

About This eBook

ePUB is an open, industry-standard format for eBooks.
However, support of ePUB and its many features varies across
reading devices and applications. Use your device or app
settings to customize the presentation to your liking. Settings
that you can customize often include font, font size, single or
double column, landscape or portrait mode, and figures that
you can click or tap to enlarge. For additional information
about the settings and features on your reading device or app,
visit the device manufacturer’s Web site.

Many titles include programming code or configuration
examples. To optimize the presentation of these elements, view
the eBook in single-column, landscape mode and adjust the font
size to the smallest setting. In addition to presenting code and
configurations in the reflowable text format, we have included
images of the code that mimic the presentation found in the
print book; therefore, where the reflowable format may
compromise the presentation of the code listing, you will see a
“Click here to view code image” link. Click the link to view the
print-fidelity code image. To return to the previous page
viewed, click the Back button on your device or app.

Functional Design

Functional Design

Principles, Patterns, and Practices

Robert C. Martin

Hoboken, New Jersey

Cover image courtesy of NASA, ESA, CSA, STScI, Webb ERO
Production Team. Use of this image does not convey an
endorsement of this or any content by the above credited.

Page xxiii: Author photo courtesy of Robert C. Martin.

Many of the designations used by manufacturers and sellers to
distinguish their products are claimed as trademarks. Where
those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed
with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of
this book, but make no expressed or implied warranty of any
kind and assume no responsibility for errors or omissions. No
liability is assumed for incidental or consequential damages in
connection with or arising out of the use of the information or
programs contained herein.

For information about buying this title in bulk quantities, or for
special sales opportunities (which may include electronic
versions; custom cover designs; and content particular to your
business, training goals, marketing focus, or branding
interests), please contact our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.

mailto:corpsales@pearsoned.com

For government sales inquiries, please contact
governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact
intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2023940397

Copyright © 2024 Pearson Education, Inc.

All rights reserved. This publication is protected by copyright,
and permission must be obtained from the publisher prior to
any prohibited reproduction, storage in a retrieval system, or
transmission in any form or by any means, electronic,
mechanical, photocopying, recording, or likewise. For
information regarding permissions, request forms and the
appropriate contacts within the Pearson Education Global
Rights & Permissions Department, please visit
www.pearson.com/permissions.

ISBN-13: 978-0-13-817639-6

ISBN-10: 0-13-817639-6

mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com/aw
http://www.pearson.com/permissions

Dedication

To my family, my love for them explains everything I do.

First, to my wife of 50 years, the gorgeous 16-year-old with
glistening brown eyes and long, flowing black hair who
captured my heart and has held it for more than half a century.
She remains as gorgeous as the day I met her. Those glistening
brown eyes and flowing locks enrapture me every day. The
mother of my children. The anchor of my life. My one and only
love.

To Angela, my beautiful firstborn and ever-faithful daughter
whose devastatingly contagious smile will melt your heart and
convince you that all is right with the world. I once asked her
what she wanted to be. Her answer was “Fun!” She went on to
achieve, and far exceed, that goal. Her boundless enthusiasm
for life infects everyone she encounters. She married Matt, a
wonderful, hardworking, and honest (and fun) man. Together
the two of them have turned the fun they share into a
mountain-biking frenzy of gainful employment. They live on a
wooded hilltop and have raised three beautiful, intelligent, and
talented daughters for me to spoil.

To Micah, my second-born and passionately dedicated son. He
inherited his mother’s glistening brown eyes. I once asked him
what he wanted to be. He said, “Rich!” I’m happy to report that
he has done quite well. He spent the better part of a decade
working with me and then founded his own software business,
which he sold some years later. Then he spent a year building
an airplane in his garage. Now he’s running yet another
software business. Much of his success is due to Angelique, the
beautiful, hardworking, and deeply intelligent woman he
married. They have raised two spectacular young men.

To Gina, my third-born and endlessly surprising daughter. If it is
possible for a woman to be more beautiful than my wife, Gina
is that woman. She became an accomplished chemical engineer,
working with such pleasant substances as uranium, fluorine,
and concentrated sodium hydroxide. She donned hard hats,
climbed reaction vessels, and managed teams of chemical plant
operators. She married Keith, a wonderful, hardworking, and
honest mechanical engineer. The two of them swap stories
about their adventures at big and complex chemical plants.
They have produced three (2.9 as of this writing) of my
grandsons. More than three years ago, struggling with the
competing pressures of motherhood, work, and the pandemic,
she asked me if I thought a career change to software engineer
might be possible. Oh yeah, it was possible, all right. She’s

crushing it! And, by the way, her industrial experience is a big
factor in just why she is crushing it.

To Justin, my last-born and confidently competent son. Justin is
a deeply analytical soul for whom no problem is insoluble, no
challenge is unmeetable, and no wrong is un-rightable. If that
sounds a tad quixotic, be assured that he is also a pragmatist of
the highest order. He chooses his battles well. He also has this
annoying tendency to be . . . right. He called his mother and me
in January of 2020 and told us a very serious pandemic was
coming. He recommended getting into cryptocurrencies and
made quite a nice nest egg with his speculations. He is a
software engineer par excellence and currently runs a software
team for a company in Austin. He married Ela, a fiery, gorgeous
young redhead whose intelligence and integrity are exceeded
only by her courage. They have produced two beautiful
children—a boy and a girl—the first of my children’s families to
enjoy that particular privilege.

Happy is the man who has his quiverful of children and
grandchildren.

Contents

Foreword
Preface
Acknowledgments
About the Author
PART I Functional Basics

Chapter 1 Immutability
What Is Functional Programming?
The Problem with Assignment
So Why Is It Called Functional?
No Change of State?
Immutability

Chapter 2 Persistent Data
On Cheating
Making Copies
Structural Sharing

Chapter 3 Recursion and Iteration
Iteration

Very Brief Clojure Tutorial
Iteration
TCO, Clojure, and the JVM

Recursion
Chapter 4 Laziness

Lazy Accumulation
OK, but Why?
Coda

Chapter 5 Statefulness
When We MUST Mutate
Software Transactional Memory (STM)
Life Is Hard, Software Is Harder

PART II Comparative Analysis
Chapter 6 Prime Factors

Java Version
Clojure Version
Conclusion

Chapter 7 Bowling Game
Java Version
Clojure Version
Conclusion

Chapter 8 Gossiping Bus Drivers
Java Solution

Driver
Route
Stop
Rumor
Simulation

Clojure

Conclusion
Chapter 9 Object-Oriented Programming

Functional Payroll
Namespaces and Source Files
Conclusion

Chapter 10 Types
PART III Functional Design

Chapter 11 Data Flow
Chapter 12 SOLID

The Single Responsibility Principle (SRP)
The Open-Closed Principle (OCP)

Functions
Objects with Vtables
Multi-methods
Independent Deployability

The Liskov Substitution Principle (LSP)
The ISA Rule
Nope!
The Representative Rule

The Interface Segregation Principle (ISP)
Don’t Depend on Things You Don’t Need
Why?
Conclusion

The Dependency Inversion Principle (DIP)

A Blast from the Past
A DIP Violation
Conclusion

PART IV Functional Pragmatics
Chapter 13 Tests

But What about the REPL?
What about Mocks?
Property-Based Testing
A Diagnostic Technique
Functional

Chapter 14 GUI
Turtle-Graphics in Quil

Chapter 15 Concurrency
Conclusion

PART V Design Patterns
Chapter 16 Design Patterns Review

Patterns in Functional Programming
Abstract Server
Adapter

Is That Really an Adapter Object?
Command

Undo
Composite

Functional?

Decorator
Visitor

To Close, or to Clojure?
The 90-degree Problem

Abstract Factory
90 Degrees Again
Type Safety?

Conclusion
Postscript: OO Poison?

PART VI Case Study
Chapter 17 Wa-Tor

Scratch That Itch
Showers Solve Problems
It’s Time to Wildly Reproduce
What about the Sharks?
Conclusion

Afterword
Index

Foreword

Uncle Bob needs little introduction. A prominent figure in the
software development industry, Bob has authored several
books on software design and delivery. Some of his works are
taught in computer science classrooms around the world.

I was a student in university when I started functional
programming. I didn’t attend an elite computer science
program teaching Scheme and C, but I was hungry for all things
computing. Nobody was talking about functional programming
then. I saw a wave of programming coming in the future; a
future where developers spent more time thinking about the
problem they were solving, rather than how to manage it. After
reading Functional Design, I wish I had this book then and now,
at every stage in my career, from student to professional.

Functional Design exudes “classic-on-arrival.” It feels like a book
written exactly for the professional software developer. Bob
touches on the foundations of software engineering and
expands upon them, putting into succinct words the things I’ve
experienced for years. He elegantly pulls back the curtain to
reveal how functional programming elements make software
design simple yet pragmatic. He does so without alienating

experienced object-oriented programmers coming from
languages like C#, C++, or Java.

By introducing a comparative analysis to Java, Functional
Design introduces functional systems design with Clojure, a Lisp
dialect. Clojure isn’t so pure like Haskell where one must use
pure functional programming concepts. Instead, Clojure
strongly encourages it, making it a great first functional
programming language. Functional Design carefully points out
the few pitfalls Clojure developers find themselves in from time
to time. As a Clojure consultant myself, I can attest to this. This
book teaches how to keep a language (and developer) out of the
way, rather than seeking something that gets out of the way.

Clojure’s critics will say that Clojure is unsuitable for any
sufficiently large codebase. As you’ll learn in the coming
chapters, the design principles and patterns apply to Clojure
just as they do to Java, C#, or C++. The design principles of
SOLID will help you build better software with functional
programming. Design patterns have long since been scoffed at
by functional programmers, but Functional Design deconstructs
such criticism and shows exactly why developers need them,
and how developers can implement them on their own.

I’ve written extensively online about classic design patterns in
Clojure, so I was delighted to find that this book approaches
design pattern usage with thoughtful diagrams before showing
the reader code. By the time you reach those chapters, you’ll
already be able to picture the Clojure code just from the
diagrams. Then, the code follows. Finally, Functional Design ties
it all together by walking you through an “enterprise”
application in Clojure using the design principles and patterns.

—Janet A. Carr, Independent Clojure Consultant

Preface

This is a book for programmers in the trenches who want to
learn how to use functional programming languages to get real
things done. As such, I will not spend any appreciable time on
the more theoretical aspects of functional programming such as
Monads, Monoids, Functors, Categories, and so on. Not that
these ideas aren’t valid, valuable, or relevant; rather, they do
not often impact the day-to-day world of the programmer. This
is because they have already been “baked into the cake” of the
common languages, libraries, and frameworks. If you are
interested in functional theory, I recommend the writings of
Mark Seemann.

This book is about how—and why—to use functional
programming in our day-to-day effort to build real systems for
real customers. In the pages that follow, we will be comparing
and contrasting the coding structures that are common in
object-oriented languages like Java to those that are common in
functional languages like Clojure.

I have chosen these two languages in particular because Java is
very widely known and used, and Clojure is extraordinarily
simple to learn.

A Brief History of Functional and Procedural
Programming

In 1936, two mathematicians, Alan Turing and Alonzo Church,
independently resolved one of David Hilbert’s famous
challenges: The Decidability Problem. It is beyond the scope of
this introduction to describe this problem in any detail, except
to say it had to do with finding a general solution to formulae of
integers. This is relevant to us because every program in a
digital computer is an integer formula.

1. Diophantine equations.

The two men independently proved that no such general
solution exists by demonstrating that there were integers that
could never be calculated by an integer formula smaller than
the integer itself.

Another way to say this is that there are numbers that no
computer program can compute. And indeed, that was the
approach that Alan Turing took. In his famous 1936 paper,
Turing invented a digital computer, and then showed that there
were numbers that could not be computed—even given infinite
time and space.

1

2

3

2. A. M. Turing, “On Computable Numbers, with an Application
to the Entscheidungsproblem” (May 1936).

3. Given infinite time and space, a computer could calculate π
or ∊ or any other irrational or transcendental number for
which a formula exists. What Turing and Church proved is that
there were numbers for which no such formula can exist. Such
numbers are “uncomputable.”

Church, on the other hand, came to the same conclusion
through his invention of lambda calculus, a mathematical
formalism for manipulating functions. Using manipulations in
the logic of his formalism, he was able to prove that there were
logical problems that could not be solved.

Turing’s invention was the forebear of all modern digital
computers. Every digital computer is, for all intents and
purposes, a (finite) Turing machine. Every program that has
ever executed on a digital computer is, for all intents and
purposes, a Turing Machine program.

Church and Turing later collaborated to show that Turing’s and
Church’s approaches were equivalent. That every program in a

Turing machine can be represented in lambda calculus, and
vice versa.

Functional programming is, for all intents and purposes,
programming in lambda calculus.

So these two styles of programming are equivalent in a
mathematical sense. Any program can be written using either
the procedural (Turing) style or the functional (Church) style.
What we are going to examine in this book is not that
equivalence, but rather, the ways that using the functional
approach affects the structure and design of our programs. We
will seek to determine whether those different structures and
designs are in any sense superior, or inferior, to those that arise
from using the Turing approach.

On Clojure

I chose Clojure for this book because learning a new language
and a new paradigm is a doubly difficult task. Therefore, I
sought to simplify that task by choosing a language that is
simple enough to not get in the way of learning functional
programming and functional design.

Clojure is semantically rich but syntactically trivial. What that
means is that the language itself has a very simple syntax that

requires very little effort to learn. The learning curve in Clojure
is all on the semantic side. The libraries and idioms require a
significant effort to internalize; but the language itself requires
almost no effort at all. My hope is that this book will give you a
way to learn and appreciate functional programming while not
being distracted by the syntax of a new language.

Having said all that, this book is not a Clojure tutorial. I will
explain some of the basics in the early chapters and use some
explanatory footnotes throughout the text, but I will also rely
upon you, gentle reader, to do your homework and look things
up. There are several Web sites that will help. One of my
favorites is https://clojure.org/api/cheatsheet.

4. By the end, you will think me a liar.

The test framework I used in this book is speclj . As the
chapters progress, you’ll see more and more of it. It is very
similar to other popular testing frameworks, so as the pages
turn, you should not find it difficult to become familiar with its
various facilities.

5. https://github.com/slagyr/speclj

4

5

https://clojure.org/api/cheatsheet
https://github.com/slagyr/speclj

On Architecture and Design

A primary focus of this book is to describe the principles of
design and architecture for systems built in a functional style.
Toward that end, I will employ unified modeling language
(UML) diagrams and make reference to the SOLID principles of
software design, Design Patterns, and the concepts of Clean
Architecture. Fear not, I will be explaining things as we go along
and will cite many external references should you need to look
things up.

6. Robert C. Martin, Clean Architecture (Pearson 2017), p. 57.

7. Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides, Design Patterns: Elements of Reusable Object-Oriented
Software (Addison-Wesley, 1994).

On Object Orientation

Many have expressed the opinion that object-oriented
programming and functional programming are incompatible.
These pages should prove otherwise. The programs, designs,
and architectures that you see here will be an admixture of
both functional and object-oriented concepts. It is my

6

7

experience, and my strongly held opinion, that the two styles
are entirely compatible and that good programmers can, and
should, apply them together.

On “Functional”

In this text, I will make use of the term functional. I will define it
and expound upon it. As the chapters roll by, I will also take
some license with it. There will be examples that, while written
in a functional language and in a functional style, will not be
purely functional. In most such cases, I will put quotation marks
around the word functional and use footnotes to point out the
license I am taking.

Why take that license? Because this is a book about pragmatics,
not theory. I am more interested in extracting the benefits from
the functional style than in strict adherence to an ideal. For
example, as we’ll see in the first chapter, “functions” that take
input from the user are not purely functional. I will, however,
make use of such “functions” as appropriate.

The source code for all the examples in all the chapters is in a
single GitHub repository named
https://github.com/unclebob/FunctionalDesign.

https://github.com/unclebob/FunctionalDesign

Register your copy of Functional Design: Principles, Patterns,
and Practices on the InformIT site for convenient access to
updates and/or corrections as they become available. To start
the registration process, go to informit.com/functionaldesign
and log in or create an account. The product ISBN
(9780138176396) will already be populated. Look on the
Registered Products tab for an Access Bonus Content link next
to this product, and follow that link to access any available
bonus materials. If you would like to be notified of exclusive
offers on new editions and updates, please check the box to
receive email from us.

http://informit.com/functionaldesign

Acknowledgments

Thank you to the diligent and professional folks at Pearson for
helping to guide this book to completion: Julie Phifer, my ever-
helpful, ever-supportive publisher of long-standing; and her
compatriots, Menka Mehta, Julie Nahil, Audrey Doyle, Maureen
Forys, Mark Taber, and a host of others. It has always been a joy
to work with you, and I look forward to many future such
endeavors.

Thank you to Jennifer Kohnke, who has produced the vast
majority of the gorgeous illustrations in my books over the last
three decades. Back in 1995, up against a production deadline,
Jennifer, Jim Newkirk, and I pulled an all-nighter to get the
illustrations for my very first book formatted and organized
just the way I wanted.

Thank you to Michael Feathers, who suggested 20 years ago that
I investigate functional programming. He was learning Haskell
at the time and was enthusiastic about the possibilities. I found
his enthusiasm contagious.

Thank you to Mark Seemann (@ploeh) for his consistently
insightful works, his keen and devastatingly rational reviews of
my works, and also for his moral courage.

Thanks to Stuart Halloway, who wrote the first book I read
about Clojure. It was more than a decade and a half ago that I
started that adventure, and I have never looked back. Stuart
was kind enough to coach me through my very first
experiments with functional programming. Also to Stuart, an
apology for once, long ago, speaking out of turn.

Thanks to Rich Hickey who debated with me in the early ’90s
regarding C++ and object-oriented design and then went on to
create and masterfully guide the development of Clojure. Rich’s
insights into software continue to amaze me.

Though I have never met them, I owe a debt of gratitude to
Harold Abelson, Gerald Jay Sussman, and Julie Sussman for the
book that truly inspired me to pursue functional programming.
That book, The Structure and Interpretation of Computer
Programs (SICP), may be the most consequential of all the books
on software that I have read. It is available for free online. Just
search for “SICP.”

Thank you to Janet Carr for her Foreword. I stumbled onto
Janet’s work while perusing Twitter one day and found that she
had come to many of the same conclusions regarding functional
programming and Clojure that I had.

And for writing the Afterword, thank you to Gina Martiny, my
lovely daughter and an accomplished chemical and software
engineer. More about her in my dedication.

About the Author

Robert C. Martin (Uncle Bob) has been a programmer since
1970. He is founder of Uncle Bob Consulting, LLC, and
cofounder with his son Micah Martin of The Clean Coders, LLC.
Martin has published dozens of articles in various trade
journals and is a regular speaker at international conferences
and trade shows. He has authored and edited many books,
including Designing Object-Oriented C++ Applications Using the
Booch Method, Pattern Languages of Program Design 3, More
C++ Gems, Extreme Programming in Practice, Agile Software
Development: Principles, Patterns, and Practices, UML for Java
Programmers, Clean Code, The Clean Coder, Clean Architecture,

Clean Craftsmanship, and Clean Agile. A leader in the industry of
software development, Martin served for three years as editor-
in-chief of the C++ Report, and he served as the first chairman
of the Agile Alliance.

I

Functional Basics

1

Immutability

What Is Functional Programming?

If you were to ask the average programmer what functional
programming is, you might get any of the following answers.

Programming with functions.
Functions are “first class” elements.
Programming with referential transparency.
A programming style based upon lambda calculus.

While these assertions might be true, they are not particularly
helpful. I think a better answer is: Programming without
assignment statements.

Perhaps you don’t think that definition is much better. Perhaps
it even frightens you. After all, what do assignment statements
have to do with functions; and how can you possibly program
without them?

Good questions. Those are the questions that I intend to answer
in this chapter.

Consider the following simple C program:

int main(int ac, char** av) {

 while(!done())

 doSomething();

}

This program is the core loop of virtually every program ever
written. It quite literally says: “Do something until you are

done.” What’s more, this program has no visible assignment
statements. Is it functional? And if so, does that mean every
program ever written is functional?

Let’s actually make this function do something. Let’s have it
compute the sum of the squares of the first ten integers [1..10]:

int n=1;

int sum=0;

int done() {

 return n>10;

}

void doSomething() {

 sum+=n*n;

 ++n;

}

void sumFirstTenSquares() {

 while(!done())

 doSomething();

}

This program is not functional because it uses two assignment
statements in the doSomething function. It’s also just plain
ugly with those two global variables. Let’s improve it:

int sumFirstTenSquares() {

 int sum=0;

 int i=1;

loop:

 if (i>10)

 return sum;

 sum+=i*i;

 i++;

 goto loop;

}

This is better; the two globals have become local variables. But
it’s still not functional. Perhaps you are worried about that
goto . It is there for a good reason. Bear with me as you
consider this small modification that uses a worker function to
convert the local variables into function arguments:

Click here to view code image

int sumFirstTenSquaresHelper(int sum, int i) {

loop:

 if (i>10)

 return sum;

 sum+=i*i;

 i++;

 goto loop;

}

int sumFirstTenSquares() {

 return sumFirstTenSquaresHelper(0, 1);

}

This program is still not functional; but it’s an important
milestone that we’ll refer to in a moment. But now, with one last
change, something magical happens:

Click here to view code image

int sumFirstTenSquaresHelper(int sum, int i) {

 if (i>10)

 return sum;

 return sumFirstTenSquaresHelper(sum+i*i, i+1);

}

int sumFirstTenSquares() {

 return sumFirstTenSquaresHelper(0, 1);

}

All the assignment statements are gone, and this program is
functional. It’s also recursive. That’s no accident. If you want to
get rid of assignment statements, you have to use recursion.

Recursion allows you to replace the assignment of local
variables with the initialization of function arguments.

It also burns up a lot of space on the stack. However, there is a
little trick we can use to fix that problem.

Notice that the last call to sumFirstTenSquaresHelper is also
the last use of sum and i in that function. Holding those two
variables on the stack after initializing the two arguments of
the recursive call is pointless; they’ll never be used. What if,
instead of creating a new stack frame for the recursive call, we
simply reused the current stack frame by jumping back to the
top of the function with a goto , as we did in the milestone
program?

This cute little trick is called tail call optimization (TCO) and all
functional languages make use of it.

1. In one way or another. The Java virtual machine (JVM)
complicates TCO a bit. C, of course, does not do TCO and so all
my recursive examples in C will grow the stack.

Notice TCO effectively turns that last program into the milestone
program. The last three lines of sumFirstTenSquaresHelper
in the milestone program are, in effect, the recursive function

1

call. Does that mean the milestone program is functional too?
No, it just behaves identically. At the source code level, that
program is not functional because it has assignment statements.
But if we take one step back and ignore the fact that the local
variables changed as opposed to being reinstantiated in a new
stack frame, then the program behaves as a functional program.

As we will discover in the next section, that is not a distinction
without a difference. In the meantime, just remember when
you use recursion to eliminate assignment statements, you are
not necessarily wasting lots of space on the stack. The language
you are using is almost certainly using TCO.

The Problem with Assignment

First let’s define what we mean by assignment. Assigning a
value to a variable changes the original value of the variable to
the newly assigned value. It is the change that makes it
assignment.

In C we initialize a variable this way:

int x=0;

But we assign a variable this way:

x=1;

In the first case, the variable x comes into existence with the
value 0 ; prior to the initialization, there was no variable x . In
the second case, the value of x is changed to 1 . This may not
seem significant, but the implications are profound.

In the first case, we do not know if x is actually a variable. It
could be a constant. In the second case, there is no doubt. We
are varying x by assigning it a new value. Thus, we can say
that functional programming is programming without variables.
The values in functional programs do not vary.

Why is this desirable? Consider the following:

.

//Block A

.

x=1;

.

//Block B

.

The state of the system during the execution of Block A is
different from the state of the system in Block B . This means

that Block A must execute before Block B . If the position of
the two blocks were swapped, the system would likely not
execute correctly.

This is called a sequential or temporal coupling—a coupling in
time; and it is something you are probably quite familiar with.
Open must be called before close . New must be called before
delete . Malloc must be called before free . The list of
pairs like this is endless. And in many ways, they are a bane of
our existence.

2. They are like the Sith; always two there are.

How many times have you forgotten to close a file, or release a
block of memory, or close a graphics context, or release a
semaphore? How many times have you debugged a pernicious
problem only to find that you can fix it by swapping the
position of two function calls?

And then there’s garbage collection.

Garbage collection is a horrible hack that we have accepted
into our languages because we are just so bad at managing
temporal couplings. If we were adept at keeping track of
allocated memory, we would not depend on some nasty

2

3

background process to clean up after us. But the sad fact is we
are so truly terrible at managing temporal couplings that we
celebrate the crutches we build to protect ourselves from them.

3. And, no, reference counting isn’t any better.

And that doesn’t take into account multiple threads. When two
or more threads are competing for the processor, keeping the
temporal couplings in the correct order becomes a much more
significant challenge. Those threads may get the order correct
99.99 percent of the time; but every once in a great while they
may execute in the wrong order and cause all manner of
mayhem. We call those situations race conditions.

Temporal couplings and race conditions are the natural
consequence of programming with variables—of using
assignment. Without assignment, there are no temporal
couplings and there are no race conditions. You cannot have a
concurrent update problem if you never update anything. You
cannot have an ordering issue within a function if the system
state never changes within that function.

4. We’ll see later that this is not entirely correct. As Spock was
fond of saying: “There are always possibilities.”

4

But perhaps it’s time for a simple example. Here’s our
nonfunctional algorithm again; this time without the goto :

Click here to view code image

1: int sumFirstTenSquaresHelper(int sum, int i) {

2: while (i<=10) {

3: sum+=i*i;

4: i++;

5: }

6: return sum;

7: }

Now let’s say you’d like to log the progress of the algorithm with
a statement like this:

 log("i=%d, sum=%d", i, sum);

Where would you put that line? There are three possibilities. If
you add the log statement after line 2 or 4, then the logged
data will be correct, and the difference will simply be whether
you are logging before or after the computation. If you insert
the log statement after line 3, then the logged data will be
incorrect. That is a temporal coupling—an ordering problem.

Now consider our functional solution, with one interesting
cosmetic change:

Click here to view code image

int sumFirstTenSquaresHelper(int sum, int i) {

 return (i>10) ? sum : sumFirstTenSquaresHelper

}

There is only one place we can put our log statement, and it
will log correct data.

So Why Is It Called Functional?

A function is a mathematical object that maps inputs to outputs.
Given y = f(x), there is a value of y for every value of x. Nothing
else matters to f. If you give x to f, you will get y every single
time. The state of the system in which f executes is irrelevant to
f.

Or to say that a different way, there are no temporal couplings
with f. There is no special order in which f must be invoked. If
you call f with x, you will get y no matter what else may have
changed.

Functional programs are true functions in this mathematical
sense. If you decompose a functional program into many
smaller functions, each of those will also be a true function in
the same mathematical sense. This is called referential
transparency.

A function is referentially transparent if you can always replace
the function call with its value. Let’s try that with our functional
algorithm for calculating the sum of the squares of the first ten
integers:

Click here to view code image

int sumFirstTenSquaresHelper(int sum, int i) {

 return (i>10) ? sum : sumFirstTenSquaresHelper

}

int sumFirstTenSquares() {

 return sumFirstTenSquaresHelper(0, 1);

}

When we replace the first call to
sumFirstTenSquaresHelper with its implementation, it
becomes:

Click here to view code image

int sumFirstTenSquares() {

 return (1>10) ? 0 : sumFirstTenSquaresHelper(0+

}

When we replace the next function call, it becomes:

Click here to view code image

int sumFirstTenSquares() {

 return

 (1>10) ? 0 :

 (2>10) ? 0+1*1

 : sumFirstTenSquaresHelper((0+1*1)+

 (1+1)+1

}

I think you can see where this is going. Each call to
sumFirstTenSquaresHelper simply gets replaced with its
implementation with the arguments properly replaced.

Notice that you cannot do this simple replacement with the
nonfunctional version of the program. Oh, you can unwind the
loop if you like; but that’s not the same as simply replacing each
function call with its implementation.

So, functional programs are composed of true mathematical,
referentially transparent functions. And that’s why this is called
functional programming.

No Change of State?

If there are no variables in functional programs, then
functional programs cannot change state. How can we expect a
program to be useful if it cannot change state?

The answer is that functional programs compute a new state
from an old state, without changing the old state. If this sounds
confusing, then the following example should clear it up:

Click here to view code image

State system(State s) {

 return isFinal(s) ? s : system(s);

}

You can start the system in some initial state , and it will
successively move the system from state to state until the
final state is reached. The system does not change a state
variable. Instead, at each iteration, a new state is created
from the old state .

If we turn TCO off and allow the stack to grow with each
recursive call, then the stack will contain all the previous states,
unchanged. Moreover, the system functions as a true function
in the mathematical sense. If you call system with state1 , it
will return state2 every single time.

If you look closely at our functional version of
sumFirstTenSquares , you will see that it uses precisely this
approach to the changing of state. There are no variables, and
no internal state. Rather, the algorithm moves from the initial
state to the final state, one state change at a time.

