

Understanding Deep Learning
Application in Rare Event Prediction

Chitta Ranjan, Ph.D.

First Edition

Chitta Ranjan, Ph.D.
Director of Science, ProcessMiner Inc.
cranjan@processminer.com
https://medium.com/@cran2367

Copyright c� 2020 Chitta Ranjan.

All rights reserved. No part of this publication may be reproduced,
distributed, or transmitted in any form or by any means, including
photocopying, recording, or other electronic or mechanical methods,
without the prior written permission of the publisher, except in the
case of brief quotations with citation embodied in critical reviews and
certain other noncommercial uses permitted by copyright law. For
permission requests, write to the author.

ISBN: 9798586189561

Printed in the United States of America.

Dedicated to my parents,
Dr. Radha Krishna Prasad and Chinta Prasad.

With love, Bharti.

Preface

Deep learning is an art. But it has some boundaries. Learning the
boundaries is essential to develop working solutions and, ultimately,
push them for novel creations.

For example, cooking is an art with some boundaries. For instance,
most cooks adhere to: salt stays out of desserts. But chefs almost always
add salt to desserts because they know the edge of this boundary. They
understand that while salt is perceived as a condiment it truly is a
flavor enhancer; when added to a dessert it enhances the flavor of every
ingredient.

Some chefs push the boundaries further. Claudia Fleming, a dis-
tinguished chef from New York, went to an extreme in her pineapple
dessert. Each component in it is heavily salted. Yet the dessert is not
salty. Instead, each flavor feels magnified. The salt makes the dessert
an extraordinary dish.

The point is that an understanding of the constructs of food allows
one to create extraordinary recipes. Similarly, an understanding of deep
learning constructs enables one to create extraordinary solutions.

This book aims at providing such a level of understanding to a reader
on the primary constructs of deep learning: multi-layer perceptrons,
long- and short-term memory networks from the recurrent neural net-
work family, convolutional neural networks, and autoencoders.

Further, to retain an understanding, it is essential to develop a mas-
tery of (intuitive) visualizations. For example, Viswanathan Anand, a
chess grandmaster, and a five-time world chess champion is quoted in
Mind Master: Winning Lessons from a Champion’s Life, “chess players

iii

iv

visualize the future and the path to winning.” There, he alludes that a
player is just as good as (s)he can visualize.

Likewise, the ability to intuitively visualize a deep learning model is
essential. It helps to see the flow of information in a network, and its
transformations along the way. A visual understanding makes it easier
to build the most appropriate solution.

This book provides ample visual illustrations to develop this skill.
For example, an LSTM cell, one of the most complex constructs in deep
learning is visually unfolded to vividly understand the information flow
within it in Chapter 5.

The understanding and visualizations of deep learning constructs are
shrouded by their (mostly) abstruse theories. The book focuses on sim-
plifying them and explain to a reader how and why a construct works.
While the “how it works” makes a reader learn a concept, the “why it
works” helps the reader unravel the concept. For example, Chapter 4
explains how dropout works followed by why it works?

The teachings in the book are solidified with implementations. This
book solves a rare event prediction problem to exemplify the deep learn-
ing constructs in every chapter. The book explains the problem formu-
lation, data preparation, and modeling to enable a reader to apply the
concepts to other problems.

This book is appropriate for graduate and Ph.D. students, as well
as researchers and practitioners.

To the practitioners, the book provides complete illustrative imple-
mentations to use in developing solutions. For researchers, the book
has several research directions and implementations of new ideas, e.g.,
custom activations, regularizations, and multiple pooling.

In graduate programs, this book is suitable for a one-semester in-
troductory course in deep learning. The first three chapters introduce
the field, a working example, and sets up a student with TensorFlow.
The rest of the chapters present the deep learning constructs and the
concepts therein.

These chapters contain exercises. Most of them illustrate concepts
in the respective chapter. Their practice is encouraged to develop a

v

stronger understanding of the subject. Besides, a few advanced exercises
are marked as optional. These exercises could lead a reader to develop
novel ideas.

Additionally, the book illustrates how to implement deep learning
networks with TensorFlow in Python. The illustrations are kept verbose
and, mostly, verbatim for readers to be able to use them directly. The
link to the code repository is also available at https://github.com/
cran2367/deep-learning-and-rare-event-prediction.

My journey in writing this book reminded me of a quote by Dr. Fred-
erick Sanger, a two-time Nobel laureate, “it is like a voyage of discovery,
seeking not for new territory but new knowledge. It should appeal to
those with a good sense of adventure.”

I hope every reader enjoys this voyage in deep learning and find their
adventure.

Chitta Ranjan

https://github.com/cran2367/deep-learning-and-rare-event-prediction
https://github.com/cran2367/deep-learning-and-rare-event-prediction

Acknowledgment

A trail of learning experiences ultimately leads to writing a book. I
have drawn from many people during my experiences to whom I am
very thankful.

I thank Dr. Kamran Paynabar and Dr. Jhareswar Maiti who instilled
in me the passion for learning and discovery during my academic life.

I also want to thank Dr. David Hardtke, Dr. Ronald Menich, and
Karim Pourak for giving me an intellectually rich environment at my
past and current work. The professional and sometimes philosophical
conversations with them gave me insightfulness to write this book.

My father, Dr. Radha Krishna Prasad, who is an inspiration in my
life helped me get started with the book. His guidance during the writing
invaluably enriched it.

Besides, bringing this book to its completion would not have been
possible without the support of my wife, Bharti. I am grateful for her
immeasurable support and motivation when writing was difficult.

I also thank Dr. Shad Kirmani, eBay Inc., Zhen Zhu, Stanford Uni-
versity, and Jason Wu, who helped improve the theoretical content in
the book. I am also grateful to Professor Mary Orr and Grace Gibbs for
their inputs.

Lastly, I want to thank my family and friends for their perennial
encouragement.

vii

Website

This book provides several implementations of deep learning networks
in TensorFlow. Additionally, video lectures are provided for most of
the sections in the book. The website provides the link to the code
repository, links to the lectures, and other resources useful for both
readers and instructors.

www.understandingdeeplearning.com

ix

www.understandingdeeplearning.com

Contents

Preface iii

Acknowledgment vii

Website ix

1 Introduction 5
1.1 Examples of Application 7

1.1.1 Rare Diseases . 7
1.1.2 Fraud Detection 8
1.1.3 Network Intrusion Detection 8
1.1.4 Detecting Emergencies 9
1.1.5 Click vis-à-vis churn prediction 9
1.1.6 Failures in Manufacturing 10

1.2 A Working Example . 11
1.2.1 Problem Motivation 11
1.2.2 Paper Manufacturing Process 12
1.2.3 Data Description 12

1.3 Machine Learning vs. Deep Learning 13
1.4 In this Book . 15

2 Rare Event Prediction 19
2.1 Rare Event Problem . 19

2.1.1 Underlying Statistical Process 19
2.1.2 Problem definition 20
2.1.3 Objective . 21

Loss function . 21
Accuracy measures 22

xi

xii CONTENTS

2.2 Challenges . 24
2.2.1 High-dimensional Multivariate Time Series 24
2.2.2 Early Prediction 26
2.2.3 Imbalanced Data 27

3 Setup 29
3.1 TensorFlow . 29

3.1.1 Prerequisites . 31
Install Python . 31
Install Virtual Environment 31

3.1.2 TensorFlow 2x Installation 32
3.1.3 Testing . 35

3.2 Sheet Break Problem Dataset 36

4 Multi-layer Perceptrons 39
4.1 Background . 39
4.2 Fundamentals of MLP 41
4.3 Initialization and Data Preparation 47

4.3.1 Imports and Loading Data 47
4.3.2 Data Pre-processing 49

Curve Shifting 50
Data Splitting . 53
Features Scaling 54

4.4 MLP Modeling . 56
4.4.1 Sequential . 56
4.4.2 Input Layer . 56
4.4.3 Dense Layer . 57
4.4.4 Output Layer . 59
4.4.5 Model Summary 59
4.4.6 Model Compile 61
4.4.7 Model Fit . 64
4.4.8 Results Visualization 65

4.5 Dropout . 68
4.5.1 What is Co-Adaptation? 68
4.5.2 What Is Dropout? 69
4.5.3 Dropout Layer 71

4.6 Class Weights . 73

CONTENTS xiii

4.7 Activation . 76
4.7.1 What is Vanishing and Exploding Gradients? . . 77
4.7.2 Cause Behind Vanishing and Exploding Gradients 78
4.7.3 Gradients and Story of Activations 79
4.7.4 Self-normalization 84
4.7.5 Selu Activation 85

4.8 Novel Ideas Implementation 87
4.8.1 Activation Customization 87
4.8.2 Metrics Customization 91

4.9 Models Evaluation . 99
4.10 Rules-of-thumb . 101
4.11 Exercises . 104

5 Long Short Term Memory Networks 107
5.1 Background . 107
5.2 Fundamentals of LSTM 109

5.2.1 Input to LSTM 110
5.2.2 LSTM Cell . 110
5.2.3 State Mechanism 111
5.2.4 Cell Operations 114
5.2.5 Activations in LSTM 119
5.2.6 Parameters . 120
5.2.7 Iteration Levels 121
5.2.8 Stabilized Gradient 121

5.3 LSTM Layer and Network Structure 125
5.3.1 Input Processing 128
5.3.2 Stateless versus Stateful 129
5.3.3 Return Sequences vs Last Output 130

5.4 Initialization and Data Preparation 132
5.4.1 Imports and Data 132
5.4.2 Temporalizing the Data 134
5.4.3 Data Splitting . 135
5.4.4 Scaling Temporalized Data 136

5.5 Baseline Model—A Restricted Stateless LSTM 136
5.5.1 Input layer . 136
5.5.2 LSTM layer . 137
5.5.3 Output layer . 138

xiv CONTENTS

5.5.4 Model Summary 138
5.5.5 Compile and Fit 139

5.6 Model Improvements . 141
5.6.1 Unrestricted LSTM Network 141
5.6.2 Dropout and Recurrent Dropout 143
5.6.3 Go Backwards 146
5.6.4 Bi-directional . 147
5.6.5 Longer Lookback/Timesteps 152

5.7 History of LSTMs . 156
5.8 Summary . 162
5.9 Rules-of-thumb . 163
5.10 Exercises . 165

6 Convolutional Neural Networks 169
6.1 Background . 169
6.2 The Concept of Convolution 171
6.3 Convolution Properties 176

6.3.1 Parameter Sharing 176
6.3.2 Weak Filters . 179
6.3.3 Equivariance to Translation 181

6.4 Pooling . 184
6.4.1 Regularization via Invariance 184
6.4.2 Modulating between Equivariance and Invariance 187

6.5 Multi-channel Input . 191
6.6 Kernels . 193
6.7 Convolutional Variants 198

6.7.1 Padding . 198
6.7.2 Stride . 200
6.7.3 Dilation . 201
6.7.4 1x1 Convolution 203

6.8 Convolutional Network 205
6.8.1 Structure . 205
6.8.2 Conv1D, Conv2D, and Conv3D 208
6.8.3 Convolution Layer Output Size 211
6.8.4 Pooling Layer Output Size 212
6.8.5 Parameters . 213

6.9 Multivariate Time Series Modeling 214

CONTENTS xv

6.9.1 Convolution on Time Series 214
6.9.2 Imports and Data Preparation 214
6.9.3 Baseline . 218
6.9.4 Learn Longer-term Dependencies 223

6.10 Multivariate Time Series Modeled as Image 227
6.10.1 Conv1D and Conv2D Equivalence 228
6.10.2 Neighborhood Model 229

6.11 Summary Statistics for Pooling 232
6.11.1 Definitions . 235
6.11.2 (Minimal) Sufficient Statistics 236
6.11.3 Complete Statistics 241
6.11.4 Ancillary Statistics 248

6.12 Pooling Discoveries . 250
6.12.1 Reason behind Max-Pool Superiority 251
6.12.2 Preserve Convolution Distribution 254

6.13 Maximum Likelihood Estimators for Pooling 256
6.13.1 Uniform Distribution 257
6.13.2 Normal Distribution 257
6.13.3 Gamma Distribution 259
6.13.4 Weibull Distribution 263

6.14 Advanced Pooling . 268
6.14.1 Adaptive Distribution Selection 268
6.14.2 Complete Statistics for Exponential Family . . . 270
6.14.3 Multivariate Distribution 272

6.15 History of Pooling . 272
6.16 Rules-of-thumb . 276
6.17 Exercises . 278

7 Autoencoders 281
7.1 Background . 281
7.2 Architectural Similarity between PCA and Autoencoder 282

7.2.1 Encoding—Projection to Lower Dimension 284
7.2.2 Decoding—Reconstruction to Original Dimension 285

7.3 Autoencoder Family . 286
7.3.1 Undercomplete 286
7.3.2 Overcomplete . 288
7.3.3 Denoising Autoencoder (DAE) 289

xvi CONTENTS

7.3.4 Contractive Autoencoder (CAE) 290
7.3.5 Sparse Autoencoder 292

7.4 Anomaly Detection with Autoencoders 294
7.4.1 Anomaly Detection Approach 295
7.4.2 Data Preparation 296
7.4.3 Model Fitting . 299
7.4.4 Diagnostics . 301
7.4.5 Inferencing . 303

7.5 Feed-forward MLP on Sparse Encodings 305
7.5.1 Sparse Autoencoder Construction 305
7.5.2 MLP Classifier on Encodings 307

7.6 Temporal Autoencoder 310
7.6.1 LSTM Autoencoder 310
7.6.2 Convolutional Autoencoder 313

7.7 Autoencoder Customization 318
7.7.1 Well-posed Autoencoder 318
7.7.2 Model Construction 320
7.7.3 Orthonormal Weights 322
7.7.4 Sparse Covariance 325

7.8 Rules-of-thumb . 327
7.9 Exercises . 329

Appendices 347

Appendix A Importance of Nonlinear Activation 347

Appendix B Curve Shifting 349

Appendix C Simple Plots 353

Appendix D Backpropagation Gradients 357

Appendix E Data Temporalization 361

Appendix F Stateful LSTM 367

Appendix G Null-Rectified Linear Unit 373

CONTENTS 1

Appendix H 1× 1 Convolutional Network 377

Appendix I CNN: Visualization for Interpretation 381

Appendix J Multiple (Maximum and Range) Pooling
Statistics in a Convolution Network 387

Appendix K Convolutional Autoencoder-Classifier 393

Appendix L Oversampling 401
SMOTE . 401

This page is intentionally left blank.

Chapter 1

Introduction

Data is important to draw inferences and predictions. As obvious as
it may sound today, it has been a collective work over the centuries
that has brought us this far. Francis Bacon (1561-1626) proposed a
Baconian method to propagate this “concept” in the 16th century. His
book Novum Organum (1620) advanced Aristotle’s Organon to advocate
data collection and analysis as the basis of knowledge.

Centuries have passed since then. And today, data collection and
analysis has unarguably become an important part of most processes.

As a result, data corpuses are multiplying. Appropriate use of these
abundant data will make us potently effective. And a key to this is rec-
ognizing predictive patterns from data for better decision making.

Without this key, data by itself is a dump. But, at the same time,
drawing the valuable predictive patterns from this dump is a challenge
that we are facing today.

“We are drowning in information while starving for knowl-
edge. The world henceforth will be run by synthesizers, peo-
ple able to put together the right information at the right
time, think critically about it, and make important choices
wisely.” – E.O. Wilson, Consilience: The Unity of Knowl-
edge (1998).

John Naisbitt stated the first part of this quote in Megatrends (1982)

5

6

which was later extended by Dr. Edward Osborne Wilson in his book
Consilience: The Unity of Knowledge (1998). Both of them have em-
phasized the importance of data and the significance of drawing patterns
from it.

Humans inherently learn patterns from data. For example, as a child
grows she learns touching a hot cup will burn. She would learn this after
doing it a few times (collecting data) and realizing the touch burns (a
pattern). Over time, she learns several other patterns that help her to
make decisions.

However, as problems become more complex humans’ abilities be-
come limited. For example, we might foretell today’s weather by looking
at the morning sun but cannot predict it for the rest of the week.

This is where Artificial Intelligence (AI) comes into the picture. AI
enables an automatic derivation of predictive patterns. Sometimes the
patterns are interpretable and sometimes otherwise. Regardless, these
automatically drawn patterns are usually quite predictive.

In the last two decades, AI has become one of the most studied fields.
Some of the popular texts in AI are, Pattern recognition and machine
learning by Bishop, C. Bishop 2006, The elements of statistical learn-
ing by Friedman, J., Hastie, T., and Tibshirani, R. Hastie, Tibshirani,
and Friedman 2009, and Deep Learning by LeCun, Y., Bengio, Y., and
Hinton, G. LeCun, Bengio, and G. Hinton 2015.

In this book, we will go a little further than them to understand
the constructs of deep learning. A rare event prediction problem is also
solved side-by-side to learn the application and implementation of the
constructs.

Rare event prediction is a special problem with profound importance.
Rare events are the events that occur infrequently. Statistically,
if an event constitutes less than 5% of the data set, it is categorized as
a rare event. In this book, even rarer events that occur less than 1%
are discussed and modeled.

Despite being so rare when these events occur, their consequences
can be quite dramatic and often adverse. Due to which, such problems
are sometimes also referred to as adverse event prediction.

Rare event problem has been categorized under various umbrellas.

Chapter 1. Introduction 7

For instance, “mining needle in a haystack,” “chance discovery,” “excep-
tion mining,” and so on. The rare event prediction problem in this book
is, however, different from most of these categories. It is predicting a
rare event in advance. For example, predicting a tsunami before it hits
the shore.

� Rare event prediction is predicting a rare event in
advance.

In the next section, a few motivating rare event examples are posed.
Thereafter, a dialogue on machine learning versus deep learning ap-
proaches and the reasoning for selecting deep learning is made in § 1.3.
Lastly, a high-level overview of the rest of the book is given in § 1.4.

1.1 Examples of Application

Rare event problems surround all of us. A few motivating examples are
presented below.

Before going further, take a moment and think of the rare
event problems that you see around. What are their impacts?
How would it be if we could predict them? Proceed with the
thought in mind.

1.1.1 Rare Diseases

There are 5,000 to 8,000 known rare diseases. Based on World Update
Report (2013)1 by WHO, 400 million people worldwide of which 25
million in the US are affected by a rare disease.

Some rare diseases are chronic and can be life-threatening. An early
detection and diagnosis of these diseases will significantly improve the
patients’ health and may save lives.

1https://www.who.int/medicines/areas/priority_medicines/Ch6_19Rare.
pdf

https://www.who.int/medicines/areas/priority_medicines/Ch6_19Rare.pdf
https://www.who.int/medicines/areas/priority_medicines/Ch6_19Rare.pdf

8 1.1. Examples of Application

The International Rare Diseases Research Consortium (IRDiRC) was
launched in 2011 at the initiative of the European Commission and the
US National Institutes of Health to foster international collaboration
in rare diseases research. However, despite these developments, rare
disease diagnosis and early detection is still a major challenge.

1.1.2 Fraud Detection

Digital frauds, such as credit card and online transactions, are becoming
a costly problem for many business establishments and even countries.
Every year billions of dollars are siphoned in credit card frauds. These
frauds have been growing year after year due to the growth in online
sales. A decade ago the estimated loss due to online fraud was $4 billion
in 2008, an increase of 11% from $3.6 billion in 2007.

The fraud’s magnitude is large in dollars but constitutes a fraction of
all the transactions. This makes it extremely challenging to detect. For
example, a credit card fraud data set provided by Kaggle has 0.172% of
the samples labeled as fraud2.

An early detection of these frauds can help in a timely prevention
of the fraudulent transactions.

1.1.3 Network Intrusion Detection

Attacks on computer systems and computer-networks are not unheard-
of. Today most organizations, including hospitals, traffic control, and
sensitive government bodies, are run on computers. Attacks on such
systems can prove to be extremely fatal.

Due to its importance, this is an active field of research. To bolster
the research, KDD-CUP’99 contest provided a network intrusion data
set3 from Defense Advanced Research Projects Agency (DARPA), an
agency of the United States Department of Defense responsible for the
development of emerging technologies for use by the military. The data
included a wide variety of intrusions simulated in a military network

2https://www.kaggle.com/mlg-ulb/creditcardfraud/
3http://kdd.ics.uci.edu/databases/kddcup99/kddcup99

https://www.kaggle.com/mlg-ulb/creditcardfraud/
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99

Chapter 1. Introduction 9

environment. Few examples of network attacks were: denial-of-service
(dos), surveillance (probe), remote-to-local (r2l), and user-to-root (u2r).
Among which, the u2r and r2l categories are intrinsically rare but fatal.

The objective in such systems are quick or early detection of such
intrusions or attacks to prevent any catastrophic breach.

1.1.4 Detecting Emergencies

Audio-video surveillance is generally accepted by society today. The
use of cameras for live traffic monitoring, parking lot surveillance, and
public gatherings, is getting accepted as they make us feel safer. Sim-
ilarly, placing cameras for video surveillance of our homes is becoming
common.

Unfortunately, most such surveillance still depends on a human oper-
ator sifting through the videos. It is a tedious and tiring job—monitoring
for events-of-interest that rarely occur. The sheer volume of these data
impedes easy human analysis and, thus, necessitates automated predic-
tive solutions for assistance.

TUT Rare Sound events 2017, a development data set4, provided
by the Audio Research Group at Tampere University of Technology is
one such data set of audio recordings from home surveillance systems.
It contains labeled samples for baby crying, glass breaking, and gun-
shot. The last two events being the rare events of concern (housebreak)
requiring early detection.

1.1.5 Click vis-à-vis churn prediction

Digital industries, such as Pandora, eBay, and Amazon, rely heavily
on subscriptions and advertisements. To maximize their revenue, the
objective is to increase the clicks (on advertisements) while minimizing
customers’ churn.

A simple solution to increasing customer clicks would be to show
more advertisements. But it will come at the expense of causing cus-

4http://www.cs.tut.fi/sgn/arg/dcase2017/challenge/
task-rare-sound-event-detection

http://www.cs.tut.fi/sgn/arg/dcase2017/challenge/task-rare-sound-event-detection
http://www.cs.tut.fi/sgn/arg/dcase2017/challenge/task-rare-sound-event-detection

10 1.1. Examples of Application

tomer churn. A churn is a customer leaving the website which could be
in the form of exiting a transaction page or sometimes even unsubscrib-
ing. Churns, therefore, cost dearly to the companies.

To address this problem, companies attempt at a targeted marketing
that maximizes the click probability while minimizing the churn proba-
bility by modeling customer behaviors.

Typically, customer behavior is a function of their past activities.
Due to this, most research attempts at developing predictive systems
that can early predict the possibility of click and churn to better cap-
italize on the revenue opportunities. However, both of these events are
“rare” which makes it challenging.

1.1.6 Failures in Manufacturing

Today most manufacturing plants whether continuous or discrete run
24x7. Any downtime causes a significant cost to the plant. For instance,
in 2006 the automotive manufacturers in the US estimated production
line downtime costs at about $22,000 per minute or $1.3 million per
hour (Advanced Technology Services 2006). Some estimates ran as high
as $50,000 per minute.

A good portion of these downtimes is caused due to a failure. Failures
occur in either machine parts or the product. For example, predicting
and preventing machine bearing failure is a classical problem in the
machining and automotive industries.

Another common problem on the product failures are found in pulp-
and-paper industries. These plants continuously produce paper sheets.
Sometimes sheet breakage happens that causes the entire process to
stop. According to Bonissone et. al. (2002) Bonissone, Goebel, and
Y.-T. Chen 2002, this causes an expected loss of $3 billion every year
across the industry.

More broadly, as per a report by McKinsey in 2015 Manyika 2015,
predictive systems have the potential to save global manufacturing busi-
nesses up to $630 billion per year by 2025.

These failures are a rare event from a predictive modeling point-of-
view. For which, an early prediction of the failures for a potential

Chapter 1. Introduction 11

prevention is the objective.

Outside of these, there are several other applications, such as stock
market collapse, recession prediction, earthquake prediction, and so on.

None of these events should occur in an ideal world. We, therefore,
envision to have prediction systems to predict them in advance
to either prevent or minimize the impact.

1.2 A Working Example

A paper sheet-break problem in paper manufacturing is taken from Ran-
jan et al. 2018 as a working example in this book. The methods devel-
oped in the upcoming chapters will be applied on a sheet-break data
set.

The problem formulation in the upcoming chapter will also refer to
this problem. The sheet-break working example is described and used
for developing a perspective. However, the formulation and developed
methods apply to other rare event problems.

1.2.1 Problem Motivation

Paper sheet-break at paper mills is a critical problem. On average, a
mill witnesses more than one sheet-break every day. The average is even
higher for fragile papers, such as paper tissues and towels.

Paper manufacturing is a continuous process. These sheet-breaks
are unwanted and costly hiccups in the production. Each sheet-break
can cause downtime of an hour or longer. As mentioned in the previous
section, these downtime cause loss of millions of dollars at a plant and
billions across the industry. Even a small reduction in these breaks
would lead to significant savings.

More importantly, fixing a sheet-break often requires an operator to
enter the paper machine. These are large machines with some hazardous
sections that pose danger to operators’ health. Preventing sheet-break
via predictive systems will make operators’ work condition better and

12 1.2. A Working Example

Raw materials

Manufacturing process

Produced paper reel

Figure 1.1. A high-level schematic outline of a continuous paper
manufacturing process.

the paper production more sustainable.

1.2.2 Paper Manufacturing Process

Paper manufacturing machines are typically half a mile long. A con-
densed illustration of the machine and the process is given in Figure 1.1.
As shown, the raw materials get into the machine from one end. They
go through manufacturing processes of forming, press, drying, and cal-
endaring in the same order. Ultimately, a large reel of the paper sheet
is yielded at the other end. This process runs continuously.

In this continuous process, sometimes sheet tears are called sheet-
breaks in the paper industry. There are several possible causes for a
break. They could be instantaneous or gradual. Breaks due to instanta-
neous causes like something falling on the paper are difficult to predict.
But gradual effects that lead to a break can be caught in advance. For
example, in the illustrative outline in Figure 1.1 suppose one of the
rollers on the right starts to rotate asynchronously faster than the one
on its left. This asynchronous rotation will cause the sheet to stretch
and eventually break. When noticed in time, an imminent break can be
predicted and prevented.

1.2.3 Data Description

The sheet-break data set in consideration has observations from several
sensors measuring the raw materials, such as the amount of pulp fiber,
chemicals, etc., and the process variables, such as blade type, couch

Chapter 1. Introduction 13

99.34%

0.66%

Normal
Break

Figure 1.2. Class distribution in paper sheet-break data.

vacuum, rotor speed, etc.

The data contains the process status marked as: normal or break.
The class distribution is extremely skewed in this data. Shown in Fig-
ure 1.2, the data has only 0.66% positive labeled samples.

1.3 Machine Learning vs. Deep Learning

Machine Learning is known for its simplicity especially in regards to its
interpretability. Machine learning methods are, therefore, usually the
first choice for most problems. Deep learning, on the other hand, pro-
vides more possibilities. In this section, these two choices are debated.

As noticed in § 1.2.3 we have an imbalanced binary labeled multivari-
ate time series process. For over two decades, imbalanced binary clas-
sification has been actively researched. However, there are still several
open challenges in this topic. Krawczyk 2016 discussed these challenges
and the research progresses.

One major open challenge for machine learning methods is an ap-
parent absence of a robust and simple modeling framework. The sum-
marization of ML methods by Sun, Wong, and Kamel 2009 in Figure 1.3
makes this more evident.

As seen in the figure, there are several disjoint approaches. For each
of these approaches, there are some unique methodological modifica-
tions. These modifications are usually not straightforward to implement.

Another critical shortcoming of the above methods is their limita-
tions with multivariate time series processes.

To address this, there are machine learning approaches for multi-

14 1.3. Machine Learning vs. Deep Learning

• Randomly resampling
• Informatively resampling
• Synthesizing new data
• Hybrid of above

Data Level Approaches

Resampling Data Space

Small-Class Boosting
• RareBoost
• SMOTEBoost
• DataBoost-IM

Cost-Sensitive
Boosting
• AdaCx
• AdaCost
• CSB-2

Boosting

Weighting Data Space
• Translation Theorem

Introducing Learning Bias
• Decision Tree
• SVMs
• Associative

Classification

One Class Learning
• SVMs
• BPNNs

Adapting Learning
Algorithms
• Integrating costs into

learning
• Decision making to

minimizing costs

Adapting Existing Algorithms

Algorithm Level Approaches

Cost-Sensitive Learning

Research Solutions

Figure 1.3. A summary of research solutions in machine learning for
imbalanced data classification (Sun, Wong, and Kamel 2009).

variate time series classification. For example, see Batal et al. 2009;
Orsenigo and Vercellis 2010; Górecki and Łuczak 2015. Unfortunately,
these methods are not directly applicable to imbalanced data sets.

In sum, most of the related machine learning approaches are solving a
part of an, “imbalanced multivariate time series problem.” A robust and
easy-to-implement solution framework to solve the problem is, therefore,
missing in machine learning.

Deep learning, on the other hand, provides a better possibility.

It is mentioned in § 2.2.3 that traditional oversampling and data
augmentation techniques do not work well with extremely rare events.
Fortunately, in the rest of the book, it is found that deep learning models
do not necessarily require data augmentation.

Intuitively this could be logical. Deep learning models are inspired
by the mechanisms of human brains. We, humans, do not require over-
sampled rare events or objects to learn to distinguish them. For example,
we do not need to see several Ferrari cars to learn how one looks like.

Similarly, deep learning models might learn to distinguish rare events

Chapter 1. Introduction 15

from a few samples present in a large data set. The results in this book
empirically support this supposition. But this is still a conjecture and
the true reason could be different.

Importantly, there are architectures in deep learning that provide a
simpler framework to solve a complex problem such as an imbalanced
multivariate time series.

Given the above, deep learning methods are developed for rare event
prediction in the subsequent chapters of this book.

1.4 In this Book

In the next chapter, a rare event problem is framed by elucidating its
underlying process, the problem definition, and the objective. There-
after, before getting to deep learning constructs, a reader is set up with
TensorFlow in Chapter 3. Both these chapters can be skipped if the
reader intends to only learn the deep learning theories.

The book then gets into deep learning topics starting with decon-
structing multi-layer perceptrons in Chapter 4. They are made of dense
layers—the most fundamental deep learning construct. More complex
and advanced long- and short- term memory (LSTM) constructs are in
Chapter 5. Convolutional layers, considered as the workhorse of deep
learning, are in Chapter 6. Lastly, an elemental model in deep learning,
autoencoders, are presented in Chapter 7.

The chapters uncover the core concepts behind these constructs. A
simplified mathematics behind dense and other layers, state informa-
tion flow in LSTM, filtration mechanism in convolution, and structural
features in autoencoder are presented.

Some of the concepts are even rediscovered. For example,

• Chapter 4 draws parallels between a simple regression model and a
multi-layer perceptron. It shows how nonlinear activations differ-
entiates them by implicitly breaking down a complex problem into
small pieces. The essential gradient properties of activations are
laid. Moreover, customized activation is also implemented for re-

16 1.4. In this Book

search illustrations. Besides, the dropout concept which enhances
MLP (and most other networks) is explained along with answering
how to use it?

• LSTM mechanisms are one of the most mystical in deep learning.
Chapter 5 deconstructs an LSTM cell to visualize the state infor-
mation flow that preserves the memory. The secret behind it is
the gradient transmission which is explained in detail. Moreover,
the variants of LSTM available in TensorFlow such as backward
and bi-directional are visually explained. Besides, LSTMs have a
rich history with several variants. They are tabulated to compare
against the variant in TensorFlow. This gives a perspective of the
LSTM commonly in-use versus the other possibilities.

• Convolutional networks use convolution and pooling operations.
They are simple operations yet make convolutional networks one of
the most effective models. Chapter 6 explains both concepts with
visual exemplifications and theoretical clarifications. The chapter
goes into detail to explain convolutional and pooling properties
such as parameter sharing, filtration, and invariance. Besides,
the need for pooling to summarize convolution is statistically con-
cretized. The statistics behind pooling also answer questions like
why max-pool generally outperforms others, and what other pool-
ing statistics are viable?

• Autoencoders are constructs for unsupervised, and semi-supervised
learning. Chapter 7 explains them by drawing parallels with prin-
cipal component analysis in machine learning. The comparison
makes it easier to understand their internal mechanisms. Autoen-
coders’ ability to learn specific tasks such as denoising or feature
learning for classification by incorporating regularization are also
presented. Besides, classifiers trained on encodings are developed.

Every chapter explains the concepts along with illustrating model
implementations in TensorFlow. The implementation steps are also ex-
plained in detail to help a reader learn model building.

This book acknowledges that there is no perfect model. And, there-
fore, the book aims at showing how to develop the models to enable a
reader to build his own best model.

Chapter 1. Introduction 17

Think of deep learning as an art of cooking. One way to cook
is to follow a recipe. But when we learn how the food, the
spices, and the fire behave, we make our creation. And an
understanding of the how transcends the creation.

Likewise, an understanding of the how transcends deep learn-
ing. In this spirit, this book presents the deep learning con-
structs, their fundamentals, and how they behave. Base-
line models are developed alongside, and concepts to improve
them are exemplified.

Besides, the enormity of deep learning modeling choices can be over-
whelming. To avoid that, we have a few rules-of-thumb before con-
cluding a chapter. It lists the basics of building and improving a deep
learning model.

In summary, deep learning offers a robust framework to solve com-
plex problems. It has several constructs. Using them to arrive at the
best model is sometimes difficult. The focus of this book is to understand
these constructs to have a direction to develop effective deep learning
models. Towards the end of the book, a reader would understand every
construct and how to put them together.

Chapter 2

Rare Event Prediction

2.1 Rare Event Problem

The previous chapter emphasized the importance of rare event prob-
lems. This chapter formulates the problem by laying out the underlying
statistical process, problem definition, and objectives. Moreover, the
challenges in meeting the objectives are also discussed. The working
example in § 1.2 is referred to during the formulation.

2.1.1 Underlying Statistical Process

First, the statistical process behind a rare event problem is understood.
This helps in selecting an appropriate approach (see the discussion in
§ 1.3).

The process and data commonalities in the rare event examples in
§ 1.1 are

• time series,

• multivariate, and

• imbalanced binary labels.

Consider our working example of a sheet-break problem. It is from a
continuous paper manufacturing process that generates a data stream.

19

20 2.1. Rare Event Problem

This makes the underlying process a stochastic time series.

Additionally, this is a multivariate data streamed from multiple
sensors placed in different parts of the machine. These sensors collect
the process variables, such as temperature, pressure, chemical dose, etc.

Thus, at any time t, a vector of observations xt is recorded. Here, xt
is a vector of length equal to the number of sensors and xit the reading
of the i-th sensor at time t. Such a process is known as a multivariate
time series.

In addition to the process variables xt, a binary label yt denoting
the status of the process is also available. A positive yt indicates an
occurrence of the rare event. Also, due to the rareness of positive yt’s,
the class distribution is imbalanced.

For instance, the labels in the sheet-break data denote whether the
process is running normal (yt = 0), or there is a sheet-break (yt = 1).
The samples with yt = 0 and yt = 1 is referred to as negatively and
positively labeled data in the rest of the book. The former is the majority
class and the latter minority.

Putting them together, we have an imbalanced multivariate stochas-
tic time series process. Mathematically represented as, (yt,xt), t =
1, 2, . . . where yt ∈ {0, 1} with

∑
1{yt = 1} �

∑
1{yt = 0} and xt ∈ Rp

with p being the number of variables.

2.1.2 Problem definition

Rare event problems demand an early detection or prediction to prevent
the event or minimize its impact.

In literature, detection and prediction are considered as different
problems. However, in the problems discussed here, early detection
eventually becomes a prediction. For example, early detection of a con-
dition that would lead to a sheet-break is essentially predicting an im-
minent sheet-break. This can, therefore, be formulated as a “prediction”
problem.

An early prediction problem is predicting an event in advance. Sup-
pose the event prediction is needed k time units in advance. This k
should be chosen such that the prediction gives sufficient time to take

Chapter 2. Rare Event Prediction 21

an action against the event.

Mathematically, this can be expressed as estimating the probability
of yt+k = 1 using the information at and until time t, i.e.,

Pr[yt+k = 1|xt−] (2.1)

where xt− denotes x before time t, i.e., xt− = {xt,xt−1, . . .}.
Equation 2.1 also shows that this is a classification problem. There-

fore, prediction and classification are used interchangeably in this book.

2.1.3 Objective

The objective is to build a binary classifier to predict a rare event
in advance. To that end, an appropriate loss function and accuracy
measures are selected for predictive modeling.

Loss function

There are a variety of loss functions. Among them, binary cross-entropy
loss is chosen here.

Cross-entropy is intuitive and has the appropriate theoretical prop-
erties that make it a good choice. Its gradient lessens the vanishing
gradients issue in deep learning networks. Moreover, from the model
fitting standpoint, cross-entropy approximates the Kullback-Leibler di-
vergence. Meaning, minimizing cross-entropy yields an approximate es-
timation of the “true” underlying process distributions1.

It is defined as,

L(θ) = −yt+k log(Pr[yt+k = 1|xt−, θ])−
(1− yt+k) log(1− Pr[yt+k = 1|xt−, θ])

(2.2)

where θ denotes the model.
1Refer to a recent paper at NIPS 2018 Zhang and Sabuncu 2018 for more details

and advancements in cross-entropy loss.

22 2.1. Rare Event Problem

Entropy means randomness. The higher the entropy the more the
randomness. More randomness means a less predictable model, i.e., if
the model is random it will make poor predictions.

Consider an extreme output of an arbitrary model: an absolute op-
posite prediction, e.g., estimating Pr[y = 1] = 0 when y = 1. In such a
case, the loss in Equation 2.2 will be, L = −1∗log(0)−(1−1)∗log(1−0) =
−1 ∗ −∞− 0 ∗ 0 = +∞.

On the other extreme, consider an oracle model: makes absolute true
prediction, i.e. Pr[y = 1] = 1 when y = 1. In this case, the cross-entropy
loss will become, L = −1 ∗ log(1)− (1− 1) ∗ log(1− 1) = 0.

During model training, any arbitrary model is taken as a starting
point. The loss is, therefore, high at the beginning. The model then
trains itself to lower the loss. This is done iteratively to bring the cross-
entropy loss from +∞ towards 0.

Accuracy measures

Rare event problems have extremely imbalanced class distribution. The
traditional misclassification accuracy metric does not work here.

This is because more than 99% of our samples are negatively labeled.
A model that predicts everything, including all the minority < 1% pos-
itive samples, as negative is still > 99% accurate. Thus, a model that
cannot predict any rare event would appear accurate. The area under
the ROC curve (AUC) measure is also unsuitable for such extremely
imbalanced problems.

In building a classifier, if there is any deviation from the usual it
is useful to fall back to the confusion matrix and look at other accu-
racy measures drawn from it. A confusion matrix design is shown in
Table 2.1.

The “actuals” and the “predictions” are along the rows and columns
of the matrix. Their values are either negative or positive. As mentioned
before, negative corresponds to the normal state of the process and is
the majority class. And, positive corresponds to the rare event and is
the minority class.

The actual negative or positive samples predicted as the same go on

Chapter 2. Rare Event Prediction 23

the diagonal cells of the matrix as true negative (TN) and true positive
(TP), respectively. The other two possibilities are if an actual negative
is predicted as a positive and the vice versa denoted as false positive
(FP) and false negative (FN), respectively.

In rare event classifiers, the goal is inclined towards maximizing the
true positives while ensuring it does not lead to excessive false predic-
tions. In light of this goal, the following accuracy measures are chosen
and explained vis-à-vis the confusion matrix.

• recall: the percentage of positive samples correctly predicted as
one, i.e., TP

TP + FN . It lies between 0 and 1. A high recall indicates
the model’s ability to accurately predicting the minority class. A
recall equal to one means the model could detect all of the rare
events. However, this can also be achieved with a dummy model
that predicts everything as a rare event. To counterbalance this,
we also use f1-score.

• f1-score: a combination (harmonic mean) of precision2 and recall.
This score indicates the model’s overall ability in predicting most
of the rare events with as few false alerts as possible. It is com-
puted as, 2(

TP
TP + FN

)−1
+
(

TP
TP + FP

)−1 . The score lies between 0 and

1 with higher the better. If we have the dummy model favoring
high recall by predicting all samples as positive (a rare event), the
f1-score will counteract it by getting close to zero.

• false positive rate (fpr): lastly, it is also critical to measure
the false positive rate. Fpr is the percentage of false alerts, i.e.,

FP
FP + TN . An excess of false alerts makes us insensitive to the
predictions. It is, therefore, imperative to keep the fpr as close to
zero as possible.

2A ratio of the true positives overall predicted positives. The ratio lies between 0
to 1 with higher the better. This measure shows the model performance w.r.t. high
true positives and low false positives. High precision is indicative of this and vice
versa.

24 2.2. Challenges

Table 2.1. Confusion matrix.

Predicted
Negative Positive

Actual Negative True Negative (TN) False Positive (FP)
Positive False Negative (FN) True Positive (TP)
* Negative: Normal process and the majority class.
** Positive: Rare event and the minority class.

2.2 Challenges

The step after formulating a problem is to identify the modeling chal-
lenges. Challenges, if identified, enable a better modeling direction. It
tells a practitioner the issues to address during the modeling.

A few acute challenges posed by a rare event problem are,

• high-dimensional multivariate time series process,

• early prediction, and

• imbalanced data.

2.2.1 High-dimensional Multivariate Time Series

This is a mouthful and, hence, broken down to its elements for clarity.
Earlier, § 2.1.1 mentioned that a rare event process is a multivariate time
series. A multivariate process has multiple features (variables). Rare
event problems typically have 10s to 100s of features which categorizes
them as a high-dimensional process.

A high-dimensional process poses modeling challenges due to “spa-
tial” relationships between the features. This is also known as cross-
correlations in space. The term “space” is used because the features
mentioned here are spread in a space.

While this space is in a mathematical context, for an intuitive un-
derstanding, think of the sensors placed at different locations in space
on a paper manufacturing machine and how they correlate with each
other.

Chapter 2. Rare Event Prediction 25

𝑦"

𝑥$%

𝑥&%

𝑥'%

Features

(a) Space.

𝑥"($%&)

𝑦$

𝑥"$𝑥"&

Time

(b) Time.

𝑥"($%&)

𝑥(($%&)

𝑥&($%&)

𝑦$

𝑥&$𝑥&&

𝑥($𝑥(&

𝑥"$𝑥"&

Time

Features

(c) Space and time.

Figure 2.1. Spatio-temporal relationships.

Figure 2.1a shows a visual illustration of spatial correlations and de-
pendencies of features with the response. Since every feature can be
related to each other, the possible spatial relationships increase expo-
nentially with the number of features, p.

The issue with excess spatial relationships with large p is that they
may induce spurious dependencies in the model. For example, in the
figure x1 and x2 are correlated and x2 is related to y. But the model
may select x1 instead of x2 or both x1 and x2.

Such spurious dependencies often cause high model variance and
overfitting, and therefore, should be avoided.

Time series, also referred to as temporal processes, pose an-
other critical challenge. Temporal features exhibit correlations with
themselves (autocorrelation3) and long-short term dependencies with

3The correlation of a variable with a lagged value of itself. For example, xt being
correlated with its previous value xt−1.

26 2.2. Challenges

the response.

For illustration, Figure 2.1b shows xt−1 and xt are autocorrelated.
It is important to isolate and/or account for these dependencies in the
model to avoid high model variance.

Additionally, we see that xt and an early observation close to x1

are related to yt indicative of short- and long-term dependencies, re-
spectively. While estimating the short-term dependencies are relatively
simpler, long-term dependencies are quite challenging to derive.

But long-term dependencies are common and should not be ignored.
For example, in a paper manufacturing process, a few chemicals that
are fed at an early stage of the production line affects the paper quality
hours later. In some processes, such long-term relationships are even a
few days apart.

A major issue in drawing these long-term dependencies is that any
prior knowledge on the lag with which a feature affects the response may
be unavailable. In absence of any prior knowledge, we have to include
all the feature lags in a model. This blows up the size of the model and
makes its estimation difficult.

A high-dimensional and time series process are individually challeng-
ing. If they are together, their challenges get multiplied.

Figure 2.1c is visually illustrating this complexity. As we can see
here, in a high-dimensional time series process the features have, a.
relationships with themselves, b. long- and short-term dependencies,
and c. cross-correlations in space and time. Together, all of these are
called spatio-temporal relationships.

As shown in the figure, the dependencies to estimate in a spatio-
temporal structure grows exponentially with more features and a longer
time horizon. Modeling such processes is, therefore, extremely challeng-
ing.

2.2.2 Early Prediction

As mentioned in § 2.1.2, we need to predict an event in advance. Ideally,
we would like to predict it well in advance. However, the farther we are

Chapter 2. Rare Event Prediction 27

Signals are weaker the farther away
we are in time from the event

Predictive signal Event
Time

Figure 2.2. Challenge with early prediction.

from an event the weaker are the predictive signals and, therefore, results
in poor predictions.

Visually illustrated in Figure 2.2, the red zagged mark indicates the
occurrence of an event and the horizontal axis is time. As shown, the
predictive signal will be the most dominant closest to the event. The
farther we are in a time the weaker is the signal.

This is generally true for any event irrespective of whether it is rare
or not. However, due to the dramatic adverse impact of a rare event, it
is critical to be able to predict it well in advance. And the challenge is
the more in advance prediction we want the harder it gets for a model.

2.2.3 Imbalanced Data

A rare event problem by definition has imbalanced data. The issue
with imbalanced data sets is that the model is heavily skewed towards
the majority class. In such situations, learning the underlying patterns
predictive of the rare event becomes difficult.

A typical resolution to address the imbalanced data issue is over-
sampling. Oversampling, however, does not work in most rare event
problems. This is because, a. extreme imbalance in class distribution,
and b. time series data.

The former typically make resampling approaches inapplicable be-
cause it requires excessive resampling to balance the data. This causes
the model to get extremely biased.

The latter prohibits the usage of more sophisticated oversampling

28 2.2. Challenges

techniques, such as SMOTE. This is because samples “interpolation” for
data synthesis done in SMOTE takes into account the spatial aspect of
the process but not temporal (refer to Appendix L). Due to this, the
synthesized data does not necessarily accentuate or retain the underlying
predictive patterns.

The temporal aspect of our problem also prohibits the use of most
other data augmentation approaches. In problems like image classifica-
tion, techniques such as reorientation and rotation augment the data.

But with temporal features, any such augmentation distorts the data
and, consequently, the inherent dependencies. Time series data augmen-
tation methods using slicing and time warping are available but they do
not work well with multivariate time series.

In the rest of the book, appropriate modeling directions to address
these challenges are discussed.

Chapter 3

Setup

TensorFlow and the working example is set up in this chapter. The
chapter begins with the reasoning for choosing TensorFlow followed by
laying out the steps to set it up.

After this setup, the chapter describes the paper sheet-break prob-
lem, a data set for it, and a few basic preprocessing steps. The following
sections are intentionally succinct to keep the setup process short.

3.1 TensorFlow

There are a bunch of platform choices for deep learning. For example,
Theano, PyTorch, and TensorFlow. Among them, the book uses the
recent TensorFlow 2x. The section begins with its reasoning and then
the installation steps in Ubuntu, Mac, and Windows.

Why TensorFlow 2x?

TensorFlow 2x was released in 2019 and is expected to change the land-
scape of deep learning. It has made,

• model building simpler,

• production deployment on any platform more robust, and

29

30 3.1. TensorFlow

• enables powerful experimentation for research.

With these, TF 2x is likely to propel deep learning to mainstream
applications in research and industry alike.

TF 2x has Keras API integrated into it. Keras is a popular high-
level API for building and training deep learning models. In regards to
TF 2x and Keras, it is important to know,

• TF 1.10+ also supports Keras. But in TF 2x Keras is also inte-
grated with the rest of the TensorFlow platform. TF 2x is pro-
viding a single high-level API to reduce confusion and enable ad-
vanced capabilities.

• tf.keras in TF 2x is different from the keras library from www.
keras.io. The latter is an independent open source project that
precedes TF 2x and was built to support multiple backends, viz.
TensorFlow, CNTK, and Theano.

It is recommended to read TensorFlow 2018 and TensorFlow 2019
from the TensorFlow team for more details and benefits of TF 2x. In
summary, they state that TF 2x has,

• brought an ease-of-implementation,

• immense computational efficiency, and

• compatibility with most mobile platforms, such as Android and
iOS, and embedded edge systems like Raspberry Pi and edge
TPUs.

Achieving these was difficult before. As TF 2x brings all of these
benefits, this book chose it.

Fortunately, the installation has become simple with TF 2x. In
the following, the installation prerequisites, the installation, and testing
steps are given.

Note: Using Google Colab environment is an alternative to
this installation. Google Colab is generally an easier way to
work with TensorFlow. It is a notebook on Google Cloud
with all the TensorFlow requisites pre-installed.

www.keras.io
www.keras.io

Chapter 3. Setup 31

3.1.1 Prerequisites

TensorFlow is available only for Python 3.5 or above. Also, it is rec-
ommended to use a virtual environment. Steps for both are presented
here.

Install Python

Anaconda

Anaconda with Jupyter provides a simple approach for installing
Python and working with it.

Installing Anaconda is relatively straightforward. Follow this link
https://jupyter.org/install and choose the latest Python.

System

First, the current Python version (if present) is looked for.

$ python --version
Python 3.7.1

or,

$ python3 --version
Python 3.7.1

It this version is less than 3.5, Python can be installed as shown in
the listing below.

Listing 3.1. Install Python.
$ brew update
$ brew install python # Installs Python 3
$ sudo apt install python3 -dev python3 -pip

Install Virtual Environment

An optional requirement is using a virtual environment. Its importance
is in the next section, § 3.1.2. It can be installed as follows1.

1Refer: https://packaging.python.org/guides/
installing-using-pip-and-virtual-environments/

https://jupyter.org/install
https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/
https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/

32 3.1. TensorFlow

Mac/Ubuntu
$ python3 -m pip install --user virtualenv

Windows
py -m pip install --user virtualenv

Now the system ready to install TensorFlow.

3.1.2 TensorFlow 2x Installation

Instantiate and activate a virtual environment

The setup will begin by creating a virtual environment.

Why is the virtual environment important? A virtual environ-
ment is an isolated environment for Python projects. Inside a virtual
environment one can have a completely independent set of packages
(dependencies) and settings that will not conflict with anything in other
virtual environment or with the default local Python environment.

This means that different versions of the same package can be used
in different projects at the same time on the same system but in different
virtual environments.

Mac/Ubuntu

Create a virtual environment called tf_2.
$ virtualenv --system -site -packages -p python3 tf_2
$ source tf_2/bin/activate # Activate the

virtualenv

The above command will create a virtual environment tf_2. In the
command,

• virtualenv will create a virtual environment.

• –system-site-packages allow the projects within the virtual en-
vironment tf_2 to access the global site-packages. The default

Chapter 3. Setup 33

setting does not allow this access (–no-site-packages were used
before for this default setting but now deprecated.)

• -p python3 is used to set the Python interpreter for tf_2. This
argument can be skipped if the virtualenv was installed with
Python 3. By default, that is the python interpreter for the vir-
tual environment. Another option for setting Python 3.x as an
interpreter is $ virtualenv –system-site-packages
–python=python3.7 tf_2. This gives more control.

• tf_2 is the name of the virtual environment created. Any other
name of a user’s choice can also be given. The physical directory
created at the location of the virtual environments will bear this
name. The (/tf_2) directory will contain a copy of the Python
compiler and all the packages installed afterward.

Anaconda

With Anaconda, the virtual environment is created using Conda as,

$ conda create -n tf_2
$ conda activate tf_2 # Activate the virtualenv

The above command will also create a virtual environment tf_2.
Unlike before, pre-installation of the virtual environment package is not
required with Anaconda. The in-built conda command provides this
facility.

Understanding the command,

• conda can be used to create virtual environments, install packages,
list the installed packages in the environment, and so on. In short,
conda performs operations that pip and virtualenv do. While
conda replaces virtualenv for most purposes, it does not replace
pip as some packages are available on pip but not on conda.

• create is used to create a virtual environment.

• -n is an argument specific to create. -n is used to name the
virtual environment. The value of n, i.e. the environment name,
here is tf_2.

34 3.1. TensorFlow

• Additional useful arguments: similar to --system-site-packages
in virtualenv, --use-local can be used.

Windows

Create a new virtual environment by choosing a Python interpreter and
making a .\tf_2 directory to retain it.

C:\> virtualenv --system -site -packages -p python3 ./
tf_2

Activate the virtual environment:
C:\> .\tf_2\Scripts\activate

Install packages within a virtual environment without affecting the
host system setup. Start by upgrading pip:

(tf_2) C:\> pip install --upgrade pip
(tf_2) C:\> pip list # show packages installed

within the virtual environment

After the activation in any system, the terminal will change to this
(tf_2) $.

Install TensorFlow

Upon reaching this stage, TensorFlow installation is a single line.
(tf_2) $ pip install --upgrade tensorflow

For a GPU or any other version of TensorFlow replace tensorflow
in this listing with one of the following.

• tensorflow âĂŤLatest stable release (2.x) for CPU-only (recom-
mended for beginners).

• tensorflow-gpu âĂŤLatest stable release with GPU support (Ubuntu
and Windows).

• tf-nightly âĂŤPreview build (unstable). Ubuntu and Windows
include GPU support.

Chapter 3. Setup 35

3.1.3 Testing

Quick test

An instant test for the installation through the terminal is,

(tf_2) $ python -c "import tensorflow as tf; x =
[[2.]]; print(’tensorflow version ’, tf.
__version__); print(’hello , {}’. format(tf.matmul
(x, x)))"

tensorflow version 2.0.0
hello , [[4.]]

The output should have the TensorFlow version and a simple oper-
ation output as shown here.

Modeling test

More elaborate testing is done by modeling a simple deep learning model
with MNIST (fashion_mnist) image data.

import tensorflow as tf
layers = tf.keras.layers
import numpy as np
print(tf.__version__)

The tf.__version__ should output tensorflow 2.x. If the version
is older, check the installation, or the virtual environment should be
revisited.

In the following, the fashion_mnist data is loaded from the Ten-
sorFlow library and preprocessed.

mnist = tf.keras.datasets.fashion_mnist
(x_train , y_train), (x_test , y_test) = mnist.

load_data ()
x_train , x_test = x_train / 255.0 , x_test / 255.0

A simple deep learning model is now built and trained on the data.

model = tf.keras.Sequential ()
model.add(layers.Flatten ())
model.add(layers.Dense(64, activation=’relu’))

36 3.2. Sheet Break Problem Dataset

model.add(layers.Dense(64, activation=’relu’))
model.add(layers.Dense(10, activation=’softmax ’))
model.compile(optimizer=’adam’,
loss=’sparse_categorical_crossentropy ’,
metrics =[’accuracy ’])

model.fit(x_train , y_train , epochs =5)

Note that this model is only for demonstration and, therefore, trained
on just five epochs.

Lastly, the model is evaluated on a test sample.
predictions = model.predict(x_test)
predicted_label = class_names[np.argmax(predictions

[0])]
print(’Actual label:’, class_names[y_test [0]])
print(’Predicted label:’, predicted_label)
Actual label: Ankle boot
Predicted label: Ankle boot

The prediction output confirms a complete installation.

3.2 Sheet Break Problem Dataset

An anonymized data from the paper manufacturing plant for sheet break
is taken from link2 provided in Ranjan et al. 2018.

It contains data at two minutes frequency with the time informa-
tion present in the DateTime column. The system’s status with regards
to normal versus break is present in the SheetBreak column with the
corresponding values as 0 and 1.

These remaining columns include timestamped measurements for the
predictors. The predictors include raw materials, such as the amount
of pulp fiber, chemicals, etc., and the process variables, such as blade
type, couch vacuum, rotor speed, etc.

The steps for loading and preparing this data is shown in Listing 3.2
below.

Listing 3.2. Loading data.
2http://bit.ly/2uCIJpG

http://bit.ly/2uCIJpG

Chapter 3. Setup 37

Figure 3.1. A snapshot of the sheet-break data.

1 import pandas as pd
2
3 df = pd.read_csv("data/processminer -sheet -break -rare

-event -dataset.csv")
4 df.head(n=5) # visualize the data.
5
6 # Hot encoding
7 hotencoding1 = pd.get_dummies(df[’Grade&Bwt’])
8 hotencoding1 = hotencoding1.add_prefix(’grade_ ’)
9 hotencoding2 = pd.get_dummies(df[’EventPress ’])
10 hotencoding2 = hotencoding2.add_prefix(’eventpress_ ’

)
11
12 df = df.drop([’Grade&Bwt’, ’EventPress ’], axis =1)
13
14 df = pd.concat ([df , hotencoding1 , hotencoding2],

axis =1)
15
16 # Rename response column name for ease of

understanding
17 df = df.rename(columns ={’SheetBreak ’: ’y’})

A snapshot of the data is shown in Figure 3.1.

The data contains two categorical features which are hot-encoded
in Line 7-10 followed by dropping the original variables. The binary
response variable SheetBreak is renamed to y.

The processed data is stored in a pandas data frame df. This will be
further processed with curve shifting and temporalization for modeling

38 3.2. Sheet Break Problem Dataset

in the next chapters.

Deactivate Virtual Environment

Before closing, deactivate the virtual environment.

Mac/Ubuntu

(tf_2) C:\> deactivate

Windows

(tf_2) $ deactivate # don’t exit until you’re done
using TensorFlow

Conda

(tf_2) $ source deactivate

or,

(tf_2) $ source deactivate

This concludes the TensorFlow setup. Now we will head to model
building.

Chapter 4

Multi-layer Perceptrons

4.1 Background

Perceptrons were built in the 1950s. And they proved to be a powerful
classifier at the time.

A few decades later, researchers realized stacking multiple percep-
trons could be more powerful. That turned out to be true and multi-
layer perceptron (MLP) was born.

A single perceptron works like a neuron in a human brain. It takes
multiple inputs and, like a neuron emits an electric pulse, a perceptron
emits a binary pulse which is treated as a response.

The neuron-like behavior of perceptrons and an MLP being a net-
work of perceptrons perhaps led to the term neural networks come forth
in the early days.

Since its creation, neural networks have come a long way. Tremen-
dous advancements in various architectures, such as convolutional neu-
ral networks (CNN), recurrent neural networks (RNN), etc., have been
made.

Despite all the advancements, MLPs are still actively used. It is the
“hello world” to deep learning. Similar to linear regression in machine
learning, MLP is one of the immortal methods that remain active due
to its robustness.

39

40 4.1. Background

It is, therefore, logical to start exploring deep learning with multi-
layer perceptrons.

Multi-layer perceptrons are complex nonlinear models. This chapter
unfolds MLPs to simplify and explain its fundamentals in § 4.2. The
section shows that an MLP is a collection of simple regression models
placed on every node in each layer. How they come together with non-
linear activations to deconstruct and solve complex problems becomes
clearer in this section.

An end-to-end construction of a network and its evaluation is then
given in § 4.3-4.4. § 4.3 has granular details on data preparation, viz.
curve shifting for early prediction, data splitting, and features scaling.
Thereafter, every construction element, e.g., layers, activations, evalua-
tion metrics, and optimizers, are explained in § 4.4.

Dropout is a useful technique (not limited to multi-layer perceptrons)
that resolves co-adaptation issue in deep learning. The co-adaptation
issue is explained in § 4.5.1. How dropout addresses it and regularizes a
network is in § 4.5.2. The use of dropout in a network is then illustrated
in § 4.5.3.

Activation functions elucidated in § 4.7 are one of the most critical
constructs in deep learning. Network performances are usually sensi-
tive to activations due to their vanishing or exploding gradients. An
understanding of activations is, therefore, essential for constructing any
network. § 4.7.1 and 4.7.2 explain vanishing and exploding gradients
issues, and their connection with activations. The story of activations
laying discoveries such as non-decaying gradient, saturation region, and
self-normalization is in § 4.7.3 and 4.7.4.

Besides, a few customizations in TensorFlow implementations are
sometimes required to attempt novel ideas. § 4.8.1 shows an implemen-
tation of a new thresholded exponential linear unit (telu) activation.
Moreover, metrics such as f1-score and false positive rate useful for eval-
uating imbalanced classifiers are unavailable in TensorFlow. They are
custom implemented in § 4.8.2. This section also clarifies that metrics
available outside TensorFlow such as in sklearn cannot be directly used
during model training.

Lastly, deep learning networks have several configurations and nu-

Chapter 4. Multi-layer Perceptrons 41

Hidden, Dense,
Layer-1.

Output Layer.Hidden, Dense,
Layer-2.

Input Prediction, !𝑦

𝑥$

𝑥%

𝑥&

⋮

Input Layer.

Figure 4.1. A high-level representation of a multi-layer perceptron.

merous choices for them, e.g., number of layers, their sizes, activations
on them, and so on. To make a construction simpler, the chapter con-
cludes with a few rules-of-thumb in § 4.10.

4.2 Fundamentals of MLP

Multi-layer perceptrons are possibly one of the most visually illustrated
neural networks. Yet most of them lack a few fundamental explanations.
Since MLPs are the foundation of deep learning, this section attempts
at providing a clearer perspective.

A typical visual representation of an MLP is shown in Figure 4.1.
This high-level representation shows the feed-forward nature of the net-
work. In a feed-forward network, information between layers flows in
only forward direction. That is, information (features) learned at a
layer is not shared with any prior layer1.

The abstracted network illustration in Figure 4.1 is unwrapped to
its elements in Figure 4.2. Each element, its interactions, and imple-
mentation in the context of TensorFlow are explained step-by-step in
the following.

1. The process starts with a data set. Suppose there is a data set

1Think of a bi-directional LSTM discussed in § 5.6.4 as a counter example to a
feed-forward network.

42 4.2. Fundamentals of MLP

𝑤!!
(#)

𝑔 &
!

"!

𝑤""!
($) 𝑧!

& + 𝑏""
$

𝑔 &
!

"!

𝑤&!
($)𝑧!

& + 𝑏&
$

𝑥!

𝑥!

𝑥"

𝑝 featuresX"×$

𝑛 samples

W$×%!
('))

W+!×+"
(-).𝑧!

(!)
𝑔 &

!

'

𝑤&!
(&)𝑥! + 𝑏&

&

𝑧0!
(!)

𝑤!!
(!)

𝑤+!!
(!)

𝑤!-
(!)

𝑤+!-
(!)

𝑤!1
(!)

𝑤+!1
(!)

𝑤!!
(-)

𝑤+"!
(-)

𝑤!+!
(-)

𝑤+"+!
(-)

𝜎 &
!

""

𝑤&!
(()𝑧!

$ + 𝑏&
(

𝑤!+"
(#)

𝑧&
($)

𝑧)"
($)

W%"×'
*)

Hidden Layer-1, Dense(𝒎𝟏).
Input 𝑛, × 𝑝
Weights W$×%!

(')

Output 𝑛, ×𝑚'

Output Layer, Dense(1).
Input 𝑛, ×𝑚-

Weights W%"×'
(*)

Output 𝑛, × 1

Hidden Layer-2, Dense(𝒎𝟐).
Input 𝑛, ×𝑚'

Weights W%!×%"
(-)

Output 𝑛, ×𝑚-

Batchsize, 𝑛,

Prediction, *𝑦

𝑥'

𝑥-

⋮

Input Layer.
Output 𝑛, × 𝑝

!𝑦

𝑔 &
!

'

𝑤"!!
(&) 𝑥! + 𝑏"!

&

⋮⋮

⋮
⋮

Prediction in
forward direction

Model learning in
backward direction

⋮ ⋮

⋮
⋮

⋮ ⋮

⋮

Figure 4.2. An unwrapped visual of a multi-layer perceptron. The input
to the network is a batch of samples. Each sample is a feature
vector. The hidden layers in an MLP are Dense. A Dense layer
is characterized by a weight matrix W and bias b. They perform
simple affine transformations (dot product plus bias: XW + b).
The affine transforms extract features from the input. The
transforms are passed through an activation function. The
activations are nonlinear. Its nonlinearity enables the network to
implicitly divide a complex problem into arbitrary sub-problems.
The outputs of these sub-problems are put together by the network
to infer the final output ŷ.

Chapter 4. Multi-layer Perceptrons 43

shown at the top left, Xn×p, with n samples and p features.

2. The model ingests a randomly selected batch during training. The
batch contains random samples (rows) from X unless otherwise
mentioned. The batch size is denoted as nb here2.

3. By default, the samples in a batch are processed independently.
Their sequence is, therefore, not important.

4. The input batch enters the network through an input layer. Each
node in the input layer corresponds to a sample feature. Explicitly
defining the input layer is optional but it is done here for clarity.

5. The input layer is followed by a stack of hidden layers till the
last (output) layer. These layers perform the “complex” intercon-
nected nonlinear operations. Although perceived as “complex,” the
underlying operations are rather simple arithmetic computations.

6. A hidden layer is a stack of computing nodes. Each node extracts
a feature from the input. For example, in the sheet-break problem,
a node at a hidden-layer might determine whether the rotations
between two specific rollers are out-of-sync or not3. A node can,
therefore, be imagined as solving one arbitrary sub-problem.

7. The stack of output coming from a layer’s nodes is called a feature
map or representation. The size of the feature map, also equal to
the number of nodes, is called the layer size.

8. Intuitively, this feature map has results of various “sub-problems”
solved at each node. They provide predictive information for the
next layer up until the output layer to ultimately predict the re-
sponse.

9. Mathematically, a node is a perceptron made of weights and bias
parameters. The weights at a node are denoted with a vector w
and a bias b.

2Batch size is referred to as None or ? in model.summary(), e.g., see Figure 4.4.
3Another example from the face-recognition problem about solving an arbitrary

sub-problem at a node is determining whether eyebrows are present or not.

44 4.2. Fundamentals of MLP

10. All the input sample features go to a node. The input to the first
hidden layer is the input data features x = {x1, . . . , xp}. For any
intermediate layer it is the output (feature map) of the previous
layer, denoted as z = {z1, . . . , zm}, where m is the size of the prior
layer.

11. Consider a hidden layer l of size ml in the figure. A node j in the
layer l performs a feature extraction with a dot product between
the input feature map z(l−1) and its weights w(l)

j , followed by an
addition with the bias bj . Generalizing this as,

z
(l)
j =

ml−1∑
i

z
(l−1)
i w

(l)
ij + bj , j = 1, . . . ,ml (4.1)

where z(l−1)
i , i = 1, . . . ,ml−1 is a feature outputted from the prior

layer l − 1 of size ml−1.

12. The step after the linear operation in Equation 4.1 is applying
a nonlinear activation function, denoted as g. There are various
choices for g. Among them, a popular activation function is recti-
fied linear unit (relu) defined as,

g(z) =

{
z, if z > 0.

0, otherwise.
(4.2)

As shown in the equation, the function is nonlinear at 0.

13. The operations in Equation 4.1 and 4.2 can be combined for every
nodes in a layer as,

z(l) = g(z(l−1)W (l) + b(l)) (4.3)

where z(l) is the feature map, W (l) = [w
(l)
1 ; . . . ;w

(l)
ml] is the stack

of weights of all ml nodes in the layer, z(l−1) is the input to the
layer which is x, if l = 1, and b(l) = {b(l)1 , . . . , b

(l)
ml} is the bias.

