


Table of Contents
Cover
Title Page
Copyright Page
Dedication Page
Preface to the Third Edition
Preface to the Second Edition
Preface to the First Edition
About the Companion Website
1 Characteristics of Aircraft Structures and Materials

1.1 INTRODUCTION
1.2 TYPES OF AIRCRAFT STRUCTURES
1.3 BASIC STRUCTURAL ELEMENTS IN AIRCRAFT
STRUCTURE
1.4 AIRCRAFT MATERIALS
PROBLEMS

2 Loads on Aircraft Structures
2.1 INTRODUCTION
2.2 BASIC STRUCTURAL ELEMENTS
2.3 Wing and Fuselage
PROBLEMS

3 Introduction to Elasticity
3.1 INTRODUCTION
3.2 CONCEPT OF DISPLACEMENT
3.3 STRAIN
3.4 STRESS
3.5 EQUATIONS OF EQUILIBRIUM IN A UNIFORM STRESS
FIELD

kindle:embed:0001?mime=image/jpg


3.6 EQUATIONS OF EQUILIBRIUM IN A NONUNIFORM STRESS
FIELD
3.7 STRESS VECTOR AND STRESS COMPONENTS RELATIONS
3.8 PRINCIPAL STRESS
3.9 SHEAR STRESS
3.10 STRESS TRANSFORMATION
3.11 LINEAR STRESS–STRAIN RELATIONS
3.12 PLANE ELASTICITY
3.13 FORMULATIONS BEYOND 2-D PLANE ELASTICITY
PROBLEMS
REFERENCES

4 Torsion
4.1 INTRODUCTION
4.2 TORSION OF UNIFORM BARS WITH ARBITRARY CROSS-
SECTION
4.3 BARS WITH CIRCULAR CROSS-SECTIONS
4.4 BARS WITH NARROW RECTANGULAR CROSS-SECTIONS
4.5 CLOSED SINGLE-CELL THIN-WALLED SECTIONS
4.6 MULTICELL THIN-WALLED SECTIONS
4.7 WARPING IN OPEN THIN-WALLED SECTIONS
4.8 WARPING IN CLOSED THIN-WALLED SECTIONS
4.9 EFFECT OF END CONSTRAINTS
PROBLEMS
REFERENCES

5 Bending and Flexural Shear
5.1 INTRODUCTION
5.2 BERNOULLI–EULER BEAM THEORY
5.3 STRUCTURAL IDEALIZATION
5.4 TRANSVERSE SHEAR STRESS DUE TO TRANSVERSE
FORCE IN SYMMETRIC SECTIONS



5.5 TIMOSHENKO BEAM THEORY
5.6 SAINT-VENANT'S PRINCIPLE
5.7 SHEAR LAG
PROBLEMS
REFERENCE

6 Flexural Shear Flow in Thin-Walled Sections
6.1 INTRODUCTION
6.2 FLEXURAL SHEAR FLOW IN OPEN THIN-WALLED
SECTIONS
6.3 SHEAR CENTER IN OPEN SECTIONS
6.4 CLOSED THIN-WALLED SECTIONS AND COMBINED
FLEXURAL AND TORSIONAL SHEAR FLOW
6.5 CLOSED MULTICELL SECTIONS
PROBLEMS

7 Failure Criteria for Isotropic Materials
7.1 INTRODUCTION
7.2 STRENGTH CRITERIA FOR BRITTLE MATERIALS
7.3 YIELD CRITERIA FOR DUCTILE MATERIALS
7.4 FRACTURE MECHANICS
7.5 STRESS INTENSITY FACTOR
7.6 EFFECT OF CRACK TIP PLASTICITY
7.7 FATIGUE FAILURE
7.8 FATIGUE CRACK GROWTH
PROBLEMS
REFERENCES

8 Elastic Buckling
8.1 INTRODUCTION
8.2 ECCENTRICALLY LOADED BEAM-COLUMN
8.3 ELASTIC BUCKLING OF STRAIGHT BARS
8.4 INITIAL IMPERFECTION



8.5 POSTBUCKLING BEHAVIOR
8.6 BAR OF UNSYMMETRIC SECTION
8.7 TORSIONAL–FLEXURAL BUCKLING OF THIN-WALLED
BARS
8.8 ELASTIC BUCKLING OF FLAT PLATES
8.9 LOCAL BUCKLING OF OPEN SECTIONS
PROBLEMS

9 Analysis of Composite Laminates
9.1 PLANE STRESS EQUATIONS FOR COMPOSITE LAMINA
9.2 OFF-AXIS LOADING
9.3 NOTATION FOR STACKING SEQUENCE IN LAMINATES
9.4 SYMMETRIC LAMINATE UNDER IN-PLANE LOADING
9.5 EFFECTIVE MODULI FOR SYMMETRIC LAMINATES
9.6 LAMINAR STRESSES
9.7 [±45°] LAMINATE
PROBLEMS

Index
End User License Agreement



List of Tables
Chapter 1

Table 1.1 Mechanical properties of metals at room
temperature in aircraft structu...
Table 1.2 Mechanical properties of �ibers.
Table 1.3 Longitudinal mechanical properties of �iber
composites.

Chapter 7
Table 7.1 Material properties of aluminum and steel alloys.
Table 7.2 Values of C and m for K in MPa  and da/dN in
m/cycle.

Chapter 8
Table 8.1 Numerical solutions for P/Pcr and w(L/2)/L.

Table 8.2 Sectional properties for thin-walled sections.
Table 8.3 Values of k for simply supported edge along y = 0
and free edge along...
Table 8.4 Values of k for clamped edge along y = 0 and free
edge along y = b, v...
Table 8.5 Values of k for buckling under shearing forces.



List of Illustrations
Chapter 1

Fig. 1.1 (a) Powered �ixed-wing aircraft, (b) glider, and (c)
rotorcraft.
Fig. 1.2 Various lighter-than-air vehicles: (a) hot-air balloon,
(b) blimp, ...
Fig. 1.3 (a) Fixed-wing drone; (b) multirotor rotary wing
drone.
Fig. 1.4 Fixed-wing aircraft parts.
Fig. 1.5 Various fuselage con�igurations: (a) truss type, (b)
semimonocoque ...
Fig. 1.6 Various wing con�igurations: (a) monospar (b)
multispar type and (c...

Chapter 2
Fig. 2.1 (a) Circular rod; (b) channel.
Fig. 2.2 Axially loaded steel rod.
Fig. 2.3 Shear panel under uniform shear stress.
Fig. 2.4 Curved panel under a state of constant shear stress.
Fig. 2.5 Cantilever beam.
Fig. 2.6 (a) Wide-�lange beam; (b) bending force distribution;
(c) shear str...
Fig. 2.7 Hollow cylinder subjected to a torque.
Fig. 2.8 Torsion member with (a) a solid section and (b)
hollow section.
Fig. 2.9 Box beam.
Fig. 2.10 Longitudinal stringers in a box beam.
Fig. 2.11 Typical spar construction.



Fig. 2.12 Typical rib construction.
Fig. 2.13 Typical two-spar wing cross-sections for subsonic
aircraft: (a) sp...
Fig. 2.14 Fuselage structure.
Fig. 2.15 Thin-walled pressurized cylinder.
Fig. 2.16 Fuselage of a Boeing 777 under construction.
Fig. 2.17 Closed thin-walled section.
Fig. 2.18 Dimensions of the cross-section of an I-beam.
Fig. 2.19 Coordinate system for a beam.
Fig. 2.20 Cross-sections of two beams.
Fig. 2.21 A joint fastened together using two bolts.
Fig. 2.22 A thin-walled cylinder fastened together with cover
plates.

Chapter 3
Fig. 3.1 (a) Displacement formulation and (b) stress
formulation approaches ...
Fig. 3.2 Displacement of material point P after deformation.
Fig. 3.3 Elongation.
Fig. 3.4 Neighboring points P and Q in a solid body.
Fig. 3.5 Rotations of material line elements in the x–y plane.
Fig. 3.6 Shear deformation in the x–y plane.
Fig. 3.7 Rigid body rotation.
Fig. 3.8 Rigid body translation.
Fig. 3.9 Total resultant force on an area.
Fig. 3.10 Stress vector with three components on the x-face.
Fig. 3.11 Example of how (a) uniform and (b) nonuniform
stress �ields are de...



Fig. 3.12 In�initesimal solid element under uniform stress.
Fig. 3.13 Stress components acting on the faces of the element
under a nonun...
Fig. 3.14 Two-dimensional state of stress in a wedge element.
Fig. 3.15 Wedge-shaped body.
Fig. 3.16 Stress components in the x–y and x′–y′ coordinates.
Fig. 3.17 Stresses in a thin-walled pressure vessel due to
internal pressure...
Fig. 3.18 Stress–strain curve.
Fig. 3.19 A cantilever beam subjected to uniformly distributed
vertical load...
Fig. 3.20 Beam under pure bending.
Fig. 3.21 The Cartesian (x–y) and the polar (r–θ) coordinates.
Fig. 3.22 A stress element in polar coordinates.
Fig. 3.23 Stress components acting on the faces of the element
under a nonun...
Fig. 3.24 Cantilever beam subjected to a shear force.
Fig. 3.25 Shape of a wedge.
Fig. 3.26 Helicopter drive shaft AB under combined tension
and torsion.
Fig. 3.27 Solid con�ined between two smooth rigid walls.
Fig. 3.28 Thin rectangular panel subjected to uniform tension.
Fig. 3.29 Thin rectangular solid panel.
Fig. 3.30 Thin rectangular solid panel.
Fig. 3.31 An aluminum cantilever panel subjected to end shear
force.
Fig. 3.32 An aluminum shaft with spiral weld.

Chapter 4



Fig. 4.1 Straight bar of a constant cross-section.
Fig. 4.2 Rotation of the cross-section of a bar under torsion.
Fig. 4.3 Tangential (s) and normal (n) directions of the
boundary contour of...
Fig. 4.4 Shear stresses on the cross-section.
Fig. 4.5 Shear stresses on (a) a cylinder of radius r(a > r) cut
out of the ...
Fig. 4.6 Torsion on a shaft with circular cross-section.
Fig. 4.7 Shear stress due to torque varies linearly along the
radial line of...
Fig. 4.8 Circular shaft with (a) solid section and (b) hollow
section.
Fig. 4.9 Bar with a narrow rectangular cross-section.
Fig. 4.10 Examples of open thin-walled sections.
Fig. 4.11 Wall section enclosed by an inner contour S1 and an
outer contour
Fig. 4.12 Shear stresses at a point on a wall section.
Fig. 4.13 Shear stress on a wall section in the s-direction.
Fig. 4.14 Constant shear �low on a closed thin-walled section.
Fig. 4.15 Resultants and moment of a constant shear �low.
Fig. 4.16 Geometrical relations among coordinate increments.
Fig. 4.17 Thin-walled bar of unit length.
Fig. 4.18 Thin-walled tube with (a) a closed section and (b) a
slit section....
Fig. 4.19 Three-stringer thin-walled bar.
Fig. 4.20 Two-cell stringer–skin–web section.
Fig. 4.21 Two-cell thin-walled section.
Fig. 4.22 Superposition of two constant shear �lows.



Fig. 4.23 Two-cell thin-walled box beam.
Fig. 4.24 Dimensions of a two-cell section.
Fig. 4.25 Shear �lows in a two-cell section.
Fig. 4.26 s–n coordinates along the centerline of the thin-
walled section.
Fig. 4.27 Calculation of warping along a thin-walled section.
Fig. 4.28 Positive direction of an s contour.
Fig. 4.29 Thin-walled channel section.
Fig. 4.30 Shear �low on a closed thin-walled section.
Fig. 4.31 Thin-walled box beam with four stringers.
Fig. 4.32 Shear �low induced by longitudinal normal stress.
Fig. 4.33 I-beam with two built-in ends.
Fig. 4.34 Bar of a hollow circular section.
Fig. 4.35 Two-cell thin-walled section.
Fig. 4.36 Single-cell section.
Fig. 4.37 (a) A closed square section and (b) an open section.
Fig. 4.38 A straight bar with a triangular section.
Fig. 4.39 A C-shaped thin open section.
Fig. 4.40 Two-cell section.
Fig. 4.41 Two-cell three-stringer thin-walled section.
Fig. 4.42 Cross-sections of two shafts.
Fig. 4.43 Dimensions of a channel section.

Chapter 5
Fig. 5.1 Straight beam of a uniform and symmetrical cross-
section.
Fig. 5.2 (a) Deformation of a beam element; (b) sign
convention for the resu...



Fig. 5.3 Equilibrium of a beam element.
Fig. 5.4 A box beam section.
Fig. 5.5 A box beam section with four corner angles.
Fig. 5.6 Beam with an arbitrary cross-section under
bidirectional loading.
Fig. 5.7 Sign convention of My and Mz.

Fig. 5.8 Neutral axis by angle α.
Fig. 5.9 Idealization of the box beam with angles.
Fig. 5.10 Direct stress distribution due to axial (tensile) load
on (a) an a...
Fig. 5.11 Direct stress distribution due to bending moment My
on (a) an actu...
Fig. 5.12 Direct stress distribution due to combined axial force
and bending...
Fig. 5.13 Direct stress distribution on (a) an actual box section
and (b) id...
Fig. 5.14 Single-cell box beam with four stringers.
Fig. 5.15 Thin-walled Z-section.
Fig. 5.16 Narrow rectangular section.
Fig. 5.17 Differential beam element with bending stresses: (a)
longitudinal ...
Fig. 5.18 (a) Wide-�lange beam; (b) distribution of ; (c)
distribution of s...
Fig. 5.19 Distribution of τxz in a wide-�lange beam.

Fig. 5.20 Concentration area for a wide �lange.
Fig. 5.21 Stringer–web beam under pure bending.
Fig. 5.22 Stringer–web beam subjected to a transverse shear
force.



Fig. 5.23 Curved and inclined thin-walled sections with
stiffeners.
Fig. 5.24 Elastic half-space subjected to (a) uniform traction
and (b) stati...
Fig. 5.25 Load distribution in a three-stringer structure.
Fig. 5.26 Free body diagrams of a strip of the upper web
before and after de...
Fig. 5.27 Cutout in a stringer sheet panel.
Fig. 5.28 Shear lag in a stringer-sheet I-beam under pure
bending.
Fig. 5.29 Thin-walled angle section.
Fig. 5.30 Thin-walled C-channel section.
Fig. 5.31 Idealized sections with different stringer areas and
skin con�igur...
Fig. 5.32 (a) An unsymmetric open section and (b) two-cell
symmetric closed ...
Fig. 5.33 Stringer–web section.
Fig. 5.34 Stringer–web section.
Fig. 5.35 Stringer–web section.
Fig. 5.36 Thin-walled section.
Fig. 5.37 Loaded box beam.
Fig. 5.38 Cantilever beam subjected to a shear force P.
Fig. 5.39 Box beam with a triangular thin-walled section.

Chapter 6
Fig. 6.1 Thin-walled section symmetrical with respect to the y-
axis.
Fig. 6.2 Free body cut from a beam.



Fig. 6.3 Beam with channel section symmetrical with respect
to the y-axis.
Fig. 6.4 Stringer–web section symmetrical with respect to the
y-axis.
Fig. 6.5 Stringer–web beam with an unsymmetrical section.
Fig. 6.6 Junction of three walls.
Fig. 6.7 Junction of three sheets and a stringer.
Fig. 6.8 Five possible contours for shear �low.
Fig. 6.9 Thin-walled bar with two heavy �langes.
Fig. 6.10 Shear-�low direction.
Fig. 6.11 Location of shear force: (a) actual location; (b)
shifted to shear...
Fig. 6.12 Shear �low for a horizontal shear force.
Fig. 6.13 Symmetric sections.
Fig. 6.14 Unsymmetric section.
Fig. 6.15 Reproduction of shear �low in Example 6.3.
Fig. 6.16 Flexural shear �lows in open sections.
Fig. 6.17 Flexural shear �lows in a closed section: (a) closed
section; (b) ...
Fig. 6.18 Superposition of shear �lows.
Fig. 6.19 Added torque due to shifting of the shear force.
Fig. 6.20 Four-stringer box beam.
Fig. 6.21 Superposition of shear �lows.
Fig. 6.22 Assuming shear force passes through the shear
center.
Fig. 6.23 Three-stringer single-cell section.
Fig. 6.24 Resultant shear forces.
Fig. 6.25 Assumed shear �lows.



Fig. 6.26 Four stringer single-cell closed section.
Fig. 6.27 A few possible ways to cut a three-cell box beam
section.
Fig. 6.28 Assumed cuts and shear �low contours.
Fig. 6.29 Constant shear �lows to be added to the total shear
�low.
Fig. 6.30 Applied force passing through a shear center.
Fig. 6.31 Thin-walled section with a side cut.
Fig. 6.32 Section of an I-beam.
Fig. 6.33 Open four-stringer section.
Fig. 6.34 Single-cell closed section.
Fig. 6.35 Unsymmetric open section.
Fig. 6.36 Two-cell closed section.
Fig. 6.37 Four-stringer thin-walled section.
Fig. 6.38 Two-cell closed section.
Fig. 6.39 Three-cell closed section.
Fig. 6.40 Unsymmetric four stringer thin-walled open section.
Fig. 6.41 Symmetric four stringer thin-walled open section.
Fig. 6.42 Unsymmetric three stringer thin-walled closed
section.
Fig. 6.43 Four stringer thin-walled open section.

Chapter 7
Fig. 7.1 Failure envelope for the maximum principal stress
criterion.
Fig. 7.2 Coulomb–Mohr failure envelope.
Fig. 7.3 Inelastic behavior.
Fig. 7.4 Yield surface for the Tresca yield criterion.



Fig. 7.5 von Mises yield criterion.
Fig. 7.6 Thin-walled hollow cylinder.
Fig. 7.7 (a) Large panel with elliptical hole; (b) stress
distributions alon...
Fig. 7.8 Panel with an edge crack loaded in tension.
Fig. 7.9 Load–de�lection curve of Figure 7.8.
Fig. 7.10 Loaded split beam.
Fig. 7.11 Split beam subjected to horizontal forces.
Fig. 7.12 Symmetrical loading and geometry of a cracked
structure.
Fig. 7.13 Polar coordinates with the origin at the crack tip.
Fig. 7.14 Center-cracked panel under uniform tension.
Fig. 7.15 Antisymmetric shear loading.
Fig. 7.16 (a) Uncracked panel; (b) panel with a crack of size
2a.
Fig. 7.17 Box beam of a rectangular thin-walled section
subjected to torque....
Fig. 7.18 Separation of fracture models.
Fig. 7.19 Dependence of fracture toughness on specimen
thickness.
Fig. 7.20 Plastic zone at the crack tip.
Fig. 7.21 Simple cyclic loading.
Fig. 7.22 Typical S–N curve.
Fig. 7.23 Typical experimentally obtained crack growth curve.
Fig. 7.24 Material under biaxial stress.
Fig. 7.25 Split beam subjected to shear force.
Fig. 7.26 Split beam subjected to extension and bending.
Fig. 7.27 Split beam subjected to shear forces.



Fig. 7.28 Split beam opened by a cylinder.
Fig. 7.29 A split beam with inclined loading.
Fig. 7.30 A large thin plate with a center crack.

Chapter 8
Fig. 8.1 Cantilever bar subjected to an eccentric load.
Fig. 8.2 Compressed bar in the buckled position.
Fig. 8.3 Straight bar with pinned ends.
Fig. 8.4 Added support at the midspan of a bar.
Fig. 8.5 The cross-section of an AISI4340 steel box beam
subjected to compre...
Fig. 8.6 Bar with clamped–pinned ends.
Fig. 8.7 Clamped–clamped bar.
Fig. 8.8 Initially deformed bar.
Fig. 8.9 Load–de�lection curves for different initial
imperfections.
Fig. 8.10 Bar in large de�lection.
Fig. 8.11 Buckled bar with a pinned–pinned end.
Fig. 8.12 Postbuckling load–de�lection curve.
Fig. 8.13 Compression of four aluminum square bars rigidly
connected to wall...
Fig. 8.14 Cross-sections of thin rectangular elements with a
single intersec...
Fig. 8.15 Bar of a cruciform cross-section with four identical
�langes.
Fig. 8.16 Arbitrary thin-walled cross-section.
Fig. 8.17 Cross-section of a bar subjected to axial compression.
Fig. 8.18 Flat plate under in-plane loads.
Fig. 8.19 Resultant forces and moments.



Fig. 8.20 Rectangular plate under uniform compression.
Fig. 8.21 Simply supported rectangular plate compressed by
uniform in-plane ...
Fig. 8.22 Plot of k versus aspect ratio for various mode
numbers.
Fig. 8.23 Buckled de�lection surface a ≫ b.
Fig. 8.24 Rectangular plate under uniform shear forces.
Fig. 8.25 Angle section with two identical �langes.
Fig. 8.26 Channel section.
Fig. 8.27 Two-bar truss.
Fig. 8.28 A Bar with a built-in end and an elastically supported
end.
Fig. 8.29 A wooden vertical column.
Fig. 8.30 Cross-section of a long column.
Fig. 8.31 Two-bar structure.
Fig. 8.32 Bar with a built-in end and a rotationally constrained
end.
Fig. 8.33 Structure with two rigidly connected bars.
Fig. 8.34 Cross-section of a simply supported bar.
Fig. 8.35 Cross-section of a thin-walled bar.

Chapter 9
Fig. 9.1 Fiber direction and coordinate systems.
Fig. 9.2 Variations of apparent moduli against �iber
orientation for three c...
Fig. 9.3 Deformation of an off-axis composite under tension.
Fig. 9.4 Composite panel under shear load.
Fig. 9.5 Position of plies in a laminate.
Fig. 9.6 Laminated panel.



Fig. 9.7 Resultant forces.
Fig. 9.8 Positions of laminas.
Fig. 9.9 Poisson's ratio νxy as a function of �iber orientation θ ...

Fig. 9.10 Distributions of laminar normal stresses.





MECHANICS OF AIRCRAFT
STRUCTURES
THIRD	EDITION

C.	T.	Sun	and	Ashfaq	Adnan

 
 
 
 
 
 
 
 
 



This edition �irst published 2021 
© 2021 John Wiley and Sons, Inc.
Edition	history 
John Wiley & Sons, Inc (2e, 2006; 1e 1998)

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from
this title is available at http://www.wiley.com/go/permissions.
The right of C.T. Sun and Ashfaq Adnan to be identi�ied as the authors of this work has been
asserted in accordance with law.

Registered	Of�ice 
John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA
Editorial	Of�ice 
111 River Street, Hoboken, NJ 07030, USA

For details of our global editorial of�ices, customer services, and more information about Wiley
products visit us at HYPERLINK "http://www.wiley.com" www.wiley.com.
Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Some
content that appears in standard print versions of this book may not be available in other formats.

Limit	of	Liability/Disclaimer	of	Warranty 
In view of ongoing research, equipment modi�ications, changes in governmental regulations, and
the constant �low of information relating to the use of experimental reagents, equipment, and
devices, the reader is urged to review and evaluate the information provided in the package insert
or instructions for each chemical, piece of equipment, reagent, or device for, among other things,
any changes in the instructions or indication of usage and for added warnings and precautions.
While the publisher and authors have used their best efforts in preparing this work, they make no
representations or warranties with respect to the accuracy or completeness of the contents of this
work and speci�ically disclaim all warranties, including without limitation any implied warranties
of merchantability or �itness for a particular purpose. No warranty may be created or extended by
sales representatives, written sales materials or promotional statements for this work. The fact
that an organization, website, or product is referred to in this work as a citation and/or potential
source of further information does not mean that the publisher and authors endorse the
information or services the organization, website, or product may provide or recommendations it
may make. This work is sold with the understanding that the publisher is not engaged in rendering
professional services. The advice and strategies contained herein may not be suitable for your
situation. You should consult with a specialist where appropriate. Further, readers should be aware
that websites listed in this work may have changed or disappeared between when this work was
written and when it is read. Neither the publisher nor authors shall be liable for any loss of pro�it
or any other commercial damages, including but not limited to special, incidental, consequential,
or other damages.
Library	of	Congress	Cataloging-in-Publication	Data	Applied	for:

ISBN: 9781119583912
Cover Design: Wiley 
Cover Image: © guvendemir/iStock/Getty Images Plus



 
 

To	my	wife,	Iris,	and	my	children,	Edna,	Clifford,	and	Leslie	–	C.T.	Sun
To	my	loving	parents	Afroza	Nasreen	and	Dr.	Md.	Golbar	Hussain,	my

beautiful	wife,	Most,	and	my	sons,	Aayan	and	Aayat	–	A.	Adnan





Preface to the Third Edition
The purpose of the third edition is to correct some typographical errors
in the second edition, add 3D elasticity equations, describe methods for
structural idealization, and add a number of worked out and exercise
problems. The Chapter 1 in the second edition is broken to two
chapters. The Chapter 1 in the new edition includes discussions on the
role of structural analysis in aircraft component design process, an
overview on (i) �ixed wing (ii) rotor craft (iii) lighter than air vehicles,
and (iv) drones, a show the road map for developing simpli�ied
geometry for structural analysis, basic structural elements and control
surfaces and materials. Example problems are added. Chapter 2
provides a brief overview of various types of mechanical loads such as
axial, shear, torsion, and bending. Solved example problems include
simple design problems including designing a pressurized thin walled
cylinder (as simpli�ied fuselage), thin cantilever beam (as simpli�ied
wing), designing against joint failure, etc. In Chapter 3, the concept of
elasticity is elaborately discussed. A new road map is added to show
how the concepts of statics, solid mechanics and elasticity are
connected. The role of elasticity in aircraft structure design and its
limitation are added. In Chapter 4, a discussion is added on the
limitation of solid mechanics in describing torsion problems for
noncircular section. Additional problems are added. In Chapter 5, a new
discussion is added to describe structural idealizations. New example
problems are added. The expansions in the remaining chapters are
concentrated on new examples and exercise problems.
The authors are indebted to many students and colleagues for some
corrections and valuable suggestions. In particular, Ashfaq Adnan is
indebted to his former colleague late Dr. Wen Chan. Ashfaq Adnan is
thankful to Aayan Adnan for his assistance in making many new
drawings. Ms. Rajni Chahal and Dr. Wei-Tsen (Eric) Lu are
acknowledged for their contributions in the worked-out problems and
instruction materials.





Preface to the Second Edition
The purpose of the second edition is to correct a number of
typographical errors in the �irst edition, add more examples and
problems for the student, and introduce a few new topics, including
primary warping, effects of boundary constraints, Saint-Venant’s
principle, the concept of shear lag, the Timoshenko beam theory, and a
brief introduction to the effect of plasticity on fracture. All these
additions are direct extensions of the existing contents in the �irst
edition. Consequently, the background-building chapters, Chapters 1
and 2, need no modi�ication. The expansions are concentrated in
Chapters 3, 4, and 6 and amount to about a 25% increase in the number
of pages.
The author is indebted to many students and colleagues for numerous
corrections and valuable suggestions. He is indebted also to Dr. G.
Huang for his assistance in making many new drawings.





Preface to the First Edition
This book is intended for junior or senior level aeronautical
engineering students with a background in the �irst course of
mechanics of solids. The contents can be covered in a semester at a
normal pace.
The selection and presentation of materials in the course of writing this
book were greatly in�luenced by the following developments. First,
commercial �inite element codes have been used extensively for
structural analyses in recent years. As a result, many simpli�ied ad hoc
techniques that were important in the past have lost their useful roles
in structural analyses. This development leads to the shift of emphasis
from the problem-solving drill to better understanding of mechanics,
developing the student’s ability in formulating the problem, and
judging the correctness of numerical results. Second, fracture
mechanics has become the most important tool in the study of aircraft
structure damage tolerance and durability in the past thirty years. It
seems highly desirable for undergraduate students to get some
exposure to this important subject, which has traditionally been
regarded as a subject for graduate students. Third, advanced composite
materials have gained wide acceptance for use in aircraft structures.
This new class of materials is substantially different from traditional
metallic materials. An introduction to the characteristic properties of
these new materials seems imperative even for undergraduate
students.
In response to the advent of the �inite element method, consistent
elasticity approach is employed. Multidimensional stresses, strains, and
stress–strain relations are emphasized. Displacement, rather than
strain or stress, is used in deriving the governing equations for torsion
and bending problems. This approach will help the student understand
the relation between simpli�ied structural theories and 3-D elasticity
equations.
The concept of fracture mechanics is brought in via the original
Grif�ith’s concept of strain energy release rate. Taking advantage of its
global nature and its relation to the change of the total strain energies



stored in the structure before and after crack extension, the strain
energy release rate can be calculated for simple structures without
dif�iculty for junior and senior level students.
The coverage of composite materials consists of a brief discussion of
their mechanical properties in Chapter 1, the stress–strain relations for
anisotropic solids in Chapter 2, and a chapter (Chapter 8) on analysis of
symmetric laminates of composite materials. This should be enough to
give the student a background to deal correctly with composites and to
avoid regarding a composite as an aluminum alloy with the Young’s
modulus taken equal to the longitudinal modulus of the composite.
Such a brief introduction to composite materials and laminates is by no
means suf�icient to be used as a substitute for a course (or courses)
dedicated to composites.
A classical treatment of elastic buckling is presented in Chapter 7.
Besides buckling of slender bars, the postbuckling concept and
buckling of structures composed of thin sheets are also brie�ly covered
without invoking an advanced background in solid mechanics.
Postbuckling strengths of bars or panels are often utilized in aircraft
structures. Exposure, even very brief, to this concept seems justi�ied,
especially in view of the mathematics employed, which should be quite
manageable for student readers of this book.
The author expresses his appreciation to Mrs. Marilyn Engel for typing
the manuscript and to James Chou and R. Sergio Hasebe for making the
drawings.

C.T. Sun
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1 
Characteristics of Aircraft Structures and
Materials



1.1 INTRODUCTION
An aircraft is a vehicle that is used for �light in the air. A vehicle like this
is typically built by assembling many component structures such as
wing, fuselage, landing gears, stabilizers, etc. Each component structure
is typically built by assembling many substructures. Each substructure
can be made out of different materials. The main difference between
aircraft structures and materials and civil engineering structures and
materials lies in their weight. The main driving force in aircraft
structural design and aerospace material development is to reduce
weight. In general, materials with high stiffness, high strength, and light
weight are most suitable for aircraft applications.
Aircraft structures must be designed to ensure that every part of the
material is used to its full capability. A typical aircraft design cycle
involves three major steps – (i) conceptual design, (ii) preliminary
design, and (iii) detail design. In any of these design stages, different
factors such as aerodynamics, avionics, propulsion, and structural
integrity are simultaneously taken into account. As such, aircraft
structures are not designed for structural safety and integrity only;
many nonstructural requirements impose additional restrictions in
designing aircraft structural components. For instance, an airfoil is
chosen according to aerodynamic lift and drag characteristics. As such,
the size and shape of an aircraft structural component are usually
predetermined. Such restrictions signi�icantly limit the number of
solutions for structural problems in terms of global con�igurations.
Often, the solutions resort to the use of special materials developed for
applications in aerospace vehicles.
The nonstructural and weight-saving design requirements generally
lead to the use of shell-like structures (monocoque constructions) and
stiffened shell structures (semimonocoque constructions). The
geometrical details of aircraft structures are much more complicated
than those of civil engineering structures. They usually require the
assemblage of thousands of parts. Technologies for joining the parts are
especially important for aircraft construction.
Because of their high stiffness/weight and strength/weight ratios,
aluminum and titanium alloys have been the dominant aircraft



structural materials for many decades. However, the recent advent of
advanced �iber-reinforced composites has changed the outlook.
Composites may now achieve weight savings of 30–40% over aluminum
or titanium counterparts. As a result, composites have been used
increasingly in aircraft structures.



1.2 TYPES OF AIRCRAFT STRUCTURES
Most aircraft are built as �ixed-wing vehicles and are commonly known
as airplanes. Other categories include rotorcrafts, glider, lighter-than-air
vehicles, etc. Presence of air is essential for generating lift on these
vehicles. As such, structural design of such vehicles depends on how
airload is transmitted to the structural elements.

1.2.1 Fixed‐Wing Aircraft
A �ixed-wing aircraft is a kind of air vehicle that is heavier-than-air but
can �ly in the air by generating lift using the wings. An aircraft with a
powered engine is generally called an airplane (Figure 1.1a). The
unpowered version of �ixed-wing aircraft is called gliders (Figure 1.1b).

1.2.2 Rotorcraft
A rotorcraft (Figure 1.1c) or rotary-wing aircraft is a heavier-than-air
vehicle that generates lift using rotary wings or rotor blades, which
revolve around a rotor. Depending on how rotor blades function,
rotorcrafts are categorized as helicopters, autogyros, or gyrodynes.
Recently, small-scale multirotor rotorcrafts are widely used for
surveillance or video-capturing purposes. Designing blades for the
rotorcraft is far more complex than designing a �ixed-wing aircraft
because of the complex aerodynamic forces.

1.2.3 Lighter‐than‐Air Vehicles
Aircraft such as balloons, nonrigid blimps, and airships (also known as
dirigibles) are designed to contain suf�icient amount of lighter-than-air
gases (typically helium) so that lift can be generated from the lifting gas
(Figure 1.2).

1.2.4 Drones
Drones (Figure 1.3) are small-scale air vehicles that can be �ixed-wing
type or rotary-wing type. The size of a drone is signi�icantly smaller than
a typical airplane or rotorcraft. As such, most drones are powered by



electrical sources. Other than their size, the lifting mechanism of a drone
is similar to the conventional �ixed-wing or rotary-wing vehicles.

Fig.	1.1 (a) Powered �ixed-wing aircraft, (b) glider, and (c) rotorcraft.

Fig.	1.2 Various lighter-than-air vehicles: (a) hot-air balloon, (b) blimp,
and (c) dirigible.

Fig.	1.3 (a) Fixed-wing drone; (b) multirotor rotary wing drone.



1.3 BASIC STRUCTURAL ELEMENTS IN
AIRCRAFT STRUCTURE
An aircraft has many integrated parts, as shown in Figure 1.4. In general,
these parts can be categorized into basic structural elements such as
wing, fuselage, landing gears, tail units (horizontal and vertical
stabilizers), and control surfaces such as aileron, rudder, and elevator.

1.3.1 Fuselage
The fuselage is the main structural element of a �ixed-wing aircraft. It
provides space for cargo, control system and pilots, passengers and
cabin crews, and other accessories and equipment. In single-engine
aircraft, the fuselage also carries the power plant. As shown in Figure
1.5, a fuselage can be constructed in various con�igurations such as
truss, semimonocoque, and monocoque.

1.3.2 Wing
The main function of the wing is to pick up the air and power plant loads
and transmit them to the fuselage. The wing cross-section takes the
shape of an airfoil, which is designed based on aerodynamic
considerations. In general, wings are constructed based on monospar,
multispar, or box beam con�igurations, as shown in Figure 1.6. These
three design con�igurations are considered as the basic designs, and
aircraft manufacturers may adopt a modi�ied con�iguration. In the
monospar wing con�iguration, only one main spanwise member is
present. Ribs or bulkheads are used to provide the necessary
aerodynamic contour or shape to the airfoil. The multispar wing
con�iguration has more than one main longitudinal member in its
construction. To attain the desired aerodynamic shape, ribs or
bulkheads are often included. The box beam wing con�iguration has two
main longitudinal members and connecting bulkheads to attain the
required airfoil contour.



Fig.	1.4 Fixed-wing aircraft parts.

Fig.	 1.5 Various fuselage con�igurations: (a) truss type, (b)
semimonocoque type, and (c) monocoque type.

Fig.	1.6 Various wing con�igurations: (a) monospar (b) multispar type
and (c) box beam type.



1.3.3 Landing Gear
The landing gear is used to support an aircraft during landing and while
it is on the ground. Small aircraft �lying at low speeds generally have
�ixed gear. On the other hand, faster and more complex aircraft have
retractable landing gear. To avoid parasite drag forces, the landing gear
is retracted into the fuselage or wings after take-off.

1.3.4 Control Surfaces
Since an aircraft is free to rotate around three mutually perpendicular
axes (longitudinal, transverse, and vertical) intersecting at its center of
gravity (CG), a pilot must be able to control rotation about each of these
axes to control overall position and direction of the aircraft. Aircraft
�light control surfaces are aerodynamic devices that allow a pilot to
maneuver and control the aircraft's �light in midair. As shown in Figure
1.4, there are three basic control surfaces, namely aileron, rudder, and
elevator. Rotation about the transverse axis, de�ined by the line that
passes through an aircraft from wingtip to wingtip, is called pitch. The
elevators are the major control surfaces for pitch. Ailerons control the
rotation about the longitudinal axis, called roll. This axis passes through
the aircraft from nose to tail. The rotation about the vertical axis is
called yaw, and the primary control of yaw is done with the rudder.



1.4 AIRCRAFT MATERIALS
Traditional metallic materials used in aircraft structures are aluminum,
titanium, and steel alloys. In the past three decades, applications of
advanced �iber composites have rapidly gained momentum. To date,
some new commercial jets, such as the Boeing 787, already contain
composite materials up to 50% of their structural weight.
Selection of aircraft materials depends on many considerations that can,
in general, be categorized as cost and structural performance. Cost
includes initial material cost, manufacturing cost, and maintenance cost.
The key material properties that are pertinent to maintenance cost and
structural performance are as follows:

Density (weight)
Stiffness (Young's modulus)
Strength (ultimate and yield strengths)
Durability (fatigue)
Damage tolerance (fracture toughness and crack growth)
Corrosion.

Seldom is a single material able to deliver all desired properties in all
components of the aircraft structure. A combination of various materials
is often necessary. Table 1.1 lists the basic mechanical properties of
some metallic aircraft structural materials.

1.4.1 Steel Alloys
Among the three metallic materials, steel alloys have highest densities,
and are used only where high strength and high yield stress are critical.
Examples include landing gear units and highly loaded �ittings. The high
strength steel alloy 300 M is commonly used for landing gear
components. This steel alloy has a strength of 1.9 GPa (270 ksi) and a
yield stress of 1.5 GPa (220 ksi).
Besides being heavy, steel alloys are generally poor in corrosion
resistance. Components made of these alloys must be plated for



corrosion protection.

Table	1.1 Mechanical	properties	of	metals	at	room	temperature	in
aircraft	structures.

Material Propertya

E v σ	u σ	Y ρ

GPa	(msi) MPa	(ksi) MPa	(ksi) g/cm3	(lb/in3)
Aluminum
2024-T3 72 (10.5) 0.33 449 (65) 324 (47) 2.78 (0.10)
7075-T6 71 (10.3) 0.33 538 (78) 490 (71) 2.78 (0.10)
Titanium
Ti-6Al-4V 110 (16.0) 0.31 925 (134) 869 (126) 4.46 (0.16)
Steel
AISI4340 200 (29.0) 0.32 1790 (260) 1483 (212) 7.8 (0.28)
300 M 200 (29.0) 0.32 1860 (270) 1520 (220) 7.8 (0.28)

aσ u , tensile ultimate stress; σY, tensile yield stress.

1.4.2 Aluminum Alloys
Aluminum alloys have played a dominant role in aircraft structures for
many decades. They offer good mechanical properties with low weight.
Among the aluminum alloys, the 2024 and 7075 alloys are perhaps the
most used. The 2024 alloys (2024-T3, T42) have excellent fracture
toughness and slow crack growth rate as well as good fatigue life. The
code number following T for each aluminum alloy indicates the heat
treatment process. The 7075 alloys (7075-T6, T651) have higher
strength than the 2024 but lower fracture toughness. The 2024-T3 is
used in the fuselage and lower wing skins, which are prone to fatigue
due to applications of cyclic tensile stresses. For the upper wing skins,
which are subjected to compressive stresses, fatigue is less of a problem,
and 7075-T6 is used.
The recently developed aluminum lithium alloys offer improved
properties over conventional aluminum alloys. They are about 10%



stiffer and 10% lighter and have superior fatigue performance.

1.4.3 Titanium Alloys
Titanium such as Ti–6Al–4V (the number indicates the weight
percentage of the alloying element) with a density of 4.5 g/cm3 is lighter
than steel (7.8 g/cm3) but heavier than aluminum (2.7 g/cm3). See Table
1.1. Its ultimate and yield stresses are almost double those of aluminum
7075-T6. Its corrosion resistance in general is superior to both steel and
aluminum alloys. While aluminum is usually not for applications above
350 °F, titanium, on the other hand, can be used continuously up to
1000 °F.
Titanium is dif�icult to machine, and thus the cost of machining titanium
parts is high. Near net shape forming is an economic way to manufacture
titanium parts. Despite its high cost, titanium has found increasing use
in military aircraft. For instance, the F-15 contained 26% (structural
weight) titanium.

1.4.4 Fiber‐Reinforced Composites

Materials made into �iber forms can achieve signi�icantly better
mechanical properties than their bulk counterparts. A notable example
is glass �iber versus bulk glass. The tensile strength of glass �iber can be
two orders of magnitude higher than that of bulk glass. In this century,
�iber science has made gigantic strides, and many high-performance
�ibers have been introduced. Listed in Table 1.2 are the mechanical
properties of some high-performance manufactured �ibers.
Fibers alone are not suitable for structural applications. To utilize the
superior properties of �ibers, they are embedded in a matrix material
that holds the �ibers together to form a solid body capable of carrying
complex loads.



Table	1.2 Mechanical	properties	of	�ibers.

Material Property
E σ	u ρ

GPa	(msi) GPa	(ksi) g/cm3

E-glass 77.0 (11) 2.50 (350) 2.54
S-glass 85.0 (12) 3.50 (500) 2.48
Silicon carbide (Nicalon) 190.0 (27) 2.80 (400) 2.55
Carbon (Hercules AS4) 240.0 (35) 3.60 (510) 1.80
Carbon (Hercules HMS) 360.0 (51) 2.20 (310) 1.80
Carbon (Toray T300) 240.0 (35) 3.50 (500) 1.80
Boron 385.0 (55) 3.50 (500) 2.65
Kevlar-49 (Aramid) 130.0 (18) 2.80 (400) 1.45
Kevlar-29 65.0 (9.5) 2.80 (400) 1.45

Table	1.3 Longitudinal	mechanical	properties	of	�iber	composites.

Material Type Property
E σ	u ρ

GPa	(msi) GPa	(ksi) g/cm3

Carbon/epoxy T300/5208 140.0 (20) 1.50 (210) 1.55
IM6/3501-6 177.0 (25.7) 2.86 (414) 1.55
AS4/3501-6 140.0 (20) 2.10 (300) 1.55

Boron/aluminum B/Al 2024 210.0 (30) 1.50 (210) 2.65
Glass/epoxy S2 Glass/epoxy 43.0 (6.2) 1.70 (245) 1.80
Aramid/epoxy Kev 49/epoxy 70.0 (10) 1.40 (200) 1.40

Matrix materials that are currently used for forming composites include
three major categories: polymers, metals, and ceramics. The resulting
composites are usually referred to as polymer matrix composites
(PMCs), metal matrix composites (MMCs), and ceramic matrix
composites (CMCs). Table 1.3 presents properties of a list of composites.