Of course, our system function does not appear to be able to
respond to any inputs. It simply starts at some initial state
and then runs to completion. But with a simple modification we
can create a “functional” program that responds quite nicely to
input events:

Click here to view code image

State system(State state, Event event) {

 return done(state) ? state : system(state, getE

}

Now, the computed next state of the system is a function of
the current state and an incoming event . And voila! We
have created a very traditional finite state machine that can
react to events in real time.

Notice the quotes I put around the word functional above. That
is because getEvent is not referentially transparent. Every
time you call it you will get a different result. Thus, you cannot
replace the call with its return value. Does this mean that our
program is not actually functional?

Strictly speaking, any program that takes input in this manner
cannot be purely functional. But this is not a book about purely
functional programs. This is a book about functional
programming. The style of the program above is “functional,”
even if the input is not pure; and it is that style we are
interested in here.

So here, for your entertainment, is a simple little real-time finite
state machine that is written in C and is “functional.” It is the
time-honored subway turnstile example. Have fun with it.

Click here to view code image

#include <stdio.h>

typedef enum {locked unlocked done} State;

typedef enum {locked, unlocked, done} State;

typedef enum {coin, pass, quit} Event;

void lock() {

 printf("Locking.\n");

}

void unlock() {

 printf("Unlocking.\n");

}

void thankyou() {

 printf("Thanking.\n");

}

void alarm() {

 printf("Alarming.\n");

}

Event getEvent() {

 while (1) {

 int c = getchar();

 switch (c) {

 case 'c': return coin;

 case 'p': return pass;

 case 'q': return quit;

 }

 }

}

}

State turnstileFSM(State s, Event e) {

 switch (s) {

 case locked:

 switch (e) {

 case coin:

 unlock();

 return unlocked;

 case pass:

 alarm();

 return locked;

 case quit:

 return done;

 }

 case unlocked:

 switch (e) {

 case coin:

 thankyou();

 return unlocked;

 case pass:

 lock();

 return locked;

it

 case quit:

 return done;

 }

 case done:

 return done;

 }

}

State turnstileSystem(State s) {

 return (s==done)? 0

 : turnstileSystem(

 turnstileFSM(s, getEvent()

}

int main(int ac, char** av) {

 turnstileSystem(locked);

 return 0;

}

Keep in mind that C does not use TCO, and so the stack will
grow until it is exhausted—though that may require quite a few
operations in this case.

Immutability

What all this means is that functional programs contain no
variables. Nothing in a functional program changes state. State
changes are passed from one invocation of a recursive function
to the next, without altering any of the previous states. If those
previous states aren’t needed, TCO can optimize them away; but
in spirit they all still exist, unchanged, somewhere in a past
stack frame.

If there are no variables in a functional program, then the
values we name are all constants. Once initialized, those
constants never go away and never change. In spirit, the entire
history of every one of those constants remains intact,
unchanged, and immutable.

2

Persistent Data

So far this has seemed relatively simple. Programs written in
the “functional” style are simply programs that have no
variables. Rather than reassign values to variables, we use

recursion to initialize new function arguments with new
values. Simple.

But data elements are seldom as simple as we have so far
imagined them to be. So let’s take a look at a slightly more
complicated problem, The Sieve of Eratosthenes:

Click here to view code image

package sieve;

import java.util.ArrayList;

import java.util.Arrays;

import java.util.List;

public class Sieve {

 boolean[] isComposite;

 static List<Integer> primesUpTo(int upTo) {

 return (new Sieve(upTo).getPrimes());

 }

 private Sieve(int upTo) {

 if (upTo<1)

 upTo=1;

 isComposite = new boolean[upTo+1];

 Arrays.fill(isComposite, false);

 isComposite[0]=isComposite[1] = true;

 for (int i=0; i<isComposite.length; i++)

 if (!isComposite[i])

 for (int c=i+i; c<isComposite.length; c+=

 isComposite[c] = true;

 }

 public List<Integer> getPrimes() {

 ArrayList<Integer> primes = new ArrayList<>(

 for (int i=0; i<isComposite.length; i++)

 if (!isComposite[i])

 primes.add(i);

 return primes;

 }

}

This cute little Java program computes the prime numbers up to
a limit. Notice all the assignment statements. There are
variables everywhere, so this program must not be functional.

But then again, look at the static function at the top.
Sieve.primesUpTo is a true mathematical function. Every
time you call it with n , it will return the prime numbers up to
n . So we can cheat and say that despite the fact that the
underlying algorithm uses variables, the result of that
algorithm is functional.

On Cheating

Our computers are, in some sense, finite Turing machines; they
are not based upon lambda calculus. The Church–Turing thesis
tells us that Turing machines and lambda calculus are
equivalent forms; but that doesn’t mean you can easily
translate from one to the other. A functional program is a
program that looks like lambda calculus but is implemented in
a finite Turing machine. And that implementation requires that
we cheat.

The first cheat we saw was TCO. We waved it away with an
argument about pragmatics. After all, since we were never
going to need all those historical stack frames, why should we
keep them? But that’s still a cheat. Under the hood, our
implementation was changing the values of existing variables.
From the Turing machine’s point of view, all our supposed
constants were actually variables.

We could continue to push that cheat upward. This lovely little
Sieve algorithm runs entirely in the constructor, so it’s all
initialization! And as we learned, initialization is not
assignment. So the fact that this program has variables under
the hood is no different from TCO. In the end, the result is still
functional.

This is fun! We can keep pushing that cheat upward. We can
push it up until it is outside our finite Turing machine of a
computer. And then we could say to ourselves: “Every program
that runs in this computer is functional because it will always
produce the same outputs when given the same inputs. Never
mind that the inputs and outputs include every single bit in the
computer’s memory. Never mind that. Yeah. That’s the ticket.”

Of course, if we take that view, then there’s not much point in
studying functional programming, is there? So let’s back down
from that highest-level cheat and keep pushing the cheats back
down until we simply cannot practically escape them.

There is no reasonable escape from TCO. We don’t have an
infinite stack. We don’t want our functional programs uselessly
consuming gigabytes of stack space until they crash. So TCO is a
practically unavoidable cheat.

Making Copies

So, what about that Sieve algorithm: Can we push the
cheating down lower than that? Can we write that algorithm so
it does not use any assignment statements?

The problem, of course, is all those for loops. We need to turn
those into recursive functions in order to get rid of the

assignment statements. We also need to do something about the
two arrays. We can’t be changing elements in existing arrays,
can we? That would make those arrays variables. So we’ll have
to make copies of them whenever we need to change an
element:

Click here to view code image

package sieve;

import java.util.ArrayList;

import java.util.Arrays;

import java.util.List;

public class Sieve {

 static List<Integer> primesUpTo(int upTo) {

 return getPrimes(

 computeSieve(

 makeSieve(Math.max(upTo, 1)),

 0),

 new ArrayList<>(), 0);

 }

 private static boolean[] makeSieve(int upTo) {

 boolean[] sieve = new boolean[upTo+1];

 Arrays.fill(sieve, false);

 sieve[0] = sieve[1] = true;

 return sieve;

 }

 private static boolean[] computeSieve(boolean[

 if (n>=sieve.length)

 return sieve;

 else if (!sieve[n])

 return computeSieve(markMultiples(sieve, n

 else return computeSieve(sieve, n+1);

 }

 private static boolean[] markMultiples(boolean

 int prim

 int m) {

 int multiple = prime * m;

 if (multiple>=sieve.length)

 return sieve;

 else {

 var markedSieve = Arrays.copyOf(sieve, siev

 markedSieve[multiple] = true;

 return markMultiples(markedSieve, prime, m+

 }

 }

 public static List<Integer> getPrimes(boolean[

 List<Inte

 int n) {

 if (n>=sieve.length)

 return primes;

 else if (!sieve[n]) {

 var newPrimes = new ArrayList<>(primes);

 newPrimes.add(n);

 return getPrimes(sieve, newPrimes, n+1);

 } else {

 return getPrimes(sieve, primes, n+1);

 }

 }

}

That’s not very pretty, is it? It is, however, pretty functional. You
might complain about the assignments in makeSieve , and I
agree that’s a bit of a cheat, but it looks close enough to an
initialization to satisfy me.

So, yes, all the significant assignment operations have been
eliminated. All the named entities are constants, and the stack
(if not deleted by TCO) contains the history of each invocation
of each recursive function.

But at what cost? Every time either of the two arrays is
modified, a new array is created in order to prevent the
previous one from being changed. The amount of memory used
by this algorithm could be enormous. Imagine finding all the
primes up to 100,000. How many sieve arrays would be
created? How many primes arrays?

And what about execution time? Copying all those arrays over
and over again must eat up a terrifying number of cycles.

Is that, then, the cost of functional programming? Must we live
with such a huge extravagance of memory and time?

Structural Sharing

Fortunately, no. It turns out that there are data structures that
behave very much like arrays but that also efficiently maintain
the history of their past states. These data structures are n-ary
trees. The bigger the n, the more efficient they are. But for the
sake of simplicity, I will choose an n of 2—binary trees—for the
following examples.

Let us say that we wish to represent a simple array of integers
from 1 to 8. The binary tree that achieves this is shown in
Figure 2.1.

Figure 2.1. A binary tree representing an array of integers [1..8]

If you look at the leaves and ignore the branches, you will see
that the leaves form an array. The branches simply provide a
way to traverse to each leaf in some ordered way. That order is
the index of the array!

To get to the element at index 0 of the array, simply take the
leftmost branch of each node. To get to the element at index 1,
go left at each node but right at the last node.

I won’t belabor this point. I’m sure you all understand binary
trees.

Now, let’s say we want to append a 42 on the end of this array
while preserving the existence of the previous array. The binary
tree that achieves this is shown in Figure 2.2.

Figure 2.2. A binary tree that represents [1..8, 42] but also preserves the original
[1..8] array

Now the tree has two roots. The root at the top left still
represents the array from 1..8. The root at the top right
represents the new array with a 42 appended after the 8.

Stop now and think carefully about this. It should be clear that
representing linear arrays as trees, in the manner shown, will
allow us to represent additions, insertions, and deletions while
preserving all previous arrangements, without massive copying
of the array.

Oh, there is some copying going on. We may have to copy a leaf
node, or some of the branch nodes, depending on what
operation we are performing. But the amount of memory and

the number of cycles are drastically less than simply
maintaining copies of all the past versions of the array.

In the end, every past version of the array will be represented
by a new root node connected to a small number of additional
branch nodes, allowing the majority of the elements of the
array to be shared among all the versions.

Now consider what happens if we use 32-ary trees instead of
binary trees. For arrays of a million elements, the tree depth is
on the order of four or five branches. Copying five nodes of 32
elements each is a lot faster and requires a lot less memory
than copying a million elements. Indeed, the cost, while not
zero, is so small as to be inconsequential for most applications.

So we have a way to represent an indexable linear array that
can be versioned over time while preserving all past versions.
We call this persistence. A persistent data structure has the
ability to undergo change while remembering all past versions
of itself.

1. Not to be confused with the overloaded term used to describe
data in offline storage.

1

But what about higher-level data structures like hash maps,
sets, stacks, and queues? How do we make all of them as
persistent as our linear indexed array? Of course, all those data
structures can be implemented using indexed arrays. Indeed,
since the memory of the computer is nothing more than one big
indexed linear array, every data structure that you can
represent within a computer can also be represented in a
persistent array.

And so the problem we confronted at the start of this chapter,
the problem of copying, can be set aside. The cost of functional
programming, in memory and cycles, need not dissuade us
from further study and pursuit of the benefits of functional
programming.

And with that problem solved, all future examples will be
written in Clojure, a language that intrinsically supports
persistent data structures.

3

Recursion and Iteration

In Chapter 1, Immutability, I stated that functional
programming makes use of recursion in order to eliminate
assignment. In this chapter, we will look at the two different
varieties of recursion; one we will call iteration and the other
will retain the original name: recursion.

Iteration

TCO is the remedy for the infinite stack depth implied by
infinite recursive loops. However, TCO is only applicable if the
recursive call is the very last thing to be executed within the
function. Such functions are often called tail call functions.

Here is a very traditional implementation of a function to
create a list of Fibonacci numbers:

Click here to view code image

(defn fibs-work [n i fs]

 (if (= i n)

 fs

 (fibs-work n (inc i) (conj fs (apply + (take

(defn fibs [n]

 (cond

 (< n 1) []

 (= n 1) [1]

 :else (fibs-work n 2 [1 1])))

This program is written in Clojure, which is a variant of Lisp.
You call this function like this:

(fibs 15)

And it returns an array of the first 15 Fibonacci numbers:

Click here to view code image

[1 1 2 3 5 8 13 21 34 55 89 144 233 377 610]

Many programmers experience eyestrain headaches the first
few times they look at Lisp, mostly because the parentheses
don’t seem to make any sense. So let me give you a very brief
tutorial about those parentheses.

Very Brief Clojure Tutorial

1. This is a typical function call in C, C++, C#, and Java: f(x) ;.
2. Here is the same function in Lisp: (f x) .
3. Now you know Lisp. Here ends the tutorial.

That’s not much of an exaggeration. The syntax of Lisp is really
that simple.

The syntax of Clojure is just a bit more complicated. So let’s take
the above program apart, one statement at a time.

First there’s defn , which looks like it is being called as a
function. Let’s go with that for now. The truth is mostly
compatible with that view. So the defn “function” defines a

new function from its arguments. The functions being defined
are named fibs-work and fibs . The square brackets after
the function name enclose the names of the arguments of the
function. So the fibs function takes a single argument named
n , while the fibs-work function takes three arguments
named n , i , and fs .

1. Actually, the square brackets are Clojure syntax for a “vector”
(an array). In this case, that vector contains the symbols that
represent the arguments.

Following the argument list is the body of the function. So the
body of the fibs function is a call to the cond function. Think
of cond like a switch statement that returns a value. The fibs
function returns the value returned by cond .

The arguments to cond are a set of pairs. The first element in
each pair is a predicate, and the second is the value that cond
will return if that predicate is true . The cond function walks
down the list of pairs until it sees a true predicate, and then it
returns the corresponding value.

The predicates are just function calls. The (< n 1) predicate
simply calls the < function with n and 1 . It returns true if
n is less than 1. The (= n 1) predicate calls the = function,

1

which returns true if its arguments are equal. The :else
predicate is considered true .

The value returned by cond for the (< n 1) predicate is [] ,
an empty vector. If (= n 1) , then cond returns a vector
containing 1. Otherwise, cond returns the value produced by
the fibs-work function.

So, the fibs function returns [] if n is less than 1, [1] if n
is equal to 1, and (fibs-work n 2 [1 1]) in every other
case.

Got it? Make sure you do. Go back over it until you do.

The))) at the end of the fibs function are just the closing
parentheses of the defn , cond , and fibs-work function
calls. I could have written fibs like this:

Click here to view code image

(defn fibs [n]

 (cond

 (< n 1) []

 (= n 1) [1]

 :else (fibs-work n 2 [1 1])

)

)

Perhaps that makes you feel better. Perhaps that relieves the
eyestrain headache you felt coming on. And indeed, many new
Lisp programmers use this technique to reduce their
parentheses anxiety. That’s certainly what I did a decade and a
half ago when I first started learning Clojure.

After a few years, however, it becomes obvious that there is no
reason to put trailing parentheses on their own lines, and the
technique simply becomes an annoyance. Trust me. You’ll see.

Anyway, that brings us to the heart of the matter, the fibs-
work function. If you have gotten comfortable with the fibs
function, you have probably already worked out most of the
details of the fibs-work function. But let’s go through it step
by step just to be sure.

First, the arguments: [n i fs] . The n argument tells us how
many Fibonacci numbers to return. The i argument is the
index of the next Fibonacci number to compute. The fs
argument is the current list of Fibonacci numbers.

The if function is a lot like the cond function. Think of (if
p a b) as (cond p a :else b) . The if function takes
three arguments. It evaluates the first as a predicate. If the

predicate is true, it returns the second argument; otherwise, it
returns the third.

So, if (= i n) , then we return fs . Otherwise… Well, let’s
walk through that one carefully.

Click here to view code image

(fibs-work n (inc i) (conj fs (apply + (take-last

This is a recursive call to fibs-work , passing in n unchanged,
i incremented by one, and fs with a new Fibonacci number
appended.

It is the conj function that does the appending. It takes two
arguments: a vector and the value to append to that vector.
Vectors are a kind of list. We’ll talk about them later.

The take-last function takes two arguments: a number n
and a list. It returns a list containing the last n elements of the
list argument.

The apply function takes two arguments: a function and a list.
It calls the function with the list as its arguments. So, (apply +
[3 4]) is equivalent to (+ 3 4) .

OK, so now you should have a good working grasp of Clojure.
There’s more to the language that we’ll encounter as we go
along. But for now, let’s get back to the topic of iteration and
recursion.

Iteration

Notice the recursive call to fibs-work is a tail call. The very
last thing done by the fibs-work function is to call itself.
Therefore, the language can employ TCO to eliminate previous
stack frames and turn the recursive call into a goto , effectively
converting the recursion to pure iteration.

So, then, functions that employ tail calls are, for all intents and
purposes, iterative.

TCO, Clojure, and the JVM

The Java virtual machine (JVM) does not make it easy for
languages to employ TCO. Indeed, the code I just showed you
does not use TCO and therefore grows the stack throughout the
iteration. Thus, in Clojure, we explicitly invoke TCO by using the
recur function as follows:

Click here to view code image

(defn fibs-work [n i fs]

(defn fibs work [n i fs]

 (if (= i n)

 fs

 (recur n (inc i) (conj fs (apply + (take-last

The recur function can only be called from a tail position, and
it effectively reinvokes the enclosing function without growing
the stack.

Recursion

There is a much more natural and elegant way to write the
Fibonacci algorithm using true recursion:

Click here to view code image

(defn fib [n]

 (cond

 (< n 1) nil

 (<= n 2) 1

 :else (+ (fib (dec n)) (fib (- n 2)))))

(defn fibs [n]

 (map fib (range 1 (inc n))))

The fib function should be self-explanatory by now. After all,
fib(n) is just fib(n−1) + fib(n−2). Notice, however, the calls to

fib are not on the tail of the function. The last thing executed
by the :else clause is the + function. This means we cannot
use the recur function and that TCO is not possible. This also
means that the stack will grow as the algorithm proceeds.

The range function takes two arguments, a and b, and returns
a list of all the integers from a to b−1. The map function takes
two arguments, f and l. The f argument must be a function and
the l argument must be a list. It calls f with each member of l
and returns a list containing the results.

This version of fib is extraordinarily inefficient. Consider this
execution profile:

Click here to view code image

fib 20 = 6765

"Elapsed time: 1.459277 msecs"

fib 25 = 75025

"Elapsed time: 11.735279 msecs"

fib 30 = 832040

"Elapsed time: 106.490355 msecs"

fib 34 = 5702887

"Elapsed time: 735.689834 msecs"

I didn’t bother to analyze the algorithm. But a quick curve fit
suggests that the algorithm is O(n) . So, as elegant as the
implementation appears, it will never do.

We can vastly improve the performance by using iteration as
follows:

Click here to view code image

(defn ifib

 ([n a b]

 (if (= 0 n)

 b

 (recur (dec n) b (+ a b))))

 ([n]

 (cond

 (< n 1) nil

 (<= n 2) 1

 :else (ifib (- n 2) 1 1)))

)

The ifib function has two overloads: [n a b] and [n] .
Since it is iterative, it does not grow the stack, and it is also
much faster than the previous recursive version. Indeed, I
believe most of that time was spent in printing rather than true
computation.

3

Click here to view code image

ifib 20 = 6765

"Elapsed time: 0.185508 msecs"

ifib 25 = 75025

"Elapsed time: 0.177111 msecs"

ifib 30 = 832040

"Elapsed time: 0.14596 msecs"

ifib 34 = 5702887

"Elapsed time: 0.148221 msecs"

Of course, we’ve lost a lot of the expressive power of the
recursive algorithm. We can reclaim that by remembering
referential transparency: In a functional language, functions
always return the same values given the same inputs. Thus, it is
never necessary to reevaluate a function. Once we have
computed the value of (fib 20) , we can remember it instead
of recomputing it.

We do this by using the memoize function as follows:

Click here to view code image

(declare fib)

(defn fib-w [n]

 (cond

 (< n 1) nil

 (<= n 2) 1

 :else (+ (fib (dec n)) (fib (- n 2)))))

(def fib (memoize fib-w))

The declare function creates an unbound symbol, which can
be used by other functions so long as it is bound before its use. I
used declare in this case because the definition of fib
comes after fib-w , and Clojure wants all names declared or
defined before they are used.

The memoize function takes an argument f, which must be a
function, and returns a new function g. Calls to g with
argument x will call f with x if, and only if, g has never been
called with x before. It then remembers those arguments and
the return value. Any subsequent call to g with x will return the
remembered value.

This version of the algorithm is just as fast as the iterative
version because we have short-circuited the vast majority of the
recursion without sacrificing the elegance of the algorithm. We
pay for that with a little extra memory, but that seems a small
price to pay.

Click here to view code image

fib 20 = 6765

"Elapsed time: 0.168678 msecs"

fib 25 = 75025

"Elapsed time: 0.16232 msecs"

fib 30 = 832040

"Elapsed time: 0.151619 msecs"

fib 34 = 5702887

"Elapsed time: 0.15134 msecs"

What we have learned here is that iteration and recursion are
very different approaches. Iterative functions must use tail calls
to drive the iteration and should use TCO to prevent the growth
of the stack. Recursive functions do not use tail calls and
therefore will grow the stack. Truly recursive functions can be
quite elegant, and memoization can be used to prevent that
elegance from significantly affecting performance.

Although Clojure was used as the language in this chapter, the
concepts are the same in virtually every other functional
language, and could even be implemented in nonfunctional
languages, though with a substantial loss of elegance. ;-)

4

Laziness

Consider the following boldfaced change to our program that
calculates a list of Fibonacci numbers:

Click here to view code image

(declare fib)

(defn fib-w [n]

 (cond

 (< n 1) nil

 (<= n 2) 1

 :else (+ (fib (dec n)) (fib (- n 2)))))

(def fib (memoize fib-w))

(defn lazy-fibs []

 (map fib (rest (range)))

)

The lazy-fibs function may look a little strange to you. Let’s
walk through it. You already understand the map function. The
rest function takes a list and returns that list without the first
element. And that brings us to the range function.

The range function, as called here, returns a list of integers
starting at zero. How many integers, you ask? As many as you
need. The range function is lazy. Or, rather, the range function
returns a lazy list.

What is a lazy list? A lazy list is an object that knows how to
compute its next value. In Java, C++, and C#, we called such
objects iterators. A lazy list is an iterator masquerading as a list.

Clojure is friends with lazy lists. Most of the library functions
return lazy lists if possible. So, in the above program, rest and
map both return a lazy list. And that means lazy-fibs also
returns a lazy list.

How would you use lazy-fibs ? Like so:

Click here to view code image

(take 10 (lazy-fibs))

returns: (1 1 2 3 5 8 13 21 34 55)

The take function takes two arguments: a number n and a
list. It returns a list that contains the first n elements of the
argument list. Actually, that’s not quite right, but I’ll get to that
in a minute.

So, now let’s walk through lazy-fibs again. The range
function returns a lazy list of integers starting at zero. The
rest function takes that list, drops the first element, and then
returns a lazy list of the remaining integers, which in this
instance, are the integers starting at one. The map function
applies each of those integers to the fib function returning a
lazy list of the Fibonacci numbers starting at (fib 1) .

You can have as many Fibonacci numbers as you like, so long as
there are no overflows or other machine limitations. So, for
example:

(nth (lazy-fibs) 50)

returns: 20365011074

The nth function takes a list and an integer n and returns the
n th element of the list. So this returns the 50th Fibonacci
number.

Now consider this:

Click here to view code image

(def list-of-fibs (lazy-fibs))

The def function (it’s not really a function, but pretend that it
is) creates a new symbol and associates it with a value. So the
symbol list-of-fibs refers to a lazy list of Fibonacci
numbers, as you can see from the following:

(take 5 list-of-fibs)

returns: (1 1 2 3 5)

Now note: When we executed the def that created list-of-
fibs , no Fibonacci numbers were calculated, and no memory
was allocated for Fibonacci numbers. The calculations only take
place, and the memory is only allocated, as the elements of the
list are accessed. Remember, behind the scenes, the lazy lists are
really just iterators that know how to calculate their next
element. Once that calculation takes place, the memory is
allocated and the value is placed into a real list.

1. That’s a convenient way to think of it for now. Actually, as
we’ll see shortly, the memory is only allocated and the list only
grows, if the program needs to hold those values.

It is tempting to think of lazy lists as being infinite. Of course
they are not. They are simply unbounded. You can walk
through as many items as you like, but that number will always
be finite.

Lazy Accumulation

It should be clear that if you continue to pass lazy lists through
functions like map , rest , and take (yes, take actually
returns a lazy list), you will accumulate a long chain of iterators
behind the scenes. Each of those iterators must hold on to the

1

function that calculates its next value. It must also hold on to all
the data required for that calculation.

I have written applications that have lists with thousands of
elements, each of which holds on to other lists with thousands
of other elements; and all these lists are lazy. Now remember,
we are deferring calculations. None of the calculations take
place until the final results are accessed. So a huge backlog of
deferred iterators can get chained through all those lists.

This works fine until you run out of the memory allocated for
holding all those deferred iterators. So, from time to time, it
might be a good idea to convert your lazy lists into real lists. In
Clojure, we do that with the doall function:

Click here to view code image

(def real-list-of-fibs (doall (take 50 (lazy-fibs

The doall function makes real-list-of-fibs a real list
that occupies memory and contains no deferred iterators. All
calculations have been done.

OK, but Why?

Good question! Laziness is not free. It requires memory and
cycles to defer calculations. Then there’s the problem of
accumulation that can lead to memory exhaustion.

Yet despite these costs, laziness is a common—if not universal—
feature in functional languages. Some languages, like Haskell,
are intrinsically lazy. Clojure is not intrinsically lazy, but so
many of the library functions are lazy that you cannot easily
avoid the laziness. F# and Scala allow laziness, but you must be
explicit about it.

Why? Why do all these languages accept the costs of laziness?

Because laziness decouples what you need to do from how
much you need to do. You can write a program that creates a
lazy sequence without knowing how big a sequence your users
are going to want. Your users can determine how much of your
sequence they need.

So, for example:

(nth (lazy-fibs) 500)

returns
22559151616193633087251269503607207204601132491375

819058863➥ 886641847462773868688340501598705279696

8498626N

Since lazy-fibs puts no limit on the number of Fibonacci
numbers it creates, you can ask for as many as you like.

Or, consider this example. I could create a list of 51 integers like
this:

(range 51)

Or like this:

(take 51 (range))

Notice in the first example, the 51 is far more coupled than in
the second. In the first, I have to get that 51 into the range
function somehow. I might be able to pass it as an argument,
but that’s a pretty strong coupling. In the second example, the
range function doesn’t care at all. That 51 could be way out
in some other part of the code, far removed from the call to
range .

By the way, you might be interested to know that in the lazy-
fibs example above, (fib 1) through (fib 499) have

likely been garbage-collected. Since I’m not holding on to the
list itself, the runtime system is free to dispose of the previously
calculated elements. Thus, it would be possible to create and
traverse a lazy list with trillions of elements and yet never hold
more than one of them in memory at a time.

2. Or at least some n , where n is small and is the “chunk” size
of the lazy engine.

Coda

There is much more to learn about laziness. My purpose here
has been to make you aware of it because it is so common in
functional languages. We will be seeing much more of it in the
pages to come, but it will almost always be in the background.

2

5

Statefulness

In the end, every program ever written is just a form of y = f(x),
where x is all the input you give to the program and y is all the

output it delivers in response.

This definition is sufficient for all batch jobs. For example, in a
payroll system, the input x is all the employee records and
timecards and the output y is all the paychecks and reports.

But perhaps this batch definition is too simplistic. After all, in
interactive applications, the input you give to the program is
often based on the output it just gave you. So perhaps we
should think of interactive software systems as:

void p(Input x) {

 while (x != DONE)

 x = (getInput(f(x))

}

In other words, our program is a loop that computes y = f(x) and
then hands y to some source of input that is passed back into f
until f finally returns DONE .

In some very real sense, the state of this program during each
iteration is x. If you were debugging some malfunction, you
would want to know the value of x and would likely call x the
state of the system.

And indeed, in the program above, there is a variable named x
that holds the state of the system and is updated upon each
iteration.

However, we can eliminate that variable by writing the
program “functionally” as follows:

void p(Input x) {

 if (x!=DONE)

 p(getInput(f(x)));

}

Now this program has no variable that is updated to hold the
state of the system. Instead, that state is passed as an argument
from one invocation of p to the next.

A few years ago I wrote a functional program in Clojure that
looked very much like this. It was a version of the old computer
game Spacewar!. You can see (and play) this program at
https://github.com/unclebob/spacewar. The game is visual and
interactive, and it is written in the “functional” style.

