

Software Engineering for Games in Serious
Contexts

Kendra M. L. Cooper • Antonio Bucchiarone
Editors

Software
Engineering for
Games in
Serious Contexts
Theories, Methods, Tools,
and Experiences

Editors
Kendra M. L. Cooper
Kelowna, BC, Canada

Antonio Bucchiarone
Fondazione Bruno Kessler
Trento, Italy

ISBN 978-3-031-33337-8 ISBN 978-3-031-33338-5 (eBook)
https://doi.org/10.1007/978-3-031-33338-5

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland
AG 2023
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

https://doi.org/10.1007/978-3-031-33338-5
https://doi.org/10.1007/978-3-031-33338-5
https://doi.org/10.1007/978-3-031-33338-5
https://doi.org/10.1007/978-3-031-33338-5
https://doi.org/10.1007/978-3-031-33338-5
https://doi.org/10.1007/978-3-031-33338-5
https://doi.org/10.1007/978-3-031-33338-5
https://doi.org/10.1007/978-3-031-33338-5
https://doi.org/10.1007/978-3-031-33338-5
https://doi.org/10.1007/978-3-031-33338-5

Preface

Serious games and gamification are two distinct but related areas of game devel-
opment that aim to harness the power of games to achieve goals. Serious games
are designed to educate, train, or inform players about real-world topics, such
as healthcare, safety, or environmental issues. Gamification, on the other hand,
involves applying game elements and design principles to non-game applications for
employee training, marketing, or education to increase engagement and motivation.
Both serious games and gamification have gained increasing attention in recent
years due to their potential to create engaging and immersive experiences that can
lead to better learning outcomes, increased productivity, and positive behavioral
change. As such, they have become a popular tool in a range of fields, including
education, finance, healthcare, and transportation; they are expected to continue to
grow in importance in the years to come.

Serious games and gamified applications are inherently complex due to their
interdisciplinary nature. They draw upon contributions from arts, behavioral sci-
ences, business, education and training, engineering, humanities, physical sciences
and mathematics, and specific targeted domains such as healthcare, transportation,
and so on. To help address this complexity, a new research community has emerged
that spans software engineering and games in serious contexts. This community
investigates software engineering approaches that are tailored for serious games and
gamification, with respect to achieving beneficial user experiences.

This book is designed as an accessible means to introduce readers to and/or
deepen existing knowledge about software engineering for games in serious con-
texts. The book is intended for software engineers, game developers, educators, and
anyone interested in how games in serious contexts can be effectively created. It
covers a wide range of topics, from game design principles to software architecture,
testing, and deployment, and is structured into two parts. These topics are spread on
11 essential chapters contributed by 45 authors who are from 9 different countries—
Brazil, Canada, Germany, Greece, Italy, Mauritius, Mexico, the United Kingdom,
and the United States of America.

The book starts with Chap. 1, written by Kendra M. L. Cooper, which introduces
the interdisciplinary research community that has emerged at the intersection of

v

 11604 57051 a 11604 57051 a

vi Preface

software engineering and games, with a focus on serious games and gamified
systems. At the same time, it summarizes examples of recent research (2016–2022)
on these topics and organizes it around established software engineering research
topics. The chapter also provides an overview of the book’s content, which includes
11 core chapters on various aspects of gameful systems.

Immediately after the introductory chapter, the volume is organized in two
parts: Part I delves into various aspects of designing, maintaining, adapting, and
evaluating games in serious contexts, while Part II focuses on the experiences of
realizing and using games in serious contexts.

Part I: Topics on the Design, Maintenance, Adaptation,
and Evaluation of Gameful Systems

Chapter 2 by Sotiris Kirginas presents various methods for evaluating users’ experi-
ences in serious games during and after development. The methods covered include
qualitative, quantitative, subjective, objective, short term, long term, summative, and
formative. The chapter also offers guidance on when to use these different user
experience assessment methods during the development cycle.

Chapter 3 by Vipin Verma et al. introduces a new content-agnostic framework
for engineering serious educational games. The framework allows for the creation
of games by reusing existing educational game mechanics and separates the game
into three independent components: mechanics, content, and student modeling.

Chapter 4 by Leticia Davila-Nicanor et al. presents a method for designing
and analyzing the architecture of serious mobile games. The technique presented
exploits established design patterns like Wrapper, Singleton, and MVC to optimize
the distribution of memory and execution time resources, and architecture analysis is
done using graph theory and software metrics. By evaluating the architecture early,
costs can be reduced and software performance can be improved. For this purpose,
a dispersion diagram is used to visualize the architecture with acceptable quality
levels.

Chapter 5 by Edward Melcer et al. proposes a serious game-based online plat-
form called ENTRUST, designed to assess trainees’ decision-making competencies
in various entrustable professional activity domains in the healthcare education field.
The chapter covers the platform’s design, insights, lessons learned throughout the
development process, and results from a pilot study of the platform. The pilot study
shows that ENTRUST can discriminate between levels of surgical expertise and can
serve as an objective assessment approach for clinical decision-making.

Chapter 6 by Michael Miljanovic et al. proposes a generalized model for
adapting existing serious games to utilize machine learning approaches without the
need to rebuild the game from scratch. The chapter presents an approach to engineer
machine learning-based serious games and discusses five common challenges that
arise in the process, along with possible solutions. The challenges include selecting

 2133 19896 a 2133 19896
a

 3580 26563 a 3580 26563 a

 3710 31896 a 3710 31896 a

 3568 42563 a 3568 42563 a

 3793 51896 a 3793 51896 a

Preface vii

data for the machine learning input, choosing game elements to adapt, addressing
the cold start problem, determining the frequency of adaptation, and testing that an
adaptive game benefits from machine learning.

Part II: Topics on Experiences with Gameful Systems

Chapter 7 by Vanissa Wanick et al. explores the potential to transfer strategies
commonly utilized in entertainment games to serious games. The chapter presents
three complementary perspectives regarding emerging aspects of player agency,
serious game modification, and transferability across different contexts, including
emergent possibilities, modding, and the importance of AI emotion modeling to
inform better game design.

Chapter 8 by Leckraj Nagowah presents a serious game called Code-Venture,
designed to help players learn the basics of coding and improve their programming
skills. A teacher’s application is included to monitor, assess, evaluate, and store the
player’s performance data. Pre- and post-game surveys show that the game is useful
and engaging, with an increase in the number of students interested in pursuing a
programming career and finding programming easy.

Chapter 9 by Bruce Maxim et al. presents a method for revising tradi-
tional lecture-based game design courses to utilize flipped classroom models.
The revised courses use agile software engineering practices and gamification to
design, implement, and test game prototypes through active learning and role-play.
The effectiveness of the revised courses is measured using surveys, which show
that students attending flipped classes are slightly more engaged with the course
materials than those in lecture-only classes. Additionally, students who interact with
the active learning course materials feel more able to apply their knowledge than
those in traditional lecture courses.

Chapter 10 by Riccardo Coppola et al. presents a gamified framework for
manually exploring GUI testing of Web-based applications, which is implemented
and evaluated. The framework improves test coverage, reduces the number of bugs
identified, and provides a positive user experience, as indicated by the participants
in the evaluation.

Chapter 11 by Mathias Eggert et al. presents a field experiment that involved
gamified quality improvement of five student projects in an information systems
course using leaderboards. The project members were interviewed to capture the
impact of using a leaderboard on their programming behavior, and the results
indicate a motivational effect with respect to improving code quality and a reduction
of code smells.

Chapter 12 by Gabriele Costa et al. presents a serious game for cybersecurity
education called “A NERD DOGMA.” It is an escape room adventure game based
on real security scenarios, which requires the player to exfiltrate data, break ciphers,
and intrude remote systems to gain experience in security operations. The game also

 2359 10341 a 2359 10341 a

 3611 18341 a 3611 18341 a

 3876 26341 a 3876 26341 a

 3762 38341 a 3762 38341 a

 3621 45008 a 3621 45008 a

 3605 53008 a 3605 53008
a

viii Preface

includes the introduction of security tools, integration of third-party technologies,
and mimicking external environments.

Perspectives

The book highlights several challenges and opportunities for the field of software
engineering for games in serious context. One of the primary challenges is to
develop effective methods for evaluating serious games and measuring their impact
and outcomes. Another challenge is to design serious games that are both engaging
and effective, which requires a deep understanding of game design principles
and instructional design. The book also emphasizes the need to develop effective
software engineering practices for serious game development and the importance
of gamification in improving user engagement and motivation. Additionally, the
potential of serious games for addressing societal challenges such as cybersecurity
and healthcare is highlighted.

Despite these challenges, the book also identifies several opportunities for the
field, including the potential of serious games to provide new and innovative
approaches to learning and the potential of serious games to address real-world
problems in new and effective ways. Overall, the chapters in the book provide a
valuable snapshot of the current state of the field and offer insights into where
it may be headed in the future. While there are still challenges to overcome, the
opportunities for researchers and practitioners in the field of software engineering
for games in serious context are exciting and numerous as presented in Chap. 13 by
Antonio Bucchiarone.

We hope that this book will be a valuable resource for anyone interested in
designing, developing, or using games in serious contexts. We believe that serious
games have the potential to transform education, healthcare, social awareness, and
environmental conservation, and we hope that this book will contribute to their
continued development and adoption.

Acknowledgments

The editors would like to express their deepest gratitude to all of the authors who
have submitted their valuable contributions and provided their highly qualified
expertise in reviewing the chapters included in this book.

Kelowna, BC, Canada Kendra M. L. Cooper
Trento, Italy Antonio Bucchiarone

 32368 31674 a 32368 31674 a

Contents

1 Introduction to Software Engineering for Games in Serious
Contexts. 1
Kendra M. L. Cooper

Part I Topics on the Design, Maintenance, Adaptation, and
Evaluation of Gameful Systems

2 User Experience Evaluation Methods for Games in Serious
Contexts. 19
Sotiris Kirginas

3 Software Engineering for Dynamic Game Adaptation in
Educational Games . 43
Vipin Verma, Ashish Amresh, Tyler Baron, and Ajay Bansal

4 Performance on Software Architecture Design to Serious
Games for Mobile Devices . 63
Leticia Davila-Nicanor, Irene Aguilar Juarez, Joel Ayala de la Vega,
Abraham Banda Madrid, and Sochitl Cruz López

5 ENTRUST: Co-design and Validation of a Serious Game for
Assessing Clinical Decision-Making and Readiness
for Entrustment . 85
Edward F. Melcer, Cara A. Liebert, Samuel Shields, Oleksandra
G. Keehl, Jason Tsai, Fatyma Camacho, Hyrum Eddington,
Amber Trickey, Melissa Lee, Sylvia Bereknyei Merrell,
James R. Korndorffer Jr., and Dana T. Lin

6 Engineering Adaptive Serious Games Using Machine Learning 117
Michael A. Miljanovic and Jeremy S. Bradbury

ix

x Contents

Part II Topics on Experiences with Gameful Systems

7 Future Directions in Games for Serious Contexts:
A Conversation About Transferability . 137
Vanissa Wanick, James Stallwood, and Guilherme Xavier

8 Code-Venture: A Mobile Serious Game for Introductory
Programming . 155
Leckraj Nagowah and Diksha Cuniah

9 Using Active Learning to Teach Software Engineering
in Game Design Courses . 189
Bruce R. Maxim and Jeffrey J. Yackley

10 A Framework for the Gamification of GUI Testing. 215
Riccardo Coppola, Luca Ardito, Tommaso Fulcini, Giacomo
Garaccione, Marco Torchiano, and Maurizio Morisio

11 Applying Leaderboards for Quality Improvement
in Software Development Projects . 243
Mathias Eggert, Philipp M. Zähl, Martin R. Wolf, and Martin Haase

12 Designing a Serious Game for Cybersecurity Education 265
Gabriele Costa and Marina Ribaudo

13 Grand Challenges in Software Engineering for Games in
Serious Contexts . 291
Antonio Bucchiarone

Editors and Contributors

About the Editors

Kendra M. L. Cooper is an Independent Scholar whose research interests span
software and systems engineering (requirements engineering and architecture)
and engineering education; these topics are explored within the context of game
engineering. Dr. Cooper’s current topics include graph-based approaches such
as biologically inspired adaptable software architecture models and ontological
foundations for serious educational games. She has co-edited the book Computer
Games and Software Engineering (2015) and edited the book Software Engi-
neering Perspectives in Computer Game Development (2021). Dr. Cooper has
co-organized/organized ICSE Workshops on Games and Software Engineering
(GAS 2012, GAS 2013, GAS 2015, GAS 2016, GAS 2022, GAS 2023) and the
CSEE&T Workshop on Essence in Education and Training (2020). She has served
as an Editor for the journal Software: Practice and Experience. Dr. Cooper received
a Ph.D. in Electrical and Computer Engineering from The University of British
Columbia, Canada.

Antonio Bucchiarone is a Senior Researcher at the Motivational Digital Systems
(MoDiS) research unit of the Bruno Kessler Foundation (FBK) in Trento, Italy. His
research activity is focused principally on many aspects of software engineering
for adaptive socio-technical systems. Dr. Bucchiarone’s current topics include
advanced methodologies and techniques supporting the definition, development, and
management of gameful systems in different domains (i.e., education, sustainable
mobility, software modeling, etc.). He was the General Chair of the 12th IEEE Inter-
national Conference on Self-Adaptive and Self Organizing Systems (SASO 2018)
and has co-organized/organized multiple workshops including Models@run.time at
MODELS 2021; Ensemble-based Software Engineering (EnSEmble) at ESEC/FSE
2018 and 2019; Microservices: Science and Engineering (MSE) at STAF2018 and
SEFM2017; and the ICSE GAS 2022, GAS 2023 workshops. Dr. Bucchiarone is
an Associate Editor of the IEEE Transactions on Intelligent Transportation Systems

xi

xii Editors and Contributors

(T-ITS) journal of the IEEE Software Magazine and of the IEEE Technology and
Society Magazine.

Contributors

Ashish Amresh Arizona State University, Phoenix, AZ, USA

Luca Ardito Politecnico di Torino, Turin, Italy

Ajay Bansal Arizona State University, Phoenix, AZ, USA

Tyler Baron Arizona State University, Phoenix, AZ, USA

Jeremy Bradbury Ontario Tech University, Oshawa, ON, Canada

Fatyma Camacho University of California, Santa Cruz, CA, USA

Riccardo Coppola Politecnico di Torino, Turin, Italy

Gabriele Costa IMT Lucca, Lucca, Italy

Diksha Cuniah University of Mauritius, Réduit, Mauritius

Leticia Davila-Nicanor Universidad Autónoma del Estado de México, Atizapán
de Zaragoza, Mexico

Hyrum Eddington Stanford University School of Medicine, Stanford, CA, USA

Mathias Eggert Aachen University of Applied Sciences, Aachen, Germany

Tommaso Fulcini Politecnico di Torino, Turin, Italy

Giacomo Garaccione Politecnico di Torino, Turin, Italy

Martin Haase Aachen University of Applied Sciences, Aachen, Germany

Irene Aguilar Juarez Universidad Autónoma del Estado de México, Texcoco,
Mexico

Oleksandra G. Keehl University of California, Santa Cruz, CA, USA

Sotiris Kirginas University of Athens, Athens, Greece

James R. Korndorffer Stanford University School of Medicine, Stanford, CA,
USA

Melissa Lee Stanford University School of Medicine, Stanford, CA, USA

Cara A. Liebert Stanford University School of Medicine, Stanford, CA, USA

Dana T. Lin Stanford University School of Medicine, Stanford, CA, USA

Editors and Contributors xiii

Sochitl Cruz López Universidad Autónoma del Estado de México, Texcoco,
Mexico

Abraham Banda Madrid Universidad Autónoma del Estado de México, Atizapán
de Zaragoza, Mexico

Bruce Maxim University of Michigan-Dearborn, Dearborn, MI, USA

Edward F. Melcer University of California, Santa Cruz, CA, USA

Sylvia Bereknyei Merrell Stanford University School of Medicine, Stanford, CA,
USA

Michael Miljanovic Ontario Tech University, Oshawa, ON, Canada

Maurizio Morisio Politecnico di Torino, Turin, Italy

Leckraj Nagowah University of Mauritius, Réduit, Mauritius

Marina Ribaudo University of Genoa, Genoa, Italy

Samuel Shields University of California, Santa Cruz, CA, USA

James Stallwood University of Southampton, Southampton, UK

Marco Torchiano Politecnico di Torino, Turin, Italy

Amber Trickey Stanford University School of Medicine, Stanford, CA, USA

Jason Tsai University of California, Santa Cruz, CA, USA

Joel Ayala de la Vega Universidad Autónoma del Estado de México, Texcoco,
Mexico

Vipin Verma Arizona State University, Phoenix, AZ, USA

Vanissa Wanick University of Southampton, Southampton, UK

Martin Wolf Aachen University of Applied Sciences, Aachen, Germany

Guilherme Xavier PUC-Rio, Rio de Janeiro, Brazil

Jeffrey Yackley University of Michigan-Flint, Flint, MI, USA

Philipp Zähl Aachen University of Applied Sciences, Aachen, Germany

Chapter 1
Introduction to Software Engineering for
Games in Serious Contexts

Kendra M. L. Cooper

Abstract Software engineering researchers have been actively investigating novel
approaches that focus on the effective development, evolution, and maintenance
of high-quality, complex systems for over 50 years. Recently, an interdisciplinary
research community has emerged that spans software engineering and games. This
community addresses a broad range of issues that prevail in developing games for
entertainment, serious games, and gamified applications. In this book, the focus is on
the latter two. Serious games are also known as games with a purpose. Beyond their
entertainment value, they also fulfill a purpose such as educating or training users on
specific learning objectives. Gamified systems are non-entertainment applications
that are enhanced with game elements to help motivate and engage users to improve
their productivity, satisfaction, time on tasks, and so on. Although distinct research
topics, serious games and gamification share a core quality of service attribute: user
experience. These applications possess the inherent, interdisciplinary complexity
of creating user experiences that engage and motivate users to accomplish specific
goals.

This introductory chapter begins with a brief presentation of background material
covering serious games, gamified systems, and a description of their inherent
interdisciplinary development nature. This is followed by a summary of examples
for recent advances that are reported in peer-reviewed publications (2016–2022)
at the intersection of software engineering and gameful systems. The results are
organized around established software engineering research topics. In addition, this
chapter provides an overview of the book structure and content; brief summaries of
the 11 core chapters are included.

Keywords Software engineering · Serious game · Gamified systems · User
experience · Interdisciplinary research · Background material

K. M. L. Cooper (�)
Independent Scholar, Vancouver, BC, Canada

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
K. M. L. Cooper, A. Bucchiarone (eds.), Software Engineering for Games
in Serious Contexts, https://doi.org/10.1007/978-3-031-33338-5_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33338-5protect T1	extunderscore 1&domain=pdf
https://doi.org/10.1007/978-3-031-33338-5_1
https://doi.org/10.1007/978-3-031-33338-5_1
https://doi.org/10.1007/978-3-031-33338-5_1
https://doi.org/10.1007/978-3-031-33338-5_1
https://doi.org/10.1007/978-3-031-33338-5_1
https://doi.org/10.1007/978-3-031-33338-5_1
https://doi.org/10.1007/978-3-031-33338-5_1
https://doi.org/10.1007/978-3-031-33338-5_1
https://doi.org/10.1007/978-3-031-33338-5_1
https://doi.org/10.1007/978-3-031-33338-5_1
https://doi.org/10.1007/978-3-031-33338-5_1

2 K. M. L. Cooper

1.1 Introduction

Since the late 1960s, software engineering researchers have been actively inves-
tigating novel approaches that focus on the effective development, evolution, and
maintenance of high-quality, complex systems. At a high level, topics include
engineering activities (e.g., requirements engineering, architecture and design,
construction, testing), umbrella activities (e.g., configuration management, life-
cycle processes, project management, software quality assurance, traceability),
frameworks and platforms, metrics, models, reuse, and so on. The topics under
investigation continue to evolve to meet new challenges; communities emerge to
address these challenges, often in interdisciplinary directions.

One of these interdisciplinary research communities that has emerged spans
software engineering and games. This community addresses a broad range of issues
that prevail in developing games for entertainment, serious games, and gamified
applications. In this book, the focus is on the latter two. Serious games are also
known as games with a purpose. Beyond their entertainment value, they also fulfill
a purpose such as educating or training users on specific learning objectives. In
contrast, gamified systems are non-entertainment applications that are enhanced
with game elements to help motivate and engage users to improve their productivity,
satisfaction, time on tasks, and so on. Research that is focused on serious games
and gamified applications are grouped in this chapter under the term gameful
engineering to reflect their serious contexts. Although distinct research topics,
serious games and gamification share a core quality of service attribute: user
experience. These applications possess the inherent, interdisciplinary complexity
of creating user experiences that engage and motivate users to accomplish specific
goals.

In this book, chapters on the design, maintenance, adaptation, evaluation, and
experiences with gameful systems are presented. The structure of this chapter is
as follows. Section 1.2 briefly presents background material on gameful systems.
The section begins by distinguishing between serious games and gamification. This
is followed by a description of their inherent development complexity due to their
interdisciplinary nature and the use of software engineering perspectives to help
address the complexity. Section 1.3 presents examples of recent advances (2016–
2022) in the literature at the intersection of software engineering and gameful
systems; the results are organized around established software engineering research
topics. The overall structure and content of the book is described in Sect. 1.4; this
section includes brief summaries of the core chapters. A summary is presented in
Sect. 1.5.

1 Introduction to Software Engineering for Games in Serious Contexts 3

1.2 Background: Gameful Engineering

1.2.1 Distinguishing Serious Games and Gamified Systems

The field of Serious games seeks to integrate the entertainment value of games
with a purpose such as educating, training, exploring, or enhancing skills and
competencies. This genre of games is well established. From a research perspective,
an extensive body of literature is available that spans over five decades; the
first results are reported by Abt [2]. The issues around creating desirable user
experiences permeate the literature. The results include proposals on a wide variety
of frameworks, methods, models, platforms, theoretical foundations, and so on; in
addition, reports on the design, implementation, and evaluation of specific serious
games are available. These games are often focused on educational or training
environments. For example, in K–20, young players can learn fundamental skills in
reading and mathematics with simpler games. Business students can play games to
learn about finance and risk management topics. Computer science and engineering
students can learn programming and software engineering skills (e.g., architecture,
design, requirements engineering, project management, software quality assurance,
testing). Medical students can learn anatomy with augmented or virtual reality
applications. In training environments, serious games are available in numerous
domains such as fire safety, healthcare, infrastructure inspection, manufacturing,
software engineering, and so on.

Gamification has recently emerged as a field to guide the effective integration
of game elements with non-entertainment applications to improve engagement, out-
comes, productivity, and satisfaction within organizations (e.g., business enterprises,
education, government). The first use of the term is accredited in the grey literature
to Pelling in 2002 [74]. However, foundational work that proposes definitions for
the gamification of software applications appears in the literature almost a decade
later (e.g., [32]). From a research perspective, a robust body of literature is available
that spans just over a decade. The issues around creating desirable user experiences
permeate the literature; it includes proposals on a wide variety of frameworks,
methods, models, platforms, theoretical foundations, and so on. In addition, reports
on the design, implementation, and evaluation of specific gamified system are
available. In business environments, gamification efforts often center on improving
the engagement, productivity, and satisfaction of employees by enhancing core
business applications or training activities. In educational environments, learning
management platforms and course content are gamified to improve the students’
engagement and motivation in order to improve learning outcomes and satisfaction.

1.2.2 Inherent Complexity

Gameful engineering relies on knowledge from multiple disciplines, which incurs a
high level of complexity: arts, behavioral sciences, business, education, engineering,

4 K. M. L. Cooper

humanities, physical sciences and mathematics, and specific targeted domains such
as healthcare (Fig. 1.1). The more creative aspects of gameful development rely
heavily on the arts, humanities, and behavioral sciences in order to emotionally
affect the users. In the realm of arts, expertise in digital media including asset
modeling in 2D/3D, as well as proficiency in performing arts, music, and visual
arts particularly in scene composition, is explored. Additionally, in the field of
humanities, philosophical inquiries delve into ethical concerns such as those related
to game addiction. In addition, knowledge of literature (e.g., narrative, plot, setting)
may be used. From the behavioral sciences, contributions from the disciplines of
anthropology, communication, sociology, and psychology may be adopted. Anthro-
pology supports game development by considering the social and cultural norms
of target audiences. Communication informs how to effectively share information
across diverse forms of media. Sociology supports interactive multiplayer game
development for communities of players. Psychology addresses the users’ gameplay
experience: engagement, motivation, retention, and reward systems.

The more technical development aspects of gameful applications rely on contri-
butions from the physical sciences (e.g., computer science, physics), mathematics,
and engineering (e.g., software and systems) disciplines. Within computer sci-
ence, for example, knowledge in artificial intelligence, data analytics, graphics,
human-computer interactions, kinds of systems (e.g., cloud, embedded, mobile,
real-time, Web based), programming languages, and visualizations may be needed.
From software engineering, knowledge in established engineering activities (e.g.,

Fig. 1.1 The interdisciplinary nature of gameful engineering

1 Introduction to Software Engineering for Games in Serious Contexts 5

requirements engineering, architecture and design, construction, testing), umbrella
activities (configuration management, lifecycle processes, project management,
traceability), re-use (components, patterns, product lines), metrics, and model-based
transformations (code, test cases) may be valuable. However, knowledge in the
software engineering community needs to be tailored for games in serious contexts,
in particular with respect to achieving the necessary user experience.

1.2.3 Addressing the Complexity

To help address the complexity of creating gameful systems, an active interdis-
ciplinary community spanning software and gameful engineering researchers has
emerged. Numerous topics receive attention such as:

• Engineering activities tailored for serious games or gamification

– requirements engineering
– architecture
– design
– testing

• Umbrella activities tailored for serious games or gamification

– lifecycle process models
– project management
– software quality assurance
– traceability

• Established topics tailored for serious games or gamification

– frameworks
– metrics
– model-based or model-driven engineering
– platforms and tools
– reuse

These topics are not always considered independently in the community. For
example, research questions may investigate a model-based design framework for
gamification or a metrics-based testing platform for serious games. In addition, the
research may draw upon other disciplines (e.g., computer science topics artificial
intelligence, computer-human interfaces, data analytics, visualization) to propose
innovative solutions.

The community has established dedicated workshops (e.g., Games and Software
Engineering [14, 15, 17, 24, 26, 92]) and journals (e.g., IEEE Transactions on Games
[49]). Edited books on computer games and software engineering that provide
snapshots of the state-of-the research are available [23, 25]; these span software

6 K. M. L. Cooper

engineering for games and serious educational games for software engineering
education. Edited books on gamification topics are also available [83, 91].

1.3 Recent Advances at the Intersection of Software and
Gameful Engineering

Examples of recently published peer-reviewed results (2016–2022) that span soft-
ware and gameful engineering topics are presented in this section. A set of high-level
topics is explored that includes traditional engineering activities (requirements
engineering, architecture and design, testing), established topics (frameworks and
platforms, metrics, models, reuse), and umbrella activities (lifecycle processes,
project management, software quality assurance, traceability). The sources for the
article searches are ACM Digital Library, IEEE Xplore, SCOPUS, and Google
Scholar. The searches for articles focused on serious games are structured as
follows:

• “requirements engineering” “serious games” “software engineering”
• architecture “serious games” “software engineering”
• design “serious games” “software engineering”
• testing “serious games” “software engineering”
• “lifecycle process” “serious games” “software engineering”
• “project management” “serious games” “software engineering”
• “software quality” “serious games” “software engineering”
• traceability “serious games” “software engineering”
• frameworks “serious games” “software engineering”
• platforms “serious games” “software engineering”
• metrics “serious games” “software engineering”
• model “model based” “model driven” “serious games” “software engineering”
• reuse “serious games” “software engineering”

Searches with a parallel structure for gamified systems are also run, substituting
“serious games” with the terms gamification and gamified.

The results are presented in Table 1.1. The table is organized into four main parts:
software engineering for serious games, serious games for software engineering,
software engineering for gamification, and gamification for software engineering.
The results are at various levels of maturity; they appear in workshops, conferences,
and journals.

Overall, the summary reveals that serious-games-related topics have received
more attention in recent years than the gamification topics (53 vs. 30). This may be
due to the more established nature of the serious game community in comparison to
the gamification community. In addition, there are gaps in the recent literature that
the community may be interested in exploring.

1 Introduction to Software Engineering for Games in Serious Contexts 7

Table 1.1 Recent results in software and gameful engineering

Software engineering for serious games

Requirements engineering [28, 61]

Architecture and design [43, 62]

Testing [4, 64]

Frameworks and platforms [1, 44, 47, 80, 93]

Metrics [3, 52, 57, 85]

Models [12, 31, 45, 58, 86, 94]

Reuse [7, 60, 75, 82, 88]

Lifecycle processes [16, 55]

Project management [21]

Software quality assurance [89]

Traceability –

Serious games for software engineering

Requirements engineering [30, 36, 40, 53]

Architecture and design [13, 67]

Testing [38, 78, 79, 87]

Frameworks and platforms –

Metrics –

Models [76]

Reuse –

Lifecycle processes [5, 9, 59]

Project management [19, 54, 65]

Software quality assurance [6, 11, 22, 34, 46, 63]

Traceability –

Software engineering for gamification

Requirements engineering [51]

Architecture and design [42, 68, 73]

Testing [37]

Frameworks and platforms [50]

Metrics –

Models [8, 20, 27, 71, 90]

Reuse –

Lifecycle processes –

Project management –

Software quality assurance –

Traceability [35, 56, 72]

(continued)

8 K. M. L. Cooper

Table 1.1 (continue)

Gamification for software engineering

Requirements engineering [29]

Architecture and design [73]

Testing [38, 87]

Frameworks and platforms [18, 33, 39, 66, 84]

Metrics –

Models –

Reuse –

Lifecycle processes [10, 70, 77, 81]

Project management [69]

Software quality assurance [41, 48]

Traceability –

The search results are intended to provide a preliminary summary of recent
results; however, additional peer-reviewed results for the topics selected may be
available in alternative sources or identified with a snowballing approach to explore
recently cited work. The search may also be expanded to include interesting topics
covering software engineering, serious games and gamification, and computer
science specializations such as artificial intelligence, data analytics, visualization,
and human-computer interfaces.

1.4 Content of the Book

This edited book consists of 13 chapters that have been prepared by 45 authors from
9 countries (Brazil, Canada, Germany, Greece, Italy, Mauritius, Mexico, the United
Kingdom, the United States). There are 11 core chapters that are organized into
2 main parts. Part I considers topics on the design, maintenance, adaptation, and
evaluation of gameful systems. Part II considers topics on experiences with gameful
systems.

1.4.1 Part I Topics on the Design, Maintenance, Adaptation,
and Evolution of Gameful Systems

A range of methods that can be used to evaluate users’ experiences in serious
games during and after the development process are presented by Sotiris Kirginas
in Chap. 2, “User Experience Evaluation Methods for Games in Serious Contexts.”
The methods include qualitative, quantitative, subjective, objective, short term, long
term, summative, and formative. The chapter also provides insights into when it is

1 Introduction to Software Engineering for Games in Serious Contexts 9

most beneficial to apply the different user experience assessment methods in the
development cycle.

A novel content-agnostic serious educational game engineering framework is
proposed by Vipin Verma et al. in Chap. 3, “Software Engineering for Dynamic
Game Adaptation.” The framework can be used to create games by reusing existing
educational game mechanics. The framework is used to separate the game into three
independent components: mechanics, content, and student modeling. In addition,
stealth assessment can be integrated into the student model.

A technique to design and analyze the architecture of serious mobile games is
proposed by Leticia Davila-Nicanor et al. in Chap. 4, “Performance on Software
Architecture Design to Serious Games for Mobile Devices.” The advantages of
an early architecture evaluation include reducing the costs to remove defects
and improve the software performance. The technique utilizes established design
patterns (Wrapper, Singleton, MVC) to improve the distribution of memory and
execution time resources. The architecture analysis is achieved with graph theory
and software metrics. A dispersion diagram visualizes an architecture with accept-
able quality levels.

A serious game-based online platform in the healthcare education domain is
proposed by Edward Melcer et al. in Chap. 5, “ENTRUST: Co-design and Val-
idation of a Serious Game for Assessing Clinical Decision-Making and Readiness
for Entrustment.” The purpose of the platform is to assess trainees’ decision-making
competencies across various entrustable professional activity domains. The design,
insights identified and lessons learned throughout the development process, and
results from a pilot study of the platform are presented. The pilot study demonstrates
the tool’s capability to discriminate between levels of surgical expertise and provides
initial evidence for its use as an objective assessment approach for clinical decision-
making.

A generalized model for evolving existing serious games to utilize machine
learning approaches without the need to rebuild the game from scratch is proposed
by Michael Miljanovic et al. in Chap. 6, “Engineering Adaptive Serious Games
Using Machine Learning.” An approach to engineer machine learning-based serious
games is presented; in addition, five common challenges and possible solutions are
discussed. The challenges include selecting data for the machine learning input,
choosing game elements to adapt, addressing the cold start problem, determining the
frequency of adaptation, and testing that an adaptive game benefits from machine
learning.

1.4.2 Part II Topics on Experiences with Gameful Systems

The potential to transfer strategies commonly utilized in entertainment games to
serious games are presented by Vanissa Wanick et al. in Chap. 7, “Future Directions
in Games for Serious Contexts: A Conversation About Transferability.” Three
complementary perspectives regarding emerging aspects of player agency, serious

10 K. M. L. Cooper

game modification, and transferability across different contexts are discussed. More
specifically, these perspectives include emergent possibilities, modding, and the
importance of AI emotion modeling to inform better game design.

A serious game for programming is presented by Leckraj Nagowah et al. in
Chap. 8, “Code-Venture: A Mobile Serious Game for Introductory Programming.”
This serious game helps players understand the basics of coding and improve their
programming skills. The learning objectives of the game are based on the program-
ming principles in the ACM/IEEE Computer Science Curricula 2013. A teacher’s
application can monitor, assess, evaluate, and store the player’s performance data.
To evaluate the game, pre- and post-game surveys indicate the game is useful and
engaging. The results reveal an increase in the number of students that (1) are
interested in pursuing a programming career and (2) find programming easy.

Approaches to revising two traditional, lecture-based game design classes to
make use of flipped classroom models are presented by Bruce Maxim et al. in
Chap. 9, “Using Active Learning to Teach Software Engineering in Game Design
Courses.” The revised courses use agile software engineering practices to design,
implement, and test game prototypes; they rely on active learning, role-play, and
gamification. Surveys are used to measure the perceived levels of engagement with
course activities. The results indicate that students attending flipped classes are
slightly more engaged with the course materials than those taking the class offered
using lecture only. In addition, students interacting with the active learning course
materials felt better able to apply their knowledge than students in a traditional
lecture course.

A gamified framework for manual exploratory GUI testing of Web-based appli-
cations is presented by Riccardo Coppola et al. in Chap. 10, “A Framework for the
Gamification of GUI Testing.” The framework is implemented, and a preliminary
evaluation is conducted to assess efficiency, effectiveness, and user experience. The
results indicate that the gamified framework helps to obtain test suites with higher
coverage; in addition, the number of bugs identified while traversing the applications
under test is slightly reduced. The participants indicate the gamified framework
provides a positive user experience, and the majority of participants expressed their
willingness to use such instruments again.

A field experiment involving the gamified quality improvement of five student
projects in an information systems course is presented by Mathias Eggert et
al. in Chap. 11, “Applying Leaderboards for Quality Improvement in Software
Development Projects.” The project members are interviewed to capture the impact
of using a leaderboard in terms of changing their programming behavior. The
interviews are based on 11 main questions that are open. The results reveal a
motivational effect with respect to improving code quality is achieved; in addition,
a reduction of code smells is reported.

The design and implementation of a serious game for cybersecurity education, A
NERD DOGMA, is presented by Gabriele Costa et al. in Chap. 12, “Designing a
Serious Game for Cybersecurity Education.” It is an escape room adventure game,
in which the challenges are based on real security scenarios. The player needs to
exfiltrate data, break ciphers, and intrude in remote systems in order to acquire first-

1 Introduction to Software Engineering for Games in Serious Contexts 11

hand experience in the planning and execution of security operations. Key design
decisions for the A NERD DOGMA game include approaches to introduce security
tools, integrate third-party technologies, and how to mimic external environments.

1.5 Summary

This chapter introduces a collection of research results that provide software
engineering perspectives on games for serious contexts. It begins by presenting
background material on gameful systems (serious games and gamified applications),
the complexity of gameful systems due to their interdisciplinary nature, and the
potential to address their complexity with tailored software engineering approaches.
This is followed by a snapshot of recently published peer-reviewed articles that
are focused on interdisciplinary work spanning gameful and software engineering.
Next, the overall structure of the book and brief summaries of the core chapters are
presented.

References

1. Abdellatif, A.J., McCollum, B., McMullan, P.: Serious games: quality characteristics evalua-
tion framework and case study. In: 2018 IEEE Integrated STEM Education Conference (ISEC),
pp. 112–119. IEEE, Piscataway (2018)

2. Abt, C.C.: Serious games. Am. Behav. Sci. 14(1), 129–129 (1970)
3. Alonso-Fernandez, C., Calvo, A., Freire, M., Martinez-Ortiz, I., Fernandez-Manjon, B.:

Systematizing game learning analytics for serious games. In: 2017 IEEE Global Engineering
Education Conference (EDUCON), pp. 1111–1118. IEEE, Piscataway (2017)

4. Alonso-Fernández, C., Perez-Colado, I.J., Calvo-Morata, A., Freire, M., Ortiz, I.M., Manjon,
B.F.: Applications of simva to simplify serious games validation and deployment. IEEE Rev.
Iberoam. de Tecnol. del Aprendiz. 15(3), 161–170 (2020)

5. Ammons, B., Bansal, S.K.: Scrumify: A software game to introduce agile software develop-
ment methods. J. Eng. Educ. Transform. 30(Special Issue) (2017)

6. Ardiç, B., Yurdakul, I., Tüzün, E.: Creation of a serious game for teaching code review: an
experience report. In: 2020 IEEE 32nd Conference on Software Engineering Education and
Training (CSEE&T), pp. 1–5. IEEE, Piscataway (2020)

7. Argasiski, J.K., Wegrzyn, P.: Affective patterns in serious games. Fut. Gen. Comput. Syst. 92,
526–538 (2019)

8. Ašeriškis, D., Blažauskas, T., Damaševičius, R.: UAREI: a model for formal description and
visual representation/software gamification. DYNA 84(200), 326–334 (2017)

9. Aydan, U., Yilmaz, M., Clarke, P.M., O’Connor, R.V.: Teaching ISO/IEC 12207 software
lifecycle processes: a serious game approach. Comput. Stand. Inter. 54, 129–138 (2017)

10. Ayoup, P., Costa, D.E., Shihab, E.: Achievement Unlocked: A Case Study on Gamifying
Devops Practices in Industry. Association for Computing Machinery, New York (2022)

11. Baars, S., Meester, S.: Codearena: inspecting and improving code quality metrics using
minecraft. In: 2019 IEEE/ACM International Conference on Technical Debt (TechDebt),
pp. 68–70. IEEE, Piscataway (2019)

12 K. M. L. Cooper

12. Barajas, A., Álvarez, F., Muñoz, J., Santaolaya, R., Collazos, C., Hurtado, J.: Verification and
validation model for short serious game production. IEEE Lat. Am. Trans. 14(4), 2007–2012
(2016)

13. Bartel, A., Hagel, G.: Gamifying the learning of design patterns in software engineering
education. In: 2016 IEEE Global Engineering Education Conference (EDUCON), pp. 74–79.
IEEE, Piscataway (2016)

14. Bell, J., Cooper, K.M.L., Kaiser, G.E., Swapneel, S.: Welcome to the 2nd international games
and software engineering workshop (gas 2012). In: 2012 Second International Workshop
on Games and Software Engineering: Realizing User Engagement with Game Engineering
Techniques (GAS), pp. iii–iv (2012)

15. Bishop, J., Cooper, K.M.L., Scacchi, W., Whitehead, J.: Introduction to the 4th international
workshop on games and software engineering (gas 2015). In: 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering, vol. 2, pp. 979–980 (2015)

16. Braad, E., Zavcer, G., Sandovar, A.: Processes and models for serious game design and
development. In: Entertainment Computing and Serious Games: International GI-Dagstuhl
Seminar 15283, Dagstuhl Castle, July 5–10, 2015, Revised Selected Papers, pp. 92–118.
Springer, Berlin (2016)

17. Bucchiarone, A., Cooper, K.M., Lin, D., Melcer, E.F., Sung, K.: Games and software
engineering: engineering fun, inspiration, and motivation. ACM SIGSOFT Softw. Eng. Notes
48(1), 85–89 (2023)

18. Cacciotto, F., Fulcini, T., Coppola, R., Ardito, L.: A metric framework for the gamification of
web and mobile GUI testing. In: 2021 IEEE International Conference on Software Testing,
Verification and Validation Workshops (ICSTW), pp. 126–129 (2021)

19. Calderon, A., Ruiz, M., O’Connor, R.V.: Prodecadmin: a game scenario design tool for
software project management training. In: Proceedings of the Systems, Software and Services
Process Improvement: 24th European Conference, EuroSPI 2017, Ostrava, September 6–8,
2017, pp. 241–248. Springer, Berlin (2017)

20. Calderón, A., Boubeta-Puig, J., Ruiz, M.: MEdit4CEP-Gam: a model-driven approach for user-
friendly gamification design, monitoring and code generation in CEP-based systems. Inform.
Softw. Tech. 95, 238–264 (2018)

21. Calderon, A., Trinidad, M., Ruiz, M., O’Connor, R.V.: Towards a standard to describe and
classify serious games as learning resources for software project management. In: Proceedings
of the Systems, Software and Services Process Improvement: 25th European Conference,
EuroSPI 2018, Bilbao, September 5–7, 2018, pp. 229–239. Springer, Berlin (2018)

22. Clegg, B.S., Rojas, J.M., Fraser, G.: Teaching software testing concepts using a mutation
testing game. In: 2017 IEEE/ACM 39th International Conference on Software Engineering:
Software Engineering Education and Training Track (ICSE-SEET), pp. 33–36. IEEE, Piscat-
away (2017)

23. Cooper, K.: Software Engineering Perspectives on Computer Game Development. CRC Press,
Taylor & Francis, Boca Raton (2021)

24. Cooper, K.M.L.: Message from the chair of the 5th international workshop on games and
software engineering. In: GAS ’16: Proceedings of the 5th International Workshop on Games
and Software Engineering. Association for Computing Machinery, New York, NY (2016)

25. Cooper, K., Scacchi, W.: Computer Games and Software Engineering. CRC Press, Taylor &
Francis, Boca Raton (2015)

26. Cooper, K.M.L., Scacchi, W., Wang, A.I.: Welcome to the 3rd international workshop on
games and software engineering: engineering computer games to enable positive, progressive
change (gas 2013). In: 2013 3rd International Workshop on Games and Software Engineering:
Engineering Computer Games to Enable Positive, Progressive Change (GAS), pp. iii–iii (2013)

27. Cosentino, V., Gérard, S., Cabot, J.: A model-based approach to gamify the learning of
modeling. In: Proceedings of the 5th Symposium on Conceptual Modeling Education and the
2nd International iStar Teaching Workshop Co-located with the 36th International Conference
on Conceptual Modeling (ER 2017), Valencia, November 6–9, 2017, pp. 15–24 (2017)

1 Introduction to Software Engineering for Games in Serious Contexts 13

28. Dalpiaz, F., Cooper, K.M.: Games for requirements engineers: analysis and directions. IEEE
Softw. 37(1), 50–59 (2020)

29. Dar, H.S.: Reducing ambiguity in requirements elicitation via gamification. In: 2020 IEEE 28th
International Requirements Engineering Conference (RE), pp. 440–444 (2020)

30. Delen, M., Dalpiaz, F., Cooper, K.: Bakere: a serious educational game on the specification
and analysis of user stories. In: 2019 IEEE 27th International Requirements Engineering
Conference (RE), pp. 369–374. IEEE, Piscataway (2019)

31. De Lope, R.P., Medina-Medina, N., Urbieta, M., Lliteras, A.B., García, A.M.: A novel UML-
based methodology for modeling adventure-based educational games. Entertain. Comput. 38,
100429 (2021)

32. Deterding, S., Dixon, D., Khaled, R., Nacke, L.: From game design elements to gamefulness:
defining “gamification”. Association for Computing Machinery, New York (2011)

33. Dichev, C., Dicheva, D., Irwin, K.: Gamification driven learning analytics. In: Proceedings of
the 13th International Conference on e-Learning, pp. 70–76 (2018)

34. dos Santos, H.M., Durelli, V.H., Souza, M., Figueiredo, E., da Silva, L.T., Durelli, R.S.:
Cleangame: gamifying the identification of code smells. In: Proceedings of the XXXIII
Brazilian Symposium on Software Engineering, pp. 437–446 (2019)

35. Ebert, C., Vizcaino, A., Grande, R.: Unlock the business value of gamification. IEEE Softw.
39(6), 15–22 (2022)

36. Espinha Gasiba, T., Beckers, K., Suppan, S., Rezabek, F.: On the requirements for serious
games geared towards software developers in the industry. In: 2019 IEEE 27th International
Requirements Engineering Conference (RE), pp. 286–296 (2019)

37. Fraser, G.: Gamification of software testing. In: 2017 IEEE/ACM 12th International Workshop
on Automation of Software Testing (AST), pp. 2–7. IEEE, Piscataway (2017)

38. Fulcini, T., Ardito, L.: Gamified exploratory GUI testing of web applications: a preliminary
evaluation. In: 2022 IEEE International Conference on Software Testing, Verification and
Validation Workshops (ICSTW), pp. 215–222 (2022)

39. Garcia, F., Pedreira, O., Piattini, M., Cerdeira-Pena, A., Penabad, M.: A framework for
gamification in software engineering. J. Syst. Softw. 132, 21–40 (2017)

40. Garcia, I., Pacheco, C., Leon, A., Calvo-Manzano, J.A.: A serious game for teaching the
fundamentals of ISO/IEC/IEEE 29148 systems and software engineering–lifecycle processes–
requirements engineering at undergraduate level. Comput. Stand. Interf. 67, 103377 (2020)

41. Gasca-Hurtado, G.P., Gómez-Alvarez, M.C., Muñoz, M., Mejía, J.: Gamification proposal for
defect tracking in software development process. In: Proceedings of the Systems, Software and
Services Process Improvement: 23rd European Conference, EuroSPI 2016, Graz, September
14–16, 2016, pp. 212–224. Springer, Berlin (2016)

42. Gasca-Hurtado, G.P., Gómez-Álvarez, M.C., Machuca-Villegas, L., Muñoz, M.: Design of a
gamification strategy to intervene in social and human factors associated with software process
improvement change resistance. IET Softw. 15(6), 428–442 (2021)

43. Goli, A., Teymournia, F., Naemabadi, M., Garmaroodi, A.A.: Architectural design game: a
serious game approach to promote teaching and learning using multimodal interfaces. Educ.
Inform. Technol. 27(8), 11467–11498 (2022)

44. Haendler, T., Neumann, G.: A framework for the assessment and training of software
refactoring competences. In: Proceedings of the 11th International Conference on Knowledge
Management and Information Systems, pp. 307–316 (2019)

45. Haendler, T., Neumann, G.: Ontology-based analysis of game designs for software refactoring.
In: Proceedings of the 11th International Conference on Computer Supported Education
(CSEDU 2019) (1), pp. 24–35 (2019)

46. Haendler, T., Neumann, G.: Serious refactoring games. In: Proceedings of the 52nd Hawaii
International Conference on System Sciences (HICSS-52), pp. 7691–7700. IEEE, Piscataway
(2019)

47. Hamiye, F., Said, B., Serhan, B.: A framework for the development of serious games for
assessment. In: Proceedings of the Games and Learning Alliance: 8th International Conference,
GALA 2019, Athens, November 27–29, 2019, pp. 407–416. Springer, Berlin (2019)

14 K. M. L. Cooper

48. Herranz, E., Guzmán, J.G., de Amescua-Seco, A., Larrucea, X.: Gamification for software
process improvement: a practical approach. IET Softw. 13(2), 112–121 (2019)

49. IEEE transactions on games. https://transactions.games/. Accessed 16 Feb 2023
50. Klock, A.C.T., Gasparini, I., Pimenta, M.S.: 5w2h framework: a guide to design, develop and

evaluate the user-centered gamification. In: Proceedings of the 15th Brazilian Symposium on
Human Factors in Computing Systems, pp. 1–10 (2016)

51. Kumar, B.S., Krishnamurthi, I.: Improving user participation in requirement elicitation and
analysis by applying gamification using architect’s use case diagram. In: Proceedings of the
3rd International Symposium on Big Data and Cloud Computing Challenges (ISBCC–16’),
pp. 471–482. Springer, Berlin (2016)

52. Loh, C.S., Li, I.H., Sheng, Y.: Comparison of similarity measures to differentiate players’
actions and decision-making profiles in serious games analytics. Comput. Hum. Behav. 64(C),
562–574 (2016)

53. Marcelino-Jesus, E., Sarraipa, J., Agostinho, C., Jardim-Goncalves, R.: The use of serious
games in requirements engineering. In: Enterprise Interoperability VII: Enterprise Interoper-
ability in the Digitized and Networked Factory of the Future, pp. 263–274. Springer, Berlin
(2016)

54. Marín, B., Vera, M., Giachetti, G.: An adventure serious game for teaching effort estimation in
software engineering. In: IWSM-Mensura, pp. 71–86 (2019)

55. Marín-Vega, H., Alor-Hernández, G., Colombo-Mendoza, L.O., Bustos-López, M., Zataraín-
Cabada, R.: Zeusar: a process and an architecture to automate the development of augmented
reality serious games. Multimed. Tools Appl. 81(2), 2901–2935 (2022)

56. Maro, S., Sundklev, E., Persson, C.O., Liebel, G., Steghöfer, J.P.: Impact of gamification on
trace link vetting: a controlled experiment. In: Proceedings of the Requirements Engineering:
Foundation for Software Quality: 25th International Working Conference, REFSQ 2019,
Essen, March 18–21, 2019, pp. 90–105. Springer, Berlin (2019)

57. Mäses, S., Hallaq, B., Maennel, O.: Obtaining better metrics for complex serious games within
virtualised simulation environments. In: European Conference on Games Based Learning,
pp. 428–434. Academic Conferences International Limited, Reading (2017)

58. Matallaoui, A., Herzig, P., Zarnekow, R.: Model-driven serious game development integration
of the gamification modeling language GaML with unity. In: 2015 48th Hawaii International
Conference on System Sciences, pp. 643–651 (2015)

59. Maxim, B.R., Kaur, R., Apzynski, C., Edwards, D., Evans, E.: An agile software engineering
process improvement game. In: 2016 IEEE Frontiers in Education Conference (FIE), pp. 1–4.
IEEE, Piscataway (2016)

60. Meftah, C., Retbi, A., Bennani, S., Idrissi, M.K.: Mobile serious game design using user
experience: modeling of software product line variability. Int. J. Emerg. Technol. Learn.
(Online) 14(23), 55 (2019)

61. Mejbri, Y., Khemaja, M., Raies, K.: Requirements engineering for pervasive games based smart
learning systems. In: Innovations in Smart Learning, pp. 129–138. Springer, Berlin (2017)

62. Mestadi, W., Nafil, K., Touahni, R., Messoussi, R.: An assessment of serious games technol-
ogy: toward an architecture for serious games design. Int. J. Comput. Games Technol. 2018
(2018)

63. Miljanovic, M.A., Bradbury, J.S.: Robobug: a serious game for learning debugging techniques.
In: Proceedings of the 2017 ACM Conference on International Computing Education Research,
pp. 93–100 (2017)

64. Moizer, J., Lean, J., Dell’Aquila, E., Walsh, P., Keary, A.A., O’Byrne, D., Di Ferdinando,
A., Miglino, O., Friedrich, R., Asperges, R., Sica, L.S.: An approach to evaluating the user
experience of serious games. Comput. Educ. 136, 141–151 (2019)

65. Molléri, J.S., Gonzalez-Huerta, J., Henningsson, K.: A legacy game for project management
in software engineering courses. In: Proceedings of the 3rd European Conference of Software
Engineering Education, pp. 72–76 (2018)

https://transactions.games/
https://transactions.games/
https://transactions.games/

1 Introduction to Software Engineering for Games in Serious Contexts 15

66. Monteiro, R.H.B., Oliveira, S.R.B., Souza, M.R.D.A.: A standard framework for gamification
evaluation in education and training of software engineering: an evaluation from a proof of
concept. In: 2021 IEEE Frontiers in Education Conference (FIE), pp. 1–7. IEEE, Piscataway
(2021)

67. Montenegro, C.H., Astudillo, H., Álvarez, M.C.G.: ATAM-RPG: a role-playing game to teach
architecture trade-off analysis method (ATAM). In: 2017 XLIII Latin American Computer
Conference (CLEI), pp. 1–9. IEEE, Piscataway (2017)

68. Morschheuser, B., Hassan, L., Werder, K., Hamari, J.: How to design gamification? A method
for engineering gamified software. Inform. Softw. Technol. 95, 219–237 (2018)

69. Muñoz, M., Pérez Negrón, A.P., Mejia, J., Gasca-Hurtado, G.P., Gómez-Alvarez, M.C.,
Hernández, L.: Applying gamification elements to build teams for software development. IET
Softw. 13(2), 99–105 (2019)

70. Neto, P.S., Medeiros, D.B., Ibiapina, I., da Costa Castro, O.C.: Case study of the introduction
of game design techniques in software development. IET Softw. 13(2), 129–143 (2019)

71. Oberhauser, R.: An ontological perspective on the digital gamification of software engineering
concepts. Int. J. Adv. Softw. 9(3 and 4), 207–221 (2016)

72. Parizi, R.M.: On the gamification of human-centric traceability tasks in software testing and
coding. In: 2016 IEEE 14th International Conference on Software Engineering Research,
Management and Applications (SERA), pp. 193–200. IEEE, Piscataway (2016)

73. Pedreira, O., García, F., Piattini, M., Cortiñas, A., Cerdeira-Pena, A.: An architecture for
software engineering gamification. Tsinghua Sci. Technol. 25(6), 776–797 (2020)

74. Pelling, N.: (2015). https://nanodome.wordpress.com/2011/08/09/the-short-prehistory-of-
gamification/

75. Perez-Medina, J.L., Jimenes-Vargas, K.B., Leconte, L., Villarreal, S., Rybarczyk, Y., Van-
derdonckt, J.: ePHoRt: towards a reference architecture for tele-rehabilitation systems. IEEE
Access 7, 97159–97176 (2019)

76. Prasetya, W., Leek, C., Melkonian, O., ten Tusscher, J., van Bergen, J., Everink, J., van der
Klis, T., Meijerink, R., Oosenbrug, R., Oostveen, J., et al.: Having fun in learning formal
specifications. In: 2019 IEEE/ACM 41st International Conference on Software Engineering:
Software Engineering Education and Training (ICSE-SEET), pp. 192–196. IEEE, Piscataway
(2019)

77. Ren, W., Barrett, S., Das, S.: Toward gamification to software engineering and contribution of
software engineer. In: Proceedings of the 2020 4th International Conference on Management
Engineering, Software Engineering and Service Sciences. Association for Computing Machin-
ery, New York (2020)

78. Rojas, J.M., Fraser, G.: Teaching mutation testing using gamification. In: European Conference
on Software Engineering Education (ECSEE) (2016)

79. Sherif, E., Liu, A., Nguyen, B., Lerner, S., Griswold, W.G.: Gamification to aid the learning of
test coverage concepts. In: 2020 IEEE 32nd Conference on Software Engineering Education
and Training (CSEE&T), pp. 1–5. IEEE, Piscataway (2020)

80. Shi, W., Kaneko, K., Ma, C., Okada, Y.: A framework for automatically generating quiz-type
serious games based on linked data. Int. J. Inform. Educ. Technol. 9(4), 250–256 (2019)

81. Sisomboon, W., Phakdee, N., Denwattana, N.: Engaging and motivating developers by
adopting scrum utilizing gamification. In: 2019 4th International Conference on Information
Technology (InCIT), pp. 223–227 (2019)

82. Söbke, H., Streicher, A.: Serious games architectures and engines. In: Entertainment Comput-
ing and Serious Games: International GI-Dagstuhl Seminar 15283, Dagstuhl Castle, July 5–10,
2015, Revised Selected Papers, pp. 148–173. Springer, Berlin (2016)

83. Stieglitz, S., Lattemann, C., Robra-Bissantz, S., Zarnekow, R., Brockmann, T. (eds.): Gamifi-
cation: using Game Elements in Serious Contexts. Springer, Berlin (2016)

84. Stol, K.J., Schaarschmidt, M., Goldblit, S.: Gamification in software engineering: the mediat-
ing role of developer engagement and job satisfaction. Emp. Softw. Eng. 27(2), 35 (2022)

https://nanodome.wordpress.com/2011/08/09/the-short-prehistory-of-gamification/
https://nanodome.wordpress.com/2011/08/09/the-short-prehistory-of-gamification/
https://nanodome.wordpress.com/2011/08/09/the-short-prehistory-of-gamification/
https://nanodome.wordpress.com/2011/08/09/the-short-prehistory-of-gamification/
https://nanodome.wordpress.com/2011/08/09/the-short-prehistory-of-gamification/
https://nanodome.wordpress.com/2011/08/09/the-short-prehistory-of-gamification/
https://nanodome.wordpress.com/2011/08/09/the-short-prehistory-of-gamification/
https://nanodome.wordpress.com/2011/08/09/the-short-prehistory-of-gamification/
https://nanodome.wordpress.com/2011/08/09/the-short-prehistory-of-gamification/
https://nanodome.wordpress.com/2011/08/09/the-short-prehistory-of-gamification/
https://nanodome.wordpress.com/2011/08/09/the-short-prehistory-of-gamification/
https://nanodome.wordpress.com/2011/08/09/the-short-prehistory-of-gamification/

16 K. M. L. Cooper

85. Suryapranata, L.K.P., Soewito, B., Kusuma, G.P., Gaol, F.L., Warnars, H.L.H.S.: Quality
measurement for serious games. In: 2017 International Conference on Applied Computer and
Communication Technologies (ComCom), pp. 1–4. IEEE, Piscataway (2017)

86. Toda, A.M., Oliveira, W., Klock, A.C., Palomino, P.T., Pimenta, M., Gasparini, I., Shi, L.,
Bittencourt, I., Isotani, S., Cristea, A.I.: A taxonomy of game elements for gamification in
educational contexts: proposal and evaluation. In: 2019 IEEE 19th International Conference
on Advanced Learning Technologies (ICALT), vol. 2161, pp. 84–88. IEEE, Piscataway (2019)

87. Valle, P.H.D., Vilela, R.F., Hernandes, E.C.M.: Does gamification improve the training
of software testers? A preliminary study from the industry perspective. Association for
Computing Machinery, New York (2021)

88. van der Vegt, W., Nyamsuren, E., Westera, W.: Rage reusable game software components and
their integration into serious game engines. In: Proceedings of the Software Reuse: Bridging
with Social-Awareness: 15th International Conference, ICSR 2016, Limassol, June 5–7, 2016,
pp. 165–180. Springer, Berlin (2016)

89. van der Vegt, W., Westera, W.: Quality of reusable game software: empowering developers with
automated quality checks. In: 2019 IEEE 19th International Conference on Software Quality,
Reliability and Security (QRS), pp. 446–452. IEEE, Piscataway (2019)

90. Vapiwala, F., Pandita, D.: A decision model for using gamification technology in employee
training. In: 2022 International Conference on Decision Aid Sciences and Applications
(DASA), pp. 942–946. IEEE, Piscataway (2022)

91. Vesa, M. (ed.): Organizational Gamification: Theories and Practices of Ludified Work in Late
Modernity (1st ed.). Routledge, Abingdon (2021)

92. Whitehead, J., Lewis, C.: Abstract for the proceedings of the 1st international workshop on
games and software engineering. In: GAS ’11: Proceedings of the 1st International Workshop
on Games and Software Engineering, pp. 1194–1195. Association for Computing Machinery,
New York (2011)

93. Wilson, D.W., Jenkins, J., Twyman, N., Jensen, M., Valacich, J., Dunbar, N., Wilson, S., Miller,
C., Adame, B., Lee, Y.H., et al.: Serious games: an evaluation framework and case study. In:
2016 49th Hawaii International Conference on System Sciences (HICSS), pp. 638–647. IEEE,
Piscataway (2016)

94. Zahari, A.S., Ab Rahim, L., Nurhadi, N.A., Aslam, M.: A domain-specific modelling language
for adventure educational games and flow theory. Int. J. Adv. Sci. Eng. Inform. Technol. 10(06)
(2020)

Chapter 13
Grand Challenges in Software
Engineering for Games in Serious
Contexts

Antonio Bucchiarone

Abstract The potential benefits of using the engaging and interactive nature of
games to achieve specific objectives have been recognized by researchers and
professionals from various domains. Serious games have been developed to impart
knowledge, skills, and awareness in areas such as education, healthcare, and the
environment, while gamification has been applied to enhance the engagement,
motivation, and participation of users in non-game activities such as sustainability
and learning. As a result, the fields of game design, software engineering, and user
experience are increasingly converging to create innovative solutions that blend the
strengths of games with real-world applications.

The main goal of this book has been to foster an environment of collaboration
that unites experts from both the software engineering and game development
communities. The primary aim has been to facilitate knowledge sharing, exchange
of experiences, and interdisciplinary perspectives to explore the latest opportunities,
challenges, costs, and benefits associated with games in serious contexts. Addition-
ally, the book seeks to establish a fresh research agenda that aligns with the emerging
trends and issues in the field.

The aim of this chapter is to provide an overview of the major challenges that
must be addressed by the software engineering and game development communities
to fully realize the potential of serious games and gamification in various domains.

Keywords Software engineering · Games in serious context · Grand challenges ·
Research roadmap

A. Bucchiarone (�)
Motivational Digital Systems (MoDiS), Fondazione Bruno Kessler (FBK), Trento, Italy
e-mail: bucchiarone@fbk.eu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
K. M. L. Cooper, A. Bucchiarone (eds.), Software Engineering for Games
in Serious Contexts, https://doi.org/10.1007/978-3-031-33338-5_13

291

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33338-5protect T1	extunderscore 13&domain=pdf

 885 56845 a 885 56845 a

mailto:bucchiarone@fbk.eu
mailto:bucchiarone@fbk.eu
https://doi.org/10.1007/978-3-031-33338-5_13
https://doi.org/10.1007/978-3-031-33338-5_13
https://doi.org/10.1007/978-3-031-33338-5_13
https://doi.org/10.1007/978-3-031-33338-5_13
https://doi.org/10.1007/978-3-031-33338-5_13
https://doi.org/10.1007/978-3-031-33338-5_13
https://doi.org/10.1007/978-3-031-33338-5_13
https://doi.org/10.1007/978-3-031-33338-5_13
https://doi.org/10.1007/978-3-031-33338-5_13
https://doi.org/10.1007/978-3-031-33338-5_13
https://doi.org/10.1007/978-3-031-33338-5_13

292 A. Bucchiarone

13.1 Introduction

This chapter attempts to summarize the discussions of the chapters presented in
this book capturing a vision of the grand challenges facing the two communities
of software engineering and games. This analysis has the unique objective to
provide useful context for future research challenges and directions. We start with a
summary of the key challenges presented in the overall chapters of the book, and we
conclude with a brief summary of where we believe the field of software engineering
for games in serious context (GSC) is going.

As we have seen from the concrete application scenario introduced in this book,
GSC is gaining popularity in all those domains that would benefit from the increased
engagement of their target users [1]. Thus, these applications are found in disparate
contexts, such as education and training [2–6], health and environmental awareness
[7–10], e-banking [11], software engineering [12], everyday challenges [13], and so
forth.

The growing adoption of GSC experiences make their design and development
increasingly complex due to, for example, the number and variety of users, and
their potential mission criticality. This complexity is nurtured, among other factors,
by a lack of theoretical grounding and adequate frameworks to engineer the
intended solutions. One of the main challenge in this context is to bring the
attention of interdisciplinary researchers and practitioners to the opportunities and
challenges involved in the new trends and issues related to the development of GSC
applications.

13.2 Grand Challenges

This section describes the challenges that have emerged in the various chapters of
this book. We start from the set of challenges more related to the engineering of
games in serious context (GSC), and we conclude with a set of challenges where
the use of GSC could improve the software engineering aspect.

13.2.1 Design of GSC

The design of GSC is quite complex and requires numerous precautions in order to
achieve a well-functioning system. In fact, according to several data in the literature
[14, 15], there is little cohesion with respect to theoretical underpinnings and what
gamification encompasses, leading to inconsistent results related to the use of such
systems. These results can be partly explained by the lack of standardized design
methodologies and the extensive use of the shortcoming one-size-fits-all strategy
[16]. In other words, they are often designed without taking into account that

13 Grand Challenges in Software Engineering for Games in Serious Contexts 293

different categories of users have different interactions with these systems. To face
these results’ inconstancy, several solutions have been presented. Some authors
suggest that the design of GSC should take into account the final users’ differences
and preferences [15, 17–20], while other authors have presented specific design
frameworks in order to properly design GSC [21–23] taking into account specific
needs. To summarize, we need to consider to whom the GSC is directed and what the
characteristics of the target group are [24]. Indeed, personalized interactive systems
are more effective than one-size-fits-all approaches [18].

13.2.2 Context-Awareness in GSC

In GSC, the term context is often associated with user and goals; actually, it is
undeniable that there is a link between these various factors. Therefore, the way
in which GSC is perceived by users depends on multiple factors, including the
individual characteristics of the users, the context in which the GSC is implemented,
and the specific task or activity being gamified. These elements all contribute to how
users perceive and engage with GSC [15]. Despite that, contextual factors and the
importance of the application domain are often underestimated in GSC research
and design [15]. Therefore, according to Koivisto and Hamari [15], the lack of
theoretical understanding surrounding the importance of the contextual influence on
gamification effectiveness might produce results that in reality cannot be generalized
to other contexts.

13.2.3 User Experience Evaluation Methodologies and Tools

User experience (UX) is a multifactorial concept that is difficult to be measured [25].
In GSC, we are especially interested in the differences between traditional research
and emerging evaluation of UX, such as physiological data (e.g., electroencephalog-
raphy, electromyography, and facial expression assessment) [26]. Since the purpose
of a user experience evaluation is to record and interpret the experience experienced
by users while interacting with a digital game, it is imperative that this recording
is accurate and reliable in order for its results to have substance and be useful.
When measuring and evaluating user experience in GSC, it is best to employ tools
from different methodologies, such as quantitative tools combined with qualitative
evaluation tools or objective tools combined with qualitative evaluation tools.
Taking advantage of each methodology in this way will increase the reliability
of the results. Utilizing tools from only one methodology may negatively affect
our evaluation efforts if we choose to leverage those tools. Finally, for better
understanding and in order to interpret the experience derived from a GSC, the
methodology used to evaluate the user experience plays a very important role. Future
research will evaluate GSC using different methodologies and tools. These studies

294 A. Bucchiarone

will ultimately be aimed at finding the most effective combination of tools and
methodologies for measuring the GSC potential.

13.2.4 Software Reuse in GSC

Creating a GSC can be very complicated, with many activities, elements, and team
members composing this development, taking a long time to be produced. Reuse is
the concept by which it aims to build some artifact from one that has already been
produced to save time and money. The gaming community has already been using
reuse concepts in an ad hoc manner to create new games from existing ones. Reuse
can bring some advantages for the development of GSC, such as greater longevity,
lower production costs, and greater diversity of solutions being created in a shorter
time. In this context, componentization can be used to simplify the complexity of a
GSC by clearly identifying and separating the concerns. This allows for easier and
longer-lasting revision management. At the same time, the Product Line paradigm
can be exploited to reuse some GSC features and create several branches from it.
Finally Model-Driven Development (MDD) can be used to derive the characteristics
of a GSC and create models from them [27]. Once the models are already created,
transformations can be applied to generate a new model that will generate new
adaptations of the GSC in the future.

13.2.5 Quality Design in GSC

The development of GSC implies a learning process like the process of incorpo-
rating new learning into memory, as well as retrieving and using it. This requires
a software architecture designed to optimize memory and processing resources
[28]. The design patterns approach offers holism and efficiency; another important
advantage of this approach is that it provides reusable solutions, which benefit the
maintainability and evolution of the system [29]. In the case of devices with limited
storage, such as mobile phones, they allow the optimization of resources. GSC has
a greater fluidity in its operation; the player’s experience when interacting with the
user interface is a motivation to continue looking for efficient solutions that improve
the use of resources and thus the speed of response with which the exercises to
be solved are presented, leading to the development of an application agile and
efficient to make your learning fun, dynamic, and permanent. For these reasons, the
software engineering community must contribute studies and techniques to improve
the performance of these applications.

13 Grand Challenges in Software Engineering for Games in Serious Contexts 295

13.2.6 Adaptation in GSC

In addition to enhancing design phases, GSC need a support for monitoring and
adaptation of the gameplay. In fact, there exist concrete risks for GSC of triggering
and producing undesirable side effects [30]. In most of the current approaches, the
design, analysis, and revision of GSC require many development activities often
unrelated to each other, with the use of various general-purpose languages (e.g.,
rule-based). The different actors involved (e.g., domain expert, system developer,
and impact managers) use different languages and tools to execute their tasks with
a completely different understanding of the game concepts and their relations. In
turn, this might lead to managing unexpected game deviations with ad hoc and not
reusable solutions, making the monitoring and the revision of game mechanics and
dynamics a complicated task. What is really needed is the provision of uniform
and clean datalogs of players’ game actions. In this way, a desired monitoring
framework would also assist and enhance the process of monitoring gameplay,
aimed at detecting and resolving upcoming design issues at runtime. Such a tool
would allow an iterative, player-centric design, in contrast to a one-size-fits-all
strategy, notoriously detrimental [13, 31, 32]. Instead, adaptive content is likely
to increase player engagement and motivation when it is aligned to players’
preferences [33] and adjusts its difficulty to the players’ skills and abilities [34].
Adapting and personalizing the gameplay to the user is more likely to foster
intrinsic motivation, challenging to achieve as is notably subjective to the player
[35–37]. The development of such an adaptive by design GSC and the addition
of adaptation to existing GSC are both challenging engineering problems, which
require a combination of expertise in the learning domain, game development,
software development, and machine learning.

13.2.7 Abstraction and Automation in GSC

A fundamental concern of gameful applications is their tailoring to the target
domain and users: if a game is detached from the domain interests, the risk is to
promote counterproductive/undesired behaviors; similarly, too easy or too complex
games could fail engagement objectives due to loss of interest or discourage-
ment, respectively [38]. A direct consequence of the mentioned tailoring needs is
the critical contribution and cooperation of application domain and gamification
experts: the former ones provide inputs about the engagement issues and desired
outcomes, while the latter ones propose corresponding gamification strategies. Such
a cooperation conveys gameful application specifications to be implemented in an
appropriate target platform.

In the current state of practice, one available implementation option is to pick up a
pre-packaged gamification application from a repository [39]. The advantage would
be to have a quick development phase limited to configuration purposes, at the

296 A. Bucchiarone

price of very limited customization possibilities, unless manually tuning the existing
implementation. Diametrically opposite, a completely new gamified application can
be developed from scratch: this solution necessarily entails longer time to market,
with the advantage of realizing a fully customized implementation. Regardless of
the choice, the realization and deployment phases introduce an abstraction gap
between gamification stakeholders, namely, domain and gamification experts, and
the gameful application itself. In fact, the target application is typically implemented
as a collection of rules matching incoming event notifications with corresponding
game status updates. Therefore, developers need to translate game mechanics and
other elements into corresponding rules while the other stakeholders are required to
backtrack state changes into corresponding gaming events.

With the growing adoption of gamification in disparate application domains
and its spreading to a wider range of users, the complexity of gameful software
is unavoidably increasing. In this respect, the abstraction gap between design and
realization becomes a critical issue: the implementation phase is more tedious and
error-prone, due to the number of rules and the customization needs. Moreover,
maintenance and evolution activities are harder to manage, due to the disconnection
between design and realization.

In order to close the gap between design and implementation of gameful
applications, abstraction is a key aspect that should be taken into account. A
developer should use a set of domain-specific languages devoted to the specification,
implementation, and deployment of gameful applications, and more in general, a
software engineering process should consider the following key aspects:

Separation of concerns: a gamification approach can be described by means of
several perspectives. When the complexity grows, an effective way to alleviate
it is to manage different perspectives as separate points of view that are later on
fused into a complete solution;

Correctness by construction: given the growth of gamification employment and
range of its potential users, the specification of gameful applications becomes
increasingly intricate. In this respect, game rules shall be consistent with
mechanisms and elements intended for the target application;

Automation: in order to close the gap between design and implementation, the
amount of manually written code shall be reduced as much as possible. Or in
the other way around, the degree of automation provided by the process shall be
maximized.

13.2.8 GSC for Software Engineering Education and Training

Gamification means creating a game narrative that guides players through increas-
ingly complex challenges, keeping them engaged with social activities such as group
work or competitions. It means providing immediate feedback and students taking
autonomous choices to progress down the individually decided path. Gamification is

13 Grand Challenges in Software Engineering for Games in Serious Contexts 297

not an add-on. Instead, gamification mechanics are fundamental to the learning path
personalization process in two ways. Not only do they keep the students engaged,
but they can also be used as tools to gain insight into the student’s behavior from
a different perspective and thus help generate a more personalized and engaging
learning path. In order to increase engagement, the gamification mechanics must be
calibrated according to the underlying activities. That is why gamification mechan-
ics should be enhanced by AI techniques to make the motivation personalized and
contextualized [40].

13.2.9 GSC for Software Quality

Software development projects often fail because of insufficient code quality [41].
It is now well documented that the task of testing software, for example, is
perceived as uninteresting and rather boring, leading to poor software quality and
major challenges to software development companies. One promising approach to
increase the motivation for considering software quality is the use of gamification.
Initial research works already investigated the effects of gamification on software
developers and come to promising [42]. Nevertheless, a lack of results from
field experiments exists, which motivates the need of new research in this field.
Preliminary results in this direction [42] show that the introduction of a leaderboard
game has a measurable effect on the Code Quality (CQ) in software development
projects, while further questions for future research arise. The leaderboard can
be used more intensively in teaching. In addition, it needs to be evaluated in
a professional context with experienced developers. Furthermore, the degree of
gamification needs to be investigated. How much is too much or too little? The
optimal degree of gamification is an aspect that should be investigated more closely
in future research works. The time spent on gamification can also be considered,
which leads to the question of how much time should or can be spent in order to
achieve the best possible results in Code Quality. In terms of motivation, it could be
analyzed whether competition with others, the own performance, or the feeling of
playing as a team contributes the most. In the context of a multiplayer approach, it
could be considered how this affects the player motivation and outcome.

13.3 Final Discussion

In this chapter, we presented the grand challenges that cover the two main
perspectives covered by this book: (i) software engineering for games in serious
contexts and (ii) games in serious context for software engineering. We hope that
this analysis not only represents a snapshot of the challenges faced in these research
fields but contributes to stimulate researchers, practitioners, and tool developers to
tackle and explore some of them. At the same time, it provides a useful context for

298 A. Bucchiarone

future research projects, research grant proposals, and new research directions. We
hope in a few years we can look back at this list and see many of them crossed out
as a sign of the continuous advancement and maturity of these two communities
together.

References

1. Koivisto, J., Hamari, J.: The rise of motivational information systems: a review of gamification
research. Int. J. Inf. Manag. 45, 191–210 (2019)

2. Dicheva, D., Dichev, C., Irwin, K., Jones, E.J., (Boots) Cassel, L., Clarke, P.J.: Can game
elements make computer science courses more attractive? In: Proceedings of the 50th ACM
Technical Symposium on Computer Science Education, SIGCSE 2019, pp. 1245 (2019)

3. Cosentino, V., Gérard, S., Cabot, J.: A model-based approach to gamify the learning of
modeling. In: Proceedings of the 5th Symposium on Conceptual Modeling Education and the
2nd International iStar Teaching Workshop Co-located with the 36th International Conference
on Conceptual Modeling (ER 2017), Valencia, November 6–9, 2017, pp. 15–24 (2017)

4. Kim, S., Song, K., Lockee, B., Burton, J.: Gamification in Learning and Education: Enjoy
Learning Like Gaming. Springer International Publishing, Berlin (2018)

5. Lee, J.J., Hammer, J.: Gamification in education: what, how, why bother? Acad. Exch. Q. 15(2),
2 (2011)

6. Bucchiarone, A., Cicchetti, A., Bassanelli, S., Marconi, A.: How to merge gamification efforts
for programming and modelling: a tool implementation perspective. In: 2021 ACM/IEEE
International Conference on Model Driven Engineering Languages and Systems Companion
(MODELS-C), pp. 721–726. IEEE, Piscataway (2021)

7. Johnson, D., Deterding, S., Kuhn, K.-A., Staneva, A., Stoyanov, S., Hides, L.: Gamification for
health and wellbeing: a systematic review of the literature. Int. Intervent. 6, 89–106 (2016)

8. Marconi, A., Schiavo, G., Zancanaro, M., Valetto, G., Pistore, M.: Exploring the world through
small green steps: improving sustainable school transportation with a game-based learning
interface. In: Proceedings of the 2018 International Conference on Advanced Visual Interfaces,
AVI 2018, pp. 24:1–24:9 (2018)

9. Rajani, N.B., Mastellos, N., Filippidis, F.T.: Impact of gamification on the self-efficacy and
motivation to quit of smokers: observational study of two gamified smoking cessation mobile
apps. JMIR Serious Games 9(2), e27290 (2021)

10. Vieira, V., Fialho, A., Martinez, V., Brito, J., Brito, L., Duran, A.: An exploratory study on the
use of collaborative riding based on gamification as a support to public transportation. In: 2012
Brazilian Symposium on Collaborative Systems, pp. 84–93. IEEE, Piscataway (2012)

11. Rodrigues, L.F., Costa, C.J., Oliveira, A.: Gamification: a framework for designing software in
e-banking. Comput. Hum. Behav. 62, 620–634 (2016)

12. Pedreira, O., García, F., Brisaboa, N., Piattini, M.: Gamification in software engineering – a
systematic mapping. Inf. Softw. Technol. 57, 157–168 (2015)

13. Vassileva, J.: Motivating participation in social computing applications: a user modeling
perspective. User Model. User Adapt. Interact. 22(1), 177–201 (2012)

14. Seaborn, K., Fels, D.I.: Gamification in theory and action: a survey. Int. J. Hum. Comput. Stud.
74, 14–31 (2015)

15. Koivisto, J., Hamari, J.: The rise of motivational information systems: a review of gamification
research. Int. J. Inf. Manag. 45, 191–210 (2019)

16. Böckle, M., Micheel, I., Bick, M., Novak, J.: A design framework for adaptive gamification
applications. In: Proceedings of the 51st Hawaii International Conference on System Sciences
(2018)

13 Grand Challenges in Software Engineering for Games in Serious Contexts 299

17. Bassanelli, S., Bucchiarone, A.: GamiDOC: a tool for designing and evaluating gamified
solutions. In: Extended Abstracts of the 2022 Annual Symposium on Computer-Human
Interaction in Play, pp. 203–208 (2022)

18. Tondello, G.F., Wehbe, R.R., Diamond, L., Busch, M., Marczewski, A., Nacke, L.E.: The
gamification user types hexad scale. In: Proceedings of the 2016 Annual Symposium on
Computer-Human Interaction in Play, pp. 229–243 (2016)

19. Oliveira, W., Hamari, J., Shi, L., Toda, A.M., Rodrigues, L., Palomino, P.T., Isotani, S.: Tailored
gamification in education: a literature review and future agenda. Educ. Inf. Technol., pp. 1–34
(2022)

20. Codish, D., Ravid, G.: Gender moderation in gamification: does one size fit all? (2017)
21. Klock, A.C.T., Gasparini, I., Pimenta, M.S.: 5w2h framework: a guide to design, develop and

evaluate the user-centered gamification. In: Proceedings of the 15th Brazilian Symposium on
Human Factors in Computing Systems, pp. 1–10 (2016)

22. Morschheuser, B., Maedche, A., Walter, D.: Designing cooperative gamification: conceptu-
alization and prototypical implementation. In: Proceedings of the 2017 ACM Conference on
Computer Supported Cooperative Work and Social Computing, pp. 2410–2421 (2017)

23. Deterding, S.: The lens of intrinsic skill atoms: a method for gameful design. Hum. Comput.
Interact. 30(3–4), 294–335 (2015)

24. Kim, B.: Designing gamification in the right way. Lib. Technol. Rep. 51(2), 29–35 (2015)
25. Moizer, J., Lean, J., Dell’Aquila, E., Walsh, P., (Alfie) Keary, A., O’Byrne, D., Di Ferdinando,

A., Miglino, O., Friedrich, R., Asperges, R., Sica, L.S.: An approach to evaluating the user
experience of serious games. Comput. Educ. 136, 141–151 (2019)

26. Atrash, A., Mower, E., Shams, K., Mataric, M.J.: Recognition of physiological data for a moti-
vational agent. In: Computational Physiology, Papers from the 2011 AAAI Spring Symposium,
Technical Report SS-11-04, Stanford, CA, March 21–23, 2011. AAAI, Washington (2011)

27. Di Ruscio, D., Kolovos, D.S., de Lara, J., Pierantonio, A., Tisi, M., Wimmer, M.: Low-code
development and model-driven engineering: two sides of the same coin? Softw. Syst. Model.
21(2), 437–446 (2022)

28. Mizutani, W.K., Daros, V.K., Kon, F.: Software architecture for digital game mechanics: a
systematic literature review. Entertain. Comput. 38, 100421 (2021)

29. Qu, J., Song, Y., Wei, Y.: Design patterns applied for game design patterns. In: Chen, Y. (Ed.)
17th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence,
Networking and Parallel/Distributed Computing, SNPD 2016, Shanghai, May 30–June 1, 2016,
pp. 351–356. IEEE Computer Society, Washington (2016)

30. Rapp, A., Hopfgartner, F., Hamari, J., Linehan, C., Cena, F.: Strengthening gamification
studies: current trends and future opportunities of gamification research (2019)

31. Khaled, R., Fischer, R., Noble, J., Biddle, R.: A qualitative study of culture and persuasion in a
smoking cessation game. In: International Conference on Persuasive Technology, pp. 224–236.
Springer, Berlin (2008)

32. Orji, R., Mandryk, R.L., Vassileva, J.: Improving the efficacy of games for change using
personalization models. ACM Trans. Comput. Hum. Interact. 24(5), 32 (2017)

33. Lavoué, E., Monterrat, B., Desmarais, M., George, S.: Adaptive gamification for learning
environments. IEEE Trans. Learn. Technol. 12(1), 16–28 (2018)

34. Pastushenko, O., Oliveira, W., Isotani, S., Hruška, T.: A methodology for multimodal learn-
ing analytics and flow experience identification within gamified assignments. In: Extended
Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems, pp. 1–9
(2020)

35. Deci, E.L., Koestner, R., Ryan, R.M.: A meta-analytic review of experiments examining the
effects of extrinsic rewards on intrinsic motivation. Psychol. Bull. 125(6), 627 (1999)

36. Malone, T.W.: What makes things fun to learn? Heuristics for designing instructional computer
games. In: Proceedings of the 3rd ACM SIGSMALL Symposium and the First SIGPC
Symposium on Small Systems, pp. 162–169. ACM, New York (1980)

37. Tondello, G.F., Wehbe, R.R., Diamond, L., Busch, M., Marczewski, A., Nacke, L.E., The
gamification user types hexad scale. In: Proceedings of the 2016 Annual Symposium on
Computer-Human Interaction in Play, CHI PLAY ’16, pp. 229–243. ACM, New York (2016)

300 A. Bucchiarone

38. Hanus, M.D., Fox, J.: Assessing the effects of gamification in the classroom: a longitudinal
study on intrinsic motivation, social comparison, satisfaction, effort, and academic perfor-
mance. Comput. Educ. 80, 152–161 (2015)

39. TechnologyAdvice.com. Compare 120+ gamification platforms (2019). https://
technologyadvice.com/gamification/

40. Bucchiarone, A., Martorella, T., Colombo, D., Cicchetti, A., Marconi, A.: POLYGLOT for
gamified education: mixing modelling and programming exercises. In: ACM/IEEE Inter-
national Conference on Model Driven Engineering Languages and Systems Companion,
MODELS 2021 Companion, Fukuoka, October 10–15, 2021, pp. 605–609. IEEE, Piscataway
(2021)

41. Vasileva, A., Schmedding, D.: How to improve code quality by measurement and refactoring.
In: Paulk, M.C., Machado, R.J., Brito, M.A., Goulão, M., Amaral, V. (Eds.) 10th International
Conference on the Quality of Information and Communications Technology, QUATIC 2016,
Lisbon, September 6–9, 2016, pp. 131–136. IEEE Computer Society, Washington (2016)

42. de Paula Porto, D., de Jesus, G.M., Ferrari, F.C., Fabbri, S.C.P.F.: Initiatives and challenges of
using gamification in software engineering: a systematic mapping. J. Syst. Softw. 173, 110870
(2021)

https://technologyadvice.com/gamification/
https://technologyadvice.com/gamification/
https://technologyadvice.com/gamification/
https://technologyadvice.com/gamification/

Part I
Topics on the Design, Maintenance,

Adaptation, and Evaluation of Gameful
Systems

Chapter 2
User Experience Evaluation Methods for
Games in Serious Contexts

Sotiris Kirginas

Abstract User experience in digital games can be influenced by many factors
such as flow [Csikszentmihalyi (Flow: the psychology of optimal experience.
Harper Collins, 1990), Sweetser and Wyeth (Computers in Entertainment 3(3):1–
24, 2005)], immersion [Brown and Cairns (ACM Conference on Human Factors in
Computing Systems, CHI 2004, ACM Press, 2004), Ermi and Mayra (Proceedings
of Chancing Views – Worlds in Play. Digital Games Research Association’s Second
International Conference, 2005)], frustration or tension [Gilleade and Dix (Proceed-
ings of the 2004 ACM SIGCHI International Conference on Advances in Computer
Entertainment Technology – ACE ’04, 2004)], psychological absorption [Funk et al.
(Proceedings of the Second International Conference on Entertainment Computing
Pittsburgh, Carnegie Mellon University, 2003)], and social game context [Bracken
et al. (Online video games and gamers’ sensations of spatial, social, and copresence.
FuturePlay 2005, 2005)]. Most of these factors should be present in a digital
game in order to provide the optimal gaming experience [Kirginas (Contemporary
Educational Technology 14(2):ep351, 2022), Kirginas et al. (International Journal
of Child-Computer Interaction 28, 2021), Kirginas and Gouscos (The International
Journal of Serious Games 4:53–69, 2017; International Journal of Serious Games
3:29–45, 2016)]. As there are many different game genres, sub-genres, and game
types, user experience needs to be explored in more detail in research studies.
This need is even greater when we talk about serious games. User experience is
a multifactorial concept that is difficult to measure. This chapter aims to present
a range of quantitative and qualitative/objective and subjective/short-term and
long-term/formative and summative methods that can be used to evaluate users’
experience in serious games during and after the development process. It is also
intended to provide insight into when the different user experience assessment
methodologies should be employed in the development cycle.