Chapter 4. Multi-layer Perceptrons 45

14. Equation 4.3 is applied to the batch of nb input samples. For
a Dense layer this is a matrix operation shown in Equation 4.4
below,

Z
(l)
nb×ml = g(Z

(l−1)
nb×ml−1

W
(l)
ml−1×ml + b(l)

ml
). (4.4)

The output Z(l)
nb×ml of the equation is the g-activated affine trans-

formation of the input features.

� The operation here is called a tensor operation.
Tensor is a term used for any multi-dimensional

matrix. Tensor operations are computationally efficient
(especially in GPUs), hence, most steps in deep learning
layers use them instead of iterative loops.

15. It is the nonlinear activation in Equation 4.4 that dissociates the
feature map of one layer from another. Without the activation, the
feature map outputted from every layer will be just a linear trans-
formation of the previous. This would mean the subsequent layers
are not providing any additional information for a better predic-
tion. An algebraic explanation of this is given in Equation A.1 in
the Appendix.

16. Activation functions, therefore, play amajor role. An appropriate
selection of activation is critical. In addition to being nonlinear,
an activation function should also have a non-decaying gradient,
saturation region, and a few other criteria discussed in § 4.7.

17. The operation in Equation 4.4 is carried forward in each layer till
the output layer to deliver a prediction. The output is delivered
through a different activation denoted as σ. The choice of this
activation is dictated by the response type. For example, it is
sigmoid for a binary response.

18. The model training starts with randomly initializing the weights
and biases at the layers. The response is predicted using these

46 4.2. Fundamentals of MLP

parameters. The prediction error is then propagated back into the
model to update the parameters to a value that reduces the error.
This iterative training procedure is called backpropagation.

19. Put simply, backpropagation is an extension of the iterative stochas-
tic gradient-descent based approach to train multi-layer deep learn-
ing networks. This is explained using a single-layer perceptron,
also otherwise known as, logistic regression. A gradient-descent
based estimation approach for logistic regression is shown in p.120-
121 in Hastie, Tibshirani, and Friedman 20094. The estimation
equation in the reference5 is rephrased to a simplified context here,

θnew ← θold − η∇θ
← θold − ηXT (y − ŷ) (4.5)

where η is a multiplier6, X is a random sample, ∇θ is the first-
order gradient of the loss with respect to the parameter θ, and θ
is the weight and bias parameters. As shown, the gradient ∇θ for
the logistic regression contains (y − ŷ) which is the prediction
error. This implies that the prediction error is propagated back
to update the model parameters θ.

20. This estimation approach for logistic regression is extended in
backpropagation for a multi-layer perceptron. In backpropagation,
this process is repeated on every layer. It can be imagined as
updating/learning one layer at a time in the reverse order of pre-
diction.

21. The learning is done iteratively over a user-defined number of
epochs. An epoch is a learning period. Within each epoch, the
stochastic gradient-descent based learning is performed iteratively
over randomly selected batches.

4The approach in Hastie, Tibshirani, and Friedman 2009 also used the second-
derivative or the Hessian matrix. However, in most backpropagation techniques only
first derivatives are used.

5Equation 4.26 in Hastie, Tibshirani, and Friedman 2009.
6Equal to the Hessian in Newton-Raphson algorithm.

Chapter 4. Multi-layer Perceptrons 47

22. After training through all the epochs the model is expected to have
learned the parameters that have minimal prediction error. This
minimization is, however, for the training data and is not guaran-
teed to be the global minima. Consequently, the performance of
the test data is not necessarily the same.

The fundamentals enumerated above will be referred to during the
modeling in the rest of the chapter.

� Deep learning models are powerful because it
breaks down a problem into smaller sub-problems

and combines their results to arrive at the overall solu-
tion. This fundamental ability is due to the presence of
the nonlinear activations.

� Intuitively, backpropagation is an extension of
stochastic gradient-descent based approach to train

deep learning networks.

The next section starts the preparation for modeling.

4.3 Initialization and Data Preparation

4.3.1 Imports and Loading Data

Modeling starts with the ritualistic library imports. Listing 4.1 shows
all the imports and also a few declarations of constants, viz. random
generator seeds, the data split percent, and the size of figures to be
plotted later.

Listing 4.1. Imports for MLP Modeling.
1 import tensorflow as tf
2
3 from tensorflow.keras import optimizers

48 4.3. Initialization and Data Preparation

4 from tensorflow.keras.models import Model
5 from tensorflow.keras.models import Sequential
6 from tensorflow.keras.layers import Input
7 from tensorflow.keras.layers import Dense
8 from tensorflow.keras.layers import Dropout
9 from tensorflow.keras.layers import AlphaDropout
10
11 import pandas as pd
12 import numpy as np
13
14 from sklearn.preprocessing import StandardScaler
15 from sklearn.model_selection import train_test_split
16
17 from imblearn.over_sampling import SMOTE
18 from collections import Counter
19
20 import matplotlib.pyplot as plt
21 import seaborn as sns
22
23 # user -defined libraries
24 import datapreprocessing
25 import performancemetrics
26 import simpleplots
27
28 from numpy.random import seed
29 seed (1)
30
31 from pylab import rcParams
32 rcParams[’figure.figsize ’] = 8, 6
33
34 SEED = 123 #used to help randomly select the data

points
35 DATA_SPLIT_PCT = 0.2

A few user-defined libraries: datapreprocessing, performancemetrics,
and simpleplots are loaded. They have custom functions for pre-
processing, evaluating models, and visualizing results, respectively. These
libraries are elaborated in this and upcoming chapters (also refer to Ap-
pendix B and C).

Next, the data is loaded and processed the same way as in List-
ing 3.2 in the previous chapter. The listing is repeated here to avoid

Chapter 4. Multi-layer Perceptrons 49

any confusion.

Listing 4.2. Loading data for MLP Modeling.
Read the data
df = pd.read_csv("data/processminer -sheet -break -rare

-event -dataset.csv")

Convert Categorical column to hot dummy columns
hotencoding1 = pd.get_dummies(df[’Grade&Bwt’])
hotencoding1 = hotencoding1.add_prefix(’grade_ ’)
hotencoding2 = pd.get_dummies(df[’EventPress ’])
hotencoding2 = hotencoding2.add_prefix(’eventpress_ ’

)

df=df.drop([’Grade&Bwt’, ’EventPress ’], axis =1)

df=pd.concat ([df , hotencoding1 , hotencoding2], axis
=1)

Rename response column name for ease of
understanding

df=df.rename(columns ={’SheetBreak ’:’y’})

4.3.2 Data Pre-processing

The objective, as mentioned in Chapter 2, is to predict a rare event in
advance to prevent it, or its consequences.

From a modeling standpoint, this translates to teaching the model
to identify a transitional phase that would lead to a rare event.

For example, in the sheet-break problem, a transitional phase could
be the speed of one of the rollers (in Figure 1.1) drifting away and rising
in comparison to the other rollers. Such asynchronous change stretches
the paper sheet. If this continues, the sheet’s tension increases and
ultimately causes a break.

The sheet break would typically happen a few minutes after the drift
starts. Therefore, if the model is taught to identify the start of the drift
it can predict the break in advance.

One simple and effective approach to achieve this is curve shifting.

50 4.3. Initialization and Data Preparation

Curve Shifting

Curve Shifting here should not be confused with curve shift in Economics
or covariate shift in Machine Learning. In Economics, a curve shift is a
phenomenon of the Demand Curve changing without any price change.
Covariate shift or data shift in ML implies a change in data distribution
due to a shift in the process. Here it means aligning the predictors with
the response to meet a certain modeling objective.

For early prediction, curve shifting moves the labels early in time.
Doing so, the samples before the rare event get labeled as one. These
prior samples are assumed to be the transitional phase that ultimately
leads to the rare event.

Providing a model with these positively labeled transitional samples
teaches it to identify the “harbinger” of a rare event in time. This, in
effect, is an early prediction.

� For early prediction, teach the model to identify
the transitional phase.

Given the time series sample, (yt,xt), t = 1, 2, . . ., curve shifting will,

1. label the k prior samples to a positive sample as one. That is,
yt−1, . . . , yt−k ← 1, if yt = 1.

2. Followed by dropping the sample (yt,xt) for the yt = 1 instance.

Due to the relabeling in the first bullet, the model learns to predict
the rare-event up to t+ k times earlier.

Besides, the curve shifting drops the original positive sample to avoid
teaching the model to predict the rare event when it has already hap-
pened. Referring to Figure 2.2, the signal is highest when the event has
occurred. Keeping these samples in the training data will be overpower-
ing on the transitional samples. Due to this, it is likely that the model
does not learn predicting the event ahead.

The curve_shift function in the datapreprocessing library per-
forms this operation. It labels the samples adjacent to the positive
labels as one. The number of adjacent samples to label is equal to the

Chapter 4. Multi-layer Perceptrons 51

argument shift_by. A negative shift_by relabels the preceding sam-
ples7. Moreover, the function drops the original positive sample after
the relabeling.

Listing 4.3. Curve-shifting.
1 # Sort by time.
2 df[’DateTime ’] = pd.to_datetime(df.DateTime)
3 df = df.sort_values(by=’DateTime ’)
4
5 # Shift the response column y by 2 rows to do a 4-

min ahead prediction.
6 df = datapreprocessing.curve_shift(df , shift_by =-2)
7
8 # Drop the time column.
9 df = df.drop([’DateTime ’], axis =1)
10
11 # Converts df to numpy array
12 X = df.loc[:, df.columns != ’y’]. values
13 y = df[’y’]. values
14
15 # Axes lengths
16 N_FEATURES = X.shape [1]

Line 6 in Listing 4.3 applies the curve shift with shift_by=-2. This
relabels two samples prior to a sheet break as positive, i.e., the transi-
tional phase leading to a break. Since the samples are at two minutes
interval, this shift is of four minutes. Thus, the model trained on this
curve-shifted data can do up to 4-minute ahead sheet break prediction.

While this is reasonable for this problem, the requirements could be
different for different problems. The shift_by parameter should be set
accordingly. Furthermore, for advanced readers, the curve shift defini-
tion is given in Appendix B for details and customization, if needed.

The effect of the curve shifting is visualized in Figure 4.3. The
figure shows sample 259 is originally a positive sample. After applying
curve_shift with shift_by=-2, the preceding two samples 257-258 are
relabeled as 1. And, the original positive sample 259 is dropped.

Thereafter, the DateTime column is not needed and, therefore, dropped.

7A positive shift_by relabels the succeeding samples to yt = 1 as one.

52 4.3. Initialization and Data Preparation

Figure 4.3. An illustration of Curve Shifting. In this example, a
dataframe is curve shifted (ahead) by two time units
(curve_shift(df, shift_by=-2)). After the shift, the updated
dataframe has the labels of two prior samples to a positive sample
updated to 1 and the original positive sample is dropped. This
procedure can also be interpreted as treating the samples prior to
a positive sample as transitional phases. Using curve_shift(),
these transitional samples are re-labeled as positives.

Chapter 4. Multi-layer Perceptrons 53

The dataframe is partitioned into the features array X and the response
y in lines 12-13. Lastly, the shape of the features array is recorded in
N_FEATURES. This becomes a global constant that will be used in defining
the input_shape during modeling.

Data Splitting

The importance of splitting a data set into train, valid, and test sets is
well known. It is a necessary modeling tradition for the right reasons,
which are briefly described below.

With the split data,

1. a model is trained on the train set, and

2. the model’s performance is validated on the valid set.

3. Steps 1-2 are repeated for a variety of models and/or model config-
urations. The one yielding the best performance on the valid set
is chosen as the final model. The performance of the final model
on the test set is then recorded.

The test set performance is a “robust” indicator. While the train set
performance is unusable due to a usual overfitting, the valid set is used
for model selection and, therefore, is biased towards the selected model.
Consequently, only the test set performance gives a reliable estimate.

In Listing 4.4, the data is randomly split into a train, valid, and test
making 64%, 16%, and 20% of the original data set, respectively.

Listing 4.4. Data splitting.
1 # Divide the data into train , valid , and test
2 X_train , X_test , y_train , y_test =
3 train_test_split(np.array(X),
4 np.array(y),
5 test_size=DATA_SPLIT_PCT ,
6 random_state=SEED)
7 X_train , X_valid , y_train , y_valid =
8 train_test_split(X_train ,
9 y_train ,
10 test_size=DATA_SPLIT_PCT ,
11 random_state=SEED)

54 4.3. Initialization and Data Preparation

A common question in splitting a time series is: should it
be at random or in the order of time?

Splitting time series in the order of time is appropriate when,

1. the data set is arranged as time-indexed tuples (response : yt, features :
xt). And,

2. the model has temporal relationships, such as yt ∼ yt−1 + . . . +
xt + xt−1 + That is, the yt is a function of the prior y’s and
x’s.

In such a model, maintaining the time order is necessary for the data
splits.

However, suppose the temporal (time-related) features are included
in the tuple as (response : yt, features : {yt−1, . . . ,xt,xt−1, . . .}). This
makes a self-contained sample with the response and (temporal) fea-
tures. With this, the model does not require to keep track of the time
index of the samples.

For multivariate time series, it is recommended to prepare such self-
contained samples. In MLP, the temporal features can be added during
the data preprocessing. But learning the temporal patterns are left to
recurrent and convolutional neural networks in the upcoming chapters
where temporally contained samples are used.

Here, the data samples are modeled in their original form (yt,xt),
where yt is one in the transitional phase and zero, otherwise. No ad-
ditional time-related features are to be modeled. Therefore, the model
is agnostic to the time order. And, hence, the data set can be split at
random.

Features Scaling

Virtually every problem has more than one feature. The features can
have a different range of values. For example, a paper manufacturing
process has temperature and moisture features. Their units are different
due to which their values are in different ranges.

These differences may not pose theoretical issues. But, in practice,
they cause difficulty in model training typically by converging at local

Chapter 4. Multi-layer Perceptrons 55

minimas.

Feature scaling is, therefore, an important preprocessing step to ad-
dress this issue. Scaling is generally linear8. Among the choices of linear
scaling functions, the standard scaler shown in Listing 4.5 is appropriate
for the unbounded features in our problem.

Listing 4.5. Features Scaling.
1 # Scaler using the training data.
2 scaler = StandardScaler ().fit(X_train)
3
4 X_train_scaled = scaler.transform(X_train , scaler)
5 X_valid_scaled = scaler.transform(X_valid , scaler)
6 X_test_scaled = scaler.transform(X_test , scaler)

As shown in the listing, the StandardScaler is fitted on the train set.
The fitting process computes the means (x̄train) and standard deviation
(σtrain) from the train samples for each feature in x. This is used to
transform each of the sets as per Equation 4.6.

x← x− x̄train
σtrain

(4.6)

Another popular scaling method is MinMaxScaler. However, they
work better in and became more popular through the image problems
in deep learning. A feature in an image has values in a fixed range of
(0, 255). For such bounded features, MinMaxScaler is quite appropriate.

� StandardScaler is appropriate for unbounded
features such as sensor data. However,

MinMaxScaler is better for bounded features such as in
image detection.

8There are a few nonlinear feature scaling methods to deal with feature outliers.
However, it is usually recommended to deal with the outliers separately and work
with linear scaling to not disturb the original distribution of the data.

56 4.4. MLP Modeling

4.4 MLP Modeling

In this section, a multi-layer perceptron model is constructed step-by-
step. Each modeling step is also elucidated conceptually and program-
matically.

4.4.1 Sequential

TensorFlow provides a simple-to-implement API for constructing deep
learning models. There are three general approaches,

• sequential,

• functional, and

• model sub-classing.

The ease of their use is in the same order. Most of the modeling
requirements are covered by sequential and functional.

Sequential is the simplest approach. In this approach, models that
have a linear stack of layers and the layers communicate sequentially
are constructed. Models in which layers communicate non-sequentially
(for example, residual networks) cannot be modeled with a sequential
approach. Functional or model sub-classing is used in such cases.

MLPs are sequential models. Therefore, a sequential model is ini-
tialized as shown in Listing 4.6.

Listing 4.6. Creating a Sequential object.
model = Sequential ()

The initialization here is creating a Sequential object. Sequential
inherits the Model class in TensorFlow, and thereby, inherits all the
training and inference features.

4.4.2 Input Layer

The model starts with an input layer. No computation is performed at
this layer. Still, this plays an important role.

Chapter 4. Multi-layer Perceptrons 57

An input layer can be imagined as a “gate” to the model. The gate
has a defined shape. This shape should be consistent with the input
sample. This layer has two functions,

• not allow a sample to get through if its shape is not consistent,
and

• communicate the shape of the inputted batch to the next layer.

Listing 4.7. Input layer in a Sequential model.
model.add(Input(shape =(N_FEATURES ,)))

The input layer is added to the model in Listing 4.7. It takes an
argument shape which is a tuple of the shape of the input. The tuple
contains the length of each axes of the input sample and an empty last
element.

Here the input has only one axis for the features (shown in Fig-
ure 4.2) with a length N_FEATURES defined in Listing 4.3. In the case of
multi-axes inputs, such as images and videos, the tuple will have more
elements.

The last (empty) element corresponds to the batch size. The batch
size is defined during the model fit and is automatically taken by the
model. The empty element in the tuple can be seen as a placeholder.

Explicitly defining the input layer is optional. In fact, it is com-
mon to define the input shape in the first computation layer, e.g. as
Dense(..., input_shape=(N_FEATURES,)). It is still explicitly de-
fined here for clarity.

4.4.3 Dense Layer

A dense layer is one of the primary layers in deep learning. It is used in
MLPs and most other deep learning architectures.

Its primality can be attributed to its simplicity. A linearly activated
dense layer is simply an affine transformation of the inputs. It will be
explained in the future chapters that such affine transformations make
model construction for different architectures, such as LSTM autoen-
coder, easier.

58 4.4. MLP Modeling

Moreover, as opposed to most other layers, a (non)linear dense layer
provides a simple structure to find a relationship between the features
and response in the same space.

An MLP is a stack of dense layers. That is, from hidden to output
all are dense layers9.

The number of hidden layers is a model configuration. As a rule-of-
thumb, it is recommended to begin with two hidden layers as a baseline.
They are added to the model in Listing 4.8.

Listing 4.8. Hidden Layers in a Sequential model.
model.add(Dense (32, activation=’relu’, name=’

hidden_layer_1 ’))
model.add(Dense (16, activation=’relu’, name=’

hidden_layer_2 ’))

The size of a layer is the first argument. The number of nodes
(denoted as units in TensorFlow) in the layer is the same as its size
(see Figure 4.2).

The size is a configuration property. It should be set around half of
the number of input features. As a convention the size should be taken
from a geometric series of 2: a number in {1, 2, 4, 8, 16, 32, . . .}.

The input sample has 69 features, therefore, the first dense layer is
made of size 32. This also means the input to the second layer has 32
features, and thus, its size is set as 16.

Following these conventions are optional but help in streamlined
model construction. These conventions are made keeping in account
the insensitivity of deep learning models towards minor configuration
changes.

� Deep learning models are generally insensitive to
minor changes in a layer size. Therefore, it is

easier to follow a rule-of-thumb for configuring layer sizes.

Activation is the next argument. This is an important argument
9An MLP with only one dense layer (the output layer) is the same as a logistic

regression model.

Chapter 4. Multi-layer Perceptrons 59

as the model is generally sensitive to any ill selection of activation. relu
is usually a good first choice for the hidden layers.

� Appropriate choice of activation is essential be-
cause models are sensitive to them. Relu activa-

tion is a good default choice for hidden layers.

The name argument, in the end, is optional. It is added for better
readability in the model summary shown in Figure 4.4. And, if needed,
to draw layer attributes, such as layer weights, using the name property.

4.4.4 Output Layer

The output layer in most deep learning networks is a dense layer. This
is due to dense layer’s affine transformation property which is usually
required at the last layer. In an MLP, it is a dense layer by design.

The output layer should be consistent with the response’s size just
like the input layer must be consistent with the input sample’s size.

In a classification problem, the size of the output layer is equal to
the number of classes/responses. Therefore, the output dense layer has
a unit size in a binary classifier (size=1) in Listing 4.9.

Listing 4.9. Output Layer in a Sequential model.
model.add(Dense(1, activation=’sigmoid ’, name=’

output_layer ’))

Also, the activation on this layer is dictated by the problem. For re-
gression, if the response is in (−∞,+∞) the activation is set as linear.
In binary classifiers it is sigmoid; and softmax for multi-class classifiers.

4.4.5 Model Summary

At this stage, the model network has been constructed. The model has
layers from input to output with hidden layers in between. It is useful
to visualize the summary of the network.

60 4.4. MLP Modeling

Figure 4.4. MLP Baseline Model Summary.

Listing 4.10 displays the model summary in a tabular format shown
in Figure 4.4.

Listing 4.10. Model Summary.
model.summary ()

In the summary, Model: "sequential_‘x’" tells this is a Sequential
TensorFlow model object. The layers in the network are displayed in
the same order as they were added.

Most importantly, the shape of each layer and the corresponding
number of parameters are visible. The number of parameters in a dense
layer can be derived as: weights = input features × size of layer plus
biases = input features. However, a direct visibility of the layer-wise
and an overall number of parameters help to gauge the shallowness or
massiveness of the model.

The end of the summary shows the total number of parameters and
its breakdown as trainable and non-trainable parameters. All the weight
and bias parameters on the layers are trainable parameters. They are
trained (iteratively estimated) during the model training.

Examples of non-trainable parameters are the network topology con-
figurations, such as the number of hidden layers and their sizes. Few
other non-trainable parameters are in layers such as Dropout and
BatchNormalization. A Dropout parameter is preset while
BatchNormalization parameters, e.g., the batch mean and variance,

Chapter 4. Multi-layer Perceptrons 61

are not “trained” but derived during the estimation.

In fact, in some cases, an otherwise trainable Dense layer is deliber-
ately made non-trainable by
model.get_layer(layerName).trainable = False. For example, upon
using a pre-trained model and training only the last layer.

However, in most models like here, all the parameters are trainable
by default.

4.4.6 Model Compile

So far, the model is constructed and visually inspected in the model
summary. This is like setting the layers of a cake on a baking tray and
inspecting it before placing it in the oven. But before it goes in the oven
there is an oven configuration step: set the right mode and temperature.

Similarly, in TensorFlow, before the model is fed in the machine for
training there is a configuration step called model compilation.

This is done using model.compile in Listing 4.11.

Listing 4.11. Model Compile.
1 model.compile(optimizer=’adam’,
2 loss=’binary_crossentropy ’,
3 metrics =[’accuracy ’,
4 tf.keras.metrics.Recall (),
5 performancemetrics.F1Score (),
6 performancemetrics.

FalsePositiveRate ()]
7)

The model.compile function has two purposes. First, verify any
network architecture flaws, such as inconsistencies in input and output
of successive layers. An error is thrown if there is any inconsistency.

And, second, define the three primary arguments: optimizer, loss,
and metrics (there are other optional arguments not covered here).
Each of these essential arguments is explained in the following.

• optimizer. A variety of optimizers are available with Tensor-

62 4.4. MLP Modeling

Flow10. Among them, adam is a good first choice. Quoted from
its authors in Kingma and Ba 2014,

“(Adam) is designed to combine the advantages of two
recently popular methods: AdaGrad (Duchi et al., 2011
Duchi, Hazan, and Singer 2011), which works well with
sparse gradients, and RMSProp (Tieleman & Hinton,
2012 G. Hinton et al. 2012), which works well in on-line
and non-stationary settings...”

Almost every optimizer developed for deep learning are gradient-
based. Adam, among them, is computationally and memory effi-
cient. Moreover, it is less sensitive to its hyper-parameters. These
attributes make adam an appropriate choice for deep learning.

The original adam paper (Kingma and Ba 2014) is simple-to-read
and is recommended for more details.

� Adam is a robust optimizer and, hence, a default
choice.

• loss. The choice of a loss function depends on the problem. For
example, in regression mse is a good choice while
binary_crossentropy and categorical_crossentropy work for
binary and multi-class classifiers, respectively.

A list of loss functions for different needs are provided by Tensor-
Flow11. For the binary classification problem here,
binary_crossentropy loss is taken. This loss function is shown
in Equation 2.2 and succinctly expressed again as

L(θ) = − 1

n

n∑
i=1

(
yi log(pi) + (1− yi) log(1− pi)

)
(4.7)

10https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras/
optimizers

11https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras/
losses

https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras/optimizers
https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras/optimizers
https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras/losses
https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras/losses

Chapter 4. Multi-layer Perceptrons 63

where yi ∈ 0, 1 are the true labels and pi = Pr[yi = 1] is the pre-
dicted probability for yi = 1. Looking closely at the equation, we
can see that the loss is minimum when there are perfect predic-
tions, i.e., if pi → 1|yi = 1 and pi → 0|yi = 0.

Also, it can be noted in Equation 4.7 that the cross-entropy loss
is continuous and differentiable. Thus, it works well with the gra-
dient descent based backpropagation estimation methods.

� Cross entropy loss is continuous and differentiable
and, hence, works well with gradient-based back-

propagation method in deep learning.

• metrics. Unlike the optimizer and loss, metrics are not directly
related to model training. Rather, the metrics are for evaluating
the model performance during training and inferencing.

Metrics are unrelated to training because their values, whether
good or poor, do not impact the model parameter update during
the training. The training focuses only on optimizing (generally
minimizing) the loss function. The metrics are an outcome of this
process.

In regression, RootMeanSquaredError() is an appropriate metric.
In classification, the accuracy that shows the percent of correct
classification is generally used. However, for imbalanced data sets
the objective is to have a high recall and f1-score, and a low false
positives rate (fpr) (described in § 2.1.3).

TensorFlow provides an in-built definition for recall (Recall())
but falls shy for the latter two. Therefore, custom f1-score and
fpr metrics are constructed and elaborated in § 4.8.2. Also, the
inability to use outside functions becomes clearer there.

The model compilation is the first stage-gate towards model comple-
tion. A successful model compile is a moment to cherish before heading
to the next step: model fit.

64 4.4. MLP Modeling

4.4.7 Model Fit

Model fitting is a step towards the “moment of truth.” This is the time
when the model performance is seen.

Listing 4.12. Model Fit.
1 history = model.fit(x=X_train_scaled ,
2 y=y_train ,
3 batch_size =128,
4 epochs =100,
5 validation_data =(X_valid_scaled ,

y_valid),
6 verbose =1).history

The primary arguments in model.fit is x, y, batch_size, and
epochs.

• x: It is the training features X in a numpy array or pandas
data frame. It is recommended to be scaled. In this model,
StandardScaler scaled features are used.

• y: It is the response y aligned with the features X, i.e., the i-th
row in X should correspond to the i-th element in y. It is a one-
dimensional array for a single class (response) model. But y can
be a multi-dimensional array for a multi-class (response) model.

• batch_size: The model trains its parameters batch-by-batch us-
ing a batch gradient descent based approach. This approach is
an extension of stochastic gradient descent (SGD) which uses only
one sample at a time. While the batch size can be set to one like
in SGD, deep learning optimization with one sample at a time is
noisy and can take longer to converge. Batch gradient descent
overcomes this issue while still having the benefits of SGD.

Similar to the hidden layer sizes, the model is not extremely sen-
sitive to minor differences in batch size. Therefore, it is easier to
choose the batch size from the geometric series of 2. For balanced
data sets, it is suitable to have a small batch, e.g., 16. However,
for imbalanced data sets, it is recommended to have a larger batch
size. Here it is taken as 128.

Chapter 4. Multi-layer Perceptrons 65

• epochs: Epochs is the number of iterations of model fitting. The
number of epochs should be set such that it ensures model conver-
gence. One indication of model convergence is a stable loss, i.e.,
no significant variations or oscillations. In practice, it is recom-
mended to start with a small epoch for testing and then increase
it. For example, here the epochs were set as 5 first and then made
100. The model training can also be resumed from where it was
left by rerunning model.fit.

� If model.fit is rerun without re-initializing or
redefining the model, it starts from where the pre-

vious fit left. Meaning, the model can be incrementally
trained over separate multiple runs of model.fit.

An additional but optional argument is validation_data. Vali-
dation data sets can be either passed here or an optional argument
validation_split can be set to a float between 0 and 1. Although val-
idation is not mandatory for model fitting, it is a good practice. Here,
the validation data sets are passed through the validation_data argu-
ment.

Listing 4.12 executes the model fit. The fit() function returns
a list history containing the model training outputs in each epoch.
It contains the values for the loss, and all the metrics mentioned in
model.compile(). This list is used to visualize the model performance
in the next section.

4.4.8 Results Visualization

Visualizing the results is a natural next step after model fitting. Visu-
alizations are made for,

• loss. The progression of loss over the epochs tells about the model
convergence. A stable and decreasing loss for the training data
shows the model is converging.

The model can be assumed to have converged if the loss is not
changing significantly towards the ending epochs. If it is still de-

66 4.4. MLP Modeling

creasing, the model should be trained with more epochs.

An oscillating loss, on the other hand, indicates the training is
possibly stuck in local minima. In such a case, a reduction in the
optimizer learning rate and/or a change in batch size should be
tried.

A stabilized decreasing loss is also desirable in the validation data.
It shows the model is robust and not overfitted.

• metrics. Accuracy metrics on the validation data is more relevant
than training. The accuracy-related metrics should improve as the
model training progresses through the epochs. This is visualized
in the metrics’ plots.

If the metrics have not stabilized and still improving, the model
should be trained with more epochs. Worse, if the metrics are
deteriorating with the epochs then the model should be diagnosed.

A few custom plotting functions are defined in Appendix C to visu-
alize the results. Using them the results are plotted (and saved to a file)
in Listing 4.13.

Listing 4.13. MLP baseline model results.
1 # Plotting loss and saving to a file
2 plt , fig =
3 simpleplots.plot_metric(history ,
4 metric=’loss’)
5 fig.savefig(’mlp_baseline_loss.pdf’,
6 bbox_inches=’tight ’)
7
8 # Plotting f1score and saving to a file
9 plt , fig =
10 simpleplots.plot_metric(history ,
11 metric=’f1_score ’, ylim =[0., 1.])
12 fig.savefig(’mlp_baseline_f1_score.pdf’,
13 bbox_inches=’tight ’)
14
15 # Plotting recall and fpr , and saving to a file
16 plt , fig =
17 simpleplots.plot_model_recall_fpr(history)
18 fig.savefig(’mlp_baseline_recall_fpr.pdf’,
19 bbox_inches=’tight ’)

Chapter 4. Multi-layer Perceptrons 67

0 20 40 60 80 100
Epoch

0.00.0

0.10.10.10.1

lo
ss

Train loss
Valid loss

(a) Loss.

0 20 40 60 80 100
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

f1
_s

co
re

Train f1_score
Valid f1_score

(b) F1-score.

0 20 40 60 80 100
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

va
lu

e

Train Recall
Valid Recall
Train FPR
Valid FPR

(c) Recall and FPR.

Figure 4.5. MLP baseline model results.

The loss is shown in Figure 4.5a. The loss is stable and almost
plateaued for the training data. However, the validation loss is increas-
ing indicating possible overfitting.

Still the performance metrics of the validation set in Figure 4.5b-
4.5c are reasonable. F1-score is more than 10%. The recall is around
the same and the false positive rate is close to zero.

Completing a baseline model is a major milestone. As mentioned
before, the multi-layer perceptron is the “hello world” to deep learning.
A fair performance of the baseline MLP shows there are some predictive
patterns in the data. This is a telling that with model improvement and
different networks a usable predictive model can be built.

The next section will attempt at some model improvements for multi-
layer perceptrons while the upcoming chapters will construct more in-

68 4.5. Dropout

tricate networks, such as recurrent and convolutional neural networks.

4.5 Dropout

A major shortcoming of the baseline model was overfitting. Overfitting
is commonly due to a phenomenon found in large models called co-
adaptation. This can be addressed with dropout. Both, the co-
adaptation issue and its resolution with dropout, are explained below.

4.5.1 What is Co-Adaptation?

If all the weights in a deep learning network are learned together, it is
usual that some of the nodes have more predictive capability than the
others.

In such a scenario, as the network is trained iteratively these pow-
erful (predictive) nodes start to suppress the weaker ones. These nodes
usually constitute a fraction of all. But over many iterations, only these
powerful nodes are trained. And the rest stop participating.

This phenomenon is called co-adaptation. It is difficult to prevent
with the traditional L1 and L2 regularization. The reason is that they
also regularize based on the predictive capability of the nodes. As a
result, the traditional methods become close to deterministic in choosing
and rejecting weights. And, thus, a strong node gets stronger and the
weak get weaker.

A major fallout of co-adaptation is: expanding the neural network
size does not help.

If co-adaptation is severe, enlarging the model does not add to learn-
ing more patterns. Consequently, neural networks’ size and, thus, capa-
bility get limited.

This had been a serious issue in deep learning for a long time. Then,
in around 2012, the idea of dropout—a new regularization approach—
emerged.

Dropout resolved co-adaptation. And naturally, this revolutionized
deep learning. With dropout, deeper and wider networks were possible.

Chapter 4. Multi-layer Perceptrons 69

One of the drivers for the deep learning successes experienced today is
attributed to dropout.

4.5.2 What Is Dropout?

Dropout changed the approach of learning weights. Instead of learning
all the network weights together, dropout trains a subset of them in a
batch training iteration.

(a) Learning all
weights.

(b) Learning a subset of all weights with dropout.

Figure 4.6. Illustrating the difference in weight learning with and
without Dropout. Without dropout (left), weights on all the
connections are learned together. Due to this, if a few
connections are stronger than others (because of initialization or
the nature of the data) the other connections become dormant.
With dropout (right), connections are randomly dropped during
each training iteration. As a result, no connection gets a chance
to maintain dominance. Consequently, all the weights are
appropriately learned.

Figure 4.6a-4.6b illustrates the model weights training (updates) dur-
ing a batch iteration. Here a simple example to train weights of four
nodes is shown. The usual training without dropout is in Figure 4.6a.
In this, all the nodes are active. That is, all the weights will be trained
together.

On the other hand, with dropout, only a subset of nodes are kept
active during batch learning. The three illustrations in Figure 4.6b
correspond to three different batch iterations (refer to the iteration levels
in Figure 4.14). In each batch iteration, half of the nodes are switched off

70 4.5. Dropout

while the remaining are learned. After iterating through all the batches
the weights are returned as the average of their batch-wise estimations.

This technique acts as network regularization. But familiarity with
traditional methods might make dropout appear not a regularization.
Yet, there are some commonalities.

Like L1 regularization pushes the small weights to zero, dropout
pushes a set of weights to zero. Still, there is an apparent difference:
L1 does a data-driven suppression of weights while dropout does it at
random.

Nevertheless, dropout is a regularization technique. It is closer to an
L2 regularization. This is shown mathematically by Pierre and Peter in
Baldi and Sadowski 2013. They show that under linearity (activation)
assumptions the loss function with dropout (Equation 4.8 below) has
the same form as L2 regularization.

L =
1

2

(
t− (1− p)

n∑
i=1

wixi

)2
+ p(1− p)

n∑
i=1

w2
i x

2
i︸ ︷︷ ︸

Regularization term.

(4.8)

where p is the dropout rate.

The dropout rate is the fraction of nodes that are dropped at a batch
iteration. For example, p is 0.5 in the illustration in Figure 4.6b.

The regularization term in Equation 4.8 has a penalty factor p(1−p).
The factor p(1− p) is maximum when p = 0.5. Therefore, the dropout
regularization is the largest at p = 0.5.

� Dropout is a regularization technique equivalent to
L2 regularization under linearity assumptions.

� A dropout rate p = 0.5 is an ideal choice for max-
imum regularization.

Therefore, a dropout rate of 0.5 is usually a good choice for hidden

Chapter 4. Multi-layer Perceptrons 71

layers. If a model’s performance deteriorate with this dropout rate it is
usually better to increase the layer size instead of reducing the rate.

Dropout, if applied on the input layer, should be kept small. A rule-
of-thumb is 0.2 or less. Dropout at the input layer means not letting
a subset of the input features into the training iteration. Although
arbitrarily dropping features is practiced in a few bagging methods in
machine learning, it generally does not bring significant benefit to deep
learning. And, therefore, dropout at the input layer should be avoided.

� Dropout at the input layer is better avoided.

These inferences drawn from Equation 4.8 are pertinent to dropout’s
practical use. Although the equation is derived with linearity assump-
tions, the results apply to nonlinear conditions.

4.5.3 Dropout Layer

Dropout is implemented in layers class in TensorFlow. The primary
argument in a Dropout layer is the rate. Rate is a float between 0 and
1 that defines the fraction of input units to drop (p in Equation 4.8).

As shown in Listing 4.14, dropout is added as a layer after a hidden
layer. A dropout layer does not have any trainable parameter (also seen
in the model summary in Figure 4.7).

Listing 4.14. MLP with dropout.
1 model = Sequential ()
2 model.add(Input(shape =(N_FEATURES ,)))
3 model.add(Dense (32, activation=’relu’,
4 name=’hidden_layer_1 ’))
5 model.add(Dropout (0.5))
6 model.add(Dense (16, activation=’relu’,
7 name=’hidden_layer_2 ’))
8 model.add(Dropout (0.5))
9 model.add(Dense(1, activation=’sigmoid ’,
10 name=’output_layer ’))
11
12 model.summary ()

72 4.5. Dropout

Figure 4.7. MLP with Dropout Model Summary.

13
14 model.compile(optimizer=’adam’,
15 loss=’binary_crossentropy ’,
16 metrics =[’accuracy ’,
17 tf.keras.metrics.Recall (),
18 performancemetrics.F1Score (),
19 performancemetrics.

FalsePositiveRate ()]
20)

The results of the model are shown in Figure 4.8a-4.8c. Dropout did
improve validation loss. Unlike the previous model, the validation loss
is virtually non-increasing.

While dropout addressed the overfitting issue, it made the model
non-predictive. This is shown in Figure 4.8b and 4.8c where the f1-score
and recall are nearly zero.

Dropout sometimes causes this. This phenomenon is typical because
a sub-model is learned at a time and the sub-model may not be sufficient
to make an accurate prediction.

A common resolution to this is increasing the network size: increase
the layers and/or their sizes. Moreover, a dropout layer has another
argument noise_shape to add noise to the inputs. Adding noise can
make the model more robust and, therefore, improve accuracy.

Chapter 4. Multi-layer Perceptrons 73

0 20 40 60 80 100
Epoch

0.0

0.10.1

0.2

0.30.3

lo
ss

Train loss
Valid loss

(a) Loss.

0 20 40 60 80 100
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

f1
_s

co
re

Train f1_score
Valid f1_score

(b) F1-score.

0 20 40 60 80 100
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

va
lu

e

Train Recall
Valid Recall
Train FPR
Valid FPR

(c) Recall and FPR.

Figure 4.8. MLP with Dropout Model Results.

4.6 Class Weights

A rare event problem has very few positively labeled samples. Due to
this, even if the classifier is misclassifying the positive labels, their effect
on the loss function is minuscule.

Remember the loss function in Equation 4.7, it gives equal impor-
tance (weights) to the positive and negative samples. To overcome this,
we can overweight the positives and underweight the negative samples.
A binary cross-entropy loss function will then be,

L(θ) = − 1

n

n∑
i=1

(
w1yi log(pi) + w0(1− yi) log(1− pi)

)
(4.9)

where w1 > w0.

74 4.6. Class Weights

The class-weighting approach works as follows,

• The model estimation objective is to minimize the loss. In a per-
fect case, if the model could predict all the labels perfectly, i.e.
pi = 1|yi = 1 and pi = 0|yi = 0, the loss will be zero. Therefore,
the best model estimate is the one with the loss closest to zero.

• With the class weights, w1 > w0, if the model misclassifies the
positive samples, i.e. pi → 0|yi = 1, the loss goes farther away
from zero as compared to if the negative samples are misclassi-
fied. In other words, the model training penalizes misclassification
of positives more than negatives.

• Therefore, the model estimation strives to correctly classify the
minority positive samples.

In principle, any arbitrary weights such that w1 > w0 can be used.
But a rule-of-thumb is,

• w1, positive class weight = number of negative samples / total
samples.

• w0, negative class weight = number of positive samples / total
samples.

Using this thumb-rule, the class weights are defined in Listing 4.15.
The computed weights are, {0: 0.0132, 1: 0.9868}.

Listing 4.15. Defining Class Weights.
1 class_weight = {0: sum(y_train == 1)/len(y_train),
2 1: sum(y_train == 0)/len(y_train)}

The model with class weights is shown in Listing 4.16. Except the
class weights argument in model.fit, the remaining is the same as the
baseline model in § 4.4.

Listing 4.16. MLP Model with Class Weights.
1 model = Sequential ()
2 model.add(Input(shape =(N_FEATURES ,)))
3 model.add(Dense (32, activation=’relu’,
4 name=’hidden_layer_1 ’))
5 model.add(Dense (16, activation=’relu’,

Chapter 4. Multi-layer Perceptrons 75

6 name=’hidden_layer_2 ’))
7 model.add(Dense(1, activation=’sigmoid ’,
8 name=’output_layer ’))
9
10 model.summary ()
11
12 model.compile(optimizer=’adam’,
13 loss=’binary_crossentropy ’,
14 metrics =[’accuracy ’,
15 tf.keras.metrics.Recall (),
16 performancemetrics.F1Score (),
17 performancemetrics.

FalsePositiveRate ()]
18)
19
20 history = model.fit(x=X_train_scaled ,
21 y=y_train ,
22 batch_size =128,
23 epochs =100,
24 validation_data =(X_valid_scaled ,
25 y_valid),
26 class_weight=class_weight ,
27 verbose =0).history

The results of the model with class weights are in Figure 4.9a-4.9c.
While the training loss is well-behaved, the validation loss is going up-
wards. But here it is not necessarily due to overfitting.

It is usual to see such behavior upon manipulating the class weights.
Here the validation recall (true positives) is high at the beginning and
then decreases along with the false positive rate (false positives). But
because the weights of the positive class are higher when both recall
and fpr decrease, the validation loss increases faster (effect of lessening
true positives are higher) than the reduction (effect of lessening false
positives).

Despite the awkward behavior of the loss, the recall improved sig-
nificantly. But at the same time, the false positive rate rose to around
4% which is more than desired. This performance can be adjusted by
changing the weights.

76 4.7. Activation

0 20 40 60 80 100
Epoch

0.00.00.00.0

0.10.1

lo
ss

Train loss
Valid loss

(a) Loss.

0 20 40 60 80 100
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

f1
_s

co
re

Train f1_score
Valid f1_score

(b) F1-score.

0 20 40 60 80 100
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

va
lu

e

Train Recall
Valid Recall
Train FPR
Valid FPR

(c) Recall and FPR.

Figure 4.9. MLP with Class Weights Model Results.

4.7 Activation

Activation functions are one of the primary drivers of neural networks.
An activation introduces the non-linear properties to a network.

It is shown in Appendix A that a network with linear activation is
equivalent to a simple regression model. It is the non-linearity of the
activations that make a neural network capable of learning non-linear
patterns in complex problems.

But there are a variety of activations, e.g., tanh, elu, relu, etc.
Does choosing one over the other improve a model?

Yes. If appropriately chosen, an activation can significantly improve
a model. Then, how to choose an appropriate activation?

An appropriate activation is the one that does not have vanishing

Chapter 4. Multi-layer Perceptrons 77

and/or exploding gradient issues. These issues are elaborated next.

4.7.1 What is Vanishing and Exploding Gradients?

Deep learning networks are learned with backpropagation. Backpropa-
gation methods are gradient-based. A gradient-based parameter learn-
ing can be generalized as

θn+1 ← θn − η∇θ (4.10)

where n is a learning iteration, η is a learning rate, and ∇θ is the
gradient of the loss L(θ) with respect to the model parameters θ.

The equation shows that gradient-based learning iteratively esti-
mates θ. In each iteration, the parameter θ is moved “closer” to its
optimal value θ∗.

However, whether the gradient will truly bring θ closer to θ∗ will
depend on the gradient itself. This is visually illustrated in Figure 4.10a-
4.10c.

� The gradient, ∇, guides the parameter θ to its op-
timal value. An apt gradient is, therefore, critical

for the parameter’s journey to the optimal.

In these figures, the horizontal axis is the model parameter θ, the
vertical axis is the loss L(θ) and θ∗ indicates the optimal parameter at
the lowest point of loss.

A stable gradient is shown in Figure 4.10a. The gradient has a
magnitude that brings θn closer to θ∗.

But if the gradient is too small the θ update is negligible. The
updated parameter θn+1, therefore, stays far from θ∗.

The gradient when too small is called the vanished gradient. And
this phenomenon is referred to as a vanishing gradient issue.

On the other extreme, sometimes the gradient is massive. Depicted
in Figure 4.10c, a large gradient moves θ farther away from θ∗.

78 4.7. Activation

∇"

𝜃∗
×

×𝜃&

𝜃&'(

ℒ(𝜃)

𝜃

(a) Stable gradient.

∇"

𝜃∗
×

×𝜃&
𝜃&'(ℒ(𝜃)

𝜃

(b) Vanished gradient.

∇"
𝜃∗
×

×𝜃&

𝜃&'(

ℒ(𝜃)

𝜃

(c) Exploded gradient.

Figure 4.10. Stable gradient vs. vanishing and exploding gradient.

This is the exploding gradient phenomenon. A large gradient is
referred to as an exploded gradient and it makes reaching θ∗ rather
elusive.

4.7.2 Cause Behind Vanishing and Exploding Gradients

This is explained with the help of expressions in Figure 4.11. The figure
is showing the gradient expressions for the layers of the network con-
structed in this chapter. The expressions are derived in Appendix D.

From the expressions in the figure, the gradients are,

• Chain multiplied. The gradients are computed using the chain

Chapter 4. Multi-layer Perceptrons 79

rule12. That is, the partial gradients are successively multiplied.

• Of the activations. The gradient ∇θ is the chain multiplication
of the partial gradients of the (layer) activations. In the figure, the
σ(·) and g(·) are the activation at the output and hidden layers,
respectively.

• Dependent on the feature map. Each part of the chain mul-
tiplication has the layer’s input features. The first layer has the
input features x and the subsequent layers have the feature maps
z.

Due to these characteristics, the gradients can,

• Vanish. A layer’s gradient is a chain of partial gradients multi-
plied together. At each network depth, another gradient term is
included in the chain.

As a result, the deeper a network, the longer the chain. These
gradients are of the activations. If the activation gradients are
smaller than 1, the overall gradient rapidly gets close to zero. This
causes the gradient vanishment issue.

• Explode. If the activation gradients’ or the feature maps’ mag-
nitudes are larger than 1, the gradient quickly inflates due to the
chain multiplication. Excessive inflation leads to what is termed
as gradient explosion.

The vanishing and exploding gradients issues are a consequence of
the activation gradient and feature map. The feature map effect is ad-
dressed using batch normalization in Ioffe and Szegedy 2015. More work
has been done on activations to address these issues and is discussed
next.

4.7.3 Gradients and Story of Activations

The vanishing and exploding gradient issues were becoming a bottle-
neck in developing complex and large neural networks. They were

12Chain rule: f ′(x) = ∂f
∂u

∂u
∂v

. . . ∂z
∂x

.

80 4.7. Activation

Hidden Layer-1.
Weights, W " .

Output Layer.
Weights, 𝐰 $.

Hidden Layer-2.
Weights, W % .

Input, 𝐱. '𝑦

𝑥"

𝑥%

𝑥*

⋮

Input Layer.

∇𝐰 - ∝
𝜕𝜎 𝐰 $ 1𝐳 %

𝜕𝐰 $ 1

∇3 4 ∝
𝜕𝜎 𝐰 $ 1𝑔 W % 1𝐳 "

𝜕𝑔 W % 1𝐳 "
𝜕𝑔 W % 1𝐳 "

𝜕𝐰 $ 1

∇3 6 ∝
𝜕𝜎 𝐰 $ 1𝑔 W % 1𝑔 W " 1𝐱

𝜕𝑔 W % 1𝑔 W " 1𝐱

𝜕𝑔 W % 1𝑔 W " 1𝐱

𝜕𝑔 W " 1𝐱
𝜕𝑔 W " 1𝐱
𝜕W " 1

Gradients can shrink or explode when
moving backwards in the network

Activation

Figure 4.11. Illustration to explain vanishing and exploding gradients.
Model training uses the backpropagation technique, which indeed
relies on gradients. Gradients are a product of partial
derivatives. Each layer adds another partial derivative.
Therefore, as backpropagation runs down the lower layers the
partial derivatives get stacked up. Depending on their small or
large magnitudes, the overall gradient can vanish or explode.

Chapter 4. Multi-layer Perceptrons 81

first resolved to some extent with the rectified linear unit (relu) and
leaky-relu in Maas, Hannun, and Ng 2013.

Relu activation is defined as,

g(x) =

{
x, if x > 0

0, otherwise
(4.11)

The gradient of relu is 1 if x > 0 and 0 otherwise. Therefore, when
a relu unit is “activated,” i.e., the input in it is anything greater than
zero, its derivative is 1. Due to this, the gradients vanishment do
not happen for the positive-valued units in an arbitrarily deep network.
These units are sometimes also called active units.

Additionally, relu is nonlinear at x = 0 with a saturation region for
x < 0. A saturation region is where the gradient is zero. The saturation
region dampens the activation variance if it is too large in the lower
layers. This helps in learning lower level features, e.g., more abstract
distinguishing patterns in a classifier.

However, only one saturation region, i.e., zero gradient in one re-
gion of x, is desirable. More than one saturation region, like in tanh
activation (has two saturation region shown in Figure 4.12b), make the
variance too small causing gradients vanishment.

� A saturation region is the part of a function where
the gradient becomes zero. Only one saturation

region is desirable.

Theoretically, relu resolved the vanishing gradient issue. Still, re-
searchers were skeptical about relu. Because without any negative
outputs the relu activations’ means (averages) are difficult to control.
Their means can easily stray to large values.

Additionally, relu’s gradient is zero whenever the unit is not active.
This was believed to be restrictive because the gradient-based backprop-
agation does not adjust the weights of units that never activate initially.
Eventually causing cases where a unit never activates.

82 4.7. Activation

To alleviate this, the relu authors further developed leaky-relu.
Unlike relu, it has a scaled-down output, 0.01x when x < 0. The
activations are visualized for comparison in Figure 4.12a.

As seen in the figure, the leaky-relu has a small but non-zero out-
put for x < 0. But this yields a non-zero gradient for every input. That
is, it has no saturation region. This did not work in favor of leaky-relu.

To resolve the issues in relu and leaky-relu, elu was developed in
Clevert, Unterthiner, and Hochreiter 2015. The elu activation is defined
as,

g(x) =

{
x, if x > 0

α(expx− 1), otherwise.
(4.12)

Elu’s gradient is visualized in Figure 4.12b. In contrast to the
leaky-relu, elu has a saturation in the negative region. As mentioned
before, the saturation results in small derivatives which decrease the
variance and, therefore, the information is well-propagated to the next
layer.

With this property and the non-zero negative outputs, elu could
enable faster learning as they bring the gradient closer to the natural
gradient (shown in Clevert, Unterthiner, and Hochreiter 2015).

However, despite the claims by elu or leaky-relu, they did not be-
come as popular as relu. Relu’s robustness made it a default activation
for most models.

In any case, relu and other activations developed thus far could not
address the gradient explosion issue. Batch normalization, a compu-
tation outside of activation done in a BatchNormalization layer, was
typically used to address it. Until Scaled Exponential Linear Unit (selu)
was developed in Klambauer et al. 2017.

Selu can construct a self-normalizing neural network. This addresses
both the vanishing and exploding gradient issues at the same time.

A selu activation, shown in Equation 4.13 below, appears to be a

Chapter 4. Multi-layer Perceptrons 83

x

ac
tiv

at
io

n

activation

tanh

sigmoid

relu

leaky_relu

elu

selu

(a) Activation output.

x

gr
ad

ie
nt

activation

tanh

sigmoid

relu

leaky_relu

elu

selu

(b) Activation gradient.

Figure 4.12. Activations comparison. The top chart compares the shape
of activations g(x) and the bottom compares their gradients
∂g(x)

∂x
. An ideal activation for most hidden layers has, 1.

nonlinearity which makes a network nonlinear to solve complex
problems, 2. a region where the gradient is ≥ 1 and < 1 + δ,
where δ is small, to avoid gradient vanishment and explosion,
respectively, and 3. a saturation region where the gradient
becomes 0 to reduce variance.

84 4.7. Activation

minor change in elu in Equation 4.12 with a λ factor.

g(x) =

{
λx, if x > 0

λα(expx− 1), otherwise
(4.13)

where, λ > 1.

But Klambauer et al. 2017 proved that the simple change brought an
important property of self-normalization that none of the predecessors
had.

4.7.4 Self-normalization

The activations of a neural network are considered self-normalized if
their means and variances across the samples are within predefined in-
tervals. With selu, if the input mean and variance are within some
intervals, then the outputs’ mean and variance will also be in the same
respective intervals. That is, the normalization is transitive across lay-
ers.

This means that selu successively normalizes the layer outputs when
propagating through network layers. Therefore, if the input features are
normalized the output of each layer in the network will be automatically
normalized. And, this normalization resolves the gradient explosion
issue.

To achieve this, selu initializes normalized weight vectors such that∑
wi = 0 and

∑
w2
i = 1 for every layer. The weights are randomly

drawn from a truncated normal distribution. For this initialization the
best values for the parameters λ and α in Equation 4.13 are derived as
1.0507 and 1.6733 in Klambauer et al. 2017.

The development of selu in Klambauer et al. 2017 outlines the gen-
erally desired properties of an activation. Among them, the presence of
negative and positive values, and a (one) saturation region are the first
candidates.

Figure 4.12a and 4.12b display the presence/absence of these prop-
erties among the popular activations. Only elu and selu have both

Chapter 4. Multi-layer Perceptrons 85

the properties. However, selu went beyond elu with two additional
attributes,

• Larger gradient. A gradient larger than one. This increases the
variance if it is too small in the lower layers. This would make
learning low-level features in deeper networks possible.

Moreover, the gradient is larger around x = 0 compared to elu
(see Figure 4.12b). This reduces the noise from weaker nodes and
guides them to their optimal values faster.

• Balanced variance. A fixed point where the variance damping
(due to the gradient saturation) is equalized by variance inflation
(due to greater than 1 gradient). This controls the activations
from vanishing or exploding.

Selu properties are irresistible. It performs better in some data sets
and especially in very deep networks. But in shallow networks such as
the baseline network in this chapter, selu might not outperform others.

4.7.5 Selu Activation

The MLP model with selu activation is shown in Listing 4.17. As shown
in the listing, a selu activated model requires,

• kernel_initializer=’lecun_normal’13. This initializes the weights
by sampling the weight vectors from a truncated normal distribu-
tion with mean 0 and standard deviation as

1√
ml−1

where ml−1 is the number of input units (size of the previous
layer).

• AlphaDropout()14. Standard dropout randomly sets inputs to
zero. This does not work with selu as it disturbs the activations’

13https://www.tensorflow.org/api_docs/python/tf/initializers/lecun_
normal

14https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras/
layers/AlphaDropout

https://www.tensorflow.org/api_docs/python/tf/initializers/lecun_normal
https://www.tensorflow.org/api_docs/python/tf/initializers/lecun_normal
https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras/layers/AlphaDropout
https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras/layers/AlphaDropout

86 4.7. Activation

mean and variance. Therefore, a new “alpha dropout” was intro-
duced in Klambauer et al. 2017 in which the inputs are randomly
set to α′. α′ is set so that the activations’ original mean and vari-
ance are preserved. This ensures the self-normalizing property of
selu.

Empirically, an alpha dropout rate of 0.05 or 0.1 leads to a good
performance.

Listing 4.17. MLP with selu Activation.
1 model = Sequential ()
2 model.add(Input(shape =(N_FEATURES ,)))
3 model.add(Dense (32, activation=’selu’,
4 kernel_initializer=’lecun_normal ’))
5 model.add(AlphaDropout (0.1))
6 model.add(Dense (16, activation=’selu’,
7 kernel_initializer=’lecun_normal ’))
8 model.add(AlphaDropout (0.1))
9 model.add(Dense(1, activation=’sigmoid ’))
10
11 model.summary ()
12
13 model.compile(optimizer=’adam’,
14 loss=’binary_crossentropy ’,
15 metrics =[’accuracy ’,
16 tf.keras.metrics.Recall (),
17 performancemetrics.F1Score (),
18 performancemetrics.

FalsePositiveRate ()]
19)
20
21 history = model.fit(x=X_train_scaled ,
22 y=y_train ,
23 batch_size =128,
24 epochs =100,
25 validation_data =(X_valid_scaled ,
26 y_valid),
27 verbose =0).history

Chapter 4. Multi-layer Perceptrons 87

4.8 Novel Ideas Implementation

4.8.1 Activation Customization

Activations is an active research field in Deep Learning and still at its
nascent stage. It is common among researchers to attempt novel activa-
tion ideas. To enable this, custom activation implementation is shown
here.

Activations can be defined as a conventional python function. For
such definitions, their gradient should also be defined and registered to
TensorFlow15.

However, the gradient definition is usually not required if the activa-
tion is defined using TensorFlow functions. TensorFlow has derivatives
predefined for its in-built functions. Therefore, explicit gradient dec-
laration is not required. This approach is, therefore, simpler and is
practically applicable in most activation definitions.

Here a custom activation, Thresholded Exponential Linear Unit (telu),
is defined in Equation 4.14.

g(x) =


λx, if x > τ

0, if − τ ≤ x ≤ τ
λα(expx− 1), if x < −τ

(4.14)

With this activation, weak nodes smaller than τ will be deactivated.
The idea behind thresholding small activations is applying regularization
directly through the telu activation function.

This custom activation is a modification of selu. The activation
is defined in Listing 4.18. The first input argument x to activation
is a tensor. Any subsequent argument is the hyperparameters, that
can be defined and set as required. Here, the threshold, τ , is the
hyperparameter.

Listing 4.18. Custom Activation telu definition.

15See tf.RegisterGradient at https://www.tensorflow.org/versions/r2.0/
api_docs/python/tf/RegisterGradient

https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/RegisterGradient
https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/RegisterGradient

88 4.8. Novel Ideas Implementation

1 from tensorflow.keras import backend as K
2 def telu(x, threshold =0.1):
3 ’’’
4 Thresholded Exponential linear unit.
5
6 Arguments:
7 x: Input tensor.
8 alpha: A scalar = 1.6732632 , slope
9 of negative section.
10 scale: A scalar = 1.05070098 , to
11 keep the gradient > 1 for
12 x > 0.
13
14 Returns:
15 The thresholded exponential linear
16 activation:
17 scale * x, if x > threshold ,
18 0, if -threshold < x < threshold
19 scale * alpha * (exp(x) -1), if
20 ‘x < -threshold ‘.
21 ’’’
22 x_ = tf.keras.activations.selu(x)
23
24 # Create a tensor of same shape as x
25 # with the threshold in each cell.
26 threshold_ = tf.math.scalar_mul(threshold ,
27 K.ones_like(x_))
28
29 # Creates an identity tensor which
30 # is one if the abs(x) > threshold.
31 threshold_multiplier =
32 K.cast(tf.keras.backend.less(threshold_ ,
33 K.abs(x_)),
34 dtype=’float32 ’)
35
36 return tf.math.multiply(x_,
37 threshold_multiplier)

The activation definition in Listing 4.18 is using in-built TensorFlow
functions for every operation. The input x is, first, passed through
selu(x) in line 22 and then thresholded. The thresholding is done by,

Chapter 4. Multi-layer Perceptrons 89

• defining a tensor of the same shape as x which has a value 1, if the
corresponding absolute of x element is greater than the threshold
and 0, otherwise.

• Followed by an element-wise multiplication between the vectors
using tf.math.multiply in line 36.

The custom activation must be tested by defining TensorFlow ten-
sors and passing them through the function. The testing is shown in
Listing 4.19.

Listing 4.19. Testing the custom activation telu.
1 # Testing TELU
2 test_x = tf.convert_to_tensor ([-1., 1.1, 0.01] ,
3 dtype=tf.float32)
4
5 # Sanity test 1: telu output should be
6 # equal to selu if threshold =0.
7 tf.print(’TELU with threshold =0.0:’,
8 telu(test_x , threshold =0.))
9 tf.print(’SELU for comparison: ’,
10 tf.keras.activations.selu(test_x))
11
12 # Output:
13 # TELU with threshold =0.0: [-1.11133075 1.15577114

0.0105070099]
14 # SELU for comparison: [-1.11133075 1.15577114

0.0105070099]
15
16 # Sanity test 2: telu should make
17 # activations < threshold.
18 tf.print(’TELU default setting: ’,
19 telu(test_x)) # default threshold = 0.1
20
21 # Output:
22 # TELU default setting: [-1.11133075 1.15577114

0]

First, a sanity test is done by setting the threshold as 0.0. In this
setting, the output should be equal to the output of a selu activation.
Second, telu functionality is validated by setting the threshold as 0.1.

90 4.8. Novel Ideas Implementation

With this threshold, the input smaller than the threshold is made 0.
The outputs are shown under comments in the listing.

The activation definition passed both tests. In general, it is impor-
tant to run various tests on custom functions before moving forward.
Because the farther we go with custom functions, the harder it becomes
to pinpoint the problem if any arises.

In Listing 4.20, an MLP model is trained with the custom telu
activation.

Listing 4.20. MLP model with the custom telu activation.
1 model = Sequential ()
2 model.add(Input(shape =(N_FEATURES ,)))
3 model.add(Dense (32, activation=telu))
4 model.add(Dense (16, activation=telu))
5 model.add(Dense(1, activation=’sigmoid ’))
6
7 model.summary ()
8
9 model.compile(optimizer=’adam’,
10 loss=’binary_crossentropy ’,
11 metrics =[’accuracy ’,
12 tf.keras.metrics.Recall (),
13 performancemetrics.F1Score (),
14 performancemetrics.

FalsePositiveRate ()]
15)
16
17 history = model.fit(x=X_train_scaled ,
18 y=y_train ,
19 batch_size =128,
20 epochs =100,
21 validation_data =(X_valid_scaled ,
22 y_valid),
23 verbose =0).history

Telu activation performed at par with the baseline. While the base-
line model had increasing validation, telu resolved the increasing vali-
dation loss issue without sacrificing the accuracy.

Chapter 4. Multi-layer Perceptrons 91

0 20 40 60 80 100
Epoch

0.0

0.10.1

0.20.2

0.3

lo
ss

Train loss
Valid loss

(a) Loss.

0 20 40 60 80 100
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

f1
_s

co
re

Train f1_score
Valid f1_score

(b) F1-score.

0 20 40 60 80 100
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

va
lu

e

Train Recall
Valid Recall
Train FPR
Valid FPR

(c) Recall and FPR.

Figure 4.13. MLP with telu activation results.

� The development and results from a custom telu
activation here demonstrates that there is signifi-

cant room for research in activation.

4.8.2 Metrics Customization

Looking at suitably chosen metrics for a problem tremendously increases
the ability to develop better models. Although a metric does not directly
improve model training but it helps in a better model selection.

Several metrics are available outside TensorFlow such as in sklearn.
However, they cannot be used directly during model training in Tensor-
Flow. This is because the metrics are computed while processing batches

92 4.8. Novel Ideas Implementation

during each training epoch.

Fortunately, TensorFlow provides the ability for this customization.
The custom-defined metrics F1Score and FalsePositiveRate are pro-
vided in the user-defined performancemetrics library. Learning the
programmatic context for the customization is important and, there-
fore, is elucidated here.

The TensorFlow official guide shows the steps for writing a custom
metric16. It instructs to create a new subclass inheriting the Metric
class and work on the following definitions for the customization,

• __init__(): All the state variables should be created in this
method by calling self.add_weight() like:
self.var = self.add_weight(...).

• update_state(): All updates to the state variables should be done
as self.var.assign_add(...).

• result(): The final result from the state variables is computed
and returned in this function.

Using these instructions, the FalsePositiveRate() custom metric
is defined in Listing 4.21. Note that FalsePositives metric is already
present in TensorFlow. But drawing the false positive rate (a ratio) from
it during training is not direct and, therefore, the FalsePositiveRate()
is defined.

Listing 4.21. Custom FalsePositiveRate Metric Definition.
1 class FalsePositiveRate(tf.keras.metrics.Metric):
2 def __init__(self , name=’false_positive_rate ’,
3 ** kwargs):
4 super(FalsePositiveRate , self).
5 __init__(name=name , ** kwargs)
6 self.negatives = self.add_weight(name=’

negatives ’,
7 initializer=’zeros ’)
8 self.false_positives = self.add_weight(
9 name=’false_negatives ’,
10 initializer=’zeros ’)

16tensorflow/python/keras/metrics.py at shorturl.at/iqDS7

shorturl.at/iqDS7

Chapter 4. Multi-layer Perceptrons 93

11
12 def update_state(self ,
13 y_true , y_pred , sample_weight=None):
14 ’’’
15 Arguments:
16 y_true The actual y. Passed by
17 default to Metric classes.
18 y_pred The predicted y. Passed
19 by default to Metric classes.
20
21 ’’’
22 # Compute the number of negatives.
23 y_true = tf.cast(y_true , tf.bool)
24
25 negatives = tf.reduce_sum(tf.cast(
26 tf.equal(y_true , False), self.dtype))
27
28 self.negatives.assign_add(negatives)
29
30 # Compute the number of false positives.
31 y_pred = tf.greater_equal(
32 y_pred , 0.5
33) # Using default threshold of 0.5 to
34 # call a prediction as positive labeled.
35
36 false_positive_vector =
37 tf.logical_and(tf.equal(y_true , False),
38 tf.equal(y_pred , True))
39 false_positive_vector = tf.cast(

false_positive_vector ,
40 self.dtype)
41 if sample_weight is not None:
42 sample_weight = tf.cast(sample_weight ,
43 self.dtype)
44 sample_weight = tf.broadcast_weights(
45 sample_weight , values)
46 values = tf.multiply(

false_positive_vector ,
47 sample_weight)
48
49 false_positives = tf.reduce_sum(

false_positive_vector)

94 4.8. Novel Ideas Implementation

50
51 self.false_positives.assign_add(

false_positives)
52
53 def result(self):
54 return tf.divide(self.false_positives ,
55 self.negatives)

How do metrics computation and customization work?

A model training is done iteratively. The iterations happen at multiple
levels. The iteration levels for multi-layer perceptron training are laid
out in Figure 4.14.

The topmost iteration level is epochs. Within an epoch, a model is
trained iteratively over randomly selected batches. The batches are the
second level of iteration.

Multiple samples are present within a batch. The model can be
trained by processing one sample at a time. But they are processed
together as a batch (as shown in Equation 4.4) for computational ef-
ficiency. The sample is, therefore, grayed in the figure indicating it a
logical iteration instead of an actual one.

During batch processing, all the model parameters—weights and
biases—are updated. Simultaneously, the states of a metric are also
updated. Upon processing all the batches in an epoch, both the esti-
mated parameters and computed metrics are returned. Note that all
these operations are enclosed within an epoch and no values are com-
municated between two epochs.

The meaning of the metrics state, metrics computation, and the
programmatic logic in Listing 4.21 for defining FalsePositiveRate are
enumerated below.

• The class FalsePositiveRate() is inheriting the Metric class in
TensorFlow. As a result, it automatically has the __init__(),
update_state(), and result() definitions. These definitions will
be overwritten during the customization.

