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Preface

This book is a specialized textbook that introduces the basic principles, typical
methods, and practical techniques of 3-D computer vision. It can provide an
advanced/second course service of computer vision for graduate students of related
majors in higher engineering colleges and universities, after studying 2D Computer
Vision: Principles, Algorithms and Applications.

This book mainly covers the higher level of computer vision from the selection of
materials. This book is self-contained, mainly for information majors, but also takes
into account learners of different professional backgrounds, and also considers the
needs of self-study readers. After learning the fundamental content of computer
vision in this book, readers can carry out scientific research and solve more and even
difficult specific problems in practical applications.

This book pays more attention to practicality in writing. Considering that com-
puter vision technology has been involved in many professional fields in recent
years, but many working people are not specialized in computer vision technology,
this book does not emphasize the theoretical system too much, minimizes the
formula derivation, and focuses on commonly used techniques. This book has
many sample questions and uses intuitive explanation to help readers understand
abstract concepts. A subject index list is given at the end of the book, and those
corresponding terms are marked in bold in the text.

This book provides a large number of self-test questions (including hints and
answers). In terms of purpose: on the one hand, it is convenient for self-study to
judge whether they have mastered the key content; on the other hand, it is also
convenient for teachers to carry out online teaching and strengthen teacher-student
interaction during lectures. The types of questions are multiple-choice questions,
which can be easily judged by a computer. In terms of content, many questions
express the basic concepts in a different way, supplementing the text, so that learners
can deepen their understanding. Some questions list descriptions that are similar but
not the same, or even have opposite meanings. Through dialectical thinking of pros
and cons, learners can also deeply understand the essence. The hints have been
provided for all self-test questions, allowing readers to obtain more information to
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further identify the meaning of the questions. At the same time, each question can be
said to be divided into two levels in this way. Readers can complete the self-test after
reading the hints to show that they basically understand it, and to complete the self-
test without looking at the hints indicates that they have an even better grasp.

From the structure of this book, there are 12 chapters in total, plus one appendix,
answers to self-test questions, and subject index. Under these 15 first-level headings,
there are a total of 103 second-level headings (sections), and there are 141 third-level
headings (subsections) underneath. The book has a total of about 500,000 words
(including pictures, drawings, tables, formulas, etc.) and a total of (numbered)
228 figures, 22 tables, and 566 formulas. In order to facilitate teaching and learning,
this book provides a total of 68 examples of various types and 157 self-test questions
(all with hints and answers). In addition, there are a list of more than 100 directly
related references and a list of more than 500 subject terms for indexing, at the end of
the book.

This book can consider three aspects from the knowledge requirements of the
prerequisite courses: (1) Mathematics: including linear algebra and matrix theory, as
well as basic knowledge about statistics, probability theory, and random modeling;
(2) Computer science: including the mastery of computer software technology, the
understanding of computer structure system, and the application of computer pro-
gramming methods; (3) Electronics: On the one hand, the characteristics and prin-
ciples of electronic equipment; on the other hand, circuit design and other content. In
addition, the book 2D Computer Vision: Principles, Algorithms and Applications
can be counted as the discipline prerequisite of this book.

Thanks to the editors of the publisher for carefully composing the manuscript,
seriously reviewing, and attentively modifying.

Finally, the author thanks his wife Yun HE and daughter Heming ZHANG for
their understanding and support in all aspects.

Beijing, China Yu-Jin Zhang
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Chapter 1
Computer Vision Overview

Computer vision is an information subject/discipline that uses computers to realize
the functions of human vision system (HVS). This book mainly introduces the high-
level content of computer vision, which can be used as a textbook for in-depth study
of computer vision. Readers can read this book after studying 2D Computer Vision:
Principles, Algorithms and Applications.

The process of human vision (in brief, vision) can be regarded as a complex
process from sensation (obtaining the image by the 2-D projection of the 3-D world)
to perception (gaining the content and meaning of the 3-D world from the 2-D
image) process. The ultimate goal of vision in a narrow sense is to make a mean-
ingful explanation and description of the scene for the observer, and in a broad sense,
it is also to make a behavior plan based on these explanations and descriptions, as
well as the surrounding environment and the wishes of the observer. Computer
vision is artificial vision or human-made vision. It is to use computers to realize
human visual functions, hoping to make meaningful judgments about actual targets
and scenes based on the perceived images.

The sections of this chapter are arranged as follows:

Section 1.1 introduces the characteristics of human vision, the brightness properties
of vision, the spatial properties of vision, and the temporal properties of vision, as
well as makes some discussions on visual perception.

Section 1.2 discusses the research purpose, research tasks, and research methods of
computer vision. It also introduces the visual computational theory proposed by
Marr in more detail. Moreover, a combined presentation for some improvement
ideas is provided.

Section 1.3 gives a general introduction to the 3-D vision system that obtains 3-D
spatial information and realizes the understanding of the scene. It compares and
discusses the layers of computer vision and image technology, leading to the
main content of this book.

Section 1.4 presents the structure of the book and gives the brief summaries of each
chapter.
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Y.-J. Zhang, 3-D Computer Vision, https://doi.org/10.1007/978-981-19-7580-6_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-7580-6_1&domain=pdf
https://doi.org/10.1007/978-981-19-7580-6_1#DOI


2 1 Computer Vision Overview

1.1 Human Vision and Characteristics

Computer vision (also called artificial vision or human-made vision) is developed on
the basis of human vision. There are two meanings here. One is that computer vision
needs to realize the functions of human vision, so it could imitate the system
structure and functional modules of human vision; the other is that computer vision
needs to extend the functions of human vision, so it could use the features of human
vision to improve the efficiency and effectiveness of these functions.

The following first gives an overview of the functional characteristics of human
vision and then discusses some important visual brightness, spatial, and temporal
properties.

1.1.1 Visual Characteristics

First compare vision with some related concepts.

1.1.1.1 Vision and Other Sensations

It is generally believed that humans have five senses of vision, hearing, smell, taste,
and touch and the corresponding sensory organs, for obtaining information from the
objective world. Among them, vision provides humans with most of the data they
receive; in other words, humans often rely more on vision than other senses when
they acquaint the world. For example, the input information obtained by humans
from eye observation often reaches several million bits, and the data rate during
continuous viewing can exceed tens of million bits per second. The human brain has
more than 1010 cells/neurons, some of which have more than 10,000 connections
(or synapses) with other neurons. It is estimated that the amount of visual informa-
tion the brain receives from the eyes is at least two orders of magnitude larger than all
the information obtained from other sense organs.

1.1.1.2 Vision and Computer Vision

Although computer vision needs to realize the functions of human vision, there are
still differences between human vision and computer vision. Human vision first
receives light stimulation in a certain wavelength range from the external environ-
ment through the sensory organs (eyes) of the visual system to the retina and then
encodes and processes the perceptive organs (brain or cerebral visual cortex) of the
visual system to obtain subjective feelings. Therefore, vision involves not only
physics and chemistry but also psychophysiology. Computer vision mainly relies
on photoelectric conversion for image acquisition, then uses processing and analysis
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functions to obtain objective data, and makes stricter reasoning and judgments based
on these results.

1.1.1.3 Vision and Machine Vision

In the early days, computer vision put more emphasis on the research of vision
science and design system software, while machine vision not only considered
design system and software but also considered hardware environment and image
acquisition technology as well as the integration of vision systems. Therefore, from
the perspective of vision system integration, machine vision systems are more
comparable to human vision systems (human visual systems). However, with the
development of electronic technology and computer technology, true and real-time
applications can be realized to a considerable extent on a stand-alone PC. Due to the
increase in knowledge in related fields, the difference between machine vision and
computer vision has been significantly reduced, and they are more interchangeably
used nowadays.

1.1.1.4 Vision and Image Generation

Vision can be regarded as a process of obtaining description and explanation of the
scene from the image of the scene with the help of the knowledge of the law of image
formation. The image generation in graphics can be seen as the process of generating
images from the abstract description of the scene with the help of the knowledge of
the law of image formation. Although they have some parallels/similarities, certain
people regard them as inverse processes, but their complexity is quite different. The
image generation process is completely deterministic and predictable, and the visual
process involves not only providing a list of all possible explanations but also
providing the most likely interpretation. This search process is one to many and
may be accompanied by combinatorial explosion. Therefore, vision is inherently
more complex than image generation in graphics.

1.1.2 Brightness Properties of Vision

The brightness of vision corresponds to the light intensity that the human eye feels
from the scene. A psychological term closely related to brightness is subjective
brightness or subjective luminance The subjective brightness refers to the bright-
ness of the observed object, which is judged by the human eyes according to the
intensity of the light stimulation of the retina. Examples of three typical brightness
properties in which the perception of brightness is related to multiple factors are as
follows.
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1.1.2.1 Simultaneous Contrast

The subjective brightness felt from the surface of an object is not only related to the
brightness of the surface itself but also to the relative relationship (ratio) between the
brightness of the surface and the surrounding environment (background). If two
objects with different brightness have a similar relative relationship with their
respective backgrounds, they can appear to have the same brightness. At this time,
the subjective brightness perceived by people has nothing to do with the absolute
value of the object brightness. Conversely, the surface of the same object will appear
brighter if it is placed on a darker background and will appear darker if it is placed on
a brighter background. This phenomenon is called simultaneous contrast, also
called conditional contrast.

Example 1.1 Simultaneous Contrast Example
All the small squares in the center of big squares (background) in Fig. 1.1 have
exactly the same brightness. However, it looks brighter when it is on a dark
background and looks darker when it is on a bright background. So, it feels like
when these four pictures are viewed from left to right, the small square in the center
gradually darkens. This is just the result of simultaneous contrast.

1.1.2.2 Mach Band Effect

At the boundary of the touch regions with different brightness in the object, human
vision may estimate the brightness value too high or too low. In other words, the
subjective brightness felt from the surface of an object is not a simple proportional
function of the illuminance the object receives. This phenomenon was discovered by
Mach, so it is called the Mach band effect.

Example 1.2 Example of Mach Band Effect
Figure 1.2a is a Mach band pattern, which includes three parts: the left side is a
uniform low-brightness area, the right side is a uniform high-brightness area, and the
middle is a gradual transition from low brightness to high brightness. Fig. 1.2b
shows the actual brightness distribution (three straight lines) from left to right. If one
looks at Fig. 1.2a with the eyes, one will find that there is a darker band at the
junction of the left and middle bands than the left band and a darker band at the
junction of the middle and right bands than the right band. The subjective brightness

Fig. 1.1 Example of simultaneous contrast
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Fig. 1.2 Schematic
diagram of Mach band effect
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obtained should be as shown in Fig. 1.2c. In fact, the darker band and the brighter
band do not exist objectively; it is the result of subjective brightness perception.

1.1.2.3 Contrast Sensitivity

Contrast sensitivity (also called contrast susceptibility) reflects the ability of the
human eye to distinguish differences in brightness. It is affected by the observation
time and the size of the observed object. If a grid composed of lines of different
thickness and contrast is used for testing, the closer the contrast between the bright
and dark lines of the grid perceived by the eyes is to the contrast between the bright
and dark lines of the original test grid, the greater the contrast sensitivity. Under ideal
conditions, people with good eyesight can distinguish a brightness contrast of 0.01,
which means that the contrast sensitivity can reach up to 100.

If the abscissa represents the thickness of the bright and dark lines of the test grid
and the ordinate represents the contrast sensitivity, then the measured result will give
the modulation transfer function of the visual system, that is, the ability that human
visual system accurately converts the test grid into an optical image. Here the grid
thickness can be expressed by spatial frequency, and its unit is the number of circles
(number of lines) contained in each degree of viewing angle, that is, circle/degree
(CPD).

The contrast sensitivity can be regulated by the light modulation factorM. If Lmax,
Lmin, and Lav are, respectively, the maximum, minimum, and average brightness
values, then
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M=
Lmax - Lmin

Lav
ð1:1Þ

1.1.3 Spatial Properties of Vision

Vision is first and foremost a spatial experience, so the spatial properties of vision
have a great influence on visual effects.

1.1.3.1 Spatial Cumulative Effect

Vision has a cumulative effect in space. The range of light stimulus intensity
experienced by the human eye can reach about 13 orders of magnitude. If described
by light illuminance, the lowest absolute stimulus threshold is 10-6 lx (lux), and the
highest absolute stimulus threshold exceeds 107lx. Under the best conditions, every
light quantum in the peripheral region of the retina will be absorbed by a rod cell, and
a visual response can be caused by only a few light quanta. This is considered to have
taken place in a complete spatial accumulation, and it can be described by the law of
the inverse ratio of light intensity and area. This law can be written as

Ec = kAL ð1:2Þ

where Ec is the absolute threshold of vision, which is the critical light energy
required for 50% detection probability (i.e., the light energy when the light stimu-
lation is observed once in every two tests in multiple experiments); A is the
cumulative area; L is the brightness; and k is a constant, which is related to the
units used by Ec, A, and L. Note that the area that can satisfy the above law has a
critical value Ac (corresponding to a round solid angle with a diameter of about
0.3 rad). When A < Ac, the above law holds; otherwise the above law does not hold.

It can be seen that the spatial cumulative effect can be understood as follows:
when a small and weak light spot is presented alone, it may be invisible (cannot
cause a visual response), but when multiple such light spots are connected together
as a large spot at the same time, one can see it. Its functional significance lies in: large
objects may be seen in a dark environment even if the outline is blurred.

1.1.3.2 Spatial Frequency

The spatial frequency corresponds to the changing speed of the visual image in
space. This can be tested with stripes whose brightness sinusoidally changes in
space. The brightness function Y(x, y) = B(1 + mcos2πfx). Among them, B is the
basic brightness, m is the amplitude (corresponding to black and white contrast), and
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f is the fringe frequency (corresponding to the fringe width). The spatial resolution
capability can be tested by changing m when f is given as a fixed value. Obviously,
the larger m, the stronger the spatial resolution ability. In practice, to test the
minimum m value that can distinguish bright and dark stripes at different angles
and frequencies, one can define 1/m minute (1′) as the contrast sensitivity. Usually
the human eye, in terms of spatial frequency felling, is equivalent to a band-pass
filter (more sensitive to the intermediate thickness of the stripes), the most sensitive
is 2 ~ 5 CPD, and the spatial cut-off frequency is 30 CPD.

When a person observes a still image, the eyeball is not still in one place, usually
after staying in one place for a few hundred milliseconds to complete the image
acquisition, the eyeball will move to another place to take another image, and so
on. This kind of movement is called saccadic eye movement. Studies have shown
that jumping movement can increase contrast sensitivity, but the peak sensitivity will
decrease.

1.1.3.3 Visual Acuity

Visual acuity is usually defined as the reciprocal of the viewing angle value
corresponding to the smallest detail that can be distinguished under certain condi-
tions. The smaller the viewing angle, the greater the visual acuity. If V is used for
visual acuity, then V = 1/(viewing angle). It represents the ability of the human eye
to correctly distinguish the details and contours of objects. A visual acuity of
1 indicates the resolution capability at a standard distance when the corresponding
viewing angle is 1°. The actual viewing angle of the human eye is 30″ ~ 60″ (this is
basically consistent with the cone cell diameter of about 0.004 mm), that is, the best
visual acuity can reach 2.0.

Visual acuity is affected by many factors, including the following:

1. Distance: When the distance of the object from the observer increases, the visual
acuity of the human eye decreases. This phenomenon is most obvious at about
10 m, and beyond a certain distance limit, the details of the object can no longer
be recognized.

2. Brightness: Increasing the brightness of the object (or enlarging the pupil) will
increase the visual acuity. The relationship between visual acuity and brightness
I is

V = a log I þ b ð1:3Þ

where a and b are constants. Visual acuity increases with increasing brightness, and
the relationship between the two is logarithmic. If the brightness continues to
increase to a certain level, the visual acuity will be close to saturation and will not
increase.
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3. The contrast between the object and the background: Increasing the contrast will
increase the visual acuity; decreasing the contrast will decrease the visual acuity.

4. Retina: Different parts of the retina have different visual acuity. The sensory cell
density near the fovea is the highest, and the visual acuity is also the highest; the
farther away from the fovea, the lower the visual acuity.

When a person observes an object, the best visual acuity is obtained when the
object is located 0.25 m in front of the eye, and the illumination is 500 lx (equivalent
to placing a 60 W incandescent lamp at 0.4 m away). At this time, the distance
between the two points that can be distinguished by the human eye is about
0.00016 m.

1.1.4 Temporal Properties of Vision

The time factor is also very important in visual perception. This can be explained in
three ways:

1. Most visual stimuli change over time or are generated sequentially.
2. The eyes are generally in constant motion, which makes the information acquired

by the brain constantly changing.
3. Perception itself is not an instantaneous process, because information processing

always takes time.

In addition, the rapid arrival of light stimuli in visual perception may affect each
other. For example, the latter light stimulus may reduce the sensitivity to the
previous light stimulus. This phenomenon is often referred to as visual masking,
which reduces the perceived contrast, thereby reducing the perceived visual acuity.

1.1.4.1 Visual Phenomena That Change Over Time

There are some visual phenomena that change over time. Here are two more obvious
examples.

Brightness Adaptation

The human eye is sensitive to the external brightness in a wide range, from the dark
vision threshold to the dazzling limit which is about 10-6 ~ 107 cd/m2. However, the
human eye cannot work in such a large range at the same time. It relies on changing
its specific sensitivity range to achieve brightness adaptation. See Fig. 1.3. Under
certain conditions, the current sensitivity of the human eye is called the brightness
adaptation level. The brightness range (subjective brightness range, two specific
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Fig. 1.3 The sensitive brightness range of human eye

ranges are given in the figure) that the human eye can feel at a certain moment is a
small segment centered on this adaptation level.

At any moment in reality, the ratio of the maximum brightness to the minimum
brightness perceived by the human eye rarely exceeds 100. The minimum brightness
and maximum brightness are 1–100 cd/m2 in a bright room, 10–1000 cd/m2 out-
doors, and 0.01–1 cd/m2 at night (without lighting). Note that as the eye traverses the
image, the change in the average background will cause different incremental
changes at each adaptation level. As a result, the eye has the ability to distinguish
a much larger total brightness level.

When the eye encounters a sudden change in brightness, the eye will temporarily
lose sight to adapt to the new brightness as quickly as possible. The adaptation to
bright light is faster than the adaptation to dark light. For example, when you leave
the movie theater and enter a place under the sun, your normal vision can be restored
quickly, but entering the movie theater from the outside under the sun may take a
rather long time to see everything clearly. Quantitatively speaking, it only takes a
few seconds to adapt to bright light, while it takes 35 to 45 min to fully adapt to dark
light (about 10 min for cone cells to reach maximum sensitivity, plus another 30 min
for rod cells to reach maximum sensitivity).

Time Resolution of the Eyes

Many experiments have shown that the eyes can perceive two kinds of asynchronous
brightness phenomena, as long as they can be separated in time. Among them, it
normally takes at least 60–80 μs (microsecond) to distinguish them with confidence
and about 20–40 μs to determine which brightness phenomenon appears first. In
terms of absolute time, this interval does not seem to be long, but it is quite long if
compared with other perception processes. For example, the time resolution of the
auditory system is only a few microseconds.

In addition, when the frequency of the intensity of the incident light changes not
too fast, the visual system can perceive the change in the intensity of the incident
light, and its effect is like letting people see intermittent “flicker.” When the
frequency of light increases and exceeds a critical frequency (its value depends on
the intensity of the light), this effect disappears, and people seem to observe
continuous and steady light. For medium-intensity light, the above critical frequency
is about 10 Hz, but for strong light, this frequency can reach 1000 Hz.
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1.1.4.2 Time Cumulative Effect

Vision also has a cumulative effect of time. When observing an object with general
brightness (light stimulation is not too large), the total energy E of the received light
is directly proportional to the visible area A, surface brightness L, and time interval
(length of observation time) T of the object, such as let Ec be 50% probability of
perceiving the required critical light energy; then there is

Ec =ALT ð1:4Þ

Equation (1.4) is established under the condition that T < Tc, and Tc is the critical
time interval. Equations (1.1)–(1.4) shows that the degree of stimulating eye in the
time less than Tc is directly proportional to the stimulating time. When the time
interval exceeds Tc, there is no longer a time cumulative effect.

1.1.4.3 Time Frequency

Time frequency corresponds to the speed of visual image changes over time. This
can be tested with stripes whose brightness changes sinusoidally with time. The
brightness function Y(t) = B(1 + mcos2πft). Among them, B is the basic brightness,
m is the amplitude (corresponding to black and white contrast), and f is the fringe
frequency (corresponding to the fringe width). The time resolution can be tested by
changing m when f is a fixed value to determine the contrast sensitivity.

Experiments show that the time frequency response is also related to the average
brightness. Under normal indoor light intensity, the human eye’s response to time
and frequency is similar to a band-pass filter. It is most sensitive to 15–20 Hz signal
and has a strong sense of flicker. When it is greater than 75 Hz, the response is 0 and
the flicker disappears. The frequency at which the flicker disappears is called the
critical flicker frequency/critical fusion frequency (CFF). In a darker environ-
ment, the response has more low-pass characteristics, and CFF is reduced. At this
time, the 5 Hz signal is most sensitive, and the flicker above 25 Hz basically
disappears. For example, if the movie theater environment is very dark, the pro-
jector’s refresh rate is 24 Hz, and there will be no flicker, which can reduce the
amount of film and the speed of the machine. The brightness of the computer
monitor is larger, and then the refresh rate of 75 Hz is needed to make flicker
disappear. After the flicker disappears, the brightness perception is equal to the
time average of brightness. This low-pass characteristic can also be parsed as a
persistent visual characteristic, that is, when the image disappears/changes, the brain
image does not disappear immediately but remains for a short period of time. Motion
blur and afterimages often felt in life are also related to this property.
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1.1.5 Visual Perception

Vision is an important function for humans to comprehend the world. Vision
includes “sensation” and “perception,” so it can be further divided into visual
sensation and visual perception. In many cases, visual sensation is often referred
to as vision, but in fact, visual perception is more important and more complicated.

1.1.5.1 Visual Sensation and Visual Perception

People not only need to obtain information from the outside world but also need to
process the information to make judgments and decisions. Therefore, the human
vision, hearing, smell, taste, touch and other functions can be divided into two levels
of sensation and perception. Sensation is at lower level; it mainly receives external
stimuli. Perception is at a higher level; it converts external stimuli into meaningful
content. In general, the sensation is to completely receive the external stimulus
basically without distinction, while the perception is to determine which parts of
the external stimulus should be combined into the “target” of concern or to analyze
and judge the nature of the source of the external stimulus.

Human visual sensation is mainly to understand the basic properties (such as
brightness, color) of people’s response to light (visible radiation) from a molecular
perspective, which mainly involves physics, chemistry, etc. The main research
contents in visual sensation are as follows:

1. The physical properties of light, such as light quantum, light wave, spectrum, etc.
2. The degree of light stimulation on visual receptors, such as photometry, eye

structure, visual adaptation, visual intensity and sensitivity, the temporal and
spatial properties, etc.

3. The sensations produced by the visual system after light acts on the retina, such as
brightness, color tone, etc.

Visual perception mainly discusses how people react after receiving visual
stimuli from the objective world, as well as the methods and results obtained in
response. It studies how to form people’s appearance of the external world space
through vision, so it has also psychological factors. Visual perception is a group of
activities carried out in the nerve center. It organizes some scattered stimuli in the
field of vision to form a whole with a certain shape and structure and to cognize the
world accordingly. As early as 2000 years ago, Aristotle defined the task of visual
perception as determining “What is where.” In recent years, both its connotation and
extension have been expanded.

The objective things that people use vision to perceive have many characteristics.
To the light stimulation, the human visual system will produce different forms of
response, so visual perception can be divided into brightness perception, color
perception, shape perception, space perception, motion perception, etc. It should
be noted that some of the various perceptions change in accordance with the changes
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in the physical quantity of the stimulus. For example, the brightness depends on the
intensity of the light, and the color depends on the wavelength of the light. However,
for some perceptions, such as the perception of space, time, and motion, there is no
exact correspondence between them and the physical quantity of the stimulation.
Perceptions with correspondences are easier to analyze, while perceptions without
exact correspondences must be considered comprehensively in conjunction with
other knowledge.

1.1.5.2 The Complexity of Visual Perception

The visual process includes three sub-processes, namely, optical process, chemical
process, and neural processing process (see 2D Computer Vision: Principles, Algo-
rithms and Applications). In the optical process, the radiation energy received by the
human eye will pass through the refractive system (including the lens, pupil, cornea,
aqueous humor, vitreous, etc.) in the human eye and finally be imaged on the retina
according to geometric rules. The visual pattern formed on the retina can be called a
retinal image, which is an optical projection received through a system composed of
the lens and pupil in the eye. This purely optical image is then transformed into a
completely different form/type by the chemical system on the retina. Note that the
retinal image is only an intermediate result of the visual system’s processing of light.
It can be regarded as the boundary between visual sensation and visual perception.
Unlike the “images” used in other occasions, people cannot see their own retinal
images. Only ophthalmologists who use special devices can see this “image.”One of
the most obvious differences between the retinal optical image and the artificial
image is that the retinal image is only focused in the center while the artificial image
(used to represent a moving eye’s field of view) is evenly focused.

Visual perception is a complicated process. In many cases, it is difficult to fully
explain all (perception) processes only by relying on the retinal image formed by the
light projected on the retina and the known mechanisms of the eye or nervous
system. Here are two examples of perception to help illustrate this problem.

Perception of the Visual Edge

The visual edge refers to the boundary between two surfaces with different bright-
ness observed from a point of view. There can be many reasons for the difference in
brightness, such as different illumination and different reflection properties. When
the visual edge is observed from a viewpoint, the visual edge may change its position
by changing the point of view and then observing again. In this way, the cognition of
the observed object may vary depending on the observation position. In the percep-
tion of the visual edge, there are both objective factors and subjective factors.
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Perception of Brightness Contrast

The visual system feels mainly the change of brightness rather than the brightness
itself. The psychological brightness of an object’s surface is basically determined by
its relationship with the brightness of the surrounding environment (especially the
background). If two objects have similar brightness ratios to their respective back-
grounds, then they appear to have similar brightness, which has nothing to do with
their own absolute brightness. Conversely, if the same object is placed on a darker
background, it will appear brighter than on a brighter background (such as simulta-
neous contrast phenomenon).

The visual system can also link the perception of brightness with the perception of
visual edges. The brightness of two visual surfaces can be compared using percep-
tion only when they are considered to be on the same visual plane. If they are
considered to be at different distances from the eyes, it is difficult to compare their
relative brightness. Similarly, when a visual edge is considered to be caused by
illumination on the same surface (the two sides of the edge are illuminated and
shadowed respectively), then the brightness difference on both sides of the edge will
automatically appear stronger.

1.2 Computer Vision Theory and Framework

Computer vision refers to the realization of human visual functions with computers,
that is, the perception, recognition, and understanding of 3-D scenes in the objective
world.

1.2.1 Reaserch Goals, Tasks, and Methods of Computer
Vision

The original purpose of computer vision research is to grasp the images of the scene;
identify and locate/extract the objects in it; and determine their structure, spatial
arrangement and distribution, and the relationship between the objects. The goal of
computer vision research is to make meaningful judgments about actual objects and
scenes based on perceived images.

The main research tasks of computer vision can be summarized into two, which
are related to each other and complement each other. The first research task is to
build a computer vision system to complete various vision tasks. In other words, it is
necessary to enable the computer to obtain images of the scene with the help of
various visual sensors (such as CCD, CMOS camera devices, etc.); to perceive and
restore the geometric properties, posture structure, movement, and mutual position
of objects in the 3-D environment; identify, describe, and explain the objective
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scene; and then make the required judgments and decisions. The main research here
is the technical mechanism. The current work in this domain is focused on building
various special systems to complete the special vision tasks proposed in various
practical situations, and in the long run, it is necessary to build more general systems.
The second research task is to use this research as a means to explore the working
mechanism of human brain vision and to further deepen the grasp and understanding
of human brain vision (such as computational neuroscience). The main research here
is the biological mechanism. For a long time, a large number of researches have been
conducted on the human brain visual system from the aspects of physiology,
psychology, nerves, cognition, etc., but all the mysteries of the visual process have
not been revealed. It can be said that the research and understanding of the visual
mechanism are still far behind for the research and mastery of visual information
processing. It needs to be pointed out that a full understanding of human brain vision
will also promote the in-depth study of computer vision. This book mainly considers
the first research task.

It can be seen from the above discussions that computer vision needs to use
computers to realize human vision functions, and its research has also gained a lot of
inspiration from human vision. Many important researches in computer vision are
realized by understanding the human visual system. Typical examples are the use of
pyramids as an effective data structure, the use of local orientation concepts to
analyze the shape of objects, and filtering techniques to detect motion. In addition,
with the help of research on the huge understanding of the human visual system, it
can help people to develop new image understanding and computer vision
algorithms.

There are two main research methods of computer vision: one is the bionics
method, which refers to the structural principles of the human visual system and
establishes corresponding processing modules to complete similar functions and
tasks, and the other is the engineering method, which starts by analyzing the
functions of human vision process; it does not deliberately simulate the internal
structure of the human visual system but only considers the input and output of the
system and uses any existing feasible means to achieve system functions. This book
mainly discusses the second method.

1.2.2 Visual Computational Theory

Research on computer vision did not have a comprehensive theoretical framework in
the early days. The research on object recognition and scene understanding in the
1970s basically detected linear edges as the primitives of the scene and then
combined them to form more complex scene structure. However, in practice,
comprehensive primitive detection is difficult and unstable, so the visual system
can only input simple lines and corners to form the so-called building block world.

The book Vision published by Marr in 1982 summarized a series of results based
on the research of human vision by him and his colleagues and proposed the visual
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computational theory/computational vision theory, which outlined a framework
for understanding visual information. This framework is both comprehensive and
refined and is the key to make the research of visual information understanding more
rigorous and improve the visual research from the level of description to the level of
mathematical science. Marr’s theory states that one must first understand the purpose
of vision and then understand the details inside. This is suitable for various infor-
mation processing tasks. The main points of this theory are as follows.

1.2.2.1 Vision Is a Complex Information Processing Process

Marr believes that vision is a far more complicated information processing task and
process than human imagination, and its difficulty is often not considered squarely.
One of the main reasons here is that although it is difficult to understand images with
computers, it is often easy for humans.

In order to understand the complex process of vision, two problems must be
solved first. One is the representation of visual information; the other is the
processing of visual information. The representation here refers to a formal system
(such as the Arabic number system, binary number system) that can clearly represent
certain entities or types of information and several rules that explain how the system
works. Some information in the representation can be prominent and clear, while
other information may be hidden and vague. Representation has a great influence on
the difficulty of subsequent information processing. As for visual information
processing, it must achieve its goal by continuously processing, analyzing, and
understanding information, transforming different forms of representation, and
gradually abstracting it.

Solving the problem of visual information representation and processing of visual
information is actually to solve the problem of computability. If a task needs to be
completed by a computer, then it should be computable. This is the problem of
computability. Generally speaking, if there is a program and the program can give
output in a finite step for a given input of a particular problem, the problem is
computable.

1.2.2.2 Three Essential Factors of Visual Information Processing

To fully understand and interpret visual information, three essential factors need to
be grasped at the same time, namely, computational theory, algorithm implementa-
tion, and hardware implementation.

The highest level of visual information understanding is abstract computational
theory. The question of whether vision can be computed by modern computers needs
to be answered by computational theory, but there is no clear answer yet. Vision is a
process of sensation plus perception. People have very little grasp of the mechanism
of human visual function in terms of micro-anatomical knowledge and objective
visual psychological knowledge. Therefore, the discussion on visual computability
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Table 1.1 The meaning of the three essential factors of visual information processing

Essential
factor

1 Computational
theory

What is the computation goal? Why is it computed like this?

2 Representation and
algorithm

How to realize computational theory? What is input and output
representation? What algorithm is used to realize the conver-
sion between representations?

3 Hardware
implementation

How to physically implement representations and algorithms?
What are the specific details of computing structures?

is still relatively limited, mainly focusing on completing certain specific visual tasks
with the digital and symbol processing capabilities of existing computers nowadays.

Secondly, the objects operated by computers today are discrete digits or symbols,
and the storage capacity of computers is also limited. Therefore, with the computa-
tional theory, the realization of the algorithm must be considered. For this reason, it
is necessary to choose a suitable type of representation for the entity operated by the
processing. Here, on the one hand, the input and output representation of processing
must be selected; on the other hand, the algorithm for completing the representation
conversion must be determined. Representation and algorithm are mutually restric-
tive. Three points need to be paid attention to:

1. There can be many alternative representations in general.
2. The determination of the algorithm often depends on the selected representation.
3. Given a representation, there can be multiple algorithms to complete the task.

From this point of view, the selected representations and the processing methods
are closely related. In general, the instructions and rules used for processing are
called algorithms.

Finally, with the representation and algorithm, how to implement the algorithm
physically must also be considered. Especially with the continuous improvement of
real-time requirements, the problem of special hardware implementation is often
raised. It should be noted that the determination of an algorithm often depends on the
hardware characteristics of physically implementing the algorithm, and the same
algorithm can also be implemented by different technical approaches.

After summarizing the above discussion, Table 1.1 can be obtained.
There is a certain logical causal connection between the above three essential

factors, but there is no absolute dependence. In fact, there are many different options
for each essential factor. In many cases, the problems involved in explaining each
essential factor are basically irrelevant to the other two essential factors (each
essential factor is relatively independent), or one or two essential factors can be
used to explain certain visual phenomena. The above three essential factors are also
called by many people the three levels of visual information processing, and they
point out that different problems need to be explained at different levels. The
relationship among the three essential factors is often shown in Fig. 1.4 (in fact, it
is more appropriate to regard it as two levels), in which the positive arrow indicates
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Fig. 1.4 The relationship of
the three essential factors of
visual information
processing

Computational
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that it has a guiding meaning, and the reverse arrow has a meaning of as basic. Note
that once there is a theory of computation, representations and algorithms as well as
hardware implementations influence each other.

1.2.2.3 Three-Level Internal Expression of Visual Information

According to the definition of visual computability, the visual information
processing process can be broken down into multiple conversion steps from one
representation to another. Representation is the key to visual information processing.
A basic theoretical framework for research of visual information understanding with
computer is mainly composed of the three-level representation structure of the
visible world established, maintained, and interpreted by visual processing. For
most philosophers, what is the essence of visual representation, how they relate to
perception, and how they support action can all have different interpretations.
However, they all agree that the answers to these questions are related to the concept
of representation.

1. Primal Sketch

The primal sketch denotes a 2-D representation, which is a collection of image
features and describes the contour part where the properties of the object surface
change. The primal sketch representation provides the information of the contour
of each object in the image and is a form of sketch representation of the 3-D
object. This way of representation can be proven from the human visual process.
When people observe a scene, they always notice the drastic changes in
it. Therefore, primal sketch should be a stage of the human visual process.

2. 2.5-D Sketch

The 2.5-D sketch is completely proposed to adapt to the computing functions of the
computer. It decomposes the object according to the principle of orthogonal
projection according to a certain sampling density, so that the visible surface of
the object is decomposed into many facets (face element) of a certain size and
geometric shape; each facet has its own orientation. Using a normal vector to
represent the orientation of the facet in which it is located and composing a set of
needles (the vector is shown with an arrow/needle) constitutes a 2.5-D sketch map
(also called a needle diagram). In this type of diagram, the normal of each
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Fig. 1.5 2.5-D sketch
example

Low-level

Processing

Pixel

Representation

Primal

Sketch
Mid-level

Processing

2.5-D

Sketch High-level

Processing

3-D

Representation
Input

Image

Fig. 1.6 The three-level representation decomposition of the Marr’s framework

orientation takes the observer as the center. The specific steps to obtain the 2.5-D
sketch map (Fig. 1.5 shows an example) are as follows:

1. Decompose the orthogonal projection of the visible surface of the object into a
collection of facets.

2. Use the normal lines to represent the orientation of the facet.
3. Draw each normal line, and superimpose all normal lines on the visible surface

within the outline of the object.

The 2.5-D sketch map is actually an intrinsic image (see Sect. 3.2), because it
shows the orientation of the surface element of the object, thus giving the
information of the surface shape. Surface orientation is an intrinsic characteristic,
and depth is also an intrinsic characteristic. The 2.5-D sketch map can be
converted into a (relative) depth map.

3. 3-D Representation

3-D representation is a representation form centered on the object (i.e., it also
includes the invisible part of the object). It describes the shape and spatial
organization of 3-D objects in the object-centered coordinate system. Some
basic 3-D entity representations can be found in Chap. 9.

Now come back to the problem of visual computability. From the perspective
of computer or information processing, the problem of visual computability can
be divided into several steps. Between the steps is a certain form of representa-
tion, and each step consists of a calculation/processing method that connects the
two forms of representation (see Fig. 1.6).
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Table 1.2 Representation framework of visual computability problem

Representation Goal Primitive

Image Represent the brightness of the scene
or the illuminance of the object

Pixel (values)

Primal sketch Represent the location of brightness
changes in the image, the geometric
distribution of the object outline, and
the organizational structure

Zero crossing point, end point, corner
point, inflection point, edge segment,
boundary, etc.

2.5-D sketch Represent the orientation, depth, con-
tour, and other properties of the visible
surface of the object in the observer-
centered coordinate system

Local surface orientation (“needle”
primitives), surface orientation dis-
continuities, depth, discontinuous
point in depth, etc.

3-D
representation

Represent the object shapes and their
spatial organization, by using voxels or
surface elements, in a coordinate sys-
tem centered on an object

3-D model, with the axis as the skel-
eton, attach the volume element or
face element to the axis

According to the above-mentioned three-level representation viewpoint, the
problem to be solved by visual computability is how to start from the pixel
representation of the original image, through the primal sketch representation
and 2.5-D sketch representation, and finally obtain the 3-D representation. They
can be summarized in Table 1.2.

1.2.2.4 Visual Information Understanding Is Organized in the Form
of Functional Modules

The idea of viewing the visual information system as a set of relatively independent
functional modules is not only supported by the evolutionary and epistemological
arguments in computing, but also some functional modules can be separated by
experimental methods.

In addition, psychological research also shows that people obtain various intrinsic
visual information by using a variety of clues or a combination of them. This
suggests that the visual information system should include many modules. Each
module obtains a specific visual cues and performs certain processing, so that
different weight coefficients can be combined with different modules to complete
the visual information understanding task according to the environment. According
to this point of view, complex processing can be completed with some simple
independent functional modules, which can simplify research methods and reduce
the difficulty of specific implementation. This is also very important from an
engineering perspective.
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1.2.2.5 The Formal Representation of Computational Theory Must
Consider Constraints

During the image acquisition process, the information in the original scene will
undergo various changes, including the following:

1. When a 3-D scene is projected as a 2-D image, the depth of the object and the
invisible part of the information are lost.

2. Images are always obtained from a specific viewing directions. Different per-
spective images of the same scene will be different. In addition, information will
be lost due to mutual occlusion of objects or mutual occlusion of various parts.

3. Imaging projection makes the illumination, object geometry, and surface reflec-
tion characteristics, camera characteristics, and the spatial relationship between
the light source, the object, and the camera all integrated into a single image gray
value, which are difficult to be distinguished.

4. Noise and distortion will inevitably be introduced in the imaging process.

For a problem, if its solution is existing; unique; continuously dependent on the
initial data, then it is well-posed. If one or more of the above is not satisfied, it is
ill-posed (under-determined). Due to the information changes in the various original
scenes mentioned above, the method of solving the vision problem as the inverse
problem of the optical imaging process becomes an ill-posed problem (becoming an
ill-conditioned problem), so it is very difficult to solve. In order to solve this
problem, it is necessary to find out the constraints of the relevant problems according
to the general characteristics of the external objective world and turn them into
precise assumptions, so as to draw conclusive and testable conclusions. Constraints
are generally obtained with the aid of prior knowledge. The use of constraints can
change ill-conditioned problems. This is because by adding constraints to the
computation problem, whose meaning could become clear and suitable solution
could be found.

1.2.3 Framework Problems and Improvements

Marr’s visual computational theory is the first theory that has a greater impact on
visual research. This theory has actively promoted research in this field and has
played an important role in the research and development of image understanding
and computer vision.

Marr’s theory also has its shortcomings, including four problems about the
overall framework (see Fig. 1.6):

1. The input in the framework is passive, what image is input, the system will
process what image.

2. The processing goal in the framework remains unchanged, and the position and
shape of the objects in the scene are always restored.
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Fig. 1.7 Improved visual computational framework

3. The framework lacks or does not pay enough attention to the guiding role of high-
level knowledge.

4. The information processing process in the entire framework is basically bottom-
up, one-way flow, and no feedback.

In response to the above problems, people have proposed a series of improvement
ideas in recent years. Corresponding to the framework of Fig. 1.6, these improve-
ments can be incorporated into new modules to obtain the framework of Fig. 1.7.

The following is a detailed discussion of the improvements in the four aspects of
the framework of Fig. 1.6 in conjunction with Fig. 1.7.

1. Human vision has initiative.
People will change the line of sight or perspective as needed to help observa-

tion and cognition. Active vision means that the vision system can determine the
movement of the camera according to the existing analysis results and the current
requirements of the vision task to obtain the corresponding image from the
appropriate position and perspective. Human vision is also selective, one can
stare (observing the region of interest at a higher resolution), or one can turn a
blind eye to certain parts of the scene. Selective vision means that the vision
system can determine the focus of the camera to obtain the corresponding image
based on the existing analysis results and the current requirements of the vision
task. Taking these factors into account, an image acquisition module is added to
the improved framework, which is also considered together with other modules in
the framework. This module should choose the image acquisition modes
according to the visual purpose.

The aforementioned active vision and selective vision can also be regarded as
two forms of active vision: one is to move the camera to focus on a specific object
of interest in the current environment; the other is to focus on a specific region in
the image and dynamically interact with it to get an interpretation. Although the
two forms of active vision look very similar, in the first form, the initiative is
mainly reflected in the observation of the camera, while in the second form, the
initiative is mainly reflected in the processing level and strategy. Although there
is interaction in both forms, that is, vision has initiative, mobile cameras need to
record and store all the complete scenes, which is a very expensive process. In
addition, the overall interpretations obtained in this way are not necessarily used.
Collecting only the most useful part of the scene, narrowing its scope, and



22 1 Computer Vision Overview

enhancing its quality to obtain useful interpretations mimics the process of human
interpretation of the scene.

2. Human vision can be adjusted for different purposes.
Purposive vision means that the vision system makes decisions based on the

purpose of vision, such as whether to fully recover information like the position
and shape of objects in the scene or just detect whether there is an object in the
scene. It may give a simpler solution to vision problems. The key issue here is to
determine the purpose of the task. Therefore, a visual purpose box (vision goal) is
added to the improvement framework. Qualitative analysis or quantitative anal-
ysis can be determined according to different purposes of understanding
(in practice, there are quite a lot of occasions where only qualitative results are
sufficient; no complex quantitative result is needed). However, the current qual-
itative analysis still lacks complete mathematical tools. The motivation of pur-
posive vision is to clarify only part of the information that is needed. For example,
the collision avoidance of autonomous vehicles does not require precise shape
descriptions, and some qualitative results are sufficient. This kind of thinking
does not have a solid theoretical basis, but the study of biological vision systems
provides many examples.

Qualitative vision, which is closely related to purposive vision, seeks a
qualitative description of an object or scene. Its motivation is not to express
geometric information that is not needed for qualitative (non-geometric) tasks or
decisions. The advantage of qualitative information is that it is less sensitive to
various unwanted transformations (such as slightly changing perspectives) or
noise than quantitative information. Qualitative or invariant can allow easy
interpretation of observed events at different levels of complexity.

3. Humans have the ability to completely solve visual problems with only partial
information obtained from images.

Humans have this ability due to the implicit use of various knowledge. For
example, after obtaining object shape information with the aid of CAD design
data (using object model library), it can help solve the difficulty of restoring the
object shape from a single image. The use of high-level (domain) knowledge can
solve the problem of insufficient low-level information, so a high-level knowl-
edge frame (module) is added to the improved framework.

4. There is an interaction between the sequential processing processes in human
vision.

The human visual process has a certain sequence in time and different levels in
meaning, and there is a certain interaction between the various steps. Although
the mechanism of this interaction is not yet fully understood, the important role of
high-level knowledge and feedback from the later results to low-level processing
has been widely recognized. From this perspective, the feedback control flow is
added to the improvement framework, and the existing results and high-level
knowledge are used to improve visual efficiency.
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1.3 Three-Dimensional Vision System and Image
Technology

In practical applications, in order to complete the vision task, a corresponding vision
system needs to be constructed, in which various image technologies are used.

1.3.1 Three-Dimensional Vision System Process

Although in many cases, people can only directly acquire images produced by 2-D
projection of the 3-D world, the objective world itself is in the 3-D space. To
accurately understand the objective world, it is necessary to grasp the 3-D spatial
information of the scene. Therefore, a 3-D vision system needs to be studied
and used.

In order to obtain 3-D spatial information, on the one hand, one can directly
acquire it; on the other hand, one can also use 2-D images to understand the content
and meaning of the 3-D world. Considering these two aspects separately, there are
two types of schemes for obtaining 3-D spatial information. One type is to build
special equipment to directly collect 3-D images, which will be discussed in Chap. 3;
the other type is to collect one or a series of 2-D images first and then try to obtain
3-D spatial information from these images (i.e., to reconstruct and restore the
objective scene). There are two technical routes in this latter method. One is to
collect multiple related 2-D images and obtain the 3-D spatial information in these
images according to their correlation. Some typical methods in this technical route
will be introduced in Chaps. 6 and 7. The other is to collect only a single 2-D image,
but use some relevant prior knowledge to obtain hidden 3-D spatial information.
Some typical methods in this technical route will be introduced in Chap. 8.

Obtaining 3-D spatial information lays the foundation for the realization of visual
tasks. On this (perceptual) basis, computer vision also needs to make meaningful
interpretations and judgments of actual goals and scenes based on the perceived
images to help to make decisions and take actions. This is a high-level work that
requires learning, reasoning, and matching with models to explain the content,
characteristics, changes, and trends of the scene.

Scene interpretation is a very complicated process, and the difficulties mainly
come from two aspects: one is that there is a large amount of multi-sided data to be
processed, and the other is the lack of the basic tools for operations from known
low-level pixel matrix to the required high-level results (to grasp the details of image
content for the information reflecting the scene). Since there is no universal tool for
understanding unstructured images, it is necessary to compromise between the two,
that is, on the one hand, the generality of the problem needs to be restricted and, on
the other hand, human knowledge needs to be introduced into the understanding
process. It is relatively straightforward to limit the generality of the problem. People
can limit the unknown conditions in the problem or limit the scope or precision of the
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Fig. 1.8 3-D vision system flow chart

expected result, but the introduction of knowledge is more difficult and worthy of
serious study.

Combining the above discussion, a 3-D vision system flowchart as shown in
Fig. 1.8 can be given. Here, the image acquisition should consider 3-D images or
2-D images containing 3-D information. Obtaining motion information is also to
obtain more comprehensive information about the objective world. 3-D reconstruc-
tion is to restore the original appearance of the objective world and then through
objective analysis of the scene, to realize the interpretation and understanding of the
scene, and to help to make decisions and to take actions to deal with the environment
and transform the world.

1.3.2 Computer Vision and Image Technology Levels

In order to complete the functions of the vision system, a series of technologies are
required. After years of development, computer vision technology has made great
progress, and there are many types. There are some classification methods for these
technologies, but it seems that they are not stable and consistent. For example,
different researchers divide computer vision technology into three levels, but the
three levels are not uniform. For example, someone divides computer vision into
low-level vision, middle-level vision, and 3-D vision. Some other people divide
computer vision into early vision (which is divided into two parts: only one image;
multiple images), middle vision, and high-level vision (geometric methods). Even
the same researcher is not consistent at different times. For example, someone once
divided the computer vision into early vision (which is divided into two parts: only
one image; multiple images), middle vision, and high-level vision (which is divided
into two parts, geometric methods; probability and inference methods).

Relatively speaking, in image engineering (a new cross-discipline that system-
atically studies various image theories, technologies, and applications), a classifica-
tion method for image technology has been relatively consistent for the past
27 years. This method divides various image technologies into three levels: image
processing, image analysis, and image understanding. As shown in Fig. 1.9, each
level has its own characteristics in terms of operation objects, data volume, semantic
level, and abstraction.

Image processing (IP) is at the low level, basically focusing on the conversion
between images, with the intent to improve the visual effects of images and lay the
foundation for subsequent tasks.
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Fig. 1.9 Schematic diagram of three levels of image engineering

Image analysis (IA) is at the middle level, mainly considering the detection and
measurement of objects of interest in the image to obtain their objective information
to establish a description of the image.

Image understanding (IU) is at a high level and emphasizes the grasping the
meaning of the image content and the interpretation of the original objective scene,
which has many similarities with human thinking and reasoning.

As mentioned above, image processing, image analysis, and image understanding
have their own characteristics in terms of abstraction degree and data volume, and
their operation objects and semantic levels are different. For their interrelationships,
see Fig. 1.9. Image processing is a relatively low-level operation, which is mainly
worked at the pixel level of the image, and the amount of processed data is very
large. Image analysis enters the middle level. Segmentation and feature extraction
transform the original image described by pixels into a more concise description of
the object. Image understanding is mainly a high-level operation. The operation
object is basically a symbol abstracted from the description. Its processing process
and method have many similarities with human thinking and reasoning. In addition,
it can be seen from Fig. 1.9 that the amount of data gradually decreases as the degree
of abstraction increases. Specifically, the original image data is gradually
transformed into a more organized and more abstract representation through a series
of processing procedures. In this process, semantics are continuously introduced/
upgraded, operation objects are changed, and the amount of data is compressed. On
the other hand, higher-level operations have a guiding role for low-level operations
and can improve the efficiency of lower-level operations.

1.3.3 Image Technology Category

According to the latest overview of statistical study of image engineering literature,
the classification of image technology in the three levels of image processing, image
analysis, and image understanding can be seen in Table 1.3. In addition to the
16 subcategories in these three levels, image engineering also includes various
technical applications subcategories, so there are 23 subcategories in total.
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Table 1.3 Current image technology categories studied in the three levels of image processing,
image analysis, and image understanding

Three layers Image technology categories and names

Image
processing

Image acquisition (including various imaging methods, image capturing,
representation and storage, camera calibration, etc.)

Image reconstruction (including image reconstruction from projection, indi-
rect imaging, etc.)

Image enhancement/image restoration (including transformation, filtering,
restoration, repair, replacement, correction, visual quality evaluation, etc.)

Image/video coding and compression (including algorithm research, imple-
mentation and improvement of related international standards, etc.)

Image information security (including digital watermarking, information
hiding, image authentication and forensics, etc.)

Image multi-resolution processing (including super-resolution reconstruction,
image decomposition and interpolation, resolution conversion, etc.)

Image analysis Image segmentation and primitive detection (including edges, corners, control
points, points of interest, etc.)

Object representation, object description, feature measurement (includ-
ing binary image morphology analysis, etc.)

Object feature extraction and analysis (including color, texture, shape,
space, structure, motion, saliency, attributes, etc.)

Object detection and object recognition (including object 2-!D positioning,
tracking, extraction, identification and classification, etc.)

Human body biological feature extraction and verification (including detec-
tion, positioning and recognition of human body, face and organs, etc.)

Image
understanding

Image matching and fusion (including registration of sequence and stereo
image, mosaic, etc.)

Scene recovering (including 3-D scene representation, modeling, recon-
struction, etc.)

Image perception and interpretation (including semantic description, scene
model, machine learning, cognitive reasoning, etc.)

Content-based image/video retrieval (including corresponding labeling, clas-
sification, etc.)

Spatial-temporal techniques (including high-dimensional motion analysis,
object 3-D posture detection, spatial-temporal tracking, behavior judgment
and behavior understanding, etc.)

This book involves some contents of three levels. In image processing technol-
ogy, it mostly discusses camera calibration and 3-D image acquisition. In image
analysis technology, it mainly discusses the promotion of some 2-D analysis tech-
nologies to 3-D space. This book focuses on some technologies in image under-
standing. It generally involves image matching and image fusion, scene restoration,
image perception and image interpretation, and spatial-temporal technology. These
categories are shown in bold letters in Table 1.3.

Among the three levels of image engineering, the level of image understanding
has the closest relationship with current computer vision technology. This book will
mainly introduce the content of this level. This also has many historical origins. In
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establishing an image/visual information system and using computers to assist
humans in completing various visual tasks, image understanding and computer
vision require the use of projective geometry, probability theory and random pro-
cesses, artificial intelligence, and other theories. For example, they all rely on two
types of intelligent activities: perception, such as perceiving the distance, orientation,
shape, movement speed, and mutual relationship of the visible part of the scene;
thinking, such as analyzing the behavior of subjects and objects based on the
structure of the scene; inferring the development and changes of the scene; and
determining and planning the subject actions.

Computer vision began to be studied as an artificial intelligence problem, so it is
often called image understanding. In fact, the terms image understanding and
computer vision are often mixed. In essence, they are connected to each other. In
many cases, they have overlapped coverages and contents, and they have not
absolute boundary in concept or practicality. In many occasions and situations,
although they have their own emphasis, they often complement each other. There-
fore, it is more appropriate to regard them as different terms used by people with
different professions and backgrounds. They are not deliberately distinguished in
this book.

1.4 Overview of the Structure and Content of This Book

This book mainly introduces the three-dimensional part of computer vision and also
corresponds to the basic concepts, basic theories, and practical techniques of high-
level image engineering. Through the comprehensive use of these theories and
technologies, various computer vision systems can be constructed to explore and
solve practical application problems. In addition, through the introduction of the
high-level content of image engineering, it can also help readers to obtain more
information based on the results obtained from the low-level and middle-level
technologies of image engineering, as well as combine and integrate the technolo-
gies at all levels.

1.4.1 Structural Framework and Content of This Book

According to the 3-D vision system flow chart in Fig. 1.8, this book selects some
related technologies for introduction. The structural framework and main contents of
this book are shown in Fig. 1.10.
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Fig. 1.10 The structure and main contents of this book (the number in parentheses corresponds to
the specific chapter number)

1.4.2 Chapter Overview

This book has 12 chapters and 1 appendix.
Chapter 1 introduces some elementary concepts and knowledge of human vision.

It first discusses some important features and characteristics of vision and then
introduces visual perception combined with visual sensation. On this basis, an
overview discussion of computer vision and the main content of this book are
provided.

Chapter 2 discusses the camera calibration scheme, followed by the reviewing of
the basic linear camera model and the typical non-linear camera model, respectively.
It also introduces a traditional camera calibration method and a simple active vision-
based calibration method.

Chapter 3 introduces 3-D image acquisition, especially depth image acquisition.
Among them, it includes not only the method of directly collecting depth images but
also the two-camera stereo imaging method with reference to human vision.

Chapter 4 introduces the video image that is another form of 3-D (2-D space and
1-D time) image that contains motion information. This chapter analyzes the char-
acteristics of video and discusses the principles and methods of motion information
classification, detection, and filtering.

Chapter 5 discusses the detection and tracking technology for moving objects in
video, from simple to complex, including pixel-by-pixel difference, background
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modeling, optical flow estimation, and several typical moving object tracking
methods.

Chapter 6 introduces binocular stereo vision, including the functions of each
module of stereo vision, region-based binocular stereo matching, and feature-based
binocular stereo matching technology, as well as a disparity map error detection and
correction method.

Chapter 7 presents two common methods for scene restoration using multiple
monocular images, including the method based on photometric stereo and the
method based on optical flow field to obtain structure from motion.

Chapter 8 introduces two types of methods for scene restoration using monocular
single images, including methods for restoring the shape of objects from tone
changes (shading) in the surface and methods for restoring the orientation of the
surface from texture changes in the surface of the object.

Chapter 9 introduces the typical methods for representing the actual 3-D scene,
including the methods of representing the 3-D surface, constructing and representing
the 3-D iso-surface, and interpolating the 2-D parallel contour to obtain 3-D surface,
as well as the method of directly representing 3-D entities.

Chapter 10 introduces different levels of matching techniques, including more
specific object matching and dynamic pattern matching methods, more abstract
methods of using graph isomorphism to match relationships, and method of using
line drawing signatures to achieve scene model matching.

Chapter 11 combines scene knowledge and learning reasoning to introduce the
models of scene interpretation, including predicate logic and fuzzy reasoning. It also
discusses two widely used models in scene classification: bag-of-words/features
model and probabilistic implicit semantic analysis model.

Chapter 12 introduces the understanding of spatial-temporal behavior, including
the concepts of spatial-temporal technology and points of interest in spatial-temporal
space, methods for learning and analyzing dynamic trajectories, and methods for
classifying and recognizing actions.

Appendix A introduces visual perception and introduces the characteristics and
laws of shape perception, space perception, and movement perception in more detail.
The understanding of human vision also has implications for computer vision.

At the end of each chapter and appendix, there is a section of “Key points and
references for each section.” On the one hand, it summarizes the central content of
each section; and on the other hand, it provides several suitable references for
in-depth study. Except the appendix, each chapter has a certain number of self-test
questions (all including hints and answers).

1.5 Key Points and References for Each Section

The following combines the main contents of each section to introduce some
references that can be further consulted.
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1. Human Vision and Characteristics
The estimation of the amount of information the brain receives from the eyes

can be found in reference [1]. For the discussion of subjective brightness in
psychology, please refer to reference [2]. For a discussion of visual phenomena
that change over time, see reference [3]. For the discussion of visual perception,
see reference [4]. Visual perception has also psychological factors; see reference
[5]. More examples of brightness contrast perception can be found in
reference [6].

2. Computer Vision Theory and Model
For the discussion of computer vision research goals, please refer to reference

[7]. The long-term goal of computer vision research should be to build a universal
system; see reference [8] for more discussions. For the original explanation of the
visual computational theory, please refer to the reference [9]. The analysis of the
essence of visual representation can be found in the reference [10]. The viewpoint
that active vision and selective vision can be regarded as two forms of active
vision can be found in reference [11]. The introduction of purposive vision into
the vision system can be found in reference [12]. The introduction of high-level
knowledge into the visual system can be found in reference [13].

3. Three-Dimensional Vision System and Image Technology
For a hierarchical discussion of computer vision, see references [1, 14, 15], etc.

For the layering method of image technology, please refer to references [16–
18]. A complete introduction to image technology can be found in references
[19–21]. The hierarchical classification of image technology in the past 26 years
can be found in the series of annual review [22–49]. For concise definitions of
related concepts and subjects, see reference [50].

4. Overview of the Structure and Content of This Book
The main content of this book is introduced in five parts. This book mainly

focuses on the principles and techniques of the high-level contents of computer
vision. The specific implementation of various algorithms can be achieved with
the help of different programming languages. For example, using MATLAB can
refer to references [51–52]. For more detailed analysis and answers to various
problems in learning, please refer to reference [53].

Self-Test Questions

The following questions include both single-choice questions and multiple-choice
questions, so each option must be judged.

1.1 Human Vision and Characteristics

1.1.1 Compare vision and other related concepts ( ).

(a) Vision and computer vision both perceive the objective world
subjectively.



[Hint] Consider the difference between vision and other concepts.

�
Can be explained by simultaneous contrast

[Hint] The Mach band effect shows that the brightness that people perceive is
not only related to the light intensity of the scene.

�

�

[Hint] Analyze according to the definition of computer vision.

�
The visual process is far more complicated than human imagination
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(b) Vision and image generation both generate images from the abstract
description of the scene.

(c) The computer vision system and the machine vision system are
comparable to the human vision system.

(d)

1.1.2

The vision process and the computer vision process are completely
deterministic and predictable.

Mach band effect ( ).

(a)
(b) Shows the same fact as simultaneous contrast
(c) Depends on the brightness adaptation level of the human visual

system
(d) I

1.1.3

ndicates that the actual brightness distribution on the strip will be
affected by the subjective brightness curve

Subjective brightness ( ).

(a) Is only related to scene brightness
(b) Is proportional to the illuminance of the object
(c) Is possible independent to the absolute value of the object brightness
(d) Determines the overall sensitivity of the human visual system

[Hint] Subjective brightness refers to the brightness of the observed object,
which is judged by the human eyes according to the intensity of the light
stimulation of the retina.

1.2 Computer Vision Theory and Model

1.2.1 Computer vision ( ).

(a) Whose goal is to uncover all the mysteries of the visual process.
(b) The research method refers to the structural principles of the human

visual system.
(c) It is a means to explore the working mechanism of human brain

vision.
(d) I

1.2.2

t is realized with the help of the understanding of the human visual
system.

Marr’s visual computational theory believes that ( ).

(a)
(b) The key to solve visual problems is the representation and processing

of information
(c) To complete the visual task, all the works must be combined



[Hint] See the five points of Marr’s visual computational theory.

�
The image acquisition module provides the basis for qualitative
vision.

�

[Hint] Analyze the connection between each step.

�

[Hint] Refer to Fig. .1.9

�
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(d)

1.2.3 I

All visual information problems can be computed with modern
computers.

n the improved visual computational framework shown in Fig. 1.7, ( ).

(a)

(b) The image acquisition module provides the basis for selective vision.
(c) The vision purpose module should be constructed based on the

purpose of active vision.
(d) The function of the high-level knowledge module is to feed back the

later result information to the early processing.

[Hint] Analyze the shortcomings of Marr’s theory.
1.3 Three-Dimensional Vision System and Image Technology

1.3.1 According to the 3-D vision system flow chart, ( ).

(a) The 3-D reconstruction must use motion information.
(b) The objective analysis of the scene is based on the interpretation of the

scene.
(c) Decisions can only be made based on the interpretation and under-

standing of the scene.
(d)

1.3.2

To obtain motion information, video images must be collected.

For image understanding, ( ).

(a) Its abstraction is high, its operand is the object, and its semantic level
is high level.

(b) Its abstraction is high, its operand is the symbol, and its semantic level
is middle level.

(c) Its abstraction is high, its amount of data is small, and its semantic
level is high level.

(d) I

1.3.3

ts abstraction is high, its amount of data is large, and its operand is the
symbol.

Which of the following image technique(s) is/are image understanding
technologies? ( ).

(a) Image segmentation
(b) Scene restoration
(c) Image matching and fusion
(d) Extraction and analysis of object characteristics

[Hint] Consider the input and output of each technology.
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1.4 Overview of the Structure and Content of This Book

1.4.1 In the following content, the five modules in this book in turn are ( ).�
(a) 3-D image acquisition, video and motion, binocular stereo vision,

scenery matching, scene interpretation
(b) 3-D image acquisition, binocular stereo vision, monocular multi-

image restoration, scene matching, scene interpretation
(c) Camera calibration, moving object detection and tracking, binocular

stereo vision, monocular and single image restoration, and spatial-
temporal behavior understanding

(d) Camera calibration, video and motion, monocular multi-image resto-
ration, moving object detection and tracking, and spatial-temporal
behavior understanding

[Hint] Refer to Fig. .1.10

1.4.2 Among the following statements, the correct one/ones is/are ( ).�
(a) 3-D image is a kind of depth image
(b) Background modeling is a technique for detecting and tracking mov-

ing objects in videos
(c) Recovering the shape of the object from the tonal change of the object

surface is a method of recovering the scene by using multiple mon-
ocular images

(d) The bag-of-words/bag of feature model is a model of spatial-temporal
behavior understanding

[Hint] Consider the content discussed in each chapter separately.

1.4.3 Among the following statements, the incorrect one/ones is/are ( ).�
(a) The region-based binocular stereo matching technology is a relatively

abstract matching technology
(b) It is possible to use a non-linear camera model for camera calibration
(c) The classification of actions is a technique for detecting and tracking

moving objects
(d) The method of obtaining structure from motion based on the optical

flow field is a method of recovering the scene by using multiple
monocular images

[Hint] Refer to the introduction in the overview of each chapter.
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Section introduces the self-calibration method (including the calibration method
based on active vision). In addition to analyzing the advantages and

2.4

Chapter 2
Camera Calibration

Video cameras (cameras) are the most commonly used equipment for capturing
images. Camera calibration has the purpose to use the feature point coordinates
(X, Y, Z ) of a given 3-D space object and its image coordinates (x, y) in 2-D image
space to calculate the internal and external parameters of the camera, thereby
establishing the quantitative relationship between the objective scene and the cap-
tured image.

Camera calibration is a very important part of machine vision technology and
photogrammetry. The essence of machine vision technology and photogrammetry is
to obtain geometric information of three-dimensional objects from the image infor-
mation taken by the camera. It can also be said that camera calibration is the
foundation of machine vision technology and photogrammetry. The process of
camera calibration is the process of obtaining the internal and external parameters
of the camera through calculations. Among them, the internal parameters include the
focal length of the camera, and the external parameters include the position infor-
mation of the camera itself in the world coordinate system. The projection relation-
ship between the world coordinate system and the image coordinate system is
determined by these internal and external parameters of the cameras.

The sections of this chapter are arranged as follows:

Section 2.1 introduces the basic linear camera model, gives a typical calibration
procedure, and discusses the internal and external parameters of the camera.

Section 2.2 discusses typical non-linear camera models, analyzes various types of
distortions in detail, and summarizes the criteria and results for the classification
of calibration methods.

Section 2.3 introduces the traditional camera calibration method, analyzes its char-
acteristics, and describes an example of a typical two-stage calibration method. In
addition, an improved method is analyzed.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
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disadvantages of this type of method, a simple calibration method is also specif-
ically introduced.

2.1 Linear Camera Model

The camera model represents the relationship between the coordinates in the world
coordinate system and the coordinates in the image coordinate system. In other
words, the projection relationship between the object point and the image point is
provided by the camera model.

The linear model is also called the pinhole model. In this model, it is considered
that any point in the 3-D space whose image in the image coordinate system is
formed according to the principle of small hole imaging.

2.1.1 Complete Imaging Model

General imaging models have been discussed in 2D Computer Vision: Principles,
Algorithms and Applications. A more complete imaging model in practical utiliza-
tion also considers two factors.

1. Not only the world coordinate system XYZ and the camera coordinate system xyz
are separated, but the camera coordinate system and the image coordinate system
x′y′ are also separated.

2. The ultimate goal of imaging is for computer processing, so it is necessary to
establish a connection from the world coordinate system to the computer image
coordinate system MN.

Here, since the image coordinate unit used in the computer is the number of
discrete pixels in the memory, so the coordinates on the image plane need to be
rounded and converted. It is also believed that the image coordinate system includes
two parts, the image physical coordinate system and the image pixel coordinate
system. The former corresponds to the coordinates on the image plane, while the
latter corresponds to the coordinates in the (memory of) computer.

Taking into account these two factors discussed here, a complete imaging process
involves a total of three conversions between four non-coincident coordinate sys-
tems, as shown in Fig. 2.1.

C1

XYZ xyz MN
C2

x'y'
C3

Fig. 2.1 Conversion from 3-D world coordinates to computer image coordinates under the linear
camera model
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1. Conversion C1 from the world coordinate system XYZ to the camera coordinate
system xyz. This conversion can be represented as

x

y

z

64 75=R

X

Y

Z

64 75þ T ð2:1Þ

where R and T are, respectively, 3 × 3 rotation matrix (actually a function of the
angles between the three pairs of corresponding coordinate axes of the two coordi-
nate systems) and 1 × 3 translation vector:

R �
r1 r2 r3

r4 r5 r6
r7 r8 r9

2
64

3
75 ð2:2Þ

T Tx Ty Tz
T

2:3

2. Conversion C2 from the camera coordinate system xyz to the image plane
coordinate system x′y′. This conversion can be represented as

x0 = λ
x
z

ð2:4Þ

y0 = λ
y
z

ð2:5Þ

3. Conversion C3 from the image plane coordinate system x′y′ to the computer
image coordinate system MN. This conversion can be represented as

M= μ
x0Mx

SxLx
þ Om ð2:6Þ

N =
y0

Sy
þ On ð2:7Þ

where M and N are the total numbers of rows and columns of pixels in the computer
memory (computer coordinates), respectively; Om and On are separately the number
of rows and the number of columns of the center pixels in the computer memory; Sx
is the distance between the centers of two adjacent sensors along the x direction
(scanning line direction); Sy is the distance between the centers of two adjacent
sensors along the y direction; Lx is the number of sensor elements in the X direction;
and Mx is the number of samples (number of pixels) of the computer in a row. In
Eq. (2.6), μ is an uncertain image scale factor that depends on the camera. According
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to the working principle of the sensor, the time difference between the image
acquisition hardware and the camera scanning hardware or the time inaccuracy of
the camera scanning itself will introduce certain uncertain factors during progressive
scanning. For example, when using a CCD, the image is scanned line by line. The
distance between adjacent pixels along the y′ direction is also the distance between
adjacent CCD photosensitive points, but along the x′ direction due to the time
difference between the image acquisition hardware and the camera scanning hard-
ware or the inaccuracy of the camera scanning time itself, some uncertain factors will
be introduced. These uncertain factors can be described by introducing the uncer-
tainty image scale factor μ, which helps to establish the connection between the
image plane coordinate system x′y′ and the computer image coordinate system MN
affected by the uncertainty image scale factor.

2.1.2 Basic Calibration Procedure

According to the general imaging model discussed in 2D Computer Vision: Princi-
ples, Algorithms and Applications, if a series of transformations PRTWh are
performed on the homogeneous coordinates Wh of a space point, the world coordi-
nate system can be overlapped with the camera coordinate system. Here, P is the
imaging projection transformation matrix, R is the camera rotation matrix, and T is
the camera translation matrix. Let A = PRT; the elements in A include camera
translation, rotation, and projection parameters; and then there is a homogeneous
representation of image coordinates Ch = AWh. If k = 1 in the homogeneous
representation, one can get

Ch1

Ch2

Ch3

Ch4

2
6664

3
7775=

a11 a12 a13 a14
a21 a22 a23 a24

a31 a32 a33 a34
a41 a42 a43 a44

2
6664

3
7775

X

Y

Z

1

2
6664

3
7775 ð2:8Þ

According to the definition of homogeneous coordinates, the camera coordinates
(image plane coordinates) in Cartesian form are

x=Ch1=Ch4 ð2:9Þ
y=Ch2=Ch4 2:10

Substitute Eqs. (2.9) and (2.10) into Eq. (2.8) and expand the matrix product to
get
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xCh4 = a11X þ a12Y þ a13Z þ a14 ð2:11Þ
yCh4 = a21X a22Y a23Z a24 2:12

Ch4 = a41X a42Y a43Z a44 2:13

where the expansion of Ch3 is omitted because it is related to z.
Substituting Ch4 into Eqs. (2.11) and (2.12), then two equations with a total of

12 unknowns can be obtained:

a11 - a41xð ÞX þ a12 - a42xð ÞY þ a13 - a43xð ÞZ þ a14 - a44xð Þ= 0 ð2:14Þ
a21 - a41y X a22 - a42y Y a23 - a43y Z a24 - a44y = 0 2:15

It can be seen that a calibration procedure should include the following:

1. Obtaining M ≥ 6 space points with known world coordinates (Xi, Yi, Zi), i = 1,
2, . . ., M (more than 25 points are often taken in practical applications, and then
the least squares fitting is used to reduce the error).

2. Take these points with the camera at a given position to get their corresponding
image plane coordinates (xi, yi), i = 1, 2, . . ., M.

3. Substitute these coordinates into Eqs. (2.14) and (2.15) to solve for the unknown
coefficients.

In order to realize the above-mentioned calibration procedure, it is necessary to
obtain the corresponding spatial points and image points. In order to accurately
determine these points, it is necessary to use a calibration object (also called a
calibration target, i.e., a standard reference object), which has a fixed pattern of
marking points (reference points). The most commonly used 2-D calibration objects
have a series of regularly arranged square patterns (similar to a chess board), and the
vertices of these squares (cross-hairs) can be used as reference points for calibration.
If the calibration algorithm of co-planar reference points is used, the calibration
object corresponds to one plane; if the calibration algorithm of non-coplanar refer-
ence points is adopted, the calibration object generally corresponds to two orthog-
onal planes.

2.1.3 Internal and External Parameters

The calibration parameters involved in camera calibration can be divided into
external parameters (outside the camera) and internal parameters (inside the camera).
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2.1.3.1 External Parameters

The first step of transformation in Fig. 2.1 is to transform from the 3-D world
coordinate system to the 3-D coordinate system whose center is at the optical center
of the camera. The transformation parameters are called external parameters or
camera attitude parameters. The rotation matrix R has a total of nine elements, but
in fact there are only three degrees of freedom, which can be represented by the three
Euler angles of the rigid body rotation. As shown in Fig. 2.2 (the line of sight is
reverse to the X axis), the intersection line AB of the XY plane and the xy plane is
called the pitch line, and the angle θ between AB and the x axis is an Euler angle
called the rotation angle (also called deflection angle yaw), which is the angle of
rotation around the z axis; the angle ψ between AB and X axis is another Euler angle,
called precession angle (also called tilt angle), which is the angle of rotation around
the Z axis; the angle ϕ between Z axis and z axis is the third Euler angle, called the
nutation angle (also called pitch/slant angle), which is the angle of rotation around
the pitch line.

Using Euler angles, the rotation matrix can be represented as a function of θ, ϕ,
and ψ :

R¼
cosψ cosθ sinψ cosθ - sinθ

- sinψ cosϕþ cosψ sinθ sinϕ cosψ cosϕþ sinψ sinθ sinϕ cosθ sinϕ

sinψ sinϕþ cosψ sinθcosϕ - cosψ sinϕþ sinψ sinθcosϕ cosθcosϕ

2
64

3
75

ð2:16Þ

It can be seen that the rotation matrix has three degrees of freedom. In addition,
the translation matrix also has three degrees of freedom (translation coefficients in
three directions). In this way, the camera has six independent external parameters,
namely, the three Euler angles θ, ϕ, ψ in R and the three elements Tx, Ty, Tz in T.

Fig. 2.2 Schematic
diagram of Euler angles
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2.1.3.2 Internal Parameters

The last two transformations in Fig. 2.1 are to transform the 3-D coordinates in the
camera coordinate system to the 2-D coordinates in the computer image coordinate
system. The transformation parameters are called internal parameters, also called
the interior camera parameters. There are four internal parameters in Fig. 2.1:
focal length λ, uncertainty image scale factor μ, and computer image coordinates Om

and On of the origin of the image plane.
The main significance of distinguishing external parameters and internal param-

eters is when a camera is used to acquire multiple images at different positions and
orientations, the external parameters of the camera corresponding to each image may
be different, but the internal parameters will not change, so after moving the camera,
it only needs to re-calibrate the external parameters but not the internal parameters.

Example 2.1 The Internal and External Parameters in Camera Calibration
Camera calibration is to align the camera’s coordinate system with the world
coordinate system. From this point of view, another way to describe the internal
and external parameters of camera calibration is as follows. Decompose a complete
camera calibration transformation matrix C into the product of the internal parameter
matrix Ci and the external parameter matrix Ce:

C=CiCe ð2:17Þ

Ci is a 4 × 4 matrix in general, but it can be simplified to a 3 × 3 matrix:

Ci =

Sx Px Tx

Py Sy Ty

0 0 1=λ

2
64

3
75 ð2:18Þ

where Sx and Sy are the scaling coefficients along the X and Y axes, respectively; Px

and Py are the skew coefficients along the X and Y axes, respectively (originated from
the non-strict orthogonality of the actual camera optical axes, which is reflected in
the image as that there is not strict 90° between pixel rows and pixel columns); Tx
and Ty are the translation coefficients along the X and Y axes, respectively (to help
move the projection center of the camera to a suitable position); and λ is the focal
length of the lens.

The general form of Ce is also a 4 × 4 matrix, which can be written as

Ce =

R1 R1 •T

R2 R2 •T

R3 R3 •T

0 1

2
6664

3
7775 ð2:19Þ



where R , R , and R are three row vectors of a 3 × 3 rotation matrix (only 3 degrees
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1 2 3

of freedom), and T is a 3-D translation column vector, and 0 is a 1 × 3 vector.
It can be seen from the above discussions that the matrix Ci has seven internal

parameters and the matrix Ce has six external parameters. However, notice that both
matrices have rotation parameters, so the rotation parameters of the internal matrix
can be merged into the external matrix. Because rotation is a combination of scaling
and skew, after removing the rotation from the internal matrix, Px and Py become the
same (Px = Py = P). When considering the linear camera model, P = 0. So there are
only five parameters in the internal matrix, namely, λ, Sx, Sy, Tx, and Ty. In this way,
the two matrices have a total of 11 parameters to be calibrated, which can be
calibrated according to the basic calibration procedure. In special cases, if the camera
is very accurate, then Sx = Sy = S = 1. At this time, there are only three internal
parameters. Furthermore, if the cameras are aligned, then Tx = Ty = 0. This leaves
only one internal parameter λ.

2.2 Non-Linear Camera Model

In actual situations, a camera usually uses a lens (often containing multiple lenses)
for imaging. Due to the levels of the processing technology of the lens and the
manufacturing technology of the camera, the projection relationship of the camera
cannot be simply described as a pinhole model. In other words, due to the influence
of various factors such as lens processing and installation, the projection relationship
of the camera is no longer a linear projection relationship, that is, the linear model
cannot accurately describe the imaging geometric relationship of the camera.

The real optical system does not work exactly according to the idealized pinhole
imaging principle, but there is lens distortion. Due to the influence of various
distortion factors, the pixel coordinates of the 3-D space object point projected to
the 2-D image plane will deviate from the ideal image point position without
distortion. The optical distortion error between the actual image point formed by
the spatial object point on the camera imaging plane and the ideal image is more
obvious in the region close to the boundary of the lens. Especially if one uses a wide-
angle lens, there are often a lot of distortions in the image plane away from the
center. This will cause deviations in the measured coordinates and reduce the
accuracy of the obtained world coordinates. Therefore, a non-linear camera model
that takes into account these distortions must be used for camera calibration.

2.2.1 Type of Distortion

Due to the influence of various distortion factors, when projecting a 3-D space object
point onto a 2-D image plane, the actually obtained image point coordinates (xa, ya)
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Fig. 2.3 Schematic
diagram of radial and
tangential distortion

Y

d

(xa, ya)

O

dr

(xi, yi)

X

and the undistorted ideal image point coordinates (xi, yi) will be different (there are
deviations), which can be expressed as

xa = xi þ dx ð2:20Þ
ya = yi dy 2:21

where dx and dy are the total non-linear distortion deviation values in the X and
Y directions, respectively. There are two common basic distortion types: radial
distortion and tangential distortion. The influence of these two basic distortions
is shown in Fig. 2.3, where dr represents the deviation caused by radial distortion and
dt represents the deviation caused by tangential distortion. Other distortions are
mostly a combination of these two basic distortions. The most typical combined
distortion is eccentric distortion or centrifugal distortion and thin prism distor-
tion; they all contain both radial distortion and tangential distortion.

2.2.1.1 Radial Distortion

Radial distortion is mainly caused by irregular lens shape (surface curvature error).
The deviation caused by it is often symmetrical about the main optical axis of the
camera lens, and it is more obvious at the distance from the optical axis along the
lens radius. Generally, the positive radial distortion is called pincushion distortion,
and the negative radial distortion is called barrel distortion, as shown in Fig. 2.4.
The mathematical model is

dxr = xi k1r
2 þ k2r

4 þ⋯
� � ð2:22Þ� �

dyr = yi k1r
2 k2r

4 ⋯ 2:23

where r = (xi
2 + yi

2)1/2 is the distance from the image point to the image center and
k1, k2, etc. are the radial distortion coefficients.
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Fig. 2.4 Pincushion
distortion and barrel
distortion
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Fig. 2.5 Tangential
distortion

Y

X

Maximum
axis

Minimum 
axis

2.2.1.2 Tangential Distortion

Tangential distortion is mainly caused by the non-collinear optical centers of the
lens group, which produces the actual image point to move tangentially on the image
plane. Tangential distortion has a certain orientation in space, so there is a maximum
axis of distortion in a certain direction, and a minimum axis in the direction
perpendicular to that direction, as shown in Fig. 2.5. The solid line represents the
absence of distortion, and the dashed line represents the result caused by tangential
distortion. Generally, the influence of tangential distortion is relatively small, and
independent modeling is relatively small.

2.2.1.3 Eccentric Distortion

The eccentric distortion is caused by the inconsistency between the optical center
and the geometric center of the optical system, that is, the optical center of the lens
device is not strictly collinear. The mathematical model can be represented by

dxt = l1 2x2i þ r2
� �þ 2l2xiyi þ⋯ ð2:24Þ� �

dyt = 2l1xiyi l2 2y2i r2 ⋯ 2:25

where r= (xi
2 + yi

2)1/2 is the distance from the image point to the image center and l1,
l 2, etc. are the eccentric distortion coefficients.
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2.2.1.4 Thin Prism Distortion

The thin prism distortion is caused by improper lens design and assembly. This
kind of distortion is equivalent to adding a thin prism to the optical system, which
causes not only radial deviation but also tangential deviation. The mathematical
model is

dxp =m1 x2i þ y2i
� �þ⋯ ð2:26Þ� �

dyp =m2 x2i y2i ⋯ 2:27

where m1, m2, etc. are the distortion coefficients of the thin prism.
Combining the radial distortion, eccentric distortion, and thin prism distortion,

the total distortion deviation of dx and dy is

dx = dxr þ dxt þ dxp ð2:28Þ
dy = dyr dyt dyp 2:29

If ignoring terms higher than order 3, and let n1 = l1 + m1, n2 = l2 + m2, n3 = 2 l1,
n4 = 2 l2, then

dx = k1xr
2 þ n1 þ n3ð Þx2 þ n4xyþ n1y

2 ð2:30Þ
dy = k1yr

2 n2x
2 n3xy n2 n4 y2 2:31

2.2.2 Calibration Steps

In practice, the radial distortion of the camera lens tends to have a greater impact.
The radial distortion it causes is often proportional to the distance between a point in
the image and the point on the optical axis of the lens. The transformation from the
undistorted image plane coordinates (x′, y′) to the actual image plane coordinates
(x*, y*) shifted by the lens radial distortion is

x� = x0 -Rx ð2:32Þ
y� = y0 -Ry 2:33

where Rx and Ry represent the radial distortion of the lens, referring to Eqs. (2.22) and
(2.23); one can get
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C1

XYZ xyz x*y*
C2

x'y'
C31

MN
C32

Fig. 2.6 Conversion from 3-D world coordinates to computer image coordinates using the
non-linear camera model

Rx = x� k1r
2 þ k2r

4 þ⋯ ≈ x�kr2 ð2:34Þ� �
Ry = y� k1r

2 k2r
4 ⋯ ≈ y�kr2 2:35

Here, only a single coefficient k of lens radial distortion is introduced for
simplifying approximation. On the one hand, the higher-order term of r can be
ignored in practice. On the other hand, it is also considered that the radial distortion
is often symmetrical about the main optical axis of the camera lens.

Taking into account the conversion from the undistorted image plane coordinates
(x′, y′) to the actual image plane coordinates (x*, y*), the transformation from 3-D
world coordinates to the computer image plane coordinates is realized according to
the non-linear camera model, as shown in Fig. 2.6. The original conversion C3 is
now decomposed into two conversions, C31 and C32, and Eqs. (2.6) and (2.7) can
still be used to define C32 (it needs only to use x* and y* to replace x′ and y′).

Although Eqs. (2.32) and (2.33) only consider radial distortion, the forms of
Eqs. (2.30) and (2.31) can actually represent various distortions. In this sense, the
flow chart of Fig. 2.6 can be applied to situations with various distortions, as long as
the corresponding Z31 is selected according to the type of distortion. Comparing
Fig. 2.6 with Fig. 2.1, the non-linearity is reflected in the conversion from x′y′ to
x*y*.

2.2.3 Classification of Calibration Methods

There are many ways to achieve camera calibration, and there are different classi-
fication methods according to different criteria. For example, according to the
characteristics of the camera model, it can be divided into linear methods and
non-linear methods; according to whether calibration objects are required, it can
be divided into traditional camera calibration methods, camera self-calibration
methods, and active vision-based calibration methods (someone also combines the
latter two). In addition, when using the calibration object, according to the dimension
of calibration objects, it can be divided into the methods of using the 2-D plane target
and the methods of using the 3-D solid target; according to the results of solving the
parameters, it can be divided into explicit methods and implicit methods; according
to whether the internal parameters of the camera can be changed, it can be divided
into methods with variable internal parameters and methods with invariable internal
parameters; according to the camera motion mode, it can be divided into the methods
with limited motion mode and the methods with non-limited motion mode;
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according to the number of cameras used by the vision system, it can be divided into
the methods using a single camera and the methods using multi-cameras. Table 2.1
provides a classification table of calibration methods, listing some classification
criteria, categories, and typical methods.

In Table 2.1, non-linear methods are generally complex, slow, and require a good
initial value; besides, non-linear search cannot completely guarantee that the param-
eters converge to the global optimal solution. The implicit parameter method uses
the elements of transformation matrix as calibration parameters and uses a transfor-
mation matrix to represent the correspondence between spatial object points and
image plane points. Because the parameter itself does not have a clear physical
meaning, it is called the implicit parameter method. Since the implicit parameter
method only requires solving linear equations, this method can provide higher
efficiency when the accuracy requirements are not very high. Direct linear methods
(DLT) take linear model as the object and uses a 3 × 4 matrix to represent the
correspondence between 3-D space object points and 2-D space image points,
ignoring the intermediate imaging process (or, in other words, combining the factors
in the process for consideration). The most common multi-camera method is the
dual-camera method. Compared with single-camera calibration, dual-camera cali-
bration not only needs to know the internal and external parameters of each camera
itself but also needs to measure the relative position and orientation between the two
cameras through calibration.

2.3 Traditional Calibration Methods

Traditional camera calibration needs to use a known calibration object (calibration
board with known 2-D data, or calibration block with known 3-D data), that is, the
size and shape of the calibration object (position and distribution of calibration
points), and then determine the internal and external parameters of the camera by
establishing the correspondence between the points on the calibration object and the
corresponding points on the captured images. Its advantages are clear theory, simple
solution, and high calibration accuracy, but the calibration process is relatively
complicated, and the accuracy of the calibration object should be high.

2.3.1 Basic Steps and Parameters

The calibration can be carried out along the conversion direction from 3-D world
coordinates to computer image coordinates. The typical process is shown in Fig. 2.7.
The conversion from the world coordinate system to the computer image coordinate
system has four steps, and each step has parameters to be calibrated:
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Table 2.1 Camera calibration method classification table

Classification criteria Types Typical methods

Characteristics of the
camera model

Linear Two-stage calibration method

Non-linear LM optimization method
Newton Raphson (NR) optimization method
Non-linear optimization method for parameter
calibration
The method assuming only the condition of radial
distortion

Whether calibration
objects are required

Traditional
calibration

Methods of using optimization algorithms
Methods of using camera transformation matrix
A two-step method considering distortion com-
pensation
Biplane method using camera imaging model
Direct linear transformation (DLT) method
Method using radial alignment constraint (RAC)

Camera self-
calibration

The method of solving Kruppa equation directly
Layered stepwise approach
Method using absolute conic
Method based on quadric surface

Active vision-
based
calibration

Linear method based on two sets of three orthog-
onal motions
Method based on four-group and five-group plane
orthogonal motion
Orthogonal movement method based on planar
homography matrix
Orthogonal motion method based on epi-pole

Dimension of calibration
targets

2-D plane
target

Black and white checkerboard calibration target
(take grid intersection as calibration point)
Arrange dots in a grid (take the center of the dot as
the calibration point)

3-D solid target 3-D objects of known size and shape

Results of solving the
parameters

Implicit
calibration

Consider calibration parameters with direct phys-
ical meaning (such as distortion parameters)

Explicit
calibration

Direct linear transformation (DLT) method to
calibrate geometric parameters

Internal parameters of the
camera can be changed

Variable inter-
nal parameters

During the calibration process, the optical param-
eters of the camera (such as focal length) can be
changed

Invariable
internal
parameters

During the calibration process, the optical param-
eters of the camera cannot be changed

Camera motion mode Limited motion
mode

The method in which camera only has a pure
rotation

Method for camera to perform orthogonal trans-
lation movement

Non-limited
motion mode

There is no limit to the movement of the camera
during calibration



Step 1: The parameters to be calibrated are the rotation matrix R and the translation
vector T.

m
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Table 2.1 (continued)

Classification criteria Types Typical methods

Number of cameras used
by the vision system

Using a single
camera

Calibrate only a single camera

Using multi-
cameras

Use 1-D calibration objects for multiple cameras
(more than 3 collinear points with known dis-
tances), and use the maximum likelihood criterion
to refine the linear algorithm

XYZ
R, T k, l, m

xyz x'y' x*y* MN
l

Fig. 2.7 Perform camera calibration along the coordinate conversion direction

Step 2: The parameter to be calibrated is the focal length of the lens λ.
Step 3: The parameters to be calibrated are the lens radial distortion coefficient k,

eccentric distortion coefficient l, and thin lens distortion coefficient m.
Step 4: The parameter to be calibrated is the uncertainty image scale factor μ.

2.3.2 Two-Stage Calibration Method

The two-stage calibration method is a typical traditional calibration method. It gets
its name because the calibration is divided into two stages: the first stage is to
calculate the external parameters of the camera (but not considering the translation
along the camera’s optical axis, Tz, at this time), and the second stage is to calculate
other parameters of the camera. Because it uses the radial alignment constraint
(RAC), it is also called the RAC method. Most of the equations in its calculation
process are linear equations, so the process of solving parameters is relatively
simple. This method has been widely used in industrial vision systems. The average
accuracy of 3-D measurement can reach 1/4000, and the accuracy of depth direction
can reach 1/8000.

Calibration can be divided into two cases/situations. If μ is known, only one
image containing a set of coplanar reference points is needed for calibration. At this
time, the first stage is to calculate R and Tx and Ty, and the second stage is to calculate
λ, k, Tz. Here, because k is the radial distortion of the lens, k is not considered in the
calculation of R. Similarly, the calculation of Tx and Ty may not consider k, but the
calculation of Tz needs to consider k (the change effect of Tz on the image is similar
to the change effect of k), so it is placed in the second stage. In addition, if μ is
unknown, an image containing a set of non-coplanar reference points should be used
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for calibration. At this time, the first stage is to calculate R and Tx, Ty, and μ, and the
second stage is still to calculate λ, k, Tz.

The specific calibration method is to first calculate a set of parameters si (i = 1,
2, 3, 4, 5), or s = [s1 s2 s3 s4 s5]

T, and further calculate the external parameters of the
camera with this set of parameters. GivenM (M ≥ 5) points whose world coordinates
(Xi, Yi, Zi) and their corresponding image plane coordinates (xi, yi) are known, i = 1,
2, . . ., M, one can construct a matrix A, in which row ai can be represented as
follows:

ai = yiXi yiYi - xiXi - xiYi yi½ 2:36Þ

Let si have the following relations with rotation parameters r1, r2, r4, r5 and
translation parameters Tx, Ty:

s1 =
r1
Ty

s2 =
r2
Ty

s3 =
r4
Ty

s4 =
r5
Ty

s5 =
Tx

Ty
ð2:37Þ

Suppose the vector u = [x1 x2 . . . xM]
T, and then from the following linear

equations

As= u ð2:38Þ

s can be solved. Next, the rotation and translation parameters can be calculated
according to the subsequent steps.

1. Set S= s21 s22 s23 s24; calculate

T2
y =

S- S2 - 4 s1s4 - s2s3ð Þ2
h i
4 s1s4 - s2s3ð Þ2 s1s4 - s2s3ð Þ≠ 0

1
s21 þ s22

s21 þ s22 ≠ 0

1
s23 þ s24

s23 þ s24 ≠ 0

>>>>>>>>><
>>>>>>>>>:

ð2:39Þ

r1 = s1Ty r2 = s2Ty r4 = s3Ty r5 = s4Ty Tx = s5Ty ð2:40Þ

3. Choose a point whose world coordinates are (X, Y, Z ) and require its image
plane coordinates (x, y) to be far away from the image center, and calculate
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pX = r1X þ r2Y þ Tx ð2:41Þ
pY = r4X r5Y Ty 2:42

This is equivalent to applying the calculated rotation parameters to the X and
Y of the point (X, Y, Z ). If the signs of pX and x are the same, and the signs of pY
and y are the same, it means that Ty has the correct sign. Otherwise, it should
negative for Ty.

4. Calculate other rotation parameters as follows:

r3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1- r21 - r22

q
r6 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1- r24 - r25

q
r7 ¼ 1- r21 - r2r4

r3
r8 ¼ 1- r2r4 - r25

r6
r9

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1- r3r7 - r6r8

p
ð2:43Þ

Note: If the sign of r1r4 + r2r5 is positive, then should negative for r6, and the
signs of r7 and r8 should be adjusted after the focal length λ is calculated.