S. Kirginas (�)
National and Kapodistrian University of Athens, Athens, Greece
e-mail: skirginas@media.uoa.gr

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
K. M. L. Cooper, A. Bucchiarone (eds.), Software Engineering for Games
in Serious Contexts, https://doi.org/10.1007/978-3-031-33338-5_2

19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33338-5protect T1	extunderscore 2&domain=pdf

 885 56845 a 885 56845 a

mailto:skirginas@media.uoa.gr
mailto:skirginas@media.uoa.gr
mailto:skirginas@media.uoa.gr
https://doi.org/10.1007/978-3-031-33338-5_2
https://doi.org/10.1007/978-3-031-33338-5_2
https://doi.org/10.1007/978-3-031-33338-5_2
https://doi.org/10.1007/978-3-031-33338-5_2
https://doi.org/10.1007/978-3-031-33338-5_2
https://doi.org/10.1007/978-3-031-33338-5_2
https://doi.org/10.1007/978-3-031-33338-5_2
https://doi.org/10.1007/978-3-031-33338-5_2
https://doi.org/10.1007/978-3-031-33338-5_2
https://doi.org/10.1007/978-3-031-33338-5_2
https://doi.org/10.1007/978-3-031-33338-5_2

20 S. Kirginas

Keywords Digital games · Serious games · Assessment · Experience ·
Quantitative · Qualitative

2.1 Introduction

Nowadays, digital games compete with traditional activities like reading books,
watching movies, listening to music, surfing the Internet, or playing sports [1].
Digital games regularly attract billions of players online and offline, generating
huge revenue. However, digital games also present new research challenges for
many traditional and new scientific areas [1]. With recent advances in the field of
human-computer interaction [2], new methods are available to precisely measure
how people interact with entertainment technologies [3, 4]. With new evaluation
methods of player interaction, we aim to support the traditional digital serious games
development and improve game design process [5].

Game developers increasingly employ user testing with playability evaluation in
the development of digital games [6–9]. Unlike other software, digital games often
offer a unique experience that contains elements that are difficult to be evaluated.
User experience in digital games can be influenced by many factors, such as flow
[10, 11], immersion [12, 13], frustration or tension [14], psychological absorption
[15], and social game context [16].

A component of a game design process is observation of players in response to
mechanics. Since it is very time-consuming to gain such individual knowledge of
game design, it is necessary to gain a more rapid understanding of the complex
behavior of players in response to game mechanics. To gain a more complete
view of user experience, several recent solutions have combined event logging
with objective and subjective player feedback [3, 17]. Similarly, player behavior
is modeled to find “optimal spots in the game and level design” [4].

This chapter aims (a) to present a range of quantitative and qualitative/objective
and subjective/short-term and long-term/formative and summative methods that can
be used to evaluate users’ experience in digital serious games during and after
the development process and (b) to provide insight into when the different user
experience evaluation methodologies should be employed in the development cycle.

The structure of this chapter is as follows: First, we outline methods for
evaluating the user experience of digital serious games based on the body of the
literature. In the next section, we explain how users’ experiences are measured in
digital serious games. Last but not least, we discuss when, how, and why to use
all main methodologies proposed to measure the effectiveness of games in serious
contexts.

2 User Experience Evaluation Methods for Games in Serious Contexts 21

2.2 Defining User Experience

According to Almeida et al. [18], experience is both the process and the outcome
of a user’s engagement with the environment at a given moment. It is both an
interactive (the process of playing the game) and an emotional (the consequence of
playing) experience—a feeling (or combination of emotions) that occurs as a result
of playing [19]. The interaction process is the way players interact when playing;
it is how the player interacts with other playable and non-playable characters and
objects in the game environment [20] and how they make decisions. The game
limits this process, which is influenced by the players’ background, motivations,
expectations, and current emotional experiences, which can change during the game
[19]. Almeida [20] argues that in many cases, the emotional state of the players also
influences the interaction processes: If they are anxious, they may be less attentive,
which could affect their ability to play and win, while if they are relaxed, they could
be in a flow state according to Csikszentmihalyi [10]. This is still a fairly open field
in the game industry, as horror games, a prominent video game genre, is dedicated
to keeping players in flow through anxiety or fear.

This approach has an impact on the outcome of the game. If the emotional
experience is positive, games can trigger positive emotions (e.g., satisfaction,
happiness, and excitement); if the emotional experience is unpleasant, games can
trigger negative emotions (anger, sadness, boredom). Positive or negative effects can
influence the interaction process by changing players’ motivations and engagement
[19, 21, 22]. This bidirectional interaction can explain why players can sometimes
experience both pleasure and frustration during the course of a game [20].

According to Roto [23], there are three phases of the game experience: (a)
the expected game experience (before a player interacts with a game), (b) the
game experience during interaction (experience that occurs while interacting with
the game), and (c) the overall player experience (experience that occurs while
interacting with the game) (experience after the game ends). The player experience
during interaction is the most important of the three phases of player experience
mentioned above. Examining the player experience during interaction is critical to
improving a game, as this phase can identify features and components that provide a
positive experience as well as those that do not. According to Lallemand [24], three
factors should be considered in order to understand the game experience during the
interaction phase: the human aspect (dispositions, expectations, needs, motivation,
mood, etc.), the system aspect (e.g., complexity, purpose, usability, functionality,
etc.), and the contextual aspect (or environment) in which the interaction takes place
(e.g., organizational/social environment, meaningfulness of the activity, voluntari-
ness of use, etc.).

22 S. Kirginas

2.3 Methods to Evaluate UX in Serious Games

While game developers should construct games that are rewarding, entertaining, and
appealing to consumers in order to enhance game reviews and sales, designing and
developing digital games is a demanding and difficult process [25]. Therefore, it
is important to understand how different players behave and interact with games.
Understanding target players and their game experiences during game development
is critical to create a better user experience and perhaps improve game ratings and
financial success.

A survey by the Entertainment Software Association (ESA) found that digital
games have become an important part of the games industry in recent decades.
Due to a number of variables such as rapidly growing market, broader player
demographics, and unique controller interfaces and platforms, digital games are an
important area of research [25].

Consequently, the opportunity is broader; however, a deeper understanding of
player demographics and platforms is required to address this market. According to
Mirza-Babaei [25], stereotypes of the single player (e.g., the image of a teenager
addicted to digital games) are generally disappearing in the industry in favor
of a new image of multiple players playing simultaneously on multiple devices.
In modern digital games, there are different types of interaction that offer more
opportunities for player interaction.

Through the growing field of games user research (GUR), developers are evaluat-
ing their games for usability and user experience to improve the gaming experience.
Games user research borrows user research techniques from human-computer
interaction (HCI) and psychology, such as behavioral observation, interviews,
questionnaires, and heuristic evaluation. Despite advances in applying user research
methods to understand the usability of productivity applications, researchers and
practitioners still face challenges in applying these methods to digital games. Digital
games have unique characteristics that prevent the application of most conventional
user research methods to the evaluation of the game experience [25].

As a result, user research methodological approaches have been modified and
improved to better meet the goals of game development. These methods aim to
provide players with a combination of qualitative and quantitative/objective and
subjective/formative and summative/short-term and long-term methods to choose
from depending on their research context and the needs of their participants. One of
the main issues facing user experience and game usability evaluation is determining
the optimal combination of different methods and combining the data from each
method into a relevant report for game developers.

2 User Experience Evaluation Methods for Games in Serious Contexts 23

2.4 Analysis of Methodologies

Users’ experiences in digital games can be measured and evaluated using different
methods. These methods are classified in various ways in the following sections.

2.4.1 Quantitative vs Qualitative Assessment

Qualitative methods are used to explore and understand players’ perceptions and
interactions. Users’ experiences are usually recorded in non-numerical data. In
contrast, quantitative methods use numerical data [26]. Quantitative approaches
show levels of engagement and interest by providing statistics, while qualitative
approaches capture players’ experiences during play. There are times when players
lack emotional expression and do not speak freely when evaluating verbally or
nonverbally. It is difficult for players to concentrate and talk about their experiences
at the same time while playing a game. When evaluating a project, both methods
should be used to achieve objective and comprehensive results.

In any research, researchers have to make a primary but basic methodological
choice between the quantitative and the qualitative approach (or their combination)
to investigate their topic. With the quantitative approach, they can find out “what
happens,” while with the qualitative approach, they investigate “why it happens.”
The aim of qualitative research is to “discover the views of the research population
by focusing on the perspectives from which individuals experience and feel
about events” [27]. In summary, qualitative assessment involves categorizing and
evaluating qualitative data to help researchers analyze and interpret game events,
user behavior, and player experiences. Collecting qualitative data can lead us down
such paths, whereas collecting quantitative data cannot, especially when it comes to
user experience.

2.4.2 Subjective vs Objective Assessment

Instruments for measuring players experience fall into two categories depending on
their reliability: objective and subjective.

Objective assessment instruments provide accurate data that are objective and
free from any subjective judgment of the participants because they are accurately
recorded by machines [28]. Objective data are recorded automatically and continu-
ously without disturbing the participants or interfering them.

In contrast, subjective instruments, are not precisely because they are com-
pleted by the users themselves, contain subjectivity, so they have lower reliability
compared to objective instruments. An objective assessment tool measures the
expressive or psychophysiological aspect of the user’s experience using facial

24 S. Kirginas

expressions and collected psychophysiological data, while a subjective tool assesses
the subjective feeling of the user’s experience using self-reports, rating scales, and
verbal protocols.

2.4.3 Short-Term vs Long-Term Assessment

In the early stages of game development, measuring users’ initial and momentary
experiences is important to obtain feedback [29]. It is also known that users’
experiences change over time [30]. Therefore, it is necessary to use instruments
that measure the experience over time to get more reliable information about game
playability. In this way, a game developer can gain insight into how a player interacts
with their game. Currently, user experience research mostly focuses on short-term
evaluations. However, the relationship between a user and a game evolves over time,
so long-term user evaluation is critical to a game’s success.

These different categorizations are important because the reasons we want to
measure user experience may vary from research to research. In some cases, we
may want to measure qualitative attributes derived from the player’s experience,
while in other cases, we may want to measure quantitative attributes. Similarly, we
may want to measure the player experience at a particular point in the game, such as
when the player wins a significant player, or we may want to assess it over a longer
period of time.

2.4.4 Formative vs Summative Evaluation

There are two types of evaluation in user experience, formative and summative.
Which type of evaluation we should use depends on where we are in the process of
developing a digital game.

Formative evaluations focus on identifying aspects of the design that work well
or not well and why. These evaluations are conducted during the redesign of a game
and provide information to gradually improve the game. Considering the case of
designing a new digital game for mobile phones, as part of the design process, a
prototype is created for this game and tested with (usually a few) users to see how
easy it is to use and how players experience it. The research may reveal several
weaknesses in the prototype, which are then addressed with a new design. This
research is an example of a formative evaluation—it helps the designers determine
what needs to be changed to improve the game. Formative evaluations involve
testing and modifying the game, usually many times, and are therefore appropriate
when developing a new game or redesigning an existing game. In both cases,
the prototyping and testing steps are repeated until the game is ready for mass
production [31].

2 User Experience Evaluation Methods for Games in Serious Contexts 25

Summative evaluation describes how well a game performs, often compared to a
benchmark, such as a previous version of the game or a competitive game. Unlike
formative evaluations, whose goals are to inform the design process, summative
evaluations involve getting the big picture and evaluating the overall experience of
a completed game. Summative evaluations are done less frequently than formative
evaluations, usually immediately before or immediately after a redesign. Assume
the redesign of the mobile phone game is complete, and now it is time to evaluate
how well it performs compared to the previous version of the game. After the data
from the survey is collected, it is then compared to the data obtained from the
previous version of the game to see if there has been any improvement. This type of
survey is a summative evaluation as it evaluates the product shipped with the goal of
tracking performance over time and ultimately calculating our return on investment.
However, during this study, we may uncover some usability issues. These issues
should be noted and addressed during the next game design. Alternatively, another
type of summative evaluations could compare results to those obtained from one
or more competitive games or to known data across the gaming industry. All
summary ratings give an overview of a game’s usability. They are meant to serve as
benchmarks so we can determine whether our own games have been improved over
time. The final summative evaluation is the go/no-go decision on whether to release
a product [31].

2.5 Overview of the Main Methodologies

There are a variety of tools and methods to uncover the quality of the experience
generated by a game, either to improve it or to use the game for the purposes of
education, training, awareness raising, and behavior change of subjects. Table 2.1
summarizes all UX assessment methods together with their assignment to one or
more of the categories mentioned above.

2.5.1 Think-Aloud Protocol

The think-aloud protocol is a qualitative method of collecting data in which players
describe their playing experiences to an expert facilitator. The facilitator pays
attention to both verbal and nonverbal (e.g., behaviors, body language) players’
responses to gain insights into the player experience [32]. Think-aloud protocol
asks participants to spontaneously report any thoughts they have while they interact
with a game without interpreting or analyzing what they have thought about
[33]. The think-aloud protocol consists of two components: (a) the technique for
collecting verbal data (think-aloud interview) and (b) the technique for predicting
and analyzing verbal data (protocol analysis). The method is useful for researchers
interested in observing, exploring, and understanding the thoughts and opinions of

26 S. Kirginas

Ta
bl
e
2.
1

O
ve
rv
ie
w
 o
f
th
e
m
ai
n
in
st
ru
m
en
ts
 a
nd
 m

et
ho
ds

M
et
ho
ds
/in

st
ru
m
en
ts

Q
ua
nt
ita

tiv
e

Q
ua
lit
at
iv
e

Su
bj
ec
tiv

e
O
bj
ec
tiv

e
Sh

or
t-
te
rm

L
on
g-
te
rm

Fo

rm
at
iv
e

Su
m
m
at
iv
e

T
hi
nk
-a
lo
ud
 p
ro
to
co
l

�
�

�
�

�
�

Su
rv
ey
s

�
�

�
�

�
�

E
xp

er
t e
va
lu
at
io
n

�
�

�
�

�
�

Pl
ay
te
st
in
g

�
�

�
�

�
�

O
bs
er
va
tio

n
�

�
�

�
�

�
In
te
rv
ie
w
s

�
�

�
�

�
�

Fo
cu
s
gr
ou
ps

�
�

�
�

�
�

Ps
yc
ho
ph
ys
io
lo
gi
ca
l m

ea
su
re
m
en
ts

�
�

�
�

�
�

�
Se

lf
-a
ss
es
sm

en
t m

ea
su
re
m
en
ts

�
�

�
�

�
�

2 User Experience Evaluation Methods for Games in Serious Contexts 27

players, which can be a challenging endeavor [34, 35]. Depending on the interaction
with the game, it can generate reports during the interaction or afterward [36].

In order to implement the think-aloud protocol, the following steps are taken: (a)
users are assigned tasks, (b) users are asked to speak aloud their thoughts during the
performance of the tasks, (c) users’ thoughts are recorded as they are performing
the tasks, and (d) the material is analyzed and commented on by the researcher(s).
Based on Avouris [37], the think-aloud protocol can be divided into the following
variations: (a) critical response protocols, in which the user is required to speak
aloud only during a predetermined task, and (b) periodic report protocols, in which
the user explains his/her thoughts only after completing a particular task so that the
task is not disturbed.

The advantage of think-aloud protocol is that researchers are able to identify
players’ main misconceptions, since it allows them to understand how players view
a game. Think aloud also enables them to obtain a rapid and high-quality response
from a small number of participants [38]. A number of researchers have criticized
the method for disrupting user concentration [39] and claiming that self-observation
would interfere with thought process and, as a result, wouldn’t show real thought
processes [33].

2.5.2 Expert Evaluation

Expert evaluation refers to an overview of the game conducted by an expert or a
team of experts. It is a formative or summative evaluation conducted by designers
and user experience experts to identify potential problems and improve the design
[40]. Expert evaluation can be conducted for an existing game to identify problems
that can be fixed by redesigning the game. Expert evaluation of games under
development can identify new problems before a prototype is created. Klas [41]
describes two types of expert evaluation: In the first, the experts themselves act
as evaluators, conduct the evaluation, and report on the results. In the second, the
evaluators supervise the experts, lead the evaluation, and assess their performance.
In comparison, expert evaluations provide quick and cost-effective results, in
contrast to more expensive types of qualitative user studies, such as playtesting,
which require more evaluators for a representative result [41].

In addition, expert evaluation can be used at different stages of the development
process to identify usability issues early in the process [40]. Expert evaluation can
be made more efficient through the use of heuristic analysis. A heuristic is a set
of guidelines that help ensure design is consistent with best practices within an
industry, and it is often used by researchers to support their evaluations [42]. The
evaluators then come together to produce the results report.

Typical findings include:

(a) Which features of the game may cause usability problems and need to be
improved

28 S. Kirginas

(b) Which features are likely to be successful and should be retained
(c) Which features should be tested with real players

2.5.3 Cognitive Walk-Through (CW)

Cognitive walk-through (CW) is a user interface design method that allows design-
ers to model how a particular type of user will understand a user interface through
exploration [43, 44] and to evaluate the learnability of a digital serious game [45].
It is an expert-based evaluation method that is therefore relatively inexpensive to
implement and can be used to identify usability issues in a system effortlessly,
quickly and economically [46]. As in expert evaluation, a team of reviewers walks
through a task and evaluates the interface from a new user’s perspective. As our
main interest is in serious games, we propose that the cognitive walk-through is an
appropriate and effective method to evaluate the learning potential of serious games,
as both the design and evaluation practices of serious games can benefit from the
cognitive walk-through method.

A cognitive walk-through cannot be conducted until the design of the game,
the task scenario, the user assumptions, the scope of the game, and the sequence
of actions that players must perform to successfully complete a given task are
accurately described [43, 46]. Then, an evaluator or group of evaluators (2–6 expert
evaluators) simulates a series of cognitive processes that users go through when
completing a set of tasks. By understanding the behavior of the interface and its
influence on players, evaluators are able to choose actions that are difficult for
ordinary players. It would therefore be useful to use this evaluation method in the
early stages of system development to ensure that users’ needs are met.

2.5.4 Playtesting

The term playtesting refers to the use of traditional user testing methods for games
[47]. The game design literature argues that playtesting is the most popular and
most important method for game developers to evaluate their game designs. It is
important for game developers to use playtesters to give feedback on unintended
challenges in their games, to collect data on the way players prioritize tasks and
goals, and to understand how players understand the mechanics of the game [31].
During playtesting, testers who have characteristics similar to those of the expected
end users (e.g., age, education level, professional similarities, gaming experience)
test the first and subsequent versions of a game and provide feedback to the game
developers, which is then incorporated into the game design [48].

Playtesting can be formal (or open), informal (or closed), or beta. Formal
playtesting can be conducted with non-design group members according to Korho-
nen [49]. Participants are usually required to fill out a questionnaire or provide

2 User Experience Evaluation Methods for Games in Serious Contexts 29

contact information in order to be considered for participation. Several members
of the design group can conduct informal playtesting. Finally, beta playtesting
relates to the final phases of testing, before releasing a product to the public, and is
sometimes conducted semi-formally with a limited version of the game to identify
any last-minute issues.

2.5.5 Interviews

Interviews are an essential element of a qualitative evaluation session with users
[50]. They provide one of the few ways of validating observations, discovering
issues, gathering opinions, and determining the sources of challenges encountered
by players [50]. Interviews can be used with other methodologies to enhance the
gathered data and give a holistic perspective of the user’s attitudes and emotions,
and they are an essential element in identifying and understanding usability issues
and obstacles in the player’s experience [51]. Therefore, interviews seem to be the
right choice for specific study aims and knowledge [52]. Nacke et al., for example,
suggest using interviews to measure the PX and capture the context and social
influences on the individual player’s experience with serious games [5].

2.5.6 Focus Groups

Focus groups are a form of qualitative and subjective research. In a focus group, a
group of people gather in a room to discuss a topic under guidance. It is a semi-
structured interview process in which a small group of people, usually six or eight,
discuss a specific study topic [19]. Krueger and Casey [53] describe the focus group
method as a means of obtaining perceptions about a particular area of interest in
a permissive, non-threatening environment (p. 5). To obtain qualitative data about
the research topic, the moderator steers the discussion more or less according to its
structure. Take a research project on user experience with a digital game. A more
in-depth interview with the players might be necessary, but before we do that, we
want to see what kinds of questions work and whether the players might raise issues
we are not considering so that we can include them in our questions.

In a focus group, participants are selected based on their relevance and rela-
tionship to the topic. Therefore, they are not considered statistically representative
of a significant population because they are not selected using strict probability
sampling methods. Instead, participants are selected through random sampling,
advertising, or snowballing, depending on the type of person and the characteristics
the researcher wants to consider. There are several advantages of focus groups: It
is a socially oriented research method that collects real-life data in a social setting,
is flexible, has high validity, provides rapid results, and costs nothing to conduct.
There are also some disadvantages of focus groups: the researchers have less control

30 S. Kirginas

than with individual interviews, the data can sometimes be difficult to analyze, the
moderators need certain skills, and the discussion needs to take place in a conducive
environment.

2.5.7 Observation

Observation is a deeply qualitative research methodology that can be integrated into
a variety of qualitative and quantitative research projects. Researchers can gain a
great deal of data and information from their observations by watching users engage
in a particular activity and then analyzing it. When observation is combined with
other methods and techniques, it is possible to gather valuable data to interpret the
topic the researcher is exploring.

The researcher must have specific skills, and the observation procedure involves
some methodological risks, especially in terms of its validity and reliability, as the
question of objectivity and impartiality is always present. Therefore, it is usually
better for inexperienced researchers to combine this technique with another one,
such as an interview, in order to collect all the data needed, to shed light on certain
aspects of the study or to triangulate the information.

2.5.8 Surveys

Surveys may be used in research to examine player-game interactions and, depend-
ing on the results, improve the gaming experience [54]. The goal of surveys is to
collect data on a subset of the population being studied by the researcher [55]. The
survey results can then be extrapolated to the full population. Surveys are a quick,
simple, and low-cost technique to collect a big amount of data that tells more about
the subjective experience of playing a game [54, 56]. This may give the impression
that creating a survey is simple, yet seemingly slight oversights can dramatically
restrict the utility of your survey data.

Surveys can help researchers collect objective and subjective data. Objective
data are directly observable and can be verified by others, such as demographic
characteristics and the number of hours spent playing games. In contrast, subjec-
tive data are not objectively verifiable, such as attitudes and emotions. Overall,
surveys can be used to assess player attitudes and experiences, motives, player
characteristics, differences between groups of players, or different iterations of
a design [54]. Their advantages include ease of use, use in many situations,
minimal cost, access to large population, absence of interviewer bias, and fast
transmission/response times [54, 56]. Surveys become even more effective when
combined with other methods [54]. For example, while game analytics may indicate
that players are more likely to succeed in a game, survey data may show that players
were less challenged and bored [57]. In addition, survey data can be combined

2 User Experience Evaluation Methods for Games in Serious Contexts 31

with physiological measures, such as facial recognition and electrodermal activity
measurements [21]. Researchers can create their own questionnaires to measure
outcomes or use existing, validated questionnaires to compare the results of their
own studies with those of other studies.

Below are some of the most commonly used questionnaires:

2.5.8.1 The Player Experience of Need Satisfaction

According to Rigby and Ryan [58], people have three universal needs: competence
(perception of a challenge), autonomy (voluntary aspects of an activity), and related-
ness (connection to others). These are the main components of what we call Player
Experience of Need Satisfaction (PENS) method. The PENS evaluation includes
two additional factors, presence (the experience of being in the game world) and
intuitive control, both of which are considered key features of games [59]. Using
7-point Likert scales, the PENS assesses these needs as well as the additional
factors. When games meet these motivational criteria, the game experience and
game success improve significantly. The PENS method is methodologically easy to
apply as it successfully targets specific experiences related to need satisfaction and
provides practically rapid feedback. These measurements can be easily applied to
specific design or game concepts as well as to games that already have established.

2.5.8.2 Challenge Originating from Recent Gameplay Interaction Scale

The challenge originating from recent gameplay interaction scale (CORGIS) is a
psychometric instrument developed by Denisova et al. [60]. This instrument is used
to assess perceived challenge in digital games. The questionnaire assesses four types
of perceived challenge in games:

Cognitive challenge: it stems from the need to plan ahead, memorize, exert effort,
prepare, and multitask.

Performative challenge: it arises from the fact that the game requires the player to
act quickly and accurately.

Emotional challenge: it arises from the emotions evoked in the player, which can
also affect the things he thinks about outside the game.

Decision-making challenge: it arises from having to make decisions that are difficult
or can lead to unfortunate outcomes.

2.5.9 Immersive Experience Questionnaire

Jennett et al. [61] developed the Immersion Experience Questionnaire (IEQ) to
measure the level of immersion of players. It measures the user experience using a 5-

32 S. Kirginas

point Likert scale but focuses primarily on the concept of immersion. The IEQ uses
positively and negatively worded questions. For every positively worded question,
there is a negatively worded question, which adds accuracy to the questionnaire. The
total score is the sum of the scores of the positively and negatively worded questions.
When the IEQ was developed, it was assumed that immersion was based on five
components. In practice, however, immersion is considered as a single dimension,
with the components influencing the interpretation of the results.

2.5.9.1 Sensual Evaluation Instrument

The sensual evaluation instrument (SEI) was developed by Isbister et al. [62]. This
is a nonverbal, body-based tool that can be used to capture shared responses more
directly, saving designers time and energy and in turn increasing the likelihood that
users will engage early in the design process. The SEI consists of eight sculptural
objects that represent the range of emotions one would expect to experience
when interacting with a digital game. The objects are not one-to-one with specific
emotions. Rather, they are meant to serve as a starting point so that everyone can
develop their own expressive taxonomy of the objects. People share their feelings
as they engage in the experience. They arrange the objects as they wish or show in
some way that they feel comfortable with the object or objects that correspond to
their current feelings. In the end, the researcher watching the video in conjunction
with SEI can better understand how the player felt during the game [63].

2.5.9.2 Game Experience Questionnaire

It is a tool designed specifically for young children (8–12 years old) to assess
their gaming experiences. The game experience questionnaire (GEQ) [64] assesses
seven different dimensions of gaming experience (immersion, flow, effectiveness,
intensity, challenge, positive emotion, negative emotion) Each of the seven dimen-
sions is distinguished into five sub-themes rated on a 5-point Likert scale. The
game experience questionnaire is divided into three separate modules, each of
which deals with a different experience: (1) core module, which evaluates the
user’s experience while playing the game; (2) social presence module, which
evaluates the user experience while playing a game with others; and (3) post-game
module, which evaluates the user’s experience after completing the game. It has
the advantage of measuring different aspects of the game experience (immersion,
flow, effectiveness, intensity, challenge, positive emotions, and negative emotions),
assessing the experience during and after the game, and assessing social presence
as well. As it covers such a large area, it can be difficult to complete by all the
researchers, so many researchers only use some of the modules.

2 User Experience Evaluation Methods for Games in Serious Contexts 33

2.5.10 Psychophysiological Measurements

Quantitative and qualitative researches both use psychophysiological measurements
to assess users’ experiences. As users’ experiences during gameplay can have
a significant impact on the playability of digital games, physiological data can
be very useful to assess players’ emotional state and performance, especially
when correlated with subjective measurements [21]. So far, results have only been
reported for first-person shooters games [65, 66]. The question arises whether
physiological and subjective measurements might prove equally reliable for other
types of digital games. The main methods for assessing user experience using
physiological methods are as follows:

Electrodermal activity (EDA): perhaps the most commonly used physiological
measurement. It is often referred to in the literature as galvanic skin response or
skin conductance. Sweat gland secretions during play are indicators of positive
arousal and mental activity [67, 68].

Cardiovascular activity measurement: an important physiological measure of human
activity. Cardiovascular activity measures heart rate and heart rate variability [69,
70].

Electromyography (EMG): provides measurements of the electrical muscles. When
a person is excessively anxious, skeletal movements are observed as a sign of
involuntary muscle contractions during intense mental activity, intense emotions,
and cognitive stress [46, 71, 72].

Facial expression: analyses human facial expressions during activity and measures
basic human emotional states such as happiness, sadness, anger, surprise, disgust,
etc. [73].

Electroencephalography (EEG) is performed with special electrodes that are
attached to the participant’s head during the test. Brain activity is then measured
using frequency wave patterns that represent different mental activities [74, 75].
Since electrodes are used in electroencephalography, it is purely a laboratory
measurement.

2.5.10.1 Biofeedback Measuring Device

The biofeedback measuring device is a device designed and built in the Laboratory
of New technologies of the Department of Communication and Media Studies,
University of Athens. This device consists of a sensor part housed on a typical
computer mouse, an analogue electronic circuit that transmits the processed signal
to a typical home computer, and finally a software component that converts the
measurements into a suitable format. The STC is seamlessly detected by the contact
of the thumb and ring finger with the Al-Si ring sensors, located on the left and right
sides of the computer mouse, respectively (Fig. 2.1).

34 S. Kirginas

Fig. 2.1 The biofeedback measuring device

Heart rate is also detected by reflective near-infrared sensors in the center of the
ring sensors (Fig. 2.1), based on the principle of reflective absorption that occurs
during changes in skin coloration caused by the pulsation of blood in the tissue.

2.5.10.2 FaceReader

A software application called FaceReader was developed by Noldus Informa-
tion Technology. The FaceReader software uses algorithms to rate facial images
according to seven basic emotional states—happy, sad, angry, surprised, scared,
disgusted, and “neutral emotional state.” These seven emotions are rated from 0
(not at all) to 100 (perfect match). FaceReader “is an effective tool for measuring
emotional experience during human-computer interaction, as it strongly suggests
that more effective and well-designed systems elicit more positive emotions and
fewer arousing falls than less effective applications” [21].

2.5.10.3 Self-Assessment Methods

Self-assessment methods are subjective, most often quantitative, and either short or
long term. They provide players with the ability to self-evaluate or make judgments
about their experience and the games they play based on specific self-assessment
tools. Their great advantages are ease of use and the use in many situations.
However, their disadvantage lies in the subjectivity of the judgments, which can
be affected by a number of factors, including bias, differences in age and gender,
economic and social status, and past experiences, among others.

2 User Experience Evaluation Methods for Games in Serious Contexts 35

2.5.10.4 Fun Toolkit

The Fun Toolkit was developed by Read and MacFarlane [76]. It consists of three
separate questionnaires:

(a) Smileyometer: It is a measurement scale based on a 5-point Likert scale,
with ratings from 1 “Poor” to 5 “Excellent.” The Smileyometer can be used
both before and after the child’s experience with a digital application, be it
an educational software or a website or a digital game. By using it before
engaging with the application, we can gather information about the children’s
expectations from the game. Using it latter, we can collect information about
the fun of the game or the emotional experience of the players.

(b) Fun sorter table: A fun sorter table generally compares a set of products,
whether they are educational software or digital games, as in our case. For a
survey on children’s ratings of digital games, children compare and rank them
from best to worst or from easiest to hardest or from what they intend to play
again to what they intend to play less.

(c) Again and again table: The questionnaire consists of a table in which children
mark whether they experienced each activity with a “Yes,” “Maybe,” or “No.”
The idea for this tool comes from the field of psychology where it is argued that
we are more likely to return to an activity we liked again and again if we like it.
In the present study, children were asked, “Would you like to play with the toy
again?”, and they had to answer accordingly.

2.5.10.5 Self-Assessment Manikin (SAM)

The Self-Assessment Manikin (SAM) is a system for evaluating three dimensions
of gaming experience: valence, arousal, and dominance [77]. It uses three pictorial
scales, illustrating cartoon creatures. All three scales are 9-point and take values
from 1 to 9, with 5 representing the middle of the scale. Although it is stated
that it is a weighted method, there are insufficient studies that support this claim.
Its advantages include ease of completion and its ability to be used in different
circumstances. The disadvantages are what all objective assessment tools suffer
from: objectivity of judgment and difficulty in matching experience with graphic.

2.5.10.6 UX Curve

The UX Curve is a tool for retrospectively evaluating user experiences. There is a
timeline and a horizontal area in which the user can graph his positive and negative
experiences. The advantage of UX Curve is that it allows the user to design the
most immersive game experience. Nevertheless, its disadvantage is that it relies on
retrospective memory from the game rather than reality for its completion [78].

36 S. Kirginas

2.5.10.7 MemoLine

The MemoLine is actually a timeline that can be used for retrospective evaluations.
There are as many frames as there are time periods in which the user plays a game.
As the tool is intended for children, the experiences they have are represented
by three different colors: green represents positive experiences, red represents
negative experiences, and gray represents times when the game is not played,
e.g., weekends. Users are given questionnaires for each of these game scenarios:
usability, challenge, quantity, and general impression [79].

The above questionnaires are certainly not the only ones. There are a large
number of other relative questionnaires such as Emo-watch, EGameFlow, Game-
ful Experience Questionnaire, Model for the Evaluation of Educational Games
(MEEGA+), Game User Experience Satisfaction Scale (GUESS), iScale CORPUS
(Change Oriented analysis of the Relationship between Product and USer), and
many others.

2.6 Discussion

The aim of this chapter is to provide an overview of evaluation methods to game
developers and researchers whose research interests are related to digital serious
games. This process is extremely important, considering that serious games differ
from games whose goal is to entertain players, rather than teach or train them. It
is also very important not only to describe these methods but also to highlight the
advantages and disadvantages of each method, as well as to explain when, how,
and why it makes sense to use each of these evaluation instruments. As it has
been discussed in this chapter, the tools for evaluating player experience can be
divided into four groups: objective-subjective, quantitative-qualitative, formative-
summative, and short term-long term.

Beginning with the objective and subjective instruments for evaluating players’
experiences, things are plain. Objective evaluation instruments provide objective
data, free from any subjective judgment. Data are accurately recorded by machines
and software, without disturbing or interfering participants. In contrast, subjective
instruments are not accurate, as they are completed by the users themselves and
therefore have lower reliability than objective instruments. Each of these evaluation
methods has its own advantages and disadvantages. On the one hand, objective
evaluation provides reliable results but is difficult to be applied as it requires
expensive equipment and is a purely laboratory procedure. In contrast, subjective
evaluation is easier to be applied, since it only requires finding suitable subjects,
whether they are players or experts, but the data collected is less reliable due to
the subjectivity of the participants. An evaluation system that uses both objective
(e.g., a skin conductance measurement) and subjective methods (e.g., a self-
reported questionnaire) to evaluate players’ experiences is proposed to overcome
the disadvantages and benefit from both forms of evaluation. Therefore, researchers

2 User Experience Evaluation Methods for Games in Serious Contexts 37

are able to collect data that is free of users’ biases, while at the same time they can
interpret it based on users’ perceptions and opinions.

A lot of information can be gained from both formative and summative eval-
uation, which can be used by developers to improve their games. In formative
evaluation, developers and experts or players have a dialogue about game play,
which helps gather information for game design. An evaluation of this kind
identifies what aspects of the design work well and what aspects don’t. As a game is
being redesigned, these evaluations provide information that can be used to improve
the game gradually. As opposed to formative evaluation, summative evaluation
discusses how well a game performs, usually in comparison with a benchmark,
such as a previous version or a competitive game. A summative evaluation takes a
step back from formative evaluations, which aim to inform the design process, and
instead looks at the big picture and evaluates the overall experience. In most cases,
summative evaluations are conducted just before or just after a redesign, and they
are less frequent than formative evaluations. A developer can thus use formative or
summative evaluation based on what they want to measure and the stage at which it
is being developed. Formative and summative evaluations can be implemented with
most of the tools described and suggested in this chapter, and the development team
can decide which types to use. As a general rule, formative evaluations produce
qualitative data, and summative evaluations produce quantitative data. To conduct a
formative evaluation, developers should rely on instruments such as a think-aloud
protocol, cognitive walk-throughs, observation, focus groups, interviews, etc. To
conduct a summative evaluation, developers should rely on instruments such as
psychophysiological and self-assessment measurements.

Serious game evaluation is essential for any developer, as it is an important
function at every stage of game development. A comprehensive evaluation of
players’ experience is beneficial to a developer in many ways. It is a well-known
method to assess the strengths and weaknesses of the game experience, which
further serves as a basis for working and improving the overall game experience.
Usually, the evaluation is done at the end when the game is ready for use.
However, some developers also evaluate player experiences in the short term (during
development). This has its own advantages, because if the game development is not
going in the desired direction, the developer can correct it, instead of waiting for the
end of the development and then making corrections.

Lastly, qualitative methods provide statistics about player engagement and
interest, while quantitative approaches help developers and researchers study
players’ perceptions and interactions. The researcher must choose a methodological
approach (or a combination of both) when researching any topic (either quantitative
or qualitative). In a quantitative approach, developers discover “what happens,”
while in a qualitative approach, they discover “why it happens.” In summary, qual-
itative assessment involves categorizing and evaluating qualitative data to help us
analyze and interpret game events, user behavior, and player experiences. Collecting
qualitative data can lead us down such paths, whereas collecting quantitative data
cannot, especially when it comes to user experience.

38 S. Kirginas

2.7 Conclusions

This chapter is intended to serve as a guide for serious game developers and
researchers who wish to evaluate existing games, to improve the players’ experience
and reach an optimal level. A player experience evaluation should record and
interpret players’ experiences of interacting with a digital game, and it is important
that these records are accurate and reliable in order to produce meaningful and
useful results. It is also important that an evaluation can identify the situations
and factors that impact the player experience and make it more or less positive.
In this case, we can make the necessary adjustments and changes to improve the
player experience. According to what has been discussed in this chapter, the tools
for evaluating the player experience can be divided into four groups: objective-
subjective, quantitative-qualitative, formative-summative, and short term-long term.

Since the game experience is multidimensional and difficult to measure, it is
important to use methods with different characteristics. Measurement and evaluation
of player experience should be done using instruments derived from different
methods, e.g., quantitative instruments and qualitative evaluation instruments or
objective instruments and qualitative evaluation instruments. It is possible to
negatively impact our evaluation efforts if we only use instruments from a single
methodology.

Last but not least, the methodology we use to evaluate the user experience is
crucial for understanding and interpreting the experience of playing a digital serious
game. Future research should evaluate digital games using different evaluation
methods and instruments. These studies should ultimately aim to find the most
effective combination of tools and methods to measure the potential of a game.

References

1. Nacke, L.E.: Affective ludology: scientific measurement of user experience, interactive
entertainment. Blekinge Institute of Technology (2009)

2. Mandryk, R.L., Atkins, M.S., Inkpen, K.M.A.: Continuous and objective evaluation of emo-
tional experience with interactive play environments. In: Proceedings of CHI 2006, Montréal,
Québec, Canada, April 2006, pp. 1027–1036. ACM (2006)

3. Drachen, A., Canossa, A.: Towards gameplay analysis via gameplay metrics. In: Proceedings
of MindTrek, Tampere, Finland, October 1–2. ACM (2009)

4. Kim, J.H., Gunn, D.V., Schuh, E., Phillips, B., Pagulayan, R.J., Wixon, D.: Tracking real-time
user experience (TRUE): a comprehensive instrumentation solution for complex systems. In:
Proceedings of CHI 2008, pp. 443–452. ACM, Florence, Italy (2008)

5. Nacke, L., Niesenhaus, J., Engl, S., Canossa, A., Kuikkaniemi, K., Immich, T.: Bringing digital
games to user research and user experience. In: Proceedings of the Entertainment Interfaces
Track 2010 at Interaktive Kulturen 2010 ceur workshop proceedings, 12–15 September (2010)

6. Pagulayan, R., Keeker, K., Wixon, D., Romero, R.L., Fuller, T.: User-centered design in games.
In: The Human-Computer Interaction Handbook: Fundamentals, Evolving Technologies, and
Emerging Applications. L, pp. 883–906. Erlbaum Associates, New York, NY (2003)

2 User Experience Evaluation Methods for Games in Serious Contexts 39

7. Pagulayan, R., Steury, K.R., Fulton, B., Romero, R.L.: Designing for fun: user-testing
case studies. In: Funology: From Usability to Enjoyment, pp. 137–150. Kluwer Academic
Publishers, Norwell, MA (2004)

8. Desurvire, H., Caplan, M., Toth, J.A.: Using heuristics to evaluate the playability of games. In:
CHI ’04 Extended Abstracts, pp. 1509–1512. ACM, Vienna (2004)

9. Korhonen, H., Koivisto, E.M.I.: Playability heuristics for mobile games. In: Proceedings of
Conference on HCI with mobile devices and services, pp. 9–16. ACM, Espoo, Finland (2006)

10. Csikszentmihalyi, M.: Flow: the psychology of optimal experience, vol. 39, 1st edn. Harper
Collins, New York (1990)

11. Sweetser, P., Wyeth, P.: GameFlow: a model for evaluating player enjoyment in games.
Comput. Entertain. 3(3), 1–24 (2005)

12. Brown, E., Cairns, P.: A grounded investigation of immersion in games. In: ACM Conference
on Human Factors in Computing Systems, CHI 2004, pp. 1297–1300. ACM Press (2004)

13. Ermi, L., Mayra, F.: Fundamental components of the gameplay experience: analysing immer-
sion. In: de Castell, S., Jenson, J. (eds.) Proceedings of Chancing Views – Worlds in Play.
Digital Games Research Association’s Second International Conference, Vancouver (2005)

14. Gilleade, K.M., Dix, A.: Using frustration in the design of adaptive videogames. In: Pro-
ceedings of the 2004 ACM SIGCHI International Conference on Advances in Computer
Entertainment Technology – ACE ’04, pp. 228–232. (2004)

15. Funk, J.B., Pasold, T., Baumgardner, J.: How children experience playing video games. In:
Proceedings of the Second International Conference on Entertainment Computing Pittsburgh,
Carnegie Mellon University, pp. 1–14 (2003)

16. Bracken, C., Lange, R.L., Denny, J.: Online video games and gamers’ sensations of spatial,
social, and copresence. FuturePlay 2005. East Lansing (2005)

17. Nacke, L., Lindley, C., Stellmach, S.: Log who’s playing: psychophysiological game analysis
made easy through event logging. In: Proceedings of Fun and Games, 2nd International
Conference, Eindhoven, The Netherlands, October 20–21, pp. 150–157. Springer (2008)

18. Almeida, S.: The player and video game interplay in the gameplay experience construct. PhD,
Universidade de Aveiro (2013)

19. Kirginas, S., Gouscos, D.: Development and validation of a questionnaire to measure percep-
tions of freedom of choice in digital games. Int. J. Serious Games (IJSG). 3(2), 29–45 (2016)

20. Almeida, S., Veloso, A., Roque, L., Mealha, O., Moura, A.: The video game and player in
a gameplay experience model proposal. In: Proceedings of Videojogos 2013 – 6th Annual
Conference in the Science and Art of Video Games. University of Coimbra, Coimbra, Portugal
(2013)

21. Kirginas, S., Psaltis, A., Gouscos, D., Mourlas, C.: Studying children’s experience during free-
form and formally structured gameplay. Int. J. Child-Comput. Interact. 28 (2021)

22. Kirginas, S., Gouscos, D.: Exploring the impact of free-form and structured digital games on
the player experience of kindergarten and primary school students. In: Russell, D., Laffey, J.
(eds.) Handbook of Research on Gaming Trends in P-12 Education, pp. 394–420. Hershey, PA,
Information Science Reference (2016)

23. Roto, V.: User Experience from Product Creation Perspective. Towards a UX Manifesto, pp.
31–34 (2007)

24. Lallemand, C.: Towards consolidated methods for the design and evaluation of user experience.
Doctoral dissertation, University of Luxembourg (2015)

25. Mirza-Babaei, P.: Getting ahead of the game: challenges and methods in games user research.
User Exp. Magaz. 15(2) (2015) https://uxpamagazine.org/getting-ahead-of-the-game/

26. Neill, J.: Qualitative & Quantitative Research. http://wilderdom.com/research/
QualitativeVersusQuantitativeResearch.html (2009)

27. Bird, M., Hammersley, M., Gomm, R., Woods, P.: Educational Research in Action/ Fragkou E:
Translate in Greek. Educational Research in Practice-Study Manual, Patras (1999)

28. Cacioppo, J., Tassinary, L., Berntson, G.: Handbook of Psychophysiology, 3rd edn. Cambridge
University Press, New York (2007)

 11478 50614 a 11478
50614 a

 22996 51720 a 22996 51720 a

40 S. Kirginas

29. Vermeeren, A., Lai-Chong Law, E., Roto, V., Obrist, M., Hoonhaut, J., Väänänen-Vainio-
Mattila, K.: User experience evaluation methods: current state and development needs.
In: Proceedings of the 6th Nordic Conference on Human-Computer Interaction: Extending
Boundaries: NordiCHI ’10 (2010)

30. Fenko, A., Schifferstein, H.N.J., Hekkert, P.: Shifts in sensory dominance between various
stages of user-product interactions. Appl. Ergon. 41, 34–40 (2010)

31. Joyce, A.: Formative vs. Summative Evaluations [blog]. https://www.nngroup.com/articles/
formative-vs-summative-evaluations/ (2019, July 28)

32. Pellicone, A., Weintrop, D., Ketelhut, D.J., Shokeen, E., Cukier, M., Plane, J.D., Rahimian, F.:
Playing aloud: leveraging game commentary culture for playtesting. Int. J. Gaming Comput.-
Mediat. Simulat. (IJGCMS). 14(1), 1–16 (2022)

33. Guss, C.D.: What is going through your mind? Thinking Aloud as a method in cross-cultural
psychology. Front. Psychol. 9, 1292 (2018)

34. Johnson, W.R., Artino, A.R., Jr., Durning, S.J.: Using the think aloud protocol in health
professions education: an interview method for exploring thought processes: AMEE Guide
No. 151. Medical teacher, 1–12. Advance online publication (2022)

35. Lundgren-Laine, H., Salantera, S.: Think-aloud technique and protocol analysis in clinical
decision-making research. Qual. Health Res. 20(4), 565–575 (2010)

36. Zhang, X., Simeone, A.L.: Using the think aloud protocol in an immersive virtual reality
evaluation of a virtual twin. In: Proceedings of the 2022 ACM Symposium on Spatial User
Interaction (SUI ’22), pp. 1–8. Association for Computing Machinery, New York, NY (2022)

37. Avouris, N., Katsanos, C., Tselios, N., Moustakas, K.: Introduction to Human-Computer
Interaction [Undergraduate textbook]. Chapter 11. Kallipos, Open Academic Editions (2015)

38. Jordan, P.W.: An introduction to usability. Taylor & Francis, London (1998)
39. Hashemi Farzaneh, H., Neuner, L.: Usability evaluation of software tools for engineer-

ing design. In: Proceedings of the 22nd International Conference on Engineering Design
(ICED19), Delft, The Netherlands, 5–8 August (2019)

40. Nova, A., Sansalone, S., Robinson, R., Mirza-Babaei, P.: Charting the uncharted with GUR:
how AI playtesting can supplement expert evaluation. In: Proceedings of the 17th International
Conference on the Foundations of Digital Games (FDG ’22). Association for Computing
Machinery, New York, NY, Article 28, pp. 1–12 (2022)

41. Klas, C.: Expert evaluation methods. In: Dobreva, M., O’Dwyer, A., Feliciati, P. (eds.) User
Studies for Digital Library Development, pp. 75–84. Facet (2012)

42. Rajanen, M., Rajanen, D.: Heuristic evaluation in game and gamification development. In:
Proceedings of GamiFin 2018 Conference, Pori (2018)

43. Allendoerfer, K., Aluker, S., Panjwani, G., Proctor, J., Sturtz, D., Vukovic, M., Chen, C.:
Adapting the cognitive walkthrough method to assess the usability of a knowledge domain
visualization. In: IEEE Symposium on Information Visualization, 2005. INFOVIS 2005, pp.
195–202. IEEE (2005)

44. Farrell, D., Moffat, D.C.: Adapting cognitive walkthrough to support game based learning
design. Int. J. Game-Based Learn. (IJGBL). 4(3), 23–34 (2014)

45. Salazar, K.: Evaluate Interface Learnability with Cognitive Walkthroughs. [online]. https://
www.nngroup.com/articles/cognitive-walkthroughs/ (2022)

46. Farzandipour, M., Nabovati, E., Sadeqi Jabali, M.: Comparison of usability evaluation methods
for a health information system: heuristic evaluation versus cognitive walkthrough method.
BMC Med. Inf. Decis. Making. 22(1), 1–1 (2022)

47. Yanez-Gomez, R., Cascado-Caballero, D., Sevillano, J.L.: Academic methods for usability
evaluation of serious games: a systematic review. Multimed. Tools Appl. 76, 5755–5784
(2017)

48. Koutsabasis, P., Gardeli, A., Partheniadis, K., Vogiatzidakis, P., Nikolakopoulou, V., Chatzi-
grigoriou, P., Vosinakis, S.: Field playtesting with experts’ constructive interaction: an
evaluation method for mobile games for cultural heritage. In: 2021 IEEE Conference on Games
(CoG), pp. 1–9 (2021)

 21776 6335 a 21776 6335 a

32220 45079 a 32220 45079 a

2 User Experience Evaluation Methods for Games in Serious Contexts 41

49. Korhonen, H.: Comparison of playtesting and expert review methods in mobile game evalu-
ation. In: Fun and Games ’10: Proceedings of the 3rd International Conference on Fun and
Games, pp. 18–27 (2010)

50. Drachen, A., Mirza-Babaei, P., Nacke, L.E.: Games User Research. Oxford University Press
(2018)

51. Carneiro, N., Darin, T., Pinheiro, M., Viana, W.: Using interviews to evaluate location-based
games: lessons and challenges. J. Interact. Syst. 11(1), 125–138 (2020)

52. Isbister, K., Schaffer, N.: Game usability: advice from the experts for advancing the player
experience. Morgan Kaufmann Publishers, Burlington, MA (2008)

53. Krueger, R.A., Casey, M.A.: Focus groups A practical guide for applied research. Sage
Publications, Thousand Oaks (2000)

54. Bruhlmann, F., Mekler, E.D.: Surveys in games user research. In: Drachen, A., Mirza-Babaei,
P., Nacke, L. (eds.) Games User Research, pp. 141–162. Oxford University Press, Oxford
(2018)

55. Rahman, M.M., Tabash, M.I., Salamzadeh, A., Abduli, S., Rahaman, M.S.: Sampling tech-
niques (probability) for quantitative social science researchers: a conceptual guidelines with
examples. Seeu Rev. 17(1), 42–51 (2022)

56. Story, D.A., Tait, A.R.: Survey research. Anesthesiology. 130(2), 192–202 (2019)
57. Hazan, E.: Contextualizing data. In: El-Nasr, M.S., et al. (eds.) Game analytics, pp. 477–496.

Springer, London (2013)
58. Rigby, S., Ryan, R.: The Player Experience of Need Satisfaction (PENS) Model, pp. 1–22.

Immersyve Inc (2007)
59. Ryan, R., Rigby, S., Przybylski, A.: The motivational pull of video games: a self-determination

theory approach. Motiv. Emot. (2006)
60. Denisova, A., Cairns, P., Guckelsberger, C., Zendle, D.: Measuring perceived challenge in

digital games: development & validation of the challenge originating from recent gameplay
interaction scale (CORGIS). Int. J. Hum.-Comput. Stud., 137 (2020)

61. Jennett, C., Cox, A.L., Cairns, P., Dhoparee, S., Epps, A., Tijs, T., Walton, A.: Measuring and
defining the experience of immersion in games. Int. J. Hum.-Comput. Stud. 66(9), 641–661
(2008)

62. Isbister, K., Höök, K., Sharp, M., Laaksolahti, J.: The sensual evaluation instrument: develop-
ing an affective evaluation tool. In: Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, pp. 1163–1172 (2006)

63. Laaksolahti, J., Isbister, K., Höök, K.: Using the sensual evaluation instrument. Digit. Creativ.
20(3), 165–175 (2009)

64. Ijsselsteijn, W.A., Poels, K., de Kort, Y.A.W.: The game experience questionnaire: development
of a self-report measure to assess player experiences of digital games, deliverable 3.3. FUGA
technical report, TU, Eindhoven, The Netherlands (2008)

65. Nacke, L.E., Grimshaw, M.N., Lindley, C.A.: More than a feeling: measurement of sonic user
experience and psychophysiology in a first-person shooter game. Interact. Comput. 22(5), 336–
343 (2010)

66. Drachen, A., Nacke, L.E., Yannakakis, G., Lee Pedersen, A.: Correlation between heart rate,
electrodermal activity and player experience in First-Person Shooter games. In: Spencer, S.N.
(ed.) Proceedings of the 5th ACM SIGGRAPH Symposium on Video Games, pp. 54–2010.
ACM, Los Angeles, CA (49)

67. Ortega, M.C., Bruno, E., Richardson, M.P.: Electrodermal activity response during seizures: a
systematic review and meta-analysis. Epilepsy Behav. 134, 108864 (2022)

68. Paloniemi, S., Penttonen, M., Eteläpelto, A., Hökkä, P., Vähäsantanen, K.: Integrating self-
reports and electrodermal activity (EDA) measurement in studying emotions in professional
learning. In: Methods for Researching Professional Learning and Development, pp. 87–109.
Springer, Cham (2022)

69. Richter, H., Krukewitt, L., Müller-Graf, F., Zitzmann, A., Merz, J., Böhm, S., Kühn, V.: High
resolution EIT based heart rate detection using Synchrosqueezing (2022)

42 S. Kirginas

70. Thissen, B.A., Schlotz, W., Abel, C., Scharinger, M., Frieler, K., Merrill, J., Haider, T.,
Menninghaus, W.: At the heart of optimal reading experiences: cardiovascular activity and
flow experiences in fiction reading. Read. Res. Q. 57(3), 831–845 (2022)

71. Fuentes del Toro, S., Wei, Y., Olmeda, E., Ren, L., Guowu, W., Díaz, V.: Validation of a low-
cost electromyography (EMG) system via a commercial and accurate EMG device: pilot study.
Sensors. 19(23), 5214 (2019)

72. Tortora, G., Derrickson, B.: Principles of Anatomy and Physiology, 12th edn. Biological
Sciences Textbook (2009)

73. Ramos, A.L.A., Dadiz, B.G., Santos, A.B.G.: Classifying emotion based on facial expression
analysis using Gabor filter: a basis for adaptive effective teaching strategy. In: Computational
Science and Technology, pp. 469–479. Springer, Singapore (2020)

74. Westover, M.B., Gururangan, K., Markert, M.S., Blond, B.N., Lai, S., Benard, S., et al.:
Diagnostic value of electroencephalography with ten electrodes in critically ill patients.
Neurocrit. Care. 33(2), 479–490 (2020)

75. Masood, K., Alghamdi, M.A.: Modeling mental stress using a deep learning framework. IEEE
Access. 7, 68446–68454 (2019)

76. Read, J.C., MacFarlane, S.J.: Using the Fun Toolkit and other survey methods to gather
opinions in child computer interaction. In: Interaction Design and Children, IDC2006. ACM
Press, Tampere (2006)

77. Lang, P.J.: The cognitive psychophysiology of emotion: fear and anxiety. In: Tuma, A.H.,
Maser, J.D. (eds.) Anxiety and the Anxiety Disorders, pp. 131–170. Lawrence Erlbaum
Associates (1985)

78. Kujala, S., Roto, V., Mattila, K., Karapanos, E., Sinnela, A.: UX curve: a method for evaluating
long-term user experience. Interact. Comput. 23, 473–483 (2011)

79. Vissers, J., De Bot, L., Zaman, B.: MemoLine: evaluating long-term UX with children. In:
Proceedings of the 12th International Conference on Interaction Design and Children, New
York, pp. 285–288 (2013)

Chapter 3
Software Engineering for Dynamic Game
Adaptation in Educational Games

Vipin Verma, Ashish Amresh, Tyler Baron, and Ajay Bansal

Abstract Educational games and game-based assessments have evolved over the
past several years and are continuing to evolve. They promote student engagement
in the learning process by creating an interactive environment where they can learn
in a fun and challenging way. This gives them the potential to yield diagnostic
information to educators and feedback to students. During the game play process,
game-based assessment (GBA) can be used to assess the learning imparted by
the game to the students. A common strategy for GBA has been to utilize
surveys and built-in quizzes to measure student learning during the game play.
However, this impacts students’ attention negatively as they need to change their
attention from game play to the assessment and back. Stealth assessment provides a
natural alternative for assessment of learning without breaking the delicate flow of
engagement. It aims to blur the lines between assessment and learning by weaving
them together within the game. Stealth assessment uses game play interaction data
to build inferences about student performance and learning. As an advantage, it
provides ways to assess hard-to-measure constructs such as learning proficiency,
critical thinking, persistence, and other twenty-first-century skills. Designing and
developing an educational game takes time, and repeating the process for every
new content or concept can be inefficient. The authors provide a framework called
content-agnostic game engineering (CAGE) that can be used to create multiple
learning contents within a single game by reusing already developed educational
game mechanics. CAGE helps reduce time for creating an educational game by
building content-agnostic mechanics that could be used across multiple content
topics. It does so by separating the game into three components of mechanics,
content, and student modeling that operate independently. Additionally, stealth
assessment can be integrated into CAGE as a part of the student model and can

V. Verma (�) · T. Baron · A. Bansal
Arizona State University, Tempe, AZ, USA
e-mail: tjbaron@asu.edu; Ajay.Bansal@asu.edu

A. Amresh
Northern Arizona University, Flagstaff, AZ, USA
e-mail: amresh@asu.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
K. M. L. Cooper, A. Bucchiarone (eds.), Software Engineering for Games
in Serious Contexts, https://doi.org/10.1007/978-3-031-33338-5_3

43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33338-5protect T1	extunderscore 3&domain=pdf

 885 52970
a 885 52970 a

mailto:tjbaron@asu.edu
mailto:tjbaron@asu.edu

 7762 52970 a 7762 52970 a

mailto:Ajay.Bansal@asu.edu
mailto:Ajay.Bansal@asu.edu
mailto:Ajay.Bansal@asu.edu

 885 56845 a 885 56845
a

mailto:amresh@asu.edu
mailto:amresh@asu.edu
https://doi.org/10.1007/978-3-031-33338-5_3
https://doi.org/10.1007/978-3-031-33338-5_3
https://doi.org/10.1007/978-3-031-33338-5_3
https://doi.org/10.1007/978-3-031-33338-5_3
https://doi.org/10.1007/978-3-031-33338-5_3
https://doi.org/10.1007/978-3-031-33338-5_3
https://doi.org/10.1007/978-3-031-33338-5_3
https://doi.org/10.1007/978-3-031-33338-5_3
https://doi.org/10.1007/978-3-031-33338-5_3
https://doi.org/10.1007/978-3-031-33338-5_3
https://doi.org/10.1007/978-3-031-33338-5_3

44 V. Verma et al.

also be content agnostic as a way to demonstrate the advantages of adopting
a CAGE-based development framework. While CAGE can work with multiple
content domains, it cannot work with every domain. The limit is decided by how the
game mechanics are implemented. In this chapter, we discuss the software practices
to implement CAGE architecture and ways to embed stealth assessment in a content-
agnostic way.

Keywords Content agnostic · Stealth assessment · Dynamic adaptation ·
Bayesian network · Facial tracking

3.1 Introduction

Educational assessment has evolved over the past several years from traditional pen-
and-paper tests to forms such as game-based assessment and continues to evolve. It
must provide feedback to learners and diagnostic information to teachers [1]. Game-
based learning offers an interactive environment for the students to learn in a fun
and challenging way while keeping them engaged in the learning process. Game-
based assessment (GBA) offers a way to assess them while they are interacting with
the game. GBA may consist of built-in quizzes and surveys to assess the student
learning while they are playing. However, such methods tend to break the students’
attention from learning to complete the assessment. Stealth assessment is a way to
assess the learners while they are playing the game without breaking their flow,
eventually blurring the lines between learning and assessment by integrating them
[2]. It utilizes the data generated during the game play to make inferences about the
student learning and performance at various grain sizes. Further, it can be used to
assess skills such as creativity [3], systems thinking [4], persistence [5], and other
twenty-first-century skills, which are needed for success today [6]. These skills in
general are hard to assess by traditional means of assessment.

3.1.1 Research Background

Evidence-centered design (ECD) is an instructional theory that assessments should
be focused on evidence-based arguments [7]. Namely, that a student’s understanding
of the material can be measured by their reaction to changes in observable variables.
Making these changes is something that GBL can do well as dynamically changing
the problem during learning is easier with GBL than most traditional teaching
methods. The issue that arises with this is the need to ensure that the change
flows naturally within the game system and does not break the player’s flow or
distract from the learning process [2]. It is here that stealth assessment techniques
can ensure that these measurements do not require overt actions that remind the
player that they are currently being evaluated on their understanding of the given

3 Software Engineering for Dynamic Game Adaptation in Educational Games 45

topic. Many methods of stealth assessment are also helpful in measuring student
reactions to unobservable variables as these are harder to detect but also important
to measure in order to gauge student understanding [7]. Finally, it is important that
the learning assessment be well integrated into the game itself and not stand out as
a separate experience [8]. Not only would that break student immersion, but games
that integrate the two are both more effective teaching tools and generally better
liked by students using them.

3.1.2 Motivation

Presently, serious games are designed with an emphasis on the educational content
of the game, which is a good approach but has some issues [9]. Such games are usu-
ally not as engaging when compared to the entertainment games, as the educational
content of the game takes precedence over entertainment while designing the game.
Further, the game is strongly connected to the learning content, due to which the
programming code, game mechanics, game design, and learning assessment cannot
be effectively re-used for teaching another content. This issue is compounded by the
complex level of observation needed to assess students’ reactions to non-observable
variables in order to properly assess student learning [7]. The setup required to do
these measurements causes the measures themselves to also be strongly connected
to the learning content. This creates a scenario where readopting existing games
to other educational content becomes extremely difficult as the game mechanics
need to be rebuilt and the learning assessment must be completely revisited as
well. The authors delineate the software framework called content-agnostic game
engineering (CAGE) that can be used to alleviate this problem. It uses content-
agnostic mechanics across a set of learning contents to develop the game. Further,
[10] observed that the explicit assessment of the learning content in the form of tests
and questionnaires can impact the player engagement in a negative way. Therefore,
[1] integrated stealth assessment in the CAGE framework. It was built in a content-
agnostic manner so that the assessment can be re-used across multiple content
domains and thus contribute to reduction in the overall game development time to a
considerable extent.

3.1.3 Chapter Outline

This chapter will target the emerging software practices in GBA and game adap-
tation. It will cover three main points: conducting stealth assessment, the CAGE
framework, and the student model. Within stealth assessment, this chapter will
elaborate upon how it has been used to assess twenty-first-century skills, which
are hard to measure otherwise, while keeping the learners engaged with the learning
process [11]. Stealth assessment includes techniques like mouse and touch-tracking

46 V. Verma et al.

Fig. 3.1 A game developed using CAGE architecture

and how they have been used to measure the students’ cognitive load without
explicitly asking it from the learners [12]. The CAGE section will incorporate how a
single assessment design can be used in the assessment of multiple content domains.
Figure 3.1 shows a game developed using the CAGE architecture developed by
Baron [10]. This game teaches cryptography and chemistry, one at a time to its
learners. So, a single game is made with an effort of two and targets two content
domains at once. Similarly, a single assessment strategy is embedded in the game
that targets assessment of both the content domains. We delineate the process to
implement a content-agnostic game and examine its feasibility for multiple serious
games creation with an embedded assessment. We also probe into the effectiveness
of game adaptation within the CAGE framework. Finally this chapter will discuss
the inclusion of the student model, representing the learning state of a student at
any point of time. This will include modeling the student’s learning state using
their performance parameters and how it can be used to dynamically adapt the
game during run-time to accommodate the learning style and knowledge state of
the student [13].

3.2 Stealth Assessment

A process that involves using data to determine if the learning goals are met or
not is called assessment [14]. It is an equally important process when compared
to designing the game mechanics and learning content of the game [1]. Stealth
assessment is a technique in which the assessment is directly woven into the fabric

3 Software Engineering for Dynamic Game Adaptation in Educational Games 47

of the game such that it is undetectable. It can be used to make inferences about
the player performance by utilizing the data generated during the game play [15].
It has been used for the assessment of many twenty-first-century skills such as
systems thinking [4], persistence [5], creativity [3], problem-solving skills [16],
team performance [17], and causal reasoning [18]. With the help of large volumes
of data generated during the game play, stealth assessment can be used to identify
the process which a player follows to solve a problem in the game [12]. Other
assessment techniques, such as survey questionnaires can break the flow of learners
and disengage them from the learning process. However, stealth assessment can
replace these obtrusive assessment techniques to keep their flow intact [19]. It can
also be used to provide immediate feedback to the learners during their game play
session, which they can immediately incorporate into their game play [20]. The real-
time feedback can further be used to dynamically adjust the game difficulty in real
time to the level appropriate for the learner [21].

3.2.1 Stealth Assessment Implementation Techniques

There are a number of ways that can be used to implement stealth assessment in
serious games. In this section, these methods are discussed along with their software
implementation techniques.

3.2.1.1 Mouse and Touch-Tracking

This technique can be used in games that employ a computer mouse or a touchscreen
device to play. It has been used for the assessment of memory strength [22],
positive and negative emotions [23], gender stereotypes [24], cognitive load [25],
and numerical representation [26]. In this technique, the mouse or touch coordinates
are tracked as the user moves their cursor across the screen. It can reveal the hidden
bias or the intent of the user while they make a decision to reach a certain target.

To implement mouse-tracking in Web-browser-based games, mousemove event
is available in the built-in Web APIs for JavaScript [27]. This event is fired whenever
mouse is moved across a target element. Further, the pageX and pageY can be
used to get the X and the Y coordinates of the point where the mousemove event
was triggered [28]. Both pageX and pageY are available to use as a part of the
MouseEvent. These X and Y coordinates can then be used to trace the path of the
mouse as it is dragged across the screen by the user, which is used to assess user’s
intent or inherent bias in their thought process. Below is an example code snippet
that tracks mouse movement within an html id element called toBeTracked and reads
their x and y coordinates:

48 V. Verma et al.

$ (’ # toBeTracked ’) . mousemove (trackMouseMovement) ;
f u n c t i o n trackMouseMovement (e v e n t) {

v a r eventDoc , doc , body ;
v a r a r e a H e i g h t = $ (’ # toBeTracked ’) . h e i g h t () ;
i f (e v e n t . pageX == n u l l && e v e n t . c l i e n t X != n u l l) {

eventDoc = (e v e n t . t a r g e t &&
e v e n t . t a r g e t . ownerDocument) ;

eventDoc = document | | eventDoc ;
doc = eventDoc . documentElement ;
body = eventDoc . body ;
e v e n t . pageX = e v e n t . c l i e n t X +

(doc && doc . s c r o l l L e f t | |
body && body . s c r o l l L e f t | | 0) −

(doc && doc . c l i e n t L e f t | |
body && body . c l i e n t L e f t | | 0) ;

e v e n t . pageY = e v e n t . c l i e n t Y +
(doc && doc . s c r o l l T o p | |

body && body . s c r o l l T o p | | 0) −
(doc && doc . c l i e n t T o p | |

body && body . c l i e n t T o p | | 0) ;
}
/ / g e t t h e x−c o o r d i n a t e o f t h e u s e r
v a r userX = e v e n t . pageX −

$ (’ # toBeTracked ’) . o f f s e t () . l e f t ;
/ / g e t t h e y c o o r d i n a t e o f t h e u s e r
v a r userY = e v e n t . pageY −

($ (’ # toBeTracked ’) . o f f s e t () . t o p + a r e a H e i g h t) ;
}

Unity3D, a game engine popularly used by the game developers, also has some
built-in ways to get the mouse coordinates [29]. They have a mousePosition method
within the Unity’s input system that returns a vector corresponding to the user’s
mouse position [30]. Unreal Engine, another popular game engine, also exposes
a way to get the mouse position [31]. However, it should be noted that excessive
mouse-tracking can affect the game performance in a negative way and could
even crash the system. A high temporal resolution will consume a lot of computer
memory. For example, it is less expensive to collect mouse tracking data every 250
ms as compared to 100 ms. Further, it depends on the target computer memory
configuration as well. A game with mouse-tracking temporal resolution of 200 ms
that works as expected on a given computer system may crash when deployed on a
system with lower available memory as maintaining all of the data about the mouse
position will add up quickly.

3 Software Engineering for Dynamic Game Adaptation in Educational Games 49

3.2.1.2 Emotion Tracking

The Visage|SDK [32] from Visage Technologies and Affdex [33] are two readily
available software solutions that can be used to recognize human emotions by
utilizing the Facial Action Coding System [34]. These solutions can be used for
offline or real-time analysis of human faces. For offline analysis, a recording of the
facial stimulus is required, while real-time analysis needs a Web camera integrated
with the application that can send the facial stimulus as an input to the software.
Affdex can detect various emotions and expression [35], and this output can then
be used to detect if a person is bored or frustrated during the game play. As an
example, Baron [10] used an algorithm to categorized the observed emotions into
states of boredom, flow, and frustration using the following algorithm:

• If all the emotions are below the threshold, then the player is classified in a
BORED state unless they were in a state of FLOW previously.

• If any of the emotions is above the threshold, then the player is in a non-bored
state.

– If anger is above the threshold and happiness is below the threshold, then the
player is classified to be in a FRUSTRATION state.

– If surprise is above the threshold and sadness is below the threshold, then the
player is classified to be in a FLOW state.

• If the above rules fail, then the player is classified to be in a state called NONE.

In another example, [36] used Affdex output data to predict the states of
boredom, flow, and frustration during game play using binary logistic regression.
This prediction can be used to adapt the game or content difficulty in real time [1].
Their results suggested that it was easier to predict boredom and flow, compared to
detecting frustration. Below are some of the prediction equations that their analysis
revealed:

. ln(F low/NonF low) = −0.84 + (0.4 × Fear) + (0.09 × Happiness)+

. (−0.074 × Sadness)

. ln(Boredom/NonBoredom) = −1.24 + (−1.13 × Fear) + (−0.38 × Happiness)+

. (0.15 × Sadness)

. ln(F rustration/NonFrustration) = 1.85 + (−0.02 × Attention)+

. (−0.03 × BrowFurrow) + (0.02 × EyeClosure) + (−0.067 × LipP ress)+

. (−0.03 × LipPucker) + (0.03 × LipSuck)

3.2.1.3 Player Data-Tracking

A large amount of background data can be collected when a video game is played.
Such data may include (but not limited to) time spent on task, total time played,
player death count, player score, and quiz response. Any data that can be attributed
to an observed variable can be gathered in a log file, which can be used for online
or offline analysis. These variables can also be used in conjunction with each other

50 V. Verma et al.

for dynamic adaptation. For example, [1] used player score and their emotions to
change the game difficulty in real time according to the following rules:

• Step up the game difficulty only when they have achieved 50% of max achievable
score and are detected as being bored.

• Step down only when their score is less than 20% of max achievable score and
are detected as being frustrated.

• If they’re in Flow, don’t change anything, and wait a while before checking again.

3.2.1.4 Bayesian Modeling

This approach utilizes the conditional dependence of several variables on each
other, to create a probabilistic graphical model of the system. A Bayesian network
for knowledge tracing is shown in Fig. 3.2 [13]. This model can be used to make
inferences about the player learning based on the other observed variables. The
model consists of a two-quiz sequence with four parameters called prior knowledge
P(L), slip rate P(S), guess rate P(G), and learn rate P(T). Prior knowledge is
gauged using diagnostic tests, while guess rate accounts for the probability of
guessing despite not possessing the knowledge. Slip rate represents the probability
of answering incorrectly (slipping) even when a skilled student actually knows the
correct answer. The learn rate accounts for the probability that the learning will
occur in the next level, based on the learning from the previous levels.

There are solutions available for modeling Bayesian networks in many program-
ming languages. Bayes Server [37] is one such software used by Verma et al. [38] in
their study. It has programming APIs available in C#, Python, Java, R, MATLAB,
Excel, Apache Spark, and JavaScript. The C# API can be easily integrated to a
Unity3D game program [39] for dynamically generating Bayesian networks, setting

Fig. 3.2 Bayesian network depicting knowledge tracing model [13]

3 Software Engineering for Dynamic Game Adaptation in Educational Games 51

Fig. 3.3 Sample dynamic Bayesian network generated using Bayes Server

evidence as well as querying the network at any point in time. Figure 3.3 shows a
dynamic Bayesian network that was programmed in Bayes Server.

3.2.1.5 Educational Data Mining

This technique uses a large number of data mining methods, which can be utilized
to find out the patterns in bulk data captured during educational game play sessions
[40]. It has been used for stealth [36, 41] as well as non-stealth measurements [42].
A given data mining technique applies to a given problem based on the assumptions
and type of data. Therefore, the method should be carefully chosen based on the
assumptions related to data.

3.3 Endogenous and Exogenous Games

The terms endogenous and exogenous games refer to how interconnected the game
mechanics and the learning content are [8]. The more connected they are, the
more the player both learns and enjoys the gaming experience [43]. Both levels
of integration present their own problems from the perspective of game design,
educational design, and game mechanics engineering.

52 V. Verma et al.

3.3.1 Exogenous Games

The more exogenous a game is, the less of a connection there is between what the
player is doing in the game and the content being taught [8]. Take as an example
a math learning game where the player flies a spaceship through an asteroid field,
destroying asteroids for points. At the end of the level, they are presented with a
math quiz that must be completed in order to advance to the next level. This game
would be considered completely exogenous. There is no connection between the
game mechanics, flying the ship and shooting the asteroids, and the math content
being taught. In particular, a player’s ability to demonstrate skill at flying the ship
and destroying the asteroids is not at all an indicator of how they will perform on
the math quiz. Likewise, getting a high score on the math quiz does not in any way
help the player fly the ship better on the next level [44].

Despite these drawbacks, exogenous games are more common in the classroom
[44]. This is in part because they are easier from a design standpoint. When
designing the game mechanics, the designers do not need to consider the educational
content at all. These are often game designers who are focused and experienced at
making entertaining gaming experiences, but often not at making educational con-
tent [10]. Likewise, the educational designers are experts at designing educational
content and scaffolding the learning process, but are unfamiliar with what makes a
quality gaming experience. With an exogenous game, these two parties can remain
within their respective areas of expertise without needing to seek compromise with
each other.

The impact exogenous design has on the actual construction of the game software
is harder to judge [10]. When the game is truly exogenous, there is a need to
develop two completely different experiences. The first is for the game itself and the
mechanics that the player engages with, and the second is for the learning portion
of the game. One benefit of this is that these types of educational experiences are
often very straightforward, often taking the form of quizzes [44]. These then should
be relatively simple to construct from a software perspective. The game mechanics
in exogenous games are also often simpler, since they do not need to link with
the educational content at all. This means that exogenous games require the time
and effort to build two completely different gaming environments within the same
project, with little space for overlap. However, these two pieces of the software are
usually simpler to build than would often be required for a single combined code
base.

3.3.2 Endogenous Games

The counterpart to exogenous games is endogenous games, where there is a strong
connection between the game mechanics and the educational content [8]. This
means that there is at least some connection between what the player does in the

3 Software Engineering for Dynamic Game Adaptation in Educational Games 53

Fig. 3.4 Link between game mechanics and educational content

game and their skill in the educational content. Taking the previous example game,
it is possible to make it more endogenous by adding two mechanics. The first would
be to link skill at the math quizzes to the game play, and the second would be a
way to reciprocate that link. Adding a mechanic where doing well on the math quiz
would empower the player’s spaceship would be a first example of a way to tie
the educational content to the game play. The player’s math skills would now have
a direct effect on the game play. Likewise, adding a mechanic where destroying
asteroids would earn the player hints on the math quizzes would be one possible
way to link the game play to the quiz. With this mechanic in place, a player who
does better in the spaceship portion of the game would be more likely to do well on
the math quiz. This example is still not very endogenous [44], but this highlights
a starting point for creating these links to create endogenous game mechanics.
Figure 3.4 shows these links between the mechanics and educational content and
how they need to feed into each other to create a cycle.

An example of a highly endogenous game [8] would be Typing of the Dead
(Typing) by Sega [45]. In this game, players automatically walk between locations
and are approached by zombies. Each zombie has a word displayed on them, and the
player must type the word displayed, and their character will shoot the zombie. If the
player is too slow, the zombie will damage them, and they will eventually die if this
happens too many times in one level. In this case, the mechanics of how the player
plays the game and what they are being taught are completely interlinked [44]. The
goal of this game is to teach the player how to type and to increase their typing
speed. The player must type quickly in order to avoid being killed in the game,
showing a link between the game play and the learning content. At the same time,
having a higher level of skill at typing will transfer to the player getting further in
the game than another player with a lower level of skill would. This creates the ideal
situation for an endogenous game where the player will learn the most effectively
[43].

54 V. Verma et al.

Endogenous games are less common than exogenous games, despite being more
effective as teaching tools because they are harder to make for a variety of design
reasons [44]. Many of the benefits that made exogenous games easy to design are
reversed in this situation, making the design process much more difficult. If the game
play and educational content are to be tightly linked, then it is necessary for the
game designers and educational designers to work together. The game mechanics
cannot be designed without consideration for the educational content, and likewise
the educational content must take into account what the player will be doing in the
game in order to decide how to present the content. Making these priorities line
up with each other can take a considerable amount of time out of the development
process.

The way in which endogenous design impacts the software structure is easier
to judge than with exogenous games [10]. Due to their nature, exogenous games
required the creation of two almost completely separate experiences with little
overlap. Endogenous games by their nature then would instead consist of one larger
integrated experience. The immediate benefit of this is that it removes the problem
of creating almost two separate code structures with little overlap. The downside is
that this one structure is likely much more complex than the other two would have
been. Endogenous mechanics are often more complex due to the need to integrate
the learning material directly. This both makes them more difficult to implement
and also can force the way you design your high-level code structure. Having the
educational content wrapped around the mechanics can make that material difficult
to edit and possibly require mechanics changes as well. Learning assessment, bug
tracing, and fixing can also be more complicated due to this connection. Endogenous
design has been shown to be the better approach for teaching [43], but these issues
make building them a challenge [10]. What would be best would be a way to create
endogenous mechanics that are strongly linked in game play, but not in actual code.
This is the principle which is followed in the CAGE architecture to develop the
game rapidly while keeping the player engagement intact for learning purposes.

3.4 CAGE Architecture

The CAGE architecture can be used to develop games and assessments that can
cater to multiple learning contents [9, 10]. It employs content-agnostic endogenous
mechanics that are tied to game play and therefore allows creation of multiple
games with an effort, which would be used to create a single game. CAGE follows
a component-based architecture [10] shown in Fig. 3.5. It consists of three main
components: the mechanics component, the content component, and the student
model.

The mechanics component corresponds to the in-game mechanics, such as
jumping, walking, sliding, or other actions players take in order to play and progress
in the game. In CAGE, this component is designed to be content-agnostic and
endogenic so that it can be used with multiple learning contents. The content

3 Software Engineering for Dynamic Game Adaptation in Educational Games 55

Fig. 3.5 Component-based CAGE architecture

component corresponds to one of the learning contents that the game is expected
to teach. A CAGE game may consist of several learning components, but only one
of them will be active at any point in time. The mechanic component passes the
player action as input to the content component, which then evaluates the action
as right or wrong. This assessment is then passed to the student model, which acts
as an accumulator for the analysis to build a model of the student’s understanding.
The student model is also designed to be content-agnostic so that it can be re-used
across multiple learning content domains, by containing multiple models to track
understanding on the different topics.

The student model can be used for summative or formative analysis. As a
summative analysis, it can be used to provide the play-through summary of the
player, such as total time they took to learn the content, number of failures, success,
scores, etc. As a formative analysis, it can be used to inform the game play session
as well as the player feedback. When used for feedback, it can be used to provide
hints or corrective actions to the players. When the student model is used to inform
game play, it can make the game adjust dynamically based on the player’s current
skill level. This dynamic adaptation could be altering the game environment, the
difficulty of the game or learning content, or all of these together.

There are several ways to make the game content-agnostic. In [10], one such
process was using hooks for the game objects to communicate with each other.

56 V. Verma et al.

Hooks are the generic messages that are generated by the game mechanics whenever
an event occurs in the game, such as the player jumping across a chasm. The
mechanics component passes these hooks to the content component, which uses
them if they are relevant for that content component. Hooks is an abstract base class
that implements polymorphism. Each content then implements their own version of
the hooks, overriding only the methods that they need. Below is an example in C#
in the Unity3D engine for a hook that corresponds to the player taking an action.

u s i n g Un i tyEng ine ;
u s i n g System . C o l l e c t i o n s ;
/ / / <summary>
/ / / The hook used when you need t o p a s s
/ / / a c t i o n s t o t h e c o n t e n t c l a s s o r i t s d e r i v a t i v e s
/ / / </ summary>
p u b l i c c l a s s ActionHook : Hook
{

p u b l i c s t r i n g a c t i o n { g e t ; p r i v a t e s e t ; }

p u b l i c ActionHook (s t r i n g ac)
{

t y p e = HookType . A c t i o n ;
a c t i o n = ac ;

}

p u b l i c o v e r r i d e s t r i n g T o S t r i n g ()
{

r e t u r n " A c t ion pe r fo rmed : " + a c t i o n ;
}

}

Another method to make the game content-agnostic is to use a database or JSON
files to keep the content data. All the data for a particular learning content type
will reside in their own JSON files. Players will be given the option to choose the
learning content at the beginning of the game. When they later change the learning
content, the active JSON files are swapped to use the one that the player selects. For
example, consider the below piece of code showing two different content classes
that inherit a common base class called Content. The source JSON file name is
changed based on the content selected by the user.

p u b l i c c l a s s Chemis t ry : C o n t e n t
{

p u b l i c Chemis t ry (s t r i n g name , s t r i n g d e s c r i p t i o n ,
s t r i n g j s o n F i l e)
{

t h i s . name = " Chemis t ry " ;
t h i s . d e s c r i p t i o n = " Ba lance t h e e q u a t i o n s ! " ;

3 Software Engineering for Dynamic Game Adaptation in Educational Games 57

t h i s . j s o n F i l e = " Chemis t ry . j s o n ;
}

}

p u b l i c c l a s s C r y p t o g r a p h y : C o n t e n t {
p u b l i c C r y p t o g r a p h y (s t r i n g name , s t r i n g d e s c r i p t i o n ,
s t r i n g j s o n F i l e)
{

t h i s . name = " C r y p t o g r a p h y " ;
t h i s . d e s c r i p t i o n = " Encode / decode t h e d a t a ! " ;
t h i s . j s o n F i l e = " C r y p t o g r a p h y . j s o n " ;

}
}

3.4.1 Student Model

A student model could be used to model various states of the student, such as their
emotional state, gaming skill, and knowledge. It is an accumulator model that can
collect the data from player interactions and mine it to store useful information
about the student. This information could be used to gauge their behavior as well
as learning and anything else that might be hidden from an external observer.
Any stealth assessment technique discussed in Sect. 3.2.1 can be used to create
a student model. These techniques can be combined with each other to create a
more complex student model that can be used to inform about multiple aspects of
a student. For example, it can be used to measure their game play proficiency and
how it affects their learning performance governed by their cognitive and emotional
states. This model can then be used to provide feedback and remediation to students.
Additionally, it can be used to dynamically adapt the game play to create an optimal
learning environment suitable for their needs.

