
A RTof1
cleAi
CODE

HOW TO WRITE CODES FOR HUMAN

Roosnam Seefan

Art of Clean Code

How to Write Codes for Human

HELLO WORLD

Overview

Since the first “Hello World” program by Dennis Ritchie, the world

has observed dramatic changes in the digital landscape. With the

growing advancement of technology, the impact of digitization is

unavoidable in all spheres of modern society. Hence efficient

program is the demand of the hours which also needs to ensure

security as well as scalability.

The modern era has identified software development as an ever­

developing process. In other words, this also ensures the

scalability of the program to some extent. Hence, software

development needs to go beyond the spatial domain as well as

the temporal domain. This phenomenon ignites the importance of

code readability in the software industry.

Therefore, readability of the code is becoming the vital feature of

the product in software development. Hence, code readability

needs to be one of the very first things to learn and adapt for

the young programmers. Furthermore, besides the fundamental

courses, such an important topic should be cultured in the higher-

level courses and industrial pieces of training. However, might be

due to the negligence, lessons, and tips on code readability at the

higher and professional level are missing.

On a different note, comments are considered as the explanation

of a programming code that is applied by the programmers to

make the code human-readable. And hence, a lot of code

readability discussions ended up with a chicken and egg situation;

which is the importance of comment. Till date, this is an

inconclusive debate since commenting strategy includes both

benefits and setbacks to the code. Well, those who are working in

the software development industry, most likely have already

experienced such discussions.

If the developers' community is asked about the necessity of

comments in the codes, we will get diversified feedback. Some

might say comments are must for the developers while the others

would state it's a lost cause.

Meanwhile, if I was asked about my opinion on the necessity of

comments, my stand is not purely black and white. To me, if you

feel commenting adds value to your code, you shouldn't give any

second thought and need to incorporate commenting effectively.

Apparently, some basic and fundamental tips are very often

violated by the codes which make comments as the black sheep

in the code. Our discussion will mostly focus on what not to do

while commenting on this book.

Moreover, in order to make a clean and readable code, we need

to ensure,

DEVIL'S ADVOCATE

Introduction

Despite the mixed opinions, as far as commenting is concerned,

the standpoint of this book is quite clear. Rather directly arguing

on the importance and necessity of comment in a code, we will

try to focus on the impacts of proper and improper comments.

Therefore, the main discussion in this chapter will be on the do's

and don'ts of commenting. Hence, we are anticipating efficient

comment is a must component for readability. Thus, the book

highly recommends to patch comments with the code for

readability.

The following sections of this chapter will address the impacts of

good and bad comments from both individual and organizational

perspectives. Along with these discussions, the chapter will also

discuss on documentation.

Impacts: Organization’s Viewpoint

Before getting into the personal interest, let us first see when and

why commenting becomes the angel for an organization. We will

also see when and why commenting takes the devil's role for the

organization. The first view is that commenting and documentation

will protect the firm from

The opposing view is that there are more effective ways to

mitigate the risk of bad and disappearing programmers (like

mandated shared ownership of code and sufficient oversight), that

comments are not necessary for clarity and can be dangerous if

not kept up to date.

However, comments and documentation of the application acts as

training material. These approaches can help new recruits to learn

the existing’s faster. Hence, the newcomers will be tacitly oriented

as the documentation can be used to give lessons about the

applications. Therefore, comments and documentation act as the

training manual and covers the syllabus as well as provide notes

to educate.

Furthermore, documentation of an application may also be

introduced to the marketing and sales personnel to understand

what the functional aspects and capabilities of the program. This

sort of information always helps the marketing and sales

department to design their strategies while promoting and to

determine what can be promised and what can be fulfilled. This

will also ensure that customers will be promised with all the

deliverables. This will also reduce the chances of turmoil with the

customers as marketing and sales executives might not require to

promote with over and/or under promises.

Impacts: Individual’s Viewpoint

Though programming is considered to be pretty much materialist,

however there is another analogy where computer programmers

are referred to be artists. Hence, programmer’s artworks are

framed in the form of programming codes. Still, some may

oppose the idea that art has to be something which involves

emotion and passion. In such cases, a passionate programmer

may advocate that there exists a different type of insanity with the

coder that makes him/her work on the problem days and nights.

So, codes are nothing but the personal expression and rational

thoughts of a programmer.