• __init__() is the entry gate to a metric class. It initializes the

Chapter 4. Multi-layer Perceptrons 95

epoch
batch

sample

Figure 4.14. Levels of iteration in MLP training. The iterations are
interpreted up to the sample level. However, computationally all
samples in a batch are processed together using tensor
operations. Hence, the sample is grayed here to indicate it is
only a logical iteration level.

state variables. State variables are used for metric computation.

• The false-positive rate is the ratio of false positives over the neg-
atives. Therefore, false_positives and negatives become the
state variables.

• The state variables are prefixed with self.. A self variable can
be accessed and updated from any definition in the class.

• The states—false positives and negatives—are initialized to zero
in __init__(). That is, at the onset of an epoch all the states
are reset to their initial values. In some problems, the initial value
can be other than zero.

• After __init__(), the program enters update_state(). This
function can be imagined as the metric processing unit. It is run
for every batch in an epoch. Inside this function, the metric states
are updated from the outcome derived from a batch.

• update_state() has the actual labels y_true and the predictions
y_pred for the samples in the batch as default arguments.

• Line 23-28 in the function are computing and updating the
self.negatives state variable. The original labels y_true in the
inputted data are numeric 0 and 1. They are first converted
into boolean in Line 23. The negatives in the batch are then
computed by finding all the False (the negative samples) in the
boolean y_true vector followed by converting it back to numeric
0/1 and summing the now numeric vector.

96 4.8. Novel Ideas Implementation

• The negatives computed in Line 25 is the number of negative
samples in the batch under process. negatives is a local variable
in its enclosing function update_state(). It is added to the metric
state variable self.negatives (a class variable) in Line 28.

• Similarly, the false positives in the batch is computed in Line 31-
51. False positives is derived by comparing the predictions y_pred
with the actuals y_true.

• To get to the false positives, the first step is to convert y_pred
to boolean. y_pred is the output of a sigmoid activated output
layer. Thus, it is a continuous number in (0, 1).

• y_pred is converted to boolean using a default threshold of 0.517.
The predictions in y_pred greater than the threshold are made
True and False, otherwise.

• A false positive is when the actual label y_true is False but the
prediction y_pred is True. That is, the model incorrectly predicted
a negative sample as positive. This logical comparison is done in
Line 36.

• The output of the logical comparison is a boolean vector
false_positive_vector which is converted to numeric 0/1 in
Line 39.

• The false_positives in the batch is then computed by summing
the vector in Line 49.

• The possibility of a not None sample weight is accounted for in
Line 26-29.

• Same as before, the self.false_positives state is then updated
in Line 51.

• After the epoch has iterated through all the batches the metric
state variables self.negatives and self.false_positives will
have stored the totals for the entire data set.

17This is a default value used in practice. If needed, it can be changed to any other
desired value.

Chapter 4. Multi-layer Perceptrons 97

• The state self.negatives has the total negative samples in the
data set. This is a constant and, therefore, self.negatives will
remain the same in all epochs. self.false_positives, on the
other hand, is a result of the goodness of model fitting. And so it
changes (ideally reduces) over successive epochs.

• Finally, the program goes to result() and yields the metric’s
value. This is the “exit” gate of the metric class. Here the false pos-
itive rate is computed by dividing the metric states self.false_positives
and self.negatives.

• Important: a metric state should be additive only. This is be-
cause the update_state() can only increment or decrement the
state variable. For instance, if the false-positive rate—a ratio and,
thus, non-additive—was created as the state variable and updated
in

update_state() it would yield
∑

i∈batches
false positivesi

negativesi
in-

stead of the desired∑
i∈batches false positivesi∑

i∈batches negativesi
. In general, any non-additive com-

putation should, therefore, be done in result().

� The state in metric customization should be addi-
tive only.

Similarly, the F1Score custom metric is defined in Listing 4.22.

Listing 4.22. Custom F1Score Metric Definition.
1 class F1Score(tf.keras.metrics.Metric):
2 def __init__(self , name=’f1_score ’, ** kwargs):
3 super(F1Score , self).__init__(name=name , **

kwargs)
4 self.actual_positives =
5 self.add_weight(name=’actual_positives ’,
6 initializer=’zeros ’)
7 self.predicted_positives =

98 4.8. Novel Ideas Implementation

8 self.add_weight(name=’predicted_positives ’
,

9 initializer=’zeros ’)
10 self.true_positives =
11 self.add_weight(name=’true_positives ’,
12 initializer=’zeros ’)
13
14 def update_state(self ,
15 y_true , y_pred , sample_weight=None):
16 ’’’
17 Arguments:
18 y_true The actual y. Passed by default
19 to Metric classes.
20 y_pred The predicted y. Passed by
21 default to Metric classes.
22
23 ’’’
24 # Compute the number of negatives.
25 y_true = tf.cast(y_true , tf.bool)
26
27 actual_positives = tf.reduce_sum(
28 tf.cast(tf.equal(y_true , True), self.

dtype))
29 self.actual_positives.assign_add(

actual_positives)
30
31 # Compute the number of false positives.
32 y_pred = tf.greater_equal(
33 y_pred , 0.5
34) # Using default threshold of 0.5 to call

a prediction as positive labeled.
35
36 predicted_positives = tf.reduce_sum(
37 tf.cast(tf.equal(y_pred , True),
38 self.dtype))
39 self.predicted_positives.assign_add(

predicted_positives)
40
41 true_positive_values =
42 tf.logical_and(tf.equal(y_true , True),
43 tf.equal(y_pred , True))
44 true_positive_values =

Chapter 4. Multi-layer Perceptrons 99

45 tf.cast(true_positive_values , self.dtype)
46
47 if sample_weight is not None:
48 sample_weight =
49 tf.cast(sample_weight , self.dtype)
50 sample_weight =
51 tf.broadcast_weights(sample_weight ,

values)
52 values =
53 tf.multiply(true_positive_values ,

sample_weight)
54
55 true_positives = tf.reduce_sum(

true_positive_values)
56
57 self.true_positives.assign_add(

true_positives)
58
59 def result(self):
60 recall =
61 tf.math.divide_no_nan(
62 self.true_positives ,
63 self.actual_positives)
64 precision =
65 tf.math.divide_no_nan(
66 self.true_positives ,
67 self.predicted_positives)
68 f1_score =
69 2 * tf.math.divide_no_nan(
70 tf.multiply(recall , precision),
71 tf.math.add(recall , precision))
72
73 return f1_score

4.9 Models Evaluation

Several models were built in this chapter. Out of them, one model
should be selected as the final model. The performance of the final
model is evaluated on the test data. This is a traditional process of
model building and selection. For this purpose, the data set was initially

100 4.9. Models Evaluation

Table 4.1. MLP models comparison. The red highlighted values indicate
an undesirable or poor result.

Validation
Model Loss F1-score Recall FPR
Baseline Increasing 0.13 0.08 0.001
Dropout Non-increasing 0.00 0.00 0.000
Class weights Increasing 0.12 0.31 0.102
selu Non-increasing 0.04 0.02 0.001
telu (custom) Non-increasing 0.12 0.08 0.001

split in train, valid, and test.

The selection is made by comparing the validation results. These
results are summarized in Table 4.1. The baseline model has higher
accuracy measures but increasing validation loss indicating potential
overfitting. Dropout resolves the overfitting but the accuracy goes to
zero. Class weights boosted the accuracy but also has a high false-
positive rate. The selu activation attempted after that had significantly
lower f1-score than the baseline.

The custom activation telu performed relatively better than the
others. It has non-increasing validation loss and close to the baseline
accuracy. Therefore, telu activated model is selected as the final model.

This does not mean telu will be the best choice in other cases. The
process of building multiple models and selection should be followed for
every problem.

The final selected model is evaluated using model.evaluate() func-
tion. The evaluate function applies the trained model on test data and
returns the performance measures defined in model.compile().

The evaluation and test results are shown in Figure 4.23.

Listing 4.23. MLP final selected model evaluation.
1 # Final model
2 model.evaluate(
3 x=X_test_scaled ,
4 y=y_test ,
5 batch_size =128,

Chapter 4. Multi-layer Perceptrons 101

6 verbose =1)
7
8 # loss: 0.0796 - accuracy: 0.9860 -
9 # recall_5: 0.0755 - f1_score: 0.1231 -
10 # false_positive_rate: 0.0020

Multi-layer perceptrons are elementary deep learning models. Any
reasonable result from MLPs act as a preliminary screening that there
are some predictive patterns in the data. This lays down a path for
further development with different network architectures.

4.10 Rules-of-thumb

This chapter went through a few MLP model constructions. Even in
those few models, several modeling constructs and their settings were
involved. In practice, there are many more choices. And they could be
overwhelming.

Therefore, this chapter concludes with some thumb-rules to make an
initial model construction easier.

• Number of layers. Start with two hidden layers (this does not
include the last layer).

• Number of nodes (size) of intermediate layers. A number
from a geometric series of 2: 1, 2, 4, 8, 16, 32, The first layer
should be around half of the number of input data features. The
next layer size is half of the previous and so on.

• Number of nodes (size) of the output layer.

– Classification. If binary classification then the size is one.
For a multi-class classifier, the size is the number of classes.

– Regression. If a single response then the size is one. For
multi-response regression, the size is the number of responses.

• Activation.

– Intermediate layers. Use relu activation.

102 4.10. Rules-of-thumb

– Output layer. Use sigmoid for binary classification, softmax
for a multi-class classifier, and linear for regression.

• Dropout. Do not add dropout in a baseline MLP model. It
should be added to a large or complex network. Dropout should
certainly be not added to the input layer.

• Data Preprocessing. Make the features X as numeric by con-
verting any categorical columns into one-hot-encoding. Then, per-
form feature scaling. Use StandardScaler if the features are un-
bounded and MinMaxScaler if bounded.

• Split data to train, valid, test. Use train_test_split from
sklearn.model_selection.

• Class weights. Should be used with caution and better avoided
for extremely imbalanced data. If used in a binary classifier, the
weights should be: 0: number of 1s / data size, 1: number of 0s /
data size.

• Optimizer. Use adam with its default learning rate.

• Loss.

– Classification. For binary classification use
binary_crossentropy. For multiclass, use
categorical_crossentropy if the labels are one-hot-encoded,
otherwise use
sparse_categorical_crossentropy if the labels are inte-
gers.

– Regression. Use mse.

• Metrics.

– Classification. Use accuracy that shows the percent of cor-
rect classifications. For imbalanced data, also include Recall,
FalsePositiveRate, and F1Score.

– Regression. Use RootMeanSquaredError().

• Epochs. Set it as 100 and see if the model training shows de-
creasing loss and any improvement in the metrics over the epochs.

Chapter 4. Multi-layer Perceptrons 103

• Batch size. Choose the batch size from the geometric progres-
sion of 2. For imbalanced data sets have larger value, like 128,
otherwise, start with 16.

For advanced readers,

• Oscillating loss. If the oscillating loss is encountered upon train-
ing then there is a convergence issue. Try reducing the learning
rate and/or change the batch size.

• Oversampling and undersampling. Random sampling will
work better for multivariate time series than synthesis methods
like SMOTE.

• Curve shifting. If the time-shifted prediction is required, for
example, in an early prediction use curve shifting.

• Selu activation. selu activation has been deemed as better for
large networks. If using selu activation then use
kernel_initializer=’lecun_normal’ and AlphaDropout(). In
AlphaDropout, use the rate as 0.1.

104 4.11. Exercises

4.11 Exercises

1. The chapter mentioned few important properties. In their context,
show,

(a) Why a linearly activated MLP model is equivalent to linear
regression? Refer to Appendix A.

(b) Why is a neural network of a single layer, unit sized layer,
and sigmoid activation the same as logistic regression?

(c) How the loss function with dropout under linear activation as-
sumption (Equation 4.8) contains an L2 regularization term?
Refer to Baldi and Sadowski 2013.
Also, show how the dropout approach is similar to an ensem-
ble method? Refer to Srivastava et al. 2014.

2. Temporal features. In (multivariate) time series processes, tem-
poral patterns are naturally present. These patterns are expected
to be predictive of the response. Temporal features can be added
as predictors to learn such patterns.

Add the following set of features (one set at a time) to the baseline
and final model of your data. Discuss your findings.

(a) Up to three lag terms for y and each x’s. That is, create
samples like,

(response: yt, predictors: yt−1, yt−2, yt−3,xt,xt−1,xt−2,xt−3)

(b) Lag terms up to 10. Does increasing the lags have any effect
on the model performance?

(c) The first derivative of x’s, i.e., a sample tuple will be,

(response: yt, predictors: xt,xt − xt−1)

(d) Second derivatives of x’s, i.e.

(response: yt, predictors: xt, (xt − xt−1)− (xt−1 − xt−2))

(e) Both, first and second derivatives together as predictors.
(f) Does the derivatives add to the predictability? Why?
(g) What is the limitation in manually adding features?

Chapter 4. Multi-layer Perceptrons 105

(h) (Optional) Frequency domain features. For temporal pro-
cesses, the features in the frequency domain are known to
have good predictive signals. They are more robust to noise
in the data. Add frequency domain features as predictors.
Discuss your findings.

(i) (Optional) The MLP model constructed in the chapter does
not have any temporal features. By itself, the MLP cannot
learn temporal patterns. Why did the MLP model without
temporal features could still work?

3. Accuracy metric—Diagnostics Odds Ratio. Imbalanced data
problems need to be evaluated with several non-traditional met-
rics. A diagnostic odds ratio is one of them.

(a) Explain diagnostic odds ratio and its interpretation in the
context of imbalanced class problems.

(b) Build a custom metric for the diagnostics odds ratio.
(c) Add it to the baseline and final models. Discuss the results.

4. Batch normalization. It is mentioned in § 4.7 that extreme
feature values can cause vanishing and exploding gradient issues.
Batch normalization is another approach to address them.

(a) Explain the batch normalization approach. Describe it along-
side explaining Algorithm 1 in Ioffe and Szegedy 2015.

(b) Add BatchNormalization in TensorFlow to the baseline and
final models. Discuss your results.

(c) Train the models without feature scaling. Can batch normal-
ization work if the input features are not scaled?

(d) (Optional) Define a custom layer implementing Algorithm 1
in Ioffe and Szegedy 201518

5. Dropout. Understand dropout behavior.

(a) Dropout does not necessarily work well in shallow MLPs.
Build an MLP with more layers and add dropout layers.

18The noise and gaussian dropout layers definition here, https://github.com/
tensorflow/tensorflow/blob/v2.1.0/tensorflow/python/keras/layers/noise.
py is helpful.

https://github.com/tensorflow/tensorflow/blob/v2.1.0/tensorflow/python/keras/layers/noise.py
https://github.com/tensorflow/tensorflow/blob/v2.1.0/tensorflow/python/keras/layers/noise.py
https://github.com/tensorflow/tensorflow/blob/v2.1.0/tensorflow/python/keras/layers/noise.py

106 4.11. Exercises

(b) Build a two hidden layer MLP with larger layer sizes along
with dropout.

(c) Discuss the results of (a) and (b).

(d) Srivastava et al. 2014 state that a multiplicative Gaussian
noise (now known as Gaussian Dropout) can work better than
a regular dropout. Explain the reasoning behind this theory.
Repeat (a)-(c) with Gaussian dropout and discuss the results.

6. Activation.

(a) Selu has one of the best properties among the existing ac-
tivations. It is believed to work better in deeper networks.
Create an MLP network deeper than the baseline and use
selu activation. Discuss the results.

(b) (Optional) Thresholded exponential linear unit (telu) is a
new activation developed in this chapter. It performed bet-
ter compared to others. This shows that there is room for
developing new activations that might outperform the exist-
ing ones.
In this spirit, make the following modification in telu.
The threshold τ in Equation 4.14 is fixed. Make τ adaptive by
making it proportional to the standard deviation of its input
x. Change τ = 0.1σx in Equation 4.14 and build customized
activation.
The idea is to adjust the threshold based on the input vari-
ance.
Apply this customized activation on the baseline model and
discuss the results.

(c) (Optional) Can the results be further improved with the ac-
tivation customization? Define your custom activation and
test it.

Chapter 5

Long Short Term Memory
Networks

5.1 Background

“Humans don’t start their thinking from scratch every sec-
ond. As you read this essay, you understand each word based
on your understanding of previous words. You don’t throw
everything away and start thinking from scratch again. Your
thoughts have persistence.”

– in Olah 2015.

Sequences and time series processes are like essays. The order of
words in an essay and, likewise, the observations in sequences and time
series processes are important. Due to this, they have temporal patterns.
Meaning, the previous observations (the memory) has an effect on the
future.

Memory persistence is one approach to learn such temporal patterns.
Recurrent neural networks (RNN) like long- and short-term memory
networks were conceptualized for this purpose.

RNNs constitute a very powerful class of computational models ca-
pable of learning arbitrary dynamics. They work by keeping a memory
of patterns in sequential orders. It combines knowledge from the past

107

108 5.1. Background

memories with the current information to make a prediction.

RNN development can be traced back to Rumelhart, G. E. Hinton,
and R. J. Williams 1985. Several RNN variants have been developed
since then. For example, Elman 1990, Jordan 1990, and time-delay
neural networks by Lang, Waibel, and G. E. Hinton 1990.

However, the majority of the RNNs became obsolete because of their
inability to learn long-term memories. This was due to the vanishing
gradient issue (explained in the RNN context in § 5.2.8).

The issue was addressed with the development of long short term
memory (LSTM) networks by Hochreiter and Schmidhuber 1997. LSTMs
introduced the concept of cell state that holds the long- and short-term
memories.

This ability was revolutionary in the field of RNNs. A majority of
the success attributed to RNNs comes from LSTMs. They have proven
to work significantly better for most of the temporal and sequential data.

At its inception, LSTMs quickly set several records. It outperformed
real-time recurrent learning, back-propagation through time, Elman-
nets, and others, popular at the time. LSTM could solve complex and
long time-lag tasks that were never solved before.

Developments in and applications of LSTMs continued over the years.
Today, they are used by Google and Facebook for text translation (Yonghui
Wu et al. 2016; Ong 2017). Apple and Amazon use it for speech recog-
nition in Siri (C. Smith 2016) and Alexa (Vogels 2016), respectively.

Despite the successes, LSTMs have also faced criticisms from some
researchers. There has been debate around the need for LSTMs after
the development of transformers and attention networks (Vaswani et al.
2017).

Regardless of the varied beliefs, LSTMs and other RNNs still stand
as major pillars in deep learning. In addition to their superiority in
various problems, there is an immense scope of new research and devel-
opment.

This chapter begins by explaining the fundamentals of LSTM in
§ 5.2. LSTMs are one of the most complex constructs in deep learning.

Chapter 5. Long Short Term Memory Networks 109

This section attempts at deconstructing it and visualizing each element
for a clearer understanding.

The subsections in § 5.2 show an LSTM cell structure (§ 5.2.2), the
state mechanism that causes memory persistence (§ 5.2.3), the opera-
tions behind the mechanism (§ 5.2.4), the model parameters (§ 5.2.6),
and the training iterations (§ 5.2.7). Importantly, LSTMs are capable of
persisting long-term memories due to a stable gradient. This property
is articulated in § 5.2.8.

Moreover, LSTM networks have an intricate information flow which
is seldom visualized but paramount to learn. § 5.3 explains LSTM cell
operations and information flow in a network with expanded visual il-
lustrations. The subsections, therein, elucidates stateless and stateful
networks (§ 5.3.2), and the importance of (not) returning sequence out-
puts (§ 5.3.3).

The chapter then exemplifies an end-to-end implementation of a
(baseline) LSTM network in § 5.4 and 5.5. Every step from data prepa-
ration, temporalization, to network construction are shown. A few net-
work improvement techniques such as unrestricted network, recurrent
dropout, go-backwards, and bi-directional are explained and implemented
in § 5.6.1-5.6.5.

LSTMs have a rich history of development. It has matured to the
current level after several iterations of research. § 5.7 walks through a
brief history of recurrent neural networks and the evolution of LSTMs.

Lastly, the networks are summarized in § 5.8 and a few rules-of-
thumb for LSTM networks are given in § 5.9.

5.2 Fundamentals of LSTM

LSTMs are one of the most abstruse theories in elementary deep learn-
ing. Comprehending the fundamentals of LSTM from its original pa-
per(s) can be intimidating.

For an easier understanding, it is deconstructed to its elements and
every element is explained in this section. This begins with a typical
neural network illustration in Figure 5.1.

110 5.2. Fundamentals of LSTM

Hidden, LSTM,
Layer-1.

Output Layer.Hidden, LSTM,
Layer-2.

Input
sample,
𝐱 "#$:"

Prediction, &𝑦

Input Layer.

𝑥")

𝑥"*

𝑥("#$))

𝑥("#$)*

⋮⋮ ⋮

⋮
⋮

⋮

𝑝
fe

at
ur

es

Time window of size 𝜏

Figure 5.1. A high-level representation of an LSTM network. The
input is a time-window of observations. An LSTM network is
designed to learn spatio-temporal relationships from these
time-window inputs. The orange highlighted box represents an
LSTM cell in the LSTM layer. Each cell learns a distinctive
spatio-temporal feature from the inputs.

5.2.1 Input to LSTM

The input to an LSTM layer is a time-window of observations. In Fig-
ure 5.1, it is denoted as x(T−τ):T . This represents p-dimensional obser-
vations in a window of size τ .

This window of observations serves as an input sample. The win-
dow allows the network to learn the spatial and temporal relationships
(remember Figure 2.1c in Chapter 2).

5.2.2 LSTM Cell

The hidden layers in Figure 5.1 are LSTM. The nodes in a layer is an
LSTM cell—highlighted in orange. A node in LSTM is called a cell
because it performs a complex biological cell-like multi-step procedure.

This multi-step procedure is enumerated in § 5.2.4. Before getting
there, it is important to know the distinguishing property that the cell
mechanism brings to LSTM.

The cell mechanism in LSTM has an element called state. A cell
state can be imagined as a Pensieve in Harry Potter.

Chapter 5. Long Short Term Memory Networks 111

“I use the Pensieve. One simply siphons the excess thoughts
from one’s mind, pours them into the basin, and examines
them at one’s leisure. It becomes easier to spot patterns and
links; you understand when they are in this form.”
–Albus Dumbledore explaining a Pensieve in Harry Potter

and the Goblet of Fire.

Like a Pensieve, sans magic, a cell state preserves memories from
current to distant past. Due to the cell state, it becomes easier to
spot patterns and links by having current and distant memories. And,
this makes the difference for LSTMs. The state and its mechanism are
elaborated in detail next.

5.2.3 State Mechanism

The cell state mechanism is explained with the help of an intuitive illus-
tration in Figure 5.2a. In the figure, the blue-shaded larger box denotes
an LSTM cell. The cell operations are deconstructed inside the box and
explained below.

• The input sample to a cell is a time-window of observations x(T−τ):T .
For simplicity, T − τ is replaced with 0 in the figure. The obser-
vations are, thus, shown as x0,x1, . . . ,xT .

• The cell sequentially processes the time-indexed observations.

• The iterations are shown as green boxes sequentially laid inside
the deconstructed cell.

• A green box takes in one time-step xt. It performs some operations
to compute the cell state, ct, and the output, ht.

• Like the other RNNs, the hidden output ht is transmitted to the
next iteration and, also, returned as a cell output. This is shown
with branched arrows with horizontal and vertical branches car-
rying ht. The horizontal branch goes to the next green box (iter-
ation) and the vertical branch exits the cell as an output.

• Differently from the other RNNs, an LSTM cell also transmits the
cell state ct.

112 5.2. Fundamentals of LSTM

𝐱!

𝐡!

𝐱" 𝐱# 𝐱$%# 𝐱$%" 𝐱$

𝐡$

𝐜!

𝐡" 𝐡$%# 𝐡$%"

(𝐱!)

𝐜! 𝐜" 𝐜" 𝐜# 𝐜$%& 𝐜$%# 𝐜$%# 𝐜$%" 𝐜$%"

(𝐱") (𝐱") (𝐱!, 𝐱"#!) (𝐱!, 𝐱"#!)

𝐜$

(a) Illustration of an unwrapped LSTM cell mechanism showing the
time-step iterations. The input to a cell is the time-window of observations
x(T−τ):T . The index (T − τ) is replaced with 0 for simplicity. The LSTM
cell acts as a memory lane in which the cell states carry the long- and
short-term memories through an imaginary truck of information.

𝐱!

𝐡!

𝐜!

Loop over 𝑡,
where 𝑡 =
𝑇 − 𝜏,⋯ , 𝑇

(b) A condensed form of the LSTM cell mechanism. In actuality, the cell
states (ht, ct) are re-accessed iteratively for t = (T − τ), . . . , T . A succinct
representation of this is shown with the looping arrows.

Figure 5.2. An unwrapped and condensed (wrapped) illustration of
LSTM cell state mechanism.

Chapter 5. Long Short Term Memory Networks 113

• Imagine the iterations along the time-steps, t = 0, . . . , T , in a cell
as a drive down a lane. Let’s call it a “memory lane.” A green box
(the time-step iteration) is a station on this lane. And, there is a
“truck of information” carrying the cell state, i.e., the memory.

• The truck starts from the left at the first station. At this station,
the inputted observation x0 is assessed to see whether the infor-
mation therein is relevant or not. If yes, it is loaded on to the
truck. Otherwise, it is ignored.

• The loading on the truck is the cell state. In the figure’s illustra-
tion, x0 is shown as important and loaded to the truck as a part
of the cell state.

• The cell state ct as truckloads are denoted as (x·) to express that
the state is some function of the x’s and not the original x.

• The truck then moves to the next station. Here it is unloaded,
i.e., the state/memory learned thus far is taken out. The station
assesses the unloaded state alongside the x available in it.

• Suppose this station is t. Two assessments are made here. First,
is the information in the xt at the station relevant? If yes, add it
to the state ct.

Second, in the presence of xt is the memory from the prior x’s
still relevant? If irrelevant, forget the memory.

For example, the station next to x0 is x1. Here x1 is found to be
relevant and added in the state. At the same time, it is found that
x0 is irrelevant in the presence of x1. And, therefore, the memory
of x0 is taken out of the state. Or, in LSTM terminology, x0 is
forgotten.

• After the processing, the state is then loaded back on the truck.

• The process of loading and unloading the truck-of-information is
repeated till the last xT in the sample. Further down the lane,
it is shown that x2,xT−2 and xT contain irrelevant information.
They are ignored while xT−1 was added as its information might
be absent in the state cT−2 learned before reaching it.

114 5.2. Fundamentals of LSTM

• The addition and omission of the timed observations of a sample
makes up the long-term memory in ct.

• Moreover, the intermediate outputs ht has a short-term memory.

• Together, they constitute all the long- and short-term memories
that lead up to deliver the final output hT at the last station.

� If you are still thinking of Harry Potter, the truck
is the Pensieve.

Using the cell state, LSTM becomes capable of preserving memories
from the past. But, why was this not possible with the RNNs
before LSTM?

Because the gradients vanish quickly for the ht’s. As a result, long-
term memories do not persist. Differently, the cell states ct in LSTM has
stabilized gradient (discussed in § 5.2.8) and, thus, keeps the memory.

5.2.4 Cell Operations

An LSTM cell behaves like a living cell. It performs multiple operations
to learn and preserve memories to draw inferences (the output).

Consider a cell operation in an LSTM layer in Figure 5.3. The cell
processes one observation at a time in a timed sequence window
{xT−τ ,xT−τ+1, . . . ,xT }.

Suppose the cell is processing a time-step xt. The xt flows into
the cell as input, gets processed along the paths (in Figure 5.3) in the
presence of the previous output ht−1 and cell state ct−1, and yields the
updated output ht and cell state ct.

The computations within the cell as implemented in TensorFlow
from Jozefowicz, Zaremba, and Sutskever 2015 are given below in Equa-

Chapter 5. Long Short Term Memory Networks 115

tion 5.1a-5.1f,

it = hard-sigmoid(w
(x)
i xt +w

(h)
i ht−1 + bi) (5.1a)

ot = hard-sigmoid(w(x)
o xt +w(h)

o ht−1 + bo) (5.1b)

ft = hard-sigmoid(w
(x)
f xt +w

(h)
f ht−1 + bf) (5.1c)

c̃t = tanh(w(x)
c xt +w(h)

c ht−1 + bc) (5.1d)
ct = ftct−1 + itc̃t (5.1e)
ht = ottanh(ct) (5.1f)

where,

• it, ot, and ft are input, output, and forget gates,

• hard-sigmoid is a segment-wise linear approximation of sigmoid
function for faster computation. It returns a value between 0 and
1, defined as,

hard-sigmoid(x) =


1 , x > 2.5

0.2x+ 0.5 ,−2.5 ≤ x ≤ 2.5

0 , x < −2.5

• c̃t is a temporary variable that holds the relevant information in
the current time-step t,

• ct and ht are the cell state and outputs, and

• w(x)
· , w(h)

· , and b· are the weight and bias parameters.

The intuition behind processing operations in Equation 5.1a-5.1f are
broken into four steps and described below.

• Step 1. Information.

The first step is to learn the information in the time-step input xt
alongside the cell’s prior learned output ht−1. This learning is done

116 5.2. Fundamentals of LSTM

𝐱!

tanh σσ

x +
x x

tanh
𝐜!"#

W! W" W#𝐡!"#
σ

W$

𝐜!

𝐡!

𝐡!

Figure 5.3. The inside of an LSTM cell. The cell consists of three
gates, input (i), output (o), and forget (f), made of sigmoid
activation (σ) shown with yellow boxes. The cell derives
relevant information through tanh activations shown with
orange boxes. The cell takes the prior states (ct−1, ht−1),
runs it through the gates, and draws information to yield the
updated (ct, ht). Source Olah 2015.

σ
W!

𝐱!

σ

x +
x x

tanh

𝐜"#$

W%𝐡"#$
σ

W#
tanh

W$

𝐜"

𝐡"

𝐡"

(a) Step 1. Information.

𝐱!

tanh σσ

x +
x x

tanh

𝐜!"#

W$ W% W&𝐡!"#

𝐜!

𝐡!

𝐡!

σ
W#

(b) Step 2. Forget.

𝐡!"#
σ tanh

W$ W%

σ
W&

𝐱!

σ
x

tanh

𝐜!"#

W'

x +
x

𝐜!

𝐡!

𝐡!

(c) Step 3. Memory.

𝐡!
σ tanh

W" W#

σ
W$

𝐱!

x +
x

𝐜!%&

𝐡!%&

𝐜!

𝐡!

σ
W#

x
tanh

(d) Step 4. Output.

Figure 5.4. Operations steps in an LSTM cell. Source Olah 2015.

Chapter 5. Long Short Term Memory Networks 117

in two sub-steps given in Equation 5.1d and 5.1a and succinctly
expressed below.

c̃t = g
(
w(h)
c ht−1 +w(x)

c xt + bc
)

it = σ
(
w

(h)
i ht−1 +w

(x)
i xt + bi

)
The first equation finds the relevant information in xt. The equa-
tion applies a tanh activation. This activation has negative and
positive values in (−1, 1). The reason for using tanh is in step 3.

It is possible that xt has information but it is redundant or irrel-
evant in the presence of the information already present with the
cell from the previous x’s.

To measure the relevancy, it is computed in the second equation.
It is activated with sigmoid to have a value in (0, 1). A value closer
to 0 would mean the information is irrelevant and vice-versa.

• Step 2. Forget.

Due to the new information coming in with xt, some of the previ-
ous memory may become immaterial. In that case, that memory
can be forgotten.

This forgetting decision is made at the forget gate in Equation 5.1c.

ft = σ
(
w

(h)
f ht−1 +w

(x)
f xt + bf

)
The expression is sigmoid activated which yields an indicator be-
tween 0 and 1. If the indicator is close to zero, the past memory is
forgotten. In this case, the information in xt will replace the past
memory.

If the indicator is close to one, it means the memory is still perti-
nent and should be carried forward. But this does not necessarily
indicate that the information in xt is irrelevant or will not enter
the memory.

• Step 3. Memory.

118 5.2. Fundamentals of LSTM

The previous steps find the information in xt, its relevance, and
the need for the memory. These are concocted together to update
the cell memory in Equation 5.1e.

ct = ftct−1 + itc̃t

The first component determines whether to carry on the memory
from the past. If the forget gate is asking to forget, i.e., ft → 0,
the cell’s memory is bygone.

The second component in the equation, itc̃t, is from step 1. This
is a product of the relevance indicator, it, and the information, c̃t.
Ultimately, the product contains the relevant information found at
t. Its value lies between −1 and +1. Depending on the different
scenarios given in Table 5.1, they become close to zero or |1|.
As depicted in the table, the best scenario for xt is when it has
relevant information. In this case, both the magnitude of |c̃t| and
it will be close to 1, and the resultant product will be far from 0.
This scenario is at the bottom-right of the table.

The itc̃t component also makes the need for using a tanh activation
in Equation 5.1d apparent.

Imagine using a positive-valued activation instead. In that case,
itc̃t will be always positive. But since the itc̃t is added to state ct
in each iteration in 0, 1, . . . , T , a positive itc̃t will move ct in an
only positive direction. This can cause the state ct to inflate.

On the other hand, tanh has negative to positive values in (−1, 1).
This allows the state to increase or decrease. And, keeps the state
tractable.

Still, tanh is not mandatory. A positive-valued activation can also
be used. This chapter implements relu activation in § 5.5 and
5.6, where it is found to work better than tanh when the input is
scaled to Gaussian(0,1).

• Step 4. Output.

At the last step, the cell output ht is determined in Equation 5.1f.
The output ht is drawn from two components. One of them is the

Chapter 5. Long Short Term Memory Networks 119

Table 5.1. Scenarios of information present in a time-step xt and its
relevance in presence of the past memory.

Information magnitude, |c̃t|, close to,
0 1

Information
relevance, it,
close to,

0 No information in xt. xt has redundant infor-
mation already present in
the memory.

1 Model (weights) incon-
sistent.

xt has relevant new infor-
mation.

output gate ot that acts as a scale with value in (0, 1). The other
is a tanh activated value of the updated cell state ct in step 3.

ot = σ
(
w(h)
o ht−1 +w(h)

o xt + bo
)

ht = ottanh(ct)

The ht expression behaves like short-term memory. And, therefore,
ht is also called a short state in TensorFlow.

These steps are shown in Figure 5.4a-5.4d. In each figure, the paths
corresponding to a step are highlighted. Besides, the order of step 1 and
2 are interchangeable. But the subsequent steps 3 and 4 are necessarily
in the same order.

5.2.5 Activations in LSTM

The activations in Equation 5.1d for c̃t and 5.1f for emitting ht cor-
respond to the activation argument in an LSTM layer in TensorFlow.
By default, it is tanh. These expressions act as learned features and,
therefore, can take any value. With tanh activation, they are in (−1, 1).
Other suitable activations can also be used for them.

On the other hand, the activations in Equation 5.1a-5.1c for input,
output, and forget gates are referred to as the argument recurrent_activation
in TensorFlow. These gates act as scales. Therefore, they are intended

120 5.2. Fundamentals of LSTM

to stay in (0, 1). Their default is, hence, sigmoid. For most purposes,
it is essential to keep recurrent_activation as sigmoid (explained in
§ 5.2.8).

� The recurrent_activation should be sigmoid.
The default activation is tanh but can be set to

other activations such as relu.

5.2.6 Parameters

Suppose an LSTM layer has m cells, i.e., the layer size equal to m.
The cell mechanism illustrated in the previous section is for one cell in
an LSTM layer. The parameters involved in the cell are, w(h)

· ,w
(x)
· , b·,

where · is c, i, f , and o.
A cell intakes the prior output of all the other sibling cells in the

layer. Given the layer size is m, the prior output from the layer cells
will be an m-vector ht−1 and, therefore, the w(h)

· are also of the same
length m.

The weight for the input time-step xt is a p-vector given there are p
features, i.e., xt ∈ Rp. Lastly, the bias on a cell is a scalar.

Combining them for each of c, i, f, o, the total number of parameters
in a cell is 4(m+ p+ 1).

In the LSTM layer, there are m cells. Therefore, the total number
of parameters in a layer are,

n_parameters = 4m(m+ p+ 1) (5.2)

It is important to note here that the number of parameters is
independent of the number of time-steps processed by the cell.
That is, they are independent of the window size τ .

This implies that the parameter space does not increase if the window
size is expanded to learn longer-term temporal patterns. While this
might appear an advantage, in practice, the performance deteriorates

Chapter 5. Long Short Term Memory Networks 121

after a certain limit on the window size (discussed more later in § 5.6.5).

� An LSTM layer has 4m(m + p + 1) parameters,
where m is the size of the layer and p the number

of features in the input.

� The number of LSTM parameters are independent
of the sample window size.

5.2.7 Iteration Levels

A sample in LSTM is a window of time-step observations. Due to this,
its iterations level shown in Figure 5.5 goes one level further than in
MLPs (in Figure 4.14). In LSTMs, the iterations end at a time-step.

Within a time-step, all the cell operations described in § 5.2.4 are
executed. But, unlike MLPs, the cell operations cannot be done directly
with the tensor operation.

The cell operations in a time-step are sequential. The output of a
time-step goes as an input to the next. Due to this, the time-steps are
processed one-by-one. Furthermore, the steps within a time-step are
also in order.

Because of the sequential operations, LSTM iterations are compu-
tationally intensive. However, samples within a batch do not interact
in stateless LSTMs (default in TensorFlow) and, therefore, a batch is
processed together using tensor operations.

5.2.8 Stabilized Gradient

The concept of keeping the memory from anywhere in the past was
always present in RNNs. However, before LSTMs the RNN models were
unable to learn long-term dependencies due to vanishing and exploding
gradient issues.

122 5.2. Fundamentals of LSTM

epoch
batch

sample
time-step

step-1 information
step-2 forget
step-3 memory
step-4 output

Figure 5.5. LSTM training iteration levels.

This was achieved with the introduction of a cell state in LSTMs.
The cell state stabilized the gradient. This section provides a simplified
explanation behind this.

The output of a cell is hT . Suppose the target is yT , and we have a
square loss function,

LT = (yT − hT)2.

During the model estimation, the gradient of the loss with respect
to a parameter is taken. Consider the gradient for a weight parameter,

∂

∂w
LT = −2 (yT − hT)︸ ︷︷ ︸

error

∂hT
∂w

.

The term (yT − hT) is the model error. During model training, the
need is to propagate this error for model parameter update.

Whether the error appropriately propagates or not depends on the

derivative
∂hT

∂w
. If

∂hT

∂w
vanishes or explodes, the error gets distorted

and model training suffers.

This was the case with the simple RNNs (refer to Figure 5.6a). In a
simple RNN, there is no cell state. The cell output hT is a function of
the prior time-step output hT−1.

Chapter 5. Long Short Term Memory Networks 123

𝐱!"#

tanh

𝐡!"#

𝐱!

tanh

𝐡!

𝐱!$#

tanh

𝐡!$#
Backpropagation

𝜕𝒉!$#
𝜕𝒉!

𝜕𝒉!
𝜕𝒉!"#

𝜕𝒉!"#
𝜕𝒉!"%

BackpropagationBackpropagation

(a) Simple RNN. The error propagates along the gradient of the hidden

outputs
ht

ht−1
which can explode or vanish.

Backpropagation

𝐱!

tanh

𝐡!

σσσ

x +
x x

tanh

𝐱!"#

tanh

𝐡!"#

σσσ

x +
x x

tanh

𝐱!$#

tanh

𝐡!$#

σσσ

x +
x x

tanh State, 𝒄!

W! W" W# W$

𝜕𝒄!#$
𝜕𝒄!

𝜕𝒄!
𝜕𝒄!%$

𝜕𝒄!%$
𝜕𝒄!%&

BackpropagationBackpropagation

W! W" W# W$ W! W" W# W$

(b) LSTM backpropagation. The error propagates along the gradients of

the cell states
ct

ct−1
which are stable.

Figure 5.6. Illustration of backpropagation in a simple RNN (top) and
LSTM (bottom).

124 5.2. Fundamentals of LSTM

hT ∝ g(hT−1).

Therefore, the derivative
∂hT

∂w
will be,

∂hT
∂w
∝ ∂hT
∂hT−1

∂hT−1

∂hT−2
. . .

∂hT−τ+1

∂hT−τ︸ ︷︷ ︸
can explode or vanish

∂hT−τ
∂w

. (5.3)

As shown in Equation 5.3, the derivative
∂hT

∂w
is on the mercy of the

chain product. A chain product is difficult to control. Since
∂ht

∂ht−1
can

take any value, the chain product can explode or vanish.

On the contrary, consider the LSTM Equations 5.1e-5.1f defined in
§ 5.2.4,

ct = ftct−1 + itc̃t

ht = ottanh(ct).

Unlike a simple RNN, LSTM emits two outputs (refer to Figure 5.6b)
in each time-step: a) a slow state ct which is the cell state or the long-
term memory, and b) a fast state ht which is the cell output or the
short-term memory.

Computing the derivative for LSTM from the expression ht = ottanh(ct),

∂hT
∂w
∝ ∂hT
∂cT

∂cT
∂cT−1

∂cT−1

∂cT−2
. . .

∂cT−τ+1

∂cT−τ

∂cT−τ
∂w

. (5.4)

Assume the forget gate ft used in ct = ftct−1 + itc̃t is inactive
throughout the window (T − τ) : T , i.e., ft = 1, t = T − τ, . . . , T .
Then,

ct = ct−1 + itc̃t.

Chapter 5. Long Short Term Memory Networks 125

In this scenario,
∂ct

∂ct−1
= 1. And, consequently,

∂hT

∂w
in Equation 5.4

becomes,

∂hT
∂w
∝ ∂hT
∂cT

∏
1︸︷︷︸

stabilizes the gradient

∂cT−τ
∂w

(5.5)

This derivative in Equation 5.5 is now stable. It does not have a
chain multiplication of elements that can take any value. Instead, it is
replaced with a chain multiplication of 1’s.

The cell state, thus, enables the error (yT − hT) to propagate down
the time-steps. In the scenario when the forget gate is closed (ft = 0)
at some time-step t in (T − τ) : T , the derivative becomes zero. This
scenario means the memory/information before t is irrelevant. There-
fore, learning/error propagation before t is not needed. In this case, the
derivative desirably becomes zero.

It is important to note that this stabilizing property in LSTM is
achieved due to the additive auto-regression like ct = ct−1 + itc̃t, expres-
sion for the cell state. The additive expression makes the cell state the
long-term memory.

� The additive nature of the cell state ct provides a
stabilized gradient that enables the error to prop-

agate down the time-steps. Due to this, long-term infor-
mation can be preserved in ct.

Besides, the stabilizing property is achieved if the forget gate takes
value in (0, 1). It is, therefore, essential that recurrent_activation is
sigmoid as mentioned in § 5.2.5.

5.3 LSTM Layer and Network Structure

The previous section illustrated the LSTM fundamentals by deconstruct-
ing an LSTM cell in Figure 5.2. The cell input-output and the operations

126 5.3. LSTM Layer and Network Structure

Time steps

Features

LSTM Layer-1.

Size: 𝑚!
Input: 𝑛" × timesteps × n_features
Output: 𝑛" × timesteps ×𝑚!
return_sequences=True

𝐱!𝐱!"#𝐱!"$

𝐡#$!
(!!)𝐡#$'

(!!)

𝐜#$!
(!!)𝐜#$'

(!!)

𝐡#$!
(!')𝐡#$'

(!')

𝐜#$!
(!')𝐜#$'

(!')

⋮

A node in an
LSTM layer.

𝐡#$!
('!)𝐡#$'

('!)

𝐜#$!
('!)𝐜#$'

('!)

⋮

LSTM Layer-2.

Size: 𝑚'
Input: 𝑛" × timesteps ×𝑚!

Input.

Batch size: 𝑛"
Shape: 𝑛" × timesteps
× n_features

Batch size, 𝑛%

State from
previous
sample in a
stateful LSTM

𝐡#
(!!)

𝐡#
(!')

𝐡#
('!)

⋮

⋮ ⋮ ⋮

State passed
to the next
sample in a
stateful LSTM

(a) LSTM network input and hidden layers. The input is a batch of
time-window of observations. This makes each sample in a batch a 2D array
and the input batch a 3D array. The time-window is arbitrarily takes as three
for illustration. The cells in blue boxes within the hidden LSTM layer is
unwrapped to their time-step iterations shown with green boxes. The connected
arcs show the transmission of time-indexed information between the layers. The
first LSTM layer is emitting sequences (LSTM(...,return_sequences=True)).
These sequences have the same notional time order as the input and are
processed in the same order by the second LSTM layer. If the model is stateful,
the cell state from the prior batch processing is preserved and accessed by the
next batch.

Figure 5.7. LSTM Network Structure. Part I.

Chapter 5. Long Short Term Memory Networks 127

𝐡!"#
(%#)𝐡!"%

(%#) 𝐡!
(%#)

𝐜!"#
(%#)𝐜!"%

(%#)

⋮

⋮

𝐡!
(%#)

⋮
⋮

𝐡!
(%%)

⋮

⋮
Prediction,
$𝑦

Dense Layer.
Size: 𝑚'
Input: 𝑛(×𝑚%
Output: 𝑛(×𝑚'

LSTM Layer-2.
Size: 𝑚%
Input: 𝑛(× timesteps ×𝑚#
Output: 𝑛(×𝑚%

LSTM Layer-2
Output.

Shape: 𝑛(×𝑚%

Output Layer.
Size: 1
Input: 𝑛(×𝑚'
Output: 𝑛(× 1

(b1) Restricted LSTM network. In a restricted network, the last LSTM layer
emits only the final hidden output. As shown above, the second LSTM layer
returns only the last ht’s from each cell which makes up the feature map vector
for input to the output dense layer ((LSTM(..., return_sequences=False)).

LSTM Layer-2.
Size: 𝑚!
Input: 𝑛" × timesteps×𝑚#
Output: 𝑛" ×𝑚!

𝐡$%#
(!#)𝐡$%!

(!#)

⋮

⋮

⋮

⋮

𝐡$
(!#)

𝐡$%#
(!#)

𝐡$%!
(!#)

⋮

⋮

⋮

⋮
Prediction,
&𝑦

𝐜$%!
(!#) 𝐜$%#

(!#)

Each cell emits an output, if
return_sequences=True

Dense Layer.
Size: 𝑚(
Input: 𝑛" ×𝑚!
Output: 𝑛" ×𝑚(

LSTM Layer-2
Output

Output Layer.
Size: 1
Input: 𝑛" ×𝑚(
Output: 𝑛" × 1

Flatten()

⋮

⋮

⋮

𝐡$
(!#)

(b2) Unrestricted LSTM network. In an unrestricted network, the hidden
outputs at each time-step, i.e., a sequence of outputs {ht−τ , . . . ,ht}, are
returned ((LSTM(..., return_sequences=False)). This makes up a 2D
feature map of shape, (layer size, time-steps).

Figure 5.7. LSTM Network Structure. Part II.

128 5.3. LSTM Layer and Network Structure

therein were explained. In this section, the view is zoomed out of the
cell and the network operations at the layer level are explained.

Figure 5.7 here brings an LSTM layer’s internal and external connec-
tions into perspective. It provides visibility on the layer’s input-output
mechanism.

The illustrations provide an understanding of stacking layers around
an LSTM layer, and the way they interact. Their references to Tensor-
Flow modeling is also given in this section.

Earlier, Figure 5.1 showed an abstraction of LSTM network. The
network layers are expanded in Figure 5.7a-5.7b2. The expanded view
is split into two parts for clarity. Figure 5.7a shows the left part of the
network—from input to the middle. And Figure 5.7b1-5.7b2 show its
continuation till the output in two major LSTM modes, viz.,
return_sequences is True versus False.

In the figures, the blue-shaded boxes in the LSTM layers are the
layer’s cells. And, as before, the green boxes within a cell is representa-
tive of a time-step iteration for input processing.

5.3.1 Input Processing

As also mentioned in § 5.2.1, LSTM takes a time-window of observations
as an input sample. A τ sized time-window of p-dimensional observa-
tions x denoted as x(T−τ):T is a two-dimensional array. A batch of
such samples is, thus, a three-dimensional array of shape: (n_batch,
timesteps, n_features).

The first LSTM layer in Figure 5.7a takes in samples from the input
batch. A sample is shown as a two-dimensional array with features and
time-steps along the rows and columns, respectively.

Each of the time-steps is processed sequentially. For illustration,
this is shown by connecting each input time-step with the corresponding
time-step iteration in the cell.

Similarly, every cell in the layer takes all the time-step inputs. The
cells transmit the cell states and hidden states within themselves to
perform their internal operations (described in four steps in § 5.2.4).

Chapter 5. Long Short Term Memory Networks 129

The interesting part is the way the states are transmitted outside.
There are two major transmission modes to understand in LSTM: state-
ful and return sequences. These modes allow building a stateful or
stateless LSTM, and/or (not) return sequences. They are described
next.

5.3.2 Stateless versus Stateful

Stateless

An LSTM layer is built to learn temporal patterns. A default LSTM
layer in TensorFlow learns these patterns in a time-window of observa-
tions x(T−τ) : T presented to it. This default setting is called a stateless
LSTM and is enforced with LSTM(..., stateful=False).

It is called stateless because the cell states are transmitted and con-
tained within the time-window (T − τ) : T . This means a long-term
pattern will be only up to τ long.

Also, in this setting, the model processes each time-window inde-
pendently. That is, there is no interaction or learning between two
time-windows. Consequently, the default input sample shuffle during
model training is allowed.

Stateful

A stateless model constrains LSTM to learn patterns only within a fixed
time-window. It does not provide visibility beyond the window.

But LSTMs were conceived to learn any long-term patterns. One
might desire to learn patterns as long back in the past as the data goes.

The stateful mode in LSTM layers enables this with
LSTM(..., stateful=True). In this mode, the last hidden and cell
states of a batch go back in the LSTM cell as the initial hidden and cell
states for the next batch.

This is shown with dashed lines exiting and entering a cell in Fig-
ure 5.7a. Note again that this reuse of states happens in stateful mode
only. Also, in this mode, the batches are not shuffled, i.e.,

130 5.3. LSTM Layer and Network Structure

model.fit(..., shuffle=False). This is to maintain the time order
of the samples to use the learning from the chronologically previous
sample.

This mode appears tempting. It promises to provide a useful power
of learning exhaustive long-term patterns. Still, it is and should not be
a preferred choice in most problems.

Stateful LSTM is appropriate if the time series/sequence data set is
stationary. In simple words, it means if the relationships stay the same
from the beginning to the end (in time). For example, text documents.

However, this is not true in many real-world problems. And, there-
fore, a stateful LSTM is not the default choice.

5.3.3 Return Sequences vs Last Output

Return sequences

The cells in an LSTM layer can be made to return sequences as an output
by setting LSTM(..., return_sequences=True). In this setting, each
cell emits a sequence of length same as the input. Therefore, if a layer
has l cells, the output shape is (n_batch, timesteps, l).

Sequences should be returned when the temporal structure needs to
be preserved. This requirement is usually when

• the model output is a sequence. For example, in sequence-to-
sequence models for language translation. Or,

• the subsequent layer needs sequence inputs. For example, a stack
of LSTM (or convolutional) layers to sequentially extract temporal
patterns at different levels of abstraction.

The illustration in Figure 5.7a is sequentially extracting tempo-
ral patterns using two LSTM layers. For this, the first LSTM layer
(LSTM Layer-1) has to return a sequence.

This is shown in the figure in which the time-step iterations (green
boxes within a cell) emit an output that is transmitted to the corre-
sponding time-step iteration in the cell of the next LSTM layer.

In this network, returning sequences from the last LSTM layer

Chapter 5. Long Short Term Memory Networks 131

(LSTM Layer-2) becomes a choice. Figure 5.7b2 shows this choice. In
this setting, a cell emits a sequence of outputs. The output is a sequence
{hT−2,hT−1,hT } with the same time-steps as the input sample
{xT−2,xT−1,xT }. This output is flattened to a vector before sending
to the output dense layer1.

The last LSTM layer emitting sequences is termed as unrestricted
LSTM network. Because the model is not restricting the output layer
to use only the last outputs of the LSTM cells. These networks are
larger but have the potential to yield better results.

Return last output

In this setting, a cell in an LSTM layer emits only the last time-step out-
put ht. This is done by setting LSTM(..., return_sequences=False).
The output shape is (n_batch, l).

The last time-step output hT is an amalgamation of information
present in all the cell states {cT , cT−1, . . . , cT−τ} and the prior cell out-
puts
{hT−1,hT−2, . . . ,hT−τ}.

This is usually required in the following scenarios,

• The encoder in an LSTM autoencoder. The encodings are gen-
erally a vector. In some LSTM autoencoders, the encoder LSTM
layer emits the last output vector as the encodings.

• Sequence to scaler model. A classifier is a good example of such
models in which the input is a sequence and the output is a class
(a scaler).

Figure 5.7b1 illustrates this setting in the last layer of the LSTM
network. It is called a restricted LSTM network because the last layer’s
output is restricted. As shown in the figure, only the last time-step
output hT (from the last green box) is emitted and sent to the next
layer.

1Flattening is, although, optional in TensorFlow because the dense layer auto-
matically takes shape based on the input.

132 5.4. Initialization and Data Preparation

5.4 Initialization and Data Preparation

5.4.1 Imports and Data

We get started with importing the libraries. LSTM related classes are
taken from tensorflow library. Also, the user-defined libraries, viz.
datapreprocessing, performancemetrics, and simpleplots, are im-
ported.

Listing 5.1. LSTM library imports.
1 import pandas as pd
2 import numpy as np
3
4 import tensorflow as tf
5 from tensorflow.keras import optimizers
6 from tensorflow.keras.models import Model
7 from tensorflow.keras.models import Sequential
8
9 from tensorflow.keras.layers import Input
10 from tensorflow.keras.layers import Dense
11 from tensorflow.keras.layers import Dropout
12 from tensorflow.keras.layers import LSTM
13
14 from tensorflow.keras.layers import Flatten
15 from tensorflow.keras.layers import Bidirectional
16
17 from tensorflow.python.keras import backend as K
18
19 from sklearn.preprocessing import StandardScaler
20 from sklearn.model_selection import train_test_split
21
22 import matplotlib.pyplot as plt
23 import seaborn as sns
24
25 # user -defined libraries
26 import utilities.datapreprocessing as dp
27 import utilities.performancemetrics as pm
28 import utilities.simpleplots as sp
29
30 from numpy.random import seed
31 seed (1)

Chapter 5. Long Short Term Memory Networks 133

32
33 SEED = 123 # used to help randomly select the data

points
34 DATA_SPLIT_PCT = 0.2
35
36 from pylab import rcParams
37 rcParams[’figure.figsize ’] = 8, 6
38 plt.rcParams.update ({’font.size’: 22})

Next, the data is read and the basic pre-processing steps are per-
formed.

Listing 5.2. Data loading and pre-processing.
1 df = pd.read_csv("data/processminer -sheet -break -rare

-event -dataset.csv")
2 df.head(n=5) # visualize the data.
3
4 # Convert Categorical column to Dummy
5 hotencoding1 = pd.get_dummies(df[’Grade&Bwt’])
6 hotencoding1 = hotencoding1.add_prefix(’grade_ ’)
7 hotencoding2 = pd.get_dummies(df[’EventPress ’])
8 hotencoding2 = hotencoding2.add_prefix(’eventpress_ ’

)
9
10 df = df.drop([’Grade&Bwt’, ’EventPress ’], axis =1)
11
12 df = pd.concat ([df , hotencoding1 , hotencoding2],

axis =1)
13
14 # Rename response column name for ease of

understanding
15 df = df.rename(columns ={’SheetBreak ’: ’y’})
16
17 # Shift the response for training the model early

prediction.
18 df = curve_shift(df, shift_by =-2)
19
20 # Sort by time and drop the time column.
21 df[’DateTime ’] = pd.to_datetime(df.DateTime)
22 df = df.sort_values(by=’DateTime ’)
23 df = df.drop([’DateTime ’], axis =1)

134 5.4. Initialization and Data Preparation

⋮

…

⋮

X

Time

0 0 0 0 1y

Temporalization

…

Time

… …

Figure 5.8. Testing data temporalization.

5.4.2 Temporalizing the Data

From an LSTM modeling standpoint, a usual two-dimensional input,
also referred to as planar data, does not directly provide time-windows.
But the time-windows are required to extract spatio-temporal patterns.

Therefore, the planar data is temporalized. In temporalization, a
time-window spanning observations in t : t− lookback is taken at a time
point t and placed at index t in a three-dimensional array.

This is visualized in Figure 5.8. An example of real data is shown in
the figure. Here a time-window of predictors of size three (lookback=3)
at time index 257 is taken out and stacked in a 3-dimensional array at
the same index 257.

No reorientation in the response y is made. It is only ensured that the
indexes of y are synchronized with the time-window stack of predictors
which is now a 3-dimensional array.

With temporalized input, the model has access to the current and
the past predictor observations xt:(t−lookback) that led to the observed
response yt. This access enables the model to learn the temporal pat-
terns.

Chapter 5. Long Short Term Memory Networks 135

� Data temporalization is essential to learn temporal
patterns.

The lookback is also referred to as timesteps to imply the prior
time-steps the model is looking at for learning the patterns.

Data is temporalized in line 3 in Listing 5.3. The shape of the
temporalized data is: (samples, timesteps, features). A lookback (or
time-steps) of 5 is chosen. This implies the model will look at up to the
past 5 observations. This equates to a time-window of 10 minutes in the
sheet-break data set.

Listing 5.3. Data Temporalization.
1 # Temporalize the data
2 lookback = 5
3 X, y = temporalize(X=input_X , y=input_y , lookback=

lookback)

5.4.3 Data Splitting

At this stage, the data is split into train, valid, and test. Fortunately,
the train_test_split() function in sklearn can be used directly on
higher-dimensional arrays. Irrespective of the array dimension, the func-
tion does the split along the first axis. This is done in Listing 5.4.

� sklearn.model_selection.train_test_split()
is agnostic to the shape of the input array. It

always samples w.r.t. the array’s first dimension.

Listing 5.4. Temporalized data split.
1 X_train , X_test , y_train , y_test =
2 train_test_split(X, y,
3 test_size=DATA_SPLIT_PCT ,
4 random_state=SEED)
5 X_train , X_valid , y_train , y_valid =
6 train_test_split(X_train , y_train ,

136 5.5. Baseline Model—A Restricted Stateless LSTM

7 test_size=DATA_SPLIT_PCT ,
8 random_state=SEED)
9
10 TIMESTEPS = X_train.shape [1] # equal to the

lookback
11 N_FEATURES = X_train.shape [2] # the number of

features

5.4.4 Scaling Temporalized Data

The 3-dimensional data is scaled using a udf, scale(), in Listing 5.5.

Listing 5.5. Scaling temporalized data.
1 # Fit a scaler using the training data.
2 scaler = StandardScaler ().fit(dp.flatten(X_train))
3 X_train_scaled = dp.scale(X_train , scaler)
4 X_valid_scaled = dp.scale(X_valid , scaler)
5 X_test_scaled = dp.scale(X_test , scaler)

Besides, it is not preferred to scale the initial 2-dimensional data
before temporalization because it will lead to the leakages in the time-
window during the data split.

5.5 Baseline Model—A Restricted Stateless LSTM

Similar to the previous chapter, it is always advisable to begin with
a baseline model. A restricted stateless LSTM network is taken as a
baseline. In such a network, every LSTM layer is stateless and the final
layer has a restricted output, i.e.,
LSTM(..., stateful=False, return_sequences=False).

In the following, the baseline model will be constructed step-by-step.

5.5.1 Input layer

As mentioned before, the input layer in LSTM expects 3-dimensional
inputs. The input shape should be: (batch size, timesteps, features).

Chapter 5. Long Short Term Memory Networks 137

A stateless LSTM does not require to explicitly specify the batch
size (a stateful LSTM does require the batch size as mentioned in Ap-
pendix F). Therefore, the input shape is defined as follows in Listing 5.6.

Listing 5.6. LSTM input layer.
1 model = Sequential ()
2 model.add(Input(shape =(TIMESTEPS , N_FEATURES),
3 name=’input’))

The input shape can also be provided as an argument to the first
LSTM layer defined next. However, similar to the previous chapter this
is explicitly defined for clarity.

5.5.2 LSTM layer

As a rule-of-thumb, two hidden LSTM layers are stacked in the base-
line model. The recurrent_activation argument is left as its default
sigmoid while the output activation is set as relu (refer to § 5.2.5).
The relu activation came into existence after LSTMs. Therefore, they
are not in the legacy LSTM definitions but can be used on the output.

Listing 5.7. LSTM layers.
1 model.add(
2 LSTM(units =16,
3 activation=’relu’,
4 return_sequences=True ,
5 name=’lstm_layer_1 ’))
6 model.add(
7 LSTM(units=8,
8 activation=’relu’,
9 return_sequences=False ,
10 name=’lstm_layer_2 ’))

The first LSTM layer has return_sequences set as True. This layer,
therefore, yields the hidden outputs for every time-step. Consequently,
the first layer output is (batch size, timesteps, 16), where 16 is the layer
size.

Since this is a restricted LSTM network, the last LSTM layer is set
with return_sequences as False. Therefore, it returns the output from

138 5.5. Baseline Model—A Restricted Stateless LSTM

only the last time-step. Thus, the layer output is of shape: (batch size,
8), where 8 is the layer size.

5.5.3 Output layer

The output layer should be a Dense layer in an LSTM network and most
other networks, in general.

Why? The output layer should be dense because it performs an
affine transformation on the output of the ultimate hidden layer. The
purpose of complex hidden layers, such as LSTM and Convolutional, is
to extract predictive features. But these abstract features do not neces-
sarily translate to the model output y. A dense layer’s affine transfor-
mation puts together these features and translates them to the output
y.

� The output layer should be a Dense layer for most
deep learning networks.

We add a Dense layer of size 1. As also mentioned in §4.4.4, the size
is based on the number of responses. For a binary classifier, like here, the
size is one with sigmoid activation. If we have a multi-class classifier,
the size should be the number of labels with softmax activation.

Listing 5.8. LSTM network output layer.
1 model.add(Dense(units=1,
2 activation=’sigmoid ’,
3 name=’output ’))

5.5.4 Model Summary

At this stage, the structure of the baseline LSTM model is ready. Before
moving forward, the model structure should be glanced at using the
model.summary() function.

Listing 5.9. LSTM baseline model summary.
1 model.summary ()

Chapter 5. Long Short Term Memory Networks 139

Figure 5.9. LSTM baseline model summary.

2
3 # Number of parameters = 4l(p + l + 1),
4 # l = layer size , p = number of features.
5 4*16*(n_features + 16 + 1) # Parameters in

lstm_layer_1
6 # 5504

The summary in Figure 5.9 shows the number of parameters in each
layer. For self-learning, it can be computed by hand using Eq. 5.2.
For example, the number of parameters in the first LSTM layer is 4 ×
16(n_features+ 16 + 1) = 5504, where 16 is the layer size.

5.5.5 Compile and Fit

The model compile() and fit() arguments are explained in § 4.4.6 and
4.4.7. They are directly applied here.

Listing 5.10. LSTM baseline model compile and fit.
1 model.compile(optimizer=’adam’,
2 loss=’binary_crossentropy ’,
3 metrics =[
4 ’accuracy ’,
5 tf.keras.metrics.Recall (),
6 pm.F1Score (),
7 pm.FalsePositiveRate ()
8])

140 5.5. Baseline Model—A Restricted Stateless LSTM

9
10 history = model.fit(x=X_train_scaled ,
11 y=y_train ,
12 batch_size =128,
13 epochs =100,
14 validation_data =(X_valid_scaled ,
15 y_valid),
16 verbose =0).history

The results are shown in Figure 5.10a-5.10c.

The accuracy metrics for the baseline LSTM model is already better
than the best achieved with MLP. This was expected from an LSTM
model because it is capable of drawing the temporal patterns. A few
model improvements are attempted next to further improve accuracy.

0 20 40 60 80 100
Epoch

0.0

0.10.1

0.2

0.30.3

lo
ss

Train loss
Valid loss

(a) Loss.

0 20 40 60 80 100
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

f1
_s

co
re

Train f1_score
Valid f1_score

(b) F1-score.

0 20 40 60 80 100
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

va
lu

e

Train Recall
Valid Recall
Train FPR
Valid FPR

(c) Recall and FPR.

Figure 5.10. LSTM baseline model results.

Chapter 5. Long Short Term Memory Networks 141

5.6 Model Improvements

5.6.1 Unrestricted LSTM Network

§ 5.3.3 discussed two choices in LSTM networks: return sequences vs
return last output at the final LSTM layer. The latter is typically the
default choice and used in the baseline restricted model above. However,
the former can likely improve the model.

The former choice enables the ultimate LSTM layer to emit a se-
quence of hidden outputs. Since the last LSTM layer is not restricted
to emitting only the final hidden output, this network is called an un-
restricted LSTM network. A potential benefit of this network is the
presence of more intermediate features.

Based on this hypothesis, an unrestricted network is constructed in
Listing 5.11.

Listing 5.11. Unrestricted LSTM model.
1 model = Sequential ()
2 model.add(Input(shape =(TIMESTEPS , N_FEATURES),
3 name=’input’))
4 model.add(
5 LSTM(units =16,
6 activation=’relu’,
7 return_sequences=True ,
8 name=’lstm_layer_1 ’))
9 model.add(
10 LSTM(units=8,
11 activation=’relu’,
12 return_sequences=True ,
13 name=’lstm_layer_2 ’))
14 model.add(Flatten ())
15 model.add(Dense(units=1,
16 activation=’sigmoid ’,
17 name=’output ’))
18
19 model.summary ()
20
21 model.compile(optimizer=’adam’,
22 loss=’binary_crossentropy ’,

142 5.6. Model Improvements

Figure 5.11. LSTM full model summary.

23 metrics =[
24 ’accuracy ’,
25 tf.keras.metrics.Recall (),
26 pm.F1Score (),
27 pm.FalsePositiveRate ()
28])
29 history = model.fit(x=X_train_scaled ,
30 y=y_train ,
31 batch_size =128,
32 epochs =100,
33 validation_data =(X_valid_scaled ,
34 y_valid),
35 verbose =0).history

In the construction, the ultimate LSTM layer lstm_layer_2 is set
with return_sequences=True. The model summary in Figure 5.11 is
showing its effect.

Unlike the baseline model, lstm_layer_2 is now returning 3-dimensional
outputs of shape (batchsize, 5, 8), where 5 and 8 are the time-steps and
the layer size, respectively. This 3D tensor is flattened before passing
on to the output Dense layer (also depicted in Figure 5.7b2).

In this network, the parameters in the output Dense layer increases
from 9 (= 8 weights + 1 bias) in the baseline network (Figure 5.9) to
41 (= 40 weights + 1 bias).

Chapter 5. Long Short Term Memory Networks 143

0 20 40 60 80 100
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

lo
ss

Train loss
Valid loss

(a) Loss.

0 20 40 60 80 100
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

f1
_s

co
re

Train f1_score
Valid f1_score

(b) F1-score.

0 20 40 60 80 100
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

va
lu

e

Train Recall
Valid Recall
Train FPR
Valid FPR

(c) Recall and FPR.

Figure 5.12. Unrestricted LSTM model results.

The results are shown in Figure 5.12a-5.12c. The accuracy improved
with the unrestricted model. For the given problem, the temporal inter-
mediate features seem to be predictive but this cannot be generalized.

5.6.2 Dropout and Recurrent Dropout

Dropout is a common technique used for deep learning network improve-
ment. However, it does not always work with RNNs including LSTMs.
Gal and Ghahramani 2016 made an extreme claim stating,

“Dropout is a popular regularization technique with deep
networks where network units are randomly masked during
training (dropped). But the technique has never been ap-
plied successfully to RNNs.”

