq = max{i : pi ≤ (i/m)q}, then,. (8.14a)

Reject H1,H2, . . . , Hrq . (8.14b)

The realised V and R depend on the random outcome of the p-values in
repeated realisations of the experiment. The rule (8.14) can be implemented as
follows: Choose q. Start from the largest p-value with i = m and check whether
inequality (8.14a) holds. Move towards decreasing values of i one step at a time,
checking for the inequality at each i. Stop at the ith value the first time pi ≤ (i/m)q
and set rq = i. This is the largest i for which the inequality holds. Any i smaller
than rq for which the inequality holds is ignored. Then reject H1,H2, . . . , Hrq . If no
p-value satisfies inequality (8.14a), then no hypothesis test is declared significant.
Common choices for q are 0.05 and 0.10.

Benjamini and Hochberg (1995) prove that if the p-values are independent of
each other, then the rule rq controls the expected false discovery proportion at level

.FDR
(
rq

) = π0q ≤ q, (8.15)

where π0 = m0
/
m is the proportion of null hypotheses (the true proportion of

SNP that do not have an effect on the trait). Therefore, the FDR-BH controls the
expected false discovery rate exactly at level π0q and conservatively at level q.
Since the number of null hypotheses m0 is not known, it is usual to specify the
inequality in terms of expression (8.13). In most modern applications, the ratio π0 is
close to 1, but it can be estimated as in Storey (2002) and Benjamini et al (2006) or
adopting a likelihood or fully Bayesian approach. Benjamini and Yekutieli (2001)
proved that the above theorem holds under certain type of stochastic dependence
among the p-values, and Storey and Tibshirani (2007) argued that the theorem holds
asymptotically as m becomes large, under any form of dependence.

For any given set of data, Q may or may not be less than or equal to q. Rather, it
is the expectation of Q that is smaller than or equal to q over conceptual replications
of the experiment.

Expression (8.14a) can be written as

.rq = max
{
i : mpi

i
≤ q

}
, (8.16)

where mpi is the expected number of false discoveries and i is the number rejected.
The ratio mpi/i is an intuitive expression for the false discovery proportion.
However, the ratio is not monotonically related to the p-values, and moving to a
lower p-value may result in a highermpi/i. Therefore, the discovery sets for a given
FDR obtained using the rule (8.14) and (8.16) may differ. In order to align both
and enforce monotonicity, Yekutieli and Benjamini (1999) suggest the following

340 8 Digression on Multiple Testing: False Discovery Rates

procedure: Let k = max{i : pi ≤ (i/m)q}. If such k exists, reject H1, . . . , Hk , as
in (8.14a). The so-called q∗, the FDR-BH p-value adjustment, is

.q∗
i = q(pi) = min

i≤k

(
pk

m

k

)
, reject Hi if q∗

i ≤ q, (8.17)

which leads to the same decision as that based on (8.14a). In order to use the p-
value adjustment, one can proceed as follows: First, order all p-values from small
to large, multiply each p-value by the total number of tests m, and divide by the
rank order i, i = 1, . . . , m. Start from the largest pim/i at the bottom of the
sequence, and move upwards towards smaller values. Second, make sure that the
resulting sequence is non-increasing: if it increases, set the increased value equal to
the preceding value (repeatedly, until the whole sequence becomes non-increasing).
Label the ith element of the sequence q∗

i . If q
∗
i is smaller than or equal to q, reject

H1, . . . , Hi . The kernel of the R−code to implement the algorithm is shown below:

pv are the sorted p-values used as input
smallest at the top
q=0.15 # SET FDR
qstar[m] <- pv[m] # Initialise qstar = largest p-value
minqstar <- qstar[m] # Initialise the minimum qstar
startloop <- m-1
for(i in startloop:1){ # loop towards smaller p-values

qstar[i] <- pv[i]*(m/i)
if(qstar[i]>=minqstar){
qstar[i] <- minqstar # If new qstar (moving upwards towards

smaller p-values) is larger than the
previous qstar, set new qstar = old qstar

}
minqstar <- qstar[i] # update the minimum qstar
if(minqstar <= q){break}

}
discovset <- i # SIZE OF DISCOVERY SET

As a simple illustration, consider the computation of q∗ and of the traditional
FDR-BH rule (8.14) using as input a list of sorted p- values. A small subset of the
relevant records is shown in Table 8.1.

A total of m = 100 hypotheses are tested, and the FDR-BH rule is applied for a
value of q = 0.15 in (8.14). Starting from the largest p-value at i = m = 100, check
rule (8.14) for H100,H99,H98 At i = 19, pi is smaller than (i/m)q (coloured
row in the table). Then reject H1, . . . , H19. This rule controls FDR at level q = 0.15.
Exactly the same discovery set is obtained if one chooses to use q∗. For i = 19,
q∗
19 ≤ q = 0.15 which leads to the same rejection of H1, . . . , H19. These constitute
the discovery set that is expected to include 19 ∗ 0.15 ≈ 3 false discoveries.

The use of (8.16) in column 4 of the table generates a value of pi(m/i) for i = 17
that is larger than for i = 18. This is remedied in the computation of q∗

i shown in
the fifth column of the table where q∗

17 is set equal to q
∗
18.

8.4 A Bayesian Approach for a Simple Two-Group Mixture Model 341

Table 8.1 A subset of m = 100 hypotheses indicating control of FDR at level q = 0.15. The
columns are the index for the hypothesis (i, i = 1, . . . , m), the sorted p-values (pi), rule (8.14)
((i/m)q), the values of (8.17), (pi(m/i)) and the computation of q∗ in column 5, (q∗

i)

8.4 A Bayesian Approach for a Simple Two-Group Mixture
Model

Much of the material in this and the coming section has been adapted from Efron
and Hastie (2016).

When the multiple testing problem is embedded in a Bayesian framework, the
false discovery rate is expressed in terms of a posterior probability, rather than as
the expectation (8.12) over repeated sampling of the data.

This section starts by considering a simple two-group mixture model involving m
identical hypotheses, of which . m0 are null .(H = 0) with probability . Pr(H = 0) =
π0 = m0/m and .m − m0 are non-null .(H = 1) with probability .π1 = 1 − π0. The
probability . π0 is the a priori probability of null for each of the m hypotheses. The
quantity m is observed, but . m0 is unknown. In this simple setup, H is the only
unknown random variable and the focus of enquiry. In modern genomewide studies,
involving million of genetic markers . π0 is much bigger than . π1, say, .π0 > 0.95.

The random binary quantity H is Bernoulli distributed,

. H ∼ Bernoulli(π1).

This is in contrast to the frequentist approach where H is considered non-random.
In the simple two-group mixture model considered here, the data are m test statistics
such as “z values” associated with the m hypotheses. The density functions under
the null and non-null hypotheses are

. p(z|H = 0) = p0(z),

p(z|H = 1) = p1(z).

Marginally, Z has the mixture distribution

.p(z) = π0p0(z) + π1p1(z).

342 8 Digression on Multiple Testing: False Discovery Rates

The mixture model is equivalent to the hierarchical model

. pj (z) = p(z|δ = j), Pr(δ = j) = πj , j = 0, 1,

where . δ is a binary random variable representing the true state of nature.
Consider a fixed rejection region A. Let

. F0(A) = Pr(Z ∈ A|H = 0) =
∫

A

p0(z)dz,

F (A) = Pr(Z ∈ A) =
∫

A

p(z)dz

denote probabilities of a set A under the null or marginal distributions.
Often, a critical value . zc is chosen, and A takes one of the following forms:

. [zc,∞), (−∞, zc] ∪ [zc,∞), (−∞, zc].

For example, for .A = [zc,∞), .F0(A) = Pr(Z ≥ zc|H0) = 1−F0(zc) where . F0(zc)

is the cumulative distribution function of Z.
When .Z = z is observed to belong in this region .(z ∈ A), the hypothesis is

declared as non-null, flagging a discovery. Then the probability that a false discovery
has been made is

.BFDR(A) = Pr(H = 0|z ∈ A). (8.18)

.BFDR(A) is the Bayes false discovery rate for A. The subscript i denoting the ith
hypothesis is not used because under the setup considered here . Pr(Hi = 0|zi ∈ A)

is the same for all .i = 1, . . . , m. A straightforward application of Bayes theorem
yields

. Pr(H = 0|z ∈ A) = Pr(Z ∈ A|H = 0) Pr(H = 0)

Pr(Z ∈ A)

= F0(A)π0

F(A)
, (8.19)

where

. F(A) = Pr(Z ∈ A) = Pr(Z ∈ A|H = 0) Pr(H = 0)

+Pr(Z ∈ A|H = 1) Pr(H = 1). (8.20)

Expression (8.19) can be written as

. Pr(H = 0|z ∈ A) = Pr(Type I error of A)π0

Pr(Type I error of A)π0 + (Power of A)π1
, (8.21)

8.4 A Bayesian Approach for a Simple Two-Group Mixture Model 343

indicating that .BFDR(A) increases with increasing type I errors and decreases with
power (Storey 2003).

Storey (2003) shows that under the assumptions outlined in this section (m
identical hypotheses . Hi and test statistics . Zi arising from a random mixture of null
and alternative distributions, with .(Hi, Zi) i.i.d. random variables, a fixed significant
region A), the BFDR(A) (8.18) can be written as

.pBFDR(A) = E

[
V (A)

R(A)
|R(A) > 0

]
(8.22)

that he calls the positive false discovery rate and is a departure from (8.12) in that
the expectation is conditional on the fact that at least one discovery has been made.
One proof is simple and instructive, and it goes as follows (Storey 2003):

. E

[
V (A)

R(A)
|R(A) > 0

]
=

m∑
k=1

E

[
V (A)

R(A)
|R(A) = k

]
Pr(R(A) = k|R(A) > 0)

=
m∑

k=1

E

[
V (A)

k
|R(A) = k

]
Pr(R(A) = k|R(A) > 0),

where k depends on the particular outcome of the p-values in any one replication of
the experiment. With the independence assumption, the number of false discoveries
.V (A), given k hypotheses have been rejected, .R(A) = k, is binomially distributed
.Bi(k,Pr(H = 0|z ∈ A)) with expectation .k Pr(H = 0|z ∈ A). Therefore, the last
line is

. E

[
V (A)

R(A)
|R(A) > 0

]
= Pr(H = 0|z ∈ A)

m∑
k=1

Pr(R(A) = k|R(A) > 0)

= Pr(H = 0|z ∈ A) (8.23)

since the last term sums to 1. The positive false discovery rate works by first fixing
the rejection region A and then estimating the FDR, which is the opposite of the
Benjamini and Hochberg’s FDR-BH.

The .BFDR (8.19) can also be interpreted as the expected proportion of false dis-
coveries among all features declared significant. Indeed, the number of hypotheses
rejected in error V is binomial .Bi(R,Pr(H = 0|z ∈ A)). Therefore, the expected
number rejected in error is .R Pr(H = 0|z ∈ A), and the number rejected is R. The
ratio of the expected number rejected in error to the number rejected is the expected
proportion of false discoveries among all features declared significant, equal to
.Pr(H = 0|z ∈ A). As such, the .BFDR is a global measure and does not provide
information about each hypothesis. This is taken care of by the local false discovery
rate (Efron and Tibshirani 2002) discussed below.

344 8 Digression on Multiple Testing: False Discovery Rates

8.5 Empirical Bayes Estimation

Empirical Bayes estimation of false discovery rate is introduced in the rather
idealised framework of the two-group mixture model presented above, with m genes
that either are null (an unknown number . m0 among these m have no effect on a
response variable) with a priori probability .π0 = m0/m or non-null with a priori
probability . π1. In the setting considered here, m is very large, . m0 is large, and the
objective is to reduce this vast set to a handful of scientifically interesting genes for
further study.

A glance at (8.19) and (8.20) reveals that computation of .BFDR requires
knowledge of . π0, . F0 and F . With very large datasets, these quantities can be
estimated from the data, and then the estimates can be used to approximate (8.19).
This is the essence of the empirical Bayes approach, that in the context of false
discovery was proposed by Efron et al (2001) and summarised in Efron (2010).
Efron and Tibshirani (2002) show the connection with the Benjamini and Hochberg
FDR.

The method proceeds as follows: The starting point is the availability of simple
t-tests for the m genes. These t-values represent the “data”. One assumes

• . F0 is known and assumed to be the normal distribution .N(0, 1) that can
be justified by transforming p-values derived from t-tests for each of the m
hypotheses to z-values, as indicated in (8.11). Using the z-values as transformed
“data”,

.F0(A) = Pr(Z ∈ A|H = 0) =
∫

A

N(0, 1). (8.24)

• . π0 is “almost known” and in practice can be set equal to 1.
• F is unknown but can be consistently estimated as follows:

. F(A) = Pr(Z ∈ A) =
∫

A

p(z)dz

=
∫ ∞

−∞
I (z ∈ A)p(z)dz

= E[I (z ∈ A)], (8.25)

and then the empirical estimator of .E[I (z ∈ A)] is

.F̂ (A) = P̂r(Z ∈ A) = 1

m

∑m

i=1
I (zi ∈ A) (8.26)

(does not depend on i and is a consistent estimator also when the .Z′s are
correlated).

8.5 Empirical Bayes Estimation 345

The empirical Bayes estimator is

.B̂FDR(A) = π̂0F0(A)

F̂ (A)
(8.27)

where . π̂0 is some estimate of .π0 = m0/m (e.g., using maximum likelihood,
unless it is set equal to 1 as a first approximation). This is an estimator of the
posterior probability of false discoveries among the features whose z-values fall
in the rejection region A; these constitute the discovery set.

One can also use p-values as “data”. When a fixed threshold .pt , .0 < pt ≤ 1 is
chosen, the features whose p-values are less than or equal to the fixed . pt are called
significant and constitute the discovery set. Then following the same reasoning as
above, with (8.24) now replaced by the uniform .U(0, 1) distribution

. F0(pt) = Pr(Pi ≤ pt |Hi = 0) =
∫ pt

0
U(0, 1) = pt

with

. F(pt) = Pr(P ≤ pt)

results in the Bayes FDR

.BFDR(pt) = Pr(H = 0|p ≤ pt) = π0F0(pt)

F (pt)
. (8.28)

An empirical Bayes estimator is obtained using

. ̂F(pt) = P̂r(P ≤ pt) = 1

m

∑m

i=1
I (pi ≤ pt).

Then the empirical Byes estimator of the posterior probability of a false discovery
is

.B̂FDR(pt) = P̂r(H = 0|P ≤ pt) = π̂0F0(pt)

F̂ (pt)
(8.29)

as in (8.27). A quantity closely related to (8.28), where the fixed threshold . pt is
replaced by . pi corresponding to hypothesis i, is

.BFDR(pi) = Pr(H = 0|P ≤ pi) = π0F0(pi)

F (pi)
(8.30)

that corresponds to Storey’s q-value (Storey 2003) discussed below.
In contrast to the frequentist counterpart of Benjamini and Hochberg (1995), the

derivation of the .BFDR does not require independence of the hypotheses (Efron
2010). However, correlation among test statistics increases the (sampling) variance
of .B̂FDR(pt) (Efron 2010).

346 8 Digression on Multiple Testing: False Discovery Rates

Connection with Benjamini-Hochberg False Discovery Rate

In order to establish a connection between (8.27) and FDR-BH, following Storey
(2002) and Efron and Tibshirani (2002), assume that rather than a fixed rejection
region A, ordered p-values .p1 < p2 < · · · < pm are available. This may require
first mapping the z-values to p-values using (8.7) with z instead of t . The numerator
of (8.27) is

. pi = 1 − F0(zi) = Pr(Z ≥ zi |H = 0)

=
∫ ∞

zi

N(0, 1).

Using the ordered p-values from smallest to largest, the denominator of (8.27) is

. ̂Pr(Pi ≤ pi) = 1

m

m∑
k=1

I (pk ≤ pi) = i

m

and

.B̂FDR(pi) = pi

P̂r(Pi ≤ pt)
π̂0 =

(mpi

i

)
π̂0. (8.31)

The threshold condition (8.16) of the FDR-BH can be written in terms of the
empirical Bayes estimate

.
B̂FDR(pi)

π̂0
= mpi

i
≤ q

or

.B̂FDR(pi) = π̂0q ≤ q, (8.32)

as in (8.15). Expression (8.32) indicates that rule (8.16) generates a discovery set
that includes those cases where the empirical Bayes posterior probability that the
hypothesis is a true null is smaller than q.

Under the assumption of a fixed significant threshold . pt , there is another way of
connecting BFDR with (8.12). The marginal probability of a rejection is

.Pr(ri = 1) = Pr(ri = 1|δi = 0) Pr(δi = 0) + Pr(ri = 1|δi = 1) Pr(δi = 1)

= Pr(Pi ≥ pt |δi = 0) Pr(δi = 0) + Pr(Pi ≥ pt |δi = 1)Pr(δi = 1)

= Pr(Pi ≥ pt).

8.6 Local False Discovery Rates 347

The first term in the right-hand side of the first line represents the probability of a
false discovery (rejection in error), and the second term is the probability of a true
discovery. The total expected number of hypotheses rejected is then

. mPr(Pi ≥ pt) = mPr(Pi ≥ pt |δi = 0) Pr(δi = 0)

+mPr(Pi ≥ pt |δi = 1) Pr(δi = 1)

where the expected number of hypotheses rejected in error is

.mPr(Pi ≥ pt |δi = 0) Pr(δi = 0) = mPr(Pi ≥ pt |δi = 0)π0. (8.33)

In any one experiment, the false discovery proportion is

. Q = V

R
.

Replacing V and R by their expectation yields

.
E(V)

E(R)
= Pr(Pi ≥ pt |δi = 0)π0

Pr(Pi ≥ pt)
= BFDR(pt),

indicating the close connection between the empirical Bayes false discovery rate
and (8.12). Indeed for large m,

.
E[V]

E[R]
≈ E

[
V

R

]
, (8.34)

(Storey and Tibshirani 2007). Efron (2010) shows that .BFDR(pt) is conservative,
in the sense that, on average, it is upwardly biased for estimating .E[V/R].

8.6 Local False Discovery Rates

The Benjamini and Hochberg FDR-BH and the Bayesian FDR (8.19) are concerned
with identifying a discovery set. Efron and Tibshirani (2002) define the local false
discovery rate

. fdr
(
yj

) = Pr
(
Hj = 0|yj

)
(8.35)

that gives a probabilistic assessment of a false positive for the specific feature
j given that . yj was observed, instead of providing a measure of the expected
proportion of nulls among all rejections. The specificity issue is important here:
the significance of the feature depends on the value . yj rather than on its inclusion
in the significant region A as in (8.18). Although data y are used here, the common

348 8 Digression on Multiple Testing: False Discovery Rates

setup is to consider test statistics for each feature. In the context of the two-group
mixture model with densities . p0 and . p1 for the null and non-null densities of the
test statistics, using Bayes theorem

.Pr
(
Hj = 0|yj

) = p0
(
yj |Hj = 0

)
π0

p
(
yj

) (8.36)

where

.p
(
yj

) = p0
(
yj |Hj = 0

)
π0 + p1

(
yj |Hj = 1

)
(1 − π0). (8.37)

While the BFDR involves ratios of distribution functions as shown in (8.19), the
local false discovery rate (8.36) involves ratios of densities. Therefore, the local false
discovery rate can be interpreted as the BFDR for an infinitesimal rejection region
around . yj . There is a relationship between BFDR and the local false discovery rate
given by

.BFDR(yt) = E[fdr(y)|y ≥ yt]. (8.38a)

= π0

∫ ∞
yt

p0
(
yj |Hj = 0

)
dyj∫ ∞

yt
p
(
yj

)
dyj

. (8.38b)

= F0(A)π0

F(A)
, (8.38c)

as in (8.27), with .A = [yt ,∞) and where . yt is some chosen threshold value,
so .BFDR(yt) is the mean value of .fdr(y) for .y ≥ yt . As before, there is an
implicit conditioning on .p0, p1 and . π0, whereby these parameters can be estimated
parametrically or nonparametrically as in Efron et al (2001).

Empirical Bayes approach requires estimation of the terms in the right-hand side
of (8.36). Under the simple two-group mixture model, when the . y′s are interpreted
as z-values, . p0 is simply the value of the standard normal density at . yj , and . π0
can be set equal to 1 as an approximation. Getting a hand on the denominator is a
little more delicate and requires density estimation. The topic is discussed in Efron
(2010). In the example below, I illustrate estimation by maximum likelihood and
using a more general approach based on McMC-Bayes.

The information supplied by FDR-BH can be combined with fdr, with the former
identifying a discovery set and the latter providing specific probabilities of false
discovery for each feature in the discovery set.

8.7 Storey’s q-Values 349

8.7 Storey’s q-Values

Consider an experiment where the estimator of the Bayes false discovery rate (8.18)
together with a rejection region give rise to a discovery set. A particular feature (e.g.,
a marker genotype) is included in the discovery set if the observed test statistic . T =
t associated with this feature falls in the rejection region .A = (−∞, c] ∪ [c,∞),
.−∞ ≤ c ≤ ∞, for a threshold c. The estimator of the Bayes false discovery rate
provides a global measure informing on a whole set of significant features. For
example, for a threshold .c = 3, say, the pBFDR involves tests based on an entire
rejection region .|ti | ≥ 3. However, within the discovery set, a feature with . ti = 5
will be more significant than a feature with .ti = 3.5. One may be interested in a
measure of significance attached to each feature in the discovery set that accounts
for the fact that, within the discovery set, some features are more significant than
others.

The q-value is designed to give each test statistic a measure of its significance in
terms of the positive false discovery rate pBFDR. For a fixed rejection region A and
an observed test statistic .T = t , the q-value is formally defined as

.q(t) = min{A:t∈A}
[
pBFDR(A)

]
, (8.39)

(Storey 2002, 2003). The q-value is the smallest pBFDR over all regions that reject
. Hi . It can be interpreted as the expected proportion of false positives among all
features as or more extreme than the one observed.

The computations of .q∗′s defined in (8.17) and of Storey’s q-values are closely
related, as shown in (8.32). The empirical Bayes estimates of the q-values can
be obtained using the same calculations as those for . q∗ except for the term
. π0. If an estimate . π̂0 is available, .qi-value .= .q∗

i π̂0, and this aligns it with
the BFDR (8.29) (the same code as shown below (8.17) can be used, with the
modification immediately below the do-loop:

qstar[i] <- pv[i] * (m/i) * pi_0hat

where pi_0hat is an estimate of . π0).
In the example of Table 8.1, where the test statistics are sorted p-values starting

from the largest at the bottom of the list, the . q∗
i is numerically equal to .qi-

value.(1/π̂0). The regions that reject .H19 (p-values .≥ 0.02844954) involve all the
.qi-values .

(
1/π̂0

)
, .i = 19, . . . , 100, and .q19-value.(1/π̂0) = 0.14973443 is the

smallest such BFDR. Alternatively, . ̂π0 can be set equal to 1, and then . q∗
i and .qi-

value are numerically identical quantities. In this case, if the null hypotheses is
rejected for features .i = 15, 14, . . . , 1, then the figures in Table 8.1 indicate that
.q∗
15 = 0.083. This is the estimate of BFDR for .i = 15 and for the set comprising all
the features that are this significant or more.

Incorporation of . ̂π0 in the calculations leads to a larger discovery set for the same
expected proportion of false positives.

350 8 Digression on Multiple Testing: False Discovery Rates

The q-value is a pBFDR analogue of the p-value. The latter is a measure of
significance in terms of the false positive rate, whereas the former is a measure of
significance in terms of the pBFDR. This conceptual difference is readily seen by
writing

. p-value = Pr(Test Positive | H0) = False positive rate

q-value = Pr(H0 | Test Positive) = False discovery rate.

A .q = 0.05, say, means that an estimated .5% of the significant results in the
discovery set are false discoveries. In contrast, in classical hypothesis testing, a
rejection of . H0 at .α = 0.05 in a single test does not mean that there is a . 95%
probability that a discovery has been made. It rather means that an estimated . 5% of
all the tests performed are false discoveries. Further and also in contrast with the
p-value, the q-value provides a measure of each markers’ significance automatically
accounting for multiple testing.

There is a qvalue package in . R that performs FDR estimation from a collection
of p-values or test statistics. The package outputs estimates of q-values, proportion
of true null hypotheses . π0 and local false discovery rates (Storey and Bass 2021).

The false discovery rate, the local false discovery rate and the q-values can be
obtained using a fully parametrised Bayesian model. This is the subject of the next
section.

8.8 Fully Bayesian McMC False Discovery Rate

The Bayesian FDR (8.18) was derived within the stylised example of the two-
group mixture model and using z-values as data. The only unknown in this setting
is the random quantity H and its associated “parameters”. Here, an alternative
development is followed that consists of inferring the parameters of (8.3) from
their posterior distribution using the McMC implementation of the spike and slab
model of Sect. 7.5. This allows more flexibility in modelling at the cost of heavier
computations and parametrisation. Flexibility is important, particularly with sets of
data involving a large number of highly correlated covariates and other explanatory
variables found in modern genomic studies.

The spike and slab model is used for focusing the presentation, but the approach
remains valid for many massive multiple comparison problems. The indicator . δ is
an ingredient of one estimator of the Bayesian FDR; it is inferred from its marginal
posterior distribution .Pr(δi = 1|y), with the remaining parameters integrated out
from the joint posterior distribution of the Bayesian model.

8.8 Fully Bayesian McMC False Discovery Rate 351

From (8.2) and (8.3),

.
V

R
=

∑m
i=1(1 − δi)ri∑m

i=1 ri

= 1 −
∑m

i=1 δiri

R
. (8.40)

Conditionally on the data (indirectly, via the rule r), the only unknown quantity
in (8.40) is . δ that appears in the numerator, in contrast with the frequentist
counterpart (8.12) that involves the expectation of a ratio of random variables. On
taking expectations over the Bernoulli random variable .[δi |y], given acceptance or
rejection based on r , the fully Bayesian FDR is immediately obtained as

.
E(V |r)

R
= 1 −

∑m
i=1 Pr(δi = 1|y)ri

R
. (8.41a)

=
∑m

i=1 Pr(δi = 0|y)ri
R

(8.41b)

(Müller et al 2007; Whittemore 2007). The ith term in the numerator
.Pr(δi = 0|y)ri is the (fully) Bayesian local false discovery rate for the ith marker
in the discovery set, so the Bayesian FDR is seen to be an average of the local false
discovery rates in the discovery set, as in (8.38). It can also be interpreted as the
expected proportion of false discoveries among the features in the discovery set
which aligns it with (8.19).

In these expressions and the ones that follow, y represents the complete data.
When the conditional distribution of . δi given . yi is not independent of the remaining
. y′s, the fully Bayesian local false discovery rate .Pr(δi = 0|y)ri can differ from
.Pr(δi = 0|yi)ri as defined in (8.35).

The marginalisations required to obtain terms .Pr(δi = 0|y) can be approximated
using McMC. An McMC-based estimator of the Bayesian FDR is obtained using
the McMC output as follows: First, calculate

.ϕ̂i = P̂r(δi = 1|y) = 1

l

l∑
j=1

δij , (8.42)

where . δij is the sampled value of . δ for marker i at iterate j of the Gibbs sampler and
l is the length of the Gibbs chain. This yields a Monte Carlo estimator of the mean
of the posterior distribution .P̂r(δi = 1|y). Then the Bayesian-McMC estimator of
FDR is

.
Ê
(
V |r, P̂r(δi = 0|y)

)

R
=

∑m
i=1 P̂r(δi = 0|y)ri

R
, (8.43)

where .P̂r(δi = 0|y) = 1 − P̂r(δi = 1|y). Expression (8.43) is a point estimator of
the Bayesian FDR.

352 8 Digression on Multiple Testing: False Discovery Rates

Posterior Distribution of False Discovery Rate

An alternative approach provides a Monte Carlo estimator of the complete pos-
terior distribution of the fully Bayesian FDR. This distribution reflects posterior
uncertainty of the parameters of the Bayesian model that propagates on to the FDR.
The protocol is as follows: First, execute the McMC sampler, and store the draws
from (7.57) at each cycle. On completion, choose a discovery set; an informal
approach could be based on selecting the marker genotypes whose Monte Carlo
estimates of the posterior probability of non-zero effects are larger than a chosen
value . θ�. These posterior probabilities could be obtained from . ϕ in (8.42) or from
the average of the draws from (7.57). The resulting discovery set includes R marker
genotypes. Then, from the stored draws .θ [j]i obtained from (7.57) belonging to the
discovery set, where i refers to the marker genotype and j to the McMC cycle,
compute at each McMC cycle the average local false discovery rate for all the
marker genotypes in this discovery set. For example, at round j , compute

.

∑m
i=1

(
1 − θ

[j]
i

)
ri

R
(8.44)

where m is the number of markers. The quantity (8.44) is the j th McMC draw from
the posterior distribution of the Bayesian FDR for the discovery set chosen, here
based on .ri = I (θi ≥ θ∗). Importantly, the discovery set is chosen only once and
used repeatedly across all the draws of the McMC chain.

In the case of the two-component normal mixture model, rules of the type . ri =
I (yi ≥ yt) or .ri = I (θi ≥ θt) are illustrated in the examples below, where . θi is the
marginal probability that . δi is equal to 1, as in (7.57).

A recent McMC implementation of the Bayesian FDR has been described by
de los Campos et al (2022).

8.9 Example: A Two-Component Gaussian Mixture

I return to the two-component mixture model of the example on page 127.
Data are realisations from two unobserved normal mixture components, and the
purpose of the analysis is to infer parameters and to allocate each data point to
a specific component. The data could represent levels of a physiological marker
in blood samples, and one wishes to isolate those individuals that were exposed
to a particular condition from those that were not. This condition is known to
generate a higher mean level of the physiological marker. Data are simulated from
a two-component Gaussian mixture, where the first component has a mean of zero
.(9000 observations), the second .(1000 observations) a mean of . 2.5 units and both a
standard deviation of 1. Figure 8.1 shows a histogram of the .10,000 records (left)

8.9 Example: A Two-Component Gaussian Mixture 353

Record

D
en

si
ty

−4 −2

0.
00

 0
.0
5
0.
10

 0
.1
5
0.
20

 0
.2
5
0.
30

 0
.3
5

−4 −20 2 4 0 2 4 6

0.
0

0.
1

0.
2

0.
3

0.
4

Record

D
en

si
ty

Fig. 8.1 Left: histogram of data. Right: plots of N(0, 1), N(2.5, 1)

and plots the mixture distribution involving .N(0, 1) and .N(2.5, 1). The histogram
reveals a certain amount of skewness due to the underlying mixture.

Information will be extracted from these data using five approaches:

1. A simple unadjusted test of the null hypothesis that each record is not different
from zero

2. A test of the null hypothesis that each record is not different from zero using a
Bonferroni correction

3. The classical Benjamini and Hochberg false discovery rate (FDR-BH)
4. An analysis of the two-component mixture model using maximum likelihood via

de EM algorithm described on page 127
5. A Bayesian McMC analysis of the two-component mixture model described on

page 234

The last two analyses use fully parametrised models, while the first three use p- or
z-values as input.

The results of the simple test and of the Bonferroni test are shown in Fig. 8.2
for a nominal probability of type I error equal to .α = 0.05. The left plot displays
the p-values against the .10,000 records, and the threshold for rejecting the null
hypothesis at .α = 0.05 is indicated by the horizontal line in red. This simple
analysis, uncorrected for multiple testing, rejects . H0 for 1278 records out of which
470 are false discoveries. For .α = 0.10, . H0 is rejected for 1829 records, of which
928 are false discoveries. The plot on the right panel shows the results based on
the Bonferroni correction using a per datum significant level equal to .0.05/10,000.
Only 35 records are declared significant with zero false discoveries among them.
When the per datum significant level is .0.10/10,000, the size of the discovery set
increases to 41 with zero false discoveries.

It is interesting to look more closely at the type I and type II errors in these
cases. A total of 9000 records were drawn from . H0 and 1000 from . H1. The simple
uncorrected test using .α = 0.05 results in 470 rejections of . H0, given that . H0 is

354 8 Digression on Multiple Testing: False Discovery Rates

0 2000 4000 6000 8000 10000

0

Record

−
lo
g1

0−
pV

al
ue

0 2000 4000 6000 8000 10000

0

2
4

6

2
4

6

Record

−
lo
g1

0−
pV

al
ue

Fig. 8.2 Left, .−Log10p-values corresponding to .10,000 records for testing the null hypothesis
that each record is a draw from a single normal distribution with null mean. The horizontal red
line is the .−Log10p-value threshold corresponding to .p = 0.05. Right: similar output where the
horizontal red line is the Bonferroni threshold corresponding to . p = 0.05/10,000

true. This yields a proportion of type I error equal to .470/9000 = 0.052, very close
to the nominal value of .0.05. The number of type II errors (false negatives) is 192
out of 1000 records drawn from .N(2.5, 1) or a power of the test of .81%.

For the Bonferroni test using a per datum significant level equal to .0.05/10,000,
the number of type I errors is now 0 out of 9000, but the number of observed false
negatives (type II errors) is 965 out of 1000 and a power of .3.5%! (not too far off
from the expected power of .pnorm(4.42, 2.5, 1, lower.tail = F) = 0.028).

Maximum Likelihood via EM
The likelihood analysis of this problem implemented via the EM algorithm is based
on the iterative system described in connection with the mixture model on page 127:

. ̂p
[t+1]
ij = Pr

(
Zi = j |π [t], θ

[t]
j , yi

)

=
pj

(
yi |θ [t]j

)
π
[t]
j

∑
j pj

(
yi |θ [t]j

)
π
[t]
j

, . (8.45a)

π
[t+1]
j = 1

n

n∑
i=1

p̂ij , . (8.45b)

θ
[t+1]
j =

∑n
i=1 p̂ij yi∑n
i=1 p̂ij

, . (8.45c)

σ 2[t+1] = 1

n

n∑
i=1

j=1∑
j=0

p̂ij

(
yi − θj

)2
. (8.45d)

8.9 Example: A Two-Component Gaussian Mixture 355

The loop is over the number of iterates (t), and within each iterate, there is a loop
over the number of records (i).

In this example, the true value of the parameters of the mixture model is θ0 = 0,
θ1 = 2.5, σ 2 = 1 and π = 0.1. When the system converges after approximately
70 iterations, the ML estimates are θ̂0 = 0.01, θ̂1 = 2.5, σ̂ 2 = 1.02 and π̂ =
0.10. A useful off-shot of the EM implementation are the terms p̂ij that assign
the probability that each datum i belongs to mixture component j ; this allows the
calculation of a local false discovery rate along the lines in (8.36).

There is a connection between (8.45a) and the Bayesian counterpart. In a
likelihood setting, (8.45a) is a conditional posterior probability, given ML estimates
θ̂ and π̂ . This can be regarded as an approximation to the Bayesian marginal
posterior probability Pr(Zi = j |y) (see page 155 for an explanation).

The kernel of the R-code to implement the EM iterates is shown below:

CREATE DATA SET AND INITIALISE PARAMETERS
prob<-vector()
INITIALISE THETA1 AND THETA0
y0<-which(y < mean(y))
theta0<-mean(y[y0])
y1<-which(y > mean(y))
theta1<-mean(y[y1])
iter<-100
resultML<-matrix(data=NA,nrow=iter,ncol=n+4)
for (i in 1:iter){

for (j in 1:n){
denom<-(dnorm(y[j],theta1,sqrt(v))*pi)
+(dnorm(y[j],theta0,sqrt(v))*(1-pi))
prob[j]<-(dnorm(y[j],theta1,sqrt(v))*pi)/denom

}
pi<-(sum(prob))/n
theta1<-(sum(prob*y))/sum(prob)
theta0<-(sum((1-prob)*y))/sum(1-prob)
v<-(sum(prob*(y-theta1)^2))/n+(sum((1-prob)*(y-theta0)^2))/n
resultML[i,]<-c(v,pi,theta1,theta0,prob)

}

COMPUTE FDR FOR ML ANALYSIS
cumavr<-rep(0,n)
fdr<-rep(0,n)
sortprob<--sort(-prob)
true<-which(dataset$label==T)
fals<-which(dataset$label==F)
for (i in 1:n){

cumavr[i]<-mean(sortprob[1:i])
fdr[i]<-1-cumavr[i] # THIS COMPUTES THE (CUMULATIVE) EXPECTED

PROPORTION OF BFDR FOR EACH DISCOVERY SET OF SIZE 1 TO n
}

In the example, it is assumed that all the non-null observations arise from a
common distribution. This may not be the case, particularly if the “observations”
are expression of genes or gene effects. Accounting for this requires adding extra
distributions for the alternative hypotheses.

356 8 Digression on Multiple Testing: False Discovery Rates

Bayesian McMC Implementation
The Bayesian computation of (8.41) is based on the McMC algorithm detailed in
Sect. 5.5 on page 234. The true value of the parameters of the mixture model are
θ0 = 0, θ1 = 2.5, σ 2 = 1 and π1 = 0.1. The Monte Carlo estimates of the posterior
means are θ̂0 = 0.01, θ̂1 = 2.49, σ̂ 2 = 1.03, π̂1 = 0.10, in very close agreement
with the true values and with the likelihood estimates.

The kernel of the R-code to implement theMcMC-based Bayesian mixture model
is shown below:

CREATE DATA SET AND INITIALISE PARAMETERS
READ CHAIN LENGTH
rep <- 1000
resmcmc <-matrix(data=NA,nrow=rep,ncol=5)
acprob <- rep(0,rep)
avr<-rep(0,n)
fd<-rep(0,n)
READ HYPERPARAMETERS OF SCALE INVERSE CHI-SQUARE PRIOR FOR v
nu_v <- 4.5
Sv <- 1
READ HYPERPARAMETERS OF THE BETA PRIOR FOR pi
a1 <- 1.5
a2 <- 10
#################### GIBBS LOOP #####################
for (i in 1:rep) {

print(i)
UPDATE THETA j
theta1hat <- mean(y[z == 1])
theta0hat <- mean(y[z == 0])
v1 <- v / sum(z == 1)
v0 <- v / sum(z == 0)
theta1 <- rnorm(1, theta1hat, sqrt(v1))
theta0 <- rnorm(1, theta0hat, sqrt(v0))
UPDATE THE n z’s
K <-

(((y-theta0)^2-(y-theta1)^2)/(2*v))-(log(1-pi)-log(pi))
un <- runif(n, 0, 1)
z <- ifelse(log(un / (1 - un)) <= K, 1, 0)
prob <- exp(K) / (1 + exp(K))
acprob <- acprob + prob
UPDATE v
ft <- sum(((y - theta1) ̂ 2)[which(z == 1)])
ft <- sum(((y - theta1) ^ 2)[z == 1])
st <- sum(((y - theta0) ^ 2)[z == 0])
Sc <- ft + st + (nu_v * Sv)
df <- nu_v + n
v <- Sc / rchisq(1, df)
UPDATE pi
a1ny <- a1 + sum(z)
a2ny <- n - sum(z) + a2
pi <- rbeta(1, a1ny, a2ny)
resprob[i,] <- prob
resmcmc[i,] <- c(i, v, pi, theta1, theta0)

}

8.9 Example: A Two-Component Gaussian Mixture 357

postprob <- acprob/rep

COMPUTE FALSE DISCOVERY RATE USING McMC OUTPUT

ordpp<-order(-postprob)
sortpp<-postprob[ordpp]
localfdr <- 1-sortpp

for (i in 1:n){
avr[i]<-mean(sortpp[1:i])
fd[i]<-1-avr[i] # THIS IS THE FDR

ALTERNATIVELY MORE COMPACTLY: MEAN OF LOCAL FDR
IN DISCOVERY SET OF SIZE i

fdloc[i] <- mean(localfdr[1:i])
fd[] = fdloc[]
}

A summary of the main results using the five approaches is displayed in Table 8.2.
The number and proportion of false discoveries reported in the table are true values
based on the particular realisation of the simulated data. ML and Bayes-McMC give
very similar results for all the features in the table. Increasing the nominal false
discovery q from 0.05 to 0.20 leads to a larger discovery set (from 356 and 353
to 799 for FDR-ML and FDR-Bayes) and of course to a larger FDR. Notice that
this increase in FDR is a consequence of a large increase in type I errors (almost
a tenfold increase) and a relatively smaller increase in power (almost twofold from
34% to 64%, approximately), as revealed by inspection of expression (8.21).

For the given nominal FDR, FDR-BH is expected to lead to a little smaller size
of discovery set for the same FDR than the other two implementations because it
uses a more conservative approach (π0 is set equal to one in expression (8.15),
whereas it is included in the computations of the FDR in the likelihood and Bayesian
approaches). This is only vaguely noticeable for a nominal q = 0.20, but the

Table 8.2 Proportion of type I and type II errors, size of discovery set/true number of false
discoveries (SizeDiscov/FD) and true proportion of false discoveries (FDR) for (1) the uncor-
rected p-values (uncorrect) and (2) the Bonferroni correction (Bonferroni). In (1), the figures in
brackets correspond to nominal probability of type I errors (α = 0.05; α = 0.10); in (2), these are
(α = 0.05/10,000; α = 0.10/10,000), (3) the Benjamini-Hochberg FDR (FDR-BH), (4) the EM-
likelihood analysis of the two-component mixture model (FDR-ML) and (5) the McMC Bayesian
analysis of the two-component mixture model (FDR-Bayes). In (3), (4) and (5), the figures in
brackets correspond to nominal FDR q = 0.05; q = 0.20). Simulated data: 1000 records from
N(0, 1) and 9000 records from N(2.5, 1)

Type I Type II SizeDiscov / FD FDR

Uncorrect (0.052; 0.10) (0.19; 0.10) (1278/470); (1829/928) (0.37; 0.51)

Bonferroni (0; 0) (0.97; 0.96) (35/0); (41/0) (0; 0)

FDR-BH (0.002; 0.016) (0.65; 0.36) (364/14); (781/144) (0.04; 0.18)

FDR-ML (0.002; 0.017) (0.66; 0.35) (356/14); (799/154) (0.04; 0.19)

FDR-Bayes (0.002; 0.017) (0.66; 0.35) (353/14); (799/155) (0.04; 0.19)

358 8 Digression on Multiple Testing: False Discovery Rates

FDR

F
re
qu

en
cy

0.00 0.02 0.04 0.06 0.08

0
20

0
40

0
60

0
80

0
10

00

FDR

F
re
qu

en
cy

0.00 0.05 0.10 0.15 0.20 0.25

0
50

0
10

00
15

00
20

00

Fig. 8.3 Histograms of Monte Carlo estimates of posterior distributions of FDR. Left: nominal
FDR of 0.05. Right: nominal FDR of 0.20. The vertical red lines are the true FDR (based on the
simulation) for the particular realisation of the data

reverse is the case for q = 0.05. The explanation lies in the small overstatement
of the true FDR by FDR-ML and FDR-Bayes observed at low FDR values. This
is illustrated in Fig. 8.4, centre and rightmost panels. Moreover, the FDR estimated
using likelihood or Bayesian methods are subject to the uncertainty (frequentist for
ML and posterior for the Bayesian methods) of the estimates of parameters that
feature in the computation of FDR.

The Bayesian McMC implementation provides a measure of uncertainty for
the FDR (conditional on the realisation of the data at hand and on the discovery
set) using the draws from the Monte Carlo estimate of the posterior distribution
of FDR (8.44). The Monte Carlo estimates of the posterior distributions of the
FDR-Bayes for q = 0.05 and q = 0.20 are shown in Fig. 8.3 in the form of
histograms. These lead to discovery sets of size 353 and 799, respectively. For
the particular realisation of the data and discovery sets, the red vertical lines show
the true (realised in the simulation) FDR. The Monte Carlo estimates of posterior
means and of 95% posterior intervals of the FDR-Bayes estimates for q = 0.05 are
0.050(0.036; 0.065) and for q = 0.20 0.200(0.163; 0.239).

In the case of FDR-BH, for the particular realisation of the data, the true FDR is
0.04 and 0.18 for q = 0.05 and q = 0.20, respectively (Table 8.2), column 5).

Over repeated sampling of the data, FDR-BH controls FDR at level smaller than
or equal to q as indicated by expression (8.15).

Results of a little closer comparison between the Benjamini-Hochberg FDR-BH
and the fully parametric likelihood or Bayesian analyses are shown in Table 8.3.
The data are analysed with the FDR-BH approach using as input the 10,000 sorted
p-values. In the top half of the table, that corresponds to an expected FDR equal to
q = 0.05, at i = 364 condition (8.16) is satisfied (equivalent to condition (8.17))
and hypotheses H1, . . . , H364 are rejected leading to a discovery set of size 364. In
the bottom half of the table that corresponds to an expected FDR equal to q = 0.20,

8.9 Example: A Two-Component Gaussian Mixture 359

Table 8.3 A subset of results obtained by applying the Benjamini-Hochberg FDR-BH approach
testing m = 10,000 hypotheses Hi with a false discovery rate set at level q = 0.05 (top five rows)
or q = 0.20 (bottom five rows). The top coloured row corresponds to H364 (a discovery set of size
i = 364) where condition (8.14) is satisfied and where q�

i=364 ≤ q = 0.05. The bottom coloured
row corresponds to H781 (a discovery set of size 781) where condition (8.14) is satisfied and where
q�
i=781 ≤ q = 0.20. The column headings are i, the index for the sorted p-values; Label=TRUE
if the record is a draw from N(2.5, 1) or FALSE from N(0, 1); Pr(Z = 1|y) the ML estimate of
the conditional probability that the record is a draw from N(2.5, 1); FDR-ML, the ML estimate
of the false discovery rate for the particular discovery set i and the remaining three columns as in
Table 8.1

Label Record Pr FDR-ML value
362 TRUE 2.913 0.8612 0.05130 0.001789 0.0018 0.04936
363 TRUE 2.912 0.8609 0.05154 0.001794 0.0018 0.04936
364 TRUE 2.911 0.8608 0.05178 0.001796 0.0018 0.04936
365 TRUE 2.903 0.8583 0.05202 0.001846 0.0018 0.05058
366 TRUE 2.901 0.8579 0.05227 0.001855 0.0018 0.05068

779 TRUE 2.157 0.4978 0.1918 0.015491 0.016 0.1988
780 FALSE 2.156 0.4971 0.1922 0.01553 0.016 0.1991
781 TRUE 2.154 0.4960 0.1926 0.01560 0.016 0.1998
782 TRUE 2.151 0.4942 0.1930 0.01571 0.016 0.2007
783 FALSE 2.151 0.4942 0.1934 0.01572 0.016 0.2007

the Benjamini-Hochberg FDR-BH rejects H1, . . . , H781. These rejection thresholds
are coloured in green. The two columns with headings Pr(Z = 1|y) and FDR-
ML are derived from the maximum likelihood analysis (the corresponding figures
from the Bayesian analysis are very similar). Column Pr(Z = 1|y) displays the
estimated probability that record i is a draw from N(2.5, 1) and 1 − Pr(Z = 1|y)
is the ML estimate of the local false discovery rate for record i. For example, for
record yi=364 = 2.911798, the local false discovery rate is 1 − 0.8608679 ≈ 0.14,
but the FDR (the average local false discovery rate in the discovery set of size 364
comprising y1, . . . , y364) is 0.052. The corresponding figures for q = 0.20 in the
bottom half of the table are 1 − 0.4960449 ≈ 0.50 for the local FDR for record
i = 781 and 0.19 for the FDR in the discovery set y1, . . . , y781. The last column
of the table, q�

i , is the Benjamini-Hochberg adjusted p-value (8.17) that in view of
equivalence (8.31) is numerically identical to the empirical Bayes estimate of the
FDR when π0 is set equal to 1.

Knowledge of the true mixture proportions allows computation of the Bayesian
FDR and the Bayesian local FDR. The following R−code can be used with the
values in the table for y364 = 2.911798 and y781 = 2.154387:

For q = 0.05:
FDR_THEOR05 <- (pnorm(2.911798,lower.tail=F)*0.9)/

(pnorm(2.911798,lower.tail=F)*0.9 +
pnorm(2.911798,2.5,lower.tail=F)*0.1)

LOCAL_THEOR05 <- (dnorm(2.911798)*0.9)/(dnorm(2.911798)*0.9 +

360 8 Digression on Multiple Testing: False Discovery Rates

dnorm(2.911798,mean=2.5,sd=1)*0.1)
FDR_THEOR05

[1] 0.04537123

LOCAL_THEOR05

[1] 0.1237628

For q = 0.20:
FDR_THEOR20 <- (pnorm(2.154387,lower.tail=F)*0.9)/

(pnorm(2.154387,lower.tail=F)*0.9 +
pnorm(2.154387,2.5,lower.tail=F)*0.1)

LOCAL_THEOR20 <- (dnorm(2.154387)*0.9)/(dnorm(2.154387)*0.9 +
dnorm(2.154387,mean=2.5,sd=1)*0.1)
FDR_THEOR20

[1] 0.1810718

LOCAL_THEOR20

[1] 0.4840697

This compares well with the ML estimates of the local FDR≈ 0.14 and
BFDR=0.052 for q = 0.05 and local FDR≈ 0.50 and BFDR=0.19 for q = 0.20
reported in Table 8.3.

Examples of other output are shown in Fig. 8.4 for the likelihood analysis. The
corresponding output from the Bayesian implementation is almost identical and is
not shown. The panel on the left shows ML estimates of Pr

(
Zi = 1|π̂ , θ̂j , σ̂

2, yi

)
for each of the 10,000 data points. Values of the data below 1 and larger than 3 are
easily allocated to the correct mixture component since estimated probabilities are

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sorted Records

P
ro

b

0 2000 4000 6000 8000 10000

0.
0

0.
2

0.
4

0.
6

0.
8

Size of discovery set

 E
M

−
F

D
R

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

TRUE FDR

 E
M

−
F

D
R

Fig. 8.4 Left: ML estimates of p̂i1 = Pr
(
Zi = 1|π̂ , θ̂j , σ̂ 2, yi

)
versus the sorted records. Centre:

ML estimates of FDR (light blue) and true FDR (red) against size of discovery set. Right: plot of
ML estimates of false discovery rates versus true false discovery rates. The 45◦ line is shown in
black

8.10 Example: The Spike and Slab Model with Genetic Markers 361

extreme, but there is ambiguity where the two components overlap. The panel on
the centre shows FDR-ML (in light blue) and true FDR (in black) versus size of
discovery set. The panel reveals a slight overestimation for low FDR values. This is
also confirmed in the rightmost panel that displays a plot of FDR-ML versus true
FDR.

In the example, the level q of the FDR-BH is set to either 0.05 or 0.20. This
gives rise to a particular size of the discovery set. A similar strategy can be applied
for a likelihood or Bayesian-McMC implementation. An alternative is to choose
various discovery sets based on Monte Carlo estimates of Pr(Zi = j |y), obtain
the associated FDR for each and decide which discovery set to keep based on this
information.

The conclusion from this example based on independent data is that all three
methods show similar performance. One attraction of the McMC Bayesian approach
is the possibility to fit complex hierarchical models capable of accounting for
various sources of variation and to generate marginal posterior distributions of the
parameters of interest, or of functions of these such as FDR, in a single coherent
analysis. This comes at the cost of more elaborate computations.

The following example introduces a new problem. How do computations of false
discovery rate are affected when input data are correlated? A classical example is the
problem of distinguishing signals from noise in genome studies involving multiple
testing of genetic markers that are in linkage disequilibrium with putative causal
loci. The first part of the example deals with uncorrelated marker genotypes.

8.10 Example: The Spike and Slab Model with Genetic
Markers

The problem discussed in this example concerns the detection of unobserved causal
loci that have an effect on an observed continuous trait. This is studied in a variety of
scenarios where in all cases the data consist of 1500 individuals and 1500 markers,
and among these, 25 are randomly assigned as causal QTL. The phenotypic value
for a datum is simulated by adding the contributions of a common mean, the effects
of the 25 QTL and a normally distributed residual term. The operational models
used for analysing the data included the 1500 marker genotypes.

The protocol is as follows:

1. The 1500 loci are independent (in linkage equilibrium):

a. Heritability (. h2) is .0.10.
b. Heritability is .0.25.
c. Heritability is .0.50.

2. The 1500 loci are correlated (in linkage disequilibrium):

a. Heritability is .0.10.

362 8 Digression on Multiple Testing: False Discovery Rates

b. Heritability is .0.25.
c. Heritability is .0.50.

The 25 loci identified as QTL differ between the independent and the correlated
groups but are the same for the three heritability levels within each group.

The three levels of . h2 result in different levels of power to detect marker effects.
This is achieved by setting the additive genetic variance of the trait equal to 4, 10
and 20 squared units and keeping the phenotypic variance (variance of the records,
y) constant at 40 squared units. This results in effects for each of the 25 QTL (in
standard deviation units of y) equal to .0.09, .0.14 and .0.20, for the three heritability
levels.

The 1500 independent marker genotypes were generated by drawing each marker
genotype from a binomial distribution .Bi(2, 0.5).

The 1500 correlated marker genotypes are in 75 independent blocks of size 20
each, where markers are correlated within blocks and uncorrelated among blocks.
The correlation between adjacent markers is approximately .0.60 and decays with
marker distance.

For all scenarios, the data are first analysed using a GWAS approach (one marker
at a time) using a Bonferroni correction for the probability of a false discovery per
test set equal to .0.05/1500.

The p-values from the GWAS were used to compute false discovery rates (FDR)
based on the standard Benjamini-Hochberg algorithm (FDR-BH). The levels of
FDR were set equal to .q = 0.10, .q = 0.05, .q = 0.01 for .h2 = 0.10, .h2 = 0.25 and
.h2 = 0.50, respectively, that give rise to discovery sets of a given size.

Finally, the data were analysed with a fully Bayesian spike and slab model
that outputs the marginal posterior distribution of FDR. In the Bayesian approach,
the discovery sets were constructed either by including those markers for which
.Pr(Zi = 1|y) > 0.5 or by choosing a particular size of discovery set. In the latter
case, the size chosen was equal to that found in the FDR-BH approach to allow
comparison between both methods of computation. In all cases, the true FDR
realised in the simulated sample was compared to the result obtained from each
of the three approaches.

Independent Marker Genotypes

The results of the GWAS using the Bonferroni correction are displayed in Fig. 8.5
for the three heritability levels and in the left block of Table 8.4. The number of loci
correctly classified in the simulated sample is 1, 11 and 23 out of 25 QTL for . h2

equal to .0.10, .0.25 and .0.50, respectively, with zero false positive results.
The FDR-BH approach identifies a larger number of QTL than the Bonferroni

approach at low heritability values (8 and 20, for . h2 equal to .0.10 and .0.25,
respectively), as expected due to higher power, albeit at the expense of incurring
on three false positive results. At .h2 = 0.5, in the simulated sample, both methods

8.10 Example: The Spike and Slab Model with Genetic Markers 363

0 500 1000 1500

6

Marker Label

−
lo

g1
0−

pV
al

ue

0 500 1000 1500

0
1

2
3

4
5

0
2

4
6

8
 10

Marker Label

−
lo

g1
0−

pV
al

ue

0 500 1000 1500

0
5

 10
15

Marker Label

−
lo

g1
0−

pV
al

ue

Fig. 8.5 GWAS analysis of 1500 individuals, 1500 uncorrelated marker genotypes with 25 causal
loci and h2 = 0.10 (left), h2 = 0.25 (centre), h2 = 0.50 (right). The Y -axes show −log10 p-values
and the X-axes the marker labels. The markers that reach −log10 p-values beyond the Bonferroni
threshold—horizontal line in red, set at −log10(0.05/1500)—are declared as discoveries (1, 11
and 23 out of 1500 markers in the left, centre and right panels, respectively)

Table 8.4 Size of discovery set/true (observed) number of false discoveries, in one simulated
sample, for uncorrelated and correlated marker genotypes, using (1) the Bonferroni correction
(Bonferroni) with nominal probability of type I error per marker (.α = 0.05/1500, (2) the
Benjamini-Hochberg FDR (FDR-BH) and (3) the McMC Bayesian analysis (FDR-Bayes). The
nominal FDR for FDR-BH is .q = 0.10 for .h2 = 0.10, .q = 0.05 for .h2 = 0.25 and .q = 0.01 for
. h2 = 0.50

Uncorrelated Correlated

.h2 .0.10 .0.25 .0.50 .0.10 .0.25 . 0.50

Bonferroni .1/0 .11/0 .23/0 .4/0 .27/12 . 50/25

FDR-BH .8/3 .20/3 .23/0 .27/14 .50/27 . 70/45

FDR-Bayesa .8/3 .20/2 .23/0 .27/14 .50/25 . 70/45

FDR-Bayesb .10/5 .25/5 .28/3 .13/4 .20/1 . 27/2
a FDR-Bayes: The discovery set for FDR-Bayes is set equal to that of FDR-BH
b FDR-Bayes: the discovery set is obtained by choosing the markers with . P̂r(Zi = 1|y) > 0.5

perform equally well, with 23 loci detected out of the 25 QTL and zero false
positives (Table 8.4).

Figure 8.6 shows output from the Bayesian implementation for the three
heritability levels, where MC estimates of .Pr(Zi = 1|y) for each marker are plotted
against marker labels (see also Table 8.4). The discovery set is here arbitrarily
defined by the group of markers that satisfy .Pr(Zi = 1|y) > 0.5. The choice
of threshold would typically not be fixed but would rather depend on an eyeball
judgement of the particular plot, and several thresholds would be explored. Given
the chosen threshold of . 0.5, the size of discovery sets for . h2 equal to .0.10, . 0.25
and .0.50 are 10, 25 and 28 markers with, respectively, 5, 5 and 3 false discoveries.
The rightmost figure indicates that many markers reach .Pr(Zi = 1|y) ≈ 1. If for
this heritability level the threshold is set equal to .Pr(Zi = 1|y) > 0.9, then 25
markers are chosen with 0 false positives. Similarly, for the figure in the centre
panel corresponding to .h2 = 025, if the threshold is .Pr(Zi = 1|y) > 0.7, then 23
markers are chosen as part of the discovery set with three false discoveries.

364 8 Digression on Multiple Testing: False Discovery Rates

0 500 1000 1500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Marker Label

P
os

tP
ro

b

0 500 1000 1500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Marker Label

P
os

tP
ro

b

0 500 1000 1500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Marker Label

P
os

tP
ro

b

Fig. 8.6 Bayes-McMC implementation of a model with 1500 individuals, 1500 uncorrelated
genetic markers of which 25 are chosen as QTL. The heritability is .10% (left), .25% (centre) and
.50% (right). The figures display the MC estimates of .Pr(Zi = 1|yi) against marker labels

McMC−Bayes FDR

D
en

si
ty

0.0 0.2 0.4 0.6

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

McMC−Bayes FDR

D
en

si
ty

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0
2

4
6

8

McMC−Bayes FDR

D
en

si
ty

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
5

10
15

Fig. 8.7 Uncorrelated marker genotypes. The histograms are MC estimates of the marginal
posterior distributions of false discovery rates for the three heritability levels. The vertical lines
indicate the true number of false discoveries realised in the simulated sample. The heritability
is .10% (left), .25% (centre) and .50% (right). Discovery set defined by those markers that satisfy
. Pr(Zi = 1|y) > 0.5

When the size of the discovery set of the Bayesian approach is set equal to that
generated by FDR-BH, both methods yield almost identical results (Table 8.4).

The figures for FDR in Table 8.4 are based on the true quantities obtained for the
sample of simulated data at hand. With real data, this information is not available. In
such a situation, for the FDR-BH approach, one must draw conclusions based on the
nominal values of q set by the user. In a discovery set of size N say, on average, one
expects qN false discoveries. For the three heritability levels, the expected number
of FD for the FDR-BH are .8 × 0.1 ≈ 1, .20 × 0.05 = 1 and .23 × 0.01 ≈ 0, not too
far from the true realisations.

The Bayesian implementation yields the marginal posterior distribution of the
FDR. Figure 8.7 displays histograms of MC estimates of these distributions for the
three heritability levels, using the threshold corresponding to .Pr(Zi = 1|y) > 0.5.
The vertical lines indicate the true number of false discoveries realised in the
simulated sample.

8.10 Example: The Spike and Slab Model with Genetic Markers 365

0 500 1000 1500

0

Marker Label

−
lo

g1
0−

pV
al

ue

0 500 1000 1500

1
2

3
4

5

0
2

4
6

8
 10

Marker Label

−
lo

g1
0−

pV
al

ue

0 500 1000 1500

0
5

10
15

20

Marker Label

−
lo

g1
0−

pV
al

ue

Fig. 8.8 GWAS analysis of 1500 individuals and 1500 correlated marker genotypes with 25 loci
and h2 = 0.10 (left), h2 = 0.25 (centre), h2 = 0.50 (right). The Y -axes shows −log10 p-values
and the X-axes the marker labels. The markers that reach −log10 p-values beyond the Bonferroni
threshold—horizontal line in red, set at −log10(0.05/1500)—are declared as discoveries (4, 27
and 50 out of 1500 markers in the left, centre and right panels, respectively)

Correlated Marker Genotypes

In this case, account is taken of the more realistic situation where the 1500 genetic
markers are in linkage disequilibrium (marker genotypes are correlated). This has
important consequences for detection of QTL and on the behaviour of single marker
regressions (GWAS).

The results of GWAS using the Bonferroni correction are displayed in Fig. 8.8
and in the right block of Table 8.4 for the three heritability levels. When .h2 = 0.10,
f our markers reach the significant threshold. When .h2 = 0.25, 27 markers are
declared significant, and 12 of these are false positive calls. At .h2 = 0.5, 50 markers
are declared significant and 25 are false positive results. The FDR-BH approach
declares 27, 50 and 70 markers as significant for .h2 = 0.10, .h2 = 0.25 and . h2 =
0.50, respectively, with 14, 27 and 45 false positives. These results are far from the
expectations. The Bonferroni test should lead to 0 false positive results on average
and FDR-BH, given the size of the discovery sets, to .27 × 0.1 ≈ 3, . 50 × 0.05 ≈ 3
and .70 × 0.01 ≈ 1 false positive results, for the three heritability levels, the three
values of q (equal to .0.1, 0.05, 0.01) and for the three heritability levels.

In contrast, the results based on the FDR-Bayes are more in line with those of the
uncorrelated markers, as reflected in the bottom row of Table 8.4 and in Fig. 8.9.

The different behaviour of FDR-Bayes and FDR-BH is due to the consequence
of fitting one marker at a time in situations where loci are correlated. As indicated
on page 273, expression (6.40), fitting a single marker that has no direct effect on
the dependent variable and that is correlated with a causal marker not included in
the model, generates a bias that can result in a phantom significant p-value. When
thousands of tests are performed in this way, the phantom p-values that are fed
into the FDR-BH lead to incorrect inferences. This is not an inherent problem of
FDR-BH; it is rather the single marker regression that cannot be used in this manner
in conjunction with FDR-BH. The problem is well understood by practitioners of

366 8 Digression on Multiple Testing: False Discovery Rates

0 500 1000 1500

0.
0

0.
2

0.
4

0.
6

0.
8

Marker Label

P
os

tP
ro

b

0 500 1000 1500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Marker Label

P
os

tP
ro

b

0 500 1000 1500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Marker Label

P
os

tP
ro

b

Fig. 8.9 Bayes-McMC implementation of a model with 1500 individuals, 1500 correlated genetic
markers of which 25 are chosen as QTL. The heritability is .10% (left), .25% (centre) and . 50%
(right). The figures display the MC estimates of .Pr(Zi = 1|yi) against marker labels

McMC−Bayes FDR

D
en

si
ty

0.0 0.2 0.4 0.6

4

McMC−Bayes FDR

D
en

si
ty

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
1

2
3

0
1

2
3

4
5

6
7

McMC−Bayes FDR

D
en

si
ty

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
5

10
15

Fig. 8.10 Correlated marker genotypes. The histograms are MC estimates of the marginal
posterior distributions of false discovery rates for the three heritability levels. The vertical lines
indicate the true number of false discoveries realised in the simulated sample. The heritability is
.10% (LEFT), .25% (CENTRE) and .50% (RIGHT). Discovery set defined by those markers that
satisfy . Pr(Zi = 1|y) > 0.5

genome studies, and several approximate solutions have been proposed (Yang et al
2012, Brzyski et al 2017).

On the other hand, a method that fits all the markers simultaneously such as the
spike and slab model should retrieve more appropriate inferences and provides a
unified approach for estimation, prediction and detection of promising covariates.
In practice, the computational burden of the implementation of such a model using
large data sets with millions of correlated covariates poses serious challenges. Many
of these challenges are being met (Patxot et al 2021, de los Campos et al 2022), and
very likely these are going to become the methods of choice in a not too distant
future.

The MC estimates of the marginal posterior distributions of FDR obtained using
FDR-Bayes are displayed in Fig. 8.10.

8.10 Example: The Spike and Slab Model with Genetic Markers 367

The R-code below shows the computation of the Bayesian FDR based on (8.44),
the construction of the histograms in Figs. 8.7 and 8.10, and Monte Carlo estimates
of posterior means and posterior intervals :

FUNCTION TO COMPUTE BAYESIAN FDR AND TO DRAW HISTOGRAM OF FDR
INPUT:
1. resultprobtheta: A FILE WITH DRAWS FROM (7.57)
2. truefd: THE TRUE PROPORTION OF FALSE DISCOVERIES OBSERVED
IN THE SAMPLE (USED TO DRAW VERTICAL LINE IN HISTOGRAM)
3. prob: CHOSEN THRESHOLD THAT DEFINES THE DISCOVERY SET
4. postprob: VECTOR OF POSTERIOR PROBABILITIES
FOR EACH GENETIC MARKER
fdrhist <- function(resultprobtheta,truefd,prob){

discset <- which(postprob > prob)
fdisc <- apply(1-(resultprobtheta[,discset]),1,mean)

BAYESIAN FDR POSTERIOR MEAN AND POSTERIOR INTERVAL:
avfdis <- mean(fdisc)
quantilefdis <- quantile(fdisc,c(0.025,0.975))

HISTOGRAM OF BAYESIAN FDR:
hist(fdisc,breaks=30,xlab=’McMC-Bayes FDR’,

main=NULL,freq=FALSE)
abline(v=truefd[length(discset)],col="red",lwd=2)

RETURNS: MC average of Bayesian FDR; posterior interval,
size of discovery set, number of false discoveries

return<-c(avfdis,quantilefdis,length(discset),
truefd[length(discset)]*length(discset))

}
out <- fdrhist(resultprobtheta,truefd,0.5)
out

Chapter 9
Binary Data

Many of the results derived under the assumption that observations are continuously
distributed extend to dichotomous and categorical responses. There are some
technical details that must be observed that are specific to discontinuous data. The
chapter starts by illustrating the behaviour of training and validating mean squared
error applied to binary records using operational logistic regression models with
increasing number of covariates.

As the number of covariates in a prediction model increases relative to the
number of records, the bias-variance trade-off calls for the introduction of shrinkage.
Three modelling scenarios that incorporate shrinkage are described: penalised
logistic regression, logistic lasso and the Bayesian-McMC driven spike and slab
model introduced on page 321, extended here to deal with binary records.

The performance of a classifier can be gauged by studying the true positive rate
and false positive rate. The receiver operating characteristic curve is often used
to compare the performance of different binary classifiers and is the subject of
Sect. 9.7.

A topic that is peculiar to data falling into discrete and mutually exclusive
categories is the computation of the probability that a future observation falls
in a given category, given some previous information. An application to binary
occurrences discussed in Sect. 9.8 is the prediction of disease status of a genetic
disease for an individual, given information on the disease status of its relatives.

The chapter ends with an appendix describing an approximate analysis of binary
traits that can be useful as an initial investigating tool, before developing the full
machinery needed for a more sophisticated approach.

A general framework for the analysis of binary data is introduced on page 84.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Sorensen, Statistical Learning in Genetics, Statistics for Biology and Health,
https://doi.org/10.1007/978-3-031-35851-7_9

369

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35851-7protect T1	extunderscore 9&domain=pdf
https://doi.org/10.1007/978-3-031-35851-7_9
https://doi.org/10.1007/978-3-031-35851-7_9
https://doi.org/10.1007/978-3-031-35851-7_9
https://doi.org/10.1007/978-3-031-35851-7_9
https://doi.org/10.1007/978-3-031-35851-7_9
https://doi.org/10.1007/978-3-031-35851-7_9
https://doi.org/10.1007/978-3-031-35851-7_9
https://doi.org/10.1007/978-3-031-35851-7_9
https://doi.org/10.1007/978-3-031-35851-7_9
https://doi.org/10.1007/978-3-031-35851-7_9
https://doi.org/10.1007/978-3-031-35851-7_9

370 9 Binary Data

9.1 Prediction for Binary Observations

Consider data .(Y1, x1) , . . . , (Yn, xn) where . Y ′
i s are binary random variables and

.xi ∈ Rp covariates. A binary classifier is a function .s(xi) that transforms inputs . xi

into a value between 0 and 1 interpreted as a probability. This can be expressed as a
prediction . Ŷi that takes the values either 0 or 1, according to

.̂Yi =
{

1 if s (xi) > t

0 if s (xi) ≤ t,
(9.1)

where .t ∈ [0, 1] is some threshold. When .s (xi) = E (Yi |xi) and .t = 0.5,
this is known as Bayes rule (poor choice of terminology, commonly used, not
to be confused with Bayes theorem) that minimises the overall probability of a
misclassification .Pr

(

̂Yi �= Yi

)

. For Bernoulli data we have

.s (xi) = E (Yi |xi) = Pr (Yi = 1|xi) (9.2)

and given data and the threshold t , one predicts . ̂Yi according to the rule

.̂Yi =
{

1 if ŝ (xi) = ̂Pr (Yi = 1|xi) > t

0 if ŝ (xi) = ̂Pr (Yi = 1|xi) ≤ t,
(9.3)

where .̂s (xi) = ̂Pr (Yi = 1|xi) is an estimate of .s (xi).
In the logistic model, the object of the modelling is the probability that Y is equal

to 1, parametrised as

.s (xi) = Pr (Yi = 1|xi) = exp
(

x′
iβ
)

1 + exp
(

x′
iβ
) , (9.4)

or alternatively, as the logit or log odds

. ln

[

Pr (Yi = 1|xi)

Pr (Yi = 0|xi)

]

= x′
iβ.

In these expressions . β includes an intercept, and the first element of the .(p+1) row
vector . x′

i is a 1.
Imagine that estimates . ̂β of the logistic coefficients are available. These yield

estimates of the probability

.̂Pr (Yi = 1|xi) = exp
(

x′
i
̂β
)

1 + exp
(

x′
i
̂β
) .

9.2 Mean Squared Error 371

If the choice falls on .t = 0.5, we would predict .̂Yi = 1 if . ̂Pr (Yi = 1|xi) >
̂Pr (Yi = 0|xi), that is, if .̂Pr (Yi = 1|xi) > 0.5 or if .x′

i β̂ > 0. The latter is readily
derived as follows. Choose .̂Yi = 1 if

.
̂Pr (Yi = 1|xi)

̂Pr (Yi = 0|xi)
> 1.

Taking logarithms on both sides,

. ln
[

̂Pr (Yi = 1|xi)
]− ln

[

̂Pr (Yi = 0|xi)
]

> 0.

This gives

. ln

⎡

⎣

exp
(

x′
i β̂
)

1 + exp
(

x′
i β̂
)

⎤

⎦− ln

⎡

⎣

1

1 + exp
(

x′
i β̂
)

⎤

⎦ > 0,

x′
i β̂ > 0.

Prediction of binary outcomes is often known as classification.

9.2 Mean Squared Error

As indicated in (6.69), the estimate of the expected validating mean squared error
using independent training data is

.Ê (MSEv) = 1

N

N
∑

i=1

(yi − ŷi)
2 + 2

N

N
∑

i=1

̂Cov (yi, ŷi) , (9.5)

where the second term is an estimate of the expected optimism. With binary
observations

. (yi − ŷi)
2 =

{

1 if yi �= ŷi ,

0 if yi = ŷi .
(9.6)

Therefore, the first term in the right hand side of (9.5) is the observed proportion of
misclassifications (or error rate) in the training data. To compute the second term,
proceed as follows:

.Cov (yi, ŷi) = E (yi ŷi) − E (yi)E (ŷi) , (9.7)

372 9 Binary Data

where .E (yi) = Pr (yi = 1) and all expectations are conditional on x. In addition,
we have

. E (ŷi) = Eyi [E (ŷi |yi)]

= Pr (ŷi = 1|yi = 0) Pr (yi = 0) + Pr (ŷi = 1|yi = 1) Pr (yi = 1) ,

and

. E (yi ŷi) = Eyi [E (yi ŷi |yi)]

= Eyi [yi E (ŷi |yi)]

= Pr (yi = 1) Pr (ŷi = 1|yi = 1) .

Substituting these expressions in (9.7) gives

. Cov (yi, ŷi) = Pr (yi = 1) (1 − Pr (yi = 1))

[Pr (ŷi = 1|yi = 1) − Pr (ŷi = 1|yi = 0)] .

The estimator of the expected validating mean squared error (9.5) for binary data
takes the form

. ̂E (MSEv) = # (yi �= ŷi)

N
+ 2

N

N
∑

i=1

̂Pr (yi = 1)
(

1 − ̂Pr (yi = 1)
)

[

̂Pr (ŷi = 1|yi = 1) − ̂Pr (ŷi = 1|yi = 0)
]

(9.8)

where .# (yi �= ŷi) is the total number of misclassifications in the training data and
the “hats” are estimates of the various probabilities. Expression (9.8) is compared
to MC estimates of the expected validating mean squared error in the simulation
example that follows. The second term in (9.8) is an estimator of expected optimism.
Much of the material in this section is taken from Efron and Hastie (2016) where
more details on the subject can be found.

Example: Training and Validation MSE with Binary Data

This example illustrates in the context of binary data, how training and validating
mean squared errors are affected as the number of covariates of the operational
models increases. The example is in the same spirit as that on page 291.

9.2 Mean Squared Error 373

Binary data are simulated using the logistic model (9.4) and consist of . N = 400
records divided in equal numbers into training and validating data. The matrix X of
genetic marker codes is generated as in the Example on page 291, here with . p� = 10
loci and includes a column vector of 1s to accommodate an intercept.

Training data are analysed with 5 operational models with numbers of covariates
equal to 5, 10, 15, 20 or 25. Model 2 with 10 covariates is the true model.
The regression coefficients of the true effects of the 10 loci were sampled from
.N (0, 0.1). The intercept . μ was chosen to generate either . Pr (Yi = 1|μ) = 0.5
or .Pr (Yi = 1|μ) = 0.2. In all, 400 replicates are simulated of both training and
validating data.

Figure 9.1 displays the mean squared errors for the validating and the training
data for each replicate, as well as the average over replications. The top panel

10 15 20 25

0.
25

0.

30

0.
35

0.

40

0.
45

0.

50

Number of Markers

Tr
ai

ni
ng

 M
S

E

10 15 20 25

0.
30

 0
.3

5
0.

40
 0

.4
5

0.
50

 0
.5

5
0.

60

Number of Markers

V
al

id
at

in
g

M
S

E

10 15 20 25

0.
15

0.

20

0.
25

0.

30

0.
35

Number of Markers

Tr
ai

ni
ng

 M
S

E

0 5 0 5

0 5 0 5 10 15 20 25

0.
15

0.

20

0.
25

0.

30

0.
35

0.

40

Number of Markers

V
al

id
at

in
g

M
S

E

Fig. 9.1 Mean squared error (MSE) per replicate (400 Monte Carlo simulations) and average MSE
shown as bold black lines. True marker effects drawn from N (0, 0.1). Top panel, Pr (Yi = 1|μ) =
0.5; bottom panel, Pr (Yi = 1|μ) = 0.2. The left panels correspond to the training data and the
right to the validating data

374 9 Binary Data

corresponds to .Pr (Yi = 1|μ) = 0.5 and the bottom panel to .Pr (Yi = 1|μ) = 0.2.
In the training data, the mean squared error decreases with increasing number of
parameters. For .Pr (Yi = 1|μ) = 0.5 the rate of decline is largest up to 10 markers
(the true model) and thereafter becomes markedly smaller.

In the validating data, the pattern of the evolution of the mean squared error with
increasing number of parameters depends on the true distribution of the data. At
intermediate probability of success, the average mean squared error in the validating
data decreases from .0.50 using a model with intercept only to .0.396 using a model
with 10 covariates (the true model). Beyond 10 covariates there is a slight increase
up to a value of .0.403 with 25 covariates. The observed optimism (difference
between the average validating .MSEv and average training .MSEt over Monte Carlo
replicates) is .0.0623 in a model with 10 covariates and the estimate based on (9.8)
is .0.0617.

At the low probability of success, the average mean squared error in the training
data decreases from .0.24, fitting a model with intercept only, to .0.20 when the
model has 25 covariates. On the other hand, in the validating data, the average
mean squared error increases from .0.23, for a model with intercept only, to . 0.27
for a model with 25 covariates. The model with only an intercept provides the
best predictions. At extreme probability of success, the mean squared error is
overwhelmed by the increase in the variance of the estimates of the regression
coefficients as more covariates are added (see the expression for the asymptotic
variance (3.37), where conditional on X the diagonal matrix D governs the
magnitude of the variance). The validating mean squared error .MSEv increases
slightly from .0.232 using a model with intercept only to .0.236 using a model with
10 covariates (the true model). As the number of covariates increases beyond 10,
the rate of increase is more pronounced.

In a model with 10 covariates, the observed optimism (difference between the
average .MSEv and average training mean squared error .MSEt over Monte Carlo
replicates) is .0.0415; the estimate based on (9.8) is .0.0477.

At a low probability of success, when the regression coefficients of the true
effects of the 10 loci are sampled from .N (0, 0.25) instead of from .N (0, 0.1), thus
allowing for larger absolute values that are easier to detect, the evolution of the mean
squared error with increasing number of parameters in the validating data shows the
more familiar pattern of a decline from an initial value when the model contains
only an intercept, towards a minimum value with models with 10 covariates (the
true model), followed by an increase as more covariates are added (see Fig. 9.2).

In a model with 10 covariates, the observed optimism (difference between the
average .MSEv and average .MSEt over Monte Carlo replicates) is .0.0253; the
estimate based on (9.8) is .0.0273.

The figures display clearly the rather large variability in .MSE across replications
of training and validating data.

9.3 Logistic Regression with Non-random Sampling 375

10 15 20 25

0.
10

0.

15

0.
20

0.

25

0.
30

Number of Markers

Tr
ai

ni
ng

 M
S

E

0 5 0 5 10 15 20 25

0.
15

0.

20

0.
25

0.

30

Number of Markers

V
al

id
at

in
g

M
S

E

Fig. 9.2 Mean squared error (.MSE) per replicate (400 Monte Carlo simulations) and average . MSE
in black, bold. Probability of success is .Pr (Yi = 1|μ) = 0.2. True marker effects drawn from
.N (0, 0.25). The left panel corresponds to the training data and the right to the validating data

9.3 Logistic Regression with Non-random Sampling

A major concern in epidemiological studies is to determine factors that are linked
to a condition or disease in a population. A variety of designs can be considered.
When the condition is at very low frequency in the population, a common study
design is to over-sample individuals with the condition (known as successes or
cases) and then sample a control group (failures or controls) from a similar segment
of the population. This type of design is known as a case-control study. A typical
example might involve recording relevant covariates from people who died from
a certain condition and from other patients who act as controls. If sampling is at
random, the relationship between the variables in the dataset would be representative
of the same relationships in the population, but this may not be the case with
non-random samples of a case-control design. Correct inferences require that the
statistical analysis accounts for the non-random sampling mechanism (Prentice and
Pyke 1979).

Consider a population of individuals .i = 1, . . . , n with disease status . Yi , covari-
ate vector . Xi and marker genotypes . Wi . Assume that the conditional distribution of
. Yi given .(Xi,Wi) = (xi, wi) is the logistic regression

. Pr (Yi = 1|xi, wi) = exp (ηi)

1 + exp (ηi)
(9.9)

where

.ηi = α + xiβ + wib

376 9 Binary Data

is the linear predictor depending on covariate and marker effects. The parameters
of the logistic model are .(α, β, b) and if data were randomly sampled, they could
be inferred from a likelihood constructed from (9.9) as starting point. With non-
random sampling, one can instead proceed as follows. Suppose (conceptually) all
individuals are observed. Each individual is assigned a binary random variable
. Si that takes the value 1 if the individual is sampled and 0 otherwise, with
.Pr (Si = 1|Yi = 0) = p0 and .Pr (Si = 1|Yi = 1) = p1. Typically, . p1 is much
larger than . p0. Given .Si = 1, sample .(Xi,Wi) from the conditional distribution
.[Xi,Wi |Yi] and if .Si = 0, .(Xi,Wi) is not sampled. In the approach to be followed,
inference is based on the conditional distribution of . Yi , given .(Xi,Wi) and .Si = 1.
The part of the sample for which .Si = 0 is ignored. As shown below this leads to the
same inferences about .(β, b) as an analysis using (9.9) to construct the likelihood.

The conditional distribution of . Yi given .(Xi,Wi) and .Si = 1 is

. Pr (Yi = 1|xi, wi, Si = 1) =
Pr (Si = 1|Yi = 1, xi, wi)Pr (Yi = 1|xi, wi)

Pr (Si = 1|xi, wi)
.

Now make the important assumption that . Pr (Si = 1|Yi = 1, xi, wi) =
Pr (Si = 1|Yi = 1), that is, . Si and .(Xi,Wi) are conditionally independent given
. Yi . In a missing data framework, .(Xi,Wi) are missing at random, in the sense
defined by Rubin (1976). Given this assumption the above can be written

. Pr (Yi = 1|xi, wi, Si = 1) = p1 exp (ηi)

p1 exp (ηi) + p0

=
(

p1
/

p0
)

exp (ηi)
(

p1
/

p0
)

exp (ηi) + 1
. (9.10)

Since

.
(

p1
/

p0
)

exp (ηi) = exp
(

α∗ + xiβ + wib
)

where .α∗ = α + ln
(

p1
/

p0
)

, we have

. Pr (Yi = 1|xi, wi, Si = 1) = exp (α∗ + xiβ + wib)

1 + exp (α∗ + xiβ + wib)

as in (9.9) but with a new intercept. Therefore, the fact that the data were not sampled
at random (they were collected retrospectively) can be ignored in logistic regression
analyses, provided that the linear predictor contains an intercept and the sampling
mechanism is independent of the explanatory variables. This is a property peculiar
to the logistic link and does not carry over to other link functions.

9.4 Penalised Logistic Regression 377

9.4 Penalised Logistic Regression

Logistic regression can be modified in the same spirit as ridge regression to deal
with the .p > n case (number of covariates p larger than the number of records
n), by maximisation of a concave penalised loglikelihood (or, equivalently, by
minimisation of a convex penalised cost function). Here details are provided for
a Newton-Raphson implementation; a full discussion can be found in a study by
Park and Hastie (2008).

The logistic regression model for the n binary responses y is parametrised as

. Pr (yi = 1|xi, μ, β) = exp
(

μ + x′
iβ
)

1 + exp
(

μ + x′
iβ
) , i = 1, . . . , n. (9.11)

In this expression, . μ is a scalar intercept, . x′
i is a row vector of p covariates and . β is

a column vector with p regression parameters. The convex function is the negative
of the loglikelihood subject to a size constraint on the . L2 norm of . β; the intercept . μ
is not penalised. Then . μ and . β are obtained as the minimisation of the cost function

. J (μ, β) = −� (μ, β|y, x) + λ

2
β ′β,

where . λ is the regularisation parameter and

. − � (μ, β|y, x) = −
n
∑

i=1

{

yi

(

μ + x′
iβ
)− ln

[

1 + exp
(

μ + x′
iβ
)]}

(9.12)

is the negative of the loglikelihood.
I shall use

. f (xi) = μ + x′
iβ

and

. πi = Pr (yi = 1|xi, μ, β) = exp (f (xi))

1 + exp (f (xi))
.

The first derivatives are

.
∂J

∂μ
= −

n
∑

i=1

(yi − πi) = −1′ (y − π) , . (9.13a)

∂J
∂β

= −
n
∑

i=1

(yi − πi) xi + λβ = −X′ (y − π) + λβ, (9.13b)

378 9 Binary Data

where . 1′ is a .(1 × n) row vector of ones, y and . π are .n × 1 column vectors with
elements . yi and . πi , respectively, and X is an .n × p matrix of covariates with row
vectors . x′

i .
The computation of second derivatives uses

.
∂πi

∂μ
= ∂πi

∂f (xi)

∂f (xi)

∂μ
,

∂πi

∂β
= ∂πi

∂f (xi)

∂f (xi)

∂β
.

Application of the chain rule yields

.
∂2J

(∂μ)2
=

n
∑

i=1

πi (1 − πi) = 1′W1,

∂2J

∂μ∂β ′ =
n
∑

i=1

πi (1 − πi) xi = 1′WX,

∂2J

∂β∂β ′ =
n
∑

i=1

xix
′
iπi (1 − πi) + Iλ = X′WX + Iλ,

where I is the .p × p identity matrix and

. W = diag {πi (1 − πi)} , i = 1, . . . , n,

a diagonal matrix of dimension .n × n. The matrix of second derivatives is

. H =
⎡

⎣

∂2J

(∂μ)2
∂2J

∂μ∂β ′
∂2J

∂β∂μ
∂2J

∂β∂β ′

⎤

⎦

(p+1)×(p+1)

=
[

1′W1 1′WX

X′W1 X′WX + Iλ

]

= Z′WZ + 	

(9.14)

of order .(p + 1) × (p + 1), where

. Z = [1, X] .

This is an .n × (p + 1) matrix whose first column is a vector of ones and

. 	 = diag {0, λ, λ, . . . , λ} ,

is a .(p + 1) × (p + 1) diagonal matrix. Let .θ = (

μ, β ′)′. The Newton-Raphson
algorithm is

.θt+1 = θt − (H)−1 S (θt) (9.15)

9.5 The Lasso with Binary Records 379

where, from (9.13),

.S (θt) = −Z′ (y − π) + 	θt . (9.16)

Using (9.14) and (9.16) in (9.15) yields

. θt+1 = θt − (Z′WZ + 	
)−1 (−Z′ (y − π) + 	θt

)

= H−1 (Z′WZ + 	
)

θt + H−1
(

Z′WW−1 (y − π) − 	θt

)

= H−1Z′W (Zθt) + H−1	θt + H−1Z′W
(

W−1 (y − π)
)

− H−1	θt

= H−1Z′W
(

Zθt + W−1 (y − π)
)

= H−1Z′Wr, (9.17)

where .r = Zθt + W−1 (y − π) and .H−1 = (Z′WZ + 	
)−1. This implementation

of the Newton-Raphson algorithm is the iteratively reweighted ridge regression
algorithm and requires inversion of the Hessian, an .(p + 1) × (p + 1) matrix. In
highly dimensional settings with .p � n, alternative strategies must be sought. The
aim could be either to avoid matrix inversion or to reduce the dimensionality of the
system from order p to order n. An example of the first type is the use of gradient
descent that uses first derivatives of the cost function. An approach that works in
an n-dimensional space involves kernel methods discussed on page 482. It is shown
that use of a particular kernel known as the linear kernel allows a reparametrisation
of the penalised logistic regression model that leads to an iterative system along the
lines of (9.17), while operating in an .n + 1-dimensional space.