5. Establish another set of linear equations to calculate the focal length λ and the
translation parameter Tz in the z direction. A matrix B can be constructed first, in
which row bi can be represented as follows:

bi = r4Xi þ r5Yi þ Ty yib c ð2:44Þ

In this equation, means rounding down.
Let the row vi of the vector v be represented as

vi = r7Xi þ r8Yið Þyi ð2:45Þ

Then, from the linear equations

Bt= v ð2:46Þ

t = [λ Tz]
T can be solved. Note that what was obtained here is only an

estimate of t.
6. If λ< 0, to use the right-handed coordinate system, it needs to negative for r3, r6,

r7, r8, λ, and Tz.
7. Use the estimation of t to calculate the radial distortion k of the lens, and improve

the values of λ and Tz. Using the perspective projection equation including
distortion, the following non-linear equation can be obtained:

yi 1þ kr2
� �

= λ
r4Xi þ r5Yi þ r6Zi þ Ty

r7Xi þ r8Yi þ r9Zi þ Tz

	
i= 1, 2, ⋯, M ð2:47Þ
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Table 2.2 World coordinate
values and image plane coor-
dinate values of five reference
points

Yi Zi xi yi
1 0.00 5.00 0.00 -0.58 0.00

2 10.00 7.50 0.00 1.73 1.00

3 10.00 5.00 0.00 1.73 0.00

4 5.00 10.00 0.00 0.00 1.00

5 5.00 0.00 0.00 0.00 -1.00

X

Y

Z 0

10

5

5

10

y

-1

1

1 2-1-2

(a) (b)

x

Fig. 2.8 The positions of five reference points in the world coordinate system and image plane
coordinate system

Solve the above equation by non-linear regression method to get the values of
k, λ, and Tz.

Example 2.2 Calibration Example of Camera External Parameters
Table 2.2 shows five reference points whose world coordinates and their
corresponding image plane coordinates are known.

Figure 2.8a shows the positions of the above five reference points in the world
coordinate system, and their positions in the image plane coordinate system are
shown in Fig. 2.8b.

From the data given in Table 2.2 and Eq. (2.36), one can get the matrix A and
vector u as follows:

A=

0:00 0:00 0:00 2:89 0:00

10:00 7:50 - 17:32 - 12:99 1:00

0:00 0:00 - 17:32 - 8:66 0:00

5:00 10:00 0:00 0:00 1:00

- 5:00 0:00 0:00 0:00 - 1:00

2
6666664

3
7777775

u= - 0:58 1:73 1:73 0:00 0:00 T

From Eq. (2.38), one can get
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s= - 0:17 0:00 0:00 - 0:20 0:87½ T

The other calculation steps are as follows:

1. Because S= s21 s22 s23 s24 = 0:07, so from Eq. (2.39), it has the following:

T2
y =

S- S2 - 4 s1s4 - s2s3ð Þ2
1=2

2 s1s4 - s2s3ð Þ2 = 25

2. Taking Ty = 5, then r1 = s1Ty = - 0.87, r2 = s2Ty = 0, r4 = s3Ty = 0,
r5 = s4Ty = - 1.0, Tx = s5Ty = 4.33 can be obtained, respectively.

3. Select the point with the world coordinates (10.0, 7.5, 0.0) that is the farthest
from the image center, and its image plane coordinates are (1.73, 1.0). By
calculation, it gets pX = r1X + r2Y + Tx = - 4.33, pY = r4X + r5Y + Ty = - 2.5.

Since the signs of pX and pY are inconsistent with the signs of x and y, take the
negative of Ty, and go back to step (2) to get r1 = s1Ty = 0.87, r2 = s2Ty = 0,
r4 = s3Ty = 0, r5 = s4Ty = 1.0, Tx = s5Ty = - 4.33.

4. Continue to calculate several other parameters; one can successively get

r3 = 1- r21 - r22
� �1=2 = 0:5 , r6 = 1- r24 - r25

� �1=2 = 0:0 , r7 =
1- r21 - r2r4

r3
= 0:5 ,

r8 =
1- r2r4 - r25

r6
= 0:0 , r9 = (1 - r3r7 - r6r8)

1/2 = 0.87 in turn. Because

r1r4 + r2r5 = 0, it is not positive, so it does not need to negative for r6.
5. Establish the second set of linear equations, and get the following matrices and

vectors from Eqs. (2.44) and (2.45):

B=

0:00 0:00

2:50 - 1:00

0:00 0:00

5:00 - 1:00

- 5:00 1:00

6666664

7777775

v= 0:00 5:00 0:00 2:50 - 2:50 T

Solving these linear equations, by Eq. (2.46), one can get t= l Tz½ �T =
- 1:0 - 7:5 T.

6. Since λ is negative, it indicates that it is not a right-handed coordinate system. To
reverse the Z coordinate axis, it needs to negative for r3, r6, r7, r8, λ, and Tz .
Finally, it gets λ = 1, and the following results:
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R=

0:87 0:00 - 0:50

0:00 1:00 0:00

- 0:50 0:00 0:87

64 75

T= - 4:33 - 5:00 7:50 T

7. The radial distortion k of the lens is not considered in this example, so the above
result is the final result.

2.3.3 Precision Improvement

The above two-stage calibration method only considers the radial distortion factor of
the camera lens. If the tangential distortion of the lens is further considered on this
basis, it is possible to further improve the accuracy of camera calibration.

According to Eqs. (2.28) and (2.29), considering the total distortion deviation dx
and dy of radial distortion and tangential distortion are

dx = dxr þ dxt ð2:48Þ
dy = dyr dyt 2:49

Considering the fourth-order term for radial distortion and the second-order term
for tangential distortion, there are

dx = xi k1r
2 þ k2r

4
� �þ l1 3x2i þ y2i

� �þ 2l2xiyi ð2:50Þ� � � �
dy = yi k1r

2 k2r
4 2l1xiyi l2 x2i 3y2i 2:51

The camera calibration can be carried out in two steps as follows.

1. First, set the initial values of lens distortion parameters k1, k2, l1, and l2 to be
0, and calculate the values of R, T, and λ.

Refer to Eqs. (2.4) and (2.5), and refer to the derivation of Eq. (2.47); one can
get

x= λ
X
Z
= λ

r1X þ r2Y þ r3Z þ Tx

r7X þ r8Y þ r9Z þ Tz
ð2:52Þ

y= λ
Y
Z
= λ

r4X þ r5Y þ r6Z þ Ty

r7X r8Y r9Z Tz
ð2:53Þ

From Eqs. (2.52) and (2.53)



With the help of R and T that have been obtained, (X, Y, Z ) can be calculated
using Eq. ( ) and then substituting into Eqs. (2.54 ) and (2.55 ) to obtain2.56

� �
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x
y
=

r1X þ r2Y þ r3Z þ Tx

r4X þ r5Y þ r6Z þ Ty
ð2:54Þ

Equation (2.54) holds for all reference points, that is, an equation can be
established by using the 3-D world coordinates and 2-D image coordinates of
each reference point. There are eight unknowns in Eq. (2.54), so if there are eight
reference points, an equation set with eight equations can be constructed, and then
the values of r1, r2, r3, r4, r5, r6, Tx, and Ty can be calculated. Because R is an
orthogonal matrix, the values of r7, r8, and r9 can be calculated according to its
orthogonality. Substituting these calculated values into Eqs. (2.52) and (2.53),
and then taking the 3-D world coordinates and 2-D image coordinates of any two
reference points, the values of Tz and λ can be calculated.

2. Calculate the values of lens distortion parameters k1, k2, l1, and l2.
According to Eqs. (2.20) and (2.21) and Eqs. (2.48) to Eq. (2.51), one can get

λ
X
Z
= x= xi þ xi k1r

2 þ k2r
4

� �þ l1 3x2i þ y2i
� �þ 2l2xiyi ð2:55Þ

λ
Y
Z
= y= yi þ yi k1r

2 þ k2r
4

� �þ 2l1xiyi þ l2 x2i þ 3y2i
� � ð2:56Þ

λ
Xj

Zj
= xij þ xij k1r

2 þ k2r
4

� �þ l1 3x2ij þ y2ij

� �
þ 2l2xijyij ð2:57Þ

λ
Yj

Zj
= yij þ yij k1r

2 þ k2r
4

� �þ 2l1xijyij þ l2 x2ij þ 3y2ij ð2:58Þ

where j = 1, 2, . . ., N, N is the number of reference points. Using 2 N linear
equations and solving with the least square method, the values of four distortion
parameters k1, k2, l1, and l2 can be obtained.

2.4 Self-Calibration Methods

The camera self-calibration method was proposed in the early 1990s. Camera self-
calibration can obtain camera parameters without resorting to high-precision cali-
bration objects. Real-time and online camera model parameters can be calculated
from the geometric constraints obtained from the image sequence. This is especially
suitable for cameras that often need to move. Since all self-calibration methods are
only related to the internal parameters of the camera and have nothing to do with the
external environment and the movement of the camera, the self-calibration method is
more flexible than the traditional calibration method. However, the accuracy of the
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Fig. 2.9 The geometric
relationship between the
images made by camera
translation
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general self-calibration method is not very high, and the robustness is also not
very high.

The basic idea of the self-calibration method is to first establish a constraint
equation about the camera’s internal parameter matrix through the absolute conic,
called the Kruppa equation, and then to solve the Kruppa equation to determine the
matrix C (C = KTK-1, K is the internal parameter matrix). Finally, the matrix K is
obtained by Cholesky decomposition.

The self-calibration method can also be realized by means of active vision
technology. However, some researchers have separately proposed calibration
methods based on active vision technology as a single category. The so-called active
vision system means that the system can control the camera to obtain multiple
images in motion and then use its motion trajectory and the corresponding relation-
ship between the obtained images to calibrate the camera parameters. The active
vision-based calibration technology is generally used when the camera’s motion
parameters in the world coordinate system are known. It can usually be solved
linearly and the obtained results have high robustness.

In practice, the method based on active vision generally installs the camera
accurately on a controllable platform, actively controls the platform to perform
special movements to obtain multiple images, and then uses the image and camera
motion parameters to determine the camera parameters. However, if the camera
movement is unknown or the camera movement cannot be controlled, this method
cannot be used. In addition, the method requires high precision of the motion
platform, and the cost is high.

The following describes a typical self-calibration method, which is also often
referred to as a method based on active vision. As shown in Fig. 2.9, the camera’s
optical center is translated from O1 to O2, and the two images captured are I1 and I2
(the origins of the coordinates are O1 and O2), respectively. A point P in space is
imaged as point p1 on I1 and as point p2 on I2, and p1 and p2 form a pair of
corresponding points. If a point p2′ is marked on I1 according to the coordinate
values of point p2 on I2, the connecting line between p2′ and p1 is called the
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connecting line of the corresponding point on I1. It can be proved that when the
camera performs pure translational motion, the lines of the corresponding points of
all spatial points on I1 intersect at the same point e, and it is the direction of the
camera movement O1e

��!
(here e is on the line between O1 and O2, and O1O2 is the

trajectory of translational motion).
According to the analysis of Fig. 2.9, by determining the intersection of the

corresponding points, the translational movement direction of the camera in the
camera coordinate system can be obtained. In this way, control the camera to
perform translational movement in three directions (i = 1, 2, 3) during the calibra-
tion, and calculate the corresponding intersection point ei with the corresponding
points before and after each movement, so as to obtain the three translational
movement direction O1ei

��!
.

With reference to Eqs. (2.6) and (2.7), consider the ideal situation of uncertain
image scale factor μ being one, and take each sensor in the X direction to sample
1 pixel in each row. Then Eqs. (2.6) and (2.7) become

M=
x0

Sx
þ Om ð2:59Þ

N =
y0

Sy
þ On ð2:60Þ

Equations (2.59) and (2.60) establish the conversion relationship between the
image plane coordinate system x′y′ represented in physical units (such as millime-
ters) and the computer image coordinate system MN represented in pixels.
According to Fig. 2.8, the coordinates of the intersection point ei (i = 1, 2, 3) on
I1 are (xi, yi), respectively, and then from Eqs. (2.59) and (2.60), the coordinates of ei
in the camera coordinate system are

ei = xi -Omð ÞSx yi -Onð ÞSy λ½ T ð2:61Þ

If the camera is translated 3 times, and the directions of these three movements are
orthogonal, eiTej = 0 (i ≠ j) can be obtained, and then

x1 -Omð Þ x2 -Omð ÞS2x þ y1 -Onð Þ y2 -Onð ÞS2y þ λ2 = 0 ð2:62Þ
x1 -Omð Þ x3 -Omð ÞS2x þ y1 -Onð Þ y3 -Onð ÞS2y þ λ2 = 0 ð2:63Þ
x2 -Omð Þ x3 -Omð ÞS2x þ y2 -Onð Þ y3 -Onð ÞS2y þ λ2 = 0 ð2:64Þ

Equations (2.62), (2.6.3), and (2.64) are further rewritten as
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x1 -Omð Þ x2 -Omð Þ þ y1 -Onð Þ y2 -Onð Þ Sy
Sx

2

þ λ
Sx

2

= 0 ð2:65Þ

x1 -Omð Þ x3 -Omð Þ þ y1 -Onð Þ y3 -Onð Þ Sy
Sx

2

þ λ
Sx

2

= 0 ð2:66Þ

x2 -Omð Þ x3 -Omð Þ þ y2 -Onð Þ y3 -Onð Þ Sy
Sx

2

þ λ
Sx

2

= 0 ð2:67Þ

and two intermediate variables are defined

Q1 =
Sy
Sx

� 2

ð2:68Þ

Q2 =
λ
Sx

2

ð2:69Þ

In this way, Eqs. (2.65), (2.66), and (2.67) become three equations with four
unknown quantities of Om, On, Q1, and Q2. These equations are non-linear. If one
subtracts Eqs. (2.66) and (2.67) from Eq. (2.65), one can get two linear equations:

x1 x2 - x3ð Þ= x2 - x3ð ÞOm þ y2 - y3ð ÞOnQ1 - y1 y2 - y3ð ÞQ1 ð2:70Þ
x2 x1 - x3 = x1 - x3 Om y1 - y3 OnQ1 - y2 y1 - y3 Q1 2:71

Let OnQ1 in Eqs. (2.70) and (2.71) be represented by intermediate variable Q3:

Q3 =OnQ1 ð2:72Þ

Then, Eqs. (2.70) and (2.71) become two linear equations about three unknowns,
Om, Q1, and Q3. Since the two equations have three unknowns, the solutions of
Eqs. (2.70) and (2.71) are generally not unique. In order to obtain a unique solution,
the camera can be moved three times along the other three orthogonal directions to
obtain three other intersection points ei (i = 4, 5, 6). If these three translational
motions have different directions from the previous three translational motions, two
equations similar to Eqs. (2.70) and (2.71) can be obtained. In this way, a total of
four equations are obtained, and any three equations can be selected, or the least
square method can be used to solveOm,Q1, andQ3 from these equations. Next, solve
forOn from Eq. (2.72), and then substituteOm,On, andQ1 into Eq. (2.67) to solve for
Q2. In this way, all the internal parameters of the camera can be obtained by
controlling the camera to perform two sets of three orthogonal translational
movements.



�

[Hint] Note that some parameters are related.

�
The relationship between the camera’s internal parameters and exter-
nal parameters can be established.
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2.5 Key Points and References for Each Section

The following combines the main contents of each section to introduce some
references that can be further consulted.

1. Linear Camera Model
The linear camera model is an idealized model based on pin-hole imaging,

which can be approximated for many occasions, and many books are also
introduced, such as [1].

2. Non-linear Camera Model
There are many kinds of non-linear camera model, and the basic elements can

be found in [2].
3. Traditional Calibration Methods

The two-stage calibration method is a typical traditional calibration method;
see [3, 4].

4. Self-Calibration Methods
The early self-calibration method can be found in [5]. The proof of the nature

of the camera when it does pure translation can be found in [6].

Self-Test Questions

The following questions include both single-choice questions and multiple-choice
questions, so each option must be judged.

2.1 Linear Camera Model

2.1.1 The camera calibration method introduced in Sect. 2.1 needs to obtain
more than 6 spatial points with known world coordinates because ( )

(a) There are 12 unknowns in the camera calibration equations.
(b) The rotation and translation of the camera need three parameters to

describe
(c) The world coordinates are 3-D, and the image plane coordinates

are 2-D
(d)

2.1.2 In camera calibration, ( ).

The transformation matrix from real- world coordinates to image
plane coordinates is a 3 × 3 matrix

(a)

(b) The obtained parameters can also be determined by the measurement
of the camera.



[Hint] Consider the purpose and specific steps of camera calibration.

�
The internal parameters must be determined first and then the exter-
nal parameters.

�

[Hint] Distortion causes the projection relationship to no longer be a linear
projection relationship.

�
The deviation caused is often symmetrical about the main optical
axis of the camera lens.

[Hint] The radial distortion is mainly caused by the curvature error of the
lens surface.
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(c) It is needed to determine both the internal parameters of the camera
and the external parameters of the camera.

(d) I

2.1.3 I

t is to determine the transformation type from a given world point
W(X, Y, Z ) to its image plane coordinates (x, y).

n camera calibration, ( ).

(a)

(b) The external parameters must be determined first and then the
internal parameters.

(c) The internal parameters and external parameters must be determined
at the same time.

(d) The internal parameters and external parameters can be determined
at the same time.

[Hint] Pay attention to the exact meaning and subtle differences of different
text descriptions.

2.2 Non-linear Camera Model

2.2.1 Due to lens distortion, ( ).

(a) The projection from 3-D space to 2-D image plane cannot be
described by a linear model.

(b) The distortion error generated will be more obvious near the
optical axis.

(c) The distortion error generated in the image plane will be more
obvious at the place which is far from the center.

(d)

2.2.2

The object point in the 3-D space can be determined according to the
pixel coordinates of the 2-D image plane.

(a)

(b) The positive

For radial distortion, ( ).

one is called barrel distortion.
(c) The negative one is called pincushion distortion.
(d) The barrel distortion caused in the image plane is more obvious at a

place away from the optical axis.



�
The distortion of the thin prism only causes radial deviation.

[Hint] Some distortions are combined distortions.

�
The non-linearity comes from the lens radial distortion coefficient k.

�

[Hint] Pay attention to the meaning of each step of conversion and content.

�
Calculate R and T in Step 1, and calculate other parameters in Step 2.

[Hint] Uncertain image scale factor μ may also be known in advance.
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2.2.3 In lens distortion, ( ).

(a)
(b) The eccentric distortion originates from the discrepancy between the

optical center and geometric center of the optical system.
(c) The tangential distortion mainly comes from the non-collinear opti-

cal centers of the lens group.
(d)

2.2.4

The centrifugal distortion includes both radial distortion and tangen-
tial distortion.

According to the non-linear camera model, in the conversion from 3-D
world coordinates to computer image coordinates, ( ).

(a)
(b) The non-linearity comes from the distance between a point in the

image and the optical axis point of the lens.
(c) The non-linearity comes from the image plane coordinates (x’, y’)

being affected by the lens radial distortion.
(d) The non-linearity comes from the actual image plane coordinates

(x*, y*) being affected by the lens radial distortion.

[Hint] Not every step of the non-linear camera model is non-linear.
2.3 Traditional Calibration Methods

2.3.1 According to Fig. 2.7, ( ).

(a) The calibration process is consistent with the imaging process.
(b) There are coefficients to be calibrated for each step of the coordinate

system conversion.
(c) There are more internal parameters to be calibrated than external

parameters.
(d)

2.3.2 I

There are always four steps in the conversion from the world coor-
dinate system to the computer image coordinate system.

n the two-stage calibration method, ( ).

(a)
(b) Calculate all external parameters in Step 1, and calculate all internal

parameters in Step 2.
(c) The k corresponding to radial distortion is always calculated in

Step 2.
(d) Uncertain image scale factor μ is always calculated in Step 1.



�
Eight reference points are needed for calibration

�

[Hint] Analyze the basic principles of self-calibration.

�
The camera model is linear.

[Hint] Note that the uncertain image scale factor is introduced in the
transformation from the image plane coordinate system x′y′ to the computer
image coordinate system MN.

�
The camera needs to do three pure translation movements.
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2.3.3 When improving the accuracy of the two-stage calibration method, the
tangential distortion of the lens is also considered, so ( ).

(a)
(b) Ten reference points are rdequired for calibration
(c) There can be up to 12 parameters to be calibrated
(d) There can be up to 15 parameters to be calibrated

[Hint] The numbers of distortion parameters considered here are 4.
2.4

2.4.1

Self-Calibration Methods

Self-calibration method ( ).

(a) No needs to resort to known calibration materials
(b) Always needs to collect multiple images for calibration
(c) Can only calibrate the internal parameters of the camera
(d) I

2.4.2

s not very highly robust when it is implemented with active vision
technology

Under the ideal situation of uncertain image scale factor μ = 1, ( ).

(a)
(b) If the number of sensor elements in the X direction is increased, the

number of rows of pixels will also increase.
(c) If the number of samples along the X direction made by the computer

in a row is increased, the number of rows of pixels will also increase.
(d)

2.4.3

The image plane coordinates represented in physical units (such as
millimeters) are also the computer image coordinates in pixels.

To calibrate the camera according to the self-calibration method intro-
duced in Sect. 2.4, ( ).

(a)
(b) The camera needs to do four pure translation movements.
(c) The camera needs to do five pure translation movements.
(d) The camera needs to do six pure translation movements.

[Hint] Analyze the number of equations that can be obtained when the
method is calibrated and the number of unknowns to be calculated.
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Chapter 3
Three-Dimensional Image Acquisition

The general imaging method obtains a 2-D image from a 3-D physical space, where
the information on the plane perpendicular to the optical axis of the camera is often
retained in the image, but the depth information along the optical axis of the camera
is lost. For 3-D computer vision, it often needs to obtain 3-D information of the
objective world or higher-dimensional comprehensive information. For this purpose,
3-D image acquisition is required. This includes not only collecting 3-D images
directly but also collecting (implicitly) images containing 3-D information and
extracting the 3-D information in subsequent processing.

Specifically, there are a variety of methods to obtain (or restore) depth informa-
tion, including stereo vision technology that refers to the human binocular vision
system to observe the world, using specific equipment and devices to directly obtain
distance information, moving the focus plane layer by layer to obtain 3-D
information, etc.

The sections of this chapter are arranged as follows:

Section 3.1 introduces the generalized high-dimensional image f(x, y, z, t, λ) with
five variables and gives several typical examples.

Section 3.2 introduces the comparison of depth images and grayscale images and
further the comparison of more general intrinsic images and non-intrinsic image
images. In addition, various depth imaging methods are also listed.

Section 3.3 introduces several typical direct methods for depth imaging, including
time-of-flight method, structured light method, Moiré contour stripes method, and
laser radar (LADAR) that can simultaneously acquire depth and intensity images.

Section 3.4 introduces several typical modes of using binocular (dual cameras) to
collect images for stereo imaging, including binocular lateral mode, binocular
convergence mode, and binocular axial mode.
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3.1 High-Dimensional Image

The objective world is high-dimensional, and correspondingly collected images can
also be high-dimensional. Here, high dimension can refer to the high dimension of
the space where the image is located or the high dimension of the image’s attributes.
Compared with the most basic 2-D static gray image f(x, y), the generalized high-
dimensional image should be a vector function f(x, y, z, t, λ) with five variables,
where f represents the objective properties reflected by the image; x, y, z are spatial
variables; t is a time variable; and λ is a spectrum variable (wavelength). This section
introduces first the types of high-dimensional images and some corresponding image
acquisition methods.

With the advancement of electronic technology and computer technology, many
image acquisition methods and equipment have been applied, making the image
continuously expand from f(x, y) to f(x, y, z, t, λ). Some typical examples are given
below.

1. Consider f(x, y) as an image reflecting the surface radiation of the scene: If the
scene can be divided into multiple slices (multiple sections) along the acquisition
direction, and each slice can be imaged separately, a complete scenery with 3-D
information (including the interior of the scene) can be obtained by combining
these slice images. That is, the 3-D image f(x, y, z) is collected. For example,
imaging methods such as CT and MRI all obtain 3-D images f(x, y, z) by moving
the imaging plane to scan the objects layer by layer.

2. Consider f(x, y) as a still image acquired at a given moment: Here, the process of
image acquisition is regarded as an instantaneous process; if multiple images are
continuously acquired along the time axis, complete information (including
dynamic information) over a period of time can be obtained. Video (and other
images acquired in sequence) gives another type of 3-D image f(x, y, t).

3. Consider f(x, y) as an image obtained only in response to a certain wavelength of
electromagnetic radiation (or the average value of radiation in a certain band): In
fact, the images obtained by using different wavelength radiation can reflect
different nature of the scene (corresponding to the reflection and absorption
characteristics of the surface of the scene at different wavelengths). The acquisi-
tion of images collected in the same time and space by using various wavelengths
of radiation can fully reflect the spectrum information of the scene, each of which
can be a 3-D image f(x, y, λ) or a 4-D image f(x, y, t, λ). A typical example is a
multispectral image; each image corresponds to a different band of frequency, but
all these images correspond to the same time and space.

4. Consider f(x, y) as an image that only considers a single property at a given spatial
location: In reality, a scene at a certain location in space can have multiple
properties, or the image at point (x, y) can also have multiple attribute values at
the same time, which can be represented by vector f. For example, a color image
can be regarded as an image with three values of red, green, and blue at each
image point, f(x, y) = [fr(x, y), fg(x, y), fb(x, y)]. In addition, the above-mentioned
image collection obtained by using various wavelengths of radiation in the same
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time and space can also be regarded as vector images f(x, y) = [fλ1(x, y), fλ2(x, y),
. . .] or f(x, y) = [ft1λ1(x, y), ft1λ2(x, y), . . ., ft2λ1 (x, y), ft2λ2(x, y), . . .].

5. Consider f(x, y) as an image collected by projecting a 3-D scene onto a 2-D plane:
In this process, the depth (or distance) information is lost (information loss). For
example, it is possible to obtain complete information (including depth informa-
tion) of the scene by combining two images collected from different viewpoints
of the same scene (stereo vision; see Chap. 6). An image whose image property is
depth is called a depth image, which can be expressed as z = f(x, y). From the
depth image, the 3-D image f(x, y, z) can be further obtained.

The above-mentioned various expansion methods for image f(x, y) can also be
combined, so that various high-dimensional images f(x, y, z, t, λ) can be obtained.

3.2 Depth Image

Computer vision technology is based on images of objective scenes, and it is very
important to obtain complete information of the objective world. When the 3-D
scene is projected to the 2-D plane and the image is collected, the depth (or distance)
information will be lost (information loss). In order to obtain the complete informa-
tion of the scene, the depth information needs to be restored.

3.2.1 Depth Image and Grayscale Image

The depth image z= f(x, y) not only reflects the depth information z of the scene but
also reflects the (x, y) plane information at each depth. The geometric shape and
spatial relationship of the objects in scene can be easily obtained from the depth
image.

Example 3.1 The Difference Between Depth Image and Grayscale Image
Consider a section on the object in Fig. 3.1, and the grayscale image and the depth
image can be collected separately for this section. For the grayscale image, its
attribute value corresponds to the grayscale (intensity) at (x, y). For the depth
image, its attribute value corresponds to the distance (depth) between (x, y) and
the imaging device. Comparing the gray image and the depth image, there are two
different characteristics as follows:

1. The pixel value of the same outer plane on the corresponding object in the depth
image changes at a certain rate (the plane is inclined relative to the image plane).
This value changes with the shape and orientation of the object but has nothing to
do with the external lighting conditions. The corresponding pixel value in
grayscale image depends not only on the illuminance of the surface (this is not
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Fig. 3.1 The difference
between depth image and
gray image
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Object
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only related to the shape and orientation of the object but also related to the
external lighting conditions) but also on the reflection coefficient of the surface.

2. There are two types of boundary lines in depth images: one is the (distance) step
edge between the object and the background (the depth is discontinuous); the
other is the ridge edge at the intersection of the regions inside the object
(corresponding to the extreme value, the depth is still continuous). For the
grayscale image, there are step edges in both places (as shown by the two steps
of the intensity curve in Fig. 3.1).

3.2.2 Intrinsic Image and Non-Intrinsic Image

Further analysis and comparison of gray image and depth image show that they are
typical representatives of the two types of images. These two types of images are
intrinsic images and non-intrinsic images, which are distinguished according to the
nature of the objective scene described by the image.

The image is the result of the scene captured by the observer or acquiring device.
The scene and the objects in the scene have some properties that have nothing to do
with the nature of the observer and the acquiring device themselves, and these
properties exist objectively, for example, the surface reflectivity, transparency,
surface orientation, movement speed of the object, and the distance and the relative
orientation between the different objects in the scene. These properties are called
intrinsic properties (of the scene), and the images representing the physical quan-
tities of these intrinsic properties are called intrinsic images. There are many types of
intrinsic images, and each intrinsic image may only represent an intrinsic property of
the scene, without the influence of other properties. If the intrinsic image can be
obtained, it is very useful for correctly interpreting the scene represented by the
image. For example, a depth image is one of the most commonly used intrinsic
images, in which each pixel value represents the distance (depth, also known as the
elevation of the scene) between the scene point represented by the pixel and the
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camera. Actually, these pixel values directly reflect the shape (an intrinsic property)
of the visible surface of the scene. Another example is the image representation
method with motion vector field introduced in Chap. 4. If the values of those motion
vectors are directly converted into amplitude values, the intrinsic images that
represent the moving speed of the object are obtained.

The physical quantity represented by the non-intrinsic image is not only related to
the scene itself but also related to the nature of the observer/sensor or the conditions
of image acquisition or the surrounding environment. A typical representative of
non-intrinsic images is the commonly used intensity image (luminance image or
illuminance image), which is generally represented as a grayscale image. The
intensity image is an image that reflects the amplitude of radiation received by the
observation site. Its intensity value is often the combined result of multiple factors
such as the intensity of the radiation source, the orientation of the radiation mode, the
reflection properties of the surface of the scene, and the location and performance of
the sensor (more discussions can be found in Chap. 7).

In computer vision, many images acquired are non-intrinsic images, while to
perceive the world, the intrinsic properties of the scene are needed. In other words,
intrinsic images need to be obtained so that the scene can be characterized and
explained further. In order to recover the intrinsic nature and structure of the scene
from non-intrinsic images, various image (pre)processing methods are often utilized.
For example, in the imaging process of grayscale images, a lot of physical informa-
tion about the scene is mixed and integrated in the pixel gray values, so the imaging
process can be regarded as a degenerate transformation. However, the physical
information about the scene is not completely lost after being mixed in the grayscale
image. Various preprocessing techniques (such as filtering, edge detection, distance
transformation, etc.) can be used to eliminate the degradation in the imaging process
with the help of redundant information in the image (it is to “reverse” the transfor-
mation of the physical imaging process), thereby converting the image into an
intrinsic image reflecting the spatial nature of the scene.

From the perspective of image acquisition, there are two methods to obtain
intrinsic images: one is to first collect non-intrinsic images containing intrinsic
information and then use image technology to restore intrinsic properties; the other
is to directly collect intrinsic images with intrinsic information. To take the collec-
tion of depth images as an example, one can use specific equipment to directly
collect depth images (such as the direct depth imaging in Sect. 3.3), or one can
collect grayscale images containing stereo information and then obtain depth infor-
mation from them (such as binocular stereo imaging in Sect. 3.4). For the former
method, one needs to use some specific image acquisition equipment (imaging
devices). For the latter method, one needs to consider the use of some specific
image acquisition modes (imaging modes) and the use of some targeted image
technology.
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3.2.3 Depth Imaging Modes

To obtain a depth image with intrinsic properties, one can proceed from two aspects.
On the one hand, it is necessary to use an imaging device with such capabilities; on
the other hand, certain acquisition modes and methods can also be used.

There are many ways of depth imaging, which are mainly determined by the
mutual position and movement of the light source, sensor, and object/scene.
Table 3.1 summarizes the characteristics of light source, sensor, and object/scene
in some depth imaging methods.

The most basic imaging method is monocular imaging, which uses a sensor to
obtain an image of the scene at a fixed position. Although as discussed in Chap. 2 of
2D Computer Vision: Principles, Algorithms and Applications, the Z coordinate of a
3-D point cannot be uniquely determined by the image point (x, y). That is, the depth
information of the scene is not directly reflected in the image, but this information is
actually hidden in the geometric distortion, shading (shadow), texture changes,
surface contours, and other factors in imaging (Chaps. 7 and 8 will introduce how
to recover depth information from such an image).

If one uses two sensors to take images of the same scene, each at one location
(or use one sensor to take images of the same scene at two locations one after the
other, or use one sensor to obtain two images with the help of an optical imaging
system), it is binocular imaging (see Sect. 2.4 and Chap. 6). At this time, the parallax
generated between the two images (similar to the human eyes) can be used to support
calculating the distance between the sensor and the scene. If more than two sensors
are used to take images of the same scene at different locations (or one sensor is used

Table 3.1 Characteristics of common imaging methods

Object/
scene

Monocular imaging Fixed Fixed Fixed 2D Computer Vision: Principles,
Algorithms and Applications

Binocular imaging Fixed Two
positions

Fixed Chapter 6

Multi-ocular imaging Fixed Multi-
positions

Fixed Chapter 6

Video/sequence
imaging

Fixed/
moving

Fixed/
moving

Moving/
fixed

Chapter 4

Light shift (photo-
metric stereo)
imaging

Translation Fixed Fixed Chapter 7

Active vision imaging Fixed Moving Fixed Chapter 2

Active vision (self-
motion) imaging

Fixed Moving Moving Chapter 2

Structured light
imaging

Fixed/
rotation

Fixed/
rotation

Rotation/
fixed

Chapter 2
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to take images of the same scene at multiple positions successively), it is multi-
ocular imaging. Monocular, binocular or multi-ocular methods can not only obtain
still images but also obtain sequence images by continuous shooting. Monocular
imaging is simpler than binocular imaging, but it is more complicated to obtain depth
information from it. Conversely, binocular imaging increases the complexity of
acquisition equipment but can reduce the complexity of acquiring depth information.

In the above discussion, it is considered that the light source is fixed in several
imaging methods. If the sensor is fixed relative to the scene and the light source
moves around the scene, this imaging method is called photometric stereo imaging
(also known as light shift imaging). Because the surface of the same scene can have
different brightness under different lighting conditions, the surface orientation of the
object can be obtained from multiple such images (but absolute depth information
cannot be obtained). If one keeps the light source fixed and let the sensor move to
track the scene, or allows the sensor and the scene to move at the same time will
constitute active vision imaging (referring to the initiative of human vision, i.e.,
people will move their body or head to change the perspective according to the
requirements of observation and selectively pay special attention to part of the
scene). This is also known as active vision self-motion imaging. In addition, if a
controllable light source is used to illuminate the scene, the structured light imaging
method is used to explain the surface shape of the scene through the collected
projection mode (see Sect. 3.3). In this way, it can be that the light source and the
sensor are fixed while the scene is rotated, or the scene is fixed, while the light source
and the sensor are rotated around the scene together.

3.3 Direct Depth Imaging

With the help of some special imaging equipment, depth images can be directly
collected. Commonly used methods include time-of-flight method (flying spot
ranging method), structured light method, Moiré fringe method (Moiré contour
stripes), holographic interferometry, geometric optical focusing method, laser radar
method (including scanning imaging and non-scanning imaging), Fresnel diffraction
technology, etc. The possible ranging accuracy and maximum working distance of
several commonly used direct depth image acquisition methods can be seen in
Table 3.2.

Table 3.2 Comparison of several direct depth image acquisition methods

Direct depth imaging
methods

Time of
flight

Structured
light

Moiré
stripes

Holographic
interferometrya

Possible ranging accuracy 0.1 mm 1 μ 1 μm 0.1 μm
Maximum working
distance

100 km 100 m 10 m 100 μm

aHolographic interferometry is just listed for reference; it will not be detailed in this book
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3.3.1 Time-of-Flight Method

Using the principle of radar ranging, the distance information can be obtained by
measuring the time required for the light wave from the light source to return to the
sensor after being reflected by the measured object. In general, the light source and
the sensor are placed in the same position, so the relationship between the propaga-
tion time t and the measured distance d is

d=
1
2
ct ð3:1Þ

where c is the speed of light (3 × 108 m/s in a vacuum).
The acquisition method of time-of-flight-based depth image is a typical method

of obtaining distance information by measuring the propagation time of light waves.
Because point light sources are generally used, it is also called the flying point
method. To obtain a 2-D image, one needs to scan the beam in 2-D or make the
measured object move in 2-D. The key to this method of ranging is to accurately
measure time, because the speed of light is 3 × 108 m/s, so if the spatial distance
resolution is required to be 0.001 m (i.e., it can distinguish two points or two lines
separated by 0.001 m in space), then the time resolution needs to reach 6.6 × 10-12 s.

3.3.1.1 Pulse Time Interval Measurement Method

This method uses the pulse interval to measure time, specifically by measuring the
time difference of the pulse waves. The basic block diagram is shown in Fig. 3.2.
The specific frequency laser light emitted by the pulsed laser source is shot forward
through the optical lens and beam scanning system and is reflected after touching the
object. The reflected light is received by another optical lens and enters the time
difference measurement module after photoelectric conversion. The module also
receives the laser light directly from the pulsed laser source and measures the time
difference between the transmitted pulse and the received pulse. According to the
time difference, the measured distance can be calculated by Eq. (3.1). It should be

Pulsed laser Optical lens

Photoelectric 

conversion

Beam scanning 

lens 

Time difference 

measurement 

Optical lens

Object

Fig. 3.2 Block diagram of the principle of pulse time interval measurement method
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noted that the starting pulse and echo pulse of the laser cannot overlap within the
working distance.

Using the above-mentioned principle, the distance measurement can also be
performed by replacing the pulsed laser source with ultrasound. Ultrasound can
work not only in natural light but also in water. Because the propagation speed of
sound waves is slow, the requirement to the accuracy of time measurement is
relatively low; however, because the medium absorbs sound relatively large, the
requirement for the sensitivity of the receiver is relatively high. In addition, due to
the large divergence of sound waves, very high-resolution distance information
cannot be obtained.

3.3.1.2 Phase Measurement Method of Amplitude Modulation

The time difference can also be measured by measuring the phase difference. The
basic block diagram of a typical method can be seen in Fig. 3.3. The laser light
emitted by the continuous laser source is under amplitude modulation by the light
intensity with a certain frequency, and it is emitted in two ways. One way is shot
forward through the optical scanning lens and reflected after touching the object;
here the reflected light is filtered to get the phase; the other way enters the phase
difference measurement module to compare the phase with the reflected light.
Because the phase takes 2π as the period, the phase difference range measured is
between 0 and 2π, so the depth measurement value d is

d=
1
2

c
2π fmod

θ þ k
c

fmod

� �
=

1
2

r
2π θ þ kr

n o
ð3:2Þ

where c is the speed of light, fmod is the modulation frequency, θ is the phase
difference (the unit is radians), and k is an integer.

Limiting the depth measurement range (limiting the value of k) can overcome the
possible ambiguity of the depth measurement value. The r introduced in Eq. (3.2)
can be called the measurement scale. The smaller the r, the higher the accuracy of

Continuous 

laser source

Modulation 

crystal 

Filtering

Optical scanning 

lens 

Phase difference 

measurement 

Optical lens 

Object Oscillator Computer 

Fig. 3.3 Block diagram of the phase measurement method of amplitude modulation
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distance measurement. In order to obtain a smaller r, a higher modulation frequency
fmod should be used.

3.3.1.3 Coherent Measurement Method of Frequency Modulation

The laser light emitted by the continuous laser source is under frequency modula-
tion by a linear waveform with a certain frequency. Suppose the laser frequency is F,
the modulating wave frequency is fmod, and the modulated laser frequency changes
linearly and periodically between F ± ΔF/2 (where ΔF is the frequency change after
the laser frequency is modulated). One part of the modulated laser light is used as the
reference light, and the other part is projected to the object to be measured. After the
light contacts the object, it is reflected and then received by the receiver. Two optical
signals coherently produce a beat signal fB, which is equal to the product of the slope
of the laser frequency change and the propagation time:

f B =
ΔF

1= 2fmodð Þ t ð3:3Þ

Substitute Eq. (3.1) into Eq. (3.3) and solve for d to get

d=
c

fmodΔF
f B ð3:4Þ

With the help of the phase change of the emitted light wave and the return light
wave

Δθ= 2πΔFt= 4πΔFd=c ð3:5Þ

it can further get

d=
c

2ΔF
Δθ
2π

� �
ð3:6Þ

Comparing Eqs. (3.4) and (3.6), the number of coherent fringes N (also the
number of zero crossings of the beat signal in the half cycle of the modulation
frequency) can be obtained:

N =
Δθ
2π =

f B
2fmod

ð3:7Þ

In practice, the actual distance (by counting the actual coherent fringe number)
can be calculated by using Eq. (3.8) according to the accurate reference distance dref
and the measured reference coherent fringe number Nref:
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d=
dref
Nref

N ð3:8Þ

3.3.2 Structured Light Method

Structured light method is a commonly used method of active sensing and direct
acquisition of depth images. Its basic idea is to use geometric information in lighting
to help extract geometric information of a scene. The imaging system with structured
light ranging is mainly composed of a camera and a light source, which are arranged
in a triangle with the observed object. The light source produces a series of point or
line lasers to illuminate the surface of the object, and the light-sensitive camera
records the illuminated part and then obtains the depth information through triangu-
lation calculation, so it is also called active triangulation ranging method. The
distance measurement accuracy of active structured light method can reach the
micron level, and the measurable depth field range can reach hundreds to tens of
thousands of times the accuracy.

There are many specific ways to use structured light imaging, including light
stripe method, grid method, circular light stripe method, cross line method, thick
light stripe method, spatial coding mask method, color coded stripe method, density
ratio method, etc. Due to the different geometric structures of the projected beams
they use, the camera shooting methods and depth distance calculation methods are
also different, but the common point is that they both use the geometric structure
relationship between the camera and the light source.

In the basic light stripe method, a single light plane is used to illuminate each part
of the scene in turn, so that a light stripe appears on the scene, and only this light
stripe part can be detected by the camera. In this way, a 2-D entity (light plane) image
is obtained every time, and then by calculating the intersection of the camera’s line
of sight and the light plane, the third dimension (distance) information of the spatial
point corresponding to the visible image point on the light stripe can be obtained.

3.3.2.1 Structured Light Imaging

When using structured light for imaging, the camera and light source must be
calibrated first. Figure 3.4 shows the geometric relationship of a structured light
system. Here is the XZ plane perpendicular to the light source, where the lens is
located (the Y axis goes from the inside of the paper to the outside, and the light
source is a strip along the Y axis). The laser emitted through the narrow slit is
irradiated from the origin O of the world coordinate system to the spatial point
W (on the surface of the object) to produce a linear projection. The optical axis of the
camera intersects the laser beam, so that the camera can collect the linear projection
to obtain the distance information of point W on the surface of the object.
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Fig. 3.4 Schematic
diagram of structured light
imaging
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In Fig. 3.4, F and H determine the position of the lens center in the world
coordinate system, α is the angle between the optical axis and the projection line,
β is the angle between the z and Z axes, γ is the angle between the projection line and
the Z axis, λ is the focal length of the camera, h is the imaging height (the distance
that the image deviates from the optical axis of the camera), and r is the distance
from the center of the lens to the intersection of the z and Z axes. It can be seen from
the figure that the distance Z between the light source and the object is the sum of
s and d, where s is determined by the system and d can be obtained by the following
formula:

d= r
sin α
sin γ

=
r sin α

cos α sin β- sin α cos β
=

r tan α
sin β 1- tan α cot βð ð3:9Þ

Substituting tan α = h/λ, then Z can be represented as

Z= sþ d= sþ rcscβ × h=λð Þ
1- cot β × h=λð Þ ð3:10Þ

Equation (3.10) relates Z and h (the rest are all system parameters) and provides a
way to obtain the object distance based on the imaging height. It can be seen that the
imaging height contains 3-D depth information or the depth is a function of the
imaging height.

3.3.2.2 Imaging Width

Structured light imaging can give not only the distance Z of the spatial point but also
the thickness of the object along the Y direction. At this time, the imaging width can
be analyzed by using the top view plane observed from the bottom of the camera
upward, as shown in Fig. 3.5.

Figure 3.5 shows a schematic diagram of the plane determined by the Y axis and
the lens center, where w is the imaging width:
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Fig. 3.5 Schematic
diagram of top view during
structured light imaging
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ð3:11Þ

where t is the distance from the center of the lens to the vertical projection of point
W on the Z axis (see Fig. 3.4)

t=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z- fð Þ2 þ H2

q
ð3:12Þ

and λ’ is the distance from the center of the lens to the imaging plane along the z-axis
(see Fig. 3.4)

λ0 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ λ2

p
ð3:13Þ

Substitute Eq. (3.12) and Eq. (3.13) into Eq. (3.11) to obtain

Y =
wt
λ0

=w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z -Fð Þ2 þ H2

h2 þ λ2

s
ð3:14Þ

In this way, the object thickness coordinate Y is related to the imaging height,
system parameters, and object distance.

3.3.3 Moiré Contour Stripes Method

Moiré stripes can be formed when two gratings have a certain inclination and
overlap. The distribution of Moiré contour stripes obtained by a certain method
can include distance information on the surface of the scene.

3.3.3.1 Basic Principles

When the projection light is used to project the grating onto the surface of the scene,
the undulation of the surface will change the distribution of the projected image. If
the deformed projection image is reflected from the surface of the scene and then
passed through another grating, the Moiré contour stripes can be obtained.
According to the principle of optical signal transmission, the above process can be
described as the result of optical signal undergoing secondary spatial modulation. If
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both gratings are linear sinusoidal perspective gratings, and the parameter that
defines the period change of the grating is defined as l, then the observed output
light signal is

f lð Þ= f 1 1þ m1 cos w1lþ θ1 lð Þ½ �f g � f 2 1þ m2 cos w2lþ θ2 lð Þ½ �f ð3:15Þ

where fi is the light intensity; mi is the modulation coefficient; θi is the phase change
caused by the fluctuation of the scene surface; and wi is the spatial frequency
determined by the grating period. In Eq. (3.15), the first term on the right corre-
sponds to the modulation function of the first grating through which the optical
signal passes, and the second term on the right corresponds to the modulation
function of the second grating through which the optical signal passes.

There are four periodic variables of spatial frequency in the output signal f(l ) of
Eq. (3.15), which are, respectively, w1, w2, w1 + w2, and w1 – w2. Since the receiving
process of the detector has a low-pass filtering effect on the spatial frequency, the
light intensity of the Moiré fringe can be represented as

T lð Þ= f 1f 2 1þ m1m2 cos w1 -w2ð Þlþ θ1 lð Þ- θ2 lð Þ½ 3:16Þ

If the periods of the two gratings are the same, there is

T lð Þ= f 1f 2 1þ 1þ θ1 lð Þ- θ2 lð Þ½ �f g ð3:17Þ

It can be seen that the distance information from the surface of the scene is
directly reflected in the phase change of the Moiré stripe.

3.3.3.2 Basic Method

Figure 3.6 shows a schematic diagram of distance measurement using the Moiré
stripe method. The distance between the light source and the viewpointD is the same

Fig. 3.6 Schematic
diagram of distance
measurement using Moiré
stripe method
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as that of the grating G; all are H. The grating is a transmissive line grating with
alternating black and white (period R). According to the coordinate system in the
figure, the grating surface is on the XOY plane; the measured height is along the
Z axis, which is represented by the Z coordinate.

Consider a point A with coordinates (x, y) on the measured surface. The illumi-
nance of the light source through the grating is the product of the light source
intensity and the transmittance of the grating at point A*. The light intensity
distribution at this point is

T1 x, yð Þ=C1
1
2
þ 2
π
X1
n= 1

1
n
sin

2πn
R

xH
zþ H

� �"
ð3:18Þ

where n is an odd number and C1 is a constant related to intensity. Passing T through
the grating G again is equivalent to another transmission modulation at point A′, and
the light intensity distribution at A′ is

T2 x, yð Þ=C2
1
2
þ 2
π
X1
m= 1

1
m

sin
2πm
R

xH þ Dz
zþ H

� �"
ð3:19Þ

where m is an odd number and C2 is a constant related to intensity. The final light
intensity received at the viewpoint is the product of the two distributions:

T x, yð Þ= T1 x, yð ÞT2 x, yð Þ ð3:20Þ

Expand the Eq. (3.20) with a polynomial; after the low-pass filtering of the
receiving system, a partial sum containing only the variable z is obtained:

T zð Þ=Bþ S
X1
n= 1

1
n

� �2

cos
2πn
R

Dz
zþ H

� �
ð3:21Þ

where n is an odd number, B is the background intensity of the Moiré stripe, and S is
the contrast of the stripe. Eq. (3.21) gives the mathematical description of Moiré
contour stripes. Generally, only the fundamental frequency term of n = 1 can
approximately describe the distribution of Moiré stripes, that is, Eq. (3.21) i
simplified to

T zð Þ=Bþ S cos
2π
R

Dz
zþ H

� �
ð3:22Þ

From Eq. (3.22), it can be seen:

1. The position of the bright stripe is at the place where the phase term is equal to an
integer multiple of 2π, namely
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ZN =
NRH

D-NR
N 2 I ð3:23Þ

2. The height differences between any two bright stripes are not equal, so the
number of stripes cannot be used to determine the height; only the height
difference between two adjacent bright stripes can be calculated.

3. If the distribution of the phase term θ can be obtained, the height distribution of
the surface of the measured object can be obtained:

Z=
RHθ

2πD-Rθ
ð3:24Þ

3.3.3.3 Improvement Methods

The above-mentioned basic method needs to use a grating of the same size as the
object to be measured (G in Fig. 3.6), which brings inconvenience to use and
manufacture. An improved method is to install the grating in the projection system
of the light source and use the magnification capability of the optical system to
obtain the effect of a large grating. Specifically, two gratings are used, which are,
respectively, placed close to the light source and the viewpoint. The light source
transmits the light beam through the grating, and the viewpoint is imaged behind the
grating. In this way, the size of the grating only needs to be the size of the
camera lens.

The practical schematic diagram of distance measurement using the above pro-
jection principle is shown in Fig. 3.7. Two imaging systems with the same param-
eters are used, their optical axes are parallel, and take geometrical imaging of two
gratings with the same spacing at the same imaging distance, and make the projec-
tion images of the two gratings coincident.

Suppose that the Moiré stripe is observed behind the grating G2 and G1 is used as
the projection grating, and the projection center O1 of the projection system L1 and
the convergence center O2 of the receiving system L2 are, respectively, equivalent to
the light source point S and the viewpointW in the basic method. In this way, as long
as MR is used to replace R in Eqs. (3.22) and (3.24) (M = H/H0 is the imaging
magnification of the two optical paths), the distribution of Moiré stripes can be
described as above, and the height distribution of the surface of the measured object
be calculated.

In practical applications, the grating in front of the projection system L1 can be
omitted, and computer software is used to complete its function. At this time, the
projection grating image containing the depth information of the measured object
surface is directly received by the camera.

From Eq. (3.24), it can be seen that if the distribution of the phase term θ can be
obtained, the distribution of the height Z of the measured object surface can be
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Fig. 3.7 Schematic
diagram of Moiré stripe
method ranging with
projection principle
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obtained. The phase distribution can be obtained by using multiple Moiré images
with a certain phase shift. This method is often referred to as the phase shift method.
Taking three images as an example, after obtaining the first image, move the
projection grating horizontally by a distance of R/3 to obtain the second image,
and then move the projection grating horizontally by a distance of R/3 to obtain the
third image. Refer to Eq. (3.22); these three images can be expressed as

T1 zð Þ=A00 þ C00 cos θ
T2 zð Þ=A00 þ C00 cos θ þ 2π=3ð Þ
T3 zð Þ=A00 þ C00 cos θ þ 4π=3ð Þ

8><
>: ð3:25Þ

The joint solution is

θ= arctan

ffiffiffi
3

p
T3 - T2ð Þ

2T1 T2 þ T3ð Þ
	 


ð3:26Þ

In this way, θ can be calculated point by point.

3.3.4 Simultaneous Acquisition of Depth and Brightness
Images

Some imaging systems can simultaneously obtain depth information and brightness
information in the scene. An example is LIDAR using lasers. The schematic
diagram is shown in Fig. 3.8. A device placed on a platform capable of nod and
pan movements transmits and receives amplitude-modulated laser waves (see the
time-of-flight method in this section). For each point on the surface of the 3-D object,
compare the transmission wave at this point and the wave received from this point to
obtain information. The spatial coordinates X and Y of this point are related to the



84 3 Three-Dimensional Image Acquisition

Receive

Surface reflection

coefficient

W(X, Y, Z)

Radiate 3-D surfacePan

&

Tilt

X

Z

Fig. 3.8 Simultaneous acquisition of depth and brightness images

nod and horizontal movement of the platform, and its depth Z is closely related to the
phase difference, and the reflection characteristics of this point to a given wavelength
of laser light can be determined by the wave amplitude difference. In this way,
LIDAR can obtain two registered images at the same time: one is the depth image,
and the other is the brightness image. Note that the depth range of the depth image is
related to the modulation period of the laser wave. If the modulation period is λ, the
same depth will be calculated every λ/2, so the depth measurement range needs to be
limited. LIDAR works similarly to radar. Both can measure the distance between the
sensor and a specific point in the scene, except that the radar reflects electromagnetic
waves.

Compared with CCD acquisition equipment, the acquisition speed of LIDAR is
relatively slow due to the need to calculate the phase for each 3-D surface point. In
addition, because the requirements for mechanical devices are relatively high (the
laser beam needs to be guided), the cost of LIDAR is also relatively high. But it is
worthwhile to use LIDAR on mining robots or robots that probe other parts of the
solar system.

3.4 Stereo Vision Imaging

Stereo vision is one of human visual functions, which mainly refers to the use of
binocular observation to obtain depth information. In computer vision, the use of
binocular imaging can obtain two images of the same scene with different view-
points (similar to human eyes), which can further obtain depth information. The
binocular imaging model can be regarded as a combination of two monocular
imaging models. In actual imaging, this can be achieved by using two monocular
systems to collect at the same time, or one monocular system can be used to collect in
two poses one after another (in this case, there is generally no movement of the
subject and light source). In computer vision, multiple cameras can also be used to
form a multi-ocular imaging system, but the basic principle is similar to binocular
imaging. Only the case of binocular imaging is discussed below.

Depending on the relative poses of the two cameras, binocular imaging can have
multiple modes. Here are some typical situations.



3.4 Stereo Vision Imaging 85

3.4.1 Binocular Horizontal Mode

Figure 3.9 shows a schematic diagram of binocular horizontal mode imaging. The
focal lengths of the two lenses (each maybe composited with multiple lenses) are
both λ, and the line between their centers is called the baseline B of the system. The
corresponding axes of the two camera coordinate systems are completely parallel
(X axis coincides), and the two image planes are parallel to the XY plane of the world
coordinate system. The Z coordinate of a 3-D space point W is the same for both
camera coordinate systems.

3.4.1.1 Disparity and Depth

It can be seen from Fig. 3.9 that the same 3-D space point is imaged on two image
planes respectively, and the position difference between the two image points (with
their respective coordinate reference points) is called disparity/parallax. Let’s dis-
cuss the relationship between disparity and depth (object distance) in the binocular
horizontal mode with the help of Fig. 3.10. Here is a schematic diagram of the plane
(XZ plane) where the two lenses connect. Among them, the world coordinate system
coincides with the first camera coordinate system and only has a translation amount
B along the X axis direction with the second camera coordinate system.

Consider the geometric relationship between the coordinate X of the point W in
the 3-D space with the coordinate x

1 of the projected point on the first image plane. It
has

jXj
Z - λ

=
x1
λ

ð3:27Þ

Then consider the geometric relationship between the coordinate X of the 3-D
space point W with the coordinate x

2 of the projected point on the second image
plane. It has

Fig. 3.9 Schematic
diagram of binocular
horizontal mode imaging
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Fig. 3.10 Disparity in
parallel binocular imaging
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B- jXj
Z - λ

=
jx2j-B

λ
ð3:28Þ

Combine the two equations, eliminate X, and get the disparity

d= x1 þ jx2j-B=
λB

Z - λ
ð3:29Þ

Solve Z from it as

Z= λ 1þ B
d

� �
ð3:30Þ

Equation (3.30) directly connects the distance Z between the object and the image
plane (i.e., the depth in the 3-D information) with the disparity d. Conversely, it also
shows that the magnitude of the disparity is related to the depth, that is, the disparity
contains the spatial information of the 3-D object. According to Eq. (3.30), when the
baseline and focal length are known, it is very simple to calculate the Z coordinate of
space point W after determining the disparity d. In addition, after the Z coordinate is
determined, the world coordinates X and Y of point W can be calculated with (x1, y1)
or (x2, y2) referring to Eqs. (3.27) or (3.28).

Example 3.2 Measurement Error of Relative Depth
Equation (3.30) gives the representation of the relationship between absolute depth
and disparity. With the help of differentiation, the relationship between the depth
change and the disparity change is

ΔZ
Δd

=
-Bλ

d2
ð3:31Þ

Multiply both sides by 1/Z; then
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Fig. 3.11 Schematic
diagram of geometric
structure for calculating
measurement error

rB
d

Z

1=Zð ÞΔZ
Δd

=
- 1
d

=
- Z
Bλ

ð3:32Þ

and so,

jΔZ
Z
j= jΔdjZ

Bλ
=

Δd
d

� �
d
λ

� �
Z
B

� �
ð3:33Þ

If both the disparity and the disparity change are measured in pixels, it can be
known that the measurement error of the relative depth in the scene will be:

1. Proportional to the pixel size.
2. Proportional to the depth Z.
3. Inversely proportional to the baseline length B between the cameras.

In addition, it can be obtained by Eq. (3.32)

ΔZ
Z

=
-Δd
d

ð3:34Þ

It can be seen that the measurement error of relative depth and the measurement
error of relative disparity are the same in value.

Example 3.3 Measurement Errors of Two Cameras
Suppose two cameras are used to observe a cylindrical object with a circular cross-
section and a local radius r, as shown in Fig. 3.11. There is a certain distance between
the intersection point of the two cameras’ sight lines and the boundary point of the
circular section, which is the error δ. Now it is needed to obtain the formula for
calculating this error δ.

To simplify the calculation, it is assumed that the boundary point is at the
orthogonal bisector connecting the projection centers of the two cameras. The
simplified geometric structure is shown in Fig. 3.12a, and the detailed diagram of
the error is shown in Fig. 3.12b.

From Fig. 3.12, it can get d = rsec(θ/2) – r and tan(θ/2) = B/2Z; replace θ to get
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Fig. 3.12 Schematic diagram of the simplified geometric structure for calculating measurement
error

Fig. 3.13 Angle scanning
camera for stereoscopic
imaging
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δ= r 1þ B=2Zð Þ2 - r≈ rB2
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This is the equation for calculating the error δ. It can be seen that the error is
proportional to r and Z-2.

3.4.1.2 Angular Scanning Imaging

In binocular horizontal mode imaging, in order to determine the information of a 3-D
space point, the point needs to be in the common field of view of the two cameras. If
the two cameras are rotated (around the X axis), it can increase the common field of
view and collect panoramic images. This can be called stereoscopic imaging with
an angle scanning camera, that is, a binocular angular scanning mode, where the
coordinates of the imaging point are determined by the azimuth angle and elevation
angle of the camera. In Fig. 3.13, θ1 and θ2, respectively, give the azimuth angles
(corresponding to the panning around the Y axis outward from the paper surface),
and the elevation angle ϕ is the angle between the XZ plane and the plane defined by
the two optical centers and point W.

Generally, the azimuth angle of the lens can be used to indicate the spatial
distance between objects. Using the coordinate system shown in Fig. 3.13, there are
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tan θ1 =
jXj
Z

ð3:35Þ

tan θ2 =
B- jXj

Z
ð3:36Þ

Combining Eqs. (3.35) and (3.36) to eliminate X, the Z coordinate of point W is

Z=
B

tan θ1 þ tan θ2
ð3:37Þ

Equation (3.37) actually connects directly the distance Z between the object and
the image plane (i.e., the depth in the 3-D information) with the tangent of the two
azimuth angles. Comparing Eq. (3.37) with Eq. (3.30), it can be seen that the effects
of disparity and focal length are both implicit in the azimuth angle. According to the
Z coordinate of the space point W, the X and Y coordinates can be obtained,
respectively, as

X= Z tan θ1 ð3:38Þ
Y = Z tanϕ ð3:39Þ

3.4.2 Binocular Convergence Horizontal Mode

In order to obtain a larger field of view (FOV) overlap, one can place two cameras
side by side, but let the two optical axes converge. This binocular convergence
horizontal mode can be regarded as the extension of binocular horizontal mode
(at this time, the vergence between the binoculars is not zero).

3.4.2.1 Disparity and Depth

Consider only the situation shown in Fig. 3.14, which is obtained by rotating the two
monocular systems in Fig. 3.10 around their respective centers. Figure 3.14 shows
the plane (XZ plane) where the two lenses connect. The distance between the centers
of the two lenses (i.e., the baseline) is B. The two optical axes intersect at point (0, 0,
Z ) in the XZ plane, and the angle of intersection is 2θ. Now let’s look at how to find
the coordinates (X, Y, Z ) of point W in 3-D space if two image plane coordinate
points (x1,

y
1) and (x2,

y
2) are known.

First, it can be seen from the triangle enclosed by the two world coordinate axes
and the camera optical axis:
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Fig. 3.14 Disparity in
convergent horizontal
binocular imaging
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Z=
B
2

cos θ
sin θ

þ λ cos θ ð3:40Þ

Now draw perpendicular lines respectively from pointW to the optical axes of the
two cameras, because the angles between the two perpendicular lines and the X axis
are both θ, so according to the relationship of similar triangles, it can get

jx1j
λ

=
X cos θ

r-X sin θ
ð3:41Þ

jx2j
λ

=
X cos θ

r þ X sin θ
ð3:42Þ

where r is the distance from (any) lens center to the convergence point of the two
optical axes.

Combine Eqs. (3.41) and (3.42), as well as eliminate r and X to get (refer to
Fig. 3.14)

λ cos θ=
2jx1j • jx2j sin θ

jx1j- jx2j =
2jx1j • jx2j sin θ

d
ð3:43Þ

Substitute Eq. (3.43) into Eq. (3.40) to get

Z=
B cos θ
2 sin θ

=
2jx1j • jx2j sin θ

d
ð3:44Þ

Both Eqs. (3.44) and (3.30) directly relate the distance Z between the object and
the image plane with the disparity d. In addition, it can be obtained from Fig. 3.14
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r=
B

2 sin θ
ð3:45Þ

Substitute it into Eq. (3.41) or Eq. (3.42) to get the X coordinate of point W

jXj= B
2 sin θ

jx1j
λ cos θ þ jx1j sin θ =

B
2 sin θ

jx2j
λ cos θ- jx2j sin θ ð3:46Þ

3.4.2.2 Image Rectification

The case of binocular convergence can also be converted to the case of binocular
parallelism. Image rectification is the process of geometrically transforming the
image obtained by the camera with the optical axis converging to get the image
obtained by the camera with the optical axis parallel. Consider the images before and
after rectifications in Fig. 3.15. The light from the pointW intersects the left image at
(x, y) and (X, Y ) before and after rectifications, respectively. Each point on the image
before rectification can be connected to the center of the lens and extended to
intersect the image after rectification. Therefore, for each point on the image before
rectification, one can determine its corresponding point on the image after rectifica-
tion. The coordinates of the points before and after rectifications are related by
projection transformation (a1 to

a
8 are the coefficients of the projection transforma-

tion matrix):

x=
a1X þ a2Y þ a3
a4X þ a5Y þ 1

ð3:47Þ

y=
a6X þ a7Y þ a8
a4X þ a5Y þ 1

ð3:48Þ

The eight coefficients in Eqs. (3.47) and (3.48) can be determined by using four
sets of corresponding points on the images before and after rectifications. Here one
can consider using the horizontal epipolar line (the intersection of the plane formed
by the baseline and a point in the scene with the imaging plane; see Sect. 6.2). For
this reason, one needs to select two epipolar lines in the image before rectification

Fig. 3.15 Using projection
transformation to rectify the
image obtained by two
cameras with the optical axis
converging
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rectification
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Fig. 3.16 Schematic
diagram of images before
and after rectification

(x4, y4)

(x1, y1)
(x2, y2)

(x3, y3)

(X1, Y1)

(X3, Y3)

(X2, Y2)

(X4, Y4)

and map them to the two horizontal lines in the image after rectification, as shown in
Fig. 3.16. The corresponding relationship is

X1 = x1 X2 = x2 X3 = x3 X4 = x4 ð3:49Þ

Y1 = Y2 =
y1 þ y2

2
Y3 = Y4 =

y3 þ y4
2

ð3:50Þ

The above corresponding relationship can maintain the width of the image before
and after rectifications, but the scale will change in the vertical direction (in order to
map the non-horizontal epipolar line to the horizontal epipolar line). In order to
obtain the rectified image, each point (X, Y ) on the rectified image needs to use
Eqs. (3.47) and (3.48) to find their corresponding point (x, y) on the image before
rectification. Also, assign the gray value at point (x, y) to point (X, Y ).

The above process is also repeated for the right image. In order to ensure that the
corresponding epipolar lines on the rectified left and right images represent the same
scan line, it is necessary to map the corresponding epipolar lines on the image before
rectification to the same scan line on the image after rectification, so the Y coordinate
in Eq. (3.50) should be used when rectifying both the left image and right image.

3.4.3 Binocular Axial Mode

When using binocular horizontal mode or binocular convergence horizontal mode, it
needs to make calculation according to the triangle method, so the baseline cannot be
too short; otherwise it will affect the accuracy of depth calculation. But when the
baseline is longer, the problems caused by the misalignment of the field of view will
be more serious. In order to avoid the difficulty of baseline selection, it is considered
adopting binocular axial mode, also called binocular longitudinal mode, that is,
two cameras are arranged in sequence along the optical axis. This situation can also
be seen as moving the camera along the optical axis and collecting the second image
closer to the subject than the first image, as shown in Fig. 3.17. In Fig. 3.17, only the
XZ plane is drawn, and the Y axis is outward from the inside of the paper. The origins
of the two camera coordinate systems for the first image and the second image are
only different in the Z direction by B, and B is also the distance between the optical
centers of the two cameras (baseline in this mode).

According to the geometric relationship in Fig. 3.17, there are
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Fig. 3.17 Binocular axial
mode imaging
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X
Z - λ-B

=
jx2j
λ

ð3:52Þ

Combining Eqs. (3.51) and (3.52) can obtain (only consider X, similar to Y )

X=
B
λ

jx1j • jx2j
jx2j- jx1j =

B
λ
jx1j • jx2j

d
ð3:53Þ

Z= λþ Bjx2j
jx2j- jx1j = λþ Bjx2j

d
ð3:54Þ

Compared with the binocular horizontal mode, the common field of view of the
two cameras in the binocular axial mode is the field of view of the front camera (the
camera that acquired the second image in Fig. 3.17), so the boundary of the common
field of view is easy to determine, and the problem that the 3-D space point is only
seen by one camera, caused by occlusion, can be basically eliminated. However,
since the binoculars basically use the same orientation to observe the scene at this
time, the benefit of lengthening the baseline to increasing the depth calculation
accuracy cannot be fully reflected. In addition, the precisions of the disparity and
depth calculation are related to the distance between the 3-D space point and the
optical axis of the camera (e.g., in Eq. (3.54), the depth Z as well as the distance |x2|
between the projection of the 3-D space point and optical axis). This is different from
the binocular horizontal mode.

Example 3.4 Measurement of Relative Height
The relative height of the ground objects can be obtained by taking two images of the
object in the air by the camera carried by the aircraft. In Fig. 3.18, W represents the
distance the camera moves, H is the height of the camera, h is the relative height
difference between the two measurement points A and B, and (d1 – d2) corresponds
to the disparity between A and B in the two images. When d1 and d2 are much smaller
than W, and h is much smaller than H, then the calculation of h can be simplified as
follows:
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Fig. 3.18 Using stereo
vision to measure relative
height
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Fig. 3.19 Object is rotated to obtain two images for measuring the relative height

h=
H
W

d1 - d2ð Þ 3:55Þ

If the above conditions are not met, the x and y coordinates in the image need to be
corrected as follows:

x0 = x
H- h
H

ð3:56Þ

y0 = y
H- h
H

ð3:57Þ

When the object is relatively close, one can rotate the object to obtain two images.
A schematic diagram is given in Fig. 3.19a, where δ represents a given rotation
angle. At this time, the horizontal distances between the two object points A and
B, d1 and d2, are different in the two images, as shown in Fig. 3.19b. The connection
angle θ and the height difference h between them can be calculated as follows:

θ= tan - 1 cos δ- d2=d1
sin δ

� �
ð3:58Þ
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h= jh1 - h2j= jd1 cos δ- d2
sin δ

-
d1 - d2 cos δ

sin δ
j= d1 þ d2ð Þ 1- cos δ

sin δ
ð3:59Þ

3.5 Key Points and References for Each Section

The following combines the main contents of each section to introduce some
references that can be further consulted.

1. High-Dimensional Image
Here high-dimensional images generally refer to all kinds of images that are

not enough to describe with only f(x, y). In practical applications, there are many
other than the few examples listed in this section. For example, in the diagnosis of
cardiovascular disease, the image f(x, y, z, t) needs to be used to measure the
thickness of the aortic vessel wall and blood flow velocity; see [1].

2. Depth Image
The image can reflect many kinds of information of the objective world. The

depth image reflects the information that is generally lost during the projection
from the 3-D scene to the 2-D image. It has received extensive attention in 3-D
computer vision; see reference [2, 3]. For the early discussion of intrinsic images
and extrinsic images, please refer to reference [4]. The description of step edges
and roof-like edges can be found in the book 2D Computer Vision: Principles,
Algorithms and Applications. Some typical multi-ocular imaging methods based
on stereo vision can be found in [5].

3. Direct Depth Imaging
The derivation from Eq. (3.20) to Eq. (3.21) can be found in [6]. More

discussions about laser LIDAR can be found in [7], where there are more
applications of laser LIDAR.

4. Stereo Vision Imaging
Stereo vision imaging can use not only binoculars but also various forms of

multi-ocular; see [5]. More discussion on image rectification can be found in
[8]. Using four sets of corresponding points on the image to determine the eight
coefficients in Eqs. (3.47) and (3.48) can be found in the book 2D Computer
Vision: Principles, Algorithms and Applications.

Self-Test Questions

The following questions include both single-choice questions and multiple-choice
questions, so each option must be judged.

3.1 High-Dimensional Image



[Hint] High dimension can refer to both the high dimension of the space
where the image is located or the high dimension of the attributes of the image.

[Hint] The basic image is the 2-D grayscale image.

Video image

[Hint] The attribute value of the depth image corresponds to the distance.

Always corresponds to the discontinuity of brightness
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3.1.1 Which of the following function(s) represent(s) high-dimensional
images? (�).
(a) f(x, z)
(b) f(x, t)
(c) f(x, λ)
(d) f

3.1.2

(t, λ)

Which of the following function(s) represent(s) high-dimensional
images? (�).
(a) f(x, z)
(b) f(x, y, z)
(c) f(t, λ)
(d) f(z, t, λ)

3.1.3 Which of the following image(s) is/are high-dimensional image(s)? (�).
(a)
(b) Depth image
(c) Moving image
(d) Multispectral image

[Hint] Consider both the dimension of image space and the dimension of
attributes.

3.2 Depth Image

3.2.1 For depth images, (�).
(a) The pixel value of the same outer plane on the corresponding object

has nothing to do with the external lighting conditions.
(b) The pixel value of the same outer plane on the corresponding object

has nothing to do with the orientation of the plane.
(c) The pixel value of the same outer plane on the corresponding object

has nothing to do with the size of the plane.
(d)

3.2.2

The pixel value of the same outer plane on the corresponding object
has nothing to do with the reflection coefficient of the plane.

The boundary line in the depth image (�).
(a)
(b) Always corresponds to the discontinuity of depth
(c) Is possible to correspond to the depth continuity
(d) Is possible to correspond to the depth discontinuity



Grayscale image

[Hint] The intrinsic image reflects an intrinsic characteristic of the scene, not
the mixed influence of multiple characteristics.

Fixed, fixed, self-moving

[Hint] Analyze the principle of the time-of-flight-based depth image
acquisition.

Phase difference, speed of light, modulation frequency

[Hint] It can be judged according to the equation derived from the principle
f using the phase difference to obtain the depth image.o
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[Hint] Analyze two situations of the boundary line in the depth image.

3.2.3 Among the following images, the image(s) belonging to the intrinsic
images is/are (�).
(a)
(b) Depth image
(c) Orientation image
(d)

3.2.4 In binocular stereo imaging, the positions of the light source, sensors,
and scene are as follows: (�).

Reflective image

(a)
(b) Moving, fixed, fixed
(c) Fixed, two positions, fixed
(d) Fixed, two positions, rotating

[Hint] Consider the characteristics of binocular stereo imaging.
3.3 Direct Depth Imaging

3.3.1 In the time-of-flight-based depth image acquisition, the pulse wave is
measured for (�).
(a) Difference in amplitude
(b) Difference in phase
(c) Difference in time
(d)

3.3.2 I

Difference in frequency

n the method for obtaining the depth image of the phase difference of
the amplitude modulation wave, the equation d= c

2π fmod
θ þ c

fmod
is used to

calculate the depth, where fmod, θ, c are, respectively (�).
(a)
(b) Phase difference, modulation frequency, speed of light
(c) Modulation frequency, speed of light, phase difference
(d) Modulation frequency, phase difference, speed of light



Camera, light source

[Hint] It can also be analyzed according to the imaging principle.

The small disparity corresponds to the long distance between the
object and the image plane.

[Hint] Refer to the binocular imaging equation.

The common field of view when using the binocular horizontal mode
has nothing to do with the baseline.
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3.3.3 The imaging system with structured light ranging is mainly composed of
the following two parts: (�).
(a)
(b) Cameras, scene
(c) Scene, light source
(d) Sensors, cameras

[Hint] Structured light imaging should use the geometric information in the
illumination to help extract the geometric information of the scene, thereby
imaging.

3.4

3.4.1 I

Stereo Vision Imaging

n the equation of binocular imaging Z = λ(1-B/D), Z, B, D represent (�).
(a) Disparity, baseline, object image distance
(b) Object image distance, baseline, disparity
(c) Baseline, disparity, object image distance
(d)

3.4.2

Object image distance, disparity, baseline

When using binocular horizontal mode for imaging, given the baseline
length, (�).
(a)

(b) The large disparity corresponds to the long distance between the
object and the image plane.

(c) The disparity value has a linear relationship with the distance
between the object and the image plane.

(d)

3.4.3

The disparity value has a non-linear relationship with the distance
between the object and the image plane.

Using two cameras with the same given focal length to perform stereo
imaging, (�).
(a)

(b) The common field of view when using binocular axial mode has
nothing to do with the baseline.

(c) The common field of view when using the binocular convergence
horizontal mode is only related to the baseline.

(d) The common field of view when using the binocular angle scanning
mode is only related to the baseline.

[Hint] Analyze what factors other than the baseline may affect the common
field of view in the four modes.
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Section discusses the detection of motion information. The motion detection
methods using image difference, the principle of motion detection in the

4.3

Chapter 4
Video Image and Motion Information

Video or video image represents a special kind of sequence image, which describes
the radiation intensity of the scene obtained by three separate sensors when a 3-D
scene is projected onto a 2-D image plane over a period of time. At present, video is
generally regarded as a sequence of images with regular intervals in color, changing
more than 25 frames per second (with continuous motion).

Digital video can be acquired by means of a digital camera using a CCD sensor or
the like. The output of a digital camera is divided into discrete frames in time, and
each frame is divided into discrete rows and columns in space similar to a still image,
so it is 3-D. The basic unit of each frame of image is still represented by pixels. If
time is considered, the basic unit of video is similar to voxel. This chapter mainly
discusses digital video images, which are called video images or videos unless they
cause confusion.

From the perspective of learning image technology, video can be seen as an
extension of (still) images. In fact, a still image is a video with a given time
(constant). In addition to some concepts and definitions of the original image,
some new concepts and definitions are needed to represent the video. The most
obvious difference between video and image is that it contains motion information in
the scene, which is also a main purpose of using video. In view of the characteristics
of videos containing motion information, the original image processing technology
also needs to be extended accordingly.

The sections of this chapter are arranged as follows:

Section 4.1 introduces first the basic content of the video, including the representa-
tion, modeling, display, and format of the video and also introduces the color
model and resolution in the color TV system.

Section 4.2 discusses first the classification of the motion information in the video
compared to the still image. Then, the characteristics and representation methods
of foreground motion and background motion are introduced respectively.
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frequency domain, and the detection of the direction of motion are respectively
introduced.

Section 4.4 starts from the video preprocessing and discusses the filtering methods
that combine the characteristics of the video and consider the motion information,
including motion detection filtering and motion compensation filtering.

4.1 Video Basic

To discuss video image processing, the discussions on the representation of the
video, as well as the format and display of the video, are provided.

4.1.1 Video Expression and Model

Video can be seen as an extension of (still) images along the time axis. Video is a
sequence of images taken at regular intervals, so the video has an extension in time
relative to the image. When discussing video, it is generally considered that the video
image is in color, so the expansion from grayscale to color should also be considered.
Because human vision has different sensitivity to brightness and color components,
different resolutions are often used for them when capturing and representing videos.

4.1.1.1 Video Representation Function

If the function f(x, y) is used to represent the image, considering the expansion of the
video in time, the function f(x, y, t) can be used to represent the video, which
describes the projection to the image plane XY at a given time t by the 3-D scene
with certain properties of (such as radiation intensity). In other words, the video
represents a certain physical property that changes in space and time or a certain
physical property that is projected onto the image plane (x, y) at time t. Further, if the
color image is represented by the function f(x, y), considering the extension of the
video from grayscale to color, the video can be represented by the function f(x, y, t),
which describes the color nature of the video at the specific time and space. The
actual video always has a limited time and space range, and the property value is also
limited. The spatial range depends on the observation region of the camera, the time
range depends on the duration of the scene being captured, and the color properties
depend on the characteristics of the scene.

Ideally, since various color models are 3-D, color video should be represented by
three functions (they constitute a vector function), and each function describes a
color component. Video in this format is called component video and is only used in
professional video equipment. This is because the quality of component video is
higher, but its data volume is also relatively large. Various composite video formats
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are often used in practice, in which three color signals are multiplexed into one single
signal. The fact that the chrominance signal has a much smaller bandwidth than the
luminance component is taken into account when constructing composite video. By
modulating each chrominance component to a frequency located at the high end of
the luminance component, and adding the chrominance component to the original
luminance signal, a composite video containing luminance and chrominance infor-
mation can be produced. The composite video format has a small amount of data but
poor quality. In order to balance the amount of data and quality, the S-video format
can be used, which includes one luminance component and one chrominance
component compounded by two original chrominance signals. The bandwidth of
the composite signal is smaller than the sum of the bandwidth of the two component
signals, so it can be transmitted or stored more efficiently. However, since the
chrominance and luminance components will crosstalk, artifacts may appear.

4.1.1.2 Video Color Model

A commonly used color model in video is the YCBCR color model, where
Y represents the luminance component and CB and CR represent chrominance
components. The brightness component can be obtained by using the RGB compo-
nent of the color:

Y = rRþ gGþ bB ð4:1Þ

where r, g, b are proportional coefficients. The chrominance component CB repre-
sents the difference between the blue part and the luminance value, and the chromi-
nance component CR represents the difference between the red part and the
luminance value (so CB and CR are also called color difference components):

CB =B- Y

CR =R- Y
ð4:2Þ

In addition, one can define the chrominance component CG = G - Y, but CG can
be obtained by CB and CR, so it is not used alone. The inverse transformation from
Y, CB, CR to R, G, B can be represented as

R

G

B

2
64

3
75=

1:0 - 0:00001 1:40200

1:0 - 0:34413 - 0:71414

1:0 1:77200 0:00004

2
64

3
75

Y

CB

CR

2
64

3
75 ð4:3Þ

In the practicalYCBCR color coordinate system, the value range of Y is [16, 235];
the value ranges of CB and CR are both [16, 240]. The maximum value of CB

corresponds to blue (CB = 240 or R = G = 0, B = 255), and the minimum value
of CB corresponds to yellow (CB = 16 or R= G= 255, B= 0). The maximum value
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of CR corresponds to red (CR= 240 or R= 255, G= B= 0), and the minimum value
of CR corresponds to blue-green (CB = 16 or R = 0, G = B = 255).

4.1.1.3 Video Space Sampling Rate

The spatial sampling rate of color video refers to the sampling rate of the luminance
component Y. Generally, the sampling rate of the chrominance components CB and
CR is usually only one-half of the luminance component. The advantage of this is
that the number of pixels per line can be halved (i.e., the sampling rate is halved), but
the number of lines per frame remains unchanged. This format is called 4:2:2, that is,
every four Y sampling points correspond to two CB sampling points and two CR

sampling points. The data volume of this format is lower than the 4:1:1 format, that
is, every four Y sampling points correspond to one CB sampling point and one CR

sampling point. However, in this format, the horizontal and vertical resolutions are
asymmetrical. Another format with the same amount of data as the 4:1:1 format is
the 4:2:0 format. It still corresponds to one CB sampling point and one CRR sampling
point for every four Y sampling points, but one-half of the sampling rates in the
horizontal and vertical directions are taken for both CB and CR. Finally, for applica-
tions requiring high resolution, a 4:4:4 format is also defined, that is, the sampling
rate for the chrominance components CB and CR is the same as the sampling rate for
the luminance component Y. The corresponding relationship between the luminance
and chrominance sampling points in the above four formats is shown in Fig. 4.1.

4.1.2 Video Display and Format

Video can be displayed according to different forms and formats.

4.1.2.1 Video Display

The aspect ratios of the monitor that displays video are mainly 4:3 and 16:9. In
addition, there can be two raster scan modes when displaying: progressive scan and
interlaced scan. The progressive scan takes the frame as the unit and progresses line

4 : 2 : 2 4 : 4 : 4 4 : 2 : 0 4 : 1 : 1 

Y pixel 

CB and CR
pixel 

Fig. 4.1 Examples of four sampling formats (two adjacent rows belong to two different fields)
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by line from the upper left corner to the lower right corner when displaying.
Interlaced scan takes the field as the unit (a frame is divided into two fields: the
top field and the bottom field; the top field contains all odd lines, and the bottom field
contains all even lines), and the vertical resolution is half of the frame’s resolution. In
interlaced scanning, the top field and the bottom field alternate, and the visual
persistence characteristics of the human visual system are used to make people
perceive as a picture. The progressive scan has high definition, but the data volume
is large; the interlaced scan only needs half the data volume, but it is a little blur.
Various standard TV systems, such as NTSC, PAL, SECAM, and many high-
definition TV systems, use interlaced scanning.

The video needs to have a certain frame rate when displaying, that is, the
frequency of two adjacent frames. According to the persistence characteristics of
human eyes, the frame rate needs to be higher than 25 frames per second. If it is
lower, flicker and discontinuity will appear.

4.1.2.2 Video Bit Rate

The amount of video data is determined together by the time resolution, spatial
resolution, and amplitude resolution of the video. Suppose the frame rate of the
video is L (i.e., the time sampling interval is 1/L ), the spatial resolution isM × N, and
the amplitude resolution isG (G= 2k, k= 8 for black and white video and k= 24 for
color video), and then the number of bits b required to store 1 second of video image
(also called video bit rate, unit is b/s) is

b= L ×M ×N × k ð4:4Þ

The amount of video data can also be defined by the number of lines fy, the
number of samples per line fx, and the frame rate ft. Thus, the horizontal sampling
interval is Δx = pixel width/ fx, the vertical sampling interval is Δy = pixel height/fy,
and the time sampling interval is Δt= 1/ft. If k is used to represent the number of bits
used for a pixel value in a video, it is 8 for monochrome video and 24 for color video,
so the video bit rate can also be expressed as

b= f x × f y × f t × k ð4:5Þ

4.1.2.3 Video Format

Due to historical reasons and different application fields, there are many different
formats of actual video. Some commonly used video formats are shown in
Table 4.1. In the frame rate column, P represents progressive, and I represents
interlaced (see the next sub-section for common TV formats).
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Table 4.1 Some video formats in practical applications

Y size/
(pixel)

Sampling
format

Frame
rate

Original
bit rate/
Mbps

Terrestrial, cable, satellite HDTV,
MPEG-2, 20–45 Mbps

SMPTE
296 M

1280 × 720 4:2:0 24P/
30P/
60P

265/332/
664

SMPTE
296 M

1920 × 1080 4:2:0 24P/
30P/
60I

597/746/
746

Video production,
MPEG-2, 15–50 Mbps

BT.601 720 × 480/
576

4:4:4 60I/
50I

249

BT.601 720 × 480/
576

4:2:0 60I/
50I

166

High-quality video publishing
(DVD, SDTV) MPEG-2, 4–
8 Mbps

BT.601 720 × 480/
576

4:2:0 60I/
50I

124

Medium-quality video release
(VCD, WWW) MPEG-1,
1.5 Mbps

SIF 352 × 240/
288

4:2:0 30P/
25P

30

ISDN/internet video conference,
H.261/H.263, 128–384 kbps

CIF 352 × 288 4:2:0 30P 37

Wired/wireless modem video
phone, H.263, 20–64 kbps

QCIF 176 × 144 4:2:0 30P 9.1

Example 4.1 BT.601 Standard Format
The BT.601 standard (formerly known as CCIR601) formulated by the Radio
Department of the International Telecommunication Union (ITU-R) provides two
video formats with an aspect ratio of 4:3 and 16:9. In the 4:3 format, the sampling
frequency is set to 13.5 MHz. The one corresponding to the NTSC standard is called
the 525/60 system, and the one corresponding to the PAL/SECAM standard is called
the 625/50 system. There are 525 lines in the 525/60 system, and the number of
pixels in each line is 858. There are 625 lines in the 625/50 system, and the number
of pixels in each line is 864. In practice, considering the need for some lines for
blanking, the effective number of lines in the 525/60 system is 480, the effective
number of lines in the 625/50 system is 576, and the effective number of pixels per
line in both systems is 720. The rest are the retrace points that fall in the invalid
region, as shown in Fig. 4.2a, b, respectively.

4.1.3 Color TV System

Color TV is a special kind of video. Commonly used color TV formats include
NTSC (developed by the United States and used in countries such as the United
States and Japan), PAL (developed by Germany and used in countries such as
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Fig. 4.2 The 4:3 format in the BT.601 standard

Germany and China), and SECAM (developed by France and used in countries such
as France and Russia).

The color models used in color television systems are also based on different
combinations of RGB, although some concepts of color models for visual perception
are used, too.

The YUVmodel is used in the PAL and SECAM systems, where Y represents the
brightness component and U and V are, respectively, proportional to the color
difference B-Y and R-Y, which are called chrominance components (or color differ-
ence components). Y,U, and V can be obtained from the normalized R′,G′, and B′ in
the PAL system (after gamma correction) through the following calculations
(R′ = G′ = B′ = 1 corresponds to the reference white):

Y

U

V

2
64

3
75=

0:299 0:587 0:114

- 0:147 - 0:289 0:436

0:615 - 0:515 - 0:100

2
64

3
75

R0

G0

B0

2
64

3
75 ð4:6Þ

The inverse transformation of R′, G′, and B′ from Y, U, and V is

R0

G0

B0

2
64

3
75=

1:000 0:000 1:140

1:000 - 0:395 - 0:581

1:000 2:032 0:001

2
64

3
75

Y

U

V

2
64

3
75 ð4:7Þ

The YIQ model is used in the NTSC system, where Y still represents the
brightness component, and I and Q are the results of the U and V components rotated
by 33°, respectively. After being rotated, I corresponds to the color between orange
and cyan, and Q corresponds to the color between green and purple. Because
the human eye is not as sensitive to the color change between green and purple as
the color change between orange and cyan, the number of bits required for the
Q component during quantization can be less than that for the I component, and the
bandwidth required for the Q component during transmission can be narrower than
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Table 4.2 Spatial sampling rate of ordinary TV system

Luminance component Chrominance component

Line number Pixel/line Line number Pixel/line

NTSC 480 720 240 360 4:2:2

PAL 576 720 288 360 4:2:2

SECAM 576 720 288 360 4:2:2

the I component. Y, I, and Q can be obtained from the normalized R′, G′, and B′ in
the NTSC system (after gamma correction) through the following calculations (R
′ = G′ = B′ = 1 corresponds to the reference white):

Y

I

Q

2
64

3
75=

0:299 0:587 0:114

0:596 - 0:275 - 0:321

0:212 - 0:523 0:311

2
64

3
75

R0

G0

B0

2
64

3
75 ð4:8Þ

The inverse transformation of R′, G′, and B′ obtained from Y, I, and Q is

R0

G0

B0

2
64

3
75=

1:000 0:956 0:620

1:000 - 0:272 - 0:647

1:000 - 1:108 1:700

2
64

3
75

Y

I

Q

2
64

3
75 ð4:9Þ

It should be pointed out that the reference white in the PAL system is slightly
different from the reference white in the NTSC system. With the help of R′, G′, and
B′ in the NTSC system, one can also get

Y

CB

CR

2
64

3
75=

0:257 0:504 0:098

- 0:148 - 0:291 0:439

0:439 - 0:368 - 0:071

2
64

3
75

R0

G0

B0

2
64

3
75þ

16

128

128

2
64

3
75 ð4:10Þ

Because the human eye has a low ability to distinguish chrominance signals, the
spatial sampling rate of chrominance signals in ordinary TV systems is lower than
that of luminance signals, which can reduce the amount of video data without
affecting the visual effect. The spatial sampling rate of various TV systems is
shown in Table 4.2.

4.2 Motion Classification and Representation

Video images can record various movements of different scenes. The motion
information is unique to the video, and the classification and representation of the
motion situation have its own characteristics.
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4.2.1 Motion Classification

In the research and application of images, people often divide images into fore-
ground (object/target) and background. Similarly, in the research and application of
video, each frame can be divided into two parts: foreground and background. In this
way, it is necessary to distinguish between foreground motion and background
motion in the video. Foreground motion refers to the object’s own motion in the
scene, which leads to the change of some pixels of the image, so it is also called local
motion, while background motion is mainly caused by the motion of the camera
itself that is shooting and induces the overall movement of all pixels in the entire
frame image, so it is also called global motion or camera motion.

Each of the above two types of motions has its own characteristics. Global motion
generally has the characteristics of strong integrity and relatively regularity. In many
cases, the global motion can be represented with only some features or a set of
models with several parameters. Local movement is often more complicated, espe-
cially when there are more moving objects (components); each object can do
different movements. The movement of the object only shows a certain consistency
in a small range of space, and it needs a more sophisticated method to accurately
represent it.

In an image, there may be four combinations of motion or stillness of the
foreground and background, that is, both are moving or both are still, and one of
them is still and the other is moving. Since a model can often be established for
global motion, in the case having both motions, local motion can be regarded as a
part that does not conform to the global motion model.

4.2.2 Motion Vector Field Representation

Since motion may include both global motion and local motion, the global model
cannot be used to represent the entire motion field (although only a few model
parameters may be enough at this time). In extreme cases, one can consider describ-
ing the motion of each pixel separately, but this requires calculating a vector at each
pixel location (the motion has both magnitude and direction), and the result does not
necessarily meet the physical constraints of the actual object. A motion vector field
representation method that comprehensively compromises accuracy and complex-
ity is to divide the entire image into many fixed-size blocks. The choice of block size
needs to be determined according to the requirements of the application. If the block
size is relatively small, the motion in the block can be represented by a single model
and obtain a higher accuracy, but the total calculation amount will be relatively large.
If the block size is relatively large, the overall complexity of motion detection will be
relatively small, and each block has a comprehensive motion with average motion
details. For example, in the international standard H.264/AVC for image coding,
blocks from 4 × 4 to 16 × 16 are used.
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Fig. 4.3 Global motion
vector superimposed on the
original image

For the motion of the image block, both the size and the direction must be
considered, so it needs to be represented by a vector. In order to represent the
instantaneous motion vector field, in practice, each motion vector is often
represented by a line segment (with a starting point) without an arrow (the length
of the line segment is proportional to the vector size, that is, the motion speed) and
superimposed on the original image. The arrow is not used here just to make the
representation concise and to reduce the impact of the arrow superimposed on the
image. Since the starting point is determined, the direction without arrows is still
clear.

Example 4.2 The Representation Example of Motion Vector Field
Figure 4.3 shows a scene of a football match. The calculation of the motion vector
field uses the method of dividing first the image into blocks (evenly distributed) and
then calculating the comprehensive motion vector of each image. In this way, a
motion vector is obtained from each block of image, which is represented by a line
segment projected from the starting point (the starting point is in the center of the
block). These line segments are superimposed on the scene image to obtain the
representation image of the motion vector field.

Figure 4.3 only shows the global motion situation. It can be seen from the
direction and size of most of the motion vector line segments in the figure that the
speed of the lower right part of the figure is faster. This is because the camera has a
step-by-step zoom (zoom out the lens, the direction of the motion vector is mostly
away from the goal) centered on the upper left where the goalkeeper is and starts
from the goal.
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4.2.3 Motion Histogram Representation

The local motion mainly corresponds to the movement of the object in the scene. The
movement of the object is often more irregular than the movement of the camera.
Although the motion of each point on the same rigid object is often consistent, there
can be relative motion between different objects, so the local motion vector field is
often more complicated than the global motion vector field.

The global motion caused by the camera often lasts longer than the interval of the
object motion change. Using this relationship, a global motion vector field can be
used to represent the video over a period of time. In order to represent the complex
and variability of object motion, it is necessary to obtain a continuous short period of
dense local motion vector field. The problem that this brings is that the amount of
data will be quite large, and a more compact way is needed to represent the local
motion vector field.