3.4.2 Stealth Assessment in CAGE

As indicated in Sect. 3.4.1, various ways of stealth assessment can be implemented
at once to create the desired assessment in the game and generate a student model.
The code snippet below illustrates how the predictive equations from [36] were used
with the algorithm implemented by Baron [10] to create a stealth assessment within
a CAGE game.

58 V. Verma et al.

p r i v a t e A f f e c t i v e S t a t e s d e t e r m i n e S t a t e ()
{

A f f e c t i v e S t a t e s s t a t e = A f f e c t i v e S t a t e s . None ;
/ / p r o b s i s an a r r a y c o n t a i n i n g p r o b a b i l i t y v a l u e s
/ / e . g . p r o b s [ATTENTION] i s p r o b a b i l i t y o f
/ / p l a y e r b e i n g i n t h e s t a t e o f a t t e n t i o n
f l o a t boredom = (f l o a t) (−8.44 + (0 . 0 7 ∗

p r o b s [ATTENTION]) +
(0 . 0 2 ∗ p r o b s [BROWFURROW]) +
(0 . 0 6 ∗ p r o b s [BROWRAISE]) +
(0 . 0 2 ∗ p r o b s [INNERBROWRAISE]) −
(0 . 0 2 8 ∗ p r o b s [MOUTHOPEN]) −
(0 . 0 3 ∗ p r o b s [SMILE])) ;

boredom = Mathf . Exp (boredom) ;
boredom = boredom / (1 + boredom) ;

f l o a t f low = (f l o a t) (1 . 5 − (0 . 0 2 ∗
p r o b s [ATTENTION]) − (0 . 0 2 5 ∗ p r o b s [EYECLOSURE]) −

(0 . 0 3 7 ∗ p r o b s [INNERBROWRAISE]) +
(0 . 0 2 ∗ p r o b s [LIPPUCKER]) −
(0 . 0 2 ∗ p r o b s [LIPSUCK]) +
(0 . 0 2 ∗ p r o b s [MOUTHOPEN]) +
(0 . 0 8 ∗ p r o b s [SMILE])) ;

f low = Mathf . Exp (f low) ;
f low = f low / (1 + f low) ;

f l o a t f r u s t r a t i o n = (f l o a t) (1 . 8 5 −
(0 . 0 2 ∗ p r o b s [ATTENTION]) −
(0 . 0 3 ∗ p r o b s [BROWFURROW]) +

(0 . 0 2 ∗ p r o b s [EYECLOSURE]) −
(0 . 0 6 7 ∗ p r o b s [LIPPRESS]) −
(0 . 0 3 ∗ p r o b s [LIPPUCKER]) +
(0 . 0 3 ∗ p r o b s [LIPSUCK])) ;

f r u s t r a t i o n = Mathf . Exp (f r u s t r a t i o n) ;
f r u s t r a t i o n = f r u s t r a t i o n / (1 + f r u s t r a t i o n) ;

i f (f r u s t r a t i o n > boredom)
{

i f (f r u s t r a t i o n > f low)
s t a t e = A f f e c t i v e S t a t e s . F r u s t r a t i o n ;

e l s e

3 Software Engineering for Dynamic Game Adaptation in Educational Games 59

s t a t e = A f f e c t i v e S t a t e s . Flow ;
}
e l s e
{

i f (boredom > f low)
s t a t e = A f f e c t i v e S t a t e s . Boredom ;

e l s e
s t a t e = A f f e c t i v e S t a t e s . Flow ;

}
r e t u r n s t a t e ;

}

3.5 Validation of the CAGE Framework

Baron [10] found that the code re-usability is a desired aspect of game creation
process when developing multiple serious games, which is facilitated by the CAGE
framework. This indicates that the CAGE framework was effective at creating
multiple games for learning with the help of content-agnostic mechanics. He also
found that the amount of programming required to create subsequent games from the
code of the first game was drastically reduced. As a result, any further game creation
needed lesser amount of time and effort when compared to creating the game for
the first time [10]. This suggests that the CAGE framework was effective in the
rapid development of educational games. However, the small number of participants
for this study could limit the generalizability of findings. Further, the research was
conducted in a classroom environment, and the participants were working alone
instead of a team, to develop these games.

Verma [1] implemented the stealth assessment into the CAGE framework and
used it to dynamically adapt the game. Verma et al. [36] found that the facial expres-
sion were a better predictor of the player states of boredom, flow, and frustration,
as compared to the facial emotions. Therefore, they used facial expression to model
the three states and subsequently used it to adapt the game play. However, in another
study, they found that the game adaptation was only effective for players who had
lower domain knowledge of the learning content [46]. For example, in a game
that teaches chemical equation, the players who already are an expert in balancing
chemical equations would not benefit from game adaptation. However, players who
join the game play with a low prior knowledge about chemical equation balancing
would benefit more. Therefore, the game adaptation should be designed primarily
for the low-domain learners. A limitation of the finding was that the participants
were not evenly distributed across the test and the control groups, which could have
caused biased results.

Baron [10] found that it leads to reduced engagement when playing multiple
CAGE games since they employ similar game play mechanics. However, game

60 V. Verma et al.

adaptation helped in alleviating the problem, and therefore player engagement was
sustained across multiple CAGE game sessions [1]. Further, the adaptation helped
improve player engagement when considered independent of the CAGE framework.
The adaptation was implemented with the help of a student model built using
dynamic Bayesian network. Therefore, it is recommended to create a dynamic game
adaptation within the educational games to keep the player motivation levels intact.
This study was conducted online during the pandemic and observed 35% dropout
rate, which might have been caused by the issues in the UI or bugs in the game.
Further, the effect size obtained in the results was low, and therefore, these results
must be interpreted with caution.

Another experiment to establish the validity of the student model indicated
that it can be applied in a content-agnostic way [38]. It involved comparing the
inference from the embedded student model with an external assessment and found a
significant correlation between the two. However, it depends on how the assessment
is implemented in the game. Therefore, it is suggested to validate your own
assessment before assuming its correctness. Nevertheless, the experiment shows
that an assessment that has been designed to be content agnostic can be valid for
multiple content domains.

References

1. Verma, V.: Content Agnostic Game Based Stealth Assessment. PhD thesis, Arizona State
University (2021)

2. Shute, V., Spector, J.M.: Scorm 2.0 white paper: stealth assessment in virtual worlds.
Unpublished manuscript (2008)

3. Kim, Y.J., Shute, V.: Opportunities and challenges in assessing and supporting creativity in
video games. In: Video Games and Creativity, pp. 99–117. Elsevier, Amsterdam (2015)

4. Shute, V.: Stealth assessment in computer-based games to support learning. Comput. Games
Instruct. 55(2), 503–524 (2011)

5. Ventura, M., Shute, V., Small, M.: Assessing persistence in educational games. Des. Recom-
mendations Adapt. Intell. Tutoring Syst. Learner Model. 2(2014), 93–101 (2014)

6. Rotherham, A.J., Willingham, D.T.: 21st-century’ skills. Am. Educ. 17(1), 17–20 (2010)
7. Mislevy, R.J., Almond, R.G., Lukas, J.F.: A brief introduction to evidence-centered design.

ETS Res. Rep. Ser. 2003(1), i–29 (2003)
8. Malone, T.W., Lepper, M.R.: Making learning fun: a taxonomy of intrinsic motivations for

learning. In: Aptitude, Learning, and Instruction, pp. 223–254. Routledge, Milton Park (2021)
9. Baron, T., Heath, C., Amresh, A.: Towards a context agnostic platform for design and

assessment of educational games. In: European Conference on Games Based Learning, p. 34.
Academic Conferences International Limited, Reading (2016)

10. Baron, T.: An Architecture for Designing Content Agnostic Game Mechanics for Educational
Burst Games. PhD thesis, Arizona State University (2017)

11. Shute, V.J., Kim, Y.J.: Formative and stealth assessment. In: Handbook of Research on
Educational Communications and Technology, pp. 311–321. Springer, Berlin (2014)

12. Verma, V., Baron, T., Bansal, A., Amresh, A.: Emerging practices in game-based assessment.
In: Game-Based Assessment Revisited, pp. 327–346. Springer, Berlin (2019)

13. Pardos, Z.A., Heffernan, N.T.: Modeling individualization in a bayesian networks implemen-
tation of knowledge tracing. In: International Conference on User Modeling, Adaptation, and
Personalization, pp. 255–266. Springer, Berlin (2010)

3 Software Engineering for Dynamic Game Adaptation in Educational Games 61

14. Chin, J., Dukes, R., Gamson, W.: Assessment in simulation and gaming: a review of the last 40
years. Simul. Gaming 40(4), 553–568 (2009)

15. Shute, V., Masduki, I., Donmez, O., Dennen, V.P., Kim, Y.-J., Jeong, A.C., Wang, C.-
Y.: Modeling, assessing, and supporting key competencies within game environments. In:
Computer-Based Diagnostics and Systematic Analysis of Knowledge, pp. 281–309. Springer,
Berlin (2010)

16. Shute, V., Wang, L.: Measuring problem solving skills in portal 2. In: E-Learning Systems,
Environments and Approaches, pp. 11–24. Springer, Berlin (2015)

17. Mayer, I., van Dierendonck, D., Van Ruijven, T., Wenzler, I.: Stealth assessment of teams in
a digital game environment. In: International Conference on Games and Learning Alliance,
pp. 224–235. Springer, Berlin (2013)

18. Shute, V., Kim, Y.J.: Does playing the world of goo facilitate learning. In: Design Research
on Learning and Thinking in Educational Settings: Enhancing Intellectual Growth and
Functioning, pp. 359–387 (2011)

19. Chen, J.: Flow in games (and everything else). Commun. ACM 50(4), 31–34 (2007)
20. Crisp, G.T., Assessment in next generation learning spaces. In: The Future of Learning and

Teaching in Next Generation Learning Spaces. Emerald Group Publishing Limited, Bingley
(2014)

21. Shute, V., Ventura, M., Small, M., Goldberg, B.: Modeling student competencies in video
games using stealth assessment. Des. Recommendations Intell. Tutoring Syst. 1, 141–152
(2013)

22. Papesh, M.H., Goldinger, S.D.: Memory in motion: movement dynamics reveal memory
strength. Psychonomic Bull. Rev. 19(5), 906–913 (2012)

23. Yamauchi, T., Xiao, K.: Reading emotion from mouse cursor motions: affective computing
approach. Cognit. Sci. 42(3), 771–819 (2018)

24. Freeman, J.B., Ambady, N.: Motions of the hand expose the partial and parallel activation of
stereotypes. Psychol. Sci. 20(10), 1183–1188 (2009)

25. Rheem, H., Verma, V., Becker, D.V.: Use of mouse-tracking method to measure cognitive
load. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 62,
pp. 1982–1986. SAGE Publications Sage CA, Los Angeles (2018)

26. Faulkenberry, T.J., Testing a direct mapping versus competition account of response dynamics
in number comparison. J. Cognit. Psychol. 28(7), 825–842 (2016)

27. Element: mousemove event (2022)
28. Mouseevent.pagex (2022)
29. Unity3d (2022)
30. Unity3d: Input.mouseposition (2022)
31. Unreal engine: get mouse position (2022)
32. Visage Technologies (2022)
33. Affectiva (2022)
34. Ekman, P., Friesen, W.V.: Facial Action Coding System: A Technique for the Measurement of

Facial Movement, Consulting Psychologists Press. Palo Alto, Santa Clara (1978)
35. iMotions Inc. Affectiva channel explained (2018). https://help.imotions.com/hc/en-us/articles/

360011728719-Affectiva-channel-explained. Accessed 07 Aug 2022
36. Verma, V., Rheem, H., Amresh, A., Craig, S.D., Bansal, A.: Predicting real-time affective states

by modeling facial emotions captured during educational video game play. In: International
Conference on Games and Learning Alliance, pp. 447–452. Springer, Berlin (2020)

37. BayesServer. Dynamic bayesian networks – an introduction (2022)
38. Verma, V., Amresh, A., Craig, S.D., Bansal, A.: Validity of a content agnostic game based

stealth assessment. In: International Conference on Games and Learning Alliance, pp. 121–
130. Springer, Berlin (2021)

39. BayesServer. Dynamic bayesian networks c# api in bayes server (2022)
40. Scheuer, O., McLaren, B.M.: Educational data mining. In: Encyclopedia of the Sciences of

Learning, pp. 1075–1079 (2012)

https://help.imotions.com/hc/en-us/articles/360011728719-Affectiva-channel-explained
https://help.imotions.com/hc/en-us/articles/360011728719-Affectiva-channel-explained
https://help.imotions.com/hc/en-us/articles/360011728719-Affectiva-channel-explained
https://help.imotions.com/hc/en-us/articles/360011728719-Affectiva-channel-explained
https://help.imotions.com/hc/en-us/articles/360011728719-Affectiva-channel-explained
https://help.imotions.com/hc/en-us/articles/360011728719-Affectiva-channel-explained
https://help.imotions.com/hc/en-us/articles/360011728719-Affectiva-channel-explained
https://help.imotions.com/hc/en-us/articles/360011728719-Affectiva-channel-explained
https://help.imotions.com/hc/en-us/articles/360011728719-Affectiva-channel-explained
https://help.imotions.com/hc/en-us/articles/360011728719-Affectiva-channel-explained
https://help.imotions.com/hc/en-us/articles/360011728719-Affectiva-channel-explained
https://help.imotions.com/hc/en-us/articles/360011728719-Affectiva-channel-explained

62 V. Verma et al.

41. Baker, R.S.J.D., Gowda, S., Wixon, M., Kalka, J., Wagner, A., Salvi, A., Aleven, V., Kusbit,
G., Ocumpaugh, J., Rossi, L.: Sensor-free automated detection of affect in a cognitive tutor for
algebra. In: Educational Data Mining 2012 (2012)

42. D’Mello, S.K., Graesser, A.: Mining bodily patterns of affective experience during learning.
In: Educational data mining 2010 (2010)

43. Mislevy, R.J., Oranje, A., Bauer, M.I., von Davier, A.A., Hao, J.: Psychometric Considerations
in Game-Based Assessment. GlassLabGames (2014)

44. Shaffer, D.W., Squire, K.R., Halverson, R., Gee, J.P.: Video games and the future of learning.
Phi delta kappan 87(2), 105–111 (2005)

45. Typing of the dead, the description (2022)
46. Verma, V., Craig, S.D., Levy, R., Bansal, A., Amresh, A.: Domain knowledge and adaptive

serious games: exploring the relationship of learner ability and affect adaptability. J. Educ.
Comput. Res. 60(2), 406–432 (2022)

Chapter 4
Performance on Software Architecture
Design to Serious Games for Mobile
Devices

Leticia Davila-Nicanor, Irene Aguilar Juarez, Joel Ayala de la Vega,
Abraham Banda Madrid, and Sochitl Cruz López

Abstract Proposal: This proposal has considered techniques to improve the soft-
ware architecture performance in serious games. To validate and quantify the design
approach have integrated the software architecture evaluation by design quality
attributes complexity and coupling.

Design: Memory data handling on mobile devices is limited; this situation
affects efficiency and slows interaction mechanisms of learning environments. In
the software process, design patterns are a technique to solve this problem; the use
of these in software architecture allows for the improvement of the distribution of
device resources: memory and fast processing set objects at runtime.

Findings: The proposal describes a technique to perform and validate the design
architecture; the advantage of evaluating the system in early phases like design is
cost reduction to remove defects and better the software performance.

Limitations: The presented work has focused on the construction and evaluation
of the quality of the software system; however, the aspects of pedagogical evaluation
belong to another study.

Practical implications and value addition: If software architecture design
improves, then the learning process also improves. In order to better the performance
design, Wrapper, Singleton, and MVC are implemented. Quality evaluation is
through software architecture analysis through graph theory and software metrics,
the metrics of the resulting system architecture. The dispersion diagram shows us
an architecture with acceptable quality levels.

L. Davila-Nicanor (�) · A. B. Madrid
Laboratorio de Evaluación y Calidad de Software, Centro Universitario UAEMex Valle de
México, Boulevard Universitario s/n. Predio de San Javier, Atizapán de Zaragoza, Estado de
México, Mexico
e-mail: ldavilan@uaemex.mx; abandam@uaemex.mx

I. A. Juarez · J. A. de la Vega · S. C. López
Centro Universitario UAEMex Texcoco, Av. Jardín Zumpango s/n. Fraccionamiento El Tejocote,
Texcoco, Estado de México, Mexico
e-mail: iaguilarj@uaemex.mx; jayalad@uaemex.mx

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
K. M. L. Cooper, A. Bucchiarone (eds.), Software Engineering for Games
in Serious Contexts, https://doi.org/10.1007/978-3-031-33338-5_4

63

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33338-5protect T1	extunderscore 4&domain=pdf

 885 51863 a 885 51863
a

mailto:ldavilan@uaemex.mx
mailto:ldavilan@uaemex.mx

 9611 51863 a 9611 51863 a

mailto:abandam@uaemex.mx
mailto:abandam@uaemex.mx

 885 56845 a 885 56845
a

mailto:iaguilarj@uaemex.mx
mailto:iaguilarj@uaemex.mx

 9734 56845 a 9734 56845 a

mailto:jayalad@uaemex.mx
mailto:jayalad@uaemex.mx
https://doi.org/10.1007/978-3-031-33338-5_4
https://doi.org/10.1007/978-3-031-33338-5_4
https://doi.org/10.1007/978-3-031-33338-5_4
https://doi.org/10.1007/978-3-031-33338-5_4
https://doi.org/10.1007/978-3-031-33338-5_4
https://doi.org/10.1007/978-3-031-33338-5_4
https://doi.org/10.1007/978-3-031-33338-5_4
https://doi.org/10.1007/978-3-031-33338-5_4
https://doi.org/10.1007/978-3-031-33338-5_4
https://doi.org/10.1007/978-3-031-33338-5_4
https://doi.org/10.1007/978-3-031-33338-5_4

64 L. Davila-Nicanor et al.

Keywords Serious game · Architectural performance · Design patterns · Design
software metrics

4.1 Introduction

In the new normality reached by the Covid-19 pandemic, virtual environments use
serious games focused on education at all levels. Serious games have been applied
in a wide range of scenarios to improve learning and reaction mechanisms, for
instance, fires and earthquakes, and this approach has been shown to statistically
contribute to better decision-making [1–5]. In education research, the positive
impact of serious games on training and education has been studied in several
research papers [6–10]. Nowadays, serious game use is important to improve
learning. The studies analyzed by [7–9] show how serious games have increased
learning in many areas like computer science.

In serious games development, the collaboration between areas of knowledge
is intrinsic and pedagogical, and software engineering experts participate in the
software development process. From the definition of requirements, the quality
attributes are specified, and this depends on the purpose of the system to be
developed. In serious games, the performance is related to the learning process
[10–12]; if the game manages to keep the attention of the player, the learning
process improves. However, if the game is slow, loses the score, and does not update
efficiently, the player’s attention is lost, and implicit gamification is affected, so the
learning process cannot mature [13].

Programming object-oriented approach and design patterns are a resource-
optimizing technique because through a holistic vision, the performance of appli-
cations is improved, optimizing resources, for instance memory. After all, only
executed functions are loaded at runtime, which differs from other programming
paradigms that load all the system functions without being sure they will be
used [14–16]. This scheme is adequate in a dynamic and random context like
serious games because it is possible to build runtime scenarios depending on player
preferences and game context variables.

The proposed approach addresses the following four research questions as the
main contributions:

Do the design patterns contribute to improving the performance of software
architecture on mobile serious games?

How does the software development process integrate design patterns on software
architecture in mobile serious games?

Do design patterns contribute to improving the quality attributes complexity and
coupling on software architecture to serious games on mobile applications?

Are software design architecture’s complexity and coupling valid to determine an
indirect study of the efficiency of software for serious games on mobile devices?

4 Performance on Software Architecture Design to Serious Games for Mobile Devices 65

Answers to these research questions will contribute to improving studies and
software development techniques on the performance of design architecture in
serious games. This proposal has considered techniques to improve the software
architecture performance and consequently the learning process, so the Wrapper,
Singleton, and MVC design software patterns are implemented. To validate and
quantify the design approach have integrated the software architecture evaluation
by design quality attributes complexity and coupling, so we have implemented
an evaluation process for architectural design described in [17]. This approach is
applied to the case study of professional-level subjects.

This chapter has been organized as follows: Sect. 4.2 is about the didactic
methodology used for the design proposed. Section 4.3 depicts the works that
relate to a recent review of the literature where the needs that serious games have
about architectural design are highlighted, as well as the analysis of design metrics
proposed to date. In Sect. 4.4, the proposal is developed integrating design patterns
on software architecture and their evaluation. In Sect. 4.5, the discussion of the
results is presented, and finally, in Sect. 4.6, the conclusions are presented.

4.2 Motivation and Research

The serious game is based on information theory [18], which is a model that explains
learning as a model analogous to the information processing of a computer in
which there are temporary and permanent information storage units, as well as
devices to capture, search, produce, and transform information. Under this approach,
learning is understood as the process of incorporating new learning into memory and
recovering and using it.

According to Benzanilla, J. M. et al. [19], the structural components definition of
a serious game for the design of the formal model is as follows:

Objectives: they must be clearly defined and known by the player. In the context
of a serious educational game, the objectives will be explicit in the competitions
performed.

Rules: This component will determine the order, rights, and responsibilities of the
players, as well as the objectives to be met by each player to achieve the challenge
they face.

Challenge: Determines when the game ends. The player will face problems related
to learning data structures for which solutions will be sought and, once all is
resolved, will face the challenge. The endgame criteria, both partial and general,
will be specified in the learning outcomes for the proposed serious game.

Interaction: It is the component that arises from the mechanics and dynamics of the
game, which will give rise to all the experiences that the player will enjoy. These
will continually surface because of the game’s immediate feedback, which will
reflect evidence of progress toward the final challenge.

66 L. Davila-Nicanor et al.

Gu, S. M. et al. [20] approach a system like a pair (U, A), where U = {x1, x2,...,
xn} is a finite and non-empty set of objects called the universe of discourse, which in
the case of serious games can be taken as the rules of operation, and A = {a1, a2,...,
am} is a non-empty finite set of attributes, which in this case are the challenges, so
that a: U → It goes for any ∈ A. That is, a software system fulfills its purpose based
on its attributes. In serious game software design, the biggest problem is focused on
the scenarios set that can be expected in the scope of the system to establish them,
which has to do with the number of variables that intervene in the context and the
number of possibilities to whom it is addressed, which makes biggest option set,
which also can only be specified until the moment when the players select their
arguments. A multi-scale software system is needed to represent data sets with
hierarchical-scale structures measured at different levels of granularity at which
each challenge and player interacts.

4.3 Background and Recent Review of the Literature

Software architectures set the necessary components that a software system must
have, based on its functional requirements. The main goal is to reach the best
interaction between components, so software architecture has been defined as
“the fundamental organization of a system, embodied in its components, their
relationships to each other, and the environment, and the principles and guidelines
governing its design and evolution over time” [21]. Non-functional requirements
are also considered because they are related to quality attributes, for example, com-
plexity, coupling, performance, reusability, cohesion, and reliability [22]. Regarding
software architectures for the design of serious games, there are a few contributions.
In Mizutani’s research [23], the authors reviewed about 512 studies from 3
publishers of prestige, and under reuse criteria, they found only 36. This study found
the approach based on data-driven design is, by a considerable margin, the most
common, present in 45% of the studies. In minor frequency, other practices like
entities based on inheritance, layered systems, and design patterns use are present
in between 20% and 30% of the selected studies. The highlighted aspect’s study is
the relative absence of test-driven development. Also, design patterns are rarely seen
applied in studies on the development of digital game mechanics. These patterns are
currently a technique that has shown completeness and robustness in the domain of
applications that implement them. The study authors expressed concern regarding
what they consider to be a lack of community interest in software engineering to
apply their knowledge to the context of serious game design, development, and
testing and how much you could benefit from your asportation in these applications.

Regarding the performance of the application in the quality evaluation of the
serious game, the metric reported in [6] work is the performance rate. Efficiency
is a quality attribute related to the computer equipment’s resources, memory, and
processing speed, at runtime faster response times, are expected in software systems.
It is an important quality attribute in serious games, this is because several studies

4 Performance on Software Architecture Design to Serious Games for Mobile Devices 67

[10–12], there are set a direct relationship between attention and improvement
in learning. On the contrary, a slow game generates disinterest and a lack of
concentration, which inversely affects the learning process. Efficiency refers to
the ability of a software system to do its job quickly and effectively, without
consuming too many resources, such as memory or processor power. On the other
hand, complexity refers to the number of components and the interconnection of
these components in a system. Generally speaking, the greater the complexity of
a software system, the more resources may be required to maintain its efficiency
[24, 25]. For example, a simple software system that performs a specific task can
be very efficient because it is easy to understand and maintain. But a complex
software system that has many components and dependencies may be less efficient,
as it may require more resources to maintain and function properly. In summary,
while complexity is not an obstacle to efficiency, it can increase the need for
resources and time to maintain the efficiency of a software system. Therefore, in the
development of object-oriented software systems, it is important to find a balance
between complexity and efficiency to develop a system that is effective and easy to
maintain and uses available resources efficiently [26].

Design patterns are a good technique to solve the efficiency of software archi-
tecture [16]. The use of a design pattern abstracts and identifies key aspects in the
solution of a highly complex problem. The kind of patterns is structural, behavioral,
and creation, some of these are applied to set new functionality at runtime, having
they limited only by the size of the memory of the equipment where they are
executed. Researchers from [14] and [15] analyze how pattern design gives a better
software solution in architecture to solve functionality. There are patterns to abstract
and solve problems that are repeated daily in the design of software systems.

4.3.1 Metrics to Evaluate Architectural Software Design

To determine software architectural quality, software metric computation is widely
used [27]. The evaluation of software architectures is a different process from the
testing phase; the evaluation of the design involves data about the relations of
the components, class, and the method’s software system at rest, without system
execution. In this case, the inputs are algorithms, class diagrams, diagrams of flow,
etc. The advantage of evaluating the system in early phases like design is cost
reduction to remove defects. According to the Carnegie and Mellon University
study [28], if the evaluation is carried out in the testing phase, it is 12 times more
expensive, but if software evaluation is done during start-up, it is 20 times more
expensive than in the design phase.

There exist many metrics that measure the complexity of software: The cyclo-
matic complexity metric provides a means of quantifying intra-modular software
complexity, and its utility has been suggested in the software development and
testing process. This work [29] proposes to measure complexity, which is based
on cyclomatic complexity and the concept of interaction between modules through

68 L. Davila-Nicanor et al.

Table 4.1 Relationship between design attributes and software metrics

Study Authors Quality attributes Metrics used

Investigating
object-oriented
design metrics to
predict
fault-proneness of
software modules

Santosh Sigh
Rathore, 2012 [31]

Size, cohesion,
coupling, complexity,
and inheritance

CBO (Coupling
Between Objects),
RFC (Response For a
Class), LCOM (Lack
of Cohesion in
Methods), CAM, DIT
(Depth of Inheritance
Tree), NOC (Number
of Children), LOC
(Line Of Code),
WMC (Weighted
Methods per Class),
CC (Cyclomatic
Complexity).

Coupling and
cohesion metrics in
Java for adaptive
reusability risk
reduction

M.Iyapparaja, 2012
[32]

Cohesion and
coupling

EV (Explicit
dependence), IV
(Implicit
dependence)

The prediction design
quality of
object-oriented
software using UML
diagrams

Vibhash Yadav, 2013
[33]

Size, cohesion,
coupling, complexity,
inheritance, and
abstraction

CC, LCOM, WMC,
LOC

Predict fault-prone
classes using the
complexity of UML
class diagram

Halim, 2013 [34] Complexity CC, RC (reduced
complexity), NC
(Nick’s class)

coupling. In this article [30], multidimensional metrics are identified and defined;
in this case, complexity is one of the properties that are related to performance and
efficiency, applied to health monitoring models at the system level with specific
phases of the design. Under these conditions, attributes like performance could be
assessed indirectly through, for instance, complexity and coupling [29].

Design software metrics have been developed to obtain information about the
quality design of an object-oriented software application, which aims to quanti-
tatively describe a system’s design properties. Table 4.1 shows the studies that
address the design approach based on the design attributes studied, about the metrics
evaluated. It is possible to observe that the most used properties or attributes are
complexity, coupling, cohesion, and inheritance. The metrics CC [31–35], CBO [31,
32, 34, 35], and WMC [31–33] are the metrics with the highest level of acceptance
for the realization of the studies, followed by LCOM and LOC [31, 33].

4 Performance on Software Architecture Design to Serious Games for Mobile Devices 69

4.4 Proposed Solution

Benzanilla, J. M. et al. [19] set the structural components for the design of the formal
model of the game, which are objectives, rules, challenges, and interactions. In this
case, the biggest problem is that the set of scenarios that can be expected in the scope
of the system, to establish the challenges, has to do with the number of variables
that intervene in the context and the number of possibilities to whom it is addressed,
which makes for an infinite set of options, which can also only be specified up to
the point where players interact with the game.

4.4.1 Didactic Requirements

The application is aimed at computer engineering students to acquire knowledge
of traversing trees in dynamic data structures, through practical exercises in which
they will be graded according to the score acquired. Any engineering and computer
science student who wants to reinforce their knowledge through this application.
The player must have previous knowledge of basic programming.

Table 4.2 detailed the functional requirements, and the application consists of
three levels of interaction: beginner, intermediate, and advanced. According to this
level, the theoretical content is related. The first level is the beginner, and the
problems that arise are a function of the theoretical framework that corresponds
to this level. Scenarios (games) are established according to the answers if they are
correct, and incentives are obtained, concluding the game, and it is assumed that he
already has the master of the said topic, promoting level promotions.

Hardware specification for development: AMD 9 processor, 8G RAM, 500G hard
drive, RANDOM 5 video card.

Table 4.2 Serious game functional requirements

No. Functional requirements

R1 The main goal of the application is made to solve practical exercises
R2 The application will have content about the theoretical foundations
R3 The application will have content about the use of game explanation, rules, levels, and

scenarios of the game
R4 The game consists of three levels (beginner, intermediate, and advanced)
R5 A new gamer will be at a beginner level
R6 Nothing is saved for the player in the test game, nor are incentives given
R7 To propose problems of the topic
R8 Rating of the solution to see the score and go to another level
R9 At each level of the game, the score acquired is saved
R10 The incentives are awarded according to the grade of the exercises on the topic

70 L. Davila-Nicanor et al.

Fig. 4.1 Serious game functionality

Software specification for development: Windows 7, android-SDK-24-4-1-en-
win, android-studio-ide-171.4443003-windows.

Specification for application: Have a smartphone that has an Android 4.2
(Jellybean) operating system, with 4G storage and 1G RAM.

The general functionality is shown in Fig. 4.1; the gamer (student) can select the
play button, which shows him a screen where his initial score is presented, and the
student can continue with the previous game or start a new game The serious game
has three levels, before presenting the game scenario; first information about the
topic to be evaluated is presented, and then the game scenario is presented, where
several exercises accumulate points if they are solved satisfactorily. The player can
pause the game, start a new game, or quit. In the case of just pausing the game, the
accumulated points are saved. In other cases, the score is lost.

4.4.2 Didactic Design

In educational applications, defining the most appropriate pedagogical aspects for
each project from the beginning is too important. In this case, the didactic design
is specified by employing a descriptive letter of the didactic interaction in which

4 Performance on Software Architecture Design to Serious Games for Mobile Devices 71

the content of the game that is documented is specified. This application consists of
three levels. In level 1 beginners, all the basic concepts of binary trees are addressed,
which are necessary for the understanding of level 2 medium, where the path of
binary trees is explained, so with this knowledge, you can go to level 3 advanced,
and when you pass it, you can be evaluated as a student who masters the subject of
binary trees in the data structure as shown in Table 4.3, the descriptive card of the
game.

As a complement to the didactic letter, the navigation tree has been developed,
using which it is possible to observe the proposed navigation for the player in
the serious game. In Fig. 4.2, the player’s activity in the three proposed levels is
presented to accord letter of didactic interaction.

The serious game has been implemented in Android language. Design patterns
are a technique that has demonstrated efficacy and reliability. The use of these in the
software architecture allows for improvement of the distribution of device resources:
memory and fast processing, the approach of setting set the needed objects at
runtime. Design patterns have been successfully implemented in the architecture of
our case studies; a serious game has been developed for the teaching of binary trees
for the data structures subject of the computer engineering career. The Wrapper,
Singleton, and MVC patterns are used in this work. They consider the functionality
of the application. Better system evolution is another observed advantage of this
approach; it is necessary throughout its useful life within the teaching-learning
process.

In the proposed software architecture (Fig. 4.3), the Wrapper pattern allows to
dynamically add functionality to the object to establish the scenarios, which allows
only the base objects to be established in memory, and the pattern generates new
combinations in the functionality in each new scenario so that the user has different
views in each new game. Previous scenarios are dynamically removed from memory
in this scheme. The MVC pattern (Model-View-Controller) allows for the separation
of the operation of the user interface, the database, and the iteration between both;
in our case, the database used was SQLite. The view shows the set of tools with
which the player interacts, and the controller is responsible for communicating
the View_scenarios actions and data where the game exercises are to the Wrapper
pattern. Finally, certain global variables need to be kept in memory. When dealing
with a dynamic schema, all the objects generated in memory will be eliminated
except those that are handled by the singleton pattern. This scheme has allowed us
to improve response times. The relationship of usability has been taken into account
in studies that mark the most appropriate colors and texts [25].

When an object of type Levels is generated by the Exercise, in beginner level
assigned zero points at the gamer through the Assign_exercise() method, according
to Fig. 4.4. The gamer activity is evaluated by recording its responses, through the
Evaluate() method, according to this action, the score is established, if the score’s
value is greater than 90%, a level rise can be granted through the to_next_level()
method, this scheme operates when going from beginner to intermediate and from
intermediate to advance via the go_next_level() method. When the player wants to
pause, the pause() method is activated; if the gamer wants to leave temporarily and

72 L. Davila-Nicanor et al.

Ta
bl

e
4.

3
D
es
cr
ip
tiv

e
le
tte

r
of
 d
id
ac
tic

 in
te
ra
ct
io
n

D
es
cr
ip
tiv

e
le
tte

r
of
 d
id
ac
tic

 in
te
ra
ct
io
n

N
am

e
of
 c
ou
rs
e:
 D
at
a
St
ru
ct
ur
es

D
ur
at
io
n:
 V
ar
ia
bl
e

M
od
al
ity

: o
ffl
in
e

In
st
ru
ct
or
 n
am

e:
Pr
er
eq
ui
si
te
s:
 T
o
th
e
kn
ow

le
dg
e
of
 b
as
ic
 p
ro
gr
am

m
in
g

L
ev
el
 1
 B
eg
in
ne
r:
 B
as
ic
 c
on

ce
pt
s
of
 b
in
ar
y
tr
ee
s
in
 d
at
a
st
ru
ct
ur
e

To
pi
c

C
on
te
nt

O
bj
ec
tiv

e
T
he
 p
ar
tic

ip
an
t:

Te
ch
ni
qu
e:

In
st
ru
ct
io
na
l

A
ct
iv
ity

:
In
st
ru
ct
or

In
te
ra
ct
io
n:

M
ob
ile
 d
ev
ic
e

R
ul
es
 g
am

e
de
sc
ri
pt
io
n

G
am

e
in
st
ru
ct
io
ns

T
he
 s
tu
de
nt
 w
ill
 k
no
w
 in

a
ge
ne
ra
l w

ay
 th

e
co
m
po
si
tio

n
of
 th

e
ga
m
e,

th
e
le
ve
ls
 th

at
 it
 in

cl
ud

es
,

an
d
th
e
le
ar
ni
ng

 th
at
 it

w
ill
 a
ch
ie
ve

T
hr
ou
gh
 a
n
ex
pl
an
at
io
n,

th
e
ob

je
ct
iv
es
 o
f
th
e
ga
m
e

th
at
 w
ill
 b
e
us
ed
 w
ill
 b
e

de
sc
ri
be
d
to
 th

e
st
ud
en
t

T
he
 g
am

e
al
lo
w
s

in
te
ra
ct
io
n
w
ith

 th
e
ga
m
e

ru
le
s
de
sc
ri
pt
io
n
m
od
ul
e

1.
 T
he
 s
tu
de
nt
 th

ro
ug
h

th
e
se
le
ct
io
n
of
 o
pt
io
ns

di
sc
ov
er
s
th
e
ru
le
s
of
 th

e
ga
m
e

2.
 T
he
 a
pp
lic
at
io
n
sh
ow

s
th
e
ac
ad
em

ic
 c
on

te
nt
 o
f

ea
ch
 le
ve
l a
nd

 th
e

ch
al
le
ng

es
 to

 s
ol
ve

3.
 T
he
 s
tu
de
nt
 c
an
 li
st
en

to
 th

e
ge
ne
ra
l e
xp

la
na
tio

n
of
 th

e
ga
m
e

C
ha
lle

ng
e

B
as
ic
 c
on

ce
pt
s

G
en
er
al
 c
on
ce
pt
s

of
 tr
ee
s:
 r
oo
t,

no
de
, p

at
h,
 le
ve
l,

de
gr
ee

U
se
 th

e
pr
ob
le
m
-b
as
ed

le
ar
ni
ng
 te
ch
ni
qu
e

T
he

ga
m
e
w
ill

al
lo
w
th
e

st
ud

en
t t
o
lis
te
n
to
 a

re
ad
in
g
of
 th

e
ba
si
c

co
nc
ep
ts
 o
f
bi
na
ry
 tr
ee
s

T
he

ga
m
e
pr
ov
id
es

qu
es
tio

ns
 r
el
at
ed
 to

 th
e

ob
je
ct
iv
es
 o
f
th
e
pr
ob

le
m

T
he
 a
pp
lic
at
io
n
sh
ow

s
a

re
ad
in
g
w
ith

 b
as
ic

co
nc
ep
ts

1.
 T
o
sh
ow

 th
e
st
ud
en
t a

fr
ag
m
en
te
d
im

ag
e
re
la
te
d

to
 le
ar
ni
ng

 b
as
ic
 c
on

ce
pt
s

2.
 R
an
do
m
ly
, t
he
 s
tu
de
nt

is
 s
ho
w
n
qu

es
tio

ns
 th

at
,

up
on
 a
ns
w
er
in
g
co
rr
ec
tly
,

ar
e
gi
ve
n
th
e

co
rr
es
po
nd
in
g
im

ag
e
an
d

he
 v
is
ua
liz

es
 h
is
 p
uz
zl
e

lit
tle

 b
y
lit
tle

 s
ol
ve
d

4 Performance on Software Architecture Design to Serious Games for Mobile Devices 73

L
ev
el
 2
 I
nt
er
m
ed
ia
te
: B

in
ar
y
tr
ee
 tr
av
er
sa
l

R
ul
es
’
ga
m
e

pr
es
en
ta
tio

n
R
ul
es
’
ga
m
e

ex
pl
an
at
io
n

T
he
 s
tu
de
nt
 w
ill
 k
no
w

th
e
ru
le
s
of
 th

e
ga
m
e
of

le
ve
l 2

T
hr
ou
gh
 th

e
co
m
pe
te
nc
e-
ba
se
d

le
ar
ni
ng
 te
ch
ni
qu
e,

th
ro
ug
h
th
e
ex
pl
an
at
io
n

of
 th

e
“r
ul
es
 o
f
th
e

ga
m
e,
”
th
e
st
ud

en
t w

ill

be
 a
bl
e
to
 s
ol
ve
 th

e
ex
er
ci
se
s
by
 a
cq
ui
ri
ng

kn
ow

le
dg
e
of
 th

e
su
bj
ec
t,

ba
se
d
on
 th

ei
r
ab
ili
tie

s,

sk
ill
s,
 a
nd

 a
tti
tu
de
s

T
he
 g
am

e
pr
ov
id
es
 a
ud
io

w
he
re
 th

e
ru
le
s
of
 th

e
ga
m
e
ar
e
ex
pl
ai
ne
d

T
he
 g
am

e
co
ns
is
ts
 o
f
an

op
tio

ns
 m

en
u
w
he
re
 th

e
pl
ay
er
 c
an
 s
el
ec
t t
he

in
st
ru
ct
io
n
op
tio

n
w
he
re

th
e
st
ud

en
t c
an
 li
st
en
 to

th
e
ge
ne
ra
l e
xp

la
na
tio

n
of

th
e
ga
m
e

T
he
 g
am

e
pr
ov
id
es
 a

vi
de
o
fo
r
ea
ch
 tr
av
er
sa
l

w
he
re
 it
 e
xp
la
in
s
th
e

co
rr
es
po
nd
in
g
al
go
ri
th
m

to
 tr
av
er
se
 a
 b
in
ar
y
tr
ee

B
in
ar
y
tr
ee

tr
av
er
sa
l

ch
al
le
ng

es

T
re
e
tr
av
er
sa
l:

Pr
eo
rd
er
, i
no
rd
er
,

an
d
po
st
or
de
r

T
he
 p
la
ye
r
w
ill
 s
ol
ve
 th

e
bi
na
ry
 tr
ee
 tr
av
er
sa
l

ex
er
ci
se
s
pr
ov
id
ed
 b
y
th
e

ap
pl
ic
at
io
n,
 th

us
 b
ei
ng

ab
le
 to

 tr
av
er
se
 th

e
tr
aj
ec
to
ry
 in

di
ca
te
d
in
 th

e
ga
m
e
 an
d
go

to
th
e
 ne
xt

le
ve
l

It
 w
ill
 b
e
ca
rr
ie
d
ou

t w
ith

th
e
co
m
pe
te
nc
y-
ba
se
d

le
ar
ni
ng
 te
ch
ni
qu
e

T
he
 g
am

e
w
ill
 p
ro
vi
de
 a

vi
de
o
w
ith

 a
n
ex
pl
an
at
io
n

of
 e
ac
h
on
e
of
 th

e
ro
ut
es

th
at
 a
re
 c
ar
ri
ed
 o
ut
 in

 th
e

bi
na
ry
 tr
ee
s

T
he
 a
pp

lic
at
io
n
w
ill

pr
ov
id
e
th
e
pr
ob
le
m
s
th
at

th
e
pl
ay
er
 w
ill
 h
av
e
to

so
lv
e

T
he
 s
tu
de
nt
 w
ill
 w
at
ch

th
e
vi
de
o
to
 le
ar
n
ho
w

ea
ch
 o
f
th
e
ro
ut
es
 o
f
th
e

tr
ee
 is
 c
ar
ri
ed
 o
ut
, w

he
re

ea
ch
 r
ou

te
 th

at
 is

co
rr
ec
tly

 g
ue
ss
ed
 w
ill

ad
va
nc
e
on
e
sq
ua
re
 in

 th
e

m
az
e
an
d
w
ill
 g
o
to
 th

e
ne
xt
 le
ve
l o

nc
e
it
re
ac
he
s

th
e
go
al
 s
qu
ar
e

(c
on
tin

ue
d)

74 L. Davila-Nicanor et al.

Ta
bl

e
4.

3
(c
on
tin

ue
d)

D
es
cr
ip
tiv

e
le
tte

r
of
 d
id
ac
tic

 in
te
ra
ct
io
n

N
am

e
of
 c
ou
rs
e:
 D
at
a
St
ru
ct
ur
es

D
ur
at
io
n:
 V
ar
ia
bl
e

M
od
al
ity

: o
ffl
in
e

In
st
ru
ct
or
 n
am

e:
Pr
er
eq
ui
si
te
s:
 T
o
th
e
kn
ow

le
dg
e
of
 b
as
ic
 p
ro
gr
am

m
in
g

L
ev
el
 3
 A
dv
an
ce
d:
 B
al
an
ce
d
tr
ee
s
in
 d
at
a
st
ru
ct
ur
es

K
no
w
 th

e
ru
le
s
of

th
e
ga
m
e

In
tr
od
uc
e
th
e
w
ay

of
 o
pe
ra
tin

g
th
e

ga
m
e

T
he
 s
tu
de
nt
 w
ill
 k
no
w

th
e
ru
le
s
of
 th

e
ga
m
e

T
he
 d
is
co
ve
ry
-b
as
ed

le
ar
ni
ng

 te
ch
ni
qu

e
w
ill

be
 a
pp
lie
d
to
 s
ol
ve
 th

e
ba
la
nc
ed
 tr
ee
 e
xe
rc
is
es

T
he
 a
pp

lic
at
io
n
w
ill

pr
ov
id
e
th
e
ru
le
s
of
 th

e
ga
m
e
w
ith

 a
ud

io

ex
pl
ai
ni
ng

 th
e
go

al
s
th
at

th
e
pl
ay
er
 m

us
t m

ee
t a
s
a

m
ea
su
re
 o
f
th
e

kn
ow

le
dg
e
ob
ta
in
ed
 o
n

th
e
su
bj
ec
t b

al
an
ce
d
tr
ee
s

in
 th

e
da
ta
 s
tr
uc
tu
re

T
he
 g
am

e
de
sc
ri
be
s
th
e

ru
le
s
of
 th

e
ga
m
e

B
al
an
ce
d
tr
ee
s

ch
al
le
ng
e

B
al
an
ce
d
tr
ee
s

T
he
 s
tu
de
nt
 w
ill
 b
e
ab
le

to
 a
cq
ui
re
 k
no
w
le
dg
e

th
ro
ug
h
th
e
ga
m
e;
 h
e
w
ill

be
 a
bl
e
to
 d
is
co
ve
r
th
e

ke
y
an
d
op
en
 th

e
tr
ea
su
re

ch
es
t,
to
 s
ol
ve
 th

e
ba
la
nc
ed
 tr
ee
 e
xe
rc
is
es

O
nc
e
th
e
ru
le
s
of
 th

e
ga
m
e
ar
e
kn
ow

n,
 th

e
le
ar
ni
ng
 te
ch
ni
qu
e
ba
se
d

on
 d
is
co
ve
ry
 w
ill
 b
e

ap
pl
ie
d.
 T
he
 s
tu
de
nt
 m

us
t

di
sc
ov
er
 th

e
kn
ow

le
dg
e

an
d,
 in

 th
is
 w
ay
, g
ui
de

hi
m
 to

 th
e
co
ns
tr
uc
tio

n
of

hi
s
sc
he
m
es
. I
n
th
is
 w
ay
,

it
or
ga
ni
ze
s
th
e

in
fo
rm

at
io
n
an
d
re
la
te
s
it

to
 p
re
vi
ou
s
kn
ow

le
dg
e

T
he
 g
am

e
w
ill
 p
ro
vi
de
 a

vi
de
o
of
 th

e
ac
ad
em

ic

kn
ow

le
dg
e
of
 th

e
su
bj
ec
t

so
 th

at
 th

e
st
ud

en
t c
an

so
lv
e
th
e
ex
er
ci
se
s
th
at

th
e
ap
pl
ic
at
io
n
w
ill
 g
iv
e

hi
m

T
he
 a
pp
lic
at
io
n
sh
ow

s
a

vi
de
o
w
ith

 th
e
co
nt
en
t o

f
th
e
th
em

e
of
 th

e
ba
la
nc
ed

tr
ee
; t
he
n
it
gi
ve
s
yo

u
th
e

qu
es
tio

ns
 th

at
 y
ou
 h
av
e
to

so
lv
e
co
rr
ec
tly

 to
 g
et
 a

ke
y;
 th

e
m
or
e
ke
ys
 y
ou

ha
ve
, t
he
 g
re
at
er
 th

e
pr
ob
ab
ili
ty
 o
f
op
en
in
g

th
e
tr
ea
su
re
 c
he
st

4 Performance on Software Architecture Design to Serious Games for Mobile Devices 75

in
st

ru
ct

io
ns

ga
m

e
ru

le
s

de
m

o

us
er

B
eg

in
ne

r
le

ve
l

M
ed

iu
m

 le
ve

l

N
ex

t l
ev

el
N

ex
t l

ev
el

E
nd

 o
f

ga
m

e

T
es

t L
ev

el

th
eo

re
tic

al

fr
am

ew
or

k

th
eo

re
tic

al

fr
am

ew
or

k

th
eo

re
tic

al

fr
am

ew
or

k
T

he
or

et
ic

al

fr
am

ew
or

k

P
ra

ct
ic

al

ex
er

ci
se

P
ra

ct
ic

al

ex
er

ci
se

P

ra
ct

ic
al

ex

er
ci

se

P
ra

ct
ic

al

ex
er

ci
se

S
ol

ut
io

n

S
ol

ut
io

n

S
av

e
ga

m
e

S
av

e
ga

m
e

S
av

e
ga

m
e

S
ol

ut
io

n
S

ol
ut

io
n

Y
es

Y
es

Y
es

Y
es

in
ce

nt
iv

e
in

ce
nt

iv
e

in
ce

nt
iv

e

N
o

N
o

N
o

N
o

N
ex

t
le

ve
l

F
ee

db
ac

k

F
ee

db
ac

k
fe

ed
ba

ck
fe

ed
ba

ck

M
ai

n
w

in
do

w

S
ta

rt
 G

am
e

us
er

A
dv

an
ce

d
le

ve
l

F
ig

. 4
.2

Se
ri
ou
s
ga
m
e
na
vi
ga
tio

n
pr
op
os
al

76 L. Davila-Nicanor et al.

Scenarios

Instructions levels

Exercise

Concrete_
Exercise

Concrete_
Question

Concrete_
Solution

Questions Solutions

Controller

View

Model

Beginer Intermediate Advanced

Evaluation

Singleton_Score

SQL
Lite

Scenarios

Colors Images
View_scen

arios

Fig. 4.3 Serious game proposal class diagram

Levels

Assigne_exercise
Do exercise = TRUE

Go_next_level

Go_next_level

Acumulative_score

Level 1:
Beginner

Acumulative_score

Resume

score >= 90 %

score: float
Indicator_level:float
Do_exercise: Boolean

Assigne_execise()
Evaluation ()
Go_next_level()
Quit(ID_Contrato)
Acumulative_score ()
Resume ()

Level 3:
Advanced

Level 2:
Intermediate

Quit

score < 90 %

Fig. 4.4 State diagram levels class

4 Performance on Software Architecture Design to Serious Games for Mobile Devices 77

then continue, his score is stored, and when he enters, he can resume from the level
reached. Finally, if the gamer wants to cancel the game, the score is lost, and the
game ends.

4.4.3 Serious Game Implementation

The serious game has been implemented in Android language. Figure 4.5 shows
start-up interfaces and the beginner level. Regarding the usability of the game, the
color chart has been selected that specifies the activity that motivates each of the
colors according to [25]. For example, the blue color predominates, which generates
calm and relaxation, which benefits the student to have concentration from the
psychological didactic point of view. The green and yellow colors help the players
in their retention and with greater ease, the theoretical contents of the game, to have
more fluidity in the solution of the problems that each level of the game has.

Experimental Research on Design Evaluation
We have considered the proposal [17] to evaluate the quality architectural design of
the proposed system. The proposal provides a predictive model to establish a quality
scheme to assess the quality of oriented object systems based on the design stage
using the software architecture analysis through graph theory and software metrics

Fig. 4.5 Serious game interfaces

78 L. Davila-Nicanor et al.

Fig. 4.6 ACG serious game proposal

of complexity and coupling. Based on the proposal, the following steps have been
established:

Generation of the ACG. The architectural design of the system has been represented
in Figs. 4.2, 4.3, and 4.4, so 18 components integrated the serious game, and the
UML diagrams were the data gathering entry to establish the graph ACGSG (see
Fig. 4.6). The relationship between the vertices of the graph and the components
of the system is presented in Table 4.4. The first column has the name of the
vertex that relates to the component, and in the following columns, they are the
complexity and coupling components metrics. The plug-in CodePro Analytix
[36] was used to get the CCM and CBO metrics on each component.

Setting the Complex attribute on ACG. The CCM metrics are ACG’s weight, so
the Floyd-Warshall algorithm was running, and 75 critical paths were estimated,
thus the less complex paths are discovered at the beginning and the more complex

4 Performance on Software Architecture Design to Serious Games for Mobile Devices 79

Table 4.4 The relationship
between the vertexes of the
ACGSG and the components
of the system

Vertex Component CCM CBO

v1 Scenarios 3.66 2
v2 Instructions 1.14 3
v3 Levels 2.33 1
v4 Exercise 1.33 2
v5 Questions 2.5 1
v6 Solutions 1.03 2
v7 Concrete_Exercise 1.14 3
v8 Concrete_Question 1.14 3
v9 Concrete_Solution 2.33 1

v10 Beginner 1.14 3
v11 Intermediate 2.5 1
v12 Advanced 1.19 2
v13 Scenarios_view 1.29 3
v14 View_scenarios 1.19 2
v15 Colors 1.17 3
v16 Images 1.19 2
v17 Evaluation 1.19 2
v18 Singleton_Score 1.19 2

paths at the end, these are later, according to the projected functionality, that we
designated critical paths, these are the ones that reflect the functionality of the
system embedded in the entire design.

Setting the CBO metric on paths localized. Following the proposal, to set quality
factors in critical paths localized, the Spearman correlation coefficient has been
estimated with the CBO data group and CCM data group in each path localized
previously. Some results of the paths identified are shown in Table 4.5; in the
first column are presented the identification path; in the next column, the CCM
and CBO metrics on the sequence are shown, and the last column is presented the
quality factor results. To set quality factors, Spearman’s correlation has evaluated
the relationship between the CCM and the CBO as ordinal variables. The results
obtained have shown spectrum values between −1 and +1. If the value closes
to −1, it indicated a weak relationship between complexity and coupling, so it
was set at a low-quality level on the path evaluated. The quality parameter values
close to +1 have a stronger relation, and the quality is higher. The plot on the
dispersion quality parameter of Fig. 4.7 shows us a dispersion set has a stronger
relationship. From these results, it was possible to infer the quality of the system
was acceptable according to the attributes that were evaluated.

In Table 4.5, the results are presented. The first column has the ID of the critical
path, the second the components sequence and their CMM and CBO metrics values,
and finally the last the quality parameter. In the table, only some results are presented
as an example. The total results of the 71 critical paths are the input data of the
scatter dispersion plot in Fig. 4.7.

80 L. Davila-Nicanor et al.

Table 4.5 Set the critical paths evaluated through quality parameters on serious game

ID path Sequence Quality parameter

1 v1 v2 v13 v15 v10 1
CCM 3.66 1.14 1.29 1.17 1.14
CBO 2 3 3 3 3
2 v1 v2 v13 v15 v11 0.6488
CCM 3.66 1.14 1.29 1.17 2.5
CBO 2 3 3 3 1
3 v1 v2 v13 v15 v12 0.2236
CCM 3.66 1.14 1.29 1.17 1.19
CBO 2 3 3 3 2
4 v1 v2 0.8750
CCM 3.66 1.14
CBO 2 3
5 v1 v2 v13 0.6488
CCM 3.66 1.14 1.29
CBO 2 3 3
n v1 vn Quality_factor
CCM
CBO
71 v18 v17 1
CCM 1.19 1.19
CBO 2 2

0

1.0

0.6

Q
ua

lit
y

P
rio

rit
za

tio
n

P
ar

am
et

er

0.2

10 20 30

Plot on Dispersion Prioritization Parameter on 71 critical paths

40

ID path

50 60 70

Fig. 4.7 Plot on dispersion quality parameter on serious game proposal

4 Performance on Software Architecture Design to Serious Games for Mobile Devices 81

4.5 Discussion

In this proposal, the use of design patterns has been contemplated to improve the
software architecture performance. Their holistic vision establishes an organization
that requires optimization of the design, and the approach contemplates dynamic
objects in memory generated at runtime [14–16]. This approach differs from others,
where all the functions that the system can execute are loaded into memory, which
in the case of serious games on mobile devices slows down the game dynamics.

To validate and quantify the design approach have integrated the software archi-
tecture evaluation method by design quality attributes complexity and coupling.
The [17] proposal has been selected because the analysis has as its main axis a
complexity approach strengthened with coupling. This relationship is related to
efficiency [29–31], and the latter is another attribute that is desired in application
performance. In the design stage, several studies are agreeing on the metrics
Complexity [31–34], and Coupling [31, 32, 34, 35] are good options to estimate
the quality and performance in oriented-object systems. In the design is not possible
to carry out a dynamic evaluation, for instance on the testing, where it is possible
because the code is available. The design doesn’t have source code, and a static
evaluation is made, taking the concept of concerns where the requirements are
projected into the architecture of the system, and the approach is developed through
UML diagrams, algorithms, and others [22]. The advantage of evaluating the design
is cost reduction because it is 12 times lower than in the testing stage [28]. Another
advantage is the defects localization and fixed before the code implementation, and
finally, test prioritization is also available early, because the background is available
to determine which components or their sequences that have a higher probability of
failure.

The design architectural evaluation applied in this research provides a predictive
model and formal method to assess a quality scheme on oriented object systems.
According to the results obtained, it can be estimated that the quality parameter
obtained through the evaluation model is based on the complexity and coupling
attributes, so the architectural complexity graph (ACG) was established, through
which a deterministic analysis is performed. This is the basis to set the quality
parameter, and those component sequences with a quality parameter close to +1
have a stronger relationship between complexity and coupling attributes, also
indicated at a good-quality level. With the implementation of the Wrapper and
MVC design patterns in software architecture to the serious game, according to the
scatterplot (Fig. 4.7), 86.6 percent of evaluated sequences close to +1, taking as an
indicator the value of 0.5 of the dispensing graph, there are indicating a good quality
level based on complexity and coupling quality design. The approach implemented
to validate an indirect study of the efficiency of software design architectures using
complexity and coupling of software for serious games is logically valid. Although
the results are not enough to set quantified parameters for efficiency, it is necessary
to estimate another analytical model to quantify the relationship.

82 L. Davila-Nicanor et al.

4.6 Conclusions

The development of software for serious games in mobile applications implies a
learning process like the process of incorporating new learning into memory, as
well as retrieving and using it. This requires a software architecture designed to
optimize memory and processing resources. The design patterns approach offers
quality and performance. In the case of devices with limited storage, for instance,
mobile phones, they allow the optimization of resources.

Answered the research questions, the design patterns contributed to improving
the performance of software architecture on mobile serious games. The software
development process to integrate design patterns on software architecture in mobile
serious games involves an adequate abstraction of requirements employing a holistic
vision projected in the design architecture, as well as the selection of quality
attributes and design patterns that have the best performance. According to the
purpose of the application that was developed at work, the Wrapper and MVC
patterns focused on establishing scenarios at runtime. This approach optimizes
the use of computing resources such as memory and processing. The process
implemented to validate an indirect study of the efficiency of software design
architectures through the complexity and coupling of software for serious games
is logically valid. Although it is appropriate to determine an analytical model
to quantify for efficiency, an additional study is required to complement the
quantitative analysis to address the computational cost or to do traditional testing
for this quality attribute.

As expressed by the study [23], our software engineering community must
contribute studies and techniques to improve the performance of these applications
from a formal point of view. The proposal describes a technique to perform and
validate the design architecture. The advantage of evaluating the system in early
phases like design is cost reduction to remove defects and better the software
performance. The main limitation of the study is that there are attributes such
as efficiency, which must be evaluated in phases after the design stage; however,
validating that there is a good architectural design implies a better implementation
and consequently a lower number of failures in its operation, which benefits the
performance of the system.

The evaluation results set the pattern design implementation on design archi-
tecture to serious game software set a high quality related with Complexity
and Coupling, allowing us to quantify the advantages of this approach which
strengthens that the design techniques implemented are suitable in terms of software
performance.

Acknowledgments This work was partially supported by the PNPC-CONACyT 2013–2016 and
2019 21 Master’s thesis on Master of Degree Postgraduate of the Autonomous University of
Mexico State.

Conflict of Interests We declare that we have no financial or personal conflicts of interest that
could inappropriately influence the development of this research.

4 Performance on Software Architecture Design to Serious Games for Mobile Devices 83

References

1. Gauthiera, A., Porayska-Pomsta, K., Mayer, S., et al.: Redesigning learning games for different
learning contexts: applying a serious game design framework to redesign Stop & Think. Int. J.
Child-Comput. Interact. 33, 100503 (2022)

2. Daylamani-Zad, D., Spyridonis, F., Al-Khafaaji, K.: A framework and serious game for
decision making in stressful situations; a fire evacuation scenario. Int. J. Hum.–Comput. Stud.
162(2022), 102790 (2022)

3. Czauderna, A., Budke, A.: How digital strategy and management games can facilitate the
practice of dynamic decision-making. Educ. Sci. 10(4), 99 (2020)

4. Clark, E.M., Merrill, S.C., Trinity, L., Bucini, G., Cheney, N., Langle-Chimal, O., Shrum,
T., Koliba, C., Zia, A., Smith, J.M.: Using experimental gaming simulations to elicit risk
mitigation behavioral strategies for agricultural disease management. PLoS One. 15(3),
e0228983 (2020)

5. Mendonca, D., Beroggi, G.E., Van Gent, D., Wallace, W.A.: Designing gaming simulations
for the assessment of group decision support systems in emergency response. Saf. Sci. 44(6),
523–535 (2006)

6. Yamoul, S., Ouchaouka, L., Radid, M., Moussetad, M.: Implementing a serious game as a
learner motivation tool, The 4th International Workshop of Innovation Technologies. Procedia
Comput. Sci. 210(2022), 351–357 (2022)

7. Jarnac de Freitas, M., Mira da Silva, M.: Systematic literature review about gamification in
MOOCs. Open Learn. J. Open Distance e-Learn., 1–23 (2020)

8. Sailer, M., Homner, L.: The gamification of learning: a meta-analysis. Educ. Psychol. Rev.
32(1), 77–112 (2020)

9. Connolly, T.M., Boyle, E.A., MacArthur, E., Hainey, T., Boyle, J.M.: A systematic literature
review of empirical evidence on computer games and serious games. Comput. Educ. 59(2),
661–686 (2012)

10. Kara, N.: A systematic review of the use of serious games in science education. Contemp.
Educ. Technol. 13, 2 (2021)

11. Graafland, M., Schraagen, J.M., Schijven, M.P.: Systematic review of serious games for
medical education and surgical skills training. Br. J. Surg. 99(10), 1322–1330 (2012)

12. Bellotti, F., Berta, R., De Gloria, A.: Designing effective serious games: opportunities and
challenges for research. Int. J. Emerg. Technol. Learn. (2010)

13. Krath, J., Schürmann, L., von Korflesch, H.F.O.: Revealing the theoretical basis of gamifica-
tion: a systematic review and analysis of theory in research on gamification, serious games,
and game-based learning. Comput. Hum. Behav. 125(2021), 106963 (2021)

14. Wedyan, F., Abufakher, S.: Impact of design patterns on software quality: a systematic
literature review. IET Softw. 14(1), 1–17 (2021)

15. Fletcher, J., Cleland-Huang, J.: Soft goal traceability patterns. In: 17th International Sym-
posium on Software Reliability Engineering (ISSRE’06), pp. 363–374. IEEE, Raleigh, NC
(2006)

16. Gamma, E., Henry, R., Johnson, R., Vlissides, J.: Design Patterns. Elements of Reusable
Object-Oriented Software. Addison-Wesley, New York, NY (1994)

17. Dávila-Nicanor, L., Orozco Aguirre, H.R., Quintana López, M., Banda Madrid, A.: Enhance-
ment to test case prioritization through object-oriented software architectural design. In: 10th
International Conference on Software Process Improvement (CIMPS) 2021, pp. 131–138
(2021)

18. Galvis Panqueva, A.H.: Ingeniería de Software Educativo. Ediciones Uniandes - Universidad
de los Andes, Santafé de Bogotá, Colombia (1992)

19. Bezanilla, M.J., Arranz, S., Rayon, A., Rubio, I., Menchaca, I., Guenaga, M., Aguilar, E.:
Propuesta de evaluación de competencias genéricas mediante un juego serio. New Approach.
Educ. Res., 44–54 (2014)

84 L. Davila-Nicanor et al.

20. Gu, S.M., Wu, Y., Wu, W.Z., Li, T.J.: Knowledge approximations in multi-scale ordered
information systems. In: Rough Sets and Knowledge Technology, Shanghai, China, 2014, pp.
525–534 (2014)

21. IEEE Std 1471-2000: IEEE Recommended Practice for Architectural Description of Software-
Intensive Systems. IEEE Computer Society (2000)

22. Oliver, V., Ingo, A., Arif, C.K.: Timo Software Architecture. Springer Nature, New York, NY
(2011)

23. Mizutani, W.K., Daros, V.K., Kon, F.: Software architecture for digital game mechanics.
Entertain. Comput. 38, 100421 (2021)

24. Dzaferagic, M., Kaminski, N., Macaluso, I., Marchetti, N.: Relation between functional
complexity, scalability, and energy efficiency in WSNs. In: 13th International Wireless
Communications and Mobile Computing Conference (IWCMC), Valencia, Spain, 2017, pp.
675–680 (2017)

25. Bansiya, J., Davis, C.G.: A hierarchical model for object-oriented design quality assessment.
IEEE Trans. Softw. Eng. 28(1), 4–17 (2001)

26. Jayalath, T., Thelijjagoda, S.: A modified cognitive complexity metric to improve the readabil-
ity of object-oriented software. In: International Research Conference on Smart Computing
and Systems Engineering (SCSE), Colombo, Sri Lanka, 2020, pp. 37–44 (2020)

27. Arvanitou, E.M., Ampatzoglou, A., Chatzigeorgiou, A., Galster, M., Avgeriou, P.: A mapping
study on design-time quality attributes and metrics. J. Syst. Softw. 127, 52–77 (2017)

28. Park, R.E., Wolfhart, B.: Goal-Driven Software Measurement. A Guidebook. Software Engi-
neering Institute, Carnegie Mellon University, Pittsburgh (1996)

29. Madi, A., Zein, O.K., Kadry, S.: On the improvement of cyclomatic complexity metric. Int. J.
Softw. Eng. Appl. 7(2) (2013)

30. Lewis, A.D., Groth, K.M.: Metrics for evaluating the performance of complex engineering
system health monitoring models. Reliab. Eng. Syst. Saf. 223, 108473 (2022)

31. Singh Rathore, S., Gupta, A.: Investigating object-oriented design metrics to predict fault-
proneness of software modules. In: 2012 CSI Sixth International Conference on Software
Engineering (CONSEG), Indore, India (2012)

32. Iyapparaja, M., Sureshkumar, D.: Coupling and cohesion metrics in java for adaptive reusabil-
ity risk reduction. In: IET Chennai 3rd International on Sustainable Energy and Intelligent
Systems (SEISCON 2012), Tiruchengode, India (2012)

33. Yadav, V., Singh, R.: The prediction design quality of object-oriented software using UML
diagrams. In: 3rd International Advance Computing Conference (IACC), pp. 1462–1467,
Ghaziabad, India (2013)

34. Halim, A.: Predict fault-prone classes using the complexity of UML class diagram. In:
International Conference on Computer, Control, Informatics and Its Applications (IC3INA),
Jakarta, Indonesia (2013)

35. Kumar, G.P., Joshi, G.: QMOOD metric sets to assess the quality of the java program.
In: International Conference on Issues and Challenges in Intelligent Computing Techniques
(ICICT), Ghaziabad, India (2014)

36. Google Developers 2018. https://sites.google.com/a/strategiesinsoftware.com/site/
commentary/googlecodeproanalytix (2022). Accessed Aug 2022

 13767 45079 a 13767 45079 a

Chapter 5
ENTRUST: Co-design and Validation
of a Serious Game for Assessing Clinical
Decision-Making and Readiness
for Entrustment

Edward F. Melcer, Cara A. Liebert, Samuel Shields, Oleksandra G. Keehl,
Jason Tsai, Fatyma Camacho, Hyrum Eddington, Amber Trickey,
Melissa Lee, Sylvia Bereknyei Merrell, James R. Korndorffer Jr.,
and Dana T. Lin

Abstract Graduate medical education is moving toward a competency-based
paradigm, predicated upon multiple real-time assessments to verify clinical and
technical proficiency (i.e., readiness for entrustment of residents). This requires
not only assessment of technical skills and medical knowledge but also critical
clinical decision-making skills in preoperative, intraoperative, and postoperative
settings. However, most medical education programs have adopted reductionist
approaches, reducing assessment of readiness for entrustment to only assessing
technical skill performance. As such, there is a growing need for tools that
can provide more comprehensive and objective evaluations of the proficiency of
residents to perform medical procedures. This chapter presents ENTRUST, our
serious game-based online platform to assess trainees’ decision-making competence
across various Entrustable Professional Activity (EPA) domains. Specifically, we
discuss (1) the design of ENTRUST; (2) insights identified and lessons learned
throughout the development process that can aid collaboration between serious
game developers and subject matter experts; and (3) results from a pilot study of
ENTRUST—demonstrating the tool’s capability to discriminate between levels of
surgical expertise and providing initial validity evidence for its use as an objective
assessment for clinical decision-making.

E. F. Melcer (�) · S. Shields · O. G. Keehl · J. Tsai · F. Camacho
University of California, Santa Cruz, Santa Clara, CA, USA
e-mail: eddie.melcer@ucsc.edu; samshiel@ucsc.edu; okeehl@ucsc.edu; ctsai32@ucsc.edu;
fcamach1@ucsc.edu

C. A. Liebert · H. Eddington · A. Trickey · M. Lee · S. B. Merrell · J. R. Korndorffer Jr. · D. T. Lin
Stanford University School of Medicine, Stanford, CA, USA
e-mail: carap@stanford.edu; hyrumedd@stanford.edu; atrickey@stanford.edu;
melchlee@stanford.edu; sylviab@stanford.edu; korndorffer@stanford.edu; danalin@stanford.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
K. M. L. Cooper, A. Bucchiarone (eds.), Software Engineering for Games
in Serious Contexts, https://doi.org/10.1007/978-3-031-33338-5_5

85

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33338-5protect T1	extunderscore 5&domain=pdf

 885 49649 a 885 49649 a

mailto:eddie.melcer@ucsc.edu
mailto:eddie.melcer@ucsc.edu
mailto:eddie.melcer@ucsc.edu

 10348 49649 a 10348 49649
a

mailto:samshiel@ucsc.edu
mailto:samshiel@ucsc.edu

 18270 49649 a 18270 49649
a

mailto:okeehl@ucsc.edu
mailto:okeehl@ucsc.edu

 25399 49649 a 25399
49649 a

mailto:ctsai32@ucsc.edu
mailto:ctsai32@ucsc.edu

 -2016 50756 a -2016
50756 a

mailto:fcamach1@ucsc.edu
mailto:fcamach1@ucsc.edu

 885 54631 a 885 54631 a

mailto:carap@stanford.edu
mailto:carap@stanford.edu

 8963 54631 a 8963 54631 a

mailto:hyrumedd@stanford.edu
mailto:hyrumedd@stanford.edu

 18814 54631 a 18814 54631 a

mailto:atrickey@stanford.edu
mailto:atrickey@stanford.edu

 -2016 55738 a -2016
55738 a

mailto:melchlee@stanford.edu
mailto:melchlee@stanford.edu

 7420 55738 a 7420 55738 a

mailto:sylviab@stanford.edu
mailto:sylviab@stanford.edu

 16178 55738 a 16178 55738
a

mailto:korndorffer@stanford.edu
mailto:korndorffer@stanford.edu

 26521 55738 a 26521
55738 a

mailto:danalin@stanford.edu
mailto:danalin@stanford.edu
https://doi.org/10.1007/978-3-031-33338-5_5
https://doi.org/10.1007/978-3-031-33338-5_5
https://doi.org/10.1007/978-3-031-33338-5_5
https://doi.org/10.1007/978-3-031-33338-5_5
https://doi.org/10.1007/978-3-031-33338-5_5
https://doi.org/10.1007/978-3-031-33338-5_5
https://doi.org/10.1007/978-3-031-33338-5_5
https://doi.org/10.1007/978-3-031-33338-5_5
https://doi.org/10.1007/978-3-031-33338-5_5
https://doi.org/10.1007/978-3-031-33338-5_5
https://doi.org/10.1007/978-3-031-33338-5_5

86 E. F. Melcer et al.

Keywords Game-based assessment · Games for Health · Serious game design ·
Co-design · Clinical decision-making · Entrustable Professional Activities

5.1 Introduction

In recent years, medical education has moved toward a competency-based paradigm
predicated upon multiple, real-time assessments to verify proficiency [43]. Within
this new paradigm, Entrustable Professional Activities (EPAs) –or units of profes-
sional practice that constitute what clinicians do as daily work– were created to
bridge the gap between competency frameworks and clinical practice [44]. EPAs
are effective tasks or responsibilities to be entrusted to a trainee once they have
attained competence at a specific level and embody a more global integration
of the Accreditation Council for Graduate Medical Education (ACGME) core
competencies [43]. Notably, there has been a widespread initiative to adopt and
incorporate EPAs in graduate medical training as a means of transitioning toward
a more competency-based educational paradigm. In 2018, the American Board of
Surgery (ABS) initiated a nationwide pilot tasking 28 general surgery programs
to explore the use and implementation of 5 core general surgery EPAs, with the
intention of formalizing EPAs as a requirement for all general surgery training
programs by 2023 [31].

The determination of readiness for entrustment is typically predicated upon direct
observation and assessment of behaviors by faculty in the clinical setting [11]. While
frequent, real-time microassessments are ideal in assessment of EPAs and readiness
for entrustment, this approach places a sizeable and continuous burden on faculty to
regularly complete evaluations for the many individual interactions they have with
multiple trainees who are to be graded across a variety of clinical skills and EPAs.
In addition, there is variability in the types and severity of patient cases encountered
in the real-world clinical setting, making it difficult to reliably evaluate trainees’
ability to manage rare diseases or complications [45]. Conversely, virtual patient
simulations enable trainees to demonstrate their clinical and surgical decision-
making in an objective, reproducible, and measurable way while decompressing
the assessment burden off faculty raters [4]. In addition, standardized scenarios may
be deployed to minimize implicit bias and subjectivity, reduce test anxiety, and test
infrequently encountered, yet critical, clinical conditions [27, 49].

Given these challenges, many pilot institutions have operationalized EPAs
by adopting reductionistic approaches and focusing on assessment of operative
performance only, as readily available tools exist to measure this construct, e.g.,
[6, 15, 18, 32, 37, 38, 47]. One mobile operative microassessment application,
SIMPL (System for Improving and Measuring Procedural Learning) [6, 17, 18],
has been widely utilized by surgical training programs to rate trainee’s technical
skills. While it possesses robust validity evidence for evaluating operative autonomy
[6, 15, 18], it does not assess clinical decision-making. However, based on the
EPA definitions and essential functions articulated by the ABS, clinical decision-

5 ENTRUST: Co-design and Validation of a Serious Game for Assessing. . . 87

making competence in the preoperative, intraoperative, and postoperative setting
constitutes critical components of entrustment. As a result, readiness for entrustment
should include assessment of both operative autonomy and clinical decision-
making. Therefore, there is a great need for evidence-based EPA-aligned tools that
specifically address clinical decision-making, as a complement to existing technical
skills evaluations.

To address this need for an objective, efficient, and scalable means to assess
clinical and surgical decision-making, we developed ENTRUST—a virtual patient
authoring and serious game-based assessment platform to deploy rigorous, case-
based patient simulations for evaluation of EPAs. In this chapter, we present (1)
the design of ENTRUST; (2) insights identified and lessons learned throughout the
development process that can aid collaboration between serious game developers
and subject matter experts; and (3) results from a pilot study of ENTRUST—
demonstrating its capability to discriminate between levels of surgical expertise and
providing initial validity evidence for its use as an objective assessment for clinical
decision-making.

5.2 Background

5.2.1 Entrustable Professional Activities

In 2018, the ABS commenced a multi-institutional pilot to implement five general
surgery EPAs, each with defined levels of entrustment from Level 0 to Level 4,
in surgical residency [1, 7]. These initial five ABS EPAs include (1) evaluation
and management of a patient with inguinal hernia, (2) evaluation and management
of a patient with right lower quadrant pain, (3) evaluation and management of a
patient with gallbladder disease, (4) evaluation and management of a patient with
blunt/penetrating trauma, and (5) providing general surgical consultation to other
healthcare providers [7]. Additionally, the ABS has given individual residency
programs the ability to determine how EPAs are piloted and assessed at their
institution. While tools exist for the intraoperative assessment of technical skills and
operative autonomy [6, 18, 32, 37, 38, 47], they do not directly not assess clinical
decision-making across the preoperative, intraoperative, and postoperative settings.
The assessment of technical skills is necessary, but is not sufficient, to determine
entrustment [45]. Therefore, there is a notable gap in the literature and need for
efficient, objective, evidence-based, EPA-aligned tools that assess clinical decision-
making across the entire course of surgical care, as a fitting complement to existing
technical skill and intraoperative evaluations.

88 E. F. Melcer et al.

5.2.2 Game-Based Assessment in the Health Domain

Educational assessment has evolved over the past decade from traditional pen-
and-paper-based tests to the use of technology such as games to assess various
competencies in the form of game-based assessment [48]. Notably, due to the
technological enhancement of what can be measured, game-based assessment pro-
vides promising possibilities for more valid and reliable measurement of students’
skills, knowledge, and attributes compared to the traditional methods of assessment
such as paper-and-pencil tests or performance-based assessments [13]. Within the
health domain, game-based assessment has been utilized in a variety of contexts
including assessment of patient health [46], assessment of motor skills and ability to
perform first aid [9], neuropsychological assessment [16], and assessment of health-
related knowledge/learning [33], to name a few. However, in the context of clinical
reasoning and decision-making, the predominant focus of serious games has been
on training and learning, e.g., [10, 20, 21, 23, 24, 26, 29, 30]. This surprising lack
of game-based assessment for clinical reasoning and decision-making highlights
the notable gap in the literature and further emphasizes the need for evidence-
based EPA-aligned game-based assessment tools that specifically address clinical
decision-making—such as ENTRUST. Furthermore, such game-based assessment
tools offer a number of potential benefits over traditional forms of assessment if
employed correctly including reduced test anxiety [27] and more authentic contexts
for assessing competency, which is crucial for acquiring more accurate assessments
of skill [40].

5.3 Design of ENTRUST

ENTRUST is a serious game-based online virtual patient simulation platform to both
train and assess medical trainees’ decision-making competence within EPAs. It is
therefore targeted at training and assessing the competency of the next generation
of clinicians at the medical student and resident levels.

5.3.1 Co-design Process

We utilized a co-design approach for the design and development of ENTRUST—
which is a widely used approach within the health field [41]. Co-design stems
from participatory design, where the people destined to use the system play a
critical role in designing it [39]. However, in a co-design process, stakeholders are
treated as equal collaborators or can even take the lead in the design process rather
than have limited roles [42]. In this way, co-design involves a shift in the locus
of responsibility and control so that “clients” or users of services become active

5 ENTRUST: Co-design and Validation of a Serious Game for Assessing. . . 89

partners in designing, shaping, and resourcing services, rather than being passive
recipients of pre-determined services [8]. For ENTRUST, we worked directly with
medical education experts and continue to do so as co-designers (i.e., full partners
in the entire design process [41]) on the project. We found this approach to be
critical for the successful design and development of ENTRUST as the subject
matter of clinical decision-making and entrustment is too complex for a serious
game development team to successfully design, develop, and maintain on their own.
As such, our research team utilizes the following co-design and agile development
process (with a number of the steps drawn from [5]):

1. Contextual inquiry in the form of informational interviews and weekly artifact
review meetings with medical education experts to identify latent needs, chal-
lenges experienced, and desired future state/artifact creation.

2. Generation of design and rapid prototyping to address identified needs and
challenges. This is done through the development of new ENTRUST artifacts
(e.g., creating an authoring platform to complement the game-based assessment
tool) or incorporation of desired features into existing artifacts (e.g., adding a
new vital sign algorithm to the simulation mode and authoring platform). Repeat
steps 1 and 2 weekly.

3. Sharing ideas and receiving feedback through periodic presentations of design
and development work on ENTRUST to larger subsections of the medical
education community.

4. Conducting studies and data analysis to empirically validate ENTRUST designs.
5. Interpreting results for requirements translation, i.e., identifying action items,

feasible priorities, and feeding back into steps 1 and 2.

This co-design process has resulted in the current iteration of ENTRUST as
described below.

5.3.2 Assessment Platform

The current ENTRUST platform includes two primary phases: simulation mode and
question mode.

5.3.2.1 Simulation Mode

In simulation mode (see Fig. 5.1), the examinee engages with patient case scenarios
starting from the preoperative setting. This setting can be in either the emergency
department or the outpatient clinic, where the examinee initiates a physical exam-
ination and full workup of the patient. During workup, the examinee can order
diagnostic tests, administer fluids and medications, perform bedside procedures,
and request consultation. All actions –both player evoked (such as conducting a
physical exam) and game evoked (such as changing vital signs due to deteriorating

90 E. F. Melcer et al.

Fig. 5.1 The simulation mode within ENTRUST. Enables examinees to engage with patient case
scenarios starting at the preoperative setting, including physical examination and full patient
workup

patient condition)– are recorded and scored on the back-end database according to
an expert-consensus-derived scoring algorithm (see Sect. 5.3.4). Points are earned
for ordering relevant labs and key interventions; conversely, points are lost for
performing inappropriate, unnecessary, or harmful actions.

Notably, the ENTRUST interface in this mode consists of six key features that
enable examinee input for assessment and provide feedback from the simulation:

1. Timer (Fig. 5.1 Top Left)—the timer displays the amount of time the examinee
has been active in the preoperative setting. During play, 1 second of game time
displayed on the timer equates to 1 minute of time taken in a real-world scenario.

2. Patient/physical exam (Fig. 5.1 Middle Left)—the virtual patient enables exam-
inees to conduct a physical examination and see results in the medical chart. As
examinees move their mouse over the virtual patient, various icons and images
will appear to indicate that a physical examination can be conducted on that part
of the body with a mouse click. Patient facial expressions also change depending
on their health status throughout the course of the preoperative setting.

3. Notifications (Fig. 5.1 Bottom Left)—notifications appear in the bottom-left
corner of the screen after each physical examination to report the results. This
is done to remove the need to go to the right side of the screen to view a
physical exam result in the medical chart before returning to continue examining
the patient on the left side of the screen, i.e., to reduce extrinsic cognitive load
[22, 34].

5 ENTRUST: Co-design and Validation of a Serious Game for Assessing. . . 91

4. Vital monitor and order progress monitor (Fig. 5.1 Top Middle)—the vital
monitor shows the virtual patient’s vital signs throughout the preoperative
simulation. Vitals are updated in real time (relative to game time) and can
deteriorate due to lack of or improper treatment as well as improve due to
performing appropriate bedside procedures or administering appropriate fluids
or medications. An audible alarm (similar sounding to real-world vital machine
alarms) can also be heard when patient vitals reach a dangerous level. The
order progress monitor shows the time remaining for any diagnostic test,
administration of fluids and medications, bedside procedures, or consultations
ordered. The exact amount of seconds remaining is shown in the progress bar
and mirrors typical real-world times taken for each order at a rate of one game
second to one real-world minute.

5. Order console (Fig. 5.1 Bottom Middle)—the order console enables the exam-
inee to order diagnostic tests, administer fluids/medications, perform bedside
procedures, and request consultation. It also allows the examinee to make
decisions about disposition, e.g., whether the patient should go home, to the
operating room (OR), or to the intensive care unit (ICU) or proceed with
nonoperative management. Selecting a disposition or causing the patient to go
into cardiac arrest will proceed to the question mode of ENTRUST.

6. Medical chart (Fig. 5.1 Right)—the medical chart maintains and displays all
relevant information regarding the virtual patient. This includes their medical
history and initially reported health complaint as well as the results from all
physical exams and orders placed. Examinees can click the tabs on the right
side of the chart to toggle between this information. Whenever there is a change
to the medical chart, such as when a physical exam or order is completed, the
corresponding tab displays a red dot to indicate new information is available.

5.3.2.2 Question Mode

ENTRUST switches to question mode (Fig. 5.2) when the examinee opts to proceed
to the operating room. In question mode, the examinee is tested on intraoperative
and postoperative knowledge, decision-making, and management of complications
via a series of single-best answer multiple-choice questions. Points are awarded for
answering correctly and deducted for answering incorrectly.

5.3.3 Authoring Platform

ENTRUST also features an online authoring portal that is designed to be accessible
for clinicians and content experts to create and deploy new case scenarios without
requiring programming experience or directly modifying the game (Fig. 5.3). This
portal provides user-friendly, easy creation, and customization options for a variety

92 E. F. Melcer et al.

Fig. 5.2 The question mode within ENTRUST. Examinees are tested on intraoperative and
postoperative knowledge, decision-making, and management of complications via a series of
single-best answer multiple-choice questions

Fig. 5.3 The ENTRUST authoring platform. Enables clinicians and content experts to easily create
and deploy new case scenarios without requiring programming experience or direct modification
of the game

5 ENTRUST: Co-design and Validation of a Serious Game for Assessing. . . 93

of aspects needed for assessment of clinical decision-making skills. Specifically, the
portal provides (1) an order library for creation and management of orders that can
be used in case scenarios; (2) a case library that allows for creation and management
of all aspects related to a case scenario for assessment; and (3) an exam library
that enables the sequencing of case scenarios to create a wide spectrum of exams.
These numerous customization options allow for virtually unlimited cases and to be
crafted, providing control of aspects ranging from varying patient age, appearance,
and apparel via a novel patient character generating tool to specialized labs and
orders on the displayed intervention menu.