The range of service temperature of a composite is often determined by
its matrix material. PMCs are usually for lower temperature (less than
300 °F) applications, and CMCs are intended for applications in hot
(higher than 1500 °F) environments, such as jet engines.
Fiber composites are stiff, strong, and light and are thus most suitable
for aircraft structures. They are often used in the form of laminates that
consist of a number of unidirectional laminae with different �iber
orientations to provide multidirectional load capability. Composite
laminates have excellent fatigue life, damage tolerance, and corrosion
resistance. Laminate constructions offer the possibility of tailoring �iber
orientations to achieve optimal structural performance of the composite
structure.



PROBLEMS
1.1 Speci�ic modulus of a material is de�ined by Young’s modulus
divided by density. Speci�ic strength is also de�ined the same
manner. Compare the speci�ic moduli and speci�ic strengths of
carbon composites, aluminum, titanium, and steel. Which one
performs better?
1.2 Consider a commercial jetliner that weighs about 200 000 kgs.
It is found that 80% of the structure is made of 2024-T3 aluminum
and 15% is made of carbon/epoxy composites. The remaining 5%
part of the airplane is equally distributed by Ti-6Al-4V and
AISI4340. If the jetliner is now redesigned with the following
material distributions, what will be the new weight of the airplane?
How much weight is saved, percentage-wise?
Carbon composite = 65%
Aluminum = 30%
Titanium = 2.5%
Steel = 2.5%.





2 
Loads on Aircraft Structures



2.1 INTRODUCTION
Aircraft structures are required to support mainly two classes of structural
loads – in-ground loads and in-�light loads. The in-ground loads are imposed
on the aircraft during various ground activities such as taxiing,
cargo/passenger loading/unloading, towing, and hoisting. The in-�light loads
are imposed on the aircraft structures due to aerodynamic loads. To maintain
desired cabin pressure at a higher altitude, certain aircraft structure is also
pressurized. In general, loads on aircraft structures can be felt in the form of
axial tension and compression, shear, bending, and torsional loads. Each
aircraft structural element is designed to take speci�ic types of these loads.
Collectively, these elements can ef�iciently provide the capability for
sustaining loads on an airplane.
Designing the structural members against speci�ic type of loading and
deformation requires stress analysis. In general, a structural analysis
roadmap incorporates the concept of statics, mechanics of solids, and
advanced concepts such as elasticity. Employment of suitable failure,
fracture, and fatigue theories will allow a stress analyst design a structural
member. As such, it is essential to understand how stress–strain relation can
be established for the basic structural elements. The governing equations for
these basic structural elements are introduced in the elementary courses
such as statics and mechanics of solids (also known as solid mechanics or
mechanics of materials). In the following subsections, the governing
equations are reviewed brie�ly and their behavior discussed.



(2.1)

(2.2)

2.2 BASIC STRUCTURAL ELEMENTS
2.2.1 Axial Member
Axial members are used to carry extensional or compressive loads applied in
the direction of the axial direction of the member. The resulting stress is
uniaxial:

where E and ε are the Young's modulus and normal strain, respectively, in the
loading direction. The total axial force F provided by the member is

where A is the cross-sectional area of the member, δ is the axial
displacement, and L is the length of the axial member. The quantity EA is
termed the axial stiffness of the member, which depends on the modulus of
the material and the cross-sectional area of the member. It is obvious that the
axial stiffness of axial members cannot be increased (or decreased) by
changing the shape of the cross-section. In other words, a circular rod and a
channel (see Figure 2.1a,b) will carry the same axial load as long as they have
the same cross-sectional area.
Axial members are usually slender and are susceptible to buckling failure
when subjected to compression. It is known that the buckling load is directly
proportional to the bending stiffness and inversely proportional to the
square of the effective length. Buckling strength can be increased by
increasing the bending stiffness and by shortening the length of the buckle
mode. For buckling, the channel section is better since it has higher bending
stiffness than the circular section. However, because of the slenderness of
most axial members used in aircraft (such as stringers), the bending stiffness
of these members is usually very small and is not suf�icient to achieve the
necessary buckling strength. In practice, the buckling strength of axial
members is enhanced by providing lateral supports along the length of the
member with more rigid ribs (in wings) and frames (in fuselage).



Fig.	2.1 (a) Circular rod; (b) channel.



EXAMPLE 2.1

The AISI4340 steel rod is subjected to the loading shown in Figure 2.2. If
the cross-sectional area of the rod is 50 mm2 determine the displacement
of its end D.
The normal forces developed in sections AB, BC, and CD are in the free
body diagrams. The modulus of elasticity E for AISI4340 steel is 200 MPa.

Fig.	2.2 Axially loaded steel rod.

The cross-sectional area of all the sections are as follows:

Free body diagram:



(2.3)

2.2.2 Shear Panel
A shear panel is a thin sheet of material used to carry in-plane shear load.
Consider a shear panel of uniform thickness t under uniform shear stress τ as
shown in Figure 2.3. The total shear force in the x-direction provided by the
panel is given by

where G is the shear modulus and γ is the shear strain. Thus, for a �lat panel,
the shear force Vx is proportional to its thickness and the lateral dimension a.

For a curved panel under a state of constant shear stress τ (see Figure 2.4),
the resulting shear force of the shear stress on the thin-walled section may
be decomposed into a horizontal component Vx and a vertical component Vy
as



Fig.	2.3 Shear panel under uniform shear stress.



(2.4)

(2.5)

Fig.	2.4 Curved panel under a state of constant shear stress.

Thus, the components of the resultant force of the shear stress τ have the
relation

Since this relation does not depend on the contour shape of the section of the
panel, a �lat panel would be the most ef�icient (in material usage) in
providing a shear force for given values of a and b.



(2.6)

(2.7)

(2.8)

(2.9)

2.2.3 Bending Member (Beam)
A structural member that can carry bending moments is called a beam. A
beam can also act as an axial member carrying longitudinal tension and
compression. According to simple beam theory, bending moment M is related
to beam de�lection w as

where EI is the bending stiffness of the beam. The area moment of inertia I
depends on the geometry of the cross-section.
Except for pure moment loading, a beam is designed to carry both bending
moments and transverse shear forces as the latter usually produce the
former. For a beam of a large span/depth ratio, the bending stress is usually
more critical than the transverse shear stress. This is illustrated by the
example of a cantilever beam shown in Figure 2.5.
It can be found that the maximum bending moment and bending stress occur
at the �ixed root of the cantilever beam. We have

The transverse shear stress distribution is parabolic over the beam depth
with maximum value occurring at the neutral plane, i.e.

From the ratio



Fig.	2.5 Cantilever beam.

Fig.	 2.6 (a) Wide-�lange beam; (b) bending force distribution; (c) shear
stress distribution.

it is evident that bending stress plays a more dominant role than transverse
shear stress if the span-to-depth ratio is large (as in wing structure). For such
beams, attention is focused on optimizing the cross-section to increase
bending stiffness.
In the elastic range, bending stress distribution over depth is linear with
maximum values at the farthest positions from the neutral axis. The material
near the neutral axis is underutilized. Thus, the beam with a rectangular
cross-section is not an ef�icient bending member.
In order to utilize the material to its full capacity, material in a beam must be
located as far as possible from the neutral axis. An example is the wide-�lange



(2.10)

beam shown in Figure 2.6a. Although the bending stress distribution is still
linear over the depth, the bending line force (bending stress times the width)
distribution is concentrated at the two �langes as shown in Figure 2.6b
because b ≫ tw. For simplicity, the small contribution of the vertical web to
bending can be neglected.
The transverse shear stress distribution in the wide-�lange beam is shown in
Figure 2.6c. The vertical web is seen to carry essentially all the transverse
shear load; its variation over the web is small and can be practically assumed
to be constant. For all practical purposes, the wide-�lange beam can be
regarded as two axial members (�langes) connected by a �lat shear panel.

2.2.4 Torsion Member
Torque is an important form of load to aircraft structures. In a structural
member, torque is formed by shear stresses acting in the plane of the cross-
section. Consider a hollow cylinder subjected to a torque T as shown in
Figure 2.7. The torque-induced shear stress τ is linearly distributed along the
radial direction. The torque is related to the twist angle θ per unit length as

Fig.	2.7 Hollow cylinder subjected to a torque.



(2.11)

(2.12)

where J is the torsional constant. For hollow cylinders, J is equal to the polar
moment of inertia of the cross-section, i.e.

The term GJ is usually referred to as torsional stiffness.
If the wall thickness t = b − a is small compared with the inner radius, then an
approximate expression of J is given by

where  is the average value of the outer and inner radii. Thus,
for a thin-walled cylinder, the torsional stiffness is proportional to the 3/2
power of the area  enclosed by the wall.



EXAMPLE 2.2

Compare the torsional stiffness of the solid circular section and the thin
hollow sections shown in Figure 2.8. Both sections are made of 2024-T3
aluminum.
The shear modulus of 2024-T3 aluminum is 27 GPa.
The polar moment of inertia J for the circulation section is

The polar moment of inertia J for the thin hollow section is

Obviously, the thin hollow section will have 50 times higher torsional
stiffness (GJ) than the solid section.
The area ratio between these two sections are

Fig.	2.8 Torsion member with (a) a solid section and (b) hollow section.



It means the hollow section is not only four times lighter than the solid
section, it has 50 times higher resistance to torsional deformation. As
such, this example illustrates that a thin-walled structure can be made
into a very ef�icient torsion member.



2.3 Wing and Fuselage
The wing and fuselage are the two major airframe components of an
airplane. The horizontal and vertical tails bear close resemblance to the
wing. Hence, these two components are taken for discussion to exemplify the
principles of structural mechanics employed in aircraft structures.

2.3.1 Load Transfer
Wing and fuselage structures consist of a collection of basic structural
elements. Each component, as a whole, acts like a beam and a torsion
member. For illustrative purposes, let us consider the box beam shown in
Figure 2.9. The box beam consists of stringers (axial members) that are
located at the maximum allowable distance from the neutral axis to achieve
the most bending capability, and the thin skin (shear panel), which encloses a
large area to provide a large torque capability. The design of Figure 2.10
would be �ine if the load is directly applied in the form of global torque T and
bending moment Mx. In reality, aircraft loads are in the form of air pressure
(or suction) on the skin, concentrated loads from the landing gear, power
plants, passenger seats, etc. These loads are to be “collected” locally and
transferred to the major load-carrying members. Without proper care, these
loads may produce excessive local de�lections that are not permissible from
aerodynamic considerations.
Using the box beam of Figure 2.9 as an example, we assume that a distributed
air pressure is applied on the top and bottom surfaces of the beam. The skin
(shear panel) is thin and has little bending stiffness to resist the air pressure.
To avoid incurring large de�lections in the skin, longitudinal stringers
(stiffeners) can be added, as shown in Figure 2.10, to pick up the air loads.
These stiffeners are usually slender axial members with a moderate amount
of bending stiffness. Therefore, the transverse loads picked up by the
stiffeners must be transferred “quickly” to more rigid ribs or frames at
sections A and B (see Figure 2.9) to avoid excessive de�lections. The ribs
collect all transverse loads from the stiffeners and transfer them to the two
wide-�lange beams (spars) that are designed to take transverse shear loads.
The local-to-global load transfer is thus complete. Note that besides serving
as a local load distributor, the stiffeners also contribute to the total bending
capability of the box beam.



Fig.	2.9 Box beam.



Fig.	2.10 Longitudinal stringers in a box beam.

2.3.2 Wing Structure
The wing as a whole performs the combined function of a beam and a torsion
member. It consists of axial members in stringers, bending members in spars,
and shear panels in the cover skin and webs of spars. The spar is a heavy
beam running spanwise to take transverse shear loads and spanwise
bending. It is usually composed of a thin shear panel (the web) with a heavy
cap or �lange at the top and bottom to take bending. A typical spar



construction is depicted in Figure 2.11. A multiple-spar wing construction is
shown in Figure 2.12.
Wing ribs are planar structures capable of carrying in-plane loads. They are
placed chordwise along the wing span. Besides serving as load redistributers,
ribs also hold the skin stringer to the designed contour shape. Ribs reduce
the effective buckling length of the stringers (or the stringer-skin system)
and thus increase their compressive load capability. Figure 2.12 shows a
typical rib construction. Note that the rib is supported by spanwise spars.

Fig.	2.11 Typical spar construction.

Fig.	2.12 Typical rib construction.



Fig.	 2.13 Typical two-spar wing cross-sections for subsonic aircraft: (a)
spars only; (b) spars and stringers.

The cover skin of the wing together with the spar webs form an ef�icient
torsion member. For subsonic airplanes, the skin is relatively thin and may be
designed to undergo postbuckling. Thus, the thin skin can be assumed to
make no contribution to bending of the wing box, and the bending moment is
taken by spars and stringers. Figure 2.13 presents two typical wing cross-
sections for two-spar subsonic aircraft. One type (Figure 2.13) consists only
of spars (the concentrated �lange type) to take bending. The other type (the
distributed �lange type, Figure 2.13) uses both spars and stringers to take
bending.
Supersonic airfoils are relatively thin compared with subsonic airfoils. To
withstand high surface air loads and to provide additional bending capability
of the wing box structure, thicker skins are often necessary. In addition, to
increase structural ef�iciency, stiffeners can be manufactured (either by
forging or machining) as integral parts of the skin.

2.3.3 Fuselage
Unlike the wing, which is subjected to large distributed air loads, the fuselage
is subjected to relatively small air loads. The primary loads on the fuselage
include large concentrated forces from wing reactions, landing gear
reactions, and pay loads. For airplanes carrying passengers, the fuselage
must also withstand internal pressures. Under normal operating conditions,
most commercial airliners �ly between 31 000 and 38 000 feet. Air density
gradually reduces as altitude increases. As such, the partial pressure of
oxygen also reduces with altitude. Prolonged exposure to such reduced
oxygen environment is dangerous to human health and can be lethal. As such,
pressurization inside the cabin (i.e. fuselage) is necessary at altitude above
10 000 feet. To speci�ically determine how much air needs to be pumped into
the cabin, the functional relation between the barometric pressure with
altitude is required:



(2.13)

here, P(H) is the barometric pressure, P0 = P(H = 0) is the average sea level
atmospheric pressure = 101.325 kPa, M is the molar mass of air = ~0.029 
kg/mol, R is the universal gas constant = 8.314 J/K mol, and T is temperature
in Kelvin, which also depends on altitude and generally reduces by about 6.5 
°C for every 1000 feet altitude hike. Using Eq. (2.13), it is possible to �ind the
required pressure, Preq = P(H) − P0 to bring the cabin pressure at a desired
pressure level. For example:

These estimations are made assuming desired cabin pressure is same as in-
ground atmospheric pressure (101.3 kPa). In reality, most commercial
airliners maintain lower than atmospheric pressure, something in the range
of 60 kPa when they �ly at maximum altitude allowed.



Fig.	2.14 Fuselage structure.

Because of internal pressure, the fuselage undergoes hydrostatic expansion.
For a very long fuselage �lying at a high altitude, the expansion could be
unachievable unless low cabin pressure is maintained or aircraft fuselage is
built with composite materials that offer low thermal expansion. In general,
the fuselage has an ef�icient circular cross-section with a semimonocoque
construction consisting of a thin shell stiffened by longitudinal axial elements
(stringers and longerons) supported by many transverse frames or rings
along its length; see Figure 2.14. The fuselage skin carries the shear stresses
produced by torques and transverse forces. It also bears the hoop stresses
produced by internal pressures. The stringers carry bending moments and
axial forces. They also stabilize the thin fuselage skin.



EXAMPLE 2.3

Consider a sealed thin-walled cylindrical shell of radius = 2 m, thickness
= 10 mm, and length = 50 m. If the cylinder is 11 500 m above the ground,
determine how much stress will be developed on the cylinder if it needs
to maintain atmospheric pressure inside. If the cylinder is made of
aluminum, what will be size of the cylinder at 11 500 m. Consider air
pressure drops by 101 kPa below the atmospheric ground pressure when
measured 11 500 m above the ground.
Since the radius (2 m) to thickness (10 mm) ratio of this cylinder is very
large, the cylinder can be treated as a thin-walled cylinder (if the ratio is
more than 10, the cylinder can be considered thin-walled).
As such, the developed longitudinal and circumferential stresses would
be

The direction of the these stresses are shown in Figure 2.15. Since both
stresses are tensile, pressurizing the cylinder with 101 kPa pressure will
cause hydrostatic expansion of the cylinder. Total lengthwise expansion
will be

Fuselage frames often take the form of a ring. They are used to maintain
the shape of the fuselage and to shorten the span of the stringers
between supports in order to increase the buckling strength of the
stringer. The loads on the frames are usually small and self-equilibrated.
Consequently, their constructions are light. To distribute large
concentrated forces such as those from the wing structure, heavy
bulkheads are needed. Figure 2.16 shows the fuselage of a Boeing 777
under construction.



Fig.	2.15 Thin-walled pressurized cylinder.



Fig.	2.16 Fuselage of a Boeing 777 under construction.
Source: Courtesy of the Boeing Company.



PROBLEMS
2.1 The beam of a rectangular thin-walled section (i.e. t is very small) is
designed to carry both bending moment M and torque T. If the total wall
contour length L = 2(a + b) (see Figure 2.17) is �ixed, �ind the optimum
b/a ratio to achieve the most ef�icient section if M = T and σallowable =
2τallowable. Note that for closed thin-walled sections such as the one in
Figure 2.17, the shear stress due to torsion is

Fig.	2.17 Closed thin-walled section.



2.2 Do Problem 2.1 with M = αT, where α = 0 to ∞.
2.3 The dimensions of a steel (300 M) I-beam are b = 50 mm, t = 5 mm,
and h = 200 mm (Figure 2.18). Assume that t and h are to be �ixed for an
aluminum (7075-T6) I-beam. Find the width b for the aluminum beam
so that its bending stiffness EI is equal to that of the steel beam.
Compare the weights-per-unit length of these two beams. Which is more
ef�icient weightwise?

Fig.	2.18 Dimensions of the cross-section of an I-beam.

2.4 Use AS4/3501-6 carbon/epoxy composite to make the I-beam as
stated in Problem 2.3. Compare its weight with that of the aluminum
beam.
2.5 Derive the relations given by (2.4) and (2.5).
2.6 The sign convention (positive directions of resultants) used in the
beam theory depends on the coordinate system chosen. Consider the
moment–curvature relation



in reference to the coordinate system shown in Figure 2.19. If w is
regarded as a positive displacement (or de�lection) in the positive y-
direction, �ind the positive direction of the bending moment. State the
reason.

Fig.	2.19 Coordinate system for a beam.

2.7 Compare the load-carrying capabilities of two beams having the
respective cross-sections shown in Figure 2.20. Use bending rigidity as
the criterion for comparison. It is given that a = 4 cm, t = 0.2 cm, and the
two cross-sections have the same area.



Fig.	2.20 Cross-sections of two beams.

2.8 The assembly shown in Figure 2.21 is fastened together by two bolts
made of 7075-T6 aluminum. Determine the required diameter of the
bolts if the assembly is subjected to the loading as shown. Use a factor of
safety = 1.4. The shear strength of 7075-T6 aluminum is 330 MPa.



Fig.	2.21 A joint fastened together using two bolts.

2.9 A thin-walled cylinder (radius = 1 m) is constructed of 10-mm thick
aluminum plates (2024-T3) that are fastened together at their ends with
two 5-mm steel cover plates (AISI4340), as shown in Figure 2.22. The
assembly is joined using rivets having a diameter of 10 mm and spaced
50 mm apart. If internal pressure of the cylinder is 10 MPa, determine
(a) the circumferential stress in the cylinder and (b) the shear stress in
the rivets.



Fig.	2.22 A thin-walled cylinder fastened together with cover plates.

2.10 Consider the rivets in the Problem 2.9. Determine the maximum
spacing between the rivets so that internal pressure is still safe.
2.11 Consider the rivets in the Problem 2.9. If the rivet spacing is �ixed,
determine the minimum rivet diameter so that the internal pressure is
safe.
2.12 Two beams, AC and CD, are hinged at C through a frictionless pin.
Beam CD is cantilevered at D and Beam AC is simply supported at A.
Draw shear force and bending moment diagram for the connected beam
and identify the location of maximum shear force and bending moment.





3 
Introduction to Elasticity



3.1 INTRODUCTION
The primary design requirement of aircraft structural components is to ensure
that the designed structures do not fail or excessively deform due to various
ground and air loads. From mechanics point of view, a basic structural design
process starts by establishing the relation between external forces with the
internal resultants. The external loads are typically de�ined in the form of
prescribed displacements, traction/stress vector, point forces, moments, or
distributed, normal, or shear forces. For structural analysis, the resultant forces
and moments are expressed in terms of stress components. In a deformable body,
the internal resultant forces and moments deform the body. The states of
deformation are expressed in terms of strain components. Depending on the
external loading type and geometry of the structure, the applied loading can lead
to uniform or nonuniform internal stress distributions. Various branches of
mechanics are simultaneously utilized to analytically perform a basic structural
design process.
Theory of elasticity is a branch of mechanics that describes the elastic relation
between stress and strain of a deformable body in equilibrium. The mathematical
formulations allow solving problems including uniform and nonuniform
distributions of stresses. Nonuniform distribution of stresses in a deformable
body generally comes from material nonhomogeneity (e.g. presence of holes,
�laws, sharp changes in geometry, etc.) or loading types. In principle, theory of
elasticity requires basic understanding of displacement, forces, stress, and strains
in terms of mathematical equations. As such, fundamental understanding in
statics and solid mechanics is essential to analyze the stress–strain relation in
deformable bodies using the theory of elasticity.
Statics is the branch of mechanics concerned with the analysis of loads (force,
moments) on physical systems in static equilibrium. The foundation of statics is
essentially an extension of Newton’s �irst law. Using statics, it is possible to obtain
internal forces and moments on a deformable body subjected to external forces
and moments. However, it is not possible to relate forces with deformation using
statics. To obtain such relation, the concepts from mechanics of solid is utilized.
Solid mechanics is the branch of mechanics that describes the relation between
stress (obtained from the internal forces/moments of a body) and strain
(obtained from the associated deformation in the body) of a body in static
equilibrium. The relation between stress and strain is established using Hooke’s
law where properties of materials such as Young’s modulus (E) and Poisson’s
ratio (v) appear as the “bridge” between stress and strain. Therefore, properties
of materials must be known if one wants to employ the concepts of solid
mechanics.



The governing equations in the theory of elasticity are built upon displacement-
based formulations or stress-based formulations. In the displacement
formulation, the displacement vectors are obtained �irst. Then, strain–
displacement relations are established in terms of differential equations. Using
the generalized Hooke’s law, the stress components are obtained. In the stress
formulation, stresses are obtained �irst, and then strains are computed using the
stress–strain relations. Finally, displacements are obtained using the strain–
displacement relations.
The major steps in the displacement and stress formulations are shown in Figure
3.1.
The theory of elasticity plays an important role for stress analysis in aircraft
structural components. However, such theory is only applicable to simple
structural components, and hence, not suitable for analyzing real aerospace
structures. Advanced, experimentally validated computational methods such as
�inite element analysis are generally used for this purpose. The theory of elasticity
is often employed as a guideline for advanced computational methods. In this
chapter, the governing equations of elasticity are developed using the
displacement-based formulations.

Fig.	3.1 (a) Displacement formulation and (b) stress formulation approaches in
theory of elasticity.



(3.1)

3.2 CONCEPT OF DISPLACEMENT
Consider a material point P at the position x(x, y, z) before deformation (see
Figure 3.2). After deformation, P moves to a new position P′(x′, y′, z′). The change
of position during deformation, which is measured in terms of the displacement
vector u, has three components: u, v, and w in the x, y, and z directions,
respectively. The new location of the point (x, y, z) after deformation is given by



Fig.	3.2 Displacement of material point P after deformation.

Thus, the deformed con�iguration is uniquely de�ined if the displacement
components u, v, and w are given everywhere in the body of interest.
Consider an axial member (i.e. a one-dimensional, 1-D, body) of original length L0.
Assume the axial strain to be uniform in the member. Then the axial strain
everywhere in the member is calculated by



(3.2)

(3.3)

(3.4)

where ΔL is the total elongation of the member. The elongation ΔL can be
regarded as the difference in displacement u1 = u(x1) at the right end and u0 =
u(x0) at the left end (see Figure 3.3), i.e.

The function u(x) = u0 + ε0(x − x0) gives the axial displacement at any point x in the
axial member.
If the strain is not uniform, then (Eq. (3.2)) gives an average strain. To determine
the strain at a point, a small segment L0 = Δx must be considered. Consider two
points x0 and x0 + Δx that are separated by a small distance Δx. Let the
displacements at these two points be

and

respectively. The difference in displacement between these two points is

which can also be regarded as the elongation of the material between these two
points. The axial strain in this segment (or at point x0) is de�ined as

Thus, axial strain can be obtained from the derivative of the displacement
function.
If a rod is subjected to a uniform tension and ε = ε0 = constant, then



(3.5)

Fig.	3.3 Elongation.

Integrate the equation above to obtain

Let u(x0) = u0; then, from the equation above, C = u0 − ε0x0, and the displacement
function is given by



(3.6)

(3.7)

(3.8)

(3.9)

3.3 STRAIN
Consider two points P and Q in a solid body. The coordinates of P and Q are (x, y,
z) and (x + Δx, y, z), respectively. The distance between the two points before
deformation is Δx (see Figure 3.4).
After deformation, let the displacement of P in the x-direction be u = u(x, y, z) and
of Q be u′ = u(x + Δx, y, z). The new distance between these two points (P′ and Q′)
in the x-direction after deformation is

where Δu ≡ u′ − u is the change	of	length in the x-direction for material connecting
P and Q after deformation. The strain is de�ined just as in an axial member:

This is the x-component of the normal strain, which measures the deformation	in
the	x-direction at a point (x, y, z).
Similarly, the y and z components of the normal strain at the point are given by

and

respectively. Comparing the strain component εxx with the strain in the 1-D case
(or in an axial member), we may interpret εxx as the elongation per unit length of
an “in�initesimal” axial element of the material at a point (x, y, z) in the x-
direction. Similar interpretations can be given to εyy and εzz.



Fig.	3.4 Neighboring points P and Q in a solid body.

Fig.	3.5 Rotations of material line elements in the x–y plane.

The three normal strain components are not suf�icient to describe a general state
of deformation in a 3-D body. Additional shear strain components are needed to
describe the distortional deformation.
For simplicity, let us consider a 2-D case. Let P, Q, R be three neighboring points
all lying on the x – y plane as shown in Figure 3.5. Let P′, Q′, and R′ be the
corresponding positions after deformation. For no loss of generality, we assume



(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

that P does not move. In addition, we assume that the in�initesimal elements 
and  do not experience any elongation. Thus, the positions of P′ and Q′ (see
Figure 3.5) are given by

For Q′, the displacement increment Δv is

Similarly for R′, the displacement increment Δu can be written as

The rotations θ1 and θ2 of elements  and  are assumed to be small and are
given by

and

respectively. The total change of angle between  and  after deformation is
de�ined as the shear strain component in the x–y plane:

Similar shear strain components in the y–z plane and x–z plane are de�ined as

Thus, a general state of deformation at a point in a solid is described by three
normal strain components εxx, εyy, εzz and three shear strain components γxy, γyz,



(3.15)

γxz.

3.3.1 Rigid Body Motion
If a body undergoes a displacement without inducing strains in the body, then the
motion is a rigid body motion. For instance, the displacements

represent a rigid body translational motion and do not yield any strains.
Another rigid body motion is the rigid body rotation. The following displacements
represent a rigid body rotation in the x–y plane.

It is easy to verify that no strains are associated with the displacement �ield
above.



(3.16)

EXAMPLE 3.1

Consider a 2-D body (a unit square ABCD) in the x–y plane as shown in Figure
3.6. After deformation, the four corner points move to A′, B′, C′, and D′,
respectively, due to the displacement �ield given by

Describe the nature of the deformation.

Fig.	3.6 Shear deformation in the x–y plane.

Using (Eq. (3.1)), the new position of point A after deformation is given by



Similarly, we obtain the new positions of B, C, and D.

Since the deformed con�iguration is linear in x and y, it can be determined
from the new positions A′, B′, C′, and D' as shown by the dashed lines in
Figure 3.6.
The strains corresponding to the displacements given by Eq. (3.16) are

This is a simple shear deformation.
For comparison, consider the following displacement �ield,

Using (Eq. (3.1)), the new positions A′, B′, C′, and D' can be obtained as shown
by the dashed lines in Figure 3.7.
It can be easily shown that the displacement �ield does not yield any strain
component. As such, this is a rigid body rotation.



Fig.	3.7 Rigid body rotation.



Fig.	3.8 Rigid body translation.

The following displacement �ield

which does not yield any strain as well, is a rigid body translation (Figure
3.8).



(3.17)

(3.18)

3.4 STRESS
For an axial member, the force is always parallel to the member, and the stress is
de�ined as

where A is the cross-sectional area. If A = 1 unit area, then σ = P.
The concept of stress can easily be extended to 3-D bodies subjected to loads
applied in arbitrary directions. Consider an in�initesimal plane surface of area ΔA
with a unit normal vector n. The total resultant force acting on this area is ΔF
(force is a vector; see Figure 3.9). The stress	vector	t is de�ined as

Thus, t can be considered as the force per unit area acting on the given plane
surface.

Fig.	3.9 Total resultant force on an area.



Fig.	3.10 Stress vector with three components on the x-face.

Consider the special plane surface with the unit normal vector parallel to the x-
axis. On this face, the stress vector t has three components, which are denoted by
σxx, τxy, τxz as shown in Figure 3.10. Similarly, on the y and z faces the force
intensities are given by the components of the respective stress vectors as

The two subscripts in each stress component have special meaning. The �irst
subscript refers to the plane where the stresses originate, and the second
subscript denotes the direction along which the stresses act. For example, the
symbol τxy refers to a stress component that originates from the plane normal to
the x-axis and acts along the y-axis direction. In a cubic stress element, there are
six planes, and three stress components can be originated from each plane. Of the
six planes, any plane for which the normal is directed toward the positive x-, y-, or



z-axis is considered as the positive plane. Otherwise, the plane is a negative plane.
If the direction of a stress component is along the positive x-, y-, or z-axis, then the
direction is a positive direction, otherwise it is a negative direction. Collectively,
any stress component will be considered positive if it originates from a positive
plane and acts along a positive direction or originates from a negative plane and
acts toward a negative direction. Otherwise, it will be a negative stress
component.
It is evident that for arbitrary applied loadings, a cubic stress element can have at
most eighteen stress components. Depending on the geometry or applied loading
types, the stresses inside a body could be uniform or nonuniform.
Consider a thin rectangular plate of width b and thickness t is subjected to a
tensile force P (uniformly distributed) as shown in Figure 3.11a. The internal
stress  is uniform everywhere. Now consider the same plate with a circular
hole of radius a at the center, as shown in Figure 3.11b. When this plate is
subjected to the tensile force P, the stresses near the hole is not uniform. In both
scenarios, these stresses must be in static equilibrium.



(3.19)

(3.20)

3.5 EQUATIONS OF EQUILIBRIUM IN A UNIFORM
STRESS FIELD
Consider an in�initesimal solid element under a state of uniform stress. The stress
element shown in Figure 3.11a is an example of such element. The stress
components on the six faces of this element are shown in Figure 3.12. Since the
body is in equilibrium, the six equations of equilibrium must be satis�ied, i.e.



Fig.	 3.11 Example of how (a) uniform and (b) nonuniform stress �ields are
developed within a structure subjected to same loading.



Fig.	3.12 In�initesimal solid element under uniform stress.

The force Eq. (3.19) can be expanded as:

It is obvious that the force Eq. (3.19) are satis�ied automatically.
The moment equation Mx can be expressed by taking the moment (with respect to
the center of the solid element)



(3.21)

Similarly, the moment equations My and Mz are

To satisfy the moment Eq. (3.20), the following relations among the shear stress
components are necessary:

Thus, only six stress components are independent, including three normal stress
components σxx, σyy, σzz and three shear stress components, say, τyz, τxz, τxy.



3.6 EQUATIONS OF EQUILIBRIUM IN A
NONUNIFORM STRESS FIELD
Consider an in�initesimal element Δx × Δy × Δz in which the stress �ield is not
uniform. Figure 3.11b shows how nonuniform stress �ield can be developed inside
a material. The stress components acting on the faces of the element are shown in
Figure 3.13.
If the element is in equilibrium, then the six equations of equilibrium, (Eqs. (3.19)
and (3.20)), must be satis�ied. Consider one of the equations of equilibrium, say,
∑Fx = 0. We have

Dividing the equation above by Δx, Δy, Δz, we obtain



(3.22)

(3.23)

Fig.	 3.13 Stress components acting on the faces of the element under a
nonuniform state of stress.

Taking the limit Δx, Δy, Δz → 0, the equilibrium equation above becomes

Similarly, equations ∑Fy = 0 and ∑Fz = 0 lead to

and



(3.24)

(3.25)

respectively.
It can easily be veri�ied that the moment equations ∑Mx = ∑My = ∑Mz = 0 lead to

which are identical to the relation given by (Eq. (3.21)).
Equations (3.22)–(3.25) are the equilibrium equations of a point in a body. If a
body is in equilibrium, the stress �ield must satisfy these equations everywhere in
the body.



EXAMPLE 3.2

a. Determine whether the following stress �ield is in static equilibrium.

Applying Eqs. (3.22)–(3.24), it can be found that

Since the given stress �ield does not satisfy the equilibrium equation, the
stresses are not in static equilibrium.

b. What is the condition for equilibrium for the following stress �ield?

Applying Eqs. (3.22)–(3.24), it can be found that



For static equilibrium, the three equilibrium equations must be zero.
As such, for equilibrium,



(3.26)

3.7 STRESS VECTOR AND STRESS COMPONENTS
RELATIONS
Consider a two-dimensional state of stress so that σxx ≠ 0, σyy ≠ 0, τxy ≠ 0 and other
stress components vanish. Consider the wedge shown in Figure 3.14. The unit
normal vector to the inclined surface is n, and the stress vector (force per unit
area) acting on this surface is t. From the equilibrium equations ∑Fx = 0 and ∑Fy =
0 for the wedge, we obtain

Fig.	3.14 Two-dimensional state of stress in a wedge element.

By noting



(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(Eq. (3.26)) can be expressed in the form

Equation (3.28) can be expressed in matrix form as

where the relation τyx = τxy has been invoked.

Using the same method, one can easily derive the equations for the three-
dimensional case with the result

Symbolically, (Eq. (3.30)) can be written as

Equation (3.31) indicates that the stress matrix [σ] can be viewed as a
transformation matrix that transforms the unit normal vector {n} into the stress
vector {t}, which acts on the surface with the unit normal {n}.



EXAMPLE 3.3

Assume that the uniform state of stress in the wedge-shaped body shown in
Figure 3.15 is

What is the stress vector on the inclined face?
The unit vector n normal to the inclined face is given by

By using (Eq. (3.30)), the components of the stress vector t (force per unit
area) are obtained as

The total force F acting on the inclined face is At, where A is the area of the
inclined face.



(3.32)

(3.33)

(3.34)

3.8 PRINCIPAL STRESS
If we are interested in �inding surfaces for which t is parallel to n, i.e.

Fig.	3.15 Wedge-shaped body.

where σ is a scalar, then (Eq. (3.31)) yields a typical eigenvalue problem:

or

where [I] is the identity matrix. In order for (Eq. (3.35)) to have a nontrivial
solution for {n}, we require that

or, explicitly,



(3.35)

(3.36)

(3.37)

(3.38)

Expanding the determinantal Eq. (3.35) yields a cubic equation in σ. Since [σ] is
real and symmetric, there are three real roots, say σ1, σ2, σ3 (see any book on
linear algebra or matrix theory for the proof). The corresponding eigenvectors,
{n(1)}, {n(2)}, {n(3)}, can be shown to be mutually orthogonal. These three
directions are called principal	directions of stress, and σ1, σ2, and σ3 are the
corresponding principal	stresses.
On the surfaces perpendicular to these directions, we have according to (Eq.
(3.32)),

This says that on the surface with the unit normal {n(i)}, the stress vector is also
normal to that surface, and its magnitude is σ1. In other words, there are no
shearing stresses on the surface that is normal to a principal direction.
Without loss of generality, we assume σ1 ≥ σ2 ≥ σ3. Then it can be shown that σ1
and σ3 are the maximum and minimum normal stresses, respectively, on all
surfaces at a point. The proof is given as follows.
On an arbitrary surface with unit normal vector {n}, let the stress vector be {t}.
The normal component (projection) of {t} on {n} is given by

where superscript T indicates the transposed matrix.
Choose a coordinate system so that x, y, and z axes are parallel to the principal
directions of stress, respectively. With respect to this coordinate system, all
shearing stress components vanish. Then [σ] has a simple form as



(3.39)

(3.40)

(3.41)

Substituting (Eq. (3.38)) into (Eq. (3.37)), we obtain

If σ1 ≥ σ2 ≥ σ3, then we have

Since  (n is a unit vector), it is obvious that



EXAMPLE 3.4

Obtain the principal stresses and directions for the following stress �ield.

For the given the stress matrix the eigenvalue problem is

which can be expanded into

The three roots for the equation above are obtained as

These are the principal stresses.

The unit normal n(1) corresponding to σ1 = 4 MPa can be obtained by
substituting this value back into the system of Eq. (3.34) to obtain

Note that these three equations are not independent. Thus, only two
equations are available to determine the solution. Since there are three
unknowns, two equations can determine only up to the ratios among the
three quantities , , and . However, we note that n(1) is a unit vector,
i.e.



With this additional equation, the solution is obtained uniquely as

Following similar manipulations, the unit vectors n(2) and n(3) corresponding
to σ2 and σ3, respectively, can be determined. We have

and

It can be observed that . Similarly, n(2).

n(3) = 0, and n(3). n(1) = 0
As such, these three eigenvectors are mutually orthogonal.



(3.42)

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)

3.9 SHEAR STRESS
The stress vector t can be decomposed into a normal vector σnn and a tangential
vector τ that is lying on the surface with the unit normal n, i.e.

Thus,

Denoting the magnitude of the shear stress vector by τ, we have

Let us choose the coordinate system (x, y, z) to be parallel to the principal
directions with corresponding principal stresses σ1, σ2, and σ3, respectively. With
respect to this coordinate system, the stress matrix [σ] assumes the diagonal form
as in Eq. (3.38). From Eq. (3.30), we obtain

Using Eq. (3.45), the magnitude of the stress vector can be written as

Substituting Eqs. (3.46) and (3.39) into Eq. (3.44), we obtain

Equation (3.47) can be further simpli�ied by using the relation .
We obtain



(3.49)

(3.50)

(3.51)

(3.52)

(3.53)

(3.54)

(3.55)

Consider all surfaces that contain the y-axis, namely surfaces with unit normal
vector perpendicular to the y-axis. For any of these surfaces, we have

From Eq. (3.48), the magnitude of the shear stress is

In deriving (Eq. (3.50)), the equation  has been used.

The extremum of |τ| occurs at

This yields the solutions

It can easily be shown that nx = 0 leads to the minimum value of τ2 and 
 yields the maximum shear stress.

Since ny = 0, and , the solution  gives .
These represent two surfaces making, respectively, +45° and −45° with respect to
the x-axis.
Substituting  into Eq. (3.50), the maximum shear stress is obtained
as

Similar considerations of surfaces containing the x and z axes, respectively, yield



Among these three shear stresses given by Eqs. (3.53)–(3.55), the one given by
Eq. (3.53) is the true maximum shear stress if we assume, with no loss of
generality,



(3.56)

(3.57)

3.10 STRESS TRANSFORMATION
Consider a state of plane stress, i.e. σzz = τxz = τyz = 0 and σxx ≠ 0, σyy ≠ 0, and σxy ≠ 
0. Let x′–y′ be coordinate axes obtained by rotating x–y axes a θ angle in the
counterclockwise direction (see Figure 3.16).

Fig.	3.16 Stress components in the x–y and x′–y′ coordinates.

Consider the surface perpendicular to the x′-axis. Using Eq. (3.29), the stress
vector t acting on this surface is given by

where n = (nx, ny) is the unit vector parallel to the x′-axis.

Let σ′xx, σ′yy, and τ′xy be the stress components in reference to the x′–y′
coordinates. Noting that σ′xx = σn, we have

Substituting the following relations



(3.58)

(3.59)

(3.60)

(3.61)

into Eq. (3.57) yields

Noting nx = cos θ, and ny = sin θ, we rewrite Eq. (3.58) in the form

Further use of

in Eq. (3.59) leads to

The shear stress component  can be regarded as the tangential component of
the stress vector, i.e.

where s is the unit vector parallel to the y′-axis (or parallel to the surface of
interest; see Figure 3.14), and its two components are

Thus,

The transformation for  is obtained by noting that  is equal to  if θ is
replaced by θ + π/2. From Eq. (3.59), we have



(3.62)

(3.63)

Equations (3.60)–(3.62) are the 2-D stress coordinate	transformation formulas,
which can be expressed in matrix form as

where σ′xx, σ′yy, and σ′xy are stress components referring to the x′–y′ coordinate
system.



EXAMPLE 3.5

As shown in Figure 3.17, the cylindrical pressure vessel has an inner radius of
1.25 m and a wall thickness of 10 mm. It is made from steel plates that are
welded along the 45° seam. Determine the normal and shear stress
components across this seam if the vessel is subjected to an internal pressure
of 8 MPa.
Considering the x- and y-axis is along the longitudinal and circumferential
direction of the pressure vessel, the stresses due to internal pressure can be
obtained as:

Fig.	3.17 Stresses in a thin-walled pressure vessel due to internal pressure
(x′-axis and y′-axis are not shown in the �igure).

The x′-axis is along the seam, as shown in Figure 3.17. To obtain the normal
(σ′yy) and shear stress (τ′xy)developed across the seam, the coordinate
transformation formulas described in matrix form (Eq. (3.63)) can be
utilized:

As such, the normal and shear stress components across the seam are 0.75 
MPa (σ′yy) and 0.25 MPa (τ′xy), respectively.



3.11 LINEAR STRESS–STRAIN RELATIONS
We have introduced six independent stress components (σxx, σyy, σzz, τyz, τxz, τxy)
to describe the load carried by a three-dimensional solid at a point, and six
independent strain components (εxx, εyy, εzz, γyz, γxz, γxy) to describe the
deformation at a point. Since, in general, deformations are produced by loads,
strain components are related to stress components. These stress–strain relations
are used to characterize the stiffness of a material. One of the common ways to
express the stress–strain relations for a material is to write the stress components
as functions of the strain components, or vice versa. If the expressions of these
functions of a material do not depend on the Cartesian coordinate systems
chosen, this material is isotropic. This is equivalent to saying that the stiffness
property of the material does not depend on direction. Otherwise, the material is
called anisotropic.
The subject of developing stress–strain relations (more generally referred to as
constitutive	models) is an important area in mechanics of solids. For the interest
of aircraft structures, we focus our attention on constitutive models commonly
used to describe lightweight metals and �iber-reinforced composites for which
linearly elastic behavior dominates in the range of small strains and loading rate
effects are negligible in most applications.
For isotropic materials, the simple tension (uniaxial stress) test is often
performed to generate a stress–strain curve as shown in Figure 3.18. For most
structural materials, such uniaxial stress–strain curves almost always consist of
an initial linear portion and a nonlinear portion beyond a stress level. Of interest
is the yield stress σY beyond which a permanent strain is produced upon
unloading, as illustrated in Figure 3.18. Note that the unloading path is linear and
parallel to the initial linear portion. The determination of the yield stress is not as
easy as the ultimate stress because it does not coincide with the end of the linear
portion of the stress–strain curve. A customary practice is to take the stress as
yield stress that produces a 0.002 permanent strain upon complete unloading.
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(3.66)

Fig.	3.18 Stress–strain curve.