The internal state of the spacewar program is enormously
complex. It consists of the Enterprise, dozens of Klingons,
hundreds of stars, many dozens of torpedoes, phaser blasts,

https://github.com/unclebob/spacewar

kinetic projectiles, bases, transports, and a plethora of other
entities and attributes. All that complexity is maintained within
a single object that I called world . And the flow of spacewar
is, for all intents and purposes:

Click here to view code image

(defn spacewar [world]

 (when (:done? world)

 (System/exit 0))

 (recur (update-world world (get-input world)))

In other words, the spacewar program is a loop that exits if
the : done? attribute of the world is true , and otherwise
presents the world to the user and gets input that it uses to
update the world .

1. Keywords in Clojure are prefixed with colons. So :done? is a
keyword, which is just a constant that can be used as an
identifier. Often, they are used as keys into hash maps. When
used as a function, a keyword behaves like an accessor into a
hash map. Thus, (:done? world) simply returns the :done?
element of the world hash map.

1

Here is the actual update-world function as it currently exists
within spacewar :

Click here to view code image

(defn update-world [ms world]

 ;{:pre [(valid-world? world)]

 ; :post [(valid-world? %)]}

 (->> world

 (game-won ms)

 (game-over ms)

 (ship/update-ship ms)

 (shots/update-shots ms)

 (explosions/update-explosions ms)

 (clouds/update-clouds ms)

 (klingons/update-klingons ms)

 (bases/update-bases ms)

 (romulans/update-romulans ms)

 (view-frame/update-messages ms)

 (add-messages)

))

The threading macro (->>) simply passes the argument
world into game-won , the output of which gets passed to
game-over , the output of which gets passed to ship/update-
ship , and so on. Each of those functions returns an updated
version of the world .

Note the ms argument. It contains the number of milliseconds
since the last update and is the primary input to the game as a
whole. As an object moves across the screen, its position is
updated based upon its velocity vector and the number of
milliseconds that have transpired since its position was last
updated.

I’m showing this to you to give you a glimpse of the complexity
being managed by this program. Keep in mind that the world
is not a mutable variable. Each of those threaded functions into
which the world is being passed is returning a new version of
the world and passing it to the next. It is not being held in a
variable and being mutated.

Let me give you one more glimpse of the complexity:

Click here to view code image

(s/def ::ship (s/keys :req-un

 [::x ::y ::warp ::warp-cha

 ::impulse ::heading ::velo

 ::selected-view ::selected

 ::selected-engine ::target

 ::engine-power-setting

 ::weapon-number-setting

 ::weapon-spread-setting

 ::heading-setting

 ::antimatter ::core-temp

 ::dilithium ::shields

 ::kinetics ::torpedos

 ::life-support-damage ::hu

 ::sensor-damage ::impulse

 ::warp-damage ::weapons-da

 ::strat-scale

 ::destroyed

 ::corbomite-device-install

What you are looking at is a small portion of the type
specification of the Enterprise, the player’s ship. Clojure
provides a mechanism called clojure.spec that give us the
ability to very specifically design our data structures with even
more precision and control than most statically typed
languages.

All this complexity of state is managed within the spacewar
program by passing the world from function to function to
function, and then recursively passing it back to spacewar .
The world is never held in a variable.

And, the game operates on a large screen at 30 frames per
second.

The bottom line here is that there is no level of complexity that
demands that we abandon immutability and deviate from the
functional style. On the other hand, there are other factors that
do, from time to time, make that demand.

When We MUST Mutate

The spacewar program uses a graphical user interface (GUI)
framework called Quil. This framework allows the programs
that use it to be written in a “functional” style. It may not
actually be functional in its internals, but from the outside
looking in, there need not be any visible mutable state.

2. See www.quil.info. Quil uses Processing behind the scenes.
Processing is a Java framework that is certainly not functional.
Quil pretends to be functional by hiding the mutable variables,
or at least by not forcing you to mutate those variables.

On the other hand, I am currently writing an application in
Clojure named more-speech that uses Java’s Swing
framework. Swing is not functional. Mutable state drips from

2

3

http://www.quil.info/

every appendage of the framework. It is a definitionally
mutable object framework.

3. https://github.com/unclebob/more-speech

This makes it a challenge to use with Clojure and maintain a
“functional” style. To make matters worse, Swing uses a model-
view approach, and the models are defined and controlled by
Swing. So building an immutable model is virtually impossible.

Swing is not the only framework that forces you into the
mutable world. There are many others. So, even if you are
determined to use the “functional” style, you must be able to
deal with the fact that a large panoply of existing software
frameworks will force you out of that style.

Worse, many such frameworks also force you into the
multithreaded world. Swing, for example, runs in its own
special thread. Programmers should not use that thread for
regular processing but must specifically enter that thread when
mutating Swing data structures.

This puts the users of such frameworks into the double
jeopardy of mutating state from within multiple threads. The

https://github.com/unclebob/more-speech

dreaded result of that, of course, is race conditions and
concurrent update anomalies.

Fortunately, there are functional languages that provide
facilities that reduce the problems of mutation and allow the
functional style to interface tolerably well with the
multithreaded, nonfunctional style.

Software Transactional Memory (STM)

STM is a set of mechanisms that treat internal memory as
though it were a transactional commit/rollback database. The
transactions are functions that are protected from concurrent
update by a compare-and-swap protocol.

If that was too much of a word salad, perhaps an example
would be clarifying.

Let us say that we have an object o and a function f that mutates
o. So o = f(o) where o is the original o mutated by f.

The problem is that f takes time to do its work, and there is a
chance that some other thread will interrupt f and apply its
own operation g on o: o = g(o). When f finally completes, what
is the state of o? Is it o ? Or is it o ? Or have both mutations been
applied, giving us o ?

f f

g

f g

f g

The typical concurrent update problem would most often yield
o , causing the operation of g to be lost. Programmers often
resolve this kind of problem by locking o so that g cannot
interrupt f, and vice versa. The lock forces the interrupting
thread to wait until o is unlocked. The problem, however, is that
this can lead to the dreaded deadly embrace.

4. Sometimes known as deadlock.

Imagine that we have two objects o and p and two functions f(o,
p) and g(p, o). These functions lock their arguments before
operating on them. Suppose f and g are executing in different
threads and g interrupts f just after f locks o. Now g locks p but
cannot lock o because o is locked by f, so g waits. Now f wakes
up and tries to lock p but cannot because p is locked by g—and
nothing can proceed. The functions f and g are in a deadly
embrace.

The problem of deadly embrace can be avoided by locking
everything in the same order every time. If f and g agree to lock
o first and p second, then the embrace cannot happen. However,
these agreements are hard to enforce, and as systems get more
and more complicated, a correct locking order can be very
difficult to divine.

f

4

STM solves this problem by not locking, and instead using a
commit/rollback technique. Let’s call this technique swap. We
can enact it with swap(o, f), which will hold the current value of
o in o , compute o = f(o), and then, in an atomic operation,
compare the current value of o with o and, if they are the
same, swap o with o . If the compare fails, then the operation is
repeated from the beginning and will continue repeating until
the compare succeeds.

5. Atomic operations cannot be interrupted.

There are several ways to use STM in Clojure, but the simplest is
the atom . An atom is an atomic value that can be altered
using the swap! function. Here’s an example:

Click here to view code image

(def counter (atom 0))

(defn add-one [x]

 (let [y (inc x)]

 (print (str "(" x ")"))

 y))

(defn increment [n id]

 (dotimes [_ n]

h f
5

h

f

 (print id)

 (swap! counter add-one)))

(defn -main []

 (let [ta (future (increment 10 "a"))

 tx (future (increment 10 "x"))

 _ @ta

 _ @tx]

 (println "\nCounter is: " @counter)))

The first line creates the atom named counter . The -main
program starts two threads, using future , both of which call
the increment function. The @ta and @tx expressions wait
for the respective threads to complete.

The add-one function adds one to its argument, but that
print function can allow another thread to jump in; and that’s
exactly what happens. Here’s an example of the output:

Click here to view code image

a(0)a(1)a(2)a(3)a(4)xa(5)x(5)(6)(6)x(7)(7)a(8)(8

x(9)(9)a(10)(10)x(11)a(11)(12)(12)a(13)x(13)(14)

x(15)(15)(16)x(17)x(18)x(19)

Counter is: 20

At first, thread a runs without interruption for a while. But at
the fifth increment, the x thread jumps in, and the two fight
each other. Notice the repeated values as the swap! detects the
collisions and repeats. Finally, thread a finishes and thread x
experiences no further interruptions. The end count of 20 is
correct.

Life Is Hard, Software Is Harder

It would be nice to live, full time, in a functional world. Multiple
threads in a functional world generally do not have race
conditions. After all, if you never update, you can’t have
concurrent update problems. But all too often we are forced
back into the multithreaded, nonfunctional world by
frameworks, or legacy code. And when that happens, the
mechanisms of STM can help us avoid the worst of an otherwise
horrific situation.

6. See Chapter 15, Concurrency, for when they do.

6

II

Comparative Analysis

What follows is a comparative analysis of a series of exercises
written in traditional object-oriented (OO) style and in
“functional” style. The first two exercises may appear familiar
to you; the OO portions come from examples that I published in
Clean Craftsmanship.

1. Robert C. Martin, Clean Craftsmanship (Addison-Wesley,
2021).

Both versions of each of the examples were created using the
discipline of test-driven development (TDD). The tests are shown
with the code in an incremental fashion. You’ll see how the first
test was passed, then the second, then the third, and so on.

The point of this part of the book is to explore and examine the
differences between OO implementations and functional
implementations.

The exercises increase in complexity from one to the next.
Prime Factors is pretty simple. Bowling Game is a bit more

1

complicated and Gossiping Bus Drivers is more complicated
still. The last exercise, Payroll, is the most complex of the
examples. I explored it in great detail in Section 3 of Agile
Software Development: Principles, Patterns, and Practices. So to
save space I’ve only included the functional version.

2. Robert C. Martin, Agile Software Development: Principles,
Patterns, and Practices (Pearson, 2002).

As the complexity increases, the differences between the
approaches become more apparent. You should find this
educational. But you should also be prepared for a few
surprises; this may not end the way you think it should.

2

6

Prime Factors

Is functional programming better than programming with
mutable variables? Let’s do a comparative analysis of some
familiar exercises. Here, for example, is the traditional Java
derivation of the Prime Factors kata using TDD, roughly as it
was presented in Chapter 2 of Clean Craftsmanship. A related3

video, Prime Factors, is also available. You can access the video
by registering at https://informit.com/functionaldesign.

3. Martin, Clean Craftsmanship, p. 52.

Java Version

We begin with a simple test:

Click here to view code image

public class PrimeFactorsTest {

 @Test

 public void factors() throws Exception {

 assertThat(factorsOf(1), is(empty()));

 }

}

And we make it pass in this simple way:

Click here to view code image

private List<Integer> factorsOf(int n) {

 return new ArrayList<>();

}

https://informit.com/functionaldesign

Of course, this passes. So the next most degenerate test is 2:

Click here to view code image

assertThat(factorsOf(2), contains(2));

We make this pass with some trivial and obvious code:

Click here to view code image

private List<Integer> factorsOf(int n) {

 ArrayList<Integer> factors = new ArrayList<>()

 if (n>1)

 factors.add(2);

 return factors;

}

Next comes 3,

Click here to view code image

assertThat(factorsOf(3), contains(3));

which we make pass by being a bit clever and replacing the 2
with n :

Click here to view code image

private List<Integer> factorsOf(int n) {

 ArrayList<Integer> factors = new ArrayList<>()

 if (n>1)

 factors.add(n);

 return factors;

}

Next comes 4, which is the first time our list will have more
than one factor in it:

Click here to view code image

assertThat(factorsOf(4), contains(2, 2));

And we make it pass with what appears to be a pretty awful
hack:

Click here to view code image

private List<Integer> factorsOf(int n) {

 ArrayList<Integer> factors = new ArrayList<>()

 if (n>1) {

 if (n % 2 == 0) {

 factors.add(2);

n /= 2;

 n /= 2;

 }

 }

 if (n>1)

 factors.add(n);

 return factors;

}

The next three tests pass without any changes:

Click here to view code image

assertThat(factorsOf(5), contains(5));

assertThat(factorsOf(6), contains(2,3));

assertThat(factorsOf(7), contains(7));

The 8 case is the first time we’ve seen more than two elements
in the list of factors:

Click here to view code image

assertThat(factorsOf(8), contains(2, 2, 2));

And we pass this with the elegant transformation of one of the
if statements into a while :

Click here to view code image

private List<Integer> factorsOf(int n) {

 ArrayList<Integer> factors = new ArrayList<>()

 if (n>1) {

 while (n % 2 == 0) {

 factors.add(2);

 n /= 2;

 }

 }

 if (n>1)

 factors.add(n);

 return factors;

}

The next test, 9, must also fail because nothing in our solution
factors out 3:

Click here to view code image

assertThat(factorsOf(9), contains(3, 3));

To solve it, we need to factor out 3’s. We could do that as
follows:

Click here to view code image

private List<Integer> factorsOf(int n) {

p g

 ArrayList<Integer> factors = new ArrayList<>()

 if (n>1) {

 while (n % 2 == 0) {

 factors.add(2);

 n /= 2;

 }

 while (n % 3 == 0) {

 factors.add(3);

 n /= 3;

 }

 }

 if (n>1)

 factors.add(n);

 return factors;

}

But this is horrific because it implies endless duplication. We
can solve that by changing another if to a while :

Click here to view code image

private List<Integer> factorsOf(int n) {

 ArrayList<Integer> factors = new ArrayList<>()

 int divisor = 2;

 while (n>1) {

 while (n % divisor == 0) {

 factors.add(divisor);

 n /= divisor;

 }

 divisor++;

 }

 if (n>1)

 factors.add(n);

 return factors;

}

Just a little bit of refactoring and we get this:

Click here to view code image

private List<Integer> factorsOf(int n) {

 ArrayList<Integer> factors = new ArrayList<>()

 for (int divisor = 2; n > 1; divisor++)

 for (; n % divisor == 0; n /= divisor)

 factors.add(divisor);

 return factors;

}

And that algorithm is sufficient to compute the prime factors of
any integer.4

4. Given enough time and space.

Clojure Version

OK, so what does this look like in Clojure?

As before, we begin with a simple degenerate test:

5. Using the speclj testing framework.

Click here to view code image

(should= [] (prime-factors-of 1))

And we make that pass as one might expect, by returning an
empty list:

Click here to view code image

(defn prime-factors-of [n] [])

The next test follows the Java version pretty closely:

Click here to view code image

(should= [2] (prime-factors-of 2))

5

So does the solution:

(defn prime-factors-of [n]

 (if (> n 1) [2] []))

And the solution to the third test employs the same clever
replacement of 2 by n :

Click here to view code image

(should= [3] (prime-factors-of 3))

(defn prime-factors-of [n]

 (if (> n 1) [n] []))

But with the test for 4, the Clojure and Java solutions begin to
diverge:

Click here to view code image

(should= [2 2] (prime-factors-of 4))

(defn prime-factors-of [n]

 (if (> n 1)

 (if (zero? (rem n 2))

 (cons 2 (prime-factors-of (quot n 2)))

 [n])

 []))

The solution is recursive. The cons function prepends a 2
onto the beginning of the list returned by prime-factors-of .
Convince yourself that you understand why! The rem and
quot functions are just the integer remainder and quotient
operations, respectively.

At this point in the Java program, there was no iteration. The
two if(n>1) segments were a tantalizing hint of the iteration
that was to come, but the solution was still just straight linear
logic.

In the functional version, however, we see full-blown recursion.
It’s not even tail-called.

The next four tests pass outright, even the test for 8:

Click here to view code image

(should= [5] (prime-factors-of 5))

(should= [2 3] (prime-factors-of 6))

(should= [7] (prime-factors-of 7))

(should= [2 2 2] (prime-factors-of 8))

In some ways, this is a shame since it was the test for 8 that
caused us to transform an if to a while in the Java solution.
No such elegant transformation takes place in the Clojure
solution; though I have to say that the recursion is the better
solution—so far.

Next comes the test for 9. And here the Java and Clojure
versions face the similar dilemma of duplicated code:

Click here to view code image

(should= [3 3] (prime-factors-of 9))

(defn prime-factors-of [n]

 (if (> n 1)

 (if (zero? (rem n 2))

 (cons 2 (prime-factors-of (quot n 2)))

 (if (zero? (rem n 3))

 (cons 3 (prime-factors-of (quot n 3)))

 [n]))

 []))

This solution is not sustainable. It would force us to add the 5, 7,
11, 13… cases all the way up to the maximum prime that our

language could hold. But this solution does imply an interesting
iterative/recursive solution:

Click here to view code image

(defn prime-factors-of [n]

 (loop [n n

 divisor 2

 factors []]

 (if (> n 1)

 (if (zero? (rem n divisor))

 (recur (quot n divisor) divisor (conj f

 (recur n (inc divisor) factors))

 factors)))

The loop function creates a new anonymous function in situ.
The recur function, when nested inside a loop expression,
causes the in situ function to be reinvoked with TCO. The
arguments to the in situ function are n , divisor , and
factors . Each is followed by its initializer. So the n within the
loop is initialized to the value of n outside the loop (the two n
identifiers are distinct), divisor is initialized to 2 , and
factors is initialized to [] .

The recursion in this solution is iterative because the recursive
calls are at the tail. Note that the cons has been changed to a

conj because the ordering of the list construction has
changed. The conj function appends to factors . Convince
yourself that you understand why the ordering has changed!

6. In this case because factors is a vector.

Conclusion

There are several things to note about this example. First, the
sequence of tests is the same between the Java and Clojure
versions. This is significant because it implies that the change to
functional programming has little to no impact on the way we
express our tests. Tests are somehow more basic, more abstract,
or more essential than the programming style.

Second, the solution strategy between the two deviated even
before any iteration was required. In Java, the test for 4 did not
require iteration; but in Clojure, it caused us to use recursion.
This implies that recursion is somehow more semantically
essential than standard looping with while statements.

Third, the derivation in Java was relatively straightforward;
there were few, if any, surprises from one test to the next. But
the Clojure derivation took a U-turn once we got to the test for
9. This was because we chose to use non-tail recursion instead

6

of the iterative loop construct to solve the test for 4. This
implies that, when we have a choice, we should prefer tail-
recursive constructs to non-tail recursion.

The end result is an algorithm that is similar to the Java
solution but has at least one surprising difference: It is not a
doubly nested loop. The Java solution has one loop that
increments the divisor and another that repeatedly adds the
current divisor as a factor. The Clojure solution replaces that
doubly nested loop with two independent recursions.

Which solution is better? The Java solution is a lot faster
because Java is a lot faster than Clojure. But otherwise, I see no
particular benefit to either. To those who know both languages
well, neither is easier than the other to read or understand.
Neither is riskier or better structured than the other. From my
point of view, it’s a wash. Other than the intrinsic speed of Java,
there is no advantage to either style that overrides the other.

However, this is the last example for which the results will be
ambiguous. As we proceed from example to example, the
differences will become more and more significant.

7

Bowling Game

Now let’s look at another traditional TDD exercise: the Bowling
Game kata. What follows is a much-abbreviated version of that
kata that appeared in Clean Craftsmanship. A related video,
Bowling Game, is also available. You can access the video by
registering at https://informit.com/functionaldesign.

1. Robert C. Martin, Clean Craftsmanship (Addison-Wesley,
2021).

Java Version

We begin, as always, with a test that does nothing, just to prove
we can compile and execute:

Click here to view code image

public class BowlingTest {

 @Test

 public void nothing() throws Exception {

 }

}

Next, we assert that we can create an instance of the Game
class:

Click here to view code image

1

https://informit.com/functionaldesign

@Test

public void canCreateGame() throws Exception {

 Game g = new Game();

}

And then we make that compile and pass by directing the
integrated development environment (IDE) to create the
missing class:

public class Game {

}

Next, we see if we can roll one ball:

Click here to view code image

@Test

public void canRoll() throws Exception {

 Game g = new Game();

 g.roll(0);

}

And then we make that compile and pass by directing the IDE to
create the roll function, and we give the argument a
reasonable name:

Click here to view code image

public class Game {

 public void roll(int pins) {

 }

}

There’s a bit of duplication in the tests already. We should get
rid of it. So we factor out the creation of the game into the
setup function:

Click here to view code image

public class BowlingTest {

 private Game g;

 @Before

 public void setUp() throws Exception {

 g = new Game();

 }

}

This makes the first test completely empty. So we delete it. The
second test is also pretty useless since it doesn’t assert anything,
so we delete it as well.

Next, we want to assert that we can score a game. But to do that
we need to roll a complete game:

Click here to view code image

@Test

public void gutterGame() throws Exception {

 for (int i=0; i<20; i++)

 g.roll(0);

 assertEquals(0, g.score());

}

public int score() {

 return 0;

}

Next come all ones:

Click here to view code image

@Test

public void allOnes() throws Exception {

 for (int i=0; i<20; i++)

 g.roll(1);

 assertEquals(20, g.score());

}

public class Game {

 private int score;

 public void roll(int pins) {

 score += pins;

 }

 public int score() {

 return score;

 }

}

The duplication in the tests can be eliminated by extracting a
function called rollMany :

Click here to view code image

public class BowlingTest {

 private Game g;

 @Before

 public void setUp() throws Exception {

 g = new Game();

 }

 private void rollMany(int n, int pins) {

 for (int i=0; i<n; i++) {

 g.roll(pins);

 }

 }

 @Test

 public void gutterGame() throws Exception {

 rollMany(20, 0);

 assertEquals(0, g.score());

 }

 @Test

 public void allOnes() throws Exception {

 rollMany(20, 1);

 assertEquals(20, g.score());

 }

}

OK, next test. One spare, with one extra bonus ball, and all the
rest gutter balls:

Click here to view code image

@Test

public void oneSpare() throws Exception {

 rollMany(2, 5);

 g.roll(7);

 rollMany(17, 0);

 assertEquals(24, g.score());

}

This test fails, of course. We have to refactor the algorithm in
order to get this to pass. We move the computation of the score
out of the roll method and into the score method, and we
walk through the rolls array two balls (one frame) at a time:

Click here to view code image

public int score() {

 int score = 0;

 int frameIndex = 0;

 for (int frame = 0; frame < 10; frame++) {

 if (isSpare(frameIndex)) {

 score += 10 + rolls[frameIndex + 2];

 frameIndex += 2;

 } else {

 score += rolls[frameIndex] + rolls[frameInd

 frameIndex += 2;

 }

 }

 return score;

}

private boolean isSpare(int frameIndex) {

 return rolls[frameIndex] + rolls[frameIndex +

}

One strike is next:

Click here to view code image

@Test

public void oneStrike() throws Exception {

 g.roll(10);

 g.roll(2);

 g.roll(3);

 rollMany(16, 0);

 assertEquals(20, g.score());

}

Passing it is just a matter of adding the strike condition, and
then we refactor a bit:

Click here to view code image

public int score() {

 int score = 0;

 int frameIndex = 0;

 for (int frame = 0; frame < 10; frame++) {

 if (isStrike(frameIndex)) {

 score += 10 + strikeBonus(frameIndex);

 frameIndex++;

 } else if (isSpare(frameIndex)) {

 score += 10 + spareBonus(frameIndex);

 frameIndex += 2;

 } else {

 score += twoBallsInFrame(frameIndex);

 frameIndex += 2;

 }

 }

 return score;

}

Lastly, we test for a perfect game:

Click here to view code image

@Test

public void perfectGame() throws Exception {

 rollMany(12, 10);

 assertEquals(300, g.score());

}

And this passes without change.

Clojure Version

Things start out quite differently in Clojure. We have no classes
to create, and there is no need for a roll method. So our first
test is the gutter game:

Click here to view code image

(should= 0 (score (repeat 20 0)))

(defn score [rolls] 0)

2. The repeat function returns a sequence of repeating values.
In this case, it is a sequence of 20 zeros.

Followed quickly by all ones:

Click here to view code image

(should= 20 (score (repeat 20 1)))

(defn score [rolls]

 (reduce + rolls))

No surprises here. The reduce function simply applies the +
function across the entire list. So our next test is one spare:

3. You will want to look this function up. It does much more
than this paragraph suggests. But you’ll see that soon enough.

Click here to view code image

(should= 24 (score (concat [5 5 7] (repeat 17 0)

2

3

((([] (p)

To make this pass, we go through several steps. The first is to
break the rolls array up into frames and sum up the frames.
At first, we assume that frames have just two rolls:

Click here to view code image

(defn to-frames [rolls]

 (partition 2 rolls))

(defn add-frame [score frame]

 (+ score (reduce + frame)))

(defn score [rolls]

 (reduce add-frame 0 (to-frames rolls)))

4. The partition function breaks the rolls list into a list of
pairs. So [1 2 3 4 5 6] becomes [[1 2][3 4][5 6]] .

Now the reduce function has come into its own. It cycles
through the pairs of rolls, accumulating them into a score.

This change keeps all the previous tests passing, but it still fails
the spare test. To pass that we have to add special processing to

4

the to-frames and add-frame functions. Our goal is to put
all the rolls needed to calculate a frame into the frame data.

Click here to view code image

(defn to-frames [rolls]

 (let [frames (partition 2 rolls)

 possible-bonuses (map #(take 1 %) (rest

 possible-bonuses (concat possible-bonus

 (map concat frames possible-bonuses)))

(defn add-frame [score frame-and-bonus]

 (let [frame (take 2 frame-and-bonus)]

 (if (= 10 (reduce + frame))

 (+ score (reduce + frame-and-bonus))

 (+ score (reduce + frame)))))

(defn score [rolls]

 (reduce add-frame 0 (to-frames rolls)))

5. The #(…) form creates an anonymous function. The %
symbol is the argument to that function. You can also use %n ,
where n is an integer representing the nth argument. So #
(take 1 %) is a function that returns a list containing the first
element of its argument.

5

6 7

6. This is not a reassignment, or even a reinitialization. The
second possible-bonuses value is distinct from the first.
Think of it like a local variable in Java hiding a function
argument or a member variable of the same name.

7. The concat function concatenates lists together. So
(concat [1 2] [3 4]) returns [1 2 3 4] .

Look closely at this code. There are lots of little tricks and
workarounds in it. Why? Because Clojure is full of lots of lovely,
tempting little tools that you can use to get data into almost the
form you want, and then use little tricks to maneuver the data
into exactly the form you want. If you aren’t careful, those little
tricks can start to dominate the code.

So, for example, see if you can figure out why I am passing
[[0]] into the concat function in to-frames . As another
example, ask yourself why I used #(take 1 %) instead of just
first .

8. Since bonuses are based on the next frame, possible-
bonuses had one too few elements. That would have
terminated the final call to map one element too early.

8

9

9. (take 1 x) returns a list containing the first element in x .
first returns the first element.

Because of the trickiness in this code, don’t be too concerned if
you are struggling to understand it. I struggled too when
looking back over it. And so…

When these little tricks proliferate it’s time to rethink the
solution. So I refactored the solution into a simple loop :

Click here to view code image

(defn to-frames [rolls]

 (loop [remaining-rolls rolls

 frames []]

 (cond

 (empty? remaining-rolls)

 frames

 (= 10 (reduce + (take 2 remaining-rolls)))

 (recur (drop 2 remaining-rolls)

 (conj frames (take 3 remaining-rolls

 :else

 (recur (drop 2 remaining-rolls)

 (conj frames (take 2 remaining-rolls

(defn add-frames [score frame]

(+ score (reduce + frame)))

 (+ score (reduce + frame)))

(defn score [rolls]

 (reduce add-frames 0 (to-frames rolls)))

This is looking a lot better. Moreover, it’s starting to look a bit
like the Java solution. The next test is one strike:

Click here to view code image

(should= 20 (score (concat [10 2 3] (repeat 16 0

And we make that pass by adding one more case to the cond :

Click here to view code image

(defn to-frames [rolls]

 (loop [remaining-rolls rolls

 frames []]

 (cond

 (empty? remaining-rolls)

 frames

 (= 10 (first remaining-rolls))

 (recur (rest remaining-rolls)

 (conj frames (take 3 remaining-rolls

((d (k i i ll)))

 (= 10 (reduce + (take 2 remaining-rolls)))

 (recur (drop 2 remaining-rolls)

 (conj frames (take 3 remaining-rolls

 :else

 (recur (drop 2 remaining-rolls)

 (conj frames (take 2 remaining-rolls

(defn add-frames [score frame]

 (+ score (reduce + frame)))

(defn score [rolls]

 (reduce add-frames 0 (to-frames rolls)))

Trivial, right? So all that’s left is the perfect game. And if this
goes like the Java version, this test should just pass without
modification:

Click here to view code image

(should= 300 (score (repeat 12 10))))

But it doesn’t! Can you see why? Perhaps the fix will elucidate
that for you:

Click here to view code image

(defn score [rolls]

 (reduce add-frames 0 (take 10 (to-frames rolls

The to-frames function happily creates more than ten
frames. It just runs to the end of the rolls list making as
many frames as it can. But a game of bowling is only ten
frames.

Conclusion

There are quite a few interesting differences between the Java
and Clojure versions of this problem. First, the Clojure version
has no Game class. So all the machinations we used to create
that class in the Java version simply don’t occur in the Clojure
version.