144 5.6. Model Improvements

True to the claim, a regular dropout does not always work with
LSTMs. However, there is another type of dropout available in RNNs
called recurrent dropout. In this technique, a fraction of inputs to the
recurrent states is dropped. Both these dropouts are applied together
in Listing 5.12 and are found to improve the model.

Listing 5.12. Unrestricted LSTM with regular and recurrent dropout.
1 model = Sequential ()
2 model.add(Input(shape =(TIMESTEPS , N_FEATURES),
3 name=’input’))
4 model.add(
5 LSTM(units =16,
6 activation=’relu’,
7 return_sequences=True ,
8 recurrent_dropout =0.5,
9 name=’lstm_layer_1 ’))
10 model.add(Dropout (0.5))
11 model.add(
12 LSTM(units=8,
13 activation=’relu’,
14 return_sequences=True ,
15 recurrent_dropout =0.5,
16 name=’lstm_layer_2 ’))
17 model.add(Flatten ())
18 model.add(Dropout (0.5))
19 model.add(Dense(units=1,
20 activation=’sigmoid ’,
21 name=’output ’))
22
23 model.summary ()
24
25 model.compile(optimizer=’adam’,
26 loss=’binary_crossentropy ’,
27 metrics =[
28 ’accuracy ’,
29 tf.keras.metrics.Recall (),
30 pm.F1Score (),
31 pm.FalsePositiveRate ()
32])
33 history = model.fit(x=X_train_scaled ,
34 y=y_train ,

Chapter 5. Long Short Term Memory Networks 145

35 batch_size =128,
36 epochs =200,
37 validation_data =(X_valid_scaled ,
38 y_valid),
39 verbose =0).history

0 25 50 75 100 125 150 175 200
Epoch

0.0

0.4

0.9

1.3

1.8

2.2
lo

ss
Train loss
Valid loss

(a) Loss.

0 25 50 75 100 125 150 175 200
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

f1
_s

co
re

Train f1_score
Valid f1_score

(b) F1-score.

0 25 50 75 100 125 150 175 200
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

va
lu

e

Train Recall
Valid Recall
Train FPR
Valid FPR

(c) Recall and FPR.

Figure 5.13. Unrestricted LSTM with dropout and recurrent dropout
results.

The results are shown in Figure 5.13a-5.13c. The accuracy was fur-
ther improved. However, increasing validation loss is still observed. Be-
sides, this model has trained over 200 epochs (as opposed to 100 in
previous models) for the metrics to stabilize.

� Recurrent_dropout is more applicable to LSTM
networks than the regular dropout.

146 5.6. Model Improvements

5.6.3 Go Backwards

Researchers at Google published a paper by Sutskever, Vinyals, and Le
2014. This paper is now one of the most popular papers on LSTMs. In
this paper, they had an interesting finding. They quote,

“...we found that reversing the order of the words in all source
sentences (but not target sentences) improved the LSTM’s
performance markedly, because doing so introduced many
short-term dependencies between the source and the target
sentence which made the optimization problem easier.”

Such a model can be made by setting go_backwards=True in the
first LSTM layer. This processes the input sequence backward.

Note that only the first LSTM layer should be made backward be-
cause only the inputs need to be processed backward. Subsequent LSTM
layers work on arbitrary features of the model. Making them backward
is meaningless in most cases.

Listing 5.13. LSTM network with input sequences processed backward.
1 model = Sequential ()
2 model.add(Input(shape =(TIMESTEPS , N_FEATURES),
3 name=’input’))
4 model.add(
5 LSTM(units =16,
6 activation=’relu’,
7 return_sequences=True ,
8 go_backwards=True ,
9 name=’lstm_layer_1 ’))
10 model.add(
11 LSTM(units=8,
12 activation=’relu’,
13 return_sequences=True ,
14 name=’lstm_layer_2 ’))
15 model.add(Flatten ())
16 model.add(Dense(units=1,
17 activation=’sigmoid ’,
18 name=’output ’))
19

Chapter 5. Long Short Term Memory Networks 147

20 model.summary ()
21
22 model.compile(optimizer=’adam’,
23 loss=’binary_crossentropy ’,
24 metrics =[
25 ’accuracy ’,
26 tf.keras.metrics.Recall (),
27 pm.F1Score (),
28 pm.FalsePositiveRate ()
29])
30 history = model.fit(x=X_train_scaled ,
31 y=y_train ,
32 batch_size =128,
33 epochs =100,
34 validation_data =(X_valid_scaled ,
35 y_valid),
36 verbose =0).history

Backward sequence processing worked quite well for sequence-to-
sequence model. Perhaps because the output was also a sequence and
the initial elements in the input sequence were dependent on the last
elements of the output sequence. Therefore, reversing the input sequence
brought the related input-output elements closer.

However, as shown in the results in Figure 5.14a-5.14c, this approach
fared close to or less than the baseline in our problem.

� Backward LSTM models are effective on sequences
in which the early segments have a larger influ-

ence on the future. For example, in language translations
because the beginning of a sentence usually has a major
influence on how the sentence ends.

5.6.4 Bi-directional

A regular LSTM, or any RNN, learn the temporal patterns in a forward
direction—going from past to the future. Meaning, at any time-step the
cell state learns only from the past. It does not have visibility of the

148 5.6. Model Improvements

0 20 40 60 80 100
Epoch

0.0

0.10.1

0.20.2

0.3

lo
ss

Train loss
Valid loss

(a) Loss.

0 20 40 60 80 100
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

f1
_s

co
re

Train f1_score
Valid f1_score

(b) F1-score.

0 20 40 60 80 100
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

va
lu

e

Train Recall
Valid Recall
Train FPR
Valid FPR

(c) Recall and FPR.

Figure 5.14. LSTM with input processed backward results.

future. This concept is clearer in Figure 5.2a. As shown in the figure,
the truck of memories (cell state) moves from left-to-right.

Schuster and Paliwal 1997 made a significant contribution by propos-
ing a bi-directional RNN. A bi-directional RNN adds a mirror RNN layer
to the original RNN layer. The input sequence is passed as is to the orig-
inal layer and in reverse to the mirror.

This enables the cell states to learn from all the input information,
i.e., both the past and the future. This is illustrated in Figure 5.15.
Similar to a regular LSTM layer, the information from the past flows
into the cell state from left-to-right in the top lane. Additionally, the
information from the future flows back to the cell states right-to-left in
the bottom lane.

This ability to have collective information from the past and the
future make a bi-directional LSTM layer more powerful. A popular

Chapter 5. Long Short Term Memory Networks 149

𝐱"

𝐡"

𝐱$ 𝐱% 𝐱&'% 𝐱&'$ 𝐱&

𝐡&

𝐬"

𝐡$ 𝐡&'% 𝐡&'$

𝐬" 𝐬$ 𝐬$ 𝐬% 𝐬&') 𝐬&'% 𝐬&'% 𝐬&'$ 𝐬&'$

()(𝐱&'$)(𝐱&'$)(𝐱$, 𝐱&'$)(𝐱", 𝐱$, 𝐱&'$)

(𝐱") (𝐱", 𝐱$) (𝐱", 𝐱$) (𝐱", 𝐱$, 𝐱&'$) (𝐱", 𝐱$, 𝐱&'$)

Figure 5.15. LSTM bi-directional cell state mechanism.

work by Graves and Schmidhuber 2005 on bi-directional LSTMs show
that they significantly outperformed the traditional LSTMs in speech
recognition. Graves and Schmidhuber 2005 also quote an important
requirement for using a bi-directional LSTM,

...for temporal problems like speech recognition, relying on
knowledge of the future seems at first sight to violate causality—
at least if the task is online.

...However, human listeners do exactly that. Sounds, words,
and even whole sentences that at first mean nothing are
found to make sense in the light of the future context.

Therefore, we must recognize whether the problem is truly online,
i.e., requiring an output for every new input, or semi-online when the
output is needed at end of some input segment. Bi-directional LSTM
does not apply to the former but could significantly improve performance
in the latter.

The sheet-break problem at hand can be treated as semi-online. A
prediction can be made after a window of sensor observations are made.
In fact, from an LSTM standpoint, most problems are either offline
(e.g., text documents) or semi-online (e.g., time series). A bi-directional
LSTM network is, therefore, built in Listing 5.14.

150 5.6. Model Improvements

Listing 5.14. Bi-directional LSTM network.
1 model = Sequential ()
2 model.add(Input(shape =(TIMESTEPS , N_FEATURES),
3 name=’input’))
4 model.add(
5 Bidirectional(
6 LSTM(units =16,
7 activation=’relu’,
8 return_sequences=True),
9 name=’bi_lstm_layer_1 ’))
10 model.add(Dropout (0.5))
11 model.add(
12 Bidirectional(
13 LSTM(units=8,
14 activation=’relu’,
15 return_sequences=True),
16 name=’bi_lstm_layer_2 ’))
17 model.add(Flatten ())
18 model.add(Dense(units=1,
19 activation=’sigmoid ’,
20 name=’output ’))
21
22 model.summary ()
23
24 model.compile(optimizer=’adam’,
25 loss=’binary_crossentropy ’,
26 metrics =[
27 ’accuracy ’,
28 tf.keras.metrics.Recall (),
29 pm.F1Score (),
30 pm.FalsePositiveRate ()
31])
32
33 history = model.fit(x=X_train_scaled ,
34 y=y_train ,
35 batch_size =128,
36 epochs =100,
37 validation_data =(X_valid_scaled ,
38 y_valid),
39 verbose =0).history

In TensorFlow, a bi-directional LSTM layer is made by wrapping

Chapter 5. Long Short Term Memory Networks 151

Figure 5.16. LSTM bi-directional network summary.

an LSTM layer within a Bidirectional layer. The Bidirectional layer
creates a mirror layer for any RNN layer passed as an argument to it
(an LSTM here).

As shown in Figure 5.16, this results in twice the number of param-
eters for a bi-directional layer compared to the ordinary LSTM layer.
Expressed as

n_parameters = 2× 4l(p+ l + 1) (5.6)

where l and p are the size of the layer and number of features, respec-
tively. Bi-directional networks, therefore, require a sufficient amount of
training data. Absence of which may render it less effective.

The results of the bi-directional network are shown in Figure 5.17a-
5.17c. The accuracy is found to be higher than the prior models. This
could be attributed to the bi-directional LSTM’s ability to capture tem-
poral patterns both retrospectively (backward) and prospectively (for-
ward).

152 5.6. Model Improvements

0 20 40 60 80 100
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

lo
ss

Train loss
Valid loss

(a) Loss.

0 20 40 60 80 100
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

f1
_s

co
re

Train f1_score
Valid f1_score

(b) F1-score.

0 20 40 60 80 100
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

va
lu

e

Train Recall
Valid Recall
Train FPR
Valid FPR

(c) Recall and FPR.

Figure 5.17. Bi-directional LSTM results.

� Bi-directional LSTMs learn temporal patterns both
retrospectively and prospectively.

5.6.5 Longer Lookback/Timesteps

LSTMs are known to learn long-term dependencies. In the previous
models, the lookback period was set as 5. A hypothesis could be that
a longer lookback could capture more predictive patterns and improve
accuracy. This is tried in this section.

First, the data is re-prepared with a longer lookback of 20 in List-
ing 5.15 by setting the lookback = 20.

Chapter 5. Long Short Term Memory Networks 153

Listing 5.15. Data re-preparation with longer lookback.
1 lookback = 20 # Equivalent to 40 min of past data.
2 # Temporalize the data
3 X, y = dp.temporalize(X=input_X ,
4 y=input_y ,
5 lookback=lookback)
6
7 X_train , X_test , y_train , y_test = train_test_split(
8 X, y, test_size=DATA_SPLIT_PCT , random_state=

SEED)
9 X_train , X_valid , y_train , y_valid =

train_test_split(
10 X_train , y_train , test_size=DATA_SPLIT_PCT ,

random_state=SEED)
11
12 X_train = X_train.reshape(X_train.shape[0],
13 lookback ,
14 n_features)
15 X_valid = X_valid.reshape(X_valid.shape[0],
16 lookback ,
17 n_features)
18 X_test = X_test.reshape(X_test.shape[0],
19 lookback ,
20 n_features)
21
22 # Initialize a scaler using the training data.
23 scaler = StandardScaler ().fit(dp.flatten(X_train))
24
25 X_train_scaled = dp.scale(X_train , scaler)
26 X_valid_scaled = dp.scale(X_valid , scaler)
27 X_test_scaled = dp.scale(X_test , scaler)

The unrestricted-LSTM network is then trained with the longer look-
back data in Listing 5.16.

Listing 5.16. LSTM model with longer lookback.
1 timesteps = X_train_scaled.shape [1]
2
3 model = Sequential ()
4 model.add(Input(shape =(timesteps , N_FEATURES),
5 name=’input’))

154 5.6. Model Improvements

6 model.add(
7 LSTM(units =16,
8 activation=’relu’,
9 return_sequences=True ,
10 recurrent_dropout =0.5,
11 name=’lstm_layer_1 ’))
12 model.add(Dropout (0.5))
13 model.add(
14 LSTM(units=8,
15 activation=’relu’,
16 return_sequences=True ,
17 recurrent_dropout =0.5,
18 name=’lstm_layer_2 ’))
19 model.add(Flatten ())
20 model.add(Dropout (0.5))
21 model.add(Dense(units=1,
22 activation=’sigmoid ’,
23 name=’output ’))
24
25 model.summary ()
26
27 model.compile(optimizer=’adam’,
28 loss=’binary_crossentropy ’,
29 metrics =[
30 ’accuracy ’,
31 tf.keras.metrics.Recall (),
32 pm.F1Score (),
33 pm.FalsePositiveRate ()
34])
35 history = model.fit(x=X_train_scaled ,
36 y=y_train ,
37 batch_size =128,
38 epochs =200,
39 validation_data =(X_valid_scaled ,
40 y_valid),
41 verbose =0).history

It was mentioned in § 5.2.6 that the number of parameters in an
LSTM layer does not increase with the lookback. That is now evident
in the model summary in Figure 5.18.

The results are in Figure 5.19a-5.19c. The performance deteriorated

Chapter 5. Long Short Term Memory Networks 155

Figure 5.18. LSTM with longer lookback network summary.

0 25 50 75 100 125 150 175 200
Epoch

0.0

0.8

1.5

2.3

3.0

3.8

lo
ss

Train loss
Valid loss

(a) Loss.

0 25 50 75 100 125 150 175 200
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

f1
_s

co
re

Train f1_score
Valid f1_score

(b) F1-score.

0 25 50 75 100 125 150 175 200
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

va
lu

e

Train Recall
Valid Recall
Train FPR
Valid FPR

(c) Recall and FPR.

Figure 5.19. Unrestricted-LSTM model with longer lookback results.

156 5.7. History of LSTMs

with a longer lookback. These results confirm the statement by Joze-
fowicz, Zaremba, and Sutskever 2015. They stated that if the lookback
period is long, the cell states fuse information across a wide window. Due
to this, the extracted information gets smeared. As a result, protracting
the lookback does not always work with LSTMs.

� Increasing the lookback may smear the features
learned by LSTMs and, therefore, cause poorer

performance.

5.7 History of LSTMs

Until the early 1990s, RNNs were learned using real-time recurrent learn-
ing (RTRL, Robinson and Fallside 1987) and back-propagation through
time (BPTT, R. J. Williams and Zipser 1995). But they had critical
limitations: vanishing and exploding gradient.

These limitations were due to the error propagation mechanism in a
recurrent network. In the early methods, the errors were progressively
multiplied as it traveled back in time. Due to this, the resultant error
could exponentially increase or decrease. Consequently, the backpropa-
gated error can quickly either vanish or explode.

The gradient explosion was empirically addressed by capping any
high values. But the vanishing gradient issue was still an unsolved
problem. It was casting doubt on whether RNNs can indeed exhibit
significant practical advantages.

Then, long short term memory (LSTM) was developed by Hochreiter
and Schmidhuber 1997. They stated,

“...as the time lag increases, (1) stored information must
be protected against perturbation for longer and longer pe-
riods, and—especially in advanced stages of learning—(2)
more and more already correct outputs also require protec-
tion against perturbation.”

– p7 in Hochreiter and Schmidhuber 1997.

Chapter 5. Long Short Term Memory Networks 157

Table 5.2. History of LSTM.

1997 • Hochreiter & Schmidhuber
• Memory state.

.
1999 • Gers, Schmidhuber, & Cummins

• Memory state, and
• Forget gate.

2002 • Gers, Schraudolph & Schmidhuber
• Memory state,
• Forget gate, and
• Peeping hole.

2007-
2008 • Graves, Fernández, & Schmidhuber, Graves &

Schmidhuber
• Memory state,
• Forget gate,
• Peeping hole, and
• Multi-dimensional.

2012-
2013 • Graves 2012, Graves 2013

• Memory state,
• Forget gate,
• Peeping hole,
• Multi-dimensional, and
• refined formulation

2015 • Jozefowicz, Zaremba, & Sutskever
• Memory state,
• Forget gate,
• Multi-dimensional,
• refined formulation, and
• implemented in TensorFlow.

2017 • Baytas, Xiao, Zhang, et. al.
• Handle irregular time-intervals (time

aware),
...

158 5.7. History of LSTMs

They recognized that the vanishment problem is due to error propa-
gation. If only the error could be left untouched during the time travel,
the vanishment and explosion would not occur.

Hochreiter and Schmidhuber 1997 implemented this idea by en-
forcing constant error flow through what they called “constant error
carousals (CECs).” Their CEC implementation was done with the help
of adding a recurring cell state. An abstract and simplified representa-
tion of their formulation is shown below.

it = f(wiyt−1 + bi)

ot = f(woyt−1 + bo)

c̃t = g(wcyt−1 + bc)

ct= ct−1 + itc̃t

yt = oth(st)

The first three expressions are called input gate, output gate, and
state gate, respectively. The last two expressions are the cell state and
cell output, respectively. In this section, it is okay to ignore the equation
details. Here the focus is on the formulation and their key differentiating
elements highlighted in red.

The key element in Hochreiter and Schmidhuber’s formulation above
is the cell state ct. The cell state acts as long-term memory.

It has an additive expression instead of multiplicative. The expres-
sion can also be seen as computing the delta, ∆ct = itc̃t, at each time-
step and adding it to the cell state ct. While it is true that additive
ct does not necessarily result in a more powerful model, the gradients
of such RNNs are better behaved as they do not cause vanishment (ex-
plained in § 5.2.8).

But this approach has another issue. The additive cell state ex-
pression does not forget a past. It will keep the memories from all the
time-steps in the past. Consequently, Hochreiter and Schmidhuber’s
LSTM will not work if the memories have limited relevance in time.

Hochreiter and Schmidhuber worked around this by performing an
apriori segmentation of time series into subsequences such that all time-
steps in the subsequence are relevant. But such an apriori processing is

Chapter 5. Long Short Term Memory Networks 159

a methodological limitation.

Gers, Schmidhuber, and Cummins 1999 addressed this by bringing
forget gates into the formulation. They stated, “any training procedure
for RNNs which is powerful enough to span long time lags must also
address the issue of forgetting in short-term memory.”

In Gers, Schmidhuber, and Cummins 1999, it is emphasized that the
cell state ct tends to grow linearly during a time series traversal. If a
continuous time series stream is presented, the cell states may grow in
an unbounded fashion. This causes saturation of the output squashing
function h(ct) at the end2.

Gers et. al. countered this with adaptive forget gates in Gers, Schmid-
huber, and Cummins 1999. These gates learn to reset the cell states (the
memory) once their contents are out-of-date and, hence, useless. This
is done by a multiplicative forget gate activation ft. ft can also be seen
as a weight on the prior memory shown in their high-level formulation
below.

it = f(wiyt−1 + bi)

ot = f(woyt−1 + bo)

ft= f(wfyt−1 + bf)

c̃t = g(wcyt−1 + bc)

ct = ftct−1 + itc̃t

yt = oth(ct)

After forget gates, Gers and Schmidhuber were back on this. They,
along with Schrandolph, devised what they called as a peeping hole in
Gers, Schraudolph, and Schmidhuber 2002. The name may sound creepy
but the approach was scientific.

In the LSTMs, thus far, each gate receives connections from the input
and the output of the cells. But there is no direct connection between
the gates and the cell state (memory) they are supposed to control. The
resulting lack of essential information (cell state) may harm a network’s

2Saturation meaning: At a saturation point of a function, any change in its
input does not change the output. That is, y = f(x) = f(x + ∆x) if x, x + ∆x ∈
saturation region.

160 5.7. History of LSTMs

performance (Gers, Schraudolph, and Schmidhuber 2002).

As a remedy, Gers et. al. added weighted “peephole” connections
from the cell states to the input, output, and forget gates shown below.

it = f(w
(y)
i yt−1 +w

(c)
i ct−1 + bi)

ot = f(w(y)
o yt−1 +w(c)

o ct−1 + bo)

ft = f(w
(y)
f yt−1 +w

(c)
f ct−1 + bf)

c̃t = g(w(y)
c yt−1 + bc)

ct = ftct−1 + itc̃t

yt = oth(ct)

The next wave of LSTM progress can be attributed to Alex Graves
for his work in 2005–2015. He along with Santiago Fernandex and Jurger
Schmidhuber developed the foundation of multi-dimensional RNNs in
Graves, Fernández, and Schmidhuber 2007.

To avoid confusion for statisticians, the multi-dimension here refers
to the number of input sample axes and not the features. For example,
a time series has one axes while an image has two axes.

Until this work, LSTM/RNNs were applicable only to single-axes
sequence problems, such as speech recognition. Applying RNNs to
data with more than one spatio-temporal axes was not straightforward.
Graves et. al. (2007) laid down the formulation for multi-dimension/axes
sequences.

The multi-dimensional extension was a significant leap that made
RNNs, in general, and LSTMs, specifically, applicable to multivariate
time series, video processing, and other areas.

This work was carried forward by Graves and Schmidhuber in Graves
and Schmidhuber 2009 that won the ICDAR handwriting competition
in 2009.

Then in 2012-2013 Graves laid a refined LSTM version in Graves
2012; Graves 2013 that we are familiar with today. His formulation for
multi-dimensional sequences is shown below.

Chapter 5. Long Short Term Memory Networks 161

it = f(W
(x)
i xt +W

(h)
i ht−1 +W

(c)
i ct−1 + bi)

ot = f(W (x)
o xt +W (h)

o ht−1 +W (c)
o ct−1 + bo)

ft = f(W
(x)
f xt +W

(h)
f ht−1 +W

(c)
f ct−1 + bf)

c̃t = g(W (x)
c xt +W (h)

c ht−1 + bc)

ct = ftct−1 + itc̃t

ht = otg(ct)

In this formulation, Graves included the features x present along
the axes of a multi-dimensional sample. This refined version was also
a simplification of the previous versions in Hochreiter and Schmidhuber
1997, and Gers, Schmidhuber, and Cummins 1999; Gers, Schraudolph,
and Schmidhuber 2002 (might not be apparent here because the formu-
lations above are simplified representations).

While the previous works had a complex memory block concept with
byzantine architecture (not shown here for clarity), Graves new formu-
lation had a simpler memory cell.

Jozefowicz and Sutseker from Google, and Zaremba from FaceBook
took forward Graves formulation that ultimately led to the current
LSTM implementation in TensorFlow. They explored the LSTM vari-
ants in Jozefowicz, Zaremba, and Sutskever 2015 and recommended the
formulation by Graves 2012 but without the peephole.

it = f(W
(x)
i xt +W

(h)
i ht−1 + bi)

ot = f(W (x)
o xt +W (h)

o ht−1 + bo)

ft = f(W
(x)
f xt +W

(h)
f ht−1 + bf)

c̃t = g(W (x)
c xt +W (h)

c ht−1 + bc)

ct = ftct−1 + itc̃t

ht = otg(ct)

In Jozefowicz et. al. (2015) and, consequently, in TensorFlow the
LSTM’s hidden state is a tuple (ht, ct). The cell state, ct, is called a
“slow” state that addresses the vanishing gradient problem, and ht is
called a “fast” state that allows the LSTM to make complex decision

162 5.8. Summary

over short periods of time.

The developments in LSTMs and RNNs have continued. Time aware
LSTM by Baytas et al. 2017 was proposed to handle irregular time
intervals between the time-steps in a sequence. A novel memory cell
called Legendre memory unit (LMU) was developed recently for RNNs
by Voelker, Kajić, and Eliasmith 2019. Moreover, a time-segment LSTM
and temporal inception by Ma et al. 2019 show interesting applications.

In sum, LSTM is an enhanced RNN. LSTM can learn long-term
memories and also dispose of them when they become irrelevant. This
is achieved due to the advancements and refinements over the years.

5.8 Summary

LSTM models showed to work better than MLPs. This was expected be-
cause they can learn temporal patterns. The baseline restricted LSTM
model beat the best MLP model in the previous chapter. The un-
restricted LSTM proved to perform even better. Adding a recurrent
dropout for regularization further improved and stabilized the model.

Inspired from other works on sequence modeling, backward and bi-
directional LSTM models were developed. The backward model per-
formed below the baseline. They work better for sequence-to-sequence
problems like language translations. However, the bi-directional model
outperformed the others. This could be attributed to a bi-directional
LSTM’s ability to capture temporal patterns both retrospectively and
prospectively.

Lastly, owing to the expectation from LSTMs to learn even longer-
term patterns a wider time-window of inputs are used. This is done by
re-preparing the data by increasing the lookback from 5 to 20. However,
contrary to the expectation the performance degraded. Primarily due
to LSTM cell state’s limitation in fusing temporal patterns from wide
time-windows. Stateful LSTMs is an alternative to learning exhaustively
long-term patterns. Their implementation is shown in Appendix F as
they are not directly applicable to the non-stationary time series process
here.

Chapter 5. Long Short Term Memory Networks 163

Besides, the LSTM models constructed here faced the issue of in-
creasing validation loss. This is further touched upon in the exercises.
Finally, the chapter is concluded with a few rules-of-thumb.

5.9 Rules-of-thumb

• The thumb-rules for the number of layers, number of nodes and
activation functions for the intermediate and output layers are the
same as that for MLPs in § 4.10.

• Data Processing. The initial data processing, e.g., converting
the data to numeric is the same as in MLP thumb-rules in § 4.10.
Additionally,

– Temporalize. The data temporalization into 3-dimensional
arrays of shape, (batch size, timesteps, features), is necessary.

– Split. Randomly split the temporalized data using
train_test_split from sklearn.model_selection. The
data split should be done after temporalization to avoid ob-
servations to leak between train, valid and test sets. Besides,
as discussed in § 4.3.2, the temporalized data windows are
self-contained. Therefore, random sampling of the time se-
ries is applicable.

– Scale. Scaling the temporalized 3D data is facilitated with
custom-defined functions in § 5.4.4. Fit a StandardScaler
on the train set and transform the valid and test sets.

• Restricted vs unrestricted LSTM. It is preferable to work
with unrestricted LSTM. It will typically provide better accuracy.
This is done as follows,

– Return sequences. Set the argument return_sequences=True
in all the LSTM layers, including the last in the stack.

– Flatten. If the layer next to the last LSTM layer is Dense(),
add a Flatten() layer. The Flatten() is a transformation
layer converting the 3-dimensional (batch size, timesteps, fea-
tures) output from the LSTM layer with a time-steps axis
into a 2-dimensional array (batch size, timesteps * features)

164 5.9. Rules-of-thumb

• Stateful LSTM. It should not be used as a baseline. A stateful
LSTM requires a deeper understanding of the process and problem
formulation. For example, whether the process is stationary. If
unclear, it is better to avoid stateful LSTM.

• Dropout. In LSTM we have two choices for Dropout, viz. the
regular dropout using the Dropout() layer and recurrent dropout
using the recurrent_dropout argument in the LSTM layer. Among
them it is preferred to start with the recurrent dropout and its rate
as 0.5 in each LSTM layer, LSTM(..., recurrent_dropout=0.5).

• Go backward. The go_backwards argument in an LSTM layer
allows processing the input sequences in the reverse order. This
brings the long-term patterns closer while moving the short-term
patterns backward. This switch is useful in some problems, such
as language translation.

The backward utility depends on the problem. This setting should
be set to False in the baseline.

To test whether it brings any improvement, only the first LSTM
layer should be toggled to go backward by setting
LSTM(..., go_backwards=True).

• Bi-directional. A bi-directional LSTM can learn patterns both
retrospectively (from the past) and prospectively (from the fu-
ture). This makes it stronger than regular LSTMs. However, bi-
directional LSTM has double the number of parameters. It should
not be used in the baseline but must be attempted to validate if
it brings any improvement.

An LSTM layer can be made bi-directional by wrapping it as
bidirectional(LSTM(...)). Similarly, any other RNN layer can
also be made bi-directional using the bidirectional() wrapper.

Chapter 5. Long Short Term Memory Networks 165

5.10 Exercises

1. LSTM is said to be an enhanced RNN. It brought in the concept
of cell state for long-term memory.

(a) Explain how a simple RNN works and differentiate it with
LSTMs.

(b) In LSTMs, is it possible to identify which features are pre-
served or forgotten from the memory?

2. Activation. In this chapter, relu activation is used on the LSTM
outputs. But tanh is its native activation.

(a) Explain why relu is still applicable as LSTM output activa-
tion.

(b) Train the baseline and bi-directional model with tanh acti-
vation and discuss the results.

(c) Train the baseline and bi-directional models with ELU and
SELU activations. Do they address the increasing validation
loss issue? Discuss your findings.

3. Peephole LSTM. Peephole LSTMs are a useful variant. They
have proved to work better than others in Graves 2013. Refer to
the Peephole LSTM expressions in § 5.7.

(a) Use the peephole LSTM in TensorFlow3.

(b) Implement the peephole LSTM as your custom LSTM cell.

(c) Discuss the results.

4. Gated Recurring Unit (GRU). GRU proposed in Cho et al.
2014 is an alternative to LSTM. Jozefowicz, Zaremba, and Sutskever
2015 found that GRU outperformed LSTM in many cases. The
formulation for GRU is,

3Refer to https://bit.ly/2JnxcyM

https://bit.ly/2JnxcyM

166 5.10. Exercises

rt = σ(W (x)
r xt +W (h)

r ht−1 + br)

zt = σ(W (x)
z xt +W (h)

z ht−1 + bz)

h̃t = tanh(W
(x)
h xt +W

(h)
h ht−1 + bh)

ht = ztht−1 + (1− zt)h̃t

(a) Implement GRU in TensorFlow. Replace the LSTM layer
with the GRU layer. Discuss the results.

(b) Jozefowicz, Zaremba, and Sutskever 2015 found that initial-
izing LSTM with forget gate bias as 1 improved the perfor-
mance. Explain the premise of initializing the forget bias as
1.

(c) Run the baseline and bi-directional LSTM model with forget
bias initialized to 1 (set unit_forget_bias as True). Com-
pare the results with the GRU model.

5. (Optional) A higher-order cell state. The cell state in tradi-
tional LSTM has a first-order autoregressive (AR-1) like structure.
That is, the cell state ct is additive with the prior ct−1. Will a
higher-order AR function work better?

(a) Build a simple custom LSTM cell with a second-order autore-
gressive expression for cell state. The formulation is given
below. This is a dummy LSTM cell in which cell state at a
time t will always have a part of the cell state learned at t−2.

it = hard-sigmoid(w
(x)
i xt +w

(h)
i ht−1 + bi)

ot = hard-sigmoid(w(x)
o xt +w(h)

o ht−1 + bo)

ft = hard-sigmoid(w
(x)
f xt +w

(h)
f ht−1 + bf)

c̃t = tanh(w(x)
c xt +w(h)

c ht−1 + bc)

ct = b+ 0.5ct−2 + ftct−1 + itc̃t

ht = ottanh(ct)

where b is a bias parameter.

Chapter 5. Long Short Term Memory Networks 167

(b) Build an adaptive second order AR cell state with the help
of an additional gate. The formulation is,

it = hard-sigmoid(w
(x)
i xt +w

(h)
i ht−1 + bi)

ot = hard-sigmoid(w(x)
o xt +w(h)

o ht−1 + bo)

ft = hard-sigmoid(w
(x)
f xt +w

(h)
f ht−1 + bf)

gt = hard-sigmoid(w(x)
g xt +w(h)

g ht−1 + bg)

c̃t = tanh(w(x)
c xt +w(h)

c ht−1 + bc)

ct = b+ gtct−2 + ftct−1 + itc̃t

ht = ottanh(ct)

(c) The purpose of this exercise is to learn implementing new
ideas for developing an RNN cell. An arbitrary formulation
is presented above. How did this formulation work? Will a
similar second-order AR formulation for GRUs work? Can
you propose a formulation that can outperform LSTM and
GRU cells?

Chapter 6

Convolutional Neural
Networks

“...We are suffering from a plethora of surmise, conjecture,
and hypothesis. The difficulty is to detach the framework
of fact—of absolute undeniable fact—from the embellish-
ments...”

– Sherlock Holmes, Silver Blaze.

6.1 Background

High-dimensional inputs are common. For example, images are high-
dimensional in space; multivariate time series are high-dimensional in
both space and time. In modeling such data, several deep learning
(or machine learning) models get drowned in the excess confounding
information.

Except for convolutional networks. They specialize in addressing
this issue. These networks work by filtering the essence out of the
excess.

Convolutional networks are built with simple constructs, viz. con-
volution, and pooling. These constructs were inspired by studies in neu-
roscience on human brain functioning. And, it is the simplicity of these

169

170 6.1. Background

constructs that make convolutional networks robust, accurate, and effi-
cient in most problems.

“Convolutional networks are perhaps the greatest success
story of biologically inspired artificial intelligence.”

– in Goodfellow, Bengio, and Courville 2016.

Convolutional networks were among the first working deep networks
trained with back-propagation. They succeeded while other deep net-
works suffered from gradient issues due to their computational and sta-
tistical inefficiencies. And, both of these properties are attributed to the
inherent simplistic constructs in convolutional networks.

This chapter describes the fundamentals of convolutional constructs,
the theory behind them, and the approach to building a convolutional
network.

It begins with a figurative illustration of the convolution concept in
§ 6.2 by describing a convolution as a simple filtration process. There-
after, the unique properties of convolution, viz. parameter sharing, (use
of) weak filters, and equivariance to translation, are discussed and illus-
trated.

The convolution equivariance makes a network sensitive to input
variations. This hurts the network’s efficiency. It is resolved by pool-
ing discussed in § 6.4. Pooling regularizes the network and, also, allows
modulating it between equivariance and invariance. These pooling at-
tributes are explained in § 6.4.1 and § 6.4.2, respectively. The sections
show that a pooled convolutional network is regularized and robust.

These sections used single-channel inputs for the illustrations. The
convolution illustration is extended to multi-channel inputs such as a
colored image in § 6.5.

After establishing the concepts, the mathematical kernel operations
in convolution is explained in § 6.6. A few convolutional variants, viz.
padding, stride, dilation, and 1×1 convolutions are then given in § 6.7.

Next, the elements of convolutional networks are described in § 6.8,
e.g., input and output shapes, parameters, etc. Moreover, the choice
between Conv1D, Conv2D, and Conv3D layers in TensorFlow is sometimes

Chapter 6. Convolutional Neural Networks 171

confusing. The section also explains their interchangeability and com-
patibility with different input types.

At this point, the stage is set to start multivariate time series model-
ing with convolutional networks. The model construction and interpre-
tations are in § 6.9. Within this section, it is also shown that convolu-
tional networks are adept at learning long-term temporal dependencies
in high-dimensional time series. A network in § 6.9.4 learned temporal
patterns as wide as 8 hours compared to only up to 40 minutes with
LSTMs in the previous chapter.

Furthermore, a flexible modeling of multivariate time series using a
higher-order Conv2D layer is given in § 6.10.

After this section, the chapter discusses a few advanced topics in
relation to pooling.

Pooling in a convolutional network summarizes a feature map. The
summarization is done using summary statistics, e.g., average or maxi-
mum. § 6.11 delves into the theory of summary statistics intending to
discover the statistics that are best for pooling. The section theoreti-
cally shows that maximum likelihood estimators (MLEs) make the best
pooling statistic.

The theory also helps uncover the reason behind max-pool’s superi-
ority in § 6.12.1. Importantly, it provides several other strong pooling
statistic choices in § 6.13. A few futuristic pooling methods such as
adaptive and multivariate statistics are also discussed in § 6.14. A brief
history of pooling is then laid in § 6.15.

Lastly, the chapter concludes with a few rules-of-thumb for con-
structing convolutional networks.

6.2 The Concept of Convolution

The concept of convolution is one of the simplest in deep learning. It is
explained in this section with the help of an arbitrary image detection
problem but the concept applies similarly to other problems.

172 6.2. The Concept of Convolution

2
Figure 6.1. An image of the letter “2.” The problem is to detect the

image as 2. Visually this is straightforward to a human but not
to a machine. An approach for the detection is determining
filters with distinctive shapes that match the letter and filtering
the image (the convolution process) through them.

Chapter 6. Convolutional Neural Networks 173

2(a) Semi-circle filter.2
(b) Angle filter.

Figure 6.2. Examples of filters for convolution to detect letters in an
image. The filters—semi-circle and angle—together can detect
letter 2 in an image.

Problem. Consider an image of the letter “2” in Figure 6.1. The
problem is to detect the image as “2.” This is a straightforward task for
a human. But not necessarily to a machine. The objective and challenge
are to train a machine to perform the task. For which, one approach is
filtration.

Filtration. There are several ways to perform the letter “2” detection.
One of them is to learn distinctive filters and filter an image through
them.

The filters should have shapes that distinguish “2.” One such set of
filters is a semi-circle and an angle shown in Figure 6.2a and 6.2b. A
presence of these shapes in an image would indicate it has “2.”

The presence of a shape in an image can be ascertained by a filtration-

174 6.2. The Concept of Convolution

2
Figure 6.3. An illustration of convolution as a filtration process

through a sieve. The sieve has a semi-circular hole
corresponding to a filter. Several letters are sifted through the
sieve. The letters that have a semi-circular shape in them
falls through it. Consequently, the 2’s pass through the filter
while the 1’s do not.

22 2
(a) “2” image swept with semi-circle filter.

2
2
2

(b) “2” image swept with angle filter.

Figure 6.4. Formal implementation of the filtration process in
convolution is sweeping the input as illustrated above. An
image with “2” in it is swept with the semi-circle filter (top)
and the angle filter (bottom). The filtration process of
detecting the presence of the filter shapes is accomplished by
sweeping the entire image to find a match.

Chapter 6. Convolutional Neural Networks 175

like process. Imagine there is a bucket of images of 1’s and 2’s. These
images are sifted through a sieve which has a semi-circular hole as shown
in Figure 6.3.

While (a part of) 2’s could pass through the sieve, the 1’s could
not go through. The filtration through the sieve indicated the presence
of semi-circle in the 2’s. Similarly, another filtration through the angle
filter could be performed to infer an image contains “2.”

This filtration process is performed in convolution. A difference is
that the filtration process in convolution appears like sweeping an image
instead of sifting.

Sweeping. Formal implementation of filtration is sweeping an image
with a filter.

Figure 6.4a and 6.4b illustrate the sweeping process in which the
entire image is swept by the semi-circle and angle filters, respectively.
In both the sweeps, the respective filter shapes were found and indicated
with a + symbol in the output. These outputs enable detection of “2.”

Convolution. Sweeping an input mathematically translates to a con-
volution operation.

In deep learning, convolution is performed with discrete kernels (de-
tails in § 6.6). The kernel corresponds to a filter and convolving an input
with it indicates the presence/absence of the filter pattern.

� A convolution operation is equivalent to sweeping
an input with a filter in search of the filter’s pat-

tern.

Importantly, the pattern’s location in the input is also returned.
These locations are critical. Without their knowledge, an image with
semi-circle and angle strewed anywhere in it will also be rendered as “2”
(an illustration is in Figure 6.11 in § 6.4.2).

In sum, a convolution operation filters distinguishing patterns in

176 6.3. Convolution Properties

an input. The inputs are typically high-dimensional. The filtration by
convolution displays the spirit of extracting the essence (patterns) from
the excess (high-dimensional input).

The illustrations in this section might appear ordinary but remember
for a machine it is different. The foremost challenge is that the filters
are unknown. And, identifying appropriate filters by a machine is non-
trivial. Convolutional networks provide a mechanism to automatically
learn the filters (see § 6.9). Besides, convolution exhibits some special
properties discussed next.

� Earlier, filters were derived through feature engi-
neering. Convolutional networks automated the

filters learning.

6.3 Convolution Properties

A convolution process sweeps the entire input. Sweeping is done with
a filter smaller than the input. This gives the property of parameter
sharing to a convolutional layer in a deep learning network.

Moreover, the filters are small and, hence, called weak. This enables
sparse interaction. Lastly, during the sweep the location of filter patterns
in the input is also returned which brings the equivariance property to
convolution.

This section explains the benefits, downsides, and intention behind
these convolution properties.

6.3.1 Parameter Sharing

The property of parameter sharing is best understood by contrasting a
dense layer with convolutional.

Suppose a dense layer is used for the image detection problem in the
previous section. A dense layer would yield a filter of the same shape
and size as the input image with letter “2” as shown in Figure 6.5.

Chapter 6. Convolutional Neural Networks 177

2
Figure 6.5. An illustration of a filter in a dense layer to detect letter

“2.” The filter size is the same as that of the input.
Consequently, the parameter space is significantly large. This is
also referred to as a strong filter because it can alone detect the
letter “2.” Although the filter is strong, the excess amount of
parameters in it make a dense layer statistically inefficient. Due
to statistical inefficiency, a dense layer would require a large
number of samples to automatically learn a filter.

Compare the sizes of dense layer filter in Figure 6.5 with either of
the convolutional filters, semi-circle, and angle, in Figure 6.2a and 6.2b.
The latter are clearly smaller.

The convolutional filter is smaller than the input. But to cover the
entire input, it sweeps through it from top to bottom and left to right.
This is called parameter sharing.

A filter is a kernel that is made of some parameters. When the same
filter is swept on different parts of the input, it is referred to as the
parameters are shared. This is in contrast to a dense layer filter which
is as big as the input and, hence, does not share parameters.

What is the benefit of parameter sharing? Parameter sharing
makes a convolutional network statistically efficient. Statistical effi-
ciency is the ability to learn the model parameters with as few samples
as possible.

Due to parameter sharing, a convolutional layer can work with small-
sized filters—smaller than the input. The small filters have fewer param-
eters compared to an otherwise dense layer. For instance, if the input

178 6.3. Convolution Properties

Figure 6.6. An example of a typical-sized 2400× 1600 image. A
convolutional filter to detect a pair of eyes is shown with an
orange box. The filter is significantly smaller than the image.
Therefore, it is termed as a weak filter. The filter is essentially a
set of parameters. This filter sweeps—convolves—the entire
image in search of a pair of eyes. This is called parameter
sharing. Besides, the convolution process also yields the location
of the pair of eyes. This ability to detect positional information is
called equivariance. –Photo by Elizaveta Dushechkina on
Unsplash.

Chapter 6. Convolutional Neural Networks 179

image has m × n pixels, a filter in the dense layer (the weight matrix)
is also m× n but a convolutional filter will be m′ × n′, where m′ << m
and n′ << n.

The benefit is evident if m and n are large. For instance, a typical-
sized image shown in Figure 6.6 is 2400 × 1600 pixels. In this image,
a convolutional filter to detect eyes is 20 × 60 with 20 ∗ 60 = 1, 200
parameters. This size is significantly smaller than a dense layer weight
parameter which is equal to the input size of 2400 ∗ 1600 = 3, 840, 000.

Since there are fewer parameters, a convolutional network can learn
them with a relatively smaller number of samples. Due to this property,
convolutional networks are sometimes also referred to as regularized ver-
sions of multilayer perceptrons.

� Parameter sharing makes convolutional network
statistically efficient, i.e., the network parameters

can be learned with fewer samples.

6.3.2 Weak Filters

The statistical efficiency is boosted due to the filter re-usability brought
by weak filters.

Convolutional layer deploy filters smaller than the input. These are
referred to as weak filters. The name is because one weak filter by itself
is not sufficient. One needs the help of other weak filters for inferencing.
For instance, the illustrative example of the letter “2” detection required
two (weak) filters: a semi-circle and an angle.

The use of weak filters brings an important attribute of filter reuse
to convolutional nets. Filter re-usability is the ability to use a filter
for detecting a pattern in multiple objects. For example, the semi-circle
filter can be reused to distinguish “0,” “2,” “3,” “6,” “8,” and “9” from
other letters as shown in Figure 6.7. In a letters detection problem,
where the letters can be in 0-9, the filter reuse becomes extremely ben-
eficial. Instead of learning strong filters for every letter, a set of weak
filters collaborate to detect multiple objects.

180 6.3. Convolution Properties

02 22 32
62 82 92

Figure 6.7. A weak filter semi-circle can detect a distinctive pattern in
multiple letters, viz. “0,” “2,” “3,” “6,” “8,” and “9.” In a letters
detection problem where the letters can be in 0-9, the semi-circle
can separate six of the ten letters. Additional filters, for example,
an inverted semi-circle to further separate “0,” “3,” “6,” and “8,”
can be employed. These filters collaborate to infer the letters
accurately with fewer parameters to learn. These weak filters and
the possibility of their reuse make convolutional networks
statistically efficient.

Chapter 6. Convolutional Neural Networks 181

� The benefit of weak filters is that they are reused.
A set of weak filters collaborate to detect multiple

objects.

A strong filter is capable of detecting an object just by itself. How-
ever, it comes at the cost of excessive parameters. Moreover, a strong
filter by definition cannot be re-used to detect any other object. An
example of a strong filter for detecting “2” is in Figure 6.5. This filter
cannot be used for any other object. Besides, strong filters are sensitive
to distortions (noise) in samples. For example, if the letter “2” is written
slightly differently, the filter will not work.

Weak filters, on the other hand, are small in size, reusable, and
robust to noise. Due to this, they can be learned with fewer samples.
Moreover, due to the reusability and robustness of a weak filter, it is
learned from samples of multiple objects. For instance, the semi-circle
filter will be automatically learned in a convolutional network using
samples of “0,” “2,” “3,” “6,” “8,” and “9.” As a result, the presence of
weak filters boosts the statistical efficiency of convolutional networks.

� A collection of weak filters make a convolutional
network strong. Weak filters are small filters with

fewer parameters and also allows filter re-usability. These
attributes boost the networks’ statistical efficiency.

6.3.3 Equivariance to Translation

Convolution exhibits the property of equivariance to translation. This
means if there is any variation in the input, the output changes in the
same way. Due to this property, convolution also preserves the positional
information of objects in the input. This is explained below.

As mentioned in the previous § 6.2, convolution is a process of sweep-
ing an input with a filter. At every (sweep) stride, the filter processes
the input at the location and emits an output. This is illustrated in

182 6.3. Convolution Properties

22
(a) Letter “2” on the top-left of image.

2
2

(b) Letter “2” on the bottom-right of image.

Figure 6.8. Illustration of the equivariance property of convolution.
Convolution is equivariant to translation, which implies if the
input changes, the output changes in the same way. For example,
“2” is at different positions: top-left (top) and bottom-right
(bottom). The convolution output changed at the same locations
showing its equivariance.

Chapter 6. Convolutional Neural Networks 183

Figure 6.8a and 6.8b.

In the figures, the letter “2” is placed at the top-left and the bottom-
right, respectively. The images are convolved (swept) with the semi-
circle filter. The convolution output is numeric but for simplicity, the
output is represented as +, if there is a match with the filter, and −,
otherwise.

Figure 6.8a and 6.8b show that based on the location of the letter
the convolution output changes. In Figure 6.8a, the output has a + at
the top-left and the rest are −. But as the position of “2” changed to
the bottom-right in Figure 6.8b the convolution output also changed to
+ at the same bottom-right location.

This shows that convolution maps the object location variation in
the input. In effect, convolution preserves the information of the object’s
location.

� Equivariance to translation is a property due to
which if there is a variation in the input, the con-

volution output changes in the same way.

Is location preservation important? Not always. In several prob-
lems, the objective is to determine the presence or absence of an object
or pattern in the input. Its location is immaterial. In such problems,
preserving the location makes the model over-representative. An over-
representative model has more features than needed and, consequently,
excess parameters. This hurts the statistical efficiency. To resolve this,
pooling is used in conjunction with a convolutional layer.

� Due to the equivariance property, the convolu-
tional layer preserves the location information of

an object or pattern in an input. This makes the net-
work over-representative that counteracts its statistical ef-
ficiency. Adding a pooling layer addresses the issue.

184 6.4. Pooling

6.4 Pooling

Pooling brings invariance to a convolutional network. If a function is
invariant, its output is unaffected by any translational change in the
input.

A pooling operation draws a summary statistic from the convolution
output. This replaces the over-representative convolution output with a
single or a few summary statistics. Pooling, therefore, further regularizes
the network and maintains its statistical efficiency (illustrated in § 6.4.1).

However, just like equivariance, an invariance to translation is also
sometimes counterproductive. Invariance makes the network blind to
the location of patterns in the input. This sometimes leads to a network
confuse the original input with its distortions (illustrated in Figure 6.10
and 6.11 in § 6.4.2).

Pooling provides a lever to modulate the network between equivari-
ance and invariance. Somewhere between the two is usually optimal.

Thereby, a pooling layer complements a convolutional layer. More-
over, pooling does not have trainable parameters1. And, therefore, it
does not add a computational overhead.

� A pooling layer provides a mechanism to regularize
a convolutional network without adding computa-

tional overhead.

In the following, the first invariance as a means for regularization is
explained. It is followed by showing pooling as a tool for modulating a
network between equivariance and invariance.

6.4.1 Regularization via Invariance

Invariance is the opposite of equivariance. If a function is invariant, its
output is unaffected by any translational change in the input.

Pooling brings invariance to a convolutional network. A pooling

1Unknown parameters to estimate.

Chapter 6. Convolutional Neural Networks 185

22 Maxpool∗

(a) Letter “2” on the top-left of image.

2
2 Maxpool∗

(b) Letter “2” on the bottom-right of image.

Figure 6.9. Illustration of invariance property of pooling. This
illustration shows an extreme level of pooling, called global
pooling. In this, the network becomes absolutely invariant.
Meaning, the location information of the object is not preserved.
Instead, the network focuses only on determining the presence or
absence of an object in an input. For example, although the letter
“2” is present in top-left and bottom-right in the top and bottom
figures, the pooling output remains the same. Here MaxPool is
used for illustration but the pooling behavior stays the same for
any other pooling. This indifference of the output to the
translations in the input is called invariance.

186 6.4. Pooling

operation summarizes the convolutional output into a statistic(s), called
a summary statistic. For example, the maximum summary statistic is
returned in MaxPool. In doing so, the granular information about an
object’s location is lost.

This causes the network to become invariant to the location of an
object in the input. The phenomenon is illustrated in Figure 6.9a and
6.9b. This illustration is a continuation of the one in Figure 6.8 in § 6.3.3
by applying MaxPool after the convolution.

As shown in the figures, the maxpool operand takes in the output
from convolution and emits the maximum value. Consequently, despite
the letter “2” being at the top-left or bottom-right in Figure 6.9a and
6.9b, respectively, the output from pooling is the same +.

In effect, pooling regularized the network by reducing the spatial size
of the representation (the feature map). This reduces the parameters
and, thereby, improves the statistical and computational efficiency. It
also improves the network’s generalizability, i.e., its applicability to more
variety of inputs.

“Invariance to local translation can be a useful property if
we care more about whether some feature is present than
exactly where it is.”

–Goodfellow, Bengio, and Courville 2016.

However, the efficiency improvement is achieved at the cost of losing
the location information. Especially, in the illustration here the location
information is completely lost. This is because global pooling was used
in the illustration. Global pooling is the case when the pooling operand
has the same size as the convolution output.

Global pooling is extreme pooling. It makes the network absolutely
invariant. In simple words, this means that the network becomes indif-
ferent to the location of an object in the input.

However, pooling is usually not used in this extremity. Instead, it
is used as a means to modulate a network between equivariance and
invariance. This is discussed next.

Chapter 6. Convolutional Neural Networks 187

� Pooling regularizes a network by making it invari-
ant, i.e., indifferent, to the location of an object

in the input.

6.4.2 Modulating between Equivariance and Invariance

Pooling is used to modulate a network between equivariance and invari-
ance. Both the extremities have downsides.

Equivariance, on one hand, preserves the location information but
makes the network over-representative. This hurts the network’s com-
putational and statistical efficiencies.

Invariance, on the other hand, regularizes the model to improve its
efficiency but loses the location information. This makes the network un-
able to differentiate between original and manipulated inputs, thereby,
hurting its reliability and general applicability.

A network is optimal somewhere between the two extremities. Pool-
ing leads to equivariance or invariance depending on whether the pool
size is equal to 1 or equal to the convolutional feature map, respec-
tively. Changing the pool size in this range modulates a network be-
tween them2.

At its minimum size of 1, the pooling output is the same as its input.
At its maximum size, pooling makes the network invariant to location
translations. The invariance effect is illustrated in Figure 6.10a and
6.10b.

The network in both figures has global pooling. An image of “2” and
an unknown inscription are analyzed using semi-circle and angle filters
in Figure 6.10a and 6.10b, respectively.

The inscription also contains a semi-circle and an angle but in the
opposite order compared to “2.” But the network could not distinguish
the inscription from “2.” The network detected both the inputs, “2” and
the inscription, as “2.” The latter (Figure 6.10b) shows that the network

2Convolution and pooling, both, are performed along the spatial axes of an input.
Therefore, the pool size is defined for the spatial axes. More details are in § 6.8.

188 6.4. Pooling

22
22

22
22
22

22
2

2

2

∗

∗

M
a
x
p
o
o
l

∗

M
a
x
p
o
o
l

∗

2

Convolution Dense layerInput OutputPoolingFilters

(a) Letter “2” correctly identified as “2.”

22

22

22

22

22

22

2
2

2
2
2

2

2

∗

∗

M
a
x
p
o
o
l

∗

M
a
x
p
o
o
l

∗

222

222

Convolution Dense layerInput OutputPoolingFilters

(b) An inscription incorrectly identified as “2.”

Figure 6.10. Limitation of invariance is illustrated with global pooling,
i.e., pool size equal to its input. This is a pooling extremity that
makes the network invariant to location translations. For
example, a deformed inscription in the bottom figure has a
semi-circle and an angle but not like in a letter “2” is still
incorrectly identified as “2.”

Chapter 6. Convolutional Neural Networks 189

2

2

∗

∗

M
a
x

p
o
o
l

∗

∗

2

M
a
x

p
o
o
l

2

22
22

22
22
22

22

Convolution Dense layerInput OutputPoolingFilters

(a) Letter “2” correctly identified as “2.”

22

22

22

22

22

22

2
2

2
2
2

2

2

∗

∗

M
a
x

p
o
o
l

∗

∗

?22

222

M
a
x

p
o
o
l

Convolution Dense layerInput OutputPoolingFilters

(b) An inscription correctly identified as unknown.

Figure 6.11. Pooling modulates the network from invariance to
equivariance by reducing the pool size. Doing this preserves the
location information and also regularizes the network by
reducing the spatial features. With appropriate
modulation—reducing pool size to two—the network here is not
confused by a manipulative inscription in the bottom figure.
Instead, it could correctly identify the top as “2” and the bottom
as unknown.

190 6.4. Pooling

got confused by the manipulated inscription and incorrectly identified
it as “2.”

This is due to the network’s invariance to the location. Although
the network’s convolutional layer recognized the location of the pat-
terns semi-circle and angle in the inscription as the opposite of “2,” the
pooling layer summarized the convolution output into a single value.
As a result, the invariant network could be easily manipulated by an
arbitrary distortion.

The issues with equivariance and invariance are resolved by choosing
the pool size between 1 and the size of the feature map illustrated in
Figure 6.11a and 6.11b.

The network in this illustration has the pool size reduced to two
(which is in between the maximum size of 3 and the minimum size of
1). The pooling yields a summary of the feature map within the pool
window. Similar to a convolution process, the pool window sweeps the
feature map and emits the summary statistic (the maximum, here) at
each stride.

A smaller pool size leads to the preservation of some of the location
information of patterns. For example, in Figure 6.11a the pooling layer
preserved the location information of the semi-circle and angle in the
input. Due to which, the network could recognize the letter “2” as “2”
because the semi-circle and angle locations are at the top and bottom
of the image, respectively. On the other hand, the location of these
patterns is the opposite of the inscription in Figure 6.11b. The network
could not recognize this and, therefore, correctly labeled the inscription
as unknown.

� The amount of regularization can be modulated by
changing the pool size in pooling. Larger the pool

size, the more the regularization, and vice-versa.

Chapter 6. Convolutional Neural Networks 191

� A large pool size for higher regularization makes
the network invariant to the location of patterns

in the input. This makes the network easily confused by
manipulative distortions in the input.

� The pool size should be chosen such that it pro-
vides regularization while preserving the location

information.

In sum, a pooling layer provides a mechanism to modulate the net-
work between equivariance and invariance. An appropriately chosen
pool size between 1 and the feature map size leads to,

• a regularized network. Pooling achieves parameter reduction
while preserving location information. This makes the network
computationally and statistically efficient. And,

• a network’s robustness to manipulations by location transla-
tions. That is, the network is likely to correctly distinguish the
original from its manipulative distortion.

Pooling summarizes the information in a sample. Maximum is one
such summary statistic and MaxPool is one of the most popular pooling
methods. More details on summary statistics and the reason for max-
pool’s popularity is explored towards the end of this chapter in § 6.11
and 6.12. Additionally, deeper insights into the theory behind pooling
and a few effective choices are provided there.

6.5 Multi-channel Input

So far the convolutional network constructs were explained using monochrome
images as examples. However, most data sets have polychrome, i.e., col-
orful images.

192 6.5. Multi-channel Input

Despite the varied colors in an image, every color is made from a
palette comprising of a few primary colors, e.g., red-green-blue (RGB).
Each constituent of the palette is called a channel. Therefore, a color
image from RGB palette has red, green, and blue channels.

For instance, a multi-channel version of the grayscale image in Fig-
ure 6.1 is shown in Figure 6.12a.

2 222Original image
(230, 157, 250)

Red channel
(230, 0, 0)

Green channel
(0, 157,0)

Blue channel
(0, 0, 250)

(a) Letter 2 multi-channel: RGB.

222 222
(b) Multi-channel semi-circle and

angle filters.

Figure 6.12. Multi-channel image and filters.

Letter “2” in Figure 6.12a is a polychrome image from the RGB
palette. As shown, the purple-colored “2” is a composition of red, green,
and blue shades. More specifically, (Red : 230, Green : 157, Blue :
250). Decomposing them into individual channels yields images in each
channel, red (230, 0, 0), green (0, 157, 0), and blue (0, 0, 250). The colors
in the image are true to scale.

The importance of visualizing an input as a composition of channels
is to understand that it requires the filters (convolutional or pooling) to
have the same number of channels. For example, Figure 6.12b shows
the semi-circle and angle filters with three channels for red, green, and
blue, respectively.

However, the example should not be misunderstood as the filter
shapes must be the same in each channel. On the contrary, every channel
in a filter can have a different shape.

As an example, Figure 6.13a has a flower with different features
(shapes) in different channels. For such inputs, the filters take differ-
ent shapes (learned in a convolutional network) in different channels as
shown in Figure 6.13b.

Moreover, the channels in images are usually independent. However,
it is not necessary for other data types such as a multivariate time series.

Chapter 6. Convolutional Neural Networks 193

(a) Multi-channel data with different
features in different channels.

(b) Multi-channel filter with different
shapes in different channels.

Figure 6.13. Multi-channel image with different characteristic features
in different channels.

Channels in data can be interpreted in various ways. It is the palette
constituents in images but it is the features in a multivariate time se-
ries. Therefore, one generic understanding of channels is: every channel
provides different information about a sample.

� A convolutional filter has the same number of
channels as in the input.

� The shape of a filter can be different in different
channels.

6.6 Kernels

Convolution is a filtration process. A filter is made of kernel(s). Rather,
a kernel is a mathematical representation of a filter.

Kernels can be either a continuous or a discrete function. Among
them, discrete kernels are commonly used in convolutional networks
due to their flexibility. This choice is similar to fitting an empirical
distribution in statistical analysis. Discrete kernels make convolutional
networks robust to the distribution of input features.

194 6.6. Kernels

Suppose, f is a discrete kernel and g is a mono-channel image, then
the convolution of f and g is expressed as,

f ∗ g =

[
+∞∑

u=−∞

+∞∑
v=−∞

f(u, v)g(x− u, y − v)

]
,∀x, y. (6.1)

Here, f is a two-dimensional kernel because g is two-dimensional.
The dimensions here are spatial. For statisticians, the term dimension
can be confused with the number of features. Therefore, in this chapter,
axis is used to denote a spatial dimension.

As mentioned in § 6.2, a convolution operation involves sweeping the
input. The sweeping occurs along each axes of the input. Therefore, be-
cause the input g has two axes the convolution operation in Equation 6.1
is a double summation along both.

A mono-channel image is a two-axes m× n matrix. For illustration,
suppose the image is a 5× 5 matrix,

G =


g11 g12 g13 g14 g15

g21 g22 g23 g24 g25

g31 g32 g33 g34 g35

g41 g42 g43 g44 g45

g51 g52 g53 g54 g55


A discrete kernel in convolutional networks is essentially a tensor.

For the two-axes G, a k × l tensor is taken as a kernel. Consider such
an arbitrary 3× 5 kernel,

F =

f11 f12 f13 f14 f15

f21 f22 f23 f24 f25

f31 f32 f33 f34 f35


Remember from § 6.2 that a convolution operation is like filtration.

Mathematically, this is equivalent to determining the similarity between
the kernel F and the input G via a convolution operation.

Referring back to Figure 6.8, a convolution operation is simply sweep-
ing a kernel over an image and an output is returned at every stride.
The output is a dot product of the kernel and a section of the image.

Chapter 6. Convolutional Neural Networks 195

The operation can be expressed by rewriting Equation 6.1 as,

F ∗G =

[
k∑

u=1

l∑
v=1

fuvgx−u+1,y−v+1

]
,∀x, y (6.2)

where x = k, . . . ,m, and y = l, . . . , n. Note that x and y range from
k and l onward to keep the indexes x − u + 1 and y − v + 1 positive
for all values of u and v. The convolution happens iteratively for every
value of x and y. Every iteration is a dot product between the kernel f
and a section of input g at (x, y).

The higher the dot product, the stronger is the similarity between
the section and the kernel. The more instances of high dot products
indicate a significant part of the input G is similar to the kernel F .

In the following, the convolution operation that was figuratively il-
lustrated earlier is illustrated again with tensor (matrix) operations.

The letter “2” is represented as a matrix G in Equation 6.3, and
semi-circle and angle filters as kernel matrices Fs and Fa, respectively,
in Equation 6.4 and 6.5. The non-zero entries are highlighted in yellow
and pink in G and F ’s, respectively.

G =


0 0 1 0 0
0 1 0 1 0
0 0 0 1 0
0 0 1 0 0
0 1 1 1 0

 (6.3)

Fs =

0 0 1 0 0
0 1 0 1 0
0 0 0 0 0

 (6.4)

Fa =

0 0 0 1 0
0 0 1 0 0
0 1 1 1 0

 (6.5)

196 6.6. Kernels

Here the G is a 5 × 5 matrix and F·’s are 3 × 5 tensors, i.e., m =
5, n = 5, k = 3 and l = 5. Therefore, the range of the iterators x, y in
Equation 6.2 are, x ∈ {3, 4, 5} and y ∈ {5}. The convolution operation
occurs for every (x, y) pairs (3, 5), (4, 5), (5, 5) as shown below.

F· ∗G =

[3∑
u=1

5∑
v=1

fuvg3−u+1,5−v+1︸ ︷︷ ︸
A (x=3,y=5)

,
3∑

u=1

5∑
v=1

fuvg4−u+1,5−v+1︸ ︷︷ ︸
B: (x=4,y=5)

,

3∑
u=1

5∑
v=1

fuvg5−u+1,5−v+1︸ ︷︷ ︸
C: (x=5,y=5)

]
(6.6)

The operation for Fs is shown below in parts (A), (B), and (C) for
(x, y) pairs (3, 5), (4, 5), (5, 5), respectively.

A =

0 ∗ 0 + 0 ∗ 0 + 1 ∗ 1 + 0 ∗ 0 + 0 ∗ 0+

0 ∗ 0 + 1 ∗ 1 + 0 ∗ 0 + 1 ∗ 1 + 0 ∗ 0+

0 ∗ 0 + 0 ∗ 0 + 0 ∗ 0 + 0 ∗ 1 + 0 ∗ 0
= 3,

B =

0 ∗ 0 + 0 ∗ 1 + 1 ∗ 0 + 0 ∗ 1 + 0 ∗ 0+

0 ∗ 0 + 1 ∗ 0 + 0 ∗ 0 + 1 ∗ 1 + 0 ∗ 0+

0 ∗ 0 + 0 ∗ 0 + 0 ∗ 1 + 0 ∗ 0 + 0 ∗ 0
= 1, and

C =

0 ∗ 0 + 0 ∗ 0 + 1 ∗ 0 + 0 ∗ 1 + 0 ∗ 0+

0 ∗ 0 + 1 ∗ 0 + 0 ∗ 1 + 1 ∗ 0 + 0 ∗ 0+

0 ∗ 0 + 0 ∗ 1 + 0 ∗ 1 + 0 ∗ 1 + 0 ∗ 0
= 0

Putting (A), (B), and (C) together, the convolution output for Fs is

Fs ∗G = [3, 1, 0] . (6.7)

Chapter 6. Convolutional Neural Networks 197

Similarly, the convolution output for Fa is,

Fa ∗G = [1, 2, 5] . (6.8)

Earlier in Figure 6.10a and 6.11a in § 6.4.2, the convolution outputs
corresponding to Equation 6.7 and 6.8 were represented as Fs ∗ G =
[+,−,−] and Fa ∗ G = [−,−,+] for simplicity. However, as shown in
this section, the convolution output is a continuous real number instead
of binary.

So far, the kernels are illustrated for mono-channel inputs. But
inputs can be multi-channel as shown in § 6.5 in which case a filter has
as many channels as the input. A multi-channel filter is made up of
multiple kernels—one kernel for each channel. The convolution is then
expressed as

F ∗G =

[
k∑

u=1

l∑
v=1

nc∑
c=1

fuvcgx−u+1,y−v+1,c

]
,∀x, y (6.9)

where nc denotes the number of channels.

In summary, a few things to note in the convolution operation are,

• The cross-sectional size of a kernel is smaller than the input, i.e.,
k ≤ m and l ≤ n, but they have the same number of channels;
sometimes also referred to as the depth.

• The dot product is between the kernel and a section of the input’s
cross-section at (x, y) through its entire depth.

• Irrespective of the depth, the dot product still yields a scalar.

• Consequently, the convolution output shape does not change with
the number of channels in the input. This is an important deduc-
tion that helps understand the importance of 1× 1 convolution in
§ 6.7.4.

Besides, Equation 6.9 is applicable on a two-axes multi-channel in-
puts, e.g., a color image. A summation is added (removed) for inputs
with additional (lesser) axes, e.g., a video has three axes while time
series has a single axis.

198 6.7. Convolutional Variants

� A filter is mathematically a kernel. A discrete ker-
nel, which is simply a matrix, is typically used in

convolutional networks.

� A filter has a kernel for every channel in the input.