3.11.1 Strains Induced by Normal Stress
Imagine that a thin cylindrical element (a rod) is taken out of a generally
anisotropic solid in the x-direction. Assume that in this rod, only σxx ≠ 0, and all
the other �ive stress components are absent (uniaxial stress). If stress σxx is
applied gradually, strains are produced.
Let us consider for now only the normal strain component εxx. A stress–strain
curve as shown in Figure 3.18 can be obtained. For the linear portion, we write

in which the constant Ex is called the Young’s	modulus in the x-direction of the
solid.
In the case of uniaxial stress loading described above, lateral strains εyy and εzz
are also present and are related to εxx as
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(3.68)

(3.69)

(3.70)

(3.71)

(3.72)

where vxy and vxz are Poisson’s	ratios. The �irst subscript indicates the loading
direction, and the second subscript indicates the direction of lateral contraction.
Using Eqs. can be rewritten as

Similar Young’s moduli Ey and Ez in the y and z directions, respectively, are
introduced in the uniaxial stress–strain relations as

and

respectively. The corresponding Poisson’s ratios are introduced in the following
relations:

and

It should be noted that in a uniaxially stressed anisotropic body, say σxx ≠ 0 and
other σij = 0, shear strains γyz, γxz, and γxy may be induced in addition to the
normal strains. In the most general case, uniaxial stress σxx may produce six strain
components,



(3.73)

where the coef�icients η’s serve a similar purpose as Poisson’s ratios; they are the
ratios of the induced shear strains and the normal strain εxx produced by uniaxial
stress σxx, i.e.

Again, the �irst subscript in η indicates the loading direction, and the second set of
subscripts indicates the plane of induced shear strain.
In a similar manner, the strains produced by uniaxial stresses σyy and σzz are
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(3.75)

and

respectively. If all three normal stress components are present, then the total
strains are the sums of the corresponding strains given by Eqs. (3.73)–(3.75).

3.11.2 Strains Induced by Shear Stress
Consider a state of simple shear with τxy ≠ 0 and all other stress components are
vanishing. In the most general solid, all strain components may be induced by τxy.
Consider the shear strain γxy induced by τxy. In the linear range of stress–strain
relations, we have



(3.76)

(3.77)

(3.78)

(3.79)

(3.80)

where Gxy is the shear	modulus in the x – y plane. Other strains induced by τxy
can be written as

in which μxy,yz and μxy,xz are introduced to represent the interactions among the
shear strains; and ηxy,x, ηxy,y, and ηxy,z are the interactions between the shear
strain γxy and the normal strains εxx, εyy, and εzz, respectively.

For simple shear in the y–z and x–z planes, we have

and

respectively. Other strains produced by τyz and τxz, can be expressed in a form
similar to Eq. (3.77).
If the material is isotropic, i.e. its mechanical properties are not direction
dependent, all the η coef�icients vanish and



(3.81)

(3.82)

Thus, in an isotropic solid, a normal stress does not produce shear strains, and a
shear stress does not produce normal strains.

3.11.3 Three‐Dimensional Stress–Strain Relations
The discussion in Sections 3.11.1 and 3.11.2 indicates that, in the most general
case, the application of a single stress component can possibly produce all six
strain components. In the linear range of stress–strain relations, we can write the
strains produced by all six stress components by using the principle of
superposition:

where aij (i, j = 1 − 6) are elastic	compliances. Comparing Eq. (3.81) with Eqs.
(3.73)–(3.77) together with two similar equations for τyz and τxz, we can easily
relate the elastic compliances to the engineering moduli Ex, Ey,…, vxy,…, Gxy …, ηx,yz,
… We have
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In matrix notation, Eq. (3.81) can be expressed as

or symbolically as

The inverse relations of Eq. (3.84) are given as

where

The relations given by Eqs. (3.84) and (3.85) are generally called Hooke’s	law.
The elements cij in [c] are called elastic	constants, and Ex, Ey, …, vxy, …, Gxy, … are
called engineering	moduli.
In general, it is easier to measure elastic compliances aij (and thus the
engineering moduli) than elastic constants cij because aij can be measured using
simple tension and simple shear tests. For instance, under simple tension in the y-
direction, the resulting strain components are equal to ai2σyy. From the measured
strains, the second column ai2 of the elastic compliance matrix can thus be
obtained. Theoretically, elastic constants cij may be determined with a similar
approach by conducting experiments in which only one strain component is
present in each experiment. However, these experiments are much more dif�icult
than uniaxial stress tests to realize in the laboratory.
Considering elastic strain energy, it can be shown that [a], and thus [c] also, is a
symmetric matrix, i.e.

Thus, there are only 21 independent elastic compliances or, equivalently, 21
elastic constants. This is the maximum number of independent elastic constants
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(3.87)
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that linear elastic materials can have. Most materials possess certain elastic
symmetries that would reduce the number of independent elastic	constants. The
following are two material groups that are of practical interest.

3.11.3.1 Orthotropic Materials
Unidirectional �iber composites can be regarded as orthotropic	materials, which
possess three mutually orthogonal planes of symmetry. The directions
perpendicular to these planes are called the material principal directions. If the
coordinates x, y, z are set up such that they are parallel to the material principal
directions, respectively, then the elastic compliance matrix reduces to

The elastic compliances aij are related to the engineering moduli as

Since aij = aji, we have

Thus, there are nine independent elastic constants for orthotropic elastic
materials.
Fiber-reinforced	composites are regarded as orthotropic solids. It is customary
to denote the �iber direction as x1-axis, and the transverse directions as x2 and x3.
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The elastic moduli are referenced to this particular coordinate system and
denoted by E1, E2, E3, v12, v13, v23, G23, G13, and G12.

The following are the in-plane engineering moduli for some polymeric
composites.
AS4/3501-6	carbon/epoxy (AS4 carbon �iber in 3501-6 epoxy):

Boron/epoxy:

S2-glass/epoxy:

Note that the Young’s modulus in the �iber direction (E1) for AS4/3501-6 is 14
times the transverse Young’s modulus (E2).

3.11.3.2 Isotropic Materials
The elastic properties of isotropic materials are invariant with respect to
directions. Thus, isotropy is a special case of orthotropy. By requiring the
conditions given by Eq. (3.80), we obtain

The corresponding elastic constants cij can also be expressed in terms of
engineering moduli as



(3.91)

(3.92)

(3.93)

where λ = vE/(1 + v)(1 − 2v).
It is evident that the stress–strain relations for isotropic materials can be
expressed in terms of the Young’s modulus E, Poisson’s ratio v, and shear modulus
G. Moreover, it can be shown that these three quantities are related by

Thus, there are only two independent elastic constants for isotropic materials.
The stress–strain relations can be expressed in matrix form, as shown below.

where, . The reverse form is

Most natural metals and alloys that are used as aerospace structural materials are
considered as isotropic materials. For example, aluminum alloys are usually
considered as isotropic materials. Typical values of their elastic moduli are
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3.12 PLANE ELASTICITY
Many structures under certain types of loading may yield strain and stress �ields
that are independent of, say, the z-direction and have

or

over the entire structure. The state of deformation with (Eq. (3.94)) is called a
state of plane	strain parallel to the x–y plane, while that with (Eq. (3.95)) is
called a state of plane	stress parallel to the x–y plane.
From the strain–displacement relations, the conditions of (3.97) can be described
in terms of the displacement �ield as

where u, v, and w are displacement components in the x, y, and z directions,
respectively.
To produce a state of plane strain parallel to the x–y plane, the structure must be
uniform in shape in the z-direction, and loading must be independent of the z-
axis. An example is a hollow cylinder subjected to uniform internal pressure with
both ends constrained to suppress its movement in the z-direction.
The plane stress condition given by Eq. (3.95), in general, cannot be exactly
realized. It is often used to approximate the state of stress in a thin panel
subjected to only in-plane (x–y plane) loading. The corresponding displacement
�ield is given by

where normal strain εzz is independent of the z-axis.

3.12.1 Stress–Strain Relations for Plane Isotropic Solids
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Plane strain and plane stress conditions lead to simpli�ication in stress–strain
relations. Recall that the 3-D stress–strain relations for isotropic solids can be
expressed in the following forms:

or

where

3.12.1.1 Plane Strain
Using the plane strain conditions, Eq. (3.99) reduces to



(3.100)

(3.101)

From the �irst three equations of (3.100), it is easy to see that

Thus, σzz is a dependent quantity. The �irst, second, and last equations in Eq.
(3.100) are usually considered the stress–strain relations for a state of plane
strain. Inverting these equations, we obtain

3.12.1.2 Plane Stress
The reduced stress–strain relations for a state of plane stress are readily derived
from the 3-D relations given by Eq. (3.99). We have
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(3.103)

(3.104)

Again, from Eq. (3.100) we note that

is a dependent quantity. Inverting the �irst two and last equations in (3.104), we
obtain

These relations are different from the corresponding plane strain relations given
by Eq. (3.100). However, the two sets of stress–strain relations can be put in a
single expression by introducing the following parameter de�ined by

In terms of parameter κ, the stress–strain relations for both plane strain and
plane stress can be expressed in the form
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3.12.2 Stress–Strain Relations for Orthotropic Solids in Plane
Stress
Fiber-reinforced composite materials are modeled as orthotropic solids.
Furthermore, they are often used in the form of thin panels for which the plane
stress condition prevails.
Let the �iber direction coincide with the x-axis and the panel be parallel to the x–y
plane. The stress–strain relations for a composite panel are given by

where E1 is the Young’s modulus in the �iber direction (the longitudinal modulus),
E2 is the transverse Young’s modulus, G12 is the shear modulus in the x–y plane,
and v12 and v21 are Poisson’s ratios. Since the compliance matrix is symmetric, we
have

Thus, there are only four independent elastic moduli.
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Inverting relations (3.107), we have

where

3.12.3 Governing Equations
To solve plane elasticity problems, three sets of conditions must be satis�ied, i.e.
the equilibrium equations, boundary conditions, and compatibility equations.

3.12.3.1 Equilibrium Equations
For plane problems, it is easy to show that the 3-D equilibrium Eqs. (3.22)–(3.24)
reduce to

3.12.3.2 Boundary Conditions
For plane problems, the loading stress vector t on the boundary is in the x–y
plane, i.e. tz = 0. On the boundary contour, the applied traction (stress vector) is
given and the stresses must satisfy the following boundary conditions:

where n = (nx, ny) is the unit normal vector to the boundary contour of the plane
body. It should be noted that a boundary can be subjected to a displacement �ield
or point force and moments. The point forces and moments are expressed in
integral forms.



EXAMPLE 3.6

Specify the boundary conditions based on the loading on beam shown in
Figure 3.19.
A plane stress condition is assumed. There are four boundaries. Each
boundary can be identi�ied with the unit normal vector.

Boundary 1: The top horizontal surface with n(1) = {0, − 1}

Boundary 2: The bottom horizontal surface with n(2) = {0, 1}

Boundary 3: The left vertical surface with n(3) = {−1, 0}

Boundary 4: The right vertical surface with n(4) = {1, 0}

Fig.	3.19 A cantilever beam subjected to uniformly distributed vertical
loading.

The boundary (1) is subjected to a stress vector t, and the boundary (2) and
(3) are unloaded. In other words, the boundary (2) and (3) are free surfaces.
Equation (3.31) will be used to specify the boundary conditions for boundary
(1), (2), and (3).
The boundary (1) is located at y = −C. The condition is:

This condition leads to σyy(x, − C) =  − q and τxy(x, − C) = 0.

The boundary (2) is located at y = C. The condition is



(3.112)
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(3.114)

This condition leads to σyy(x, C) = 0 and τxy(x, C) = 0.

Similarly, the boundary (3) is located at x = 0. The condition is

This condition leads to σyy(0, y) = 0 and τxy(0, y) = 0.

The boundary (4) is �ixed. As such, the boundary conditions should be
speci�ied in terms of displacements and can be written as
At x	=	l,	u	=	0,	v	=	0, and 

Appropriate Airy stress function must be chosen to solve this elasticity
problem.

3.12.3.3 Compatibility Equation
The three strain components εxx, εyy, and γxy are derived from the two
displacement components u and v as

Using the strain-displacement relations in Eq. (3.113), we can derive the following
compatibility equation:

Thus, the three strain functions εxx, εyy, and γxy cannot be arbitrarily speci�ied;
they must satisfy the compatibility Eq. (3.113). Otherwise, we may not be able to
�ind a unique displacement �ield.
For isotropic solids, the compatibility Eq. (3.113) can be written in terms of
stresses by using the stress–strain relations and equilibrium equations. We have

where



(3.115)

In general three-dimensional problems, there are six strain components.
Following the procedure used in deriving (Eq. (3.113)), we are able to derive �ive
additional compatibility equations that involve the strain components. In the case
of plane strain problems, among the six strain components, only the in-plane
strains εxx, εyy, and γxy are not vanishing and, thus, only the compatibility Eq.
(3.113) is not trivial.
For plane stress, normal strain εzz is present in addition to the three in-plane
strain components. If we assume that all stress components (and thus all strain
components) are independent of the z-axis, then, besides (Eq. (3.113)), there are
additional compatibility equations that need to be satis�ied. They are

The equations above indicate that εzz must be a linear function of x and y. In
general, this contradicts the result of relation (3.103), in which the two in-plane
normal strains may not be linear in x and y. In other words, solutions obtained
with the plane stress governing Eqs. (3.110), (3.111), and (3.113) do not satisfy
all compatibility equations and are, in general, only approximate solutions.
However, these solutions are very good for thin plates under in-plane loads. More
details on this topic can be found in many books on the theory of elasticity
(Timoshenko and Goodier 1970).
The plane stress formulation can be an exact formulation for some special states
of stress. For example, a uniform state of stress in plates produced by loads that
are applied uniformly over the thickness along the edge of the plate satis�ies all
the compatibility equations. Hence, such a state of stress is plane stress rather
than plane strain even if plate thickness is large.

3.12.4 Solution by Airy Stress Function for Plane Isotropic Solids
Many solutions to elasticity problems involving plane isotropic solids can be
obtained using a speci�ic type of stress functions. The method applies the Airy
stress function and reduces the requirement of satisfying the three governing
equations, i.e. the equilibrium equations, boundary conditions, and compatibility
equations to a single governing equation in terms of a single unknown. The
resulting governing equation can be mathematically solved by various methods of
applied mathematics.
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Consider the possibility of the existence of a stress function φ(x, y) such that it is
related with the stress components through the following differential equations.

With the relations given by Eq. (3.116), it can be veri�ied that the equilibrium Eq.
(3.110) are satis�ied automatically. Substitution of Eq. (3.116) into Eq. (3.114)
yields

or, explicitly,

The above is the compatibility equation in terms of ϕ which is called the Airy
stress	function. In this form, the solution to a plane elasticity problem is reduced
to solving (Eq. (3.117)) for ϕ from which stresses are derived from Eq. (3.116).
These stresses are required to satisfy the boundary conditions. Note that, in using
the Airy stress function, one need not worry about equilibrium equations and
compatibility equations since they are automatically satis�ied. The solution
procedure involves solving the partial differential Eq. (3.117) and satisfying the
boundary conditions (3.111).



EXAMPLE 3.7

Verify whether the following function is a valid Airy	stress	function.

It can be shown that

As such, the given stress function will satisfy (Eq. (3.117)). Hence, it is a valid
stress function.



EXAMPLE 3.8

Consider a beam of rectangular cross-section subjected to pure bending as
shown in Figure 3.20. This can be considered as a 2-D plane stress problem.
Show that the following stress function solves the problem

To show that this Airy stress function is the solution, we must check whether
it satis�ies the compatibility Eq. (3.117) and boundary conditions, which state

Fig.	3.20 Beam under pure bending.

It is obvious that this Airy stress function satis�ies the compatibility Eq.
(3.117). Using Eq. (3.116), we obtain the stress components corresponding to
the Airy stress function as

Thus, if we choose C = σ0/6b, then the boundary conditions are totally
satis�ied.

3.12.5 Plane Elasticity Solutions in Polar Coordinate System
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Many load bearing members have geometrical features that can be more
conveniently analyzed in polar coordinates. In a 2-D polar coordinate system, the
x–y coordinates are replaced by the r–θ coordinates. The plane elasticity solutions
for structural members such as a fuselage, a rotor, a circular disk, or a curved
beam are ef�iciently obtained if analyzed in the polar coordinate system. The
strain–displacement relations, plane stress–strain relations, governing equations,
and Airy stress formulations are expressed in the polar coordinate formulations.
All these expressions can be obtained from the Cartesian coordinate formulations
through Cartesian to polar coordinate transformation. As shown in Figure 3.21,
the x–y coordinates and the r–θ coordinates are related with the following
equations:

More details on the coordinate transformation and derivations of governing
equations in polar coordinates can be found in many books on the theory of
elasticity (Timoshenko and Goodier 1970; Sadd 2009).

3.12.5.1 Strain–Displacement Relations
The strain-displacement relations for plane problems can be derived by applying
Eq. (3.118) to the Cartesian forms Eqs. (3.7)–(3.12).

where, εrr and εθθ are normal strains and γrθ is the shear strain. The
displacements along the r and θ where, and are normal strains and is the shear
strain. The displacements along the r and directions are prescribed by ur and uθ.
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(3.123)

Fig.	3.21 The Cartesian (x–y) and the polar (r–θ) coordinates.

3.12.5.2 Stresses in Polar Coordinates and Equilibrium Equations
The stress components in plane elasticity are σrr, σθθ, and τrθ. The directions of
these stress components are illustrated in the stress element shown in Figure
3.22. The stresses in the opposing faces will be same when the element
represents uniform stress �ield conditions. When the stress �ield is not uniform,
the stresses in the opposing faces of a stress element will be different as shown in
Figure 3.23.
The equilibrium equations can be obtained by balancing the forces along the r
and θ directions.



Fig.	3.22 A stress element in polar coordinates.



(3.124)

Fig.	 3.23 Stress components acting on the faces of the element under a
nonuniform state of stress.

3.12.5.3 Stress–Strain Relations
The stress–strain relations in polar coordinates are similar to those prescribed in
Cartesian coordinates. The Hooke’s Law in plane stress and plane strain
conditions are given in Eqs. (3.124) and (3.125), respectively.
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(3.130)

(3.131)

3.12.5.4 Stress Function Formulations
To solve problems in polar coordinates using the Airy stress function method, Eqs.
(3.116) and (3.117) can be transformed into Eqs. (3.126) and (3.127) using the
relations outlined in Eq. (3.118):

To solve elasticity problems for certain geometries, applications of both polar
coordinate and Cartesian coordinate formulations are often required. For
example, the elasticity solution of a 2-D rectangular plate with a circular hole
requires polar coordinate formulations near the “hole region” and Cartesian
coordinate formulations in areas far from the hole area. The transformations of
stresses and displacements between polar coordinate and Cartesian coordinate
are an integral part in such types of elasticity problems.
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3.13 FORMULATIONS BEYOND 2‐D PLANE
ELASTICITY
One major advantage of the two-dimensional formulations for plane isotropic
solids is that the method allows the developments of analytical closed-form
solutions to certain types of three-dimensional problems, of which, three-
dimensional solutions are very dif�icult to obtain. In other words, the Airy stress
function approach outlined in the previous section is very convenient because
this method analytically solves boundary-value problems and provides
mathematical equations to compute internal stress distributions and
displacements within the structure. However, the Airy approach is somewhat
limiting because it is mostly applicable to axisymmetric or simple geometries
subjected to axial, shear, or bending-type loadings. Obviously, the Airy approach is
not applicable to other loading types such as torsion. For solving torsion
problems, the Prandtl	stress	function method can be used.
It is worth mentioning that both the Airy stress function and the Prandtl stress
function are actually the special forms of the Beltrami-Mitchel	stress	functions for
solving three-dimensional problems. The general form of this stress function
involves the three-dimensional equilibrium Eqs. (3.22)–(3.24) and Beltrami-
Mitchel compatibility equations (Sadd 2009):
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The two-dimensional representation of the Beltrami-Mitchel compatibility
equations is Eq. (3.114), which can also be obtained by setting z = 0 in the Eqs.
(3.133), (3.134), and (3.136), and then combining them.
The general form of Beltrami-Mitchel stress functions involves �inding suitable
relations functions ϕij(x, y, z), where i, j = 1 → 3, that are related with the stress
components through the following differential equations:

When all but the diagonal elements of Beltrami-Mitchel stress functions ϕij are
eliminated, i.e.

the resulting functions are called Maxwell	stress	functions. The corresponding
stress–stress function relations yield the following representation:



(3.145)

(3.146)

(3.147)

(3.148)

(3.149)

(3.150)

(3.151)
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It is easily found that the two-dimensional stress–Airy stress function relation
outlined in Eq. (3.116) can be obtained by setting ϕ11 = ϕ22 = 0 and ϕ33 = ϕ(x, y)
in the Maxwell stress functions.
When only the diagonal elements of the Beltrami-Mitchel stress functions ϕij are
eliminated, i.e:

the resulting functions are called Morera	stress	functions. The corresponding
stress–stress function relations yield the following representation:
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The Prandtl	stress	function (here denoted by φ(x, y)) for solving torsion problems
is a special case of the Morera function with ϕ12 = ϕ13 = 0 and :



PROBLEMS
3.1 Consider a unit cube of a solid occupying the region

After loads are applied, the displacements are given by

a. Sketch the deformed shape for α = 0.03, β = −0.01.
b. Calculate the six strain components.

Find the volume change ΔV [ΔV = V (the volume after deformation) − V0 (the
original volume)] for this unit cube. Show that εxx + εyy + εzz ≈ ΔV.

3.2 Consider a unit square of a 2-D solid occupying the region
0 ≤ x ≤1 and 0 ≤ y ≤1
After loads are applied, the displacements are given by
u	=	ax and v	=	by

a. Sketch the deformed shape for:
i. a = 0.01, b = 0.015

ii. a = 0.01/x, b = −0.01/y
iii. a = 0.01y/x, b = −0.015x/y

b. Calculate the six strain components for all three cases.
3.3 Consider the following displacement �ield:

Sketch the displaced con�iguration of a unit cube with the faces originally
perpendicular to the axes, respectively. This displacement �ield does not
yield any strains; it only produces a rigid body rotation. Show that the angle
of rotation is



3.4 Consider the displacement �ield in a body

Find the locations of the two points (0, 0, 0) and (5, 0, 0) after deformation.
What is the change of distance between these two points after deformation?
Calculate the strain components corresponding to the given displacement
�ield. Use the de�inition of εxx to estimate the change of distance between the
two points. Compare the two results.
3.5 Consider the problem of simple shear in Example 3.1 and Figure 3.6.
From the deformed shape, �ind the normal strain for material along the line 

 by comparing the deformed length  and undeformed length .

Set up new coordinates (x′, y′) so that the x′-axis coincides with , and y′ is
perpendicular to the x′-axis. The relation between (x, y) and (x′, y′) is given
by

where θ = 45° is the angle between x′ and the x-axis.
Write the displacements u′ and v′ in the x′ and y′ directions, respectively, in
terms of the new coordinates x′ and y′. The relation between (u′, v′) and (u,
v) is the same as between (x′, y′) and (x, y). Then calculate the strains using
u′ and v′, i.e.

Compare  with the normal strain (along ) obtained earlier.



3.6 A cantilever beam of a rectangular cross-section is subjected to a shear
force V as shown in Figure 3.24. The bending stress is given by

where M = −V(L − x). Assume a state of plane stress parallel to the x–z plane,
i.e. σyy = τxy = τyz = 0. Find the transverse shear stress τxz(=τzx) by
integrating the equilibrium equations over the beam thickness and applying
the boundary conditions τxz = 0 at z = ±h/2. Hint: From the equilibrium
equation

we have

Fig.	3.24 Cantilever beam subjected to a shear force.

3.7 The state of stress in a body is uniform and is given by



Find the three components of the stress vector t on the surface ABCD as
shown in Figure 3.25. Find the normal component σn of the stress vector.

Fig.	3.25 Shape of a wedge.

3.8 Find the principal stresses and corresponding principal directions for the
stresses given in Problem 3.7. Check the result with other methods such as
Mohr’s circle.
3.9 As shown in Figure 3.26, the 5-cm diameter drive shaft AB on the
helicopter is subjected to an axial tension of 50 kN and a torque of 1 kN-m.
Determine the principal stresses and the directions for a stress element
taken at a point on the surface of the shaft.



Fig.	3.26 Helicopter drive shaft AB under combined tension and torsion.

3.10 A solid shaft of circular cross-section supports a torque of 50 kN-m and
a bending moment of 25 kN-m. If the diameter of the shaft is 150 mm,
calculate the principal stresses using the eigenvalue method.
3.11 A state of hydrostatic stress is given by

Show that on any surface the force (or stress vector) is always
perpendicular to the surface and that the magnitude of the stress vector is
equal to σ0.

3.12 An isotropic solid with Young’s modulus E and Poisson’s ratio v is under
a state of hydrostatic stress as given in Problem 3.11. Find the corresponding
strain components.
3.13 For small strains, the volume change ΔV/V is identi�ied to be equal to
εxx + εyy + εzz. The bulk modulus K of an isotropic solid is de�ined as the ratio
of the average stress and the volume change, i.e.

Derive K in terms of E and v.
3.14 A block of elastic solid is compressed by normal stress σxx as shown in
Figure 3.27. The containing walls are rigid and smooth (frictionless). Find the
values of k for plane strain and plane stress conditions, respectively, in the
stress–strain relation obtained from the compression test above.



Fig.	3.27 Solid con�ined between two smooth rigid walls.

Assume that E = 70 GPa and v = 0.3.
3.15 An aluminum 2024-T3 bar of unit cross-sectional area is subjected to a
tensile force in the longitudinal direction. If the lateral surface of the bar is
con�ined and not allowed to contract during loading, �ind the force that is
needed to produce a 1% longitudinal strain. Compare this with the
corresponding load for the bar under simple tension.
3.16 Compare the axial stiffnesses of aluminum alloy 2024-T3 under plane
strain and plane stress conditions.
3.17 Show that the state of stress of a solid body of any shape placed in a
pressured chamber is a state of hydrostatic stress. Neglect the effect of the
gravitational force.
3.18 Derive the compatibility equation for plane elasticity problems in terms
of stresses, i.e.

3.19 Consider a thin rectangular panel loaded as shown in Figure 3.28. Show
that the Airy stress function

solves the problem. Find the constants c1, c2,	c3.



Fig.	3.28 Thin rectangular panel subjected to uniform tension.

3.20 Consider the a × b rectangular panel shown in Figure 3.29. Find the
problem that the Airy stress function ϕ = xy3 solves. That is, �ind the tractions
at the boundary of the panel.

Fig.	3.29 Thin rectangular solid panel.

3.21 Consider a thin rectangular panel shown in Figure 3.30. Find the stress
components and the stress vector on the surface y	=	d and x	=	l if the stress



function  describes the nature of loading on the panel.

Fig.	3.30 Thin rectangular solid panel.

3.22 As shown in Figure 3.31, an aluminum cantilever panel of length a = 1 m
and height 2b	= 20 mm is subjected to a downward end shear force W. The
following stress function is proposed:

a. Prove that this is a valid Airy stress function.
b. Specify the boundary conditions for each surface.
c. Find the complete stress solutions.
d. Obtain state of stresses at x = a and y = b.
e. Obtain principal stresses and maximum shear stress.



Fig.	3.31 An aluminum cantilever panel subjected to end shear force.

3.23 The stresses in a 2-D rectangular steel body (E = 200 GPa, v = 0.32) are:
σxx =  − A(L − x)y, and ; other stress components are zero.
Here, L represents length and h is height.

a. Is this stress in equilibrium?
b. If this problem is simpli�ied to a plane stress problem, are the strains

compatible?

c. What are the displacements if A = 100 MPa/m2, L = 1 m, and h = 25 mm?
3.24 What are the normal and shearing stresses on the spiral weld of the
aluminum shaft (Figure 3.32) of diameter d subjected to an axial load P and a
torque T? Given: P = 120 kN, T = 1.5 kN, d = 40 mm, and ϕ = 35°. It is known
that the axial load produces an axial stress  and the torque produces a
shear stress .



Fig.	3.32 An aluminum shaft with spiral weld.
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4 
Torsion



4.1 INTRODUCTION
Torque is a common form of load in aircraft structures. A torque is a moment
or couple that has the unit N · m. The difference between a torque and a
bending moment is that a torque acts about the longitudinal axis of a shaft as
illustrated in Figure 4.1, whereas a bending moment acts about an axis that is
perpendicular to the longitudinal axis of the shaft (beam). Based on Saint-
Venant's principle (Hibbeler 1965), it is customary to ignore the differences
in stress and strain near the load-application end of the shaft, even for
statically equivalent loads. Thus, a torque symbol (a curved arrow) may
represent many possible local load distributions that are statically
equivalent. However, it should be noted that for shafts of thin-walled cross-
sections under torsion, this boundary layer, in which stresses and strains are
different for statically equivalent loads, may become large and, thus, needs to
be taken into account in the stress analysis (Fung 1965).
Nevertheless, the effect of torque is of major concern in the design of many
aircraft structural components such as wing, fuselage, horizontal, vertical
stabilizer, etc. In analyzing torsion on a structural member, the �irst step is to
determine the relation between the applied torque and the internal
deformation and stress �ields. The geometry of the section plays a signi�icant
role in determining how a torsion problem can be analyzed. For example,
torsion in a prismatic shaft of isotropic and linearly elastic solids can be
treated using the concepts of solid mechanics. Using solid mechanics
approach, only shafts of circular solid and hollow sections can be analyzed.
Other types of sections are unable to satisfy the assumptions involved in
deriving the deformation and stress �ields:

Plane sections of the shaft remain plane and circular after deformation
produced by application of the torque.
Diameters in plane sections remain straight after deformation.

These assumptions lead to the result that shear strain (and, thus, shear
stress) is a linear function of the radial distance from the point of interest to
the center of the section. Moreover, these assumptions imply that plane
sections of the shaft rotate as rigid bodies during deformation without in-
plane deformations or out-of-plane displacements (i.e. warping).
Unfortunately, these assumptions are not valid in shafts of noncircular
sections, for which different formulations are required.



4.2 TORSION OF UNIFORM BARS WITH
ARBITRARY CROSS‐SECTION
There are two classical approaches to solving the torsion of solid shafts of
noncircular cross-section. The Prandtl stress function method employs
assumptions regarding stresses produced in the shaft by a torque, while the
Saint-Venant warping function method is based on assumptions of the
displacement �ield. These two methods lead to the same solution. Here we
begin with Saint-Venant's displacement assumptions but derive the
governing equations in terms of the Prandtl stress function.



Fig.	4.1 Straight bar of a constant cross-section.

4.2.1 Governing Equations
Consider a straight shaft of constant cross-section subjected to equal and
opposite torques T at the ends as shown in Figure 4.1. The origin of the
coordinate system is selected to be at the center	of	twist (COT) of the cross-
section, about which the cross-section rotates during twisting under the
torque. Note that the cross-section here is not restricted to circular or hollow
circular section only. By the de�inition of the COT, the in-plane displacements
vanish at this location. For a circular cross-section, the COT is obviously



(4.1)

(4.2)

located at the center of the cross-section. In general, the location of the COT
depends on the shape of the cross-section and how the end is supported. In
the formulation of the torsion problem, however, the explicit location of the
COT may not be known a priori. If the effect of end support is ignored (i.e.
warping is allowed to develop freely without exterior constraints), then the
COT coincides with the shear center, which is discussed in Chapter 5. For
convenience, we assume that the Cartesian coordinate system is set up with
the origin located at the COT. The governing equations for torsion problems
derived based on an arbitrarily selected origin of the coordinate system are
identical to those based on this special coordinate system except for the
displacements, which differ by a rigid body displacement. This result can be
recognized by the fact that an arbitrary coordinate system is related to the
COT system by a constant vector, which does not lead to nontrivial strains
(and stresses).
Let α denote the total angle of rotation (twist angle) at z relative to the end at
z = 0. The rate of twist (twist angle per unit length) at z is denoted by

Saint-Venant assumed that during torsional deformation, plane sections
warp, but their projections on the x–y plane rotate as a rigid body. This
assumption implies that the in-plane displacement components u and v
follow those of a rigid body rotation. Consider an arbitrary point P on the
cross-section at z that moves through a rotation of a small angle α to P′ after
the torque is applied. For clarity in illustration, we select P to locate on the
lateral boundary of the bar as shown in Figure 4.2. Assume that the cross-
section at z = 0 remains stationary. If the rotation angle α is small, then the
displacement components at point P are given by



(4.3)

Fig.	4.2 Rotation of the cross-section of a bar under torsion.

in which r is the distance from the origin of the coordinates to point P. This
displacement �ield represents a rigid rotation of the cross-section through
angle α in the x–y plane.
The displacement w in the z-direction is assumed to be independent of z,
and, thus, can be expressed in the form

where the rate of twist θ is independent of z and ψ(x, y) is the warping
function.
The displacement �ield given by (4.1)–(4.3) yields

From the stress–strain relations, we conclude that

Thus, τyz and τxz are the only two nonvanishing stress components. In view of
the displacement �ield, it is easy to see that τyz and τxz are independent of z.



(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

In the absence of body forces, the equations of equilibrium (3.22)–(3.24)
reduce to

Since the nonzero stresses are only shear stresses, the Prandtl stress function
ϕ(x, y) will be the appropriate function in solving elasticity problems
involving torsion. It is shown in (3.158)–(3.159) that the relation between
the Prandtl stress function ϕ(x, y) and shear stress components τxz and τyz
are

It is easy to verify that τzx and τyz, derived from ϕ in this manner, satisfy the
equations of equilibrium automatically.
From (4.1) and (4.2) and the strain–displacement relations,

we obtain

Using (4.6) and (4.7), it is easy to derive the following equation:

This is the compatibility equation for torsion. Using the stress–strain
relations



(4.9)

(4.10)

(4.11)

we obtain, from (4.8),

In terms of the Prandtl stress function, (4.9) becomes

The torsion problem now reduces to �inding the stress function ϕ and
requiring that the stresses derived from this stress function satisfy the
boundary conditions.

4.2.2 Boundary Conditions
It can be observed from Figure 4.1 that there are basically three surfaces on a
uniform bar – the lateral surface and the two plane sections normal to which
torque is applied. As such, on the lateral surface of the bar, no loads are
applied. Thus, the stress vector (traction) t must vanish. Using (3.31), i.e.

the stress vector can be evaluated on the lateral surface by specifying the unit
normal vector n. On the lateral surface, nz = 0. Thus,



(4.12)

(4.13)

(4.14)

(4.15)

Fig.	4.3 Tangential (s) and normal (n) directions of the boundary contour of
the bar cross-section.

Explicitly, we have

Referring to Figure 4.3, it is easy to derive



(4.16)

(4.17)

(4.18)

Using the relations in (4.14) and (4.15), (4.13) can be expressed as

The traction-free boundary condition tz = 0 is now given by

on the lateral surface. For solid sections with a single contour boundary, this
constant is arbitrary and can be chosen to be zero. Thus, the boundary
condition can be expressed as

4.2.3 Torque–Stress Relations
It is obvious that the developed shear stresses τxz and τyz inside the bar are
due to the applied torque T. Here, the mathematical relations between these
shear stresses τxz and τyz on the cross-section (see Figure 4.4) and their
resultant torque are obtained. Consider a differential area dA = dx	dy. The
torque produced by the stresses in this area is



Fig.	4.4 Shear stresses on the cross-section.

The total resultant torque is obtained by integrating dT over the entire cross-
section, i.e.



(4.19)

(4.20)

(4.21a)

(4.21b)

where x1,	x2, y1, and y2 are integration limits on the boundary. Since ϕ
vanishes on the boundary contour, the last two terms in the equation above
vanish. Thus,

The derivations above clearly indicate that the solution of the torsion
problem lies in �inding the stress function ϕ(x, y) that vanishes along the
lateral boundary of the bar. Once ϕ(x, y) is determined, the location of the
COT (x = 0, y = 0) is also de�ined.

4.2.4 Warping Displacement
For bars of arbitrary cross-section, warping (out-of-plane displacement) of
the cross-section occurs when twisted. From we have

The warping displacement w can be obtained by integrating the equations
above:



(4.22)

where, f(y) and g(x) are integration constants and can be obtained from the
�ixity conditions speci�ied in the problem descriptions. In essence, either can
be used to determine warping displacement w(x,y).

4.2.5 Torsion Constant
The torsion equation T	=	GJθ (2.10) can be used to express the relation
between the applied torque T and the resulting rate of twist θ for shafts of
arbitrary cross-sections. The torsion constant J is obtained as

Using (4.19) and (4.10) in the equation above, we obtain

Thus, once the Prandtl stress function is solved, the torsional	rigidity GJ of
the shaft is also determined.



(4.23)

(4.24)

4.3 BARS WITH CIRCULAR CROSS‐SECTIONS
Torsion on a bar with circular or hollow cross-sections can be solved using
the concepts of elementary mechanics of solids. The elasticity approach
using Prandtl stress function is also applicable as the theory is developed for
a bar with arbitrary cross-sections including circular and noncircular
sections such as rectangular, triangular, etc.

4.3.1 Elasticity Approach Using Prandtl Stress Function
To �ind the suitable Prandtl stress function, consider a uniform bar of circular
cross-section. If the origin of the coordinates is chosen to coincide with the
center of the cross-section, the boundary contour is given by the equation

where a is the radius of the circular boundary. Assume the stress function as

For a circular bar, any point on the lateral surface satis�ies x2 + y2 = a2. On this

surface, As such, the stress function (4.23) satis�ies the
boundary condition (4.18).
Substituting (4.23) into the compatibility q. (4.10), we have

Rearranging,

Substituting the expression of C in (4.23), the complete stress function that
solves the torsion problem for a bar with circular cross-section can be
obtained:



(4.25)

(4.26)

(4.27)

(4.28)

Thus, the stress function of (4.25) solves the torsion problem. It also
indicates that the center of the circular section is the COT.
From (4.19), we have the torque as

where

is the polar moment of inertia of the cross-section, and

is the cross-sectional area. Since a2A = 2Ip, thus,

and J = Ip. The shear stresses are



Consider a cylinder of a circular cross-section of radius r cut from the
circular bar of radius a. On the lateral surface of this cylinder of radius r (see
Figure 4.5a), the stress vector is given by (4.13). Thus,

Fig.	 4.5 Shear stresses on (a) a cylinder of radius r(a > r) cut out of the
original cylinder, and (b) a surface cut along the radial direction of the
cylinder.

Also note that

Using (4.27), (4.28), and the relations above, we obtain

As shown in Figure 4.5a, the radial shear stress τrz on the cross-section
vanishes since it is equal to tz.

Now, consider the surface exposed by cutting along the radial direction of the
cylinder as shown in Figure 4.5b. The unit normal vector to the surface is



(4.29)

(4.30)

(4.31)

(4.32)

given by

Substituting (4.27) and (4.28) together with (4.29) into (4.13) yields the only
nonvanishing component of the stress vector in the z-direction as

On the z-face (the cross-section), the tangential shear stress τ (that is
perpendicular to the radial direction) is equal to tz in magnitude. Adjusting
the sign for direction, we have

Using (4.19) to eliminate θ, the relation above can be expressed in terms of
the torque

It is evident that the magnitude of τ is proportional to r. This is the well-
known result for torsion of circular bars.
Using (4.6), (4.7), (4.27), (4.28), and stress–strain relations, we have

Using these two results we �ind that w(x, y) = f(y)+ g(x) = constant. It implies
that a bar with circular section experiences either a rigid body displacement
(when f(y)+ g(x) ≠ 0 but constant) or no displacement (when f(y)+ g(x) = 0)
along the z-direction). In other words, there will be no deformation along the
z-direction. Thus, for bars with circular cross-sections under torsion, there is
no warping.

4.3.2 Mechanics of Solid Approach



Consider a solid circular shaft of radius a and length L, as shown in Figure
4.6. The shaft is �ixed at one end and a torque T is applied to the other end. To
develop the torsion formula using mechanics of solid approach, the following
assumptions must be made:

i. The shape of the circular section remains circular after torque is applied.
ii. The cross-section remains �lat all the time. In other words, there is no

warping.
iii. The length and the radius of the shaft do not change due to the applied

torque.

Due to applied torque T at the free end (z	=	L), the shaft undergoes twisting
deformation. As such, the undeformed plane (see Figure 4.6) MOPN distorts
into the skewed plane MOPQ as the point N on the surface of the free end
moves to point Q. Due this deformation, a radial line drawn on the cross-
sectional plane located at a distance z from the �ixed end of the shaft will
rotate through an angle ψ(z). When a radial line is drawn at a distance z + Δz
from the �ixed end, the shaft then rotates through an angle ψ(z) + Δψ(z). For
any arbitrary radius r, it can be shown that

Fig.	4.6 Torsion on a shaft with circular cross-section.



(4.33)

(4.34)

(4.35)

(4.36)

where, γ is the shear strain.
Rearranging,

 (4.34)

Since, 0 ≤ r ≤ a, it is obvious that γ = 0 at r = 0 and γ = γmax at r = a

As such, (4.33) can be expressed as

Using the shear stress–strain relation, (4.34) can be written as

 (4.36)

The q. (4.35) describes the shear stress distribution over the cross-section.
To �ind the relation between this shear stress and the resultant torque T, a
moment equilibrium must be taken with respect to z-axis. As shown in
Figure 4.7, the internal resultant torque T is, in principle, the summation of
the torque produced by the shear stress τ on each stress element dA.

Rearranging,



(4.37)

Fig.	4.7 Shear stress due to torque varies linearly along the radial line of the
cross-section.

Using (4.35), (4.36) can be also expressed as

Comparing (4.37) and (4.30), it is obvious that both the mechanics of solid
approach and the elasticity approach can be used to generate the torsion
formula for a circular cross-section.



(4.38)

The shear stress formula (4.37) is also valid for a hollow shaft. Note that the
torsion constant/polar moment of inertia for a hollow section is J = 

.

The maximum shear stress is



EXAMPLE 4.1

For the solid and hollow circular sections shown in Figure 4.8, what is the
maximum torque if the allowable shear stress is τallow = 187 MPa. What is
the corresponding maximum twist angle θ? The shear modulus of the
material is G = 237 GPa.

Solid	Section
Radius a = 5 cm

Polar moment of inertia  cm4

Considering τmax = τallow, the maximum torque Tmax can be found from
(4.36):

Using the torsion formula T = GJθ, the maximum twist angle is



Fig.	4.8 Circular shaft with (a) solid section and (b) hollow section.