5.3.3.1 Order Library

The order library enables authors to create, manage, and modify a database of
orders for use in any case scenario (see Fig. 5.4). The order library is designed to be
modular and reusable, enabling authors to specify all default information necessary
for a particular order to work within any case while leaving scenario specific details
(such as scoring or abnormal results) to be specified in a case-by-case basis within
the case library. Specifically, the order library enables authors to easily specify:

• Order Name
• Order Category (Procedure, Lab, Imaging, Medication, Transfusion, Consult)
• Order Subcategory, which is dependent upon what order category was selected
• Default Order, i.e., whether it should be included by default when creating any

new case scenario in the case library)
• Wait Time in seconds for the order to complete during simulation
• Default Score when the order is made during simulation
• Default Result when the order is made during simulation—there are also

additional options to specify if the result should randomly fall within a number
range or use a default image if applicable or if there should be multiple default
results provided simultaneously

• Unit of the default result if applicable

5.3.3.2 Case Library

The case library enables authors to create, manage, and modify a database of case
scenarios for use in any examination (see Fig. 5.5). The case library is designed
to enable authors to specify all core aspects of a case scenario, including desig-
nating effects of interventions on vital signs and determining the appropriateness
of actions by rewarding and penalizing examinees on a tiered scoring system.
Clinical vignettes and multiple-choice questions can be entered and edited with
ease and flexibility as well. Additionally, media files such as photographs and
radiology images can be uploaded to be interpreted by the examinee. The specific
configuration options the case library provides are:

94 E. F. Melcer et al.

Fig. 5.4 The ENTRUST authoring platform order library tool. Enables authors (e.g., clinicians and
content experts) to easily create and manage modular orders that can be used in any case

5 ENTRUST: Co-design and Validation of a Serious Game for Assessing. . . 95

Fig. 5.5 The ENTRUST authoring platform case library tool. Enables authors (e.g., clinicians and
content experts) to easily create and manage case scenarios for examinations

96 E. F. Melcer et al.

1. General information—this section enables authors to specify basic information
about the case scenario (such as title, summary, whether it occurs in the
emergency room or clinic, and so forth) as well as general information about
the virtual patient (such as patient name, their reported ailment, present illness,
past medical and surgical history, medications, allergies, and so forth).

2. Patient image—this section provides a virtual patient generation tool (see
Fig. 5.6) that enables authors to customize a wide range of details about the
virtual patient such as their sex, age, BMI, skin color, facial features, hair, what
they wear when on-screen, visible physical abnormalities during a physical exam
(such as a hernia), where the incision site will be displayed during the question
mode, and if they will have a C-collar or backboard for certain kinds of injuries.
Notably, the broad range of customization options allows for representation of a
diverse range of patients from infant to elderly, underweight to morbidly obese,
and so forth (see Fig. 5.6 Right for some examples).

3. Vital sign settings—this section enables authors to specify the starting vitals for
the virtual patient in the simulation mode, as well as specify a vital sign update
algorithm that specifies how the patient’s vitals will change throughout the
simulation mode. Vital sign algorithms realistically replicate how certain vitals
would change over time in the real world for certain conditions. Current options
include clinic patient, stable ED patient, isolated tachycardia, hemorrhagic shock,
sepsis, and septic shock.

4. Physical exam—this section enables authors to specify the results and score for
performing various physical examinations on the virtual patient. Current physical
examinations available to the examinee include general, HEENT (head, ears,
eyes, nose, and throat), breast, cardiovascular, pulmonary, abdomen, left/right
genitourinary, and extremities.

5. Orders—this section enables authors to specify what orders (i.e., procedures,
labs, imaging, medications, transfusions, consults, or fluids) are available to the
examinee in a specific case scenario, as well as the results and positive/negative
score effect placing that order will have. By default, when a new order is added
to a case scenario, it uses the default details, result(s), and score change specified
in the order library. However, authors are also able to modify an order, for that
specific case scenario only, to specify sophisticated result and scoring logic (see
Fig. 5.7). Specifically, authors can (1) customize results, such as change findings
or add a different image if applicable to show patient abnormalities for a case
scenario; (2) set new scoring logic for use of an order, including setting additional
penalties for extraneous, repeated use of an order when not appropriate; (3) set
pretest effects if applicable; and (4) set vital sign changes that will occur upon
making an order if applicable, e.g., by ordering fluids.

5 ENTRUST: Co-design and Validation of a Serious Game for Assessing. . . 97

Fig. 5.6 The ENTRUST authoring platform virtual patient generation tool. Enables authors (e.g.,
clinicians and content experts) to easily define key patient details and visualizes how these will
look in real time. Notably, the broad range of options allows for representation of a diverse range
of patients from infant to elderly, underweight to morbidly obese, and so forth

98 E. F. Melcer et al.

Fig. 5.7 The customization of results and scoring logic within the ENTRUST authoring platform.
Enables authors (e.g., clinicians and content experts) to easily define how a specific order will
impact results, score, vital sign changes, and so forth for a particular case scenario

6. Disposition settings—this section enables authors to specify scoring for each
potential disposition choice made by the examinee. Current disposition options
include sending the patient home, to a ward, to the ICU, or to the OR or to
proceed with nonoperative management.

7. Intraoperative and postoperative questions—these sections enable authors
to specify single-best answer multiple-choice questions and related settings for
questions that will appear in the question mode.

5.3.3.3 Exam Library

The exam library enables authors to create, manage, and modify a database of exams
for use in assessment (see Fig. 5.8). Authors are able to create a new exam, select any
case scenario from the case library to include in the exam, and modify the order of
case scenario appearance. During play, examinees are given a prompt at completion
of a case to start the next case (if applicable) upon clicking the “Next” button.

5 ENTRUST: Co-design and Validation of a Serious Game for Assessing. . . 99

Fig. 5.8 The ENTRUST authoring platform exam library tool. Enables authors (e.g., clinicians
and content experts) to easily create and manage a specified series of case scenarios in the form of
an exam for use in assessment

5.3.4 Case Creation and Scoring Algorithm

Over a dozen cases have already been authored and iteratively refined to align with
EPA standards for inguinal hernia, thyroid disease, and breast disease as articulated
by the American Board of Surgery [7]. Based on feedback from an expert panel, the
cases were iteratively revised with the final case scenarios reviewed and approved
by the case authors.

100 E. F. Melcer et al.

A scoring algorithm for ENTRUST was also designed to reflect appropriate-
ness of actions, patient clinical status, and accuracy of multiple-choice question
responses. This scoring algorithm was vetted by two board-certified surgeons
with formal training in surgical education to reflect appropriateness of clinical
interventions and multiple-choice question responses. The case scenario and scoring
algorithm have also been beta-tested internally by the research team prior to studies
and data collection to ensure proper functionality of each case. Specifically, for
diagnostic studies and interventions employed during the simulation mode, scoring
was categorized using the following framework:

• Critical [. +200]
• Indicated [. +100]
• Optional [0]
• Not Indicated but Not Harmful [. −50]
• Mild to Moderate Harm [. −100]
• Severe Harm [. −200]
• Death/Cardiac Arrest [. −500]

Additionally, during simulation mode, points are deducted for each instance of
failure to address and correct vital sign abnormalities [. −200]. During question
mode, multiple-choice questions were awarded . +200 points for correct responses
and . −200 for incorrect responses.

5.3.5 Technical Specifications and Data Collection

ENTRUST utilizes a JavaScript and P5.js front end to provide an interactive
simulation interface, as well as a Google Cloud Platform backend for secure data
logging and analysis of demographic data, gameplay actions, and scores during
gameplay. The platform works on most modern browsers (Chrome, Firefox, and
Edge) and is easily distributable to a wide range of participants through a simple
Web link. ENTRUST requires minimal computational resources to deploy the
simulations and can therefore be run on almost any modern computer. The ease
of distribution through Web browsers coupled with low computational needs makes
ENTRUST ideal for deployment in most countries around the world.

ENTRUST’s secure backend database logs detailed player performance data
including a time stamp of all examinee actions, changes in patient vital signs, points
awarded or deducted for an action or intervention, and responses to all multiple-
choice questions. The database may be queried to extract data in aggregate format
for program-specific or research purposes.

5 ENTRUST: Co-design and Validation of a Serious Game for Assessing. . . 101

5.4 Study: ENTRUST Inguinal Hernia EPA Assessment Pilot

In order to provide initial validity evidence for ENTRUST’s capabilities as a
tool for assessment of clinical decision-making skills and entrustability, we con-
ducted an initial pilot study of an Inguinal Hernia EPA Assessment developed on
ENTRUST—this study and results were initially reported in [25]. We hypothesized
that ENTRUST possesses validity evidence for use in the assessment of clinical
decision-making for general surgery residents. As a result, we posited the following
research questions:

1. Do users of a game-based assessment tool such as ENTRUST need to have prior
video game experience to successfully engage with the tool?

2. Does score-based performance on ENTRUST discriminate between levels of
surgical expertise, e.g., prior operative experience or post-graduate year of
training?

3. Is ENTRUST able to assess critical surgical decision-making performance?

5.4.1 Methodology

5.4.1.1 Participants

A total of 43 surgical residents at a US-based academic institution participated
in the study. Participants included general surgery categorical residents, general
surgery preliminary residents, and designated surgical subspecialty residents in the
general surgery residency program. Designated surgical subspecialty residents were
in post-graduate year 1 (PGY-1) or PGY-2 of training and included residents from
cardiothoracic surgery, ophthalmology, orthopedic surgery, otolaryngology, plastic
surgery, urology, and vascular surgery. Participants ranged from PGY-1 though
PGY-5, with representation from all PGY-levels. Participants reported their PGY-
level based on number of clinical years of surgical residency training completed
with research time omitted. The mean (SD) age was 30.8 (3.2) years; 51.1% of
the participants were female; 2.3% identified as Native American, 9.3% as Latino,
9.3% Black or African American, 34.9% Asian, and 39.5% White (see Fig. 5.9).
Two participants preferred not to report their ethnicity. The self-reported prior video
game experience of the participants ranged from 0 to 15 hours per week with mean
1.4 (SD 3.1) hours.

102 E. F. Melcer et al.

Fig. 5.9 Demographics of study participants for the ENTRUST Inguinal Hernia EPA Assessment
Pilot. Values reported as n (%) or mean (SD). Acronymns—Post-graduate Year (PGY) & standard
deviation (SD). . † Includes PGY-1 or PGY-2 cardiothoracic surgery, ophthalmology, orthopedic
surgery, otolaryngology, plastic surgery, urology, and vascular surgery trainees in the general
surgery residency program

5.4.1.2 Measures

• Demographic Survey—a demographic survey was created to collect infor-
mation pertaining to the age, gender, ethnicity, PGY-level, surgical specialty,
self-reported inguinal hernia operative case volume, and prior video game
experience of participants.

• ENTRUST Inguinal Hernia EPA Assessment—an ENTRUST Inguinal Hernia
EPA Assessment containing four cases was developed and piloted to collect
initial validity evidence using Messick’s framework [12, 28]. The case scenarios
consisted of (1) an outpatient elective unilateral inguinal hernia, (2) an elective
bilateral inguinal hernia, (3) an acutely incarcerated inguinal hernia, and (4)

5 ENTRUST: Co-design and Validation of a Serious Game for Assessing. . . 103

a strangulated inguinal hernia. The four case scenarios for inguinal hernia,
including all multiple-choice questions, were authored and iteratively developed
by a board-certified general surgeon with formal training in surgical education.
Cases were also carefully created in alignment with EPA descriptions and
essential functions for inguinal hernia outlined by the American Board of Surgery
[7]. The case content and multiple-choice questions were then reviewed and
discussed by an expert panel (n = 5) of board-certified general surgeons
representing a variety of practice settings. The case was iteratively revised based
on this feedback, with the final case scenario reviewed and approved by the
authors. The following scores logged by ENTRUST were analyzed to compare
differences in performance between PGY-levels:

1. Preoperative sub-score—the score a participant received on just the simula-
tion mode of ENTRUST for a single case scenario

2. Preoperative total score—the combined score for all four case scenarios that
a participant received on just the simulation mode of ENTRUST

3. Intraoperative sub-score—the score a participant received on just the intraop-
erative questions during the question mode of ENTRUST

4. Intraoperative total score—the combined score for all four case scenarios that
a participant received on just the intraoperative questions during the question
mode of ENTRUST

5. Postoperative sub-score—the score a participant received on just the postop-
erative questions during the question mode of ENTRUST

6. Postoperative total score—the combined score for all four case scenarios that
a participant received on just the postoperative questions during the question
mode of ENTRUST

7. Total case score—the combined score for preoperative sub-score, intraopera-
tive sub-score, and postoperative sub-score for a single case scenario

8. Grand total score—the combined total case score for all four case scenarios

5.4.1.3 Procedure

This study was conducted at a US-based academic institution in a proctored
exam setting on laptop computers. Participants started by consenting to participate
and then completing the demographic survey. After viewing a standardized video
tutorial to orient participants to the ENTRUST platform, they then completed a non-
scored practice case, which enabled them to interact firsthand with ENTRUST and
familiarize themselves with the platform interface and functionality. Once finished
with the practice case, participants completed the ENTRUST Inguinal Hernia EPA
Assessment. The study protocol (#53137) was reviewed and approved by the
Institutional Review Board at the authors’ institution.

104 E. F. Melcer et al.

5.4.2 Data Analysis

Demographics are reported as mean and standard deviation for continuous variables
and proportions for categorical variables. Descriptive statistics for total and sub-
scores, including median and interquartile range, were calculated for each PGY-
level. To assess the relationship between ENTRUST scores and resident level of
training, Spearman rank correlations were calculated to examine the relationship
between ENTRUST scores and ordinal PGY-level (1–5). These analyses were
performed for ENTRUST grand total score, preoperative total score, intraoperative
total score, and postoperative total score. Additionally, total case score, preoperative
sub-score, intraoperative sub-score, and postoperative sub-score were calculated
for individual case scenarios. Associations of ENTRUST grand total score and
intraoperative total score with self-reported total inguinal hernia operative cases
performed and video game experience were examined using Spearman rank cor-
relations. Correlation between score and self-reported inguinal hernia operative
experience was visualized using locally estimated scatterplot smoothing (LOESS).
We assessed variations in scores between categorical and non-categorical PGY-1
and PGY-2 residents using Wilcoxon rank-sum tests.

A critical clinical decision-making action relevant for entrustment, specifically,
the decision to attempt to manually reduce a hernia in the emergency department,
was evaluated in additional analyses for the acutely incarcerated and strangulated
inguinal hernia case scenarios. For these cases, the percentage of trainees selecting
the correct answer was calculated by PGY-level. Wilcoxon rank-sum tests were
calculated to examine whether participants who responded correctly on this critical
action had significantly higher total and preoperative sub-scores than those who
responded incorrectly. For this analysis, the preoperative score was adjusted to
remove the score reward or penalty related to this critical action to eliminate the
effect of the critical action itself on participant score. For all statistical tests, a
significance threshold of .p < 0.05 was utilized. All analyses were conducted using
R v.4.0.2 (Vienna, Austria) [35].

5.4.3 Results

5.4.3.1 Relationship Between Performance and Prior Video Game
Experience

Prior video game experience did not correlate with performance on ENTRUST
(rho . = 0.094, .p = 0.56). This indicates that video game experience is not a
prerequisite to successfully engage with ENTRUST.

5 ENTRUST: Co-design and Validation of a Serious Game for Assessing. . . 105

5.4.3.2 Relationship Between Scores and Prior Operative Experience

Grand total score and intraoperative total score were correlated with self-reported
prior inguinal hernia operative experience for participants (Fig. 5.10a, rho . = 0.65,
.p < 0.0001, and Fig. 5.10b, rho . = 0.59, .p < 0.0001, respectively).

5.4.3.3 Relationships Between Scores and PGY-Level

ENTRUST Inguinal Hernia EPA Assessment grand total score was positively
correlated with PGY-level (Fig. 5.11, rho . = 0.64, .p < 0.0001). Preoperative,
intraoperative, and postoperative total scores were also positively correlated with
PGY-level (preoperative, rho . = 0.51, . = ; intraoperative, rho . = 0.50, .p = 0.0006;
postoperative, rho . = 0.32, .p = 0.038). Total case scores were positively correlated
with PGY-level for cases representing elective unilateral inguinal hernia (rho . = 0.51,
.p = 0.0004), strangulated inguinal hernia (rho . = 0.59, .p < 0.0001), and elective
bilateral inguinal hernia (rho . = 0.52, .p = 0.0003) (Fig. 5.12a). No statistically
significant difference was found in acutely incarcerated inguinal hernia case total
score by PGY-level (Fig. 5.12a, rho . = 0.10, .p = 0.50). Descriptive statistics for all
ENTRUST Inguinal Hernia EPA Assessment scores are shown in Fig. 5.13.

For each of the four case scenarios, preoperative sub-score and intraoperative
sub-score were additionally analyzed by PGY-level. Preoperative sub-scores were
significantly correlated with PGY-level for all cases: elective unilateral inguinal
hernia (rho . = 0.43, .p = 0.004), acutely incarcerated inguinal hernia (rho . = 0.41,
.p = 0.0066), strangulated inguinal hernia (rho . = 0.40, .p = 0.007), and elective
bilateral inguinal hernia (rho . = 0.40, .p = 0.008) (Fig. 5.12b). Intraoperative sub-
scores were significantly correlated with PGY-level for the strangulated inguinal
hernia (rho . = 0.50, .p = 0.0007) and elective bilateral inguinal hernia (rho . = 0.54,

Fig. 5.10 Correlation of ENTRUST inguinal hernia EPA score performance to self-reported
inguinal hernia operative case experience. (a) Grand total score. (b) Intraoperative total score

106 E. F. Melcer et al.

Fig. 5.11 ENTRUST Inguinal Hernia EPA Assessment grand total score by PGY-Level

.p = 0.0002) case scenarios, but was not statistically significant for elective
unilateral or acutely incarcerated inguinal hernia cases (Fig. 5.12c).

5.4.3.4 Categorical vs Non-categorical General Surgery Trainee
Performance

Median grand total score for PGY-1 categorical general surgery trainees was higher
than PGY-1 non-categorical surgery trainees (5190 vs 3178, .p = 0.014). There
was no statistically significant difference in score performance between PGY-2
categorical and non-categorical surgery trainees (6040 vs 4243, .p = 0.23).

5.4.3.5 Critical Surgical Decision-Making Performance

For the critical clinical decision-making choice of whether to attempt manual
reduction of an acutely incarcerated inguinal hernia in the emergency department,
this was performed correctly by 100% of PGY-3 through PGY-5 residents, 88%
of PGY-2 residents, and 67% of PGY-1 residents (Fig. 5.14a). Unadjusted total
case score and preoperative sub-score for the acutely incarcerated inguinal hernia
case were both significantly higher for those trainees correctly attempting manual

5 ENTRUST: Co-design and Validation of a Serious Game for Assessing. . . 107

Fig. 5.12 ENTRUST Inguinal Hernia EPA Assessment case scenario total and sub-scores by PGY-
Level. Total case score (a). Preoperative sub-scores (b). Intraoperative question sub-scores (c).
Postoperative question sub-scores (d). The acutely incarcerated inguinal hernia and strangulated
inguinal hernia case scenarios did not include postoperative questions

108 E. F. Melcer et al.

Fig. 5.13 ENTRUST Inguinal Hernia EPA Assessment score performance descriptive statistics.
Values reported as median [IQR]. Acronym—interquartile range (IQR). . † Case scenario did not
include postoperative phase of questioning

reduction (.p = 0.007 and .p < 0.0001, respectively). However, these differences in
total case score and preoperative sub-score were not statistically significant when
scores were adjusted to remove the scoring impact of the decision to manually
reduce the incarcerated hernia (.p = 0.11 and .p = 0.17, respectively).

For the decision of whether to attempt manual reduction of a strangulated
inguinal hernia, this was performed correctly by 100% of PGY-3, PGY-4, and PGY-
5 residents, 91% of PGY-2 residents, and 75% of PGY-1 residents (Fig. 5.14b).
Unadjusted total case score and preoperative sub-score for the strangulated inguinal
hernia case were significantly higher for those trainees correctly deciding not to
attempt manual reduction (.p = 0.009 and .p = 0.0019, respectively). After
adjustment to remove the scoring impact of the decision to manually reduce the
strangulated hernia, a statistically significant difference in preoperative sub-score
remained between those who attempted reduction and those who did not attempt
reduction (.p = 0.032).

5 ENTRUST: Co-design and Validation of a Serious Game for Assessing. . . 109

Acutely Incarcerated Inguinal Hernia

PGY-5

a

PGY-4

PGY-3

P
G

Y
 L

ev
el

PGY-2

PGY-1

0.00 0.25 0.50

% Indicated Response

Strangulated Inguinal Hernia

0.75 1.00

PGY-5

b

PGY-4

PGY-3

P
G

Y
 L

ev
el

PGY-2

PGY-1

0.00 0.25

Decision Response Correct Response (′No′) Incorrect Response (′Yes′)

0.50
% Indicated Response

0.75 1.00

Fig. 5.14 ENTRUST Inguinal Hernia EPA Assessment grand total score by PGY-Level

110 E. F. Melcer et al.

5.5 Discussion

5.5.1 Lessons Learned from the Co-design Process

We identified a number of insights and lessons learned throughout the ENTRUST
co-design process as follows:

• Early development of tools to empower stakeholders—one common tech-
nique within game development is to abstract content, design, and logic from core
game engine code (e.g., through use of a level editor to create and edit levels or
external script files to maintain game parameters, logic, and character dialogues).
This is typically done with the intent of modularizing aspects game development
as well as making that development more accessible to individuals with limited
programming skills. We found this approach to be especially critical for our co-
design process since stakeholders tend to have no prior programming experience,
making it difficult to add or update content in the game otherwise. However,
of equal importance was the creation of sophisticated tools that empowered
stakeholders to easily create, edit, and view changes to the serious game in
real time. For instance, during the ENTRUST design and development process,
we initially abstracted the creation and management of case scenarios to a
spreadsheet template. While this did enable stakeholders to create content for the
game, it also effectively disempowered them since working with a spreadsheet
was cumbersome, difficult for reusability (e.g., required reentering default orders
and other repeated details for every new case scenario), and forced stakeholders
to wait a substantial amount of time to view changes—as a programmer had to
input spreadsheet information into the game. This process also introduced a lot
of confusion and communication overhead as a by-product. These issues were
not remedied until the creation of an authoring tool that enabled stakeholders to
quickly and easily edit case scenario information directly in the ENTRUST game
database. By enabling stakeholders without programming experience to easily
create, edit, and view changes to ENTRUST in real time, we empowered them to
be more directly involved with and provide input into the design and development
process. This in turn greatly increased productivity, reduced errors in identifying
and addressing latent needs, and ultimately improved overall development speed.
Importantly, it also enabled new stakeholders (such as the College of Surgeons
of East, Central and Southern Africa) to get involved with various aspects of
the project far more easily. This insight also falls in line with existing research,
which has highlighted the importance of empowering stakeholders for successful
co-design [2].

• Benefits of frequent review meetings with stakeholders—another key aspect
of ENTRUST’s successful co-design and development was the incorporation of
weekly review meetings with stakeholders. Initially, ENTRUST’s co-design and
development involved monthly review meetings with stakeholders. However, the
long duration between co-design/development and stakeholder review proved

5 ENTRUST: Co-design and Validation of a Serious Game for Assessing. . . 111

problematic as it often led to errors in identifying the appropriate items for
the sprint and product backlogs. Switching to a more frequent weekly review
meeting with stakeholders at the end of each sprint helped to greatly reduce
such errors. While frequent review meetings are not always feasible due to time
constraints for stakeholders, some form of frequent communication and review
(even asynchronously) can result in similar benefits [14, 19, 36, 41].

5.5.2 Validity Evidence for Assessing Clinical
Decision-Making Skills

Our pilot data indicates that ENTRUST score performance is correlated to PGY-level
and inguinal hernia operative experience, i.e., there was a statistically significant
increase in total score with successively higher PGY-level. This trend was observed
for grand total score, preoperative total score, intraoperative total score, and
individual total case scores. However, while surgical decision-making skills tend to
develop over time with increasing PGY-level, it is not a strictly time-based construct,
and the variation in score within PGY-level may be explained by differences in
clinical decision-making ability and readiness for entrustment. Theoretically, a
junior resident with high ENTRUST performance who objectively demonstrates
surgical decision-making competence may be entrusted with greater autonomy
earlier than a senior resident with low ENTRUST score performance for a particular
EPA domain. Thus, ENTRUST has potential to be employed as a tool to inform
entrustment decisions as surgical training shifts from a time-based model toward a
competency-based paradigm.

Additionally, as demonstrated by the clinical decision-making surrounding
whether or not to attempt manual reduction of an incarcerated or strangulated
inguinal hernia, ENTRUST also holds potential to evaluate and query specific key
surgical decision-making points important in determining readiness or lack of readi-
ness for entrustment. By logging all trainee actions and querying specific decisions,
ENTRUST may assist program directors and surgical educators in assigning ABS
EPA Levels, independent of PGY-level. This information can be used to inform
decisions on entrustment and autonomy.

Ultimately, this study provides initial validity evidence for use of ENTRUST as an
objective measure of surgical decision-making for EPAs. Content evidence for the
case scenarios was established by alignment of case content with published ABS
EPA descriptions and essential functions [7], expert review, and group consensus
of case content and scoring algorithm. The ability of the ENTRUST assessment
to discriminate between PGY-levels, as well as its correlation to inguinal hernia
operative case experience provides evidence of its relationship to other established
variables in surgical education. Importantly, there was also no difference in score
performance based on prior video game experience, indicating that video game
experience is not required to utilize ENTRUST effectively.

112 E. F. Melcer et al.

5.6 Limitations

There are some limitations of this work, particularly with the pilot study. This
includes the single institution study design and self-reported inguinal hernia oper-
ative experience. Additionally, there were notably lower numbers of participants at
higher PGY-levels (see Fig. 5.9). All of these could impact generalizability of the
results to some extent.

5.7 Future Work

5.7.1 ENTRUST Development

Future development plans for ENTRUST include expansion of the platform to
encompass all ABS general surgery EPAs, as well as creation of additional
environments, assets, and functionality to accommodate higher acuity case scenarios
situated in the trauma bay and ICU settings. Ultimately, this will enable ENTRUST
to evaluate a broader spectrum of trainees’ readiness for entrustment in a more
diverse range of scenarios. We also plan to make ENTRUST more scalable for
distribution by adding additional functionality and security to manage multiple
organizations and allow them to maintain their own examinee assessment data and
order, case, and exam libraries. Finally, we plan to extend ENTRUST beyond just
a game-based assessment platform into a game-based learning platform as well.
This will include the development of new tools to visualize player actions both
individually and in aggregate to support self-regulated learning [3].

5.7.2 ENTRUST Research

Future research directions include collection and analysis of additional validity
evidence for ENTRUST using Messick’s unified framework of construct validity,
including response process evidence, internal structure, and consequences [28]. In
future studies, we intend to further investigate relationship of ENTRUST’s assess-
ment capabilities/scores to other objective assessment variables such as ACGME
Case Logs, ABS Inservice Training Exam (ABSITE) scores, Accreditation Council
for Graduate Medical Education (ACGME) Milestones, and ABS board pass rates.
Additionally, we plan to correlate performance on ENTRUST to individual trainee
performance on micro-assessments such as SIMPL or other platforms for actual
clinical interactions. Results from this pilot will inform the design of future
multi-institutional studies featuring a larger set of case scenarios for the Inguinal
Hernia EPA to further collect validity evidence, conduct standard setting, and map
gameplay patterns and specific key decision-making actions to EPA levels and
readiness for entrustment.

5 ENTRUST: Co-design and Validation of a Serious Game for Assessing. . . 113

5.8 Conclusion

This chapter presented the design of and preliminary validity evidence for
ENTRUST—a virtual patient authoring and serious game-based assessment
platform to deploy rigorous, case-based patient simulations for evaluation of EPAs.
Our results with ENTRUST demonstrate feasibility and initial validity evidence
for objective assessment of surgical decision-making for inguinal hernia EPA. We
also discussed insights and lessons learned from the co-design and development of
ENTRUST, as well as highlighted future directions for the game-based platform.
Importantly, the ENTRUST authoring and assessment platform holds potential to
inform readiness of entrustment for American Board of Surgery EPAs in the future
and to support the ongoing transformation of surgical education to a competency-
based paradigm.

Acknowledgments The authors would like to thank Yulin Cai, Ruonan Chen, Pichy Jumphol-
wong, Ananya Anand, and Sherry Wren for their contributions to the development of the
ENTRUST platform.

References

1. ABS E-News – Spring 2018. In: News from the American Board of Surgery. The American
Board of Surgery (2018). http://www.absurgery.org/quicklink/absnews/absupdate0518.html#
epa. Accessed 12 Jan 2021

2. Ardito C., Buono P., Costabile M.F., Lanzilotti R., Piccinno A.: End users as co-designers of
their own tools and products. J. Visual Lang. Comput. 23(2), 78–90 (2012)

3. Barnard-Brak, L., Paton, V.O., Lan, W.Y.: Profiles in self-regulated learning in the online
learning environment. Int. Rev. Res. Open Distrib. Learn. 11(1), 61–80 (2010)

4. Berman, N.B., Durning, S.J., Fischer, M.R., Huwendiek, S., Triola, M.M.: The role for virtual
patients in the future of medical education. Acad. Med. 91(9), 1217–1222 (2016)

5. Bird, M., McGillion, M., Chambers, E.M., Dix, J., Fajardo, C.J., Gilmour, M., Levesque, K.,
Lim, A., Mierdel, S., Ouellette, C., Polanski, A.N., Reaume, S.V., Whitmore, C., Carter, N.: A
generative co-design framework for healthcare innovation: development and application of an
end-user engagement framework. Res. Involv. Engagem. 7(1), 1–12 (2021)

6. Bohnen, J.D., George, B.C., Williams, R.G., Schuller, M.C., DaRosa, D.A., Torbeck, L.,
Mullen, J.T., Meyerson, S.L., Auyang, E.D., Chipman, J.G., Choi, J.N.: The feasibility of real-
time intraoperative performance assessment with SIMPL (system for improving and measuring
procedural learning): early experience from a multi-institutional trial. J. Surg. Educ. 73(6),
e118–e130 (2016)

7. Brasel, K.J., Klingensmith, M.E., Englander, R., Grambau, M., Buyske, J., Sarosi, G., Minter,
R.: Entrustable professional activities in general surgery: development and implementation. J.
Surg. Educ. 76(5), 1174–1186 (2019)

8. Burkett, I.: An Introduction to Co-design, vol. 12. Knode, Sydney (2012)
9. Charlier, N.: Game-based assessment of first aid and resuscitation skills. Resuscitation 82(4),

442–446 (2011)

http://www.absurgery.org/quicklink/absnews/absupdate0518.html#epa
http://www.absurgery.org/quicklink/absnews/absupdate0518.html#epa
http://www.absurgery.org/quicklink/absnews/absupdate0518.html#epa
http://www.absurgery.org/quicklink/absnews/absupdate0518.html#epa
http://www.absurgery.org/quicklink/absnews/absupdate0518.html#epa
http://www.absurgery.org/quicklink/absnews/absupdate0518.html#epa
http://www.absurgery.org/quicklink/absnews/absupdate0518.html#epa
http://www.absurgery.org/quicklink/absnews/absupdate0518.html#epa
http://www.absurgery.org/quicklink/absnews/absupdate0518.html#epa

114 E. F. Melcer et al.

10. Chon, S.H., Timmermann, F., Dratsch, T., Schuelper, N., Plum, P., Berlth, F., Datta, R.R.,
Schramm, C., Haneder, S., Späth, M.R., Dübbers, M., Kleinert, J., Raupach, T., Bruns, C.,
Kleinert, R.: Serious games in surgical medical education: a virtual emergency department as
a tool for teaching clinical reasoning to medical students. JMIR Serious Games 7(1), 1–11
(2019)

11. Cianciolo, A.T., Kegg, J.A.: Behavioral specification of the entrustment process. J. Grad. Med.
Educ. 5(1), 10–12 (2013)

12. Cook, D.A., Zendejas, B., Hamstra, S.J., Hatala, R., Brydges, R.: What counts as validity
evidence? Examples and prevalence in a systematic review of simulation-based assessment.
Adv. Health Sci. Educ. 19(2), 233–250 (2014)

13. de Klerk, S., Kato, P.M.: The future value of serious games for assessment: Where do we go
now?. J. Appl. Testing Technol. 18(S1), 32–37 (2017)

14. Domecq, J.P., Prutsky, G., Elraiyah, T., Wang, Z., Nabhan, M., Shippee, N., Brito, J.P.,
Boehmer, K., Hasan, R., Firwana, B., Erwin, P., Eton, D., Sloan, J., Montori, V., Asi, N., Dabrh,
A.M.A., Murad, M.H.: Patient engagement in research: a systematic review. BMC Health Serv.
Res. 14(1), 1–9 (2014)

15. Eaton, M., Scully, R., Schuller, M., Yang, A., Smink, D., Williams, R.G., Bohnen, J.D., George,
B.C., Fryer, J.P., Meyerson, S.L.: Value and barriers to use of the SIMPL tool for resident
feedback. J. Surg. Educ. 76(3), 620–627 (2019)

16. Ferreira-Brito, F., Fialho, M., Virgolino, A., Neves, I., Miranda, A.C., Sousa-Santos, N.,
Caneiras, C., Carrico, L., Verdelho, A., Santos, O.: Game-based interventions for neuropsy-
chological assessment, training and rehabilitation: which game-elements to use? A systematic
review. J. Biomed. Inform. 98, 103287 (2019)

17. George, B.C., Bohnen, J.D., Williams, R.G., Meyerson, S.L., Schuller, M.C., Clark, M.J.,
Meier, A.H., Torbeck, L., Mandell, S.P., Mullen, J.T., Smink, D.S.: Readiness of US general
surgery residents for independent practice. Ann. Surg. 266(4), 582–594 (2017)

18. George, B.C., Bohnen, J.D., Schuller, M.C., Fryer, J.P.: Using smartphones for trainee
performance assessment: a SIMPL case study. Surgery 167(6), 903–906 (2020)

19. Guise, J.M., O’Haire, C., McPheeters, M., Most, C., LaBrant, L., Lee, K., Cottrell, E.K.B.,
Graham, E.: A practice-based tool for engaging stakeholders in future research: a synthesis of
current practices. J. Clin. Epidemiol. 66(6), 666–674 (2013)

20. Hwang, G.J., Chang, C.Y. Facilitating decision-making performances in nursing treatments:
a contextual digital game-based flipped learning approach. Interactive Learn. Environ. 31(1),
1–16 (2020)

21. Johnsen, H.M., Fossum, M., Vivekananda-Schmidt, P., Fruhling, A., Slettebø, Å.: Teaching
clinical reasoning and decision-making skills to nursing students: design, development, and
usability evaluation of a serious game. Int. J. Med. Inform. 94, 39–48 (2016)

22. Kalyuga, S., Plass, J.L.: Evaluating and managing cognitive load in games. In: Handbook of
Research on Effective Electronic Gaming in Education, pp. 719–737. IGI Global, Pennsylvania
(2009)

23. Lagro, J., van de Pol, M.H., Laan, A., Huijbregts-Verheyden, F.J., Fluit, L.C., Rikkert,
M.G.O.: A randomized controlled trial on teaching geriatric medical decision making and cost
consciousness with the serious game GeriatriX. J. Am. Med. Direct. Assoc. 15(12), e1–957.e6
(2014)

24. Liebert, C.A., Mazer, L., Merrell, S.B., Lin, D.T., Lau, J.N.: Student perceptions of a
simulation-based flipped classroom for the surgery clerkship: a mixed-methods study. Surgery
160(3), 591–598 (2016)

25. Liebert, C.A., Melcer, E.F., Keehl, O., Eddington, H., Trickey, A.W., Lee, M., Tsai, J.,
Camacho, F., Merrell, S.B., Korndorffer, Jr. J.R., Lin, D.T.: Validity evidence for ENTRUST
as an assessment of surgical decision-making for the inguinal hernia entrustable professional
activity (EPA). J. Surg. Educ. 79(6), e202–e212 (2022)

26. Lin, D.T., Park, J., Liebert, C.A., Lau, J.N.: Validity evidence for surgical improvement of
clinical knowledge ops: a novel gaming platform to assess surgical decision making. Am. J.
Surg. 209(1), 79–85 (2015)

5 ENTRUST: Co-design and Validation of a Serious Game for Assessing. . . 115

27. Mavridis, A., Tsiatsos, T.: Game-based assessment: investigating the impact on test anxiety
and exam performance. J. Comput. Assist. Learn. 33(2), 137–150 (2017)

28. Messick, S.: Standards of validity and the validity of standards in performance asessment.
Educ. Measur. Issues Pract. 14(4), 5–8 (1995)

29. Middeke, A., Anders, S., Schuelper, M., Raupach, T., Schuelper, N.: Training of clinical
reasoning with a serious game versus small-group problem-based learning: a prospective study.
PLoS One 13(9), e0203851 (2018)

30. Nemirovsky, D.R., Garcia, A.J., Gupta, P., Shoen, E., Walia, N.: Evaluation of surgical
improvement of clinical knowledge ops (SICKO), an interactive training platform. J. Digit.
Imag. 34(4), 1067–1071 (2021)

31. New model of surgical resident autonomy coming in 2023. In: ACS Clinical Congress News
(2021). Published October 23, 2021. Accessed 21 Jan 2022. https://www.acsccnews.org/new-
model-of-surgical-resident-autonomy-coming-in-2023/

32. Nikolian, V.C., Sutzko, D.C., Georgoff, P.E., Matusko, N., Boniakowski, A., Prabhu, K.,
Church, J.T., Thompson-Burdine, J., Minter, R.M., Sandhu, G.: Improving the feasibility and
utility of OpTrust–a tool assessing intraoperative entrustment. Am. J. Surg. 216(1), 13–18
(2018)

33. Oestreich, J.H., Guy, J.W.: Game-based learning in pharmacy education. Pharmacy 10(1), 11
(2022)

34. Plass, J.L., Moreno, R., Brünken, R.: Cognitive Load Theory. Cambridge University Press,
Cambridge (2010)

35. R Core Team: R: A language and environment for statistical computing. R Foundation for
Statistical Computing, Vienna (2013). https://www.R-Project.org/

36. Salsberg, J., Parry, D., Pluye, P., Macridis, S., Herbert, C.P., Macaulay, A.C.: Successful
strategies to engage research partners for translating evidence into action in community health:
a critical review. J. Environ. Pub. Health 2015, 1–15 (2015)

37. Sánchez, R., Rodríguez, O., Rosciano, J., Vegas, L., Bond ,V., Rojas, A., Sanchez-Ismayel, A.:
Robotic surgery training: construct validity of Global Evaluative Assessment of Robotic Skills
(GEARS). J. Robot. Surg. 10(3), 227–231 (2016)

38. Sandhu, G., Nikolian, V.C., Magas, C.P., Stansfield, R.B., Sutzko, D.C., Prabhu, K., Matusko,
N., Minter, R.M.: OpTrust: validity of a tool assessing intraoperative entrustment behaviors.
Ann. Surg. 267(4), 670–676 (2018)

39. Schuler, D., Namioka, A.: Participatory Design: Principles and Practices. CRC Press, Boca
Raton (1993)

40. Seelow, D.: The art of assessment: using game based assessments to disrupt, innovate, reform
and transform testing. J. Appl. Testing Technol. 20(S1), 1–16 (2019)

41. Slattery, P., Saeri, A.K., Bragge, P.: Research co-design in health: a rapid overview of reviews.
Health Res. Policy Syst. 18(1), 1–13 (2020)

42. Steen, M.: Co-design as a process of joint inquiry and imagination. Des. Issues 29(2), 16–28
(2013)

43. Ten Cate, O., Scheele, F.: Competency-based postgraduate training: can we bridge the gap
between theory and clinical practice? Acad. Med. 82(6), 542–547 (2007)

https://www.acsccnews.org/new-model-of-surgical-resident-autonomy-coming-in-2023/
https://www.acsccnews.org/new-model-of-surgical-resident-autonomy-coming-in-2023/
https://www.acsccnews.org/new-model-of-surgical-resident-autonomy-coming-in-2023/
https://www.acsccnews.org/new-model-of-surgical-resident-autonomy-coming-in-2023/
https://www.acsccnews.org/new-model-of-surgical-resident-autonomy-coming-in-2023/
https://www.acsccnews.org/new-model-of-surgical-resident-autonomy-coming-in-2023/
https://www.acsccnews.org/new-model-of-surgical-resident-autonomy-coming-in-2023/
https://www.acsccnews.org/new-model-of-surgical-resident-autonomy-coming-in-2023/
https://www.acsccnews.org/new-model-of-surgical-resident-autonomy-coming-in-2023/
https://www.acsccnews.org/new-model-of-surgical-resident-autonomy-coming-in-2023/
https://www.acsccnews.org/new-model-of-surgical-resident-autonomy-coming-in-2023/
https://www.acsccnews.org/new-model-of-surgical-resident-autonomy-coming-in-2023/
https://www.acsccnews.org/new-model-of-surgical-resident-autonomy-coming-in-2023/
https://www.R-Project.org/
https://www.R-Project.org/
https://www.R-Project.org/
https://www.R-Project.org/
https://www.R-Project.org/

116 E. F. Melcer et al.

44. Ten Cate, O., Chen, H.C., Hoff, R.G., Peters, H., Bok, H., van der Schaaf, M.: Curriculum
development for the workplace using entrustable professional activities (EPAs): AMEE guide
no. 99. Med. Teach. 37(11), 983–1002 (2015)

45. Ten Cate, O., Carraccio, C., Damodaran, A., Gofton, W., Hamstra, S.J., Hart, D.E., Richardson,
D., Ross, S., Schultz, K., Warm, E.J., Whelan, A.J., Schumacher, D.J.: Entrustment decision
making: extending Miller’s pyramid. Acad. Med. 96(2), 199–204 (2021)

46. Vallejo, V., Wyss, P., Rampa, L., Mitache, A.V., Müri, R.M., Mosimann, U.P., Nef, T.:
Evaluation of a novel Serious Game based assessment tool for patients with Alzheimer’s
disease. PLoS One 12(5), e0175999 (2017)

47. Vassiliou, M.C., Feldman, L.S., Andrew, C.G., Bergman, S., Leffondré, K., Stanbridge, D.,
Fried, G.M.: A global assessment tool for evaluation of intraoperative laparoscopic skills. Am.
J. Surg. 190(1), 107–113 (2005)

48. Verma, V., Baron, T., Bansal, A., Amresh, A.: Emerging practices in game-based assessment.
In: Game-Based Assessment Revisited, pp. 327–346. Springer, Cham (2019)

49. Yeo, H.L., Dolan, P.T., Mao, J., Sosa, J.A.: Association of demographic and program factors
with American Board of Surgery qualifying and certifying examinations pass rates. JAMA
Surg. 155(1), 22–30 (2020)

Chapter 6
Engineering Adaptive Serious Games
Using Machine Learning

Michael A. Miljanovic and Jeremy S. Bradbury

Abstract The vast majority of serious games (SGs) do not feature any form of
machine learning (ML); however, there is a recent trend of developing SGs that
leverage ML to assess learners and to make automated adaptations during game
play. This trend allows serious games to be personalized to the learning needs of
the player and can be used to reduce frustration and increase engagement. In this
chapter, we will discuss the development of new ML-based SGs and present a
generalized model for evolving existing SGs to use ML without needing to rebuild
the game from scratch. In addition to describing how to engineer ML-based SGs,
we also highlight five common challenges encountered during our own development
experiences, along with advice on how to address these challenges. Challenges
discussed include selecting data for use in an ML model for SGs, choosing game
elements to adapt, solving the cold start problem, determining the frequency of
adaptation, and testing that an adaptive game benefits from learning.

Keywords Adaptation · Machine learning · Personalized learning · Serious
games

6.1 Introduction

Serious games (SGs), also known as educational games, are games designed with
a purpose other than entertainment. Most commonly, these are video games that
have been made to help aid with learning in a variety of contexts, including science,
healthcare, business, and more [15]. Developers of SGs have a difficult challenge:
to create a product that is first and foremost a game that not only engages players
but equally importantly improves their understanding and competency with non-
game content. Game-based learning (GBL) using SGs differs from the related

M. A. Miljanovic (�) · J. S. Bradbury
Ontario Tech University, Oshawa, ON, Canada
e-mail: michael.miljanovic@ontariotechu.ca; jeremy.bradbury@ontariotechu.ca

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
K. M. L. Cooper, A. Bucchiarone (eds.), Software Engineering for Games
in Serious Contexts, https://doi.org/10.1007/978-3-031-33338-5_6

117

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33338-5protect T1	extunderscore 6&domain=pdf

 885
56845 a 885 56845 a

mailto:michael.miljanovic@ontariotechu.ca
mailto:michael.miljanovic@ontariotechu.ca
mailto:michael.miljanovic@ontariotechu.ca

 15248 56845 a 15248
56845 a

mailto:jeremy.bradbury@ontariotechu.ca
mailto:jeremy.bradbury@ontariotechu.ca
mailto:jeremy.bradbury@ontariotechu.ca
https://doi.org/10.1007/978-3-031-33338-5_6
https://doi.org/10.1007/978-3-031-33338-5_6
https://doi.org/10.1007/978-3-031-33338-5_6
https://doi.org/10.1007/978-3-031-33338-5_6
https://doi.org/10.1007/978-3-031-33338-5_6
https://doi.org/10.1007/978-3-031-33338-5_6
https://doi.org/10.1007/978-3-031-33338-5_6
https://doi.org/10.1007/978-3-031-33338-5_6
https://doi.org/10.1007/978-3-031-33338-5_6
https://doi.org/10.1007/978-3-031-33338-5_6
https://doi.org/10.1007/978-3-031-33338-5_6

118 M. A. Miljanovic and J. S. Bradbury

field of gamification [1], where game elements such as badges, points, and avatars
are applied to non-game contexts. Using these definitions, an application such as
Duolingo would not be considered an SG since it was not designed as a game, but it
would be considered an example of gamification because it includes elements such
as achievements and a leaderboard to encourage players to use the app frequently.
On the other hand, IBM’s CityOne is an SG designed to help players learn about
transportation, environmental, and logistical issues that are relevant to city leaders
and businesses. The distinction between these applications is important—Duolingo
seeks to use gamification to improve engagement, while CityOne is intended to be
intrinsically motivating by its nature of being a game.

The target audience for SGs can include any demographic, but the players
of these games are considered learners in the context of the game’s educational
environment. One of the greatest challenges of serious games is learner assessment,
which often takes the form of stealth assessment [13] in order to avoid disrupting
the game play experience.

The importance of learner assessment is even more significant for the purposes
of adaptation. Adaptive SGs are a new form of SG that use learner data collected
before or during game play to modify the game automatically [14]. This strategy
can be used to reduce the difficulty level for players who are struggling with the
game’s content or to increase the challenge for players who have demonstrated a
high level of competence. The concept of dynamic difficulty adjustment has already
been implemented in entertainment games like Left 4 Dead, which has a “Director”
that constantly adjusts the game as it assesses the player’s performance (Figs. 6.1
and 6.2).

Automatically assessing learning is a particularly difficult task, which has led to
the use of techniques such as machine learning (ML) to analyze learners based on

Fig. 6.1 The GidgetML game—an ML-enhanced version of the Gidget programming game that
personalizes the game play and game elements to meet the learning needs of the player

6 Engineering Adaptive Serious Games Using Machine Learning 119

Fig. 6.2 The RoboBug game—an ML-enhanced program debugging game that personalizes the
game play and the hint system to meet the learning needs of the player

data provided to a player experience model [3]. A variety of ML algorithms might be
appropriate for this purpose, but each presents its own challenges. Different learning
models require various forms of data, and it can be challenging to determine what
data points are relevant to assessing learner competency.

This chapter will discuss some of the challenges that come from engineering
adaptive SGs, and to support our discussion of engineering adaptive serious games,
we will use two case studies throughout this chapter to illustrate and provide context
to the issues with using ML for adaptation. Both case studies are examples of SGs
for computer science education; however, the lessons learned can be generalized to
other domains.

The first case study is an SG called GidgetML [12], which is a modified
version of the serious programming game Gidget created by Michael Lee and Amy
Ko [5, 6]. The game requires players to correct bugs in code to navigate the Gidget
character and provide instructions to complete various tasks on a two-dimensional
grid map. GidgetML uses an ML algorithm that takes information about failed
player attempts and code efficiency to categorize players into different competency
categories. It then modifies subsequent levels of the game based on the player’s
competency—players demonstrating higher levels of competence start each level
with additional bugs in their starter code and stricter limitations on how efficient
their solution must be to be accepted as correct.

The second case study is an SG called RoboBUG [9], which was designed to help
players gain familiarity with various techniques for debugging source code. Players
navigate their character through lines of code akin to navigating a text editor and
must identify lines of code that contain semantic or logical errors. Two adaptive
variants of RoboBUG were created, each using data including time on task and

120 M. A. Miljanovic and J. S. Bradbury

failure counts to categorize players [8]. One adaptive variant modified the game’s
code and obstacles to increase or decrease challenge by obfuscating bugs or making
them easier to see, while the second variant provided an increasing number of hints
to players depending on their assessed competency level.

6.2 Data Models

With a traditional non-game-based learning assessment, it can be difficult to make
judgments about a learner’s competence—questions can be phrased poorly, or the
answers to a multiple-choice question might be deduced by context clues. However,
in an educational game, the multitude of actions taken by a player over time can
be examined in a variety of different ways in order to gauge their performance.
For example, one might consider how much idle time elapses during game play,
how much time a player spends tinkering with different parts of a puzzle, or how
many mistakes are made before the player is able to progress in a game. These data
features and others can be sampled across a game play session and used to predict a
player’s level of competence based on a well-designed game play model.

The theoretical basis for modelling player behavior in an SG lies in competence-
based knowledge space theory (CbKST) [4]. This theory distinguishes between
assessment problems/activities and the desired competencies that pertain to them.
A given assessment problem might have a number of different solutions that pertain
to different competencies, and similarly any given competence might be able to
provide a solution to many different assessment problems. In addition, there are
some competencies which are composed of other competencies, representing a skill
that can only be developed after others have already been learned.

As an example, consider the assessment problem of summing a list of numbers
using a program. One solution might involve iterating through each element of
the list, adding that number to an initial sum of zero, and examining the sum
after all elements have been added. This solution would require the learner to
demonstrate competency in arithmetic and iteration; however, this is not the only
way to solve the problem. Another solution could be a recursive approach to adding
the numbers together; although this solution might be equally correct, it requires an
understanding of recursion that is not necessary to solve the problem. Therefore, we
see that many assessment problems may be linked to many different competencies
and that not all of these links are equal—clearly the ability to sum two numbers is
required, but knowledge of iteration or recursion is each optional.

6.2.1 Game Task Model

In the context of educational games, most game “tasks” are intended to foster the
development of or test a player for specific competencies. Thus, to assess any player,
one must first examine each task (which is a form of the assessment problem) to
determine the linked competencies that are prerequisites or otherwise associated.

6 Engineering Adaptive Serious Games Using Machine Learning 121

This can be particularly difficult if there are multiple different approaches that might
be suitable for overcoming the task, in which case, it is necessary to identify the
approach selected by the player. However, restrictions placed upon the player may
be used to limit the space of solutions that could be used to solve a problem. For
example, in a block-based coding game, removing any “loop” blocks would force
the player to rely on a recursive solution to solve the problem and eliminate the
competency relationship between the task and iteration.

Thus, the first necessary step for applying adaptivity to an educational game is
to consider the tasks in the game and determine the relevant competencies for each.
This means identifying the necessary prerequisite competencies needing to attempt
a solution for a task and the desired outcomes from completing the task. Ideally, the
first tasks in the game should require as few prerequisites as possible (or zero), and
subsequent tasks should build upon what has been learned from the previous ones.
If there are any gaps in competencies between tasks, then this should be addressed
by the introduction of additional tasks or some other way to help the player develop
the necessary prerequisite. For example, if a task requires a prerequisite competency
that the player would only learn if they completed an optional game play task, then
that task should either be made mandatory, or another task should be added that can
compensate for the missing exercise.

6.2.2 Player/Learner Model

Once there is a suitable model for game tasks, it then becomes possible to create
a model for the player based on CbKST. A player’s behavior in-game can be
logged for both post-game assessment as well as in-game assessment, although the
latter presents a greater challenge due to the time sensitivity of the evaluation and
incompleteness of the data. A best estimate of a player’s competency should be
gleaned based on their performance on tasks, whether successful or unsuccessful.
Game play data has a high degree of granularity, and while some games may be
suited to simply differentiating between successful and unsuccessful attempts at a
task, it is often preferable to examine specifically how a player attempts to complete
a task and evaluate the player based on both their approach and whether or not it was
successful. Two students who both succeed or both fail at a task will not necessarily
be at an equal level of competency, considering their performance and how efficient
or how close they were to solving the problem, as well as how easily they were able
to reach that solution can provide further insight as to their competency level.

122 M. A. Miljanovic and J. S. Bradbury

6.3 A Generalized Methodology for Evolving Existing
Serious Games to Use ML

To support the development of new adaptive SGs, we have devised a methodology to
guide the process of adding automatic adaptation to existing non-adaptive SGs [10].
The methodology has four key phases (see Fig. 6.3):

1. Identify a potential adaptive game
2. Model game play tasks and the ability of learners
3. Build ML and supporting functionality into the existing code base.
4. Evaluate the benefits of the adaptive modifications.

6.3.1 Identify

A number of technical and learning factors should be considered when identifying
if a serious game is appropriate for adding adaptation via ML.

The three most important technical factors are source code availability, software
quality, and game playability. First, the source code will need to be publicly
available. This is a non-issue if the game was written by the same developers who
are extending it; however, if the developer implementing adaptation is someone
other than the original developer, then it is necessary to ensure that the software
license for the chosen game allows for modification and redistribution. Second, the
serious game needs to be of significant quality and robustness to support a planned
redevelopment. The quality of the software can be assessed by reviewing available
software artifacts including documentation, source code, and issue tracking data.
Third, the playability of the game should also be considered, and existing playability
studies are an asset.

Fig. 6.3 An overview of our methodology for evolving adaptive serious games. Once a game has
been identified for adaptation, a model and plan is developed that connects the game play tasks with
a method for assessing learners. After the model has been created, the adaptation functionality is
built into the existing code base. Finally, the new adaptive serious game should be evaluated to
determine its efficacy (e.g., learning, engagement), and the evaluation results should be compared
with the efficacy results of the original non-adaptive serious game

6 Engineering Adaptive Serious Games Using Machine Learning 123

The main learning factors that need to be considered are:

• Learning outcomes: Adapting the learning content of a game requires a clear
understanding of the required knowledge, topics, and learning outcomes that are
present in the original game.

• Learner experience and demographics. Making informed decisions about adapt-
ing the chosen game requires detailed knowledge about the learners who will play
the game. Learners of various age groups may respond differently to in-game
adaptations. Furthermore, knowledge about the level of experience of the game’s
audience is needed in order to make good decisions about how to adjust learning
content, including accommodation for an audience with no experience. Special
consideration should also be given to adapting for learners of diverse educational
backgrounds outside of computer science. Finally, we suggest choosing games
that are inclusive in order to reach a diversified audience of learners.

• Learning evaluation: In order to properly evaluate the final adaptive serious
game in phase four, it is best to choose an existing game that has already been
evaluated with respect to learning. The existing evaluation can serve as a baseline
in assessing the learning benefits of adaptation later.

6.3.2 Model

Once a game has been selected, the next step is to determine how viable it is to make
it adaptive. This is based on the ability to create an accurate model of a game play
task as well as the ability to model learners using the collected data.

Game play tasks can be deconstructed into several key features that are relevant
for evaluating learning. In alignment with CbKST, each task should be associated
with one or more competencies that are prerequisites; in other words, the task
cannot or should not be completed unless the learner has demonstrated (and been
given opportunity to do so) competency in those prerequisites. The successful
completion of a task should provide evidence to both prerequisite and other
associated competencies, so that learners can be evaluated based on the tasks they
have completed. In addition to associated competencies, tasks also are targets for
adaptation, and so the parameters of the task that can be changed should be taken
into account. For instance, a task might have a time limit, feedback/hints, or other
constraints that can be adjusted based on the perceived level of player competency.
If a game is unable to adjust these task features (or has no tasks at all, such as a
non-structured “open world” game), it may not be well suited for adaptation.

In addition to being able to create models of tasks, there must be sufficient
available data sources to create an accurate model of the learner. The primary
source for modeling learner competency comes from their completion of tasks.
The number of successful attempts and failures on tasks associated with specific
competencies generates a significant amount of data that can help classify the learner
and predict their level of competency in different areas. In addition to successes

124 M. A. Miljanovic and J. S. Bradbury

and failures, the degree to which a learner is successful or unsuccessful provides
more useful information than a binary feature. For example, the speed at which a
learner completes tasks, or the quality of their solution, might help distinguish mid-
competency learners from those with high competency. It is important, however, to
separate data that reflects competency in learning versus competency in games—for
example, it may be the case that faster completion of tasks only indicates that the
learner is better at playing games, but does not have a higher level of competency
than a slower learner that has higher-quality solutions. The degree to which data
can inform a learner model has a significant impact on whether or not a game
can accurately assess the learner and therefore make good decisions about how and
when to adapt.

6.3.3 Build

This phase includes integrating key modelling functionality into the existing code
base, for example, logging player behavior (if not already present), initializing the
learner assessment model, and then applying an adaptation strategy.

Learner-specific adaptation requires a constant gathering and assessment of
learner information. The data gathered is categorized based on what it is measuring
and how often the measurements can take place For example, data may be gathered
during a task, between a task, or between game play sessions.

There are different options that a developer might consider for initializing a
player’s assessment model. This is a challenging part of the build phase and will
be discussed in detail in Sect. 6.4.3. The key consideration is to determine how to
initialize the SG until enough data is collected to adapt to an individual player.

Once data is being logged and the SG initialization has been established, the
developer can proceed to apply the previously chosen adaptive strategy. This
involves increasing restrictions on steps, work, errors, and time for players who have
demonstrated high competence and are seeking a greater challenge. Conversely,
these restrictions should be reduced for players who exhibit low competence in order
to accommodate their needs and reduce the level of challenge.

6.3.4 Evaluate

One of the challenges with serious game development is the need for accurate
and reliable evaluation. One benefit to our approach of evolving existing serious
programming games is that many have existing studies that can be replicated and
reproduced for the adaptive versions, thus allowing us to evaluate the benefits of the
adaptive modifications by comparing the study results from the original and adaptive
versions of a game. In cases where the original version of a serious game did not

6 Engineering Adaptive Serious Games Using Machine Learning 125

have an evaluation, we recommend following best practices, which may include
questionnaires, skill tests, interviews, and controlled experiments.

6.4 Challenges in Engineering Adaptive Serious Games

Engineering adaptive serious games presents a number of unique challenges that
are not present in the development of non-adapative SGs. In this section, we will
discuss five of the most common challenges faced by SG developers planning to
add adaptation to existing SGs:

• Selecting data for use in an ML model for SGs. The selection of user data
can have a huge impact on the success of ML as a method for adapting to a
learner’s needs in SGs. We will describe how to select the relevant features from
potentially dense game play data based on assessing the data with respect to a
learner’s competence and understanding of a learner’s mindset.

• Choosing game elements to adapt. Modern video games use player perfor-
mance data to modify game play difficulty, and this can also be used in the context
of SGs to modify game play elements that facilitate learning. For example, this
might include changing the frequency or verbosity of in-game hints or modifying
game play tasks based the abilities of the learner.

• Solving the cold start problem. Many ML methods require an initial data
set for training, but at the beginning of game play, there is often little or no
information available. We will discuss different strategies for addressing the cold
start problem as well as how the generation of synthetic data sets can assist with
making ML features viable sooner.

• Determining how frequently to adapt. It is possible to adapt an SG between
game sessions, between game levels, or even during a game play task. One issue
with determining frequency is that frequent adaptations can be computationally
expensive, may frustrate the user, and can even negatively impact learning.
Another issue is that infrequent adaptations, while mitigating performance issues,
can be too late to handle frustrated players who fail to complete a task that is not
suited for their level of competence. We will share our experience with selecting
the adaptation frequency based on an analysis of the game play and the target
learners of the game.

• Evaluating that an adaptive game benefits learning. The best practices in
playtesting non-adaptive SGs are insufficient to provide confidence in the efficacy
of ML-based SG features. Therefore, additional testing on top of traditional
playtesting is needed. We will discuss our experiences with testing an ML-based
SG including how to identify the relevant metrics and how to assess the results
to determine if the ML adaptations are working correctly.

126 M. A. Miljanovic and J. S. Bradbury

6.4.1 Challenge #1: Selecting Data

How do you decide what SG data to select for use in an ML model?

As with many machine learning applications, it is generally the case that the data
available is not going to perfectly suit the needs of the ML model Fig. 6.4 for
examples of available game data. For example, a player who fails a task that requires
an understanding of a particular learning concept is not necessarily incompetent at
that concept—human error must be considered. Thus, a probabilistic approach is
best to account for cases where a player makes a careless mistake or when some
tasks vary in their difficulty. It is likely the case that a player who can succeed at
multiple challenging tasks is competent in the prerequisite competences, even if they
occasionally fail simpler tasks based on the same competences.

Depending on the genre of game and the design of the task, some data features
may not be relevant to the assessment of the player. For example, one should be
wary of using time elapsed as a metric of competency if the task itself is untimed,
and there is a possibility that the player may sit idle because they have opted to
physically step away from the game for some time period. It can be difficult to
distinguish between idle time and time spent thinking about a problem, but generally
given the fast-paced nature of games (compared to traditional learning activities),
one can expect that a lengthy delay is likely the case of the player being absent. This
should be accounted for when automating any form of data collection from game
play, as it will likely cause a significant effect on the data set if a 10-minute break
from the game is measured as 10 minutes thinking about a problem. A player taking

Fig. 6.4 Examples of serious game data available for use in adaptation

6 Engineering Adaptive Serious Games Using Machine Learning 127

a long time to think about something, but still sitting and playing the game, is likely
to consider interacting with some part of the environment, and games that present
obstacles or hazards for the player to interact with while they play may mitigate
their ability to idle.

Finally, the data provided for all the models must be used to make an assessment
of the player. One approach to this is to use an unsupervised machine learning
algorithm to compare the player to others who have previously completed the
game. An unsupervised algorithm is a good choice because there is no way to say
with certainty how competent any given player is based on their performance; we
can only make estimates at best. An advantage to this approach is the ability to
separately assess the existing data set and categorize each player based on their
demonstrated competency. This way, the player can be assigned a label (such as low,
medium, or high competency) and that label used to make determinations about the
best form of adaptation. In the next section, we will discuss what can be adapted
based on this information.

In GidgetML, the data collected from each task included the number of failed
attempts at a solution as well as the number of “steps” needed to complete the task.
Each player was then categorized into different levels of competency in debugging
based on a K-means clustering machine learning algorithm. Using this algorithm,
each of the three clusters was labeled as low, medium, or high based on the average
performance of the players in that cluster, and each player in that cluster was
assigned that label. Then, when the model had to account for a new player, it would
repeat the K-means clustering algorithm and use the old labels to determine the
player’s categorization based on the players with whom they shared a cluster.

6.4.2 Challenge #2: Game Elements

How do you select what game elements to adapt?

With an accurate model of tasks and players, a game can determine when it is
necessary to adapt to the learner. However, there remains the question of what to
adapt in a task—specifically, which game elements should be changed and how
should they be adjusted.

It is first important to distinguish between game elements conducive to learning
and game elements relevant only to game play and entertainment. For example,
a change in the amount of hints and feedback provided to the player is likely to
impact their learning, while increasing the number of obstacles that require manual
dexterity to avoid may only serve to make the game more challenging if those
obstacles are not related to any of the game’s competencies. It may be tempting
to increase the difficulty of a game by adding more obstacles or using stricter

128 M. A. Miljanovic and J. S. Bradbury

restrictions on time. However, the audience for a learning game will include players
who are skilled at games but lacking the desired competencies, as well as players
who demonstrate high levels of competency but are less familiar with video games.
There are different ways to challenge each player, and if the goal of adaptation is to
create an experience that finds a balance between challenge and skill, then the way
in which players are challenged will vary based on their skill level.

An important purpose of adaptation is to facilitate learners who are struggling
with difficult content. This is why one of the most valuable forms of adaptation
comes in the form of feedback. This can vary from hints about how to approach a
task differently or even demonstrations about how to attempt to solve a problem that
the learner may not be familiar with. The administration of feedback must also be
carefully timed; presenting instructions at the start of a task might be ignored, but
giving a hint to a player immediately after they make an unsuccessful attempt at an
action is likely to immediately affect what the player will do next.

GidgetML modified only two game elements using its adaptive settings. The first
modification was a change to the sample solution provided to players at the start
of each task—players who demonstrated a high level of competency were given
obscure code with many errors, while players at a low level were given code that
might be mostly correct with only a few mistakes. The second modification changed
the restrictions on what would be an acceptable solution to a given task. For high-
competence players, only a very efficient or perfect solution would be accepted
as correct, while low-competence players would be able to submit less efficient
solutions to pass a level.

RoboBUG was developed to have two different types of adaptation. The first was
a change to game play obstacles and code, using an approach similar to GidgetML
for obscuring the code presented to players. RoboBUG also featured game obstacles
that would hinder the player when navigating through the code, which were changed
to be faster and more inconvenient for players at higher levels of competence. The
second form of adaptation was the introduction of hints and feedback presented to
players as they interacted with the code or failed to complete a level. Players at
low levels of competence would receive frequent feedback and advice on how to
understand the code in a task, while players at higher levels would receive such
hints infrequently or not at all.

6.4.3 Challenge #3: Cold Start

How do you solve the cold start problem in adaptive SGs?

The cold start problem occurs when for new users “. . . the system does not
have information about their preferences in order to make recommendations” [7].

6 Engineering Adaptive Serious Games Using Machine Learning 129

Fig. 6.5 Alternative approaches to addressing the cold start problem in adaptive SGs

Specifically, for adaptive SGs, there is insufficient information about a player’s
learning needs to make a recommendation on the starting state of the SG.

It may be tempting to resolve the cold start problem by providing the game with
existing external data about players, such as their grades or results on a pre-game
quiz (see Fig. 6.5). However, this has a number of drawbacks. Firstly, there are
issues of privacy in tracking the behavior of players while associating their data with
grades—this could potentially be used to identify players who would otherwise wish
to remain anonymous. There is also the question of whether or not the grades or quiz
results are actually reflective of the player’s competence. The cold start problem is
not solved if the data provided is not accurate, and it could be the case that a player’s
grades or quiz scores are not reflective of the same competencies associated with the
game’s tasks.

One approach that can be considered is simply ignoring the cold start problem
altogether. With this approach, there will be significant errors in the assessment of
players for whom little game play data has been collected, but the model should
become more accurate as the size of the data increases over time. A way to mitigate
the issue of initial errors in assessment is to limit the degree to which adaptation
happens in the earlier parts of the game. For example, the first tasks in a game might
have little variation between them in order to account for the potential errors in
assessment, while later tasks might have a large range of difficulty levels as there is
a greater level of confidence in a player’s actual level of competency.

130 M. A. Miljanovic and J. S. Bradbury

An alternative solution is to use an earlier part of the game as the initial data
set for the model, and only begin to adapt game play once the player has reached
a certain point. The introductions to many games feature tutorials or guides to
demonstrate for players how they interact with the game’s environment. It may
be the case that these tutorials and guides are suitable for data collection, but
unsuitable for any kind of adaptation. In such a scenario, the way in which a player
demonstrates the competencies targeted by the tutorial should be used as the initial
data provided for machine learning. Thus, it is better for these tutorials to allow
for a high degree of player agency, as opposed to tutorials which provide explicit
step-by-step instruction on how to proceed.

GidgetML handled the cold start problem by only introducing adaptive game
play halfway through the game’s tasks. The first half of the game was an extended
tutorial to introduce each game play feature one at a time, and it was only after these
tasks were completed that GidgetML would begin to adapt to select new tasks. This
meant that GidgetML had access to many levels worth of game play data that could
be used to predict performance from each player.

6.4.4 Challenge #4: Adaptation Frequency

How frequently should you adapt in an SG?

Aside from the questions of how and what to adapt, there is also the question
of when. Frequent adaptation can have the benefit of quickly addressing issues
of frustration experienced during game play, which might otherwise lead to
players abandoning the game from believing they lack the skill to play. However,
more advanced machine learning algorithms may lead to issues of computational
performance in the game, particularly as data sets grow and when the number of
features is large.

Adaptation frequency can be separated into three categories: between session,
between task, and during task (see Fig. 6.6). Between session adaptation occurs

Fig. 6.6 Adaptation frequency—within tasks, between tasks, and between sessions

6 Engineering Adaptive Serious Games Using Machine Learning 131

Fig. 6.7 Trade-offs between different adaptation frequencies

when the algorithm only runs after the player has finished playing, presumably to
pick up the game at a later time. Between task adaptation uses the data from each
task completed and, in combination with the existing data set, adjusts the subsequent
task based on the results of the game’s algorithm. During task adaptation takes into
account the player’s current behavior and, based upon the task as well as the data
sets, determines whether or not (and how) the task should be adjusted while the
player is attempting to complete it.

Computationally, it is easiest to adapt between game play sessions, but for games
that do not have significant replay value or are unlikely to be played for more than
one session, this approach may not be useful. Between task adaptation can serve to
adjust tasks based on previous behavior and allow the game to plan out the player’s
path to help adjust for any shortcomings in desired competencies. However, it does
not provide a solution to players struggling with an immediate task, and cannot
adjust to compensate unless the player finally completes the task or fails it. Although
the approach of adapting during a task offers a solution to this problem, it has its
own issues, namely, those of performance as well as the risk of overfitting data
depending on the algorithm being used (Fig. 6.7).

GidgetML and RoboBUG made use of between-task adaptations in order to
select from three different versions of subsequent tasks in the game. Since the
elements of the game that were modified were exclusively restrictions on the task’s
acceptance criteria or increased vagueness of the sample code or sample solution,
there would not be any elements available to modify during the task. In addition,
since the games were designed to be completed in a single session, it would not be
possible to make use of between session adaptation in an effective way.

6.4.5 Challenge #5: Evaluating Learning

How do you evaluate that an adaptive SG benefits learning?

Perhaps the most challenging of all issues facing developers of educational games is
the ability to evaluate their efficacy, both for entertainment and engagement, as well

132 M. A. Miljanovic and J. S. Bradbury

as their value for learning. Although engagement and learning may be correlated,
it is possible for a game to be significantly engaging while providing little learning
value, or vice versa.

Historically, educational games are not frequently given thorough evaluations
for their value in learning (see Figs. 6.8 and 6.9) [11]. Many games developed by
researchers and gaming companies are only tested for their functionality, and not
tested to see if the target audience will gain any significant improvement in their
development of any competencies. Part of the reason for this is that it is difficult to

100.00%

75.00%

50.00%

25.00%

0.00%
Did the users
have positive
feelings about

the game?

Was the game
accessible?

Research Questions

Were users
engaged while

playing the
game?

Was there a
learning effect

from playing the
game?

No Research
Questions
Evaluated

Fig. 6.8 Questions evaluated by studies of serious programming games [11]

100.00%

75.00%

50.00%

25.00%

0.00%

Inform
al Feedback

Survey/Questionnaire

Form
al In

terview

Skill T
ests

Game Play Statistics

Expert F
eedback

No Evaluation

Method

Fig. 6.9 Methods used in the evaluation of serious programming games [11]

6 Engineering Adaptive Serious Games Using Machine Learning 133

ascertain whether or not a game is an effective learning tool. Adaptive and non-
adaptive games are equally capable at logging game play data, but there is no
established set of best practices for evaluating the learning effect of educational
games.

One approach to testing is to consider the use of a post-game evaluation, such
as a questionnaire, to determine how much the player understands after playing the
game. This was the approach used for RoboBUG—players would complete a pre-
game questionnaire that tested their knowledge of the learning competencies, then
play the game, and then complete the same test again to see if they would change
their answers. However, this has several issues—firstly, players may simply not wish
to complete the assessment if there is no incentive to do so. Secondly, a pre-game
questionnaire is necessary in order to compare the results of the questionnaires, and
such tests are an inconvenience that may encourage players to not bother playing the
game in the first place. Finally, and most importantly, it is completely possible that
the questionnaires do not actually assess the competencies that the game will teach.
A multiple-choice test, or other test that can be automatically evaluated, is ill-suited
to determine whether or not a player has achieved the highest levels of Bloom’s
taxonomy [2]. Although it may be possible to make a test suited to determining
whether or not the player can recall, understand, or apply different competencies, it
is not as easy to determine whether or not a learner can analyze, evaluate, or create
when limited to an automated grading system. It is also challenging to overcome
this obstacle by creating a generalizable questionnaire, because any two games are
unlikely to cover the exact same content.

6.5 Discussion

The development of new adaptive serious games and the addition of adaptation
to existing serious games are both challenging engineering problems that require
a combination of expertise in the learning domain, game development, software
development, and machine learning. In this chapter, we have presented one approach
to engineering adaptive serious games using ML. We have also discussed five of the
common challenges faced in the development of adaptive SGs and provided insight
and guidance based on our own experience of development adaptive SGs in the field
of computer science.

The main limitations of the models and practices presented are as follows:

• All of the models and practices are based on our experience with the development
of adaptive SGs for computer science. While we believe these generalize to other
domains, we acknowledge that the generalizability has not been fully researched.

• Our methodology for evolving existing SGs to us ML has not been indepen-
dently utilized by third-party developers. We have successfully applied this
methodology to add adaption to a third-party developed SG (Gidget) and to an

134 M. A. Miljanovic and J. S. Bradbury

in-house developed SG (RoboBUG), but we do not have data on the use of this
methodology outside of our research group.

Our experience with the development and deployment of adaptive SGs in
computer science has shown that despite the challenges that may be encountered,
the use of adaptation in SGs provides an opportunity to enhance the engagement
and learning of SG players by personalizing the game play to their specific learning
needs.

References

1. Caponetto, I., Earp, J., Ott, M.: Gamification and education: a literature review. In: European
Conference on Games Based Learning, vol. 1, p. 50. Academic Conferences International
Limited, Reading (2014)

2. Forehand, M.: Bloom’s taxonomy. Emer. Perspect. Learn. Teach. Technol. 41(4), 47–56 (2010)
3. Frutos-Pascual, M., Zapirain, B.G.: Review of the use of ai techniques in serious games:

Decision making and machine learning. IEEE Trans. Comput. Intell. AI Games 9(2), 133–152
(2015)

4. Kopeinik, S., Nussbaumer, A., Bedek, M., Albert, D.: Using CbKST for learning path
recommendation in game-based learning. In: 20th International Conference on Computers in
Education, pp. 26–30 (2012)

5. Lee, M.J., Ko, A.J.: Personifying programming tool feedback improves novice programmers’
learning. In: Proceedings of the Seventh International Workshop on Computing Education
Research, pp. 109–116. ACM, New York (2011)

6. Lee, M.J., Ko, A.J.: A demonstration of gidget, a debugging game for computing education.
In: 2014 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC),
pp. 211–212. IEEE, Piscataway (2014)

7. Lika, B., Kolomvatsos, K., Hadjiefthymiades, S.: Facing the cold start problem in recom-
mender systems. Expert Syst. Appl. 41(4, Part 2), 2065–2073 (2014)

8. Miljanovic, M.A.: Adaptive Serious Games for Computer Science Education. PhD thesis,
Ontario Tech University, Oshawa, ON (2020). Supervisor: Jeremy S. Bradbury

9. Miljanovic, M.A., Bradbury, J.S.: Robobug: a serious game for learning debugging techniques.
In: Proceedings of the 13th Annual ACM International Computing Education Research
Conference (ICER 2017), pp. 93–100 (2017)

10. Miljanovic, M.A., Bradbury, J.S.: Making serious programming games adaptive. In: Proceed-
ings of the 4th Joint Conference on Serious Games (JCSG 2018) (2018)

11. Miljanovic, M.A., Bradbury, J.S.: A review of serious games for programming. In: Proceedings
of the 4th Joint Conference on Serious Games (JCSG 2018) (2018)

12. Miljanovic, M.A., Bradbury, J.S.: GidgetML: an adaptive serious game for enhancing first
year programming labs. In: Proceedings of the 42nd International Conference on Software
Engineering (ICSE 2020) (2020)

13. Shute, V.J.: Stealth assessment in computer-based games to support learning. Comput. Games
Instruct. 55(2), 503–524 (2011)

14. Streicher, A., Smeddinck, J.D.: Personalized and adaptive serious games. In: Entertainment
Computing and Serious Games, pp. 332–377. Springer, Berlin (2016)

15. Susi, T., Johannesson, M., Backlund, P.: Serious games: an overview (2007)

Part II
Topics on Experiences with Gameful

Systems

Chapter 7
Future Directions in Games for Serious
Contexts: A Conversation About
Transferability

Vanissa Wanick, James Stallwood, and Guilherme Xavier

Abstract This chapter provides a conversation in the form of an opinion piece
about strategies commonly utilized in games that can be “transferred” to Serious
Games (SGs) and games for serious contexts. The aim of this chapter is to provide
different perspectives and examples that are currently utilized by entertainment
games that could be utilized in SG development. SGs are often developed for
particular situations, and with that, the development process might be attached to
specific stakeholders, becoming, most of the time, a “one-off” product, which may
limit the SG life cycle and game repurposing. This chapter brings with three com-
plementary perspectives to address future challenges and opportunities regarding
emerging aspects of player agency and SG modification and transferability across
different contexts. First, we discuss emergent possibilities, bringing examples from
digital entertainment transferability. Second, we take into consideration “modding”
strategies to provide insights for SG modification and transferability, discussing the
role of the “context” in games development. Third, we demonstrate the importance
of AI emotion modelling to inform better game design. To conclude, we respond to
these ideas and provide suggestions for SG research and practice.

Keywords Personality vectors · Transferability · Serious games · Position
paper · Modding · Emotional modelling

7.1 Introduction

Serious games (SGs) and gamified applications utilized in non-entertainment
contexts have the potential to promote positive behavior but also keep the user

V. Wanick (�) · J. Stallwood
University of Southampton, Southampton, UK
e-mail: vwv1n12@soton.ac.uk; J.E.Stallwood@soton.ac.uk

G. Xavier
Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
e-mail: guix@puc-rio.br

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
K. M. L. Cooper, A. Bucchiarone (eds.), Software Engineering for Games
in Serious Contexts, https://doi.org/10.1007/978-3-031-33338-5_7

137

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33338-5protect T1	extunderscore 7&domain=pdf

 885 52970 a 885 52970 a

mailto:vwv1n12@soton.ac.uk
mailto:vwv1n12@soton.ac.uk
mailto:vwv1n12@soton.ac.uk

 10036 52970 a 10036 52970 a

mailto:J.E.Stallwood@soton.ac.uk
mailto:J.E.Stallwood@soton.ac.uk
mailto:J.E.Stallwood@soton.ac.uk
mailto:J.E.Stallwood@soton.ac.uk
mailto:J.E.Stallwood@soton.ac.uk

 885
56845 a 885 56845 a

mailto:guix@puc-rio.br
mailto:guix@puc-rio.br
mailto:guix@puc-rio.br
https://doi.org/10.1007/978-3-031-33338-5_7
https://doi.org/10.1007/978-3-031-33338-5_7
https://doi.org/10.1007/978-3-031-33338-5_7
https://doi.org/10.1007/978-3-031-33338-5_7
https://doi.org/10.1007/978-3-031-33338-5_7
https://doi.org/10.1007/978-3-031-33338-5_7
https://doi.org/10.1007/978-3-031-33338-5_7
https://doi.org/10.1007/978-3-031-33338-5_7
https://doi.org/10.1007/978-3-031-33338-5_7
https://doi.org/10.1007/978-3-031-33338-5_7
https://doi.org/10.1007/978-3-031-33338-5_7

138 V. Wanick et al.

engaged in a specific activity. Due to their attachment to the “context,” these games
and applications may become a “one-off” product, being difficult to replicate outside
their own environment. But what if the process of creating and developing serious
games could be fed by other models, imported both from the entertainment area and
from constituent approaches of automatism programming techniques, mediated by
the experience of their designers?

This chapter provides a conversation and an outline of topics usually utilized in
games that can be “transferred” to serious games and games for serious contexts.
This approach we have called as “transferability.” The concept of transferability
discussed in this chapter can be twofold. From one side, transferability is about
the generalization of “solutions” and from another, transferability accounts for the
extent to which a solution can be effectively achieved in another context. Thus,
considering that serious games are designed based on and for a particular context,
we believe that by discussing transferability, we can provide recommendations for
improvement and insights to design and develop more effective SGs.

In research, transferability relates to the degree to which that research method
or output can be transferred to other contexts. Transferability might be at times
combined with generalization, which means that the output can be applied into other
contexts. For SG design, it means that these games are designed with a purpose
in mind; however, would that mean that a serious game can be only applied to
one single context? As [1] mention, the definition of the term SG is related to
cultural practices, but as these practices evolve, the range of the term might also
change. A SG can be used to communicate a message, enable training/cognitive or
physical capabilities, and facilitate data sharing and collection (e.g., crowdsourcing
and citizen science applications, such as Foldit) [1]. This means that SGs have a
clear purpose, though it does not imply—not directly—that the game itself needs to
be designed for that single purpose.

Yet, the term “serious games” deals with a conflict between what is admitted as
purposeful seriousness and what is expected from a game as an activity aimed at
the enjoyment of its participants. If the game exists at play time, this is where, at
the “Game,” we will drop our anchors to take a look around. In addition to this
discussion, therefore, we will first consider the “game” part of the term “serious
game,” implying in the dialogue that the difficulty for designers in making their
projects engaging is not in the content but in the way in which it is presented for
interactive participation.

Considering this, this chapter discusses transferability, from the perspective
of the authors, in three sections: (1) transferability of competences and skills
constituted by gaming practices (e.g., the idea of games as instruments) and
transferability via games as tools (e.g., modding practices), (2) transferability of
“informal” game development practices via Game Jams and games developed as
a commentary about a particular “serious” context (e.g., health issues), and (3)
personality vectors as an AI mechanism to improve the quality of in-game agents.
Each section has a particular treatment given by the authors, with relevant examples.
We believe these examples extend debates in the literature around repurposing of
SGs [2, 3] and agent-oriented software engineering [4].

7 Future Directions in Games for Serious Contexts: A Conversation About. . . 139

Despite the challenges of developing games for serious contexts (e.g., user
engagement, costs of production, metrics of the effectiveness of the game/applica-
tion, etc.), software engineers and designers have been working toward personalized
strategies and algorithms that provide users with unique experiences [5]. Artificial
intelligence (AI) might be able to solve a few issues with personalization; however,
gameplay adaptability might be difficult to achieve when the game is already made.

Games applied in serious contexts might also depend on stakeholders’ ability
to deploy the game in that context (e.g., by recommending and reading results of
a health application or designing experiences for (and with) students). Thus, when
designing games for serious contexts and gamified applications, it is important to
understand how much control would be given to its “users,” how and when, in order
to make it relevant.

This chapter aims to address future challenges and opportunities regarding
emerging aspects of player agency and SG modification across different contexts
through a set of conversations posed by the authors. To conclude, we respond to
these ideas and provide suggestions for SG development. For software engineers,
we discuss the potential of modular approaches, together with the application of
personality vectors to enrich intelligent tutoring mechanisms and potential practices
for the early stages of SG development.

7.2 Serious Games Design Transferability: Setting Up
the Conversation About Purpose, Tools, and Instruments

In this section, we discuss aspects that blur the line between entertainment and
serious contexts, such as games designed as a commentary about a “serious”
context, but that are not SGs per se as their main purpose is entertainment. We
will use two examples to discuss the concept of transferability in the design of two
games: Before I forget and Hellblade: Senua’s Sacrifice.

Before I forget (Fig. 7.1) tells the story of a woman trying to reconnect with her
past, but it creates several scenarios that reflect the emotional portrait of dementia.
In an article published by The Guardian [6], the authors mentioned the idea emerged
from a Game Jam that had in fact a serious context to tackle. Game Jams (GJs), from
Global Game Jam (GGJ) to many others (particularly hosted in the platform itch.io),
can support a new landscape for game design and development, since it provides a
safe space for people to collaborate and create together in an informal setting. The
reason for that is that these platforms and events can offer innovative and interesting
new mechanics since it allows quick and rapid prototyping games. GJs are usually
thematic and have an initial point of interest. Themes may vary, from indigenous
communities to keywords like “roots” (GGJ 2023s theme). Within these themes,
questions might emerge; for example, what is the best way to represent the concept
of “roots?” What do “roots” represent? How might these ideas become interesting
mechanics? These are common questions that emerge in a brainstorming session,

140 V. Wanick et al.

Fig. 7.1 Before I forget (Source: Threefold games)

which may emerge from a problem statement [7]. But what if the questions become
more technical and more subject specific?

Let’s bring back Before I forget and discuss the questions suggested by the
developers and designers. During the early stages of development, the creators
mentioned that one of the questions they had was “What happens when we lose
our memories?” [6] Then the creators moved to design questions, such as on how
to implement and how to go further into developing the narrative and the other
design components. The key aspect for the innovative factor in this case was the
transferability from one discipline to the other and having two questions being asked
at the same time: one related to research and scientific aspects and the other related
to design and development (on how to make the final prototype). Before I forget is
not a SG but has serious contexts involved in its design and core experience.