� The shape of a convolution output does not change
with the number of channels in the input.

6.7 Convolutional Variants

6.7.1 Padding

In the previous section, convolution was illustrated using an arbitrary
input and kernel of sizes 5× 5 and 3× 5, respectively. It was observed
in Equations 6.7 and 6.8 that the 5× 5 input reduced to a 3× 1 output.

Consider a network with several such layers. At every layer the
features size will shrink considerably.

The shrinking of the feature map is not a problem if the network is
shallow or the input is high-dimensional. The feature reduction (regu-
larization) is, in fact, beneficial as it reduces the dimension.

However, a rapid reduction in the feature map size prohibits the
addition of any subsequent layer or makes the higher-level layers futile.
It is because we can quickly run out of the features available for the next
convolutional layer. This issue easily becomes an impediment against
constructing deep networks.

� Feature maps shrink considerably in traditional
convolution. It becomes an issue in deep networks

as we quickly run out of features.

Chapter 6. Convolutional Neural Networks 199

G′ =



0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 1 0 1 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0


(a) Zero-padding shown in gray.

Fs ∗G′ =


0 1 0 1 0
1 0 3 0 1
0 1 1 1 1
0 1 0 2 0
1 1 3 1 1


(b) Convolution output from the

“semi-circle” kernel, Fs.

Fa ∗G′ =


1 1 3 1 1
0 2 1 2 1
1 1 2 2 0
1 2 5 2 1
0 2 1 1 0


(c) Convolution output from the

“angle” kernel, Fa.

Figure 6.14. Illustration of padding in convolutional layers on a 5× 5
image of “2.” Convolving the input with kernels Fs and Fa of
size 3× 5 yielded a 3× 1 output in Equation 6.7 and 6.8. This
significantly downsized the feature map. The precipitous
downsizing prohibits stacking multiple layers as the network
quickly runs out of features. This is resolved with padding.
Padding works by appending zeros on the periphery of the input.
Convolving the padded input (top) with Fs and Fa again results
in a 5× 5 outputs (bottom) which are of the same size as the
input. Padding, thus, prevents the feature map from diminishing
and, hence, enables constructing deeper networks.

200 6.7. Convolutional Variants

The issue can be resolved with a padded convolutional layer. In
padding, the size of the input sample is artificially increased to augment
the outputted features map size.

Padding was originally designed to make the size of the feature map
equal to the size of the input. It is done by appending 0’s on the pe-
riphery of input. Figure 6.14a illustrates padding of the 5 × 5 matrix
G for the letter “2” by adding rows and columns of 0’s to form an arti-
ficially enlarged input G′. Convolving the enlarged G′ with Fs and Fa
resulted in an 5× 5 output in Figure 6.14b and 6.14c. The outputs are
of the same size as the original 5× 5 input G. It is, thus, called “same”
padding.

“Same” padding employs the maximum amount of padding. More
than this is pointless as it will only add rows and/or columns of zeros in
the output. The default convolutional layer with no padding is referred
to as “valid” padding.

The amount of padding can be fine-tuned between “valid” and “same”
padding to optimize the feature size. However, such a fine-tuning should
generally be avoided as feature size reduction can be achieved better with
pooling.

� “Same” padding is useful to construct deep net-
works. It prevents the feature maps from dimin-

ishing allowing high-level layers to extract predictive pat-
terns.

Padding can be done in TensorFlow by setting the padding argument
as Conv(..., padding="same"). Convolution layer, otherwise, has no
padding, by default, and can be explicitly set as
Conv(..., padding="valid").

6.7.2 Stride

Stride in the context of convolution virtually means the same as a stride
in plain English. Stride means the distance between two steps. During
a convolution, every iteration in (x, y) in Equation 6.9 is a step. By

Chapter 6. Convolutional Neural Networks 201

default, x and y are iterated with steps of one. In this case, the stride
is 1. However, the stride can be increased to skip some steps.

For instance, in the example of convolving a 5× 5 input with 3× 5
kernels in § 6.6, x is in {3, 4, 5}. It means the convolution operation is
taking steps in the direction of x as 3 → 4 and 4 → 5. The stride here
is 1, which is the lowest possible.

But if the input size is large, convolving every step in the input
is computationally intensive. In such cases, it could be useful to skip
steps by setting the stride greater than 1. In the above example, a
stride=2 reduces the convolution iterations from 3 (x = {3, 4, 5}) to 2
(x = {3, 5}).

In large inputs, a stride of 2 significantly reduces the computation
time but generally does not affect the accuracy. Despite the benefit,
a larger stride (> 2) is often not used as it can adversely affect the
network’s performance.

� A stride of 2 can help reduce computation when
the input size is large. However, a larger stride

should be avoided.

In TensorFlow, the strides argument is a tuple of size 1, 2, or 3
for Conv1D, Conv2D, and Conv3D, respectively. The tuple specifies the
stride along each spatial axes, e.g., height, or width. If a single number
is given in the argument, the same stride is applied along all the axes.

6.7.3 Dilation

Dilation means to spread out or expand. This is precisely the purpose
of dilation in convolution. When a filter is dilated, it expands by adding
empty spaces between its elements.

An illustration of the dilated semi-circle and angle filters are in Fig-
ure 6.15a and 6.15b. In its implementation, the filters’ kernels are in-
terspersed with 0’s.

A dilated kernel expands its coverage while having fewer elements.
Due to lesser elements, a dilated filter reduces the computation. It is

202 6.7. Convolutional Variants

2(a) Dilated “semi-circle” filter.2
(b) Dilated “angle” filter.

Figure 6.15. Illustration of dilated filters. In dilated convolutional
layers, the filters are expanded by uniformly adding rows and
columns of zero along its spatial axes. This helps in increased
coverage of the input with fewer parameters.

also shown to improve accuracy in certain problems. For example, F.
Yu and Koltun 2016 exemplified the benefits of dilated convolution in
semantic segmentation problem.

However, replacing a regular filter with a dilated filter sometimes
reduces accuracy. To address this, an un-dilated layer and dilated layer
are put together in a network such that the latter is larger than the for-
mer. This approach achieves an increased coverage of the input without
a significant increase in computation.

� A dilated convolution layer used together with a
regular un-dilated convolution layer increases the

coverage of input that typically improves the accuracy
without a significant increase in computation.

The dilation argument in Tensorflow is dilation_rate. Similar to
strides, this is also a tuple of size 1, 2, or 3 for Conv1D, Conv2D, and
Conv3D, respectively, that specifies the dilation along each spatial axes.
And, if a single number is given, the same dilation is applied along all
the axes. Also, note that the term dilation_rate should not be con-
fused to be a float between 0 and 1. Instead, it a positive integer, i.e.,

Chapter 6. Convolutional Neural Networks 203

dilation_rate ∈ I+. The integer denotes the number of zero rows/-
columns interspersed in a kernel.

Besides, dilation should not be confused with stride. Both reduce
computation for large inputs. But a dilated convolutional layer has
expanded filters. On the other hand, increasing stride does not change
the filter size. It only skips some steps.

6.7.4 1x1 Convolution

There is a special and popular convolutional layer that has filters of size
1×1. This means the filter is unlikely to have a pattern to detect in the
input. This is contrary to the filtration purpose of convolutional layers.
Then, what is its purpose?

Its purpose is different from conventional convolutional layers. Con-
ventional convolutions’ purpose is to detect the presence of certain pat-
terns in the input with a filtration-like approach. Unlike them, a 1× 1
convolution’s purpose is only to amalgamate the input channels.

Figure 6.16 illustrates a 1× 1 convolution that aggregates the color
channels of an image to translate it into a grayscale. As shown in the
figure, the 1 × 1 convolution kernel has the same depth, i.e., channels,
as the input. The 1× 1 filter moves systematically with a stride of one
across the input without any padding (dilation is not applicable in a
1× 1 filter) to output a feature map with the same height and width as
the input minus the depth.

A 1× 1 filter does not attempt to learn any pattern. Instead, it is a
linear projection of the input. It significantly reduces the dimension of
the features and, consequently, the parameters in a network. Besides,
some researchers consider a 1×1 convolution as “pooling” of the channels.
It is because a pooling layer does not summarize features along the
channels but a 1× 1 convolution does exactly that.

Moreover, while a single 1×1 convolution reduces the features depth
to 1, multiple 1×1 convolution cells in a layer bring different summaries
of the channels. The number of cells can be adjusted to increase or
decrease the resultant feature map depth.

204 6.7. Convolutional Variants

1×1

1/3
1/3

1/3

∗

∗

Figure 6.16. Illustration of an application of a 1× 1 convolution. The
input is a color image with red, blue, and green channels. The
channels are intended to be summarized to reduce the input’s
dimension. A 1× 1 convolution can be used here to transform
the image into a mono-channel grayscale image. For this, a
1× 1 convolutional kernel with a weight parameter 1/3 is taken.
The image and the kernel are expanded here to show the original
channels which get amalgamated into a single channel grayscale
output. In a convolutional layer, the weight parameter is learned
during the network training. A layer can have multiple 1× 1
convolution cells. Each cell will yield a new transformed
channel, e.g., different color schemes in images such as gray,
sepia, chrome, vivid, etc. A 1× 1 convolutional layer can, thus,
be used to increase or reduce the channels.

Chapter 6. Convolutional Neural Networks 205

� A 1×1 convolutional layer does not look for shape
or object patterns. Instead, its purpose is to amal-

gamate the signals in the input channels. It can be imag-
ined as the “pooling” of channels.

1× 1 convolution plays a critical role in constructing deep networks
where the feature maps have to be modulated at different stages. It
was initially investigated in Lin, Q. Chen, and Yan 2013. Afterward,
Szegedy et al. 2015; He et al. 2016 used them to develop notably deep
networks.

6.8 Convolutional Network

6.8.1 Structure

This section exemplifies the structure of a convolutional network. Fig-
ure 6.17 illustrates an elementary convolutional network. The compo-
nents of the network are as follows,

• Grid-like input. Convolutional layers take grid-like inputs. The
input in the figure is like an image, i.e., it has two axes and three
channels each for blue, red, and green.

• Convolutional layer. A layer comprises filters. A filter is made
up of kernels. It has one kernel for each input channel. The size of
a layer is essentially the number of filters in it which is a network
configuration. Here, five illustrative filters, viz., diagonal stripes,
horizontal stripes, diamond grid, shingles, and waves, are shown
in the convolutional layer. Each of them has blue, red, and green
channels to match the input.

• Convolutional output. A filter sweeps the input to tell the
presence/absence of a pattern and its location in the input. In the
figure, the outputs corresponding to each filter are shown with a
black square of the same pattern. It must be noted that the colored
channels in the input are absent in the layer’s output. This is

206 6.8. Convolutional Network

P
O
O
L
I
N
G

⋮

Two-axes input
with three
channels: blue,
red, and green.

Convolution layer
of size 5, i.e., it has
five filters.

Convolution layer
output having five
channels.

Pooling layer
output.

Pooling
layer.

Flatten(). Dense (output)
layer.

!𝑦

Figure 6.17. Convolutional networks have a grid-like input. In this
illustration, the input is like an image, i.e., it has two axes and
three channels for blue, red, and green. The convolutional layer
has five illustrative filters, viz., diagonal stripes, horizontal
stripes, diamond grid, shingles, and waves. Each filter has as
many channels as the input which are blue, red, and green here.
The convolutional output from a filter aggregates the
information from all the channels. As a result, the input’s
original channels are relinquished. Instead, each filter’s output
becomes a channel for the next layer. The output from each
filter is, therefore, shown in a respective same pattern black
square as a channel. They form a feature map with five
channels which is the input to the pooling layer. This layer
summarizes and reduces the spatial features but maintains the
channel structure. More sets of (higher level) convolutional and
pooling layers can be stacked with a caution that sufficient
features are passed on after every layer. Towards the end of the
network, the output of the convolutional/pooling layer is
flattened and followed by a dense output layer.

Chapter 6. Convolutional Neural Networks 207

because during the convolution operation the information across
the channels is aggregated. Consequently, the original channels
in the input are relinquished. Instead, the output of each filter
becomes a channel for the next layer.

• Pooling layer. A convolutional layer is conjoined with a pool-
ing layer. In some texts, e.g., Goodfellow, Bengio, and Courville
2016, a convolutional layer is defined as a combination of a con-
volutional and pooling layer. The pooling layer summarizes the
spatial features, which are the horizontal and vertical axes in the
figure.

• Pooling output. Pooling reduces the sizes of the spatial axes due
to a data summarization along the axes. This makes the network
invariant to minor translations and, consequently, robust to noisy
inputs. It is important to note that the pooling occurs only along
the spatial axes. Therefore, the number of channels remains intact.

• Flatten. The feature map thus far is still in a grid-like structure.
The flatten operation vectorizes the grid feature map. This is
necessary before passing the feature map on to a dense output
layer.

• Dense (output) layer. Ultimately, a dense layer maps the con-
volution derived features with the response.

The purpose of a convolutional network is to automatically learn
predictive filters from data. Multiple layers are often stacked to learn
from low- to high-level features. For instance, a face recognition network
could learn the edges of a face in the lower layers and the shape of eyes
in the higher layers.

� The purpose of a convolutional network is to au-
tomatically learn the filters.

208 6.8. Convolutional Network

6.8.2 Conv1D, Conv2D, and Conv3D

In Tensorflow, the convolutional layer can be chosen from Conv1D, Conv2D,
and Conv3D. The three types of layers are designed for inputs with one,
two, or three spatial axes, respectively. This section explains when each
of them is applicable and their interchangeability.

Convolutional networks work with grid-like inputs. Such inputs are
categorized based on their axes and channels. Table 6.1 summarizes
them for a few grid-like data, viz. time series, image, and video.

A (univariate) time series has a single spatial axis corresponding
to the time. If it is multivariate then the features make the channels.
Irrespective of the number of channels, a time series is modeled with
Conv1D as it has only one spatial dimension.

…

Axis-1 (Spatial-dim1), time

Ch
an

ne
ls

(a) Input shape for Conv1D.

…
Axis-2 (Spatial-dim2), width

Ch
an

ne
ls

Axis-2 (Spatial-
dim2), height

(b) Input shape for Conv2D.

…
Ch

an
ne

ls

…

Axis-2 (Spatial-
dim2), width

…

…

Axis-3 (Spatial-dim3), time

Axis-1 (Spatial-
dim1), height

(c) Input shape for Conv3D.

Figure 6.18. Conv layer for different types of input shapes.

Images, on the other hand, have two spatial axes along their height
and width. Videos have an additional spatial axis oxymoronically along
time. Conv2D and Conv3D are, therefore, applicable to them, respec-
tively. The channels in them are the palette colors such as red, green,
and blue.

Chapter 6. Convolutional Neural Networks 209

Table 6.1. Axes and channels in grid-like inputs to convolutional net-
works.

Time series Image Video
Axis-1
(Spatial dim1) Time Height Height

Axis-2
(Spatial dim2) - Width Width

Axis-3
(Spatial dim3) - - Time

Channels
Features (one
in univariate
time series)

Colors Colors

Conv’x’d Conv1D Conv2D Conv3D

Input Shape
(samples,
time,
features)

(samples,
height,
width,
colors)

(samples,
height,
width,
time,
colors)

kernel_size3

An integer,
t, specifying
the time
window

An integer
tuple, (h, w),
specifying
the height
and width
window.

An integer
tuple,
(h, w, t),
specifying
the height,
width,
and time
window.

Kernel shape (t, features) (h, w, colors) (h, w, t, col-
ors)

210 6.8. Convolutional Network

� Conv1D, Conv2D, and Conv3D are used to model
inputs with one, two, and three spatial axes, re-

spectively.

The Conv‘x’D selection is independent of the channels. There could
be any number of channels of arbitrary features. Regardless, the Conv‘x’D
is chosen based on the number of spatial axes only.

Inputs to Conv1D, Conv2D, and Conv3D are structured as N-D ten-
sors of shape (samples, time_steps, features), (samples, height,
width, channels), and (samples, height, width, channels), respec-
tively. The first axis is reserved for samples for almost every layer in
TensorFlow. The shape of a sample is defined by the rest of the axes
(shown in Figure 6.18a-6.18c). Among them, the last axis corresponds
to the channels (by default) in any of the Conv‘x’D layers4 and the rest
are the spatial axes.

The kernel_size argument in Conv‘x’D determines the spatial di-
mension of the convolution kernel. The argument is a tuple of integers.
Each element of the tuple corresponds to the kernel’s size along the re-
spective spatial dimension. The depth of the kernel is fixed and equal
to the number of channels. The depth is, therefore, not included in the
argument.

� Conv layers are agnostic to the number of chan-
nels. They differ only by the shape of the input’s

spatial axes.

Besides, one might observe that a Conv2D can be used to model the
inputs of Conv1D by appropriately reshaping the samples. For exam-
ple, a time series can be reshaped as (samples, time, 1, features).
Similarly, a Conv3D can be used to model the inputs of both Conv1D and
Conv2D by reshaping a time series as (samples, 1, 1, time, features)

4The position of the channel is set with data_format argument. It is
channels_last (default) or channels_first.

Chapter 6. Convolutional Neural Networks 211

and an image as (samples, height, width, 1, colors)5. Essentially,
due to their interchangeability, a universal Conv3D layer could be made
to work with a variety of inputs. The three variants are, still, provided
in TensorFlow for convenience.

Additionally, it is worth to learn that a network can be formulated
differently by moving the features on the channels to a spatial axis.
For example, a multivariate time series can be modeled like an image
with a Conv2D by reshaping it from (samples, time, features) to
(samples, time, features, 1). This approach is shown in § 6.10.
And, similarly, the channels of an image can be put on a spatial axis as
(sample, height, width, colors, 1) and modeled with a Conv3D.

In short, the input types and the convolutional layer variants are
not rigidly interlocked. Instead, it is upon the practitioner to formulate
the problem as appropriate.

� The choice of Conv1D, Conv2D, and Conv3D are
not tightly coupled with specific input types. They

can be used interchangeably based on a problem.

6.8.3 Convolution Layer Output Size

It is essential to understand the size of a convolutional layer output in a
different scenario to construct a network. A typical un-padded convolu-
tional layer, for example, downsizes the feature map. Constructing deep
networks without keeping the track of output downsizing may result in
an ineffective network.

The output size of a filter in a convolutional layer is,

o =

⌊
i− k − (k − 1)(d− 1) + 2p

s

⌋
+ 1 (6.10)

where,

5In such a restructuring, the kernel_size along the unit axes is also made 1.

212 6.8. Convolutional Network

• i Size of input’s spatial axes,
• k Kernel size,
• s Stride size,
• d Dilation rate,
• p Padding size,
and, each parameter in the equation is a tuple of the same size as

the number of spatial axes in the input. For instance, in the convolution
example between G and Fs,a in § 6.6,

• i = (5, 5), size of the spatial axes of input G,
• k = (3, 5), size of the kernel F·,
• s = (1, 1), the default single stride,
• d = (1, 1), the default no dilation, and
• p = (0, 0), the default no padding.

The output size is computed as o =
⌊

(5,5)−(3,5)−((3,5)−1)((1,1)−1)+2∗(0,0)
(1,1)

⌋
+

1 = (3, 1).

Furthermore, a convolutional layer with l filters has an (o, l) tensor as
the output where l corresponds to the channels. Extending the example
in § 6.6, suppose a convolutional layer has the semi-circle, Fs, and angle,
Fa, filters. The output will then be a (3, 1, 2) tensor where the last tuple
element 2 correspond to channels—one from each filter.

It is worth noting that the original channels in the input are not
included in the output size computation. As mentioned in the previous
§ 6.8.1, the convolution operation aggregates the channels due to which
the original channels are lost in the output. This also implies that a
network construction by tracking the output downsizing is unrelated to
the input channels.

6.8.4 Pooling Layer Output Size

The output size of the pooling layer is governed by similar parameters
as the convolutional. Analogous to the kernel size, a pooling layer has
pool size. Strides and padding are also choices in pooling. Dilation,
however, is not available in pooling.

Chapter 6. Convolutional Neural Networks 213

Based on them, the pooling output size for a channel is,

o =

⌊
i− k + 2p

s

⌋
+ 1 (6.11)

where,
• i Size of input’s spatial axes,
• k Pool size,
• s Stride size, and
• p Padding size.

If there are l channels, the pooling output is an (o, l) tensor. Es-
sentially, the pooling happens independently for every channel, i.e., the
values in the channels are not merged.

Moreover, note that “same” padding does not result in downsam-
pling. Still, the pooling operation brings the invariance attribute to the
network and, hence, useful.

6.8.5 Parameters

The number of parameters in a Conv layer can be simply expressed as
the ((filter volume) + 1) * (number of filters).

A filter has weight parameters equal to its volume plus a bias pa-
rameter. The volume of a filter is the product of the spatial axes (kernel
size, k) and the depth (the number of channels, c, in the input). For ex-
ample, in § 6.6 the kernel shape k is (3, 5) and number of channels c for
the grayscale input is 1. Therefore, the filter volume is 3 ∗ 5 ∗ 1 = 15. If
the input was in RGB, i.e., c = 3, the filter volume becomes 3∗5∗3 = 45.

The number of filters is equal to the parameter filters set in the
definition of a Conv layer.

Unlike the Conv layer, most of the pooling layers such as MaxPool and
AveragePooling in TensorFlow does not have any trainable parameters.

214 6.9. Multivariate Time Series Modeling

6.9 Multivariate Time Series Modeling

The rare event prediction problem explored in this book is a multivariate
time series. This section proceeds with modeling it with convolutional
networks.

6.9.1 Convolution on Time Series

Before modeling, the filters and convolution operation in the context of
multivariate time series is briefly explained.

A multivariate time series structure is illustrated in Figure 6.19a.
The figure shows an illustrative example in which the x-, y-, and z-axis,
show the time, the features, and the features’ values, respectively6.

The time series in the figure has three features with rectangular-,
upward pulse-, and downward pulse-like movements. The features are
placed along the depth which makes them the channels. A filter for such
a time series is shown in Figure 6.19b.

The convolution operation between the filter and the time series is
shown in Figure 6.20. As time series has only one spatial axis along time,
the convolution sweeps it over time. At each stride, a similarity between
the filter and a section of time series is emitted (not shown in the figure).
The convolution variants, viz. padding, stride (>1), dilation, and 1× 1,
work similarly along the time axis.

6.9.2 Imports and Data Preparation

Like always, the modeling starts with importing the required libraries,
including the user-defined ones.

Listing 6.1. Imports for the convolutional network.
1 import pandas as pd
2 import numpy as np
3

6The z-axis with the values should not be confused as a spatial axis as it appears
in images. The axis for values of pixels in an image is hidden for simplicity. It can
be imagined as an additional axis perpendicular to the image.

Chapter 6. Convolutional Neural Networks 215

Time

Feature

Value

(a) Multivariate time-series.

(b) Multivariate time-series filter.

Figure 6.19. An illustrative example of a multivariate time series (top)
and a filter (bottom). The time series has a single spatial axis
along time shown on the x-axis. A univariate time series has a
single channel while the features in a multivariate time series
become its channels shown on the y-axis. The value of the
features with time is shown along the z-axis. This axis should
not be confused as a spatial axis like in an image. A time series
filter with the same number of channels, i.e., features, is shown
in the bottom figure.

216 6.9. Multivariate Time Series Modeling

Time

Feature

Value Convolution

Time

Feature

Value Convolution

⋯

Figure 6.20. Illustration of a convolution operation on a multivariate
time series. Similar to the convolution in images, the filter is
swept across the time series input. Since there is only one
spatial axis along the time, the sweep happens over it. At each
stride, the filter looks for a match between itself and the input.
For example, a complete match is detected as the filter comes
towards the right.

4 import tensorflow as tf
5 from tensorflow.keras import optimizers
6 from tensorflow.keras.models import Model
7 from tensorflow.keras.models import Sequential
8 from tensorflow.keras.layers import Input
9 from tensorflow.keras.layers import Dense
10 from tensorflow.keras.layers import Dropout
11 from tensorflow.keras.layers import Conv1D
12 from tensorflow.keras.layers import Conv2D
13 from tensorflow.keras.layers import MaxPool1D
14 from tensorflow.keras.layers import AveragePooling1D
15 from tensorflow.keras.layers import MaxPool2D
16 from tensorflow.keras.layers import ReLU
17 from tensorflow.keras.layers import Flatten
18 from tensorflow.python.keras import backend as K
19
20 from sklearn.preprocessing import StandardScaler
21 from sklearn.model_selection import train_test_split
22
23 from collections import Counter
24
25 import matplotlib.pyplot as plt
26 import seaborn as sns
27

Chapter 6. Convolutional Neural Networks 217

28 # user -defined libraries
29 import utilities.datapreprocessing as dp
30 import utilities.performancemetrics as pm
31 import utilities.simpleplots as sp
32
33 from numpy.random import seed
34 seed (1)
35
36 SEED = 123 # used to help randomly select the data

points
37 DATA_SPLIT_PCT = 0.2
38
39 from pylab import rcParams
40 rcParams[’figure.figsize ’] = 8, 6
41 plt.rcParams.update ({’font.size’: 22})

The tensor shape of a multivariate time series in a convolutional
network is the same as in an LSTM network. The temporalization pro-
cedure discussed in § 5.4.2 is also applied here. The data preprocessing
steps for converting categorical features to one-hot encoding and curve-
shifting is in Listing 6.2.

Listing 6.2. Data pre-processing.
1 df = pd.read_csv("data/processminer -sheet -break -rare

-event -dataset.csv")
2 df.head(n=5) # visualize the data.
3
4 # Hot encoding
5 hotencoding1 = pd.get_dummies(df[’Grade&Bwt’])
6 hotencoding1 = hotencoding1.add_prefix(’grade_ ’)
7 hotencoding2 = pd.get_dummies(df[’EventPress ’])
8 hotencoding2 = hotencoding2.add_prefix(’eventpress_ ’

)
9
10 df = df.drop([’Grade&Bwt’, ’EventPress ’], axis =1)
11
12 df = pd.concat ([df , hotencoding1 , hotencoding2],

axis =1)
13
14 # Rename response column name for ease of

understanding

218 6.9. Multivariate Time Series Modeling

15 df = df.rename(columns ={’SheetBreak ’: ’y’})
16
17 # Shift the response column y by 2 rows to do a 4-

min ahead prediction.
18 df = dp.curve_shift(df, shift_by =-2)
19
20 # Sort by time and drop the time column.
21 df[’DateTime ’] = pd.to_datetime(df.DateTime)
22 df = df.sort_values(by=’DateTime ’)
23 df = df.drop([’DateTime ’], axis =1)
24
25 # Converts df to numpy array
26 input_X = df.loc[:, df.columns != ’y’]. values
27 input_y = df[’y’]. values

6.9.3 Baseline

As usual, modeling starts with constructing a baseline model. The base-
line models the temporal dependencies up to a lookback of 20, which is
the same as the LSTM models in the previous chapter. The temporal-
ization is done with this lookback in Listing 6.3. The resultant data in
X is a (samples, timesteps, features) array.

Listing 6.3. Data temporalization and split
1 lookback = 20
2 X, y = dp.temporalize(X=input_X ,
3 y=input_y ,
4 lookback=lookback)
5
6 # Divide the data into train , valid , and test
7 X_train , X_test , y_train , y_test =
8 train_test_split(np.array(X),
9 np.array(y),
10 test_size=DATA_SPLIT_PCT ,
11 random_state=SEED)
12 X_train , X_valid , y_train , y_valid =
13 train_test_split(X_train ,
14 y_train ,
15 test_size=DATA_SPLIT_PCT ,
16 random_state=SEED)

Chapter 6. Convolutional Neural Networks 219

17
18 # Scaler using the training data.
19 scaler = StandardScaler ().fit(dp.flatten(X_train))
20
21 X_train_scaled = dp.scale(X_train , scaler)
22 X_valid_scaled = dp.scale(X_valid , scaler)
23 X_test_scaled = dp.scale(X_test , scaler)
24
25 # Axes lengths
26 TIMESTEPS = X_train_scaled.shape [1]
27 N_FEATURES = X_train_scaled.shape [2]

The baseline is a simple network constructed with the Sequential()
framework in Listing 6.9.3.

Listing 6.4. Baseline convolutional neural network
1 model = Sequential ()
2 model.add(Input(shape =(TIMESTEPS ,
3 N_FEATURES),
4 name=’input’))
5 model.add(Conv1D(filters =16,
6 kernel_size =4,
7 activation=’relu’,
8 padding=’valid ’))
9 model.add(MaxPool1D(pool_size=4,
10 padding=’valid ’))
11 model.add(Flatten ())
12 model.add(Dense(units =16,
13 activation=’relu’))
14 model.add(Dense(units=1,
15 activation=’sigmoid ’,
16 name=’output ’))
17 model.summary ()

The network’s components are as follows.

Input layer

The shape of an input sample is defined in the Input() layer. An
input sample here is a (timesteps, n_features) tensor due to the
temporalization during the data processing.

220 6.9. Multivariate Time Series Modeling

Figure 6.21. Baseline convolutional network summary.

Conv layer

The network begins with a Conv1D layer. The kernel_size is set as 4
and the number of filters is 16. Therefore, there will be 16 convolu-
tional filters each being a (4, n_features) tensor.

Here n_features=69 and, therefore, each filter will have 4 × 69
weights plus 1 bias parameters. Combining this for all the 16 filters,
the convolutional layer contains (4 ∗ 69 + 1) ∗ 16 = 4, 432 trainable pa-
rameters.

The output size of the layer along the spatial axis can be computed
using Equation 6.10 as o =

⌊
(20)−(4)−((3)−1)((1)−1)+2∗(0)

(1)

⌋
+ 1 = (17).

The output size along the channels will be equal to the number of fil-
ters in the convolutional layer, i.e., 16. Therefore, the output shape is
(None, 17, 16) as shown in the model summary in Figure 6.21. Here,
None corresponds to the batch_size.

The number of parameters is computed as per § 6.8.5 as (4∗69+1)∗
16 = 4, 432, where 4 is the kernel size and 69 is the number of channels,
and 16 is the number of filters in the layer.

The activation in the Conv layer is set to relu. Similar to other
networks, relu is a good choice in a baseline model.

Chapter 6. Convolutional Neural Networks 221

Pooling layer

Max-pooling is one of the most popular pooling. The reason behind its
popularity is explained in 6.12.1. MaxPool, thus, becomes an obvious
choice for the baseline.

Similar to convolutional layers, a pooling layer is chosen from MaxPool1D,
MaxPool2D, and MaxPool3D based on the number of spatial axes in its
input. Here the output of the Conv layer which is the input to the
MaxPool layer has one spatial axis and, therefore, MaxPool1D is used.

The pool_size is set to 4 which results in an output of size
o =

⌊
(17)−(4)+2∗(0)

(4)

⌋
+ 1 = (4) along its (single) spatial axis. Also, the

output will have the same number of channels as the number of filters
in its input, i.e., 16. Therefore, as also shown in Figure 6.21, the output
shape is (None, 4, 16) where None corresponds to the batch_size.

Besides, the pooling layer has no trainable parameters. A few pool-
ing methods such as in Kobayashi 2019b have trainable parameters
which can be considered for model improvement.

Flatten layer

This is merely an operational layer. It, naturally, has no trainable pa-
rameters. The flattening layer is required to create a feature vector out
of the multi-axes tensor outputted from the MaxPool layer.

Dense layer

A penultimate Dense layer with 16 units is added to reduce the dimen-
sion of the features from 64 to 16 before passing them on to the final
output dense layer. Since here we have a binary classification problem,
the output dense layer requires a single unit with sigmoid activation.

Model fitting and results

The model fit is performed similarly to the other networks discussed in
the previous chapters.

222 6.9. Multivariate Time Series Modeling

1 # Model fitting
2 model.compile(optimizer=’adam’,
3 loss=’binary_crossentropy ’,
4 metrics =[
5 ’accuracy ’,
6 tf.keras.metrics.Recall (),
7 pm.F1Score (),
8 pm.FalsePositiveRate ()
9])
10 history = model.fit(x=X_train_scaled ,
11 y=y_train ,
12 batch_size =128,
13 epochs =150,
14 validation_data =(X_valid_scaled ,

y_valid),
15 verbose =0).history

0 20 40 60 80 100 120 140
Epoch

0.00.0

0.10.10.10.1

lo
ss

Train loss
Valid loss

(a) Loss.

0 20 40 60 80 100 120 140
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

f1
_s

co
re

Train f1_score
Valid f1_score

(b) F1-score.

0 20 40 60 80 100 120 140
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

va
lu

e

Train Recall
Valid Recall
Train FPR
Valid FPR

(c) Recall and FPR.

Figure 6.22. Baseline convolutional network results.

The results are summarized in Figure 6.22a-6.22c. The validation

Chapter 6. Convolutional Neural Networks 223

recall and FPR are close to 0.4 and 0, respectively. Also, f1-score is
close to 0.4. These performance results from the baseline convolutional
network are already close to the best output in the previous chapter
with LSTM models.

It is important to remind ourselves that the models developed here
are not for comparison because the performances differ with problems.
Instead, the essential finding here is that a convolutional network can
work as well or possibly even better than a recurrent neural network
(e.g., LSTM) in some temporal data. This means convolutional networks
are capable of learning temporal patterns by treating them as spatial.

� Convolutional networks have a strong potential to
learn temporal patterns. They perform even better

than recurrent neural networks in some problems.

6.9.4 Learn Longer-term Dependencies

Recurrent neural networks such as LSTMs are intended to learn long-
term dependencies. The amount of the long-term dependencies can be
increased by making the lookback higher during the data temporaliza-
tion.

In principle, LSTMs should work with any short or long lookback
because the gradient of the long-term dependencies cannot vanish (see
§ 5.2.8 in the previous chapter). But, in practice, it does not work
because the learned dependencies can get smeared.

This phenomenon was reported in Jozefowicz, Zaremba, and Sutskever
2015. The smearing occurs because LSTMs and similar recurrent neural
networks fuse the state information causing them to become confounded
in the long-term.

A convolutional network, on the other hand, works like a filtration
process with small filters. These filters sweep the input. They are
agnostic to the input’s size. That means, from a network’s accuracy
standpoint the filtration with convolution is largely indifferent to the
lookback.

224 6.9. Multivariate Time Series Modeling

A network is constructed following this principle in Listing 6.5 where
the lookback=240 as opposed to 20 in the baseline.

Listing 6.5. Convolutional network with longer-term dependencies
1 # Data Temporalize
2 lookback = 240 # Value 20 in baseline. Increased to

40 and 240 to learn longer -term dependencies.
3 X, y = dp.temporalize(X=input_X ,
4 y=input_y ,
5 lookback=lookback)
6 X_train , X_test , y_train , y_test =
7 train_test_split(np.array(X),
8 np.array(y),
9 test_size=DATA_SPLIT_PCT ,
10 random_state=SEED)
11 X_train , X_valid , y_train , y_valid =
12 train_test_split(X_train ,
13 y_train ,
14 test_size=DATA_SPLIT_PCT ,
15 random_state=SEED)
16 # Initialize a scaler using the training data.
17 scaler = StandardScaler ().fit(dp.flatten(X_train))
18
19 X_train_scaled = dp.scale(X_train , scaler)
20 X_valid_scaled = dp.scale(X_valid , scaler)
21 X_test_scaled = dp.scale(X_test , scaler)
22
23 TIMESTEPS = X_train_scaled.shape [1]
24 N_FEATURES = X_train_scaled.shape [2]
25
26 # Network construction
27 model = Sequential ()
28 model.add(Input(shape =(TIMESTEPS ,
29 N_FEATURES),
30 name=’input’))
31 model.add(Conv1D(filters =16,
32 kernel_size =4,
33 activation=’relu’))
34 model.add(Dropout (0.5))
35 model.add(MaxPool1D(pool_size =4))
36 model.add(Flatten ())
37 model.add(Dense(units =16,

Chapter 6. Convolutional Neural Networks 225

38 activation=’relu’))
39 model.add(Dense(units=1,
40 activation=’sigmoid ’,
41 name=’output ’))
42 model.summary ()
43
44 model.compile(optimizer=’adam’,
45 loss=’binary_crossentropy ’,
46 metrics =[
47 ’accuracy ’,
48 tf.keras.metrics.Recall (),
49 pm.F1Score (),
50 pm.FalsePositiveRate ()
51])
52 history = model.fit(x=X_train_scaled ,
53 y=y_train ,
54 batch_size =128,
55 epochs =150,
56 validation_data =(X_valid_scaled ,
57 y_valid),
58 verbose =0).history

The results are in Figure 6.23a-6.23c. The accuracy performance
increased compared to the baseline. This implies longer-term depen-
dencies exist in the problem.

The presence of longer-term dependencies fits with the fact that the
process settings in manufacturing processes such as paper manufacturing
have lagged effects. For example, the density of pulp going into the
machine impacts the paper strength a few hours later at the other end
of the machine.

� Convolutional networks can capture longer-term
patterns in time series processes.

At this point, a question arises: why do not we make the lookback
even longer? Although a longer lookback is usually better for accu-
rate predictions, it significantly increases the computation because the
convolutional feature map size rises dramatically. The increase in com-
putation with lookback is not specific to convolutional networks. It is

226 6.9. Multivariate Time Series Modeling

0 20 40 60 80 100 120 140
Epoch

0.00.00.0

0.10.10.1

lo
ss

Train loss
Valid loss

(a) Loss.

0 20 40 60 80 100 120 140
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

f1
_s

co
re

Train f1_score
Valid f1_score

(b) F1-score.

0 20 40 60 80 100 120 140
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

va
lu

e

Train Recall
Valid Recall
Train FPR
Valid FPR

(c) Recall and FPR.

Figure 6.23. Results of a convolutional neural network from learning
longer-term dependencies.

Chapter 6. Convolutional Neural Networks 227

#C
ha

nn
els

=1

…

Timesteps as Spatial-dim1

Fe
atu

re
s a

s

Ch
an

ne
ls

Ax
is-

2

Timesteps as Spatial-dim1

Features
as Spatial-
dim2Reshape

Figure 6.24. A reshaped multivariate time series that resembles
structure of an image with a single channel.

a general problem in most deep learning networks.

6.10 Multivariate Time Series Modeled as Im-
age

In the previous § 6.9, convolutional neural networks were constructed
following the conventional approach of placing the temporal axis along
a spatial axis and the multivariate features as channels.

Another approach is placing the features along a second spatial axis.
This can be done by reshaping the input samples from (timesteps,
features) to (timesteps, features, 1) tensors. The reshape is il-
lustrated in Figure 6.24. The reshaped time series appears in the shape
of an image with a single channel. Hence, this approach is termed as
modeling a multivariate time series as an image.

In the reshaped time series sample, the timesteps and features
are the spatial axes with one channel. Due to the two spatial axes, a
convolutional network is constructed with Conv2D.

In the following, first, a Conv2D network equivalent to the baseline
Conv1D network in § 6.9.3 is constructed to show their interchangeability
in § 6.10.1. Thereafter, another network is constructed with Conv2D
which is intended to learn the local temporal and spatial dependencies
in and between the features in § 6.10.2.

228 6.10. Multivariate Time Series Modeled as Image

6.10.1 Conv1D and Conv2D Equivalence

This section shows the equivalence between Conv1D and Conv2D by mod-
eling the multivariate time series like an image.

In Listing 6.6, a convolutional network equivalent to the baseline
network in § 6.9.3 is constructed using Conv2D. At its top, a lambda
function to reshape the original samples is defined. It changes the
X from (samples, timesteps, features) to (samples, timesteps,
features, 1) tensor.

Listing 6.6. A Conv2D network equivalent to the baseline Conv1D net-
work.
1 # Equivalence of conv2d and conv1d
2 def reshape4d(X):
3 return X.reshape ((X.shape [0],
4 X.shape[1],
5 X.shape[2],
6 1))
7
8 model = Sequential ()
9 model.add(Input(shape =(TIMESTEPS ,
10 N_FEATURES ,
11 1),
12 name=’input’))
13 model.add(Conv2D(filters =16,
14 kernel_size =(4, N_FEATURES),
15 activation=’relu’,
16 data_format=’channels_last ’))
17 model.add(MaxPool2D(pool_size =(4, 1)))
18 model.add(Flatten ())
19 model.add(Dense(units =16,
20 activation=’relu’))
21 model.add(Dense(units=1,
22 activation=’sigmoid ’,
23 name=’output ’))
24 model.summary ()

Thereafter, a network with Conv2D is defined. The network is made
equivalent to the Conv1D network by setting the kernel_size in line 14
as (4, n_features). This kernel covers the entire feature axis which

Chapter 6. Convolutional Neural Networks 229

Figure 6.25. Summary of a Conv2D equivalent to the baseline Conv1D
network shows their interchangeability.

makes the network the same as the Conv1D network.

They become the same because the features are the channels in the
Conv1D network. Therefore, the Conv kernel spans all the channels. Set-
ting the Conv2D kernel width equal to the number of features replicated
this behavior. This is also confirmed by comparing the parameters in
each layer shown in the model summary in Figure 6.25 with the baseline
model summary in Figure 6.21. All of them are the same.

The result of the Conv2D network here is not shown as they resemble
the baseline results in § 6.9.3.

The purpose of this section is to show the interchangeability of
Conv1D and Conv2D in constructing convolutional networks. A prac-
titioner can choose between either.

Conv2D networks provide more flexibility. Using it, one can construct
models equivalent to a Conv1D network as well as try other architectures
by treating a multivariate time series as an image. This is shown in the
next section.

6.10.2 Neighborhood Model

A benefit of treating multivariate time series as an image for modeling
is: a network can be constructed to learn the local temporal and spatial
dependencies called a neighborhood model. These models require fewer
convolutional parameters. One such network is developed in Listing 6.7.

230 6.10. Multivariate Time Series Modeled as Image

Listing 6.7. Neighborhood model for multivariate time series
1 def reshape4d(X):
2 return X.reshape ((X.shape [0],
3 X.shape[1],
4 X.shape[2],
5 1))
6
7 # Neighborhood Model
8 model = Sequential ()
9 model.add(Input(shape =(TIMESTEPS ,
10 N_FEATURES ,
11 1),
12 name=’input’))
13 model.add(Conv2D(filters =16,
14 kernel_size =(4, 4),
15 activation=’relu’,
16 data_format=’channels_last ’,
17 name=’Conv2d ’))
18 model.add(MaxPool2D(pool_size =(4, 4),
19 name=’MaxPool ’))
20 model.add(Flatten(name=’Flatten ’))
21 model.add(Dense(units =16,
22 activation=’relu’,
23 name=’Dense’))
24 model.add(Dense(units=1,
25 activation=’sigmoid ’,
26 name=’output ’))
27 model.summary ()

The kernel_size for the convolutional layer is set as (4, 4). As
visually illustrated in Figure 6.26a, the kernel can only learn the local
dependencies within a 4×4 span and, hence, referred to as a neighborhood
model.

Besides, as the reshaped time series has a single channel, the convo-
lutional kernel size becomes (4, 4, 1) as opposed to (4, n_features,
1) in the previous § 6.10.1. Consequently, as shown in Figure 6.26b, the
convolutional parameters reduce significantly.

However, due to the smaller kernel, the convolutional feature map
becomes larger than in the baseline. This causes the penultimate dense
layer parameters to increase.

Chapter 6. Convolutional Neural Networks 231

Timesteps as Spatial-dim1

Features
as Spatial-
dim2

4
4

(a) A 4× 4 kernel. .

(b) Neighborhood model summary.

Figure 6.26. In the top figure, the horizontal and vertical axes are time
(i.e., the temporal dimension) and features (i.e., the spatial
dimension), respectively. The 4× 4 kernel spans both the axes
and learns the local spatio-temporal dependencies. The
constructed convolutional network summary (bottom) shows a
significant reduction in the convolutional layer parameters
compared to the baseline.

232 6.11. Summary Statistics for Pooling

A neighborhood model is expected to perform well if the interacting
features are ordered or grouped, i.e., spatial dependencies are expected
to be local. In such a scenario, it can have a similar performance as the
baseline with fewer convolutional parameters that improve efficiency.

Besides, a neighborhood model also provides the flexibility to span
a longer or the entire time-steps if long-term dependencies need to be
learned. This is, otherwise, difficult if the time series is in its original
shape as in the baseline model.

In sum, modeling a multivariate time series as an image brings more
flexibility to construct efficient networks to learn short or wide spatial
dependencies and short or long temporal dependencies based on the
problem. The conventional modeling approach, on the other hand, only
allows changing the length of the temporal dependencies.

6.11 Summary Statistics for Pooling

The strength of a convolutional network is its ability to simplify the fea-
ture extraction process. In this, pooling plays a critical role by weeding
the extraneous information.

A pooling operation summarizes features into a summary statistic.
It, therefore, relies on the statistic’s efficiency. Whether the statistic
preserves the relevant information or loses them depends on its efficiency.

What is an efficient summary statistic?

A summary statistic is a construct from principles of data reduction
(Casella and Berger 2002). It is defined as,

a summary statistic summarizes a set of observations to pre-
serve the largest amount of information as succinctly as
possible.

An efficient summary statistic is, therefore, one that concisely con-
tains the most information of a sample. For example, the sample mean,
or maximum. Other statistics, such as the sample skewness, or sample

Chapter 6. Convolutional Neural Networks 233

Sufficient Statistic
Contains all the
information about 𝜃
in a sample 𝑋!, … , 𝑋".

Minimal Sufficient Statistic
Contains all the information
about 𝜃 as succinctly as
possible.

Complete Statistic
Spans the entire
sample space.

Ancillary Statistic
Complementary
information in the
sample

Complete Minimal
Sufficient Statistic

Minimum Variance Unbiased
Estimator (MVUE)

𝐸 𝑇 = 𝜃 and
var 𝑇 ≤ var 𝑇′

Maximum Likelihood
Estimator (MLE)

-𝜃 = 𝜑(𝑇)

Summary Statistic for
Pooling

Figure 6.27. A summary statistic for pooling has roots in sufficient,
complete, and ancillary statistics. A statistic that is both
sufficient and complete provides a minimum variance unbiased
estimator (MVUE). An MVUE’s properties make it an efficient
statistic. For some distributions, the maximum likelihood
estimator (MLE), e.g., sample maximum, is an MVUE and,
hence, becomes the best pooling statistic. Moreover, ancillary
statistics, such as sample range, extracts information
complementary to the MLE. They can be used as an additional
pooling statistic (see Appendix J).

234 6.11. Summary Statistics for Pooling

size do not contain as much relevant information and, therefore, not
efficient for pooling.

This section lays out the theory of summary statistics to learn about
efficient statistics for pooling.

“An experimenter might wish to summarize the information
in a sample by determining a few key features of the sam-
ple values. This is usually done by computing (summary)
statistics—functions of the sample.”

–Casella and Berger 2002.

Learning the dependence of pooling on the efficiency of summary
statistics and the theory behind them is rewarding. It provides answers
to questions like,

• Currently, max-pool and average-pool are the most common. Could
there be other equally or more effective pooling statistics?

• Max-pool is found to be robust and, hence, better than others in
most problems. What is the cause of max-pool’s robustness?

• Can more than one pooling statistic be used together? If yes, how
to find the best combination of statistics?

This section goes deeper into the theory of extracting meaningful
features in the pooling layer. In doing so, the above questions are an-
swered. Moreover, the theory behind summary statistics also provides
an understanding of appropriately choosing a single or a set of statistics
for pooling.

� Pooling operation computes a summary statistic
and its efficacy relies on the efficiency of the

statistic.

� An efficient summary statistic is one that contains
the most information in as few values as possible,

e.g., the sample mean and variance.

Chapter 6. Convolutional Neural Networks 235

In the following, summary statistics applicable to pooling from three
categories: (minimal) sufficient statistics, complete statistics, and ancil-
lary statistics are explained. First, a few definitions are given in § 6.11.1.
Then, sufficient statistics are shown to contain all the sample informa-
tion in § 6.11.2. Next, § 6.11.3 shows complete statistics span the en-
tire sample and a complete sufficient statistic is the minimum variance
unbiased statistic (MVUE). It is further shown that a distribution’s
maximum likelihood estimator (MLE), e.g., average and maximum, is
complete, sufficient, and MVUE.

This means, MLEs span the entire sample, contains all the informa-
tion as succinctly as possible and is efficient. Hence, they make the best
pooling statistic. Moreover, ancillary statistics such as sample range are
shown to have complementary information in § 6.11.4 which can improve
a network if used as an additional pooling statistic.

The findings in this section are used later in § 6.12 and 6.13 to
uncover discoveries such as the reason behind max-pool’s superiority,
the effect of nonlinear activation on pooling, and the MLEs of common
distributions for pooling.

6.11.1 Definitions

The feature map outputted by a convolutional layer is the input to a
pooling layer. The feature map is a random variable X = {X1, . . . , Xn}
where n is the feature map size7.

An observation of the random variable is denoted as x = {x1, . . . , xn}.
Describing properties of random variables is beyond the scope of this
book but it suffices to know that their true underlying distribution and
parameters are unknown8.

The distribution function, i.e., the pdf or pmf 9, for the random
variableX is denoted as f . The distribution has an underlying unknown
parameter θ. The θ characterizes the observed x and, therefore, should

7The variables are denoted in block letters to denote they are random variables.
8Refer to Chapter 5 in Casella and Berger 2002 to learn the properties of random

variables.
9Pdf or pmf refers to probability density function or probability mass function for

continuous or discrete distributions, respectively.

236 6.11. Summary Statistics for Pooling

be estimated.

A summary statistic of f(X) is an estimate of θ. The statistic is a
function of the random variable denoted as T (X) and computed from
the sample observations as T (x). The sample mean, median, maximum,
standard deviation, etc. are examples of the function T .

The goal is to determine T ’s that contain the most information of
the feature map, achieve the most data reduction, and are the most
efficient. These T ’s are the best choice for pooling in convolutional
networks.

6.11.2 (Minimal) Sufficient Statistics

“A sufficient statistic for a distribution parameter θ is a
statistic that, in a certain sense, captures all the informa-
tion about θ contained in the sample.”

–Casella and Berger 2002.

The concept of sufficient statistics lays down the foundation of data
reduction by summary statistics. It is formally defined as follows.

Definition 1. Sufficient Statistic. A statistic T (X) is a sufficient
statistic for θ if the sample conditional distribution f(X|T (X)) does not
depend on θ.

The definition can be interpreted as the conditional distribution of
X given T (X), i.e., f(X|T (X)), is independent of θ. This implies
that in presence of the statistic T (X) any remaining information in the
underlying parameter θ is not required.

� A sufficient statistic can replace the distribution
parameter θ.

It is possible only if T (X) contains all the information about θ avail-
able in X. Therefore, T (X) becomes a sufficient statistic to represent
the sample in place of θ.

For example,

Chapter 6. Convolutional Neural Networks 237

• Mean. The sample mean, T (X) = X̄ =
∑
iXi
n , is a sufficient

statistic for a sample from a normal or exponential distribution.

• Maximum. The sample maximum, T (X) = X(n), where X(n) =
maxiXi, i = 1, . . . , n is the n-th order statistic10, is a sufficient
statistic in a (truncated) uniform distribution or approximately
in a Weibull distribution if its shape parameter is large.

The average-pool (AvgPool) and max-pool (MaxPool) indirectly orig-
inated from here. They are commonly used pooling methods. Between
them, MaxPool is more popular. But, why? It is answered shortly in
§ 6.12.1. Before getting there, summary statistics are explored in the
context of pooling.

� Mean and maximum are sufficient statistics which
indirectly led to the origin of AvgPool and

MaxPool.

The sufficiency of a statistic is proved using the Factorization The-
orem.

Theorem 1. Factorization Theorem. A statistic T (X) is sufficient
if and only if functions g(t|θ) and h(x) can be found such that f(x|θ) =
g(T (x)|θ)h(x).

The proofs for the sufficiency of the sample mean and maximum
for normal and uniform distributions, respectively, are in Casella and
Berger 2002 Chapter 6. However, it is worthwhile to look at sufficient
statistics for a normal distribution to realize there are multiple sufficient
statistics for a distribution.

Proposition 1. If X1, . . . , Xn are iid normal distributed N(µ, σ2), the
sample mean x̄ =

∑n
i xi
n and sample variance s2 =

∑n
i (xi−x̄)2

(n−1) are the
sufficient statistics for µ and σ2, respectively.

Proof. The parameters for a normal distribution are θ = (µ, σ2). The
joint pdf of the sample X = X1, . . . , Xn is,

10An order statistic denoted as X(i) is the i-th largest observation in a sample.
Therefore, X(n) is the maximum of a sample.

238 6.11. Summary Statistics for Pooling

f(x|µ, σ2) =

n∏
i

(2πσ2)−1/2 exp
(
− (xi − µ)2/(2σ2)

)
= (2πσ2)−n/2 exp

(
−

n∑
i

(xi − µ)2/(2σ2)
)

(6.12)

The pdf depends on the sample x through the two statistics T1(x) =
x̄ and T2(x) = s2.

Thus, using the Factorization Theorem we can define h(x) = 1 and

g(t|θ) = g(t1, t2|µ, σ2)

= (2πσ2)−n/2 exp
(
−
(
n(t1 − µ)2 + (n− 1)t2

)
/(2σ2)

)
We can now express the pdf as

f(x|µ, σ2) = g(T1(x), T2(x)|µ, σ2)h(x).

Hence, by Factorization Theorem, T (X) = (T1(X), T2(X)) = (X̄, S2)
is a sufficient statistic for (µ, σ2) in this normal model.

Proposition 1 shows that a sample from normal distribution has more
than one sufficient statistic, x̄, and s2. Similarly, a uniform distribution
has the sample maximum maxi xi and minimum mini xi as its sufficient
statistics.

This tells that sufficient statistics are not unique in a distribution.
There can be many. In fact, the entire ordered sample T (X) = X =
(X(1), . . . , X(n)) is also a sufficient statistic.

Of course T (X) = X is not much of a data reduction. But, out of
the several sufficient statistics, which is better than the other?

The answer lies in the defined purpose of a summary statistic. The
purpose is to achieve as much data reduction as possible without loss of
information about the parameter θ.

Chapter 6. Convolutional Neural Networks 239

Therefore, a sufficient statistic that achieves the most data reduction
while retaining all the information about θ is preferable. Such a statistic
is formally called a minimal sufficient statistic.

Definition 2. Minimal Sufficiency. A sufficient statistic T (X) is
called a minimal sufficient statistic if for any other sufficient statistic
T ′(X), T (X) is a function of T ′(X), i.e., T (X) = f(T ′(X)) for any
X ∈ X .

This can be interpreted as if any sufficient statistic T ′(X) can be
reduced to T (X), it means T (X) provides more data reduction with-
out losing information. For example, T (X) = maxiXi and T ′(X) =
X1, . . . , Xn are sufficient statistics where T (X) = maxiXi = maxT ′(X).

Thus, T (X) has the information of θ more succinctly than any other
T ′(X). And, therefore, T (X) becomes minimally sufficient.

Mathematically, minimal sufficiency can be proved using the follow-
ing theorem.

Theorem 2. Suppose there exists a statistic T (x) such that for every
two samples x and y the ratio of their pdfs f(x|θ)

f(y|θ) is a constant indepen-
dent of θ if and only if T (x) = T (y). Then T (X) is a minimal sufficient
statistic for θ.

Using the theorem, the minimal sufficient statistics for X ∼ Normal
and X ∼ Uniform are shown in the following propositions.

Proposition 2. The sample mean x̄ =
∑n
i xi
n and sample variance

s2 =
∑n
i (xi−x̄)2

(n−1) are the minimal sufficient statistics for µ and σ2, re-
spectively, if X1, . . . , Xn are iid normal N(µ, σ2).

Proof. Suppose x and y are two samples, and their sample mean and
variances are (x̄, sx2) and (ȳ, sy2), respectively.

Using the pdf expression in Equation 6.12, the ratio of pdfs of x and
y is,

240 6.11. Summary Statistics for Pooling

f(x|µ, σ2)

f(y|µ, σ2)
=

(2πσ2)−n/2 exp
(
−
(
n(x̄− µ)2 + (n− 1)s

x2
)
/(2σ2)

)
(2πσ2)−n/2 exp

(
−
(
n(ȳ − µ)2 + (n− 1)s

y2
)
/(2σ2)

)
= exp

((
− n(x̄2 − ȳ2) + 2nµ(x̄− ȳ)− (n− 1)(sx2−s

y2)

)
/(2σ2)

).
The ratio is a constant, i.e., independent of µ and σ, if and only if

x̄ = ȳ and sx2=sy2
. Thus, by Theorem 2, ((̄X), S2) is minimal sufficient

statistic for (µ, σ2).

Proposition 3. The sample maximum maxiXi and minimum miniXi

are the minimal sufficient statistics for θ if X1, . . . , Xn are iid uniform
in the interval (−θ, θ), and −∞ < θ <∞.

Proof. The joint pdf of X from U(−θ, θ) is,

f(x|θ) =

n∏
i

1

2θ
1(|xi| < θ)

=
1

(2θ)n
1(max

i
xi < θ) · 1(min

i
xi > −θ)

Therefore, a ratio of pdfs of two samples x and y is,

f(x|θ)
f(y|θ)

=
1(maxi xi < θ) · 1(mini xi > −θ)
1(maxi yi < θ) · 1(mini yi > −θ)

The ratio is a constant independent of θ if and only if maxi xi =
maxi yi and mini xi = mini yi.

Therefore, by Theorem 2, T (X) = (maxiXi,miniXi) is a minimal
sufficient statistic for θ.

Chapter 6. Convolutional Neural Networks 241

In sum, sufficient statistics provide all information about a sample.
However, there are many sufficient statistics and most of them do not
result in data reduction. A minimal sufficient statistic, on the other
hand, preserves the information and provides as much data reduction
as possible. Therefore, among the several choices of sufficient statistics,
minimal sufficient statistic(s) should be taken for pooling.

� A minimal sufficient statistic such as mean and
maximum has all the information about underly-

ing distribution parameter θ present in a feature map as
succinctly as possible.

Moreover, any one-to-one mapping of a minimal sufficient statistic is
also a minimal sufficient statistic. This is important knowledge. Based
on this, a pooling statistic can be scaled to stabilize a network without
affecting the statistic’s performance. For example, one should be pooling
with

∑
iXi/n and

√∑
i(Xi − X̄)2/n instead of

∑
iXi and

∑
i(Xi −

X̄)2/n, respectively.

Identifying the best one-to-one mapping is, however, not always
straightforward. The approach to finding the best-mapped statistic is
formalized by connecting minimal sufficient statistics with the maximum
likelihood estimator (MLE) through the theory of complete statistics in
the next section.

6.11.3 Complete Statistics

The many choices with minimal sufficient statistics sometimes confuse a
selection. This section introduces complete statistics which narrows the
pooling statistic choice to only the maximum likelihood estimator
of the feature map distribution.

A complete statistic is a bridge between minimal sufficient statistics
and MLEs. MLEs derived from complete minimal statistics have the
essential attributes of unbiasedness and minimum variance along with
the minimality and completeness properties. MLEs, therefore, become
the natural choice for pooling. Thereby, removing most of the ambiguity

242 6.11. Summary Statistics for Pooling

around pooling statistic selection.

In the following, these attributes and the path that leads to the
relationship between complete minimal statistics and the MLE is laid
out.

Definition 3. Completeness. Let f(t|θ) be a family of pdfs or pmfs
for a statistic T (X). The family of probability distributions is called
complete if for every measurable, real-valued function g, Eθ(g(T)) = 0
for all θ ∈ Ω implies g(T) = 0 with respect to θ, i.e., Pθ(g(T) = 0) = 1
for all θ. The statistic T is boundedly complete if g is bounded.

In simple words, it means a probability distribution is complete
if the probability of a statistic T (X) from an observed sample X =
X1, . . . , Xn in the distribution is always non-zero.

This is clearer by considering a discrete case. In this case, complete-
ness means Eθ(g(T)) =

∑
g(T)Pθ(T = t) = 0 implies g(T) = 0 because

by definition Pθ(T = t) is non-zero.

For example, suppose X1, . . . , Xn is observed from a normal dis-
tribution N(µ, 1), and there is a statistic T (X) =

∑
Xi. Then, the

Pµ(T (X) = 0) is not equal to 0 for all µ. Therefore, Eµ(g(T)) =∫
g(T)Pµ(T) = 0 implies g(T) = 0 for all µ. Therefore, T =

∑
Xi is

complete.

This is an important property because it confirms that a statistic T ,
if complete, will span the whole sample space. Simply put, the statistic
will contain some information from every observed sample Xi of the
distribution for any parameter θ. And, therefore, the statistic is called
complete.

� A complete statistic contains some information
about every observation from a distribution.

The importance of the completeness property is understood better
by differentiating it with a sufficient statistic.

A minimal sufficient statistic contains all the information about θ,
it does not necessarily span the whole sample space.

For example, supposeX1, . . . , Xn is iid Uniform(−θ, θ) then T (X) =

Chapter 6. Convolutional Neural Networks 243

(X(1), X(n)), where X(1) = miniXi and X(n) = maxiXi is a sufficient
statistic. But it is not complete because E(X(n) − X(1)) = c, where
c is a constant independent of θ. Therefore, we can define g(T) =
X(n) −X(1) − c but E(X(n) −X(1) − c) = 0 does not necessarily imply
X(n) −X(1) − c is always 0 because E(X(n) −X(1)) 6= c for θ′ 6= θ.

However, for the Uniform distribution, T = X(n) is sufficient and
complete. The proof is in § 6.2 in Casella and Berger 2002. It means
T = X(n) spans the whole sample space.

For a normal distribution N(µ, σ2), T = (
∑

iXi,
∑

iX
2
i) is both

sufficient and complete. Meaning, the T has all the information about
µ, σ2 in a sample X1, . . . , Xn as well as spans the whole sample space.

On a side note, a complete statistic is a misleading term. Instead of
a statistic, completeness is a property of its family of distribution f(t|θ)
(see Casella and Berger 2002 p.285). That means, when a statistic’s
distribution is complete it is called a complete statistic.

Next, the following Theorem 3 and 4 establish a relation between a
complete statistic and a minimal sufficient statistic.

Theorem 3. Bahadur’s theorem11. If T is a boundedly complete
sufficient statistic and finite-dimensional, then it is minimal sufficient.

A boundedly complete statistic in Theorem 3 implies the arbitrary
function g in Definition 3 is bounded. This is a weak condition which
is almost always true. Therefore, a complete sufficient statistic in most
cases are also minimal.

The reverse, however, is always true as stated in Theorem 4.

Theorem 4. Complete Minimal Sufficient Statistic12. If a min-
imal sufficient statistic exists, then any complete sufficient statistic is
also minimal.

A complete minimal sufficient statistic has both completeness and
minimality attributes. The statistic, therefore, spans the entire sam-
ple space, draws information from there, and yields all the information

11See Bahadur 1957.
12See § 6.2 in Casella and Berger 2002 and § 2.1 in Schervish 2012.

244 6.11. Summary Statistics for Pooling

about the feature map distribution parameter θ as succinctly as pos-
sible. These attributes might appear enough, but are they?

They are not. Consider a complete minimal sufficient statistic U =∑
iXi for a normally distributed feature map, N(µ, σ2). Its expected

value is E(U) = nµ, which makes it biased. Using such a statistic in
pooling can also make a convolutional network biased.

The biasedness in T is removed in U =
∑
iXi
n . But there are other

unbiased statistics as well, e.g., U ′ = (X(1) + X(n))/2. Which among
them is better for pooling? The one with a smaller variance.

Compare the variances of U and U ′: var(U) = σ2/n and var(U ′) =
σ2/2. Clearly, var(U) < var(U ′), if n > 2. It means if suppose U ′ is
used in pooling, its value will swing significantly from sample to sample.
This makes the network training and inferencing unstable. U , on the
other hand, will have smaller variations that bring model stability.

Unbiasedness and small variation, therefore, in a pooling statistic
makes a convolutional network efficient. This brings us to another type
of statistic called minimum variance unbiased estimator (MVUE). It is
defined as,

Definition 4. Minimum Variance Unbiased Estimator (MVUE).
A statistic T is a minimum variance unbiased estimator if T is unbi-
ased, i.e., E(T) = θ and var(T) ≤ var(T ′) for all unbiased estimator T ′

and for all θ. Due to unbiasedness and small variance, it is statistically
efficient.

An MVUE is of particular interest due to its efficiency. Using an
MVUE instead of any other statistic is analogous to using scaled input
in a deep learning network. Just like an unscaled input, a biased and/or
high variance pooling statistic makes the network unstable.

Identification of an MVUE provides an efficient statistic. Also, to
our benefit, MVUE is unique. This is vital because the lookout for the
best pooling statistic is over once the MVUE is found for a feature map.
The uniqueness property is given in Theorem 5 below.

Theorem 5. MVUE is unique. If a statistic T is a minimum vari-
ance unbiased estimator of θ then T is unique.

Chapter 6. Convolutional Neural Networks 245

Proof. Suppose T ′ is another MVUE 6= T . Since both T and T ′ are
MVUE, their expectations will be θ, i.e., E(T) = E(T ′) = θ, and the
lowest variance denoted as δ, i.e., var(T) = var(T ′) = δ.

We define an unbiased estimator combining T and T ′ as,

T ∗ =
1

2
(T + T ′).

For T ∗, we have

E(T ∗) = θ

and,

var(T ∗) = var

(
1

2
T +

1

2
T ′
)

=
1

4
var(T) +

1

4
var(T ′) +

1

2
cov(T, T ′)

≤ 1

4
var(T) +

1

4
var(T ′)+

1

2
(var(T)var(T ′))1/2 Cauchy-Schwarz inequality

= δ As, var(T) = var(T ′) = δ.

But if the above inequality is strict, i.e., var(T ∗) < δ, then the
minimality of δ is contradicted. So we must have equality for all θ.

Since the inequality is from Cauchy-Schwarz, we can have equality
iff,

T ′ = a(θ)T + b(θ).

Therefore, the covariance between T and T ′ is,

cov(T, T ′) = cov(T, a(θ)T + b(θ))

= cov(T, a(θ)T)

= a(θ)var(T)

246 6.11. Summary Statistics for Pooling

but from the above equality cov(T, T ′) = var(T), therefore, a(θ) = 1.
And, since

E(T ′) = a(θ)E(T) + b(θ)

= θ + b(θ)

should be θ, b(θ) = 0.

Hence, T ′ = T . Thus, T is unique.

Due to the uniqueness and efficiency properties, the MVUE statistic
is an ideal statistic in pooling and, therefore, should be identified. As
shown in Figure 6.27, a complete minimal sufficient statistic leads to the
MVUE as per Theorem 6 below.

Theorem 6. Lehmann-Scheffé13. Let T be a complete (minimal)
sufficient statistic and there is any unbiased estimator U of θ. Then
there exists a unique MVUE, which can be obtained by conditioning U
on T as T ∗ = E(U |T). The MVUE can also be characterized as a unique
unbiased function T ∗ = ϕ(T) of the complete sufficient statistic.

A complete (minimal) sufficient statistic does not guarantee unbi-
asedness and low variance by itself. However, Theorem 6 tells that a
one-to-one function of it is an MVUE and is, of course, complete and
minimal.

Therefore, an MVUE statistic T ∗, if found, has both efficiency and
complete minimal statistic properties. These properties make it supreme
for pooling. However, a question remains, how to find the T ∗?

Theorem 7 leads us to the answer in Corollary 1.

Theorem 7. MLE is a function of sufficient statistic. If T is a
sufficient statistic for θ, then the maximum likelihood estimator (MLE)
(if it exists) θ̂ is a function of T , i.e., θ̂ = ϕ(T).