This a common phenomenon where a programmer needs to reuse

own codes. Moreover, a coder's rational thought for solving any

problem is contextual. Hence, it's a must to relate previous

constraints with the current requirements prior to the reuse. So,

commenting in the code will always help you to recall the context

or the thought process you had while developing the code. While

reusing, comments in the code will also show you the gaps of

the existing code to the current requirements. Meanwhile, while

reusing, one may use the entire script or partial. In both cases, a

well commented code tells you all the dependencies and links a

code exhibits in a flash.

MORE IS NOT ALWAYS GOOD

Introduction

In the previous chapter, we have learnt why to comment in the

code. In this part of the book we will discuss the common

misconceptions while commenting. This is very natural that if

comments are good, the first beneficiary will be the coder himself.

It is also true the coder himself will be the first victim for the

bad comments.

Understanding the Value of a Comment

It is observed that whenever someone gets introduced to

something new, he or she is more inclined to the usage of it.

However, we need to understand the value of a particular

comment before applying. Consider the following example where

while declaring the coder uses comments to describe the datatype

of the variable.

Here, we need to first identify the value of the comment. From

any aspect such comment doesn’t add any value to the code. This

comment conveys the same understanding as the code part, which

is nothing but repetition. Such comments discomfort the reader

and hence, we need to ensure to comment only on those

thoughts that the code fails to express.

Don’t Overdo

While commenting in the code, we need to ensure that its not

overdone. Consider the following example,

// get the username using get_username method where user ID is the argume
username get_username(user_ID);

// if username matches with current user
(username = - current_user) {
// allow to edit profile by setting edit_profile to be true
edit_profile = 1;

In this particular case, comments before each statement make the

comments to be less productive. If you are trying to explain the

purpose of this particular portion, it’s better to combine the

comments into one and write it just before the block starts as

follows,

// enable current user to edit pr
username get_username(user_ID);

(username = current_user) {
edit_profile 1;

}

INDENTATION & SPACING

Introduction

Indentation in the code is one of the most essential features for

readability. Still, coders are often neglecting it while being reluctant

to follow indentation systematically. Hence, it has been seen over

the years that long and complex codes become abandoned just

due to defective and inconsistent indentation styling.

In a programming environment, code indentation is mainly

considered as the styling method in order to produce a readable

and understandable program. Furthermore, adding the aesthetic

values, indentation can be interpreted as the process a

programmer follows to divide and organize the source code into

blocks. Therefore, this approach will ensure that the reader to

have a comfortable journey while sailing through the code for his

or her understanding. Even, when someone revisits his/her source

code, consistency in the indenting style can save lots of time of

that particular programmer.

Importance of Indentation

Though being consistent with the indentation style ensures the

code to be pretty looking, however, code indenting is also used to

indicate a specific block associated with any comment. Yet,

programmers often bristle on the importance of indentation, some

programming environments such Python takes indentation quite

seriously. Indentation has been given additional attention in Python

such that even extra spacings before any statement may cause

compilation error to the program.

Nevertheless, a good number of programmers are also practicing

code indentation naturally.

While coding, a programmer needs to bear in mind that though

following any particular indentation styling may require additional

time, however it will save more time in the long run. Hence, if

you are required to give more time while coding, this will benefit

you and your readers in the long terms. However, just to meet

the deadline or for any other reasons, if the indentation styles are

not followed properly, rectification of the code may incur at a later

stage.

We should remember that a code which follows the proper

indentation style makes it:

In a nutshell, a programmer should remember that a code is

coded once however this code has the chance to be read several

times in the later phases.

Indentation Styles

From the previous sections we have realized that indentation style

plays a vital role from the code’s readability view point. On the

contrary, there exists no universal indentation style which can be

followed by everyone or can be considered to be the standard styling

scheme. The fact of the matter is any indentation styling is a good

style in programming as long as it has been followed throughout the

code. Hence, indentation style enigma can be resolved by being

consistent.

We may now say that in order to ensure a readable code, the best

indentation style needs to be always consistent. A practical

implication can be if a new member joins any ongoing development

project and becomes the part of a team, as far as indentation is

concerned, the new member needs to follow the exact same

indentation styling that has been followed for this project.

In the following section we will see three different indentation styles

for the same block of code. Again, these are few of the many

different indentation styles and we are just using these three for our

visual understandings. As discussed earlier, indentation mainly divides

the code to different parts, which is commonly known as the blocks.

Apart from this, in any indentation styling, statements of equal

importance or same level will also need to indented with exact

indented space.