4.2.3.1 Histogram of Motion Vector Direction

The motion vector direction histogram (MDH) is a compact way to represent
motion. The basic idea of this method is to only retain the motion direction
information to reduce the amount of data. The basis is that people first distinguish
different motions according to the motion direction, and the magnitude of the motion
amplitude requires more attention to distinguish, so the motion direction can be
regarded as the most basic motion information. MDH extracts the distribution of the
motion direction in the field through the statistics of the data in the motion vector
field to represent the main motion of the object in the video. In actual representation,
the direction range from 0° to 360° can be divided into several intervals, and the data
of each point on the motion vector field is classified into the interval closest to its
motion direction. The final statistical result is the histogram of the motion vector
direction. An example of MDH is shown in Fig. 4.4.

In the specific calculation, considering that there may be many static or basically
static points in the local motion vector field, the motion direction calculated at these
positions is usually random and may not necessarily represent the actual motion
direction of the point. In order to avoid incorrect data affecting the histogram
distribution, before counting the motion vector direction histogram, a minimum

Fig. 4.4 Example of
histogram of motion vector
direction

Angle 

# point 

0 45 90 135

4

15

9

12

180 225 270 315

7

14

8

5



112 4 Video Image and Motion Information

amplitude threshold can be selected for the vector size, and pixels smaller than the
minimum amplitude threshold are not included in the motion vector direction
histogram.

4.2.3.2 Histogram of Movement Area Types

The motion region type histogram (MRTH) is another compact way of
representing motion. When the object is moving, the object can be segmented
according to the local motion vector field, and each motion region with different
affine parameter models can be obtained. These affine parameters can be regarded as
a group of motion characteristics representing the motion region, so that the infor-
mation of various motions in the motion vector field can be represented by means of
the representation of the region parameter model. Specifically, it classifies motion
models and counts the number of pixels in each motion region that meets different
motion models. An example of MRTH is shown in Fig. 4.5. Using an affine
parameter model for each motion region can not only conform to the local motion
that people understand subjectively but also reduce the amount of data required to
describe motion information.

The classification of the motion model is to divide the motion models into various
types according to the motion vector describing the motion affine parameter model.
For example, an affine motion model has six parameters, and its classification is a
division of the 6-D parameter space. This division can use a vector quantization
method. Specifically, according to the parameter model of each motion region,
the vector quantizer is used to find the corresponding motion model type, and then
the area value of the motion region that meets the motion model type is counted. The
statistical histogram obtained in this way indicates the coverage area of each motion
type. Different local motion types can represent not only different translational
motions but also different rotational motions, different motion amplitudes, etc.
Therefore, compared with the motion vector direction histogram, the motion region
type histogram has a stronger description ability.

Fig. 4.5 Histogram of
motion region types
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4.2.4 Motion Track Description

The trajectory of the object gives the position information of the object during the
motion. The trajectory of a moving object can be used when performing high-level
explanations of actions and behaviors under certain circumstances or conditions. The
international standard MPEG-7 recommends a special descriptor to describe the
trajectory of the moving object. This kind of motion trajectory descriptor consists
of a series of key points and a set of functions that interpolate between these key
points. According to requirements, key points can be represented by coordinate
values in 2-D or 3-D coordinate space, and the interpolation function corresponds to
each coordinate axis, x(t) corresponds to the horizontal trajectory, y(t) corresponds to
the vertical trajectory, and z(t) corresponds to the trajectory in the depth direction.
Figure 4.6 shows a schematic diagram of x(t). In the figure, there are four key points
t0, t1, t2, and t3. In addition, there are three different interpolation functions between
these pairs of key points.

The general form of the interpolation function is a second-order polynomial:

f tð Þ= f p tð Þ þ vp t- tp
� �þ ap t- tp

� �2
=2 ð4:11Þ

In Eq. (4.11), p represents a point on the time axis; vp represents motion speed; ap
represents motion acceleration. The interpolation functions corresponding to the
three segments of the trajectory in Fig. 4.6 are zero-order function, first-order
function, and double-order function, respectively. Segment A is x(t)= x(t0), segment
B is x(t) = x(t1) + v(t1)(t - t1), and segment C is x(t) = x(t2) + v(t2)(t -
t2) + 0.5 × a(t2)(t - t2)

2.
According to the coordinates of the key points in the trajectory and the forms of

the interpolation functions, the motion of the object along a specific direction can be
determined. Summing up the motion trajectories in three directions, it can determine
the motion of the object in space over time. Note that interpolation functions
between the two key points in the horizontal trajectory, vertical trajectory, and
depth trajectory can be functions of different orders. This kind of descriptor is
compact and extensible, and according to the number of key points, the granularity
of the descriptor can be determined. It can both describe delicate motions with close
time intervals and roughly describe motions in a large time range. In the most

t

x(t)

t0

A

B

t1 t2 t3

C

Fig. 4.6 Schematic diagram of key points and interpolation functions in trajectory description
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extreme case, one can keep only the key points without the interpolation function,
because only the key point sequence can already provide a basic description of the
trajectory.

4.3 Motion Information Detection

Compared with still images, motion changes are unique to video. Detecting the
motion information in the video image (i.e., determining whether there is motion,
which pixels and regions are in motion, and the speed and direction of the motion) is
the basis of many video image processing and analysis tasks.

In video motion detection, it is necessary to distinguish foreground motion and
background motion. This section discusses only the global motion detection, and the
local motion detection will be discussed in Chap. 5.

4.3.1 Motion Detection Based on Camera Model

Because the overall motion of the scene caused by camera motion is relatively
regular, it can be detected with the help of the camera motion model. This model is
mainly used to establish the connection between the pixel space coordinates before
and after the camera motions in adjacent frames. When estimating model parameters,
first select enough observation points from adjacent frames, then use a certain
matching algorithm to obtain the observed motion vectors of these points, and finally
use parameter fitting methods to estimate model parameters.

4.3.1.1 Camera Motion Type

There are many types of camera motion, which can be introduced with the help of
Fig. 4.7. Assuming that the camera is placed at the origin of the 3-D space coordinate
system, the optical axis of the lens is along the Z axis, and the spatial point P(X, Y, Z )
is imaged at the image plane point p(x, y). The camera can have translational motions
along three coordinate axes, respectively. Among them, the motion along the X axis
is called translation or tracking motion, the motion along the Y axis is called lifting
motion, and the motion along the Z axis is called dollying motion. The camera can
also have a rotation around three coordinate axes, respectively. The rotation around
the X axis is called tilting motion, the motion around the Y axis is called panning
motion, and the movement around the Z axis is called rotation motion (around the
optical axis). Finally, changes in the focal length of the camera lens will also cause
changes in the field of view, which is called zooming motion or scaling motion. The
zooming motion can be divided into two types, namely, zoom in (forward
zooming), which is used to align/focus the camera on the object of interest, and
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Fig. 4.7 Types of camera motion

zoom out (backward zooming), which is used to give a panoramic expansion
process of a scene gradually from fine to coarse.

To sum up, there are six types of camera motions: (1) scanning, that is, the camera
rotates horizontally; (2) tilting, that is, the camera rotates vertically; (3) zooming,
that is, the camera changes the focal length; (4) tracking, that is, the camera moves
horizontally (laterally); (5) lifting, that is, the camera moves perpendicularly (verti-
cal); and (6) dollying, that is, the camera moves back and forth (horizontally). These
six types of motion can be combined to form three types of operations: (1) translation
operation; (2) rotation operation; and (3) zoom operation.

To describe the spatial coordinate changes caused by these types of camera
motions, an affine transformation model needs to be established. For general appli-
cations, the linear six-parameter affine model is often used:

u= k0xþ k1yþ k2
v= k3xþ k4yþ k5

�
ð4:12Þ

The affine model is a linear polynomial parameter model, which is easier to
handle mathematically. In order to improve the description ability of the global
motion model, some extensions can be made on the basis of the six-parameter affine
model. For example, by adding the quadratic term xy to the polynomial of the model,
an eight-parameter bilinear model can be obtained:
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Fig. 4.8 The motion vector
values obtained by the block
matching algorithm directly

u= k0xyþ k1xþ k2yþ k3
v= k4xyþ k5xþ k6yþ k7

ð4:13Þ

The global motion vector detection based on the bilinear model can be performed
as follows. To estimate the eight parameters of the bilinear model, a set of (more than
4) motion vector observations is required (in this way, 8 equations can be obtained).
When obtaining the motion vector observation values, considering that the motion
vector value in the global motion is often relatively large, the entire frame image can
be divided into small square blocks (such as 16 × 16), and then the block matching
method is used to obtain the motion vector, and the result is displayed using the
motion vector field representation in Sect. 4.2.

Example 4.3 Motion Information Detection Based on Bilinear Model
Figure 4.8 shows an image obtained by actual motion detection based on the bilinear
model, in which the motion vector (starting at the center of the block) obtained by the
block matching algorithm is superimposed on the original image to represent the
motion of each block.

As can be seen from Fig. 4.8, because there are some local object motions in the
original image, and the amplitude of these motions is relatively large, so in the
location where there is local motion (e.g., near the location of each football player in
the figure), the motion vectors obtained by block matching method are much larger
than the global motion vectors. In addition, the block matching method may generate
random error data in the low-texture regions of the image. For example, in the
background of the picture (close to the stand), there are also some larger motion
vectors. For these reasons, the relatively regular global motion amplitude in the
figure is relatively small (but its direction and relative size distribution have some
similarities with Fig. 4.3).
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4.3.1.2 Motion Camera

Depth information can also be obtained from the video. When a camera is used to
collect a series of images in multiple poses one after another, the same 3-D space
point will correspond to the coordinate points on the image plane of different frames,
resulting in parallax. Here, the camera’s motion trajectory can be regarded as a
baseline. If one uses two frames of images acquired one after another and match the
features in them, it is possible to obtain depth information. This method is also called
motion stereo.

When the camera moves (this is also equivalent to the case in active vision), the
distance that the object point moves laterally depends not only on X but also on Y. To
simplify the problem, the radial distance R (R2= X2 + Y2) from the object point to the
optical axis of the camera can be used for representation.

To calculate the parallax from the camera motion, refer to Fig. 4.9 (Fig. 4.9b is a
section of Fig. 4.9a). The radial distances of the image points in the two images are.

R1 =
Rλ
Z1

R2 =
Rλ
Z2

ð4:14Þ

In this way, the parallax is

d=R2 -R1 =Rλ
1
Z2

-
1
Z1

� �
ð4:15Þ

Let the baseline B = Z1 - Z2, and assuming B << Z1, B << Z2, then it can get
(take Z2 = Z1Z2)

d=
RBλ
Z2 ð4:16Þ

Let R0 ≈ (R1 + R2)/2, by using R/Z = R0/λ, to get
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Fig. 4.9 Calculate the parallax from the camera motion
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d=
BR0

Z
ð4:17Þ

The final depth of the object point can be derived as

Z =
BR0

d
=

BR0

R2 -R1ð Þ ð4:18Þ

Equation (4.17) can be compared with Eq. (3.29); here the parallax depends on
the (average) radial distance R0 between the image point and the optical axis of the
camera, while there it is independent of the radial distance. Comparing Eq. (4.18)
with Eq. (3.30), the depth information of the object point on the optical axis cannot
be given here; for other object points, the accuracy of the depth information depends
on the radial distance.

Now look at the ranging accuracy. It can be seen from Eq. (3.30) that depth
information is related to parallax, and parallax is related to imaging coordinates.
Suppose x

1 produces a deviation e, that is, x1e = x1 + e, then d1e = x1 + e + |x2| -
B = d + e, so the distance deviation is

ΔZ= Z- Z1e = λ 1þ B
d

� �
- λ 1þ B

d1e

� �
=

λBe
d d þ eð Þ ð4:19Þ

Substituting Eq. (3.29) into Eq. (4.19) to get

ΔZ =
e Z- λð Þ2

λBþ e Z- λð Þ ≈
eZ2

λBþ eZ
ð4:20Þ

The last step is a simplification by considering Z >> λ in the general case. It can
be seen from Eq. (4.10) that the accuracy of distance measurement is related to the
focal length of the camera, the baseline length between the cameras, and the object
distance. The longer the focal length and the longer the baseline, the higher the
accuracy; the larger the object distance, the lower the accuracy. In practice, the
equivalent baseline taken with cameras is generally very short, because the objects in
the series of images are taken from almost the same angle of view.

4.3.2 Frequency Domain Motion Detection

The aforementioned modeling method detects the comprehensive changes of various
motions in the image space. With the help of Fourier transform, the detection of
motion can also be switched to the frequency domain. The advantage of frequency
domain motion detection is that it can handle translation, rotation, and scale
changes separately.
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4.3.2.1 Detection of Translation

Suppose that the position of the pixel at time tk is (x, y) and the position of the pixel at
time tk + 1 moves to (x + dx, y + dy). It is generally assumed that the gray level of the
pixel itself remains unchanged during this period of time; then

f xþ dx, yþ dy, tkþ1ð Þ= f x, y, tkð Þ 4:21Þ

According to the properties of Fourier transform, there are

Fk u, vð Þ= f x, y, tkð Þ 4:22Þ
Fkþ1 u, vð Þ= f xþ dx, yþ dy, tkþ1ð Þ 4:23Þ

It can be obtained with the help of translation properties:

Fkþ1 u, vð Þ=Fk u, vð Þ exp j2π udxþ vdyð Þ½ � 4:24Þ

Equation (4.24) shows that the phase angle difference of the Fourier transform of
the two images taken at time tk and time tk + 1 is

dθ u, vð Þ= 2π udx, vdyð Þ 4:25Þ

Taking into account the separability of Fourier transform, it can be obtained from
Eq. (4.25):

dx=
dθx uð Þ
2πu ð4:26Þ

dy=
dθy vð Þ
2πv ð4:27Þ

In Eq. (4.26) and (4.27), dθx(u) and dθy(v) are the difference between the phase
angle of the Fourier transform projected on the X axis and the Y axis by f(x, y, tk) and
f(x, y, tk + 1), respectively. Due to the non-uniqueness of the phase angle, the
following methods can be used when calculating dθx(u) and dθy(v). Suppose the
variation range of dx satisfies

				 dxLx
				< 1

2K
ð4:28Þ

where K is a positive constant and Lx is the number of pixels in the X direction.
Substitute u = K/Lx into Eq. (4.9), take the absolute value of dθx(u), and get from
Eq. (4.28):
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			dθx K
Lx

			= 2π K
Lx

jdxj< π ð4:29Þ

Under the restriction of Eq. (4.29), the phase angles of the Fourier transform
projected on the X axis and the Y axis by f(x, y, tk) and f(x, y, tk + 1) are, respectively,
added with an integer multiple of 2π to produce the unique value of dθx(u).

4.3.2.2 Detection of Rotation

The detection of rotational motion can be carried out with the help of the power
spectrum obtained after Fourier transform, because the straight line pattern in the
image (such as a straight edge) corresponds to the straight line pattern past the origin
of the spectrum in the power spectrum after Fourier transform, and the two straight
line patterns correspond to before and after the rotation intersect.

Specifically, the Fourier transform of f(x, y, tk) and f(x, y, tk + 1) can be performed,
respectively, and their power spectra can be calculated:

Pk u, vð Þ= jFk u, vð Þj2 ð4:30Þ
Pkþ1 u, vð Þ= jFkþ1 u, vð Þj2 ð4:31Þ

Further, it is required to search for corresponding straight line patterns passing
through the origin in Pk(u, v) and Pk + 1(u, v), respectively, such as Lk and Lk + 1.
Project Lk onto Pk + 1(u, v), the angle between this projection, and Lk is the angle of
rotation of the object.

4.3.2.3 Detection of Scale Changes

The detection of scale changes can also be carried out by means of the power
spectrum obtained after Fourier transform. The scale change of the image space
corresponds to the change of the frequency in the Fourier transform domain. When
the size of the object in the image space becomes larger, the low-frequency compo-
nents of the power spectrum in the frequency domain will increase. When the size of
the object in the image space becomes smaller, the high-frequency components of
the power spectrum in the frequency domain will increase.

Specifically, first obtain the power spectrum of f(x, y, tk) and f(x, y, tk + 1) after
Fourier transform, and then in Pk(u, v) and Pk + 1(u, v), search for the linear patterns
Lk and Lk + 1 in the same direction, respectively. Lk is projected onto Pk + 1(u, v) to
obtain Lk

'. Now measure the length of Lk
' and Lk + 1, which are |Lk

'| and |Lk + 1|,
respectively. The scale change can use the following equation to represent:
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S=
			 L0k
Lkþ1

			 ð4:32Þ

If S < 1, it means that from time tk to tk + 1, the object’s image size has increased
by S times. If S > 1, it means that from time tk to tk + 1, the object’s image size has
reduced to 1/S.

4.3.3 Detection of Movement Direction

In many applications, certain specificmotion patterns need to be determined. In this
case, image-based information and motion-based information can be combined.
Motion information can be obtained by determining a specific difference between
images that are acquired sequentially. Generally, in order to improve the accuracy
and use the spatial distribution information, the image is often divided into blocks,
and then two moving image blocks with a time difference (one collected at time t and
one collected at time t + dt) are considered. The direction of motion can use the
following four kinds of calculation for difference image:

U= jf t - f tþdt"j
D= jf t - f tþdt#j
L= jf t - f tþdt← j
R= jf t - f tþdt→ j

ð4:33Þ

where the arrow represents the direction of image motion, such as # represents the
image frame It + dt moves downward relative to the previous frame It.

The amplitude of motion can be obtained by summing the area of the image
block. This sum can be quickly calculated with the help of the integral image below.

Integral image is a matrix representation method that maintains the global
information of the image. In the integral image, the value I(x, y) at the position
(x, y) represents the sum of all the pixel values at the upper left of the position in the
original image f(x, y):

f x, yð Þ=
X

p≤ x,q≤ y

f p, qð Þ ð4:34Þ

The construction of the integral image can be carried out by scanning the image
only once by means of a loop:

1. Let s(x, y) represent the cumulative sum of a row of pixels, s(x, -1) = 0.
2. Let I(x, y) be an integral image, I(-1, y) = 0.
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Fig. 4.10 Schematic
diagram of integral image
calculation

Fig. 4.11 Haar rectangle
features in integral image
calculation

3. Scan the entire image line by line, and calculate the cumulative sum s(x, y) of the
row of the pixel and the integral image I(x, y) for each pixel (x, y) by means of
a loop:

s x, yð Þ= s x, y- 1ð Þ þ f x, yð Þ ð4:35Þ
I x, yð Þ= I x- 1, yð Þ þ s x, yð Þ ð4:36Þ

4. When the pixel in the lower right corner is reached after a line-by-line scan of the
entire image, the integral image I(x, y) is constructed.

As shown in Fig. 4.10, using the integral image, the sum of any rectangle can be
calculated with the help of four reference arrays. For rectangle D, the calculation
formula is as follows:

Dsum = I δð Þ þ I αð Þ- I βð Þ þ I γð Þ½ � 4:37Þ

where I(α) is the value of the integral image at point α, that is, the sum of pixel values
in rectangle A; I(β) is the sum of pixel values in rectangles A and B; I(γ) is the sum of
pixel values in rectangles A and C; and I(δ) is the sum of pixel values in rectangles
A, B, C, and D. Therefore, the calculation that reflects the difference between two
rectangles requires eight reference arrays. In practice, a look-up table can be
established, and calculations can be completed with the help of the look-up table.

The Haar rectangle feature commonly used in object detection and tracking, as
shown in Fig. 4.11, can be quickly calculated by subtracting the shaded rectangle
from the unshaded rectangle with the help of the integral image. For Fig. 4.11a, b, it
only needs to look up the table six times; for Fig. 4.11c, it only needs to look up the
table eight times; and for Fig. 4.11d, it only needs to look up the table nine times.



4.4 Motion-Based Filtering 123

4.4 Motion-Based Filtering

In order to effectively detect the motion information in a video image, it is often
necessary to preprocess the video image first to eliminate various interference effects
and improve image quality. Filtering here represents a variety of preprocessing
processes and methods (which can be used to enhance, restore, filter out noise,
etc.). Since video images include both spatial and temporal variables, video filtering
is often a spatial-temporal filtering. Compared with still image filtering, video
filtering can also be considered with the help of motion information. Motion
detection filtering and motion compensation filtering are common modes of video
filtering.

4.4.1 Motion Detection-Based Filtering

There is more time-varying motion information in video than in still images, so the
filtering of video can consider the problems caused by motion on the basis of filtering
still images. But from another perspective, video filtering can also be effectively
performed through motion detection. In other words, motion detection-based
filtering needs to be performed on the basis of motion detection.

4.4.1.1 Direct Filtering

The simplest direct filtering method is to use frame averaging technology. By
averaging multiple samples at the same position in different frames, noise can be
eliminated without affecting the spatial resolution of the frame image. It can be
proved that in the case of additive Gaussian noise, the frame averaging technique
corresponds to calculating the maximum likelihood estimation and can reduce the
noise variance to 1/N (N is the number of frames participating in the averaging). This
method is effective for fixed parts of the scene.

Frame averaging essentially performs 1-D filtering along the time axis, that is,
time-domain averaging, so it can be regarded as a time filtering method, and time
filter is a special type of spatial-temporal filter. In principle, the use of temporal filters
can avoid spatial blurring. However, similar to the space domain averaging operation
that will cause spatial blur, the time domain averaging operation in the scene that has
a sudden change in position with time can also cause temporal blur. Here, the motion
adaptive filtering corresponding to the edge-preserving filtering in the space domain
(usually performed along the edge direction) can be used, and the filtering direction
is determined by the motion information between adjacent frames. The motion
adaptive filter can be constructed with reference to the edge-preserving filter in the
spatial domain. For example, at a specific pixel in a certain frame, it can be assumed
that there are five possible motion trends next: no motion, motion in the positive
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direction of X, motion in the negative direction of X, motion in the positive direction
of Y, and motion in the negative direction of Y. If the minimum mean square error
estimation is used to determine the actual motion trend, and the changes along the
time axis produced by the motion from the changes caused by the noise are
distinguished, then the overall good filtering effect can be obtained by filtering
only in the corresponding motion direction.

4.4.1.2 Using Motion Detection Information

In order to determine the parameters in the filter, the motion detection can also be
used to adapt the designed filter to the specific conditions of the motion. The filter
can be a finite impulse response (FIR) filter or an infinite impulse response (IIR)
filter, namely

f FIR x, y, tð Þ= 1- βð Þf x, y, tð Þ þ βf x, y, t- 1ð Þ 4:38Þ
f IIR x, y, tð Þ= 1- βð Þf x, y, tð Þ þ βf IIR x, y, t- 1ð Þ 4:39Þ

where

β= max 0,
1
2
- αjg x, y, tð Þ- g xð , y, t- 1Þj

n
ð4:40Þ

It is the signal obtained by motion detection, and α is a scalar constant. These
filters will be turned off (set β to 0) when the motion amplitude is large (the second
item on the right will be less than zero) to avoid artificial error.

It can be seen from Eq. (4.38) that the FIR filter is a linear system, and the
response to the input signal eventually tends to 0 (i.e., finite). It can be seen from
Eq. (4.39) that there is a feedback loop in the IIR filter, so the response to the pulse
input signal is infinite. Relatively speaking, FIR filters have limited noise elimination
capabilities, especially when only time domain filtering is performed and the number
of frames involved in filtering is small. IIR filter has stronger noise cancellation
ability, but its impulse response is infinite: when the input signal is finite, the output
signal will become infinite. FIR filters are more stable and easier to optimize than IIR
filters, but they are more difficult to design.

4.4.2 Motion Compensation-Based Filtering

The motion compensation filter acts on the motion trajectory and needs to use
accurate information at each pixel on the motion trajectory. The basic assumption of
motion compensation is that the pixel gray level remains unchanged on a determined
motion trajectory.
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4.4.2.1 Motion Trajectory and Time-Space Spectrum

The motion on the image plane corresponds to the 2-D motion or motion rate of the
spatial scene point under projection. In each frame of image, the points in the scene
move along a curve in the XYT space, which is called a motion trajectory. The
motion trajectory can be described by a vector function M(t; x, y, t0), which
represents, at time t, the horizontal and vertical coordinates of the reference point
(x, y) at time t0. An explanatory diagram is shown in Fig. 4.12, where at time t′,M(t′;
x, y, t0) = (x′, y′).

Given the trajectory M(t; x, y, t0) of a point in the scene, the velocity along the
trajectory at time t′ and position (x′, y′) is defined as

s x0, y0, t0ð Þ= dM
dt

t; x, y, t0ð Þjt= t ′ ð4:41Þ

Next, consider the case where there is only a uniform global motion in the video.
When there is a uniform motion of (sx, sy) on the image plane, the grayscale change
between frames can be represented as

f M x, y, tð Þ= f M x- sxt, y- syt, 0
� �

≈ f 0 x- sxt, y- syt
� � ð4:42Þ

Among them, sx and sy are the two components of the motion vector, the reference
frame is selected at t0 = 0, and f0(x, y) represents the grayscale distribution in the
reference frame.

In order to derive the spatial-temporal spectrum of this video, first define the
Fourier transform of any spatial-temporal function as

FM u, v, wð Þ=
ZZZ

f M x, y, tð Þ exp - j2π uxþ vyþ wtð Þ½ dxdydt ð4:43Þ

Substituting Eq. (4.42) into Eq. (4.43), it gives

Fig. 4.12 Motion trajectory
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Fig. 4.13 The definition
domain of global uniform
motion

(sx, sy, 1)
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u

FM u, v, wð Þ= f 0 x- sxt, y- syt exp - j2π uxþ vyþ wtð Þ½ dxdydt

=F0 u, vð Þ � δ usx þ vsy þ w
� �

ð4:44Þ

The delta function in Eq. (4.44) shows that the definition domain of spatial-
temporal spectrum (support set) is a plane that satisfies Eq. (4.38) and passes through
the origin (as shown in Fig. 4.13):

usx þ vsy þ w= 0 ð4:45Þ

4.4.2.2 Filtering Along the Motion Trajectory

The filtering along the motion trajectory refers to the filtering of each point on
each frame along the motion trajectory. First consider the situation along an arbitrary
motion trajectory. The output of the filter defined at (x, y, t) is

g x, y, tð Þ=F f 1 q½ ;M q; x, y, tð Þ�f g ð4:46Þ

where f1[q;M(q; x, y, t)]= fM[M(q; x, y, t), q] means that the motion trajectory along
(x, y, t) is a 1-D signal in the input image and F represents the 1-D filter along the
motion trajectory (which can be linear or non-linear).

The linear and spatial invariant filtering along a uniform motion trajectory can be
represented as

g x, y, tð Þ=
ZZZ

h1 qð Þδ z1 - sxq, z2 - syq
� �

f M x- z1, y- z2, t- qð dz1dz2dq

=
Z

h1 qð Þf M x- sxq, y- syq, t- q
� �

dq=
Z

h1 qð Þf 1 t- q; x, y, tð dq

ð4:47Þ
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Fig. 4.14 Definition domain of the frequency response of the motion compensation filter

In Eq. (4.47), h1(q) is the impulse response of the 1-D filter used along the motion
trajectory. The impulse response of the above-mentioned spatial-temporal filter can
also be represented as

h x, y, tð Þ= h1 tð Þδ x- sxt, y- syt
� � ð4:48Þ

Perform 3-D Fourier transform on Eq. (4.48) to get the frequency domain
response of the motion compensation filter:

H u, v, wð Þ=
ZZZ

h1 tð Þδ x- sxt, y- syt
� �

exp - j2π uxþ vyþ wtð½ dxdydt

=
Z

h1 tð Þ exp - j2π usx þ vsy þ w
� �

t

 �

dt=H1 usx þ vsy þ w
�

ð4:49Þ

Project the definition domain of the frequency domain response of the motion
compensation filter to the uw plane, as shown in the shaded part in Fig. 4.14, and the
diagonal lines in the figure represent the motion trajectory. Figure 4.14a corresponds
to sx = 0, that is, pure time domain filtering without motion compensation; and
Fig. 4.14b represents the situation when motion compensation is right and sx is
matching to speed in the input video.

4.4.2.3 Motion Compensation Filter

It is assumed here that along the path of the motion trajectoryM(q; x, y, t), the change
of the pixel gray level is mainly owing to noise. Due to different motion estimation
methods, different domains of filters (such as spatial domain or temporal domain),
and different filter structures (such as FIR or IIR), there are many types of motion
compensation filters.
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(x, y)

k+1 th frame k+2 th framek–2 th frame k–1 th frame k th frame

Fig. 4.15 Motion trajectory estimation

Figure 4.15 shows a schematic diagram of motion trajectory estimation in a
sampling sequence in the time-space domain, where five frames of images are
taken as an example. Assuming that N frames of images are used to filter the k-th
frame of images, these N frames of images can be denoted as k - M, ..., k - 1,
k, k + 1, ..., k + M, where N = 2 M + 1. First estimate the discrete motion trajectory
M(l; x, y, t) at (x, y) of the k-th frame image, l = k -M, ..., k - 1, k, k + 1, ..., k +M.
The function M(l; x, y, t) is a continuous vector function, which gives the pixel
coordinates in the l-th frame of image corresponding to the pixel at (x, y) in the k-th
frame of image. The solid arrows in Fig. 4.15 indicate the trajectory of motion. When
estimating the trajectory, refer to the k-th frame of image to estimate the offset
vector, as shown by the dotted arrow.

Considering that the noise is zero mean and additive spatial-temporal noise, the
noisy video image that needs to be filtered at this time is

g x, y, tð Þ= f x, y, tð Þ þ n x, y, tð Þ ð4:50Þ

If the noise is white in space and time, its frequency spectrum is evenly distrib-
uted. According to Eq. (4.45), the definition domain of video is a plane, and
designing an appropriate motion compensation filter can effectively eliminate all
noise energy outside the plane without blurring. Equivalently, in the spatial-temporal
domain, white noise with zero mean can be completely filtered out as long as it
follows the correct trajectory.

After the definition domain of the motion compensation filter is determined,
various filtering methods can be used for filtering. Two basic methods are described
below.

4.4.2.4 Spatial-Temporal Adaptive Linear Minimum Mean Square
Error Filtering

The spatial-temporal adaptive linear minimum mean square error (LMMSE)
filtering can be performed as follows. The pixel estimate at (x, y, t) is
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f e x, y, tð Þ= σ2f x, y, tð Þ
σ2f x, y, tð Þ þ σ2n x, y, tð Þ g x, y, tð Þ- μg xð , y, tÞ
 þ μf x, y, tð Þ ð4:51Þ

In Eq. (4.51), μf (x, y, t) and σf
2(x, y, t) correspond to the mean value and the

variance of the noise-free image, respectively; μg(x, y, t) represents the mean value of
the noisy image; and σn

2(x, y, t) represents the variance of the noise. Considering
stationary noise, it can also be obtained:

f e x, y, tð Þ= σ2f x, y, tð Þ
σ2f x, y, tð Þ þ σ2n x, y, tð Þ g x, y, tð Þ

þ σ2n x, y, tð Þ
σ2f x, y, tð Þ þ σ2n x, y, tð Þ μg x, y, tð Þ ð4:52Þ

From Eq. (4.52), the adaptive ability of the filter can be seen. When the variance
of the spatial-temporal signal is much smaller than the noise variance, σf

2(x, y, t)≈ 0,
the above estimation approximates the spatial-temporal mean value, μg = μf. On the
other extreme, when the variance of the spatial-temporal signal is much greater than
the variance of the noise, σf

2(x, y, t) >> σn
2(x, y, t), the above estimation will

approximate the value of the noisy image to avoid blurry.

4.4.2.5 Adaptive Weighted Average Filtering

Adaptive weighted average (AWA) filtering calculates a weighted average of
image values along the motion trajectory in space and time. The weight is deter-
mined by optimizing a criterion function, and its value depends on the accuracy of
the motion estimation and the spatial uniformity of the region around the motion
trajectory. When the motion estimation is sufficiently accurate, the weights tend to
be consistent, and the AWA filter performs direct spatial-temporal averaging. When
the difference between the value of a pixel in the space and the value of the pixel to
be filtered is greater than a given threshold, the weight for this pixel is reduced, and
the effects of other pixels are strengthened. Therefore, the AWA filter is particularly
suitable for filtering when different scenes are contained in the same image region
caused by rapid zooming or viewing angle changes of camera. In this case, the effect
is better than that of the spatial-temporal adaptive linear minimum mean square error
filter.

The AWA filter can be defined as follows:

bf x, y, tð Þ=
X

r, c, kð Þ2 x, y, tð Þ
w r, c, kð Þg r, c, kð Þ ð4:53Þ

where
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w r, c, kð Þ= K x, y, tð Þ
1þ αmax ε2, g x, y, tð Þ- g rð , c, kÞ½ 2

n ð4:54Þ

is the weight, K(x, y, t) is the normalization constant:

K r, c, kð Þ=
X

r, c, kð Þ2 x, y, tð Þ

1

1þαmax ε2, g x, y, tð Þ-g rð , c, kÞ½ 2
n

8<
:

9=
;

-1

ð4:55Þ

In Eqs. (4.53) and (4.54), both α (α > 0) and ε are filter parameters, and they are
determined according to the following principles:

1. When the grayscale difference of pixels in the spatial-temporal region is mainly
caused by noise, it is best to convert the weighted average to a direct average,
which can be achieved by appropriately selecting ε2. In fact, when the square of
the difference is less than ε2, all weights take the same value K/(1+ αε2) = 1/L,

and bf x, y, tð Þ degenerates into a direct average. Therefore, the value of ε2 can be
set to twice the noise variance.

2. When the difference between g(x, y, t) and g(r, c, k) is greater than ε2, then
the contribution of g(r, c, k) is weighted by w(r, c, k) < w(x, y, t) = K/(1 + αε2).
The parameter α acts as a “penalty” term, which determines the sensitivity of the
weight to the squared difference [g(x, y, t)- g(r, c, k)]2. Generally, it can be set to
1. At this time, the pixels whose grayscale difference between each frame is
greater than ±ε will participate in the average.

4.5 Key Points and References for Each Section

The following combines the main contents of each section to introduce some
references that can be further consulted.

1. Video Basic
For more introduction to the basic concepts of video, please refer to [1, 2].

2. Motion Classification and Representation
For the applications of the histogram of the motion vector direction and the

histogram of the motion region type, please refer to [3]. The motion trajectory
descriptor recommended by the international standard (MPEG-7) can be found in
[4, 5].

3. Motion Information Detection
The original introduction to the integral image can be found in [6].



[Hint] The three formats are sorted by data volume and quality, respectively.

The maximum value of CB can only be obtained at one point.

[Hint] Refer to the representation of RGB color space.
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4. Motion-Based Filtering
The principle of eliminating noise with the help of frame averaging can be

found in the book 2D Computer Vision: Principles, Algorithms and Applications.

Self-Test Questions

The following questions include both single-choice questions and multiple-choice
questions, so each option must be judged.

4.1 Video Basic

4.1.1 Video has many different representation forms; among the three formats
introduced, (�).
(a) The data volume of the component video format is the smallest.
(b) The data volume of the S-video format is the smallest.
(c) The quality of S-video format is the worst.
(d)

4.1.2 I

The quality of the composite video format is the worst.

n the practical YCBCR color coordinate system, (�).
(a)
(b) The minimum value of CR can only be obtained at one point.
(c) The value range of Y is smaller than the value ranges of CB and CR.
(d)

4.1.3

The value range of Y is larger than the value ranges of CB and CR.

The video bit rate (b/s) of NTSC color TV system is (�).
(a)
(b) 373 M
(c) 498 M
(d) 746 M

[Hint] Calculate according to Eq. (4.4).
4.2 Motion Classification and Representation

4.2.1 Between the foreground motion and background motion, (�).
(a) The foreground motion is more complicated.
(b) Background motion is more difficult to detect than foreground

motion.
(c) The foreground motion is related to the motion of the camera.
(d) Background motion generally has the characteristics of strong

integrity.



The image can be divided into blocks.

[Hint] The vector has magnitude and direction, and the vector superimposed
on the original image describes the motion speed of the image block.

Fig. 4.17a
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Fig. 4.16 Original figure

Fig. 4.17 Figures superimposed with optical flow vectors

[Hint] Foreground motion is also called local motion; background motion is
also called global motion or camera motion.

4.2.2 By observing the image obtained through superimposing the calculated
motion vector on the original image, (�).
(a)
(b) The spatial position of the motion can be determined.
(c) It can understand the magnitude and direction of the motion.
(d) I

4.2.3

t can distinguish background motion and foreground motion.

When the figure in Fig. 4.16 rotates clockwise around the center, the
figure superimposed with the optical flow field vector is the closest to (�).
(a)
(b) Fig. 4.17b
(c) Fig. 4.17c
(d) Fig. 4.17d

[Hint] When drawing the line segment representing the vector, pay attention
to the starting point and length, where the length is proportional to the linear
velocity of motion.

4.3 Motion Information Detection

4.3.1 The six motion types of the camera can be combined to form three types
of operations, among which the translation operations include (�).
(a) Scanning, tilting, zooming
(b) Tilting, zooming, tracking



[Hint] Analyze the camera motion conditions represented by various motion
types in detail.

k0 = 0, k1 = 0, k2 = 3, k3 = 0, k4 = 0, k5 = 5

[Hint] Substitute into Eq. ( ) to calculate.4.12

[Hint] Analyze the characteristics of motion adaptive filtering in detail.

[Hint] Analyze according to Eqs. ( ) and ( ).4.394.38
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(c) Zooming, tracking, lifting
(d)

4.3.2

Tracking, lifting, dollying

Suppose the motion vector of a point in the image is [3, 5], then the
values of the coefficients in its six-parameter motion model are (�).
(a)
(b) k0 = 0, k1 = 3, k2 = 0, k3 = 0, k4 = 0, k5 = 5
(c) k0 = 0, k1 = 0, k2 = 3, k3 = 0, k4 = 5, k5 = 0
(d)

4.3.3

k0 = 0, k1 = 3, k2 = 0, k3 = 0, k4 = 5, k5 = 0

For detecting the change of object scale in the frequency domain, (�).
(a) It needs to calculate the Fourier transform phase angle of the object

image.
(b) It needs to calculate the Fourier transform power spectrum of the

object image.
(c) If the scale change value is greater than 1, it indicates that the object

size has increased.
(d) If the scale change value is smaller than 1, it indicates that the object

size has reduced.

[Hint] Analyze the meaning of each parameter in Eq. (4.32).
4.4

4.4.1

Motion-Based Filtering

Motion adaptive filtering (�).
(a) Is a filtering method based on motion detection
(b) Is a filtering method based on motion compensation
(c) Uses the motion information between adjacent frames to determine

the filtering direction
(d)

4.4.2

Detects the changes in noise intensity along the time axis

Which of the following statement(s) is/are correct? (�).
(a) It is difficult to design an infinite impulse response filter.
(b) The infinite impulse response filter updates its response iteratively.
(c) The finite impulse response filter uses feedback to limit the output

signal length.
(d) The output signal of the finite impulse response filter is finite when

the input signal is infinite.



Suppose the gray scale of moving pixels is constant.
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4.4.3 In the filtering based on motion compensation, (�).
(a)
(b) Consider that all points in the scene are projected onto the XY plane.
(c) Suppose that the trajectory of the point is a straight line along the

time axis.
(d) Need to apply the motion compensation filter to the motion

trajectory.

[Hint] Analyze the characteristics of motion compensation filtering.
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Chapter 5
Moving Object Detection and Tracking

In order to analyze the change information in the image or to detect the moving
object, it is necessary to use an image sequence (also called a dynamic image). An
image sequence is composed of a series of 2-D (spatial) images that are continuous
in time or a special type of 3-D image, which can be represented as f(x, y, t).
Compared with the still image f(x, y), the time variable t is added here. When
t takes a certain value, one frame of image in the sequence is obtained. Generally,
video is considered to be a sequence of images with regular changes in t (generally
collected 25 to 30 times per second).

Unlike a single image, the continuously collected image sequence can reflect the
movement of the scene and the change of the scene. On the other hand, objective
things are always in constant motion and change, motion is absolute, and stillness is
relative. An image is a special case of an image sequence. The changes of the scene
and the movement of the scene are more obvious and clear in the sequence images.

The analysis of the motion in the image sequence is not only based on the analysis
of the object in the still image but also needs to be expanded in technology, changed
in means, and expanded in purpose.

The sections of this chapter are arranged as follows:

Section 5.1 introduces the basic method of using pixel-by-pixel difference to detect
change information. The cumulative difference image can better overcome the
influence of random noise.

Section 5.2 discusses some basic background modeling methods and compares their
effects, including single Gaussian model-based methods, video initialization-
based methods, Gaussian mixture model-based methods, and codebook-based
methods.

Section 5.3 introduces the derivation of the optical flow equation and the least square
method of optical flow estimation. On this basis, the optical flow in motion is
analyzed, and a dense optical flow algorithm based on the brightness gradient is
given.
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Section introduces several typical moving object tracking methods, including
Kalman filter, particle filter, and mean shift and kernel tracking technology.

5.4
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5.1 Differential Image

The movement change of the scenery in the scene will lead to the change of the
object in the video image, and this change generally corresponds to a local region.
The simplest method for moving object detection is to find changes in local regions.

In video, the difference between the two images before and after can be directly
obtained by comparing pixel by pixel. This image is called a difference image.
Assuming that there is basically no change in the lighting conditions between
multiple frames, then the value in the difference image is not zero, indicating that
the pixel at that position may have moved (i.e., the pixel at this position in the next
frame of image has moved, and the pixel of the next position now occupies this
position, causing the grayscale difference to change). It should be noted that the pixel
with value zero in the difference image may also have moved (i.e., the new pixel
moved over has the same grayscale as the original pixel). In other words, generally,
the difference between two adjacent images in time can highlight the changes in the
position and shape of the moving object in the image.

5.1.1 Calculation of Difference Image

Refer to Fig. 5.1a, assuming that the gray level of the object is brighter than the gray
level of the background. With the help of difference calculation, one can get the
positive value region before the motion and the negative value region after the
motion. In this way, the motion information of the object can be obtained, and the
shape of some parts of the object can also be obtained. If the difference between a
series of images is calculated, and the regions with positive or negative values in the
difference image are logically combined, then the shape of the entire object can be

Positive

Negative

Motion

Fig. 5.1 Using difference images to extract objects
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determined. Figure 5.1b shows an example. The rectangular region is gradually
moved downward, and the different parts of the elliptical object are drawn in turn,
and the results of different time are combined to produce a complete elliptical object.

If a series of images are acquired with relative motion between the image
acquisition device and the scene being photographed, the motion information
existing in it can be used to help determine the changed pixels in the image. Suppose
two images f(x, y, ti) and f(x, y, tj) are collected at time ti and tj, then the difference
image can be obtained accordingly:

dij x, yð Þ= 1 jf x, y, tið Þ- f xð , y, tjÞj> Tg

0 otherwise

�
ð5:1Þ

where Tg is the gray level threshold. The pixels with 0 in the difference image
correspond to the places where there is no change (due to motion) between the two
moments before and after. The pixel of 1 in the difference image corresponds to the
change between the two images, which is often caused by the motion of the object.
However, the pixel of 1 in the difference image may also originate from different
situations. For example, f(x, y, ti) is a pixel of a moving object and f(x, y, tj) is a
background pixel or vice versa. It may also be that f(x, y, ti) is a pixel of a moving
object and f(x, y, tj) is a pixel of another moving object or even a pixel of the same
moving object but at different positions (may have different gray levels).

The threshold Tg in Eq. (5.1) is used to determine whether there is a significant
difference in the gray levels of the images at two different moments. Another method
for judging the significance of gray level differences is to use the following likeli-
hood ratio:

σiþσj
2 þ μi - μj

2

� �2h i2
σi � σj > Ts ð5:2Þ

where each μ and σ are the mean and variance of the two images collected at time ti
and tj, respectively, and Ts is the significance threshold.

In the actual situation, due to the influence of random noise, the difference
between two images is not zero where there is no pixel shift. In order to distinguish
the effect of noise from the movement of pixels, a larger threshold can be used for the
difference image, that is, when the difference is greater than a certain threshold, it is
considered that the pixel has moved. In addition, the pixels that are 1 due to noise in
the difference image are generally isolated, so they can also be removed based on
connectivity analysis. But doing so will sometimes eliminate slow motion objects
and/or smaller objects.
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5.1.2 Calculation of Accumulative Difference Image

To overcome the above-mentioned random noise problem, one can consider using
multiple images to calculate the difference image. If the change in a certain location
only occasionally occurs, it can be judged as noise. Suppose there are a series of
images f(x, y, t1), f(x, y, t2), . . ., f(x, y, tn), and take the first image f(x, y, t1) as the
reference image. The accumulative difference image (ADI) can be obtained by
comparing the reference image with each subsequent image. Here, it is supposed that
the value of each position in the image is the sum of the number of changes in each
comparison.

Refer to Fig. 5.2. Fig. 5.2a shows the image collected at the time t1. There is a
square object in the image. Let it move 1 pixel horizontally to the right per unit time.
Figure 5.2b, c are the following images collected at time t2 and time t3, respectively;
Fig. 5.2d, e show the accumulative difference (d ) of the images corresponding to
time t2 and time t3, respectively. The accumulative difference in Fig. 5.2d is also the
ordinary difference discussed earlier (because it is only accumulated once at this
time). The square marked 1 on the left represents the gray level difference (one unit)
between the object trailing edge of Fig. 5.2a and the backgrounds of Fig. 5.2b; the
square marked with 1 on the right corresponds to the gray level difference between
the background of Fig. 5.2a and the front edge of the object in Fig. 5.2b (also one
unit). Figure 5.2e can be obtained by adding the gray level difference (a unit)
between Fig. 5.2a, c to Fig. 5.2d (two accumulations), where the gray level differ-
ence between positions 0 and 1 is 2 units and the gray level difference between
positions 2 and 3 is also 2 units.

Referring to the above example, it can be seen that the accumulative difference
image ADI has three functions:

1. The gradient relationship between adjacent pixel values in ADI can be used to
estimate the speed vector of the object motion, where the direction of the gradient
is the direction of the speed and the magnitude of the gradient is proportional to
the speed.

0 031 12 2 3 104 45 5 5
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Fig. 5.2 Determining the motion of the object with the accumulative difference image
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2. The number of pixels in ADI can help determine the size and moving distance of
the moving object.

3. ADI contains all the historical data of the object motion, which is helpful for
detecting slow motion and the motion of smaller objects.

In practical applications, three types of ADI images can be further distinguished:
absolute ADI, denoted as Ak(x, y); positive ADI, denoted as Pk(x, y); and negative
ADI, denoted as Nk(x, y). Assuming that the gray level of the moving object is
greater than the gray level of background, then for k > 1, the following three
definitions of ADI can be obtained (take f(x, y, t1) as the reference image):

Ak x, yð Þ= Ak- 1 x, yð Þ þ 1 jf x, y, t1ð Þ- f xð , y, tkÞj> Tg

Ak- 1 x, yð Þ otherwise

�
ð5:3Þ

�
Pk x, yð Þ= Pk- 1 x, yð Þ þ 1 f x, y, t1ð Þ- f x, y, tkð Þ½ > Tg

Pk- 1 x, yð Þ otherwise
ð5:4Þ

Nk x, yð Þ= Nk- 1 x, yð Þ þ 1 f x, y, t1ð Þ- f x, y, tkð Þ½ < - Tg

Nk- 1 x, yð Þ otherwise
ð5:5Þ

The values of the above three ADI images are the result of counting the pixels,
and they are all zero initially. The following information can be obtained from them:

1. The area of the non-zero region in the positive ADI image is equal to the area of
the moving object.

2. The position of the corresponding moving object in the positive ADI image is the
position of the moving object in the reference image.

3. When the moving object in the positive ADI image does not coincide with the
moving object in the reference image, the positive ADI image stops counting.

4. The absolute ADI image contains all object regions in the positive ADI image and
the negative ADI image.

5. The moving direction and speed of the moving object can be determined
according to the absolute ADI image and the negative ADI image.

5.2 Background Modeling

Background modeling is a kind of idea for motion detection, which can be realized
by different technologies, and it is applied in many moving object detection.
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5.2.1 Basic Principle

The calculation of the difference image introduced in Sect. 5.1 is a simple and fast
motion detection method, but the effect is not good enough in many practical
situations. This is because when calculating the difference image, all environmental
fluctuations (background clutter), lighting changes, camera shake, etc. and the
effects of the object motion are mixed together and all detected at the same time
(especially when the first frame is always used as the reference frame, the problem is
more serious), so only in very strictly controlled situations (such as when the
environment and background are unchanged) can the real object motion be
separated.

A more reasonable motion detection idea is not to regard the background as
completely unchanged but to calculate and maintain a dynamic (satisfying a certain
model) background frame. This is the basic idea of background modeling. Back-
ground modeling is a training-testing process. Firstly, a background model is trained
using some of the first frame images in the video image sequence, and then this
model is used to test the subsequent frames, and motion is detected based on the
difference between the current frame image and the background model.

A simple background modeling method is to use the average or median value of
the previous N frames in the detection of the current frame to determine and update
the value of each pixel in the period of N frames. A specific algorithm mainly
includes the following steps:

1. Obtain the first N frames of images, and determine the median value of these
N frames at each pixel as the current background value.

2. Obtain the N + 1-th frame, and calculate the difference between this frame and
current background at each pixel position (the difference can be threshold to
eliminate or reduce noise).

3. Use a combination of smoothing or morphological operations to eliminate very
small regions in the difference image and fill holes in large regions. The reserved
region represents the moving object in the scene.

4. Update the median value with the N + 1-th frame.
5. Return to Step (2), and consider the next frame of the current frame.

This basic method of using the median to maintain the background is relatively
simple and has a small amount of calculation, but the effect is not very good when
there are multiple objects in the scene at the same time or when the object motion
is slow.

5.2.2 Typical Practical Methods

Several typical basic methods for background modeling are introduced below. They
all divide the motion foreground extraction into two steps: model training and actual
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detection. A mathematical model is established for the background through training,
and the built model is used to eliminate the background in the detection to obtain the
foreground.

5.2.2.1 Method Based on Single Gaussian Model

The method based on the single Gaussian model believes that the value of the pixel
in the video sequence obeys the Gaussian distribution. Specifically, for each fixed
pixel position, the mean μ and variance σ of the pixel value at that position in the
N-frame training image sequence are calculated, and thus a single Gaussian back-
ground model is uniquely determined. In motion detection, the background subtrac-
tion method is used to calculate the difference between the value f of the pixel in the
current frame image and the background model, and then the difference with the
threshold T (usually three times the variance σ) is compared, that is, according to |
f – μ| ≤ 3σ the pixel as foreground or background can be determined.

This model is relatively simple, but the disadvantage is that it is more sensitive to
changes in lighting intensity. Sometimes when both the mean and variance change,
the model will not be valid. It generally requires that the lighting intensity has no
obvious change in a long time, and the shadow of the moving foreground in the
background during the detection period is small. In addition, when there is a moving
foreground in the scene, since there is only one model, the moving foreground
cannot be separated from the static background, which may cause a larger false
alarm rate.

5.2.2.2 Method Based on Video Initialization

In the training sequence, the background is generally required to be static. If there is
still moving foreground in the training sequence, problems may occur. At this time,
if the background value on each pixel can be extracted first, the static background
and the moving foreground can be separated, and then the background modeling can
be performed, so it is possible to overcome the aforementioned problems. This
process can also be seen as initializing the training video before modeling the
background, so as to filter out the influence of the motion foreground on the
background modeling.

The video initialization can be specifically performed as follows. For N frames of
training images with moving foreground, first set a minimum length threshold Tl,
and intercept the sequence of length N at each pixel position to obtain several
sub-sequences {Lk}, K= 1, 2, . . ., with relatively stable pixel values and with length
greater than Tl. From this, a longer sequence with a smaller variance is selected as the
background sequence.

Through this initialization step, the situation where the background is static but
there is a moving foreground in the training sequence can be transformed into a
situation where the background is static and there is no moving foreground in the
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training sequence. When the background modeling problem with moving fore-
ground under the static background is transformed into the background modeling
problem without moving foreground under the static background, the aforemen-
tioned method based on the single Gaussian model can still be used for background
modeling.

5.2.2.3 Method Based on Gaussian Mixture Model

If there is motion for the background in the training sequence, the method based on
the single Gaussian model will not work well. At this time, a more robust and
effective method is to model each pixel with a mixed Gaussian distribution, that is,
introduce a Gaussian mixture model (GMM) to model multiple states of the
background separately, and update the model parameters of state according to
which state the data belongs to, in order to solve the background modeling problem
under the motion background.

The basic method based on Gaussian mixture model is to read each frame of
training images in turn, and iteratively model every pixel in every occasion. Suppose
a pixel can be (mixed) modeled with multiple Gaussian distribution weights at a
certain moment. Set an initial standard deviation at the beginning of training. When a
new image is read in, its pixel values are used to update the original background
model. Compare each pixel value with the Gaussian function value at this time. If it
falls within 2.5 times the variance around the mean, it is considered a match, that is,
the pixel is considered to be compatible with the model, and its pixel value can be
used to update the mean and variance of Gaussian mixture model. If the number of
current pixel models is less than expected, a new model is established for this pixel.
If there are multiple matches, one can choose the best.

If no match is found, the Gaussian distribution corresponding to the lowest
weight is replaced with a new Gaussian distribution with a new mean. Compared
with other Gaussian distributions, the new Gaussian distribution has higher variance
and lower weight at this time and may become part of the local background. If the
models have been judged and they do not meet the conditions, replace the model
with the smallest weight with the new model. The mean of the new model is the
value of the pixel, and then an initial standard deviation is set. This is done until all
training images have been trained.

5.2.2.4 Method Based on Codebook

In the codebook-based method, each pixel is represented by a codebook. A codebook
can contain one or more code words, and each code word represents a state. The
codebook was originally generated by learning a set of training frame images. There is
no restriction on the content of the training frame image, which can include moving
foreground or moving background. Next, use a time domain filter to filter out the code
words representing the moving foreground in the codebook, and retain the code words
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representing the background; then use a spatial filter to restore the code words
(representing the rare background) filtered by error with the time domain filter to the
codebook, to reduce the false alarms of sporadic foreground in the background region.
Such a codebook represents a compressed form of the background model of a video
sequence. The background model can be constructed based on the codebook.

5.2.3 Effect Examples

Some test results of the above four background modeling methods are introduced as
follows. In addition to the visual effect, the average value of the detection rate (the
ratio of the number of detected foreground pixels to the number of real foreground
pixels) and the false alarm rate (the ratio of the number of detected pixels that do not
belong to the foreground to the number of all detected foreground pixels) is used for
quantitative comparison.

5.2.3.1 No Moving Foreground in Static Background

Consider the simplest case first. In the training sequence, the background is static and
there is no moving foreground. Figure 5.3 shows a set of images of experimental
results. In the image sequence used, there is only a static background in the initial
scene, and a person who enters the scene later is to be detected. Figure 5.3a is a scene
after the entering of a person, Fig. 5.3b shows the corresponding reference result, and
Fig. 5.3c shows the detection result obtained by the method based on the single
Gaussian model. It can be seen from Fig. 5.3c that there are many pixels in the
middle of the human body and the hair part (all in the lower gray value and relatively
consistent region) that are not detected, and there are some sporadic false detection
points on the background.

Fig. 5.3 The detection result when there is no moving foreground on a static background
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5.2.3.2 There Is a Moving Foreground in a Static Background

Consider a slightly more complicated situation. In the training sequence, the back-
ground is static, but there is a moving foreground. Figure 5.4 shows a set of images
of experimental results. In the sequence used, there is a person in the initial scene,
and then he leaves, and the person who has left the scene is to be detected.
Figure 5.4a is a scene when the person has not left. Figure 5.4b shows the
corresponding reference result, and Fig. 5.4c shows the result obtained by the
method based on video initialization. Figure 5.4d shows the results obtained with
the codebook-based method.

Comparing the two methods, the codebook-based method has a higher detection
rate and a lower false alarm rate than the video initialization method. This is because
the codebook-based method establishes multiple code words for each pixel, thereby
improving the detection rate; at the same time, the spatial filter used in the detection
process reduces the false alarm rate.

5.2.3.3 There Is a Moving Foreground in the Moving Background

Consider a more complicated situation. The background in the training sequence is
moving, and there is also a moving foreground. Figure 5.5 shows a set of images of
experimental results. In the sequence used, the tree is shaking in the initial scene, and
a person entering the scene is to be detected. Figure 5.5a is a scene after the entering
of a person. Figure 5.5b shows the corresponding reference results. Figure 5.5c
shows the results obtained by the Gaussian mixture model method. Figure 5.5d gives
the result obtained with the codebook-based method.

Fig. 5.4 The result when there is a moving foreground on a static background

Fig. 5.5 The result when there is a moving foreground on the moving background
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Comparing the two methods, both the method based on the Gaussian mixture
model and the method based on the codebook have more designing efforts for
moving background, and therefore both have a higher detection rate (the detection
rate of the former is slightly higher than the latter). Since the former has no
processing steps corresponding to the latter’s spatial filter, the false alarm rate of
the former is slightly higher than that of the latter.

5.3 Optical Flow Field and Motion

The motion of the scenery in the scene will cause the scenery in the video image
obtained during the motion to be in different relative positions. This difference in
position can be called parallax, which corresponds to the displacement vector
(including size and direction) reflecting the scenery motion on the video image. If
the parallax is divided by the time difference, the velocity vector (also called the
instantaneous displacement vector) can be obtained. All velocity vectors (may be
different each other) in each frame of image form a vector field, which can also be
called an optical flow field in many cases.

5.3.1 Optical Flow Equation

Suppose a specific image point is at (x, y) at time t, and the image point moves to
(x + dx, y + dy) at time t + dt. If the time interval dt is small, it can be expected
(or assumed) that the gray level of the image point remains unchanged; in other
words, there is

f x, y, tð Þ= f xþ dx, yþ dy, t þ dtð Þ 5:6Þ

Expand the right side of the above equation with Taylor series, set dt → 0, take
the limit, and omit the higher-order terms to get

-
∂f
∂t

=
∂f
∂x

dx
dt

þ ∂f
∂y

dy
dt

=
∂f
∂x

uþ ∂f
∂y

v= 0 ð5:7Þ

where u and v are the moving speed of the image point in the X and Y directions,
respectively, and they form a speed vector with three components:

f x =
∂f
∂x

f y =
∂f
∂y

f t =
∂f
∂t

ð5:8Þ

From Eq. (5.8), the optical flow equation obtained is
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f x, f y • u, v½ �T = - f t ð5:9Þ

The optical flow equation shows that the gray time change rate of a certain point
in a moving image is the product of the grayscale space change rate of the point and
the spatial motion speed of the point.

In practice, the grayscale time change rate can be estimated by the first-order
difference average along the time direction:

f t ≈
1
4
f x, y, tþ 1ð Þ þ f xþ 1, y, tþ 1ð Þ þ f x, yþ 1, tþ 1ð Þ½ f xþ 1, yþ 1, tþ 1ð

-
1
4
f x, y, tð Þ þ f xþ 1, y, tð Þ þ f x, yþ 1, tð Þ þ f xþ 1, yþ 1, tð½

ð5:10Þ

The grayscale spatial change rate can be estimated by the average value of the
first-order difference along the X and Y directions:

f x≈
1
4
f xþ 1, y, tð Þ þ f xþ 1, yþ 1, tð Þ þ f xþ 1, y, tþ 1ð Þ½ f xþ 1, yþ 1, tþ 1ð

-
1
4
f x, y, tð Þ þ f x, yþ 1, tð Þ þ f x, y, tþ 1ð Þ þ f x, yþ 1, tþ 1ð½

ð5:11Þ

f y≈
1
4
f x, yþ 1, tð Þ þ f xþ 1, yþ 1, tð Þ þ f x, yþ 1, tþ 1ð Þ½ f xþ 1, yþ 1, tþ 1ð

-
1
4
f x, y, tð Þ þ f xþ 1, y, tð Þ þ f x, y, tþ 1ð Þ þ f xþ 1, y, tþ 1ð½

ð5:12Þ

5.3.2 Optical Flow Estimation with Least Square Method

After substituting Eqs. (5.10) to (5.12) into Eq. (5.9), the least square method can be
used to estimate the optical flow components u and v. Take N pixels at different
positions on the same object with the same u and v on two consecutive images f(x, y,

t) and f(x, y, t + 1); usebf kð Þ
t ,bf kð Þ

x , andbf kð Þ
y to denote the estimations of ft, fx, and fy at the

k-th position (k = 1, 2, . . ., N ), respectively:
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Fig. 5.6 Optical flow detection example

f t =

-bf 1ð Þ
t

-bf 2ð Þ
t

⋮

-bf Nð Þ
t

6666664
7777775 Fxy =

bf 1ð Þ
x

bf 1ð Þ
ybf 2ð Þ

x
bf 2ð Þ
y

⋮ ⋮bf Nð Þ
x

bf Nð Þ
y

66666664
77777775 ð5:13Þ

Then the least square estimations of u and v are

u, v½ �T = FT
xyFxy

� �- 1
FT
xyf t ð5:14Þ

Example 5.1 Optical Flow Detection Example
Figure 5.6 shows a set of examples of optical flow detection and results. Figure 5.6a
is a side image of a sphere with a pattern, and Fig. 5.6b is a side image obtained by
rotating the sphere (around the vertical axis) a small angle to the right. The motion of
the sphere in the 3-D space reflected on the 2-D image is basically a translational
motion, so in the optical flow detected in Fig. 5.6c, the parts with larger optical flow
are distributed along the meridian, reflecting the result of horizontal motion of the
vertical edge.

5.3.3 Optical Flow in Motion Analysis

The image difference can be used to obtain the motion trajectory. The optical flow
cannot be used to obtain the motion trajectory, but information useful for image
interpretation can be obtained. Optical flow analysis can be used to solve a variety of
motion problems: camera stationary object moving, camera moving object station-
ary, and both are moving.

The motion in the dynamic image can be regarded as a combination of the
following four basic motions. The detection and recognition of them by optical
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Fig. 5.7 Recognition of motion forms

Fig. 5.8 Explanation of the optical flow field

flow can be carried out based on their characteristics with the help of some simple
operators.

1. Translation with a constant distance from the camera (may be along different
directions): a group of parallel motion vectors are formed; see Fig. 5.7a.

2. The translation along the line of sight in the depth direction relative to the camera
(symmetric in each direction): a set of vectors with the same focus of expansion
(FOE) are formed; see Fig. 5.7b.

3. Equidistant rotation around the line of sight: a group of concentric motion vectors
are produced; see Fig. 5.7c.

4. The rotation of the flat object orthogonal to the line of sight: constitute one or
more groups of vectors starting from the straight line; see Fig. 5.7d.

Example 5.2 Explanation of the Optical Flow Field
The optical flow field reflects the motion in the scene. Figure 5.8 shows some
examples of optical flow fields and their explanations (the length of the arrow
corresponds to the speed of motion). In Fig. 5.8a, only one object moves toward
the right; Fig. 5.8b corresponds to the camera moving forward (into the paper). At
this time, the fixed object in the scene appears to be starting and diverging outward
from the focus of expansion. In addition, there is a horizontal moving object that has
its own focus of expansion. Figure 5.8c corresponds to an object moving in the
direction of a fixed camera, and the focus of expansion is inside its contour (if the
object moves away from the camera, it appears to leave each focus of contraction
(FOC), which is opposite to the focus of expansion). Figure 5.8d corresponds to the
situation where an object rotates around the line of sight of the camera, while



5.3 Optical Flow Field and Motion 149

Fig. 5.8e corresponds to the situation where an object rotates around a horizontal
axis orthogonal to the line of sight; the feature points on the object appear to move up
and down (its contour may oscillate).

A lot of information can be obtained by analyzing motion using optical flow, such
as the following:

5.3.3.1 Mutual Velocity

The optical flow representation can be used to determine the mutual velocity T
between the camera and the object. Let the mutual velocities in the X, Y, and
Z directions of the world coordinate system be TX = u, TY = v, TZ = w, where
Z gives information about the depth (Z > 0 represents a point in front of the image
plane). If the coordinates of an object point at t0 = 0 are (X0, Y0, Z0), then the
coordinate of the image of that point (set the focal length of the optical system to one
and the object moving velocity is constant) at time t is

x, yð Þ= X0 þ ut
Z0 þ wt

,
Y0 þ vt
Z0 þ wt

	 

ð5:15Þ

5.3.3.2 Focus of Expansion

Next, use optical flow to determine the focus of expansion of the 2-D image.
Assuming that the motion is toward the camera, when t → -1, the motion starting
at an infinite distance from the camera can be obtained. This motion proceeds along a
straight line toward the camera, and the starting point on the image plane is

x, yð ÞFOE =
u
w
,

v
w

� �
ð5:16Þ

Note that this same equation can also be used for t→1; at this time the motion is
in the opposite direction. Any change in the direction of motion will cause changes
in the speed u, v, w and the position of the focus of expansion on the image.

5.3.3.3 Collision Distance

Assume that the origin of the image coordinates moves along the direction S = (u/w,
v/w, 1), and the trajectory in the world coordinate system is a straight line, namely
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X, Y , Zð Þ= t S= t
u
w
,
v
w
, 1 ð5:17Þ

where t represents time. Let X represent (X, Y, Z ); the position of the camera closest
to the world point X is

Xc =
S S •Xð Þ
S • S

ð5:18Þ

When the camera is moving, the minimum distance from the world point X is

dmin =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X •Xð Þ- S •Xð Þ2

S • S

r
ð5:19Þ

In this way, a collision occurs when the distance between a point camera and a
point object is less than dmin.

5.3.4 Dense Optical Flow Algorithm

In order to accurately calculate the local motion vector field, a luminance gradient-
based dense optical flow algorithm (also known as Horn-Schunck algorithm) can
be used, which gradually approximates the motion vector of each pixel between
adjacent frame images through an iterative method.

5.3.4.1 Solving the Optical Flow Equation

The dense optical flow algorithm is based on the optical flow equation. It can be seen
from the optical flow equation of (5.9) that there is one equation but two unknown
quantities (u, v) for each pixel, so the optical flow equation is an ill-conditioned
problem; it needs to add extra constraints to transform the problem into a solvable
problem. Here, the optical flow equation solving problem can be transformed into an
optimization problem by introducing optical flow error and velocity field gradient
error. First, define the optical flow error eof as the part of the motion vector field that
does not meet the optical flow equation, namely

eof =
∂f
∂x

uþ ∂f
∂y

vþ ∂f
∂t

ð5:20Þ

Obtaining the motion vector field is to minimize the sum of squares of eof in the
entire frame image, that is, to minimize eof is to make the calculated motion vector
meet the constraints of the optical flow equation as much as possible. In addition,
define the velocity field gradient error e2s as
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e2s =
∂u
∂x

2

þ ∂u
∂y

2

þ ∂v
∂x

2

þ ∂v
∂y

2

ð5:21Þ

The error e2s describes the smoothness of the optical flow field. The smaller the e2s,
the closer the optical flow field is to smooth. Therefore, the meaning of minimizing
e2s is to make the entire motion vector field as smooth as possible. The dense optical
flow algorithm considers two constraints at the same time, hoping to find the optical
flow field (u, v) that minimizes the weighted sum of the two errors in the entire frame,
namely

min
u x, yð Þ
v x, yð Þ

=
Z
A
e2of u, vð Þ þ w2e2s uð , vÞ� �

dxdy ð5:22Þ

where A represents the image region and w is the relative weight of optical flow error
and smoothing error, used to strengthen or weaken the influence of smoothness
constraints in the calculation.

When the motion in the scene is violent and the motion vector amplitude is large,
the optical flow error will also be relatively large, resulting in a large error in the
optimized result according to Eq. (5.22). An improvement at this time is to use the
displacement frame difference term

f xþ un, yþ vn, t þ 1ð Þ- f x, y, tð Þ ð5:23Þ

to substitute the optical flow error term eof and use the average gradient term

f x =
1
2

∂f
∂x

xþ un, yþ vn, t þ 1ð Þ þ ∂f
∂x

xð , y, tÞ
�

ð5:24Þ�
f y =

1
2

∂f
∂y

xþ un, yþ vn, t þ 1ð Þ þ ∂f
∂y

xð , y, tÞ ð5:25Þ

to substitute the partial derivatives ∂f/∂x and ∂f/∂y, respectively; in this way, it can
better approximate larger motion vectors.

Using the displacement frame difference term and average gradient term defined
by Eqs. (5.23) to (5.25), the increment of the motion vector, [Δu(x, y, t)n + 1, Δv(x, y,
t)n + 1], calculated in the n + 1th iteration can be represented by the following two
equations:

Δu x, y, tð Þnþ1 = - f x
f xþ un, yþ vn, t þ 1ð Þ- f xð , y, tÞ½

w2 þ f 2x þ f 2y
ð5:26Þ
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Δv x, y, tð Þnþ1 = - f y
f xþ un, yþ vn, t þ 1ð Þ- f xð , y, tÞ½

w2 þ f 2x þ f 2y
ð5:27Þ

Finally, because the dense optical flow algorithm uses the global smoothness
constraint, the motion vector at the boundary of the moving object will be smoothed
into a gradual transition, which will blur the motion boundary. The following
discusses how to use global motion information for motion compensation to obtain
motion vectors caused by local objects.

5.3.4.2 Global Motion Compensation

Based on the global motion parameters caused by the camera motion, the global
motion vector can be recovered according to the estimated motion parameters, so
that the global motion vector is first compensated in the dense optical flow algorithm,
and then the motion vector caused by local object is gradually approached with
iteration.

In the actual calculation process, the global motion vector of each pixel is first
calculated from the estimated global motion vector and then combined with the
current local motion vector as the initial value input for the next iteration. The
specific steps are as follows:

1. Set the initial local motion vector (ul, vl)0 of all points in the image to 0.
2. Calculate the global motion vector (ug, vg) of each point according to the global

motion model.
3. Calculate the actual motion vector of each pixel

un, vnð Þ= ug, vg þ ul, vlð Þn ð5:28Þ

where ul, vlð Þn is the average value of the local motion vector in the pixel neighbor-
hood after the n-th iteration.

4. Calculate the correction value (Δu, Δv)n + 1 of the motion vector at this point
according to Eqs. (5.26) and (5.27).

5. If the magnitude of (Δu, Δv)n + 1 is greater than a certain threshold T, then let

ul, vlð Þnþ1 = ul, vlð Þn þ Δu, Δvð Þnþ1 ð5:29Þ

and go to step (3); otherwise, end the calculation.
Figure 5.9 shows the comparison between the calculation results of the direct

block matching method (see Example 4.3) and the improved dense optical flow
iteration algorithm with global motion compensation. For the same original image,
Fig. 5.9a superimposes the motion vector field calculated by the block matching
method on it, and Fig. 5.9b superimposes the motion vector estimated for the global
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Fig. 5.9 Comparison of calculation results of block matching method and improved dense optical
flow iterative algorithm

motion (the global smoothness constraint causes the motion boundary to be incon-
spicuous and the motion vector amplitude is small); Fig. 5.9c superimposes the local
motion vector calculated by the dense optical flow iterative algorithm with global
motion compensation. It can be seen from these figures that the effect of global
motion in the results of the block matching method has been successfully compen-
sated, and the erroneous motion vectors in the low-texture background region have
also been eliminated, so that the motion vectors in the final result are concentrated on
the players and the ball that are moving upward are more in line with the local
motion content in the scene.

5.4 Moving Object Tracking

To track the moving object in the video is to detect and locate the same object in each
frame of the video image. The following difficulties are often encountered in
practical applications:

1. The object and the background are similar, and it is not easy to capture the
difference between the two.

2. The appearance of the object itself changes with time. On the one hand, some
objects are nonrigid, and their appearance will inevitably change with time; on the
other hand, external conditions such as light will change over time, whether it is a
rigid body or a nonrigid body.

3. During the tracking process, due to the change of the spatial position between the
background and the object, the tracked object may be blocked, and the (complete)
object information will not be obtained. In addition, tracking must take into
account the accuracy of object positioning and the real-time nature of the
application.

Moving object tracking often combines the location and representation of the
object (this is mainly a bottom-up process that needs to overcome the effects of
object appearance, orientation, lighting, and scale changes) and trajectory filtering
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and data fusion (this is a top-down process that requires consideration of the object’s
motion characteristics, the use of various prior knowledge and motion models, and
the promotion and evaluation of motion assumptions).

Moving object tracking can use many different methods, including contour-based
tracking, region-based tracking, mask-based tracking, feature-based tracking, and
motion information-based tracking. Tracking based on motion information is also
divided into tracking using the continuity of motion information and tracking using
the method of predicting the object location in the next frame to reduce the search
range. Several commonly used techniques are introduced below, among which both
Kalman filtering and particle filtering are methods to reduce the search range.

5.4.1 Kalman Filter

When tracking an object in the current frame, it is often desirable to be able to predict
its position in the subsequent frame, so that the previous information can be utilized
in maximum and the minimum search in the subsequent frame can be performed. In
addition, prediction is also helpful to solve the problems caused by short-term
occlusion. To this end, it is necessary to continuously update the position and
speed of the tracked object point:

xi = xi- 1 þ vi- 1 ð5:30Þ
vi = xi - xi- 1 ð5:31Þ

Here one needs to obtain three quantities: the original position, the optimal
estimate of the corresponding variable (model parameter) before the observation
(with sup-script mark -), and the optimal estimate of the corresponding variable
after the observation (with sup-script mark +). In addition, noise needs to be
considered. If m is used to represent the noise of position measurement and n is
used to represent the noise of velocity estimation, the above two equations become

x-
i = xþi- 1 þ vi- 1 þmi- 1 ð5:32Þ

v-i = vþi- 1 þ ni- 1 ð5:33Þ

When the velocity is constant and the noise is Gaussian noise, the optimal
solution is

x-
i = xþi- 1 ð5:34Þ

σ-
i = σþi- 1 ð5:35Þ

They are called prediction equations, and
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xþi =
xi=σ2i þ x-

i = σ-
i

2

1=σ2i þ 1= σ-
ið Þ2 ð5:36Þ

σþi =
1

1=σ2i þ 1= σ-
ið Þ2

1=2

ð5:37Þ

They are called correction equations, where σ± is the standard deviation
obtained by estimating x± with the corresponding model and σ is the standard
deviation of the original measurement x. Here is a brief explanation why the
variances in Eq. (5.37) are not combined in the usual way of addition. If there are
multiple error sources all acting on the same data, these variances need to be added
up. If each error source contributes the same amount of error, the variance needs to
be multiplied by the number of error sources M. In the opposite case, if there are
more data and the error source does not change, the variance needs to be divided by
the total number of data points N. So there is a natural ratio M/N to control the total
error. Here, a small-scale correlation variance is used to describe the results, so the
variances are combined in a special way.

It can be seen from the above equation that repeated measurements can improve
the estimation of the position parameters and reduce the errors based on them in each
iteration. Since the noise is modeled as the position, the positions earlier than i–1 can
be ignored. In fact, many position values can be averaged to improve the accuracy of
the final estimation, which will be reflected in the values of xi

-, σi
-, xi

+, and σi
+.

The above algorithm is called the Kalman filter, which is the best estimate for a
linear system with zero mean Gaussian noise. However, since the Kalman filter is
based on averaging, large errors will occur if there are outliers in the data. This
problem occurs in most motion applications, so each estimate needs to be tested to
determine if it is too far from the actual. Furthermore, this result can be generalized
to multi-variable and variable speed (even variable acceleration) situations. At this
time, define a state vector including position, velocity, and acceleration, and use
linear approximation to proceed.

5.4.2 Particle Filter

The Kalman filter requires that the state equation is linear and the state distribution is
Gaussian. These requirements are not always met in practice. Particle filter is an
effective algorithm for solving non-linear problems. The basic idea is to use random
samples (these samples are called “particles”) propagated in the state space to
approximate the posterior probability distribution (PPD) of the system state, thereby
obtaining the estimated value of system state. The particle filter itself represents a
sampling method by which a specific distribution can be approximated through a
time structure. Particle filters are also often referred to as sequential Monte Carlo
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methods, guided filtering, etc. In the research of image technology, it is also called
CONditional DENSity propagATION (CONDENSATION).

Suppose a system has a state Xt = {x1, x2, . . ., xt}, where the subscript represents
time. At time t, there is a probability density function that represents the possible
situation of xt, which can be represented by a group of particles (a group of sampling
states), and the appearance of particles is controlled by its probability density
function. In addition, there are a series of observations related to the probability of
state Xt, Zt = {z1, z2, . . ., zt}, and a Markov hypothesis that the probability of xt
depends on the previous state xt-1, which can be expressed as P(xt|xt-1).

Conditional density diffusion is an iterative process. At each step, a set of
N samples si with weight wi are maintained, namely

St = sti, wtið Þf g i= 1,2,⋯,N
X

i
wi = 1 ð5:38Þ

These samples and weights together represent the probability density function of
the state Xt given the observation Zt. Unlike the Kalman filter, the distribution does
not need to meet the constraints of single-mode, Gaussian distribution, etc. and can
be multi-mode. Now it is necessary to derive St from St-1.

The specific steps of particle filtering are as follows:

1. Suppose a set of weighted samples St - 1 = {s(t - 1)i,w(t - 1)i} at a known time t-
1. Let the cumulative probability of weight be

c0 = 0

ci = ci- 1 þ w t- 1ð Þi i= 1,2,⋯,N
ð5:39Þ

2. Randomly select a number r in the uniform distribution between [0 1], and
determine j= arg[mini(ci> r)] to calculate the n-th sample in St. Diffusing the j-
th sample in St-1 is called importance sampling, that is, adding the most weight
to the most likely sample.

3. Use the Markov property of xt to derive stn.
4. Obtain wtn = p(zt|xt = stn) by observing Zt.
5. Return to step (2) and iterate N times.
6. Normalize {wti} so that ∑iwi = 1.
7. Output the best estimate of xt:

xt =
XN
i= 1

wtisti ð5:40Þ
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Measurement k

Selection k

Resampling k

Prediction k

Measurement k+1

Fig. 5.10 The whole process of particle filtering

Example 5.3 Particle Filter Iteration Example
Consider the 1-D case, where xt and st are only scalar real numbers. Suppose that at
time t, xt has a displacement vt and is affected by zero-mean Gaussian noise e, that is,
xt+1 = xt + vt + et, et ~N(0, σ1

2). Further assume that zt is Gaussian distribution
centered on x, and the variance is σ2

2. Particle filtering needs to make N “guess” on
x1, and get S1 = {s11, s12, . . ., s1N}.

Now let’s generate S2. Choose a sj from S1 (without considering the value of w1i);
let s21 = sj + v1 + e, where e ~ N(0, σ1

2). Repeat the above process N times to

generate particles at t = 2. At this time, w2i = exp s2i - z2ð Þ2=σ22
h i

. Renormalize w2i

and the iteration ends. The estimate of x2 thus obtained is
PN

i w2is2i.

A more detailed description of the particle filter is as follows. The particle filter is
a recursive (iterative) Bayesian method that uses a set of samples of the posterior
probability density function at each step. With a large number of samples (particles),
it will be close to the optimal Bayesian estimation. The following is discussed with
the help of the schematic process shown in Fig. 5.10.

Consider the observations z1 to zk of an object in consecutive frames,
corresponding to the obtained object states x1 to xk. At each step, the most likely
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state of the object needs to be estimated. Bayes’ rule gives the posterior probability
density:

p xkþ1jz1:kþ1ð Þ= p zkþ1jxkþ1ð Þp xkþ1jz1:kð Þ
p zkþ1jz1:kð Þ ð5:41Þ

where the normalization constant is

p zkþ1jz1:kð Þ=
Z

p zkþ1jxkþ1ð Þp xkþ1jz1:kð Þdxkþ1 ð5:42Þ

The prior probability density can be obtained from the last time:

p xkþ1jz1:kð Þ=
Z

p xkþ1jxkð Þp xkjz1:kð Þdxk ð5:43Þ

Using the Markov hypothesis common in Bayesian analysis, it can get

p xkþ1jxk, z1:kð Þ= p xkþ1jxkð Þ 5:44Þ

That is, the transition probability required to update xk → xk + 1 depends only on
z1:k indirectly.

For the above equations, especially Eqs. (5.41) and (5.43), there is no universal
solution, but the constraint solution is possible. For the Kalman filter, it is assumed
that all posterior probability densities are Gaussian. If the Gaussian constraint does
not hold, a particle filter should be used.

To use this method, write the posterior probability density as the sum of the delta
function samples:

p xkj z1:kð Þ≈
XN
i= 1

wi
kδ xk - xik
� � ð5:45Þ

Among them, the weight is normalized by the following equation:

XN
i= 1

wi
k = 1 ð5:46Þ

Substituting Eq. (5.41) into Eq. (5.43), it can get

p xkþ1jz1:kþ1ð Þ / p zkþ1jxkþ1ð Þ
XN
i= 1

wi
kp xkþ1jxik
� � ð5:47Þ
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Fig. 5.11 Use cumulative
discrete probability
distribution for systematic
resampling

N

CDF

1.00 

0.00 
0

Although the above equation gives a discrete weighted approximation to the true
posterior probability density, it is very difficult to directly sample from the posterior
probability density. Therefore, this problem needs to use Sequence Importance
Sampling (SIS), with the help of a suitable “suggested” density function q(x0:k|z1:k)
to solve. The importance density function is best decomposable:

q x0:kþ1jz1:kþ1ð Þ= q xkþ1jx0:k z1:kþ1ð Þq x0:kjz1:kð Þ 5:48Þ

Next, the weight update equation can be calculated:

wi
kþ1 =wi

k

p zkþ1jxikþ1

� �
p xikþ1jxik
� �

q xikþ1jxi0:k, z1:kþ1
� � =wi

k

p zkþ1jxikþ1

� �
p xikþ1jxik
� �

q xikþ1jxik, zkþ1
� � ð5:49Þ

where the path xi0:k and the observation z1:k are eliminated, which is necessary to
enable the particle filter to iteratively track in a controllable manner.

Using only the sequence importance sampling will make all but one particle
become very small after a few iterations. A simple way to solve this problem is to
resample to remove small weights and redouble to increase the large weights. A
basic algorithm for resampling is “systematic resampling,” which includes the use of
cumulative discrete probability (CDF, in which the original delta function sampling
is combined into a series of steps) distribution and cutting between [0 1] to find
suitable indicators for the new sample. As shown in Fig. 5.11, this results in the
elimination of small samples and doubles the large samples. The graph uses regu-
larly spaced horizontal lines to indicate the cuts needed to find a suitable index (N )
for the new sample. These cuts tend to ignore the small steps in the CDF and
strengthen large samples by doubling.

The above result is called Sampling Importance Resampling (SIR), which is
important for generating a stable sample set. Using this special method, the impor-
tance density is selected as the prior probability density:
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q xkþ1jxik, zkþ1 = p xkþ1jxik ð5:50Þ

and substituting it back into Eq. (5.49), a greatly simplified weight update equation is
obtained:

wi
kþ1 =wi

kp zkþ1jxikþ1

� � ð5:51Þ

Furthermore, since the resampling is performed at every time, all previous
weights wi

k take the value 1/N. The above equation is simplified to

wi
kþ1 / p zkþ1jxikþ1

� � ð5:52Þ

5.4.3 Mean Shift and Kernel Tracking

The mean shift represents the mean vector of the shift. The mean shift is a
non-parametric technique that can be used to analyze complex multi-modal feature
spaces and determine feature clusters. It assumes that the distribution of clusters in
its central part is dense, and it iteratively calculates the mean value of the density
kernel (corresponding to the centroid or the center of gravity of the cluster, which is
also the most frequent value in a given window) to achieve the goal.

The principle and steps of the mean shift method are introduced below with the
help of Fig. 5.12, where the dots in each figure represent the feature points in the 2-D
feature space (actually maybe higher dimensional). First, randomly select an initial
region of interest (initial window) and determine its centroid (as shown in
Fig. 5.12a). It can also be regarded as drawing a ball with this point as the center
(drawing a circle in 2-D). The radius of the ball or circle should be able to contain a
certain number of data points, but not all data points can be included. Next, search
for a region of interest with a greater density of surrounding points, and determine its
centroid (equivalent to moving the center of the ball to a new position, which is the
average position of all points in this radius), and then move the window to this

Initial window 

Initial centroid

New windowMean shift

Previous centroid

Mean shift sequence

New centroid

Fig. 5.12 Schematic diagram of the principle of the mean shift method
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position that is determined by the centroid, where the displacement vector between
the original centroid and the new centroid corresponds to mean shift (as shown in
Fig. 5.12b). Repeat the above process to continuously move the mean (the result is
that the ball/circle will gradually approach the region with greater density) until
convergence (as shown in Fig. 5.12c). The position of the last centroid here
determines the maximum value of the local density, that is, the most frequent
value of the local probability density function.

Mean shift technique can also be used for moving object tracking. At this time,
the region of interest corresponds to the tracking window, and a feature model is
required for the tracked object. The basic idea of using the mean shift technique for
object tracking is to continuously move the object model in the tracking window to
search for the position with the largest correlation value. This is equivalent to
moving the window to coincide (converge) with the centroid when determining
the cluster center.

In order to track the object continuously from the previous frame to the current
frame, the object model determined in the previous frame can be placed at the center
position xc of the local coordinate system of the tracking window, and the candidate
object in the current frame is at the position y. The feature description of the
candidate object can be described by the probability density function p(y) estimated
from the current frame data. The probability density functions of the object model Q
and the candidate object P(y) are, respectively, defined as

Q= qvf g
Xm

v= 1
qv = 1 ð5:53ÞX

P yð Þ= pv yð Þf g m

v= 1
pv = 1 ð5:54Þ

in which v = 1, . . ., m, where m is the number of features. Let S(y) be the similarity
function between P(y) and Q, namely

S yð Þ= S P yð Þ, Qf g ð5:55Þ

For an object tracking task, the similarity function S(y) is the likelihood that an
object to be tracked in the previous frame is at the position y in the current frame.
Therefore, the local extremum of S(y) corresponds to the position of the object in the
current frame.

In order to define the similarity function, an isotropic kernel can be used, where
the description of the feature space is represented by the kernel weight, and then S(y)
is a smooth function of y. If n is the total number of pixels in the tracking window
and xi is the position of the ith pixel, the probability of the candidate object feature
vector Qv in the candidate window is estimated as

bQv =Cq

Xn

i
K xi - xcð Þδ b xið Þ- qv½ � 5:56Þ
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Among them, b(xi) is the value of the object feature function at the pixel point xi;
the role of the δ function is to determine whether the value of xi is the quantization
result of the feature vector Qv; K(x) is a convex and monotonically decreasing kernel
function; Cq is the normalization constant

Cq = 1 =
Xn

i= 1
K xi - xcð Þ 5:57Þ

Similarly, the probability of the feature model vector Pv of the candidate object
P(y) is estimated as

bPv =Cp

Xn

i
K xi - yð Þδ b xið Þ- pv½ � 5:58Þ

Among them, Cp is the normalization constant (which can be calculated in
advance for a given kernel function), and

Cp = 1 =
Xn

i= 1
K xi - yð Þ ð5:59Þ

The Bhattacharyya coefficient is usually used to estimate the degree of similarity
between the object mask and the density of the candidate region. The more similar
the distribution between the two densities, the greater the degree of similarity. The
object center position is

y=
Pn

i= 1xiwiK y- xið ÞPn
i= 1wiK y- xið Þ ð5:60Þ

where wi is the weighting coefficient. Note that the analytical solution of y cannot be
obtained from Eq. (5.60), so iterative solution is required. This iterative process
corresponds to a process of finding the maximum value in the neighborhood. The
characteristics of the kernel tracking method are high operating efficiency and easy
to modularize, especially for objects with regular movement and low speed, and new
object center positions can always be obtained successively, so as to achieve object
tracking.

Example 5.4 Feature Selection During Tracking
In the tracking of the object, in addition to the tracking strategy and method, the
choice of object features is also very important. An example is given below, which
uses the color histogram and the edge orientation histogram (EOH) to perform
tracking under the mean shift tracking framework, as shown in Fig. 5.13.
Figure 5.13a is a frame of image in a video sequence, where the color of the object
to be tracked is similar to the background. At this time, the color histogram does not
work well (as shown in Fig. 5.13b). Using the edge orientation histogram can keep
up with the object (as shown in Fig. 5.13c). Figure 5.13d is an image in another video
sequence, in which the edge orientation of the object to be tracked is not obvious. At
this time, the color histogram can follow the object (as shown in Fig. 5.13e), while
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Fig. 5.13 An example of tracking using a feature alone

Fig. 5.14 An example of combining two types of feature in tracking

the use of edge orientation histogram is not effective (as shown in Fig. 5.13f). It can
be seen that the use of a feature alone will lead to the result of tracking failure under
certain circumstances.

The color histogram mainly reflects the information inside the object, and the
edge orientation histogram mainly reflects the information of the object contour.
Combining the two features, it is possible to obtain a more general effect. Figure 5.14
shows an example, where the four images correspond to the four frames of the video
sequence in time order. Here is a car to be tracked. Due to the changes in the size of
the object, changes in the viewing angle, and partial occlusion of the object in the
video sequence, the color or outline of the car alters to a certain degree over time. By
combining the color histogram and the edge orientation histogram, the joint effect is
better than any of the two.



[Hint] When the value at a place of the difference image is not zero, the pixel
must have moved there, but the reverse is not necessarily true.
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5.5 Key Points and References for Each Section

The following combines the main contents of each section to introduce some
references that can be further consulted.

1. Differential Image
Difference operation is a basic arithmetic operation; please refer to the docu-

ment 2D Computer Vision: Principles, Algorithms and Applications.
2. Background Modeling

Background modeling can be seen as a method to reduce the amount of
modeling calculations with the help of adaptive sub-sampling; see [1].

3. Optical Flow Field and Motion
For further distinction and discussion of optical flow field and motion field, see

Sect. 7.3. More discussion of Horn-Schunck algorithm can be found in [2]. In the
dense optical flow algorithm, the global motion is compensated first, and then the
local motion is calculated; see [3].

4. Moving Object Tracking
In Kalman filtering, the use of prediction methods to solve the problem of

short-term occlusion can be found in [4]. For the specific steps of particle
filtering, please refer to [5]. The discussion of isotropic kernel in the mean shift
technique can also be found in the [6]. More examples of selecting object features
in tracking can be found in [7].

Self-Test Questions

The following questions include both single-choice questions and multiple-choice
questions, so each option must be judged.

5.1. Differential Image

5.1.1 Point out the following correct description: (�).
(a) If the value of a place in the difference image is not zero, the pixel at

that place has moved.
(b) If the value of a place in the difference image is zero, the pixel at that

place has not moved.
(c) If the pixel in a place does not move, the value at the place of the

difference image is zero.
(d) If a pixel in a place has moved, the value at the place of the difference

image is not zero.



[Hint] There may be many reasons why the pixel value of difference image is
not zero.

[Hint] Consider the definition of accumulative difference image.

The gray level of the object

[Hint] Analyze from the point of view of imaging brightness.

[Hint] Analyze according to the background modeling principle.
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5.1.2 Consider a non-zero pixel in the difference image, (�).
(a) It must be an object pixel.
(b) It must be a background pixel.
(c) It may originate from an object pixel and a background pixel.
(d) I

5.1.3

t is possibly from a background pixel and an object pixel.

Accumulative difference image (�).
(a) Is the sum of two or more difference images
(b) Is the difference between two or more difference images
(c) Has the pixel region that is not zero with equal size to the object

region
(d)

5.1.4

Has the pixel region that is not zero with bigger size than the object
region

According to the accumulative difference image, it can estimate (�).
(a)
(b) The size of the object
(c) The motion direction of the object
(d) The motion magnitude of the object

[Hint] The accumulative difference image counts the number of changes in
position and motion situations.

5.2. Background Modeling

5.2.1 The reasons for the difference in pixel values between the previous and
next image frames in the video sequence include (�).
(a) The camera moves when shooting
(b) There are sceneries moving in the scene
(c) The illumination has changed during the shooting
(d)

5.2.2 I

The transmittance of the atmosphere has changed

n background modeling, (�).
(a) It is assumed that the background and foreground cannot move at the

same time.
(b) The same strategy is used to calculate the difference image.
(c) It is supposed that the background is fixed and the foreground is

moving.
(d) It is considered that the background changes dynamically according

to a certain model.



The single Gaussian model can be used as long as there are no
moving objects in the background.

[Hint] The optical flow field is an instantaneous displacement vector field

The translation of the flat object along the vertical direction

[Hint] The arrow indicates the direction of the object movement.

Because the optical flow equation solving problem is an optimization
problem
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Fig. 5.15 A flat object and
its motion vectors

5.2.3 Various basic background modeling methods have their own character-
istics: (�).
(a)

(b) The method based on video initialization needs to first separate the
moving foreground from the static background.

(c) The number of Gaussian distributions in the Gaussian mixture model
should be the same as the number of moving objects in the scene.

(d) The codebook produced by the codebook-based method can repre-
sent both the motion foreground and the motion background.

[Hint] Consider the ideas related to various background modeling methods,
respectively.

5.3. Optical Flow Field and Motion

5.3.1 The optical flow equation shows: (�).
(a) The motion of the scenery corresponds to the displacement vector on

the image
(b) All displacement vectors in the image constitute an optical flow field
(c) The gray time change rate of a certain point in the moving image is

proportional to the gray space change rate of that point
(d)

5.3.2

The gray time change rate of a certain point in the moving image is
proportional to the spatial motion speed of that point

The motion vector in Fig. 5.15 represents (�)
(a)
(b) The translation of the flat object along the depth direction
(c) The rotation of the flat object orthogonal to the line of sight
(d)

5.3.3

The flat object rotates clockwise around the line of sight

Why is it an ill-conditioned problem to solve the optical flow equation?
(�).
(a)

(b) Because there are two unknowns in one optical flow eq.



[Hint] Having difficulty does not mean that it cannot be done.

s a tracking method based on motion information

[Hint] Consider the characteristics of Kalman filter.