13See Lehmann and Scheffé 1950 and Lehmann and Scheffé 1955.

Chapter 6. Convolutional Neural Networks 247

Proof. Based on the Factorization Theorem 1,

f(x|θ) = g(T (x|θ))h(x).

An MLE is computed by finding the θ that maximizes the likelihood
function L(θ|x) = f(x|θ).

If MLE is unique then h(x) is a constant or equal to 1 without loss
of generality. Therefore,

θ̂ = arg max
θ
f(x|θ)

= arg max
θ
g(T (x|θ))

which is clearly a function of the sufficient statistic T (X).

Corollary 1. If MLE θ̂ is unbiased and a complete minimal sufficient
statistic T exist for parameter θ, then θ̂ = ϕ(T), and it is the unique
minimum variance unbiased estimator (MVUE). Thereby, the statistic
θ̂ contains all the information about the parameter θ, spans the whole
sample space, and is efficient.

Proof. Based on Theorem 7, the maximum likelihood estimator (MLE)
θ̂ is a function of a sufficient statistic T, i.e., θ̂ = ϕ(T).

If T is complete sufficient and θ̂ is unbiased, then based on The-
orem 6, θ̂ = ϕ(T) and is an MVUE. Therefore, being a function of
complete statistic, θ̂ spans the whole sample space. Also, it is efficient
based on the definition of MVUE in Definition 4.

Based on Theorem 3 and Theorem 4 a complete statistic in most
cases is minimal, and if a minimal statistic exist then any complete
statistic is always minimal. Therefore, if T is complete minimal, ϕ(T)
is also complete minimal and, therefore, θ̂ = ϕ(T) will have all the
information about θ as succinctly as possible.

Finally, as per Theorem 5 an MVUE is unique. Therefore, θ̂ will be
unique.

248 6.11. Summary Statistics for Pooling

At this stage, Theorem 3-7 come together to forge a spectacular
relationship in Corollary 1. This is a pivotal result because a maximum
likelihood estimator is available for most of the distributions applicable
to the convolutional feature maps inputted to pooling.

MLE’s properties elucidated in Corollary 1 make it an obvious choice
in pooling. It is shown in § 6.13 that average and maximum pooling
statistics are indeed MLEs. In fact, a parameterization combining the
average and maximum in Boureau, Ponce, and LeCun 2010 to obtain a
pooling statistic between the two is shown to be the MLE for Weibull
distribution.

6.11.4 Ancillary Statistics

A (complete) minimal sufficient statistic itself or in the form of MLE
retains all the information about the parameter θ. It eliminates all
the extraneous information in the sample and takes only the piece of
information related with θ.

Therefore, it might be suspected that no more information remains
to draw from the sample. Except that there is more.

There is still information remaining in the sample that is independent
of θ. For example, sample range or interquartile range. Such statistics
are called ancillary statistics.

Ancillary statistics, defined below, have information complementary
to minimal sufficient statistics. They can, therefore, act as a strong
companion to a minimal sufficient based MLE statistic in pooling.

Definition 5. Ancillary Statistic. A statistic S(X) whose distribu-
tion does not depend on the parameter θ is called an ancillary statistic.

As mentioned above, the sample range or interquartile range are
examples of ancillary statistics. Both are special cases of a range statistic
R = X(k) − X(l), where X(k) and X(l) are order statistics with k, l ∈
{1, . . . , n}. Proposition 4 shows that a range statistic is an ancillary
statistic for any location model, e.g., normal and uniform distribution.

Proposition 4. If X1, . . . , Xn are iid observations from a location model
where cdf is denoted as F (x − θ),−∞ < θ < ∞, e.g., Uniform and

Chapter 6. Convolutional Neural Networks 249

Normal, then any range statistic R = X(k)−X(l) is an ancillary statistic,
where X(k) and X(l) are order statistics with k, l ∈ {1, . . . , n}. The
sample range R = X(n) − X(1) = maxiXi − miniXi and inter-quartile
range R = Q3 −Q1 are special cases of a range.

Proof. We have X ∼ F (X − θ). We replace X with Z such that X =
Z + θ. Thus, the cdf of a range statistic R = X(k) −X(l) becomes,

FR(r|θ) = Pθ(R ≤ r)
= Pθ(X(k) −X(l) ≤ r)
= Pθ((Z(k) + θ)− (Z(l) + θ) ≤ r)
= Pθ(Z(k) − Z(l) + θ − θ ≤ r)
= Pθ(Z(k) − Z(l) ≤ r)

The cdf of R, therefore, does not depend on θ. Hence, the range
statistic R is an ancillary statistic.

As per the proposition, a range statistic can be used in conjunction
with any other minimal sufficient statistic in pooling. However, the
combination should be chosen carefully. They are sometimes dependent.
For example, in a Uniform model, the minimal sufficient statistics are
T1(X) = maxiXi and T2(X) = miniXi, and an ancillary statistic is
S(X) = maxiXi − miniXi. Clearly, S(X) is a function, and, thereof
dependent, of T1(X) and T2(X).

A complete minimal statistic, however, is independent of any ancil-
lary statistic as per Theorem 8.

Theorem 8. Basu’s Theorem14. If T (X) is complete and minimal
sufficient statistic, then T (X) is independent of every ancillary statistic
S(X).

Therefore, a minimum variance unbiased MLE based off of a com-
plete minimal statistic is always independent of an ancillary statistic.

14See Basu 1955.

250 6.12. Pooling Discoveries

This property reinforces the support for using MLE as the primary pool-
ing statistic. And, if needed, an ancillary statistic can be directly in-
cluded due to their mutual independence. For illustration, Appendix J
develops a Convolutional Network with maximum (MLE) pool and sam-
ple range (ancillary statistic) pool put together in parallel.

� The ancillary statistic in pooling can draw addi-
tional relevant information from the convolutional

feature map to improve a network’s performance.

6.12 Pooling Discoveries

A convolutional network mainly comprises of three operations of convo-
lution, activation, and pooling. Among them, pooling plays a key role
in extracting the essence from the excess to improve the computational
and statistical efficiencies.

There are a variety of pooling statistics developed over the years and
discussed in § 6.15. Despite the variety, max-pooling remains popular
due to its superior performance in most data sets.

The upcoming § 6.12.1 puts forward a plausible reason behind max-
pool’s superiority. The expounded reasoning also uncovers an inherent
fallacy of distribution distortion in the convolution → activation → pool-
ing structure in traditional networks.

Remedial architectures from Ranjan 2020 to address the fallacy by
preserving the features map distribution is in § 6.12.2. The distribution
preservation leads to presenting maximum likelihood estimators (MLEs)
for pooling in § 6.13 (based on Corollary 1).

The section also shows a unifying theory behind max- and average-
pooling, and their combination as mixed pooling in the form of MLE
statistic of a Weibull distribution. Thereafter, a few advanced pooling
techniques based off of summary statistics to adopt adaptive pooling
and address spatial relationships are laid in § 6.14.

Lastly, the history of pooling discussed in § 6.15 ties together the

Chapter 6. Convolutional Neural Networks 251

literature with the rest of this section.

6.12.1 Reason behind Max-Pool Superiority

The realization of max-pooling importance traces back to biological re-
search in Riesenhuber and Poggio 1998. Riesenhuber and Poggio 1999
provided a biological explanation of max-pool superiority over average.
Popular work by deep learning researchers have also advocated for max-
pooling in Yang et al. 2009; Boureau, Ponce, and LeCun 2010; Saeedan
et al. 2018.

Yang et al. 2009 reported significantly better classification perfor-
mance on several object classification benchmarks using max-pooling
compared to others.

A theoretical justification was provided in Boureau, Ponce, and Le-
Cun 2010. They provided a theory supporting max-pool assuming the
input to pooling as Bernoulli random variables. But the Bernoulli as-
sumption is an extreme simplification. A traditional features map input
to pooling is a continuous random variable while Bernoulli is discrete.

The reason for max-pool’s superiority lies in the understanding dis-
tribution of feature maps, or rather the distorted distribution and its
MLE statistic.

A feature map is a continuous random variable. A random variable
follows a distribution. The MLE of the distribution, if known, is the
best pooling statistic. The question is, what is the distribution of the
feature map?

It depends on the problem. However, determining the distribution is
not difficult. A bigger issue is that a feature map’s distribution is already
distorted before pooling. This is caused by a nonlinear activation of
convolution output.

A nonlinear activation distorts the original distribution. Fitting
known distributions on them become difficult. This is illustrated in Fig-
ure 6.28a. The figure shows the effect of ReLU activation on a normally
distributed feature map.

As shown in the figure, the original distribution warps due to ReLU
activation. It becomes severely skewed and does not follow a known

252 6.12. Pooling Discoveries

x=0 x

Normal distribution
ReLU activated

(a) Normal Distribution before and after ReLU activation.

x=0 x

Uniform distribution
ReLU activated

(b) Uniform Distribution before and after ReLU activation.

Figure 6.28. The feature map outputted from a convolutional network
typically follows a distribution. The true distribution is,
however, distorted by a nonlinear activation. For example,
ReLU activated normal and uniform distribution shown here are
severely skewed. Due to this, the feature map becomes biased.
Therefore, most summary statistics other than the maximum
becomes unusable for pooling. For example, the sample average
yields an overestimate of the mean, the minimum statistic
remains zero irrespective of the true smallest value, and a range
statistic becomes =(maximum − zero). In effect, a nonlinear
activation before pooling restricts its ambit, i.e., only a few
summary statistics in pooling remain usable.

Chapter 6. Convolutional Neural Networks 253

distribution. If it is still assumed as a normal distribution, the sample
mean (the MLE) will be an overestimate of the true mean. The overes-
timation undermines the average statistic for pooling. Similarly, other
statistics, if used, in pooling such as the sample variance (an ancillary
statistic15) will be underestimated.

The average statistic is overestimated under the normality assump-
tion due to the distortion. This explains the reason behind average-
pooling unfitness in some problems.

How does the maximum pooling remain effective in presence of the
distortion? There are two plausible reasons based on distribution as-
sumptions described below.

• Uniform distribution. The maximum statistic is the MLE of
a uniform distribution. As shown in Figure 6.28b, the distortion
does not affect the sample maximum. Although an activated fea-
ture map is no longer uniform if it was originally uniformly dis-
tributed the maximum statistic remains undisturbed for pooling.

• Weibull distribution. An activated feature map can be fitted
with a Weibull distribution. It is quite a flexible distribution. It
has various shapes for different values of its scale λ and shape k
parameters. A few illustrations for different (λ, k) are shown in
Figure 6.34 in § 6.13.4. The section also presents Weibull’s MLE
in Equation 6.25 which becomes equal to the sample maximum for
large k.

Under these conditions, the sample maximum becomes the best pool-
ing statistic. Perhaps, most of the problems are close to one of them
and, hence, max-pooling is popular.

� Max-pool is robust to the distortions in feature
map distribution caused by nonlinear activation.

Therefore, it works better than other types of pooling in
most problems.

15Sample variance is an ancillary statistic as well as the MLE of normal distribu-
tion’s variance parameter

254 6.12. Pooling Discoveries

The above reasons are conjectures. The exact theoretical reasoning
behind max-pool’s superiority is still elusive. And, as the theory behind
pooling evolves, a better pooling statistic backed with its theoretical
efficiency might be discovered.

6.12.2 Preserve Convolution Distribution

The premise of max-pool’s superiority also uncovered a traditional con-
volutional network fault: convolution feature map distribution distortion
before pooling. Distortion of feature map distribution is detrimental to
pooling because the information is lost or masked.

This fault is present due to the structure convolution → activation →
pooling in traditional networks. The structure follows the deep learning
paradigm of nonlinear activation following a trainable layer.

� Nonlinear activation on convolutional layer output
before pooling is an architectural fault.

But following this paradigm is not necessary for convolutional net-
works. A pooling layer is not trainable16. Therefore, nonlinear activa-
tion before or after pooling does not affect the overall nonlinearity of a
convolutional network. Thus, their positions can be swapped to follow
a structure convolution → pooling → activation to preserve the feature
map’s distribution while not impacting the network’s nonlinearity.

Ranjan 2020 made the above argument and proposed the swapping.
Swapping the order of pooling and nonlinear activation remedies the
distribution distortion fallacy. The difference between the traditional
and a swapped architecture is shown in Figure 6.29a and 6.29b.

Due to the swapping, the information derived in the convolution
operation remains intact for pooling. Importantly, the convolutional
feature map’s distribution remains undisturbed. This brings a few major
improvements,

16A pooling layer is fundamentally not trainable. However, some trainable pooling
methods are proposed by researchers, e.g., Kobayashi 2019a.

Chapter 6. Convolutional Neural Networks 255

Input to layer

Convolution layer: Affine
transform

Nonlinear Activation, e.g., ReLU

Pooling layer

Next layer

(a) Traditional Convolutional
Network.

Input to layer

Convolution layer: Affine
transform

Pooling layer

Nonlinear Activation, e.g., ReLU

Next layer

(b) Swapped Pooling-Activation
Network.

Figure 6.29. A traditional convolutional network (left) has a nonlinear
activation, e.g., ReLU, before the pooling layer. The nonlinear
activation distorts the distribution of the feature map outputted
by the convolutional layer. Due to this, only a maximum
summary statistic in MaxPool works in most problems.
Swapping the order of pooling and activation (right) remedies
the issue of distortion. In this network, the feature map’s
distribution is undisturbed which allows the use of a variety of
summary statistics, including combinations of sufficient and
ancillary statistics. For example, (mean, standard deviation), or
(maximum, range).

256 6.13. Maximum Likelihood Estimators for Pooling

• MLE statistic based on distribution. As per Corollary 1 in
§ 6.11.3, the maximum likelihood estimator (MLE) makes the best
statistic for pooling. Feature maps typically follow distributions
from known families. If undisturbed, their MLEs can be used in
pooling.

• Usability of ancillary statistics. A variety of ancillary statistics
such as standard deviation, range, and IQR, become informative
if the distribution is preserved. Moreover, a combination of MLE
and ancillary statistics can also be pooled.

� A swapped pooling and nonlinear activation archi-
tecture in the convolutional network allows the use

of MLEs and ancillary statistics in pooling.

Both improvements have far-reaching effects. Especially, the possi-
bility of pooling MLEs discussed in detail next.

6.13 Maximum Likelihood Estimators for Pool-
ing

A feature map follows a distribution. The distribution differs with sam-
ples. For example, an object with sharp edges at the center of an image
will have a different feature map distribution compared to an object
with smudgy edges or located at a corner (shown in Figure 6.35a and
6.35b in § 6.14).

Regardless, the distribution’s maximum likelihood estimator (MLE)
makes the most efficient pooling statistic as described in § 6.11. A few
distributions that feature maps typically follow and their MLEs are,
therefore, given below.

Besides, a profound theoretical support for the parametric combina-
tion of the sample mean and maximum proposed by Boureau, Ponce,
and LeCun 2010 as the optimal choice for pooling is given in § 6.13.4.
The section shows that Boureau, Ponce, and LeCun 2010’s parameteri-
zation is the MLE of a Weibull distribution.

Chapter 6. Convolutional Neural Networks 257

6.13.1 Uniform Distribution

A uniform distribution belongs to the symmetric location probability
distribution family. A uniform distribution describes a process where
the random variable has an arbitrary outcome in a boundary denoted
as (α, β) with the same probability. Its pdf is,

f(x) =


1

β − α
, if α < x < β

0 , otherwise
(6.13)

Different shapes of the uniform distribution are shown in Figure 6.30
as examples. Feature maps can follow a uniform distribution under some
circumstances, such as if the object of interest is scattered in an image.

However, uniform distributions relevance lies in it being the maxi-
mum entropy probability distribution for a random variable. This im-
plies, if nothing is known about the distribution except that the feature
map is within a certain boundary (unknown limits) and it belongs to a
certain class then the uniform distribution is an appropriate choice.

Besides, the maximum likelihood estimator of uniform distribution
is,

β̂ = max
i
Xi (6.14)

Therefore, if the feature map is uniformly distributed or distribution
is unknown, maxiXi is the best pooling statistic. The latter claim also
reaffirms the reasoning behind max-pools superiority in § 6.12.1.

6.13.2 Normal Distribution

A normal distribution, a.k.a. Gaussian, is a continuous distribution
from the exponential location family. It is characterized by its mean
µ and standard deviation σ parameters. Its pdf is defined below and

258 6.13. Maximum Likelihood Estimators for Pooling

x

0.0 2.5 5.0 7.5 10.0

de
ns

ity

U(α=0.0, β=1.0)
U(α=−0.5, β=2.0)

U(α=1.0, β=3.0)
U(α=0.0, β=5.0)

Figure 6.30. In a uniform distribution, X ∼ U(α, β), X ∈ (α, β),
α, β ∈ R, and β > α, the probability of the feature X having any
value in (α, β) is equal (= 1

β−α) and zero, otherwise. It is also
maximum entropy probability distribution, which implies if
nothing is known about a feature map’s distribution except that
it is bounded and belongs to a certain class then uniform
distribution is a reasonable default choice. The maximum
likelihood estimate (MLE) of a uniform distribution is the
maximum order statistic, i.e., β̂ = X(n) = maxiXi.

Chapter 6. Convolutional Neural Networks 259

Figure 6.31 shows a few examples.

f(x) =
1√

2πσ2
exp

(
− (x− µ)2

2σ2

)
(6.15)

The MLEs of the normal distribution are

µ̂ =

∑
iXi

n
, (6.16)

σ̂2 =

∑
i(Xi − X̄)2

n− 1
. (6.17)

A normal distribution supports −∞ < x < ∞, i.e., x ∈ R and is
symmetric. But most nonlinear activated feature map either distorts
the symmetry or bounds it, e.g., ReLU lower bounds the feature map
at 0.

Due to the distortion, activated feature maps are unlikely to follow
a normal distribution. Therefore, a restructured convolution → pooling
→ activation architecture described in § 6.12.2 becomes favorable.

A normal distribution is a plausible distribution for most data sam-
ples barring some special cases such as if the object in an image is at the
corners. Besides, normality offers two MLE statistics for pooling that
provide both signal and spread information.

6.13.3 Gamma Distribution

A gamma distribution is an asymmetrical distribution also from the
exponential family. It has two parameters: shape k and scale θ. They
characterize the lopsidedness and spread of the distribution.

Its pdf is,

f(x) =
1

Γ(k)θk
xk−1 exp−

x

θ
(6.18)

where, x > 0, and k, θ > 0.

260 6.13. Maximum Likelihood Estimators for Pooling

x

−10 0 10 20 30

de
ns

ity

N(µ=0.0, σ=1.0)
N(µ=2.0, σ=2.0)
N(µ=3.0, σ=3.0)
N(µ=7.0, σ=4.0)
N(µ=14.0,σ=3.0)
N(µ=19.0,σ=1.5)

Figure 6.31. A normal distribution, X ∼ N(µ, σ), X ∈ R,
µ ∈ R, σ ∈ R+, is the symmetric distribution from the
exponential family. A convolutional feature map follows a
normal distribution if and only if it can take any value in
(−∞,∞) and the probability P (X = x) is symmetric. That is, a
nonlinear activated convolutional output is unlikely to be
normal. A linearly activated (or inactivated) convolutional
output can be assumed to be normal in many data sets. The
center µ and the spread σ differs by the data. The MLEs for
them are, µ̂ = X̄ =

∑
iXi
n and σ̂2 = S2 =

∑
i(Xi−X̄)2

(n−1) .

Chapter 6. Convolutional Neural Networks 261

x

0 20 40 60

de
ns

ity

G(θ=1.0, k=1.0)
G(θ=1.0, k=3.0)
G(θ=2.0, k=4.0)
G(θ=5.0, k=5.0)

G(θ=1.5,k=10.0)
G(θ=1.5,k=20.0)

Figure 6.32. A gamma distribution, X ∼ G(k, θ), X > 0, and k, θ > 0,
is one of the asymmetric distribution from the exponential
family. Gamma distribution is applicable on an activated
convolutional output x such that f(x) > 0 or constrained
convolution where x > 0. Gamma distribution provides more
flexibility due to its asymmetry. The exponential distribution is
a special case of Gamma distribution if k = 1, shown with
G(1, 1) above. This is an extreme case found when the object is
partially present or at corners of the input. In other cases, the
shape and scale differ with data and are characterized by k and
θ, respectively. Closed-form MLEs do not exist for Gamma,
however, mixed type log-moment estimators exist that have
similar efficiency as MLEs presented as,

θ̂ =
1

n(n− 1)

(
n
∑

i xi log(xi)−
∑

i log(xi)
∑

i xi

)
and

k̂ =
n
∑

i xi

n
∑

i xi log(xi)−
∑

i log(xi)
∑

i xi
.

262 6.13. Maximum Likelihood Estimators for Pooling

The distribution can take a variety of forms as shown in Figure 6.32.
In fact, like uniform distribution, the gamma distribution is also the
maximum entropy probability distribution. This makes gamma distri-
bution applicable to feature maps in most data samples.

However, its support is x > 0 which constrains its applicability
only to positive-valued feature maps. There are several ways to con-
strain the feature maps, e.g., using a positive activation such as ReLU
(or Null-ReLU defined in Appendix G), or with kernel and bias con-
straints set to non-negative in the convolutional layer and non-negative
input17. Besides, if needed, a three-parameter Gamma distribution
is also available with a location parameter c and pdf f(x|c, θ, k) =

1

Γ(k)θk
(x− c)k−1 exp−

(x− c)
θ

where c ∈ (−∞,∞).

Assuming the feature map is positive, i.e., c = 0, gamma distribution
applies to them in most cases. If k = 1, G(θ, 1) is an exponential distri-
bution also shown in Figure 6.32. Another example in Figure 6.35b in
§ 6.14 shows an image with an object at a corner yields an exponentially
distributed feature map. The MLE for exponential is the sample mean,

θ̂ =

∑
i xi

n
. (6.19)

Under other circumstances, the gamma distribution is flexible to take
different shapes. However, a closed-form MLE does not exist for them.
Fortunately, mixed type log-moment estimators exist that have similar
efficiency as MLEs (Ye and N. Chen 2017). They are,

θ̂ =
1

n2

(
n
∑
i

xi log(xi)−
∑
i

log(xi)
∑
i

xi

)
(6.20)

k̂ =
n
∑

i xi

n
∑

i xi log(xi)−
∑

i log(xi)
∑

i xi
. (6.21)

17E.g. Input scaled with sklearn.preprocessing.MinMaxScaler() and Convolu-
tional layer defined as
Conv1D(..., kernel_constraint=tf.keras.constraints.NonNeg(),
bias_constraint=tf.keras.constraints.NonNeg(),...).

Chapter 6. Convolutional Neural Networks 263

Based on the listed complete sufficient statistic for the gamma dis-
tribution in Table 6.2 as per Theorem 9, the estimators θ̂ and k̂ are
complete sufficient statistics. However, the statistics are biased. The
bias-corrected statistics are (Louzada, P. L. Ramos, and E. Ramos 2019),

θ̃ =
n

n− 1
θ̂ (6.22)

k̃ = k̂ −
1

n

(
3k̂ −

2

3

(
k̂

1 + k̂

)
−

4

5

k̂

(1 + k̂)2

)
. (6.23)

These unbiased estimators are a function of the complete sufficient
statistics. Therefore, according to Theorem 6 θ̃ and k̃ are MVUE. In
effect, they exhibit the same properties expected from MLEs for pooling.

Note that, in practice, log(x) in the statistics can be replaced with
log(x+ε) where ε is a small constant in R+, e.g., ε← 1e−3. This adds a
small bias to the estimates but also makes them stable. This correction
addresses the possibility of feature maps taking extremely small values.

6.13.4 Weibull Distribution

A Weibull distribution is also an asymmetrical distribution from the
exponential family. It has similar parameters as a gamma distribution,
scale λ and shape k, and also a similar form. Like a gamma distribution,
Weibull is also lopsided and has a spread characterized by k and λ. But
they differ in their precipitousness. This is clearer from the pdf given
as,

f(x) =
k

λ

(
x

λ

)k−1

exp−

(
x

λ

)k
(6.24)

where, x ≥ 0, and λ, k > 0.

Ignoring the constants in the pdf of gamma andWeibull distributions
(in Equation 6.18 and Equation 6.24, respectively), one can note that the
difference is exp (−x/θ) versus exp−(x/λ)k. This implies that Weibull
distribution precipitates rapidly if k > 1 and slowly if k < 1, while the

264 6.13. Maximum Likelihood Estimators for Pooling

x

de
ns

ity

Average pool, W(λ, k=1)

Mixed pool, W(λ, k>1)
Max pool, W(λ, k→∞)

Figure 6.33. Pooling has typically stayed with max or average statistics.
A better pooling, however, is hypothesized to be somewhere
between them. Boureau, Ponce, and LeCun 2010 parameterized
pooling statistic as f(x) =

(
1
n

∑
i x

k
i

) 1
k , which gives the average

for k = 1 and the max for k →∞. A value in between for k
gives a pooling statistic that is a “mixture” of average and max.
This parameterization comes from the assumption that X is
Weibull distributed, i.e., X ∼W (λ, k), and the pooling statistic
is the MLE for λ.

Chapter 6. Convolutional Neural Networks 265

gamma distribution is indifferent. If k = 1, both gamma and Weibull
are equal and reduces to an exponential distribution.

The ability to adjust the precipitousness makes Weibull distribu-
tion a sound choice for fitting feature maps. Because the separability
of features defines the precipitousness. For example, a strong feature
map sharply distinguishes an object’s features and will have a quickly
dropping off pdf, i.e., a large k.

Therefore, the MLE of Weibull distribution given below is quite ap-
propriate for pooling.

λ̂ =

(
1

n

∑
i

xki

) 1
k

(6.25)

assuming k is known.

Interestingly, the parametrization given in Boureau, Ponce, and Le-
Cun 2010 is the MLE of Weibull distribution. This is interesting because
in their or other prior work a connection between pooling and Weibull
distribution was not established.

Instead, Boureau, Ponce, and LeCun 2010 found that the optimal
pooling statistic is somewhere between an average- and max-pooling.
They, therefore, posed the pooling statistic as in Equation 6.25 that
continuously transitions from average- to max-pooling as follows,

• if k = 1, then average-pooling,

• if k →∞, then max-pooling, and

• if 1 < k <∞, then mixed-pooling.

TheWeibull distribution in these conditions are shown in Figure 6.33.
In the figure, it is noticed that under the max-pool condition the distri-
bution precipitates quickly indicating a distinguishing feature map. The
average-pool is for k = 1 when Weibull becomes an Exponential distri-
bution for which the MLE is indeed the sample mean (Equation 6.19).
A mixed pooling is in between the two and so is the shape of its distri-
bution.

266 6.13. Maximum Likelihood Estimators for Pooling

In the above, the shape parameter k is assumed to be known. Fitting
a Weibull distribution to feature maps can become more informative if
the k is also derived from the features (data). The distribution’s form
for different (λ, k) are shown in Figure 6.34 for illustration.

Unfortunately, a closed-form MLE for k does not exist. It can be
estimated using numerical methods by solving,

∑
i x

k
i log(xi)∑
i x

k
i

−
1

k
−

1

n

∑
i

log(xi) = 0 (6.26)

Moreover, Weibull distribution can also be fitted if feature maps are
lower bounded at τ , where τ > 0. Then the MLE for λ̂ is,

λ̂ =

(
1∑

i 1(xi > τ)

∑
i

(xki − τk)1(xi > τ)

) 1
k

(6.27)

and k can be estimated by solving,

∑
i(x

k
i log(xi)− τk log(τ))∑

i(x
k
i − τk)

−
1∑

i 1(xi > τ)

∑
i

log(xi)1(xi > τ) = 0

(6.28)

where 1(xi > τ) is an indicator function equal to 1, if xi > τ , and
0, otherwise.

These expressions are derived from a three-parameter Weibull de-

fined as, f(x) =
k

λ

(
x− τ
λ

)k−1

exp−

(
x− τ
λ

)k
, where τ < x < ∞

(R. L. Smith 1985; Hirose 1996)18. They are helpful to accommodate
some types of activation or dropout techniques.

Lastly, like gamma, Weibull distribution also supports only positive
x. Therefore, approaches, such as positive-constrained inputs, kernel,
and bias, discussed in § 6.13.3 can be used.

18A similar three-parameter is also for gamma distribution in R. L. Smith 1985
but closed-form estimators are unavailable.

Chapter 6. Convolutional Neural Networks 267

x

0 2 4 6

de
ns

ity

W(λ=1.0, k=0.3)
W(λ=0.5, k=7.5)
W(λ=1.0, k=7.5)
W(λ=2.0, k=9.0)
W(λ=5.0, k=7.5)
W(λ=3.0, k=9.0)

Figure 6.34. Weibull distribution, X ∼W (λ, k), X ∈ R+, and
λ, k ∈ R+, is another asymmetric distribution from the
exponential family. Similar to a Gamma distribution, Weibull
provides flexibility for different shapes and scales. Moreover, the
Exponential distribution is also a special case of Weibull if
k = 1. MLE is available for λ in Weibull, λ̂ =

(
1
n

∑
i x

k
i

) 1
k .

Closed-form MLE for k is, however, unavailable and can be
estimated via numerical methods.

.

268 6.14. Advanced Pooling

6.14 Advanced Pooling

The possibility of fitting distributions uncovered a myriad of pooling
statistics. It also made possible using advanced techniques, such as an
adaptive selection of distribution.

Such techniques have significance because optimal pooling depends
on the characteristics of feature maps in convolutional networks and the
data set. Automatically determining the optimal pooling is challenging
and discussed in expanse in Lee, Gallagher, and Tu 2016; Kobayashi
2019b.

Moreover, MLEs are learned to be the appropriate pooling statistic.
But they are unavailable for some distributions.

Besides, convolutional feature maps are likely to be dependent in
most data sets because nearby features are correlated. However, pooling
statistics are developed assuming their independence.

This section provides a few directions to address these challenges.

6.14.1 Adaptive Distribution Selection

Feature maps for different samples in a data set can differ significantly.
For illustration, Figure 6.35a and 6.35b show images with an object at
the center and corner, respectively. The images are filtered through a
Sobel filter (§ 12.6.2 in McReynolds and Blythe 2005). Also shown in
the figures is the feature map distribution yielded by the filter.

The former image results in a peaked distribution that can be from a
normal, gamma, or Weibull while the latter results in an exponential-like
distribution.

If the distribution is known, using MLEs for pooling is fitting the
distribution to the feature map.

This is straightforward with normal and gamma distribution as closed-
form estimators exist for their parameters. For Weibull, MLE is available
for scale λ but not for the shape k. Although k can be numerically es-
timated by solving Equation 6.26 for k, it is computationally intensive.
However, k need not be estimated with precision. Instead, k can be
assumed to belong in a finite discrete set of positive real numbers, i.e.,

Chapter 6. Convolutional Neural Networks 269

Image Feature Map distribution

(a) Object with color gradient.

Image Feature Map distribution

(b) Object on a corner.

Figure 6.35. An image containing an object with a color gradient (top)
and another image with an object at a corner (bottom) are
convolved with a Sobel kernel that detects the color gradient
changes. The outputted convolution feature map has a gamma
(top) and exponential (bottom) distribution, respectively. Their
respective MLEs should be used in pooling.

270 6.14. Advanced Pooling

K = {k|k ∈ R+} and |K| is small. The k ∈ K that yields the maximum
likelihood should be chosen, i.e.,

argk max
∏
i

f(xi|λ̂, k) (6.29)

where f is the pdf of Weibull in Equation 6.24, λ̂ is estimated using
Equation 6.25, and xi, i = 1, . . . , n is the feature map.

Deriving pooling statistics by fitting distributions is effective. But it
works on an assumption that the distribution is known. Since, exponen-
tial distributions, viz. normal, gamma, and Weibull, provide reasonable
flexibility, the assumption is not strong. Still further improvement can
be made by adaptively choosing a distribution, i.e., let the distribution
be data-driven. An approach could be to fit various distributions and
select the one which yields the maximum likelihood.

6.14.2 Complete Statistics for Exponential Family

We have learned that MLEs are the best pooling statistic. But their
closed-form expressions are sometimes unknown.

We know that MLEs are a function of complete statistic(s). In ab-
sence of an MLE expression, complete statistic(s) can be used in pooling.

Most feature maps follow a distribution from exponential family and,
fortunately, complete statistics for any distribution from the family is
available based on Theorem 9 below.

Theorem 9. Exponential family complete sufficient statistics19.
Let X1, . . . , Xn be iid observations from an exponential family with pdf
or pmf of form

f(x|θθθ) = h(x)c(θθθ) exp

(
k∑
j=1

wj(θθθ)tj(x)

)
(6.30)

19Based on Theorem 8.1 in Lehmann and Scheffé 1955 and Theorem 6.2.10 in
Casella and Berger 2002.

Chapter 6. Convolutional Neural Networks 271

Table 6.2. List of Complete Sufficient Statistics based on Theorem 9 for
Exponential family distributions.

Distribution Pdf, x, θθθ
Complete sufficient
statistics, T (X)

Normal

1
√

2πσ2
exp−

(x− µ)2

2σ2
,

x ∈ (−∞,∞),
θθθ = (µ, σ2)

(∑n
i=1Xi,

∑n
i=1X

2
i

)

Exponential

λ exp (−λx),
x ∈ [0,∞),
θθθ = λ

∑n
i=1Xi

Gamma

βα

Γ(α)
exp −

(
βx−

(α− 1) log x
)
,

x ∈ (0,∞),
θθθ = (α, β)

(∑n
i=1Xi,

∑n
i=1 logXi

)

Weibull

k

λ
exp −

((x
λ

)k−
(k − 1) log

x

λ

)
,

x ∈ [0,∞),
θθθ = (λ, k)

(∑n
i=1X

k
i ,
∑n

i=1 logXi

)

where θθθ = (θ1, θ2, . . . , θk). Then the statistic

T (X) =

(
n∑
i=1

t1(Xi),
n∑
i=1

t2(Xi), . . . ,
n∑
i=1

tk(Xi)

)
(6.31)

is complete if {(w1(θθθ), . . . , wk(θθθ)) : θθθ ∈ Θ} contains an open set in
Rk. Moreover, it is also a sufficient statistic for θ.

It can be noted that the MLEs for normal, gamma and Weibull
distributions are indeed a function of the complete statistics listed in

272 6.15. History of Pooling

Table 6.2 based on the theorem. Similarly, complete statistic(s) for any
other distribution from the exponential family can be determined for
pooling.

6.14.3 Multivariate Distribution

Most of the pooling approaches assume feature maps are independent.
The independence assumption is, however, false since close by image
features are correlated. For example, if a filter detects an edge then it is
likely to find the next pixel as an edge as well. Consequently, the feature
map it yields will have dependence.

Addressing the dependence is challenging with traditional pooling
methods. Only a few techniques address it. Saeedan et al. 2018 is
one of them which uses the concept developed in Weber et al. 2016 in
the field of image processing for detail-preservation for downscaling in
pooling.

The dependence can be addressed by making the features indepen-
dent, e.g., removing autocorrelation, before fitting distributions (pool-
ing). Features dependence can also be addressed by fitting multivariate
distributions, e.g., multivariate normal and Wishart distributions.

6.15 History of Pooling

Pooling is an important construct of a convolutional network. Without
pooling, the network is statistically and computationally inefficient, and
virtually dysfunctional.

The concept has roots in biological constructs. Many computer vi-
sion architectures including pooling in convolutional networks have been
inspired by studies of the visual cortex on multi-stage processing of sim-
ple and complex cells in Hubel and Wiesel 1962. Translational invari-
ance is achieved by the complex cells that aggregate local features in a
neighborhood.

One of the earliest neural networks with the pooling concept is the
Neocognitron (Fukushima 1986). This network employed a combination
of “S-cells” and “C-cells” which acted as activation and pooling, respec-

Chapter 6. Convolutional Neural Networks 273

tively. The “C-cells” become active if at least one of the inputs from
the “S-cells” is active. This is similar to a binary gate that makes the
network robust to slight deformations and transformations.

LeCun, Boser, et al. 1990 introduced the idea of parameter shar-
ing with convolution and network invariance via subsampling by taking
an average of the local features. Average-pooling was further used in
LeCun, Bottou, et al. 1998.

Max-pooling was put forward soon after in Riesenhuber and Poggio
1999. The paper discusses the biological functioning of the visual cortex
and lays two idealized pooling mechanisms, linear summation (‘SUM’)
with equal weights (to achieve an isotropic response), and a nonlinear
maximum operation (‘MAX’), where the strongest afferent determines
the postsynaptic response. They are average and max-pooling, respec-
tively.

Riesenhuber and Poggio 1999 compared average- and max- pooling
from a biological visual cortex functioning standpoint. They explained
that responses of a complex cell would be invariant as long as the stim-
ulus stayed in the cell’s receptive field. However, it might fail to infer
whether there truly is a preferred feature somewhere in the complex
cell’s receptive field. In effect, the feature specificity is lost. However, in
max-pooling the output is the most active afferent and, therefore, signals
the best match of the stimulus to the afferent’s preferred feature. This
premise in Riesenhuber and Poggio 1999 explained the reason behind
max-pool’s robustness over the average.

Max-pool was further used and empirical evidence of its efficacy
was found in Gawne and Martin 2002; Lampl et al. 2004; Serre, Wolf,
and Poggio 2005; Ranzato, Boureau, and Cun 2008. Using max-pool,
Yang et al. 2009 reported much better classification performance on
multi-object or scene-classification benchmarks compared to average-
pool. However, no theoretical justification behind max-pool’s outper-
formance was yet given.

Boureau, Ponce, and LeCun 2010 perhaps provided the earliest theo-
retical support behind max-pool. They assumed feature maps as Bernoulli
random variables that take values 0 or 1. Under the assumption, they
expressed the mean of separation and variance of max-pooled features.

274 6.15. History of Pooling

Their expressions show that max-pool does better class separation than
average. However, the justification was based on an extreme simplifica-
tion of Bernoulli distribution while feature maps are continuous in most
problems. To which, Ranjan 2020 recently provided more general proof
from a statistical standpoint.

Besides, the possibility of the optimal pooling lying in between average-
and max- pooling was seeded in Boureau, Ponce, and LeCun 2010. They,
themselves, also provided a parameterization to combine both as∑

i

exp(βxi + α)∑
j exp(βxj + α)

which is equivalent to average or max if β → 0

and β →∞, respectively, and α = 0. A more sophisticated approach to
estimate the α, β from features, i.e., trainable mixing parameters, based
on maximum entropy principle was developed in Kobayashi 2019b.

The mixing idea was taken in D. Yu et al. 2014; Lee, Gallagher, and
Tu 2016 to propose mixed-pooling as fmix(x) = α · fmax(x) + (1− α) ·
favg(x). Lee, Gallagher, and Tu 2016 also devised a trainable mixing
called as gated-pooling in which the weight α = σ(ωωωTx) where σ is a
sigmoid function in [0, 1] and ωωω is learned during training. A further
extension, called Tree-pooling, was also proposed by them that auto-
matically learned the pooling filters and mixing weights to responsively
combine the learned filters.

Although pooling is typically used for invariance, a variant called
stochastic pooling was proposed in Zeiler and Fergus 2013 for regular-
ization of convolutional networks. Stochastic pooling works by fitting a
multinomial distribution to the features and randomly drawing a sample
from it.

Most of the pooling techniques worked by assuming the indepen-
dence of features. However, it is a strong assumption because nearby
features are usually correlated. Ranjan 2020 discussed this issue and
provided a few directions, e.g., fitting a multivariate distribution and
using its summary statistic or removing feature dependency before com-
puting a statistic for pooling. Prior to this, T. Williams and Li 2018
and Saeedan et al. 2018 have worked in a similar direction.

T. Williams and Li 2018 proposed a wavelet pooling that uses a
second-level wavelet decomposition to subsample features. This ap-

Chapter 6. Convolutional Neural Networks 275

proach was claimed to resolve the shortcomings of the nearest neigh-
bor interpolation-like method, i.e., local neighborhood features pooling,
such as edge halos, blurring, and aliasing Parker, Kenyon, and Troxel
1983.

Saeedan et al. 2018 developed a “detail-preserving” pooling drawn
from the approach for image processing in Weber et al. 2016 called detail-
preserving image downscaling (DPID). DPID calculates a weighted av-
erage of the input, but unlike traditional bilateral filters (Tomasi and
Manduchi 1998), it rewards the pixels that have a larger difference to the
downscaled image. This provides a customizable level of detail magnifi-
cation by allowing modulation of the influence of regions around edges
or corners.

Kobayashi 2019a proposed fitting Gaussian distribution on the lo-
cal activations and aggregate them into sample mean µX and standard
deviation σX . They devised the pooling statistic as µX + ησX where
µX =

∑
iXi
n and σX =

√∑
i(Xi−X̄)2

(n−1) . Since the activations are not full
Gaussian, they fit half-Gaussian and inverse softplus-Gaussian. Still,
the activations are unlikely to follow these distributions due to the phe-
nomenon of distribution distortion presented in Ranjan 2020. Moreover,
the µX + ησX is not a complete statistic due which it does not have the
minimum variance.

Besides, He et al. 2015b developed a spatial pyramid pooling. It is
mainly designed to deal with images of varying size, rather than delving
in to different pooling functions or incorporating responsiveness.

There is another school of thought that rallies against pooling alto-
gether. For example, Springenberg et al. 2015 proposed an “all Convo-
lutional Net” which replaced the pooling layers with repeated convolu-
tional layers. To reduce the feature map size, they used larger stride
in some of the convolutional layers to achieve a similar performance as
with the pooling layers. Variational autoencoders (VAEs) or generative
adversarial networks (GANs) are also found to work better in absence of
pooling layers. However, this could be due to the usage of lossy statis-
tics20 for pooling. A use of MLEs or complete sufficient statistics as
proposed in Ranjan 2020 would work well in VAEs or GANs.

20Summary statistics that lose the information of the original data.

276 6.16. Rules-of-thumb

6.16 Rules-of-thumb

• Baseline network. Construct a simple sequential baseline model
with convolution → pooling → activation → flatten → dense →
output layer structure. Note to swap activation and pooling layers.

• Convolution layer

– Conv1D vs. Conv2D vs. Conv3D. A Conv‘x’D is chosen based
on the number of spatial axes in the input. Use Conv1D,
Conv2D, and Conv3D for inputs with 1, 2, and 3 spatial axes,
respectively. Follow Table 6.1 for details.

– Kernel. The kernel_size argument is a tuple in which each
element represents the size of the kernel along a spatial axis.
The size can be taken as the

√
spatial axis size/2.

– Filters. The number of filters can be taken as a number
from the geometric series of 2 close to n_features/4.

– Activation. Use a linear activation. A nonlinear activation
will be added after the pooling layer.

– Padding. Use valid padding in a shallow network. A shal-
low network is defined as one in which the feature map size
does not reduce significantly before the output layer. In
deep networks with several convolutional layers, use the same
padding at least in some of the convolutional layers.

– Dilation. Do not use dilation in a baseline model. In deep
networks, undilated and dilated convolutional layers can be
paired.

– Stride. Use the default stride=1 in a baseline model. The
stride can be increased to 2 if the input dimension is high.
However, in most problems, a stride larger than 2 is not rec-
ommended.

• Pooling layer

– Pool1D vs. Pool2D vs. Pool3D. Use the pooling layer consis-
tent with the Conv layer. For example, Pool1D with Conv1D,
and so on.

Chapter 6. Convolutional Neural Networks 277

– Pooling statistic. Use maximum statistic for pooling via
the MaxPool layer.

– Pool size. The square root of the feature map size (along
the spatial axes) can be taken.

– Padding. Follow the same principle as for convolution padding.
Use valid padding in a shallow and same in a deep network.

• Activation. Use a nonlinear relu activation layer after a pooling
layer to follow convolution → pooling → activation structure.

• Dense layer. After the stack of convolution → pooling → acti-
vation bundled layers, place a dense layer to downsize the feature
map. Use a Flatten() layer before the dense layer to vectorize
the multi-axes feature map. The number of units can be set equal
to a number in the geometric series of 2 closest to the length of
the flattened features divided by 4.

• Output layer. The output layer is dense. The number of units
is equal to the number of labels in the input. For example, in
a binary classifier, the number of units is equal to 1. The other
configurations of the output layer follow the same rules-of-thumb
as in § 4.10.

278 6.17. Exercises

6.17 Exercises

1. Long-term dependencies. Recurrent neural networks, e.g., LSTMs
are meant to learn long-term dependencies. However, it is found
that in some high-dimensional multivariate time series problems
LSTMs perform poorly if the time-steps (lookback) is increased.
A convolutional neural network, on the other hand, works better
even with long lookbacks.

(a) Refer to Jozefowicz, Zaremba, and Sutskever 2015 and ex-
plain the reason behind LSTM and other RNNs limitation in
learning long-term dependencies.

(b) Explain why convolutional networks still work well with long
time-steps?

(c) Train and evaluate the baseline convolutional network in § 6.9.3
with a TIMESTEPS equal to 120 and 240, and report the in-
crease in the model accuracy, parameters, and runtime. In-
terpret your findings.

(d) Plotting the feature maps and filters provide some interpre-
tation of the model. Refer to Appendix I to plot them and
report your interpretations.

2. Conv1D, Conv2D, and Conv3D. § 6.8.2 explained the different sce-
narios in which Conv1D, Conv2D, or Conv3D could be used. Next,
§ 6.10.1 explained that they are top-down interchangeable. Also,
as shown in § 6.10.2, the interchangeability provides more model-
ing choices when a higher level Conv‘x’D is used.

(a) Refer to § 6.10.1 and construct a convolutional network us-
ing Conv3D layer that is equivalent to the baseline model in
§ 6.9.3.

(b) Construct another convolutional network using Conv3D layer
equivalent to the neighborhood model in § 6.10.2.

(c) Explain how a Conv3D layer can replace a Conv2D layer in a
convolutional network for images?

3. 1×1 Convolution. A 1×1 convolutional layer summarizes the
information across the channels.

Chapter 6. Convolutional Neural Networks 279

(a) Explain how is this conceptually similar to and different from
pooling?

(b) Refer to Appendix H to construct a network with 1×1 con-
volutional layers. Present the improvement in model perfor-
mance.

(c) Plot the feature maps outputted by the 1×1 convolutional
layer (refer Appendix I) and present your interpretations.

4. Summary Statistics. § 6.11 expounded the theory of minimal
sufficient and complete statistics which led to a maximum likeli-
hood estimator (MLE) shown as the best pooling statistic in § 6.13.
Additionally, ancillary statistics were put forward as complemen-
tary pooling statistics to enhance a network’s performance.

(a) Prove that the maximum statistic maxiXi is a complete min-
imal sufficient statistic for a uniform distribution. Also, show
that it is the MLE for uniform as mentioned in § 6.13.1.

(b) Derive the MLEs for normal, gamma, and Weibull distribu-
tions given in § 6.13.2-6.13.4.

5. Pooling statistics. It is mentioned in § 6.12 the feature map
distribution distortion is caused by nonlinear activations. A possi-
bility of using pooling statistics other than average and maximum
arises by addressing the distortion.

(a) Train the baseline model with max- and average pooling.
Then swap activation and pooling layers, and make the con-
volutional layer activation as linear as described in § 6.12.2
in the same baseline network. Train with max- and average-
pooling again. Compare the results for both pooling before
and after the swap.

(b) Construct a network by referring to Appendix J with a max-
imum and range (max−min) pooling statistics in parallel.
The range statistic is an ancillary statistic that complements
the maximum statistic with regards to the information drawn
from a feature map. Present and discuss the results.

280 6.17. Exercises

(c) Explain why swapping the activation and pooling layers make
use of ancillary statistics such as range and standard devia-
tion possible?

(d) (Optional) Construct a network with average and standard
deviation pooling statistics in parallel. They are the MLEs
of a normal distribution. If feature maps are normally dis-
tributed, they pool the most relevant information. Present
and discuss the results.

(e) (Optional) Construct a network with Weibull distribution
MLE as the pooling statistic. Train the network with the
shape parameter k in {0.1, 1, 10, 100}. Present the results
and explain the effect of k.

Chapter 7

Autoencoders

7.1 Background

An autoencoder is a reconstruction model. It attempts to reconstruct
its inputs from itself as depicted below,

x→ f(x)→ z︸ ︷︷ ︸
encoding

→ g(z)→ x̂︸ ︷︷ ︸
decoding

. (7.1)

Clearly, an autoencoder is made of two modules: an encoder and
a decoder. As their names indicate, an encoder f encodes input x
into encodings z = f(x), and a decoder g decodes z back to a closest
reconstruction x̂.

Training a model to predict (construct) x̂ from x sometimes appear
trivial. However, an autoencoder does not necessarily strive for a perfect
reconstruction. Instead, the goal could be dimension reduction, denois-
ing, learning useful features for classification, pre-training another deep
network, or something else.

Autoencoders, therefore, fall in the category of unsupervised and
semi-supervised learning.

They were conceptualized in the late 80’s. These early works were in-
spired by principal component analysis. PCA, which was invented more
than a century ago (Pearson 1901), has remained a popular feature rep-

281

282 7.2. Architectural Similarity between PCA and Autoencoder

resentation technique in machine learning for dimension reduction and
feature representation. Autoencoders developed in Rumelhart, G. E.
Hinton, and R. J. Williams 1986; Baldi and Hornik 1989 provided a
neural network version of PCA.

Over the past two decades, autoencoders have come far ahead. Sparse
encoding with feature space larger than the input was developed in Ran-
zato, Poultney, et al. 2007; Ranzato, Boureau, and Cun 2008. Further-
more, denoising autoencoders based on corrupted input learning in Vin-
cent, Larochelle, Bengio, et al. 2008; Vincent, Larochelle, Lajoie, et al.
2010 and contractive penalty in Rifai, Vincent, et al. 2011; Rifai, Mesnil,
et al. 2011 came forward.

In this chapter, some of the fundamental concepts behind this vari-
ety of autoencoders are presented. It begins with explaining an autoen-
coder vis-à-vis a PCA in § 7.2. A simpler explanation is provided here
by drawing parallels. Thereafter, the family of autoencoders and their
properties are presented in § 7.3.

The chapter then switches to using autoencoders for rare event pre-
diction. An anomaly detection approach is used in § 7.4. Thereafter,
a sparse autoencoder is constructed and a classifier is trained on the
sparse encodings in § 7.5.

A sparse LSTM and convolutional autoencoders are also constructed
in § 7.6 for illustration. Towards the end of the chapter, § 7.7 presents
autoencoder customization in TensorFlow to incorporate sparse covari-
ance and orthogonal weights properties. The customization example
here is intended to help researchers implement their ideas. Lastly, the
chapter concludes with a few rules-of-thumb for autoencoders.

7.2 Architectural Similarity between PCA and
Autoencoder

For simplicity, a linear single layer autoencoder is compared with prin-
cipal component analysis (PCA).

There are multiple algorithms for PCA modeling. One of them is
estimation by minimizing the reconstruction error (see § 12.1.2 in Bishop

Chapter 7. Autoencoders 283

𝑥 " 𝑥 # 𝑥 $

𝑧 "
=
'

()
"

$
𝑤
"(
𝑥 (

𝑧 #
=
'

()
"

$
𝑤
#(
𝑥 (

𝑧 +
=
'

()
"

$
𝑤
+(
𝑥 (

𝑧 " 𝑧 # 𝑧 +

,𝑥 "
=
'

-)
"

+
𝑤
-".
𝑧 -

,𝑥 #
=
'

-)
"

+
𝑤
-#.
𝑧 -

,𝑥 /
=
'

-)
"

+
𝑤
-/.
𝑧 -

,𝑥 $
=
'

-)
"

+
𝑤
-$.
𝑧 -

W
+×

$
W
$×

+
.

𝒛 +
×
"
=
W
+×

$
𝒙 $

×
"

4 𝒙 $
×
"
=
W
$×

+
.

𝒛 +
×
"

𝑝
fe

at
ur

es

X 7
×
$

𝑛
sa

m
pl

es

In
pu

t L
ay

er
.

Si
ze

 p
 x

 1
.

Da
ta

 w
ith

 p
fe

at
ur

es

an
d

n
sa

m
pl

es
.

En
co

di
ng

 L
ay

er
.

In
pu

t p
 x

 1
.

O
ut

pu
t k

x
1.

W
ei

gh
ts

 W
+×
$

De
co

di
ng

 L
ay

er
.

In
pu

t k
 x

 1
.

O
ut

pu
t p

x
1.

W
ei

gh
ts

 W
$×

+
.

En
co

di
ng

s,

ou
tp

ut
 o

f t
he

En

co
di

ng
 L

ay
er

.
Si

ze
 k

x
1.

𝑤
""

⋯

𝑤
#"

⋯

𝑤
+"

⋯

𝑤
"#

𝑤
##

𝑤
+#

𝑤
"$

𝑤
#$

𝑤
+$

⋯

⋯

⋯

𝑤
"".

𝑤
#".

𝑤
+".

𝑤
"#.

𝑤
##.

𝑤
+#.

𝑤
"$.

𝑤
#$.

𝑤
+$.

En
co

di
ng

—
co

nv
er

tin
g

da
ta

 to
 e

nc
od

ed
 fe

at
ur

es
.

Au
to

en
co

de
r

PC
A

PC
 tr

an
sf

or
m

at
io

n—
co

nv
er

tin
g

da
ta

 to
 P

C
sc

or
es

.

D
ec

od
in

g—
re

co
ns

tr
uc

tin
g

da
ta

 fr
om

 e
nc

od
ed

 fe
at

ur
es

.

Re
co

ns
tr

uc
tio

n—
re

co
ns

tr
uc

tin
g

da
ta

 fr
om

 P
C

sc
or

es
.

F
ig
ur
e
7.
1.

Il
lu
st
ra
ti
on

of
P
C
A

an
d
A
ut
oe
nc
od
er

re
la
ti
on

sh
ip
.

284 7.2. Architectural Similarity between PCA and Autoencoder

2006). Following this algorithm gives a clearer understanding of the
similarities between a PCA and an autoencoder.

Figure 7.1 visualizes a single-layer linear autoencoder. As shown at
the bottom of the figure, the encoding process is similar to the principal
component transformation.

PC transformation is projecting the original data on the principal
components to yield reduced-dimension features called principal scores.
This is similar to the encoding process in an autoencoder.

Conversely, an autoencoder’s decoding process is similar to recon-
structing the data from the Principal Scores.

In the following, their relationship is further elaborated by showcas-
ing the key autoencoder components and their counterpart in PCA.

7.2.1 Encoding—Projection to Lower Dimension

PCA is a covariance decomposition expressed as Σ = WΛW T , where Σ
is the covariance matrix of X, W is the eigenvectors matrix, and Λ is
an eigenvalues diagonal matrix.

The W matrix is an orthogonal basis, also known as the principal
components. The transformation of the original data X into principal
features is,

Z = XW (7.2)

where W is a p × k matrix with eigenvectors in each column. The
eigenvectors are the top k principal components. The k is chosen as
less than the original dimension p of X, i.e., k < p. This dimension
reduction can also be seen as an encoding.

A similar process occurs in the encoding stage of an autoencoder.
Look closely at the encoder section in Figure 7.1.

The encoding (dense) layer has k nodes. A colored cell in the layer
is a computing node with p weights. The weights can also be denoted
as a p × k matrix W . The weights on each node are the equivalent of
an eigenvector in PCA.

Chapter 7. Autoencoders 285

The encoding output is,

Z = g(XW) (7.3)

where g is an activation function. If the activation is linear, the
encoding in autoencoder becomes equivalent to the principal scores in
PCA (Equation 7.2).

7.2.2 Decoding—Reconstruction to Original Dimension

Reconstructing the data is also called decoding. The original data can
be reconstructed (estimated) from the principal scores as,

X̂ = ZW T . (7.4)

Similarly, the decoder in an autoencoder reconstructs the data. As
shown in Figure 7.1, the data is reconstructed as,

X̂ = ZW ′ (7.5)

whereW ′ is a k×p weight matrix. Unlike in encoding, the activation
in decoding depends on the range of the input. For example, if the input
x ∈ R then a linear activation but if x ∈ R+ then a ReLU-like activation.
Since the inputs are usually scaled to belong in R, it is safe to assume
that the decoding has linear activation.

Note that theW in Equation 7.4 for PCA is the same as the encoding
weights in Equation 7.2. But a different weight W ′ in Equation 7.5 is
for a decoder. This is because the encoding and decoding weights are
not necessarily the same in autoencoders.

But they can be tied to become the same. This unison is shown
in Figure 7.1 using colors in the W matrices. When the encoder and
decoder weights are tied, we have

W ′ = W T (7.6)

which means the rows of the encoder weights become equal to the
columns of decoder weights.

286 7.3. Autoencoder Family

� If the encoder and decoder weights are tied and the
encoder has linear activation, the autoencoder be-

comes equivalent to a PCA model. Conversely, a nonlin-
early activated encoder is a nonlinear extension of PCA.

7.3 Autoencoder Family

There are several types of autoencoders. Table 7.1 summarizes the prop-
erties of the most common autoencoders. The rest of this section briefly
describes them along with their applications.

7.3.1 Undercomplete

An undercomplete autoencoder has a smaller encoding dimension than
the input. A simple example of such an autoencoder is,

X·×p → f(X·×pW
(e)
p×k)︸ ︷︷ ︸

encoder

→ Z·×k → g(Z·×kW
(d)
k×p)︸ ︷︷ ︸

decoder

→ X̂·×p. (7.7)

Here the input X and the encoding Z are p- and k-dimensional,
respectively, and k < p.

In learning a smaller representation, an undercomplete autoencoder
gathers the most salient features of the data. The learning process is
simply minimizing a loss function

L(x, g(f(xW (e))W (d))) (7.8)

where L is a loss function, for example, mean squared error, that
penalizes dissimilarity between x and x̂ = g(f(xW (e))W (d)).

Undercomplete autoencoders are more common. Perhaps because it
has roots in PCA. A linearly activated (single or multilayer) undercom-
plete autoencoder reduces to

Chapter 7. Autoencoders 287

T
ab

le
7.
1.

T
yp

es
of

au
to
en
co
de
rs

an
d
th
ei
r
pr
op

er
ti
es
.

U
nd

er
co
m
pl
et
e

au
to
en
co
de
r

R
eg
ul
ar
iz
ed

ov
er
co
m
pl
et
e

Sp
ar
se

au
to
en

co
de

r
D
en

oi
si
ng

au
to
en

co
de

r
C
on

tr
ac
ti
ve

au
to
en

co
de

r
W
el
l-p

os
ed

au
to
en

co
de

r
(N

ea
r)

O
rt
ho

go
na

lw
ei
gh

ts
,

λ
||W

T
W
−
I
||2 F

X

U
ni
tn
or
m

w
ei
gh

ts
,

||W
|| 2

=
1

X
X

X

Sp
ar
se

en
co
di
ng

co
va
ri
an

ce
,

λ
||Ω

z
(1
−
I
)||

2 F

X

Sp
ar
se

en
co
di
ng

,
λ
||Z
|| 1

X
X

Sm
al
ld

er
iv
at
iv
e,

λ
||
∂
z

∂
x
||2 F

X
X

Sm
al
le

nc
od

in
g,

k
<
p

X
X

C
or
ru
pt
ed

in
pu

t,
x
←
x

+
ε

X

288 7.3. Autoencoder Family

X·×p → X·×pW
(e)
p×k → Z·×k → Z·×kW

(d)
k×p → X̂·×p,

which is the same as PCA if W (e) has eigenvectors.

These roots bring the dimension reduction ability in undercomplete
autoencoder. Their encodings are, therefore, used in data compression
and data transformation. For example, classifiers on high-dimensional
data are sometimes trained on its encodings (a data transformation).

7.3.2 Overcomplete

While undercomplete autoencoder does dimension reduction and learns
the most important features, it sometimes fails to learn the true under-
lying process. It fails when the encoder and decoder are given too much
capacity, i.e., a lot to learn in a small dimension when k is small.

An overcomplete autoencoder overcomes the issue by allowing the
encoding dimension to be equal to or larger than the input. This eases
the over capacity issue.

A large encoding may appear counter-intuitive to the common un-
derstanding of autoencoders. It does not offer dimension reduction! On
the contrary, we have more. Even worse, an overcomplete autoencoder
can easily learn to become an identity transform, i.e., a trivial model
with W (e) = Ip×p.

To avoid triviality, an overcomplete autoencoder is regularized. A
nonlinear and regularized overcomplete autoencoder can effectively learn
the underlying data distribution due to its larger capacity.

A simple overcomplete autoencoder is similar to an undercomplete
autoencoder in Equation 7.7 except k ≥ p. The difference is in the loss
function. Overcomplete autoencoders necessarily have regularization
included in them. For example,

L(x, x̂) + λ1||z||1 + λ2

∣∣∣∣∣∣∂z
∂x

∣∣∣∣∣∣2
F

(7.9)

where L(x, x̂) is typically a mean squared error to keep the model
output x̂ close to the input x.

Chapter 7. Autoencoders 289

The second term λ1||z||1 encourages sparse encodings z. This is dis-
cussed more in § 7.3.5 on sparse autoencoders. Besides, it is argued
in Goodfellow, Bengio, and Courville 2016 that the L1-norm1 sparsity
penalty is not a “regularization” term. Instead, it is a way to approxi-
mately train a generative model.

The third term
∣∣∣∣∣∣∂z
∂x

∣∣∣∣∣∣2
F

makes the derivative of the encodings with
respect to the input smaller. This forces the autoencoder to learn a
function that is less sensitive to minor changes in x. An autoencoder
with derivative regularization is called a contractive autoencoder
discussed in § 7.3.4.

With these regularization properties taken from other autoencoders,
an overcomplete autoencoder learns useful abstraction of the data dis-
tribution even if its capacity is large enough to learn a trivial identity
function.

Besides, remember that Equation 7.9 is only an example of overcom-
plete model loss function. An overcomplete autoencoder can work with
any one of the two or other types of regularization as well.

7.3.3 Denoising Autoencoder (DAE)

Observing noisy data is common in several problems. One application
of autoencoders is to denoise the data. A specially designed denoising
autoencoder serves this purpose.

A simple denoising autoencoder appears as

x+ εεε→ f(x+ εεε)→ z → g(z)→ x̂, (7.10)

where εεε is a noise added to the input.

As shown in Equation 7.10, a denoising autoencoder deliberately
adds noise denoted with ε in the input. The model is then trained to
reconstruct the original x from its noisy version x+εεε. The loss function

1An L1-norm is ||z||1 =
∑
i |z|i.

290 7.3. Autoencoder Family

is, therefore, defined as

L(x, g(f(x+ εεε)). (7.11)

In minimizing the loss, a denoising autoencoder learns to skim de-
noised data from noise. It is shown in Bengio et al. 2013; Alain and
Bengio 2014 the model implicitly learns the structure of the data distri-
bution pdata(x).

Besides, a denoising autoencoder can be constructed as an overcom-
plete high-capacity autoencoder. It is because its loss function becomes

E(||x− x̂||2) + σ2E
[∣∣∣∣∣∣∂z
∂x

∣∣∣∣∣∣2
F

]
+ o(σ2) (7.12)

if we have mean squared error criterion and the noise is additive,
x← x+ εεε, and gaussian, ε ∼ N(0, σ) (refer to Alain and Bengio 2014).

7.3.4 Contractive Autoencoder (CAE)

A contractive autoencoder is trained to make encodings robust to noisy
perturbations in the input. To encourage robustness, the sensitivity of
z to any perturbations in the input is penalized during model training.

How to measure the sensitivity? The derivative of encodings with
respect to the input makes an appropriate measure.

If the input and encoding are x ∈ Rp and z ∈ Rk, respectively, then

the derivative
∂z

∂x
is a k × p matrix. The matrix of derivatives is called

a Jacobian denoted by J where

Jij =
∂zi
∂xj

, i = 1, . . . , k, j = 1, . . . , p. (7.13)

The overall sensitivity of a model encodings is estimated by the
Frobenius-norm of J , which in simple terms is the sum of squares of

every derivative Jij . The norm is expressed as ||J ||2F =
∑

ij

(∂zi
∂xj

)2
.

Chapter 7. Autoencoders 291

Consequently, the CAE loss function with the penalty on derivatives
is

L(x, x̂) + λ
∣∣∣∣∣∣∂z
∂x

∣∣∣∣∣∣2
F
. (7.14)

The objective of a contractive autoencoder is similar to a denoising
autoencoder: make the encodings robust to noise. Alain and Bengio
2014 theoretically show that they are equivalent if denoising autoencoder
is trained by adding small Gaussian noise to the input.

However, they achieve robustness differently. Contractive autoen-
coder forces the encodings z to resist perturbations in the input. On
the other hand, a denoising autoencoder forces this on the inferences x̂.

In doing so, a contractive autoencoder learns better encodings to
use in other tasks such as classification. Rifai, Vincent, et al. 2011
achieved state-of-the-art classification errors on a range of datasets using
contractive autoencoders learned features to train MLPs.

“The best classification accuracy usually results from apply-
ing the contractive penalty (for robustness to input pertur-
bations) to the encodings z rather than to the inferences
x̂,”

–Goodfellow, Bengio, and Courville 2016.

Rifai, Vincent, et al. 2011 found that the Jacobian norm penalty
in contractive autoencoder loss (Equation 7.14) carve encodings that
correspond to a lower-dimensional non-linear manifold. Simply put, a
manifold is a house of data. The objective of autoencoders is to find the
shape of the smallest such house. In doing so, its encodings learn the
essential characteristics of the data.

� In simple terms, a manifold is a house of data. An
autoencoder finds the shape of the smallest such

house.

The encodings capture the local directions of the variations along

292 7.3. Autoencoder Family

the manifold while being more invariant to a majority of directions or-
thogonal to the manifold.

Think of this as the manifold house has data on its walls. Variations
along the walls should be captured. But variations perpendicular to
a wall (and on the outside) is noise. The model should, therefore, be
invariant to them.

Rifai, Mesnil, et al. 2011 went further to add a penalty on the second

derivative of encodings
∂2z

∂x2
called the Hessian to develop a higher-order

contractive autoencoder. While the first derivative Jacobian penalty
ensures robustness to small noise, the Hessian penalty extends this ro-
bustness to larger noise.

From a manifold perspective, the Hessian penalty penalizes curva-
ture. This means the manifold house will have smoother walls. Conse-
quently, the noisier data falls out of it easily.

With its benefits, a practical issue with the contractive autoencoders
is that although the Jacobian or Hessian is cheap to compute in single
hidden layer autoencoders, it becomes expensive in deeper autoencoders.
Rifai, Vincent, et al. 2011 addressed the issue by separately training a
series of single-layer autoencoders stacked to make a deep autoencoder.
This strategy makes each layer locally contractive and, consequently,
the deep autoencoder contractive.

7.3.5 Sparse Autoencoder

A sparse autoencoder imposes sparsity on the encodings z. The sparse
encodings are typically drawn to perform another task, such as classifi-
cation.

For instance, suppose we have labeled data (x, y) from a high-dimensional
process. Learning a classifier on high-dimensional data is challenging.
However, a sparse autoencoder can extract the relevant information
along with reducing the classification features dimension. An example
of such a model is

Chapter 7. Autoencoders 293

x→ f(x)→ z → g(z)→ x̂y
→ h(z)→ ŷ (7.15)

where x̂ is the reconstructed x and ŷ is the predicted label from
the encodings z, and f , g, h, denote encoder, decoder, and classifier,
respectively.