The same can be said about Hellblade: Senua’s Sacrifice, which tackles psy-
chosis. For the design of this particular game, designers worked together with
professors and neuroscientists, and the research was fed into game development via
the description of hallucinations and other experiences [8]. The game itself portrays
a Viking environment, but it is the experience that conveys the psychotic state of
the main character (Senua). Senua is a traumatized Celtic warrior on a quest to the
Viking underworld, Hel. Thus, there is a layer of “fantasy” being added to a “serious”
context. It is worth mentioning that the game, however, has not emerged from a GJ,
as compared to Before I forget, but from a research project.

Both Before I forget and Hellblade: Senua’s Sacrifice had their base on scientific
and subject specific knowledge but are entertainment games. However, this does not
mean that these games cannot be used in an educational setting. In fact, they might
be great tools to teach about particular health conditions.

7 Future Directions in Games for Serious Contexts: A Conversation About. . . 141

In this sense, it is important to differ two concepts that are fundamental when
considering games, and serious games in particular, with a focus on their purpose
and transferability: games as “tools” and games as “instruments.” Although they
seem like only terminological differences, they evoke different interpretations and
thus different perceptions of purpose.

When we consider games as “tools,” we are assuming their functional character-
istics as something participated to resolve a problem. It should be noted that a game
as “problem-solving activity, approached with a playful attitude” [7] is a sufficient
ontological definition of game, in the absence of a definitive one, that both the area
and the related disciplines have not yet been able to consolidate. That said, when we
think of games as “tools,” we are assuming that they fulfil a dual purpose: the first
within a diegetic dimension and in compliance with rules to reach an objective and
second in a sphere that expands in the experience of its own practice.

For example, there is a recent appeal in translating work activities that would
otherwise be considered completely devoid of fun, bringing to make-believe the
“responsibilities” of a simulated job-like activity. We highlight here the games Plane
Mechanic Simulator (Disaster Studio/Cobble Games, 2019), Euro Truck Simulator
2 (SCS Software, 2012), and PC Building Simulator (The Irregular Corporation,
2018), which somewhat could be perceived as serious games in convenient contexts
(if the player is a mechanic, trucker, or computer technician), beyond those they are
“originally” related to.

In the first game, Plane Mechanic Simulator, the player is invited to consider
that World War II airplanes are like an assembly of puzzle pieces that occupy
a specific location at a specific time, which we can summarize as a space-time-
problem, in the mechanical structure of a complex vehicle. For there to be a repair
(pointed out bureaucratically, on a clipboard), the player must navigate a three-
dimensional structure of the object to be mended, laboriously removing screws,
plates, and exquisitely detailed parts to meet the objective of the demand, later
carrying out the reverse process of disassembly to obtain victory. What at first
glance may seem like an activity worthy of Sisyphus, it actually finds an echo in
a mechanistic and structuralist society, the one that seeks to reduce the distance
between modus faciendi and modus operandi of cultural assets in the virtual world.
The industrial complexity has as a summary a kind of gap between what is made and
what is used, which in part explains the large number of different “maker kits” now
on online sales to satisfy hands that are not busy with manual duties but overloaded
with intellectual work, as a way of aesthetic “compensation.” Thus, if there is a low
possibility of actual building nowadays in our lives, at least the experience of virtual
“building” is possible, seductive, and free from consequences.

In the second game, Euro Truck Simulator 2, the player takes the wheel of a truck
to transport goods, of all kinds, along the roads of Europe. There is a version located
in the United States by the company itself, but this spin-off title little or nothing
differs in the result of a driving experience, since the community also manages to
create other mods to update the game to other parts of the world and their respective
highways. If the player has no interest in trucks, but in buses or even cars, it is too
possible for unofficial installations to adapt the game to the taste of its driver, which

142 V. Wanick et al.

is seen as normal behavior by the developer company. This, in part, solves technical
issues (in the “eternal pursuit of realism as an end”) and in part interferes with
the way the game is consumed (beyond the usual player and in more spectacular
ways). On the Twitch video platform, specialized in broadcasting matches from
this and many other games, there is vast content of “drivers” getting involved in
hypothetical scenarios of dangerousness on unrealistic roads, in a kind of “self-
assured skill tests,” which in the game is a concern but not the most important. At
least, no more than following the traffic rules (whose fines are immediately charged
to the driver), exploring kilometers and kilometers of territories based on typical
old continent environments without running out of fuel or passing out from sleep
deprivation, and delivering packages on time for XP acquisition.

In the third game, PC Building Simulator, the player takes over a private shop
specializing in repairs and installation of computer parts, retracing a path similar
to Plane Mechanic Simulator in a genre that we could call adminpuzzle: the
traditional puzzle of digital games plus financial responsibilities such as those of
Euro Truck Simulator 2 and their administrative schedules, garages, and employees.
The metalanguage of this game is too provocative and does not allow us to
exempt a comment about a computer game in which computers are based on
“real” computers, and even their parts are sponsored by “real” companies, dedicated
to computer construction that must be built with performance for digital games.
The process is cyclical and, therefore, meditative: tasks need to be carried out on
different equipment, seeking with audio-visual assets to “ludify” something that
would otherwise be perceived as just a technical work devoid of “epicity,” common
in other interactive digital works.

As well as these three games, many others seek, in the rigor (or lack of) of
the simulations, to bring their players the feeling of a metrical tooling operation.
There are learning curves and, therefore, results that demand dedication for a certain
number of hours. The game is thus a “tool” to be used to satisfy an estimated
result, generally far from the reality of its player. As games are opportunities for
other experiences, there is meaning in challenges that deal with this alternative and,
therefore, experimental prerogative.

Minecraft, for instance, can be said to be a “simulator” that allows players
to experiment with. The “game” has playful and gameful components, allowing
players to explore an open world but to also play with rules (surviving mode).
Minecraft has many versions including an educational version, which then becomes
a “serious toy” (using [1]’s terminology). This “version” and its mods are accompa-
nied by teaching resources. In this case, the “real” context (e.g., classroom) is still
imperative for the learner to achieve the learning objectives. What makes Minecraft
an interesting example about transferability is that the game can be applied into
other contexts, which comes together with the idea about repurposing a game for
a particular context. Can a SG designed for that purpose be repurposed and have
“transferable” components? So, could we do the reverse? Foldit is potentially a good
example (see Fig. 7.2). When Foldit was launched in 2008, its first challenge was
to decode proteins, which then were applied to solve issues related to the COVID-
19 global pandemic (see Fig. 7.2). Foldit did not change its core and still remained

7 Future Directions in Games for Serious Contexts: A Conversation About. . . 143

Fig. 7.2 Foldit: COVID-19 version (Source: Screenshot from authors based on http://www.fold.
it)

with the same mechanics, but it changed its challenge and potentially the way these
were presented to players. Therefore, would “transferability” mean that the core
mechanics stay intact? Would that not be the same as reskinning an existing game?

Jenkins et al. [9] proposed that educational game design requires negotiation of
identities, assumptions and meaning, as games it might not be clear if the games
are seen as just entertainment or just educational pieces. This might be a matter of
perspective and purpose, being the goal of the game to support learning objectives or
particular goals, and the “fun” is the way to achieve that. Nearly 20 years later, there
is still a need to negotiate “identities,” which [9] represent by teachers, designers,
students, and so on. Nearly 20 years later, these roles and identities are revisited with
the rise of the modding culture, like those common in platform/gamehub Roblox
(Roblox Corporation, 2006). Modifications have been used in design and in games
for serious contexts, as mentioned before. However, these were still modifications
mostly made by teachers/designers and less from the perspective of players/students.
In fact, one of the most challenging aspects is to be able to identify which games are
“moddable” [10].

We talk now about games as “instruments,” that is, as an activity that demands
time invested in skill, constituted by dedication and some tuning: the operational
adjustments that are necessary so that the result is in line with what is expected
for a driven sensation to fulfil rule-imposed objectives. In these games, victory
is not enough but the certainty of “being one with the game” in the fullness
of knowing how to know. Thus, the more used the instrument, the better the
apparent and internalized result, which we can understand as a learning process.

http://www.fold.it
http://www.fold.it
http://www.fold.it
http://www.fold.it

144 V. Wanick et al.

Csikszentmihalyi’s [11] Flow is immediately expected to appear right here: by
becoming one with the game, the player awaits the trance that allows him to advance
and advance, seeking in virtuosity, both personal and social satisfaction.

The transferability of competences and skills constituted by gaming practices
has been the core of serious games since their first applications for school renewal
and training in the 1970s of one or more proficiencies; it becomes common with
the expansion of digital electronic accessibility in the 1990s and with the multi-
mediatization of cybernetic microcomputing in the 2000s. Although they belong
to another dimension of interactivity with a purpose (which would go against the
usual expectation of a game for its “promising empty” condition precisely because
it belongs to the sphere of interstitial activities of modern and productive societies).
While “instruments”, games require their participants to understand all the resources
involved in order to take better advantage of them. In addition to their mechanics,
dynamics, and aesthetics [12], games as an activity exist only ongoing, but as an
experience, exist both ongoing and after, in the form of affective memory and tacit
knowledge.

Whether “tools” or “instruments,” games can be “recommissioned” for other
practical purposes as long as they are not deprived of their main conditional
characteristics: fantasy and control. This means that entertainment games can
be appropriated, via an exercise of “metaphorization”; that is, the game has a
symbolic meaning that could function as a metaphor or analogy. After all, as a
means of communication and expression, games assume themselves as promoters
of a purpose. And being recognized as such, they facilitate the migration of use
knowledge from one context to another. As a subversive sample of this kind of
entertainment gaming transferability we are talking about, let’s discuss the modus
operandi, the use of the keyboard for first-person shooter games.

Back in the year 1997, Quake became an outstanding commercial success by iD
Software. Until the emergence of complex games that require the simultaneous use
of mouse and keyboard, video games had a certain amount of possible and allowed
inputs, establishing two paradigms sufficient for interaction, the “lever” (generally
pushed in the direction of the command) and the “button pressed” (to activate or
deactivate an action). The use of the keyboard had in the function keys F1 to F12,
Enter, Space Bar, and directional arrows an industrial agreement of use; therefore,
they were foreseen in function of the programs that made use of their positions and
functions. When that year Dennis “Thresh” Fong beat Tom “Entropy” Kimzey in
the first national Quake tournament, he went on to popularize an inadvertent use of
W, A, S, and D keys as the new “directional” keys. Anyway, the next first-person
shooter games like Half-Life, Counter-Strike, and Unreal Tournament, to name a
few popular examples, gave up the directional arrows due to this new “imported”
adaptation scheme, which is still considered default even for games that are not
first-person shooters.

Speaking of the present, in search of a future in which SG invites the versatility of
its samples to acquire welcome flow states, it is necessary to investigate opportuni-
ties in the production of game assets and its relation with its players. Transferability,
then, becomes a token both serious and entertainment games must rely on, focusing

7 Future Directions in Games for Serious Contexts: A Conversation About. . . 145

on engagement behavior, directly associated with emotional responses. Next, we
bring some technical suggestions about that.

7.3 Going Technical: Personality Vectors as a Strategy
Toward Emotional AI Modelling

The aim in this section is to first set a premise for a concept of personality vectors
and then show with an extended example how these personality vectors might be
used in a more complex example. This section deliberately discusses examples
outside the SG field, particularly looking at a potential strategy to evoke emotional
behaviors of non-player characters (NPCs). The application of these examples is
addressed in the conclusion.

To begin, let us think of a guard patrolling an environment. This guard will patrol
until an enemy, the player, is spotted and will then engage the enemy in combat or
flee from the enemy dependent on if the guard is sufficiently healthy and armed
to do so. We will assume that the guard begins their duty fully in good health and
well-armed for the purpose.

Regardless of whether we might use a state-machine or a behavior tree or any
other kind of model for this NPC, the design is similar for all of them. The guard
receives information from the game-world and its own current situation and will
decide upon certain actions if pre-conditional statements are met. For example,
suppose that it is decided that in order to engage an enemy, the guard must first
be able to see the enemy, be reasonably healthy (e.g., health > 50%), and have an
abundance of ammunition for a number of shots to be made (e.g., 10 shots). If those
conditions are met, then the reasoning framework for our guard will make them
engage their foe. This collection of preconditional statements and actions can be
called the NPC’s “strategy” or “strategy framework.” One could think of it as the
training manual that the guard received before they took the job.

This strategy framework may be a sufficient basis for all guards, but the way it
works opens an obvious in-game question: how does the guard know how healthy
they are? So, we might abstract this further and ask what does this guard have
the right to know accurately about themselves from moment to moment? As the
preconditional statements in the strategy framework rely on the data collected by
the guard, why should that data be processed directly rather than being put through
some data judgement protocol first?

If the guard is wrong about spotting the player, then the guard may open fire into
a harmless jacket hanging on a door. If the guard is wrong about being sufficiently
healthy to take on the threat, they will find themselves at quite a disadvantage. If the
guard is wrong about having enough ammunition, they will quickly find themselves
in an action movie cliché.

146 V. Wanick et al.

For simplicity’s sake, we could imagine the data judgement protocol to look
something like this and using a simple probability:

NPC_Judgment():
r = random_number(0, 1)
IF r <= 0.05

THEN RETURN random_number(-10, 10)
ELSE RETURN 0

For the guard’s preconditional variables (health, ammunition, enemy_spotted),
there would be two distinct variables used: the actual, or true, value variables and
the perceived variables where the returned value of the NPC_Judgment protocol is
added to the actual value. The result is that instead of using the actual values in the
strategic framework’s conditional reasoning, the perceived values are used instead.

This would provide greater nuance and difference to the guard’s behavior at
relatively little cost and, more importantly, without having to alter the basic strategy
framework at all. However, we could go further. Though we have chosen arbitrary
numbers for the probability and the ranges to add for the perceived variables,
these could instead be linked to a predesigned personality for the guard or change
over time according to circumstances. We can rewrite parts of our NPC_Judgment
protocol to account for these options.

misjudge_rate = 0.05
misjudge_extreme = 10
NPC_Judgment():
r = random_number(0, 1)
IF r <= misjudge_rate
THEN RETURN random_number(-misjudge_extreme, misjudge_extreme)

In predesigning the personality for the guard, we might decide to make a
guard that is more prone to making misjudgments, and so we would increase the
misjudge_rate to be a higher value and more likely to occur. Or we might decide that
our guard character is even more inaccurate with their perceptions than an ordinary
guard and increase the misjudge_extreme value. Or, indeed, we could decrease
those values for more seasoned guards and any mixture in between. In taking this
approach, we allow ourselves to make personality and experience changes to our
guard agents without changing the strategy framework for all guards. Divorcing this
process enables us to safely experiment with these parameters without the need for
tedious minute work in the strategy framework itself.

We might decide instead to fix these values to some external stimuli as well. For
example, consider the type of guard who on seeing half of their comrades. If instead
we took something like the number of times the guard has seen a fallen comrade
and either mapped that or used it as a factor for the guard’s misjudge_rate and
misjudge_extreme values, then we begin to get something approaching a basic fear
index. When people are scared, they make mistakes. Our NPC_Judgment variables
might instead look a little like this:

misjudge_rate = 0.05 * fear_value
misjudge_extreme = map(10, 30, fear_min, fear_max, fear_value)

7 Future Directions in Games for Serious Contexts: A Conversation About. . . 147

where in the first instance the fear index acts as a factor for the misjudgment
probability and in the second instance the misjudgment extreme is mapped between
10 and 30 depending on the current value of the fear index compared with some
maximum.

If we were to have multiple personality indices, we might weight their effects on
these judgment variables differently according to how we thought they might apply
or by personality design. Suppose our guard has two personality indices: fear and
anger. We could design a guard that is affected more by one than another or by both
equally. So, a guard who is more cowardly might be made like this, misjudge_rate
= (0.1 * fear_value) + (0.02 * anger_value), whereas a guard that is more easily
caught in the red mists of rage might be made like this: misjudge_rate = (0.01 *
fear_value) + (0.2 * anger_value).

In either case, we have a liberty to model our guards according to personality in
whichever way we choose. A fearless guard might take no influence from fear at all.

In the event we have multiple personality indices to track and to factor into our
NPC_Judgement protocol, we could create a personality matrix where one row, say
the first, is the effect vector for the guard’s personality and the second row are the
personality indices generated from external events in the game. Treating the rows
as single vectors, our simple model for the misjudge_rate variable can be calculated
with the dot product of these two rows.

Of course, we don’t have to use the dot product approach or the mapping
approach described above; these are simple implementations. However, going
forward with this idea, it is worth remembering our two key ideas: a strategy
framework which does not alter at all between different agents and a personality
matrix or vector of indices which is used to add a variation to the behaviors described
in the strategy framework.

Let us now move on to a different kind of problem: NPC poker players or poker
agents. Poker, and in this case referred specifically to Texas Hold ‘Em, as with many
other card games, has standard conventions that accompany its rules, and because
lying is an intrinsic part of playing poker, those conventions make the game both
stable and unstable in trying to determine the actions of a player.

For example, it is a common convention that the closer a player is to the dealer
chip from a clockwise position at the table, the stronger their hand should be if
they choose to call or raise a bid. The reasoning for this strategy is simple; players
closer to the dealer chip must act before those further away, and it is better to be in a
position of strength. Similarly, if a player has the dealer chip or is close to the dealer
chip on the right, they can play weaker hands knowing that they do not have to act
before anyone else.

If we were to design a poker agent to use this strategy alone in a limited
experiment of opening plays, we would be missing a fundamental part of the game.
Our agent would consider its position, analyze the strength of its hand, and make
some judgment, probably probabilistic on whether it should call, raise, or fold.
However, what we are missing in this implementation is the ability to lie. Because of
the convention that is held due to the collective experience and knowledge of poker
players down through the ages, a big blind who raises represents a strong or monster

148 V. Wanick et al.

hand. At this point, we should carefully not the poker terminology “represents.” We
do not say the big blind player has a strong hand, only that they represent one and
act as if they do.

The curiousness of poker is that it is a game seeped in personality. As a player, we
must assume our competitors are trying to be truthful about their hand and intentions
even though there is an excellent chance that they are lying to us.

Therefore, when we design such agents, we must be mindful of many more
factors. We could, for example, begin with a simple protocol for analyzing the

strength of a hand. There is, for example, an approximately 6% (.

(
13
1

)(
4
2

)
(

52
2

)) chance of

being dealt a pocket pair. In the pre-flop portion of the game, this is a major strength.
Afterall, there are only 13 values of pairs, and their relative unlikelihood means that
at a table of five people, if you have a pocket pair at this stage of the game and cards
were turned, you’d have a very good chance of winning. By the end of the game,
five cards, the likelihood of other players also having a pair increases significantly
as do the chances of your pair being beaten.

What is useful for designers is that poker is a game which illustrates the folly
of holding onto a strategy framework only model. Our goal is not in creating poker
agents that win optimally wherever they can but ones that act like poker players to
increase the verisimilitude of the game experience.

This then leads us to the question, what of the personality vectors/matrices? How
do we use them? We must first ask ourselves what is a reasonable area in which
a poker player could make a mistake in their reasoning? What is the equivalent
of misjudging one’s ammunition or health status in poker? Finally, because of the
nature of the game itself, how can we abstract misjudgment protocols to include
intentional misrepresentation of our hand, bluffing?

Let’s start with some assumptions about our poker agent. Firstly, we will assume
that our agent will not forget the cards they have. While this does occasionally
happen, the agent is technically free to look at their cards at any time so we will
not consider this to be a valid misjudgment opportunity. Secondly, we will assume
that our agent knows the rules of the game fully and isn’t playing different variants
unknowingly. Thirdly, we will assume our agent can perform simple arithmetic
operations like percentages of the pot, cards seen versus cards remaining, etc.

As there are many factors that could be in play in a poker game, we will only use
one of them: hand potential. Using only the values for the two cards in the agent’s
hand and knowing if they are suited (sharing the same suit) or not (“off suit” or
“off”), there are 169 possible hands an agent might have. We can value our hands
numerically from the best possible two-card combination (two aces) to the worst
possible two-card combination (7 – 2 off). As with our earlier guard example, it
should be possible to assign a misjudgment for card strength in the same way we
discussed the idea of health or ammunition earlier.

Card strength is not only relative to other cards but also indicates an idea of
playable freedom depending on where the agent is sat relative to the dealer chip. In
other words, a hand’s strength is not dependent only on the values of the cards but

7 Future Directions in Games for Serious Contexts: A Conversation About. . . 149

also on where the player is sat in combination. If there were six people at a table
playing the game, then the best position would generally be in the sixth chair. If we
label each seat, beginning with the small blind at 1, then the seat position for the
player can be used as a starting point. If our agent were sat next to the button, then
they would have a position score of 5.

To begin to formulate a score, let’s call this variable hand_potential. Thus, so far:

hand_potential = position

To keep things simple, we could assign each card combination a score using 1
(worst) to 169 (best). Combining these terms into our hand_potential variable, we
get:

hand_potential = position(hand_strength)

If we use the extremes for our range of possibilities, this means that we have two
cases of comparison to judge our combination. The first is that at our six-person
poker table, the worst possible hand in the best possible position is comparable
to the sixth worst hand in the worst position. The second is that our 28th worst
hand in the best possible position is comparable to a pair of aces in the small blind
position. Clearly this simple combination doesn’t really account for hand strength
appropriately. We can fix this by either reducing the effect of the position on the
final score or increasing the effect of the hand strength.

If we square the hand strength instead, we get a more satisfactory result. The
worst hand in the best position is only better than the second worst hand in the small
blind position. Whereas with this model, the best hand in the worst position has a
worst score than the 70th worst hand in the best position, a little shy of half all-
possible hands. If this is not satisfactory still, and this is a very simple modelling for
the purposes of illustration, we could add some factor before we square the result.
We might add ten to the pre-squared hand strength if it is a pocket pair and five to
the suited cards to add a reasonable distinction. A small pair (generally considered
to be less than ten) has more chance of becoming a three of a kind than suited cards
have of becoming a flush or a straight.

hand_potential = position((hand_strength + (suited? + pair?))2)

This model for hand potential may not be perfectly nuanced, but it is hopefully
sufficient for a basic agent to help make its judgments about play decisions and basic
enough to implement simply. Indeed, we might calculate hand strength according to
the number of over cards as well, but we’ll leave that distinction out for the moment.
As we now have a judgment variable, we can apply similar principles of alteration
as with the guard assessing their health and ammunition.

In this instance, we would see agents making raises when they should call or
folding when they should call, etc. These changes would form a slight variance to
the accepted strategies replicating what we see real poker players do, often to the
chagrin of championship bracelet winners around the globe who take a dim view to
such plays.

150 V. Wanick et al.

This leads us to the first of our potential indices for the personality vector:
experience. Experienced players will more readily compute the conventions of play
because it helps them size up their opposition. Experience will lead a player to better
evaluate their hand and position in the game and cause them to act more accordingly
with the conventions as they are tried and true. Inexperienced players, who maybe
are less aware of their position and the conventions are more likely to make risky
and daring moves if they move at all.

Likewise, with experience, a player might be described as a tight or loose player
(which links to the concept of bluffing). A tight player is someone who works more
with the value of their hand and position and acts strictly accordingly (the kind of
player that will deviate less from the conventions of the strategy framework). A
loose player, conversely, is the opposite. A simple implementation of these kinds of
personality on a factor such as hand potential would be to observe if a tight player
does not play a hand because one or two factors are not as optimal. This being
the case, a player’s style as index in the personality vector would act as a limiting
or gaining factor for hand potential leading loose players to make riskier plays (in
effect over valuing their cards) and tight players to make much more conservative
plays (in effect under valuing their cards).

Therefore, based on the two examples presented in this section (patrolling
agent and poker player agent), we can expect that the strategy framework can
be formulated separately from the agent’s interpretation, which would be then
grounded on the personality vectors. These personality vectors can vary in many
ways as described, from reactions to particular stimuli to the ability of being able to
“lie.”

In the next section, we discuss the applicability of these ideas into SG develop-
ment. We hope to see the adoption of more personality-based reasoning for game
agents, so it will lead to a better experience all round for the players of those games.
We hope also that a general paradigm model for this can be developed in much the
same way other reasoning models have been created.

7.4 Conclusions

This chapter proposed a conversation about aspects that can be “transferred” from
games and then can be potentially utilized in SG development. To conclude this
conversation, we would like to propose several ideas on how to take these concepts
into practice.

7.4.1 Games as “Tools” and Games as “Instruments”

In Sect. 7.2, we have mentioned about the transferability of competences and
skills constituted by gaming practices, particularly from the perspective of games

7 Future Directions in Games for Serious Contexts: A Conversation About. . . 151

as tools and games as instruments. In this case and in SG development, games
could be repurposed if seen as a “serious toy,” meaning that the game itself would
have multiple facets. This could be explained via a modular approach (similar
to LEGO bricks), in which the game now seen as a “toy” could evoke multiple
playing settings. In this particular case, modding can be a methodology to be
applied and investigated, particularly the aspects that make a game “moddable.”
Thus, by incorporating “moddable” affordances to the game, it might be that
designers and developers could provide more modular approaches to development.
Yet, questions still remain: How can a player learn how to modify the game? Can
this be accessible to all players, or is it still for a minority of players who are
familiar with development? The same can be applied for the discussion and title
from [9]’s paper You can’t bring that game to school (2003); we may, as developers
and designers, actually allow students to bring the games to school and change them.
Since games become even more part of today’s society’s culture, the choice of which
game to use for pedagogical reasons could be negotiated.

Another aspect mentioned in Sect. 7.2 was games as “instruments.” The trans-
ferability aspect of this category is competences and skills, which aligns with flow
mechanisms, game balancing, and alignment of player-game knowledge (“know-
how”). Thus, for SG development, this aspect might inform SG adaptability and
controlling conventions and heuristics.

7.4.2 Early Development, Purpose, and Contextualization

In this chapter, we mentioned the benefit of GJs, particularly when developing
games quickly and dynamically in teams. Serious contexts are common (e.g.,
sustainability, health, politics, etc.); thus, SG developers and designers might want
to engage in defining small but effective game mechanics and processes in order to
increase SG development quality in early stages. As noted by [13], SG effectiveness
and playability tend to be evaluated in the end of product development, showing
that there is still a gap for quality assurance during the early stages. We expect that
perhaps via GJs (or similar participatory/co-creative events) and alignment of both
research and design questions designers, developers and stakeholders can ensure
SG quality but also develop innovative mechanics and design solutions together.
In this case, player control and fantasy should be balanced with the learning (or
behavioral) objectives, in order to inform better practices in SG development. Since
playability aspects influence SG effectiveness [13], it might be that the mechanics
need to be explored before aligning it with the pedagogical needs. Yet, design and
research questions need to be equally balanced and addressed. Our examples in Sect.
7.2 showed how these can be addressed and perhaps this approach might help SG
development in the early stages.

152 V. Wanick et al.

7.4.3 Personality Vectors, Emotional Modelling, and SG
Development

Introducing personality vectors as part of the reasoning structure can add nuance
and variance to the expected behaviors of non-player character agents in games in a
way that increases the opportunity for unique and more lifelike behavior from those
agents. What is more, the two-structure approach of keeping the personality vector
separate from the strategy framework allows us to influence changes in the agent
easily, cleanly, and with an overall simplicity that maintaining one structure does not
allow and that does not require us to design multiple solutions for multiple agents.
In essence, the strategy framework is the training manual, and the personality vector
is the agent’s interpretation. These ideas can be implemented toward intelligent
tutors, for example, in order to generate more believability and perhaps even trust
(even with an NPC being able to lie). In health, personality vectors could enhance
the emotional response NPCs might have toward a sensitive topic or provide more
human-like responses.

Yet, as a result of a conversation on “transferability” from general games to SG
development, this chapter brings back into discussion particular questions that might
be of interest and might enrich SG development and research, such as: How much
of the game stems from the context? Can this be a multiplatform experience? What
does it mean to design a “transferable” serious game? What can be learnt from
current design processes to make these games more transferable? Can this be applied
in all serious games?

We hope that there will be greater flexibility in what is understood as academic
terms, since the opening is beneficial not only for the diverse realization of serious
games but as an invitation to new looks at applied entertainment.

References

1. Alvarez, J., Djaouti, D., Louchart, S., Lebrun, Y., Zary, N., Lepreux, S., Kolski, C.: A formal
approach to distinguish games, toys, serious games & toys, serious re-purposing & modding
and simulators. IEEE Trans. Games. (2022).

2. Protopsaltis, A., Panzoli, D., Dunwell, I., de Freitas, S.: Repurposing serious games in health
care education. IFMBE Proc. 29, 963–966 (2010)

3. Chettoor Jayakrishnan, G., Banahatti, V., Lodha, S.: GOVID: repurposing serious game for
enterprise COVID-19 awareness. ACM Int. Conf. Proc. Ser., 11–18 (2021)

4. Gómez-Rodríguez, A., González-Moreno, J.C., Ramos-Valcárcel, D., Vázquez-López, L.:
Modeling serious games using AOSE methodologies. In: International Conference on Intel-
ligent Systems Design and Applications, ISDA, pp. 53–58 (2011)

5. Ninaus, M., Nebel, S.: A systematic literature review of analytics for adaptivity within
educational video games. Front. Educ. (Lausanne). 5, 308 (2021)

6. Wen, A.: Before I Forget: the video game that tackles dementia | Games |
The Guardian. https://www.theguardian.com/games/2018/jun/06/before-i-forget-early-onset-
dementia-video-game. Accessed 17 Nov 2022

7. Schell, J.: The Art of Game Design, a Book of Lenses. (2008).

 5663 55973 a 5663 55973
a

7 Future Directions in Games for Serious Contexts: A Conversation About. . . 153

8. Lloyd, J.: How Hellblade: Senua’s Sacrifice deals with psychosis | BBC Science Focus Mag-
azine. https://www.sciencefocus.com/the-human-body/how-hellblade-senuas-sacrifice-deals-
with-psychosis/. Accessed 17 Nov 2022

9. Jenkins, H., Squire, K., Tan, P.: You can’t bring that game to school! In: Laurel, B. (ed.) Design
Research: Methods and Perspectives, p. 334. MIT Press, Cambridge, MA (2003)

10. Abbott, D.: Modding tabletop games for education. In: Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformat-
ics) (2019)

11. Csikszentmihalyi, M.: Finding Flow: The Psychology of Engagement with Everyday Life.
Basic Books (1998)

12. Hunicke, R., Leblanc, M., Zubek, R.: MDA: a formal approach to game design and game
research. In: Workshop on Challenges in Game AI, pp. 1–4 (2004)

13. Vargas, J.A., García-Mundo, L., Genero, M., Piattini, M.: A systematic mapping study on
Serious Game quality. ACM Int. Conf. Proc. Ser. (2014)

 2413 800 a 2413 800 a

Chapter 8
Code-Venture: A Mobile Serious Game
for Introductory Programming

Leckraj Nagowah and Diksha Cuniah

Abstract In the last decade, there have been tremendous improvements in the IT
field, and the demand for skilled professionals has ever since grown rapidly. For
a better economic development, it is thus of primary importance for schools and
universities to uncover and train new talents who will help propel our society’s
upward trend in IT and meet the increasing demand. On the other hand, there is a
misconception among youngsters that programming is complex and not designed
for everyone. Using the fact that nowadays games are becoming increasingly
popular especially among the younger generation, a mobile serious programming
game, Code-Venture, is being proposed in this chapter. Other than being fun and
entertaining, the aim of Code-Venture is to help the players understand the basics
of coding and sharpen their skills in programming. Code-Venture is based on the
fundamental programming principles as recommended in the ACM/IEEE Computer
Science Curricula 2013. Moreover, through the implementation of the teacher’s
application, which stores scoring information about the players of the game, a
constant monitoring, assessment, and evaluation of the player’s performance can
be performed. Pre-game and post-game surveys have been conducted to evaluate
the mobile serious game Code-Venture. Most of the 35 respondents found the game
useful and engaging with a considerable increase in the number of students who
are willing to join a career in programming and another increase in the number of
respondents who now found programming easy.

Keywords Mobile serious game · Game-based learning · Educational games ·
Introductory programming · Serious programming game

L. Nagowah (�) · D. Cuniah
Faculty of Information, Communication and Digital Technologies, Department of Software and
Information Systems, University of Mauritius, Réduit, Mauritius
e-mail: l.nagowah@uom.ac.mu; diksha.cuniah2@umail.uom.ac.mu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
K. M. L. Cooper, A. Bucchiarone (eds.), Software Engineering for Games
in Serious Contexts, https://doi.org/10.1007/978-3-031-33338-5_8

155

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33338-5protect T1	extunderscore 8&domain=pdf

 885
56845 a 885 56845 a

mailto:l.nagowah@uom.ac.mu
mailto:l.nagowah@uom.ac.mu
mailto:l.nagowah@uom.ac.mu
mailto:l.nagowah@uom.ac.mu

 10290 56845 a 10290
56845 a

mailto:diksha.cuniah2@umail.uom.ac.mu
mailto:diksha.cuniah2@umail.uom.ac.mu
mailto:diksha.cuniah2@umail.uom.ac.mu
mailto:diksha.cuniah2@umail.uom.ac.mu
mailto:diksha.cuniah2@umail.uom.ac.mu
https://doi.org/10.1007/978-3-031-33338-5_8
https://doi.org/10.1007/978-3-031-33338-5_8
https://doi.org/10.1007/978-3-031-33338-5_8
https://doi.org/10.1007/978-3-031-33338-5_8
https://doi.org/10.1007/978-3-031-33338-5_8
https://doi.org/10.1007/978-3-031-33338-5_8
https://doi.org/10.1007/978-3-031-33338-5_8
https://doi.org/10.1007/978-3-031-33338-5_8
https://doi.org/10.1007/978-3-031-33338-5_8
https://doi.org/10.1007/978-3-031-33338-5_8
https://doi.org/10.1007/978-3-031-33338-5_8

156 L. Nagowah and D. Cuniah

8.1 Introduction

Technological innovations hold a key place in most sectors worldwide. It has
become a compulsory tool to most people in the workplace and life in general.
Nowadays, almost every service, such as online shopping, reservations, or even
learning, can be accessed online or through mobile applications. What lies behind
those applications is programming. While coding can be fun and exciting, to some it
comes out as boring and tough or even stressful when traditional learning methods
are used [1, 2]. Additionally, a high rate of failure coupled with students’ lack of
interest in programing have been reported in a number of studies [3].

It is well known in the computer science education (CSE) community that
students struggle in programming classes, which can lead to high dropout and failure
rates [4]. In 2007, Bennedsen and Caspersen [5] estimated through a study that out
of 2,000,000 IT students worldwide, about 650,000 failed every year. They then
replicated their study in 2019 and observed that the failure rate was still high at 28%
[6]. Fundamental programming and computational thinking skills are crucial in the
field of computer science whereby one might find it challenging to enter the world
of IT without these core skills [7].

On the other hand, Halbrook et al. found that 95% of homes with children of
under 18 years of age own some form of video-game platform [8]. As a matter
of fact, researchers are investigating game-based computer science learning [9,
10] where numerous games are being developed that mainly focus on computer
programming and aim at helping students grasp the fundamental programming
concepts. Mathrani et al. [11] confirmed the effectiveness of serious games as a
means of teaching and learning. Students who participated in the survey proved that
game-based learning made themmore engaged in the use of programming principles
through gaming steps, as they were able to visualize the programming constructs
and thus get a better understanding of how it works. Boeker et al. [12] noted that
a conventional approach was not very effective when learning programming. Thus,
using serious games as a means of teaching made the normally boring classroom
environment more fun and enhanced the player’s ability to grasp difficult concepts.
Ding et al. also confirmed through their study that game-based learning is more
effective, easier to grasp, and more preferred by students than traditional learning
methods [13].

The primary aim of this work is to develop a mobile serious game that
aims at enhancing the programming skills of beginners, together with a mobile
application for teachers who will assess, monitor, and evaluate the performance
of players. The chapter also discusses the results obtained from a pilot study with
35 students aged between 16 and 21. The authors also plan to conduct a more
structured experimentation in the future to assess the perceived improvements in the
programming skills of the users of the mobile application. A structured approach
was used to implement our mobile serious game and is described in the subsequent
sections. The remainder of this chapter is organized as follows. In Sect. 8.2, a
background on the related works has been given, and an analysis of the existing

8 Code-Venture: A Mobile Serious Game for Introductory Programming 157

works has been provided in Sect. 8.3. Section 8.4 highlights the architecture and
the main components of Code-Venture. The implementation and testing of the
application are presented in Sect. 8.5. A discussion is presented in Sect. 8.6, and
finally, Sect. 8.7 concludes the chapter.

8.2 Background Study

A game refers to an organized play with rules, goals, and challenges for the purpose
of entertainment [14]. The term gamification was first coined in 2008, and in contrast
to normal games, it is characterized by its serious purpose. Researchers agree that
gamification usually focuses on game elements and mechanics in serious contexts.
Gamification therefore includes the use of game elements in non-game contexts.
Game elements include levels, points, badges, leader boards, avatars, quests, social
graphs, or certificates [15, 16].

Gamification is closely linked to two related concepts, namely, game-based
learning and serious games. Game-based learning is the achievement of defined
learning outcomes through game content and play, as well as boosting learning by
involving problem-solving areas and challenges that offer learners, who are also
the players, with a sense of accomplishment [17]. As the name says, game-based
learning aims at educating the players. It however relies on a fully fledged game,
commonly known as a serious game. A serious game refers to playful interactive
applications whose primary purpose other than being fun and entertaining includes
education, training, analysis, visualization, simulation, health, and therapy [18].
Serious games and game-based learning therefore differ from gamification due to
the fact that they are fully functional games. They all share the idea of employing
pleasant gameful experiences for the benefit of a serious goal, such as education or
behavior modification, rather than focusing on enjoyment. Gamification as a broader
concept merely takes components of games and applies them to the real environment
[15].

8.2.1 Related Works

To review existing serious games on programming, two searches have been carried
out: one on Google Scholar to find some related works and another one on common
app stores to look for existing commercial applications. This section presents some
of the findings.

Jemmali and Yang [19] developed a serious game called “May’s Journey,”
which targets middle school and high school students. This game was primarily
designed to encourage girls to choose programming as a field of study. It was a 3D
puzzle game where the player had to interact with the environment to solve mazes
involving basics of programming. The puzzles focused on concepts and logics but

 11919 13008 a 11919 13008
a

158 L. Nagowah and D. Cuniah

still allowed the player to type programming instructions to bridge the gap between
real programming and coding in a game. The game was tested with ten teenagers
aged from 14 to 17 years for educational content, and the authors reported that the
teenagers were engaged with the game.

Du et al. [20] made a study about the Hour of Code by Code.org, which is a
1-h introductory tutorial to programming, making use of visual programming. The
game uses blocks to program a solution for different puzzles. After solving each
maze, the player received a positive feedback and advanced to mazes that are more
complex. One hundred and sixteen students from two universities participated in
the study, and the game proved to have a positive impact on the students’ attitude
toward programming. However, the game also turned out not to have a significant
effect on the player’s actual coding skills.

Miljanovic and Bradbury [21] developed a serious game with a systematic
approach to focus on programming comprehension rather than writing codes. Thus,
novices without knowledge of programming could play this game and gain some
basic understanding. The player had to accomplish several comprehension tasks in
order to activate a Mech Suit system. While advancing in the game, the player was
able to develop a concise understanding of variable values, data types, program
statements, and control flow, all of which were repeatedly tested throughout the
gameplay.

Law [22] investigated on how to enhance the iteration, selection, and building
of command blocks in programming through the use of video games. The skills
to be developed were problem-solving skills and computational thinking skills in
order to get the required result. The author used the freely available “Program your
robot” game that targeted these skills and allowed the player to visualize the abstract
concepts in programming. Despite the fact that the pilot study was carried out with
only 42 students, the findings and the student comments showed positive results
and indicated that it would be worthwhile to expand the study to a broader cohort
pursuing a wider range of computing programs.

Junaeti et al. [23] conducted research about teaching basic programming con-
cepts using the genius learning strategy. “Array Adventure” was a serious adventure
game designed to target the principles behind arrays. The first level involved one-
dimensional arrays and the second level catered to multi-dimensional arrays. The
game was set in a 2D environment whereby the player had to complete missions in
an adventure style gameplay. The game was evaluated by 30 students and 2 experts
and positive results were obtained.

Jordaan explored the likelihood of making use of board games to improve
the learning experience of computer science students. The findings of this study
demonstrated that students appreciated the dynamic learning atmosphere provided
by board games and that they accepted them as a fun and enjoyable method of
instruction [24].

Lotfi and Mohammed [25] presented a mobile serious game that taught object-
oriented programming concepts for beginners. “OOP Serious Game” was set in a
zoo environment where the player had to create animal classes and understand the
methods that were behaviors, actions, and voices. The elements of class, object,

 25348 5027 a 25348 5027 a

8 Code-Venture: A Mobile Serious Game for Introductory Programming 159

and complex paradigms like inheritance and polymorphism were taught through
gamification techniques in order to facilitate the learning of these concepts. The
game used an in-game assessment mechanism to gauge the player’s knowledge of
four OOP concepts, namely, class, object, inherence, and polymorphism. However,
the results were inconclusive as to the game’s efficacy in teaching the programming
concepts to the players.

Yallihep and Kutlu [26] analyzed and evaluated the effect of a mobile serious
game called “LightBot” for learning programming. A 5-week study was carried
out in a primary school in Turkey with 36 fifth-grade students. According to
the research, the game positively influenced the students’ achievements. Complex
concepts like recursions and procedure were taught at an early stage to students in a
gamified learning approach.

Zhao et al. [27] proposed a serious game that focuses on the structure of the
C programming language. “Restaurant game” was a 2D game that incorporated
programming concepts like data types, variables, and structures. The player was
required to engage with various game objects, which were data types’ representa-
tions in a restaurant, and, as a result, gain a deeper knowledge about application
of these programming concepts. Ninety first-year students tested the serious game,
and the results showed that the improvements in learning outcomes were statistically
significant. More than half of the participants were of the opinion that the game may
help them get better grades in the programming course, and more than 60% of the
participants said it improved their understanding of programming topics.

Karram analyzed “Code Combat,” which is a popular game that targets object-
oriented programming concepts in a game-based format [28]. The game offers
an engaging and fun environment whereby the player has to complete tasks and
challenges to earn points and level up. Rewards such as badges and rankings also
make the player more motivated to complete the levels and thus learn the concepts
along the way. The game guides the player to type the appropriate code lines
in order to assign tasks to the virtual characters and thus complete the puzzles.
Code Combat makes difficult concepts like inheritance, nested loops, and recursion
simpler through a gaming approach.

Toukiloglou and Xinogalos [29] developed “NanoDoc” that taught programming
concepts through a first-person shooter game. The players had to acquire a key
by solving programming puzzles to navigate through the different rooms. The
programming environment featured a hybrid 2D/3D mode where the player created
a program to control the avatar’s movement in a 3D grid. The solution algorithm was
constructed with a 2D block-based programming environment using colored blocks
that could be connected and manipulated through drag and drop actions. The game
proved to be effective in improving students’ motivation, engagement, and learning
outcomes, as well as in reducing their anxiety toward programming.

Akkaya and Akpinar [30] designed a game aimed at teaching the fundamental
concepts of object-oriented programming and computational thinking skills to
students. The game adopted a constructivist learning approach set in a fantasy
environment with metaphorical machines to make the abstract concepts concrete. It
included interactive tools such as class and method definer machines for students to

160 L. Nagowah and D. Cuniah

program robots. A pedagogical agent provided instructions, support, and feedback,
and the game had a visual and textual feedback mechanism to understand the code
execution. The game aimed at teaching students the importance and applications
of object-oriented programming and computational thinking and also eased their
introduction to algorithmic thinking. The game was tested by 61 students with and
without prior programming knowledge, and the results showed that the students
improved their understanding of the fundamental concepts of OOP.

8.2.2 Commercial Apps

Popular games about coding were also searched for on common app stores with
search terms like “serious game programming,” “programming game,” and “coding
game” to search for existing serious games about programming. Some of the main
findings are listed below.

• Hacked

In Hacked, the player impersonated a hacker who needed to solve some problems
with codes and save the world [31]. It had a progressive difficulty and offered a wide
variety of options ultimately guiding the player to develop his personalized game.
The player was required to have some prior knowledge on programming before
attempting the game. The features included were performance tracker, assistance
in writing of codes, level system, problem-solving skills, reward system, and
competition with other players.

• Coding Planets

Coding planets required the user to solve puzzles through commands issued to a
robot [32]. All age groups are targeted allowing them to sharpen their programming
skills and gain fair knowledge of coding. The players needed to use their logic
to advance through the different levels while developing their problem-solving
skills. The main features included were as follows: improvement of problem-solving
skill, development of logical thinking skill, sequencing, looping, functions, use of
command icons to issue instructions, beginner and advanced difficulty, and reward
system.

• LightBot: Code Hour

This game introduced programming concepts for beginners [33]. It consisted of
commanding a robot to light up tiles by giving it instructions. The skills targeted
were basic concepts like sequencing, loops, and procedures. The game had good
reviews whereby players affirmed that they were able to learn about program-
ming concepts in a fun and interactive way. The features included were learning
of programming practices like planning, programming, testing, and debugging;
development of problem-solving skills; learning about control flow concepts like
functions, sequencing, and loops; and programming through commands.

8 Code-Venture: A Mobile Serious Game for Introductory Programming 161

• SpriteBox: Code Hour

This was a puzzle-platformer and adventure game allowing the player to venture
through different worlds and using code to complete the objectives [34]. It targeted
all players regardless of their programming knowledge and consisted of 20 levels
of challenging puzzles. The features included were icon-based programming,
sequencing, parameters, debugging, loops and problem-solving, exploration while
learning, and beginner and advanced levels.

• Meoweb

Meoweb used fancy displays to make the process of learning programming more
fun and approachable [35]. The puzzle games consisted of the manipulation of codes
in order to solve the set problems. Logical thinking was also required from the
players to advance through different obstacles and levels to complete goals and
ultimately reach the final destination. The basic concepts of CSS programming
could be grasped by completing the levels. The main features included were as
follows: development of problem-solving skill, reward system, leveling system, and
logical thinking.

• BeBlocky: Kids Code Easy

BeBlocky was an engaging game that taught basic programming [36]. Target
players were mainly children and aspiring novices. The player encountered several
robots that needed to be programmed by dragging and dropping programming
blocks in a sequential way. The features included were memory boosting; develop-
ing aptitude in sequence, loops, and commands; improvement of problem-solving
skills; development of logical reasoning; and leveling system.

• Coding Galaxy

The game provided an interactive and user-friendly interface for learning about
basic programming concepts [37]. It was designed and reviewed by skilled teachers
and specialists who incorporated core methods traditionally used for teaching
programming in the system. The targeted players were students aged 5 and
above. The game consisted of more than 200 levels whereby the player was
expected to complete missions and objectives and solve programming puzzles. The
features included were development of computational thinking, problem-solving,
critical thinking, communication and leadership skills, development of creativity
and teamwork, learning through adventure and quest system, monitoring of user
performance, learning report, sequence, looping, conditional logic, function, and
parallelism.

• Grasshopper: Learn to Code for Free

Grasshopper consisted of several mini-games guiding players toward all the
basic concepts needed in the JavaScript programming language [38]. The player
needed to use codes to solve puzzles. Upon completion of all the game levels,
the player should be able to write basic JavaScript codes. The features included

162 L. Nagowah and D. Cuniah

were calling functions, variables, strings, for loops, arrays, conditionals, operators,
objects, arrays, recursions, and HTML.

8.2.3 Skills Required for Introductory Programming

After thorough analysis of the selected articles, the important skills deduced to
be imperative when it comes to learning introductory programming have been
highlighted in Table 8.1. The logical skills have been devised from the literature,
while the technical skills were based on the ACM/IEEE-CS Joint Task Force on
Computing Curricula, 2013 [45].

8.3 Analysis

The previous section gave an overview of some of the related works on serious
programming games. This section provides an analysis of those works with respect
to the ACM/IEEE guidelines for the programming module. The comparison table
visually highlights the main features of the serious games surveyed from the
literature and those commercially available.

8.3.1 Comparative Analysis of the Related Works

The related works have been analyzed with respect to the ACM/IEEE-CS Joint
Task Force on Computing Curricula 2013 [45]. More specifically, Table 8.2 shows
how the related works try to address the skills highlighted by ACM/IEEE in terms
of algorithms and design, fundamental programming concepts, and development
methods. As it can be observed from the table, Code Combat is by far the game that
provides for most of the features as recommended by ACM/IEEE followed by Hour
of Code and May’s Journey.

8.3.2 Comparative Analysis of the Commercial Games

Table 8.3 shows an analysis of the existing commercial programming games with
respect to their gaming features and the logical and technical skills targeted for
the commercial games. As it can be observed from Table 8.3, Hacked is the game
that has the highest number of features followed by SpriteBox and Coding Galaxy.
These three games attempt to cater to a high number of technical skills and at the

8 Code-Venture: A Mobile Serious Game for Introductory Programming 163

Table 8.1 Programming skills table

Logical skills
Problem-solving One of the factors that affect students’ academic performance when it

comes to learning introductory programming is low problem-solving
skills. According to a study, a high number of novice students failing
programming courses was due to a lack of problem-solving skills.
Training through activities that help improve this skill can be highly
beneficial to students’ performance in computing studies [39]

Debugging Debugging can be considered as a form of “learning from mistakes”
strategy. It is well known that students can effectively learn through
their mistakes, and in this case, debugging skills are developed when
the students have to browse their own code to identify the source of the
problem. This is yet another essential skill required to become a good
programmer [40]

Testing Improving testing skill is crucial to increase productivity. Without this
skill, a beginner might have difficulty in making a correct working
program which has all the required functionality. This skill should be
developed from the start and worked on to have a positive impact on
the aspiring programmer [41]

Algorithmic thinking A study proved most students learning introductory programming had
underdeveloped algorithmic and computational skills [42]. This skill is
crucial for beginners in programming as this is what will enable them
to define clear, concise steps to solve any problem, which is basically
what the basis of programming is about. Basically, algorithmic thinking
consists of the following:
• The ability to analyze given problems
• The ability to specify a problem precisely
• The ability to find the basic actions that are adequate to the given
problem
• The ability to construct a correct algorithm to a given problem using
the basic actions
• The ability to think about all possible special and normal cases of a
problem
• The ability to improve the efficiency of an algorithm
Improving this essential skill which has a strong creative aspect
includes solving a maximum of problems. By providing the student
with simple problems with gradual increasing difficulty, the latter can
effectively work on this skill [43]

Sequencing This is a common process for writing codes. Instructions are given in a
specific order, and the computer processes and executes them
accordingly. The development of this skill allows the programmer to
think like the computer and hence solve programming problems more
efficiently. This is yet another core skill required for novice
programmers [44]

(continued)

164 L. Nagowah and D. Cuniah

Table 8.1 (continued)

Technical skills
Variables and datatypes These are the basics of computer programming. Every code makes

use of variables and data types to solve problems. This knowledge is
vital to be able to write codes effectively

Functions Functions also form part of the basics of programming language. Use
of functions allows code to be modular, clear, and concise to be able
to write good-quality codes

Loops The ACM Computer Science curricula 2013 also includes the
concept of loops as the programming fundamentals. Beginners in
programming must understand how loops work and how to include
them in their code in order to effectively solve problems

Arrays Fundamental data structures also include arrays that are another
important factor in writing codes. The use of arrays is very common,
and many problems require this concept to be able to tackle
problems accordingly

Decisions/conditions Fundamental programming concepts include decisions/conditions
that is yet another core element in programming. ELSE and
SWITCH statements are very common in programming and crucial
for solving problems

same time aim at developing the logical skills of the player. They also have several
gaming features, as one would expect from a normal game.

8.3.3 Summary of Findings

Most related works concluded that a serious game for learning programming
positively influenced students’ academic performance. For instance, Yallihep and
Kutlu [26] conducted a research using a popular mobile serious game “LightBot,”
and Du et al. [20] also conducted an evaluation of a programming game, which
showed a great increase in motivation as well as performance in students. Several
games were developed that aimed at programming comprehension by combining
programming concepts with gaming mechanisms [21, 22, 25, 27]. This method
proved highly beneficial as it made learning process more fun compared to
traditional ways. Learning programming through gaming mechanisms proved to
reduce anxiety and significantly improve the learning curve in students [29, 30].
Karram [28] investigated Code Combat, which proved to accelerate and improve the
learning process of students. The game targeted several important technical skills
as per the guidelines of the ACM/IEEE. However, the gameplay of Code Combat
seems to follow the same format for all the different levels. It can eventually be
deduced that gamified learning has proved to be a great way to learn the basics
of programming. It was also observed that a series of logical skills were also
imperative when it came to learning programming. Computational thinking skills
like problem-solving, sequencing, debugging, and algorithmic thinking to facilitate

Ta
bl
e
8.
2

C
om

pa
ra
tiv

e
an
al
ys
is
 o
f
ga
m
es
 f
ro
m
 th

e
lit
er
at
ur
e

A
lg
or
ith

m
s
an
d
de
si
gn

Fu
nd
am

en
ta
l p

ro
gr
am

m
in
g
co
nc
ep
ts

D
ev
el
op
m
en
t

m
et
ho
ds

Se
ri
ou
s
ga
m
e

Pr
ob
le
m

so
lv
in
g

A
lg
or
ith

m
ic

th
in
ki
ng

Se
qu
en
ci
ng

N
on
-s
pe
ci
fic

pr
og
ra
m
m
in
g

co
nc
ep
ts

Sy
nt
ax

an
d

se
m
an
tic
s

V
ar
ia
bl
es

an
d
da
ta

ty
pe
s

E
xp
re
ss
io
ns

an
d

as
si
gn
m
en
ts

In
pu
t

an
d

ou
tp
ut

C
on
di
tio

na
ls

an
d

ite
ra
tiv

es

Fu
nc
tio

ns

an
d

pa
ra
m
e-

te
rs

R
ec
ur
si
on

A
rr
ay
s

D
eb
ug
gi
ng

Te
st
in
g

M
ay
’s
 J
ou
rn
ey

[1
9]

�
�

�
�

�
�

�
�

H
ou
r
of
 C
od
e

[2
0]

�
�

�
�

�
�

�
�

R
ob
ot
 O
N
!
[2
1]

�
�

�
�

�
�

Pr
og
ra
m
 y
ou
r

ro
bo
t [
22
]

�
�

�
�

�

A
rr
ay
 A
dv
en
tu
re

[2
3]

�
�

�
�

�

B
oa
rd
 G
am

e
[2
4]

�
�

O
O
P
Se
ri
ou
s

G
am

e
[2
5]

�
�

�

L
ig
ht
B
ot
 [
26
]

�
�

�
�

�
�

R
es
ta
ur
an
t g

am
e

[2
7]

�
�

C
od
e
C
om

ba
t

[2
8]

�
�

�
�

�
�

�
�

�
�

�
�

�
�

N
an
oD

oc
 [
29
]

�
�

�
�

C
ur
io
us
 R
ob
ot
s:

O
pe
ra
tio

n
A
sg
ar
d

[3
0]

�
�

�
�

Ta
bl
e
8.
3

C
om

pa
ra
tiv

e
an
al
ys
is
 o
f
ex
is
tin

g
fe
at
ur
es
 o
f
co
m
m
er
ci
al
 g
am

es

C
at
eg
or
y

Fe
at
ur
es

H
ac
ke
d

[3
1]

C
od
in
g

Pl
an
et

[3
2]

L
ig
ht
-

B
ot

[3
3]

Sp
ri
te
-

B
ox

[3
4]

M
eo
-

w
eb

[3
5]

B
e-

B
lo
ck
y

[3
6]

C
od
in
g

G
al
ax
y

[3
7]

G
ra
ss
ho
pp
er

[3
8]

G
am

in
g
fe
at
ur
es

A
dv
en
tu
re
/e
xp
lo
ra
tio

n
ty
pe

�
�

�
M
ul
tip

le
 d
if
fic
ul
ty
 le
ve
l

�
�

T
ra
ck
in
g
of
 p
la
ye
r
pe
rf
or
m
an
ce

�
�

�
R
ep
or
t o

n
pe
rf
or
m
an
ce

�
�

R
ew

ar
d
sy
st
em

�
�

�
�

�
T
ut
or
ia
l/i
n-
ga
m
e
as
si
st
an
ce

�
�

L
ev
el
in
g
sy
st
em

�
�

�
�

�
�

C
ha
lle

ng
e
ot
he
r
pl
ay
er
s/
in
te
ra
ct
io
n

�
�

Sk
ill
s
de
ve
lo
pe

d
D
ev
el
op
 p
la
nn
in
g
sk
ill

�
�

�
�

Im
pr
ov
e
te
st
in
g
sk
ill

�
D
eb
ug
gi
ng
 s
ki
ll

�
�

Pr
ob
le
m
-s
ol
vi
ng
 s
ki
ll

�
�

�
�

�
�

�
�

M
em

or
y
bo
os
t

�
�

L
og
ic
al
 th

in
ki
ng

�
�

�
�

�
�

�
C
ri
tic

al
 th

in
ki
ng

�
Te
am

w
or
k

�
�

Te
ch
ni
ca
l c
on

ce
pt
s

U
se
 o
f
re
al
 c
od

es
�

�
�

�
Ic
on
-b
as
ed
 p
ro
gr
am

m
in
g

�
�

�
�

�
�

Fu
nc
tio

ns
�

�
�

�
�

�
L
oo
ps

�
�

�
�

�
�

�
Se
qu
en
ci
ng

�
�

�
�

�
�

�
V
ar
ia
bl
es
 a
nd

 d
at
at
yp

es
�

�
�

Pa
ra
m
et
er
s

�
�

8 Code-Venture: A Mobile Serious Game for Introductory Programming 167

learning process were brought to attention. Finally, a gamified learning approach
to learning programming showed a very positive effect in teaching programming
classes. Therefore, games targeting the skills required for programming can greatly
improve the academic performance of students studying the subject or even teach
beginners about how programming works and introduce them to the world of
algorithms and computational thinking. The main game elements used in most of
the games were levels, points, leader boards, avatars, and quests. Varying the types
of games is vital in order to ensure that the players are motivated and engaged. It is
also important for the players to have regular and personalized feedback. Most of
the games analyzed do not provide for these two important factors, hence the aim
behind our system, Code-Venture.

8.4 High-Level Architecture

The high-level architecture is a way of representing how the whole system works
and shows the interactions between the different modules. Figure 8.1 shows the
high-level architecture of Code-Venture consisting of the mobile device, an online
database, and a mobile application for teachers.

Android Mobile Game

Online
Database

storing player
score

Players

Teacher accesses
real-time database

from mobile app
and monitors

student
performance

Fig. 8.1 High-level architecture

168 L. Nagowah and D. Cuniah

The main components of Code-Venture are as follows:

Players: The players targeted are aspiring programming students, novice program-
mers, or teenagers with little or no experience in the field. Players will record
their personal details and attempt the games through their mobile phones.

Mobile device: The mobile device is where the Code-Venture mobile app that
consists of different gameplay will be downloaded, installed, and played. Storing
of scores is made possible and pushed to the online database.

Online database: The information collected from the game, that is, the player details,
scores, and areas of weaknesses, will be saved on the online database for future
access by the tutor.

Teacher’s mobile application: The students’ information retrieved from an online
database is displayed on a mobile application designed especially for the teacher.
The latter can review player’s score, weaknesses, and overall performance of the
students on the different games through this application. This app will also allow
the tutor to send personalized messages to the students.

8.4.1 The Mini-games of Code-Venture

As compared to existing serious programming games, Code-Venture will consist
of different mini-games, namely, the Adventure Mode, the Variable Runner, the
Algorithm Puzzle, and the Quiz, where each of the mini-game targets different skills.
Table 8.4 shows the mini-games of Code-Venture and the skills that each game
targets.

Table 8.4 Code-Venture mini-games and the skills targeted

Code-Venture mini-games

Category Skills
Adventure
Mode

Variable
Runner

Algorithm
Puzzle Quiz

Logical skill Problem-solving � � �
Debugging � �
Testing �
Algorithmic thinking � �
Sequencing �

Technical skill Variables and data types � � �
Functions � �
Decisions � �
Loops � � �
Arrays �

8 Code-Venture: A Mobile Serious Game for Introductory Programming 169

8.4.2 Justifications for Code-Venture’s Mini-games

Code-Venture includes several mini-games to differentiate it from existing serious
programming games. Giving the player’s the opportunity to play a variety of games
ensures that the player is exposed to several gameplays and hence remains engaged
and motivated. The more engaged and motivated a player is, the more the benefits
that can be obtained from playing the serious game. The different mini-games of
Code-Venture have been carefully planned and are backed by evidence from the
literature whereby similar implementations have been successful in educating the
players. Table 8.5 describes Code-Venture mini-games in more detail and gives
justifications as to why these games have been chosen.

8.5 Code-Venture’s Implementation and Testing

Code-Venture was implemented with Unity 2019.2.15f1 personal edition and Visual
Studio 2017. The C# programming language over .NET2.0 framework was used
to program the different mini-games. The computer used consisted of a fourth-
generation Intel core processor, a RAM of 8GB, and a 250GB SSD together
with an NVidia graphic card GTX 1050ti. Two mobile phones were used to test
the application, namely, a Samsung A20 (Android 9.0) and an HTC Desire 828
(Android 5.1.1) having a RAM of 3 and 2 GB, respectively. Different tests were
carried out on both emulators and the actual mobile devices including a user
acceptance test with 35 students most of whom were to embark on undergraduate
studies.

8.5.1 Code-Venture’s Main Functionalities

The main functionalities of Code-Venture are described and illustrated below.

• Register or Login and Main Menu

The player should enter login details and select “Play Now” on opening the game
if he/she is an existing user, as shown in Fig. 8.2. In case of a new user, the “Register”
button registers the necessary user details. After signing in, the user is then presented
with the menu screen where the different game modes can be accessed as shown in
Fig. 8.3.

170 L. Nagowah and D. Cuniah

Ta
bl
e
8.
5

Ju
st
ifi
ca
tio

ns
 f
or
 C

od
e-

Ve
nt

ur
e
m
in
i-
ga
m
es

Pr
op
os
ed
 g
am

e
G
am

e
de
sc
ri
pt
io
n
an
d
ta
rg
et
ed
 s
ki
lls

E
vi
de
nc
e
fr
om

 li
te
ra
tu
re

A
dv
en
tu
re
 M

od
e

(C
od
in
g

A
dv
en
tu
re
)

T
hi
s
is
 th

e
m
ai
n
ga
m
e
th
at
 c
on

si
st
s
of
 a
 3
D
 e
nv
ir
on

m
en
t w

he
re
by

th
e
pl
ay
er
 is
 a
bl
e
to
 e
xp
lo
re
 f
re
el
y
an
d
so
lv
e
pr
og
ra
m
m
in
g

pu
zz
le
s
at
 th

e
sa
m
e
tim

e.
 T
he
 p
la
ye
r
is
 a
bl
e
to
 tr
ig
ge
r
di
al
og

ue
s

w
ith

 n
on
-p
la
ya
bl
e
ch
ar
ac
te
rs
 in

 th
e
ga
m
e
an
d
ac
ce
pt
 q
ue
st
s
fr
om

th
em

. E
ac
h
of
 th

e
qu

es
ts
 ta
rg
et
s
di
ff
er
en
t t
yp

es
 o
f
m
in
i-
ga
m
es

th
at
 a
dd
re
ss
 d
if
fe
re
nt
 p
ro
gr
am

m
in
g
pr
ob
le
m
s

•
C
od
e-
re
ar
ra
ng
e—

re
ar
ra
ng
e
bi
ts
 a
nd
 p
ie
ce
s
of
 a
 c
od
e
in
 th

e
co
rr
ec
t o

rd
er

•
Fi
nd
-e
rr
or
—
ch
oo
se
 th

e
lin

e
of
 c
od
e
w
hi
ch
 is
 c
au
si
ng
 a
n
er
ro
r
in

th
e
co
de

•
Fi
nd
-o
ut
pu
t—

de
te
rm

in
e
th
e
ou
tp
ut
 o
f
th
e
co
de
 w
he
n
ru
n

•
Fi
ll-
bl
an
ks
—

w
ri
te
 th

e
co
rr
ec
t c
od

e
in
 th

e
em

pt
y
bo

xe
s
pr
ov
id
ed

in
 a
 p
ie
ce
 o
f
co
de

T
he
 g
am

e
al
so
 h
as
 a
 “
ha
rd
 m

od
e,
”
w
hi
ch
 is
 th

e
sa
m
e
st
or
y
an
d

en
vi
ro
nm

en
t b

ut
 w
ith

 m
or
e
co
m
pl
ex
 a
nd
 c
ha
lle
ng
in
g

pr
og
ra
m
m
in
g
pu
zz
le
s

Ju
na
et
i e
t a
l.
[2
3]
 c
on
cl
ud
ed
 th

ro
ug
h
re
se
ar
ch
 th

at
 le
ar
ni
ng
 in

 th
e

fo
rm

 o
f
ad
ve
nt
ur
e
ga
m
es
 h
ad
 a
 p
os
iti
ve
 e
ff
ec
t o

n
th
e
pl
ay
er
s’

le
ar
ni
ng
 p
ro
ce
ss
. P

la
ye
rs
 p
ro
ve
d
to
 b
e
m
or
e
m
ot
iv
at
ed
 a
nd

en
ga
ge
d
w
hi
le
 p
la
yi
ng
 th

is
 ty

pe
 o
f
ga
m
e

Je
m
m
al
i a
nd

 Y
an
g
[1
9]
 m

ad
e
a
3D

 f
ul
ly
 im

m
er
si
ve
 a
dv
en
tu
re

ga
m
e
w
ith

 a
n
in
te
re
st
in
g
st
or
yl
in
e
to
 d
ra
w
 th

e
pl
ay
er
s’
 a
tte

nt
io
n.

T
he
 im

pl
em

en
ta
tio

n
of
 p
ro
gr
am

m
in
g
co
nc
ep
ts
 in

 a
 v
is
ua
l a
nd

in
te
ra
ct
iv
e
w
ay
 p
ro
ve
d
to
 e
nh

an
ce
 th

e
pl
ay
er
s’
 w
ill
in
gn

es
s
to

ke
ep
 p
la
yi
ng

. I
m
pl
em

en
tin

g
pr
og

ra
m
m
in
g
co
nc
ep
ts
 in

 th
is

en
vi
ro
nm

en
t m

ad
e
th
e
pl
ay
er
 h
av
e
a
fu
n
ga
m
in
g
ex
pe
ri
en
ce

in
st
ea
d
of
 th

e
fe
el
in
g
of
 b
ei
ng

 f
or
ce
d
to
 le
ar
n
so
m
et
hi
ng

 th
at
 m

ay

de
m
ot
iv
at
e
th
e
pl
ay
er
 q
ui
ck
ly

V
ar
ia
bl
e
R
un

ne
r

(g
am

e
fo
r
le
ar
ni
ng

co
nc
ep
t o

f
va
ri
ab
le
s)

T
he
 g
am

e
is
 s
et
 in

 a
 p
la
tf
or
m
 w
he
re
 th

e
pl
ay
er
 c
an
 m

ov
e
th
e
he
ro

le
ft
 o
r
ri
gh
t a
s
th
e
la
tte
r
ke
ep
s
ru
nn
in
g
fo
rw

ar
d.
 W

hi
le
 r
un
ni
ng
,

th
e
he
ro
 e
nc
ou

nt
er
s
ba
lls
 w
ith

 d
if
fe
re
nt
 v
al
ue
s,
 w
hi
ch
 a
re
 th

e
po
ss
ib
le
 a
ns
w
er
s
to
 th

e
qu
es
tio

n
be
in
g
di
sp
la
ye
d.
 T
he
 p
la
ye
r
is

fir
st
 p
re
se
nt
ed
 w
ith

 a
 q
ue
st
io
n
te
xt
 a
nd

 is
 e
xp

ec
te
d
to
 s
el
ec
t t
he

ap
pr
op

ri
at
e
an
sw

er
 b
y
co
lli
di
ng

 w
ith

 it
. A

 s
co
ri
ng

 s
ys
te
m
 is
 a
ls
o

in
cl
ud

ed
 w
he
re
by

 e
ac
h
co
rr
ec
t a
ns
w
er
 a
dd

s
to
 th

e
sc
or
e
an
d
vi
ce

ve
rs
a

M
ilj
an
ov
ic
 a
nd
 B
ra
db
ur
y
[2
1]
 m

ad
e
us
e
of
 a
 g
am

in
g
m
ec
ha
ni
sm

to
 ta
ck
le
 c
on

ce
pt
s
lik

e
va
ri
ab
le
s
an
d
da
ta
 ty

pe
s.
 A
 p
uz
zl
e-
ty
pe

ga
m
e
pr
ov
ed
 to

 b
e
ef
fe
ct
iv
e
in
 h
el
pi
ng

 to
 le
ar
n
as
 w
el
l a
s

im
pr
ov
in
g
sk
ill
s
lik

e
cr
iti
ca
l t
hi
nk

in
g
an
d
pr
ob

le
m
-s
ol
vi
ng

Z
ha
o
et
 a
l.
[2
7]
 in
ve
st
ig
at
ed
 a
nd

 c
am

e
up
 w
ith

 a
 g
am

e
th
at

te
ac
he
s
co
nc
ep
ts
 o
f
va
ri
ab
le
s
th
ro
ug
h
fo
od
s
se
t i
n
a
re
st
au
ra
nt
.

T
he
 p
la
ye
r
is
 e
xp

ec
te
d
to
 e
ng
ag
e
w
ith

 th
e
ga
m
e
ob

je
ct
s
th
at

re
pr
es
en
t d

at
a
ty
pe
s
in
 o
rd
er
 to

 g
ai
n
a
de
ep
er
 k
no
w
le
dg
e
ab
ou
t

th
is
 p
ro
gr
am

m
in
g
co
nc
ep
t

8 Code-Venture: A Mobile Serious Game for Introductory Programming 171

A
lg
or
ith

m
 P
uz
zl
e

(g
am

e
te
ac
hi
ng

ba
si
c

pr
og
ra
m
m
in
g

co
nc
ep
ts
 th

ro
ug
h

co
m
m
an
ds
)

T
hi
s
ga
m
e
ai
m
s
at
 te
ac
hi
ng

 th
e
pl
ay
er
 th

e
ba
si
c
pr
og

ra
m
m
in
g

co
nc
ep
ts
. T

he
 p
la
ye
r
ha
s
to
 is
su
e
co
m
m
an
ds
 to

 th
e
he
ro
, a
nd
 th

e
la
tte

r
w
ill
 e
xe
cu
te
 th

e
in
st
ru
ct
io
ns
 a
cc
or
di
ng

ly
. I
co
ns
 a
re
 u
se
d
to

gi
ve
 in

st
ru
ct
io
ns
 th

at
 a
re
 th

en
 a
pp
lie
d
to
 th

e
he
ro
 u
po
n
ex
ec
ut
io
n.

T
he
 s
ki
lls
 ta
rg
et
ed
 a
re
 a
s
fo
llo

w
s:

•
C
om

pu
ta
tio

na
l t
hi
nk
in
g
sk
ill

•
Pr
ob
le
m
-s
ol
vi
ng

•
Pl
an
ni
ng

•
Te
st
in
g

•
D
eb
ug
gi
ng

•
L
og

ic
al
 a
nd

 c
ri
tic

al
 th

in
ki
ng

 s
ki
ll

Fu
rt
he
rm

or
e,
 th

e
fo
llo

w
in
g
ba
si
c
hi
gh
-l
ev
el
 p
ro
gr
am

m
in
g

co
nc
ep
ts
 a
re
 a
ls
o
in
vo
lv
ed
: f
un
ct
io
ns
, l
oo
ps
, a
nd
 s
eq
ue
nc
in
g

D
u
et
 a
l.
[2
0]
 c
on
cl
ud
ed
 th

at
 v
is
ua
l p

ro
gr
am

m
in
g
w
ith

 th
e
us
e
of

bl
oc
ks
 w
as
 e
ff
ec
tiv

e
in
 m

ak
in
g
pl
ay
er
s
be
tte
r
un
de
rs
ta
nd

pr
og
ra
m
m
in
g
co
nc
ep
ts
. B

as
e
sk
ill
s
lik

e
co
m
pu
ta
tio

na
l t
hi
nk
in
g

sk
ill
s,
 p
ro
bl
em

-s
ol
vi
ng
, a
nd
 d
eb
ug
gi
ng
 w
er
e
de
ve
lo
pe
d,
 w
hi
ch

fu
rt
he
r
he
lp
s
m
as
te
r
pr
og
ra
m
m
in
g

K
ar
ra
m
 [
28
]
de
du
ce
d
fr
om

 th
e
po
pu
la
r
ga
m
e

C
od

e
C

om
ba

t t
ha
t

le
ar
ni
ng
 p
ro
gr
am

m
in
g
th
ro
ug
h
th
e
us
e
of
 c
om

m
an
ds
 a
nd

in
st
ru
ct
io
ns
 p
ro
ve
d
to
 b
e
be
ne
fic

ia
l i
n
te
ac
hi
ng

 p
la
ye
rs
 th

e
ba
si
cs

of
 p
ro
gr
am

m
in
g

Q
ui
z
(g
am

e
co
ns
is
ts
 o
f
a

se
ri
es
 o
f
qu
es
tio

ns

to
 te
st
 th

e
pl
ay
er
s’

cu
rr
en
t

kn
ow

le
dg
e)

T
hi
s
ga
m
e
te
st
s
th
e
pl
ay
er
s’
 k
no
w
le
dg
e
ab
ou
t p

ro
gr
am

m
in
g.
 I
t

al
so
 a
ct
s
as
 a
 le
ar
ni
ng

 g
am

e
si
nc
e
it
co
ns
is
ts
 o
f
se
ve
ra
l

m
ul
tip

le
-c
ho

ic
e
qu

es
tio

ns
 th

at
 h
av
e
to
 b
e
at
te
m
pt
ed
 b
y
th
e
pl
ay
er
.

T
he
 p
ro
gr
es
s
an
d
co
rr
ec
t o

r
w
ro
ng
 a
ns
w
er
s
ar
e
re
co
rd
ed
 f
or

fu
tu
re
 e
va
lu
at
io
n
of
 th

e
pe
rf
or
m
an
ce
 o
f
th
e
pl
ay
er
. T

he
 in

ce
nt
iv
e

pr
ov
id
ed
 to

 p
la
y
th
is
 q
ui
z
ga
m
e
an
d
ex
ce
l i
n
it
is
 th

at
 th

er
e
ar
e

re
w
ar
ds
 th

at
 a
re
 o
bt
ai
ne
d
if
 th

e
qu
es
tio

ns
 a
re
 c
or
re
ct
ly
 a
ns
w
er
ed
.

T
hi
s
m
ot
iv
at
es
 th

e
us
er
 to

 a
tte

m
pt
 th

e
qu

es
tio

ns
 s
er
io
us
ly
 a
nd

 a
s
a

re
su
lt
ga
in
 f
ur
th
er
 k
no
w
le
dg
e
on
 p
ro
gr
am

m
in
g.
 T
he
 g
am

e
is

ad
ap
tiv

e,
 th

at
 is
, t
he
 c
om

pl
ex
ity

 o
f
th
e
qu

es
tio

ns
 in

cr
ea
se
s
as
 th

e
pl
ay
er
 p
ro
gr
es
se
s
in
 th

e
ga
m
e

Ju
na
et
i e
t a
l.
[2
3]
 m

ad
e
us
e
of
 in

ce
nt
iv
e
an
d
co
m
pe
tit
io
n

m
ec
ha
ni
sm

s
in
 o
rd
er
 to

 a
ss
es
s
th
e
pe
rf
or
m
an
ce
 o
f
th
e
pl
ay
er

th
ro
ug

h
va
ri
ou

s
qu

iz
ze
s
af
te
r
ea
ch
 g
am

e
le
ve
l.
T
he
 r
es
ul
ts
 p
ro
ve
d

to
 b
e
su
cc
es
sf
ul
 s
in
ce
 p
la
ye
rs
 r
ev
ea
le
d
th
at
 th

ey
 g
ai
ne
d

kn
ow

le
dg
e
on
 p
ro
gr
am

m
in
g
by
 a
ns
w
er
in
g
th
e
qu
es
tio

ns

L
ot
fi
an
d
M
oh
am

m
ed
 [
25
]
m
ad
e
us
e
of
 in

-g
am

e
as
se
ss
m
en
ts
 f
or

ea
ch
 g
am

e
le
ve
l i
n
or
de
r
to
 e
va
lu
at
e
th
e
pl
ay
er
 a
bo

ut
 f
ou

r
O
O
P

co
nc
ep
ts
. T

he
 le
ar
ne
r’
s
pe
rf
or
m
an
ce
 w
as
 m

on
ito

re
d
th
ro
ug
h
a

sc
or
in
g
an
d
tim

in
g
sy
st
em

172 L. Nagowah and D. Cuniah

Fig. 8.2 Main menu—login or register

Fig. 8.3 Access main menu with player details

• Adventure Mode and Different Mini-Games

Upon choosing the Adventure mode, the player is able to move the character
around the 3D environment and rotate the camera (Fig. 8.4). The player can gather
collectibles, trigger dialogues, accept quests, and view the current progress as
illustrated in Fig. 8.5.

8 Code-Venture: A Mobile Serious Game for Introductory Programming 173

Fig. 8.4 Adventure mode—accept quest

Fig. 8.5 Adventure mode—view progress

• Challenge Mode, Variable Runner, and View Score

The player can select the Challenge mode game option and choose to play
“Variable Runner” whereby he is able to move the character left or right to choose
the ball which corresponds to the correct answer to the question provided as shown
in Fig. 8.6. The player is presented with final score (Fig. 8.7) when the timer is
over.

174 L. Nagowah and D. Cuniah

Fig. 8.6 Variable runner game

Fig. 8.7 Variable runner score display

• Challenge Mode, Algorithm Puzzle, and View Score

Upon choosing the “Challenge Mode” game option and entering the “Algorithm
Puzzle” game, the player is presented with a scene with interface commands as
shown in Fig. 8.8. The player can make use of different functions and loops in order
to complete a level. The character can be moved by choosing different commands,
and the score is displayed after each level is completed (Fig. 8.9).

8 Code-Venture: A Mobile Serious Game for Introductory Programming 175

Fig. 8.8 Algorithm puzzle game

Fig. 8.9 Algorithm puzzle score

• Quiz Game and Score

After selecting the quiz game, the player is presented with a question together
with four possible answers, as shown in Fig. 8.10. The player must choose an answer
whereby the correct answer is highlighted in green, while a red color is used for
selection of an incorrect answer. After attempting ten questions, the player is given
his final score together with the grade, error count, and time taken to complete

176 L. Nagowah and D. Cuniah

the questions (Fig. 8.11). The quiz consists of several levels where the difficulty
increases as the player progresses in the game.

Fig. 8.10 Quiz game

Fig. 8.11 Quiz game score

8 Code-Venture: A Mobile Serious Game for Introductory Programming 177

• Teacher Application

The teacher can sign in by entering his/her login credentials and then get access to
the list of players of Code-Venture for a specific class. After logging in, the teacher
can select any player to view his/her performance details on the different games
(Fig. 8.12) as well as send a private message to the player as shown in Fig. 8.13.

Fig. 8.12 Player
performance details

178 L. Nagowah and D. Cuniah

Fig. 8.13 Personalized message sent to student

8.5.2 User Acceptance Testing

A User Acceptance Testing (UAT) was the last phase of the testing process that
was performed by end users. This was to validate the software among the targeted
audience, to get their precious feedback, and ensure the application met its intended
purpose. Pre-game and post-game surveys have been conducted with 35 students
who have very little to no perception about programming and were about to embark
on undergraduate studies. After inquiring about certain basic information through
an online form, they were made to play all games in Code-Venture for a period of
1 week. A feedback of their gaming experience was then taken by the means of a
second survey.

8.5.2.1 Pre-game Results

The 35 students who tested the application were aged between 16 and 21 years
inclusive, 57.1% were female, and the remaining 42.9% were male. Among others,
the participants were asked on their background knowledge about programming,
and the results, illustrated in Fig. 8.14, showed that 42.9% of them had only a vague
notion of programming and 45.7% had none.

They were also asked about their feelings on programming, and the results are
shown in Fig. 8.15. 68.6% of the participants thought that programming was hard,
22.9% were of the opinion that programming is medium difficult, and the remaining
8.6% thought programming was easy.

8 Code-Venture: A Mobile Serious Game for Introductory Programming 179

Do you have any prior notion about programming?

35 responses

42.9%

11.4%

45.7%

None
Some vague notion

Basic understanding
A fair knowledge

Extensive knowledge

Fig. 8.14 Prior knowledge of programming

According to you, programming is....

35 responses

8.6%

22.9%

68.6%

Hard
Easy

Medium Difficulty

Fig. 8.15 Programming difficulty

The respondents were also asked about intention of pursuing further studies in
programming, and the results are shown in Fig. 8.16. 65.7% of the participants
mentioned that they did not intend to pursue their studies in programming, 11.4%
intended to embrace the field, and the remaining 22.9% were unsure.

8.5.2.2 Post-game Results

The 35 students were given Code-Venture to play for 1 week and were required
to answer a post-game survey. As illustrated in Fig. 8.17, 42.9% of the participants
liked the game very much, while 31.4% liked the game. Twenty percent were neutral
about the game, while 5.7% did not like Code-Venture. When asked whether they
wanted to play Code-Venture more in the future, 91.4% of the respondents answered
favorably.

180 L. Nagowah and D. Cuniah

Do you intend to pursue further studies in programming?

35 responses

11.4%

22.9%

65.7%

Yes
No

Maybe

Fig. 8.16 Further studies in programming

Fig. 8.17 Code-Venture ratings

The participants were also asked to rate Code-Venture as a means of teaching
programming. As shown in Fig. 8.18, 51.4% found the game to be useful, and 3.14%
enjoyed the game and received some information on programming. 11.4% were
not able to decide whether the game was useful in helping them better understand
programming, while 5.7% found the game to be minimally useful. It is also worth
noting that none of the respondents indicated that the game was not useful at all in
helping them in programming. When prompted about game-based learning, 77.1%
of the respondents were of the opinion that game-based learning is a good approach
to learn programing, 20% were unsure, and one participant mentioned that it is not
suitable.

After playing Code-Venture, the participants were again asked about their
feelings on programming. As shown in Fig. 8.19, this time, 40% of the respondents
found it to be easy, compared to the 8.6% obtained prior to playing Code-Venture.
Only 5.7% found programming to be hard post Code-Venture, while previously a

8 Code-Venture: A Mobile Serious Game for Introductory Programming 181

Fig. 8.18 Usefulness of Code-Venture

Fig. 8.19 Feelings on programming after playing Code-Venture

huge proportion of 68.6% found it to be difficult. The percentage of students who
found programming to be slightly difficult rose from 22.9% to 54.3% with many
respondents moving their feelings from Hard to Medium difficult.

When the participants were again asked about their intention to pursue further
studies in programming, 32.4% responded positively, compared to the 11.4% previ-
ously. Only 5.8% (two participants) mentioned that they did not want to have their
further studies in programming compared to a whopping 65.7% previously. The
percentage of students who were unsure about their further studies in programming
rose from 22.9% to 61.8% with many respondents moving their opinions from No
to May be (Fig. 8.20).

8.5.2.3 Overall Feedback from Students

The following feedback were compiled from the post-game surveys.

182 L. Nagowah and D. Cuniah

Fig. 8.20 Further studies on programming after playing Code-Venture

• Adventure Game—Positive

The game proved to bring a sense of motivation and eagerness to learn. The
element of game exploration and quests further enhanced the player’s determination
to progress through the game and complete all the achievements. By doing so, the
students had to go through programming concepts and rules that made them more
familiar with the world of programming.

• Variable Runner—Satisfactory

This game proved to be informative and did have a good response from players.
However, the players expressed that it was too basic and systematic. The concepts
were only being introduced without proper explanation on how these concepts
actually work. Hence, comprehension of variables and data types was only partially
achieved.

• Algorithm Puzzle—Positive

This game proved to be useful to most of the participants, as they understood
the game easily and managed to complete several levels with a good score.
Upon questioning, they said they could understand the concept of commands
and sequencing and were able to tackle these puzzles easily. The skills targeting
algorithmic thinking, problem-solving, debugging and functions, and loops and
sequencing proved to have been successfully inculcated in the students.

• Quiz Game—Neutral

This game ended up having a neutral effect on the students since they did not
really have much knowledge about programming initially. Hence, answering a set
of questions regarding this topic proved to be tough for them. As a result, a majority
of the students scored low marks for this game. Thus, it has been deduced that this
game mode would be much more efficient if played after attempting the other games
or after being exposed to some more programming principles.

8 Code-Venture: A Mobile Serious Game for Introductory Programming 183

8.6 Discussion

Code-Venture has several strengths as it has been designed based on the ACM/IEEE
guidelines for introductory programming. The game consists of several mini-games
that target different skills required for learning programming. Each mini-game dif-
fers from the other, making the gameplay experience fun, engaging, and appealing.
The game has an adventure mode where the player is able to venture out and attempt
programming puzzles while exploring a beautiful interactive 3D world and making
the gameplay experience interesting with in-game characters to interact with. The
player gets the feeling of actually playing a real game while indirectly learning
about programming. The player gets even more motivated to excel in the game due
to the high score/leaderboard system that triggers the element of competition among
the players. The system has a mobile application, which is used by the teacher
to monitor the scores and overall performance of the players while they attempt
the different games. He can hence easily determine the areas of weaknesses of the
students, and thus, targeted assistance can be provided to all the players based on
their gaming and learning experience. The game elements used in Code-Venture
include levels, points, leader boards, avatars, and quests. It also uses the following
game mechanics: health, energy, coins, time, position, attack, interact, movement,
and opening chests.