Needs to assume that the state distribution is Gaussian
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(c) Because the optical flow equation corresponds to a smooth motion
vector field

(d) Because the optical flow error has a larger amplitude in intense
motion

[Hint] Consider the solution from the definition of the optical flow equation.
5.4.

5.4.1

Moving Object Tracking

When tracking a moving object, (�).
(a) It needs to obtain the complete trajectory of the moving object.
(b) If the object is a nonrigid body, it cannot be tracked.
(c) If the object is blocked, the viewing angle must be changed.
(d) I

5.4.2

t can consider either the object contour or the object region.

(a) I
(b) Is a tracking metho

Kalman filter (�).

d based on object contour
(c) Can be used when the object is blocked
(d)

5.4.3

Can solve the problem of nonlinear state

Particle filter (�).
(a)
(b) Can obtain the optimal result through iteration
(c) Is a tracking method based on the object region
(d) Uses random samples called “particles” to represent each tracking

object

[Hint] Consider the characteristics of particle filters.
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Chapter 6
Binocular Stereo Vision

The human visual system is a natural stereoscopic vision system that acquires 3-D
information through binocular imaging.

In computer vision, stereo vision mainly studies how to use (multi-image)
imaging technology to obtain distance (depth) information of objects in a scene
from (multiple) images, and its pioneering work began as early as the mid-1960s.
Stereo vision observes the same scene from two or more viewpoints, collects a set of
images from different perspectives, and then obtains the disparity between
corresponding pixels in different images through the principle of triangulation
(i.e., the difference between the positions of the two corresponding points on
the image when the same 3-D point is projected on two 2-D images), from which
the depth information is obtained, and then the shape of the object in the scene and
the spatial position between them are calculated. The working process of stereo
vision has many similarities with the perception process of the human visual system.

Artificial stereo vision using electronic equipment and computers can be realized
with binocular images, trinocular images, or multi-eye images. This chapter only
considers binocular stereo vision.

The sections of this chapter are arranged as follows:

Section 6.1 introduces the workflow of stereo vision and analyzes the six functional
modules involved in the process of stereo vision one by one.

Section 6.2 discusses the method of matching binocular images based on regions.
First, the principle of mask matching is introduced, and then the focus is on the
detailed analysis of various constraints in stereo matching.

Section 6.3 discusses the method of matching binocular images based on features.
Based on the introduction of the basic steps and methods, the widely used Scale
Invariant Feature Transformation (SIFT) is described in detail, and dynamic
programming based on ordering constraints is also discussed.

Section 6.4 introduces a method for detecting and correcting the errors of the
parallax map/image, which is characterized by being more versatile and fast.
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6.1 Stereo Vision Process and Modules

Stereo vision needs to reconstruct the objective scene in the computer, and the
process is shown in Fig. 6.1. The complete stereo vision system that performs this
process can be divided into six functional modules, that is, six tasks are required to
complete the stereo vision task.

6.1.1 Camera Calibration

Camera calibration has been introduced in Chap. 2. Its purpose is to determine the
internal and external parameters of the camera based on an effective imaging model,
so as to correctly establish the corresponding relationship between the object point in
the spatial coordinate system and its image point on the image plane. In stereo vision,
multiple cameras are often used, and each camera must be calibrated separately.
When deriving 3-D information from 2-D image coordinates, if the camera is fixed,
only one time of calibration is required. If the camera is moving, it may require
multiple calibrations.

6.1.2 Image Acquisition

Image acquisition involves two aspects of spatial coordinates and image attributes,
as introduced in Chap. 3, where there is a special introduction to the acquisition of
high-dimensional images containing 3-D information, including various direct imag-
ing methods and imaging methods in stereo vision. Many direct imaging methods
use specific equipment to obtain 3-D spatial information under specific environ-
ments or conditions. The video images introduced in Chap. 4 also contain spatial-
temporal 3-D information.
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Fig. 6.1 Stereo vision process and modules
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6.1.3 Feature Extraction

Stereo vision helps to obtain 3-D information (especially depth information) by
using the parallax between different observation points on the same scene. How to
determine the corresponding relationship of the same scene in different images
would be a key step/phase. One of the methods to solve this problem is to select
appropriate image features to match multiple images. The feature here is a general
concept, representing the abstract representation and description of a pixel or a set of
pixels (e.g., in Sect. 6.2, the pixel gray value of the sub-image is mainly considered,
and in Sect. 6.3, the grayscale distribution in the pixel neighborhood is mainly
considered). At present, there is no universally applicable theory for obtaining
image features. The commonly used matching features from small to large include
point-like features, line-like features, planar (regional) features, and body-like (vol-
umetric) features. Generally speaking, large-scale features contain richer image
information, and the requirement for feature number is small, which is easy to obtain
fast matching; but their extraction and description are relatively complicated, and the
positioning accuracy is also poor. On the other hand, the small-scale features
themselves have high positioning accuracy and simple representation and descrip-
tion; however, they are often large in number and contain less information. There-
fore, strong constraint criteria and corresponding matching strategies need to be
adopted when matching.

6.1.4 Stereo Matching

Stereo matching refers to the establishment of correspondence between features
based on the calculation of selected features, thereby establishing the relationship
between image points of the same spatial point in different images and obtaining
corresponding parallax images. Stereo matching is the most important and difficult
step in stereo vision. The most difficult problem of using Eqs. (3.30), (3.37), or
(4.18) to calculate distance Z is to find corresponding points in different images of
the same scene, that is, it is to solve the problem of finding the corresponding points
of the object in the two images. If the corresponding point is defined by brightness,
the actual corresponding point may have different brightness on the two images due
to the different observation positions of the eyes. If the corresponding point is
defined by a geometric shape, the geometric shape of the object itself is just what
needs to obtain. Relatively speaking, using binocular axial mode is less affected by
this problem than using binocular horizontal mode. This is because of the three
points, namely, the origin (0, 0), as well as (x1, y1) and (x2, y2), are all arranged in a
straight line, and the points (x1, y1) and points (x2, y2) are on the same side of the
point (0, 0), which is easier to search.

Currently, the practical technologies are mainly divided into two categories,
namely, grayscale correlation and feature matching. The former type is based
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on the gray value of the regional pixels, which also considers the neighborhood
properties of each point to be matched. The latter type is a method based on feature
points, that is, first select points with unique or special properties in the image as
matching points. The features used by the latter method are mainly the coordinates of
inflection point and corner point in the image, the edge line segment, the contour of
the object, and so on. The above two methods are similar to the region-based and
edge-based methods in image segmentation. Sections 6.2 and 6.3 will, respectively,
introduce some matching methods based on regional gray level correlation and
feature points.

6.1.5 3-D Information Recovery

After the parallax image is obtained through stereo matching, the depth image can be
further calculated, and the 3-D world/information in the scene can be restored (this is
also often referred to as 3-D reconstruction). The factors that affect the accuracy of
distance measurement mainly include digital quantization effects, camera calibration
errors, exactness of feature detection, as well as matching and positioning. Generally
speaking, the accuracy of distance measurement is directly proportional to the
exactness of matching and positioning and is proportional to the length of the camera
baseline (line between different camera positions). Increasing the length of the
baseline can improve the depth measurement accuracy, but at the same time, it
will increase the difference between the corresponding images, and the possibility of
the scene being blocked is greater, thereby increasing the difficulty of matching.
Therefore, in order to design an accurate stereo vision system, various factors must
be considered comprehensively to ensure that each aspect has high accuracy, so that
the 3-D information can be accurately restored.

By the way, accuracy is an important indicator in 3-D information recovery, but
some models try to circumvent this problem. For example, in the network-symbol
model, it is not necessary to accurately reconstruct or calculate the 3-D model but to
transform the image into an understandable relational format similar to the knowl-
edge model. In this way, there is no need to limit the accuracy of 3-D information
recovery. Using the network-symbol model, it is no longer necessary to perform
object recognition based on the field of view but based on the derived structure, and
it is less affected by local changes and the appearance of the object.

6.1.6 Post-Processing

The 3-D information obtained through the above steps is often incomplete or has
certain errors due to various reasons and requires further post-processing. There are
three main types of commonly used post-processing:
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6.1.6.1 Depth Interpolation

The primary purpose of stereo vision is to restore the complete information of the
visual surface of the scene, and the feature-based stereo matching algorithm can only
directly restore the parallax values at the feature points in the image because the
features are often discrete. Therefore, a parallax surface interpolation and recon-
struction step is added in the post-processing, that is, the discrete data is interpolated
to obtain the parallax values that are not at the feature points. There are many
interpolation methods, such as nearest neighbor interpolation, bilinear interpola-
tion, and spline interpolation. There are also model-based interpolation reconstruc-
tion algorithms. During the interpolation process, the main concern is how to
effectively protect the discontinuous information on the surface of the scene.

6.1.6.2 Error Correction

Stereo matching is performed between images affected by geometric distortion and
noise interference. In addition, due to the existence of periodic patterns and smooth
regions in the image, as well as the occlusion effect and the lack of strictness of the
constraint principle, errors will occur in the parallax image. The detection and
correction of errors are therefore also an important post-processing content. It is
often necessary to select appropriate techniques and methods according to the
specific reasons and methods of error. Section 6.4 will introduce an error correction
algorithm.

6.1.6.3 Precision Improvement

The calculation of parallax and the restoration of depth information are the basis of
subsequent work. Therefore, the precision of parallax calculation is often highly
demanded in specific applications. In order to further improve the precision, after
obtaining the usual pixel-level parallax of general stereo vision, the precision can be
further improved to achieve subpixel-level disparity accuracy.

6.2 Region-Based Stereo Matching

Determining the relationship of the corresponding points in the binocular image is a
key step to obtain the depth image. The following discussion only takes the
binocular horizontal mode as an example. If the unique geometric relationships
among various modes are considered, the results obtained with the binocular hori-
zontal mode can also be extended to other modes.
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The most intuitive way to determine the relationship between corresponding
points is to use point-to-point correspondence matching. However, the direct use
of the grayscale of a single pixel for matching will be affected by factors such as
many points in the image with the same gray values and interfering noise in the
image. In addition, when a spatial 3-D scene is projected onto a 2-D image, not only
the same scene may have different appearances in images from different viewpoints,
but also many changing factors in the scene, such as various lighting conditions,
noise interference, scene geometry and distortion, surface physical appearances, and
camera characteristics, are all integrated into a single image gray value. It is very
difficult to determine the above factors separately from this gray value. So far this
problem has not been well solved.

6.2.1 Template Matching

The region-based method needs to consider the nature of the neighborhood of the
point, and the neighborhood is often determined with the help of templates (also
called mask, sub-images, or windows). When a point in the left image of a given
binocular image pair needs to be searched for a matching point in the corresponding
right image, the neighborhood centered on the point in the left image can be
extracted as a mask, and the mask can be translated on the right image, and calculate
the correlation with each position, to determine whether it matches according to the
correlation value. If it matches, it is considered that the center point of the matching
position in the right image and that point in the left image form a corresponding point
pair. Here, the place of maximum correlation value can be selected as the matching
position, or a threshold value can be given first, and the points satisfying the
correlation value greater than the threshold value can be extracted first and then
selected according to some other factors.

The generally used matching method is called template matching, and its
essence is to use a mask (smaller image) to match a part (sub-image) of a larger
image. The result of the matching is to determine whether there is a small image in
the large image, and if so, the position of the small image in the large image is further
determined. In template matching, the template is often square, but it can also be
rectangular or other shapes. Now consider finding the matching position of a
template image w(x, y) of size J × K and a large image f(x, y) of M × N; set J ≤ M
and K ≤ N. In the simplest case, the correlation function between f(x, y) and w(x, y)
can be written as

c s, tð Þ=
X
x

X
y
f x, yð Þw x- s, y- tð Þ 6:1Þ

where s = 0, 1, 2, . . ., M – 1; t = 0, 1, 2, . . ., N – 1.
The summation in Eq. (6.1) is performed on the image region where f(x, y) and

w(x, y) overlap. Figure 6.2 shows a schematic diagram of related calculations,
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Fig. 6.2 Template
matching schematic
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assuming that the origin of f(x, y) is at the upper left corner of the image and the
origin of w(x, y) is at the center of the template. For any given position (s, t) in f(x, y),
a specific value of c(s, t) can be calculated according to Eq. (6.1). When s and
t change, w(x, y) moves in the image region and gives all the values of the function
c(s, t). The maximum value of c(s, t) indicates the position that best matches w(x, y).
Note that for s and t values close to the boundary of f(x, y), the matching accuracy
will be affected by the image boundary, and the error is proportional to the size of
w(x, y).

In addition to determining the matching position according to the maximum
correlation criterion, the minimum mean square error function can also be used:

Mme s, tð Þ= 1
MN

X
x

X
y

f x, yð Þw x- sð , y- tÞ½ 2 ð6:2Þ

In VLSI hardware, the square operation is more difficult to implement, so the
absolute value can be used instead of the square value to get the minimum average
difference function:

Mad s, tð Þ= 1
MN

X
x

X
y
jf x, yð Þw x- sð , y- tÞj ð6:3Þ

The correlation function defined by Eq. (6.1) has a drawback, that is, it is more
sensitive to changes in the amplitude of f(x, y) and w(x, y). For example, when the
value of f(x, y) is doubled, the value of c(s, t) will also be doubled. To overcome this
problem, the following correlation coefficient can be defined:

C s, tð Þ=
P
x

P
y

f x, yð Þ- f x, yð Þ� �
w x- s, y- tð Þ-w½

P
x

P
y

f x, yð Þ- f xð�
, yÞ�2P

x

P
y

w x- s, y- tÞ-w�2ð g1=2
h� ð6:4Þ

where s= 0, 1, 2, . . .,M – 1; t= 0, 1, 2, . . ., N – 1, w is the mean value of w (it needs
to be calculated once), and f (x, y) represents the mean value of the region
corresponding to the current position of w in f(x, y).
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The summation in Eq. (6.4) is performed on the common coordinates of f(x, y)
and w(x, y). Because the correlation coefficient has been scaled to the interval [–1, 1],
the change in its value is independent of the amplitude change of f(x, y) and w(x, y).

Another method is to calculate the gray level difference between the template and
the sub-image and establish the correspondence between the two sets of pixels that
meet the mean square difference (MSD). The advantage of this type of method is
that the matching result is not easily affected by the grayscale detection accuracy and
density of the template, so it can get a high positioning accuracy and a dense parallax
surface. The disadvantage of this type of method is that it relies on the statistical
characteristics of the image gray level, so it is more sensitive to the surface structure
of the scene and the reflection of light. Therefore, there are certain difficulties for the
surface of the space scene that lacks sufficient texture details, and the imaging
distortion is large (such as the baseline length is too large). Some derivation of
gray levels can also be used in actual matching, but experiments have shown that in
matching comparisons using gray level, gray level difference and direction, gray
level Laplacian value, and gray level curvature as matching parameters, the gray
level is still the best in matching.

As a basic matching technique, template matching has been applied in many
aspects, especially when the image is only shifted. Using the calculation of the
correlation coefficient above, the correlation function can be normalized to over-
come the problems caused by the amplitude change. But it is more difficult to
normalize the image size and rotation. The normalization of the size requires spatial
scale transformation, and this process requires a lot of calculations. Normalizing the
rotation is more difficult. If the rotation angle of f(x, y) is known, it is possible to just
rotate w(x, y) by the same angle to align w(x, y) with f(x, y). But without knowing the
rotation angle of f(x, y), to find the best match, one needs to rotate w(x, y) at all
possible angles. In practice, this method is not feasible, so it is seldom to directly use
region-related methods (such as template matching) under arbitrary rotation or
without constraints on rotation.

The method of image matching using templates representing matching primitives
must solve the problem that the amount of calculation will increase exponentially
with the number of primitives. If the number of primitives in the image is n and the
number of primitives in the template is m, there are O(nm) possible correspondences
between the primitives of the template and the image, where the number of combi-
nations is C(n, m) or Cn

m.

Example 6.1 Template Matching Using Geometric Hashing
To achieve efficient template matching, geometric hashing can also be used. Its
basis is that three points can define a 2-D plane. That is, if you choose three
non-collinear points P1, P2, P3, you can use the linear combination of these three
points to represent any point:

Q=P1 þ s P2 -P1ð Þ þ t P3 -P1ð Þ 6:5Þ
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Equation (6.5) will not change under the affine transformation, that is, the value
of (s, t) is only related to the three non-collinear points and has nothing to do with the
affine transformation itself. In this way, the value of (s, t) can be regarded as the
affine coordinates of point Q. This feature is also applicable to line segments: three
non-parallel line segments can be used to define an affine benchmark.

Geometric hashing requires the construction of a hash table, which can help the
matching algorithm to quickly determine the potential position of a template in the
image. The hash table can be constructed as follows: For any three non-collinear
points (reference point group) in the template, calculate the affine coordinates (s, t) of
other points. The affine coordinates (s, t) of these points will be used as the index of
the hash table. For each point, the hash table retains the index (serial number) of the
current reference point group. If you want to search for multiple templates in an
image, you need to keep more template indexes.

To search for a template, randomly select a set of reference points in the image,
and calculate the affine coordinates (s, t) of other points. Using this affine coordinate
(s, t) as the index of the hash table, the index of the reference point group can be
obtained. In this way, a vote for the occurrence of this reference point group in the
image is obtained. If the randomly selected points do not correspond to the reference
point group on the template, there is no need to accept voting. However, if the
randomly selected point corresponds to the reference point group on the template,
the vote is accepted. If many votes are accepted, it means that this template is likely
to be in the image, and the benchmark set of indicators can be obtained. Because the
selected set of reference points will have a certain probability of being inappropriate,
the algorithm needs to iterate to increase the probability of finding the correct match.
In fact, it is only necessary to find a correct set of reference points to determine the
matching template. Therefore, if k points of the N template points are found in the
image, the probability that the reference point group is correctly selected at least
once in m attempts is

p= 1- 1- k=Nð Þ3
h im

ð6:6Þ

In the image, if the ratio of the number of points in the template to the number of
image points k/N is 0.2, and the expected probability of the template matching is
99% (i.e., p = 0.99), then the number of attempts m is 574.

6.2.2 Stereo Matching

Using the principle of template matching, the similarity of regional gray levels can
be used to search for the corresponding points of two images. Specifically, in the
stereo image pair, first select a window centered on a certain pixel in the left image,
construct a template based on the grayscale distribution in the window, and then use
the template to search in the right image to find the most matching window position,
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and then the pixel in the center of the matching window corresponds to the pixel to
be matched in the left image.

In the above search process, if there is no prior knowledge or any restriction on
the position of the template in the right image, the search range may cover the entire
right image. It is time-consuming to search in this way for each pixel in the left
image. In order to reduce the search range, it is better to consider using some
constraints, such as the following three constraints.

1. Compatibility constraints. Compatibility constraint means that black dots can
only match black dots. More generally speaking, only the features of the same
type of physical properties in the two images can be matched. It is also called
photometric compatibility constraint.

2. Uniqueness constraint. The uniqueness constraint means that a single black
point in one image can only be matched with a single black point in another
image.

3. Continuity constraints. The continuous constraint means that the parallax
change near the matching point is smooth (gradual) in most points except the
occluded region or the discontinuous region in the entire image, which is also
called the disparity smoothness constraint.

When discussing stereo matching, in addition to the above three constraints, you
can also consider the epipolar constraints introduced below and the sequential
constraints introduced in Sect. 6.3.

6.2.2.1 Epipolar Line Constraint

The epipolar line constraint can help reduce the search range (from 2-D to 1-D)
during the search process and speed up the search process.

First, introduce the two important concepts of epipole and epipolar line with the
help of the binocular lateral convergence mode diagram in Fig. 6.3. In Fig. 6.3, the
left eye center is at the origin of the coordinate system, the X axis connects the left
and right eye centers, the Z axis points to the observation direction, the distance
between the left and right eyes is B (also often called the system baseline), the optical

Fig. 6.3 Schematic
diagram of epipoles and
epipolar lines
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Fig. 6.4 Correspondence
between epipoles and
epipolar lines
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axis of the left and right image planes is all in the XZ plane, and the angle of
intersection is θ. Consider the connection between the left and right image planes.O1

and O2 are the optical centers of the left and right image planes, and the connecting
line between them is called the optical center line. The intersection points e

1 and
e
2 of

the optical center line with the left and right image planes are called the poles of the
left and right image planes (the pole coordinates are e1 and e2, respectively). The
optical center line and the spatial point W are in the same plane. This plane is called
the polar plane. The intersection lines L1 and L2 of the polar plane and the left and
right image planes are, respectively, called the polar lines of the projection points of
the spatial point W on the left and right image planes. The polar line defines the
position of the corresponding point of the binocular image, and the right image plane
projection point p2 (coordinates p2) corresponding to the projection point p1 (coor-
dinates p1) of the space point W on the left image plane must be on the polar line L2.
On the contrary, the projection point of the left image plane corresponding to the
projection point of the spatial point W on the right image plane must be on the
epipolar line L1.

Example 6.2 Correspondence Between Epipoles and Epipolar Lines
There are two sets of optical systems in the binocular stereo vision system, as shown
in Fig. 6.4. Consider a set of points ( p1, p2, ...) on the image plane 1, and each point
corresponds to a ray in the 3-D space. Each ray projects a line (L1, L2, ...) on the
image plane 2. Because all light rays converge to the optical center of the first
camera, these lines must intersect at a point on the image plane 2. This point is the
image of the optical center of the first camera in the second camera, which is called
the epipole. Similarly, the image of the optical center of the second camera in the first
camera is also an epipole. These projection lines are epipolar lines.

Example 6.3 Epipolar Line Mode
The epipoles are not always in the observed image, because the epipolar lines may
intersect outside the field of view. There are two common situations shown in
Fig. 6.5. First, in the binocular horizontal mode, the two cameras are facing the
same direction, there is a certain distance between their optical axes, and the
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Fig. 6.5 Epipolar line mode example

coordinate axes of the image plane are correspondingly parallel, then the epipolar
lines will form a parallel pattern, and the intersection (epipole) will be at infinity, as
shown in Fig. 6.5a. Second, in the binocular axial mode, the optical axes of the two
cameras are in a line, and the image plane coordinate axes are correspondingly
parallel, then the epipoles are in the middle of the corresponding images, and the
epipolar lines will form a radiation pattern, as shown in Fig. 6.5b. Both cases indicate
that the epipolar mode provides information about the relative position and orienta-
tion of the cameras.

The epipolar line defines the positions of the corresponding points on the
binocular image. The projection point of the right image plane that corresponds to
the projection point of the space point W on the left image plane must be on the
epipolar line L2; on the contrary, the projection point of the left image plane that
corresponds to the projection point of the space point W on the right image plane
must be on the epipolar line L1. This is the epipolar line constraint.

In binocular vision, when an ideal parallel optical axis model is used (i.e., the
lines of sight of every camera are parallel), the epipolar line coincides with the image
scan line, and the stereo vision system at this time is called the parallel stereo vision
system. In parallel stereo vision systems, epipolar line constraints can also be used to
reduce the search range of stereo matching. In an ideal situation, the use of epipolar
constraints can change the search for the entire image into a search for a line in the
image. But it should be pointed out that the epipolar line constraint is only a local
constraint. For a space point, there may be more than one projection point on the
epipolar line.

Example 6.4 Epipolar Line Constraint Diagram
As shown in Fig. 6.6, use a camera (left) to observe a point W in space. The imaged
point p1 should be on the line connecting the optical center of the camera and point
W. However, all points on the line will be imaged at point p1, so the position/distance
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Fig. 6.6 Epipolar line
constraint illustration
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of a specific point W cannot be completely determined from point p1. Now use the
second camera to observe the same spatial point W, and the imaged point p2 should
also be on the line connecting the optical center of the camera and pointW. All points
like W on this line are projected onto a straight line on the image plane 2, and this
straight line is called an epipolar line.

From the geometric relationship in Fig. 6.6, it can be seen that for any point p1 on
image plane 1, the image plane 2 and all its corresponding points are (constrained)
on the same straight line, which is the epipolar line constraint mentioned above.

6.2.2.2 Essential Matrix and Fundamental Matrix

The connection between the projected coordinate points of the space point W on the
two images can be described by an essential matrix E with five degrees of freedom,
which can be decomposed into an orthogonal rotation matrix R followed by a
translation matrix T (E = RT). If the projection point coordinates in the left image
are represented by p1, and the projection point coordinates in the right image are
represented by p2, then

pT2Ep1 = 0 ð6:7Þ

The epipolar lines passing through p1 and p2 on the corresponding image satisfy
L2 = Ep

1 and L1 = ETp
2, respectively. On the corresponding image, the epipoles

passing through p1 and p2 satisfy Ee1 = 0 and ETe2 = 0, respectively.

Example 6.5 Derivation of Essential Matrix
The essential matrix indicates the relationship between the projection point coordi-
nates of the same space point W (coordinates W) on the two images. In Fig. 6.7,
suppose you can observe the projection positions p1 and p2 of the point W on the
image, and you also know the rotation matrix R and the translation matrix T between
the two cameras; then you can get three 3-D vectorsO1O2,O1W, andO2W. The three
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Fig. 6.7 The derivation of
the essential matrix
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3-D vectors must be coplanar. Because in mathematics, the criterion that three 3-D
vectors a, b, and c are coplanar can be written as a • (b × c)= 0, this criterion can be
used to derive the essential matrix.

According to the perspective relationship of the second camera, it is known:
vector O1W / Rp1, vector O1O2 / T, and vector O2W = p2. Combining these
relationships with the coplanar condition, you get the desired result:

pT2 T ×Rp1ð Þ= pT2Ep1 = 0 ð6:8Þ

The epipolar lines passing through points p1 and p2 on the corresponding image
satisfy L2 = Ep1 and L1 = ETp2, respectively. The epipoles e1 and e2 passing
through points p1 and p2 on the corresponding image satisfy Ee1 = 0 and
ETe2 = 0, respectively.

In the above discussion, it is assumed that p1 and p2 are the pixel coordinates after
the camera has been corrected. If the camera has not been calibrated, the original
pixel coordinates q1 and q2 need to be used. Suppose the internal parameter matrix of
the camera is G1 and G2, then

p1 =G- 1
1 q1 ð6:9Þ

p2 =G- 1
2 q2 ð6:10Þ

Substituting the above two equations into Eq. (6.7), it gives q
2
T(G2

-1)TEG1
-

1q
1 = 0, which can be written as

qT2Fq1 = 0 ð6:11Þ

where
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F= G- 1
2

T
EG- 1

1 ð6:12Þ

It is called the fundamental matrix because it contains all the information for
camera calibration. The fundamental matrix has 7 degrees of freedom (each epipole
requires two parameters, plus three parameters to map three epipolar lines from one
image to another image, because the projective transformation in the two 1-D
projection spaces has 3 degrees of freedom). The essential matrix has 5 degrees of
freedom, so the fundamental matrix has two more free parameters than the essential
matrix. However, by comparing Eqs. (6.7) and (6.11), it shows that the roles or
functions of these two matrices are similar.

The essential matrix and the fundamental matrix are related to the internal and
external parameters of the camera. If the internal and external parameters of the
camera are given, it can be known from the epipolar line constraint that for any point
on the image plane 1, a 1-D search only needs to be performed on the image plane
2 to determine the position of the corresponding point. Further, the correspondence
constraint is a function of the internal and external parameters of the camera. Given
the internal parameters, the external parameters can be determined by the observed
pattern of the corresponding points, and the geometric relationship between the two
cameras can be established.

6.2.2.3 Influencing Factors in Matching

There are still some specific issues that need to be considered and resolved when
using the region matching method in practice.

1. Due to the shape of the scenery or the occlusion of the scenery when shooting the
scene, the scenery captured by the left camera may not be all captured by the right
camera, so some templates determined with the left image may not be able to find
an exact match in the right image. At this time, it is often necessary to perform
interpolation based on the matching results of other matching positions to obtain
the data of these unmatched points.

2. When using the pattern of a template image to represent the characteristics of a
single pixel, the premise is that different template images should have different
patterns, so that the matching can be distinguished, that is, it can reflect the
characteristics of different pixels. But sometimes there are certain smooth regions
in the image, and the template images obtained in these smooth regions have the
same or similar patterns; there will be uncertainty in the matching, leading to
mismatches. In order to solve this problem, it is sometimes necessary to project
some random textures onto these surfaces to convert smooth regions into texture
regions, thereby obtaining template images with different patterns to eliminate
uncertainty.
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Fig. 6.8 Binocular stereo matching is affected by the smooth region of the image

Example 6.6 Binocular Stereo Matching Is Affected by the Smooth Region
of the Image
Figure 6.8 shows an example of stereo matching errors when there are smooth
grayscale regions along the binocular baseline direction. Figure 6.8a, b are the left
and right images of a pair of perspective views, respectively. Figure 6.8c is a parallax
image obtained by using binocular stereo matching (here, for clarity, only the result
of scene matching is retained), the darker gray in the image represents a longer
distance (larger depth), and the lighter gray represents a closer distance (smaller
depth). Figure 6.8d is a 3-D perspective view (contour map) corresponding to
Fig. 6.8c. Comparing these images, it can be seen that because the gray values of
some locations in the scene (such as the horizontal eaves of towers and houses, etc.)
are roughly similar along the horizontal direction, it is difficult to search and match
them along the epipolar line. Determining the corresponding points produced a lot of
errors due to mismatching. In Fig. 6.8c, there are some white or black (patch) regions
that are inconsistent with the surroundings, while reflecting in Fig. 6.8d there are
some sharp glitch regions.
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6.2.2.4 Calculation of Surface Optical Properties

Using the grayscale information of the binocular image, it is possible to further
calculate some optical properties of the object surface (see Sect. 7.1). There are two
factors to pay attention for the reflection characteristics of the surface: one is the
scattering caused by surface roughness; the other is the specular reflection caused by
the surface compactness. The two factors are combined as follows: let N be the unit
vector in the normal direction of the surface patch, S is the unit vector in the direction
of the point light source, and V is the unit vector in the direction of the observer’s
line of sight, and the reflecting brightness obtained on the patch I(x, y) is the product
of the composed reflectance ρ(x, y) and the composed reflectance R[N(x, y)], namely

I x, yð Þ= ρ x, yð ÞR N x, yð Þ½ � 6:13Þ

where

R N x, yð Þ½ �= 1- αð ÞN • Sþ α N •Hð Þk ð6:14Þ

Among them, ρ, α, and k are coefficients related to the surface optical properties,
which can be calculated from the image data.

The first term on the right side of the Eq. (6.14) considers the scattering effect,
which does not vary with the angle of sight; the second term considers the specular
reflection effect. Let H be the unit vector in the direction of the specular reflection
angle:

H=
Sþ Vð Þ

2 1þ S •Vð Þ½ � ð6:15Þ

The second term on the right side of the Eq. (6.14) reflects the change of the line
of sight vector V through the vector H. In the coordinate system used in Fig. 6.3

V 0 = 0, 0, - 1f g
V 00 = - sin θ, 0, cos θf g ð6:16Þ

6.3 Feature-Based Stereo Matching

The disadvantage of the region-based matching method is that it relies on the
statistical characteristics of the image gray level, so it is more sensitive to the surface
structure of the scenery and the light reflection. If the scenery surface lacks enough
texture details on the space (such as along the epipolar direction in Example 6.6),
there are certain difficulties when imaging distortion is large (e.g., the baseline length
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is too large). Taking into account the characteristics of the actual image, some salient
feature points (also called control points, key points, or matching points) in the
image can be determined first, and then these feature points can be used for
matching. Feature points are less sensitive to changes in ambient lighting during
matching, and their performance is relatively stable.

6.3.1 Basic Steps and Methods

The main steps of feature point matching are as follows:

1. Select feature points for matching in the image. The most commonly used feature
points are some special points in the image, such as edge points, corner points,
inflection points, landmark points, etc. In recent years, local feature points (local
feature descriptors), such as SIFT points (see below), are also widely used.

2. Match the feature point pairs in the stereo image pair (see below; also refer to
Chap. 10).

3. Calculate the parallax of the matching point pair, and obtain the depth at the
matching point (similar to the region-based method in Sect. 6.2).

4. Interpolate the result of the sparse depth values to obtain a dense depth map
(because the feature points are discrete, the dense parallax field cannot be directly
obtained after matching).

6.3.1.1 Matching with Edge Points

For an image f(x, y), the feature point image can be obtained by calculating the edge
points:

t x, yð Þ= max H, V , L, Rf g ð6:17Þ

where H, V, L, R are all calculated by gray gradient

H= f x, yð Þ- f x- 1, yð Þ½ �2 þ f x, yð Þ- f xþ 1, yð Þ½ 2 ð6:18Þ
V = f x, yð Þ- f x, y- 1ð Þ½ �2 þ f x, yð Þ- f x, yþ 1ð Þ½ 2 ð6:19Þ

L= f x, yð Þ- f x- 1, yþ 1ð Þ½ �2 þ f x, yð Þ- f xþ 1, y- 1ð Þ½ 2 ð6:20Þ
R= f x, yð Þ- f xþ 1, yþ 1ð Þ½ �2 þ f x, yð Þ- f x- 1, y- 1ð Þ½ 2 ð6:21Þ

Then t(x, y) is divided into small regionsW that do not overlap each other, and the
point with the largest calculated value is selected as the feature point in each small
region.
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Fig. 6.9 The diagram of 16 kinds of zero-crossing patterns

Now consider matching the image pair formed by the left image and the right
image. For each feature point of the left image, all possible matching points in the
right image can be formed into a possible matching point set. In this way, a label set
can be obtained for each feature point of the left image, where the label l is either the
parallax between the left image feature point and its possible matching points or a
special label representing no matching point. For each possible matching point,
calculate the following equation to set the initial matching probability P(0)(l ):

A lð Þ=
X
x,y2W

f L x, yð Þ- fR xþ lx, yþ ly
� �� 2 ð6:22Þ

where l= (lx, ly) is the possible parallax. A(l ) represents the grayscale fit between the
two regions, which is inversely proportional to the initial matching probability P(0)

(l). In other words, P(0)(l) is related to the similarity in the neighborhood of possible
matching points. Accordingly, with the aid of the relaxation iteration method, the
points with close parallax in the neighborhood of possible matching points are given
positive increments, and the points with distant parallax in the neighborhood of
possible matching points are given negative increments to adjust P(0)(l) for iterative
update. As the iteration progresses, the iterative matching probability P(k)(l) of the
correct matching point will gradually increase, while the iterative matching proba-
bility P(k)(l) of other points will gradually decrease. After a certain number of
iterations, the point with the largest matching probability P(k)(l) is determined as
the matching point.

6.3.1.2 Matching with Zero-Crossing Points

When matching feature points, the zero-crossing pattern can also be selected to
obtain matching primitives. Use the Laplacian (of Gaussian function) to perform
convolution to get the zero-crossing point. Considering the connectivity of the zero-
crossing points, 16 different zero-crossing patterns of 3 × 3 templates can be
determined, as shown by the shadows in Fig. 6.9.

For each zero-crossing pattern of the left image in the binocular image, all
possible matching points in the right image form a possible matching point set. In
stereo matching, all the non-horizontal zero-crossing patterns in the left image can be
formed into a point set with the help of the horizontal epipolar line constraint, and a
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label set is assigned to each point, and an initial matching probability is determined.
Using a similar method as the matching using edge points, the final matching point
can also be obtained through relaxation iteration.

6.3.1.3 Depth of Feature Points

Figure 6.10 (it is obtained by removing the epipolar line in Fig. 6.3 and then by
moving the baseline to the X axis to facilitate the description; the meaning of each
letter is the same as Fig. 6.3) explains the corresponding relationship among feature
points.

In the 3-D space coordinates, a feature point W(x, y, –z) after orthogonal projec-
tion is on the left and right images, respectively:

u0, v0ð Þ= x, yð Þ ð6:23Þ
u00, v00ð Þ= x-Bð Þ cos θ- z sin θ, y½ � 6:24Þ

The calculation of u" here is based on the coordinate transformation of first
translation and then rotation. Equation (6.24) can also be derived with the help of
Fig. 6.11 (here a diagram parallel to the XZ plane in Fig. 6.10 is provided, where Q is
the result of shifting point W along the positive direction of X by B):

Fig. 6.10 Schematic
diagram of the coordinate
system of binocular vision
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u00 =OS= ST - TO= QE þ ET
� �

sin θ-
B- x
cos θ

ð6:25Þ

Note that W is on the –Z axis, so there is

u00 = - z sin θ þ B- xð Þ tan θ sin θ- B- x
cos θ

= x-Bð Þ cos θ- z sin θ ð6:26Þ

If u" has been determined by u' (i.e., the matching between the feature points has
been established), the depth of the feature points projected to u' and u" can be
inversely solved from Eq. (6.24) as

- z= u00cscθ þ B- u0ð Þ cot θ ð6:27Þ

6.3.1.4 Sparse Matching Points

It can be seen from the above discussion that the feature points are only some specific
points on the object, and there is a certain interval between them. Only with the
sparse matching points, a dense parallax field cannot be directly obtained, so it may
not be possible to accurately restore the shape of the object. For example, Fig. 6.12a
shows four points that are coplanar in space (equal distance from another space
plane). These points are sparse matching points obtained by parallax calculation.
Suppose these points are located on the outer surface of the object, but there can be
infinitely many curved surfaces passing these four points; Fig. 6.12b–d give several
possible examples. It can be seen that only the sparse matching points cannot
uniquely restore the shape of the object, and some other conditions or interpolation
of the sparse matching points needs to be combined to obtain a dense parallax map
such as that obtained in region matching.

(a) (b) (c) (d)

Fig. 6.12 Only sparse matching points cannot restore the shape of the object uniquely
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6.3.2 Scale Invariant Feature Transformation

Scale Invariant Feature Transformation (SIFT) can be regarded as a method of
detecting salient features in an image. It can not only determine the position of a
point with salient features in the image but also give a description vector of the point,
also known as SIFT operator or descriptor. It is a kind of local descriptor, which
contains three types of information: location, scale, and direction.

The basic ideas and steps of SIFT are as follows. First obtain the multi-scale
representation of the image, which can be convolved with the image using a
Gaussian convolution kernel (referred to as Gaussian kernel, the only linear kernel).
The Gaussian convolution kernel is a Gaussian function with variable scale:

G x, y, σð Þ= 1
2πσ2

exp
- x2 þ y2ð Þ

2σ2

� 	
ð6:28Þ

where σ is the scale factor. The multi-scale representation of the image after the
convolution of Gaussian convolution kernel and image is represented as

L x, y, σð Þ=G x, y, σð Þ � f x, yð Þ ð6:29Þ

The Gaussian function is a low-pass function, and the image will be smoothed
after convolution with the image. The size of the scale factor is related to the degree
of smoothness. Large σ corresponds to a large scale, which mainly gives an overview
of the image after convolution; small σ corresponds to a small scale, and the details
of the image are retained after convolution. In order to make full use of image
information of different scales, a series of convolutions of Gaussian convolution
kernels and image with different scale factors can be used to construct a Gaussian
pyramid. In general, the scale factor coefficient between two adjacent layers of the
Gaussian pyramid is k. If the scale factor of the first layer is σ, the scale factor of the
second layer is kσ, the scale factor of the third layer is k2σ, and so on.

SIFT then searches for salient feature points in the multi-scale representation of
the image, using the difference of Gaussian (DoG) operator for this purpose. DoG is
the difference between the convolution results of two Gaussian kernels of different
scales, which is similar to the Laplacian of Gaussian (LoG) operator. If h and k are
used to represent the coefficients of different scale factors, the DoG pyramid can be
represented as

D x, y, σð Þ= G x, y, kσð Þ-G x, y, hσð Þ½ � � f x, yð Þ= L x, y, kσð Þ
- L x, y, hσð Þ 6:30Þ

The multi-scale representation space of the DoG pyramid of the image is a 3-D
space (image plane and scale axis). To search for extreme values in such a 3-D space,
it is necessary to compare the value of a point in the space with the values of its
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Fig. 6.13 The calculation steps of SIFT description vector

26 neighboring voxels. The result of this search determines the location and scale of
the salient feature points.

Next, the gradient distribution of pixels in the neighborhood of the salient feature
point is used to determine the direction parameter of each point. The modulus
(amplitude) and direction of the gradient at (x, y) in the image are, respectively
(the scale used for each L is the scale of each salient feature point)

m x, yð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L xþ 1, yð Þ- L x- 1, yð Þ½ �2 þ L x, yþ 1ð Þ- L x, y- 1ð Þ½ 2

q
ð6:31Þ

θ x, yð Þ= arctan
L x, yþ 1ð Þ- L x, y- 1ð Þ
L xþ 1, yð Þ- L x- 1, yð Þ

�
ð6:32Þ

After obtaining the direction of each point, the direction of the pixels in the
neighborhood can be combined to obtain the direction of the salient feature point.
For details, please refer to Fig. 6.13. First (on the basis of determining the location
and scale of the salient feature point), take a 16 × 16 window centered on the salient
feature point, as shown in Fig. 6.13a. Divide the window into 16 groups of 4 × 4, as
shown in Fig. 6.13b. Calculate the gradient of every pixel in each group to obtain the
gradients of the pixels in this group, as shown in Fig. 6.13c; here the arrow direction
indicates the gradient direction, and the length of the arrow is proportional to the
magnitude of gradient. Use eight-direction (interval 45°) histogram to count the
gradient direction of pixels in each group, and take the peak direction as the gradient
direction of the group, as shown in Fig. 6.13d. In this way, for 16 groups, each group
can get an 8-D direction vector, and concatenate them to get a 16 × 8 = 128-D
vector. This vector is normalized and finally used as the description vector of each
salient feature point, that is, the SIFT descriptor. In practice, the coverage region of
the SIFT descriptor can be square or round, which is also called a salient patch.

The SIFT descriptor is invariant to image scaling, rotation, and illumination
changes, and it has also certain stability for affine transformation, viewing angle
changes, local shape distortion, noise interference, etc. This is because in the process
of obtaining the SIFT descriptor, the influence of rotation is eliminated by the
calculation and adjustment of the gradient direction, the influence of the illumination
change is eliminated by the vector normalization, and the robustness is enhanced by
the combination of the pixel direction information in the neighborhood. In addition,
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Fig. 6.14 Example of the detection result of significant patches

the SIFT descriptor is rich in information and has good uniqueness (compared to
edge points or corner points that only contain position and extreme value informa-
tion, the SIFT descriptor has a 128-D description vector). Also due to its uniqueness
or particularity, SIFT descriptors can often identify a large number of salient patches
in an image for different applications to choose. Of course, due to the high dimension
of the description vector, the computation amount of the SIFT descriptor is often
relatively large. There are also many improvements to SIFT, including replacing the
gradient histogram with PCA (for effective dimensionality reduction), limiting the
amplitude of each direction of the histogram (some non-linear illumination changes
mainly affect the amplitude), using speeded-up robust feature (SURF), etc.

Example 6.7 SIFT Significant Patch Detection Results
With the help of SIFT, it is possible to determine a large number (generally,
hundreds of 256 × 384 images can be obtained) in the image scale space, covering
the local regions of the image that do not change with the translation, rotation, and
scaling of the image, and the impact of affecting by noise and interference is very
small.

Figure 6.14 shows the two results of salient patch detection. Figure 6.14a is a ship
image, and Fig. 6.14b is a beach image, in which all detected SIFT salient patches
are represented by a circle overlaid on the image (a salient patch of the circle shape is
used here).

6.3.3 Dynamic Programming Matching

The selection method of feature points is often closely related to the matching
method used for them. The matching of feature points needs to establish the
corresponding relationship between the feature points. For this purpose, ordering
constraints can be adopted and dynamic programming methods can be used.

Take Fig. 6.15a as an example, consider three characteristic points on the visible
surface of the observed object, and name them in order A, B, C. They are exactly the



6.3 Feature-Based Stereo Matching 193

BA

C

a b c a'b'c'

O O'  

A B

C

a b d d'b'c'

O O'
D

Fig. 6.15 Sequence constraints

a'

f '
e'

d'c'b'

a 

b c d e 
f

a b e 

f '

b'

e'

c d f

d'

c'

a'

Fig. 6.16 Matching based on dynamic programming

reverse of the order of projection on the two images (along the epipolar line); see
c, b, a and c', b', a'. The rule of opposite order is called sequential constraints.
Sequential constraint is an ideal situation, and it is not guaranteed to always hold in
actual scenarios. For example, in the situation shown in Fig. 6.15b, a small object is
blocked in front of the large object behind and occludes the part of the large object
and makes the original point c and a' invisible on the image. The order of projection
on the image also does not satisfy the order constraint.

However, in most practical situations, the sequential constraint is still a reason-
able constraint, so it can be used to design a stereo matching algorithm based on
dynamic programming. In the following, suppose that multiple feature points on the
two epipolar lines have been determined (as shown in Fig. 6.15), and the
corresponding relationship between them should be established as an example for
discussion. Here, the problem of matching each feature point pair can be transformed
into a problem of matching the interval between adjacent feature points on the same
epipolar line. Refer to the example in Fig. 6.16a, which shows two feature point
sequences that are arranged on two grayscale profiles. Although due to occlusion and
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other reasons, the interval between some feature points degenerates into one point,
the order of feature points determined by the sequential constraint is still retained.

According to Fig. 6.16a, the problem of matching each feature point pair can be
described as a problem of searching for the optimal path on the graph corresponding
to the nodes. The arc between the nodes in the graph representation can provide the
matching paths between intervals. In Fig. 6.16a, the upper and lower contour lines
correspond to two epipolar lines, respectively, and the quadrilateral between the two
contour lines corresponds to the intervals between the feature points (zero length
interval causes the quadrilateral to degenerate into a triangle). The matching rela-
tionship determined by dynamic programming is also shown in Fig. 6.15b, where
each diagonal line corresponds to a quadrilateral interval and the vertical or hori-
zontal line corresponds to the degenerated triangle.

The complexity of the above algorithm is proportional to the product of the
number of feature points on the two epipolar lines.

6.4 Error Detection and Correction of Parallax Map

In practical applications, due to the existence of periodic patterns and smooth regions
in the image, as well as the occlusion effects and the lack of strictness of the
constraint principle, the parallax map will have errors. The parallax map is the
basis for subsequent 3-D reconstruction work, so it is very important to perform
error detection and correction processing on the basis of the parallax map.

The following introduces a more general and fast disparity map error detection
and correction algorithm. The first characteristic of this algorithm is that it can
directly process the parallax map and is independent of the specific stereo matching
algorithm that generates the parallax map. In this way, it can be used as a general
parallax map post-processing method to be added to various stereo matching algo-
rithms without modifying the original stereo matching algorithm. Secondly, the
computation amount of this method is only proportional to the number of
mismatched pixels, so the computation amount is small.

6.4.1 Error Detection

With the help of the sequential constraints discussed earlier, let’s first define the
concept of ordering matching constraints. Suppose fL(x, y) and fR(x, y) are a pair of
(horizontal) images and OL and OR are their imaging centers, respectively. Let P and
Q be two points that do not coincide in space, PL and QL the projections of P and
Q on fL(x, y), and PR and QR the projections of P and Q on fR(x, y); see Fig. 6.17.

Suppose that X(•) is used to represent the X coordinate of the pixel. From
Fig. 6.17, it can be seen that if X(P) < X(Q), then X(PL) ≤ X(QL) and X(PR) ≤
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Fig. 6.17 Schematic diagram of defining sequential matching constraints

X(QR), and if X(P)> X(Q), then X(PL) ≥ X(QL) and X(PR) ≥ X(QR). Therefore, if the
following conditions are true () means implicit)

X PLð Þ≤X QLð Þ ) X PRð Þ<X QRð Þ
X PLð Þ≥X QLð Þ ) X PRð Þ>X QRð Þ ð6:33Þ

it is said that PR and QR meet the sequential matching constraint; otherwise it is said
that there has been a crossover, that is to say, an error has occurred. It can be seen
from Fig. 6.17 that the sequential matching constraint has certain restrictions on the
Z coordinates of points P and Q, which is relatively easy to determine in practical
applications.

According to the concept of sequential matching constraints, the crossed
matching region can be detected, that is, error detection. Let PR = fR(i, j) and
QR= fR(k, j) be any two pixels in the jth row in fR(x, y); then their matching points in
fL(x, y) can be recorded separately: PL = fL(i + d(i, j), j) and QL = fL(k + d(k, j), j).
Define C(PR, QR) as the cross-label between PR and QR. If Eq. (6.33) holds, it is
recorded as C(PR, QR) = 0; otherwise, it is recorded as C(PR, QR) = 1. Define the
crossing number Nc of the corresponding pixel PR as

Nc i, jð Þ=
XN- 1

k= 0

C PR, QRð Þ k ≠ i ð6:34Þ

where N is the number of pixels in the jth row.
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6.4.2 Error Correction

If a region where the crossing number is not zero is called the crossing region, the
mismatch in the crossing region can be corrected by the following algorithm.
Assuming {fR(i, j)| i ⊆ [p, q]} is the crossing region corresponding to PR, then the
total cross number Ntc of all pixels in this region is

N tc i, jð Þ=
Xq
i= p

Nc i, jð Þ ð6:35Þ

The error correction of the mismatched points in the crossing region includes
the following steps:

1. Find the pixel fR(l, j) with the largest crossing number; here

I= max
i⊆ p, q½ �

Nc i, jð Þ½ � 6:36Þ

2. Determine the new search range {fL(i, j)| i ⊆ [s, t]} for the matching point
fR(k, j), where

s= p- 1þ d p- 1, jð Þ
t= qþ 1þ d qþ 1, jð Þ

�
ð6:37Þ

3. Find a new matching point that can reduce the total crossing number Ntc from
the search range (the maximum gray level correlation matching technology, e.g.,
can be used).

4. Use the new matching point to correct d(k, j) to eliminate the mismatch of pixels
corresponding to the current maximum crossing number.

The above steps can be used iteratively; after correcting one mismatched pixel,
continue to correct each of the remaining error pixels. After correcting d(k, j), first
re-calculate Nc(i, j) in the crossing region by Eq. (6.34), followed by calculating Ntc,
and then perform the next round of correction processing according to the above
iteration until Ntc = 0. Because the principle of correction is to make Ntc = 0, it can
be called a zero-crossing correction algorithm. After correction, a parallax map
that meets the sequential matching constraint can be obtained.

Example 6.8 Example of Matching Error Detection and Elimination
Suppose that the calculated parallax of the interval region [153, 163] in row j of the
image is shown in Table 6.1 and the distribution of matching points in this region is
shown in Fig. 6.18.
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Table 6.1 Parallax in the crossing region

i 153 154 155 156 157 158 159 160 161 162 163

d(i, j

Fig. 6.18 Distribution of
matching points before
crossing region correction

153 154 155 156 157 158 159 160 161 162 163

181 182 183 184 185 186 187 188 189 190 191

fR

fL

Table 6.2 The number of horizontal crossings in the interval region [153, 163]

i 153 154 155 156 157 158 159 160 161 162 163

Nc

Fig. 6.19 The distribution
of matching points after
crossing region correction

153 154 155 156 157 158 159 160 161 162 163

181 182 183 184 185 186 187 188 189 190 191

f R

f L

According to the correspondence between fL(x, y) and fR(x, y), it can be known
that the matching points in the region [160, 162] are error mismatch points.
According to Eq. (6.34), calculate the crossing number (along the horizontal direc-
tion) to get Table 6.2.

From Table 6.2, [fR(154, j), fR(162, j)] is the crossing region. From Eq. (6.35),
Ntc = 28 can be obtained; from Eq. (6.36), it can be seen that the pixel with the
largest crossing number is fR(160, j); then, according to Eq. (6.37), the search range
of the new matching point fR(160, j) is {fL(i, j)| i ⊆ [181, 190]}. According to the
technique of maximum gray level correlation matching, a new matching point
fL(187, j) that corresponds to fR(160, j) and can reduce Ntc is found from the search
range, and the parallax value d(160, j) corresponding to fR(160, j) is corrected as
d(160, j) = X[fL(187, j)] - X[fR(160, j)] = 27. Then proceed to the next round of
correction according to the above iterative method until Ntc = 0 in the entire region.
The corrected matching point distribution is shown in Fig. 6.19. It can be seen from
Fig. 6.19 that the original mismatch points in the interval region [160, 162] have
been eliminated.

It should be pointed out that the above algorithm can only eliminate the mismatch
points in the crossing region. Since the sequential matching constraint is only
processed for the crossing region, the mismatch point in the region where the
crossing number is zero cannot be detected or corrected.
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Fig. 6.20 A real instance of error elimination

Example 6.9 A Real Instance of Matching Error Detection and Elimination
Here, a pair of images in Fig. 6.8a, b are selected for matching. Figure 6.20a is a part
of the original image, Fig. 6.20b is a parallax map obtained directly using the region-
based stereo matching method, and the result of Fig. 6.20c is obtained after further
processing with the above correction algorithm. Comparing Fig. 6.20b, c, it can be
seen that there are many mismatched points (too-white and too-dark patches) in the
original parallax map. After correction processing, a considerable part of the
mismatched points is eliminated. The image quality has been significantly improved.

6.5 Key Points and References for Each Section

The following combines the main contents of each section to introduce some
references that can be further consulted.

1. Stereo Vision Process and Modules
In each module of stereo vision, there are many different implementation

methods. For example, you can refer to [1] for further information about the
network-symbol model; refer to the reference 2D Computer Vision: Principles,
Algorithms and Applications for the calculation of interpolation. The model-
based interpolation reconstruction algorithm can be found in [2]; the sub-pixel
level parallax accuracy can be found in [3]. This chapter only discusses binocular
stereo vision, which is a direct imitation of the human visual system. In a
computer vision system, it is also possible to use three or even more oculars
(cameras); for example, see [4].

2. Region-Based Stereo Matching
At the image boundary, the impact of using the template can be found in [3]. In

stereo matching, compatibility constraints, uniqueness constraints, and continuity
constraints are all commonly used constraints. For further discussion, please refer
to [5]. For a more detailed introduction of essential matrix and fundamental
matrix, please refer to [6]. Pixel gray values are mostly used in region-based



[Hint] Consider the sequence of the stereo vision process.
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matching, and some people have tried some derivation of gray levels, but some
experiments have shown (e.g., see [7]) that among gray level, gradient magnitude
and direction, Laplacian value of gray level, and gray curvature, using the
grayscale parameter in matching is still the best. The imaging model used in the
calculation of surface optical properties can be found in the book 2D Computer
Vision: Principles, Algorithms and Applications.

3. Feature-Based Stereo Matching
When matching feature points, the further discussion for selecting the zero-

crossing pattern to obtain matching primitives can refer to [8]. Interpolation is
required after obtaining sparse matching points, which can be found in the book
2D Computer Vision: Principles, Algorithms and Applications. Scale Invariant
Feature Transformation (SIFT) is based on the multi-scale representation of
images (see [3]); for detecting salient features in images, see [9], and the
26 neighborhood concepts used can be found in [10]. For an introduction to the
speeded-up robust feature (SURF), please refer to [4]. Using sequential con-
straints to perform dynamic programming matching can be found in [11].

4. Error Detection and Correction of Parallax Map
For details of the more general and fast parallax map error detection and

correction algorithm introduced, please refer to [12]. A recent fast refinement
algorithm for parallax results can be found in [13].

Self-Test Questions

The following questions include both single-choice questions and multiple-choice
questions, so each option must be judged.

6.1 Stereo Vision Process and Modules

6.1.1 In the stereo vision process shown in Fig. 6.1, (�).
(a) Image acquisition should be carried out on the basis of camera

calibration.
(b) The function of the feature extraction module is to extract the

features of the pixel set for matching.
(c) The depth interpolation in post-processing is to help stereo matching.
(d)

6.1.2

Post-processing is needed because the 3-D information obtained is
often incomplete or has certain errors.

Consider the various modules in the stereo vision process given in
Fig. 6.1, (�).
(a) The stereo matching module is only used when it can directly make

3-D imaging.



[Hint] Consider the respective functions and connections of each module.

Although the positioning accuracy of large-scale features is poor,
they contain a lot of information and match faster.

[Hint] Matching is to determine the most relevant position.

[Hint] The attribute of the pixel corresponds to f, while the position corre-
sponds to (x, y).
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(b) The feature extraction module can directly extract the gray value of
the pixel set as a feature.

(c) The image acquisition module can directly acquire 3-D images to
achieve 3-D information recovery.

(d)

6.1.3

The function of the 3-D information recovery module is to establish
the relationship between the image points of the same space points in
different images.

Which of the following description(s) is/are incorrect? (�).
(a)

(b) If only a single camera is used for image acquisition, there is no need
for calibration.

(c) The gray values of pixels in small regions are relatively related, so it
is suitable for grayscale correlation matching.

(d) If the camera baseline is relatively short, the difference between the
captured images will be relatively large.

[Hint] Analyze the meaning of each description carefully.
6.2 Region-Based Stereo Matching

6.2.1 In template matching, (�).
(a) The template used must be square.
(b) The size of the template used must be smaller than the size of the

image to be matched.
(c) The matching positions determined by the correlation function and

the minimum mean square error function are consistent.
(d)

6.2.2

The matching position calculated by the correlation coefficient does
not change with the gray value of the template and the matching
image.

Among the various constraints used for matching, (�).
(a) The epipolar line constraint restricts the position of the pixel.
(b) The uniqueness constraint restricts the attributes of pixels.
(c) The continuity constraint restricts the position of pixels.
(d)

6.2.3 I

The compatibility constraint restricts the attributes of pixels.

n the following description of epipolar line constraint, (�).
(a) The epipolar constraint can help reduce the amount of calculation by

half in the matching search process.



[Hint] Refer to Example –Example .6.46.2

[Hint] Consider the particularity of the features.

[Hint] Analyze the meaning of each calculation step in the scale invariant
feature transformation.
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(b) The epipolar line in one imaging plane and the extreme point in
another imaging plane are corresponding.

(c) The epipolar line pattern can provide information about the relative
position and orientation between two cameras.

(d)

6.2.4

For any point on an imaging plane, all points corresponding to it on
the imaging plane 2 are on the same straight line.

Comparing the essential matrix and the fundamental matrix, (�).
(a) The degree of freedom of the essential matrix is more than that of the

fundamental matrix.
(b) The role or function of the fundamental matrix and the essential

matrix is similar.
(c) The essential matrix is derived from uncorrected cameras.
(d) The fundamental matrix reflects the relationship between the projec-

tion point coordinates of the same space points on two images.

[Hint] Consider the different conditions in the derivation of the two
matrices.

6.3 Feature-Based Stereo Matching

6.3.1 For feature-based stereo matching technology, (�).
(a) It is not very sensitive to the surface structure of the scene and light

reflection.
(b) The feature point pair used is the point determined according to the

local properties in the image.
(c) Each point in the stereo image pair can be used as a feature point in

turn for matching.
(d)

6.3.2

The matching result is not yet a dense parallax field.

Scale Invariant Feature Transformation (�).
(a) Needs to use multi-scale representation of images
(b) Needs to search for extreme values in 3-D space
(c) In which the 3-D space here includes position, scale, and direction
(d) I

6.3.3

n which the Gaussian difference operator used is a smoothing
operator

For sequential constraints, (�).
(a) It indicates that the feature points on the visible surface of the object

are in the same order as their projection points on the two images.



[Hint] Consider the definition and connection of the crossing number and
the total crossing number.

[Hint] Analyze the meaning of each step in the zero-crossing correction
algorithm.
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(b) It can be used to design a stereo matching algorithm based on
dynamic programming.

(c) It may not be true/hold when there is occlusion between objects.
(d) When the graphical representation is performed according to the

dynamic programming method, the interval between some feature
points will degenerate into one point, and the order of constraint
determination is invalid.

[Hint] Analyze the conditions for the establishment of sequential
constraints.

6.4

6.4.1 I

Error Detection and Correction of Parallax Map

n the method of parallax map error detection and correction, (�).
(a) Only the region where the crossing number is not zero should be

considered.
(b) The crossing number in a region is proportional to the size of the

region.
(c) To calculate the total crossing number, twice summations are

performed.
(d)

6.4.2

The crossing number in a region is proportional to the length of the
region.

Analyze the following statements, which is/are correct? (�).
(a) In the crossing region, the crossing values of adjacent points differ

by 1.
(b) The zero-crossing correction algorithm must make Ntc = 0, so it is

named.
(c) The sequential matching constraint refers to the sequential con-

straint, so it indicates that the order of the space points is reversed
to the order of their imaging points.

(d)

6.4.3 I

The zero-crossing correction algorithm is an iterative algorithm.
After each iteration, the total crossing numbers will always decrease.

n Example 6.8, Ntc = 28 before correction; please find a new matching
point fL(187, j) that corresponds to fR(160, j) and can reduce Ntc. It can
correct the parallax value d(160, j), corresponding to fR(160, j), to
d(160, j) = X[fL(187, j)] - X[fR(160, j)] = 27. At this time, (�).
(a) Ntc = 16
(b) Ntc = 20



[Hint] The crossing number on the left side of the correction point fR(160, j)
will decrease but on the right side may increase. Need specific calculations.
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(c) Ntc = 24
(d)

6.4.4

Ntc = 28

On the basis of 6.4.3, find the fR(161, j) with the largest crossing number,
and determine the new matching point corresponding to fR(161, j) that
can reduce Ntc. In this way, the correction can make the total crossing
number Ntc drop to (�).
(a) 20
(b) 15
(c) 10
(d) 5

[Hint] The new matching point corresponding to fR(161, j) and capable of
reducing Ntc is fL(188, j).
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Chapter 7
Monocular Multiple Image Recovery

The binocular stereo vision method introduced in Chap. 6 is an important method to
imitate the principle of human stereo vision to obtain depth information. Its advan-
tage is that the geometric relationship is very clear, but the disadvantage is that it
needs to be matched to determine the corresponding points in the binocular image.
Corresponding point matching is a difficult problem, especially when the scene
lighting is inconsistent and there are shadows on the scene. At this time, the
correspondence of the points cannot be guaranteed based on the similarity of the
gray levels. In addition, the use of stereo vision methods requires that several points
on the scene appear in all images for which corresponding points need to be
determined. In practice, it is affected by the occlusion of the line of sight, etc., and
it cannot guarantee that different cameras have the same field of view, which will
cause the difficulty of corresponding point detection and affect the corresponding
point matching.

To avoid complicated corresponding point matching problems, various 3-D clues
from monocular images (i.e., only a single camera with a fixed position is used, but
single or multiple images can be taken) are often used to recover the scene. Since one
dimension is lost when the 3-D world is projected onto the 2-D image, the key to
recovering the scene is to recover the lost one dimension.

From the perspective of information, the stereo vision method recovers the depth
of the scene according to multiple images obtained by the camera at different
positions, which can be seen as converting the redundant information between
multiple images into depth information. Obtaining multiple images with redundant
information can also be accomplished by collecting changing images of scene at the
same location. These images can be obtained with only one (fixed) camera, so it is
also called the monocular method (the stereo vision method is based on multiple-
ocular multiple-image). The surface orientation of the scene can be determined from
the monocular multiple-images obtained in this way, and the relative depth
between various parts of the scene can be directly obtained from the surface
orientation of the scene. In practice, the absolute depth of the scene can often be
further obtained.
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If the position of the light source is changed during image acquisition, a single
camera at a fixed position can be used to obtain multiple images under different
lighting conditions. The image brightness of the same surface varies with the shape
of the scene, which can be used to help determining the shape of the 3-D scene. The
multiple images at this time do not correspond to different viewpoints but corre-
spond to different lighting, which is called shape from illumination (shape restora-
tion by lighting). If the scene moves during the image acquisition process, an optical
flow will be generated in an image sequence composed of multiple images. The
magnitude and direction of the optical flow vary with the orientation of the surface of
the scene, so it can be used to help determining the 3-D structure, which is called
shape from motion (shape restoration by motion).

The sections of this chapter are arranged as follows:

Section 7.1 starts from the principle of photometry, first analyzes the imaging
process from the light source to the scene and then to the lens, and points out
that the image gray level depends on the intensity of the light source and the
reflection characteristics of the scenery, as well as the geometric relationship
between them.

Section 7.2 discusses the establishment of the relationship between the image gray
level and the orientation of the scenery, and the orientation of the scenery is
determined by the change of the image gray level.

Section 7.3 introduces how to detect the motion of the scenery and uses the optical
flow equation to describe and solve the principle and several special cases of the
optical flow equation.

Section 7.4 further introduces the realization of the restoration of the shape and
structure of the scenery by the solution of the optical flow equation. Here, the
analytical optical flow equation is solved by the transformation of the coordinate
system.

7.1 Photometric Stereo

Photometric stereo, also known as photometric stereoscopy, is a discipline that
uses the principles of photometry to obtain stereo information. It is also regarded as a
way to restore the surface orientation of the scenery with a series of images collected
under the same viewing angle but under different lighting conditions. Photometric
stereo methods are often used in environments where lighting conditions are rela-
tively easy to control or determine.
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7.1.1 Light Source, Scenery, Lens

The photometric stereo method should restore the three-dimensional shape of the
scenery according to the illumination (change). Photometry is the subject of light
measurement in the process of light emission, propagation, absorption, and scatter-
ing. It mainly relates to the field of light intensity measurement in optics, that is, the
part of optics that measures the quantity or spectrum of light. It is a corresponding
metrology subject in the visible light band, taking into account the subjective factors
of the human eye. Light is a special electromagnetic wave, so photometry is regarded
as a branch of radiometry.

Photometric measurement studies the intensity of light and its measurement. It
also evaluates the visual effects of radiation based on the physiological characteris-
tics of human visual organs and certain agreed norms. The measurement methods are
divided into two types: visual measurement (subjective photometry) and instrumen-
tal and physical measurement (objective photometry). The subjective photometry
directly compares the brightness of the two halves of the field of view and then
converts them into target detection quantities, such as luminous intensity and
luminous flux. Objective photometry uses physical devices to replace the human
eye for photometric comparison.

In image engineering, visible light is the most common electromagnetic radiation.
The collection of visible light images from a scene requires knowledge related to
photometry. The following physical quantities are commonly used in photometry to
describe the emitted, transmitted, or received light energy: (i) luminous flux;
(ii) luminous intensity; (iii) brightness/intensity; and (iv) illuminance.

Look at the imaging process, the light source illuminates the scenery first, and
then the light reflected from the scenery reaches the lens (imaging sensor) to form an
image, as shown in Fig. 7.1. The illumination of the scenery by the light source
involves two factors. On the one hand, the light source has a certain luminance
intensity. The irradiation intensity to the scene is called illuminance, and the
illuminance of the scene is a function of the luminance intensity. On the other
hand, the light from the light source incidents the scenery at a certain angle, and

Fig. 7.1 From the light
source through the scenery
to the lens Luminance intensity 
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the illumination of the scenery is a function of the orientation of the scenery relative
to the light source. The illumination of the lens by the reflected light from the scenery
also involves two factors. On the one hand, the reflected light of the scenery has a
certain brightness, so there is illuminance to the lens, and the illuminance of the lens
is a function of the brightness of the scene. On the other hand, the light emitted from
the scenery hits the lens, and the illuminance of the lens is a function of the
orientation of the lens relative to the scene. In addition, the reflected light of the
scenery is also related to the reflection characteristics of the scenery surface. The five
relationships or factors here are marked with (i), (ii), (iii), (iv), and (v) in Fig. 7.1.

Further analysis shows that the process from light source to scenery and the
process from scenery to lens are similar. Receiving light from a light source from a
scenery is similar to receiving light from a lens, that is, the scenery for the lens is
equivalent to the light source illuminating the scene and the lens relative to the
scenery is equivalent to the scenery illuminated by the light source. The following is
an introduction to factor (i) and factor (ii) related to the relationship between
intensity/brightness and illuminance, factor (iii) and factor (iv) related to relative
orientation, as well as factor (v) related to reflection characteristic.

7.1.2 Scene Brightness and Image Brightness

Scene brightness and image brightness are two related but different concepts. In
imaging, the former is related to radiance and the latter is related to irradiance.
Specifically, the former corresponds to the luminous flux emitted from the surface in
the scene (as a light source), which is the power emitted per unit area of the light
source surface within a unit solid angle, in Wm-2 sr-1; the latter corresponds to the
luminous flux illuminating the surface, it is the power per unit area hitting the surface
of the scene, and the unit is Wm-2. In optical imaging, the scene is imaged on the
image plane (of the imaging system), so the brightness of the scene corresponds to
the luminous flux emitted from the surface of the scene, and the brightness of the
image corresponds to the luminous flux obtained from the image plane.

The brightness of the image obtained after imaging a 3-D scene depends on many
factors, such as the intensity of the reflected light and the intensity of the incident
light when an ideal diffuse surface is illuminated by a point light source (a light
source whose line segment is small enough or far enough from the observer). The
surface light reflection coefficient is proportional to the cosine of the light incident
angle (the angle between the line of sight and the incident ray). In a more general
case, image brightness is affected by the shape of the scene itself, its posture in space,
surface reflection characteristics, the relative orientation and position of the scene
and the image acquisition system, the sensitivity of the acquisition device, and the
radiation intensity and distribution of the light source. That is, the image brightness
does not represent the intrinsic properties of the scene.
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7.1.2.1 The Relationship Between Scene Brightness and Image
Brightness

Now let’s discuss the relationship between the radiance of a point light source (the
brightness of the scene) and the illuminance of the corresponding point on the image
(the brightness of the image). As shown in Fig. 7.2, a lens with a diameter of d is
placed at λ from the image plane (λ is the focal length of the lens). Suppose the area
of a certain surface element on the surface of the scene is δO and the area of the
corresponding image pixel is δI. The angle between the light ray from the scene
element to the center of the lens and the optical axis is α, and the angle with the
normalN of the scene surface panel is θ. The distance between the scene and the lens
along the optical axis is z (because the direction from the lens to the image is
assumed to be the positive direction, it is marked as -z in the figure).

The area of the image pixel seen from the lens center is δI × cosα, and the actual
distance between the image pixel and the lens center is λ/cosα, so the solid angle
facing the image pixel is δI × cosα/(λ/cosα)2. Similarly, it can be seen that the solid
angle of the scene element seen from the center of the lens is δO × cosθ/(z/cosα)2. It
can be obtained from the equality of two solid angles:

δO
δI

=
cos α
cos θ

z
λ

� �2
ð7:1Þ

Let’s see how much light from the surface of the scene will pass through the lens.
Because the lens area is π(d/2)2, it can be seen from Fig. 7.2 that the solid angle of the
lens viewed from the scene element is

Ω=
πd2
4

cos α
1

z= cos αð Þ2 =
π
4

d
z

� �2

cos 3α ð7:2Þ

In this way, the power emitted from the surface element δO of the scene and
passing through the lens is
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Fig. 7.2 Scene surface elements and corresponding image pixels
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δP= L× δO ×Ω× cos θ= L × δO ×
π
4

d
z

2

cos 3α cos θ ð7:3Þ

where L is the brightness of the scene falling on the surface of the scene in the
direction toward the lens. Since the light from other areas of the scene will not reach
the image element δI, the illuminance obtained by this element is

E=
δP
δI

= L ×
δO
δI

×
π
4

d
z

� �2

cos 3α cos θ ð7:4Þ

Substituting Eq. (7.1) into Eq. (7.4), we finally get

Ε= L
π
4

d
z

� �2

cos 4α ð7:5Þ

It can be seen from Eq. (7.5) that the measured element illuminance E is propor-
tional to the brightness L of the scene of interest and is proportional to the area of the
lens but is inversely proportional to the square of the focal length of the lens. The
change in illuminance produced by camera movement is reflected in the angle α.

7.1.2.2 Bidirectional Reflectance Distribution Function

When imaging the observation scene, the brightness L of the scene is not only related
to the luminous flux incident on the surface of the scene and the proportion of
incident light reflected, but also related to the geometric factors of light reflection,
that is, it is related to the direction of illumination and the direction of sight. Now
look at the coordinate system shown in Fig. 7.3, where N is the normal of the surface
element,OR is an arbitrary reference line, and the direction of a ray I can be the angle
θ between the ray and the normal of the surface (called the polar angle) and the angle
ϕ (called the azimuth angle) between the orthographic projection of the ray on the
surface of the scene and the reference line.

Fig. 7.3 Polar angle θ and
azimuth angle ϕ indicating
the direction of light ray
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Fig. 7.4 Schematic
diagram of bidirectional
reflectance distribution
function
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Fig. 7.5 Schematic
diagram of obtaining surface
brightness under the
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With such a coordinate system, (θi, ϕi) can be used to indicate the direction of
light incident on the surface of the scene, and (θe, ϕe) can be used to indicate the
direction of reflection to the observer’s line of sight, as shown in Fig. 7.4.

From this, we can define the bidirectional reflectance distribution function
(BRDF), which is very important for understanding surface reflection, and denote it
as f(θi, ϕi; θe, ϕe) below. It represents the brightness of the surface observed by the
observer in the direction (θe, ϕe) when the light is incident on the surface of the scene
along the direction (θi, ϕi). The unit of the bidirectional reflectance distribution
function is the reciprocal of the solid angle (sr-1), and its value ranges from zero to
infinity (at this time, any small angle of incidence will lead to observation of
radiation). Note that f(θi, ϕi; θe, ϕe) = f(θe, ϕe; θi, ϕi), that is, the bidirectional
reflectance distribution function is symmetric about the incident and reflection
directions. Suppose δE(θi, ϕi) is the illuminance obtained by the object when the
light incidents on the surface of the object along the direction of (θi, ϕi) and the
brightness of the reflection (emission) observed in the direction of (θe, ϕe) is δL(θe,
ϕe), and then the bidirectional reflectance distribution function is the ratio of
brightness to illuminance, namely

f θi, ϕi; θe, ϕeð Þ= δL θe, ϕeð Þ
δE θi, ϕið Þ ð7:6Þ

Now further consider the case of an extended light source (a light source with a
certain light-emitting area). In Fig. 7.5, the width of an infinitesimal surface element
on the sky (which can be considered as a radius of 1) along the polar angle is δθi, and
the width along the azimuth angle is δϕi. The solid angle corresponding to this
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Fig. 7.6 Four basic incident and observation modes

surface element is δω = sinθiδθiδϕi (where sinθi takes into account the spherical
radius after conversion). If Eo(θi, ϕi) is the illuminance of unit solid angle along the
direction of (θi, ϕi), then the illuminance of the surface element is Eo(θi, ϕi)
sinθiδθiδϕi, while the illuminance received by the entire surface is

E=
Zπ

- π

Zπ=2
0

Eo θi, ϕið Þ sin θi cos θidθidϕi ð7:7Þ

In Eq. (7.7), cosθi considers the influence of the projection of the surface along
the direction (θi, ϕi) (projected onto the plane perpendicular to the normal).

In order to obtain the brightness of the entire surface, the product of the bidirec-
tional reflectance distribution function and the surface element illuminance needs to
be added up on the hemisphere that the light may enter. With the help of Eq. (7.6), it
has

L θe, ϕeð Þ=
Zπ

- π

Zπ=2
0

f θi, ϕi; θe, ϕeð ÞEo θi, ϕið Þ sin θi cos θidθidϕi ð7:8Þ

The result of Eq. (7.8) is a function of two variables (θe and ϕe); these two
variables indicate the direction of the light shining toward the observer.

Example 7.1 Common Incident and Observation Modes
The common light incident and observation modes include the four basic forms
shown in Fig. 7.6, where θ represents the incident angle and ϕ represents the azimuth
angle. They are all combinations of diffuse incidence di and directional (θi, ϕi)
incidence as well as diffuse reflection de and directional (θe, ϕe) observations. Their
reflectance ratios are in order: diffuse incidence-diffuse reflection ρ(di; de); direc-
tional incidence-diffuse reflection ρ(θi, ϕi; de); diffuse incidence-directional obser-
vation ρ(di; θe, ϕe); and directional incidence-directional observation ρ(θi, ϕi; θe, ϕe).
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7.1.3 Surface Reflection Characteristics and Brightness

The bidirectional reflectance distribution function indicates the reflection character-
istics of the surface, and different surfaces have different reflectance characteristics.
Only two extreme cases are considered below: an ideal scattering surface and an
ideal specular reflection surface.

7.1.3.1 Ideal Scattering Surface

An ideal scattering surface is also called a Lambertian surface or a diffuse
reflection surface. It is equally bright from all viewing directions (regardless of
the angle between the observation line of sight and the surface normal), and it reflects
all incident light without absorption. It can be seen that f(θi, ϕi; θe, ϕe) of an ideal
scattering surface is a constant (not dependent on angle), and this constant can be
calculated as follows. For a surface, its brightness integral in all directions should be
equal to the total illuminance obtained by the surface, namely

L θe, ϕeð Þ=
Zπ

- π

Zπ=2
0

f θi, ϕi; θe, ϕeð ÞE θi, ϕið Þ sin θe cos θedθedϕe

=E θi, ϕið Þ cos θi ð7:9Þ

In Eq. (7.9), both sides are multiplied by cos θi to convert to theN direction. From
the above equation, the BRDF of an ideal scattering surface can be solved as

f θi, ϕi; θe, ϕeð Þ= 1
π ð7:10Þ

With the help of Eq. (7.10), it can be known that for an ideal scattering surface,
the relationship between its brightness L and illuminance E is

L=
E
π ð7:11Þ

Example 7.2 Lambertian Surface Normal
In practice, the common matte surface reflects light divergently, and the matte
surface model under ideal conditions is the Lambertian model. The reflectivity of
the Lambertian surface depends only on the incident angle i. Further, the change in
reflectivity with angle i is cosi. For a given reflected light intensity I, it can be seen
that the incident angle satisfies cosi = C × I, and C is a constant, that is, the constant
reflection coefficient (albedo). Therefore, the angle i is also a constant. It can be
concluded that the surface normal is on a directional cone surrounding the direction
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Fig. 7.7 Two directional
cones intersecting on two
lines

of the incident light, the half angle of the cone is i, and the axis of the cone points to
the point source of illumination, that is, the cone is centered on the incident light
direction.

The two directional cones that intersect on two lines can define two directions in
space, as shown in Fig. 7.7. Therefore, to make the surface normal completely
unambiguous, a third cone is needed. When using three light sources, each surface
normal must have a common vertex with each of the three cones: the two cones have
two intersection lines, and the third cone in the regular position will reduce the range
to a single line, so as to give a unique explanation and estimation of the direction of
the surface normal. It should be noted that if some points are hidden behind and are
not hit by the light of a certain light source, there will still be ambiguity. In fact, the
three light sources cannot be in one straight line, they should be relatively separated
from the surface, and they should not block each other.

If the absolute reflection coefficient R of the surface is unknown, a fourth cone
can be considered. Using four light sources can help determine the orientation of a
surface with unknown or non-ideal characteristics. But this situation is not always
necessary. For example, when three rays of light are orthogonal to each other, the
sum of the cosines of the angles relative to each axis must be one, which means that
only two angles are independent. Therefore, using three sets of data to determine
R and two independent angles, a complete solution is obtained. The use of four light
sources can help determine any inconsistency explanations in practical applications.
This inconsistency may come from the presence of high light reflecting elements.

7.1.3.2 Ideal Specular Reflecting Surface

The ideal specular reflecting surface is totally reflective like a mirror (e.g., the
bright region on the object is the result of the specular reflection of the light source
on the object), so the wavelength of reflected light only depends on the light source
and has nothing to do with the color of the reflecting surface. Different from an ideal
scattering surface, an ideal specular reflecting surface can reflect all light incident
from the direction (θi, ϕi) to the direction (θe, ϕe), and the incident angle is equal to
the reflection angle; see Fig. 7.8. The BRDF of an ideal specular reflecting surface
will be proportional (with a scale factor of k) to the product of the two pulses
δ(θe – θi) and δ(ϕe – ϕi – π).
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Fig. 7.8 Schematic
diagram of ideal specular
reflecting surface

N

qe=q q i=q

In order to find the proportional coefficient k, the integral of the brightness in all
directions of the surface should be equal to the total illuminance obtained on the
surface, namely

Zπ

- π

Zπ=2
0

kδ θe - θið Þδ ϕe -ϕi - πð Þ sin θe cos θedθedϕe = k sin θi cos θi = 1 ð7:12Þ

From this, the BRDF of the ideal specular reflecting surface can be solved as

f θi, ϕi; θe, ϕeð Þ= δ θe - θið Þδ ϕe -ϕi - πð Þ
sin θi cos θi

ð7:13Þ

When the light source is an extended light source, substituting the above equation
into Eq. (7.8), the brightness of an ideal specular reflecting surface can be obtained as

L θe, ϕeð Þ=
Zπ

- π

Zπ=2
0

� δ θe - θið Þδ ϕe -ϕi - πð Þ
sin θi cos θi

E θi, ϕið Þ sin θi cos θidθidϕi =E θe, ϕe - πð 7:14Þ

That is, the polar angle does not change, but the azimuth angle is rotated by 180°.
In practice, ideal scattering surfaces and ideal specular reflecting surfaces are

relatively rare. Many surfaces can be regarded as having both a part of the properties
of an ideal scattering surface and a part of the properties of an ideal specular
reflecting surface. In other words, the BRDF of the actual surface is the weighted
sum of Eqs. (7.10) and (7.13).
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7.2 Shape from Illumination

According to the analysis from the light source through the scene to the lens, the gray
scale of the image depends not only on the illumination of the light source to the
scene and the illumination of the scene to the lens but also on the surface character-
istics of the scene. The illuminance is not only related to the distance between the
light source and the scene plus the distance between the scene and the lens but also
the direction of the light source and the scene plus the orientation of the scene and the
lens. In this way, under the premise that the surface characteristics of the scene are
known or certain assumptions are made, it is possible to establish the relationship
between the image gray scale and the orientation of the scene and then determine the
orientation of the scene according to the change of the image gray scale.

7.2.1 Representation of the Surface Orientation of a Scene

First consider how to represent the orientation of each point on the surface of the
scene. For a smooth surface, each point on it will have a corresponding tangent
plane, and the orientation of this tangent plane can be used to indicate the orientation
of the surface at that point. The normal vector of the surface, that is, the (unit) vector
perpendicular to the tangent plane, can indicate the orientation of the tangent plane.
If we borrow the Gaussian spherical coordinate system (see Sect. 9.2) and place the
end of this normal vector at the center of the ball, then the top of the vector and the
sphere will intersect at a specific point. This intersection point can be used to mark
the surface orientation. The normal vector has two degrees of freedom, so the
position of the intersection on the sphere can be represented by two variables, such
as using polar angle and azimuth angle or using longitude and latitude.

The selection of these variables is related to the setting of the coordinate system.
Generally, for convenience, one axis of the coordinate system is often coincident
with the optical axis of the imaging system, and the system origin is placed at the
center of the lens, so that the other two axes are parallel to the image plane. In the
right-hand system, the Z axis can be directed to the image, as shown in Fig. 7.9. In

Fig. 7.9 Describing the
surface with a distance
orthogonal to the lens plane
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Fig. 7.10 Use partial
differentiation to
parameterize the surface
orientation
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this way, the surface of the scene can be described by the distance -z orthogonal to
the lens plane (i.e., parallel to the image plane).

Now write the surface normal vector in terms of z and the partial derivatives of
z with respect to x and y. The surface normal is perpendicular to all the lines on the
surface tangent plane, so the outer (cross) product of any two non-parallel straight
lines on the tangent plane can provide the surface normal, which can be seen in
Fig. 7.10.

If a small step δx is taken from a given point (x, y) along the X axis, according to
the Taylor expansion, the change along the Z axis is δz = δx × ∂z/∂x + e, where
e includes higher-order terms. In the following, p and q are used to represent the
partial derivatives of z with respect to x and y, and (p, q) are generally called surface
gradients. In this way, the vector along the X axis is [δx 0 pδx]T, which is parallel to
the line of vector rx = [1 0 p]T at (x, y) of the tangent plane. Similarly, a straight line
parallel to the vector ry= [0 1 q]T also crosses (x, y) of the tangent plane. The surface
normal can be obtained by calculating the outer product of these two straight lines.
Finally, it is determined whether to point the normal toward the observer or leave the
observer. If it points to the observer (take the reverse direction), then

N= rx × ry = 1 0 p½ �T × 0 1 q½ �T = - - p - q 1½ �T ð7:15Þ

Here the unit vector on the surface normal is

bN=
N
jNj =

- p - q 1½ �Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2 þ q2

p ð7:16Þ

Next, calculate the angle θe between the surface normal of the scene and the lens
direction. Assuming that the scene is quite close to the optical axis, the unit
observation vector from the scene to the lens can be regarded as [0 0 1]T, so the
result of the dot product operation of the two unit vectors can be obtained:
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bN • bV= cos θe =
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ p2 þ q2
p ð7:17Þ

When the distance between the light source and the scene is much larger than the
dimension of the scene itself, the direction of the light source can be indicated by
only one fixed vector, and the direction of the surface corresponding to the vector is
orthogonal to the light emitted by the light source. If the normal of the surface of the
scene can be represented by [–ps –qs 1]

T, when the light source and the observer are
on the same side of the scene, the direction of the light source can be indicated by the
gradient (ps, qs).

7.2.2 Reflectance Map and Brightness Constraint Equation

Now consider linking the pixel gray scale (image brightness) with the pixel gray-
scale gradient (surface orientation).

7.2.2.1 Reflection Map

Consider illuminating a Lambertian surface with a point light source, the illuminance
is E, according to Eq. (7.10), and its brightness is

L=
1
π
E cos θi θi ≥ 0 ð7:18Þ

where θi is the angle between the surface normal unit vector [–p –q 1]T and the unit
vector pointing to the light source [–ps –qs 1]

T. Note that since the brightness cannot
be negative, there is 0 ≤ θi ≤ π/2. Find the inner product of these two unit vectors to
get

cos θi =
1þ pspþ qsqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ p2 þ q2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ p2s þ q2s
p ð7:19Þ

Substituting it to Eq. (7.18), the relationship between the brightness of the scene
and the surface orientation can be obtained. The relation function obtained in this
way is denoted as R(p, q), and the graph obtained by drawing it as a function of the
gradient (p, q) in the form of contours is called a reflectance map. The PQ plane is
generally called a gradient space, where each point ( p, q) corresponds to a specific
surface orientation. The point at the origin represents all planes perpendicular to the
viewing direction. The reflection map depends on the nature of the object surface
material and the location of the light source, or the reflectance map has integrated the
surface reflection characteristics and light source distribution information.



7.2 Shape from Illumination 219

0.0
0.2

0.8

0.6
0.4

P

Q

0.5

0.9

0.7
0.8

0.6

Q

P

00

Fig. 7.11 Examples of Lambertian surface reflectance map

The image illuminance is proportional to several constants, including the recip-
rocal of the focal length λ square and the fixed brightness of the light source. In
practice, the reflectance map is often normalized to facilitate unified description. For
the Lambertian surface illuminated by a distant point light source, there is

R p, qð Þ= 1þ pspþ qsqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2 þ q2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2s þ q2s

p ð7:20Þ

It can be seen from Eq. (7.20) that the relationship between the brightness of the
scene and the surface orientation can be obtained from the reflectance map. For
Lambertian surfaces, the contours of constant value on the reflectance map will be
nested conic curves. This is because that from R( p, q) = c (c is a constant), the
relation (1 + psp + qsq)

2 = c2(1 + p2 + q2)(1 + ps
2 + qs

2) can be obtained. The
maximum value of R(p, q) is obtained at ( p, q) = ( ps, qs).

Example 7.3 Lambertian Surface Reflectance Map Example
Figure 7.11 shows three examples of different Lambertian surface reflection dia-
grams. Figure 7.11a shows the situation when ps = 0 and qs = 0 (corresponding to
nested concentric circles); Fig. 7.11b is the case when ps ≠ 0 and qs = 0
(corresponding to ellipse or hyperbola); Fig. 7.11c is the case when ps ≠ 0 and
qs ≠ 0 (corresponding to hyperbola).

Now consider another extreme case, called an isotropy radiation surface. If the
surface of an object can radiate uniformly in all directions (which is not physically
possible), it will feel brighter when viewed obliquely. This is because the tilt reduces
the visible surface area, and it is assumed that the radiation itself does not change, so
the amount of radiation per unit area will be larger. The brightness of the surface at
this time depends on the reciprocal of the cosine of the radiation angle. Considering
the projection of the surface of the object in the direction of the light source, it can be
seen that the brightness is proportional to cosθi/cosθe. Because cosθe = 1/
(1 + p2 + q2)1/2, it has
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Fig. 7.12 Example of
surface reflectance map of
isotropy radiation 0.0 0.2 0.80.60.4

P

Q

0

R p, qð Þ= 1þ pspþ qsqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2s þ q2s

p ð7:21Þ

Contours are now parallel straight lines. This is because R( p, q) = c (c is a
constant) gives (1 + psp + qsq) = c(1 + ps

2+ qs
2)1/2. These straight lines are

orthogonal to the directions ( ps, qs).

Example 7.4 Example of Surface Reflectance Map of Isotropy Radiation
Figure 7.12 is an example of a reflection map of isotropy radiation surface, where
ps/qs = 1/2, so the slope of the contour (straight line) is 2.

7.2.2.2 Image Brightness Constraint Equation

The reflectance map shows the dependent relationship of the surface brightness on
the surface orientation. The illuminance E(x, y) of a point on the image is propor-
tional to the brightness of the corresponding point on the surface of the scene.
Assuming that the surface gradient at this point is ( p, q), the brightness of this
point can be denoted as R(p, q). If the scale factor is set to a unit value through
normalization, one can get

E x, yð Þ=R p, qð Þ ð7:22Þ

This equation is called the image brightness constraint equation. It shows that
the gray level I(x, y) of the pixel at (x, y) in the image I depends on the reflection
characteristic R(p, q). The image brightness constraint equation links the brightness
of any position (x, y) in the image plane XY with the orientation (p, q) of the
sampling unit represented in a gradient space PQ. The image brightness constraint
equation plays an important role in restoring the object surface shape from the image.

Now suppose that a sphere with a Lambertian surface is illuminated by a point
light source, and the observer is also at the position of point light source. Because
θe = θi and (ps, qs) = (0, 0) at this time, from Eq. (7.20), the relationship between
brightness and gradient is
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Fig. 7.13 The brightness of
the spherical surface varies
with positions
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R p, qð Þ= 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2 þ q2

p ð7:23Þ

If the center of the sphere is on the optical axis, its surface equation is

z= z0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 - x2 þ y2ð Þ

p
x2 þ y2 ≤ r2 ð7:24Þ

where r is the radius of the ball and –z0 is the distance between the center of the ball
and the lens (see Fig. 7.13).

According to p = -x/(z – z0) and q = -y/(z – z0), it can get (1 + p2 + q2)1/2 = r/
(z – z0) and finally get

E x, yð Þ=R p, qð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1-

x2 þ y2

r2

r
ð7:25Þ

It can be seen from the above equation that the brightness gradually decreases
from the maximum value at the center of the image to the zero value at the boundary
of the image. The same conclusion can be obtained by considering the light source
direction S, the line of sight direction V, and the surface direction N marked in
Fig. 7.13. When people observe such a form of brightness change, they will think
that the image is obtained by imaging a round or spherical object. However, if each
part of the surface of the ball has different reflection characteristics, the resulting
image and the resulting feeling will be different. For example, when the reflection
image is represented by Eq. (7.21), and ( ps, qs) = (0, 0), a disc with uniform
brightness is obtained. For people who are accustomed to observing the reflective
properties of Lambertian surfaces, such a spherical surface will be looked
relatively flat.
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7.2.3 Solution of Photometric Stereo

For a given image, people often hope to restore the original shape of the imaged
object. The corresponding relationship from the surface orientation determined by
p and q to the brightness determined by the reflection map R( p, q) is unique, but the
reverse is not necessarily true. In practice, there may be infinitely many surface
orientations that can give the same brightness. These orientations corresponding to
the same brightness on the reflectance map are connected by contour lines. In some
cases, special points with maximum or minimum brightness can often be used to
help determine the surface orientation. According to Eq. (7.20), for a Lambertian
surface, only when ( p, q)= ( ps, qs) will R(p, q)= 1, so given the surface brightness,
the surface orientation can be uniquely determined. But in general, the correspon-
dence from image brightness to surface orientation is not unique. This is because
brightness has only one degree of freedom (brightness value) at each spatial position,
while orientation has two degrees of freedom (two gradient values).

In this way, new information needs to be introduced in order to restore the surface
orientation. In order to determine the two unknown variables p and q, two equations
are needed. Two equations can be obtained from each image point by using two
images collected under different light sources (see Fig. 7.14):

R1 p, qð Þ=E1

R2 p, qð Þ=E2
ð7:26Þ

If these equations are linearly independent, then there are unique solutions to
p and q. If these equations are not linear, then there are either no solutions or multiple
solutions for p and q. The corresponding relationship between brightness and surface
orientation is not the only ill-conditioned problem. Collecting two images is equiv-
alent to using additional equipment to provide additional conditions to solve the
ill-conditioned problem.

Example 7.5 Photometric Stereo Solution Calculation
Suppose

Fig. 7.14 Changes of
lighting conditions in
photometric stereoscopy
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Fig. 7.15 Calculate the surface orientation using photometric stereo

R1 p, qð Þ= 1þ p1pþ q1q
r1

and R2 p, qð Þ= 1þ p2pþ q2q
r2

where

r1 = 1þ p21 þ q21 and r2 = 1þ p22 þ q22

then as long as p1/q1 ≠ p2/q2, it can be solved from the above equations:

p=
E2
1r1 - 1

� �
q2 - E2

2r2 - 1
� �

q1
p1q2 - q1p2

and p=
E2
2r2 - 1

� �
p1 - E2

1r1 - 1
�

p2
p1q2 - q1p2

It can be seen from the above discussions that given two corresponding images
collected under different illumination conditions, a unique solution can be obtained
for the surface orientation of each point on the imaging object.