You might think that the loss of the Game class is a weakness of
the Clojure version. After all, it’s convenient to be able to just
create a Game , toss it a bunch of rolls, and then get the score.
However, the Clojure version has decoupled the accumulation
of the rolls from the computation of the score. Those concepts
are not bound together in the Clojure version. And that makes
me think that the Java version has a subtle violation of the
Single Responsibility Principle.

10. See Robert C. Martin, Clean Architecture (Pearson, 2017).

10

Second, as we tried to solve the one spare case, we saw how the
Clojure version got polluted with all those nasty little tricks.
This is a real problem with Clojure programs (or perhaps
Clojure programmers). It’s just too easy to add one more nasty
little trick to get things to work.

Third, the Clojure solution is significantly different from the
Java solution. Oh, there are some points of similarity, to be sure.
That cond structure in the Clojure version is very reminiscent
of the if/else structure in the Java version. However, those
two similar structures produced radically different results. The
Java version produced the score. The Clojure version produced
a frame that included the bonus balls for spares and strikes.

This is an interesting separation of concerns. It is a fact that
computing the score forces both versions to identify all the rolls
that impact each frame. However, the Java version does this in
situ, whereas the Clojure version nicely separates those two
concerns.

Which of these versions is better? The Java version ended up a
bit simpler than the Clojure version; but it was also a bit more
coupled. The separation of concerns in the Clojure version
convinces me that between the two, it would be more flexible
and useful.

But, of course, we are only talking about a dozen lines of code.

8

Gossiping Bus Drivers

So far in this comparative analysis we haven’t found a strong
reason to prefer functional programming over OO
programming. So let’s examine a slightly more interesting
problem.

Object orientation was born in 1966 when Ole-Johan Dahl and
Kristen Nygaard added some modifications to the ALGOL-60
language in order to make the language more amenable to
discrete event simulation. The new language was called
SIMULA-67 and is considered to be the first true OO
programming language.

1. Legend has it that they were simulating Norwegian ocean
shipping.

So let’s do a comparative analysis of a simple discrete event
simulator. That should keep the problem squarely in the OO
wheelhouse. A nice problem to choose is the Gossiping Bus
Drivers kata.

2. https://kata-log.rocks/gossiping-bus-drivers-kata

Given n drivers, each with their own circular route of stops,
determine how many steps are required until all gossip known
to each bus driver is known by all. Drivers only gossip if they
arrive together at the same stop.

So, let’s say that Bob knows rumor X and drives route [p,q,r].
Jim knows rumor Y and drives route [s,t,u,p]. When will Bob

1

2

https://kata-log.rocks/gossiping-bus-drivers-kata

and Jim be able to share their gossip? If they start at time 0,
then at time 3 they will both be at stop p; remember, the routes
are circular.

The process is limited to 480 steps.

This problem gets more interesting when there are more than
two drivers and more complex routes.

Java Solution

I wrote a solution to this problem in Java. I started out with a
very traditional kind of OO analysis and design (see Figure 8.1).

Figure 8.1. Simple object model for the Java version

The Simulator holds many Drivers. Each Driver has a Route,
and each Route contains many Stops. Each Stop has many
Drivers, and each Driver has many Rumors.

This is a fairly simple object model. There’s not even any
inheritance or polymorphism implied. So it should be a pretty
straightforward implementation.

I wrote the Java code using TDD, of course. Here are the tests.
As you can see, they are fairly wordy; but at least they all fit
into a single test class: .

3. If you read my book Clean Craftsmanship (Addison-Wesley,
2021), you’ll understand why this is a good thing.

Click here to view code image

package gossipingBusDrivers;

import org.junit.Before;

import org.junit.Test;

import static org.hamcrest.MatcherAssert.assertTh

import static org.hamcrest.collection.IsEmptyColl

import static org.hamcrest.collection.

 IsIterableContainingInAnyOrder.containsInAnyOrd

import static org.junit.Assert.assertEquals;

public class GossipTest {

3

 private Stop stop1;

 private Stop stop2;

 private Stop stop3;

 private Route route1;

 private Route route2;

 private Rumor rumor1;

 private Rumor rumor2;

 private Rumor rumor3;

 private Driver driver1;

 private Driver driver2;

 @Before

 public void setUp() {

 stop1 = new Stop("stop1");

 stop2 = new Stop("stop2");

 stop3 = new Stop("stop3");

 route1 = new Route(stop1, stop2);

 route2 = new Route(stop1, stop2, stop3);

 rumor1 = new Rumor("Rumor1");

 rumor2 = new Rumor("Rumor2");

 rumor3 = new Rumor("Rumor3");

 driver1 = new Driver("Driver1", route1, rumo

 driver2 = new Driver("Driver2", route2, rumo

 }

 @Test

 public void driverStartsAtFirstStopInRoute() th

 assertEquals(stop1, driver1.getStop());

 }

 @Test

 public void driverDrivesToNextStop() throws Exc

 driver1.drive();

 assertEquals(stop2, driver1.getStop());

 }

 @Test

 public void driverReturnsToStartAfterLastStop(

 throws Exception {

 driver1.drive();

 driver1.drive();

 assertEquals(stop1, driver1.getStop());

 }

 @Test

 public void firstStopHasDriversAtStart() throws

 assertThat(stop1.getDrivers(), containsInAnyO

 assertThat(stop2.getDrivers(), empty());

 }

 @Test

 public void multipleDriversEnterAndLeaveStops(

 throws Exception {

 assertThat(stop1.getDrivers(), containsInAnyO

 assertThat(stop2.getDrivers(), empty());

 assertThat(stop3.getDrivers(), empty());

 driver1.drive();

 driver2.drive();

 assertThat(stop1.getDrivers(), empty());

 assertThat(stop2.getDrivers(), containsInAnyO

 assertThat(stop3.getDrivers(), empty());

 driver1.drive();

 driver2.drive();

 assertThat(stop1.getDrivers(), containsInAnyO

 assertThat(stop2.getDrivers(), empty());

 assertThat(stop3.getDrivers(), containsInAnyO

 driver1.drive();

 driver2.drive();

 assertThat(stop1.getDrivers(), containsInAnyO

 assertThat(stop2.getDrivers(), containsInAnyO

 assertThat(stop3.getDrivers(), empty());

 }

 @Test

 public void driversHaveRumorsAtStart() throws E

 assertThat(driver1.getRumors(), containsInAny

 assertThat(driver2.getRumors(), containsInAny

 }

 @Test

 public void noDriversGossipAtEmptyStop() throws

 stop2.gossip();

 assertThat(driver1.getRumors(), containsInAny

 assertThat(driver2.getRumors(), containsInAny

 }

 @Test

 public void driversGossipAtStop() throws Except

 stop1.gossip();

 assertThat(driver1.getRumors(), containsInAny

 assertThat(driver2.getRumors(), containsInAny

 }

 @Test

 public void gossipIsNotDuplicated() throws Exce

 stop1.gossip();

 stop1.gossip();

 assertThat(driver1.getRumors(), containsInAny

 assertThat(driver2.getRumors(), containsInAny

 }

 @Test

 public void driveTillEqualTest() throws Excepti

 assertEquals(1, Simulation.driveTillEqual(dri

 dri

 }

 @Test

 public void acceptanceTest1() throws Exception

 Stop s1 = new Stop("s1");

 Stop s2 = new Stop("s2");

 Stop s3 = new Stop("s3");

 Stop s4 = new Stop("s4");

 Stop s5 = new Stop("s5");

 Route r1 = new Route(s3, s1, s2, s3);

 Route r2 = new Route(s3, s2, s3, s1);

 Route r3 = new Route(s4, s2, s3, s4, s5);

 Driver d1 = new Driver("d1", r1, new Rumor("

 Driver d2 = new Driver("d2", r2, new Rumor("2

 Driver d3 = new Driver("d3", r3, new Rumor("3

 assertEquals(6, Simulation.driveTillEqual(d1

 }

 @Test

 public void acceptanceTest2() throws Exception

 Stop s1 = new Stop("s1");

 Stop s2 = new Stop("s2");

 Stop s5 = new Stop("s5");

 Stop s8 = new Stop("s8");

 Route r1 = new Route(s2, s1, s2);

 Route r2 = new Route(s5, s2, s8);

 Driver d1 = new Driver("d1", r1, new Rumor("

 Driver d2 = new Driver("d2", r2, new Rumor("2

 assertEquals(480, Simulation.driveTillEqual(d

 }

}

The solution code is broken up into several small files.

Driver

Click here to view code image

package gossipingBusDrivers;

import java.util.Arrays;

import java.util.HashSet;

import java.util.Set;

public class Driver {

 private String name;

 private Route route;

private int stopNumber = 0;

 private int stopNumber = 0;

 private Set<Rumor> rumors;

 public Driver(String name, Route theRoute,

 Rumor... theRumors) {

 this.name = name;

 route = theRoute;

 rumors = new HashSet<>(Arrays.asList(theRumo

 route.stopAt(this, stopNumber);

 }

 public Stop getStop() {

 return route.get(stopNumber);

 }

 public void drive() {

 route.leave(this, stopNumber);

 stopNumber = route.getNextStop(stopNumber);

 route.stopAt(this, stopNumber);

 }

 public Set<Rumor> getRumors() {

 return rumors;

 }

 public void addRumors(Set<Rumor> newRumors) {

 rumors.addAll(newRumors);

 }

}

}

Route

Click here to view code image

package gossipingBusDrivers;

public class Route {

 private Stop[] stops;

 public Route(Stop... stops) {

 this.stops = stops;

 }

 public Stop get(int stopNumber) {

 return stops[stopNumber];

 }

 public int getNextStop(int stopNumber) {

 return (stopNumber + 1) % stops.length;

 }

 public void stopAt(Driver driver, int stopNumbe

 stops[stopNumber].addDriver(driver);

 }

public void leave(Driver driver int stopNumbe

 public void leave(Driver driver, int stopNumbe

 stops[stopNumber].removeDriver(driver);

 }

}

Stop

Click here to view code image

package gossipingBusDrivers;

import java.util.ArrayList;

import java.util.HashSet;

import java.util.List;

import java.util.Set;

public class Stop {

 private String name;

 private List<Driver> drivers = new ArrayList<>

 public Stop(String name) {

 this.name = name;

 }

 public String toString() {

 return name;

 }

 public List<Driver> getDrivers() {

 return drivers;

 }

 public void addDriver(Driver driver) {

 drivers.add(driver);

 }

 public void removeDriver(Driver driver) {

 drivers.remove(driver);

 }

 public void gossip() {

 Set<Rumor> rumorsAtStop = new HashSet<>();

 for (Driver d : drivers)

 rumorsAtStop.addAll(d.getRumors());

 for (Driver d : drivers)

 d.addRumors(rumorsAtStop);

 }

}

Rumor

package gossipingBusDrivers;

public class Rumor {

 private String name;

 public Rumor(String name) {

 this.name = name;

 }

 public String toString() {

 return name;

 }

}

Simulation

Click here to view code image

package gossipingBusDrivers;

import java.util.HashSet;

import java.util.Set;

public class Simulation {

 public static int driveTillEqual(Driver... driv

 int time;

 for (time = 0; notAllRumors(drivers) && time

 driveAndGossip(drivers);

 return time;

 }

private static void driveAndGossip(Driver[] dri

 private static void driveAndGossip(Driver[] dri

 Set<Stop> stops = new HashSet<>();

 for (Driver d : drivers) {

 d.drive();

 stops.add(d.getStop());

 }

 for (Stop stop : stops)

 stop.gossip();

 }

 private static boolean notAllRumors(Driver[] d

 Set<Rumor> rumors = new HashSet<>();

 for (Driver d : drivers)

 rumors.addAll(d.getRumors());

 for (Driver d : drivers) {

 if (!d.getRumors().equals(rumors))

 return true;

 }

 return false;

 }

}

A quick perusal of this code will convince you that it is written
in a very traditional OO style and that the objects encapsulate
their own state relatively well.

Clojure

When writing the Clojure version I did not start out with a
design sketch. Rather, I depended upon my TDD tests to help me
with the design. The tests are as follows:

Click here to view code image

(ns gossiping-bus-drivers-clojure.core-spec

 (:require [speclj.core :refer :all]

 [gossiping-bus-drivers-clojure.core

(describe "gossiping bus drivers"

 (it "drives one bus at one stop"

 (let [driver (make-driver "d1" [:s1] #{:r1})

 world [driver]

 new-world (drive world)]

 (should= 1 (count new-world))

 (should= :s1 (-> new-world first :route fi

 (it "drives one bus at two stops"

 (let [driver (make-driver "d1" [:s1 :s2] #{:

 world [driver]

 new-world (drive world)]

 (should= 1 (count new-world))

 (should= :s2 (-> new-world first :route fi

 (it "drives two buses at some stops"

 (let [d1 (make-driver "d1" [:s1 :s2] #{:r1})

 d2 (make-driver "d2" [:s1 :s3 :s2] #{:

4

 world [d1 d2]

 new-1 (drive world)

 new-2 (drive new-1)]

 (should= 2 (count new-1))

 (should= :s2 (-> new-1 first :route first)

 (should= :s3 (-> new-1 second :route first

 (should= 2 (count new-2))

 (should= :s1 (-> new-2 first :route first)

 (should= :s2 (-> new-2 second :route first

 (it "gets stops"

 (let [drivers #{{:name "d1" :route [:s1]}

 {:name "d2" :route [:s1]}

 {:name "d3" :route [:s2]}}]

 (should= {:s1 [{:name "d1" :route [:s1]}

 {:name "d2" :route [:s1]}]

 :s2 [{:name "d3", :route [:s2]}]}

 (get-stops drivers)))

)

 (it "merges rumors"

 (should= [{:name "d1" :rumors #{:r2 :r1}}

 {:name "d2" :rumors #{:r2 :r1}}]

 (merge-rumors [{:name "d1" :rumors #

 {:name "d2" :rumors #

 (it "shares gossip when drivers are at same sto

g p

 (let [d1 (make-driver "d1" [:s1 :s2] #{:r1})

 d2 (make-driver "d2" [:s1 :s2] #{:r2})

 world [d1 d2]

 new-world (drive world)]

 (should= 2 (count new-world))

 (should= #{:r1 :r2} (-> new-world first :ru

 (should= #{:r1 :r2} (-> new-world second :

 (it "passes acceptance test 1"

 (let [world [(make-driver "d1" [3 1 2 3] #{1}

 (make-driver "d2" [3 2 3 1] #{2}

 (make-driver "d3" [4 2 3 4 5] #{

 (should= 6 (drive-till-all-rumors-spread wo

 (it "passes acceptance test 2"

 (let [world [(make-driver "d1" [2 1 2] #{1})

 (make-driver "d2" [5 2 8] #{2})

 (should= :never (drive-till-all-rumors

)

4. #{. . .} represents a set in Clojure. A set is a list of items
that has no duplicates.

There are some interesting similarities between the Java tests
and the Clojure tests. They are both quite wordy; although the
Clojure tests contain half as many lines. The Java version has 12

tests whereas the Clojure version has only 8. This difference has
a lot to do with the way the two different solutions were
partitioned. The Clojure tests also play pretty fast and loose
with the data.

Consider, for example, the "merges rumors" test. The
merge-rumors function expects a list of drivers; however, the
test does not create completely formed drivers. Rather, it
creates abbreviated structures that look like drivers as far as
the merge-rumors function is concerned.

The solution is all contained in a single, very short file:

Click here to view code image

(ns gossiping-bus-drivers-clojure.core

 (:require [clojure.set :as set]))

(defn make-driver [name route rumors]

 (assoc {} :name name :route (cycle route) :ru

(defn move-driver [driver]

 (update driver :route rest))

(defn move-drivers [world]

 (map move-driver world))

(defn get-stops [world]

5 6

7

(defn get-stops [world]

 (loop [world world

 stops {}]

 (if (empty? world)

 stops

 (let [driver (first world)

 stop (first (:route driver))

 stops (update stops stop conj driver

 (recur (rest world) stops)))))

(defn merge-rumors [drivers]

 (let [rumors (map :rumors drivers)

 all-rumors (apply set/union rumors)]

 (map #(assoc % :rumors all-rumors) drivers

(defn spread-rumors [world]

 (let [stops-with-drivers (get-stops world)

 drivers-by-stop (vals stops-with-drivers

 (flatten (map merge-rumors drivers-by-stop)

(defn drive [world]

 (-> world move-drivers spread-rumors))

(defn drive-till-all-rumors-spread [world]

 (loop [world (drive world)

 time 1]

 (cond

 (> time 480) :never

(apply = (map :rumors world)) time

8

9

10

 (apply (map :rumors world)) time

 :else (recur (drive world) (inc time)))))

5. assoc adds elements to a map. (assoc {} :a 1) returns
{:a 1} .

6. cycle returns a lazy (and “infinite”) list that simply repeats
the input list endlessly. Thus, (cycle [1 2 3]) returns [1 2
3 1 2 3 1 2 3 …] .

7. The update function returns a new map with one element
changed. (update m k f a) changes the k element of m by
applying the function (f e a) , where e is the old value of
element k . Thus, (update {:x 1} :x inc) returns {:x
2} .

8. The union function is from the set namespace. Notice the
ns at the top aliases the clojure.set namespace to just
set .

9. vals returns a list of all the values in a map. keys returns
a list of all the keys in a map.

10. The flatten function turns a list of lists into a list of all the
elements. So (flatten [[1 2][3 4]]) returns [1 2 3 4] .

This solution is 42 lines, whereas the Java solution is 145 lines
spread among five files.

Both solutions have the concept of a Driver, but I made no
attempt to encapsulate the concepts of Route, Stop, and Rumor
into independent objects. They all just happily live within the
Driver.

Worse, the Driver “object” is not an object in the traditional OO
sense. It has no methods. There is one method in the system,
move-driver , that operates on a single Driver, but it’s just a
little helper function for the more interesting move-drivers
function.

Six out of the eight functions take only the world as an
argument. Thus, we might say that the only true object in this
system is the world , and it has five methods. But even that is a
stretch.

Even if we decide that the Driver is a kind of object, it is not
mutable. The simulated world is nothing more than a list of
immutable Drivers. The drive function accepts the world
and produces a new world in which all the Drivers have been

moved one step, and Rumors have been spread at any stop
where more than one Driver has arrived.

That drive function is an example of an important concept.
Notice how the world passes through a pipeline of functions.
In this case there are only two, move-drivers and spread-
rumors , but in larger systems the pipeline can be quite long. At
each stage along that pipeline the world is modified into a
slightly new form.

This tells us that the partitioning of this system is not about
objects, but about functions. The relatively unpartitioned data
passes from one independent function to the next.

You might argue that the Java code is relatively straightforward,
whereas the Clojure code is too dense and obscure. Believe me
when I say that it does not take very long to get comfortable
with that density and that the perceived obscuration is an
illusion based on unfamiliarity.

Is the lack of partitioning in the Clojure version a problem? Not
at its current size; but if this program were to grow the way
most systems grow, that problem would assert itself with a
vengeance. Partitioning OO programs is a bit more natural than

partitioning functional programs because the dividing lines are
much more obvious and pronounced.

On the other hand, the dividing lines we chose for the Java
version are not guaranteed to lead to an effective partitioning.
The warning is in the drive function of the Clojure program. It
seems likely that a better partitioning of this system might lie
along the different operations that manipulate the world, rather
than things like Routes, Stops, and Rumors.

Conclusion

We saw some differences in the Prime Factors and Bowling
Game katas; but the differences were relatively minor. The
differences in the Gossiping Bus Drivers kata were much more
pronounced. This is likely because that last kata was a bit larger
than the first two (I’d say twice the size), and also because it was
a true finite state machine.

A finite state machine moves from state to state, taking actions
that depend upon the incoming events and the current state.
When such systems are written in an OO style, the state tends to
be stored in mutable objects that have dedicated methods. But
in a functional style, the state remains externalized in

immutable data structures that are passed through pipelines of
functions.

We can perhaps conclude from this that programs that do
simple calculations, like Prime Factors, are little affected by the
OO or functional style. They are, after all, simple functions
without any change of state. Programs in which state change is
restricted to minor issues, such as array indexing, are only
slightly affected by the difference in style. But those programs
that are driven by changes of state from one moment to the
next, like the Gossiping Bus Drivers program, will see profound
differences between the two styles.

The OO style leads to a partitioning that is strongly related to
data cohesion, whereas the functional style leads to a
partitioning that is strongly related to behavioral cohesion.
Which of these two is better is a question that I will leave for
subsequent chapters.

9

Object-Oriented Programming

In the preceding chapter, we saw that the OO style of
programming is strongly related to data types and the cohesion
of data. But that’s not all there is to object orientation. Indeed,
data cohesion may be secondary to another attribute of object
orientation: polymorphism.

In Clean Architecture, I made the point that the OO style has
three attributes: encapsulation, inheritance, and
polymorphism. I then led you through the reasoning that, of the
three, polymorphism is the most beneficial. The other two are,
at best, ancillary.

1. Robert C. Martin, Clean Architecture (Pearson, 2017).

The examples in the previous chapters did not lend themselves
to any polymorphism. Let’s correct that by examining how we
might solve the Payroll problem from Section 3 of Agile
Software Development: Principles, Patterns, and Practices.

2. Robert C Martin, Agile Software Development: Principles,
Patterns, and Practices (Pearson, 2002).

The requirements are as follows.

There is a database of employee records.
The payroll program runs daily, generating payments for
those employees who should be paid on that day.
Salaried employees are paid on the last business day of the
month. Their monthly salary is a field in their employee
record.

1

2

Commissioned employees are paid every other Friday. They
are paid a base salary plus commission. The base salary and
the commission rate are fields in their employee record.
Commission is calculated by multiplying the commission rate
by the total of the sales receipts for that employee.
Hourly employees are paid every Friday. Their hourly rate is
a field in their employee record. Their pay is calculated by
multiplying their hourly rate by the sum of the hours on their
timecards for the week. If that sum is greater than 40, the
remaining hours are paid at 1.5 times their hourly rate.
Employees are given the option to have their paychecks
mailed to their home address, held at their paymaster’s
office, or directly deposited into their bank account. The
address, paymaster, and bank information are fields in their
employee record.

The typical OO solution to this problem is shown in the unified
modeling language (UML) diagram in Figure 9.1.

Figure 9.1. Object model for the Payroll problem

Perhaps the best place to begin is with the Payroll class. In
Java, it has a run method that looks like this:

Click here to view code image

void run() {

 for (Employee e : db.getEmployees()) {

 if (e.isPayDay()) {

 Pay pay = e.calcPay();

 e.sendPay(pay);

 }

 }

}

I have made the point many times, and in many places,
including the aforementioned books, that this little snippet of
code is the pure truth. For each employee, if today is the day
they should be paid, then calculate their pay and send it to
them.

From that little snippet of code, the rest of the implementation
ought to be pretty clear. There are three uses of the Strategy
pattern: one to implement calcPay , another to implement
isPayDay , and the last to implement sendPay .

3. Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides, Design Patterns: Elements of Reusable Object-Oriented
Software (Addison-Wesley, 1995), 315.

It should also be clear that this structure of objects must be
built up by the getEmployees function, which reads the
employees from the database and arranges them properly. It is
unlikely that the data in the database looks like the object
structure seen here.

3

There is also a very clear architectural boundary (dashed line)
that cuts across all those inheritance relationships, dividing the
high-level abstractions from the low-level details.

Functional Payroll

Figure 9.2 shows what this might look like as a functional
program.

Figure 9.2. Data flow diagram of the Payroll problem

Isn’t it interesting that I chose a data flow diagram (DFD) to
represent the functional solution? DFDs are very helpful in

depicting the relationships between processes and data
elements, but they are not nearly as helpful as UML class
diagrams when it comes to depicting architectural decisions.

Still, the DFD helps us propose the functional version of the
pure truth:

Click here to view code image

(defn payroll [today db]

 (let [employees (get-employees db)

 employees-to-pay (get-employees-to-be-pai

 today employees)

 amounts (get-paycheck-amounts employees-t

 ids (get-ids employees-to-pay)

 dispositions (get-dispositions employees

 (send-paychecks ids amounts dispositions)))

Notice that this differs from the Java version in that it is not an
iterative approach. Rather, the list of employees flows through
the program, getting modified at each stage according to the
data flow diagram. This is typical of the way functional
programs are conceived and written. Functional programs tend
to be more like plumbing than step-by-step procedures. They
regulate and modify the flow of data, rather than iterating step
by step through the data.

So, what about the architecture? There was that nice
architectural boundary in the UML diagram of the OO version.
Where is the architectural boundary in the functional version?

Let’s look a bit deeper. The tests may give us some hints:

Click here to view code image

(it "pays one salaried employee at end of month b

 (let [employees [{:id "emp1"

 :schedule :monthly

 :pay-class [:salaried 5000]

 :disposition [:mail "name" "h

 db {:employees employees}

 today (parse-date "Nov 30 2021")]

 (should= [{:type :mail

 :id "emp1"

 :name "name"

 :address "home"

 :amount 5000}]

 (payroll today db))))

In this test, the database contains a list of employee s, and each
employee is a hash map with specific fields. That’s not so
different from an object, is it? The payroll function returns a

list of paycheck directives, each of which is also a hash map—
another object. Interesting.

Click here to view code image

(it "pays one hourly employee on Friday by Direct

 (let [employees [{:id "empid"

 :schedule :weekly

 :pay-class [:hourly 15]

 :disposition [:deposit "routi

 time-cards {"empid" [["Nov 12 2022" 80/10

 db {:employees employees :time-cards time

 friday (parse-date "Nov 18 2022")]

 (should= [{:type :deposit

 :id "empid"

 :routing "routing"

 :account "account"

 :amount 120}]

 (payroll friday db))))

4. This is not 80 divided by 10. Rather, it is the rational number
80/10. This ensures that subsequent mathematics will not treat
the value as an integer.

https://calibre-pdf-anchor.a/#a448

This test shows how the employee and paycheck-
directive objects vary based upon the :schedule , :pay-
class , and :disposition . It also shows that the database
contains time-card s associated with employee id s. From
this, the third test ought to be predictable:

Click here to view code image

(it "pays one commissioned employee on an even F

 (let [employees [{:id "empid"

 :schedule :biweekly

 :pay-class [:commissioned 100

 :disposition [:paymaster "pay

 sales-receipts {"empid" [["Nov 12 2022"

 db {:employees employees :sales-receipts

 friday (parse-date "Nov 18 2022")]

 (should= [{:type :paymaster

 :id "empid"

 :paymaster "paymaster"

 :amount 850}]

 (payroll friday db))))

Notice that the payments are being properly calculated, the
dispositions are being correctly interpreted, and—as far as we
can tell—the schedules are being followed. So how is this all
being accomplished?

Here’s the key to it all:

Click here to view code image

(defn get-pay-class [employee]

 (first (:pay-class employee)))

(defn get-disposition [paycheck-directive]

 (first (:disposition paycheck-directive)))

(defmulti is-today-payday :schedule)

(defmulti calc-pay get-pay-class)

(defmulti dispose get-disposition)

(defn get-employees-to-be-paid-today [today emplo

 (filter #(is-today-payday % today) employees))

(defn- build-employee [db employee]

 (assoc employee :db db))

(defn get-employees [db]

 (map (partial build-employee db) (:employees d

(defn create-paycheck-directives [ids payments di

 (map #(assoc {} :id %1 :amount %2 :disposition

 ids payments dispositions))

(defn send-paychecks [ids payments dispositions]

(for [paycheck-directive

5

6

7

 (for [paycheck directive

 (create-paycheck-directives ids payments

 (dispose paycheck-directive)))

(defn get-paycheck-amounts [employees]

 (map calc-pay employees))

(defn get-dispositions [employees]

 (map :disposition employees))

(defn get-ids [employees]

 (map :id employees))

5. (filter predicate list) calls predicate for every
member of list and returns a sequence of all the members
for which predicate was not falsey.

6. The partial function takes a function and some arguments,
and returns a new function in which all those arguments have
already been initialized. Thus, ((partial f 1) 2) is
equivalent to (f 1 2) .

7. In this case, the for function calls dispose for each
paycheck-directive in the list returned by create-
paycheck-directives .

Do you see those defmulti statements (in bold)? They are
analogous, though not identical, to a Java interface. Each
defmulti defines a polymorphic function. However, that
function does not dispatch based upon an intrinsic type, the
way Java or C# or even Ruby and Python do. Rather, they
dispatch upon the result of the function specified right after the
name.

So, the get-pay-class function returns the value that the
calc-pay function will polymorphically dispatch on. What
does get-pay-class return? It returns the first element of the
pay-class field of the employee . According to our tests,
those values are :salaried , :hourly , and :commissioned .

So where are the implementations of the calc-pay functions?
They are further down in the program:

Click here to view code image

(defn- get-salary [employee]

 (second (:pay-class employee)))

(defmethod calc-pay :salaried [employee]

 (get-salary employee))

(defmethod calc-pay :hourly [employee]

 (let [db (:db employee)

8

 time-cards (:time-cards db)

 my-time-cards (get time-cards (:id emplo

 [_ hourly-rate] (:pay-class employee)

 hours (map second my-time-cards)

 total-hours (reduce + hours)]

 (* total-hours hourly-rate)))

(defmethod calc-pay :commissioned [employee]

 (let [db (:db employee)

 sales-receipts (:sales-receipts db)

 my-sales-receipts (get sales-receipts (:i

 [_ base-pay commission-rate] (:pay-class

 sales (map second my-sales-receipts)

 total-sales (reduce + sales)]

 (+ (* total-sales commission-rate) base-pay)

8. The trailing - makes this a private function, so only
functions in this file can access it.

9. (get m k) returns the value of k in the map m .