9.5 The Lasso with Binary Records

The use of the lasso is illustrated for the case of binary responses parametrised as
in (9.4). In this formulation the loglikelihood takes the form

. � (β0, β|x, y) =
∑n

i=1
yi

(

β0 + x′
iβ
)− ln

[

1 + exp
(

β0 + x′
iβ
)]

where here, contrary to (9.4), . x′
i is .(1 × p) and . β is .(p × 1). The lasso coefficients

are the solutions to

.max
β0,β

[

n
∑

i=1

yi

(

β0 + x′
iβ
)− ln

[

1 + exp
(

β0 + x′
iβ
)]

]

− λ

p
∑

j=1

∣

∣βj

∣

∣ . (9.18)

380 9 Binary Data

As before in (7.19), the intercept term is not penalised and the predictors x are
standardised. An efficient computational algorithm is the path-wise coordinate
descent described in connection with the linear model, with modifications to
accommodate the lack of piece-wise linearity of the coefficients of the logistic
likelihood (Efron and Hastie 2016).

9.6 A Bayesian Spike and Slab Model for Binary Records

An alternative to the penalised logistic regression and the lasso is the spike and
slab model that postulates a two-component mixture distribution for the SNP effects
consisting of a normal distribution and a point mass at zero. Section 7.5 provides
a full description of the model and an McMC implementation for continuous data.
Here, I indicate the modification of the McMC algorithm required for the analysis
of binary responses.

The binary records are described with the probit model that assumes an under-
lying unobserved liability u. For the ith record, the liability is normally distributed
.ui |μ, xi, b ∼ N

(

μ + x′
ib, σ 2 = 1

)

. The linear model for the liability of record i
can be written

. ui = μ + x′
ib + ei .

Above, . μ is an intercept, .xi ∈ Rp is a column vector of p observed marker
genotypes, b is a .p × 1 column vector of unobserved marker effects and residuals

are .ei
iid∼ N (0, 1). For the ith record . (i = 1, 2, . . . , n)

. Pr (yi = 1|μ, xi, b) = Pr (ui > 0|μ, xi, b)

= Pr
(

ei < μ + x′
ib
)

= �
(

μ + x′
ib
)

, (9.19)

where .�(t) is the distribution function of the standard normal distribution and I used
the symmetry of the normal distribution to go from line 1 to line 2. The conditional
likelihood function for record i, given .μ, xi, b, is proportional to (9.19). The prior
distributions for the binary case are assumed to be identical to those in (7.43) on
page 321, except for . σ 2, that here takes the fixed value .σ 2 = 1. As in the continuous
case, the SNP effects are expressed as

.bi = αiδi, i = 1, . . . , p, (9.20)

9.6 A Bayesian Spike and Slab Model for Binary Records 381

where .αi |σ 2
b

iid∼ N
(

0, σ 2
b

)

is independent of the binary .(0, 1) indicator variable . δi

that has an a priori Bernoulli distribution with probability . π :

. δi |π iid∼ Br (π) , , i = 1, . . . , m,

Pr (δi = 1|π) = π, Pr (δi = 0|π) = 1 − π.

This binary indicator variable with its associated distribution .Pr (δi = 1|π) specifies
the a priori probability that a marker effect . bi is non-zero, and this prior probability
is the same for all markers. The variance component . σ 2

b , that describes the prior
uncertainty of the SNP effect drawn from the slab component is assumed to have
the scaled inverse chi-square prior distribution

. σ 2
b |Sb, vb ∼ Sbχ

−2 (Sb, vb) ,

where the . Sb and the . vb are user-tuned hyperparameters.
It is computationally convenient to augment the vector of parameters with the

unobserved liabilities u (see page 215). The a priori distribution of the random
vector u is

. u|μ, b ∼ N (1μ + Xb, 1)

and the conditional pmf of the data, given u, takes the degenerate form (see page
216)

. Pr (Yi = yi |ui) = I (ui > 0)yi + I (ui < 0)1−yi .

The posterior density for the binary case is

. p
(

u,μ, α, δ, π, σ 2
b |y
)

∝ p (y|u) p (u|μ, b) p
(

α|σ 2
b

)

p (δ|π) p (π) p
(

σ 2
b

)

(9.21)

with the b’s defined in (9.20).
The fully conditional posterior distributions for the Gibbs sampling implemen-

tation are derived from (9.21) and with the exception of the fully conditional of u,
.[u|D] (see page 222 for definition of D) and of the fact that the conditional variance
of the liability is fixed to .σ 2 = 1, are identical to those for the continuous data and
will not be repeated here.

The fully conditional posterior density of the liability is obtained by extracting
those terms in the posterior density (9.21) that contain u. That is,

. p (ui |D) ∝ p (ui |μ, b) p (yi |ui)

= N (ui |1μ + Xb, 1)
[

I (ui > 0)yi + I (ui < 0)1−yi

]

. (9.22)

382 9 Binary Data

This expression indicates that when .yi = 1, .ui > 0 and the fully conditional
posterior density of . ui is a truncated normal distribution, with mean . x′

iβ, variance 1
and support .(0,∞). When .yi = 0, then .ui < 0 and the fully conditional posterior
density of . ui is a truncated normal distribution, with mean . x′

iβ, variance 1 and
support .(−∞, 0).

A general method to sample the variable u from any univariate distribution
truncated in the interval .[a, b] can be found in Devroye (1986), page 38, Example
10:

.u = F−1 {F (a) + U [F (b) − F (a)]} , (9.23)

where F is the distribution function of the untruncated variable and U is a draw
from a uniform distribution in the interval .[0, 1].

An R-code to draw all the . U ′s in one pass is as follows. Assume that the mean
of the vector of untruncated liability is given by mu+Xb, the variance is the identity
matrix I and y represents the complete binary data vector. Then the code is

mean <- mu+Xb
sd <- 1
intermediate <- y*pnorm(0,mean=mean,sd=sd)+

runif(length(y))*(pnorm(0,mean=mean,sd=sd)*(1-y) +
(1-pnorm(0,mean=mean,sd=sd))*y)

u <- qnorm(intermediate,mean=mean,sd=sd)

The general algorithm to execute the Gibbs sampler for binary records is identical
to that described on page 321, except that the liability u has to be generated with
each new cycle of the Gibbs sampler. This is achieved by executing the code above.
Further, the residuals have to be defined appropriately at the level of the liability,
and . σ 2 is fixed at the value 1.

Example: Prediction and QTL Detection Using Genetic Marker
Information

This example investigates the predictive ability of the penalised logistic regression,
the logistic lasso and the binary spike and slab model, using 2000 simulated
binary records representing nominally unrelated individuals. The package glmnet
described in Example 7.4 on page 319 was used to perform the computations for the
logistic lasso.

The data are generated using a probit model where the unobserved liability . ui for
the ith record has the linear structure

.ui = μ + z′
ib + ei, i = 1, 2, . . . , 2000. (9.24)

9.6 A Bayesian Spike and Slab Model for Binary Records 383

Above, .μ = −0.67 is chosen to generate a proportion of . 1′s of approximately
.0.25, . zi is the column vector for individual i of 50 centred QTL genotype codes,
b is the column vector of the 50 substitution effects and the . e′

is are . N (0, 1)
independent residual effects. The additive genetic variance in the underlying scale
is .σ 2

a = V ar(z′
ib|b). This variance was set equal to 1 and the substitution effects . bi

were chosen accordingly, the same value for the 50 loci (.≈ 0.23 units).
The binary records are analysed with an operational probit model involving 1500

centred genotypic marker codes. The 50 loci of the true model in (9.24) were
randomly sampled from these 1500 and were assigned as QTL. For individual i,
the operational model of the underlying liability is

. ui = m + x′
iβ + εi, i = 1, 2, . . . , 2000,

where m is an intercept, . xi is the (observed) column vector for individual i of the
1500 centred marker genotypic codes, . β is the (unobserved) vector with the 1500
unknown marker effects and the . ε′

i s are independently distributed standard normal
random variables.

QTL Detection

Before studying prediction ability, we look into the performance of the spike and
slab model as a QTL detection tool and compare it with a simple GWAS approach
based on a probit likelihood, one marker at a time. Having generated the binary data
vector y of length 2000 and the matrix of centred marker genotypes Xc, the kernel
of the R-code for the GWAS analysis is shown below:

PERFORM A GWAS ON THE DATA USING A PROBIT REGRESSION
Xc is the 2,000 by 1,5000 matrix of centred marker
genotype codes
GWAS=matrix(nrow=ncol(Xc),ncol=4)
colnames(GWAS)=c(’estimate’,’SE’,’t-value’,’p-value’)
for(i in 1:ncol(Xc)){
fm=glm(y~Xc[,i],family = binomial(link = "probit"))
GWAS[i,]= summary(fm)$coef[2,]
}
plot(-log10(GWAS[,4]),type=’o’,ylab=’-log10-pValue’,

cex=.5,col=4)
abline(h=-log10(0.05/nmark),lty=2,col=2)
log Bonferroni bound:
cat(’Bonferroni’,-log10(0.05/nmark),’\n’)
GWASdetct<-which(-log10(GWAS[,4]) > -log10(0.05/nmark))
length(GWASdetct) # SIZE OF DISCOVERY SET

384 9 Binary Data

The computation of the p-values is obtained appealing to the asymptotic
properties of the likelihood estimator of marker effects; this leads to approximate
t-distributed test statistics and uniformly distributed p-values .Un(0, 1) under . H0
(see page 337).

The result for the GWAS based on a Bonferroni bound for an individual test
equal to .0.05/1500 is shown in the left panel of Fig. 9.3. Only 13 of the 50 QTL
are declared significant, and in this discovery set, there are no false discoveries. The
classical test without the Bonferroni correction declares 133 markers as significant,
and among these, 86 are false discoveries.

The size of the discovery set based on the Benjamini and Hochberg FDR
rule (8.14b), setting the level of the FDR .q = 0.15, is equal to 50, and among these,
the realised number of false discoveries is 11, leading to a realised false discovery
proportion equal to .11/50 = 0.22. The R-code that implements this computation is
shown on page 340.

The right panel of Fig. 9.3 shows McMC estimates of the posterior probabilities
that each marker effect is not equal to zero, generated from the Bayesian McMC
spike and slab model using the 2000 binary records. A discovery set was obtained
by arbitrarily choosing the markers with non-zero posterior probabilities larger
than . 0.8. The ensuing discovery set included 44 genetic markers, and among
these, 2 were true false positives, leading to a true FDR equal to .2/44 = 0.045.
The McMC estimate of the mean of the posterior distribution of the Bayes-FDR
for this discovery set of size 44 is .0.033, based on (8.43) or on (8.44) on page
351. The .95% posterior interval obtained from the McMC draws from (8.44) is
.(4.56 ∗ 10−5; 9.11 ∗ 10−2).

0 500 1000 1500

0
2

4
6

Marker ID

−
lo

g1
0−

pV
al

ue

0 500 1000 1500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Marker ID

P
os

tP
ro

b

Fig. 9.3 Analysis of 2000 binary records. Left: .− log10 p-values for testing the null hypothesis
that each of 1500 marker effects is equal to zero. The horizontal red line is the Bonferroni threshold
corresponding to .− log10(0.05/1500). Right: posterior probabilities that marker effects are not
zero, for each of the 1500 markers, based on the Bayesian McMC spike and slab model. The
horizontal line is the threshold corresponding to a posterior probability equal to 0.8

9.6 A Bayesian Spike and Slab Model for Binary Records 385

McMC−Bayes FDR

D
en

si
ty

0.0 0.2 0.4 0.6 0.8

10
15

McMC−Bayes FDR

D
en

si
ty

0.0 0.2 0.4 0.6 0.8

0
5

0
2

4
6

8
 10

12

Fig. 9.4 Histograms of the McMC Bayes posterior distribution of the Bayes-FDR choosing as
discovery set the set of markers whose marginal posterior probability of non-zero effects is larger
than .0.80 (LEFT) or larger than .0.56 (RIGHT). The vertical lines show the true FDR realised in
the simulated data

For a discovery set of size 50, obtained by choosing the markers with non-zero
posterior probabilities larger than .0.56, the Bayes-FDR estimate is .0.072 with a . 95%
posterior interval equal to .(0.013; 0.142). The true number of false discoveries is 7,
resulting in a true FDR realised in the sample equal to .0.14. Figure 9.4 displays the
histograms of the McMC posterior distribution of these Bayes-FDR. The vertical
lines show the realised (true) FDR obtained in the particular simulation for each
discovery set.

The R-code to produce the histograms and Monte Carlo estimates of posterior
means and posterior intervals of the false discovery rates is shown on page 367.

Several other pieces of information can be extracted from the Bayesian model.
For each marker one can extract the probability of a non-zero effect conditional on
observed data, and the draws from (7.57) retrieve a Monte Carlo estimate of the
posterior probability distribution of this probability of non-zero effect. For instance,
the Monte Carlo estimate of the mean of the posterior probability that marker 141
is non-zero is .0.83, and the Monte Carlo estimate that this probability is larger than
. 0.6, say, is .0.96. A similar picture can be obtained for the local false discovery rate
for each marker genotype in the discovery set.

Prediction

The 2000 binary records are divided in equal proportions into training and validating
sets. The criterion to evaluate predictive ability is the proportion of mistaken
predictions in the validating data or error rate, given by

.MSEv = 1

Nv

Nv
∑

i=1

(yi − ŷi)
2

386 9 Binary Data

where .Nv = 1000 is the number of records in the validating set, . yi is the ith record
in the validating set (0 or 1) and . ̂yi is the predicted value computed using (9.3) using
.t = 0.5. I also used the Brier score

.MSEB
v = 1

Nv

Nv
∑

i=1

(

yi − π̂i

)2 (9.25)

that uses additional information from the predicted probabilities . ̂Pr (Yi = 1|μ) =
π̂i .

The validating .MSEv of the spike and slab model, the penalised logistic
regression and the logistic lasso are .0.35, .0.35 and .0.30, respectively. For the Brier
score (9.25), the corresponding figures are .0.25, .0.30 and .0.20.

The Bayesian McMC implementation produces automatically a Monte Carlo
estimate of the marginal posterior distribution of the validating .MSEv . The McMC
estimate of the .95% posterior interval of the validating .MSEv is .(0.321; 0.386) and
for the Brier score .(0.227; 0.275). This quantifies the uncertainty in the measures of
.MSE due to uncertainty in the predictors, conditional on the data.

In order to have a point of reference, these error rates can be compared to the
error rate of the null model, defined as

. ui = μ + εi, i = 1, 2, . . . , 2000,

that results in a loglikelihood equal to

. � (μ|y) =
∑

i=1

yiμ − n ln
[

1 + exp (μ)
]

,

where n is the number of records in the dataset. A differentiation yields

.
d � (μ|y)

dμ
=
∑

i=1

yi − n
exp (μ)

1 + exp (μ)

=
∑

i=1

yi − nPr (Yi = 1|μ) .

On setting the derivative equal to zero,

. ̂Pr (Yi = 1|μ) =
∑

j=1

yj /n = π̂ , for all i,

equal to the proportion of . 1′s in the data. The predicted value is

.̂yi =
{

1 if π̂ > 0.5
0 if π̂ ≤ 0.5

for all i.

9.6 A Bayesian Spike and Slab Model for Binary Records 387

Depending on the value of . π̂ , this amounts to setting all the predictions to either 0
or 1. Therefore, the error rate of the null model is . π̂ or .1 − π̂ , whichever is smaller.
In this example, the null model leads to an error rate equal to .0.35, identical to that
obtained for the spike and slab model and a little higher than the value obtained
using the logistic lasso. The Brier score for the null model is . 1

nv

∑

i (yi − 0.35)2 =
0.23.

When the data are more informative, things look a little better. For instance,
increasing the total number of records to 5000 and keeping 1500 markers, . MSEv

for the spike and slab model, the penalised logistic regression and the logistic lasso
are .0.29, .0.38 and .0.27, respectively. Using the Brier score, the values for . MSEB

v

are .0.19, .0.35 and .0.18.
The kernel of the R-code for running the logistic lasso using the package glmnet

is shown below.

THE TRAINING DATA y AND MATRIX OF COVARIATES X
BOTH CREATED IN A SECTION OF THE CODE NOT SHOWN
library(glmnet)
train=sample(1:nrow(X),nrow(X)/2)
test=(-train)
y.test=y[test]

STEP 1

cv.out=cv.glmnet(X[train,],y[train],alpha=1,intercept=TRUE,
family="binomial",type = "class")
plot(cv.out)
bestlam=cv.out$lambda.min
bestlam
#NUMBER NON-ZERO COVARIATES:
length(which(as.vector(coef(cv.out,s=bestlam))!=0))

STEP 2

OBTAIN PREDICTIONS BASED ON CLASS LABELS
fm.predclass=predict(cv.out,s=bestlam,newx=X[test,],
family="binomial",type="class")

OBTAIN PREDCTIONS BASED ON PROBABILITIES (Brier score)
fm.predresp=predict(cv.out,s=bestlam,newx=X[test,],
family="binomial",type="response")
#ERROR RATE (CLASS LABELS):

mean((as.numeric(fm.predclass)-y.test)^2
#ERROR RATE (FITTED PROBS):

mean((as.numeric(fm.predresp)-y.test)^2)

ERROR RATE OF NULL MODEL: liability = mu + e
mean(y.test)

The kernel of the R-code for executing the penalised logistic regression using
gradient descent is shown below.

388 9 Binary Data

nit <- 1500 # Number of gradient descent iterations

nrep <- 5 # Number of replications
(To compute variability of MSE across replicates)

#lambda <- 0.0 # ZERO PENALTY !!!!!!!!
lambda <- 0.4

gama <- 0.008 # Learning rate
c <- rep(0,nit)
newcost <- rep(0,nit)
newcostv <- rep(0,nrep)

result <- matrix(data=NA, nrow=nit,ncol=8)
resulttv <- matrix(data=NA, nrow=nit,ncol=8)
resulttvnr <- matrix(data=NA, nrow=nitnr,ncol=8)

res <- matrix(data=NA, nrow=nrep,ncol=9)
resnr <- matrix(data=NA, nrow=nrep,ncol=8)

msev <- rep(NA,nrep)
msevnr <- rep(NA,nrep)

FUNCTION TO COMPUTE Pr[Y = 1]
prob1 <- function(miu,beta,X){

pr <- exp(miu+X%*%beta)/(1+exp(miu+X%*%beta))
}
FUNCTION TO COMPUTE THE LOSS FUNCTION
cost <- function(miu,beta,X,y)

{-sum(y*(miu+X%*%beta) - log(1 + exp(miu+X%*%beta)))
+ crossprod(beta)*(lambda/2)}

c[1]<- cost(miu,beta,X,y)
ptm <- proc.time()

######### GRADIENT DESCENT #############
FIT MODEL TO TRAINING DATA; TEST IN VALIDATING DATA

set.seed(771311)
numone <- sum(y)
numzero <- length(y) - numone
nindiv <- length(y)
ptm <- proc.time()
for (i in 1:nrep){

cat(i, "\n",sep="")
train=sample(1:nrow(X),floor(0.5*nrow(X)))
Xtrain <- X[train,]
Xval <- X[-train,]
ytrain <- y[train]
yval <- y[-train]
miu <- 0.0
beta <- rep(0.0,ncol(Xtrain))
for(j in 1:nit){

fdmiu <- -sum(ytrain - prob1(miu, beta,Xtrain))
fdbeta <- -t(Xtrain) %*%

(ytrain - prob1(miu, beta,Xtrain)) + lambda * beta
fd <- matrix(c(fdmiu,fdbeta),nrow=length(beta)+1,ncol=1)
sol0 <- matrix(c(miu,beta),nrow=length(beta)+1,ncol = 1)

9.7 Area Under the Curve 389

sol1 <- sol0 - gama * fd
miu <- sol1[1,1]
beta <- sol1[-1,1]
newcostv[j] <- cost(miu, beta,Xtrain,ytrain)
resulttv[j,] <- c(j,newcostv[j],miu,beta[1:5])

}
probval <- prob1(miu,beta,Xval)
y_predval <- as.numeric(ifelse(probval > 0.5,1,0))
msev[i] <- mean((y_predval-yval)^2)
res[i,] <- c(i,j,newcostv[j],miu,beta[1:5])
}
proc.time()-ptm
tail(resulttv)
tail(res)
summary(msev) # SUMMARY MISCLASSIFICATION ACROSS REPLICATES

The complete R-code that performs the computations of this example is on the
GitHub site in the folder named “.codes”. The web address is https://github.com/
SorensenD/SLGDS/codes. The specific R-code is labelled code0901.R.

9.7 Area Under the Curve

Consider binary data and a classifier such as logistic regression that generates
predictions or classifications . Ŷ taking values 0 or 1 according to the rule (9.3), given
covariates x. The result of applying the classifier depends critically on the threshold
t used. In the case of (9.3), setting .t = 0.5 leads to Bayes’ rule that minimises

.Pr
(

Ŷ �= Y
)

, the overall error rate.

The outcome of the binary classifier can be displayed in the so-called confusion
matrix shown in Table 9.1. For a particular experiment, the proportions that fall
in the body of the table are empirical realisations of the 4 joint probabilities that
provide 3 independent pieces of information. Different ways of summarising these
joint probabilities give rise to different methods of classification.

Table 9.1 A typical confusion matrix for a binary classifier with the 4 joint probabilities in the
body of the table

True status

.Y = 1 .Y = 0 Marginal

Predicted .Ŷ = 1 .Pr
(

Ŷ = 1, Y = 1
)

.Pr
(

Ŷ = 1, Y = 0
)

. Pr
(

Ŷ = 1
)

Status .Ŷ = 0 .Pr
(

Ŷ = 0, Y = 1
)

.Pr
(

Ŷ = 0, Y = 0
)

. Pr
(

Ŷ = 0
)

Marginal .Pr (Y = 1) . Pr (Y = 0)

.Pr
(

Ŷ = k|Y = k
)

.k = 1: Sensitivity .k = 0: Specificity

https://github.com/SorensenD/SLGDS/codes
https://github.com/SorensenD/SLGDS/codes
https://github.com/SorensenD/SLGDS/codes
https://github.com/SorensenD/SLGDS/codes
https://github.com/SorensenD/SLGDS/codes
https://github.com/SorensenD/SLGDS/codes

390 9 Binary Data

One way of summarising the 4 joint probabilities in the body of the table is by
the following 2 conditional probabilities and 1 marginal probability:

1. .Pr
(

Ŷ = 1|Y = 0
)

known as the false positive rate (FPR) (type I error) or

false discovery rate. In epidemiology the term . 1 − Pr
(

Ŷ = 1|Y = 0
)

=
Pr
(

Ŷ = 0|Y = 0
)

(true negative) is referred to as specificity

2. .Pr
(

Ŷ = 1|Y = 1
)

known as the true positive rate (TPR) (power) or sensitivity in

epidemiology. The term .1 − Pr
(

Ŷ = 1|Y = 1
)

= Pr
(

Ŷ = 0|Y = 1
)

is known

as the false negative rate (FNR). These conditional probabilities depend on the
threshold t .

3. .Pr (Y = 1) is sometimes known as prevalence or incidence if 1 means having the
condition.

The overall probability of misclassification or overall error rate is

. Pr
(

̂Y �= Y
) = Pr

(

̂Y = 1|Y = 0
)

Pr (Y = 0) + Pr
(

̂Y = 0|Y = 1
)

Pr (Y = 1)

= FPR (1 − Pr (Y = 1)) + FNRPr (Y = 1) , (9.26)

equal to the sum of the off-diagonal cells in the body of Table 9.1. Given the
incidence in the population, the two components of the overall error rate, FPR and
FNR, are critically dependent on the threshold t and they are complementary. As
the threshold t is reduced, FPR increases and FNR decreases. A classifier that uses
.t = 0.5 is known to have the lowest overall error rate, but depending on the case at
hand, one may choose a threshold to reduce FNR. A typical example is a rule used to
classify individuals as diseased or not diseased, where one is more concerned about
the error of classifying a diseased individual as not diseased than about the error
of classifying a not diseased individual as diseased. The optimal threshold must be
chosen on the basis of the “cost” associated with the disease.

The receiver operating characteristic curve (ROC) for data Y is a graphic
often used in engineering, psychology and medicine to assess the performance of
diagnostic systems for simultaneously displaying the two types of errors for all
possible thresholds. A ROC curve is constructed by plotting true positive rate (or
sensitivity), .TPR (t) = Pr (s (x) > t |Y = 1) (equal to .1 − FNR) versus the false
positive rate (or 1-specificity), .FPR (t) = Pr (s (x) > t |Y = 0), for all possible
values of the threshold t that defines disease status, where the scoring rule . s (x) =
Pr (Y = 1|x) is defined in (9.2). The plot is displayed on the unit square, and the area
under the curve (AUC) represents one measure of the performance of the classifier.
Values of AUC close to 1 denote a good classifier, and one that performs not better
than chance has an AUC of . 0.5. When a ROC curve has an AUC close to 1, there is
a high probability that a diseased individual will be correctly classified and a small
probability that a healthy individual will be misdiagnosed as diseased. ROC curves
for two classifiers display their ability to detect disease status.

9.7 Area Under the Curve 391

An important detail is that .TPR is computed using data from the diseased
fraction only, and .FPR is computed using data from the non-diseased fraction
only. These quantities are conditional probabilities. Therefore, the ROC plot is
independent of the prevalence of the disease in the population. This is in marked
contrast to the so-called predicted values that involve the conditional probabilities

.Pr
(

Y = y|Ŷ = ŷ
)

, reflecting the clinical value of the test. The predicted values

depend on the prevalence of the disease in the population, .Pr (Y = y), as illustrated
below.

Predicted Disease Status

Sensitivity and specificity are often used to describe test performance. From a
diagnostic point of view, one is interested in knowing how well a test result predicts
disease status. The positive predicted value is equal to the conditional probability

that an individual has the disease, given a positive test: .Pr
(

Y = 1|Ŷ = 1
)

. An

important quantity is .Pr
(

Y = 1|Ŷ = 0
)

, the conditional probability that the disease

is present given that the test is negative. These conditional probabilities are obtained
using Bayes theorem

.Pr
(

Y = 1|Ŷ = 1
)

=
Pr
(

Ŷ = 1|Y = 1
)

Pr (Y = 1)

Pr
(

Ŷ = 1
) , (9.27)

where

. Pr
(

Ŷ = 1
)

= Pr
(

Ŷ = 1|Y = 1
)

Pr (Y = 1)

+Pr
(

Ŷ = 1|Y = 0
)

Pr (Y = 0) .

Similarly,

.Pr
(

Y = 0|Ŷ = 0
)

=
Pr
(

Ŷ = 0|Y = 0
)

Pr (Y = 0)

Pr
(

Ŷ = 0
) , (9.28)

where

. Pr
(

Ŷ = 0
)

= Pr
(

Ŷ = 0|Y = 0
)

Pr (Y = 0)

+Pr
(

Ŷ = 0|Y = 1
)

Pr (Y = 1) .

392 9 Binary Data

As a specific application, consider a test that has a specificity equal to

.Pr
(

Ŷ = 0|Y = 0
)

= 1 and a sensitivity equal to .Pr
(

Ŷ = 1|Y = 1
)

= 0.95.

Consider a person who feels who has been exposed to an infected relative and
who is evaluated as having a pre-test probability of contracting the disease (prior
probability) equal to .Pr (Y = 1) = 0.2. Using the complement of (9.28), the post-
test probability (posterior probability) of infection, given a negative test result, is

.Pr
(

Y = 1|Ŷ = 0
)

= 0.012. With a prior probability equal to .Pr (Y = 1) = 0.5,

this changes to .Pr
(

Y = 1|Ŷ = 0
)

= 0.048.

On the other hand, if sensitivity of the test is .Pr
(

Ŷ = 1|Y = 1
)

= 0.70, with

.Pr (Yi = 1) = 0.2, the posterior probability is .Pr
(

Y = 1|Ŷ = 0
)

= 0.07 and with

a prior equal to .Pr (Y = 1) = 0.5, the posterior probability is . Pr
(

Y = 1|Ŷ = 0
)

=
0.23.

Infection Prevalence

The prevalence of a disease is the proportion of individuals in the population that
have the disease, .Pr (Y = 1). Imagine that in a random sample, n individuals are
tested, that predictions . Ŷ are generated using some rule .s(x) and that T are declared
positive. Then the ratio

.P̂r
(

Ŷ = 1
)

= T

n
(9.29)

is taken as an estimator of prevalence .Pr (Y = 1). However, this estimate is biased
unless the test is perfect with specificity and sensitivity equal to 1. To see this,
let .Pr

(

̂Y = 1
)

be the expected value of .P̂r
(

̂Y = 1
)

. The relationship between

.Pr
(

Ŷ = 1
)

and .Pr (Y = 1) is given by

. Pr
(

Ŷ = 1
)

= Pr
(

Ŷ = 1|Y = 1
)

Pr (Y = 1) + Pr
(

Ŷ = 1|Y = 0
)

Pr (Y = 0)

= senPr (Y = 1) + (1 − spe) (1 − Pr (Y = 1))

= (1 − spe) + (sen + spe − 1) Pr (Y = 1) ,

(Diggle 2011) where .sen = Pr
(

Ŷ = 1|Y = 1
)

and .1 − spe = Pr
(

Ŷ = 1|Y = 0
)

.

If the test is perfect, .spe = sen = 1, and substituting above, yields . Pr
(

Ŷ = 1
)

=
Pr (Y = 1). Otherwise, with an imperfect test, .Pr

(

Ŷ = 1
)

is a linear, increasing

function of .Pr(Y = 1) (if .sen + spe > 1, implying that the test is superior to the

9.7 Area Under the Curve 393

toss of a coin). An unbiased estimator of incidence (given n, sen, spe and bounded
between 0 and 1) is

.
Pr
(

̂Y = 1
)− (1 − spe)

sen + spe − 1
= T − n (1 − spe)

n (sen + spe − 1)
. (9.30)

Example: Estimation of Prevalence Using an Imperfect Test

As an illustration assume that an imperfect test is implemented on . n = 10,000
individuals and that .T = 900 show a positive result. If this test has a sensitivity
equal to .0.85 and a specificity equal to .0.95, then the estimate of prevalence based
on (9.30) is .̂Pr (Y = 1) = 0.05.

Given n, spe and sen, a confidence interval for this estimator of prevalence is
readily obtained from the fact that T is binomially distributed. Using R, the lower
and the upper bounds for a .95% confidence interval for T are

lb <- qbinom(0.025,n,(T/n))
up <- qbinom(0.975,n,(T/n))

and the corresponding .95% (frequentist) confidence interval for .Pr (Y = 1) is

. Pr

[

lb − n (1 − spe)

n (sen + spe − 1)
< Pr (Y = 1) <

ub − n (1 − spe)

n (sen + spe − 1)

]

= 0.95.

For instance, for .T = 900 tested positive out of .n = 10,000 with .spe = 0.95 and
.sen = 0.85, the above gives

.Pr (0.043 < Pr (Y = 1) < 0.057) = 0.95. (9.31)

This calculation assumes that spe and sen are known without error. Incorporation
of uncertainty in these parameters can be accommodated in a straightforward
manner adopting a Bayesian approach and is expected to result in a confidence
interval wider than that given by (9.31).

As shown below it is quite simple to implement a Monte Carlo-based Bayesian
approach. Let .Pr (Y = 1) = θ and .Pr

(

̂Y = 1
) = φ. The strategy adopted is to

parametrise the model in terms of .(φ, sen, spe), to draw posterior samples from
.[φ, sen, spe|t, n] and to construct . θ from these draws using (9.30) at each round.
These are draws from the desired posterior distribution .[θ |t, n]. This Monte Carlo
method is known as composition (see page 153). The Bayesian model is

.p (φ, sen, spe|t, n) ∝ p (φ, sen, spe) p (t |n, φ) . (9.32)

394 9 Binary Data

Assume that .φ, sen and spe are a priori independent, with .φ ∼ Un (0, 1), . sen ∼
Un (0.8, 1) and .spe ∼ Un (0.925, 1). Thus, sen is constrained in the interval
.[0.8, 1] and spe in the interval .[0.925, 1]. With these assumptions,

.p (φ, sen, spe|t, n) ∝ p (sen) p (spe) p (t |n, φ) (9.33)

where the binomial likelihood is of the form

.p (t |n, φ) ∝ φt (1 − φ)n−t . (9.34)

Viewed as a function of . φ, this is the kernel of a beta distribution .Be (t+1, n−t+1).
For .n = 10,000 and .t = 900, this is a very peaked (informative) likelihood. The
algorithm proceeds as follows:

1. Draw sen from . Un (0.8, 1)
2. Draw spe from . Un (0.925, 1)
3. Draw . φ from . Be (t + 1, n − t + 1)
4. Calculate . θ from (9.30) and repeat from 1 until the desired chain length is

achieved.

Steps 1 and 2 could be replaced with scaled beta distributions .Be (a, b) where a
and b are chosen to generate the appropriate mode (e.g. .0.85 for sen and .0.95 for
spe). The scaling is chosen to guarantee that the draws are within specific intervals
(e.g. .[0.8, 1] for sen and .[0.925, 1] for spe and the lower limit .0.925 guarantees that
the estimator of . θ is positive). The code uses an algorithm due to Devroye (1986) to
sample from truncated distributions (see page 218).

It is clear from (9.33) and (9.34) that the data contain information neither about
sen nor about spe. The choice of the range of values from which these parameters
are sampled propagates into the posterior uncertainty of .[θ |t, n].

The R-code below implements the algorithm.

CODE0902
rm(list=ls()) # CLEAR WORKSPACE
set.seed(3033)
rep<-10000
se<-0.85
sp<-0.95
a_se<-4
b_se<-1.5
a_sp<-10
b_sp<-1.5

THEORETICAL MODE OF BETA PRIORS
theoretmodese<-(a_se-1)/(a_se+b_se-2)
theoretmodesp<-(a_sp-1)/(a_sp+b_sp-2)
resultg<-matrix(data=NA,nrow=rep,ncol=4)

NUMBER OF TESTS: n
n<-10000
NUMBER OF POSITIVE TESTS: t
t<-900

9.7 Area Under the Curve 395

for (i in 1:rep){
psi<-rbeta(1,(t+1),(n-t+1))
a<-1-sp
b<-se+sp-1
if((psi-a) > 0)

{
theta <- (psi-a)/b
}
else {theta <- 0}

DRAW SE SP FROM TRUNCATED BETA’S USING DEVROYE’S ALGORITHM
se<-qbeta(runif(1,pbeta(0.8,a_se,b_se),pbeta(1,a_se,b_se)),
a_se,b_se)

sp<-qbeta(runif(1,pbeta(0.925,a_sp,b_sp),pbeta(1,a_sp,b_sp)),
a_sp,b_sp)

#se <- 0.85
#sp <- 0.95
OR
DRAW SE AND SP FROM APPROPRIATE UNIFORM DISTRIBUTIONS
#se<-runif(1,0.8,1)
#sp<-runif(1,0.925,1)
resultg[i,]<-c(i,theta,se,sp)
}
BAYESIAN POSTERIOR MEAN OF THETA AND POSTERIOR INTERVAL
postmean <- mean(resultg[,2])
postinterval <- quantile(resultg[,2],c(0.025,0.975))
postmean

[1] 0.05754302

postinterval

2.5% 97.5%
0.01928466 0.09916501

Execution of the code choosing the scaled beta distributions for sen and spe
leads to a Monte Carlo estimate of the posterior mean of . θ equal to .0.058, with
a .95% Bayesian posterior interval .(0.019, 0.099). This is wider than the classical
interval generated by (9.31) and reflects the prior uncertainty in spe and sen. When
sen and spe are fixed at .0.85 and .0.95, respectively, the Monte Carlo output yields
an estimate of the posterior mean of . θ equal to .0.050 and a .95% Bayesian posterior
interval .(0.043, 0.057), in agreement with the classical interval (9.31).

Probabilistic Interpretation of AUC

Given an observation .Yi = 1 (class 1) and an observation .Y ′
i = 0 (class 0), the AUC

can be interpreted as the probability that the classification .s = s (xi) will assign a
higher score to . Yi than to . Y ′

i (assuming that 1’s rank higher than 0’s, so that if the
score .s(xi) is larger than a threshold t , a prediction based on . xi will be classified

396 9 Binary Data

as a member of class 1. The classification score s can be defined at the level of the
liability as in (3.74) on page 109).

It will be convenient to define the following quantities:

• T PR: . Pr (s > t |Y = 1) = 1 − Pr (s ≤ t |Y = 1) = 1 − F1 (t)

• FPR: . Pr (s > t |Y = 0) = 1 − Pr (s ≤ t |Y = 0) = 1 − F0 (t)

• .ε = 1 − F0 (t) �⇒ F0 (t) = 1 − ε �⇒ t = F−1
0 (1 − ε), where .F−1

0 is the
inverse cumulative distribution function that maps a FPR to a given threshold

• .f0 (t) = dF0(t)
dt

= p (t |Y = 0), the probability density function of s for . Y = 0
(class 0)

• . dε
dt

= −f0 (t) �⇒ dε = −f0 (t) dt

• .f1 (t) = dF1(t)
dt

= p (t |Y = 1), the probability density function of s for . Y = 1
(class 1)

Using this notation the ROC curve can be written as a function of . ε = 1− F0 (t)

as follows:

.ROC(ε) = 1 − F1

(

F−1
0 (1 − ε)

)

. (9.35)

The area under the ROC curve (AUC) is defined as .
∫ 1
0 ROC(ε) dε. Substitut-

ing (9.35) yields

. AUC =
∫ 1

0

(

1 − F1

(

F−1
0 (1 − ε)

))

dε

=
∫ −∞

∞

[

1 − F1

[

F−1
0 (F0 (t))

]]

(−f0 (t)) dt

=
∫ ∞

−∞
[1 − F1 (t)] f0 (t) dt. (9.36)

In the second line, the integration is from . ∞ to .−∞ because .F−1
0 (1) = ∞ and

.F−1
0 (0) = −∞. The third line changes the sign of . f0 and the limits of integration

are reversed. Substituting

. 1 − F1 (t) =
∫ ∞

t

f1 (u) du,

results in

. AUC =
∫ ∞

−∞

∫ ∞

t

f1 (u) f0 (t) du dt

=
∫ ∞

−∞

∫ ∞

−∞
I (u > t) f1 (u) f0 (t) du dt (9.37)

9.7 Area Under the Curve 397

that can be read as the probability that the score assigned to a draw Y from class 1
is larger than the score assigned to a draw . Y ′ from class 0.

Example: ROC Curves

ROC curves and AUC are illustrated with two simulated binary datasets that differ in
the level of heritability on the underlying scale. These are .h2 = 0.5 and .h2 = 0.23.
In both sets of data, there are 2000 phenotypes and 500 genetic markers, out of
which 20 are causal (have an effect on the value of liability). The proportion of
1’s is approximately .0.30, and this is controlled by setting the mean . μ at the level
of liability equal to .−0.67. The effects of causal loci are obtained to ensure that
the additive variance on the underlying scale is either . 0.3 (for .h2 = 0.23) or 1
(for .h2 = 0.5). The residual effects at the level of liability are iid .N (0, 1) and
phenotypes are simulated using a probit model. The . R−code below generates the
data for .h2 = 0.23.

******* GENERATE BINARY DATA - PROBIT MODEL *******
CODE0903
rm(list=ls()) # CLEAR WORKSPACE
library(glmnet)
set.seed(30337)
va<-0.3
#va <- 1
p<-0.25
#p <- 0.5
mu <- qnorm(p)
ve <- 1
nindiv<-2000
nloci<-20
nmarker<-500
be<-matrix(data=0.0,nrow=nmarker,ncol=1) # parameter true model
IDq<-sample(1:nmarker,nloci,replace=F) # choose nloci as QTL
WT<-matrix(nrow=nindiv,ncol= nmarker,

rbinom(n=nindiv*nmarker,size=2,p=.5))
XT<-matrix(data=NA,nrow=nindiv,ncol=nmarker) # NO INTERCEPT
XTi<-matrix(data=NA,nrow=nindiv,ncol=nmarker+1) # INTERCEPT
CENTER MARKER MATRIX
cm<-colMeans(WT)
for (i in 1:nmarker)
{

XT[,i]<-(WT[,i]-cm[i])
}
meanXT <- apply(XT,2,mean)
varXT<-apply(XT,2,var)
Compute 2*Sum(p(1-p)); Sum over nqtl QTL:
sumvar<-sum(varXT[IDq])
QTLeff<-sqrt(va/sumvar) # QTL effect
so that genetic variance is VA
be[IDq] <- QTLeff # QTL EFFECT
xb<-XT%*%be
p1 <- pnorm(mu+xb) # PROBIT MODEL

398 9 Binary Data

be[IDq]<-QTLeff # TRUE MARKER EFFECT = QTLeff; REST ARE ZERO
var(XT%*%be)

[,1]
[1,] 0.3103757

y<-rep(0,nindiv)
y <- rbinom(nindiv,1,p1)
mean(y)

[1] 0.288

Two models are fitted to the binary data. The first is a logistic lasso implemen-
tation and the second is a standard logistic likelihood that includes the full set of
500 genetic markers (referred to as the full model). Both models are fitted using the
package GLMNET. The full model is retrieved including .s = 0 as an argument to
the call of the function GLMNET. The code to run GLMNET, for .h2 = 0.23, is as
follows:

#CODE0903(cont)
####### FITTING FULL MODEL AND LASSO MODEL WITH GLMNET ########
set.seed(3337)
#library(glmnet)

train=sample(1:nrow(XTi),nrow(XTi)/2)
test=(-train)
y.test=y[test]
y.train<-y[train]
********** FIT GLMNET TO FIND THE BEST LAMBDA ***************
STEP 1
cv.out=cv.glmnet(
XT[train,],y[train],alpha=1,standardize=TRUE,family="binomial")
#plot(cv.out)
bestlam=cv.out$lambda.min
length(which(as.vector(coef(cv.out,s=bestlam))!=0))

[1] 56

STEP 2

fm.pred0=predict(
cv.out,s=0,newx=XT[test,],family="binomial",type="class")

fm.pred=predict(
cv.out,s=bestlam,newx=XT[test,],family="binomial",
type="class")

mean((as.numeric(fm.pred)-y.test)^2) # VALIDATION MSE: LASSO

[1] 0.273

9.7 Area Under the Curve 399

VALIDATION MSE: FULL MODEL:

mean((as.numeric(fm.pred0)-y.test)^2)

[1] 0.374

ERROR RATE OF NULL MODEL: y = mu + e
pnull<-mean(y.test)
pnull

[1] 0.296

ynull<-rep(0,length(y.test))
if(pnull > 0.5){ynull<-1}
mean((ynull-y.test)^2) # VALIDATION MSE BASED ON NULL MODEL

[1] 0.296

ROC curves can be generated using the package pROC. This package can use
the output from GLMNET (step 2, fm or fm0). Various pieces of information can
be extracted and one of these is displayed in Fig. 9.5. The curves illustrate that the
classifiers’ performance is higher at heritability .h2 = 0.5 than at .h2 = 0.23 due to
an increase in power. The lasso classifier is consistently superior to the full model
classifier (which includes the 500 marker covariates) over the full range of the values
of the threshold t .

The R-code below generates Fig. 9.5 using the package pROC.

False Positive Percentage

T
ru

e
P

os
iti

ve
 P

er
ce

nt
ag

e

20 40 60 80 100

20
 4

0
 6

0
 8

0
10

0

AUC: 78.7%

AUC: 62.4%

False Positive Percentage

T
ru

e
P

os
iti

ve
 P

er
ce

nt
ag

e

0 0 20 40 60 80 100

0 0
20

 4
0

 6
0

 8
0

10
0

AUC: 66.6%

AUC: 58.6%

Fig. 9.5 ROC curves using simulated data. Left: .h2 = 0.50. Right: .h2 = 0.23. Blue line, lasso
regression; green line, full likelihood model with all 500 covariates

400 9 Binary Data

CODE0903(cont)
#install.packages("pROC", .libPaths()[1])
library(pROC)
set.seed(420)
par(pty="s") # GENERATES "PRETTY" FIGURES

fm.pred=predict(
cv.out,s=bestlam,newx=XT[test,],family="binomial",
type="response")
fm.pred0=predict(
cv.out,s=0,newx=XT[test,],family="binomial",type="response")

pred<-as.numeric(fm.pred)
pred0<-as.numeric(fm.pred0)
roc.info<-roc(y.test, pred,plot=FALSE,legacy.axes=TRUE) # LASSO

Setting levels: control = 0, case = 1

Setting direction: controls < cases

FULL MODEL:
roc.info0<-roc(y.test, pred0,plot=FALSE,legacy.axes=TRUE)

Setting levels: control = 0, case = 1
Setting direction: controls < cases

s <-roc(y.test, pred,plot=FALSE,legacy.axes=TRUE,percent=TRUE,
xlab="False Positive Percentage",
ylab="True Positive Percentage",
col="blue",print.auc=TRUE,cex.lab=1.3)

Setting levels: control = 0, case = 1
Setting direction: controls < cases

CREATE DATA FRAME TO BE USED IN THE NEXT CODE
THAT CONTAINS TPOS, FPOS FOR THE COMPLETE RANGE
OF THRESHOLDS t
roc.df<-data.frame(tpos=roc.info$sensitivities*100,

fpos=(1-roc.info$specificities)*100,
thresholds=roc.info$thresholds)

roc.df0<-data.frame(tpos0=roc.info0$sensitivities*100,
fpos0=(1-roc.info0$specificities)*100,
thresholds0=roc.info0$thresholds)

head(roc.df)

tpos fpos thresholds
1 100.00000 100.00000 -Inf
2 100.00000 99.85795 0.04341405
3 100.00000 99.71591 0.06056188
4 99.66216 99.71591 0.06751315
5 99.66216 99.57386 0.06976092
6 99.66216 99.43182 0.07345414

9.7 Area Under the Curve 401

f50<-roc.df[min(which(roc.df$thresholds > 0.49995)),]
f50_0<-roc.df0[min(which(roc.df0$thresholds > 0.49995)),]
par(pty="m")
f50

tpos fpos thresholds
950 12.5 1.988636 0.5000075

mean(y.test)

[1] 0.296

The estimate of AUC can be retrieved typing s$auc. This yields 66.597 in
agreement with the value displayed in the right panel of Fig. 9.5 corresponding
to the lasso regression.

Estimates of AUC can also be obtained by numerical integration of the AUC
curve. The following code performs this operation using the trapezoid rule:

CODE0903(cont)
********** COMPUTE AUC BY NUMERICAL INTEGRATION ******
tpos <- roc.df$tpos/100
fpos <- roc.df$fpos/100
n<-length(tpos)
sum((tpos[-1]+tpos[-n])/2*(fpos[-n]-fpos[-1]))

[1] 0.6659724

OR AS A FUNCTION
auc <- function(fpos,tpos){

n <- length(tpos)
abs(sum((tpos[-1]+tpos[-n])/2*(fpos[-n]-fpos[-1])))

}
with(roc.df,auc(fpos/100,tpos/100)) # AUC FOR LASSO

[1] 0.6659724

with(roc.df0,auc(
fpos0/100,tpos0/100)) # AUC FULL MODEL: glmnet: LAMBDA=0

[1] 0.5932389

A threshold t equal to . 0.5 minimises the overall (validation) error rate (9.26).
This can be confirmed by extracting the necessary information from data frames
generated by the package pROC, executed by the section of R-code CODE0903
starting on page 399. The last two lines of this code output the proportion of true
positives, false positives for the complete range of values of the thresholds, t , for

402 9 Binary Data

the LASSO (f50) and for the full model (f50_0). For example, using the output
linked to f50, the estimate of the validating mean squared error or error rate is

. (100 − 12.5) × 0.296 + 1.988636 × (1 − 0.296) = 27.3

where the proportion of . 1′s in the validating data is .0.296. The result is in agreement
with mean((as.numeric(fm.pred)-y.test)ˆ2)=.0.273 in the R-code
starting on page 398.

9.8 Prediction of Disease Status of Individual Given Disease
Status of relatives

The question addressed here is how to compute the probability that an individual
will show a genetic disease, given sources of information that can be incorporated
in a probability model. This could include family history and known susceptibility
loci (So et al 2011). In the development that follows, information is restricted to the
disease status of the individual’s father and mother.

The Model

A simple binary trait (disease/not-disease) and a threshold probit model are
assumed. In the parametrisation used (see page 109 for the alternative parametri-
sation), if . ui exceeds the threshold t , then the individual shows the disease and
.Yi = 1; otherwise, if . ui is smaller than t , .Yi = 0. Assume the linear model for the
liability

.ui = μ + gi + ei, (9.38)

where .gi ∼ N
(

0, σ 2
g

)

is the additive genetic value of individual i, . σ 2
g is the

additive genetic variance, .ei ∼ N (0, 1) is the environmental deviation and . μ is
the population mean. The phenotypic variance of the marginal distribution of the

liability is .σ 2 = σ 2
g +1, and the heritability on the underlying scale is .h2 = σ 2

g

/

σ 2.

Calculation of Disease Status

The general result is motivated with a specific case. Consider the joint distribution
of the liabilities of an offspring .(uo) and of its unrelated parents . (uf , um)

.
(

uo, uf , um

) ∼ N

⎛

⎝

⎡

⎣

μ

μ

μ

⎤

⎦ ,

⎡

⎣

1 0.5h2 0.5h2

0.5h2 1 0
0.5h2 0 1

⎤

⎦ σ 2

⎞

⎠ . (9.39)

9.8 Prediction of Disease Status of Individual Given Disease Status of relatives 403

An additive genetic model is assumed, where the covariance of the offspring with
each parent is .σ 2

g /2 = h2σ 2/2.
Given this model, what is the probability that the offspring will show the

disease, given the disease status of father and mother? This conditional probability
model, given information on parents, will be referred to as the selection model,
introduced by the set of Eqs. (2.53) on page 71. Two approaches are described. One
uses standard probability theory where computations rely on multivariate normal
numerical integration. The other is an approximation that avoids the numerical
computation of multiple integrals; it is based on results of truncation selection of
normal variates dating back to Pearson (1903) and Aitken (1934). The essentials of
the latter approach are summarised in NOTE 2 on page 411.

Consider the case where the father has the disease and the mother does not.
The conditional probability that the offspring is affected by the disease, given this
information, is

. Pr
(

Yo = 1|Yf = 1, Ym = 0
) = Pr

(

Yo = 1, Yf = 1, Ym = 0
)

Pr
(

Yf = 1, Ym = 0
)

= Pr
(

uo > t |uf > t, um < t
)

=
∫∞
t

∫∞
t

∫ t

−∞ p
(

uo, uf , um

)

dumduf duo
∫∞
−∞
∫∞
t

∫ t

−∞ p
(

uo, uf , um

)

dumduf duo

=
∫∞
t

∫∞
t

∫ t

−∞ p
(

uo, uf , um

)

dumduf duo
∫∞
t

∫ t

−∞ p
(

uf , um

)

dumduf

. (9.40)

In these expressions, .p
(

uo, uf , um

)

is the joint probability density function of
the distribution defined in (9.39), and .p

(

uf , um

) = ∫∞
−∞ p

(

uo, uf , um

)

du0. The
evaluation of (9.40) requires multivariate normal numerical integration. Several
software routines are available to compute the numerical integration; here I use the
R function pmvnorm that is part of the library mvtnorm.

A little insight into expression (9.40) can be gained as follows. Under the
selection model, the joint probability density function of the trivariate normal
distribution is

. ps
(

uo, uf , um

) = p
(

uo, uf , um

)

∫∞
−∞
∫∞
t

∫ t

−∞ p
(

uo, uf , um

)

dumduf duo

and the marginal density of . uo under the selection model is

. ps (uo) =
∫ ∞

t

∫ t

−∞
ps
(

uo, uf , um

)

dumduf .

Integration of .ps (uo) over the interval .(t < uo < ∞) yields (9.40).

404 9 Binary Data

To compute the marginal probability (under the selection model) that . Yo = 1
using the Pearson-Aitken formula (see NOTE 2 on page 411), proceed as follows.
In terms of expression (9.58), let .x = (

uf , um

)

and .y = uo. Then using (9.54)
and (9.56)

.μ∗
x = E

[(

uf , um

) |uf > t, um < t
] =

[

μ + σ
φ(α)

1−�(α)

μ − σ
φ(β)
�(β)

]

(9.41)

and using (9.55) and (9.57),

. V ∗
x = Var

[(

uf , um

) |uf > t, um < t
] =

=
⎡

⎣

σ 2
[

1 − φ(α)
1−�(α)

(

φ(α)
1−�(α)

− α
)]

0

0 σ 2
[

1 − φ(β)
�(β)

(

φ(β)
�(β)

+ β
)]

⎤

⎦ . (9.42)

(see NOTE 1 on page 407 for the definition of . α and . β). Then using (9.59) the mean
of the offspring in the selection model is

.E
(

u0|uf > t, um < t
) = μ∗

y = μy + CyxV
−1
x

(

μ∗
x − μx

)

, (9.43)

and using the block in the second row and second column of (9.60), the variance of
the offspring in the selection model is

.Var
(

u0|uf > t, um < t
) = Vy − Cyx

(

V −1
x − V −1

x V ∗
x V −1

x

)

Cxy. (9.44)

Finally, the marginal probability that the offspring is affected (in the selection
model) is obtained by numerically integrating the (univariate) normal distribution
with mean given by (9.43) and variance given by (9.44) over the range: lower limit
. = t , upper limit . = infinity.

It is important to notice that results (9.41) and (9.42) are exact. However, due
to the correlation of . u0 with the truncated variables . uf and . um, the marginal
distribution of . uo after truncation is not normal. The Pearson-Aitken formula is
used to compute the mean and variance of this distribution and then integrate over
the normal distribution with this mean and variance. The assumption of normality in
this last step is an approximation that works remarkably well in the example below,
despite the rather extreme incidence for one of the cases considered.

Example: Prediction of a Genetic Disease

The computations are illustrated with a binary trait whose heritability on the
underlying scale is .h2 = 1/3 and the phenotypic variance is .σ 2 = 3/2. The

9.8 Prediction of Disease Status of Individual Given Disease Status of relatives 405

objective is to predict the disease status of an offspring, given knowledge of the
disease status of the father and the mother. The incidence in the population is either
. 2% or .0.2%.

The R-code to perform the “exact” computations and the Pearson-Aitken
formula is shown below. The code is divided in two parts; the first part performs
numerical integration and outputs the conditional probability that an offspring shows
the disease given

1. CASE 1: father affected, mother affected
2. CASE 2: father affected, mother not affected
3. CASE 3: father unaffected, mother unaffected

CODE0904
NUMERICAL INTEGRALS
rm(list=ls()) # CLEAR WORKSPACE
library(mvtnorm)
EXAMPLE: FATHER-MOTHER-CHILD
p<-0.02 # INCIDENCE IN THE POPULATION
p <- 0.002
mean<-c(0,0,0) # MEAN OF THE THREE LIABILITIES
her <- 1/3 # heritability
var <- 1.5 # variance of liability
cov <- 0.5*her*var # covariance single parent-child
t<-qnorm((1-p),mean=0,sd=sqrt(1.5)) # THRESHOLD
VAR-COV MATRIX OF LIABILITY:
sigma <- matrix(c(var,cov,cov,cov,var,0,cov,0,var),3,3)
sigma

[,1] [,2] [,3]
[1,] 1.50 0.25 0.25
[2,] 0.25 1.50 0.00
[3,] 0.25 0.00 1.50

CASE 1: FATHER AFFECTED, MOTHER AFFECTED
den<-pmvnorm(lower=c(-Inf,t,t),upper=c(Inf,Inf,Inf),

mean=mean,sigma=sigma)
num<-pmvnorm(lower=c(t,t,t),upper=c(Inf,Inf,Inf),

mean=mean,sigma=sigma)
proboffsprcase1 <- num/den
#proboffsprcase1
CASE 2: FATHER AFFECTED, MOTHER UNAFFECTED
den<-pmvnorm(lower=c(-Inf,t,-Inf),upper=c(Inf,Inf,t),

mean=mean,sigma=sigma)
num<-pmvnorm(lower=c(t,t,-Inf),upper=c(Inf,Inf,t),

mean=mean,sigma=sigma)
proboffsprcase2 <- num/den

406 9 Binary Data

#proboffsprcase2
CASE 3: FATHER UNAFFECTED, MOTHER UNAFFECTED
den<-pmvnorm(lower=c(-Inf,-Inf,-Inf),upper=c(Inf,t,t),

mean=mean,sigma=sigma)
num<-pmvnorm(lower=c(t,-Inf,-Inf),upper=c(Inf,t,t),

mean=mean,sigma=sigma)
proboffsprcase3 <- num/den
#proboffsprcase3

The three conditional probabilities are as follows: CASE 1, .0.101; CASE 2,
.0.046; and CASE 3, .0.019.

The second part computes the same conditional probabilities using the Pearson-
Aitken formula.

CODE0905
Pearson-Aitken formula
Input
mean<-0 # marginal mean of liability
var<-1.5 # marginal variance of liability
varg<-0.5 # additive genetic variance
p<-0.02 # Incidence in population
t<-qnorm((1-p),mean=0,sd=sqrt(1.5)) # THRESHOLD
varfm<-var*diag(2) # VAR-COV PARENTS
covop<-matrix(0.5*varg,nrow=1,ncol=2) # COV OFFS-PARENTS
CASE 1: FATHER AFFECTED, MOTHER AFFECTED
FATHER:
alfa<-(t-mean)/sqrt(var) # LOWER TRUNCATION
p_alfa<-dnorm(alfa) # PDF AT LOWER TRUNCATION POINT
cum_alfa<-pnorm(alfa) # CUM. DIST. FUNCTION AT LOWER TRUNCATION
intsel<-p_alfa/(1-cum_alfa) # "INTENSITY OF SELECTION"
MEAN AND VARIANCE OF (SELECTED) FATHER (MOTHER BELOW)
minfather<-mean+sqrt(var)*intsel
varfather<-var*(1-intsel*(intsel-alfa))
MOTHER
minmother<-minfather
varmother<-varfather
MEAN AND VARIANCE OF SELECTED FATHER AND MOTHER
expcase1 <- matrix(c(minfather,minmother),2,1)
varcase1 <- matrix(c(varfather,0,0,varmother),2,2)
CONDITIONAL MEAN AND VARIANCE OF LIABILITY OF OFFSPRING
condmin<-mean+covop%*%solve(varfm)%*%(expcase1)
int1<-solve(varfm)-(solve(varfm)%*%varcase1%*%solve(varfm))
condvar<-var-(covop%*%(int1)%*%t(covop))
proboffPAcase1<-1-pnorm(t,mean=condmin,sd=sqrt(condvar))

CASE 2: FATHER AFFECTED, MOTHER UNAFFECTED
FATHER: AS IN CASE 1
beta<-(t-mean)/sqrt(var) # upper TRUNCATION
p_beta<-dnorm(beta)
cum_beta<-pnorm(beta)
MOTHER MEAN AND VARIANCE
minmother<-mean-sqrt(var)*(p_beta/cum_beta)
varmother<-var*(1-(p_beta/cum_beta)*((p_beta/cum_beta)+beta))
expcase2 <- matrix(c(minfather,minmother),2,1)
varcase2 <- matrix(c(varfather,0,0,varmother),2,2)

9.8 Prediction of Disease Status of Individual Given Disease Status of relatives 407

CONDITIONAL MEAN AND VARIANCE OF LIABILITY OF OFFSPRING
condmin<-mean+covop%*%solve(varfm)%*%(expcase2)
int2<-solve(varfm)-(solve(varfm)%*%varcase2%*%solve(varfm))
condvar<-var-(covop%*%(int2)%*%t(covop))
proboffPAcase2<-1-pnorm(t,mean=condmin,sd=sqrt(condvar))
**
CASE 3: FATHER UNAFFECTED, MOTHER UNAFFECTED
FATHER: AS MOTHER IN CASE 2
expcase3 <- matrix(c(minmother,minmother),2,1)
varcase3 <- matrix(c(varmother,0,0,varmother),2,2)

CONDITIONAL MEAN AND VARIANCE OF LIABILITY OF OFFSPRING
condmin<-mean+covop%*%solve(varfm)%*%(expcase3)
int3<-solve(varfm)-(solve(varfm)%*%varcase3%*%solve(varfm))
condvar<-var-(covop%*%(int3)%*%t(covop))
proboffPAcase3<-1-pnorm(t,mean=condmin,sd=sqrt(condvar))

The three conditional probabilities are as follows: CASE 1, . 0.1; CASE 2,
.0.046; and CASE 3, .0.019, in good agreement with the results based on numerical
integration.

The results are summarised in Table 9.2. The results show that, for this example,
both ways of computing the probabilities lead to identical results, to 3 decimal
digits. Moving through the rows from right to left indicates that the probability
of disease status of the offspring increases from a value that corresponds to the
population incidence, when neither parent is affected, to a value that is 5 times larger
or 15 times larger, for incidences in the population of .2% or .0.2%, respectively,
when both parents are affected.

Note 1: Mean and Variance of the Truncated Normal Distribution

The pdf of the normal distribution with mean . μ and variance . σ 2 truncated between
a and b, .a < b, is

.p (y|a < y < b) =
(

2πσ 2
)− 1

2 exp
(

− (y−μ)2

2σ 2

)

Pr (a < y < b)
(9.45)

Table 9.2 Probability of disease of an offspring, given the disease status of its parents

.Pr(Y = 1) .(Yf = 1; Ym = 1) (.Yf = 1; Ym = 0).a (.Yf = 0; Ym = 0)

.0.02 PA .0.100 .0.046 . 0.019

N .0.100 .0.046 . 0.019

.0.002 PA .0.031 .0.0086 . 0.002

N .0.031 .0.0086 . 0.002

.Pr(Y = 1) incidence in population, PA computation with the Pearson-Aitken formula, N
numerical integration

a Disease status of parents: for example, (.Yf = 1; Ym = 0) symbolises the case where the father
shows the disease (.Yf = 1) and the mother does not (.Ym = 0)

408 9 Binary Data

where

. Pr (a < y < b) = Pr

(

a − μ

σ
<

y − μ

σ
<

b − μ

σ

)

= Pr (α < z < β) , α = a − μ

σ
;β = b − μ

σ
; z = y − μ

σ

= �(β) − �(α) .

The expected value is

.E (y|a < y < b) =
(

2πσ 2
)− 1

2

�(β) − �(α)

∫ b

a

y exp

(

− (y − μ)2

2σ 2

)

dy. (9.46)

Since .y = μ + σz and .dy = σdz, this can be written as

. E (y|a < y < b) =
(

2πσ 2
)− 1

2

�(β) − �(α)

∫ β

α

(μ + σz) exp

(

−z2

2

)

σdz

= (2π)− 1
2

�(β) − �(α)
μ

∫ β

α

exp

(

−z2

2

)

dz

+ (2π)− 1
2

�(β) − �(α)
σ

∫ β

α

z exp

(

−z2

2

)

dz

= μ + (2π)− 1
2

�(β) − �(α)
σ

∫ β

α

z exp

(

−z2

2

)

dz. (9.47)

Let .f (z) = exp
(

− z2

2

)

; then .f ′ (z) = −z exp
(

− z2

2

)

and .
∫ β

α
z exp

(

− z2

2

)

dz =
− ∫ β

α
f ′ (z) dz = − (f (β) − f (α)). Expression (9.47) can be written as

. E (y|a < y < b) = μ + (2π)− 1
2

�(β) − �(α)
σ

[

exp

(

−α2

2

)

− exp

(

−β2

2

)]

= μ + σ
φ (α) − φ (β)

� (β) − �(α)
, (9.48)

where .φ (x) is the pdf of the standard normal distribution evaluated at x.
The conditional variance is

. Var (y|a < y < b) = Var (μ + σz|α < z < β)

= σ 2V ar (z|α < z < β) . (9.49)

9.8 Prediction of Disease Status of Individual Given Disease Status of relatives 409

Then

. Var (z|α < z < β) = E
[

z2|α < z < β
]

− [E (z|α < z < β)]2 ,

where .E (z|α < z < β) = φ(α)−φ(β)
�(β)−�(α)

. The first term is

.E
[

z2|α < z < β
]

= (2π)− 1
2

�(β) − �(α)

∫ β

α

z2 exp

(

−z2

2

)

dz. (9.50)

A simple way of computing the integration is to note that

. (2π)−
1
2 z2 exp

(

−z2

2

)

= φ′′ (z) + φ (z) ,

where .φ′′ (z) is the second derivative of the pdf of the standard normal random
variable z with respect to z. Then (9.50) can be written as

. E
[

z2|α < z < β
]

= 1

�(β) − �(α)

∫ β

α

[

φ′′ (z) + φ (z)
]

dz

= 1

�(β) − �(α)

[

φ′ (z)
∣

∣

β

α
+ (� (β) − �(α))

]

. (9.51)

Using

. φ′ (z)
∣

∣

β

α
= (2π)−

1
2 α exp

(

−α2

2

)

− (2π)−
1
2 β exp

(

−β2

2

)

= αφ (α) − βφ (β) ,

and substituting in (9.51), yields

. E
[

z2|α < z < β
]

= αφ (α) − βφ (β)

� (β) − �(α)
+ 1.

Then

.Var (z|α < z < β) = 1 + αφ (α) − βφ (β)

� (β) − �(α)
−
(

φ (α) − φ (β)

� (β) − �(α)

)2

410 9 Binary Data

and

. Var (y|a < y < b) = σ 2

[

1 + αφ (α) − βφ (β)

� (β) − �(α)
−
(

φ (α) − φ (β)

� (β) − �(α)

)2
]

.

(9.52)

As a special case of (9.48) and (9.52), consider first .y > t . Then .a = t and
.b = +∞. Use the following result:

. lim
z−>∞z exp

(

−z2

2

)

= 0. (9.53)

Then .φ (β) = 0, .�(β) = 1 and using (9.53), .βφ (β) = 0. The conditional
expectation is

.E (y|y > t) = μ + σ
φ (α)

1 − �(α)
, (9.54)

where .1 − �(α) is the proportion larger than t (the proportion selected, in
quantitative genetic parlance) and .φ (α) /(1 − �(α)) is known as the intensity of
selection. The conditional variance is

. Var (y|y > t) = σ 2

[

1 + αφ (α)

1 − �(α)
−
(

φ (α)

1 − �(α)

)2
]

= σ 2
[

1 − φ (α)

1 − �(α)

(

φ (α)

1 − �(α)
− α

)]

. (9.55)

As a second case, assume .y < t . Then .a = −∞, .b = t , .φ (α) = 0, .�(α) = 0,
.αφ (α) = 0. The conditional expectation is

. E (y|y < t) = μ + σ
−φ (β)

� (β)

= μ − σ
φ (β)

� (β)
. (9.56)

The conditional variance is

. Var (y|y < t) = σ 2

[

1 − βφ (β)

� (β)
−
(

φ (β)

� (β)

)2
]

= σ 2
[

1 − φ (β)

� (β)

(

φ (β)

� (β)
+ β

)]

. (9.57)

9.9 Appendix: Approximate Analysis of Binary Traits 411

Note 2: The Pearson-Aitken Formula

The Pearson-Aitken formula describes how a mean vector and a covariance matrix
of a set of variables are affected by selection on a subset of variables. It has
been much used in animal breeding, notably by Henderson (1975). The normally
distributed random variables are the vectors x and y with joint distribution

. (x, y) ∼ N

[(

μx

μy

)

,

(

Vx Cxy

Cyx Vy

)]

. (9.58)

If selection operates on x and its expected mean changes to . μ∗
x , then the expected

mean of vector y changes to

.μ∗
y = μy + CyxV

−1
x

(

μ∗
x − μx

)

. (9.59)

If selection changes the variance of x to . V ∗
x , then the covariance matrix of .(x, y) is

changed to

.

(

V ∗
x V ∗

x V −1
x Cxy

CyxV
−1
x V ∗

x Vy − Cyx

(

V −1
x − V −1

x V ∗
x V −1

x

)

Cxy

)

. (9.60)

In the absence of selection (or with random selection), .V ∗
x = Vx , and the

covariance (9.60) reduces to the covariance structure of (9.58).

9.9 Appendix: Approximate Analysis of Binary Traits

Binary traits can be analysed ignoring their discrete nature using a linear model.
This can be a useful approximation for an initial analysis that may work adequately
in large datasets, where the proportion of . 1′s is not extreme. Here, I provide the
rationale for such an approximation and establish the relationship between the
parameters of the Bayesian linear (approximate) model and the Bayesian (true)
probit model, where parameters are defined on the unobserved underlying scale.

As before the binary datum is classified as “survival” versus “death”, say. Let u
represent the unobserved liability and t the threshold. If .u > t then the individual
survives and the binary variable (the observed datum) takes the value .y = 1. If
.u ≤ t the individual dies and the observed datum is .y = 0. The liability associated
with datum ij is . uij ; expressed in terms of the linear model, it takes the form

. uij = μ + fi + eij , i = 1, 2, ..., nf , j = 1, . . . , n,

fi |σ 2
f

iid∼ N
(

0, σ 2
f

)

, eij
iid∼ N (0, 1) , (9.61)

412 9 Binary Data

where . μ is the mean, . fi is a random full-sib family effect and . eij is a random
residual .N (0, 1). There are . nf full-sib families and n full-sibs per family. The
probability of survival of individual ij (which is the pmf of the random variable
. Yij) is

. Pr
(

yij = 1|μ, fi

) = Pr
(

uij > t |μ, fi

) = Pr
(

uij − μ − fi > t − μ − fi |μ, fi

)

= Pr (ei > t − μ − fi |μ, fi) =
∫ ∞

t−μ−fi

p
(

eij

)

deij

=
∫ μ+fi−t

−∞
p
(

eij

)

deij = �(μ + fi − t) . (9.62)

The liabilities cannot be observed and a convenient origin is to set the value of the
threshold to .t = 0. Hence,

. Pr
(

yij = 1|μ, fi

) = �(μ + fi) . (9.63)

This constraint makes the likelihood model identifiable and the Hessian becomes
negative definite. For the ij th datum, the conditional pmf is

. [�(μ + fi)]
yij [1 − �(μ + fi)]

1−yij .

To derive the approximation, the following is needed:

. �(μ + fi)|fi=0 = �(μ) ,

∂� (μ + fi)

∂fi

∣

∣

∣

∣

fi=0
= (2π)−

1
2 exp

(

−μ2

2

)

= φ (μ) ,

where . � and . φ are the cumulative distribution function and the density function
of the standard normal distribution, respectively. Expanding the conditional likeli-
hood (9.63) using a first-order Taylor series about .fi = 0, one obtains

. Pr
(

yij = 1|μ, fi

) ≈ �(μ) + fi

∂� (μ + fi)

∂fi

∣

∣

∣

∣

fi=0

= �(μ) + φ (μ) fi. (9.64)

Since the data stem from a binary process,

. E
(

Yij |μ, fi

) = Pr
(

yij = 1|μ, fi

) ≈ �(μ) + φ (μ) fi,

Var
(

Yij |μ, fi

) = Pr
(

yij = 1|μ, fi

) (

1 − Pr
(

yij = 1|μ, fi

))

≈ [�(μ) + φ (μ) fi] [(1 − �(μ)) − φ (μ) fi]

= �(μ) (1 − �(μ)) + φ (μ) fi − φ (μ)2 f 2
i − 2�(μ) φ (μ) fi. (9.65)

9.9 Appendix: Approximate Analysis of Binary Traits 413

Also,

. Cov
(

Yij , Yik|μ, fi

) = 0.

Marginally with respect to . fi ,

.E
(

Yij |μ
) = Efi

[

E
(

Yij |μ, fi

)] ≈ �(μ) . (9.66)

. Var
(

Yij |μ
) = Varfi

(

E
(

Yij |μ, fi

))+ Efi

(

Var
(

Yij |μ, fi

))

The first term in the right-hand side is

. Varfi

(

E
(

Yij |μ, fi

)) ≈ Varfi [�(μ) + φ (μ) fi] = φ (μ)2 σ 2
f .

The second term in the right-hand side is

. Efi

(

Var
(

Yij |μ, fi

)) ≈ Efi

[

�(μ) (1 − �(μ)) − φ (μ) fi − φ (μ)2 f 2
i

]

= �(μ) (1 − �(μ)) − φ (μ)2 σ 2
f .

Therefore,

. Var
(

Yij |μ
) = φ (μ)2 σ 2

f + �(μ) (1 − �(μ)) − φ (μ)2 σ 2
f

= �(μ) (1 − �(μ)) . (9.67)

Similarly,

. Cov
(

Yij , Yik|μ
) = Cov

[

E
(

Yij |μ, fi

)

,E (Yik|μ, fi)
]+ E

[

Cov
(

Yij , Yik|μ, fi

)]

= φ (μ)2 σ 2
f . (9.68)

Invoking the normal approximation to the likelihood, the hierarchical model
becomes

. Yij |μ, fi ∼ N
(

[�(μ) + φ (μ) fi] ,
[

�(μ) (1 − �(μ)) − φ (μ)2 σ 2
f

])

,

fi |σ 2
f ∼ N

(

0, σ 2
f

)

,

that can be expressed as

.Yij |μ, fi ∼ N
(

μ∗ + f ∗
i , σ 2∗

e

)

,

f ∗
i |σ 2

f ∼ N
(

0, σ 2∗
f

)

,

414 9 Binary Data

where

.

μ∗ = �(μ) ,

f ∗
i = φ (μ) fi,

σ 2∗
e = �(μ) (1 − �(μ)) − σ 2∗

f ,

σ 2∗
f = φ (μ)2 σ 2

f ,

h2o = 2σ 2∗
f

σ 2∗
f + σ 2∗

e

= 2φ (μ)2 σ 2
f

� (μ) (1 − �(μ))
.

(9.69)

These equations establish the association between the parameters of the linear
approximation and those of the probit model on the underlying scale.

Assuming improper uniform prior distributions for .
(

μ, σ 2
f

)

, the approximate

posterior density is

. p
(

μ, σ 2
f

)

∝ p
(

y|μ, σ 2
f

)

p
(

f |σ 2
f

)

∝
(

σ 2∗
e

)− N
2
exp

[

− 1

2σ 2∗
e

(

y − 1μ∗ − Zf ∗)′ (y − 1μ∗ − Zf ∗)
]

(

σ 2∗
f

)− nf
2
exp

(

− 1

2σ 2∗
f

f ∗′
f ∗
)

, N = nf n, (9.70)

where . f ∗ is the column vector with . nf elements . f ∗
i .

Example

The approximation is implemented to analyse simulated binary data with a full-sib
family structure. There are 1000 full-sib families, 3 offspring per family. On the
underlying scale of the true model, the intraclass correlation between full-sibs is
.0.15 leading to a heritability on the underlying scale equal to .0.30. The proportion
of . 1′s among the 3000 binary records is approximately .0.16. The true model is
executed using the R-code on page 642. Based on a single chain of length 2000, the
Gibbs sampler generated the following estimates of posterior means:

.̂E (μ|y) = −1.07,

̂E
(

σ 2
f |y
)

= 0.173,

̂E
(

h2|y
)

= 0.293.

9.9 Appendix: Approximate Analysis of Binary Traits 415

The analysis based on the normal approximation generates the following estimates
of posterior means of parameters on the observed scale:

. ̂E (μ|y) = 0.160,

̂E
(

σ 2
f |y
)

= 0.0102,

̂E
(

σ 2
e |y
)

= 0.126,

̂E
(

h2|y
)

= 0.149.

These can be transformed to the estimates on the underlying scale using (9.69):

. ̂E (μ|y) = −0.995,

̂E
(

σ 2
f |y
)

= 0.174,

̂E
(

h2|y
)

= 0.291.

in good agreement with the results of the exact analysis. However, uncertainty is
a little underestimated with the normal model. For instance, for .[σ 2

f |y], the . 95%
posterior interval obtained with the exact analysis is .(0.090; 0.276) and with the
approximation .(0.106; 0.268). This is probably because the approximation is based
on a first-order Taylor expansion and the variance is a second-order term. In general,
the approximation deteriorates when the proportion of . 1′s is more extreme and
datasets are smaller.

The R-code below fits the normal approximation:

CODE0906
GAUSSIAN FULL SIB-FAMILY MODEL; SINGLE-SITE GIBBS SAMPLING
AS AN APPROXIMATION TO THE TRUE PROBIT MODEL
rm(list=ls()) # Clear the workspace
set.seed(12345)
require(graphics)
GENERATE CORRELATED (FULL-SIBS DATA
#install.packages("MCMCpack", .libPaths()[1])
#install.packages("mvtnorm", .libPaths()[1])
library(MCMCpack)
INITIALISE PARAMETERS
p0 <- 0.15
mu <- qnorm(p0)
iccfs<-0.15 #INTRACLASS CORRELATION FS
VARIANCE BETWEEN FAMILIES: iccfs /(1- iccfs)
vfs <- iccfs/(1-iccfs)
nfs<-1000 # NUMBER OF FULL-SIB FAMILIES

fs<-3 #FULL-SIB FAMILY SIZE
N<-nfs*fs

c<-0
##

416 9 Binary Data

GENERATE BINARY RECORDS Y
f<-rnorm(nfs,mean=0,sd=sqrt(vfs))
p <- pnorm(mu+f)
y <- rbinom(N,1,rep(p,each=fs))
w <- rep(1:nfs,each=fs)
d<-data.frame(w,y)
family <- as.factor(w)
Z<-model.matrix(~0+family)

ztz<-t(Z)%*%Z
rep<-2000
resultap<-matrix(data=NA,nrow=rep,ncol=5)
transf<-matrix(data=NA,nrow=rep,ncol=4)

#INITIALISE THE VECTOR OF FAMILIY EFFECTS fe
(Not to be confused with the TRUE family effects f)
fe<-rep(0,nfs)
INITIALISE BETWEEN FAMILY VARIANCE COMPONENT vf
vf<-1
INITILISE RESIDUAL VARIANCE
ve<-1
INITIALISE k
k<-ve/vf
INITIALISE THE MEAN
mu<-0
sumpyinvt<-0
#START GIBBS LOOP NORMAL MODEL
ptm <- proc.time()
for (i in 1:rep)
{

print(i)
SAMPLE mu
meanmu<-sum(y-Z%*%fe)/(nfs*fs)
mu<-rnorm(1,mean=meanmu,sd=sqrt(ve/(nfs*fs)))
SAMPLE FAMILY EFFECTS f
varf<-(k+fs)^(-1)
fmean<- varf*(t(Z)%*%(y-mu))
fe<-rnorm(nfs,mean=fmean, sd=sqrt(varf*ve))
#SAMPLE vf
#COMPUTE SCALE
ftf<-sum(fe*fe)
vfx<-ftf/rchisq(1,nfs-2)
vf<-as.numeric(vfx)
SAMPLE ve
COMPUTE SCALE
e<-(y-mu-Z%*%fe)
ete<-t(e)%*%e
vex<-ete/rchisq(1,N-2)
ve<-as.numeric(vex)
k<-ve/vf
her <- (2*vf)/(vf+ve)
resultap[i,]<-c(i,mu,vf,ve,her)
TRANSFORM TO PARAMETERS IN UNDERLYING SCALE
mut <- qnorm(mu)
vft <- vf/(dnorm(mut)**2)
hert <- (2*vft)/(vft+1)
transf[i,] <- c(i,mut,vft,hert)

}
proc.time()-ptm

Chapter 10
Bayesian Prediction and Model Checking

Aspects of Bayesian prediction have been addressed in previous chapters. In
particular, Chaps. 7 and 9 show a Bayesian implementation of the spike and slab
model for continuous and binary records, respectively, and illustrate how the
marginal posterior distribution of validating mean squared errors can easily be
computed in an McMC environment (pages 331 and 386).

This chapter brings several elements of Bayesian prediction into focus. After a
brief discussion of the type of uncertainty accounted for by different predictors, the
chapter introduces the prior and the posterior predictive distributions that are key
ingredients of Bayesian prediction. Two examples, one using count data and the
other continuous data, illustrate the kind of predictive inferences that are possible
when posterior distributions are known. One example uses an analytical approach,
whereas the other extracts Monte Carlo samples from known distributions using the
method of composition. The Monte Carlo samples drawn from either the marginal
posterior distributions of the parameters used to construct the predictor or from
the posterior predictive distribution of the predictor are used to generate Monte
Carlo estimates of the complete marginal posterior distributions of validating mean
squared errors. This makes use of the important property of ergodic averages
mentioned on page 186.

Section 10.3 offers a breakdown of the Bayesian expectation of training and
validating mean squared errors of prediction. The concept of expected optimism,
previously introduced in Chap. 6 in the frequentist framework, is given a Bayesian
interpretation.

This is followed by an example of a logistic model using Bayesian-McMC
and maximum likelihood implementations. The predictive ability of the model
quantified using validating mean squared errors is obtained with both approaches.
The uncertainty associated with the mean squared errors is also illustrated with both
methods of inference. The chapter concludes with the topic of model checking using
posterior predictive simulations with an application in an McMC environment.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Sorensen, Statistical Learning in Genetics, Statistics for Biology and Health,
https://doi.org/10.1007/978-3-031-35851-7_10

417

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35851-7protect T1	extunderscore 10&domain=pdf
https://doi.org/10.1007/978-3-031-35851-7_10
https://doi.org/10.1007/978-3-031-35851-7_10
https://doi.org/10.1007/978-3-031-35851-7_10
https://doi.org/10.1007/978-3-031-35851-7_10
https://doi.org/10.1007/978-3-031-35851-7_10
https://doi.org/10.1007/978-3-031-35851-7_10
https://doi.org/10.1007/978-3-031-35851-7_10
https://doi.org/10.1007/978-3-031-35851-7_10
https://doi.org/10.1007/978-3-031-35851-7_10
https://doi.org/10.1007/978-3-031-35851-7_10
https://doi.org/10.1007/978-3-031-35851-7_10

418 10 Bayesian Prediction and Model Checking

10.1 Levels of Uncertainty

One of the attractions of Bayesian methods is the natural manner of accounting for
uncertainty and the possibility of doing so in a single, coherent analysis. Consider
the classical regression model with the .n × 1 training data vector y modelled as

.y|b, σ 2 ∼ N
(
xb, Iσ 2

)
, (10.1)

where b is a .p×1 vector of unknown regression coefficients, x is an observed . n×p

matrix of covariates, I is the identity matrix of dimension .n× n and the scalar . σ 2 is
the unknown conditional variance component of a datum, the same for all data.

Data are divided into training and validating sets, fitting the model using the
former and evaluating its predictive performance with the latter.

Let . b̂ represent an estimator of b using training data y and covariates x. One
possible predictor (given the sampling model (10.1)) evaluated at .x = x0 (here a
.p × 1 vector) that has been explored in previous chapters is

.̂y0 = x′
0b̂. (10.2)

This predictor represents a point estimate of the average value of . y0 (evaluated at
.x = x0) and ignores uncertainty.

A second possibility is to construct a predictor that accounts for the uncertainty
associated with the unknown b. A Bayesian could do this in an McMC environment
by replicating the following two steps:

1. Draw . b∗ from . [b|y]
2. Construct the predictor . ŷ0 = x′

0b
∗

Rather than a point prediction as in the previous case, the draws from . [b|y]
and the derived . ŷ0’s generate a distribution of . ŷ0. This distribution represents the
propagated posterior uncertainty of b on to . ŷ0, but as (10.2), .ŷ0 = x′

0b
∗ predicts an

average value . y0, given covariate . x0 and . b∗.
The predictor can be used to compute posterior distributions of any function, such

as validating mean squared errors. The inferential uncertainty in b is a component
of the expected validating mean squared error.

A third possibility is to construct a predictor of new validating records . y0 that
accounts for uncertainty about b and now also for sampling uncertainty of the
new records. Again in an McMC environment, this is achieved by repeating the
following:

1. Draw . b∗ from . [b|y]
2. Draw the predictor . ŷ∗

0 from .
[
y0|b∗, x0, y

]

This generates draws from the joint posterior distribution .[y0, b|x0, y]. In this
case, both sources of uncertainty are components of the expected validating
mean squared error. Generation of new data from .

[
y0|b∗, x0, y

]
is accounting for

10.2 Prior and Posterior Predictive Distributions 419

sampling variation, and therefore, frequency properties of the Bayesian procedure
are implicitly incorporated.

The Bayesian approach leads to a partitioning of the expected validating mean
squared error in line with the frequentist counterpart. However, the interpretation
is different. For instance, in the third case in the Bayesian context, the expectation
is taken over the posterior predictive distribution of predicted data, with training
and validating data fixed. This results in three terms contributing to the expected
validating mean squared error. In common with the frequentist approach shown
in (6.51) on page 279, the first term represents sampling uncertainty of replicated
(validating) data. The second represents posterior uncertainty of the predictor (see
expression (10.4b) below) and the third is the average (over the posterior predictive
distribution) squared discrepancy between the predictor and the observed validating
data that is held fixed.

In a frequentist setting, the sampling uncertainty of the estimate . ̂b can be quan-
tified by replicating simulation of data, estimating b, and constructing a prediction
. ̂y0 for each replicate. Using the . ̂y0’s in the construction of the mean squared error
accounts for the sampling uncertainty of . ̂b. An alternative to simulating new data is
to resample the observed data. When a simulation strategy is chosen, parameters are
replaced by their estimated values obtained from the original training data. Under
both strategies, the sampling uncertainty of a new datum can be accounted for by
adding an extra step consisting of drawing the predictors . ̂y∗

0 from .
[
y0 |̂b, x0, y

]
.

The concept of uncertainty and its propagation in the computation of validating
mean squared errors, from a Bayesian and from a frequentist perspective, is
illustrated with the logistic model example on page 430. Details of the algebra of
the Bayesian expectation can be found on page 428 and in the prediction problems
on pages 562, 651 and 654.

10.2 Prior and Posterior Predictive Distributions

In the standard setup, we observe an . n−dimensional response vector y and the
associated .(n × p) matrix of covariates x. The conditional mean of y is .f (x) for
some function f and the objective could be to obtain a prediction for a yet-to-
be-observed response . y0, a scalar drawn from the same distribution as y, using
the estimated function evaluated at a value of the covariate equal to . x0. The
classical solution to this problem has been to use the training data .zi = (xi, yi),
.i = 1, 2, . . . , n and to construct the predictor .̂y0 = f̂ (z, x0), where . f̂ is some
estimate of f . For instance, in standard least squares linear regression, .f (xi) = x′

ib,

.f̂ (z, x0) = x′
0b̂, where .̂b = (

x′x
)−1

x′y and . x′
i is the ith row of the . (n × p)

matrix x. In other words, the frequentist solution is to use .̂y0 = E
(
y0|x0, b̂

)
as the

predictor, where the parameter b that indexes the conditional distribution is replaced
by its least squares estimator . ̂b in this case. This prediction can be regarded as a point
estimate of the average response in the population, conditional on . x0 and . ̂b.

420 10 Bayesian Prediction and Model Checking

In a more general formulation, given a vector of unknown parameters . θ , the
Bayesian solution to this prediction problem is to construct the posterior predictive
density of . y0

. p (y0|y, x0) =
∫

p (y0, θ |y, x0) dθ

=
∫

p (y0|θ, y, x0) p (θ |y) dθ

=
∫

p (y0|θ, x0) p (θ |y) dθ, (10.3)

wherein, going from line 2 to line 3, it is assumed that given . θ , . y0 is conditionally
independent of y and that . θ and . x0 are independent. Notice that even though . y0 is
conditionally independent of y, they are not marginally independent. If in the last
line, .p (θ |y) is replaced by the prior density .p (θ), (10.3) is known as the prior
predictive distribution of . y0.