The pilot testing carried out with 35 participants resulted in some promising
outcomes. After playing Code-Venture, 40% of the respondents found programming
to be easy, compared to the 8.6% obtained prior to playing the game. Only
5.7% found programming to be hard after playing Code-Venture, while initially a
remarkable 68.6% found it to be difficult. When asked about their intention to pursue
further studies in programming, 32.4% of the respondents replied positively after
playing Code-Venture compared to the 11.4% previously. A mere 5.8% mentioned
that they did not want to have their further studies in programming compared to
a substantial 65.7% previously. It can therefore be deduced after this pilot study
that the mobile serious programming game Code-Venture does have a positive
impact on the players. These findings may also have practical implications for the
tutor delivering the programming module. Game-based learning strategies could
be adopted, and the use of serious programming games can be included in the
teaching and delivery of the introductory programming modules. Assessments or
non-curricular activities may also be designed on the use of the serious games in
normal classes or during practical sessions. Obviously, a more thorough testing of
the application on a larger scale and for a longer duration is required to have better
statistical claims about the effectiveness of the application.

While Code-Venture has several strengths, it does have some weaknesses.
Internet connection is required for connecting to an online database to store the
score of the player, which will be viewed by a teacher. Code-Venture has currently
been developed for Android platforms only. Moreover, mobile devices older than
Android 4.1 are not able to run Code-Venture due to incompatibility issues with
the new components included in the game. The game takes some storage space,

184 L. Nagowah and D. Cuniah

about 130 MB, on the mobile device it has been installed due to it being a 3D game
consisting of heavy game objects. As for any other 3D game, Code-Venture can also
consume a high amount of battery life when played over a prolonged period.

Some avenues for further improvement can be considered in the future. Artificial
intelligence can be integrated in the mini-games to have more responsive and
adaptive gaming experiences. Customized progress details and graphs concerning
the student’s strengths and weaknesses in the teacher’s application may also be
enhanced. Multiplayer game modes, whereby the players are able to challenge and
compete with others for rewards and points, will definitely be a big advantage.
Additionally, more quests in the game’s adventure mode, an improved storyline,
and expanding the game environment to increase the areas of exploration can be
envisaged. Finally, the development of more mini-games in the challenge mode to
tackle more programming skills may also be useful.

Based on our analysis, Code Combat, Hour of Code, LightBot, and May’s Jour-
ney are the most featured currently available serious programming games. Together
with Code-Venture, they have all been designed to encourage computational think-
ing among individuals of all ages and assist them in learning fundamental computer
science principles. All these games have a good combination of text, audio, and
graphics. What really differentiates Code-Venture from the other serious games is
that Code-Venture makes use of a varying gameplay for the different integrated mini-
games while the other games have a similar gameplay for all the different levels.
Code-Venture also includes a mobile application for the tutor who can visualize the
progress of the students on the different games. What makes Code-Venture unique is
the possibility of sending personalized messages to students to advise them on their
progress.

There are several threats to validity that could have an impact on the results
obtained. Firstly, the sample size was very small with only 35 participants and
limited to the students available from the researchers’ contacts. The use of a
convenience sampling poses a threat to internal validity. Moreover, some students
have parental or siblings support at home, which may have affected their interaction
with Code-Venture. Additionally, since the ages of the participants were between
16 and 21, the maturity of the respondents may also affect the results. Finally, the
students were given the mobile application for a period of only 1 week. The time
that the students interacted with the application may therefore not be the same. A
greater sample size would have helped minimize these issues.

8.7 Conclusion

This work investigated the possibility of applying a game-based learning strategy
to teach novice students about programming through a serious game named Code-
Venture. Code-Venture was based on the ACM/IEEE Computing Curriculum for
programming. The main objective of Code-Venture was to enlighten the students
about this seemingly complex programming subject and show them that it could be

8 Code-Venture: A Mobile Serious Game for Introductory Programming 185

fun and enjoyable to learn the programming principles. Code-Venture makes use of
varying gameplays to ensure the player is engaged and motivated. While the mini-
games serve as a challenge for the player, the adventure-mode creates an immersive
experience for learning. This game is associated with an application that helps
teachers monitor their students’ performance. With the elaborate scoring system,
the student’s skills, strengths, and weaknesses can be evaluated.

A pilot study has been carried out with 35 students together with pre-game and
post-game surveys. The survey results were analyzed, and the outcomes were very
promising. The participants who tested Code-Venture were very entertained and
engaged and showed keen interest in playing more. They got a better perception
about programming and expressed their will to learn more about it. A positive
change was noted in the opinion of the students regarding programming. After
playing Code-Venture, 40% of the respondents found programming to be easy
compared to the 8.6% obtained prior to playing the game. Only 5.7% found
programming to be hard post-Code-Venture, while previously an impressive 68.6%
found it to be difficult. When the participants were asked about their intention to
pursue further studies in programming, 32.4% responded positively post playing
Code-Venture compared to the 11.4% previously. Only 5.8% mentioned that they
did not want to have their further studies in programming compared to a massive
65.7% previously.

Code-Venture is a promising game providing ease of access, viability, and
the opportunity to sharpen one’s knowledge and expand one’s understanding of
programming in a fun and entertaining way. While Code-Venture has several
benefits, the game is still lacking in some areas. A more elaborated and captivating
storyline has yet to be implemented in the Adventure-Mode to better grasp the
player’s attention with more interesting quests and dialogues. The mini-games could
be improved by including a better tutorial system to guide the player. The teacher’s
mobile application has few options to view progress of the students that can also
be further enhanced. Moreover, budget limitations resulted in only free assets and
resources being considered for the development Code-Venture. The lockdown due
to the COVID-19 pandemic resulted in a pilot study where the testing was carried
out by only 35 participants. Hence, there is a need to carry out a thorough testing
of Code-Venture over a long period to evaluate the impact of the application on the
skills of the players and confirm its effectiveness in helping the players better grasp
the main programming principles.

Disclosures No funding was received for this article, and the authors declare no conflicts of
interest.

References

1. Papadakis, S., Kalogiannakis, M., Orfanakis, V., Zaranis, N.: Novice programming environ-
ments. Scratch & app inventor: a first comparison. In: Proceedings of the 2014 Workshop on
Interaction Design in Educational Environments, pp. 1–7 (2014)

186 L. Nagowah and D. Cuniah

2. Miskon, M.T., Hilmi, F.D., Khusairi, W.A., Rustam, I.: Development of constructionist robotics
to facilitate learning in C programming course. J. Phys. Conf. Ser. 1529(2), 022039 (2020)

3. Mathew, R., Malik, S.I., Tawafak, R.M.: Teaching problem solving skills using an educational
game in a computer programming course. Inf. Educ. 18(2), 359–373 (2019)

4. Lahtinen, E., Ala-Mutka, K., Järvinen, H.M.: A study of the difficulties of novice programmers.
ACM SIGCSE Bull. 37(3), 14–18 (2005)

5. Bennedsen, J., Caspersen, M.E.: Failure rates in introductory programming. ACM SIGCSE
Bull. 39(2), 32–36 (2007)

6. Bennedsen, J., Caspersen, M.E.: Failure rates in introductory programming: 12 years later.
ACM Inroads. 10(2), 30–36 (2019)

7. Lye, S.Y., Koh, J.H.L.: Review on teaching and learning of computational thinking through
programming: what is next for K-12? Comput. Hum. Behav. 41, 51–61 (2014)

8. Halbrook, Y.J., O’Donnell, A.T., Msetfi, R.M.: When and how video games can be good: a
review of the positive effects of video games on well-being. Perspect. Psychol. Sci. 14(6),
1096–1104 (2019)

9. Schez-Sobrino, S., Vallejo, D., Glez-Morcillo, C., Redondo, M.Á., Castro-Schez, J.J.:
RoboTIC: a serious game based on augmented reality for learning programming. Multimed.
Tools Appl. 79, 34079–34099 (2020)

10. Shahid, M., Wajid, A., Haq, K.U., Saleem, I., Shujja, A.H.: A review of gamification
for learning programming fundamental. In: 2019 International Conference on Innovative
Computing (ICIC), pp. 1–8. IEEE (2019)

11. Mathrani, A., Christian, S., Ponder-Sutton, A.: PlayIT: game based learning approach for
teaching programming concepts. J. Educ. Technol. Soc. 19(2), 5–17 (2016)

12. Boeker, M., Andel, P., Vach, W., Frankenschmidt, A.: Game-based e-learning is more effective
than a conventional instructional method: a randomized controlled trial with third-year medical
students. PLoS One. 8(12) (2013)

13. Ding, D., Guan, C., Yu, Y.: Game-based learning in tertiary education: a new learning
experience for the generation Z. Int. J. Inf. Educ. Technol. 7(2), 148 (2017)

14. Cheng, M.T., Chen, J.H., Chu, S.J., Chen, S.Y.: The use of serious games in science education:
a review of selected empirical research from 2002 to 2013. J. Comput. Educ. 2, 353–375
(2015)

15. Krath, J., Schürmann, L., Von Korflesch, H.F.: Revealing the theoretical basis of gamification:
a systematic review and analysis of theory in research on gamification, serious games and
game-based learning. Comput. Hum. Behav. 125, 106963 (2021)

16. Zainuddin, Z., Chu, S.K.W., Shujahat, M., Perera, C.J.: The impact of gamification on learning
and instruction: a systematic review of empirical evidence. Educ. Res. Rev. 30, 100326 (2020)

17. Qian, M., Clark, K.R.: Game-based learning and 21st century skills: a review of recent
research. Comput. Hum. Behav. 63, 50–58 (2016)

18. Tori, A.A., Tori, R., Nunes, F.L.: Serious Game Design in Health Education: A Systematic
Review. IEEE Transactions on Learning Technologies (2022)

19. Jemmali, C., Yang, Z.: May’s journey: a serious game to teach middle and high school girls
programming. Master’s thesis, Worcester Polytechnic Institute (2016)

20. Du, J., Wimmer, H., Rada, R.: “Hour of Code”: can it change students’ attitudes toward
programming? J. Inf. Technol. Educ. Innov. Pract. 15, 53 (2016)

21. Miljanovic, M.A., Bradbury, J.S.: Robot on! A serious game for improving programming
comprehension. In: Proceedings of the 5th International Workshop on Games and Software
Engineering, pp. 33–36 (2016)

22. Law, R.: Teaching programming using computer games: a program language agnostic
approach. In: European Conference on Games Based Learning, pp. 368–376. Academic
Conferences International Limited (2017)

23. Junaeti, E., Sutarno, H., Nurmalasari, R.R.: Genius learning strategy of basic programming in
an adventure game. In: IOP Conference Series: Materials Science and Engineering, vol. 288,
No. 1, p. 012057. IOP Publishing (2018)

8 Code-Venture: A Mobile Serious Game for Introductory Programming 187

24. Jordaan, D.B.: Board games in the computer science class to improve students’ knowledge
of the python programming language. In: 2018 International Conference on Intelligent and
Innovative Computing Applications (ICONIC), pp. 1–5. IEEE (2018)

25. Lotfi, E., Mohammed, B.: Teaching object oriented programming concepts through a mobile
serious game. In: Proceedings of the 3rd International Conference on Smart City Applications,
p. 74. ACM (2018)

26. Yallihep, M., Kutlu, B.: Mobile serious games: effects on students’ understanding of program-
ming concepts and attitudes towards information technology. Educ. Inf. Technol., 1–18 (2019)

27. Zhao, D., Muntean, C., Muntean, G.: The Restaurant Game: a NEWTON PROJECT serious
game for C programming courses. In: Society for Information Technology & Teacher Educa-
tion International Conference, pp. 1867–1874. Association for the Advancement of Computing
in Education (AACE) (2019)

28. Karram, O.: The role of computer games in teaching object-oriented programming in high
schools-code combat as a game approach. WSEAS Trans. Adv. Eng. Educ. 18, 37–46 (2021)

29. Toukiloglou, P., Xinogalos, S.: NanoDoc: designing an adaptive serious game for programming
with working examples support. Eur. Conf. Games Based Learn. 16(1), 628–636 (2022)

30. Akkaya, A., Akpinar, Y.: Experiential serious-game design for development of knowledge of
object-oriented programming and computational thinking skills. Comput. Sci. Educ. 32(4),
476–501 (2022)

31. Hacked. Google Play. [online]. https://play.google.com/store/apps/
details?id=com.hackedapp&hl=en (2015). Accessed 2 Oct 2019

32. Coding Galaxy. App Store. [online]. https://apps.apple.com/us/app/coding-galaxy/
id1240651393 (2022). Accessed 20 Feb 2023

33. Lightbot: Code Hour. App Store. [online]. https://apps.apple.com/us/app/lightbot-code-hour/
id873943739 (2018). Accessed 20 Feb 2023

34. SpriteBox: Code Hour. App Store. [online]. https://apps.apple.com/us/app/spritebox-code-
hour/id1161515477 (2018). Accessed 20 Feb 2023

35. Meoweb: The Puzzle Coding Game. Google Play. [online]. https://play.google.com/store/apps/
details?id=br.com.tapps.meoweb&hl=en&gl=US (2020). Accessed 20 Feb 2023

36. BeBlocky: Kids Code Easy. Google Play. [online]. https://play.google.com/store/apps/
details?id=com.beblocky.beblocky&hl=en&gl=US (2022). Accessed 20 Feb 2023

37. Coding Planets. Google Play. [online]. https://play.google.com/store/apps/
details?id=com.material.design.codingplanet&hl=en&gl=US (2017). Accessed 10 Dec
2022

38. Grasshopper: Learn to Code. Google Play. [online]. https://play.google.com/store/apps/
details?id=com.area120.grasshopper&hl=en&gl=US (2023). Accessed 20 Feb 2023

39. Gomes, A., Mendes, A.J.: Problem solving in programming. In: PPIG, p. 18. (2007)
40. Ahmadzadeh, M., Elliman, D., Higgins, C.: The impact of improving debugging skill on

programming ability. Innov. Teach. Learn. Inf. Comput. Sci. 6(4), 72–87 (2007)
41. Fucci, D., Turhan, B., Oivo, M.: On the effects of programming and testing skills on external

quality and productivity in a test-driven development context. In: Proceedings of the 19th
International Conference on Evaluation and Assessment in Software Engineering, pp. 1–6
(2015)

42. Csernoch, M., Biró, P., Máth, J., Abari, K.: Testing algorithmic skills in traditional and non-
traditional programming environments. Inf. Educ. 14(2), 175–197 (2015)

43. Futschek, G.: Algorithmic thinking: the key for understanding computer science. In: Inter-
national Conference on Informatics in Secondary Schools-Evolution and Perspectives, pp.
159–168. Springer, Berlin (2006)

44. Farrell, J.: Programming Logic and Design, Comprehensive. Cengage Learning (2014)
45. ACM/IEEE-CS Joint Task Force on Computing Curricula: Computer Science Curricula 2013.

Technical Report. ACM Press and IEEE Computer Society Press (2013)

21670 20726 a 21670 20726 a

 17747 22940
a 17747 22940 a

 16069 25153 a 16069
25153 a

 17481 27367 a 17481
27367 a

21670 29581 a 21670 29581 a

 21670 31795 a 21670
31795 a

21670 34009 a 21670 34009 a

 21670 37330 a 21670 37330
a

Chapter 9
Using Active Learning to Teach Software
Engineering in Game Design Courses

Bruce R. Maxim and Jeffrey J. Yackley

Abstract Game developers are beginning to understand it is important to approach
computer game design like how all software engineers approach projects involving
large numbers of people and significant investment of time. Engineering instructors
often rely on the traditional lecture model when they teach topics to a classroom
of students. Students often fail to engage with the material presented by lecturers.
Many engineering educators regard experiential learning as an effective way to train
future generations of engineers and game developers. The authors have created
two courses that focus on software engineering and game development. These
courses were initially offered as traditional lecture classes to both in-person and
online groups of students. This chapter describes the authors’ approaches to revising
these game design classes to make use of flipped classroom models that rely on
active learning, role-play, and gamification to cover software engineering topics in
these courses. Students learn to use Agile software engineering practices to design,
implement, and test game prototypes. In-person students were surveyed to measure
their perceived levels of engagement with course activities. Our assessment data
suggests that students attending flipped class meetings were slightly more engaged
with the course materials than those taking the class offered using lectures only.
Students interacting with the active learning course materials felt better able to apply
their knowledge than students in a traditional lecture course.

Keywords Active learning · Student engagement · Role-play · Game design ·
Agile development

B. R. Maxim (�)
University of Michigan-Dearborn, Dearborn, MI, USA
e-mail: bmaxim@umich.edu

J. J. Yackley
University of Michigan-Flint, Flint, MI, USA
e-mail: jyackley@umich.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
K. M. L. Cooper, A. Bucchiarone (eds.), Software Engineering for Games
in Serious Contexts, https://doi.org/10.1007/978-3-031-33338-5_9

189

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33338-5protect T1	extunderscore 9&domain=pdf

 885 52970 a 885 52970 a

mailto:bmaxim@umich.edu
mailto:bmaxim@umich.edu

 885
56845 a 885 56845 a

mailto:jyackley@umich.edu
mailto:jyackley@umich.edu
https://doi.org/10.1007/978-3-031-33338-5_9
https://doi.org/10.1007/978-3-031-33338-5_9
https://doi.org/10.1007/978-3-031-33338-5_9
https://doi.org/10.1007/978-3-031-33338-5_9
https://doi.org/10.1007/978-3-031-33338-5_9
https://doi.org/10.1007/978-3-031-33338-5_9
https://doi.org/10.1007/978-3-031-33338-5_9
https://doi.org/10.1007/978-3-031-33338-5_9
https://doi.org/10.1007/978-3-031-33338-5_9
https://doi.org/10.1007/978-3-031-33338-5_9
https://doi.org/10.1007/978-3-031-33338-5_9

190 B. R. Maxim and J. J. Yackley

9.1 Introduction

Engineering instructors often rely on the traditional lecture model where they cover
a topic, with or without a slideshow, to a classroom of students. Students often fail
to engage with the material presented by lectures until an assessment activity is
near. Many engineering educators regard experiential learning as the most effective
way to train future generations of engineers and game developers. The authors have
noticed higher levels of engagement when students participate in class activities
rather than passively listening to lectures. These activities may include games,
discussions, role-play, peer reviews, and group problem-solving or design exercises.
This chapter describes the authors’ approach to revising two lecture heavy game
design courses to make use of a flipped classroom model that relies on active
learning, role-play, and gamification to cover software engineering topics in game
design courses.

Covid-19 restrictions forced a shift to the online delivery of all courses at
our university in 2020. In Fall 2021, face-to-face class meetings were allowed
if vaccination, masking, and social distancing were enforced. Often, activities
developed for face-to-face delivery of software engineering topics cannot be used
without modification in the online delivery of course materials. Following Covid
protocols in face-to-face classes also required modification of active learning course
materials.

Students learning software engineering principles and practices may find it
difficult to apply them in the development of complex software projects. Software
engineering involves acquiring application domain knowledge to understand the
client’s needs. It is therefore important to do more than simply use a game as the
term project in a software engineering course as some authors have suggested [1–3].
Additionally, adding game topics to already crowded software engineering courses,
as some authors have advised [3, 4], requires sacrificing important software engi-
neering topics. Focusing on one application area in the first software engineering
class is not fair to all students as not every software engineering student wants to
become a game developer.

9.2 Background

Game developers are beginning to understand that it is important to treat computer
game design in the same way that other software engineers approach projects
involving large numbers of people and a significant investment of time [5]. Game
developers can benefit from using evolutionary software process models to manage
their development risks and reduce their project completion times. The process of
determining the technical requirements for a game software product is like that
used to specify any other type of software product. However, unlike most software
products, games have an entertainment dimension. People play computer games
because games are fun [6].

9 Using Active Learning to Teach Software Engineering in Game Design Courses 191

The authors believe that the capstone design course should not be the only
opportunity for students to manage complex software development projects. This
suggests the use of other courses in the curriculum such as a game design course
as a means of providing additional software engineering experiences. This paper
describes the authors’ experiences revising and employing active learning materials
to teach software engineering content in a sequence of two face-to-face game
design courses with or without social distancing and online either synchronously
or asynchronously spanning a 6-year period.

9.2.1 Active Learning

Engineering educators regard experiential learning as the best way to train the
next generation of engineers [7]. Toward this end, it is reasonable to believe
that the interaction practiced in active learning classrooms can improve software
engineering education at the undergraduate level and better prepare students for the
experiential learning that comes with their capstone projects [8].

Active learning is “embodied in a learning environment where the teachers
and students are actively engaged with the content through discussions, problem-
solving, critical thinking, debate and a host of other activities that promote
interaction among learners, instructors and the material” [9]. Prince defines active
learning as any classroom activity that requires students to do something other than
listen and take notes [10]. Active learning opportunities can complement or replace
lectures to make class delivery more interesting to the students. Active learning
using flipped classes can also foster developing an attitude of lifelong learning
among students [11].

Specifically, active learning helps students develop problem-solving, critical
reasoning [12], and analytical skills, all of which are valuable tools that prepare
students to make better decisions, become better students, and better employees
[10]. Raju and Sankar undertook a study to develop teaching methodologies that
could bring real-world issues into engineering classrooms [13]. The results of their
research led to recommendations to engineering educators on the importance of
developing interdisciplinary technical case studies that facilitate the communication
of engineering innovations to students in the classroom.

Active learning helps students learn by increasing their engagement in the
process [14, 15]. Active learning techniques help students better understand the
topics covered in the curriculum [16]. Active learning also helps students be more
excited about the study of engineering than traditional instruction [17]. The group
work that often accompanies active learning instruction helps students develop their
soft skills [18] and makes students more willing to meet with instructors outside
of class [19]. Krause writes that engagement does not guarantee learning is taking
place, but learning can be enhanced if it provides students with opportunities to
reflect on their learning activities [20].

192 B. R. Maxim and J. J. Yackley

There is consensus among members of our department’s professional advisory
board that professional practice invariably requires strong verbal and written
communication skills. To develop their oral communications skills, students need
opportunities to present their work as well as observe their peers doing the same.
Some instructors believe that the project activities inherent in real-world software
development encourage students to improve their written and oral communication
skills [21].

Day and Foley used class time exclusively for exercises by having their students
prepare themselves through the study of materials provided online [22]. Bishop
and Verleger presented a comprehensive survey of flipped classroom exercise
implementations [23]. Wu et al. effectively implemented class exercises as active
learning tools in their flipped classroom approach [24]. Research suggests that the
success of flipped classroom approaches depends on the nature of the course being
taught. Learning content after engaging in course activities can be easier for some
students [25]. The investment in time required for instructors to develop quality out-
of-class materials and in-class active learning experiences can be substantial [26].

The active learning approach of problem-based learning (PBL) has consistently
been demonstrated to lead to positive learning outcomes such as self-directed learn-
ing habits, problem-solving skills, and deep disciplinary knowledge while engaging
students in collaborative, authentic, and learning situations [27]. While PBL was
first incorporated into medical school curricula in 1969, it is currently used in a
wide variety of courses [28]. For instance, within the field of engineering, Warnock
and Mohammadi-Aragh investigated the impact of PBL on student learning in a
biomedical materials course and found that students made significant improvements
in their problem-solving, communication, and teamwork skills [29].

PBL has also been used in senior-level engineering courses with the same
positive results [30–32]. Although students in a PBL software engineering course
reported that the projects were more time intensive than a typical course project, they
were receptive to the approach since they thought it was related to the professional
environment and provided them with opportunities to relate theory and practice.
This contrasted with students taught using a traditional lecture and project approach
to the course who viewed completing a traditional course project more negatively
[33].

9.2.2 Student Engagement

Active learning techniques such as think-pair-share exercises [34], pair program-
ming [35], peer instruction [36], and flipped classrooms [37] have been demon-
strated to increase student engagement [11]. Many of these interventions are used
in introductory-level instruction, primarily to address broadening participation in
large classes [38]. Admittedly, lack of access to technology to create and access the
videos needed to flip a classroom can pose challenges to both students and teachers
[26].

9 Using Active Learning to Teach Software Engineering in Game Design Courses 193

Ham and Myers introduced process-oriented guided inquiry learning (POGIL)
into a computer organization course [39]. In software engineering courses, the use
of real-world, community-based projects may be an effective way to engage students
with a meaningful problem while teaching them software engineering concepts [40].
Students often become more invested in their projects when they see that their
products are more than simply a paper design. In our course redesign, we used
the class activities to motivate students to design game software products and use
software engineering techniques to solve real-world programming problems.

An important aspect of software engineering education is the development of soft
skills such as communication and project management. There are several examples
of courses that make use of project work to help students enhance their soft skills
simultaneously with their software development skills [41]. Decker and Simkins
[42] introduced the use of an extended role-play approach in a game development
process class where the students were not assessed solely on the artifacts they
produced but the processes by which they created their artifacts. Their role-play
activities emphasize industry best practices for both technical and soft skills (project
management, communication, marketing, and interdisciplinary design).

9.2.3 Role-Play

Simkins [43] defines role-play as simulating the real world in environments where
consequences can be mitigated safely. Role-play allows students to get hands-
on practice with engineering concepts and practice the soft skills that make for
successful professional engineers: communication, problem-solving, and analytical
skills. We believe this makes role-play a critical tool in the active learning
engineering classroom. Numerous researchers have investigated the use of role-play
in the software engineering classroom with success.

Moroz-Lapin [44] and Seland [45] used role-play in human-computer interaction
courses to engage students with the requirement engineering process to better
understand system behavior from the users’ point of view. Similarly, Zowghi and
Parvani [46] also investigated requirements engineering using role-play to have
their students understand the process of requirements gathering from both the client
and developer perspective. Role-play was used by Börstler [47] to teach students
object-oriented programming concepts with class-responsibility-collaborator cards.
Vold and Yayilgan [48] achieved greater student engagement with role-play in
an information technology course. Further, we draw inspiration from a study that
used the Second Life online virtual world as a platform for students to role-play
a fictional company for enterprise resource planning [49]. Other online role-play
simulations focus on students taking the role of project managers with students
receiving immediate feedback on their decisions [50–52].

The redesign described in this paper builds upon the work of Maxim, Brunvand,
and Decker [53], which used role-play in a re-designed game design course, CIS
488, at the University of Michigan–Dearborn. We re-use this work with some slight

194 B. R. Maxim and J. J. Yackley

modifications as the second course in our two-course game design sequence [54].
The course from 2017 had the students role-play as developers of a failing game
company with the goal of simulating concept ideation to creation and release of
3D computer games using Unreal Engine 4. The failing game company backstory
used to motivate the role-play in our course is discussed further in Decker and
Simkins [42]. Decker and Simkins provide the framework we used to build and
adapt our role-play modules. These modules emphasize industry best practices for
the technical game development work and soft skills development as well as the
introduction of secondary learning objectives based in business and legal concerns
that naturally arise during the role-play [54].

9.2.4 Gamification

Gamified learning or the gamification of learning has been defined as the use of
game design elements in non-game settings to increase motivation and attention on
task [55, 56]. Using active learning in the authors’ experience may lead to issues
with group participation and motivation if students do not feel the need to work
outside of class. Adding gamification elements to active learning can help mitigate
this problem.

James Gee [57] has identified 36 learning principles that are present in good
games. These learning principles provide the backbone for good game design and,
in turn, can be used as guiding principles when designing a gamified learning
environment. For instance, good games provide players with information when they
need it and within the context in which the information will be used [58]. Effective
game design includes challenging players, so they are routinely working at the edge
of their abilities and knowledge, also known as their zone of proximal development
[59]. Having students, or players, operate within this optimal learning zone helps
keep them engaged and encourages them to learn more to meet the demands of the
next challenge.

According to Gee [58], games can promote collaboration and skill building, if
players are required to share knowledge and skills to be successful. Games that
reward teamwork can have a positive impact on the development of prosocial skills
[60]. Gee contends that well-designed games are motivational specifically because
of the different learning principles outlined previously [58]. Working at the limits of
their abilities keeps players engaged as they continue to take on new challenges [61].
Gee refers to this process as a cycle of expertise, which requires players to constantly
learn, act, revise, and learn again to demonstrate proficiency and be successful in a
game [57].

In addition to the motivational aspect of the cognitive element of games, Lee
and Hammer [62] suggest that the social and emotional aspects of rewards and
consequences earned in gaming environments contribute to motivation as well.
However, there needs to be a balance between positive and negative outcomes to
prevent discouraging or overwhelming the students [56]. A well-designed game can

9 Using Active Learning to Teach Software Engineering in Game Design Courses 195

also motivate players to stay engaged by enhancing the value of the task or tasks
being completed [63]. This is particularly beneficial with educational games focused
on school-related subjects that students might not otherwise choose to immerse
themselves within. Toth and Kayler [64] created a role-playing game that made use
of quests to motivate students’ assignment completion.

Gamification can be used as a means of promoting rewards for completing tasks.
Students can be rewarded for compliance to software process steps and for taking
the initiative to improve their “soft skills.”

It is important to acknowledge the debate that centers around gamification. There
are critics such as Ian Bogost who colorfully proclaim “Gamification is bullshit” and
that it is little more than a marketing term for exploitative practices [65]. A more
nuanced criticism from Casey O’Donnell argues that gamification at its heart is a
form of algorithmic surveillance that provides data of dubious merit and use [66].

9.3 Proposed Solution

The University of Michigan–Dearborn offers a two-course undergraduate sequence,
CIS 487 and CIS 488, in game design. These courses are offered in-person on
campus and paired with an online section that allows enrolled students to complete
the course requirements asynchronously. Prior to 2017, these involved students
attending or observing a 3-h lecture with slides. Little in-class interaction between
students was observed with in-person course delivery. In our experience following
students throughout the two-semester sequence, most students spent their class time
with their laptops more than with the course lecture material [17]. We wanted
to change the structure of these courses to better engage the students with the
software engineering content covered in these courses. We describe our experiences
in altering these courses to include active-learning role-play.

Given all the positive evidence discussed previously, it was determined that a
PBL pedagogical approach was well suited for software engineering project courses.
In our classes, students are encouraged to reflect on the lessons learned from the
activities either in writing or orally during class postmortem discussions.

We included role-play activities in our course redesign to allow students to
practice skills such as project management, communication, marketing, and inter-
disciplinary design. To encourage the development of soft skills, the investigators
made use of small group activities with the expectation that students would provide
written or oral summaries (either live online or using video) of the strategies used to
complete their tasks and their lessons learned. The decision was made to continue
to use the term-long role-play activities in CIS 488 since those students had a good
grasp of software engineering and game design from the prerequisite courses CIS
487 and CIS 375 Software Engineering 1.

Gamification can be used as a means of promoting rewards for completing
tasks. Students can be rewarded for compliance to software process steps and for
taking the initiative to improve their “soft skills.” In this way, the authors hope to

196 B. R. Maxim and J. J. Yackley

resolve the discrepancies in personal efforts that are often present in student project
work. We believe gamification can be accomplished in a non-manipulative and
non-exploitative manner where the goal of the gamification is to provide different
opportunities for involvement in the courses thereby allowing students to work on
what interests them the most.

We designed tasks covering the gamut of game design and engineering process
tasks and assigned them point values for successful completion. Students were
allowed to negotiate their own tasks within their team structures while also being
encouraged to work on a variety of different tasks to earn points toward their
final course grade. These tasks encouraged development of soft skills through team
communication, planning, and problem-solving. Allowing students to negotiate the
nature of their activities and rewards upfront often goes a long way to ensuring that
all students are engaged for the entire semester.

When Covid-19 forced us to eliminate or modify the way we offered our in-
person game design courses, we developed strategies to improve online student
engagement. In 2020 and Winter 2021, our game design classes were offered
entirely online. Some students participated in these classes by attending syn-
chronous class meetings using Zoom and completed small-group assignments in
breakout rooms. Asynchronous online students watched online videos of class
lectures and activities. Starting in Fall 2021, in-person instruction was allowed for
students attending classes on campus, if they wore masks, were vaccinated, and
followed social distancing rules while in the classroom or lab. Asynchronous online
students continued observing class by viewing video recordings 1 day after the class
meetings.

9.3.1 Course Overview: CIS 487 Computer Game Design I

The purpose of CIS 487 is to introduce students to the technology, science, and
art involved in the creation of computer games. The course meets once a week for
3 h over a 15-week semester. Before the Fall 2017 semester, this course split time
between lectures on game design principles and Unity 2D and 3D game engine
video tutorials. The revisions to this course focused primarily on introducing active-
learning activities on game design as an alternative to a lecture heavy focus for
presenting course content. Table 9.1 shows a week-by-week listing of the topics for
the course.

The weekly class was taught using a flipped classroom approach and was
split into three principal components. The first component was a short interactive
presentation on the game design material for the week. These presentations were
reduced to 30–45 min on average and were then followed by the second component,
an activity designed to engage the students more deeply with the material. Finally,
the third component was a 30-min, tutorial video on a particular Unity engine
tutorial on a particular topic usually related to the game design content for the week.

9 Using Active Learning to Teach Software Engineering in Game Design Courses 197

Table 9.1 A listing of the weekly topics and activities for CIS 487

Week Software engineering topic Activities

1 Game Design Evaluation
Intellectual Property

Bartok Rule Changes Exercise
Copyright Card Game

2 Game Storylines in Design
Puzzle Design Process

Storyline Exercise
Shocking Puzzle Design

3 Game Quality Review Peer Review of Game Review
4 Game and Balance

Storyboarding
Feasibility Prototypes

Analysis of 3 Dot Game
Paper Prototype—Test Feasibility of
New First Person Shooter Game Design

5 Design Documents
Brainstorming and Pitches
Trade-off Analysis

Ideation and One Page Creation
Create Game Pitch for One Page Game
Analyze Impact of Adding or Removing
Features Using Paper Prototypes

6 Formal Technical Reviews
Playtesting

Peer Review 2D Pitch Document
Playtest 2D Game Feasibility Prototype

7 User Experience Design
Agile Development

Revise User Interface Design
Process Improvement Game (PIG)
Contest

8 UX Sound Design
UX Level Design

Create Skit Using 2D Games Sounds
Only
Create Outline for New 2D Game level

9 2D Game Testing Peer Review 2D Game Beta Prototype
10 Game AI design

Game AI testing
Design New Finite State Game AI for 2D
game
Test Game AI Using Paper Prototype and
Roleplay

11 Game Design Documents
Formal Technical Reviews

Peer Review 3D Game Concept
Presentations

12 Playtesting and Testing Create Testing Script for 2D game
External Testers use Script to Test 2D
game

13 Playtesting Playtesting of 3D Alpha Prototypes
14 Marketing Marketing Exercise for 3D Game
15 Quality Assessment Peer Assessment of 3D Beta Prototypes

The students were evaluated on the completion of five projects, four of which
were team-based assignments and one which was an individual assignment. The
group assignments involved the use of gamification to reward differential student
project contributions that were broken down into elective components each with its
own point value. Students could select any number of electives from the assignment
to complete to earn a maximum number of points on the assignment. Students also
submitted write-ups of the small-group activities completed in class. These write-
ups were started in class, completed individually, and submitted for grading.

The first project was an individual review of a professionally produced computer
game. Students prepared their reviews of the game and their critiques in a Power-
Point. They were then required to present them to the class. The reviews were to

198 B. R. Maxim and J. J. Yackley

cover the basic information of the game (i.e., title, type, price, authors); a summary
of the game, which was to include items such as the story, gameplay, user interface,
etc.; and their thoughts on a number of questions such as the quality, fun, comparison
to similar games, design mistakes, strengths, and weaknesses.

Projects two and three were completed by a group of three or four with the same
students completing both projects together. Students selected their own partners for
the projects. The two projects were the creation of a 2D Unity game pitch and
the production of the game itself (delivered as two prototypes). The game pitches
involved creation of a pitch document that outlined the game story, game play look
and feel, and the development specifications. The 2D game required a playable game
with at least one playable character, one level transition, and rudimentary physics
and AI.

The fourth and fifth projects were also team-based, but the students were required
to form teams of four or five individuals. The students again could choose their own
partners but were not required to collaborate with the same partner from their 2D
game. The fourth and fifth projects were to design and implement a 3D game alpha
and beta prototype. The game requirements were like those for the 2D game with
the expectation of a more polished and complete game.

9.3.2 Course Overview: CIS 488 Computer Game Design II

The CIS 488 course contains a semester-long role-play in which the students
function as the employees of a struggling game company. Also, the course makes
use of gamification and active-learning elements as did its predecessor, CIS 487.
CIS 488 meets 1 day a week for 3 h over a 15-week semester. Table 9.2 shows the
weekly topics and activities. During the first class period, students were introduced
to the backstory of the role-play and how it would affect the conduct of the
course. In previous offerings of this course, much of the class time was spent
observing instructor lectures on Unreal4 programming techniques. In the current
course offering, most class time was spent in game design studio role-play activities.
Classes often began with an all-hands meeting to introduce the day’s role-playing
activities. Students were expected to use video tutorials outside of class to learn to
use the Unreal4 Blueprint system and level editor.

The fictitious company created for the role-play had a tradition of using a green
light system for continuing or stopping development of game products. The first task
was for each company developer to do a quick market research review and create
a pitch for an innovative game product. The top five pitches were selected by class
vote. The winning pitch authors were allowed to recruit four or five team members
during the third class period. Each team was asked to provide a representative for
a committee to write a company-wide software process standards document based
on the scrum framework. A contest was held within the company to create a new
name and logo. The developers selected their favorite, and Imagination Studio was
launched.

9 Using Active Learning to Teach Software Engineering in Game Design Courses 199

Table 9.2 A listing of the weekly topics and activities for CIS 488

Week Software engineering topic Activities

1 Role-play Introduction
2 3D Game Pitch Presentation Peer Green Light Vote

Team Formation
3 Software Process Definition Teams Refine Game Concepts as One

Pages
Develop Agile Company Process Model

4 Business Plan Creation Process Model Presentation and
Approval
One Page Review

5 Formal Technical Reviews Peer Review of Draft Design Document
6 Elevator Pitches

IP Ownership
Creation and Review of Game Elevator
Pitch
Game Theme Ownership Dispute
Activity

7 Contracts and Scope Creep Two Pitch Swaps
Contract Dispute Activity
Lens Presentations

8 Playtesting Peer Review of Alpha Game Prototypes
9 Retrospective

Game AI Design
Greenlight Vote on Alpha Prototypes
Alpha Retrospective and Beta Planning
Lens Presentations

10 Security Game Espionage Activity
Lens Presentations

11 Formal Technical Review
Playtesting

Peer Review of Final Game Design
Document
Playtesting of Beta Game Prototype

12 Software Evolution Create an Outline for a Game Sequel
with Taking Game Asset Reuse into
Consideration
Lens Presentations

13 Game Packaging
Marketing

Create the Script for the Team Game
Project
Lens Presentations

14 Marketing Presentations Peer Review of Game Marketing Video
15 Quality Assessment Peer Assessment of Gold Release

Candidates

Each team’s first task was to create a game design document and a business plan
for their game. To assist them in this task, two local game company owners were
recruited to act in the role of business consultants who shared their experiences
with creating a company and bringing their first games to market. The second team
deliverable was a game alpha prototype, which included one complete logic path and
a draft user manual. This delivery signaled the end of the first sprint in the scrum
framework. These games were evaluated for quality of game play. The company
looked at the productivity of each team. The team leads were asked to make an oral

200 B. R. Maxim and J. J. Yackley

presentation to confirm that they had sufficient resources to complete their game
products on time (the end of the semester was designated as the end of the fiscal
year). All developers discussed the future of the game products and decided (without
the instructor’s influence) to cancel one of the projects. The developers from the
canceled project were reassigned to existing development teams.

The third team deliverable was a beta prototype, which needed to accommodate
a requirement change. The change resulted in the addition of a significant game
artificial intelligence (AI) element to their evolving design. This deliverable also
included the creation of the final game design document and test plan. The final
team deliverable was the gold release prototype and a marketing presentation that
included a video piece to promote their game product. Company developers scored
each game (other than their own) using a rubric provided by the instructor. The
average of these scores was used as the grade for the prototype.

The students participated in several role-play scenarios through the semester, in
addition to greenlighting the games. One element of this class that was hard to fit
into the role-play framework was the assignment where each developer uses their
own game to illustrate game design features from Schell’s book of game design
lenses [67]. In this assignment, each student selects a group of three related lenses
and creates a 20-min presentation discussing how these lenses illustrate qualities
from their game or not. This is sold as continuing education or inspiration for
undertaking perfective maintenance activities to the company developers.

9.4 Results and Discussion

Each of the course assignments was evaluated using Canvas rubrics designed by
the instructor for each type of submission. Currently, these rubrics contain 2–10
criteria, each scored from 1 to 5. Table 9.3 shows the rubric used to evaluate the
active learning assignments that called for students to conduct experiments or create
design artifacts. Specialized rubrics were created for the team project assignments.

No statistical comparisons of performance on the assignment write-ups were
made between students in the in-person section and the asynchronous online
sections of CIS 487 during Fall 2021 or for the in-person and online sections of
CIS 488 in Winter 2022. However, informal comparisons of student data from the
two modes of CIS 487 delivered by the instructor in Fall 2021 suggest that students
attending the in-person class meetings produced work, which seemed to receive

Table 9.3 CIS 487/488 activity question rubric

Topic
Rating and feedback
(0=missing, 4=satisfactory, 5=exceeds specification)

Quality of answers
Completeness of write-up

9 Using Active Learning to Teach Software Engineering in Game Design Courses 201

higher scores using similar grading rubrics. Similar observations were made for
CIS 488 students in Winter 2022.

The authors created four research questions to compare the levels of engagement
by students taking CIS 487 and 488 under flipped classroom in-person (FC) active
learning as compared to the engagement of students taking previous offerings of
CIS 487 and 488 with fewer active learning opportunities.

RQ1: Is the flipped classroom student performance worse than student performance
in other course delivery modes?

To answer this question, the authors looked at data analytics (number of late
and missing assignments) collected by the Canvas management system for three
iterations of each course sequence shown in Tables 9.4 and 9.5. To briefly describe
the difference between the semesters, Fall 2016 and Winter 2017 represented a
Lecture-Heavy (LH) version of the courses before active learning activities were
fully introduced in the curriculum, while Fall 2017 and Winter 2018 represent an
intermediate (IM) step between the previous LH version of the courses and the
flipped classroom (FC) version that fully embraced active learning techniques in
Fall 2021 and Winter 2022, both of which involved heavy social distancing.

In Table 9.4 for CIS 487, it initially appears that there was a decrease in
student grades and performance as the class transitioned into using active learning.
However, this is due to an outlier from an underperforming student. There is no
statistical difference at the 95% confidence level from the student t-test for the
overall grade between F2016-LH and F2017-IM for overall grade or average number
of late assignments per student. Yet, there was a statistical difference in populations
for the average number of missing assignments per student. We attribute this to
the increased workload caused by having students report on their activities in the

Table 9.4 CIS 487 Canvas course analytics for the Fall 2016, Fall 2017, and Fall 2021 semesters

F2016-LH N = 24 F2017-IM N = 22 F2021-FC N = 23
Average overall course grade 91.2% 84.6% 91.8%
Average number of late
assignments per student

0.4 0.7 0.2

Average number of missing
assignments per student

0.1 1.8 0.5

Table 9.5 CIS 488 Canvas course analytics for winter 2017, winter 2018, and winter 2022
semesters

W2017-LH N = 17 W2018-IM N = 18 W2022-FC N = 23
Average overall course grade 87.7% 95.3% 95.1%
Average number of late
assignments per student

0.6 0.2 0.6

Average number of missing
assignments per student

2.9 3.1 2.2

202 B. R. Maxim and J. J. Yackley

class. There was no statistical difference at 95% confidence between F2016-LH and
F2021-FC.

Although at first glance in Table 9.5 it would appear the introduction of
active learning techniques in W2018-IM and W2022-FC had a positive effect on
student performance, there was no statistical difference between the W2017-LH
version of the course and either W2018-IM and W2022-FC at 95% confidence for
overall course grade, average number of late assignments, and average number of
missing assignments. Therefore, we conclude from this that flipped class student
performance is at least not hindered in active learning course modalities, but it
is important to keep in mind the added burden of daily assignment write-ups as
students transition to new course delivery methods.

While it is not reflected in data shown in Tables 9.4 or 9.5, students seem to be
exhibiting better communication skills in the flipped classroom delivery because of
the increased writing and oral presentation requirements as compared to the lecture
versions of the courses. While not measured explicitly in our work, most students
seem to write better and more meaningful peer reviews as they progress through the
courses. Team participation is better in the active learning classes than in the lecture
heavy versions of the classes.

9.4.1 Course Surveys

We surveyed the students during the final weeks of each semester, to gather the
students’ own perceptions of their levels of engagement with the class, active
learning, and gamification. The CIS 487 survey emphasized active learning and
engagement. The CIS 488 survey emphasized gamification and engagement.

RQ2: Do flipped classroom students have a different perception of their level of
engagement as reported on the CIS 487 final survey than students in other course
delivery modes?

Students rated each statement on their perceptions of active learning and their
engagement in the survey from 1 (strongly disagree) to 5 (strongly agree). The
distribution of responses to each question for CIS 487 is seen in Table 9.6. We
performed a statistical analysis of the responses using the Mann-Whitney U Test.
We found no statistical difference between the responses for the F2016-LH and
F2017-IM groups at the 95% confidence level. This indicated that in F2017-IM, we
had begun to implement some activities that students in both groups did not seem to
feel differently about their active learning and engagement in the course. However,
students in the F2021-FC course were significantly different at the 95% confidence
level than the F2016-LH group for survey questions 2–5. Students agreed more that
the course activities were useful (65% vs. 26% strongly agree) and allowed them to
apply what they learned (70% vs. 44% strongly agree), and when asked if they did
not understand the connection between the class activities and other aspects of the
course reported, they strongly disagreed 65% to 41%.

9 Using Active Learning to Teach Software Engineering in Game Design Courses 203

Table 9.6 End-of-course student perception survey results focusing on agreement with the
statements evaluating their engagement for three CIS 487 courses

Strongly Strongly

Survey statement disagree Disagree Neutral Agree agree Course

1. There were opportunities 1 (4%) 0 1 (4%) 3 (11%) 22 (81%) F2016-LH

for me to actively 0 0 1 (5%) 7 (33%) 13 (62%) F2017-IM

engage in learning 0 0 1 (5%) 4 (20%) 15 (75%) F2021-FC
2. Course activities 3 (11%) 0 3 (11%) 14 (52%) 7 (26%) F2016-LH

were a useful 0 2 (10%) 3 (14%) 11 (52%) 5 (24%) F2017-IM

way to learn 0 0 1 (5%) 6 (30%) 13 (65%) F2021-FC
3. Course activities 2 (7%) 2 (7%) 2 (7%) 9 (33%) 12 (44%) F2016-LH

let me apply 1 (5%) 2 (10%) 3 (14%) 10 (48%) 5 (24%) F2017-IM

what I learned 0 0 0 6 (30%) 14 (70%) F2021-FC
4. Course is an 2 (7%) 0 2 (7%) 12 (44%) 11 (41%) F2016-LH

example of 0 1 (5%) 3 (14%) 8 (38%) 9 (43%) F2017-IM

active learning 0 0 1 (5%) 2 (10%) 17 (85%) F2021-FC
5. I didn’t understand 11 (41%) 8 (30%) 6 (22%) 0 2 (7%) F2016-LH

connection between class 10 (48%) 8 (38%) 2 (10%) 1 (5%) 0 F2017-IM

activities and other 13 (65%) 6 (30%) 1 (5%) 0 0 F2021-FC

aspects of course
6. Working in groups was an 2 (7%) 2 (7%) 3 (11%) 9 (33%) 11 (41%) F2016-LH

effective way for me to learn 0 3 (14%) 3 (14%) 8 (38%) 7 (33%) F2017-IM
7. I prefer to learn 7 (26%) 6 (22%) 6 (22%) 6 (22%) 2 (7%) F2016-LH

primarily through lecture 6 (29%) 9 (43%) 2 (10%) 3 (14%) 1 (5%) F2017-IM
8. I had more opportunities 2 (7%) 0 0 9 (33%) 16 (59%) F2016-LH

to actively engage in learning 0 1 (5%) 1 (5%) 11 (52%) 8 (38%) F2017-IM

in this class compared to other

classes I’ve taken

In addition, we also looked at comparing F2017-IM to F2021-FC students’
perceptions of how active learning was different between the intermediate imple-
mentation of the course and a fully flipped classroom. Again, we used the
Mann-Whitney U Test finding that the student populations for survey questions 2–4
were significantly different at the 95% confidence level. Students more strongly felt
that course activities were a useful way to learn (65% vs. 24% strongly agree) and
that the course let them apply what they learned (70% vs. 24%).

We additionally asked students to rate their engagement for six survey questions
on a scale from “very little of their time” to “most of the time” for specific behaviors.
Unfortunately, as we redesigned the course, we modified the survey for F2021-FC
to be less time intensive and do not have student response data for questions 9–14
as seen in Table 9.7. Therefore, we only compare F2016-LH to F2017-IM.

We used a Mann-Whitney U Test to statistically compare populations. At the
95% confidence interval only, question 13 had a statistical difference. Students
stated stronger disagreement in F2017-IM for being expected to memorize facts

204 B. R. Maxim and J. J. Yackley

Table 9.7 End-of-course student survey focusing on rating active learning elements of their
experience in three courses of CIS 487

Very little Less than At least

of the half half Most of

Survey statement time the time the time the time Course

9. I was actively engaged 0 1 (4%) 9 (33%) 17 (63%) F2016-LH

in my learning 0 0 7 (33%) 14 (67%) F2017-IM
10. The professor created 0 3 (11%) 3 (11%) 21 (78%) F2016-LH

opportunities for me to actively 0 0 8 (38%) 13 (62%) F2017-IM

engage in my learning
11. I applied the course material 3 (11%) 2 (7%) 8 (30%) 14 (52%) F2016-LH

to real-world situations 2 (10%) 4 (19%) 8 (38%) 7 (33%) F2017-IM
12. My small group worked 1 (4%) 2 (7%) 6 (22%) 18 (67%) F2016-LH

effectively and collaboratively 0 3 (14%) 8 (38%) 10 (48%) F2017-IM
13. I was expected to memorize 4 (15%) 16 (59%) 1 (4%) 6 (22%) F2016-LH

facts and information 10 (48%) 9 (43%) 1 (5%) 1 (5%) F2017-IM
14. I spent time working on 15 (56%) 8 (30%) 2 (7%) 2 (7%) F2016-LH

activities that were too 10 (48%) 10 (48%) 1 (5%) 0 F2017-IM

simplistic or irrelevant

and information than students in F2016-LH with 48% to 15% strong disagreement.
We attribute this to the insertion of small activities in some lectures, which
moved students from listening to lectures to investigating and discovering how the
information they have learned works in practice.

Overall, student agreement seemed stronger when compared to the intermediate
course than the lecture heavy. It may be possible that an incomplete or partial imple-
mentation of active learning techniques in a class prevents or diminishes students’
perceptions of active learning. We suggest that those wishing to implement similar
changes in their pedagogical approach may be better served by fully embracing an
active learning course redesign rather than a slow or partial implementation spread
out over several semesters.

Without prompting students in the active learning courses showed strong prefer-
ence for working on the activities and projects, as opposed to taking exams. They
felt that the activities and project-based learning approach not only prepared them
better for their senior design class but also prepared them better for their careers.

Overwhelmingly, the projects are the biggest strength cited by students in
the course surveys. Their comments reinforce the positive effect of projects on
practical learning as well as the development of collaborative, problem-solving
skills. Several students also indicated that replacing exams with projects provided
a more meaningful learning experience and knowledge that would be otherwise
difficult to assess with a traditional assessment approach.

9 Using Active Learning to Teach Software Engineering in Game Design Courses 205

RQ3: Does gamification affect the choices of flipped classroom students differently
than students in other course delivery modes as reported on the CIS 488 final
survey?

Gamification was examined in the CIS 488 final survey (see Table 9.8). We
only administered this survey to students taking this course in Winter 2017 and
Winter 2022. Students again submitted their responses as a 1 (strongly disagree) to
5 (strongly agree). We also performed a statistical analysis with the Mann-Whitney
U test on the W2017-LH and W2022-FC student populations. At 95% confidence
level, there was no statistical difference between the two groups’ responses. Both
student groups seem evenly split on statement 3, “I did what I had to, but didn’t feel
I had a choice,” while also agreeing 70% vs. 80% with statement 2, “I felt like I

Table 9.8 CIS 488 end of course survey on student perceptions on gamification

Strongly Strongly

Survey statement disagree Disagree Neutral Agree agree Course

1. I put more effort into 0 1 (10%) 3 (30%) 3 (30%) 3 (30%) W2017-LH

assignments for than I normally 0 0 2 (11%) 9 (50%) 7 (39%) W2022-FC

do for the courses I take
2. I felt like I had more control 1 (10%) 1 (10%) 1 (10%) 2 (20%) 5 (50%) W2017-LH

and choice over the assignments 0 0 2 (11%) 8 (44%) 8 (44%) W2022-FC

I completed than I normally do
3. In this course, I did what 1 (10%) 3 (30%) 2 (20%) 2 (20%) 2 (20%) W2017-LH

I had to, but I didn’t feel 2 (11%) 7 (39%) 3 (17%) 4 (22%) 2 (11%) W2022-FC

like it was really my choice
4. In this course, I picked 1 (10%) 0 0 5 (50%) 4 (40%) W2017-LH

assignments based on what 1 (6%) 1 (6%) 4 (22%) 5 (28%) 7 (39%) W2022-FC

interested me
5. In this course, I feel I had 1 (10%) 1 (10%) 0 4 (40%) 4 (40%) W2017-LH

control over how I demonstrated 0 1 (6%) 1 (6%) 7 (39%) 9 (50%) W2022-FC

my understanding of the course

material
6. When picking the assignments 0 1 (10%) 3 (30%) 2 (20%) 4 (40%) W2017-LH

you submitted for this course, 2 (11%) 0 11(61%) 2 (11%) 3 (17%) W2022-FC

how important to you when

deciding was how many points

I could earn by doing

the assignment?
7. When picking the assignments 1 (10%) 3 (30%) 2 (20%) 2 (20%) 2 (20%) W2017-LH

you submitted for this course, 0 4 (22%) 7 (39%) 4 (22%) 3 (17%) W2022-FC

how important to you when

deciding was how much the

assignment allowed me to

collaborate with my classmates?

206 B. R. Maxim and J. J. Yackley

had more control and choice than I normally do.” We conclude that in our limited
study, it did not appear that students in the W2022-FC class were influenced by
gamification than students in the lecture delivery mode.

However, student comments clearly indicated they liked being given the ability to
make choices that impacted their learning. It allowed them to tailor their experiences
directly to their interests and skills. We believe this contributed to the high quality
of the games produced by the students during the semester.

We suggest this was due to an increase in motivation caused by being permitted
to pursue their individual interests. As one student wrote reflective of multiple other
comments, “I’m more driven to do a good job, since I choose to do it.” Meanwhile,
another student commented, “This inspires creativity and forces students to solve
real world problems, along with delivering a full product.” Interestingly, the point
valuation seemed less important to the students when picking an assignment even if
it meant fewer points were awarded.

9.4.2 Course Evaluations

Students on our campus are requested to complete a standard set of course
evaluations at the end of the semester. The evaluation form is completed online and
anonymously prior to receiving their final course grades. We wanted to compare the
course evaluations of socially distanced students in other active learning conditions.

RQ4: Do flipped classroom students have different course experiences than students
in other course delivery modes?

Questions are rated from 1 (strongly disagree) to 5 (strongly agree). Our college
redesigned the course evaluations during the period between W2018 and F2021
to solicit different information, so we have included the most pertinent survey
questions for CIS 487 in Table 9.9 and for CIS 488 in Table 9.10.

The student comments on the course evaluations indicated that they enjoyed the
design activities and felt these activities helped them when creating their project
deliverables. They also felt that sharing ideas and insights with other students during
class discussions helped them learn. They enjoyed being able to apply the material
covered in the lectures and tutorials to solve actual problems.

Students appreciated the class activities for a variety of reasons. They felt these
activities were more engaging than just listening to a lecture accompanied by slides.
The students liked the redundancy that was built in the activities that often had them
look at different facets of similar design concerns. Some students wrote that they
felt the group work and writing activity summaries helped them become more at
ease when speaking in class.

Students felt that the strengths of this course were the dynamic learning activities,
the lack of exams, and game project development. They also felt that completing the
class activities collaboratively provides better opportunities for students to master
the material.

9 Using Active Learning to Teach Software Engineering in Game Design Courses 207

Table 9.9 CIS 487 end-of-term collegiate course evaluations

1 = Strongly disagree
5 = Strongly agree F2016-LH N = 21 F2017-IM N = 22 F2021-FC N = 24
Course met my expectations 4.33 4.55 4.56
Course objectives were clear 4.24 4.36 4.67
Typical workload compared to
other courses

~ ~ 4.21

Course advanced my
understanding of subject

~ ~ 4.75

Lab activities increased my
understanding of lecture topics

~ ~ 2.92

I knew what was expected of
me

~ ~ 4.52

Overall course rating 4.52 4.73 4.63

Table 9.10 CIS 488 end-of-term collegiate course evaluations

1 = Strongly disagree
5 = Strongly agree W2017-LH N = 13 W2018-IM N = 13 W2022-FC N = 11
Course met my expectations 4.85 4.38 4.50
Course objectives were clear 4.85 4.31 4.64
Typical workload compared
to other courses

~ ~ 4.00

Course advanced my
understanding of subject

~ ~ 4.50

Lab activities increased my
understanding of lecture
topics

~ ~ 2.09

I knew what was expected of
me

~ ~ 4.64

Overall course rating 4.85 4.46 4.45

9.4.3 Lessons Learned

We believe that some of our findings can be applied to other engineering project
courses. Looking at the course analytics, course evaluations, and engagement survey
data, we found two common themes. The first is that there are few statistical
differences in the academic performance between students in the lecture heavy
versions of the courses and flipped classroom versions. We interpret this to mean
that these two courses successfully transitioned from lecture heavy to active
learning. Harder to measure is the growth in the students’ soft skills (written and
oral communication, collaboration, and project management). The second is that
students feel more engaged in the active learning versions of these courses and like
the flexibility gamification brings them.

Students enjoyed the role-play (CIS 488) and felt is added to the realism of the
development process. It is interesting to note that seven student teams from CIS

208 B. R. Maxim and J. J. Yackley

488 have gone on to form LLCs to continue their game development activities
professionally. This did not happen prior to the introduction of the failing game
company role-play in CIS 488.

Students enjoyed the class activities but sometimes needed more guidance
(scaffolding) and more time to complete some of the activities. Students love
working in small groups, but they do not like talking to the whole class without
a script. In courses involving both in-person and online students, both types of
students were included on the same project teams as this tends to increase online
student engagement.

9.4.4 Threats to Validity

We recognize that one of the limitations of this study was that we did not have a
control group. We also acknowledge that the instructor teaching all CIS 487 and
488 course offerings may also account for the lack of significant differences on
some of the evaluation measures.

The asynchronous course delivery, pre- and post-Covid shutdown, was signifi-
cantly different than that occurring using zoom during 2020 or 2021. Prior to 2019
and university implemented a policy which required the pairing of an asynchronous,
distance learning section with a face-to-face section of the same course. The live
class sessions were captured, verbatim, for later viewing by the asynchronous
students. This course feature was implemented in most CIS courses prior to Covid.
This provided an advantage to the 2019 and 2021 asynchronous online sections
in that they could witness the live lecture and some class activities as a virtual
classroom observer. During 2021–2022, the asynchronous online students were
only able to view the class activities plus any recorded videos posted for pre-class
viewing by the flipped class in-person students.

One area of uncertainty when measuring the student responses is the unknown
amount of interaction between students in the synchronous and asynchronous
sections of CIS 487 and 488. Students in the CIS department know each other
from other classes that they have taken together. Even though a student registered
in the asynchronous online section was not allowed to attend any in-person class
meetings, it is quite possible that a friend from an in-person course section may have
shared their course experiences with them giving them additional insight into group
activities completed in the classroom. In other words, the asynchronous student may
not be totally isolated from knowledge learned in the group activities. We did not
attempt direct comparisons between in-person and online students in this chapter.
Student engagement can only be measured indirectly in online courses using surveys
and course analytics. In 2016–2017, direct observation of student behavior was used
to provide insight into their levels of engagement among in-person class instruction.
We did not include direct observation of students in the socially distanced in-person
sections of either CIS 487 or CIS 488. Trying to measure student engagement using
chat comments or interaction with shared Google documents is a viable alternative

9 Using Active Learning to Teach Software Engineering in Game Design Courses 209

but also lacks the immediate visual feedback an instructor experiences with a real-
time view of a student’s face.

There were no surveys taken between the Winter 2017 and Winter 2022 offerings
of CIS 488. These surveys provide the most direct and candid feedback on active
learning from the student’s perspective. Although 2017 CIS 488 survey data
provides some good baseline data, it would have been more beneficial to have data
from Winter 2018.

The 2019–2020 and 2020–2021 academic years presented extraordinary chal-
lenges for students. All students, not just those from this university, were asked to
learn under circumstances never-before experienced. While it would be expected
that many students were excited to return to face-to-face instruction, it may also be
expected that many felt anxious or even distracted with the fresh look of face-to-
face instruction. It is difficult to assess what effects, both positive and negative, this
might have had on the return to an active learning classroom in Fall 2021.

9.5 Conclusions and Future Direction

During the past 3 years, most institutions across the world were required to switch
to online formats. This switch to using videoconferencing often required major
adjustments to course design and left many students simply watching online lecture
videos and taking exams. We demonstrated in previously reported studies that it is
possible to move an in-person active learning software engineering course online
[68, 69]. We also believe that engineering project courses can be run using social
distancing Covid protocols without observing significant reductions in student levels
of engagement as compared to other course formats. We take this as evidence that
it is possible to design a socially distanced active learning course that can be more
engaging than its online counterpart. We credit the active learning components of
the class and the levels of student interaction that accompany them for making
this possible. We encourage other instructors to adopt active learning practices
and modify them as needed to satisfy Covid protocol requirements in their course
deliveries to achieve higher levels of student satisfaction and engagement.

We were encouraged by the enthusiasm that students exhibited while working
with the active learning modules during the in-person class meetings and look
forward to continuing to develop this course content. It may be important to develop
ways in which asynchronous students are encouraged to be a part of some sort
of face-to-face experience, even if it is not during formal online class meetings.
Informal study or discussion groups that would meet online, with flexible meeting
times, might be a way to increase engagement with activities. The demand for online
game design offerings is strong among the students on our campus. Experiences
from the Fall 2021 course delivery of CIS 487 and Winter 2022 course delivery
of CIS 488 will be used to revise the next offering of these courses and their
corresponding active learning materials. The challenge will be to seek ways to
ensure that online students feel engaged with the class materials.

210 B. R. Maxim and J. J. Yackley

Acknowledgments This project was partially supported by a grant from the University of
Michigan-Dearborn Advancement of Teaching and Learning HUB Creative Teaching Fund.

References

1. Becker, K.: Teaching with games: the minesweeper and asteroids experience. J. Comput. Sci.
Coll. 17(2), 23–33 (2001)

2. Jones, R.: Design and implementation of a computer games: a capstone course for under-
graduate computer science education. In: Proceedings of 31st SIGCSE Technical Symposium
(Austin, TX, March 2000), pp. 260–264. ACM Press, New York, NY (2000)

3. Pleva, G.: Game programming and the myth of child’s play. J. Comput. Sci. Coll. 20(2), 125–
136 (2004)

4. Claypool, K., Claypool, M.: Software engineering design: teaching software engineering
through game design. In: Proceedings of 10th Annual SIGCSE Conference on Innovation
and Technology in Computer Science Education, Caparica, Portugal, June 2005, pp. 123–127.
ACM Press, New York, NY (2005)

5. Rollings, A., Morris, D.: Game Architecture and Design. New Riders, Indianapolis, IN (2004)
6. Maxim, B.R.: Software Requirements Analysis and Design. NIIT, Atlanta, GA (2004)
7. Samavedham, L., Ragupathi, K.: Facilitating 21st century skills in engineering students. J. Eng.

Educ. XXVI(1), 38–49 (2012)
8. Maxim, B.R., Acharya, S., Brunvand, S., Kessentini, M.: WIP: introducing active learning in

a software engineering course. In: Proceedings of the 2017 Annual Meeting of the American
Society for Engineering Education, Columbus, OH, June 2017, pp. 1–12

9. Promoting Active Learning. https://utah.instructure.com/courses/148446/pages/active-
learning. Accessed 25 Feb 2016

10. Prince, M.: Does active learning work? A review of the research. J. Eng. Educ. 93, 223–231
(2004)

11. Luster-Teasley, S., Hargrove-Leak, S.C., Waters, C.: NSF TUES: Transforming undergraduate
environmental engineering laboratories for sustainable engineering using the case studies in the
sciences instructional method. In: Proceedings of the 2014 Annual Meeting of the American
Society for Engineering Education, Indianapolis, IN, June 2014

12. Jungic, V., Kaur, H., Mulholland, J., Xin, C.: On flipping the classroom in large first-year
calculus courses. Int. J. Math. Educ. Sci. Technol. 46(4), 1–8 (2015)

13. Raju, P.K., Sanker, C.C.: Teaching real-world issues through case studies. J. Eng. Educ. 88(4),
501–508 (1999)

14. Nickels, K.M.: Do’s and don’ts of introducing active learning techniques. In: Proceedings
of the 2000 Annual Meeting of the American Society for Engineering Education, St. Louis,
Missouri, June 2000

15. Lavelle, J.P., Stimpson, M.T., Brill, E.D.: Flipped out engineering economy: converting a
traditional class to an inverted model. In: Krishnamurthy, A., Chan, W.K.V. (eds.) Proceedings
of the 2013 Industrial Systems Engineering Research Conference, pp. 397–407 (2013)

16. Wood, K., Jensen, D., Dutson, A., Green, M.: Active learning approaches in engineering design
courses. In: Proceedings of the 2003 Annual Meeting of the American Society for Engineering
Education, Nashville, Tennessee, June 2003

17. Maxim, B.R., Decker, A., Yackley, J.J.: Student engagement in active learning software
engineering courses. In: Proceedings of 49th IEEE Annual Frontiers in Education Conference,
Cincinnati, OH, October 2019, pp. F3G1–F3G5

18. Yelamarthi, K., Member, S., Drake, E.: A flipped first-year digital circuits course for engineer-
ing and technology students. IEEE Trans. Educ. 58(3), 179–186

19. Meier, R.D.: Active learning in large lectures. In: Proceedings of the 1999 Annual Meeting of
the American Society for Engineering Education, Charlotte, North Carolina, June 1999

 13129 28480 a 13129 28480
a

9 Using Active Learning to Teach Software Engineering in Game Design Courses 211

20. Krause, R., Hayton, A.C., Wonoprabowo, J., Loo, L.: Is engagement alone sufficient to ensure
“active learning?”. Loma Linda Univ. Stud. J. 2(1) (2017)

21. Ardis, M., Chenoweth, S., Young, F.: The ‘Soft’ topics in software engineering Education. In:
Proceedings of 38th Annual Frontiers in Education Conference (Vol. 1, Oct 2008), pp. F3H1–
F3H6. IEEE Press, Saratoga Springs, NY (2008)

22. Day, J.A., Foley, J.D.: Evaluating a web lecture intervention in a human-computer interaction
course. IEEE Trans. Educ. 49(4), 420–431 (2006)

23. Bishop, J.L., Verleger, M.A.: The flipped classroom: a survey of the research. In: Proceedings
of the 2017 Annual Meeting of the American Society for Engineering Education, Atlanta, GA.
(2013)

24. Wu, P., Manohar, P., Acharya, S.: The design and evaluation of class exercises as active learning
tools in software verification and validation. Inf. Syst. Educ. J. (2016)

25. Cheng, L., Ritzhaupt, A.D., Antonenko, P.: Effects of the flipped classroom instructional
strategy on students’ learning outcomes: a meta-analysis. Educ. Technol. Res. Dev. 67(4), 793–
824 (2018)

26. Morrison, G.R., Ross, S.M., Kemp, J.E., Kalman, H.: Designing Effective Instruction. Wiley
(2010)

27. Savery, J., Duffy, T.: Problem-based learning: an instructional model and its constructivist
framework. Educ. Technol. 35(5), 31–38 (1995)

28. Silva, A., Bispo, A., Rodriguez, D., Vasquez, F.: Problem-based learning: a proposal for struc-
turing PBL and its implications for learning among students in an undergraduate management
degree program. Revista de Gestão. 25(2), 160–177 (2018)

29. Warnock, J.N., Mohammadi-Aragh, M.J.: Case study: Use of problem-based learning to
develop students’ technical and professional skills. Eur. J. Eng. Educ. 41(2), 142–153 (2016)

30. Dunlap, J.: Problem-based learning and self-efficacy: how a capstone course prepares students
for a profession. Educ. Technol. Res. Dev. 53(1), 65–83 (2005)

31. Urbanic, R.: Developing design and management skills for senior industrial engineering
students. J. Learn. Des. 4(3), 35–49 (2011)

32. Gavin, K.: Case study of a project-based learning course in civil engineering design. Eur. J.
Eng. Educ. 36(6), 547–558 (2011)

33. Souza, M., et al.: Students perception on the use of project-based learning in software
engineering education. In: SBES 2019: Proceedings of the XXXIII Brazilian Symposium on
Software Engineering, pp. 537–546 (2019)

34. Kothiyal, R., et al.: Effect of think-pair-share in a large CS1 class: 83% sustained engagement.
In: Proceedings of the Ninth Annual International ACM Conference on International Comput-
ing Education Research (ICER ’13), pp. 137–144. ACM, New York, NY (2013)

35. Nagappan, M., Williams, L., Ferzli, M., Wiebe, E., Yang, K., Miller, C., Balik, S.: Improving
the CS1 experience with pair programming. In: Proceedings of the 34th SIGCSE technical
symposium on Computer science education (SIGCSE ’03), pp. 359–362. ACM, New York,
NY (2003)

36. Porter, L., Bouvier, D., Cutts, Q., Grissom, S., Lee, C., McCartney, R., Zingaro, D., Simon,
B.: A multi-institutional study of peer instruction in introductory computing. In: Proceedings
of the 47th ACM Technical Symposium on Computing Science Education (SIGCSE ’16), pp.
358–363. ACM, New York, NY (2016)

37. Greer, T., Hao, Q., Jing, M., Barnes, B.: On the effects of active learning environments in
computing education. In: Proceedings of the 50th ACM Technical Symposium on Computer
Science Education (SIGCSE ’19), February 27–March 2, 2019, Minneapolis, MN, 6 pages.
ACM, New York, NY

38. Hoffman, B., Morelli, R., Rosato, J.: Student engagement is key to broadening participation in
CS. In: Proceedings of the 50th ACM Technical Symposium on Computer Science Education
(SIGCSE ’19), February 27–March 2, 2019, Minneapolis, MN, 7 pages. ACM, New York, NY

39. Ham, Y., Myers, B.: Supporting guided onquiry with cooperative learning in computer
organization. In: Proceedings of the 50th ACM Technical Symposium on Computer Science
Education (SIGCSE ’19), pp. 273–279. ACM, New York, NY (2019)

212 B. R. Maxim and J. J. Yackley

40. Stone, J.A., Madigan, E.: Experiences with community-based projects for computing majors.
J. Comput. Sci. Coll. 26(6), 64–70 (2011)

41. Kharitonova, Y., Luo, Y., Park, J.: Redesigning a software development course as a preparation
for a capstone. In: Proceedings of the 50th ACM Technical Symposium on Computer Science
Education (SIGCSE ’19), February 27–March 2, 2019, Minneapolis, MN, 7 pages. ACM, New
York, NY

42. Decker, A., Simkins, D.: Leveraging role play to explore the software and game development
process. In: Proceedings of 46th IEEE Annual Frontiers in Education Conference, Erie, PA,
October 2016, pp. S3F6–S3F10

43. Simkins, D.: The arts of larp: design, literacy, learning, and community in live-action role play.
McFarland, Jefferson, NC (2015)

44. Moroz-Lapin, K.: Role play in HCI studies. In: Proceedings of the 2009 international
conference on HCI Educators: playing with our Education (HCIEd’09), pp. 12–12. British
Computer Society, Swinton (2009)

45. Seland, G.: Empowering end users in design of mobile technology using role play as a
method: reflections on the role-play conduction. In: Kurosu, M. (ed.) Proceedings of the 1st
International Conference on Human Centered Design: Held as Part of HCI International 2009
(HCD 09), pp. 912–921. Springer, Berlin (2009)

46. Zowghi, D., Paryan, S.: Teaching requirements engineering through role playing: lessons
learnt. In: Proceedings of the 11th IEEE International Conference on Requirements Engineer-
ing (RE ’03), pp. 233–241. IEEE Computer Society, Washington, DC (2003)

47. Börstler, J.: Improving CRC-card role-play with role-play diagrams. In: Companion to the 20th
Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA ’05), pp. 356–364. ACM, New York, NY (2005)

48. Vold, T., Yayilgan, S.Y.: Playful participation for learning in higher education — The
introduction of participatory role play simulation in a course at Hedmark University College.
In: Proceedings of 2013 International Conference on Information Technology Based Higher
Education and Training (ITHET), Antalya, 2013, pp. 1–4

49. Rudra, A., Jaeger, B., Aitken, A., Chang, V., Helgheim, B.: Virtual team role play using second
life for teaching business process concepts. In: Proceedings of 44th Hawaii International
Conference on System Sciences (HICSS), Kauai, HI, 2011, pp. 1–8

50. Maxim, B.R., Kaur, R., Apzynski, C., Edwards, D., Evans, E.: An agile software engineering
process improvement game. In: Proceedings of 46th IEEE Annual Frontiers in Education
Conference, Erie, PA, October 2016, pp. S3F1–S3F5

51. Nakamura, T., Maruyama, H., Takashima, A., Sambe, Y.: Role-play exercises for project man-
agement education that incorporate a software agent. In: Proceedings 2012 IEEE International
Conference on Teaching, Assessment and Learning for Engineering (TALE), Hong Kong,
2012, pp. W2A-8–W2A-14

52. Navarro, E., Hoek, A.: SimSE: an interactive simulation game for software engineering
education. In: Proceeding of the Seventh IASTED International Conference on Computers and
Advanced Technology in Education, pp. 12–17 (2004)

53. Maxim, B.R., Decker, A., Brunvand, S.: Use of role-play and gamification in a software project
course. In: Proceedings of 47th IEEE Annual Frontiers in Education Conference, Indianapolis,
IN, October 2017, pp. T3D1–T3D5

54. Yackley, J.J., Maxim, B.R., Brunvand, S., Decker, A.: Active learning and gamification in
game design courses. In: Proceedings of Meaningful Play 2018 Conference, East Lansing,
MI, October 2018, pp. 165–178

55. Domínguez, A., Saenz-de-Navarrete, J., de-Marcos, L., Fernández-Sanz, L., Pagés, C.A.,
Martínez-Herráiz, J.J.: Gamifying learning experiences: practical implications and outcomes.
Comput. Educ. 380–392

56. Simões, J., Redondo, R.D., Vilas, A.F.: A social gamification framework for a K-6 learning
platform. Comput. Hum. Behav. 29, 345–353 (2012)

57. Gee, J.P.: What Video Games Have to Teach Us About Learning and Literacy, 2nd edn. St.
Martin’s Press (2014)

9 Using Active Learning to Teach Software Engineering in Game Design Courses 213

58. Gee, J.P.: What video games have to teach us about learning and literacy. Comput. Entertain.
1(1), 1–4 (2003)

59. Vygotsky, L.S.: Mind and Society: The Development of Higher Mental Processes. Harvard
University Press (1978)

60. Granic, I., Lobel, A., Engels, R.: The benefits of playing video games. Am. Psychol. 69(1),
66–78 (2014)

61. Ott, M., Tavella, M.: A contribution to the understanding of what makes young students
genuinely engaged in computer-based learning tasks. Procedia Soc. Behav. Sci. 1(1), 184–188
(2009)

62. Lee, J.J., Hammer, J.: Gamification in education: what, how, why bother? Definitions and uses.
Exchange Organ. Behav. Teach. J. 15(2), 1–5 (2011)

63. Yang, Y.T.C.: Building virtual cities, inspiring intelligent citizens: digital games for developing
students’ problem solving and learning motivation. Comp. Educ. 59(2), 365–377 (2012)

64. Toth, D., Kayler, M.: Integrating role-playing games into computer science courses as a
pedagogical tool. In: Proceedings of the 46th ACM Technical Symposium on Computer
Science Education (SIGCSE ’15), pp. 386–391. ACM, New York, NY (2015)

65. Bogost, I.: Gamification is bullshit. http://bogost.com/writing/blog/gamification_is_bullshit/.
Accessed 30 Aug 2018

66. O’Donnell, C.: Getting played: gamification, bullshit, and the rise of algorithmic surveillance.
Surveill. Soc. 12(3), 349–359 (2014)

67. Schell, J.: The Art of Game Design: A Book of Lenses. CRC Press (2015)
68. Maxim, B.R., Limbaugh, T., Yackley, J.J.: Student engagement in an online software engineer-

ing course. In: Proceedings of 51st IEEE Annual Frontiers in Education Conference, Lincoln,
NE, October 2021, pp. T3D1–T3D9

69. Maxim, B.R., Limbaugh, T.: WIP: Engaging software engineering students in synchronous
asynchronous on-line course. In: Proceedings of the 2021 Annual Meeting of the American
Society for Engineering Education, Long Beach, CA, July 2021, pp. 1–17

 13475 17405 a 13475 17405
a

Chapter 10
A Framework for the Gamification of
GUI Testing

Riccardo Coppola, Luca Ardito, Tommaso Fulcini, Giacomo Garaccione,
Marco Torchiano, and Maurizio Morisio

Abstract Software testing is a critical activity in the software development process.
Several techniques have been proposed, addressing different levels of granularity
from low-level unit testing to higher-level exploratory testing through the software’s
graphical user interface (GUI). In modern software development, most test cases
are obtained by automated test generation. However, while automation generally
achieves high coverage in code-level white-box testing, it does not always generate
realistic sequences of interactions with the GUI. By contrast, manual exploratory
testing has survived as a costly, error-prone, and tedious yet crucial activity. Gamifi-
cation is seen as an opportunity to increase user satisfaction and engagement while
performing testing activities. It could also enable and encourage crowdsourced
testing tasks. The purpose of the study described in this chapter is to provide a
framework of gamification mechanics and dynamics that can be applied to the
practice of manual exploratory GUI testing. We provide an implementation of
the framework as an extension of an existing manual exploratory GUI testing for
Web applications, and we provide a preliminary evaluation of the gamified tool
in terms of provided efficiency, effectiveness, and user experience. Our results
show that the gamified solution makes the testers obtain test suites with higher
coverage while reducing slightly the number of bugs signalled while traversing the
applications under test. The gamified tool also was considered to provide a positive
user experience, and the majority of participants expressed their willingness to use
such instruments again in the future. As future work, we foresee the implementation
of the framework in a stand-alone tool and in-depth empirical experiment to evaluate
quantitatively the benefits and drawbacks provided by such mechanics in real testing
scenarios.

Keywords Gamification · Software engineering · Software testing · Web
application testing · GUI testing

R. Coppola (�) · L. Ardito · T. Fulcini · G. Garaccione · M. Torchiano · M. Morisio
Politecnico di Torino, Department of Control and Computer Engineering, Torino, Italy
e-mail: riccardo.coppola@polito.it; luca.ardito@polito.it; tommaso.fulcini@polito.it;
giacomo.garaccione@polito.it; marco.torchiano@polito.it; maurizio.morisio@polito.it

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
K. M. L. Cooper, A. Bucchiarone (eds.), Software Engineering for Games
in Serious Contexts, https://doi.org/10.1007/978-3-031-33338-5_10

215

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33338-5protect T1	extunderscore 10&domain=pdf

 885 55738
a 885 55738 a

mailto:riccardo.coppola@polito.it
mailto:riccardo.coppola@polito.it
mailto:riccardo.coppola@polito.it

 11500 55738 a 11500
55738 a

mailto:luca.ardito@polito.it
mailto:luca.ardito@polito.it
mailto:luca.ardito@polito.it

 19815 55738 a 19815 55738 a

mailto:tommaso.fulcini@polito.it
mailto:tommaso.fulcini@polito.it
mailto:tommaso.fulcini@polito.it

 -2016 56845 a -2016 56845 a

mailto:giacomo.garaccione@polito.it
mailto:giacomo.garaccione@polito.it
mailto:giacomo.garaccione@polito.it

 9848 56845 a 9848 56845 a

mailto:marco.torchiano@polito.it
mailto:marco.torchiano@polito.it
mailto:marco.torchiano@polito.it

 20307 56845 a 20307
56845 a

mailto:maurizio.morisio@polito.it
mailto:maurizio.morisio@polito.it
mailto:maurizio.morisio@polito.it
https://doi.org/10.1007/978-3-031-33338-5_10
https://doi.org/10.1007/978-3-031-33338-5_10
https://doi.org/10.1007/978-3-031-33338-5_10
https://doi.org/10.1007/978-3-031-33338-5_10
https://doi.org/10.1007/978-3-031-33338-5_10
https://doi.org/10.1007/978-3-031-33338-5_10
https://doi.org/10.1007/978-3-031-33338-5_10
https://doi.org/10.1007/978-3-031-33338-5_10
https://doi.org/10.1007/978-3-031-33338-5_10
https://doi.org/10.1007/978-3-031-33338-5_10
https://doi.org/10.1007/978-3-031-33338-5_10

216 R. Coppola et al.

10.1 Introduction

Software testing is a critical activity in the software development process. Its
main purpose is to detect defects and faults in advance in the code produced,
avoiding to release code affected by bugs and security issues, whose repair cost
increases once the software is released to the final users. Testing is also utilized
to prove conformance to functional requirements and the reliability of software
artefacts. Several software testing techniques exist in the literature, ranging from
low-level unit testing of atomic components of the software (unit tests) to higher-
level exploratory testing through the finalized software (end-to-end or E2E testing).
When conducted through the graphical user interface (GUI) of the software under
test (SUT), E2E testing is typically called GUI testing.

In modern software development, test cases are often obtained through auto-
mated test generation, a practice that ensures significant time saving and repeatabil-
ity of test practices. However, while automation generally achieves high coverage in
code-level white-box testing activities, automated testing is not always the optimal
choice to generate E2E test suites, with the generation of interaction sequences that
have a low level of realism in mimicking the final user’s interaction with the system.
Therefore, a relevant portion of E2E testing activities is still conducted manually
by the QA team. Manual testing is however renowned as a costly, error-prone, and
tedious yet crucial activity [1]. Throughout this manuscript, we will refer to GUI
testing as the tool-aided activity conducted by development companies or external
test factories, and not to activities performed by the final users of the applications
(e.g., beta testing or crowdsourced verification of Web applications). Our focus is
also on GUI-based functional testing, i.e., to all activities related to the verification
of the main features of the SUT.

Gamification, defined as the use of game design elements in non-game con-
texts [2], is gaining traction in the latest years in disciplines related to computer
science, because of its proven capability in motivating, engaging, and improving the
performance of the participants of tasks to which game mechanics are applied [3, 4].
Several frameworks have been proposed to govern and aid the design of gamified
activities and tools. In this chapter, we adopt as a reference the Octalysis framework
proposed by Yu-Kai Chou [5]. The framework identifies eight core drives that
represent aspects of human behavior that can be stimulated through gamification.

Several works in software engineering literature have motivated, conceptualized,
and evaluated gamification mechanics to improve the results of many activities of
the software process [6]. Albeit the primary application of gamification mechanics
is still used primarily in the educational field [7], there is a growing interest
by practitioners in implementing them in industrial contexts and tooling [8].
Case studies in the literature have documented encouraging outcomes by such
adoption [9].

Of all software engineering activities, software testing is particularly suitable
for the application of the most common gamification elements. Testing activities,
in fact, typically produce quantitative, measurable, and comparable results (e.g.,

10 A Framework for the Gamification of GUI Testing 217

coverage thresholds reached, number of defects found, number of crashes triggered)
that can be naturally translated to game-like aspects (e.g., points and leaderboards).

The present chapter has the goal of proposing a structured methodology to apply
gamification in the domain of exploratory GUI testing, a facet of the software testing
practice which is still not covered by related literature. We propose a set of game
mechanics that can be adopted for testing both Web and android applications, with
a scoring algorithm that can be used in a general context. We aim to chart a viable
path for researchers and practitioners that will approach the topic of gamification in
the GUI testing discipline.