Indentation Style A
function myStyleO {

($ some thing) ■{
StyleA();
StyleBO;

} <
StyleCf);

done();>

Indentation Style B
function myStyleO
{

($something)

StyleAf);
StyleB();

}
else
{

StyleC();
}
done();

Indentation Style C
function myStyleO
{ ($something)

{ StyleAO;
StyleBO;

else
{ StyleCO;
}
done();

In the Indentation Style A, the opening bracket “{” goes on the

same line as the function definition and control structure, where the

opening bracket goes to the next line in both cases in Style B.

Unless observed closely, one may fail to identify the features of

styling in the Indentation Style A, B, C since they are somewhat

similar. This also tells us that there are styles which are derived from

other existing styles. For instance, the following Style D is a derived

one from the previous example styles. Also known as PEAR standard,

in Style D the opening bracket “{” goes on the same line as the

function definition and goes to the next line in control structure.

Hence, we as a programmer always need to be fully clear about the

indentation styling rules before applying. Moreover, for the spacing

purpose, it is always advised to use tabs instead of spacebars for

indentations.

Indentation Style 0
function myStyleO

($something) {
StyleA();
StyleBO;

} e- {
StyleC();

}
done();

Indentation Settings

The first sign that strikes the mind whenever someone refers to

indentation is the spacebar. Hence, we feel on hitting the spacebar

various numbers of time before different levels in the code. On the

other hand, if someone is familiarized with the processing

applications, he or she might be feeling to use tabs for indenting

purposes.

No matter you use the spacebars or the tabs concerning indentation,

you are doing good. However, the concern is raised whenever you

start mixing these two keys in the code. This is because length

settings are the opposite for spacebar and tabs. For spacebar,

spacing length is fixed for all the systems, where tab length is a

user setting dependent. Hence, one can set tabs to be 4 spaces

where others may set it at 6. Whenever tabs and spaces are mixed

in the code, the code becomes messy in the screen of other who

has different tabs length.

The following code looks clumsy due to the improper use of spaces

and tabs.

void addition_subtraction_multiplication(int a, int b, int opt){

(opt=l){
int result = a+b;
cout « "Result is " « result « endl;

1
// two numbers will be subtracted if user makes opt variable

(opt=2){
int result = a-b;
cout « "Result is " « result « endl;

ll for other values in opt, multiplication will be executed
else{
int result — a*b;
cout « "Result is " « result « endl;

1

Therefore, for a well-organized readable code, we should not combine

spaces and tabs for indentation purpose. An implementation of this

concept has been shown in the following code which is a

reproduction of the previous one.

void addition_subtraction_multiplication(int a, int b, int opt){
// two numbers will be added if user makes opt variable to be 1

(opt=l){
int result = a+b;
cout « "Result is " « result « endl;

// two numbers will be subtracted if user makes opt variable to be 2
else if (opt=2){

int result = a-b;
cout « "Result is " « result « endl;

// for other values in opt, multiplication will be executed
*lse{

int result = a*b;
cout « "Result is " « result « endl;

1
}

CLEAN NAMES

Introduction

If a code explains its working mechanism, comments become

groundless for it. However, one may argue that since I'm using

comments to explain my code, why should I bother on self­

describing codes. Again, we can reduce a good amount of reading

time if back and forth movement is avoided to read the

comments. Moreover, comments become the main mess of code

if they are properly managed with the version changes. Even

ensuring the up to date comments needs extra efforts and time.

We can avoid such hurdles in the code if the code is self­

explaining.

Word Boundaries

While naming a variable or a method, we may need to use more

than a word in order to make it descriptive. Names containing

more than a word makes the code more readable and

understandable. However, if no technique is applied to distinguish

words, the names will be meaningless and in cases misleading. In

order to avoid such situations, we need to adopt one of the two

popular techniques to set the boundaries. These popular

approaches are called camelCase and underscoring approach. In

the camelCase approach, first alphabet in each word is capitalized,

other than the first word. Meanwhile, underscores are used

between words to differentiate one from another in the

underscoring approach.

Name to Exhibit Intention

A variable name needs to be explicit in the code in order to

make readable. Hence, the name will exhibit the coder intention

as well as the purpose of the variable. If the name is self-

explanatory, we can easily ignore the comment requires to express

its purpose.