Having obtained (10.3), one may wish to use the mean or the mode as the
point predictor . ̂y0. Consider the linear regression example, where . y0|b, x0, σ

2 ∼
N

(
x′
0b, σ 2

)
. Assume that the variance . σ 2 is known and that there is a prior

distribution for b which is left unspecified. The mean and variance of the posterior
predictive distribution are

.E
(
y0|y, x0, σ

2
)

= Eb|y,σ 2 [E(y0|b, x0)] = Eb|y,σ 2

(
x′
0b

)
, . (10.4a)

Var
(
y0|y, x0, σ 2

)
= Eb|y,σ 2

[
Var

(
y0|b, x0, σ 2

)]
+ Varb|y,σ 2 [E (y0|b, x0)]

= σ 2 + Varb|y,σ 2

(
x′
0b

)
. (10.4b)

The mean can be seen to be an average, over the posterior distribution of b (given
. σ 2 since this variance is assumed known), of the conditional mean of . y0 given b.
The variance contains two terms: one representing the sampling uncertainty of the
new record and the other the posterior uncertainty of . x′

0b. As the dimension of y
increases and that of b remains constant, the second term in the last line (the variance
of the posterior distribution of . x′

0b) vanishes but the first term does not.
Posterior predictive distributions account for sampling uncertainty of records that

could have been observed, given a model. In this sense, frequency properties of
the Bayesian procedure are implicitly incorporated. This applies to any function of
replicated data, such as mean squared errors.

The classical frequentist approach to prediction can be regarded as an approxi-
mation to a Bayesian prediction based on the posterior predictive density. Details
are found in the Note on page 155 where it is shown that in large samples,

.p (y0|y, x0) ≈ p
(
y0|θ̂ , x0

)

10.2 Prior and Posterior Predictive Distributions 421

and therefore

. E (y0|y, x0) =
∫

y0p (y0|y, x0) dy0

≈
∫

y0p
(
y0|θ̂ , x0

)
dy0

= E
[
y0|θ̂ , x0

]

= x′
0θ̂ ,

where . ̂θ is the maximum likelihood estimator of . θ (or the least squares estimator in
this linear regression setting).

Example: Binary Data

The following stylised example based on binary records (.y ∈ 0, 1) illustrates
properties of the prior and posterior predictive distributions.

Before data Y are observed, the distribution of a future binary observation,
given its prior distribution, takes the form .Pr (Y = y|θ) = θy (1 − θ)1−y , where
.E (Y |θ) = Pr (Y = 1|θ) = θ is the probability that the outcome is equal to 1. Then
the pmf of the prior predictive distribution of the future record is

. Pr (Y = y) =
∫ 1

0
p (y, θ) dθ

=
∫ 1

0
p (y|θ) p (θ) dθ

=
∫ 1

0
θy (1 − θ)1−y p (θ) dθ. (10.5)

I will assign a beta distribution with hyperparameters a and b as the prior for . θ ,
.Be (θ |a, b). These hyperparameters define how the probability mass is allocated
through the support of the distribution and define its moments. The pdf of
.Be (θ |a, b) is

. p (θ |a, b) = � (a + b)

� (a) � (b)
θa−1 (1 − θ)b−1 ∝ θa−1 (1 − θ)b−1 , θ ∈ [0, 1] ,

(10.6)

422 10 Bayesian Prediction and Model Checking

where .� (x + 1) = x! is the gamma function that generalises the factorial function
to all real numbers .x > 0. The mean and variance are

. E (θ |a, b) = a

a + b
,

Var (θ |a, b) = ab

(a + b)2 (a + b + 1)
.

When .a = 1, .b = 1, the beta distribution becomes a proper uniform distribution in
.[0, 1].

Using the beta distribution as prior, (10.5) becomes

. Pr (Y = y) = � (a+b)

� (a) � (b)

∫ 1

0
θy+a−1 (1−θ)b−y dθ

= � (a+b)

� (a) � (b)

∫ 1

0
θa∗−1 (1−θ)b

∗−1 dθ, a∗ = a+y, b∗ = 1+b−y,

= � (a+b)

� (a) � (b)

� (a∗) � (b∗)
� (a∗+b∗)

∫ 1

0

� (a∗+b∗)
� (a∗) � (b∗)

θa∗−1 (1−θ)b
∗−1 dθ

= � (a+b)

� (a) � (b)

� (a∗) � (b∗)
� (a∗+b∗)

= � (a+b)

� (a) � (b)

� (a+y) � (b+1−y)

� (a+b+1)
.

(10.7)

wherein going from the second to the third line, I multiplied and divided by the
constant of integration and the fourth line follows because the integral is over a
proper pdf and equals 1. Expression (10.7) is a special case of the beta-binomial
distribution .Bb (x|a, b, n) that is generated by the mixture

.Bb (x|a, b, n) =
∫ 1

0
Bi (x|n, θ) Be (θ |a, b) dθ, (10.8)

where .n = 1 for the case of the Bernoulli trial.
The probability that .Y = 1 derived from the prior predictive distribution is

obtained from (10.7), setting .y = 1 and using .� (x + 1)
/

� (x) = x� (x),

. Pr (Y = 1) = � (a + b)

� (a) � (b)

� (a + 1) � (b)

� (a + b + 1)

= a

a + b
,

which is equal to the prior mean, as expected, since the prior is the only source of
information. This result can also be arrived at more expediently using the mixture

10.2 Prior and Posterior Predictive Distributions 423

formulation (10.8),

. Pr (Y = 1) = E (y) = Eθ [E (y|θ)]

= Eθ (nθ) = na

a + b
,

where .n = 1 in the case of the Bernoulli random variable. Since the Bernoulli
distribution is completely characterised by knowledge of .Pr (Y = 1) (from which
.Pr (Y = 0) = 1 − Pr (Y = 1) is obtained), one can also write

. Pr (Y = 1) =
∫ 1

0
Pr (Y = 1|θ) p (θ) dθ

=
∫ 1

0
θp (θ) dθ = E (θ) , (10.9)

again indicating the dependence of the prior prediction on the prior distribution.
Imagine now that m binary responses .y = (y1, y2, . . . , ym)′ have been observed

in a first sample. What is the posterior predictive distribution for a scalar .ym+1 in a
second sampling? With y representing the .m × 1 data vector from the first sample,
the posterior predictive pmf for the Bernoulli example is characterised by computing

. Pr (Ym+1 = 1|y) =
∫ 1

0
Pr (Ym+1 = 1|θ) p (θ |y) dθ

=
∫ 1

0
θp (θ |y) dθ = E (θ |y) , (10.10)

equal to the posterior mean. In addition, using (10.8)

. E (Ym+1|y) = Eθ |y [E (Ym+1|θ)] = E (θ |y) .

Applying Bayes theorem, the posterior density is

. p (θ |y) = p (y|θ) p (θ)

p (y)

= 1

p (y)

∏m

i=1
θyi (1 − θ)1−yi

� (a + b)

� (a) � (b)
θa−1 (1 − θ)b−1

= K θ
∑m

i=1 yi (1 − θ)m−∑m
i=1 yi θa−1 (1 − θ)b−1

∝ θa+∑m
i=1 yi−1 (1 − θ)b+m−∑m

i=1 yi−1 ,

K = � (a + b)

p (y) � (a) � (b)
, (10.11)

424 10 Bayesian Prediction and Model Checking

which is the kernel of a .Be
(̃
a, b̃

)
distribution, where

. ̃a = a +
m∑

i=1

yi,

b̃ = b + m −
m∑

i=1

yi .

Then (10.10) is

. Pr (Y = 1) = E (θ |y)

= ã

ã + b̃
= a + ∑m

i=1 yi

a + b + m
. (10.12)

Given the model, the predictive posterior distribution is affected by the prior input
through a and b, but the influence dissipates as sample size m increases, since a and
b are usually small numbers relative to m and .

∑m
i=1 yi .

Example: Continuous Data

This example considers the linear regression model

.y|b, σ 2 ∼ N
(
xb, Iσ 2

)
(10.13)

with independent improper uniform prior distributions associated with the parame-
ters .

(
b, σ 2

)
.

The objective of this example is to illustrate Monte Carlo estimation of the
distribution of 3 different validating mean squared errors that account for different
sources of uncertainty of the predictor. The example is essentially an illustration of
the construction of the distribution of one random variable (the mean squared error)
using the known distribution of another random variable (the predicted values) and
how easily this is accomplished using Monte Carlo methods.

The data (a vector with 2000 records) are simulated as follows:

• the vector b of regression coefficients, of dimension .150 × 1, is drawn from a
normal distribution . b ∼ N (0, 4 × I)

• the elements of the full rank matrix x of covariates, of dimension .2000 × 151,
are drawn from a binomial distribution .x ∼ Bin (2, 0.5), with an extra column
vector of . 1′s added to account for an intercept which is set equal to . μ = 10

• vector of records y, of dimension the .2000 × 1, is drawn from a normal
distribution .y ∼ N (xb, 20 × I)

10.2 Prior and Posterior Predictive Distributions 425

The 2000 records are divided into a training (t) and a validating (v) set of equal
size, so that .y = (

y′
t , y

′
v

)′.
The parameters of the model are drawn from the appropriate posterior distri-

bution, given training data . yt , using the method of composition (see page 153) as
follows:

• Draw .σ 2∗ from the marginal posterior distribution

.

[
σ 2|yt

]
∼ χ−2(v, S),

a scale inverted chi-square distribution with .n − (p + 1) − 2 degrees of freedom
and scale parameter

.
1

v

(
y − xb̂

)′ (
y − xb̂

)
,

where .̂b = (
x′x

)−1
x′y, as in (4.46) on page 161 and . p = 150

• Draw . b∗ from the conditional posterior distribution

.

[
b|σ 2∗, yt

]
∼ N

(
b̂,

(
x′x

)−1
σ 2∗) ,

a normal distribution (see page 156 for a derivation)
• Draw .y∗

v,pred , the .1000 × 1 vector of predicted validating records from the
conditional posterior distribution

.

[
yv,pred |b∗, σ 2∗] ∼ N

(
xvb

∗, Iσ 2∗) ,

a normal distribution (given .
(
b∗, σ 2∗), .yv,pred is independent of . yt).

These steps are repeated 1000 times to obtain the required sample. In each cycle,
.
(
σ 2∗, b∗, y∗

v

)
is a sample from the joint posterior distribution .

[
σ 2, b, yv|yt

]
, while

. y∗
v is a sample from the posterior predictive distribution .

[
yv,pred |yt

]
.

Using the draws from the joint posterior distribution, the following functions are
calculated. First,

.MSEv,1 = 1

750

(
yv − xvb

∗)′ (
yv − xvb

∗)
, (10.14)

a point estimator of the validating mean squared error of average predictions,
where .b

∗ = Ê (b|y), the Monte Carlo estimate of the posterior mean of b obtained
using the Monte Carlo draws . b∗ from the marginal posterior distribution .[b|y].

426 10 Bayesian Prediction and Model Checking

F
re

qu
en

cy

24 26 28 30

0
20

0
40

0
60

0
80

0
10

00

F
re

qu
en

cy

40 45 50

0
20

0
40

0
60

0
80

0

Fig. 10.1 Left: histogram of the marginal posterior distribution of .MSEv,2; the validating mean
squared error accounting for posterior uncertainty of the parameters of the Bayesian model. Right:
histogram of the marginal posterior distribution of .MSEv,3; the validating mean squared error
accounting for posterior uncertainty of the parameters of the Bayesian model and for sampling
uncertainty of new validating records

Second, for each of the 1000 cycles using the draws . b∗, compute

.MSEv,2 = 1

750

(
yv − xvb

∗)′ (
yv − xvb

∗) . (10.15)

The elements of (10.15) constructed in this way constitute extractions from the
Monte Carlo estimate of the marginal posterior distribution of .MSEv,2. This
posterior distribution reflects the propagated posterior uncertainty of b.

Third, for each of the 1000 cycles, compute

.MSEv,3 = 1

750

(
yv − y∗

v,pred

)′ (
yv − y∗

v,pred

)
, (10.16)

This estimator of validating mean squared error of predictions of individual data
points accounts for posterior uncertainty of the parameters of the Bayesian model
and for sampling uncertainty of the new data. The draws (10.16) constitute
extractions from the Monte Carlo estimate of the marginal posterior distribution
of .MSEv,3. The Monte Carlo estimates of the marginal posterior distributions of
.MSEv.2 and .MSEv,3 are displayed as histograms in Fig. 10.1.

The R-code below simulates the data, executes the method of composition and
computes the validating mean squared errors.

CODE1001
rm(list=ls()) # CLEAR WORKSPACE
set.seed(123)

nindiv <- 2000
nmark <- 150

10.2 Prior and Posterior Predictive Distributions 427

nsamples <- nindiv*nmark
GENERATE COVARIATE MATRIX FROM BINOMIAL DISTRIBUTION
X<-matrix(nrow=nindiv,ncol=nmark,

rbinom(n=nsamples,size=2,p=.5))

CHOOSE VALUE FOR MEAN mu
mu <- 10
CHOOSE VALUE FOR ENVIRONMENTAL VARIANCE ves
ves<-20
b<-matrix(data=0.0,nrow=nmark,ncol=1) # b from operational model

et<- rnorm(nindiv,mean=0,sd=sqrt(ves))
b <- rnorm(nmark,mean=0,sd=2)
y <- mu + X %*%b + et
train <- sample(1:nrow(X),floor(0.5*nrow(X)))
Xt <- X[train,]
yt <- y[train]
Xv <- X[-train,]
yv <- y[-train]
Zt <- cbind(1,Xt)
Zv <- cbind(1,Xv)

coefficient matrix LHSt, rhs & solution solt
RHSt <- crossprod(Zt,yt)
LHSt <- crossprod(Zt)
solt <- solve(LHSt,RHSt)
e <- yt-Zt%*%solt

rep <- 5000 # NUMBER OF DRAWS USING COMPOSITION
ystartrain <- matrix(data=NA,nrow=length(yt),ncol=1)
ystarval <- matrix(data=NA,nrow=length(yt),ncol=1)

resMSE <- matrix(data=NA,nrow=rep,ncol=3)
res <- matrix(data=NA,nrow=rep,ncol=(nmark+2))

scale <- sum(e^2)
Cinv <- solve(LHSt)
ch <- chol(Cinv)
ptm<-proc.time()

for (i in 1:rep){
print(i)

df <- length(yt)-(nmark+1)-2
DRAW RESIDUAL VARIANCE

varstar <- scale/rchisq(1,df)
resid <- rnorm(length(solt),0,1)

DRAW LOCATION PARAMETERS
bstar <- solt + t(ch)%*% resid*sqrt(varstar)
ystartrain <- Zt%*%bstar +

rnorm(length(ystartrain),0,sd=sqrt(varstar))
DRAW VALIDATING DATA

ystarval <- Zv%*%bstar +
rnorm(length(ystarval),0,sd=sqrt(varstar))

msevalystar <- mean((ystarval-yv)^2) # MSE_3
msetrainystar <- mean((ystartrain-yt)^2)
msevalbstar <- mean((Zv%*%bstar-yv)^2) # MSE_2
resMSE[i,] <- c(msetrainystar,msevalystar,msevalbstar)
res[i,] <- c(varstar,bstar)

}
proc.time()-ptm

428 10 Bayesian Prediction and Model Checking

user system elapsed
17.62 0.02 4.23

av <- apply(res,2,mean)
bstarhat <- av[2:(nmark+2)]
ystarhatval <- Zv%*%bstarhat
mse_1 <- mean((ystarhatval-yv)^2) # POINT PREDICTOR
mserrors <- apply(resMSE,2,mean)
mse_2 <- mserrors[3]
mse_3 <- mserrors[2]
ci_2 <- quantile(resMSE[,3],c(0.025,0.975))
ci_3 <- quantile(resMSE[,2],c(0.025,0.975))

The Monte Carlo estimate of the point estimator .MSEv,1 is equal to .23.2. The
mean of the marginal posterior distributions of .MSEv,2 and the .95% posterior
interval is .26.5 .(24.6, 28.5), and the corresponding figures for .MSEv,3 are 45,
.(41, 49.4), the latter reflecting, as expected, the extra uncertainty contributed by
sampling of new records .yv,pred .

10.3 Bayesian Expectations of MSE

In the Bayesian setting, the expected values of the validating mean squared errors
are composed of terms that generate a structure similar to the frequentist counterpart
discussed on page 278. The expectations of (10.15) and (10.16) can be obtained as
follows. The focus is on single terms of the sum, since the expectation of the sum is
equal to the sum of the expectations of each record. From (10.15) for the ith record,

.Eb|y
(
MSEi,v,2

) = Eb|y
(
yi,v − ŷi,v

)2 (10.17)

where the predictor is .ŷi,v = x′
i,vb, .Eb|y stands for the expectation over the posterior

distribution .[b|y] and y includes the vector of training .(yt) and validating . (yv)

records. The random variable in (10.17) is . ŷi,v , a function of the random variable b.
Expanding the square and taking expectations yields

. Eb|y
(
MSEi,v,2

) = y2
i,v + Varb|yt

(
ŷi,v

) + (
Eb|yt

(
ŷi,v

))2 − 2yi,v Eb|yt

(
ŷi,v

)

= Varb|yt

(
ŷi,v

) + (
yi,v − Eb|yt

(
ŷi,v

))2

= Varb|yt

(
x′
i,vb

) +
(
yi,v − x′

i,vb̂
)2

, (10.18)

where .b̂ = E(b|yt). The first term is the contribution from the posterior variance
of the predictor; the second term is the squared discrepancy between the validating
datum and the posterior mean of the predictor.

10.3 Bayesian Expectations of MSE 429

Using similar algebra, the expectation of single terms in (10.16) is

. Ey∗
v |y

(
MSEi,v,3

) = Vary∗
v |yt

(
y∗
i,v

) + (
yi,v − Ey∗

v |yt

(
y∗
i,v

))2

= σ 2 + Varb|yt

(
x′
i,vb

) +
(
yi,v − x′

i,vb̂
)2

, (10.19)

where I used . y∗
i,v instead of .y

∗
i,v,pred to simplify the notation. The random variable in

this case is the posterior predicted value of a future validating record . y∗
i,v . The step

from the first to the second line uses the decomposition of the posterior predictive
variance (10.4b). The first term in (10.19) is the irreducible error: the sampling
variance of the future validating datum; the second is the contribution from the
variance of the conditional mean of . y∗

v under its sampling model (due to posterior
uncertainty of b); and the third term, equal to the second term in (10.18) as revealed
by (10.4a) is the squared discrepancy between the validating datum . yv and the mean
of the posterior predictive distribution of . y∗

v .
Let . y∗

i,t represent the ith draw from the posterior predictive distribution . [·|yt , xt]
involving the training data. The Bayesian expectation of the training mean squared
error takes the form

. Ey∗
t |yt

(
MSE3,t,i

) = Vary∗
t |yt

(
y∗
i,t

) + (
yt − Ey∗

t |yt

(
y∗
i,t

))2

= σ 2 + Varb|yt

(
x′
i,t b

) +
(
yi,t − x′

i,t b̂
)2

. (10.20)

This has exactly the same structure as (10.19) with . xv and . yv replaced by . xt and
. yt . The important difference between (10.19) and (10.20) is in their third terms.
In (10.20), prediction and estimation use the same training data. On the other hand,
in (10.19), estimation is based on training data and prediction on validating data.
Consequently, the squared term corresponding to the training mean squared error
is smaller than the squared term of the validating mean squared error, reflecting
overfitting.

A little more specifically, overfitting is reflected in the in-sample correlation
between the vectors of data (considered fixed in the Bayesian framework) and
the means of the draws from the posterior predictive distributions. The in-sample
correlation is a component of the third terms of (10.19) and (10.20). It contributes
negatively to these third terms and is larger in the training data than in the validating
data.

In summary, the difference between the expected values of training and validating
mean squared errors is due to the third terms and constitutes the Bayesian version
of the expected optimism.

430 10 Bayesian Prediction and Model Checking

10.4 Example: Bayesian and Frequentist Measures of
Uncertainty

This example illustrates the computation of two measures of validating mean
squared error for binary predictions. The first accounts only for uncertainty of
the estimated parameters and is labelled .MSE1. The second accounts for both,
uncertainty of the estimated parameters and uncertainty due to sampling of single
records and is labelled .MSE2.

Bayesian and frequentist approaches are used for inferences; the Bayesian
approach is implemented with McMC (Metropolis-Hastings) and the frequentist
with classical likelihood using the R-function GLM. The objective is to show how
uncertainty can be accounted for using both schools of inference and to make a
comparison within the settings of the example.

Binary data .(2000 records) are simulated using a logistic model with two
covariates, . x1 and . x2. The parameters of the logistic model are .θ = (β0, β1, β2).
Specifically for the ith datum, .yi ∼ Br (pi), where

. pi = Pr (yi = 1|x1i , x2i)
= exp (β0 + β1x1i + β2x2i)

1 + exp (β0 + β1x1i + β2x2i)
. (10.21)

The covariates are simulated from uniform distributions .x1i ∼ Un (−1, 1), . x2i ∼
Un (−1, 1) and the three regression parameters are set equal to .β0 = −1.3863,
.β1 = 2, .β2 = 2. The intercept . β0 is chosen to generate a proportion of . 1′s in the
vicinity of .20%. The 2000 records were randomly divided into two sets of 1000
records each corresponding to training and validating data.

The R-code below generates the binary data.

CODE1002
######### SIMULATE BINARY RECORDS FROM LOGISTIC MODEL
AND FIT LOGISTIC MODEL (2 COVARIATES) WITH M-H
CREATE TRAINING AND TESTING/VALIDATING DATA
rm(list=ls()) # CLEAR WORKSPACE
set.seed(77111)
require(graphics)
THE CODE WILL USE THE PACKAGE MVTNORM; IT IS INSTALLED BELOW
#install.packages("mvtnorm", .libPaths()[1])
library(mvtnorm)
library(MASS)
#CHOOSE LENGTH OF CHAIN rep
rep<-6000
result<-matrix(data=NA,nrow=rep,ncol=6)
nindiv <- 2000
x1 <- rep(0,nindiv)
x2 <- rep(0,nindiv)
y <- rep(0,nindiv)
p<-0.2
x1 <- runif(nindiv,-1,1)
x2 <- runif(nindiv,-1,1)

10.4 Example: Bayesian and Frequentist Measures of Uncertainty 431

b_0 <- log(p/(1-p))
b_1 <- 2
b_2 <- 2
z <- b_0 + b_1*x1 + b_2*x2
p1 <- exp(z)/(1+exp(z))
GENERATE THE BINARY RECORDS
y <- rbinom(length(p1),1,p1)
CONSTRUCT THE DATA SET
dat1 <- matrix(c(y,x1,x2),nrow = nindiv, ncol = 3)
colnames(dat1) <- c("Y", "X1", "X2")
d<-data.frame(dat1)
#attach(d)
Y <- d$Y
X1 <- d$X1
X2 <- d$X2
set.seed(771)
train=sample(1:length(X1),length(X1)/2)
test=(-train)
y.test=Y[test]
y.train<-Y[train]
length(y.train)

[1] 1000

The Bayesian approach is implemented using Metropolis-Hastings. The algo-
rithm is very similar to the one used on page 631, with a modification to account for
the extra covariate.

The R-code to implement the Metropolis-Hastings algorithm is shown below:

CODE1002 (cont)
CHOOSE TUNING PARAMETER LAMBDA AND COVARIANCE MATRIX C
OF THE METROPOLIS-HASTINGS ALGORITHM
lambda<-0.015
c <- diag(c(1.5,0.6,0.6))
INITIALISE THE MEAN OF THE TRIVARIATE DISTRIBUTION
theta<-c(-5,1.0,1.0)

FUNCTION TO COMPUTE THE LOG-POSTERIOR
logpost <- function(data,theta)
{

interm <- theta[1] + theta[2]*data$X1 + theta[3]*data$X2
with(data=data,sum(Y*(interm)-log(1+exp(interm))))

}
#START M-H LOOP
ptm <- proc.time()
accept<-0
for (i in 1:rep)
{
print(i)

#SAMPLE PROPOSAL FOR THETA (Ytheta) FROM N(theta,lamdaC)
Ytheta<- rmvnorm(1,mean=theta,sigma=lambda*c)
logalfa<-logpost(d[train,],Ytheta) - logpost(d[train,],theta)
unif<-runif(1)
if (unif<exp(logalfa))
{

theta[1]<-Ytheta[1]

432 10 Bayesian Prediction and Model Checking

theta[2]<-Ytheta[2]
theta[3]<-Ytheta[3]
interm <- theta[1] + theta[2]*X1[test] + theta[3]*X2[test]

proby1 <- exp(interm)/(1+exp(interm))
yhat <- rbinom(length(Y[test]),1,proby1)
yhatBR <- ifelse(proby1 > 0.5, 1, 0)
accept<-accept+1

}
else
{

interm <- theta[1] + theta[2]*X1[test] + theta[3]*X2[test]
proby1 <- exp(interm)/(1+exp(interm))
yhat <- rbinom(length(Y[test]),1,proby1)
yhatBR <- ifelse(proby1 > 0.5, 1, 0)

}
misclas <- mean((yhat-Y[test])**2)
misclasBR <- mean((yhatBR-Y[test])**2)
brier <- mean((Y[test]-proby1)**2)
vyhat <- var(yhat)
logscYV <- sum(Y[test]*log(proby1)+(1-Y[test])*log(1-proby1))
result[i,]<-c(i,theta[1],theta[2],theta[3],misclas,misclasBR)

}
proc.time()-ptm

user system elapsed
5.77 0.09 5.86

acceptratio <- accept/rep
PRINT ACCEPTANCE RATIO OF THE JOINT UPDATING
acceptratio

[1] 0.454

PRINT THE McMC ESTIMATES OF POSTERIOR MEANS
apply(result[501:rep,5:6],2,mean)

[1] 0.2933327 0.2184742

PRINT 95% POSTERIOR INTERVALS FOR THE MISCLASSIFICATION RATES
misclasQ <- quantile(result[500:rep,5],c(0.025,0.975))
misclasQ

2.5% 97.5%
0.268 0.320

misclasBRQ <- quantile(result[500:rep,6],c(0.025,0.975))
misclasBRQ

2.5% 97.5%
0.212 0.229

10.4 Example: Bayesian and Frequentist Measures of Uncertainty 433

THE McMC ESTIMATES OF MEAN OF POSTERIOR DISTRIBUTION OF
REGRESSION PARAMETERS ARE
meanbetas <- apply(result[500:rep,2:4],2,mean)
meanbetas

[1] -1.470091 2.037410 2.063063

AND THE 95% POSTERIOR INTERVALS ARE
quantile(result[500:rep,2],c(0.025,0.975))

2.5% 97.5%
-1.678812 -1.272822

quantile(result[500:rep,3],c(0.025,0.975))

2.5% 97.5%
1.716287 2.389274

quantile(result[500:rep,4],c(0.025,0.975))

2.5% 97.5%
1.688001 2.393371

The Monte Carlo estimates of posterior means of . β0, . β1 and .β2 . (−1.47,
2.04, 2.06) are in good agreement with the simulated values (.β0 = −1.39, .β1 = 2,
.β2 = 2).

The frequentist implementation maximises the logistic loglikelihood

.� (θ |yt , x) =
nt∑

i=1

{
yt,i x′

iθ − ln
(
1 + exp(x′

iθ)
)}

(10.22)

with respect to . θ . In (10.22), . yt is the vector of .nt = 1000 training records and
. x′

i is the ith row of the .nt × 3 matrix of covariates x with a column vector of 1’s
to account for . β0. The R function glm is used to perform the likelihood analysis.
Frequentist uncertainty is incorporated generating 1000 bootstrap replications of
training/validating splits. The R-code shown below implements the logistic likeli-
hood:

CODE1002 (cont)
FIT MODEL BY ML
set.seed(771)
nrepl <- 1000
resLik <- matrix(data=NA,nrow=nrepl,ncol=3)
ptm <- proc.time()

434 10 Bayesian Prediction and Model Checking

for (i in 1:nrepl){
train=sample(1:nrow(d),nrow(d)/2)
f<-glm(Y ~.,data=d[train,],family="binomial")
summary(f)
#f<-glm(Y ~1,data=d[train,],family="binomial")
summary(f)
PRED PROBABILITIES:
predV <- predict(f,d[-train,],type="response")
BrierFreq <- mean((predV-d$Y[-train])^2)
ASSIGN Y TO ITS CLASS ACCORDING TO BAYES RULE
yhatBR <- ifelse(predV > 0.5, 1, 0)
mseBR <- mean((yhatBR-d$Y[-train])^2) # MSE_1
OR SAMPLE Y FROM ITS PREDICTIVE DISTRIBUTION
CONDITIONAL ON ML ESTIMATES - THIS MAKES
IT COMPARABLE TO THE McMC APPROACH
yhatPpd <- rbinom(length(Y[-train]),1,predV)
msePpd <- mean((yhatPpd-d$Y[-train])^2) # MSE_2
resLik[i,] <- c(i,mseBR,msePpd)

}
proc.time()-ptm

user system elapsed
4.44 0.09 4.53

apply(resLik[,2:3],2,mean)

[1] 0.210431 0.288090

quantile(resLik[,2],c(0.025,0.975))

2.5% 97.5%
0.192 0.229

quantile(resLik[,3],c(0.025,0.975))

2.5% 97.5%
0.264 0.313

Results are shown in Table 10.1 that includes in the bottom row the predictive
performance of the null model with the intercept . β0 as the only parameter of the
loglikelihood (10.22).

The uncertainty in . θ contributes to .MSE1 whereas both uncertainty in . θ and
sampling variation of validating records . y∗

v contribute to .MSE2. This is reflected in
the difference in mean values of .MSE1 and .MSE2.

10.5 Model Checking Using Posterior Predictive Distributions 435

Table 10.1 Posterior means (for the Bayesian model), means over bootstrap replicates (for the
likelihood model) and .95% intervals (in brackets; Monte Carlo estimates of posterior intervals for
the Bayesian model; bootstrap frequentist intervals for the likelihood model) of validating mean
squared errors .MSE1 and .MSE2, obtained from a Bayesian McMC implementation (Bayesian
McMC) and from a frequentist, maximum likelihood implementation (ML), for a logistic model
with two predictors. The corresponding results obtained fitting the null model (a model containing
only a mean at the level of the logit) are displayed in the row labelled Null model. The null model
acts as a benchmark

.MSE1 . MSE2

Bayesian McMC 0.22 0.29

(0.21; 0.23) (0.27; 0.32)

ML 0.21 0.29

(0.19; 0.23) (0.26; 0.31)

Null model 0.30 0.42

(0.28; 0.32) (0.39; 0.44)

The figures in the table show that the full model does better than the null model
on all accounts. Both methods of inference produce very similar results, not only
in terms of point estimates but also in terms of measures of uncertainty. This is not
a general conclusion. In more complicated hierarchical models, marginalisation of
nuisance parameters as part of the standard Bayesian machinery leads to larger (and
more appropriate) measures of uncertainty than the standard likelihood approach.
This often translates into larger values of .MSE and larger uncertainty intervals.

The exercises section on page 562 includes several examples of the computation
of mean squared errors, from a frequentist and Bayesian perspective, accounting for
different sources of uncertainty.

10.5 Model Checking Using Posterior Predictive
Distributions

Predicted data .ypred drawn from posterior predictive distributions were used
to compute validating mean squared errors, by comparing the average squared
difference between predicted (or simulated) data and observed validating data . yv .
The .MSE is a function of the parameters of the model . θ (conditional on training data
. yt); its distribution reflects the propagated posterior uncertainty of these parameters
and of the sampling uncertainty of the predicted data.

Predicted data can also be used for inferences by checking whether a particular
model properly accounts for aspects of the data that may be of scientific relevance.
Let M denote the model that is to be questioned and that is presumed to have
generated observed data y. The basic idea is to compare a function of y to the same
function of predicted (or replicated) data generated under model M . These functions
are constructed to address the specific feature of the model under enquiry; they

436 10 Bayesian Prediction and Model Checking

depend on the observed data and often also on the parameters of the model. In the
literature they are known as discrepancy measures (Gelman et al 1995) and labelled
.T (y, θM), a function of data and parameters, where . θM is the parameter vector under
model M . The discrepancy measure .T (y, θM) based on observed data is compared
to .T (ypred , θM), based on predicted data .ypred generated under model M . If zero is
an atypical value in the posterior predictive distribution of .T (y, θM)−T (ypred , θM),
then model M is making predictions that do not fit that aspect of the data described
by the discrepancy measure. Model checking performed in this way is a diagnostic
tool for assessing the usefulness of a model for a specific purpose rather than for
studying its global fit. Key literature on the subject is Rubin (1984), Gelman et al
(1995) and Gelman et al (1996).

An Example with a Genetically Structured Heterogeneous
Variance Model

The use of posterior predictive model checking is explained using an example
adapted from Sorensen and Waagepetersen (2003). Imagine that unknown to the
experimenter, observed data had been generated by the following model. At a first
stage, the sampling model is Gaussian of the form

.yij |μ, fi, σ
2
i ∼ N

(
μ + fi, σ

2
i

)
, i = 1, . . . , nf ; j = 1, . . . , n. (10.23)

In (10.23) . yij is a record, . μ is the mean, . fi is a random family effect and there is a
structured residual term that gives rise to a different residual variance . σ 2

i for each of
the . nf families; there are n offspring per family. The pattern of data generated by
this model is quite common in animal breeding, where a family could represent a
cohort of half-sibs produced by sires that mate each to n randomly chosen females,
which in turn have each one offspring.

The model for the residual variances takes the form

.σ 2
i = exp

(
μ∗ + f ∗

i

)
, (10.24)

where . μ∗ is a parameter in . R and . f ∗
i is a random family effect acting on the variance.

When the elements of . f ∗ are all zero, the residual variance reduces to the usual
homogeneous variance .σ 2 = exp (μ∗).

The random variables .
(
fi, f

∗
i

)
, .i = 1, . . . , nf , are iid draws from

.

(
fi, f

∗
i |σ 2

f , σ 2
f ∗ , ρ

)
∼ N

[(
0
0

)
,

(
σ 2

f ρσf σf ∗

ρσf σf ∗ σ 2
f ∗

)]
, (10.25)

10.5 Model Checking Using Posterior Predictive Distributions 437

where . σ 2
f is the variance between half-sibs acting at the level of the mean, .σ 2

f ∗ is the
variance between half-sibs acting at the level of the variance and . ρ is the coefficient
of correlation.

The model defined by (10.23), (10.24) and (10.25) postulates that the residual
variance has a genetic component because it varies across families. In the half-sib
model assumed, variation between half-sib families is entirely genetic and explains
.25% of the additive genetic variance.

This model induces a relationship between mean and variance through (10.25).
Write

. f ∗
i = E

(
f ∗

i |fi

) + (
f ∗

i − E
(
f ∗

i |fi

))

= ρ
σf ∗

σf

fi + u (10.26)

where u is independent of . fi . Then

.u|σf ∗ , ρ ∼ N
(
0,

(
1 − ρ2

)
σ 2

f ∗
)

. (10.27)

Therefore, the distribution .

[
fi, f

∗
i |σ 2

f , σ 2
f ∗ , ρ

]
is the same as the distribution

.

[
fi,

(
ρ

σf ∗

σf

fi + u

)
|σ 2

f , σ 2
f ∗ , ρ

]
. (10.28)

When .ρ = 1 the relationship between mean and variance is deterministic; when
.ρ = 0 the variance is genetically determined and homogeneous, independent of the
mean. Otherwise, the relationship between mean and variance is controlled by the
sign and size of . ρ.

The focus of enquiry in this example is to study whether the data provide
evidence of a relationship between residual variance and family mean, supporting
case 1 or 3.

Taking expectations of (10.23) over the distribution .
[
fi, f

∗
i |σ 2

f , σ 2
f ∗ , ρ

]
, the

marginal distribution of the data is

.yij |μ,μ∗, σ 2
f , σ 2

f ∗ ∼ N

(
μ, σ 2

f + exp

[
μ∗ + σ 2

f ∗

2

])
, (10.29)

using the fact that if .x ∼ N
(
μ, σ 2

)
, .exp (x) is lognormally distributed with mean

.E
[
exp (x)

] = exp
(
μ + σ 2

2

)
.

438 10 Bayesian Prediction and Model Checking

Consider regressing .
(
μ∗ + f ∗

i

)
, the log-residual variance of family i, on

.(μ + fi), the mean of family i. The regression coefficient is

.β = Covfi ,f
∗
i

(
μ∗ + f ∗

i , μ + fi

)

Varfi (fi)
= ρ

σf ∗

σf

. (10.30)

The choice of discrepancy measure described below aimed at establishing an asso-
ciation between family effects and within family variance is motivated by (10.30).

Constructing Discrepancy Measures

The mechanism that generated a particular set of data is seldom known. The closest
one may come to knowing this mechanism is when data originate from a carefully
designed and controlled experiment.

In the specific situation considered here, we imagine that using field records
y, there is interest in investigating a possible genetic source of residual variation
inducing a relationship between within family variance and family effect. Before
committing resources to the development of the software needed to fit the model
defined by (10.23), (10.24) and (10.25), one may start by fitting a model labelled
M that assumes homogeneity of residual variance. In a second stage, one can define
a discrepancy measure designed to reveal whether the lack of association between
family mean and within family variance implied by model M holds. Given model
M , replicated or predicted data .ypred are generated, .T

(
ypred , θM

)
is constructed

and compared to .T (y, θM). If zero is an atypical value in the posterior predictive
distribution of .T (y, θM)−T

(
ypred , θM

)
, then there is justification to extend model

M , because model’s M assumption of lack of association between family mean and
within family variance is not supported.

The starting point is to fit model M of homogeneous variance to data y,

.yij |μ, fi, σ
2,M ∼ N

(
μ + fi, σ

2
)

, i = 1, . . . , nf ; j = 1, . . . , n, .

(10.31a)

fi |σ 2
f ∼ N

(
0, σ 2

f

)
. (10.31b)

The model is implemented using McMC; one may assign improper prior

distributions to .

(
μ, σ 2

f , σ 2
)
.

The discrepancy measure to check for an association between family mean and
within family variance in the observed data y is constructed as follows:

10.5 Model Checking Using Posterior Predictive Distributions 439

1. Using observed data first compute for each family

.Si

(
yij , θi

) = 1

n

∑n

i=j

(
yij − μ − fi

)2
, θi = (μ, fi) . (10.32)

The quantity . Si is the average squared residual for family i.
2. Second, fit a simple linear regression of .log Si

(
yij , θi

)
on . fi , .i = 1, . . . , nf ,

leading to the discrepancy measure

.T (y, θ) = β (y, θ) , (10.33)

where . β is the regression coefficient which is a function of data y and . θ .
3. Repeat using predicted data generated using the homogeneous variance model

.

[
ypred,ij |μ, fi, σ

2
]

∼ N
(
μ + fi, σ

2
)

.

Regress .log Si

(
ypred,ij , θi

)
on . fi , .i = 1, . . . , nf , leading to the discrepancy

measure

.T
(
ypred , θ

) = β
(
ypred , θ

)
, (10.34)

the regression coefficient based on predicted data.
4. Compute

.T (y, θ) − T
(
ypred , θ

)
. (10.35)

These steps are conducted using McMC. At round t the algorithm outputs
draw .θ [t] and .y[t]

pred from .
[
θ, ypred |y,M

]
based on model M of homogeneous

variance. These draws are used to construct a Monte Carlo estimate of the posterior
distribution of the discrepancy measure (10.35). If zero is excluded from the
posterior distribution or is very unlikely, then the conjecture of an association
between family mean and within family variance in the observed data is supported.

Generating Data Based on the Genetic Heterogeneous Variance
Model

Data available for analysis are generated using the model defined in (10.23), (10.24)
and (10.25). This model is not known to the researcher.

To create the data, the following set of parameters are used:

1. Number of half-sib families .nf = 400; number of records per family .n = 30,
the same for all families

440 10 Bayesian Prediction and Model Checking

2. .μ = 10; .μ∗ = 3; .σ 2
f = 5; .σ 2

f ∗ = 1.8; .ρ = 0.15. Based on these input
parameters, the marginal mean and variance of a datum are expected to be 10
and .exp (3 + 0.9) = 49.4, respectively.

The R-code used to generate the data is shown below:

HETVARMODEL MODEL CHECKING
rm(list=ls()) # Clear the workspace
require(graphics)
GENERATE CORRELATED (FULL-SIB/HALF-SIB) DATA

INITIALISE PARAMETERS
mu<-10 # MEAN
mu_v <- 3 # MEAN VAR

#VARIANCE BETWEEN FULL-SIBS/HALF-SIBS
vfs <- 5 # mimicking half-sibs
vfs_v <- 1.8 # VARIANCE BETWEEN FULL-SIBS/HALF-SIBS
AT THE LEVEL OF THE VAR
rho <- 0.15 # CORRELATION BETWEEN FAMILY EFFECTS (fs,fs_v)
AT THE LEVEL OF MEAN AND VARIANCE
RESIDUAL VARIANCE (NOT USED)
ves<-exp(log(50))
nf<-400 # NUMBER OF FULL-SIB/HALF-SIB FAMILIES
n<-30 #FULL-SIB/HALF-SIB FAMILY SIZE
N<-nf*n
y<-matrix(data=0,nrow=nf*n,ncol=1)
z IS COLUMN MATRIX WITH FAMILY ID (ID=1,.,nfs)
z<-matrix(data=0,nrow=nf*n,ncol=1)
GENERATE nf FULL-SIB/HALF-SIB EFFECTS f
fs<-rnorm(nf,mean=0,sd=sqrt(vfs))

GENERATING A FULL-SIB/HALF-SIB STRUCTURE
VIA z
z <- rep(1:nf,each=n)

u <- rnorm(nf,0,sqrt((1-rho^2)*vfs_v))
SIB EFFECTS AT THE LEVEL OF VARIANCE
fs_v <- (rho*sqrt(vfs_v)/sqrt(vfs))*fs + u
GENERATE nf*n RESIDUAL EFFECTS
es<-rnorm(nf*n,mean=0,sd=sqrt(exp(mu_v + fs_v[z])))
mean(es)
var(es)
y <- mu + fs[z] + es
f <- as.factor(z)
d <- data.frame(y,f)

USE THE FUNCTION AGGREGATE TO COMPUTE MEANS AND
VARIANCES FOR EACH FAMILY
agm <- aggregate(y~f,d,FUN=function(y){mean(y)})
agv <- aggregate(y~f,d,FUN=function(y){var(y)})

10.5 Model Checking Using Posterior Predictive Distributions 441

Detecting a Relationship Between Within Family Variance and
Family Mean Using Observed Data

What does a simple analysis based on observed data reveal? Figure 10.2 displays
the relationship between the logarithm of the estimated within family variance of the
400 families and the family means based on 30 records per family using the observed
(simulated) data (generated under the heterogeneous variance model). A simple
least squares regression of log variance within families on family means yields an
estimate of the regression coefficient equal to .0.038 with a standard error equal to
.0.025. This analysis based on raw averages discloses considerable heterogeneity of
residual variance but provides a very tenuous and inconclusive relationship between
mean and variance, despite a reasonably sized and well-structured dataset. The
question is whether inferences of association between mean and variance are sharper
using posterior predictive model checking.

Detecting a Relationship Between Within Family Variance and
Family Mean Using Discrepancy Measures

The dataset generated under the genetically heterogeneous variance model defined
in (10.23), (10.24) and (10.25) is analysed using a homogeneous variance model. A
Gibbs sampling implementation of the homogeneous variance model is described
in Chap. 5, page 249. In the current application, the code generates 5000 draws

Fig. 10.2 The relationship
between the logarithm of the
variance within families and
the family means induced by
the heterogeneous variance
model

5 10 15

0
2

4

Family mean

Lo
g

V
ar

 20

6

442 10 Bayesian Prediction and Model Checking

F
re

qu
en

cy

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

10
0

15
0

20
0

F
re

qu
en

cy

0.00 0.05 0.10 0.15 0.20

0
50

0
50

10
0

15
0

Fig. 10.3 Left: Monte Carlo estimate of posterior distribution of discrepancy measure (10.34)
based on predicted data .ypred generated using a model of homogeneous variance across families
(the reference distribution). Right: Monte Carlo estimate of posterior distribution of discrepancy
measure (10.35). The vertical red lines at zero are indicative of a lack of association between family
mean and within family variance

from the McMC estimates of the posterior distribution of discrepancies (10.34)
and (10.35).

The Monte Carlo estimates of the marginal posterior distributions of the two dis-
crepancy measures (10.34) and (10.35) are shown in Fig. 10.3. The left panel shows
that the Monte Carlo estimate of the reference distribution, based on predicted data
generated with the homogeneous variance model (discrepancy measure (10.34)), is
centred at zero. This is evidence of no signs of association between family mean and
within family variance in the replicated data .ypred , as expected. The panel on the
right displays the Monte Carlo estimate of the posterior distribution of discrepancy
measure (10.35). A value of zero is very unlikely under this distribution, supporting
the conjecture of a relationship between family mean and within family variance in
the observed data y.

This posterior prediction-based analysis, given the model, reveals an association
between within family variance and family effects in the observed data that could
not be revealed by the analysis based on simple means displayed in Fig. 10.2.
Does this provide convincing evidence for a genetically structured residual variance
in the data? No, it does not. One can only conclude that the results are not in
conflict with a model posing genetic control of residual variance and justify further
experimentation.

I conclude with a remark that is particularly relevant in an inferential frame-
work. Modern computing tools allow fitting complex models to investigate subtle
structures in large observational datasets that may be scientifically relevant. The
heterogeneous variance model can serve as an illustration. The coefficient of
skewness generated by this model is directly proportional to . ρ, the correlation
coefficient between family effects acting on mean and variance (Ros et al 2004).
Therefore, if the observed data have a skewed distribution in either direction

10.5 Model Checking Using Posterior Predictive Distributions 443

not necessarily due to genetically structured variance heterogeneity, a model that
postulates variance heterogeneity will result in a better fit than the simple alternative
assuming homogeneous variance. The analysis would even output an estimate of the
non-existent correlation . ρ, leading to spurious inference. This makes it strikingly
clear that an attempt to understand the state of nature via a statistical analysis of
data, particularly observational data, must be regarded only as a first step until more
fundamental knowledge becomes available. Model checking using a well-designed
discrepancy measure is a contribution to this process.

Identifiability of parameters is also an important consideration. In highly com-
plex models, there is always the pitfall that parameters may be unidentified or very
weakly identified and it may not always be possible to check lack of identifiability.
Often for convenience, one chooses prior distributions of parameters that are
improper (as practised repeatedly in this book!). Such prior assumptions can lead to
improper posterior distributions that may go undetected in an McMC environment.
This can lead to misleading inferences. An interesting example, initially taken from
Carlin and Louis (1996), can be found on page 543 of Sorensen and Gianola
(2002) and a useful reference is Natarajan and Kass (2000). The use of proper
prior distributions will dispose of the potential problem of posterior impropriety and
unidentifiability and, if chosen judiciously, may lead to Bayesian learning. However,
the problem of the influence of prior information on posterior inference still needs
to be addressed.

It is important to learn as much as possible about the model by experimenting
with it before launching a full analysis using modern computational tools.

Chapter 11
Nonparametric Methods: A Selected
Overview

Throughout this book a phrase like “assume the data have been generated by
the following probability model” has been abundantly used. Indeed, the standard
parametric assumption is that observed data represent one realisation from some
given probability model and the goal can be to infer the parameters of the
model. Alternatively and from a classical frequentist setting, conditionally on esti-
mated parameters, the goal may be to predict future observations. For quantitative
responses the parametric model can be written as

.yi = m (xi, θ) + ei, i = 1, 2, . . . , n, (11.1)

where m is some function that relates observations . yi (outputs) to observed

covariates . xi (inputs, also referred to as features) constituting the dataset . zi
iid=

(yi, xi) , i = 1, 2, . . . , n. The function .m(xi, θ) = E(yi |xi, θ), a conditional
expectation, will be referred to as the regression function or the prediction function:
its estimate uses as input the feature x and produces an output . ̂y. The residual terms
. ei are iid from some distribution and . θ is a vector of parameters. The form of
m is often simple, as in linear regression, and when the model is approximately
correct, inferences about . θ are straightforward and efficient. If . ̂θ is an estimate of
. θ , a predicted value given . x0i is .̂y0i = m

(

x0i ,̂θ
)

. For instance, in linear regression,
.m (xi, b) = x′

ib, .̂y0i = x′
0i
̂b, where . ̂b is the estimated value of b. For data arising

from binary trials, modelling takes place at the level of .Pr (yi = 1|xi, θ) as in logistic
regression.

Nonparametric models, on the other hand, do not commit to a specific form for
m and instead regard m as an algorithm that for future . x0 leads to a good predictor
of . y0. The prediction algorithm is constructed or trained in the training set of
observations, and its predictive ability is studied in the validating or testing set.
Nonparametric theory focuses on the properties of the algorithms, their predictive
power, and convergence properties if they are iterative and on factors that affect
their accuracy. There is a distinction between supervised learning problems, where

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Sorensen, Statistical Learning in Genetics, Statistics for Biology and Health,
https://doi.org/10.1007/978-3-031-35851-7_11

445

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35851-7protect T1	extunderscore 11&domain=pdf
https://doi.org/10.1007/978-3-031-35851-7_11
https://doi.org/10.1007/978-3-031-35851-7_11
https://doi.org/10.1007/978-3-031-35851-7_11
https://doi.org/10.1007/978-3-031-35851-7_11
https://doi.org/10.1007/978-3-031-35851-7_11
https://doi.org/10.1007/978-3-031-35851-7_11
https://doi.org/10.1007/978-3-031-35851-7_11
https://doi.org/10.1007/978-3-031-35851-7_11
https://doi.org/10.1007/978-3-031-35851-7_11
https://doi.org/10.1007/978-3-031-35851-7_11
https://doi.org/10.1007/978-3-031-35851-7_11

446 11 Nonparametric Methods: A Selected Overview

the objective is typically to make a prediction (or a classification in the case of
discrete data), and unsupervised learning, where the aim is to explore how the data
fall into different clusters. The latter is not dealt with here.

Nonparametric methodology offers a great deal of flexibility and can han-
dle model complexities such as a large number of feature variables, complex
interactions involving the feature variables and unknown nonlinear relationships
between the feature variables and the response. Nonparametric methods have tuning
parameters that control their adaptation to the data and therefore the degree of
overfitting via the bias-variance trade-off. These tuning parameters can be set by
the user or can be estimated from the data.

Prediction algorithms are largely the product of research in fields outside of
statistics, especially computer science, and a vast number have been developed. This
chapter provides an overview and examples including nonparametric regression
methods, kernel methods using basis expansions, a special kind of neural networks
known as multilayer perceptrons, decision trees and random forests.

11.1 Local Kernel Smoothing

The first part of this section provides a description of some selected traditional
nonparametric methods that possess great flexibility for the estimation of the
regression function. The objective is to predict the regression function m at some
target value x. The examples and motivation in this first part assume that the
response y is a function of a scalar predictor x.

All the nonparametric models described here are of the form .ŷ = Hy, where . ŷ
is the prediction and H is a hat matrix (i.e. page 266), not a function of y.

The Binned Estimator

A convenient starting point is nonparametric estimation of the conditional expecta-
tion of a random variable Y , .E (Y |X = x) = m (x) using a random sample (training
data) .(y1, x1) , (y2, x2) , . . . , (yn, xn), without assuming a specific form for m. The
estimate at the point .X = x is the mean of the observations y for which .Xi = x,
.i = 1, 2, An approximate result is to average the observations y associated
with . X′s close to x, such that .|xi − x| ≤ h for a small .h > 0 called the bandwidth.
Essentially, the X axis is divided into bins, and the estimate for the bin is the average
of the y’s belonging to the bin. The value of the bandwidth determines the width of
the bins: large size with more observations produces a smoother fit as a function

11.1 Local Kernel Smoothing 447

of X. When .x ± h defines the bin, the estimator of the regression function can be
written as

. ̂m (x) =
∑n

i=1 I (|xi − x| ≤ h) yi
∑n

i=1 I (|xi − x| ≤ h)

=
n
∑

i=1

wi (x) yi, wi (x) = I (|xi − x| ≤ h)
∑n

i=1 I (|xi − x| ≤ h)
, (11.2)

where .I (u) is the indicator function equal to 1 if the argument holds and 0 other-
wise. For a given x, the sum in the denominator is the number of observations that
fall in the corresponding bin. Since .

∑n
i=1 wi (x) = 1, (11.2) is a weighted average

of the training observations . yi and the ith weight determines the contribution of . yi

to the estimator .m̂ (x).
The .n × 1 column vector of fitted values is

. ̂m = (m̂ (x1) , m̂ (x2) , . . . , m̂ (xn))
′ ,

and it follows that

.m̂ = Wy, (11.3)

where .y = (y1, y2, . . . , yn)
′ is the training data and W is the .n×n matrix whose ith

row contains the weights given to . yi to estimate .m̂ (xi). Expression (11.3) highlights
that the estimate is linear in the data. The ith row of W is

. w (xi)
′ =

[

I (|x1−xi |≤h)
∑n

j=1 I(|xj −xi |≤h)
I(|x2−xi |≤h)

∑n
j=1 I(|xj −xi |≤h)

· · · I (|xn−xi |≤h)
∑n

j=1 I(|xj −xi |≤h)

]

.

(11.4)

The matrix W is the hat matrix encountered in (6.21), page 266.
To illustrate suppose that .n = 7, .xi = i/7, .i = 1, 2, . . . , 7 and .h = 1/7. Then

for .i = 1 and .x = 1/7, the denominator in (11.2) is 2, the first row of W is

.
[

1
2

1
2 0 0 0 0 0

]

,

and .m̂ (x1 = 1/7) = 1
2y1 + 1

2y2. For .i = 2, .x = 2/7, the denominator in (11.2) is
3, the second row of W is

.
[

1
3

1
3

1
3 0 0 0 0

]

,

448 11 Nonparametric Methods: A Selected Overview

and .m̂ (x2 = 2/7) = 1
3y1 + 1

3y2 + 1
3y3, and so on. The hat matrix for this example

is

.W =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
2

1
2 0 0 0 0 0

1
3

1
3

1
3 0 0 0 0

0 1
3

1
3

1
3 0 0 0

0 0 1
3

1
3

1
3 0 0

0 0 0 1
3

1
3

1
3 0

0 0 0 0 1
3

1
3

1
3

0 0 0 0 0 1
2

1
2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (11.5)

If instead .h = 2/7 is used, the hat matrix is

.W =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
3

1
3

1
3 0 0 0 0

1
4

1
4

1
4

1
4 0 0 0

1
5

1
5

1
5

1
5

1
5 0 0

0 1
5

1
5

1
5

1
5

1
5 0

0 0 1
5

1
5

1
5

1
5

1
5

0 0 0 1
4

1
4

1
4

1
4

0 0 0 0 1
3

1
3

1
3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (11.6)

Note that as h increases, more observations enter into the bin and smoothing is said
to be more “global”. Conversely, as h decreases, the neighbourhood size is smaller
and the smoothing is more “local”.

The R-code below displays an example of a binned estimator. Figure 11.1 shows
that as the number of bins increases from 6 (blue line) to 19 (green line), the fit
becomes more jagged leading to overfitting. The dots represent the response.

CODE1101
rm(list=ls()) # CLEAR WORKSPACE
set.seed(195021)
x<-seq(from=0, to=2*pi,by=0.2)
f0<-function(x){ 100+sin(2*x)+cos(x/2) }
R2<-2/3
y<-f0(x)+rnorm(n=length(x),sd=sqrt(var(f0(x))*(1-R2)/R2))
z1 <- cut(x,breaks=seq(from=min(x),to=max(x+.01),

length=7),right=F)
f1 <- lm(y~z1)
z2 <- cut(x,breaks=seq(from=min(x),to=max(x+.01),

length=20),right=F)
f2 <- lm(y~z2)

plot(y~x,main=’Binned estimator’)
lines(x=x,y=predict(f1),col=’blue’,lwd=2)
lines(x=x,y=predict(f2),col=’green’,lwd=2)
legend(5, 103, legend=c("6 bins", "19 bins"),

col=c("blue", "green"), lty=1:1, cex=0.8)

11.1 Local Kernel Smoothing 449

Fig. 11.1 An example of a
binned estimator illustrating
how the smoothness of the fit
is controlled by the number of
bins. The dots represent the
response

0 2 4 6 8

97
98

99
10

0
10

1
10

2

Binned estimator

x

y

6 bins
19 bins

Other Kernel Smoothing Methods

Estimator (11.2) is a step function, discontinuous at each .x = xi , due to the weights
given by the indicator functions. If the indicator function in (11.2) is replaced by a
kernel function, .K(·), then the estimator can be written as

.m̂ (x) =
∑n

i=1 K
(

xi−x
h

)

yi
∑n

i=1 K
(

xi−x
h

) . (11.7)

This is the form of a kernel regression estimator, known as the Nadaraya-Watson
estimator that does not necessarily eliminate the discontinuity unless the kernel
function used is continuous. For instance, the uniform density .K(u) = 1/2 for
.u = (xi − x)/h in the support .[−1, 1] is a kernel function that is a proper
probability density function symmetric at zero. The uniform kernel in particular
is an alternative representation of the binned estimator (11.2) and suffers from the
same discontinuity.

A kernel function satisfies .0 ≤ K (u) < ∞, .
∫∞
−∞ K (u) du = 1, or equal to a

constant, .K (u) = K (−u), .
∫∞
−∞ uK (u) du = 0 and .σ 2

K = ∫∞
−∞ u2K (u) du < ∞.

A normalised kernel function satisfies .
∫∞
−∞ u2K (u) du = 1.

The size of h in (11.7) plays a central role in the degree of smoothness of .m̂ (x).
As h approaches 0, . xi approaches x, .m̂ (xi) approaches . yi and the fitted values
go through the observed data. This is an extreme case of overfitting. When h is
very large, the computation of .m̂ (x) involves all the . x′

is and the estimator .m̂ (x)

450 11 Nonparametric Methods: A Selected Overview

Fig. 11.2 An example of a
binned estimator generated
using a uniform kernel on a
grid of values of x. The
degree of smoothness is
controlled by the smoothing
parameter. The dots represent
the response

0 2 4 6 8

97
98

99
10

0
10

1
10

2

Uniform kernel using a grid of values of x

x

y

h=0.2
h=0.8

approaches the mean of the observations for all i, an extreme case of underfitting.
The R-code below illustrates this using a uniform kernel on a grid of values of x
and the result is displayed in Fig. 11.2.

CODE1102
rm(list=ls()) # CLEAR WORKSPACE
set.seed(195021)
x<-seq(from=0, to=2*pi,by=0.2)
f0<-function(x){ 100+sin(2*x)+cos(x/2) }
R2<-2/3
y<-f0(x)+rnorm(n=length(x),sd=sqrt(var(f0(x))*(1-R2)/R2))
d <- as.matrix(dist(x))
h <- 0.2
d2 <- ifelse(d <= h,1,0)
div <- apply(d2,1,sum)
rx <- d2%*%y/div

h <- 0.8
d2 <- ifelse(d <= h,1,0)
div <- apply(d2,1,sum)
rx <- d2%*%y/div

As indicated, the construction of (11.2), either as expressed in terms of indicator
functions or in terms of the uniform kernel, places equal weights to those points
within a distance h and those outside h are ignored. This generates a discontinuity
when the .x′s are grouped in bins, although a smoother graph results if a grid of
values of the .x′s is chosen instead.

11.1 Local Kernel Smoothing 451

One may wish to place more weights to those observations that are close to x.
There are a number of continuous kernel functions that can be used with (11.7) that
address these issues and a common one is the Gaussian kernel

. K

(

xi − x

h

)

= (2π)−
1
2 exp

(

− (xi − x)2

2h2

)

.

The constant term .(2π)− 1
2 is typically omitted, and the term in the denominator of

the exponential function can be replaced by h. The fitted value at .x1 = 1/7 is given
by

.m̂ (x1 = 1/7) =
∑7

i=1 exp
[

− (1/7−xi)
2

2h2

]

yi

∑7
i=1 exp

[

− (1/7−xi)
2

2h2

] =
7
∑

i=1

wi (x) yi (11.8)

that has the form given by (11.7). A prediction for a new scalar value of the covariate
.x = x∗ is

.m̂
(

x = x∗) =
∑7

i=1 exp

[

− (x∗−xi)
2

2h2

]

yi

∑7
i=1 exp

[

− (x∗−xi)
2

2h2

] =
7
∑

i=1

wi

(

x∗) yi, (11.9)

where the weight function is

.wi

(

x∗) =
exp

[

− (x∗−xi)
2

2h2

]

∑7
i=1 exp

[

− (x∗−xi)
2

2h2

] . (11.10)

An example of the implementation of a Gaussian kernel applied to the same data
used in Figs. 11.1 and 11.2 is shown in the R-code below that produces Fig. 11.3 as
output. Compared to the uniform kernel, the Gaussian kernel generates a smoother
fit. As shown in the figure, a higher degree of smoothness is associated with larger
values of the bandwidth h.

CODE1103
GAUSSIAN KERNEL REGRESSION
rm(list=ls()) # CLEAR WORKSPACE
set.seed(195021)
GENERATE DATA
x<-seq(from=0, to=2*pi,by=0.2)
#x<-seq(from=0, to=2*pi,length.out=33)

f0<-function(x){ 100+sin(2*x)+cos(x/2) }
R2<-2/3
y<-f0(x)+rnorm(n=length(x),sd=sqrt(var(f0(x))*(1-R2)/R2))
CHOOSE h

452 11 Nonparametric Methods: A Selected Overview

h <- 0.25
CONSTRUCT DISTANCE MATRIX AND GAUSSIAN KERNEL
d <- as.matrix(dist(x))^2
Kh25 <- exp(-(1/(2*h^2))*d)
sc25 <- apply(Kh25,1,sum)
mhgaus25 <- Kh25%*%y/sc25
plot(y~x,main=’Gaussian kernel regression’)
lines(x,mhgaus25,col="red")
CHOOSE h
h <- 0.10
Kh10 <- exp(-(1/(2*h^2))*d)
sc10 <- apply(Kh10,1,sum)
mhgaus10 <- Kh10%*%y/sc10
lines(x,mhgaus10,col="blue")
legend(5, 103, legend=c("h=0.25", "h=0.10"),

col=c("red", "blue"),lty=1:1, lwd=c(1.5,1.5), cex=0.8)

Kernel smoothing methods discussed so far suffer from boundary bias. For
instance, an estimate for a decreasing function on the left boundary includes points
to the right of the boundary, and since the function is decreasing, this creates a
downward bias. Bias can also occur in the interior of the function if it has substantial
curvature and is aggravated when covariates are multidimensional or unequally
spaced. These problems can be alleviated using a generalisation of kernel regression:
local polynomial regression.

Fig. 11.3 The Gaussian
kernel estimator computed
with the R-code CODE1103,
using two values for the
bandwidth parameter

0 2 4 6 8

97
98

99
10

0
10

1
10

2

Gaussian kernel regression

x

y

h=0.25
h=0.10

11.1 Local Kernel Smoothing 453

Local Polynomial Regression

The Nadaraya-Watson kernel regression estimator of the conditional expectation
.m(x) can be framed in terms of a weighted regression. Given the weight function
like the one defined in (11.10), choose .μ = m̂ (x) to minimise the weighted sum of
squares

.

n
∑

i=1

wi (x) (yi − μ)2 . (11.11)

Setting the derivative with respect to . μ equal to zero and solving for . μ recovers the
kernel estimator

.m̂(x) =
∑

i w (xi) yi
∑

i w (xi)
. (11.12)

This is a weighted regression with a mean only implying the approximation . m (x) ≈
μ. A generalisation is to replace the local constant . μ by a local polynomial of
degree p. This polynomial is fitted to each target value x and generates estimates of
regression parameters by minimising the weighted sum of squares along the same
lines as in (11.11)

.

n
∑

i=1

wi (x)

⎛

⎝yi −
p
∑

j=0

bjx (xi − x)j

⎞

⎠

2

. (11.13)

This weighted sum of squares can be written

.

n
∑

i=1

wi (x)

⎛

⎝yi −
p
∑

j=0

bjx (xi − x)j

⎞

⎠

2

= (y − Xxbx)
′ Wx (y − Xxbx) .

Minimisation of this expression with respect to . bx gives the standard weighted least
squares estimator

.̂bx = (

X′
xWxXx

)−1
X′

xWxy, (11.14)

where

.Xx =
⎡

⎢

⎣

1 (x1 − x) · · · (x1 − x)p

...
...

. . .
...

1 (xn − x) · · · (xn − x)p

⎤

⎥

⎦ (11.15)

454 11 Nonparametric Methods: A Selected Overview

is an .n × (p + 1) matrix and

.Wx = diag [w1 (x) · · ·wn (x)] (11.16)

is an .n × n diagonal matrix of weights . wi (x). In (11.14) the dependence on the

target value x has been made explicit by writing .b̂x =
(

b̂0x, b̂1x, . . . , b̂px

)′
. At the

target value . xi = x, the terms in .(xi − x) drop out and the fitted value is

.m̂ (x) = z′
1

(

X′
xWxXx

)−1
X′

xWxy. (11.17)

= Hxy. (11.18)

= ̂b0x, (11.19)

where . z1 is the .(p + 1)×1 column vector with 1’s in the first entry and 0’s elsewhere
and . Hx is a hat vector. It is important to notice that the complete regression function
must be computed for each target value, despite the fact that at .xi = x, . m̂ (x) =
b̂0 (x). Setting .p = 0 yields the kernel regression estimator (11.7).

The same result is obtained if (11.13) is replaced by

.

n
∑

i=1

wi (x)

⎛

⎝yi −
p
∑

j=0

bjxx
j
i

⎞

⎠

2

= (y − Xbx)
′ Wx (y − Xbx) ,

where now

. X =
⎡

⎢

⎣

1 x1 · · · x1
p

...
...

. . .
...

1 xn · · · xn
p

⎤

⎥

⎦

n×(p+1)

.

A predicted value at the target .x∗ = (

x∗, x∗2, . . . x∗p
)

is

. ̂m
(

x∗) = (

1, x∗) (X′Wx∗X
)−1

X′Wx∗y

= ̂b0x∗ +
p
∑

j=1

̂bjx∗
(

x∗)j ,

where .(1, x∗) is .(p × 1) × 1 and the weight function .Wx∗ is an .n × n diagonal
matrix with ith diagonal element

.wi

(

x∗) =
exp

[

− (x∗−xi)
2

2h2

]

∑n
i=1 exp

[

− (x∗−xi)
2

2h2

] .

11.1 Local Kernel Smoothing 455

Fig. 11.4 A local linear
regression estimator
computed with the R-code
CODE1104, using two values
for the bandwidth parameter

0 2 4 6 8

97
98

99
10

0
10

1
10

2

Local linear regression

x

y

h=0.20
h=0.80

The R-code below implements a local linear regression (.p = 1) and the output
is displayed in Fig. 11.4.

CODE1104
rm(list=ls()) # CLEAR WORKSPACE
set.seed(195021)
LOCAL LINEAR REGRESSION SETS p = 1
p <- 1
x<-seq(from=0, to=2*pi,by=0.2)
f0<-function(x){ 100+sin(2*x)+cos(x/2) }
R2<-2/3
y<-f0(x)+rnorm(n=length(x),sd=sqrt(var(f0(x))*(1-R2)/R2))

w <- matrix(data=NA,nrow=length(x),ncol=length(x))
X <- matrix(data=NA, nrow=length(y), ncol=(p+1))
W <- matrix(data=NA, nrow=length(y), ncol=length(y))

one <- rep(1,length(y))

X <- cbind(one,x)
Xt <- t(X)
k <- seq(1:length(x))

mhx <- function(k,w,one,X){
W <- diag(w[k,])
Xt <- t(X)
solve(Xt%*%W%*%X,Xt%*%W%*%y)

}

mpred <- function(k,estx,x){
estx[1,k]+estx[2,k]*x[k]

}

456 11 Nonparametric Methods: A Selected Overview

CONSTRUCT DISTANCE MATRIX
dst <- as.matrix(dist(x))
d <- as.matrix(dist(x))^2

CONSTRUCT GAUSSIAN KERNEL
CHOOSE h
h <- 0.2
Kh25 <- exp(-(1/(2*h^2))*d)
div <- apply(Kh25,1,sum)

SCALE GAUSSIAN KERNEL: PLACE RESULT IN w
for(i in 1:nrow(Kh25)){

w[i,] <- Kh25[i,]/div[i]
}

estx <- sapply(k,mhx,w,one,X)

fitx <- sapply(k,mpred,estx,x)
APPROX PREDICTION FOR A NEW X=5.12:
fitx[which.min(abs(x-5.12))]
fitx[which.min(abs(x-5.0))] ## FIT FOR X=5.0

plot(x,y,main=’Local linear regression’)
lines(x,fitx,lty=1,col="blue")

h <- 0.5
Kh25 <- exp(-(1/(2*h^2))*d)
div <- apply(Kh25,1,sum)

SCALE GAUSSIAN KERNEL: PLACE RESULT IN w
for(i in 1:nrow(Kh25)){

w[i,] <- Kh25[i,]/div[i]
}

estx <- sapply(k,mhx,w,one,X)

fitx <- sapply(k,mpred,estx,x)
APPROX PREDICTION FOR A NEW X=5.12:
fitx[which.min(abs(x-5.12))]
fitx[which.min(abs(x-5.0))] ## FIT FOR X=5.0

lines(x,fitx,lty=1,col="red")
legend(5, 103, legend=c("h=0.20", "h=0.50"),

col=c("blue", "red"),lty=1:1, lwd=c(1.5,1.5), cex=0.8)

The R-code below computes a prediction based on the local linear regression for
a new value of the feature .x = z.

CODE1105
rm(list=ls()) # CLEAR WORKSPACE
set.seed(195021)
LOCAL LINEAR REGRESSION SETS p = 1
p <- 1
x<-seq(from=0, to=2*pi,by=0.2)
f0<-function(x){ 100+sin(2*x)+cos(x/2) }
R2<-2/3
y<-f0(x)+rnorm(n=length(x),sd=sqrt(var(f0(x))*(1-R2)/R2))

11.1 Local Kernel Smoothing 457

z <- 5.12
bz <- matrix(c(1,z),nrow=2)
bzt <- t(bz)
one <- rep(1,length(y))

X <- matrix(data=NA, nrow=length(y), ncol=(p+1))
Wz <- matrix(data=NA, nrow=length(y), ncol=length(y))

X <- cbind(one,x)
Xt <- t(X)
CHOOSE h
h <- 0.2
d <- x-z
ele <- exp(-(d^2)/(2*h^2))
sm <- sum(ele)
Wz <- diag(ele/sm)
pred_z <- bzt%*%solve(Xt%*%Wz%*%X,Xt%*%Wz%*%y)
cat("x =",z,"\n")

x = 5.12

cat("Prediction =", pred_z,"\n")

Prediction = 98.37111

Choice of Bandwidth Parameter

Leave-one-out cross-validation can be used to choose the bandwidth parameter h.
Since the methods described here are linear smoothers, use can be made of the
exact expression (6.58) or of the approximate but more robust generalised cross-
validation estimator (6.59). The R-code below computes both for a range of values
of h. Figure 11.5 illustrates that for the present data, both estimators produce very
similar values of leave-one-out mean squared error (.0.64 vs .0.66) and choose a
similar amount of smoothing (.h = 0.35 for (6.58) and .h = 0.325 for (6.59)).

CODE1106
COMPUTE HAT MATRIX FOR THE LOCAL LINEAR REGRESSION
rm(list=ls()) # CLEAR WORKSPACE
set.seed(195021)

x<-seq(from=0, to=3*pi,by=0.05)

f0<-function(x){ 100+sin(2*x)+cos(x/2) }
noise <- rnorm(n=length(x),sd=sqrt(var(f0(x))*0.5))
y<- f0(x) + noise

one <- rep(1,length(x))

X <- matrix(data=NA, nrow=length(y), ncol=(2))
W <- matrix(data=NA, nrow=length(y), ncol=length(y))

458 11 Nonparametric Methods: A Selected Overview

HatMat <- matrix(data=NA, nrow=length(x), ncol=length(x))

h <- seq(from = 0.1, to = 1.5, by = 0.025)
GCV <- rep(0,length(h))
LOOCV <- rep(0,length(h))
form40 <- rep(0,length(h))
dsq <- rep(0,length(h))

tr <- rep(0,length(h))
Trmse <- rep(0,length(h))

j <- seq(1:length(x))

X <- cbind(one,x)
Xt <- t(X)

Hat <- function(j,h,k,x,X){
d <- x - x[j]
ele <- exp(-(d^2)/(2*h[k]^2))
sm <- sum(ele)
w <- diag(ele)/sm
X[j,]%*%solve(Xt%*%w%*%X)%*%Xt%*%w
}

for (k in 1:length(h)) {
HatMat<- t(sapply(1:length(x),Hat,h,k,x,X))
predy <- HatMat %*% y
tr[k] <- sum(diag(HatMat))
Trmse[k] <- mean((predy - y) ^ 2)
dsq[k] <- (1 - mean(diag(HatMat))) ^ 2
GCV[k] <- Trmse[k] / dsq[k] # generalised LOOCV
omd <- 1 - diag(HatMat)
LOOCV[k] <- mean(((predy - y) / omd) ^ 2) # LOOCV

}

h[which.min(LOOCV)]

[1] 0.35

h[which.min(GCV)]

[1] 0.325

min(LOOCV)

[1] 0.660054

min(GCV)

[1] 0.639314

11.1 Local Kernel Smoothing 459

Fig. 11.5 Computation of
leave-one-out mean squared
error for a range of values of
the smoothing parameter h
using the generalised
cross-validation estimator
(6.59) and using estimator
(6.58). The former chooses
.h = 0.325 and the latter
. h = 0.35

0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.
7

0.
8

0.
9

1.
0

h

G
C

V
 /

LO
O

C
V

GCV
LOOCV

Extension to Several Dimensions

Kernel smoothing methods such as the Nadaraya-Watson estimator and local
regression estimators can be extended to deal beyond the one-dimensional case
.(d = 1) discussed so far. For instance, for .d = 2 and .p = 1 (polynomial of degree
one for each of the two coordinates, a linear regression), terms of the form . (xi − x)

in the kernel (11.7) are replaced by

. (xi − x) = (x1i − x1) (x2i − x2) .

When a single bandwidth parameter h is used, the kernel reduces to the product of
the kernels of each component

.K

(

(xi − x)′ (xi − x)

h

)

= K1

(

x1i − x1

h

)

K2

(

x2i − x2

h

)

(11.20)

for target values .(x1, x2). However, a multivariate kernel of the form

. K

(

(xi − x)′ A (xi − x)

h

)

,

for some positive semidefinite matrix A can also be used. For diagonal A, this would
allow to control the influence of certain predictors by assigning different values to h

460 11 Nonparametric Methods: A Selected Overview

in (11.20). The fit at the target values .x = (x1, x2) requires minimising with respect
to . α, b1, b2

.

n
∑

i=1

wi (yi − α (x1, x2) − b1 (x1, x2) x1i − b2 (x1, x2) x2i)
2 .

The fitted value at the target becomes

. m̂ (x1, x2) = (1, x1, x2)
′ b̂ (x1, x2)

where .b̂′ (x1, x2) =
(

α̂ (x1, x2) , b̂1 (x1, x2) , b̂1 (x1, x2)
)

and

. wi (x) =
K
(

(xi−x)′(xi−x)
h

)

∑n
i=1 K

(

(xi−x)′(xi−x)
h

) .

Local polynomials become less attractive when the dimension exceeds beyond
.d = 2 or 3. Other nonparametric approaches are required to deal with higher
dimensions.

11.2 Kernel Methods Using Basis Expansions

The nonparametric methods discussed so far provide flexibility by fitting a model
repeatedly for each target value x. The model could be a simple mean model
(polynomial of degree zero: the binned estimator), or polynomials of any degree,
such as the simple linear regression, a polynomial of degree one. The contribution
that the data features . xi , .i = 1, . . . , n make to the fit at the target x is controlled by
a kernel function.

This section introduces kernel methodology where kernel functions expand the
original set of features into an implicitly high-dimensional space. The method can
involve regularisation, in a similar spirit as in ridge regression, and can capture the
effect on the data of complex interactions and nonlinear terms involving the original
features, without explicit modelling. Here the treatment is heuristic and based on
examples. An authoritative reference is Wahba (1990). The topic is also discussed
at length in the books of Bishop (2006) and Hastie et al (2009).

Preliminaries

I review briefly the concepts of dual representation, basis functions and kernel
functions and note how a dual representation leads to kernel functions. These

11.2 Kernel Methods Using Basis Expansions 461

provide flexible mechanisms to implicitly expand the feature space of a regression
model. Kernels are introduced using ridge regression as an example.

The following notation and definitions will be needed.

• The p-norm of a vector .x ∈ Rn is .
(|x1|p + · · · + |xn|p

) 1
p = ‖x‖p

• For . p = 1, the .�1-norm is .‖x‖1 = |x1| + · · · + |xn|
• For . p = 2, the .�2-norm or Euclidean norm or length of vector x is . ‖x‖2 =

(

x2
1 + · · · + x2

n

) 1
2 = 〈x, x〉 1

2 = √
x′x ≥ 0. The Euclidean norm is sometimes

denoted without any subscript: .‖x‖
• For vectors .x ∈ Rn and .y ∈ Rn, the squared distance between x and y is

. ‖x − y‖2
2 = ‖x‖2

2 + ‖y‖2
2 − 2x′y.

For instance, for .x = (x1, x2) and .y = (y1, y2),

. ‖x − y‖2
2 = [(x1 − y1) , (x2 − y2)] [(x1 − y1) , (x2 − y2)]

′

= (x1 − y1)
2 + (x2 − y2)

2

= x2
1 + x2

2 + y2
1 + y2

2 − 2x1y1 − 2x2y2

= ‖x‖2
2 + ‖y‖2

2 − 2x′y.

and if x and y are orthogonal, .x′y = 0.
• A vector whose length is 1 is called the unit vector. If a non-zero vector x is

divided by its length (or multiplied by .1/ ‖x‖), a unit vector results because

. ‖u‖ = 1

‖x‖ ‖x‖ = 1

• The inner product of vectors x and y is a function that can be represented as
.
∑n

i=1 xiyi = x′y = y′x = 〈x, y〉 = 〈y, x〉 (the inner product is symmetrical).
• As noted in the following sections, vectors can be infinitely dimensional. Such

infinitely dimensional vector spaces (Hilbert spaces) must be endowed with
certain structure in order to derive mathematically useful results. This structure
guarantees that properties of Hilbert spaces apply also to finite dimensional
settings. Technical details are omitted in this overview, and I draw instead on
a result based on the representer theorem on page 472 that has far-reaching
applications. A similar result can be arrived at informally using the concept
of dual representation. The general idea is to express the solution of a linear
system in terms of kernel functions. A variety of kernel functions can be used.
This provides a flexible mechanism to expand the feature space without explicit
modelling. In this way, nonlinear associations between the covariates and the
records can be explored.

462 11 Nonparametric Methods: A Selected Overview

Dual Representation

Linear models admit a dual representation where kernel functions arise naturally.
For instance, consider a training dataset .S = {(x1, y1) , . . . , (xnyn)} where . xi ∈ Rp

are p-dimensional feature vectors and .yi ∈ R are responses. The regression model
can be written

.y = 1μ + Xb + e, e ∼
(

0, Iσ 2
)

. (11.21)

In ridge regression . μ and b are obtained as the solution to the minimisation of the
cost function

.J (μ, b) = (y − 1μ − Xb)′ (y − 1μ − Xb) + λ ‖b‖2 , (11.22)

where the scalar .λ ≥ 0 is a parameter that controls the amount of shrinkage.
Differentiation with respect to . μ and b gives

.

[

1′1 1′X
X′X X′X + λI

] [

μ̂
̂b

]

=
[

1′y
X′y

]

(11.23)

that results in the closed-form solution

.̂b = (

X′X + Iλ
)−1

X′ (y − 1μ̂) . (11.24)

A scalar prediction at some target value x (a .p × 1 column vector) is equal to

.m (x) = μ̂ + x′b̂. (11.25)

Matrix .X′X+Iλ is of dimension . p×p. If .λ > 0 the matrix .X′X+Iλ is positive
definite, and therefore the solution . ̂b is unique.

Solution (11.24) can be expressed in what is known as the dual form. The partial
derivative of .J (μ, b) with respect to b results in

. − X′y + X′1μ + X′Xb + λb = 0

Multiplying by .λ−1 and rearranging yields

.̂b = λ−1X′ (y − 1μ̂ − X̂b
) = X′α̂ =

n
∑

i=1

α̂ixi (11.26)

11.2 Kernel Methods Using Basis Expansions 463

where . xi is the ith column of . X′ with p entries and the dual variable . ̂α is equal to

. ̂α = λ−1 (y − 1μ̂ − X̂b
)

⇒ λα̂ = (

y − 1μ̂ − XX′α̂
)

⇒ α̂ = (

XX′ + Iλ
)−1

(y − 1μ̂) . (11.27)

Expression (11.26) indicates that . b̂ can be expressed as a linear combination of
the training features . xi and . ̂α. The dual variable . ̂α involves the solution of a linear
system of n equations. In contrast, (11.24) requires the solution of a linear system of
p equations. The choice between both depends on the relative sizes of n and p. An
important observation is that the dual solution of the ridge regression (11.27) uses
inner products between data points . xi via .XX′. Indeed, the ij th element of .XX′ is

.
[

XX′]
i,j

= x′
ixj ,

where . x′
i is the ith row of X and . xj is the j th column of . X′. A predicted value at the

target x is of the form

. m (x) = μ̂ + x′
̂b = μ̂ + x′

n
∑

i=1

α̂ixi

= μ̂ +
n
∑

i=1

α̂ix
′xi

= μ̂ +
n
∑

i=1

α̂i 〈x, xi〉 , (11.28)

again involving the inner product between the training features . xi and the target
x. In general, a method will be referred to as kernelised, if the training features x
appear only inside inner products of functions of x, the basis functions. These are
dealt with on page 465. The inner product .〈x, xi〉 is the simplest example of a kernel
function, often referred to as linear kernel.

Kernelised Predictions

Consider representing the inner product .〈x, xi〉 in the last line of (11.28) by .k (x, xi),
a kernel function. This kernel function takes the form

.k (x, xi) = (

x1, . . . , xp

)

⎛

⎜

⎝

xi1
...

xip

⎞

⎟

⎠ .

464 11 Nonparametric Methods: A Selected Overview

The kernelised prediction formulation of (11.28) at the target x becomes

.m (x) = μ̂ +
n
∑

i=1

α̂ik (x, xi) , (11.29)

a linear combination of .k (x, x1) , . . . , k
(

x, xp

)

considered as a function of x. The
predicted values for new features . x′

i , .i = 1, . . . , m, can be written as

.

⎡

⎢

⎣

m
(

x′
1

)

...

m
(

x′
m

)

⎤

⎥

⎦ = 1μ̂+
⎡

⎢

⎣

α̂1k
(

x′
1, x1

)+ · · · +α̂nk
(

x′
1, xn

)

...
...

...

α̂1k
(

x′
m, x1

)+ · · · +α̂nk
(

x′
m, xn

)

⎤

⎥

⎦ = 1μ̂+Kα̂ (11.30)

generalising expression (11.29). Matrix .K = XX′ = (k
(

xi, xj

)

ij
∈ Rn×n, which is

symmetric and positive semidefinite, is known as the kernel matrix or Gram matrix
for any kernel k in the set .{x1, . . . , xn}. More details on this matrix follow shortly.
At this point note that the Gram matrix contains the evaluation of the kernel function
on all pairs of feature points . xi . All the information about the data x is contained
in K . New predictions require the input of the complete feature points . xi of the
training data.

Kernelised Cost Functions

The cost function (11.22) can be written in terms of the .n × n symmetric kernel
matrix K . Using (11.26),

. (y − 1μ − Xb) = (

y − 1μ − XX′α
)

= (y − 1μ − Kα) .

Therefore, the residual sum of squares takes the form

. ‖y − 1μ − Xb‖2 = ‖y − 1μ − Kα‖2 .

The penalised term .λ ‖b‖2 can be expressed as

.λ ‖b‖2 = λ
∥

∥X′α
∥

∥

2

= λα′XX′α

= λα′Kα.

11.2 Kernel Methods Using Basis Expansions 465

Therefore, the cost function (11.22) is equal to the convex and differentiable cost
function

. (y − 1μ − Kα)′ (y − 1μ − Kα) + λα′Kα. (11.31)

Setting the partial derivatives with respect to . μ and . α equal to zero yields

.

[

1′1 1′K
K1 K (K + λI)

] [

μ̂

α̂

]

=
[

1′y
Ky

]

. (11.32)

Rearranging the second equation results in .K (K + λI) α = K (y − 1μ̂). One
solution is

.̂α = (K + λI)−1 (y − 1μ̂) , (11.33)

as can be confirmed by replacing (11.33) in the partial derivative of the cost function
with respect to . α. If K is positive definite, (11.33) is the only solution to the
minimisation of (11.31). The vector of n fitted values is given by (11.30)

. ̂y = 1μ̂ + Kα̂

= 1μ̂ + K (K + λI)−1 (y − 1μ̂) . (11.34)

The vector of fitted values . ̂y is invariant to whatever solution of . K (K + λI) α =
K (y − 1μ̂) is used. The right-hand side of (11.34) can be written as

.
[

1 K
]

[

1′1 1′K
K1 K (K + λI)

]−1 [
1′
K

]

y = Hy

where H is not a function of y, so this is a linear smoother in the observations.
The subsection concludes with two important messages. First, the algorithm for

solving (11.31) involves only the computation of inner products of feature vectors
x. All the information about the training data is contained in the matrix K and
the output vector y. Second, the kernelised cost function (11.31) with solution
(11.33) can be used with a variety of kernel matrices K , providing flexibility. Kernel
functions automatically incorporate nonlinear associations between the features x
and the records y, without explicit modelling, as discussed in the next subsection.

Nonlinear Feature Mappings Using Kernel Functions

Consider a regression function

.m (x) = α + bx, (11.35)

466 11 Nonparametric Methods: A Selected Overview

where b is a scalar parameter and feature .x ∈ R is also a scalar. One may
wish to expand the model to explore nonlinear structures in the training data
and, to this end, a basis function .φ (x) is used that maps x onto . φ (x) =
(

x, x2, x3
) ∈ R3, a three-dimensional space. The effect of . φ is to recode the data

from .
{(

x1,y1
)

, . . . , (xn, yn)
}

to .{(φ (x1) , y1) , . . . , (φ (xn) , yn)}. The regression
function in the new space is now

. m (φ (x)) = α + b1x + b2x
2 + b3x

3 = α + b′φ (x) ,

where now b is a vector of parameters with three elements. This operation allows
the output y to be represented by a nonlinear function of the original features x,
but y is still linear in the parameters b in the expanded model. The only difference
with (11.35) is that .φ (x) is substituted for x. This linearity in the parameters greatly
simplifies the analysis of this class of models. As we shall see, these models lead
to convex functions that are relatively easy to optimise. The algorithm that solves
(11.31) proceeds in exactly the same manner as in the standard linear model, with x
replaced by .φ (x). This requires computation of the inner products .φ (x)′ φ (x).