Example 7.6 Photometric Stereo Solution Example
Figure 7.15a, b are two corresponding images collected for the same sphere ball
under different lighting conditions (two same light sources are at two different
positions). Figure 7.15c is the result of drawing the orientation vector of each
point after calculating the surface orientation using the above method. It can be
seen that the orientation close to the center of the ball is relatively more perpendic-
ular to the paper, while the orientation close to the edge of the ball is relatively
parallel to the paper. Note that where there is no light, or where only one image is
illuminated, the surface orientation cannot be determined.

In many practical situations, three different lighting sources are often used, which
not only linearize the equations but, more importantly, improve the accuracy and the
range of surface orientation that can be solved. In addition, this newly added third
image can also help restore the surface reflection coefficient.

Surface reflection properties can often be described by the product of two factors
(coefficients): one is a geometric term, which represents the dependence on the light
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reflection angle; the other is the proportion of incident light reflected by the surface,
called the reflection coefficient.

Under normal circumstances, the reflection characteristics of various parts of the
object surface are not consistent. In the simplest case, brightness is simply the
product of the reflection coefficient and some orientation functions. The value of
the reflection coefficient here is between 0 and 1. There is a Lambertian-like surface
(the same brightness from all directions but not all incident lights are reflected), its
brightness can be expressed as ρcosθi, and ρ is the surface reflection coefficient
(it may change depending on the position). In order to restore the reflection coeffi-
cient and the gradient ( p, q), three types of information are needed, which can be
obtained from the measurement of three images.

First introduce the unit vectors in the three light source directions:

Sj =
- pj - qj 1

	 
Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2j þ q2j

q j= 1, 2, 3 ð7:27Þ

Then the illuminance can be represented as

Ej = ρ Sj •N
� �

j= 1, 2, 3 ð7:28Þ

where

N=
- p - q 1½ �Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ p2 þ q2
p ð7:29Þ

is the unit vector of the surface normal. In this way, three equations can be obtained
for the unit vectors N and ρ:

E1 = ρ S1 •Nð Þ
E2 = ρ S2 •Nð Þ
E3 = ρ S3 •Nð Þ

ð7:30Þ

Combine these equations to get

E= ρS •N ð7:31Þ

The rows of the matrix S are the light source direction vectors S1, S2, S3, and the
elements of the vector E are the three brightness measurement values.

Suppose S is non-singular; then it can get from Eq. (7.31):
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Fig. 7.16 Use three images to restore the reflection coefficient

ρN= S- 1 •E=
1

S1 • S2 × S3ð Þ½ � E1 S2 × S3ð Þ þ E2 S3 × S1ð Þ þ E3 S1 × S2ð Þ½ 7:32Þ

The direction of the surface normal is the product of a constant and the linear
combination of three vectors, each of which is perpendicular to the direction of the
two light sources. If each vector is multiplied by the brightness obtained when the
third light source is used, the unique reflection coefficient can be determined by
determining the values of the vectors.

Example 7.7 Recovering the Reflection Coefficient with Three Images
Suppose a light source is placed at three positions in space (-3.4, -0.8, -1.0), (0.0,
0.0, -1.0), (-4.7, -3.9, -1.0) to collect three images. According to the image
brightness constraint equation, three sets of equations can be obtained to calculate
the surface orientation and reflection coefficient ρ. Figure 7.16a shows these three
sets of reflection characteristic curves. It can be seen from Fig. 7.16b that when the
reflection coefficient ρ= 0.8, the three reflection characteristic curves intersect at the
same point p = -0.1 and q = -0.1; in other cases, there will be no intersection.

7.3 Optical Flow Equation

In Sect. 4.3, the method of using the motion camera to obtain scenery depth
information is introduced. Essentially, the relative movement between the camera
and the scene is used there. In fact, it is equivalent if the camera is fixed but the
scenery moves. The movement of the scenery will lead to the change of the scenery’s
pose, and the change of the scenery’s pose may reveal different surface of the scene.
Therefore, the use of sequence images or videos to detect the movement of the scene
can also reveal the structure of each part of the scene.
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The detection of motion can be based on changes in image brightness over time,
which can be represented by optical flow (see Sect. 5.3). However, it should be noted
that although the movement of the camera or the movement of the scenery will cause
the brightness change of each image frame in the video, the change of the lighting
conditions in the video may also cause the brightness of the image to change with
time, so the brightness on the image plane changes with time does not always
correspond to the movement of the scenery (unless the lighting conditions are
known).

7.3.1 Optical Flow and Motion Field

Motion can be described by a motion field, which is composed of the motion
(velocity) vector of each point in the image. When the object moves in front of the
camera or the camera moves in a fixed environment, it is possible to obtain
corresponding image changes. These changes can be used to restore (obtain) the
relative movement between the camera and the object and the mutual interaction
among multiple objects in the scene.

Example 7.8 Calculation of Motion Field
The motion field assigns a motion vector to each point in the image. Suppose that at a
certain moment, a point Pi in the image corresponds to a point Po on the object
surface (see Fig. 7.17), and the two points can be connected by the projection
equation. Let the movement speed of the object point Po relative to the camera be
Vo, and then this movement will cause the corresponding image point Pi to produce a
movement with a speed Vi. These two speeds are

Vo =
dro
dt

Vi =
dri
dt

ð7:33Þ

where ro and ri are connected by the following equation:

Fig. 7.17 Object points and
image points connected by
projection equation
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(a) (b)

Fig. 7.18 Optical flow is not equivalent to motion field

1
λ
ri =

1
ro • z

ro ð7:34Þ

In Eq. (7.34), λ is the focal length of the lens, and z is the distance from the center
of the lens to the object. Derivation of Eq. (7.34) can get the velocity vector assigned
to each pixel, and these velocity vectors constitute the motion field.

Visual psychology believes that when relative movement occurs between a
person and an object being observed, the movement of the parts with optical features
on the surface of the object being observed provides information about movement
and structure. When there is relative motion between the camera and the object, the
motion of the brightness mode observed is called optical flow or image flow, or the
movement of the object with optical features is projected onto the retinal plane (i.e.,
image plane) to form optical flow. Optical flow represents the change of the image; it
contains the information of the object’s movement, which can be used to determine
the observer’s movement relative to the object. Optical flow has three elements:

1. Motion (velocity field), which is a necessary condition for the formation of
optical flow.

2. Parts with optical characteristics (such as grayscale pixels), which can carry
information.

3. Imaging projection (from the scene to the image plane), so the optical flow can be
observed.

Although there is a close relationship between optical flow and motion field, they
do not completely correspond. The motion of the object in the scene causes the
motion of the brightness mode in the image, and the visible motion of the brightness
mode generates optical flow. In an ideal situation, the optical flow corresponds to the
motion field, but in practice there are also times when it does not correspond. In other
words, motion produces optical flow, so there must be motion if there is optical flow,
but there is not necessarily optical flow if there is motion.

Example 7.9 The Difference Between Optical Flow and Motion Field
First, consider that when the light source is fixed, a ball with uniform reflection
characteristics rotates in front of the camera, as shown in Fig. 7.18a. At this time,
there are spatial variations in brightness everywhere in the spherical image, but this
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Fig. 7.19 The problem of
corresponding points in two
images at different moments C P P'

t t+  t�

C'

kind of spatial variation does not change with the rotation of the spherical surface, so
the image (gray scale) does not change with time. In this case, although the motion
field is not zero, the optical flow is zero everywhere. Next, consider the situation
where a fixed ball is illuminated by a moving light source; see Fig. 7.18b. The gray
scale everywhere in the image will change with the movement of the light source due
to changes in the lighting conditions. In this case, although the optical flow is not
zero, the motion field of the sphere is zero everywhere. This movement is also called
apparent movement (optical flow is the apparent movement of the brightness mode).
The above two situations can also be regarded as optical illusions.

It can be seen from the above example that optical flow is not equivalent to a
motion field. However, in most cases, the optical flow and the motion field still have
a certain corresponding relationship, so in many cases, the relative motion can be
estimated from the image change according to the corresponding relationship
between the optical flow and the motion field. But it should be noted that there is
also a problem of determining the corresponding points between different images.

Example 7.10 The Problem of Determining the Corresponding Points Between
Images
Refer to Fig. 7.19, where each closed curve represents an equal brightness curve.
Consider that there is an image point P with brightness E at time t, as shown in
Fig. 7.19a. At time t + δt, which image point does P correspond to? In other words,
to solve this problem, it is needed to know how the brightness mode changes.
Generally, there are many points near P with the same brightness E. If the brightness
changes continuously in this part of the region, then P should be on an iso-brightness
curve C. At time t + δt, there will be some iso-brightness curves C′ with the same
brightness near the original C, as shown in Fig. 7.19b. However, at this time, it is
difficult to say which point P′ on C′ corresponds to the original point P on the
original curve C, because the shapes of the two iso-luminance curves C and C′ may
be completely different. Therefore, although it can be determined that the curve
C corresponds to the curve C′, it cannot be specifically determined that the point
P corresponds to the point P′.

It can be seen from the above that only relying on the local information in the
changing image cannot uniquely determine the optical flow. Further consider Exam-
ple 7.9; if there is a region in the image with uniform brightness that does not change
with time, then the optical flow of this region is likely to be zero everywhere, but in
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fact, the uniform region can also be assigned any vector movement mode (arbitrary
optical flow).

Optical flow can represent changes in an image. Optical flow contains not only
the information about the movement of the observed object but also the structural
information of the scene related to it. Through the analysis of optical flow, the
purpose of determining the 3-D structure of the scene and the relative motion
between the observer and the moving object can be achieved. Motion analysis can
use optical flow to describe image changes and infer object structure and motion.
The first step is to represent the changes in the image with 2-D optical flow (or the
speed of the corresponding reference point), and the second step is to calculate the
result based on optical flow, that is, calculate the 3-D structure of the moving object
and its motion relative to the observer.

7.3.2 Solving Optical Flow Equation

Optical flow can be seen as the instantaneous velocity field generated by the motion
of pixels with gray scale on the image plane. Based on this, a basic optical flow
constraint equation can be established, also called optical flow equation (see Sect.
5.3) or image flow equation. Let f(x, y, t) be the gray scale of image point (x, y) at
time t, u(x, y) and v(x, y) represent the horizontal and vertical moving speeds of
image point (x, y), and then the optical flow equation can be represented as

f xuþ f yvþ f t = 0 ð7:35Þ

where fx, fy, and ft represent the gradient of the pixel gray value in the image along the
X, Y, and T directions, respectively, which can be measured from the image.

Equation (7.35) can also be written as

f x, f y
� �

• u, vð Þ= - f t ð7:36Þ

This equation shows that if a fixed observer is watching a moving scene, the (first-
order) time change rate of a certain point on the image obtained is the product of the
scene’s brightness change rate and the point’s movement speed. According to
Eq. (7.36), it can be seen that the component of the optical flow in the direction of
the brightness gradient ( fx, fy)

T is ft/( fx
2 + fy

2)1/2. However, it can still not determine
the optical flow component that it is perpendicular to the above direction (i.e.,
iso-brightness line direction).
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7.3.2.1 Optical Flow Calculation: Rigid Body Motion

The calculation of optical flow is to solve the optical flow equation, that is, to find the
optical flow component according to the gradient of the gray value of the image
point. The optical flow equation limits the relationship between the three directional
gradients and the optical flow components. It can be seen from Eq. (7.35) that this is
a linear constraint equation about the velocity components u and v. If the velocity
components are used as the axes to establish a velocity space (see Fig. 7.20 for its
coordinate system), then the u and v values satisfying the constraint Eq. (7.35) are on
a straight line. It can be obtained from Fig. 7.20:

u0 = -
f t
f x

v0 = -
f t
f y

θ= arctan
f x
f y

� �
ð7:37Þ

Note that each point on the line is the solution of the optical flow equation (i.e.,
the optical flow equation has infinite solutions). In other words, only one optical flow
equation is not enough to uniquely determine the two quantities u and v. In fact,
using only one equation to solve two variables is an ill-conditioned problem, and
other constraints must be added to solve it.

In many cases, the object under consideration can be regarded as a rigid body
without deformation. In a rigid body motion, the adjacent points on it have the same
optical flow velocity. This condition can be used to help solve the optical flow
equation. According to the condition that adjacent points on the object have the same
optical flow velocity, it can be known that the spatial change rate of optical flow
velocity is zero, that is

∇uð Þ2 = ∂u
∂x

þ ∂u
∂y

� �2

= 0 ð7:38Þ

∇vð Þ2 = ∂v
∂x

þ ∂v
∂y

2

= 0 ð7:39Þ

These two conditions can be combined with the optical flow equation to calculate
the optical flow by solving the minimization problem. Assume

Fig. 7.20 The u and
v values satisfying the
optical flow constraint
equation are on a
straight line
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ε x, yð Þ=
x y

f xuþ f yvþ f t
2 þ λ2 ∇uð Þ2 þ ∇vð Þ2 ð7:40Þ

The value of λ should consider the noise condition in the image. If the noise is
strong, it means that the confidence of the image data itself is low and it needs to rely
more on the optical flow constraint, so λ needs to take a larger value; otherwise, λ
needs to take a smaller value.

In order to minimize the total error in Eq. (7.40), take the derivatives of ε with
respect to u and v, and then take the derivatives to zero:

f 2xuþ f xf yv= - λ2∇u- f xf t ð7:41Þ
f 2yvþ f xf yu= - λ2∇v- f yf t ð7:42Þ

The above two equations are also called Euler equations. If u and v denote the
mean values (which can be calculated with the image local smoothing operator) in
the u neighborhood and v neighborhood, respectively, and let ∇u= u- u and
∇v= v- v, then Eqs. (7.41) and (7.42) can be changed to

f 2x þ λ2
� �

uþ f xf yv= λ2u- f xf t ð7:43Þ� �
f 2y þ λ2 vþ f xf yu= λ2v- f yf t ð7:44Þ

It can be obtained from Eqs. (7.43) and (7.44):

u= u-
f x f xuþ f yvþ f t
	 

λ2 þ f 2x þ f 2y

ð7:45Þ
	 


v= v-
f y f xuþ f yvþ f t

λ2 þ f 2x þ f 2y
ð7:46Þ

Equations (7.45) and (7.46) provide the basis for solving u(x, y) and v(x, y) by
iterative method. In practice, the following relaxation iterative equations are often
used to solve

u nþ1ð Þ = u nð Þ -
f x f xu

nð Þ þ f yv
nð Þ þ f t

	 

λ2 þ f 2x þ f 2y

ð7:47Þ
	 


v nþ1ð Þ = v nð Þ -
f y f xu

nð Þ þ f yv
nð Þ þ f t

λ2 þ f 2x þ f 2y
ð7:48Þ

Here one can take the initial value u(0) = 0, v(0) = 0 (straight line passing through
the origin). Equations (7.47) and (7.48) have a simple geometric interpretation, that
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Fig. 7.21 The geometric
interpretation of using
iterative method to solve
optical flow
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Fig. 7.22 Optical flow detection example

is, the new iteration value at a point (u, v) is the average value in the neighborhood of
the point minus an adjustment amount; the quantity of adjustment is in the direction
of the brightness gradient; see Fig. 7.21. Therefore, the iterative process is a process
of moving a straight line along the brightness gradient, and the straight line is always
perpendicular to the direction of the brightness gradient.

Example 7.11 Optical Flow Detection Example
Figure 7.22 shows an example of optical flow detection. Figure 7.22a is an image of
a football, and Fig. 7.22b, c are images obtained by rotating Fig. 7.22a around the
vertical axis and clockwise around the line of sight, respectively. Figure 7.22d, e are
the optical flows detected under these two rotation conditions.

From the optical flow maps obtained above, it can be seen that the optical flow
value is relatively large at the junction of the black and white blocks on the surface of
the football, because the gray level changes more drastically in these places, while
inside the black and white blocks, the optical flow value is very small or 0, because



7.3 Optical Flow Equation 233

when the football rotates, the gray level of these points basically does not change
(similar to movement without optical flow). However, because the surface of the
football is not completely smooth, there is also a certain optical flow in the interior of
the black and white blocks corresponding to the certain surface regions of football.

7.3.2.2 Optical Flow Calculation: Smooth Motion

Further analysis of Eqs. (7.43) and (7.44) reveals that the optical flow in the region
where the brightness gradient is completely zero cannot be determined in fact, while
for the optical flow in the region where the brightness gradient changes quickly, the
calculated error may be large. Another commonly used method for solving optical
flow is to consider the smooth motion condition that the motion field changes
generally slowly and stable in most parts of the image. At this time, consider
minimizing a measure that deviates from smoothness. The commonly used measure
is the integral of the square of the magnitude of the optical flow velocity gradient:

es =
ZZ

u2x þ u2y

� �
þ v2x þ v2y

� �h i
dxdy ð7:49Þ

Also consider minimizing the error of the optical flow constraint equation

ec =
ZZ

f xuþ f yvþ f t
	 
2

dxdy ð7:50Þ

Therefore, it is needed to minimize es + λec, where λ is the weighting quantity. If
the brightness measurement is accurate, λ should be the larger; on the contrary, if the
image noise is large, λ can be smaller.

7.3.2.3 Optical Flow Calculation: Gray Level Mutation

There will be discontinuities in the optical flow at the edges where the objects
overlap. To extend the above-mentioned optical flow detection method from one
region to another, the discontinuity needs to be determined. This brings up a similar
problem to the chicken or the egg. If there is an accurate optical flow estimation, it is
easy to find the place where the optical flow changes rapidly and divide the image
into different regions; conversely, if the image can be well divided into different
regions, an accurate estimation of the optical flow can be obtained. The solution to
this contradiction is to combine the region segmentation into the iterative solution
process of optical flow. Specifically, after each iteration, look for places where the
optical flow changes rapidly, and mark these places to avoid the smooth solution
obtained in the next iteration from crossing these discontinuities. In practical appli-
cations, the threshold is generally high to avoid dividing the image too early and too
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Fig. 7.23 The situation when the gray level changes

finely, and then the threshold is gradually lowered as the estimation of the optical
flow gets better.

More generally speaking, the optical flow constraint equation is applicable not
only to continuous grayscale regions but also to regions with sudden grayscale
changes. In other words, a condition for the application of the optical flow constraint
equation is that there can be (limited) abrupt discontinuities in the image, but the
changes around the discontinuities should be uniform.

Refer to Fig. 7.23a, XY is the image plane, I is the grayscale axis, and the object
moves along the X direction with speed (u, v). At time t0, the gray level at point P0 is
I0, and the gray level at point Pd is Id; at time t0 + dt, the gray level at P0 moves to Pd

to form an optical flow. In this way, there is a grayscale mutation between P0 and
Pd, and the gray level gradient is ∇f= ( fx, fy). Now look at Fig. 7.23b; if one looks at
the grayscale change from the path, because the gray level at Pd is the gray level at P0

plus the gray level difference between P0 and Pd, there is

Id =
ZPd

P0

∇f • dlþ I0 ð7:51Þ

If one looks at the gray level change from the time course, because the observer
sees the gray level change from Id to I0 in Pd, there is

I0 =
Zt0þdt

t0

f td t þ Id ð7:52Þ

Since the gray level changes should be the same in these two cases, the combi-
nation of Eqs. (7.51) and (7.52) can provide
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ZPd

P0

∇f • dl= -
Zt0þdt

t0

f tdt ð7:53Þ

Substituting dl = [u v]Tdt into it, and considering that the line integration limit
and the time integration limit should correspond to each other, one can get

f xuþ f yvþ f t = 0 ð7:54Þ

This shows that the previous uninterrupted method can still be used to solve the
problem.

It can be proved that the optical flow constraint equation is also applicable to the
discontinuity of the velocity field due to the transition between the background and
the object under certain conditions, provided that the image has sufficient sampling
density. For example, in order to obtain the necessary information from the texture
image sequence, the sampling rate of the space should be smaller than the scale of
the image texture. The sampling distance in time should also be smaller than the
scale of the velocity field change, or even much smaller, so that the displacement is
smaller than the scale of the image texture. Another condition for the application of
the optical flow constraint equation is that the grayscale change at each point in the
image plane should be completely caused by the movement of a specific pattern in
the image, and should not include the effects of changes in reflection properties. This
condition can also be expressed as the optical flow velocity field is generated by the
change of the position of a pattern in the image at different times, but the pattern
itself does not change.

7.3.2.4 Optical Flow Calculation: Based on High-Order Gradient

The previous solution to the optical flow Eq. (7.35) only uses the first-order gradient
of the image gray scale. There is a view that the optical flow constraint equation itself
already contains the smoothness constraint on the optical flow field, so in order to
solve the optical flow constraint equation, it is necessary to consider the continuity of
the image itself on the gray scale (i.e., consider the high-order gradient of the
image gray scale) to constrain the grayscale field.

The terms in the optical flow constraint equation are expanded with Taylor series
at (x, y, t), and the second order is taken to obtain
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f x =
∂ f xþ dx, yþ dy, tð Þ

∂ x
=

∂ f x, y, tð Þ
∂ x

þ ∂2 f x, y, tð Þ
∂ x2

dx

þ ∂2 f x, y, tð Þ
∂ x∂ y

dy ð7:55Þ

f y =
∂ f xþ dx, yþ dy, tð Þ

∂y
=

∂ f x, y, tð Þ
∂y

þ ∂2 f x, y, tð Þ
∂ y∂ x

dx

þ ∂2 f x, y, tð Þ
∂ y2

dy ð7:56Þ

f t =
∂ f xþ dx, yþ dy, tð Þ

∂ t
=

∂ f x, y, tð Þ
∂ t

þ ∂2 f x, y, tð Þ
∂ t∂ x

dx

þ ∂2 f x, y, tð Þ
∂ t∂ y

dy ð7:57Þ

u x dx, y dy, t = u x, y, t ux x, y, t dx uy x, y, t dy 7:58

v x dx, y dy, t = v x, y, t vx x, y, t dx vy x, y, t dy 7:59

Substituting Eq. (7.55) to Eq. (7.59) into the optical flow constraint equation, and
obtaining

f xuþ f yvþ f t
� �þ f xxuþ f yyvþ f xux þ f yvx þ f tx

�
dxþ

f xyuþ f yyvþ f xuy þ f yvy þ f ty
� �

dyþ f xxux þ f yxvx
� �

dx2þ
f xyux þ f xxuy þ f yyvx þ f xyvy
� �

dxdyþ f xyuy þ f yyvy
� �

dy2 = 0

ð7:60Þ

Because these terms are independent, six equations can be obtained, respectively,
namely

f xuþ f yvþ f t = 0 ð7:61Þ
f xxuþ f yxvþ f xux þ f yvx þ f tx = 0 ð7:62Þ
f xyuþ f yyvþ f xuy þ f yvy þ f ty = 0 ð7:63Þ

f xxux þ f yxvx = 0 ð7:64Þ
f xyux þ f xxuy þ f yyvx þ f yyvy þ f xyvy = 0 ð7:65Þ

f xxuy þ f yyvy = 0 ð7:66Þ

It is more complicated to directly solve the six two-order equations from
Eq. (7.61) to Eq. (7.66). With the help of the condition that the spatial rate of change
of the optical flow field is zero (see the previous discussion on Eqs. (7.38) and
(7.39)), it can be assumed that ux, uy, vx, and vy are approximately zero, so that the
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above six equations are only the simplified equations of the first three equations,
namely

f xuþ f yvþ f t = 0 ð7:67Þ
f xxuþ f yxvþ f tx = 0 ð7:68Þ
f xyuþ f yyvþ f ty = 0 ð7:69Þ

To solve two unknowns from these three equations, the least square method can
be used.

When solving the optical flow constraint equation with the help of gradients, it is
assumed that the image is differentiable, that is, the motion of the object between
image frames should be small enough (less than one pixel/frame). If it is too large,
the aforementioned assumption will not hold, and the optical flow constraint equa-
tion cannot be solved accurately. One of the methods that can be taken at this time is
to reduce the resolution of the image, which is equivalent to low-pass filtering the
image, which has the effect of reducing the optical flow speed.

7.4 Shape from Motion

Optical flow contains information about the structure of the scene, so the orientation
of the surface can be obtained from the optical flow of the surface of the object, that
is, the shape of the surface of the object can be determined. This is called restoring
shape from motion and abbreviated as shape from motion.

The orientation of every point in the objective world and the surface of the object
can be represented by an orthogonal coordinate system XYZ centered on the
observer. Consider a monocular observer located at the origin of the coordinates,
and suppose the observer has a spherical retina, so that the objective world can be
considered to be projected onto a unit image sphere. The image sphere can be
represented by a spherical coordinate system containing longitude ϕ and latitude θ
and a distance r from the origin. It can also represent all points in the objective world
in a Cartesian coordinate system, as shown in Fig. 7.24.

The transformation from spherical coordinates to Cartesian coordinates is given
by the following three equations:

x= r sin θ cosϕ ð7:70Þ
y= r sin θ sinϕ 7:71

z= r cos θ 7:72

The transformation from Cartesian coordinates to spherical coordinates is given
by the following three equations:
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Fig. 7.24 Spherical
coordinate system and
Cartesian coordinate system
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r= x2 þ y2 þ z2 ð7:73Þ� �
θ= arc cos

z
r

ð7:74Þ

ϕ= arc cos
y
x

ð7:75Þ

With the help of coordinate transformation, the optical flow of an arbitrary
moving point can be determined as follows. Let (u, v, w) = (dx/dt, dy/dt, dz/dt) be
the speed of the point in the XYZ coordinate system, and then (δ, ε) = (dϕ/dt, dθ/dt)
is the angular velocity of the point along the ϕ and θ directions in the image spherical
coordinate system

δ=
v cosϕ- u sinϕ

r sin θ
ð7:76Þ

ε=
ur sin θ cosϕþ vr sin θ sinϕþ wr cos θð cos θ- rw

r2 sin θ
ð7:77Þ

Equations (7.76) and (7.77) constitute the general representations of optical flow
in the ϕ and θ directions.

Now consider the calculation of optical flow in a simple case. Suppose the scene
is stationary and the observer moves along the Z axis (positive direction) at a speed S.
At this time, u = 0, v = 0, w = –S; substituting them into Eqs. (7.76) and (7.77) can
obtain, respectively

δ= 0 ð7:78Þ

ε=
S sin θ

r
ð7:79Þ

Equations (7.78) and (7.79) constitute the simplified optical flow equations,
which are the basis for solving surface orientation and edge detection. According
to the solution of the optical flow equation, it can be judged whether each point in the
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Fig. 7.25 Schematic diagram of finding the surface direction

optical flow field is a boundary point, a surface point, or a space point. Among them,
the type of boundary and the orientation of the surface can also be determined in the
two cases of boundary point and surface point.

Here it is only introduced how to use optical flow to find the surface orientation.
First look at Fig. 7.25a, let R be a point on a given element on the surface of the
object, and the monocular observer with the focus at O observes this element along
the line of sight OR. Suppose the normal vector of the element is N, and N can be
decomposed into two mutually perpendicular directions: one is in the ZOR plane,
and the angle with OR is σ (as shown in Fig. 7.25b); the other one is in a plane
perpendicular to the ZOR plane (parallel to the XY plane), and the angle with OR′ is τ
(as shown in Fig. 7.25c, where the Z axis is pointed out in the paper). In Fig. 7.25b, ϕ
is a constant, and in Fig. 7.25c, θ is a constant. In Fig. 7.25b, the ZOR plane
constitutes a “depth profile” along the line of sight, while in Fig. 7.25c, the “depth
profile” is parallel to the XY plane.

Now discuss how to determine σ and τ. Consider first the σ in the ZR plane; see
Fig. 7.25b. If the vector angle θ is given a small increment Δθ, the change of the
vector radius r is Δr. Making an auxiliary line ρ passing R, it can be seen that on the
one hand, ρ/r = tan(Δθ) ≈ Δθ and, on the other hand, ρ/Δr = tanσ. Putting them
together to eliminate ρ, then

rΔθ=Δr tan σ ð7:80Þ

Consider now the τ in the vertical plane to the RZ plane; see Fig. 7.25c. If the
vector angle ϕ is given a small increment Δϕ, the length of the vector radius r
changes toΔr. Now making an auxiliary line ρ, it can be seen that on the one hand, ρ/
r = tanΔϕ ≈ Δϕ and, on the other hand, ρ/Δr = tanτ. Putting them together to
eliminate ρ, then

rΔϕ=Δr tan τ ð7:81Þ

Furthermore, taking the limits of Eqs. (7.80) and (7.81), respectively, it can get
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cot σ=
1
r

∂r
∂θ

ð7:82Þ

cot τ=
1
r

∂r
∂ϕ

ð7:83Þ

where r can be determined by Eq. (7.72). Because ε is a function of both ϕ and θ, the
Eq. (7.79) can be rewritten as

r=
S sin θ
ε ϕ, θð Þ ð7:84Þ

Find the partial derivatives with respect to ϕ and θ, respectively; it gets

∂r
∂ϕ

= S sin θ
- 1
ε2

∂ε
∂ϕ

ð7:85Þ
� �

∂r
∂θ

= S
cos θ
ε

-
sin θ
ε2

∂ε
∂θ

ð7:86Þ

Note that the surface orientation determined by σ and τ has nothing to do with the
observer’s movement speed S. Substituting Eq. (7.84) to Eq. (7.86) into Eq. (7.82)
and Eq. (7.83), the equations for σ and τ can be obtained:

σ= arccot cot θ-
∂ ln εð Þ
∂θ

� �
ð7:87Þ

� �
τ= arccot -

∂ϕ
ð7:88Þ

7.5 Key Points and References for Each Section

The following combines the main contents of each section to introduce some
references that can be further consulted.

1. Photometric Stereo
The use of photometric stereoscopic methods needs to control the lighting

conditions; see also [1]. Using the symmetry of the bidirectional reflectance
distribution function with respect to the incident and reflection directions, the
3-D scene can also be restored with the help of binocular Helmholtz stereo vision
method, especially good for high-light scenes, as in [2].



�

[Hint] Refer to the flowchart from the light source through the scenery to the
lens in Fig. .7.1

�

[Hint] The light reflection coefficient is related to the reflected light
intensity.
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2. Shape from Illumination
Restoring shape from light is a typical method of shape from X, which is

introduced in many books about computer vision, such as [3].
3. Optical Flow Equation

The derivation of the optical flow equation can be seen in Sect. 5.3 and also
in [4].

4. Shape from Motion
For the discussion of the boundary types and surface orientations of boundary

points and surface points in the optical flow field, please refer to [5]. The
discussion on obtaining structure from motion can also be found in [6].

Self-Test Questions

The following questions include both single-choice questions and multiple-choice
questions, so each option must be judged.

7.1 Photometric Stereo

7.1.1 Imaging involves light source, scenery, and lens, ( ).

(a) The light emitted by the light source is measured by intensity, and
the light received by the scenery is measured by illuminance.

(b) The light emitted by the scenery is measured by intensity, and the
light received by the lens is measured by illuminance.

(c) The light from the light source incidents to the scenery at a certain
angle.

(d)

7.1.2

The light from the scenery incidents to the lens at a certain angle.

The brightness of the image obtained after imaging a 3-D scenery is
proportional to ( ).

(a) The shape of the scenery itself and its posture in space
(b) The intensity of light reflected when the surface of the scenery is

illuminated by light
(c) The light reflection coefficient of the surface of the scenery
(d) The product of the light reflection coefficient on the surface of the

scenery and the intensity of the light reflected on the surface of the
scenery when illuminated by light



�

[Hint] The Lambertian surface is also called the diffuse reflection surface.

�

�

[Hint] What is needed is to represent the characteristics of the scenery itself.

�

[Hint] The R in the reflection image R( p, q) corresponds to the surface
brightness of the scenery, and ( p, q) corresponds to the surface gradient of the
scenery.
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7.1.3 For Lambertian surfaces, the incident and observation mode correspond
to ( ).

(a) Fig. 7.6a
(b) Fig. 7.6b
(c) Fig. 7.6c
(d)

7.1.4

Fig. 7.6d

For an ideal specular reflection surface, the incident and observation
mode correspond to ( ).

(a) Fig. 7.6a
(b) Fig. 7.6b
(c) Fig. 7.6c
(d) Fig. 7.6d

[Hint] The ideal specular reflection surface can reflect all the incident light
from the (θi, ϕi) direction to the (θe, ϕe) direction.

7.2 Shape from Illumination

7.2.1 To represent the orientation of each point on the surface of the scenery,
( ).

(a) One can use the orientation of the tangent surface corresponding to
each point on the surface.

(b) One can use the normal vector of the tangent plane corresponding to
each point on the surface.

(c) One can use two position variables corresponding to the intersection
of the normal vector and the surface of the sphere.

(d)

7.2.2 I

One can use the unit observation vector from the scenery to the lens.

n the reflection image obtained by illuminating the Lambertian surface
with a point light source, ( ).

(a) Each point corresponds to a specific surface orientation.
(b) Each circle corresponds to a specific surface orientation.
(c) It contains information on surface reflection characteristics and light

source distribution.
(d) It contains the relationship between the brightness of the scenery and

the surface orientation.



�

�

[Hint] Consider the three key elements of optical flow.

�

[Hint] The establishment of the optical flow equation does not mean that it is
solvable.
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7.2.3 There is an ellipsoidal object x2/4 + y2/4 + z2/2= 1 with an ideal specular
reflection surface. If the incident light intensity is 9 and the reflection
coefficient is 0.5, the intensity of the reflected light observed at (1, 1, 1)
will be approximately ( ).

(a) 3.8
(b) 4.0
(c) 4.2
(d) 4.4

[Hint] Calculate the intensity of reflected light specifically, and pay atten-
tion that the incident angle and the reflection angle of the specular reflection
surface are equal.

7.3 Optical Flow Equation

7.3.1 The optical flow expresses the change of the image. The following cases
where there is optical flow (optical flow is not 0) include ( ).

(a) The moving light source illuminates the object that is relatively
stationary with the camera

(b) The fixed light source illuminates the rotating object in front of the
fixed camera

(c) The fixed light source illuminates moving objects with different
reflective surfaces

(d)

7.3.2

The moving light source illuminates a moving object with an invis-
ible brightness pattern on the surface

Only one optical flow equation cannot uniquely determine the optical
flow velocity in two directions, but ( ).

(a) If the object is regarded as a rigid body without deformation, then
this condition can be used to help solve the optical flow equation.

(b) If the ratio of the optical flow components in the two directions are
known, the optical flow in the two directions can also be calculated.

(c) If the acceleration of the object movement in the image is set to be
very small, then this condition can be used to help solve the optical
flow equation.

(d) If the gray level changes uniformly but there are only a few sudden
changes in the image, it can also be used to calculate the optical flow
in two directions.
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[Hint] Judge according to the coordinate conversion equation.

�

[Hint] Judge according to the coordinate conversion formula.

�
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7.3.3 In solving the optical flow equation, from the perspective of rigid body
motion, the constraint that the spatial rate of change of the optical flow is
zero is introduced; from the perspective of smooth motion, the constraint
that the motion field changes slowly and steadily is introduced, ( ).

(a) Compared with the two constraints, the former is weaker than the
latter

(b) Compared with the two constraints, the former is as weak as the
latter

(c) Compared with the two constraints, the former is stronger than the
latter

(d) Compared with the two constraints, the former is as strong as the
latter

[Hint] Compare the representations of two constraints.
7.4

7.4.1 I

Shape from Motion

f the longitude of a point in space is 30°, the latitude is 120°, and the
distance from the origin is 2, then its Cartesian coordinates are: ( ).

(a) x = 6/2, y = 3, z = -1
(b) x = 6/2, y = 3/2, z = -1
(c) x = 6/2, y = 3/4, z = -2
(d)

7.4.2 I

x = 6/2, y = 3, z = -2

f the Cartesian coordinates of a point in space are x = 6, y = 3, z = 2,
then its spherical coordinates are ( ).

(a) ϕ = 30°, θ = 67°, r = 10
(b) ϕ = 40°, θ = 73°, r = 9
(c) ϕ = 50°, θ = 67°, r = 8
(d)

7.4.3

ϕ = 60°, θ = 73°, r = 7

Consider Fig. 7.25, which is/are used to illustrate the finding of the
surface direction? ( ).

(a) In Fig. , the ZOR plane coincides with the YZ plane.7.25b
(b) In Fig. 7.25b, the ZOR plane does not coincide with the YZ plane.
(c) In Fig. 7.25c, the ZOR’ plane coincides with the XY plane.
(d) In Fig. 7.25c, the ZOR’ plane does not coincide with the XY plane.

[Hint] Analyze according to Fig. 7.25a.
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Chapter 8
Monocular Single Image Recovery

The scene restoration method introduced in Chap. 7 is based on redundant information
inmultiple monocular images. This chapter introduces the method based onmonocular
single image. In practice, when a 3-D scene is projected onto a 2-D image, the depth
information in it will be lost. However, judging from the practice of the human visual
system, especially the ability of spatial perception (see Appendix A), in many cases
there are still many depth cues in the image, so under certain constraints or prior
knowledge, it is still possible to recover the scene from it. In other words, in the process
of acquiring 2-D images from 3-D scenes, some useful information is indeed lost due
to projection, but some information with conversing forms is retained (or it can be said
that the 3-D clues of scenes are still in 2-D images).

Many methods have been proposed for scene restoration from monocular single
image. Some methods are more general (with certain generalization), and some
methods need to meet specific conditions. For example, in the imaging process,
some information about the shape of the original scenery will be converted into the
brightness information corresponding to the shape of the original scenery in the
image (or in the case of certain illumination, the brightness change in the image is
related to the shape of the scenery), so the surface shape of the scenery can be
restored according to the shading changes of the image, which is called shape
restoration from shading (in short, shape from shading). For another example,
under the condition of perspective projection, some information about the shape of
the scenery will be retained in the change of the surface texture of the object
(different orientation of the scenery surface will cause different surface texture
changes), so the surface of the object can be determined by analyzing the texture
change for different orientations and then trying to restore its surface shape; this is
called shape restoration from texture (in short, shape from texture).

The sections of this chapter are arranged as follows:

Section 8.1 introduces the principle of shape restoration from shading, which uses
the relationship between the tone on the image and the surface shape of the object
in the scene to establish a brightness equation that links the gray scale of the pixel
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with the orientation. The gradient space method is specifically discussed, which
can analyze and explain the structure formed by the intersection of planes.

Section 8.2 discusses the problem of solving the image brightness constraint equa-
tion and introduces the method and effect of the solution in the linear, rotationally
symmetric, and general smooth constraint conditions.

Section 8.3 introduces the principle of shape restoration from texture. The essence is
to infer the orientation of the surface according to the corresponding relationship
between imaging and distortion, with the aid of prior knowledge of the surface
texture of the object, and using the change after the texture change projection.

Section 8.4 further discusses how to calculate the vanishing point when the texture is
composed of regular texture element grids, so as to restore the surface orientation
information.

8.1 Shape from Shading

When objects in the scene are illuminated by light, various parts of the surface will
appear to have different brightness due to their different orientations. This spatial
change of brightness (shading change) after imaging appears as different tones on
the image (also called different shadows). According to the distribution and changes
of the tone, the shape information of the object can be obtained. This is called
restoring the shape from the shading or shape from shading.

8.1.1 Shading and Orientation

First discuss the relationship between the shading on the image and the surface shape
of the object in the scene, and then introduce how to represent the change of
orientation.

Shading corresponds to different levels of brightness (represented by gray scale)
formed by projecting a 3-D object onto a 2-D image plane. The change distribution
of these levels depends on four factors:

1. The geometry of the visible (facing the observer) surface of the object (surface
normal direction)

2. The incident intensity (energy) and direction of the light source
3. The position and distance of the observer (line of sight) relative to the object
4. The reflection characteristics of the surface of the object

The effect of these four factors can be introduced with the help of Fig. 8.1, where
the object is represented by the surface element S; the normal direction of the surface
element N indicates the direction of the surface element, which is related to the local
geometry of the object; the incident intensity and the direction of the light source are
represented by the vector I; the position and distance of the observer relative to the
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Fig. 8.1 Four factors
affecting the change of
image gray scale

V

N

S

e i

r

object are indicated by the line of sight vector V; the surface reflection characteristics
of the object ρ depend on the material of the surface element, which is generally a
function of the spatial position of the element.

According to Fig. 8.1, if the incident light intensity on the 3-D object surface
element S is I and the reflection coefficient ρ is a constant, then the reflection
intensity along N is

E x, yð Þ= I x, yð Þρ cos i ð8:1Þ

If the light source comes from behind the observer and is parallel light, then
cosi = cose. Assuming that the line of sight intersects the imaged XY plane
perpendicularly, and the object has a Lambertian scattering surface, that is, the
intensity of the surface reflection does not change due to changes in the observation
position, the observed light intensity can be written as

E x, yð Þ= I x, yð Þρ cos e ð8:2Þ

To establish the relationship between the surface orientation and the image
brightness, the gradient coordinates PQ are also arranged on the XY plane; suppose
the normal is away from the observer along the observer’s direction; according to
N = [p q -1]T and V = [0 0 -1]T, it can obtain

cos e= cos i=
p q - 1½ �T • 0 0 - 1½ �T

j p q - 1½ �Tj • j 0 0 - 1½ �Tj =
1

p2 þ q2 þ 1
ð8:3Þ

Substituting Eq. (8.3) into Eq. (8.1), the observed image gray scale is

E x, yð Þ= I x, yð Þρ 1

p2 þ q2 þ 1
ð8:4Þ

Now consider the general case where the light is not incident at the angle i = e.
Let the incident light vector I passing through the panel be [pi qi -1]T, because cosi
is the cosine of the angle between N and I, so it has
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cos i=
p q - 1½ �T • 0 0 - 1½ �T

j p q - 1½ �Tj • j 0 0 - 1½ �Tj =
ppi þ qqi þ 1

p2 þ q2 þ 1 p2i þ q2i þ 1
ð8:5Þ

Substituting Eq. (8.5) into Eq. (8.1), the gray level of the image observed when
the light is incident at any angle is

E x, yð Þ= I x, yð Þρ= ppi þ qqi þ 1

p2 þ q2 þ 1 p2i þ q2i þ 1
ð8:6Þ

Equation (8.6) can also be written in a more abstract general form

E x, yð Þ=R p, qð Þ ð8:7Þ

This is the same image brightness constraint equation as Eq. (7.22).

8.1.2 Gradient Space Method

Now consider the change of the image gray level due to the change of surface
element orientation. A 3-D surface can be expressed as z = f(x, y), and the surface
element normal on it can be represented as N = [p q -1]T. It can be seen that the
surface in 3-D space is just a point G(p, q) in 2-D gradient space from its orientation,
as shown in Fig. 8.2. In other words, only two variables are needed to represent the
orientation of the 3-D surface. Using this gradient space method to study 3-D
surfaces can play a role in dimensionality reduction (to 2-D), but the representation
of gradient space does not determine the position of 3-D surfaces in 3-D coordinates.
In other words, a point in the gradient space represents all surface elements with the
same orientation, but the spatial positions of these surface elements can be different.

With the aid of gradient space method, the structure formed by the intersection of
planes can be analyzed and explained.

Example 8.1 Determine the Convex or Concave Structure Formed by
the Intersection of Planes
The intersection of multiple planes can form a convex structure or a concave
structure. To determine whether it is a convex structure or a concave structure, the

Fig. 8.2 The representation
of 3-D surface in 2-D
gradient space

Q G

PO

r=(p2+q2)1/2

q�=arctan(q/p)
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Fig. 8.3 Example of the
intersection of two spatial
planes
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Fig. 8.4 The convex structure (a) and concave structure (b) composed by two spatial planes
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Fig. 8.5 Two situations where three space planes intersect

gradient information can be used. First look at the situation where two planes S1 and
S2 intersect to form a line of intersection l, as shown in Fig. 8.3 (where the gradient
coordinate PQ coincides with the spatial coordinate XY). Here G1 and G2, respec-
tively, represent the gradient space points corresponding to the two normal lines of
the two planes, and the line between them is perpendicular to the projection l′ of l.

If S and G of the same face have the same sign (on the same side of the projection
l′ of l ), it indicates that the two faces form a convex structure, as shown in Fig. 8.4a.
If the S and G on the same face have different signs, it indicates that the two faces
form a concave structure, as shown in Fig. 8.4b.

Further consider the case where three planes A, B, and C intersect and their
intersection lines are l1, l2, and l3; see Fig. 8.5a. If the faces on both sides of each
intersection line have the same sign as the corresponding gradient points (each face
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is arranged clockwise as AABBCC), it indicates that the three faces form a convex
structure, as shown in Fig. 8.5b. If the faces on both sides of each intersection line
have different signs with that of the corresponding gradient points (each face is
arranged clockwise as CBACBA), it means that the three faces form a concave
structure, as shown in Fig. 8.5c.

Now go back to Eq. (8.4) and rewrite it as

p2 þ q2 =
I x, yð Þρ
E x, yð Þ

� �2
- 1=

1
K2 - 1 ð8:8Þ

In Eq. (8.8), K represents the relative reflection intensity observed by the
observer. The map based on the contour line of the relative reflection intensity is
called the reflection map. Equation (8.8) corresponds to the equations of a series of
concentric circles on the PQ plane, and each circle represents the observed orienta-
tion track of the same gray level panel. When i= e, the reflection image is composed
of concentric circles. For the general case of i ≠ e, the reflection map consists of a
series of ellipses and hyperbolas.

Example 8.2 Application Example of Reflection Map
Assuming that the observer can see three planes A, B, and C, they form the plane
intersection as shown in Fig. 8.6a, but the actual degree of inclination is unknown.
Using the reflection map, the angle between the three planes can be determined.
Suppose I and V are in the same direction, it can get (the relative reflection intensity
can be measured from the image) KA = 0.707, KB = 0.807, KC = 0.577. According
to the characteristic that the line between the G(p, q) of the two faces is perpendic-
ular to the intersection of the two faces, the triangle shown in Fig. 8.6b can be
obtained (i.e., the conditions satisfied by the orientation of the three planes). Now
find GA, GB, GC on the reflection map shown in Fig. 8.6c. Substituting each K value
into Eq. (8.8), the following two sets of solutions are obtained:

(a) Plane intersection (b) Conditions satisfied (c) Reflection map
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90°

120° 

P

B
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Q
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O 

90°
GB

GC

GA
30°

Fig. 8.6 (a–c) Application example of reflection map
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pA, qAð Þ= 0:707, 0:707ð Þ pB, qBð Þ= -0:189, 0:707ð Þ pC, qCð Þ= 0:707, 1:225ð
p0A, q

0
A = 1, 0 p0B, q

0
B = -0:732, 0 p0C, q

0
C = 1, 1

The first set of solutions corresponds to the small triangles in Fig. 8.6c, and the
second set of solutions corresponds to the big triangles in Fig. 8.6c. Both sets of
solutions satisfy the condition of relative reflection intensity. In fact, there are two
possible combinations for the orientation of the three planes, corresponding to the
convex and concave structures of the three intersections.

8.2 Solving Brightness Equation

Since the image brightness constraint equation relates the gray level of the pixel to
the orientation of the pixel, the gray level I(x, y) of the pixel at (x, y) in the image can
be considered to find the orientation ( p, q) there. But there is a problem here, that is,
the brightness measurement of a single point on the image can only provide one
constraint, and the orientation of the surface has two degrees of freedom. In other
words, suppose that the visible surface of the object in the image is composed of N
pixels, and each pixel has a gray value I(x, y). The solution of Eq. (8.7) is the required
value at the pixel position (p, q). Because according to N pixels, only N equations
can be formed from the image brightness equation, but there are 2N unknowns, that
is, there are two gradient values for each gray value to be solved, this is an
ill-conditioned problem, and no unique solution can be obtained. It is generally
necessary to add additional conditions to establish additional equations to solve this
ill-conditioned problem. In other words, if there is no additional information,
although the image brightness equation establishes the relationship between the
image brightness and the surface orientation, the surface orientation cannot be
restored based on the image brightness equation alone.

A simple way to consider additional information is to use the constraints in the
monocular image. The main considerations include uniqueness, continuity (surface,
shape), compatibility (symmetry, epipolar line), etc. In practical applications, there
are many factors that affect the brightness, so it is only possible to restore the shape
of the object from the shading if the environment is highly controlled.

In practice, people can often estimate the shape of each part of the human face
only by observing a plane picture. This shows that the picture contains enough
information or people have implicitly introduced additional assumptions based on
empirical knowledge when observing the picture. In fact, the surface of many real
objects is smooth, or continuous in depth, and further partial differentials are also
continuous. A more general situation is that the object has a continuous surface with
slices and only the edges are not smooth. The above information provides a strong
constraint. There is a certain connection between the orientation of two adjacent
elements on the surface, and together they should give a continuous smooth surface.
It can be seen that the macro-smooth constraint method can be used to provide
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additional information to help solve the image brightness constraint equation. The
following three cases are introduced from simple to complex:

8.2.1 Linearity Case

First consider the special case of linear reflection; suppose

R p, qð Þ= f apþ bqð Þ 8:9Þ

where a and b are constants. At this time, the reflection map is shown in Fig. 8.7, and
the contour lines in the gradient space in the map are parallel lines.

The function f in Eq. (8.9) is a strictly monotonic function (see Fig. 8.8). In
addition, its inverse function f-1 exists. Knowing from the image brightness
equation

s= apþ bq= f - 1 E x, yð Þ½ � ð8:10Þ

Note that it is not possible to determine the gradient ( p, q) of a particular image
point only by measuring the gray level of the image, but an equation that restricts the
possible value of the gradient can be obtained. For a surface with an angle θ to the
X axis, its slope is

Fig. 8.7 Reflection map of
linear combination of
gradient elements
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Fig. 8.8 The s = ap + bq
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Fig. 8.9 Restoring the
surface according to the
parallel surface profile lines

z0

O
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X

s
t

m θð Þ= p cos θ þ q sin θ ð8:11Þ

Now choose a specific direction θ0 (see Fig. 8.7), tanθ0 = b/a, that is

cos θ0 =
a

a2 þ b2
sin θ0 =

b

a2 þ b2
ð8:12Þ

The slope in this direction is

m θ0ð Þ= apþ bq

a2 þ b2
=

1

a2 þ b2
f - 1 E x, yð Þ½ � 8:13Þ

Starting from a specific image point, if one takes a small step δs, then the change
of z at this time is δz = mδs, that is,

dz
ds

=
1

a2 þ b2
f - 1 E x, yð Þ½ � 8:14Þ

where x and y are linear functions of s:

x sð Þ= x0 þ s cos θ y sð Þ= y0 þ s sin θ ð8:15Þ

First find the solution at a point (x0, y0, z0) on the surface, and integrate the
previous differential equation over z to get

z sð Þ= z0 þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
Zs

0

f - 1 E x, yð Þ½ �ds ð8:16Þ

In this way, a surface profile line along the straight line given above (one of the
parallel straight lines in Fig. 8.9) can be obtained. When the reflection map is a
function of the linear combination of gradient elements, the surface profile lines are
parallel straight lines. As long as the initial height z0(t) is given, the surface can be
restored by integrating along these lines. Of course, in practice, the integral is
calculated by a numerical algorithm.
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Note that if one wants to know the absolute distance, one needs to know the z0
value at a certain point, but one can restore the (surface) shape without this absolute
distance. In addition, the absolute distance cannot be determined only by the integral
constant z0. This is because z0 itself does not affect the shading, and only the changes
in depth can affect the shading.

8.2.2 Rotational Symmetry Case

Now consider a more general situation. If the distribution of the light source has
rotational symmetry with respect to the observer, then the reflection map is also
rotationally symmetric. For example, when the observer views the hemispherical sky
from bottom to top, the obtained reflection map is rotationally symmetric; and when
the point light source and the observer are at the same position, the obtained
reflection map is also rotationally symmetric. In these cases

R p, qð Þ= f p2 þ q2 ð8:17Þ

Now assuming that the function f is strictly monotonic and derivable, and the
inverse function is f-1, then according to the image brightness equation, it has

p2 þ q2 = f - 1 E x, yð Þ½ � 8:18Þ

If the angle between the fastest rising direction of the surface and the X axis is θs,
where tanθs = p/q, then

cos θs =
p

p2 þ q2
sin θs =

q

p2 þ q2
ð8:19Þ

According to Eq. (8.11), the slope in the direction of steepest ascent is

m θsð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f - 1 E x, yð Þ½ �

q
ð8:20Þ

In this case, if one knows the brightness of the surface, one can know its slope, but
one doesn’t know the direction of the fastest rising, that is, one doesn’t know the
respective values of p and q. Now suppose that the direction of the steepest ascent is
given by ( p, q). If a small step length of δs is taken in the direction of the steepest
ascent, the resulting change in x and y should be

δx= p

p2 þ q2
δs δy= q

p2 þ q2
δs ð8:21Þ

And the change of z is
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δz=mδs=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

p
δs=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f - 1 E x, yð Þ½ �

q
δs ð8:22Þ

To simplify these equations, the step size can be taken as p2 q2δs, so it has

δx= pδs δy= qδs δz= p2 þ q2 δs= f - 1 E x, yð Þ½ � δs ð8:23Þ

In addition, a horizontal surface is a region of uniform brightness on the image, so
only the brightness gradient of the curved surface is not zero. To determine the
brightness gradient, the image brightness equation can be derived with respect to
x and y. Let u, v, and w be the second-order partial derivatives of z with respect to
x and y respectively, namely,

u=
∂2z
∂x2

∂2z
∂x∂y

= v=
∂2z
∂y∂x

w=
∂2z
∂y2

ð8:24Þ

Then according to the chain rule of the derivative, one can get

Εx = 2 puþ qvð Þf 0 Εy = 2 pvþ qwð Þf 0 ð8:25Þ

where f′(r) is the derivative of f(r) with respect to its unique variable r.
Now let’s determine the changes in δp and δq due to the step size (δx, δy) in the

image plane. By differentiating p and q, one can get

δp= uδxþ vδy δq= vδxþ wδy ð8:26Þ

According to Eq. (8.23), one can get

δp= puþ qvð Þδs δq= pvþ qwð Þδs ð8:27Þ

Or further by Eq. (8.25), one can get

δp= Ex

2f 0
δs δq=

Ey

2f 0
δs ð8:28Þ

In this way, in the limit case of δs → 0, the following set of five differential
equations can be obtained (differentiation is performed on s):

_x= p _y= q _z= p2 þ q2 _p=
Ex

2f 0
_q=

Ey

2f 0
ð8:29Þ

If the initial value is given, the above five ordinary differential equations can be
solved numerically to get a curve on the object surface. The curve obtained in this
way is called the characteristic curve, and it happens to be the fastest rising curve
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here. This kind of curve is perpendicular to the contour lines point by point. Note that
when R(p, q) is a linear function of p and q, the characteristic curve is parallel to the
surface of the object.

In addition, if _x= p and _y= q in Eq. (8.29) are differentiated once again to s,
another set of equations can be obtained:

€x=
Ex

2f 0
€y=

Ey

2f 0
z= f - 1 E x, yð Þ½ � ð8:30Þ

Since both Ex and Ey are measures of image brightness, the above equations need
to be solved by numerical solutions.

8.2.3 The General Case of Smoothness Constraints

Under normal circumstances, the surface of the object is relatively smooth (although
there are discontinuities between the objects); this smoothness constraint can be
used as an additional constraint. If it is considered that the surface of the object
(within the contour of the object) is smooth, the following two equations hold:

∇pð Þ2 = ∂p
∂x

þ ∂p
∂y

	 
2

= 0 ð8:31Þ

∇qð Þ2 = ∂q
∂x

þ ∂q
∂y

	 
2

= 0 ð8:32Þ

If they are combined with the brightness constraint equation, solving the surface
orientation problem can be transformed into a problem that minimizes the following
total error:

ε x, yð Þ=
X
x

X
y

E x, yð Þ-R pð , qÞ½ �2 þ λ ∇pð Þ2 þ ∇qð Þ2
hn

ð8:33Þ

Equation (8.33) can be regarded as follows: Find the orientation distribution of
the surface elements of the object, so that the weighted sum of the overall grayscale
error and the overall smoothness error is the smallest. Let p and q denote the mean
values in the p neighborhood and q neighborhood, respectively, take the derivative
of ε with respect to p and q, respectively, and take the derivative to zero, and then
substitute ∇p= p- p and ∇q= q- q to obtain



8.2 Solving Brightness Equation 259

�

d

d

i,j

��
1

4
i,j

1

4

i,j

���l

E )(x, y

)( x, yp

)(x, yq

)(x, yp

)( x, yp
)( x, yp

R
p

)(x, yp

)(x, yq
d

d

R
q

)(p, qR

)( x, yq
)( x, yq

)( x , yq

( )n

( )n

( )n

( )n

( )n

( )n

( )n

( )n

( )n

���l

( +1)n

( +1)n

( )n

( )n

Fig. 8.10 Flowchart for solving constraint equations

p x, yð Þ= p x, yð Þ þ 1
λ
E x, yð Þ-R pð , qÞ½ �∂R

∂p
ð8:34Þ

q x, yð Þ= q x, yð Þ þ 1
λ
E x, yð Þ-R pð , qÞ½ �∂R

∂q
ð8:35Þ

The equations for iteratively solving Eqs. (8.34) and (8.35) are as follows (the
initial value of the iteration can be the boundary point value):

p nþ1ð Þ = p nð Þ þ 1
λ

E x, yð Þ-R p nð Þ
�

, q nð ÞÞ
h i∂R nð Þ

∂p
ð8:36Þ

q nþ1ð Þ = q nð Þ þ 1
λ

E x, yð Þ-R p nð Þ
�

, q nð ÞÞ
h i∂R nð Þ

∂q
ð8:37Þ

Here one should pay attention to the unevenness between the inside and outside
of the contour of the object, and there are jumps.

Example 8.3 Flowchart for Solving the Brightness Constraint Equation
The flowchart for solving Eqs. (8.36) and (8.37) is shown in Fig. 8.10. Its basic
framework can also be used to solve the relaxation iteration Eqs. (7.47) and (7.48) of
the optical flow equation.

Example 8.4 Example of Shape Restoration from Shading
Figure 8.11 shows two examples of restoring shapes from shading. Figure 8.11a is
an image of a sphere; Fig. 8.11b is the (needle) image of the surface orientation of the
sphere obtained from Fig. 8.11a using shading information; Fig. 8.11c is another
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Fig. 8.11 (a–d) Example of shape restoration from shading (see text)

sphere image; Fig. 8.11d is the (needle) image of the surface orientation obtained
from Fig. 8.11c using shading information. In the group of Fig. 8.11a, b, the
direction of the light source is relatively close to the direction of the line of sight,
so basically the direction of each point can be determined for the entire visible
surface. Figure 8.11c, d has a relatively large angle between the direction of the light
source and the direction of the line of sight, so the direction of the visible surface that
cannot be illuminated by light cannot be determined (as shown in Fig. 8.11d,
corresponding to the upper left parts of the image in Fig. 8.11c).

8.3 Shape from Texture

The representation, description, segmentation, and classification of textures in
images have been introduced in Chap. 11 of 2D Computer Vision: Principles,
Algorithms and Applications. Here we discuss the problem of restoring shape
from texture.

When people observe a textured surface, they can observe the degree of inclina-
tion of the surface with only one eye, because the texture of the surface will look
distorted due to the inclination. The role of texture in restoring surface orientation
has been discussed as early as 1950. The method of estimating the surface orienta-
tion based on the observed surface texture distortion will be described below.

8.3.1 Monocular Imaging and Distortion

In perspective projection imaging, the farther the scene is from the observation point
or the collector, the smaller the image will be, and vice versa. This can be seen as a
kind of dimensional distortion during imaging. This kind of imaging distortion
actually contains the spatial and structural information of the 3-D scenery. It needs to
be pointed out here that unless the X or Y of the scenery coordinates is known, the
absolute distance between the collector and the scenery cannot be directly obtained
from the 2-D image (only the relative distance information is obtained).
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The geometric outline of an object can be regarded as composed of straight-line
segments. Next, consider some distortions that occur when a straight line of 3-D
space is perspectively projected onto a 2-D image plane. According to the camera
model, the projection of a point is still a point. A straight line is composed of its end
points and intermediate points, so the projection of a straight line can be determined
based on the projections of these points. There are two points in space (points at both
ends of the straight line) W1 = [X1 Y1 Z1]

T, W2 = [X2 Y2 Z2]
T; the points in between

can be represented as (0 < s < 1)

sW1 þ 1- sð ÞW2 = s

X1

Y1

Z1

2
64

3
75þ 1- sð Þ

X2

Y2

Z2

2
64

3
75 ð8:38Þ

The above two end points, after projection P, can be represented as PW1 = [kX1

kY1 kZ1 q1]
T, PW2 = [kX2 kY2 kZ2 q2]

T, where q1 = k(λ - Z1)/λ, q2 = k(λ - Z2)/λ.
The point on the line between the original W1 and W2 can be represented as
(0 < s < 1) after being projected:

P sW1 þ 1- sð ÞW2½ �= s

kX1

kY1

kZ1

q1

2
6664

3
7775þ 1- sð Þ

kX2

kY2

kZ2

q2

2
6664

3
7775 ð8:39Þ

In other words, the image plane coordinates of all points on this space straight line
can be obtained by dividing the first three terms by the fourth term of homogeneous
coordinates, which can be represented as (0 ≤ s ≤ 1)

w= x y½ �T = s X1 þ 1- sð ÞX2

s q1 þ 1- sð Þq2
s Y1 þ 1- sð ÞY2

s q1 þ 1- sð Þq2

� T

ð8:40Þ

The above is the result of projection transformation using s to represent the spatial
point. On the other hand, on the image plane, w1 = [λX1/(λ - Z1) λY1/(λ - Z1)]

T,
w2 = [λX2/(λ - Z2) λY2/(λ - Z2)]

T; the point on the line between them can be
represented as (0 < t < 1)

tw1 þ 1- tð Þw2 = t

λX1

λ- Z1
λY1

λ- Z1

2
64

3
75þ 1- tð Þ

λX2

λ- Z2
λY2

λ- Z2

2
64

3
75 ð8:41Þ

Therefore, the coordinates (indicated by t) of the points on the image plane of w1

and w2 as well as the line between them are (0 ≤ t ≤ 1)
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w= x y½ �T = t
λX1

λ- Z1
þ 1- tð Þ λX2

λ- Z2
t

λY1

λ- Z1
þ 1- tð Þ λY2

λ- Z2

� T

ð8:42Þ

If the projection result represented by s is the image point coordinate represented
by t, then Eqs. (8.40) and (8.42) should be equal, so that one can get

s=
t q2

t q2 þ 1- tð Þq1
ð8:43Þ

t=
sq1

sq1 1- s q2
ð8:44Þ

It can be seen from Eqs. (8.43) and (8.44) that s and t have single-valued
relationships. In 3-D space, the point represented by s corresponds to one and only
one point represented by t in the 2-D image plane. All the spatial points represented
by s are connected to form a straight line, and all the image points represented by
t are connected to form a straight line. It can be seen that after a straight line in the
3-D space is projected onto the 2-D image plane, as long as it is not a vertical
projection, the result is still a straight line (but the length may vary). If it is a vertical
projection, the projection result is just a point (this is a special case). The inverse
proposition is also true, that is, a straight line on the 2-D image plane must be
produced by a straight line projection in the 3-D space (in special cases it can also be
produced by a plane projection).

Next, consider the distortion of parallel lines, because parallel is a very charac-
teristic relationship between lines in a straight line system. In 3-D space, a point
(X, Y, Z ) on a straight line can be represented as

X

Y

Z

2
64

3
75=

X0

Y0

Z0

2
64

3
75þ k

a

b

c

2
64

3
75 ð8:45Þ

Among them, (X0, Y0, Z0) represents the starting point of the straight line; (a, b, c)
represents the direction cosines of the straight line; k is any coefficient.

For a group of parallel lines, their (a, b, c) are the same; only (X0, Y0, Z0) are
different. The distance between the parallel lines is determined by the difference
between different (X0, Y0, Z0). If the parallel line is extended to both ends infinitely, it
can be seen that the projected trajectory of the parallel line is only related to (a, b, c)
and has nothing to do with (X0, Y0, Z0). In other words, parallel lines with the same
(a, b, c) will intersect at one point after extending infinitely. This point can be in the
image plane or outside the image plane, so it is also called vanishing point. The
calculation of the vanishing point will be introduced in Sect. 8.4.
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8.3.2 Orientation Restoration from the Change of Texture

Using the texture on the surface of the object can help determine the orientation of
the surface and further restore the shape of the surface. The description of texture
here is mainly based on the idea of structural method: complex texture is composed
of some simple texture primitives (texture element, or texel) repeatedly arranged
and combined in a certain regular form. In other words, texture elements can be
regarded as visual primitives with repeatability and invariance in a region. Here the
repeatability refers to the repeated occurrence of these primitives in different posi-
tions and directions. Of course, this kind of repetition is possible only at a certain
resolution (the number of texels in a given visual range). The invariance refers to the
pixel composition of the same primitive having some basically similar characteris-
tics. These characteristics may be only related to the gray scale or may depend also
on the certain characteristics such as its shape.

8.3.2.1 Three Typical Methods

Using the texture of the surface of an object to determine its orientation should
consider the influence of the imaging process, which is specifically related to the
relationship between the texture of the scenery and the texture of the image. In the
process of acquiring the image, the texture structure on the original scenery may
change in the image (generating gradient changes in both size and direction). This
change may be different depending on the orientation of the surface where the
texture is located and have 3-D information about the orientation of the object’s
surface. Note that this is not to say that the surface texture itself carries 3-D
information but that the changes produced by the texture during the imaging process
carry 3-D information. The texture changes can be divided into three categories
(here, assuming that the texture is limited to a flat surface), referring to the schematic
diagram in Fig. 8.12. The commonly used methods for restoring orientation based on
texture information can also be divided into the following three categories:

(a) Change of texture 

   element size

(b) Change of texture 

   element shape

(c) Change of spatial

   relationship between

   texture elements

X

Y

O

Fig. 8.12 (a–c) Texture change and surface orientation
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1. Use the Change of Texture Element Size
In perspective projection, there is a law of near-large and far-small, so texture

elements with different positions may have different sizes after projection. This is
obvious when looking along the direction of the floor or floor tiles. According to
the maximum value of the change rate of the projection size of the texture
element, the orientation of the plane where the texture element is located can be
determined. See Fig. 8.12a; the direction of this maximum value is the direction
of the texture gradient. Assuming that the image plane coincides with the paper
surface and the line of sight comes out of the paper, then the direction of the
texture gradient depends on the rotation angle of the texture element around the
camera line of sight, and the value of the texture gradient gives the degree of
inclination of the texture element relative to the line of sight. Therefore, the
orientation of the texture element and the plane of texture element can be
determined with the aid of the geometric information of the camera placement.

It should be noted that the regular texture on the surface of the 3-D scene will
produce a texture gradient in the 2-D image, but the texture gradient in the 2-D
image does not necessarily come from the regular texture on the surface of the 3-
D scene.

Example 8.5 The Change of Texture Element Size Provides the Depth
of the Scenery
Figure 8.13 shows two pictures. The front part of Fig. 8.13a has many petals (they
are equivalent to texels of similar size), and the petal size gradually decreases from
front to back (from near to far). This change in the size of texture elements gives a
sense of depth to the scene. The building in Fig. 8.13b has many columns and
windows (they are equivalent to regular-shaped texture elements). The changes in
their size also give people a sense of depth in the scene, and it is easy to help the
observer to make the judgment that the farthest distance is from the corners.

Fig. 8.13 (a, b) The change of texture element size gives the depth of the scene
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2. Use the Change of Texture Element Shape
The shape of the texel on the surface of the object may change after imaging

with perspective projection and orthogonal projection. If the original shape of
the texel is known, the direction of the surface can also be calculated from the
result of the change of the texel shape. The orientation of the plane is determined
by two angles (the angle of rotation relative to the camera axis (line of sight) and
the angle of inclination relative to the camera axis). For the given original texture
elements, these two angles can be determined according to the change results
after imaging. For example, on a plane, the texture composed of circles will
become ellipse on an inclined plane, as shown in Fig. 8.12b. At this time, the
orientation of the main axis of the ellipse determines the angle of rotation relative
to the camera axis, and the ratio of the lengths of the long and short axis reflects
the angle of tilt relative to the camera axis. This ratio is also called the aspect
ratio. The calculation process is described below. Suppose the equation of the
plane where the circular texture primitives are located is

axþ byþ czþ d= 0 ð8:46Þ

The circle that constitutes the texture can be regarded as the line of intersection
between the plane and the sphere (the line of intersection between the plane and
the sphere is always a circle, but when the line of sight is not perpendicular to the
plane, the line of intersection seen by the deformation is always an ellipse). The
spherical equation is

x2 þ y2 þ z2 = r2 ð8:47Þ

Solve the above two equations together (equivalent to projecting a sphere onto
a plane)

a2 þ c2

c2
x2 þ b2 þ c2

c2
y2 þ 2adxþ 2bdyþ 2abxy

c2
= r2 -

d2

c2
ð8:48Þ

This is an elliptic equation, which can be further transformed into

a2 þ c2
� �

xþ ad
a2 þ c2

� �2
þ b2 þ c2

� �
yþ bd

b2 þ c2

� �2
þ 2abxy= c2r2

-
a2d2 þ b2d2

a2 þ c2

� �2
ð8:49Þ

From the above equation, the coordinates of the center point of the ellipse can
be obtained, and the semimajor axis and semiminor axis of the ellipse can be
determined, so that the rotation angle and the tilt angle can be calculated.
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X
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O

Y

Z

Fig. 8.14 The position of the circular texture primitive plane in the coordinate system

Another way to judge the deformation of circular texture is to calculate the
semimajor axis and semiminor axis of different ellipses. See Fig. 8.14 (where the
world coordinates coincide with the camera coordinates), the angle between the
plane where the circular texture primitives are located and the Y axis is α (it is also
the angle between the texture plane and the image plane). In the image obtained at
this time, not only the circular texture primitive becomes an ellipse, but the
density of the upper primitive is greater than that of the middle part, forming a
density gradient. In addition, the aspect ratio of each ellipse, that is, the ratio of
the length of the semiminor axis to the length of the semimajor axis, is not
constant, forming a gradient of the aspect ratio. At this time, there are changes
in both the size of the texel and the shape of the texel.

If the diameter of the original circle is D, for the circle at the center of the
scenery, the long axis of the ellipse in the image can be obtained according to the
perspective projection relationship as

Dmajor 0, 0ð Þ= λ
D
Z

ð8:50Þ

where λ is the focal length of the camera and Z is the object distance. The aspect
ratio at this time is the cosine of the tilt angle, that is,

Dminor 0, 0ð Þ= λ
D
Z

cos α ð8:51Þ

Now consider the primitives on the scenery that are not on the optical axis of
the camera (the light-colored ellipse in Fig. 8.14). If the Y coordinate of the
primitive is y and the angle between the line to the origin and the Z axis is θ, then
one can get

Dmajor 0, yð Þ= λ
D
Z

1- tan θ tan αð Þ 8:52Þ
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Dminor 0, yð Þ= λ
D
Z
cos α 1- tan θ tan αð Þ2 ð8:53Þ

The aspect ratio at this time is cosα(1 - tanθ tanα), which will decrease with
the increase of θ, forming a gradient of the aspect ratio.

3. Use the Change of Spatial Relationship Between Texture Elements
If the texture is composed of regular grids of texels, the surface orientation

information can be recovered by calculating its vanishing point (see Sect. 8.4).
The vanishing point is the common intersection point of each line segment in the
set of intersecting line segments. For a perspective image, the vanishing point on
the plane is formed by the projection of the texel at infinity to the image plane in a
certain direction, or is the convergence point of parallel lines at infinity, which
can be seen in Eq. (8.39).

Example 8.6 Texture Element Grid and Vanishing Point
Figure 8.15a shows a perspective view of a cuboid with parallel grid lines on each
surface, and Fig. 8.15b is a schematic diagram of the vanishing point of each surface
texture.

If one looks along the surface to its vanishing point, one can see the change
in the spatial relationship between texture elements, that is, the increase in the
distribution density of texture elements. Two vanishing points obtained from
the same surface texture element grid can be used to determine the orientation
of the surface. The line where these two points are located is also called
vanishing line, which is composed of vanishing points of parallel lines in
different directions on the same plane (e.g., the vanishing points of parallel
lines in different directions on the ground constitute the horizon). The direc-
tion of the vanishing line indicates the rotation angle of the texture element
relative to the camera axis, and the intersection of the vanishing line and x = 0
indicates the tilt angle of the texture element relative to the line of sight; see

Fig. 8.15 Texture element grid (a) and vanishing point (b)
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Table 8.1 Comparison of three methods for determining the surface orientation of objects using
texel changes

Rotation angle of the texel
relative to the camera axis

Tilt angle of the texel relative to
the camera axis

Use the change of texel
size

Texture gradient direction Texture gradient value

Use the change of texel
shape

Texel main axis direction The ratio of the long axis and short
axis of the texel

Use the change of spatial
relationship between texels

The direction of the line
between the two vanishing
points

The intersection of the line
between two vanishing points and
x = 0

Table 8.2 Overview of some methods to obtain shapes from textures

Surface
type

Original
texture

Projection
model

Analysis
method

Analysis
unit

Unit
attribute

Texture gradient Plane Unknown Perspective Statistics Wave Wavelength

Texture gradient Plane Unknown Perspective Structure Region Area

Texture gradient Plane Uniform
density

Perspective Statistics/
structure

Edge/
region

Density

Convergence line Plane Parallel
lines

Perspective Statistics Edge Direction

Normalized tex-
ture feature map

Plane Known Orthogonal Structure Line Length

Normalized tex-
ture feature map

Curved
surface
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Shape distortion Plane Isotropic Orthogonal Statistics Edge Direction

Shape distortion Plane Unknown Orthogonal Structure Region Shape

Fig. 8.12c. The above situation can be easily explained by the perspective
projection model.

Finally, the above three methods of using the changes of texture element to
determine the surface orientation of an object can be summarized in Table 8.1.

8.3.2.2 Shape from Texture

The specific effect of determining the surface orientation and restoring the surface
shape by texture is related to the gradient of the surface itself, the distance between
the observation point and the surface, and the angle between the line of sight and the
image. Table 8.2 gives an overview of some typical methods, which also lists various
terms for obtaining shapes from textures. The various methods that have been
proposed to determine the surface by texture are mostly based on different combi-
nations of them.

In Table 8.2, the difference between the different methods is mainly on the use of
different surface orientation cues, namely, the texture gradient (referring to the
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maximum change rate and direction of the texture roughness on the surface), the
convergence line (which can limit the flat surface in assuming that these lines are
parallel in 3-D space and can determine the vanishing point of the image), the
normalized texture characteristic map (the map is similar to the reflection map for
the shape from shading), and the shape distortion (if knowing the original shape of a
pattern on the surface, then the observable shape can be determined on the image for
various orientations of the surface). The surface is flat in most cases, but it can also
be curved; the analysis method can be either a structural method or a statistical
method.

In Table 8.2, the projection type mostly uses perspective projection, but it can
also be orthogonal projection or spherical projection. In spherical projection, the
observer is at the center of the sphere, the image is formed on the sphere, and the line
of sight is perpendicular to the sphere. When restoring the surface orientation from
the texture, the 3-D volume should be reconstructed according to the distortion of the
original texture element shape after projection. Shape distortion is mainly related to
two factors: (1) the distance between the observer and the object, which affects the
size of the texture element after distortion, and (2) the angle between the normal line
of the object surface and the line of sight (camera axis, also called the surface
inclination); it affects the deformed shape of the texture element. In orthogonal
projection, the first factor does not work; only the second factor will work. In
perspective projection, the first factor works, and the second factor only works
when the surface of the object is curved (if the surface of the object is flat, it will
not produce distortion that affects the shape). The projection form that can make the
above two factors work together on the shape of the object is spherical perspective
projection. At this time, the change of the distance between the observer and the
object will cause the size of the texture element to change, and the change of the
inclination of the object surface will cause the change of the object shape after
projection.

In the process of restoring the surface orientation from the texture, it is often
necessary to make certain assumptions about the texture pattern. Two typical
assumptions are as follows:

Isotropic Assumption

The isotropic assumption holds that for an isotropic texture, the probability of
finding a texture primitive on the texture plane has nothing to do with the orientation
of the texture primitive. In other words, the probability model for isotropic texture
does not need to consider the orientation of the coordinate system on the texture
plane.
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Homogeneity Assumption

The homogeneity of texture in an image means that no matter where the texture of a
window is selected at any position in the image, it is consistent with the texture of the
window selected at other positions. More strictly speaking, the probability distribu-
tion of a pixel value only depends on the nature of the pixel neighborhood and has
nothing to do with the spatial coordinates of the pixel itself. According to the
homogeneity assumption, if the texture of a window in the image is collected as
a sample, the texture outside the window can be modeled according to the nature of
the sample.

In an image obtained by orthogonal projection, even if the texture is assumed to
be homogeneous, the orientation of the texture plane cannot be restored, because the
homogeneous texture is still a homogeneous texture after viewing angle transfor-
mation. However, if the image obtained by perspective projection is considered, it is
possible to restore the orientation of the texture plane.

This problem can be explained as follows: According to the assumption of
homogeneity, and that the texture is composed of a uniform pattern of points, if
the texture plane is sampled with equally spaced grids, then the number of texture
points obtained by each grid should be the same or very close. However, if this
texture plane covered with grids at equal intervals is perspectively projected, some
grids will be mapped into larger quadrilaterals, while others will be mapped into
smaller quadrilaterals. In other words, the texture on the image plane is no longer
homogeneous. Since the grid is mapped to different sizes, the number of (originally
homogeneous) texture patterns contained therein is no longer the same. According to
this property, the relative orientation of the imaging plane and the texture plane can
be determined by using the proportional relationship of the number of texture
patterns contained in different windows.

8.3.2.3 Texture Stereo Technology

The combination of texture method and stereo vision method is called texture stereo
technique. It estimates the direction of the surface of the scene by acquiring two
images of the scene at the same time, avoiding the problem of complicated
corresponding point matching. In this method, the two imaging systems used are
connected by rotation transformation.

In Fig. 8.16, the straight line orthogonal to the texture gradient direction and
parallel to the surface of the object is called the characteristic line, and there is no
change in the texture structure on this line. The angle between the characteristic line
and the X axis is called the characteristic angle, which can be calculated by
comparing the Fourier energy spectrum of the texture region.

According to the characteristic lines and characteristic angles obtained from the
two images, the surface normal vector N = [Nx Ny Nz]

T can be determined:
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Fig. 8.16 Characteristic lines of texture surface

Nx = sin θ1 a13 cos θ2 þ a23 sin θ2ð Þ 8:54Þ
Ny = - cos θ1 a13 cos θ2 a23 sin θ2 8:55

Nz = cos θ1 a21 cos θ2 a22 sin θ2 - sin θ1 a11 cos θ2 a21 sin θ2 8:56

Among them, θ1 and θ2 are the angles formed by the characteristic line in the two
images and the X axis counterclockwise; the coefficient aij is the directional cosine
between the corresponding axes in the two imaging systems.

8.4 Detection of Texture Vanishing Points

When using changes in the spatial relationship between texture elements to estimate
the surface orientation, it is necessary to detect/calculate the vanishing point.

8.4.1 Detecting the Vanishing Point of Line Segment Texture

If the texture pattern is composed of straight-line segments, the introduction for the
method of detecting vanishing point can be conducted with the help of Fig. 8.17.
Theoretically, this work can be carried out in two steps (each step requires one
Hough transform):

1. Determine all the straight lines in the image (which can be done directly with the
Hough transform).

2. Find those straight lines that pass through common points, and determine which
points are the vanishing points (the peak accumulated in the parameter space
indicating these points with the help of the Hough transform).
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(a)                                  (b)                                   (c)                                (d) 
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Fig. 8.17 (a–d) Determine the vanishing point of line segment texture (see text)

According to the Hough transform, the straight line in the image space can be
determined by detecting the parameters in the parameter space. As shown in
Fig. 8.17a, in the polar coordinate system, a straight line can be represented as

λ= x cos θ þ y sin θ ð8:57Þ

If the symbol “)” is used to represent the transformation from one set to another,
the transformation {x, y} ) {λ, θ} maps a straight line in the image space XY to a
point in the parameter space ΛΘ, and the set of straight lines with the same vanishing
point (xv, yv) in the image space XY is projected onto a circle in the parameter space
ΛΘ. To illustrate this point, λ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and θ = arctan{y/x} can be substituted

into the following equation:

λ= xv cos θ þ yv sin θ ð8:58Þ

Transfer the result to the Cartesian coordinate system, and one can get

x-
xv
2

� �2
þ y-

yv
2

� �2
=

xv
2

� �2
þ yv

2

� �2
ð8:59Þ

The above equation represents a circle with its center at (xv/2, yv/2) and a radius of

λ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xv=2ð Þ2 þ yv=2ð Þ2

q
, as shown in Fig. 8.17b. This circle is the trajectory of all

the line segments with (xv, yv) as the vanishing point projected into the ΛΘ space. In
other words, the transformation {x, y} ) {λ, θ} can be used to map the set of line
segments from XY space to ΛΘ space to detect the vanishing point.

The above method of determining the vanishing point has two shortcomings: one
is that the detection of a circle is more difficult than the detection of a straight line,
and the amount of calculation is also large; the other is when xv → 1 or yv → 1,
there are λ → 1 (here the symbol “→” indicates a trend). To overcome these
shortcomings, the transformation {x, y}) {k/λ, θ} can be used instead, where k is a
constant (k is related to the value range of the Hough transform space). At this time,
Eq. (8.58) becomes
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k
λ
= xv cos θ þ yv sin θ ð8:60Þ

Transfer Eq. (8.60) into the Cartesian coordinate system (let s = λcosθ and
t = λsinθ); then it gets

k= xvsþ yvt ð8:61Þ

This is a line equation. In this way, the vanishing point at infinity can be projected
to the origin, and the trajectory of the points corresponding to the line segments with
the same vanishing point (xv, yv) becomes a straight line in the ST space, as shown in
Fig. 8.17c. The slope of this line can be known from Eq. (8.61) as-yv/xv, so this line
is orthogonal to the vector from the origin to the vanishing point (xv, yv), and the
distance from the origin is k=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2v þ y2v

p
. The Hough transform can be used another

time to detect this line, that is, the space ST where the line is located is regarded as
the original space, and the detection is performed in the (new) Hough transform
space RW. In this way, the straight line in the space ST is a point in the space RW, as
shown in Fig. 8.17d, and its position is

r=
k

x2v þ y2v
ð8:62Þ

w= arctan
yv
xv

	 

ð8:63Þ

From Eqs. (8.62) and (8.63), the coordinates of the vanishing point can be solved
as

xv =
k2

r2 1þ tan 2w
p ð8:64Þ

yv =
k2 tanw

r2 1 tan 2w
p ð8:65Þ

8.4.2 Determine the Vanishing Point Outside the Image

The above method has no problem when the vanishing point is in the range of the
original image. But in practice, the vanishing point is often outside the image range
(as shown in Fig. 8.18), or even at infinity. At this time, the normal image parameter
space will encounter problems. For long-distance vanishing points, the peaks of the
parameter space are distributed in a large distance range. As a result, the detection
sensitivity will be poor, and the positioning accuracy will be low.
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Fig. 8.18 An example of
the vanishing point outside
the image

V

Fig. 8.19 Use Gaussian
sphere to determine the
vanishing point
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C

V 
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An improved method for this is to construct a Gaussian sphere G around the
projection center of the camera, and use G instead of the extended image plane as the
parameter space. As shown in Fig. 8.19, the vanishing point appears at a finite
distance (but it is also possible at infinity), and it has a one-to-one relationship (V and
V′) with a point on the Gaussian sphere (the center is C). In reality, there will be
many unrelated points. To eliminate their influence, paired lines (lines in 3-D space
and lines projected onto the Gaussian sphere) need to be considered. If there are
N lines in total, the total number of line pairs is N(N - 1)/2, that is, the magnitude is
O(N2).

Consider the situation where the ground is covered with floor tiles and the camera
is tilted to the ground and observed along the laying direction of the floor. At this
time, the configuration shown in Fig. 8.20 can be obtained (VL stands for vanishing
line), where C is the center of the camera;O,H1, andH2 are on the ground;O, V1, V2,
and V3 are on the imaging plane; and a and b (the length and width of the brick,
respectively) are known. The cross ratio obtained from points O, V1, V2, and V3 is
equal to the cross ratio obtained from points O, H1, and H2 and the point at infinity
along the horizontal direction, so it gives
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Fig. 8.20 Determine the
vanishing point by means of
the cross ratio from the
known intervals
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Fig. 8.21 Calculate the
offset of the circle center
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y1 y3 - y2ð Þ
y2 y3 - y1ð Þ =

x1
x2

=
a

aþ b
ð8:66Þ

From Eq. (8.66), y3 can be calculated:

y3 =
by1y2

ay1 þ by1 - ay2
ð8:67Þ

In practice, it should be possible to adjust the position and angle of the camera
relative to the ground so that a = b; then one can get

y3 =
y1y2

2y1 - y2
ð8:68Þ

This simple equation shows that the absolute values of a and b are not important;
as long as their ratio is known, it can be calculated. Furthermore, the above
calculation does not assume that the points V1, V2, and V3 are vertically above the
point O, nor does it assume that the points O, H1, and H2 are on the horizontal line. It
is only required that they are on two coplanar straight lines, and C is also in this
plane.

Under the condition of perspective projection, the ellipse is projected as an
ellipse, but its center will be slightly offset. This is because the perspective projection
does not maintain the length ratio (the midpoint is no longer the midpoint). Assum-
ing that the position of the vanishing point of the plane can be determined from the
image, the previous method can be used to easily calculate the center offset. First
consider the special case of an ellipse, a circle, which is an ellipse after projection.
Refer to Fig. 8.21; let b be the short semiaxis of the ellipse after projection, d be the
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Fig. 8.22 Calculate the
offset of the center of the
ellipse

C

P2 VLP1

O

distance between the ellipse and the vanishing line after projection, e be the offset of
the center of the circle after projection, and point P as the center of projection.
Taking b + e as y1, 2b as y2, and b + d as y3, then it can get from Eq. (8.68)

e=
b2

d
ð8:69Þ

The difference from the previous method is that here y3 is known and it is used to
calculate y1 and then to calculate e. If one doesn’t know the vanishing line, but one
knows the direction of the plane where the ellipse is located and the direction of the
image plane, one can deduce the vanishing line and then makes the calculation as
above.

If the original object is an ellipse, the problem is a little more complicated,
because not only the longitudinal position of the center of the ellipse is not known,
but also its horizontal position is also not known. At this time, two pairs of parallel
tangents of the ellipse should be considered. After projection imaging, one pair
intersects at P1 and the other pair intersects at P2. Both intersection points are on the
vanishing line (VL), as shown in Fig. 8.22. Because for each pair of tangents, the
chord connecting the tangent points passes through the center O of the original
ellipse (this characteristic does not change with the projection), the center of the
projection should be on the chord. The intersection of the two chords corresponding
to the two pairs of tangents is the projection center C.

8.5 Key Points and References for Each Section

The following combine the main contents of each section to introduce some refer-
ences that can be further consulted:

1. Shape from Shading
The principle and method of reconstructing the surface shape of the scene

according to the image shading can also be found in many references, such as
[1, 2].
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2. Solving Brightness Equation
The image brightness constraint equation establishes the relationship between

the pixel brightness and the pixel gradient, but the gradient is 2-D and the
brightness is 1-D, so an equation has two unknowns, and other constraints must
be added to increase the number of equations to find the solutions. Refer to
reference [2].

3. Shape from Texture
For the content of the camera model and homogeneous coordinates, please

refer to the document 2D Computer Vision: Principles, Algorithms and Applica-
tions. Table 8.2 summarizes some typical methods of restoring shape from
texture, which also lists various terms for obtaining shape from texture [3]. The
idea of structural method is commonly used in texture analysis; please refer to the
document 2D Computer Vision: Principles, Algorithms and Applications. For the
discussion of the assumption of texture patterns, please refer to reference [4].

4. Detection of Texture Vanishing Points
An introduction to the Hough transform can be found in the document 2D

Computer Vision: Principles, Algorithms and Applications. For the discussion of
cross ratio, please refer to reference [5].

Self-Test Questions

The following questions include both single-choice questions and multiple-choice
questions, so each option must be judged.

8.1. Shape from Shading

8.1.1. 3-D objects are projected onto the 2-D image plane to form various
brightness levels, and the distribution and changes of these levels depend
on four factors. In Eq. (8.6), these four factors are, respectively,
corresponding to ( ).

(a) I(x, y), light source incident intensity and direction; ρ(x, y), surface
reflection characteristics; ( p, q), line of sight direction; ( pi, qi),
surface normal direction.

(b) I(x, y), surface reflection characteristics; ρ(x, y), light source incident
intensity and direction; ( p, q), surface normal direction; ( pi, qi), line
of sight direction.

(c) I(x, y), surface reflection characteristics; ρ(x, y), light source incident
intensity and direction; ( p, q), line of sight direction; ( pi, qi), surface
normal direction.

(d) I(x, y), light source incident intensity and direction; ρ(x, y), surface
reflection characteristics; ( p, q), surface normal direction; ( pi, qi),
line of sight direction.

[Hint] Check these four factors in turn.
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8.1.2. In gradient space method, ( ).

(a) A point is used in the gradient space to represent a surface element.
(b) A point in the gradient space can only represent a surface element at

one location.
(c) A point is used in the gradient space to represent all surface elements

with the same orientation.
(d) A point in the gradient space may represent a surface element at

different positions.

[Hint] Each point in the gradient space represents an orientation.
8.1.3. In the two sets of solutions of Example 8.2, ( ).

(a) The first set of solutions corresponds to the convex structure of the
converging point of three lines of intersection, and the second set of
solutions corresponds to the concave structure of the converging
point of three lines of intersection.

(b) The first set of solutions corresponds to the convex structure of the
converging point of three lines of intersection, and the second set of
solutions also corresponds to the convex structure of the converging
point of three lines of intersection.

(c) The first set of solutions corresponds to the concave structure of the
converging point of three lines of intersection, and the second set of
solutions corresponds to the convex structure of the converging point
of three lines of intersection.

(d) The first set of solutions corresponds to the concave structure of the
converging point of three intersections, and the second set of solu-
tions also corresponds to the convex structure of the converging
point of three intersections.

[Hint] Refer to Fig. for analysis.8.5

8.2. Solving Brightness Equation

8.2.1. The image brightness constraint equation is compared with the optical
flow constraint equation in Chap. 7; ( ).

(a) The similarity is that there are both two unknown quantities.
(b) The difference is that the former only contains spatial information,

while the latter also contains temporal information.
(c) The similarity is that both provide information to restore the 3-D

scene from the 2-D image.
(d) The difference is that the former considers the brightness change

rate, while the latter considers the speed of the imaging point.

[Hint] Analyze the meaning of each parameter in the two equations in
detail.

8.2.2. Compare the optical flow constraint equation in Chap. 7 with the image
brightness constraint equation here; ( ).
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(a) The similarity is that they both establish the relationship between the
pixel characteristics in the image and the object characteristics in the
scene.

(b) The difference is that the former is related to the movement speed of
the imaging point, while the latter is related to the reflection charac-
teristics of the imaging point.

(c) The similarity is that the grayscale gradient information at each pixel
in the image is used.

(d) The difference is that the former considers the first-order time change
rate of the pixel gray value, while the latter only considers the pixel
gray value.

[Hint] Pay attention to distinguish between brightness gradient and
orientation gradient.

8.2.3. Solving the image brightness constraint equation is to determine the
orientation of the object surface according to the image grayscale infor-
mation; ( ).

(a) In the case of linear reflection, the grayscale function can be any
monotonic function.

(b) In the case of linear reflection, the gradient of a particular image
point can be determined by only measuring the gray level of the
image.

(c) In the case of rotational symmetry, the grayscale reflection image
obtained is also rotationally symmetric.

(d) In the case of rotational symmetry, the value of the object orientation
gradient can be determined according only to the brightness of the
object surface.

[Hint] Pay attention to the conditions for solving the image brightness
straint equation under specific circumstances.con

8.3. Shape from Texture

8.3.1. Projecting the lines in the 3-D space by perspective projection onto the
2-D image plane will produce dimensional distortion; ( ).

(a) The farther the line perpendicular to the line of sight is from the
camera, the smaller the distortion.

(b) The distance from the straight line to the camera can be judged
according to the magnitude of the distortion.

(c) If it is not a vertical projection, the projection result is still a
straight line.

(d) If the projection result is not a straight line, it is not a vertical
projection.

[Hint] Analyze how the line perspective projection produces
distortion.
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8.3.2. In the restoration of orientation from flat surface texture changes, ( ).

(a) Suppose the surface texture itself has 3-D orientation information.
(b) Suppose the change of surface texture patterns carries 3-D orienta-

tion information.
(c) Assuming that the orientation change of the surface texture carries

3-D orientation information.
(d) Suppose that the size change of the surface texture carries 3-D

orientation information.

[Hint] The surface texture and surface have the same orientation.
8.3.3. Among the three methods of using texture element changes to determine

the surface orientation of an object, ( ).

(a) The changes of the three texture elements are independent and will
not occur in combination.

(b) If the direction of the texture gradient is determined, the change in
the size of the texture element can be used to determine the orienta-
tion of the texture element.

(c) If the lengths of the long axis and short axis of the texture element are
determined, the change in the shape of the texture element can be
used to determine the orientation of the texture element.