Hollow	Section
Inner radius a = 5 cm
Outer radius b = 6 cm

Polar moment of inertia  cm4

The maximum torque Tmax can be found from (4.38):

The corresponding maximum twist angle is



4.4 BARS WITH NARROW RECTANGULAR
CROSS‐SECTIONS
The result for circular cross-sections cannot be extended automatically to
noncircular cross-sections. For example, for a square cross-section, the shear
stress cannot be assumed to be perpendicular to the radial direction, and its
magnitude is not proportional to the radial distance. Further, warping is
present. For bars with certain noncircular cross-sections, solutions can be
found in books on the theory of elasticity. In aircraft structures, many
components are large in lateral dimensions compared with the thickness. For
such narrow sections, simpli�ications can be achieved.
Consider a bar (shaft) with a narrow rectangular cross-section subjected to a
pure torque as shown in Figure 4.9a. From the consideration of symmetry,
the COT for this cross-section is located at the geometric center of the
section. To satisfy Saint-Venant's principle, the length L of the bar is assumed
to be much greater than the width b of the cross-section. Moreover, it is
assumed that the cross-section (see Figure 4.9b) of the bar is wide such that
b ≫ t. Basically, this is a thin plate along in the z-direction. On the top and
bottom faces (y = ±t/2), the traction-free boundary condition requires that



Fig.	4.9 Bar with a narrow rectangular cross-section.

In terms of the stress function, this says that



(4.39)

(4.40)

(4.41)

(4.42)

(4.43)

(4.44)

on the top and bottom faces. Since t is very small, and τyz must vanish at y =
±t/2, it is unlikely that the shear stress τyz would build up across the
thickness. Therefore, we can assume that τyz ≈ 0 through the thickness.
Consequently, we assume that ϕ is independent of x.
In view of the foregoing, the governing Eq. (4.10) reduces to

Integrating (4.40) twice, we obtain

The boundary condition requires that

which leads to

and subsequently,

The corresponding shear stresses are obtained from (4.5) and (4.42) as

The shear stress τxz acts parallel to the x-axis and is distributed linearly
across the width, as shown in Figure 4.9c. The maximum shear stress occurs
at y = ±t/2, i.e.



(4.45)

The torque is obtained by substituting (4.42) into (4.19):

De�ine the torsion constant J as

Then

where GJ is the torsional rigidity.
From (4.6) and (4.43), we have

The amount of warping on the cross-section can be obtained from
integrating the expression above. We obtain

The integration constant is set equal to zero because w = 0 at the COT. In fact,
w = 0 along the centerline of the sheet.
The results obtained here can be used for sections composed of a number of
thin-walled members. For example, the T-section shown in Figure 4.10a can
be considered as a section consisting of two rectangular sections. The
combined torsional rigidity is given by

where



Fig.	4.10 Examples of open thin-walled sections.

The formula given by (4.45) can also be applied to curved open thin-walled
sections by interpreting b as the total arc length as depicted by Figure 4.10.
It is noted that the torsion constant J given by (4.45) is valid only if b/t is
large. If the two dimensions are comparable, then J should be evaluated using
the elasticity solution obtained by solving a rectangular cross-section using
the Prandtl stress function method (Timoshenko and Goodier 1970). A
correction coef�icient β needs to modify the torsion constant of (4.45), i.e.

For b/t = 1.0, 1.5, 2.0, 5.0, 10.0, β = 0.422, 0.588, 0.687, 0.873, 0.936,
respectively.



(4.46a)

(4.46b)

Using the relation T = GJθ, (4.43) can be rearranged to express the shear
stress distribution in terms of torque:

Shear stress is maximum when 

As such, Eq. (4.46a) can be written as:



4.5 CLOSED SINGLE‐CELL THIN‐WALLED
SECTIONS
4.5.1 The s–n Coordinate System
Members with closed thin-walled sections are quite common in aircraft
structures. Figure 4.11 shows a closed thin-walled section with a single cell.
The wall thickness t is assumed to be small compared with the total length of
the complete wall contour. In general, the wall thickness t is not a constant
but is a function of s.
It can be noticed that shear stress along the thickness direction is negligible
in a thin rectangular section. For such geometry, solving problems in the
Cartesian coordinate system is convenient by setting the axes along the
thickness and width directions. Working with Cartesian system is not
meaningful when the geometry of the thin section is irregular. It will be
shown that setting a new coordinate system (s–n coordinate) where one axis
acts along the width and the other acts along the thickness will simplify the
analysis.



(4.47)

Fig.	4.11 Wall section enclosed by an inner contour S1 and an outer contour
S0.

The wall section is enclosed by the inner contour S1 and the outer contour S0
as shown in Figure 4.11. Using the Prandtl stress function ϕ, the stress-free
boundary conditions are given by [see (4.17)]

Thus,



(4.48)

(4.49)

where C0 and C1 are two different constants and cannot be set equal to zero
simultaneously as in the case of solid sections with a single boundary
contour.
Consider the shear stresses at an arbitrary point on the wall section. Let us
set up a coordinate system s–n so that s coincides with the centerline of the
wall and n is perpendicular to s as shown in Figure 4.12a. Take an
in�initesimal prismatic element of unit length in the z-direction as shown in
Figure 4.12b. The active shear stresses on the side faces are shown in the
�igure. Note that the inclined surface is perpendicular to the s-direction. The
equilibrium condition (balance of forces in the z-direction) gives



(4.50)

Fig.	4.12 Shear stresses at a point on a wall section.

Similarly, using the free body of Figure 4.12c and the equilibrium condition,
we have



(4.51)

(4.52)

(4.53)

Note that a negative sign is added in front of τyz dx to account for the fact that
an increment ds is accompanied by a decrement −dx. Since τnz = ∂ϕ/∂s = 0 on
S0 and S1, and t is small, the variation of τnz across the wall thickness is
negligible. Hence, a reasonable approximation is to assume τnz ≈ 0 over the
entire wall section. As a result of this assumption, the τsz is retained as the
only nonvanishing stress component.

4.5.2 Prandtl Stress Function
Let ϕ be expressed in terms of the coordinates s and n and expand ϕ in series
of n as

where

in which t(s) is wall thickness and, in general, is a function of the wall
contour.
Since the range of n is small, the high-order terms of n in (4.52) can be
neglected without causing much error. Retaining the linear term in (4.52), we
have

The boundary conditions require that



(4.54)

(4.55)

Solving the two equations, we obtain

4.5.3 Shear Flow q
The shear stress τ on the wall section in the s-direction (see Figure 4.13) is
given by

Thus, the shear stress τ on the thin-walled section is uniform over the
thickness. Nevertheless, τ is still a function of the contour s if the wall
thickness t is not constant.
De�ine the shear	�low q (force/contour length) as

This indicates that regardless of the wall thickness, the shear �low is constant
along the wall section.

4.5.4 Shear Flow–Torque Relation
The shear stress τ along the wall is usually represented by the shear �low q
along the centerline of the wall. Since the shear �low forms a closed contour,
the force resultants are equal to zero, i.e. ∑ Fx = 0 and ∑ Fy = 0. However, the
shear �low produces a resultant torque.
Consider a constant shear �low q on a closed thin-walled section as shown in
Figure 4.14. The resultant torque produced by the shear �low acting on the
contour segment ds is given by



where ρ is the distance from the origin of the coordinates to the line segment
ds. The torque T can be obtained by integrating the above along the entire
shear �low contour. Noting that ρ	ds = 2dA, we rewrite the integral above as
an area integral:

Fig.	4.13 Shear stress on a wall section in the s-direction.



(4.56)

(4.57a)

(4.57b)

Fig.	4.14 Constant shear �low on a closed thin-walled section.

where  is the area enclosed by the shear �low or, equivalently, the	area
enclosed	by	the	centerline	of	the	wall	section.
Consider a shear �low q as shown in Figure 4.15. It can easily be shown that
the resultant force R is oriented parallel to the line connecting the two end
points P and Q of the shear �low, and the magnitude of the resultant force is
given by

The components of the resultant force are



(4.57c)

(4.57d)

Fig.	4.15 Resultants and moment of a constant shear �low.

The torque about the z-axis is

where  is the area bounded by the contour q and lines  and . The
actual location e (see Figure 4.15) of the resultant force can be obtained from
the torque equivalence condition, i.e.



4.58)

(4.59)

(4.60a)

(4.60b)

(4.61)

(4.62)

4.5.5 Twist Angle
The torsion formula T	=	GJθ can be considered as the universal equation that
is valid for torsion on all geometries. For a thin rectangular section or
circular shaft or any geometries of which torsion constant J is readily
available or known, the twist angle can be obtained by rearranging the
torsion formula

When torsion constant J is not known, then (4.59) cannot be used to �ind the
twist angle. In such a scenario, the twist angle is obtained �irst. The torsion
constant J is then obtained using the torsion formula.

4.5.5.1 Method 1
Using the shear strains given by (4.6) and (4.7) and the stress–strain
relations, we obtain

Using the �irst line of (4.50), we have

From Figure 4.16, the following relations are obvious:



(4.63)

(4.64)

Fig.	4.16 Geometrical relations among coordinate increments.

Substitution of (4.60) and (4.62) into (4.61) leads to

Integrating τ over the closed contour along the centerline of the wall, we
have

where L is the total length of the contour. The �irst term on the right-hand
side of (4.64) vanishes because w(0) = w(L). The second term can be
integrated using Green's theorem, which states that



(4.65)

By identifying g as x and f as −y in (4.65), we use Green's theorem to obtain

from which θ is obtained as

4.5.5.2 Method 2 for Constant Shear Flow
Consider a thin-walled bar of unit length as shown in Figure 4.17. The shear
stress is



(4.66)

Fig.	4.17 Thin-walled bar of unit length.

and the shear strain is

The corresponding strain energy density is given by

The total strain energy stored in the bar (of unit length) is

The work done by torque T through the twist angle θ is given by



(4.67)

(4.68)

In the equation above,  is the area enclosed by the shear �low contour.

From the energy principle (work done by external forces is equal to the total
strain energy), we obtain

or explicitly,

Thus,

This is identical to (4.65) if q is constant along the wall.

4.5.6 Torsion Constant J
Since T = GJθ, we have

From this relation, we obtain the torsion constant J for the single-cell thin-
walled section as

in which T = 2q  has been used.



EXAMPLE 4.2

Compare the torsional rigidities of the two tubes shown in Figure 4.18.

Closed	Hollow	Section
As shown in Figure 4.18a, the wall thickness is t = 0.005 m and the
average radius is 0.2025 m. Thus,

From (4.68), the torsion constant is obtained as

Slit	Section
The slit section is made by cutting open the closed section (Figure 4.18b),
then the torsion constant is given by (4.45) as

The ratio of torsional rigidities of these two tubes is

It is evident that the tube with the closed section has a much higher
torsional rigidity than the slit tube.



Fig.	4.18 Thin-walled tube with (a) a closed section and (b) a slit section.



EXAMPLE 4.3

Find the maximum torque and allowable shear �low for the three-stringer
thin-walled beam with the cross-section as shown in Figure 4.19 if the
allowable shear stress of the material is 200 MPa.

Solution
The contribution of individual stringers to the overall torsional rigidity of
the thin-walled structure is small and can be neglected. Hence, this
structure can be considered as a single-cell closed section with a
nonuniform wall thickness and the shear �low is constant along the wall.

Fig.	4.19 Three-stringer thin-walled bar.

Because of its smaller thickness, the shear stress in the curved wall is
higher than that in the straight walls. The shear stress in the curved wall
is

The allowable shear stress of the material is 200 MPa. As such, the
maximum torque that this structure can take is



(4.69)

(4.70)

The maximum allowable shear �low will be

Note:
If the torque T (N m) is given, then the shear �low is obtained from the
relation . The area  is readily obtained as

Thus,

The twist angle per unit length can be obtained using (4.61). We have



(4.71a)

(4.71b)

(4.71c)

4.6 MULTICELL THIN‐WALLED SECTIONS
Wing sections are often composed of airfoil skin supported by thin vertical
webs to form multicell constructions. Figure 4.20 shows a two-cell skin–web
section. In addition, stiffeners are used to carry bending loads. The	individual
stiffeners,	although	having	large	concentrated	cross-sectional	areas,	have
relatively	small	torsion	constants	and	do	not	make	a	signi�icant	contribution	to
the	torsional	rigidity	of	the	wing	box	and	are	often	neglected	in	the
consideration	of	torsional	stiffness	of	the	wing	box.
For torsion of a single-cell section, the Prandtl stress function must be
constant along each boundary contour. For the two-cell section, there are
three boundary contours, i.e. S0, S1, and S2 (see Figure 4.21). Thus, we have

where C0, C1, and C2 are three different constants.

From the result of (4.55), we note that the shear �low between two boundary
contours is equal to the difference between the values of ϕ along these
contours. Speci�ically, for each cell, the shear �low is considered positive if it
forms a counterclockwise torque about the cell and its value is equal to the
value of ϕ on the inside contour minus that on the outside contour, i.e.



(4.72)

Fig.	4.20 Two-cell stringer–skin–web section.

Fig.	4.21 Two-cell thin-walled section.

Note that the direction of q12 assumed in Figure 4.21 is positive for cell 1 and
negative for cell 2.
From (4.71), we obtain

In view of this relation, the shear �low system of Figure 4.21 can be viewed as
the superposition of two shear �lows q1 and q2 as depicted in Figure 4.22.
Thus, the torque contributed by each cell can be calculated by using .
The total torque of the two-cell section is



(4.73)

(4.74a)

(4.74b)

(4.75)

where  and  are the areas enclosed by the shear �lows q1 and q2,
respectively.
The twist angles θ1 and θ2 of the cells are obtained using (4.65):

It	is	important	to	note	that	for	each	cell,	the	shear	�low	(and	twist	angle)	is
taken	positive	if	it	�lows	(rotates)	in	the	counterclockwise	direction. For the
shear �low in Figure 4.21, q12 = q1 − q2 should be used for cell 1, while for cell
2, −q12 = q2 − q1 should be used.

Since the entire thin-wall section must rotate as a rigid body in the plane, we
require the compatibility condition

Equations (4.73) and (4.75) are solved to �ind the two unknown shear �lows
q1 and q2.

Sections with more than two cells can be treated in a similar way. Additional
equations provided by the compatibility condition are available for solving
additional unknown shear �lows. The torque for an n-cell section is given by

The twist angle θ of the section is the same as the individual cells. Hence, we
choose cell 1 to calculate the twist angle:

From T = GJθ, we obtain the torsion constant J of the multicell section as



(4.76)

Fig.	4.22 Superposition of two constant shear �lows.



(4.77)

(4.78)

EXAMPLE 4.4

A two-cell thin-walled box beam (see Figure 4.23) is subjected to a
torque T that causes a twist angle θ = 5°/m (0.087 rad/m). Assume that G
= 27 GPa. Find the corresponding shear �low and torque.

Using (4.65), we have for cell 1,

Substituting numerical values into the equation above, we have

Similarly for cell 2,

Solving (4.77) and (4.78), we obtain the shear �lows as

The torque that produces the given twist angle is



Fig.	4.23 Two-cell thin-walled box beam.

The torsion constant is



(4.79)

(4.80)

(4.81)

EXAMPLE 4.5

The cross-section of the thin-walled beam in Figure 4.19 is modi�ied into
the two-cell section shown in Figure 4.24. Compare the torsional
rigidities of these two beams.

For the single-cell beam of Figure 4.19, the torsional rigidity can be
obtained from Eq. (4.70) in Example 4.3, from which we have

and the torsion constant J = 0.013 m4.

For the two-cell section of Figure 4.24, we have  = 1.767 m2 and  = 
1.2 m2 for cells 1 and 2, respectively. From (4.73), we obtain

in which the shear �lows q1 and q2 are indicated in Figure 4.25. The rate
of twist for cell 1 is



Fig.	4.24 Dimensions of a two-cell section.

Fig.	4.25 Shear �lows in a two-cell section.

Similarly, for cell 2 we have

Finally, the compatibility q. (4.75) leads to



(4.82)

Solving (4.80) and (4.82) simultaneously for q1 and q2, we obtain

Since the two cells have identical twist angle, we can use (4.81) to
calculate the rate of twist, with the result

Thus, the two-cell section has a torsion constant J = 0.03 m4, which is
more than twice that of the single-cell section of Figure 4.19.
Consider the single-cell section obtained from that of Figure 4.24 by
removing the diagonal sheet. The shear �low is easily obtained from

Subsequently, the rate of twist is obtained as

and the torsion constant is

This value is almost equal to that of the two-cell section. From this
example, it is interesting to note that torsional rigidity of a closed thin-
walled section cannot be increased signi�icantly by
compartmentalizations.



(4.83)

(4.84)

(4.85)

4.7 WARPING IN OPEN THIN‐WALLED
SECTIONS
Except for circular cross-sections, shafts of noncircular sections exhibit
warping under pure torques. In other words, out-of-plane displacements
occur during torsion. For instance, in the narrow rectangular section shown
in Figure 4.20, the out-of-plane displacement is given by

Substituting (4.83) in (4.25b), we have

which is consistent with initial assumption τyz = 0. Moreover, we note that τxz
= 0 along the centerline of the wall from (4.42). Thus, we have

along y = 0.
It is noted that w = 0 along the centerline (y = 0) of the wall. Thus, warping
occurs only across the thickness of the wall. This type of warping is usually
called secondary	warping. For general thin-walled sections, the centerline
of the wall may also warp with the magnitude much greater than the
secondary warping. This is known as primary	warping.
Consider a curved thin-walled section of uniform thickness as shown in
Figure 4.26. Following the procedure described in Section 4.5, we set up a
right-hand coordinate system s–n–z so that s coincides with the centerline of
the wall, n is perpendicular to s, and z remains unchanged. The origin of s can
be chosen arbitrarily. At any local position along the contour s, the state of
stress (or strain) in the wall section is approximately the same as that of a
straight rectangular section by identifying s with x and n with y (see Figure
4.9b). However, the warping function cannot be obtained from (4.83) by
using such a substitution. At a point along the s contour, let us denote the
displacement in the s-direction and un the displacement in the n-direction.
With respect to this new coordinate system, the shear strains are



(4.86)

(4.87)

In view of (4.85), we have γsz = 0 along s (the centerline of the wall). Thus,

Apparently, the out-of-plane displacement along s may be obtained by
integration of (4.87) when ∂us/∂z is known.

For convenience, we assume that the COT for the thin-walled section is
known. Figure 4.27 shows the relative position of the COT and the contour s.
Take an arbitrary point P on the contour s. After the application of a torque,
point P moves to P′ because of the rigid rotation assumption of Saint-
Venant's torsion formulation (see Figure 4.2). The total displacement is



Fig.	4.26 s–n coordinates along the centerline of the thin-walled section.

Fig.	4.27 Calculation of warping along a thin-walled section.



(4.88)

(4.89)

(4.90)

(4.91)

where α is the total twist angle measured from z = 0 to the current section of
interest.
From Figure 4.27a, the displacement us in the s-direction (i.e. the tangential
direction at point P) is

where ρ is the distance from the COT to the tangent line at point P as shown
in Figure 4.27a. Substituting (4.88) in (4.87), we obtain

To perform the integration of (4.89) along s, we consider a line segment ds
along the contour s as shown in Figure 4.27b. The area  is recognized to
be

Now, integrating (4.89) with the aid of (4.90) we obtain

where  is the area enclosed by the contour s and the two lines connecting
the COT with the two points s = 0 and s = s (see Figure 4.27c). The area  can
also be considered as the area swept by the generator line (the line
connecting COT and the origin of s) from s = 0 to s = s. If the origin of s is
selected such that warping vanishes at s = 0, then w(0) = 0.
It	is	important	to	note	that	in	the	derivation	of (4.88),	the	positive	direction	of	s
must	be	set	up	so	that	it	is	counterclockwise	with	respect	to	the	z-axis	in	order
to	make	it	consistent	with	the	positive	direction	of	θ. Otherwise, a negative
sign must be added on the right-hand side of (4.88). This can be
implemented by interpreting the area  to be a negative value. As an
example, consider the s contour shown in Figure 4.28. Line  is tangential
to the s curve at point P. Below point P, the positive direction of s forms a
counterclockwise rotation about the z-axis. while beyond point P it forms a



clockwise rotation. Thus, in the calculation of , the additional area beyond
point P must be regarded as a negative value. On the other hand, if s is set up
such that its positive direction is opposite to that shown in Figure 4.28, then
the area  is positive above point P and negative below point P.

Fig.	4.28 Positive direction of an s contour.



EXAMPLE 4.6

The COT of the thin-walled channel section shown in Figure 4.29 is
located on the horizontal axis of symmetry at a distance

to the left of the vertical wall, where Ix is the moment of inertia about the
x-axis. Find the warping displacement.

Consider the contour s, which is broken into two straight parts, s1 and s2,
as shown in Figure 4.29. For contour s1 we have



Fig.	4.29 Thin-walled channel section.

and for contour s2

in which a negative sign is added because the direction of s2 produces a
clockwise rotation about the COT. From (4.91), the warp of the thin wall
is

and



The warping displacement in the lower half of the section can easily be
recognized to be of the same magnitude as the upper half except for the
sign change resulting from the fact that the s contour is in the negative
direction. In view of the antisymmetric warping of the section, we
conclude that w(0) = 0. In fact, this is true at locations on any axis of
symmetry of the thin-walled section. Thus, the warping displacement at
the upper corner point is −ehθ (a negative sign means that the
displacement is in the negative z-direction), and at the upper free edge it
is (bh − eh)θ.



(4.92)

(4.93)

4.8 WARPING IN CLOSED THIN‐WALLED
SECTIONS
We follow the same procedure used in treating open sections. First, set up
the s–n–z coordinate system with the origin at the COT and with positive s
forming counterclockwise about the COT (see Figure 4.30). The shear �low qs
is related to the shear stress τsz as

where t is the thickness of the wall and G is the shear modulus. Using the �irst
equation in (4.86), we obtain from (4.92) the following relation:



(4.94)

Fig.	4.30 Shear �low on a closed thin-walled section.

Using (4.88), which is valid for closed sections, we obtain from (4.93) the
equation

Integration of (4.94) along s leads to



(4.95)

This gives the warp at any point relative to that at the point s = 0.



(4.96)

(4.97)

EXAMPLE 4.7

The cross-section of a thin-walled box beam subjected to a torque T is
shown in Figure 4.31. Find the warping displacement of the cross-
section.

The axes of symmetry of this section are chosen to coincide with x and y
axes, respectively, as shown in Figure 4.31. From symmetry, the COT is
seen to be at the origin of the coordinate system. Moreover, we take the
origin for s at (x = a/2, y = 0). From symmetry, we have w(0) = 0. In fact,
any midpoint of the four sidewalls can be selected as the origin of s and
satis�ies w(0) = 0.
For closed single-celled sections, we have

and



(4.98)

Fig.	4.31 Thin-walled box beam with four stringers.

in which  is the total area enclosed by the thin walls. Substituting
(4.96) and (4.97) in (4.95), we have the warp along the thin wall as

By dividing the contour s into �ive consecutive segments, s1, s2, s3, s4, and
s5, the integration in (4.98) can easily be evaluated in each segment. For
s1, we obtain

which is linear in S1. At stringer 1, S1 = b/2 and the warp is



(4.99)

The warp along s2 is

The warp at stringer 2 is obtained by setting S2 = a. We have

Similarly, the warps along s3, s4, and s5 can be calculated using (4.98). The
result would show that

Of course, the result above can also be deduced from the symmetry of the
cross-section. Note that a positive value of w1 means that the warp is in
the positive z-direction if T is positive (counterclockwise). It is obvious
from (4.99) that the sign of w1 changes if a/t1 > b/t2 and that no warping
occurs for square sections of uniform wall thickness.



(4.100)

(4.101)

(4.102)

(4.103)

4.9 EFFECT OF END CONSTRAINTS
The Saint-Venant torsion formulation is derived based on the assumption
that warping is freely developed and is uniform along the shaft. However, in
practice, torsion members may be connected to other structural components
or built into a “rigid” support. As a result, this assumption is violated and the
Saint-Venant torsion solutions obtained in previous sections need to be
modi�ied. Nowadays, analyses of the end constraint effects in structures
under general loads are often carried out using �inite elements. In this
section, we consider shafts of open thin-walled sections to illustrate the
effect of end constraints in torsion. The purpose is to gain some insight into
how suppression of warping can increase the torsional rigidity of a shaft. It is
noted that the following analysis procedures are not suitable for thin-walled
structures with stringers. If stringers are present, their contributions to the
shear �low induced by end constraints must be included.
Consider an open thin-walled section in which an s contour is set up along
the thin wall as shown in Figure 4.28. The solution for free warping is given
by (4.91). If we select the origin of s such that w(0) = 0, then (4.91) becomes

In the case of torsion without end constraints, both w and θ are independent
of z over the entire length of the shaft. If end constraints are present, then
both w and θ are functions of z (the longitudinal axis along the shaft). Let us
write (4.100) in the form

in which

is the warp at any point s per unit rate of twist angle. From (4.101), we note
that ws is independent of z, meaning that the “shapes” of the warp on
different cross-sections are identical except for the magnitude of the warp.
The fact that w(s, z) is a function of z indicates the presence of the
longitudinal normal stress:



(4.104)

(4.105)

which in turn induces shear �low q as shown in Figure 4.32. Since σzz is a
function of z, its values at the two cross-sections separated by a distance dz
differ by the increment dσzz. Similarly, the shear �lows on the two
longitudinal sides of the free body are q and q + dq. The balance of forces in
the z-direction acting on the free body yields

or

Fig.	4.32 Shear �low induced by longitudinal normal stress.

Substituting (4.103) in (4.104), we have

The shear �low along a certain contour on a wall can be obtained by
integration (4.105) and using the fact that shear �low vanishes at the open
edges, say, s = s0 and s = s1, of the section. Then at any location s, the shear
�low is



(4.106)

(4.107)

(4.108)

(4.109)

(4.110)

(4.111)

In the case where multiple walls are present, the shear �low along each path
must be calculated in the same manner. The shear �low obtained from
(4.106) is produced by σzz. This shear �low forms a torque T′ about the COT,
which can be expressed as

where the de�inition of ρ is given in Figure 4.27a. Again, in the case of
multiple thin-walled contours, the integration in (4.107) must include all
integrals along all the s contours.
Substituting (4.106) in (4.107) yields

From (4.90) and (4.102), we obtain the relation

Thus,

Noting that

we have

Substituting (4.111) in (4.110) and integrating, we obtain



(4.112)

(4.113)

(4.114)

(4.115)

(4.116)

(4.117)

(4.118)

Since shear �lows vanish at open edges of the shaft, i.e. q(s0) = q(s1) = 0, the
�irst term on the right-hand side of (4.112) is zero in view of (4.106). Thus,
the torque induced by the end constraint is

where

is a constant that depends only on the geometry of the cross-section. Note
that the area  must be measured starting from the point where warp is
zero. Since  appears as a squared term in (4.114), the direction of the
contour s is not relevant.
Based on the superposition principle, the total torque carried by the shaft is
the sum of the torque of the Saint-Venant torsion and T′. Thus,

which can be written in the form

In (4.116),

Note that k has the length unit. If the applied torque T is known, then the
general solution to the second-order differential equation is



(4.119)

where θp is a particular solution that depends on the functional form of T,
and C1 and C2 are arbitrary constants to be determined by boundary
conditions.
For a constant torque T, a particular solution is θp = T/GJ, and the solution
(4.118) can be written in the form

Assume that the shaft is built in at z = 0 and at the free end z = L a torque T is
applied. Let L be large such that T = GJθ (Saint-Venant torsion) as z → L. To
satisfy this condition, we require that D1 = 0. At the built-in end (z = 0),
warping is suppressed and w = 0. From (4.101), this implies that θ = 0. Thus,
D2 = −1 and

where the effective torsion constant Jeff is given by

It is noted that the effective torsional rigidity GJeff is a function of z and its
value is enhanced signi�icantly as z approaches the built-in end. Also note
that the end constraint effect diminishes as k/z → 0. Thus, k is a length
parameter that measures the size of the boundary layer of the end constraint
effect.
Once the solution for θ is obtained, the distribution of the end constraint-
induced normal stress σzz can be calculated by using (4.103) and the shear
�low by using (4.106).



EXAMPLE 4.8

The two ends of an aluminum I-beam are rigidly welded, respectively, to
two heavy steel plates to suppress warping at both ends (see Figure
4.33a). A torque T is applied by twisting one end against the other. Find
the effect end constraints.

From symmetry of the cross-section, it is easy to see that the COT is
located at the midpoint of the web. At this location, the warping
displacement is zero. This location is then selected as the origin of the s
contour.
The I-beam section can be approximated by three thin rectangular
sections and the torsion constant J is given by



Fig.	4.33 I-beam with two built-in ends.

To calculate Γ using (4.114), we must perform integration over the entire
section. We note that  for the web is zero and that the four �lange
segments have the same value of  except the sign. In view of the
foregoing, we consider only the upper right segment of the �lange, and a
local s′ contour (Figure 4.33) is set up for the evaluation of . The swept
area about the COT is

The contribution of this segment to the Γ of the entire section is



(4.120)

(4.121)

The Γ for the entire section is the sum of the four equal contributions of
the four �lange segments.
We have

Γ = 4 × 52 × 10−12 = 208 × 10−12 m6

Taking E = 70 GPa and G = 27 GPa for aluminum, then from (4.117),

The general solution (4.119) can be written alternatively as

Because of symmetry of θ with respect to z, the odd function sinh(z/k)
should be dropped. This is accomplished by setting B2 = 0. The second
boundary condition is at the built-in end (z = L/2), where warp w = wsθ is
zero, i.e. θ = 0 or

from which we obtain

Since L = 1 m and k = 0.335 m, we have B1 = −0.428. Thus, the solution for
rate of twist angle is

The twist angle α at any point z is



(4.122)

At the built-in end (z = L/2), the twist angle relative to that at midspan (z
= 0) is calculated by substituting z = L/2 in (4.122), with the result

If the end constraint is removed, the twist angle is calculated using the
Saint-Venant torsion formulation, with the result

The end constraint effect on the amount of twist in the shaft is evident. In
other words, suppression of warping in a shaft increases its torsional
rigidity.



PROBLEMS
4.1 Show that the Prandtl stress function for bars of circular solid
sections is also valid for bars of hollow circular sections as shown in
Figure 4.34. Find the torsion constant J in terms of the inner radius ai
and outer radius a0, and compare with the torsion constant obtained
using (4.68) for thin-walled sections. What is the condition on the wall
thickness for the approximate J to be within 1% of the exact J?

Fig.	4.34 Bar of a hollow circular section.

4.2 For a torque applied to a shaft with circular cross-section (radius =
a), show that T = GJθ. It is known that  and T =
2∬Aϕdxdy.

4.3 A circular shaft of radius = 2 cm and length = 1 m is made with 2024-
T3 aluminum. Find the rate of twist if applied torque is 1 kN m. If the



maximum allowable θ is 5°/m and torque is 1 kN·m, design a new
circular shaft that will satisfy the T and θ requirements.
4.4 Consider the straight bar of a uniform elliptical cross-section. The
semimajor and semiminor axes are a and b, respectively. Show that the
stress function of the form

provides the solution for torsion of the bar.
Find the expression of C and show that

and the warping displacement

4.5 In the previous Problem (4.4), if the material is 2024-T3 aluminum
and the allowable shear stress = 187 MPa, �ind safe applicable torque for
a = 1 m, b = 150 mm.
4.6 Obtain the location and magnitude of maximum warping
displacement on the elliptical section in Problems 4.4 and 4.5.
4.7 A thin aluminum sheet is to be used to form a closed thin-walled
section. If the total length of the wall contour is 100 cm, what is the
shape that would achieve the highest torsional rigidity? Consider
elliptical (including circular), rectangular, and equilateral triangular
shapes.
4.8 The two-cell section in Figure 4.35 is obtained from the single-cell
section of Figure 4.36 by adding a vertical web of the same thickness as
the skin.
Compare the torsional rigidities of the structures of Figures 4.35 and
4.36 with L1 = L2 = 10 cm and L1 = 5 cm and L2 = 15 cm, respectively.



Fig.	4.35 Two-cell thin-walled section.

Fig.	4.36 Single-cell section.

4.9 Find the torsional rigidity if the sidewall of one of the two cells in
Figure 4.35 (with L1 = L2 = 10 cm) is cut open. What is the reduction of



torsional rigidity compared with the original intact structure?
4.10 Find the torque capability of the thin-walled bar with the section
shown in Figure 4.36. Assume that the shear modulus G = 27 GPa and the
allowable shear stress of τallow = 187 MPa.

4.11 Consider a thin-walled square section with the cross-section
shown in Figure 4.37a. The wall thickness is t = 0.3 cm and the average
side length is 15 cm. Find the torsion constant. If the section is now cut
open (4.28b), determine the new torsion constant. Find the shear stress
distributions if θ = 2o/m.

Fig.	4.37 (a) A closed square section and (b) an open section.

4.12 For the triangular section shown in Figure 4.38, it is found that the
following stress function is valid. Assume z-direction is the length
direction of the structure and torque is applied counterclockwise about
z-axis.
Obtain shear stresses developed in the section. If a = 100 cm, G = 27 
GPa, and  �ind the magnitude and locations of maximum

shear stress.
What will be torque T and polar moment of inertia J.



4.13 Obtain the expression for maximum shear stress and the rate of
twist in terms of applied torque T for the C-shaped thin open section
shown in Figure 4.39. If the material is aluminum (G = 27 GPa) and a = 
60 mm and b = 80 mm, what will be the safe applicable torque?

Fig.	4.38 A straight bar with a triangular section.



Fig.	4.39 A C-shaped thin open section.

4.14 A two-cell thin-walled member with the cross-section shown in
Figure 4.40 is subjected to a torque T. The resulting twist angle θ is 3°.
Find the shear �lows, the applied torque, and the torsion constant. The
material is aluminum alloy 2024-T3.



Fig.	4.40 Two-cell section.

4.15 For the bar of Figure 4.40, �ind the maximum torque if the
allowable shear stress is τallow = 187 MPa. What is the corresponding
maximum twist angle θ?
4.16 Find the shear �low and twist angle in the two-cell three-stringer
thin-walled bar with the cross-section shown in Figure 4.41. The
material is Al 2024-T3. The applied torque is 2 × 105 N m.

Fig.	4.41 Two-cell three-stringer thin-walled section.

4.17 What is the maximum torque for the structure of Figure 4.41 if the
allowable twist angle θ is 2°/m?



4.18 The two shafts of thin-walled cross-sections shown in Figure
4.42a,bcontain the same amount of aluminum alloy. Compare the
torsional rigidities of the two shafts without end constraints.
4.19 Find the distributions of the primary warping displacement on the
cross-sections shown in Figure 4.42b. Due to symmetry, the COT
coincides with the centroid of the section, and warp at the midpoint of
each �lat sheet section is zero. Sketch the warping displacement along
the wall.

Fig.	4.42 Cross-sections of two shafts.

4.20 A shaft with a channel section shown in Figure 4.43 is subjected to
a torque T. Assume that neither end is constrained. Find the warping
distribution on the cross-section, the maximum warp, and the location
of the maximum warp.
4.21 Consider the shaft of the channel section shown in Figure 4.43. If
one end of the shaft is built in and the other end is free, �ind the effective
torsional rigidity as a function of the distance from the built-in end.
Assume that the length L of the shaft is suf�iciently large so that near the
free end the Saint-Venant torsion assumptions are valid. Compare the
total twist angle with that for a free-free shaft for L = 2 m.



Fig.	4.43 Dimensions of a channel section.

4.22 Calculate the distributions of normal stress σzz and shear �low
distributions at the built-in end for Problem 4.21.
4.23 Assume that the shaft of the channel section of Figure 4.43 is built
in at both ends. Find the torque that is necessary to produce a relative
twist angle a = 5° between the two ends. Assume that L = 1 m, Young's
modulus E = 70 GPa, and shear modulus G = 27 GPa. Compare this with
the free–free case.
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5 
Bending and Flexural Shear



5.1 INTRODUCTION
Bending is the most frequently occurring form of load in aircraft structures. As
the name implies, a bending load “bends” a structure and, depending on the
direction of the lateral forces or bending moments, results in the development
of nonuniform tensile and compressive stresses normal to the cross-section
and transverse shear stress parallel to the cross-section. A shear force–bending
moment diagram can be constructed to analyze and visualize the nature of the
internal shear forces and bending moments at any location on the structure.
The intuitive approach for solving a problem would be using a direct method
where the applied bending forces would have been �irst linked with the
internal resultants and stress components. Then, using the stress–strain law,
strain components would be obtained. Finally, the associated displacements
would be obtained via strain–displacement relations. However, there is no
direct method to analytically solve a bending problem. As such, inverse or
semi-inverse methods such as theory of elasticity are often used. The theory of
elasticity approach is useful for solids with narrow section or axisymmetric
circular sections. An analysis becomes very cumbersome and often intractable
when the loading becomes complicated. For thin-walled sections such as
boxed-beam section or multichannel section, analytical solutions are not
possible even for simpler loadings. When loadings are only lateral and
deformation is not large, a simpler inverse approach, called Bernoulli–Euler
beam theory is used. The main disadvantage of the Bernoulli–Euler beam
theory is that this theory is not applicable when transverse shear deformation
is important. In such a situation, the Timoshenko beam theory is appropriate.
For excessive bending deformation, other methods such as inelastic bending or
plastic bending approaches are often used. However, when both the section
geometries and loadings get complicated, none of the analytical methods will
work. In such situations, numerical methods such as �inite element and �inite
difference methods need to be used.



(5.1)

(5.2)

(5.3)

(5.4)

5.2 BERNOULLI–EULER BEAM THEORY
5.2.1 Unidirectional Bending on Beams with a Symmetric
Section
Consider a straight beam (bar) of a uniform cross-section that is symmetrical
with respect to a vertical line. The coordinates are set up such that the x-axis
coincides with the centroidal axis of the cross-sections along the beam, and the
z-axis coincides with the vertical line of symmetry; see Figure 5.1. The
resultant transverse load pz (N/m) is applied in the x–z plane.

Of interest are displacements in the x and z directions, u and w, respectively. If
the width of the beam is small, then the state of stress due to transverse
loading can be approximated by plane stress parallel to the x–z plane, and u
and w can be assumed to be functions of x and z only. Expand u and w in power
series of z as

Fig.	5.1 Straight beam of a uniform and symmetrical cross-section.

For slender beams, the depth is small compared with the length. In other
words, the range of z is small, and the high-order terms in z make insigni�icant
contributions. Hence, as a �irst-order approximation, we truncate the series of
Eqs. (5.1) and (5.2) as



(5.5)

in which we use ψy in place of u1. From Eq. (5.3), it is obvious that u0
represents the longitudinal displacement at the centroidal axis, and ψy
represents the rotation of the cross-section after deformation; see Figure 5.2a.
From Eq. (5.3), a positive rotation ψy is clockwise, which is opposite to the
slope dw0/dx of the beam de�lection.

Note that u(x, z) is a linear function of z. This implies that plane cross-sections
remain plane after deformation but may not be perpendicular to the centroidal
axis.
The strain components corresponding to the approximate displacements given
by Eqs. (5.3) and (5.4) are

Fig.	 5.2 (a) Deformation of a beam element; (b) sign convention for the
resultant force and moment.



(5.6)

(5.7)

(5.8)

(5.9)

(5.10)

(5.11)

(5.12)

De�ine the resultant axial force Nx and bending moment My as

in which the area integration is over the entire cross-section. The de�initions of
Nx and My given by Eqs. (5.7) and (5.8), respectively, also determine the sign
convention for Nx and My. The positive directions of Nx and My are shown in
Figure 5.2b.
For slender beams, the transverse shear strain γxz is small. In calculating the
bending strain, we can assume that γxz = 0 is an approximation. This leads to,
from Eq. (5.6),

The relation above implies that the plane cross-section remains perpendicular
to the centroidal axis after deformation, and that the amount of rotation of the
cross-section is equal to the slope of de�lection.
Using Eqs. (5.9) and (5.5), we obtain

Substitution of Eq. (5.10) into Eqs. (5.7) and (5.8) yields



(5.13)

(5.14)

(5.15)

(5.16)

Since the origin of the coordinates coincides with the centroid of the cross-
section, we have

Thus, Eqs. (5.11) and (5.12) reduce to

where

is the moment of inertia of the cross-sectional area about the y-axis.
If no axial force is applied, i.e. Nx = 0, then du0/dx = 0. From Eq. (5.5), this
means that εxx = 0 along the x-axis (or, more precisely, in the x–y plane). Thus,
the x-axis is the neutral axis and the x–y plane is the neutral plane.
After adopting the approximation of Eq. (5.9), we note that γxz = 0, and, as a
result, the transverse shear stress τxz cannot be obtained from the shear strain
(which is approximated to be zero). The resultant transverse shear force

should be obtained from considering the equilibrium of a beam element as
shown in Figure 5.3.
The force equilibrium in the z-direction gives

Taking the limit Δx → 0, we have



(5.17)

(5.18)

The equilibrium of moments about the y-axis located at the left end of the
beam element in Figure 5.3 yields

After taking Δx → 0 (and thus ΔVz → 0), we obtain

It is evident that the transverse shear force Vz can be derived from the bending
moment using Eq. (5.18).

Fig.	5.3 Equilibrium of a beam element.

If the beam is subjected to a pure constant moment, then

This is satis�ied by setting τxz = 0 (see Eq. (5.16)). Evidently, the assumption γxz
= 0 is exact in this case when moment is constant along the beam.
Substituting Eq. (5.15) into Eq. (5.18) and then into Eq. (5.17), we obtain



(5.19)

(5.20)

(5.21)

(5.22)

This is the Bernoulli–Euler	beam (simple beam) equation.
In the absence of axial force, i.e. Nx = 0, we have du0/dx = 0 from Eq. (5.14), and
the bending strain reduces to

Using Eqs. (5.15) and (5.20), we can write

and consequently,



EXAMPLE 5.1

Consider a 5-m long box beam subjected to a uniform bending moment My
= 100 kN m such that the top surface is under compression and the bottom
surface is under tension. Compare the maximum bending stresses on the
box beam with and without corner angles (stringers). The thickness of all
sections is 10 mm (Figure 5.4).

Fig.	5.4 A box beam section.

a. First, consider the box beam with any stiffening stringers/angles.
Equation (5.34a) is used to obtain the bending stress distribution. The
section is symmetric. As such, only the moment of inertias Iy will be
required and can be calculated as

The direct stress distribution is given by



On the top and bottom sections, z = ±0.3 m. As such,

b. This section is also symmetric (Figure 5.5). The moment of inertia Iy
including the angles can be calculated as follows:

The direct stress distribution is given by



Fig.	5.5 A box beam section with four corner angles.

On the top and bottom sections, z = ±0.3 m. As such,

The addition of the angles lowers the direct stresses on the section. In
other words, load carrying capacity of a section can be improved by adding
stringers/angles.