A more general case is to consider a feature vector . x = (

x1, . . . , xp

)′ ∈ Rp

involving p variables, where the basis function . φ transforms x into the product of
all monomial terms. The notation .(x, z) denotes two different values of the feature
x, .
(

xi, xj

)

and therefore .x, z ∈ Rp. The basis function is

. φ (x) = (

x1x1, x1x2, . . . , x1xn, . . . , xpxp

)′ ∈ Rp2
,

φ (z) = (

z1z1, z1z2, . . . , z1zn, . . . , zpzp

)′ ∈ Rp2
. (11.36)

The time required to compute .φ (x) or the inner product .φ (x)′ φ (z) is of order . p2

(because there are . p2 terms and . p2 products), while the time required to compute the
inner product in the original feature space .x′z is of order p (there are p products).
So the complexity of the evaluation of the inner products is proportional to the
dimension of the feature space. The function that for all .x, z computes the inner
products .φ (x)′ φ (z) is a kernel function k. Specifically,

.k (x, z) = 〈φ (x) , φ (z)〉 = φ (x)′ φ (z) =
p
∑

i=1

p
∑

j=1

(

xixj

) (

zizj

)

. (11.37)

The kernel function involves . p2 products, where . φ is a mapping from X to an inner
product feature space F . When . φ is the identity mapping and the new feature space
involves the covariates .xi ∈ Rp of the training set, .K = XX′. The ij th element of
.XX′ is .

(

XX′)
ij

= 〈

xi, xj

〉 = x′
ixj , where . x′

i is the ith row of the incidence matrix

.X ∈ Rn×p; this particular kernel is known as the linear kernel. The kernel matrix K
has dimension .n × n.

11.2 Kernel Methods Using Basis Expansions 467

At face value, it seems that use of the basis function . φ to explore a higher
dimensional space comes at the cost of increased computation. The next section
shows that this is not the case.

The Kernel Trick

As indicated above, the computation of inner products involving . φ in (11.37) can
be very demanding when the inner product feature space F is high dimensional.
In the case of (11.37), there are . p2 products. As shown below, regardless of the
dimension of F , the use of kernel functions allows computation of .φ (x)′ φ (z) using
the original features .(x, z) without explicitly computing the mapping . φ. The claim is
that the inner product (11.37) involving the basis function (11.36) can be computed
using

.k (x, z) = φ (x)′ φ (z) = (

x′z
)2 (11.38)

requiring p products. To prove the claim, write

. k (x, z) = (

x′z
)2

=
(

p
∑

i=1

xizi

)

⎛

⎝

p
∑

j=1

xj zj

⎞

⎠

=
p
∑

i=1

p
∑

j=1

xixj zizj

=
p
∑

i=1

p
∑

j=1

(

xixj

) (

zizj

)

= φ (x)′ φ (z) . (11.39)

The first line in (11.39) requires order p computations involving the inner product
of vectors x and z, each with p elements, while the last line requires order . p2. The
inner product between the new feature space (high dimensional) has been computed
without explicitly evaluating the new feature space, using the original (lower
dimensional) feature space. The function that performs this direct computation is
the kernel function k, and the operation of swapping the linear kernel with the new
kernel is known as the kernel trick.

468 11 Nonparametric Methods: A Selected Overview

Choice of Kernel Functions

The use of kernel functions provides flexibility: the same algorithm can be applied
replacing one kernel function with another. In addition, very high-dimensional fea-
ture spaces involving nonlinear terms among the features and complex interactions
can be explored, without their explicit evaluation. The question is, how should a
kernel be chosen and what function qualifies as a kernel function?

A function .k (x, z) can be used as a kernel function if there exists some . φ such
that .k (x, z) = φ (x)′ φ (z). For a given set of feature vectors .{x1, . . . , xn}, .xi ∈ Rp,
define the symmetric matrix .K ∈ Rn×n to be the Gram matrix or kernel matrix such
that .

[

Kij

]

i,j=1,...,n
where, .Kij = 〈

φ (zi) , φ
(

zj

)〉

. Then

. z′Kz =
n
∑

i=1

n
∑

j=1

zizjKij

=
n
∑

i=1

n
∑

j=1

zizj

〈

φ (zi) , φ
(

zj

)〉

=
〈

n
∑

i=1

ziφ (zi) ,

n
∑

j=1

zjφ
(

zj

)

〉

=
∥

∥

∥

∥

∥

n
∑

i=1

ziφ (zi)

∥

∥

∥

∥

∥

2

≥ 0

and therefore K is a positive semidefinite matrix. This result indicates that the
construction of a valid kernel involves first finding a feature mapping . φ and then
computing its inner product to generate K . There is a powerful result known as
Mercer’s theorem that allows going the other way: choose an appropriate K and do
not worry about . φ. An appropriate K is simply any symmetric, positive semidefinite
matrix.

A few examples of commonly used kernels are

• the linear kernel .k (x, z) = 〈x, z〉
• the polynomial kernel of degree d, .k (x, z) = (〈x, z〉 + 1)d

• the Laplacian radial basis kernel .k (x, z) = exp
[

−‖x−z‖1
2σ 2

]

• the Gaussian or radial basis function kernel . k (x, z) = exp

[

−‖x−z‖2
2

2σ 2

]

.

(Above, the term .2σ 2 is often replaced by the positive scalar h, the bandwidth
parameter).

Any of these kernel functions and many others can be used to minimise (11.31)
with solution given by (11.33).

11.2 Kernel Methods Using Basis Expansions 469

An observation regarding the Gaussian kernel is that, in order to express it as
.k (x, z) = 〈φ (x) , φ (z)〉, the new feature vector .φ (x) must be of infinite dimension.
The inner product space of this infinitely dimensional feature vector is referred to as
a reproducing kernel Hilbert space (RKHS). The finite dimensional inner product
space . Rp is a special case. The Gaussian kernel is a square, positive definite matrix
of dimension .p ×p, where the original feature space is . Rp, despite the fact that . φ ∈
R∞. To illustrate, assume a single scalar feature per response. The basis function
.φ (x) corresponding to the Gaussian kernel is an implicitly infinite vector with the
form

. φ (x) = exp

[

− x2

2σ 2

] [

1,
x

σ
√

1! ,
x2

σ 2
√

2! ,
x3

σ 3
√

3! , . . .
]′

and .〈φ (x) , φ (z)〉 is a series that converges to .k (x, z). Indeed,

. 〈φ (x) , φ (z)〉 =
∞
∑

j=0

1

j ! exp

[

−
(

x2 + z2
)

2σ 2

]

xj zj

(

σ 2
)j

= exp

[

−
(

x2 + z2
)

2σ 2

] ∞
∑

j=0

(xz)j

(

σ 2
)j

j !

= exp

[

−
(

x2 + z2
)

2σ 2

]

exp
[xz

σ 2

]

= exp

[

− (x − z)2

2σ 2

]

= k (x, z)

where the step from the second to third line follows from the characterisation of the
exponential function as a Maclaurin series.

Interestingly, the finite dimensional cost function (11.31) with solution (11.33)
can be used despite the infinite dimensionality of the inner product space associated
with the Gaussian kernel. Positive definite kernel functions give rise to implicitly
infinite dimensional feature spaces.

NOTE

The term .2σ 2 in the Laplacian basis kernel and in the Gaussian kernel is the
bandwidth parameter and can be replaced by the customary notation h.

470 11 Nonparametric Methods: A Selected Overview

Kernel Matrices as Similarity Matrices

Kernel matrices are also known as similarity matrices or covariance functions. For
instance, consider two p dimensional vectors . xi and . xj , where p could represent
the number of features, while i and j could represent two individuals. The Gaussian
kernel function is

. k
(

xi, xj

) = exp

(

−
∥

∥xi − xj

∥

∥

2

σ 2

)

,

where

.
∥

∥xi − xj

∥

∥ =
[

(

xi1 − xj1
)2 + (

xi2 − xj2
)2 + · · · + (

xip − xjp

)2
] 1

2
(11.40)

is the Euclidean distance and . σ 2 (or written also as h) is the bandwidth of the
kernel. The kernel function .k

(

xi, xj

)

evaluates to 1 if . xi and . xj are identical and
approaches 0 as . xi and . xj become increasingly different. In a genomics context
when x represents SNPs, the elements of the kernel matrix are larger for pairs of
individuals that are more genetically alike.

The bandwidth parameter controls how fast the Euclidean distance falls with
increasing difference between features . xi and . xj . The choice of the bandwidth
parameter has important consequences on inference and prediction. Large values
of . σ 2 lead to entries of the Gaussian kernel approaching 1 resulting in underfitting.
Small values of . σ 2 generate entries approaching 0. In this case, in a model including
a random effect and a residual term, the random effect associated with the kernel
matrix becomes confounded with the residual term. The bandwidth parameter can
be chosen using cross-validation.

A few remarks are in order.

• Kernel matrices are dense and in large datasets can be computationally challeng-
ing to construct.

• Concerning the influence of the bandwidth parameter on predictions based
on (11.30): If the elements of K are very small, the predicted values are all
approximately equal to . ̂μ. Such a kernel model has little or no predictive power.

• On the other hand, if all elements of K are very close to 1, the predicted values
are very similar and again, predictive power is compromised.

• Kernels can be used for many types of inputs such as strings, discrete structures,
images, time series and more, provided the kernel matrices corresponding to any
finite training set are positive semidefinite. They are an extremely flexible tool.

• A new kernel can be generated from existing kernels by addition, element-wise
multiplication, or by multiplication by a positive scalar. The requirement is that
these operations result in a symmetric, positive semidefinite matrix. This property
provides great flexibility. In a genetics context, a new kernel can be constructed
from the sum of existing covariance matrices derived from specific parametric

11.2 Kernel Methods Using Basis Expansions 471

assumptions. The resulting kernel can be used to exploit potential contributions
from, for example, non-additive genetic sources of variation or from SNP . ×
environment interactions, despite the fact that the nonparametric model is not
explicitly built upon specific mechanistic considerations (Gianola and de los
Campos 2008; de los Campos et al 2009).

• The bandwidth parameter of a Gaussian kernel can be selected by cross-
validation or can be inferred as in Perez-Elizalde et al (2015).

• As illustrated on page 476, kernels can be viewed as prior information describing
covariance structures in the data. The choice of kernel should reflect prior
knowledge, but this may be difficult to accomplish. One may want to consider
instead a family of kernels weighted by parameters inferred from the data (e.g.
de los Campos et al 2010), or attempt to infer the kernel from the data (e.g.
Duvenaud et al 2013 and Gianola et al 2020).

• As is clear from (11.40) diagonal elements of the Euclidean distance can become
very large when the number of features p is large. In such a situation, the
Gaussian kernel matrix is diagonally dominant and the model may predict poorly.
Typically, this calls for some form of standardisation at the level of the inputs and
perhaps at the level of the Euclidean distance leading to different kernel matrices.
This may impinge on the predictive capacity of the model and can be gauged
using cross-validation

• Kernel methods are essentially prediction tools. The kernel function expands
the original feature space into a new, high-dimensional feature space via inner
products of basis functions that are not explicitly constructed. It is therefore
not straightforward to measure the importance of a specific feature in the new
feature space, contrary to parametrised regression models. However, there are
kernels that are constructed in a manner that resemble known parameters of fully
parametric models, and this provides a framework for interpretation. An example
on page 476 is the linear kernel that takes the form of a genomic relationship
matrix, and the smoothing or regularisation parameter is interpreted as a ratio of
variance components.

It becomes clear that the linear kernel can be viewed as a similarity matrix if it
is transformed into a correlation matrix where the diagonal elements, equal to 1,
describe the similarity between the individual with itself.

A genomic relationship matrix is also a linear kernel that can be scaled in a
variety of ways. A standard approach is to transform the marker genotype . xij into
.wij ∼ (0, 1), where i refers to individual (row of X) and j to marker genotype
(column of X). The genomic variance under such a model is .pσ 2

b (this is the
marginal variance of .w′

ib, where vector .b ∈ Rp has iid elements representing p
marker effects distributed as .N

(

0, Iσ 2
b

)

).

Another approach is to centre .xij and divide by .
(

∑p

j=1 Var
(

xj

)

) 1
2
, where

.Var(xj) is the variance of marker j , equal to .2pj (1 − pj). In practice the variance
of marker j is replaced by the empirical variance of the elements of column j of

472 11 Nonparametric Methods: A Selected Overview

matrix X. With this scaling and centring of . xij , the genomic variance is equal to . σ 2
b ,

independent of the number of markers.

Reducing Infinitely Dimensional Problems to Finite
Dimensional Problems

This short tour of kernel methods using basis expansions took ridge regression as
starting point from which a number of results were derived. The model is specified in
(11.21) with solution (11.23). The dual representation allows to express the solution
and predictions in terms of inner products involving the original feature data, as
indicated in (11.26) and (11.30). Kernel functions, with associated kernel matrices,
are defined as inner products of basis functions. The basis functions expand the
original feature space. In this way, one can explore the effects of nonlinear terms of
the original feature space, on the observations. Kernel methodology creates a very
flexible setup, because the same algorithm to solve the linear system can be applied
with different kernel matrices.

A more rigorous approach to arrive at the same result invokes the repre-
senter theorem (Kimeldorf and Wahba 1971). Consider a training dataset . S =
{(x1, y1) , . . . , (xnyn)} where .xi ∈ Rp are p-dimensional feature vectors, .yi ∈ R are
responses. Assume a regression function .m (xi) = μ + g (xi), where, for example,
.g (xi) = x′

ib as in the linear model, but could also accommodate other nonlinear
structures. A flexible general formulation for estimating m when it belongs to some
possibly infinite dimensional Hilbert space . H of functions is to minimise the cost
function

.J = min
m∈H

n
∑

i=1

� (yi,m (xi)) + λ ‖m‖2
H

(11.41)

where . � is some function measuring goodness of fit to data such as . � (y,m) =
(y − m)2, a quadratic function, although other functions (such as the negative of
the log-likelihood) can be used, . λ is the smoothing or regularisation parameter
and the last term .‖m‖2

H
is a norm in the space of functions . H generated by a

positive definite kernel .K
(

xi, xj

)

. Solving for m directly from (11.41) involves an
optimisation in a possibly infinite dimension; this is a difficult task.

The representer theorem finds a solution of an equivalent problem in a finite
dimension of the form

.g (x) =
n
∑

i=1

αik (xi, x) , (11.42)

11.2 Kernel Methods Using Basis Expansions 473

that requires finding the values of n scalar coefficients . αi (and of the intercept . μ).
Writing

. m (xi) = μ + g (xi)

= μ +
n
∑

i=1

αik (xi, x) , (11.43)

this translates into solving

. min
μ,α

n
∑

i=1

� (yi, μ + g (xi)) + λ ‖g‖2 =

min
μ,α

n
∑

i=1

�

⎛

⎝yi, μ +
n
∑

j=1

αik
(

xi, xj

)

⎞

⎠ + λ

n
∑

i=1

n
∑

j=1

αiαj k
(

xi, xj

)

. (11.44)

For instance, in the case of ridge regression, the cost function is

. J =
n
∑

i=1

(yi − m (xi))
2 + λ ‖g‖2 .

Plugging (11.43) into J and writing .‖g‖2 = α′Kα yield the finite dimensional
optimisation problem of the form

. J = ‖y − 1μ − Kα‖2 + λα′Kα,

as in (11.31), where .[K]i,j = k
(

xi, xj

)

is an .n × n Gram matrix. The minimiser
over . α is (11.33) and the fitted values are given by (11.34); these are obtained by
direct application of the representer theorem, without the need for a dual form.

A couple of examples follow, starting with a toy example that highlights details
of some of the matrix operations and illustrates how the Gaussian kernel regression
can cope with strong nonlinear relationships between the feature x and the output y.

Example: Classical, Kernelised, and Gaussian Kernel Ridge
Regression

The R-code below generates a scalar covariate x and a vector of responses y of
dimension .N = 100, nonlinearly associated with x. In a first stage, it performs
an analysis using standard ridge scalar regression solving the linear system (11.23).
Model (11.21) includes an intercept . μ and a regression parameter b, so the left-hand
side of the system (11.23) is of dimension .2×2. The fitted values are obtained from

474 11 Nonparametric Methods: A Selected Overview

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

x

y

1 2 3 4 5 6 7 1 2 3 4 5 6 7

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

x

y
Fig. 11.6 Left: fitted values using a classical linear ridge regression. Right: fitted values using a
Gaussian kernel

. Xb̂, where . b̂ is the solution to (11.23). The estimate of the regression parameter
is .b̂ = 0.399 and the code prints the first 10 fitted values. Figure 11.6, left panel,
displays the output y as a function of the feature vector x and the fitted values.

CODE1107
rm(list=ls()) # CLEAR WORKSPACE
set.seed(195021)
library(MASS)
N <- 100
GENERATE DATA
x<-seq(from=1, to=2.2*pi,length=N)
signal <- cos(1.5*x)+ exp(-0.4*x)
noise <- rnorm(N,0,0.25)
y <- signal + noise
lambda <- 0.01
X <- cbind(1,x)
RHS <- crossprod(X,y)
LHS <- crossprod(X)
LHS[-1,-1] <- LHS[-1,-1]+diag(c(rep(1,1)))*lambda # assumes
one covariate x
Classical LS solution
bh1 <- solve(LHS,RHS)
bh1

[,1]
0.46692087
x -0.09918769

yhatclassic <- X%*%bh1
yhatclassic[1:5]

[1] 0.3677332 0.3618105 0.3558878 0.3499650 0.3440423

11.2 Kernel Methods Using Basis Expansions 475

yhatclassic[6:10]

[1] 0.3381196 0.3321969 0.3262742 0.3203515 0.3144288

The R-code below fits the same model in dual form with .K = XX′. The left-
hand side of the system (11.32) is now .101×101, and the code prints out the first 10
fitted values, which are identical to those generated with the classical representation.
The estimates of the intercept and of the regression parameter are the same as in the
classical parametrisation.

CODE1107 (cont)
kernelised (dual) solution with kernel matrix XX’
K <- x%*%t(x) # LINEAR KERNEL
X <- cbind(1,K)
RHS <- crossprod(X,y)
LHS <- crossprod(X)
LHS[-1,-1] <- LHS[-1,-1]+K*lambda
diag(LHS) <- diag(LHS) + c(0,rep(1e-8,N))
sol <- as.matrix(solve(LHS,RHS))
yhatkernellin <- sol[1]+K%*%sol[-1]
yhatkernellin[1:5]

[1] 0.3677332 0.3618105 0.3558878 0.3499650 0.3440423

yhatkernellin[6:10]

[1] 0.3381196 0.3321969 0.3262742 0.3203515 0.3144288

alfa <- sol[-1]
bhkernellin <- sum(alfa*x)
bhkernellin

[1] -0.09918769

muhatkernellin <- sol[1]
muhatkernellin

[1] 0.4669209

Finally, I fit the Gaussian kernel regression using the R-code below. The same
system of equations (11.32) is solved, where now K represents the Gaussian kernel
with .σ 2 = h = 0.7. The fitted values are displayed in Fig. 11.6, right panel. The
nonlinear relationship between the covariate and the data is well captured by the
Gaussian kernel.

476 11 Nonparametric Methods: A Selected Overview

CODE1107(cont)
####### GAUSSIAN KERNEL SOLUTION #####################
CONSTRUCT GAUSSIAN KERNEL
#w <- matrix(data=NA,nrow=length(x),ncol=length(x))
K <- matrix(data=NA,nrow=length(x),ncol=length(x))

d <- as.matrix(dist(x))^2
CHOOSE h and lambda
h <- 0.7
lambda <- 0.5

K <- exp(-(1/(2*h^2))*d)

X <- cbind(1,K)
RHS <- crossprod(X,y)
LHS <- crossprod(X)
LHS[-1,-1] <- LHS[-1,-1]+K*lambda

diag(LHS) <- diag(LHS)+c(0,rep(1e-8,N))

sol <- solve(LHS,RHS)
fgaus <- sol[1]+K%*%sol[-1]
alfa <- sol[-1]

Bayesian View of Kernelised Regression

Consider the derivation of BLUP (best linear unbiased predictor) that can be found
in Henderson et al (1959), based on finding the maximiser of the joint density of y
(vector of dimension .n × 1) and a (vector of dimension .q × 1) with respect to b
(vector of dimension .p × 1) and a, under the assumption of normality. When vector
a represents additive genetic values, this probability model is known as the additive
genetic model. With known covariances matrices R and G, the logarithm of the joint
distribution takes the form (ignoring an additive constant and multiplying by . −1)

. log [p (y, a|b,R,G)] = log [p (y|a, b, R)] + log [p (a|G)]

∝ (y − Xb − Za)′ R−1 (y − Xb − Za) + a′G−1a. (11.45)

11.2 Kernel Methods Using Basis Expansions 477

Differentiating with respect to b and a leads to the linear system, which arranged in
the usual mixed model format is

.

[

X′R−1X X′R−1Z

Z′R−1X Z′R−1X + G−1

] [

̂b

â

]

=
[

X′R−1y

Z′R−1y

]

. (11.46)

An alternative interpretation based on a Bayesian argument is to write the joint
posterior density .p (b, a|y,G,R) as

. p (b, a|y,G,R) ∝ p (y|a, b, R) p (a, b|G)

= p (y|a, b, R) p (a|G) (11.47)

assuming .p (a, b|G) ∝ p (a|G). Then .
[

b̂, â
]

is the mode (and the mean under

normality) of the posterior distribution .[b, a|y,G,R].
This same structure (11.45) can be applied to the kernel function (replacing

vector b with scalar . μ)

.
1

σ 2
e

(y − 1μ − Kα)′ (y − 1μ − Kα) + 1

σ 2
a

α′Kα (11.48)

which implies .
[

y|μ, α, σ 2
e

] ∼ N
(

1μ + Kα, Iσ 2
e

)

and .
[

α|K, σ 2
α

] ∼ N
(

0,K−1σ 2
α

)

,
where . σ 2

α is the variance captured by the specific kernel adopted. Differentiation
with respect to . μ and . α leads to the linear system

.

[

1′1 1′K
K ′1 K ′K + λK

] [

μ̂

α̂

]

=
[

1′y
K ′y

]

, (11.49)

where .λ = σ 2
e /σ 2

α . This system is identical to (11.32). One can argue that this
interpretation brings us back to the parametric setup and offers a framework to infer
the regularisation parameter . λ from data, using likelihood or Bayesian methods.
Parameter . λ is expressed as a ratio of the two variance components, i.e., .λ = σ 2

e /σ 2
α .

Genetic Models Using Kernelised Regressions

The classical additive genetic model assumes that, in (11.45), .G = Aσ 2
a where A

is a positive definite .q × q matrix of additive genetic relationships among additive
genetic values of q individuals, given a pedigree, and the scalar . σ 2

a is the additive
genetic variance of some trait.

478 11 Nonparametric Methods: A Selected Overview

In the kernel model (11.48), consider the transformation .g = Kα. Since . α is
normal with mean zero and variance . K−1σ 2

α , it follows that .g ∼ N
(

0,Kσ 2
α

)

. The
cost function to be minimised along the same lines as in (11.48) is now

.
1

σ 2
e

(y − 1μ − g)′ (y − 1μ − g) + 1

σ 2
α

g′K−1g. (11.50)

Differentiation with respect to . μ and g leads to the linear system

.

[

1′1 1′
1 I + λK−1

] [

μ̂

ĝ

]

=
[

1′y
y

]

(11.51)

where .λ = σ 2
e

/

σ 2
α is the regularisation parameter. If .K = A and .σ 2

α = σ 2
a ,

the linear system (11.51) becomes identical to that of the classical (infinitesimal)
additive genetic model using the numerator relationship matrix as kernel (de los
Campos et al 2009). In this case the random variable g represents additive genetic
values. Of course the solution for . ̂g in (11.51) is identical to the solution for .Kα̂ in
(11.49). To see this, write the second equation in (11.49) as

. K ′ (K + λI) α̂ = K ′ (y − 1μ̂) .

Multiplying both sides by .K−1 and using .K ′ = K due to symmetry, gives

. (K + λI) α̂ = (y − 1μ̂) . (11.52)

Similarly from (11.51),

.

(

I + λK−1
)

ĝ = (y − 1μ̂)

and replacing . ̂g by .Kα̂ recovers (11.52). A similar result applies to the equations
for . ̂μ.

This development was based on the classical infinitesimal model; a genomic
model incorporating a large number of markers leads to the same results. In this
case, g are genomic values, . σ 2

a is interpreted as the genomic variance and K as a
genomic relationship matrix.

Example: A Bayesian Kernelised Regression

A Bayesian implementation of a RKHS (reproducing kernel Hilbert space) model is
applied to the wheat dataset downloaded from BGLR (Perez and de los Campos
2014) consisting of grain yields from .n = 599 wheat inbred lines genotyped

11.2 Kernel Methods Using Basis Expansions 479

for 1279 genetic markers. A Gaussian kernel with three values of the bandwidth
parameter h is used to illustrate the effect on inferences.

The Bayesian RKHS model assumes the following hierarchical structure:

. y|μ, g, σ 2
e ∼ N

(

1μ + g, Iσ 2
e

)

,

with

. g|Kh, σ
2
g ∼ N

(

0,Khσ
2
g

)

,

and improper uniform prior distributions for . μ, . σ 2
e and . σ 2

g . The positive definite
.n × n matrix .Kh is the Gaussian kernel with bandwidth parameter h.

In order to improve computational efficiency, K is expressed as

.K = UDU ′, (11.53)

(de los Campos et al 2010) using the eigenvalue decomposition shown on page 91.
Details of the Gibbs sampling implementation can be found on page 227 (here, K
is positive definite, whereas in the example of page 227, G is singular; this requires
a very slight modification of the McMC implementation). In (11.53) U is the . n × n

orthogonal matrix of eigenvectors of K and D is an .n × n diagonal matrix with
eigenvalues .di > 0, for all i.

A chain of length .25,000 was run and the Monte Carlo estimates of posterior
means of . σ 2

g , . σ 2
e and .λ = σ 2

e /σ 2
g for .h = 0.5, .h = 1 and .h = 3 are shown in

Table 11.1.
Inferences about the components of variance are sensitive to the chosen value of

the bandwidth parameter h, but the regularisation parameter . λ is less affected. The
impact on prediction varying h for constant . λ is illustrated in an example on page
509.

The R-code to execute the Gibbs sampler is shown below. The lines at the bottom
compute the Monte Carlo (sampling) error of features of the posterior samples based
on the method of batching.

Table 11.1 McMC-based Bayesian inferences of the components of variance conditional on three
values of the bandwidth parameters h for grain yield data of 599 wheat inbred lines from the BGLR
package, using a Gaussian kernel RKHS regression. The regularisation parameter . λ is the ratio of
the variance components . σ 2

e and . σ 2
g . The elements in brackets in the fourth column show the . 95%

posterior intervals for the MC estimates of the posterior distribution of the regularisation parameter
. λ. The Monte Carlo standard error of the posterior mean of the .λ′s is approximately 0.002

h .σ 2
g .σ 2

e . λ

0.5 1.20 0.33 0.28 (0.17;0.45)

1.0 0.83 0.27 0.33 (0.20;0.52)

3.0 0.72 0.20 0.28 (0.15;0.46)

480 11 Nonparametric Methods: A Selected Overview

CODE1108
BAYESIAN KERNELISED REGRESSION
WHEAT DATA FROM BGLR

CODE ASSUMES K IS OF FULL RANK
THEREFORE IT DOES NOT WORK WITH CENTRED G.
IT WORKS WITH GAUSSIAN KERNEL

rm(list=ls()) # CLEAR WORKSPACE
set.seed(37111)
library(BGLR)
data(wheat)
USE BGLR MATRIX X
X <- wheat.X
y<- wheat.Y[,1]
nindiv<-length(y)
nmark<-ncol(X)

A GAUSSIAN KERNEL ################

kgaus <- function(X,h){
X <- scale(X,center=TRUE,scale=FALSE)
S=sqrt(sum(apply(FUN=var, X=X,MARGIN=2)))
X <- X/S
D <- as.matrix(dist(X))^2
K <- exp(-h*D)

}
############ CHOOSE GAUSSIAN KERNEL ##############
#h <- 0.5
h <- 1
#h <- 3.0

K <- kgaus(X,h)
dim(K)
qr(K)$rank
G<-K

EIGEN DECOMPOSITION OF G
EVD <- eigen(G)
names(EVD)
head(EVD$values)
U <- EVD$vector

11.2 Kernel Methods Using Basis Expansions 481

tU<-t(U)
val <- EVD$values
summary(val)
D <- diag(val,nrow=nindiv)
#Dp IS A VECTOR WITH NON-ZERO EIGENVALUES
Dp<-c(val[1:nindiv])
#INITIALISE Ve
Ve<-0.5
#INITIALISE Vg
Vg<-0.5
#INITIALISE k
k<-Ve/Vg
#INITIALISE VECTOR ALFA
alfa<-rep(0,nindiv)
CHOOSE LENGTH OF GIBBS CHAIN
rep<-25000
#INITIALISE result
result<-matrix(data=NA,nrow=rep,ncol=5)
START GIBBS CHAIN
ptm <- proc.time()
for (i in 1:rep)
{

cat(i, "\n",sep="")
SAMPLE mu
avmu<-sum(y-U%*%alfa)/nindiv
varmu<-Ve/nindiv
mu<-rnorm(1,mean=avmu,sd=sqrt(varmu))
SAMPLE alfa1 (VECTOR OF LENGTH nindiv)
meanalfa1<-(Dp/(Dp+k))*tU%*%(y-mu)
varalfa1<-((Dp)/(Dp+k))*Ve
alfa1<-rnorm(nindiv,meanalfa1,sqrt(varalfa1))
alfa<-alfa1
SAMPLE Vg
COMPUTE SCALE
scVg<-sum(alfa1*alfa1*(1/Dp))
Vg<-scVg/rchisq(1,nindiv-2)
#Vg<-0.0001
SAMPLE Ve
COMPUTE SCALE
ystar<-y-mu-U%*%alfa
scVe<-sum(ystar*ystar)
Ve<-scVe/rchisq(1,nindiv-2)
k<-Ve/Vg
ualfa <- U%*%alfa

482 11 Nonparametric Methods: A Selected Overview

result[i,]<-c(i,mu,Vg,Ve,k)
print(result[i,])
}
proc.time()-ptm
apply(result[2000:rep,2:5],2,mean)

#CODE FOR THE MC VARIANCE BASED ON BATCHING
y <- result[,5] # READS IN ALL DRAWS STORED IN RESULT
#choose number of batches b
b<-500
batch_size <- length(y)/b
batch_size
x<-matrix(y,ncol=b, byrow=FALSE)
avrb<-apply(x,2,mean)
mcvarb<-var(avrb)/length(avrb)
sqrt(mcvarb)
efchsizebatch<-var(y)/mcvarb
efchsizebatch

PLOT AUTOCORRELATION VERSUS LAG USING
R-FUNCTION acf
require(graphics)
acf(y) ## AUTOCORRELATION OF McMC DRAWS
acf(avrb) ## AUTOCORRELATION OF BATCH MEANS

Kernel Logistic Regression

Section 9.4 introduced penalised logistic regression, where regression coefficients
are shrunk as in ridge regression allowing the analysis when .p > n, where p is the
number of features and n is the length of the vector of binary records y. Kernel
methods also make use of a penalisation and work instead in an n-dimensional
space that can be an advantage when .p � n. Additionally, kernel methods extend
the feature space exploring complicated associations among the original features
without explicit modelling. Here I describe an application to logistic regression.
The starting point is to use .f (xi) = μ + x′

iβ in the negative of the log-likelihood
(9.12)

. − � (μ, β|y, x) = −
n
∑

i=1

{

yi (f (xi)) − ln
[

1 + exp (f (xi))
]}

,

11.2 Kernel Methods Using Basis Expansions 483

and use the representer theorem result (11.43) replacing .f (xi) by

.f (xi) = μ +
n
∑

j=1

αjk
(

xi, xj

)

. (11.54)

The next step is to minimise the convex cost function with respect to . μ and . αi ,
. i = 1, 2, . . . , n

. J (μ, α|λ)=−
n
∑

i=1

{

yi (f (xi))−ln
[

1 + exp (f (xi))
]}+ λ

2

n
∑

i=1

n
∑

j=1

αiαj k
(

xi, xj

)

.

(11.55)

Using similar algebra as in Sect. 9.4, the expressions for the first derivatives are

.
∂J

∂μ
= −1′ (y − π) , . (11.56a)

∂J
∂α

= −K (y − π) + λKα, (11.56b)

where . 1′ is a row vector of n ones, .y = {yi} is a column vector with the n responses
. yi , .i = 1, . . . , n, .π = {πi} is a column vector with the n terms having the form

. πi = Pr (yi = 1|x, μ, α) = exp (f (xi))

1 + exp (f (xi))
,

and .K = {

k
(

xi, xj

)}

is an .n × n Gram matrix whose ij th element is the kernel
function .k

(

xi, xj

)

. The second derivatives are

.
∂2J

(∂μ)2
=

n
∑

i=1

πi (1 − πi) = 1′W1,

∂2J

∂α∂α′ = KWK + λK,

∂2J

∂α∂μ
= KW1.

The matrix of second derivatives can be written as

.H =
[

1′W1 1′WK

KW1 KWK + λK

]

,

484 11 Nonparametric Methods: A Selected Overview

where .W = diag {πi (1 − πi)}, .i = 1, 2, . . . , n, an .n × n diagonal matrix. Let

. Z = [1,K] , of dimension n × (n + 1) ,

M =
[

0 0
0 K

]

, of dimension (n + 1) × (n + 1) ,

� = diag {0, λ, λ, . . . , λ} , of dimension (n + 1) × (n + 1) ,

θ = (

μ, α′)′ , of dimension (n + 1) × 1.

The matrix of second derivatives can be compactly expressed as

. H = Z′WZ + �M

and the vector of first derivatives as

. S (θ) = −Z′ (y − π) + �Mθ.

The iterative system of the Newton-Raphson algorithm is

. θt+1 = θt − HS (θt)

= θt − (

Z′WZ + �M
)−1 (−Z′ (y − π) + �Mθt

)

= H−1 (Z′WZ + �M
)

θt + H−1
(

Z′WW−1 (y − π) − �Mθt

)

= H−1Z′W (Zθt) + H−1�Mθt + H−1Z′W
(

W−1 (y − π)
)

− H−1�Mθt

= H−1Z′W
(

Zθt + W−1 (y − π)
)

= H−1Z′Wr, (11.57)

where .H−1 = (

Z′WZ + �M
)−1 and .r = Zθt + W−1 (y − π). This implemen-

tation of Newton-Raphson is the iteratively reweighted ridge regression algorithm
that has a similar structure as (9.17) and at face value requires inversion of the
.(n + 1) × (n + 1) matrix of second derivatives.

In connection with the penalised logistic regression model described on page
377, it was indicated that use of the linear kernel .K = XX′ generates a
reparametrised penalised logistic regression model that operates in the .n + 1-
dimensional space. This kernel leads to a dual representation of the original logistic
regression model (9.11), which operates in the .p + 1-dimensional space. To see this
multiply the second line of (9.17) by . H = (

Z′WZ + �
)

.
(

Z′WZ + �
)

θt+1 = (

Z′WZ + �
)

θt − (−Z′ (y − π) + �θt

)

, (11.58)

11.2 Kernel Methods Using Basis Expansions 485

where .Z = [1, X] and .θ ′ = [

μ, β ′]′ as in the penalised logistic regression of page
377. This system can be written as

.

[

1′W1 1′WX

X′W1 X′WX + Iλ

] [

μt+1

βt+1

]

=
[

1′W1 1′WX

X′W1 X′WX + Iλ

] [

μt

βt

]

+
[

1′ (y − π)

X′ (y − π) − λβt

]

.

Expanding yields

.
(

1′W1
)

μt+1 + (

1′WX
)

βt+1 = (

1′W1
)

μt + (

1′WX
)

βt + 1′ (y − π) , .

(11.59)
(

X′W1
)

μt+1 + (

X′WX + Iλ
)

βt+1 = (

X′W1
)

μt + (

X′WX + Iλ
)

βt

+X′ (y − π) − λβt . (11.60)

Now perform the following:

• Replace .βt = X′αt

• Premultiply (11.60) by X and let . K = XX′

This results in the iterative system

.

[

μt+1

αt+1

]

=
[

μt

αt

]

+
[

1′W1 1′WK

KW1 KWK + λK

]−1 [
1′ (y − π)

K (y − π) − λKαt

]

, (11.61)

the same as the second line of (11.57). This is a dual representation of the penalised
logistic regression model of Sect. 9.4.

Example: Analysis of Binary Observations Using Kernelised
Logistic Regression, Penalised Logistic Regression, and Logistic
Lasso

The performance of the kernelised logistic regression (KLR) using a Gaussian
kernel, the penalised logistic regression (PLR) and logistic lasso (LL) is compared
for a particular simulated dataset consisting of 599 binary records. The binary
records were simulated using a logistic model. Genetic marker data from 599
wheat inbred lines genotyped for 1279 genetic markers were downloaded from
the statistical package BGLR described in Perez and de los Campos (2014). The
simulated “true” model on an underlying scale involves 20 loci randomly sampled
from these 1279 markers and assigned as QTL. The substitution effects of these
QTL were chosen so that the additive genetic variance between lines . σ 2

a on the

486 11 Nonparametric Methods: A Selected Overview

underlying scale was equal to 1 squared unit. The underlying liability for line i has
the linear structure

. ui = m + z′
ib + ei, i = 1, 2, . . . , 599,

where .m = 0.0, . zi is the column vector for line i of the 20 scaled and standardised
QTL genotypes and b is the column vector of the 20 substitution effects. Vector . z′

i of
dimension .1 × 20 has .(0, 1) elements for each of the two homozygote genotypes of
line i and the .e′

i s are independently distributed standard logistic random variables.
The heritability . h2 between lines on the underlying scale (.σ 2

a /
(

σ 2
a + π2/3

)

) is equal
to .0.23 and the proportion of 1’s in the data is approximately . 0.5.

The three operational models used to analyse the data assumed that the liability
can be written in terms of the linear structure

. ui = μ + x′
iβ + εi, i = 1, 2, . . . , 1, 279,

where . x′
i is the .1 × 1279 row vector for line i of the 1279 marker genotypes, . β is

the vector with the 1279 marker effects and the .ε′
i s are independently distributed

standard logistic random variables.
The 599 lines were divided into training and validating sets of sizes 299 and 300,

respectively. The logistic regression model using the 1279 markers was fitted to the
training data using KLR, PLR and LL, and the estimates of the marker effects were
used to predict the binary phenotypes of the validating dataset. The package glmnet
described in Example 7.4 was used to fit the logistic lasso.

The criterion used to evaluate prediction ability was the proportion of misclassi-
fications in the validating data or error rate, given by

.
1

Nv

Nv
∑

i=1

(yi − ŷi)
2 (11.62)

where .Nv = 300 is the number of records in the validating set, . yi is the ith record
in the validating set (0 or 1) and . ̂yi is the predicted value computed using (9.3) with
.t = 0.5.

The average proportion of misclassifications (min, max) over 10 random repli-
cates of training/testing samples was .0.33 .(0.30, 0.37) for LL, .0.40 . (0.38, 0.43)

for PLR and .0.33 .(0.28, 0.37) for KLR. In principle, LL has the advantage of
performing model selection. However, in this particular dataset, the number of
covariates not set to zero was highly variable across replicates ranging from 1 to
52 with an average of 14. Therefore, little inferential meaning can be assigned to
the choice of covariate.

11.2 Kernel Methods Using Basis Expansions 487

The R-code to fit the KLR to the wheat dataset using the Newton-Raphson
algorithm is shown below:

CODE1109
SIMULATING BINARY DATA TO BE ANALYSED WITH KLR
USES THE X MATRIX FROM WHEAT IN BGLR
rm(list=ls()) # CLEAR WORKSPACE
library(BGLR)
data(wheat)
X <- wheat.X
set.seed(371)

USE BGLR MATRIX X
nindiv <-nrow(X)
nmark <- ncol(X)

nloci<-20
p<-0.5
mu<-log(p/(1-p))

GENERATE LIABILITY ###################
va<-1.0 # additive variance of liability
Xc<-matrix(data=NA,nrow=nindiv,ncol= nmark)
parameter from true model:
be<-matrix(data=0.0,nrow=nmark,ncol=1)
y<-rep(0,nindiv)
cm<-colMeans(X)
CENTER AND SCALE X #################
for (i in 1:nmark)
{Xc[,i]<- (X[,i]-cm[i])/sd(X[,i])
}
QTLeff<-sqrt(va/nloci)# calculate the QTL effect so that the
total genetic variance is VA
IDq<-sample(1:nmark,nloci,replace=F) # from the nmark markers,
choose nloci as QTL
be[IDq]<-QTLeff # the only b’s that are not zero are those
associated with QTL.
########### GENERATE PHENOTYPIC BINARY DATA ###################
xb<-Xc%*%be
pr <- exp(mu+xb)/(1+exp(mu+xb))
y <- rbinom(nindiv,1,pr)
#sum(y)/length(y) # OBSERVED PROPORTION OF 1’S IN SAMPLE
mean(y)

[1] 0.5025042

nitnr <- 10 # NUMBER OF N-R ITERATIONS
nrep <- 10 # NUMBER OF TRAINING / TESTING REPLICATES

#lambda <- 0.0 # ZERO PENALTY !!!!!!!!
lambda <- 0.4

newcostvnr <- rep(0,nrep)
res <- matrix(data=NA, nrow=nrep,ncol=9)
resulttvnr <- matrix(data=NA, nrow=nitnr,ncol=8)

msev <- rep(NA,nrep)
msevnr <- rep(NA,nrep)

488 11 Nonparametric Methods: A Selected Overview

A GAUSSIAN KERNEL ################
kgaus <- function(X,h){
X <- scale(X,center=TRUE,scale=FALSE)
S=sqrt(sum(apply(FUN=var, X=X,MARGIN=2)))
X <- X/S
D <- as.matrix(dist(X))^2
K <- exp(-h*D)

}
############ CHOOSE KERNEL ##############
h <- 0.5
K <- kgaus(Xc,h)
#dim(K)
#qr(K)$rank

prob1 <- function(miu,alfa,K){

pr <- exp(miu+K%*%alfa)/(1+exp(miu+K%*%alfa))
}
cost <- function(miu,alfa,K,y){-sum(y*(miu+K%*%alfa) -

log(1 + exp(miu+K%*%alfa))) + lambda*crossprod(alfa)}

######### ########### NEWTON-RAPHSON ####################
FIT MODEL TO TRAINING DATA AND TEST IN VALIDATING DATA ###
set.seed(77131111)
ptm <- proc.time()
for (i in 1:nrep) {
cat(i, "\n",sep="")

train=sample(1:nrow(K),floor(0.5*nrow(K)))
Ktrain <- K[train,train]
Kval <- K[-train,train]
ytrain <- y[train]
yval <- y[-train]

delta <- diag(c(0,rep(lambda,ncol(Ktrain))))
M <- cbind(0,Ktrain)
M <- rbind(0,M)
START VALUES FOR MIU AND ALFA ################
miu <- 0.0
alfa <- rep(0.0, ncol(Ktrain))
W <- matrix(data = 0,nrow = ncol(Ktrain),ncol = ncol(Ktrain))
for (j in 1:nitnr) {

fdmiu <- -sum(ytrain - prob1(miu, alfa, Ktrain))
fdalfa <-

-Ktrain %*% (ytrain - prob1(miu, alfa, Ktrain)) +
lambda * Ktrain %*% alfa

fd <- matrix(c(fdmiu, fdalfa), nrow = length(alfa) +
1, ncol = 1)

W <-
diag(c(prob1(miu, alfa, Ktrain) *
(1 - prob1(miu, alfa, Ktrain))))

Z <- cbind(1, Ktrain)
zwz <- t(Z) %*% W %*% Z
LHS <- zwz + lambda * M
RHS <- -fd
sol0 <- matrix(c(miu, alfa), nrow =

length(alfa) + 1, ncol = 1)
sol1 <- sol0 + solve(LHS,RHS)
miu <- sol1[1, 1]
alfa <- sol1[-1, 1]
newcostvnr[j] <- cost(miu, alfa, Ktrain, ytrain)

11.3 Neural Networks 489

resulttvnr[j,] <- c(j, newcostvnr[j], miu, alfa[1:5])
}
probval <- prob1(miu, alfa, Kval)
y_predval <- as.numeric(ifelse(probval > 0.5, 1, 0))
msev[i] <- mean((y_predval - yval) ^ 2)
res[i,] <- c(i,j,newcostvnr[j],miu,alfa[1:5])
}

proc.time()-ptm

user system elapsed
2.11 0.11 0.58

tail(resulttvnr[,2:6])

[,1] [,2] [,3] [,4] [,5]
[5,] 236.2372 0.1062297 -0.9584729 0.685112 0.8690137
[6,] 236.2372 0.1062297 -0.9584729 0.685112 0.8690137
[7,] 236.2372 0.1062297 -0.9584729 0.685112 0.8690137
[8,] 236.2372 0.1062297 -0.9584729 0.685112 0.8690137
[9,] 236.2372 0.1062297 -0.9584729 0.685112 0.8690137
[10,] 236.2372 0.1062297 -0.9584729 0.685112 0.8690137

#tail(res)
summary(msev)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.2833 0.3233 0.3283 0.3310 0.3442 0.3700

The program outputs the last six iterations of the Newton-Raphson algorithm
and replicates 10, for the value of the cost function, . μ and the estimates of first three
elements of . α. The summary function at the end displays summary statistics of the
misclassification rate over the ten replicates.

11.3 Neural Networks

Neural networks (NN) have a long history (McCulloch and Pitts 1943) and have
become the state of the art technique for many machine learning problems involving
complex nonlinear data. The subject has been rebranded along its development,
and presently it is also known as machine learning or deep learning and it is
being successfully applied in many software areas including object, image and
speech processing, robotics, video games and search engines. This section provides
a very basic introduction to the subject concentrating exclusively on fully connected
NN, also known as multilayer perceptrons and illustrates, via examples, how they
can be used for classification and regression. Useful references are the books by
Bishop (2006), Goodfellow et al (2016) and Bernard (2021) and a review by LeCun

490 11 Nonparametric Methods: A Selected Overview

et al (2015), where other types of more modern networks, including convolutional
NN, recurrent NN and transformer networks, are discussed. A very comprehensive
reference is López et al (2022) that also provides detailed descriptions and imple-
mentation of many methods used for genomic prediction with special emphasis on
plant breeding. An early Bayesian perspective on the subject can be found in Neal
(1996) and a recent neural network Bayesian McMC implementation in Zhao et al
(2021).

I motivate the subject by interpreting logistic regression as a special case of a
fully connected NN. Multilayer perceptrons (MLP) or fully connected networks
are the oldest and classic neural architecture invented in the 1960s. MLP are used
today as components of other neural network architectures, such as convolutional
neural networks, transformers, Bayesian neural networks, variational autoeconders
and others.

Preliminaries: A Logistic Regression

Consider binary observations y and features x that constitute training records
.{(x1, y1) , . . . , (xn, yn)}, .xi ∈ Rp, .yi ∈ {0, 1} and assume the model adopted is

.E (yi |zi) = Pr (yi = 1|zi) = m(xi) = exp (zi)

1 + exp (zi)
. (11.63)

The linear transformation .zi = w′xi + b consists of the input (vector x with
p features (covariates)), parameters (w (a .(p × 1) vector of unknown regression
coefficients)) and b (a scalar intercept). In machine learning the parameters w are
known as weights, the intercept b is known as the bias and the training records are
known as training examples. Both w and b are unknown.

In Chap. 3 maximum likelihood estimates of the parameters of the logistic
model w and b were obtained using the Newton-Raphson and the EM algorithms.
Chapter 5 discusses a Bayesian implementation. Here the problem is approached
regarding the logistic model as a special case of a NN, and the cost function (nega-
tive of the loglikelihood, a convex function) is minimised using a gradient descent
algorithm. In what follows, unless otherwise stated, the subscript i identifying the
ith training record will be omitted.

Figure 11.7 displays a logistic regression model represented as a neural network.
The .x′s are the .p = 2 features (covariates). These constitute the first layer. A linear
function .z(2) of the features and parameters is fed into what is known as neuron or
node (the superscript denotes the layer). The neuron is activated by an activation
function . σ that results in an output of layer 2, .a(2), known as an activation unit. For

11.3 Neural Networks 491

Fig. 11.7 Logistic regression model represented as a two-layered neural network for a single
training record (.y, x1, x2). The first layer (outer circles) corresponds to the input: .p = 2 covariates
.xj , j = 1, 2, plus 1 for the intercept. A linear transformation of the input, .z(2) = w′x + b,
where .w′ = (w1, w2), is fed into a neuron on the second layer. The neuron is activated by the
activation function . σ (here, the sigmoid function), producing an output .a(2), the activation unit
.a(2) = σ(z(2)). In this simple example of a shallow network, the output or prediction .hθ (x) = ỹ is
equal to .a(2). This output is evaluated using the loss function L that indicates how well . ̃y = a(2)

compares with the observation y

the logistic regression, the activation function is the logistic or sigmoid function . σ
(11.63)

.σ
(

z(2)
)

= exp
(

z(2)
)

1 + exp
(

z(2)
) = 1

1 + exp
(−z(2)

) , (11.64)

where the linear function .z(2) = w′x + b. In Fig. 11.7 there are two layers: an input
layer (layer 1), where the activation unit is just the input, .a(1)

1 = x1, .a(1)
2 = x2, and

a layer 2 that includes a single activation unit .a(2) = σ
(

z(2)
) = ỹ, the output. The

output is here a predicted or estimated value of the probability .m(xi) in (11.63). With
some abuse of notation, this output will also be denoted by .h(x) or .hθ (x), where . θ
is a vector of parameters of the NN and x represents the vector of covariates.

In linear models the regression function takes the form .m (x) = w′x. Kernels
introduce nonlinear functions of the features x, via basis functions .φ(x) that
could capture more complex structures leading to .m (x) = w′φ (x). Kernel
methods require the user to supply the form of the kernel function. In the present
representation of logistic regression as a NN, .φ (x) = σ

(

w′x + b
)

, where w and b
are estimated from the training data and . σ is a given nonlinear function such as the
sigmoid. If . σ is the identity function, the neural network reduces to a linear model.

492 11 Nonparametric Methods: A Selected Overview

Training the Neural Network

Training the NN in Fig. 11.7 requires first, a forward propagation step that runs
from left to right. It starts by feeding the features x and the parameters . (w, b), via
a linear transformation, into a neuron that gets activated by the activation function
. σ generating a prediction or output .a(2) = h(x) = ỹ (the notation distinguishes
the regression function or conditional expectation of the data m, from the output
of a forward propagation step that results in a prediction .h = ỹ). Second, a
back propagation step (Rumelhart et al 1986) is used to compute the gradient of
the cost function with respect to all parameters of the neural network. The back
propagation step involves the chain rule of calculus. Once gradients are computed,
the cost function can be minimised using, for example, gradient descent or stochastic
gradient descent, yielding estimates of parameters. This is an iterative process
which, on completion, outputs a prediction.

Notation

The simple NN of Fig. 11.7 can be made more complex by increasing the number
of layers and the number of neurons per layer. Identification of parameters in such
a complex system requires a more involved notation. In general, let

• .n� : number of neurons in layer . �. For the input layer, .� = 1, .n1 = p, the number
of features in the input datum

• .a
(j)
i : activation unit i (or output produced by the activation function) in layer

j . For the input layer .j = 1, there is no activation function and the notation is
interpreted as .a(1)

i = xi

• .a(j) : layer j . This is a column vector with number of elements equal to the
number of neurons in layer j

• .W(j) : matrix of weights (parameters) of the function that controls the mapping
from layer j to layer .j + 1. The number of rows of .W(j) is equal to the number
of neurons in layer .j + 1, and the number of columns is equal to the number of
neurons in layer j . If a network has . nj neurons in layer j and .nj+1 neurons in
layer .j + 1, .W(j) is of dimension .nj+1 × nj

• .b(j) : column vector of intercept terms of the function that controls the mapping
from layer j to layer .j + 1, with number of elements equal to the number of
neurons in layer . j + 1

Forward Propagation

The logistic regression example displayed in Fig. 11.7 considers a single training
datum consisting of the two covariates .(x1, x2) and the observation y. A scheme of
forward propagation is displayed in Fig. 11.8.

11.3 Neural Networks 493

Fig. 11.8 Forward propagation scheme for the logistic regression model interpreted as a neural
network. The linear function of parameters .W, b and feature vector .x = a(1), . z(2), is fed into
the activation function . σ (the logistic function). This activation function outputs the prediction
.a(2) = ỹ. The loss function L quantifies the discrepancy between .a(2) and the observed record y

The variable .z(2) is a linear function of the input features (the two covariates
.x1 = a

(1)
1 , x2 = a

(1)
2) and is fed into the activation function . σ , which generates

the output .a(2) = ỹ (a predicted probability). The forward propagation step can be
written as

.z(2) = W
(1)
11 a

(1)
1 + W

(1)
12 a

(1)
2 + b(1), . (11.65a)

a(2) = σ
(

z(2)
)

= ỹ. (11.65b)

The dimension of .W(1) = (W
(1)
11 ,W

(1)
12) is .1 × 2 because this network has two

features in layer 1 .(i.e., x1 and x2) and one single neuron in layer 2 (the output . a(2) =
ỹ). The parameters .W(1) and .b(1) must be initialised to start the iteration.

Loss Function

The loss function L measures the degree to which the output . ỹ matches the
observation y (following the machine learning tradition, here cost function is a
measure involving an entire dataset that may or may not include a regularisation
term; loss function involves a single datum). The overall objective is to minimise
the cost function by minimising the sum of the loss functions for each datum.
This requires computation of the gradients .∂L/∂W(1), .∂L/∂b(1) that can be
accomplished using back propagation. The present simple example provides the
background for dealing with more complex situations.

Back propagation is an application of the chain rule of calculus applied in a
computationally efficient manner. This efficiency is achieved in part by reusing
derivatives computed for higher layers of the network, in the computation of
derivatives of the lower layers.

The contribution of the datum .(y, x) to the (convex) loss function (i.e., the
negative of the loglikelihood) to be minimised with respect to .(W, b) follows from
the Bernoulli distribution and is

.L (ỹ, y) = − (y log ỹ + (1 − y) log (1 − ỹ)) . (11.66)

494 11 Nonparametric Methods: A Selected Overview

An intuition for the loss function is as follows. For .y = 1, when the predicted
probability (the output of the forward propagation step) is .a(2) = ỹ = 1, the loss
function is zero, and when the predicted probability is .ỹ = 0, the loss function is
infinity. Similarly, for .y = 0, when .ỹ = 0 the loss function is zero and when . ỹ = 1
the loss function is infinity.

Although hidden from the notation, L depends not only on y but also on the input

.

(

b(1),W
(1)
11 ,W

(1)
12 , a

(1)
1 , a

(1)
2

)

.

Some of this input, .
(

a
(1)
1 , a

(1)
2

)

, is given (in this simple example, .a(1)
i = xi), but

the parameters .
(

b(1),W
(1)
11 ,W

(1)
12

)

are not observed and must be initialised to begin

iteration.

Chain Rule

Before deriving the back propagation algorithm for the simple example of Fig. 11.7,
I consider a general application of the chain rule of calculus. Figure 11.9 shows a
flowchart where input .a ∈ Rp is fed into a function g that outputs .b ∈ Rn. In turn, b
is fed into a function f that outputs .c ∈ Rm. Specifically,

. a = (

a1, a2, . . . , ap

)

,

b = g (a) = (b1, b2, . . . , bn) ,

c = f (b) = (c1, c2, . . . , cm) .

The function g performs a mapping from . Rp to . Rn and the function f a mapping
from . Rn to . Rm. Consider the computation of the change in . ci due to a change in . aj .

Fig. 11.9 Flowchart where input a is fed into a function g that outputs b. This output is fed into a
function f that outputs c

11.3 Neural Networks 495

A change in . aj may induce a change in .(b1, b2, . . . , bn), which in turn induces a
change in each . ci . The chain rule states that to first order, the net change in . ci due
to a change in . aj is given by the sum of the changes induced along each path from
. aj to . ci . Letting k denote one of the m paths,

.
∂ci

∂aj

=
n
∑

k=1

∂ci

∂bk

∂bk

∂aj

. (11.67)

Back Propagation

The back propagation step computes the gradient of the cost function with respect
to the parameters of the NN. Once the gradient is available, the cost function can be
minimised using gradient descent.

Minimisation of the cost function involves minimising the sum of the loss
functions for each datum (11.66). Using (11.65), this takes the form

.
∂L

a(2)
: (1 × 1) ,

∂L

∂z(2)
= ∂L

∂a(2)

∂a(2)

∂z(2)
: (1 × 1) ,

∂L

∂W(1)
= ∂L

∂z(2)

∂z(2)

∂W(1)
: (2 × 1) ,

∂L

∂b(1)
= ∂L

∂z(2)

∂z(2)

∂b(1)
: (1 × 1) .

More specifically,

1. For the output .a(2) = ỹ in layer 2, compute

. δ(2) = ∂L

∂z(2)
= ∂L

∂a(2)

da(2)

dz(2)

= ∂L

∂a(2)
σ ′ (z(2)

)

. (11.68)

2. The partial derivatives with respect to .W(1)
11 ,W

(1)
12 are

.
∂L

W
(1)
11

= ∂L

∂z(2)

∂z(2)

∂W
(1)
11

= δ(2)a
(1)
1 , (11.69)

496 11 Nonparametric Methods: A Selected Overview

.
∂L

W
(1)
12

= ∂L

∂z(2)

∂z(2)

∂W
(1)
12

= δ(2)a
(1)
2 , (11.70)

.
∂L

b(1)
= ∂L

∂z(2)

∂z(2)

∂b(1)

= δ(2). (11.71)

3. For the sigmoid function in (11.68)

. σ ′ (z(2)
)

= σ
(

z(2)
) (

1 − σ
(

z(2)
))

= a(2)
(

1 − a(2)
)

,

and

.
∂L

∂a(2)
= − y

a(2)
+ 1 − y

1 − a(2)
. (11.72)

Therefore, substituting in (11.68),

.δ(2) = a(2) − y. (11.73)

Cost Function

The above computations and the loss function (11.66) pertain to a single training
record. For n records the cost function is

. J (θ) = 1

n

n
∑

i=1

L (ỹi, yi) = −1

n

n
∑

i=1

(yi − log ỹi + (1 − yi) log (1 − ỹi)) ,

(11.74)

an average of the loss functions over the n records (scaling by .1/n does not change
the optimisation of J but avoids numerical problems during the computations). In
this equation . θ is the vector of parameters .

(

W(1), b(1)
)

. Minimisation of the cost
function requires computation of the gradients with respect to .

(

W(1), b(1)
)

. These
are the average of the gradients of each datum calculated using (11.69), (11.70) and
(11.71). For instance, for .W(1)

11 ,

.
∂J (θ)

∂W
(1)
11

= 1

n

n
∑

i=1

∂L (ỹi , yi)

∂W
(1)
11

,

11.3 Neural Networks 497

where now .∂L (ỹi , yi) /∂W
(1)
11 is the partial derivative of the loss function for the ith

record with respect to .W(1)
11 .

The general form of a gradient descent update is given by expression (3.57) on
page 99. In the present case, once the partial derivatives are available, the gradient
descent update is

. W
(1)
11 : = W

(1)
11 − α

∂J

W
(1)
11

,

W
(1)
12 : = W

(1)
12 − α

∂J

W
(1)
12

,

b(1) : = b(1) − α
∂J

b(1)
,

for a user chosen value of the learning rate . α.

A Single Hidden Layer Neural Network

Figure 11.10 shows an example of a neural network with three layers: the input layer
showing a single training example, a hidden layer and an output layer with a single
output node. The input layer has three nodes .(xi, i = 1, 2, 3) plus an extra node 1
for the bias term. The hidden layer has also three nodes representing activation units

.

(

a
(2)
i , i = 1, 2, 3

)

, plus a node 1 to account for the bias. Finally, the output layer

has a single node .a(3), the prediction. For this example, the hidden layer is generated
with the sigmoid function, but other activation functions can be used instead, as
discussed on page 500.

The single node output layer applied here is appropriate for a regression model
where the output is a real number, or for a binary .(1/0) outcome. Here the latter
is assumed and the sigmoid function (11.64) is used in the generation of the final
layer. For a continuous variable, the output is typically generated using the identity
function. For a K class classification, the final output can be generated using the
softmax function

.a
(L)
k = g (zk) = exp (zk)

∑k=K
k=1 exp (zk)

, (11.75)

also used for a multilogit model and interpreted as a probability. In this expression
L denotes the number of layers in the network, so that .a

(L)
k is the kth node of the

last layer corresponding to class k. The number of nodes in the final layer is K and
the sum of terms (11.75) equals 1.

498 11 Nonparametric Methods: A Selected Overview

Fig. 11.10 A neural network diagram with three layers: an input layer representing the feature
vector with three predictors x = (x1, x2, x3), with 1 to account for the bias term; a hidden layer
with three nodes representing activation units (a (2)

1 , a (2)
2 , a (2)

3), with the extra node 1 to account for
the bias term and an output layer a(3) = hθ (x) = ỹ that yields a prediction

Reverting to the NN of Fig. 11.10 and following the notation defined above,
consider the forward propagation step. For a single training datum, the step can
be represented by the equations below where input predictors x output the scalar
prediction . ỹ

.a(1) =
(

a
(1)
1 , a

(1)
2 , a

(1)
3

)′ = (x1, x2, x3)
′ ,

z
(2)
1 = W

(1)
11 a

(1)
1 + W

(1)
12 a

(1)
2 + W

(1)
13 a

(1)
3 + b

(1)
1 ,

z
(2)
2 = W

(1)
21 a

(1)
1 + W

(1)
22 a

(1)
2 + W

(1)
23 a

(1)
3 + b

(1)
2 ,

z
(2)
3 = W

(1)
31 a

(1)
1 + W

(1)
32 a

(1)
2 + W

(1)
33 a

(1)
3 + b

(1)
3 , (11.76)

a
(2)
i = σ

(

z
(2)
i

)

, i = 1, 2, 3,

z(3) = W
(2)
11 a

(2)
1 + W

(2)
12 a

(2)
2 + W

(2)
13 a

(2)
3 + b

(2)
1 ,

a(3) = σ
(

z(3)
)

= ỹ.

11.3 Neural Networks 499

The forward propagation can be written more compactly in vectorised form along
the lines in (11.65), yielding

.

z(2) = W(1)a(1) + b(1), z(2) =
[

z
(2)
1 , z

(2)
2 , z

(2)
3

]′
,

W(1) : (3 × 3) , a(1) : (3 × 1) , b(1) : (3 × 1) ,

a(2) = σ
(

z(2)
)

, a(2) : (3 × 1) ,

z(3) = W(2)a(2) + b(2),

W(2) : (1 × 3) , a(2) : (3 × 1) , b(2) : (1 × 1) ,

a(3) = σ
(

z(3)
)

, a(3) : (1 × 1) .

(11.77)

The logistic regression model was interpreted as a two-layered neural network of
the form .f (x) = Pr (Y = y|x). The three-layered neural network represented by
the system (11.77) can be written as

. f (x) = f (2)
(

f (1) (x)
)

,

with a straightforward extension for a deeper layered network. Above, .f (1) is the
activation function from the first layer and .f (2) is the activation function of the
second layer. Each of these functions is indexed by parameters that are learned by
the network in order to output/predict a value as close as possible to the observed
record. The effectiveness with which this is achieved is measured by the cost
function.

From a prediction perspective, closeness between predictions and outputs may
be the result of overfitting. This suggests the need for regularisation.

The Cost Function

The cost function (11.74) for the logistic regression is a convex function easy to
minimise. In the example there are p parameters and n data points, and when . n � p

there are no issues with the computation. Typically, neural networks are very heavily
parametrised and prone to overfitting. One way to avoid overfitting is to include a
regularisation term as part of the cost function.

Consider a neural network with m training records .(x1, y1) , . . . , (xm, ym) and
assume an output with K classes, so that the output .hW,b (x) ∈ RK (with binary

500 11 Nonparametric Methods: A Selected Overview

outcomes .K = 1). Let .
(

hW,b

(

x(i)
))

k
be the kth output corresponding to datum i.

The cost function is

. J (θ) = − 1

m

[

m
∑

i=1

K
∑

k=1

y
(i)
k log

(

hW,b

(

x(i)
))

k

+
(

1 − y
(i)
k

)

log
(

1 −
(

hW,b

(

x(i)
))

k

)

]

+λ

2

L−1
∑

l=1

nl
∑

i=1

nl+1
∑

j=1

(

W
(l)
ji

)2
. (11.78)

In this expression, L is the number of layers, . nl is the number of nodes in
layer l, .nl+1 the number of nodes in layer .l + 1 and . λ is the regularisation or
tuning parameter. The bias term is not regularised. Expression (11.78) features the
quadratic penalisation, but other penalties such as the lasso penalty are also used.

Contrary to what has been the case so far, the cost function (11.78) and
of most neural networks are not convex but typically have multiple optima.
Global minimisation of such a multidimensional surface is an insurmountable task.
Notwithstanding, finding near local optima is not difficult. Recent theoretical and
empirical results appear to indicate that, in general, the many local optima found
using mini-batch gradient descent or stochastic gradient descent do not constitute
an issue in neural network optimisation (LeCun et al 2015).

Minimisation of the cost function requires the gradients .∂J (θ) /∂W
(l)
j i ,

.∂J (θ) /∂b
(l)
j . This is achieved in a computationally efficient manner using back

propagation along the same lines as indicated for the simple logistic regression
model. Details are a little laborious and are relegated to an Appendix on page 533.
The Appendix also discusses vectorisation of back propagation to optimise matrix
multiplications and provides an example of back propagation in the presence of
multiple connected paths.

Activation Functions

Activation functions are a fundamental building block of neural networks. They turn
the neural network model into a highly nonlinear function of the input variables
whose parameters are learned as the network is implemented. It is easy to see that
use of an identity function (rather than of a nonlinear activation function) in the
hidden layer and output layer of the neural network of Fig. 11.10 transforms the

11.3 Neural Networks 501

neural network into a linear model. Indeed, setting in (11.77)

. a2 = z(2) = W(1)a(1) + b(1)

a(3) = W(2)a(2) + b(2)

= W(2)
[

W(1)a(1) + b(1)
]

+ b(2)

= W(2)W(1)a(1) +
(

W(2)b(1) + b(2)
)

= ˜Wa(1) +˜b, (11.79)

transforms the network into a linear function of the input .a(1). This lacks the ability
to extract nonlinear patterns from the input data.

The examples discussed so far included as activation functions the sigmoid
function, the softmax function and the identity function. The sigmoid function can
be used in the hidden layers of a neural network and is used in the outer layer for
binary classifiers. It transforms the input to values in .(0, 1). For multiclass problems
the outer layer uses the softmax function, and for regression the outer layer uses the
identity function.

Another activation function is the tanh function or hyperbolic function

. tanh (z) = exp (z) − exp (−z)

exp (z) + exp (−z)
,

that outputs values in .(−1, 1). The range of values of z generated by this function
has the same effect as standardising the output. This often leads to better behaviour
of the neural network relative to that of the sigmoid function. The derivative is

.
∂

∂z
tanh (z) = 1 − (tanh (z))2 .

One disadvantage of the sigmoid function and of the tanh function is that if
z becomes a very large positive number or a very small negative number, the
derivatives are very close to zero. This can slow down gradient descent. An
activation function that does not suffer from this property is the ReLU (rectified
linear unit) function that outputs positive values. It takes the form

. ReLU (z) = max (0, z) =
{

0, z ≤ 0,

z, z > 0,

with derivative

.
dReLU (z)

dz
= I (z > 0) .

502 11 Nonparametric Methods: A Selected Overview

This derivative does not exist at .z = 0, but a computer implementation is not
sensitive to this since numerically z is never exactly equal to zero. Despite the fact
that the derivative is close to zero when .z < 0, there are enough z values larger than
zero so that gradient descent moves at an acceptable pace. A variant is the leaky
ReLU

. leaky ReLU (z) = max (cz, z) ,

where c is a small number (e.g. .c = 0.01) with derivative

.
∂leaky ReLU (z)

∂z
=
{

1, z > 0,

c, z < 0,

so the derivative, numerically speaking, is never zero.
In modern neural networks, hidden layers often use the ReLU or the leaky

ReLU functions rather than the sigmoid function because they often lead to better
numerical behaviour and are cheaper to compute. Several other activation functions
can be found in the literature but the ones mentioned here are the most commonly
used.

Remarks on Fitting Neural Networks

Neural networks are characterised by having many parameters: the weights and
biases, the choice of activation functions, the regularisation parameter, the learning
rate and the number of hidden layers and neurons per layer. For good performance
neural networks require fine tuning of these parameters. This calls for considerable
experimentation and expertise. In addition, back propagation, a central operation
of the NN, can become very challenging in real-world implementations and is an
area with many subtleties. The following is a minimal list of issues that require
attention:

• Standardising the features/covariates to mean zero and variance one is particu-
larly advisable when the inputs have different distributions. The standardisation
has the effect of speeding up gradient descent and simplifies computations since
a common learning rate can be applied.

• Starting values of covariates, parameters and regularisation parameter. The range
of values of the covariates has a direct effect on the values of the parameters.
Standardisation of the covariates facilitates initialising the parameters; a general
advice is to choose starting values at random in the proximity of zero (e.g.
random uniform weights over the range .[−0.7,+0.7] (Hastie et al 2009), or
smaller). Weights (parameters) are typically initialised drawing randomly from
Gaussian or uniform distributions. The choice of scale of the initial distribution
may require considerable experimentation. One suggestion for initialising .W(�)

11.3 Neural Networks 503

is to use .Un (−k, k), .k = 1
/√

n�, or .N (0, 1)∗ 1
/√

n� (where . n� is the number
of columns of .W(�)) and if a ReLU activation function is used, . N (0, 1)∗ 2

/√
n�

(Hu et al 2021). It is important not to set the initial value of the .W ′s exactly equal
to zero. If this is the case, the activation units and the . δ terms of each layer take
the same values and this symmetry cannot be broken. This creates a redundancy
(irrespective of the number of neurons per layer, this would be equivalent to a
network with only one neuron per layer since all neurons take the same value)
and poor behaviour of the neural network. Judicious choice of starting values for
the parameters of a neural network reduces the problem of exploding or vanishing
gradients that may arise in deep neural networks (Glorot and Bengio 2010). The
value of the regularisation parameter is very influential, with larger values of . λ
leading to smaller values of the parameters tending to reduce overfitting but to
increase bias. An interesting case arises in connection with the use of tanh or
sigmoid. Small weights lead to small values of z. Within a fairly broad range of
values of z, the relationship between tanh and sigmoid with z is almost linear. In
this situation the neural network reduces to a linear model (see (11.79)) and may
perform poorly if there are complex nonlinearities in the data

• Number of hidden layers/number of neurons per layer. For any given problem,
it is difficult to know in advance how deep (how many layers) a neural network
must be. The number of hidden layers is best considered as a hyperparameter to
be determined via experimentation and cross-validation. The number of neurons
per layer is also a model feature to be determined by experimentation. It is
common to use in the order of tens or hundreds of neurons, with this number
increasing with the number of features. Shallow (few layers) neural networks
would typically require more neurons per layer in order to fit the same function.

• Tuning gradient descent. Depending on the size of the dataset, gradient descent
can be applied to the complete data (batch gradient descent), or to mini-batches
of the data (mini-batch gradient desdent). For datasets of the order of say
up to 3000 features, batch gradient descent should be a reasonable choice.
For larger sizes the features can be divided into mini-batches of size 1024,
or 512 features. Within each mini-batch, a single step of gradient descent is
computed (as if the whole training set consisted of this unique mini-batch). This
requires computation of forward propagation, computation of the cost function,
computation of back propagation to obtain the gradients of the cost function with
respect to the parameters and finally updating of parameters. This completes
the processing of the mini-batch. The calculations are repeated for each mini-
batch, until the complete training data have been processed leading to a single
pass of the complete training set. The cost function changes for each mini-batch,
and the algorithm will never reach a minimum; it will rather fluctuate around a
(local) minimum. In contrast with batch gradient descent where a pass through
the training data leads to one updating step of the parameters, in mini-batch
gradient descent many updating steps are performed, one for each mini-batch.
The complete mini-batch algorithm has an outer loop allowing many passes
through the complete training data or until satisfactory convergence is reached.

504 11 Nonparametric Methods: A Selected Overview

For very large datasets, mini-batch gradient descent is considerably faster than
batch gradient descent. The noise associated with mini-batch gradient descent is
beneficial in avoiding that the algorithm gets stuck in local minima.

• Gradient checking. During the debugging phase of the development of an
algorithm, it is good practice to check the results from the coded gradient
with those obtained with numerical derivatives. The latter are easily obtained as
follows. Let .θ ∈ Rp be the parameters of the neural network and let .J (θ) be the
cost function. Then for small . ε (e.g. .ε = 10−4), the numerical partial derivatives
are approximated by

.
∂

∂θ1
J (θ) ≈ J

(

(θ1 + ε) , θ2, . . . , θp

) − J
(

(θ1 − ε) , θ2, . . . , θp

)

2ε
,

...

∂

∂θp

J (θ) ≈ J
(

θ1, θ2, . . . ,
(

θp + ε
)) − J

(

θ1, θ2, . . . ,
(

θp − ε
))

2ε
.

Eyeballing a plot of the exact versus the numerical derivatives should give a first
impression (a straight line with slope 1 passing through the origin should be a
good indication) or more precisely checking the size of

.

∥

∥∂θapprox − ∂θ
∥

∥

2
∥

∥∂θapprox
∥

∥

2 + ‖∂θ‖2

which for .ε = 10−6 should be .10−6 or .10−5, though this will depend on the
number of iterations.

• Software. There is a wealth of software available to fit neural networks. For the
simple multilayer perceptron, neuralnet proved straightforward to use in the
small datasets of the examples below. Other popular choices include deepnet,
h20, and for more ambitious users, Google released the open-source software
TensorFlow with the friendly user interface Keras.

Example: Analysis of Binary Observations Using a Neural
Network

The objective is to study the predictive ability of a neural network and to make
a comparison with the kernelised logistic regression, the logistic lasso and the
penalised logistic regression.

The data consist of 599 binary records simulated with a logistic model using the
wheat inbred lines genotyped for 1279 binary genetic markers, as in the example
on page 485. The true (simulated) model on the underlying scale involves 20 loci

11.3 Neural Networks 505

randomly sampled from these 1279 markers and assigned as QTL. The proportion
of . 1′s in the observations is approximately .50%. A neural network with one hidden
layer is implemented in R with the vectorised code described on page 537. The
neural network is also fitted using the R software neuralnet as a comparison.
The single layered neural network has five neurons in the hidden layer, and the

sigmoid function is used in the hidden and output layers. An .� − 2 regularisation
term is added to the logistic loss function, and the regularisation parameter is
set to .0.002. The learning rate of the gradient descent is set to .0.008, and for
each of 20 replicates of training/validating splits, the number of gradient descent
iterations is 5000. The predictive ability of the neural network was quantified using
the validation MSE (proportion of misclassifications in the validation data, after
transforming the predicted probabilities into predicted observations on the .0, 1 scale
using Bayes rule, as defined on page 370).

Over the 20 replications, the minimum, median, mean and maximum values of
the validating MSE were .0.32, .0.36, .0.36 and .0.40, respectively. The corresponding
figures for the training MSE were .0.08, .0.10, .0.10 and .0.15. The analysis was
repeated using the R software neuralnet, and the results for the minimum,
median, mean and maximum values of the validation MSE over 20 splits were .0.31,
.0.36, .0.36 and .0.41. For the training MSE, the corresponding results were .0.01,
.0.03, .0.04 and .0.10.

The predictive performance of the neural work for these data quantified as the
average (over 20 replications) validating .MSE, was similar to that obtained by the
penalised logistic regression (.0.40), the kernelised logistic regression (.0.33) and the
logistic lasso (.0.33), as reported on page 485.

Increasing the number of neurons in the hidden layer from 5 to 10 and to
50 deteriorated prediction performance. The same was noted by increasing the
number of layers to two and three (with five neurons per layer) using the software
neuralnet. These were exploratory modifications to the original architecture
without aiming at a proper optimisation of the neural network.

The R-code to fit the neural network to the simulated wheat data set is shown
below. The first code represents the vectorised version, and the second code
describes the implementation with neuralnet.

CODE1110
FIT THE NEURAL NETWORK TO SIMULATED BINARY PHENOTYPES
USING THE WHEAT INBRED LINES WITH THE 1,279 GENETIC MARKERS

rm(list=ls()) # CLEAR WORKSPACE
set.seed(37111)

library(BGLR)
data(wheat)

USE BGLR MATRIX X

X <- wheat.X
nindiv <-nrow(X)
nmark <- ncol(X)
###

506 11 Nonparametric Methods: A Selected Overview

NUMBER OF LOCI AFFECTING THE SIMULATED DATA
nloci<-20
p<-0.5
mu<-log(p/(1-p)) # BIAS TERM FOR SIMULATED DATA

INITIALISE PARAMETERS AND ALLOCATE MATRICES ##############
va<-1.0 # additive variance of liability
ve<-1.0 # environmental variance
Xc<-matrix(data=NA,nrow=nindiv,ncol= nmark)
be<-matrix(data=0.0,nrow=nmark,ncol=1) # parameter of true model
y<-rep(0,nindiv)
cm<-colMeans(X)
for (i in 1:nmark)
{Xc[,i]<- (X[,i]-cm[i])/sd(X[,i])
}
QTLeff<-sqrt(va/nloci)# QTL effect so that the total
genetic variance is VA
IDq<-sample(1:nmark,nloci,replace=F) # from the nmark markers,
choose nloci as QTL
be[IDq]<-QTLeff # the only b’s that are not zero are those
associated with QTL.
########### GENERATE BINARY DATA y ###################
xb<-Xc%*%be
pr <- exp(mu+xb)/(1+exp(mu+xb))
y <- rbinom(nindiv,1,pr)

df = data.frame(cbind(X,y))
m <- length(y)
BIG X!
X <- t(X)
p <- nrow(X)

Y <- matrix(y,nrow=1,ncol=length(y))

n_1 <- p # NUMBER OF FEATURES IN INPUT DATA
READ NUMBER OF NEURONS IN LAYER 2
n_2 <- 5
READ NUMBER OF NEURONS IN LAYER 3
n_3 <- 1

FUNCTIONS:
SIGMOID FUNCTION
sigm <- function(par){

1/(1+exp(-par))
}
COST FUNCTION EXCLUDING REGULARISATION TERM
cost <- function(A,Y){-(tcrossprod(Y,log(A))+

tcrossprod((1-Y),(log(1-A))))/m}

READ REGULARISATION PARAMETER delta

delta <- 0.02

READ GD LEARNING RATE (HERE LABELLED gamma)
gamma <- 0.08

eps: range of initial values of elements of W_1: (-eps,eps)
eps <- 0.85

11.3 Neural Networks 507

READ NUMBER OF GRADIENT DESCENT ITERATIONS
nit <- 5000
READ NUMBER OF TRAINING / VALIDATING REPS
nitval <- 20

resultval <- matrix(data=NA, nrow=nitval,ncol=3)
result <- matrix(data=NA, nrow=nit,ncol=8+n_2)

ptm<-proc.time()

for (j in 1:nitval) {
INITIALISE MATRIX OF WEIGHT W_1 (n_2 x n_1), n_1=p=rows of X
INITIALISE MATRIX OF WEIGHT W_2 (n_3 x n_2)
W_1 <- matrix(nrow=n_2,ncol=n_1,runif(n_2*n_1,-eps,eps))
W_2 <- matrix(nrow=n_3,ncol=n_2,runif(n_3*n_2,-eps,eps))
train=sample(1:ncol(X),floor(0.5*ncol(X)))

Yt <- matrix(Y[train],nrow=1,ncol=length(Y[train]))
Yv <- matrix(Y[-train],nrow=1,ncol=length(Y[-train]))
Xt <- X[,train]
Xv <- X[,-train]
b_1 <- matrix(0,nrow=n_2,ncol=ncol(Xt))
b_2 <- matrix(0,nrow=n_3,ncol=ncol(Xt))

for (i in 1:nit) {
cat("j=",j, " ","i=",i, "\n", sep = "")
FORWARD PROPAGATION
Z_2 <- W_1 %*% Xt + b_1
A_2 <- sigm(Z_2) # SIGMOID FUNCTION

A_2 <- pmax(Z_2,0.01*Z_2) # Leaky ReLU function
Z_3 <- W_2 %*% A_2 + b_2
A_3 <- sigm(Z_3)

A_3 <- Z_3 # USE THE IDENTITY FUNCTION FOR CONTINUOUS DATA
BACK PROPAGATION
DZ_3 <- A_3 - Yt
DW_2 <- (DZ_3 %*% t(A_2) / m) + delta * W_2
Db_2 <- mean(DZ_3)
DZ_2 <- t(W_2) %*% DZ_3 * A_2 * (1 - A_2) # sigmoid function
Leaky ReLU function:

DZ_2 <- t(W_2)%*%DZ_3 * ifelse(Z_2 > 0,1,0.01)

DW_1 <- (DZ_2 %*% t(Xt) / m) + delta * W_1
Db_1 <- apply(DZ_2, 1, mean)
GRADIENT DESCENT ON TRAINING DATA Xt
W_1 <- W_1 - gamma * DW_1
W_2 <- W_2 - gamma * DW_2
b_1 <- b_1 - gamma * Db_1
b_2 <- b_2 - gamma * Db_2

BELOW: ADD PENALTY TERM TO THE LOSS FUNCTION
newcost <- cost(A_3, Yt) + (delta/2)*(sum(W_2^2)+sum(W_1^2))
result[i,] <- c(i,newcost,DW_2[1:5],W_1[1],W_2)

}
ytrain <- as.numeric(ifelse(A_3 > 0.5, 1, 0))
msetrain <- mean((ytrain - Yt) ^ 2)

print(table(yh, Y))
VALIDATION STAGE WITH DATA Xv
A LITTLE TWIST: IN LINES 400-404 b_1 & b_2 MUST BE ADJUSTED
BECAUSE/IF # TRAINING RECORDS < # VALIDATING RECORDS !!!!!!
a <- floor(0.5*ncol(X))
b <- 0.5*ncol(X)

508 11 Nonparametric Methods: A Selected Overview

bind <- function(b){cbind(b,b[,1])}
b_1 <- if(a<b) {bind(b_1)}
b_2 <- if(a<b) {bind(b_2)}
Z_2 <- W_1 %*% Xv + b_1
A_2 <- sigm(Z_2)
Z_3 <- W_2 %*% A_2 + b_2
A_3 <- sigm(Z_3)
yval <- as.numeric(ifelse(A_3 > 0.5, 1, 0))
mseval <- mean((yval - Yv) ^ 2)
resultval[j,] <- c(j, msetrain,mseval)

}
proc.time() - ptm
print(table(yval,Yv))
plot(resultval[,2],type="l",ylim=c(min(resultval[,2]),
max(resultval[,3])))
lines(resultval[,3],col="red")
summary(resultval[,3])

R-code to fit the neural network using neuralnet is shown below:

CODE1110 (cont)
FIT \texttt{neuralnet} ON TRAINING DATA AND
TEST ON VALIDATING DATA
REPEAT nrepnn TIMES
set.seed(371111)
library(neuralnet)

nrepnn <- 20

resmsenn <- matrix(data=NA,nrow=nrepnn,ncol=3)

for (i in 1:nrepnn){
cat(i, "\n",sep="")
train=sample(1:ncol(X),floor(0.5*ncol(X))) # ASSUMES X

HAS BEEN TRANSPOSED!
SETTING BELOW hidden = c(5,6) FITS TWO LAYERS OF 5 NEURONS
IN LAYER 1 AND 6 NEURONS IN LAYER 2. hidden =c(5) FITS
A SINGLE LAYER WITH 5 NEURONS

nn=neuralnet(y~.,data=df[train,],hidden=c(5),linear.output=
FALSE,act.fct="logistic")
pnv <- as.numeric(predict(nn,df[-train,]))
predv <- ifelse(pnv > 0.5, 1, 0)
msev <- mean((pnv-Y[-train])^2)
pnt <- as.numeric(predict(nn,df[train,]))
predt <- ifelse(pnt > 0.5, 1, 0)
mset <- mean((pnt-Y[train])^2)
resmsenn[i,] <- c(i,msev,mset)

}
plot(resmsenn[,2],type="l",ylim=c(min(resmsenn[,3]),
max(resmsenn[,2])))
lines(resmsenn[,3],col="red")
summary(resmsenn[,2])

11.3 Neural Networks 509

Example: Prediction Using a Neural Network, a RKHS
Regression and a Genomic BLUP Model

In this second example, prediction ability is evaluated for the neural network and for
the RKHS (reproducing kernel Hilbert space) regression with a Gaussian kernel. A
genomic BLUP model is also fitted, which is a special case of the RKHS regression
with a linear kernel appropriately scaled. In contrast with the previous two models,
the genomic BLUP model captures only linear relationships of the feature space.

Grain yields (centred and standardised to unit variance) from the 599 inbred lines
were downloaded from the BGLR package and, as was the case in the previous
example, 1279 binary genetic markers were available as input features for each
line. The neural network architecture was as in the previous example, with the only
difference that the output neuron was generated using the identity function since
grain yield data are continuous. The cost function for this example has terms of the
form .(y − a(3))2 rather than the logistic likelihood employed for the binary records.
The expression for .z(3) on page 537 is unchanged.

The analysis of grain yield using the RKHS regression was based on the model
described in the example on page 478. The Bayesian RKHS model used . λ = 0.3
and three values of the bandwidth parameter h were entertained. The best prediction
result (reported in Table 11.2) was obtained using .h = 1.

The prediction ability of the models was quantified using the validating . MSE
(average sum of squared differences between observed and predicted validating
records) and the correlation between observed and predicted validating phenotypes,
over 20 replicates of training/validating splits. For the RKHS regression, predictions
were obtained from expression (11.30), and details are disclosed in the R-code
below. Results in the form of Minimum Mean and Maximum over the 20 replicates,
for the validating MSE and for the correlation between observed and predicted
validating phenotypes, are displayed in Table 11.2.

For these data the RKHS regression with the Gaussian kernel was a slightly better
prediction machine than the neural network and the BLUP model, both of which
performed similarly. The RKHS regression model was also implemented using . λ =
0.3, .h = 0.5 and .λ = 0.3, .h = 3.0. The mean validation MSE and correlations

Table 11.2 Grain yield of 599 inbred lines for wheat data from the BGLR package. Prediction
ability quantified as the minimum, mean and maximum over 20 random training/validating splits
(.50% of each) for the validation MSE (X; e.g. for the first entry, .X = 0.72) and for the correlation
between observed and predicted validating phenotypes (Y ; e.g. for the first entry, .Y = 0.36) for the
neural network model (NN), the RKHS regression model (RKHS) and the genomic BLUP model.
The results in the table are in the form . X/Y

Minimum Mean Maximum

NN 0.72/0.36 0.83/0.43 0.91/0.51

RKHS 0.68/0.42 0.78/0.49 0.90/0.56

BLUP 0.70/0.35 0.83/0.43 0.93/0.51

510 11 Nonparametric Methods: A Selected Overview

between observed and predicted validation phenotypes for these two RKHS variants
were (.0.79; .0.47) and (.0.86; .0.42), respectively.