10. Destructures the pay-class of the employee and ignores
the first element.

9

10

I italicized the words further down because that is significant in
a Clojure program. Clojure programs cannot call functions that
are declared below the point of call. But these functions are
declared below the point of call. That means there is a source
code dependency inversion. The calc-pay implementations
are called by the payroll function; but the payroll function
is above the calc-pay implementations.

Indeed, I could move all the implementations of the defmulti
function to a different source file that the payroll source file
does not require .

If we draw the relationships between those source files, we get
the diagram in Figure 9.3.

Figure 9.3. Dependency inversion

The arrows depict the requires relationships between the
source files. The source code of those requires in the
payroll-implementation.clj file looks like this:

Click here to view code image

(ns payroll-implementation

 (:require [payroll :refer [is-today-payday calc

The source code dependency inversion should be obvious. The
payroll function in payroll.clj calls the is-today-
payday , calc-pay , and dispose implementations in the
payroll-implementation.clj file, but the payroll.clj
file does not depend upon the payroll-implementation.clj
file. The dependency points the other way around.

What does all this inversion mean? It means that the low-level
details in payroll-implementation.clj depend upon the
high-level policy in payroll.clj . And whenever low-level
details depend upon high-level policy, we have the potential for
an architectural boundary. We could even draw it as shown in
Figure 9.4.

Figure 9.4. Architectural boundary

Notice that I used a UML implements arrow. It’s almost as if
Payroll and PayrollImplementation were classes in a
Java program.

But we can do even better than this. We can move all the
defmulti statements, along with their supporting functions,
into their own payroll-interface namespace and source
file, like this:

Click here to view code image

(ns payroll-interface)

(defn- get-pay-class [employee]

 (first (:pay-class employee)))

(defn- get-disposition [paycheck-directive]

 (first (:disposition paycheck-directive)))

(defmulti is-today-payday :schedule)

(defmulti calc-pay get-pay-class)

(defmulti dispose get-disposition)

And now we can draw the architecture diagram as shown in
Figure 9.5.

Figure 9.5. Architecture with interface

This is starting to look more and more like the UML diagram of
a Java or C# program. It looks like we got a Payroll class, a
PayrollInterface class, and a PayrollImplementation
class. And indeed, from an architectural point of view, that’s a
pretty accurate statement.

But there are some interesting differences. Where, for example,
are the PaySchedule , PayClassification , and
PayDisposition classes that we saw in the UML of the OO
Java program?

We could easily pull them out of the Clojure program by
splitting the PayrollImplementation.clj file into three
namespaces and files, as shown in Figure 9.6.

Figure 9.6. Split architecture

This is not the kind of thing you can do in Java or C# since there
is no way, in those languages, to implement each function of an
interface in a different module. However, it’s perfectly possible
in Clojure. The important thing to remember is that this is an
architectural diagram, not a class diagram. PaySchedule ,
PayClassification , and PayDisposition are namespaces
and source files, not classes. We do not make instances of them.
They don’t represent objects in an OO sense.

Not that there aren’t objects in our Clojure solution. There
certainly are. The employee , the paycheck-directive , and
even the pay-class and disposition are objects. They do
not have methods as strongly associated with them as they

would if they were written in an OO language; but there are
functions through which those objects flow.

Namespaces and Source Files

In Clojure especially, namespaces and source files are deeply
connected. Each namespace must be contained in its own
source file, and the name of that file must correspond to the
name of the namespace. This is very similar to the way Java
forces public classes into their own source file named for the
class. It is also very similar to the file/class convention used by
C++ and C# programmers. This could lead you to consider that
each Clojure namespace is something like a class.

11. Through a simple translation algorithm.

The correspondence is not perfect, of course. The contents of a
Clojure namespace need not be class-like at all. But, in general,
the concept is not a bad one.

One of the great temptations in functional languages like
Clojure is to group functions into namespaces in a kind of ad
hoc, by-feel way. Without the OO structure to force us to divide
functions into classes that exist in their own source files, we
often wind up with source file structures that are ricketier and
more fragile than they ought to be.

11

So, when writing functional programs, it is not a bad idea to
consider the partitioning disciplines of OO and continue to
apply them. We’ll see more of this later as we investigate
principles, patterns, and architecture.

Conclusion

First of all, functional programs and OO programs are different.
Functional programs tend to be constructions of plumbing that
regulate data flow transformations, while mutable OO
programs tend to iterate step by step over objects. However,
from an architectural point of view, the two styles are quite
compatible. It turns out that we can partition the functions of a
functional program into the same kinds of architecturally
significant elements as an OO program. From an architectural
point of view, there’s very little difference.

Functional programs may not be composed of syntactically
enforced classes that enclose methods and define objects. Yet,
objects still exist in functional programs. Those objects are less
tightly bound to the functions that operate upon them than they
would be in an OO language. Whether that is an advantage or a
disadvantage is something we will continue to probe in the
chapters that follow.

We shall see as these pages turn more and more toward design
and architecture, the differences between functional programs
and the object orientation of immutable objects start to become
less and less relevant.

10

Types

The preceding chapter may have left you somewhat distressed.
Those things that I called objects were just hash maps and were
completely untyped. Anybody could stick anything into them
without any constraint. The salary in the :pay-class could
hold a string instead of a number. The :schedule field could
hold an integer instead of the appropriate keyword.

In short, these objects are not statically typed. The compiler
does not check them. And therefore, all hell could break loose!

Many functional languages, as well as many OO languages, are
statically typed in order to prevent that hell. Other languages,
like Clojure, Python, and Ruby, depend upon other mechanisms
to prevent that hell.

Those of us who practice TDD are not usually very concerned
about that hell. Our tests generally ensure that the objects that
we pass around are properly constructed. Still, in complex
systems, where the totality of all the objects can end up being
quite complex, there is a need for a more formal and complete
way to ensure the integrity of our types than a dynamically
typed language (and even most statically typed languages) can
give us.

In Clojure, I use the clojure.spec library to achieve the goal
of type integrity. The type specification for our payroll example
looks like this:

Click here to view code image

(s/def ::id string?)

(s/def ::schedule #{:monthly :weekly :biweekly})

(s/def ::salaried-pay-class (s/tuple #(= % :sala

(s/def ::hourly-pay-class (s/tuple #(= % :hourly

(s/def ::hourly pay class (s/tuple #(= % :hourly

(s/def ::commissioned-pay-class (s/tuple #(= % :c

 pos? pos

(s/def ::pay-class (s/or :salaried ::salaried-pay

 :Hourly ::hourly-pay-cla

 :Commissioned ::commissi

(s/def ::mail-disposition (s/tuple #(= % :mail) s

(s/def ::deposit-disposition (s/tuple #(= % :depo

 string? st

(s/def ::paymaster-disposition (s/tuple #(= % :pa

 string?)

(s/def ::disposition (s/or :mail ::mail-dispositi

 :deposit ::deposit-dis

 :paymaster ::paymaste

(s/def ::employee (s/keys :req-un [::id ::schedul

 ::pay-class :

(s/def ::employees (s/coll-of ::employee))

(s/def ::date string?)

(s/def ::time-card (s/tuple ::date pos?))

(s/def ::time-cards (s/map-of ::id (s/coll-of ::t

(s/def ::sales-receipt (s/tuple ::date pos?))

(s/def ::sales-receipts (s/map-of

 ::id (s/coll-of ::sale

(s/def ::db (s/keys :req-un [::employees]

 :opt-un [::time-cards ::sales

(s/def ::amount pos?)

(s/def ::name string?)

(s/def ::address string?)

(s/def ::mail-directive (s/and #(= (:type %) :mai

 (s/keys :req-un [

(s/def ::routing string?)

(s/def ::account string?)

(s/def ::deposit-directive (s/and #(= (:type %)

 (s/keys :req-un

(s/def ::paymaster string?)

(s/def ::paymaster-directive (s/and #(= (:type %

 (s/keys :req

(s/def ::paycheck-directive (s/or

 :mail ::mail-direct

 :deposit ::deposit

 :paymaster ::paymas

(s/def ::paycheck-directives (s/coll-of ::paychec

(s/def ::paycheck directives (s/coll of ::paychec

1. (pos? x) returns true if x is a number greater than zero.

If this looks scary, it should. There’s a lot of detail in there. Keep
in mind, however, that this is the level of detail that you would
have to specify within the modules of a statically typed
language in order to capture all the type constraints.

Understanding this type specification is not actually difficult.
Look down toward the middle and find the definition of ::db .
This just says that the database is a hash map with a required
:employees field and two optional fields for :time-cards
and :sales-receipts .

If you look a bit higher in the specification, you’ll see that
::employees is just a collection of ::employee , ::sales-
receipts is a collection of ::sales-receipt , and ::time-
cards is a collection of ::time-card . Don’t let the double
colons bother you; they are a namespace convention. You can
read the Clojure docs later if you want to understand them. For
now, just look at the keywords and ignore how many colons
there are.

https://calibre-pdf-anchor.a/#a489

As we continue to work our way up, we see that an
::employee is a hash map that is required to have the keys
:id , :schedule , :pay-class , and :disposition . Keep
exploring and you’ll find that the :id must be a string; the
:schedule must be one of :monthly , :weekly , or
:biweekly ; and a :salaried-pay-class is a tuple
containing :salaried , followed by a positive number.

The s/or statements might bother you a bit. The arguments
come in pairs, and the first in each pair is just the name of that
alternative. So, in the ::disposition definition, :mail is
just the name of the ::mail-disposition alternative. Don’t
worry anymore about this. It will become clear if you decide
one day to read the clojure.spec docs.

So, given this elaborate type specification, how do we use it? I
sometimes use it in my tests as follows:

Click here to view code image

(it "pays one salaried employee at end of month b

 (let [employees [{:id "emp1"

 :schedule :monthly

 :pay-class [:salaried 5000]

 :disposition [:mail "name" "h

 db {:employees employees}

today (parse-date "Nov 30 2021")]

 oday (pa se da e o 30 0)]

 (should (s/valid? ::db db))

 (let [paycheck-directives (payroll today db)

 (should (s/valid? ::paycheck-directives

 paycheck-directives))

 (should= [{:type :mail

 :id "emp1"

 :name "name"

 :address "home"

 :amount 5000}]

 paycheck-directives))))

Look for the calls to s/valid? , which is a function that
returns true if the data matches the spec. Look carefully and
you’ll see that I’m checking the ::db spec on the way in and
the ::paycheck-directives spec on the way out. This is
pretty secure. If my tests have high coverage, and they all check
the specs for the inputs and outputs of the functions they call,
then violations of type ought to be extremely rare.

I have, upon occasion, also used Clojure’s :pre and :post
features to run the specs on critical data before and after the
main processing functions of my applications.

Here, for example, is the main processing step of the
spacewar game I wrote some years ago:2

2. https://github.com/unclebob/spacewar

Click here to view code image

(defn update-world [ms world]

 ;{:pre [(valid-world? world)]

 ; :post [(valid-world? %)]}

 (->> world

 (game-won ms)

 (game-over ms)

 (ship/update-ship ms)

 (shots/update-shots ms)

 (explosions/update-explosions ms)

 (clouds/update-clouds ms)

 (klingons/update-klingons ms)

 (bases/update-bases ms)

 (romulans/update-romulans ms)

 (view-frame/update-messages ms)

 (add-messages)))

The :pre and :post statements are commented out, but
they are ready to be reasserted should I suspect some kind of
terrible type corruption.

3. I don’t much care for commented-out code. I’d remove these
lines as the project matured.

3

https://github.com/unclebob/spacewar

Conclusion

There is a lot of wailing and gnashing of teeth over the static
versus dynamic typing issue. Each side yells at the other
without listening to what either side has to say. I think both
sides have valid points. Dynamic typing makes code easier to
write. Static typing makes code a lot safer, easier to understand,
and much more internally consistent. It seems to me that a
library like clojure.spec strikes a great balance. It gives you
the ability to have as much or as little type checking as you
need. It allows you to specify when types are checked and when
they are not. What’s more, it allows you to specify dynamic
constraints that no static type system can check. So, for my
money, libraries like this give you better than the best of both
worlds.

III

Functional Design

11

Data Flow

In Chapter 9, Object-Oriented Programming, I suggested that the
design of a functional program is more like plumbing than
procedure. There is a definite data flow bias to it. This is
because we tend to use map , filter , and reduce to
transform the contents of lists into other lists, rather than
iterating through the problem one element at a time to produce
results.

We can see this bias in many of our previous examples,
including the Bowling Game, Gossiping Bus Drivers, and Payroll
applications in Part II, Comparative Analysis.

As another example, consider this interesting problem from day
ten of Advent of Code 2022. The goal was to render pixels on a
6-by-40 screen. The pixels were drawn from left to right, one at
a time, based on a clock circuit. Clock cycles were counted
starting at 0. If a certain register x matched the clock cycle
number, then the pixel at the appropriate screen position was
turned on; otherwise, it was turned off.

1. https://adventofcode.com/2022/day/10

This is actually quite typical of the way old CRT displays used
to work. You had to energize the electron beam at just the right
moment as it rastered over the screen. So you matched the bits
in the bitmap to the clock that drove that beam. If, according to
the clock, the beam was at position 934, and if the 934th bit in
the bitmap was set, then you energized the beam for an instant
to display that pixel.

2. Cathode ray tube. A cathode ray is an electron. CRTs have
electron guns that create narrow beams of electrons that are

1

2

https://adventofcode.com/2022/day/10

rastered across the screen using regularly changing magnetic
fields. The beam strikes phosphors on the screen and makes
them glow, thus creating a raster image.

The Advent of Code problem was a bit more interesting. It asked
us to simulate a simple processor that had two instructions. The
first instruction was noop , which took one clock cycle but had
no other effect. The other instruction was addx , which took an
integer argument n that it added to the x register of the
processor. This instruction consumed two clock cycles and only
changed the x register after both cycles had completed. Pixels
on the screen would be visible for a clock cycle if, and only if, at
the beginning of that cycle the x register matched the clock
cycle number.

So if according to the clock, the beam was over screen position
23, and if the x register was 23 at the start of cycle 23, then the
beam would be energized for that clock cycle.

To complicate matters just a little more, the matching of the x
register to the clock cycle was widened so that 22, 23, and 24
would match clock cycle 23. In other words, the x register
specified a window that was three pixels wide. So long as the
clock cycle fell within that window, the beam would be
energized.

Since the screen is 40 pixels wide and 6 pixels tall, the matching
of the clock cycle to x is modulus 40.

The task was to execute a set of instructions and produce a list
of six strings that were 40 characters each, with "#" indicating
a pixel that was visible and "." indicating one that was not
visible.

If you were to write this program in Java, C, Go, C++, C#, or any
other procedural/OO language, you might create a loop that
iterated one cycle at a time while accumulating the appropriate
pixels for each cycle. The loop would consume instructions and
modify the x register as directed.

Here’s a typical example in Java:

Click here to view code image

package crt;

public class Crt {

 private int x;

 private String pixels = "";

 private int extraCycles = 0;

 private int cycle = 0;

 private int ic;

 private String[] instructions;

public Crt(int x) {

 public Crt(int x) {

 this.x = x;

 }

 public void doCycles(int n, String instructions

 instructions = instructionsLines.split("\n")

 ic = 0;

 for (cycle = 0; cycle < n; cycle++) {

 setPixel();

 execute();

 }

 }

 private void execute() {

 if (instructions[ic].equals("noop"))

 ic++;

 else if (instructions[ic].startsWith("addx "

 && extraCycles == 0) {

 extraCycles = 1;

 }

 else if (instructions[ic].startsWith("addx "

 && extraCycles == 1) {

 extraCycles = 0;

 x += Integer.parseInt(instructions[ic].subs

 ic++;

 } else

 System.out.println("TILT");

 }

 private void setPixel() {

 int pos = cycle % 40;

 int offset = pos - x;

 if (offset >= -1 && 1 >= offset)

 pixels += "#";

 else

 pixels += ".";

 }

 public String getPixels() {

 return pixels;

 }

 public int getX() {

 return x;

 }

}

Notice all the mutated state. Notice how it iterates, cycle by
cycle, to populate the pixels. Notice also the funny business of
extraCycles to account for the fact that addx takes two
cycles to execute.

Finally, notice that although the program is nicely partitioned
into a few smallish functions, those functions are all coupled

together by the mutable state variables. That is, of course, the
usual situation for methods of a mutable class.

I solved this problem in Clojure today. And the solution I came
up with was very different from the Java code above.
Remember as you read this to start at the bottom. Clojure
programs are always written from the bottom up.

Click here to view code image

(ns day10-cathode-ray-tube.core

 (:require [clojure.string :as string]))

(defn noop [state]

 (update state :cycles conj (:x state)))

(defn addx [n state]

 (let [{:keys [x cycles]} state]

 (assoc state :x (+ x n)

 :cycles (vec (concat cycles [x x

(defn execute [state lines]

 (if (empty? lines)

 state

 (let [line (first lines)

 state (if (re-matches #"noop" line)

 (noop state)

(if l t [[] (t h

 (if-let [[_ n] (re-matches

 #"addx (-?\d+

 (addx (Integer/parseInt n) st

 "TILT"))]

 (recur state (rest lines)))))

(defn execute-file [file-name]

 (let [lines (string/split-lines (slurp file-nam

 starting-state {:x 1 :cycles []}

 ending-state (execute starting-state line

 (:cycles ending-state)))

(defn render-cycles [cycles]

 (loop [cycles cycles

 screen ""

 t 0]

 (if (empty? cycles)

 (map #(apply str %) (partition 40 40 "" sc

 (let [x (first cycles)

 offset (- t x)

 pixel? (<= -1 offset 1)

 screen (str screen (if pixel? "#" ".

 t (mod (inc t) 40)]

 (recur (rest cycles) screen t)))))

(defn print-screen [lines]

 (doseq [line lines]

 (println line))

t)

3

 true)

(defn -main []

 (-> "input"

 execute-file

 render-cycles

 print-screen))

3. TILT is my favorite error message. Long ago, pinball
machines would put up this message and cancel your game if
you physically tilted the machine in order to manipulate the
ball.

The execute-file function transforms the list of instructions
in the named file into a list of resulting x values. The render-
cycles function then transforms the list of x values into a list
of pixels, which it finally partition s into strings of 40
characters.

Notice that there are, of course, no mutable variables. Instead,
the state value flows through each of the functions as though
through a pipeline.

The state value begins in execute-file and then flows to
execute , then repeatedly to noop or addx , and then back to

execute , and finally back to execute-file . At each stage in
that flow, a new value of state is created from the old without
changing the old.

If this seems eerily familiar to you, it should. This is very much
like the pipes and filters we have gotten used to in our
command-line shells. Data flows into a command from a pipe, is
transformed by that command, and then flows out to the next
command through a pipe.

Here’s a recent command I’ve been using at the shell:

Click here to view code image

ls -lh private/messages | cut -c 32-37,57-64

It lists the private/messages directory and then cut s out
certain fields. The data flows out of the ls command, through
the pipe, and then into the cut command. This has the same
kind of feel as the state value flowing through the execute ,
addx , and noop functions.

As a result of this pipelining, you should notice that my
cathode-ray-tube program is partitioned into a set of
smallish functions that are not coupled to one another by
mutable state. Whatever coupling exists is merely the coupling

of the data formats that flow from function to function through
the pipes.

Finally, notice that there is none of the funny business we saw
in the Java program surrounding the two cycles of the addx
instruction. Instead, the two cycles are neatly accounted for by
simply adding two x values to the :cycles element of the
state .

Of course, I didn’t have to use the data flow style. I could have
created a Clojure algorithm that was much closer to the Java
algorithm. But that’s not the way I think about things when I’m
writing in a functional language. Instead, I am biased toward
data flow solutions.

Some of the newer features in Java and C# lend themselves to
the data flow style. But they are wordy and appear to me to be
bolted onto the languages in awkward ways. Your mileage may
vary; but I find that when I use procedural/OO languages I tend
to iterate much more than I tend to plumb.

Or, to say this differently:

In mutable languages, behaviors flow through objects. In
functional languages, objects flow through behaviors.

12

Solid

I wrote about the SOLID principles over two decades ago in the
context of OO design. Because of that context, many have come
to associate those principles with OO and regard them as
anathema to functional programming. This is unfortunate
because the SOLID principles are general principles of software
design that are not specific to any particular programming

style. In this chapter, I will endeavor to explain how the SOLID
principles apply to functional programming.

The following chapters are summaries, not complete
descriptions, of the principles. For those of you who are
interested in more detail, I recommend the following sources.

Agile Software Development: Principles, Patterns, and
Practices.

1. Robert C. Martin (Pearson, 2002).

Clean Architecture.

2. Robert C. Martin (Pearson, 2017).

Cleancoder.com. Check out the blog posts and articles. There
are lots and lots of things to learn on this Web site about
principles and more.
Cleancoders.com. This Web site has videos that explain each
principle in great detail and with compelling examples.

The Single Responsibility Principle (SRP)

1

2

http://cleancoder.com/
http://cleancoders.com/

The SRP is a simple statement about focusing our modules on
the sources that cause them to change. Those sources are, of
course, people. It is people who request changes to software,
and therefore it is people to whom our modules are
responsible.

These people can be separated into groups called roles or
actors. An actor is a person, or a group of people, who require
the same things from the system. The kinds of changes they
request will be consistent with each other. On the other hand,
different actors have different needs. The changes one actor
requests will affect the system in very different ways from the

changes requested by other actors. Those disparate changes
may even be at cross purposes to each other.

When a module is responsible to more than one actor, the
changes requested by those competing actors can interfere with
each other. This interference often leads to the design smell of
fragility; causing the system to break in unexpected ways when
simple changes are made.

Nothing can be quite so terrifying to managers and customers
than systems that suddenly misbehave in startling ways after
simple feature changes are made. If this repeats too often, the
only conclusion they can come to is that the developers have
lost control of the system and don’t know what they are doing.

A violation of the SRP can be as simple as mixing GUI
formatting and business rule code together in the same module.
Or it can be as complex as using stored procedures in the
database to implement business rules.

Here’s a simple example of a nasty SRP violation written in
Clojure. First, let’s look at the tests because they tell the story:

Click here to view code image

(describe "Order Entry System"

 (context "Parsing Customers"

 (it "parses a valid customer"

 (should=

 {:id "1234567"

 :name "customer name"

 :address "customer address"

 :credit-limit 50000}

 (parse-customer

 ["Customer-id: 1234567"

 "Name: customer name"

 "Address: customer address"

 "Credit Limit: 50000"])))

 (it "parses invalid customer"

 (should= :invalid

 (parse-customer

 ["Customer-id: X"

 "Name: customer name"

 "Address: customer address"

 "Credit Limit: 50000"]))

 (should= :invalid

 (parse-customer

 ["Customer-id: 1234567"

 "Name: "

 "Address: customer address"

 "Credit Limit: 50000"]))

 (should= :invalid

 (parse-customer

 ["Customer-id: 1234567"

 "Name: customer name"

 "Address: "

 "Credit Limit: 50000"]))

 (should= :invalid

 (parse-customer

 ["Customer-id: 1234567"

 "Name: customer name"

 "Address: customer address"

 "Credit Limit: invalid"])))

 (it "makes sure credit limit is <= 50000"

 (should= :invalid

 (parse-customer

 ["Customer-id: 1234567"

 "Name: customer name"

 "Address: customer address"

 "Credit Limit: 50001"])))))

The first test tells us that we are parsing some text input into a
customer record. That record has four fields: id , name ,
address , and credit-limit . The next four tests tell us about
syntax errors such as missing or malformed input.

The last test is the interesting one. It tests a business rule.
Testing a business rule as part of parsing the input is a clear
SRP violation. The parsing code can safely validate syntax

errors, but it should avoid all semantic checks because those
checks are in the domain of a different actor. The actor who
specifies the input format is not the same as the actor who
specifies the largest allowable credit limit.

3. This is true even when the two actors are the same person. In
that case, that person is playing two different roles.

The code that passes these tests exacerbates the problem:

Click here to view code image

(defn validate-customer

 [{:keys [id name address credit-limit] :as cust

 (if (or (nil? id)

 (nil? name)

 (nil? address)

 (nil? credit-limit))

 :invalid

 (let [credit-limit (Integer/parseInt credit-l

 (if (> credit-limit 50000)

 :invalid

 (assoc customer :credit-limit credit-limi

(defn parse-customer [lines]

 (let [[_ id] (re-matches #"^Customer-id: (\d{7}

3

 (nth lines 0))

 [_ name] (re-matches #"^Name: (.+)$" (nth

 [_ address] (re-matches #"^Address: (.+)$

 [_ credit-limit] (re-matches #"^Credit Li

 (nth lines 3

 (validate-customer

 {:id id

 :name name

 :address address

 :credit-limit credit-limit})))

Look at how the validate-customer function mixes the
syntax checks with the semantic business rule that limits the
credit limit to 50,000. That semantic check belongs in an
entirely different module, not tangled in with all those syntax
checks.

Worse, consider a programmer who conscientiously uses
clojure/spec to dynamically define the type of customer :

Click here to view code image

(s/def ::id (s/and

 string?

 #(re-matches #"\d+" %)))

(s/def ::name string?)

(s/def ::address string?)

(s/def ::credit-limit (s/and int? #(<= % 50000))

(s/def ::customer (s/keys :req-un [::id ::name

 ::address ::c

This specification properly constrains the customer data
structure to be syntactically correct; but it also imposes the
semantic business rule constraint that the credit limit must not
be greater than 50,000.

Why am I concerned about mixing the credit limit constraint
with the syntax of the data structure? It is because I expect the
syntax of the data structure and the credit limit constraint to be
specified by different actors. And I expect those different actors
will request changes at different times and for different
reasons. I don’t want a change to the syntax to inadvertently
break a business rule.

Of course, this begs the question: Where do semantic
validations belong? The answer to that is semantic validations
belong in the modules responsible to the actors who are likely
to change them. If, for example, there is a business rule that
says that credit limits must not exceed 50,000, then the
enforcement code should go in the module that handles all the
other credit limit processing.

Gather together the things that change for the

same reasons, and at the same times.

Separate those things that change for different

reasons or at different times.

The Open-Closed Principle (OCP)

The OCP was first stated by Bertrand Meyer in his classic 1988
book, Object-Oriented Software Construction. To paraphrase, it
says that software modules should be open for extension but
closed for modification. This means that you want to design
your modules such that extending or changing their behavior
does not require you to modify their code.

4. Pearson, 1988.

This may sound oxymoronic, but it’s actually something that we
do all the time. Consider, for example, the copy program in C:

Click here to view code image

void copy() {

 int c;

 while ((c = getchar()) != EOF)

 putchar(c);

}

This program copies characters from stdin to stdout . I can
add new devices to the operating system anytime I like. For
example, I could add an optical character recognition (OCR) and
a text-to-speech synthesizer to the system. This program would
still operate without complaint and would happily copy

4

characters from the OCR to the voice synthesizer without
needing to be modified or even recompiled.

This is a very powerful idea that allows us to separate high-level
policy from low-level detail and keep the high-level policy
immune from changes to the low-level detail. However, it
requires that the high-level policy access the low-level detail
through an abstraction layer.

In OO programs, we typically create that abstraction layer
through polymorphic interfaces. In statically typed languages
like Java, C#, and C++, those interfaces are classes with abstract
methods. High-level policies are given access through those
interfaces to the low-level details that implement, or inherit
from, those interfaces.

5. The keyword interface in Java and C# defines classes
where every method is abstract.

In dynamically typed OO languages like Python and Ruby, these
interfaces are duck types. Duck types have no particular syntax
within the language. They are simply sets of function signatures
called by the high-level policies and implemented by the low-
level details. The dynamic type system determines the
polymorphic dispatch at runtime by matching those signatures.

5

Some functional languages, like F# and Scala, sit on top of an
OO foundation and thus can take advantage of the polymorphic
interfaces of that foundation. But functional languages have
long had another mechanism by which the abstraction layer for
the OCP can be created: functions.

Functions

Consider this simple Clojure program:

Click here to view code image

(defn copy [read write]

 (let [c (read)]

 (if (= c :eof)

 nil

 (recur read (write c)))))

This is essentially the same program as the copy program
written in C, except that the functions to read and write have
been passed in as arguments. Nevertheless, the abstraction
layer for the OCP is intact.

6. Functions that are passed as arguments, or returned as
values from functions, are sometimes called higher-order
functions.

6

By the way, I tested this program using the following tests. I
think you’ll find this interesting.

Click here to view code image

(def str-in (atom nil))

(def str-out (atom nil))

(defn str-read []

 (let [c (first @str-in)]

 (if (nil? c)

 :eof

 (do

 (swap! str-in rest)

 c))))

(defn str-write [c]

 (swap! str-out str c)

 str-write)

(describe "copy"

 (it "can read and write using str-read and str

 (reset! str-in "abcedf")

 (reset! str-out "")

 (copy str-read str-write)

 (should= "abcdef" @str-out)))

I used the atom s because I/O is a side effect and is therefore
not purely functional. After all, when you read from an input or
write to an output, you are mutating their states. Thus, the low-
level I/O functions are not purely functional and use Software
Transactional Memory to manage the mutation of state.