For instance, consider the following example, where a wrong

approach is used to name a variable which requires to keep track

of the number of users. If you name the variable to be i, you are

required to use the comment to express the functionality of this

variable. Furthermore, while reading the code, whenever i appears,

the reader needs to recall the meaning or the purpose over and

over. This introduces extra effort for the user, as well as additional

reading time. However, if we just make the variable name self-

explanatory, such as UserCount, doesn't require the reader to

memorize the purpose of the variable. Similarly, while dealing with

locations, it’s better to user destination and source as the variable

names rather Ioci and loc2.

Avoid Confusing Names

While naming a variable or a method, we need to ensure that the

name wouldn't confuse or mislead the reader. For instance, if you

are using a variable named user to hold the name of the user, its

better to name it UserName. Moreover, if required to hold the

first and last names of the user, the variables should be named

UserFirstName and UserLastName instead of fname and lname.

In short, a coder needs to remember that he is writing the code

for the human to understand. Moreover, it's better not to glue

keywords or reserved words in the name. If we name a method

ObjectLocation that calculates the location of any entity, using

Object will introduce confusion.

Avoid Abbreviated Names

While naming, it's better not to use abbreviated wordings, even it

carries obvious meaning. Hence, we should use the variable name

DateOfBirth instead of DoB in order to avoid any confusion.

Similarly, partial abbreviated names are also advised to be ignored.

Therefore, the variable names should be UserFirstName and

UserLastName instead of UserFN and UserLN.

Furthermore, it's better to ignore the single alphabet variable

names. Hence, instead of using variable names as i, x, a; it is

better to use their purpose as the name of the variable.

Names for Classes and Methods

If you are coding in an object-oriented environment, you should

know that we often use objects for modeling purpose. That exists

in physical form is represented as an object in coding

environments. Hence, it is rational to name the classes in nouns

or in noun phrases.

On the other hand, we use a method or function to perform any

task. Hence, it's rational to name the method using a verb.

Hence, methods, named as getInput(), setMessage(), etc, are

pointing.

Furthermore, there are some general activities a coder needs to

perform in the code. Such activities are advised to be defined as

method rather than historical variable. For instance, in order to

check connection, the most intuitive method would be calling a

method named isAlive() sounds more rational than keeping the

status in an array.

Consistent Naming Scheme

The naming scheme for variables and methods will ensure comfort

and ease in understanding code. Hence, in order to assure the

code to be well readable, we need to be consistent in the

naming. For instance, if we have a common method in several

classes, names for this method for all the classes need to be the

same.

Moreover, in case of temporary variables, the good practice is also

to be consistent. For instance, in case of a loop counter, a well

readable code will be using a variable name counter throughout

the code.

Moreover, naming convention should maintain the credibility of the

code. Hence, humorous names in variables and methods may

sound funny for the first read, however, a code may lose

credibility since such scheme doesn't add any value for the

readers in terms of understanding the code.

Similar to indentation, again in variable and method naming, there

is no prescribed "best" method. However, likewise indentation, for

naming we should be consistent.

CODE GROUPING

Introduction

As mentioned earlier, the clean code needs to be well organized

for the readers. Such code involves the art of grouping

statements. We have methods and classes in the coding

environment to group statements based on the tasks. Benefits and

features of classes and functions are out of the scope of this

book; however, I hope readers are already familiar with these

features.

The “One Thing” Function

Function is one of most popular approaches to split a long code

into blocks. Programmers usually apply functions for debugging and

testing purpose. Apart for the naming convention discussed earlier,

we should develop functions in the code so that they accomplish

the main object. Well, in the programming arena, the main object

for any function is termed to be the "one thing". However, what is

this one thing and how to determine whether any function meets

the “one thing” or not.

<iostream>
std;

//functions to perform addition, subtraction and multiplication

void addition_subtraction_multiplication(int a, int b, int optH
// two numbers will, be added if user makes opt variable to b

<opt=){
int result = a+b;
cout « "Result is " « result « endl;

}

// two numbers will be subtracted if user makes opt variable
(opt=2}{

int result = a-b;
cout « "Result is " « result « endl;

}
// for other values in opt# multiplication will be executed
else{

int result = a*b;
cout « "Result is " « result « endl;

]-

int main(]
{

addition_subtraction_multiplication(l,2, 3);

In this code, user can perform three basic mathematical operations

over two values. The code uses a variable opt which is used to

select user opinion. Looking at the arguments, it's obvious that this

function is performing multiple tasks within while ignoring the One

Thing concept. Moreover, though it a very tiny code, yet it looks

messy.

Now look at the following code, which is a refined one.