The R-code used to fit the RKHS model is shown below:

CODE1111
TRAINING AND TESTING OF GRAIN YIELD -
WHEAT INBRED LINES FROM BGLR PACKAGE
rm(list=ls()) # CLEAR WORKSPACE
set.seed(37111)
library(BGLR)
data(wheat)

USE BGLR MATRIX X
x <- wheat.X
y<- wheat.Y[,4]
A GAUSSIAN KERNEL ################

kgaus <- function(X,h){
X <- scale(X,center=TRUE,scale=FALSE)
S=sqrt(sum(apply(FUN=var, X=x,MARGIN=2)))
X <- X/S
D <- as.matrix(dist(X))^2
K <- exp(-h*D)

}

A LINEAR KERNEL #################
klin1 <- function(X){

X=scale(X,center=TRUE,scale=FALSE)
S=sqrt(sum(apply(FUN=var, X=X,MARGIN=2)))
X=X/S
K=tcrossprod(X)

}
############ CHOOSE GAUSSIAN KERNEL ##############

#h <- 0.5
h <- 1
<- 3

K <- kgaus(x,h)
#dim(K)
#qr(K)$rank

############## CHOOSE LINEAR KERNEL ###############
#K <- klin1(x)
#dim(K)
#qr(K)$rank

READ NUMBER OF TRAINING / VALIDATING SPLITS nitval
nitval <- 20
READ REGULARISATION PARAMETER lambda
lambda <- 0.3

result <- matrix(data=NA, nrow=nitval,ncol=5)

ptm <- proc.time()
for (j in 1:nitval) {

cat(j, "\n",sep="")
train = sample(1:nrow(x), floor(0.5 * nrow(x)))
xt <- x[train,]

11.4 Classification and Regression Trees 511

yt <- y[train]
xv <- x[-train,]
yv <- y[-train]
YHATt <- matrix(nrow = length(yt), ncol = 1)
YHATv <- matrix(nrow = length(yv), ncol = 1)
Ktrain <- K[train, train]
Kval <- K[-train, train]
Xt <- cbind(1, Ktrain)
RHSt <- crossprod(Xt, yt)
LHSt <- crossprod(Xt)
LHSt[-1, -1] <- LHSt[-1, -1] + Ktrain * lambda

diag(LHSt) <- diag(LHSt) + c(0, rep(1e-8,ncol(Xt)-1))
solt <- solve(LHSt, RHSt)
YHATt <- solt[1] + Ktrain %*% solt[-1]
YHATv <- solt[1] + Kval %*% solt[-1]
mset <- mean((YHATt - yt) ^ 2)
msev <- mean((YHATv - yv) ^ 2)
cort <- cor(YHATt, yt)
corv <- cor(YHATv, yv)
result[j,] <- c(j, mset, msev, cort, corv)

}
proc.time() - ptm
summary(result[,3])
summary(result[,5])

11.4 Classification and Regression Trees

This section describes an approach to modelling where the feature space is
partitioned into regions within which the responses are relatively homogeneous.
The partitioning of the feature space follows a set of binary splitting rules that
gives rise to a decision tree. Decision trees can be used for continuous as well as
for categorical variables. In the former they are known as regression trees and in
the latter as classification trees. The tree has terminal nodes or leaves that arise
when a stopping criterion for further partitioning has been met. Finally, a prediction
associated with a particular terminal node is obtained based on the mean or mode
of the training output in the terminal node, in the case of regression trees, or, based
on the most frequent class, in the case of classification tress. The method lends
itself to a graphical representation that possesses pedagogical quality and ease of
interpretation.

This section shows how to build a tree and how to apply it with the South African
Heart Disease Data (Rousseauw et al 1983) used also in Hastie et al (2009), where
a more detailed account can be found. The data is a subset of a larger dataset
and includes 462 males in a high-risk heart disease region of the Western Cape
in South Africa. There are .p = 9 sources of information (features or covariates or
inputs) available on each patient: systolic blood pressure (sbp), cumulative tobacco
(tobacco), low-density lipoprotein cholesterol (ldl), adiposity, family history of heart
disease (famhist), type A behaviour (type-a), obesity, alcohol and age. The output
or response is coronary heart disease (chd). Adiposity is a measure of percent body

512 11 Nonparametric Methods: A Selected Overview

|
age < 31.5

age < 50.5

typea < 68.5 famhist: Absent

tobacco < 7.605

H

H D

H D

D

Fig. 11.11 Classification tree fit to the South African Heart Disease data. The goal is to predict
the health status of a patient (“Healthy” or "Diseased, “H” and “D”, respectively), based on nine
features or covariates. The split at the top of the tree results in two branches: one on the left for
age .< 31.5 years and one on the right for age .> 31.5 years. The left split does not undergo further
subdivision and the group is classified as “Healthy”. The split on the right undergoes a further split
whereby those with age .< 50.5 years are moved to the left and those over .50.5 years to the right.
The split on the left has a further split governed by type a score whereby those .< 68.5 are moved
to the left and are classified as “Healthy” and those scoring .> 68.5 are moved to the right and are
classified as “Diseased”. The final tree has six terminal nodes or leaves with a certain number of
observations in each terminal node (not shown in the figure). The predictions “D” or “H” at each
terminal node depend on the proportion of observations falling into each category

fat, whereas obesity is measured as body mass index (bmi). Type-A refers to a
behaviour pattern characterised by an excessive competitive drive, impatience and
anger/hostility. Coronary heart disease (chd) is a classification variable that takes
values “Diseased” and “Healthy”. Out of the 462 patients, 160 are classified as
“Diseased”.

Figure 11.11 shows the output of a classification tree fitted to these data. The
tree arises from questions associated with the inputs/covariates. These questions are
known as splits. Starting at the top of the tree, the first split assigns observations
to the left if age is less than .31.5 years. These observations do not undergo further
splits and constitute a terminal node or leaf. Observations whose age is older than
.31.5 years are moved to the right. This branch undergoes a further split, again based
on age, where the threshold now is .50.5 years; those younger define a left branch and
those older a right branch. The left branch has a split according to scoring for type-a
behaviour. Those scoring less than .68.5 are moved to the left and constitute another
terminal node; those scoring higher than .68.5 are moved to the right and give rise

11.4 Classification and Regression Trees 513

to a third terminal node. Observations whose age is older than .50.5 years undergo a
split due to family history, (absent/present), a categorical variable. The left branch
includes observations that do not show family history for chd, while the right branch
includes those observations that do. These constitute a terminal node. The branch
on the left has a further split according to tobacco: less than an accumulated amount
of .7.605 go to the left and give rise to a terminal node. Those with a value larger
than .7.605 comprise another terminal node. The tree has 6 terminal nodes.

The shape of the final tree is governed by the splits. The data consist of p
variables or features (in the case of the heart data, .p = 9) and a response that is
.(xi, yi), .i = 1, 2, . . . , n, with .xi = (

xi1, xi2, . . . , xip

)

. For each split, the algorithm
must decide which of the p variables to choose and then must perform a search to
find the optimal point to split (the first split in the tree of Fig. 11.11 is based on the
feature age and the split occurs at .31.5 years). One must also decide how deep the
tree must be, that is, when to stop splitting and thereby declaring the records from
this last split as belonging to a terminal node. The predictions for each terminal
node shown in Fig. 11.11 arise by counting the number of . D′s and . H ′s among
the observations in the terminal node and choosing as the predicted value the most
frequent.

Among the 462 observations, the proportion “Diseased” is .0.346. Consider the
first decision at the top of the tree (actually, the root, since the tree is upside down).
For each of the nine covariates, the algorithm finds the binary partition that optimises
one of two criteria (Gini index or deviance, described at the end of this subsection)
that measure the impurity among the response in the binary partition (if all the
observations in the partition belong to the same class, the impurity is zero and it
is maximum when .50% belong to each class). The aim is ideally to find a partition
of the covariate within which the responses have the same label. For the tree in
Fig. 11.11, the choice falls on age. There are 49 “age classes” among the 462
records and the age .31.5 years minimises the impurity. At this point there are 117
observations whose age is less than .31.5 years, and among these, 10 are classified as
“Diseased” resulting in a proportion of “Healthy” equal to .0.915 and in a prediction
equal to H . This constitutes the first terminal node of the tree. After this split the
algorithm works with those observations on the right, and a new split is found by
the same procedure. The same covariate, age, now at the point .50.5 years is chosen
as the one minimising impurity. Those records whose age is less than .50.5 years are
moved to the left. Among these records, 119 are “Healthy” and 54 are “Diseased”
resulting in a prediction at this stage of H .

A characteristic of decision trees is that optimality is defined locally for each
split, one at a time, and the algorithm searches for all possible splitting points for
each covariate. The process is repeated until a stopping criterion is reached (based on
the number of observations in a splitting region, or on the reduction of impurity). A
compromise must be found between growing very deep trees, leading to overfitting,
or shallow trees that do not capture enough of the variability of the response.
The common practice is first to grow a deep tree stopping when the number of
observations in a node reaches a minimum (5, say). This tree will typically overfit
the data. This is then followed by tree pruning which requires cross-validation: the

514 11 Nonparametric Methods: A Selected Overview

bottom branches of the tree are removed until the cross-validation error increases.
The tree in Fig. 11.11 is a result of this pruning procedure. The original tree had 15
terminal nodes and included seven of the nine predictors. The pruned tree has only
six terminal nodes and four predictors. Both trees were fitted to the complete set of
462 observations. The misclassification rate of these trees using the complete data
was .0.21 and .0.23 for the complete and pruned tree, respectively.

Regression trees follow the same rationale as the classification trees, except that
the residual sum of squares is used instead of the Gini index or the deviance as
criteria to split the nodes or to prune the tree. The response y now is quantitative
and, initially, the residual sum of squares before the first split is .

∑n
i=1 (yi − y)2

where . y is the mean of the n responses. For a first partition around a splitting point
s, the . nl observations falling on the left of s have mean . ̂μl and those . nr falling on
the right of s, . ̂μr . These means constitute the predicted values for the first partition.
The residual sum of squares for this node for this value of s is reduced to

.

∑

i:xij ≤s

(yi − μ̂l)
2 +

∑

i:xij >s

(yi − μ̂r)
2 . (11.80)

The algorithm searches the covariate j and the split point s that minimises
Eq. (11.80). For each branch a new split is carried out to refine predictions. Once
a final tree has been constructed, there will be a predicted value attached to each
terminal node given by the node’s mean. For a new set of covariates for a new
individual, a predicted value is obtained by starting at the top of the tree and
following the splits downwards until the terminal node with its predicted value is
reached. For a regression tree, the new individual is assigned the prediction given
by that terminal node’s mean.

The Gini Index and the Deviance

Let . Rj denote the j th node and let .njk denote the number of observations of class
k, .k = 1, 2, . . . , K in node j . The estimate of the probability of observing class k
in node j is the proportion of observations y that fall in class k

. ̂pjk = 1

njk

∑

i:xi∈Rj

I (yi = k) ,

and the class assigned to node j is the class with the largest estimated probability,
.arg max p̂jk . The Gini index associated with node j is

.Gj =
K
∑

k=1

p̂jk

(

1 − p̂jk

)

. (11.81)

11.4 Classification and Regression Trees 515

G takes on small values when the estimated probabilities are extreme and reaches a
maximum when estimated probabilities are intermediate.

An alternative to the Gini index is the deviance or entropy given by

.Dj = −
K
∑

k=1

p̂jk log p̂jk. (11.82)

Since . lim
p−>0

p log p = 0, we take .p̂jk log p̂jk = 0 whenever .p̂jk = 0. Therefore,

entropy is at a minimum value of 0 when one of the .p̂jk = 1 and all other equal to
0, and it attains a maximum when all .p̂jk in node j are equal and .p̂jk = 1/K for
all k.

As shown in the examples that follow, for classification trees, the function tree
in R uses .2njDj = −2

∑K
k=1 njk log p̂jk instead of (11.82), where . nj is the number

of responses in node j .

Evaluating Prediction Performance with Cross-Validation

The misclassification rates of the full and pruned trees quoted above (.21% and .23%,
respectively) were estimated using the complete data. This is likely to underestimate
the misclassification rate when evaluated on new data. Here the predicted ability of
the classification tree is investigated further using cross-validation. The approach is
as follows:

1. Split the data into training and validating sets (.50% of the observations in each)
2. Construct a full tree using the training data
3. Compute the misclassification rate for this full tree in the training and validating

data
4. Prune the full tree
5. Compute the misclassification rate of this pruned tree in the validating data

For a particular replicate, the full tree from step 2 has 25 terminal nodes and
includes 7 of the 9 variables (dropped famhist and alcohol). The training and
validating misclassification rates of this tree are .14% and .38% respectively. The
misclassification rate of the null model obtained by classifying all the observations
in the complete data as healthy is .34.6% (equal to the proportion of diseased
individuals). The result is not encouraging.

The pruned tree from step 4 has three terminal nodes and includes only age
and ldl, a remarkable simplification from the full tree. The training and validating
misclassification rates of this pruned tree are .24% and .34.2% respectively, better
than the full tree but not an improvement over the performance of the null model.

516 11 Nonparametric Methods: A Selected Overview

Example: Analysis of the Heart Data Using a Classification Tree

The code below reads the South African Heart Disease dataset and executes the
function tree in R. The presentation follows closely the format in James et al
(2017), pages 323–327. We look a little more closely into the output of the tree
function and of other related functions that reveal some of the mechanics of the
constructed trees.

CODE1112
READ SOUTH AFRICAN HEART DISEASE DATA
rm(list=ls()) # CLEAR WORKSPACE
library(sda)
library(tree)
library(glmnet)
library(randomForest)
library(loon.data) # MUST INSTALL PACKAGE loon.data
data("SAheart")
sahd <- SAheart
sahd$chd <- factor(as.numeric(sahd$chd),levels=c(2,1),

labels=c("D","H"))
#length(which(sahd$chd=="H")) # NO HEART DISEASE
#length(which(sahd$chd=="D")) # HEART DISEASE

FUNCTION "ACCURACY":
accuracy = function(actual, predicted) {

mean(actual == predicted)
}
FIT TREE TO TRAINING AND VALIDATING HEART DATA
replicate <- 1
result <- matrix(data=NA, nrow=replicate,ncol=2)
REPLICATION
for(i in 1:replicate){

SPLIT DATA INTO TRAINING / VALIDATING SET
set.seed(31)
train=sample(1:nrow(sahd),nrow(sahd)/2)
treetrain <- sahd[train,]
treevalid <- sahd[-train,]
FIT TREE TO THE TRAINING DATA
treetr <- tree(sahd$chd[train] ~. ,data=treetrain)
trtrpred <- predict(treetr,treetrain,type="class")
trvapred <- predict(treetr,treevalid,type="class")
table(predicted = trvapred, actual = sahd$chd[-train])
table(predicted = trtrpred, actual = sahd$chd[train])
acval <- accuracy(actual=sahd$chd[-train],predicted=trvapred)
actst <- accuracy(actual=sahd$chd[train],predicted=trtrpred)
result[i,] <- c(1-acval,1-actst)

}
summary(treetr)

Classification tree:
tree(formula = sahd$chd[train] ~ ., data = treetrain)
Variables actually used in tree construction:
[1] age, typea, tobacco, obesity, ldl, sbp,
[7] adiposity
Number of terminal nodes: 25

11.4 Classification and Regression Trees 517

Residual mean deviance: 0.5449 = 112.2 / 206
Misclassification error rate: 0.1342 = 31 / 231

result

[,1] [,2]
[1,] 0.3809524 0.1385281

The code reads the 462 records and randomly samples two sets of 231 records
that constitute the training and validating data. The tree function is fit to the
training data (treetrain) and creates the object treetr. The summary function
displays information about the resulting tree. I discuss this function below in
connection with the pruned tree. At this stage we note that the resulting tree has
25 terminal nodes and includes 7 out of the 9 features of the dataset. The reported
misclassification error rate of .13% corresponds to the training data; it is therefore
likely to be underestimated. This is confirmed applying the predict function
using as arguments the training and validating data. The misclassification error rate
using the validating data is .38% and using the training data slightly under . 14%
(showing a mild discrepancy with the result of a little over .13% reported in the
summary function).

The next step is to investigate whether a pruned tree leads to a better prediction
performance. The code below fits the function cv.tree using as one of the
arguments the object generated by fitting the tree to the training data. It uses
cross-validation in order to find the size of the tree that produces the smallest
misclassification rate. Size here refers to the number of terminal nodes.

CODE1112 (cont)
PRUNE TREE FROM TRAINING RUN
set.seed(33)
treetr_cv <- cv.tree(treetr, FUN = prune.misclass)
#treetr_cv
index of tree with minimum error
min_idx = which.min(treetr_cv$dev)
#min_idx
number of terminal nodes in that tree
treetr_cv$size[min_idx]

[1] 3

misclassification rate of each tree
#treetr_cv$dev / length(train)
IT APPEARS THAT A TREE WITH treetr_cv$size[min_idx]
TERMINAL NODES HAS THE SMALLER MISCLASSIFICATION
EXECUTE PRUNE.MISCLASS: TREE WITH LOWEST C-V ERROR RATE
SET best = TO NR TERMINAL NODES FROM THIS BEST TREE
tree_prune<-prune.misclass(treetr,best=treetr_cv$size[min_idx])
#summary(tree_prune)

518 11 Nonparametric Methods: A Selected Overview

OBTAIN PREDICTIONS USING THIS PRUNED TREE
tree_prune_trn <- predict(tree_prune, sahd[train,],type="class")
table(predict = tree_prune_trn, actual = sahd$chd[train])

actual
predict D H
D 35 10
H 45 141

1-accuracy (predict = tree_prune_trn, actual = sahd$chd[train])

[1] 0.2380952

tree_prune_val<-predict(tree_prune,sahd[-train,],type="class")
table(predict = tree_prune_val, actual = sahd$chd[-train])

actual
predict D H
D 20 19
H 60 132

1-accuracy (predict = tree_prune_val, actual = sahd$chd[-train])

[1] 0.3419913

tree_prune

node), split, n, deviance, yval, (yprob)
* denotes terminal node

1) root 231 298.10 H (0.3463 0.6537)
2) age < 51.5 149 155.00 H (0.2148 0.7852) *
3) age > 51.5 82 111.30 D (0.5854 0.4146)
6) ldl < 4.92 37 47.97 H (0.3514 0.6486) *
7) ldl > 4.92 45 47.67 D (0.7778 0.2222) *

The training and validating misclassification rates (.1 − accuracy) of this pruned
tree (that has three terminal nodes only) are .24% and .34.2% respectively. The
function table displays the number of misclassifications in the off-diagonals
and the correctly classified records in the diagonals. For instance, in the case
of the training data, the first table, the number of misclassified observations is
.10+45 = 55, and the number of correctly classified observations is .35+141 = 176,
out of a total of 231 observations.

Turning attention to the output from the pruned tree and typing the tree object
tree_prune disclose details about each branch of the tree. The first branch of
the tree (the split at age .< 51.5 years; corresponds to the second node) has . n =
149 observations. The deviance for the split is .155.00 and the predicted value is
.yval = H , because the proportion of H ’s, .0.7852, is larger than the proportion of

11.4 Classification and Regression Trees 519

D’s, .0.2148. This split is a terminal node as indicated by the asterisk . ∗. As a check
on the reported proportions, compute:

CODE1112 (cont)
A LITTLE CALCULATION: PROPORTION OF H’s IN LEFT BRANCH
OF THE FIRST SPLIT OF THE PRUNED TREE
trtrlt <- treetrain[which(treetrain$age < 51.5),]
dim(trtrlt)

[1] 149 10

trtrltH <- trtrlt[which(trtrlt$chd == "H"),]
dim(trtrltH)[1]/dim(trtrlt)[1]

[1] 0.7852349

The reported deviance for the split equal to .155.00 results from the following
computation. The starting point is the entropy (11.82); for .j = 2, the second node,

. D2 = −(0.7852 × log(0.7852) + 0.2148 × log(0.2148))

= 0.5202

and the printed deviance is .2(149)(0.5202) = 155.02.
It is also possible to obtain the deviance of the pruned tree by executing:

summary(tree_prune)

Classification tree:
snip.tree(tree = treetr, nodes = c(6L, 7L, 2L))
Variables actually used in tree construction:
[1] "age" "ldl"
Number of terminal nodes: 3
Residual mean deviance: 1.099 = 250.7 / 228
Misclassification error rate: 0.2381 = 55 / 231

The numerator of the printed residual mean deviance is

. 2
∑

j

njDj = −2 × 149 × (0.7852 × log(0.7852) + 0.2148 × log(0.2148)) +

−2 × 37 × (0.6486 × log(0.6486) + 0.3514 × log(0.3514)) +
−2 × 45 × (0.2222 × log(0.2222) + 0.7778 × log(0.7778))

= 250.68,

where .Dj is given by expression (11.82), . nj is the number of observations in
terminal node j and there are three terminal nodes in the pruned tree. The residual

520 11 Nonparametric Methods: A Selected Overview

mean deviance is obtained by dividing the numerator by the number of observations
in the data minus the number of terminal nodes. In the example, this gives
.250.68/(231 − 3) = 1.099.

Variability of Estimated Trees

Figure 11.12 shows the number of features and the validating misclassification
error rate versus replicate number for 10 pruned trees obtained by resampling the
complete data to construct ten training/ validating sets of data, fitting a tree to the
training data in each replicate, pruning the tree obtained from the training data and
obtaining predictions on the validating data. The number of features included in the
final pruned tree ranged from 8 in replicate 1, with .MSE = 0.35, to 1 in replicate 6,
with a .MSE = 0.32. The smallest .MSE = 0.29 was observed in replicates 7 and 9,
with 5 and 2 features, respectively. The figures display large variation, particularly
in the number of features included in the final pruned tree.

There are two sources of variability at play here. One is the data. The number
of records, the relative contribution of each covariate and the correlation structure
among covariates make it difficult to find the “best” predictive model. More than
one combination of covariates leads to similar predictive ability. The other important
source of variability is methodological: trees are known to be non-robust, such that
small changes in the data cause large changes in the final estimated tree. The large
variability of decision trees makes them relatively poor prediction machines. This
limitation is in contrast to other attractive properties such as ease of interpretation,

Fig. 11.12 Left y-axis:
number of features included
in the pruned tree (in blue).
Right y-axis:
misclassification error
(.MSE ∗10) (dashed red),
versus replicate number. The
smallest .MSE = 0.29 over
the 10 replicates was for
replicates 7 and 9. The pruned
trees for these replicates
included 5 and 2 features,
respectively. The smallest
number of features is 1 (age
.< 49.5 years) for replicate 6,
with a .MSE = 0.32

102 4 6 8

1
2

3
4

5
6

7
8

Replicate

N
o.

 F
ea

tu
re

s

3.
0

3.
2

3.
4

3.
6

3.
8

M
S

E
*1

0
No. Features
MSE*10

11.5 Bagging and Random Forests 521

coupled with a highly pedagogic graphical display. As indicated in the next section,
the non-robustness issue can be improved upon by constructing many trees and
averaging the final predictions.

11.5 Bagging and Random Forests

As indicated in (6.51), the variance of the predictor is one of the three terms
that influence the expected validation prediction error. Bootstrap aggregation or
bagging (Breiman 1996) improves prediction ability by reducing this variance. This
is achieved by constructing a prediction averaged over several bootstrap samples
whose variance is smaller than the variance of an estimate based on a single sample.

The idea of bagging is illustrated here with decisions trees, but it can be used
with other approaches. The algorithm is quite straightforward: create B bootstrap
samples of training data each of size . nt (sampling the . nt rows of the training data
.(yi, xi), .i = 1, 2, . . . , nt with replacement . nt times) and grow a tree from each. Let
.̂fb (x0) be the prediction from the bth bootstrap sample at the prediction point . x0 and
let .̂fB (x0) be the prediction obtained using the B samples. In the case of regression
trees, . ̂fB is a simple average over the B samples, and for classification trees . ̂fB is
based on a majority vote: the most frequent class is chosen as the label for . ̂fB . Each
tree is grown deep and not pruned. This ensures low bias, and by averaging the B
predictions, the large variance of each tree is substantially reduced. Specifically, we
have

. Var
(

̂fB (x0)
) = Var

[

1

B

B
∑

b=1

̂fb (x0)

]

= 1

B2

[

B Var
(

̂fb (x0)
) + B (B − 1) Cov

(

̂fb (x0) , ̂f ′
b (x0)

)]

= (1 − ρ)

B
Var

(

̂fb (x0)
) + ρ Var

(

̂fb (x0)
)

(11.83)

where . ρ is the pairwise correlation between predictors from the different trees. With
large number of bootstrap samples B, the first term in the right-hand side is reduced,
while the second depends on the correlation between the predictor functions.

The initial use of bagging with decision trees is based on inclusion of all the p
features each time a split is considered. The trees fitted to the bootstrap samples
constructed in this way tend to be correlated because the same feature is likely to
be chosen in the different trees, particularly at the top of the tree. In a random forest
(Breiman 2001), only .m < p features are randomly selected (without replacement)
as candidates for splitting and a different set of m features is selected at each split.
This has the effect of reducing the correlation between the trees and the second
term in (11.83). Typical values for m are .p/3 for regression trees and .

√
p for

classification. The essentials of a random forest construction are that each tree is

522 11 Nonparametric Methods: A Selected Overview

based on a random subset of the observations (the bootstrapping step) and each split
is based on a random subset of candidate features.

Out-of-Bag Error Estimates

The use of bagging provides an opportunity to study the prediction ability of a model
without resorting to cross-validation. Consider data .zi = (yi, xi), .i = 1, 2, . . . , n.
The probability of selecting a particular observation in each of the B bootstrap
samples is .1/n, and the probability of not selecting it is .(1 − 1/n). When n random
samples are taken with replacement to form the bootstrap sample, the probability
of not selecting the observation in the n samples is .(1 − 1/n)n, which in the limit
when .n → ∞, is equal to .exp(−1) ≈ 0.37. Therefore, the observation is absent
in approximately one third of the B bootstrap samples, on average (the number
of bootstrap samples with the missing observation is binomially distributed, with
parameters B and .exp(−1)). In random forests, out-of-bag error estimates for
classification or regression are obtained by constructing random forest predictors
of each observation . yi , by averaging the predictors from trees grown in which . zi is
absent. The error estimates obtained in this manner agree well with those obtained
using cross-validation.

Variable Importance

Although the primary objective of random forests is prediction, it may be of interest
to obtain an overall summary of the importance of each predictor or feature. There
are two popular measures of importance of the predictor variables. One is based on
recording the decrease of the residual sum of squares, in the case of regression trees,
or of the Gini index in the case of classification trees, each time a particular predictor
is used in a split. Averaging this decrease over the B trees reveals the important
predictors as those leading to large decreases. The other approach addresses the
contribution of a feature to prediction more directly: it considers the decrease
in prediction accuracy when the feature is randomly permuted in the out-of-bag
samples, thereby removing its association with the response. The rationale is that
a permutation is supposed to mimic the absence of the predictor variable from the
model. When the permuted predictor, together with the remaining non-permuted
predictors, is used to predict the response with these out-of-bag observations, the
prediction accuracy (proportion of observations classified correctly) decreases if
the permuted predictor is associated with the response. In regression problems,
classification rate is replaced by mean squared error. The difference between the two
prediction accuracies (permuted/non-permuted) associated with a particular feature
averaged over the B trees constitutes its variable importance score.

11.5 Bagging and Random Forests 523

Example: Analysis of the Heart Data Using a Random Forest

The R-code below fits a random forest to the heart data using the function
randomForest. In order to look more closely into the output, the argument mtry
that specifies the number of features randomly selected in each split is set to a single
value (3 in the example; setting mtry.= 9 chooses bagging).

CODE1113
RANDOM FOREST WITH HEART DATA
#rm(list=ls()) # CLEAR WORKSPACE
library(sda)
library(tree)
library(glmnet)
library(randomForest)
sahd <- read.table(
"http://www-stat.stanford.edu/~tibs/ElemStatLearn/
datasets/SAheart.data", sep=",",head=T,row.names=1)
FUNCTION ACCURACY:
accuracy = function(actual, predicted) {

mean(actual == predicted)
}

CHANGE RESPONSE VARIABLE AND FAMHIST TO FACTOR
#sahd$chd<-as.factor(ifelse(sahd$chd == 1,
"Disease","Healthy"))
#sahd$famhist <- as.factor(sahd$famhist)

#head(sahd)
#str(sahd)
sumd <- data.frame()
nrep <- 1
reslt <- rep(NA,nrep)
mtry <- c(1,3,5,9)
mtry <- 3
set.seed(2)
for (m in mtry){

cat("mtry ",m,"\n",sep="")
for (rep in 1:nrep) {

cat("Replicate ",rep,"\n",sep="")
train=sample(1:nrow(sahd),nrow(sahd)/2)
rf <- randomForest(sahd$chd ~.,data=sahd,

subset=train,mtry=m,importance=TRUE)
predict <- predict(rf,sahd[-train,])
observed <- sahd$chd[-train]
t <- table(observed,predict)
print(t)
reslt[rep]<-1-accuracy(predicted=predict,actual=observed)

}
sumd <- rbind(

sumd,c(m,min(reslt),mean(reslt),median(reslt),max(reslt),
var(reslt)))

}

mtry 3
Replicate 1
predict

524 11 Nonparametric Methods: A Selected Overview

observed D H
D 30 47
H 25 129

names(sumd) <- c("mtry","min","mean","median","max","var")
sumd[3]

mean
1 0.3116883

The data are divided into a training and a validating set (each of 231 observa-
tions), the random forest is fitted to the training set and the resulting validating mean
squared error is .MSE ≈ 0.31 (misclassification rate: .(47+25)/(30+47+25+129)).
This is a little improvement over the validating MSE of the pruned tree, with
.MSE = 0.34, reported on page 518.

When randomForest is executed on the complete data, details of the output
can be displayed typing the object rf (not shown).

CODE1113 (cont)
library(randomForest)
rf <- randomForest(sahd$chd ~.,data=sahd,mtry=3,importance=TRUE)
rf$mtry

[1] 3

rf$ntree

[1] 500

rf$confusion

D H class.error
D 68 92 0.5750000
H 54 248 0.1788079

Particular elements of the output file can be extracted. The output indicates that 3
variables are used per split (mtry) and that by default .B = 500 trees are constructed
(ntree). The estimate of the out-of-bag error rate computed from the complete
data (.(92 + 54)/(92 + 54 + 248 + 68) ≈ 0.32) is in good agreement with the
misclassification error rate using cross-validation reported above (.31%).

The importance of each feature can be obtained using the importance
function:

CODE1113 (cont)
importance(rf,type=1)

11.5 Bagging and Random Forests 525

MeanDecreaseAccuracy
sbp 3.869507
tobacco 13.272608
ldl 4.080764
adiposity 4.032976
famhist 7.679644
typea 1.714666
obesity -3.309007
alcohol -3.556895
age 17.041426

The output indicates that on average over the 500 trees, age, tobacco and family
history are the three most important features affecting prediction accuracy.

Variability of Random Forests

Variation over repeated samples of training/testing data can be obtained using the
code above by modification of the parameter nrep. The performance of random
forest for different choices of the number of features sampled per split can be studied
setting mtry <- c(1,3,5,9). The code above was run setting nrep=100, and
the prediction accuracy (misclassification rate) is shown in Table 11.3.

For this particular dataset, the results are similar across scenarios with a slight
advantage for the choice mtry=1.

Example: An Analysis Involving Genetic Epistatic Interactions

An attractive property of decision trees and random forests is their potential ability
to capture interactions involving covariables. This is examined here with a stylised
example in the context of gene discovery and genomic prediction.

A matrix of genotypic markers (of order number of individuals (sample
size)} . × number of markers . = 1000) is generated from a binomial distribution
.Bi (n = 2, p = 0.5). These marker data are part of the operational models used for

Table 11.3 Prediction accuracy of random forests over 100 samples of training/testing splits and
for 4 different numbers of features sampled out of 9 per split (mtry; mtry=9 indicates bagging).
The figures in the table display the minimum, mean and maximum prediction accuracy over 100
replicates

mtry min mean max

1 0.22 0.30 0.35

3 0.27 0.32 0.36

5 0.26 0.32 0.40

9 0.26 0.32 0.38

526 11 Nonparametric Methods: A Selected Overview

inferences and prediction. Three sample sizes are studied: .1000, 5000 and . 10,000
observations.

Observations are simulated using two models that differ in their genetic archi-
tectures. In the first model, the additive model, 10 marker genotypes are randomly
sampled from the 1000 genotypic markers and designated as QTL. The 10 QTL
are assigned additive genetic effects equal to .0.22σ each, where .σ = √

5 is the
standard deviation of the phenotypic distribution. The 10 QTL combine additively
to determine genetic values. This model generates an additive genetic variance equal
to .1.25 squared units. Setting the environmental variance equal to .(5 − 1.25) results
in a heritability or proportion of variance of the observations captured by the linear
regression on QTL genotypes equal to .0.25.

In the second model, the interaction model, the genetic values are the result of
the following process. First, one locus contributing to additive genetic variation is
randomly chosen among the 10 QTL. This additive locus contributes an additive
genetic variance equal to .0.125 squared units. Second, among the 45 possible
combinations of two loci taken from the 10 QTL, 10 are randomly sampled to
generate additive . × additive epistatic interactions. The interaction effects are all set
equal to .0.44σ where, as before, .σ = √

5. When gene frequencies are intermediate
and loci are in linkage equilibrium, the epistatic part of the interaction model
constructed in this example does not generate additive genetic variation; the only
source of additive genetic variation stems from the single additive locus. The genetic
variance arising from the interacting genotypes is of additive . × additive type only
and equal to .2.5 squared units. As in the first model, the phenotypic variance is
equal to 5 squared units. Details of the interaction model are described below in the
NOTE: The epistatic model.

Three operational models used for analysis of the data are compared. The first
two are fully parametric models and include the lasso and a Bayesian spike and slab
mixture described on page 321. In both, the conditional mean of the data is assumed
to be linearly related to the 1000 marker genotypes. The third is a nonparametric
model: a random forest. The three models are fitted to data generated using both
genetic architectures (the additive and the interaction models) and to the 3 sample
sizes.

The two parametric models assume a multiple linear regression of the response
y on the 1000 marker genotypes. It follows that, for the additive model, the 10
QTL are a subset of the marker panel of the operational model. For the interaction
model, only the single QTL is a subset of the marker panel. The interaction terms
that define the remaining proportion of the true genotypic values are not members
of the operational models.

The models do not intend to mimic any particular trait. Rather, the intention is to
examine the following conjectures:

1. with a purely additive genetic model, genomic operational models that postulate
a linear regression of response on marker genotypes (encoded additively) should
perform as well as or better than random forests, in terms of prediction ability
and in terms of QTL detection.

11.5 Bagging and Random Forests 527

2. In the presence of genetic interactions between QTL, random forests should
outperform linear models, both in prediction ability and in QTL detection
because linear models do not account for interactions.

The justification for point 1 is that operational models that postulate a linear
regression of data on additively encoded marker genotypes are in close agreement
with the true model. In such a setup, the linear models should be difficult to
outperform. While the exact location of QTL is unknown, their detection depends on
size of the effects and on the amount of data. In the case of point 2, the linear models
are at a disadvantage: there are no interaction terms in the operational models. On
the other hand, the building process of a decision tree (which is an integral part of
the random forests) is designed to capture interactions provided signals are strong
enough.

The R-code below generates the data for .10,000 individuals and for the
interaction model. The additive model is retrieved by minor changes of the code.

CODE1114
GENERATING AN EPISTATIC MODEL AND FIT RANDOM FOREST,
LASSO, BAYESIAN MIXTURE
rm(list=ls()) # CLEAR WORKSPACE
set.seed(303371)
nindiv<-10000
nmark <- 1000
nqtl <- 10
nintqtl <- 10
mu_y<-0
Xq<-matrix(data=NA,nrow= nindiv,ncol= nqtl)
######## GENETIC MARKERS Xm #########################
Xm<-matrix(nrow= nindiv,ncol= nmark,

rbinom(nindiv*nmark,size=2,p=.5)-1)
from the nmark markers, choose nqtl as QTL:
IDq<-sample(1:nmark,nqtl,replace=F)
Xq <- Xm[,IDq] # QTL GENOTYPIC MATRIX
INTERACTION GENOTYPIC MATRIX:
Xi<-matrix(data=NA,nrow= nindiv,ncol= nintqtl)
b <- rep(0,nmark+nintqtl)
nr <- ncol(Xq)
i1 <- combn(nr,2)
i2 <- sample(ncol(i1),nintqtl,replace=FALSE)
i3 <- as.matrix(i1[,i2])
for (i in 1:nintqtl){

Xi[,i] <- Xq[,i3[1,i]]*Xq[,i3[2,i]]+1
}
GENERATE GENOTYPIC VALUES g
b[IDq] <- 0.5

528 11 Nonparametric Methods: A Selected Overview

BELOW: ZERO OUT length(idzero) ADDITIVE EFFECTS
idzero <- sample(IDq,floor(0.9*nqtl),replace=FALSE)
b[idzero] <- 0

lb <- nmark+1
ub <- nmark+nintqtl
b[lb:ub] <- 1.0
gi <-Xi%*%b[lb:ub]
ga <- Xq%*%b[IDq]
g <- ga + gi
va <- var(ga)
vi <- var(gi)
vg <- var(g)
y <- ga+gi+rnorm(nindiv,0,sqrt(5-va-vi))
vy <- var(y)
her_a <- va/vy
her_i <- vi/vy
V <- vy*(1-her_a-her_i) # CONDITIONAL VARIANCE
cov(ga,gi)

[,1]
[1,] -0.0001627963

va

[,1]
[1,] 0.1254941

vi

[,1]
[1,] 2.553642

vy

[,1]
[1,] 4.922617

The results for the additive Model are displayed in Table 11.4. In terms of
prediction ability quantified by the validating mean squared error (MSE), there is
little difference between the lasso and the Bayesian mixture although the latter is
consistently superior. Both outperformed the random forest. In terms of detection
of causal loci, the proportion of true and false positives in the discovery set
differs markedly among methods and population sizes (see the table legend for the

11.5 Bagging and Random Forests 529

Table 11.4 Additive model. Validating mean square error (MSE), true positive calls (TP) and false
positive calls (FP) among flagged loci in the discovery set (TP+FP) using lasso, the Bayesian
mixture and the random forest for three sample sizes (n). The discovery set was arbitrarily defined
as follows. For lasso, the set of regression estimates not set equal to zero. For the Bayesian mixture,
the loci whose McMC estimate of the probability of belonging to the non-zero mixture component
is larger than . 0.5. For random forest, the 10 loci that had the highest importance score. NULL
MODEL refers to the validation MSE of predictions based on the mean of the training observations,
a benchmark

MSE TP / FP

n 1000 5000 10,000 1000 5000 10,000

LASSO 4.59 3.98 3.96 9 / 10 10 / 17 10 / 33

MIXTURE 4.12 3.89 3.71 7 / 0 10 / 0 10 / 0

R FOREST 5.25 4.53 4.32 4 / 6 9 / 1 10 / 0

NULL MODEL 5.55 5.03 5.03

Table 11.5 Interaction Model. Validating mean square error (MSE), true positive calls (TP) and
false positive calls (FP) among flagged loci in the discovery set (TP+FP) using lasso, the Bayesian
mixture and the random forest for three sets of number of individuals (n). The discovery set was
arbitrarily defined as follows. For lasso, the set of regression estimates not set equal to zero.
For the Bayesian mixture, the loci whose McMC estimate of the probability of belonging to
the non-zero mixture component is larger than . 0.5. For random forest, the 10 loci that had the
highest importance score. As point of reference, NULL MODEL refers to the validation MSE of
predictions based on the mean of the training observations, a benchmark

MSE TP / FP

n 1000 5000 10,000 1000 5000 10,000

LASSO 4.47 5.04 4.89 1 / 15 1 / 2 1 / 0

MIXTURE 4.46 5.03 4.87 1 / 1 1 / 0 1 / 0

R FOREST 4.61 4.95 4.69 1 / 9 4 / 6 8 / 2

NULL MODEL 4.61 5.16 5.01

definition of discovery set). With .n = 1000 observations the random forest and
the Bayesian mixture detect four and seven of the ten causal loci, respectively. The
random forest flags six false positives and the Bayesian mixture none. Lasso on the
other hand detects nine of the ten causal loci and generates ten false positives. With
the two largest population sizes, the three methods successfully detect the ten causal
loci (with the exception of the random forest that detects nine out of the ten with
one false positive when fitted to .n = 5000 observations). However, lasso, in contrast
with the other two methods, flags a considerable number of false positive calls with
the larger population sizes.

The results for the interaction Model are displayed in Table 11.5. The prediction
ability of lasso and Bayesian mixture is slightly better to that of the random forest
for .n = 1000, but the reverse is true for the two larger sample sizes.

When .n = 1000, all three methods detect the single additive QTL. Lasso and
random forest produce a substantial amount of false positive calls, but the Bayesian
mixture produces only 1. When .n = 5000 or .10,000, lasso and the Bayesian mixture
detect the single additive QTL. On the other hand, the random forest detects not

530 11 Nonparametric Methods: A Selected Overview

only the single additive QTL but also flags 4 and 8 of the 10 genotypes involved
in epistatic interactions, for sample sizes .n = 5000 or .10,000, respectively. The
number of false positive results in the random forest discovery set is 6 and 2, for
.n = 5000 and .n = 10,000, respectively.

We conclude the example with a few remarks:

• The analysis confirms both conjectures in terms of prediction ability. When
it comes to identification of causal loci involved in epistatic interactions, the
conjecture holds provided .n > p.

• When the relationship between signal and noise is unfavourable for detection of
loci involved in epistatic interactions, a possible strategy is to fit a random forest
locally, in specific chromosome segments, searching for loci that are not captured
by a regression based on linear terms.

• A common way of searching for interactions is, first, to fit a regression based
on linear terms and, second, using the detected marker loci fit for the quadratic
terms. This strategy does not work when the QTL emit signals only through
epistatic combinations.

• The random forest, as implemented in the example, can potentially capture
individual QTL that are involved in epistatic interactions but does not flag the
interaction itself. A simple discovery strategy, particularly when the number of
single loci discovered is not large relative to n, is to include these individual
loci in a second step constructing all possible interaction combinations using, for
example, simple least squares regression, or alternatively, a Bayesian mixture.

NOTE: The Epistatic Model

The epistatic model used in the example induces additive genetic variation through
the single additive QTL. The 10 epistatic loci generate additive . × additive epistatic
variance only. This is stylised and holds provided that loci are in linkage equilibrium
and gene frequencies are all intermediate.

The details of the model for a specific interaction genotype are as follows.
Each biallelic locus with genotypes .A1A1, .A1A2 and .A2A2 is coded as .X11 = 1,
.X12 = X21 = 0 and .X22 = −1, respectively. Then the quadratic term is obtained
as .XijXkl + 1, .i, j, k, l = 1, 2. This generates the following genotypic codes for the
additive . × additive epistatic model:

.A1A1 .A1A2 . A2A2

.B1B1 2 1 0

.B1B2 1 1 1

.B2B2 0 1 2

The R-code below provides an example with .106 individuals in the sample and
a single additive . × additive genotype.

11.5 Bagging and Random Forests 531

CODE1115
GENETIC MODELS
rm(list=ls()) # CLEAR WORKSPACE
set.seed(303371)
nindiv<-1000000
nqtl <- 2
nintqtl <- 1
ba <- rep(1,nqtl)
bi <- rep(1,nintqtl)
mu_y<-0
INTERACTION GENOTYPIC MATRIX
Xi<-matrix(data=NA,nrow= nindiv,ncol= nintqtl)
Xq<-matrix(nrow= nindiv,ncol= nqtl,

rbinom(nindiv*nqtl,size=2,p=.5)-1) # LINEAR TERMS
nr <- ncol(Xq)
i1 <- combn(nr,2)
i2 <- sample(ncol(i1),nintqtl,replace=FALSE)
i3 <- as.matrix(i1[,i2])
CONSTRUCT INTERACTION GENOTYPE
for (i in 1:nintqtl){

Xi[,i] <- Xq[,i3[1,i]]*Xq[,i3[2,i]]+1
}
gi <-Xi%*%bi # INTERACTION GENETIC VALUES
ga <- Xq%*%ba # ADDITIVE GENETIC VALUES
g <- ga + gi # TOTAL GENETIC VALUES
va <- var(ga)
vi <- var(gi)
vg <- var(g)
y_i <- gi+rnorm(nindiv,0,sqrt(5-vi))
y_ai <- ga + gi+rnorm(nindiv,0,sqrt(5-va-vi))
vy <- var(y_i)
cor(Xq)

[,1] [,2]
[1,] 1.0000000000 0.0003593763
[2,] 0.0003593763 1.0000000000

vy

[,1]
[1,] 4.982423

532 11 Nonparametric Methods: A Selected Overview

vi

[,1]
[1,] 0.2497092

va

[,1]
[1,] 0.9998697

vg

[,1]
[1,] 1.249443

FIT LINEAR REGRESSION OF
INTERACTION GENETIC VALUES ON QTL LOCI
fa <- lm(gi ~ Xq)
CONFIRM THAT THE MODEL DOES NOT CAPTURE ANY
(ADDITIVE GENETIC) VARIATION
res <- summary(fa)
res$r.squared

[1] 9.507938e-07

res$coefficients[,1:3]

Estimate Std. Error t value
(Intercept) 1.0001798275 0.0004997101 2001.5199827
Xq1 -0.0005506352 0.0007067582 -0.7790999
Xq2 0.0004147291 0.0007069803 0.5866204

The .2 × 2 correlation matrix of the QTL genotypes indicates virtually no linkage
disequilibrium. The output of the summary indicates that the linear regression of
epistatic genetic values on the two QTL genotypes fails to capture epistatic variation
and, in agreement with this, the two linear regression coefficients do not differ from
zero. In other words, for these data the additive genetic variance is zero. This is
no longer the case if matrix Xq of QTL genotypes is generated from a binomial
distribution with .n = 2 and .p �= 0.5. The subject is further explored by, for example,
Hill et al (2008) and Mäki-Tanila and Hill (2014).

11.6 Appendix 533

11.6 Appendix

This appendix provides the details of back propagation for the single hidden layer
neural network described on page 497. It is shown how matrix multiplications can be
optimised computationally by means of vectorisation. The last subsection provides
an example of minimisation of a cost function, when the architecture of the NN
requires computation of partial derivatives following more than a single path.

Minimisation of the Cost Function: Back Propagation

Finding local minima of (11.78) requires the gradients .∂J (θ) /∂W
(l)
j i , .∂J (θ) /∂b

(l)
j .

For the neural network of Fig. 11.10, .K = 1, .L = 3, .n1 = 3, .n2 = 3, .n3 = 1, and
the predicted value for the ith datum is .hW,b

(

x(i)
) = a

(3)
i . Then (11.78) reduces to

. J (θ) = − 1

m

[

m
∑

i=1

y(i) log a
(3)
i +

(

1 − y(i)
)

log
(

1 − a
(3)
i

)

]

+λ

2

2
∑

l=1

nl
∑

i=1

nl+1
∑

j=1

(

W
(l)
ji

)2
. (11.84)

In this neural network, as indicated in (11.77), the dimension of the matrix of
parameters is

. W(1) = (3 × 3) ,

W(2) = (1 × 3) ,

b(1) = (3 × 1) ,

b(2) = (1 × 1) .

There are a total of 16 parameters including four bias terms.
The back propagation for this neural network is derived in detail. The different

steps pertain to Fig. 11.13 that displays a flowchart of the operations and make

Fig. 11.13 Scheme of back propagation for the neural network displayed in Fig. 11.10, moving
from right to left. Forward propagation moves from left to right. Back propagation computes partial
derivatives of the cost function J with respect to .W(2), b(2),W(1), b(1). This involves 16 parameters

534 11 Nonparametric Methods: A Selected Overview

reference to Eqs. (11.76). In a first stage, I start with a single record/example and
the computations involve only the first term on the right-hand side of (11.84) (partial
derivatives for the regularisation term are of the form .λW

(�)
ji).

• Step 1. Start from the last layer (layer 3) and compute .δ(3) in two steps

. δ(3) = ∂J

∂z(3)
= ∂J

∂a(3)

∂a(3)

∂z(3)

= −∂
[

y log a(3) + (1 − y) log
(

1 − a(3)
)]

∂a(3)

∂a(3)

∂z(3)
.

From the first term in (11.84), dropping the superscript . (i) denoting the record

.
∂J

∂a(3)
= − y

a(3)
+ (1 − y)

(

1 − a(3)
) ,

∂a(3)

∂z(3)
= a(3)

(

1 − a(3)
)

,

⇒ δ(3) = a(3) − y.

These partial derivatives take the same form as (11.72) and (11.73).

• Step 2. Compute partial derivatives of J with respect to . W(2) =
[

W
(2)
11 ,W

(2)
12 ,

.W
(2)
13

]

, . b(2),

.
∂J

∂W(2)′ = ∂J

∂z(3)

∂z(3)

∂W(2)′ ,

∂z(3)

∂W
(2)
11

= a
(2)
1 ,

∂z(3)

∂W
(2)
12

= a
(2)
2 ,

∂z(3)

∂W
(2)
13

= a
(2)
3 ,

and therefore

.
∂J

∂W(2)
= δ(3)a(2), (11.85)

where .δ(3) = ∂J/∂z(3) is a scalar and .a(2) =
[

a
(2)
1 , a

(2)
2 , a

(2)
3

]

is a . (3 × 1)

column vector. Above, .W(2) is a matrix with a single row and three columns

11.6 Appendix 535

consistent with the definition given for .W(j). We need also

.
∂J

∂b(2)
= ∂J

z(3)

∂z(3)

∂b(2)
= δ(3) (11.86)

because .∂z(3)/∂b(2) = 1.
• Step 3. Compute .δ(2) in two steps. The first step is

. δ(2) = ∂J

∂z(2)
= ∂J

∂a(2)

∂a(2)

∂z(2)
,

∂J

∂a(2)
= ∂J

∂z(3)

∂z(3)

∂a(2)
,

∂z(3)

∂a
(2)
1

= W
(2)
11 ,

∂z(3)

∂a
(2)
2

= W
(2)
12 ,

∂z(3)

∂a
(2)
3

= W
(2)
13 .

The second step is

.
∂a(2)

z(2)
= σ ′ (z(2)

)

=

⎡

⎢

⎢

⎢

⎣

a
(2)
1

(

1 − a
(2)
1

)

a
(2)
2

(

1 − a
(2)
2

)

a
(2)
3

(

1 − a
(2)
3

)

⎤

⎥

⎥

⎥

⎦

= a(2) ·
(

1 − a(2)
)

,

where . · denotes the Hadamard (or elementwise) product and 1 is a column vector
with three elements. Finally,

. δ(2) = W(2)′δ(3) · σ ′ (z(2)
)

.

This can be written compactly as follows:

.δ(2) = ∂J

∂z(2)
=
⎡

⎢

⎣

δ
(2)
1

δ
(2)
2

δ
(2)
3

⎤

⎥

⎦ = δ(3)

⎡

⎢

⎣

W
(2)
11

W
(2)
12

W
(2)
13

⎤

⎥

⎦ ·

⎡

⎢

⎢

⎢

⎣

a
(2)
1

(

1 − a
(2)
1

)

a
(2)
2

(

1 − a
(2)
2

)

a
(2)
3

(

1 − a
(2)
3

)

⎤

⎥

⎥

⎥

⎦

.

536 11 Nonparametric Methods: A Selected Overview

• Step 4. Compute partial derivatives of J with respect to .W(1), .b(1).

.
∂J

∂W
(1)
11

= ∂J

∂z
(2)
1

∂z
(2)
1

∂W
(1)
11

= δ
(2)
1 a

(1)
1 ,

∂J

∂W
(1)
12

= ∂J

∂z
(2)
1

∂z
(2)
1

∂W
(1)
12

= δ
(2)
1 a

(1)
2 ,

...

∂J

∂W
(1)
33

= ∂J

∂z
(2)
3

∂z
(2)
3

∂W
(1)
33

= δ
(2)
3 a

(1)
3 ,

and

.
∂J

∂b
(1)
1

= ∂J

∂z
(2)
1

∂z
(2)
1

∂b(1)
= δ

(2)
1 ,

∂J

∂b
(1)
2

= ∂J

∂z
(2)
2

∂z
(2)
2

∂b
(1)
2

= δ
(2)
1 ,

∂J

∂b
(1)
3

= ∂J

∂z
(2)
3

∂
(2)
3

∂b
(1)
3

= δ
(2)
3 .

For the ij th element of W of layer . � and for the ith bias term b of layer . �, we
have

.
∂J

∂W
(�)
ij

= δ
(�+1)
i a

(�)
j ,

∂J

∂b
(�)
i

= δ
(�+1)
i .

In vectorised form, for any matrix .W(�), vector .b(�) in layer . � and activation
function g, the back propagation for a single record, in standard multilayer neural
networks, reduces to the following three equations:

.δ(�) =
(

W(�)′δ(�+1)
)

· g′ (z(�)
)

,

∂J

∂W(�)
= δ(�+1)a(�)′ + λW(�), (11.87)

∂J

∂b(�)
= δ(�+1).

11.6 Appendix 537

For instance,

.
∂J

∂W(1)
=

⎡

⎢

⎣

δ
(2)
1

δ
(2)
2

δ
(2)
3

⎤

⎥

⎦

[

a
(1)
1 a

(1)
2 a

(1)
3

]

+ λW(1)

=
⎡

⎢

⎣

δ
(2)
1 a

(1)
1 δ

(2)
1 a

(1)
2 δ

(2)
1 a

(1)
3

δ
(2)
2 a

(1)
1 δ

(2)
2 a

(1)
2 δ

(2)
2 a

(1)
3

δ
(2)
3 a

(1)
1 δ

(2)
3 a

(1)
2 δ

(2)
3 a

(1)
3

⎤

⎥

⎦ + λW(1),

and in particular

.
∂J

∂W
(1)
23

= δ
(2)
2 a

(1)
3 + λW

(1)
23 .

With the gradients available from (11.87) and averaging the gradients over the m
training records, implementation of gradient descent to find a local minimum of J
requires the updating steps

. W(�) : W(�) − α
∂J

W(�)
,

b(�) : b(�) − α
∂J

∂b(�)
,

where gradients are interpreted as averages over the m training records.

Vectorising Forward and Back Propagation for the Complete
Training Data

Much of the material in this section is guided by Andrew Ng’s course on Machine
Learning, Stanford University.

Most neural network computations involve matrix multiplications. This can be
exploited in order to improve computational efficiency by means of vectorisation.

The system of equations (11.77) for forward propagation and (11.87) for back
propagation involves vectorised forms for a single-input datum. Therefore, the
complete propagation requires a loop over all the training records. Such a loop is
computationally inefficient and can be avoided by vectorising over the complete set
of training records.

The complete vectorisation of forward propagation is achieved as follows.
Assume that the m training records are .

(

x(1), y(1)
)

, . . . ,
(

x(m), y(m)
)

, where . x(i) ∈
Rp and .y(i) ∈ R. First, stack the input feature vectors column-wise and generate the

538 11 Nonparametric Methods: A Selected Overview

matrix X of dimension .p × m,

. X = [

x(1) x(2) · · · x(m)
]

where each .x(i) is a column vector with p elements. I illustrate with the neural
network of Fig. 11.10, with .p = n1 = 3, .n2 = 3, .n3 = 1 and X is .n1 × m. Then the
complete forward propagation involves computation of

1. . Z(2) = W(1)X+b(1), Z(2) : n2 ×m = 3×m; W(1) : n2 ×n1 = 3×3; X :
n1 × m = 3 × m; b(1) : n2 × m = 3 × m

2. . A(2) = σ
(

Z(2)
)

, A(2) : n2 × m = 3 × m

3. . Z(3) = W(2)A(2) + b(2), Z(3) : n3 × m = 1 × m; W(2) : n3 × n2 =
1 × 3; b(2) : n3 × m = 1 × m

4. . A(3) = σ
(

Z(3)
)

, A(3) : n3 × m = 1 × m

In step 1, .b(1) is the original .3 × 1 column vector with the single column
repeated m times. Similarly in step 3, .b(2) is the original scalar, repeated column-
wise m times. Computation of the 4 steps generates the forward propagation for the
complete training data. The activation function . σ in steps 2 and 4 can be arbitrary,
but in the present example, it is the sigmoid function.

To compute back propagation in vectorised form, define

• .�Z(�): vectorised version of .δ(�) = ∂J
/

∂z(�)

• .�W(�): vectorised version of .∂J
/

∂W(�)

• .�b(�): vectorised version of .∂J
/

∂b(�)

• .Y = (

y(1), y(2), . . . , y(m)
)

: .1 × m vector of observed records

The complete back propagation involves computation of

1. . �Z(3) = A(3) − Y, �Z(3) : 1 × m

2. . �W(2) = 1
m

�Z(3)A(2)′ + λW(2), �W(2) : 1 × 3; A(2)′ : m × 3; W(2) :
1 × 3

3. .�b(2) = 1
m

�Z(3)1, �b(2) : 1×1 and 1 is a .m×1 column vector of . 1′s (. �b(2)

is the result of averaging the elements of the row vector .�Z(3) over the number
of training records)

4. . �Z(2) = W(2)′�Z(3) · σ ′ (Z(2)
)

, �Z(2) : 3 × m; W(2)′ : 3 × 1; �Z(3) :
1 × m;
. σ ′ (Z(2)

) : 3 × m

5. . �W(1) = 1
m

�Z(2)X′+λW(1), �W(1) : 3×3; �Z(2) : 3×m; X′ : m×3;
λW(1) : 3 × 3

6. .�b(1) = 1
m

�Z(2)1, �b(1) : 3 × 1; 1 is a .m × 1 column vector of . 1′s (. �b(1)

is the result of averaging the elements of each of the three rows of matrix . �Z(2)

over the number of columns).

Computation of the six steps generate the back propagation for the complete
training data, and as in the case of forward propagation, the activation function in

11.6 Appendix 539

Fig. 11.14 A three-layer neural network with 2 output classes, .a (3)
1 , .a (3)

2 . The computation of the

partial derivative of the cost function J with respect to .z (2)
1 must trace two paths (marked in red),

since a change in .z (2)
1 has an effect on J via .z (3)

1 and via . z (3)
2

step 4 is arbitrary. The result in step 1 is specific for the sigmoid function used in
the output layer.

Back Propagation with Multiple Paths

Neither of the two examples of back propagation discussed so far involved the
computation of partial derivatives following more than one path along the lines
indicated in (11.67). To illustrate a case where this is necessary, consider the 3-
layer neural network displayed in Fig. 11.14 with two output classes rather than the
single output class neural network of Fig. 11.10 (another example could involve a
neural network with a single output neuron and more than 3 layers).

The forward propagation for a single data point for this network generates

. z
(2)
i = W

(1)
i1 x1 + W

(1)
i2 x2 + b

(1)
i , i = 1, 2,

z
(3)
i = W

(2)
i1 a

(2)
1 + W

(1)
i2 a

(2)
2 + b

(2)
i , i = 1, 2,

a
(2)
i = σ

(

z
(2)
i

)

i = 1, 2,

a
(3)
i = σ

(

z
(3)
i

)

i = 1, 2.

Consider the computation of .∂J
/

∂z
(2)
1 = δ

(2)
1 . This requires

.
∂J

∂z
(2)
1

= ∂J

∂a
(2)
1

∂a
(2)
1

∂z
(2)
1

=
[

∂J

∂z
(3)
1

∂z
(3)
1

∂a
(2)
1

+ ∂J

∂z
(3)
2

∂z
(3)
2

∂a
(2)
1

]

∂a
(2)
1

∂z
(2)
1

=
[

δ
(3)
1 W

(2)
11 + δ

(3)
2 W

(2)
21

]

a
(2)
1

(

1 − a
(2)
1

)

. (11.88)

540 11 Nonparametric Methods: A Selected Overview

This can be generated directly using (11.87). Indeed, for this example, .� = 2,

. W(2) =
[

W
(2)
11 W

(2)
12

W
(2)
21 W

(2)
21

]

; δ(3) =
[

δ
(3)
1

δ
(3)
2

]

; g′ (Z(2)
)

=
⎡

⎣

a
(2)
1

(

1 − a
(2)
1

)

a
(2)
2

(

1 − a
(2)
2

)

⎤

⎦

and substituting in

. δ(l) =
(

W(�)′δ(�+1)
)

· g′ (z(�)
)

yields

.δ(2) = ∂J

∂z(2)
=
[

δ
(2)
1

δ
(2)
2

]

=
[

δ
(3)
1 W

(2)
11 + δ

(3)
2 W

(2)
21

δ
(3)
1 W

(2)
12 + δ

(3)
2 W

(2)
22

]

·
⎡

⎣

a
(2)
1

(

1 − a
(2)
1

)

a
(2)
2

(

1 − a
(2)
2

)

⎤

⎦ .

Part III
Exercises and Solutions

Chapter 12
Exercises

12.1 Likelihood Exercises I

Exercise 1

In a binomial experiment with n trials and probability of success . θ , x successes
are observed. The setup could represent a trial designed to estimate the proportion
of individuals in a population that suffer from a particular disease. A sample of n
randomly selected individuals is taken and the number diseased, x, is recorded:

(a) Write down the probability mass function of the data
(b) Write down the likelihood function and the loglikelihood function of . θ .
(c) Derive the maximum likelihood estimator of . θ . Assume .n = 10 and .x = 8.

What is the maximum likelihood estimate of . θ?
(d) Derive a .95% confidence interval for . θ using the asymptotic approximation to

the ML estimator of . θ .

Exercise 2

In the above experiment, use the transformation (known as the logit or logodds):

.β = g (θ) = ln

(
θ

1 − θ

)
. (12.1)

The inverse transformation is

.θ = g−1 (β) = exp (β)

1 + exp (β)
. (12.2)

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Sorensen, Statistical Learning in Genetics, Statistics for Biology and Health,
https://doi.org/10.1007/978-3-031-35851-7_12

543

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35851-7protect T1	extunderscore 12&domain=pdf
https://doi.org/10.1007/978-3-031-35851-7_12
https://doi.org/10.1007/978-3-031-35851-7_12
https://doi.org/10.1007/978-3-031-35851-7_12
https://doi.org/10.1007/978-3-031-35851-7_12
https://doi.org/10.1007/978-3-031-35851-7_12
https://doi.org/10.1007/978-3-031-35851-7_12
https://doi.org/10.1007/978-3-031-35851-7_12
https://doi.org/10.1007/978-3-031-35851-7_12
https://doi.org/10.1007/978-3-031-35851-7_12
https://doi.org/10.1007/978-3-031-35851-7_12
https://doi.org/10.1007/978-3-031-35851-7_12

544 12 Exercises

(a) Write the likelihood based on . β.
(b) Plot the likelihood based on . β and the likelihood based on . θ and compare both.
(c) Derive the ML estimator and the ML estimate of . β based on the likelihood (a).
(d) What is the .95% confidence interval for . β?
(e) Finally, transform the confidence interval obtained in (d) back in terms of . θ .

How does this confidence interval compare with that obtained in (1d)? Which
do you believe is more reliable?

Exercise 3

Suppose you observe the following .n = 10 iid records each from .N
(
μ, σ 2

)
:

. 0.88; 1.07; 1.27; 1.54; 1.91; 2.27; 3.84; 4.50; 4.64; 5.41,

.
∑n

i=1 yi = 27.33; .
∑n

i=1 (yi − μ̂)2 = 25.8052 where .μ̂ = 1
n

∑n
i=1 yi , .n = 10.

(a) Write down the likelihood and the loglikelihood of .
(
μ, σ 2

)
.

(b) Derive the ML estimators and the ML estimates of . μ and . σ 2.
(c) Derive the observed information matrix .I (μ, σ 2) and evaluate it at the ML

estimates.
(d) Derive the asymptotic variance of .

(
μ̂, σ̂ 2

)
based on 3c.

(e) Derive Fisher’s (expected) information of .
(
μ, σ 2

)
and evaluate it at the ML

estimates.
(f) Find the asymptotic variance of .

(
μ̂, σ̂ 2

)
based on Fisher’s (expected) informa-

tion obtained in 3e.
(g) According to asymptotic theory, . ̂σ 2 is normally distributed with mean equal to

. σ 2 and variance given by the result you derived in 3f. What is the exact (small
sample) distribution of . ̂σ 2 and what is its mean and variance?

(h) Compute an exact (small sample) .95% confidence interval for . σ 2 and an
approximate .95% confidence interval based on asymptotic results.

Exercise 4

Consider the following hypothetical data collected from the field:

. x1, x2, . . . , xm, xm+1, . . . , xn,

y1, y2, . . . , ym.

There are m bivariate observations .{(xi, yi) , i = 1, 2, . . . , m} and .(n − m) univari-
ate records. However sampling is not at random: the structure of the data mimics
records on first and second lactation, where only individuals with the highest

12.1 Likelihood Exercises I 545

first lactation records (.x1, . . . , xm) were allowed to produce a second lactation
(.y1, . . . , ym).

Using these data, the analyst wishes to estimate various parameters associated
with milk production, such as the mean and variance of first and second lactation
records, their correlation and the regression coefficient of second lactation records
on first lactation records. The objective of the example is to show how the construc-
tion of the “correct” likelihood model avoids the potential problem associated with
the non-random sampling mechanism that generated the data.

Let .θ = (μy, μx, σxy, σyy, σxx). Ignoring the selection mechanism and the . n−m

univariate records .xm+1, . . . , xn, one can assume that each of the m pairs of records
is bivariate normal:

. (yi, xi)| θ ∼ N

([
μy

μx

]
,

[
σyy = 4 σyx = 2.4

σyx = 2.4 σxx = 4

])
, (12.3)

i = 1, 2, . . . , m,

with .μy = 10, .μx = 15 and the pairs .(yi, xi) are iid. A standard result is that, given
(12.3),

. yi | xi, θ ∼ N (E (yi |xi, θ) ,Var (yi |xi, θ)) , (12.4)

where

. E (yi |xi, θ) = μy + σyx

σxx

(xi − μx)

= 10 + 0.6 (xi − 15)

and

. Var (yi |xi, θ) = σyy − σyx (σxx)
−1 σyx

= 4 − 2.42/4.

For the m pair of records, the joint pdf is

.p
(
x, y|μy, θ

) =
(
2πσyyσxx

(
1 − ρ2

))− m
2

. (12.5)

exp

[
− 1

2
(
1 − ρ2

) . (12.6)

⎛
⎝
∑m

i=1 (xi − μx)
2

σxx

+
∑m

i=1

(
yi − μy

)2
σyy

− 2ρ

∑m
i=1 (xi − μx)

(
yi − μy

)
(σxx)

1
2
(
σyy

) 1
2

⎞
⎠
⎤
⎦ ,

(12.7)

546 12 Exercises

where the coefficient of correlation .ρ = σxy/(σxxσyy)
0.5. Ignoring the sampling

mechanism that gave rise to the data, the likelihood is proportional to (12.7) and the
closed form likelihood estimators are given by

.μ̂x = 1

m

n∑
i=1

xi, μ̂y = 1

m

m∑
i=1

yi, . (12.8a)

σ̂xx =
1

m

m∑
i=1

(xi − μ̂x)
2 , σ̂yy =

1

m

m∑
i=1

(
yi − μ̂y

)2
, . (12.8b)

ρ̂ = σ̂xy√
σ̂xx σ̂yy

, σ̂xy =
1

m

m∑
i=1

(
yi − μ̂y

)
(xi − μ̂x) . (12.8c)

The R-code below generates bivariate observations where some of the records in
one of the variables are missing. The strategy makes use of the factorisation:

. p (x, y) = p (y|x) p (x) .

rm(list=ls()) # Clear the workspace
set.seed(772231)
n <- 5000 # Number of records generated for Y_1
p <- 0.20 # Proportion to be selected
m <- round(p*n) # Number of records selected
y1 <- rnorm(n,mean=10,sd=2) # Generate random variable Y_1
y1_sort <-sort(y1,decreasing=TRUE) # Sort Y_1
y1s <- y1_sort[1:m] # The highest m Y_1 records are kept
#length(y1) # Number of records in Y_1
#length(y1s) # Number of records in the selected subset of Y_1
Generate Y_2
y2<-rnorm(length(y1s),mean=15+0.6*(y1s-10),sd=sqrt(4-(2.4^2)/4))

(a) Using only the fraction of the data that has no missing offspring (i.e. the m
pairs .(yi, xi)), estimate the parameters with estimators in (12.8). From the same
subset of data, estimate also the regression of y on x, using

.̂byx = σ̂xy

σ̂xx

. (12.9)

The regression is a parameter that can be directly derived from the set of
parameters in likelihood (12.7) or from (12.3). That is

. byx = σxy

σxx

= 0.6.

Similarly, the correlation coefficient is

.ρ = σxy

σxxσyy

= 0.6. (12.10)

12.1 Likelihood Exercises I 547

How do the estimates obtained using this approach compare with the parameters
defined in (12.3)? An eyeball evaluation is adequate at this stage.

(b) Write down the correct likelihood and loglikelihood accounting for the observed
pattern of data based on parametrisation .

(
μx, σxx, β0, β1, σy.x

)
.

(c) Using the likelihood in (b), obtain ML estimators and ML estimates of
.φ = (

μx, σxx, β0, β1, σy.x

)
by analytical maximisation of the loglikelihood.

Backtransform these estimates in terms of .θ = (
μy,μx, σxy, σyy, σxx

)
. How

do the estimates obtained using this second approach compare with the true
value of the parameters defined in (12.3)?

Exercise 5

This is a theoretical exercise designed to train the skills necessary to construct and to
maximise a likelihood function in the absence of random sampling. An exponential
distribution is used often applied to study waiting times until the next event. For
example, in a clinical trial, one may be interested in studying how a new drug affects
time until a relapse of the disease. At the end of the trial, some patients may not have
shown signs of relapse; this gives rise to censoring.

In the simple exponential sampling model used here, expectations can be
obtained in closed form. The censoring mechanism is as follows: each observation
is compared to a censoring or truncation point c (the termination time of the clinical
trial). If it is smaller than or equal to c, it is registered as such; if it is larger than c
(no relapse observed), it is set equal to c. Since selection depends on the censored
records, it is not ignorable and must be incorporated in the likelihood in order to
draw inferences correctly. To set the background, the first part of the example deals
with standard inferences based on a random sample from an exponential distribution
in the absence of censoring.

1. A random sample of size n is obtained from iid draws from an exponential
distribution. The pdf of one observation is

. p (yi |b) = b exp (−byi) , b, yi > 0.

The parameter b is known as the rate, the focus of inference.
It can readily be verified that

.

∫ ∞

0
p (yi |b) dyi = 1.

The mean and variance of . Yi are

.E (Yi |b) = 1

b

548 12 Exercises

and

. Var (Yi |b) = 1

b2
,

respectively (here I distinguish the random variable Y from its realised value
y). The expression for the mean indicates that mean relapse time is inversely
proportionately to the rate, as expected.

The pdf associated with the n independent observations is

. p (y|b) =
n∏

i=1

p (yi |b)

= bn exp

(
−b

n∑
i=1

yi

)
. (12.11)

(a) Write the loglikelihood
(b) Write the score
(c) Derive the maximum likelihood estimator of b
(d) Derive Fisher’s information from . −E

[
l
′′
(b|Y)

]

2. Assume that after the random sample of size n has been drawn, . (n − r)

observations larger than a known point c are censored. Clearly, .r ≤ n. There
are r observed records which happen to be smaller than c, and .(n − r) records
whose values are equal to c.

The data-generating mechanism can be written as follows. To derive the pdf
of a single observation, define a latent variable . Xi whose density is . p (xi |b) =
b exp (−bxi), .b, xi > 0 and let the data be the observed values of the random
variable:

. Yi =
{

c if Xi ≥ c

Xi if Xi < c.

Note that

.Pr (Xi ≥ c) = 1 −
∫ c

0
p (xi |b) dxi

= exp (−bc)

= 1 − F (c) ,

Pr (Xi < c) =
∫ c

0
p (xi |b) dxi

= 1 − exp (−bc)

= F (c) .

12.2 Likelihood Exercises II 549

Then the pdf of . Yi is

. pYi (yi |b) = pXi (yi |Yi<c, b) Pr (Yi<c|b) +Pr (Yi = c|b, Yi = c) Pr (Yi = c|b)

= I (yi < c) pXi (yi |b) + I (yi = c) Pr (Yi = c|b)

= I (yi < c) b exp (−byi) + I (yi = c) exp (−bc) , (12.12)

and due to independence, .p (y|b) = ∏n
i=1 p (yi |b). Expression (12.12) is a

proper pdf. Indeed,

.

∫
p (yi |b) dyi =

∫
I (yi < c) b exp (−byi) dyi + exp (−bc)

= 1 − exp (−bc) + exp (−bc) = 1.

(a) Write the loglikelihood
(b) Write the score (loglikelihood)
(c) Derive the maximum likelihood estimator of b
(d) Derive Fisher’s information from . −E

[
l
′′
(b|Y)

]

12.2 Likelihood Exercises II

Exercise 1

The R-code below generates 30 binary records mimicking the presence-1/absence-
0 of disease among subjects exposed to (scaled) levels of a drug, the covariate. The
analyst could be interested in learning how the probability of the disease is affected
by the levels of the drug:

rm(list=ls()) # Clear the workspace
set.seed(12371)
CREATE BINARY DATA
mu <- -2
beta <- 0.7
cov <- rnorm(30,2,3) # GENERATE THE COVARIATE
xb <- cov*beta
p1 <- pnorm(mu+xb) # PROBABILITIES ACCORDING TO PROBIT MODEL
#p1 <- rbeta(30,2,2)
dat1 <- cbind(rbinom(30,1,p1),round(cov,digits=0)) # CREATE DATA
colnames(dat1) <- c("Y", "X")
d <- data.frame(dat1)
head(d)

550 12 Exercises

Y X
1 1 7
2 1 6
3 1 3
4 0 1
5 1 4
6 0 0

In an initial analysis, one can study the following approximate relationship
between the probability of disease and the level of the drug. Let

. θi = Pr (Yi = 1|μ, β, xi) ,

be the probability that the ith individual shows the disease, given the covariate and
parameters . μ and . β:

(a) Sort the covariate x and then create f ive groups where group 1 includes the
six individuals exposed to the lowest levels of the drug and group 5 includes
individuals exposed to the highest levels of the drug. Plot the proportion of
individuals that show the disease in each group versus the mean level of the
group. Does the relationship look approximately linear?

(b) Fit a model of the form

.Yi = μ + βxi + ei, (12.13)

and estimate . μ and . β by least squares. In this expression . Yi is a proxy for . θi and
represents the number of cases that show the disease in group i, divided by the
number of cases in group i (i.e. six cases) and . xi is the average level of the drug
in group i over the six cases. What is the probability that a future individual
will show the disease when exposed to a scaled drug level equal to . −3, 1 or 9?

(c) Fit the logistic regression:

.logit (θi) = ln

(
θi

1 − θi

)
= μ + βxi. (12.14)

From this expression, solving for the probability . θi (the probability that .Yi = 1)

.logit−1 (θi) = θi = exp (μ + βxi)

1 + exp (μ + βxi)
. (12.15)

The parametrisation used is

.Yi =
{
1 if ui > 0,
0 if ui < 0,

ui = μ + βxi + ei,

12.2 Likelihood Exercises II 551

where the independent errors . ei follow the standard logistic distribution. Therefore,

. Pr (Yi = 1|μ, β, xi) = Pr (ui > 0|μ, β, xi)

= Pr (μ + βxi + ei > 0|μ, β, xi)

= Pr (ei > −μ − βxi |μ, β, xi)

= Pr (ei < μ + βxi |μ, β, xi)

=
∫ μ+βxi

−∞
p (ei) dei

=
∫ μ+βxi

−∞
exp (ei)[

1 + exp (ei)
]2 dei

= exp (μ + βxi)

1 + exp (μ + βxi)
(12.16)

as in (12.15), indicating that in the binary case, the logit and the threshold are
equivalent models.

With the present parametrisation, the joint density of the data is

. p (y|μ, β, x) =
∏30

i=1

[
exp (μ + βxi)

1 + exp (μ + βxi)

]yi
[

1

1 + exp (μ + βxi)

]1−yi

.

(12.17)

(c1) Write the loglikelihood of the parameters
(c2) Calculate first and second derivatives of the loglikelihood
(c3) Fit the model (12.14) using Newton-Raphson and obtain ML estimates of . μ

and of . β.
(c4) What is the asymptotic variance covariance matrix of the ML estimators of . μ

and of . β?
(c5) What is the probability that a future individual will show the disease when

exposed to a scaled drug level equal to . −3, 1 or 9? Compare with what you
obtained in 1b.

Exercise 2

Fit the probit regression model to the previous data using the EM algorithm.

552 12 Exercises

Exercise 3

Table 12.1, taken from Gelman et al 1995, shows data from a bioassay experiment.
Four different doses of a drug (measured as .ln(g/ml)) are administered to 20
animals, 5 in each dose, and the number of deaths is recorded. The objective of
the experiment is to study the toxicity of the drug and how it varies with dose.

Let . yi represent the number of deaths observed out of . ni with dose level . xi . It
will be assumed that . yi is binomial .Bi (ni, θi), where . θi is modelled with the logistic
regression:

.logit (θi) = ln

(
θi

1 − θi

)
= β0 + β1xi, i = 1, . . . , 4. (12.18)

The inverse function yields:

.logit−1 (θi) = θi = exp (β0 + β1xi)

1 + exp (β0 + β1xi)
. (12.19)

The likelihood takes the form

. L (β0, β1|n, x) ∝
∏4

i=1

[
exp (β0 + β1xi)

1 + exp (β0 + β1xi)

]yi
[
1 − exp (β0 + β1xi)

1 + exp (β0 + β1xi)

]ni−yi

(12.20)

where .n = (n1, . . . , n4)
′, .x = (x1, . . . , x4)

′. The loglikelihood, after a little
simplification, reduces to

.� (β0, β1|n, x) =
4∑

i=1

{yi (β0 + β1xi) − ni ln (1 + exp(β0 + β1xi))} . (12.21)

(i) Obtain ML estimates of . β0 and . β1 for the logit model using Newton-Raphson.
(ii) ObtainML estimates of . β0 and . β1 for the probit model using the EM algorithm.
(iii) Suppose that within each dose, the five animals happen to be full-sibs. What

modifications to the loglikelihood (12.20) are necessary to account for the
correlated structure of the data?

Table 12.1 Data from a
bioassay experiment

Dose Deaths Sample size

−0.86 0 5

−0.30 1 5

−0.05 3 5

0.73 5 5

12.2 Likelihood Exercises II 553

Example 4

The R-code below generates genomic data: 2000 nominally unrelated individuals
(meaning distantly related) with .20,000 genetic markers available for each indi-
vidual. Modern datasets include of the order of .200,000 individuals and 2 million
marker genotypes per individual. This example scales down by factor 100. The
simulated data assumes that all the genetic markers have an effect on the trait of
the same magnitude.

In a preliminary analysis, one could be interested in fitting a classic genomic
model to estimate the genomic variance.

Assuming that records have zero mean, the genomic model is

.y|g, σ 2
e ∼ N

(
g, Iσ 2

e

)
, . (12.22a)

g|W, σ 2
g ∼ SN

(
0,Gσ 2

g

)
, . (12.22b)

G =
1

m
WW ′, . (12.22c)

W = {
Wij

}
. (12.22d)

In these expressions, m is the number of SNPs, and .Wij is the label for the j th
maker in individual i, .(i = 1, . . . n; j = 1, . . . , m;m > n):

. Wij = Xij − E
(
Xij

)
√
Var

(
Xij

) , Xij = 0, 1, 2.

The eigenvalue decomposition of .WW ′ is

. WW ′ = U	U ′

=
∑n

i=1
λiUiU

′
i ,

where .U = [U1, U2, . . . , Un], of order .n × n is the matrix of eigenvectors of .WW ′,
. Uj is the j th column (dimension .n × 1) and . 	 is a diagonal matrix with elements
equal to the eigenvalues .λ1, λ2, . . . , λn associated with the n eigenvectors.

The loglikelihood, up to an additive constant, is

. lnp
(
k, σ 2

e |y,W
)

= −1

2

{
n ln σ 2

e +
n∑

i=1

ln (λik + 1)

+ 1

σ 2
e

n∑
i=1

ỹ2
i

λik + 1

}
, (12.23)

554 12 Exercises

where . ỹi is the ith element of the .n × 1 column vector .ỹ = U ′y.

(i) Obtain ML estimates of . σ 2
e and k using Newton-Raphson.

(ii) Obtain ML estimates using the R-function OPTIM and compare with the
Newton-Raphson computations.

(iii) The loglikelihood (12.23) is parametrised in terms of . σ 2
e and .k = σ 2

g /σ 2
e .

Obtain the ML estimate of . σ 2
g and its asymptotic variance from the Newton-

Raphson output in (i).
(iv) Obtain ML estimates of . σ 2

e , k and . σ 2
g using the EM algorithm.

LIKELIHOOD PROBLEMS II QUESTION 4
DATA BASED ON GENOMIC MODEL; OBTAIN SVD OF WW’(1/m)
rm(list=ls()) # CLEAR WORKSPACE
set.seed(1327)
nindiv<-2000
nmark<-20000
nt <- nindiv*nmark
X<-matrix(nrow=nindiv,ncol=nmark,rbinom(n=nt,size=2,p=.5))
stdev <- matrix(data=NA,nrow= nmark,ncol=1)
W <- matrix(data=NA,nrow= nindiv,ncol=nmark)
U <- matrix(data=NA,nrow= nindiv,ncol= nindiv)
G<-matrix(data=NA,nrow= nindiv,ncol= nindiv)
cm <- colMeans(X)
MATRIX OF STANDARDISED MARKER GENOTYPE CODES
for (i in 1:nmark)
{

W[,i] <-(X[,i]-cm[i]) / sd(X[,i])
}
COULD USE INSTEAD:
W <- scale(X)
#qr(X)$rank
#qr(W)$rank
GENERATE nindiv GENOMIC VALUES N(0,(1/nmark)WW’*10); Vg=10
g <- (1/sqrt(nmark))*W%*%rnorm(nmark,mean=0,sd=sqrt(10))
GENERATE nindiv PHENOTYPES WITH MEAN 0, VAR=10+15,
HERITABILITY=10/(10+15)=0.4
#PARAMETER k = Vg/Ve = 10/15 =0.67
y <- g+rnorm(nindiv,mean=0,sd=sqrt(15))
GENOMIC RELATIONSHIP MATRIX G
G <- (1/nmark)*W%*%t(W)
SVD OF G
EVD <- eigen(G)
names(EVD)
head(EVD$values)
U <- EVD$vector
val <- EVD$values
val[length(y)] <-0
D <- diag(val,nrow=nindiv)
ytilde <- t(U)%*%y
dim(ytilde)
#END OF GENERATION OF DATA

12.3 Bayes Exercises I 555

12.3 Bayes Exercises I

Exercise 1

You are given the following data y drawn from a normal distribution:

. y = (45.83, 50.37, 50.06, 51.59, 48.43, 52.75, 42.92, 48.57, 46.18, 50.20)′.

Assuming the likelihood is proportional to

. y|μ, σ 2 ∼ N
(
1μ, Iσ 2

)
,

that . μ and . σ 2 are a priori independent and their prior distributions are

.[μ] ∝ constant, . (12.24a)

[σ 2] ∝ 1

σ 2 , (12.24b)

then the posterior distribution can be written

. p
(
μ, σ 2|y

)
∝ p

(
y|μ, σ 2

)
p
(
σ 2

)
p (μ)

∝ exp

⎡
⎢⎢⎣−

n∑
i=1

(yi − μ)2

2σ 2

⎤
⎥⎥⎦
(
σ 2

)−(n
2+1)

. (12.25)

(i) Derive analytically the marginal distributions .[μ|y] and .[σ 2|y].
(ii) From these marginal distributions, obtain .E[μ|y], .Var[μ|y] , .E[σ 2|y],

.Var
[
σ 2|y] and the mode of .[σ 2|y].

(iii) Compute .95% posterior intervals for . μ and . σ 2.
(iv) Derive the asymptotic posterior distribution . [μ, σ 2|y]
(v) Obtain the .95% posterior intervals for . μ and . σ 2 based on the asymptotic

posterior distribution .[μ, σ 2|y].

Exercise 2

Using data y in Exercise 1, write a computer programme to implement the above
model with:

556 12 Exercises

(i) A Metropolis-Hastings, single-site updating of . μ and .σ 2. From the output
obtain Monte Carlo estimates of .E[μ|y], .Var[μ|y], .E[σ 2|y], .Var [σ 2|y] and
.95% posterior intervals for . μ and . σ 2.

(ii) A Metropolis-Hastings, joint updating of . μ and . σ 2. From the output obtain
Monte Carlo estimates of .E[μ|y], .Var[μ|y], .E[σ 2|y], .Var [σ 2|y] and . 95%
posterior intervals for . μ and . σ 2.

(iii) For the Metropolis-Hastings single-site updating algorithm, use two sets of
tuning parameters. In the first set, try .kμ = 0.19, .kσ 2 = 1. In the second
set, try .kμ = 19, .kσ 2 = 9. Compute the Monte Carlo variance, the effective
chain length (effective sample size) and the integrated autocorrelation for . μ
and for . σ 2 for both strategies. What do you observe? Can you provide an
explanation?

Exercise 3

Use the vector of records y from Exercise 1 and write a computer programme to
implement the model using Gibbs sampling:

(i) From the output of the Gibbs sampler, compute Monte Carlo estimates of
.E[μ|y], .E[σ 2|y] and .95% posterior intervals for . μ and . σ 2. Calculate also Monte
Carlo variances of the estimator of .E[μ|y] and .E[σ 2|y].

(ii) Compute the effective chain length and the integrated autocorrelation for . μ and
for . σ 2.

12.4 Bayes Exercises II

Exercise 1

Consider the data generated in Likelihood Exercises II, Exercise 1, on page 549. As
before, let

. θi = Pr (Yi = 1|μ, β, xi) ,

be the probability that the ith individual shows the disease, given the covariate and
parameters . μ and . β.

The logistic regression model is

.logit (θi) = ln

(
θi

1 − θi

)
= μ + βxi. (12.26)

12.4 Bayes Exercises II 557

Solving for . θi gives

. θi = logit−1 (θi) = exp (μ + βxi)

1 + exp (μ + βxi)
.

This model can be interpreted directly as a non-linear model for the probability . θi or
also, indirectly, in terms of an unobserved latent variable (or underlying variable) . ui .
In this second formulation, the discrete observation . Yi is associated with the latent
variable . ui as follows:

. Yi =
{
1 if ui > 0
0 if ui < 0

, and

ui = μ + βxi + ei,

where the . e′s are iid residuals from a logistic probability distribution. Therefore in
this case,

. θi = Pr (Yi = 1|μ, β, xi) = Pr (ui > 0|μ, β, xi)

= exp (μ + βxi)

1 + exp (μ + βxi)
, (12.27)

as in (12.16). The likelihood is proportional to

. p (μ, β|y, x) =
∏30

i=1

[
exp (μ + βxi)

1 + exp (μ + βxi)

]yi
[

1

1 + exp (μ + βxi)

]1−yi

(12.28)

and assuming a uniform prior for .(μ, β), (12.28) is also proportional to the posterior
distribution of .(μ, β).