Objects with Vtables

For those of you who are pining for OO, you can pass an
“object” into copy using the following technique:

Click here to view code image

(defn copy [device]

 (let [c ((:getchar device))]

 (if (= c :eof)

 nil

 (do

 ((:putchar device) c)

 (recur device)))))

The test simply loads the device map with the functions:

Click here to view code image

(it "can read and write using str-read and str-w

 (reset! str-in "abcedf")

(t! t t "")

 (reset! str-out "")

 (copy {:getchar str-read :putchar str-write}

 (should= "abcdef" @str-out))

C++ programmers will recognize that the device argument is
just a vtable—which is the polymorphism mechanism in C++. In
any case, it should be obvious that you can define many
different devices for the copy program to use. You can extend
the behavior of copy without having to modify it.

Multi-methods

Still another variation on this theme is the use of multi-
methods. Many languages, functional or otherwise, support
multi-methods in one way or another. Multi-methods are
another form of duck typing, because they create a loose
grouping of methods that are dynamically dispatched based on
their function signature and the “type” of the arguments.

7. I used quotes here because the “type” of the arguments is not
necessarily associated with their specific data types. Indeed,
that “type” can be a completely different concept.

In Clojure, we use the time-honored approach of a dispatching
function to specify that “type”:

7

Click here to view code image

(defmulti getchar (fn [device] (:device-type devi

(defmulti putchar (fn [device c] (:device-type de

Here we see getchar and putchar declared as multi-
methods. Each has a dispatching function that takes the same
arguments that getchar and putchar will be called with. We
can change the copy program to call those multi-methods:

(defn copy [device]

 (let [c (getchar device)]

 (if (= c :eof)

 nil

 (do

 (putchar device c)

 (recur device)))))

The test for this new copy function is below. Notice that the test
device is no longer a vtable containing pointers to functions.
Instead, it now contains the input and output atom s, and also a
:device-type . It is that :device-type that the multi-
methods will be dispatching on.

Click here to view code image

(it "can read and write using multi-method"

 (let [device {:device-type :test-device

 :input (atom "abcdef")

 :output (atom nil)}]

 (copy device)

 (should= "abcdef" @(:output device))))

All that remains are the implementations of the multi-methods.
They should not be too surprising.

Click here to view code image

(defmethod getchar :test-device [device]

 (let [input (:input device)

 c (first @input)]

 (if (nil? c)

 :eof

 (do

 (swap! input rest)

 c))))

(defmethod putchar :test-device [device c]

 (let [output (:output device)]

 (swap! output str c)))

These are the implementations that will be dispatched when
the :device-type is :test-device . It should be clear that

many other such implementation methods could be created for
various different devices. Those new devices will extend the
copy program without forcing any modification.

Independent Deployability

One of the benefits we expect to get from the OCP is the ability
to compile high-level policies and low-level details in separate
modules and to deploy them independently. In Java and C#, this
would mean compiling them down into separate jar or dll
files that can be dynamically loaded. In C++, we would compile
the modules and place the binaries into dynamically loadable
shared libraries.

The Clojure solutions shown above do not achieve that goal. The
high-level policy and the low-level detail cannot be dynamically
loaded from two separate jar files.

This is much less of an issue than it would be in Java or C#
because “loading” a Clojure program almost always involves
compiling it. Thus, while the high-level policies and low-level
details may not be dynamically loaded from jar files, they are
dynamically compiled and loaded from source files. Therefore,
most of the benefits of independently deployable jar files are
preserved.

8

8. Clojure allows for precompilation in some cases.

However, if you absolutely must have total and complete
independent deployability, there is another option. You can use
Clojure’s protocols and records:

(defprotocol device

 (getchar [_])

 (putchar [_ c]))

The protocol will become a Java interface that can be
independently compiled into a jar file for dynamic loading.
The implementation of the protocol (shown below) can likewise
be independently compiled and loaded:

Click here to view code image

(defrecord str-device [in-atom out-atom]

 device

 (getchar [_]

 (let [c (first @in-atom)]

 (if (nil? c)

 :eof

 (do

 (swap! in-atom rest)

 c))))

 (putchar [_ c]

 (swap! out-atom str c)))

(describe "copy"

 (it "can read and write using str-read and str

 (let [device (->str-device (atom "abcdef") (a

 (copy device)

 (should= "abcdef" @(:out-atom device)))))

Notice the ->str-device function in the test. That’s
essentially the Java constructor of the str-device class that
implements the device protocol. Notice also that I loaded the
atom s into the device as in the previous example.

Indeed, I did not change the copy program to get this example
to work. The copy program is exactly as it was in the multi-
method example. Now that’s the OCP at work!

If the protocol/record mechanism of Clojure feels like OO, that’s
because it is OO. The JVM is an OO foundation, and Clojure fits
very nicely upon that foundation.

The Liskov Substitution Principle (LSP)

Any language that supports the OCP must also support the LSP.
The two principles are linked because every violation of the LSP
is a latent violation of the OCP.

The LSP was first described by Barbara Liskov in 1988,
providing a more or less formal definition of a subtype. In
essence, she said that a subtype must be substitutable for its
base type in any program that uses the base type.

9. Coincidentally, that’s the same year that Bertrand Meyer
published the OCP.

9

To clarify that, let us say that we have some program pay that
uses a type employee :

Click here to view code image

(defn pay [employee pay-date]

 (let [is-payday? (:is-payday employee)

 calc-pay (:calc-pay employee)

 send-paycheck (:send-paycheck employee)]

 (when (is-payday? pay-date)

 (let [paycheck (calc-pay)]

 (send-paycheck paycheck)))))

Notice that I’m using the vtable approach to create the type.
Notice also that the data within the type is completely hidden
from the pay function. All the pay function can see is the
methods within the employee type. How much more OO can
you get?

Here’s the test code that uses this type. Notice that the make-
test-employee function makes an object that uses duck typing
to conform to the employee type:

Click here to view code image

(defn test-is-payday [employee-data pay-date]

true)

 true)

(defn test-calc-pay [employee-data]

 (:pay employee-data))

(defn test-send-paycheck [employee-data paycheck

 (format "Send %d to: %s at: %s"

 paycheck

 (:name employee-data)

 (:address employee-data)))

(defn make-test-employee [name address pay]

 (let [employee-data {:name name

 :address address

 :pay pay}

 employee {:employee-data employee-data

 :is-payday (partial test-is-pay

 employee-da

 :calc-pay (partial test-calc-pa

 :send-paycheck (partial test-se

 employe

 employee))

(describe "Payroll"

 (it "pays a salaried employee"

 (should= "Send 100 to: name at: address"

 (pay (make-test-employee "name" "add

 :now))))

Notice the make-test-employee function uses the pointer to
implementation (PIMPL) pattern to hide the data in the
:employee-data field and expose only the methods. Finally,
notice that all the polymorphic methods are given the
employee-data as their first arguments. Oh, just so OO! And
yet entirely functional.

10. Holding all the data behind a single field to help keep it
private. See https://cpppatterns.com/patterns/pimpl.html.

It should be clear that I could create many different kinds of
employee objects and pass them to the pay function without
modifying the pay function at all. This is the OCP.

However, to achieve that I must be very careful to make sure
that every employee object I create conforms to the
expectations of the pay function. If one of those methods does
something that pay doesn’t expect, then pay will malfunction.

For example, this test fails:

Click here to view code image

(it "does not pay an employee whose payday

10

https://cpppatterns.com/patterns/pimpl.html

 (it does not pay an employee whose payday

 (should-be-nil

 (pay (make-later-employee "name" "addre

 :now)))

It fails because make-later-employee does not conform to
the pay function’s expectations for the : is-payday method.
As you can see below, it returns :tomorrow instead of false :

Click here to view code image

(defn make-later-employee [name address pay]

 (let [employee (make-test-employee name address

 is-payday? (partial (fn [_ _] :tomorrow)

 (:employee-data emplo

 (assoc employee :is-payday is-payday?)))

This is an LSP violation.

Now imagine you were the author of the pay function, and you
were tasked with debugging why certain employees were
getting paychecks at the wrong times. You find that many
employee objects are using the :tomorrow convention instead
of returning a boolean as they should. What do you do?11

11. Of course, a statically typed language would solve that
particular issue. So would a well-timed call to s/valid? , given
appropriate specs. But that’s not the case we are investigating at
the moment.

You could fix all those employees. Or you could add an extra
condition to the pay function:

Click here to view code image

(defn pay [employee pay-date]

 (let [is-payday? (:is-payday employee)

 calc-pay (:calc-pay employee)

 send-paycheck (:send-paycheck employee)]

 (when (= true (is-payday? pay-date))

 (let [paycheck (calc-pay)]

 (send-paycheck paycheck)))))

Yeah, that’s pretty ugly. It’s also an OCP violation because
we’ve modified high-level policy due to the misbehavior of a
low-level detail.

12. Think long and hard about why that is ugly and why many
programmers would be tempted to delete the = true, thus re-
exposing the bug.

12

The ISA Rule

The OO literature often uses the term ISA (pronounced, and
meaning, “is a”) to describe subtypes. To describe the above
situation in those terms we would say that the test-employee
ISA employee , and the later-employee ISA employee . This
usage can be confusing.

First, the later-employee is not an employee because it
does not conform to the expectations of the pay function; and
it is the pay function, and all the other functions that operate
on employee s, that define what the employee type is.

But second, and perhaps more important, the term ISA can be
deeply misleading. The ancient and venerable square/rectangle
conundrum is often used to make this point.

Let us say that we have an object that describes a rectangle. In
Clojure, it might look like this:

(defn make-rect [h w]

 {:h h :w w})

A simple test of this rectangle object might look like this:

Click here to view code image

(it "calculates proper area after change in size

 (should= 12 (-> (make-rect 1 1) (set-h 3) (set

To make this work we’ll need the set-h , set-w , and area
functions as follows:

(defn set-h [rect h]

 (assoc rect :h h))

(defn set-w [rect w]

 (assoc rect :w w))

(defn area [rect]

 (* (:h rect) (:w rect)))

Nothing here should be surprising. The rectangle object is not
mutable. The set-h and set-w functions simply create new
rectangles with the changed parameters.

So let’s flesh this out a bit and create a small system that uses
our rectangle. Here are the tests:

Click here to view code image

(describe "Rectangle"

 (it "calculates proper area and perimeter"

 (should= 25 (area (make-rect 5 5)))

 (should= 18 (perimeter (make-rect 4 5)))

 (should= 12 (-> (make-rect 1 1) (set-h 3) (se

 (it "minimally increases area"

 (should= 15 (-> (make-rect 3 4) minimally-inc

 (should= 24 (-> (make-rect 5 4) minimally-inc

 (should= 20 (-> (make-rect 4 4) minimally-inc

And here are the functions that pass those tests:

Click here to view code image

(defn perimeter [rect]

 (let [{:keys [h w]} rect]

 (* 2 (+ h w))))

(defn minimally-increase-area [rect]

 (let [{:keys [h w]} rect]

 (cond

 (>= h w) (make-rect (inc h) w)

 (> w h) (make-rect h (inc w))

 :else :tilt)))

13. This destructures the map into the named components. In
this case, it is equivalent to (let [h (:h rect) w (:w

13

rect)] …

Again, there’s nothing very surprising about this. Perhaps you
are confused by the minimally-increase-area function.
This function simply increases the area of the rectangle by the
smallest integral amount possible.

14. Presuming all the lengths and widths are integers.

So now let’s imagine that this system has been in operation for
years and has been very successful. But lately the customers of
this system have been asking for squares. How do we add
squares to our system?

If we apply the ISA rule, we might decide that a square is a
rectangle, and therefore, we should make the functions that
accept rectangles also accept squares. In Java, we might
accomplish this by deriving the class Square from the class
Rectangle . In Clojure, we can do this by simply creating
rectangles with equal sides:

(defn make-square [side]

 (make-rect side side))

This should bother us slightly because the size of the square
object is the same as the size of the rectangle object. Objects

14

of type square ought to be smaller since they don’t need both
the height and the width. But memory is cheap, and we want to
keep things simple, right?

The question is, will all our tests still pass? They should, of
course, because our squares are really just rectangles (ah, that’s
just the ISA rule!).

These tests pass just fine:

Click here to view code image

(should= 36 (area (make-square 6)))

(should= 20 (perimeter (make-square 5)))

So does this one, but it’s bothersome because somewhere in
there, “squareness” got lost:

Click here to view code image

(should= 12 (-> (make-square 1) (set-h 3) (set-w

The functions set-h and set-w do not return a square
when passed a square . That’s a bit strange; but in some
bizarre way it actually makes sense. I mean, if you set the

height of a square without changing the width, it’s not going
to be a square anymore, right?

If you feel a little itching at the back of your brain right now,
you should probably pay attention to it.

Anyway, what about our minimally-increase-area test?
Does it pass?

Click here to view code image

(should= 30 (-> (make-square 5) minimally-increas

Yes, that passes too. And of course, it should since the function
simply increases the height or width as necessary.

So it looks like we’re done, and this worked just great!

Nope!

Our customer calls us up a few days later, and he’s not very
happy. He’s been trying to minimally increase the area of his
squares, and it’s just not working.

“When I increase the area of a 5-by-5 square,” he bleats, “I get a
rectangle back with an area of 30. I need to get a square back

with an area of 36!”

Uh-oh. Looks like we guessed wrong. This is an LSP violation.
We created a subtype that does not conform to the expectations
of the functions that use the base type. The expectation of
minimally-increase-area is that height and width can be
modified independently. According to our customer, that’s not
true for a square .

So, what should we do?

We could add a :type field to the objects and have the
constructors put either :square or :rectangle into the
field, respectively. And of course, then we’d have to put an if
statement into the minimally-increase-area function. We’d
also have to change set-h and set-w to change the type to
:rectangle . And those changes violate the OCP, because
every violation of the LSP is a latent violation of the OCP.

I’ll leave other solutions as an exercise. You might try using
multi-methods. You might try using protocols and records. You
might try using vtables. Or you might just keep the two types
absolutely separate and never pass a square into a function
that takes a rectangle .

The Representative Rule

I prefer this last option. That’s because I don’t much care for the
ISA rule. You see, while it is geometrically true that a square is a
rectangle, none of the objects in my code were actual rectangles
or squares. My code had objects that represented squares and
rectangles, but they were neither squares nor rectangles. And
here’s the thing about representatives:

The representatives of things do not share the

relationships of the things they represent.

Just because a square is a rectangle in geometry, it does not
mean that a square object in code is a rectangle object in
code. That relationship is not shared because objects of type
square do not behave the way objects of type rectangle
behave.

When you see two objects in the real world that are obviously
connected by the phrase “is a,” you may be tempted to create a
subtype relationship in your code. Be careful with that. You
may just run afoul of the representative rule and violate the
LSP.

The Interface Segregation Principle (ISP)

The name of this principle derives from its origins in statically
typed OO languages. The example I usually use to describe the
ISP works quite well for such languages as Java, C#, and C++,
because those languages depend upon declared interfaces. In
dynamically typed languages like Ruby, Python, JavaScript, and
Clojure, those examples don’t work particularly well, because in
those languages, interfaces are undeclared and are already
segregated by duck typing.

For example, consider the following Java interface:

interface AtmInteractor {

 void requestAccount();

 void requestAmount();

 void requestPin();

}

Here we see three methods bound together in the
AtmInteractor interface. Any user of this interface therefore
depends upon all three methods, even if that user only calls one
of those methods. Thus, that user depends upon more than it
needs. If the signature of one of those methods changes, or if
another method is added to that interface, then that user will
have to be recompiled and redeployed, making the design
unnecessarily fragile.

We solve this weakness in statically typed OO languages by
segregating the interfaces as follows:

interface AccountInteractor {

 void requestAccount();

}

interface AmountInteractor {

 void requestAmount();

}

interface PinInteractor {

 void requestPin();

}

Then each user can depend only upon the methods that it needs
to call while the implementation can multiply implement those
interfaces:

Click here to view code image

public class AtmInteractor implements AccountInte

 AmountInte

 PinInteract

 void requestAccount() {…};

 void requestAmount() {…};

 void requestPin() {…};

}

Perhaps the UML diagram in Figure 12.1 will make this clearer.
By segregating the interfaces, the three users depend only on
the methods that they need; and yet those methods can be
implemented by a single class.

Figure 12.1. Segregated interfaces

In Clojure, we could use one of our duck typing techniques to
address this problem:

Click here to view code image

(defmulti request-account :interactor)

(defmulti request-amount :interactor)

(defmulti request-pin :interactor)

Those three multi-methods are not bound together under a
single declaration. Indeed, they do not even need to be kept
together in the same source file. They could instead be declared
in modules that are specific to their function. Thus, if the
signature of one changed, or if a new multi-method were

added, there would be no impact upon the users of the multi-
methods that were not changed. If they were precompiled,
they would not require recompilation.

15. Clojure allows modules to be precompiled for faster loading.

This means that in dynamically typed languages, like Clojure, it
is easier to avoid depending on things you don’t need. But that
doesn’t mean that the principle doesn’t apply.

Don’t Depend on Things You Don’t Need

Back to the name. The word Interface in Interface Segregation
Principle is not tied solely to the interface classes in Java, C#,
and C++. Rather, it applies to the generic meaning of the word.
The “interface” of a module is simply the list of all the access
points within that module.

Java and C# (and, by strong convention, C++) are class-based
languages in which there is a strong coupling between classes
and source files. Java in particular demands that each source
file be named after the sole public class declared within that
source file. This automatically sets up the conditions that the
ISP is trying to avoid. Groups of methods are coupled together
into a single module that users will depend upon, even if they
don’t depend upon every one of those methods. Thus, unless the

15

designer is careful, those users will depend upon things they
don’t need.

Dynamically typed languages like Ruby, Python, and Clojure do
not have this class-to-module constraint. You can declare
anything you like within any source file you like. You can write
the entire application in a single source file if you like!
Therefore, it is even easier in those languages to set up the
conditions that will cause users of a module to depend upon
things they don’t need.

16. Not recommended. ;-)

This is not a situation that is specific to functional languages. It
is also not a situation from which functional languages are
immune. Designers can easily pollute the interfaces of their
modules with all kinds of access points that the majority of
their users don’t need.

Why?

Why do we care about depending on modules that have more
than we need? Why should it bother us if our module only uses
one of the ten functions in another module?

16

In statically typed languages the cost can be severe because a
change to one of the functions we don’t use can force our
module to be recompiled and redeployed. If our module is just
one of many modules in a binary component (like a jar file),
then that entire component will need to be redeployed. Those
are couplings that every serious designer should be careful
about.

In dynamically typed languages, the cost is reduced but is not
zero. In Clojure, for example, there is a strict requirement that
the source code dependencies between modules must be
acyclic. The more functions that a module contains, the more
outgoing and incoming source code dependencies impinge
upon that module and thus the greater the probability that it
will participate in a cycle.

17. We’ll encounter this in Chapter 17, Wa-Tor.

But possibly the best reason for caring about these
dependencies is that a module structure that limits extraneous
dependencies is cogent. It is an indication that intelligent
human beings have cared enough to separate the concerns and
lower the coupling. The readers of your code will thank you for
that care.

17

Conclusion

The real meaning of the ISP is:

Gather together the things that are used together.

Separate those things that are used separately.

Don’t depend on things you don’t need.

The Dependency Inversion Principle (DIP)

Of the SOLID principles, one could say that the OCP is the moral
heart, the SRP is the organizing force, while the LSP and the ISP
are caution signs surrounding the potholes created by
carelessness. That leaves the DIP, which is the underlying
mechanism behind all the others. In almost every case when we
find a principle violation, the solution involves the inversion of
one or more critical dependencies.

In decades long past, software was constructed with a
completely constrained and parallel dependency structure.
Source code dependencies paralleled runtime dependencies.
The structure looked like Figure 12.2.

Figure 12.2. The ancient parallel dependency structure

The dashed arrows are runtime dependencies. They show that
high-level modules call mid-level modules, which call low-level
modules. The solid arrows are source code dependencies. They
show that each source code module depends upon the modules
it calls. Those source code dependencies were statements like
#include , import , require , and using that mentioned
the name of the downstream source file.

In those ancient days of yore, those two kinds of dependencies
were always parallel to each other. If module X had a
runtime dependency on module Y , it also had a source code
dependency on module Y .

18. Well, not quite always. In the late ‘50s and early ‘60s,
Herculean efforts were expended by operating system
engineers to invert a few, very strategic dependencies in order
to create the abstraction of device independence. They had no
tool other than explicit pointers to functions, so they were very,
very careful.

This meant that high-level policy was inextricably dependent
upon low-level detail. Think hard about the implications of that
statement.

18

But in the late ‘60s, Ole-Johan Dahl and Kristen Nygaard moved
a data structure in the ALGOL compiler from the stack to the
heap and discovered OO. And with that discovery came the
ability for programmers to invert dependencies easily and
safely.

19. The data structure was the stack frame of function calls. The
language they created was Simula 67.

20. The history of the invention of Simula is fascinating. It is
briefly described in the 1972 book Structured Programming by
Edsger W. Dijkstra, Ole-Johan Dahl, and C. A. R. Hoare
(Academic Press), and in much more detail in the paper “The
Development of the Simula Languages” by Dahl and Nygaard
(https://hannemyr.com/cache/knojd_acm78.pdf).

It took another 25 years before OO languages started to move
into the mainstream. But since then, virtually all programmers
have been able to effortlessly break that parallel dependence.
They do it as shown in Figure 12.3.

19

20

https://hannemyr.com/cache/knojd_acm78.pdf

Figure 12.3. Inverting the dependency by inserting an interface

HL1 has a runtime dependency on F() within ML1 ; but HL1
has no source code dependency, either direct or transitive, upon
ML1 . Instead, they both depend upon the interface I .

21. In dynamically typed languages, the interface I would not
exist as a source code module. Rather, it would be a duck type
that HL1 and ML1 would conform to.

This ability to take any source code dependency and invert it
provides us with an immense amount of power. We can easily
and safely arrange the source code dependencies of our
software to ensure that high-level modules do not depend upon
low-level modules.

This allows us to create structures like that shown in Figure
12.4.

21

Figure 12.4. Plug-in structure

Here we see the high-level business rules have runtime
dependencies upon the user interface (UI) and the database but
have no source code dependencies on those modules. This
application of the DIP means that the UI and database are plug-
ins to the business rules and could easily be replaced with
different implementations without affecting the business rules,
thereby conforming to the OCP.

Of course, what’s really going on is that the UI and the database
are implementing interfaces contained within the business
rules. The business rules operate upon those interfaces,
allowing the flow of control to go outward toward the UI and
database while keeping the source code dependencies inverted
inward toward the business rules (see Figure 12.5).

Figure 12.5. The interfaces within the business rules allow plug-ins.

Notice that all the dependencies point toward abstractions. This
leads us to one way to describe the DIP:

Where possible, point all source code dependencies at
abstractions.

A Blast from the Past

But enough theory. Let’s see this at work. I’m going to borrow a
nostalgic example from my friend and mentor, Martin Fowler.
He presented this Video Store example in the first edition of
his wonderful book, Refactoring. Of course, I’m going to use
Clojure instead of Java.

22. Video killed the radio store and the Internet killed the video
store. Yes, boys and girls, there was a time when we would go to
the video store to rent videotapes and DVDs.

23. Addison-Wesley, 1999.

Here are the tests:

Click here to view code image

(describe "Video Store"

(with customer (make-customer "Fred"))

22

23

 (cus o e (a e cus o e ed))

 (it "makes statement for a single new release"

 (should= (str "Rental Record for Fred\n"

 "\tThe Cell\t9.0\n"

 "You owed 9.0\n"

 "You earned 2 frequent renter p

 (make-statement

 (make-rental-order

 @customer

 [(make-rental

 (make-movie "The Cell" :new-

 3)]))))

 (it "makes statement for two new releases"

 (should= (str "Rental Record for Fred\n"

 "\tThe Cell\t9.0\n"

 "\tThe Tigger Movie\t9.0\n"

 "You owed 18.0\n"

 "You earned 4 frequent renter p

 (make-statement

 (make-rental-order

 @customer

 [(make-rental

 (make-movie "The Cell" :new-

 3)

 (make-rental

 (make-movie "The Tigger Movie

 3)]))))

 (it "makes statement for one childrens movie"

 (should= (str "Rental Record for Fred\n"

 "\tThe Tigger Movie\t1.5\n"

 "You owed 1.5\n"

 "You earned 1 frequent renter p

 (make-statement

 (make-rental-order

 @customer

 [(make-rental

 (make-movie "The Tigger Movie

 3)]))))

 (it "makes statement for several regular movies

 (should= (str "Rental Record for Fred\n"

 "\tPlan 9 from Outer Space\t2.0

 "\t8 1/2\t2.0\n"

 "\tEraserhead\t3.5\n"

 "You owed 7.5\n"

 "You earned 3 frequent renter p

 (make-statement

 (make-rental-order

 @customer

 [(make-rental

 (make-movie "Plan 9 from Oute

 1)

 (make-rental

 (make-movie "8 1/2", :regula

2)

 2)

 (make-rental

 (make-movie "Eraserhead" :reg

 3)])))))

From these tests, you should be able to determine what this
application does. Customers rent videos for a certain number of
days. The price and the reward points are apparently calculated
based upon the type of the video and the number of days they
are rented. There seem to be three types of videos: :regular ,
:new-release , and :childrens .

Here is the code that passes these tests:

Click here to view code image

(defn make-customer [name]

 {:name name})

(defn make-movie [title type]

 {:title title

 :type type})

(defn make-rental [movie days]

 {:movie movie

 :days days})

(defn make-rental-order [customer rentals]

 {:customer customer

 :rentals rentals})

(defn determine-amount [rental]

 (let [{:keys [movie days]} rental

 type (:type movie)]

 (condp = type

 :regular

 (if (> days 2)

 (+ 2.0 (* (- days 2) 1.5))

 2.0)

 :new-release

 (* 3.0 days)

 :childrens

 (if (> days 3)

 (+ 1.5 (* (- days 3) 1.5))

 1.5))))

(defn determine-points [rental]

 (let [{:keys [movie days]} rental

 type (:type movie)]

 (if (and (= type :new-release)

 (> days 1))

 2

1)))

 1)))

(defn make-detail [rental]

 (let [title (:title (:movie rental))

 price (determine-amount rental)]

 (format "\t%s\t%.1f" title price)))

(defn make-details [rentals]

 (map make-detail rentals))

(defn make-footer [rentals]

 (let [owed (reduce + (map determine-amount rent

 points (reduce + (map determine-points re

 (format

 "\nYou owed %.1f\nYou earned %d frequent re

 owed points)))

(defn make-statement [rental-order]

 (let [{:keys [name]} (:customer rental-order)

 {:keys [rentals]} rental-order

 header (format "Rental Record for %s\n" n

 details (string/join "\n" (make-details

 footer (make-footer rentals)]

 (str header details footer)))

If you read the first edition of Refactoring, this should look
pretty familiar. In essence, we have a simple report generator

that calculates and formats a statement for a rental order.

The very first thing you should have noticed is the horrific SRP
violation in the tests. Those tests couple the business rules with
the construction and formatting of the statement. If someone
from marketing decides to make even a trivial change to the
statement format, all the tests will fail.

Consider, for example, the effects of changing the statement to
begin with the words “Rental Statement for” instead of “Rental
Record for.”

This SRP violation makes the tests very fragile. To fix this we
need to separate the tests that specify the format of the report
from the tests that specify the business rules.

To do this I’m going to split the tests into three different
modules: one for testing the calculations, another for the
formatting, and the last for integration.

Here is the statement-calculator test. From now on, I’ll
include all the ns statements so that you can see the names
of the modules and their source code dependencies.

24. ns stands for namespace. These statements generally
appear at the start of every Clojure module and define the

24

module’s name and its dependencies.