<iostream>
std;

// Function to add two values
void addition(ir?t a, int b){

cout « "Result is " « a+b « endl;

// Function to subtract one value from annth
void subtraction(int a, int bj-f

cout « "Result is " « a-b « endl;

void multiplication(ir;t a, int b){
cout « "Result is " « a*b « endl;

}

int main()

addition(l(2);
}

In the revised version of the code, we have divided the messy

function into 3 functions. Now, we are getting a clear idea about

the code with little efforts. Meanwhile we can also straightway

modify any section of the code without affecting another function.

Embrace the Brackets

If we were questioned, "what makes unobscured definition for

function and class?". Brackets won't be the perfect answer,

however, it's not the incorrect one as well. In fact, overlooking the

odd programming environments, brackets are the proper answer.

Hence, we can feel the implicit importance of bracket for grouping

codes.

The following codes show function and class definitions fused with

braces.

class exampleclass

public:
exampleClass(int argi, float arg2);
void displayData();

private:
int argl;
float arg2;

};

void exampleFunctionCint userGuess)!

//generate three random numbers
int randomNumberl rand();
int randoniNumber? randO;
int randomNuml:-2r2 randO;

//shows result of the guess
(userGuess randomNumberl
userGuess==randomNumber2 ।|
userGuess randomNumberB)-{
cout "BINGO" endI;

}
else

cout "LONG TO GO" endl;

In case of clean coding, braces are the formatting sugar which

defines the group of related statements and indicates the starting

and ending points. Applying braces, we can even control the

domain of a variable.

Though the introduction of braces does increase the code's

readability, however, it also has some limitations. Since with

brackets, we may restrict the domain of a variable and trigger

vulnerabilities to the code. Even a program may crash due to the

improper use of brackets.

Make Blocks

In addition to the previous discussion, grouping similar statements

makes a code more reading friendly. As we may agree that a

function can be divided into smaller tasks or sub-tasks. Even we

may have several lines to accomplish a sub-task or we may have

several statements for similar type of task in the code. In order to

give the reader a quick understanding of these statements, we can

group them in blocks of code. In such approach each block will

have some generic features or functionalities. More often, if codes

are organized in blocks, a single comment may be enough to

express the functionalities of several statements. Following example

states the visual presentation of several statements in a block.

class exampleclass

public:
exampleClass(int argi, float arg2);
void displayData();

private:
int argl;
float arg2;

};

void exampleFunctionCint userGuess)!

//generate three random numbers
int randomNumberl rand();
int randoniNumber? randO;
int randomNuml:-2r2 randO;

//shows result of the guess
(userGuess randomNumberl
userGuess==randomNumber2 ।|
userGuess randomNumberBH
cout "BINGO" endI;

else
cout "LONG TO GO" endl;

Capitalizing Query Statements

In case of database driven applications, query statements interplay

a big role in the code's readability. Hence, if we have raw SQL

queries in the code, the best practice is to make them also

readable and clean.

As we know that SQL statements are case insensitive for

keywords. However, a general practice coder applies to capitalize

on the keywords in the query statements in order to differentiate

keywords from user tables and its schemas.

SELECT UserID, UserName
FROM UserData
WHERE UserID 'U1231}

UPDATE UserData
SET LoglnTime N0W()
WHERE UserName 'Abe';

REUSABILITY & REDUNDANCY

Introduction

Removing duplicates is another smart approach to make a code

efficient. Moreover, reusable code saves substantial coding time for

any developers. Hence this chapter will focus how can we reuse

codes in order to enhance the readability.

Templates and Includes

While developing any application, repetitive tasks are a very

common phenomena. If same assignment is given to two different

coders, one who has years of experience and the other one who

is relatively young in coding, it’s most likely the seasoned one will

deliver early. If you are thinking that the experience one knows

more hence solves the problem early, you are most likely making

a mistake. If you ignore the experience issue, the senior coder

delivers the product early just because he has larger number of

resources or his archive is richer than the young coder. The moral

of this is whenever we solve any problem we will most likely use

a lot of codes that we had prepared previously. Hence, a better

reable code makes life easier whenever we need to reuse it. And

a smarter coder doesn’t code the same thing over and over,

rather reuse the code to get the most out of it.

One of such example could be explaining with the help of

Template in C++. As you may recall, with this feature, we may

use the same code functionalities for various variables. In

Templates we just pass the data type as parameter in the code

instead of coding the same functionalities several times for various

data types.