(i) Write a programme to implement this logistic model using the Metropolis-
Hastings algorithm with joint updating for .(μ, β).

(ii) Compute MC estimators of the mean, variance and .95% posterior intervals of
.[μ|y] and .[β|y].

(iii) Compute MC standard errors and effective chain lengths of .Ê (μ|y) and
.Ê (β|y).

(iv) Compute a MC estimate of .Pr(Y = 1|x = 3, y).

558 12 Exercises

Exercise 2

Fit the probit regression model to the previous data using the Metropolis-Hastings
algorithm with joint updating for .(μ, β):

(i) Write a programme to implement this probit model using the Metropolis-
Hastings algorithm with joint updating of .(μ, β).

(ii) Compute MC estimators of the mean, variance and .95% posterior intervals of
.[μ|y] and .[β|y].

(iii) Compute MC standard errors and effective chain lengths of .Ê (μ|y) and
.Ê (β|y).

(iv) Compute the MC estimate of .Pr(Y = 1|x = 3, y). How does this estimate
differ from the one computed in Exercise 1, iv ?

Exercise 3

Fit the probit regression model to the previous data using a Gibbs sampling
algorithm and data augmentation:

(i) Write a programme to implement this probit model using the Gibbs sampling
algorithm.

(ii) Compute MC estimators of the mean, variance and .95% posterior intervals of
.[μ|y] and .[β|y].

(iii) Compute MC standard errors and effective chain lengths of .Ê (μ|y) and
.Ê (β|y).

Exercise 4

The R-code below generates correlated binary data based on a probit threshold
model. A full-sib family structure is assumed: nf s full-sib families with f s full-
sibs per family. At the level of liability, the (true) hierarchical model is

.uij = fi + eij , , i = 1, . . . , nf s, j = 1, . . . , f s,

fi |σ 2
f

iid∼ N
(
0, σ 2

f

)
,

eij
iid∼ N (0, 1) .

12.4 Bayes Exercises II 559

#SINGLE-SITE GIBBS - CORRELATED PROBIT MODEL
DOES NOT USE THE SVD OF ZZ’
rm(list=ls()) # Clear the workspace
set.seed(7713)

require(graphics)
GENERATE CORRELATED (FULL-SIBS) BINARY DATA (THRESHOLD MODEL)
THE CODE WILL USE THE PACKAGE MVTNORM; IT IS INSTALLED BELOW
#install.packages("MCMCpack", .libPaths()[1])
#install.packages("mvtnorm", .libPaths()[1])
library(mvtnorm)
#library(MCMCpack)
INITIALISE PARAMETERS
#p0<-0.2
p0 <- 0.5
mu <- qnorm(p0)
iccfs<-0.25 #INTRACLASS CORRELATION FS
VARIANCE BETWEEN FAMILIES: iccfs /(1- iccfs)
PHENOTYPIC VARIANCE: 1/(1-iccfs)
nfs<- 400 # NUMBER OF FULL-SIB FAMILIES
fs<-3 #FULL-SIB FAMILY SIZE
y<-matrix(data=0,nrow=fs*nfs,ncol=1)
x<-matrix(data=0,nrow=fs*nfs,ncol=1)
GENERATE NFS FULL-SIB EFFECTS f
f<-rnorm(nfs,mean=0,sd=sqrt(iccfs/(1-iccfs)))

GENERATE BINARY RECORDS Y
f<-rnorm(nfs,mean=0,sd=sqrt(iccfs/(1-iccfs)))
p <- pnorm(mu+f)
y <- rbinom(nfs*fs,1,rep(p,each=fs))
w <- rep(1:nfs,each=fs)
d<-data.frame(w,y)
family <- w
family <- as.factor(family)
Z<-model.matrix(~0+family)
head(d)

w y
1 1 1
2 1 1
3 1 0
4 2 0
5 2 0
6 2 0

The Bayesian model used to analyse the data assumes

.uij = μ + fi + eij , , i = 1, . . . , nf s, j = 1, . . . , f s,

fi |σ 2
f

iid∼ N
(
0, σ 2

f

)
,

eij
iid∼ N (0, 1) .

560 12 Exercises

The prior distributions for . μ and . σ 2
f are assumed to be proportional to constants. In

matrix notation the model for the vector of liabilities is

. u = Xμ + Zf + e

where X (a column vector of . 1′s) and Z are observed incidence matrices.

(i) Write a computer programme to draw inferences about . μ and . σ 2
f using a

single-site updating Gibbs sampling algorithm and data augmentation.
(ii) Compute MC estimators of the mean and .95% posterior intervals of .[μ|y],

.

[
σ 2

f |y
]
and .

[
h2|y].

(iii) Compute MC standard errors and effective chain lengths for .Ê (μ|y),

.Ê
(
σ 2

f |y
)
and .Ê

(
h2|y).

Exercise 5

The R-code below generates genomic data: 500 nominally unrelated individuals
with 1000 genetic markers available for each individual. The genomic model is

.y|μ, g, σ 2
e ∼ N

(
1μ + g, Iσ 2

e

)
, . (12.29a)

g|W, σ 2
g ∼ SN

(
0,Gσ 2

g

)
, . (12.29b)

G =
1

m
WW ′, . (12.29c)

W = {
Wij

}
. (12.29d)

In these expressions, m is the number of SNPs, and .Wij is the label for the j th
marker genotype of individual i, .(i = 1, . . . n; j = 1, . . . , m;m > n):

. Wij = Xij − E
(
Xij

)
√
Var

(
Xij

) , Xij = 0, 1, 2.

The eigenvalue decomposition of G is

. G = U	U ′

=
∑n

i=1
λiUiU

′
i ,

where .U = [U1, U2, . . . , Un], of order .n × n is the matrix of eigenvectors of G, . Uj

is the j th column (dimension .n×1) and . 	 is a diagonal matrix with elements equal
to the eigenvalues .λ1, λ2, . . . , λn associated with the n eigenvectors.

12.4 Bayes Exercises II 561

The loglikelihood, up to an additive constant, is (see expression (3.48) on page
95)

. lnp
(
μ, k, σ 2

e |y,W
)

= −1

2

{
n ln σ 2

e +
n∑

i=1

ln (λik + 1)

+ 1

σ 2
e

(y − 1μ)′ U (k + I)−1 U ′ (y − 1μ)

}
, (12.30)

where .k = σ 2
g /σ 2

e .

BAYES PROBLEMS II. GENOMIC MODEL
DATA BASED ON GENOMIC MODEL; OBTAIN SVD OF WW’(1/m)
rm(list=ls()) # CLEAR WORKSPACE
nindiv<-500
nmark<-1000
nt <- nindiv*nmark
X<-matrix(nrow=nindiv,ncol=nmark,rbinom(n=nt,size=2,p=.5))
stdev <- matrix(data=NA,nrow= nmark,ncol=1)
W <- matrix(data=NA,nrow= nindiv,ncol=nmark)
U <- matrix(data=NA,nrow= nindiv,ncol= nindiv)
G<-matrix(data=NA,nrow= nindiv,ncol= nindiv)
cm <- colMeans(X)
#CHOOSE VALUE FOR GENOMIC VARIANCE vgs
vgs<-10
#CHOOSE VALUE FOR ENVIRONMENTAL VARIANCE ves
ves<-25
CREATE MATRIX OF STANDARDISED MARKER GENOTYPE CODES
for (i in 1:nmark)
{

W[,i] <-(X[,i]-cm[i]) / sd(X[,i])
}
CAN USE INSTEAD:
W <- scale(X)
GENERATE nindiv GENOMIC VALUES FROM N(0,(1/nmark)WW’*vgs,)
nmark MARKER VALUES: REALISATIONS FROM N(0,I sqrt(vgs/nmark))
g <- (1/sqrt(nmark))*W%*%rnorm(nmark,mean=0,sd=sqrt(vgs))
GENERATE nindiv PHENOTYPES WITH MEAN 0, VAR=vgs+ves,
HERITABILITY=vgs/(vgs+ves)
e<- rnorm(nindiv,mean=0,sd=sqrt(ves))
y <- g+ e
GENOMIC RELATIONSHIP MATRIX G
G <- (1/nmark)*W%*%t(W)
SVD OF G
EVD <- eigen(G)
#names(EVD)
#head(EVD$values)
U <- EVD$vector
tU<-t(U)
val <- EVD$values
val[length(y)] <-0
D <- diag(val,nrow=nindiv)
Dp IS A VECTOR WITH NON-ZERO EIGENVALUES
Dp<-c(val[1:nindiv-1])

562 12 Exercises

(i) Write a computer programme to draw inferences about . μ, . σ 2
e and . σ 2

g using a
single-site updating Gibbs sampling algorithm.

(ii) Compute MC estimators of the mean and .95% posterior intervals of .[μ|y],
.

[
σ 2

g |y
]
, .
[
σ 2

e |y] and .
[
h2|y].

(iii) Compute MC standard errors and effective chain lengths for .̂E (μ|y),

.̂E
(
σ 2

g |y
)
, .̂E

(
σ 2

e |y) and .̂E
(
h2|y).

(iv) Obtain ML estimates of . μ, . σ 2
e and . σ 2

g using the R-function OPTIM to
compare with the Bayesian results. Obtain the asymptotic covariance matrix
and compare the .95% frequentist interval with the .95% Bayesian posterior
interval of . σ 2

g .

12.5 Prediction Exercises

The expectations of the validating mean squared errors on pages 278 and 428 were
obtained by simple expansion of the squared term of the .MSEv . The same results can
be obtained by expressing the .MSE as a quadratic form. It is quite simple to check
whether the quadratic form is chi-square distributed, and therefore an analytical
form of the complete distribution of .MSE becomes available. The result rests on the
assumption of normality.

The following result is used (used also on page 584):

• If the random vector .x ∼ N (μ, V), then the random variable . x′Ax ∼
χ2 (r (A) , λ), a chi-square distribution with .r(A) degrees of freedom and non-
centrality parameter . λ, if AV is idempotent, where .r(A) denotes the rank of
matrix A. The non-centrality parameter . λ is equal to

. λ = μ′Aμ.

The mean and variance are

.E
(
x′Ax

) = μ′Aμ + tr (AV) , . (12.31a)

Var
(
x′Ax

) = 4μ′AV Aμ + 2 tr (AV)2 . (12.31b)

In the special case when .μ = 0, then .E
(
x′Ax

) = tr (AV) and . Var
(
x′Ax

) =
2 tr (AV)2 = 2 tr (AV). Typically, .r(A) < r(V) and .tr (AV) = r(AV) = r(A).
Then for .μ = 0, .E(x′Ax) = r(A) and .Var(x′Ax) = 2r(A).

• For a symmetric matrix A and a random vector .x ∼ (μ, V), the quadratic form
.x′Ax has mean given by

.E
(
x′Ax

) = μ′Aμ + tr (AV) . (12.32)

12.5 Prediction Exercises 563

If x is normally distributed

. Var
(
x′Ax

) = 4μ′AV Aμ + 2 tr (AV)2 .

In the above expressions, expectations are taken with respect to .[x|u, V].

Exercise 1

A classical problem in quantitative genetics is to predict a future phenotypic value
or an unobserved genetic value, given available information. The starting point is
to construct a model of the joint distribution of observables and unobservables. To
be specific, consider a training-validating scenario where the training data consist
of . n1 observed phenotypic records . y1 and the scalar to be predicted could be either
a hold-out phenotypic record . y2 or an unobserved genetic value . g2. A hierarchical
genetic model assumes

.

[
y1

y2

]
=

[
1μ1

μ2

]
+

[
g1

g2

]
+

[
e1

e2

]
, (12.33)

where . y1 is the vector of observed phenotypic records in the training set with . n1
elements. The scalar . y2 is a hold-out validating datum, . μ1 and . μ2 are unobserved
means, and . g1 (a column vector with . n1 elements) and . g2 (a scalar) are normally
distributed unobserved (additive) genetic values

.

[
g1

g2

]
σ 2

g ∼ N

[(
0
0

)
,

(
G11 G12

G21 G22

)
σ 2

g

]
, (12.34)

where . σ 2
g is the additive genetic variance (here, assumed known). In (12.34) .G11 is

the matrix of dimension .n1 × n1 of expected additive genetic relationships in the
training data constructed on the basis of a given pedigree. The dimensions of the
remaining blocks are

. G12 : n1 × 1,

G21 : 1 × n1,

G22 : 1 × 1.

The off-diagonal block . G12, a column vector, specifies the coefficient of additive
genetic relationships between the . n1 individuals in the training data and the
individual in the validating data. The scalar .G22 is the coefficient of additive
genetic relationship of the individual in the validating data with itself, equal to 1,
in the absence of inbreeding. Residual terms are assumed to follow the independent

564 12 Exercises

normal distributions:

.

[
e1

e2

]∣∣∣∣ σ 2
e ∼ N

[(
0
0

)
,

(
I 0
0 1

)
σ 2

e

]
,

where . σ 2
e is a residual variance .Var (yi |μ, gi) (assumed known) and I is the . n1 ×n1

identity matrix.
The purpose of the exercise is to obtain predictors of . y2 and of . g2, given the

observable . y1, the training data. Assume that the predictors take the form of the
conditional means:

. ̂y2 = E (y2|y1) ,

ĝ2 = E (g2|y1) .

1. Derive .Var (ŷ2), .Cov (y2, ŷ2), .Var (ĝ2), .Cov (g2, ĝ2).
2. Derive the prediction error variances .Var (y2 − ŷ2), . Var (g2 − ĝ2)

3. Derive the squared correlations .R2 (y2, ŷ2), .R2 (g2, ĝ2), where

. R2 (x, y) = [Cov (x, y)]2

Var (x)Var (y)

Show that

. R2 (y2, ŷ2) = h2R2 (g2, ĝ2) , h2 = Var (g2)

Var (y2)

4. Argue that as . n1 increases, .R2 (g2, ĝ2) approaches 1 and .R2 (y2, ŷ2) approaches
. h2.

5. Using the hold-out single data point . y2, derive the expected value of the
validating mean squared error:

. E (MSEv) = Ey1y2 (y2 − ŷ2)
2

Exercise 2

The components of the expected validating mean squared error .MSEv were dis-
cussed on page 277. From a classical frequentist point of view, when the expectation
is taken over the distribution of training and validating data, three components
contribute to the expected validating mean squared error as indicated in (6.51) on
page 279.

12.5 Prediction Exercises 565

Let y denote training data, . y0 validating data and let .ŷ0 = x′
0θ̂ denote a

frequentist point prediction of the validating datum . y0, where . x′
0 is a row vector

of p covariates and . θ̂ is some estimate based on the training data of parameter . θ that
indexes the linear model. Then, given . x0

. Eyy0 (MSEv) = Eyy0

(
y0 − ŷ0

)2
= Ey0

(
y2
0

)
+ Ey

(
ŷ2
0

)
− 2Eyy0

(
y0 ŷ0

)
. (12.35)

1. Obtain an analytical expression for (12.35) by calculating the expectations of its
three terms and, in so doing, reproduce result (6.51). Expectations are taken over
the distributions of training and validating data.

2. Adopt a Bayesian perspective. Conceptually, this involves drawing . θ∗ from . [θ |y]
and given . θ∗, drawing a predicted validating datum . ŷ∗

0 from .
[
ŷ0|θ∗, y, x0

]
that

has the same distribution as the validating datum .
[
y0|θ∗, y, x0

]
. The draws

.
(
θ∗, ŷ∗

0

)
are extractions from .

[
θ, ŷ0|y, xo

]
, while the margins are draws from

.[θ |y] and from .
[
ŷ0|y, x0

]
. The latter is the posterior predictive distribution of

the Bayesian predictor. The mean (dropping the conditioning on . x0 to avoid
cluttering the notation) is

. E
(
ŷ0|y

) = Eθ |y
[
E
(
ŷ0|θ, y

)] = Eθ |y
(
x′
0θ

)
and the variance

. Var
(
ŷ0|y

) = σ 2 + Varθ |y
(
x′
0θ

)

where . σ 2 represents sampling uncertainty of the draws from .
[
ŷ0|θ∗, y, x0

]
, as

explained in (10.4) on page 420. Obtain an analytical expression for the Bayesian
expected validating mean squared error:

. E (MSEv |y, y0) = E
(
y0 − ŷ0|y, y0

)2
= y2

0 + E
(
ŷ2
0 |y

)
− 2y0 E

(
ŷ0|y

)
.

that involves expectations over the posterior predictive distribution of . ŷ0.

Exercise 3

Let the .n × 1 vector of observations y be a realisation from the probability model:

.y|μ ∼ N
(
1μ, Iσ 2

)
. (12.36)

In what follows . σ 2 is assumed known and . μ is the only unknown parameter.

566 12 Exercises

Partition .y′ = (
y′
t , y

′
v

)
into training and validating sets of lengths .nt , nv . Let

.μ̂ = 1′yt

nt

(12.37)

be the ML estimate of . μ based on the training records, where 1 is a column vector
of . 1′s with . nt elements. The sampling distribution of the ML estimator is

.μ̂ ∼ N

(
μ,

σ 2

nt

)
. (12.38)

A vector of predicted validating records . ŷv is

. ŷv = 1μ̂

and the validating .MSEv is

. MSEv = 1

nv

(
ŷv − yv

)′ (
ŷv − yv

)
.

1. Derive the expected value of .MSEv under the following three scenarios:

(a) Case 1: the training data . yt are treated as fixed and the validating data . yv

as random. Here the .MSEv quantifies the ability of the model to predict
new records accounting for their sampling variation, without accounting for
sampling variation of . μ̂.

(b) Case 2: the training data . yt are treated as random and the validating data
. yv as fixed. Here the .MSEv quantifies the ability of the model to predict an
average validating datum, accounting for sampling variation of . μ̂.

2. Case 3: Derive the expected value of .MSEv and of .MSEt when training data . yt

and validating data . yv are treated as random. Here the .MSEv quantifies the ability
of the model to predict a new record accounting for its sampling variation and
also for sampling variation of . μ̂.

Obtain an expression for .E (MSEv) −E (MSEt). Formulate any insights from
this calculation, perhaps with help from a glance at expression (6.68).

Exercise 4

A Bayesian perspective is adopted extending model (12.36) by assigning an
improper uniform prior distribution to . μ. Bayesian inferences are conditional on
the data, and therefore . yt and . yv are treated as fixed observed quantities:

12.5 Prediction Exercises 567

1. Derive the expected value of the validating mean squared error under the
following three scenarios:

(a) Compute the mean of the posterior distribution of .[μ|yt] that takes the same
form as the ML estimator (12.37); label this mean . ̂μ. Generate validating
predictions . y∗

v drawing from .
[
yv|μ̂, yt

]
. Define the validating mean squared

error:

.MSEv = 1

nv

(
y∗
v − yv

)′ (
y∗
v − yv

)
. (12.39)

Show that .MSEv has a scaled chi-square distribution.
This approach does not account for the posterior uncertainty of . μ but

accounts for sampling uncertainty of . y�
v .

(b) Account for the uncertainty about . μ that is fully captured by its posterior
distribution. Given the likelihood (12.36) and an improper uniform prior
distribution for . μ, the posterior distribution is

. μ|yt ∼ N

(
μ̂,

σ 2

nt

)
.

Construct the vector of predicted validating records

. ŷv = 1nvμ

and using these, calculate

.MSEv = 1

nv

(
ŷv − yv

)′ (
ŷv − yv

)
(12.40)

and its expectation.
(c) Account for the uncertainty about . μ and for sampling uncertainty of new

validating data . y�
v (the predictors), fitting the hierarchical Bayesian model:

.μ|yt ∼ N

(
μ̂,

σ 2

nt

)
, . (12.41a)

yv|μ, yt ∼ N
(
1μ, Iσ 2

)
, (12.41b)

where . ̂μ is the posterior mean; obtain an analytical expression for .E(MSEv).
A Monte Carlo approach based on the method of composition is to draw

the pairs .
(
μ∗
1, y

∗
v1

)
, . . . ,

(
μ∗

N, y∗
vN

)
, where . μ∗

i is a draw from the distribution
.[μ|yt] and . y∗

vi is a draw from the distribution .
[
yv|μ∗

i , yt

]
. The quantities

.y∗
v1, . . . , y

∗
vN are an iid sample from the posterior predictive distribution

.[yv|yt] and can be used to compute the validating mean squared error (12.39).

568 12 Exercises

2. Discuss the results obtained using a, b and c. Provide an interpretation of the
distribution of the .MSEv under the Bayesian and frequentist perspectives.

Exercise 5

This exercise is in the same spirit as the previous one; the model is a little more
parametrised.

The R-code below generates n individuals each genotyped for p covariates
(genetic markers). Among these genetic markers nqtl are defined as causal
genotypes. The size of gene substitution effects of these causal loci is chosen to
generate an additive genetic variance equal to 10 squared units, and the heritability
of the continuous trait is set equal to . 0.5. The data vector y with n elements is
divided into a training set . yt and a validating set . yv , each of size . n/2. Let W
represent the centred and scaled matrix X, where .X = {

Xij

}
is an .n/2 .×p observed

matrix with genotypic codes .Xij equal to .0, 1, 2 according to the number of the
arbitrarily chosen allele of individual i and marker j .

The operational statistical model is as follows:

.yt |μ, b, σ 2
e ∼ N

(
1μ + Wb, Iσ 2

e

)
, . (12.42a)

b|σ 2
b ∼ N

(
0, Iσ 2

b

)
, (12.42b)

where . yt is the vector of training records of length . n/2, . μ is an unobserved mean,
b is a vector of unknown genetic marker effects of length p, 1 is a vector of . 1′s of
length . n/2, . σ 2

e is the residual variance and . σ 2
b reflects prior uncertainty for each

element of b. In other words, . σ 2
b is the prior variance of the effect of one marker, the

same for all p markers. These two variance components are assumed known:

PREDICTION EXERCISE 5
rm(list=ls()) # CLEAR WORKSPACE
set.seed(123)
nindiv<-100
nmark <- 50
nt <- nindiv*nmark
NUMBER QTL
nqtl <- 50

GENERATE MARKER MATRIX FROM BINOMIAL DISTRIBUTION
X<-matrix(nrow= nindiv,ncol= nmark,rbinom(n=nt,size=2,p=.5))

CHOOSE VALUE FOR MEAN mu AND GENOMIC VARIANCE vgs
mu <- 10
vgs<-10
CHOOSE VALUE FOR ENVIRONMENTAL VARIANCE ves
ves<-20
her <- vgs/(vgs+ves)

12.5 Prediction Exercises 569

btrue<-matrix(data=0.0,nrow=nmark,ncol=1) # parameter from
true model
IDq<-sample(1:nmark,nqtl,replace=F) # from nmark markers, choose
nqtl as QTL
QTLeff<-sqrt(vgs/nqtl)# QTL effect so that the total genetic
variance is VA
btrue[IDq]<-QTLeff # QTL b’s are not zero
W <- matrix(data=NA,nrow= nindiv,ncol=nmark)
cm <- colMeans(X)
CREATE MATRIX OF STANDARDISED MARKER GENOTYPE CODES
for (i in 1:nmark)
{

W[,i] <-(X[,i]-cm[i]) / sd(X[,i])
}
can use more compactly:
W <- scale(X)
GENERATE nindiv PHENOTYPES
e<- rnorm(nindiv,mean=0,sd=sqrt(ves))
y <- mu + W%*%btrue+ e
k <- (ves/vgs)*nmark # ratio of residual to genomic variance
Vb = vgs/nmark
train <- sample(1:nrow(W),floor(0.5*nrow(W)))
Xt <- W[train,]
yt <- y[train]
Xv <- W[-train,]
yv <- y[-train]
Zt <- cbind(1,Xt)
Zv <- cbind(1,Xv)
#####################
ridge regression coefficient matrix, rhs & solution solt
RHSt <- crossprod(Zt,yt)
LHSt <- crossprod(Zt)
LHSt[-1,-1] <- LHSt[-1,-1]+diag(k,nrow=nrow(LHSt)-1)
solt <- solve(LHSt,RHSt)
PREDICTION, CONDITIONAL ON ESTIMATED PARAMETERS (solt)
predval <- Zv%*%solt # VALIDATING
predtrain <- Zt%*%solt # TRAINING

A standard ridge regression is fitted to the training data . yt and assuming known
dispersion parameters, the posterior mean of .

[
μ, b|yt , σ

2
e , σ 2

b

]
satisfies the linear

system

.

[
1′1 1′Wt

W ′
t 1 W ′

t Wt + Iλ

] [
μ̂

b̂

]
=

[
1′yt

W ′yt

]
, (12.43)

where .λ = σ 2
e

σ 2
b

and matrix W has been appropriately partitioned into training and
validating blocks:

. W =
[

Wt

Wv

]
,

each of dimension .n/2 . ×p.

570 12 Exercises

In a Bayesian setting, predictors . y∗
v of validating records are drawn from the

posterior predictive distribution .[yv|yt], and the validating mean squared error is
computed with the usual expression:

.MSEv = 1

nv

(
y∗
v − yv

)′ (
y∗
v − yv

)
, (12.44)

1. Derive the exact distribution of .MSEv (12.44) conditional on the solutions .

(
μ̂, b̂

)

from (12.43). In this case, . y∗
v is a draw from .

[
yv|yt , μ̂, b̂

]
. Write a computer

programme to generate a Monte Carlo estimate of the posterior distribution of

.MSEv , drawing validating predictions . y�
v from .

[
yv|yt , μ̂, b̂

]
. Compare with the

analytic results.
2. Derive an analytic expression for the expected value of (12.44) based on the

hierarchical Bayesian model (12.42), using the formula for the expected value of
a quadratic form (12.32). This provides a description of MSE based on a single
point: its mean. Here, as in . 1. above, account is taken of the contribution from
sampling variation of new records, but in contrast with . 1., account is also taken
of the posterior uncertainty of .[μ, b].

3. Allowing for uncertainty in .(μ, b), write a code that uses the method of
composition to obtain draws .

(
y∗
v , μ∗, b∗), by sampling repeatedly from

.
(
μ∗, b∗) ∼ [μ, b|yt] ,

y∗
v ∼ [

yv|μ∗, b∗, yt

]
,

from which the validating mean squared error (12.44) is calculated. This
generates a second MC estimate of the posterior distribution of .MSEv . In contrast
with 2. above, this provides a complete description of the marginal posterior
distribution of MSE. Compute the Monte Carlo estimates of the mean and
variance and compare the mean with the exact result obtained in 2.

Exercise 6

The exercise involves estimation of validating mean squared error using training
data only. This entails obtaining an expression for the expected optimism followed
by use of expression (6.69).

Consider the hierarchical linear model:

.y|b, f, σ 2 ∼ N
(
Xb + Zf, Iσ 2

)
, . (12.45a)

f |σ 2
f ∼ N

(
0, Iσ 2

f

)
. (12.45b)

12.5 Prediction Exercises 571

Above, y is the vector of observed training data with n elements, X and Z are
observed incidence matrices of dimension .(n × p), and .

(
n × nf

)
, b is a vector of

unobserved p elements representing fixed effects and f is a vector of unobserved iid
random effects with . nf elements. Assume that there are . no records in each of the . nf

random effects, so that the total number of records is .n = nf no. A typical example
arises when data cluster in full-sib families, where f is a vector of random family
effects (here, assumed to be unrelated across families) and there are . no offspring per
family. Given known variance components . σ 2 and . σ 2

f , BLUP of f and BLUE of b
are obtained solving the linear system:

.

[
X′X X′Z
Z′X Z′Z + Ik

] [
b̂

f̂

]
=

[
X′y
Z′y

]
, k = σ 2

σ 2
f

. (12.46)

The vector of predictors (fitted values, linear in y) is

. ŷ = Wθ̂

where .W = [X Z], .θ̂ ′ =
[
b̂′, f̂ ′

]
and . θ̂ is the solution to the linear system

.
[
W ′W +

]
θ̂ = W ′y

with

. =
[
0 0
0 Ik

]
.

The R-code below generates data based on the model, with .nf = 500 full-
sib families, .no = 2 full-sibs per family and .n = nf no = 1000 records. The
vector of fixed effects b has .p = 2 elements, here mimicking 2 breeds. The variance
components . σ 2 and . σ 2

f are set equal to 5 and 1 squared units, respectively, leading
to a heritability equal to . 1/3.

The code below constructs and solves the mixed model equations:

#FULL-SIB CONTINUOUS DATA
rm(list=ls()) # Clear the workspace
set.seed(123771)
ptm<-proc.time()
require(graphics)
INITIALISE PARAMETERS
mus<-10 # MEAN
vfs<-1 #VARIANCE BETWEEN FULL-SIBS
#vfs<-0.5 #VARIANCE BETWEEN FULL-SIBS
#vfs <- 0.1
RESIDUAL VARIANCE

572 12 Exercises

ves<-5
k <- ves/vfs
nf<-500 # NUMBER OF FULL-SIB FAMILIES
n<-2 # FULL-SIB FAMILY SIZE
nb <- 2 # NUMBER OF BREEDS
N<-nf*n # TOTAL NUMBER OF RECORDS
y<-matrix(data=0,nrow=nf*n,ncol=1)
z<-matrix(data=0,nrow=nf*n,ncol=1)
GENERATE nf FULL-SIB EFFECTS fs
fs<-rnorm(nf,mean=0,sd=sqrt(vfs))
BREED EFFECTS
br <- rep(0,nb)
br[1] <- 5
br[2] <- 8
GENERATE nf*n RESIDUAL EFFECTS
es<-rnorm(nf*n,mean=0,sd=sqrt(ves))

GENERATING A FULL-SIB STRUCTURE
b <- rep(1:nb,each=N/2)
z <- rep(1:nf,each=n)
y <- br[b] + fs[z] + es
d <- data.frame(y,z)

d<-data.frame(y,z)
GENERATE INCIDENCE MATRICES X & Z
family <- z
breed <- b
family <- as.factor(family)
breed <- as.factor(breed)
X<-model.matrix(~0+breed)
Z<-model.matrix(~0+family)
W <- cbind(X,Z)
LHS <- crossprod(W) # LHS OF MME
LHS[-(1:2),-(1:2)] <- LHS[-(1:2),-(1:2)]+

diag(k,nrow=nrow(LHS)-2)
RHS <- crossprod(W,y) # RHS OF MME
SOL <- solve(LHS,RHS) # SOLUTION

1. Derive the analytical form for the expected optimism:

.
2

n

n∑
i=1

Cov (yi, ŷi) . (12.47)

12.5 Prediction Exercises 573

Data are correlated within the training and validating data due to the full-
sib structure. However training and validating data are independent because it is
assumed that different iid families are assigned to both. Therefore the expression
for expected optimism given in (6.68) is valid.

2. Write a computer programme to obtain a Monte Carlo estimate of (12.47) using
a parametric bootstrap and compare with the exact result obtained in 1.

Chapter 13
Solution to Exercises

13.1 Likelihood Exercises I

Exercise 1

(a) The probability mass function of the data x is

.p (x|n, θ) =
(

n

x

)
θx (1 − θ)n−x , x = 0, 1, . . . , n (13.1)

where

.

(
n

x

)
= n!

(n − x)!x!

is the binomial coefficient. In (13.1) the random variable is x, for fixed values
of n and θ .

(b) The likelihood function is proportional to (13.1) and can be written

.L (θ |n, x) ∝ θx (1 − θ)n−x , 0 < θ < 1. (13.2)

which is a function of θ , for fixed values of n and x.

The loglikelihood is obtained by taking the natural logarithm of (13.2):

.� (θ |n, x) = x ln θ + (n − x) ln (1 − θ) , 0 < θ < 1. (13.3)

(c) The ML estimator of θ is obtained by maximising (13.3). Taking the first
derivative of �(θ |n, x) with respect to θ and setting the resulting expression

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Sorensen, Statistical Learning in Genetics, Statistics for Biology and Health,
https://doi.org/10.1007/978-3-031-35851-7_13

575

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35851-7protect T1	extunderscore 13&domain=pdf
https://doi.org/10.1007/978-3-031-35851-7_13
https://doi.org/10.1007/978-3-031-35851-7_13
https://doi.org/10.1007/978-3-031-35851-7_13
https://doi.org/10.1007/978-3-031-35851-7_13
https://doi.org/10.1007/978-3-031-35851-7_13
https://doi.org/10.1007/978-3-031-35851-7_13
https://doi.org/10.1007/978-3-031-35851-7_13
https://doi.org/10.1007/978-3-031-35851-7_13
https://doi.org/10.1007/978-3-031-35851-7_13
https://doi.org/10.1007/978-3-031-35851-7_13
https://doi.org/10.1007/978-3-031-35851-7_13

576 13 Solution to Exercises

equal to zero yields:

.
∂� (θ |n, x)

∂θ
= x

θ
− n − x

1 − θ
= 0. (13.4)

The ML estimator of θ is

.̂θ = x

n
. (13.5)

With n = 10 and x = 8, the ML estimate is

. ̂θ = 8

10
= 0.8.

(d) First-order asymptotic theory asserts that

.̂θ ∼ N
(
θ, i (θ)−1

)
, (13.6)

where Fisher’s expected information is

. i (θ) = −Ex

[
∂2� (θ |n, x)

(∂θ)2

]

= −Exx

[
− x

θ2
− n − x

(1 − θ)2

]

= nθ

θ2
+ n − nθ

(1 − θ)2

= n

θ (1 − θ)
.

The asymptotic variance of the ML estimator is obtained using

. i
(
θ̂
)−1 = θ̂

(
1 − θ̂
)

n
= 0.016.

The asymptotic 95% confidence interval for θ is

. Pr
(
0.8 − 1.96 × √

0.016 < θ < 0.8 + 1.96 × √
0.016
)

= 0.95,

equal to

.Pr (0.55 < θ < 1.05) = 0.95. (13.7)

13.1 Likelihood Exercises I 577

In repeated sampling, the random interval (13.7) includes θ with probability 95%.
The asymptotic confidence interval (13.7) includes values of θ outside its bounds.

Exercise 2

(a) The transformation is

.β = g (θ) = ln

(
θ

1 − θ

)
. (13.8)

with inverse transformation

.θ = g−1 (β) = exp (β)

1 + exp (β)
. (13.9)

Under the transformation (13.8), the likelihood is

. L (θ |n, x) = L
(
g−1 (β) |n, x

)
∝
[

exp (β)

1 + exp (β)

]x (
1 − exp (β)

1 + exp (β)

)n−x

,

=
[

exp (β)

1 + exp (β)

]x [1

1 + exp (β)

]n−x

− ∞ < β < ∞. (13.10)

(b) The result of using the transformed parameter (13.8) translates into a more
symmetric likelihood function, as displayed in Fig. 13.1. This in turn has
consequences for the quality of inferences.

(c) There are two ways of deriving the MLE of β. The simplest is using the
invariance property of the MLE. The MLE of β is

.β̂ = ln

(
θ̂

1 − θ̂

)
= ln

0.8

0.2
= 1.386. (13.11)

0.2 0.4 0.6 0.8 1.0
q

Likelihood

2 0 2 4 6
b

Fig. 13.1 Left panel: plot of L (θ |n, x) (13.2). Right panel: plot of L
(
g−1 (β)

)
(13.10)

578 13 Solution to Exercises

The asymptotic variance of β̂ is

. Var
(
β̂
)

= Var
(
θ̂
) (dg (θ)

dθ

)∣∣∣∣
2

θ=θ̂

= 0.016

⎛
⎝ 1

θ̂
(
1 − θ̂
)
⎞
⎠

2

= 0.625. (13.12)

A longer calculation requires maximising (13.10) with respect to β. It is easier
to work with the loglikelihood. A simple calculation shows that the loglikelihood is

.�
(
g−1 (β) |n, x

)
= xβ − n ln

[
1 + exp (β)

]
. (13.13)

Then,

.
∂

∂β
�
(
g−1 (β) |n, x

)
= x − n exp (β)

1 + exp (β)
,

whose root is

. ̂β = − ln

(
n − x

x

)
= 1.386

as in (13.11).
To compute the asymptotic variance of β̂, take second derivatives of the

loglikelihood with respect to β. This gives:

.
∂2

(∂β)2
�
(
g−1 (β) |n, x

)
= ∂

∂β

[
x − n exp (β)

1 + exp (β)

]

= − n exp (β)

(1 + exp (β))2
.

Evaluated at β = β̂, taking the reciprocal and multiplying by −1 yields the
asymptotic variance:

. Var
(
β̂
) = (1 + exp (β))2

n exp (β)

∣∣∣∣∣
β=β̂

= (1 + exp (1.386))2

10 exp (1.386)
= 0.625

as in (13.12).

13.1 Likelihood Exercises I 579

(d) The asymptotic 95% confidence interval (CI) for β is

. Pr
(
1.386 − 1.96 × √

0.625 < β < 1.386 + 1.96 × √
0.625
)

= 0.95,

equal to

. Pr (−0.16 < β < 2.94) = 0.95. (13.14)

(e) Using (13.9), interval (13.14) can be transformed back in terms of θ :

. Pr
(
g−1 (−0.16) < g−1 (β) < g−1 (2.94)

)

yielding

. Pr (0.46 < θ < 0.95) . (13.15)

This interval based on the more regular likelihood function (13.10) is more
reliable than that obtained with the original likelihood function (13.2). Interval
(13.15) includes values of θ within the permissible parameter space.

Note

There is a (pure) likelihood-based confidence interval. Useful references from two
advocates of the method are Edwards (1992) and Royall (1997), and a tutorial is
given by Meeker and Escobar (1995). In this approach to inference, the likelihood
function is regarded as conveying a complete measure of uncertainty about the
parameter of interest, without the need to invoke sampling distributions (like in
inferences based on a posterior distribution). In the present example of the binomial
model with .x = 8 successes out of .n = 10 trials, the value of the loglikelihood
(13.3) evaluated at .θ = θ̂ is equal to .−5.004024. In the words of Edwards (1992),
this is the maximum support, at .θ̂ = 0.8. The pure likelihood approach considers the
values of . θ which lie within, for example, two units of support of the best supported
value (the choice of “two” units is arbitrary, like the choice of two units of standard
deviations of the “best” estimate in conventional analyses). Then the MLE and the
“confidence interval” that arises from such an exercise in the present example are
.0.8 (0.494; 0.965), quite close to the value reported in (13.15).

The R-code below evaluates first, the loglikelihood when the parameter is
replaced by its MLE. Second, the code executes the function OPTIM twice, with
judicious choice of the parameter lower and upper, generating the two values
of . θ that define the lower and upper limits within two units of support of the best
supported value.

580 13 Solution to Exercises

In multiparameter settings this approach is less transparent, in contrast with
Bayesian methods that handle multidimensional parameters in a natural way via
marginalisation. In general, this is a vast subject with considerable statistical and
philosophical controversy:

rm(list=ls()) # Clear the workspace
set.seed(123771)
n <- 10
x <- 8
loglik<-function(n,x,theta)
{

llik <- (x*log(theta)+(n-x)*log(1-theta))
}
LL <- loglik(10,8,0.8) # loglikelihood at ML of theta
LL

[1] -5.004024

The value "-7" below, is the (approximate) value of
the loglikelihood two units of support from its value
at the MLE (which is approx, -5)
fn <- function(theta){
(-7-(8*log(theta)+(10-8)*log(1-theta)))^2

}
EXECUTE OPTIM TWICE, ADJUSTING LOWER AND UPPER LIMITS
TO GENERATE THE TWO ROOTS
lower<-optim(0.4,fn,method="Brent",lower=0.01,upper=0.8)$par
upper<-optim(0.4,fn,method="Brent",lower=0.8,upper=0.999)$par
LOWER BOUND OF CI
lower

[1] 0.4943429

UPPER BOUND OF CI
upper

[1] 0.9652074

As a closing comment, from a Bayesian perspective, (13.3) is the logarithm of
the beta density .Be(a, b), with .a = x + 1 and .b = n − x + 1. Therefore this “pure
likelihood” approach in this unidimensional example leads to the same inferences
about . θ as those drawn from the beta posterior .Be(x + 1, n − x + 1). To illustrate,
the .95% posterior interval for . θ from .Be(x + 1, n − x + 1) using R is obtained
executing qbeta(c(0.025,0.975),9,3) that yields .(0.482, 0.940).

13.1 Likelihood Exercises I 581

Exercise 3

(a) First write the model using the more general formulation:

. y = Xb + e,

where X is a column vector of ones of length n = 10, b is a vector with a single
element equal to μ and the random vector e ∼ N

(
0, Iσ 2

)
. With this notation

the likelihood is proportional to

. L
(
b, σ 2|y

)
∝
(
2πσ 2
)− n

2
exp

[
− 1

2σ 2 (y − Xb)′ (y − Xb)

]
,

and the loglikelihood, up to an additive constant is equal to

.�
(
b, σ 2|y

)
= −n

2
ln
(
σ 2
)

− 1

2σ 2 (y − Xb)′ (y − Xb) . (13.16)

(b) Derivation of the ML estimators of b and of σ 2 requires a joint maximisation of
(13.16) with respect to b and σ 2. The partial derivative with respect to b is

.
∂

∂b
�
(
b, σ 2|y

)
= ∂

∂b

[
− 1

2σ 2

(
y′y − 2y′Xb + b′X′Xb

)]

= 1

2σ 2

(
2X′y − 2X′Xb

)

= 1

σ 2

(
X′y − X′Xb

)
.

Setting this equal to zero and solving for b yields the ML estimator:

.̂b = (X′X
)−1

X′y. (13.17)

The partial derivative of (13.16) with respect to σ 2 is

.
∂

∂σ 2 �
(
b, σ 2|y

)
= ∂

∂σ 2

[
−n

2
ln
(
σ 2
)

− 1

2σ 2 (y − Xb)′ (y − Xb)

]

= − n

2σ 2
+ 1

2σ 4 (y − Xb)′ (y − Xb) .

582 13 Solution to Exercises

On setting this equation equal to zero and multiplying out by 2σ 2 yields the MLE
of σ 2:

.̂σ 2 =
(
y − Xb̂

)′ (
y − Xb̂

)
n

(13.18)

where Xb̂ = ŷ is the predicted or fitted value of y.
In the special case of this simple model with the n × 1 matrix X = 1 and b = μ,

the MLE (13.17) is

. ̂μ = (1′1
)−1 1′y

= 1

10

10∑
i=1

yi = y = 2.733

and (13.18) is

. ̂σ 2 = (y − 1μ̂)′ (y − 1μ̂)

n

=
∑10

i=1 (yi − μ̂)2

10
= 2.581.

(c) Let θ ′ = (b, σ 2
)
. The observed information is equal to minus the Hessian :

.I (b, σ 2) = −∂2�
(
b, σ 2|y)

∂θ∂θ ′ . (13.19)

The Hessian requires

.
∂2�
(
b, σ 2|y)

∂b∂b′ ,
∂2�
(
b, σ 2|y)

∂b∂σ 2 ,
∂2�
(
b, σ 2|y)(

∂σ 2
)2 .

These second derivatives are

.
∂2�
(
b, σ 2|y)

∂b∂b′ =
∂
[

1
σ 2

(
X′y − X′Xb

)]
∂b

= −X′X
σ 2 ,

∂2�
(
b, σ 2|y)

∂b∂σ 2 =
∂
[

1
σ 2

(
X′y − X′Xb

)]
∂σ 2 = −X′ (y − Xb)

σ 2 ,

13.1 Likelihood Exercises I 583

∂2�
(
b, σ 2|y)(

∂σ 2
)2 =

∂
[
− n

2σ 2 + 1
2σ 4 (y − Xb)′ (y − Xb)

]
∂σ 2

=
n
2

(
σ 2
)−2 − (y − Xb)′ (y − Xb)

(
σ 2
)−3

.

Therefore the observed information matrix is

. I (b, σ 2) =
⎡
⎣ X′X

σ 2 −X′(y−Xb)

σ 2

− (y−Xb)′X
σ 2 − n

2(σ 2)
2 + (y−Xb)′(y−Xb)

(σ 2)
3

⎤
⎦

=
⎡
⎣ n

σ 2

∑n
i=1(yi−μ)

σ 2∑n
i=1(yi−μ)

σ 2 − n

2(σ 2)
2 +
∑n

i=1(yi−μ)2

(σ 2)
3

⎤
⎦ , (13.20)

which evaluated at the ML estimates μ̂ = 2.733 and σ̂ 2 = 2.581 is equal to

. I (μ̂, σ̂ 2) =
[
3.874 0
0 0.7503

]
.

(d) The asymptotic variance of
(
μ̂, σ̂ 2
)
based on (13.19) is

. Var
(
μ̂, σ̂ 2
)

= I (μ̂, σ̂ 2)−1

=
[
3.874−1 0
0 0.7503−1

]

=
[
0.258 0
0 1.333

]
. (13.21)

(e) The expected information is

. i
(
b, σ 2
)

= Ey

[
−∂2�
(
b, σ 2|y)

∂θ∂θ ′

]
,

which requires the expectation of each of the f our elements of (13.20). These
are

.Ey

(n

σ 2

)
= n

σ 2
,

Ey

(∑n
i=1 (yi − μ)

σ 2

)
= 0,

584 13 Solution to Exercises

Ey

(
− n
2
(
σ 2
)2 +
∑n

i=1 (yi − μ)2(
σ 2
)3

)
= − n

2
(
σ 2
)2 +

nσ 2

(
σ 2
)3

= n
2
(
σ 2
)2 .

Therefore,

. i
(
μ̂, σ̂ 2
)

=
[

n
σ̂ 2 0
0 n

2(σ̂ 2)
2

]

=
[
3.874 0
0 0.7503

]
,

the same as (13.21).
(f) The asymptotic variance of

(
μ̂, σ̂ 2
)
based on Fisher’s (expected) information is

the same as (13.21). The form of the expression is

.Var
(
μ̂, σ̂ 2
)

=
[

σ̂ 2

n
0

0
2
(
σ̂ 2
)2

n

]
. (13.22)

(g) The following results are useful:

(i) If vector x is N (μ, V), then x′Ax is χ2
(
r (A) , μ′Aμ

)
, a chi-square distribu-

tion with r(A) degrees of freedom and non-centrality parameter μ′Aμ, if AV is
idempotent. An idempotent matrix is a matrix which, when multiplied by itself,
yields itself. If K is idempotent, K2 = K and rank (K) = r (K) = tr (K).

(ii) Write
∑n

i=1(yi−μ)2

σ 2 = 1
σ 2 (y − 1μ)′ (y − 1μ). Given y ∼ N

(
1μ, Iσ 2

)
, then

. E (y − 1μ) = 0; V = Var (y − 1μ) = Iσ 2; A = 1

σ 2
I

and AV = I which is idempotent. It follows that 1
σ 2 (y − 1μ)′ (y − 1μ) ∼

χ2 [n, 0] because r
(

1
σ 2 I
)

= n. The mean and variance are

.E

(
1

σ 2 (y − 1μ)′ (y − 1μ)

)
= n

Var

(
1

σ 2 (y − 1μ)′ (y − 1μ)

)
= 2n.

13.1 Likelihood Exercises I 585

Given the linear model y = Xb + e, with e ∼ N
(
0, Iσ 2

)
, the MLE of b is

. ̂b = (X′X
)−1

X′y.

and the MLE of σ 2 is

. ̂σ 2 =
(
y − Xb̂

)′ (
y − Xb̂

)
n

.

Write

. y − Xb̂ = y − X
(
X′X
)−1

X′y

=
(
I − X

(
X′X
)−1

X′) y.

Therefore,

.
(
y − Xb̂

)′ (
y − Xb̂

) = y′ (I − X
(
X′X
)−1

X′) y
= y′Py

where P is idempotent. Then

.
1

σ 2

(
y − Xb̂

)′ (
y − Xb̂

) = 1

σ 2 y′Py.

Since V = Var (y) = Iσ 2 and A = 1
σ 2 P , AV = P , and idempotent matrix .

Therefore,

.
1

σ 2

(
y − Xb̂

)′ (
y − Xb̂

) ∼ χ2
(

r (P) , b′X′PXb
1

2σ 2

)

= χ2 (n − r (X)) , (13.23)

and the exact sampling distribution of the MLE of σ 2 is

.

(
y − Xb̂

)′ (
y − Xb̂

)
n

∼ σ 2

n
χ2 (n − r (X)) , (13.24)

which is proportional to a chi-square distribution. The second line follows because

PX = 0 and r (P) = r
(
I − X

(
X′X
)−1

X′
)

= r (I) − r
(
X
(
X′X
)−1

X′
)

=
n − r (X). In view of (13.24), since X = 1 (a vector of ones whose rank is 1) and
b = μ, a scalar, the expected value and variance of σ̂ 2 are

586 13 Solution to Exercises

. E

[(
y − Xb̂

)′ (
y − Xb̂

)
n

]
= σ 2

n
(n − 1) ,

Var

[(
y − Xb̂

)′ (
y − Xb̂

)
n

]
=
(

σ 2

n

)2
2 (n − 1) . (13.25)

Therefore the MLE of σ 2 is biased. The small sample variance of σ̂ 2 using (13.25)
evaluated at σ 2 = σ̂ 2 is

. 2

(
σ̂ 2

n

)2
(n − 1) =

(
2.581

10

)2
2 (9) = 1.199,

a little smaller than the asymptotic value 2
(
σ̂ 2
)2/

n reported in (13.22).

Exercise 4

The R-code that generates the data is reproduced below:

rm(list=ls()) # Clear the workspace
set.seed(772231)
n <- 5000 # Number of records generated for Y_1
p <- 0.20 # Proportion to be selected
m <- round(p*n) # Number of records selected
y1 <- rnorm(n,mean=10,sd=2) # Generate random variable Y_1
y1_sort <-sort(y1,decreasing=TRUE) # Sort Y_1
y1s <- y1_sort[1:m] # The highest m Y_1 records are kept
#length(y1) # Number of records in Y_1
#length(y1s) # Number of records in the selected subset of Y_1
Generate Y_2
y2<-rnorm(length(y1s),mean=15+0.6*(y1s-10),sd=sqrt(4-(2.4^2)/4))

Let .θ = (μy, μx, σxy, σyy, σxx). If the selection mechanism is (incorrectly)
ignored and only the m bivariate records are considered, these can be assumed to be
a realisation from

. (yi, xi)| θ ∼ N

([
μy

μx

]
,

[
σyy = 4 σyx = 2.4

σyx = 2.4 σxx = 4

])
, (13.26)

i = 1, 2, . . . , m,

with .μy = 10, .μx = 15. The closed forms of the ML estimators are

.μ̂x = 1

m

m∑
i=1

xi, μ̂y = 1

m

m∑
i=1

yi, . (13.27a)

13.1 Likelihood Exercises I 587

σ̂xx =
1

m

m∑
i=1

(xi − μ̂x)
2 , σ̂yy =

1

m

m∑
i=1

(
yi − μ̂y

)2
, . (13.27b)

ρ̂ = σ̂xy√
σ̂xx σ̂yy

, σ̂xy =
1

m

m∑
i=1

(
yi − μ̂y

)
(xi − μ̂x) . (13.27c)

(a) The ML estimates based on (13.27) can be computed with the R-code below:

m <- length(y2)
n <- length(y1)
round(mean(y1s),digits=2)

[1] 12.8

round(mean(y2),digits=2)

[1] 16.56

round(mean((y1s-mean(y1s))^2),digits=2)

[1] 0.91

round(mean((y2-mean(y2))^2),digits=2)

[1] 2.85

round((cov(y1s,y2)*(m-1)/m),digits=2)

[1] 0.54

round(cov(y1s,y2)/(sqrt(var(y1s)*var(y2))),digits=2)

[1] 0.34

round(cov(y1s,y2)/var(y1s),digits=2)

[1] 0.59

588 13 Solution to Exercises

The ML estimates (13.27) are

. μ̂x = 12.8,

μ̂y = 16.56,

σ̂xx = 0.91,

σ̂yy = 2.85,

σ̂xy = 0.54,

ρ̂ = 0.34,

b̂yx = 0.59.

With the exception of . b̂yx , these estimates are in very poor agreement with the
true parameter values defined in (13.26).

If the individuals that produced a second lactation had been randomly selected,
this approach using a subset of the data would have performed adequately. The
topic of inferences under selection is a delicate one; important references are Rubin
(1976) and Little and Rubin (1987).

(b) The density function of the complete data under parametrisation . φ =(
μx, σxx, β0, β1, σy.x

)
is

. p (x, y|φ) =
∏m

i=1
p (xi, yi |φ)

∏n

i=1+m
p (xi |φ)

=
[∏m

i=1
p (yi |xi, φ) p (xi |φ)

] [∏n

i=1+m
p (xi |φ)

]

=
∏n

i=1
p (xi |μx, σxx)

∏m

i=1
p
(
yi |xi, β0 + β1xi, σy.x

)

= (2πσxx)
− n

2 exp

[
−
∑n

i=1 (xi − μx)
2

2σxx

] (
2πσy.x

)− m
2

exp

[
−
∑m

i=1 (yi − β0 − β1xi)
2

2σy.x

]
(13.28)

where

.σy.x = σyy −
(
σxy

)2
σxx

, (13.29)

13.1 Likelihood Exercises I 589

is the variance of the conditional distribution of Y given X. The likelihood is
proportional to (13.28) and the loglikelihood is

. �
(
μx, σxx, β0, β1, σy.x |x, y

) = −n

2
ln σxx −

∑n
i=1 (xi − μx)

2

2σxx

− m

2
ln σy.x

−
∑m

i=1 (yi − β0 − β1xi)
2

2σy.x

. (13.30)

(c) The first two terms in the right-hand side of (13.30) are the loglikelihood of
the .N

(
μ, σ 2
)
linear model. The ML estimates of . μ and . σ 2 are given for the

general case in (13.17) and (13.18), which in this example with .X = 1 (a vector
of ones) and .b = μx reduce to

.μ̂x =
∑n

i=1 xi

n
, . (13.31a)

σ̂xx =
∑n

i=1 (xi − μ̂)2

n
. (13.31b)

To obtain the MLE of . σy.x , . β0 and . β1, differentiate (13.30) with respect to
. σy.x , . β0 and . β1. After a little simplification, the three equations with the three
unknowns are

. − m +
∑m

i=1 (yi − β0 − β1xi)
2

σy.x

= 0,

m∑
i=1

(yi − β0 − β1xi) = 0,

m∑
i=1

xi (yi − β0 − β1xi) = 0.

From the second equation

.β̂0 = y − β̂1x
∗, (13.32)

where

.y =
∑m

i=1 yi

m
,

x∗ =
∑m

i=1 xi

m
,

590 13 Solution to Exercises

In these expressions, . x∗ is the mean of the selected first lactation records. From the
third equation

.β̂1 =
∑m

i=1 xiyi − mx∗ y∑m
i=1 x2

i − mx∗2 = Sxy

Sxx

. (13.33)

Finally from the first equation,

.̂σy.x =
∑m

i=1

(
yi − β̂0 − β̂1xi

)2
m

. (13.34)

Substituting (13.32) and (13.33) in (13.34) leads to the alternative form (see NOTE
below):

.m σ̂y.x = Syy − S2
xy

Sxx

(13.35)

which is more in line with the parameter (13.29), where

. Syy =
m∑

i=1

(yi − y)2 .

Note

Substituting (13.32) in (13.34) gives:

.

m∑
i=1

(
yi − β̂0 − β̂1xi

)2 =
m∑

i=1

(
yi − (y − β̂1x

∗)− β̂1xi

)2

=
m∑

i=1

(
(yi − y) − β̂1

(
xi − x∗))2

=
m∑

i=1

(yi − y)2 − 2β̂1

m∑
i=1

(yi − y)
(
xi − x∗)+ β̂

2
1

m∑
i=1

(
xi − x∗)2

= Syy − 2β̂1Sxy + β̂
2
1Sxx

= Syy − S2
xy

Sxx

,

where the last line is obtained by replacing .β̂1 = Sxy/Sxx in the 4th line.

13.1 Likelihood Exercises I 591

These MLEs of .φ = (μx, σxx, β0, β1, σy.x

)
can be expressed in terms of the

MLEs of .θ = (μy,μx, σxy, σyy, σxx

)
. First, MLEs of . μx and .σxx are displayed in

(13.31). The remaining MLEs of the parameters in . φ are obtained as follows. Recall
that

. β0 = μy − β1μx = 1,

β1 = σxy

σxx

= 0.6,

σy.x = σyy −
(
σxy

)2
σxx

= 2.56.

Then from the first equation

. ̂μy = β̂0 + β̂1μ̂x = 14.9.

From the second equation

. ̂σxy = β̂1σ̂xx = 2.36,

and from the third

. ̂σyy = σ̂y.x +
(
σ̂xy

)2
σ̂xx

= σ̂y.x + β̂2
1 σ̂xx = 4.25.

The R-code that performs the computations is shown below:

sxy <- cov(y1s,y2)/var(y1s)
syy <- sum((y2-mean(y2))^2)
sxx <- mean((y1-mean(y1))^2)
beta1hat <- cov(y1s,y2)/var(y1s)
sigmaxxhat <- mean((y1-mean(y1))^2)
sigmaxyhat <- beta1hat*sigmaxxhat
beta0hat <- mean(y2)-beta1hat*mean(y1s)
muxhat <- mean(y1)
muyhat <- beta0hat+beta1hat*muxhat
sigmay.xhat <- (syy-sxy^2/sxx)/length(y2)
sigmayyhat <- sigmay.xhat +((sigmaxyhat^2)/sigmaxxhat)
rhohat <- sigmaxyhat/sqrt(sigmaxxhat*sigmayyhat)
byxhat <- cov(y1s,y2)/var(y1s)

and generates the ML estimates:

.μ̂x = 10,

μ̂y = 14.9,

592 13 Solution to Exercises

σ̂xx = 3.97,

σ̂yy = 4.25,

σ̂xy = 2.36,

ρ̂ = 0.57,

b̂yx = 0.59.

These estimates are all in good agreement with the true value of the parameters
defined in (13.26).

Exercise 5

1. Uncensored model:

(a) The loglikelihood is obtained taking logarithms of (12.11):

.l (b|y) = n ln b − b

n∑
i=1

yi. (13.36)

(b) The score is

.l′ (b|y) = n

b
−

n∑
i=1

yi. (13.37)

(c) The maximum likelihood estimator is obtained setting the derivative with
respect to b equal to zero and solving for b. This results in

.̂b = n∑n
i=1 yi

. (13.38)

(d) Fisher’s information is computed from

. l
′′
(b|y) = − n

b2
,

that yields

. I (b) = −E
[
l
′′
(b|Y)
]

= n

b2
. (13.39)

13.1 Likelihood Exercises I 593

2. Censored model:

(b) From (12.12), the contribution to the loglikelihood from one observation is

.l (b|yi) = I (yi < c) (ln b − byi) − I (yi = c) bc. (13.40)

(c) Associated first and second derivatives are

.l′ (b|yi) = I (yi < c)

(
1

b
− yi

)
− I (yi = c) c (13.41)

and

.l
′′
(b|yi) = −I (yi < c)

1

b2
. (13.42)

The score based on all the data is

.

n∑
i=1

l′ (b|yi) =
n∑

i=1

{
I (yi < c)

(
1

b
− yi

)
− I (yi = c) c

}

= r

b
−

r∑
i=1

yi − (n − r) c. (13.43)

(d) Setting to zero and solving leads to MLE of b :

.b̂ = r∑r
i=1 yi + (n − r) c

. (13.44)

In the absence of censoring, r = n and (13.44) is equal to (13.38).
a. Information is computed using (13.42):

. I (b) = −E

{
n∑

i=1

[
l
′′
(b|Yi)
]}

= E

{
n∑

i=1

[
I (Yi < c)

1

b2

]}

=
n∑

i=1

1

b2
Pr (Yi < c)

= n

b2
− n exp (−bc)

b2

= n

b2
Pr (Yi < c) . (13.45)

594 13 Solution to Exercises

In the absence of censoring c = ∞, Pr (Yi < c) = 1 and (13.45) is equal
to (13.39). Also, nPr (Yi < c) = E (r) (the number of non-censored records,
r , is binomially distributed, i.e. r ∼ Bi (n,Pr (Yi < c))).

Censoring reduces the amount of information in the data to infer b.

13.2 Likelihood Exercises II

Exercise 1

(a)
(b) Figure 13.2 depicts the relationship between Y (the rough measure of θ) and X,

the covariate (average drug level). A linear fit seems like a good approximation.
Here, Y is an 5 × 1 vector with the averages of the 5 groups of the 0/1
observations, and X is an 5 × 1 vector with the average drug level of the 5
groups. The linear fit is based on the model E(Yi |xi) = μ + βxi .

The least squares estimates of μ and β are

. β̂ = ˆCov (X, Y)

V̂ar (X)
= 1.07

8.35
= 0.13

μ̂ = X − β̂ Y = 0.47 − β̂ 2.33 = 0.17.

Fig. 13.2 Plot of Y versus
X—the data collected in five
groups with six observations
in each group

0 2 4 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

X

Y

13.2 Likelihood Exercises II 595

In these expressions, ˆCov (X, Y) is the sample covariance between the elements of
vectors X and Y , V̂ar (X) is the sample variance among the f ive observations in
X, X is the mean of the f ive observations in X and Y is the mean of the f ive
observations in Y .

According to the linear approximation, the estimated probabilities that future
individuals will show the disease when exposed to a drug level equal to −3, 1, 9 are

. ̂μ + β̂ (−3) = −0.22

μ̂ + β̂ 1 = 0.30

μ̂ + β̂ 9 = 1.32.

With the exception of the second, the probabilities do not lie within the interval
(0, 1).

c1. Taking logarithms of the likelihood results in the loglikelihood

. � (μ, β|y, x) =
30∑
i=1

{
yi ln

[
exp (μ + βxi)

1 + exp (μ + βxi)

]

+ (1 − yi) ln

[
1

1 + exp (μ + βxi)

]}

=
30∑
i=1

{yi (μ + βxi) − ln (1 + exp (μ + βxi))} . (13.46)

c2. The first derivatives of � (μ, β|y, x) with respect to μ and β are

.
∂� (μ, β|y, x)

∂μ
=

30∑
i=1

(
yi − exp (μ + βxi)

1 + exp (μ + βxi)

)
,

∂� (μ, β|y, x)

∂β
=

30∑
i=1

(
xiyi − xi exp (μ + βxi)

1 + exp (μ + βxi)

)
.

The second derivatives are

.
∂2� (μ, β|y, x)

(∂μ)2
= −

30∑
i=1

exp (μ + βxi)

(1 + exp (μ + βxi))
2
,

∂2� (μ, β|y, x)

(∂β)2
= −

30∑
i=1

x2
i exp (μ + βxi)

(1 + exp (μ + βxi))
2
,

∂2� (μ, β|y, x)

∂β∂μ
= −

30∑
i=1

xi exp (μ + βxi)

(1 + exp (μ + βxi))
2 .

596 13 Solution to Exercises

c3. The iterative system based on Newton-Raphson is

.

[
μ

β

]
t+1

=
[

μ

β

]
t

+
⎡
⎣
∑30

i=1
exp(μ+βxi)

(1+exp(μ+βxi))
2

∑30
i=1

xi exp(μ+βxi)

(1+exp(μ+βxi))
2∑30

i=1
xi exp(μ+βxi)

(1+exp(μ+βxi))
2

∑30
i=1

x2i exp(μ+βxi)

(1+exp(μ+βxi))
2

⎤
⎦

−1

μ=μt
β=βt⎡

⎣
∑30

i=1

(
yi − exp(μ+βxi)

1+exp(μ+βxi)

)
∑30

i=1

(
xiyi − xi exp(μ+βxi)

1+exp(μ+βxi)

)
⎤
⎦

μ=μt
β=βt

. (13.47)

The following R-code implements the Newton-Raphson algorithm:

CODE1301
rm(list=ls()) # Clear the workspace
set.seed(12371)
CREATE BINARY DATA
mu <- -2
beta <- 0.7
cov <- rnorm(30,2,3) # GENERATE THE COVARIATE
xb <- cov*beta
p1 <- pnorm(mu+xb) # PROBABILITIES ACCORDING TO PROBIT MODEL
CREATE DATA:
dat1 <- cbind(rbinom(30,1,p1),round(cov,digits=0))
colnames(dat1) <- c("Y", "X")
END OF GENERATION OF DATA
nit <- 10 # NUMBER OF N-R ITERATIONS
miu <- matrix(data=NA, nrow=nit+1,ncol=1)
beta <- matrix(data=NA, nrow=nit+1,ncol=1)
resultnr <- matrix(data=NA,nrow=nit,ncol=3)
START VALUES FOR MIU AND BETA
miu [1]<- 0.17
beta[1] <- 0.13
for (i in 1:nit)
{

vc11 <- - sum(exp(miu[i]+beta[i]*dat1[,2])/((1+exp(miu[i]+
beta[i]*dat1[,2]))^2))

vc22 <- - sum(dat1[,2]^2*exp(miu[i]+ beta[i]*dat1[,2])/
((1+exp(miu[i]+ beta[i]*dat1[,2]))^2))

vc12 <- - sum(dat1[,2]*exp(miu[i]+ beta[i]*dat1[,2])/
((1+exp(miu[i]+beta[i]*dat1[,2]))^2))

vcmat <- matrix(c(vc11,vc12,vc12,vc22),nrow=2,ncol=2)
vcmatinv <- solve(vcmat)
fd1 <- sum((dat1[,1]-(exp(miu[i]+ beta[i]*dat1[,2]))/

(1+exp(miu[i]+beta[i]*dat1[,2]))))

fd2 <- sum(((dat1[,1]*dat1[,2])-(dat1[,2]*exp(miu[i]+
beta[i]*dat1[,2]))/(1+exp(miu[i]+beta[i]*dat1[,2]))))

fd <- matrix(c(fd1,fd2),nrow=2,ncol=1)
sol0 <- matrix(c(miu[i], beta[i]),nrow=2,ncol=1)
sol1 <- sol0+(-vcmatinv%*%fd)
miu[i+1] <-sol1[1]

13.2 Likelihood Exercises II 597

beta[i+1] <- sol1[2]
resultnr[i,] <- c(i,sol1[1],sol1[2])

}
resultnr

[,1] [,2] [,3]
[1,] 1 -1.366182 0.5567651
[2,] 2 -2.014602 0.7949203
[3,] 3 -2.278267 0.8957553
[4,] 4 -2.314792 0.9096833
[5,] 5 -2.315397 0.9099107
[6,] 6 -2.315397 0.9099107
[7,] 7 -2.315397 0.9099107
[8,] 8 -2.315397 0.9099107
[9,] 9 -2.315397 0.9099107
[10,] 10 -2.315397 0.9099107

ASYMPTOTIC COVARIANCE MATRIX
-vcmatinv

[,1] [,2]
[1,] 0.8641485 -0.2427031
[2,] -0.2427031 0.1003475

COMPUTE PROBABILITIES THAT Y=1, GIVEN X = -3, 1, 9
p1<-exp(miu[i+1]+beta[i+1]*(-3))/(1+exp(miu[i+1]+

beta[i+1]*(-3)))
p1

[1] 0.006399413

p2<-exp(miu[i+1]+beta[i+1]*1)/(1+ exp(miu[i+1]+beta[i+1]*1))
p2

[1] 0.196947

p3<-exp(miu[i+1]+beta[i+1]*9)/(1+ exp(miu[i+1]+beta[i+1]*9))
p3

[1] 0.9971957

After a few iterations, the Newton-Raphson method converges to μ̂ = −2.32 and
β̂ = 0.91

c4. The asymptotic covariance matrix of the ML estimators is shown above. The
95% confidence interval for β based on the asymptotic variance is

.Pr
(
0.91 − 1.96 × √

0.100 < β < 0.91 + 1.96 × √
0.100
)

= 0.95,

598 13 Solution to Exercises

equal to

. Pr (0.29 < β < 1.53) = 0.95. (13.48)

c5. The three probabilities (also displayed at the bottom of the code) are

. Pr
(
Y = 1|μ̂, β̂, x = −1

)
= 0.006,

Pr
(
Y = 1|μ̂, β̂, x = 3

)
= 0.20,

Pr
(
Y = 1|μ̂, β̂, x = 9

)
= 0.99,

all within the allowed range (0, 1).
As a comparison, the following code uses the R function OPTIM to maximise

the loglikelihood and to obtain asymptotic variances (OPTIM minimises the cost
function defined as the negative of the loglikelihood). The bottom part of the code
presents the simplest solution to this problem using the standard R function glm:

CODE1301 (cont)
USE THE R-FUNCTION OPTIM TO COMPARE WITH THIS PROGRAMME
dat <- data.frame(dat1)
logl <- function(data,par)
{

with(data,-sum(Y*(par[1]+par[2]*X)-
log(1+exp(par[1]+par[2]*X))))

}
result<-optim(par=c(-3.5,0.05),logl,data=dat,

hessian=TRUE,method="BFGS")
IF METHOD IS NOT INCLUDED IN THE CALL, OPTIM USES
THE NELDER-MEAD ALGORITHM
result <- optim(par=c(-3.5,0.05),logl,data=dat,hessian=TRUE,
method="BFGS", control=list(trace=1,REPORT=1))
THIS CALL INCLUDES control=list(trace=1,REPORT=1) WHICH
PROVIDES THE PROGRESS OF THE ITERATION
result$par

[1] -2.3154794 0.9099291

solve(result$hessian)

[,1] [,2]
[1,] 0.8641949 -0.2427165
[2,] -0.2427165 0.1003514

########### USE GLM in R
d <- data.frame(dat1)
logreg <- glm(d$Y~d$X, data=d, family=binomial(link="logit"))
resglm <- summary(logreg)
pred <- predict(logreg,d,type="response")

13.2 Likelihood Exercises II 599

logscore <- sum(d$Y*log(pred)+(1-d$Y)*log(1-pred)) # LogLik of
full model evaluated at ML estimates
-2*logscore # DEVIANCE FULL MODEL

[1] 22.81623

resglm$deviance

[1] 22.81623

resglm$coefficients[,1:3]

Estimate Std. Error z value
(Intercept) -2.3153968 0.9295501 -2.490879
d$X 0.9099107 0.3167592 2.872563

NULL MODEL
logregnull <- glm(d$Y~1,data=d,family=binomial(link="logit"))
resglmnull <- summary(logregnull)
prednull <- predict(logregnull,d,type="response")
logscorenull <- sum(d$Y*log(prednull)+(1-d$Y)*log(1-prednull))
LogLik of null model evaluated at ML estimate
-2*logscorenull # DEVIANCE NULL MODEL

[1] 41.4554

resglmnull$deviance

[1] 41.4554

resglmnull$coefficients[1:3]

[1] -0.1335314 0.3659621 -0.3648776

Exercise 2

The model is paramatrised as

. Pr (Yi = 1|xi, β) = Pr (ui > 0|xi, β)

= �
(
x′
iβ
)

(13.49)

and

. Pr (Yi = 0|xi, β) = 1 − �
(
x′
iβ
)
. (13.50)

600 13 Solution to Exercises

The conditional expectations are

. E (ui |β, xi, yi = 1) = x′
iβ + φ

(
x′
iβ
)

�
(
x′
iβ
) ,

E (ui |β, xi, yi = 0) = x′
iβ − φ

(
x′
iβ
)

1 − �
(
x′
iβ
) .

The likelihood is

. L (β|x, y) ∝
∏N

i=1

[(
�
(
x′
iβ
))yi
(
1 − �

(
x′
iβ
))1−yi
]

and the loglikelihood

. � (β|x, y) =
N∑

i=1

[
yi ln�

(
x′
iβ
)+ (1 − yi) ln

(
1 − �

(
x′
iβ
))]

.

The R-code below implements the EM algorithm using the probit model. The
result is in good agreement with that obtained with the R function OPTIM shown at
the bottom:

CODE1302
LikIIQ2 EM algorithm with probit model
rm(list=ls()) # Clear the workspace
set.seed(12371)
CREATE BINARY DATA
mu <- -2
beta <- 0.7
cov <- rnorm(30,2,3) # GENERATE THE COVARIATE
xb <- cov*beta
p1 <- pnorm(mu+xb) # PROBABILITIES ACCORDING TO PROBIT MODEL
#p1 <- rbeta(30,2,2)
dat1 <- cbind(rbinom(30,1,p1),round(cov,digits=0)) # CREATE DATA
colnames(dat1) <- c("Y", "X")
d <- data.frame(dat1)
attach(d)
m <- cbind(1,X)
mt <- t(m)
mtm <- mt%*%m
miu <- -1
beta <- 1
FUNCTION expu THAT COMPUTES CONDITIONAL EXPECTATIONS
HERE WE ASSUME THAT Y=1 IF u>0
expu <- function(data,par,i)
{

miu <- par[1]
beta <- par[2]
if(Y[i]==1)
{
with(data,miu+beta*X[i]+

(dnorm(miu+beta*X[i])/pnorm(miu+beta*X[i])))
} else

13.2 Likelihood Exercises II 601

{
with(data,miu+beta*X[i]-

(dnorm(miu+beta*X[i])/(1-pnorm(miu+beta*X[i]))))
}

}
FUNCTION loglik TO COMPUTE THE LOG-LIKELIHOOD
loglik <- function(data,par)
{

miu <-par[1]
beta <- par[2]
with(data,sum(Y*log(pnorm(miu+beta*X))+

(1-Y)*log(1-pnorm(miu+beta*X))))
}
iter <- 100
euvec <- matrix(data=NA, nrow=30,ncol=1)
sol <- matrix(data=NA, nrow=iter, ncol=2)
llik <- matrix(data=NA,nrow=iter,ncol=1)
result <- matrix(data=NA,nrow=iter,ncol=3)
PLACE 30 CONDITIONAL EXPECTATIONS IN euvec AND ITERATE
for (i in 1:iter)
{

for (j in 1:length(X))
{

euvec[j] <- expu(d,c(miu,beta),j)
}
sol[i,] <- t(solve(mtm)%*%mt%*%euvec)
miu <- sol[i,1]
beta <- sol[i,2]
llik[i] <-loglik(d,c(miu,beta))
result[i,] <- c(miu,beta,llik[i])

}
FINAL ITERATES OF THE EM ALGORITHM
tail(result)

[,1] [,2] [,3]
[95,] -1.386253 0.5462922 -11.22912
[96,] -1.386253 0.5462921 -11.22912
[97,] -1.386253 0.5462921 -11.22912
[98,] -1.386253 0.5462920 -11.22912
[99,] -1.386253 0.5462920 -11.22912
[100,] -1.386253 0.5462919 -11.22912

USE THE R-FUNCTION OPTIM TO COMPARE WITH THIS PROGRAMME
logl <- function(data,par)
{

miu <- par[1]
beta <- par[2]
with(data,-sum(Y*log(pnorm(miu+beta*X))+

(1-Y)*log(1-pnorm(miu+beta*X))))
}
result1<-optim(par=c(-1,1),logl,data=d,hessian=TRUE,

method="BFGS")
ML ESTIMATES USING OPTIM
result1$par

[1] -1.386252 0.546292

602 13 Solution to Exercises

Exercise 3

(i) To implement the Newton-Raphson algorithm, first and second derivatives of
the loglikelihood are needed. These are

.
∂� (β0, β1|n, x)

∂β0
=

30∑
i=1

(
yi − ni exp (β0 + β1xi)

1 + exp (β0 + β1xi)

)
,

∂� (β0, β1|n, x)

∂β
=

30∑
i=1

(
xiyi − nixi exp (β0 + β1xi)

1 + exp (β0 + β1xi)

)
.

and

.
∂2� (β0, β1|n, x)

(∂β0)
2 = −

30∑
i=1

ni exp (β0 + β1xi)

(1 + exp (β0 + β1xi))
2 ,

∂2� (β0, β1|n, x)

(∂β)2
= −

30∑
i=1

nix
2
i exp (β0 + β1xi)

(1 + exp (β0 + β1xi))
2 ,

∂2� (β0, β1|n, x)

∂β∂β0
= −

30∑
i=1

nixi exp (β0 + β1xi)

(1 + exp (β0 + β1xi))
2
.

Therefore the iterative system based on Newton-Raphson is

.

[
β0

β

]
t+1

=
[

β0

β

]
t

+
⎡
⎣
∑30

i=1
ni exp(β0+β1xi)

(1+exp(β0+β1xi))
2

∑30
i=1

nixi exp(β0+β1xi)

(1+exp(β0+β1xi))
2∑30

i=1
nixi exp(β0+β1xi)

(1+exp(β0+β1xi))
2

∑30
i=1

x2i exp(β0+β1xi)

(1+exp(β0+β1xi))
2

⎤
⎦

−1

β0=β0t
β=βt⎡

⎣
∑30

i=1

(
yi − ni exp(β0+β1xi)

1+exp(β0+β1xi)

)
∑30

i=1

(
xiyi − nixi exp(β0+β1xi)

1+exp(β0+β1xi)

)
⎤
⎦

β0=β0t
β=βt

. (13.51)

To obtain start values for the iteration, rough estimates of β0 and β1 can be
obtained from θi ≈ yi/ni . Then,

.logit (θi) = ln

(
θi

1 − θi

)
= β0 + β1xi, i = 1, . . . , 4. (13.52)

and

.logit (yi/ni) = z = β0 + β1xi + ei, i = 1, . . . , 4. (13.53)

13.2 Likelihood Exercises II 603

The logits of 0 and 1 are not defined, so for the purpose of this approximation,
change y1 = 0.5 and y4 = 4.5. Writing (13.53) as z = Xb + e, the least squares
estimates are

. ̂β0 = 0.1; β̂1 = 2.9.

The R-code below fits the likelihood using Newton-Raphson. As before, the
function OPTIM is included as a check.

CODE1303
NEWTON-RAPHSON IMPLEMENTATION OF LIKELIHOOD PROBLEM II,
rm(list=ls()) # Clear the workspace
set.seed(771133)
BINOMIAL DATA SET (Y "successes" out of n=5 "trials")
dat1 <-
matrix(c(0,-0.86,5,1,-0.3,5,3,-0.05,5,5,0.73,5),

nrow=4,ncol=3,byrow=T)
colnames(dat1) <-c("Y","X","n")
dat1

Y X n
[1,] 0 -0.86 5
[2,] 1 -0.30 5
[3,] 3 -0.05 5
[4,] 5 0.73 5

nit <- 10
miu <- matrix(data=NA, nrow=nit+1,ncol=1)
beta <- matrix(data=NA, nrow=nit+1,ncol=1)
resultnr <- matrix(data=NA, nrow=nit,ncol=2)

miu [1]<- 0.1
beta[1] <- 2.9
for (i in 1:nit)
{

vc11 <- - sum(5*exp(miu[i]+beta[i]*dat1[,2])/
((1+exp(miu[i]+ beta[i]*dat1[,2]))^2))

vc22 <- - sum(5*dat1[,2]^2*exp(miu[i]+ beta[i]*dat1[,2])/
((1+exp(miu[i]+ beta[i]*dat1[,2]))^2))

vc12 <- - sum(5*dat1[,2]*exp(miu[i]+ beta[i]*dat1[,2])/
((1+exp(miu[i]+ beta[i]*dat1[,2]))^2))

vcmat <- matrix(c(vc11,vc12,vc12,vc22),nrow=2,ncol=2)
vcmatinv <- solve(vcmat)
fd1 <- sum((dat1[,1]-(5*exp(miu[i]+ beta[i]*dat1[,2]))/

(1+exp(miu[i]+ beta[i]*dat1[,2]))))
fd2 <- sum(((dat1[,1]*dat1[,2])-(5*dat1[,2]*exp(miu[i]+

beta[i]*dat1[,2]))/(1+exp(miu[i]+ beta[i]*dat1[,2]))))

fd <- matrix(c(fd1,fd2),nrow=2,ncol=1)
sol0 <- matrix(c(miu[i], beta[i]),nrow=2,ncol=1)
sol1 <- sol0+(-vcmatinv%*%fd)
miu[i+1] <-sol1[1]
beta[i+1] <- sol1[2]
resultnr[i,] <- c(miu[i+1],beta[i+1])

}
resultnr

604 13 Solution to Exercises

[,1] [,2]
[1,] 0.3048018 4.425389
[2,] 0.5560914 5.914432
[3,] 0.7610883 7.169775
[4,] 0.8394160 7.696086
[5,] 0.8465271 7.748401
[6,] 0.8465802 7.748817
[7,] 0.8465802 7.748817
[8,] 0.8465802 7.748817
[9,] 0.8465802 7.748817
[10,] 0.8465802 7.748817

-vcmatinv

[,1] [,2]
[1,] 1.038535 3.545987
[2,] 3.545987 23.743865

USE THE R-FUNCTION OPTIM TO COMPARE WITH THIS PROGRAMME
dat <- data.frame(dat1)
logl <- function(data,par)
{

with(data,-sum(Y*(par[1]+par[2]*X)-
5*log(1+exp(par[1]+par[2]*X))))

}
result <- optim(par=c(0.1,2.9),logl,data=dat,

hessian=TRUE,method="BFGS")
IF METHOD NOT INCLUDED, OPTIM USES NELDER-MEAD ALGORITHM
THIS CALL INCLUDES control=list(trace=1,REPORT=1):
PROVIDES THE PROGRESS OF THE ITERATION
result$par

[1] 0.8468243 7.7496258

solve(result$hessian)

[,1] [,2]
[1,] 1.038684 3.546793
[2,] 3.546793 23.748757

(ii) The EM algorithm is constructed assuming the probit model :

. Pr (Yi = 1|xi, β) = Pr (ui > 0|xi, β)

= Pr
(
x′
iβ + ei > 0|xi, β

)
= Pr
(
ei > −x′

iβ|xi, β
)

= �
(
x′
iβ
)
,

. Pr (Yi = 0|xi, β) = 1 − �
(
x′
iβ
)
,

13.2 Likelihood Exercises II 605

where ei ∼ N (0, 1) and �(z) is the cdf of the standard normal distribution
evaluated at z. The binomial likelihood is proportional to

. L (β|n,N, x) ∝
∏C

i=1

[
�
(
x′
iβ
)]ni
[
1 − �

(
x′
iβ
)]Ni−ni

and the loglikelihood is

. � (β|n,N, x) =
C∑

i=1

ni ln�
(
x′
iβ
)+ (Ni − ni) ln

(
1 − �

(
x′
iβ
))

where C is the number of levels of the covariate (in the example, C = 4).
After 950 iterations the system converges to β̂0 = 0.484 and β̂1 = 4.459. At this

point the loglikelihood is equal to −5.869818. The R-code below fits the likelihood
using the EM algorithm based on the iterative system (3.93) on page 116. The R-
function OPTIM is included as a comparison. It provides the same estimates and, in
addition, an estimate of the asymptotic covariance matrix. This is

. Var
(
β̂0, β̂1
) =
[
0.434 1.575
1.575 9.733

]
.

Based on Var
(
β̂0, β̂1
)
, the 95% confidence intervals for β0 and β1 are

. Pr (−0.807 < β0 < 1.775) = 0.95,

Pr (−1.655 < β0 < 10.574) = 0.95,

reflecting large uncertainty in the inference.

CODE1304
EM PROBIT MODEL; LIKELIHOOD PROBLEMS II, QUESTION 3ii
rm(list=ls()) # Clear the workspace
set.seed(12371)
BINOMIAL DATA (Y successes out of n=5 trials)
dat1 <-
matrix(c(0,-0.86,5,1,-0.3,5,3,-0.05,5,5,0.73,5),

nrow=4,ncol=3,byrow=T)
colnames(dat1) <-c("n","X","N")
dat1

n X N
[1,] 0 -0.86 5
[2,] 1 -0.30 5
[3,] 3 -0.05 5
[4,] 5 0.73 5

606 13 Solution to Exercises

nit <- 1000
miu <- 0.1
beta <- 2.9
dat <- data.frame(dat1)
col1 <- matrix(rep(1:1,length(dat1[,1])),

nrow=length(dat1[,1]),ncol=1)
m <- matrix(c(col1,dat1[,2]),nrow=length(dat1[,1]),ncol=2)
mt <- t(m)
dN <- diag(dat$N)
dn <- diag(dat$n)
dd <- dN-dn
FUNCTION loglik TO COMPUTE THE LOG-LIKELIHOOD
loglik <- function(data,par)
{

miu <-par[1]
beta <- par[2]
with(data, sum(n*log(pnorm(miu+beta*X))+

(N-n)*log(1-pnorm(miu+beta*X))))
}
CONSTRUCT FUNCTIONS expu0 and expu1 THAT COMPUTE
CONDITIONAL EXPECTATIONS
ASSUME: Y=1 IF u>0; THEREFORE Pr[Y=1]=F (CDF of std. normal)
expu1 <- function(data,par,i)
{

miu <- par[1]
beta <- par[2]
with(data,(miu+beta*X[i]+

dnorm(miu+beta*X[i])/pnorm(miu+beta*X[i])))
}
expu0 <- function(data,par,i)
{

miu <- par[1]
beta <- par[2]
with(data,(miu+beta*X[i]-

dnorm(miu+beta*X[i])/(1-pnorm(miu+beta*X[i]))))
}
sol <- matrix(data=NA, nrow=nit, ncol=2)
e1 <- matrix(data=NA,nrow=length(dat1[,1]),ncol=1)
e0 <- matrix(data=NA,nrow=length(dat1[,1]),ncol=1)
llik <- matrix(data=NA,nrow=nit,ncol=1)
result <- matrix(data=NA,nrow=nit,ncol=3)
for (i in 1:nit)
{

for (j in 1:length(dat1[,1]))
{

e1[j] <- expu1(data=dat,c(miu,beta),j)
e0[j] <- expu0(data=dat,c(miu,beta),j)

}
sol[i,] <- t(solve(mt%*%dN%*%m)%*%(mt%*%dn%*%e1+mt%*%dd%*%e0))
miu <- sol[i,1]
beta <- sol[i,2]
llik[i] <-loglik(dat,c(miu,beta))
result[i,] <- c(miu,beta,llik[i])

}
tail(result)

[,1] [,2] [,3]
[995,] 0.4839674 4.45866 -5.869818
[996,] 0.4839674 4.45866 -5.869818

13.2 Likelihood Exercises II 607

[997,] 0.4839674 4.45866 -5.869818
[998,] 0.4839674 4.45866 -5.869818
[999,] 0.4839674 4.45866 -5.869818
[1000,] 0.4839674 4.45866 -5.869818

USE THE R-FUNCTION OPTIM TO COMPARE WITH THIS PROGRAMME
logl <- function(data,par)
{

miu <- par[1]
beta <- par[2]
with(data,-sum(n*log(pnorm(miu+beta*X))+

(N-n)*log(1-pnorm(miu+beta*X))))
}
result1 <- optim(par=c(0.1,2.9),logl,data=dat,

hessian=TRUE,method= "BFGS")
result2 <- optim(par=c(0.1,2.9),logl,data=dat,

hessian=TRUE)
result1$par

[1] 0.4839727 4.4587022

solve(result1$hessian)

[,1] [,2]
[1,] 0.4343711 1.575394
[2,] 1.5753937 9.732975

Figure 13.3 displays the trajectory of the EM iterates for μ. The corresponding
plot for β shows a similar pattern.