5.2.2 Bidirectional Bending on Beams with an Arbitrary
Section
For beams with arbitrarily shaped cross-sections, we set up the coordinate
system as shown in Figure. 5.7. Again, the x-axis is chosen to coincide with the
centroidal axis. The external load is decomposed into py and pz in the y and z
directions, respectively. It is noted that the line loads must pass through the
center of twist (shear center) if torsion is to be avoided. However, in the



(5.23a)

(5.23b)

(5.23c)

(5.24a)

following development of the bending theory, the actual positions of
application for line loads py and pz need not be speci�ied, although in Figure 5.6
both py and pz are shown to pass through the centroid of the cross-section.

Under such bidirectional bending, the longitudinal displacement is a function
of x, y, and z. The approximate displacement expansions similar to Eqs. (5.3)
and (5.4) are given by

where ψy and ψz are rotations of the cross-section about the y and z axes,
respectively. The positive	direction	of	ψy is	the	right-hand	rotation	about	the
positive	y-axis,	and	ψz is	about	the	negative	z-axis.

The corresponding strains are



Fig.	5.6 Beam with an arbitrary cross-section under bidirectional loading.



(5.24b)

(5.24c)

Fig.	5.7 Sign convention of My and Mz.

Again, the simplifying assumption γxy = γxz = 0 yields the relations

which are substituted into Eq. (5.24a) to obtain



(5.25)

(5.26)

(5.27)

(5.28)

(5.29a)

(5.29b)

(5.29c)

Using the argument that du0/dx = 0 if Nx = 0, the bending strain is reduced to

The bending moments about the y and z axes, respectively, are de�ined as

where

From the de�initions of Eqs. (5.27) and (5.28), the sign convention for My and
Mz is determined as illustrated in Figure 5.7.

Solving Eqs. (5.27) and (5.28), we obtain



(5.30)

(5.31)

Using Eq. (5.26), we write the bending stress as

The location of the neutral	axis (neutral plane) along which σxx = 0 can be
found from Eq. (5.30), i.e.

De�ining the neutral plane by angle α as shown in Figure 5.8, we have



(5.32)

(5.33)

Fig.	5.8 Neutral axis by angle α.

Note that the positive direction of angle α is clockwise.
Since the distribution of the bending stress is linear over the cross-section, it is
also linear with respect to the distance to the neutral axis. That is, the most
distant location from the neutral axis experiences the greatest magnitude of
bending stress. Further, the neutral axis divides the tensile bending stress �ield
and the compressive stress �ield.
If the y- or z-axis is an axis of symmetry for the cross-section, then Iyz = 0 and
Eq. (5.30) reduces to

Further, if Mz = 0, the bending stress becomes

This is what was derived in Section 5.2.1 for symmetric sections.



(5.34a)

(5.34b)

(5.35a)

(5.35b)

(5.35c)

(5.35d)

If Iyz ≠ 0 and Mz = 0, then from Eq. (5.30) we have

Therefore, for beams with an arbitrary cross-section under one-way bending,
say My ≠ 0 and Mz = 0, the simple beam bending stress formula (5.33) is not
valid, and Eq. (5.34a) must be used.
For Mz ≠ 0 and My = 0, the corresponding bending stress equation can be
obtained as

From the equilibrium considerations of a differential beam element, it is easy
to derive the following relations for bidirectional bending by following the
procedures used in deriving Eqs. (5.17) and (5.18).

The relations in Eq. (5.35) are valid only for the sign convention adopted as
illustrated in Figure 5.3. Note that the positive directions of the shear force Vz
and bending moment My acting on the positive cross-section (with an outward
normal vector pointing in the positive x-direction) are opposite to those acting
on the negative cross-section. Henceforth, the cross-sections and the
accompanied positive shear forces will be shown to avoid confusion.
From Eq. (5.35), the equilibrium equations can be written as



Substituting Eqs. (5.27) and (5.28) in the above equations, respectively, we
obtain the displacement equilibrium equations for the beam theory:

For symmetric sections, Iyz = 0 and the above beam equations reduce to the
form of Eq. (5.19).



5.3 STRUCTURAL IDEALIZATION
For simple structural sections, such as thin-walled solid sections, closed
rectangular or circular sections, solving a bending problem is relatively less
complicated because obtaining moment of inertias for such sections are
generally simple. Many aerospace structural components are stiffened to
improve load carrying capacity without signi�icantly increasing weight. The
longitudinal stiffeners in a box beam (see Figure 2.10), spars and stringers in a
subsonic wing section (see Figure 2.13), fuselage with longitudinal stringers
(see Figure 2.14) are few examples where stringers/stiffeners are used in
aerospace components. During bending analysis, obtaining moment of inertias
for such sections becomes very complicated and cumbrous. To perform
preliminary design studies, quick and ef�icient solutions are often sought over
accuracy. For such purposes, thin-walled stiffened-sections are converted to
simpler “idealized” sections, which, under the same loading conditions, exhibit
the same or nearly the same response like the actual structure.
In the box section in Example 5.1b, the four angles/stringers are located near
the four corners where the bending stresses are maximum. Since the
dimensions of the stringers are small compared to the overall section, it is
reasonable to assume that the variation in bending stresses near the stringer
regions is small. Based on the assumption, it is possible to develop an
equivalent section where the thin-walled section and stringers are replaced
with a skin and stringer assembly as shown in Figure 5.9. It is further assumed
that the bending stresses are carried by the stringers and the shear stresses
are taken by the skins. In such an arrangement, the entire area of the original
section is equivalently distributed among the stringers only. The areas of these
stringers (i.e. A1, A2, A3, and A4 in Figure 5.9) are calculated by balancing the
moments produced in the original section and the equivalent “idealized”
section. More detail on structural idealization can be found in chapters 20 and
22 of Aircraft	Structures	for	Engineering	Students	by Megson (2016).



(5.36)

Fig.	5.9 Idealization of the box beam with angles.

There are two ways direct stress can be generated on a section, namely, by
axial load and by bending moment. The equivalent area of the stringers
depends on the load types. First, consider an axially (tensile) loaded beam
section shown in Figure 5.10a. To transform this panel into an idealized panel
as shown in Figure 5.10b, it will be assumed that the actual thickness tR of the
panel will be replaced by an implicit thickness t, and tR = 0 in the idealized
section. Since the loading producing the direct stresses in the actual and
idealized panels must be the same, both panels must satisfy static equilibrium.
For axially loaded section, equating the axial force is enough to obtain the
stringer area (Figure 5.11).

Because the axial load is uniform and equally shared by the two stringers, both
stringers should have the same area. In other words, A1 = A2.



Fig.	5.10 Direct stress distribution due to axial (tensile) load on (a) an actual
panel and (b) idealized panel.



Fig.	5.11 Direct stress distribution due to bending moment My on (a) an actual
panel and (b) idealized panel.

Now, consider that the same panels are loaded with bending moment My. Both
panels must satisfy static equilibrium. Balance of the axial forces will require
A1 = A2. As such, the moments must be equated to obtain expressions for the
stringer areas. Taking moment with respect to the origin,



(5.37)

It can be observed that the area of the stringers will vary due to load types and
direction. When both axial and bending moments are present, the axial stress
in the opposite ends of the section will not be same, as shown in Figure 5.12.
Without losing generality, it will be assumed that σ1 > σ2. Taking moment with
respect to the bottom end yields



(5.38a)

Fig.	5.12 Direct stress distribution due to combined axial force and bending
moment My on (a) an actual panel and (b) idealized panel.

Similarly, the area of the stringer # 2 can be obtained by taking moment with
respect to the top end as



(5.38b)

(5.39)

It can be noticed that the exact area of the stringers cannot be found if σ1 and
σ2 are not known. For pure axial or pure bending moment cases, although the
exact values of σ1 and σ2 are not known, the ratio  or  is known. For
example, for pure axial load, as shown in Figure 5.10b,  = 1. For pure
bending, as shown in Figure 5.11b, . In principle, the direct stress
ratio between two stringers is proportional to the distance ratio of those two
stringers from the centroid. For the section considered in Figures 5.10, 5.11, or
5.12, the centroid of the section is located at the midpoint of the vertical height

h. As such,  for axial loading case, and  for pure

bending case. Suppose a bending moment My is applied to a section that is not
symmetric about the y-axis, then the location of the centroid will not bisect the
vertical height of the section. As such, the ratio of σ1 and σ2 will be

where h1 is the vertical distance of σ1 from the neutral axis, h2 is the vertical
distance σ2 from the neutral axis, and h1 + h2 = h.



EXAMPLE 5.2

Idealize the box beam section shown in Figures 5.4 and 5.5.
The geometry of the idealized structure for both the sections will be
identical. The area of the stringers will be different.
For the box beam without any angles, the stringer areas can be calculated
using Eq. (5.38). The direct stress distributions on the actual and idealized
sections are shown in Figure 5.13. It can be observed that each stringer
interacts with two neighboring stringers. Each interaction needs to be
separately considered. For example, the area for stringer # 1 can be
obtained as



Fig.	5.13 Direct stress distribution on (a) an actual box section and (b)
idealized box section.

Similarly,



As such, A1 = A2 = A3 = A4 = 60 × 10−4 m2.

For the box section with the angles, the area of angles must be added to the
corresponding stringer areas.
As such,

It can be easily shown that A1 = A2 = A3 = A4 = 69 × 10−4 m2.



EXAMPLE 5.3

The cross-section of a single-cell box beam with four stringers is shown in
Figure 5.14. The contribution of the thin sheets to bending is assumed to
be negligible. Thus, only the areas of the stringers are considered in the
bending analysis. Using structural idealization method, the areas of the
stringers are estimated as A1 = 6 × 10−4 m2, A2 = 5 × 10−4 m2, A3 = A4 = 4 × 
10−4 m2. Find the bending stress distributions.

Fig.	5.14 Single-cell box beam with four stringers.

First, the centroid of the effective cross-sectional areas (i.e. those of the
stringers) must be determined. Denoting the coordinates of the stringers
by  with respect to the  system, we have the coordinates of the
centroid:



Thus, the location of the centroid is (0.21, 0.19) in the  system.

This cross-section consisting of four stringers is not symmetric with
respect to either the y- or the z-axis. Hence, the general bending equations
must be used. The moments of inertia of the effective cross-sectional area
of the box beam with respect to the coordinate system y–z are calculated
according to Eq. (5.29). Denoting the coordinates of each stringer by (yi, zi)
with respect to the y–z system, we have

Consider the loading Mz = 0 and My ≠ 0. The neutral plane is given by

which yields α = 7° measured clockwise from the y-axis.
The bending stresses in the stringers can be calculated easily using Eq.
(5.30), if My and Mz are given.



EXAMPLE 5.4

A beam of the thin-walled Z-section shown in Figure 5.15 is subjected to a
positive bending moment My. Find the distribution of bending stresses.

In this case, the centroid is easy to locate to be at the midpoint of the
vertical web as shown in Figure 5.15.
The moment of inertia of the cross-section is the sum of the moments of
inertia of the three rectangular sections of the web and two �langes. For
each section it is most convenient to calculate Iy, Iz, and Iyz using the
parallel axis method. For example, consider the upper �lange 3–4. Let the y′
and z′ axes be local coordinates with the origin at the centroid C′ of the
upper �lange. According to the parallel axis theorem, the moment of inertia
Iy of the cross-section of the upper �lange is



(5.40)

Fig.	5.15 Thin-walled Z-section.

in which A34 is the cross-sectional area of the upper �lange and  is the
moment of inertia about y′-axis. For the upper �lange, we have



(5.41)

(5.42)

(5.43)

(5.44)
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Similarly, the moment of inertia about the z-axis can be obtained in a
similar manner.
The product of inertia of the upper �lange can be written as

and  = 0 because of symmetry with respect to the local coordinate
system.
For the entire Z-section, we obtain

For thin-walled sections, the terms with t3 are small and are neglected in
the following calculations.
The orientation of the neutral axis can be calculated using Eq. (5.31) with
Mz = 0. Then

Thus, α = −tan−l(3h/4b). Note that a negative value of α means that the
neutral axis is oriented at a counterclockwise rotation of an angle −α from
the y-axis as shown in Figure 5.10. Since the bending stress distribution is
linear with respect to the distance (positive above and negative below the
neutral axis) from the neutral axis, the distribution on the Z-section must
be antisymmetric with respect to the neutral axis.

Let us consider the case with h = 2b, which leads to α = −tan−1 1.5 = −56.3°.
Note that in this case, points 3 and 4 on the upper �lange are on opposite



sides of the neutral axis, and the corresponding bending stresses must be
of opposite signs. At the free edge of the upper �lange (point 4 in Figure
5.15) the bending stress is calculated using Eq. (5.34a) together with y =
h/2, z = h/2. We have, for a positive bending moment,

Similarly, at point 3 (y = 0, z = h/2), we obtain



5.4 TRANSVERSE SHEAR STRESS DUE TO
TRANSVERSE FORCE IN SYMMETRIC SECTIONS
In deriving the Bernoulli–Euler beam equation, the transverse shear strain γxz
was neglected while the transverse shear stress τxz (and, thus, the transverse
shear force Vz) was kept in the equilibrium equation. Such contradictions are
often found in simpli�ied structural theories. The assumption γxz = 0 is quite
good for slender beams (i.e. the depth is small compared with the span). In
fact, it is exact if the loading is a pure bending moment. However, for short
beams under transverse loads, signi�icant shear stress (strain) may result.
The exact distribution of τxz on the cross-section of a beam subjected to
transverse forces is generally not easy to analyze. An exception is the narrow
rectangular section as shown in Figure 5.16. If h ≫ b, the plane stress
assumption adopted in the derivation of the simple beam theory is valid. In
other words, τxz can be assumed to be uniform across the width of the section.
Otherwise, τxz is a function of y.

5.4.1 Narrow Rectangular Cross‐Section
Consider a beam with a narrow rectangular cross-section as shown in Figure
5.16. The resultant transverse shear force Vz is

Fig.	5.16 Narrow rectangular section.
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(5.47)

(5.48)

(5.49)

This de�inition alone is not suf�icient to recover the distribution of τxz in the
vertical (z) direction. We resort to the equilibrium equation for a state of plane
stress parallel to the x–z plane (see Eq. (3.110)):

Substituting Eq. (5.22) into Eq. (5.46), we obtain

Using the relation

in Eq. (5.47) we have

Integrating the above equation from z = −h/2 to z, we obtain

Since the shear stress vanishes at the top and bottom faces, i.e.

Equation (5.48) reduces to

where
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(5.51)

(5.52)
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From Eq. (5.49), it is evident that τxy has a parabolic distribution over z, and
the maximum value that occurs at z = 0 is

5.4.2 General Symmetric Sections
For uniform beams with general symmetric (with respect to the z-axis) cross-
sections, the simple beam results are valid, i.e.

However, the transverse shear stress τxz distribution over the cross-section is
dif�icult to analyze. For symmetrical sections under a transverse shear force Vz,
the only thing we know is that the distribution of τxz is symmetrical with
respect to the z-axis.
Since the variation of τxz in the y-direction is unknown, it is more convenient to
consider the transverse shear �low qz de�ined as

If τxz is uniform across the width t, then

If τxz is not uniform in the y-direction, the average value is introduced as



(5.55)

Here, the positive direction of qz is taken to coincide with that of τxz.

The transverse shear �low qz can be determined from the equilibrium of a
differential beam element as shown in Figure 5.17. In Figure 5.17a, the side
view of the beam element of length Δx is shown with the bending stresses
acting on the two neighboring cross-sections. Consider the free body of the
beam element above the B–B plane (i.e. z ≥ z1) as shown in Figure 5.17b. The
shear �low qz on the cross-section at z = z1 is equal to the shear force acting on
the bottom face of the free body as depicted in Figure 5.18a. For the free body
above z = z1, equilibrium equation ∑Fx = 0 is given by

Fig.	 5.17 Differential beam element with bending stresses: (a) longitudinal
section; (b) cross-section.
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Fig.	5.18 (a) Wide-�lange beam; (b) distribution of ; (c) distribution of shear
�low qz.

where A1 is the cross-sectional area above z = z1. Dividing both sides of Eq.
(5.53) by Δx and taking the limit Δx → 0, we have

By using Eq. (5.51) in Eq. (5.57), we obtain the transverse shear �low as

where



(5.60)

is the �irst moment of the area A1. If the centroid of A1 is at z = zc, then Q can
also be expressed as

5.4.3 Thin‐Walled Sections
Consider the wide-�lange beam shown in Figure 5.18a. The transverse shear
stress is usually represented by the average value  as shown in Figure 5.18b.
A jump in  is noted at plane CDEF due to the sudden change of width. If the
transverse shear �low qz is plotted as shown in Figure 5.18c, then no such jump
exists.

Fig.	5.19 Distribution of τxz in a wide-�lange beam.



Fig.	5.20 Concentration area for a wide �lange.

In the free-hung portion of the wide �lange (e.g. the portions CD and EF), the
actual transverse shear stress τxz is much smaller than the average value . It
is noted that τxz must vanish along AB, CD, and EF. If the thickness of the �lange
is small, then τxz cannot build up signi�icantly except for the portion connected
to the vertical web. A more accurate distribution of τxz along C′D′E′F′ is
depicted in Figure 5.19.
From Figure 5.18, it is seen that for wide-�lange beams, the transverse shear
stress is small in the �lange and that the web carries the majority of the
transverse shear load. An approximate model for such a wide-�lange beam is
obtained by lumping the total area of the �lange into a concentrated area as
shown in Figure 5.20. In addition, we may assume that the web does not
contribute to resisting bending. Thus, for the web section we have

which remains unchanged with location. As a result, qz is constant along the
web.
In aircraft structures, stringers are often used to provide bending stiffness, and
thin webs are used to carry shear �lows. To maximize the bending capacity of
the structure, we place stringers at the greatest distance from the neutral axis.
The thin web is usually assumed ineffective in bending. Consequently, the
shear �low in the web between two adjacent stringers is constant.



It should be noted that although the transverse shear stress τxz is very small in
the �langes, the in-plane shear stress τxy is signi�icantly large, as discussed in
this chapter. However, the existence of the in-plane shear stress does not affect
the simpli�ied calculation above of the transverse shear �low in the web.

5.4.4 Shear Deformation in Thin‐Walled Sections
In developing the simple beam theory in Section 5.2, the transverse shear
strains are neglected, leading to the well-known assumptions in the simple
beam theory that plane sections remain plane and normal to the neutral axis
after deformation. However, this simpli�ication may lead to substantial errors
in estimating the de�lection of thin-walled beam members unless they are long
or they are under pure bending moments.
Consider the thin-walled beam loaded as shown in Figure 5.21a. Note that at
the free end no shear stress is applied. We assume that the web can only take
shearing stresses, and bending is taken by the two stringers. The bending
moment is M = Ph and is uniform over the entire length of the beam. From the
free body diagram in Figure 5.21b, at any section B-B, there is no transverse
shear stress (and thus no transverse shear strain) in the web based on the
equilibrium condition ∑Fz = 0. Hence, we conclude that the axial forces in the
stringers also remain constant over the length of the beam. The assumptions
adopted by the simple beam theory are thus valid in this case.
Consider now the beam of Figure 5.21 subjected to a shear load (a constant
shear �low q0) at the free end as shown in Figure 5.22a. From the force and
moment balance conditions of the free body shown in Figure 5.22b, we have a
constant transverse shear �low qz = q0 and linearly varying axial force P =
q0hx/h = q0x over the beam length. The corresponding moment along the beam
is M = Ph = q0hx.

The de�lection of the beam consists of two parts; one part results from the
bending moment and the other from the transverse shear deformation. The
de�lection due to bending moment is obtained from the simple beam Eq.
(5.15):



Fig.	5.21 Stringer–web beam under pure bending.



(5.61)

(5.62)

Fig.	5.22 Stringer–web beam subjected to a transverse shear force.

Integrating Eq. (5.61) twice, we obtain

where C1 and C2 are arbitrary constants. From the boundary conditions



(5.63)

(5.64)

(5.65)

C 1 and C2 are determined to be

Then the de�lection at the free end (x = 0) due to bending deformation is
obtained as

The shear deformation in the web contributes to the beam de�lection in
addition to the bending moment. The constant shear strain in the web is

in which t is the thickness of the web. Recall that in deriving the simple beam
theory, we set γxz = 0. Now we relax the condition and allow the transverse
shear strain to occur and use the relation

to calculate the transverse displacement. At the �ixed end (x = L), ∂u/∂z = 0,
which is true over the entire beam length because γxz is constant. Since γxz is
uniform in the web, we have

along the entire beam. Subsequently, we obtain by integration

The integration constant C can be determined by the boundary condition w0 =
0 at x = L. The result is
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Thus, the de�lection at the free end (x = 0) due to shear deformation in the web
is

Consider the ratio

where A = th is the cross-sectional area of the web. It is evident that a long
beam (L ≫ h) with either a high shear rigidity (GA) or small bending rigidity
(EIy) would �it the description of the simple beam theory.
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5.5 TIMOSHENKO BEAM THEORY
A beam theory that accounts for transverse shear deformation can be
developed following the procedure presented in Section 5.1 for the simple
beam theory. The displacement expansions of Eqs. (5.3) and (5.4) are adopted,
but the zero transverse shear strain condition Eq. (5.9) is not imposed. If,
again, we assumed that the axial force Nx is absent, then only transverse
de�lection w0 and rotation of cross-section ψy are kept in the formulation. The
only nontrivial strains are

Since the transverse shear strain γxz exists, the transverse shear stress τxz can
be calculated directly from γxz using the stress–strain relations. The resultant
shear force acting on the cross-section can be calculated directly from the
shear strain as

where A is the area of the cross-section that carries transverse shear loads.
The bending moment is de�ined by Eq. (5.8). Using σxx = Eεxx together with Eq.
(5.68) in Eq. (5.8), we have

The equilibrium conditions Eqs. (5.17) and (5.18), which are obtained from the
balance of vertical forces and balance of moments of a differential beam
element (see Figure 5.3), remain valid. Substituting Eqs. (5.70) and (5.71) in
Eqs. (5.18) and (5.17), we obtain



(5.72)

(5.73)
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Fig.	5.23 Curved and inclined thin-walled sections with stiffeners.

These are the two equilibrium equations of the Timoshenko	beam	theory.
The two equilibrium equations may be combined into one by eliminating ψy.
This can be performed by �irst solving Eq. (5.73) for dψy/dx and then
substituting it in Eq. (5.72) after differentiating it once. The result is

The boundary conditions at the ends of a Timoshenko beam are speci�ied as
follows.

For a hinged end, w0 = 0, and My is prescribed.

For a clamped end, w0 = ψy = 0.

For a free end, Vz and My are prescribed.



Note that at a clamped end, the rotation of the cross-section vanishes while the
slope of de�lection dw0/dx is not zero unless the transverse shear strain
vanishes at that location.
A Timoshenko beam theory for bidirectional bending can be derived in a
similar manner.



(5.75)

EXAMPLE 5.5

Solve the problem of the two-stringer beam shown in Figure 5.22a using
the Timoshenko beam theory.
Two solution procedures may be used. The �irst one is to solve the
combined equilibrium equation (5.74). Since pz = 0, Eq. (5.74) reduces to

for which the general solution is readily obtained as

From Eq. (5.71), we have

which is then substituted in Eq. (5.70) to yield

Thus, the function ψy also contains the same integration constants, C1, C2,
C3, and C5. Boundary conditions are used to determine these four
constants.
An alternative approach is to take advantage of the fact that the shear
loading at the free end produces a constant shear force along the beam, i.e.

Substitution of Eq. (5.75) in Eq. (5.73) yields

and after integration of the differential equation above,
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(5.78)

where B1 and B2 are integration constants.

From Eq. (5.71), we have

Thus,

Integrate Eq. (5.77) twice to obtain

The boundary conditions are

Solving the four equations above with the general solutions given by Eqs.
(5.76) and (5.78), we obtain
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and thus, the de�lection curve

The maximum de�lection occurs at the free end (x = 0):

It is evident that the �irst term in the solution above is the de�lection
associated with bending given by Eq. (5.63) and the second term is
associated with transverse shear deformation given by Eq. (5.67).

In the derivation of the Timoshenko beam theory, two terms in the
displacement expansion Eq. (5.1) are kept, resulting in a constant transverse
shear strain over the entire cross-section (see Eq. (5.6)). To compensate for
such an oversimpli�ication, it is customary to introduce a shear correction
factor k to modify the shear rigidity GA of the cross-section into kGA. For a
rectangular solid cross-section, the shear correction factor is often taken as k =
5/6 for static cases and k = π2/12 for dynamic cases. For thin-walled sections
with stiffeners, the wall that bears the shear load is often assumed to take no
bending and the shear stress and strain in the thin-walled section become
constant between two adjacent stiffeners as discussed in Example 5.5. Then
setting k = 1 is consistent with the constant shear assumption. It should be
noted that for curved or inclined walls, the shear �low direction follows that of
the centerline of the wall. This type of shear �low is discussed in Chapter 6.
Since the Timoshenko beam theory assumes that the resultant shear force acts
in the z-direction, only the z-component of the shear �low should be taken into
account in calculating the shear force Vz. Using the concept provided by Eq.
(4.49), this effect of inclined shear �low can be accounted for by rede�ining the



area A in the shear rigidity GA as the projection of the area of the inclined
cross-section on the z-axis. For example, for both sections shown in Figure
5.23, A = th, rather than the actual cross-sectional area, should be used in the
Timoshenko beam equations.



5.6 SAINT‐VENANT'S PRINCIPLE
It is a common practice to adopt the resultant force and resultant moment
rather than the actual traction in structural analyses. An example of a
cantilever beam subjected to a shear force V is shown in Figure 2.5. The actual
application of the force could be quite different; namely, it could be the
resultant of a distributed shear stress over the cross-section at the loading end
or the sum of two concentrated forces applied at any two locations on the
vertical centerline of the cross-section. We do not have any doubt about the
consistency between the solutions obtained utilizing this simplifying approach.
Indeed, such an idealization of loading conditions is justi�ied by Saint-
Venant's	principle. According to Saint-Venant's principle, the stresses or
strains at a point suf�iciently far from the locations of two sets of applied loads
do not differ signi�icantly if these loads have the same resultant force and
moment. These two sets of loads are said to be statically	equivalent. An
example of two statically equivalent tractions in a two-dimensional problem is
given in Figure 5.24. It is obvious that these two traction distributions have the
same resultant force and resultant moment. Saint-Venant's principle asserts
that the stresses or strains at a distant point in the body produced by these two
loads, respectively, do not differ signi�icantly. In general, the distance at which
Saint-Venant's principle works is considered several times the size of the
region of load application (the length b in this example). In fact, it also depends
on the con�iguration of the body of interest.
Many solutions to structural mechanics problems are obtained by neglecting
the boundary layer region in which the stress and strain �ields are affected by
the actual local load distribution. It is of interest to know the size of this
boundary layer in which these solutions are not accurate. In general, solutions
for the boundary layer region are not easy to obtain analytically. Here, for
illustration purposes, we use an idealized structure as an example.
Consider a three-stringer thin-walled panel symmetrically loaded by a system
of self-balanced forces as shown in Figure 5.25a. The middle stringer has a
cross-sectional area of A2 and the upper and lower stringers have A1 each. The
webs are assumed to be capable of taking only shear stresses. That is, normal
stresses in the webs are neglected.



Fig.	5.24 Elastic half-space subjected to (a) uniform traction and (b) statically
equivalent triangular traction.
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Fig.	5.25 Load distribution in a three-stringer structure.

From the free body diagram of Figure 5.25b, we conclude that the forces in the
stringers at section position x must satisfy

in which a negative sign means that the direction of P2 is opposite to the
assumed direction in Figure 5.25b. Consider the free body diagram of a small
segment Δx of the upper stringer at position x shown in Figure 5.25c. The
balance of forces in the axial direction yields

in which t is the thickness of the web. By taking Δx → 0, the equation above
leads to
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Now take a strip of the upper web of length Δx at position x as shown in Figure
5.26a before deformation. After the application of loads at the left end, shear
strain occurs in the web and axial strains ε1(x) and ε2(x) occur in the upper and
middle stringers, respectively (see Figure 5.26b). The increment of shear strain
is

from which we obtain

Since stringers are treated as axial members and webs are treated as shear
panels, we have

Substituting the relations above in Eq. (5.84), we obtain
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Fig.	 5.26 Free body diagrams of a strip of the upper web before and after
deformation.

Substitution of Eqs. (5.83) and (5.81) in Eq. (5.85) yields

where

The general solution for the second-order differential equation (5.86) is

Since the resultant of the applied forces is zero, it is expected that no force
would be felt at a suf�iciently large distance from the left end. Let L be large
enough so that P1 → 0 as x → L. This condition requires that D = 0. The other
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boundary condition is P1 = P0 at x = 0, which leads to C = P0. To make Eq. (5.88)
the solution, the shear stress τ0 applied at the free end must be consistent with
that given by Eq. (5.83), i.e.

The negative sign indicates that the actual direction of the shear stress must be
opposite to that shown in Figure 5.25.
For the case A1 = A2 = A, the solution of Eq. (5.88) can be written as

where

The distance x0 from the free end at which P1/P0 = 0.01 can be obtained from
solving Eq. (5.89) for x. We have

If the stringers and webs are made of aluminum 2024 with E = 70 GPa, G = 27 
Gpa, t = 2 mm, h = 200 mm, A1 = A2 = A = 100 mm2, then λ = 0.0108/mm. Thus,
from Eq. (5.91) we obtain x0 = 639 mm. This says that Saint-Venant's principle
is approximately valid beyond a distance that is three times the height h of the
three-stringer panel from the load application end. Of course, this conclusion is
affected by geometry of the structure. In general, thin-walled structures have
small wall thicknesses and tend to make the value of X small, resulting in a
signi�icant boundary layer in which Saint-Venant's principle is not valid.



5.7 SHEAR LAG
Shear	lag is a phenomenon of load distribution. Saint-Venant's principle is a
good example of shear lag. Consider the stringer-sheet panel of Figure 5.25a
with three stringers loaded at the left end. At a distance from the loading end,
the loads in the stringers all approach zero. The analysis presented in Section
5.5 indicates that this load redistribution is accomplished by the load transfer
in the shear panels through a distance x0. The exponential decay of the load in
the two outside stringers is given by Eq. (5.89). The decay index λ given by Eq.
(5.90) depends on the axial rigidity EA of the stringer and shear rigidity Ght of
the sheet. A very rigid sheet makes the shear lag region small, while rigid
stringers require a long distance to accomplish load redistribution.
In aircraft structures, there are many locations where shear lags occur. The
most notable ones are (i) cutouts where some stringers are discontinuous, and
(ii) sites of load application, which can be illustrated by the example of Figure
5.26a. In essence, the mechanics of shear lag in the two situations above are
basically the same.
Figure 5.27 shows a three stringer–web panel with a cutout. The loads carried
by the stringers at the free end are the same. Due to the discontinuity, the load
in stringer 5–6 drops to zero at the cutout, while the load in each of the two
side stringers increases to 1.5 P in the region. Load redistribution takes place
again through shear lag beyond the cutout; the load in stringer 3–4 increases
from zero and approaches P if length L1 is large enough. The size of the shear
lag zone near a cutout depends on the geometry of the structure and material
properties of the stringer and the web. If stringers and webs are made of the
same material, the shear lag zone is often taken as an approximation to be
three times the cutout size b (see Figure 5.27).



Fig.	5.27 Cutout in a stringer sheet panel.
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EXAMPLE 5.6

A stringer-sheet cantilever I-beam is built in at one end and loaded by a
moment at the free end as shown in Figure 5.28a. Through the shear lag
action, the axial stresses in the stringers at a distance from the loading end
can be calculated using the beam theory. Find the distance of the shear lag.
Since there is no transverse shear loading, the moment produced by the
pair of forces of opposite directions applied at the mid-stringers is pure
bending and no shear stress is present in the vertical web. As a result, the
top and bottom �langes can be analyzed separately. To simplify the analysis,
we assume that sheets are ineffective in carrying normal stresses. The
procedure of the analysis follows that used in Section 5.5 in the discussion
of Saint-Venant's principle.
If the simple beam theory is employed to solve this bending problem, we
�ind that the axial force in the three upper stringers is equal to P0. This
contradicts the actual loading condition at the free end of the structure.
Consider the free body diagram for the upper �lange panel (see Figure
5.28b). The balance of forces in the x-direction yields

Fig.	5.28 Shear lag in a stringer-sheet I-beam under pure bending.
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Using a free body diagram similar to Figure 5.25c, equations in the form of
Eqs. (5.83) and (5.85) are obtained, i.e.

where τ is the shear stress in the �lange. Substitution of Eq. (5.93) in Eq.
(5.94) leads to

where

The general solution to the second-order differential equation is readily
obtained as

in which the arbitrary constants C and D are to be determined by boundary
conditions. At x = 0, P1 = 0. Then

At x = L (the built-in end), τ = 0. In view of (5.93), this condition is
equivalent to

which leads to

Solving Eqs. (5.97) and (5.98), we obtain
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The force in the side stringer is then given by

At x = L,

It is evident that as L → ∞, P1 → P0, and P2 → P0. Then the beam solution is
obtained.
It is of interest to know the value of L at which P1 = 0.99P0. This value can
be obtained by solving the following equation derived from Eq. (5.100):

The result is

For a material with E = 70 GPa, G = 27 GPa, t = 2 mm, b = 200 mm, and A = 
100 mm2, we have λ = 0.0108/mm, and then the value of L at which P1 = 
0.99P0 is L = 490 mm. This length is about 2.5 times the width b of the
�lange. At this location, the bending stresses in the stringers obtained from
the simple beam theory are accurate.



PROBLEMS
5.1 A uniform beam of a thin-walled angle section as shown in Figure 5.29
is subjected to the bending My (Mz = 0). Find the neutral axis and bending
stress distribution over the cross-section.
5.2 Rotate the angle section of Figure 5.29 counterclockwise for 45°. Find
the neutral axis and the maximum bending stress. Compare the load
capacity with that of the original section given by Figure 5.29.

Fig.	5.29 Thin-walled angle section.

5.3 Idealize the C-channel section shown in Figure 5.30 considering the
section will be subjected to (a) axial force only, (b) a bending moment My,
and (c) bending moment Mz.



Fig.	5.30 Thin-walled C-channel section.

5.4 Compare the section properties (i.e. Iy and Iz) of the C-channel section
shown in Figure 5.30 with the corresponding section properties for the
idealized structure obtained in Problems 5.3b, c.
5.5 Compare the bending stress distributions between the actual section
shown in Figure 5.30 and the idealized section found in Problem 5.3b if My
= 100 kN.m and Mz = 0.

5.6 In the idealized structure, section properties such as centroid and
moment of inertia calculations are obtained based on the areas and
locations of the stringers. For each section shown in Figure 5.31, obtain
the centroid and moment of inertia if A = 2 cm2.
5.7 Idealize the following sections (i.e. sketch out the equivalent idealized
section and �ind the areas for the stringers) shown in Figure 5.32
assuming both sections are subjected to bending moment with respect to
the horizontal axis. Both sections have uniform thickness = t.



a. Find section properties in terms of h, b, and t for the actual and
idealized sections. In your calculation, consider thickness t to be very
small compared to the other dimensions b or h. As such, all higher-
order terms of t can be ignored.

b. Compare the maximum bending stresses in the actual and idealized
two-cell box section. It is given that h = 20 cm, b = 30 cm, and t = 1 cm.

Fig.	 5.31 Idealized sections with different stringer areas and skin
con�igurations.

Fig.	 5.32 (a) An unsymmetric open section and (b) two-cell symmetric
closed box section.



5.8 Obtain section properties and bending stresses for the idealized
sections shown in Example 5.2. Compare your results with the actual
sections shown in Example 5.1.
5.9 The stringer–web sections shown in Figures 5.33–5.35 are subjected
to the shear force Vz ≠ 0, while Vy = 0. Find the bending stresses in the
stringers for the same bending moment My. Which section is most
effective in bending?

Fig.	5.33 Stringer–web section.



Fig.	5.34 Stringer–web section.



Fig.	5.35 Stringer–web section.

5.10 Compare the bending capabilities of the two sections of Figures 5.34
and 5.35 if My = 0, Mz ≠ 0.

5.11 Figure 5.36 shows the cross-section of a four-stringer box beam.
Assume that the thin walls are ineffective in bending and the applied
bending moments are

Find the bending stresses in all stringers.



Fig.	5.36 Thin-walled section.

5.12 Find the neutral axis in the thin-walled section of Figure 5.36 for the
loading given in Problem 5.5.
5.13 Find the bending stresses in the stringers at the �ixed end of the box
beam loaded as shown in Figure 5.35. Assume that the thin sheets are
negligible in bending. Find the neutral axis.
5.14 Find the de�lection of the box beam of Figure 5.37 using the simple
beam theory.



Fig.	5.37 Loaded box beam.

5.15 Find the bending stresses in the stringers of the box beam in Figure
5.37 for the bending moments given in Problem 5.5.
5.16 A cantilever beam of a solid rectangular cross-section is loaded as
shown in Figure 5.38. Assume that the material is isotropic. Find the
de�lections of the beam using the simple beam theory and Timoshenko
beam theory, respectively. Plot the ratio of the maximum de�lections of the
two solutions (at the free end) versus L/h. Use the shear correction factor 

.



Fig.	5.38 Cantilever beam subjected to a shear force P.

5.17 A thin-walled beam of length 5 m long has one end built into a rigid
wall, and the other end is subjected to a shear force Vz = 5000 N. The
cross-section is given by Figure 5.30 with h = 0.2 m and the wall thickness
= 0.002 m. The material is aluminum 2024-T3 with E = 70 GPa, G = 27 GPa,
and cross-sectional area of the stringer A = 80 mm2. Assume that thin
walls carry only shear stresses. Find the de�lections at the free end using
the simple beam theory and the Timoshenko beam theory. Compare the
transverse shear stresses in the vertical web obtained from the two
theories.
5.18 A 2024-T3 aluminum box beam with a thin-walled section is shown
in Figure 5.39. Assume that thin walls (thickness t) are ineffective in
bending. Find the de�lections at the free end using the simple beam theory
for shear loads Vz = 5000 N and Vy = 5000 N separately. Solve the same
problem using the Timoshenko beam theory. In which loading case is the
simple beam theory more accurate in predicting the de�lection? Explain.



Fig.	5.39 Box beam with a triangular thin-walled section.

5.19 Consider the structure with a cutout as shown in Figure 5.27. Find
the axial force distribution in stringers 3–4 and 5–6. Assume that both
stringers and webs have the same material properties of E = 70 GPa and G
= 27 GPa. Also assume that b = 200 mm, the thickness of the web t = 2 mm,
and the cross-sectional area of the stringer A = 64 mm2. Hint: The zero-
stress condition in the web at the cutout cannot be enforced because of
the simpli�ied assumption that shear stress and strain are uniform across
the width of the web. Use the known condition that the force in the side
stringers is 1.5 P at the cutout.
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6 
Flexural Shear Flow in Thin‐Walled Sections



6.1 INTRODUCTION
Shear �lows in thin-walled sections can be generated by torques or
transverse shear forces. The presence of shear strains along the wall gives
rise to primary warping (in the longitudinal direction), and end constraints
of the structure have signi�icant effects on its structural behavior as
discussed in Chapter 4 and Chapter 5. In this chapter, the shear �low
produced by combined torsional and transverse loads is studied. To avoid
mathematical complexities, the end-constraining effect is neglected in the
analysis presented in this chapter.



6.2 FLEXURAL SHEAR FLOW IN OPEN THIN‐
WALLED SECTIONS
Bending stresses in beams with open thin-walled sections subjected to
bending loads can be analyzed using the beam equations derived in previous
sections with excellent accuracy if the beam span-to-depth ratio is large. In
contrast, the transverse shear stresses τxz and τxy are very dif�icult to obtain.
In fact, for a thin-walled section, τxz and τxy, in general, are not the most
convenient stress components to consider. For instance, it is more
advantageous to set up the s–n coordinate system for the thin-walled section
shown in Figure 6.1. The s-axis follows the center line of the wall, and the n-
axis is perpendicular to the s-axis. Referring to the s–n coordinate system, the
shear stresses can be represented by τxn and τxs, as shown in Figure 6.1.
Again, using the argument that the wall section is thin and that τxn vanishes
on the boundary, we conclude that τxn must be small, and we may set τxn = 0
over the entire wall section as an approximation. Thus, the only nonvanishing
shear stress component is τxs (or simply τ), and a great simpli�ication is
achieved.

6.2.1 Symmetric Thin‐Walled Sections
If the cross-section is symmetrical about the y- or z-axis, then Iyz = 0. For one-
way bending, say Vz ≠ 0 and Vy = 0, beam equations (5.50)–(5.52) are to be
used. Consider the beam section given by Figure 6.2, which is symmetrical
about the y-axis. We set up the s–n coordinate system as shown in Figure 6.1.
The shear stress τxs is assumed to vanish along the longitudinal edges.

Take a free body cut from the beam as shown in Figure 6.2. The balance of
forces in the x-direction of this free body requires that

where qs = tτxs is the �lexural shear �low on the thin-walled section and As is
the cross-sectional area of the free body. Taking limit Ax → 0, we have



(6.1)

Fig.	6.1 Thin-walled section symmetrical with respect to the y-axis.

Fig.	6.2 Free body cut from a beam.



(6.2)

Noting that

we derive the following expression from Eq. (6.1):

where

is the �irst moment of area As, and zc is the vertical distance from the centroid
of As to the y-axis.

Comparing Eq. (6.2) with Eq. (5.55), we note that qz and qs differ by a sign.
This is because the assumed positive directions (qs is positive in the positive
s-direction) of the two shear �lows are opposite. The shear �low calculated
according to Eq. (6.2) is the �lexural shear �low because it is induced solely by
the bending stress. The resultant force of the shear �low is equal to the
applied shear force Vz.

Note that in the foregoing derivation of the �lexural shear �low, the horizontal
position of Vz is never speci�ied. This is because bending moment My does not
depend on the horizontal position of the shear force Vz. However, this does
not imply that Vz can be applied at any arbitrary position if torsional shear
stresses are to be avoided. This subject is discussed further in Section 6.2.



Example 6.1

The beam with the channel section shown in Figure 6.3a is loaded with a
constant shear force Vz (Vy = 0). The wall thickness is t. Find the �lexural
shear �low on this section.
Since the section is symmetrical about the y-axis, the �lexural shear �low
can be calculated using Eq. (6.2).
Consider an arbitrary section m–m in the upper �lange. For this section,
we have

Thus,

This indicates that the shear �low is linearly distributed along the upper
�lange, and the negative sign means that its direction is opposite that of
the contour s, as shown in Figure 6.3b. The maximum value occurs at s =
b, i.e.



Fig.	6.3 Beam with channel section symmetrical with respect to the y-
axis.