Click here to view code image

(ns video-store.statement-calculator-spec

 (:require [speclj.core :refer :all]

 [video-store.statement-calculator :re

(declare customer)

(describe "Rental Statement Calculation"

 (with customer (make-customer "Fred"))

 (it "makes statement for a single new release"

 (should= {:customer-name "Fred"

 :movies [{:title "The Cell"

 :price 9.0}]

 :owed 9.0

 :points 2}

 (make-statement-data

 (make-rental-order

 @customer

 [(make-rental

 (make-movie "The Cell" :new-

 3)]))))

 (it "makes statement for two new releases"

 (should= {:customer-name "Fred",

 :movies [{:title "The Cell", :price

 {:title "The Tigger Movie

 :owed 18.0,

 :points 4}

 (make-statement-data

 (make-rental-order

 @customer

 [(make-rental

 (make-movie "The Cell" :new-

 3)

 (make-rental

 (make-movie "The Tigger Movie

 3)]))))

 (it "makes statement for one childrens movie"

 (should= {:customer-name "Fred",

 :movies [{:title "The Tigger Movie

 :owed 1.5,

 :points 1}

 (make-statement-data

 (make-rental-order

 @customer

 [(make-rental

 (make-movie "The Tigger Movie

 3)]))))

 (it "makes statement for several regular movies

 (should= {:customer-name "Fred",

 :movies [{:title "Plan 9 from Oute

 :price 2.0}

 {:title "8 1/2", :price 2

 {:title "Eraserhead", :pri

 :owed 7.5,

 :points 3}

 (make-statement-data

 (make-rental-order

 @customer

 [(make-rental

 (make-movie "Plan 9 from Oute

 :regular)

 1)

 (make-rental

 (make-movie "8 1/2", :regula

 2)

 (make-rental

 (make-movie "Eraserhead" :reg

 3)])))))

What we’ve done here is replace the formatted rental statement
with a data structure that contains all the data that goes into the
statement. This allows us to separate the formatting from the
calculation, as shown in the statement-calculator
implementation:

Click here to view code image

(ns video-store.statement-calculator)

(defn make-customer [name]

 {:name name})

(defn make-movie [title type]

 {:title title

 :type type})

(defn make-rental [movie days]

 {:movie movie

 :days days})

(defn make-rental-order [customer rentals]

 {:customer customer

 :rentals rentals})

(defn determine-amount [rental]

 (let [{:keys [movie days]} rental

 type (:type movie)]

 (condp = type

 :regular

 (if (> days 2)

 (+ 2.0 (* (- days 2) 1.5))

 2.0)

 :new-release

(* 3 0 days)

 (3.0 days)

 :childrens

 (if (> days 3)

 (+ 1.5 (* (- days 3) 1.5))

 1.5))))

(defn determine-points [rental]

 (let [{:keys [movie days]} rental

 type (:type movie)]

 (if (and (= type :new-release)

 (> days 1))

 2

 1)))

(defn make-statement-data [rental-order]

 (let [{:keys [name]} (:customer rental-order)

 {:keys [rentals]} rental-order]

 {:customer-name name

 :movies (for [rental rentals]

 {:title (:title (:movie rental))

 :price (determine-amount rental)}

 :owed (reduce + (map determine-amount rental

 :points (reduce + (map determine-points rent

This is a bit simpler than before and is nicely encapsulated.
Notice the ns statement shows that this module has no source

code dependencies. Everything in the module is about the
calculation of the data that goes into the statement. However,
there is nothing here that hints at the formatting of the
statement.

The formatting test is quite simple:

Click here to view code image

(ns video-store.statement-formatter-spec

 (:require [speclj.core :refer :all]

 [video-store.statement-formatter :ref

(describe "Rental Statement Format"

 (it "Formats a rental statement"

 (should= (str "Rental Record for CUSTOMER\n"

 "\tMOVIE\t9.9\n"

 "You owed 100.0\n"

 "You earned 99 frequent renter

 (format-rental-statement

 {:customer-name "CUSTOMER"

 :movies [{:title "MOVIE"

 :price 9.9}]

 :owed 100.0

 :points 99}))))

This should be self-explanatory. We’re just making sure that we
can format the data produced by the statement-calculator
module. The implementation is also very simple:

Click here to view code image

(ns video-store.statement-formatter)

(defn format-rental-statement [statement-data]

 (let [customer-name (:customer-name statement-d

 movies (:movies statement-data)

 owed (:owed statement-data)

 points (:points statement-data)]

 (str

 (format "Rental Record for %s\n" customer-n

 (apply str

 (for [movie movies]

 (format "\t%s\t%.1f\n"

 (:title movie)

 (:price movie))))

 (format "You owed %.1f\n" owed)

 (format "You earned %d frequent renter poin

Again, we have a nicely encapsulated module with no source
code dependencies.

To make sure that both of these modules work together as they
should, I added a simple integration test:

Click here to view code image

(ns video-store.integration-specs

 (:require [speclj.core :refer :all]

 [video-store.statement-formatter :ref

 [video-store.statement-calculator :re

(describe "Integration Tests"

 (it "formats a statement for several regular mo

 (should= (str "Rental Record for Fred\n"

 "\tPlan 9 from Outer Space\t2.0

 "\t8 1/2\t2.0\n"

 "\tEraserhead\t3.5\n"

 "You owed 7.5\n"

 "You earned 3 frequent renter p

 (format-rental-statement

 (make-statement-data

 (make-rental-order

 (make-customer "Fred")

 [(make-rental

 (make-movie

 "Plan 9 from Outer Space

 1)

 (make-rental

 (make-movie "8 1/2", :regul

2)

 2)

 (make-rental

 (make-movie "Eraserhead" :

 3)]))))))

This is much better from an SRP point of view. If the marketing
folks make trivial changes to the format of the report, only the
formatting and integration tests will break. None of the
calculation tests will break. That might not seem like a big win
in a toy example like this. But in a real-world application where
the tests would number in the thousands, this is a very big win
indeed.

We are also protected from business rule changes. If the finance
people decide they need to change the way prices are
calculated, the formatting test will be immune, and only the
calculation and integration tests will be affected.

A DIP Violation

While all this winning was going on, did you happen to notice
the DIP violation? You might have missed it because it’s not in
the production code. It’s in the integration test.

Look at the ns statement. Do you see those two lines that
mention the statement-formatter and the statement-
calculator ? Those lines create source code dependencies on
the concrete implementations of those modules. That’s a high-
level policy depending on a concrete low-level detail. That’s a
definitional DIP violation.

Perhaps this puzzles you. How can a test be a high-level policy?
Aren’t tests as low level as you can get? Aren’t they the ultimate
details?

Yes, that’s true. But integration tests in particular are stand-ins
for high-level policy. Look at that integration test again. It does
precisely what the high-level policy of the application would
have to do. It calls make-statement-data and passes the
result to format-rental-statement . And since both of those
functions are concrete implementations, our high-level
production code will have the same DIP violation as our
integration test.

Do we always pay attention to the DIP in our tests? It is always
wise to be aware. It may not always be wise to force
compliance. Some tests are best left coupled to low-level
implementations. However, if you want your test suites to be
robust and flexible and if you don’t want a hundred tests to

break when you change one small thing in the production code,
then keeping an eye on the coupling between your tests and the
production code is a good idea.

25. I spend a lot of time on this topic in my book Clean
Craftsmanship (Addison-Wesley, 2021).

But perhaps you are still not convinced. So let’s add a new
feature. Sometimes we want the statement to be displayed on a
text terminal, and sometimes we want it on a browser. So we
need text and HTML versions of format-rental-statement .

Let’s also add one more new feature. Some of our stores are
offering a “buy two, get one free” policy. So, if you rent three
videos, you will only be charged for the two most expensive
ones.

If we were implementing this in an OO language, we would
likely be tempted to create two new abstract classes or
interfaces. The StatementFormatter abstraction would have
a format-rental-statement method that would be
implemented in both the TextFormatter and
HTMLFormatter implementations. Likewise, the
StatementPolicy abstraction would implement the make-

25

statement-data function in both NormalPolicy and
BuyTwoGetOneFreePolicy .

We can easily mimic this design by using any one of the three
approaches that we discussed in the section on the OCP. We
could build vtables for the two abstractions. Or we could use
defprotocol and defrecord to build actual Java interfaces
and implementations. Or, finally, we could use multi-methods.

Let’s see what the multi-method approach looks like. Keep in
mind that this is a child-sized problem posing as an adult
situation. What you’ll see me do here is meant to show how
much larger problems can be designed and partitioned.

In the end, as shown in Figure 12.6, I split the whole system up
into eleven modules, three of which are tests.

Figure 12.6. Splitting the Video Store application into modules

Figure 12.6 looks like a UML diagram for an OO solution. The
dependency inversion should be obvious. The order-
processing module is the highest-level policy. It depends
upon two abstractions. The statement-formatter is an
interface, whereas the statement-policy is an abstract class
with one implemented method.

If you are confused at my use of OO vernacular to describe a
functional program in Clojure, you shouldn’t be. The OO words

I’m using have very direct analogies in the functional world.

The statement-formatter interface is implemented by the
text-formatter and the HTML-formatter . The
statement-policy abstract class is implemented by the
normal-statement-policy . The buy-two-get-one-free-
policy implementation derives from normal-statement-
policy but overrides one of its methods. The mechanisms
behind all this “inheritance” will become clear in a moment.

The tests appear at the bottom. They are marked with <T> .
They use a little utility module named constructors that
knows how to build the basic data structures. Then each uses its
particular portion of the production code to test what it needs.

Now let’s look at the source code. Pay special attention to the
ns statements and notice that they match the arrows on the
UML diagram.

Let’s begin with the constructors . They are pretty self-
explanatory:

Click here to view code image

(ns video-store.constructors)

(defn make-customer [name]

 {:name name})

(defn make-movie [title type]

 {:title title

 :type type})

(defn make-rental [movie days]

 {:movie movie

 :days days})

(defn make-rental-order [customer rentals]

 {:customer customer

 :rentals rentals})

The constructors have no outgoing dependencies in the ns
statement and simply build plain old Clojure data structures.

The integration test is in the integration-specs module:

Click here to view code image

(ns video-store.integration-specs

 (:require [speclj.core :refer :all]

 [video-store.constructors :refer :all

 [video-store.text-statement-formatte

 [video-store.normal-statement-policy

 [video-store.order-processing :refer

(declare rental-order)

(describe "Integration Tests"

 (with rental-order (make-rental-order

 (make-customer "Fred")

 [(make-rental

 (make-movie

 "Plan 9 from Outer Sp

 :regular)

 1)

 (make-rental

 (make-movie "8 1/2", :

 2)

 (make-rental

 (make-movie "Eraserhead

 3)]))

 (it "formats a text statement"

 (should= (str "Rental Record for Fred\n"

 "\tPlan 9 from Outer Space\t2.0

 "\t8 1/2\t2.0\n"

 "\tEraserhead\t3.5\n"

 "You owed 7.5\n"

 "You earned 3 frequent renter p

 (process-order

 (make-normal-policy)

 (make-text-formatter)

 @rental-order))))

This is pretty much the same as before, except that the ns
statement has all the explicit source code dependencies. This
test still violates the DIP, but only because it must call the
make-normal-policy and make-text-formatter
constructors within the corresponding modules. I suppose I
could have used an Abstract Factory to break those last
dependencies; but it didn’t seem worth the effort for a test that
tests integration.

26. See Chapter 16, “Design Patterns Review.”

The other two tests are more specific. Pay special attention to
the fact that their source code dependencies only pull in what
they need:

Click here to view code image

(ns video-store.statement-formatter-spec

 (:require [speclj.core :refer :all]

 [video-store.statement-formatter :ref

 [video-store.text-statement-formatte

 [video-store.html-statement-formatte

(declare statement-data)

(describe "Rental Statement Format"

 (with statement-data {:customer-name "CUSTOMER

mo ies [{ title "MOVIE"

26

 :movies [{:title "MOVIE"

 :price 9.9}]

 :owed 100.0

 :points 99})

 (it "Formats a text rental statement"

 (should= (str "Rental Record for CUSTOMER\n"

 "\tMOVIE\t9.9\n"

 "You owed 100.0\n"

 "You earned 99 frequent renter

 (format-rental-statement

 (make-text-formatter)

 @statement-data

)))

 (it "Formats an html rental statement"

 (should= (str

 "<h1>Rental Record for CUSTOMER<

 "<table>"

 "<tr><td>MOVIE</td><td>9.9</td><

 "</table>"

 "You owed 100.0
"

 "You earned 99 frequent

 (format-rental-statement

 (make-html-formatter)

 @statement-data))))

The statement-formatter-spec tests the two different
formats. The format is specified by the first argument of the
format-rental-statement function. That argument is
created by the make-text-formatter and make-html-
formatter functions, which are implemented in the
appropriate modules, as you’ll see.

The last test is the statement-policy-spec :

Click here to view code image

(ns video-store.statement-policy-spec

 (:require

 [speclj.core :refer :all]

 [video-store.constructors :refer :all]

 [video-store.statement-policy :refer :all]

 [video-store.normal-statement-policy :refer

 [video-store.buy-two-get-one-free-policy :ref

(declare customer normal-policy formatter)

(declare new-release-1 new-release-2 childrens)

(declare regular-1 regular-2 regular-3)

(describe "Rental Statement Calculation"

 (with customer (make-customer "CUSTOMER"))

 (with normal-policy (make-normal-policy))

 (with new-release-1 (make-movie "new release 1

 (with new-release-2 (make-movie "new release 2

 (with childrens (make-movie "childrens" :child

 (with regular-1 (make-movie "regular 1" :regula

 (with regular-2 (make-movie "regular 2" :regula

 (with regular-3 (make-movie "regular 3" :regula

 (context "normal policy"

 (it "makes statement for a single new release

 (should= {:customer-name "CUSTOMER"

 :movies [{:title "new release 1"

 :price 9.0}]

 :owed 9.0

 :points 2}

 (make-statement-data

 @normal-policy

 (make-rental-order

 @customer

 [(make-rental @new-release-1 3

 (it "makes statement for two new releases"

 (should= {:customer-name "CUSTOMER",

 :movies [{:title "new release 1"

 {:title "new release 2"

 :owed 18.0,

 :points 4}

 (make-statement-data

 @normal-policy

 (make-rental-order

 @customer

 [(make-rental @new-release-1 3

(k t l @ l 2 3

 (make-rental @new-release-2 3

 (it "makes statement for one childrens movie

 (should= {:customer-name "CUSTOMER",

 :movies [{:title "childrens", :p

 :owed 1.5,

 :points 1}

 (make-statement-data

 @normal-policy

 (make-rental-order

 @customer

 [(make-rental @childrens 3)])

 (it "makes statement for several regular movi

 (should= {:customer-name "CUSTOMER",

 :movies [{:title "regular 1", :p

 {:title "regular 2", :p

 {:title "regular 3", :p

 :owed 7.5,

 :points 3}

 (make-statement-data

 @normal-policy

 (make-rental-order

 @customer

 [(make-rental @regular-1 1)

 (make-rental @regular-2 2)

 (make-rental @regular-3 3)])

(t t "B t t f li "

 (context "Buy two get one free policy"

 (it "makes statement for several regular movi

 (should= {:customer-name "CUSTOMER",

 :movies [{:title "regular 1", :p

 {:title "regular 2", :p

 {:title "new release 1"

 :owed 5.0,

 :points 3}

 (make-statement-data

 (make-buy-two-get-one-free-polic

 (make-rental-order

 @customer

 [(make-rental @regular-1 1)

 (make-rental @regular-2 1)

 (make-rental @new-release-1

The statement-policy-spec tests the various pricing rules.
You’ve seen the first batch already. The last test checks the buy
two, get one free policy used by some stores. Notice that the
policy is passed into the make-statement-data function and
is created by the make-normal-policy and make-buy-two-
get-one-free-policy functions.

Now, on to the production code. We begin with the order-
processing module:

Click here to view code image

(ns video-store.order-processing

 (:require [video-store.statement-formatter :ref

 [video-store.statement-policy :refer

(defn process-order [policy formatter order]

 (->> order

 (make-statement-data policy)

 (format-rental-statement formatter)))

There’s not much to it. Notice the source code dependencies
only refer to the statement-formatter interface and the
statement-policy abstraction.

The statement-formatter interface is very simple:

Click here to view code image

(ns video-store.statement-formatter)

(defmulti format-rental-statement

 (fn [formatter statement-data]

 (:type formatter)))

The defmulti statement is roughly equivalent to creating an
abstract method in Java or C#. Since this module has nothing
but one abstract method, it is roughly equivalent to an
interface. The dispatcher function is trivial; it just returns the
:type of the formatter.

The statement-policy abstraction is a bit more interesting:

Click here to view code image

(ns video-store.statement-policy)

(defn- policy-movie-dispatch [policy rental]

 [(:type policy) (-> rental :movie :type)])

(defmulti determine-amount policy-movie-dispatch

(defmulti determine-points policy-movie-dispatch

(defmulti total-amount (fn [policy _rentals] (:ty

(defmulti total-points (fn [policy _rentals] (:ty

(defn make-statement-data [policy rental-order]

 (let [{:keys [name]} (:customer rental-order)

 {:keys [rentals]} rental-order]

 {:customer-name name

 :movies (for [rental rentals]

 {:title (:title (:movie rental))

 :price (determine-amount policy

 :owed (total-amount policy rentals)

 :points (total-points policy rentals)}))

The statement-policy module has four abstract methods
and one implemented method. Notice how it uses the Template
Method pattern. Notice also that the determine-amount and
determine-points functions use a dispatch code that is a
tuple. That’s pretty interesting. It means that we can dispatch
those functions based upon two degrees of freedom instead of
one. That’s something that’s hard to do in most OO languages.
We’ll see it used shortly.

27. See Chapter 17, “Wa-Tor.”

But first let’s look at the text-statement-formatter
implementation:

Click here to view code image

(ns video-store.text-statement-formatter

 (:require [video-store.statement-formatter :ref

(defn make-text-formatter [] {:type ::text})

(defmethod format-rental-statement

 ::text

27

 [_formatter statement-data]

 (let [customer-name (:customer-name statement-d

 movies (:movies statement-data)

 owed (:owed statement-data)

 points (:points statement-data)]

 (str

 (format "Rental Record for %s\n" customer-n

 (apply str

 (for [movie movies]

 (format "\t%s\t%.1f\n"

 (:title movie)

 (:price movie))))

 (format "You owed %.1f\n" owed)

 (format "You earned %d frequent renter poin

This shouldn’t be much of a surprise. I just moved the code over
here without much change. Notice the make-text-formatter
function at the top.

The html-statement-formatter shouldn’t be very
surprising either:

Click here to view code image

(ns video-store.html-statement-formatter

 (:require [video-store.statement-formatter :ref

(defn make-html-formatter [] {:type ::html})

(defmethod format-rental-statement ::html

 [formatter statement-data]

 (let [customer-name (:customer-name statement-d

 movies (:movies statement-data)

 owed (:owed statement-data)

 points (:points statement-data)]

 (str

 (format "<h1>Rental Record for %s</h1>" cus

 "<table>"

 (apply str

 (for [movie movies]

 (format "<tr><td>%s</td><td>%.1f</

 (:title movie) (:price mov

 "</table>"

 (format "You owed %.1f
" owed)

 (format "You earned %d frequent rent

 points))))

The more interesting modules are the two policy modules. Let’s
begin with normal-statement-policy :

Click here to view code image

(ns video-store.normal-statement-policy

(:require [video-store.statement-policy :refer

 (:require [video store.statement policy :refer

(defn make-normal-policy [] {:type ::normal})

(defmethod determine-amount [::normal :regular]

 (let [days (:days rental)]

 (if (> days 2)

 (+ 2.0 (* (- days 2) 1.5))

 2.0)))

(defmethod determine-amount

 [::normal :childrens]

 [_policy rental]

 (let [days (:days rental)]

 (if (> days 3)

 (+ 1.5 (* (- days 3) 1.5))

 1.5)))

(defmethod determine-amount

 [::normal :new-release]

 [_policy rental]

 (* 3.0 (:days rental)))

(defmethod determine-points [::normal :regular]

 1)

(defmethod determine-points

 [::normal :new-release]

[policy rental]

 [_policy rental]

 (if (> (:days rental) 1) 2 1))

(defmethod determine-points

 [::normal :childrens]

 [_policy _rental]

 1)

(defmethod total-amount ::normal [policy rentals

 (reduce + (map #(determine-amount policy %) ren

(defmethod total-points ::normal [policy rentals

 (reduce + (map #(determine-points policy %) ren

That’s different, isn’t it? Look carefully at those defmethod
statements. We’ve dispatched on both the policy type and the
movie type. This isolates the business rules really well.

You might be worried that the two degrees of freedom will
create an N*M problem, leading to a proliferation of the
“determine” functions. You’ll see how I handle that in a minute.

Notice the make-normal-policy constructor at the top that
was used by our tests.

Now let’s look at the buy-two-get-one-free-policy
module:

Click here to view code image

(ns video-store.buy-two-get-one-free-policy

 (:require [video-store.statement-policy :refer

 [video-store.normal-statement-policy

(derive ::buy-two-get-one-free ::normal/normal)

(defn make-buy-two-get-one-free-policy []

 {:type ::buy-two-get-one-free})

(defmethod total-amount

 ::buy-two-get-one-free

 [policy rentals]

 (let [amounts (map #(determine-amount policy %

 (if (> (count amounts) 2)

 (reduce + (drop 1 (sort amounts)))

 (reduce + amounts))))

Surprise, surprise! Look at that derive statement. This is
Clojure’s way of allowing you to create ISA hierarchies. This
statement says that a ::buy-two-get-one-free policy is a
:normal policy. The multi-method dispatching mechanism
uses hierarchies like this to resolve which defmethod to
dispatch to.

28

29

28. Take care to avoid LSP violations!

29. Once again, don’t worry about the double colons. They are
just a way to scope keywords into a namespace.

What this says to the compiler is that it should use the
:normal implementations unless overridden by a specific
::buy-two-get-one-free implementation.

Thus, our module only has to override the total-amount
function in order to subtract the least expensive movie if three
or more are rented.

Conclusion

OK, that’s it. We’ve chopped this system up into 11 modules.
Each module is nicely encapsulated. We have inverted the most
important source code dependencies so that high-level policies
do not depend upon low-level details.

The overall structure looks a lot like an OO program, and yet it
is entirely functional.

Nice.

IV

Functional Pragmatics

13

Tests

Throughout this book, you’ve seen many of the unit tests I have
written. In virtually every case, I used the TDD discipline of
writing my tests and code in a tight loop, with the tests a few
seconds ahead of the code.

1. I have written a great deal about this discipline in Clean
Craftsmanship (Addison-Wesley, 2021), Clean Code (Pearson,

1

2008), and Agile Software Development: Principles, Patterns, and
Practices (Pearson, 2002). There is also a vast amount of
information available on the Web. One of the best books on the
topic is Growing Object-Oriented Software, Guided by Tests by
Steve Freeman and Nat Pryce (Addison-Wesley, 2010).

For the most part, those tests were written using a framework
called speclj (pronounced “speckle”), written by Micah
Martin and others. It is very similar to the RSpec framework
that is popular in Ruby.

2. https://github.com/slagyr/speclj

I have been practicing TDD for well over 20 years now. I’ve used
it in Java, C#, C, C++, Ruby, Python, Lua, Clojure, and a variety of
other languages. What I have learned in those decades is that
the language does not matter to the discipline. The discipline is
the same regardless of the language.

The fact that Clojure is a functional language does not change
my testing strategy, nor affect my use of the TDD discipline. I
write my Clojure programs test-first the way I write my Java
programs test-first. The paradigm doesn’t matter. The discipline
is universal.

2

https://github.com/slagyr/speclj

But What about the REPL?

Lots of functional programmers say they don’t need TDD
because they test everything in the REPL. I do lots of
experimenting in the REPL too; but in most cases, I encode what
I’ve learned into a test. Tests, like diamonds, are forever.
Experiments in the REPL aren’t there the morning after.

What about Mocks?

Mocking is a technique used by TDD practitioners to
encapsulate their tests away from large swaths of the system. In
effect, they create objects, called mocks, that represent those
swaths and use the LSP to substitute the mocks in for them.

3. They are more formally referred to as test-doubles, but in this
context, I’ll continue to use the colloquial vernacular.

Since the LSP is viewed as an OO principle, and since mocks in
OO languages are based on polymorphic interfaces, it has
become something of an urban myth that functional languages
do not support mocks.

But as we have seen, the LSP works just as well in a functional
language as it does in an OO language, and polymorphic

3

interfaces are generally very easy to create. Thus, the ability to
write mocks, in all their various forms, is not at all impeded in a
functional language.

As an example, here is a test from my more-speech
application that employs a couple of mocks:

4. https://github.com/unclebob/more-speech

Click here to view code image

(it "adds an unrooted article id to a tab"

 (let [message-id 1

 messages {message-id {:tags []}}

 event-context (atom {:text-event-map mess

 (reset! ui-context {:event-context event-cont

 (with-redefs [swing-util/add-id-to-tab (stub

 swing-util/relaunch (stub :rela

 (add-article-to-tab 1 "tab" nil)

 (should-have-invoked :relaunch)

 (should-have-invoked :add-id-to-tab

 {:with ["tab" :selecte

Don’t worry too much about what this test does. Just look down
at the with-redefs statement. This test mocks the swing-

4

https://github.com/unclebob/more-speech

util/add-id-to-tab and swing-util/relaunch functions
to use named stubs. Those stubs are perfect no-ops. They accept
any number of arguments and return nothing at all. But they
do remember what happened to them. So, down at the bottom,
we see that the :relaunch stub should have been called, and
the :add-id-to-tab stub should have been called with three
arguments: "tab" , :selected , and 1 .

5. There are ways to get them to return values, but that’s
beyond the scope here. Check the speclj docs
(https://github.com/slagyr/speclj) if you are interested.

6. Which technically makes them spies.

Property-Based Testing

One cannot hang out with functional programmers without
eventually hearing about QuickCheck and property-based
testing. Unfortunately, the topic often arises as a
counterargument to TDD. I’m not going to try to support or
refute that argument. Instead, I want to show you how very
powerful property-based testing is within the TDD discipline.

5

6

https://github.com/slagyr/speclj

First of all, what is property-based testing? Property-based
testing is a verification and diagnostic technique that employs
the random generation of inputs and a very powerful strategy
of defect isolation.

Let’s say that I’ve just written a function that computes the
prime factors of a given integer:

Click here to view code image

(defn factors-of [n]

 (loop [factors [] n n divisor 2]

 (if (> n 1)

 (cond

 (> divisor (Math/sqrt n))

 (conj factors n)

 (= 0 (mod n divisor))

 (recur (conj factors divisor)

 (quot n divisor)

 divisor)

 :else

 (recur factors n (inc divisor)))

 factors)))

Let’s also say that I wrote this function using TDD. Here are my
tests:

Click here to view code image

(defn power2 [n]

 (apply * (repeat n 2N)))

(describe "factor primes"

 (it "factors 1 -> []"

 (should= [] (factors-of 1)))

 (it "factors 2 -> [2]"

 (should= [2] (factors-of 2)))

 (it "factors 3 -> [3]"

 (should= [3] (factors-of 3)))

 (it "factors 4 -> [2 2]"

 (should= [2 2] (factors-of 4)))

 (it "factors 5 -> [5]"

 (should= [5] (factors-of 5)))

 (it "factors 6 -> [2 3]"

 (should= [2 3] (factors-of 6)))

 (it "factors 7 -> [7]"

 (should= [7] (factors-of 7)))

 (it "factors 8 -> [2 2 2]"

 (should= [2 2 2] (factors-of 8)))

 (it "factors 9 -> [3 3]"

 (should= [3 3] (factors-of 9)))

 (it "factors lots"

 (should= [2 2 3 3 5 7 11 11 13]

 (factors-of (* 2 2 3 3 5 7 11 11 13

 (it "factors Euler 3"

(should= [71 839 1471 6857] (factors-of 60085

 (should= [71 839 1471 6857] (factors-of 60085

 (it "factors mersenne 2^31-1"

 (should= [2147483647] (factors-of (dec (powe

Pretty cool, right? But how certain am I that this function
actually works? I mean, how do I know that there isn’t some
horrible corner case where the function fails unexpectedly?

Of course, I may never be perfectly sure about this; but there
are some things I can do to make myself a lot more comfortable.
One property of the output is that the product of all the factors
will equal the input. So why don’t I generate a thousand
random integers and make sure that the prime factors of each
multiply together to equal them.

I can do that like so:

Click here to view code image

(def gen-inputs (gen/large-integer* {:min 1 :max

(declare n)

(describe "properties"

 (it "multiplies out properly"

 (should-be

7

 :result

 (tc/quick-check

 1000

 (prop/for-all

 [n gen-inputs]

 (let [factors (factors-of n)]

 (= n (reduce * factors))))))))

7. A forward declaration of n .

Here I’m using test.check , the property-based testing
framework in Clojure that mimics the behavior of QuickCheck.
The idea is pretty simple. I’ve got a generator up there named
gen-inputs . It will generate random integers between 1 and a
billion. That ought to be a good enough range.

8. https://clojure.org/guides/test_check_beginner

The test tells QuickCheck to run 1,000 times. For each integer, it
calculates the prime factors, multiplies them all together, and
makes sure that the product equals the input. Nice.

The tc/quick-check function returns a map with the results.
The :result element of that map will be true if all the

8

https://clojure.org/guides/test_check_beginner

checks passed; and that’s what the should-be :result
asserts.

There is another property of the prime factors: They should all
be prime. So let’s write a function that tests for primality:

Click here to view code image

(defn is-prime? [n]

 (if (= 2 n)

 true

 (loop [candidates (range 2 (inc (Math/sqrt n

 (if (empty? candidates)

 true

 (if (zero? (rem n (first candidates)))

 false

 (recur (rest candidates)))))))

That’s a pretty traditional, if horribly inefficient, algorithm.
Inefficient or not, we can use it to write the property test for the
primality of all the factors:

Click here to view code image

(describe "factors"

 (it "they are all prime"

 (should-be

 :result

 (tc/quick-check

 1000

 (prop/for-all

 [n gen-inputs]

 (let [factors (factors-of n)]

 (every? is-prime? factors)))))))

OK. So now we know that this function returns a list of integers,
each of which is prime, and that when multiplied together
equal the input. That’s kind of the definition of prime factors.