We report the process of adapting gamified mechanics to the activity of manual
exploratory GUI testing. To that extent, we perform a preliminary investigation of
the current state of the art and practice in the field of gamified software testing,
to identify the most mentioned tools and adopted mechanics, and the benefits and
drawbacks provided by the techniques. We then detail a framework of mechanics for
the gamification of GUI testing, incorporating game elements like session scores,
leaderboards, and live graphical feedback. The framework has been developed as
a prototype for GUI testing of Web applications, but it is by design adaptable to
different domains. We finally report the findings of an experiment conducted with
graduate students, to evaluate the improvements in effectiveness and user experience
of the gamified tool when compared to the non-gamified equivalent.

The framework we present brings a novel contribution to the current state of
the art related to the gamification of software testing, being an example of a
gamified tool for manual exploratory GUI testing: an analysis of the literature we
have performed has revealed that this is still a relatively unexplored field. More
specifically, no solutions have been proposed previously specifically for exploratory
manual GUI testing of Web applications. The framework extends two previous
works: the prototype framework proposed by Cacciotto et al. [10] and an extension
of it by Fulcini and Ardito [11], which also saw a first preliminary evaluation of the
framework.

The chapter is organized as follows: Sect. 10.2 presents a background about
software testing techniques and gamification in the software engineering discipline.
Section 10.3 provides a survey of the existing scientific literature regarding gamified
software testing. Section 10.4, based on the findings of the literature review,
presents a conceptual framework for gamification of manual exploratory GUI
testing. Section 10.5 describes the methodology, setting, and results of an empirical
evaluation of the framework. Section 10.6 discusses the threats to validity of
the framework. Finally, Sect. 10.7 concludes the chapter with an overview of the
findings and future research directions.

218 R. Coppola et al.

10.2 Background and Related Work

This section illustrates the main concepts of GUI testing: the major available
technologies, the main limitations, and open challenges. We also introduce the
background concepts about the utilization of gamification in software engineering.

10.2.1 GUI Testing

GUI testing is a form of functional testing, which exercises a software under
test (SUT) of any given domain through its graphical user interface. GUI testing
exercises the SUT by mimicking the operations that would be performed by its
typical end—that in that sense, GUI testing is a form of End-to-End (E2E) or system
testing since it aims at defining scenario-based test cases to cover the functional
requirements of the SUT.

Many GUI testing tools and techniques have emerged in the last three decades,
and now they are available for different platforms and domains. All methodologies
and technologies used for GUI testing share several commonalities. GUI test
scenarios are typically defined as a sequence of different locators, i.e., graphical
elements that have to be recognized and interacted with inside the GUI; each locator
in a GUI test sequence is typically associated with a specific operation, e.g., mouse
clicks and movements, key presses, or text insertions. GUI test cases also make
use of different forms of oracles, i.e., visual cues or properties of the GUIs that
are checked to verify the conformance of the SUT’s behavior with the functional
requirements.

GUI testing activities are not inherently automated; in fact, related literature
highlights that a significant portion of GUI testing is still performed manually by
practitioners.

Automated support for GUI testing is made available by a large number of
commercial and academic tools, which can be classified under two different
categorizations. Alégroth et al. define three different generations of GUI testing
tools, based on the type of locators and oracles used [12]:

• First generation, or coordinate-based testing tools, use exact coordinates to locate
and verify the presence of elements on the screen. Coordinate-based locators
were used in the very first tools in the field and have been largely abandoned
because of their flakiness and unreliability.

• Second generation, or property-based testing tools, use textual properties of the
graphical elements of the GUI to identify and verify them (e.g., XML attributes
in layout files of mobile applications or HTML attributes and properties in
DOM files describing the appearance of Web apps). Property-based testing tools
are currently the most widespread methodology of GUI testing: selenium and
espresso are prominent examples of such a category of GUI testing tools for the
mobile and Web domains, respectively.

10 A Framework for the Gamification of GUI Testing 219

• Third generation, or visual testing tools, use image recognition to locate and
verify images in the pictorial GUI of the application. Visual GUI testing tools are
still an emerging research direction in the literature [13].

Another possible categorization of GUI testing techniques can be performed
based on the way the sequences of interactions against the GUI are selected and
recorded into test scripts [14]:

• Automation frameworks and APIs are tools that allow the creation of scripts
involving methods that access the hierarchy of components of the GUI. The
frameworks offer methods that allow executing specific operations on the located
widgets.

• Record and replay tools allow the tester to manually execute operations against
the SUT’s GUI to have them recorded into re-executable test scripts.

• Automated input generation (AIG) tools allow generating the sequences of
interactions against the GUI without human scripting. These tools can be based
on random input generation or leverage models of the GUI to test.

Although many tools and techniques are available, there is evidence that GUI
testing tools are not widely adopted by commercial and open-source projects, and
GUI testing is conducted mostly manually, using random tools, or completely
neglected.

The scarce diffusion of GUI testing is partly related to inherent technical issues:
GUI test cases exhibit very high fragility (i.e., the necessity of performing important
maintenance operations of GUI test cases when the SUT’s GUI evolves [15]), flaki-
ness (i.e., the possibility that the same test case produces unpredictable results when
applied to the same SUT [16]), and fragmentation (i.e., the necessity to execute
the test cases against different rendering of the GUI on varying configurations,
browsers, or devices [17]). Recent surveys in the literature have identified the main
limitations of GUI testing in industrial practice. Even if most of the identified
challenges are technological and tool-related (e.g., the difficulty in coping with
application changes that may break test execution; timing and synchronization
issues between the test cases and the SUT; missing means to provide robust
identification of GUI widgets), some of the identified challenges are related to the
requirement of specific skills and trained professionals for the execution of even
trivial GUI testing activities [18].

However, it is widely accepted in related literature that defining test scripts is
typically considered by developers as a time-consuming, error-prone, and boring
activity [19]. The typically low engagement of testing activities makes them often
overlooked in computing curricula, thereby creating a lack of knowledge about
testing techniques in junior developers [20].

220 R. Coppola et al.

10.2.2 Gamification in Software Engineering

Many works in related literature have applied gamified concepts to the field of
software engineering.

In their systematic mapping, Pedreira et al. report that gamification is being
adopted in many different phases of the software process [2]. The principal
application areas are software implementation, project monitoring and control, and
collaboration between team members. Software testing is the fifth most mentioned
area in related work about gamified software engineering practices. Gamification in
software engineering is also a significantly growing trend in the field, as reported in
the literature review performed by Barreto et al. [21].

The mentioned surveys identified badges and leaderboards as the most frequently
mentioned gamification aspects used to enhance engagement in software engineer-
ing activities. The prevalent benefits provided by the application of gamification are
increased performance in performing the gamified activities, higher product quality,
and better learning. A few negative effects are also mentioned, e.g., ineffective and
eventually dissatisfying experiences and cognitive overload on the participants.

Gamification is typically applied to software engineering practices that require
high commitment and cooperation by their participants. de Melo et al., for instance,
present a gamified platform for version control systems, to build a ranking of
the most active developers contributing to software projects [22]. Ašeriškis et al.
describe game rules for a project management system that they evaluated through
the application of the standard system usability scale (SUS). The authors identified
benefits provided by the utilization of the platform while guaranteeing relatively
high usability to its users [23].

The literature reviews in the software engineering discipline report, however,
that a high percentage of works in gamification (more than 70%) fails to report
practical results obtained by the application of the technique. This aspect underlines
the immaturity of the practice in software engineering while not taking into account
the fundamental aspect of the user experience provided by the gamified tools and
techniques.

10.3 Gamified Software Testing: A State of the Art

This section discusses and analyzes the current applications of gamification mechan-
ics to GUI testing. The presented results are the outcome of a semi-systematic
literature review that was performed on the Google Scholar dataset, by searching
for the keywords gamification (or ludicization, or gamified), software, and testing.
We then applied a set of inclusion and exclusion criteria, which are reported in
Tables 10.1 and 10.2, to the results of this first search, resulting in a total of 43
sources. The execution of a process of backward snowballing on these sources,
where we applied the inclusion and the execution criteria to new research items

10 A Framework for the Gamification of GUI Testing 221

Table 10.1 Inclusion criteria for the semi-systematic literature review

Inclusion criteria Description

IC1 The source is directly related to the topic of gamification applied to the field
of software testing and generally defined for the software engineering
discipline but with clear applicability to the testing activity or explicitly
proposes, discusses, improves, or applies an approach, a framework, or a
prototype related to the gamification of any facet of software testing,
including education of software testing subjects

IC2 The source addresses the topics covered by the review questions

IC3 The literature item is written in a language that is directly comprehensible
by the authors: English, Italian, or Chinese

IC4 The source is an item of white literature with the full text available for
download and is published in a peer-reviewed journal or conference
proceedings

Table 10.2 Exclusion criteria for the semi-systematic literature review

Exclusion criteria Description

EC1 The source is not directly related to the topic of gamification applied to the
field of software testing

EC2 The source is not in a language directly comprehensible by the authors

EC3 The source is an item of white literature, but the full text is not available for
download or online reading

EC4 The source discusses a serious/applied game that cannot be applied to real
use case scenarios of the software testing process or software testing
education and training

EC5 The source is not a primary study but a secondary or tertiary study of the
topic

EC6 The source has not been published between 2010 and 2021

found, followed by a similar process of forward snowballing, resulted in a total of
50 different literature sources about gamified software testing, which we have listed
in the online Appendix A.1 An analysis of this literature review has shown that there
is a significant lack of gamified testing tools that focus on exploratory GUI testing:
more precisely, the only works we have found that have GUI testing as a focus
are the previous works we have based this framework on. We conclude that this is
still an unexplored field of research, and we feel that our work can be considered a
novelty; we hope that our framework can inspire new research works in the field of
gamified GUI testing.

All the collected sources were analyzed to collect the following information,
discussed in the subsections below: (i) the most frequently adopted mechanics and
tools for gamified software testing and (ii) the benefits and drawbacks of such
techniques as discussed in related literature.

1 https://doi.org/10.6084/m9.figshare.21967361.v1.

https://doi.org/10.6084/m9.figshare.21967361.v1
https://doi.org/10.6084/m9.figshare.21967361.v1
https://doi.org/10.6084/m9.figshare.21967361.v1
https://doi.org/10.6084/m9.figshare.21967361.v1
https://doi.org/10.6084/m9.figshare.21967361.v1
https://doi.org/10.6084/m9.figshare.21967361.v1
https://doi.org/10.6084/m9.figshare.21967361.v1
https://doi.org/10.6084/m9.figshare.21967361.v1
https://doi.org/10.6084/m9.figshare.21967361.v1

222 R. Coppola et al.

10.3.1 Adopted Game Mechanics

To assess the adoption and diffusion of game mechanics in gamified software testing
literature, all the mechanics mentioned in the selected literature underwent a process
of coding. The codes used were the names of the mechanics in the Octalysis
framework. By this analysis, 24 different mechanics of the Octalysis framework
were found in the related literature.

In the following, we report the gamification mechanics that had a number of
mentions above the average:

• Score: The mechanic belongs to the Accomplishment core drive of the Octalysis
framework. It implies that the user can earn virtual points after performing
specific actions in the gamified system. The score can be used for other game
mechanics (e.g., for buying virtual goods). A scoring system is often considered
a fundamental building block for a gamified system, as many other dynamics
that directly stimulate emotion rely on that. This mechanic was implemented or
discussed in 33 different sources.

• Leaderboards: The mechanic belongs to the Accomplishment core drive of the
Octalysis Framework. It consists of comparisons and rankings between the scores
obtained by different users of the gamified system. The correlation between
score and leaderboard is clear: the former is a mechanic that does not produce
emotional value in the user until a competition dynamic, the leaderboard, is
stimulated. The mechanic was implemented or discussed in 27 different sources.

• Levels: The mechanic belongs to the Unpredictability core drive of the Octalysis
framework. They consist of the progression of the player through different stages
with different objectives. The mechanic was implemented or discussed in 16
different sources.

The complete set of mechanics proposed, along with their definitions, related
Octalysis core drive, and mentions in the related literature, is reported in the online
Appendix B of the manuscript.2

In Fig. 10.1, we report the number of mentions for each gamification core
drive defined in the Octalysis Framework. From the graph, it is evident how
the main focus of available gamification implementations for software testing is
to provide Accomplishment to the users as a positive means of motivation (43
mentions). Conversely, only two sources implemented mechanics related to the
Avoidance dimension, which is related to the enforcement of correct patterns by
applying punishments and maluses to non-conforming users. Few mentions were
also gathered by the gamification mechanics related to the Epic Meaning macro-
category of the Octalysis framework. We consider such a low number of mentions
as an effect of the still prototypical nature of most of the described tools, which did
not allow for the implementation of complex narratives.

2 https://doi.org/10.6084/m9.figshare.20425446.

https://doi.org/10.6084/m9.figshare.20425446
https://doi.org/10.6084/m9.figshare.20425446
https://doi.org/10.6084/m9.figshare.20425446
https://doi.org/10.6084/m9.figshare.20425446
https://doi.org/10.6084/m9.figshare.20425446
https://doi.org/10.6084/m9.figshare.20425446
https://doi.org/10.6084/m9.figshare.20425446
https://doi.org/10.6084/m9.figshare.20425446

10 A Framework for the Gamification of GUI Testing 223

Fig. 10.1 Distribution of mentions in the literature for the core drives of the Octalysis framework

10.3.2 Gamified Software Testing Tools

In the mined set of literature about gamified software testing, we identify 27
different tools and/or frameworks for gamified software testing. In the online
Appendix C,3 we report the full list and tools, providing for each of them a brief
description, the adopted mechanics (regarding the Octalysis framework), and the
list of literature sources mentioning them.

It is evident from the list of tools that an important focus in gamified software
testing literature is put on software testing education, as gamified mechanics are
seen as a primary means of increasing the student’s engagement in learning software
testing topics. Several gamified tools aimed at practitioners’ implementation of
crowd-based mechanisms, to obtain higher coverage and effectiveness (i.e., detected
bugs), by generating competition between different testers.

In the following, we report the most mentioned gamified testing tools in related
literature. For each tool, we report the primary source where it has been described
and the mechanics that it implements according to the Octalysis framework ;
additionally, we present Table 10.3, where we list each tool and the gamified
mechanics employed by said tool.

• CodeDefenders is a turn-based mutation testing game, in which two players
are involved in competitive rounds. One player plays as the attacker, with the
objective of injecting faults into the software, and the other plays as the defender,
with the objective of writing test cases to spot faults. The tool has been originally

3 https://doi.org/10.6084/m9.figshare.20425491.

https://doi.org/10.6084/m9.figshare.20425491
https://doi.org/10.6084/m9.figshare.20425491
https://doi.org/10.6084/m9.figshare.20425491
https://doi.org/10.6084/m9.figshare.20425491
https://doi.org/10.6084/m9.figshare.20425491
https://doi.org/10.6084/m9.figshare.20425491
https://doi.org/10.6084/m9.figshare.20425491
https://doi.org/10.6084/m9.figshare.20425491

224 R. Coppola et al.

Table 10.3 Gamified testing tools and their gamified mechanics

Tool Gamified elements

CodeDefenders Duels, scores, leaderboards, puzzles, feedback, challenges

HALO Social interaction, quests, storytelling, achievements,
levels, leaderboards

VU-BugZoo Trophies, scores

WReSTT-Cyle Score, leaderboards, badges, timing, levels, rewards, social
interaction, quizzes

Auction-Based Bug Management Auctions, virtual goods, timing, badges, leaderboards

described by Rojas and Fraser [24] and has originally been used to teach mutation
testing in an academic context. In the following years, the tool received further
developments introducing more features, along with several related experiments,
which enriched the existing literature with experience reports of Code Defenders
usage. The tool implements the following gamification mechanics: duels, scores,
leaderboards, puzzles, feedback, and challenges.

• HALO is a plugin for Eclipse proposed by Sheh et al. that uses game-like
mechanics to make the whole software engineering process more engaging and
social [25, 26]. The tool implements an MMORPG-like (Massive Multiplayer
Online Role Playing Game) approach to software testing activities. It has
been used as the basis for the Secret Ninja approach proposed by Kiniry and
Zimmerman, in which the gamification aspects are applied, while the users
are not aware of their application [27]. The tool implements the following
gamified mechanics: social interaction, quests, storytelling, achievements, levels,
and leaderboards.

• VU-BugZoo, originally described by Silvis-Cividjian et al. [28], is an educational
digital platform to teach software testing, based on a repository of faulty (stand-
alone and embedded) code. The platform engages instructors and learners in a
bug-hunting experience, which is empowered by the utilization of mechanics
typical of game design. The tool implements the trophy and score gamification
mechanics.

• WReSTT-Cyle (Web-Based Repository of Software Testing Tools Cyber-Enabled
Learning Environments) is a cyber-learning environment that employs several
learning and engagement strategies in order to aid the phase of software testing
learning. It has been originally described by Clarke et al. [29] as a repository of
learning objects to support software testing teaching and has then evolved into
different projects named SEP-CyLe (Software Engineering and Programming)
and STEM-CyLe (an extension to all STEM disciplines). Originally, the tool
covered simple white and black-box unit testing. The cyber-enabled learning
environment adopts the following gamification mechanics: score, leaderboards,
badges, timing, levels, rewards, social interaction, and quizzes.

• Auction-Based Bug Management: originally described by Usfekes et al. [26], it
is a serious game for bug tracking in Application Lifecycle Management Tools.
The tool is based on an auction reward mechanism, with the aim of providing an

10 A Framework for the Gamification of GUI Testing 225

incentive structure for software practitioners to find, resolve, and test bugs and
malfunctionings of a given SUT. The tool implements the following gamified
mechanics: auctions, virtual goods, timing, badges, and leaderboards.

10.3.3 Advantages and Drawbacks of Gamification for
Software Testing

On the set of literature items about the gamification of software testing activities, we
applied a procedure of coding to extract categories of benefits and drawbacks caused
by the adoption of gamified mechanics in testing procedures. After the coding was
performed, we applied axial coding to extract higher-level categories of benefits
and drawbacks. We report the full list of advantages and issues extracted from the
literature in online Appendix D4 of this chapter.

The main categories of advantages discussed in related literature are the follow-
ing:

• Better User Experience: Under this category, we include all the benefits related
to an increased quality of the user experience provided to the tester when
gamified mechanics are applied. Twenty sources underline a higher Engagement
(or involvement) guaranteed by game elements in the testing activity, with
quantitative empirical results reported by Clegg et al. for unit testing [30, 31].

Fifteen different sources highlighted that an important benefit of having game
aspects in testing procedures is the guarantee of having more fun activities. This
aspect was highlighted especially in the educational context [32].

Finally, several gamification mechanics have been proven to provide addi-
tional motivation to the testers involved.

• Higher Efficiency. Efficiency, as defined by the ISO 9001 standard, is the extent
to which time, effort or cost is well used for the intended task or purpose [33].
Under this category, we include advantages related to reduced efforts and costs
in test case definition, generation, or execution caused by the application of
gamified mechanics. One of the most positively commented aspects of gamified
tools is the presence of informative content in the testing practices, which is
able to reduce the effort required by the testers to gather information during the
test cases design [34]. Several sources consider gamification a means to reduce
the required effort to perform test-related activities. Crowdsourced contributions
are mentioned in several sources and are seen as a primary mean to boost the
efficiency of testing procedures [35].

• Higher Effectiveness. Effectiveness, as defined by the ISO 9001 standard, is
the extent to which planned activities are realised and planned results are
achieved [33]. Under this category, we include all the discussed advantages

4 https://doi.org/10.6084/m9.figshare.20456574.

https://doi.org/10.6084/m9.figshare.20456574
https://doi.org/10.6084/m9.figshare.20456574
https://doi.org/10.6084/m9.figshare.20456574
https://doi.org/10.6084/m9.figshare.20456574
https://doi.org/10.6084/m9.figshare.20456574
https://doi.org/10.6084/m9.figshare.20456574
https://doi.org/10.6084/m9.figshare.20456574
https://doi.org/10.6084/m9.figshare.20456574

226 R. Coppola et al.

related to an enhancement of the outcomes of gamified testing procedures.
Increased effectiveness is measured both in testing education (improved learning,
measured through analysis of grades, [31]) and in testing practice (e.g., increased
branch coverage and mutation score in gamified mutation testing, as measured by
Fraser et al. [36]). Other specific effectiveness-related aspects are mentioned in
other sources, e.g., effectiveness in finding bugs, identifying code smells, finding
issues, and adding comments to the original code.

The main categories of disadvantages discussed in related literature are the
following:

• Design Issues. Several studies in the literature report issues related to how
the gamified aspects are designed and fit the underlying testing activities. For
instance, Garcia et al. and Bryce et al. report cases where gamification interferes
with the testing activities, being incompatible with other improvement efforts
applied to the testing practice [37, 38]. Five of the collected studies highlight
the necessity of proper calibration of gamification mechanics, to disincentivize
possible exploits from the users to gain benefits.

• Implementation issues. A limited number of the selected sources mention
implementation-related issues for gamified tools. The main concerns in this sense
are related to the scalability of gamified approaches, especially the possibility to
extend successfully to multiple players the game mechanics that are evaluated on
a limited number of subjects [35]).

• Bad user experience. Some reports in the literature indicate that gamification
can make the learning curve for testing procedures steeper [39]. Harranz et al.
also report the possibility of change resistance for organizations to transition to
gamified procedures [40].

• Lower effectiveness. Several sources in the literature report failing attempts at
increasing the effectiveness of testing procedures through gamification, both in
terms of the bug-finding ability of generated test cases and in learning outcomes
[41].

• Lower efficiency. By increasing the concepts that the tester has to learn, gam-
ification –when not properly designed and applied– can actually add overhead
to the testing procedure. Pedreira et al. underline that setting up gamified work
environments never has a negligible cost [42]. de Jesus et al. report that gamified
environments are inherently complex and require incremental and constant
efforts to be built [43].

In Fig. 10.2, we report the number of manuscripts in the set of analyzed literature,
which mention at least one advantage or drawback for each of the defined categories.
From the number of mentions, it is evident that the main focus of literature about
gamified software testing has a primary focus on the advantages or the drawbacks
that are caused to the user experience of the tools and techniques.

10 A Framework for the Gamification of GUI Testing 227

Fig. 10.2 Number of mentions in literature for each category of advantages and limitations

10.4 A Framework of Game Mechanics for GUI Testing of
Web Apps

In this section, we describe and discuss a framework of gamified mechanics that
can be applied to GUI Web application testing. To the best of our knowledge, the
framework constitutes the first set of gamified elements specifically tailored for the
practice of GUI testing. Even if some of the mechanics can be applied to other
testing methodologies (e.g., to unit or mutation testing tools), most of the mechanics
are specifically intended to aid the definition of second-generation GUI test cases
through the record and replay methodology.

We have defined two preliminary prototypes of our framework of gamified
mechanics: (i) an implementation as a plug-in for the Scout augmented testing tool,
originally presented by Nass et al. [44], and (ii) a plug-in for the Chrome browser,
to enable in-browser generation of test suites for Web applications.

Even though they are specifically implemented for Web application testing, the
gamified mechanics in the framework are generalizable to GUI testing applied to any
software domain (i.e., they can be adapted with little effort to mobile and desktop
applications).

Figure 10.3 reports the Octalysis analysis performed for the proposed framework,
by assigning one point to each dimension to which the gamified mechanics
belong. The following subsections describe the individual gamification mechanics
implemented.

228 R. Coppola et al.

Epic Meaning

Accomplishment Empowerment

Ownership Social
Influence

Scarcity Unpredictability

Avoidance

My
Octalysis
Analysis

Fig. 10.3 Octalysis score for the proposed framework

10.4.1 Scoring Mechanism and Leaderboard

The principal gamification element of the proposed gamification framework is a
formula to assign a score to each testing session performed by the tester. The score
allows for evaluating the tester’s performance, taking into account different factors,
while introducing a competitive aspect that may encourage testers to put more effort
into their activities.

The score is composed of two parts: a base score, which takes into account
factors that can be used to compare different GUI test sequences on the same
working application, and a bonus score, which takes into account the bug-finding
capability of the developed test suites. As such, the score is calculated by using the
following formula:

. S = Sbase + Sbonus

The base score is computed by using the following formula:

. Sbase = a · C + b · EX + c · EF

The base score adds up to 100 points and is composed of three subcomponents
weighted by configurable parameters:

10 A Framework for the Gamification of GUI Testing 229

• Coverage component (C): the average page coverage obtained by the tester
during the session, according to the formula:

. C =
∑

∀i∈P

covi

|P |
where .covi is the coverage of the i-th page and P is the set of pages visited during
the session. This component is multiplied by default for a coefficient equal to
60%.

• Exploration component (EX): a component depending on the percentage of
pages visited and widgets interacted for the first time by the current tester. It is
therefore computed according to the following formula:

. EX = k

b
· pnew

ptot

+ h

b
· wnew

wtot

, k + h = b

where .pnew and .ptot are the newly discovered and the total pages, respectively,
while .wnew and .wtot are the newly discovered and the total interacted widgets,
respectively. By default, this component is worth 30% of the total base score.

• Efficiency component (EF): it is computed as the ratio between the number of
interacted widgets and the total number of interactions, thereby according to the
formula:

. EF = whl

wint

By default, this component is worth 10% of the base score. This component
aims at measuring the diversity of interactions performed by the tester to avoid
exploitations of the scoring mechanism (Fig. 10.4).

The bonus score is computed by using the following formula:

. Sbonus = d · T + e · P

The base score adds up to 50 points and is composed of two subcomponents
weighted by configurable parameters:

• Time component (T): it is computed on top of the duration of the test session.
The rationale for the utilization of a time component is that longer test sequences
should allow a more thorough exploration of the GUI. The time component is
computed as follows:

.T =

⎧
⎪⎪⎨

⎪⎪⎩

0 sint ≤ 2 ∨ sint > 30

1.5 · t 2 < sint ≤ 5

t 5 < sint ≤ 15

0.5 · t 15 < sint ≤ 30

230 R. Coppola et al.

Fig. 10.4 Results screen, showing the metrics measured for the session and the related score

where t is the duration of the session (in minutes), while .sint is the average
time spent per interaction (measured in seconds). By default, this component
is multiplied by 0.3.

• Problems component (P): it is computed on top of the number of issues reported
by the tester during the exploration of the SUT. The default coefficient of this
component is equal to 0.2.

10.4.2 Progress Bars

The progress bar is a form of live graphical feedback, which shows the number of
widgets that have been interacted with by the tester during the exploration of the
SUT.

The progress bar is rendered so that a global progress bar shows the percentage
of widgets interacted with by the user, in relation to the total amount of widgets
present on the page.

For the pages that have already been explored by at least another tester, a blue
line is shown on top of the progress bar to indicate the highest score in the page, i.e.,
the maximum coverage reached on such page among all past test sessions.

This element is aimed at providing satisfaction for the progress made by the
testers.

10 A Framework for the Gamification of GUI Testing 231

10.4.3 Exploration Highlights

Exploration highlights are a form of live feedback employed to notify that a new
page has been discovered by the current tester, i.e., no previous test session has ever
visited it.

This element allows informing the tester when their exploration of the SUT is
better –in terms of novelty– than previous testers’ ones.

10.4.4 Injected Bugs

Injected bugs are visual modifications that are injected into the AUT’s GUI. At the
current state of implementation of the prototype, injected bugs are represented as
superimposed oval-shaped visual elements, placed over randomly chosen elements
in a set of pages of the SUT. The purpose of injected bugs is to encourage the
tester to explore the Web application by visiting as many pages as possible while
providing an immediate operation to perform in addition to only recording valid
operations over a properly working SUT.

In Fig. 10.5, the three visual elements discussed are visible: the progress bar on
top of the screen, an exploration highlight in the top-left corner, and an injected bug
in the center of the page.

Fig. 10.5 Visual elements shown during the exploration of the SUT: progress bar, exploration
highlights, injected bugs

232 R. Coppola et al.

10.4.5 Achievements

Achievements are used to provide a visual certification that the tester has met
specific objectives or requirements.

Achievements are shown through graphical badges. The purpose of achievements
is to provide gratification to the tester.

Gained achievements are shown as a form of live feedback during the test session
in which they are gained. It is possible for a tester to visualize the whole set of
achievements gained and those that are still missing.

10.4.6 User Profiles and Avatars

The mechanic allows defining a profile for each tester registered in the system. The
tester can then customize the profile with the preferred avatar, choosing between a
set of available ones. Additional items are unlockable by utilizing an in-game virtual
currency, which the tester is given every time he unlocks achievements or completes
quests or objectives.

Avatars belong –as a mechanic– to the Ownership core drive in the Octalysis
framework and are based on the human need to empower their presence and
properties.

Each player profile is associated with a certain amount of experience points. As in
many role-playing game-based gamification mechanics, experience points allow to
increase the player’s level and to unlock additional features or customization items
when certain levels are reached.

In Fig. 10.6, the profile page of the tester is reported. The profile page shows
the currently selected avatar, the item shop (where to invest virtual currency to
customize the avatar), and the unlocked achievements.

10.4.7 Quests and Challenges

Finally, the gamification framework includes two additional mechanics aimed at
encouraging the tester to execute specific actions.

Quests are specific tasks to perform during the execution of testing sequences.
They can be tied to specific types of interactions and elements or to the number of
pages visited. The framework considers two different types of quests: daily quests,
which are available for a single day, and questlines, proposing a set of predefined
quests of increasing difficulty. Figure 10.7 shows both types of quests implemented
in the framework.

Challenges are specific tasks to be completed that are available only for a set
period of time (e.g., for a week). The score of all participating testers is registered

10 A Framework for the Gamification of GUI Testing 233

Fig. 10.6 Profile page of the tester, with the chosen avatar, the achievements’ badges, and the
avatar shop

for each challenge, and a special leaderboard for the testers competing in a challenge
is created. Prizes can be awarded to the testers that achieve a good placement in the
challenge.

Although real-world rewards are indeed a successful extrinsic motivator based
on tangible feedback (mostly monetary prizes), a plain usage not supported by a
balanced gamified experience would result unappealing and unsustainable in the
long term. Providing monetary incentives is an extrinsic motivator, the adoption of
which only keeps the user effectively involved in the short term (what is defined as
left-brain in the Octalysis core drives).

Providing an intrinsic motivating factor such as unpredictability (in the shape
of daily quests) is the way we aim at keeping testers engaged with a balanced
experience while attempting to mitigate the over-justification effect, whereby the
effect of an extrinsic motivator diminishes as the user becomes accustomed to it.

234 R. Coppola et al.

Fig. 10.7 Page displaying quests and challenges, with a section for daily challenges and one for
the entire questline, each one having its set of rewards

10.5 Preliminary Evaluation

After the definition of the framework, we performed a preliminary assessment to
evaluate the effectiveness and efficiency of the proposed gamified GUI testing tool.

To that extent, we performed a 2 treatments × 2 sequences × 2 objects full
factorial (crossover) experiment. The treatment of the experiment was administered
as two different versions of the tool: the gamified version (i.e., implementing our
framework) and the standard version (i.e., the original version of the Scout tool for
exploratory GUI testing of Web applications).

The experiment involved 144 participants recruited through convenience sam-
pling among students enrolled in the Software Engineering course held at the
Polytechnic University of Turin in the Spring semester of 2021. All participants
received both treatments, and received two different tasks to perform, each with
a specific subject application. All participants were provided with the task of
generating test cases for two different Web-based SUTs, manually and utilizing
the Scout tool. The applications were selected randomly from a list of open-

10 A Framework for the Gamification of GUI Testing 235

Table 10.4 Experiment
design

Period 1 Period 2

Object:Treatment Object:Treatment

Group 1 Mezzanine:Gamified Wagtail:Standard

Group 2 Mezzanine:Standard Wagtail:Gamified

Group 3 Wagtail:Gamified Mezzanine:Standard

Group 4 Wagtail:Standard Mezzanine:Gamified

source applications available in grey-literature.5 The selected applications were
Mezzanine6 and Wagtail.7 The experiment design is reported in Table 10.4.

In our evaluation we focused on three different aspects of the testing practice:
effectiveness, efficiency and User Experience. To evaluate Effectiveness, we injected
artificial bugs in the two experimental objects, and we measured the number of
True Positives, i.e. bug reports provided by the testers that corresponded to bugs
injected in the SUT. To evaluate Efficiency, we measured the coverage (i.e., the ratio
between analyzed widgets and total widgets in the traversed Web pages) provided
by the generated test cases during the test sequences recorded by the participants.
At the end of the experimental sessions, the participants were administered the
TAM questionnaire [45], to evaluate the User Experience of the tool. The full TAM
questionnaire is reported in an online Appendix E.8

Figure 10.8 shows the boxplots for the distribution of average coverage per
page and the total number of true positives found in each session, aggregated by
treatment. Numeric results are shown in Table 10.5.

The results suggest that the gamified version of the tool achieves higher mean
coverage (9.9% against 8.3%), whereas the number of true positives detected was
both slightly higher for the standard version of the tool on average (2.75 vs. 2.58).

These results suggest that the inclusion of gamified mechanics primarily caused
the participants to focus more on their exploratory testing. Hence, each application
page was tested more thoroughly with gamified mechanics in place. We guess
that the primary explanation for this behavioral change is connected to the visual
highlight features that were added to the tool.

In the experiment, we verified that gamification had a negative (albeit not
significant) impact on the defect-finding ability of the testers. We guess that the
slightly lower number of defects found on average can be justified by the cognitive
overhead introduced by the gamification concepts.

Figure 10.9 reports the distribution of the answers to the TAM Questionnaire. In
the graph, we report the mean of the answers for each category of the questionnaire
(i.e., Attitude toward Usage or ATU, Perceived Usefulness or PU, Behavioral
Intention or BI, Perceived Ease of Use or PE).

5 https://github.com/unicodeveloper/awesome-opensource-apps.
6 https://github.com/stephenmcd/mezzanine.
7 https://github.com/wagtail/wagtail.
8 https://doi.org/10.6084/m9.figshare.20456496.

https://github.com/unicodeveloper/awesome-opensource-apps
https://github.com/unicodeveloper/awesome-opensource-apps
https://github.com/unicodeveloper/awesome-opensource-apps
https://github.com/unicodeveloper/awesome-opensource-apps
https://github.com/unicodeveloper/awesome-opensource-apps
https://github.com/unicodeveloper/awesome-opensource-apps
https://github.com/unicodeveloper/awesome-opensource-apps
https://github.com/stephenmcd/mezzanine
https://github.com/stephenmcd/mezzanine
https://github.com/stephenmcd/mezzanine
https://github.com/stephenmcd/mezzanine
https://github.com/stephenmcd/mezzanine
https://github.com/wagtail/wagtail
https://github.com/wagtail/wagtail
https://github.com/wagtail/wagtail
https://github.com/wagtail/wagtail
https://github.com/wagtail/wagtail
https://doi.org/10.6084/m9.figshare.20456496
https://doi.org/10.6084/m9.figshare.20456496
https://doi.org/10.6084/m9.figshare.20456496
https://doi.org/10.6084/m9.figshare.20456496
https://doi.org/10.6084/m9.figshare.20456496
https://doi.org/10.6084/m9.figshare.20456496
https://doi.org/10.6084/m9.figshare.20456496
https://doi.org/10.6084/m9.figshare.20456496

236 R. Coppola et al.

Gamified

Standard

0% 10% 20%
Coverage

30% 40%

Gamified

Standard

0 2 4
True positives

6 8

Fig. 10.8 Boxplots for the two metrics observed and measured during the experiment, average
coverage over pages (percentage) and true positives found

Table 10.5 Statistics for coverage and true positives

Mezzanine Wagtail All

S G S G S G

Coverage Mean 8.0% 8.9% 8.6% 10.8% 8.3% 9.9%

Median 6.2% 7.4% 6.5% 8.8% 6.5% 8.1%

Std. dev 6.8% 6.0% 5.5% 6.5% 6.2% 6.3%

True positives Mean 1.87 1.57 3.68 3.58 2.75 2.58

Median 2.00 1.00 1.00 4.00 2.00 2.00

Std. dev 1.23 1.06 1.57 1.68 1.67 1.72

We observe, on average, that participants had mostly positive perceptions
toward all the metrics measured by the TAM model. The metric with the most
positive responses was the Attitude toward Usage metric, with 17% of participants
strongly agreeing and 66% agreeing that gamification is a desirable addition to the
practice of exploratory testing. A high value for the Attitude toward Usage can be
considered as a consequence of a positive User Experience of the users in their
sessions with the gamified tool. High positive perceptions were also measured for
Perceived Usefulness and Behavioral Intention. These results suggest that most of
the participants would use tools with gamification if they had to perform testing
activities in the future. Additionally, they indicate that gamification was perceived as
valuable and usable. The values for Behavioral Intention and Perceived Usefulness
suggest that the gamified mechanics and aims were easily understandable by the
users.

10 A Framework for the Gamification of GUI Testing 237

Fig. 10.9 Distribution of the answers (percentage of the responses for each level of the respective
Likert scale) provided by the participants to the four categories of the TAM questionnaire: ATU
(Attitude Toward Usage), PU (Perceived Usefulness), BI (Behavioral Intention), and PE (Perceived
Ease of Use). The results are averaged over all the questions of each category

The most negative perceptions were aimed toward Perceived Ease of Use (16%
Disagree, 4% Strongly disagree). This result, however, can be justified by the lack
of experience of the participants with the practices and the inherently low ease of
use of the specific tool that was extended with gamified mechanics.

10.6 Threats to Validity

The potential threats to the framework’s validity are discussed according to the
categories defined by Wohlin et al. [46].

Threats to internal validity concern factors that may affect the results and were
not considered in the study. There is no guarantee that the measures selected to
evaluate a testing session (coverage, time spent) are the most optimal ones for this
purpose: a systematic literature review by Coppola and Alégroth [47] identified 55
different metrics belonging to 4 categories of GUI-based testing: functional-level
metrics, GUI-level metrics, model-level metrics, and code-level metrics. With this
many possible metrics present in the literature for GUI testing, it is not possible
to say that the metrics we used for our frameworks are the most beneficial or

238 R. Coppola et al.

effective; future experiments and studies are going to be required in order to be
able to correctly gauge whether the selected metrics are effective or if they can be
replaced with other ones.

Threats to construct validity concern the relationship between theory and
observation. The framework defines a set of gamified mechanics that have been
proven to be effective in multiple studies, but it cannot be assumed that the
combination of said mechanics will prove effective for a GUI testing tool, as there
is currently no study on gamification of this specific practice. Future experiments
are going to be necessary to evaluate whether usage of the tool can lead to improved
GUI testing practices, as well as increased interest and motivation for the testers;
these experiments will have to evaluate the framework in its entirety as well as the
single gamified elements, to identify eventual weak links.

Threats to external validity concern whether the results can be generalized.
We cannot affirm for certain that the tool will prove to be effective for all cases
of exploratory GUI testing of Web applications, mainly due to two factors: the
selection of gamified mechanics, which may appear to be effective on paper but
then prove itself not optimal when applied to real-world scenarios, and the absence
of other studies and experiments on gamified GUI testing that can be compared
to the framework. The fact that this framework consists of, to the extent of our
knowledge, a novelty for the current literature means that we cannot consider our
choices and methods to be generalized for all possible facets of exploratory GUI
testing. There is also the risk of having selected gamified elements that cannot be
applied to every possible kind of Web application or to different domains; different
Web development strategies may not interact correctly with the framework, for
example, and this means that the defined strategy cannot be generalized to the entire
field of GUI testing for Web applications.

10.7 Conclusion and Future Directions

In this chapter, we have described a framework of gamified mechanics to be applied
to exploratory GUI testing of Web applications. To the best of our knowledge, the
framework constitutes the first effort in adapting gamification mechanics to GUI
testing. We complement the definition of the framework with a literature review of
gamification applied to software testing, to provide a view of the current state of
the art about gamified testing tools, along with the most utilized mechanics and the
mentioned advantages and drawbacks of the technique.

The framework contains seven different mechanics. Three of them represent
novel contributions with regard to the existing literature: a scoring mechanism
specifically defined for GUI testing of Web applications and graphical feedback
(exploration highlights and progress bars) that are specifically designed to follow
the typical procedure of exploratory testing of Web-based SUTs.

We have implemented the mechanics in a prototype tool, developed as both a
plug-in for an existing augmented testing tool (Scout) and as a plug-in for the

10 A Framework for the Gamification of GUI Testing 239

Chrome browser. The implementation of the framework allowed us to perform a
preliminary evaluation, in the form of a controlled experiment with 144 participants.

The performed experimentation showed that gamified mechanics provide higher
page coverage than non-gamified GUI testing. From a bug-finding standpoint, gam-
ification has shown to have no significant beneficial or detrimental effects. Finally,
gamification was considered to provide a good user experience. Our experiment
thereby confirms that with no loss in effectiveness of the generated test sequences,
gamification can enhance the user experience provided to software testers. A
better user experience can lead to higher productivity, engagement, and quality of
test cases produced by testers. The conduction of more well-structured empirical
experimentations, including more metrics to verify effectiveness, efficiency, and
user experience, and the consequent evaluation of the interaction between the dif-
ferent measures, will be crucial to provide a dependable assessment of the benefits
provided by gamification. The current positive effects on coverage can in fact
be considered as direct behavioral consequence of some introduced gamification
mechanics (e.g., progress bar and visualization highlights) with negligible or even
detrimental effects on the real quality of generated test cases with the gamified tool.

At the current state of implementation, the tool is still in a prototypal state, and
it needs to be deployed on the tester’s machine to work; in our future development,
we foresee a distributed implementation that will allow the utilization of the tool
with crowd-testing purposes and effective utilization of competitive mechanics (e.g.,
leaderboards).

Future research directions include the adoption of the tool in an educational
context –e.g., a software engineering course– in order to conduct a longitudinal
study to evaluate the effects of utilizing gamification when teaching system-level
and GUI testing to students. Moreover, we believe it is important to evaluate the
impact of the individual proposed mechanics in isolation.

References

1. Borjesson, E., Feldt, R.: Automated system testing using visual GUI testing tools: a compar-
ative study in industry. In: 2012 IEEE Fifth International Conference on Software Testing,
Verification and Validation, pp. 350–359. IEEE, Piscataway (2012)

2. Pedreira, O., García, F., Brisaboa, N., Piattini, M.: Gamification in software engineering–a
systematic mapping. Inf. Softw. Technol. 57, 157–168 (2015)

3. Mäntylä, M.V., Smolander, K.: Gamification of software testing-an MLR. In: International
Conference on Product-Focused Software Process Improvement, pp. 611–614. Springer, Berlin
(2016)

4. Rodrigues, L., Pereira, F.D., Toda, A.M., Palomino, P.T., Pessoa, M., Carvalho, L.S.G.,
Fernandes, D., Oliveira, E.H., Cristea, A.I., Isotani, S.: Gamification suffers from the novelty
effect but benefits from the familiarization effect: findings from a longitudinal study. Int. J.
Educ. Technol. High. Educ. 19(1), 1–25 (2022)

5. Chou, Y.-k.: Actionable Gamification: Beyond Points, Badges, and Leaderboards. Packt
Publishing Ltd, Birmingham (2019)

240 R. Coppola et al.

6. Hosseini, C., Humlung, O., Fagerstrøm, A., Haddara, M.: An experimental study on the effects
of gamification on task performance. In: Procedia Computer Science 196 (2022) 999–1006,
International Conference on ENTERprise Information Systems/ProjMAN – International
Conference on Project MANagement/HCist – International Conference on Health and Social
Care Information Systems and Technologies 2021. https://www.sciencedirect.com/science/
article/pii/S1877050921023255

7. Wang, C., He, J., Jin, Z., Pan, S., Lafkihi, M., Kong, X.: The impact of gamification on teaching
and learning physical internet: a quasi-experimental study. Ind. Manag. Data Syst. 122, 1499–
1521 (2022)

8. Jensen, M.L., Wright, R.T., Durcikova, A., Karumbaiah, S.: Improving phishing reporting
using security gamification. J. Manag. Inf. Syst. 39(3), 793–823 (2022)

9. Liechti, O., Pasquier, J., Reis, R.: Supporting agile teams with a test analytics platform: a case
study. In: 2017 IEEE/ACM 12th International Workshop on Automation of Software Testing
(AST), pp. 9–15. IEEE, Piscataway (2017)

10. Cacciotto, F., Fulcini, T., Coppola, R., Ardito, L.: A metric framework for the gamification of
web and mobile GUI testing. In: 2021 IEEE International Conference on Software Testing,
Verification and Validation Workshops (ICSTW), pp. 126–129 (2021)

11. Fulcini, T., Ardito, L.: Gamified exploratory GUI testing of web applications: a preliminary
evaluation. In: 2022 IEEE International Conference on Software Testing, Verification and
Validation Workshops (ICSTW), pp. 215–222 (2022)

12. Alégroth, E., Gao, Z., Oliveira, R., Memon, A.: Conceptualization and evaluation of
component-based testing unified with visual GUI testing: an empirical study. In: 2015 IEEE
8th International Conference on Software Testing, Verification and Validation (ICST), pp. 1–
10. IEEE, Piscataway (2015)

13. Ardito, L., Bottino, A., Coppola, R., Lamberti, F., Manigrasso, F., Morra, L., Torchiano, M.:
Feature matching-based approaches to improve the robustness of android visual GUI testing.
ACM Trans. Softw. Eng. Methodol. 31(2), 1–32 (2021)

14. Vasquez, M.L., Moran, K., Poshyvanyk, D.: Continuous, evolutionary and large-scale: a new
perspective for automated mobile app testing. Preprint. arXiv:1801.06267

15. Coppola, R., Morisio, M., Torchiano, M.: Mobile GUI testing fragility: a study on open-source
android applications. IEEE Trans. Reliab. 68(1), 67–90 (2018)

16. Memon, A.M., Cohen, M.B.: Automated testing of GUI applications: models, tools, and
controlling flakiness. In: 2013 35th International Conference on Software Engineering (ICSE),
pp. 1479–1480. IEEE, Piscataway (2013)

17. Kamran, M., Rashid, J., Nisar, M.W.: Android fragmentation classification, causes, problems
and solutions. Int. J. Comput. Sci. Inf. Sec. 14(9), 992 (2016)

18. Nass, M., Alégroth, E., Feldt, R.: Why many challenges with GUI test automation (will)
remain. Inf. Softw. Technol. 138, 106625 (2021)

19. Kochhar, P.S., Thung, F., Nagappan, N., Zimmermann, T., Lo, D.: Understanding the test
automation culture of app developers. In: 2015 IEEE 8th International Conference on Software
Testing, Verification and Validation (ICST), pp. 1–10. IEEE, Piscataway (2015)

20. Krutz, D.E., Malachowsky, S.A., Reichlmayr, T.: Using a real world project in a software
testing course. In: Proceedings of the 45th ACM Technical Symposium on Computer Science
Education, pp. 49–54 (2014)

21. Barreto, C.F., França, C., Gamification in software engineering: a literature review. In: 2021
IEEE/ACM 13th International Workshop on Cooperative and Human Aspects of Software
Engineering (CHASE), pp. 105–108. IEEE, Piscataway (2021)

22. de Melo, A.A., Hinz, M., Scheibel, G., Berkenbrock, C.D.M., Gasparini, I., Baldo, F.:
Version control system gamification: a proposal to encourage the engagement of developers to
collaborate in software projects. In: Meiselwitz, G. (ed.) Social Computing and Social Media,
pp. 550–558. Springer International Publishing, New York City (2014)

23. Ašeriškis, D., Damaševičius, R.: Gamification of a project management system. In: The
Seventh International Conference on Advances in Computer-Human Interactions, pp. 200–207
(2014)

 21112 -307 a 21112 -307 a

https://www.sciencedirect.com/science/article/pii/S1877050921023255
https://www.sciencedirect.com/science/article/pii/S1877050921023255
https://www.sciencedirect.com/science/article/pii/S1877050921023255
https://www.sciencedirect.com/science/article/pii/S1877050921023255
https://www.sciencedirect.com/science/article/pii/S1877050921023255
https://www.sciencedirect.com/science/article/pii/S1877050921023255
https://www.sciencedirect.com/science/article/pii/S1877050921023255
https://www.sciencedirect.com/science/article/pii/S1877050921023255

10 A Framework for the Gamification of GUI Testing 241

24. Parizi, R.M.: On the gamification of human-centric traceability tasks in software testing and
coding. In: 2016 IEEE 14th International Conference on Software Engineering Research,
Management and Applications (SERA), pp. 193–200 (2016)

25. Ruohonen, J., Allodi, L.: A bug bounty perspective on the disclosure of web vulnerabilities.
ArXiv abs/1805.09850

26. Üsfekes, Ç., Tüzün, E., Yilmaz, M., Macit, Y., Clarke, P.M.: Auction-based serious game for
bug tracking. IET Softw. 13, 386–392 (2019)

27. Bell, J., Sheth, S., Kaiser, G.: Secret ninja testing with halo software engineering. In:
Proceedings of the 4th International Workshop on Social Software Engineering, SSE ’11,
pp. 43–47. Association for Computing Machinery, New York (2011)

28. Silvis-Cividjian, N., Limburg, R., Althuisius, N., Apostolov, E., Bonev, V., Jansma, R., Visser,
G., Went, M.: Vu-bugzoo: a persuasive platform for teaching software testing. In: Proceedings
of the 2020 ACM Conference on Innovation and Technology in Computer Science Education,
ITiCSE ’20, p. 553. Association for Computing Machinery, New York (2020)

29. P.E., Y.F., Clarke, P.J.: Gamification-based cyber-enabled learning environment of software
testing. In: 2016 ASEE Annual Conference & Exposition, ASEE Conferences, New Orleans,
Louisiana, pp. 1–16 (2016). https://peer.asee.org/27000

30. Clegg, B.S., Rojas, J.M., Fraser, G.: Teaching software testing concepts using a mutation
testing game. In: 2017 IEEE/ACM 39th International Conference on Software Engineering:
Software Engineering Education and Training Track (ICSE-SEET), pp. 33–36 (2017)

31. Sun, Y.: Design and implementation of a gamified training system for software testing. Adv.
Educ. 10, 395–400 (2020)

32. Fraser, G., Gambi, A., Kreis, M., Rojas, J.M.: Gamifying a software testing course with code
defenders. In: Proceedings of the 50th ACM Technical Symposium on Computer Science
Education, SIGCSE ’19, pp. 571–577. Association for Computing Machinery, New York
(2019)

33. I. 9001:2005, Quality management systems – requirements, Standard, International Organiza-
tion for Standardization (2005)

34. Lőrincz, B., Iudean, B., Vescan, A.: Experience report on teaching testing through gamification.
In: EASEAI 2021, pp. 15–22. Association for Computing Machinery, New York (2021)

35. Amiri-Chimeh, S., Haghighi, H., Vahidi-Asl, M., Setayesh-Ghajar, K., Gholami-Ghavamabad,
F.: Rings: a game with a purpose for test data generation. Interact. Comput. 30(1), 1–30 (2017)

36. Fraser, G., Gambi, A., Rojas, J.M.: Teaching software testing with the code defenders testing
game: experiences and improvements. In: 2020 IEEE International Conference on Software
Testing, Verification and Validation Workshops (ICSTW), pp. 461–464 (2020)

37. Bryce, R., Mayo, Q., Andrews, A., Bokser, D., Burton, M., Day, C., Gonzolez, J., Noble,
T.: Bug catcher: a system for software testing competitions. In: Proceeding of the 44th
ACM Technical Symposium on Computer Science Education, SIGCSE ’13, pp. 513–518.
Association for Computing Machinery, New York (2013)

38. García, F., Pedreira, O., Piattini, M., Cerdeira-Pena, A., Penabad, M.: A framework for gami-
fication in software engineering. J. Syst. Softw. 132, 21–40 (2017). https://www.sciencedirect.
com/science/article/pii/S0164121217301218

39. Berkling, K., Thomas, C.: Gamification of a software engineering course and a detailed
analysis of the factors that lead to it’s failure. In: 2013 International Conference on Interactive
Collaborative Learning (ICL), pp. 525–530 (2013)

40. Herranz, E., Colomo-Palacios, R., Al-Barakati, A.: Deploying a gamification framework for
software process improvement: preliminary results. In: Stolfa, J., Stolfa, S., O’Connor, R.V.,
Messnarz, R. (eds.) Systems, Software and Services Process Improvement, pp. 231–240.
Springer International Publishing, Cham (2017)

41. de Jesus, G.M., Paschoal, L.N., Ferrari, F.C., Souza, S.R.S.: Is it worth using gamification on
software testing education? An experience report. In: Proceedings of the XVIII Brazilian Sym-
posium on Software Quality, SBQS’19, pp. 178–187. Association for Computing Machinery,
New York (2019)

https://peer.asee.org/27000
https://peer.asee.org/27000
https://peer.asee.org/27000
https://peer.asee.org/27000
https://peer.asee.org/27000

 25995 42865 a 25995 42865
a

https://www.sciencedirect.com/science/article/pii/S0164121217301218
https://www.sciencedirect.com/science/article/pii/S0164121217301218
https://www.sciencedirect.com/science/article/pii/S0164121217301218
https://www.sciencedirect.com/science/article/pii/S0164121217301218
https://www.sciencedirect.com/science/article/pii/S0164121217301218
https://www.sciencedirect.com/science/article/pii/S0164121217301218
https://www.sciencedirect.com/science/article/pii/S0164121217301218
https://www.sciencedirect.com/science/article/pii/S0164121217301218

242 R. Coppola et al.

42. Pedreira, O., García, F., Piattini, M., Cortiñas, A., Cerdeira-Pena, A.: An architecture for
software engineering gamification. Tsinghua Sci. Technol. 25(6), 776–797 (2020)

43. Jesus, G.M.d., Ferrari, F.C., Paschoal, L.N., Souza, S.d.R.S.d., Porto, D.d.P., Durelli, V.H.S.:
Is it worth using gamification on software testing education? An extended experience report in
the context of undergraduate students. J. Softw. Eng. Res. Dev. 8, 6:1–6:19 (2020). https://sol.
sbc.org.br/journals/index.php/jserd/article/view/738

44. Nass, M., Alégroth, E., Feldt, R.: Augmented testing: industry feedback to shape a new testing
technology. In: 2019 IEEE International Conference on Software Testing, Verification and
Validation Workshops (ICSTW), pp. 176–183. IEEE, Piscataway (2019)

45. Lee, Y., Kozar, K.A., Larsen, K.R.: The technology acceptance model: past, present, and future.
Commun. Assoc. Inf. Syst. 12(1), 50 (2003)

46. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experimentation
in Software Engineering. Springer Science & Business Media, Berlin (2012)

47. Coppola, R., Alégroth, E.: A taxonomy of metrics for gui-based testing research: a systematic
literature review. Inf. Softw. Technol. 152, 107062 (2022). https://www.sciencedirect.com/
science/article/pii/S0950584922001719

 -563
3014 a -563 3014 a

https://sol.sbc.org.br/journals/index.php/jserd/article/view/738
https://sol.sbc.org.br/journals/index.php/jserd/article/view/738
https://sol.sbc.org.br/journals/index.php/jserd/article/view/738
https://sol.sbc.org.br/journals/index.php/jserd/article/view/738
https://sol.sbc.org.br/journals/index.php/jserd/article/view/738
https://sol.sbc.org.br/journals/index.php/jserd/article/view/738
https://sol.sbc.org.br/journals/index.php/jserd/article/view/738
https://sol.sbc.org.br/journals/index.php/jserd/article/view/738
https://sol.sbc.org.br/journals/index.php/jserd/article/view/738
https://sol.sbc.org.br/journals/index.php/jserd/article/view/738
https://sol.sbc.org.br/journals/index.php/jserd/article/view/738
https://sol.sbc.org.br/journals/index.php/jserd/article/view/738

 9578 14084 a 9578 14084 a

https://www.sciencedirect.com/science/article/pii/S0950584922001719
https://www.sciencedirect.com/science/article/pii/S0950584922001719
https://www.sciencedirect.com/science/article/pii/S0950584922001719
https://www.sciencedirect.com/science/article/pii/S0950584922001719
https://www.sciencedirect.com/science/article/pii/S0950584922001719
https://www.sciencedirect.com/science/article/pii/S0950584922001719
https://www.sciencedirect.com/science/article/pii/S0950584922001719
https://www.sciencedirect.com/science/article/pii/S0950584922001719

Chapter 11
Applying Leaderboards for Quality
Improvement in Software Development
Projects

Mathias Eggert, Philipp M. Zähl, Martin R. Wolf, and Martin Haase

Abstract Software development projects often fail because of insufficient code
quality. It is now well documented that the task of testing software, for example,
is perceived as uninteresting and rather boring, leading to poor software quality and
major challenges to software development companies. One promising approach to
increase the motivation for considering software quality is the use of gamification.
Initial research works already investigated the effects of gamification on software
developers and come to promising. Nevertheless, a lack of results from field exper-
iments exists, which motivates the chapter at hand. By conducting a gamification
experiment with five student software projects and by interviewing the project
members, the chapter provides insights into the changing programming behavior
of information systems students when confronted with a leaderboard. The results
reveal a motivational effect as well as a reduction of code smells.

Keywords Software development · Software testing · Gamification ·
Leaderboard

11.1 Motivation

Software development projects are confronted with different stakeholders and
different quality requirements. Particularly, when new business models are explored
in a highly competitive environment, development speed is more important than
quality, which can lower the attractiveness of products [1]. At the same time,
additional quality requirements arise through the trend of mobile application
development [2, 3]. It is now well documented that the task of testing software, for
example, is perceived as uninteresting and rather boring, leading to poor software

M. Eggert (�) · P. M. Zähl · M. R. Wolf · M. Haase
FH Aachen University of Applied Sciences, Aachen, Germany
e-mail: eggert@fh-aachen.de; zaehl@fh-aachen.de; m.wolf@fh-aachen.de;
martin.haase@alumni.fh-aachen.de

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
K. M. L. Cooper, A. Bucchiarone (eds.), Software Engineering for Games
in Serious Contexts, https://doi.org/10.1007/978-3-031-33338-5_11

243

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33338-5protect T1	extunderscore 11&domain=pdf

 885 55738 a 885 55738 a

mailto:eggert@fh-aachen.de
mailto:eggert@fh-aachen.de
mailto:eggert@fh-aachen.de

 9474 55738 a 9474 55738 a

mailto:zaehl@fh-aachen.de
mailto:zaehl@fh-aachen.de
mailto:zaehl@fh-aachen.de

 17710 55738 a 17710 55738 a

mailto:m.wolf@fh-aachen.de
mailto:m.wolf@fh-aachen.de
mailto:m.wolf@fh-aachen.de
mailto:m.wolf@fh-aachen.de

 -2016
56845 a -2016 56845 a

mailto:martin.haase@alumni.fh-aachen.de
mailto:martin.haase@alumni.fh-aachen.de
mailto:martin.haase@alumni.fh-aachen.de
mailto:martin.haase@alumni.fh-aachen.de
mailto:martin.haase@alumni.fh-aachen.de
https://doi.org/10.1007/978-3-031-33338-5_11
https://doi.org/10.1007/978-3-031-33338-5_11
https://doi.org/10.1007/978-3-031-33338-5_11
https://doi.org/10.1007/978-3-031-33338-5_11
https://doi.org/10.1007/978-3-031-33338-5_11
https://doi.org/10.1007/978-3-031-33338-5_11
https://doi.org/10.1007/978-3-031-33338-5_11
https://doi.org/10.1007/978-3-031-33338-5_11
https://doi.org/10.1007/978-3-031-33338-5_11
https://doi.org/10.1007/978-3-031-33338-5_11
https://doi.org/10.1007/978-3-031-33338-5_11

244 M. Eggert et al.

quality [4–6] and currently posing major challenges to software development
companies [7].

One promising approach to increase the motivation for considering software
quality is the use of gamification, which involves the use of elements from video
games to increase motivation for tasks in a non-game context [8]. Rather it considers
the use of games or game elements in a serious context [9]. Game elements include
awards, points, or medals, but also rankings and similar reward systems [8].

Gamification and gamified information systems (GIS) provide elements familiar
from computer games to make every day mundane and often boring activities more
attractive and engaging [9, 10]. Gamification can help increase the motivation and
efficiency of routine tasks [11, 12, e.g., 8].

Initial research works already investigated the effects of gamification on software
developers and come to promising results [13–15]. Nevertheless, a lack of results
from field experiments exists, which motivates the article at hand. By conducting
an experiment with five student software projects and by interviewing the project
members, we want to shed light into to motivational effects of leaderboards applied
by software developers to increase software quality.

The article provides both insights into the changing behavior at software devel-
opment tasks, measured with the code quality checking software Sonarcube, and
insights into the perceptions of software developers when faced with a leaderboard.
The remainder of the chapter is as follows. The subsequent section summarizes
relevant research works in the field of gamification applied for software developers.
In addition, we clearly point out the research gap that is addressed by the work at
hand. In Sect. 11.3, we describe the research method and the experimental setting.
Section 11.4 comprises the results of the experiments and the interviews. Section
11.5 discusses the findings and provides an outlook on further research regarding
gamification for software developers.

11.2 Related Work

11.2.1 Gamification

Precursors to the idea of gamification can be traced back to the boom in video
games in the 1980s. However, the term gamification was first used almost 20 years
later by the British game developer Nick Pelling in 2002 [vgl. 10, 16]. Since then,
the term has been used in many ways, which means that various definitions of
gamification are known today [16–18]. These definitions focus on user experience
and improved motivation, as well as user retention. Thus, in non-game contexts, i.e.,
real-life tasks, the elements of gamification should be applied to the gamified task
to achieve improvements in the areas mentioned. The most well-known and very
comprehensively formulated definition comes yet from Deterding et al. [9] and also
includes limitations that clearly show what constitutes gamification:

11 Applying Leaderboards for Quality Improvement in Software. . . 245

The use (rather than expansion) of design (rather than game-based technology or other
game-related practices) elements (rather than full-fledged games) that exhibit characteristics
of games (rather than play or playfulness) in non-game contexts (regardless of specific
intended uses, contexts, or modes of implementation). [9]

The design of gamified applications is based on various elements that can
also be found in conventional games. According to Deterding, S., Khaled, R.,
Nacke, L., and Dixon, D. [19], there are different levels of abstraction of these
design elements. Ordered from concrete to abstract, they are user interface design
patterns (e.g., badges, levels, leaderboards), design patterns/gamemechanics, design
principles/guidelines, conceptual models (MDA framework, imagination, curiosity),
and game design methods (playtesting, etc.).

Widely used game design elements are therefore points, badges, and leader-
boards. Points are distributed for achieving specific game objectives [20]. Badges
are trophies that are visible to other players and are awarded when a milestone is
reached in the game. They are not the goal of the game but complement it. They are
awarded for special achievements [20, 21]. A leaderboard records the progress of all
players, usually in the form of a high score [20]. While leaderboards are sometimes
controversial, overall they can be said to improve motivation [22]. Other elements
of gamification are progress bars, quests, or the story of the game [23].

Motivation is another important concept in the gamification approach. Motivation
is divided into different types. On the one hand, there is extrinsic motivation. This
is brought to the individual from the outside and is supported by rewards, for
example [24, 25]. Social motivation can also be considered extrinsic [25]. Intrinsic
motivation, on the other hand, arises within the individual and is caused solely by
the inherent satisfaction of performing the activity in question [26].

11.2.2 Software Quality and Technical Debt

Software quality (SQ) is an expression that describes the qualitative characteristics
of a software product. Not clearly defined, it has been made more tangible by
various quality models, for example, ISO/IEC 25000. In this, one finds different
areas that make up SQ: functionality, reliability, efficiency, usability, transferability,
and modifiability [27].

Code quality (CQ) is a sub-aspect of SQ; it is the feature of SQ that is the focus
of this thesis. CQ describes how well a source code satisfies formal requirements.
One speaks also of programming style or code structure. This should, in terms
of code created by students, be of balanced size, readable, understandable, well-
structured, and not complex. There should also be a minimum of duplication or
poorly formatted expressions [28].

Codesmells (CS) are particularly interesting in the context of this work. Accord-
ing to Fowler [29], these are functioning code components that have a poor structure.
Several aspects are listed that may indicate a smell: duplicated code, long methods,
large classes, long parameter lists, divergent changes, data lumps, lazy classes, or

246 M. Eggert et al.

comments that try to make bad code understandable are just a few of these aspects.
[29]. Thus, they are symptoms or problems at the code or design level [30]. They are
an important factor that can lead to technical debt (TD) and affect the maintainability
of a software system [31]. By making the software work despite smells, they are
classified as mostly invisible, in terms of TD [32].

This work focusses on TD. Because it is a metaphor, a concrete definition is
difficult. The metaphor states that short-term advantage comes at the expense of the
long-term quality of a software system. It is first mentioned in Cunningham [33] and
initially referred only to software implementation. Later research has extended this
to architecture, design, documentation, requirements, and testing [34, 35]. Another
extension of the metaphor says that software development tasks are postponed but
carry the risk of causing problems in the future if they are not caught up [36]. A
modern definition is:

A design or construction approach that is expedient in the short term, but creates a technical
context in which the same work is more expensive later than it is now (including increased
costs over time). [37]

In many studies, TD is classified as a risk [35]. This is justified by internal quality,
which can affect future development.

On the one hand, there is the intentional TD. This occurs when a developer
needs to meet a deadline or uses a work-around solution in complex code. Code
complexity, the risk of damaging the code by changing it, or compromising
functionality can also be reasons to intentionally include TD [38].

On the other hand, there is unintentional TD. This occurs when a developer is
not competent enough to find the cleanest solution to a problem, the team does
not adhere to the necessary standards, or when the technology used needs to be
actualized. Also, unintentional TD can occur when customer requirements are very
specific or complex [38]. The metaphor of debt also states that there is interest that
accumulates the longer the debt remains unpaid, further increasing TD should it
remain unpaid [32, 33].

SonarQube is a tool used to analyze source code, among other things. It provides
an evaluation of the code according to security, bugs, and CS. TD is also estimated
with a temporal indication. SonarQube is widely used in the industry. Regarding
this, the actual time needed to improve is lower than indicated by SonarQube [39,
40]. Saarimaki et al. [40] had students improve other people’s open-source code
using SonarQube for this purpose, so it is likely that an experienced developer would
have been even faster with their own code. However, the most accurate data on the
TD can be found at CS. This is confirmed in a downstream study, which also says
that most code that generates TD is CS [41]. Therefore, in this work, the focus is
also on TD generated by CS. In the data collection of this work, the SonarQube
analysis result is used in the leaderboard game.

11 Applying Leaderboards for Quality Improvement in Software. . . 247

11.2.3 Gamification and Software Development Quality

The research on gamification and its influence on software quality is diverse. An
overview of research results is provided in Fig. 11.1. Fraser [42] analyzed gamifi-
cation of the testing process in the areas of teaching, practice, and crowdsourcing.
Fraser [42] does not provide any evaluation results of his prototype. A literature
review was conducted by Hamari et al. [43]. In this, the current state of research
regarding gamification is analyzed.

The tool CodeSmellExplorer, which was conceptualized and developed by Raab
[44], used gamified elements to teach university students about the importance of
good programming styles. In the evaluation of its prototype, Raab [44] could con-
firm that students perceive gamification elements, particularly coding challenges, as
interesting and stimulating.

Crowd development, i.e., the creation of software in a very-small-step manner
(micro-tasks) by many developers, was investigated by LaToza et al. [45]. “Crowd
development envisions a software development process optimized for sharing
knowledge, distributing work efficiently, motivating contributions, and ensuring
quality” [45]. In the context of gamification, Dubois and Tamburrelli [46] studied
how a gamified application should be designed and used. They compared to groups
(with and without competition) and found out that competition leads to slightly more
Javadoc and test coverage. They explain this effect by the usage of metrics from
other students as benchmark for their own development [46].

Fig. 11.1 State of the art in gamification research

248 M. Eggert et al.

To get students into the habit of good software testing, HALO by Bell et al. [47]
attempts to establish this habit in a hidden way, i.e., without pointing out the actual
goal. So far, the effects of HALO were not evaluated. Further attempts to teach
students good programming practice through gamification are made by Kasahara et
al. [48] and Mi et al. [49]. Kasahara et al. [48] applied a leaderboard containing code
metrics for motivating code quality improvements. They could show that the code
complexity decreases through this gamification element. Mi et al. [49] developed
and evaluated a game called GamiCRS, which is an “online platform for students to
learn code readability” [49]. It applies points, badges, and leaderboards in order to
motivate students. The authors evaluate GamiCRS by conducting a post-application
survey with technology acceptance constructs. The results confirm that the game
motivates students to increase code quality. In a professional setting, maintaining
good programming style using gamification is studied by Prause and Jarke [50].
In two agile software development experiments and surveys, they could show that
gamification can motivate the following coding conventions. CodeArena is a tool
developed by Baars and Meester [51] that attempts to incorporate CS and bugs in a
game, in this case Minecraft, and encourages the player to improve them.

In this chapter, we shed more light into the impact of gamification and partic-
ularly of leaderboards on code quality and software development motivation. The
research gap is also visualized in Fig. 11.1.

11.3 Research Design

11.3.1 Planning the Research

In order to answer the research question, we follow the call for more mixed-
method research in information systems [52] and conduct experiment with software
developers as well as semi-structured focus group interviews [53]. The research
process comprises six steps and is depicted in Fig. 11.2.

As outlined in the motivation section, software developers often perceive soft-
ware quality as a disturbing and annoying task. Against this background, we
analyzed relevant gamification literature. As outlined in the previous section, some
research on the effects of gamification on software developers exist [7, 9]. However,
no research work explicitly investigates the effects of leaderboards on the software
quality. In order to close this gap and to contribute to the body of gamification
knowledge, the chapter at hand investigates the motivational effects of applying
leaderboards to increase software quality. Our research work aims at answering the
research question:

How does a leaderboard-based gamification approach motivate software devel-
opers to increase software quality?

11 Applying Leaderboards for Quality Improvement in Software. . . 249

Planning the
research

and preparation

Preparing the
experiments

Conducting the
experiments

Preparing the
interviews

Conducting the
interviews

Analyzing the
interview results

● Explicate the
problem

● Search for
related work and
possible
solutions

● Develop research
question

● Literature review
● Research gap
● Research

question

● Design tasks and
experiment
process

● Find suitable
probands

● Setup experiment
environment

● Leaderboard design
● Prepared

experiemnt
environment (Sonar
Qube and
leaderboard
operationalization)

● Pool of information
systems students

● Conduct
experiments

● Measure changes
in software
quality

● Protocoll
observations

● Sonar qube
protocols

● Develop question
guideline for
interviews

● Prepare focus
group interviews

● Plan
appointments

● Question
guideline for
focus group
interviews

● Conducting the
interviews in five
focus group
sessions

● Record all
answers

● Transcribe all
answers

● Transcribed
interview data

● Analyze the
transcribed
interviews by
applying
inductive content
analysis

● Build categories

● Categorized
effects of
leaderboard
application for
SW quality
improvement

Fig. 11.2 Research process, activities, and outcomes

11.3.2 Preparing and Conducting the Experiments

To answer the research question, we applied an experiment with six information
systems (IS) student groups. The experiment environment is as follows. The exper-
iment takes place within the course “interdisciplinary information systems project,”
which belongs to the fifth semester of the IS bachelor curriculum. Within that
course, the students need to work on software development projects, whereas the
product owner and all requirements come from an industry partner. Consequently,
each student group works in different software development projects with different
technological requirements and applied programming languages. An overview of
the project goals, with the assigned groups and the programming languages used, is
provided in Table 11.1. All experiment and interview participants are listed in Table
11.2. Due to privacy concerns, the participants A3, C1, and C4 did not want to offer
their age, semester, and working experience.

The teams initially work freely on their projects. This includes weekly sprint
reviews and retrospectives, which take place together with the product owner from
the industry or an instructor. The way of working is agile, and SCRUM is used.

The first four sprints (4 weeks) deliver the baseline without the leaderboard
game. The project members should first get familiar with the new project and team.
Beginning with the fifth sprint, we began analyzing the code in order to prepare
a leaderboard. At the evening before the sprint reviews, the git repositories of the
groups are analyzed with SonarQube to read out the TD. The analysis results are the
basis for the leaderboard game.

The leaderboard game was voluntary for the project groups. The groups were
given access to SonarQube code analysis of their project code. In this analysis, they
can see the code locations, code smells (CS), and bugs, as well as the estimated TD.
SonarQube accesses the groups’ git repositories and has been updated with each

250 M. Eggert et al.

Table 11.1 Project overview

Project Project goal Par�cipants vue.js Java JS TS HTML CSS PHP Kotlin

A Task list and planner with
templates

A1, …, A5 ✓ ✓ ✓ ✓ ✓ ✓

B
360° customer view for an

insurance company's internal
service staff

B1, …, B4 ✓ ✓ ✓ ✓

C Project management app for
cra� businesses

C1, …, C4 ✓ ✓

D
App for local retail to enter

products into an online
catalog

D1, …, D5 ✓ ✓ ✓ ✓

E Everyday life facilita�on for
cancer pa�ents

E1, …, E4 ✓ ✓ ✓ ✓

F Yard Management Dashboard
for Logis�cs Companies

F1, …, F4 ✓ ✓ ✓ ✓ ✓

 ✓

Table 11.2 Experiment und interview participants

Participant Project Age Semester Gender Work experience?

A1 A 23 7 M No
A2 A 21 4 M No
A3 A n/a n/a F n/a
A4 A 23 7 M No
A5 A 21 5 M No
B1 B 23 10 M No
B2 B 20 5 M No
B3 B 26 10 M No
B4 B 24 7 F No
C1 C n/a n/a M n/a
C2 C 20 4 M No
C3 C 26 5 F No
C4 C n/a n/a M n/a
D1 D 22 4 M No
D2 D 23 5 F No
D3 D 22 7 M No
D4 D 27 5 M Yes
D5 D 23 5 M No
E1 E 21 5 M No
E2 E 30+ 8 M No
E3 E 20 5 M No
E4 E 23 5 M No
F1 F 22 7 M No
F2 F 21 7 M No
F3 F 22 7 M No

11 Applying Leaderboards for Quality Improvement in Software. . . 251

new version that is committed to the master branch. This allows the groups to track
their improvements. The goal of the game is to reduce the TD. Since the projects
vary in size, we developed a calculation key to scale the effort and assign points to
the team’s performance. This is as follows:

. δT D (tn, tn−1) = T DLoC (tn)

T DLoC (tn−1)
∗ 100 = TD (tn)

TD (tn−1)
∗ 100 [%]

. T DLoC (tn) = T D (tn)

LoC (tn)
∗ 100 [Minutes/100 Lines of Code]

LoC (tn) := Lines of Code in P roject at tn

T D (tn) := T echnical Depth at tn [Minutes]

The formula δTD takes into account how much TD has been reduced within
a certain period of time (here: current week compared to previous week). Thus,
groups with a high TD reduction will receive a high score, while groups with a low
TD reduction will receive a low score. TDLoC is used as an additional metric. It
describes how much TD is present per 100 lines of code at a given time. While δTD
is thus limited to the change, TDLoC provides a normalized evaluation of the code
quality. δTD can do without TDLoC, since the additional variables shorten it.

The group that achieves the highest δTD in the respective week receives 15 points
and thus the first place. The second place receives 10 points and the third still 5. In
addition, gold, silver, and bronze medals are awarded according to the placement.

This calculation was done once a week. Each student receives an email contain-
ing the current leaderboard, which exemplary is depicted in Fig. 11.3. The weekly
winner team then received a medal, which remained until the end of the game and
was displayed in the leaderboard overview. Thus, in addition to the weekly winner,
an overall winner can also be determined. The leaderboard, which recorded the
points and medals, as well as the reduced TD, was available for groups to view at any
time and was updated weekly. All groups were notified when it was updated. As an
additional motivation, the winning group was promised a certificate of achievement.

Fig. 11.3 Leaderboard example

252 M. Eggert et al.

11.3.3 Preparing and Conducting the Interviews

After finishing the leaderboard game and the project phase, we conducted focus
group interviews to obtain feedback on the participant’s perceptions and to assess
the motivational effect of the game on the participants. The development of the
interview guideline followed the recommendations of Brinkmann and Kvale [53].
All interviews were audio recorded and transcribed. The interview transcripts are the
basis for the final analysis. The interview guideline comprises the following main
questions, which are all of type open:

1. Independent of the game, how did you engage with software quality this
semester?

2. To what extent did you notice the quality of your code using SonarQube?
3. What do you think of SonarQube as a tool?
4. What obstacles did you face in using it?
5. Did the leaderboard draw your attention to software quality?
6. What was the relevance of software quality before the introduction of the

leaderboard?
7. What motivated you to reach the gold medal or at least the top 3?
8. Who of you ignored the game? Why?
9. What motivating aspects did the game have?

10. What did you think was bad/needs improvement?
11. How do you feel differently about code quality now?

11.3.4 Analyzing the Interview Results

To derive the perceived effects of applying a leaderboard into software development
projects, we deeply analyzed the interview transcripts, which were generated during
the focus group sessions. Therewith, we aim at inductively analyzing the content
and generating categories of effects. For the inductive content analysis, we follow
Mayring [54] and apply an iterative process. Each time we identified a new category
and finished the analysis of one interview transcript, we again begin with the already
analyzed transcripts. Answers to a question may contain different concepts that are
categorized according to the category description. A coding example is provided in
Table 11.3.

We develop concepts based on the core statements, which are then used to form
categories. In addition, we count the statement and the interview frequency and
evaluate the relevance of the statement. The statement frequency shows how many
statements are made about this concept in the interview. The interview frequency
quantifies the number of interviews, in which this concept is discussed.

11 Applying Leaderboards for Quality Improvement in Software. . . 253

Table 11.3 Example of statement categorization

Category Concept Example statement

Motivational
effects

Competition “When you see that others [...] are better, have more
points [...], have a better grade, then you always
have the incentive to keep up, [...] to catch up, that
you then also want to collect more points or want to
overtake”

Motivational
effects

Awards “I also find it motivating that you now receive such
an award at the end”

Willingness to
play

Active
participation

“We did look in though and especially Code Smells
we had found and removed them”

500

400

300

T
D

 (
m

in
)

200

100

0
0. 1. 2. 3. 4.

(Game
start)

Week

Group A

5. 6. 7. 8. 9. 10.

Reduced

Added

Remaining

Fig. 11.4 Progress of TD from group A

11.4 Results

11.4.1 Effects of a Leaderboard on Software Quality

All observed student projects work on their tasks for a total of 10 weeks and 10
sprints. The leaderboard game starts at the beginning of Sprint 5, where teams are
given access to their code analyses in SonarQube, along with the indication that the
reduction of TD will be rewarded with points in the leaderboard game. Playing is
optional for the students, and the results are not graded. The game was played 5
weeks. Project Group C did not participate in the game. In the TD progressions, the
start time of the game is marked. It should be noted that none of the groups had
previously mined TD. The project groups received the first leaderboard, and thus
the first feedback on their code 1 week after the game began. In the following, we
go through the results group wise.

In the first 2 weeks of the game, Group A has not made any improvements.
Only in the third week after the start of the game the code is improved, and the
TD is reduced by 5 min. This represents a percentage improvement of 7.5% to
4.51 min/100 LoC. After that, the group did not make any further improvements.
The course of the TD of Group A can be seen in Fig. 11.4.

254 M. Eggert et al.

In the penultimate week of the game, Group B made code improvements for the
first time. TD was reduced in the amount of 429 min. This corresponds with almost
94% to almost the entire TD built up until then. On 100 LoC only 3.6 min TD came
thereby. However, it is noticeable that significantly less new TD was built up 1 week
before the start of the game (game announcement) and afterward. Figure 11.5 shows
the course of the TD of group B.

Team D made code improvements regularly, but not every week. No comparative
values are available for this group before the start of the third sprint because git code
pushes appears right after the third sprint. The team was able to reduce TD by a total
of 68 min, which corresponds to approximately 12.4%. In terms of the number of
lines of code, the TD reaches 0.46 min/100 LoC. The development of the TD of
group D is provided in Fig. 11.6.

Group E has made code improvements every week since the beginning of the
game. In the third week, the entire TD has already been reduced. At the same time,
the team creates a continuous quality improvement, because every newly built TD
is immediately reduced. A total of 144 min of TD are reduced during the ten sprints.

500

400

300

T
D

 (
m

in
)

200

100

0
0. 1. 2. 3. 4.

(Game
start)

Week

Group B

5. 6. 7. 8. 9. 10.

Reduced

Added

Remaining

Fig. 11.5 Progress of TD from group B

500

400

300

T
D

 (
m

in
)

200

100

0
0. 1. 2. 3. 4.

(Game
start)

Week

Group D

5. 6. 7. 8. 9. 10.

Reduced

Added

Remaining

Fig. 11.6 Progress of TD from group D

11 Applying Leaderboards for Quality Improvement in Software. . . 255

500

400

300

T
D

 (
m

in
)

200

100

0
0. 1. 2. 3. 4.

(Game
start)

Week

Group E

5. 6. 7. 8. 9. 10.

Reduced

Added

Remaining

Fig. 11.7 Progress of TD from group E

500

400

300

T
D

 (
m

in
)

200

100

0
0. 1. 2. 3. 4.

(Game
start)

Week

Group F

5. 6. 7. 8. 9. 10.

Reduced

Added

Remaining

Fig. 11.8 Progress of TD from group F

The code of this group is free of TD at the end of the game, which can be seen in
Fig. 11.7.

In the first week of the game, Group F has improved 70 min, and none in the
following 3 weeks. Only in the last 2 weeks is code improved again, resulting in
a reduction in TD amounting to 440 min. In total, the TD is reduced by 510 min,
which corresponds to 84.9% of the total debt. This results in a value of 9.44 min/100
LoC. The course of the TD of group F can be found in Fig. 11.8.

Group C acts as a comparison group, since it did not participate in the game. This
provides an opportunity to view the group’s results in comparison to the others. In
group C, no code improvements are made during the entire period. At the same time,
a lot of TD was built. The progression of TD for this group can be seen in Fig. 11.9.

256 M. Eggert et al.

1400
1600
1800
2000

1200

800
1000

T
D

 (
m

in
)

600

200
400

0
0. 1. 2. 3. 4.

(Game
start)

Week

Group C

5. 6. 7. 8. 9. 10.

Reduced

Added

Remaining

Fig. 11.9 Progress of TD from group C (comparison group)

Table 11.4 Interview results

Category Statement frequency Interview frequency

Motivational effects

1. Competition 17 5
2. Quality Metrics 10 4
3. Awards 4 2
Willingness to play

4. Active participation 10 2
5. Passive participation 5 1

11.4.2 Motivational Effects of Leaderboards on Software
Quality

Next to the code quality results of the experiment, we interviewed all team members
in dedicated focus group interviews. The inductive content analysis reveals two
main categories, which are motivational effects and willingness to play. In total,
five concepts could be retrieved by analyzing the interview transcripts (Table 11.4).

11.4.3 Motivational Effects

The first category comprises the impact of leaderboards on the participant motiva-
tion. The concepts of competition, code quality, and awards are considered. We
perceive competition as the motivational effect that results from comparing and
competing against the other teams. It is therefore an extrinsic motivation. Another
extrinsic motivation is the award (medals) given when a team achieves one of the
first three places in a given week. The concept of code metrics involves measuring

11 Applying Leaderboards for Quality Improvement in Software. . . 257

code improvement as a motivating factor. It describes the motivating effect of
passing quality gates and seeing code quality metrics.

The competition has motivated many of the participants. Thus, the claim to be
better than the competitors is described as quite normal: “If you see that others
[...] are better, have more points [...] or a better grade, then you always have the
incentive to want to keep up with them, [...] which makes you want to collect
more points or overtake them” (Interviewee A4). Attention is also paid to how
the other teams are performing: “We always looked to see how the other teams
were doing” (Interviewee B1). In particular, the ranking is perceived as the most
motivating element, even if the general motivation is not particularly high in this
group: “The motivation to really pay attention to the ranking was not particularly
high for us. Still, it was the most motivating aspect because of the competitiveness”
(interviewee D1). The low motivation of this group can be attributed to a lack of
time and experience: “[Since] we were not yet so familiar with vue.js, [...] the topic
of software quality [in the case of problems] loose attention until we received an e-
mail with the updated ranking. [...] Maybe it would have been different with another
programming language or another project” (Interviewee D1).

In other groups, however, motivation has increased as a result of the leaderboard.
Again, the interest in the ranking of the other groups is clear: “It definitely motivates.
[...] So you regularly looked to see what points the others had. And of course, you
want to be [...] better—so it motivates you to deal with your mistakes through this”
(Interviewee E2). “If there hadn’t been this competition, I don’t know if we would
have made such small corrections” (Interviewee E2).

There is also an intrinsic motivation that one’s own CQ is improved by the
leaderboard game, which is represented by the quality metrics: “At the end of the
day, there were various metrics (CS, bugs, vulnerability and test coverage). I found
it motivating to work towards passing the overall test (quality gate)” (Interviewee
F3). “[It was motivating] to be better than the others, by making the code better”
(Interviewee F2). Again, the competitive nature of the leaderboard is evident.

The awards and medals are also perceived as motivating by several persons.
Statements such as “If we do [the following action] like this now, we might get the
gold medal again or at least the silver medal” were made (Interviewee E2). When
asked about motivating aspects, it was said, for example, “the medals definitely. [...]
I think that always motivates” (interviewee E2), or “I also find it motivating that you
now receive such an award at the end” (interviewee E1).