In a similar manner, the shear �low on the vertical web is obtained as

where s′ is measured starting from the top end of the web. The second
term in the numerator in the equation above is the �irst moment of the
cross-sectional area of the vertical web up to the point s′. At the top of the
web, s′ = 0 and

At the midsection of the web, s′ = h, and



At the bottom of the web, s′ = 2h, and

Again, the negative value of qs indicates that the actual direction of qs is
opposite that of s′.
The shear �low on the lower �lange can be calculated using the same
counterclockwise shear �low contour. Alternatively, we may choose a new
clockwise contour s″ as shown in Figure 6.3a. We have

and

The shear �low along the lower �lange given by the preceding equation is
positive, indicating that its direction is the same as contour s″.
It can be veri�ied that the resultant force of the shear �low is equal to Vz.

6.2.1.1 Stringer–Web Sections
For stringer–web constructions such as the one with the cross-section shown
in Figure 6.4, stringers are used to take bending. Often, the web can be
assumed to be ineffective in bending, and its area neglected in the calculation
of Q. As a result, the shear �low between two adjacent stringers becomes
constant.



Example 6.2

Consider a four-stringer thin-walled channel beam with cross-section
shown in Figure 6.4. Find the shear �low distribution on the section.

Fig.	6.4 Stringer–web section symmetrical with respect to the y-axis.



Assume that A3 = A2 and A4 = A1; then the section is symmetric about y-
axis, and the shear �low Eq. (6.2) can be used. Thus, shear �low qi
produced by a vertical shear force Vz is obtained as

where

and zk is the vertical position of stringer Ak.

For q1, we have

and thus

Similarly, we have

Note that the actual direction of the shear �low is opposite that shown in
Figure 6.4.



(6.3)

(6.4)

(6.5)

It is easy to show that the shear �low can also be expressed as

where zi+1 is the z-coordinate of area Ai+1.

The preceding result indicates that

and

that is, the vertical resultant of the shear �low must be equal to the
applied transverse shear force Vz, and the horizontal resultant force must
vanish as there is no horizontally applied force.

6.2.2 Unsymmetric Thin‐Walled Sections
For unsymmetric thin-walled sections under bidirectional bending, the
equilibrium Eq. (6.1) is still valid. However, the bending stress σxx must be
calculated from Eq. (5.30). For convenience, we rewrite Eq. (5.30) in the form

where

Substituting Eq. (6.3) together with Eqs. (5.35b) and (5.35d) into Eq. (6.1),
we obtain

where



(6.6)

are the �irst moments of the area As about the z and y axes, respectively.



Example 6.3

Consider the stringer–web beam shown in Figure 6.5. Find the shear �low
distribution on this section.
The shear �low produced by combined vertical load Vz and horizontal
load Vy can be solved by considering these two loads separately. Consider
the applied load Vz ≠ 0 and Vy = 0. The direction of the shear �low s is
indicated in the �igure. The positive direction of the shear �low is
assumed to be the same as that of the contour s. The moments of inertia
and product of inertia of the section are �irst calculated as

Fig.	6.5 Stringer–web beam with an unsymmetrical section.

Subsequently, we calculate ky, kz, and kyz according to Eq. (6.4) with the
result

For shear �low q1, only one stringer is involved. We have



(6.7)

and the shear �low is obtained from Eq. (6.5) as

For q2, we have

and

In the same manner, we obtain

Of course, in this case, constant shear �low q2 can be obtained from the
fact that the resultant transverse shear force must be equal to Vz, i.e.

Again, the negative sign in the equation above indicates that the actual
direction of the shear �low is opposite that assumed in Figure 6.5.

6.2.3 Multiple Shear Flow Junctions
In multicell thin-walled sections, there are junctions where three or more
shear �lows meet. For example, consider the junction of three walls as shown
in Figure 6.6. We have shown that for shear �lows produced by a torque,

This relation is valid for �lexural shear �lows produced by transverse forces
for sections without concentrated areas. Relation (6.7) is obvious from the
consideration of balance of force (in x-direction) for the free body of Figure
6.6.



For sections consisting of stringers and thin sheets, the Relation (6.7) is not
valid. Consider the junction of three sheets and a stringer as shown in Figure
6.7. The equilibrium equation in the x-direction is

Fig.	6.6 Junction of three walls.



(6.8)

(6.9)

(6.10)

Fig.	6.7 Junction of three sheets and a stringer.

Taking Δx → 0, we have

For example, consider a symmetrical section subjected to transverse force Vz.
We have

where zc is the vertical position of the stringer. Substitution of Eq. (6.9) into
Eq. (6.8) yields

which is different from Eq. (6.7).

6.2.4 Selection of Shear Flow Contour



In using Eq. to calculate �lexural shear �lows, it is important to specify the
shear �low contour s since it indicates the assumed direction of the shear
�low. Other than the requirement that a contour must begin from a free edge,
the choice can be arbitrary. For simple sections, such as those shown in
Figures 6.4 and 6.5, a single contour is suf�icient, and we may select the
contour to start from either the top free edge or the bottom free edge.
For some sections, it is convenient to set up different shear �low contours for
different portions of the section. For example, consider the wide �lange beam
as shown in Figure 6.8. Five contours are selected (see Figure 6.8). Contours
s1, s2, s4, and s5 can be used to calculate the shear �lows in the �langes
independently. Contour s3 should be considered as the combined contour of
s1 and s2. When calculating the shear �low in the vertical web (along s3), the
areas of both top �langes must be included. Using the relation q3 = q1 + q2 at
the junction, the shear �low along the vertical web can be calculated by
adding the contribution of the additional area of the vertical web to the shear
�lows q1 and q2 in the top �langes at the junction.



6.3 SHEAR CENTER IN OPEN SECTIONS
In calculating the shear �low in an open section produced by shear forces,
only the magnitude of the shear force is used. The position of the applied
force in the y–z plane is not speci�ied. However, the �lexural shear �low
resulting from the shear force has a de�inite resultant force location. This
location is called the shear	center of the cross-section. The shear center is
sometimes called the center of twist. If a torque is applied about the shear
center, the beam will twist without bending. Conversely, if the shear force is
applied through the shear center, the beam will bend without twisting.

Fig.	6.8 Five possible contours for shear �low.



(6.11)

Fig.	6.9 Thin-walled bar with two heavy �langes.

To illustrate the procedure of �inding the location of shear center, let us
consider a thin-walled bar with two heavy �langes as shown in Figure 6.9.
Assume that the curved web is ineffective in bending. Consequently, the
shear �low is constant between the �langes, and is obtained as

Using Eqs. (4.40) and (6.11), it can be easily veri�ied that the resultant R of
the shear �low is qh, which is equal to the applied shear force Vz. In fact, shear
�lows calculated from the shear �low formulas (6.2) and (6.5) always give the
applied shear forces.



(6.12)

(6.13)

(6.14)

The location of the resultant force R(= Vz) of the shear �low q is also the
location of the shear center. The applied shear force Vz must be applied
through this location in order to avoid additional torsional deformation.
Assuming that the shear center is at a distance e to the left of the top �lange
(see Figure 6.9), and requiring that the moment produced by R(= Vz) about
the top �lange be the same as by the shear �low, we have

where

is the area enclosed by the curved web and the straight line connecting the
two �langes. From Eq. (6.12), we obtain

The positive sign of e indicates that the location of the shear center is to the
left of the �langes. Also note that the shear center location does not depend
on the magnitude of the shear force.
In general, the location of a shear center is determined by its horizontal
position and vertical position. The horizontal position is obtained from the
loading condition Vz ≠ 0 and Vy = 0, and the vertical position is determined
using Vy ≠ 0 and Vz = 0.



(6.15)

(6.16)

Example 6.4

The four-stringer thin-walled channel section of Figure 6.10 is a special
case of the section given in Figure 6.4. Find the horizontal and vertical
positions of its shear center.
To determine the horizontal position of its shear center, we consider the
loading of Vz ≠ 0 and Vy = 0. The resulting shear �low has been obtained in
Example 6.2. We have

Note that the shear �low direction in Figure 6.10 is the actual direction.
Let the resultant force of the shear �low be Rz, which is obviously equal to
Vz in magnitude and should pass through the shear center (see Figure
6.10).
The resultant force Rz must also produce the same moment about the x-
axis (or any other axis) as does the shear �low, i.e.

where

is the horizontal distance between the centroid and the vertical web.
Using Rz = Vz and the expressions for q1, q2, and q3, we obtain the
distance ysc from Eq. (6.15) as



The location y = ysc is the horizontal position of the shear	center for this
section for the shear force applied in the vertical (z) direction. The
negative sign of ysc in Eq. (6.16) indicates that the actual shear center is
to the left of the centroid.

Fig.	6.10 Shear-�low direction.



(6.17)

Fig.	6.11 Location of shear force: (a) actual location; (b) shifted to shear
center.

If the shear force Vz is applied through the shear center, this shear �low is
the complete response of the structure. If the shear force Vz is not applied
through the shear center as shown in Figure 6.11a, then it results in an
additional torque load. As shown in Figure 6.11b, the shear force Vz can
be translated to the shear center, resulting in a torque Vzd. In such cases,
the shear stresses produced by the torque must be added to the �lexural
shear stresses. Since open thin-walled sections are generally weak in
torsion, it is desirable to apply the shear force through the shear center.
To �ind the vertical position zsc of the shear center, we consider the
section of Figure 6.10 subjected to loading Vy ≠ 0 and Vz = 0. For this
section kyz = 0, and from Eq. (6.5) we have

The location of the centroid is indicated in Figure 6.16 with

The shear �low is easily obtained from Eq. (6.17):



The shear �low, after adjusting the sign for direction, is shown in Figure
6.12. The shear �low is seen to be symmetrical with respect to the y-axis.
The resultant Ry thus coincides with the y-axis and, consequently, the
vertical location of the shear center is zsc = 0.

Simple Rule for Determining the Shear Center
The following rule can be used to locate the shear center for sections
possessing symmetries. If a section (including both stringers and thin webs)
is symmetric about an axis, then the shear center lies on this axis. For
example, the sections of Figure 6.13a, b are symmetrical with respect to the
y-axis and thus zsc = 0.



Fig.	6.12 Shear �low for a horizontal shear force.

Fig.	6.13 Symmetric sections.



Fig.	6.14 Unsymmetric section.

This cannot be said about the section of Figure 6.14. Although	it	is	considered
a	symmetrical	section	for	bending	when	the	thin	webs	are	assumed	ineffective
in	bending,	the	shear	�low	cannot	be	symmetric	about	the	y-axis	because	of	the
unsymmetric	webs.
For sections such as the angle section in Figure 6.13a, the T-section in Figure
4.10a, and cruciform sections in which all walls meet at a single location, the
shear center coincides with the intersection point. This conclusion is easily
reached in view of the fact that all shear �lows are straight and meet at one
point.



Fig.	6.15 Reproduction of shear �low in Example 6.3.



Example 6.5

Find the shear center for the beam with a channel section shown in
Figure 6.3.
The beam is symmetrical about the y-axis. Thus, zsc = 0. To determine the
horizontal position of the shear center, we consider the loading case Vz ≠ 
0, Vy = 0 for which the shear �low has already been obtained in Example
6.1 and is reproduced in Figure 6.15b.
Assume that Vz passes through the shear center, which is assumed to be
at ey to the right of the vertical wall. Then the moment produced by Vz
and the shear �low about any axis (that is parallel to the x-axis) must be
equal. By selecting the axis location at the lower left corner of the
channel, the shear �lows on the vertical wall and the lower �lange
produce no moment and only the shear �low on the upper �lange does.
The shear �low on the upper �lange can be written in the form

The moment of this shear �low about the axis selected is clockwise and is
given by

For the assumed loading position (see Figure 6.15), the moment
produced by Vz about the same axis is Vzey, which is counterclockwise.
Hence,

Noting that

we obtain



The minus sign indicates that the actual location of the shear center is to
the left of the vertical wall. Thus, a �itting sticking out from the vertical
wall may be necessary to facilitate such loading.



(6.18)

6.4 CLOSED THIN‐WALLED SECTIONS AND
COMBINED FLEXURAL AND TORSIONAL
SHEAR FLOW
Closed thin-walled sections are capable of taking both shear forces and
torques. Shear �lows can result from simultaneous applications of shear
forces and torques. In the derivation of �lexural shear �lows in open sections,
the �lexural shear stress τxs (and thus, qs) is zero at the free edges (see Figure
6.16). For closed sections, such as shown in Figure 6.17a, there are no free
edges. We assume that at point O the value of the shear �low is q0 (see Figure
6.17b). Thus, the closed section can be regarded as an open section with a
nonzero shear �low at point O. Starting contour s from this point (see Figure
6.17b), we obtain the shear �low qs as

where  is the shear �low calculated assuming a free edge at point O. Hence,
the actual shear �low can be considered as the superposition of (s) and the
unknown constant shear �low q0 as depicted in Figure 6.18. The �lexural
shear �low q′ can be regarded as the shear �low produced by the shear force
in the open section obtained by cutting the wall longitudinally at point O.

Fig.	6.16 Flexural shear �lows in open sections.



(6.19)

Fig.	 6.17 Flexural shear �lows in a closed section: (a) closed section; (b)
section with a �ictitious cut.

Fig.	6.18 Superposition of shear �lows.

The shear �low qs can be viewed from the front section (positive x-face) or
the back section (negative x-face). Viewed from the front section, the shear
�low qs should produce the resultant shear force equal to Vz. It should also
generate the same moment as Vz about any axis parallel to the x-axis. Using
the closed section and loading of Figure 6.17 as an example, it is easy to show
that the shear �low qs calculated from Eq. (6.18) yields the resultant force Vz
automatically. In fact, it is the shear �low  that produces the shear force
since the resultant force of the closed constant shear �low q0 vanishes. The
remaining condition is the moment equation. Taking moment about the x-
axis, we have

where  is the area enclosed by the shear �low.

Equation (6.19) ensures that the resulting shear �low must produce the same
moment as the applied shear force Vz. This equation is used to determine q0.



(6.20)

6.4.1 Shear Center
The shear �low given by Eq. (6.18) may contain �lexural shear and torsional
shear if Vz is applied at an arbitrary location. If the applied shear force Vz
passes through the shear center, i.e. d = ysc, then the resulting shear �low is
pure �lexural shear, which should produce no twist angle, i.e.

Equation (6.19) is used to determine q0 in terms of ysc. The location (ysc) of
the shear center, if not given, is subsequently obtained from solving Eq.
(6.20) by replacing d with ysc.

An equivalent problem to that of Figure 6.17 can be obtained by translating
the shear force Vz from y = d to y = ysc (the shear center) and adding a torque
T = Vz(d − ysc) as shown in Figure 6.19. The shear �low resulting from this
torque must be added to the shear �low produced by the shear force that
passes through the shear center.



Fig.	6.19 Added torque due to shifting of the shear force.



Fig.	6.20 Four-stringer box beam.



Example 6.6

A four-stringer box beam is loaded as shown in Figure 6.20. Find the
shear center.
Assume the thin sheets to be ineffective in bending. The centroid is easily
identi�ied and is shown in the �igure.
As far as bending is concerned, this cross-section is symmetrical with
respect to the y-axis. Thus, Iyz = 0. The other properties of the cross-
section are given by

We �irst calculate the shear �low q′ by assuming a cut (see Figure 6.21) in
the wall between stringers 1 and 2, i.e.  = 0. The shear �lows on other
walls are calculated according to Eq. (6.2) for symmetrical sections. We
obtain



(6.21)

Fig.	6.21 Superposition of shear �lows.

The resulting moment of the total shear �low q = q′ + q0 must be equal to
the moment produced by Vz. Taking moment about stringer 1 and using

Equation (6.19), we obtain

Thus,

The total shear �lows are

To determine the horizontal location of the shear center, we assume that
the shear force Vz is applied through the shear center (assumed to be at



(6.22)

distance e from stringer 1 as shown in Figure 6.22). Then the moment Eq.
(6.21) is replaced by

Thus,

Fig.	6.22 Assuming shear force passes through the shear center.

and



Since Vz passes through the shear center, the twist angle is equal to zero.
Using Eq. (6.17), we have

This equation reduces to

Solving the above equation for e, we obtain

The negative sign indicates that the shear center is located to the left of
the vertical wall between stringers 1 and 5. It is obvious from Figure 6.14
that

The vertical location zsc of the shear center can be determined in a
similar manner by applying a horizontal shear force Vy. The result is zsc = 
0, i.e. the shear center lies on the axis of symmetry of the cross-section.

6.4.2 Statically Determinate Shear Flow
At any cross-section of a thin-walled beam, the shear �low must result in the
same resultant forces and moment as the applied ones, i.e.



(6.23a)

(6.23b)

(6.23c)

where ez and ey are the distances of Vy and Vz from the axis about which the
moments are taken. For some sections, the shear �low can be determined
from these equations alone. This type of shear �low is statically determinate.
In this case, the sectional properties (Iy, Iz, and Iyz) are not involved.



(6.24)

(6.25)

(6.26)

Example 6.7

Consider a three-stringer single-cell section loaded as shown in Figure
6.23. Obtain the shear �low and vertical location of the shear center.
The three equations on the equivalent resultants are given by

Solving the equations above, we obtain

If Vz passes through the shear center, then the twist angle θ = 0, i.e.

This leads to

The negative sign indicates that the shear center is located to the left of
the vertical web.



Fig.	6.23 Three-stringer single-cell section.



(6.27)

(6.28)

(6.29)

Example 6.8

The cross-section of a three-stringer thin-walled beam and the applied
loads are shown in Figure 6.24a. Find the shear �low.
This problem can be solved by �irst converting the loads into the
resultant shear forces as shown in Figure 6.24b and then using the
method of cutting the closed cell into an open cell to �ind .

Alternatively, by recognizing that the shear �low is statically determinate,
we can use Eq. (6.23) to determine the shear �low. Assuming constant
shear �lows in the thin-wall segments as shown in Figure 6.25, we have

The left-hand side and right-hand side of (6.29) represent moments of
the applied forces and the shear �low about stringer 1, respectively. In
deriving the equations above, the relation given by Eq. (4.50) has been
used. Also, the areas  and  are

The shear �lows q12, q23, and q31 are obtained by solving the three Eqs
(6.27)–(6.29).



Fig.	6.24 Resultant shear forces.

Fig.	6.25 Assumed shear �lows.



Example 6.9

Find the unknown shear �low in the section shown in Figure 6.26 for Vz = 
10 kN. Given that h = 100 cm, area A of each stringers = 10 cm2, and Iy =
Ah2.
This is a closed single-cell section. As such, the problem can be solved
using the method shown in Example 6.7. As the shear �low, since q23 is
already provided, there is no need to make a cut and start solving the
problem as an open section. The shear �low on the remaining skins can
be obtained directly as

Recall that shear �low on any skin depends on the shear �low on the
preceding skin. When a section is open, then the shear �low is zero at the
free end. On a close section, shear �low on any section is not known. For
such a section, Eq. (6.2) cannot be directly applied, and a cut is usually
necessary. In this case, the shear �low q41is known.



6.5 CLOSED MULTICELL SECTIONS
As discussed in Section 6.4, the shear �low in a single-cell beam can be
analyzed by making a �ictitious cut so that it can be treated as an open
section with an existing constant shear �low q0. The shear �low q′ is
unambiguously obtained from Eq. for the “open section” subjected to the
applied shear forces. The unknown shear �low q0 is determined from the
requirement that the moment produced by the total shear �low q′ + q0 must
be equal to the moment produced by the applied shear forces.

Fig.	6.26 Four stringer single-cell closed section.



(6.30)

Fig.	6.27 A few possible ways to cut a three-cell box beam section.

The aforementioned procedure can be employed for the analysis of shear
�lows in beams with multicell thin-walled cross-sections. For instance,
consider an «-cell section. Make a “cut” in the wall in each cell to make the
entire section “open.” For each cell, a constant shear �low qi (i = 1, 2,…, n)
must be added to the shear �low q′ calculated for the open section. It requires
n equations to solve for the n unknowns qi. These n equations are provided
by the n − 1 compatibility equations,

where θi is the twist angle per unit length of the ith cell. An additional
equation is provided by equating the moment of the applied shear forces to
the total resultant moment of all the shear �lows in the cells.
In making the cuts, no part of the section should be completely cut off. In
setting up the shear �low contours for the resulting open section, it is more
convenient to begin each contour from the cut location where q′ = 0.
Moreover, each wall can be covered by only a single contour. Figure 6.27
shows a few possible ways to cut a three-cell box beam section. Apparently,
the cut depicted in Figure 6.27c is the most convenient because a single
contour is suf�icient.



Example 6.10

The two-cell box beam section shown in Figure 6.28 is symmetrical about
the y-axis. Find the shear �low and shear center.
Assume that the sheets are ineffective in bending. The pertinent cross-
sectional property is

Cut the sheets between stringers 1 and 6 and between 5 and 6, and set up
the contours s1 and s2 as shown in Figure 6.28. Each contour must start
from the cut (the free edge). The positive shear �low direction is assumed
to be in the contour direction. In the following, qij is used to denote the
shear �low between stringers i and j.

Fig.	6.28 Assumed cuts and shear �low contours.

Cell	1:



(6.31)

(6.32)

(6.33)

(6.34)

Cell	2:

The shear �lows are completed by adding the constant shear �lows q1 and
q2 (see Figure 6.29) in the individual cells, respectively. The equations
needed for determining q1 and q2 are obtained from the moment
equation and the compatibility equation.
Moment Equation
The in-plane moment produced by Vz about any axis must be equal to the
in-plane moment about the same axis resulting from the shear �lows.
Taking the moment about stringer 1, we have

where

Substituting the numerical values of  given by Eqs. (6.31) and (6.32)
into Eq. (6.33), we obtain

Compatibility Equation



(6.35)

Fig.	6.29 Constant shear �lows to be added to the total shear �low.

The compatibility condition requires that the twist angle of cell 1 must be
equal to that of cell 2. Using Eq. (4.65), we have

where  and  are the areas enclosed by the centerlines of the thin
walls in cells 1 and 2, respectively, and

Equation (6.35) is simpli�ied to



(6.36)

(6.37)

Solving Eqs. (6.34) and (6.36), we obtain

Shear Center
To �ind the shear center, we assume that the applied force passes through
the shear center as shown in Figure 6.30 The resultant torque of the
shear �low and the torque produced by Vz must be equal. Taking the
moment about stringer 1, we have

where ∑M1 is the same as the right-hand side of (6.33). Explicitly, the
equation above is given by

Fig.	6.30 Applied force passing through a shear center.

By the de�inition of shear center, we require that



(6.38)

(6.39)

These three equations are suf�icient to solve for q1, q2, and the shear
center location ey. The solutions are



PROBLEMS
6.1 Find the �lexural shear �low produced by the transverse shear force
Vz = 1000 N in the beam with the thin-walled section given by Figure
6.31.

Fig.	6.31 Thin-walled section with a side cut.

6.2 Find the shear �low of the wide-�lange beam (Figure 6.32) subjected
to Vz = 1000 N.



Fig.	6.32 Section of an I-beam.

6.3 Find the shear center ysc for the sections of Figures 6.31 and 6.33.
For the four-stringer section (Figure 6.33), assume that the thin sheets
are ineffective in bending.



Fig.	6.33 Open four-stringer section.

6.4 Find the �lexural shear �low in the section of Figure 6.33 for Vz =
5000 N.
6.5 Find the shear �low for the three-stringer section shown in Figure
6.34 for Vz = 5000 N and Vy = 0. Given shear modulus G = 27 GPa, �ind the
twist angle per unit length. Also determine the shear center. Is the shear
�low statically determinate?

Fig.	6.34 Single-cell closed section.

6.6 Do Problem 6.5 for Vz = 5000 N and Vy = 10 000 N.



6.7 Find the shear �low on the four-stringer section (Figure 6.35)
subjected to Vz = 5000 N. Assume that the thin sheets are ineffective in
bending.

Fig.	6.35 Unsymmetric open section.

6.8 Find the shear center (ysc, zsc) for the open section in Figure 6.36.



Fig.	6.36 Two-cell closed section.

6.9 Find the shear center of the Z-section given by Figure 5.15.
6.10 Find the shear �low in the two-cell section loaded as shown in
Figure 6.36 for Vz = 5000 N. Given G = 27 GPa, �ind the twist angle θ.

6.11 Find the shear �low of the structure with the cross-section given in
Figure 6.36 if the vertical force Vz is applied at 20 cm to the right of the
stringers. Also �ind the corresponding angle of twist θ.
6.12 Solve Example 6.9 by assuming cuts on the webs between stringers
1 and 2 and stringers 6 and 3.
6.13 A thin-walled box beam is obtained by welding the cut of the
section shown in Figure 6.31. Find the shear �low produced by a vertical
shear force Vz = 1000 N applied at 100 mm to the right of the vertical
wall that contains the original cut.



6.14 Show that the shear center for the section of Figure 6.37 is at a
distance

to the left of stringer 1.

Fig.	6.37 Four-stringer thin-walled section.

6.15 Find the shear �low in the two-cell thin-walled section for Vz =
5000 N shown in Figure 6.38. Also determine the shear center. Assume
thin sheets to be ineffective in bending.



Fig.	6.38 Two-cell closed section.

6.16 Find the shear �low in the �ive-stringer thin-walled section
produced by the loads shown in Figure 6.39.

Fig.	6.39 Three-cell closed section.

6.17 A four �lange beam section is shown in Figure 6.40. The cross-
sectional area of each �lange is shown adjacent to the �lange. The
external shear load V = 141.14 kN acts in a direction as shown. Find the
vertical and horizontal location of the shear center.



Fig.	6.40 Unsymmetric four stringer thin-walled open section.

6.18 Find the shear �lows in the webs of the beam shown in Figure 6.41.
Each of the four �langes has an area of 6.5 cm2. Find the shear center for
the area.



Fig.	6.41 Symmetric four stringer thin-walled open section.

6.19 Find the shear �lows in the closed single-cell section for Vz = 5000 N
as shown in Figure 6.42. The area for each stringer is 10 cm2 and
thickness of each panel is 0.1 cm. It is given that Iy = 2667 cm4, Iz = 10
667 cm4, Iyz =  − 2667 cm4.

Fig.	6.42 Unsymmetric three stringer thin-walled closed section.



6.20 Find the shear center Ysc for the following open cell section shown
in Figure 6.43. Given that A = 20 cm2, h = 40 cm, Iy = 1.5Ah2 cm4, Iz =
6Ah2 cm4.

Fig.	6.43 Four stringer thin-walled open section.





7 
Failure Criteria for Isotropic Materials



7.1 INTRODUCTION
The modes of failure of a structure can be put in two general categories,
structural failure and material failure. The former is characterized by the loss
of ability to perform the intended structural function. Examples of structural
failure include elastic buckling and �lutter. In general, a structural failure may
be attributed to excessive de�lections of the structure and may not
necessarily involve breakage of the structure. On the other hand, material
failure usually involves excessive permanent deformation or fracture of the
material. In this chapter, we address the latter category of failure. For
convenience, a state of plane	stress is assumed. In addition, only isotropic
materials are considered.



(7.1a)

(7.1b)

7.2 STRENGTH CRITERIA FOR BRITTLE
MATERIALS
In general, brittle materials exhibit linear stress–strain curves and have small
strains to failure. Their uniaxial strengths can be determined by simple
tension and compression tests. However, to predict failure in the material
under a state of combined stresses, strength (or failure) criteria are needed
in conjunction with these uniaxial strength data.
Many stress criteria for brittle materials have been proposed based on the
phenomenological approach, which is basically an educated curve-�itting
approach. Presented next are two criteria often employed to predict failure in
brittle materials.

7.2.1 Maximum Principal Stress Criterion
Suppose that from simple tension and compression tests, one obtains
ultimate strengths σUT and σUC (σUC is negative), respectively. Now consider a
solid in a state of plane stress, and let σ1 and σ2 (σ3 = 0) be the principal
stresses in the plane. The maximum	principal	stress	criterion states that
failure would occur if

or

This failure criterion basically states that if any of the principal stresses
reaches the ultimate strength, failure in the material would occur.
This failure criterion is presented graphically in Figure 7.1. The line forming
the square box in the σ1–σ2 plane is called the failure	envelope. Any stress
state within the envelope would not produce failure.

7.2.2 Coulomb–Mohr Criterion
The maximum normal stress criterion does not allow interaction of σ1 and
σ2. However, many experiments have suggested that the presence of σ2 could



(7.2a)

(7.2b)

reduce the ultimate value of σ1. The Coulomb–Mohr	criterion is among
many criteria that attempt to account for the effect of stress interaction.
The Coulomb–Mohr failure envelope for a state of plane stress (σ3 = 0) is
shown in Figure 7.2. The envelope is given by the following equations.

Fig.	7.1 Failure envelope for the maximum principal stress criterion.



(7.2c)

(7.2d)

Fig.	7.2 Coulomb–Mohr failure envelope.

For a pure shear produced by σ2 = −σ1 (assume that σ1 > 0), the maximum
shear stress is . From Eq. (7.2d), we have



which is the shear stress at failure under pure shear loading.



(7.3)

(7.4)

Example 7.1

A thin-walled tube is made of a brittle material having σUT = 200 MPa and
σUC = −500 MPa. The mean radius is a = 0.2 m and the wall thickness t =
0.004 m. Find the maximum torque T that the tube can carry.
Under a torque, the state of the stress in the tube is pure shear. The shear
stress τ can be obtained from the shear �low q, which is related to the
torque.
We have

It is easy to show that for pure shear, the principal stresses are σ1 = −σ2 =
τ. Without loss of generality, we assume that τ > 0.
According to the maximum principal stress criterion, there are two
possible failure loads, i.e.

and

It is obvious that

Thus, the maximum torque is, from Eq. (7.3),

If the Coulomb–Mohr criterion is used, then the maximum shear stress is
obtained from Eq. (7.2d). We have

and the corresponding maximum torque



(7.5)

The signi�icant discrepancy between the predictions of these two
strength criteria in this example serves to emphasize that the
applicability of these strength criteria may vary from material to material
and that great caution must be exercised in using these criteria.



(7.6a)

7.3 YIELD CRITERIA FOR DUCTILE MATERIALS
Many materials exhibit substantial strain before fracture. When stressed
beyond a level called yield	stress, the material may exhibit inelastic behavior
as shown in Figure 7.3. Part of the strain produced beyond the yield stress σY
will remain even after stress is removed. This permanent strain εp is called
plastic strain. Yielding can be considered a form of failure if no permanent
deformation is allowed in the structure.
For uniaxial loading, the yield stress can be determined from the uniaxial
stress–strain curve, i.e. yielding occurs if σ ≥ σY. For a state of more complex
stresses, yield criteria are needed to determine whether permanent strains
have been produced.

7.3.1 Maximum Shear Stress Criterion (Tresca Yield Criterion)
in Plane Stress
At the atomic scale, plastic deformation is associated with sliding of adjacent
layers of atoms. This slip action is referred to as dislocation, which is
produced by shearing of the solid. The Tresca	yield	criterion is proposed
based on the assumption that if the shear stress exceeds the critical value,
then dislocation, and thus yielding, would occur.
Consider a state of plane stress parallel to the x–y plane. Denote σ1 and σ2 as
the principal stresses in the x–y plane, and σ3 = σzz = 0. From Chapter 2, we
note that the three local maximum shear stresses are given by

Let the critical value of shear stress be τY. Then, noting that σ3 = 0 from plane
stress, the yield criterion can be expressed as



(7.6b)

(7.6c)

(7.7a)

Fig.	7.3 Inelastic behavior.

Yielding occurs if any of the inequalities above is satis�ied.
For simple tension, σ1 ≠ 0, σ2 = 0, we know that yielding occurs at σ1 = σY.
Substituting σ1 = σY into Eq.(7.6a) or (7.6b), we obtain

Thus, the Tresca yield criterion can also be written as



(7.7b)

(7.7c)

(7.8)

The yield surface (envelope) shown in Figure 7.4 is constructed by the
minimum values of the left-hand side of Eq. (7.7). Stresses inside the
envelope produce no plastic strains.

7.3.2 Maximum Distortion Energy Criterion (von Mises Yield
Criterion)
In an isotropic material, deformation can be separated into two parts, i.e.
dilatation (or volume change) and distortion (or shape change). Plastic
deformation resulting from dislocation accompanies distortion but not
dilatation.
From Problem 3.13, we note that dilatation is given by



(7.9)

(7.10)

Fig.	7.4 Yield surface for the Tresca yield criterion.

With the aid of the stress–strain relations given by Eq. (3.98), Eq. (7.8) can be
expressed in terms of stress components as

where



(7.11)

(7.12)

(7.13)

(7.14a)

(7.14b)

is the average stress. Equation (7.9) can be written in terms of the bulk
modulus	K as

where

For a state of plane stress, we have

Thus, Eqs. (7.8) and (7.10) reduce to

The strain energy density (energy per unit volume) associated with the
volume dilatation is given by

The total strain energy density for plane stress is

Using the stress–strain relations Eq. (3.102), we have

The strain energy associated with distortional deformation is obtained as



(7.15)

(7.16)

(7.17)

(7.18)

(7.19)

(7.20)

After some manipulations, Eq. (7.15) can be expressed explicitly in the form

where

If x and y axes are chosen parallel to the principal directions of stress, then
τxy = 0 and J2 can be expressed in terms of the principal stresses as

The maximum	distortion	energy	criterion states that yielding begins if the
distortion energy reaches a critical value W0, i.e.

This critical value W0 can be determined from substituting the known
yielding condition in simple tension, σxx = σY, into Eq. (7.19). We have

Since W0 is a material constant, it can be used in the yield criterion for more
general states of stress. Thus, yield criterion Eq. (7.19) becomes

This is also known as the von	Mises	yield	criterion for isotropic materials.
The yield surface is represented graphically in Figure 7.5.
The von Mises yield criterion for isotropic solids in a state of plane strain can
be derived in a similar manner. It can be expressed in the form of Eq. (7.20)



(7.21)

with

Since the Poisson ratios for most isotropic solids are within the bounds of 0
and 0.5, it is not dif�icult to see from comparing Eqs. (7.20) and (7.21) that
the plane stress J2 is larger than the plane strain J2 if both σ1 and σ2 are
positive (tensile). This implies that it is easier to produce yielding in a solid
under plane stress than under plane strain.



Example 7.2

A thin-walled hollow cylinder is subjected to an axial force N, a torque T,
and an internal pressure p0, as shown in Figure 7.6. It is assumed that the
yield stress is σY = 280 MPa, the radius is a = 1 m, and wall thickness is t = 
5 × 10−3 m. Find critical pressure if N = T = 0. Will the critical pressure
change if T = 0 but N = 5 MN.

Fig.	7.5 von Mises yield criterion.



Fig.	7.6 Thin-walled hollow cylinder.

The stresses produced by these loads are uniform over the entire
cylinder. We use a local x–y coordinate system as shown in Figure 7.6 to
describe the stress �ield. The axial stress σxx is obtained by dividing the
axial force N with the cross-sectional area of the thin wall 2πat:

The shear stress is produced by the torque T. First, calculate the shear
�low in the thin wall. We have

Then we obtain

The hoop stress σyy can be obtained by cutting the cylinder into two half-
shells along the longitudinal direction and considering balance of forces.
We have



If the cylinder is subjected to internal pressure alone, then N = T = 0, and,
thus σxx = τxy = 0. The hoop stress produced by the internal pressure is

This is a uniaxial stress, and yielding is given by σyy = σY. Thus, the value
of p0 that would cause yielding is

from which the maximum internal pressure is obtained.

If N = 5 MN is also present, then, in addition to the hoop stress, we have
axial stress σxx given by

At the onset of yielding, the stresses σxx = 159 MPa, σyy = 200 p0, and τxy =
0 must satisfy the von Mises yield criterion Eq. (7.20), i.e.

or, after simpli�ication,

There are two possible solutions for the equation above, i.e.

We pick the �irst one because the second solution (−0.82 MPa) represents
a pressure applied from the outside surface. Comparison of this solution
with the solution for the case N = 0 indicates that a tensile axial force
would raise the allowable internal pressure. On the other hand, it can



easily be shown that axial compression would reduce the amount of
internal pressure that is allowed if yielding is to be avoided.



Example 7.3

A round shaft of diameter 1.5 in. loaded by a bending moment M = 5000 
lb-in. and a torque T = 8000 lb-in, and an axial tensile force, N = 6000 lbs.
If the material is ductile with a yield strength σY = 40 Ksi, determine the
safety factor corresponding to yield using

a. the maximum shear failure criterion
b. the von Mises failure criterion

The factor of safety (F.S.) can be obtained by taking the ratio of the
maximum allowed principal stress and the corresponding principal
stress developed due to loading. In other words,

Based on the given information related to the shaft geometry and
loading: d = 1.5 in, M = 5000 lb-in, T = 8000 lb-in, N = 6000 lb, and σy = 40 
Ksi, the developed axial and shear stresses are

The state of stress gives  Ksi

The principal stresses are σ1 = 24.44 ⋅ Ksiσ2 =  − 5.96 ⋅ Ksi

a. Maximum Shear Failure Criterion We have



b. Von Mises Failure Criterion

 Take “−” value since σ2 I is a negative value.



(7.22)

(7.23)

7.4 FRACTURE MECHANICS
7.4.1 Stress Concentration
Consider a large panel with an elliptical hole as shown in Figure 7.7a. A
remote uniform normal stress σ0 is applied. If the panel is thin, this problem
can be treated as a plane stress problem. The solution for this problem,
which was obtained by Inglis in 1928, can be found in many books on
elasticity. Of interest is the location where the material is most severely
stressed. From the solution for the stress �ield, we �ind that the normal stress
σyy has the maximum value at the ends of the major axis (x = ±a):

The distributions of σyy and σxx along the x-axis are shown in Figure 7.7b.

The stress concentration factor Kt is de�ined as

For a circular hole, a = b and

Apparently, for elliptical holes with a > b, the stress concentration factor is
larger than 3. In fact, theoretically, Kt → ∞ as b/a → 0.

The presence of stress concentrations in a material may cause premature
failure. If the material contains defects such as elliptical holes, its strength
de�initely would depend on the magnitude of stress concentration resulting
from the defects. Our ability to predict failure of the material evidently relies
on our understanding of the results of these defects.



Fig.	7.7 (a) Large panel with elliptical hole; (b) stress distributions along the
x-axis.

7.4.2 Concept of Cracks and Strain Energy Release Rate
Many defects and damage in materials and structures have the form of a
crack. An ideal crack (or Grif�ith crack) can be viewed as the limiting case of
an elliptic hole with the minor axis b → 0. This limiting case results in
unbounded stresses at the crack tip. As a result, stress-based failure criteria
such as the maximum principal stress criterion and the Coulomb–Mohr
criterion are not suitable for failure prediction for structures containing ideal
cracks because of the singular stresses.
Grif�ith was the �irst researcher to propose an energy balance concept to
determine whether a crack would grow or not. The growth of the crack
signi�ies the onset of failure.
According to Grif�ith's argument, new crack surfaces are formed during crack
extension; the creation of crack surfaces requires a supply of energy from the
system (applied forces and the material). When the supply meets the
demand, crack growth is realized.



(7.24)

In order to put Grif�ith's energy concept in mathematical terms, let us
consider a panel of thickness t with a crack at an edge as shown in Figure 7.8.
Assume that the crack extends the amount da after the load reaches P.
During the crack extension, the load is kept at the constant value of P and
thus the de�lection increases by dδ. In the load–de�lection curve, this process
is represented by the line segments  and  in Figure 7.9. Subsequently,
the load is gradually removed as indicated by the line . Thus, during the
cycle of loading–crack extension–unloading, the energy released from the
structural system is represented by the area enclosed by ABCA. The amount
of energy released, denoted by dWs, can be expressed as

Fig.	7.8 Panel with an edge crack loaded in tension.



Fig.	7.9 Load–de�lection curve of Figure 7.8.

The energy released from the structural system (including the applied loads)
provides the energy needed to form the newly created crack surfaces during
the crack extension. Note that the strain energies stored in the panel before
and after crack extension are given by

and

respectively. The increase in strain energy in the structure after crack
extension is



(7.25)

(7.26)

(7.27)

Comparing Eqs. (7.24) and (7.25), we have

This says that the amount of energy released, dWs, during crack extension of
da is equal to the gain of strain energy in the panel.
It is more convenient to quantify the energy released by normalizing with
respect to the crack surface created by da, i.e.

where t is the thickness of the panel and G is called the strain	energy
release	rate (energy/area) per crack tip.

7.4.3 Fracture Criterion
It is our interest to determine whether the crack would grow (or extend)
under a given loading condition. A crack growth criterion is derived based on
the energy balance concept (the Grif�ith criterion), which states that if

then the crack would grow. The critical value Gc is called the fracture
toughness of the material and is a material constant. The fracture toughness
Gc can be regarded as the energy per unit area (per crack tip) needed to form
fracture surfaces. If the applied load produces a G that is always larger or
equal to Gc, then crack growth would not stop and catastrophic failure would
occur in the structure member. The fracture criterion Eq. (7.27) is different
from the strength criterion in that it assumes the presence of a crack.

7.4.3.1 Strain Energy in Structural Members
From Eq. (7.26), we note that the strain energy release rate of a crack in a
structure is related to the rate of change of the total strain energy in the
structure with respect to crack length. It is then useful to review some of the
strain energy expressions in structural members.

7.4.3.2 Axial Element



(7.28a)

(7.28b)

(7.29)

In an axial element of a uniform cross-section, the axial stress is σxx = P/A
where P is the total applied axial force, and A is the cross-sectional area.
From the strain energy density function Eq. (3.96), we have

The total strain energy stored in an axial member of length L is

7.4.3.3 Beam Element
For beams of a symmetric section subjected to a bending moment M about
the y-axis, the bending stress is given by

The strain energy density can be expressed in the form

The strain energy per unit length of the beam is obtained from integrating
the strain energy density over the cross-section, i.e.

Since bending moment M may be a function of x, the total strain energy
stored in the beam is obtained by integrating Eq. (7.29) over the entire
length. We have



(7.30)

(7.31)

(7.32)

(7.33)

7.4.3.4 Torsion Member
For a bar of a solid circular section, the shear stress τ is related to the torque
T as

Using the shear stress–strain relation

the strain energy density is obtained from Eq. (7.14) as

in which G is the shear modulus. The total strain energy stored in the bar of a
circular cross-section and length L is

For a thin-walled bar of single closed section, the strain energy stored in the
bar of unit length is given by Eq. (4.66). For a bar of length L, the total strain
energy is



where the contour integration is along the center line of the wall.



Example 7.4

Consider an equally split beam loaded as shown in Figure 7.10. Find the
expression for the energy release rate.
There are three beam segments, among which segment 3 is not loaded
and has no strain energy stored. Because of symmetry, beams 1 and 2
have the same amount of strain energy.

Fig.	7.10 Loaded split beam.

Consider beam 1. The bending moment is

and the strain energy stored in the beam is

where



(7.34)

(7.35)

is the moment of inertia of beam 1 (and beam 2). The total strain energy
stored in the entire split beam is

from which we obtain the strain energy release rate

Suppose that the crack would start to grow at P = P1 and a = a1. Thus,

If a2 = 2a1, then the P2 required to grow the crack is

Note that b = L − a is not a constant. Comparing Eqs. (7.34) and (7.35),
we conclude that

That is, it takes half the load to grow the crack if the initial crack size is
twice as large.
Of course, the conclusion above may not be true for other loading and
structural con�igurations. For instance, if the transverse loads are
replaced with two constant moments M0, the strain energy release rate
can readily be obtained as

which is obviously independent of crack length.