(d) If the equation connecting the two vanishing points is determined,
the change in the spatial relationship of the texels can be used to
determine the orientation of the texels.

[Hint] To determine the orientation of the texture element, two angles
d to be determined.nee

8.4. Detection of Texture Vanishing Points

8.4.1. Which of the following description(s) about vanishing points is/are
incorrect? ( ).

(a) The vanishing point is obtained by projecting the spatial point onto
the image plane.

(b) The vanishing point is the intersection point of parallel lines with the
same direction cosines after infinite extension.

(c) For any projection form, the vanishing point can be obtained by
projecting the texture element at infinity to the image plane.

(d) As long as the surface is covered by texture, the surface orientation
information can be restored by calculating the vanishing point.

[Hint] Analyze the principles and conditions of the vanishing point
formation.

8.4.2. In determining the vanishing point of the line segment texture according
to Fig. 8.17, ( ).
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(a) The reason that the detection of circles is more computationally
expensive than the detection of straight lines is that the number of
parameters of circles is more than those of straight lines.

(b) When xv → or yv → , the circle becomes a straight line.
(c) The transformation {x, y}) {k/λ, θ} will transform the line segment

to be detected back to the line segment in Fig. 8.17a.
(d) The transformation {x, y} ) {k/λ, θ} will project the set of straight

lines with the same vanishing point (xv, yv) in the image space to a
point in the parameter space.

[Hint] Analyze with reference to each space in Fig. 8.17.
8.4.3. Suppose that the texture is composed of regular texture element grids.

The grid texture has a vanishing point in the perspective projection
image. Suppose there are three known straight lines passing the
vanishing point as x = 0, y = 0, and y = 1 - x; let k = 1; then the
coordinates of the vanishing point are ( ).

(a) xv = √2, yv = √2.
(b) xv = √2/2, yv = √2.
(c) xv = √2, yv = √2/2.
(d) xv = √2/2, yv = √2/2.

[Hint] Calculate with the help of Hough transform.
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Chapter 9
Three-Dimensional Scenery Representation

After obtaining a 3-D image with various direct 3-D imaging methods or various
scene restoration and reconstruction methods, it is necessary to represent the 3-D
scenery in it.

Various representation methods for the 2-D regions segmented from the image
have been introduced in 2D Computer Vision: Principles, Algorithms and Applica-
tions. For the actual representation of 3-D sceneries, the 3-D representation method
can be studied on this basis. It should be pointed out here that the changes brought by
the development from the 2-D world to the 3-D world are not only quantitative but
also a qualitative leap (e.g., in 2-D space, the region is enclosed by lines or curves; in
3-D space, only lines or curves cannot enclose the volume); it puts forward new
requirements in theory and methods for the representation and processing of visual
information.

There are multiple 3-D structures in the objective world, and they may correspond
to different levels of abstraction. Different methods are often needed to represent
various 3-D structures at different levels.

The sections of this chapter are arranged as follows:

Section 9.1 first introduces some concepts that represent and describe the local
features of a surface, including surface normal section, surface principal normal
curvature, average curvature, and Gaussian curvature.

Section 9.2 discusses how to represent a 3-D surface. On the one hand, one can use
the parameter representation method of a curve or a curved surface. On the other
hand, one can also represent the 3-D surface by representing the orientation of the
surface.

Section 9.3 introduces two algorithms for constructing and representing iso-surfaces
in 3-D space: the marching cube algorithm and the wrapper algorithm.

Section 9.4 discusses how to start from the parallel contour of the 3-D object,
through interpolation, to represent the object surface with a set of mesh elements,
and to realize the technology of surface titling.
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Section introduces several methods to directly represent 3-D entities (including
surface and interior). In addition to some basic representation schemes, a gener-
alized cylinder representation method is introduced in detail.

9.5
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9.1 Local Features of the Surface

The surface of an object may be a flat surface or a curved surface, and a flat surface
can be regarded as a special case of a curved surface. The curved surface is an
important component that constitutes a 3-D (solid) entity, and it is also the first
observed part when observing the entity. In order to represent and describe curved
surfaces, it is necessary to study their local features. Differential geometry is an
important tool for studying the local features of curved surfaces. In the following
discussion, general curved surfaces are considered.

9.1.1 Surface Normal Section

In the following, the properties near a point P on the surface S are considered. It can
be proved that for the curve C passing through the point P and on the surface S, all its
tangent lines are on the same plane U, and the plane U is the tangent plane passing
through the point P on the surface S. The straight line N passing through the point
P and perpendicular to the surface S is called the normal line of the surface S at the
point P, as shown in Fig. 9.1. The direction of the normal vector at the point P can be

S

N

Ct

U

P
TC

Fig. 9.1 The normal N, tangent T, tangent surface U, and normal section line Ct of a point on the
surface
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taken as the local direction of the surface S at the point P. It can be seen that at each
point on the surface, there is only one normal, but there can be countless tangents.

Although there is only one normal at the point P through the surface S, there can
be an infinite number of planes containing the normal (and also a tangent); all these
planes can be obtained by rotating any plane containing the normal around the
normal. The intersection of these planes and the surface S constitutes a single-
parameter plane curve family, which can be called a normal section family.
Figure 9.1 also shows a normal section Ct (it is completely in surface S, but it can
be different from curve C) corresponding to the tangent of curve C.

In general, the normal section of the surface S is regular at the point P, and
sometimes it is an inflection point. The curvature of the normal section at the point
P is called the normal curvature of the surface S in the corresponding tangent
direction at the point P. If the normal section line is on the same side of the tangent
plane as the surface normal pointing to the inside, the normal curvature is said to be
positive; if they are separately on both sides, the normal curvature is said to be
negative. If the point P is the inflection point of the corresponding normal section,
then the normal curvature of the surface S in the corresponding tangent direction at
the point P is zero.

9.1.2 Surface Principal Curvature

Since there may be an infinite number of curves passing through the same point on
the surface, it is not possible to directly extend the curvature definition of the above
plane curve to the surface. However, for each surface, at least one direction with the
maximum curvature K1 can be determined on it, and a direction with the minimum
curvature K2 can also be determined (for a relatively flat surface, there may be
multiple directions of maximum curvature and minimum curvature, any of which
could be selected at this time). In other words, the normal curvature of the normal
section line at the point P on the surface will have a maximum value K1 in a certain
direction around the normal line, and a minimum value K2 in another certain
direction. Generally speaking, these two directions are called the principal direc-
tions of the surface S at the point P. It can be proved that they are orthogonal to each
other (unless the normal curvature takes the same value in all directions, which
corresponds to a plane). Figure 9.2 shows an example. T1 and T2 represent the two
principal directions.

Fig. 9.2 Principal curvature
direction

P

N

T1

T2
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According to the similarities and differences of the two principal curvature signs
in the neighborhood of the point P on the surface S, three different shapes of
the neighborhood can be judged. If the signs of the two principal curvatures are
the same, the surface of the neighborhood at point P is elliptical and does not cross
the tangent plane. When the sign of curvature is positive, point P is convex; when the
sign of curvature is negative, point P is concave. If the signs of the two principal
normal curvatures are opposite, then the surface of the neighborhood at point P is
hyperbolic, and the surface S is partially saddle-shaped and passes through the
tangent plane along the two curves. The corresponding normal section line has an
inflection point at point P. Their tangents are in the asymptotic direction of the
surface S at the point P, and these directions are separated by the principal direction.
Elliptical points and hyperbolic points form blocky regions on the surface. These
regions are generally separated by a curve composed of parabolic points. On these
curves, one of the two principal curvatures is zero. The corresponding principal
direction is also the asymptotic direction, and there is a sharp point along this
direction at the intersection of the surface and its tangent plane.

9.1.3 Mean Curvature and Gaussian Curvature

Combining the principal curvatures K1 and K2 introduced above can form the mean
curvature H and Gaussian curvature G:

H=
K1 þ K2

2
=

Tr Kð Þ
2

ð9:1Þ
G=K1K2 = det Kð Þ ð9:2Þ

The mean curvature determines whether the surface is locally convex (mean
curvature is negative) or concave (mean curvature is positive). If the surface is
locally elliptical, the Gaussian curvature is positive; if the surface is locally hyper-
bolic, the Gaussian curvature is negative.

Combining the sign analysis of Gaussian curvature and mean curvature, a
classification description of the surface can be obtained, which is often called a
topographical description; see Table 9.1. (These descriptions can also be used to
segment depth images, often called surface segmentation.)

In mathematical language, the gradient at the peak point is zero, and all secondary
directional derivatives are negative. The gradient at the pit point is also zero, but all

Table 9.1 Eight surface types determined by Gaussian curvature G and mean curvature H

Curvature H < 0 H = 0 H > 0

G < 0 Saddle ridge Minimal Saddle valley

G = 0 Ridge/ridge surface Plane Valley/valley surface

G > 0 Peak Pit
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Fig. 9.3 (a–h) Examples of eight surface types

the secondary directional derivatives are positive. Ridges can be divided into ridge
points and ridge lines. A ridge point is also a kind of peak point, but unlike an
isolated peak point, it only has a negative secondary directional derivative in a
certain direction. Adjacent ridge points are connected to form a ridge line. The
ridge line can be a flat straight line or a curved line (including non-flat straight lines).
The gradient along the flat ridge line is zero, and the secondary directional derivative
is also zero, while the secondary directional derivative in the direction intersecting
the ridge line is negative. There must be a negative second derivative along the
direction that intersects the curved ridge, and the first derivative in that direction
must be zero. A valley is also called a ditch. It is different from an isolated pit. It only
has a positive second derivative in certain directions (change the second derivative in
the description of the ridge line from negative to positive to obtain the right
description of valley line). The gradient at the saddle point is zero, and the extreme
values of its two quadratic directional derivatives (there are a local maximum in one
direction and a local minimum in the other direction perpendicular to it) must have
different signs. Saddle ridge and saddle valley, respectively, correspond to the
situations where the two extreme values take different signs.

Example 9.1 Eight Kinds of Surface Types Examples
From Table 9.1 it can be seen that there are eight different types of surfaces.
Figure 9.3 shows an example of each of these eight surface types.
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The relative arrangement positions of the example images in Fig. 9.3 are the same
as those in Table 9.1, where Fig. 9.3a corresponds to the saddle ridge, Fig. 9.3b
corresponds to the minimal direction, Fig. 9.3c corresponds to the saddle valley,
Fig. 9.3d corresponds to the ridge/ridge surface, Fig. 9.3e corresponds to the plane,
Fig. 9.3f corresponds to the valley/valley surface, Fig. 9.3g corresponds to the peak,
and Fig. 9.3h corresponds to the pit.

9.2 Three-Dimensional Surface Representation

When people observe a 3-D scene, the first thing they see is the outer surface of the
object. In general, the outer surface is composed of a set of curved surfaces. In order
to represent the outer surface of 3-D objects and describe their shape, the outer
contour line or outer contour surface of the object can be used. If the outer contour
line is given, the outer contour surface can also be obtained by interpolation or
“surface overlay” method. The surface model is mainly used here.

9.2.1 Parameter Representation

The parameter representation is a general analytical representation.

9.2.1.1 The Parameter Representation of the Curve

The outline of an object is an important clue to express the shape of an object. For
example, the commonly used wireframe representation method is an approximate
method for representing 3-D objects with a set of outer contour lines. The outline of
some objects can be obtained directly from the image. For example, when using the
structured light method to collect depth images, the 3-D coordinates of the points
where the light plane intersects the outer surface of the object can be obtained. If the
points on the same plane are connected with smooth curves and the series of curves
are displayed in sequence, the shape of the object surface can be represented. The
outline of some objects needs to be calculated from the image. For example, in order
to observe the inside of a biological specimen, the specimen is cut into a series of
slices, and an image is collected for each slice. Through the segmentation of each
image, the boundary of each specimen can be obtained, that is, the contour line of the
cross-section of the organism. Here, if one wants to restore the 3-D shape of the
original specimen, it is needed to align and combine these contour lines.

Example 9.2 Wireframe Representation Example
Figure 9.4 shows several examples of wireframe representations. This is the result of
the biomedical cells sliced into thin slices, first acquiring a 2-D image for each slice,
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Fig. 9.4 Example of wireframe representation method

then detecting the cell profile, obtaining the contour of each cell, and then aligning
and representing the result with a wireframe representation method. From these
wireframe representations, information about the shape and structure of 3-D cells
can be obtained.

The contour line of the object is generally a 3-D curve, which can often be
represented by a parametric spline, written in the form of a matrix (using t to indicate
the normalized length from a certain point along the curve) as

P tð Þ= x tð Þ y tð Þ z tð Þ½ �T 0≤ t≤ 1 ð9:3Þ

Any point on the curve is described by a function of three parameters t. The curve
starts at t= 0 and ends at t= 1. In order to represent a universal curve, make the first
and second derivatives of the parametric spline continuous, and the order of P(t) is at
least 3. The cubic polynomial curve can be written as

P tð Þ= at3 þ bt2 þ ct þ d ð9:4Þ

where

a= ax ay az
� �T ð9:5Þ

b= bx by bz
T ð9:6Þ

c= cx cy cz
T ð9:7Þ

d= dx dy dz
T ð9:8Þ

The cubic spline curve can be represented as

x tð Þ= axt
3 þ bxt

2 þ cxt þ dx ð9:9Þ
y tð Þ= ayt

3 þ byt
2 þ cyt þ dy ð9:10Þ
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z tð Þ= azt
3 þ bzt

2 þ czt þ dz ð9:11Þ

The cubic polynomial can represent the curve passing through a specific tangent
point, and it is also the lowest-order polynomial that represents a nonplanar curve.

In addition, a 3-D curve can be implicitly represented as a set of points (x, y, z)
satisfying the following equation:

f x, y, zð Þ= 0 ð9:12Þ

9.2.1.2 Parameter Representation of Curved Surface

The outer surface of the object is also an important clue to represent the shape of the
object. The outer surface of an object can be represented by a collection of patches,
and each patch can be represented as

P u, vð Þ= x u, vð Þ y u, vð Þ z u, vð Þ½ � T 0≤ u,v≤ 1 ð9:13Þ

If the first derivatives of P(u, v) in two directions are calculated, then Pu(u, v) and
Pv(u, v) can be obtained, both of which are on the tangent plane passing through the
surface point (x, y, z)= P(u, v); the normal vector N at this point can be calculated by
Pu(u, v) and Pv(u, v):

N Pð Þ= Pu ×Pv

Pu ×Pvk k ð9:14Þ

A 3-D surface can also be implicitly represented as a set of points (x, y, z)
satisfying the following equation:

f x, y, zð Þ= 0 ð9:15Þ

For example, a sphere of radius r with its center at (x0, y0, z0) can be represented
as

f x, y, zð Þ= x- x0ð Þ2 þ y- y0ð Þ2 þ z- z0ð Þ2 = 0 ð9:16Þ

The explicit representation of a 3-D surface is

z= f x, yð Þ ð9:17Þ

Surface elements can be represented by bivariate polynomials of different orders.
The simplest bilinear patch (any section parallel to the coordinate axis is a straight
line) can be represented as
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z= a0 þ a1xþ a2y ð9:18Þ

The curved surface can be represented by high-order polynomials, for example,
biquadratic patch

z= a0 þ a1xþ a2yþ a3xyþ a4x
2 þ a5y

2 ð9:19Þ

and bi-cubic patch

z= a0 þ a1xþ a2yþ a3xyþ a4x
2 þ a5y

2 þ a6x
3 þ a7x

2yþ a8xy
2 þ a9y

3 ð9:20Þ

In addition, the representation of the surface can also be converted into the
representation of the curve with the help of the concept of surface element. If each
surface element is surrounded and bounded by four curves, then the entire surface
can be represented by determining the four curves of each surface element.

9.2.2 Surface Orientation Representation

The appearance and shape of the object can be outlined by representing the orien-
tation of each surface of the 3-D object, and the surface normal can be used to
represent the orientation of the surface.

9.2.2.1 Extended Gaussian Image

The extended Gaussian image is a model for representing 3-D objects. Its two
characteristics are approximation and abstraction. The extended Gaussian image of
an object gives the distribution of the normal of the object surface, and thus the
direction of each point on the surface. If the object is a convex multi-cone, then the
object and its extended Gaussian image have one-to-one correspondence, but one
extended Gaussian image may correspond to an infinite number of concave objects.

In order to calculate the extended Gaussian image, the concept of Gaussian
sphere can be used. The Gaussian sphere is a unit sphere. Given a point on the
3-D object surface as shown in Fig. 9.5a, the point corresponding to the point on the
sphere with the same surface normal can be used to obtain the Gaussian sphere, as
shown in Fig. 9.5b. In other words, put the end of the orientation vector of the object
surface point at the center of the sphere, and the top of the vector intersects the sphere
at a specific point. This intersection point can be used to mark the orientation of the
original object surface point. The position of the intersection point on the sphere can
be represented by two variables (with two degrees of freedom), such as polar angle
and azimuth angle or longitude and latitude. If all points on the Gaussian sphere are
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Fig. 9.5 Gaussian sphere and extended Gaussian image

placed with a mass equal in value to the corresponding surface area, an extended
Gaussian image can be obtained, as shown in Fig. 9.5c.

Consider the case where the object is a convex polyhedron and all its surfaces are
flat. The convex polyhedron can be completely determined by the area and orienta-
tion of its various surfaces. The direction of each surface plane (the direction of the
normal vector) can be used to obtain the Gaussian sphere of the convex polyhedron.
Because points on different surfaces of the convex polyhedron will not have the
same surface normal vector, each point on the Gaussian sphere corresponds to a
specific surface orientation. The expanded Gaussian image obtained in this way has
the following characteristics: the total mass on the expanded Gaussian image is
numerically equal to the sum of the area of the polyhedron surface regions; if the
polyhedron is closed, the same region can be projected from any opposite direction.

The above method can be extended to smooth curved surfaces. Define the limit of
the ratio of the region δS on the Gaussian sphere to the corresponding region δO on
the object when δO tending to zero is the Gaussian curvature G, namely,

G= lim
δO→ 0

δS
δO =

dS
dO

ð9:21Þ

If the integration for a region O on the object is made, it will get the integral
curvature:

ZZ

O

GdO=
ZZ

S

dS= S ð9:22Þ

where S is the corresponding region on the Gaussian sphere. Equation (9.22) allows
the treatment of surfaces with discontinuous normal lines.

If the integration for the above region S on the Gaussian sphere is made, it gives
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ZZ

S

1
G
dS=

ZZ

O

dO=O ð9:23Þ

where O is the corresponding region on the object.
Equation (9.23) shows that the extended Gaussian image can be defined by the

reciprocal of Gaussian curvature, specifically mapping the reciprocal of Gaussian
curvature at a point on the object surface to the corresponding point on the unit ball.
If u and v are used to denote the coefficients of the object surface points, and p and
q are used to denote the coefficients of the points on the Gaussian sphere, the
extended Gaussian image is defined as

Ge p, qð Þ= 1
G u, vð Þ ð9:24Þ

The above mapping is unique for convex objects. If the object is not convex, the
following three situations may occur:

1. The Gaussian curvature of some points will become negative.
2. Multiple points on the object will contribute to the same point on the ball.
3. Some parts of the object will be obscured by other parts.

Example 9.3 Calculation Example of Extended Gaussian Image
Given a sphere with a radius of R, its extended Gaussian image Ge( p, q) = R2; if the
region δO is observed from the center of the sphere, then the observed solid angle is
w = δO/R2; and the area of the region on the Gaussian sphere is δS = w.

9.2.2.2 Spherical Projection and Stereographic Projection

The surface orientation of the object has two degrees of freedom. To specify the
orientation of the surface element, either gradient or unit normal can be used, where
the direction pointed by the surface normal can be represented by the above
Gaussian sphere. The Gaussian sphere itself has a curved outer surface. Generally,
it can be projected onto a plane to obtain a gradient space, as shown in Fig. 9.6a.

Consider an axis that passes through the sphere and is parallel to the Z axis. The
center of the sphere can be used as the center of projection to project a point on the
Northern Hemisphere onto a plane tangent to the North Pole. This is called spherical
projection. It can be proved that the position of the point with gradient ( p, q) on this
plane is equal to (-p, -q). One disadvantage of using this plane to define the
gradient space is that in order to avoid confusion, only a hemisphere can be projected
onto this plane.

In many cases, the only concern is the surface visible to the observer, which
corresponds to a point on the Northern Hemisphere. But there are other situations.
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Fig. 9.6 Spherical projection (a) and stereographic projection (b)

For example, for a backlit scene, the direction to the light source needs to be
represented by a point in the Southern Hemisphere. This encounters a difficulty in
the gradient space, which is that the point on the equator corresponding to the surface
of the Gaussian sphere will be projected to infinity in the gradient space.

One way to avoid such difficulties is to use stereographic projection. The
destination of the projection here is still a plane tangent to the North Pole, but the
center of the projection is the South Pole, as shown in Fig. 9.6b. In this way, except
for the South Pole, all points on the sphere can be uniquely mapped to the plane. The
projection of the equator will be a circle with a radius equal to the diameter of the
sphere. If the coordinates in the stereographic projection are s and t, it can be proved:

s=
2p

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2 þ q2

p t=
2q

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2 þ q2

p ð9:25Þ

In turn:

p=
4s

4- s2 - t2
q=

4t
4- s2 - t2

ð9:26Þ

Another advantage of the stereographic projection is that it is a conformal
projection on the Gaussian sphere, that is, the angles on the spherical surface are
the same angles after being projected to the plane. One disadvantage of stereographic
projection is that some equations are more complicated than in spherical projection.

9.3 Construction and Representation of Iso-surfaces

The basic unit in a 3-D image is a voxel. If the contour voxels of a 3-D object all have
a certain gray value, then these voxel points will form an equivalent surface
(iso-surface), which is the interface of this object with other objects or background.
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The following introduce two related algorithms for the construction and representa-
tion of equivalent surfaces:

9.3.1 Marching Cube Algorithm

Consider a cube with eight voxels forming vertices (see Fig. 9.7a) where black
voxels represent the foreground and white voxels represent the background. The
cube has six adjacent cubes (up, down, left, right, front, back). If all the eight voxels
of the cube belong to the foreground or all belong to the background, then the cube is
an internal cube. If some of the eight voxels of the cube belong to the foreground and
some belong to the background, then the cube is a bounding cube. The equivalent
surface should be in the bounding cube (passing through the bounding cube). For
example, for the cube in Fig. 9.7a, the equivalent surface can be the shaded rectangle
in Fig. 9.7b.

The marching cube (MC) algorithm is a basic method to determine the equiv-
alent surface. The algorithm needs to check each cube in the image first and
determine the bounding cube that intersects the object surface and at the same
time determine their intersection. According to the intersection of the object surface
and the cube, the part of the object surface inside the cube is generally a curved
surface, but it can be approximated by a patch. Each such patch is easily
decomposed into a series of triangles, and the triangles obtained in this way can
easily further compose the triangular network of the object surface.

The algorithm checks each voxel one by one, traveling from one cube to another
adjacent cube. In theory, each vertex voxel of the cube may be black voxel or white
voxel, so for each cube, there may be 28 = 256 different black and white voxel
layouts/configurations. However, if considering the symmetry of the cube, there are
only 22 different black and white voxel layouts. Among the 22 different layouts,
8 are the inversions of other layouts (black voxels are converted to white voxels or
white voxels are converted to black voxels). In this way, only 14 different black and
white voxel layouts are left, and there are only 14 different object surface patches, as
shown in Fig. 9.8 (the first image represents the case where the object surface does
not intersect the cube).

Fig. 9.7 A cube with eight
voxels (a) forming vertices
intersects with the object
surface (b)

(a) (b)
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Fig. 9.8 Marching cube layout

These conditions can be listed in a look-up table, and whenever a cube is checked,
only the look-up table needs to be searched to determine the corresponding surface
patch. The algorithm proceeds as follows: Starting from the upper left corner, scan
the entire first layer of the 3-D image, and then start the entire scan from the upper
left corner of the second layer after reaching the lower right corner, and proceed to
the lower right corner of the last layer of image in turn. Every time a foreground
voxel is scanned, check the cube of eight voxels that the voxel belongs to. As long as
the object surface intersects the cube, it is one of the last 14 layout situations in
Fig. 9.8. One can use the above look-up table to find each corresponding surface
patch and further decompose it into a series of triangles. In practical applications, all
256 layout situations are often listed in the look-up table to avoid time-consuming
verification of symmetry and reversibility.

Although the distributions of the above-mentioned various black and white
voxels are different and easy to distinguish, in some cases, the part of the object
surface intersecting the cube within the cube cannot be obtained from the distribu-
tion of black and white voxels only. In fact, among the last 14 layouts in Fig. 9.8, the
six layouts of 3rd, 6th, 7th, 10th, 12th, and 13th (most of their diagonal vertices are
voxels of the same color) correspond to more than one surface distribution; in other
words, there is ambiguity to determine a certain plane. Figure 9.9 shows a pair of
typical examples, they correspond to the same layout (the tenth layout), but there are
two possible object surface distributions.

One way to solve the above-mentioned ambiguity problem is to expand the
layouts by adding complementary layouts to those with ambiguity in the basic
layouts. Figure 9.9a, b can be regarded as complementary layouts. The other five
complementary layouts that extend the ambiguous layout can be seen in Fig. 9.10
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Fig. 9.9 (a, b) An example
of an ambiguous marching
cube layout

(a) (b)

Fig. 9.10 Five complementary layouts added to ambiguous layouts

+ =

Fig. 9.11 The object surface is not closed from the marching cube

(the polygons in the first three figures have been triangulated). In practice, a sub-
look-up table can be established for each of them. Each sub-look-up table contains
two triangulation methods. In addition, a table must be stored to record the compat-
ibility of these triangulation methods.

In addition, there are two other methods that correspond to the topology flow
pattern. One is called the surface average values, which calculate the average value
of four vertices on the ambiguity surface and compare the average value with a
predetermined threshold, to select a possible topology flow pattern. The other is
called the gradient consistency heuristics, which estimate the gradient of the center
point of the ambiguity surface from the average of the gradients of the four corner
points of the ambiguity surface and determine the topology flow pattern of ambiguity
surface according to the direction of the gradient.

In addition to the above ambiguity problem, the marching cube algorithm only
checks each cube separately and does not consider the topology of the overall object,
so even if an ambiguous layout is not adopted, it cannot guarantee that a closed
object surface will always be obtained. An example of using the marching cube
method but not getting a closed object surface is shown in Fig. 9.11. The two initial
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(a) (b)
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Fig. 9.12 (a, b) The combination of two kinds of triangular surface elements

layouts in the figure both get the correct decomposition without ambiguity, but
combining them does not provide a closed object surface.

Example 9.4 Different Combinations of Triangular Surface Elements
There are two ways to use two triangles to connect the four vertices and form the
surface part of the object. The resulting surface area and surface orientation are not
the same. For example, in Fig. 9.12, for the same four vertices on a square (the
number indicates the height of the point relative to the reference plane), Fig. 9.12a, b,
respectively, gives two kinds of way. The surface area obtained according to
Fig. 9.12a is 13.66, and the surface area obtained according to Fig. 9.12b is 14.14.
There is a difference of about 3.5% between the two areas.

9.3.2 Wrapper Algorithm

The wrapper algorithm is also called the marching tetrahedral (MT) algorithm,
which can solve the unclosed problem of the marching cube method described
above, thereby ensuring a closed and complete triangular representation of the object
surface. However, the disadvantage of this method is that it will normally generate
up to three times the actual number of triangles required, so a post-processing step is
required to simplify the polygon mesh, thereby reducing the number of triangles to
an acceptable level.

In this algorithm, the cube with eight voxels (vertices) as shown in Fig. 9.7a is
also considered each time. The first step of the algorithm is to decompose the voxel
grid into a set of cubes. Each cube has six adjacent cubes (up, down, left, right, front,
back). The second step of the algorithm decomposes each cube into five tetrahe-
drons, as shown in Fig. 9.13. The four tetrahedrons on the left have two sets of edges
of the same length (three for each), and the fifth tetrahedron (the rightmost one in
Fig. 9.13) has four faces of the same size. The voxels that belong to the tetrahedron
can be regarded as inside the object, and the voxels that do not belong to the
tetrahedron can be regarded as outside the object.

There are two solutions to the tetrahedron decomposition of the cube, as shown in
Fig. 9.14. Among them, the two schemes shown in Fig. 9.14a, b can be called odd
scheme and even scheme, respectively. The decomposition of the voxel grid is
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Fig. 9.13 Each cube is decomposed into five tetrahedrons

Fig. 9.14 (a, b) Two
solutions to decompose the
cube into tetrahedrons

(a) Odd scheme (b) Even scheme

carried out in odd phase and even phase, just like a chess board, alternating black and
white. This ensures that the tetrahedrons in adjacent cubes can match each other, so
as to finally get a consistent surface.

The third step of the algorithm is to determine whether the object surface
intersects the tetrahedron. Note that each tetrahedron contains four voxels. If all
four voxels of a tetrahedron are inside the object or none of the voxels are inside the
object, then it can be said that the object surface does not intersect with the
tetrahedron and can be ignored in subsequent processing.

The next step of the algorithm is to estimate the boundary between the object
surface and each (polygon) face of the tetrahedron that intersects the object surface.
The vertices at both ends of each pair of boundary lines can be linearly interpolated,
and the intersection points on the edges connecting each pair of vertices can be
obtained by approximation. If all four vertices are used for bilinear interpolation, it is
possible to get better results. For six adjacent voxels, bilinear interpolation is
equivalent to linear interpolation. For diagonal edges, set the gray values of the
four vertices as a, b, c, and d; then the interpolation result is

I uð Þ= a- b- cþ dð Þu2 þ - 2aþ bþ cð Þuþ a ð9:27Þ

where the parameter u changes from 0 to 1 along the diagonal. By calculating a u0
value and making I(u0) = 0, the intersection point can be calculated.

According to the intersection point, the vertices after surface titling (splicing) can
be determined, as shown in Fig. 9.15. The orientation of the tiling surface is
indicated by arrows. Orientation can help distinguish the inside and outside of
each tiling surface. By convention, when viewed from the outside, the orientation
is counterclockwise. In order to stabilize the topology of the object, the above
conventions must be adopted in the entire surface mesh.
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One black vertex Two black vertices Three black vertices

Fig. 9.15 Three situations where the surface intersects

9.4 Interpolating Three-Dimensional Surfaces from
Parallel Contours

For 3-D object surfaces, a common boundary representation method is to use
polygon meshes. Here the polygon is composed of vertices, edges, and surfaces,
and each mesh can be regarded as a surface element. Given a set of three-
dimensional data, the process of obtaining the above-mentioned polygon mesh and
representing the object surface with a set of surface elements is often called surface
tiling. The two methods in the previous section are general methods for surface tiling
of arbitrary 3-D grids. This section considers a special case.

9.4.1 Contour Interpolation and Tiling

In many 3-D imaging methods (such as CT, MRI, etc.), 2-D images are obtained
layer by layer and then added together to obtain 3-D images. If the contour of the
object is detected from each 2-D image, the 3-D object surface can be reconstructed
based on the series of parallel contour lines. A common method here is to use
(triangular) surface elements to interpolate between contours. In practice, contour
lines are often given in the form of polygons to save the amount of representation
data. The problem to be solved at this time can be described as using a series of
triangular planes to form the surface between two adjacent polygons. If a triangle has
a vertex on one polygon, the remaining two vertices must be on another polygon, and
vice versa. There are two main steps here. The first step is how to determine an initial
pair of vertices from two adjacent polygons, and the connection of these two vertices
forms an edge of the triangle. The second step is how to select the next adjacent
vertex based on a known vertex pair to form a complete triangle. By repeating the
second step continuously, the work of constructing triangles can be continued to
form a closed contour (often called a wireframe). This process can also be called
contour tiling.

Look at the first step intuitively; the corresponding initial vertices on two adjacent
polygons should have a certain similarity on their respective polygons, that is, they
have similar features on their respective polygons. The features that can be
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Fig. 9.16 Selection from
the contour line to the vertex
in the contour surface
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considered here include the geometric position of the vertices, the direction of the
edges connecting adjacent vertices, the angle between two adjacent edges, the
direction from the center of gravity to the edge point, etc. When the distance from
the center of gravity of the polygon to the edge point is relatively large, the direction
from the center of gravity to the edge point will be a relatively stable feature. As
shown in Fig. 9.16, if the vector from the edge point Pi to the center of gravity of the
polygon in one polygon is Ui, and the vector from the edge point Qj to the center of
gravity of the polygon in another polygon is Vj, then the initial pair of vertices can be
determined according to the principle of maximizing the inner product of the vectors
Ui and Vj. The maximum inner product here represents the situation where the two
vectors are as parallel as possible and the distance between the edge point and the
center of gravity is as large as possible. If the two polygons are similar, then select
the furthest vertex pair.

Look at the second step now. After selecting the first pair of vertices, it needs to
select another vertex to form the first triangle. There are many selection criteria, such
as the area of the triangle, the distance from the next pair of vertices, the orientation
of the line with the center of gravity, and so on. If it is based on the distance from the
next pair of vertices, the vertex pair with the shortest distance can be selected. But
sometimes just using this criterion is not enough, especially when the horizontal
positions of the vertices are different.

Figure 9.17 is used to introduce a vertex selection method used in the second step,
which is obtained by projecting the contour line of Fig. 9.16 to the XY plane.
Suppose the current vertex pair is Pi and Qj. The X axis coordinate of Pi is smaller
than the X axis coordinate of Qj. In this case, Piþ1Qj may be shorter than PiQjþ1 .
However, because the direction of PiPiþ1 is quite different from the direction of
Qj- 1Qj, from the perspective of surface continuity, people still tend to choose Qj + 1
as the vertex of the next triangle. Specifically, in this case, the difference in direction
should also be taken into consideration. Suppose the direction difference between
PiPiþ1 and Qj- 1Qj is Ai, and the direction difference between Pi- 1Pi and QjQjþ1 is



302 9 Three-Dimensional Scenery Representation

Pi

Qj

Q Qj

P
+1

P

Ai jB

1 i

j 1 +1

i

Fig. 9.17 The result of projecting the contour line of Fig. 9.16 to the XY plane

Fig. 9.18 Three problems
encountered when building
a 3-D surface from a plane
profile

Corresponding

Branching

Tiling

Bj, then the rule for selecting the next vertex when Piþ1Qj <PiQjþ1 is as follows
(T represents a predetermined threshold):

1. If cosAi> T, it indicates that Ai is smaller, PiPiþ1 andQj- 1Qj closer to parallel, so
at this time the next vertex should be Pi+1.

2. If cosAi ≤ T, and cosBi > T, it means that Bj is smaller, Pi- 1Pi and QjQjþ1 closer
to parallel, so the next vertex should be Qj+1 at this time.

3. If the above two conditions are not met, that is, cosAi ≤ T and cosBi ≤ T, the
distance factor is still considered, and Pi+1 is selected.

9.4.2 Problems That May Be Encountered

The above method of interpolating the contour to obtain the surface can be regarded
as extracting a grid of surface tiling from the plane contour represented by the vector.
This task is much more difficult than extracting a surface grid from a raster image
with a voxel data structure. There are several problems in creating a 3-D surface from
a plane profile, which can be explained with the help of Fig. 9.18.

9.4.2.1 Corresponding Problems

Correspondence includes two levels of problems. If there is only one contour in
each plane, then the corresponding problem only involves determining the relation-
ship between the corresponding points in the contours of the adjacent planes. When
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the distance between the planes is relatively small, the shape difference between the
contours will be relatively small, and it is easier to find the match between the
contour points. However, if the distance between the planes is relatively large and
the contour shape is relatively complex, it is difficult to determine the correspon-
dence. If there is more than one contour in the two adjacent planes, the problem will
be more complicated. First, it is to determine the relationship of the corresponding
contours in different planes. This not only needs to consider the local characteristics
of the contour but also the global characteristics of the contour. Due to insufficient
constraints, there is currently no very reliable fully automatic method to solve the
corresponding problem, and manual intervention is still required in some situations.

9.4.2.2 Tiling Problem

Tiling is to use the triangular meshes to create a surface between two corresponding
contours of adjacent planes. The basic idea is to generate a set of optimized
triangular patches according to a certain criterion to approximate the object surface.
The criteria here can vary according to different requirements, such as requiring the
smallest surface area, the largest total volume, the shortest connection between
contour points, and the most parallel connection between contour points and the
center of gravity of the contour. Although there can be many criteria, the central
problem is an optimization problem. In addition, in a general sense, tiling can also be
used to fit the surface between the corresponding contours with curved surfaces (the
above method of using triangular planes is a special case). At this time, the
representation of parametric curved surfaces is often used to obtain higher-order
continuity.

9.4.2.3 Branching Problem

The problem of branching (bifurcation) occurs when a contour is divided into two
or more contours from one plane to an adjacent plane. In general, the contour
corresponding relationship when the branching occurs cannot be determined only
by the local information at the branching. It is often necessary to use the overall
geometric information and topological relationship of the contour. A common way
to solve this problem is to use the following Delaunay triangulation method to
generate the triangle meshes from a given set of input vertices.
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9.4.3 Delaunay Triangulation and Neighborhood Voronoï
Diagram

In 1934, the Russian mathematician Delaunay pointed out: For a point set composed
of N points on a plane domain, there is one and only one type of triangulation,
namely, Delaunay triangulation, so that the sum of smallest interior angles of all
triangles is the largest. Delaunay triangulation can make each triangle obtained as
close to an equilateral triangle as possible, but this definition is not complete.

According to the definition of Delaunay triangulation, it can be derived that
Delaunay triangulation meets the following two criteria (they are the basis for
constructing the triangulation algorithm):

1. Common circle criterion: That is, the circumcircle of any triangle will not
contain any other data points. This criterion is often referred to as the property
of an empty disc.

2. Maximum and minimum angle criterion: For a quadrilateral formed by any
two adjacent triangles, Delaunay triangulation requires that all the minimum
value of the six internal angles of the two triangles divided by a diagonal of the
quadrilateral will be greater than the minimum value of all the six internal angles
of the two triangles divided by the other diagonal of the quadrilateral. This
criterion enables Delaunay triangulation to avoid producing narrow and
ill-conditioned triangles with sharp internal angles as much as possible.

The Voronoï diagram and Delaunay’s triangle are duals. The Voronoï neighbor-
hood of a pixel provides an intuitive approximate definition of the pixel. The
Voronoï neighborhood of a given pixel corresponds to the closest Euclidean plane
region to the pixel, which is a set of finite independent points P = {p1, p2, . . ., pn},
where n ≥ 2.

Let’s first define the ordinary Voronoï diagram.
Utilize Euclidean distance:

d p, qð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
px - qxð Þ2 þ py - qy

� �2q
ð9:28Þ

The Voronoï neighborhood of point pi can be defined as

V pið Þ= p 2 ℝ2j8i≠ j : d p, pið Þ≤ d pð , pjÞ
� ð9:29Þ

It contains the boundary BV(pi) of the neighborhood, which contains equidistant
points satisfying the following formula:

BV pið Þ= p 2 ℝ2j∃i≠ j : d p, pið Þ= d pð , pjÞ
� ð9:30Þ

The set of Voronoï neighborhoods for all points is
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Fig. 9.19 The vertical
dichotomy method to
construct the Voronoï
diagram
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Fig. 9.20 The duality (c) of the Voronoï diagram (a) and Delaunay triangle (b)

W Pð Þ= V p1ð Þ, ⋯, V pnð Þf g ð9:31Þ

This can be called the ordinary Voronoï diagram of the point set P, or Voronoï
diagram for short. The edges in the Voronoï diagram represent the line segments of
the boundary BV( pi). The vertices in the Voronoï diagram are the points where the
line segments intersect.

The vertices of the Delaunay diagram are all points in P. If and only if V( pi) and
V( pj) are adjacent in the Voronoï diagram, the two points pi and pj form an edge in
the Delaunay diagram.

When constructing the Voronoï diagram, it can start with the simplest case, that
is, from only two different plane points p1 and p2, as shown in Fig. 9.19a. Equation
(9.29) shows that the Voronoï neighborhood V( p1) of p1 includes all points that are
either closer to p1 than p2, or points that are equidistant from these two points. It can
be seen from Fig. 9.19a that all the points equidistant from the two points p1 and p2
are exactly on the vertical dichotomy (bisecting) b12 of the line segment from p1 to
p2. According to Eq. (9.30) and the definition of the vertical dichotomy, the contour
BV(p1) of the Voronoï neighborhood of p1 is b12. All points on the half-plane
containing p1 defined by b12 are closer to p1 than p2, and they will form the Voronoï
neighborhood V( p1) of p1.

If the third point p3 is added to the construction of the Voronoï diagram, a triangle
Δ123 can be constructed, as shown in Fig. 9.19b. Using the vertical dichotomy
method for each side of the triangle again, a Voronoï diagram with n = 3 can be
constructed.

Figure 9.20 gives an example of the duality of the Voronoï diagram and
Delaunay triangle. Figure 9.20a is the Voronoï diagram of several plane points,
Fig. 9.20b is its duality, namely, Delaunay triangle, and Fig. 9.20c shows the
relationship between them.
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According to Eqs. (9.28)–(9.31) used for the Voronoï diagram, it can be further
extended to the region Voronoï diagram.

The region Voronoï diagram of an image unit ij is defined as

Va ij
� �

= p 2 ℝ2j8j≠ k : da p, ij
� �

≤ da pð , ikÞ
� ð9:32Þ

where the distance between image unit ij and point p is

da p, ij
� �

= min
q2ij

d p, qð Þ ð9:33Þ

The above equation gives the minimum Euclidean distance between the point
p and any point q in the image unit ij. The Voronoï neighborhood of an image unit is
a point set, and the distance from this point set to ij is less than or equal to the
distance from any other image unit to ij. Similar to the Voronoï diagram, the
boundary BVa ij of the region Voronoï diagram is given by

BVa ij
� �

= p 2 ℝ2j∃j≠ k : da p, ij
� �

= da pð , ikÞ
� ð9:34Þ

The boundary contains points that are equidistant from two or more image units
(they are not closer to one of the image units). In the Voronoï diagram, the common
boundary of two adjacent Voronoï neighborhoods is always a line or line segment,
while in the region Voronoï diagram, the boundary is always a curve or curve
segment.

The region Voronoï diagram Wa of an image is the collection of the region
Voronoï diagram of all image units, namely,

Wa Pð Þ= Va i1ð Þ, ⋯, V a inð Þf g ð9:35Þ

9.5 Three-Dimensional Entity Representation

For most objects in the real world, although they can only be seen on their surface,
they are actually 3-D entities. These entities can be represented in a variety of ways
according to specific applications. The volumetric model is mainly used here.

9.5.1 Basic Representation Scheme

There are many schemes for 3-D entity representation. The following is a brief
introduction to the most basic and commonly used representation schemes.
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9.5.1.1 Spatial Occupancy Array

Similar to the 2-D spatial occupancy array for the 2-D region, the 3-D spatial
occupancy array can also be used to represent the 3-D object. Specifically, for
any point (x, y, z) in the image f(x, y, z), if it is within a given entity, f(x, y, z) is taken
as 1; otherwise it is 0. In this way, the set of points where f(x, y, z) is 1 represents the
object to be represented. An example can be seen in Fig. 9.21, Fig. 9.21a is a
schematic diagram of a 3-D stereoscopic region image, Fig. 9.21b is a schematic
diagram of the corresponding 3-D spatial occupancy array, and the image voxel and
the array element are one-to-one correspondence.

Because the size of the 3-D array here is the cube of the image resolution, the
spatial occupancy array method is effective and practical only when the image
resolution is low (and the shape of the object is irregular); otherwise the amount of
data is too large. One of the advantages of representing objects with 3-D arrays is
that it is easy to obtain various slices through the object, so as to display the
information inside the object.

9.5.1.2 Cell Decomposition

Cell decomposition refers to a method of decomposing objects step by step until
they are decomposed into cells that can be represented uniformly. The aforemen-
tioned spatial occupancy array representation can be regarded as a special case of
unit decomposition, and the unit is a voxel. In general unit decomposition, the units
can also havemore complex shapes, but they still have the property of quasi-disjoint;
in other words, different units do not share the volume. The only combination
operation for the 3-D solid elements after decomposition is glue.

The octree method is a commonly used unit decomposition method, and its
structure is shown in Fig. 9.22. The left side shows the octree decomposition
diagram, and the right side shows the octree representation diagram.

The octree is a direct extension of the quadtree in 2-D images (see 2D Computer
Vision: Principles, Algorithms and Applications) in 3-D images, and it can be
generated by recursive volume decomposition. The octree representation method
converts the position of an object in a 3-D image into a position in a hierarchical
structure tree. Similar to the analysis of the quadtree, it can be seen that for an octree

Fig. 9.21 (a, b)
Representing 3-D objects by
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Fig. 9.22 Octree structure

Fig. 9.23 Surface decomposition example

with n levels, the total number of nodes N is at most (for practical applications,
generally less than this number)

N=
Xn
k= 0

8k =
8nþ1 - 1

7
≈ 8

7
8n ð9:36Þ

The basic principle of unit decomposition is applicable to various forms of
primitives. A typical example is surface decomposition, where the appearance of a
3-D structure is regarded as the combination of its various visible surfaces. Surface
decomposition uses graphs to represent the surface of an object with nodes
representing each surface, edges (intersections of surfaces) and vertices (intersec-
tions of edges), and a set of pointers that indicate the connection of these basic units.
Figure 9.23 shows an example of the decomposition of a triangular pyramid. The
three types of units are represented by three symbols (as shown on the left), and the
pointers are represented by lines on the right.

The result of surface decomposition is the collection of all (basic) surfaces, and
these surfaces can also be represented by a region adjacency graph (RAG). The
region adjacency graph only considers the surface and its adjacency relationship
(it implies the vertex and edge units), so it is simpler than the representation in
Fig. 9.23.
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9.5.1.3 Geometric Model Method

The geometric model method is often used in systems based on computer-aided
design (CAD) models. It is also called the rigid body model method because it is
used to represent rigid bodies (the representation of nonrigid bodies is still a
challenging problem, and there is no unified method). The rigid body model system
can be divided into two categories. In the boundary representation system, the rigid
body is represented by the union of its various boundary surfaces. In the construc-
tive solid geometry representation system, the rigid body is represented as a
combination of other simple rigid bodies through a set of collective operations.
The lowest level (simplest) is the primitive body, which can generally be represented
by the analytical function F(x, y, z), and is limited to the inside of the intersection of
the closed half-space defined by F(x, y, z) ≥ 0.

Example 9.5 Example of Boundary Representation and Constructive
Representation
Figure 9.24a shows an object composed of two geometric bodies, Fig. 9.24b shows
an example of the boundary representation of this object (ten boundary surfaces are
used), and Fig. 9.24c gives an example of the constructive representation of this
object (three simple rigid bodies are used).

9.5.2 Generalized Cylinder Representation

Many actual 3-D objects can be formed by moving a 2-D set along a 3-D curve
(similar to build a series of flat plates). In a more general case, this set can also have
parameter changes in motion. The rigid body representation method based on this
mode is usually called the generalized cylinder method, and it is also called the
generalized cone method. This is because the primitive body in this method is often a
cylinder or cone of any size; of course, it can also be a cuboid or sphere of any size
(a variation of a cylinder or a cone).

The generalized cylinder method usually uses a combination of a (generalized)
cylinder with a certain axis (called through-axis) and a certain cross-section to

(a) (b) (c)

Fig. 9.24 (a–c) Example of boundary representation and constructive representation
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Fig. 9.25 (a, b) Example of the generalized cylinder method

represent a 3-D object. In other words, it has two basic units: a through-axis and a
cross-section with a certain shape that moves along the through-axis; a schematic
diagram is shown in Fig. 9.25a. Combining multiple such primitives can represent
the different details of an object from high to low, level by level. Figure 9.25b gives
an example of this representation (where each cylinder is represented by a rectangle
in 2-D).

If the primitive is treated as a variable, that is, the through-axis and the moving
cross-section are changed, a series of generalized cylinder variants can also be
obtained. In fact, the through-axis can be divided into the following two categories:

1. The through-axis is a straight-line segment.
2. The through-axis is a curve (it can also be closed).

There are many types or forms of changes in the moving cross-section, mainly in
the following three categories:

1. The boundary of the cross-section can be a straight line or a curve.
2. The cross-section can be rotationally and reflectively symmetrical or asymmetri-

cal, or only rotationally or reflectively symmetrical.
3. The shape of the cross-section can be changed or unchanged when it moves. The

size of the cross-section can also become larger, smaller, larger first and then
smaller, smaller first and then larger, etc., when it moves.

Figure 9.26 shows some change cases. Combining these variants as volumetric
primitives can represent even complex 3-D objects. Theoretically, there are infi-
nitely many pairs of through-axes and cross-sections that can represent all kinds of
3-D object.

Projecting a basic 3-D generalized cylinder into a 2-D image will mainly produce
two different results, namely, strips and ellipses. The strip is the result of projection
along the length of the cylinder, and the ellipse is the result of the projection of the
cross-section of the cylinder. If one considers various generalized cylinder variants,
it is possible to produce any desired result.
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Fig. 9.26 Variations of generalized cylinder

9.6 Key Points and References for Each Section

The following combine the main contents of each section to introduce some refer-
ences that can be further consulted:

1. Local Features of the Surface
The calculation and representation of local features of curved surfaces mainly

involve differential geometry, as can be found in references [1, 2]. For the mean
curvature and Gaussian curvature of the surface, please refer to reference [3].

2. 3-D Surface Representation
For the Gaussian map method of representing the surface orientation, please

refer to reference [4]. More discussion on the Gaussian sphere can be found in
reference [2]. The content of the 3-D edge representation model can also be found
in the reference [5]. For the extended Gaussian image, several situations when the
object is a non-convex body can be found in reference [6].

3. Construction and Representation of Iso-surfaces
The marching cube algorithm can perform fast calculations with the help of a

look-up table; the wrapping algorithm has a large amount of calculation, but it can
overcome the ambiguity problem of the marching cube algorithm [3]. To solve
the corresponding problems, tiling problems, and branching problems of these
algorithms, please refer to reference [7].

4. Interpolate 3-D Surfaces from Parallel Contours
The surface interpolation stitching of two adjacent parallel contours needs to

solve the corresponding problem between contours. This is a problem of image
registration in a more general sense. See the discussion in Sect. 10.1. For the
content of using contours to represent 3-D shapes, please refer to references
[8, 9]. The definition of the Voronoï region and the ordinary Voronoï diagram
can be found in reference [10].
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5. 3-D Entity Representation
The method of directly representing 3-D entities including surface and interior

can be found in references [11, 12]. In addition, one can also refer to the literature
of computer graphics, such as reference [13], which also provides many related C
language programs.

Self-Test Questions

The following questions include both single-choice questions and multiple-choice
questions, so each option must be judged.

9.1. Local Features of the Surface

9.1.1. Consider a point P on the surface S; (�).
(a) The tangent plane passing through this point contains all the tangent

lines of the curve C passing through the point P and on the surface S.
(b) The straight-line N passing through this point and perpendicular to

the surface S is called the normal line of the surface S at the point P.
(c) The number of tangents passing through the point is equal to the

number of normal lines.
(d) Among the tangent lines passing through this point, at least one of

the tangent lines is in the same plane as the normal line.

[Hint] The tangent line and the normal line are perpendicular to each
other.

9.1.2. For each point on a surface, (�).
(a) There is only one direction of maximum curvature.
(b) There is only one direction of minimum curvature.
(c) The maximum curvature will always be obtained in a certain

direction.
(d) The minimum curvature will always be obtained in a certain direction.

[Hint] The curvature may be the same in different directions.
9.1.3. Only considering the signs of mean curvature and Gaussian curvature

can make the following judgments on the surface: (�).
(a) As long as the mean curvature is positive, there is a local minimum

point on the surface.
(b) As long as the mean curvature is negative, there is a local maximum

point on the surface.
(c) As long as the Gaussian curvature is positive, there is a local

minimum point on the surface.
(d) As long as the Gaussian curvature is negative, there is a local

maximum point on the surface.

[Hint] Refer to the example in Fig. 9.3.
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9.2. 3-D Surface Representation

9.2.1. To represent the outer surface of 3-D objects and describe their shape, (�).
(a) The outer contour line or outer contour surface of the object can

be used.
(b) The outline of the object is obtained during image acquisition.
(c) The outer contour surface of the object can be decomposed into a

collection of various surface elements.
(d) The representation of the outer contour surface of the object can be

converted into the representation of the outer contour line of the
object.

[Hint] Analyze the relationship between body, surface, and line.
9.2.2. Extended Gaussian image (�).

(a) Can represent the distribution of the normals of the 3-D object
surface.

(b) Can accurately represent the orientation of each point on the surface.
(c) Has a one-to-one correspondence with the represented object.
(d) Can be used to restore the surface of the 3-D object.

[Hint] Refer to the description of the extended Gaussian image.
9.2.3. When projecting the Gaussian sphere onto a plane to obtain the gradient

space, (�).
(a) The spherical projection projects the point with the gradient ( p, q)

onto the position ( p, q) on the plane.
(b) The spherical projection uses the center of the Gaussian sphere as the

center of projection to project all points on the spherical surface onto
the plane.

(c) Stereographic projection uses the South Pole of the Gaussian sphere
as the center of projection to project all points on the spherical
surface onto the plane.

(d) Stereographic projection will project the point on the equator of the
corresponding Gaussian sphere to the edge of the plane.

[Hint] Analyze according to the center position of the two projections.

9.3. Construction and Representation of Iso-surfaces

9.3.1. Equivalent surface (iso-surface) (�).
(a) Only exists at the junction of one object and other objects or

backgrounds.
(b) Is always a 3-D curved surface in a 3-D image.
(c) Is composed of 3-D voxel points with a certain gray value.
(d) Constructs a closed and complete object surface.

[Hint] Pay attention to the definition of iso-surface.
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9.3.2. In the marching cube algorithm, (�).
(a) The bounding cube is defined as the cube contained in the object.
(b) Determine the iso-surface according to the different situations where

the object surface intersects the cube.
(c) Determine the boundary cube with voxel as the basic unit.
(d) The 14 different black and white voxel layouts shown in Fig. 9.7

contain all possible layouts of the cube.

[Hint] Distinguish between voxel and cube, cube and boundary cube.
9.3.3. Which of the following statement(s) is/are correct? (�).

(a) The object surface that is not closed by the marching cube algorithm
is due to the ambiguity problem.

(b) The wrapper algorithm can always produce a closed object surface.
(c) The marching cube algorithm and the wrapper algorithm use cubes

of different sizes.
(d) In the wrapper algorithm, all cube decomposition methods are

the same.

[Hint] Compare the characteristics of the marching cube algorithm
and the wrapper algorithm.

9.4. Interpolate 3-D Surfaces from Parallel Contours

9.4.1. Which of the following description(s) about tiling is/are correct? (�).
(a) Surface tiling is a method of representing the surface of 3-D object

by using a set of surface elements.
(b) Each mesh in the polygon mesh is a three-dimensional structure

composed of vertices, edges, and surfaces.
(c) The effect of surface tiling is consistent with the effect of contour

tiling.
(d) The basic unit represented by the wireframe is the mesh in the

polygonal mesh.

[Hint] Pay attention to the difference between line representation and
surface representation.

9.4.2. Among the problems that may be encountered in the method of interpo-
lating the contour to obtain the surface, (�).
(a) The corresponding problem only needs to consider determining the

corresponding points in the corresponding contours.
(b) To solve the tiling problem, the corresponding problem needs to be

solved first.
(c) The branching problem often needs to use the geometric information

and topological relationship of the contour as a whole.
(d) To solve these problems, it is needed to use the global features of the

contour.

[Hint] Analyze the characteristics of these problems separately.



Self-Test Questions 315

9.4.3. Voronoï diagram and Delaunay triangle are related to each other and
have their own characteristics: (�).
(a) Given some plane points, Delaunay triangle takes these points as

vertices.
(b) Given a plane point, the Voronoï neighborhood corresponds to the

Euclidean plane region closest to the point.
(c) Given some plane points, the Voronoï diagram is the set of Voronoï

neighborhoods of these points.
(d) The Voronoï diagram and Delaunay triangle are duals, so their lines

of intersection are perpendicular to each other.

[Hint] Refer to Fig. .9.19

9.5. 3-D Entity Representation

9.5.1. Among the most basic and commonly used representation schemes, (�).
(a) The amount of data required for the spatial occupancy array is more

than that of the octree, but the representation accuracy is higher than
that of the octree.

(b) The amount of data required for the spatial occupancy array is more
than that of the surface decomposition, but the representation accu-
racy is higher than that of the surface decomposition.

(c) The boundary representation system of the rigid body model uses the
boundary surface as the primitive, so the representation of the object
is consistent with the surface decomposition method.

(d) The simple rigid body is used as the primitive in the constructive
solid geometry representation system, so the representation result of
the object is consistent with the representation result of the spatial
occupancy array.

[Hint] Analyze the characteristics of each representation method.
9.5.2. The generalized cylinder method uses a through-axis and a cross-section

as variables to represent 3-D objects; (�).
(a) The through-axis can be a straight line segment or a curved segment

of any shape.
(b) The cross-section can be a plane of any shape and move along the

through-axis.
(c) Various combinations of through-axis and cross-section can form

various basic three-dimensional primitives.
(d) There is a special pair of through-axis and cross-section representa-

tions for each given 3-D object.

[Hint] The generalized cylinder method has no restrictions on the
through-axis and the cross-section.
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9.5.3. When using a generalized cylinder to represent a bicycle, (�).
(a) The bell cover needs to use a circular threading axis and a circular

cross-section.
(b) The handlebar needs to use a curved through-axis and a circular

cross-section.
(c) The wheel needs to use a circular through-axis and asymmetrical

cross-section.
(d) The spokes need to use a straight through-axis and a rotationally

symmetrical cross-section.

[Hint] The cross-section moves along the through-axis.
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Chapter 10
Generalized Matching

The functions and goals to be achieved by computer vision are complex, including
processes such as perception/observation, scene restoration, matching cognition,
scene interpretation, etc. Among them, matching cognition tries to connect the
unknown with the known through matching and then uses the known to explain
the unknown. For example, the scene matching technology is a technology that uses
the data of the scene reference map for autonomous navigation and positioning. It
uses the image sensor mounted on the aircraft to collect the real-time scene during
the flight and compare it with the pre-prepared reference scene. The real-time
matching will obtain accurate navigation and positioning information.

For a complex computer vision system, there are often multiple image inputs and
other forms of representation coexisting within it. Matching uses the existing
representations and models stored in the system to perceive the information in the
image input and finally establish the correspondence with the outside world, to
realize the interpretation of the scene. The interpretation of the scene is a process
of continuous cognition, so it is necessary to match the information obtained from
the image with the existing model for explaining the scene. It can also be said that
perception is the process of combining visual input with previous representations,
and cognition also needs to establish or discover connections between various
internal representations. For this reason, matching can be understood as a technique
or process that combines various representations and knowledge to explain the
scene.

Commonly used image-related matching methods and techniques can be classi-
fied into two categories: one is more specific and corresponds to the lower-level
pixels or sets of pixels, which can be collectively referred to as image matching; the
other is more abstract, mainly related to image objects or the nature and connection
of objects, or even related to the description and interpretation of the scene, which
can be collectively referred to as generalized matching. For example, the region-
based stereo matching and feature-based stereo matching introduced in Chap. 6
belong to the former category. This chapter focuses on introducing some matching
methods and techniques related to the latter type of scenery.
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The sections of this chapter are arranged as follows:

Section 10.1 summarizes the basic concepts of various matching, compares and
discusses matching and registration, and analyzes several commonly used image
matching evaluation criteria.

Section 10.2 first discusses the measurement of matching and then introduces some
typical object matching methods, including matching with landmarks or feature
points on the object, matching the contours of the two object regions with the help
of string representations, and matching by using the inertia equivalent ellipse and
matching two object regions with the help of the shape matrix representation.

Section 10.3 introduces a method of dynamically establishing the pattern for object
representation during the matching process and then matching these patterns.
This dynamic idea/thinking can be extended to various occasions.

Section 10.4 uses the principle of graph theory and the properties of graphs to
establish the correspondence between objects and uses graph isomorphism to
match scenes at different levels.

Section 10.5 introduces the matching method that first constructs the line drawing of
the object by projecting the (visible) surface observed on the 3-D scene onto the
contour of the region formed by the 2-D image, and then marking the line drawing,
and finally using this mark to match the 3-D scene with the corresponding model.

10.1 Matching Overview

In the understanding of images, matching technology plays an important role. From
a visual point of view, vision includes sight and sense. The “sight” should be a
purposeful “sight,” that is, according to a certain knowledge (including the descrip-
tion of the object and the explanation of the scene), the image should be used to find
the scenery that meets the requirements in the scene; the “sense” should be the
“sense” with cognition, that is, the characteristics of the scenery should be extracted
from the input image, and then matched with the existing scenery model, so as to
achieve the purpose of understanding the meaning of the scene. Matching and
knowledge are inherently related, and matching and interpretation are also
inseparable.

10.1.1 Matching Strategies and Categories

In a broad sense, matching can be carried out at different (abstract) levels, because
knowledge has different levels and can also be used at different levels. For each
specific match, it can be seen as finding the correspondence between two represen-
tations. If the types of two representations are comparable, matching can be done in a
similar sense. For example, when the two representations are both in image form, it
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Fig. 10.1 Matching and
mapping

I2

O

I1
T12

TO1 TO2

is called image matching; if the two representations represent the object in the
image, it is called object matching; if the two representations represent the descrip-
tion of the scene, it is called scene matching; if both representations are relational
structures, it is called relational matching; the latter three are generalized
matching. If the two representation types are different (e.g., one is an image
structure and the other is a relational structure), then it can also be matched in an
extended sense, or it is called fitting.

To establish a connection between the two representation types, matching needs
to be carried out through mapping. When reconstructing the scene, the image
matching strategy can be divided into two situations according to the different
mapping functions used; see Fig. 10.1.

10.1.1.1 Matching in Image Space

The image space matching directly connects the images I1 and I2 with the mapping
function T12. In this case, the object model is implicitly included in the establishment
of T12. The process is generally quite complicated, but if the object surface is
relatively smooth, an affine transformation can be used to locally approximate
it. At this time, the computational complexity can be reduced to a level comparable
to that of the object space. In the case of occlusion, the smooth hypothesis will be
affected and the image matching algorithm will encounter difficulties.

10.1.1.2 Matching in Object Space

In this case, the object O is directly reconstructed by the inversion of the perspective
transformations TO1 and TO2. An explicit representation model for objectO is needed
here, and the problem is solved by establishing a correspondence between image
features and object model features. The advantage of object space matching tech-
nology is that they are more consistent with the physical world, so if a more complex
model is used, it can even deal with occlusion. If the object space is regarded as the
transformation of the image space or the mapping space, the matching of the object
space can also be extended to the generalized matching of more general and abstract
level spaces.

Image matching algorithms can be further classified and hierarchized according
to the image representation model they use.
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10.1.1.3 Matching Based on Raster

Raster-based matching uses the raster representation of the image, that is, it tries to
find the mapping function between image regions by directly comparing gray scale
or grayscale functions. This type of method can be very accurate, but it is very
sensitive to occlusion.

10.1.1.4 Feature-Based Matching

In feature-based matching, the symbolic description of the image is first decomposed
by using the salient features extracted from the image with the feature extraction
operator, and then the corresponding features of different images are searched for,
according to the assumption of the local geometric properties of the object to be
described. The further step is to perform geometric mapping. Compared with the
methods based on raster matching, these methods are more suitable for situations
with surface discontinuities and data approximation.

10.1.1.5 Matching Based on Relationship

Relation matching is also called structural matching. Its technology is based on the
similarity of topological relationships between features (topological properties do
not change under perspective transformation). These similarities exist in the feature
adjacency graph rather than the similarity of grayscale or point distribution. The
matching of the relationship description can be applied in many situations, but it may
generate a very complicated search tree, so its computational complexity may be
very large.

The (broad) template matching theory believes that in order to recognize the
content of a certain image, there must be a “memory trace” or basic model in the past
experience. This model is also called a “template.” If the current stimulus matches
the template in the brain, people can tell what the stimulus is. For example, the
“template matching” introduced in Sect. 6.2 is actually a special case of using this
theory, and it can also be called narrow template matching. In narrow template
matching, the designed template comes from the past experience in the brain, and the
large image to be matched corresponds to the current stimulus. However, the
template matching theory says that the external stimulus must be in full compliance
with the template. In reality, people can not only recognize images that are consistent
with the basic model in real life but also can recognize images that are not
completely consistent with the basic model.

Gestalt psychologists proposed the prototype matching theory. This theory
believes that the currently observed image of a letter “A,” no matter what shape it
is or where it is placed, is similar to the “A” known in the past. Humans do not store
countless templates of different shapes in long-term memory, but use the similarities
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abstracted from various images as prototypes to test the images they want for
cognition. If one can find a prototype similar to the image one wants for cognition,
then one can realize the cognition of this image. This kind of image cognition model
is more suitable than template matching from the perspective of neurology and
memory search process, and it can also explain the cognition process of some
irregular images that are similar to the prototype in some aspects. According to
this model, an idealized prototype of the letter “A” can be formed, which summa-
rizes the common characteristics of various images similar to this prototype. On this
basis, the matching cognition for all other “A”s becomes possible even though they
are inconsistent with the prototype and only similar.

Although the prototype matching theory can explain some phenomena in image
cognition more reasonably, it does not explain how humans can distinguish and
process similar stimuli. Prototype matching theory does not give a clear model or
mechanism of image cognition, and it is difficult to realize this theory in computer
programs.

10.1.2 Matching and Registration

Matching and registration are two closely related concepts, and there are many
similarities in technology. However, careful analysis shows that there are still certain
differences between the two. The meaning of registration is generally narrow. It
mainly refers to the establishment of the correspondence between images obtained in
different time or space, especially the geometric correspondence (geometric correc-
tion). The final effect is often reflected in the pixel level. Matching can consider not
only the geometric properties of the image but also the grayscale properties of the
image, and even other abstract properties and attributes of the image. From this point
of view, registration can be regarded as a matching of lower-level representations,
and the generalized matching can include registration. The main difference between
image registration and stereo matching is that the former requires not only the
establishment of the relationship between the point pairs but also the calculation of
the global coordinate transformation parameters between the two images from the
corresponding relationship and the latter only requires the establishment of the
corresponding relationship between the point pairs and then simply needs to calcu-
late the parallax for each pair of points.

In terms of specific implementation technology, registration can often be
achieved with the help of coordinate transformation and affine transformation.
Most registration algorithms include three steps: (1) feature selection; (2) feature
matching; and (3) calculation of the transformation function. The performance of
registration technology is often determined by the following four factors:

1. The feature space of the features used for registration
2. A search space that makes the search process possible
3. Search strategy for scanning the search space
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4. A similarity measure used to determine whether the registration correspondence
is valid

The registration technology in the image space (such as stereo vision matching)
can be divided into two categories similar to the matching technology (such as Sects.
6.2 and 6.3). The registration technology in the frequency domain is mainly carried
out through related calculations in the frequency domain. Here, the image needs to
be converted/transformed to the frequency domain through Fourier transform, and
then the phase information or amplitude information of the spectrum is used to build
the corresponding relationship between images in the frequency domain to achieve
registration; they can be called phase correlation method and amplitude correlation
method, respectively.

The following only takes the registration when there is a translation between the
images as an example to introduce the calculation of the phase correlation method
(PCM; for the calculation of rotation and scale changes, please refer to the ideas in
Sect. 4.3). The phase correlation calculation between the two images can be carried
out by means of the phase estimation of the cross power spectrum. Suppose two
images f1(x, y) and f2(x, y) have the following simple translation relationship in the
space domain:

f 1 x, yð Þ= f 2 x- x0, y- y0ð Þ 10:1Þ

According to the translation theorem of the Fourier transform, it has

F1 u, vð Þ=F2 x, yð Þ exp - j2π ux0 þ vy0ð Þ½ � 10:2Þ

If the normalized cross power spectrum of the Fourier transform F1(u, v) and
F2(u, v) of two images f1(x, y) and f2(x, y) is used for representation, the phase
correlation between them can be calculated as follows:

exp - j2π ux0 þ vy0ð Þ½ �= F1 x, yð ÞF�
2 x, yð Þ

jF1 x, yð ÞF�
2 xð , yÞ j ð10:3Þ

where the inverse Fourier transform of exp[-j2π(ux0 + yv0)] is δ(x - x0, y - y0). It
can be seen that the relative translation of the two images f1(x, y) and f2(x, y) in space
is (x0, y0). The amount of translation can be determined by searching the position of
the maximum value (caused by the pulse) in the image.

The following summarize the steps of the phase correlation algorithm based on
the Fourier transform:

1. Calculate the Fourier transform F1(u, v) and F2(u, v) of the two images f1(x, y) and
f2(x, y) to be registered.

2. Filter out the DC component and high-frequency noise in the spectrum, and
calculate the product of the spectrum components.

3. Use Eq. (10.3) to calculate the normalized cross power spectrum.
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4. Perform inverse Fourier transform on the normalized cross power spectrum.
5. Search the coordinates of the peak point in the image of inverse Fourier trans-

form, which gives the relative translation amount.

The calculation amount of the above registration method is only related to the size
of the image and has nothing to do with the relative position between the images or
whether they overlap. This method only uses the phase information in the cross
power spectrum, is easy to calculate, is insensitive to the brightness changes between
images, and can effectively overcome the influences of illumination changes. Since
the obtained correlation peaks are sharper and more prominent, higher registration
accuracy can be obtained.

10.1.3 Matching Evaluation

Commonly used image matching evaluation criteria include accuracy, reliability,
robustness, and computational complexity.

Accuracy refers to the difference between the true value and the estimated value.
The smaller the difference, the more accurate the estimation. In image registration,
accuracy refers to the mean, median, maximum, or root mean square value of the
distance between the reference image point and the registered image point (after
resampling to the reference image space). When the correspondence has been
determined, the accuracy can be measured from the synthesized image or the
simulated image; another method is to place the fiducial mark in the scene and use
the position of the fiducial mark to evaluate the accuracy of the registration. The unit
of accuracy can be pixels or voxels.

Reliability refers to how many times the algorithm has achieved satisfactory results
in the total tests performed. If N pairs of images are tested and M tests give
satisfactory results, when N is large enough and N is representative of the image,
thenM/N represents reliability. The closer theM/N is to 1, the more reliable it is. The
reliability of the algorithm is predictable.

Robustness refers to the degree of stability of accuracy or the reliability of an
algorithm under different changing conditions of its parameters. Robustness can be
measured in terms of noise, density, geometric differences, or the percentage of
dissimilar regions between images. The robustness of an algorithm can be obtained
by determining the stability of the accuracy of the algorithm or the reliability when
the input parameters change (such as using their variance, the smaller the variance,
the more robust the algorithm). If there are many input parameters, each of which
affects the accuracy or reliability of the algorithm, then the robustness of the
algorithm can be defined relative to each parameter. For example, an algorithm
may be robust to noise, but not robust to geometric distortion. To say that an
algorithm is robust generally means that the performance of the algorithm will not
change significantly with the changes in the parameters involved.
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Computational complexity determines the speed of the algorithm and indicates its
practicality in specific applications. For example, in image-guided neurosurgery, it is
necessary to register the image used to plan the operation with the image reflecting
the operation condition at a specific time within a few seconds. However, matching
aerial images acquired by aircraft often needs to be completed in the order of
milliseconds. The computational complexity can be expressed as a function of the
image size (considering the number of additions or multiplications required for each
unit); it is generally hoped that the computational complexity of a good matching
algorithm is a linear function of the image size.

10.2 Object Matching

Image matching uses pixels as a unit, the amount of calculation is generally large,
and the matching efficiency is low. In practice, the object of interest is often detected
and extracted first, and then the object is matched. If a concise object representation
is used, the matching workload can be greatly reduced. Since the object can be
represented in different ways, a variety of methods can also be used to match the
object.

10.2.1 Measure of Matching

The effect of object matching should be judged by a certain measure, the core of
which is mainly the degree of object similarity.

10.2.1.1 Hausdorff Distance

In the image, the object is composed of points (pixels), and the matching of two
objects is a match between two point sets in a certain sense. The method of using
Hausdorff distance (HD) to describe the similarity between point sets and matching
through feature point sets is widely used. Given two finite point sets A= {a1, a2, . . .,
am} and B = {b1, b2, . . ., bn}, the Hausdorff distance between them is defined as
follows:

H A, Bð Þ= max h A, Bð Þ, h B, Að Þ½ � 10:4Þ

where
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Fig. 10.2 Schematic
diagram of Hausdorff
distance
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h B, Að Þ= max
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b- ak k ð10:6Þ

The norm ||•|| in Eqs. (10.5) and (10.6) can take different forms. The function
h(A, B) is called the directed Hausdorff distance from the set A to set B, which
describes the longest distance from point a 2 A to any point in the point set B;
similarly, the function h(B, A) is called the directed Hausdorff distance from set B to
set A, which describes the longest distance from point b 2 B to any point in point set
A. Since h(A, B) and h(B, A) are asymmetric, the maximum value between them is
generally taken as the Hausdorff distance between the two point sets.

The geometric meaning of the Hausdorff distance can be explained as follows: If
the Hausdorff distance between two point sets A and B is d, then for any point in each
point set, at least one point in another point set can be found in a circle centered on
that point and with a radius of d. If the Hausdorff distance between two point sets is
0, it means that the two point sets are coincident. In the schematic diagram in
Fig. 10.2, h(A, B) = d21, h(B, A) = d22 = H(A, B).

The Hausdorff distance defined above is very sensitive to noise points or the
outline of a point set. A commonly used improvement method uses the concept of
statistical average, replacing the maximum with the mean value, which is called the
modified Hausdorff distance (MHD), that is, Eqs. (10.5) and (10.6) are, respec-
tively, changed to

hMHD A, Bð Þ= 1
NA

X
a2A

min
b2B

a- bk k ð10:7Þ

hMHD B, Að Þ= 1
NB

X
b2B

min
a2A

b- ak k ð10:8Þ

where NA represents the number of points in point set A and NB represents the
number of points in point set B. Substituting them into Eq. (10.4), it gives

HMHD A, Bð Þ= max hMHD A, Bð Þ, hMHD B, Að Þ½ 10:9Þ
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When the Hausdorff distance is used to calculate the correlation matching
between the template and the image, it does not require a clear point relationship
between the template and the image. In other words, it does not need to establish a
one-to-one relationship of point correspondence between the two point sets, which is
an important advantage.

10.2.1.2 Structural Matching Measure

Objects can often be decomposed, that is, into their individual components. Different
objects can have the same components but different structures. For structural
matching, most of the matching measures can be explained by the so-called
“template and spring” physical analogy model. Considering that the structure
matching is the matching between the reference structure and the structure to be
matched, if the reference structure is regarded as a structure depicted on the trans-
parent film, the matching can be regarded as moving the transparent film on the
structure to be matched and deforming it to get the fit of the two structures.

Matching often involves similarities that can be quantitatively described. A match
is not a simple correspondence, but a correspondence quantitatively described
according to a certain goodness index, and this goodness corresponds to a match
measure. For example, the goodness of the fit of two structures depends on the
degree of matching between the components of the two structures one by one, as
well as the amount of work required to deform the transparencies.

In practice, to achieve deformation, the model is considered as a set of rigid
templates connected by springs. For example, a face template and spring model can
be seen in Fig. 10.3. Here the templates are connected by springs, and the spring
function describes the relationship between the templates. The relationship between
templates generally has certain constraints. For example, on a face image, the two
eyes are generally on the same horizontal line, and the distance is always within a
certain range. The quality of the matching is a function of the goodness of the local

Fig. 10.3 The template and
spring model of the
human face
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fitting of the template and the energy required to make the structure to be matched in
fitting the reference structure by elongating the spring.

The matching measurement of template and spring can be represented in general
form as follows:

C=
X
d2Y

CT d, F dð Þ½ � þ
X

d, eð Þ2 Y ×Eð Þ
CS F dð Þ, F eð Þ½ � þ

X
c2 N[Mð Þ

CM cð Þ ð10:10Þ

where CT represents the dissimilarity between the template d and the structure to be
matched, CS represents the dissimilarity between the structure to be matched and the
object component e, CM represents the penalty for missing components, and F(•) is a
mapping that transforms the reference structure template into a structural component
to be matched. F divides reference structures into two categories: structures that can
be found in the structure to be matched (belonging to set Y ) and structures that
cannot be found in the structure to be matched (belonging to set N ). Similarly,
components can also be divided into two types: components that exist in the
structure to be matched (belonging to set E) and components that do not exist in
the structure to be matched (belonging to set M ).

The normalization problem needs to be considered in the structural matching
measurement, because the number of matched components may affect the value of
the final matching metric. For example, if the “spring” always has a finite cost, so
that the more elements that are matched, the greater the total energy, this does not
mean that the more number of matched parts is worse than the less number of
matched parts. Conversely, the delicate matching of a part of the structure to be
matched with a specific reference object often makes the remaining part unmatched.
At this time, this kind of “sub-matching” is not as good as the effect of making most
of the parts to be matched close to matching. In Eq. (10.10), this situation is avoided
by penalizing missing parts.

10.2.2 Corresponding Point Matching

When the matching between two objects (or a model and an object) has specific
landmark points or characteristic points on the object (see Sect. 6.3), it can be
carried out by means of the correspondence between them. If these landmark points
or feature points are different from each other (with different attributes), there are
two pairs of points that can be matched. If these landmark points or feature points are
the same as each other (have the same attributes), at least three non-collinear
corresponding points must be determined on the two objects (the three points must
be coplanar).

In 3-D space, if perspective projection is used, since any set of three points can be
matched with any other set of three points, the correspondence between the two sets
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Fig. 10.4 (a–c) Three-point matching under weak perspective projection (see text)

Table 10.1 Ambiguity when using corresponding point matching

Distribution of points Coplanar Non-coplanar

Number of corresponding point pairs ≤ ≥6 ≤ ≥6
Perspective projection 1 4 1
Weak perspective projection 1 1 2

of points cannot be determined at this time. If the weak perspective projection is
used, the ambiguity of matching is much smaller.

Consider a simple situation below. Suppose a group of three points P1, P2, and P3

on the object are on the same circle, as shown in Fig. 10.4a. Suppose the center of
gravity of the triangle is C and the straight line connecting C and P1, P2, and P3

intersects the circle at points Q1, Q2, and Q3, respectively. Under weak perspective
projection conditions, the distance ratio PiC:CQi remains unchanged after projec-
tion. In this way, the circle will become an ellipse after projection (but a straight line
will still be a straight line after projection, and the distance ratio will not change), as
shown in Fig. 10.4b. When P′1, P′2, and P′3 are observed in the image, C′ can be
calculated, and then the positions of points Q′1, Q′2, and Q′3 can be determined. So
there are six points to determine the position and parameters of the ellipse (actually at
least five points are needed). Once the ellipse is known, the match becomes an ellipse
match.

If the distance ratio is calculated incorrectly, Qi will not fall on the circle, as
shown in Fig. 10.4c. In this way, the ellipses passing through P′1, P′2, and P′3 as
well as Q′1, Q′2, and Q′3 cannot be obtained after projection, so the above calcula-
tion is impossible.

More general ambiguity can be found in Table 10.1, where the number of
solutions obtained when matching the object with corresponding points in the
image is given in various situations. The bold 1 means there is only one solution
and no ambiguity. When the number of solutions ≥2, it shows that there is ambigu-
ity. All 2s happen when they are coplanar, corresponding to perspective inversion.
Any non-coplanar point (more than three points in the corresponding plane) provides
enough information to eliminate ambiguity. Table 10.1 considers the two cases of
coplanar points and non-coplanar points, respectively, and also compares perspec-
tive projection and weak perspective projection.
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10.2.3 String Matching

String matching can be used to match the contours of two object regions. Suppose
that two region contours A and B have been coded into character strings a1a2 . . . an
and b1b2 . . . bm (see the various contour representation methods in Chap. 9 of 2D
Computer Vision: Principles, Algorithms and Applications and the discussion about
character string description in Chap. 10 of the book). Starting from a1 and b1, if there
is ak= bk at the kth position, it is said that the two contours have a match. IfM is used
to represent the total number of matches between two strings, the number of
unmatched symbols is

Q= max
��
A
��
,

��
B
��� �

-M ð10:11Þ

where ||arg|| represents the length (number of symbols) of the string representation of
arg. It can be proved that Q = 0 if and only if A and B are congruent.

A simple similarity measure between A and B is

R=
M
Q

=
M

max
��
A
��
,

��
B
��� �

-M
ð10:12Þ

It can be seen from Eq. (10.12) that a larger value of R indicates a better match.
When A and B match exactly, the value of R is infinite; and when there is no symbol
match between A and B (M = 0), the value of R is zero.

Because string matching is performed symbol by symbol, the determination of
the starting point is very important to reduce the amount of calculation. If the
calculation is started from any point, and each time the calculation is made again
after moving the position of one symbol; according to Eq. (10.12), the entire
calculation will be very time-consuming (proportional to ||A|| × ||B||), so in practice,
it is often necessary to normalize the string representation first.

The similarity between two strings can also be described by Levenshtein distance
(edit distance). The distance is defined as the (minimum) number of operations
required to convert one string to another. The operations here mainly include editing
operations on the string, such as deleting, inserting, and replacing. For these oper-
ations, one can also define weights, so that the similarity between two strings can be
measured more finely.

10.2.4 Matching of Inertia Equivalent Ellipses

The matching between objects can also be carried out by means of their inertia
equivalent ellipse, which has been used in the registration work of 3-D object
reconstruction of sequence images. Different from the matching based on the object
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Equivalent 

ellipse

Object Equivalent 

ellipse1

1
2

Object 2

Fig. 10.5 Matching with equivalent ellipse

contour, the matching based on the inertia equivalent ellipse is based on the entire
object region. With the help of the inertia ellipse corresponding to the object, an
equivalent ellipse can be further calculated for each object. From the perspective of
object matching, since each object in the image pair to be matched can be
represented by its equivalent ellipse, the problem of object matching can be
transformed into the matching of its equivalent ellipse. A schematic diagram for
this match is shown in Fig. 10.5.

In general object matching, the main considerations are the deviations caused by
translation, rotation, and scale transformation. The goal is to obtain the
corresponding geometric parameters needed. To this end, the parameters required
for translation, rotation, and scale transformation can be calculated with the help of
the center coordinates of the equivalent ellipse, the orientation angle (defined as the
angle between the major principal axis of the ellipse and the positive X axis), and the
length of the major principal axis.

Firstly consider the center coordinates (xc, yc) of the equivalent ellipse, that is, the
center of gravity coordinates of the object. Assuming that the object region contains
a total of N pixels, then

xc =
1
N

XN
i= 1

xi ð10:13Þ

yc =
1
N

XN
i= 1

yi ð10:14Þ

The translation parameter can be calculated based on the difference between the
center coordinates of the two equivalent ellipses. Secondly, the direction angle θ of
the equivalent ellipse can be obtained by means of the slopes k and l of the two
principal axes of the corresponding inertia ellipse (set A is the moment of inertia
when the object rotates around the X axis, and B is the moment of inertia when the
object rotates around the Y axis)

θ=
arctan kð Þ A<B

arctan lð Þ A>B

�
ð10:15Þ

The rotation parameter can be calculated based on the angle difference of the two
ellipses. Finally, the two semimajor axis lengths ( p and q) of the equivalent ellipse
reflect the information of the object size. If the object itself is an ellipse, it is exactly
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(a) (b)

Fig. 10.6 Example of equivalent ellipse matching: before (a) and after (b)

the same in shape as its equivalent ellipse. In general, the equivalent ellipse of the
object is the approximation of the object in terms of moment of inertia and area (but
not at the same time). Here, the object areaM is needed to normalize the axis length.
After normalization, when A < B, the length p of the semimajor axis of the
equivalent ellipse can be calculated by the following equation (suppose H is the
product of inertia):

p=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 Aþ Bð Þ-

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A-Bð Þ2 þ 4H2

q�

M

vuuut
ð10:16Þ

The scale transformation parameter can be calculated according to the length ratio
of the major axes of the two ellipses. As the three transformation parameters of
geometric correction required for the above two object matching can be calculated
independently, so each transformation in the equivalent ellipse matching can be
performed separately in order.

Example 10.1 Equivalent Ellipse Matching Effect Example
Using the inertia equivalent ellipse for matching is more suitable for irregular
objects. Figure 10.6 shows a set of examples of matching cell images.
Figure 10.6a shows two adjacent cell slice images. The cross-sectional size and
shape of the two cells in the figure and the position and orientation of the two cells in
the image are all different. Figure 10.6b shows the matching result after calculating
the equivalent ellipse for the cell profile. It can be seen that the two cell profiles are
well aligned, which also lays a solid foundation for the subsequent 3-D
reconstruction.

10.2.5 Shape Matrix Matching

The object regions that need to be matched in two images often have differences in
translation, rotation, and scale. Taking into account the local characteristics of the
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Fig. 10.7 An object (a) and its shape matrix (b)

image, if the image does not represent a deformed scene, the local non-linear
geometric differences between the images can be ignored. In order to determine
the correspondence between the objects that need to be matched in two images, it is
necessary to seek the similarity between the objects that does not depend on
translation, rotation, and scale differences. The shape matrix is a representation of
the quantization of the object shape with polar coordinates. As shown in Fig. 10.7a,
place the origin of the coordinates at the center of gravity of the object, and resample
the object along the radial and circumferential directions. These sampled data are
independent of the object’s position and orientation. Let the radial increment be a
function of the maximum radius, that is, always quantize the maximum radius into
the same number of intervals, and the representation obtained in this way is called
the shape matrix, as shown in Fig. 10.7b. The shape matrix is independent of scale.

The shape matrix contains both the boundary and internal information of the
object, so it can also represent the object with holes (not just the outer contour). The
shape matrix can represent all the projection, orientation, and scale of the object in a
standardized way. Given two shape matricesM1 andM2 of size m × n, the similarity
between them is (note that the matrix is a binary matrix)

S=
Xm- 1

i= 0

Xn- 1

j= 0

1
mn

M1 i, jð Þ ^ M2 ið½ , jÞ� _ M1 i, jÞ ^ M2 i, jÞ�ð g	
� ð10:17Þ

where the upper horizontal line represents the logical NOT operation. When S= 1, it
means that the two objects are exactly the same. As S gradually decreases and tends
to 0, the two objects become increasingly dissimilar. If the sampling is dense enough
when constructing the shape matrix, the original object region can be reconstructed
from the shape matrix.

If the shape matrix is sampled on a logarithmic scale along the radial direction
when constructing the shape matrix, the scale difference between the two objects
will be transformed into a positional difference along the horizontal axis in the
logarithmic coordinate system. If one starts from any point in the object region
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(rather than from the maximum radius) when quantifying the region circumference,
it will get the value along the vertical axis in the logarithmic coordinate system. Log
polar coordinate mapping can convert the rotation difference and scale difference
between two regions into translation difference, thus simplifying the work of object
matching.

10.3 Dynamic Pattern Matching

In the previous discussion of various matches, the representations that need to be
matched have been established in advance. In fact, sometimes the representation that
needs to be matched is dynamically established during the matching process, or
different representations for matching need to be established according to the data to
be matched in the matching process. The following describes a method combined
with a practical application, called dynamic pattern matching.

10.3.1 Matching Process

In the process of reconstructing 3-D cells from serial medical slice images, judging
the correspondence of each profile of the same cell in adjacent slices is a key step
(this is the basis for contour interpolation in Sect. 9.4). Due to the complicated
slicing process, thin slices, deformation, and other reasons, the number of cell
profiles on adjacent slices may be different, and their distribution arrangements
may also be different. To reconstruct the 3-D cells, it is necessary to determine the
corresponding relationship between the various profiles of each cell, that is, to find
the corresponding profiles of the same cell on each slice. The overall flowchart for
completing this work can be seen in Fig. 10.8. Here, the two slices to be matched are
called matched slice and matching slice, respectively. The matched slice is a

Identify

corresponding

candidates

Build section

pattern

Select a

matched profile

Build section

pattern

Select a

matching profile

Parameter

adjustment

Pattern checking 

and matching Matching result
Matching

Mis-
matching

Fig. 10.8 Flowchart of dynamic pattern matching process
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reference slice. When each profile on the matching slice to be matched is registered
with the corresponding matched profile on the matched slice, the matching slice
becomes a matched slice and can be used as a reference slice for the next matching
slice. By continuing to match in this way, all profiles on a sequence slice can be
registered (Fig. 10.8 only takes one profile as an example). This sequence strategy
can also be used for other matching tasks.

Refer to the flowchart in Fig. 10.8; it can be seen that there are six main steps in
dynamic pattern matching:

1. Select a matched profile from the matched slice.
2. Construct the pattern representation of the selected matched profile.
3. Determine the candidate region on the matching slice (the prior knowledge can be

used to reduce the amount of calculation and ambiguity).
4. Select the matching profile in the candidate region.
5. Construct the pattern representation of each selected matching profile.
6. Use the similarity between the profile patterns to test for determining the corre-

spondence between the profiles.

10.3.2 Absolute Pattern and Relative Pattern

Since the distribution of cell profiles on the slices is not uniform, in order to complete
the above matching steps, it is necessary to dynamically establish a pattern repre-
sentation for each profile that can be used for matching. Here, the relative positional
relationship between each profile and its several adjacent profiles can be used to
construct the unique pattern of the profile. The pattern constructed in this way can be
represented by a pattern vector. Assuming that the relationship used is the length and
direction of the line between each profile and its adjacent profile (or the angle
between the lines), then the two profile patterns (both are represented by vectors)
Pl and Pr on two adjacent slices can be written as

Pl = xl0, yl0, dl1, θl1, ⋯, dlm, θlm½ T ð10:18Þ
Pr = xr0, yr0, dr1, θr1, ⋯, drn, θrn½ T ð10:19Þ

In the formula, xl0, yl0, and xr0, yr0 are the center coordinates of the two slices,
respectively; each d represents the length of the connection line between other
profiles on the same slice and the matching profile; each θ represents the angle
between the lines from the matching profile to the surrounding two adjacent profiles
in the same slice. Note that m and n can be different here. When m and n are
different, it can also select parts of the points to construct the pattern for matching. In
addition, the choice of m and n should be the result of the balance between the
amount of calculation and the uniqueness of the pattern. The specific value can be
adjusted by determining the pattern radius (i.e., the largest d, as shown in d2 in
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Fig. 10.9 Absolute pattern: (a) original, (b) after rotation and translation

Fig. 10.9a). The entire pattern can be seen as contained in a circle with a definite
radius of action.

In order to match between the profiles, the corresponding pattern needs to be
translated and rotated. The pattern constructed above can be called an absolute
pattern because it contains the absolute coordinates of the center profile.
Figure 10.9a shows an example of Pl. Absolute pattern has rotation invariance to
the origin (central profile), that is, after the entire mode is rotated, each d and θ is
unchanged; but from Fig. 10.9b, it can be seen that it does not have translation
invariance, because after the entire pattern is translated, both x0 and y0 have changed.

In order to obtain translation invariance, the center point coordinates in the
absolute pattern can be removed, and the relative pattern is constructed as follows:

Ql = dl1, θl1, ⋯, dlm, θlm½ �T ð10:20Þ
Qr = dr1, θr1, ⋯, drn, θrn½ �T ð10:21Þ

The relative pattern corresponding to the absolute pattern in Fig. 10.9a is shown
in Fig. 10.10a.

It can be seen from Fig. 10.10b that the relative pattern has not only rotation
invariance but also translation invariance. In this way, the two relative pattern
representations can be matched by rotation and translation, and the similarity can
be calculated, so as to obtain the goal of matching profile.

It can be seen from the analysis of dynamic pattern matching that its main
characteristics are as follows: the pattern is dynamically established, and the
matching is completely automatic. This method is more versatile and flexible, and
its basic idea can be applied to a variety of applications.
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Fig. 10.10 Relative pattern: (a) original, (b) after translation

10.4 Graph Theory and Graph Matching

Seeking correspondence is a key in relation matching. Because the corresponding
relationship can have many different combinations, if the search method is not
appropriate, the workload will be too large to be carried out. Graph isomorphism
is a way to solve this problem.

10.4.1 Introduction to Graph Theory

Let’s first introduce some basic definitions and concepts of graph theory.

10.4.1.1 Basic Definition

In graph theory, a graph G is defined as a finite non-empty vertex set V(G) and a
finite edge set E(G), denoted as

G= V Gð Þ, E Gð Þ½ �= V , E½ � ð10:22Þ

Among them, each element of E(G) corresponds to the unordered pair of vertices
in V(G), which is called the edge of G. Graph is also a relational data structure.

In the following, the elements in the set V are represented by uppercase letters,
and the elements in the set E are represented by lowercase letters. Generally, the edge
e formed by the unordered pair of vertices A and B is denoted as e$ AB or e$ BA,
and A and B are called the end points of e; the edge e is called join A and B. In this
case, vertices A and B are incident with edge e, and edge e is incident with vertices
A and B. Two vertices incident with the same edge are adjacent, and similarly, two
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edges with a common vertex are also adjacent. If two edges have the same two end
points, they are called multiple edges or parallel edges. If the two end points of an
edge are the same, it is called a loop; otherwise it is called a link.

10.4.1.2 The Geometric Representation of the Graph

The vertices of the graph are represented by dots, and the edges are represented by
straight lines or curves connecting the vertices, and the geometric representation or
geometric realization of the graph can be obtained. A graph with edges greater than
or equal to 1 can have an infinite number of geometric representations.