On the other hand, if we consider web-based applications,

functionalities and features of this application may be expressed

via several web pages. And interesting all these will always have

few parts to be common elements. And the most obvious

common parts of the web pages are the header and footer

sections. In such case, the most inefficient approach would be

coping the same code in all the pages considering that are these

pages will be having the name header and footer section. Now,

let’s assume a scenario where a site contains 100 pages and you

have the same header and footer code copied in 100 places.

However, you have realized there is a typo in the footer. Now you

just have two choices, correct the typo in 100 pages manually or

leave the typo as it is. Definitely, the second option is

unprofessional and the first one is cumbersome. This scenario is

the best resemble for code duplicacy setbacks.

Such situations can be avoided by reusing or refering the code

instead of duplicating. If we consider a web application on

Laravel, the route directory contains all the route files which will

be automatically loaded by the laravel framework.

LIMIT LENGTH

Introduction

It is often referred that readability of the source code prevails in

the reader's eyes. Let's image a gigantic sized picture where the

viewer needs to see the picture in parts. Later, he/she requires to

imagine the whole picture fusing all the parts. Ignoring the odds,

such an approach definitely discomforts the viewer. Similarly,

whenever we read a code we want to see everything in front of

the eye, rather sliding the screen while remembering.

Hence, this chapter discusses the line length of the code and how

to reduce the length to make the code more reading friendly.

Moreover, deep nesting conditions are also discussed here. We will

also learn a few tips to eliminate the deep nesting loops.

Avoid Deep Nesting

Now let us consider a situation where the code contains deep

nesting conditional statements. Such state in the code makes it

harder to understand or follow. Concerning the state of code's

readability, we need to make the adjustments and necessary

modifications to decrease this nesting levels.

(cone itionl)

{conditionZ)

(condit ion3)
{

(conditiori4)

returr Bj

0;

fl;

Again, we have reached a situation or rather to call a problem

state where the solution is not well bounded. As we may realize

the deep nesting statements obstruct the ease of understanding,

however there is no explicit definition on the non-deep nesting.

Taking this opportunity, I would advocate on simpler nesting as

the acceptable one. The simpler nesting can be seen as a two

leveled nesting. Even we all have or will have the experience on

dealing with 3D array, hence even Three Level deep nesting may

also be considered to be readable.

However, it the level grows to four, things will get tough to be

read or to trace. Hence, again we need to devise a method that

limits the growth of the deep nestings. I personally follow two

tricks whenever I have to stop the growth, where complexity of

the deepening loops may trigger which approach to be followed.

The first one is relatively easier than the second one, since it is

quite straightforward. The tip here is to relocate the inner loops

into a separate function. The limitation of this approach is such

method may introduce additional functions which might require

extra efforts to be maintained as well. Furthermore, in the second

approach, we need merge or combine two or even three nested

conditions into one statement and reproduce all the possible

states and their actions.

Trim the Long Lines

While coding for human, I would like to first highlight on the eyes

and its natural turns. In medical science, this is an established

concept that wider columns strain the eye and which will eventually

make the reading difficult.

Moreover, narrow sized columns are easier to be parsed as compared

to the wider ones. This is the reason why we have newspaper

articles in narrow columns. Likewise, while coding, long-lined

statements may hamper code readability. Bearing this in mind, while

coding we should avoid the long-lined statements. Even if we have

some long lines in our code, we can always slash them and present

in multiple lines.

UerEmail->SetFrom('anyone@anywhere.com')->add_to('clean@code.com')->SetMailSubject('Dont Forget to Code Clean')->SetNaiWody('
anything in the body')->SendMail();

SUserEmail.
- > 5 c t r ? ■ c ~i (’ a n y o n e(=a n ywh e r e. c o n)
- > a □ c _t c (’c1e a n@c o d e > c o m’)
- > (' D ■? n t r ■ ;• c c t to C o i: c C o a n :)
“>■ ' {’anything in the body’)
->SendMait();

END-WORDS

Clean coding happens to be one of major concerns in today’s

open-source era where readability of the code is becoming the

vital feature in software development. Besides, code readability

needs to be one of the very first things to learn and adapt for

the young programmers. Hence this book introduces clean code

along with few tips and tricks. If adequate steps on readability are

followed while developing a program, the impact of any code

would be much bigger than otherwise. Moreover, bug fixing will

also be much easier for such codes.

Here, in the book, I have presented my perceptions that I have

obtained for the last 12 years both in industry and academia.

© Roosnam Seefan 2019

	A RTof1 cleAi

	CODE