Fig.	7.11 Split beam subjected to horizontal forces.



(7.36)
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Example 7.5

Consider the split beam of Figure 7.11. Find the expression for the energy
release rate.
Change the loads to horizontal forces as shown in Figure 7.11. In this
case, segments 1 and 2 are both subjected to an axial force P, and
segment 3 is subjected to a bending moment M = Ph produced by the pair
of axial forces. The strain energy stored in segments 1 and 2 are
computed using Eq. (7.28b), i.e.

The strain energy stored in segment 3 is obtained using Eq. (7.30).

The total strain energy in the split beam is

where A1 = A2 = th and I3 = t(2h)3/12.

Before differentiating Eq. (7.38) to obtain the strain energy release rate,
we should recognize the fact that b = L − a is a function of a. In view of
this, we have

Consider the case in which the axial forces applied to segments 1 and 2,
respectively, are in the same direction. For such a loading condition,
segment 3 is under an axial force of 2P. The total strain energy in the split
beam becomes



It is easy to verify that

This implies that the crack cannot be propagated under such loads.



(7.39a)

(7.39b)

7.5 STRESS INTENSITY FACTOR
Within the framework of linear elasticity, stresses near the tip of an ideal
crack in a panel subjected to in-plane loads are singular. In fact, the singular
stress �ield near the crack tip has a known functional form.

7.5.1 Symmetric Loading (Mode I Fracture)
If the loading and geometry of the cracked structure are symmetric with
respect to the crack surface (e.g. Figure 7.12), then the singular stress �ield
(for both plane stress and plane strain) has the following form:



Fig.	7.12 Symmetrical loading and geometry of a cracked structure.



(7.39c)

(7.40)

Fig.	7.13 Polar coordinates with the origin at the crack tip.

where r, θ are polar coordinates with the origin at the crack tip (see Figure
7.13). The factor KI is called the stress	intensity	factor for mode I fracture
whose value depends on the load and geometry of the cracked structure. The
unit of stress intensity factor is Pa .

For an in�inite panel containing a center crack subjected to remote uniform
load σ0 (replace the load in Figure 7.12 with a uniform load σ0), the stress
intensity factor is

However, if the uniform remote stress σ0 is applied in the direction parallel to
the crack surfaces (i.e. in the x-direction), then a uniform state of uniaxial
stress σxx = σ0 is produced and there is no singular stress �ield near the crack
tip. Consequently, KI = 0.

For cracked bodies of �inite dimensions under arbitrary (but symmetric)
loading, stress analyses must be performed (often numerically) to obtain the
stress intensity factors. For example, for a center-cracked panel of width w
subjected to uniform load σ0 (Figure 7.14), the stress intensity factor is given
by



where Y is a width correction factor. There are many approximate correction
factors for different loading conditions and geometries of cracked bodies.
They can be found in many books on fracture mechanics or handbooks
dedicated to stress to stress intensity factors. For a long rectangular panel
with a �inite width w, a few approximate width correction factors are given
below.

Fig.	7.14 Center-cracked panel under uniform tension.



(7.41a)

(7.41b)

(7.41c)

(7.42)

(7.43)

(7.44)

Note that, for w ≫ a, Y ≈ 1, and KI reduces to that of the in�inite panel.

Along the crack plane ahead of the crack tip (θ = 0°), the stresses are given by

Of interest is the crack opening displacement v(x) along the crack surface.
For the in�inite panel subjected to uniform normal loading σ0, the
displacements at the upper and lower crack surfaces are symmetrical. Thus,
only the displacement on the upper crack surface needs to be described:

where

Explicitly, the plane stress crack opening displacement at the upper surface is



(7.45a)

In Eqs. (7.42) and (7.44), the origin of the x-axis is located at the center of the
crack as shown in Figure 7.18.
Although the near-tip stresses given by Eq. (7.39) are not the actual stresses
in the cracked structure, they are dominant near the crack tip and thus
control crack growth. Also note that these near-tip stresses are in direct
proportion to the stress intensity factor KI. Intuitively, one would expect KI to
be a good parameter for determining onset of crack growth (i.e. fracture).

7.5.2 Antisymmetric Loading (Mode II Fracture)
Another mode of fracture is mode II fracture associated with loading that is
antisymmetric with respect to the crack surface. Shear loading as shown in
Figure 7.15 is a mode II fracture problem. In terms of the polar coordinates
shown in Figure 7.13, the singular stress �ield near the crack tip is obtained
as

Fig.	7.15 Antisymmetric shear loading.



(7.45b)

(7.45c)

(7.46a)

(7.46b)

(7.47)

where KII is the mode II stress intensity factor.

For an in�inite cracked panel subjected to a uniform shear τ0 as shown in
Figure 7.15, . Note that along the x-axis ahead of the crack tip (θ
= 0°), we have

where r = 0 is located at the crack tip.
The displacements on the two crack surfaces are antisymmetric with respect
to the x-axis. For the upper crack surface, we have

Thus, under antisymmetric loading, the crack surfaces do not open. Rather,
they slide against each other. This is why mode	II fracture is also referred to
as the sliding	mode	of	fracture.

7.5.3 Relation between K and G
Consider an in�inite panel of unit thickness subjected to uniform tension.
Figure 7.16a shows the uncracked panel, and Figure 7.16b shows the panel
with a crack of size 2a.
The total strain energy released from crack size 0 to crack size 2a can be
calculated by a reverse process called the crack	closure	method. The
argument is as follows. Before the crack appears, the stress �ield is uniform,
and σyy = σ0 everywhere in the panel. To return the cracked panel to its
original uncracked con�iguration, work must be done. The amount of work
necessary to close the crack is equal to the energy released during crack



(7.48)

(7.49)

growth from 0 to 2a. Since the original stress is σyy = σ0, to return to the
original state of stress (in the uncracked panel), we need to use this stress to
close the crack opening displacement v, which is given by Eq. (7.42). Thus,
the total energy release during crack growth from 0 to 2a is given by

Fig.	7.16 (a) Uncracked panel; (b) panel with a crack of size 2a.

where the factor 2 accounts for the two crack surfaces. Since v is an even
function, we can write



(7.50)

(7.51)

(7.52)

(7.53)

(7.54)

Substituting Eq. (7.42) into Eq. (7.49), we have

The strain energy release rate (per crack tip) for mode I is

In Eq. (7.51), the  factor accounts for two crack tips in the panel.

Using the de�inition of κ, we can easily show that for symmetric (mode I)
loading,

and

Following the same procedure, we can derive the strain energy release rate
for antisymmetric (mode II) loading. We have

and



(7.55)

Although the relations (7.52)–(7.55) are derived for an in�inite panel under
either uniform normal stress σ0 or shear stress τ0, they are valid for �inite
dimensions and arbitrary loading. Of course, in general cases, KI and KII must
be solved for the speci�ic problem.
In general, it is dif�icult to analyze the near-tip singular stress �ield to obtain
stress intensity factors. On the other hand, for some structures, such as
beams, the energy release rate can be evaluated rather easily using the
simple beam theory. The corresponding stress intensity factor can be
obtained using the G–K relation. The accuracy of such an approach obviously
depends on the accuracy of the simple beam theory used in calculating the
strain energy. For short beams or beams of thin-walled cross-sections, the
Timoshenko beam theory can provide a better description of deformation in
the beam (as discussed in Chapter 4) and, thus, a more accurate strain
energy release rate.
In view of these relations, the fracture toughness of a material can be given
by either Gc or Kc.



Example 7.6

Consider the split beam of Example 7.4. Find the critical load if 
.

It is obvious that the loading is a symmetric (mode I) loading. Assume a
plane strain fracture condition so that

Since the strain energy release rate for the split beam is

we have

Thus,

Suppose that the split beam has the following dimensions:

If the fracture toughness of the material is

then the critical load Pcr that would cause fracture (crack extension) is
obtained using the fracture criterion, i.e.



Solving the equation above for Pcr and substituting the numerical values
of the beam dimensions together with v = 0.3, we obtain

It is easy to verify that a split beam of a material with KIc = 34 MPa 
could withstand the same load with a = 7.08 cm.



Example 7.7

A box beam of a rectangular thin-walled section is subjected to a
counterclockwise torque as shown in Figure 7.17. Find how much torque
this section will sustain before fracture.
The material is brittle, and the wall material has a toughness equal to KIc
= 5 MPa . After a period of service, a through-the-thickness crack
appears in the top panel. The crack makes an angle 45° against the z-axis.
Because of the crack, the torque capacity of the box beam will be
reduced.
Assume a = 0.01 m. Cut out the 1 m × 1 m panel that contains the crack.
This panel is subjected to a pure shear loading as shown in Figure 7.17b.
It is easy to show that the principal stresses are σ1 = τ and σ2 = −τ, and
the corresponding principal directions make 45° and −45° against the x-
axis as shown in Figure 7.17c. In terms of σ1 and σ2 as loading, we
recognize this as a mode I fracture problem.
Since σ2 is applied parallel to the crack surface, it does not open the crack
surfaces and does not contribute to the near-tip singular stresses. Hence,
σ1 is the only loading that is relevant to fracture of the panel.

We note that the size of the isolated panel (Figure 7.17c) is large
compared with the crack size. Thus, the stress intensity factor KI can be
approximated by that for an in�inite panel, i.e.

The maximum shear stress τmax is reached when KI = KIc. We obtain



Fig.	7.17 Box beam of a rectangular thin-walled section subjected to
torque.



(7.56)

The torque capacity of the cracked box beam is

7.5.4 Mixed Mode Fracture
For general crack geometries and loading, both modes of fracture are
present. One way to separate these modes is to separate the loading into the
symmetric part and antisymmetric part. If the cracked body is symmetric
with respect to the crack surface, then the symmetric part of loading
produces KI (or GI) and the antisymmetric part, KII (or GII). Such
decomposition is illustrated with a split beam subjected to a transverse load
P as shown in Figure 7.18.
Under mixed loading, both KI (GI) and KII (GII) contribute to fracture. There
are a number of mixed mode fracture criteria available, none of which,
however, stands out as the best for all materials with various properties. The
following criterion has been shown to �it test data for many materials quite
well:

Fig.	7.18 Separation of fracture models.



7.6 EFFECT OF CRACK TIP PLASTICITY
A beginner in fracture mechanics is often bothered by the singular stress
�ield near the crack tip. Of course, the stress singularity exists because of the
use of linear elasticity theory in the stress analysis. In reality, the material
near the crack tip yields at a �inite stress. The region in which yielding occurs
is called the crack	tip	plastic	zone. If the plastic zone is small, then the
plastic zone size has a unique relation with the stress intensity factor of the
elastic singular stress �ield and the corresponding critical stress intensity
factor Kc (fracture toughness) can still be used to characterize fracture
toughness with some adjustment of the crack length. Since the value of Kc is
measured experimentally, the in�luence of plasticity on the resistance of
crack growth in the material is re�lected in the value of Kc. This is a simple
extension of linear elastic fracture mechanics for applications in materials of
moderate ductility.
The development of the plastic zone near the crack tip depends on the yield
strength and thickness of the material. In general, the stress �ield near the
crack tip in thin plates can be approximated with a two-dimensional plane
stress solution, while for suf�iciently thick plates, the plane strain solution is
a closer approximation. From Eqs. (7.20) and (7.21), it is noted that for the
same in-plane stresses σxx, σyy, and τxy, yielding conditions under plane stress
can be satis�ied more easily than under plane strain. This indicates that the
plastic zone size near the crack tip in thin plates is greater than that in thick
plates. Since a larger plastic zone at the crack tip dissipates more energy as it
moves along with the crack tip during crack growth, a larger crack tip plastic
zone provides a greater resistance to crack growth. Indeed, experimental
results have con�irmed that thinner cracked specimens have high fracture
toughnesses than thicker specimens, as depicted in Figure 7.19. The
mechanisms that cause the thickness dependency of fracture toughness are
quite complicated and there is no simple physics-based model that is capable
of predicting this thickness effect. In general, fracture toughness approaches
a constant value as the specimen thickness reaches a certain level. This
constant toughness is the plane	strain	fracture	toughness of a material and
is denoted by KIc Table 7.1 lists values of KIc of some metals.



Fig.	7.19 Dependence of fracture toughness on specimen thickness.



Table 7.1 Material properties of aluminum and steel alloys.
Source: Data from N. E. Dowling, 1993.

Material Plane	strain
toughness	KIc	(MPa	

)

Yield	σY
(MPa)

Ultimate
stress	σUT
(MPa)

Ultimate
elongation	εUT
(%)

Al	alloys
2024-
T651

24 415 485 13

2024-
T351

34 325 470 20

6061-
T651

34 275 310 11

7075-
T651

29 505 570 12

Steel
AISI
1144

66 540 840 5

AISI
4130

110 1090 1150 14



Fig.	7.20 Plastic zone at the crack tip.

When plastic deformation occurs near the crack tip, stress becomes �inite
and the elastic singular stress �ield no longer exists. Consequently, stress
intensity factor is not available for characterizing fracture toughness. New
parameters are thus needed for quantifying fracture toughness for ductile
materials. However, for moderately ductile materials a crack length
adjustment method credited to Irwin et al. (1958) renders the singular
elastic stress �ield (the K-�ield) valid beyond the plastic zone. Irwin
considered the elastic–plastic stress �ield near the crack tip as shown in
Figure 7.20. By shifting the crack tip position to a �ictitious position with a
distance rp (see Figure 7.20) and considering the balance of forces for the



(7.57)

(7.58)

(7.59)

free body of the upper half-space above the crack, he estimated the plastic
zone size (2rp) to be

for plane stress states. Following the same procedure, the plastic zone size
under plane strain is

Since the values of Poisson's ratio are around 0.3 for most metals, it is
evident that the plastic zone size is much greater under plane stress than
that under plane strain.
De�ine an effective crack length as

Then the elastic singular stress σyy along the crack plane associated with this
�ictitious crack of length aeff is able to describe the stress reasonably well
beyond the plastic zone as long as rp/a ≤ 0.1 (Sun and Wang 2002). Thus, the
corresponding stress intensity factor KI(aeff) can be employed to characterize
the opening stress σyy near the crack tip, and the critical value Kc may be
used to quantify fracture toughness. Since aeff depends on rp, which in turn
depends on KI and KI depends on aeff, the calculation of KI (aeff) needs a few
iterations. However, for most materials, rp calculated from Eq. (7.57) or
(7.58) using KI based on the original crack length should be able to yield a
reasonable aeff and a KI (aeff).

In applying the Irwin's plastic zone adjustment method described above for
determining fracture toughness, care must be exercised in making sure that
the crack tip plastic zone does not interact with the boundary of the
specimen. If the plastic zone gets too close to the boundary, its size and shape
are affected by the boundary conditions and the K-�ield assumption adopted
in the derivation of this method is no longer valid. This is why large
specimens are often required for fracture toughness testing of materials that
exhibit ductility. Without observing this restriction, the values of Kc
determined with this method will depend on the specimen size.



Example 7.8

A large metallic sheet with a center crack of length 2a is used for testing
fracture toughness Kc. The yield stress of the metal is 400 MPa, and the
fracture toughness of the sheet is estimated to be about 70 MPa . Find
the minimum crack length for the test.
The largest plastic zone size occurs when KI = 70 MPa . Using Eq.
(7.57), we have

Thus, the half physical crack length should be at least 49 mm.



7.7 FATIGUE FAILURE
Under repeated (cyclic) loads of magnitudes below the static failure load, a
structure may still fail after a number of cycles of load application. This
failure is called fatigue failure, and the “duration” (or fatigue	life) that the
structure endures up to failure point is measured in terms of number of
cycles of load application.

7.7.1 Constant Stress Amplitude
The simplest cyclic loading is one that varies between the maximum stress
σmax and the minimum stress σmin as shown in Figure 7.21.

The following are terms often used in the study of fatigue behavior.

Fig.	7.21 Simple cyclic loading.

Note that the quantities above are related, i.e.



Thus, the cyclic load can be given in various ways. For example, the loading as
depicted in Figure 7.21 can be given by specifying σmax and σmin, σa and σm,
σmax and R, and so on.

7.7.2 S–N Curves
Constant amplitude (with different mean stresses) fatigue tests are often
used to evaluate the fatigue properties of a material. The results are plotted
in stress amplitude (σa or Sa) versus cycles to failure Nf. This is the S–N
curve. A typical S–N curve is shown in Figure 7.22. Similar curves can be
obtained by plotting σmax or Δσ versus Nf.

For some materials, there may exist a stress amplitude below which fatigue
failure does not appear ever to occur. This stress level is called the fatigue
limit or endurance	limit. If a structure is designed to last for a speci�ied
number of cycles (Nf), the S–N curve can provide the allowable stress.

7.7.3 Variable Amplitude Loading
Consider a fatigue loading consisting of m stress amplitudes, say, σa1, σa2, …,
σam. For each stress amplitude σai the number of loading cycles is Ni. The
Palmgren–Miner	rule is often used to estimate fatigue life under such
loading. The Palmgren–Miner rule is based on the assumption that for each
stress amplitude σai applied for Ni cycles, the total fatigue life is depleted by
the amount (percentage of total fatigue life under σai)



(7.60)

Fig.	7.22 Typical S–N curve.

Fatigue failure occurs if 100% of the fatigue life is consumed, i.e.

or

Mainly because of its simplicity, Palmgren–Miner's rule has been widely used
for estimating fatigue life of structures under variable amplitude loading.
However, experimental results indicate that this formula often produces
predictions that are not accurate and are not necessarily on the conservative
side.



(7.61)

7.8 FATIGUE CRACK GROWTH
Fatigue damage often appears in the form of cracks. If the crack reaches a
critical length at which the stress intensity factor or the strain energy release
rate is equal to the critical value Kc or Gc (the fracture toughness), then
catastrophic failure would occur. Fatigue damage can be considered to have
two parts, namely, the crack initiation part (formation of cracks) and the
crack propagation part. Accordingly, fatigue life is composed of the number of
cycles of load application until a detectable size of crack appears and the
number of cycles of subsequent load application until the crack grows to the
critical length.
Another approach to fatigue failure is to assume the presence of �laws
(cracks) in the structure before it is placed in service. Such �laws could be
produced during manufacture of the material, forming, or machining of the
structural part. With a realistically assumed �law (crack) size in the structure
at the most critical location, fatigue life can be estimated purely based on
crack growth. We are interested in determining the crack growth per cycle of
load application, da/dN, under mode I loading. Since the singular stress �ield
at the crack tip is proportional to the stress intensity factor (see Eq. (7.39)), it
is reasonable to assume that the crack growth rate (da/dN) is a function of
the stress intensity factor KI or the range of stress intensity factor ΔKI in the
case of cyclic loading, i.e.



(7.62)

(7.63)

Fig.	7.23 Typical experimentally obtained crack growth curve.

where, for simplicity, K is used to denote KI. A typical experimentally
obtained crack growth curve is shown in Figure 7.23 in a log–log plot. This
indicates that the power law

�its the data very well except for the two ends of the ΔK range. This crack
growth equation is credited to P. C. Paris and is usually called the Paris	Law
(or more correctly, the Paris model) of crack growth.
In log–log scale, Eq. (7.62) can be expressed as



Thus, in the log–log plot, the relation between da/dN and ΔK appears linear.
Equation (7.62) can be integrated to �ind the relation between crack length
and load cycles. To do this, the relation between K and crack length a must be
obtained �irst. For example, consider a large panel (treated as an in�inite
panel) containing initially a center crack of 2a0. If the cyclic loading is
uniform normal stress with

then

From Eq. (7.62), we have

or

Table	7.2	Values	of	C	and	m	for	K	in	MPa	 	and	da/dN	in	m/cycle.

Material C m
2024T3 (R = 0.1) 1.60 × 10−11 3.59
2024T3 (R = 0.5) 3.15 × 10−11 3.59
Martensitic steel (R = 0) 1.36 × 10−10 2.25
Austenitic steel (R = 0) 5.60 × 10−12 3.25

Integrating the above equation, i.e.

we obtain



Thus, the current half crack length after N cycles is

In the Paris model, coef�icients C and m are independent of ΔK (or
equivalently, the stress range) but are in�luenced by the R-ratio. Table 7.2
lists values of C and m for some metals.



PROBLEMS
7.1 Derive the distortional energy expression for plane stress.
7.2 A thin-walled hollow sphere 2 m in diameter is subjected to internal
pressure p0. The wall thickness is 5 mm and the yield stress of the
material is 250 MPa. Use both Tresca and von Mises yield criteria to
determine the maximum internal pressure p0 that does not cause
yielding.
7.3 Consider the problem of Example 7.2. Find the maximum p0 without
causing yielding if N = 50 × 106 N (compression).
7.4 An aluminum alloy 2024-T651 (see Table 7.1) panel is subjected to
biaxial loading as shown in Figure 7.24. Assume that σ1 = 300 MPa and
σ2 can be either tension or compression. Find the maximum values of |
σ2| in tension and compression that the panel can withstand before
yielding according to von Mises yield criterion.

Fig.	7.24 Material under biaxial stress.



7.5 Find the total strain energy release rate for the split beam loaded as
shown in Figures 7.25 and 7.26.

Fig.	7.25 Split beam subjected to shear force.

Fig.	7.26 Split beam subjected to extension and bending.

7.6 Consider the split beam with loading shown in Figure 7.27. Loadings
in both Figures 7.14 and 7.27 are antisymmetric, and both are mode II
fracture problems. For the same value of P, which loading is more
ef�icient in cracking the beam? Assume that the beam dimensions and
the elastic properties are



Fig.	7.27 Split beam subjected to shear forces.

7.7 To further split a beam, a rigid pin of diameter d = 0.5 cm is inserted
as shown in Figure 7.28. How far does one have to drive the cylinder in
order to split the beam? Assume a plane strain fracture condition with
KIc = 50 MPa .



Fig.	7.28 Split beam opened by a cylinder.

7.8 Consider a long thin-walled cylinder of a brittle material subjected
to an internal pressure p0. The diameter of the cylinder is 2 m, the wall
thickness is 5 mm, and the mode I fracture toughness of the material (of
the same thickness of the wall) is KIc = 5 MPa  (here, KIc may not be
the plane strain fracture toughness). If there is a through-the-thickness
longitudinal crack of 5 cm in length on the cylinder, estimate the
maximum internal pressure that the cracked cylinder can withstand. If
the cracked cylinder is subjected to a torque and the mode II toughness
of the material is the same as that of mode I, estimate the maximum
torque. Provide justi�ications of the approach employed in the
estimation.
7.9 Consider the thin-walled box beam in Figure 7.21. The top wall
contains a crack parallel to the x-axis. The crack length is 0.02 m (i.e. a =
0.01 m). Assume that the material is brittle and that modes I and II have
the same toughness value of 5 MPa . If the box beam has already
been subjected to a torque T = 100 kN m, estimate the maximum
additional axial force N by using the mixed mode fracture criterion.
7.10 Derive the strain energy (bending and shear together) per unit
length of a Timoshenko beam with a solid rectangular cross-section. The
counterpart of the simple beam theory is given by Eq. (7.29). Use this
expression to derive the mode I strain energy release rate for the split
beam of Figure 7.13. Compare the Timoshenko beam solution with the
simple beam solution. How long (in terms of a/h) does the crack length



have to be for the simple beam solution to be within 5% of the
Timoshenko beam solution?
7.11 Compare the plastic zone sizes for plane strain mode I fracture at
failure in Al 2024-T651 and Al 7075-T651.
7.12 A center-cracked thin Al 2024-T651 �lat panel with a very large
width-to-crack length ratio is subjected to uniform remote tensile stress.
The initial crack length is 50 mm and it grows to 55 mm when the
applied load reaches the maximum value of 136 MPa. Determine the
fracture toughness using Irwin's plastic zone adjustment method. Is the
crack length valid for this method?
7.13 The split beam of Figure 7.13 is subjected to a pair of cyclic
opening forces P with

The initial crack length a0 is 40 mm. The material is 2024-T651 Al, and
t = 2 × 10−2 m, h = 1 × 10−2 m. The crack growth rate is given by

in which KI is in MPa . Find the number of cycles to failure (at which
the crack becomes unstable under the load Pmax).

7.14 Consider Example 7.7. Instead of a static torque, a cyclic torque
with

is applied. The Paris law for the material is

Find the number of cycles for the crack of initial length a0 = 0.01 m to
grow to a length a = 0.02 m.
7.15 Consider the split beam with the loading shown in Figure 7.29.

a. Find the expression for energy release rate.



b. If the critical energy release rate for the beam to fracture is 32 500 
N/m, E = 70 GPa, t = 1 cm, h = 5 cm, a = 15 cm, and L = 45 cm, �ind the
maximum safe applicable force P.

Fig.	7.29 A split beam with inclined loading.

7.16 An in�inite thin plate with a 10-cm crack is subjected to a uniform
loading 300 MPa, as shown in Figure 7.30. The material properties of the
plate is given as
E = 200 GPa, ν = 0.3, σult = 1.8 GPa

The plate is subjected to a fatigue loading with σmax = 275 MPa and R = 
0.5. The plate has a crack growth law as



Fig.	7.30 A large thin plate with a center crack.

Determine
a. the crack growth life of the plate

b. the residual strength of the plate after being subjected to a 20 × 103

fatigue life.
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8 
Elastic Buckling



8.1 INTRODUCTION
Failure in a structure can be classi�ied in two general categories, material failure and structural failure.
The former includes plastic yielding, rupture, fatigue, and unstable crack growth (fracture). In the
latter category, examples include �lutter (excessive dynamic de�lection of a structure in air�low) and
buckling. Structural failure results in the loss of the designed structural functions and may lead to
eventual material failure. In this chapter, we study an important mode of structural failure – buckling.
For the sake of brevity, the transverse displacements of the bar are denoted by w and v instead of the
w0 and v0 used in Chapter 4.



(8.1)

(8.2)

(8.3)

8.2 ECCENTRICALLY LOADED BEAM‐COLUMN
A bar is called a beam-column if it is subjected to bending moments and compressive axial forces. An
example is the cantilever bar subjected to an eccentrical load as shown in Figure 8.1. The vertical arm
attached to the free end is assumed to be rigid.
Referring to the deformed con�iguration shown in Figure 8.1, the bending moment at section x is

where w(x) is the transverse de�lection of the bar and δ is the de�lection at the free end. Using the
bending Eq. (4.14), we have

which can be expressed as

where

The general solution for the nonhomogeneous linear ordinary differential Eq. (8.1) is easily obtained as

Fig.	8.1 Cantilever bar subjected to an eccentric load.

The three unknowns C1, C2, and δ are determined using the boundary conditions, i.e.



(8.4)

(8.5)

(8.6)

(8.7)

(8.8)

(8.9)

(8.10)

and

Solving the three equations above, we obtain

with which we have the de�lection as

From Eq. (8.8) we see that the tip de�lection δ is proportional to the eccentricity e, and that δ → ∞ as kL 
→ π/2 no matter how small e(≠0) is. The compressive force corresponding to kL = π/2 is

At this load, a straight bar under axial compression would suffer excessive de�lection (or buckling).
This critical load as given by Eq. (8.10), which is independent of the eccentricity e, is called the
buckling	load for a “straight” bar with one end clamped and the other free.



(8.11)

(8.12)

(8.13)

8.3 ELASTIC BUCKLING OF STRAIGHT BARS
For the eccentrically compressed bar discussed in Section 8.2, the de�lection given by Eq. (8.9) vanishes
if e = 0 and P < Pcr. That is, no transverse de�lection can be produced by the compressive force. However,
when e = 0 and P = Pcr (or equivalently, cos kL = 0), the solution (8.9) for the de�lection is not
determined. Hence, to consider the axially loaded (e = 0) bar, a different formulation of the problem is
needed. Consider a centrically (e = 0) compressed straight bar. The boundary conditions at the two
ends are arbitrary. We want to examine for a given P whether it is possible to maintain a transverse
de�lection w(x). If such de�lection is possible, then it must satisfy the equilibrium equation and the
speci�ied boundary conditions.

Fig.	8.2 Compressed bar in the buckled position.

Take a differential element from the compressed bar in the (assumed) buckled position as shown in
Figure 8.2. The equilibrium equations for this free body are

or

or

Substituting Eq. (8.12) into Eq. (8.11), we obtain the equilibrium equation for the assumed de�lection

Substituting the relation



(8.14)

(8.15)

(8.16)

(8.17a)

(8.17b)

(8.17c)

(8.17d)

(8.18a)

(8.18b)

(8.18c)

(8.18d)

into Eq. (8.13), we obtain the equilibrium equation in terms of de�lection as

where k is de�ined by Eq. (8.2). The general solution for Eq. (8.15) is readily obtained as

The four arbitrary constants C1–C4 are to be determined by using the boundary conditions.

Fig.	8.3 Straight bar with pinned ends.

8.3.1 Pinned–Pinned Bar
Consider a straight bar with pinned ends as shown in Figure 8.3. The boundary conditions are

and

Substitution of Eq. (8.16) into Eq. (8.17) yields



(8.19a)

(8.19b)

(8.20)

(8.21)

(8.22)

(8.23)

(8.24)

(8.25)

(8.26)

(8.27)

From Eqs. (8.18a) and (8.18b), we have C2 = C4 = 0. Thus, the four equations reduce to

from which we obtain C3 = 0 and

Since C1 ≠ 0 (otherwise, we have a trivial solution, i.e. w = 0 everywhere), we must require that

Equation (8.21) is satis�ied if

The corresponding P’s that satisfy (8.22) are

The de�lection (buckling	mode	shape) for each critical load  (also called buckling	load) is

where

Hence, there are in�initely many possible deformed con�igurations given by Eq. (8.24) that are
associated with the axial loads given by Eq. (8.23). In other words, at the compressive load , besides
the straight position, the bar can also assume a deformed position given by Eq. (8.24) for any value of
C1. These values of P, the critical loads, are also called bifurcation	points.

Among all the critical loads, the lowest one with n = 1 is of particular importance because as
compression is applied to the bar the lowest buckling load is reached �irst. The lowest buckling load
(for the �irst buckling mode with n = 1) is

which is known as Euler’s	formula for column buckling. The corresponding mode shape is

To produce the second buckling mode, the �irst mode must be suppressed. This can be realized by
adding a support at the midspan of the bar as shown in Figure 8.4. In view of the buckling mode shape
(Eq. (8.27)), we must set C1 = 0 for the �irst mode to satisfy the condition w = 0 at x = L/2. Thus, the �irst
buckling mode is suppressed.
Consider the second buckling mode (n = 2), for which the buckling load is



(8.28)

(8.29)

and the corresponding buckling mode shape is given by

which satis�ies the condition w = 0 at the midspan. Thus, the lowest compressive load that can cause
buckling of the bar of Figure 8.4 is that given by Eq. (8.28). This load is four times the buckling load for
the bar without support at the midspan.
The discussion above indicates that the buckling load of a bar can be increased signi�icantly by
reducing the span between supports. This is a common practice in aircraft structures to increase the
compressive load capability of stringers without changing their bending stiffness by decreasing the
spacing between adjacent ribs or frames.

Fig.	8.4 Added support at the midspan of a bar.



(8.30a)

Example 8.1

An AISI4340 steel box beam has a length of 5 m and is pinned at both ends. If the cross-sectional
area has the dimensions shown, determine the critical compressive load (Figure 8.5).
This is a pinned–pinned bar. As such, the critical buckling load will be given by Eq. (8.26).

It is obvious that the critical compressive load will be minimum when the I is minimum.
As such,

The compressive strength of AISI4340 steel is 1483 MPa. As such, the structure will buckle when
the compressive load exceeds 68 kN.

Fig.	8.5 The cross-section of an AISI4340 steel box beam subjected to compressive load.

8.3.2 Clamped–Free Bar
The clamped–free bar shown in Figure 8.1 is assumed to be centrically compressed (e = 0). The
boundary conditions are



(8.30b)

(8.30c)

(8.30d)

(8.31a)

(8.31b)

(8.31c)

(8.31d)

(8.32)

(8.33)

(8.34)

(8.35)

(8.36)

The last equation can be written as

Substituting the general solution (8.16) into Eq. (8.30), we obtain

From Eqs. (8.31b) and (8.31d), we have C1 = C3 = 0. From Eq. (8.31c), we obtain

For a nontrivial solution C2 ≠ 0, and we require that

which yields the buckling loads

The lowest buckling load is

which is only one-fourth that for the pinned–pinned bar.
The lowest buckling mode shape is

which is identical to that of the eccentrically loaded bar (see Figure 8.1) except for the constant
amplitude.

8.3.3 Clamped–Pinned Bar
The boundary conditions for the clamped–pinned ends (see Figure 8.6) are



(8.37a)

(8.37b)

(8.38a)

(8.38b)

(8.38c)

(8.38d)

(8.39a)

(8.39b)

(8.40)

(8.41)

which yield the following four equations:

Eliminating C3 and C4 from Eqs. (8.38c) and (8.38d) using Eqs. (8.38a) and (8.38b), we obtain

It is easy to verify that neither sin kL = 0 nor cos kL = 0 can satisfy Eq. (8.39b) simultaneously.
From Eq. (8.39b), we have

Substituting Eq. (8.40) into Eq. (8.39a) yields

Fig.	8.6 Bar with clamped–pinned ends.

For a nontrivial solution, we require that



(8.42)

(8.43)

(8.44)

(8.45a)

(8.45b)

(8.45c)

(8.45d)

The solution for kL to Eq. (8.42) can only be solved numerically. The lowest value that satis�ies Eq.
(8.42) is approximately

from which the lowest buckling load is obtained as

From Eqs., we have

Thus, the buckling shape is not a pure sinusoid. The buckling load is about twice that for the pinned–
pinned bar.

8.3.4 Clamped–Clamped Bar
The boundary (end) conditions for the clamped–clamped bar (Figure 8.7) are w = 0, and dw/dx = 0 at
both ends (x = 0, L). Using the general solution (8.16), these boundary conditions become

Fig.	8.7 Clamped–clamped bar.

Eliminating C3 and C4 from Eqs. (8.45c) and (8.45d) using Eqs. (8.45a) and (8.45b), we obtain



(8.46a)

(8.46b)

(8.47)

(8.48)

(8.49)

(8.50)

(8.51)

(8.52)

(8.53)

Consider the possible solution

For m = 1, 3, 5,…, we have

From Eqs. (8.46a) and (8.46b), the conditions (8.47) and (8.48) require that C1 = 0 and C2 = 0. Thus, we
have a trivial solution.
For m = 2, 4, 6,… (or m = 2n, n = 1, 2, 3,…), we have

Substitution of Eq. (8.49) into Eq. (8.46) yields C1 = 0 (thus, C3 = 0) and C2 ≠ 0. Thus, the buckling mode
shape is

with

Thus, the buckling loads are

The lowest buckling load

is four times the buckling load for the pinned–pinned bar.

8.3.5 Effective Length of Buckling
One common feature among all buckling loads is that they can be expressed in a single form as

where Le is the effective	length	of	buckling whose value depends on the boundary conditions. For
example, for the pinned–pinned bar, Le = L; for the clamped–pinned bar, Le = 0.7L; for the clamped–free
bar, Le = 2L; and for the clamped–clamped bar, Le = 0.5L.

The buckling load is directly proportional to the bending stiffness and inversely proportional to the
square of the effective length. It is thus more ef�icient to increase the buckling strength of a bar by
reducing its effective length of buckling.



(8.54)

(8.55)

Since the moment of inertia I of the bar cross-section is, like Le, a geometric quantity, (Eq. (8.53)) is
often expressed as

where ρ is the radius of gyration de�ined by

The quantity Le/ρ is referred to as the effective	slenderness	ratio of the bar.
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(8.60)
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8.4 INITIAL IMPERFECTION
In Section 8.2, the bar was assumed to be initially straight. If the bar is slightly bent, possibly due to
forced �itting, then the equilibrium Eq. (8.12) must be modi�ied. Assume that the initially deformed
shape of the bar is given by w0(x), (see Figure 8.8) and the additional perturbed de�lection is denoted
by w(x). Then the total de�lection is given by

The equilibrium Eq. (8.12) becomes

This leads to the equilibrium equation for the bent bar as

The complementary solution for Eq. (8.58) is given by Eq. (8.16). The particular solution requires a
speci�ic form of w0.

For illustrative purposes, consider a pinned–pinned bar with the initial bent shape given by

Fig.	8.8 Initially deformed bar.

Substituting Eq. (8.59) into Eq. (8.58), the equilibrium equation becomes

It is easy to verify that

is a particular solution. The complete solution is the sum of the complementary and the particular
solutions, i.e.



(8.62)

(8.63)

(8.64)

The boundary conditions yield four homogeneous equations identical to Eqs. (8.18a)–(8.18d), which
can be satis�ied by C1 = C2 = C3 = C4 = 0. Thus, the solution (8.62) reduces to

for which the maximum de�lection w(L/2) is

In Eq. (8.64), Pcr = π2EI/L2 is the lowest buckling load of the straight pinned–pinned bar.

Figure 8.9 depicts the maximum de�lection w(L/2) as a function of P/Pcr for various values of the initial
de�lection δ0. The de�lection becomes unbounded as P approaches the buckling load Pcr. Thus, the
amount of initial imperfection of the bar in�luences only the amplitude of the de�lection but not the
limiting (buckling) load.

Fig.	8.9 Load–de�lection curves for different initial imperfections.



(8.65)

(8.66)

(8.67)

(8.68)

(8.69)

8.5 POSTBUCKLING BEHAVIOR
In the previous sections, we found that when a bar is subjected to the buckling load, its de�lection
would become unbounded. This is the result of using small de�lection beam theory. In reality, the
compressive load can be increased beyond the buckling load if the large de�lection effect is included in
the formulation of the equilibrium equation.
For a small de�lection, we have used the approximate relation

If the exact curvature dθ/ds is used, the relation above becomes

where s is the contour along the deformed beam and θ is the slope of the de�lection curve (see Figure
8.10).
If the de�lection is very small so that the slope θ is very small and ds ≃ dx, then we adopt the
approximate expressions

and thus the relation given by Eq. (8.65). For a beam undergoing large de�lection, Eq. (8.66) must be
used.
Consider a buckled bar with pinned–pinned end conditions as shown in Figure 8.11. Take the contour s
to coincide with the deformed bar, which has a length of L. The initial slope of the de�lection at the left
end is denoted by α. From Figure 8.11, it is easy to see that the bending moment along the deformed
bar is

and from Figure 8.10 we have



(8.70)

(8.71)

(8.72)

Fig.	8.10 Bar in large de�lection.

Fig.	8.11 Buckled bar with a pinned–pinned end.

Substituting Eqs. (8.68) and (8.69) into Eq. (8.66) leads to

To solve Eq. (8.70), we multiply both sides of the equation by dθ/ds, i.e.

which can be written as

Integrating Eq. (8.72) from s = 0 to s and the corresponding range θ = α to θ, we obtain
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(8.74)

(8.75)

(8.76)

(8.77)

(8.78)

Thus,

From Figure 8.11, we note that dθ/ds is negative for the entire bar. Thus, the negative sign is taken.
From Eq. (8.74), we have

Since the de�lection is symmetrical about the midspan at which θ = 0, we can integrate over half of the
bar and obtain

in which cos θ = 1 – 2 sin2 (θ/2) has been used.
De�ine the new variable ϕ as

where

From the relation (8.77), it is seen that when θ varies from 0 to α, the quantity sin ϕ varies from 0 to 1;
hence ϕ varies from 0 to π/2. Differentiate Eq. (8.77) to obtain

Thus,

Using Eq. (8.78) together with Eq. (8.77), the integral Eq. (8.76) takes the form



(8.79)

(8.80a)

(8.80b)

(8.81)

(8.82)

The integral F(β) is the elliptic integral of the �irst kind. For a given value of β, the value of F can be
found in many mathematical tables.
Recalling the de�inition of k and the buckling load Pcr for the pinned–pinned bar, we rewrite Eq. (8.79)
in the form

or

The numerical solution for P/Pcr is given in Table 8.1 for a range of value α.

From Eqs. (8.69) and (8.75), we have

Table	8.1	Numerical	solutions	for	P/Pcr	and	w(L/2)/L.

α 0° 10° 20° 30° 40° 60° 80° 100° 120° 140°
P/P cr 1 1.004 1.015 1.035 1.064 1.152 1.293 1.518 1.884 2.541

w(L/2)/L 0 0.055 0.110 0.162 0.211 0.297 0.360 0.396 0.402 0.375

The de�lection at the midspan w(L/2) is

From Eq. (8.77), we have

Thus,

and



(8.83a)

(8.83b)

Using the relation above together with Eq. (8.78) in Eq. (8.82), we obtain

Normalizing P with the Euler buckling load Pcr = π2EI/L2, we have

For a given value of α, the corresponding value of P/Pcr is obtained �irst using Eq. (8.80b), and then
from Eq. (8.83b) the midspan de�lection is obtained. Some numerical solutions are given in Table 8.1.
The load–de�lection curve is plotted in Figure 8.12 using the values in Table 8.1.
This load–de�lection curve exhibits the postbuckling behavior of the pinned–pinned bar using the large
de�lection theory. It indicates that the compressive load can be increased beyond the buckling load.
However, the load stays basically at the buckling load level until very large de�lections (corresponding
to large α angles) are produced.
In general, buckling is considered a form of structural failure, and design loads usually do not exceed
buckling loads. In aircraft structures that consist of structural elements with different buckling
strengths, it is not unusual to allow part of the thin or slender elements to undergo elastic postbuckling
without incurring permanent deformation. Such practice would enhance the allowable compressive
load for the structure.



Fig.	8.12 Postbuckling load–de�lection curve.



Example 8.2

A structure consisting of four aluminum square bars rigidly connected to two heavy walls, as
shown in Figure 8.13, is designed to carry compressive load F. The cross-sections for bars 1 and 4
are 2 × 2 cm and for bars 2 and 3, 1 × 1 cm. Find whether the load F will cause buckling
considering the presence and absence of postbuckling.
The moments of inertia of the bars are readily obtained as

The buckling loads for the bars are

Fig.	8.13 Compression of four aluminum square bars rigidly connected to walls.

Before buckling occurs, the compressive strains in the bars are equal and their loads are
proportional to their respective cross-sectional areas. Thus, the loads carried by bars 1 and 4
when bars 2 and 3 have just buckled are

At this stage the total load F is

If postbuckling in bars 2 and 3 is allowed, then the load is increased to the level at which bars 1
and 4 would buckle. Recall that in the postbuckled state, the loads carried by bars 2 and 3 are
basically equal to Pcr2 and Pcr3, respectively. Thus, the total load capacity of this structure is



which is more than three times the total load if no postbuckling is allowed.
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(8.87a)

(8.87b)

(8.88a)

8.6 BAR OF UNSYMMETRIC SECTION
Consider a straight bar of unsymmetric section under compression. The assumed perturbed de�lection
consists of displacement components v(x) in the y-direction and w(x) in the z-direction.
Take a free body of a small bar element similar to that of Figure 8.2. The consideration of balance of
forces in the y and z directions yields

and

respectively. The balance of moments yields

Substituting the following relations [see Eqs. (5.27) and (5.28)]

into Eq. (8.85) and then Eq. (8.84), we obtain the equilibrium equations as

For illustration, we consider a pinned–pinned bar. It is easy to show that the displacements

satisfy the boundary conditions. Thus, they represent a possible buckling mode. Substitution of Eq.
(8.87) into Eq. (8.86) yields



(8.88b)
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Eliminating C2 from these equations, we obtain

For a nontrivial solution, C1 ≠ 0, and we have.