Example 10.2 The Geometric Representation of a Graph
Set V(G) = {A, B, C}, E(G) = {a, b, c, d}, where a $ AB, b $ AB, c $ BC,
d $ CC. In this way, the graph G can be represented by the graph given in
Fig. 10.11.

In Fig. 10.11, the edges a, b, and c are adjacent to each other, and the edges c and
d are adjacent to each other, but the edges a and b are not adjacent to the edge d.
Similarly, vertices A and B are adjacent, vertices B and C are adjacent, but vertices
A and C are not adjacent. In terms of edge types, edges a and b are parallel edges,
edge d is a loop, and edges a, b, and c are both links.

10.4.1.3 Colored Graph

In the definition of a graph, the two elements of each unordered pair (i.e., two
vertices) can be the same or different, and any two unordered pairs (i.e., two edges)
can be the same or different. Different elements can be represented by vertices of
different colors, which are called the chromaticity of the vertices (referring to
vertices marked with different colors). The different relationships between elements
can be represented by edges of different colors, which are called the chromaticity of
edges (referring to edges marked with different colors). So a generalized colored
graph G can be represented as

G= V , Cð Þ, E, Sð Þ½ � 10:23Þ

where V is the vertex set, C is the vertex chromaticity set, E is the edge set, and S is
the edge chromaticity set. They are

Fig. 10.11 Geometric
representation of a graph
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Fig. 10.12 (a. b) Two
objects to be represented by
colored graphs
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Fig. 10.13 The object representation with colored graph

V = V1, V2, ⋯, VNf g ð10:24Þ
C= CV1 , CV2 , ⋯, CVNf g ð10:25Þ
E= eViVj jVi, Vj 2 V ð10:26Þ
S= sViVj jVi, Vj 2 V ð10:27Þ

Among them, each vertex can have a color, and each edge can also have a color.

Example 10.3 Examples of Colored Graph Representation
Consider the two objects in the image as shown in Fig. 10.12. The object on the left
contains three elements, which can be represented as Ql = {A, B, C}; the object on
the right contains four elements, which can be represented as Qr = {1, 2, 3, 4}.

The two objects in Fig. 10.12 can be represented by two colored graphs as shown
in Fig. 10.13, in which the vertex color is distinguished by the shape of the vertex
and the edge color is distinguished by the line type. The information reflected by
colored graphs is more comprehensive and intuitive.

10.4.1.4 Sub-Graph

For two graphs G and H, if V(H )⊆ V(G), E(H )⊆ E(G), then the graph H is called a
sub-graph of graph G, denoted as H⊆ G. In turn, call graph G themother graph of
graph H. If the graph H is a sub-graph of the graph G, but H ≠ G, then the graph H is
called the proper sub-graph of the graph G, and the graph G is called the proper
mother graph of the graph H.

If H ⊆ G and V(H ) = V(G), call graph H the spanning sub-graph of graph G,
and call graph G the spanning mother graph of graph H. For example, in
Fig. 10.14, Fig. 10.14a shows graph G, while Fig. 10.14b–d, respectively, shows
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Fig. 10.14 Examples of graph (a) and spanning sub-graphs (b–d)
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Fig. 10.15 (a–f) Several operations to obtain sub-graphs (see text)

the various spanning sub-graphs of graph G (they are all spanning sub-graphs of
graph G but are different from each other).

If all the multiple edges and loops are removed from a graph G, the resulting
simple spanning sub-graph is called the underlying simple graph of the graph G.
The three spanning sub-graphs shown in Fig. 10.14b–d have only one underlying
simple graph, that is, Fig. 10.14d. The following four operations to obtain an
underlying simple graph will be introduced with the help of graph G given in
Fig. 10.15a.

1. For the non-empty vertex subset V′(G)⊆ V(G) of graph G, if there is a sub-graph
of graph G with V′(G) as the vertex set, and all edges with the two end points in
graph G as the edge set, then this sub-graph is called the induced sub-graph of
graph G, denoted asG[V′(G)] orG[V′]. Figure 10.15b shows the graph ofG[A, B,
C] = G[a, b, c].

2. Similarly, for the non-empty edge subset E′(G) ⊆ E(G) of graph G, if there is a
sub-graph of graph G with E′(G) as the edge set, and the end points of all the
edges in this set as vertex set, then this sub-graph is called the edge-induced
sub-graph of graph G, denoted as G[E′(G)] or G[E′]. Figure 10.15c shows the
graph of G[a, d] = G[A, B, D].

3. For the proper subset of non-empty vertices G[a, d] = G[A, B, D] of graph G, if
there is a sub-graph of graph G that takes the vertex set after removing V′
(G) ⊂ V(G) as the vertex set, and takes the edge set after removing all the
edges incident with V′(G) in the graph G as the edge set, then this sub-graph is
the remaining sub-graph of the graph G, denoted as G - V′. Here G - V′ = G[V
\V′] holds. Figure 10.15d shows the graph of G - {A, D} = G[B, C] = G[{A, B,
C, D} - {A, D}].

4. For the proper subset of non-empty edges E′(G) ⊆ E(G) of graph G, if there is a
sub-graph of graph G that takes the edge set after removing E′(G) ⊂ E(G) as the
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edge set, then this sub-graph is a spanning sub-graph of graph G, denoted as G -
E′. Note that here G- E′ and G[E\E′] have the same edge set, but the two are not
necessarily identical. Among them, the former is always a spanning sub-graph,
while the latter is not necessarily a spanning sub-graph. Figure 10.15e gives an
example of the former, G - {c} = G[a, b, d, e]. Figure 10.15f gives an example
of the latter, G[{a, b, c, d, e} - {a, b}] = G - A ≠ G - [{a, b}].

10.4.2 Graph Isomorphism and Matching

The matching of graphs is achieved with the help of graph isomorphism.

10.4.2.1 The Identity and Isomorphism of Graph

According to the definition of graphs, for two graphs G and H, if and only if
V(G) = V(H ) and E(G) = E(H ), the graphs G and H are called identical, and the
two graphs can be represented by the same geometric representation. For example,
the graphs G and H in Fig. 10.16 are identical. However, if two graphs can be
represented by the same geometric representation, they are not necessarily identical.
For example, the graphs G and I in Fig. 10.16 are not identical (the vertices and
edges have different labels), although they can be represented by two geometric
representations with the same shape.

For two graphs that have the same geometric representation but are not identical,
as long as the labels of the vertices and edges of one of the graphs are appropriately
renamed, a graph identical to the other graph can be obtained. These two graphs can
be called isomorphic, or they are isomorphism. In other words, the isomorphism of
two graphs means that there is a one-to-one correspondence between the vertices and
edges of the two graphs. The isomorphism of two graphs G and H can be denoted as
G ffi H. The necessary and sufficient condition is that the following mapping exists
between V(G) and V(H ) as well as E(G) and E(H ):
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G = [V, E] H = [V, E] I = [V', E']

Fig. 10.16 The identity of the graphs
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Fig. 10.17 Graph
isomorphism P

G = [V, E] H = [V', E']
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P(B)
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A

P : V Gð Þ→V Hð Þ ð10:28Þ
Q : E Gð Þ→E Hð Þ ð10:29Þ

In addition, the mapping P and Q maintain an induced relationship, that is,
Q(e) = P(A)P(B), 8e $ AB 2 E(G), as shown in Fig. 10.17.

10.4.2.2 Determination of Isomorphism

It can be seen from the previous definition that isomorphic graphs have the same
structure and the only difference is that the labels of the vertices or edges are not
exactly the same. The comparison of graph isomorphism focuses on describing
mutual relationships, so graph isomorphism can have no geometric requirements,
that is, more abstract (of course, there can also be geometric requirements, that is,
more specific). Graph isomorphism matching is essentially a tree search problem, in
which different branches represent trials of different combinations of corresponding
relationships.

Now consider the situation of isomorphism between several graphs. For the sake
of simplicity, all vertices and edges of the graphs are not labeled here, that is, all
vertices are considered to have the same color, and all edges also have the same
color. For clarity, it takes a single-color line diagram (a special case of G)

B= Vð Þ, Eð Þ½ �= V , E½ � ð10:30Þ

to illustrate. V and E in Eq. (10.30) are still given by Eqs. (10.24) and (10.26),
respectively, but all elements in each set are the same here. In other words, there are
only one type of vertex and one type of edge. Refer to Fig. 10.18; given two graphs
B1 = [V1, E1] and B2 = [V2, E2], the isomorphism between them can be divided into
the following types:

1. Graph Isomorphism
The graph isomorphism refers to one-to-one mapping between B1 and B2.

For example, Fig. 10.18a, b shows cases of graph isomorphism. Generally
speaking, if the mapping is represented by f, then for e1 2 E1 and e2 2 E2,
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(a) (b) (c) (d)

Fig. 10.18 (a–d) Several cases of graph isomorphism

f(e1)= e2 must exist, and for each join line in E1 connecting any pair of vertices e1
and e1′ (e1, e1′ 2 E1), there must be a join line connecting f(e1) and f(e1′) in E2.
When recognizing the object, it is necessary to establish a full-graph isomorphism
relationship between the graph representing the object and the graph of the object
model.

2. Sub-Graph Isomorphism
Sub-graph isomorphism refers to the isomorphism between a part of graph

B1 (sub-graph) and the whole graph of B2. For example, the multiple sub-graphs
in Fig. 10.18c are isomorphic with Fig. 10.18a. When detecting objects in the
scene, the object model needs to be used to search for isomorphic sub-graphs in
the scene graph.

3. Double-Sub-Graph Isomorphism
Double-sub-graph isomorphism refers to all isomorphism between each

sub-graph of B1 and each sub-graph of B2. For example, in Fig. 10.18a, d, there
are several double-sub-graphs that are isomorphic. Generally, when a common
object needs to be found in two scenarios, the task can be transformed into a
problem of isomorphism of double-sub-graphs.

There are many algorithms for finding isomorphism of graphs. For example,
each graph to be determined can be converted into a certain type of standard form,
so that the isomorphism can be determined more conveniently. In addition, it is
also possible to perform an exhaustive search on the trees that may match
between the corresponding vertices in the line graph, but this method requires a
lot of calculation when the number of vertices in the line graph is large.

A method with fewer restrictions and faster convergence than the isomorphic
method is association graph matching. In association graph matching, the graph
is defined asG= [V, P, R], where V represents a set of nodes, P represents a set of
unit predicates for nodes, and R represents a set of binary relations between
nodes. Here the predicate represents a sentence that only takes one of the two
values TRUE or FALSE, and the binary relationship describes the attributes of a
pair of nodes. Given two graphs, an association graph can be constructed.
Association graph matching is the matching between the nodes and nodes as
well as two-value relationship and two-value relationship in the two graphs.
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10.5 Line Drawing Signature and Matching

When observing a 3-D scene, what one sees is its (visible) surface. When a 3-D
scene is projected onto a 2-D image, each surface will form a region. The boundaries
of each surface will be displayed as contours in the 2-D image, and the line drawing
of the object is formed by using these contours to represent the object. For relatively
simple scenes, line drawings can be marked, that is, 2-D images with outline
markings can be used to represent the relationship between the surfaces of the 3-D
scenes. With the help of this mark, the 3-D scene can also be matched with the
corresponding model to further explain the scene.

10.5.1 Contour Marking

First give some definitions of the nouns/concepts in the contour marking.

10.5.1.1 Blade

If a continuous surface (called the occluding surface) in the 3-D scene occludes a part
of another surface (called the occluded surface), the change in the direction of the
normal of the surface is smooth and continuous when advancing along the contour of
the former surface. At this time, the contour line is called the blade (the blade of the
2-D image is a smooth curve). To indicate the blade, an arrow “←” or “→” can be
added to the contour line. Generally, it is agreed that the direction of the arrow
indicates that when advancing in the direction of the arrow, the occluding surface is
on the right side of the blade. On both sides of the blade, the direction of the
occluding surface and the direction of the occluded surface can be independent.

10.5.1.2 Limb

If a continuous surface in a 3-D scene not only occludes a part of another surface but
also occludes other parts of itself, that is, self-occlusion, the change of the normal
direction of the surface is smooth and continuous and perpendicular to the line of
sight; the contour line at the time is called the limb (usually formed when a smooth
3-D surface is viewed from the side). To indicate the limb, double arrows “$” can
be added to the contour line. When traveling along the limb, the direction of the 3-D
surface does not change; while traveling in a direction that is not parallel to the limb,
the direction of the 3-D surface changes continuously.

The blade is the true (physical) edge of the 3-D scene, while the limb is only the
(apparent) edge. When the blade or limb crosses the boundary or contour between
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the occluding object surface and the occluded background surface, a jump edgewith
discontinuous depth will be produced.

10.5.1.3 Crease

If the orientation of the 3-D visible surface changes suddenly or if two 3-D surfaces
meet at an angle, a crease is formed. On both sides of the crease, the points on the
surface are continuous, but the direction of the surface normal is not continuous. If
the surface of the crease is convex, it is generally indicated by “+”; if the surface of
the crease is concave, it is generally indicated by “-.”

10.5.1.4 Mark

If the parts of the 3-D surface have different reflectivity, marks will be formed. The
marks are not caused by the shape of the 3-D surface. It can use “M” to indicate
marks.

10.5.1.5 Shade/Shadow

If a continuous surface in a 3-D scene does not occlude a part of the other surface
from the viewpoint, but blocks the light from the light source to this part, it will cause
shadows on this part of the second surface. The shadow on the surface is not caused
by the shape of the surface itself, but is the result of the influence of other parts on the
light. The shadow can be marked with “S.” The sudden change of light at the shadow
boundary is called the light boundary.

Example 10.4 Contour Marking Example
Figure 10.19 shows some examples of above contour markings. In the picture, a
hollow cylinder is placed on a platform. There is a mark M on the cylinder, and the
cylinder creates a shadow S on the platform. There are two limbs on the side of the
cylinder. The upper contour is divided into two parts by the two limbs. The upper
contour side occludes the background (platform), and the lower contour side
occludes the inside of the cylinder. The creases of the platform are convex, and
the creases between the platform and the cylinder are concave.

10.5.2 Structural Reasoning

In the following, consider using the contour structure in the 2-D image to reason
about the structure of the 3-D object. It is assumed that the surface of the object is a
flat surface and all the corner points after the intersection are formed by the
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Fig. 10.19 Example of
contour marking
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Fig. 10.20 Different interpretations of the same line drawing: (a) Floating in air, (b) Pasted on wall

intersection of three surfaces. Such a 3-D object can be called a trihedral corner
object, as shown by the two line drawings in Fig. 10.20. At this time, a small change
in the viewpoint will not cause a change in the topological structure of the line
drawing, that is, it will not cause the disappearance of surfaces, edges, or joins. In
this case, the object is said to be in general position.

The two line drawings in Fig. 10.20 are geometrically the same, but there are two
different 3-D interpretations for them. The difference is that Fig. 10.20b marks three
more concave creases than Fig. 10.20a, so that the object in Fig. 10.20a appears to be
floating in the air, while the object in Fig. 10.20b appears to be pasted on the
back wall.

In the graph marked with only {+, -, →}, “+” represents an unclosed convex
line, “-” represents an unclosed concave line, and “→” represents a closed line/
curve. At this time, there are four types of (topological) combination of line joins: six
types of L joins, four types of T joins, three types of arrow joins, and three types of
fork joins (Y joins), as shown in Fig. 10.21.

If one considers the vertices formed by the intersection of all three faces, there
should be a total of 64 marking methods, but only the above 16 join methods are
reasonable. In other words, only the line drawings that can be marked with the
16 join types shown in Fig. 10.21 can physically exist. When a line drawing can be
marked, its marking can provide a qualitative interpretation of the drawing.
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Fig. 10.21 Sixteen join types of trihedral corner object

10.5.3 Labeling via Backtracking

To automatically mark the line drawing, different algorithms can be used. The
following describes a method of labeling via backtracking. Formulate the problem
to be solved as follows: Given a set of edges in a 2-D line drawing, a mark should be
assigned to each edge (the type of join used must satisfy Fig. 10.21) to explain the
3-D situation. The method of labeling via backtracking arranges the edges in a
sequence (as far as possible, put the edges with the most constraints on the mark
in front), it generates a path in a depth-first manner, mark each edge in turn with all
possible labels, and check the new label with other edge labels for consistency. If the
join created with the new label is inconsistent or does not conform to the situation in
Fig. 10.21, then fall back to consider another path; otherwise continue to consider the
next edge. If the labels assigned to all edges in this way satisfy the consistency, then
a labeling result is obtained (a complete path to the leaf is obtained). Generally, more
than one marking result can be obtained for the same line drawing. At this time, it is
necessary to use some additional information or prior knowledge to obtain the final
unique judgment result.

Example 10.5 Marking Example with Labeling via Backtracking
Consider the pyramid shown in Fig. 10.22, and the interpretation tree (including the
steps and final results) obtained by using the method of labeling via backtracking for
labeling is shown in Table 10.2.

As can be seen from the interpretation tree, there are three complete pathways
(marked up to the leaves), which give three different interpretations of the same line
drawing. The search space of the entire interpretation tree is quite small, which
indicates that the trihedral corner object has a fairly strong constraint mechanism.
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Fig. 10.22 Pyramid
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Table 10.2 Interpretation tree for pyramid line drawing

Result and interpretation

Interpretation
tree

– C is not a reasonable L join

The interpretation of edge AB is
contradictory

The interpretation of edge AB is
contradictory

– C is not a reasonable L join

Pasted on wall

The interpretation of edge AB is
contradictory

Put on table

Floating in air

10.6 Key Points and References for Each Section

The following combine the main contents of each section to introduce some refer-
ences that can be further consulted:

1. Matching Overview
The discussion of matching and mapping can also be found in reference

[1]. The four factors describing the performance of registration technology can
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be found in reference [2]. The discussion on the evaluation criteria of image
matching can also be found in reference [3].

2. Object Matching
For further analysis of the modified Hausdorff distance, please refer to refer-

ence [4]. A detailed explanation of the physical analogy model of “template and
spring” can be found in reference [5]. An introduction to landmarks can be found
in the document 2D Computer Vision: Principles, Algorithms and Applications.
The discussion about weak perspective projection can also be found in reference
[6]. The matching and application of inertia equivalent ellipse can be found in
reference [7]. For the specific calculation of the inertia ellipse, please refer to the
document 2D Computer Vision: Principles, Algorithms and Applications. For
further analysis of the shape matrix, please refer to reference [3].

3. Dynamic Pattern Matching
A detailed introduction to dynamic pattern matching can be found in reference

[8]. For the discussion and application of the generality of dynamic pattern
matching, please refer to reference [7].

4. Graph Theory and Graph Matching
The detailed introduction of graph theory can be found in reference [9]. An

introduction to several types of isomorphism can be found in reference [5]. For
more description of association graph matching, please refer to reference [10].

5. Line Drawing Signature and Matching
For the introduction of the principle of line drawing marking and the specific

method of labeling via backtracking, please refer to reference [11].

Self-Test Questions

The following questions include both single-choice questions and multiple-choice
questions, so each option must be judged.

10.1. Matching Overview

10.1.1. Matching is to find the correspondence between two representations;
(�).
(a) Image matching is to find the correspondence between two image

representations, such as the left and right image functions in
binocular stereo vision.

(b) Object matching is to find the correspondence between two object
representations, such as two persons in the two consecutive video
frames.

(c) The scene matching is looking for the correspondence between
two scene descriptions, such as the scenery on both sides of a
highway.
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(d) Relationship matching is to find the correspondence between two
relationship descriptions, such as the mutual positions of two
persons at different moments.

[Hint] The object hierarchy of different matches is different.
10.1.2. Matching and registration are two closely related concepts; (�).

(a) The concept of matching is larger than the concept of registration.
(b) The registration considers more image properties than matching.
(c) Image registration and stereo matching both need to establish the

correspondence between point pairs.
(d) The goal of matching and registration is to establish content

correlation between two images.

[Hint] Registration mainly considers low-level representation,
while matching covers more levels.

10.1.3. Various evaluation criteria for image matching are both related and
different; (�).
(a) For a matching algorithm, the higher the accuracy, the higher the

reliability.
(b) For a matching algorithm, the higher the reliability, the higher the

robustness.
(c) For a matching algorithm, the robustness can be judged with the

help of accuracy.
(d) For a matching algorithm, the reliability can be judged with the

help of robustness.

[Hint] Analyze according to the self-definition of the criteria.

10.2. Object Matching

10.2.1. Hausdorff distance (�).
(a) Can only describe the similarity between two pixel sets.
(b) Is the distance between the closest two points in the two point sets.
(c) Is the distance between the two points that are the furthest apart in

the two point sets.
(d) Being 0 indicates that the two point sets do not overlap.

[Hint] Judge according to the definition of Hausdorff distance.
10.2.2. Suppose that the contours A and B encoded as character strings are

matched. It is known that ||A|| = 10, ||B|| = 15, and (�).
(a) If M = 5 is known, then R = 1/2.
(b) If M = 5 is known, then R = 1/4.
(c) If M = 10 is known, then R = 2.
(d) If M = 10 is known, then R = 1.

[Hint] Calculate directly according to Eq. (10.12).
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10.2.3. Inertia equivalent ellipse matching method can be applied to object
matching; (�).
(a) Each inertia equivalent ellipse corresponds to a specific object.
(b) Representing the object with its inertia equivalent ellipse can

reduce the complexity of representing the object.
(c) When the object is not an ellipse, the inertia equivalent ellipse of

the object is only equal to the area of the object.
(d) For this, four parameters of the ellipse are calculated, which shows

that an ellipse can be completely determined by four parameters.

[Hint] See the calculation of inertia and equivalent ellipse
ap. 12 of 2D Computer Vision: Principles, Algorithms and
lications).

(Ch
App

10.3. Dynamic Pattern Matching

10.3.1. In the dynamic pattern matching method, (�).
(a) The grayscale information of the pixels to be matched has

been used.
(b) The position information of the pixel to be matched has been used.
(c) Two point sets can be matched.
(d) The Hausdorff distance can be used to measure the effect of

matching.

[Hint] Analyze according to the construction method of dynamic
pattern.

10.3.2. In the dynamic pattern matching method, the absolute pattern refers to
the pattern (�).
(a) Whose number of units used is determined.
(b) That can be realized with a fixed size template.
(c) That is determined in space.
(d) That is constant throughout the matching process.

[Hint] See the pattern example in Fig. 10.9.
10.3.3. Comparing absolute pattern and relative pattern, (�).

(a) The representation of absolute pattern is simpler than that of
relative pattern.

(b) The absolute pattern has more units than the relative pattern has.
(c) The absolute pattern and the relative pattern have the same

properties.
(d) The absolute pattern and relative pattern can have different pattern

radii.

[Hint] Analyze the difference between absolute pattern and relative
tern.pat
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10.4. Graph Theory and Graph Matching

10.4.1. In the geometric representation of the graph, (�).
(a) A graph with number of edges one can have an infinite number of

geometric representations.
(b) The graph with the number of vertices one can have an infinite

number of geometric representations.
(c) If edges a and b are adjacent, it indicates that edges a and b are

incident with vertex A.
(d) If vertices A and B are adjacent, it indicates that the edge e is

incident with the vertices A and B.

[Hint] Adjacent only involves any two edges or two vertices, and
the incident also considers a specific vertex or a specific edge.

10.4.2. Which of the following statement(s) about colored graphs is/are
wrong? (�).
(a) A graph is composed of two sets, and a colored graph is composed

of two sets.
(b) A graph is composed of two sets, and a colored graph is composed

of four sets.
(c) The number of edges in the colored graph is the same as the

chromaticity number of the edges.
(d) The number of vertices in the colored graph is the same as the

chromaticity number of the vertices.

[Hint] Different vertices can have the same color, and different
edges can also have the same color.

10.4.3. Which of the following statement(s) about the identity and isomor-
phism of graphs is/are correct? (�).
(a) The two graphs of identity have the same geometric

representation.
(b) The two graphs of isomorphism have the same geometric

representation.
(c) Two graphs with the same geometric representation are identical.
(d) Two graphs with the same geometric representation are

isomorphic.

[Hint] Analyze the difference between identities and isomorphism
and their relationship with geometric representations.

10.4.4. Which of the following statement(s) about graph isomorphism is/are
correct? (�).
(a) The graph isomorphism of two graphs indicates that the two

graphs have the same geometric representation.
(b) The sub-graph isomorphism of two graphs indicates that the two

graphs have the same geometric expression.
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Fig. 10.23 A line drawing
of a square

BA

C

(c) The sub-graph isomorphism of two graphs indicates that the two
graphs are isomorphic.

(d) The double-sub-graph isomorphism of the two sub-graphs indi-
cates that the two sub-graphs are isomorphic.

[Hint] Distinguish between isomorphism and geometric represen-
on, and distinguish between graphs and sub-graphs.tati

10.5. Line Drawing Signature and Matching

10.5.1. Some of the blades of the square in Fig. 10.23 have marks, and the
remaining marks are as follows: (�).
(a) A is %, B is ., and C is →.
(b) A is %, B is %, and C is ←.
(c) A is ., B is ., and C is ←.
(d) A is %, B is ., and C is ←.

[Hint] Pay attention to the agreement on the direction of the arrow.
10.5.2. For the object in Fig. 10.19a, if it is to be pasted on the left wall, it

should be as follows: (�).
(a) Figure 10.24a.
(b) Figure 10.24b.
(c) Figure 10.24c.
(d) Figure 10.24d.

[Hint] The concave creases should be on the same vertical plane.
10.5.3. When performing structural reasoning and labeling via backtracking,

the issues to be noted include: (�).
(a) Only one mark can be assigned to each edge of the line graph.
(b) Do not use the join types not shown in Fig. 10.21.
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Fig. 10.24 (a–d) Various line drawing objects

(c) Two graphs with the same geometric structure may have different
interpretations.

(d) Sort the vertices first, list all possible constraints for each vertex in
turn, and verify them one by one.

[Hint] Refer to the example in Table 10.2 for analysis.
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Chapter 11
Knowledge and Scene Interpretation

The high-level goal of computer vision is to achieve an understanding of the scene.
The understanding of visual scenes can be expressed as based on the visual percep-
tion of scene environment data, combined with various image technologies, mining
features, and patterns in visual data from different perspectives such as computa-
tional statistics, behavioral cognition, and semantics, so as to realize the effective
scene analysis and understanding. From a certain point of view, scene understanding
is based on the analysis of the scene to achieve the purpose of explaining the
semantic of the scene.

Scene interpretation needs to be based on existing knowledge and with the help
of reasoning. Knowledge is the result of previous human understanding of the
objective world and a summary of experience, which can guide the current knowing
and understanding of new changes in the objective world. The analysis of the scene
should be combined with high-level semantics, and the marking and classification of
scenes are both semantic interpretation-oriented scene analysis methods. In addition,
to explain the semantics of the scene, it is necessary to further reason/infer based on
the analysis results of the image data. Reasoning is the process of collecting
information, learning, and making decisions based on logic.

The high-level explanation of the scene is based on the analysis and semantic
description of the scene. This includes methods for fuzzy reasoning using fuzzy sets
and fuzzy operation concepts, methods for classifying scenes based on bag-of-words
models/feature package models, and probabilistic hidden semantic analysis models.

The sections of this chapter are arranged as follows:

Section 11.1 introduces the representation methods for scene knowledge and models
and discusses some problems in knowledge modeling.

Section 11.2 introduces the predicate logic and system, which is a well-organized
type of knowledge that is widely used in proposition representation and knowl-
edge inference. It specifically analyzes the predicate calculus rules and the basic
method of using theorem proof to reason.
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Section introduces the fuzzy logic principles and fuzzy operation rules required
for fuzzy inference. It also discusses the basic model of fuzzy inference, as well as
combination rules and de-fuzzification methods to help make decisions.

11.3
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Section 11.4 discusses two widely used models in scene classification: bag-of-words
model/bag-of-feature model and probabilistic latent semantic analysis model.

11.1 Scene Knowledge

The knowledge of the scene mainly includes the factual characteristics of the scenery
in the objective world. This kind of knowledge is generally limited to certain
determined scenes, and it can also be called a priori knowledge of the scene.
Common knowledge refers to this kind of knowledge.

11.1.1 Model

Scene knowledge is closely related to the model. On the one hand, knowledge is
often represented by models, so it is often referred to directly as models. On the other
hand, in practical applications, knowledge is often used to build models to help
restoring scenes and realizing the purpose of image understanding. For example, a
scene model can be built to describe the 3-D world with the help of objects and their
surfaces; a lighting model can be built to describe the intensity, color, position, and
range of the light source; a sensor model can be built to describe the optics of the
imaging device and geometric properties.

The word model reflects the fact that any natural phenomenon can only be
described to a certain degree (precision or accuracy). In the research of natural
sciences in seeking the simplest and most versatile description that can minimize
the deviation of observation facts, the use of models is a basic and effective principle.
However, one must be very careful when using the model, and even when the data
seems to be very consistent with the model assumptions, as there is no guarantee that
the model assumptions will always be correct. This is because it is possible to obtain
the same data based on different model assumptions.

Generally speaking, there are two issues to pay attention to when building a
model. An issue is called an overdetermined inverse problem, when a model is
described by only a few parameters but there are a lot of data to verify it. A common
example is fitting a straight line through a large number of data points. In this case, it
may not be possible to determine the exact solution of the straight line through all the
data points, but it is possible to determine the straight line that minimizes the total
distance from all the data points. In many cases, the reverse situation is encountered,
that is, too little data can be obtained. A typical example is to calculate the dense
motion vector of an image sequence, and another example is to calculate a depth map
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Fig. 11.1 (a, b) Get the surface orientation of the object with the help of geometric constraints (see text)

from a pair of stereo images. Mathematically speaking, this is an under-determined
problem, and it is necessary to increase the limited conditions to solve the problem.

In image understanding, models can be divided into 2-D model and 3-D model.
The 2-D model represents the characteristics of the image. The advantage is that it
can be directly used for the matching of images or image features. The disadvantage
is that it is not easy to fully represent the geometric characteristics of objects in 3-D
space and the connections between objects. They are generally only used when the
line of sight or object orientation is given. The 3-D model contains the characteristics
of the position and shape of the 3-D object in the scene and the relationship between
them, so it can be used in many different occasions. The problem with this flexibility
and versatility is that it is difficult to establish a matching connection between the
model and the scene description. In addition, the amount of calculation required to
build these models is often very large.

Commonly used 2-D models can be divided into two types: image models and
object models. The image model matches the description of the entire image with the
model of the scene. This is generally suitable for relatively simple scenes or images.
When there are multiple objects with uncertain interrelationships in the image, this
model is not suitable. This is because the 2-D model is the result of projection and
does not completely represent the geometric relationship of the actual 3-D space.
The object model only matches the description of the partial image with the model,
that is, a model must be prepared for each object and matched with the description of
the partial image to identify the object.

Scene knowledge is very important for image understanding. Scene knowledge
can help to give the only explanation of the scene in many cases, because the
conditions of the problem and the types of changes can often be determined
according to the model.

Example 11.1 Get the Orientation of the Object with the Help of Geometric
Constraints
As shown in Fig. 11.1a, two parallel lines on the 3-D space plane S are given.
Projecting them onto the image I by perspective projection, the result is still two
parallel lines, denoted as l1 and l2, respectively, and they have the same vanishing
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point P (see Sect. 8.4). Because each vanishing point corresponds to a point at
infinity on the plane S, all lines of sight passing through this point are parallel to S. If
the focal length of the camera is λ, the direction of the line of sight can be represented
by (x, y, -λ). Let the normal direction of the plane S be ( p, q, 1), while p and
q correspond to the gradient map of S. Because the sight direction vector and the
normal direction vector of S are orthogonal, their inner product is zero, that is,
xp + yq = λ, which can also be regarded as the linear equation of p and q.

Now consider Fig. 11.1b; suppose that a vanishing point P1 is determined by two
parallel lines. If it is known that there are two parallel lines on S, another vanishing
point P2 can be obtained. By solving the two linear equations together, p and q can
be determined, so as to finally determine the direction of the normal line.

It can be further proved that for any parallel line on S, their p and q are the same,
so their vanishing points are on the line connecting the above two points. Here,
because it is known that the two lines on the image are derived from parallel lines in
the scene (scene knowledge), the orientation of the object surface can be constrained.
Scene knowledge has the effect of limiting the types of changes.

11.1.2 Attribute Hypergraph

In order to understand the image, it is necessary to link the input image with
the scene knowledge. The representation of scene knowledge is closely related to
the representation of 3-D objects. The attribute hypergraph is a way to represent
the attributes of 3-D objects. In this representation, objects are represented in the
form of attribute pairs. An attribute pair is an ordered pair, which can be recorded as
(Ai, ai), where Ai is the attribute name and ai is the attribute value. An attribute set can
be represented as {(A1, a1), (A2, a2), . . ., (An, an)}. The entire attribute graph is
represented asG= [V, A], where V is a set of hyper nodes and A is a set of hyper arcs.
Each hyper node or hyper arc has an attribute set associated with it.

Example 11.2 Attribute Hypergraph Example
Figure 11.2 shows a tetrahedron and its attribute hypergraph. In Fig. 11.2a, the five
visible edge lines are represented by numbers 1–5, and the two visible surfaces S1

(a) (b)
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Fig. 11.2 (a) Tetrahedron, (b) Attribute hypergraph
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and S2 are represented by circled numbers 6 and 7, respectively (they also represent
the orientation of the surface). In the attribute hypergraph in Fig. 11.2b, the nodes
correspond to the edges and surfaces, the arcs correspond to the connections between
them, and the subscripts of the symbols correspond to the numbers of the edges and
surfaces.

The surface S1 can be represented by an attribute graph as

G1 = V1, A1

v {(type, line), (length, 10)}

½ �

v2 = {(type, line), (length, 10)}
v3 = {(type, line), (length, 9)}
v6 = {(type, circle), (radius, 1)}
a12 = {(type, connection), (line1, v1), (line2, v2), (angle, 54°)}
a13 = {(type, connection), (line1, v1), (line2, v3), (angle, 63°)}
a23 = {(type, connection), (line1, v2), (line2, v3), (angle, 63°)}

The surface S2 can be represented by an attribute graph as

G2 = V2, A2

v1 = {(type, line), (length, 10)}

½ �

v4 = {(type, line), (length, 8)}
v5 = {(type, line), (length, 12)}
v7 = {(type, circle), (radius, 1)}
a14 = {(type, connection), (line1, v1), (line2, v4), (angle, 41°)}
a15 = {(type, connection), (line1, v1), (line2, v5), (angle, 82°)}
a45 = {(type, connection), (line1, v4), (line2, v5), (angle, 57°)}

The attribute graphs G1 and G2 are both basic attribute graphs, which describe the
surfaces S1 and S2, respectively. In order to combine them to form a complete
description of the object, an attribute hypergraph can be used. In the attribute
hypergraph, each hyper node corresponds to a basic attribute graph, and each
hyper arc connects two basic attribute graphs corresponding to two hyper nodes.
The hyper arcs of the above attribute graphs G1 and G2 are

a11 = {(type, connection), (line1, v1)}
a25 = {(type, connection), (line1, v2), (line2, v5), (angle, 85°)}
a34 = {(type, connection), (line1, v3), (line2, v4), (angle, 56°)}

The attribute hypergraph obtained is shown in Fig. 11.2b, where the hyper node
set V = {G1, G2} and the hyper arc set A = {a11, a25, a34}.

For a scene with multiple objects, an attribute graph can be constructed for each
object first, and then they can be used as the hyper nodes of a higher layer of the
hypergraph to further construct the attribute hypergraph. By iterating in this way, an
attribute hypergraph of a complex scene can be constructed.
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The matching of attribute hypergraphs can be carried out with the help of graph
isomorphism (see Sect. 10.4).

11.1.3 Knowledge-Based Modeling

Starting from the existing knowledge of the 3-D world, the models of 3-D scenes and
objects can be built and stored in the computer as high-level knowledge. By
comparing and matching these models with the descriptions of 3-D scenes and
objects obtained through low-level image processing and analysis, the recognition
of 3-D objects and even the understanding of 3-D scenes can be realized.

In addition, the establishment of the model can also be gradually established
based on the image data obtained from the object. Such a modeling process is
essentially a learning process, and this process is more consistent with the human
cognitive process, because after seeing an object many times, people will abstract the
various features of the object. Thus, the description of the object is obtained and
stored in the brain for future use. It is worth pointing out here that learning means
thinking and purpose, and learning without purpose can only be counted as training.
In learning, the purpose is the learner’s purpose, and in training, the purpose is the
teacher’s purpose.

In some specific applications, especially in some object recognition applications,
it is not necessary to build a complete 3-D model; only the model can describe the
salient features of the object to be recognized and help identify the object is required.
But in the case of general scene interpretation, modeling is a complicated problem,
and there are two main difficulties:

1. The model should contain all the information of the scene. However, it is difficult
to obtain complete information. For example, it is difficult to obtain all the
information of a complex scene, especially when a part of the scene is occluded;
the information of occluded part needs often to be obtained from other sources. In
addition, people often use multi-level methods with different levels of abstraction
to describe and represent scenes based on specific situations. How to establish
these levels and obtain corresponding information often requires special methods.

2. The complexity of the model is also difficult to determine, and it is often
necessary to build a complex model for complex scenes. But if the model is too
complex, the model may not be practical even if enough information can be
obtained.

In modeling, the use of model knowledge or scene knowledge related to the
application domain is very important. In many practical applications, making full use
of prior knowledge is an important guarantee for solving the problem of image
understanding. For example, in many industrial designs, the object model is
established during the design process, and this structured knowledge can help greatly
simplify the processing of information. In recent years, systems based on
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Fig. 11.3 Example of a multi-level model

computer-aided design (CAD) models have been greatly developed, among which
the geometric model method is mainly used; see Sect. 9.5.

When establishing a scene model based on the geometric model method, the
following issues should be considered:

1. The objective world is composed of objects, and each object can be decomposed
into geometric elements at different levels, such as curved surfaces and lines of
intersection (using a boundary representation system) or basic unit (using a
constructive solid geometry representation system). The data structure of the
model should reflect these levels.

2. The representation of any geometric element must use a certain coordinate
system. For the convenience of representation, the coordinate system of each
level can be different. In this way, there should be information required for
coordinate conversion between every level of the model.

3. It is best to use the same data structure at the same level.
4. The representation of features by the model can be divided into two types: explicit

and implicit. For example, the explicit representation of the surface directly gives
the conditional equations that each point on the surface should satisfy. Since the
intersection of each surface can be calculated according to the equation of each
surface, it can be considered that the explicit representation of the surface is also
the implicit representation of the intersection of the surface. However, in practice,
in order to reduce online calculations, implicit features are often calculated and
stored in the model during modeling.

Example 11.3 Multi-Level Model Example
Figure 11.3 shows an example of a multi-level model, which is basically divided into
three levels:
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1. The world level is the highest level, corresponding to the 3-D environment or
scene.

2. The object level is the middle level, corresponding to each independent object
that composes the 3-D environment or scene.

3. The feature level is the lowest level, corresponding to the various basic elements
that make up the object. From a geometric point of view, the basic elements can
be divided into surfaces, edges, and points. The surface can be a plane or a curved
surface; an edge can be a curve or a straight line; a point can be a vertex or an
inflection point; etc. For various basic elements, sometimes they can be further
decomposed as needed to establish more basic and lower levels.

Each of the above levels can adopt its own data structure to indicate the
corresponding name, category, characteristics, coordinate system, etc.

11.2 Logic System

Predicate logic, also called first-order logic, has a history of hundreds of years. It is a
well-organized and widely used knowledge type. This type of knowledge is very
useful in representing propositions and introducing new facts with the help of fact
knowledge bases. One of the most powerful elements is predicate calculus. In most
cases, logic systems are based on first-order predicate calculus, which can represent
almost anything. First-order predicate calculus is a symbolic formal language (sym-
bol logic), which can be used to represent a wide range of numerical formulas or
statements in various natural languages and can also represent statements from
simple facts to complex representations. With the help of it, logical reasoning in
mathematics can be symbolized, knowledge can be represented by logical rules, and
these rules can be used to prove whether logical representations are valid or not. This
is a natural way of representing knowledge in the form of a formula. Its characteristic
is that it can represent knowledge accurately and flexibly (meaning that the method
of knowledge representation can be independent of the method of reasoning).

11.2.1 Predicate Calculation Rules

There are four basic elements of predicate calculus:

1. Predicate symbols: Generally represented by uppercase strings (including letters
and digits).

2. Function symbols: Generally, lowercase strings were used to represent functions
(symbols).

3. Variable symbols: Generally, lowercase characters were used to represent vari-
ables (symbols).
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Table 11.1 Example of predicate

Statement Predicate

Image I is a digital image DIGITAL(I )

Image J is a scan image SCAN(J )

Combine digital image I and scan image J COMBINE[DIGITAL(I ), SCAN(J )]

There is a pixel p in image I INSIDE( p, I )

Object x is behind object y BEHIND(x, y)

Table 11.2 Examples of clauses

Statement Predicate

Image I is a digital image and a scan image DIGITAL(I ) ^ SCAN(I )

Image I is a digital image or an analogue image DIGITAL(I ) _ ANALOGUE(I )

Image I is not a digital image ~DIGITAL(I )

If image I is a scan image; then image I is a digital image SCAN(I ) ) DIGITAL(I )

An image is either a digital image or an analogue image (8x)DIGITAL(x) _ ANALOGUE(x)

There is an object inside image (∃x)INSIDE(x, I )

4. Constant symbol: Also known as constant symbol, generally represented by
uppercase character string.

A predicate symbol indicates a relationship in the domain in question. For
example, the proposition “1 is less than 2” can be represented as LESSHAN(1, 2),
where LESSHAN is a predicate symbol and 1 and 2 are both constant symbols.

Example 11.4 Example of Basic Elements of Predicate Calculus
Table 11.1 gives some examples of the basic elements of predicate calculus. In these
examples, the predicate includes the predicate symbol and one or more of its vari-
ables. These variables can be constants or functions of other variables.

Predicates are also called atoms, and the atoms are combined with logical
conjunctions to get clauses. Commonly used logical conjunctions are “^” (AND),
“_” (OR), “~” (NOT), and “)” (IMPLIES). In addition, there are two quantifiers
that indicate quantity: “8” is called universal quantifier, 8x represents all x, “∃” is
called existential quantifier, and ∃x represents the existence of an x. For logical
representations, the representations obtained by connecting other representations
with ^ or _ are called conjunctive representations or disjunctive representations,
respectively. Legal predicate calculus representations are called well-formed for-
mulas (WFFs).

Example 11.5 Use Logical Conjunctions to Combine Atoms to Get Clauses
Table 11.2 gives examples of using logical conjunctions to combine atoms to obtain
clauses. The first four examples are related to constant symbols, and the last two
examples also include variable symbols.

Logical representations can be divided into two categories. If a logical represen-
tation is in the form of (8x1 x2 . . . xk)[A1 ^ A2 ^ . . . ^ An ) B1 _ B2 _ . . . _ Bm],
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Table 11.3 The truth table of
logical connector

~A

where A and B are atoms, then it is said to follow the clausal form syntax. The left
and right parts of a clause are, respectively, called the condition and conclusion of
the clause. If a logical representation includes atoms, logical conjunctions, existen-
tial quantifiers, and universal quantifiers, then it is said that the representation
follows the non-clausal form syntax.

Now consider the proposition: For each x, if x represents an image and a digit,
then x is either black and white or colored. In clause syntax, this proposition can be
written as the following representation:

8xð Þ IMAGE xð Þ ^ DIGITAL xð Þ ) GRAY xð Þ _ COLOR xð Þ½ 11:1Þ

In non-clause syntax, this proposition can be written as the following
representation:

8xð Þ IMAGE xð Þ ^ DIGITAL xð Þ _ GRAY xð Þ _ COLOR xð Þ½ 11:2Þ

It is easy to verify that the above two representations are equivalent or that the
above two representations have the same representative ability (it can use the truth
table of the logical connector in Table 11.3 to prove). In fact, it is always possible to
switch from clause form to non-clause form, or vice versa.

Table 11.3 shows the relationship between the aforementioned logical connec-
tors. The first five columns are the basic logic operations, and the sixth column is the
implicit operation. For an implicit operation, the left part is called the antecedent,
and the right part is called the consequent. If the antecedent is empty, the represen-
tation “)P” can be regarded as representing P; conversely, if the consequent is
empty, the representation “P)” represents the negation of P, that is, “~P.”
Table 11.3 indicates that if the consequent is T (regardless of the antecedent at this
time) or the antecedent is F (regardless of the consequent at this time), then the
implicit value is T; otherwise, the implicit value is F. In the above definition, for an
implicit operation, as long as the antecedent is F, the implicit value is T. This
definition often creates confusion and leads to strange propositions. For example,
consider a meaningless statement: “If the image is round, then all objects are green.”
Because the antecedent is F, the representation result of the predicate calculus of the
statement will be T, but it is obviously not true here. However, in practice, consid-
ering that logically implicit operations in natural languages do not always make
sense, the above problems do not always arise.
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Table 11.4 Some important
equivalent relations

Relation Definition

Basic logic ~(~A) , A

A _ B , ~A ) B

A ) B , ~B ) ~A

De Morgan’s law ~(A ^ B) , ~A _ ~B

~(A _ B) , ~A ^ ~B

Distribution law A ^ (B _ C) , (A ^ B) _ (A ^ C)

A _ (B ^ C) , (A _ B) ^ (A _ C)

Commutative law A ^ B , B ^ A

A _ B , B _ A

Associative law (A ^ B) ^ C , A ^ (B ^ C)

(A _ B) _ C , A _ (B _ C)

Others ~(8x)P(x) , (∃x)[~P(x)]

~(∃x)P(x) , (8x)[~P(x)]

Example 11.6 Logical Representation Example
The following examples of logical representations can help explain the concepts
discussed earlier.

1. If the image is digital, then it has discrete pixels:

DIGITAL imageð Þ ) DISCRETE xð Þ

2. All digital images have discrete pixels:

8xð Þ IMAGE xð ÞDIGITAL xð Þ½ � ) ∃yð Þ PIXEL IN y, xð Þ ^ DISCRETE yð Þ½f

The representation reads: For all x, x is an image and digital, then there is
always y, y is the pixel in x, and it is discrete.

3. Not all images are digital:

8xð Þ IMAGE xð Þ½ � ) ∃yð Þ IMAGE yð Þ^ � DIGITAL yð Þ½

The representation reads: For all x, if x is an image, then there is y, and y is an
image, but not a digital.

4. Color digital images carry more information than monochrome digital images:

8xð Þ 8yð Þ IMAGE xð Þ ^ DIGITAL xð Þ ^ COLOR xð Þ½f
^ IMAGE yð Þ ^ DIGITAL yð Þ ^MONOCHROME yð Þ½ MOREINFO x, yð Þg

The representation reads: For all x and all y, if x is a color digital image and y is
a monochrome digital image, then x carries more information than y.

Table 11.4 gives some important equivalent relations (here , stands for equiv-
alence), which can help realize the conversion between clause form and non-clause
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form. The rationality of these equivalent relations can be verified with the help of the
truth table of logical connectors in Table 11.3.

11.2.2 Inference by Theorem Proving

In predicate logic, the rules of inference can be applied to certain WFFs and sets of
WFFs to generate new WFFs. Table 11.5 gives some examples of inference rules
(W stands for WFFs). In the table, c is a constant symbol. The general statement
“infer G from F” indicates F ) G is always true, so G can replace F in logical
representations.

Inference rules can generate “derived WFFs” from given WFFs. In predicate
calculus, “derived WFFs are called theorems,” and in the derivation, the sequential
application of inference rules constitutes the proof of the theorem. Many work of
image understanding can be represented in the form of theorem proving through
predicate calculus. In this way, a set of known facts and some rules of inference can
be used to obtain new facts or prove the rationality (correctness) of the hypothesis.

In predicate calculus, two basic methods can be used to prove the correctness of
logical representations: the first is to use a process similar to proving mathematical
representations to directly operate on non-clause forms, and the second is to match
item in the form of a clause in a representation.

Example 11.7 Prove the Correctness of Logical Representations
Suppose the following facts are known: (1) There is a pixel p in the image I; (2) the
image I is a digital image. Also suppose the following “physics” law holds: (3) If the
image is digital, then its pixels are discrete. Both aforementioned facts (1) and
(2) vary with the application problem, but condition (3) is knowledge that has
nothing to do with the application.

The above two facts can be written as INSIDE( p, I ) and DIGITAL(I ). According
to the description of the problem, the above two facts are connected by the logical
conjunction ^, namely, INSIDE( p, I ) ^ DIGITAL(I ). The law of “physics”
represented in clauses (i.e., condition (3)) is (8x, y)[INSIDE(x, y) ^ DIGITAL
( y) ) DISCRETE(x)].

Now use clause representation to prove that the pixel p is indeed discrete. The
idea of proof is to first prove that the nonconformity of the clause is inconsistent with
the fact, so that it can show that the clause to be proved is valid. According to the

Table 11.5 Example of inference rules

Inference rule Definition

Modus ponens From W1 ^ (W1 ) W2) deduce W2

Modus tollens From ~W2 ^ (~W1 ) W2) deduce W1

Projection From W1 ^ W2 deduce W1

Universal specialization From (8x)W(x) deduce W(c)
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previous definition, the knowledge about this problem can be represented in the form
of the following clauses:

1. )INSIDE( p, I )
2. )DIGITAL(I )
3. (8x, y)[DIGITAL( y) ) DISCRETE(x)]
4. DISCRETE( p))

Note that the negation of the predicate DISCRETE( p) can be represented as
DISCRETE( p)).

After representing the basic elements of the problem in clause form, the empty
clause can be achieved by matching the left and right sides of each implicit
representation, thereby using the contradiction that arises to obtain proof. The
matching process relies on variable substitution to make the atoms equal. After
matching, one can get a clause called resolvent, which contains the left and right
sides that do not match. If one replaces y with I and replaces x with p, the left side of
(3) matches the right side of (2), so the resolvent is

5. )DISCRETE( p)

However, because the left side of (4) and the right side of (5) are congruent, the
solution of (4) and (5) is an empty clause. This result is contradictory. It shows that
DISCRETE( p)) cannot be established, which proves the correctness of DIS-
CRETE( p).

Now use non-clause representation to prove that the pixel p is indeed discrete.
First, according to the relationship introduced in Table 11.4, ~A ) B , A _ B,
condition (3) is converted into a non-clause form, namely, (8x, y)[~INSIDE
(x, y) ^ ~DIGITAL( y) _ DISCRETE(x)].

The following use a modus ponens form to represent the knowledge about this
problem:

1. (8x, y)[INSIDE(x, y) ^ DIGITAL( y)] ^ [~INSIDE(x, y) ^ ~DIGITAL( y) _ DIS-
CRETE(x)]

Replace y with I and x with p to get
2. [INSIDE( p, I ) ^ DIGITAL(I )] ^ [~INSIDE( p, I ) ^ ~DIGITAL(I ) _ DIS-

CRETE(p)]
Using projection rules, it can deduce

3. INSIDE( p, I ) ^ [~INSIDE( p, I ) _ DISCRETE( p)]
Then, use the distribution law to get A ^ (~A _ B) = (A ^ B). This gives a

simplified representation:
4. INSIDE( p, I ) ^ DISCRETE( p)

Using the projection rule again, it gets
5. DISCRETE( p).

This proves that the original representation in (1) is completely equivalent to the
representation in (5). In other words, in this way, the conclusion that the pixel p is
discrete is inferred or deduced based on the given information.
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A basic conclusion of predicate calculus is that all theorems can be proved in a
finite time. People have already proposed an inference rule called resolution to
prove this conclusion. The basic step of this analysis rule is to first represent the
basic elements of the problem in the form of clauses, and then seek the antecedent
and consequent of the implicit representation that can be matched, and then match
by substituting variables to make the atoms equal. The clause (called the resol-
vent) obtained after matching includes the left and right sides that do not match.
The proof of the theorem is now transformed into a clause to be solved to produce
an empty clause, and the empty clause gives contradictory results. From the point
of view that all correct theorems can be proved, this resolution rule is complete;
from the point of view that all wrong theorems are impossible to prove, this
resolution rule is correct.

Example 11.8 Interpret the Image Based on the Knowledge Base Solution
Suppose that the knowledge base in an aerial image interpretation system has the
following information: (1) There are runways in all commercial airport images.
(2) There are planes in all commercial airport images. (3) There are buildings in
all commercial airport images. (4) In a commercial airport, at least one of the
buildings is the terminal building. (5) The building surrounded by and pointed by
the airplanes is the terminal building. This information can be put into a “model” of a
commercial airport in the form of clauses:

8xð Þ CONTAINS x, runwaysð Þ ^ CONTAINS x, airplanesð Þ½
^CONTAINS x, buildingsð Þ ^ POINT�TOðairplanes; buildingsÞ�

) COM� AIRPORT xð Þ

Note that the information in (4) is not directly used in the model, but its meaning
is implicit in the two conditions that the building and the airplanes point to the
building in the model; condition (5) clearly indicates what kind of building is the
terminal building.

Suppose there is an aerial image and a recognition engine can distinguish
different objects in the aerial image. From the perspective of image interpretation,
two types of questions can be asked:

1. What kind of image is this?
2. Is this an image of a commercial airport?

Under normal circumstances, the first question cannot be answered with current
technology. The second question is generally more difficult to answer, but it will
become easier if the scope of the discussion is narrowed. Specifically, the model-
driven approach shown above has obvious advantages, and it can be used to guide
the work of the recognition engine. In this example, the recognition engine should be
able to recognize three types of objects, namely, runways, airplanes, and buildings.
If, as is common, the height of the acquired image is known, the task of finding the
object can be further simplified, because the relative scale of the object can be used to
guide the recognition process.
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The recognizer that works according to the above model will have the following
output: CONTAINS(image, runway), CONTAINS(image, airplanes), CONTAINS
(image, buildings). On the basis of object recognition, the authenticity of the clause
POINT-TO(airplanes, buildings) can be further judged. If the clause is false,
the process stops; if the clause is true, the process will continue to determine whether
the given image is an image of a commercial airport by judging the correctness of the
clause COM-AIRPORT(image).

If one wants to use the method of analyzing and proving theorem to solve the
above problem, one can start to work according to the following four pieces of
information obtained from the image: (1) )CONTAINS(image, runway);
(2) )CONTAINS(image, airplanes); (3) )CONTAINS(image, buildings); and
(4) )POINT-TO(airplanes, buildings). The negation of the clause to be proved
here is (5) COM-AIRPORT(image)). First notice that if the x is replaced with
image, one of the clauses on the left side of the model will match the right side of (1).
The resolvent is

CONTAINSðimage; airplanesÞ ^ CONTAINSðimage; buildingsÞ ^ POINT½
� TOðairplanes; buildingsÞ�
) COM� AIRPORTðimageÞ

Similarly, one of the clauses on the left side of the above resolvent will match the
right side of (2), and the new resolvent is

CONTAINS image, buildingsð Þ ^ POINT‐TO airplanes, buildingsð½
) COM‐AIRPORT imageð Þ

Next, the resolvent obtained by using (3) and (4) is )COM-AIRPORT(image).
Finally, the resolvent of this result and (5) give an empty clause (the right side of

the resolvent is the same as the left side of (5)), which creates a contradiction. This
proves the correctness of COM-AIRPORT(image), which means that the given
image is indeed an image of a commercial airport (it matches the model of the
commercial airport).

11.3 Fuzzy Reasoning

Fuzzy is a concept often opposed to clarity or crisp. In daily life, many vague things
are often encountered, without clear quantitative or quantitative boundaries, which
need to use some vague words and sentences to describe. Using fuzzy concepts can
represent a variety of loose, uncertain, and imprecise knowledge and information
(e.g., fuzzy mathematics uses uncertain things as its research objects) and can even
represent knowledge that is obtained from conflicting sources. Determinants or
modifiers similar to those in human language can be used here, such as high gray
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scale, medium gray scale, low gray scale, etc., to form a fuzzy set to represent and
describe related image knowledge. Based on the representation of knowledge,
further reasoning can be carried out. Fuzzy reasoning needs to be carried out with
the help of fuzzy logic and fuzzy operations.

11.3.1 Fuzzy Sets and Fuzzy Operations

A fuzzy set S in fuzzy space X is a set of ordered pairs:

S= x½ , MS xð Þ�jx 2 Xf g ð11:3Þ

where the membership function MS(x) represents the membership degree of x in S.
The value of the membership function is always a nonnegative real number,

usually limited to [0, 1]. Fuzzy sets can often be uniquely described by their
membership functions. Figure 11.4 shows several examples of using exact set and
fuzzy set to represent the gray level as “dark,” where the horizontal axis corresponds
to the image gray level x, for the fuzzy set is the definition domain of its membership
function MS(x). Figure 11.4a is described by the exact set, and the result given is
binary (less than 127 is completely “dark,” and greater than 127 is not “dark” at all).
Figure 11.4b is a typical fuzzy set membership function, from 0 to 255 along the
horizontal axis, its membership degree along the vertical axis from 1 (corresponding
to a gray level of 0, completely belonging to the “dark” fuzzy set) to 0 (corresponding
to a gray scale of 255, which is not part of the “dark” fuzzy set at all). The gradual
transition in the middle shows that the x between them is partly “dark” and partly not
“dark.” Figure 11.4c gives an example of a non-linear membership function, which
is somewhat like the combination of Fig. 11.4a, b, but still represents a fuzzy set.

The operation on fuzzy sets can be carried out with the help of fuzzy logic
operations. Fuzzy logic is a science based on multivalued logic that uses fuzzy
sets to study fuzzy thinking, language forms, and their laws. Fuzzy logic operations
have names similar to general logic operations but define different operations. Let
MA(x) and MB( y) denote the membership functions corresponding to fuzzy sets
A and B, and their domains are X and Y, respectively. The fuzzy intersection

(a) (b) (c)

1

0 255 x

M (x)

127

1

0 255 x

M (x)

1

0 255 x

M (x)

127

Fig. 11.4 Schematic representation of exact set (a) and fuzzy set (b, c)
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(a) VD (b) VVD (c) SD (d) NVD

1
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M (x)

x

1
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M (x)
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M (x)

1
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Fig. 11.5 (a–d) Some calculation results of the original fuzzy set D in Fig. 11.4b

operation, fuzzy union operation, and fuzzy complement operation can be defined
point by point as follows:

Intersection A \ B : MA\B x, yð Þ= min MA xð Þ, MB yð Þ½ �
Union A [ B : MA[B x, yð Þ= max MA xð Þ, MB yð Þ½ �

ComplementAc : MAc xð Þ= 1-MA xð Þ
ð11:4Þ

The operation on the fuzzy set can also be carried out by changing the shape of the
fuzzy membership function point by point with the help of general algebraic
operations. Assuming that the membership function in Fig. 11.4b represents a
fuzzy set D (dark), then the membership function of the enhanced fuzzy set VD
(very dark) is shown in Fig. 11.5a.

MVD xð Þ=MD xð Þ •MD xð Þ=M2
D xð Þ ð11:5Þ

This type of operation can be repeated. For example, the membership function of
the fuzzy set VVD (very very dark) is shown in Fig. 11.5b.

MVVD xð Þ=M2
D xð Þ •M2

D xð Þ=M4
D xð Þ ð11:6Þ

On the other hand, it can also define a weakened fuzzy set SD (somewhat dark),
and its membership function is shown in Fig. 11.5c.

MSD xð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
MD xð Þ

p
ð11:7Þ

Logic operations and algebraic operations can also be combined. For example,
the complement of the enhanced fuzzy set VD, that is, the membership function of
the fuzzy set NVD (not very dark), is shown in Fig. 11.5d.

MNVD xð Þ= 1-M2
D xð Þ ð11:8Þ

Here NVD can be regarded as N[V(D)], that is, MD(x) corresponds to D, MD
2(x)

corresponds to V(D), and 1 - MD
2(x) corresponds to N[V(D)].
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11.3.2 Fuzzy Reasoning Method

In fuzzy reasoning, the information in each fuzzy set must be combined with certain
rules to make a decision.

11.3.2.1 Basic Model

The basic model and main steps of fuzzy reasoning are shown in Fig. 11.6. Starting
from the fuzzy rules, determining the basic relationship of membership in the related
membership function is called combination, and the result of using fuzzy composi-
tion is a fuzzy solution space. In order to make a decision based on the solution
space, there must be a process of de-fuzzification.

Fuzzy rules refer to a series of unconditional and conditional propositions. The
form of the unconditional fuzzy rule is

x is A ð11:9Þ

The form of conditional fuzzy rule is

if x is A then y is B ð11:10Þ

where A and B are fuzzy sets, while x and y represent scalars in their corresponding
domains.

The degree of membership corresponding to the unconditional fuzzy rule is
MA(x). Unconditional fuzzy rules are used to limit the solution space or define a
default solution space. Since these rules are unconditional, they can directly act on
the solution space with the help of the operation of fuzzy sets.

Now consider conditional fuzzy rules. Among the various existing methods for
realizing decision-making, the simplest is monotonic fuzzy reasoning, which can
directly obtain the solution without using the fuzzy combination and de-fuzzification
described below. For example, let x represent the illuminance value of the outside
world and y represent the gray value of the image; then the fuzzy rule representing
the high-low degree of the image grayscale is as follows: if x is DARK, then
y is LOW.

Figure 11.7 shows the principle of monotonic fuzzy reasoning. Assume that
according to the determined external illuminance value (where x = 0.3), the mem-
bership value MD(0.3) = 0.4 can be obtained. If one uses this value to represent the

De-

fuzzification

Fuzzy 

composition
Solution spaceFuzzy rule Decision

Fig. 11.6 Model and steps for fuzzy reasoning
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Fig. 11.7 Monotonic fuzzy reasoning based on a single fuzzy rule
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Fig. 11.8 Fuzzy min-max combination using minimum correlation

membership valueML( y) =MD(x), one can get the expected gray level of the image
to be y = 110 (range 0–255), which is at lower range.

11.3.2.2 Fuzzy Combination

Knowledge related to the decision-making process is often contained in more than
one fuzzy rule. But not every fuzzy rule has the same contribution to decision-
making. There are different combining mechanisms that can be used to combine
rules; the most commonly used is the min-max rule.

In the min-max combination, a series of minimization and maximization pro-
cesses are used. Refer to Fig. 11.8; first use the minimum value of the predicted true
value, also called the correlation minimum MA(x), to define the membership
function MB( y) of the fuzzy result. Then, update the membership function of the
fuzzy result point by point to get the fuzzy membership function

M yð Þ= min MA xð Þ, MB yð Þf g ð11:11Þ

If there are N rules, do this for each rule (two rules are taken as an example in the
figure). Finally, the fuzzy membership function of the solution is obtained by
maximizing the minimized fuzzy set point by point:
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Fig. 11.9 Fuzzy min-max combination using correlation products

Fig. 11.10 (a, b) Two
methods of de-fuzzification
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MS yð Þ= max
n

Mn yð Þf g ð11:12Þ

Another method is called correlation product, which scales the original result
fuzzy membership function instead of truncating it. The minimum correlation
calculation is simple, and the de-fuzzification is simple, while the correlation product
can maintain the shape of the original fuzzy set (see Fig. 11.9).

11.3.2.3 De-fuzzification

Fuzzy combination gives a fuzzy membership function of a single solution for each
solution variable. In order to determine the exact solution for decision-making, it is
necessary to determine a vector containing multiple scalars (each scalar corresponds
to a solution variable) that can best represent the information in the fuzzy solution
set. This process is performed independently for each solution variable and is called
de-fuzzification. Two commonly used de-fuzzification methods are composite
moment method and composite maximum method.

The composite moment method first determines the center of gravity c of the
membership function of the fuzzy solution and transforms the fuzzy solution into a
clear solution c, as shown in Fig. 11.10a. The composite maximum method
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determines the domain point with the maximum membership value in the member-
ship function of the fuzzy solution. If the maximum value is on a platform, the center
of the platform gives a clear solution d, as shown in Fig. 11.10b. The result of the
composite moment method is sensitive to all rules (take a weighted average), while
the result of the composite maximum method depends on the single rule with the
highest predicted true value. The composite moment method is often used in control
applications, and the composite maximum method is often used in identification
applications.

11.4 Scene Classification

Scene classification is to determine various specific regions (including position,
relationship, attribute/property, etc.) in the image based on the principle of visual
perception organization and give the semantic and conceptual explanation of the
scene. Its specific means and goal are to automatically classify and label images
according to a given set of semantic categories and provide effective contextual
information for object recognition and interpretation of the scene content.

Scene classification is related to but different from object recognition. On the one
hand, there are often many types of objects in a scene. To achieve scene classifica-
tion, it is often necessary to recognize some of these objects (but generally it is not
necessary to recognize all objects). On the other hand, in many cases, only a certain
understanding of the object is needed for classification (e.g., in some cases, only the
underlying information, such as color, texture, etc., can meet the classification
requirements). With reference to the human visual cognition process, the preliminary
object recognition can often meet the specific classification requirements of the
scene. At this time, the connection between the low-level features and the high-
level cognition must be established to determine and explain the semantic category
of the scene.

The classified scene has a certain guiding effect on object recognition. In the
nature world, most objects only appear in specific scenes. The correct judgment of
the global scene can provide a reasonable context constraint mechanism for the local
analysis of the image (including object recognition).

11.4.1 Bag-of-Words/Feature Model

The bag-of-words model or bag-of-features model is derived from the processing
of natural language, and it is often called the bag-of-features model after it is
introduced into the image domain. The bag-of-features model is named after the
category features belong to the same object group to form a bag. The model usually
adopts a directed graph structure (the relationship between the undirected graph
nodes is a probability constraint relationship, while the relationship between the
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directed graph nodes is a causal relationship; and an undirected graph can be
regarded as a special kind of directed graph, symmetric directed graph). The
conditional independence between the image and the visual vocabulary in the bag-
of-features model is the theoretical basis of the model, but there is no strict geometric
information about the object component in the model.

The original bag-of-words model only considers the symbiotic relationship and
the topic logical relationship between the features corresponding to the words and
ignores the spatial relationship between the features. In the image field, not only the
image features themselves but also the spatial distributions of image features are also
very important. In recent years, many local feature descriptors (such as SIFT; see
Sect. 6.3) have relatively high dimensionality, which can more comprehensively and
explicitly represent the special properties of key points in the image and the small
region around it (different from the corner points representing only position infor-
mation while keeping the nature of itself implicitly represented), and are obviously
different from other key points and the small regions around them. Moreover, these
feature descriptors can overlap and cover each other in the image space, so that the
nature of the relationship can be better preserved. The use of these feature descriptors
improves the ability to describe the spatial distribution of image features.

Representing and describing the scene with the bag-of-features model requires
extracting local region description features from the scene, which can be called
visual vocabulary. The scene has some basic components, so the scene can be
decomposed. Applying the concept of a document, a book is composed of many
words. Returning to the image domain, it can be considered that the image of the
scene is composed of many visual words. From a cognitive perspective, each visual
word corresponds to a feature (more precisely, a feature that describes the local
characteristics of a scene) in the image, which is a basic unit that reflects the content
of the image or the meaning of the scene. Constructing a collection of visual words
(visual vocabulary) to represent and describe the scene can include the following
aspects: (1) extracting features; (2) learning visual vocabulary; (3) obtaining quan-
tified features of visual vocabulary; and (4) using the frequency of visual vocabulary
to represent images.

A specific example is shown in Fig. 11.11. First, perform region (the neighbor-
hood of key points) detection on the image, and divide and extract regions of
different categories (see Fig. 11.11a, where the regions take small squares for ease
of use); then calculate the feature vector for each region to represent the region, as
shown in Fig. 11.11b; next quantize the feature vector to obtain visual words and
build a codebook, as shown in Fig. 11.11c; and finally count the occurrence
frequency of specific words in each region image. Here several examples of using
histograms are shown in Fig. 11.11d–f. Combining them together can give the
representation of the whole image.

After the image is divided into multiple subregions, each subregion can be given a
semantic concept, that is, each subregion is used as a visual unit to make it have a
unique semantic meaning. Since similar scenes should have similar concept collec-
tions and distributions, scenes can be divided into specific semantic categories based
on the regional distribution of semantic concepts. If semantic concepts can be
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(a) (b) (c)

(d) (e) (f)

Fig. 11.11 (a–f) The process of obtaining the description features of the local region in the image
(see text)

connected with visual vocabulary, then the classification of scenes can be carried out
with the help of vocabulary representation and description models.

Visual vocabulary can directly represent the object or only represent the middle-
level concepts in the neighborhood of key points. The former needs to detect or
segment the object in the scene and further classify the scene by classifying the
object. For example, if the sky is detected, the image should be outdoor. The latter
does not need to segment the object directly, but uses the local descriptor obtained by
training to determine the label of the scene. There are generally three steps:

1. Feature point detection: Commonly used methods include image grid method and
Gaussian difference method. The former divides the image according to the grid
and takes the center of the grid to determine the feature points. The latter uses the
difference of Gaussian (DoG) operator (see Sect. 6.3) to detect local features of
interest, such as corner points.

2. Feature representation and description: Use the nature of the feature point itself
and the nature of the neighborhood to carry out. In recent years, the Scale
Invariant Feature Transformation (SIFT) operator (see Sect. 6.3) is often
used, which actually combines feature point detection and feature representation
and description.

3. Generate dictionary: Cluster local description results (such as using K-means
clustering method), and take cluster centers to form a dictionary.

Example 11.9 Visual Vocabulary
In practice, the selection of the local region can be done with the help of the SIFT
local descriptor. The selected local region is a circular region with key points as the
center and has some invariant characteristics, as shown in Fig. 11.12a. The
constructed visual vocabulary is shown in Fig. 11.12b, where each sub-image
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(a) (b) (c)

[a1 a2 a3 a4 a5 …]T

[b1 b2 b3 b4 b5 …]T

[c1 c2 c3 c4 c5 …]T

[d1 d2 d3 d4 d5 …]T

Fig. 11.12 (a–c) Obtaining visual vocabulary with the help of SIFT local descriptors (see text)

represents a basic visual word (a key point feature cluster), and can be represented by
a vector, as shown in Fig. 11.12c. The visual word dictionary can be used to
represent the original image with a combination of visual words, and the frequency
of use of various visual words reflects the characteristics of the image.

In the actual application process, firstly represent the image with visual vocabu-
lary through feature detection operators and feature descriptors, form the parameter
estimation and probabilistic reasoning of the visual vocabulary model, obtain
parameter iteration formulas and probabilistic analysis results, and finally carry out
the analysis and explanation of the trained model.

Bayesian correlation models are most commonly used in modeling; typical
models include probabilistic latent semantic analysis (pLSA) model and latent
Dirichlet allocation (LDA) model. According to the framework of the bag-of-
features model, the image is regarded as text, and the topics found in the image
are regarded as object classes (such as classrooms, sports fields); then a scene
containing multiple objects is regarded as a composition of probabilistic models
constructed by mixing a set of topics, which can be divided into semantic categories
by analyzing the distribution of scene topics.

11.4.2 pLSA Model

The probabilistic latent semantic analysis (pLSA) model is derived from the Prob-
abilistic Latent Semantic Index (pLSI), which is a graph model established to solve
the classification of objects and scenes. This model was originally used for learning
natural language and text. Its original noun definitions all used concepts in the text,
but it is also easy to generalize to the image field (especially with the help of the
framework of the bag-of-features model).
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11.4.2.1 Model Description

Suppose there is an image set T= {ti}; i= 1, . . ., N, N is the total number of images;
the visual words contained in T come from the word set, i.e., dictionary (visual
vocabulary) S = {sj}; j = 1, . . ., M, M is the total number of words; a statistical
co-occurrence matrix P of size N × M can be used to describe the properties of the
image set; each element pij = p(ti, sj) in the matrix indicates that the frequency of
word sj appears in the image ti. The matrix is actually a sparse matrix.

The pLSA model uses a latent variable model to describe the data in the
co-occurrence matrix. It associates each observation (the word sj appears in the
image ti) with a latent variable (called a topic variable) z 2 Z = {zk}, k = 1, . . ., K.
Use p(ti) to represent the probability of the word appearing in the image ti, p(zk|ti) to
represent the probability that the topic zk appears in the image ti (i.e., the probability
distribution of the image in the topic space) and p(sj|zk) to represent the probability
that the word sj appears under a specific topic zk (i.e., the topic probability distribu-
tion in the dictionary); then by selecting an image ti with a probability of p(ti) and a
topic with a probability of p(zk|ti), one can generate the word sj with a probability of
p(sj|zk). In this way, the conditional probability model based on the topic and word
co-occurrence matrix can be defined as

p sjjti
� �

=
XK

k= 1

p sjjzk
� �

p zkjtið Þ ð11:13Þ

That is, the words in each image can be mixed by K latent topic variables p(sj|zk)
according to the coefficient p(zk|ti). In this way, the elements of the co-occurrence
matrix P are

p ti, sj
� �

= p tið Þp sjjti
� � ð11:14Þ

The graph representation of the pLSA model is shown in Fig. 11.13, where the
boxes represent collections (large boxes represent image collections, and small
boxes represent repeated selection of topics and words in images); arrows represent
the dependencies between nodes; and nodes are a random variable—the left obser-
vation node t (shaded) corresponds to the image, the right observation node

Object   classes

St

 

p(s| z)p(t)
t z s

p(z | t )

Image Vocabulary

{Cap, Ear, Hair, Eye, Nose, Mouth, …}

T

Fig. 11.13 Schematic diagram of pLSA model
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Fig. 11.14 Decomposition of the co-occurrence matrix

s (shaded) corresponds to the visual vocabulary described by the descriptor, and the
middle node z is the (unobserved) latent node that indicates the object category
corresponding to the image pixel, that is, the topic. The model is to establish the
probability mapping relationship between the topic z and the image t and the visual
vocabulary s through training and to select the category corresponding to the
maximum posterior probability as the final classification decision result.

The goal of the pLSA model is to search for the vocabulary distribution proba-
bility p(sj|zk) under a specific topic zk and the corresponding mixing ratio p(zk|ti) in
the specific image, so as to obtain the vocabulary distribution p(sj|ti) in the specific
image. Equation (11.13) represents each image as a convex combination of K topic
vectors, which can be illustrated by matrix operations, as shown in Fig. 11.14.
Among them, each column in the left matrix represents a visual vocabulary in a
given image, each column in the middle matrix represents a visual vocabulary in a
given topic, and each column in the right matrix represents a topic (object category)
in a given image.

11.4.2.2 Model Calculation

Here it is necessary to determine the topic vector common to all images and
the special mixing ratio coefficient for each image. The purpose is to determine
the model with high probability for the words appearing in the image, so that the
category corresponding to the maximum posterior probability can be selected as the
final object category. This can be achieved by optimizing the following objective
function to obtain the maximum likelihood estimation of the parameters:

L=
YM

j= 1

YN

i= 1

p sjjti
� �p sj, tið Þ ð11:15Þ

The maximum likelihood estimation of the latent variable model can be calcu-
lated using the maximum expectation or expectation maximization (EM) algo-
rithm. The EM algorithm is an algorithm for finding the maximum likelihood
estimation or maximum a posteriori estimation of parameters in a probability
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model (depending on unobservable latent variables) in statistical calculations. It is an
iterative technique that estimates unknown variables when a part of the relevant
variables is known. The algorithm has two alternate iterative calculation steps:

1. Calculate expectation (E step), that is, use the existing estimated value of the
latent variable to calculate its maximum likelihood estimation.

2. Maximize (M step), that is, to estimate the value of the required parameter on the
basis of the obtained maximum likelihood value in E step, and the obtained
parameter estimation value is used in the next E step.

Here, the E step is to calculate the posterior probability of the latent variable on
the basis of the known parameter estimation, which can be represented as
(by Bayesian formula)

p zkjti, sj
� �

=
p sjjzk
� �

p zkjtið Þ
PK

l= 1p sjjzl
� �

p zljtið Þ ð11:16Þ

The M step is to maximize the likelihood of the completely expected data in the
posterior probability obtained from the E step, and its iterative formula is

p sjjzk
� �

=

PN
i= 1p sjjzk

� �
p zkjtið Þ

PK
l= 1p sjjzl

� �
p zljtið Þ ð11:17Þ

The formulas of the E step and the M step are operated alternately until the
termination condition is met. The final decision on the category can be made with the
help of the following formula:

z� = argmax
z

p zjtð Þf g ð11:18Þ

11.4.2.3 Model Application Example

Consider an image classification problem based on emotional semantics. The image
contains not only the intuitive scene information but also various emotional semantic
information. In addition to representing the scenery, state, and environment of the
objective world, it can also bring strong emotional reactions to people. Different
emotion categories can generally be represented by adjectives. There is an emotion
classification framework that divides all emotions into ten categories, including five
positive (joy, satisfaction, excitement, awe, and unbiased positive) and five negative
(anger, sadness, disgust, panic, and unbiased negative). An International Affective
Picture System (IAPS) database has been established internationally. There are a
total of 1182 color pictures with a wide range of object categories. Some pictures
belonging to the above ten emotional categories are shown in Fig. 11.15.
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(a) Joy (f) Anger

(b) Satisfaction (g) Sadness

(c) Excitement (h) Disgust

(d) Awe (i) Panic

(e) Unbiased positive (j) Unbiased negative

Fig. 11.15 (a–j) Examples of ten emotion category pictures in the International Affective Picture
System database

Figure 11.15a–e corresponds to five positive emotions and Fig. 11.15f–j corresponds
to five negative emotions.

In image classification based on emotional semantics, the image is the picture in
the library, the words are selected from emotional category vocabulary, and the topic
is the latent emotional semantic factor (representing an intermediate semantic
layer concept between the underlying image features and the high-level emotional
category). First, the K-means algorithm is used to cluster the underlying image
features obtained by the SIFT operator into an emotional dictionary. Then, the
pLSA model is used to learn the latent emotional semantic factors, so as to obtain
the probability distribution p(sj|zk) of each latent emotional semantic factor on the
emotional word and the probability distribution of each picture on the latent emo-
tional semantic factor p(zk|ti). Finally, the support vector machine (SVM) method
is used to train the emotional image classifier and used to classify different emotion
categories.

Example 11.10 Classification Test Results
Some experimental results of classification using the above method are shown in
Table 11.6, in which 70% of the pictures of each emotion category are used as the
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Table 11.6 Example of classification

s = 200 s = 300 s = 400

z = 10 24.3 29.0 33.3 41.7 35.4 36.1 25.

38.9 45.0 52.1 69.5 62.4 58.4 45.

34.0 36.8 43.8 58.4 55.4 49.1 35.

28.4 30.7 37.5 48.7 41.3 40.9 29.

26.5 30.8 40.7 48.9 39.5 37.1 30.

23.5 27.2 31.5 42.0 37.7 38.3 26.

20.9 22.6 29.8 35.8 32.1 23.1 21.

s = 500 s = 600 s = 700 s = 8

z = 20

z = 30

z = 40

z = 50

z = 60

z = 70

The shaded rows and columns show the best effect obtained at the cross of s = 500 and z = 20

training set and the remaining 30% of the pictures are used as the test set. The
training and testing process is repeated ten times. The table shows the average
correct classification rate (%) of the ten categories. The value of the emotional
word s is between 200 and 800 (interval 100), and the value of the latent emotional
semantic factor z is between 10 and 70 (interval 10).

From Table 11.6, it can be seen the influence of different numbers of latent
emotional semantic factors and emotional vocabulary on the image classification
effect. When the value of the latent emotional semantic factor is fixed, as the number
of emotional words increases, the classification performance gradually increases and
then gradually decreases, and the value of s is best when the value of s is 500.
Similarly, when the number of emotional words is fixed, as the latent emotional
semantic factor increases, the classification performance gradually improves and
then gradually decreases, and the value of z is best when the value of z is 20.
Therefore, when s = 500 and z = 20, the best classification effect that can be
achieved by the above method can be obtained.

11.5 Key Points and References for Each Section

The following combine the main contents of each section to introduce some refer-
ences that can be further consulted:

1. Scene Knowledge
For more discussion on the concept of the model, see reference [1]. More

discussion on learning and training purposes can be found in reference [2].
2. Logic System

The details of the description of predicate calculus and the use of theorem
proof for inference can be found in references [3, 4].
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3. Fuzzy Reasoning
The discussion of various rules of fuzzy reasoning can be found in

reference [5].
4. Scene Classification

Scene classification is a step further than object recognition. To give the
semantic and conceptual explanation of the scene, various models are often
used. The bag-of-words model is often referred to as the bag-of-features model
in the image field, which can be found in reference [6]. Probabilistic latent
semantic analysis is a graph model established to solve the classification of
objects and scenes, which can be found in reference [7]. For more information
about the International affective picture system (IAPS) database, please refer to
reference [8], and the use of this database for image classification problems based
on emotional semantics can be found in reference [9].

Self-Test Questions

The following questions include both single-choice questions and multiple-choice
questions, so each option must be judged.

11.1. Scene Knowledge

11.1.1. Analyze the following statements; which one(s) is/are wrong? (�).
(a) It is possible to obtain the same data according to different model

assumptions.
(b) The same data may meet different model assumptions.
(c) One way to solve the under-determined problem is to increase the

limiting conditions.
(d) One way to solve the overdetermined inverse problem is to reduce

the limiting conditions.

[Hint] Consider the relationship between the model and the data.
11.1.2. For the tetrahedron given in Fig. 11.2a, if the invisible surface and

ridge line are also considered, the attribute hypergraph will have (�).
(a) Four super nodes, six super arcs.
(b) Four super nodes, 12 super arcs.
(c) Four super nodes, 18 super arcs.
(d) Four super nodes, 24 super arcs.

[Hint] Each super node corresponds to an attribute graph, and super
arc connections are required between each other.

11.1.3. The following statements correspond in pairs, of which the incorrect
one/ones is/are (�).
(a) The learner’s purpose in learning is his own purpose.
(b) The purpose of the learner in training is the purpose of others.
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(c) The complete 3-D model should contain all the information of the
scene.

(d) A model that does not contain all the information of the scene
cannot solve the 3-D problem.

[Hint] Model building and problem-solving are not equivalent.

11.2. Logic System

11.2.1. Point out the following incorrect description: (�).
(a) The four basic elements of predicate calculus can be divided into

two groups.
(b) The four basic elements of predicate calculus are all used in

representing a statement.
(c) Conjunctive representations and disjunctive representations are

both well-formed formulas.
(d) Both conjunctive representations and disjunctive representations

can represent the same statement.

[Hint] Pay attention to the difference between general conditions
and special cases.

11.2.2. Compare clause form syntax and non-clause form syntax: (�).
(a) Representations in clause form can be converted to representa-

tions in non-clause form.
(b) Representations in clause form and representations in non-clause

form can represent the same proposition.
(c) Representations obtained by following the clause form syntax

include atoms, logical conjunctions, existential quantifiers, and
universal quantifiers.

(d) Representations that follow the non-clause form syntax include
atoms, logical conjunctions, existential quantifiers, and universal
quantifiers.

[Hint] The existential quantifiers are not considered in the clause
form syntax.

11.2.3. In predicate calculus, to prove the correctness of logical representa-
tions, (�).
(a) One can directly operate on non-clause forms.
(b) The logical representation to be proved is obtained by reasoning

on the non-clause form.
(c) One can match items in the clause form of the representation.
(d) The logical representation to be proved is obtained by matching

the clause form.

[Hint] The ideas of the two proofs are different.
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Fig. 11.16 The
membership functions of
three fuzzy sets 1

0 255 x
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11.3. Fuzzy Reasoning

11.3.1. Fuzzy is the opposite of exact. Which of the following statement
(s) about fuzziness is/are correct? (�).
(a) The fuzzy set contains the exact set.
(b) There is a one-to-one correspondence between fuzzy sets and their

membership functions.
(c) The membership function of fuzzy sets is derivable point by point.
(d) Because fuzzy concepts represent loose, uncertain, and imprecise

knowledge and information, fuzzy reasoning is approximate.

[Hint] Fuzzy is related to exact.
11.3.2. Consider the operation on fuzzy sets; (�).

(a) This can be done with the help of fuzzy logic operations.
(b) This can be done with the help of fuzzy algebraic operations.
(c) Fuzzy logic operations and fuzzy algebra operations can be

combined.
(d) Fuzzy logic operations and fuzzy algebra operations can be

repeated.

[Hint] Fuzzy logic operations and fuzzy algebra operations have
their own characteristics.

11.3.3. Figure 11.16 gives the membership functions of dark gray fuzzy set D,
bright gray fuzzy set B, and medium gray fuzzy set M; if LM(x)= 2/3,
LB(x) = 1/3, then what is the grayscale g? (�).
(a) 43.
(b) 85.
(c) 170.
(d) 213.

[Hint] Judge according to Fig. .11.16
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11.4. Scene Classification

11.4.1. Scene classification is related to but different from object recognition; (�).
(a) The recognition of the object is often the basis of the scene

classification.
(b) The classification result of the scene can help identify the object.
(c) The scene can be classified before the object is recognized.
(d) The object recognition can be performed before the scene is

classified.

[Hint] The scene classification is generally at a higher level than the
object recognition.

11.4.2. The bag-of-features model is a bag-of-words model in the image field;
(�).
(a) Itself considers the spatial relationship between the features.
(b) Itself considers the symbiotic relationship between the

characteristics.
(c) The features in the bag-of-features model are all local features.
(d) Each local feature is a visual vocabulary.

[Hint] Consider the composition of the bag-of-features.
11.4.3. Consider the solid circles and ellipses in Fig. 11.11c; (�).

(a) Each of them corresponds to a square region in Fig. 11.11a.
(b) Each of them is related to each square region in Fig. 11.11a.
(c) Each of them corresponds to a feature vector in Fig. 11.11b.
(d) Each of them is related to a bin in Fig. 11.11d.

[Hint] Each square region corresponds to a histogram.
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Chapter 12
Spatial-Temporal Behavior Understanding

An important task of image understanding is to interpret the scene and guide actions
by processing the images obtained from the scene. To this end, it is necessary to
determine which sceneries are in the scene and how they change their position,
posture, speed, relationship, etc., in space over time. In short, it is necessary to grasp
the movement of the scenery in time and space, determine the purpose of the
movement, and then understand the semantic information they convey.

Automatic object behavior understanding based on image/video is a very chal-
lenging research problem. It includes obtaining objective information (collecting
image sequences), processing related visual information, analyzing (representation
and description) to extract information content, and interpreting image/video infor-
mation on this basis to achieve learning and recognition behavior.

The above-mentioned work spans a wide range, among which motion detection
and recognition have recently received a lot of attention and research, and significant
progress has also been made. Relatively speaking, research on high-level abstract
behavior recognition and description (related to semantics and intelligence) is still
underway, the definition of many concepts is not very clear, and many technologies
are still being developed.

The sections of this chapter are arranged as follows:

Section 12.1 defines spatial-temporal technology and spatial-temporal behavior
understanding and introduces their development and hierarchical research state.

Section 12.2 discusses how to detect the key points (spatial-temporal interest points)
that reflect the concentration and change of spatial-temporal motion information.

Section 12.3, from point to line, further introduces the learning and analysis of
dynamic trajectories and activity paths formed by connecting points of interest.

Section 12.4 introduces the technology of modeling and recognizing actions and
activities that are still under constant research and development.
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12.1 Spatial-Temporal Technology

Spatial-temporal technique is the technology oriented to the understanding of
spatial-temporal behavior, and it is a relatively new research field. Spatial-temporal
behavior understanding is based on spatial-temporal technology for image under-
standing. Current work is being carried out at different levels. Here are some general
situations.

12.1.1 New Research Field

The image engineering review series mentioned in Chap. 1 has been conducted for
27 years since the 1995 literature statistics. When the image engineering review
series entered its second decade (starting with the 2005 literature statistics), with the
emergence of new hotspots in image engineering research and application, a new
subcategory was added to the image understanding category—C5: space-time tech-
nology (3-D motion analysis, posture detection, object tracking, behavior judgment
and understanding). The emphasis here is to comprehensively use all kinds of
information in the image/video to make corresponding judgments and explanations
on the scene and the dynamics of the target in it.

In the past 17 years, the number of literatures collected for subcategory C5 in the
review series is 279, and their distribution in each year is shown by the histogram
bins in Fig. 12.1. In the first 8 years, there were about 11 articles per year on average,
and about 21 articles per year in the last 9 years. The figure also shows the change
trend obtained by fitting the number of documents in each year with a fourth-order
polynomial curve. Generally speaking, this is still a relatively new research field, and
the research results are not too many, and the development trend has also fluctuated.
In recent years, however, the number of publications of related literature has been
relatively stable, and a rapid growth momentum has appeared.
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Fig. 12.1 The literature number and change of spatial-temporal technology in each year
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12.1.2 Multiple Levels

At present, the main objects of research on spatial-temporal technology are moving
people or objects and the changes in the scenery (especially people) in the scene.
According to the level of abstraction of its representation and description, it can be
divided into multiple levels from bottom to top:

1. Action primitive: Refers to the atomic unit used to construct the action, generally
corresponding to the brief and specific movement information in the scene.

2. Action: A meaningful aggregate (ordered combination) composed of a series of
action primitives of the subject/initiator. In general, actions represent simple
exercise patterns that are often performed by one person and generally only last
on the order of seconds. The result of human movement often leads to changes in
human posture.

3. Activity: A combination of a series of actions performed by the subject/initiator
in order to complete a certain task or achieve a certain goal (mainly emphasizing
logical combination). Activities are relatively large-scale movements that gener-
ally depend on the environment and interacting people. Activities often represent
complex sequences of (possibly interactive) actions performed by multiple people
and often last for a long period of time.

4. Events: It refers to certain activities occurred at special circumstance (particular
position, time, environment, etc.). Usually, the activity is performed by multiple
subjects/initiators (group activity) and/or having the interaction with external
world. Detection of specific events is often associated with abnormal activity.

5. Behavior: It emphasizes the subject/initiator (mainly human being), dominated
by ideological movements, to change action, perform sustained activity, describe
events, etc., in a specific environment/context.

In the following, the sport of table tennis is taken as an example to give some
typical pictures at all the above levels, as shown in Fig. 12.2. Player’s venue, swing,
etc. can be seen as typical action primitives, as shown in Fig. 12.2a. Players serve a
ball (including drop, windup, jitter wrist, hitting, etc.) and return a ball (including the
venue, outriggers, palming, pumping balls, etc.) are typical actions, as shown in
Fig. 12.2b. However, the whole process of a player running to the fence and picking
up the ball is usually regarded as an activity. The two players hitting the ball back
and forth in order to win points is a typical scene of activity, as shown in Fig. 12.2c.

Fig. 12.2 (a–e) Several screens in the table tennis match
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The competition between two or several sport teams is generally seen as an event,
and awarding the players after the game is also a typical event, as shown in
Fig. 12.2d, which leads to the ceremony. After winning, though the player making
a fist and self-motivation gesture can be regarded as an action, this more often is seen
as a behavior of the players. In addition, when players perform good exchange, the
audience applauded, shouted, and cheered, which are also attributed to the behavior
of the audience, as shown in Fig. 12.2e.

It should be noted that the concepts of last three layers are often not strictly
distinguished and are used in many studies without distinction. For example, the
activity may be called event, when it refers to some unusual activities (such as the
disputes between two persons, the elder person falling during walk, etc.); the activity
may be called behavior, when the emphasis is mainly on the meaning of activity
(behavior), or the nature of the activity (such as shoplifting actions or activities over
the wall burglary called theft). In the following discussion, unless special emphasis is
being made, the (generalized) activities will be used unevenly to represent the last
three layers.

12.2 Spatial-Temporal Interest Point Detection

The change of scenery usually comes from the motion (especially accelerated
motion) of objects. Accelerated motion of local structure in video images corre-
sponds to the objects with accelerated motion in scenes; they are at the locations with
unconventional moving values in the image. It is expected, at these positions (image
points), there are information of object movement in physical world and of force for
changing object structure in scene, so they are helpful in understanding the scene.

In spatial-temporal scene, the detection of the point of interest (POI) has a
tendency of expansion from space to space-time.

12.2.1 Detection of Points of Interest in Space

In the image space, the image modeling can be performed by using the linear scale-
space representation, namely, Lsp: R2 × R+ → R, with f sp: R2 → R.

Lsp x, y; σ2z
� �

= gsp x, y; σ2z
� �� f sp x, yð Þ ð12:1Þ

that is, making convolution of f sp by using a Gaussian kernel with a variance of σz
2:
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gsp x, y; σ2z =
1

2πσ2z
exp - x2 þ y2 =2σ2z ð12:2Þ

Next, use Harris interest point detector to detect interest points. The idea of
detection is to determine the spatial position of f sp with obvious changes in both
horizontal and vertical directions. For a given observation scale σz

2, these points can
be calculated with the help of a matrix of second moments obtained by summing in a
Gaussian window with variance σz

2:

μsp • ; σ2z , σ
2
i

� �
= gsp • ; σ2i

� �� ∇L • ; σ2z
� �� �

∇L • ; σ2z
� �� �Tn

= gsp • ; σ2i
� �� Lspx

� �2
Lspx L

sp
y

Lspx L
sp
y Lspy

� �2

264
375 ð12:3Þ

Among them, Lx
sp and Ly

sp are the Gaussian differential calculated at the local
scale σz

2 according to Lx
sp = ∂x[g

sp(•; σz
2)⨂f sp(•)] and Ly

sp = ∂y[g
sp(•; σz

2)⨂f sp(•)].
The second-order moment descriptor in Eq. (12.3) can be regarded as the

orientation distribution covariance matrix of a 2-D image in the local neighborhood
of a point. Therefore, the eigenvalues of μsp, λ1, and λ2 (λ1 ≤ λ2) constitute a
descriptor of f sp, which changes along the two image directions. If the values of λ1
and λ2 are both large, it indicates that there is a point of interest. In order to detect
such a point, the positive value of the corner point function can be detected:

Hsp = det μspð Þ- k • trace2 μspð Þ= λ1λ2 - k λ1 þ λ2ð Þ2 ð12:4Þ

At the point of interest, the ratio of eigenvalues a = λ2/λ1 should be large.
According to Eq. (12.4), for the positive local extremum of Hsp, a should satisfy
k ≤ a/(1 + a)2. Therefore, if k = 0.25, the positive maximum value of H will
correspond to an ideal isotropic interest point (at this time a = 1, that is, λ1 = λ2).
A smaller value of k is more suitable for the detection of sharper interest points
(corresponding to a larger value of a). The commonly used value of k in the literature
is k = 0.04, which corresponds to detecting interest points with a < 23.