Its loss function is expressed as

L(x, g(f(x)) + λ||z||1 (7.16)

where the penalty is an L1-norm λ||z||1 = λ
∑

i |zi|.
The encoding size can be smaller, equal, or larger than the input.

It can vary based on the problem. Regardless, the sparsity penalty in
a sparse autoencoder extracts essential statistical features in the input
data.

This property is guaranteed because the sparsity penalty results in
the autoencoder approximate a generative model. It is straightforward
to show that the sparsity penalty is arrived at by framing a sparse
autoencoder as a generative model that has latent variables (refer to
§ 14.2.1 in Goodfellow, Bengio, and Courville 2016). The latent vari-
ables here are the encodings z.

� Sparsity penalty in an autoencoder is not a “reg-
ularization” term. It is a way of approximating a

generative model.

� Approximating a generative model with an autoen-
coder ensures the encodings are useful, i.e., they

describe the latent variables that explain the data.

Besides, the loss function in Equation 7.16 is if the autoencoder is

294 7.4. Anomaly Detection with Autoencoders

trained independent of the classification task. The loss function can
be modified to include classification. For example, the classifier and
autoencoder in Equation 7.15 can be trained simultaneously by including
the classification error in the loss as

L(x, g(f(x)) + L′(y, h(z)) + λ||z||1 (7.17)

where L′(y, h(z)) penalizes differences between the actual and pre-
dicted labels such as cross-entropy.

The former approach has two-stage learning. The encodings are
learned in the first stage by minimizing Equation 7.16 independent of
the classification task. The encodings act as latent features to train a
classifier in the second stage. This approach is tractable and, therefore,
easier to train. However, the encodings can sometimes be ineffective in
the classifier.

The simultaneous learning approach by minimizing loss in Equa-
tion 7.17 ensures the autoencoder learns the latent features such that
they are capable of classifying. However, it lacks tractability.

� Sparse autoencoders learn relevant information in
a reduced dimension useful in other tasks such as

classification.

7.4 Anomaly Detection with Autoencoders

Anomaly detection is unarguably one of the best approaches in rare
event detection problems. Especially, if the event is so rare that there
are insufficient samples to train a classifier. Fortunately, an (extremely)
rare event often appears as an anomaly in a process. They can, therefore,
be detected due to their abnormality.

Petsche et al. 1996 have one of the early works in deep learning which
developed anomaly detectors for rare event detection. They developed
an “autoassociator” to detect an imminent motor failure.

The “autoassociator” was essentially a reconstructor. Petsche et al.

Chapter 7. Autoencoders 295

1996 showed that the autoassociator has a small reconstruction error on
measurements recorded from healthy motors but a larger error on those
recorded from faulty motors.

This difference in the reconstruction errors: small for normal condi-
tions and large for a rare anomaly forms the basis of anomaly detection
models for rare events.

This section presents the anomaly detection approach for rare event
detection using an autoencoder. First, the approach is explained in
§ 7.4.1. Then an autoencoder construction and application for rare
event prediction is given in § 7.4.2-7.4.5.

7.4.1 Anomaly Detection Approach

If an event is extremely rare, we can use an anomaly detection ap-
proach to predict the rare event. In this approach, the rare event is
treated as anomalies. The model is trained to detect the anomaly.

Given a data set (xt, yt), t = 1, . . . , T , where yt corresponds to the
event and xt ∈ Rp are the process variables at time t with p dimensions.
The problem is to detect a rare event, if one occurred, at a time t′ when
t′ > T .

At time t′ > T , the event yt′ is unknown. For example, if a bank
fraud happened at t′ it may remain undetected until reported by the
account holder. By that time, a loss is likely to be already incurred.
Instead, if the fraud was detected at t′, the fraudulent transaction could
be withheld.

The anomaly detection works using a reconstruction model approach
for detection. The model learns to reconstruct the process variables xt
given itself, i.e., the model is x̂t|xt.

The approach can be broken down as follows.

1. Training

(a) Divide the process data into two parts: majority class (nega-
tively labeled), {xt, ∀t|yt = 0}, and minority class (positively
labeled), {xt,∀t|yt = 1}.

(b) The majority class is treated as a normal state of a process.

296 7.4. Anomaly Detection with Autoencoders

The normal state is when the process is event-less.

(c) Train a reconstruction model on the normal state samples
{xt,∀t|yt = 0}, i.e., ignore the positively labeled minority
data.

2. Inferencing

(a) A well-trained reconstruction model will be able to accurately
reconstruct a new sample xt′ if it belongs to the normal state.
It will, therefore, have a small reconstruction error ||xt′ −
x̂t′ ||22.

(b) However, a sample during a rare-event would be abnormal
for the model. The model will struggle to reconstruct it.
Therefore, the reconstruction error will be large.

(c) Such an instance of high reconstruction error is called out as
a rare event occurrence.

7.4.2 Data Preparation

As usual, we start model construction by loading the libraries in List-
ing 7.1.

Listing 7.1. Load libraries for dense reconstruction model
1 import numpy as np
2 import pandas as pd
3
4 %tensorflow_version 2.x
5 import tensorflow as tf
6 from tensorflow.keras.models import Model
7 from tensorflow.keras.layers import Input
8 from tensorflow.keras.layers import Dense
9 from tensorflow.keras.layers import Layer
10 from tensorflow.keras.layers import InputSpec
11 from tensorflow.keras.callbacks import

ModelCheckpoint
12 from tensorflow.keras.callbacks import TensorBoard
13 from tensorflow.keras import regularizers
14 from tensorflow.keras import activations
15 from tensorflow.keras import initializers

Chapter 7. Autoencoders 297

16 from tensorflow.keras import constraints
17 from tensorflow.keras import Sequential
18 from tensorflow.keras import backend as K
19 from tensorflow.keras.constraints import UnitNorm
20 from tensorflow.keras.constraints import Constraint
21 from tensorflow.python.framework import tensor_shape
22
23 from numpy.random import seed
24 seed (123)
25
26 from sklearn import datasets
27 from sklearn import metrics
28 from sklearn.model_selection import train_test_split
29 from sklearn.preprocessing import StandardScaler
30 import scipy
31
32 # User -defined library
33 import utilities.datapreprocessing as dp
34 import utilities.reconstructionperformance as rp
35 import utilities.simpleplots as sp

In the anomaly detection approach, an autoencoder is trained on
the “normal” state of a process which makes the majority class. In the
dataset, those are the 0 labeled samples. They are, therefore, separated
for training and a scaler is fitted on it. The rest of the validation and
test sets are scaled with it.

Listing 7.2. Data preparation for rare event detection
1 # The data is taken from https :// arxiv.org/abs

/1809.10717. Please use this source for any
citation.

2
3 df = pd.read_csv("data/processminer -sheet -break -rare

-event -dataset.csv")
4 df.head(n=5) # visualize the data.
5
6 # Hot encoding
7 hotencoding1 = pd.get_dummies(df[’Grade&Bwt’])
8 hotencoding1 = hotencoding1.add_prefix(’grade_ ’)
9 hotencoding2 = pd.get_dummies(df[’EventPress ’])
10 hotencoding2 = hotencoding2.add_prefix(

298 7.4. Anomaly Detection with Autoencoders

11 ’eventpress_ ’)
12
13 df = df.drop([’Grade&Bwt’, ’EventPress ’],
14 axis =1)
15
16 df = pd.concat ([df , hotencoding1 , hotencoding2],
17 axis =1)
18
19 # Rename response column name for ease of

understanding
20 df = df.rename(columns ={’SheetBreak ’: ’y’})
21
22 # Sort by time.
23 df[’DateTime ’] = pd.to_datetime(df.DateTime)
24 df = df.sort_values(by=’DateTime ’)
25
26 # Shift the response column y by 2 rows to do a 4-

min ahead prediction.
27 df = dp.curve_shift(df, shift_by =-2)
28
29 # Drop the time column.
30 df = df.drop([’DateTime ’], axis =1)
31
32 # Split the data and scale
33
34 DATA_SPLIT_PCT = 0.2
35 SEED = 123
36 df_train , df_test =
37 train_test_split(df ,
38 test_size=DATA_SPLIT_PCT ,
39 random_state=SEED)
40 df_train , df_valid =
41 train_test_split(df_train ,
42 test_size=DATA_SPLIT_PCT ,
43 random_state=SEED)
44
45 df_train_0 = df_train.loc[df[’y’] == 0]
46 df_train_1 = df_train.loc[df[’y’] == 1]
47 df_train_0_x = df_train_0.drop([’y’], axis =1)
48 df_train_1_x = df_train_1.drop([’y’], axis =1)
49
50 df_valid_0 = df_valid.loc[df[’y’] == 0]

Chapter 7. Autoencoders 299

51 df_valid_1 = df_valid.loc[df[’y’] == 1]
52 df_valid_0_x = df_valid_0.drop([’y’], axis =1)
53 df_valid_1_x = df_valid_1.drop([’y’], axis =1)
54
55 df_test_0 = df_test.loc[df[’y’] == 0]
56 df_test_1 = df_test.loc[df[’y’] == 1]
57 df_test_0_x = df_test_0.drop([’y’], axis =1)
58 df_test_1_x = df_test_1.drop([’y’], axis =1)
59
60 scaler = StandardScaler ().fit(df_train_0_x)
61 df_train_0_x_rescaled =
62 scaler.transform(df_train_0_x)
63 df_valid_0_x_rescaled =
64 scaler.transform(df_valid_0_x)
65 df_valid_x_rescaled =
66 scaler.transform(df_valid.drop([’y’],
67 axis = 1))
68
69 df_test_0_x_rescaled =
70 scaler.transform(df_test_0_x)
71 df_test_x_rescaled =
72 scaler.transform(df_test.drop([’y’],
73 axis = 1))

7.4.3 Model Fitting

An undercomplete autoencoder is constructed here. Its configurations
are as follows,

• A single layer encoder and decoder.

• The encoding size is taken as approximately half of the input fea-
tures. The size is chosen from the geometric series of 2 which is
closest to the half.

• The encoding layer is relu activated.

• The encoding weights are regularized to encourage orthogonality
(see § 7.7.3).

• The encodings are regularized to encourage a sparse covariance
(see § 7.7.4).

300 7.4. Anomaly Detection with Autoencoders

• The encoding and decoding weights are constrained to have a unit
norm. The encoding weights are normalized along the rows axis
while the decoding weights on the columns axis.

• The decoding layer is linear activated. It is mandatory to have
it linearly activated because it reconstructs the input that ranges
in (−∞,∞).

• The loss function is mean squared error that is appropriate because
x is unbounded.

• The input x and output y in the .fit() function are the same in
an autoencoder as the objective is to reconstruct x from itself.

Listing 7.3. Autoencoder model fitting
1 # Autoencoder for rare event detection
2
3 input_dim = df_train_0_x_rescaled.shape [1]
4
5 encoder = Dense(units=32,
6 activation="relu",
7 input_shape =(input_dim ,),
8 use_bias = True ,
9 kernel_regularizer=
10 OrthogonalWeights(
11 weightage =1.,
12 axis =0),
13 kernel_constraint=
14 UnitNorm(axis =0),
15 activity_regularizer=
16 SparseCovariance(weightage =1.),

name=’encoder ’)
17
18 decoder = Dense(units=input_dim ,
19 activation="linear",
20 use_bias = True ,
21 kernel_constraint=
22 UnitNorm(axis =1), name=’decoder ’)
23
24 autoencoder = Sequential ()
25 autoencoder.add(encoder)

Chapter 7. Autoencoders 301

26 autoencoder.add(decoder)
27
28 autoencoder.summary ()
29 autoencoder.compile(metrics =[’accuracy ’],
30 loss=’mean_squared_error ’,
31 optimizer=’adam’)
32
33 history = autoencoder.fit(x=df_train_0_x_rescaled ,
34 y=df_train_0_x_rescaled ,
35 batch_size =128,
36 epochs =100,
37 validation_data=
38 (df_valid_0_x_rescaled ,
39 df_valid_0_x_rescaled),
40 verbose =0).history

7.4.4 Diagnostics

A few simple diagnostics are done on the fitted autoencoder. In List-
ing 7.4, it is shown that the dot product of encoding weights are nearly
an identity matrix. That shows the effect of the OrthogonalWeights()
regularizer.

The listing also shows that the weights have an exact unit-norm. A
unit-norm constraint is relatively simpler to impose than orthogonality.
Unit-norm does not significantly impact learning. It is simply normal-
izing any estimated set of weights. Unlike orthogonality, this constraint
can, therefore, be a hard-constraint2.

Listing 7.4. Near orthogonal encoding weights
1 # Near orthogonal encoding weights
2 w_encoder = autoencoder.get_layer(’encoder ’).

get_weights ()[0]
3 print(’Encoder weights dot product\n’,
4 np.round(np.dot(w_encoder.T, w_encoder), 2))
5
6 # Encoder weights dot product

2A hard-constraint is strictly applied while a soft-constraint is encouraged to be
present in a model.

302 7.4. Anomaly Detection with Autoencoders

7 # [[1. 0. -0. ... -0. 0. -0.]
8 # [0. 1. 0. ... 0. -0. 0.]
9 # [-0. 0. 1. ... -0. 0. 0.]
10 # ...
11 # [-0. 0. -0. ... 1. -0. -0.]
12 # [0. -0. 0. ... -0. 1. 0.]
13 # [-0. 0. 0. ... -0. 0. 1.]]
14
15 # Encoding weights have unit norm
16 w_encoder = np.round(autoencoder.get_layer(’encoder ’

).get_weights ()[0], 2).T
17 print(’Encoder weights norm , \n’,
18 np.round(np.sum(w_encoder ** 2, axis = 1), 1))
19
20 # Encoder weights norm ,
21 # [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
22 # 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
23 # 1. 1. 1. 1. 1. 1.]

After this, Listing 7.5 shows the covariance sparsity of the learned
encodings. That ensures the encodings have less redundant information.

Listing 7.5. Sparse covariance of encodings
1 # Nearly -uncorrelated encoded features
2 encoder_model = Model(inputs=autoencoder.inputs ,
3 outputs=autoencoder.get_layer(

’encoder ’).output)
4 encoded_features = pd.DataFrame(encoder_model.

predict(df_train_0_x_rescaled))
5
6 print(’Encoded feature correlations\n’,
7 np.round(encoded_features.corr(), 2))
8
9 # Encoded feature correlations
10 # 0 1 2 ... 29 30 31
11 # 0 1.00 -0.01 -0.08 ... 0.04 0.03 -0.12
12 # 1 -0.01 1.00 0.05 ... -0.01 0.06 -0.02
13 # 2 -0.08 0.05 1.00 ... 0.11 -0.02 0.10
14 # 3 0.00 -0.03 -0.04 ... 0.17 0.04 -0.02
15 # ...
16 # 28 -0.02 0.09 0.15 ... -0.10 -0.16 -0.03
17 # 29 0.04 -0.01 0.11 ... 1.00 -0.01 -0.08

Chapter 7. Autoencoders 303

18 # 30 0.03 0.06 -0.02 ... -0.01 1.00 0.09
19 # 31 -0.12 -0.02 0.10 ... -0.08 0.09 1.00
20 # [32 rows x 32 columns]

7.4.5 Inferencing

The inferencing for rare event prediction using an autoencoder is made
by classifying the reconstruction errors as high or low. A high recon-
struction error indicates the sample is anomalous to the normal process
and, therefore, inferred as a rare event.

Listing 7.6. Autoencoder inferencing for rare event prediction
1 # Inferencing
2 error_vs_class_valid =
3 rp.reconstructionerror_vs_class(
4 model=autoencoder ,
5 sample=df_valid_x_rescaled ,
6 y=df_valid[’y’])
7
8 # Boxplot
9 plt , fig = rp.error_boxplot(
10 error_vs_class=error_vs_class_valid)
11
12 # Prediction confusion matrix
13 error_vs_class_test =
14 rp.reconstructionerror_vs_class(
15 model=autoencoder ,
16 sample=df_test_x_rescaled ,
17 y=df_test[’y’])
18 conf_matrix , fig =
19 rp.model_confusion_matrix(
20 error_vs_class=error_vs_class_test ,
21 threshold=errors_valid1.quantile (0.50))

To determine the threshold of high vs low, boxplot statistics of the
reconstruction error is determined for the positive and negative samples
in the validation set. The boxplots are shown in Figure 7.4a.

From them, the 50-percentile of the positive sample errors is taken as
the threshold for inferring a test sample as a rare event. The confusion
matrix from test set predictions is shown in Figure 7.4b.

304 7.4. Anomaly Detection with Autoencoders

0.0 1.0
true class

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
reconstruction_error

Boxplot grouped by true_class

(a) Boxplot.

Normal Break
Predicted class

No
rm

al
Br

ea
k

Tr
ue

 c
la

ss

2492 1520

27 26
500

1000

1500

2000

(b) Confusion matrix.

Figure 7.2. Dense undercomplete autoencoder inferencing results. The
boxplot of reconstruction errors for positive and negative samples
in the validation set is at the top. The bottom figure shows the
confusion matrix of the test inferences made based on the error
threshold from the validation set.

The test recall is as high as ∼ 50% but at the cost of a high false-
positive rate ∼ 38%. The f1-score is, therefore, as small as ∼ 3%.

A high false-positive rate may be undesirable in some problems. An-
other approach of using encodings learned from an autoencoder in a
feed-forward classifier typically addresses the issue and shown in the
next section.

Chapter 7. Autoencoders 305

7.5 Feed-forward MLP on Sparse Encodings

In this section, first, an overcomplete sparse autoencoder is constructed
in § 7.5.1. Its encodings are then used in a feed-forward MLP classifier
in § 7.5.2. This section shows that sparse autoencoders can learn useful
features and help improve classification tasks.

7.5.1 Sparse Autoencoder Construction

A sparse autoencoder described in § 7.3.5 is constructed here. The
model is overcomplete with the encoding dimension equal to the input
dimension.

The sparsity regularization is imposed on the encodings by setting
activity_regularizer=tf.keras.regularizers.L1(l1=0.01) in the
model construction in Listing 7.7.

Listing 7.7. Sparse Autoencoder to derive predictive features
1 # Sparse Autoencoder for Rare Event Detection
2 input_dim = df_train_0_x_rescaled.shape [1]
3
4 encoder = Dense(units=input_dim ,
5 activation="relu",
6 input_shape =(input_dim ,),
7 use_bias = True ,
8 kernel_constraint=
9 UnitNorm(axis =0),
10 activity_regularizer=
11 tf.keras.regularizers.L1(
12 l1 =0.01) ,
13 name=’encoder ’)
14
15 decoder = Dense(units=input_dim ,
16 activation="linear",
17 use_bias = True ,
18 kernel_constraint=
19 UnitNorm(axis =1), name=’decoder ’)
20
21 sparse_autoencoder = Sequential ()
22 sparse_autoencoder.add(encoder)

306 7.5. Feed-forward MLP on Sparse Encodings

23 sparse_autoencoder.add(decoder)
24
25 sparse_autoencoder.summary ()
26 sparse_autoencoder.compile(
27 metrics =[’accuracy ’],
28 loss=’mean_squared_error ’,
29 optimizer=’adam’)
30
31 history = sparse_autoencoder.fit(
32 x=df_train_0_x_rescaled ,
33 y=df_train_0_x_rescaled ,
34 batch_size =128,
35 epochs =100,
36 validation_data =(df_valid_0_x_rescaled ,
37 df_valid_0_x_rescaled),
38 verbose =0).history

This regularization makes the autoencoder’s loss function as in Equa-
tion 7.16. Due to the sparsity penalty in loss, the encoder weights shown
in Listing 7.8 are not a trivial identity function even though the autoen-
coder is overcomplete (refer to the issue of trivial encodings in § 7.3.2).

Listing 7.8. Encoder weights are not identity in an overcomplete sparse
autoencoder
1 # Weights on encoder
2 w_encoder = np.round(np.transpose(
3 autoencoder.get_layer(’encoder ’).get_weights ()

[0]), 3)
4
5 # Encoder weights
6 # [[0.088 0.063 0.009 ... 0.096 -0.261 0.103]
7 # [0.076 0.227 0.071 ... 0.083 -0.007 0.094]
8 # [0.055 -0.1 -0.218 ... -0.019 -0.067 0.011]
9 # ...
10 # [0.039 -0.042 0.078 ... -0.216 -0.066 0.178]
11 # [0.088 -0.169 0.084 ... -0.333 -0.109 0.171]
12 # [0.057 0.081 -0.086 ... 0.26 0.201 -0.1]]

Moreover, the effect of the encodings sparsity penalty is visible in
Figure 7.3. The figure shows several encodings are pushed to zero. In
doing so, the autoencoder learns only the essential data features.

Chapter 7. Autoencoders 307

Figure 7.3. Encodings of the sparse autoencoder.

The sparse encodings did prove to improve the model’s performance.
The boxplots in Figure 7.4a show a better separation of positive and
negative samples compared to the previous model. The confusion matrix
in Figure 7.4b also shows an improvement.

With the sparse autoencoder, the recall increased to ∼ 60%, the
false-positive rate decreased to ∼ 34%, and f1-score increased to ∼ 4%.
The false-positive rate is still high. The next section shows a feed-
forward MLP on the sparse encodings to resolve the issue.

7.5.2 MLP Classifier on Encodings

The encodings learned in sparse autoencoders typically make excellent
input features to a feed-forward classifier in deep learning.

In this section, a two-stage approach: 1. learn a sparse encoder, and
2. train a classifier on the encodings, is demonstrated.

Listing 7.9 first derives the encodings of the training, validation,
and test x’s by passing them through the sparse encoder learned in the
previous § 7.5.1.

An MLP model with the same architecture as the baseline MLP in
§ 4.4 is constructed except that the network is trained on the encodings.

Listing 7.9. MLP feed-forward classifier on sparse encodings for rare
event prediction
1 # Classifier on the sparse encodings
2

308 7.5. Feed-forward MLP on Sparse Encodings

0.0 1.0
true class

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200
reconstruction_error

Boxplot grouped by true_class

(a) Boxplot.

Normal Break
Predicted class

No
rm

al
Br

ea
k

Tr
ue

 c
la

ss

2624 1388

21 32
500

1000

1500

2000

2500

(b) Confusion matrix.

Figure 7.4. Sparse overcomplete autoencoder inferencing results. The
boxplot (top) shows the sparse autoencoder could better separate
positive and negative samples. The confusion matrix (bottom)
confirms it with an improvement in the accuracy measures.

3 # Data preparation
4 import utilities.performancemetrics as pm
5 df_train_x = df_train.drop([’y’], axis =1)
6 df_train_y = df_train[’y’]. values
7
8 df_train_x_rescaled = scaler.transform(df_train_x)
9
10 df_valid_y = df_valid[’y’]. values
11 df_test_y = df_test[’y’]. values
12

Chapter 7. Autoencoders 309

13 # Obtain encodings to use as features in classifier
14 encoder_model =
15 Model(inputs=sparse_autoencoder.inputs ,
16 outputs=sparse_autoencoder.get_layer(’

encoder ’).output)
17 X_train_encoded_features =
18 encoder_model.predict(df_train_x_rescaled)
19 X_valid_encoded_features =
20 encoder_model.predict(df_valid_x_rescaled)
21 X_test_encoded_features =
22 encoder_model.predict(df_test_x_rescaled)
23
24 # Model
25 classifier = Sequential ()
26 classifier.add(Input(
27 shape=(X_train_encoded_features.shape [1],)))
28 classifier.add(Dense(units=32,
29 activation=’relu’))
30 classifier.add(Dense(units=16,
31 activation=’relu’))
32 classifier.add(Dense(units=1,
33 activation=’sigmoid ’))
34
35 classifier.compile(optimizer=’adam’,
36 loss=’binary_crossentropy ’,
37 metrics =[’accuracy ’,
38 tf.keras.metrics.Recall (),
39 pm.F1Score (),
40 pm.FalsePositiveRate ()]
41)
42
43 history = classifier.fit(
44 x=X_train_encoded_features ,
45 y=df_train_y ,
46 batch_size =128,
47 epochs =150,
48 validation_data =(X_valid_encoded_features ,
49 df_valid_y),
50 verbose =0).history

The model’s f1-score, recall, and FPR are shown in Figure 7.5a and
7.5b. These accuracy measures when compared with the MLP model

310 7.6. Temporal Autoencoder

results on original data in Figure 4.5b and 4.5c show a clear improve-
ment. The f1-score increased from ∼ 10% to ∼ 20%, recall increased
from ∼ 5% to ∼ 20%, and false-positive remained close to zero.

0 20 40 60 80 100 120 140
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

f1
_s

co
re

Train f1_score
Valid f1_score

(a) F1-score.

0 20 40 60 80 100 120 140
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

va
lu

e

Train Recall
Valid Recall
Train FPR
Valid FPR

(b) Recall and FPR.

Figure 7.5. MLP feed-forward classifier on sparse encodings results.

7.6 Temporal Autoencoder

A dense autoencoder encodes flat data. Sometimes it is required to
encode them as sequences or time series. Sequence constructs such as
LSTM and Convolution can be used to build autoencoders for them.

However, there are a few differences in this autoencoder construction
compared to a dense autoencoder. They are discussed below along with
constructing LSTM and convolutional autoencoders.

7.6.1 LSTM Autoencoder

An LSTM autoencoder can be used for sequence reconstruction, sequence-
to-sequence translation (Sutskever, Vinyals, and Le 2014), or feature ex-
traction for other tasks. The simple sparse autoencoder is constructed
here in Listing 7.10 which can be modified based on the objective.

In this model,

• an overcomplete autoencoder is modeled.

• The model is split into encoder and decoder modules.

Chapter 7. Autoencoders 311

• The encoder has the same number of units as the number of input
features (overcompleteness).

• The LSTM layer output in the encoder is flattened (in line 18).
This is to provide encoded vectors. This is optional.

• The encoded vector is L1-regularized in line 22 for sparsity.

• The encoder and decoder modules end with a linearly activated
Dense layer. The ending dense layer is not for feature extraction.
Instead, its task is similar to calibration. Complex layers such
as LSTM and convolution yield features that may be in a different
space than the original data. A linear dense layer brings these
features back to the original space for reconstruction.

• The ending Dense layer in the decoder is applied directly to the
LSTM sequence outputs. Flattening the sequences is unnecessary
because the dense layer automatically estimates a weights tensor
compatible with the shape of the sequences.

Listing 7.10. A sparse LSTM autoencoder
1 # LSTM Autoencoder Model
2 # Encoder
3
4 inputs = Input(shape =(TIMESTEPS ,
5 N_FEATURES),
6 name=’encoder -input’)
7
8 x = LSTM(units=N_FEATURES ,
9 activation=’tanh’,
10 return_sequences=True ,
11 name=’encoder -lstm’)(inputs)
12
13 # Shape info needed to build Decoder Model
14 e_shape = tf.keras.backend.int_shape(x)
15 latent_dim = e_shape [1] * e_shape [2]
16
17 # Generate the latent vector
18 x = Flatten(name=’flatten ’)(x)
19 latent = Dense(units=latent_dim ,
20 activation=’linear ’,

312 7.6. Temporal Autoencoder

21 activity_regularizer=
22 tf.keras.regularizers.L1(l1 =0.01) ,
23 name=’encoded -vector ’)(x)
24
25 # Instantiate Encoder Model
26 encoder = Model(inputs=inputs ,
27 outputs=latent ,
28 name=’encoder ’)
29 encoder.summary ()
30
31 # Decoder
32 latent_inputs = Input(shape=(latent_dim ,),
33 name=’decoder_input ’)
34
35 x = Reshape ((e_shape [1], e_shape [2]),
36 name=’reshape ’)(latent_inputs)
37
38 x = LSTM(units=N_FEATURES ,
39 activation=’tanh’,
40 return_sequences=True ,
41 name=’decoder -lstm’)(x)
42
43 output = Dense(units=N_FEATURES ,
44 activation=’linear ’,
45 name=’decoded -sequences ’)(x)
46
47 # Instantiate Decoder Model
48 decoder = Model(inputs=latent_inputs ,
49 outputs=output ,
50 name=’decoder ’)
51 decoder.summary ()
52
53 # Instantiate Autoencoder Model using Input and

Output
54 autoencoder = Model(inputs=inputs ,
55 outputs=decoder(inputs=encoder(

inputs)),
56 name=’autoencoder ’)
57 autoencoder.summary ()

Chapter 7. Autoencoders 313

� Linearly activated dense layer in encoder and de-
coder is necessary for calibration.

7.6.2 Convolutional Autoencoder

An autoencoder that encodes data using convolutions is called a con-
volutional autoencoder. Unlike most other autoencoders, a convolu-
tional autoencoder uses different types of convolution layers for encoding
and decoding. This and other specifications of a convolutional autoen-
coder constructed in Listing 7.11 are given below.

• The encoder and decoder modules are encapsulated within defi-
nitions. The encapsulation approach makes it easier to construct
more complex modules. Moreover, the benefit is in visualizing the
network structure as shown in Figure 7.6.

• A sparsity constraint on the encodings (for a sparse autoencoder)
is added in the encoder in line 44.

• The decoder in a convolutional autoencoder cannot be made with
Conv layers. A convolution layer is meant for extracting abstract
features. In doing so, it downsizes the input. A decoder, on the
other hand, is meant to reconstruct the input by upsizing (en-
coded) features. This is possible with ConvTranspose layers, also
known as the deconvolutional layer (refer Shi, Caballero, Theis,
et al. 2016).

• Pooling should strictly be not used in the decoder. Pooling is
for data summarization. But decoding is for reconstruction. Any
summarization with pooling can obstruct reconstruction.

• Decoding with (transpose) convolutional layers sometimes causes
feature inflation. A batch normalization layer is usually added to
stabilize the reconstruction.

• Similar to an LSTM autoencoder and for the same reason, a Dense
layer is added at the end of both encoder and decoder. Its purpose
is to calibrate the encoding and decoding.

314 7.6. Temporal Autoencoder

� Pooling and Conv layers should not be used in a
decoder of convolutional autoencoders.

� ConvTranspose is used in place of a Conv layer in
a decoder of convolutional autoencoders.

Listing 7.11. A sparse convolutional autoencoder
1 inputs = Input(shape =(TIMESTEPS ,
2 N_FEATURES),
3 name=’encoder_input ’)
4
5 def encoder(inp):
6 ’’’
7 Encoder.
8
9 Input
10 inp A tensor of input data.
11
12 Process
13 Extract the essential features of the input as
14 its encodings by filtering it through
15 convolutional layer(s). Pooling can also
16 be used to further summarize the features.
17
18 A linearly activated dense layer is added as the
19 final layer in encoding to perform any affine
20 transformation required. The dense layer is not
21 for any feature extraction. Instead , it is only
22 to make the encoding and decoding connections
23 simpler for training.
24
25 Output
26 encoding A tensor of encodings.
27 ’’’
28
29 # Multiple (conv , pool) blocks can be added here
30 conv1 = Conv1D(filters=N_FEATURES ,

Chapter 7. Autoencoders 315

31 kernel_size =4,
32 activation=’relu’,
33 padding=’same’,
34 name=’encoder -conv1’)(inp)
35 pool1 = MaxPool1D(pool_size=4,
36 strides=1,
37 padding=’same’,
38 name=’encoder -pool1’)(conv1)
39
40 # The last layer in encoding
41 encoding = Dense(units=N_FEATURES ,
42 activation=’linear ’,
43 activity_regularizer=
44 tf.keras.regularizers.L1(l1

=0.01) ,
45 name=’encoder ’)(pool1)
46
47 return encoding
48
49 def decoder(encoding):
50 ’’’
51 Decoder.
52
53 Input
54 encoding The encoded data.
55
56 Process
57 The decoding process requires a transposed
58 convolutional layer , a.k.a. a deconvolution
59 layer. Decoding must not be done with a
60 regular convolutional layer. A regular conv
61 layer is meant to extract a downsampled
62 feature map. Decoding , on the other hand ,
63 is reconstruction of the original data from
64 the downsampled feature map. A regular
65 convolutional layer would try to extract
66 further higher level features from
67 the encodings instead of a reconstruction.
68
69 For a similar reason , pooling must not be
70 used in a decoder. A pooling operation is
71 for summarizing a data into a few summary

316 7.6. Temporal Autoencoder

72 statistics which is useful in tasks such as
73 classification. The purpose of decoding is
74 the opposite , i.e., reconstruct the original
75 data from the summarizations. Adding pooling
76 in a decoder makes it lose the variations
77 in the data and , hence , a poor reconstruction.
78
79 If the purpose is only reconstruction , a
80 linear activation should be used in decoding.
81 A nonlinear activation is useful for
82 predictive features but not for reconstruction.
83
84 Batch normalization helps a decoder by
85 preventing the reconstructions
86 from exploding.
87
88 Output
89 decoding The decoded data.
90
91 ’’’
92
93 convT1 = Conv1DTranspose(filters=N_FEATURES ,
94 kernel_size =4,
95 activation=’linear ’,
96 padding=’same’)(encoding)
97
98 decoding = BatchNormalization ()(convT1)
99

100 decoding = Dense(units=N_FEATURES ,
101 activation=’linear ’,
102 name=’decoder ’)(decoding)
103
104 return decoding
105
106 autoencoder = Model(inputs=inputs ,
107 outputs=decoder(encoder(inputs))

)
108
109 autoencoder.summary ()
110
111 autoencoder.compile(loss=’mean_squared_error ’,
112 optimizer = ’adam’)

Chapter 7. Autoencoders 317

Figure 7.6. A baseline convolutional autoencoder.

113
114 history = autoencoder.fit(x=X_train_y0_scaled ,
115 y=X_train_y0_scaled ,
116 epochs =100,
117 batch_size =128,
118 validation_data=
119 (X_valid_y0_scaled ,
120 X_valid_y0_scaled),
121 verbose =1).history

A convolutional autoencoder can be used for image reconstruction,

318 7.7. Autoencoder Customization

image denoising, or, like the other autoencoders, feature extraction for
other tasks (Shi, Caballero, Huszár, et al. 2016).

In this chapter, three different programmatic paradigms in Tensor-
Flow is used for constructing a dense, an LSTM, and a convolutional
autoencoder. The paradigms are interchangeable for simple models.
However, the functional approach used for the convolutional autoen-
coder in Listing 7.11 is preferable.

7.7 Autoencoder Customization

Autoencoders have proven to be useful for unsupervised and semi-supervised
learning. Earlier, § 7.3 presented a variety of ways autoencoders can be
modeled. Still, there is significant room for new development.

The section is intended for researchers seeking new development. It
presents an autoencoder customization idea in § 7.7.1. A customized
autoencoder is then constructed in § 7.7.2-7.7.4.

7.7.1 Well-posed Autoencoder

A mathematically well-posed autoencoder is easier to tune and opti-
mize. The structure of a well-posed autoencoder can be defined from its
relationship with principal component analysis.

As explained in the previous § 7.2.1 and 7.2.2, a linearly activated
autoencoder approximates PCA. And, conversely, autoencoders are a
nonlinear extension of PCA. In other words, an autoencoder extends
PCA to a nonlinear space. Therefore, an Autoencoder should ideally
have the properties of PCA. These properties are,

• Orthonormal weights. It is defined as follows for encoder weights,

W TW = I, and (7.18)
p∑
j=1

w2
ij = 1, i = 1, . . . , k (7.19)

Chapter 7. Autoencoders 319

where I is a p×p identity matrix, p is the number of input features,
and k is the number of nodes in an encoder layer.

• Independent features. The principal component analysis yields
independent features. This can be seen by computing the covari-
ance of the principal scores Z = XW ,

cov(Z) ∝ (XW)T (XW)

= W TXTXW

∝W TWΛW TW

= Λ

where Λ is a diagonal matrix of eigenvalues and W are the eigen-
vectors. But autoencoder weights are not necessarily eigenvectors.
Therefore, this property is not present by default and can be in-
corporated by adding a constraint,

correlation(Zencoder) = I. (7.20)

• Tied layer. An autoencoder typically has an hour-glass like sym-
metric structure3. In such a network, there is a mirror-layer in the
decoder for every layer in the encoder. These layers can be tied
by their weights and activations as

W (−l) = (W (l))T (7.21)

f (−l) = (f (l))−1 (7.22)

where W (l) and f (l) are the weights and activation on the l-th en-
coder layer, and W (−l) and f (−l) are on its mirror layer in the de-
coder. The weights transpose relationship in Equation 7.21 comes
from Equation 7.6. The activations’ inverse relationship is required
due to their nonlinearity.

3An autoencoder does not necessarily have an hour-glass like structure. The
decoder can be structured differently than the encoder.

320 7.7. Autoencoder Customization

Tying the weights without the activations inverse relationship can
cause poor reconstruction. Consider a simple autoencoder flow to
understand this issue:

X → f (l)(XW (l))︸ ︷︷ ︸
encoder

→ Z → f (−l)(ZW (−l))︸ ︷︷ ︸
decoder

→ X̂.

In this flow, if W (−l) becomes W ((l))T then f (−l) must become
the inverse of f (l). Otherwise, the model is improperly posed.
For example, if f (−l) is the same as f (l) then the model will be
expected to yield the estimation of the input X using the same
weights learned for encoding and the same nonlinear activation
but X → f (l)(XW (l))→ Z → f (l)(Z(W (l))T) 6→ X̂

Therefore, layers can only be tied in presence of a nonlinear acti-
vation and its inverse. However, defining such activation is non-
trivial. In its absence, layers can be tied only if they are linearly
activated in which case we lose the multilayer and nonlinear ben-
efits of autoencoders.

7.7.2 Model Construction

In this section, an autoencoder with sparse encoding representation co-
variance (the features independence property in § 7.7.1) and orthonormal
weights regularization is constructed and fitted on a random data. The
custom definitions for these properties and the regularization effects are
then illustrated in § 7.7.3 and 7.7.4.

The model is constructed and fitted on random data. The encoder
layer has kernel_regularizer, kernel_constraint, and
activity_regularizer defined. These are discussed in the next sec-
tions.

Listing 7.12. An illustrative example of a regularized autoencoder.
1 # Generate Random Data for Testing
2 n_dim = 5
3
4 # Generate a positive definite
5 # symmetric matrix to be used as

Chapter 7. Autoencoders 321

6 # covariance to generate a random data.
7 cov = datasets.make_spd_matrix(n_dim ,
8 random_state=None)
9
10 # Generate a vector of mean for generating the

random data.
11 mu = np.random.normal(loc=0,
12 scale =0.1,
13 size=n_dim)
14
15 # Generate the random data , X.
16 n = 1000
17 X = np.random.multivariate_normal(mean=mu,
18 cov=cov ,
19 size=n)
20
21 # Autoencoder fitted on random data
22 nb_epoch = 100
23 batch_size = 16
24 input_dim = X.shape [1]
25 encoding_dim = 4
26 learning_rate = 1e-3
27
28 encoder = Dense(units=encoding_dim ,
29 activation="relu",
30 input_shape =(input_dim ,),
31 use_bias = True ,
32 kernel_regularizer=
33 OrthogonalWeights(
34 weightage =1.,
35 axis =0),
36 kernel_constraint=
37 UnitNorm(axis =0),
38 activity_regularizer=
39 SparseCovariance(
40 weightage =1.), name=’encoder

’)
41
42 decoder = Dense(units=input_dim ,
43 activation="linear",
44 use_bias = True ,
45 kernel_constraint=

322 7.7. Autoencoder Customization

46 UnitNorm(axis =1), name=’decoder ’
)

47
48 autoencoder = Sequential ()
49 autoencoder.add(encoder)
50 autoencoder.add(decoder)
51
52 autoencoder.compile(metrics =[’accuracy ’],
53 loss=’mean_squared_error ’,
54 optimizer=’sgd’)
55 autoencoder.summary ()
56
57 autoencoder.fit(X, X,
58 epochs=nb_epoch ,
59 batch_size=batch_size ,
60 shuffle=True ,
61 verbose =0)

7.7.3 Orthonormal Weights

Orthonormality of encoding weights is an essential property. Without it
the model is ill-conditioned, i.e., a small change in the input can cause
a significant change in the model.

As shown in Equation 7.18 and 7.19, this property has two parts: a.
orthogonality, and b. unit norm.

The latter is easily incorporated in an encoder layer using
kernel_constraint=UnitNorm(axis=0) constraint4.

The former property can be incorporated with a custom regularizer
defined in Listing 7.13. This is used in kernel_regularizer that acts
as a soft constraint. Meaning, the estimated weights will be only nearly
orthogonal.

The weights can be made strictly orthogonal by an input covariance
decomposition. But due to decomposition computational complexity, a
regularization method is preferred.

4In a decoder layer, the same constraint should be applied on the columns as
kernel_constraint=UnitNorm(axis=1).

Chapter 7. Autoencoders 323

Listing 7.13. A custom constraint for orthogonal weights.
1 # Orthogonal Weights.
2 class OrthogonalWeights (Constraint):
3 def __init__(self ,
4 weightage = 1.0,
5 axis = 0):
6 self.weightage = weightage
7 self.axis = axis
8
9 def weights_orthogonality(self ,
10 w):
11 if(self.axis ==1):
12 w = K.transpose(w)
13
14 wTwminusI = K.dot(K.transpose(w), w) -
15 tf.eye(tf.shape(w,
16 out_type=tf.float32)[1])
17
18 return self.weightage * tf.math.sqrt(
19 tf.math.reduce_sum(tf.math.square(

wTwminusI)))
20
21 def __call__(self , w):
22 return self.weights_orthogonality(w)

The learned encoder and decoder weights for the autoencoder in
Listing 7.12 is shown in Listing 7.14.

Listing 7.14. Encoder and decoder weights on an illustrative regularized
autoencoder
1 w_encoder = np.round(autoencoder.get_layer(’encoder ’

).get_weights ()[0], 3)
2 w_decoder = np.round(autoencoder.get_layer(’decoder ’

).get_weights ()[1], 3)
3 print(’Encoder weights\n’, w_encoder.T)
4 print(’Decoder weights\n’, w_decoder.T)
5
6 # Encoder weights
7 # [[-0.301 -0.459 0.56 -0.033 0.619]
8 # [-0.553 0.182 -0.439 -0.644 0.231]
9 # [-0.036 0.209 -0.474 0.61 0.599]

324 7.7. Autoencoder Customization

10 # [-0.426 -0.683 -0.365 0.288 -0.367]]
11 # Decoder weights
12 # [[-0.146 -0.061 0.436 -0.72 0.517]
13 # [-0.561 0.199 -0.431 -0.633 0.242]
14 # [-0.059 0.681 -0.345 0.613 0.194]
15 # [0.086 -0.769 -0.22 0.198 -0.56]]

The (near) orthogonality of encoding weights is shown in Listing 7.15.
The weights are nearly orthogonal with small non-zero off-diagonal ele-
ments in W TW . As mentioned earlier, the orthogonality is added as a
soft-constraint due to which W TW ≈ I instead of strict equality.

Listing 7.15. Encoder weights dot product show their near orthogonality.
The orthogonality regularization is not applied on the decoder—its dot
product is therefore not diagonal heavy
1 w_encoder = autoencoder.get_layer(’encoder ’).

get_weights ()[0]
2 print(’Encoder weights dot product\n’,
3 np.round(np.dot(w_encoder.T, w_encoder), 2))
4
5 w_decoder = autoencoder.get_layer(’decoder ’).

get_weights ()[1]
6 print(’Decoder weights dot product\n’,
7 np.round(np.dot(w_decoder.T, w_decoder), 2))
8
9 # Encoder weights dot product
10 # [[1. 0. 0. 0.]
11 # [0. 1. 0.01 0.]
12 # [0. 0.01 1. 0.]
13 # [0. 0. 0. 1.]]
14 # Decoder weights dot product
15 # [[1. 0.46 -0.52 -0.49]
16 # [0.46 1. -0.02 -0.37]
17 # [-0.52 -0.02 1. -0.44]
18 # [-0.49 -0.37 -0.44 1.]]

The orthogonality regularization is not added to the decoder. Due
to that, the decoder weights dot product is not diagonally dominant.

Besides, the unit-norm constraint is added on both encoder and de-
coder weights. Their norms are shown in Listing 7.16.

Chapter 7. Autoencoders 325

Listing 7.16. Norm of encoder and decoder weights
1 print(’Encoder weights norm , \n’,
2 np.round(np.sum(w_encoder ** 2,
3 axis = 0),
4 2))
5 print(’Decoder weights norm , \n’,
6 np.round(np.sum(w_decoder ** 2,
7 axis = 1),
8 2))
9
10 # Encoder weights norm ,
11 # [1. 1. 1. 1.]
12 # Decoder weights norm ,
13 # [1. 1. 1. 1.]

It is important to note that decoder unit-norm is applied along the
columns. Also, if the orthogonality regularization is to be added on
decoder, it should be such that WW T ≈ I unlike in encoder (where it
is W TW ≈ I).

7.7.4 Sparse Covariance

Independence of the encoded features (uncorrelated features) is another
desired property. It is because correlated encoding means we have re-
dundant information spilled over the encoded dimensions.

However, unlike in PCA, weights orthogonality does not necessarily
result in independent features. This is because ZTZ = W TXTXW 6= I
even if W TW = I. Orthogonal principal components, on the other
hand, leads to independent features because they are drawn from the
matrix decomposition of the input, i.e., XTX = WΛW T where Λ is a
diagonal eigenvalues matrix.

If the orthogonal encoder weights were drawn by covariance decom-
position of the input, the features will be independent. However, due to
the computational complexity, the (near) feature independence is incor-
porated by regularization.

An approach to incorporate this is in Listing 7.17. Similar to weight
orthogonality, the feature independence is incorporated as a soft con-

326 7.7. Autoencoder Customization

straint to have a sparse covariance.

Listing 7.17. A custom regularization constraint for encoded feature
covariance sparsity
1 # Near -Independent Features
2 class SparseCovariance (Constraint):
3
4 def __init__(self , weightage =1.0):
5 self.weightage = weightage
6
7 # Constraint penalty
8 def uncorrelated_feature(self , x):
9 if(self.size <= 1):
10 return 0.0
11 else:
12 output = K.sum(K.square(
13 self.covariance -
14 tf.math.multiply(self.covariance ,
15 tf.eye(self.size)))

)
16 return output
17
18 def __call__(self , x):
19 self.size = x.shape [1]
20 x_centered = K.transpose(tf.math.subtract(
21 x, K.mean(x, axis=0, keepdims=True)))
22
23 self.covariance = K.dot(
24 x_centered ,
25 K.transpose(x_centered)) / \
26 tf.cast(x_centered.get_shape ()[0],
27 tf.float32)
28
29 return self.weightage * self.

uncorrelated_feature(x)

The covariance of the encoded random data is shown in Listing 7.18.
As expected, the covariance is sparse. Moreover, similar to PCA be-
havior, most of the input data variability is taken by a small number of
encodings. In this example, the last encoding dimension has more than
99% of the variance.

Chapter 7. Autoencoders 327

Listing 7.18. The covariance of encoded features
1 encoder_model = Model(inputs=autoencoder.inputs ,
2 outputs=autoencoder.get_layer(

’encoder ’).output)
3 encoded_features = np.array(encoder_model.predict(X)

)
4 print(’Encoded feature covariance\n’,
5 np.round(np.cov(encoded_features.T), 3))
6
7 # Encoded feature covariance
8 # [[0.01 -0. 0. -0.02]
9 # [-0. 0. 0. -0.02]
10 # [0. 0. 0.02 -0.02]
11 # [-0.02 -0.02 -0.02 4.36]]

7.8 Rules-of-thumb

• Autoencoder Construction.

– Add unit-norm constraint on the weights. This prevents ill-
conditioning of the model.

– Add a linearly activated dense layer at the end of the encoder
and decoder for calibration in most autoencoders.

– The activation on the decoder output layer should be based
on the range of the input. For example, linear if the input
x is in (−∞,∞) (scaled with StandardScaler) or sigmoid
if x is in (0, 1) (scaled with MinMaxScaler).

• Sparse autoencoder.

– A sparsity constraint should be added to the encoder’s out-
put. Typically, it is a dense layer. The sparsity can be added
as activity_regularizer=tf.keras.regularizers.L1(l1=0.01).

– The encoding size should be equal to the original data di-
mension (overcomplete). The sparsity penalty ensures that
the encodings are useful and not trivial.

– Sparse encodings are best suited for use in other tasks such
as classification.

328 7.8. Rules-of-thumb

• Denoising autoencoder.

– Unlike sparse autoencoders, denoising autoencoders regular-
ize the decoder output to make them insensitive to minor
changes in the input.

– Train a denoising autoencoder by adding small gaussian noise
to the input. Ensure that the loss function minimizes the
difference of the original data x with the decodings of the
noisy data g(f(x+ εεε)) where εεε is Gaussian(0,σ).

– They are useful for denoising or reconstruction objectives.
But their encodings are typically not useful for classification
tasks.

• LSTM autoencoder.

– Use tanh activation in the LSTM layers in both encoder and
decoder.

– Works better for translation tasks, for example, English to
Spanish text translation. Typically, they do not work well
for data reconstruction.

• Convolutional autoencoder.

– Encoder module has a stack of Conv and Pooling layers.
They perform summarization of the useful features of the
data.

– Decoder module has a stack of ConvTranspose and
BatchNormalization layers.

– Decoder module should not have Conv or Pooling layers.

Chapter 7. Autoencoders 329

7.9 Exercises

1. At the beginning of the chapter it is mentioned that autoencoders
were conceptualized with inspiration from an older concept of prin-
cipal component analysis (PCA) in statistics.

(a) A PCA model is linear. It was mentioned in § 4.2 that a dense
layer network is equivalent to a linear model if the activations
on each layer are linear (proved in Appendix A). Extending
this to a dense autoencoder, does it become the same as a
principal component analysis (PCA) model if the activations
are linear? Refer to § 7.7.1.

(b) Under what conditions an autoencoder becomes equivalent
to PCA? Refer to § 7.2 and § 7.7.1.

2. In § 7.6.1 and 7.6.2 it is mentioned that a linearly activated dense
layer should be added at the end of encoder and decoder modules.

(a) What is the benefit of the linear dense layers?

(b) When is it not essential?

(c) Is it more essential in decoder than encoder? Explain.

3. The chapter provides examples of shallow autoencoders. In build-
ing a deep autoencoder what would you do in the following sce-
nario?

(a) In constructing a Sparse autoencoder would you consider
adding sparsity penalty on the activations (output) of the
intermediate layers in the encoder versus only on the last
encoder layer?

(b) An autoencoder is essentially a special case of a feed-forward
network where both the predictors and the response are the
same. Looking at an autoencoder from this perspective some-
times makes it difficult to separate encoder and decoder. Es-
sentially, to tell the boundary. This becomes even harder in a
deep network. How would you distinguish where an encoder
ends and a decoder begins?

330 7.9. Exercises

4. In § 7.7.1 a few aspects of regularizing autoencoder by constraining
encoder and decoder are discussed. Based on them,

(a) Should you consider regularizing the encoder or decoder func-
tions f and g, respectively? Why?

(b) If following the structure of the principal component of anal-
ysis, what is the difference in constraining weights on encoder
and decoder to be unit-norm in a dense autoencoder? Why?

(c) Why is it difficult to strictly enforce weights orthogonality in
an autoencoder? Why is it present by default in PCA? Refer
to § 7.7.3.

(d) Orthogonal weights in PCA leads to independent features.
However, an autoencoder even with orthogonal encoder weights
does not guarantee independent encodings. Why? The an-
swer to this question also answers Q 1a.

5. The goal of an autoencoder is to learn the essential properties of
the data while training to reconstruct the input. There are differ-
ent types of regularization available to improve learning. Broadly,
regularization can be applied to either the encoding f(x) or the
decoding g(f(x)). Refer to § 7.3 and answer the following.

(a) Among them, when is regularizing the encoding f(x) better?

(b) When is regularizing the decoder g(f(x)) better?

(c) (Optional) Refer to § 14.2.1 in Goodfellow, Bengio, and Courville
2016 to show that a sparse autoencoder approximates a gen-
erative model and that the sparsity penalty arrives as a result
of this framework.

6. (Optional) The encoder module in an autoencoder can be incor-
porated in a classifier network. There are several ways it can be
incorporated. Appendix K provides a flexible implementation to
try different approaches.

(a) Run the model in the appendix to train a classifier by trans-
ferring the encoder weights learned in autoencoder training
to a classifier.

Chapter 7. Autoencoders 331

(b) Make the transferred encoder weights trainable. Note the
change in the number of trainable parameters compared to
in Q 6a. Train the model.

Bibliography

[AB14] Guillaume Alain and Yoshua Bengio. “What regularized auto-
encoders learn from the data-generating distribution”. In:
The Journal of Machine Learning Research 15.1 (2014),
pp. 3563–3593.

[Adv06] Inc. Advanced Technology Services. Downtime Costs Auto
Industry $22k/Minute - Survey. Mar. 2006. url: https:
//news.thomasnet.com/companystory/downtime-costs-
auto-industry-22k-minute-survey-481017.

[Bah57] RR Bahadur. “On unbiased estimates of uniformly mini-
mum variance”. In: Sankhyā: The Indian Journal of Statis-
tics (1933-1960) 18.3/4 (1957), pp. 211–224.

[Bas55] Dev Basu. “On statistics independent of a complete suffi-
cient statistic”. In: Sankhyā: The Indian Journal of Statis-
tics (1933-1960) 15.4 (1955), pp. 377–380.

[Bat+09] Iyad Batal et al. “Multivariate time series classification with
temporal abstractions”. In: Twenty-Second International FLAIRS
Conference. 2009.

[Bay+17] Inci M Baytas et al. “Patient subtyping via time-aware LSTM
networks”. In: Proceedings of the 23rd ACM SIGKDD inter-
national conference on knowledge discovery and data min-
ing. 2017, pp. 65–74.

[BCB14] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio.
“Neural machine translation by jointly learning to align and
translate”. In: arXiv preprint arXiv:1409.0473 (2014).

333

https://news.thomasnet.com/companystory/downtime-costs-auto-industry-22k-minute-survey-481017
https://news.thomasnet.com/companystory/downtime-costs-auto-industry-22k-minute-survey-481017
https://news.thomasnet.com/companystory/downtime-costs-auto-industry-22k-minute-survey-481017

334 Bibliography

[Ben+13] Yoshua Bengio et al. “Generalized denoising auto-encoders
as generative models”. In: Advances in neural information
processing systems. 2013, pp. 899–907.

[BGC02] Piero Bonissone, Kai Goebel, and Yu-To Chen. “Predicting
wet-end web breakage in paper mills”. In: Working Notes
of the 2002 AAAI symposium: Information Refinement and
Revision for Decision Making: Modeling for Diagnostics,
Prognostics, and Prediction. 2002, pp. 84–92.

[BH89] Pierre Baldi and Kurt Hornik. “Neural networks and prin-
cipal component analysis: Learning from examples without
local minima”. In: Neural networks 2.1 (1989), pp. 53–58.

[Bis+95] Christopher M Bishop et al. Neural networks for pattern
recognition. Oxford university press, 1995.

[Bis06] Christopher M Bishop. Pattern recognition and machine learn-
ing. springer, 2006.

[Bou+11] Y-Lan Boureau, Nicolas Le Roux, et al. “Ask the locals:
multi-way local pooling for image recognition”. In: 2011 In-
ternational Conference on Computer Vision. IEEE. 2011,
pp. 2651–2658.

[BPL10] Y-Lan Boureau, Jean Ponce, and Yann LeCun. “A theo-
retical analysis of feature pooling in visual recognition”. In:
Proceedings of the 27th international conference on machine
learning (ICML-10). 2010, pp. 111–118.

[BS13] Pierre Baldi and Peter J Sadowski. “Understanding dropout”.
In: Advances in neural information processing systems. 2013,
pp. 2814–2822.

[CB02] George Casella and Roger L Berger. Statistical inference.
Vol. 2. Duxbury Pacific Grove, CA, 2002.

[Cho+14] Kyunghyun Cho et al. “Learning phrase representations us-
ing RNN encoder-decoder for statistical machine transla-
tion”. In: arXiv preprint arXiv:1406.1078 (2014).

[CJK04] N Chawla, N Japkowicz, and A Kolcz. “Special issue on class
imbalances”. In: SIGKDD Explorations 6.1 (2004), pp. 1–6.

Bibliography 335

[CN11] Adam Coates and Andrew Y Ng. “Selecting receptive fields
in deep networks”. In: Advances in neural information pro-
cessing systems. 2011, pp. 2528–2536.

[CUH15] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochre-
iter. “Fast and accurate deep network learning by exponen-
tial linear units (elus)”. In: arXiv preprint arXiv:1511.07289
(2015).

[Dai+17] Jifeng Dai et al. “Deformable convolutional networks”. In:
Proceedings of the IEEE international conference on com-
puter vision. 2017, pp. 764–773.

[Den+09] Jia Deng et al. “Imagenet: A large-scale hierarchical image
database”. In: 2009 IEEE conference on computer vision and
pattern recognition. Ieee. 2009, pp. 248–255.

[DHS11] John Duchi, Elad Hazan, and Yoram Singer. “Adaptive sub-
gradient methods for online learning and stochastic opti-
mization”. In: Journal of machine learning research 12.Jul
(2011), pp. 2121–2159.

[Elm90] Jeffrey L Elman. “Finding structure in time”. In: Cognitive
science 14.2 (1990), pp. 179–211.

[ESL14] Joan Bruna Estrach, Arthur Szlam, and Yann LeCun. “Sig-
nal recovery from pooling representations”. In: International
conference on machine learning. 2014, pp. 307–315.

[Fuk86] Kunihiko Fukushima. “A neural network model for selec-
tive attention in visual pattern recognition”. In: Biological
Cybernetics 55.1 (1986), pp. 5–15.

[Gam17] John Cristian Borges Gamboa. “Deep learning for time-
series analysis”. In: arXiv preprint arXiv:1701.01887 (2017).

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep
learning. MIT press, 2016.

[GFS07] Alex Graves, Santiago Fernández, and Jürgen Schmidhuber.
“Multi-dimensional recurrent neural networks”. In: Inter-
national conference on artificial neural networks. Springer.
2007, pp. 549–558.

336 Bibliography

[GG16] Yarin Gal and Zoubin Ghahramani. “A theoretically grounded
application of dropout in recurrent neural networks”. In:
Advances in neural information processing systems. 2016,
pp. 1019–1027.

[GŁ15] Tomasz Górecki and Maciej Łuczak. “Multivariate time se-
ries classification with parametric derivative dynamic time
warping”. In: Expert Systems with Applications 42.5 (2015),
pp. 2305–2312.

[GM02] Timothy J Gawne and Julie M Martin. “Responses of pri-
mate visual cortical V4 neurons to simultaneously presented
stimuli”. In: Journal of neurophysiology 88.3 (2002), pp. 1128–
1135.

[Gra12] Alex Graves. “Sequence transduction with recurrent neural
networks”. In: arXiv preprint arXiv:1211.3711 (2012).

[Gra13] Alex Graves. “Generating sequences with recurrent neural
networks”. In: arXiv preprint arXiv:1308.0850 (2013).

[GS05] Alex Graves and Jürgen Schmidhuber. “Framewise phoneme
classification with bidirectional LSTM and other neural net-
work architectures”. In: Neural networks 18.5-6 (2005), pp. 602–
610.

[GS09] Alex Graves and Jürgen Schmidhuber. “Offline handwrit-
ing recognition with multidimensional recurrent neural net-
works”. In: Advances in neural information processing sys-
tems. 2009, pp. 545–552.

[GSC99] Felix A Gers, Jürgen Schmidhuber, and Fred Cummins.
“Learning to forget: Continual prediction with LSTM”. In:
(1999).

[GSS02] Felix A Gers, Nicol N Schraudolph, and Jürgen Schmid-
huber. “Learning precise timing with LSTM recurrent net-
works”. In: Journal of machine learning research 3.Aug (2002),
pp. 115–143.

[Gul+14] Caglar Gulcehre et al. “Learned-norm pooling for deep feed-
forward and recurrent neural networks”. In: Joint European
Conference on Machine Learning and Knowledge Discovery
in Databases. Springer. 2014, pp. 530–546.

Bibliography 337

[He+15a] Kaiming He et al. “Delving deep into rectifiers: Surpass-
ing human-level performance on imagenet classification”. In:
Proceedings of the IEEE international conference on com-
puter vision. 2015, pp. 1026–1034.

[He+15b] Kaiming He et al. “Spatial pyramid pooling in deep con-
volutional networks for visual recognition”. In: IEEE trans-
actions on pattern analysis and machine intelligence 37.9
(2015), pp. 1904–1916.

[He+16] Kaiming He et al. “Deep residual learning for image recog-
nition”. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. 2016, pp. 770–778.

[Hin+12] Geoffrey Hinton et al. “COURSERA: Neural Networks for
Machine Learning”. In: Lecture 9c: Using noise as a regu-
larizer (2012).

[Hir96] Hideo Hirose. “Maximum likelihood estimation in the 3-
parameter Weibull distribution. A look through the gen-
eralized extreme-value distribution”. In: IEEE Transactions
on Dielectrics and Electrical Insulation 3.1 (1996), pp. 43–
55.

[How+17] Andrew G Howard et al. “Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications”. In:
arXiv preprint arXiv:1704.04861 (2017).

[HS97] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term
memory”. In: Neural computation 9.8 (1997), pp. 1735–1780.

[HTF09] Trevor Hastie, Robert Tibshirani, and Jerome Friedman.
The elements of statistical learning: data mining, inference,
and prediction. Vol. Second Edition. Springer Science &
Business Media, 2009.

[HW62] David H Hubel and Torsten N Wiesel. “Receptive fields,
binocular interaction and functional architecture in the cat’s
visual cortex”. In: The Journal of physiology 160.1 (1962),
p. 106.

[IS15] Sergey Ioffe and Christian Szegedy. “Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift”. In: arXiv preprint arXiv:1502.03167 (2015).

338 Bibliography

[Jap+00] Nathalie Japkowicz et al. “Learning from imbalanced data
sets: a comparison of various strategies”. In: AAAI workshop
on learning from imbalanced data sets. Vol. 68. Menlo Park,
CA. 2000, pp. 10–15.

[JHD12] Yangqing Jia, Chang Huang, and Trevor Darrell. “Beyond
spatial pyramids: Receptive field learning for pooled image
features”. In: 2012 IEEE Conference on Computer Vision
and Pattern Recognition. IEEE. 2012, pp. 3370–3377.

[Jor90] Michael I Jordan. “Attractor dynamics and parallelism in a
connectionist sequential machine”. In: Artificial neural net-
works: concept learning. 1990, pp. 112–127.

[JZS15] Rafal Jozefowicz, Wojciech Zaremba, and Ilya Sutskever.
“An empirical exploration of recurrent network architec-
tures”. In: International conference on machine learning.
2015, pp. 2342–2350.

[KB14] Diederik P Kingma and Jimmy Ba. “Adam: A method for
stochastic optimization”. In: arXiv preprint arXiv:1412.6980
(2014).

[Kla+17] Günter Klambauer et al. “Self-normalizing neural networks”.
In: Advances in neural information processing systems. 2017,
pp. 971–980.

[Kob19a] Takumi Kobayashi. “Gaussian-Based Pooling for Convolu-
tional Neural Networks”. In: Advances in Neural Informa-
tion Processing Systems. 2019, pp. 11216–11226.

[Kob19b] Takumi Kobayashi. “Global feature guided local pooling”.
In: Proceedings of the IEEE International Conference on
Computer Vision. 2019, pp. 3365–3374.

[Kra16] Bartosz Krawczyk. “Learning from imbalanced data: open
challenges and future directions”. In: Progress in Artificial
Intelligence 5.4 (2016), pp. 221–232.

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
“Imagenet classification with deep convolutional neural net-
works”. In: Advances in neural information processing sys-
tems. 2012, pp. 1097–1105.

Bibliography 339

[Lam+04] Ilan Lampl et al. “Intracellular measurements of spatial in-
tegration and the MAX operation in complex cells of the
cat primary visual cortex”. In: Journal of neurophysiology
92.5 (2004), pp. 2704–2713.

[LBH15] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep
learning”. In: nature 521.7553 (2015), p. 436.

[LCY13] Min Lin, Qiang Chen, and Shuicheng Yan. “Network in net-
work”. In: arXiv preprint arXiv:1312.4400 (2013).

[LeC+90] Yann LeCun, Bernhard E Boser, et al. “Handwritten digit
recognition with a back-propagation network”. In: Advances
in neural information processing systems. 1990, pp. 396–404.

[LeC+98] Yann LeCun, Léon Bottou, et al. “Gradient-based learn-
ing applied to document recognition”. In: Proceedings of the
IEEE 86.11 (1998), pp. 2278–2324.

[LGT16] Chen-Yu Lee, Patrick W Gallagher, and Zhuowen Tu. “Gen-
eralizing pooling functions in convolutional neural networks:
Mixed, gated, and tree”. In: Artificial intelligence and statis-
tics. 2016, pp. 464–472.

[LRR19] Francisco Louzada, Pedro L Ramos, and Eduardo Ramos.
“A note on bias of closed-form estimators for the gamma dis-
tribution derived from likelihood equations”. In: The Amer-
ican Statistician 73.2 (2019), pp. 195–199.

[LS50] EL Lehmann and H Scheffé. “Completeness, Similar Re-
gions, and Unbiased Estimation. I”. In: vol. 10. 4. JSTOR
25048038. 1950, 305fffdfffdfffd–340. doi: 10.1007/978-1-
4614-1412-4_23.

[LS55] EL Lehmann and H Scheffé. “Completeness, Similar Re-
gions, and Unbiased Estimation. II”. In: vol. 15. 3. JSTOR
25048243. 1955, pp. 219–236. doi: 10.1007/978-1-4614-
1412-4_24.

[LWH90] Kevin J Lang, Alex H Waibel, and Geoffrey E Hinton. “A
time-delay neural network architecture for isolated word
recognition”. In: Neural networks 3.1 (1990), pp. 23–43.

http://dx.doi.org/10.1007/978-1-4614-1412-4_23
http://dx.doi.org/10.1007/978-1-4614-1412-4_23
http://dx.doi.org/10.1007/978-1-4614-1412-4_24
http://dx.doi.org/10.1007/978-1-4614-1412-4_24

340 Bibliography

[Ma+19] Chih-Yao Ma et al. “TS-LSTM and temporal-inception: Ex-
ploiting spatiotemporal dynamics for activity recognition”.
In: Signal Processing: Image Communication 71 (2019), pp. 76–
87.

[Mal89] Stephane G Mallat. “A theory for multiresolution signal de-
composition: the wavelet representation”. In: IEEE trans-
actions on pattern analysis and machine intelligence 11.7
(1989), pp. 674–693.

[Man15] James Manyika. The Internet of Things: Mapping the value
beyond the hype. McKinsey Global Institute, 2015.

[MB05] Tom McReynolds and David Blythe. Advanced graphics pro-
gramming using OpenGL. Elsevier, 2005.

[MHN13] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. “Rec-
tifier nonlinearities improve neural network acoustic mod-
els”. In: Proc. icml. Vol. 30. 1. 2013, p. 3.

[Nag+11] Jawad Nagi et al. “Max-pooling convolutional neural net-
works for vision-based hand gesture recognition”. In: 2011
IEEE International Conference on Signal and Image Pro-
cessing Applications (ICSIPA). IEEE. 2011, pp. 342–347.

[NH10] Vinod Nair and Geoffrey E Hinton. “Rectified linear units
improve restricted boltzmann machines”. In: ICML. 2010.

[Ola15] Christopher Olah. “Understanding lstm networks”. In: (2015).