Which can be rewritten as

Two solutions for P are obtained:

The buckling load is the smaller of the two solutions, i.e.

where

The quantity Ip is readily recognized as the smaller moment of inertia about the principal axes of the
cross-sectional area. In fact, Ip is the minimum value of the moment of inertia of the cross-section about
any axis passing through the centroid. This indicates that buckling de�lection takes place in the
direction perpendicular to the principal axis about which the moment of inertia is the minimum.
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8.7 TORSIONAL–FLEXURAL BUCKLING OF THIN‐WALLED BARS
In the previous sections, we considered only lateral de�lection (�lexure) for possible buckling modes.
For bars with low torsional rigidities, buckling may also occur by twisting, or by combined twisting and
bending. This type of buckling failure is very important to aircraft structures because they often consist
of thin-walled bars with open sections.
A full treatment of torsional–�lexural buckling is beyond the scope of this book. In this section, we will
adopt governing equations without detailed derivations and use them to perform some buckling
analyses of thin-walled structures. For additional details, the reader is referred to the book by S. P.
Timoshenko and J. M. Gere, Theory	of	Elastic	Stability, 2nd edition, McGraw-Hill, New York, 1961.

8.7.1 Nonuniform Torsion
In Chapter 3, we discussed pure torsion, i.e. the torque is applied at the end of a bar, the ends of which
are free to warp. The torque T is related to the twist angle per unit length θ as

where G is the shear modulus, J is the torsion constant, and α is the total twist angle. Since θ (and thus
T also) is constant, we have the differential equation

which implies that the twist angle α is a linear function of x.
In pure torsion, only shearing stresses on cross-sections are produced, and the torque is the resultant
couple of these shearing stresses. If the cross-sections are not free to rotate (e.g. a built-in end), then
warping would be completely or partially suppressed, resulting in normal axial stresses (σxx)
distributed over the cross-section. Additional shearing stresses are induced by the normal stresses in
order to satisfy equilibrium equations. These shearing stresses produce an additional torque T′, which
can be related to the twist angle α as

where Cw is called the warping	constant. Thus, the total torque is

If no external torques are applied between the two ends, then T is constant, and
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Fig.	8.14 Cross-sections of thin rectangular elements with a single intersection.

The differential equation above is solved in conjunction with prescribed end conditions to obtain the
torsional deformation (the twist angle α). Two of the most commonly encountered end conditions are
stated as follows:

Equation (8.98) implies that the end is not allowed to rotate about the x-axis but is free to warp.
The warping constant Cw depends on the geometry of the cross-section. For cross-sections consisting of
thin rectangular elements that intersect at a common point (see Figure 8.14), the warping constant Cw
is very small and can practically be taken equal to zero. Additional values of Cw for other thin-walled
sections are given by Timoshenko and Gere, which are reproduced in Table 8.2.

8.7.2 Torsional Buckling of Doubly Symmetric Section
Consider a straight bar under a pair of compressive forces P applied at both ends. This is the initial
state from which buckling will be examined. The method follows that of Section 8.3, i.e. a possible
buckled shape (given by �lexural de�lections w and v, and twisting α) is assumed and then examined
with the equilibrium equations and end conditions. If the buckled shape satis�ies the equilibrium
equations and end conditions for a given compressive force P, then buckling would occur.
If the cross-section of a bar is symmetric about the y and z axes, then its centroid and shear center
coincide. An example is the bar of a cruciform cross-section with four identical �langes as shown in
Figure 8.15.
For bars of doubly symmetric cross-sections, the equilibrium equations for the buckled shape are

where A is the area of the cross-section, and I0 is the polar moment of inertia about the shear center. If
the shear center coincides with the centroid of the cross-section, then I0 = Iy + Iz. It is evident that the
three equations above are not coupled, the �irst two equations are equilibrium equations for �lexural
(bending) buckling in the y and z directions, respectively, and the torsional buckling governed by Eq.
(8.101) is independent of �lexural buckling. These three differential equations can be solved



independently to obtain their respective critical compressive loads. The lowest value among the three
critical loads is of interest in practical applications.



Table	8.2	Sectional	properties	for	thin-walled	sections.
Source: S. P. Timoshenko and J. M. Gere, Theory	of	Elastic	Stability, 2nd ed., McGraw-Hill, New York, 1961.





(8.102)

(8.103)
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●, O is shear center.

The equilibrium Eq. (8.101) for torsional buckling is of the same form as that for �lexural buckling.
De�ining

Fig.	8.15 Bar of a cruciform cross-section with four identical �langes.

we can rewrite Eq. (8.101) in the form

which is, in form, identical to Eq. (8.15). Thus, for a simply supported bar, the critical load for torsional
buckling satis�ies [see Eq. (8.22)]

The corresponding torsional buckling load (for n = 1) is given by

Similarly, for a bar with built-in ends, the torsional buckling load is

Using the concept of effective length of buckling, Le, torsional buckling loads for different end
conditions can be expressed in the form
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(8.109)

where

is the polar	radius	of	gyration of the cross-section.

Example 8.3

Buckling of a thin-walled bar with a cruciform cross-section as shown in Figure 8.15 is studied.
Assume that b ≫ t. Analyze the possibility of torsional buckling in this structure.
The following properties are easily obtained:

From the discussion in Section 8.7.1, we have Cw = 0 for this cross-section if b ≫ t. For simply
supported ends, the torsional buckling load is obtained from Eq. (8.104):

The torsional buckling load is noted to be independent of the length of the bar.
Since the bending rigidities of the cross-section of the bar are identical about both y and z axes,
the �lexural buckling load for the simply supported bar is obtained from Eq. (8.26) by recognizing
Iy = Iz = I. We have

For the torsional buckling to occur preceding the �lexural buckling, we require

or

The result above indicates that torsional buckling occurs in stubby bars.
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8.7.3 Torsional–Flexural Buckling
Buckling of bars with arbitrary thin-walled cross-sections usually involves coupled torsion and
bending. For an arbitrary cross-section, the centroid and the shear center usually do not coincide (see
Figure 8.16).
Set up the coordinate system so that the y and z axes are the principal centroidal axes of the cross-
section for which Ixy = 0. The location of the shear center is denoted by (y0, z0). The equilibrium
equations for the buckled de�lections and twist are

Fig.	8.16 Arbitrary thin-walled cross-section.

It should be noted that the polar moment of inertia I0 is about the axis passing through the shear
center. Thus,

The three differential Eqs. (8.110)–(8.112) are solved simultaneously in conjunction with the speci�ied
end conditions. For simply supported ends, we have
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and for built-in ends we have

Consider the case of a bar of length L with simply supported ends. It can readily be veri�ied that the
following buckling shape functions

satisfy the end conditions (8.113) and (8.114). Substituting the buckling shape functions of Eq. (8.117)
into Eqs. (8.110)–(8.112) yields

 

The equations above can be expressed in the form

where

It is noted that Py and Pz are the Euler critical loads for buckling about the y and z axes, respectively,
and Pα is the critical load for pure torsional buckling.

Equations (8.121)–(8.123) are homogeneous, and a nontrivial solution for C1, C2, and C3 exists only if
the determinant of the coef�icient matrix vanishes, i.e.



(8.125)

Expanding the determinant of Eq. (8.125), we obtain a cubic equation for P, which yields three possible
roots. These are the critical loads of buckling. The lowest value is of practical interest.



Example 8.4

An aluminum bar of length L = 1 m is subjected to axial compression. The cross-section of the bar
is shown in Figure 8.17. The ends of the bar are simply supported. The material properties are
given by E = 70 GPa and G = 30 GPa; the dimensions are t = 2 mm, h = 0.05 m, and b = 0.1 m. Find
the critical buckling load.
Since the cross-section is symmetrical about the y-axis, the centroid must lie on the y-axis. The
horizontal distance  of the centroid from the vertical wall is determined by taking moments of
the cross-sectional area about the vertical wall, i.e.

where

Fig.	8.17 Cross-section of a bar subjected to axial compression.

is the total cross-sectional area. Thus,

From the result of Example 6.5, we obtain the horizontal position, y0, of the shear center as

in which Iy is
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(8.133)

Other sectional properties are

The warping constant Cw is found from Table 8.2. We have

From Eq. (8.124), we have

Noting that y0 = –0.076 m and z0 = 0, we see that the three equilibrium equations, Eqs. (8.121)–
(8.123), become

 

It is evident that Eq. (8.137) is not coupled with the other two equations. The solution for Eq.
(8.137) is

In order to have a nontrivial solution for Eqs. (8.138) and (8.139), we require that

After expanding the determinant, we obtain

The two possible roots for P are

and

Among the three critical loads, the lowest value is Pcr = 0.89 × 105 N, which is lower than any of
the uncoupled buckling loads given by Eq. (8.136). Thus, the buckling load of the bar is reduced by
the coupling of torsion and bending.
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8.8 ELASTIC BUCKLING OF FLAT PLATES
Thin panels under compression would also buckle. Since aircraft structures are composed of thin-
walled components, buckling of thin sheets is an important subject of study to aeronautical engineers.
Unlike buckling of slender bars, buckling analysis of thin sheets requires knowledge of advanced
structural mechanics such as theories of plates and shells as well as advanced mathematics. These
subjects are usually covered in graduate-level courses and are thus beyond the scope of this book.
The objective of this section is to provide the student with some exposure to the subject of buckling of
thin plates. To achieve this without requiring an advanced background of the student, many derivations
of the equations and formulas will be skipped. Whenever possible, the column buckling results
discussed in previous sections will be used to provide some qualitative explanations.

8.8.1 Governing Equation for Flat Plates
Consider a �lat plate of thickness h under in-plane line loads (force/length) as shown in Figure 8.18.
This is considered the initial state of the �lat plate. If additional deformation is produced in terms of
transverse de�lection w, then transverse shear forces Qx and Qy (force/length), bending moments Mx
and My, and twisting moment Mxy (moment/length) are induced in the plate. The positive directions of
these plate resultant forces and moments are shown in Figure 8.19. These induced plate resultant
shear forces and moments together with the existing in-plane resultant forces Nx, Ny, and Nxy
(force/length) must satisfy the equilibrium equations. Since the initial state under in-plane forces is
already in a state of equilibrium, the only equilibrium equation to be satis�ied is the balance of forces in
the z-direction. Following a procedure similar to that used in Section 8.3 for straight bars, we obtain
the equilibrium equation for the differential plate element of Figure 8.19 as

Fig.	8.18 Flat plate under in-plane loads.

where

is the bending	rigidity of the plate.

8.8.1.1 Boundary Conditions



(8.136)

(8.137)

(8.138)

(8.139)

The general solution to the differential Eq. (8.134) contains arbitrary constants that are to be
determined from the boundary conditions of the plate. For illustration, we consider the boundary
conditions along the edge x = 0.

Fig.	8.19 Resultant forces and moments.

8.8.1.2 Clamped Edge
A clamped edge means that the de�lection (w) and rotation (∂w/∂x) along this edge are not allowed
during plate deformation. Thus, the boundary conditions are given by

8.8.1.3 Simply Supported Edge
The de�lection along a simply supported edge is zero, but the edge is allowed to rotate freely about the
y-axis; i.e. there are no bending moments Mx along this edge. These conditions are expressed in terms
of plate displacement in the form

8.8.1.4 Free Edge
If the edge x = 0 is free from external loads, then the shear force and bending moment must vanish
along this edge. Since ∂Mxy/∂y produces an equivalent shear force action, the total shear force acting on
this edge must include Qx and ∂Mxy/∂y. Thus, the conditions for a free edge are

By using the relations



(8.140)

(8.141)

(8.142)

and

the condition (8.139) can be written as

8.8.2 Cylindrical Bending
In general, buckling of �lat plates is a 2-D problem. The de�lection surface of a buckled plate is a
function of both x and y coordinates. A special case of a rectangular plate under uniform compression 

 as shown in Figure 8.20 may be treated approximately as a 1-D problem if b ≫ a. For such a
case, the de�lection w can be assumed to be independent of the y-axis. The deformed plate forms a
cylindrical surface about the y-axis and thus the name cylindrical	bending. Such an assumption is
good except for the regions near the edges y = 0 and y = b. Neglecting this edge effect and assuming that
w(x) is a function of x only, the governing Eq. (8.134) reduces to

Fig.	8.20 Rectangular plate under uniform compression.

Multiplying Eq. (8.141) by b, we have



(8.143)

(8.144)

(8.145)

(8.146)

where  is the total compressive force. Comparing Eq. (8.142) with Eq. (8.15), we note that if
the bending rigidity EI of the bar is replaced by the total bending rigidity Db of the plate, then the
buckling of a plate in cylindrical bending is identical to buckling of a straight bar.
From Eq. (8.135), we note that

Thus the only difference between a bar and a plate in cylindrical bending is a factor of 1 – v2. This is the
result of the assumption that the bending stress in the plate is in a state of plane strain parallel to the
x–z plane while in the bar a state of plane stress is assumed.

8.8.3 Buckling of Rectangular Plates

8.8.3.1 Simply Supported Edges
Consider a rectangular plate compressed by uniform in-plane forces  along the edges x = 0 and x = a
as shown in Figure 8.21. The four edges are assumed to be simply	supported. The de�lection surface of
the buckled plate is given by

It is easy to verify that this de�lection function satis�ies the simply supported boundary conditions
(8.137) along all four edges. It must also satisfy the equilibrium Eq. (8.134). Substitution of Eq. (8.144)
in Eq. (8.134) leads to

Fig.	8.21 Simply supported rectangular plate compressed by uniform in-plane forces.

from which we obtain the critical value of the compressive force.

The solution given by Eq. (8.146) represents the buckling force associated with the buckling mode
shape in the form of Eq. (8.144) with a combination of m and n. From Eq. (8.146), it is obvious that
among all the possible values of n, n = 1 will make  the smallest. Thus, the critical value of the
compressive force becomes
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where

If b ≫ a, then  can be approximated by the expression

which can easily be veri�ied as the solution to the buckling Eq. (8.141) for the cylindrical bending
problem. In such cases, m = 1 yields the lowest critical force; i.e.

For plates with general aspect ratios, the minimum critical force  depends on the ratio a/b and the
mode number m. If a is smaller than b, the second term in parentheses in Eq. (8.148) is always smaller
than the �irst term. Then the minimum value of  can be obtained by taking the minimum value of the
�irst term, i.e. m = 1. Thus, for a ≤ b, we have

whose minimum value occurs when a = b for a constant b. This conclusion can easily be obtained by
setting . This result indicates that the buckling load for a plate of a given width is
the smallest if the plate is square and is given by
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Fig.	8.22 Plot of k versus aspect ratio for various mode numbers.

This is four times the buckling load for plates under cylindrical bending.
To �ind the minimum critical values of  for other aspect ratios a/b, we must minimize the factor k
given in Eq. (8.148). Figure 8.22 shows the plot of k versus aspect ratio a/b for various mode numbers
m. It is interesting to note that the buckling mode number switches from m = 1 to m = 2 at a/b = ,
and from m = 2 to m = 3 at a/b = , and so on. In fact, a general relation exists; i.e.

If a ≫ b, m becomes large, and then

The corresponding buckled de�lection surface is

The preceding buckled shape indicates that a very long plate buckles as if the plate were divided into
many simply supported square plates of size b × b. A sketch illustrating the buckled de�lection surface is
shown in Figure 8.23.
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Fig.	8.23 Buckled de�lection surface a ≫ b.

Table	8.3	Values	of	k	for	simply	supported	edge	along	y	=	0	and	free	edge	along	y	=	b,	v =	0.25.

a/b 0.50 1.0 1.2 1.4 1.6 1.8 2.0 2.5 3.0 4.0 5.0
k 4.40 1.440 1.135 0.952 0.835 0.755 0.698 0.610 0.564 0.516 0.506

8.8.3.2 Other Boundary Conditions
Simply	Supported	Edges	along	x = 0, x = a, and	y = 0, and	the	Free	Edge	along	y = b We now change the
edge of the plate (see Figure 8.23) along y = b to the free edge condition while keeping all other three
edges simply supported. The lowest critical compressive force  is given by the general form

The value of the buckling coef�icient k depends on the aspect ratio a/b and Poisson’s ratio v. Table 8.3
lists the values of k for various aspect ratios and v = 0.25. For long plates (i.e. a ≫ b) the value of k can
be calculated using the approximate formula

Simply	Supported	Edges	Along	x	=	0,	x	=	a,	Clamped	Edge	y	=	0,	and	the	Free	Edge	y	=	b For a rectangular
plate with these boundary conditions, the values of k for a/b ratios up to 2.4 are listed in Table 8.4.

8.8.4 Buckling Under Shearing Stresses
Consider a rectangular plate under uniform shear forces Nxy along all edges that are simply supported
(see Figure 8.24). The buckling is actually caused by the compressive stresses on the planes at 45°
against the x-axis. The buckled de�lection surface should satisfy the equilibrium Eq. (8.134). In this
case, Eq. (8.134) becomes

Table	8.4	Values	of	k	for	clamped	edge	along	y	=	0	and	free	edge	along	y =	b,	v =	0.25.

a/b 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.2 2.4
k 1.70 1.56 1.47 1.41 1.36 1.34 1.33 1.33 1.34 1.36 1.38 1.45 1.47
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Fig.	8.24 Rectangular plate under uniform shear forces.

Table	8.5	Values	of	k	for	buckling	under	shearing	forces.

a/b 1.0 1.2 1.4 1.5 1.6 1.8 2.0 2.5 3.0 4.0 ∞
k 9.34 8.0 8.3 8.1 8.0 6.8 6.6 6.1 5.9 5.7 5.35

For this case, a single term such as that given by Eq. (8.144) cannot satisfy Eq. (8.158), although the
simply supported boundary conditions are satis�ied. There are approximate methods to �ind the
solution for the buckling load, which can be given as

where k is a constant depending on the ratio a/b. The two signs indicate that the buckling load does not
depend on the direction of the shearing force. In Table 8.5, values of k for various aspect ratios are
listed.



(8.160)

(8.161)

8.9 LOCAL BUCKLING OF OPEN SECTIONS
Thin �lat panels are inef�icient in carrying compressive loads because their buckling stresses are low.
However, thin-walled sections formed with thin sheets, such as angles and channels, can provide much
improved compressive buckling strengths.
The global buckling of slender bars of thin-walled sections was discussed in Section 8.6. For short
open-section members, local buckling may occur before global buckling. Local buckling often takes the
form of buckling of �lat plates.
Let us consider an open section composed of �lat sheet elements. It has been found that the buckling
load of the open section can be approximated reasonably well by summing the individual buckling
loads of the sheet elements. The rationale for such an approach is similar to that used in Example 8.1.
Denoting the buckling load for sheet element i by , the total buckling load of the composite section is
estimated as

The (average) crippling	stress σcr of the section is

where A is the total cross-sectional area.
To estimate the local buckling load, boundary conditions for each sheet element must be speci�ied. This
is usually a rather dif�icult task because restraints from the adjacent sheet elements, in general, do not
fall into the usual category of edge conditions for �lat plates. Approximate but conservative boundary
conditions are usually used. For example, the angle section shown in Figure 8.25 has two identical
�langes that would buckle under the same compressive load. In this case, there is no restraint from one
�lange on the other. Hence, the edge along the junction can be assumed to be simply supported. For
more general sections, the simply supported edge is often used to approximate the boundary
conditions along the junction of two sheet elements.



Fig.	8.25 Angle section with two identical �langes.



Example 8.5

Estimate the crippling load for a channel section shown in Figure 8.26. The material is an
aluminum alloy with E = 69 GPa and v = 0.3.
The channel is assumed to be the assembly of three �lat plate elements. The loading edges (top
and bottom) are simply supported; the edges along the junctions between elements are
approximated as simply supported edges; the free edges in elements 1 and 3 are obvious. The
local buckling load for each element is calculated as follows.
Elements	1	and	3: These two plate elements are simply supported along three sides and free on
one side. The aspect ratio a/b is 5.0, which gives the buckling coef�icient k = 0.506 (see Table 8.3).
The bending rigidity of the plate element is given by Eq. (8.135). We have

Fig.	8.26 Channel section.

Thus, the buckling (line) load for plate elements 1 and 3 is



The local buckling load for both elements is

Element	2: Plate element 2 is simply supported along the four edges. The aspect ratio is a/b = 3.33.
The corresponding buckling coef�icient k can be picked up from Figure 8.24. We have k ≃ 4.0.
Thus, the local buckling (line) load for element 2 is

The buckling load for element 2 is

Using Eq. (8.160), the total crippling load for the channel section is



PROBLEMS
8.1 The truss structure consists of two bars connected by a pin-joint (which allows free rotation of
the bars). The other ends of the bars are hinged as shown in Figure 8.27. A weight W is hung at the
joint. Find the maximum weight the truss can sustain before buckling occurs.

Fig.	8.27 Two-bar truss.

8.2 A bar, as shown in Figure 8.28, is built-in at the left end and supported at the right end by a
linear spring with spring constant α. Find the equation for buckling loads. Hint: The boundary
conditions are w = 0 and dw/dx = 0 at the left end; and M = 0 and V = −αw at the right end.

Fig.	8.28 A Bar with a built-in end and an elastically supported end.

8.3 The 3-m tall wooden vertical column has the dimensions shown in Figure 8.29. There is a �ixed
collar at the middle of the column so that the column cannot de�lect at the middle. Properties of
wood are E = 11 GPa, σY = 40 MPa.

i. Determine the critical buckling load P (produced by the top beam) considering (a) the �ixed
collar is absent and (b) the �ixed collar is present.



ii. What is the most likely mode of failure, buckling type or compressive type when (a) the �ixed
collar is absent and (b) the �ixed collar is present? Your answer must be supported by
analysis.

iii. Find the critical length L at which both buckling failure and compressive failure become
equally possible modes of failure.

Fig.	8.29 A wooden vertical column.

8.4 An AISI4340 steel column has a length of 5 m and has the cross-section shown in Figure 8.30.
Determine the critical load if its bottom end is �ixed supported and its top is free with respect to
the strong axis and is pinned about the weak axis.



Fig.	8.30 Cross-section of a long column.

8.5 Two steel bars (E = 210 GPa) are connected by a hinge as shown in Figure 8.31. The square
cross-section of the bar is 5 × 5 cm. Find the buckling load for the bar with a built-in end.

Fig.	8.31 Two-bar structure.

8.6 Find the buckling load equation for the bar with the left end built-in and the right end simply
supported but constrained by a rotational spring (see Figure 8.32). The spring constant β relates
the bending moment M and the rotation θ = dw/dx by M = βθ.

Fig.	8.32 Bar with a built-in end and a rotationally constrained end.



8.7 Two steel bars of a 4-cm circular cross-section are rigidly connected into a T-shaped structure.
The diameter of the bars is 4 cm. Three ends are built-in as shown in Figure 8.33. At the joint, a
roller support is provided to prevent vertical de�lection of the joint. Compression is applied as
shown in the �igure. Find the lowest buckling load.

Fig.	8.33 Structure with two rigidly connected bars.

8.8 For the structure of Problem 8.5, �ind the buckling load if the roller support at the joint is
removed.
8.9 A simply supported bar has a doubly symmetrical cross-section consisting of a thin web and
thin �langes as shown in Figure 8.34. Find the length of the bar at which the �lexural buckling load
is equal to the torsional buckling load.



Fig.	8.34 Cross-section of a simply supported bar.

8.10 A simply supported aluminum (E = 70 GPa, G = 27 GPa) bar 2 m in length has the cross-
section shown in Figure 8.35. Find the lowest three buckling loads.



Fig.	8.35 Cross-section of a thin-walled bar.

8.11 Find the buckling load of a 1-m-long bar having a thin-walled circular cross-section 50 mm in
diameter and wall thickness of 2 mm. If the closed section is made into an open one by cutting a
longitudinal slit over the entire length of the bar, what is the buckling load? Assume that E = 70 
GPa and G = 27 GPa.





9 
Analysis of Composite Laminates
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9.1 PLANE STRESS EQUATIONS FOR
COMPOSITE LAMINA
Many structural applications of �iber-reinforced composite materials are
in the form of thin laminates, and a state of plane stress parallel to the
laminate can be assumed with reasonable accuracy. For this reason,
formulations in plane stress are of particular interest for composite
structures.
In this chapter, the x1-axis will be designated as the �iber direction as
shown in Figure 9.1. For a state of plane stress parallel to the x1–x2 plane
in an orthotropic solid (i.e. σ33 = σ13 = σ23 = 0), the stress–strain relations
are given by (3.107) or (3.109). Symbolically, (3.109) can be expressed in
the form

where

are called reduced	stiffnesses, which should not be confused with elastic
constants cij.

The inverse relations of (9.1) are given by (3.109), which are usually
presented as



(9.4)

where

is a subset of the elastic compliances aij (i, j = 1, 2,…, 6) in (3.99).

Fig.	9.1 Fiber direction and coordinate systems.

Note that in the plane stress–strain relations for orthotropic solids in a
state of plane stress, there are four independent material constants. For
�ibrous composites, E1 (Young's modulus in the �iber direction), E2
(transverse Young's modulus), G12 (longitudinal shear modulus), and v12
(transverse/longitudinal Poisson ratio) are often used to characterize the
composite in a state of plane stress.



(9.5)

(9.6)
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In stress analyses, sometimes a coordinate system x–y is set up, which
does not always coincide with the material principal axes, x1 and x2 as
illustrated in Figure 9.1. The two sets of stress components with respect
to these two coordinates systems are related by the transformation matrix
[Tσ] [see (3.63)]:

where

In the same manner, the strains with respect to the two coordinate
systems are related by

where

Note that the inverses [Tσ]−1 and [Tε]−1 can be obtained by replacing θ in
(9.6) and (9.8) with −θ.
Using the transformation matrices [Tσ] and [Tε], we have



(9.9)
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Thus, the stress–strain relations for the state of plane stress parallel to x–y
(x1–x2) plane become

where

The explicit expressions for the elements in [Q] are given by
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(9.14)
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The fact that [ ] is a full matrix indicates that the in-plane shear
deformation γxy is coupled with the normal deformations εxx and εyy. This
behavior is called shear-extension	coupling.
Following a similar procedure, we obtain

where

and

By using the de�initions of engineering moduli, the stress–strain relations
in an arbitrary coordinate system (x, y) can also be expressed in the form



(9.16)
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Since the x- or y-axis may not coincide with the principal (�iber) direction,
the engineering moduli Ex, Ey, vxy, Gxy, and ηxy, x … are called the apparent
engineering	moduli. Comparing (9.12) and (9.15), we have

For an orthotropic material, the apparent engineering moduli can be
expressed in terms of the principal engineering moduli through the use of
(9.16), (9.14), and (9.4). The relations are



Variations of the apparent moduli Ex, Gxy, vxy, and ηx,xy against �iber
orientation θ for three composites are given in Figure 9.2.
In the plots, the following material constants were used.
Carbon/epoxy:

Boron/aluminum:



Fig.	9.2 Variations of apparent moduli against �iber orientation for three
composites.

Glass/epoxy:

Among the three composites, carbon/epoxy is the most anisotropic with
the largest E1/E2 ratio, and boron/aluminum is the least anisotropic. The



following behaviors are noticed.

The longitudinal stiffness represented by Ex drops sharply as the
loading direction deviates from the �iber direction, especially for
carbon/epoxy. Thus, the �iber orientation in composite structures
must be precisely aligned during manufacturing.
The shear stiffness represented by Gxy attains a maximum value at θ =
45°. This means that placing �ibers in the 45° direction in a composite
can achieve the best in-plane shear property.
The maximum coupling between extension and shear occurs between
θ = 10° and 20°. From the results for ηx,xy shown in Figure 9.2, a unit
of axial strain (εx= 1) applied in the x-direction can induce two units
of shear strain γxy in carbon/epoxy composite if the �iber orientation
is 12°.

Fig.	9.3 Deformation of an off-axis composite under tension.
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9.2 OFF‐AXIS LOADING
Consider a state of uniform deformation in a composite panel produced by
applying a uniaxial stress σxx = σ0 in the x-direction (see Figure 9.3). From
(9.12), the uniform state of deformation is given by the strains

It is seen that shear deformation can result from application of a normal
load, except when x and y axes coincide with the material principal axes,
x1 and x2 (in that case  = S16 = 0). Coupling between normal
deformation and shear deformation does not exist in isotropic solids.
Integrating the strain–displacement relations for εxx and εyy [see (3.7) and
(3.8)] yields the displacement components:

where f(y) and g(x) are arbitrary functions of variables y and x,
respectively. Substituting (9.18) and (9.19) into shear strain

we obtain

where a prime indicates differentiation with respect to the argument.
From (9.21), it is obvious that f(y) and g(x) must be linear functions of y
and x, respectively, i.e.



(9.23)

(9.24)

(9.25)

(9.26)

(9.27)

(9.28)

(9.29)

(9.30)

Thus, the displacements (9.18) and (9.19) can be expressed as

 

Removing the rigid body translations from the displacements above, we
set C3 = C4 = 0. To suppress the rigid body rotation, we assume that the
horizontal edges of the panel remain horizontal after deformation, i.e.

The remaining constant C1 is obtained from (9.21) in conjunction with
(9.20). We have

Thus, the displacement �ield in the composite panel under the uniform
stress σxx = σ0 is

For the AS4/3501-6 carbon/epoxy composite, the elastic moduli are

If the off-axis angle θ is 45°, then



(9.31)

The deformed shape of the panel can be determined from the
displacement �ield given by (9.28) and (9.29), which is depicted in Figure
9.3.
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Example 9.1

A composite panel with θ = 45° is under shear load τ, as shown in
Figure 9.4. The elastic moduli of the composite are given by (9.30).
Find the compliance.

Fig.	9.4 Composite panel under shear load.

From (9.12), the strains produced by the shear load are

Using the elastic moduli (9.30) and the transformed compliances
(9.14), we have



(9.36)

It is interesting to note from (9.35) that a positive shear load produces
negative normal strains in εxx and εyy. In other words, a positive shear
load would shorten the composite panel in both x and y directions. On
the other hand, a negative shear load would enlarge the size of the
panel.



9.3 NOTATION FOR STACKING SEQUENCE IN
LAMINATES
Unidirectionally reinforced �iber composites have superior properties
only in the �iber direction. In practical applications, laminas with various
�iber orientations are combined together to form laminated composites
that are capable of carrying loads of multiple directions. Due to the
lamination, the material properties of a laminate become heterogeneous
over the thickness. Further, due to the arbitrary �iber orientations of the
laminas, the laminate may not possess orthotropy as each constituent
lamina does.
A laminate consists of a number of laminas of different �iber orientations.
A composite ply is the basic element in constructing a laminate. Each
lamina may contain one or more plies of the same �iber orientation. The
laminate properties depend on the lamina �iber orientation as well as its
position in the laminate (the stacking	sequence). To describe a laminate,
the �iber orientation and position of each lamina must be accurately
speci�ied.
To achieve the foregoing purpose, a global coordinate system, (x, y, z),
must be established. Let the x–y plane be parallel to the plane of the
laminate and the z-axis be in the thickness direction. The �iber orientation
(θ) is measured relative to the x-axis as shown in Figure 9.1. The positions
of the plies are listed in sequence starting from one face of the laminate to
the other face along the positive z-direction. An example is shown in
Figure 9.5 for [0/0/45/−45].



Fig.	9.5 Position of plies in a laminate.

In practice, layup is not arbitrary; it often possesses certain repetitions
and symmetry. To avoid lengthy expressions, abbreviated notations are
used to specify the stacking sequence. The following are some abbreviated
notations introduced to indicate ply or sublaminate repetition and
symmetry in the lay-up.

9.3.1 Symmetry
If the layup is symmetric with respect to the midplane of the laminate,
then only half of the plies are speci�ied; the other half is included by a
subscript s indicating symmetric layup. An example is [0/90/+45/−45]s or
[0/90/±45]s, which stands for [0/90/+45/−45/−45/+45/90/0].

9.3.2 Repetition
If a ply or sublaminate contiguously repeats itself n times in a laminate,
then a subscript n is attached to the ply angle or the sublaminate group



angles to indicate the repetitions. For example, [02/902] stands for
[0/0/90/90], and [(0/90)2/±452] stands for
[0/90/0/90/45/45/−45/−45].

Additional examples are as follows:
[0/±45/0]s stands for [0/45/−45/0/−45/45/0] where an underline is
used to indicate the ply right on the plane of symmetry.
[(0/90)2]s or [0/90]2s stands for [0/90/0/90/90/0/90/0].

[(0/90)s ]2 stands for [0/90/90/0/0/90/90/0].

Special names are often given to laminates with particular layups. For
instance, a laminate consisting of only 0° and 90° plies is referred to as a
cross-ply	laminate. If a laminate consists of only +θ and −θ plies, it is
called an angle-ply	laminate. A balanced	laminate is a laminate in
which there is a −θ ply for every +θ ply.



9.4 SYMMETRIC LAMINATE UNDER IN‐PLANE
LOADING
Laminates with symmetric lay-ups are most popular in applications
mainly because they are free from warping induced by thermal residual
stresses resulting from curing at elevated temperatures. Laminates
provide excellent stiffness and strength properties for in-plane loading.
They can be used with great structural ef�iciency in skins and stiffeners in
aircraft structures.
Consider a laminated panel consisting of a number of �iber-reinforced
laminas, as shown in Figure 9.6. The x–y plane is located at the midplane
of the laminate. In a well-made laminate, the laminas are perfectly
bonded. Under in-plane loading, laminas deform, and the displacements
are continuous across the ply boundaries. If the laminate is thin, then we
can assume with good accuracy that the strain components εxx, εyy, and γxy
in all the laminas are the same over the thickness of the laminate. In other
words, we assume that the laminate deforms uniformly over the thickness
if it is under in-plane loading.

Fig.	9.6 Laminated panel.

Although the strains are uniform and continuous over the thickness of the
laminate, the stresses in the laminas are, in general, discontinuous across
the interfaces due to different material properties resulting from different



(9.37)

(9.38)

(9.39)

(9.40)

�iber orientations. For the kth lamina, the stress components are
calculated using the transformed stress–strain relations:

It is conceivable that analyzing each layer individually is a cumbersome
task. Consistent with the beam theory in Chapter 5 and the plate theory in
Chapter 8, in-plane resultant forces are introduced. These resultant forces
are de�ined as

where h denotes the thickness of the plate and the stress components σxx,
σyy, and σxy assume the values of , , and  if z is located in the kth
lamina. The resultant forces, which have the unit of force per unit length,
are depicted in Figure 9.7.
Let the kth lamina occupy the region from z= zk−1 to z = zk (see Figure 9.8).
Then the integral in (9.38) can be broken up into integrals over the
individual laminas as

where n is the total number of laminas in the laminate. Substituting (9.37)
into (9.39), we obtain



Fig.	9.7 Resultant forces.



(9.41)

(9.42)

Fig.	9.8 Positions of laminas.

Note that the quantities εx, εy, and γxy are independent of z. Hence, the
integrations in (9.40) can be performed to yield

where



(9.43)

or, explicitly,

Coef�icients Aij are called extensional	stiffnesses.



(9.44)

(9.45)

(9.46)

9.5 EFFECTIVE MODULI FOR SYMMETRIC
LAMINATES
A symmetric laminate under in-plane loading can be treated as an
equivalent homogeneous anisotropic solid in plane stress by introducing
the average stresses

In terms of these average stresses, (9.41) can be written as

Equation (9.45) indicates that the laminate is effectively a 2-D anisotropic
solid in-plane stress and [A]/h is the effective elastic constant matrix.
The inverse relation of (9.45) is

where

The components  are given by



(9.47)

(9.48)

where

Comparing (9.46) with (9.15), we can relate the components  to the
effective engineering moduli for the laminate as

If a symmetric laminate also possesses the property A16 = A26 = 0 (e.g.
[0/90]s and [±45]s), then the effective moduli can be expressed explicitly
as



(9.49)

9.5.1 Quasi‐Isotropic Laminate
Although each lamina is anisotropic, some laminates may possess
isotropic in-plane stiffness properties. These laminates are called quasi-
isotropic	laminates because their bending properties are still
anisotropic.
A quasi-isotropic laminate is characterized by an in-plane stiffness matrix
that is invariant with respect to in-plane rotations of the coordinate
system. In other words, the laminate stiffnesses are independent of
direction just like an isotropic homogeneous solid. A symmetric quasi-
isotropic laminate is constructed as follows. Let n (≥ 3) be the number of
�iber orientations in the laminate. The angle between two adjacent �iber
orientations is π/n. The number of plies for each �iber orientation is
identical. Examples for quasi-isotropic laminates are π/3 laminate
[0/±60]s and π/4 laminate [±45/0/90]s. Other quasi-isotropic laminates
corresponding to higher values of n can be constructed in the same
manner.



Example 9.2

Find the effective moduli for a quasi-isotropic laminate [±45/0/90]s.

Assume that, the elastic moduli of the composite are

The laminate in-plane stiffnesses Aij are obtained as

The effective moduli for the laminate are calculated using (9.49). We
obtain

Note that the relation e = 2(1 + v)G for isotropic materials holds for the
quasi-isotropic laminate.



Example 9.3

Show that negative Poisson's ratio in laminates is possible.
When a symmetric laminate is treated as a 2-D homogeneous solid in
plane stress, it may exhibit some unusual properties that are not
observed in other homogeneous solids. One of these is a negative
Poisson's ratio.

Fig.	9.9 Poisson's ratio νxy as a function of �iber orientation θ in [θ/θ + 
25°]s laminate.



Consider the symmetric but unbalanced laminates [θ/θ + 25°]s, where
θ = 0° to 190°. The ply properties are

The apparent Poisson's ratio vxy can be calculated using (9.48). Figure
9.9 shows vxy as a function of θ. It is seen that negative values of vxy are
possible.
Also note that unusually high positive values of vxy can be produced.



(9.50)

(9.51)

9.6 LAMINAR STRESSES
The in-plane resultant forces provide a convenient way to formulate the
global governing equations for thin laminates. However, for the prediction
of laminate strength, stresses in each lamina must be recovered.
If loads in terms of {N} are given, then the laminate strains are obtained
from

The stresses , , and  in the kth lamina are calculated according to
(9.37), i.e.



(9.52)

(9.53)

(9.54)

(9.55)

(9.56)

(9.57)

Example 9.4

Obtain laminar stresses in a quasi-isotropic symmetric laminate
[±45/0/90]s under a uniaxial load Nx.

The composite ply properties are assumed to be

The following stiffness matrices are readily calculated:



The strains are

in which Nx is in N/m. The laminar stresses are



Fig.	9.10 Distributions of laminar normal stresses.

The distributions of the laminar normal stresses are shown in Figure
9.10. It is evident that the stress distribution from lamina to lamina is
not continuous. Also note the large compressive stress σyy developed



in the 90° lamina due to its inability to contract in the y-direction. It is
easy to verify that the resultant force Ny = 0.

The stress components in reference to the material principal axes (x1,
x2) in each lamina are of particular interest in strength analysis. These
stress components can be obtained using the coordinate
transformation given by (9.5). We obtain



(9.58)

(9.59)

(9.60)

9.7 [±45°] LAMINATE
The ±45° type of laminate is often used to provide greater shear rigidities
of composite structures. For example, consider the [±45]s laminate with
the composite properties given in Example 9.4. Using [ ]±45° given by (d)
in Example 9.4, we have

By treating this laminate as an equivalent homogeneous orthotropic solid
in plane stress, the equivalent elastic moduli can be obtained from (9.49).
We have

Comparing these moduli with those of the unidirectional composite, we
note a signi�icant increase in the shear rigidity. However, this is achieved
at the expense of the longitudinal modulus Ex.

9.7.1 Determination of G12 Using ±45° Laminates

Consider the [±45]s laminate subjected to a uniform uniaxial stress  (= 
Nx/h) σ0 and  = 0. Based on the symmetry of the laminate, it is
not dif�icult to see that in both +45° and −45° laminas,

From the coordinate transformation (9.5) for stress, we have



(9.61)

(9.62)

(9.63)

(9.64)

(9.65)

(9.66)

(9.67)

For θ = −45°, (9.61) yields

Since the [±45]s laminate is balanced with respect to the uniaxial load, we
have γxy = 0. From the coordinate transformation on strains,

we obtain

In the −45° lamina, (9.64) gives

With respect to the material principal coordinate system (x1, x2), the shear
stress–strain relation for an orthotropic composite is σ12 = G12γ12. Thus,

In view of (9.62), we conclude that

In deriving the relation above, the de�initions Ex = σ0/εxx and vxy = −εyy/εxx
have been used. Here Ex and vxy are the effective Young's modulus and
Poisson's ratio, respectively, of the [±45]s laminate under uniaxial load in



the x-direction. The relation (9.67) can be used to determine G12 from the
tension test of a [±45]s laminate specimen.



PROBLEMS
9.1 Given a carbon/epoxy composite panel under uniaxial loading, i.e.
σxx = σ0, σyy = σxy = 0, plot γxy as a function of the �iber orientation θ.
The composite properties are
E 1 = 140 GPa, E2 = 10 GPa,   G12 = 7 GPa, v12 = 0.3

9.3 Consider a rectangular composite panel with θ= 45° (material
properties are given in Problem 9.1) subjected to σxx= 10 MPa, σyy = 0,
σxy = τ. Find τ that is necessary to keep the deformed shape
rectangular.
9.3 Plot the extension-shear coupling coef�icients ηx,xy and ηxy,x
versus θ for the composite given in Problem 9.1. Find the θs that
correspond to the maximum values of ηx, xy and ηxy, x, respectively.

9.4 If the carbon/epoxy composite panel is subjected to a shear
stress σxy, �ind

a. the �iber orientation at which σ11 is maximum

b. the �iber orientation at which γxy is minimum.

Compare the result with that of Problem 9.3.
9.5 Consider a [±45]s laminate. If the constituent composite material
is highly anisotropic, i.e.

show that the effective engineering moduli for the laminate can be
expressed approximately as



Compare these approximate values with the exact values for
AS4/3501-6 carbon/epoxy composite.
9.6 Compare the in-plane longitudinal stiffnesses in the x-direction
for [±30/0]s and [302/0]s laminates of AS4/3501-6 carbon/epoxy
composite. Which is stiffer?
9.7 Plot the effective moduli Ex, Gxy, and vxy versus θ for the angle-ply
laminate [±θ]s of AS4/3501-6 carbon/epoxy composite.

9.8 Find the shear strains (γxy) in the AS4/3501-6 carbon/epoxy
composite [±45]s and [0/90]s laminates subjected to the shear
loading Nxy = 1000 N/m. Also �ind the lamina stresses σ11, σ22, and
σ12. If the maximum shear strength of the composite is |σ12| = 100 
MPa, what are the shear loads (Nxy) the two laminates can carry?
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