12.2.2 Detection of Points of Interest in Space and Time

The detection of point of interest in space is extended to space and time, that is, it is
considered to detect the position in the local space-time volume that has significant
changes in image value both in space and time. A point with this property will
correspond to a point of interest in space with a specific position in time, which is in a
temporal and spatial neighborhood with nonconstant motion value. Detecting
spatial-temporal interest points is a method of extracting underlying motion features,






394 12 Spatial-Temporal Behavior Understanding

Fig. 12.3 Example of
points of interest in time and
space

Y
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and does not require background modeling. Here, a given video can be convolved
with a 3-D Gaussian kernel at different spatial-temporal scales. Then the spatial-
temporal gradients are calculated in each layer of the scale-space representation, and
they are combined in the neighborhood of each point to obtain the stability estima-
tion of the spatial-temporal second-order moment matrix. Local features can be
extracted from the matrix.

Example 12.1 Examples of Points of Interest in Time and Space
Figure 12.3 shows a segment of a player swinging and hitting the ball in a table
tennis match. Several points of interest in time and space are detected from this
picture. The density of spatial-temporal interest points along the time axis is related
to the frequency of the action, while the position of the spatial-temporal interest
points in space corresponds to the motion trajectory and amplitude of the beat.

To model the spatial-temporal image sequence, one can use the function f:
R2 × R → R and construct its linear scale-space representation, by convolving
f with the isotropic Gaussian kernel (uncorrelated spatial variance σz

2 and time
variance τz

2), L: R2 × R × R+
2 → R:

L • ; σ2z , τ
2
z

� �
= g • ; σ2z , τ

2
z

� �� f •ð Þ ð12:5Þ

Among them, the space-time separated Gaussian kernel is

g x, y, t; σ2z , τ
2
z

� �
=

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πð Þ3σ4z τ2z

q exp -
x2 þ y2

2σ2z
-

t2

2τ2z

	
ð12:6Þ

The use of a separate scale parameter for the time domain is very critical, because
events in the time and space domains are generally independent. In addition, the
event detected by the interest point operator depends simultaneously on the obser-
vation scale of space and time domains, so the scale parameters σz

2 and τz
2 need to be

treated separately.
Similar to the space domain, consider a matrix of second-order moments in the

time-space domain. It is a 3 × 3 matrix, including the first-order space and the
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first-order time differentiation convolution with the Gaussian weight function g(•;
σi
2, τi

2):

μ= g • ; σ2i , τ
2
i

� �� L2x LxLy LxLt
LxLy L2y LyLt

LxLt LyLt L2t

264
375 ð12:7Þ

Among them, the integration scales σi
2 and τi

2 are connected with the local scales
σz

2 and τz
2 according to σi

2 = sσz
2 and τi

2 = sτz
2. The first-order differentiation is

defined as

Lx • ; σ2z , τ
2
z

� �
=∂x g� fð Þ

Ly • ; σ2z , τ
2
z

� �
=∂y g� fð Þ

Lt • ; σ2z , τ
2
z

� �
=∂t g� fð Þ

ð12:8Þ

In order to detect points of interest, search for regions with significant eigenvalues
λ1, λ2, and λ3 of μ in f. This can be achieved by extending the Harris corner detection
function defined in space, that is, Eq. (12.4), to the spatial-temporal domain by
combining the determinant and rank of μ:

H= det μð Þ- k • trace3 μð Þ= λ1λ2λ3 - k λ1 þ λ2 þ λ3ð Þ3 ð12:9Þ

To prove that the positive local extremum of H corresponds to points with large
values of λ1, λ2, and λ3 (λ1 ≤ λ2 ≤ λ3), it can define the ratio a = λ2/λ1 and b = λ3/λ1,
and rewrite H as

H= λ31 ab- k 1þ aþ bð Þ3
h i

ð12:10Þ

Because H ≥ 0, there is k ≤ ab/(1 + a + b)3, and k will get its maximum possible
value k= 1/27 when a= b= 1. For a significantly large value of k, the positive local
extremum of H corresponds to a point where the image value changes significantly
along both time and space axes. Especially, if the maximum value of a and b is 23 as
in space domain, the value of k used in Eq. (12.9) will be k ≈ 0.005. Therefore, the
spatial-temporal interest points in f can be obtained by detecting the positive local
spatial-temporal maxima in H.
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12.3 Spatial-Temporal Dynamic Trajectory Learning
and Analysis

Dynamic trajectory learning and analysis in time and space attempts to provide a
grasp of the state of the monitoring scene through the understanding and character-
ization of the behavior of each moving object in the scene. Figure 12.4 shows
the flowchart of the dynamic trajectory learning and analysis of the video. Firstly,
the object is detected (such as pedestrian detection from the car) and tracked, then the
obtained trajectory is used to automatically construct the scene model, and finally the
model is used to describe the monitoring status and provide annotations to activities.

In scene modeling, first define the image region where the activity/event occurs as
the point of interest (POI), and then define the activity path (AP) in the next
learning step, which describes how the object moves/travels between the points of
interest. The model built in this way can be called a POI/AP model.

The main work in POI/AP learning includes:

1. Activity learning: Activity learning can be carried out by comparing trajecto-
ries; although the length of the trajectories may be different, the key is to maintain
an intuitive understanding of similarity.

2. Adaptation: Study on the technology of managing the POI/AP model. These
technologies need to be able to adapt online how to add new activities, remove
activities that are no longer continuing, and validate the model.

3. Feature selection: Determine the correct dynamic representation level for a
specific task. For example, only spatial information can be used to determine
the route that a car travels, but speed information is often needed to detect
accidents.

12.3.1 Automatic Scene Modeling

The automatic modeling of the scene with the help of dynamic trajectory includes the
following three points:

Trajectory

Input video
Object detection Scene modeling

Annotated video
Object tracking Motion analysis

Fig. 12.4 Flowchart of dynamic trajectory learning and analysis
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12.3.1.1 Object Tracking

Object tracking (see Chap. 5) requires the identity maintenance of each observable
object in each frame. For example, an object tracked in a T-frame video will generate
a series of inferred tracking states:

ST = s1, s2, ⋯, sTf g ð12:11Þ

Among them, each st can describe object characteristics such as position, speed,
appearance, and shape. This trajectory information forms the cornerstone of further
analysis. Through careful analysis of this information, activities can be identified and
understood.

12.3.1.2 Point of Interest Detection

The first task of scene modeling is to find the region of interest in the image. In the
topographic map indicating the tracking object, these regions correspond to the
nodes in the map. Two types of nodes that are often considered include the entry/
exit region and the stop region. Take a teacher to give a lecture in the classroom as an
example. The former corresponds to the classroom door and the latter corresponds to
the podium.

The entry/exit region is the location where the object enters or leaves the field of
view (FOV) or the tracked object appears or disappears. These regions can often be
modeled with the help of a 2-D Gaussian mixture model (GMM), Z �PW

i= 1wiN μi, σið Þ , in which there are W components. This can be solved by the
EM algorithm (see Sect. 11.4). The entry point data is included in the position
determined by the first tracking state, and the exit point data is included in the
position determined by the last tracking state. They can be distinguished by a density
criterion, and the mixing density in state i is defined as

di =
wi

π
ffiffiffiffiffiffiffijσij

p > Td ð12:12Þ

It measures the compactness of the Gaussian mixture. Among them, the threshold

Td =
w

π
ffiffiffiffiffiffijCjp ð12:13Þ

indicates the average density of signal clusters. Here, 0 < w < 1 is the user-defined
weight, and C is the covariance matrix of all points in the region data set. Tight
mixing indicates the correct region and loose mixing indicates tracking noise due to
tracking interruption.
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The stop region is derived from the scene landmark point, that is, the object tends
to be a fixed position for a period of time. These stopping regions can be determined
by two different methods, namely, (1) the speed of the tracked point in the region is
lower than a certain low threshold determined in advance, and (2) all tracked points
remain at one limited distance in the ring at least for a certain period of time. By
defining a radius and a time constant, the second method can ensure that the object is
indeed kept in a specific range, while the first method may still include slow-moving
objects. For activity analysis, in addition to determining the location, it is also
necessary to grasp the time spent in each stop region.

12.3.1.3 Activity Path Learning

To understand behavior, it is needed to determine the activity path. The POI can be
used to filter out false alarms or track interrupted noise from the training set and only
retain the trajectories that start after entering the active region and end before leaving
out the active region. The tracking trajectory through the active region is divided into
two segments corresponding to entering the active region and leaving the active
region. An activity should be defined between the two points of interest at the start
and end of the object.

In order to distinguish action objects that change over time (such as pedestrians
walking or running along the sidewalk), time dynamic information needs to be added
to the path learning. Figure 12.5 shows the three basic structures of the path learning
algorithm. Their main differences include the type of input, motion vector, trajectory
(or video clip), and the way of motion abstraction. In Fig. 12.5a, the input is a single
trajectory at time t, and the points in the path are implicitly ordered in time. In
Fig. 12.5b, a complete trajectory is used as the input of the learning algorithm to
directly establish the output path. In Fig. 12.5c, what is drawn is the decomposition
of the path according to the video sequence. The video clip (VC) is broken down into
a set of action words to describe the activity, or the video clip is assigned a certain
activity label according to the appearance of the action word.

(a) (b) (c)

Implicit order PathActivity

f

f 1

f T

f 2

Trajectory Path Action wordVideo clip

VC

Path

Fig. 12.5 (a–c) Trajectory and path learning plan (see text)
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12.3.2 Path Learning

Since the path describes the movement of the object, an original trajectory can be
represented as a sequence of dynamic measurements. For example, a commonly
used trajectory representation is a motion sequence

GT = g1, g2, . . . , gTf g ð12:14Þ

where the motion vector

gt = xt, yt, vtx, v
t
y, a

t
x, a

t
y

h iT
ð12:15Þ

represents the dynamic parameters of the object obtained from tracking at time t,
including position [x, y]T, velocity [vx, vy]

T, and acceleration [ax, ay]
T.

It is possible to learn AP in an unsupervised way just by using the trajectory. The
basic flow is shown in Fig. 12.6. The preprocessing step is to establish the trajectory
for clustering, and the clustering step can provide a global and compact path model
representation. Although there are three separate sequential steps in the figure, they
are often combined together.

Here are some detailed explanations for each of the three steps.

12.3.2.1 Trajectory Preprocessing

Most of the work in path learning research is to obtain trajectories suitable for
clustering. The main difficulty when tracking is due to the time-varying character-
istics, which leads to inconsistent trajectory lengths. At this point, steps need to be
taken to ensure that meaningful comparisons can be made between inputs of
different sizes. In addition, the trajectory representation should intuitively maintain
the similarity of the original trajectory in the clustering.

The trajectory preprocessing mainly includes two contents:

1. Normalization: The purpose of normalization is to ensure that all trajectories have
the same length Lt. Two simple techniques are zero-filling and expansion. Zero-
filling is to add some items equal to zero at the rear of the shorter trajectory.
Expansion is to extend the part at the last moment of the original trajectory to the

PathTracking Trajectory

pre-processing

Trajectory

clustering

Path

Modeling

Normalization +

Dimensionality reduction

Distance/Similarity measurement 

Clustering process and verification

Cluster center +

Envelope sub-path

Fig. 12.6 Trajectory learning steps
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required length. They are all likely to expand the trajectory space very large. In
addition to checking the training set to determine the length of the trajectory, Lt,
prior knowledge can also be used for resampling and smoothing. Resampling
combined with interpolation can ensure that all trajectories have the same length
Lt. Smoothing can be used to eliminate noise, and the smoothed trajectory can
also be interpolated and sampled to a fixed length.

2. Dimensionality reduction: Dimensionality reduction maps the trajectory to a new
low-dimensional space, so that a more robust clustering method can be used. This
can be achieved by assuming a trajectory model and determining the parameters
that best describe the model. Commonly used techniques include vector quanti-
zation, polynomial fitting, multi-resolution decomposition, hidden Markov
model, subspace method, spectrum method, and kernel method.

Vector quantization can be achieved by limiting the number of unique trajecto-
ries. If the trajectory dynamics are ignored and only based on spatial coordinates, the
trajectory can be regarded as a simple 2-D curve and can be approximated by a least
mean square polynomial of order m (each w is a weight coefficient):

x tð Þ=
Xm
k= 0

wkt
k ð12:16Þ

In the spectrum method, a similarity matrix S can be constructed for the training
set, where each element sij represents the similarity between trajectory i and trajec-
tory j. It is also possible to construct a Laplacian matrix L:

L=D- 1=2SD- 1=2 ð12:17Þ

where D is a diagonal matrix and the ith diagonal element is the sum of the ith row
elements in S.

The largest K eigenvalues can be determined by decomposing L. Put the
corresponding eigenvectors into a new matrix, the rows of which correspond to
the trajectories after spectral space transformation, and the spectral trajectories can
be obtained by K-means method.

Most researchers combine trajectory normalization and dimensionality reduction
to treat the original trajectory to ensure that standard clustering techniques can
be used.

12.3.2.2 Trajectory Clustering

Clustering is a common machine learning technique for determining structure in
unlabeled data. When observing the scene, the motion trajectories are collected and
combined into similar categories. In order to generate meaningful clusters, the
process of trajectory clustering must consider three issues: (1) Define a distance
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(corresponding similarity) measure; (2) cluster update strategy; and (3) cluster
verification.

1. Distance/Similarity Measurement
The clustering technique relies on the definition of distance (similarity) mea-

surement. As mentioned earlier, one of the main problems of trajectory clustering
is that the trajectories generated by the same activity may have different lengths.
To solve this problem, either a preprocessing method can be used, or a distance
measure independent of the size can be defined (if the two trajectories Gi and Gj

have the same length):

dE Gi, Gj

� �
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gi -Gj

� �T
Gi -Gj

� �q
ð12:18Þ

If the two trajectories Gi and Gj have different lengths, the improvement to the
Euclidean distance that does not change with size is to compare two trajectory
vectors of length m and n (m > n), and use the last point gj,n to cumulate
distortion:

d cð Þ
ij =

1
m

Xn
k= 1

dE gi,k , gj,k
� �þ Xm- n

k= 1

dE gi,nþk

�
, gj,nÞ

(
ð12:19Þ

The Euclidean distance is relatively simple, but it is not effective when there is
a time offset, because only the aligned sequence can be matched. Here one can
consider using the Hausdorff distance (see Sect. 10.2). In addition, there is a
distance metric that does not depend on the complete trajectory (outliers are not
considered). Assuming that the lengths of trajectories Gi = {gi,k} and Gj = {gj,l}
are Ti and Tj, respectively, then

Do Gi, Gj

� �
=

1
Ti

XTi

k= 1

do gi,k, Gj

� � ð12:20Þ

where

do gi,k, Gj

� �
= min

l

dE gi,k, gj,l
� �

Zl

" #
l 2 1- δð Þkb c⋯ 1þ δd ekf ð12:21Þ

where Zl is the normalization constant, which is the variance at point l.
Do(Gi, Gj) is used to compare trajectories with existing clusters. If two

trajectories are compared, Zl = 1 can be used. The distance metric defined in
this way is the average normalized distance from any point to the best match with
it. At this time, the best match is in a sliding time window centered at point l with
a width of 2δ.



The path learned with the aid of the clustering algorithm needs further
verification, because the actual number of categories is not known. Most cluster-
ing algorithms require an initial choice of the desired number of categories K, but
this is often incorrect. For this reason, the clustering process can be performed on
different K separately, and the K corresponding to the best result is taken as the
true number of clusters. The judgment criterion here can use the Tightness and
Separation Criterion (TSC), which compares the distance between trajectories
in a cluster with the distance between trajectories in different clusters. Given the
training set DT = {G1, . . ., GM}, there are
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2. Clustering Process and Verification
The preprocessed trajectories can be combined with unsupervised learning

techniques. This will decompose the trajectory space into perceptually similar
clusters (such as roads). There are many methods for clustering learning: (1) iter-
ative optimization; (2) online adaptation; (3) hierarchical method; (4) neural
network; and (5) symbiotic decomposition.

TSC Kð Þ= 1
M

PK
j= 1

PM
i= 1f

2
ijd

2
E Gi, cj
� �

min ijd
2
E ci, cj
� � ð12:22Þ

where fij is the fuzzy membership degree of the trajectory Gi to the cluster Cj (the
samples are denoted by cj).

12.3.2.3 Path Modeling

After trajectory clustering, a graph model can be established according to the
obtained path for effective reasoning. The path model is a compact representation
of clustering. There are two ways to achieve path modeling. The first method
considers the complete path, in which the path from the end to the end not only
has an average centerline but also has an envelope indicating the path range on both
sides. There may be some intermediate states along the path that give the measure-
ment sequence, as shown in Fig. 12.7a; the second method decomposes the path into
some sub-paths, or represents the path as a tree containing sub-paths, and predicts the
probability of the path from the current node to the leaf node, as shown in Fig. 12.7b.

(a) First method (b) Second method
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Fig. 12.7 (a, b) Two ways to model the path
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12.3.3 Automatic Activity Analysis

Once the scene model is established, the behavior and activities of the object can be
analyzed. A basic function of surveillance video is to verify events of interest.
Generally speaking, it is only possible to define interest in certain circumstances.
For example, the parking management system pays attention to whether there are
vacant spaces for parking, while in the intelligent conference room system, it is
concerned with the communication between personnel. In addition to only identify-
ing specific behaviors, all atypical events also need to be checked. Through long-
term observation of a scene, the system can perform a series of activity analysis,
thereby learning which events are of interest.

Some typical activities are analyzed as follows:

1. Virtual fence: Any surveillance/monitoring system has a surveillance/monitor-
ing range, and a sentry can be set up on the boundary of the range to give early
warning of events within the range. This is equivalent to establishing a virtual
fence at the boundary of the surveillance region and triggering analysis once there
is an intrusion, such as controlling a high-resolution pan-tilt-zoom (PTZ) cam-
era to obtain the details of the intrusion, starting to count the number of
intrusions, etc.

2. Speed analysis: The virtual fence only uses position information. With the help
of tracking technology, dynamic information can also be obtained to realize
speed-based early warning, such as vehicle speeding or road blockage.

3. Path classification: The speed analysis only uses the current tracked data. In
practice, the active path (AP) obtained from the historical movement pattern can
also be used. The behavior of newly emerging objects can be described with the
help of the maximum a posteriori (MAP) path:

L� = argmax
k

p lkjGð Þ= argmax
k

p G, lkð Þp lkð Þ ð12:23Þ

This can help determine which activity path best interprets the new data.
Because the prior path distribution p(lk) can be estimated with the training set,
the problem is simplified to use HMM for maximum likelihood estimation.

4. Anomaly detection: The detection of abnormal events is often an important task
of the monitoring system. Because the activity path can indicate a typical activity,
an abnormality can be found if a new trajectory does not match the existing one.
Abnormal patterns can be detected with the help of intelligent thresholding:

p l�jGð Þ< Ll ð12:24Þ

where the value of the active path l* most similar to the new trajectoryG is still
less than the threshold Ll.

5. Online activity analysis: Being able to analyze, identify, and evaluate activities
online is more important than using the entire trajectory to describe the
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Fig. 12.8 Using path for
collision assessment

Personal space

Safety zone

movement. A real-time system must be able to quickly reason about what is
happening based on incomplete data (usually based on graph models). Two
situations are considered here—(1) Path prediction: One can use the tracking
data so far to predict future behavior and refine the prediction when more data is
collected. The use of incomplete trajectories to predict activities can be
represented as

bL= argmax
j

p ljjWtGtþk

� � ð12:25Þ

where Wt represents the window function and Gt+k is the trajectory up to the
current time t and k predicted future tracking states. (2) Tracking anomalies: In
addition to classifying the entire trajectory as anomalies, it is also necessary to
detect abnormal events as soon as they occur. This can be achieved by replacing
G in Eq. (12.24) with WtGt+k. The window function Wt does not have to be the
same as in the prediction, and the threshold may need to be adjusted according to
the amount of data.

6. Object interaction characterization: Higher-level analysis is expected to fur-
ther describe the interaction between objects. Similar to abnormal events, it is
difficult to strictly define object interactions. In different environments, there are
different types of interactions between different objects. Take a car collision as an
example. Each car has its own space size, which can be regarded as its personal
space. When a car is driving, its personal space must increase a minimum safety
distance (minimum safety zone) around the car, so the space-time personal space
will change with movement; the faster the speed, the more the minimum safety
distance increases (especially in the direction of travel). A schematic diagram is
shown in Fig. 12.8, where the personal space is represented by a circle and the
safe region changes as the speed (including size and direction) changes. If the two
vehicles meet in a safe region, there is a possibility of a collision, which can help
plan driving routes.

Finally, it needs to be pointed out that for simple activities, the analysis can be
performed only based on the object position and speed, but for more complex
activities, more measurements may be required, such as adding the curvature of
the section to identify odd motion trajectories. To provide more comprehensive
coverage of activities and behaviors, it is often necessary to use a multi-camera
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network. The activity trajectory can also be derived from an object composed of
interconnected components (such as a human body), where the activity needs to be
defined relative to a set of trajectories.

12.4 Spatial-Temporal Action Classification
and Recognition

Vision-based human action recognition is a process of marking image sequences
(videos) with action (class) labels. Based on the representation of the observed image
or video, human action recognition can be turned into a classification problem.

12.4.1 Motion Classification

Various techniques can be used to classify spatial-temporal actions.

12.4.1.1 Direct Classification

In the direct classification method, no special attention is paid to the time domain.
These methods add the information of all frames in the observation sequence to a
single representation or recognition and classify actions on each frame.

In many cases, the representation of images is high-dimensional. This leads to a
very large amount of matching calculations. In addition, the representation may also
include features such as noise. Therefore, it is necessary to obtain compact and
robust feature representation in low-dimensional space for classification. The dimen-
sionality reduction technology can use either a linear method or a non-linear method.
For example, principal component analysis (PCA) is a typical linear method, and
local linear embedding (LLE) is a typical non-linear method.

The classifier used for direct classification can also be different. Discriminative
classifiers focus on how to distinguish different categories, rather than model each
category; SVM is such a typical classifier. Under the bootstrap framework, a series
of weak classifiers (each one often only represented in 1-D) are used to construct a
strong classifier. Adaptive booting (AdaBoost; see Section 13.2 of 2D Computer
Vision: Principles, Algorithms and Applications) is a typical method.

12.4.1.2 Time State Model

The generative model learns the joint distribution between observations and
actions, modeling each action class (taking into account all changes). Discriminant
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models learn the probability of action categories under observation conditions. They
do not model categories but focus on the differences between different categories.

The most typical generative model is the hidden Markov model (HMM), where
the hidden state corresponds to each step of the action. The hidden state models the
state transition probability and the observation probability. There are two indepen-
dent assumptions here. One is that the state transition only depends on the previous
state, and the other is that the observation depends only on the current state. The
variants of HMM include maximum entropy Markov model (MEMM), factored-
state hierarchical hiddenMarkov model (FS-HHMM), and hierarchical variable
transition hidden Markov model (HVT-HMM).

On the other hand, the discriminative model models the conditional distribution
after a given observation, combining multiple observations to distinguish different
action categories. This model is more useful for distinguishing related actions.
Conditional random field (CRF) is a typical discriminative model, and its improve-
ments include factorial conditional random field (FCRF), generalization of con-
ditional random field, and so on.

12.4.1.3 Motion Detection

The method based on action detection does not explicitly model the representation of
the object in the image, nor does it model the action. It links the observation
sequence to the numbered video sequence to directly detect (already defined)
actions. For example, a video segment can be described as a bag of words encoded
on different timescales, and each word corresponds to the gradient orientation of a
partial patch. Partial patches with slow time changes can be ignored, so that the
representation will mainly focus on the moving region.

When the movement is periodic (such as walking or running), the movement is
cyclic, that is, cyclic action. At this time, time domain segmentation can be
performed by analyzing the self-similarity matrix. Further, a marker can be added
to the athlete, and a self-similarity matrix can be constructed by tracking the marker
and using an affine distance function. Perform frequency transformation on the self-
similarity matrix, and the peaks in the frequency spectrum correspond to the
frequency of the movement (if one wants to distinguish between a walking person
or a running person, one can calculate the gait period). Analysis of the matrix
structure can determine the type of action.

The main methods of representing and describing human actions can be divided
into two categories—(1) Appearance-based methods: It directly uses the description
of the image’s foreground, background, contour, optical flow and changes, and so
on. (2) Human model-based methods: It uses the human body model to represent the
structural characteristics of the actor, such as describing the action with a sequence
of human joint points. No matter what kind of method is adopted, it will play an
important role to realize the detection of the human body and the detection and
tracking of important parts of the human body (such as the head, hands, feet, etc.).
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Fig. 12.9 Action classification and recognition combining posture and context information

Example 12.2 Action Classification Example
The classification of actions should consider not only the posture of the actor but also
the environment (context) of the action. The process of combining the two to classify
images and some effects are shown in Fig. 12.9.

12.4.2 Action Recognition

The representation and recognition of actions and activities are a relatively new but
not yet mature field. Most of the methods used depend on the researcher’s purpose.
In scene interpretation, the representation can be independent of the object that
produces the activity (such as a person or car); while in monitoring applications,
the most concerned are person’s activities and interactions between persons. In the
holistic approach, the global information is better than component information, for
example, when the gender of a person needs to be determined. For simple actions
such as walking or running, one may also consider using local/partial methods,
where more attention is paid to detailed actions or action primitives.

12.4.2.1 Holistic Recognition

The holistic recognition emphasizes the recognition of the entire human body or
various parts of a single human body. For example, a person’s walking, walking gait,
etc. can be recognized based on the structure of the entire body and the dynamic
information of the entire body. Most of the methods here are based on the silhouette
or contour of the human body and do not distinguish various parts of the body. For
example, there is a human body-based identification technology that uses a silhou-
ette of a person and uniformly samples the silhouette and then processes the
decomposed silhouette with PCA. To calculate the time-space correlation, the
trajectories can be compared in the eigen-space. On the other hand, the use of
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Fig. 12.10 Sample pictures of actions in the Weizmann action recognition database

dynamic information can not only identify the identity but also determine what the
person is doing. Body part-based recognition uses the position and dynamic infor-
mation of body parts to recognize actions.

Example 12.3 Example of Action Recognition Database
Figure 12.10 shows sample pictures of some actions in the Weizmann action
recognition database. These pictures are divided into ten categories. In Fig. 12.10,
from top to bottom, the left column shows head clap (jack), lateral movement (side),
bend, walk, and run, and the right column shows slaps, play with one hand (wave1),
waving both hands (wave2), one forward hop (skip), both feet jump (jump), and two
feet jump in place (p-jump).

12.4.2.2 Posture Modeling

The recognition of human actions is closely related to the estimation of human
posture. Human body posture can be divided into action posture and postural
posture. The former corresponds to a person’s action behavior at a certain moment,
and the latter corresponds to the direction of the human body in 3-D space.

The representation and calculation methods of human body posture can be
divided into three types:

1. Appearance-based method: Instead of directly modeling the physical structure of
a person, it uses color, texture, contour, and other information to analyze the
posture of the human body. Since only the apparent information in the 2-D image
is used, it is difficult to estimate the postural posture of the human body.

2. Human body model-based method: First use the line drawing model (see Sect.
10.5), 2-D model, or 3-D model to model the human body, and then estimate the
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human body posture by analyzing these parameterized human body models. Such
methods usually require high image resolution and accuracy of object detection.

3. 3-D reconstruction-based method: Firstly, the 2-D moving object obtained by
multiple cameras at different positions is reconstructed into a 3-D moving object
through corresponding point matching, and then the human posture in 3-D space
is estimated using camera parameters and imaging formulas.

The posture can be modeled based on points of interest in time and space (see
Sect. 12.2). If only the spatial-temporal Harris interest point detector is used, most of
the spatial-temporal interest points obtained are in the region of sudden motion. The
number of such points is small and belongs to the sparse type, and it is easy to lose
important motion information in the video, resulting in detection failure. In order to
overcome this problem, some dense spatial-temporal interest points can also be
extracted with the help of motion intensity to fully capture the changes caused by
movement. Here, the image can be convolved with the spatial Gaussian filter and the
temporal Gabor filter to calculate the motion intensity. After extracting the spatial-
temporal interest points, a descriptor is established for each point, and then each
posture is modeled. A specific method is to first extract the spatial-temporal feature
points of the postures in the training sample library as the underlying features, and let
one posture correspond to a set of spatial-temporal feature points. Then an
unsupervised classification method is used to classify the posture samples to obtain
clustering results of typical postures. Finally, the Gaussian mixture model based on
EM is used to achieve modeling for each typical posture category.

A recent trend in posture estimation in natural scenes is to overcome the problem
of tracking with a single view in unstructured scenes, and more use of single-frame
images for posture detection. For example, based on robust component detection and
probabilistic combination of components, a better estimate of 2-D posture can be
obtained in complex movies.

12.4.2.3 Activity Reconstruction

Action leads to a change in posture. If each static posture of the human body is
defined as a state, then with the help of state space method (also known as proba-
bilistic network method), the state is transferred by transition probability; then the
construction of an activity sequence can be obtained by traversing between the states
of the corresponding posture.

Based on the estimation of posture, significant progress has also been made in
automatically reconstructing human activities from video. The original model-based
analysis-synthesis scheme uses multi-view video capture to effectively search the
posture space. Many current methods pay more attention to obtaining the overall
body movement rather than the precise construction of details.

Single-view human activity reconstruction has also made a lot of progress with
the help of statistical sampling techniques. At present, more attentions are paid to
the use of learned models to constrain activity-based reconstruction. Research has
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shown that using a strong prior model is helpful for tracking specific activities in a
single-view image.

12.4.2.4 Interactive Activities

Interactive activities are more complex activities. It can be divided into two catego-
ries: (1) the interaction between people and the environment, such as when people
drive a car or take a book, and (2) interpersonal interaction, which often refers to the
communication activities or contact behaviors of two persons (or multiple persons).
It is obtained by combining the (atomic) activities of a single person. Single-person
activities can be described with the help of a probability graph model. Probabilistic
graph model is a powerful tool for modeling continuous dynamic feature sequences
and has a relatively mature theoretical basis. Its disadvantage is that the topological
structure of its model depends on the structural information of the activity itself, so a
large amount of training data is required to learn the topological structure of the
graph model for complex interactive activities. In order to combine single-player
activities, statistical relational learning (SRL) methods can be used. SRL is a
machine learning method that integrates relational/logical representation, probabi-
listic reasoning, machine learning, and data mining to obtain a likelihood model of
relational data.

12.4.2.5 Group Activities

Quantitative changes cause qualitative changes. A substantial increase in the number
of participating activities will bring new problems and new research. For example,
the analysis of group object movement mainly takes people flow, traffic flow, and
dense biological groups in nature as objects, studies the representation and descrip-
tion methods of group object movement, and analyzes the influence of group object
movement characteristics and boundary constraints on group object movement. At
this time, the grasp of the unique behavior of special individuals is weakened, and
more attentions are paid to the abstraction of individuals and the description of the
entire collective activity. For example, some research draws on the theory of macro-
kinematics, explores the motion law of particle flow, and establishes the motion
theory of particle flow. On this basis, a semantic analysis of the dynamic evolution
phenomena of aggregation, dissipation, differentiation, and merging in group object
activities is carried out in order to explain the trend and situation of the entire scene.

Figure 12.11 shows a screen for counting the number of people in a monitoring
scene.

In the analysis of group activities, the statistics of the number of individuals
participating in the activity is a basic data. For example, in many public places, such
as squares, stadium entrances, etc., it is necessary to have certain statistics on the
number of people in the flow. Although there are many people in the scene and their
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Fig. 12.11 Statistics of the
number of people in crowd
monitoring

Fig. 12.12 The monitoring
geometry when the optical
axis of the camera is
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actions are different, the concern here is the number of people in a certain range
(in the region enclosed by a frame).

Example 12.4 Placement of Cameras in Surveillance
Consider the basic geometry for counting the number of people in monitoring. Place
the camera (height is Hc) diagonally above the pedestrian, as shown in Fig. 12.12,
and it can see the position of the pedestrian’s feet on the ground. Suppose the optical
axis of the camera is along the horizontal direction, the focal length is λ, and the
angle of observing human feet is α. Suppose the vertical downward direction of the
coordinate system is the Y axis, and the X axis comes out of the paper.

In Fig. 12.12, the horizontal depth Z is

Z= λHc=y ð12:26Þ

The height of the upper part of the pedestrian in image is

yt = λY t=Z = yY t=Hc ð12:27Þ

The height of the pedestrian itself can be estimated as follows:



ð

412 12 Spatial-Temporal Behavior Understanding

Fig. 12.13 The monitoring
geometry when the optical
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Ht =Hc - Y t =Hc 1- yt=yð Þ 12:28Þ

In practice, the optical axis of the camera generally tilts downward slightly to
increase the observation range (especially for observing objects close and below the
camera), as shown in Fig. 12.13.

The calculation formula here is more complicated. First of all, it can be seen from
Fig. 12.13:

tan α=Hc=Z ð12:29Þ
tan α- δð Þ= y=λ ð12:30Þ

where δ is the downward tilt angle of the camera. Eliminate α from the above two
equations to get Z as a function of y:

Z =Hc
λ- y tan δð Þ
yþ f tan δð Þ ð12:31Þ

In order to estimate the height of pedestrians, replace Hc and y in the above
equation with Yt and yt, respectively; then it gives

Z= Y t
λ- yt tan δð Þ
yt þ λ tan δð Þ ð12:32Þ

Combine both Eqs. (12.31) and (12.32), and eliminate Z to get

Y t =Hc
λ- y tan δð Þ yt þ λ tan δð Þ
yþ λ tan δð Þ λ- yt tan δð Þ ð12:33Þ

Next, consider the optimal downward tilt angle δ. Refer to Fig. 12.14; the angle of
view of the camera is 2γ. It is required to include the closest point Zn and the farthest
point Zf, which correspond to αn and αf, respectively.

Write for the closest point and the farthest point:
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Fig. 12.14 Calculate the
monitoring geometry of the
optimal tilt angle when the
camera’s optical axis is
tilted downward
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Hc=Zn = tan αn = tan δþ γð Þ ð12:34Þ
Hc=Zf = tan αf = tan δ- γð Þ ð12:35Þ

Take the ratio of the two equations to get

η=
Zn

Zf
=

tan δ- γð Þ
tan δþ γð Þ ð12:36Þ

If taking Zf =1, then δ= γ, Zn = Hccot
2γ. The limit case is Zf =1, Zn = 0, that

is, δ= γ = 45°, which covers all points on the ground. In practice, γ should be small,
and Zn and Zf are determined by δ. For example, when γ = 30°, the optimal η is zero;
at this time δ = 30° or δ = 60°; the worst η is 0.072; at this time δ = 45°.

Finally, consider the nearest pedestrian distance Zs so that pedestrians do not
block each other. According to Eq. (12.29), let tanα = Ht/Zs and tanα = Hc/Z,
respectively; one can solve

Zs =HtZ=Hc ð12:37Þ

It can be seen that the distance is proportional to the height of pedestrians.

12.4.2.6 Scene Interpretation

Different from the recognition of the object in the scene, the scene interpretation
mainly considers the whole image without verifying the specific object or person.
Many methods actually used only consider the results captured by the camera and
learn and recognize activities by observing the movement of the object without
necessarily determining the identity of the object. This strategy is more effective
when the object is small enough to be represented as a point in the 2-D space.

For example, a system for detecting abnormal conditions includes the following
modules. The first is to extract the 2-D position and velocity and size and binary
silhouette of object and use vector quantization to generate a sample codebook. In
order to consider the temporal relationship between each other, the statistics of
symbiosis can be used. By iteratively defining the probability function between the
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examples in the two codebooks and determining a binary tree structure, the leaf
nodes correspond to the probability distribution in the co-occurrence statistical
matrix. The higher-level nodes correspond to simple scene activities (such as the
movement of car or pedestrian). They can be further combined to give an explana-
tion of the scene.

12.5 Key Points and References for Each Section

The following combine the main contents of each section to introduce some refer-
ences that can be further consulted:

1. Spatial-Temporal Technology
A review series of image engineering for more than quarter century can be

found in reference [1]. For a discussion on adding the subcategory of space-time
technology to this series, please refer to reference [2]. More on the understanding
of spatial-temporal behavior can be found in reference [3].

2. Spatial-Temporal Interest Point Detection
In spatial-temporal scenes, the discussion of the trend of the detection of

interest points from space to space-time can be found in reference [3]. The
representation of linear scale space can be found in reference [4]. For an intro-
duction to the Harris interest point detector, please refer to the document 2D
Computer Vision: Principles, Algorithms and Applications.

3. Spatial-Temporal Dynamic Trajectory Learning and Analysis
More information about the learning and analysis of spatial-temporal dynamic

trajectory can be found in reference [5]. An example of using a vehicle-mounted
camera to detect pedestrians on the road can be found in reference [6]. The
automatic modeling of the scene with the help of dynamic trajectory can be
found in reference [7].

4. Spatial-Temporal Action Classification and Recognition
More techniques and discussions on the classification of spatial-temporal

actions can be found in reference [8]. For more information on the Weizmann
action recognition database, please refer to [9]. The representation and recogni-
tion of actions and activities can also be found in reference [10]. An introduction
to the Gabor filter can be found in reference [11]. An example of counting people
in monitoring scenarios can be found in reference [12].

Self-Test Questions

The following questions include both single-choice questions and multiple-choice
questions, so each option must be judged.
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12.1. Spatial-Temporal Technology

12.1.1. Spatial-temporal behavior understanding technology involves multi-
ple levels: (�).
(a) The action primitive emphasizes the momentary movement

information.
(b) The action primitives will not be the same in the actions of

multiple people.
(c) The action is composed of a series of orderly action primitives.
(d) Different actions do not have the same action primitive.

[Hint] The action level is higher than the action primitive level.
12.1.2. Some people refer to the bag-of-words model to describe the relation-

ship between action primitives and actions. At this time, the action
primitives can be regarded as a word, and the action can be regarded as
a bag of words: (�).
(a) A set of given action primitives corresponds to only one action.
(b) An action always corresponds to a given set of action primitives.
(c) The action primitives have a symbiotic relationship, so multiple

action primitives can only constitute one action.
(d) Action primitives have a symbiotic relationship, so one action can

contain multiple action primitives.

[Hint] Analyze according to the definition of bag-of-words model.
12.1.3. There are many cross-connections in the last three levels of spatial-

temporal behavior understanding; (�).
(a) The behavior is the result of action.
(b) An event is a combination of a series of actions.
(c) The action is initiated by one person, and the activity is initiated

by multiple persons.
(d) The relationship between two tuples (action primitives, action)

and (action, activity) is the same.

[Hint] Grasp the basic meaning of each concept.

12.2. Spatial-Temporal Interest Point Detection

12.2.1. Lsp: R2 × R+ → R and f sp: R2 → R; then according to Eq. (12.1), (�).
(a) gsp(x, y; σz

2): R+ → R.
(b) gsp(x, y; σz

2): R2
+ → R.

(c) gsp(x, y; σz
2): R2 × R+ → R.

(d) gsp(x, y; σz
2): R2 × R+ → R2.

[Hint] gsp(x, y; σz
2) is a Gaussian kernel with variance σz

2.
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12.2.2. When detecting the large positive value of the corner point function, a
larger value of a is suitable for the detection of sharper points of
interest. If k = 0.16, then (�).
(a) a = 2.
(b) a = 4.
(c) a = 6.
(d) a = 8.

[Hint] Calculate according to the relationship between a and k.
12.2.3. When the method of detecting interest points in 2-D space is extended

to space-time for 3-D interest point detection, it will encounter the
problem of anisotropy (different resolution in the three directions). To
solve this problem, one can (�).
(a) First, perform interest point detection in 2-D space at each

moment, and then perform interest point detection in 1-D time.
(b) Adjust the ratio of space variance and time variance according to

the anisotropy.
(c) Calculate the eigenvalues of the three directions according to the

anisotropy.
(d) Resample (or interpolate) the original data to convert anisotropic

data into isotropic data.

[Hint] Anisotropy is a problem caused by different resolutions.

12.3. Spatial-Temporal Dynamic Trajectory Learning and Analysis

12.3.1. Consider the three basic structures of the path learning algorithm
given in Fig. 12.5; (�).
(a) In Fig. 12.5a, the time dynamic information is added in the sorting

of the trajectory at each time.
(b) In Fig. 12.5b, the time dynamic information is added when

constructing the path.
(c) In Fig. 12.5c, the time dynamic information is added in the

process of decomposing the video segment.
(d) In the three basic structures, all of them have added time dynamic

information.

[Hint] Analyze the location where the time dynamic information is
added.

12.3.2. Consider the trajectory learning steps given in Fig. 12.6; (�).
(a) In the normalization method of trajectory preprocessing, zero-

filling is a special case of extension.
(b) Zero-filling will make the length of all trajectories the same as the

length of the original longest trajectory.
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(c) Resampling combined with interpolation can also make all trajec-
tories have the same length, which is also the length of the original
longest trajectory.

(d) Resampling combined with interpolation can also solve the prob-
lem that the trajectories generated by the same activity in trajec-
tory clustering have different lengths.

[Hint] Compare the different characteristics of zero-filling and
resampling in adjusting trajectory length.

12.3.3. In automatic activity analysis, (�).
(a) The virtual fence directly considers the location information of the

boundary of the monitoring range.
(b) The speed analysis directly uses the position change information

of the object movement.
(c) The path classification directly considers the location information

of the object in space.
(d) The path classification directly uses the speed information of the

object movement.

[Hint] The path itself is defined by the spatial location.

12.4. Spatial-Temporal Action Classification and Recognition

12.4.1. In the time state model for action classification, (�).
(a) The hidden Markov model models the state transition probability

and observation probability of each action.
(b) The hidden Markov model assumes that both the state transition

probability and the observation probability only depend on the
previous state.

(c) The conditional random field model learns the joint distribution
between observations and actions.

(d) The conditional random field model learning models the condi-
tional distribution after a given observation.

[Hint] Contrast the generative model and the discriminant model.
12.4.2. In the working method of motion recognition, (�).

(a) The human body posture estimation method based on appearance
usually has higher requirements for image resolution.

(b) The holistic recognition based on dynamic information is closer to
the posture modeling of the action posture.

(c) The method of posture modeling based on time and space interest
points belongs to the method based on human body model.

(d) The method based on 3-D reconstruction needs to reconstruct 3-D
moving objects, so it focuses more on the modeling of postural
posture.
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[Hint] Analyze the main characteristics of various action recogni-
tion methods, respectively.

12.4.3. Suppose a camera with a focal length of 0.05 m is placed (height is
4 m) diagonally above the pedestrian as shown in Fig. 12.11, and a
pedestrian’s foot is observed with 45°. If the pedestrian’s imaging
height is 0.02 m, then the height of the pedestrian is (�).
(a) 1.8 m.
(b) 1.7 m.
(c) 1.6 m.
(d) 1.5 m.

[Hint] It can be calculated according to the imaging model.
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Appendix A: Visual Perception

The high level of vision is visual perception. Typical visual perception mainly
includes shape perception, space perception, and motion perception.

A.1 Shape Perception

Shape perception mainly discusses the perception of the shape of the object one
wants to observe or pay attention to. When people observe a scene, they often call
the objects they want to observe or pay attention to as figure (foreground, object),
and classify other parts into the background. Distinguishing between figure and
background is the basis for understanding shape perception, and the first step in
shape perception is to separate and extract objects from the background.

The structure of the object shape has certain rules. Gestalt theory in psychology
believes that the perception of stimuli has a tendency of self-organizing, and the
shape will follow a certain law when organizing basic visual units (such as points
and lines) into meaningful blocks (connected components) or regions. Commonly
used laws include the following:

1. Proximity: Elements that are close in space are more likely to be perceived as
belonging to a common shape than elements that are separated.

2. Similarity: Elements with similar shapes or sizes are more likely to be perceived
as belonging to similar collective shapes.

3. Continuation: If a shape is incomplete, there is a natural tendency to regard
(connect) it as complete.

4. Closure: When a shape is moved, the elements that move at the same time are
regarded as belonging to the same shape.

The most basic concept in shape perception is the contour (outline, the closed
boundary of the object). People always see the outline before perceiving the shape.
In fact, people see the shape of an object because they first see the contour that
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distinguishes the object from other background parts in the field of vision. Intuitively
speaking, the perception of shape generally requires a clear contour between visible
regions of different brightness.

In mathematical language, the composition of the contour is the second derivative
of the corresponding brightness of the contour. In other words, only a (linear) change
in brightness does not produce a contour, and only an accelerated change in
brightness can produce a contour. In addition, when the acceleration of the bright-
ness change is lower than the threshold of the perceptual contour, although the eyes
are looking at the object, its shape cannot be seen.

The contour is closely related to the shape, but the contour is not equal to the
shape. When the two parts of the field of view are separated by contours, even
though they have the same contour lines, they can be seen as having different shapes.
The difference between contour and shape can also be explained in this way: When
people pay attention to the shape of an object, they tend to look at certain regions
(usually key parts derived from experience); when people pay attention to the
contour, the contour is seen as a route to be traced, there is a process of “shape
formation” from the contour to the perception of shape. It can be said that the contour
is only the boundary, a partial concept, while the shape is the whole, which is a
global concept.

Contours have “directivity” in helping to form shapes. Contours usually tend to
affect the space it encloses, that is, contours generally play a role in forming shapes
inward rather than outward. When the field of view is divided into an object and a
background by a contour, the contour usually only helps the object to form a
shape, and the background does not seem to have a shape. For example, if one digs
out a small piece from a big picture, these two have the same contour, but few
people can see that they form the same shape. This can explain that in jigsaw
puzzles, the parts with specific patterns are better for splicing than those with large
blue sky or sea water. This is because in the former case, it can rely on the
understanding of the picture, while in the latter case, only the contour of the
drawing board plays a role.

In shape perception, the perception of contours is often different from the actual
situation due to psychological factors. In addition to the previousMach band effect
(see Sect. 1.2), there is an interesting phenomenon called subjective contour. People
can see a certain contour or shape for some reason without a difference in brightness.
This kind of contour perception produced without direct stimulation is called
subjective contour or illusion contour.

Example A.1 Subjective Contour Example
One can see a weak subjective contour (there is no closed boundary in practice)
between the three fan-shaped discs in Fig. A.1a. The equilateral triangle surrounded
by this subjective contour looks brighter than the actual background with equal
brightness. It feels like a white triangle plane is located between the obscured
triangle composed of the other three corners and the observer. Figure A.1b, c give
two other examples, where Fig. A.1b is not as vivid as Fig. A.1c. The subjective
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(a) (b) (c)

Fig. A.1 (a–c) Example of subjective contour (see text)

contour indicates that the perception of shape depends on the extraction of edges. In
Fig. A.1, although there are only discontinuous edges and lines, people can still see
objects with shapes.

A.2 Spatial Perception

The human eye retina is a curved surface. From the imaging point of view, it is
equivalent to a plane with only height and width in the 2-D space. However, people
can perceive a 3-D space from the visual image formed on it, that is, the depth and
distance information might be obtained. This ability is the so-called spatial percep-
tion. Spatial perception is essentially a matter of depth perception, because the
observation of the other two dimensions is often more direct and certain (less
ambiguity).

There are many clues in the 2-D retinal image that can help people perceive and
interpret the 3-D scene. Human beings do not have an organ directly or exclusively
used to perceive distance, and the perception of space often does not rely solely on
vision. In spatial vision, people use some external objective conditions called indices
of depth and internal conditions of their own bodies to help judge the spatial position
of objects. These conditions include nonvisual indices of depth, binocular indices of
depth, and monocular indices of depth.

A.2.1 Nonvisual Indices of Depth

Nonvisual indices of depth have their physiological basis (their principles have also
been used in robot vision in recent years), and there are two common ones:
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1. Eye Focus Adjustment
When viewing objects at different distances, the eye adjusts its lens (equiva-

lent to a lens in a camera) through the eye muscles to obtain a clear image on the
retina. The signal transmitted to the brain by this regulatory activity provides
information about the distance of the object, and the brain can give an estimate of
the distance of the object based on this.

2. Convergence of the Visual Axes of Two Eyes
When viewing objects at different distances, the two eyes will adjust them-

selves to align their respective fovea to the object, so that the object is mapped
to the most receptive zone of the retina. In order to align the two eyes with the
object, the visual axes of the two eyes must complete a certain convergent
motion, which tends to be concentrated when looking near and scattered when
looking far away. The eye muscle movement that controls the convergence of
the visual axis can also provide the brain with information about the distance of
the object.

Example A.2 Binocular Convergence of Visual Axes and Object Distance
Refer to Fig. A.2, set the object at point P, the points L and R represent the positions
of the left and right eyes, and d is the distance between L and R, that is, the eye
distance (usually 65 mm). When the original parallel viewing axes (as shown by the
dashed arrow) converge to point P, the left eye’s inward rotation angle is θL, and the
right eye’s inward rotation angle is θR, and it has θ= θL + θR. It can be seen that if the
angle of rotation θ is known, the object distance D can be calculated. In addition, if
the object distance D is known, the angle θ can also be calculated.

A.2.2 Binocular Indices of Depth

People’s perception of the depth of a space scene mainly relies on binocular vision.
In binocular vision, each eye observes from a different angle, forming a different and
independent vision on its respective retina. Specifically, the left eye sees more points

Fig. A.2 Schematic
diagram of the visual axes of
both eyes

P

L Rd = 65mm

D
q

q

L R
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on the left side of the object, and the right eye sees more points on the right side of
the object. In other words, the image of the center of attention on the object will fall
on the corresponding points of the retina of the two eyes, while other points fall on
the noncorresponding parts. This is binocular disparity (parallax), which provides
main binocular indices of depth.

Binocular disparity is an important cause of stereo perception or depth perception.
With the help of binocular disparity, the relative distance can be perceived more
accurately than with the help of physiological conditions such as adjustment of eyes
and convergence of visual axes. However, it should be noted that when two objects
are located at different distances, these distances must exceed a certain limit before
the observer can distinguish the difference in distance between the two. This
discrimination ability is called deep acuity. To determine the depth acuity is to
determine the minimum discrimination threshold of binocular disparity. Depth
acuity can also be measured by aberration angle. The minimum limit of binocular
depth acuity of a normal person is 0.0014–0.0028 rad.

When a person is in a normal body posture, the parallax between the eyes is along
the horizontal direction, which is called lateral aberration. Human depth perception
is mainly produced by lateral aberrations. The parallax along the up and down
direction of the retina is called longitudinal aberration, it rarely appears in life, and
people are not sensitive to it.

Da Vinci has long discovered the basic problem in binocular vision: the two
retinal images obtained by observing the same object at a fixed focal length are
different, so how do people perceive that they are the same object? Here it needs to
use the concept of corresponding points (see Chap. 6 for more content). It can be
geometrically proved that there are many points in the binocular field of view that
can be perceived as one point. The geometric trajectory of these points is called
binocular single vision (horopter), and the left and right retinal images of these
points form corresponding point pairs. The above-mentioned perception process is
carried out in the cerebral cortex, and the two retinal images are combined after being
transmitted to the cerebral cortex to produce a single image with a sense of depth.

In practice, when the observer focuses the vision of both eyes on a closer object,
there is a certain angle between the visual axes of the two eyes, and neither of them is
straightforward. However, when looking at the object, the eyes face a common
visual direction through the combination of the frame, and the image obtained is
single, as if it is seen by one eye. From the perspective of subjective perception, two
eyes can be regarded as a single organ. A theoretically imaginary single eye in the
middle of the two eyes can be used to represent this organ, called the cyclopean eye.

Example A.3 Cyclopean Eye
Each pair of corresponding points on the retina of both eyes has a common visual
direction. As shown in Fig. A.3, when the object is directly in front at C, it acts on the
fovea CL and fovea CR of the left and right eyes, respectively. When CL and CR are
hypothetically overlapped, the location of the object at point C is on the fovea FC of
the cyclopean eye, and its direction is in the center of the cyclopean eye, that is, the
subjective visual direction is straightforward. When the object is at S, it acts on the SL
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Fig. A.3 Schematic
diagram of the
cyclopean eye

C S

FCL

LS
RC

RSCF
S

and SR of the left and right eyes, respectively. For the cyclopean eye, the object is
positioned at the FS.

The cyclopean eye is a very useful concept when people deal with spatial
perception. When people are spatially orienting objects, they regard themselves as
the center of the visual space, and the direction from the fovea toward the front of the
cyclopean eye is regarded as the forward direction of vision to determine the
orientation of the object. Since the object is viewed in a single direction subjectively,
this direction is called the subjective direction, which connects the object with the
cyclopean eye in the middle of the two eyes in the above imagination. All objects
falling in two visual directions (corresponding to two optical axes) are perceived as
being in the same subjective direction. It looks like two points corresponding to two
retinas have the same direction value.

The subjective visual direction may be inconsistent with the actual position of the
stimulus acting on any pair of corresponding points on the retina. In other words,
there will be a difference between the objective visual space and the subjective visual
space. Here the corresponding points on the retina refer to those units that produce
the same visual direction when the stimulus is felt on the two retinas, that is to say,
the retinal units on the two retinas that have the same visual direction are called the
corresponding retina points. In fact, the foveae of the two eyes are the corresponding
points on the retina of the two eyes. The visual direction of the fovea is the main
visual direction. People rely on the main visual direction of the cyclopean eye to
determine the position of an object in space.

A.2.3 Monocular Indices of Depth

People’s perception of the depth of a space scene can sometimes be achieved by
monocular vision (only one eye is needed). In monocular vision, some physical
conditions of the stimulus itself, through the experience and learning of the observer,
can also become the indices of depth and distance of perception under certain
conditions (see Chap. 8). The main monocular indices of depth include the
following:
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1. Size and Distance
According to the principle of viewing angle measurement, if the visual image

size on the retina is maintained, the ratio of the object size to the object distance
does not change. This is called Euclidean’s law and is represented by equation as

s=
S
D

ðA:1Þ

Among them, S is the size of the object;D is the object distance; s is the size of
the visual image on the retina (the eyeball size is a constant, here is taken as 1).

This phenomenon in which the size of an object on the retina is inversely
proportional to the distance of the object is called perspective scaling. Based on
this, when the actual size of the object is known, the object distance can be
calculated by visual observation. When observing two objects of similar size,
which one produces a larger image on the retina, which one appears closer
together. Observing the same object at an acute angle to the axis of the object
has a smaller visual image on the retina than observing it at a right angle. This is
also called foreshortening.

2. Lighting Changes
Illumination changes include: (1) The distribution of light and shadow: gen-

erally bright objects appear close, and dark or shadowed objects appear far away;
(2) Color distribution: in people’s experience, distant objects are generally blue,
and close objects appear to be yellow or red. Based on this, people often think that
yellow or red objects are closer, and blue objects are far away; (3) Atmospheric
perspective: Because there are many related atmospheric factors (such as fog,
etc.) between the observer and the object, people observe that the contours of
distant objects are relatively not as clear as the contours of closer objects. These
lighting variation factors provide important indices of depth.

3. Linear Perspective
According to the laws of geometric optics, rays passing through the center of

the pupil generally give a true image projected by the center. Roughly speaking,
this projection transformation can be described as a projection from a point to a
plane, called linear perspective. Due to the existence of linear perspective, closer
objects occupy a larger viewing angle and appear to be larger in size; distant
objects occupy a smaller viewing angle and appear to be smaller in size.

4. Texture Gradient
The surface of the object in the scene is always textured. For example, a brick

wall has a double texture, the pattern between the bricks contains a macro
texture, and the surface of each brick has a micro texture. When a person
observes a surface that contains a certain texture and that is not perpendicular
to the line of sight, the texture is projected to the retina and gives a gradual change
in the corresponding texture gradient in the visual image. This sparse near and
dense far away structure density difference gives some clues to the distance (see
Sect. 8.3).
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5. Object Occlusion
The mutual occlusion between objects is an important condition for judging

the relationship between objects. Using it to judge the context of objects depends
entirely on physical factors. When the observer or the observed object is in
motion, the change of occlusion makes it easier for people to judge the front
and back relationship of the object. When an object occludes another object, the
inter-position phenomenon occurs. At this time, it can be known that the distance
between the occluding object and the observer is shorter than the distance
between the occluded object and the observer. However, it is more difficult to
judge the absolute distance between objects by occlusion.

6. Motion Parallax
When the observer moves in a fixed environment, the angle of view changes

quickly due to the different distances of objects (the angle of view of closer
objects changes quickly, and the angle of view of farther objects changes
slowly), which causes the perception of relative motion. As shown in Fig. A.4,
when the observer moves from left to right at speed v and observes objects A and
B, the images obtained at f1 are A1 and B1, respectively; and the images obtained
at f2 are A2 and B2, respectively. The observer perceives that the visual size of
object A changes faster than the visual size of object B, and the (stationary)
objects A and B appear to be gradually moving away from each other (as if they
are moving).

The above motion situation is related to the observer’s gaze point, and the
motion felt in reality is a rotation around the gaze point. As shown in Fig. A.5,
when the observer moves from top to bottom at the speed v, if the gaze point is P,
then the closer point A can be observed to move in the opposite direction to the
observer, and the far point B moves in the same direction as the observer. It
should be said that these are the indices of depth caused by the perception of the
cerebral cortex.

It should be pointed out that although the motion parallax is caused by the
movement of the observer, if the observer is stationary and the object or envi-
ronment moves, a similar effect will be obtained. In addition, since the principle
of perspective projection is the same, motion parallax is related to perspective
scaling and perspective shortening.

v

f1 f2
A1

A

A2

B1 B2

B

Fig. A.4 Geometric interpretation of the distance motion parallax
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f2

f1
A P

v

Fig. A.5 The geometric explanation of the directional motion parallax

A.3 Motion Perception

The perception of motion is also one of the important functions of the visual system.
If vision is the general term for sensory modalities caused by light passing through
the visual organs, then detecting the movement of objects in the visual field is one of
the submodalities. The following gives some representations about the relationship
between motion and motion vision and discusses some characteristics of motion
perception.

A.3.1 The Condition of Motion Perception

At present, the most widely accepted theory of visual motion perception has
two keys:

1. There is a motion detection unit in the vision system, which includes two
detection channels. One is a static channel, which detects spatial frequency
information and has low-pass filtering characteristics in temporal frequency; the
other is a dynamic channel, which has band-pass characteristics in time and
frequency. If and only if the two channels have a response at the same time, the
human eye can perceive the motion and detect the speed of the motion, as shown
in Fig. A.6.

This motion detector model correctly explains the visual choice of time
frequency and motion speed. Obviously, the condition for obtaining good motion
vision is that the speed of motion can be sensed if and only when both channels
have a response. Such a zone can only be the overlapping part of the two response
curves, that is, the shadow zone in Fig. A.6, and can be called the motion
vision zone.

When the time frequency of the object change is lower than the Tdb point, it
can only cause a static channel response, while the dynamic channel response is
zero. The result is that the output of the motion detector is zero, that is, the vision
cannot perceive the change of the object. Reflected in the speed, the object will be
perceived as static, such as the movement of the hour hand, the movements of the
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Fig. A.6 Static and dynamic channels jointly determine motion vision

sun and the moon, etc. If the time frequency of the movement change is higher
than Tse and lower than Tde, it can only cause the response of the dynamic
channel, while the response of the static channel is zero. At this time, although
the vision can perceive the movement of the object, it cannot calculate its speed,
nor can it distinguish the structural details of the object, such as the trees passing
by at a high speed outside the window of a quickly run train, and the high-speed
rotating fan blades. Motion with higher speed, that is, when the time frequency is
higher than Tde, neither the dynamic channel nor the static channel responds,
indicating that vision can neither calculate the speed nor perceive the movement
of the object, or even the existence of the object, such as the movement of a bullet
out of the chamber of gun. Therefore, only when the time frequency is in the
motion vision zone between Tdb and Tse can the dynamic channel and the static
channel have a good response at the same time, and the vision can effectively
perceive the movement of the object and calculate the speed of its movement.
Therefore, the selectivity of the human eye to the speed of motion depends on the
response of the motion detector inside the visual system to the time frequency.

It can be seen from the above that motion perception is closely related to
motion speed. The upper and lower limits of the motion speed are affected by
many factors, including: the size of the object, a large-sized object needs more
movement to be considered as a movement; brightness and contrast, the greater
the brightness and contrast, the more obvious the movement is perceived; the
environment, there is a certain degree of relativity in the motion perception, if
there is a fixed reference point, the movement is easy to be perceived.

2. The knowledge of human’s own motion, which avoids attributing the motion of
the human body or eyes to the motion of the scene. There are many kinds of
human eye movements, including rapid movement, tracking movement, com-
pensation movement, and drifting movement. These movements will make the
retina perceive the motion relative to the environment, which is equivalent to the
noise source of visual observation and needs to be eliminated.
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A.3.2 Detection of Moving Objects

When a person observes a moving object, the eyeball will automatically follow its
movement. This phenomenon is called eye pursuit movement. At this time, the
relative speed of the eyeball and the object will be reduced, so that people can
recognize the object more clearly. For example, when watching some ball games
(such as table tennis), although the movement speed of table tennis is very fast,
people can still see the approximate trajectory of the ball due to eye pursuit
movement. For another example, if one turns his/her eyes to follow the direction
of rotation of the fan, one will find that the details of the fan can be seen more clearly.
The maximum speed that the eyeball can follow is 4–5°/s, so it is impossible to see
the flight of a bullet clearly.

A.3.3 Depth Motion Detection

Humans can not only obtain depth distance information from the equivalent of 2-D
retina, but also depth motion information. This shows that there is a mechanism for
monocular depth motion detection, which can be explained with the help of Fig. A.7.
First generate a rectangular pattern on the computer screen, and make its sides move
in the 2-D plane along the direction of the arrow in Fig. A.7a. Observers looking at
Fig. A.7a, b will feel that the rectangle is stretched in the horizontal and vertical
directions, respectively, but there is no depth motion in both cases. But if the two are
combined, that is, when the left and right sides of the rectangle and the top and
bottom sides of the rectangle are moved in the horizontal and vertical directions at
the same time as shown in Fig. A.7c, the observer can perceive the obvious depth
motion even if he/she observes with a single eye: The rectangle moves from far to
near to the front of the screen.

(a) (b) (c)

VRVL

VN

VM

VN

VM

VL VR

Fig. A.7 (a–c) Monocular depth motion detection (see text)
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A.3.4 Real Motion and Apparent Motion

Under certain conditions, motion may be sensed when there is no scenery motion in
the scene, which is called apparent motion. For example, the observer watches two
relatively close points in space, and lights them with two flashes at different times. If
the time difference between two flashes is small, they will be sensed at the same
time. If the time difference between two flashes is large, they will be perceived one
after the other. Only when the time difference between the two flashes is between
30 and 200 μs will the apparent motion be perceived (that is, feeling the motion of a
light spot to another position). Apparent motion can be divided into several catego-
ries and marked with Greek letters. For example, α motion refers to the action of
expansion or contraction (two flash points are different in size); βmotion refers to the
motion from one point to another. If some phenomena are very different but related,
it is called the ϕ effect.

A.3.5 Correspondence Matching of Apparent Motion

Which parts of the two successively presented patterns can be correspondingly
matched will affect the effect of apparent motion. Since visual stimulation involves
many factors, there are many types of correspondence matching. Experiments on
the correspondence matching of apparent motion show that some common factors
can be ranked as follows: (1) the proximity of the spatial position; (2) the similarity
of the shape and structure; (3) the priority of the 2-D plane relative to the 3-D
volume.

First consider the proximity of the spatial location. Suppose that the line segment
L in Fig. A.8a is initially generated by a computer, displayed for 100 ms and then
erased, and then line segmentsM and N are sequentially generated, and displayed for
100 ms and then erased. In this cycle, one can notice the line segments moving back
and forth on the screen. So is the direction of movement perceived by the human eye
from L→M or L→ N? Experiments show that this kind of motion matching mainly
depends on the distance between the subsequent line segments M and N and the
starting line segment L. Based on this, there is the corresponding matching rule 1: in
the two successively presented patterns, the closest spatial position of the pixel
corresponds to the matching (as shown in the figure by the double-headed arrow
in the middle).

Figure A.8b shortens the line segment N. At this time, the sensed motion always
goes back and forth between L and M. Based on this, there is the corresponding
matching rule 2: the pixels with the most similar shape and structure in the two
successively presented patterns are matched correspondingly.

Figure A.8c does not shorten the line segment N, but introduces a cube structure
so that L and M appear to be on the same plane, while N is on another plane. At this
time, it is noticed that the line segment N was flashing in the original place, while the
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(a) (b) (c)

M L N M L N M L
N

Fig. A.8 (a–c) Spatial location proximity and shape similarity (see text)

(a) Both forward and reverse (b) Forward (c) Reverse

B
A

C

A
B B

C

A

Fig. A.9 (a–c) Different presentation orders cause the motion perception of spoke rotation

other line segment was moving back and forth between L andM. Based on this, there
is the corresponding matching rule 3: In the presence of 3-D structure and motion
cues, pixels in plane motion are matched first.

The above discussions are the most basic corresponding matching rules. Violat-
ing any of them will lead to the illusion motion. Using the rules of corresponding
matching can easily explain the wheel reversal phenomenon in the movie. In
Fig. A.9, the two cross-shaped spokes that appear one after another are represented
by solid and dashed lines, respectively. When two adjacent spokes form an angle of
45° as shown in Fig. A.9a, the motion of the spokes will turn forward for a while and
reverse for a while. This phenomenon can be easily explained by the first
corresponding matching rule mentioned above. At this time, the spokes represented
by the dashed lines can be formed by rotating the spokes represented by solid lines
through 45° clockwise or 45° counterclockwise. Since the shapes of the two spokes
are exactly the same, both forward and reverse rotation are possible.

Now use the computer to change the space interval displayed by the spokes, and
use different display order to present three kinds of cross-shaped spokes
A (represented by thick lines), B (represented by thin lines), and C (represented by
dashed lines). The motion direction of spokes is fixed. If the presentation order is
A → B → C, then the spokes are perceived to rotate clockwise, and the direction of
rotation is unique, as shown in Fig. A.9b. Because according to the corresponding
matching rule 1, the order of A→ B→ C is the closest in space. In the same way, the
direction of rotation of the spokes as seen in Fig. A.9c is counterclockwise. In some
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movies, the spokes turned upside down because the shooting frame rate was not
synchronized with the wheel speed. As a result, the fast-rotating wheel was shot into
the display sequence of Fig. A.9c. According to the above-mentioned corresponding
matching rule, the illusion of turning the wheel is caused.

A.3.6 Aperture Problem

The aperture problem is an important issue to be considered in motion detection. The
aperture problem can be represented as: when observing the motion of a certain
object (such as a line segment group) through a circular small hole, the direction of
motion perceived by the human eye is perpendicular to the line segment. The reason
here is that the local motion of the line segment in the small hole is regarded as the
overall motion. Take Fig. A.10a as an example. Regardless of whether the line
segment moves to the left or upwards, it can only see the line segment moving in the
direction pointed by the arrow (toward the upper left direction) through the small
hole. This is a subjective apparent motion.

The above phenomenon can also be explained based on the corresponding
matching rules of apparent motion. It can be seen from the figure that each line
segment has two intersections with the small hole. According to the matching rule,
the two intersections of the current line segment will match the two intersections of
the nearest line segment at the next moment. Although the motion directions of these
intersections are all along the circle, the visual system always tends to regard each
line segment as a whole, so the perceived motion direction of the line segment will
be the composite direction of the two intersections, that is, perpendicular to the
direction of motion of the two intersections. Therefore, the strict representation of
the aperture problem should be that the perceived motion direction of the line
segment is the composite direction of the motion direction of its two intersection
points.

It is deduced from this example that when the shape of the small hole changes, the
apparent motion direction of the line segment will change to the left, as shown in

(a) Subjective 

     apparent motion

(b) To the left (c) To the upward (d) Along 

 the diagonal 

Fig. A.10 (a–d) The apparent motion direction under different small holes
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Edge 1

Edge 2

Fig. A.11 A way to solve the aperture problem

Fig. A.10b; upward, as shown in Fig. A.10c; and along the diagonal direction, as
shown in Fig. A.10d. Figure A.10c can well explain the illusion motion of the barber
shop sign. From the perspective of the observer’s retinal projection image, the
cylindrical frame of the barber shop sign is equivalent to a rectangular hole. When
the cylinder rotates, the motion direction of the color bar is determined by the two
intersection points. According to the corresponding matching rule, the motion
direction of the intersection of the left and right rows of the color bar is upwards,
so the composite direction is also upwards (downward if reversed).

On the other hand, the “aperture problem” can also be used to illustrate how the
human brain detects motion. As shown in Fig. A.11a, b, when the observer watches
the motion of a larger diagonal grating pattern through a small circular hole, no
matter if the pattern moves downward, toward right, or to the lower right, the
observed motion direction seems to be the same, that is, the pattern moves to the
lower right. This phenomenon shows a basic uncertainty in motion detection. One
way to solve this problem is to watch through two small circular holes at the same
time, as shown in Fig. A.11c, so that the motion of the two edges of the pattern can
be detected separately, and two motion components can be obtained, so as to make
correct judgments on the direction of motion.

It is seen from this method that the detection of motion information can be
divided into two levels. The first level detects motion components, and the second
level integrates motion components to detect more complex motions.

A.3.7 Dynamic Indices of Depth

The indices of depth listed in Sect. A.2 can also provide depth information when the
retina is moving, which is called dynamic indices of depth. For example, linear
perspective often appears in the form of dynamic perspective in perception: when a
person in the car moves with the car, the continuous change of the field of view
produces a flow (flux, a continuous gradient change) on the retina. The speed of the
flow is inversely proportional to the distance, so distance information is provided.

There is some other information related to motion, such as motion parallax,
which is the information generated by the relative movement of the image and the
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retina when a person moves to both sides (lateral movement). Rotation and radial
motion (when the object moves toward or away from the eye) can also provide
information about space and the objects in it. There are two things to note:

1. These cues are both geometrical and dynamic. They are mainly perceived in the
cerebral cortex rather than in the retina.

2. These clues are completely absent in the flat image. When a person moves in front
of the portrait in the museum, the person neither perceives the parallax movement
nor the dynamic perspective in the image. The image is treated as a single object
and moves like a rigid body.

This is also the case for motion images. It is necessary to distinguish between the
representation of dynamic cues (for example, a picture taken by a moving camera)
and the dynamic cues caused by the observer’s own motion. If the observer moves in
front of the camera, then there is no dynamic perspective or parallax caused by its
own movement. If an object is obscured by another object in the captured image,
only the observer who relies on the movement of the camera can see the object, and it
is useless for the observer to work hard.

A.4 Key Points and References for Each Section

The following combines the main contents of each section to introduce some
references that can be further consulted.

1. Shape Perception
The vividness of subjective contours to shape perception can also be found in

reference [1]. Discussing shape vision often involves many phenomena and
problems of optical illusion, which can be found in reference [2].

2. Spatial Perception
More discussion about lighting changes in monocular indices of depth can be

found in reference [3].
3. Motion Perception

More discussion on apparent motion can be found in reference [3].
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Answers to Self-Test Questions

Some answers have explanations.

Chapter 1 Computer Vision Overview

1.1. Human Vision and Characteristics

1.1.1. (C).
1.1.2. (B).
1.1.3. (C).

1.2. Computer Vision Theory and Model

1.2.1. (B); (C); (D).
1.2.2. (A); (B).
1.2.3. (B).

1.3. Three-Dimensional Vision System and Image Technology

1.3.1. (C).
1.3.2. (C).
1.3.3. (B); (C).

1.4. Overview of the Structure and Content of This Book

1.4.1. (A); (C).
1.4.2. (B).
1.4.3. (A); (C).
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Chapter 2 Camera Calibration

2.1. Linear Camera Model

2.1.1. (A), Two equations can be obtained from one space point.
2.1.2. (B); (C).
2.1.3. (D).

2.2. Nonlinear Camera Model

2.2.1. (A); (C).
2.2.2. (A); (D).
2.2.3. (B); (D).
2.2.4. (C).

2.3. Traditional Calibration Methods

2.3.1. (A); (B).
2.3.2. (C).
2.3.3. (A); (D).

2.4. Self-Calibration Methods

2.4.1. (A); (B); (C).
2.4.2. (C).
2.4.3. (D).

Chapter 3 Three-Dimensional Image Acquisition

3.1. High-Dimensional Image

3.1.1. (A); (B); (C); (D).
3.1.2. (C); (D).
3.1.3. (A); (C); (D).

3.2. Depth Image

3.2.1. (A); (D).
3.2.2. (C); (D).
3.2.3. (B); (C); (D).
3.2.4. (C).
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3.3. Direct Depth Imaging

3.3.1. (C).
3.3.2. (D), The depth is inversely proportional to the modulation frequency,

and proportional to the speed of light and the phase difference; in
addition, the phase difference has a period of 2π.

3.3.3. (A).

3.4. Stereo Vision Imaging

3.4.1. (B).
3.4.2. (A); (D).
3.4.3. (B); (D).

Chapter 4 Video Image and Motion Information

4.1. Video Basic

4.1.1. (D).
4.1.2. (C).
4.1.3. (B).

4.2. Motion Classification and Representation

4.2.1. (A); (D).
4.2.2. (B); (C).
4.2.3. (D).

4.3. Motion Information Detection

4.3.1. (D).
4.3.2. (A).
4.3.3. (B).

4.4. Motion-Based Filtering

4.4.1. (A); (C).
4.4.2. (B).
4.4.3. (D).

Chapter 5 Moving Object Detection and Tracking

5.1. Differential Image

5.1.1. (A); (C).
5.1.2. (C); (D).



438 Answers to Self-Test Questions

5.1.3. (A); (D).
5.1.4. (B); (C); (D).

5.2. Background Modeling

5.2.1. (A); (B); (C); (D).
5.2.2. (D).
5.2.3. (B); (C), This is not always true, because not every moving object will

pass every pixel.

5.3. Optical Flow Field and Motion

5.3.1. (C); (D).
5.3.2. (C).
5.3.3. (B).

5.4. Moving Object Tracking

5.4.1. (A); (D).
5.4.2. (A); (C).
5.4.3. (B).

Chapter 6 Binocular Stereo Vision

6.1. Stereo Vision Process and Modules

6.1.1. (A); (D).
6.1.2. (B); (C).
6.1.3. (B); (C).

6.2. Region-Based Stereo Matching

6.2.1. (C); (D).
6.2.2. (A); (D).
6.2.3. (B); (C); (D).
6.2.4. (B); (D).

6.3. Feature-Based Stereo Matching

6.3.1. (B); (D).
6.3.2. (A); (B).
6.3.3. (B); (C).

6.4. Error Detection and Correction of Parallax Map

6.4.1. (A); (C).
6.4.2. (B); (D).
6.4.3. (B).
6.4.4. (D).
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Chapter 7 Monocular Multiple Image Recovery

7.1. Photometric Stereo

7.1.1. (A); (C).
7.1.2. (B); (C).
7.1.3. (A).
7.1.4. (D).

7.2. Shape from Illumination

7.2.1. (A); (B); (C).
7.2.2. (A); (C); (D).
7.2.3. (C).

7.3. Optical Flow Equation

7.3.1. (A); (C).
7.3.2. (A); (B); (C).
7.3.3. (C).

7.4. Shape from Motion

7.4.1. (B).
7.4.2. (D).
7.4.3. (B); (C).

Chapter 8 Monocular Single Image Recovery

8.1. Shape from Shading

8.1.1. (D).
8.1.2. (C); (D).
8.1.3. (B).

8.2. Solving Brightness Equation

8.2.1. (A); (B); (C).
8.2.2. (A); (B); (D).
8.2.3. (C).

8.3. Shape from Texture

8.3.1. (A); (C).
8.3.2. (B); (C); (D).
8.3.3. (D).



440 Answers to Self-Test Questions

8.4. Detection of Texture Vanishing Points

8.4.1. (B).
8.4.2. (A), The parameter space of a circle is 3-D, while the parameter space of

a straight line is 2-D.
8.4.3. (D).

Chapter 9 Three-Dimensional Scene Representation

9.1. Local Features of the Surface

9.1.1. (A); (B); (D).
9.1.2. (C); (D).
9.1.3. (A); (B).

9.2. 3-D Surface Representation

9.2.1. (A); (C); (D).
9.2.2. (A).
9.2.3. (C).

9.3. Construction and Representation of Iso-Surfaces

9.3.1. (B); (C); (D).
9.3.2. (B).
9.3.3. (B).

9.4. Interpolate 3-D Surfaces from Parallel Contours

9.4.1. (B).
9.4.2. (C).
9.4.3. (A); (B); (C).

9.5. 3-D Entity Representation

9.5.1. (B); (D).
9.5.2. (A); (B); (C).
9.5.3. (B); (D).

Chapter 10 Scene Matching

10.1. Matching Overview

10.1.1. (A); (B); (C); (D).
10.1.2. (A); (C).
10.1.3. (C).
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10.2. Object Matching

10.2.1. (D).
10.2.2. (A); (C).
10.2.3. (B).

10.3. Dynamic Pattern Matching

10.3.1. (B); (C).
10.3.2. (C).
10.3.3. (B); (D).

10.4. Graph Theory and Graph Matching

10.4.1. (A).
10.4.2. (A); (C); (D).
10.4.3. (A); (B); (D).
10.4.4. (D).

10.5. Line Drawing Signature and Matching

10.5.1. (D).
10.5.2. (C).
10.5.3. (D).

Chapter 11 Knowledge and Scene Interpretation

11.1. Scene Knowledge

11.1.1. (D).
11.1.2. (C).
11.1.3. (A); (B); (C).

11.2. Logic System

11.2.1. (B); (C).
11.2.2. (C).
11.2.3. (D).

11.3. Fuzzy Reasoning

11.3.1. (A); (B).
11.3.2. (D).
11.3.3. (C).

11.4. Scene Classification

11.4.1. (A); (B); (D).
11.4.2. (B); (C).
11.4.3. (A); (C).
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Chapter 12 Spatial-Temporal Behavior Understanding

12.1. Spatial-Temporal Technology

12.1.1. (A); (C).
12.1.2. (B); (D).
12.1.3. (B).

12.2. Spatial-Temporal Interest Point Detection

12.2.1. (C).
12.2.2. (B).
12.2.3. (B); (D).

12.3. Spatial-Temporal Dynamic Trajectory Learning and Analysis

12.3.1. (A); (C); (D).
12.3.2. (A); (B); (D).
12.3.3. (A); (B); (C).

12.4. Spatial-Temporal Action Classification and Recognition

12.4.1. (A); (D).
12.4.2. (B).
12.4.3. (C).
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2.5D sketch, 17
3-D image acquisition, 67
3-D reconstruction, 172
3-D representation, 18
6-coefficient affine model, 115
8-coefficient bilinear model, 115
ϕ effect, 430

A
Abnormality detection, 403
Absolute pattern, 335
Accumulative difference image (ADI), 138
Accuracy, 323
Action, 391
Action primitives, 391
Active vision, 21
Active vision-based calibration, 58
Activity, 391
Activity learning, 396
Activity path (AP), 396, 398
Adaptation, 396
Adaptive boosting (AdaBoost), 405
Adaptive weighted average (AWA), 129
Adjacent, 336
Angle scanning camera, 88
Antecedent, 364
Aperture problem, 432
Apparent movement, 430
Aspect ratio, 265
Association graph matching, 342
Attribute hypergraph, 358
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B
Background modeling, 140
Background motion, 109
Backward zooming, 115
Bag-of-features model, 375
Bag-of-words model, 375
Barrel distortion, 45
Behavior, 391
Bi-cubic patch, 291
Bidirectional reflectance distribution function

(BRDF), 211
Bilinear patch, 290
Binocular angular scanning mode, 88
Binocular axis model, 92
Binocular focused horizontal model, 89
Binocular horizontal mode, 85, 173
Binocular imaging model, 84
Binocular indices of depth, 423
Binocular longitudinal mode, 92
Binocular single vision, 423
Binocular vision, 422
Biquadratic patch, 291
Blade, 343
Block matching, 116, 152
Branching, 303
Brightness adaptation, 8

C
Camera attitude parameters, 42
Camera calibration, 37, 170
Camera line of sight, 264
Camera model, 38
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Camera motion, 114
Cell decomposition, 307
Centrifugal distortion, 45
Clausal form syntax, 364
Codebook, 142
Color model, 103
Color TV format, 106
Common circle criterion, 304
Compatibility constraint, 178
Component video, 102
Composite maximum, 374
Composite moment, 374
Composite video, 102
Computational complexity, 324
Computational vision theory, 15
Computer-aided design (CAD), 309, 361
Computer vision, 1, 13
Conditional contrast, 4
CONditional DENSity propagATION

(CONDENSATION), 156
Conditional random field (CRF), 406
Conjunctive, 363
Consequent, 364
Constructive solid geometry (CSG), 309
Continuous constraint, 178
Contour, 419
Contour tiling, 300
Contrast sensitivity, 5, 10
Contrast susceptibility, 5
Correction equations, 155
Correlation minimum, 373
Correlation product, 374
Correspondence, 302, 327
Corresponding matching, 430
Corresponding point, 423
Crease, 344
Critical flicker frequency (CFF), 10
Critical fusion frequency (CFF), 10
Cross-section, 309
Cumulative effect of time, 10
Cyclic action, 406
Cyclopean eye, 423

D
De-fuzzification, 372, 374
Delaunay triangulation, 304
Depth acuity, 423
Depth image, 69
Difference image, 136 Field of view (FOV), 89, 397
Difference of Gaussian (DoG), 190, 377
Diffuse reflection surface, 213

Direct filtering, 123
Discriminative model, 406
Disjunctions, 363
Disparity, 85, 169
Disparity map, 194
Disparity smoothness constraint, 178
Distortion, 260
Dollying, 114
Double-sub-graph isomorphism, 342
Duality, 305
The dynamic indices of depth, 433
Dynamic pattern matching, 333
Dynamic programming, 192

E
Eccentric distortion, 45, 46
Edge orientation histogram (EOH), 162
Edge set, 336
Edge-induced sub-graph, 339
Edit distance, 329
Entity, 284, 306
Epipolar line, 178, 181
Epipolar line constraint, 178, 180, 187
Epipolar plane, 179
Epipole, 178
Error correction, 173, 196
Error detection, 195
Essential matrix, 181
Events, 391
Existential quantifier, 363
Expectation-maximization (EM), 380
Expectation-maximization (EM) algorithm,

380
Extended Gaussian image, 291
External parameters, 42
Eye pursuit movement, 429

F
Factored-state hierarchical hidden Markov

model (FS-HHMM), 406
Factorial CRF, 406
Feature, 171
Feature adjacency graph, 320
Feature matching, 171
Feature measurement, 26
Feature point, 186
Feature selection, 396

Filtering along the motion trajectory, 126
Finite impulse response (FIR), 124
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Fitting, 319
Flat, 287
Focus of contraction (FOC), 148
Focus of expansion (FOE), 148
Foreground motion, 109
Foreshortening, 425
Fovea, 8, 422
Frame average, 123
Frequency domain motion detection, 118
Frequency modulation, 76
Fundamental matrix, 183
Fuzzy, 369
Fuzzy composition, 372
Fuzzy logic, 370
Fuzzy rules, 372
Fuzzy set, 370
Fuzzy solution space, 372

G
Gauss sphere, 274, 291
Gaussian curvature, 286, 292
Gaussian mixture model (GMM), 142, 397
A generalization of the CRF, 406
Generalized cylinder, 309
Generalized matching, 319
Generative model, 405
Geometric hashing, 176
Geometric models, 309, 361
Geometric realization, 337
Geometric representation, 337
Gestalt theory, 419
Global motion, 109
Global motion vector, 152
Glue, 307
Gradient consistency heuristics, 297
Gradient space, 218, 250
Graph, 194, 336, 379
Graph isomorphism, 341
Grayscale correlation, 171
Grayscale mutation, 234

H
Harris interest point detector, 393
Hausdorff distance (HD), 324
Hidden Markov model (HMM), 406
Hierarchical variable transition hidden Markov

model (HVT-HMM), 406
High-dimensional image, 68
High-order gradient, 235
Holistic recognition, 407
Homogeneity assumption, 270

Horizontal aberration, 423
Horopter, 423
Hough transform, 272
Human vision system (HVS), 1

I
Ideal scattering surface, 213
Ideal specular reflecting surface, 214
Identical, 340
Image acquisition, 26, 170
Image analysis (IA), 25
Image brightness constraint equation, 220, 250,

254
Image engineering, 24
Image flow, 227
Image flow equation, 229
Image fusion, 26
Image interpretation, 26
Image matching, 26, 319
Image perception, 26
Image processing (IP), 24
Image rectification, 91
Image sequence, 135
Image understanding (IU), 25
Importance sampling, 156
In general position, 345
Incident, 336
Indices of depth, 421
Induced sub-graph, 339
Inertia equivalent ellipse, 329
Inference, 356, 366
Infinite impulse response (IIR), 124
Integral curvature, 292
Integral image, 121
Interior camera parameters, 43
Interlaced scanning, 105
Internal parameters, 43
International Affective Picture System (IAPS),

381
Interpolation, 173
Inter-position, 426
Intrinsic image, 70
Intrinsic property, 70, 208
Irradiance, 208
Isomorphic, 340
Isotropy assumption, 269
Isotropy radiation surface, 219

J
Join, 336
Jump edge, 344
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K
Kalman filter, 155
Kernel tracking, 162
Knowledge, 355

L
Labeling via backtracking, 346
Lambertian surface, 213
Landmark points, 327
Laplacian of Gaussian (LoG), 190
Latent Dirichlet allocation (LDA), 378
Latent emotional semantic factor, 382
Learning, 360
Lens, 207
Lens distortion, 44
Lifting, 114
Light detection and range (LIDAR), 83
Light source, 207
Limb, 343
Linear minimum mean square error (LMMSE),

128
Linear model, 38
Linear perspective, 425
Linear scale-space representation, 392
Link, 337
Local linear embedding (LLE), 405
Local motion, 109
Local motion vector, 152
Loop, 337
Luminance gradient-based dense optical flow

algorithm, 150

M
Mach band effect, 4, 420
Machine vision, 3
Macro texture, 425
Magnitude-modulation, 75
Marching cube (MC), 295
Marching tetrahedra, 298
Mark, 344
Matching, 317
Maximum and minimum angle criterion, 304
Maximum entropy Markov model (MEMM),

406
Mean curvature, 286
Mean shift, 160
Mean square difference (MSD), 176
Membership function, 370
Micro texture, 425
Minimal, 286

Min-max rule, 373
Modality, 427
Model, 356
Modified Hausdorff distance (MHD), 325
Moiré contour stripes, 79
Monocular indices of depth, 424
Monocular multiple-images, 205
Monocular single image, 247
Monocular vision, 424
Monotonic fuzzy reasoning, 372
Motion compensation, 124
Motion compensation filter, 127
Motion field, 226
Motion pattern, 121
Motion region type histogram (MRTH), 112
Motion stereo, 117
Motion trajectory, 125
Motion trajectory descriptor, 113
Motion vector directional histogram (MDH),

111
Motion vector field representation, 109
Motion-detection based filtering, 123
Moving object tracking, 153
Multiple edges, 337
Mutual velocity, 149

N
Nod, 83
Non-clausal form syntax, 364
Non-visual indices of depth, 421
Normal section, 285

O
Object description, 26
Object detection, 26
Object interaction characterization, 404
Object matching, 319
Object property extraction and analysis, 26
Object recognition, 26
Object representation, 26
Octree, 307
Online activity analysis, 403
Optical flow, 227
Optical flow equation, 146, 229
Optical flow field, 145
Ordering constraint, 192
Ordering matching constraint, 194
Ordinary Voronoï diagram, 305
Orthogonal projection, 17, 265, 269
Overdetermined inverse problem, 356
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P
Pan, 83
Panning, 114
Pan-tilt-zoom (PTZ) camera, 403
Parallax, 117, 433
Parallel edges, 337
Particle filter, 155
Patch, 295
Path classification, 403
Path modeling, 402
Peak, 286
Perspective projection, 265, 269
Perspective scaling, 425
Phase correlation method (PCM), 322
Photometric compatibility constraint, 178
Photometric stereo, 206
Photometric stereoscopy, 206
Photometry, 207
Pincushion distortion, 45
Pinhole model, 38
Pit, 286
Planar, 285
Point of interest (POI), 392, 396
Predicate calculus, 362
Predicate logic, 362
Prediction equations, 154
Primal sketch, 17
Principal component analysis (PCA), 405
Principal directions, 285
Probabilistic latent semantic analysis (pLSA),

378
Probabilistic Latent Semantic Index (pLSI), 378
Progressive scanning, 104
Proper sub-graph, 338
Proper super-graph, 338
Prototype matching, 320
Pulse interval, 74
Purposive vision, 22
Puzzle, 420

Q
Qualitative vision, 22
Quasi-disjoint, 307

R
Radial alignment constrains (RAC), 51
Radial distortion, 45
Radiance, 208
Reflection map, 222, 252
Region adjacency graph (RAG), 308
Region Voronoï diagram, 306

Registration, 321
Regular grids of texels, 267
Relational matching, 319
Relative pattern, 335
Reliability, 323
Representation, 17
Resolution, 368
Resolvent, 368
Ridge, 286, 287
Rigid body models, 309
Rigid body motion, 230
Robustness, 323
Roof ridge, 70
Rotation, 114
Rotational symmetry, 256

S
Saccadic eye movement, 7
Saddle ridge, 286, 287
Saddle valley, 286, 287
Salient feature points, 190
Salient features, 190
Salient patch, 191
Scale Invariant Feature Transformation (SIFT),

190, 377
Scene, 207
Scene classification, 375
Scene interpretation, 23, 355, 413
Scene knowledge, 356
Scene matching, 319
Scene recovering, 26
Selective vision, 21
Self-calibration, 57
Self-occlusion, 343
Shade, 344
Shading, 248
Shadow, 344
Shape from motion, 237
Shape from shading, 248
Shape from texture, 260
Shape matrix, 332
Shape perception, 419
Simultaneous contrast, 4
Single Gaussian model, 141
Smooth motion, 233
Smoothness constraint, 258
Solid angle, spatial angle, 6, 209, 293
Space perception, 421
Spanning mother graph, 338
Spanning sub-graph, 338
Spanning super-graph, 338
Spatial frequency, 6
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Spatial occupancy array, 307
Spatial sampling rate, 104
Spatial summation, 6
Spatial-temporal behavior understanding, 390
Spatial-temporal techniques, 26, 390
Spatio-temporal Fourier spectrum, 125
Speed profiling, 403
Spherical projection, 269, 293
Statistical relational learning (SRL), 410
Step edge, 70
Stereo matching, 171
Stereo vision, 84, 169
Stereographic projection, 294
Stereoscopic imaging, 88
String matching, 329
Structural matching, 326
Structured light, 77
Sub-graph, 338
Sub-graph isomorphism, 342
Subjective brightness, 3
Subjective contour, 420
Subjective luminance, 3
Subpixel-level disparity, 173
Support vector machine (SVM), 382
Surface average values, 297
Surface model, 288
Surface orientation, 216
Surface tiling, 300

T
Tangential distortion, 45
Template, 174
Template matching, 174, 320
Texture element (texel), 263
Texture gradient, 425
Texture stereo technique, 270
Thin prism distortion, 45
Through-axis, 309
Tightness and Separation Criterion (TSC),

402
Tiling, 303
Tilting, 114
Time of flight, 73
Topic, 376
Total cross number, 196
Tracking, 114, 397
Trajectory, 397
Trajectory clustering, 400
Trajectory preprocessing, 399
Trihedral corner, 345

U
Uncertainty image scale factor, 40
Under-determined problem, 357
Underlying simple graph, 339
Uniqueness constraint, 178
Universal quantifier, 363

V
Valley, 286, 287
Vanishing line, 267
Vanishing point, 262, 267
Vergence, 89
Vertex set, 336
Video, 102
Video data rate, 105
Video format, 105
Video image, 101
Video initialization, 141
Virtual fencing, 403
Vision, 1
Visual acuity, 7
Visual computational theory, 14
Visual edge, 12
Visual felling, 11
Visual masking, 8
Visual perception, 11
Visual vocabulary, 376
Volumetric models, 306
Volumetric primitives, 310
Voxel, 294

W
Well-formed formulas (WFFs), 363
Wireframe, 288, 300
Wrapper algorithm, 298

Y
YCBCR color model, 103
YIQ model, 107
YUV model, 107

Z
Zero-crossing correction algorithm, 196
Zero-crossing pattern, 187
Zoom in, forward zooming, 114
Zoom out, 114
Zooming, 114
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