[Ong17] Thuy Ong. Facebook’s translations are now powered com-
pletely by AI. Aug. 2017. url: https://www.theverge.
com/2017/8/4/16093872/facebook-ai-translations-
artificial-intelligence.

[OV10] Carlotta Orsenigo and Carlo Vercellis. “Combining discrete
SVM and fixed cardinality warping distances for multivari-
ate time series classification”. In: Pattern Recognition 43.11
(2010), pp. 3787–3794.

[Pea01] Karl Pearson. “LIII. On lines and planes of closest fit to
systems of points in space”. In: The London, Edinburgh, and
Dublin Philosophical Magazine and Journal of Science 2.11
(1901), pp. 559–572.

https://www.theverge.com/2017/8/4/16093872/facebook-ai-translations-artificial-intelligence
https://www.theverge.com/2017/8/4/16093872/facebook-ai-translations-artificial-intelligence
https://www.theverge.com/2017/8/4/16093872/facebook-ai-translations-artificial-intelligence

Bibliography 341

[Pet+96] Thomas Petsche et al. “A neural network autoassociator for
induction motor failure prediction”. In: Advances in neural
information processing systems. 1996, pp. 924–930.

[PKT83] J Anthony Parker, Robert V Kenyon, and Donald E Troxel.
“Comparison of interpolating methods for image resampling”.
In: IEEE Transactions on medical imaging 2.1 (1983), pp. 31–
39.

[Ran+07] Marc’Aurelio Ranzato, Christopher Poultney, et al. “Effi-
cient learning of sparse representations with an energy-based
model”. In: Advances in neural information processing sys-
tems. 2007, pp. 1137–1144.

[Ran+18] Chitta Ranjan et al. “Dataset: rare event classification in
multivariate time series”. In: arXiv preprint arXiv:1809.10717
(2018).

[Ran20] Chitta Ranjan. “Theory of Pooling”. In: PrePrint, Research-
Gate (Nov. 2020). doi: 10.13140/RG.2.2.23408.07688.
url: https://doi.org/10.13140/RG.2.2.23408.07688.

[RBC08] Marc’Aurelio Ranzato, Y-Lan Boureau, and Yann L Cun.
“Sparse feature learning for deep belief networks”. In: Ad-
vances in neural information processing systems. 2008, pp. 1185–
1192.

[RF87] AJ Robinson and Frank Fallside. The utility driven dynamic
error propagation network. University of Cambridge Depart-
ment of Engineering Cambridge, 1987.

[RHW85] David E Rumelhart, Geoffrey E Hinton, and Ronald JWilliams.
Learning internal representations by error propagation. Tech.
rep. California Univ San Diego La Jolla Inst for Cognitive
Science, 1985.

[RHW86] David E Rumelhart, Geoffrey E Hinton, and Ronald JWilliams.
“Learning representations by back-propagating errors”. In:
nature 323.6088 (1986), pp. 533–536.

[Rif+11a] Salah Rifai, Grégoire Mesnil, et al. “Higher order contractive
auto-encoder”. In: Joint European conference on machine
learning and knowledge discovery in databases. Springer. 2011,
pp. 645–660.

http://dx.doi.org/10.13140/RG.2.2.23408.07688
https://doi.org/10.13140/RG.2.2.23408.07688

342 Bibliography

[Rif+11b] Salah Rifai, Pascal Vincent, et al. “Contractive auto-encoders:
Explicit invariance during feature extraction”. In: Icml. 2011.

[RP98] Maximilian Riesenhuber and Tomaso Poggio. “Just one view:
Invariances in inferotemporal cell tuning”. In: Advances in
neural information processing systems. 1998, pp. 215–221.

[RP99] Maximilian Riesenhuber and Tomaso Poggio. “Hierarchical
models of object recognition in cortex”. In: Nature neuro-
science 2.11 (1999), pp. 1019–1025.

[Sae+18] Faraz Saeedan et al. “Detail-preserving pooling in deep net-
works”. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition. 2018, pp. 9108–9116.

[Sch12] Mark J Schervish. Theory of statistics. Springer Science &
Business Media, 2012.

[Shi+16a] Wenzhe Shi, Jose Caballero, Ferenc Huszár, et al. “Real-
time single image and video super-resolution using an effi-
cient sub-pixel convolutional neural network”. In: Proceed-
ings of the IEEE conference on computer vision and pattern
recognition. 2016, pp. 1874–1883.

[Shi+16b] Wenzhe Shi, Jose Caballero, Lucas Theis, et al. “Is the de-
convolution layer the same as a convolutional layer?” In:
arXiv preprint arXiv:1609.07009 (2016).

[Smi16] Chris Smith. iOS 10: Siri now works in third-party apps,
comes with extra AI features. June 2016. url: https://
bgr.com/2016/06/13/ios-10-siri-third-party-apps/.

[Smi85] Richard L Smith. “Maximum likelihood estimation in a class
of nonregular cases”. In: Biometrika 72.1 (1985), pp. 67–90.

[SP10] Thomas Serre and Tomaso Poggio. “A neuromorphic ap-
proach to computer vision”. In: Communications of the ACM
53.10 (2010), pp. 54–61.

[SP97] Mike Schuster and Kuldip K Paliwal. “Bidirectional recur-
rent neural networks”. In: IEEE transactions on Signal Pro-
cessing 45.11 (1997), pp. 2673–2681.

[Spr+15] Jost Tobias Springenberg et al. “Striving for simplicity: The
all convolutional net”. In: ICLR (2015).

https://bgr.com/2016/06/13/ios-10-siri-third-party-apps/
https://bgr.com/2016/06/13/ios-10-siri-third-party-apps/

Bibliography 343

[Sri+14] Nitish Srivastava et al. “Dropout: a simple way to prevent
neural networks from overfitting”. In: The journal of ma-
chine learning research 15.1 (2014), pp. 1929–1958.

[SVL14] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. “Sequence
to sequence learning with neural networks”. In: Advances in
neural information processing systems. 2014, pp. 3104–3112.

[SWK09] Yanmin Sun, Andrew KC Wong, and Mohamed S Kamel.
“Classification of imbalanced data: A review”. In: Interna-
tional Journal of Pattern Recognition and Artificial Intelli-
gence 23.04 (2009), pp. 687–719.

[SWP05] Thomas Serre, Lior Wolf, and Tomaso Poggio. “Object recog-
nition with features inspired by visual cortex”. In: 2005
IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’05). Vol. 2. Ieee. 2005, pp. 994–
1000.

[SZ15] Karen Simonyan and Andrew Zisserman. “Very deep con-
volutional networks for large-scale image recognition”. In:
ICLR (2015).

[Sze+15] Christian Szegedy et al. “Going deeper with convolutions”.
In: Proceedings of the IEEE conference on computer vision
and pattern recognition. 2015, pp. 1–9.

[Ten18] TensorFlow. Standardizing on Keras: Guidance on High-
level APIs in TensorFlow 2.0. Dec. 2018. url: https://
medium . com / tensorflow / standardizing - on - keras -
guidance-on-high-level-apis-in-tensorflow-2-0-
bad2b04c819a.

[Ten19] TensorFlow. What’s coming in TensorFlow 2.0. Jan. 2019.
url: https://medium.com/tensorflow/whats-coming-
in-tensorflow-2-0-d3663832e9b8.

[TM98] Carlo Tomasi and Roberto Manduchi. “Bilateral filtering for
gray and color images”. In: Sixth international conference on
computer vision (IEEE Cat. No. 98CH36271). IEEE. 1998,
pp. 839–846.

https://medium.com/tensorflow/standardizing-on-keras-guidance-on-high-level-apis-in-tensorflow-2-0-bad2b04c819a
https://medium.com/tensorflow/standardizing-on-keras-guidance-on-high-level-apis-in-tensorflow-2-0-bad2b04c819a
https://medium.com/tensorflow/standardizing-on-keras-guidance-on-high-level-apis-in-tensorflow-2-0-bad2b04c819a
https://medium.com/tensorflow/standardizing-on-keras-guidance-on-high-level-apis-in-tensorflow-2-0-bad2b04c819a
https://medium.com/tensorflow/whats-coming-in-tensorflow-2-0-d3663832e9b8
https://medium.com/tensorflow/whats-coming-in-tensorflow-2-0-d3663832e9b8

344 Bibliography

[Vas+17] Ashish Vaswani et al. “Attention is all you need”. In: Ad-
vances in neural information processing systems. 2017, pp. 5998–
6008.

[Vin+08] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, et al. “Ex-
tracting and composing robust features with denoising au-
toencoders”. In: Proceedings of the 25th international con-
ference on Machine learning. 2008, pp. 1096–1103.

[Vin+10] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, et al. “Stacked
denoising autoencoders: Learning useful representations in
a deep network with a local denoising criterion.” In: Journal
of machine learning research 11.12 (2010).

[VKE19] Aaron Voelker, Ivana Kajić, and Chris Eliasmith. “Legendre
Memory Units: Continuous-Time Representation in Recur-
rent Neural Networks”. In: Advances in Neural Information
Processing Systems. 2019, pp. 15544–15553.

[Vog16] Werner Vogels. Bringing the Magic of Amazon AI and Alexa
to Apps on AWS. Nov. 2016.

[Web+16] Nicolas Weber et al. “Rapid, detail-preserving image down-
scaling”. In: ACM Transactions on Graphics (TOG) 35.6
(2016), pp. 1–6.

[WH18] Yuxin Wu and Kaiming He. “Group normalization”. In: Pro-
ceedings of the European conference on computer vision (ECCV).
2018, pp. 3–19.

[WL18] Travis Williams and Robert Li. “Wavelet pooling for convo-
lutional neural networks”. In: International Conference on
Learning Representations. 2018.

[Wu+16] Yonghui Wu et al. “Google’s neural machine translation sys-
tem: Bridging the gap between human and machine trans-
lation”. In: arXiv preprint arXiv:1609.08144 (2016).

[WZ95] Ronald J Williams and David Zipser. “Gradient-based learn-
ing algorithms for recurrent”. In: Backpropagation: Theory,
architectures, and applications 433 (1995).

Bibliography 345

[Xie+17] Saining Xie et al. “Aggregated residual transformations for
deep neural networks”. In: Proceedings of the IEEE con-
ference on computer vision and pattern recognition. 2017,
pp. 1492–1500.

[Yan+09] Jianchao Yang et al. “Linear spatial pyramid matching using
sparse coding for image classification”. In: 2009 IEEE Con-
ference on computer vision and pattern recognition. IEEE.
2009, pp. 1794–1801.

[YC17] Zhi-Sheng Ye and Nan Chen. “Closed-form estimators for
the gamma distribution derived from likelihood equations”.
In: The American Statistician 71.2 (2017), pp. 177–181.

[YK16] Fisher Yu and Vladlen Koltun. “Multi-scale context aggre-
gation by dilated convolutions”. In: ICLR (2016).

[Yu+14] Dingjun Yu et al. “Mixed pooling for convolutional neural
networks”. In: International conference on rough sets and
knowledge technology. Springer. 2014, pp. 364–375.

[ZF13] Matthew D Zeiler and Rob Fergus. “Stochastic pooling for
regularization of deep convolutional neural networks”. In:
ICLR (2013).

[ZS18] Zhilu Zhang and Mert Sabuncu. “Generalized cross entropy
loss for training deep neural networks with noisy labels”. In:
Advances in neural information processing systems. 2018,
pp. 8778–8788.

Appendix A

Importance of Nonlinear
Activation

It is mentioned a few times in this book that a nonlinear activation is
essential for the nonlinearity of a deep learning model. Specifically, this
is emphasized in § 4.7 in Chapter 4. In this appendix, it is shown that a
linear activation makes a multi-layer network a simple linear regression
model.

In the following, Equation A.1 applies the activation successively
from input to the output in an illustrative two-layer network in Chap-
ter 4. It shows that if the activation is linear, i.e., g(x) = x, then any
multi-layer network becomes equivalent to a linear model.

ŷ = g(wT z(2)) (A.1a)

= g(wT g(W (2)T g(W (1)Tx))) (A.1b)

= wTW (2)TW (1)Tx, if activation g is linear. (A.1c)

= W̃ Tx (A.1d)

where, W̃ T = wTW (2)TW (1)T .

347

Appendix B

Curve Shifting

Curve shifting is used to learn relationships between the variables at a
certain time with an event at a different time. The event can be either
from the past or the future.

For a rare event prediction, where the objective is to predict an event
in advance, the event is shifted back in time. This approach is similar to
developing a model to predict a transition state which ultimately leads
to an event.

In Listing B.1, a user-defined function (UDF) for curve-shifting a bi-
nary response data is shown. In the UDF, an input argument shift_by
corresponds to the time units we want to shift y. shift_by can be a
positive or negative integer.

Listing B.1. Curve Shifting.
import numpy as np

def sign(x):
return (1, -1)[x < 0]

def curve_shift(df , shift_by):
’’’
This function will shift the binary labels in a

dataframe.
The curve shift will be with respect to the 1s.

349

350

For example , if shift is -2, the following
process

will happen: if row n is labeled as 1, then
- Make row (n+shift_by):(n+shift_by -1) = 1.
- Remove row n.
i.e. the labels will be shifted up to 2 rows up.

Inputs:
df A pandas dataframe with a binary

labeled column.
This labeled column should be named as

’y ’.
shift_by An integer denoting the number of rows

to shift.

Output
df A dataframe with the binary labels

shifted by shift.
’’’

vector = df[’y’].copy()
for s in range(abs(shift_by)):

tmp = vector.shift(sign(shift_by))
tmp = tmp.fillna (0)
vector += tmp

labelcol = ’y’
Add vector to the df
df.insert(loc=0, column=labelcol + ’tmp’, value=

vector)
Remove the rows with labelcol == 1.
df = df.drop(df[df[labelcol] == 1]. index)
Drop labelcol and rename the tmp col as

labelcol
df = df.drop(labelcol , axis =1)
df = df.rename(columns ={ labelcol + ’tmp’:

labelcol })
Make the labelcol binary
df.loc[df[labelcol] > 0, labelcol] = 1

return df

curve_shift assumes the response is binary with (0, 1) labels, and

Appendix B. Curve Shifting 351

for any row t where y==1 it,

1. makes the y for rows (t+shift_by):(t+shift_by-1) equal to
1. Mathematically, this is y(t−k):t ← 1, if yt = 1 and k is the
shift_by. And,

2. remove row t.

Step 1 shifts the curve. Step 2 removes the row when the event
(sheet-break) occurred. As also mentioned in § 2.1.2, we are not in-
terested in teaching the model to predict an event when it has already
occurred.

The effect of the curve shifting is shown using Listing B.2.

Listing B.2. Testing Curve Shift.
import pandas as pd
import numpy as np

’’’Download data here:
https :// docs.google.com/forms/d/e/1

FAIpQLSdyUk3lfDl7I5KYK_pw285LCApc -
_RcoC0Tf9cnDnZ_TWzPAw/viewform

’’’
df = pd.read_csv("data/processminer -sheet -break -rare

-event -dataset.csv")
df.head(n=5) # visualize the data.

Hot encoding
hotencoding1 = pd.get_dummies(df[’Grade&Bwt’])
hotencoding1 = hotencoding1.add_prefix(’grade_ ’)
hotencoding2 = pd.get_dummies(df[’EventPress ’])
hotencoding2 = hotencoding2.add_prefix(’eventpress_ ’

)

df = df.drop([’Grade&Bwt’, ’EventPress ’], axis =1)

df = pd.concat ([df , hotencoding1 , hotencoding2],
axis =1)

df = df.rename(columns ={’SheetBreak ’: ’y’}) #
Rename response column name for ease of
understanding

352

’’’
Shift the data by 2 units , equal to 4 minutes.

Test: Testing whether the shift happened correctly.
’’’
print(’Before shifting ’) # Positive labeled rows

before shifting.
one_indexes = df.index[df[’y’] == 1]
display(df.iloc[(one_indexes [0] -3):(one_indexes

[0]+2) , 0:5]. head(n=5))

Shift the response column y by 2 rows to do a 4-
min ahead prediction.

df = curve_shift(df, shift_by = -2)

print(’After shifting ’) # Validating if the shift
happened correctly.

display(df.iloc[(one_indexes [0] -4):(one_indexes
[0]+1) , 0:5]. head(n=5))

The outputs of the listing are visualized in Figure 4.3 in Chapter 4.

Appendix C

Simple Plots

The result plots in every chapter are made using the definitions in List-
ing C.1.

Listing C.1. Simple plot definitions.
1 ##############################
2 ##### Plotting functions #####
3 ##############################
4
5 import matplotlib.pyplot as plt
6 import seaborn as sns
7 import numpy as np
8
9 def plot_metric(model_history , metric ,
10 ylim=None , grid=False):
11 sns.set()
12
13 if grid is False:
14 sns.set_style("white")
15 sns.set_style("ticks")
16
17 train_values = [
18 value for key , value in model_history.items

()
19 if metric in key.lower ()
20][0]
21 valid_values = [

353

354

22 value for key , value in model_history.items
()

23 if metric in key.lower ()
24][1]
25
26 fig , ax = plt.subplots ()
27
28 color = ’tab:blue’
29 ax.set_xlabel(’Epoch’, fontsize =16)
30 ax.set_ylabel(metric , color=color , fontsize =16)
31
32 ax.plot(train_values , ’--’, color=color ,
33 label=’Train ’ + metric)
34 ax.plot(valid_values , color=color ,
35 label=’Valid ’ + metric)
36 ax.tick_params(axis=’y’, labelcolor=color)
37 ax.tick_params(axis=’both’,
38 which=’major ’, labelsize =14)
39
40 if ylim is None:
41 ylim = [
42 min(min(train_values),
43 min(valid_values), 0.),
44 max(max(train_values),
45 max(valid_values))
46]
47 plt.yticks(np.round(np.linspace(ylim[0],
48 ylim[1], 6), 1))
49 plt.legend(loc=’upper left’, fontsize =16)
50
51 if grid is False:
52 sns.despine(offset=1, trim=True)
53
54 return plt , fig
55
56
57 def plot_model_recall_fpr(model_history , grid=False)

:
58 sns.set()
59
60 if grid is False:
61 sns.set_style("white")

Appendix C. Simple Plots 355

62 sns.set_style("ticks")
63
64 train_recall = [
65 value for key , value in model_history.items

()
66 if ’recall ’ in key.lower ()
67][0]
68 valid_recall = [
69 value for key , value in model_history.items

()
70 if ’recall ’ in key.lower ()
71][1]
72
73 train_fpr = [
74 value for key , value in model_history.items

()
75 if ’false_positive_rate ’ in key.lower()
76][0]
77 valid_fpr = [
78 value for key , value in model_history.items

()
79 if ’false_positive_rate ’ in key.lower()
80][1]
81
82 fig , ax = plt.subplots ()
83
84 color = ’tab:red’
85 ax.set_xlabel(’Epoch’, fontsize =16)
86 ax.set_ylabel(’value’, fontsize =16)
87 ax.plot(train_recall , ’--’, color=color , label=’

Train Recall ’)
88 ax.plot(valid_recall , color=color , label=’Valid

Recall ’)
89 ax.tick_params(axis=’y’, labelcolor=’black’)
90 ax.tick_params(axis=’both’, which=’major’,

labelsize =14)
91 plt.legend(loc=’upper left’, fontsize =16)
92
93 color = ’tab:blue’
94 ax.plot(train_fpr , ’--’, color=color , label=’

Train FPR’)

356

95 ax.plot(valid_fpr , color=color , label=’Valid FPR
’)

96 plt.yticks(np.round(np.linspace (0., 1., 6), 1))
97
98 fig.tight_layout ()
99 plt.legend(loc=’upper left’, fontsize =16)

100
101 if grid is False:
102 sns.despine(offset=1, trim=True)
103
104 return plt , fig

Appendix D

Backpropagation Gradients

Think of the two-layer neural network shown in Figure 4.2 illustrated in
Chapter 4. We used a binary_crossentropy loss for this model shown
in Equation 4.7. Without any loss of generality (w.l.o.g.), it can be
expressed for a single sample as,

L(θ) = y log(ŷ) + (1− y) log(1− ŷ) (D.1)

where, ŷ is the prediction for y, i.e. the Prθ[y = 1] (denoted by p in
Eq. 4.7) and θ is the set of all parameters {W (1),W (2),w(o)}. Here the
bias parameters are assumed as 0 w.l.o.g.

The parameter update in an iterative estimation vary for different
optimizers such as adam and sgd in TensorFlow. However, as they are
all Gradient Descent based, the update rule generalizes as,

θ ← θ − η∂L
∂θ

(D.2)

where η is a learning parameter.

As seen in the equation, the gradient guides the parameter estima-
tion to reach its optimal value.

357

358

The gradient expression for a weight parameter can be derived as,

∂L
∂W T

=
∂L
∂ŷ

∂ŷ

∂W T
(D.3)

A derivative of the weight transpose is used for mathematical con-

venience. Besides,
∂L
∂ŷ

will always be the same and, therefore, can be

ignored to express,

∂L
∂W T

∝ ∂ŷ

∂W T
(D.4)

Additionally, the relationship between the layers’ inputs and outputs
are,

ŷ = σ(w(o)T z(2)) (D.5a)

z(2) = g(W (2)T z(1)) (D.5b)

z(1) = g(W (1)Tx) (D.5c)

where σ is the activation on the output layer and g on the hidden
layers. Note that g can be different across layers but shown to be the
same here for simplicity.

Using Equation D.4-D.5, we can express the gradients for each weight
parameter as,

Output Layer.

∂L
∂w(o)T

∝ ∂σ(w(o)T z(2))

∂w(o)T
(D.6)

Appendix D. Backpropagation Gradients 359

Hidden Layer-2.

∂L
∂W (2)T

∝ ∂σ(w(o)T z(2))

∂W (2)T

∝ ∂

∂W (2)T
σ(w(o)T g(W (2)T z(1)))

∝ ∂σ(w(o)T g(W (2)T z(1)))

∂g(W (2)T z(1))

∂g(W (2)T z(1))

∂W (2)T
(D.7)

Hidden Layer-1.

∂L
∂W (1)T

∝ ∂σ(w(o)T z(2))

∂W (1)T

∝ ∂

∂W (1)T
σ(w(o)T g(W (2)T g(W (1)Tx)))

∝ ∂σ(w(o)T g(W (2)T g(W (1)Tx)))

∂g(W (2)T g(W (1)Tx))

∂g(W (2)T g(W (1)Tx))

∂g(W (1)Tx)

∂g(W (1)Tx)

∂W (1)T

(D.8)

Appendix E

Data Temporalization

Temporal models such as LSTM and convolutional networks are a bit
more demanding than other models. A significant amount of time and
attention goes into preparing the data that fits them.

First, we will create the three-dimensional tensors of shape: (sam-
ples, timesteps, features) in Listing E.1. Samples mean the number of
data points. Timesteps is the number of time steps we look back at any
time t to make a prediction. This is also referred to as the lookback
period. The features are the number of features the data has, in other
words, the number of predictors in multivariate data.

Listing E.1. Data temporalization
1 def temporalize(X, y, lookback):
2 ’’’
3 Inputs
4 X A 2D numpy array ordered by time of

shape: (n_observations x n_features)
5 y A 1D numpy array with indexes aligned

with X, i.e. y[i] should correspond to X[i].
Shape: n_observations.

6 lookback The window size to look back in the
past records. Shape: a scalar.

7
8 Output
9 output_X A 3D numpy array of shape: ((

n_observations -lookback -1) x lookback x

361

362

n_features)
10 output_y A 1D array of shape: (n_observations -

lookback -1), aligned with X.
11 ’’’
12 output_X = []
13 output_y = []
14 for i in range(len(X) - lookback - 1):
15 t = []
16 for j in range(1, lookback + 1):
17 # Gather the past records upto the

lookback period
18 t.append(X[[(i + j + 1)], :])
19 output_X.append(t)
20 output_y.append(y[i + lookback + 1])
21 return np.squeeze(np.array(output_X)), np.array(

output_y)
22
23
24 def flatten(X):
25 ’’’
26 Flatten a 3D array.
27
28 Input
29 X A 3D array for lstm , where the

array is sample x timesteps x features.
30
31 Output
32 flattened_X A 2D array , sample x features.
33 ’’’
34 flattened_X = np.empty(
35 (X.shape[0], X.shape [2])) # sample x

features array.
36 for i in range(X.shape [0]):
37 flattened_X[i] = X[i, (X.shape [1] - 1), :]
38 return flattened_X
39
40
41 def scale(X, scaler):
42 ’’’
43 Scale 3D array.
44
45 Inputs

Appendix E. Data Temporalization 363

46 X A 3D array for lstm , where the
array is sample x timesteps x features.

47 scaler A scaler object , e.g., sklearn.
preprocessing.StandardScaler , sklearn.
preprocessing.normalize

48
49 Output
50 X Scaled 3D array.
51 ’’’
52 for i in range(X.shape [0]):
53 X[i, :, :] = scaler.transform(X[i, :, :])
54
55 return X

Additional helper functions, flatten() and scale(), are defined to
make it easier to work with the tensors.

Testing

Since temporalization is an error-prone transformation, it is important
to test the input tensors as shown in Listing E.2.

Listing E.2. Testing data temporalization.
1 """ ### Temporalized data scale testing """
2
3 from sklearn.preprocessing import StandardScaler
4 from sklearn.model_selection import train_test_split
5
6 # Sort by time and drop the time column.
7 df[’DateTime ’] = pd.to_datetime(df.DateTime)
8 df = df.sort_values(by=’DateTime ’)
9 df = df.drop([’DateTime ’], axis =1)
10
11 input_X = df.loc[:, df.columns != ’y’]. values #

converts df to numpy array
12 input_y = df[’y’]. values
13
14 n_features = input_X.shape [1] # number of features
15
16 # Temporalize the data
17 lookback = 5

364

18 X, y = temporalize(X=input_X ,
19 y=input_y ,
20 lookback=lookback)
21
22 X_train , X_test , y_train , y_test = train_test_split(
23 np.array(X),
24 np.array(y),
25 test_size =0.2,
26 random_state =123)
27 X_train , X_valid , y_train , y_valid =

train_test_split(
28 X_train ,
29 y_train ,
30 test_size =0.2,
31 random_state =123)
32
33 # Initialize a scaler using the training data.
34 scaler = StandardScaler ().fit(flatten(X_train))
35
36 X_train_scaled = scale(X_train , scaler)
37
38 ’’’
39 Test: Check if the scaling is correct.
40
41 The test succeeds if all the column means
42 and variances are 0 and 1, respectively , after
43 flattening.
44 ’’’
45 print(’==== Column -wise mean ====\n’, np.mean(

flatten(X_train_scaled), axis =0).round (6))
46 print(’==== Column -wise variance ====\n’, np.var(

flatten(X_train_scaled), axis =0))
47
48 # ==== Column -wise mean ====
49 # [-0. 0. 0. -0. -0. -0. -0. 0. -0. -0. 0. -0.

-0. 0. 0. 0. 0. 0.
50 # -0. -0. -0. -0. 0. 0. -0. -0. 0. 0. -0. 0.

0. 0. 0. 0. -0. 0.
51 # 0. 0. -0. 0. 0. -0. -0. 0. -0. 0. 0. 0.

0. -0. -0. -0. 0. 0.
52 # 0. 0. 0. -0. -0. 0. -0. -0. -0. -0. 0. 0.

-0. 0. 0.]

Appendix E. Data Temporalization 365

53 # ==== Column -wise variance ====
54 # [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.

1. 1. 1. 1. 1. 1. 1. 1.
55 # 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.

1. 1. 1. 1. 1. 1. 1. 1.
56 # 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.

1. 1. 1. 0. 0.]

The temporalization output is shown in Figure 5.8 in Chapter 5.

Besides, the scale() function is tested and the outputs are shown in
the listing. As expected, the mean and variances become 0 and 1 after
using a StandardScaler() on the temporalized data.

Appendix F

Stateful LSTM

A typical stateless LSTM cell illustrated in Chapter 5 processes only
as much “past” in the data as defined by the timesteps. This could be
restrictive because:

“Ideally, we want to expose the network to the entire se-
quence and let it learn the inter-dependencies, rather than
we define those dependencies explicitly in the framing of the
problem.

...

This is truly how the LSTM networks are intended to be
used.”

– Jason Brownlee

It is, in fact, learned in temporal modeling with LSTMs and con-
volutional neural networks in Chapter 5 and 6 that a larger lookback
(timesteps) typically improves a model’s accuracy. This is logical be-
cause there are lagged dependencies. And, a larger timestep allows the
model to look farther in the past to have more context for prediction.

If going farther back in time improves accuracy then can we go all
the way in the past? The answer is yes. This can be done with stateful
LSTMs.

367

368

Using a stateful LSTM is a simple approach. This approach requires
the input samples to be ordered by time. Also, unlike typical model
fitting that resets the model every training iteration, with the stateful
LSTM it is reset every epoch.

The implementation in this appendix shows that a stateful LSTM
cell processes the entire input training data sequentially and learns the
dependencies from anywhere in the past.

However, as lucrative as the stateful LSTM appears, it does not al-
ways work. This approach tends to work better if the data is stationary.
For example, text documents. The writing pattern does not change
significantly and therefore, the process is stationary.

But most time series processes are non-stationary. The dependencies
in them are confounded due to the non-stationarity. Therefore, a window
of timesteps in which the process is assumed to be stationary tends to
work better. For the same reason, a large time step should be carefully
chosen in non-stationary processes.

� Stateful LSTM is suitable if the data is stationary,
i.e., the patterns do not change with time.

Implementing a stateful LSTM is different from traditional models.
In the following, the implementation steps are given.

Data Preparation

In a stateful LSTM network, it is necessary to have the size of the input
data as a multiple of the batch size. The data preparation is thus slightly
different. In Listing F.1 the number of samples for train, valid, and test
is taken as a multiple of the batch size which is closest to their original
size.

Listing F.1. Stateful LSTM model data preparation.
1 # Time ordered original data.
2 lookback_stateful = 1
3 # Temporalize the data
4 X, y = temporalize(X=input_X ,

Appendix F. Stateful LSTM 369

5 y=input_y ,
6 lookback=lookback_stateful)
7
8 batch_size = 128
9
10 # Train , valid and test size set
11 # to match the previous models.
12 train_size = 13002
13 valid_size = 3251
14 test_size = 3251
15
16 X_train_stateful , y_train_stateful =
17 np.array(
18 X[0:int(train_size / batch_size) *
19 batch_size]),
20 np.array(
21 y[0:int(train_size / batch_size) *
22 batch_size])
23 X_valid_stateful , y_valid_stateful = np.array(
24 X[int(train_size / batch_size) *
25 batch_size:int((train_size + valid_size) /
26 batch_size) *
27 batch_size]), np.array(
28 y[int(train_size / batch_size) *
29 batch_size:int((train_size +
30 valid_size) / batch_size) *
31 batch_size])
32 X_test_stateful , y_test_stateful = np.array(
33 X[int((train_size + test_size) / batch_size) *
34 batch_size :]), np.array(
35 y[int((train_size + test_size) /
36 batch_size) * batch_size :])
37
38 X_train_stateful =
39 X_train_stateful.reshape(
40 X_train_stateful.shape[0],
41 lookback_stateful ,
42 n_features)
43 X_valid_stateful =
44 X_valid_stateful.reshape(
45 X_valid_stateful.shape[0],
46 lookback_stateful ,

370

47 n_features)
48 X_test_stateful =
49 X_test_stateful.reshape(
50 X_test_stateful.shape [0],
51 lookback_stateful ,
52 n_features)
53
54 scaler_stateful =
55 StandardScaler ().fit(flatten(
56 X_train_stateful))
57
58 X_train_stateful_scaled =
59 scale(X_train_stateful ,
60 scaler_stateful)
61
62 X_valid_stateful_scaled =
63 scale(X_valid_stateful ,
64 scaler_stateful)
65 X_test_stateful_scaled =
66 scale(X_test_stateful ,
67 scaler_stateful)

The question is, why the batch size is required in a stateful model?

It is because when the model is stateless, TensorFlow allocates a
tensor for the states of size output_dim based on the number of LSTM
cells. At each sequence processing, this state tensor is reset.

On the other hand, TensorFlow propagates the previous states for
each sample across the batches in a stateful model. In this case, the
structure to store the states is of shape (batch_size, output_dim).
Due to this, it is necessary to provide the batch size while constructing
the network.

Stateful Model

A stateful LSTM model is designed to traverse the entire past in the
data for the model to self-learn the distant inter-dependencies instead
of limiting it in a lookback window. This is achieved with a specific
training procedure shown in Listing F.2.

The LSTM layer is made stateful by setting its argument

Appendix F. Stateful LSTM 371

stateful=True.

Listing F.2. Stateful LSTM model.
1 # Stateful model.
2
3 timesteps_stateful =
4 X_train_stateful_scaled.shape [1]
5 n_features_stateful =
6 X_train_stateful_scaled.shape [2]
7
8 model = Sequential ()
9 model.add(
10 Input(shape=(timesteps_stateful ,
11 n_features_stateful),
12 batch_size=batch_size ,
13 name=’input’))
14 model.add(
15 LSTM(8,
16 activation=’relu’,
17 return_sequences=True ,
18 stateful=True ,
19 name=’lstm_layer_1 ’))
20 model.add(Flatten ())
21 model.add(Dense(units=1,
22 activation=’sigmoid ’,
23 name=’output ’))
24
25 model.summary ()
26
27 model.compile(optimizer=’adam’,
28 loss=’binary_crossentropy ’,
29 metrics =[
30 ’accuracy ’,
31 tf.keras.metrics.Recall (),
32 performancemetrics.F1Score (),
33 performancemetrics.

FalsePositiveRate ()
34])

Unlike stateless LSTM, the cell states are preserved at every training
iteration in a stateful LSTM. This allows it to learn the dependencies
between the batches and, therefore, long-term patterns in significantly

372

long sequences. However, we do not want the state to be transferred
from one epoch to the next. To avoid this, we have to manually reset
the state after each epoch.

A custom operation during training iterations can be performed
by overriding the definitions in tf.keras.callbacks.Callback1. The
Callback() class has definitions to perform operations at the beginning
and/or end of a batch or epoch for both test and train. Since we
require to reset the model states at the end of every epoch, we override
the on_epoch_end() in Listing F.3 with model.reset_states().

Listing F.3. Custom Callback() for Stateful LSTM model.
1 class ResetStatesCallback(
2 tf.keras.callbacks.Callback):
3
4 def on_epoch_end(self , epoch , logs ={}):
5 self.model.reset_states ()

We now train the model in Listing F.4. In the model.fit(), we set
the argument callbacks equal to our custom defined
ResetStatesCallback(). Also, we set shuffle=False to maintain the
time ordering of the samples during the training.

Listing F.4. Stateful LSTM model fitting.
1 history = model.fit(
2 x=X_train_stateful_scaled ,
3 y=y_train_stateful ,
4 callbacks =[ResetStatesCallback ()],
5 batch_size=batch_size ,
6 epochs =100,
7 shuffle=False ,
8 validation_data =(X_valid_stateful_scaled ,
9 y_valid_stateful),
10 verbose =0).history

The results from stateful LSTM on the sheet-break time series is
poorer than the other LSTM models in Chapter 5. As alluded to earlier,
a potential reason is that the process is non-stationary. Due to this, the
dependencies change over time and are difficult to learn.

1/api_docs/python/tf/keras/callbacks/Callback

Appendix G

Null-Rectified Linear Unit

Rectified Linear Units (relu) is one of the most common activation
functions. It is expressed as,

g(x) =

{
x, if x > 0

0, otherwise.
(G.1)

As shown in the equation, relu makes any non-positive x as 0. This
brings nonlinearity to the model but at the cost of feature manipulation.

Such manipulation affects the pooling operation in convolutional net-
works (see § 6.12.2 in Chapter 6). The manipulation distorts the original
distribution of the features which makes some pooling statistics, e.g., av-
erage, inefficient.

A resolution mentioned in § 6.13.3 is replacing relu activation with
null-relu, which is defined as,

g(x) =

{
x, if x > 0

φ, otherwise
(G.2)

where φ denotes null. Unlike Equation G.1, null-relu acts as drop-
ping the non-positive x’s instead of treating them as 0. Both are visu-
alized in Figure G.1a and G.1b, respectively.

373

374

x

y

y = 0

ReLU

(a) Traditional relu activation.

x

y

y = φ

Null−ReLU

(b) A variant null-relu activation.

Figure G.1. The traditional Rectified Linear Unit (relu) activation
(top) transforms any non-positive x to zero. This is a nonlinear
operation essential in most deep learning layers. However, in
between a convolutional and pooling operation, the relu
transformation can have an unwanted effect. The pooling
attempts to draw a summary statistic from convolution output.
But relu brings artificial 0’s that subvert summary information.
A Null-relu activation (bottom) mitigates this by replacing the
non-positive x’s with φ (null). Unlike 0s in relu, nulls do not
add any artificial information; they only mask the non-positive
x’s.

Appendix G. Null-Rectified Linear Unit 375

Null-relu’s impact on the activated features for normal and uni-
form distributions are shown in Figure G.2a and G.2b, respectively. As
opposed to the relu effect shown in Figure 6.28a and 6.28b, the acti-
vated feature distributions are still known—half-gaussian and uniform.
Therefore, efficient pooling statistics such as in Kobayashi 2019a can be
used.

376

x=0 x

Normal distribution
NULL−ReLU activated

(a) Normal Distribution after null-relu activation.

x=0 x

Uniform distribution
NULL−ReLU activated

(b) Uniform Distribution after null-relu activation.

Figure G.2. The distribution of the feature map is distorted by a relu
activation. While any nonlinear activation distorts the original
distribution, relu’s is severe because it artificially adds zeros for
every non-positive x. Due to this, the activated x’s distribution
becomes extremely heavy at zero. Such distributions do not
belong to known or well-defined distribution families. A variant
of relu called null-relu transforms the non-positive x to null
(φ). This is equivalent to throwing the non-positive x’s instead
of assuming them to be zero. If the original distribution is
normal (top) or uniform (bottom), the null-relu activated are
half-Gaussian and Uniform, respectively. Therefore, it has a less
severe effect on distribution.

Appendix H

1× 1 Convolutional Network

§ 6.7.4 explains 1×1 convolution layers and their purpose. An illus-
trative convolutional network with 1×1 convolutional layer is shown in
Listing H.

A regular convolution layer has a kernel size larger than 1 to learn
spatial features. Differently, a 1×1 convolution layer has a kernel size
equal to 1. Its primary purpose is to reduce the channels for network
dimension reduction. Sometimes they are also used to learn features
from the information in the channels. For this, multiple 1× 1 layers are
stacked in parallel.

The illustrative example in Listing H has a single 1×1 convolutional
layer. As shown in Figure H.1, the layer resulted in a reduction of the
channels from 64 to 32. The network is built and trained on temporalized
data with lookback=240. The results are shown in Figure H.2a-H.2c.

1 ## 1x1 convolutional network
2
3 model = Sequential ()
4 model.add(Input(shape =(TIMESTEPS ,
5 N_FEATURES),
6 name=’input’))
7 model.add(Conv1D(filters =64,
8 kernel_size =4,
9 activation=’relu’,
10 name=’Convlayer ’))

377

378

11 model.add(Dropout(rate =0.5,
12 name=’dropout ’))
13 model.add(Conv1D(filters =32,
14 kernel_size =1,
15 activation=’relu’,
16 name=’Conv1x1 ’))
17 model.add(MaxPool1D(pool_size=4,
18 name=’maxpooling ’))
19 model.add(Flatten(name=’flatten ’))
20 model.add(Dense(units =16,
21 activation=’relu’,
22 name=’dense’))
23 model.add(Dense(units=1,
24 activation=’sigmoid ’,
25 name=’output ’))
26 model.summary ()
27
28 model.compile(optimizer=’adam’,
29 loss=’binary_crossentropy ’,
30 metrics =[
31 ’accuracy ’,
32 tf.keras.metrics.Recall (),
33 pm.F1Score (),
34 pm.FalsePositiveRate ()
35])
36 history = model.fit(x=X_train_scaled ,
37 y=y_train ,
38 batch_size =128,
39 epochs =150,
40 validation_data =(X_valid_scaled ,
41 y_valid),
42 verbose =0).history

Appendix H. 1× 1 Convolutional Network 379

Figure H.1. Summary of a 1× 1 convolutional network.

0 20 40 60 80 100 120 140
Epoch

0.00.0

0.10.1

0.20.2

lo
ss

Train loss
Valid loss

(a) Loss.

0 20 40 60 80 100 120 140
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

f1
_s

co
re

Train f1_score
Valid f1_score

(b) F1-score.

0 20 40 60 80 100 120 140
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

va
lu

e

Train Recall
Valid Recall
Train FPR
Valid FPR

(c) Recall and FPR.

Figure H.2. 1× 1 convolutional network results.

Appendix I

CNN: Visualization for
Interpretation

A benefit of convolutional networks is that they have filters and fea-
ture representations which can be visualized to understand the spatio-
temporal patterns and dependencies. These visuals help diagnose a
model.

In this appendix, illustrations for filters and feature representation
visualization are presented. The visuals are for the network constructed
in Appendix H.

Filter Visualization

We can look at the layers in a model by printing model.layers as shown
in Listing I.1. Every convolutional layer makes a set of filters. A layer
weights (the filters) can be taken using the layer index or the name.

For example, the convolutional layer weights in the model in List-
ing H can be fetched as model.layers[0].get_weights() because it is
the first layer which has index 0, or using a named call as
model.get_layer(’Convlayer’).get_weights() where Convlayer is
the user-defined name for the layer.

Listing I.1. CNN model layers.

381

382

1 model.layers
2 # [<tensorflow.python.keras.layers.convolutional.

Conv1D at 0x149fd59b0 >,
3 # <tensorflow.python.keras.layers.core.Dropout at 0

x149fd5780 >,
4 # <tensorflow.python.keras.layers.convolutional.

Conv1D at 0x14b123358 >,
5 # <tensorflow.python.keras.layers.pooling.

MaxPooling1D at 0x14d77d048 >,
6 # <tensorflow.python.keras.layers.core.Flatten at 0

x149d86198 >,
7 # <tensorflow.python.keras.layers.core.Dense at 0

x14cd69c50 >,
8 # <tensorflow.python.keras.layers.core.Dense at 0

x14c990a90 >]

Listing I.2 fetches the convolutional filters and scales them in (0,1)
for visualization. They are then plotted in Figure I.1. The plots have a
clearer interpretation of image problems. In such problems, the filters
have shapes that correspond to certain patterns in the objects.

The filter visuals here can be interpreted differently. Each filter is
of shape (4, 69) corresponding to the kernel size and the input features,
respectively. The plot shows which feature is active in a filter.

Besides, there are a total of 64 filters in the convolutional layer (see
Listing H). Out of them, 16 filters are shown in the figure.

Listing I.2. CNN filter plotting.
1 ## Plot filters
2
3 # retrieve weights from the first convolutional

layer
4 filters , biases = model.layers [0]. get_weights ()
5 print(model.layers [0].name , filters.shape)
6 # Convlayer (4, 69, 64)
7
8 # normalize filter values to 0-1 so we can visualize

them
9 f_min , f_max = filters.min(), filters.max()
10 filters = (filters - f_min) / (f_max - f_min)
11

Appendix I. CNN: Visualization for Interpretation 383

Figure I.1. Convolutional layer filters visualization.

12 from matplotlib import pyplot
13 from matplotlib.pyplot import figure
14 figure(num=None , figsize =(20 ,10), dpi=160, facecolor

=’w’, edgecolor=’k’)
15 # plot first 16 filters
16 n_filters , ix = 16, 1
17 for i in range(n_filters):
18 # get the filter
19 f = filters[:, :, i]
20 # plot each channel separately
21
22 # specify subplot and turn of axis
23 ax = pyplot.subplot(n_filters , 2, ix)
24 ax.set_xticks ([])
25 ax.set_yticks ([])
26 # plot filter channel in grayscale
27 pyplot.imshow(f[:, :], cmap=’gray’)
28 ix += 1
29 # show the figure
30 pyplot.show()

Feature Representation Visuals

Visualizing the feature representations helps to learn the model’s reac-
tions to positive and negative samples.

In Listing I.3, a few true positive and true negative samples are taken
based on the model inferences. Out of all the true positives, the ones
with high probabilities are taken for better diagnosis.

384

The feature representation outputted by the first convolutional layer
in Listing H is taken here. The steps for fetching the feature represen-
tations (map) are shown in Listing I.3.

As was shown in the model summary in Figure H.1, the output of
the convolution layer is a feature representation of shape 237× 64.

We visualize these 237 × 64 outputs for the true positive and true
negative samples in Figure I.2a-I.2b.

Listing I.3. Convolutional network feature representation plotting.
1 ## Plot feature map
2 # Take out a part of the model to fetch the feature

mapping
3 # We are taking the feature mapping from the first

Convolutional layer
4 feature_mapping = Model(inputs=model.inputs , outputs

=model.layers [0]. output)
5
6 prediction_valid = model.predict(X_valid_scaled).

squeeze ()
7
8 top_true_positives = np.where(
9 np.logical_and(prediction_valid > 0.78, y_valid

== 1))[0]
10
11 top_true_negatives = np.where(
12 np.logical_and(prediction_valid < 1e-10, y_valid

== 0))[0]
13
14 # Plotting
15 from matplotlib import pyplot
16 from matplotlib.pyplot import figure
17 figure(num=None , figsize =(4, 4), dpi=160, facecolor=

’w’)
18
19
20 def plot_feature_maps(top_predictions):
21
22 n_feature_maps , ix = 10, 1
23
24 for i in range(n_feature_maps):

Appendix I. CNN: Visualization for Interpretation 385

25
26 samplex = X_valid_scaled[top_predictions[i],

:, :]
27 samplex = samplex.reshape ((1, samplex.shape

[0], samplex.shape [1]))
28
29 feature_map = feature_mapping.predict(

samplex).squeeze ()
30
31 ax = pyplot.subplot(np.round(n_feature_maps

/ 2), 2, ix)
32 ax.set_xticks ([])
33 ax.set_yticks ([])
34
35 # plot filter channel in grayscale
36 pyplot.imshow(np.transpose (1 - (feature_map

- feature_map.min()) /
37 (feature_map.max

() -
feature_map.
min())),

38 cmap=’viridis ’)
39 ix += 1
40
41 # show the figure
42 pyplot.show()
43
44 plot_feature_maps(top_true_positives)
45
46 plot_feature_maps(top_true_negatives)

In the figure, the yellow indicates the feature is active while the
opposite for green. At a high level, it can be interpreted that most of
the features are activated for true positives but not for true negatives.
Meaning, the activation of these features distinguishes a positive (sheet
break) from a normal process (no sheet break).

However, the true positive feature map on the top-left in Figure I.2a
does not follow this interpretation. To further diagnose, subsequent
layers should be visualized.

These visualizations help diagnose the model. The diagnosis can help

386

in model improvement, new model development, or root cause analysis.

A different set of samples can be chosen, e.g., false positives, or false
negatives, to diagnose the model to identify what happens when it is
unable to correctly predict.

(a) True positives. (b) True negatives.

Figure I.2. Convolutional network feature representation plotting.

Appendix J

Multiple (Maximum and
Range) Pooling Statistics in
a Convolution Network

The concept of using summary statistics for pooling described in Chap-
ter 6 opened possibilities for new ways of pooling. One of them is using
ancillary statistics in parallel with a sufficient statistic.

In this appendix, a network is constructed in Listing J withmaximum
pooling (a sufficient statistic) and range pooling (an ancillary statistic)
in parallel.

The network structure is shown in Figure J.1. As shown here, the
ReLU (nonlinear) activation is added after the pooling. This is essential
as described in § 6.12.2. Otherwise, if activation is added between convo-
lutional and pooling layers (following the tradition), the range statistic
becomes the same as the maximum whenever the feature representations
have any negative value.

1 ## Multiple -pooling layer convolutional network
2 x = Input(shape =(TIMESTEPS , N_FEATURES))
3
4 conv = Conv1D(filters =16,
5 kernel_size =4,
6 activation=’linear ’,

387

388

Figure J.1. A convolutional network with maximum and range pooling
placed in parallel.

Appendix J. Multiple (Maximum and Range) Pooling Statistics in a
Convolution Network 389

7 padding=’valid ’)(x)
8
9 # left operations
10 max_statistic = MaxPool1D(pool_size =4,
11 padding=’valid ’)(conv)
12
13 # right operations
14 # 1. negative of feature map
15 range_statistic = tf.math.negative(conv)
16 # 2. apply maxpool to get the min statistics
17 range_statistic = MaxPool1D(pool_size =4,
18 padding=’valid ’)(

range_statistic)
19 # 3. negative of negative in step (1) to revert to

original
20 range_statistic = tf.math.negative(range_statistic)
21 # 4. subtract with max_statistic to get the
22 # range statistic max(x) - min(x)
23 range_statistic = tf.math.subtract(max_statistic ,
24 range_statistic)
25
26 # Concatenate the pool
27 concatted =
28 tf.keras.layers.Concatenate ()([max_statistic ,
29 range_statistic])
30
31 features = Flatten ()(concatted)
32
33 features = ReLU()(features)
34
35 # 128 nodes for lookback = 20 or 40.
36 dense = Dense(units =256,
37 activation=’relu’)(features)
38
39 predictions = Dense(units=1,
40 activation=’sigmoid ’,
41 name=’output ’)(dense)
42
43 model = Model(inputs=x,
44 outputs=predictions)
45
46 # Plot the network structure

390

47 tf.keras.utils.plot_model(model ,
48 show_shapes=False ,
49 dpi =600)
50
51 # Train the model
52 model.compile(optimizer=’adam’,
53 loss=’binary_crossentropy ’,
54 metrics =[
55 ’accuracy ’,
56 tf.keras.metrics.Recall (),
57 pm.F1Score (),
58 pm.FalsePositiveRate ()
59])
60 history = model.fit(x=X_train_scaled ,
61 y=y_train ,
62 batch_size =128,
63 epochs =150,
64 validation_data =(X_valid_scaled ,
65 y_valid),
66 verbose =1).history

The network construction in Listing J shows a work-around with
existing TensorFlow functions to get the range statistic. A custom range-
pooling layer can also be built.

The results from training the network on a temporalized data with
lookback=240 shown in Figure J.2a-J.2c have a more stable accuracy
performance than every other model. The stability could be attributed
to the informative features provided by the parallel pooling.

Appendix J. Multiple (Maximum and Range) Pooling Statistics in a
Convolution Network 391

0 20 40 60 80 100 120 140
Epoch

0.00.0

0.10.1

0.20.2

lo
ss

Train loss
Valid loss

(a) Loss.

0 20 40 60 80 100 120 140
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

f1
_s

co
re

Train f1_score
Valid f1_score

(b) F1-score.

0 20 40 60 80 100 120 140
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

va
lu

e

Train Recall
Valid Recall
Train FPR
Valid FPR

(c) Recall and FPR.

Figure J.2. Convolutional network with range and maximum pooling
results.

Appendix K

Convolutional
Autoencoder-Classifier

One of the applications of autoencoders is learning encodings that are
used to train a classifier. In this appendix, an illustrative example is
presented with the steps.

Sparse Convolutional Autoencoder

A sparse autoencoder is preferred for use in a classifier. The sparsity is
applied on the encodings as shown in Listing K.1. The implementation
approach here is different from the implementations in Chapter 7 to
show another way to construct an autoencoder.

Listing K.1. Sparse convolutional autoencoder.
1 # Sparse CNN Autoencoder
2
3 inputs = Input(shape =(TIMESTEPS ,
4 N_FEATURES),
5 name=’encoder_input ’)
6
7 def encoder(inp):
8 ’’’
9 Encoder.
10

393

394

11 Input
12 inp A tensor of input data.
13
14 Process
15 Extract the essential features of the input as
16 its encodings by filtering it through

convolutional
17 layer(s). Pooling can also be used to further
18 summarize the features.
19
20 A linearly activated dense layer is added as the
21 final layer in encoding to perform any affine
22 transformation required. The dense layer is not
23 for any feature extraction. Instead , it is only
24 to make the encoding and decoding connections
25 simpler for training.
26
27 Output
28 encoding A tensor of encodings.
29 ’’’
30
31 # Multiple (conv , pool) blocks can be added here
32 conv1 = Conv1D(filters=N_FEATURES ,
33 kernel_size =4,
34 activation=’relu’,
35 padding=’same’,
36 name=’encoder -conv1’)(inp)
37 pool1 = MaxPool1D(pool_size=4,
38 strides=1,
39 padding=’same’,
40 name=’encoder -pool1’)(conv1)
41
42 # The last layer in encoding
43 encoding = Dense(units=N_FEATURES ,
44 activation=’linear ’,
45 activity_regularizer=
46 tf.keras.regularizers.L1(l1

=0.01) ,
47 name=’encoder -dense1 ’)(pool1)
48
49 return encoding
50

Appendix K. Convolutional Autoencoder-Classifier 395

51 def decoder(encoding):
52 ’’’
53 Decoder.
54
55 Input
56 encoding The encoded data.
57
58 Process
59 The decoding process requires a transposed
60 convolutional layer , a.k.a. a deconvolution
61 layer. Decoding must not be done with a
62 regular convolutional layer. A regular conv
63 layer is meant to extract a downsampled
64 feature map. Decoding , on the other hand ,
65 is reconstruction of the original data
66 from the downsampled feature map. A
67 regular convolutional layer would try to
68 extract further higher level features from
69 the encodings instead of a reconstruction.
70
71 For a similar reason , pooling must not be
72 used in a decoder. A pooling operation is
73 for summarizing a data into a few summary
74 statistics which is useful in tasks such
75 as classification. The purpose of
76 decoding is the opposite , i.e., reconstruct
77 the original data from the summarizations.
78 Adding pooling in a decoder makes it lose
79 the variations in the data and ,
80 hence , a poor reconstruction.
81
82 If the purpose is only reconstruction , a
83 linear activation should be used in
84 decoding. A nonlinear activation is useful
85 for predictive features but not for
86 reconstruction.
87
88 Batch normalization helps a decoder by
89 preventing the reconstructions
90 from exploding.
91
92 Output

396

93 decoding The decoded data.
94
95 ’’’
96
97 convT1 = Conv1DTranspose(filters=N_FEATURES ,
98 kernel_size =4,
99 activation=’linear ’,

100 padding=’same’)(encoding)
101
102 decoding = BatchNormalization ()(convT1)
103
104 decoding = Dense(units=N_FEATURES ,
105 activation=’linear ’)(decoding)
106
107 return decoding
108
109 autoencoder = Model(inputs=inputs ,
110 outputs=decoder(encoder(inputs))

)
111
112 autoencoder.summary ()
113 autoencoder.compile(loss=’mean_squared_error ’,

optimizer = ’adam’)
114
115 history =
116 autoencoder.fit(x=X_train_y0_scaled ,
117 y=X_train_y0_scaled ,
118 epochs =100,
119 batch_size =128,
120 validation_data=
121 (X_valid_y0_scaled ,
122 X_valid_y0_scaled),
123 verbose =1).history

Convolutional Classifier Initialized with Encoder

A classifier can be (potentially) enhanced with an autoencoder. List-
ing K.2 constructs a feed-forward convolutional classifier with an encoder
attached to it.

Appendix K. Convolutional Autoencoder-Classifier 397

Listing K.2. Convolutional feed-forward network initialized with au-
toencoder.
1 # CNN Classifier initialized with Encoder
2
3 def fully_connected(encoding):
4 conv1 = Conv1D(filters =16,
5 kernel_size =4,
6 activation=’relu’,
7 padding=’valid ’,
8 name=’fc-conv1’)(encoding)
9 pool1 = MaxPool1D(pool_size=4,
10 padding=’valid ’,
11 name=’fc-pool1’)(conv1)
12 flat1 = Flatten ()(pool1)
13
14 den = Dense(units=16,
15 activation=’relu’)(flat1)
16
17 output = Dense(units=1,
18 activation=’sigmoid ’,
19 name=’output ’)(den)
20
21 return(output)
22
23 encoding = encoder(inputs)
24 classifier =
25 Model(inputs=inputs ,
26 outputs=fully_connected(
27 encoding=encoder(inputs)))

The encoder can be used to have either a,

• Pre-trained classifier. A trained encoder can be used as a part
of a feed-forward classifier network. Or,

• Encoded features as input. The features produced by an en-
coder used as input to a classifier.

Corresponding to the two approaches, an argument retrain_encoding
is defined in Listing K.3.

The argument when set to False results in the classifier using the
encoded features as input. This is achieved by making the layers in

398

the encoder section of the model as non-trainable in line 13 in the listing
(Listing K.3). This is also shown in Figure K.1.

The argument, retrain_encoding, when set to True uses the en-
coding weights to initialize the model and retrain them while learning
the classifier.

Listing K.3. Training an autoencoder-classifier.
1 # Classifier layer initialized with encoder
2 retrain_encoding = False
3
4 for classifier_layer in classifier.layers:
5 for autoencoder_layer in autoencoder.layers:
6 if classifier_layer.name == autoencoder_layer.

name:
7 # Set the weights of classifier same as the
8 # corresponding autoencoder (encoder) layer
9 classifier_layer.set_weights(
10 autoencoder_layer.get_weights ())
11
12 if retrain_encoding == False:
13 classifier_layer.trainable = False
14 print(classifier_layer.name +
15 ’ in classifier set to ’ +
16 autoencoder_layer.name +
17 ’ in the encoder ’ +
18 ’is trainable: ’ +
19 str(classifier_layer.trainable))
20
21 classifier.summary ()
22 classifier.compile(optimizer=’adam’,
23 loss=’binary_crossentropy ’,
24 metrics =[
25 ’accuracy ’,
26 tf.keras.metrics.Recall (),
27 pm.F1Score (),
28 pm.FalsePositiveRate ()
29])
30
31 history = classifier.fit(x=X_train_scaled ,
32 y=y_train ,
33 batch_size =128,

Appendix K. Convolutional Autoencoder-Classifier 399

Figure K.1. Model summary of convolutional autoencoder-classifier
using the encodings as classifier input.

34 epochs =100,
35 validation_data=
36 (X_valid_scaled ,
37 y_valid),
38 verbose =1).history

Appendix L

Oversampling

Oversampling techniques artificially increase the minority positive class
samples to balance the data set. One of the most fundamental oversam-
pling techniques is randomly selecting samples from the minority class
with replacement. The random selection process is repeated multiple
times to get as many minority samples as required for data balancing.

However, in an extremely unbalanced data, creating a large number
of duplicates for the minority class may yield a biased model.

A more methodical approach called Synthetic Minority Over-sampling
Technique (SMOTE) can address this.

SMOTE

In this approach, data is synthesized by randomly interpolating new
points between the available (real) minority samples.

This procedure is illustrated in Figure L.1. In the figure, the +’s are
the “rare” minority class and o’s are the majority. SMOTE synthesizes a
new minority sample between the existing samples. These interpolations
work as follows,

• the interpolated point is drawn randomly from anywhere on the
line (in the two-dimensional visual in Figure L.1, otherwise, a
hyper-plane in general) that connects two samples denoted as x1

401

402

𝒙"

𝒙# 𝒙# + 𝑟(𝒙" − 𝒙#)

Minority class

Majority class
𝑘 = 1

𝑘 = 2
𝑘 = 3

Figure L.1. Illustration of SMOTE oversampling. SMOTE synthesizes
a new sample (shown in translucent orange +) by interpolating
between two samples.

and x2.

• For this, a random number between 0 and 1 is generated. The
new point is then synthesized as, x1 + r(x2 − x1), shown as a
translucent + in the figure.

• Note that, any interpolated sample between x1 and x2 will lie on
the line connecting them (shown as small translucent +’s in the
figure).

SMOTE is available in Python as imblearn.over_sampling.SMOTE()
1. Its primary arguments are,

• k_neighbors. Denoted as k in Figure L.1, it is the number of
nearest neighbors SMOTE will use to synthesize new samples. By
default, k = 5. A lower k will have lesser noise but also less robust,
and vice-versa for a higher k.

• random_state is used to control the randomization of the algo-
rithm. It is useful to set this to reproduce the sampling.

1https://imbalanced-learn.readthedocs.io/en/stable/generated/
imblearn.over_sampling.SMOTE.html

https://imbalanced-learn.readthedocs.io/en/stable/generated/imblearn.over_sampling.SMOTE.html
https://imbalanced-learn.readthedocs.io/en/stable/generated/imblearn.over_sampling.SMOTE.html

Appendix L. Oversampling 403

Listing L.1. SMOTE Oversampling.
1 smote = SMOTE(random_state =212, k_neighbors =1)
2 X_train_scaled_resampled , y_train_resampled =
3 smote.fit_resample(X_train_scaled , y_train)
4 print(’Resampled dataset shape %s’ %
5 Counter(y_train_resampled))

Listing L.1 shows the SMOTE declaration. Here, k_neighbors=1 be-
cause the data is noisy and a larger k will add more noise. However, a
small k comes at the cost of making the model biased, and therefore,
potentially poorer inferencing accuracy.

A model is built and trained with the oversampled data in List-
ing L.2. The results are shown in Figure L.2a-L.2c.

Listing L.2. MLP Model with SMOTE Oversampled Training Data.
1 model = Sequential ()
2 model.add(Input(shape =(N_FEATURES ,)))
3 model.add(Dense (32, activation=’relu’))
4 model.add(Dense (16, activation=’relu’))
5 model.add(Dense(1, activation=’sigmoid ’))
6
7 model.summary ()
8
9 model.compile(optimizer=’adam’,
10 loss=’binary_crossentropy ’,
11 metrics =[’accuracy ’,
12 tf.keras.metrics.Recall (),
13 performancemetrics.F1Score (),
14 performancemetrics.

FalsePositiveRate ()]
15)
16
17 history = model.fit(x=X_train_scaled_resampled ,
18 y=y_train_resampled ,
19 batch_size =128,
20 epochs =200,
21 validation_data =(X_valid_scaled ,
22 y_valid),

404

0 25 50 75 100 125 150 175 200
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

lo
ss

Train loss
Valid loss

(a) Loss.

0 25 50 75 100 125 150 175 200
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

f1
_s

co
re

Train f1_score
Valid f1_score

(b) F1-score.

0 25 50 75 100 125 150 175 200
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

va
lu

e

Train Recall
Valid Recall
Train FPR
Valid FPR

(c) Recall and FPR.

Figure L.2. MLP with SMOTE oversampling model results.

	Preface
	Acknowledgment
	Website
	Introduction
	Examples of Application
	Rare Diseases
	Fraud Detection
	Network Intrusion Detection
	Detecting Emergencies
	Click vis-à-vis churn prediction
	Failures in Manufacturing

	A Working Example
	Problem Motivation
	Paper Manufacturing Process
	Data Description

	Machine Learning vs. Deep Learning
	In this Book

	Rare Event Prediction
	Rare Event Problem
	Underlying Statistical Process
	Problem definition
	Objective
	Loss function
	Accuracy measures

	Challenges
	High-dimensional Multivariate Time Series
	Early Prediction
	Imbalanced Data

	Setup
	TensorFlow
	Prerequisites
	Install Python
	Install Virtual Environment

	TensorFlow 2x Installation
	Testing

	Sheet Break Problem Dataset

	Multi-layer Perceptrons
	Background
	Fundamentals of MLP
	Initialization and Data Preparation
	Imports and Loading Data
	Data Pre-processing
	Curve Shifting
	Data Splitting
	Features Scaling

	MLP Modeling
	Sequential
	Input Layer
	Dense Layer
	Output Layer
	Model Summary
	Model Compile
	Model Fit
	Results Visualization

	Dropout
	What is Co-Adaptation?
	What Is Dropout?
	Dropout Layer

	Class Weights
	Activation
	What is Vanishing and Exploding Gradients?
	Cause Behind Vanishing and Exploding Gradients
	Gradients and Story of Activations
	Self-normalization
	Selu Activation

	Novel Ideas Implementation
	Activation Customization
	Metrics Customization

	Models Evaluation
	Rules-of-thumb
	Exercises

	Long Short Term Memory Networks
	Background
	Fundamentals of LSTM
	Input to LSTM
	LSTM Cell
	State Mechanism
	Cell Operations
	Activations in LSTM
	Parameters
	Iteration Levels
	Stabilized Gradient

	LSTM Layer and Network Structure
	Input Processing
	Stateless versus Stateful
	Return Sequences vs Last Output

	Initialization and Data Preparation
	Imports and Data
	Temporalizing the Data
	Data Splitting
	Scaling Temporalized Data

	Baseline Model—A Restricted Stateless LSTM
	Input layer
	LSTM layer
	Output layer
	Model Summary
	Compile and Fit

	Model Improvements
	Unrestricted LSTM Network
	Dropout and Recurrent Dropout
	Go Backwards
	Bi-directional
	Longer Lookback/Timesteps

	History of LSTMs
	Summary
	Rules-of-thumb
	Exercises

	Convolutional Neural Networks
	Background
	The Concept of Convolution
	Convolution Properties
	Parameter Sharing
	Weak Filters
	Equivariance to Translation

	Pooling
	Regularization via Invariance
	Modulating between Equivariance and Invariance

	Multi-channel Input
	Kernels
	Convolutional Variants
	Padding
	Stride
	Dilation
	1x1 Convolution

	Convolutional Network
	Structure
	Conv1D, Conv2D, and Conv3D
	Convolution Layer Output Size
	Pooling Layer Output Size
	Parameters

	Multivariate Time Series Modeling
	Convolution on Time Series
	Imports and Data Preparation
	Baseline
	Learn Longer-term Dependencies

	Multivariate Time Series Modeled as Image
	Conv1D and Conv2D Equivalence
	Neighborhood Model

	Summary Statistics for Pooling
	Definitions
	(Minimal) Sufficient Statistics
	Complete Statistics
	Ancillary Statistics

	Pooling Discoveries
	Reason behind Max-Pool Superiority
	Preserve Convolution Distribution

	Maximum Likelihood Estimators for Pooling
	Uniform Distribution
	Normal Distribution
	Gamma Distribution
	Weibull Distribution

	Advanced Pooling
	Adaptive Distribution Selection
	Complete Statistics for Exponential Family
	Multivariate Distribution

	History of Pooling
	Rules-of-thumb
	Exercises

	Autoencoders
	Background
	Architectural Similarity between PCA and Autoencoder
	Encoding—Projection to Lower Dimension
	Decoding—Reconstruction to Original Dimension

	Autoencoder Family
	Undercomplete
	Overcomplete
	Denoising Autoencoder (DAE)
	Contractive Autoencoder (CAE)
	Sparse Autoencoder

	Anomaly Detection with Autoencoders
	Anomaly Detection Approach
	Data Preparation
	Model Fitting
	Diagnostics
	Inferencing

	Feed-forward MLP on Sparse Encodings
	Sparse Autoencoder Construction
	MLP Classifier on Encodings

	Temporal Autoencoder
	LSTM Autoencoder
	Convolutional Autoencoder

	Autoencoder Customization
	Well-posed Autoencoder
	Model Construction
	Orthonormal Weights
	Sparse Covariance

	Rules-of-thumb
	Exercises

	Appendices
	Appendix Importance of Nonlinear Activation
	Appendix Curve Shifting
	Appendix Simple Plots
	Appendix Backpropagation Gradients
	Appendix Data Temporalization
	Appendix Stateful LSTM
	Appendix Null-Rectified Linear Unit
	Appendix 11 Convolutional Network
	Appendix CNN: Visualization for Interpretation
	Appendix Multiple (Maximum and Range) Pooling Statistics in a Convolution Network
	Appendix Convolutional Autoencoder-Classifier
	Appendix Oversampling
	SMOTE