11.4.4 Willingness to Play

Willingness to play is a category that comprises reasons to participate in the game as
well as limiting factors. Two forms of participation are differentiated: First, active
participation exists by contributing code improvements to perform better in the
game. In addition, there is passive participation, in which the code improvements
are carried out independently of the game. Some participants actively participated in

258 M. Eggert et al.

the game: “We especially looked for and removed the CS” (interviewee B1). “There
was a lot of interest in the moments when SonarQube provided the new analysis
results. That’s when everybody was kind of peeked in and looked to see what the
quality of our code was” (interviewee B3).

Some participants merely played passively, which leads to passive participation.
Here, communication among the teams and mediation in the overall context was
given as a reason: “I was generally a bit lost, you also heard relatively little from the
other teams. The competitive idea behind it also went down as a result—you didn’t
know who was taking it seriously now and who wasn’t?” (Interviewee A5).

11.5 Discussion and Outlook

The results described in this chapter provide an answer to the research question of
how a leaderboard-based gamification approach may motivate software developers
to increase software quality.

First, the leaderboard game acts as motivational trigger at least for the better
groups for conducting code improvements. This gets clear by considering the
statement of interviewee D: “I think without this leaderboard [...], we would have
thought zero about [code quality].” Just like Prause and Jarke [50], it can be
concluded that gamification has a better effect in a non-time-sensitive context.
Furthermore, developers who improve their code mutually within a team contribute
not just to the overall understanding of SQ but also to the functionality of the
software. Furthermore, the results indicate that playing software developers draw
more attention on quality and are more consciously about it. However, one single
team member might work more responsibly, while others contribute only little to the
quality, which we could not measure. We address this challenge by a not too strict
set of rules, which encourages all team members to cooperate. It is also important
to consider different types of players. Some participants felt extrinsically motivated,
i.e., by the comparison or competition with the other teams or the desire to achieve a
particularly good place. Other participants stated that they were motivated solely by
the demand for their own CQ, i.e., more intrinsically. Thus, the leaderboard game
was able to trigger both types of motivation.

Second, leaderboard-based gamification stimulates and arises interest at software
developers for improving code quality. Raab [44] found out that students often
write unmaintainable code and fail in recognizing bad coding practices. We can
solely partially confirm this observation. The participating students have at least
built up a sense of what good practices are, and they were engaged with their code
independently of the game. That gamification stimulates and arises interest and is
consistent with the results of this work. Applying a leaderboard increases the interest
for clean code and thus learning software development, which is consistent with
Dubois and Tamburrelli [46]. However, predicting the desired effect is also difficult
in that environment. Above all, choosing the right elements of gamification is a
challenge. In line with Fraser [42], the results of this work reveal that gamification

11 Applying Leaderboards for Quality Improvement in Software. . . 259

has an influence on the teaching of SQ. In contrast to our study, Fraser [42]
considers solely the testing of software. Similar to Bell et al. [47], the social learning
environment approach contributed to participants’ engagement with SQ and CQ
issues. However, this was not attempted via hidden methods but apparently as a
competition with the goal of achieving better quality in the software.

Third, the results show that gamification in the form of a leaderboard with points
and badges has a positive impact on CQ. All groups that participated in the game
improved their code. Initially, rather small improvements were made. This was due
to the initial uncertainty of how many of the other teams would even participate in
the game. However, as soon as it became apparent that a competition was taking
place, some teams became much more active in their efforts to improve their own
code. Some groups removed all or a very high percentage of their TD. In contrast,
the game CodeArena by Baars and Meester [51] was not tested with attendees of
an experiment. However, the approach to fix bugs in a game is comparable to the
leaderboard game we presented. The results of this work show that this approach
works. In addition, we confirm that the idea not only increased the CQ but also
experiences are made and learning progress is achieved. The results of this work are
also consistent with those of Kasahara et al. [48]. The groups that participated in
the game improved their code, while the group that did not participate did not make
any improvements. Furthermore, many participants stated that they were under time
pressure in the project because they had to deliver functional results for the first
time and they were additionally busy with the rest of their studies. Thus, we assume
that the participants were not able to divide their project working time completely
free and independent. Working in full-time for the project would most likely further
increase the CQ.

Against this background, we contribute to research in two ways. First, we could
show that the introduction of a leaderboard game has a measurable effect on the CQ
in software development projects. Second, we shed light into the motivational effect
of gamification and in particular the application of leaderboards to undergraduate
information systems students. Furthermore, we could prove the positive effects of
gamification, which is in line with the findings of Hamari et al. [43].

The validity of the results are subject to limitations. First, the different software
development teams worked on completely different software artifacts, which may
bias the results to some extent. However, the teams do not necessarily need to work
on identical projects, because we solely focus on the change of the software quality
due to the motivational effects of the leaderboard.

Second, the leaderboard game has weaknesses. The scoring, which tries to be
fair by basing TD on LoC, is only applicable for improving teams. A team that
writes good code from the beginning and thus builds up little TD would probably
not take one of the first places, even if its TD is minimized. Differences between
programming languages that require more or fewer lines of code are also not
considered.

Third, it is not possible to predict how the CQ would have developed further
after finishing the observation phase. The so-called novelty effect, i.e., the increased

260 M. Eggert et al.

interest in new things [55], may be a reason for the motivation during the short-
observed game period (6 weeks).

The generalizability of the results is limited to IS bachelor students with no
or just little software quality experience. The sample size is with 27 participants
rather small. In addition, the background of the selected participants was rather
homogeneous, as they are all in the same study program in similar semesters. The
experiment attendees were challenged with new programming languages and the
requirements that such a project entails. This also caused time problems, which
led to the fact that the game or the CQ was regarded as rather secondary. A
development team that is familiar with the programming languages and used to
work in an agile manner would not have had these problems. It cannot be concluded
that an experienced team would have made more code improvements, because the
CQ in professional development teams is better from the beginning. Therefore, the
measured motivational effect may differentiate at more experienced or even older
software developers. At the same time, in the context of teams, it is important to
note that effects on an individual, such as those that can occur through gamification,
can often affect the team as well. For example, the increased engagement of a team
member through gamification can have a positive impact on the team [56]. Likewise,
such game elements can focus the entire team on individual quality requirements
(such as code quality). By using cooperation, the team could achieve a better mental
model through artificial conflicts, which improves the team’s performance [57].
Based on this, we expect gamification to bring improvements at the team level as
well, but this should be further verified in future research.

Further questions for future research arise from this work. The leaderboard
can be used more intensively in teaching. In addition, it needs to be evaluated in
a professional context with experienced developers. Furthermore, the degree of
gamification needs to be investigated. How much is too much or too little? The
optimal degree of gamification is an aspect that should be investigated more closely
in future research works. The time spent on gamification can also be considered,
which leads to the question of how much time should or can be spent in order to
achieve the best possible results in CQ. In terms of motivation, it could be analyzed
whether competition with others, the own performance, or the feeling of playing as
a team contributes the most. In the context of a multiplayer approach, it could be
considered how this affects player motivation and outcome.

References

1. Huang, M.-H., Rand, W., Rust, R.T.: Don’t do it right, do it fast? Speed and quality of
innovation as an emergent process (2016)

2. Flora, H.K., Wang, X., Chande, S.V.: An investigation on the characteristics of mobile
applications: a survey study. IJITCS. 6, 21–27 (2014)

3. Singh, N., Soni, D.: Proposing new model for effort estimation of mobile application
development. IJCA. 170, 14–18 (2017)

11 Applying Leaderboards for Quality Improvement in Software. . . 261

4. Deak, A., Stålhane, T., Cruzes, D.: Factors influencing the choice of a career in software testing
among Norwegian students. In: Artificial Intelligence and Applications / 794: Modelling,
Identification and Control / 795: Parallel and Distributed Computing and Networks / 796:
Software Engineering / 792: Web-Based Education. ACTAPRESS, Calgary, AB (2013)

5. Fernández-Sanz, L., Villalba, M.T., Hilera, J.R., et al.: Factors with negative influence on
software testing practice in Spain: a survey. In: O’Connor, R.V., Baddoo, N., Cuadrago Gallego,
J., et al. (eds.) Software Process Improvement. 16th European Conference, EuroSPI 2009,
Alcala (Madrid), Spain, September 2–4, 2009. Proceedings, vol. 42, pp. 1–12. Springer, Berlin
(2009)

6. Shah, H., Harrold, M.J.: Studying human and social aspects of testing in a service-based soft-
ware company. In: Dittrich, Y. (ed.) Proceedings of the 2010 ICSE Workshop on Cooperative
and Human Aspects of Software Engineering, pp. 102–108. ACM, New York, NY (2010)

7. Deak, A., Stålhane, T., Sindre, G.: Challenges and strategies for motivating software testing
personnel. Inf. Softw. Technol. 73, 1–15 (2016)

8. Koivisto, J., Hamari, J.: The rise of motivational information systems: a review of gamification
research. Int. J. Inf. Manag., 191–210 (2019)

9. Deterding, S., Dixon, D., Khaled, R., et al.: From game design elements to gamefulness. In:
Lugmayr, A., Franssila, H., Safran, C., et al. (eds.) Proceedings of the 15th International
Academic MindTrek Conference Envisioning Future Media Environments, p. 9. ACM, New
York, NY (2011)

10. Liu, D., Santhanam, R., Webster, J.: Toward meaningful engagement: a framework for design
and research of gamified information systems. MIS Quart. 41, 1011–1034 (2017)

11. Augustin, K., Thiebes, S., Lins, S., et al.: ARE WE PLAYING YET? A REVIEW OF
GAMIFIED ENTERPRISE SYSTEMS. In: PACIS 2016 Proceedings. AIS Electronic Library
(2016)

12. Blohm, I., Leimeister, J.M.: Gamification. Design of IT-based enhancing services for motiva-
tional support and behavioral change. Bus. Inf. Syst. Eng. 5, 275–278 (2013)

13. Hermanto, S., Kaburuan, E.R., Legowo, N.: Gamified SCRUM design in software development
projects. In: 2018 International Conference on Orange Technologies (ICOT), pp. 1–8. IEEE
(2018)

14. Marques, R., Costa, G., Silva, M.M.: Gamifying software development scrum projects. In:
2017 9th International Conference on Virtual Worlds and Games for Serious Applications (VS-
Games). Proceedings : 6–8 September 2017, Athens, Greece. IEEE, Piscataway, NJ (2017)

15. Snipes, W., Nair, A.R., Murphy-Hill, E.: Experiences gamifying developer adoption of
practices and tools. In: Jalote, P., Briand, L., van der Hoek, A. (eds.) Companion Proceedings
of the 36th International Conference on Software Engineering – ICSE Companion 2014, pp.
105–114. ACM Press, New York, NY (2014)

16. Marczewski, A.: Gamification. A simple Introduction &ABitMore, 2nd edn. Lulu.comDigital
>16 (2013)

17. Fitz-Walter, Z., Tjondronegoro, D., Wyeth, P.: Orientation passport. In: Stevenson, D. (ed.)
Proceedings of the 23rd Australian Computer-Human Interaction Conference, pp. 122–125.
ACM, New York, NY (2011)

18. Mekler, E.D., Brühlmann, F., Opwis, K., et al.: Disassembling gamification. In: Mackay, W.E.
(ed.) CHI ’13 Extended Abstracts on Human Factors in Computing Systems, p. 1137. ACM,
New York, NY (2013)

19. Deterding, S., Khaled, R., Nacke, L., Dixon, D.: Gamification: toward a definition. In: ACM
Conference on Human Factors in Computing Systems (CHI) (2011)

20. Huang, B., Foon, K.: Do points, badges and leaderboard increase learning and activity: a quasi-
experiment on the effects of gamification. In: Ogata, H., Chen, W., Kong, S.C., Qiu, F. (eds.)
Proceedings of the 23rd International Conference on Computers in Education (2015)

21. Hamari, J., Eranti, V.: Framework for Designing and Evaluating Game Achievements (2011)
22. Zähl, P.M., Biewendt, M., Wolf, M.R., et al.: Requirements for competence developing games

in the environment of SE competence development. In: 35. Jahrestagung des Arbeitskreises
Wirtschaftsinformatik an Hochschulen für Angewandte Wissenschaften im deutschsprachigen
Raum (AKWI), pp. 73–88

28408 40651 a 28408 40651 a

262 M. Eggert et al.

23. Sailer, M., Hense, J., Mandl, H., et al.: Psychological perspectives on motivation through
gamification. Interact. Des. Arch. J. (2013)

24. Reiss, S.: Intrinsic and extrinsic motivation. Teach. Psychol. 39, 152–156 (2012)
25. Stieglitz, S., Lattemann, C., Robra-Bissantz, S., et al. (eds.): Gamification. Using game

elements in serious contexts. Progress in IS. Springer, Cham (2017)
26. Ryan, D.: Intrinsic and extrinsic motivations: classic definitions and new directions. Contemp.

Educ. Psychol. 25, 54–67 (2000)
27. Kanellopoulos, Y., Antonellis, P., Antoniou, D., et al.: Code quality evaluation methodology

using the ISO/IEC 9126 standard. IJSEA. 1, 17–36 (2010)
28. Breuker, D.M., Derriks, J., Brunekreef, J.: Measuring static quality of student code. In:

Rößling, G. (ed.) Proceedings of the 16th Annual Joint Conference on Innovation and
Technology in Computer Science Education, p. 13. ACM, New York, NY (2011)

29. Fowler, M.: Refactoring. Improving the design of existing code, 28. printing. The Addison-
Wesley object technology series. Addison-Wesley, Boston (2013)

30. Fontana, F.A., Ferme, V., Zanoni, M., et al.: Towards a prioritization of code debt: a code smell
Intensity Index. In: Ernst, N.A. (ed.) 2015 IEEE 7th International Workshop on Managing
Technical Debt (MTD 2015). Bremen, Germany, 2 October 2015, pp. 16–24. IEEE, Piscataway,
NJ (2015)

31. Tufano, M., Palomba, F., Bavota, G., et al.: When and why your code starts to smell bad (and
whether the smells go away). IIEEE Trans. Softw. Eng. 43, 1063–1088 (2017)

32. Kruchten, P., Nord, R.L., Ozkaya, I.: Technical debt: from metaphor to theory and practice.
IEEE Softw. 29, 18–21 (2012)

33. Cunningham, W.: The WyCash portfolio management system. In: Archibald, J.L., Wilkes,
M.C. (eds.) Conference proceedings / OOPSLA ‘92. 18–22 October 1992, Vancouver, British
Columbia, pp. 29–30. Association for Computing Machinery, New York, NY (1993)

34. Brown, N., Ozkaya, I., Sangwan, R., et al.: Managing technical debt in software-reliant
systems. In: Roman, G.-C. (ed.) Proceedings of the FSESDP Workshop on Future of Software
Engineering Research, p. 47. ACM, New York, NY (2010)

35. Li, Z., Avgeriou, P., Liang, P.: A systematic mapping study on technical debt and its
management. J. Syst. Softw. 101, 193–220 (2015)

36. Alves, N.S., Mendes, T.S., de Mendonça, M.G., et al.: Identification and management of
technical debt: a systematic mapping study. Inf. Softw. Technol. 70, 100–121 (2016)

37. Kruchten, P., Nord, R.L., Ozkaya, I., et al.: Technical debt. SIGSOFT Softw. Eng. Notes. 38,
51–54 (2013)

38. Yli-Huumo, J., Maglyas, A., Smolander, K.: How do software development teams manage
technical debt? – An empirical study. J. Syst. Softw. 120, 195–218 (2016)

39. Marcilio, D., Bonifacio, R., Monteiro, E., et al.: Are static analysis violations really fixed? A
closer look at realistic usage of SonarQube. In: ICPC 2019. 2019 IEEE/ACM 27th International
Conference on Program Comprehension : Proceedings : Montréal, Canada, 25 May 2019, pp.
209–219. IEEE, Piscataway, NJ (2019)

40. Saarimaki, N., Baldassarre, M.T., Lenarduzzi, V., et al.: On the accuracy of SonarQube tech-
nical debt remediation time. In: Staron, M., Capilla, R., Skavhaug, A. (eds.) 45th Euromicro
Conference on Software Engineering and Advanced Applications. SEAA 2019 : 28–30 August
2019, Kallithea, Chalkidiki, Greece : Proceedings, pp. 317–324. IEEE, Piscataway, NJ (2019)

41. Staron, M., Capilla, R., Skavhaug, A. (eds.): 45th Euromicro Conference on Software Engi-
neering and Advanced Applications. SEAA 2019 : 28–30 August 2019, Kallithea, Chalkidiki,
Greece : Proceedings. IEEE, Piscataway, NJ (2019)

42. Fraser, G.: Gamification of software testing. In: 2017 IEEE/ACM 12th International Workshop
on Automation of Software Testing. AST 2017 : 20–21 May 2017, Buenos Aires, Argentina :
Proceedings, pp. 2–7. IEEE, Piscataway, NJ (2017)

43. Hamari, J., Koivisto, J., Sarsa, H.: Does gamification work? – A literature review of empirical
studies on gamification. In: 2014 47th Hawaii International Conference on System Sciences.
IEEE (2014)

11 Applying Leaderboards for Quality Improvement in Software. . . 263

44. Raab, F.: CodeSmellExplorer: tangible exploration of code smells and refactorings. In:
Erwig, M. (ed.) 2012 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC 2012). Innsbruck, Austria, 30 September–4 October 2012, pp. 261–262. IEEE,
Piscataway, NJ (2012)

45. LaToza, T.D., Ben Towne, W., van der Hoek, A., et al.: Crowd development. In: Prikladnicki,
R. (ed.) 2013 6th International Workshop on Cooperative and Human Aspects of Software
Engineering (CHASE 2013), San Francisco, California, USA, 25 May 2013; Part of the 35th
International Conference on Software Engineering (ICSE), pp. 85–88. IEEE, Piscataway, NJ
(2013)

46. Dubois, D.J., Tamburrelli, G.: Understanding gamification mechanisms for software devel-
opment. In: Meyer, B. (ed.) Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering, p. 659. ACM, New York, NY (2013)

47. Bell, J., Sheth, S., Kaiser, G.: Secret ninja testing with HALO software engineering. In: Maalej,
W. (ed.) Proceedings of the 4th International Workshop on Social Software Engineering, p. 43.
ACM, New York, NY (2011)

48. Kasahara, R., Sakamoto, K., Washizaki, H., et al.: Applying gamification to motivate students
to write high-quality code in programming assignments. In: Scharlau, B. (ed.) Proceedings of
the 2019 ACM Conference on Innovation and Technology in Computer Science Education, pp.
92–98. Association for Computing Machinery, New York, NY (2019)

49. Mi, Q., Keung, J., Mei, X., et al.: A gamification technique for motivating students to learn
code readability in software engineering. In: Wang, F.L. (ed.) 2018 International Symposium
on Educational Technology. ISET 2018: 31 July–2 August 2018, Osaka, Japan : Proceedings,
pp. 250–254. IEEE, Piscataway, NJ (2018)

50. Prause, C.R., Jarke, M.: Gamification for enforcing coding conventions. In: Di Nitto, E. (ed.)
Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering, pp. 649–
660. ACM, New York, NY (2015)

51. Baars, S., Meester, S.: CodeArena: inspecting and improving code quality metrics using
minecraft. In: 2019 IEEE/ACM International Conference on Technical Debt. TechDebt 2019 :
26–27 May 2019, Montréal, Canada, pp. 68–70. IEEE, Piscataway, NJ (2019)

52. Venkatesh, V., Brown, S.A., Bala, H.: Bridging the qualitative-quantitative divide: guidelines
for conducting mixed methods research in information systems. MIS Quart. 37, 21–54 (2013)

53. Brinkmann, S., Kvale, S.: Doing Interviews. SAGE (2018)
54. Mayring, P.: Qualitative Inhaltsanalyse. In: Mey, G., Mruck, K. (eds.) Handbuch Qualitative

Forschung in der Psychologie, 1. Aufl, pp. 601–613. VS Verlag für Sozialwissenschaften
(GWV), s.l. (2010)

55. Clark, R.E.: Reconsidering research on learning from media. Rev. Educ. Res. 53, 445 (1983)
56. Dutra, A.C.S., Prikladnicki, R., Conte, T.: What are the main characteristics of high perfor-

mance teams for software development? In: Proceedings of the 17th International Conference
on Enterprise Information Systems, pp. 145–152. SCITEPRESS – Science and Technology
Publications (2015)

57. de Dreu, C.K.W., Weingart, L.R.: Task versus relationship conflict, team performance, and
team member satisfaction: a meta-analysis. J. Appl. Psychol. 88, 741–749 (2003)

Chapter 12
Designing a Serious Game for
Cybersecurity Education

Gabriele Costa and Marina Ribaudo

Abstract Serious gaming is becoming fundamental for reducing the initial effort
of studying highly complex and extremely technical subjects. Cybersecurity is
no exception as it is in general perceived as one of the most difficult fields in
computer science. This happens because cybersecurity is orthogonal to any specific
technology. As a consequence, although many people may be interested in knowing
more about cybersecurity, approaching the topic is often perceived as cumbersome,
if not even frustrating. In this context, serious gaming can be adopted to create
an engaging and controlled environment where players with no security skills may
face realistic challenges. Needless to say, designing and implementing such games
is itself a challenge. In this chapter, we present our experience with designing
and implementing a serious game on cybersecurity, called A NERD DOGMA.
Briefly, A NERD DOGMA is a classical escape room adventure where players
have to progressively advance by solving some challenges. What truly characterizes
A NERD DOGMA is that all of the enigmas are actual cybersecurity challenges.
Each challenge is based on a real security scenario where the player, being the
attacker or the on-field agent, has to exfiltrate data, break ciphers, and intrude in
remote systems. The main objective is to provide inexpert users with a first-hand
experience of how certain security operations are planned and executed. To this aim,
a number of issues must be addressed. For instance, one cannot avoid introducing
security tools, e.g., to scan a remote machine programmatically. However, requiring
players to interact with a command line terminal might discourage most of them.
Another difficulty emerges from the integration of third-party technologies. Most
games are self-contained, i.e., they do not allow participants to directly interact
with external systems or resources, and, in case it is necessary, they mimic the
external environment. Nevertheless, this approach is not optimal for cybersecurity

G. Costa (�)
IMT Lucca, Lucca, Italy
e-mail: gabriele.costa@imtlucca.it

M. Ribaudo
University of Genoa, Genoa, Italy
e-mail: marina.ribaudo@unige.it

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
K. M. L. Cooper, A. Bucchiarone (eds.), Software Engineering for Games
in Serious Contexts, https://doi.org/10.1007/978-3-031-33338-5_12

265

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33338-5protect T1	extunderscore 12&domain=pdf

 885
52970 a 885 52970 a

mailto:gabriele.costa@imtlucca.it
mailto:gabriele.costa@imtlucca.it
mailto:gabriele.costa@imtlucca.it

 885 56845 a 885 56845
a

mailto:marina.ribaudo@unige.it
mailto:marina.ribaudo@unige.it
mailto:marina.ribaudo@unige.it
https://doi.org/10.1007/978-3-031-33338-5_12
https://doi.org/10.1007/978-3-031-33338-5_12
https://doi.org/10.1007/978-3-031-33338-5_12
https://doi.org/10.1007/978-3-031-33338-5_12
https://doi.org/10.1007/978-3-031-33338-5_12
https://doi.org/10.1007/978-3-031-33338-5_12
https://doi.org/10.1007/978-3-031-33338-5_12
https://doi.org/10.1007/978-3-031-33338-5_12
https://doi.org/10.1007/978-3-031-33338-5_12
https://doi.org/10.1007/978-3-031-33338-5_12
https://doi.org/10.1007/978-3-031-33338-5_12

266 G. Costa and M. Ribaudo

where “thinking out of the box” is of paramount importance. Taking strategic design
decisions requires a systematic assessment of these and other technical aspects that
we present in this chapter.

Keywords Cybersecurity awareness · Gamification · Hands on training

12.1 Introduction

In the last decades, the computer security community has devoted considerable
effort to investigating novel training methodologies. The main reason is that, since
security is orthogonal to every technology, a modern security expert is required to
master many different disciplines. For instance, a penetration tester may have to
both inspect the PHP code written by expert Web developers and evaluate the user
privileges configured by a system administrator.

As a result, learning-by-doing quickly emerged as an inspiring principle. The
idea is that direct, practical experience is a highly effective and efficient training
method. Unfortunately, in this context, “hands on” refers to both applied, e.g., binary
code inspection, and theoretical, e.g., cryptography math, aspects of computer
science and engineering. Hence, the effort in front of people willing to become
security experts may appear gargantuan.

Gamification soon appeared as a valid alternative to more traditional training
processes. In particular, capture the flag (CTF) competitions rapidly gained in
popularity in the last years (see [20] and [18] for some early witnesses). A
CTF provides an interactive learning environment for different skill levels, from
beginners to practitioners and even experts.

CTF are organized more and more frequently; nevertheless, CTF players are
usually highly motivated individuals. Since they are almost unknown to the great
majority of people, CTF may be perceived as extremely complex competitions,
only accessible to specialists and, thus, discouraging the participation of most
individuals. In this case, a CTF would fail its primary goal: to bring knowledge
and awareness about cybersecurity to a wide audience.

In this chapter, we report our experience with A NERD DOGMA, i.e., a quest
CTF (see Sect. 12.3.1) in the form of an escape room experience specifically
designed for beginners. The main goal of A NERD DOGMA is to provide an
interactive and immersive gaming experience for allowing unskilled people to move
the first steps in a real CTF and, more in general, in the field of cybersecurity. A
NERD DOGMA consists of four entry-level, yet realistic challenges that must be
solved by learning the rudiments during the game. All the challenges have been
designed to be self-contained, i.e., no specific previous knowledge is needed to solve
them. Moreover, some of the challenges must be solved by means of a (simplified)
command-line terminal. The aim is to make the players understand how to interact
with tools similar to those used in reality.

The design and implementation of A NERD DOGMA have been carried out
in the last years. During this period, we defined the objectives and specifications
used to validate the final product. Also, we implemented it in various forms,

12 Designing a Serious Game for Cybersecurity Education 267

e.g., as an online video game and as a physical escape room. Finally, these
implementations were utilized in various contexts for training and for increasing
cybersecurity awareness. All these events confirmed the adequacy of our design and
implementation.

This chapter is organized as follows. In Sect. 12.2, we survey on the related
work. Section 12.3 presents the game objectives and requirements, while Sect. 12.4
describes the overall design. Section 12.5 details the different versions of the escape
room implemented in the last years, and Sect. 12.6 provides our lesson learned.
Finally, some concluding remarks are given in Sect. 12.7.

12.2 Related Work

Gamification techniques may be used for several purposes such as increasing
motivation, improving learning outcomes, favoring teamwork, and introducing
young students to STEM disciplines. This is well established in the context of
computer science education as discussed, for example, in a recent study [1],
which compares the performances of groups of students exposed to gamification
techniques against control groups, e.g., their peers involved in more traditional
activities.

Various experiences using gamification or CTF-like competitions have also been
published for cybersecurity education. In most cases, these experiences involve
university students attending cybersecurity classes, e.g., see [2, 5, 6]. In these papers,
CTF-like exercises are used to train or evaluate students. Some results are shown,
and in general, the authors state that the combination of both gamification and
competition is an effective way to motivate students to put more effort into the
study of cybersecurity topics, to increase their practical skills, and to promote
teamwork. For a recent survey about other cybersecurity education experiences, we
refer the interested reader to [17]. In the remaining part of this section, we limit our
discussion to some projects we consider closer to our proposal.

The work in [8] presents a framework to design games having a pedagogic
purpose for an audience of non-experts. In particular, the paper suggests the steps
game designers should follow. These include the preliminary analysis of the target
players and the available resources such as time constraints, budget, and technical
skills of the developers. Classical software development steps such as design,
deployment, and prototype assessment are also discussed. Then the game can go
“live” with or without the supervision of learning facilitators. Finally, an evaluation
phase should be performed to assess whether the game contributed to increasing
cybersecurity awareness.

The authors of [15] suggest that the main characteristics of escape rooms, for
instance, their underlying storytelling, cooperative nature, teamwork, and timing
constraints, make them an ideal learning tool according to the constructivist learning
theory. Players become an active part of the story, not a mere audience. The
debriefing phase at the end of the game (if present) allows them to expose their

268 G. Costa and M. Ribaudo

view about the acquired knowledge, including possible difficulties. This narrative is
common to several papers introducing learning experiences based on escape rooms.

For example, GenCyber1 camps are summer cybersecurity camps organized in
different places in the USA for middle and high school students. Each camp director
can design a different learning format, and some results have been published in the
literature. In one experience, presented in [11], the students have to access the IT
infrastructure of the SPECTRE organization to find the password of a target account,
owned by Ernst Blofeld, a villain of the James Bond universe. Further GenCyber
challenges, mostly focusing on virtual reality, are presented in [7], where the authors
also measure the appreciation of the camp participants. In [12], the authors describe
their escape room, built following a path that is very similar to ours. For their first
proof of concept, the authors turned a conference room into a physical escape room
and organized teams of players who had a limited amount of time to solve several
puzzles. The experience was fun and appreciated by the players, but hard to scale
or move. The solution proposed to scale up is the Escape the Briefcase game, i.e., a
bag with a combination lock and different puzzles that can be deciphered in different
orders before the entire mystery is revealed. The bag is easy to “duplicate” to allow
more teams to play at the same time. Before starting, the mission is explained
(briefing), and the timer is set. After the game, a post-game discussion (debriefing)
follows, to improve the comprehension of the material covered in each puzzle.

Other authors report the narration underlying their experience. For instance, [14]
reports on a 10-week period during which students played an alternate reality game,
based on the following story: “The daughter of a student expelled 20 years ago is
back to her father’s campus to avenge him, and her initial point of attack is the
website of a security course [...].” The goal of the experience was to make the
participants understand some key concepts of cybersecurity and to improve their
skills to prevent cyberattacks. Results show that, after the course, students positively
changed their perception, in terms of understanding the tasks and problems that need
to be solved.

In [9], the authors use the story of a radical animal rights group, the Animal
Freedom Battalion, willing to free an animal held in zoo captivity, to increase
students’ engagement. The goal of the students playing the role of activists is to
compromise the zoo’s website and then delete records about the animals from
the zoo’s inventory database. Then, they could break into the zoo and free the
animal with no digital trace left in the database to witness that the animal ever
was at the zoo. The challenge was divided into three phases that mimic an actual
penetration testing methodology, i.e., reconnaissance, exploitation, and execution.
The authors conclude their work by reporting positive, yet informal, feedback from
the participants.

Finally, a more recent work [16] describes a first-person 3D escape room
developed with the Unity game engine2 to be used in class with the students

1 https://www.gen-cyber.com/.
2 https://unity.com/.

https://www.gen-cyber.com/
https://www.gen-cyber.com/
https://www.gen-cyber.com/
https://www.gen-cyber.com/
https://www.gen-cyber.com/
https://unity.com/
https://unity.com/
https://unity.com/

12 Designing a Serious Game for Cybersecurity Education 269

of a master’s degree in cybersecurity. The plan is to integrate the scores of the
students/players within the learning management system used for teaching. The
game is currently under development, and it has not been tested with students yet.

Although all the experiences just described share some similarities with A NERD
DOGMA, our escape room is substantially different since it targets a general
audience of inexpert players, rather than university students. Also, as described in
the following, since A NERD DOGMA comes with an open-source design, it can
be implemented and used in different contexts.

12.3 Requirements and Objectives

In this section, we state all the requirements and objectives considered during the
design and development of A NERD DOGMA.

12.3.1 Realism of Challenges

The primary goal was to provide players with a first-hand experience of cybersecu-
rity. This objective is not new, as it is also common in several artworks, e.g., video
games and movies, and contests. Thus, it is worth considering how cybersecurity has
been presented in this context, possibly by comparing successful and unsuccessful
results.

12.3.1.1 Nmap Cameos

Nmap3 is perhaps the most famous network scanning tool. Interestingly enough, its
developers also curate a list of Nmap appearances in movies. The list includes, for
instance, The Matrix Reloaded,4 Die Hard 4,5 and Snowden.6

Clearly, these movies aim at being pleasant for a wide audience, and the
appearances of Nmap mostly resemble Easter eggs.7 Although no real scanning
through Nmap was ever presented, the scenes gain realism by including actual
penetration testing tools.

3 https://nmap.org/.
4 http://www.imdb.com/title/tt0234215/.
5 http://www.imdb.com/title/tt0337978/.
6 http://www.imdb.com/title/tt3774114/.
7 See https://nmap.org/movies/ for details.

https://nmap.org/
https://nmap.org/
https://nmap.org/
http://www.imdb.com/title/tt0234215/
http://www.imdb.com/title/tt0234215/
http://www.imdb.com/title/tt0234215/
http://www.imdb.com/title/tt0234215/
http://www.imdb.com/title/tt0234215/
http://www.imdb.com/title/tt0234215/
http://www.imdb.com/title/tt0337978/
http://www.imdb.com/title/tt0337978/
http://www.imdb.com/title/tt0337978/
http://www.imdb.com/title/tt0337978/
http://www.imdb.com/title/tt0337978/
http://www.imdb.com/title/tt0337978/
http://www.imdb.com/title/tt3774114/
http://www.imdb.com/title/tt3774114/
http://www.imdb.com/title/tt3774114/
http://www.imdb.com/title/tt3774114/
http://www.imdb.com/title/tt3774114/
http://www.imdb.com/title/tt3774114/
https://nmap.org/movies/
https://nmap.org/movies/
https://nmap.org/movies/
https://nmap.org/movies/

270 G. Costa and M. Ribaudo

12.3.1.2 Movies on Hacking

A major example of the potentialities of combining realistic cybersecurity and
fiction comes from the celebrated series Mr. Robot.8 As a matter of fact, it is
well known that the authors of the show resorted to security experts, e.g., Michael
Bazzell. The result was a highly realistic fiction, which even inspired actual security
tools.9 Another prominent example is again Snowden, which narrates the true
story of Edward Snowden, the former NSA security expert who revealed privacy
violations perpetrated by some apparatuses of the US government.

Even though the security operations appearing in these movies may be realistic or
based on actual events, hacking sequences are often oversimplified, and no technical
details are given.

12.3.1.3 Cybersecurity in Video Games

Unlike movies, video games permit one to directly interact with a simulated
environment. As a consequence, players must learn how to use the game controls to
carry out specific tasks, including cybersecurity-related ones. Yet, as for movies,
most video games target a general audience that might be not so interested in
technical details.

In the last few years, some video games related to cybersecurity have been
published. For instance, Cyberpunk 2077 [3] and the Watch Dogs [13]10 saga are
staged in next future’s highly connected societies. There, most of the gameplay has
to do with some sort of hacking. However, these games present no technical aspects
as all the operations amount to mini-games, e.g., based on constraint solving or
pattern matching.

An interesting exception is Hacknet [19]. This game specifically aims at pro-
viding an immersive experience on cybersecurity. This includes, for instance,
a simulated terminal that accurately mimics a Linux shell. To the best of our
knowledge, the level of realism achieved by Hacknet is possibly the highest for
a video game.

12.3.1.4 Capture the Flag Competitions

As mentioned in the introduction, CTF competitions are real-life contests for
security practitioners. A CTF amounts to a collection of challenges, each based on
some technical aspect of cybersecurity. By solving the challenges, players collect

8 https://www.imdb.com/title/tt4158110/.
9 https://github.com/Manisso/fsociety.
10 Interestingly enough, Watch Dogs: Legion was also a victim of a real data leakage attack, see
https://www.zdnet.com/article/ubisoft-crytek-data-posted-on-ransomware-gangs-site/.

https://www.imdb.com/title/tt4158110/
https://www.imdb.com/title/tt4158110/
https://www.imdb.com/title/tt4158110/
https://www.imdb.com/title/tt4158110/
https://www.imdb.com/title/tt4158110/
https://www.imdb.com/title/tt4158110/
https://github.com/Manisso/fsociety
https://github.com/Manisso/fsociety
https://github.com/Manisso/fsociety
https://github.com/Manisso/fsociety
https://github.com/Manisso/fsociety
https://www.zdnet.com/article/ubisoft-crytek-data-posted-on-ransomware-gangs-site/
https://www.zdnet.com/article/ubisoft-crytek-data-posted-on-ransomware-gangs-site/
https://www.zdnet.com/article/ubisoft-crytek-data-posted-on-ransomware-gangs-site/
https://www.zdnet.com/article/ubisoft-crytek-data-posted-on-ransomware-gangs-site/
https://www.zdnet.com/article/ubisoft-crytek-data-posted-on-ransomware-gangs-site/
https://www.zdnet.com/article/ubisoft-crytek-data-posted-on-ransomware-gangs-site/
https://www.zdnet.com/article/ubisoft-crytek-data-posted-on-ransomware-gangs-site/
https://www.zdnet.com/article/ubisoft-crytek-data-posted-on-ransomware-gangs-site/
https://www.zdnet.com/article/ubisoft-crytek-data-posted-on-ransomware-gangs-site/
https://www.zdnet.com/article/ubisoft-crytek-data-posted-on-ransomware-gangs-site/
https://www.zdnet.com/article/ubisoft-crytek-data-posted-on-ransomware-gangs-site/
https://www.zdnet.com/article/ubisoft-crytek-data-posted-on-ransomware-gangs-site/
https://www.zdnet.com/article/ubisoft-crytek-data-posted-on-ransomware-gangs-site/

12 Designing a Serious Game for Cybersecurity Education 271

flags, i.e., strings in a given format, and they earn points. In most CTF events,
challenges are independent, and players can select the next one from a global
board. This kind of CTF is called Jeopardy. Another frequent type is Attack/Defence
(A/D), where teams directly compete by exploiting and patching a vulnerable
infrastructure. Less frequently, CTFs are organized in form of quests. In a Quest,
CTF players have to progress along a storyline by solving the challenges. Clearly,
in terms of engagement, a Quest CTF offers some advantages. Hence, it is not
surprising that Jeopardy and A/D are often directed to expert players who have
their own reference platform11 where competitions are weekly announced so that
individuals and teams can enroll, play, and compare their position in a worldwide
ranking. On the other hand, Quest is frequent for entry-level events.12

12.3.2 Type and Complexity of Challenges

Another crucial aspect has to do with the technical content of the challenges to be
included. For instance, CTF challenges may belong to various categories, depending
on the security domain they refer to. Below, we briefly consider the main features of
some common categories of challenges, with particular attention to their potential
for implementing entry-level exercises. Also, we remark that these categories are
not mutually exclusive as challenges may belong to more than one.

12.3.2.1 Binary

Binary challenges have to do with tasks such as reverse engineering and debugging
of executables. These challenges always require the usage of some tool and a general
understanding of how programs are written, compiled, and executed. Some very
basic tools for binary challenges include, for instance, strings (which extracts
ASCII strings from a file), hexdump (which shows the hexadecimal encoding of
the binary), and strace (which monitors the system calls performed by a running
program).

12.3.2.2 Network

This category includes challenges on network traffic inspection and protocol
analysis. For instance, they might require to reconstruct the interactions between two
or more computers from a fragment of recorded network traffic. These challenges

11 https://ctftime.org/.
12 For example, see https://capturetheflag.withgoogle.com/beginners-quest.

https://ctftime.org/
https://ctftime.org/
https://ctftime.org/
https://capturetheflag.withgoogle.com/beginners-quest
https://capturetheflag.withgoogle.com/beginners-quest
https://capturetheflag.withgoogle.com/beginners-quest
https://capturetheflag.withgoogle.com/beginners-quest
https://capturetheflag.withgoogle.com/beginners-quest
https://capturetheflag.withgoogle.com/beginners-quest

272 G. Costa and M. Ribaudo

require at least some previous knowledge about the TCP/IP mechanisms and rely on
tools such as Wireshark.13

12.3.2.3 OSInt

Open-source intelligence challenges revolve around collecting and processing data
from online sources. Players may take advantage of some tools such as Maltego,14

but in general, these challenges are meant to be solved without any specific
technology. Furthermore, some of the data sources may be well known by most
of the population, e.g., social media (SocMInt).

12.3.2.4 Crypto

Crypto challenges require tampering with ciphers, e.g., to reverse an encrypted text.
Complex exercises may require advanced math, an understanding of algorithmic
schemes, and scripting capabilities. Although tools may be useful, basic challenges,
e.g., asking to break simple substitution ciphers, do not require advanced skills, and
they can be solved with only pen and paper. Also, very little knowledge of ciphers,
in general, is necessary to deal with them.

12.3.2.5 Web

These challenges ask for finding a flag hidden in a Web application, e.g., by
exploiting a certain vulnerability. This category includes challenges on cross-site
scripting and SQL injection. However, simple challenges may require inspecting the
source code of a Web page, forging the parameters of an HTTP request, or inspecting
the value of a cookie. This can be done by using a common Web browser, and it only
requires some understanding of how the Web works.

12.3.2.6 Forensics

Loosely speaking, forensics exercises are about reconstructing a certain event from
logs or from other files. For instance, logs can be from a certain OS or a recording of
network traffic (network forensics). To carry out these challenges, the players must
understand the log structure and, reasonably, the process that generated it.

13 https://www.wireshark.org/.
14 https://www.maltego.com/.

https://www.wireshark.org/
https://www.wireshark.org/
https://www.wireshark.org/
https://www.wireshark.org/
https://www.maltego.com/
https://www.maltego.com/
https://www.maltego.com/
https://www.maltego.com/

12 Designing a Serious Game for Cybersecurity Education 273

12.3.2.7 Stego

Steganography means hiding data in messages or in multimedia documents, e.g.,
pictures and audio files. In a stego challenge, the player has to reconstruct such
hidden data. Sometimes, these challenges may require the usage of complex tools
and a good knowledge of certain file formats. However, very basic challenges exist
that only rely on some file features that most people might be aware of, e.g.,
metadata or text fonts. Often these challenges can be even solved with in-editor
functionalities, e.g., by adjusting the colors of a picture.

12.3.2.8 Misc

All the challenges that cannot be mapped to one of the previous groups belong to
the Misc category. Misc challenges are often related to some specific technology or
sub-topic in computer science.

12.3.3 Previous Knowledge

Another goal is that of stimulating the curiosity of as many people as possible
toward cybersecurity-related topics. To achieve that, we have to carefully consider
the required previous knowledge. On the one hand, if challenges are only accessible
to skilled players, most participants might find the game frustrating and opt out. On
the other hand, if no skills are required, players might find it not challenging at all
and get bored, especially when carrying out a long or repetitive task.

In general, we assume participants to have basic computer skills. These skills
include the following:

• Computer. The player understands that computers internally perform operations
and that certain tasks may be time-consuming.

• File. The player knows the most common file formats, e.g., pdf and txt. Also,
they know how to browse directories in a file system.

• Network. The player roughly understands that computers are connected through
networks using IP addresses.

• Web. The player can use a Web browser, follow hyperlinks, visit a URL, and
query search engines.

• Social. The player is aware of the existence of the most famous social networks
and has a basic understanding of how they work (e.g., they know what Facebook
posts and tweets are).

274 G. Costa and M. Ribaudo

• English. The player can read and understand a simple text, and they can follow
written instructions.15

12.3.4 Teamwork

A further message we would like to convey is that, in most cases, cybersecurity
is a team job, where people share their peculiar skills and mindset for achieving
a common objective. For this reason, the game must allow small teams of people
to participate. Furthermore, if possible, the game implementation should support
single-player mode so to be employable in more contexts. For instance, to compen-
sate the absence of a helping team, single players might have more time or hints on
how to solve the challenges.

12.3.5 Scoring and Playability

In terms of playability, we aim at designing a challenging game that only some
participants can conclude. At the same time, our goal is to provide people with
an entertaining experience from which they can learn something. For instance, we
might expect that around 20% of the players can finish the game and that less than
10% cannot solve even the first challenge. The scoring system should reflect the
progresses done by the players through the game and, possibly, keep into account
other factors, e.g., the amount of time required to finish the game.

12.4 A NERD DOGMA Design

Based on the requirements given in the previous section, below we introduce the
design and gameplay of A NERD DOGMA. Briefly, A NERD DOGMA is a Quest
CTF following a classical escape room game structure.

12.4.1 Game Plot

NERD corp. is an evil organization that aims at conquering the world. Currently,
they plan to release their ultimate malware with the codename “A NERD DOGMA.”

15 Although the game can be implemented in any language, we acknowledge English as the
reference language for technical operations.

12 Designing a Serious Game for Cybersecurity Education 275

Fig. 12.1 Planimetry of the four rooms layout. From top left, in counterclockwise order: (1)
secretary room, (2) copier room, (3) control room, and (4) archive room

However, the malware has a kill switch, which is a secret, alphanumeric code. The
agents/players’ mission is to retrieve the secret code.

To obtain it, the players must split into two teams that . (i) physically infiltrate the
NERD corp. HQ and .(ii) remotely deal with the IT security facilities. The on-field
team must collect evidence, move inside the headquarters, and perform actions, e.g.,
opening doors. Their equipment includes a UV flashlight to detect biological traces.
On the other hand, the remote team operates through a terminal having the necessary
security tools.

The HQ consists of four rooms. The general layout of the four rooms is shown in
Fig. 12.1. Briefly, to complete the game, players have to make their way through the
four rooms. The first three rooms, namely, the secretary room, the copier room, and
the control room, have locked doors that must be opened by the on-field agents.
Locks are controlled by PIN pads, and the unlocking PIN must be obtained by
solving a game challenge. The last room, called archive room, has an emergency
exit door. The on-field agents can leave anytime, but this will interrupt the mission.
The last challenge is to find the kill switch in the archived documents. After leaving
the HQ, players must reveal the kill switch to prove they solved the last challenge.

276 G. Costa and M. Ribaudo

12.4.1.1 Challenges

Below we schematically describe the four challenges and provide their write-ups.

1. Secretary room
Type: OSInt

Hints: Post-it #1: “Check the privacy policy of SOCIAL” (where SOCIAL is a social
network); Post-it #2: “PIN = NICK” (where NICK is a nickname);
Nameplate: “Ms. Eva Grandenaro”a

UV light: Fingerprints on the PIN pad

Write-up: Ms. Eva Grandenaro has an account on SOCIAL. A public post leaks her
daughter’s birth date, which is the PIN code

2. Copier room
Type: Stego

Hints: Partially readable wastepaper that contains the address of a printing queue

UV light: Fingerprints on the PIN pad

Write-up: The printing queue is accessible, and it contains four pdf documents. One of
the documents is a communication about the new PIN code. The PIN code is
covered by a black overlay, which makes it unreadable but does not prevent
text selection and copying

3. Control room
Type: Misc (Brute force)

Hints: A network diagram showing the IP address of the electronic lock

UV light: Fingerprints on the PIN pad

Write-up: The PIN codes can be enumerated and tested one by one with a tool (see
Sect. 12.5)

4. Archive room
Type: Crypto

Hints: Four encrypted documents

Write-up: One of the documents contains the final, secret code. All the documents are
encrypted with Caesar cipher. The key can be obtained by noticing that all
the documents begin with two fields, called “SUBJECT” and
“CLASSIFICATION”

a Grandenaro is a free translation for Moneypenny in Italian

12.4.1.2 Scoring and Further Details

The game supports multiple scoring systems. We assume that players’ score always
ranges over [0, 100], where 100 denotes the highest score. Naively, one might assign
25 points for each room/challenge solved. However, this would result in a coarse-
grained evaluation. A significant aspect is that the agents have a limited amount
of time, e.g., 20 minutes, to retrieve the secret code from the HQ. Hence, a better
scoring system will also consider the saved time, if any. For instance, we may opt
for assigning 20 points for each challenge and 10 points for the saved time. The time

12 Designing a Serious Game for Cybersecurity Education 277

points can be given for each minute remaining on the game timer. In addition, the
scoring system may include a cost , e.g., 5 points, for hints, i.e., in-game suggestions
on how to solve the current challenge. Thus, we should also consider that some
players might ask for the first challenge’s hint without solving it. In such a case, the
final score would be negative, which is often unwanted.

Although different versions of the game have been implemented using distinct
scoring systems, the default one follows the equation below:

. Score = 10 + 20 · Solves − 5 · Hints + min {T ime, 10}

Here, Solves is the number of solved rooms, Hints that of requested helps, and
T ime is the amount of (entire) minutes saved in case of game completion.

12.4.2 Compliance

Here we briefly revise the compliance of our design with regard to the objectives
discussed in Sect. 12.3.

1. Realism. Our challenges are based on actual CTF ones, and thus they have
the potential to offer a realistic experience. Clearly, this is also influenced
by the actual implementation (e.g., tools). This aspect is further discussed in
Sect. 12.5. Nevertheless, in principle, our challenges can provide a realistic
experience. Furthermore, the escape room can contribute to making the game
more immersive.

2. Complexity. The overall complexity of the proposed challenges might be cate-
gorized as entry level. Indeed, none of them require particular skills. Also, our
challenges cover four of the common CTF categories described in Sect. 12.3.2,
so that players can have a tasting of various security subjects.

3. Knowledge. No specific previous knowledge is needed. Players can solve the first
two challenges by just using a regular Web browser and a pdf viewer. The last two
challenges require the use of a terminal, and thus, it is important to provide them
with a self-explanatory interface and adequate help. This is further explained in
Sect. 12.5.

4. Teamwork. All the challenges must be solved by combining the on-field hints
with remote support. This will stimulate the interaction between the two teams
and test their communication skills.

5. Playability. The scoring system and the game time ensure that the game can be
tuned for different types of audiences. Moreover, hints and even write-ups can
be added so that players are allowed to obtain extra help in exchange for their
collected points.

278 G. Costa and M. Ribaudo

Fig. 12.2 First on-site proof of concept

12.5 Implementations

Starting from the design described above, different implementations have been
realized, all sharing the same rooms/challenges, with some changes which have been
introduced over time. In this section, we briefly present the various implementations,
both physical and digital, in chronological order.

12.5.1 First Prototype (2019)

The first implementation of A NERD DOGMA was presented during Bright Night
in September 2019.16 The implementation consisted of a tabletop experience where
most of the game operations were simulated by human supervisors (see Fig. 12.2).
The remote team was provided with a Linux machine and a real terminal. The
supervisor was in charge of helping the players with the terminal commands
necessary to solve the challenges.

The four rooms were simulated by placing closed cardboard boxes along four
segments of a long table. Each segment was delimited by red cords, and players

16 http://www.bright-toscana.it/eventi-e-laboratori-lucca-2019/.

http://www.bright-toscana.it/eventi-e-laboratori-lucca-2019/
http://www.bright-toscana.it/eventi-e-laboratori-lucca-2019/
http://www.bright-toscana.it/eventi-e-laboratori-lucca-2019/
http://www.bright-toscana.it/eventi-e-laboratori-lucca-2019/
http://www.bright-toscana.it/eventi-e-laboratori-lucca-2019/
http://www.bright-toscana.it/eventi-e-laboratori-lucca-2019/
http://www.bright-toscana.it/eventi-e-laboratori-lucca-2019/
http://www.bright-toscana.it/eventi-e-laboratori-lucca-2019/
http://www.bright-toscana.it/eventi-e-laboratori-lucca-2019/
http://www.bright-toscana.it/eventi-e-laboratori-lucca-2019/

12 Designing a Serious Game for Cybersecurity Education 279

could access the next segment only after communicating the correct door PIN to
the game supervisor. After that, the supervisor was in charge of removing the red
cord and opening the hints box in the next room. Moreover, the supervisor was
responsible for part of the storytelling, e.g., describing what the players would have
seen by switching on the UV light.

The event was organized for teams of four members. Each team had 30 minutes
to end the game, and extra hints were offered (for free) by the supervisors when
teams got stuck in solving a challenge. The final score was computed as:

. Score = 20 · Solves + 2 · min {T ime, 10}

Again, Solves is the number of solved rooms, and T ime is the amount of (entire)
minutes saved in case of game completion.

12.5.2 First Video Game (2020)

We started the implementation of the first video game in early 2020, and the first
playable version went online in May 2020.17 The online implementation has also
the objective to deal with some limitations that emerged during the first event and
make it accessible to a wider public. All in all, the main goal was to get rid of the
human supervisor. Since her role was mainly related to helping the players with the
terminal, we opted for a mock-up terminal, which we describe below.

12.5.2.1 Terminal

The terminal is designed to resemble a real Unix terminal with a limited number
of commands. To do this, we used JQueryTerminal.18 Briefly, JQueryTerminal is a
simulated, JavaScript-implemented terminal that entirely runs inside a Web browser.
Each terminal command is coded through a JavaScript function as a member of the
terminal object, and developers have to implement their own functions. Below, we
show an excerpt of the terminal implementation for the command help.

$(’body’).terminal({
help: function() {

this.echo(/* supported commands list */);
},
/* Other commands implementation */

});

17 https://anerddogma.it/.
18 https://terminal.jcubic.pl/.

https://anerddogma.it/
https://anerddogma.it/
https://anerddogma.it/
https://terminal.jcubic.pl/
https://terminal.jcubic.pl/
https://terminal.jcubic.pl/
https://terminal.jcubic.pl/

280 G. Costa and M. Ribaudo

Fig. 12.3 A NERD DOGMA remote team terminal

The behavior of the command is defined in the function body. In this case,
the function has no parameters, and it simply outputs a text before terminating.
The printed text (omitted here for brevity) is a help message explaining what the
supported commands are and how to use them (see Fig. 12.3).

The other available commands are crush and decrypt. The crush command
has a few inputs, i.e., the IP address of the target lock, the PIN length (--len),
the PIN charset (--chars), and the maximum number of repetitions of each
character (--reps). The implementation verifies that the correct IP address of
the target electronic lock is passed as an input. In that case, it enumerates all the
strings that comply with the given parameters. To simulate the PIN submission
process, a 0.1-second delay is forced at each cycle. This delay ensures that only
a few seconds are required when the right parameters are used, while using the
wrong parameters makes it impossible to find the right PIN before the game times
out. When the correct PIN is generated, the command terminates with a success
message. The correct command for solving the challenge of the third room is
crush 10.187.51.1 --len 6 --chars 137 --reps 2.

Finally, the decrypt command rotates the characters of the given message
according to the parameter --key. For simplicity, messages are all capitalized, and
only letters are rotated. All the documents appearing in the fourth room are rotated
by 16 positions. Thus, the command for obtaining the cleartext from message is
decrypt message --key 16.

12 Designing a Serious Game for Cybersecurity Education 281

Fig. 12.4 The four rooms layout of the first version of the video game

12.5.2.2 Core Game

The core of the online version is a point-and-click game developed in Godot,19 a
lightweight, open-source game development framework. By default, Godot games
can be exported for the most common desktop and mobile OSes as well as for
HTML5 Web platforms. The core game consists of . (i) a welcome screen, .(ii) the
four rooms, and .(iii) a game over screen. Each screen is implemented as a Godot
scene. Loosely speaking, a scene is a software component implementing a model-
view-controller (MVC) pattern. The model is coded through a class implemented in
Godot script, i.e., a python-like programming language. The view is a graphic user
interface created through the Godot graphic editor that embeds the user controllers,
e.g., buttons and text input fields. The overall game logic is implemented through
scene transitions that occur when certain events are triggered, e.g., when the right
PIN is inserted.

Figure 12.4 shows the Godot scenes for the rooms (following the layout of
Fig. 12.1). Instead, Fig. 12.5 shows the Godot controls of a PIN pad and its
appearance when the UV light control is triggered. All in all, the game has controls
for:

• Inspecting the in-game hints
• Interacting with the PIN pads
• Activating/deactivating the UV light on PIN pads

19 https://godotengine.org/.

https://godotengine.org/
https://godotengine.org/
https://godotengine.org/

282 G. Costa and M. Ribaudo

Fig. 12.5 The PIN pad of a door (left) and the effect of applying the UV flashlight (right)

• Moving between two adjacent rooms
• Opening the game terminal in a new tab of the browser
• Visualizing the extra hint in each room

12.5.2.3 Further Game Components

The last two elements needed to implement the full game are the social account of
Ms. Eva Grandenaro (secretary room) and the printing queue (copier room). For
the social media account, we opted for a Facebook profile. The profile has a single,
public post following the specifications given in Sect. 12.4.1. Instead, the printing
queue has been implemented as a directory managed by an Apache HTTP server.20

12.5.3 First Physical Room (2020)

Almost contemporarily to the video game implementation, we proposed another
physical implementation of A NERD DOGMA during the 4th Italian Conference
on Cybersecurity (ITASEC) [10] in February 2020. Roughly, the installation (see
Fig. 12.6) resembled that of Bright Night 2019, with few, significant improvements.

Briefly, the peculiar aspects of this installation were the following:

• The game was implemented as a single room, delimited by movable panels. This
room contained the hints of the secretary’s room and three electronic safe boxes.

20 https://intranerd.it/printers/queue37.

https://intranerd.it/printers/queue37
https://intranerd.it/printers/queue37
https://intranerd.it/printers/queue37
https://intranerd.it/printers/queue37
https://intranerd.it/printers/queue37

12 Designing a Serious Game for Cybersecurity Education 283

Fig. 12.6 A four-player team playing during ITASEC 2020

• Each electronic safe box contained the hints of one of the other three rooms.
• The UV light was simulated by placing QR codes on top of some objects in the

room. Each code, when scanned with a QR code reader, returned a text message
describing what the UV light shows, e.g., “Fingerprints appear on digits 1,3,7.”

12.5.4 Second Video Game (2021)

To improve the gaming aspects of the first video game, in 2021, a group of master
students was asked for reimplementing A NERD DOGMA from its specifications.
Due to its relevance, the students decided to use the Unity game engine, a main-
stream framework widely adopted in the video game industry. Again, this version of
the video game was deployed as a Web application.21 The main differences between
this version and the previous one are the following:

12.5.4.1 3D Graphics

As shown in Fig. 12.7, a 3D graphic with four scenes built with a customized
Unity asset and interactable objects was used in this case. This aims at making
the experience more immersive and giving a better characterization of the rooms

21 Now available at https://anerddogma.it/.

https://anerddogma.it/
https://anerddogma.it/
https://anerddogma.it/

284 G. Costa and M. Ribaudo

Fig. 12.7 The four rooms layout in the 3D version of A NERD DOGMA

and their nature. As a matter of fact, clearly identifying that they are in a certain
environment helps the players understand the current challenge and how to approach
the solution. Also, most people might find it more pleasant to interact with a curated
interface and be more motivated to see how the game progresses.

12.5.4.2 Support for Multi-language and Difficulty Levels

Another improvement is that now the game supports two languages, i.e., Italian end
English. This configuration can be selected before starting the game.

Contemporary, players can pick one between two difficulty levels, i.e., beginner
and expert. The main difference between the two is that beginners also have access
to the write-ups. A write-up provides full details on how to solve the current
challenge, but it also voids the points gained for solving it. As a consequence,
the scoring mechanism is changed accordingly, and the final score is computed as
follows:

. Score = 20 · Solves − 16 · Solutions + min {T ime − 2 · Hints, 10}

Here, reading a write-up (Solutions) decreases the score of the corresponding room
of 16 points (corresponding to 80% of the room value), while reading a hint (Hints)
decreases the remaining time of 2 minutes. The game lasts 30 minutes.

12 Designing a Serious Game for Cybersecurity Education 285

12.5.4.3 Social Account

The last difference regards the social network used in the first challenge. In
this version, Ms. Eva Grandenaro has a Twitter account (rather than a Facebook
one). The reason behind this choice is twofold. First, most young players showed
little confidence in using Facebook. Furthermore, Facebook is now restricting the
accessibility to public posts so that only registered people can see them (while this
is not required by Twitter). Since we prefer not to assume players to be registered to
any particular service, we opted for dropping Facebook.

12.5.4.4 Terminal

In the first prototype of the 3D version, a new terminal was re-implemented
inside the game to better integrate the command line hacking tasks with the 3D
environment. Afterward, we decided to reuse the JavaScript terminal introduced in
Sect. 12.5.2. This choice will guarantee easier code maintainability in case of the
addition of new rooms/challenges. Indeed, the JavaScript terminal, already used in
the 2D version, is also adopted in the recent mobile room presented in the next
section. In case of the addition of new commands, we will have a single application
to update.

12.5.5 Mobile Room (2022)

The last version of A NERD DOGMA is a 5 m . × 5 m (2.30 m tall) installation
(see Fig. 12.8). In this implementation, all the game aspects have been physically
implemented. Hence, for instance, room doors are actually locked with six-digit
PIN pads. Room walls are decorated, and actual furniture can be placed inside to
make every event slightly different. More importantly, the entire escape room can
be disassembled and moved in order to carry the game to different locations and, in

Fig. 12.8 External (left) and interior (right) of the last physical implementation of A NERD
DOGMA

286 G. Costa and M. Ribaudo

care, substitute damaged elements. When disassembled, the escape room is stored
in a 2.30 m . × 1.25 m . × 1.50 m box, which weighs approximately 500 Kg.

12.6 Participation to Events

In [4], we presented some experimental activities that we carried out on and
with A NERD DOGMA. Those experiments aimed at testing and measuring the
effectiveness of the game in introducing cybersecurity to inexpert players. In this
section, we report all the other events where the escape room was employed, and we
discuss the lesson learned.

12.6.1 Physical Installations

As stated in Sect. 12.5, A NERD DOGMA was first introduced at Bright Night 2019
(as a tabletop game) and then at ITASEC 2020 (as a single room). Thanks to the
movable room implementation, the game has been also presented in other venues
more recently. For instance, in 2022, the game was included among the training
activities of the Cybertrials,22 i.e., a free training program for high-school female
students. In particular, the movable room was included in the final event organized
in Turin (see Fig. 12.9).

Another event where the escape room recently appeared was the Wired Next
Fest,23 October 2022, in Milan. There the attendance was free, upon registration,
and open to the general audience present at the event. Finally, the last installation of
A NERD DOGMA occurred at Lucca Comics and Games 2022,24 i.e., the second
world’s largest comic festival.

12.6.2 Video Game Adoption

As detailed in [4], during the COVID-19 lockdown, the video game was used in
online events for high school students. After the lockdown, other open days with
high school students were (and will be) organized, either in schools’ labs or online,
to reach a large audience of students potentially interested in computer science and
cybersecurity.

During these events, we collect informal feedback from students, and we report
here some positive comments like “Prepare many more rooms !!!!!!!”25 and

22 https://www.cybertrials.it/.
23 https://nextfest2022-milano.wired.it/.
24 https://www.luccacomicsandgames.com/en/2022/home/.

https://www.cybertrials.it/
https://www.cybertrials.it/
https://www.cybertrials.it/
https://www.cybertrials.it/
https://nextfest2022-milano.wired.it/
https://nextfest2022-milano.wired.it/
https://nextfest2022-milano.wired.it/
https://nextfest2022-milano.wired.it/
https://nextfest2022-milano.wired.it/
https://www.luccacomicsandgames.com/en/2022/home/
https://www.luccacomicsandgames.com/en/2022/home/
https://www.luccacomicsandgames.com/en/2022/home/
https://www.luccacomicsandgames.com/en/2022/home/
https://www.luccacomicsandgames.com/en/2022/home/
https://www.luccacomicsandgames.com/en/2022/home/
https://www.luccacomicsandgames.com/en/2022/home/

12 Designing a Serious Game for Cybersecurity Education 287

Fig. 12.9 The escape room presentation at the Cybertrials final event in Turin (May 2022)

“Perhaps after one finds a solution give a bonus for 2 extra minutes. Anything else
is perfect and beautiful”.26

Some students also asked for extra time: “In our opinion, more time should be
given”27 and to “Being able to copy and paste the final text”28 in the last room,
with the documents encrypted with Caesar cipher. Of course, players would like to
complete all the rooms, and changing these settings would mean further simplifying
the game. But as we already stated in Sect. 12.3.5, we aimed at designing an
engaging and challenging game that only some participants can conclude.

Besides schools, the video game was included again in Bright Night 2020, 2021,
and 2022. There, A NERD DOGMA was proposed to the visitors. Since the online
game can scale on a large number of participants, we did not need to set up any
reservation process. A similar event was presented during Lucca Comics and Games

25 Original (Italian): “Fare molte più stanze !!!!!!!”.
26 Original (Italian): “Magari dopo che trovi una soluzione dare un bonus per esempio 2 minuti in
più di tempo. Per il resto tutto perfetto e bello”.
27 Original (Italian): “Secondo noi bisognerebbe dare più tempo”.
28 Original (Italian): “Poter copiare e incollare il testo finale”.

288 G. Costa and M. Ribaudo

2021, inside the Game Science Research Center exposition area,29 and for the
European Researchers’ Night30 2022 in Genova.

12.6.3 Lesson learned

In the last four years, we have exploited A NERD DOGMA for a number of
activities and events. Thousands of people played the game, either online or
in person. Our experience, also experimentally assessed in [4], confirms that
gamification is a powerful tool. In particular, this activity showed that also serious
and highly technical topics, e.g., those related to cybersecurity, can be introduced
with properly designed games. Although designing such games is nontrivial, the
systematic assessment of the state of the art helped us in taking reasonable
design and implementation choices. Among them, the neat decoupling between
the game design and its actual implementation allowed us to develop different
versions of the game. Furthermore, the Quest CTF approach provided us with
interesting opportunities in terms of challenge substitution and revision, without
compromising the overall structure of the game. Finally, the escape room setting
supported the strong engagement of participants without interfering with the design
and implementation of each challenge.

In terms of validation, we still have to carry out an in-depth analysis of our
design. As a matter of fact, although feedback and data have been collected for
some implementations, we still do not have a methodology that allows us to
aggregate such information. As a consequence, a quantitative analysis of, e.g., the
effectiveness of A NERD DOGMA is yet to come, and we consider it as future
work.

12.7 Conclusion

In this chapter, we presented the design and implementation of A NERD DOGMA,
a Quest CTF combined with an escape room that hosts four entry-level, yet realistic,
cybersecurity challenges. Our work started with a systematic revision of the game
objectives that resulted in a list of specifications. Thus, we designed A NERD
DOGMA and its challenges in order to satisfy the specifications, and eventually,
we implemented the game in various forms. These implementations were presented
in various contexts for both online and in-person training activities. In all cases,
no technical issues were reported, and we collected feedback from the players.

29 https://sites.google.com/imtlucca.it/gamescience/events/programma-lcg2021.
30 https://www.sharper-night.it/evento/gioco-escape-room-a-nerd-dogma/.

https://sites.google.com/imtlucca.it/gamescience/events/programma-lcg2021
https://sites.google.com/imtlucca.it/gamescience/events/programma-lcg2021
https://sites.google.com/imtlucca.it/gamescience/events/programma-lcg2021
https://sites.google.com/imtlucca.it/gamescience/events/programma-lcg2021
https://sites.google.com/imtlucca.it/gamescience/events/programma-lcg2021
https://sites.google.com/imtlucca.it/gamescience/events/programma-lcg2021
https://sites.google.com/imtlucca.it/gamescience/events/programma-lcg2021
https://sites.google.com/imtlucca.it/gamescience/events/programma-lcg2021
https://sites.google.com/imtlucca.it/gamescience/events/programma-lcg2021
https://sites.google.com/imtlucca.it/gamescience/events/programma-lcg2021
https://www.sharper-night.it/evento/gioco-escape-room-a-nerd-dogma/
https://www.sharper-night.it/evento/gioco-escape-room-a-nerd-dogma/
https://www.sharper-night.it/evento/gioco-escape-room-a-nerd-dogma/
https://www.sharper-night.it/evento/gioco-escape-room-a-nerd-dogma/
https://www.sharper-night.it/evento/gioco-escape-room-a-nerd-dogma/
https://www.sharper-night.it/evento/gioco-escape-room-a-nerd-dogma/
https://www.sharper-night.it/evento/gioco-escape-room-a-nerd-dogma/
https://www.sharper-night.it/evento/gioco-escape-room-a-nerd-dogma/
https://www.sharper-night.it/evento/gioco-escape-room-a-nerd-dogma/
https://www.sharper-night.it/evento/gioco-escape-room-a-nerd-dogma/
https://www.sharper-night.it/evento/gioco-escape-room-a-nerd-dogma/
https://www.sharper-night.it/evento/gioco-escape-room-a-nerd-dogma/

12 Designing a Serious Game for Cybersecurity Education 289

This helped us draw some statements about the game, its features, and potential
improvements.

Our research confirms that gamification is a viable solution for the provisioning
of serious and technical content to a wide audience of unskilled people. Neverthe-
less, as we highlighted, there are several caveats that game designers must consider.
Although modern development frameworks, e.g., Unity and Godot, can support
software design and implementation, the actual contents must be carefully studied
as, for instance, some of them can be external to the implementation. The open-
source design of A NERD DOGMA also aims at mitigating this issue by allowing
challenges to be maintained over time, without redesigning the entire game.

Acknowledgments This work was partially supported by project SERICS (PE00000014) under
the NRRP MUR program funded by the EU-NGEU.

References

1. Ahmad, A., Zeshan, F., Khan, M.S., Marriam, R., Ali, A., Samreen, A.: The impact of
gamification on learning outcomes of computer science majors. ACM Trans. Comput. Educ.
20(2) (2020)

2. Beltrán, M., Calvo, M., González, S.: Experiences using capture the flag competitions
to introduce gamification in undergraduate computer security labs. In: 2018 International
Conference on Computational Science and Computational Intelligence (CSCI), pp. 574–579.
IEEE, Piscataway (2018)

3. CD Projekt Red. Cyberpunk 2077. PlayStation 4, PlayStation 5, Xbox One, Xbox Series X/S,
Microsoft Windows, Stadia (2020)

4. Costa, G., Lualdi, M., Ribaudo, M., Valenza, A.: A NERD DOGMA: introducing CTF to non-
expert audience. In: Proceedings of the 21st Annual Conference on Information Technology
Education, SIGITE ’20, pp. 413–418. Association for Computing Machinery, New York (2020)

5. Dabrowski, A., Kammerstetter, M., Thamm, E., Weippl, E., Kastner, W.: Leveraging com-
petitive gamification for sustainable fun and profit in security education. In: 2015 USENIX
Summit on Gaming, Games, and Gamification in Security Education (3GSE 15), Washington,
DC. USENIX Association, Berkeley (2015)

6. Demetrio, L., Lagorio, G., Ribaudo, M., Russo, E., Valenza, A.: ZenHackAdemy: Ethical
Hacking @ DIBRIS. In: Proceedings of the 11th International Conference on Computer
Supported Education, CSEDU 2019, Heraklion, Crete, May 2–4, 2019, vol. 1, pp. 405–413.
SciTePress, Setúbal (2019)

7. Jin, G., Tu, M., Kim, T.-H., Heffron, J., White, J.: Game based cybersecurity training for high
school students. In: Proceedings of the 49th ACM Technical Symposium on Computer Science
Education, SIGCSE ’18, pp. 68–73. Association for Computing Machinery, New York (2018)

8. Le Compte, A., Elizondo, D., Watson, T.: A renewed approach to serious games for cyber
security. In: 2015 7th International Conference on Cyber Conflict: Architectures in Cyberspace,
pp. 203–216. NATO CCD COE Publications, Tallinn (2015)

9. Lehrfeld, M., Guest, P.: Building an ethical hacking site for learning and student engagement.
In: SoutheastCon 2016, pp. 1–6. IEEE, Piscataway (2016)

10. Loreti, M., Spalazzi, L. (Eds.) Proceedings of the Fourth Italian Conference on Cyber Security,
Ancona, February 4th to 7th, 2020, vol. 2597. CEUR Workshop Proceedings. CEUR-WS.org
(2020)

290 G. Costa and M. Ribaudo

11. McDaniel, L., Talvi, E., Hay, B.: Capture the flag as cyber security introduction. In: 2016 49th
Hawaii International Conference on System Sciences (HICSS), pp. 5479–5486 (2016)

12. Mello-Stark, S., VanValkenburg, M.A., Hao, E.: Thinking Outside the Box: Using Escape
Room Games to Increase Interest in Cyber Security, pp. 39–53. Springer International
Publishing, Berlin (2020)

13. Montreal, U.: Watch dogs. Microsoft Windows, PlayStation 3, PlayStation 4, Xbox 360, Xbox
One, Wii U (2014)

14. Morelock, J.R., Peterson, Z.: Authenticity, ethicality, and motivation: a formal evaluation of a
10-week computer security alternate reality game for CS undergraduates. In: 2018 USENIX
Workshop on Advances in Security Education (ASE 18), Baltimore. USENIX Association,
Berkeley (2018)

15. Papaioannou, T., Tsohou, A., Bounias, G., Karagiannis, S.: A constructive approach for raising
information privacy competences: the case of escape room games. In: Katsikas, S., Furnell,
S. (Eds.) Trust, Privacy and Security in Digital Business, pp. 33–49. Springer International
Publishing, Berlin (2022)

16. Pappas, G., Peratikou, P., Siegel, J., Politopoulos, K., Christodoulides, C., Stavrou, S.: Cyber
escape room: an educational 3d escape room game within a cyber range training realm.
In: INTED2020 Proceedings, 14th International Technology, Education and Development
Conference, pp. 2621–2627. IATED, 2–4 March (2020)

17. Švábenský, V., Vykopal, J., Čeleda, P.: What are cybersecurity education papers about? A
systematic literature review of SIGCSE and ITiCSE conferences. In: Proceedings of the
51st ACM Technical Symposium on Computer Science Education, SIGCSE ’20, pp. 2–8.
Association for Computing Machinery, New York (2020)

18. Tobey, D.H., Pusey, P., Burley, D.L.: Engaging learners in cybersecurity careers: lessons from
the launch of the National Cyber League. ACM Inroads 5(1), 53–56 (2014)

19. Trobbiani, M.: Hacknet. Microsoft Windows, macOS, Linux, PlayStation 4, Xbox One,
Nintendo Switch, iOS, Android (2015)

20. Vigna, G.: The 2010 international capture the flag competition. IEEE Sec. Privacy 9(1), 12–14
(2011)

	Preface
	Part I: Topics on the Design, Maintenance, Adaptation, and Evaluation of Gameful Systems
	Part II: Topics on Experiences with Gameful Systems
	Perspectives
	Acknowledgments

	Contents
	Editors and Contributors
	About the Editors
	Contributors

	1 Introduction to Software Engineering for Games in SeriousContexts
	1.1 Introduction
	1.2 Background: Gameful Engineering
	1.2.1 Distinguishing Serious Games and Gamified Systems
	1.2.2 Inherent Complexity
	1.2.3 Addressing the Complexity

	1.3 Recent Advances at the Intersection of Software and Gameful Engineering
	1.4 Content of the Book
	1.4.1 Part I Topics on the Design, Maintenance, Adaptation, and Evolution of Gameful Systems
	1.4.2 Part II Topics on Experiences with Gameful Systems

	1.5 Summary
	References

	13 Grand Challenges in Software Engineering for Games in Serious Contexts
	13.1 Introduction
	13.2 Grand Challenges
	13.2.1 Design of GSC
	13.2.2 Context-Awareness in GSC
	13.2.3 User Experience Evaluation Methodologies and Tools
	13.2.4 Software Reuse in GSC
	13.2.5 Quality Design in GSC
	13.2.6 Adaptation in GSC
	13.2.7 Abstraction and Automation in GSC
	13.2.8 GSC for Software Engineering Education and Training
	13.2.9 GSC for Software Quality

	13.3 Final Discussion
	References

	Part I Topics on the Design, Maintenance, Adaptation, and Evaluation of Gameful Systems
	2 User Experience Evaluation Methods for Games in SeriousContexts
	2.1 Introduction
	2.2 Defining User Experience
	2.3 Methods to Evaluate UX in Serious Games
	2.4 Analysis of Methodologies
	2.4.1 Quantitative vs Qualitative Assessment
	2.4.2 Subjective vs Objective Assessment
	2.4.3 Short-Term vs Long-Term Assessment
	2.4.4 Formative vs Summative Evaluation

	2.5 Overview of the Main Methodologies
	2.5.1 Think-Aloud Protocol
	2.5.2 Expert Evaluation
	2.5.3 Cognitive Walk-Through (CW)
	2.5.4 Playtesting
	2.5.5 Interviews
	2.5.6 Focus Groups
	2.5.7 Observation
	2.5.8 Surveys
	2.5.8.1 The Player Experience of Need Satisfaction
	2.5.8.2 Challenge Originating from Recent Gameplay Interaction Scale

	2.5.9 Immersive Experience Questionnaire
	2.5.9.1 Sensual Evaluation Instrument
	2.5.9.2 Game Experience Questionnaire

	2.5.10 Psychophysiological Measurements
	2.5.10.1 Biofeedback Measuring Device
	2.5.10.2 FaceReader
	2.5.10.3 Self-Assessment Methods
	2.5.10.4 Fun Toolkit
	2.5.10.5 Self-Assessment Manikin (SAM)
	2.5.10.6 UX Curve
	2.5.10.7 MemoLine

	2.6 Discussion
	2.7 Conclusions
	References

	3 Software Engineering for Dynamic Game Adaptation in Educational Games
	3.1 Introduction
	3.1.1 Research Background
	3.1.2 Motivation
	3.1.3 Chapter Outline

	3.2 Stealth Assessment
	3.2.1 Stealth Assessment Implementation Techniques
	3.2.1.1 Mouse and Touch-Tracking
	3.2.1.2 Emotion Tracking
	3.2.1.3 Player Data-Tracking
	3.2.1.4 Bayesian Modeling
	3.2.1.5 Educational Data Mining

	3.3 Endogenous and Exogenous Games
	3.3.1 Exogenous Games
	3.3.2 Endogenous Games

	3.4 CAGE Architecture
	3.4.1 Student Model
	3.4.2 Stealth Assessment in CAGE

	3.5 Validation of the CAGE Framework
	References

	4 Performance on Software Architecture Design to Serious Games for Mobile Devices
	4.1 Introduction
	4.2 Motivation and Research
	4.3 Background and Recent Review of the Literature
	4.3.1 Metrics to Evaluate Architectural Software Design

	4.4 Proposed Solution
	4.4.1 Didactic Requirements
	4.4.2 Didactic Design
	4.4.3 Serious Game Implementation

	4.5 Discussion
	4.6 Conclusions
	References

	5 ENTRUST: Co-design and Validation of a Serious Game for Assessing Clinical Decision-Making and Readinessfor Entrustment
	5.1 Introduction
	5.2 Background
	5.2.1 Entrustable Professional Activities
	5.2.2 Game-Based Assessment in the Health Domain

	5.3 Design of ENTRUST
	5.3.1 Co-design Process
	5.3.2 Assessment Platform
	5.3.2.1 Simulation Mode
	5.3.2.2 Question Mode

	5.3.3 Authoring Platform
	5.3.3.1 Order Library
	5.3.3.2 Case Library
	5.3.3.3 Exam Library

	5.3.4 Case Creation and Scoring Algorithm
	5.3.5 Technical Specifications and Data Collection

	5.4 Study: ENTRUST Inguinal Hernia EPA Assessment Pilot
	5.4.1 Methodology
	5.4.1.1 Participants
	5.4.1.2 Measures
	5.4.1.3 Procedure

	5.4.2 Data Analysis
	5.4.3 Results
	5.4.3.1 Relationship Between Performance and Prior Video Game Experience
	5.4.3.2 Relationship Between Scores and Prior Operative Experience
	5.4.3.3 Relationships Between Scores and PGY-Level
	5.4.3.4 Categorical vs Non-categorical General Surgery Trainee Performance
	5.4.3.5 Critical Surgical Decision-Making Performance

	5.5 Discussion
	5.5.1 Lessons Learned from the Co-design Process
	5.5.2 Validity Evidence for Assessing Clinical Decision-Making Skills

	5.6 Limitations
	5.7 Future Work
	5.7.1 ENTRUST Development
	5.7.2 ENTRUST Research

	5.8 Conclusion
	References

	6 Engineering Adaptive Serious Games Using Machine Learning
	6.1 Introduction
	6.2 Data Models
	6.2.1 Game Task Model
	6.2.2 Player/Learner Model

	6.3 A Generalized Methodology for Evolving Existing Serious Games to Use ML
	6.3.1 Identify
	6.3.2 Model
	6.3.3 Build
	6.3.4 Evaluate

	6.4 Challenges in Engineering Adaptive Serious Games
	6.4.1 Challenge #1: Selecting Data
	6.4.2 Challenge #2: Game Elements
	6.4.3 Challenge #3: Cold Start
	6.4.4 Challenge #4: Adaptation Frequency
	6.4.5 Challenge #5: Evaluating Learning

	6.5 Discussion
	References

	Part II Topics on Experiences with Gameful Systems
	7 Future Directions in Games for Serious Contexts: A Conversation About Transferability
	7.1 Introduction
	7.2 Serious Games Design Transferability: Setting Up the Conversation About Purpose, Tools, and Instruments
	7.3 Going Technical: Personality Vectors as a Strategy Toward Emotional AI Modelling
	7.4 Conclusions
	7.4.1 Games as “Tools” and Games as “Instruments”
	7.4.2 Early Development, Purpose, and Contextualization
	7.4.3 Personality Vectors, Emotional Modelling, and SG Development

	References

	8 Code-Venture: A Mobile Serious Game for Introductory Programming
	8.1 Introduction
	8.2 Background Study
	8.2.1 Related Works
	8.2.2 Commercial Apps
	8.2.3 Skills Required for Introductory Programming

	8.3 Analysis
	8.3.1 Comparative Analysis of the Related Works
	8.3.2 Comparative Analysis of the Commercial Games
	8.3.3 Summary of Findings

	8.4 High-Level Architecture
	8.4.1 The Mini-games of Code-Venture
	8.4.2 Justifications for Code-Venture's Mini-games

	8.5 Code-Venture's Implementation and Testing
	8.5.1 Code-Venture's Main Functionalities
	8.5.2 User Acceptance Testing
	8.5.2.1 Pre-game Results
	8.5.2.2 Post-game Results
	8.5.2.3 Overall Feedback from Students

	8.6 Discussion
	8.7 Conclusion
	References

	9 Using Active Learning to Teach Software Engineering in Game Design Courses
	9.1 Introduction
	9.2 Background
	9.2.1 Active Learning
	9.2.2 Student Engagement
	9.2.3 Role-Play
	9.2.4 Gamification

	9.3 Proposed Solution
	9.3.1 Course Overview: CIS 487 Computer Game Design I
	9.3.2 Course Overview: CIS 488 Computer Game Design II

	9.4 Results and Discussion
	9.4.1 Course Surveys
	9.4.2 Course Evaluations
	9.4.3 Lessons Learned
	9.4.4 Threats to Validity

	9.5 Conclusions and Future Direction
	References

	10 A Framework for the Gamification of GUI Testing
	10.1 Introduction
	10.2 Background and Related Work
	10.2.1 GUI Testing
	10.2.2 Gamification in Software Engineering

	10.3 Gamified Software Testing: A State of the Art
	10.3.1 Adopted Game Mechanics
	10.3.2 Gamified Software Testing Tools
	10.3.3 Advantages and Drawbacks of Gamification for Software Testing

	10.4 A Framework of Game Mechanics for GUI Testing of Web Apps
	10.4.1 Scoring Mechanism and Leaderboard
	10.4.2 Progress Bars
	10.4.3 Exploration Highlights
	10.4.4 Injected Bugs
	10.4.5 Achievements
	10.4.6 User Profiles and Avatars
	10.4.7 Quests and Challenges

	10.5 Preliminary Evaluation
	10.6 Threats to Validity
	10.7 Conclusion and Future Directions
	References

	11 Applying Leaderboards for Quality Improvement in Software Development Projects
	11.1 Motivation
	11.2 Related Work
	11.2.1 Gamification
	11.2.2 Software Quality and Technical Debt
	11.2.3 Gamification and Software Development Quality

	11.3 Research Design
	11.3.1 Planning the Research
	11.3.2 Preparing and Conducting the Experiments
	11.3.3 Preparing and Conducting the Interviews
	11.3.4 Analyzing the Interview Results

	11.4 Results
	11.4.1 Effects of a Leaderboard on Software Quality
	11.4.2 Motivational Effects of Leaderboards on Software Quality
	11.4.3 Motivational Effects
	11.4.4 Willingness to Play

	11.5 Discussion and Outlook
	References

	12 Designing a Serious Game for Cybersecurity Education
	12.1 Introduction
	12.2 Related Work
	12.3 Requirements and Objectives
	12.3.1 Realism of Challenges
	12.3.1.1 Nmap Cameos
	12.3.1.2 Movies on Hacking
	12.3.1.3 Cybersecurity in Video Games
	12.3.1.4 Capture the Flag Competitions

	12.3.2 Type and Complexity of Challenges
	12.3.2.1 Binary
	12.3.2.2 Network
	12.3.2.3 OSInt
	12.3.2.4 Crypto
	12.3.2.5 Web
	12.3.2.6 Forensics
	12.3.2.7 Stego
	12.3.2.8 Misc

	12.3.3 Previous Knowledge
	12.3.4 Teamwork
	12.3.5 Scoring and Playability

	12.4 A NERD DOGMA Design
	12.4.1 Game Plot
	12.4.1.1 Challenges
	12.4.1.2 Scoring and Further Details

	12.4.2 Compliance

	12.5 Implementations
	12.5.1 First Prototype (2019)
	12.5.2 First Video Game (2020)
	12.5.2.1 Terminal
	12.5.2.2 Core Game
	12.5.2.3 Further Game Components

	12.5.3 First Physical Room (2020)
	12.5.4 Second Video Game (2021)
	12.5.4.1 3D Graphics
	12.5.4.2 Support for Multi-language and Difficulty Levels
	12.5.4.3 Social Account
	12.5.4.4 Terminal

	12.5.5 Mobile Room (2022)

	12.6 Participation to Events
	12.6.1 Physical Installations
	12.6.2 Video Game Adoption
	12.6.3 Lesson learned

	12.7 Conclusion
	References