0 200 400 600 800 1000

0.
15

0.

20

0.
25

0.

30

0.
35

0.

40

0.
45

Iterate number

M
L

es
tim

at
e

Fig. 13.3 Trajectory of the EM iterates for μ

608 13 Solution to Exercises

(ii) Data (number of deaths) are assumed to be binomially distributed. This
requires that the binary observations contributing to the number of deaths are
independent. This will not be the case if the data consist of related individuals:
in the presence of genetic variation or of effects of common environment
records of relatives are correlated.

When observations within a class consist of full-sibs, the liability for a given
individual (assume the probit model for the example) can be written

.uij = x′
iβ + fi + eij , . . . j = 1, . . . , Ni (13.54)

where now fi is the effect of the ith full-sib family common to the Ni records that

belong to covariate level i and eij
iid∼ N (0, 1). Assume that fi

iid∼ N
(
0, σ 2

f

)
, where

σ 2
f is the covariance between full-sibs. Then,

. Cov
(
uij , uik

) = σ 2
f .

Conditioning on fi , [ui |xi, β, fi]
iid∼ N
(
x′
iβ + fi, 1

)
and

. Pr
(
Yij = 1, Yik = 1|xi, β, fi

) = Pr
(
uij > 0, uik > 0|xi, β, fi

)
= Pr
(
uij > 0|xi, β, fi

)
Pr (uik > 0|xi, β, fi)

= Pr
(
Yij = 1|xi, β, fi

)
Pr (Yik = 1|xi, β, fi) .

In view of the conditional independence of Yij , given fi , the sum of independent

binary random variables ni = ∑Ni
j=1 Yij is binomial. In the probit model, the

probability that Yij = 1 is

. Pr
(
Yij = 1|xi, β, fi

) = Pr (ui > 0|xi, β, fi)

= Pr
(
x′
iβ + fi + eij > 0|xi, β, fi

)
= Pr
(
eij > −x′

iβ − fi |xi, β, fi

)
= �
(
x′
iβ + fi

)

and

. Pr
(
Yij = 0|xi, β, fi

) = 1 − �
(
x′
iβ + fi

)
.

The conditional distribution of the data n = {ni}C
i=1 given vector f = {fi}C

i=1 is
binomial and takes the form:

.Pr (n|xi, β, f) =
∏C

i=1

[
�
(
x′
iβ + fi

)]ni
[
1 − �

(
x′
iβ + fi

)]Ni−ni

13.2 Likelihood Exercises II 609

and the marginal distribution of the data is obtained averaging over the distribution[
f |σ 2

f

]

. Pr (n|xi, β) =
∫ ∏C

i=1

[
�
(
x′
iβ + fi

)]ni
[
1 − �

(
x′
iβ + fi

)]Ni−ni p
(
f |σ 2

f

)
df

=
∏C

i=1

∫ [
�
(
x′
iβ + fi

)]ni
[
1 − �

(
x′
iβ + fi

)]Ni−ni p
(
fi |σ 2

f

)
dfi (13.55)

where the equality in the second line holds if the full-sib families are independent.
The likelihood is proportional to (13.55) whose construction requires the solution of
univariate integrals. In such univariate cases, numerical methods such as Gaussian
quadrature work well, and the problem does not pose a computational obstacle. A
benchmark paper pre McMC is Anderson and Aitkin (1985).

Exercise 4

The first R-code below generates genomic data (assumes genomic variance is 10
and residual variance is 15):

CODE1305
LIKELIHOOD PROBLEMS II QUESTION 4
DATA BASED ON GENOMIC MODEL AND OBTAIN THE SVD OF WW’(1/m)
rm(list=ls()) # CLEAR WORKSPACE
set.seed(1327)
nindiv<-2000
nmark<-20000
nt<-nindiv*nmark
X<-matrix(nrow= nindiv,ncol= nmark,rbinom(n=nt,size=2,p=.5))
stdev <- matrix(data=NA,nrow= nmark,ncol=1)
W <- matrix(data=NA,nrow= nindiv,ncol=nmark)
U <- matrix(data=NA,nrow= nindiv,ncol= nindiv)
G<-matrix(data=NA,nrow= nindiv,ncol= nindiv)
cm <- colMeans(X)
CREATE MATRIX OF STANDARDISED MARKER GENOTYPE CODES
for (i in 1:nmark)
{

W[,i] <-(X[,i]-cm[i]) / sd(X[,i])
}
COULD USE INSTEAD:
W <- scale(X)
#qr(X)$rank
#qr(W)$rank
#nmark MARKER VALUES: REALISATIONS FROM N(0,I sqrt(0.001))
g <- (1/sqrt(nmark))*W%*%rnorm(nmark,mean=0,sd=sqrt(10))
GENERATE nindiv PHENOTYPES WITH MEAN 0, VAR=10+15,
GENOMIC HERITABILITY=10/(10+15)=0.4
#PARAMETER k = Vg/Ve = 10/15 =0.67
y <- g+rnorm(nindiv,mean=0,sd=sqrt(15))
GENOMIC RELATIONSHIP MATRIX G
G <- (1/nmark)*W%*%t(W)

610 13 Solution to Exercises

SVD OF G
EVD <- eigen(G)
names(EVD)

[1] "values" "vectors"

head(EVD$values)

[1] 1.731427 1.724233 1.722874 1.715446 1.710233 1.707764

U <- EVD$vector
val <- EVD$values
val[length(y)] <-0
D <- diag(val,nrow=nindiv)
ytilde <- t(U)%*%y
dim(ytilde)

[1] 2000 1

#END OF GENERATION OF DATA

(i) The R-code below performs the Newton-Raphson computations and the top
part includes a call to OPTIM as a check:

CODE1305(cont)
FUNCTIONS loglik AND logliktransf TO COMPUTE LOG-LIKELIHOODS
loglik <- function(data,par)
{

ve <- par[1]
k <- par[2]
ll <- -0.5*(length(ytilde)*log(ve)+sum(log(val*k+1))+

(1/ve)*sum(ytilde^2/(val*k+1)))
return(-ll)

}
FUNCTION logliktransf TO COMPUTE TRANSFORMED LOG-LIKELIHOOD
logliktransf <- function(data,par)
{
nue <- par[1]
nug <- par[2]
lltransf<--0.5*(length(ytilde)*nue+sum(log(val*exp(nug-nue)+1))+

(1/exp(nue))*sum(ytilde^2/(val*exp(nug-nue)+1)))

return(-lltransf)
}

FUNCTION OTPIM TO COMPARE WITH RESULTS TO COME
result1 <-optim(par=c(5,0.5),loglik,data =ytilde,hessian=TRUE)
result1$par

[1] 18.2720286 0.2991165

13.2 Likelihood Exercises II 611

OBTAIN ASYMPTOTIC VARIANCES BY INVERSION OF THE -HESSIAN
solve(result1$hessian)

[,1] [,2]
[1,] 5.6228947 -0.38289962
[2,] -0.3828996 0.02772035

USE OPTIM TO MAXIMIZE TRANSFORMED LOG-LIKELIHOOD
result2 <-
optim(par=c(exp(5),exp(0.5)),logliktransf,

data=ytilde,hessian=TRUE)
result2$par

[1] 2.901324 1.714862

solve(result2$hessian)

[,1] [,2]
[1,] 0.01619379 -0.04998708
[2,] -0.04998708 0.17211488

NEWTON-RAPHSON COMPUTATIONS
nit <- 20
resultnr<-matrix(data=NA,nrow=nit,ncol=3)
llike<-matrix(data=NA,nrow=nit,ncol=1)
ve <- matrix(data=NA, nrow=nit+1,ncol=1)
k <- matrix(data=NA, nrow=nit+1,ncol=1)
ve[1] <- 7
k[1] <- 0.4
llike[1] <- -loglik(ytilde,c(ve[1],k[1]))
for (i in 1:nit)
{

vc11 <- - 0.5*((2/ve[i]^3)*sum(ytilde^2/(1+k[i]*val))-
length(ytilde)/ve[i]^2)

vc12 <- -0.5*(1/ve[i]^2)*sum(val*ytilde^2/(1+k[i]*val)^2)
vc22 <- -0.5*((1/ve[i])*sum(2*val^2*ytilde^2/(1+k[i]*val)^3)-

sum(val^2/(1+k[i]*val)^2))
vcmat <- matrix(c(vc11,vc12,vc12,vc22),nrow=2,ncol=2)
vcmatinv <- solve(vcmat)
fd1 <- -0.5*((length(ytilde)/ve[i])-

(1/ve[i]^2)*sum(ytilde^2/(1+k[i]*val)))
fd2<--0.5*(sum(val/(1+k[i]*val))-

(1/ve[i])*sum(val*ytilde^2/((1+k[i]*val)^2)))
fd <- matrix(c(fd1,fd2),nrow=2,ncol=1)
sol0 <- matrix(c(ve[i],k[i]),nrow=2,ncol=1)
sol1 <- sol0 - (vcmatinv%*%fd)
ve[i+1] <- sol1[1]
k[i+1] <- sol1[2]
llike[i+1] <- loglik(ytilde,c(ve[i+1],k[i+1]))
resultnr[i,] <- c(sol1[1],sol1[2],llike[i])

}
#PRINT RESULTS
tail(resultnr)

612 13 Solution to Exercises

[,1] [,2] [,3]
[15,] 18.2763 0.2986934 4164.218
[16,] 18.2763 0.2986934 4164.218
[17,] 18.2763 0.2986934 4164.218
[18,] 18.2763 0.2986934 4164.218
[19,] 18.2763 0.2986934 4164.218
[20,] 18.2763 0.2986934 4164.218

-vcmatinv

[,1] [,2]
[1,] 5.6031133 -0.38126712
[2,] -0.3812671 0.02758818

(i) After 8-10 iterations the Newton-Raphson algorithm converges to . ̂σ 2
e = 18.28

and .̂k = 0.30. The asymptotic variance-covariance matrix is

. Var
(
σ̂ 2

e , k̂
)

=
[

5.603 −0.381
−0.381 0.028

]
.

(ii) The values obtained using OPTIM are .̂σ 2
e = 18.27 and .̂k = 0.30 with

asymptotic variances:

. Var
(
σ̂ 2

e , k̂
)

=
[

5.622 −0.383
−0.383 0.028

]
.

(iii)

The ML estimate of .σ 2
g = kσ 2

e is .̂kσ̂ 2
e = 5.48. The asymptotic variance is

.Var
(
g
(
θ̂
)) = ∂λ

∂θ ′

∣∣∣∣
θ=θ̂

Var
(
θ̂
) ∂λ′

∂θ

∣∣∣∣
θ=θ̂

. (13.56)

In this expression, the original parameters are .θ ′ = (σ 2
e , k) and we are interested in

. λ = g (θ) =
(
σ 2

e , kσ 2
e

)′
,

where .kσ 2
e = σ 2

g . Now,

.
∂λ

∂θ ′ =
⎡
⎣

∂σ 2
e

∂σ 2
e

∂σ 2
e

∂k

∂kσ 2
e

∂σ 2
e

∂kσ 2
e

∂k

⎤
⎦ =
[
1 0
k σ 2

e

]
.

13.2 Likelihood Exercises II 613

Therefore (13.56) is

. Var
(
σ̂ 2

e , k̂σ̂ 2
e

)
=
[

1 0
0.30 18.28

] [
5.603 −0.381

−0.381 0.028

] [
1 0.30
0 18.28

]

=
[

5.603 −5.266
−5.266 5.693

]

and .Var
(
σ̂ 2

g

)
= 5.693.

(iv) The R-code below performs the EM computations based on the iterative
system (3.140):

CODE1305 (cont)
EM COMPUTATIONS
emiter<-1000
vgem<-5
veem<-10
kem<-vgem/veem
resultem<-matrix(data=NA,nrow=emiter,ncol=4)
for (i in 1:emiter)
{
expalfa<-kem*(val/(val*kem+1))*ytilde
tol<-0.00001
trdiv<-vgem*sum(1/(val[val>tol]*kem+1))
trv<- vgem*sum(val/(val*kem+1))
vgem<-((kem^2)*sum(ytilde^2*val/(val*kem+1)^2)+trdiv)/(nindiv-1)
veem<-(sum(y^2)-2*sum(expalfa*ytilde)+sum(expalfa^2)+trv)/nindiv
kem<-vgem/veem
loglike<-loglik(ytilde,c(veem,kem))
resultem[i,]<-c(vgem,veem,kem,-loglike)
}
tail(resultem)

[,1] [,2] [,3] [,4]
[995,] 5.464388 18.27113 0.2990722 -4164.218
[996,] 5.464361 18.27116 0.2990703 -4164.218
[997,] 5.464335 18.27118 0.2990684 -4164.218
[998,] 5.464308 18.27121 0.2990666 -4164.218
[999,] 5.464282 18.27124 0.2990647 -4164.218
[1000,] 5.464256 18.27126 0.2990629 -4164.218

After approximately 950 iterations, the EM algorithm converges to the same
estimates obtained using Newton-Raphson (to 2 decimal places). These are . σ̂ 2

g =
5.46, .̂σ 2

e = 18.27 and .k̂ = 0.30.

614 13 Solution to Exercises

13.3 Bayes Exercises I

Exercise 1

Start by reading in the data:

y <- c(45.83,50.37,50.06,51.59,48.43,52.75,42.92,48.57,
46.18,50.20)

ybar <- mean(y)
ssq <- var(y)

The sample mean . ȳ and the sample variance .S2 =
n∑

i=1
(yi−y)2

n−1 are 48.69 and 8.859,
respectively, with sample size .n = 10:

(i) Derivation of the density of .[μ|y] requires integration of (12.25) with respect to
. σ 2. Using

.

n∑
i=1

(yi − μ)2 = (n − 1) S2 + n (y − μ)2 ,

where

. S2 =

n∑
i=1

(yi − y)2

n − 1
,

leads to

. p
(
μ, σ 2|y

)
∝
(
σ 2
)−(n

2+1)
exp

(
− 1

2σ 2

[
(n − 1) S2 + n (y − μ)2

])
.

(13.57)

Let .α = n/2. Then

. p (μ|y) =
∫ ∞

0
K
(
σ 2
)−α−1

exp

(
− 1

2σ 2

[
(n − 1) S2 + n (y − μ)2

])
dσ 2,

(13.58)

where K is a constant of integration. Let

.A = (n − 1) S2 + n (y − μ)2 ,

x = A

2σ 2 ,

dσ 2 = −A

2
x−2dx.

13.3 Bayes Exercises I 615

Substituting in (13.58)

. p (μ|y) = −A

2

∫ ∞

0
K

(
A

2x

)−α−1

exp (−x) x−2dx

= −
(

A

2

)(
A

2

)−α−1 ∫ ∞

0
K

(
1

x

)−α−1

exp (−x) x−2dx

∝ A−α

∫ ∞

0
xα−1 exp (−x) dx

∝ A−α

where the last line results from the fact that the integral, known as the Gamma
function is

.

∫ ∞

0
xα−1 exp (−x) dx = Γ (α) , α > 0,

a constant with respect to . μ. Then,

. p (μ|y) ∝
(
(n − 1) S2 + n (y − μ)2

)− n
2

=
(
(n − 1) S2 + n (y − μ)2

)−(v+1
2

)
,

where .v = n − 1. Finally,

.p (μ|y) ∝
(
1 + n (y − μ)2

vS2

)−
(

v+1
2

)

, (13.59)

that is the kernel of the density of a . t−distribution with .v = n − 1 degrees of
freedom, mean . y and scale .S2/n; that is

. [μ|y] ∼ t

(
n − 1, y,

S2

n

)
. (13.60)

The mean and variance are

.E (μ|y) = y,

Var (μ|y) = S2

n

n − 1

n − 3
.

616 13 Solution to Exercises

Derivation of the density of .
[
σ 2|y] requires the following integration of (12.25)

with respect to . μ:

. p
(
σ 2|y
)
∝
∫ ∞

−∞

(
σ 2
)−(n

2+1)
exp

(
− 1

2σ 2

[
(n − 1) S2 + n (y − μ)2

])
dμ

=
(
σ 2
)−(n

2+1)
exp

(
− 1

2σ 2 (n − 1) S2
)∫ ∞

−∞

× exp

(
− 1

2σ 2
n (y − μ)2

)
dμ

=
(
σ 2
)−(n

2+1)
exp

(
− 1

2σ 2 (n − 1) S2
)(

2π
σ 2

n

) 1
2

∝
(
σ 2
)−(n

2+1) (
σ 2
) 1

2
exp

(
− 1

2σ 2 (n − 1) S2
)

=
(
σ 2
)−(n−1

2 +1
)
exp

(
− 1

2σ 2 (n − 1) S2
)

, (13.61)

which is the kernel of the density of a scaled inverted chi-square distribution with
.(n − 1) degrees of freedom and scale . S2. Therefore,

.

[
σ 2|y
]

∼ χ−2
(
n − 1, S2

)
. (13.62)

(ii) The expected value and variance of the . t−distribution (13.60) are given by

. E (μ|y) = y = 48.69,

Var (μ|y) = n − 1

n − 3

S2

n
= 9

7

8.859

10
= 1.139.

The modal value is equal to the mean.

The mean, variance and mode of the scale inverted chi-square distribution (13.62)
are

.E
(
σ 2|y
)

= n − 1

n − 3
S2 = 11.39,

Var
(
σ 2|y
)

= 2(n − 1)2

(n − 3)2 (n − 5)
S4 = 162

49 × 5
8.862 = 51.91,

argmax
[
σ 2|y
]

= n − 1

n + 1
S2 = 9

11
8.86 = 7.25.

13.3 Bayes Exercises I 617

(iii) To compute confidence intervals for the . t−distribution, it is easiest to trans-
form . μ to the standard . t−distribution as follows.

Let

. t = f (μ) = μ − y

S
/√

n
;

μ = f −1 (t) = S√
n
t + y;

df −1 (t)

t
= S
/√

n ; not a function of t;

⇒ p (t) ∝
⎛
⎜⎝1 +

n
(
y − S√

n
t − y
)2

vS2

⎞
⎟⎠

−
(

v+1
2

)

=
(
1 + t2

v

)−
(

v+1
2

)

which is the kernel of the density of a standard . t−distribution .t (v), with .v = n− 1.
Then using the R-function qt(c(.025, .975), df=9), the higher and lower
bounds are

. h = 2.262157,

� = −2.262157

which in the original scale (obtained as .
(
h × S√

n

)
+ y and .

(
� × S√

n

)
+ y) results

in the .95% posterior interval

. Pr (46.56 < μ < 50.82|y) = 0.95. (13.63)

To compute the .95% posterior interval of . σ 2, it seems easy to use the function
igamma in R. First recall that the relationship between the scaled inverse chi-square
and the inverse gamma distributions is

. χ−2
(
v, S2
)

= IG

(
v

2
,
vS2

2

)
.

Therefore in terms of (13.62) requires working with

.IG

(
n − 1

2
,
(n − 1) S2

2

)
.

618 13 Solution to Exercises

The R function qigamma is part of the pscl package that must be downloaded
and installed. The R-code below does this and computes the .95% posterior interval:

#install.packages("pscl", .libPaths()[1])
library(pscl)
a <- (length(y)-1)/2
b <- (length(y)-1)*var(y)/2
qigamma(c(0.025,0.975),a,b)

[1] 4.191167 29.524482

The .95% posterior interval is

.Pr
(
4.19 < σ 2 < 29.52|y

)
= 0.95. (13.64)

(iv) According to (first order) asymptotic theory, the posterior distribution of
.[μ, σ 2|y] is

.

[
μ, σ 2|y

]
∼ N

⎛
⎜⎜⎝
[

μ̂

σ̂ 2

]
,−

⎡
⎢⎢⎣

(
∂2p
(
μ,σ 2|y)

(∂μ)2

) (
∂2p
(
μ,σ 2|y)

∂μ∂σ 2

)
(

∂2p
(
μ,σ 2|y)

∂μ∂σ 2

) (
∂2p
(
μ,σ 2|y)

(∂σ 2)
2

)
⎤
⎥⎥⎦

−1⎞
⎟⎟⎠ ,

(13.65)

where . μ̂ and . σ̂ 2 are the mode of .
[
μ, σ 2|y].

The density of the joint posterior distribution was given in (13.57):

. p
(
μ, σ 2|y

)
∝
(
σ 2
)−(n

2+1)
exp

(
− 1

2σ 2

[
(n − 1) S2 + n (y − μ)2

])
,

and the logposterior density, up to an additive constant, is

. lnp
(
μ, σ 2|y

)
= −
(n
2

+ 1
)
ln σ 2− 1

2σ 2

[
(n − 1) S2 + n (y − μ)2

]
. (13.66)

First derivatives are

.
∂ lnp
(
μ, σ 2|y)
∂μ

= n (y − μ)

σ 2 ,

∂ lnp
(
μ, σ 2|y)

∂σ 2 = −n + 2

2σ 2 + (n − 1) S2 + n (y − μ)2

2σ 4 .

13.3 Bayes Exercises I 619

Setting these equations equal to zero and solving for . μ and . σ 2 gives:

.

[
μ̂

σ̂ 2

]
=
[

y
n−1
n+2S

2

]
=
[

y∑
(yi−y)2

n+2

]
. (13.67)

Second derivatives are

.
∂2p
(
μ, σ 2|y)

(∂μ)2
= − n

σ 2
,

∂2p
(
μ, σ 2|y)(

∂σ 2
)2 = n + 2

2σ 4
− (n − 1) S2 + n (y − μ)2

σ 6
,

∂2p
(
μ, σ 2|y)

∂μ∂σ 2
= −n (y − μ)

σ 4
.

Evaluated at the mode, these second derivatives are (and substituting . (n − 1) S2 =
(n + 2) σ̂ 2)

.
∂2p
(
μ, σ 2|y)

(∂μ)2

∣∣∣∣∣
μ=μ̂,σ 2=σ̂ 2

= − n

σ̂ 2 ,

∂2p
(
μ, σ 2|y)(

∂σ 2
)2
∣∣∣∣∣
μ=μ̂,σ 2=σ̂ 2

= n + 2

2σ̂ 4 − n + 2

σ̂ 4 = −n + 2

2σ̂ 4 ,

∂2p
(
μ, σ 2|y)

∂μ∂σ 2

∣∣∣∣∣
μ=μ̂,σ 2=σ̂ 2

= 0.

Therefore the asymptotic approximation to .
[
μ, σ 2|y] is

.

[
μ, σ 2|y

]
∼ N

([
y∑

(yi−y)2

n+2

]
,

[
σ̂ 2

n
0

0 2σ̂ 4

n+2

])
(13.68)

Another approximation based on the likelihood function is

. [θ |y] ∼ N

(
θ̂ , I (θ)−1

∣∣∣
θ=θ̂

)
(13.69)

620 13 Solution to Exercises

where . ̂θ is the ML estimator and .I (θ) is the observed information. I derive this
approximation and compare it to (13.68). Ignoring the prior, write

. p
(
μ, σ 2|y

)
∝ p
(
y|μ, σ 2

)

∝ exp

⎡
⎢⎢⎣−

n∑
i=1

(yi − μ)2

2σ 2

⎤
⎥⎥⎦
(
σ 2
)−(n

2)

= exp

[
− (n − 1) S2 + n (y − μ)2

2σ 2

](
σ 2
)−(n

2)
,

and the logposterior is

. lnp
(
μ, σ 2|y

)
= −
(n
2

)
ln σ 2 − 1

2σ 2

[
(n − 1) S2 + n (y − μ)2

]
.

First derivatives are

.
∂ lnp
(
μ, σ 2|y)
∂μ

= n (y − μ)

σ 2 ,

∂ lnp
(
μ, σ 2|y)

∂σ 2 = − n

2σ 2 + (n − 1) S2 + n (y − μ)2

2σ 4 .

Setting these equations equal to zero and solving for . μ and . σ 2 gives

.

[
μ̂

σ̂ 2

]
=
[

y
n−1
n

S2

]
=
[

y∑
(yi−y)2

n

]
.

Second derivatives are

.
∂2p
(
μ, σ 2|y)

(∂μ)2
= − n

σ 2 ,

∂2p
(
μ, σ 2|y)(

∂σ 2
)2 = n

2σ 4
− (n − 1) S2 + n (y − μ)2

σ 6
,

∂2p
(
μ, σ 2|y)

∂μ∂σ 2 = −n (y − μ)

σ 4 .

13.3 Bayes Exercises I 621

Evaluated at the mode, these second derivatives are (substituting .(n − 1) S2 = nσ̂ 2)
are

.
∂2p
(
μ, σ 2|y)

(∂μ)2

∣∣∣∣∣
μ=μ̂,σ 2=σ̂ 2

= − n

σ̂ 2 ,

∂2p
(
μ, σ 2|y)(

∂σ 2
)2
∣∣∣∣∣
μ=μ̂,σ 2=σ̂ 2

= n

2σ̂ 4 − n

σ̂ 4 = − n

2σ̂ 4 ,

∂2p
(
μ, σ 2|y)

∂μ∂σ 2

∣∣∣∣∣
μ=μ̂,σ 2=σ̂ 2

= 0.

Therefore the asymptotic approximation to .
[
μ, σ 2|y] is now

.

[
μ, σ 2|y

]
∼ N

([
y∑

(yi−y)2

n

]
,

[
σ̂ 2

n
0

0 2σ̂ 4

n

])
(13.70)

As n increases, (13.68) and (13.70) approach the same value.

(v) The approximate .95% posterior intervals for . μ and . σ 2 based on (13.68) can be
obtained using the R functions :

qnorm(c(0.025,0.975),48.69,sqrt(6.644/10))

[1] 47.09242 50.28758

qnorm(c(0.025,0.975),6.644,sqrt(7.357))

[1] 1.327835 11.960165

that yield

. Pr (47.09 < μ < 50.28|y) = 0.95

Pr
(
1.33 < σ 2 < 11.96|y

)
= 0.95.

The approximate .95% posterior intervals for . μ and . σ 2 based on (13.70) are
obtained using the R functions:

qnorm(c(0.025,0.975),48.69,sqrt(7.973/10))

[1] 46.93992 50.44008

622 13 Solution to Exercises

qnorm(c(0.025,0.975),7.973,sqrt(12.714))

[1] 0.9844159 14.9615841

that yield

. Pr (46.94 < μ < 50.44|y) = 0.95,

Pr
(
0.98 < σ 2 < 14.96|y

)
= 0.95.

Comparison with the exact results (13.63) and (13.64) shows that the interval for
. μ is well approximated by the normal distribution, but this is not the case for . σ 2.
Clearly a sample size of .n = 10 is not big enough for the normal approximation to
hold in the case of . σ 2.

Exercise 2

(i) The R-code below implements the Bayesian model with the Metropolis-
Hastings single-site updating algorithm:

CODE1306
#METROPOLIS-HASTINGS SINGLE-SITE UPDATING - USES ACF
rm(list=ls()) # Clear the workspace
set.seed(123456)
require(graphics)
y<-c(45.83,50.37,50.06,51.59,48.43,52.75,42.92,48.57,

46.18,50.20)
SET LENGTH OF CHAIN rep
rep<-10000
result<-matrix(data=NA,nrow=rep,ncol=3)

mu<- 15
v<- 10
#CHOOSE TUNING PARAMETERS kmu AND kv
#kmu<-0.19
#kv<-0.1
kmu<-19
kv<-9
acceptv<-0
acceptmu<-0
ptm <- proc.time()
for (i in 1:rep)
{

13.3 Bayes Exercises I 623

#UPDATING THE VARIANCE
logYv<-rnorm(1,mean=log(v),sd=sqrt(kv))
logalfav <-sum((y-mu)^2)/(2*v)-sum((y-mu)^2)/

(2*exp(logYv))+(length(y)/2)*(log(v)-logYv)
unif<-runif(1)
if (unif<exp(logalfav))
{

v<-exp(logYv)
acceptv<-acceptv+1

}
#UPDATING THE MEAN
Ymu<-rnorm(1,mean=mu,sd=sqrt(kmu))
logalfamu<- sum((y-mu)^2)/(2*v)-sum((y-Ymu)^2)/(2*v)
unif<-runif(1)
if (unif<exp(logalfamu))
{

mu<-Ymu
acceptmu<-acceptmu+1
result[i,]<-c(i,mu,v)

}
else {

result[i,]<-c(i,mu,v)
}

}
proc.time()-ptm

user system elapsed
0.15 0.00 0.19

acceptratiomu<-acceptmu/rep
acceptratiov<-acceptv/rep
DISCARD THE FIRST 1500 DRAWS
mu<-result[1501:rep,2]
v<-result[1501:rep,3]
meanmus<-mean(mu)
meanmus

[1] 48.67492

varmus<-var(mu)
varmus

[1] 1.315822

624 13 Solution to Exercises

cimus<-quantile(mu,c(0.025,0.975))
cimus

2.5% 97.5%
46.35049 50.93522

meanvs<-mean(v)
meanvs

[1] 12.15146

varvs<- var(v)
varvs

[1] 66.8197

civs<-quantile(v,c(0.025,0.975))
civs

2.5% 97.5%
4.29519 32.92001

The single-site updating algorithm generates the following output. The chain
length is 10, 000, and the first 1, 500 samples are discarded:

. ̂E (μ|y) = 48.67

V̂ar (μ|y) = 1.32

P̂r (46.35 < μ < 50.94|y) = 0.95

Ê
(
σ 2|y
)

= 12.15

V̂ar
(
σ 2|y
)

= 66.82

P̂r
(
4.3 < σ 2 < 32.92|y

)
= 0.95.

(ii) The R-code below implements the Bayesian model with the Metropolis-
Hastings joint updating algorithm:

CODE1307
#METROPOLIS-HASTINGS JOINT UPDATING
rm(list=ls()) # Clear the workspace
set.seed(123456)
require(graphics)

13.3 Bayes Exercises I 625

y<-c(45.83,50.37,50.06,51.59,48.43,52.75,42.92,48.57,
46.18,50.20)

SET LENGTH OF CHAIN rep
rep<-10000
result<-matrix(data=NA,nrow=rep,ncol=3)
#INITIALISE mu AND v
mu<-15
v<-10
#CHOOSE TUNING PARAMETERS kmu AND kv
kmu<-0.15
kv<-0.08
accept<-0
ptm <- proc.time()
for (i in 1:rep)
{

Ymu<-rnorm(1,mean=mu,sd=sqrt(kmu))
logYv<-rnorm(1,mean=log(v),sd=sqrt(kv))
logalfa <-sum((y-mu)^2)/(2*v)-sum((y-Ymu)^2)/

(2*exp(logYv))+(length(y)/2)*(log(v)-logYv)
unif<-runif(1)
if (unif<exp(logalfa))
{

mu<-Ymu
v<-exp(logYv)
result[i,]<-c(i,mu,v)
accept<-accept+1

}
else
{

result[i,]<-c(i,mu,v)
}

}
proc.time()-ptm

user system elapsed
0.13 0.00 0.13

acceptratio<-accept/rep
mu<-result[1501:rep,2]
v<-result[1501:rep,3]
meanmuj<-mean(mu)
meanmuj

[1] 48.62203

626 13 Solution to Exercises

varmuj<-var(mu)
varmuj

[1] 1.175362

cimuj<-quantile(mu,c(0.025,0.975))
cimuj

2.5% 97.5%
46.34522 50.69246

meanvj<-mean(v)
meanvj

[1] 11.91832

varvj<- var(v)
varvj

[1] 55.73139

civj<-quantile(v,c(0.025,0.975))
civj

2.5% 97.5%
4.242654 30.864260

The joint updating algorithm produces the following output. The chain length is
10, 000, and the first 1, 500 samples are discarded:

.Ê (μ|y) = 48.62

V̂ar (μ|y) = 1.18

P̂r (46.35 < μ < 50.69|y) = 0.95

Ê
(
σ 2|y
)

= 11.92

V̂ar
(
σ 2|y
)

= 55.73

P̂r
(
4.24 < σ 2 < 30.86|y

)
= 0.95.

13.3 Bayes Exercises I 627

A glance at these figures confirms that they are in good agreement with the exact
results.

(iii)

For kμ = 0.19, kσ 2 = 0.1, the following results are obtained:

(a) acceptance ratios for μ and σ 2 are 0.87 and 0.47, respectively;
(b) The MC variances for μ and σ 2 are 0.0095 and 0.63, respectively;
(c) effective chain length for μ and σ 2 are 160 and 194, respectively;
(d) integrated autocorrelations for μ and σ 2 are 53 and 43, respectively.

For kμ = 19, kσ 2 = 9, the following results are obtained:

(a) acceptance ratios for μ and σ 2 are 0.29 and 0.19, respectively;
(b) The MC variances for μ and σ 2 are 0.00097 and 0.093, respectively;
(c) effective chain length for μ and σ 2 are 1357 and 720, respectively;
(d) integrated autocorrelations for μ and σ 2 are 6.3 and 11.8, respectively.

When the tuning parameters (variances) are very small, the proposed values differ
very little from the previous values and are accepted with high probability; this
generates a highly correlated chain. When the tuning parameters are larger, proposed
values differ, on average, relatively more from previous values, are accepted with
smaller probability and the degree of autocorrelations is relatively smaller. This
is also illustrated in Fig. 13.4 that displays autocorrelations versus lag. The left
panel corresponds to kμ = 0.19, kσ 2 = 0.1 that generates high autocorrelations
decreasing at a low rate with lag. The right panel corresponds to kμ = 19, kσ 2 = 9;
the autocorrelations fall at a higher rate.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Series y

0 10 20 30 40 0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Series y

Fig. 13.4 Plots of autocorrelations versus lag of draws from [μ|y] using kμ = 0.19, kσ 2 = 0.1
(left panel) and kμ = 19, kσ 2 = 9 (right panel)

628 13 Solution to Exercises

Exercise 3

(i) The R- code below implements the Bayesian model with the single-site Gibbs
sampling algorithm:

CODE1308
#GIBBS SAMPLING ALGORITHM
rm(list=ls()) # Clear the workspace
set.seed(12345)
require(graphics)
dat<-c(45.83,50.37,50.06,51.59,48.43,52.75,42.92,48.57,

46.18,50.20)
SET LENGTH OF CHAIN rep
rep<-10000
result<-matrix(data=NA,nrow=rep,ncol=3)
#INITIALISE mu AND v
#mu<-mean(dat)
#v<-var(dat)
mu<-1
v<-2
n<-length(dat)
START GIBBS CHAIN
ptm <- proc.time()
for (i in 1:rep)
{

GENERATE MIU
mu<-rnorm(1,mean=mean(dat),sd=sqrt(v/n))
COMPUTE SCALE
s<-((n-1)*var(dat)+n*(mean(dat)-mu)^2)/n
GENERATE V
v<-n*s/rchisq(1,n)
result[i,]<-c(i,mu,v)

}
proc.time()-ptm

user system elapsed
0.45 0.00 0.46

END OF GIBBS CHAIN
#mu<-result[1000:rep,2]
mu<-result[,2]

#v<-result[1000:rep,3]
v<-result[,3]

13.3 Bayes Exercises I 629

meanmu<-mean(mu)
meanmu

[1] 48.70177

varmu<-var(mu)
varmu

[1] 1.132319

cimu<-quantile(mu,c(0.025,0.975))
cimu

2.5% 97.5%
46.59150 50.84902

meanv<-mean(v)
meanv

[1] 11.35799

varv<- var(v)
varv

[1] 48.91507

civ<-quantile(v,c(0.025,0.975))
civ

2.5% 97.5%
4.184609 29.596819

The Gibbs sampling algorithm yields the following estimates:

.Ê (μ|y) = 48.7

V̂ar (μ|y) = 1.13

Ê
(
σ 2|y
)

= 11.36

V̂ar
(
σ 2|y
)

= 48.92

P̂r (46.59 < μ < 50.85|y) = 0.95

P̂r
(
4.18 < σ 2 < 29.6|y

)
= 0.95,

630 13 Solution to Exercises

in good agreement with those obtained with the Metropolis-Hastings algorithms.
The Monte Carlo variances are

. V̂ar
[̂
E (μ|y)

] = 0.0001,

V̂ar
[
Ê
(
σ 2|y
)]

= 0.0070.

(ii) The effective chain lengths for μ and σ 2 are 9, 931 and 7, 512, respectively.

The integrated autocorrelations μ and σ 2 are 1.0 and 1.33, respectively.
The R-code that computes these quantities is shown below:

CODE1308 (cont)
#POST-McMC ANALYSIS
CODE FOR THE MC VARIANCE BASED ON GEYER

CHOOSE MU OR V AND PLACE IN VECTOR Y
y<-result[,2] # READS IN mu
#y <- result[,3] # READS IN v
ns <- length(y)
svar<-var(y)*(ns-1)/ns
tau<-1
tausum<-0
for(i in 0:ns)
{

gamaj<-0.0
gamak<-0.0
j<-2*i
k<-(2*i)+1
lag1<-j
lag2<-k
#USE THE R-FUNCTION ACF TO COMPUTE AUTOCORRELATIONS
cov1<-acf(y,type="covariance",lag.max=lag1,plot=FALSE)
cov2<-acf(y,type="covariance",lag.max=lag2,plot=FALSE)
gamaj<-cov1$acf[lag1+1]
gamak<-cov2$acf[lag2+1]
tau<-gamaj+gamak
if(tau<0)
{

break
}
tausum<-tausum+tau

}

varch<- -svar+2*tausum
mcvar<-varch/ns
mcvar

[1] 0.0001140094

efchsize<-svar/mcvar
efchsize

[1] 9930.804

13.4 Bayes Exercises II 631

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Fig. 13.5 Plots of autocorrelations versus lag of draws from
[
σ 2|y] using the Gibbs sampler

integrautoc<-varch/svar
integrautoc

[1] 1.006968

For this toy model and dataset, the draws from the McMC chain generated by the
Gibbs sampler have very small autocorrelation. This is illustrated in Fig. 13.5.

13.4 Bayes Exercises II

Exercise 1

(i) The R-code below fits the Bayesian logistic regression model implemented
with a Metropolis-Hastings algorithm with joint updating of (μ, β):

CODE1309
#BINARY DATA - M-H JOINT UPDATING - LOGISTIC MODEL
rm(list=ls()) # Clear the workspace
set.seed(123)
#require(graphics)
THE CODE WILL USE THE PACKAGE MVTNORM; IT IS INSTALLED BELOW
#install.packages("mvtnorm", .libPaths()[1])
library(mvtnorm)
#CHOOSE LENGTH OF CHAIN rep

632 13 Solution to Exercises

rep<-10000
result<-matrix(data=NA,nrow=rep,ncol=4)

CREATE BINARY DATA
mu <- -2
beta <- 0.7
nrec <- 30
cov <- rnorm(nrec,2,3) # GENERATE THE COVARIATE
xb <- cov*beta
p1 <- pnorm(mu+xb) # PROBABILITIES ACCORDING TO PROBIT MODEL
CREATE DATA:
d <- data.frame(Y=rbinom(nrec,1,p1),X=round(cov,digits=0))
mean(d$Y)

[1] 0.3

CHOOSE TUNING PARAMETER LAMBDA AND COVARIANCE MATRIX C
lambda<-1
c<-matrix(c(1,0.0,0.0,0.1),nrow=2,ncol=2,byrow=T)

INITIALISE THE MEAN OF THE BIVARIATE DISTRIBUTION
theta<-c(-2,1)
accept<-0
FUNCTION TO COMPUTE THE LOG-POSTERIOR
logpost <- function(data,par)
{

theta[1] <-par[1]
theta[2] <- par[2]
with(data=d,sum(Y*(theta[1]+theta[2]*X)-log(1+exp(theta[1]+

theta[2]*X))))
}
#START MH LOOP
ptm <- proc.time()
for (i in 1:rep)
{

#SAMPLE PROPOSAL FOR THETA (Ytheta) FROM N(theta,lamdaC)
Ytheta<- rmvnorm(1,mean=theta,sigma=lambda*c)
logalfa<-logpost(d,c(Ytheta[1],Ytheta[2])) -

logpost(d,c(theta[1],theta[2]))
unif<-runif(1)
if (unif<exp(logalfa))
{

theta[1]<-Ytheta[1]
theta[2]<-Ytheta[2]
result[i,]<-c(i,theta[1],theta[2],exp(theta[1]+3*theta[2])/

(1+exp(theta[1]+3*theta[2])))
accept<-accept+1

}
else
{

result[i,]<-c(i,theta[1],theta[2],exp(theta[1]+3*theta[2])/
(1+exp(theta[1]+3*theta[2])))

}
}
proc.time()-ptm

13.4 Bayes Exercises II 633

user system elapsed
2.56 0.03 2.59

acceptratio<-accept/rep
acceptratio

[1] 0.4313

meanmu<-mean(result[,2])
meanmu

[1] -3.996897

varmu<-var(result[,2])
varmu

[1] 1.986835

cimu<-quantile(result[,2],c(0.025,0.975))
cimu

2.5% 97.5%
-7.311877 -1.717778

meanbeta<-mean(result[,3])
meanbeta

[1] 1.168351

varbeta<- var(result[,3])
varbeta

[1] 0.1899689

cibeta<-quantile(result[,3],c(0.025,0.975))
cibeta

2.5% 97.5%
0.4968853 2.1923000

meanprob <- mean(result[,4])
meanprob

[1] 0.3901256

634 13 Solution to Exercises

ciprob <- quantile(result[,4],c(0.025,0.975))
ciprob

2.5% 97.5%
0.1421850 0.6921409

(ii) The following features of the posterior distribution are obtained from the
output:

. ̂E (μ|y) = −3.997,

Ê (β|y) = 1.168,

V̂ar (μ|y) = 1.987,

V̂ar (β|y) = 0.19,

P̂r (−7.312 < μ < −1.718|y) = 0.95,

P̂r (0.497 < β < 2.192|y) = 0.95,

P̂r (Y = 1|x = 3, y) = 0.39,

where in the last line, P̂r (Y = 1|x = 3, y) is the mean of the McMC draws from
Pr (Y = 1|x = 3, y). The McMC estimate of the 95% posterior interval of the
distribution of Pr(Y = 1|x = 3, y) is (0.142; 0.692). Given x, this probability
is only a function of (μ, β), and the confidence interval reflects the posterior
uncertainty associated with (μ, β).

Figure 13.6 displays histograms of MC estimates of the marginal posterior
distributions [μ|y] (left panel) and of [β|y] (right panel). Both histograms reveal
considerable asymmetry.

result[, 2]

F
re

qu
en

cy

−10 −8 −6 −4 −2

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00

result[, 3]

F
re

qu
en

cy

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0
20

0
40

0
60

0
80

0
10

00

Fig. 13.6 Histograms of MC estimates of [μ|y] (left panel) and of [β|y] (right panel)

13.4 Bayes Exercises II 635

It is interesting to compare the output from the Bayesian implementation with
that derived from a maximum likelihood analysis. The R-function below fits the
OPTIM function :

CODE1309 (cont)
USE THE R-FUNCTION OPTIM TO COMPARE WITH THIS PROGRAMME
FUNCTION TO COMPUTE THE NEGATIVE OF THE LOG-POSTERIOR
logpostoptim <- function(data,par)
{

theta[1] <-par[1]
theta[2] <- par[2]
with(data=d,-sum(Y*(theta[1]+theta[2]*X)-log(1+exp(theta[1]+

theta[2]*X))))
}
result1 <- optim(par=c(-3,1),logpostoptim,

data=d,hessian=TRUE,method="BFGS")
result1$par

[1] -3.2918405 0.9354898

solve(result1$hessian)

[,1] [,2]
[1,] 1.3069454 -0.3367133
[2,] -0.3367133 0.1197200

The ML estimates of uncertainty are based on asymptotic results that do not quite
hold in the small sample setting of this example. There is considerable difference
between the uncertainty reported by both methods of inference.

The ML estimates of μ and β are -3.292 and 0.935, respectively. These differ
from the McMC estimates of posterior means due, in part, to the asymmetry
referred to above that results in different values for mean and mode. Further, the
likelihood approach relies on a joint maximisation of the loglikelihood function,
whereas marginal inferences are reported with the Bayesian method. One can bring
both approaches a little closer by computing the modal value of the estimates of
the marginal posterior distributions [μ|y] and [β|y]. The R-code below uses the
function modeest and calculates these modal values using a kernel estimator:

CODE1309 (cont)
computing MODE with package modeest
and via density estimation
#install.packages("modeest", .libPaths()[1])
y<- result[,2]
x<-result[,3]
library(modeest)
myDensity<-density(y)
modeEstmu <- mlv(y,method = "kernel", kernel = "gaussian")
modeEstmu

[1] -3.498042

636 13 Solution to Exercises

modeEstbeta <- mlv(x,method = "kernel", kernel = "gaussian")
modeEstbeta

[1] 0.9147319

The estimate of the posterior mode of [μ|y] is seen to be -3.498 and of [β|y],
0.915, more in line with the results reported from the likelihood approach.

(iii) The R-code below calculates MC variances, effective chain lengths and
integrated autocorrelations:

CODE1309 (cont)
#POST-McMC ANALYSIS
CODE FOR THE MC VARIANCE BASED ON GEYER
ns<-rep
CHOOSE MU OR V AND PLACE IN VECTOR Y
y<- result[,2]
#y<-result[,3]
svar<-var(y)*(ns-1)/ns
tau<-1
tausum<-0
for(i in 0:ns)
{

gamaj<-0.0
gamak<-0.0
j<-2*i
k<-(2*i)+1
lag1<-j
lag2<-k
#USE THE R-FUNCTION ACF TO COMPUTE AUTOCORRELATIONS
cov1<-acf(y,type="covariance",lag.max=lag1,plot=FALSE)
cov2<-acf(y,type="covariance",lag.max=lag2,plot=FALSE)
gamaj<-cov1$acf[lag1+1]
gamak<-cov2$acf[lag2+1]
tau<-gamaj+gamak
if(tau<0)
{

break
}
tausum<-tausum+tau

}
varch<- -svar+2*tausum
mcvar<-varch/ns
mcvar

[1] 0.009202506

efchsize<-svar/mcvar
efchsize

[1] 215.88

13.4 Bayes Exercises II 637

integrautoc<-varch/svar
integrautoc

[1] 46.32203

The MC variance of the estimated mean of [μ|y], the effective chain length and
integrated autocorrelation of the draws from [μ|y] obtained from the output are
0.0092, 215.88 and 46.32, respectively. For [β|y] the respective values are 0.00088,
213.57 and 46.82, respectively. These figures indicate that the McMC samples
display a relatively high degree of autocorrelation.

Exercise 2

(i) The R-code below fits the probit regression model with theMetropolis-Hastings
joint updating algorithm:

CODE1310
#BINARY DATA - METROPOLIS-HASTINGS JOINT UPDATING - PROBIT MODEL
rm(list=ls()) # Clear the workspace
set.seed(123)
#require(graphics)
CODE USES PACKAGE MVTNORM; IT IS INSTALLED BELOW
#install.packages("mvtnorm", .libPaths()[1])
library(mvtnorm)
#CHOOSE LENGTH OF CHAIN rep
rep<-10000
result<-matrix(data=NA,nrow=rep,ncol=4)

CREATE BINARY DATA BASED ON PROBIT MODEL
mu <- -2
beta <- 0.7
nrec <- 30
cov <- rnorm(nrec,2,3) # GENERATE THE COVARIATE
xb <- cov*beta
p1 <- pnorm(mu+xb) # PROBABILITIES ACCORDING TO PROBIT MODEL
CREATE DATA:
d <- data.frame(Y=rbinom(nrec,1,p1),X=round(cov,digits=0))
mean(d$Y)

[1] 0.3

CHOOSE TUNING PARAMETER LAMBDA AND COVARIANCE MATRIX C
lambda<-0.25
c<-matrix(c(1,0.0,0.0,0.1),nrow=2,ncol=2,byrow=T)

INITIALISE THE MEAN OF THE BIVARIATE DISTRIBUTION
theta<-c(-2,1)

accept<-0
FUNCTION TO COMPUTE THE LOG-POSTERIOR

638 13 Solution to Exercises

logpost <- function(data,par)
{

theta[1] <-par[1]
theta[2] <- par[2]
with(data=d,sum(Y*log(pnorm(theta[1]+theta[2]*X))+

(1-Y)*log(1.000001-pnorm(theta[1]+theta[2]*X))))
}
#START MH LOOP
ptm <- proc.time()
for (i in 1:rep)
{

#SAMPLE PROPOSAL FOR THETA (Ytheta) FROM N(theta,lamdaC)
Ytheta<- rmvnorm(1,mean=theta,sigma=lambda*c)
lp1<- logpost(d,c(Ytheta[1],Ytheta[2]))
lp2<- logpost(d,c(theta[1],theta[2]))
logalfa<-lp1-lp2
unif<-runif(1)
if (unif<exp(logalfa))
{

theta[1]<-Ytheta[1]
theta[2]<-Ytheta[2]
result[i,]<-c(i,theta[1],theta[2],

pnorm(theta[1]+3*theta[2]))
accept<-accept+1

}
else
{

result[i,]<-c(i,theta[1],theta[2],
pnorm(theta[1]+3*theta[2]))

}
}
proc.time()-ptm

user system elapsed
2.73 0.06 2.80

acceptratio<-accept/rep
meanmu<-mean(result[,2])
meanmu

[1] -2.230753

varmu<-var(result[,2])
varmu

[1] 0.4690703

cimu<-quantile(result[,2],c(0.025,0.975))
cimu

2.5% 97.5%
-3.696849 -1.062495

13.4 Bayes Exercises II 639

meanbeta<-mean(result[,3])
meanbeta

[1] 0.6450377

varbeta<- var(result[,3])
varbeta

[1] 0.04395467

cibeta<-quantile(result[,3],c(0.025,0.975))
cibeta

2.5% 97.5%
0.2879808 1.0886044

meanprob <- mean(result[,4])
meanprob

[1] 0.3900007

ciprob <- quantile(result[,4],c(0.025,0.975))
ciprob

2.5% 97.5%
0.1653514 0.6497098

(iii) The following features of the posterior distribution are obtained from the
output:

. ̂E (μ|y) = −2.231,

Ê (β|y) = 0.645,

V̂ar (μ|y) = 0.469,

V̂ar (β|y) = 0.044,

P̂r (−3.697 < μ < −1.062|y) = 0.95,

P̂r (0.288 < β < 1.089|y) = 0.95,

P̂r (Y = 1|x = 3, y) = 0.39,

where in the last line, P̂r (Y = 1|x = 3, y) is the mean of the McMC draws
from Pr (Y = 1|x = 3, y). The McMC estimate of the 95% posterior interval

640 13 Solution to Exercises

of the distribution of Pr(Y = 1|x = 3, y) is (0.165; 0.65). Given x this
probability is only a function of (μ, β) and the confidence interval reflects
the posterior uncertainty associated with (μ, β). Despite the difference in
estimates of the parameters between the logit and the probit models, the
estimates of the posterior probability Pr(Y = 1|x = 3, y) are in good
agreement.

(iii) The MC variance of the mean of [μ|y], the effective chain length and
integrated autocorrelation of the draws from [μ|y] are 0.0018, 264.0 and
37.9, respectively. For [β|y] these figures are 0.00017, 264.92 and 37.75,
respectively.

Exercise 3

(i) The R-code below generates the same 30 binary records used in the previous
examples and fits a probit model implemented with a single-site updating Gibbs
sampling algorithm:

CODE1311
BINARY DATA; GIBBS WITH DATA AUGMENTATION PROBIT MODEL
LIABILITIES SAMPLED IN ONE GO AFTER JA pg 241
rm(list=ls()) # Clear the workspace
set.seed(123)
#require(graphics)
THE CODE WILL USE THE PACKAGE MVTNORM; IT IS INSTALLED BELOW
#install.packages("mvtnorm", .libPaths()[1])
library(mvtnorm)
#CHOOSE LENGTH OF CHAIN rep
rep<-10000
result<-matrix(data=NA,nrow=rep,ncol=3)

CREATE BINARY DATA
mu <- -2
beta <- 0.7
nrec <- 30
cov <- rnorm(nrec,2,3) # GENERATE THE COVARIATE
xb <- cov*beta
p1 <- pnorm(mu+xb) # COMPUTE PROBABILITIES FOR PROBIT MODEL
#p1 <- rbeta(30,2,2)
CREATE DATA:
d <- data.frame(Y=rbinom(nrec,1,p1),X=round(cov,digits=0))
mean(d$Y)

[1] 0.3

One<-rep(1,nrec)
X<-matrix(c(One,d[,2]),nrow=nrec,ncol=2)
Y<-matrix(d[,1],nrow=length(d[,1]),ncol=1)
#INITIALISE THETA (THE VECTOR WITH MU AND BETA)

13.4 Bayes Exercises II 641

theta<-matrix(data=0,nrow=2,ncol=1)
INITIALISE VECTOR u
u<-rep(0,nrec)
#COMPUTE XTX INVERSE
xtxinv<-solve(t(X)%*%X)
#START GIBBS LOOP
ptm <- proc.time()
for (i in 1:rep)
{

thetahat<-xtxinv%*%t(X)%*%u
#SAMPLE THETA FROM MVN(thetahat,xtxinv)
theta<- t(rmvnorm(1,mean=thetahat,sigma= xtxinv))
SAMPLE LIABILITIES u_j FROM A TN(beta+Uf,1)

av<-X%*%theta # MEAN OF UNTRUNCATED NORMAL(mu+U[j,]alfa,1)
cutoff<-pnorm(-av)
interm<-(cutoff*(1-Y)+(1-cutoff)*Y)*runif(length(Y))+cutoff*Y
interm[interm==1]<-0.999
u<-qnorm(interm)+av
END SAMPLING LIABILITIES u
result[i,]<-c(i,t(theta))

}
proc.time() - ptm

user system elapsed
2.64 0.09 2.73

meanmu<-mean(result[,2])
meanmu

[1] -2.177854

varmu<-var(result[,2])
varmu

[1] 0.4747578

cimu<-quantile(result[,2],c(0.025,0.975))
cimu

2.5% 97.5%
-3.728438 -1.014262

meanbeta<-mean(result[,3])
meanbeta

[1] 0.6290715

642 13 Solution to Exercises

varbeta<- var(result[,3])
varbeta

[1] 0.04445811

cibeta<-quantile(result[,3],c(0.025,0.975))
cibeta

2.5% 97.5%
0.2846762 1.1175002

(ii) The following features of the posterior distribution are obtained from the
output:

. ̂E (μ|y) = −2.178,

Ê (β|y) = 0.629,

V̂ar (μ|y) = 0.475,

V̂ar (β|y) = 0.044,

P̂r (−3.728 < μ < −1.014|y) = 0.95,

P̂r (0.285 < β < 1.118|y) = 0.95,

that can be seen to be in good agreement with the output in Exercise 13.4.

(iii) The MC variance of the estimated mean of [μ|y], the effective chain length
and integrated autocorrelation of the draws from [μ|y] are 0.0014, 340.8
and 29.3, respectively. For [β|y] these figures are 0.00013, 336.3 and 29.7,
respectively. A comparison with Exercise 13.4 indicates that the Gibbs sampler
generated slightly less correlated draws from [μ, β|y] than the Metropolis-
Hastings algorithm, as implemented in this example. The latter can be tuned to
improve its behaviour; this was not attempted here.

Exercise 4

(i) The R-code below generates binary data from 500 full-sib families each with
2 full-sibs and fits a probit threshold model implemented via a Gibbs sampling
algorithm using a single chain of length 2, 000.

CODE1312
#SINGLE-SITE GIBBS - CORRELATED PROBIT MODEL
DOES NOT USE THE SVD OF ZZ’

13.4 Bayes Exercises II 643

rm(list=ls()) # Clear the workspace
set.seed(7713)

require(graphics)
GENERATE CORRELATED (FULL-SIBS) BINARY DATA (THRESHOLD MODEL)
#install.packages("MCMCpack", .libPaths()[1])
#install.packages("mvtnorm", .libPaths()[1])
library(mvtnorm)
#library(MCMCpack)
INITIALISE PARAMETERS
p0 <- 0.5
mu <- qnorm(p0)
iccfs<-0.15 #INTRACLASS CORRELATION FS
VARIANCE BETWEEN FAMILIES: iccfs /(1- iccfs)
PHENOTYPIC VARIANCE: 1/(1-iccfs)
nfs<-500 # NUMBER OF FULL-SIB FAMILIES
fs<-2 #FULL-SIB FAMILY SIZE
SET DATA Y= 0
y<-matrix(data=0,nrow=fs*nfs,ncol=1)
x IS COLUMN MATRIX WITH FAMILY ID (ID=1,.,nfs)
x<-matrix(data=0,nrow=fs*nfs,ncol=1)
GENERATE NFS FULL-SIB EFFECTS f
f<-rnorm(nfs,mean=0,sd=sqrt(iccfs/(1-iccfs)))
SET COUNTER c EQUAL TO ZERO
(c = nfs*fs IS EQUAL TO THE LENGTH OF BINARY DATA VECTOR y)
c<-0

GENERATE BINARY RECORDS Y
f<-rnorm(nfs,mean=0,sd=sqrt(iccfs/(1-iccfs)))
p <- pnorm(mu+f)
y <- rbinom(nfs*fs,1,rep(p,each=fs))
w <- rep(1:nfs,each=fs)
d<-data.frame(w,y)
family <- w
family <- as.factor(family)
Z<-model.matrix(~0+family)
WITH INDEPENDENT FAMLIES Z’Z IS DIAGONAL
ztz<-rep(fs,nfs)
#CHOOSE LENGTH OF CHAIN rep
rep<-2000
result<-matrix(data=NA,nrow=rep,ncol=3)
INITIALISE LIABILITY VECTOR u
u<-rep(0,fs*nfs)
#INITIALISE THE VECTOR OF FAMILIY EFFECTS fam
fam<-rep(0,nfs)
INITIALISE BETWEEN FAMILY VARIANCE COMPONENT vf
vf<-0.2
INITIALISE THE MEAN (HERE BETA, A SCALAR)
beta<-0
#START GIBBS LOOP
ptm<-proc.time()
for (i in 1:rep)
{

zfam <- Z%*%fam
SAMPLE BETA
betahat<-sum(u-zfam)/(fs*nfs)
beta<-rnorm(1,mean=betahat,sd=sqrt(1/(fs*nfs)))
SAMPLE LIABILITIES u FROM A TN(beta+Zf,1)
av<-beta+ zfam # MEAN OF UNTRUNCATED NORMAL(mu+Zf,1)

644 13 Solution to Exercises

prob<-pnorm(-av)
interm<-(prob *(1-y)+(1- prob)*y)*runif(fs*nfs)+ prob*y
interm[interm==1]<-0.999
u<-qnorm(interm)+av
END SAMPLING LIABILITIES u
SAMPLE FAMILY EFFECTS fam
varfam<-1/(fs+(1/vf))
fammean<-varfam*(t(Z)%*%(u-beta))
fam<-rnorm(nfs,mean=fammean, sd=sqrt(varfam))
#SAMPLE vf
#COMPUTE SCALE
ftf<-sum(fam*fam)
vf<-ftf/rchisq(1,nfs-2)
result[i,]<-c(i,beta,vf)

}
proc.time()-ptm

user system elapsed
25.33 0.64 6.52

CONSTRUCT THE DERIVED PARAMETER "HERITABILITY" herit
herit <- 2*result[,3]/(result[,3]+1)
meanbeta <- mean(result[,2])
meanbeta

[1] -0.05565647

meanvf <- mean(result[,3])
meanvf

[1] 0.377655

meanher <- mean(herit)
meanher

[1] 0.5408147

cibeta <- quantile(result[,2],c(0.025,0.975))
cibeta

2.5% 97.5%
-0.15785926 0.03703906

civf <- quantile(result[,3],c(0.025,0.975))
civf

2.5% 97.5%
0.2110779 0.5870883

13.4 Bayes Exercises II 645

ciher <- quantile(herit,c(0.025,0.975))
ciher

2.5% 97.5%
0.3485786 0.7398306

(ii) The code outputs the following results:

. ̂E (μ|y) = −0.06,

Ê
(
σ 2

f |y
)

= 0.38,

Ê
(
h2|y
)

= 0.54,

P̂r (−0.158 < μ < 0.037|y) = 0.95,

P̂r
(
0.211 < σ 2

f < 0.587|y
)

= 0.95,

P̂r
(
0.349 < h2 < 0.74|y

)
= 0.95.

The parameter h2, the heritability on the underlying scale, is constructed from
the output of the McMC, using σ 2

f , the variance component between families and

the variance of the residual term of the liability, equal to 1: h2 = 2σ 2
f /(σ

2
f + 1).

(iii) Execution of the R-code on page 636 generates the following results.

The MC variances of the estimate of the mean of [μ|y], the mean of [σ 2
f |y] and

the mean of [h2|y] are 5.74 × 10−6, 2.3 × 10−4 and 2.6 × 10−4, respectively.
The effective chain lengths of [μ|y], [σ 2

f |y] and [h2|y] are 448.2, 42.2 and 40.2,
respectively.

The integrated autocorrelations of [μ|y], [σ 2
f |y] and [h2|y] are 4.46, 47.4 and

49.8, respectively.
Due to the considerable degree of autocorrelation among samples, particularly

for [σ 2
f |y] and [h2|y], a chain of length 2, 000 results in effective chain lengths

equivalent to approximately 40 independent draws.

Exercise 5

(i) The R-code below fits the genomic model using a single-site Gibbs sampling
algorithm:

CODE1313
BAYES PROBLEMS II Exercise 5. GENOMIC MODEL

646 13 Solution to Exercises

DATA BASED ON GENOMIC MODEL; OBTAIN SVD OF WW’(1/m)
rm(list=ls()) # CLEAR WORKSPACE
set.seed(12345)
nindiv<-500
nmark<-1000
nt <- nindiv*nmark

GENERATE MARKER MATRIX FROM BINOMIAL DISTRIBUTION
X<-matrix(nrow= nindiv,ncol= nmark,rbinom(n=nt,size=2,p=.5))
stdev <- matrix(data=NA,nrow= nmark,ncol=1)
W <- matrix(data=NA,nrow= nindiv,ncol=nmark)
U <- matrix(data=NA,nrow= nindiv,ncol= nindiv)
G<-matrix(data=NA,nrow= nindiv,ncol= nindiv)
cm <- colMeans(X)
#CHOOSE VALUE FOR GENOMIC VARIANCE vgs
vgs<-10
#CHOOSE VALUE FOR ENVIRONMENTAL VARIANCE ves
ves<-25
CREATE MATRIX OF STANDARDISED MARKER GENOTYPE CODES
for (i in 1:nmark)
{

W[,i] <-(X[,i]-cm[i]) / sd(X[,i])
}
GENERATE nindiv GENOMIC VAL FROM N(0,(1/nmark)WW’*vgs)
#NOTE: MARKER VALUES ARE DRAWS FROM N(0,I sqrt(vgs/nmark))
g <- (1/sqrt(nmark))*W%*%rnorm(nmark,mean=0,sd=sqrt(vgs))
GENERATE nindiv PHENOTYPES WITH MEAN 0,
VAR=vgs+ves, HERITABILITY=vgs/(vgs+ves)
e<- rnorm(nindiv,mean=0,sd=sqrt(ves))
y <- g+ e
GENOMIC RELATIONSHIP MATRIX G
G <- (1/nmark)*W%*%t(W)
SVD OF G
EVD <- eigen(G)
names(EVD)

[1] "values" "vectors"

#head(EVD$values)
U <- EVD$vector
tU<-t(U)
val <- EVD$values
val[length(y)] <-0
D <- diag(val,nrow=nindiv)
#Dp IS A VECTOR WITH NON-ZERO EIGENVALUES
Dp<-c(val[1:nindiv-1])
#INITIALISE Ve
Ve<-5
#INITIALISE Vg
Vg<-5
#INITIALISE k
k<-Ve/Vg
#INITIALISE VECTOR ALFA
alfa<-rep(0,nindiv)
CHOOSE LENGTH OF GIBBS CHAIN
rep<-4000
#INITIALISE result
result<-matrix(data=NA,nrow=rep,ncol=7)

13.4 Bayes Exercises II 647

START GIBBS CHAIN
ptm<-proc.time()

for (i in 1:rep)
{
print (i)
SAMPLE mu
avmu<-sum(y-U%*%alfa)/nindiv
varmu<-Ve/nindiv
mu<-rnorm(1,mean=avmu,sd=sqrt(varmu))
#mu<-0
SAMPLE alfa1 (VECTOR OF LENGTH nindiv-1)
meanalfa1<-(Dp/(Dp+k))*tU[1:nindiv-1,]%*%(y-mu)
varalfa1<-((Dp)/(Dp+k))*Ve
alfa1<-rnorm(nindiv-1,meanalfa1,sqrt(varalfa1))
alfa<-c(alfa1,0)
SAMPLE Vg
COMPUTE SCALE
scVg<-sum(alfa1*alfa1*(1/Dp))
Vg<-scVg/rchisq(1,nindiv-3)
#Vg<-0.0001
SAMPLE Ve
COMPUTE SCALE
ystar<-y-mu-U%*%alfa
scVe<-sum(ystar*ystar)
Ve<-scVe/rchisq(1,nindiv-2)
#Ve<-25
k<-Ve/Vg
result[i,]<-c(i,mu,Vg,Ve,Vg/(Vg+Ve),1/k,mean(alfa*alfa))

print(result[i,])
}
proc.time()-ptm

user system elapsed
28.87 0.67 7.39

FUNCTION LOGLIK TO CONSTRUCT THE LOGLIKELIHOOD
TO COMPARE THE BAYESIAN RESULTS WITH OPTIM
#NOTE: k IN THE LOGLIKELIHOOD IS Vg/Ve
loglik<-function(data,par)
{

mu<-par[1]
ve<-par[2]
k<-par[3]
dkiinv<-diag(1/((val*k)+1),nrow=nindiv,ncol=nindiv)
ll<- -0.5*(length(y)*log(ve)+sum(log((val*k)+1))+

(1/ve)*t(y-mu)%*%U%*%dkiinv%*%tU%*%(y-mu))
return(-ll)

}
result1<-optim(par=c(0.5,12,2),loglik,data=y,hessian=TRUE)
result1$par

[1] -0.02250109 28.28775687 0.32911418

vgml <- result1$par[2]*result1$par[3]
solve(result1$hessian)

648 13 Solution to Exercises

[,1] [,2] [,3]
[1,] 5.657552e-02 0.0003634452 -1.420182e-05
[2,] 3.634452e-04 13.2109992444 -5.162269e-01
[3,] -1.420182e-05 -0.5162269466 2.661989e-02

meanmu <- mean(result[,2])
meanmu

[1] -0.02252344

#apply(result[,2:6],2,mean)
cimu <- quantile(result[,2],c(0.025,0.975))
cimu

2.5% 97.5%
-0.4810972 0.4374214

meanvg <- mean(result[,3])
meanvg

[1] 10.11903

civg <- quantile(result[,3],c(0.025,0.975))
civg

2.5% 97.5%
3.210285 16.971752

meanve <- mean(result[,4])
meanve

[1] 28.27113

cive <- quantile(result[,4],c(0.025,0.975))
cive

2.5% 97.5%
22.05225 35.56460

meanher <- mean(result[,5])
meanher

[1] 0.2624171

13.4 Bayes Exercises II 649

ciher <- quantile(result[,5],c(0.025,0.975))
ciher

2.5% 97.5%
0.08389514 0.41867397

meank <- mean(result[,6])
meank

[1] 0.3749238

cik <- quantile(result[,6],c(0.025,0.975))
cik

2.5% 97.5%
0.09157809 0.72020512

meanalfasq <- mean(result[,7])
meanalfasq

[1] 9.928053

cialfasq <- quantile(result[,7],c(0.025,0.975))
cialfasq

2.5% 97.5%
3.17666 15.95473

(ii) The code outputs the following quantities:

.Ê (μ|y) = −0.02,

Ê
(
σ 2

g |y
)

= 10.12,

Ê
(
σ 2

e |y
)

= 28.27,

Ê
(
h2|y
)

= 0.26,

P̂r (−0.481 < μ < 0.437|y) = 0.95,

P̂r
(
3.21 < σ 2

g < 16.972|y
)

= 0.95,

P̂r
(
22.052 < σ 2

e < 35.565|y
)

= 0.95,

P̂r
(
0.084 < h2 < 0.419|y

)
= 0.95.

650 13 Solution to Exercises

The last lines at the bottom of the code (meanalfasq and cialfasq) show
the Monte Carlo estimate of the mean and posterior interval of the genomic variance
defined in (5.53) on page 234.

(iii) Execution of the R-code on page 636 yields MC variances of Ê (μ|y),

Ê
(
σ 2

g |y
)
, Ê
(
σ 2

e

)
and Ê

(
h2|y). These are 1.47 × 10−5, 0.23, 0.14 and

1.41 × 10−4, respectively. The associated effective chain lengths are 3, 758,
55, 84 and 54, revealing a high degree of autocorrelation for the draws from
σ 2

e |y, σ 2
g |y and from the posterior distribution h2|y. A longer chain length

than the one used here would result in less noisy estimates of MC estimates
of posterior means. For example, executing the code setting the length of the

Gibbs chain to 40, 000 results in a MC variance of Ê
(
σ 2

g |y
)
equal to 0.04 and

an effective chain length of 326, an increase of factor 6 for the latter. This leads
to more precise estimates of features of posterior distributions.

(iv) The likelihood is parametrised in terms of θ ′ = (μ, σ 2
e , k). In order to

derive the ML estimate of σ 2
g , one proceeds as follows. Let λ

′ = g (θ)′ =(
μ, σ 2

e , kσ 2
e

)
, where kσ 2

e = σ 2
g . Using the transformation invariance property

(see page 56)

. ̂σ 2
g = k̂σ̂ 2

e = 9.31.

The asymptotic variance of λ is

.Var
(̂
λ
) = ∂λ

∂θ ′

∣∣∣∣
θ=θ̂

Var
(
θ̂
) ∂λ′

∂θ

∣∣∣∣
θ=θ̂

. (13.71)

In this expression (see page 54)

.
∂λ′

∂θ
=

⎡
⎢⎢⎣

∂μ
∂μ

∂σ 2
e

∂μ

∂kσ 2
e

∂μ

∂μ

∂σ 2
e

∂σ 2
e

∂σ 2
e

∂kσ 2
e

∂σ 2
e

∂μ
∂k

∂σ 2
e

∂k

∂kσ 2
e

∂k

⎤
⎥⎥⎦ =
⎡
⎣1 0 0
0 1 k

0 0 σ 2
e

⎤
⎦ .

When evaluated at the ML estimates, this gives:

.
∂λ′

∂θ

∣∣∣∣
θ=θ̂

=
⎡
⎣ 1 0 0
0 1 0.3291142
0 0 28.2877569

⎤
⎦ .

13.5 Prediction Exercises 651

Using Var
(
θ̂
)
from the OPTIM output, (13.71) is

. Var
(
μ̂, σ̂ 2

e , σ̂ 2
g

)
=
⎡
⎣ 0.00566 0.00036 −0.00028

0.00036 13.21010 −10.25614
−0.00028 −10.25614 13.12319

⎤
⎦ .

The frequentist 95% confidence interval for σ 2
g is

. Pr
(
9.31 − 1.96

√
13.12319 < σ 2

g < 9.31 + 1.96
√
13.12319

)

= Pr
(
2.21 < σ 2

g < 16.41
)

= 0.95

that is numerically in reasonable agreement with the McMC estimate of the
Bayesian posterior interval. The chain of length 40, 000 leads to the 95% Bayesian

posterior interval P̂r
(
2.25 < σ 2

g < 16.92|y
)

= 0.95, quite in line with the frequen-
tist confidence interval.

13.5 Prediction Exercises

Exercise 1

The following results are useful:

.E (ŷ2) = E [E (y2|y1)] = E (y2) , (13.72)

and

. Cov (ŷ2, y2) = E (ŷ2y2) − E (ŷ2)E (y2) , (13.73)

E (ŷ2y2) = E [E (ŷ2y2|y1)]
= E [̂y2 E (y2|y1)]
= E
(
ŷ2
2

)
.

Using (13.72) in (13.73)

.Cov (ŷ2, y2) = Var (ŷ2) . (13.74)

Similar algebra yields

.Cov (ĝ2, g2) = Var (ĝ2) .

652 13 Solution to Exercises

1. Given the model, the variance in the training data is

. Var (y1) = σ 2
g (G11 + Iλ) = σ 2

g T , λ = σ 2
e

σ 2
g

, T = (G11 + Iλ) .

. ̂y2 = E (y2|y1) = μ2 + G21T
−1 (y1 − 1μ1) .

Then,

. Var (ŷ2) = G21T
−1
(
T σ 2

g

)
T −1G12

= G21T
−1G12σ

2
g ,

Also, given the model,

. ̂g2 = E (g2|y1) = G21T
−1 (y1 − 1μ1) .

Then

. Var (ĝ2) = G21T
−1G12σ

2
g

= Var (ŷ2) .

2. The prediction error variances are

. Var (y2 − ŷ2) = Var (y2) − Var (ŷ2) = E [Var (y2|y1)] = Var (y2|y1) ,

Similarly,

. Var (g2 − ĝ2) = Var (g2) − Var (ĝ2) = E [Var (g2|y1)] = Var (g2|y1) ,

where the last equalities in the right-hand sides hold in the Gaussian setup
because the conditional variances do not depend on y.

3. The squared correlations or prediction accuracies are

.R2 (g2, ĝ2) = [Cov (g2, ĝ2)]2

Var (g2)Var (ĝ2)

= Var (ĝ2)

Var (g2)
,

13.5 Prediction Exercises 653

equal to the proportion of the additive genetic variance captured by the linear
predictor . ̂g2. Similarly

. R2 (y2, ŷ2) = [Cov (y2, ŷ2)]2

Var (y2)Var (ŷ2)

= Var (ŷ2)

Var (y2)

= Var (ĝ2)

Var (y2)

Var (g2)

Var (g2)

= h2R2 (g2, ĝ2) . (13.75)

4. .R2 (g2, ĝ2) can be written as

. R2 (g2, ĝ2) = Var (ĝ2)

Var (g2)

= Var (g2) − E [Var (g2|y1)]
Var (g2)

.

As the size of the training data . n1 increases, given that the data structure is such
that this leads to a steady increase of information about the scalar . g2, the posterior
variance .Var (g2|y1) decreases and .R2 (g2, ĝ2)will increase towards 1. Therefore
in (13.75), the upper limit of .R2 (y2, ŷ2) is equal to . h2.

5.

. E (MSEv) = Ey1y2 (y2 − ŷ2)
2

= Ey1y2

(
y2
2 + ŷ2

2 − 2y2ŷ2
)

= Ey2

(
y2
2

)
+ Ey1

(
ŷ2
2

)
− 2Ey1y2 (y2ŷ2)

= Var (y2) + [E (y2)]
2 + Var (ŷ2) + [E (ŷ2)]

2

−2 [Cov (y2, ŷ2) + E (y2)E (ŷ2)]

= Var (y2) + Var (ŷ2) + [E (y2) − E (ŷ2)]
2 − 2Cov (y2, ŷ2)

= Var (y2) − Var (ŷ2)

because .E (y2) = E (ŷ2) and .Cov (y2, ŷ2) = Var (ŷ2). This expression is equal
to .Var (y2 − ŷ2), the prediction error variance. The equality holds when the

654 13 Solution to Exercises

predictor is based on the conditional mean. Indeed, by definition of variance

. Var (y2 − ŷ2) = E
[
(y2 − ŷ2)

2
]

− [E (y2 − ŷ2)]
2

= E(MSE) − [E (y2) − E (ŷ2)]
2

= E(MSE)

when .E (y2) = E (ŷ2).

The assumption throughout is that expectations are computed over the true
model. For example, the conditional mean is

. ̂y2 = E (y2|y1) =
∫

y2p (y2|y1) dy2

and this requires knowledge of .[y2|y1], not only its form but also of the parameters
that index this distribution.

Exercise 2

1. The frequentist expectation of the validating mean squared error (12.35), given
x0, is

. Eyy0 (MSEv) = Ey0

(
y2
0

)
+ Ey

(
ŷ2
0

)
− 2Ey0 (y0)Ey

(
ŷ0
)

= Var (y0) + (E (y0))
2 + Var

(
ŷ0
)+ (E (ŷ0))2

−2Ey0 (y0)Ey

(
ŷ0
)

= Var (y0) + Var
(
ŷ0
)+ (E (y0 − ŷ0

))2
as in (6.51). Due to independence, Eyy0

(
y0 ŷ0
) = Ey0 (y0)Ey

(
ŷ0
)
. The first term

represents sampling variation of a new record; the second accounts for variation
of the predictor over replications of training data, and the third is an average
squared bias.

2. The algebra of the Bayesian calculation (given x0) is based on taking expecta-
tions over the posterior predictive distribution of ŷ0, [ŷ0|y]:

. E (MSEv |y, y0) = y2
0 + E
(
ŷ2
0 |y
)

− 2y0 E
(
ŷ0|y
)

= y2
0 + σ 2 + Varθ |y

(
x′
0θ
)+ (E (ŷ0|y))2

−2y0 E
(
ŷ0|y
)

= σ 2 + Varθ |y
(
x′
0θ
)+ (y0 − E

(
ŷ0|y
))2

. (13.76)

13.5 Prediction Exercises 655

The first term accounts for sampling variation of a new validating datum;
the second represents the propagated posterior uncertainty of parameter θ to
the conditional mean of the predictor ŷ0, given θ (the sharper the posterior
distribution of θ , the smaller the size of this term); the third is the squared
discrepancy between the observed validating datum y0 and the expected value
of the predictor, taken over its posterior predictive distribution (see (10.4a)). In
the second line, I used (see (10.4b))

. Var
(
ŷ0|y
) = E

(
ŷ2
0 |y
)

− (E (ŷ0|y))2
= σ 2 + Varθ |y

(
x′
0θ
)
,

E
(
ŷ2
0 |y
)

= σ 2 + Varθ |y
(
x′
0θ
)+ (E (ŷ0|y))2 .

On the other hand, if instead of predicting single records, a Bayesian predictor
ŷ0 = x′

0θ
∗ is constructed drawing θ∗ from the posterior distribution [θ |y], then,

taking expectations over [θ |y]

. E (MSEv |y, y0) = y2
0 + E
((

x′
0θ
)2 |y
)

− 2y0 E
(
x′
0θ |y)

= Varθ |y
(
x′
0θ
)+ (y0 − E

(
x′
0θ |y))2 ,

which is equal to the last two terms in (13.76). This is so because in the linear model,
with ŷ0 = x′

0θ

. Ey0|y
(
ŷ0|y
) = Eθ |y

(
x′
0θ |y)

(see (10.4a)). The expectation of MSEv in (13.76) has an extra term accounting for
the sampling variance of the draw of the predictor from

[
ŷ0|θ, y

]
.

Exercise 3

Case 1. When training data . yt are treated as fixed, .E(ŷv − yv) = ŷv − E(yv),
.Var(ŷv − yv) = Var(yv) and

.E
(
ŷv − yv

) = 1μ̂ − 1μ.

Var
(
ŷv − yv

) = V = Iσ 2.

656 13 Solution to Exercises

Let .A = 1
σ 2 I . Then .AV = I , an .nv × nv identity matrix (idempotent). It follows

that

.
1

σ 2

(
ŷv − yv

)′ (
ŷv − yv

) ∼ χ2 (r (A) , λ) .

Since .r (A) = nv , .λ = 1
σ 2 (1μ̂ − 1μ)′ (1μ̂ − 1μ), then,

. MSEv = σ 2

nv

χ2 (nv, λ) .

Using (12.31a)

. E (MSEv) = σ 2

nv

(
nv + 1

σ 2 (1μ̂ − 1μ)′ (1μ̂ − 1μ)

)

= σ 2 + (μ̂ − μ)2. (13.77)

The first term in the right-hand side of (13.77) represents sampling uncertainty of
. yv , and the second represents the squared difference between the predictor and the
expected value of the predictand.

Using (12.31b) the variance is

.Var (MSEv) =
(

σ 2

nv

)2 (
2nv + 4

σ 2 (1μ̂ − 1μ)′ (1μ̂ − 1μ)

)
. (13.78)

Case 2. When training data are treated as random and validating data as fixed

. E
(
ŷv − yv

) = 1nvμ − yv

Var
(
ŷv − yv

) = 1nv1
′
nv

σ 2

nt

,

where . 1nv is a column vector of . 1′s with . nv elements.
Consider the quadratic form:

.
1

σ 2

(
ŷv − yv

)′
(ŷv − yv) = (ŷv − yv

)′
A
(
ŷv − yv

)

where .A = I 1
σ 2 . Then AV is idempotent, as shown below:

.AV AV =
(
11′ 1

nt

)(
11′ 1

nt

)

=
(
11′ 1

nt

)
.

13.5 Prediction Exercises 657

It follows that

.
1

σ 2 (ŷv − yv)
′ (ŷv − yv) ∼ χ2

(
r (A) ,

1

σ 2 (1μ − yv)
′ (1μ − yv) ,

)

a chi-square distribution with .r (A) = nv degrees of freedom and non-centrality
parameter . 1

σ 2 (1μ − yv)
′ (1μ − yv). Then the sample validating mean squared error

is a draw from

. MSEv = σ 2

nv

χ2
(

r (A) ,
1

σ 2 (1μ − yv)
′ (1μ − yv)

)

and has expected value

. E (MSEv) = σ 2

nv

[
nv

nt

+ 1

σ 2 (1μ − yv)
′ (1μ − yv)

]

= σ 2

nt

+ 1

nv

nv∑
i=1

(
yvi

− μ
)2

.

The first term represents sampling variance of . μ̂ and the second is the average
squared difference between the validating records and the expected value of their
predictions.

Case 3. When both the training and the validating data are treated as random, the
mean squared error is not proportional to a chi-square distribution. However, its
expected value can be computed using (12.32).

In this case

. E
(
ŷv − yv

) = E
(
1nv μ̂ − 1nvμ

)
= (1nvμ − 1nvμ) = 0,

Var
(
ŷv − yv

) = 1nv1
′
nv

σ 2

nt

+ Invσ
2.

Then,

. E (MSEv) = 1

nv

tr
[
Var
(
ŷv − yv

)]

= σ 2

nv

(
nv

nt

+ nv

)

= σ 2
(
1

nt

+ 1

)
. (13.79)

658 13 Solution to Exercises

The first term accounts for the sampling variance of theML estimator and the second
for the sampling variance of the validating records. There is no third term because
the expectation of .

(
ŷv − yv

)
over the distribution of .(yv, yt) is zero.

To compute .E (MSEt), I use

. ̂yt = 1nt

(
1nt 1

′
nt

)−1 1nt yt

= Hyt

where H is idempotent. Then with . H1nt = 1nt

. E
(
ŷt − yy

) = 0.

The variance is

. Var
(
Hyt − yy

) = Hσ 2 + Iσ 2 − 2Hσ 2

= (Int − H
)
σ 2.

Therefore,

. E (MSEt) = σ 2

nt

tr
(
Int − H

)

= σ 2

nt

(nt − 1) .

The average difference between validating and training mean squared errors

. E (MSEv) − E (MSEt) = σ 2
(
1

nt

+ 1

)
− σ 2

nt

(nt − 1)

= 2
σ 2

nt

.

This is the expected optimism (see (6.68)) as coined by Efron (1986), the extent
by which, the .MSE based on training data underestimates the validating .MSE, on
average.

Exercise 4

1.

(a) In the first scenario, assuming y∗
v is a draw from yv|μ̂, yt ∼ N

(
1μ̂, Iσ 2

)

.E
(
y∗
v − yv

) = 1μ̂ − yv.

13.5 Prediction Exercises 659

Let

. z = 1

σ

(
y∗
v − yv

)
.

Then,

. z|yv ∼ N

(
1

σ

(
1μ̂ − yv

)
, I

)

and therefore,

. z′z|yv ∼ χ2 (nv, λ) ,

where the non-centrality parameter is

. λ = E (z|yv)
′ E (z|yv) = 1

σ 2

(
1μ̂ − yv

)′ (1μ̂ − yv

)
.

In terms of z, the validating MSEv is

. MSEv = σ 2

nv

z′z

and therefore, using (12.31),

.E (MSEv) = σ 2

nv

(
nv + 1

σ 2

(
1μ̂ − yv

)′ (1μ̂ − yv

))
, . (13.80a)

Var (MSEv) =
(

σ 2

nv

)2 (
2nv +

4

σ 2

(
1μ̂ − yv

)′ (1μ̂ − yv

))
. (13.80b)

The first term in the right-hand side of (13.80a) accounts for the sampling
variance associated with the generation of predicted validating records y�

v .
(b) In this second scenario, the posterior distribution of μ is

. μ|yt ∼ N

(
μ̂,

σ 2

nt

)
,

where in this model, the posterior mean μ̂ takes the same form as the ML
estimator. The vector of predicted validating records is

.̂yv = 1nvμ.

660 13 Solution to Exercises

The computation of MSEv requires

. E
(
ŷv|yt

) = Eμ|yt

[
E
(
ŷv|μ
)]

= Eμ|yt

[
1nvμ
] = 1nv μ̂

and

. Var
(
ŷv|yt

) = Eμ|yt

[
Var
(
ŷv|μ
)]+ Varμ|yt

[
E
(
ŷv|μ
)]

= Varμ|yt

(
1nvμ
) = 1nv1

′
nv

σ 2

nt

.

Therefore,

. E
(
ŷv − yv

) = 1nv μ̂ − yv,

Var
(
ŷv − yv

) = 1nv1
′
nv

σ 2

nt

,

and

. E (MSEv) = 1

nv

E
[
(ŷv − yv)

′ (ŷv − yv)
]

= 1

nv

[
σ 2

nt

tr
(
1′
nv
1nv

)+ (1nv μ̂ − yv

)′ (1nv μ̂ − yv

)]

= σ 2

nt

+ 1

nv

(
1nv μ̂ − yv

)′ (1nv μ̂ − yv

)
. (13.81)

The first term on the right-hand side is the contribution from the posterior
uncertainty of μ, and the second term is the average squared discrepancy
between the validating observations and the validating mean predictions.

(c) The third scenario is based on the hierarchical model defined in (12.41).
Under this model, the validating mean squared error does not reduce to a
chi-square variable. An analytic expression for the expected value of MSEv
is derived using the formula for the expectation of a quadratic form (12.32).
Under the hierarchy defined in (12.41), dropping the subscript nv in 1nv

.E (yv|yt) = Eμ|yt [E (yv|μ, yt)]

= Eμ|yt (1μ) = 1μ̂

13.5 Prediction Exercises 661

and

. Var (yv|yt) = E [Var (yv|μ, yt)] + Var [E (yv|μ, yt)]

= Iσ 2 + 11′ σ 2

nt

.

Then,

. E
(
y�
v − yv

) = (1μ̂ − yv

)
,

Var
(
y�
v − yv

) = Iσ 2 + 11′ σ 2

nt

,

where the random variable y�
v , the vector of predicted validating records, is

drawn from the posterior predictive distribution [yv|yt]. Since A = I , using
(12.32), it follows that the expected value of the validating mean squared
error is

. E (MSEv) = 1

nv

[
(1μ̂ − yv)

′ (1μ̂ − yv) + σ 2
(
tr

(
Inv + 1

nt

tr
(
11′)))]

= σ 2 + σ 2

nt

+ 1

nv

(1μ̂ − yv)
′ (1μ̂ − yv) . (13.82)

2. The difference in MSEv between (13.80) and (13.82) is the term σ
2

nt
that reflects

posterior uncertainty of μ.
As indicated in (13.79), the frequentist expectation of MSEv taken over the

distribution of training and validating data generates a term that accounts for the

sampling uncertainty of μ̂ (the term σ
2

nt
). The estimator is unbiased and therefore

there is no third term contributing the E(MSEv).
Exercises 1 and 2 illustrate that the expectation of MSE derived either from

frequentist or from Bayesian perspectives contain similar terms. The distribution
over which the expectation is computed determines the breakdown of E(MSE).
In the frequentist approach, expectations are taken over the training data, or
the validating data, or both. The Bayesian counterpart conditions on training
and validating data; expectations are computed over the posterior distribution
of parameters, or over the conditional distribution of simulated records, given
parameters. These are draws from the same distribution as the validating records.
Alternatively and to account for both sources of uncertainty, one resorts to
the hierarchical model (12.41), and expectations are taken over the posterior
predictive distribution of predicted values of validating data.

662 13 Solution to Exercises

Exercise 5

All computations are conditional on the variance components that are assumed
known.

1. The exact distribution of .MSEv when validating predictions . y∗
v are drawn from

the distribution .[yv|μ̂, b̂, yt] can be obtained as follows. Let

. z = 1

σe

(
y∗
v − yv

)
,

⇒ z|μ̂, b̂, yv ∼ N

(
1

σe

(
1vμ̂ + Wvb̂ − yv

)
, I

)
.

Then,

. z′z ∼ χ2 (nv, λ) ,

because .A = Iσ−2
e , .V = Iσ 2

e and .AV = I , an idempotent matrix. The non-
centrality parameter is

. λ = E
(
z|μ̂, b̂, yv

)′
E
(
z|μ̂, b̂, yv

)

= 1

σ 2
e

(
1vμ̂ + Wvb̂ − yv

)′ (
1vμ̂ + Wvb̂ − yv

)
.

In terms of z, the validating mean squared error is

. MSEv = σ 2
e

nv

z′z.

Using (12.31), it follows that

. E (MSEv) =

=
(

σ 2
e

nv

)(
nv + 1

σ 2
e

(
1vμ̂ + Wvb̂ − yv

)′ (
1vμ̂ + Wvb̂ − yv

))
. (13.83a)

Var (MSEv) =

=
(

σ 2
e

nv

)2 (
2nv + 4

σ 2
e

(
1vμ̂ + Wvb̂ − yv

)′ (
1vμ̂ + Wvb̂ − yv

))
. (13.83b)

The R-code below generates n individuals each genotyped for p covariates
(genetic markers). Among these genetic markers, nqtl are chosen as causal
genotypes. The gene substitution effects of these causal loci are chosen to generate

13.5 Prediction Exercises 663

an additive genetic variance equal to 10 squared units, and the heritability of the
continuous trait is set equal to . 0.5. The data y are divided into a training . yt and a
validating set . yv , each of size . n/2. Let W represent the centred and scaled matrix
X, where .X = {Xij

}
is an .n/2×p observed matrix with genotypic codes . Xij equal

to .0, 1, 2 according to the number of the arbitrarily chosen allele of individual i and
marker j .

The operational model is defined in terms of the following distributions:

.yt |μ, b, σ 2
e ∼ N

(
1μ + Wb, Iσ 2

e

)
, . (13.84a)

b|σ 2
b ∼ N

(
0, Iσ 2

b

)
, (13.84b)

where . yt is a vector of records of length . n/2, . μ is an unobserved mean, b is a vector
of unknown genetic marker effects of length p, 1 is a vector of . 1′s of length . n/2, . σ 2

e

is the residual variance and . σ 2
b reflects prior uncertainty for each element of b. The

two variance components are assumed known:

CODE1314
PREDICTION EXERCISE 5
rm(list=ls()) # CLEAR WORKSPACE
set.seed(123)
nindiv<-100
nmark <- 500
nt <- nindiv*nmark
NUMBER QTL
nqtl <- 50

GENERATE MARKER MATRIX FROM BINOMIAL DISTRIBUTION
X<-matrix(nrow=nindiv,ncol=nmark,rbinom(n=nt,size=2,p=.5))

CHOOSE VALUE FOR MEAN mu AND GENOMIC VARIANCE vgs
mu <- 10
vgs<-10
CHOOSE VALUE FOR ENVIRONMENTAL VARIANCE ves
ves<-20
her <- vgs/(vgs+ves)

btrue<-matrix(data=0.0,nrow=nmark,ncol=1) # parameter from
true model
IDq<-sample(1:nmark,nqtl,replace=F) # from the nmark markers,
choose nqtl as QTL
QTLeff<-sqrt(vgs/nqtl)# calculate the QTL effect so that the
total genetic variance is VA
btrue[IDq]<-QTLeff # the only b’s that are not zero are those
associated with QTL.
W <- matrix(data=NA,nrow= nindiv,ncol=nmark)
cm <- colMeans(X)
CREATE MATRIX OF STANDARDISED MARKER GENOTYPE CODES
for (i in 1:nmark)
{

W[,i] <-(X[,i]-cm[i]) / sd(X[,i])
}
more efficiently, could use:
W <- scale(X)

664 13 Solution to Exercises

GENERATE nindiv PHENOTYPES WITH MEAN 0, VAR=vgs+ves,
HERITABILITY=vgs/(vgs+ves)
e<- rnorm(nindiv,mean=0,sd=sqrt(ves))
y <- mu + W%*%btrue+ e
k <- (ves/vgs)*nmark # ratio of residual to
genomic variance Vb = vgs/nmark
train <- sample(1:nrow(W),floor(0.5*nrow(W)))
Xt <- W[train,]
yt <- y[train]
Xv <- W[-train,]
yv <- y[-train]
Zt <- cbind(1,Xt)
Zv <- cbind(1,Xv)
#####################
ridge regression coefficient matrix, rhs & solution solt
RHSt <- crossprod(Zt,yt)
LHSt <- crossprod(Zt)
LHSt[-1,-1] <- LHSt[-1,-1]+diag(k,nrow=nrow(LHSt)-1)
solt <- solve(LHSt,RHSt)
PREDICTION, CONDITIONAL ON ESTIMATED PARAMETERS (solt)
predval <- Zv%*%solt # VALIDATING
predtrain <- Zt%*%solt # TRAINING

The R-code below generates a MC estimate of the posterior distribution
of the .MSEv , where the validating predictions are drawn from the distribution
.[yv|μ̂, b̂, yt].
CODE1314 (cont)
COMPUTE SAMPLING DISTRIBUTION OF MSE, CONDITIONAL ON
(mu_hat,b_hat) AND VARIANCES
rep <- 10000
res1 <- matrix(data=NA, nrow=rep,ncol=1)

meany <- predval
vary <- diag(ves,nrow=length(yv))
ptm <- proc.time()
for (i in 1:rep){

yrep <- rnorm(length(yv),meany,sqrt(ves))
mse1 <- mean((yrep-yv)^2)
ztz <- (1/ves)*sum((yrep-yv)^2)
res1[i,] <- mse1

}
proc.time()-ptm

user system elapsed
0.70 0.01 0.21

meanmsev <- apply(res1,2,mean)
meanmsev

[1] 52.34182

13.5 Prediction Exercises 665

varmsev <- apply(res1,2,var)
varmsev

[1] 67.52094

ncp <- sum((yv-meany)^2)/ves
expmse <- (ves/length(yv))*(length(yv)+ncp)
expmse

[1] 52.35257

varmse <- (2* length(yv) + 4*ncp)*(ves/length(yv))^2
varmse

[1] 67.76411

expQF <- ves + (mean((yv-meany)^2))
expQF

[1] 52.35257

The MC estimates of the mean and variance are 52.342 and 67.521. These agree
well with the exact results, 52.353 and 67.764 obtained from (13.83). The last line of
the code computes the expected value of .MSEv using the formula for the expectation
of a quadratic form, which, of course, agrees with the mean of the scaled chi-square
distribution.

2. The validating mean squared error arising from this model does not reduce to
a chi-square variable. However an analytic expression for the expected value of
.MSEv based on the expectation of a quadratic form can be derived as follows.
First express the hierarchical model as

. θ∗|yt ∼ N
(
θ̂ , C−1

t σ 2
e

)
,

y∗
v |θ∗, yt ∼ N

(
Zvθ

∗, Iσ 2
e

)
,

where

. θ = (μ, b) ,

Zv = (1Wv) .

The solution to the linear system, . θ̂ , is

.Ct θ̂ = Z′
t yt ,

666 13 Solution to Exercises

and

. Ct =
[
1′1 1′Wt

W ′
t 1 W ′

t Wt + Ik

]
, k = σ 2

e

σ 2
b

.

Then

. E
(
y∗
v |yt

) = Eθ∗|yt

[
E
(
y∗
v |θ∗, yt

)] = Eθ∗|yt

(
Zvθ

∗) = Zvθ̂,

and

. Var
(
y∗
v |yt

) = Eθ∗|yt

[
Var
(
y∗
v |θ∗, yt

)]+ Varθ∗|yt

[
E
(
y∗
v |θ∗, yt

)]
= Iσ 2

e + ZvC
−1
t Z′

vσ
2
e .

Therefore, conditional on the complete data .y′ = (y′
t , y

′
v

)
,

. E (MSEv) = 1

nv

E
[(

y∗
v − yv

)′ (
y∗
v − yv

)]

= 1

nv

[
tr
(
σ 2

e

(
I + ZvC

−1
t Z′

v

))
+ (Zvθ̂ − yv

)′ (
Zvθ̂ − yv

)]

= σ 2
e + σ 2

e

nv

tr
(
ZvC

−1
t Z′

v

)
+ 1

nv

(
Zvθ̂ − yv

)′ (
Zvθ̂ − yv

)
.(13.85)

The first term is the contribution from sampling variation of validating predic-
tions, the second reflects the propagated posterior uncertainty of . θ , and the third
is an average squared discrepancy between the observed validating records and the
predictions.

3. The R-code below applies the method of composition to obtain draws from
the posterior predictive distribution of . yv and constructs the validating mean
squared error based on these draws:

CODE1314 (cont)
METHOD OF COMPOSITION:
(ACCOUNTING FOR UNKNOWN LOCATION PARAMETERS)
1. USING TRAINING DATA Yt, SAMPLE THETA* ~ THETA|Yt
2. SAMPLE VALIDATING DATA Yv* ~ Yv|THETA*
3. COMPUTE VALIDATION MSEv = MEAN((Yv*-Yv)^2)
4. GOTO 1 UNTIL ENOUGH SAMPLES
rep <- 1000
res2 <- matrix(data=NA, nrow=rep,ncol=2)
theta <- solt
Cinv <- solve(LHSt)

13.5 Prediction Exercises 667

ch <- chol(Cinv*ves)
varcov <- Cinv*ves
ptm <- proc.time()
for (i in 1:rep){
print(i)

theta <- solt + t(ch)%*%rnorm(length(theta),0,1)
DRAWS FROM THE VALIDATING DATA:

ystarval <- rnorm(length(yv),Zv%*%theta,sqrt(ves))
DRAWS FROM THE TRAINING DATA:

ystartrain <- rnorm(length(yt),Zt%*%theta,sqrt(ves))

mse2val <- mean((ystarval-yv)^2) # VALIDATION MSE
mse2train <- mean((ystartrain-yt)^2) # TRAINING MSE
res2[i,] <- c(mse2val,mse2train)

}
proc.time()-ptm

user system elapsed
6.51 0.15 1.50

hist(res2[,1])
apply(res2,2,mean)

[1] 62.99294 43.39716

meanmse2val <- mean(res2[,1])
varmse2val <- var(res2[,1])
interm <- Zv%*%Cinv%*%t(Zv)
expQF <- ves + (ves*sum(diag(interm)))/length(yv) +

mean((predval-yv)^2)
expQF

[1] 62.65027

The MC estimate of the mean validating mean squared error 62.993 agrees well
with the theoretical result 62.65 obtained from (13.85). The posterior uncertainty
of .[θ |yt] propagates onto the distribution of the validating mean squared error. As a
consequence, the mean validating mean squared error is larger than the one obtained
when the calculation is conditional on .θ = θ̂ . The posterior variance of .MSEv , equal
to 116.464, is also considerably larger.

The attraction of the Monte Carlo approach is that it generates an estimate of the
complete marginal posterior distribution of MSE.

668 13 Solution to Exercises

Exercise 6

1. The linear predictor is

. ̂y = W
[
W ′W + Σ

]−1
W ′y

= Hy.

Contrary to the non-hierarchical case the “hat” matrix H is not idempotent:

The expected optimism is

.
2

n
tr
[
Cov
(
y, ŷ′)] = 2

n
tr
(
Cov
(
y, ŷ′))

= 2

n
tr
(
Cov
(
y, y′H ′))

2

n
tr
[
Cov
(
y, y′W

[
W ′W + Σ

]−1
W ′)]

= 2

n
tr
[
V W
[
W ′W + Σ

]−1
W ′] (13.86)

where V = Var (y) = ZZ′σ 2
f + Iσ 2 = σ 2

(
ZZ′ σ 2

f
σ 2 + I

)
= σ 2Ṽ . An additive

genetic model without non-genetic sources of covariation between full-sibs imposes
the constraint 0 < σ 2

f ≤ σ 2.
The R-code below generates the full-sib family data, constructs the mixed model

equations, the predictor (fitted values), and obtains an expression for expected
optimism. The bottom part of the code generates a Monte Carlo estimate of expected
optimism:

CODE1315
#FULL-SIB CONTINUOUS DATA
rm(list=ls()) # Clear the workspace
set.seed(123771)
ptm<-proc.time()
require(graphics)
INITIALISE PARAMETERS
mus<-10 # MEAN
vfs<-1 #VARIANCE BETWEEN FULL-SIBS
#vfs<-0.5 #VARIANCE BETWEEN FULL-SIBS
#vfs <- 0.1
RESIDUAL VARIANCE
ves<-5
k <- ves/vfs
nf<-500 # NUMBER OF FULL-SIB FAMILIES
n<-2 # FULL-SIB FAMILY SIZE
nb <- 2 # NUMBER OF BREEDS
N<-nf*n # TOTAL NUMBER OF RECORDS
y<-matrix(data=0,nrow=nf*n,ncol=1)
z<-matrix(data=0,nrow=nf*n,ncol=1)

13.5 Prediction Exercises 669

GENERATE nf FULL-SIB EFFECTS fs
fs<-rnorm(nf,mean=0,sd=sqrt(vfs))
BREED EFFECTS
br <- rep(0,nb)
br[1] <- 5
br[2] <- 8
GENERATE nf*n RESIDUAL EFFECTS
es<-rnorm(nf*n,mean=0,sd=sqrt(ves))

GENERATING A FULL-SIB STRUCTURE
b <- rep(1:nb,each=N/2)
z <- rep(1:nf,each=n)
y <- br[b] + fs[z] + es
d <- data.frame(y,z)

d<-data.frame(y,z)
GENERATE INCIDENCE MATRICES X & Z
family <- z
breed <- b
family <- as.factor(family)
breed <- as.factor(breed)
X<-model.matrix(~0+breed)
Z<-model.matrix(~0+family)
W <- cbind(X,Z)
LHS <- crossprod(W) # LHS OF MME
LHS[-(1:2),-(1:2)]<-LHS[-(1:2),-(1:2)]+diag(k,nrow=nrow(LHS)-2)
RHS <- crossprod(W,y) # RHS OF MME
SOL <- solve(LHS,RHS) # SOLUTION
HAT <- W%*%solve(LHS)%*%t(W)
V <- Z%*%t(Z)*vfs + diag(ves,nrow=length(y))
COVyyhat <- sum(diag(V%*%t(HAT)))
lambda <- 1/k
Vtilde <- (Z%*%t(Z)*lambda + diag(1,nrow=length(y)))
df <- sum(diag(Vtilde%*%HAT))
yhat <- HAT%*%y
MSEt <- mean((y-yhat)^2)
MSEt

[1] 4.754883

optim1 <- 2*COVyyhat/length(y)
optim1

[1] 2.02

MSEv <- MSEt + optim1
MSEv

[1] 6.774883

The analytical results yield an expression for expected optimism (parameter
optim1 in the bottom of the code) based on (13.86) equal to 2.02. The sample

670 13 Solution to Exercises

training mean squared error is

. MSEt = 1

n

N∑
i=1

(yi − ŷi)
2

equal to 4.75. Therefore the estimate of the validating mean square error is

. MSEv = MSEt +2

n
tr
(
Cov
(
y, ŷ′))

equal to 6.77 (parameter MSEv at the bottom of the code).

2. The R-code below generates a Monte Carlo estimate of expected optimism
using a parametric bootstrap:

CODE1315 (cont)
MONTE CARLO ESTIMATE OF OPTIMISM
SIMULATE DATA & STORE Y, YHAT
rep <- 1000
gemY <- matrix(data=NA,nrow=rep,ncol=length(y))
gemYHAT <- matrix(data=NA,nrow=rep,ncol=length(y))

br[1] <- SOL[1]
br[2] <- SOL[2]
for (i in 1:rep){

fs<-rnorm(nf,mean=0,sd=sqrt(vfs))
es<-rnorm(nf*n,mean=0,sd=sqrt(ves))
y <- br[b] + fs[z] + es
RHS <- crossprod(W,y)
SOL <- solve(LHS,RHS)
yhat <- W%*%SOL
gemY[i,] <- y
gemYHAT[i,] <- yhat

}
sumcov <- 0
COMPUTE SUM(COV(Y,YHAT))
for (i in 1:length(y)){

sumcov <- sumcov + cov(gemY[,i],gemYHAT[,i])
}
#####################################
A MORE EFFICIENT AND LESS TRANSPARENT CODE IS
sumcov <-
sum(sapply(1:length(y),FUN=function(i)
{cov(gemY[,i],gemYHAT[,i])}))
#####################################
sumcov

13.5 Prediction Exercises 671

[1] 1010.313

optim2 <- 2*sumcov/length(y)
optim2

[1] 2.020626

The Monte Carlo estimate of expected optimism, conditional on the model
(parameter optim2 in the bottom of the code), based on 1, 000 replications of
data, is equal to 2.0206. This compares well with the analytical result.

Degrees of Freedom

An expression for the model’s degrees of freedom (or effective number of parame-
ters) is

.df = 1

σ 2 tr
(
Cov
(
y, ŷ′)) , (13.87)

(Hastie et al 2009) that for the present setup gives

. df = tr
[
Ṽ W
[
W ′W + Σ

]−1
W ′] .

Setting .σ 2
f = 1 and .σ 2 = 5 results in an estimate of the model’s degrees of

freedom or effective number of parameters based on (13.87) equal 202 (parameter
df in the code).

This estimate depends on the ratio .σ 2
f

/
σ 2. To illustrate, setting . σ 2

f to a very

small number in the code above (say, .σ 2
f = 10−5) produces an estimate of the

model’s degrees of freedom of .2.00 (rounded off to two decimal places). This is
equal to the number of breeds. A simple way to understand this result is by studying
the linear system (12.46). The model for a scalar record can be written

. yijk = bi + fij + eijk,

where . bi is the fixed effect of breed i, . fij is the random effect of family j nested
in breed i and .eijk is the residual associated with record k of family j in breed i. A
closer look at the mixed model equations (12.46) reveals that the equation for the
ij th family is

.nob̂i +
(

no + σ 2
f

σ 2

)
f̂ij = yij.

672 13 Solution to Exercises

where . yij. is the sum of the records belonging to the ij th family. A little algebra
shows that for the data structure of the example

. f̂ij = (yij. − nob̂i

)− (no − 1) σ 2
f + σ 2

noσ
2
f + σ 2

(
yij. − nob̂i

)
.

When .σ 2
f → 0, .f̂ij → 0 and when .σ 2

f → σ 2 (its maximum value, given the
constraint),

. f̂ij → 1

(no + 1)

(
yij. − nob̂i

)
.

The first case, .σ 2
f → 0, sets family effects equal to zero, and the model’s degrees of

freedom correspond to the number of breeds, equal to 2.
Imagine that instead of parametrising the model as in (12.45), the random family

effects are integrated out yielding the alternative form:

. y|b ∼ N
(
Xb, σ 2Ṽ

)
.

The generalised least squares estimator of b is

. ̂b =
(
X′Ṽ −1X

)−1
X′Ṽ −1y.

The vector of fitted values is .̂y = Xb̂ and the degrees of freedom of the integrated
parametrisation are

. df = 1

σ 2 tr
[
Cov
(
y, ŷ′)]

= 1

σ 2
tr

[
Cov

(
y, y′Ṽ −1X

(
X′Ṽ −1X

)−1
X′
)]

= 1

σ 2 tr

[
σ 2Ṽ Ṽ −1X

(
X′Ṽ −1X

)−1
X′
]

= tr

[
X′X
(
X′Ṽ −1X

)−1
]

.

Setting .σ 2
f = 1 and .σ 2 = 5 results in an estimate of the model’s degrees of freedom

equal to . 2.8, which differs from the estimate 202 obtained with the alternative
parametrisation. Different parametrisations of the model result in different measures
of its complexity, as pointed out by Spiegelhalter et al (2002). On the other
hand, when .σ 2

f → 0, .Ṽ → I and the model’s degree of freedom approaches

.tr
[
X′X
(
X′X
)−1
]

= 2, the number of breeds, as with the previous parametrisation.

13.5 Prediction Exercises 673

The concept of degrees of freedom has not been discussed in the book and is
not pursued further. The example illustrates that the topic deserves considerable
reflection (see Janson et al 2015). The definition used here is based on the optimism
of the training mean squared error as an estimate of validating error and is due to
Efron (1986). Spiegelhalter et al (2002, 2014) discuss the subject and propose an
alternative expression. Further elaborations of the concept can be found in Gelman
et al (2014).

References

Aitken AC (1934) Note on selection from a multivariate normal population. Proc Edinb Math Soc
4:106–110

Albert J (2009) Bayesian Computation with R. Springer, Berlin
Anderson DA, Aitkin M (1985) Variance component models with binary response: interviewer

variability. J R Stat Soc Ser B 47:203–210
Anderson TW (1957) Maximum likelihood estimation for the multivariate normal distribution

when some observations are missing. J Am Stat Assoc 52:200–203
Benjamini Y, Hochberg Y (1995) Controlling false discovery rate: A practical and powerful

approach to multiple testing. J R Stat Soc Ser B Methodol 57:289–300
Benjamini Y, Yekutieli Y (2001) The control of false discovery rate in multiple testing under

dependency. Ann Stat 29:1165–1188
Benjamini Y, Krieger AM, Yekutieli D (2006) Adaptive linear step-up procedures that control the

false discovery rate. Biometrika 93:491–507
Bernard E (2021) Introduction to machine learning. Wolfram Media, Champaign
Bernardo JM, Smith AFM (1994) Bayesian Theory. Wiley, London
Berndt E, Hall B, Hall R, Hausman J (1974) Estimation and inference in nonlinear structural

models. Ann Econ Soc Meas 3:653–665
Bishop CM (2006) Pattern recognition and machine learning. Springer, Berlin
Bottou L (2012) Stochastic gradient descent tricks. In: Montavon G, Orr GB, Müller KR (eds)

Neural networks: tricks of the trade. Springer, Berlin, pp 421–436. chap 18
Box GEP, Tiao GC (1973) Bayesian inference in statistical analysis. Wiley, London
Boyle EA, Li YI, Pritchard JK (2017) An expanded view of complex trits: from polygenic to

omnigenic. Cell 169:1177–1186
Breiman L (1996) Bagging predictors. Mach Learn 24:123–140
Breiman L (2001) Random forests. Mach Learn 45:5–32
Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and regression trees.

Chapman and Hall, London
Brown PJ (1977) Centering and scaling in ridge regression. Technometics 19:35–36
Brzyski D, Peterson CB, Sobczyk P, Candes E, Bogdan M, Sabatti C (2017) Controlling the rate

of GWAS false discoveries. Genetics 205:61–75
Bulmer MG (1971) The effect of selection on genetic variability. Am Nat 105:201–211
Bulmer MG (1980) The mathematical theory of quantitative genetics. Oxford University Press,

Oxford
Carlin BP, Louis TA (1996) Bayes and empirical Bayes methods for data analysis. Chapman and

Hall, London

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Sorensen, Statistical Learning in Genetics, Statistics for Biology and Health,
https://doi.org/10.1007/978-3-031-35851-7

675

https://doi.org/10.1007/978-3-031-35851-7
https://doi.org/10.1007/978-3-031-35851-7
https://doi.org/10.1007/978-3-031-35851-7
https://doi.org/10.1007/978-3-031-35851-7
https://doi.org/10.1007/978-3-031-35851-7
https://doi.org/10.1007/978-3-031-35851-7
https://doi.org/10.1007/978-3-031-35851-7
https://doi.org/10.1007/978-3-031-35851-7
https://doi.org/10.1007/978-3-031-35851-7
https://doi.org/10.1007/978-3-031-35851-7

676 References

Casella G, Berger RL (1990) Statistical inference. Brooks–Cole, Belmont
Chen MH, Shao QM, Ibrahim JG (2000) Monte Carlo methods in Bayesian computation. Springer–

Verlag, Berlin
Cowles MK, Carlin BP (1996) Markov chain Monte Carlo convergence diagnostics: a comparative

review. J Am Stat Assoc 91:883–904
Curnow RN (1961) The estimation of repeatability and heritability from records subject to culling.

Biometrics 17:553–566
Dahlquist B Å, Björck Å (1974) Numerical methods. Prentice-Hall, Englewood Cliffs
de los Campos G, Gianola D, Rosa GJM (2009) Reproducing kernel Hilbert spaces regression: a

general framework for genetic evaluation. J Anim Sci 87:1883–1887
de los Campos G, Gianola D, Rosa GJM, Weigel KA, Crossa J (2010) Semi-parametric genomic-

enabled prediction of genetic values using reproducing kernel Hilbert spaces methods. Genet
Res 92:295–308

de los Campos G, Hickey J, Pong-Wong R, Daetwyler HD, Calus MPL (2013a) Whole genome
regression and prediction methods applied to plant and animal breeding. Genetics 193:327–
345. https://doi.org/10.1534/genetics.112.143313

de los Campos G, Vazquez AI, Fernando R, Klimentidis YC, Sorensen D (2013b) Prediction of
complex human traits using the genomic best linear unbiased predictor. PLoS Genet 9(3),
e1003608

de los Campos G, Sorensen D, Gianola D (2015) Genomic heritability: what is it? PLOS Genet
11(5), e1005048

de los Campos G, Grueneberg A, Funkhouser S, Perez-Rodriguez P, Samaddar A (2022) Fine
mapping and accurate prediction of complex traits using Bayesian Variable Selection models
applied to biobank-size data. Eur J Hum Genet. https://doi.org/10.1038/s41431-022-01135-5

Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via de EM
algorithm (with discussion). J R Stat Soc Ser B 39:1–38

Devroye L (1986) Non-uniform random variate generation. Springer–Verlag, Berlin
Diggle PJ (2011) Estimating prevalence using an imperfect test. Epidemiol Res Int 2011. https://

doi.org/10.1155/2011/608719
Duvenaud D, Lloyd JR, Grosse R, Tenenbaum JB, Ghahramani Z (2013) Structure discovery in

nonparametric regression through compositional kernel search. ArXiv:1302.4922
Edwards AWF (1992) Likelihood. The John Hopkins University Press, Baltimore
Efron B (1986) How biased is the apparent rate of a prediction rule? J Am Stat Assoc 81:461–470
Efron B (2010) Large-scale inference. Cambridge University Press, Cambridge
Efron B (2020) Prediction, estimation, and attribution. J Am Stat Assoc 115:636–655
Efron B, Hastie T (2016) Computer age statistical inference. Cambridge University Press,

Cambridge
Efron B, Tibshirani R (2002) Microarrays, empirical Bayes methods and false discovery rates.

Genet Epidemiol 1:70–86
Efron B, Tibshirani R, Storey JD, Tusher V (2001) Empirical Bayes analysis of a microarray

experiment. J Am Stat Assoc 96:1151–1160
Falconer DS (1965) The inheritance of liability to certain diseases, estimated from the incidence

among relatives. Ann Hum Genet 29:51–76
Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics. Longman, New York
Fisher RA (1922) On the mathematical foundations of theoretical statistics. Philos Trans R Soc

Lond A 222:309–368
Friedman J, Hastie T, Höfling H, Tibshirani R (2007) Pathwise coordinate optimization. Ann Appl

Stat 1(2):302–332
Friedman J, Hastie T, Tibshirani R (2009) Glmnet: Lasso and elastic-net regularized generalized

linear models. R package version 1.1-4
Friedman J, Hastie T, Tibshirani R (2010) Regularization paths for generalized linear models via

coordinate descent. J Stat Softw 33(1):1–22
Galton F (1885) Regression towards mediocrity in hereditary stature. J Anthropol Insti 15:246–263

https://doi.org/10.1534/genetics.112.143313
https://doi.org/10.1534/genetics.112.143313
https://doi.org/10.1534/genetics.112.143313
https://doi.org/10.1534/genetics.112.143313
https://doi.org/10.1534/genetics.112.143313
https://doi.org/10.1534/genetics.112.143313
https://doi.org/10.1534/genetics.112.143313
https://doi.org/10.1534/genetics.112.143313
https://doi.org/10.1038/s41431-022-01135-5
https://doi.org/10.1038/s41431-022-01135-5
https://doi.org/10.1038/s41431-022-01135-5
https://doi.org/10.1038/s41431-022-01135-5
https://doi.org/10.1038/s41431-022-01135-5
https://doi.org/10.1038/s41431-022-01135-5
https://doi.org/10.1038/s41431-022-01135-5
https://doi.org/10.1038/s41431-022-01135-5
https://doi.org/10.1038/s41431-022-01135-5
https://doi.org/10.1155/2011/608719
https://doi.org/10.1155/2011/608719
https://doi.org/10.1155/2011/608719
https://doi.org/10.1155/2011/608719
https://doi.org/10.1155/2011/608719
https://doi.org/10.1155/2011/608719
https://doi.org/10.1155/2011/608719

References 677

García-Cortés LA, Sorensen D (1996) On a multivariate implementation of the Gibbs sampler.
Genet Sel Evol 28:121–126

Gelfand AE (1996) Model determination using sampling-based methods. In: Gilks WR, Richard-
son S, Spiegelhalter DJ (eds) Markov chain Monte Carlo in practice. Chapman and Hall,
London, pp 145–161

Gelfand AE, Dey DK, Chang H (1992) Model determination using predictive distributions with
implementation via sampling-based methods. In: Bernardo JM, Berger JO, Dawid AP, Smith
AFM (eds) Bayesian statistics, vol. 4. Oxford University Press, Oxford, pp 147–167

Gelman A, Carlin JB, Stern HS, Rubin DB (1995) Bayesian data analysis. Chapman and Hall,
London

Gelman A, Meng XL, Stern H (1996) Posterior predictive assessment of model fitness via realized
discrepancies (with discussion). Stat Sin 6:733–807

Gelman A, Hwang J, Vehtari A (2014) Understanding predictive information criteria for Bayesian
models. Stat Comput 24:997–1016

George EI, McCulloch RE (1993) Variable selection via Gibbs sampling. J Am Stat Assoc 8:881–
889

Geyer CJ (1992) Practical Markov chain Monte Carlo. Stat Sci 7:473–511
Gianola D, de los Campos G (2008) Inferring genetic values for quantitative traits non-

parametrically. Genet Res 90:525–540
Gianola D, de los Campos G, Hill WG, Manfredi E, Fernando R (2009) Additive genetic variability

and the Bayesian alphabet. Genetics 183:347–363
Gianola D, Fernando R, Schön CC (2020) Inferring trait-specific similarity among individuals from

molecular markers and phenotypes with Bayesian regression. Theor Popul Biol 132:47–59
Glorot X, Bengio Y (2010) Understanding the difficulty of training deep feedforward neural

networks. J Mach Learn Res Proc Track 9:249–256
Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press, Cambridge
Green P (1995) Reversible jump MCMC computation and Bayesian model determination.

Biometrika 82:711–732
Habier D, Fernando R, Deckers J (2007) The impact of genetic relationship information on

genome-assisted breeding values. Genetics 177:2389–2397
Habier D, Fernando R, Kizilkaya K, Garrik DJ (2011) Extension of the Bayesian alphabet for

genomic selection. BMC Bioinf 12(186):1–2
Hald A (1998) A History of mathematical statistics, from 1750 to 1930. Wiley, London
Halldorsson BV, Eggertsson HP et al (2022) The sequences of 150,119 genomes in the UK

Biobank. Nature 607:732–740
Harville DA (1977) Maximum likelihood approaches to variance component estimation and to

related problems. J Am Stat Assoc 72:320–340
Hastie T, Qian J (2016) Glmnet vignette. https://web.stanford.edu/~hastie/Papers/Glmnet_

Vignette.pdf
Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning. Springer, New York,

p 745
Hastings WK (1970) Monte Carlo sampling methods using Markov chains and their application.

Biometrika 57:97–109
Hayes B, Price J, Chamberlain AJ, Bowman PJ, Goddard ME (2010) Genetic architecture of

complex traits and accuracy of genomic prediction: coat colour, milk-fat percentage, and type
in Holstein cattle as contrasting model traits. PLoS Genet 6(9), e1001139

Henderson CR (1953) Estimation of variance and covariance components. Biometrics 9:226–252
Henderson CR (1975) Best linear unbiased estimation and prediction under a selection model.

Biometrics 31:423–447
Henderson CR, Kempthorne O, Searle SR, Von Krosigk CN (1959) Estimation of environmental

and genetic trends from records subject to culling. Biometrics 15:192–218
Hill WG, Weir BS (2011) Variation in actual relationship as a consequence of Mendelian sampling

and linkage. Genet Res 93:47–64

https://web.stanford.edu/~hastie/Papers/Glmnet_Vignette.pdf
https://web.stanford.edu/~hastie/Papers/Glmnet_Vignette.pdf
https://web.stanford.edu/~hastie/Papers/Glmnet_Vignette.pdf
https://web.stanford.edu/~hastie/Papers/Glmnet_Vignette.pdf
https://web.stanford.edu/~hastie/Papers/Glmnet_Vignette.pdf
https://web.stanford.edu/~hastie/Papers/Glmnet_Vignette.pdf
https://web.stanford.edu/~hastie/Papers/Glmnet_Vignette.pdf
https://web.stanford.edu/~hastie/Papers/Glmnet_Vignette.pdf
https://web.stanford.edu/~hastie/Papers/Glmnet_Vignette.pdf

678 References

Hill WG, Goddard ME, Visscher PM (2008) Data and theory point to mainly additive genetic
variance for complex traits. PLoS Genet 4:e1000008

Hoerl AE, Kennard RW (1970a) Ridge regression: Applications to nonorthogonal problems.
Technometrics 12:69–82

Hoerl AE, Kennard RW (1970b) Ridge regression: biased estimation for nonorthogonal problems.
Technometrics 12:55–67

Hu Z, Zhang J, Ge Y (2021) Handling vanishing gradient problem using artificial derivative. IEEE
Access 9:22,371–22,377

James G, Witten D, Hastie T, Tibshirani R (2017) An introduction to statistical learning. Springer,
Berlin

Janson L, Fithian W, Hastie TJ (2015) Effective degrees of freedom: a flawed metaphor. Biometrika
102:479–485

Kass RE, Carlin BP, Gelman A, Neal RM (1998) Markov chain Monte Carlo in practice: a
roundtable discussion. Am Stat 52:93–100

Kimeldorf G, Wahba G (1971) Some results on Tchebycheffian spline functions. J Math Anal Appl
33:82–95

LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444
Lehmann EL, Casella G (1998) Theory of point estimation. Springer–Verlag, Berlin
Lindley DV, Smith AFM (1972) Bayesian estimates for the linear model. J R Stat Soc Ser B 34:1–

41
Little RJA, Rubin DB (1987) Statistical analysis with missing data. Wiley, London
Liu JS, Wong HW, Kong A (1994) Covariance structure of the Gibbs sampler with applications to

the comparisons of estimators and augmentation schemes. Biometrika 81:27–40
López OAM, López AM, Crossa J (2022) Mulitivariate statistical machine learning methods for

genomic prediction. Springer, Berlin
Lush JL, Shrode RR (1950) Changes in milk production with age and milking frequency. J Dairy

Sci 33:338–357
Mäki-Tanila A, Hill WG (2014) Influence of gene interaction on complex trait variation with

multilocus models. Genetics 198:355–367
Mallows CL (1973) Some comments on Cp. Technometrics 15:661–675
Mardia KV, Kent JT, Bibby JM (1979) Multivariate analysis. Academic Press, New York
McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull

Math Biophys 5:115–133
McLachlan GJ, Krishnan T (1997) The EM algorithm and extensions. Wiley, London
Meeker WQ, Escobar LA (1995) Teaching about approximate confidence regions based on

maximum likelihood estimation. Am Stat 49:48–53
Meng X (2018) Statistical paradises and paradoxes in big data (i): law of large populations, big

data paradox, and the 2016 presidential election. Ann Appl Stat 12:685–726
Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equations of state

calculations by fast computing machines. J Chem Phys 21:1087–1092
Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-

wide dense marker maps. Genetics 157:1819–1829
Mitchell AJ, Beauchamp JJ (1988) Bayesian variable selection in linear regression (with discus-

sion). J Am Stat Assoc 83:1023–1036
Müller P, Parmigiani G, Rice K (2007) FDR and Bayesian multiple comparison rules. In: Bernardo

JM, Bayarri MJ, Berger JO, Dawid AP, Heckerman D, Smith AFM, West M (eds) Bayesian
statistics, vol 8, Oxford University Press, Oxford, pp 349–370

Natarajan R, Kass RE (2000) Reference Bayesian methods for generalized linear models. J Am
Stat Assoc 95:227–237

Neal RM (1996) Bayesian learning for neural networks. Springer-Verlag, Berlin
Park MY, Hastie T (2008) Penalized logistic regression for detecting gene interactions. Biostatistics

9:30–50
Park T, Casella G (2008) The Bayesian LASSO. J Am Stat Assoc 103:681–686

References 679

Patterson HD, Thompson R (1971) Recovery of inter-block information when block sizes are
unequal. Biometrika 58:545–554

Patxot M, Banos TD, Kousathanas A, Orliac EJ, Ojavee SE, Moser G, Holloway A, Sidorenko J,
Kutalik Z, Mägi R, Visscher PM, Rönnegård L, Robinson MR (2021) Probabilistic inference
of the genetic architecture underlying functional enrichment of complex traits. Nat Commun
12:6972

Pearson K (1894) Contributions to the mathematical theory of evolution. Philos Trans R Soc Lond
Ser A 185:71–110

Pearson K (1903) Mathematical contributions to the theory of evolution. XI. On the influence of
natural selection on the variability and correlation of organs. Philos Trans R Soc Lond Ser A
200:1–66

Perez P, de los Campos G (2014) Genome-wide regression and prediction with the BGLR statistical
package. Genetics 198:483–495

Perez-Elizalde S, Cuevas J, Perez-Rodriguez P, Crossa J (2015) Selection of the bandwidth
parameter in a Bayesian regression model for genomic-enabled prediction. J Agric Biol Environ
Stat 20:512–532

Peskun PH (1973) Optimum Monte Carlo sampling using Markov chains. Biometrika 60:607–612
Prentice RL, Pyke R (1979) Logistic disease incidence models and case-control studies. Biometrika

66:403–411
Priestley MB (1981) Spectral analysis and time series. Academic Press, New York
Ripley B (1987) Stochastic simulation. Wiley, London
Ros M, Sorensen D, Waagepetersen R, Dupont-Nivet M, SanCristobal M, Bonnet JC, Mallard

J (2004) Evidence for genetic control of adult weight plasticity in the snail Helix aspersa.
Genetics 168:2089–2097

Rousseauw J, du Plessis J, Benade A, Jordaan P, Kotze J, Jooste P (1983) Coronary risk factor
screening in three rural communities. S Afr Med J 64:430–436

Royall R (1997) Statistical Evidence. Chapman and Hall, London
Rubin DB (1976) Inference and missing data. Biometrika 63:581–592
Rubin DB (1984) Bayesianly justifiable and relevant frequency calculations for the applied

statistician. Ann Stat 12:1151–1172
Rubin DB (2002) Statistical analysis with missing data. Wiley, London
Rumelhart D, Hinton G, Williams R (1986) Learning representations by back-propagation. Nature

323:533–536
San Cristobal-Gaudy M, Elsen JM, Bodin L, Chevalet C (1998) Prediction of the response to a

selection for canalisation of a continuous trait in animal breeding. Genet Sel Evol 30:423–451
Searle SR (1971) Linear models. Wiley, London
Seber GAF, Lee AJ (2003) Linear regression analysis. Wiley, London
Singh D, Febbo PG, Ross K, Jackson DG, Manola J, Ladd C, Tamayo P, Renshaw AA, D’Amico

AV, Richie JP, Lander ES, Loda M, Kantoff PW, Golub TR, Sellers WR (2002) Gene expression
correlates of clinical prostate cancer behavior. Cancer Cell 1:203–209

So HC, Kwan JSH, Cherny SS, Sham PC (2011) Risk prediction of complex diseases from family
history and known susceptibility loci, with applications for cancer screaning. Am J Hum Genet
88:548–565

Sorensen D, Gianola D (2002) Likelihood, Bayesian, and MCMC methods in quantitative genetics.
Springer-Verlag, Berlin, pp 740. Reprinted with corrections, 2006

Sorensen D, Waagepetersen R (2003) Normal linear models with genetically structured residual
variance heterogeneity: a case study. Genet Res 82:207–222

Sorensen D, Fernando RL, Gianola D (2001) Inferring the trajectory of genetic variance in the
course of artificial selection. Genet Res 77:83–94

Speed D, Hermani G, Johnson MR, Balding DJ (2012) Improved heritability estimation from
genome-wide SNPs. Am J Hum Genet 91:1011–1021

Speed D, Cai N, Johnson S M R Nejentsev, Balding DJ (2017) Reevaluation of SNP heritability in
complex human traits. Nat Genet 49:986–992

680 References

Speed D, Kaphle A, Balding DJ (2021) SNP-based heritability and selection: improved models
and new results. BioEssays. https://doi.org/10.1002/bies.202100170

Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A (2002) Bayesian measures of model
complexity and fit (with discussion). J R Stat Soc Ser B 64:583–639

Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A (2014) The deviance information criterion:
12 years on. J R Stat Soc Ser B 76:485–493

Storey JD (2002) A direct approach to false discovery rates. J R Stat Soc Ser B 64:479–498
Storey JD (2003) The positive false discovery rate: a Bayesian interpretation and the .q−value. Ann

Stat 31:2013–2035
Storey JD, Bass AJ (2021) Bioconductor’s qvalue package. https://www.bioconductor.org/

packages/devel/bioc/vignettes/qvalue/inst/doc/qvalue.pdf
Storey JD, Tibshirani R (2007) Statistical significance for genomewide studies. Proc Natl Acad Sci

100:9440–9445
Sun X, Qu L, Garrick DJ, Dekkers JCM, Fernando RL (2012) A fast EM algorithm for Bayes-like

prediction of genomic breeding values. Plos One https://doi.org/10.1371/journal.pone.0049157
Swendsen R, Wang J (1987) Non-universal critical dynamics in Monte Carlo simulations. Phys

Rev Lett 58:86–88
Tanner MA (1996) Tools for statistical inference. Springer–Verlag, Berlin
Tanner MA, Wong W (1987) The calculation of posterior distributions by data augmentation. J Am

Stat Assoc 82:528–550
Tibshirani R (1996) Regression shrinkage and selection via the LASSO. J R Stat Soc Ser B 58:267–

288
VanRaden PM (2008) Efficient methods to compute genomic predictions. J Dairy Sci 91:4414–

4423
Visscher PM (2008) Sizing up human height variation. Nat Genet 40:489–490
Waagepetersen R, Sorensen D (2001) A tutorial on reversible jump MCMC with a view towards

applications in QTL-mapping. Int Stat Rev 69:49–61
Wahba G (1990) Spline models for observational data. SIAM, Philadelphia
Wainschtein P, Jain D et al (2022) Assessing the contribution of rare variants to complex trait

heritability from whole-genome sequence data. Nat Genet 54:263–273
Wei GCG, Tanner MA (1990) A Monte Carlo implementation of the EM algorithm and the poor

man’s data augmentation algorithm. J Am Stat Assoc 85:699–704
Weir B, Cockerham CC, Reynolds J (1980) The effects of linkage and linkage disequilibrium on

the covariance of noninbred relatives. Heredity 45:351–359
Weir BS (1996) Genetic data analysis II. Sinauer Associates
Weir BS, Cockerham CC (1977) Two-locus theory in quantitative genetics. In: Pollak E,

Kempthorne O, Bailey TB (eds) Proceedings of the international conference on quantitative
genetics. The Iowa State University Press, Ames, pp 247–269

Whittemore AS (2007) A Bayesian false discovery rate for multiple testing. J Appl Stat 34:1–9
Wright S (1934) An analysis of variability in number of digits in an inbred strain of guinea pigs.

Genetics 19:506–536
Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR, Madden PA, Heath AC,

Martin NG, Montgomery GW, Goddard ME, Visscher PM (2010) Common SNP’s explain a
large proportion of the heritability for human height. Nat Genet 42:565–569

Yang J, Ferreira T, Morris AP, Medland SE, Genetic Investigation of Anthropometric Traits
(GIANT) Consortium DGR, Meta-analysis (DIAGRAM) Consortium PAF Madden, Heath AC,
Martin GN, Montgomery GW, Weedon MN, Loos RJ, Frayling TM, McCarthy MI, Hirschhorn
JN, Goddard ME, Visscher PM (2012) Conditional and joint multiple-SNP analysis of GWAS
summary statistics identifies additional variants influencing complex traits. Nat Genet 44:369–
378

Yekutieli D, Benjamini Y (1999) Resampling-based false discovery rate controlling multiple tests
procedures for correlated test statistics. J Stat Plann Inference 82:171–196

Yengo L, Vedantam S, Marouli E et al (2022) A saturated map of common genetic variants
associated with human height. Nature 610:704–712

https://doi.org/10.1002/bies.202100170
https://doi.org/10.1002/bies.202100170
https://doi.org/10.1002/bies.202100170
https://doi.org/10.1002/bies.202100170
https://doi.org/10.1002/bies.202100170
https://doi.org/10.1002/bies.202100170
https://doi.org/10.1002/bies.202100170
https://www.bioconductor.org/packages/devel/bioc/vignettes/qvalue/inst/doc/qvalue.pdf
https://www.bioconductor.org/packages/devel/bioc/vignettes/qvalue/inst/doc/qvalue.pdf
https://www.bioconductor.org/packages/devel/bioc/vignettes/qvalue/inst/doc/qvalue.pdf
https://www.bioconductor.org/packages/devel/bioc/vignettes/qvalue/inst/doc/qvalue.pdf
https://www.bioconductor.org/packages/devel/bioc/vignettes/qvalue/inst/doc/qvalue.pdf
https://www.bioconductor.org/packages/devel/bioc/vignettes/qvalue/inst/doc/qvalue.pdf
https://www.bioconductor.org/packages/devel/bioc/vignettes/qvalue/inst/doc/qvalue.pdf
https://www.bioconductor.org/packages/devel/bioc/vignettes/qvalue/inst/doc/qvalue.pdf
https://www.bioconductor.org/packages/devel/bioc/vignettes/qvalue/inst/doc/qvalue.pdf
https://www.bioconductor.org/packages/devel/bioc/vignettes/qvalue/inst/doc/qvalue.pdf
https://www.bioconductor.org/packages/devel/bioc/vignettes/qvalue/inst/doc/qvalue.pdf
https://www.bioconductor.org/packages/devel/bioc/vignettes/qvalue/inst/doc/qvalue.pdf
https://www.bioconductor.org/packages/devel/bioc/vignettes/qvalue/inst/doc/qvalue.pdf
https://doi.org/10.1371/journal.pone.0049157
https://doi.org/10.1371/journal.pone.0049157
https://doi.org/10.1371/journal.pone.0049157
https://doi.org/10.1371/journal.pone.0049157
https://doi.org/10.1371/journal.pone.0049157
https://doi.org/10.1371/journal.pone.0049157
https://doi.org/10.1371/journal.pone.0049157
https://doi.org/10.1371/journal.pone.0049157

References 681

Zhao T, Fernando R, Cheng H (2021) Interpretable artificial neural networks incorporating
Bayesian alphabet models for genome-wide prediction and association studies. G3. https://doi.
org/10.1093/g3journal/jkab228

Zou H, Hastie T (2005) Regularization and variable selection via the elastic net. J R Stat Soc Ser
B 67:301–320

https://doi.org/10.1093/g3journal/jkab228
https://doi.org/10.1093/g3journal/jkab228
https://doi.org/10.1093/g3journal/jkab228
https://doi.org/10.1093/g3journal/jkab228
https://doi.org/10.1093/g3journal/jkab228
https://doi.org/10.1093/g3journal/jkab228
https://doi.org/10.1093/g3journal/jkab228

Author Index

A
Aitken (1934), 403
Albert (2009), 10
Anderson (1957), 66
Anderson and Aitkin (1985), 609

B
Benjamini and Hochberg (1995), 334, 336,

338, 339, 345
Benjamini and Yekutieli (2001), 339
Benjamini et al (2006), 339
Bernard (2021), 489
Bernardo and Smith (1994), 171
Berndt et al (1974), 79
Bishop (2006), 460, 489
Bottou (2012), 100
Box and Tiao (1973), 145, 157
Boyle et al (2017), 43
Breiman (1996), 521
Breiman (2001), 30, 521
Breiman et al (1984), 27
Brown (1977), 301
Brzyski et al (2017), 366
Bulmer (1971), 36
Bulmer (1980), 73

C
Carlin and Louis (1996), 13, 443
Casella and Berger (1990), 334
Chen et al (2000), 184
Cowles and Carlin (1996), 184
Curnow (1961), 69

D
Dahlquist and Björck (1974), 77
de los Campos et al (2009), 471, 478
de los Campos et al (2010), 471, 479
de los Campos et al (2013a), 43, 45
de los Campos et al (2013b), 262
de los Campos et al (2015), 40, 42, 46, 73
de los Campos et al (2022), 352, 366
Dempster et al (1977), 103
Devroye (1986), 218, 382, 394
Diggle (2011), 392
Duvenaud et al (2013), 471

E
Edwards (1992), 579
Efron (1986), 277, 286, 658, 673
Efron (2010), 344, 345, 347, 348
Efron (2020), 32
Efron and Hastie (2016), 288, 315, 341, 372,

380
Efron and Tibshirani (2002), 343, 344, 346,

347
Efron et al (2001), 334, 336, 344, 348

F
Falconer (1965), 86
Falconer and Mackay (1996), 60, 262
Fisher (1922), 51, 52
Friedman et al (2007), 314, 315
Friedman et al (2009), 25, 319
Friedman et al (2010), 25, 315, 316,

320

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Sorensen, Statistical Learning in Genetics, Statistics for Biology and Health,
https://doi.org/10.1007/978-3-031-35851-7

683

https://doi.org/10.1007/978-3-031-35851-7
https://doi.org/10.1007/978-3-031-35851-7
https://doi.org/10.1007/978-3-031-35851-7
https://doi.org/10.1007/978-3-031-35851-7
https://doi.org/10.1007/978-3-031-35851-7
https://doi.org/10.1007/978-3-031-35851-7
https://doi.org/10.1007/978-3-031-35851-7
https://doi.org/10.1007/978-3-031-35851-7
https://doi.org/10.1007/978-3-031-35851-7
https://doi.org/10.1007/978-3-031-35851-7

684 Author Index

G
Galton (1885), 60
García-Cortés and Sorensen (1996), 181
Gelfand (1996), 247–249
Gelfand et al (1992), 248
Gelman et al (1995), 20, 144, 162, 436, 552
Gelman et al (1996), 20, 436
Gelman et al (2014), 673
George and McCulloch (1993), 43, 322
Geyer (1992), 184, 188
Gianola and de los Campos (2008), 471
Gianola et al (2009), 40
Gianola et al (2020), 471
Glorot and Bengio (2010), 503
Goodfellow et al (2016), 100, 489
Green (1995), 194, 198

H
Habier et al (2007), 38
Habier et al (2011), 43, 322
Hald (1998), 51
Halldorsson et al (2022), 3
Harville (1977), 121
Hastie and Qian (2016), 25, 316, 320
Hastie et al (2009), 268, 460, 502, 511, 671
Hastings (1970), 189, 197
Hayes et al (2010), 322
Henderson (1953), 156
Henderson (1975), 69, 411
Henderson et al (1959), 66, 156, 158,

476
Hill and Weir (2011), 46, 73
Hill et al (2008), 532
Hoerl and Kennard (1970a), 300
Hoerl and Kennard (1970b), 300
Hu et al (2021), 503

J
James et al (2017), 320, 516
Janson et al (2015), 673

K
Kass et al (1998), 183
Kimeldorf and Wahba (1971), 472

L
LeCun et al (2015), 100, 489, 500
Lehmann and Casella (1998), 52
Lindley and Smith (1972), 157, 305
Little and Rubin (1987), 588

Liu et al (1994), 181
López et al (2022), 490
Lush and Shrode (1950), 66

M
Mäki-Tanila and Hill (2014), 532
Mallows (1973), 284, 291
Mardia et al (1979), 93
McCulloch and Pitts (1943), 489
McLachlan and Krishnan (1997), 103
Meeker and Escobar (1995), 579
Meng (2018), 32
Metropolis et al (1953), 198
Meuwissen et al (2001), 43, 72
Mitchell and Beauchamp (1988), 43
Müller et al (2007), 351

N
Natarajan and Kass (2000), 443
Neal (1996), 490

P
Park and Casella (2008), 318
Park and Hastie (2008), 377
Patterson and Thompson (1971), 121, 161
Patxot et al (2021), 43, 366
Pearson (1894), 127
Pearson (1903), 403
Perez and de los Campos (2014), 478,

485
Perez-Elizalde et al (2015), 471
Peskun (1973), 198
Prentice and Pyke (1979), 375
Priestley (1981), 188

R
Ripley (1987), 184
Ros et al (2004), 442
Rousseauw et al (1983), 511
Royall (1997), 579
Rubin (1976), 63, 70, 376, 588
Rubin (1984), 20, 436
Rubin (2002), 63, 66
Rumelhart et al (1986), 492

S
San Cristobal-Gaudy et al (1998), 265
Searle (1971), 120
Seber and Lee (2003), 282, 283

Author Index 685

Singh et al (2002), 22, 28
So et al (2011), 402
Sorensen and Gianola (2002), 51, 55, 57, 60,

102, 105, 118, 142, 162, 181, 194,
443

Sorensen and Waagepetersen (2003), 436
Sorensen et al (2001), 44
Speed et al (2012), 45
Speed et al (2017), 43
Speed et al (2021), 43
Spiegelhalter et al (2002), 672, 673
Spiegelhalter et al (2014), 673
Storey (2002), 339, 346, 349
Storey (2003), 343, 345, 349
Storey and Bass (2021), 350
Storey and Tibshirani (2007), 339, 347
Sun et al (2012), 239, 240
Swendsen and Wang (1987), 209

T
Tanner (1996), 153
Tanner and Wong (1987), 209
Tibshirani (1996), 24, 311, 318

V
VanRaden (2008), 45
Visscher (2008), 41

W
Waagepetersen and Sorensen (2001), 194
Wahba (1990), 460
Wainschtein et al (2022), 43
Wei and Tanner (1990), 104
Weir (1996), 82, 211
Weir and Cockerham (1977), 38
Weir et al (1980), 38
Whittemore (2007), 351
Wright (1934), 86

Y
Yang et al (2010), 42
Yang et al (2012), 41, 366
Yekutieli and Benjamini (1999), 339
Yengo et al (2022), 41

Z
Zhao et al (2021), 490
Zou and Hastie (2005), 319

Subject Index

A
Acceptance probability, 171, 195
Activation function, see Neural networks
Additive .. × additive genetic variance, 530
Additive genetic effects, 262
Additive genetic model, 476–478
Additive genetic relationship matrix, 477
Additive genetic value, 34, 165, 261, 262, 477
Additive genetic variance, 35
Allele, 33
Allele content, 34, 261
Area under the curve, see Binary data
Autocorrelation of sampled values, 185, 637
Autoregressive model, 17, 190
Average effect of the gene substitution, 34, 262

B
Back propagation, 492, 495, 533

back propagation with multiple paths, 539
vectorising back propagation, 537

Back propagation with multiple paths, see
Back propagation

Bagging, 30, See also Random forest521
Bandwidth, 446

choice of bandwidth parameter, 457
leave-one-out cross-validation, 457

Basis function, 466
Batching, 189
Bayes factor, 164, 248
Bayes false discovery rate, see False discovery

rate
Bayes theorem, 142, 157
Bayesian asymptotics, 170
Bayesian learning, 162, 165, 443

Bayesian local false discovery rate, see False
discovery rate

Bayesian McMC estimator of FDR, see False
discovery rate

Bayesian prediction, see Prediction
Bayesian view of kernelised regression, 476
Bayes rule, 370, 389
Bayes theorem, 9
Benjamini and Hochberg FDR, see False

discovery rate
Best linear approximation, 259, 262
Best linear predictor, 259, 261
Best linear unbiased estimator, BLUE, 158,

571
Best linear unbiased predictor, BLUP, 158,

476, 571
Best predictor, 258

properties of best predictor, 260
Bias, see Neural networks
Bias-variance trade-off, 277
Binary classifier, see Binary data
Binary data, 21, 370, 549, 640

approximate analysis, 411
area under the curve, 389
binary classifier, 370
confusion matrix, 389
correlated binary data, 558, 642
estimator of expected validating mean

squared error, 372
false negative rate, 390
false positive rate, 390
incidence, 390
lasso for binary records, 379
logistic regression with non-random

sampling, 375

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Sorensen, Statistical Learning in Genetics, Statistics for Biology and Health,
https://doi.org/10.1007/978-3-031-35851-7

687

https://doi.org/10.1007/978-3-031-35851-7
https://doi.org/10.1007/978-3-031-35851-7
https://doi.org/10.1007/978-3-031-35851-7
https://doi.org/10.1007/978-3-031-35851-7
https://doi.org/10.1007/978-3-031-35851-7
https://doi.org/10.1007/978-3-031-35851-7
https://doi.org/10.1007/978-3-031-35851-7
https://doi.org/10.1007/978-3-031-35851-7
https://doi.org/10.1007/978-3-031-35851-7
https://doi.org/10.1007/978-3-031-35851-7

688 Subject Index

mean squared error, 371
overall error rate, 390
penalised logistic regression, 377
posterior predictive distribution, 423
prevalence, 390
prior predictive distribution, 421
ROC curve, 390
sensitivity, 390
specificity, 390
spike and slab model, 380
training mean squared error, 372
validating mean squared error, 372

Binned estimator, 446
Bonferroni correction, 40, 333
Bootstrap, 288, 433

nonparametric bootstrap, 288
parametric bootstrap, 288, 573, 670

Breeding value, 34
Burn-in period, 180

C
Censored data, 547
Central limit theorem, 143, 185
Chain rule, see Neural networks
Choice of bandwidth parameter, see Bandwidth
Combining quadratic forms, 145, 157
Complete data loglikelihood, 107
Composition, 153, 393, 425, 567, 570, 666
Conditional posterior distribution, 145, 159
Conditional predictive distribution, 247
Conditional predictive ordinate, CPO, 248
Confidence interval, 7, 544
Confusion matrix, see Binary data
Conjugacy, 145
Conjugate prior distribution, 144
Convergence diagnosis, 183
Correlated binary data, 220
Cost function, 100, 377, 462, 465, 472, 473,

478, 483, 490, 499
Covariance between relatives, 37
Cramér-Rao theorem, 56
Cumulative distribution function, 11
Curvature, 8

D
Data augmentation, 209, 221, 558
Deep learning, 489
Degrees of freedom, 671
Detailed balance, 195
Dimension matching, 198
Diploid, 33
Discovery set, see False discovery rate

Discrepancy measures, see Posterior predictive
model checking

Discrete Markov chain, 194
Distribution

beta-binomial distribution, 422
beta distribution, 11, 12
binomial distribution, 4, 106, 543, 575
bivariate normal distribution, 63, 545
chi-square distribution, 562, 585
Dirichlet distribution, 207
double exponential distribution, 318
exponential distribution, 547, 592

censoring, 548, 593
lognormal distribution, 59, 174, 206
mean and variance of a truncated normal

distribution, 407
multinomial distribution, 80, 105
multivariate normal distribution, 116, 158,

166
normal distribution, 51, 143
normal inverse chi square distribution, 144
scaled inverted chi square distribution, 144,

148, 616
singular normal distribution, 74, 93
standard normal distribution, 112
student-t distribution, 149, 152, 239, 337,

615
truncated distributions, 71, 218

Dominance variance, 35
Dual representation, 462
Dual solution, see Ridge regression
Dual variable, 463

E
Effective chain length, 184, 556, 557, 560, 562,

627, 630, 636, 645
Effective number of parameters, 268, 671
Effective sample size, 184, 187
Eigenvalues, 92
Eigenvectors, 92
Elastic net, 319
Empirical Bayes estimator of FDR, see False

discovery rate
Environmental value, 33
Epistatic genetic variance, 530
Epistatic loci, 530
Epistatic model, 530
Epoch, 101
Equilibrium additive genetic variance, 36
Ergodic Markov chain, 195
Estimator of expected validating mean squared

error, see Binary data

Subject Index 689

Expectation-maximisation (EM) algorithm,
102, 551, 552, 554, 600, 604, 613

Expected additive genetic relationship, 34
Expected information, 576
Expected mean squared error, 276, 278
Expected (training) mean squared error, 276,

566, 658
Expected (validating) mean squared error, 276,

566, 567, 570, 656, 657, 659, 660,
662

Bayesian interpretation, 654

F
Factorised likelihood, 64
False discovery proportion, 336
False discovery rate, 338

Bayes false discovery rate, 342
Bayesian McMC estimator of FDR, 351
Benjamini and Hochberg FDR, 338
connection between the empirical Bayes

estimator and the classical false
discovery rate, 346

discovery set, 335
empirical Bayes estimation, 344
empirical Bayes estimator, 345
fully Bayesian false discovery rate, 350
fully Bayesian local false discovery rate,

351
local false discovery rate, 343, 347
marginal posterior distribution, 358, 364,

366
McMC draw from the posterior distribution

of FDR, 352
McMC estimate of average local false

discovery rate, 352
mixture model, 341
positive false discovery rate, 343
spike and slab model, 361
Storey’s q-values, 349
Two Gaussian mixtures, 352

inferences using Bayes-McMC, 356
inferences using EM maximum

likelihood, 354
False negative rate, see Binary data
False positive rate, see Binary data
Family wise error rate, 333
Fisher’s expected information, 55, 56, 544,

548, 549, 584, 593
Forward propagation, 492, 493

vectorising forward propagation, 537
Full-sib mixed model, 250
Fully Bayesian false discovery rate, see False

discovery rate

Fully conditional posterior distribution, 181,
210

Functional invariance, 56, 62, 577, 612, 650

G
Gamma function, 12, 150, 422, 615
Gaussian kernel, 451, 468, 485
Gene, 33
Generalised inverse, 93
Genetic markers, 24, 39, 41, 45, 73, 74, 332,

341, 397, 479, 485, 504, 553, 560,
568, 662

Genetic value, 33, 261
Genetic variance, 35
Genomewide association study, GWAS, 40,

273, 362, 365, 383, 384
Genomic heritability, 40, 74
Genomic likelihood, 95
Genomic model, 39, 72, 91, 131, 227, 239, 478,

553, 560, 609, 645
Genomic relationship matrix, 42, 471, 478
Genomic value, 39, 478
Genomic variance, 40, 478
Genotype, 33
Geyer’s Estimator of Monte Carlo Variance,

188
Gibbs sampling algorithm, 180, 215, 556, 558,

560, 562, 628, 640, 645
Gradient checking, 504
Gradient descent, 98, 490, 492, 497, 500, 503

batch gradient descent, 503
mini-batch gradient descent, 503

Gram matrix, 464

H
Haploid, 33
Hardy-Weinberg law, 34
Hat matrix, See also Least squares266, 447
Heritability, 35
Hessian, 55, 582
Heterogeneous variance model, see Least

squares; Posterior predictive model
checking

Heteroscedastic error, 265
Homoscedastic error, 265
Hyperbolic fuction, see Neural networks
Hypothesis test, 333

I
Idempotent matrix, 266, 267, 562, 584, 585,

656, 658, 668

690 Subject Index

Identifiability, 86, 412, 443
Identity by descent, IBD, 34
Ignorable selection, 63, 66
Improper prior distribution, 160
Incidence, see Binary data
Indicator function, 244, 447
Infection prevalence, 392
Infinitesimal model, 73, 166, 478
Inner product of two vectors, 461
Integrated autocorrelation, 187, 627, 630, 636,

645
Intensity of selection, 112
Interaction genetic model, 526, 530
Inverse transform, 336, 337
Iterative reweighted least squares, 91

J
Jacobian of the transformation, 199

K
K-fold cross-validation, 281
Kernel function, 449, 463, 466, 468
Kernelised cost function, 464
Kernelised logistic regression prediction, 505
Kernelised predictions, 463
Kernel logistic regression, 482
Kernel matrix, 464
Kernel regression estimator, 449
Kernel trick, 467

L
Lag-covariance, 185
Lagrange multiplier, 129
Lag-t autocovariance, 188
Lasso, 24, 310

Bayesian intepretation, 318
binary records, 379
logistic regression, 485
subdifferential, 312
tuning parameter, 311

Law of iterated expectations, 258
Law of total variance, 265
Least squares, 263

conditional variance, 264
estimated residuals, 264
fitted value, 264
hat matrix, 266
heterogeneous variance model, 265
overfitting, 268
residual sum of squares, 269
unconditional variance, 265

Least squares estimator, 263, 594
Least squares prediction, 290
Leave-one-out cross-validation, 281, 310, 457

generalised cross-validation, 283
implementation shortcut, 282
mean squared error, See also Bandwidth;

Ridge regression281
Leverage, 268
Liability, 86, 109
Liability model, 86
Likelihood

marginal likelihood, 248
Likelihood function, 5, 54, 543, 544, 547, 552,

557, 575, 577, 581, 589, 600, 605,
650

Linear kernel, 466
Linear regression model, 263, 424, 581
Linear smoother, 274, 465
Linkage disequilibrium, 35
Local false discovery rate, see False discovery

rate
Local polynomial regression, 453
Locus, 33
Logistic lasso, 485

prediction, 505
Logistic model, 21, 430, 550, 552, 556, 631
Logistic regression, 21, See also Metropolis-

Hastings algorithm; Neural
networks490,

Logistic regression with non-random sampling,
see Binary data

Logit, 88, 370, 543
Logit model, 552
Loglikelihood, 6, 54, 60, 543, 547–549,

551–553, 561, 575, 578, 581, 589,
593, 595, 600, 605, 635

Logodds, 87, 237, 370, 543
Loss function, 493

M
Machine learning, 489
Marginal distribution, 555
Marginal posterior distribution, 147, 160
Markov chain Monte Carlo (McMC), 171
Markov property, 194
Maximum likelihood estimate, 5, 54, 554, 562,

582
Maximum likelihood estimator, 6, 543, 544,

548, 549, 575, 586, 593
Mean and variance of a truncated normal

distribution, see Distribution
Mean squared error, 21, 258, 274, 276, 278,

308, 320, 371, 424, 435

Subject Index 691

accounting for sources of uncertainty, 424
Bayesian interpretation, 565, 654
marginal posterior distribution, 331, See

also Binary data435
Mercer’s theorem, 468
Method of moments, 138
Method of scoring, 78
Metropolis-Hastings algorithm, 172, 557

general acceptance ratio, 199
joint updating, 172, 556, 558, 624, 631, 637
logistic regression, 431
single-site updating, 176, 556, 622

Microarray study, 22
Misclassification error, 22
Missing data, 63, 66, 103
Misspecified likelihood, 72
Mixed linear model, 118, 156, 166
Mixed model equations, 157, 571, 668
Mixture distribution, 148

student-t distribution, 148
Mixture model, 127, 234

Gaussian mixture, 234, See also False
discovery rate341

Model checking, 19
Model comparison, 247
Monte Carlo sampling error, 183, 556–558,

560, 562, 627, 630, 636, 645
Multilogic model, 497
Multiple testing, 40

N
Nadaraya-Watson estimator, 449
Neural networks, 489

activation function, 490, 500
bias, 490
chain rule, 494
hyperbolic function, 501
logistic regression, 490
neuron, 490
prediction, 505
ReLU function, 501

leaky ReLU function, 502
sigmoid function, 490
softmax function, 497
tanh function, 501
weights, 490

Neuron, see Neural networks
Newton-Raphson, 77, 551, 552, 554, 596, 602,

603, 610
Normal mixtures, see False discovery rate
Norm of a vector, 461
Notation, 53
Nuisance parameter, 121, 160

Null hypothesis, 333

O
Observed information, 55, 544, 582, 583
Odds ratio, 87
Operational model, 568
OPTIM, 11, 83, 562, 598, 600, 603, 605, 610,

635, 651
Optimism, 277, 286, 293, 429, 572, 658

Bayesian optimism, 429
estimation of optimism, 288, 668
Monte Carlo estimator, 573, 670

Overall error rate, see Binary data
Overfitting, see Least squares

P
Pearson-Aitken formula, 405, 411
Penalised logistic regression, 377

prediction, 505, See also Binary data505
Phenotype, 33
Phenotypic value, 261
Phenotypic variance, 35
Positive false discovery rate, see False

discovery rate
Posterior distribution, 9, 141, 555, 618

asymptotic theory, 170, 618
improper posterior distribution, 443
modal value, 635

Posterior interval, 12, 555, 556, 621, 651
Posterior mean, 146, 155
Posterior mode, 155, 636
Posterior predictive distribution, 20, 151, 419,

see Binary data
Posterior predictive model checking, 435

discrepancy measures, 436
marginal posterior distribution, 442

heterogeneous variance model, 436
Posterior variance, 146
Predicted disease status, 391
Prediction, 257, 418

Bayesian prediction, 418
Prediction error variance, 158, 270
Prediction of a genetic disease, 404
Prediction of disease status, 402
Prediction with binary records, 385, 430
Prevalence, see Binary data
Prior distribution, 8, 141, 555
Prior information, 8, 18
Prior odds, 164
Prior predictive distribution, 420, See also

Binary data421
Probability density function, 12, 53, 143, 588

692 Subject Index

Probability distribution, 4
Probability mass function, 54, 86, 543, 575
Probability of a false discovery, 333
Probability of a significant result, 333
Probability of a type I error, 333
Probit model, 109, 220, 551, 558, 600, 604, 637

correlated data, 608
Proposal distribution, 171, 195
P-value, 336

Q
QTL detection with binary records, 383
QTL detection with continuous data, 361
Quadratic forms

expectation of a quadratic form, 134, 562
Quantitative trait loci (QTL), 33

R
Random forest, 30, 521

bagging, 521
capturing interaction, 525
out-of-bag error estimate, 522
variability of random forest, 525
variable importance, 522

Random variable, 4
Receiver operating characteristic (ROC) curve,

see Binary data
Rectified linear unit (ReLU) function, see

Neural networks
Representer theorem, 472
Reproducing kernel Hilbert space, RKHS, 469
Restricted likelihood, 161
Restricted maximum likelihood, 121, 160
Reversibility, 200
Reversible Markov chain, 196
Ridge regression, 300, 463, 569

Bayesian view of ridge regression, 305
bias-variance trade-off, 304
choice of shrinkage parameter, 304
dual solution, 463
leave-one-out cross-validation, 310
mean squared error, 302
prediction ability , 306

S
Sample mean squared error, 276
Sampling from truncated distributions, 218
Sampling variance of the maximum likelihood

estimator, 6
Score function, 55, 60, 89, 549, 593, 595
Sensitivity, see Binary data

Shrinkage, see Ridge regression
Sigmoid function, see Neural networks
Similarity matrix, 470
Single nucleotide polymorphisms (SNPs), 39
Softmax function, see Neural networks
Specificity, see Binary data
Spectral decomposition, 46, 92, 301, 479, 553,

560
Spike and slab model, 321, see False discovery

rate
genomic variance, 325
McMC implementation, 326
mean squared error, 331, See also False

discovery rate331
Spike and slab model for binary records, see

Binary data
State space, 194
Stationarity, 194, 199
Stationary distribution, 171, 195, 196
Stochastic gradient descent, 99
Storey’s q-values, see False discovery rate
Subdifferential, see Lasso
Supervised learning, 445
Support, 54, 71

T
Tanh fuction, see Neural networks
Target distribution, 172
Taylor series expansion, 77, 155, 412
Threshold model, 86
Training data, 21, 270, 275
Training mean squared error, 21, 280, See also

Binary data372
Transformation of random variables, 175, 336
Transition probability, 195
Tree

classification tree, 27, 512
deviance, 515, 519
Gini index, 514
impurity, 513
prediction, 29
split, 512
terminal node, 28, 512

pruning, 513
regression tree, 514
variability of estimated trees, 520

True model, 72
Truncated data, 71, 134, 244
Truncated distribution, see Distribution
Truncated normal model, 244
T-test, 40, 337

Subject Index 693

U
Unsupervised learning, 446

V
Validating data, 22, 275
Validating datum, 269
Validating mean squared error, 22, 293, See

also Binary data372
Vectorising back propagation, see Back

propagation

Vectorising forward propagation, see Forward
propagation

W
Weights, see Neural networks

Z
Z-values, 337

	Preface
	Acknowledgements
	Contents
	1 Overview
	1.1 Introduction
	1.2 The Sampling Distribution of a Random Variable
	1.3 The Likelihood and the Maximum Likelihood Estimator
	The Sampling Variance of the Maximum Likelihood Estimator

	1.4 Incorporating Prior Information
	Using a Discrete Prior
	Using a Beta Prior: The Beta-Binomial Model
	Prior Influence on Inferences
	Simulating from the Posterior Distribution
	Estimating Moments Using (Correlated) Samples from Posterior Distributions

	1.5 Frequentist or Bayesian?
	1.6 Prediction
	1.7 Appendix: A Short Overview of Quantitative Genomics
	The Classical Quantitative Genetics Model
	The Single Locus Model
	Models with Many Loci
	Covariance Between Relatives
	Expected Value of the Genomic Relationship Matrix

	The Genomic Model
	Fitting Models Incorporating Marker Genotypes
	Comments on the Genomic Variance and the Genomic Relationship Matrix

	Part I Fitting Likelihood and Bayesian Models
	2 Likelihood
	2.1 A Little Intuition
	Notation

	2.2 Summary of Likelihood Results
	Summary of Properties of Maximum Likelihood Estimators

	2.3 Example: The Likelihood Function of Transformed Data
	2.4 Example: Linear Regression
	Invariance

	2.5 Example: Bivariate Normal Model with Missing Records
	2.6 Example: Likelihood Inferences Using Selected Records
	Estimation by Least Squares
	Estimation by Maximum Likelihood

	2.7 Example: The Likelihood Function with Truncated Data
	2.8 Example: The Likelihood Function of a Genomic Model

	3 Computing the Likelihood
	3.1 Newton-Raphson and the Method of Scoring
	Example: Estimation of Gene Frequencies from ABO Blood Group Phenotypes
	Example: A Regression Model for Binary Data
	The Liability Model
	A Digression on Parameter Interpretation
	Likelihood Function
	The Iterative System

	Example: A Genomic Model
	Background
	A Probabilistically Equivalent Reparametrisation
	Writing the Likelihood
	Implementation Using Newton-Raphson
	An R-code That Performs the Eigenvalue Decomposition

	3.2 Gradient Descent and Stochastic Gradient Descent
	A Toy Example

	3.3 The EM Algorithm
	Derivation
	A Digression on a Multivariate Transformation for Discrete Random Variables
	Example: Estimation of Gene Frequencies from ABO Blood Group Phenotypes
	Example: A Regression Model for Binary Data
	E-step
	M-step
	Notes

	Example: A Binomial Regression Model
	A Digression on Some Matrix Algebra Results
	Example: ML Estimation in the Mixed Linear Model
	Example: REML (Restricted Maximum Likelihood) Estimation in the Mixed Linear Model
	Example: Bivariate Normal Model with Missing Records
	Example: A Two-Component Mixture Model
	E-step
	M-step

	Example: Genomic Model
	Note

	Example: Likelihood Inferences with Truncated Data and Using the Method of Moments
	Estimation Using the Method of Moments

	4 Bayesian Methods
	4.1 Example: Estimating the Mean and Variance of a Normal Distribution
	4.2 Posterior Predictive Distribution for a New Observation
	4.3 Example: Monte Carlo Inferences of the Joint Posterior Distribution of Mean and Variance
	4.4 Approximating a Marginal Distribution
	4.5 Example: The Normal Linear Mixed Model
	4.6 Example: Inferring a Variance Component from a Marginal Posterior Distribution
	4.7 Example: Bayesian Learning—Inheritance of Haemophilia
	4.8 Example: Bayesian Learning—Updating Additive Genetic Values
	4.9 A Brief Account of Bayesian Asymptotics
	4.10 An Overview of Markov Chain Monte Carlo
	4.11 The Metropolis-Hastings Algorithm
	Joint Updating
	Joint Updating: Example Using the Normal Model (4.64) and (4.65)
	NOTE on the Theory of Transformations of Random Variables

	Single-Site Updating
	Single-Site Updating: Example Using the Normal Model (4.64), (4.65)

	4.12 The Gibbs Sampling Algorithm
	4.13 Output Analysis
	NOTE 1
	NOTE 2
	Geyer's Estimator of the Monte Carlo Variance
	The Method of Batching
	Example: A Simulated Autoregressive Process

	4.14 Appendix: A Closer Look at the McMC Machinery
	The Standard Metropolis-Hastings Ratio
	Stationarity
	Detailed Balance
	The Acceptance Probability of the Metropolis-Hastings Algorithm

	The General Metropolis-Hastings Ratio
	Stationarity
	Reversibility
	The Acceptance Probability for a General Metropolis-Hastings Algorithm

	A Toy Example
	Strategy 1

	NOTE
	Strategy 2
	Strategy 3

	5 McMC in Practice
	5.1 Example: Estimation of Gene Frequencies from ABO Blood Group Phenotypes
	Data Augmentation
	The Gibbs Sampling Implementation

	5.2 Example: A Regression Model for Binary Data
	Metropolis-Hastings Algorithm
	Gibbs Sampling Algorithm
	Drawing Samples from Truncated Distributions

	5.3 Example: A Regression Model for Correlated Binary Data
	Gibbs Sampling Implementation
	Deriving [β|D]
	Deriving [u|D]
	Deriving [f|D]
	Deriving [σf2|D]

	A Metropolis Within Gibbs Implementation: Case 1
	A Metropolis Within Gibbs Implementation: Case 2

	5.4 Example: A Genomic Model
	Deriving [μ|D]
	Deriving [α|D]
	Deriving [σg2|D]
	Deriving [σe2|D]
	An Alternative Definition of Genomic Variance

	5.5 Example: A Mixture Model of Two Gaussian Components
	Deriving [θ1|D]
	Deriving [zi|D]
	Deriving [σ2|D]
	Deriving [π1|D]

	5.6 Example: An Application of the EM Algorithm in a Bayesian Context—Estimation of SNP Effects
	Preliminaries
	E-Step
	M-Step
	An Alternative Parametrisation

	5.7 Example: Bayesian Analysis of the Truncated Normal Model
	5.8 A Digression on Model Comparison
	Example
	A Gibbs Sampler for the ``True'' Model
	A Gibbs Sampler for the ``Wrong'' Model

	Part II Prediction
	6 Fundamentals of Prediction
	6.1 Best Predictor and Best Linear Predictor
	Properties of the Best Predictor
	Example: Additive Genetic Values as Best Linear Predictors
	Using a Biased Predictor

	6.2 Estimating the Regression Function in Practice: Least Squares
	Least Squares Linear Regression and the ``Hat'' Matrix
	Prediction of Out-of-Sample Values
	A Justification for the Choice of a Linear Relationship
	Some Caveats of the Linear Regression Model
	Least Squares Prediction as an Approximation to Best Linear Prediction
	The Linear Regression as a Linear Smoother

	6.3 Overview of Things to Come
	6.4 The Bias-Variance Trade-Off
	6.5 Estimation of Validation MSE of Prediction in Practice
	Implementation Shortcut for Leave-One-Out Cross-Validation

	6.6 On Average Training MSE Underestimates Validation MSE
	Independently Distributed Data
	Correlated Data
	Estimating Optimism of the Training Sample

	6.7 Least Squares Prediction
	Example: Prediction Ability of the Least Squares Estimator
	Quantifying Optimism

	Example: What Measure of Prediction Error Does Leave-One-Out Estimate?
	Example: Variation of Leave-One-Out Cross-Validation

	7 Shrinkage Methods
	7.1 Ridge Regression
	A Toy Example
	Choice of Shrinkage Parameter
	Bayesian View of Ridge Regression
	Note

	Example: Prediction Ability of the Ridge Estimator
	Example: Leave-One-Out Cross-Validation and Shrinkage

	7.2 The Lasso
	The Subdifferential
	An Example with a Single Regression Parameter
	A General Algorithm to Obtain Lasso Solutions
	A Bayesian Interpretation of the Lasso

	7.3 An Extension of the Lasso: The Elastic Net
	7.4 Example: Prediction Using Ridge Regression and Lasso
	7.5 A Bayesian Spike and Slab Model
	The Mixture Model
	McMC Implementation
	Updating [μ|D]
	Updating [αi|D]
	Updating [δi|D]
	Remarks
	Updating [π|D]
	Updating [σb2|D]
	Updating [σ2|D]

	Example: Spike and Slab Model

	8 Digression on Multiple Testing: False Discovery Rates
	8.1 Introduction
	8.2 Preliminaries
	8.3 The Benjamini-Hochberg False Discovery Rate
	8.4 A Bayesian Approach for a Simple Two-Group Mixture Model
	8.5 Empirical Bayes Estimation
	Connection with Benjamini-Hochberg False Discovery Rate

	8.6 Local False Discovery Rates
	8.7 Storey's q-Values
	8.8 Fully Bayesian McMC False Discovery Rate
	Posterior Distribution of False Discovery Rate

	8.9 Example: A Two-Component Gaussian Mixture
	8.10 Example: The Spike and Slab Model with Genetic Markers
	Independent Marker Genotypes
	Correlated Marker Genotypes

	9 Binary Data
	9.1 Prediction for Binary Observations
	9.2 Mean Squared Error
	Example: Training and Validation MSE with Binary Data

	9.3 Logistic Regression with Non-random Sampling
	9.4 Penalised Logistic Regression
	9.5 The Lasso with Binary Records
	9.6 A Bayesian Spike and Slab Model for Binary Records
	Example: Prediction and QTL Detection Using Genetic Marker Information
	QTL Detection
	Prediction

	9.7 Area Under the Curve
	Predicted Disease Status
	Infection Prevalence
	Example: Estimation of Prevalence Using an Imperfect Test
	Probabilistic Interpretation of AUC
	Example: ROC Curves

	9.8 Prediction of Disease Status of Individual Given Disease Status of relatives
	The Model
	Calculation of Disease Status
	Example: Prediction of a Genetic Disease
	Note 1: Mean and Variance of the Truncated Normal Distribution
	Note 2: The Pearson-Aitken Formula

	9.9 Appendix: Approximate Analysis of Binary Traits
	Example

	10 Bayesian Prediction and Model Checking
	10.1 Levels of Uncertainty
	10.2 Prior and Posterior Predictive Distributions
	Example: Binary Data
	Example: Continuous Data

	10.3 Bayesian Expectations of MSE
	10.4 Example: Bayesian and Frequentist Measures of Uncertainty
	10.5 Model Checking Using Posterior Predictive Distributions
	An Example with a Genetically Structured Heterogeneous Variance Model
	Constructing Discrepancy Measures
	Generating Data Based on the Genetic Heterogeneous Variance Model
	Detecting a Relationship Between Within Family Variance and Family Mean Using Observed Data
	Detecting a Relationship Between Within Family Variance and Family Mean Using Discrepancy Measures

	11 Nonparametric Methods: A Selected Overview
	11.1 Local Kernel Smoothing
	The Binned Estimator
	Other Kernel Smoothing Methods
	Local Polynomial Regression
	Choice of Bandwidth Parameter
	Extension to Several Dimensions

	11.2 Kernel Methods Using Basis Expansions
	Preliminaries
	Dual Representation
	Kernelised Predictions
	Kernelised Cost Functions
	Nonlinear Feature Mappings Using Kernel Functions
	The Kernel Trick
	Choice of Kernel Functions
	NOTE

	Kernel Matrices as Similarity Matrices
	Reducing Infinitely Dimensional Problems to Finite Dimensional Problems
	Example: Classical, Kernelised, and Gaussian Kernel Ridge Regression
	Bayesian View of Kernelised Regression
	Genetic Models Using Kernelised Regressions
	Example: A Bayesian Kernelised Regression
	Kernel Logistic Regression
	Example: Analysis of Binary Observations Using Kernelised Logistic Regression, Penalised Logistic Regression, and Logistic Lasso

	11.3 Neural Networks
	Preliminaries: A Logistic Regression
	Training the Neural Network
	Notation

	Forward Propagation
	Loss Function
	Chain Rule
	Back Propagation
	Cost Function
	A Single Hidden Layer Neural Network
	The Cost Function
	Activation Functions
	Remarks on Fitting Neural Networks
	Example: Analysis of Binary Observations Using a Neural Network
	Example: Prediction Using a Neural Network, a RKHS Regression and a Genomic BLUP Model

	11.4 Classification and Regression Trees
	The Gini Index and the Deviance
	Evaluating Prediction Performance with Cross-Validation
	Example: Analysis of the Heart Data Using a Classification Tree
	Variability of Estimated Trees

	11.5 Bagging and Random Forests
	Out-of-Bag Error Estimates
	Variable Importance
	Example: Analysis of the Heart Data Using a Random Forest
	Variability of Random Forests
	Example: An Analysis Involving Genetic Epistatic Interactions
	NOTE: The Epistatic Model

	11.6 Appendix
	Minimisation of the Cost Function: Back Propagation
	Vectorising Forward and Back Propagation for the Complete Training Data
	Back Propagation with Multiple Paths

	Part III Exercises and Solutions
	12 Exercises
	12.1 Likelihood Exercises I
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4
	Exercise 5

	12.2 Likelihood Exercises II
	Exercise 1
	Exercise 2
	Exercise 3
	Example 4

	12.3 Bayes Exercises I
	Exercise 1
	Exercise 2
	Exercise 3

	12.4 Bayes Exercises II
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4
	Exercise 5

	12.5 Prediction Exercises
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4
	Exercise 5
	Exercise 6

	13 Solution to Exercises
	13.1 Likelihood Exercises I
	Exercise 1
	Exercise 2
	Note
	Exercise 3
	Exercise 4
	Note

	Exercise 5

	13.2 Likelihood Exercises II
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4

	13.3 Bayes Exercises I
	Exercise 1
	Exercise 2
	Exercise 3

	13.4 Bayes Exercises II
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4
	Exercise 5

	13.5 Prediction Exercises
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4
	Exercise 5
	Exercise 6
	Degrees of Freedom

	References
	Author Index
	Subject Index