So this is nice. I can randomly generate a bunch of inputs and
then apply property checks to the outputs.

A Diagnostic Technique

But I called property-based testing a diagnostic technique,
didn’t I? So let’s look at a more interesting example and I’ll
show you want I mean.

Remember our Video Store example from the preceding
chapter? Let’s do some property-based testing on that.

First of all, remember that we wrote a function called make-
statement-data that took a policy and a rental-order

and generated the statement-data that we then fed into one
of our formatters? So here’s the type specification of the
rental-order using clojure.spec :

Click here to view code image

(s/def ::name string?)

(s/def ::customer (s/keys :req-un [name]))

(s/def ::title string?)

(s/def ::type #{:regular :childrens :new-release}

(s/def ::movie (s/keys :req-un [::title ::type])

(s/def ::days pos-int?)

(s/def ::rental (s/keys :req-un [::days ::movie]

(s/def ::rentals (s/coll-of ::rental))

(s/def ::rental-order (s/keys :req-un [::custome

That’s not too hard to read. From the bottom up:

A :rental-order is a map with two elements: :customer
and :rentals .
The :rentals element is a collection of :rental items.
A :rental is a map with :days and :movie elements.
A :days element is a positive integer.
A :movie element is a map with a :title and :type .

A :type is one of :regular , :childrens , or :new-
release .
A :title is a string.
A :customer is a map with a single :name element.
A :name is a string.

With this type specification in place, we can write a generator
that produces rental orders that conform to the type. So first,
here are the generators:

Click here to view code image

(def gen-customer-name

 (gen/such-that not-empty gen/string-alphanumeri

(def gen-customer

 (gen/fmap (fn [name] {:name name}) gen-custome

(def gen-days (gen/elements (range 1 100)))

(def gen-movie-type

 (gen/elements [:regular :childrens :new-release

(def gen-movie

 (gen/fmap (fn [[title type]] {:title title :typ

 (gen/tuple gen/string-alphanumeric ge

(def gen-rental

(def gen rental

 (gen/fmap (fn [[movie days]] {:movie movie :day

 (gen/tuple gen-movie gen-days)))

(def gen-rentals

 (gen/such-that not-empty (gen/vector gen-rental

(def gen-rental-order

 (gen/fmap (fn [[customer rentals]]

 {:customer customer :rentals rental

 (gen/tuple gen-customer gen-rentals)

(def gen-policy (gen/elements

 [(make-normal-policy)

 (make-buy-two-get-one-free-pol

I’m not going to explain the ins and outs of clojure.check
here, but I will walk through what the generators do.

gen-policy randomly selects one of the two policies.
gen-rental-order creates a map from gen-customer
and gen-rentals .
gen-rentals creates a vector from gen-rentals and
ensures that it is not empty.
gen-rental creates a map from gen-movie and gen-
days .

gen-movie creates a map from gen/string-
alphanumeric and gen-movie-type .
gen-movie-type selects from among the three types.
gen-days selects between integers from 1 to 100.
gen-customer creates a map with a name from gen-
customer-name .
gen-customer-name generates a nonempty alphanumeric
string.

Do you notice an eerie similarity between the type specification
and the generator? So do I. Here are a few sample outputs from
the generator:

Click here to view code image

[

 {:customer {:name "5Q"},

 :rentals [{:movie {:title "", :type :new-releas

 {:customer {:name "3"},

 :rentals [{:movie {:title "", :type :new-releas

 {:customer {:name "XA"},

 :rentals [{:movie {:title "r", :type :regular}

 {:movie {:title "", :type :childrens}

 {:customer {:name "4v"},

 :rentals [{:movie {:title "3", :type :childrens

 {:customer {:name "0rT"},

 :rentals [{:movie {:title "", :type :regular},

 {:movie {:title "94Y", :type :regula

 {:movie {:title "D5", :type :new-rele

 :days 58}]}

 {:customer {:name "ZFAK"},

 :rentals [{:movie {:title "H8", :type :regular}

 {:movie {:title "d6WS8", :type :regul

 {:movie {:title "d", :type :regular}

 {:movie {:title "Yj8b7", :type :regul

 {:movie {:title "Z2q70", :type :child

 :days 9}]}

 {:customer {:name "njGB0h"},

 :rentals [{:movie {:title "zk3UaE", :type :regu

 :days 53}]}

 {:customer {:name "wD"},

 :rentals [{:movie {:title "51L", :type :childre

 :days 17}]}

 {:customer {:name "2J5nzN"},

 :rentals [{:movie {:title "", :type :regular},

 {:movie {:title "sA17jv", :type :regu

 {:movie {:title "27E41n", :type :new

 :days 85}

 {:movie {:title "Z20", :type :new-rel

 {:movie {:title "8j5B7h6S", :type :re

 :days 76}

 {:movie {:title "vg", :type :children

 {:customer {:name "wk"},

 :rentals [{:movie {:title "Kq6wbGG", :type :chi

 :days 43}

 {:movie {:title "3S2DvUwv", :type :ch

 :days 76}

 {:movie {:title "fdGW", :type :child

 {:movie {:title "aS28X3P", :type :chi

 :days 18}

 {:movie {:title "p", :type :childrens

 {:movie {:title "xgC", :type :regula

 {:movie {:title "CQoY", :type :child

 {:movie {:title "38jWmKlhq", :type :

 :days 96}

 {:movie {:title "Liz8T", :type :regul

]

Just a bunch of random data that conforms nicely to the type of
a rental-order . But let’s check that:

Click here to view code image

(describe "Quick check statement policy"

 (it "generates valid rental orders"

 (should-be

 :result

 (tc/quick-check

 100

 (prop/for-all

 [rental-order gen-rental-order]

 (nil?

 (s/explain-data

 ::constructors/rental-order

 rental-order))))))

This is a nice little quick-check that generates 100 random
rental-order objects and runs them through the
clojure.spec/explain-data function. That function makes
sure that each rental order conforms to the
::constructors/rental-order spec that we saw above. If it
does, it returns nil , which passes the quick-check .

Now, does make-statement-data create a valid statement-
data object? Let’s check that using the same strategy as above:

Click here to view code image

(s/def ::customer-name string?)

(s/def ::title string?)

(s/def ::price pos?)

(s/def ::movie (s/keys :req-un [::title ::price]

(s/def ::movies (s/coll-of ::movie))

(s/def ::owed pos?)

(s/def ::points pos-int?)

(s/def ::statement-data (s/keys :req-un [::custom

 ::movies

 ::owed

 ::points

(it "produces valid statement data"

 (should-be

 :result

 (tc/quick-check

 100

 (prop/for-all

 [rental-order gen-rental-order

 policy gen-policy]

 (nil?

 (s/explain-data

 ::policy/statement-data

 (make-statement-data policy rental-o

So here we see the clojure.spec for the statement-data ,
and the quick-check that makes sure that the output of
make-statement-data conforms to it. Nice.

With all this passing, we can be pretty sure that the generator is
generating valid rental orders. So now let’s get on with the
property checks.

One property we could check is to make sure that when make-
statement-data converts a rental-order into a
statement-data the :owed member of the statement-
data object is the sum of all the movies itemized in that object.

The quick-check for this might be as follows:

Click here to view code image

(it "statement data totals are consistent under a

 (should-be

 :result

 (tc/quick-check

 100

 (prop/for-all

 [rental-order gen-rental-order

 policy gen-policy]

 (let [statement-data (make-statement-data

 policy rental-orde

 prices (map :price (:movies stateme

 owed (:owed statement-data)]

 (= owed (reduce + prices)))))))

This quick-check has a bug in it. Can you spot it?

Here’s the output when I run it:

Click here to view code image

{:shrunk

 {:total-nodes-visited 45,

 :depth 14,

 :pass? false,

 :result false,

 :result-data nil,

 :time-shrinking-ms 3,

 :smallest

 [{:customer {:name "0"},

 :rentals [{:movie {:title "", :type :regula

 {:movie {:title "", :type :regula

 {:movie {:title "", :type :regula

 {:type

 :video-store.

 buy-two-get-one-free-policy/buy-two-get-o

 :failed-after-ms 0,

 :num-tests 7,

 :seed 1672092997135,

 :fail

 [{:customer {:name "4s7u"},

 :rentals

 [{:movie {:title "i7jiVAd", :type :childrens

{:movie {:title "7MQM" :type :new release}

 {:movie {:title "7MQM", :type :new-release}

 {:movie {:title "qlS4S", :type :new-release

 {:movie {:title "X", :type :regular}, :days

 {:movie {:title "w1cRbM", :type :regular},

 {:movie {:title "7Hb41O5", :type :regular}

 {:movie {:title "xWc", :type :childrens},

 {:type

 :video-store.

 buy-two-get-one-free-policy/buy-two-get-on

 :result false,

 :result-data nil,

 :failing-size 6,

 :pass? false}

Yes, I know this looks awful; but this is where the real magic of
quick-check shines through, so bear with me.

First of all, do you see that top element named :shrunk ? That’s
a big clue to what is going on here. When quick-check finds
an error, it begins hunting for the smallest randomly generated
input that continues to produce that error.

So look at the :fail element. That’s the rental-order that
caused the initial failure. Now look at the :smallest element
within the :shrunk element. The quick-check function
managed to shrink the rental-order down while preserving

the failure. That’s the smallest rental-order that it could find
that failed.

And why did it fail? Notice that there are three movies. Notice
also that the policy is buy-two-get-one-free . Ah, of course,
under that policy the sum of the movies is not equal to the
:owed element.

It’s that shrinking behavior that makes property-based testing a
diagnostic technique.

Functional

So why are tools like quick-check not more popular in OO
languages? Perhaps it’s because they work best with pure
functions. I imagine it’s possible to set up generators and test
properties in a mutable system, but it’s likely a lot more
complicated than in an immutable system.

14

GUI

Over the years, I have used two different GUI frameworks in
functional programs. The first is named Quil, and it is based
upon the popular Java framework named Processing. The

1

2

second is SeeSaw, which is based upon the old Java Swing
framework.

1. www.quil.info

2. https://processing.org

3. https://github.com/clj-commons/seesaw

4. https://en.wikipedia.org/wiki/Swing_(Java)

Quil is “functional,” which makes it fun and easy to use in a
“functional” program. SeeSaw is not functional at all. Indeed, it
depends very strongly on mutable state that you must
continuously update. This makes it a royal pain to use in a
functional program. The difference is startling.

One of the first programs I wrote using Quil was spacewar .
I’ve mentioned it a few times in this book. If you’d like to see the
program in action, you can go to
https://github.com/unclebob/spacewar where there is a
ClojureScript version you can run in your browser. I did not
write spacewar to be used in ClojureScript; but Mike Fikes

3 4

http://www.quil.info/
https://processing.org/
https://github.com/clj-commons/seesaw
https://en.wikipedia.org/wiki/Swing_(Java)
https://github.com/unclebob/spacewar

ported it over in a day or so. It actually works better in my
browser than it does in native Clojure on my laptop.

Turtle-Graphics in Quil

Walking through the source code of spacewar is beyond the
scope of this book. However, there is a simpler Quil program
that I wrote awhile back that is the perfect size. It’s turtle-
graphics .

5. https://github.com/unclebob/turtle-graphics

Turtle graphics are a simple set of commands that were
invented for the Logo language in the late 1960s. Those
commands controlled a robot called a turtle. The robot sat on a
large piece of paper and had a pen that could be raised and
lowered onto the paper. The robot could be told to move
forward or backward a certain distance, or to turn a number of
degrees left or right.

6. https://en.wikipedia.org/wiki/Turtle_graphics

Figure 14.1 is a picture of the inventor, Seymour Papert, with
one of his turtles.

5

6

https://github.com/unclebob/turtle-graphics
https://en.wikipedia.org/wiki/Turtle_graphics

Figure 14.1. Seymour Papert with one of his turtles

7. Courtesy of MIT Museum.

So, for example, if you’d like to draw a square, you might issue
these commands:

Pen down

Forward 10

Right 90

Forward 10

Right 90

Forward 10

Right 90

7

Forward 10

Pen up.

The original idea was to introduce children to programming by
showing them how to control the turtle to draw interesting
shapes. I don’t know how well this worked for children, but it
turned out to be pretty useful for programmers who wanted to
draw complex designs on the screen. I once used a Logo system
with turtle graphics on the Commodore 64 to write a pretty
elaborate Lunar Lander game.

Anyway, awhile back, I thought it would be fun to have a turtle
graphics system in Clojure so that I could easily investigate
some interesting mathematical and geometric puzzles.

My goal was not to create a turtle graphics console on which
you would type commands. Instead, I wanted a turtle graphics
API that I could use to write graphical functions in Clojure.

So, for example, I wanted to write a program like this:

(defn polygon [theta, len, n]

 (pen-down)

 (speed 1000)

 (dotimes [_ n]

 (forward len)

 (right theta)))

(defn turtle-script []

 (polygon 144 400 5))

That program draws the picture in Figure 14.2. (Notice the little
turtle sitting on the left vertex of the star.)

Figure 14.2. A star drawn using turtle graphics

The turtle-script function is the entry point for the
turtle-graphics system. You put your drawing commands
into it. In this case, I put a call to the polygon function into it.

Perhaps you’ve noticed that the polygon function does not
appear to be functional because it doesn’t produce a return
value from its inputs. Instead, it has the side effect of drawing
on the screen. Moreover, each of the commands mutates the
state of the turtle. So turtle-graphics programs are not
functional.

And yet, the turtle-graphics framework is “functional.” Or
rather, it is about as functional as a GUI program can be. After
all, the point of a GUI program is to mutate the state of the
screen.

8. Although you might find this interesting:
https://fsharpforfunandprofit.com/posts/13-ways-of-looking-at-
a-turtle/.

The turtle-graphics framework begins by configuring and
invoking Quil:

Click here to view code image

8

https://fsharpforfunandprofit.com/posts/13-ways-of-looking-at-a-turtle/

(defn ^:export -main [& args]

 (q/defsketch turtle-graphics

 :title "Turtle Graphics"

 :size [1000 1000]

 :setup setup

 :update update-state

 :draw draw-state

 :features [:keep-on-top]

 :middleware [m/fun-mode])

 args)

I’m not going to do a full tutorial on Quil here, but there are a
few things I should point out. Take note of the :setup ,
:update , and :draw elements. Each points to a function.

The setup function will be called once at the start of the
program.

The draw-state function will be called 60 times a second in
order to refresh the screen. Everything that should be on the
screen must be drawn by the draw function. The screen
doesn’t remember anything.

The update-state function will be called just before the
draw-state function. This function is used to change the state

of what is being drawn. Think of it as the function that moves
the elements of the screen one 60th of a second into the future.

Think of this like a really simple loop:

Click here to view code image

(loop [state (setup)]

 (draw-state state)

 (recur (update-state state)))

If you think of this as a tail recursive loop, then the contents of
the screen are the tail recursive values. So even though we are
mutating the contents of the screen, we are doing so at the tail
of the recursion where the mutation is harmless. So, although
not purely functional, it is as “functional” as any TCO system
can be.

9. Mostly harmless.

10. Remember our discussion about tail call optimization back
in Chapter 1.

Here’s my setup function:

Click here to view code image

9

10

(defn setup []

 (q/frame-rate 60)

 (q/color-mode :rgb)

 (let [state {:turtle (turtle/make)

 :channel channel}]

 (async/go

 (turtle-script)

 (prn "Turtle script complete"))

 state))

This starts out pretty simple. It sets the frame rate to 60fps and
the color mode to RGB, and it creates the state object that will
be passed to update-state and draw-state .

The async/go function starts up a new lightweight thread in
which our turtle-script will execute.

The state object is composed of a channel and the turtle .
We’ll talk about the channel later. For the moment, let’s
concentrate on the turtle :

Click here to view code image

(s/def ::position (s/tuple number? number?))

(s/def ::heading (s/and number? #(<= 0 % 360)))

(s/def ::velocity number?)

(s/def ::distance number?)

(s/def ::omega number?)

(s/def ::angle number?)

(s/def ::weight (s/and pos? number?))

(s/def ::state #{:idle :busy})

(s/def ::pen #{:up :down})

(s/def ::pen-start (s/or :nil nil?

 :pos (s/tuple number? nu

(s/def ::line-start (s/tuple number? number?))

(s/def ::line-end (s/tuple number? number?))

(s/def ::line (s/keys :req-un [::line-start ::lin

(s/def ::lines (s/coll-of ::line))

(s/def ::visible boolean?)

(s/def ::speed (s/and int? pos?))

(s/def ::turtle (s/keys :req-un [::position

 ::heading

 ::velocity

 ::distance

 ::omega

 ::angle

 ::pen

 ::weight

 ::speed

 ::lines

 ::visible

 ::state]

 :opt-un [::pen-start]))

(defn make []

 {:post [(s/assert ::turtle %)]}

 {:position [0.0 0.0]

 :heading 0.0

 :velocity 0.0

 :distance 0.0

 :omega 0.0

 :angle 0.0

 :pen :up

 :weight 1

 :speed 5

 :visible true

 :lines []

 :state :idle})

This shows the type specification of the turtle , followed by its
constructor. Notice that the constructor checks the type as a
:post condition. The elements of the turtle are mostly self-
explanatory. There’s the XY position, the angular heading, the
velocity, the up/down state of the pen, the drawing weight of the
pen, the visibility state, and so on. The other elements will come
to light soon enough.

How do we draw the turtle?

Click here to view code image

(defn draw-state [state]

 (q/background 240)

 (q/with-translation

 [500 500]

 (let [{:keys [turtle]} state]

 (turtle/draw turtle))))

——Turtle module——

(defn draw [turtle]

 (when (= :down (:pen turtle))

 (q/stroke 0)

 (q/stroke-weight (:weight turtle))

 (q/line (:pen-start turtle) (:position turtle

 (doseq [line (:lines turtle)]

 (q/stroke-weight (:line-weight line))

 (q/line (:line-start line) (:line-end line))

 (when (:visible turtle)

 (q/stroke-weight 1)

 (let [[x y] (:position turtle)

 heading (q/radians (:heading turtle))

 base-left (- (/ WIDTH 2))

 base-right (/ WIDTH 2)

 tip HEIGHT]

 (q/stroke 0)

 (q/with-translation

 [x y]

 (q/with-rotation

 [heading]

 (q/line 0 base-left 0 base-right)

 (q/line 0 base-left tip 0)

 (q/line 0 base-right tip 0))))))

The draw-state function, which is called by Quil 60 times
each second, sets the background color of the screen to light
gray, centers the drawing at (500, 500), and then calls
turtle/draw , which draws the current line in progress and
then all the other lines that were previously drawn. Finally, it
draws the turtle itself. Notice how Quil helps with translation
and rotation.

So how do we update the turtle state?

Click here to view code image

(defn update-state [{:keys [channel] :as state}]

 (let [turtle (:turtle state)

 turtle (turtle/update-turtle turtle)]

 (assoc state :turtle (handle-commands channel

The update-state function calls turtle/update-turtle .
Then it calls handle-commands , and there’s that channel
again. Let’s look at update-turtle first:

Click here to view code image

(defn update-position

 [{:keys [position velocity heading distance] :a

 (let [step (min (q/abs velocity) distance)

 distance (- distance step)

 step (if (neg? velocity) (- step) step)

 radians (q/radians heading)

 [x y] position

 vx (* step (Math/cos radians))

 vy (* step (Math/sin radians))

 position [(+ x vx) (+ y vy)]]

 (assoc turtle :position position

 :distance distance

 :velocity (if (zero? distance)

(defn update-heading [{:keys [heading omega angle

 (let [angle-step (min (q/abs omega) angle)

 angle (- angle angle-step)

 angle-step (if (neg? omega) (- angle-step

 heading (mod (+ heading angle-step) 360)

 (assoc turtle :heading heading

 :angle angle

 :omega (if (zero? angle) 0.0 om

g g

(defn make-line [{:keys [pen-start position weigh

 {:line-start pen-start

 :line-end position

 :line-weight weight})

(defn update-turtle [turtle]

 {:post [(s/assert ::turtle %)]}

 (if (= :idle (:state turtle))

 turtle

 (let [{:keys [distance

 state

 angle

 lines

 position

 pen

 pen-start] :as turtle}

 (-> turtle

 (update-position)

 (update-heading))

 done? (and (zero? distance)

 (zero? angle))

 state (if done? :idle state)

 lines (if (and done? (= pen :down))

 (conj lines (make-line turtle)

 lines)

 pen-start (if (and done? (= pen :down)

 position

p

 pen-start)]

 (assoc turtle

 :state state

 :lines lines

 :pen-start pen-start))))

Notice that update-turtle has a :post condition that
checks the type of the turtle after it has been updated. It’s nice
to know that when you update a big structure you haven’t
messed up some little part of it.

If the turtle ’s :state is :idle , meaning that it is neither
moving nor rotating, then we don’t make any changes.
Otherwise, we update the position and heading of the turtle
and then destructure its internals. We are done when the
distance and angle remaining in the current animated motion
are zero. And if we are done, we set the :state to :idle .

If we are done and the pen is down, then we add the line in
progress to the list of previous lines, and we update the pen-
start to the current position to prepare for the next line.

Updating the position and heading are simple functions that do
the necessary trig calculations to place the turtle in the proper

position and orientation. They both use the turtle’s :velocity
to adjust how big a step they take at each update.

Now on to handling the commands:

Click here to view code image

(defn handle-commands [channel turtle]

 (loop [turtle turtle]

 (let [command (if (= :idle (:state turtle))

 (async/poll! channel)

 nil)]

 (if (nil? command)

 turtle

 (recur (turtle/handle-command turtle comm

If the turtle is :idle , then we are ready for a command. So we
poll the channel . If there is a command on the channel , we
process it by calling turtle/handle-command , and then
repeat until no commands are left on the channel.

Handling each command is pretty straightforward:

Click here to view code image

(defn pen-down [{:keys [pen position pen-start]

 (assoc turtle :pen :down

 :pen-start (if (= :up pen) positi

(defn pen-up [{:keys [pen lines] :as turtle}]

 (if (= :up pen)

 turtle

 (let [new-line (make-line turtle)

 lines (conj lines new-line)]

 (assoc turtle :pen :up

 :pen-start nil

 :lines lines))))

(defn forward [turtle [distance]]

 (assoc turtle :velocity (:speed turtle)

 :distance distance

 :state :busy))

(defn back [turtle [distance]]

 (assoc turtle :velocity (- (:speed turtle))

 :distance distance

 :state :busy))

(defn right [turtle [angle]]

 (assoc turtle :omega (* 2 (:speed turtle))

 :angle angle

 :state :busy))

(defn left [turtle [angle]]

 (assoc turtle :omega (* -2 (:speed turtle))

 :angle angle

 :state :busy))

(defn hide [turtle]

 (assoc turtle :visible false))

(defn show [turtle]

 (assoc turtle :visible true))

(defn weight [turtle [weight]]

 (assoc turtle :weight weight))

(defn speed [turtle [speed]]

 (assoc turtle :speed speed))

(defn handle-command [turtle [cmd & args]]

 (condp = cmd

 :forward (forward turtle args)

 :back (back turtle args)

 :right (right turtle args)

 :left (left turtle args)

 :pen-down (pen-down turtle)

 :pen-up (pen-up turtle)

 :hide (hide turtle)

 :show (show turtle)

 :weight (weight turtle args)

 :speed (speed turtle args)

 :else turtle))

We simply translate the command tokens into function calls.
Not really rocket science. The command functions manage the
state of the turtle. Take for instance, the forward command. It
sets the turtle ’s :state to :busy , sets the turtle’s
:velocity , and sets the :distance it must move before
going :idle again.

OK, we’re almost done. Now all we need to do is look at the way
the turtle-script function sends commands to the
channel :

Click here to view code image

(def channel (async/chan))

(defn forward [distance] (async/>!! channel [:fo

(defn back [distance] (async/>!! channel [:back d

(defn right [angle] (async/>!! channel [:right an

(defn left [angle] (async/>!! channel [:left angl

(defn pen-up [] (async/>!! channel [:pen-up]))

(defn pen-down [] (async/>!! channel [:pen-down]

(defn hide [] (async/>!! channel [:hide]))

(defn show [] (async/>!! channel [:show]))

(defn weight [weight] (async/>!! channel [:weight

(defn speed [speed] (async/>!! channel [:speed sp

The async/>!! function sends its argument to the channel .
If the channel is full, it waits. That really wasn’t very
surprising, was it?

And with that, we can put all the turtle graphics commands we
like into the turtle-script function and watch the turtle
dance around the screen drawing our pretty pictures.

You can see this framework in action in the videos at
www.youtube.com/@Cleancoders; specifically, The Euler Project,
episodes 2.3, 2.2, 5, and 9.

http://www.youtube.com/@Cleancoders

15

Concurrency

Concurrency in functional programs is substantially less
complicated than it is in programs that support mutable state.
The reason, as I said back in Chapter 1, is that you can’t have
concurrent update problems if you don’t do updates. I also said
that this means you can’t have race conditions.

These “facts” remove much of the complication of dealing with
multiple threads. Threads simply cannot interfere with one

another if they are composed of pure functions.

Or can they?

While comforting, those “facts” are not precisely true. The
purpose of this chapter is to show how multithreaded
“functional” programs can still have race conditions.

To examine this, let’s set up some interacting finite state
machines. One of my favorite examples is the making of a
telephone call in the 1960s. The sequence of events looked
roughly like Figure 15.1.

Figure 15.1. A message sequence chart of a telephone call

This is a message sequence chart. Time is on the vertical axis,
and all messages are angled because they all take time to send.

You may be unfamiliar with the telephony nomenclature I used
here. Indeed, if you were born after the year 2000, you may be
unfamiliar with telephones in general. So, for the sake of
history and nostalgia, let me walk you through the process.

Bob wants to place a call to Alice. Bob lifts the telephone
receiver off its hook and holds it to his ear. The telephone
company (telco) sends a dial tone to the receiver. Upon hearing
that tone, Bob dials Alice’s number. The telco then sends a
ringing voltage to Alice’s phone and a ringback tone to Bob’s
receiver. Alice hears the ringing of her phone and lifts the
receiver off the hook. The telco connects Bob to Alice, and Alice
says “Hello” to Bob.

1. Telephones in the early 20th century had a hook that the
receiver hung on. By the 1960s, the hook had been replaced by a
cradle that the receiver sat in; but it was still called the hook.

2. This was a very recognizable sound that meant that the
telephone system was ready for you to dial the number you
wanted to call.

3. The verb dial means to enter the telephone number. In the
early 1960s, this was accomplished by using a rotary dial on the

1

2

3

4 5

face of the telephone.

4. 90 volts in the United States.

5. Another very distinct sound that was meant to entertain the
caller while waiting for the called phone to be answered.

There are three finite state machines running in this scenario:
Bob, telco, and Alice. Bob and Alice run separate instances of
the User state machine shown in Figure 15.2.

Figure 15.2. The User state machine

6

6. These state machines are abbreviated to keep them simple. In
reality, all the states would have transitions back to Idle.

The Telco state machine is shown in Figure 15.3.

Figure 15.3. The Telco state machine

In these diagrams, the -> symbol means to send the
corresponding event to the other state machine.

So when Bob decides to make a call (the call event from the Idle
state) the User state machine sends the off-hook event to the
Telco. When the Telco is in the Waiting for Dial state and
receives the Dial event from the User, it sends the Ring and
Ringback events to the appropriate User state machines.

If you study these diagrams carefully, you should be able to see
how the state machines and messages interact to allow Bob to
call Alice.

We can write these state machines in Clojure quite simply:

Click here to view code image

(def user-sm

 {:idle {:call [:calling caller-off-hook]

 :ring [:waiting-for-connection callee-o

 :disconnect [:idle nil]}

 :calling {:dialtone [:dialing dial]}

 :dialing {:ringback [:waiting-for-connection n

 :waiting-for-connection {:connected [:talking

 :talking {:disconnect [:idle nil]}})

(def telco-sm

 {:idle {:caller-off-hook [:waiting-for-dial dia

 :hangup [:idle nil]}

 :waiting-for-dial {:dial [:waiting-for-answer

 :waiting-for-answer {:callee-off-hook

 [:waiting-for-hangup conn

 :waiting-for-hangup {:hangup [:idle disconnect

Each state machine is simply a hash map of states, each of
which contains a hash map of events that specify the new state
and the action to be performed.

So when the user-sm is in the :idle state and it gets a
:call event, it transitions to the :calling state and calls the
caller-off-hook function.

These state machines can be executed by the following
transition function:

Click here to view code image

(defn transition [machine-agent event event-data

 (swap! log conj (str (:name machine-agent) "<-

 (let [state (:state machine-agent)

 sm (:machine machine-agent)

 result (get-in sm [state event])]

 (if (nil? result)

 (do

 (swap! log conj "TILT!")

 machine-agent)

 (do

 (when (second result)

7

 ((second result) machine-agent event-da

 (assoc machine-agent :state (first result

7. The get-in function returns an element from a nested map.
(get-in {:a {:b 2}} [:a :b]) returns 2 .

The log variable is an atom that is simply used to accumulate
a set of logging statements so that we can watch the operation
of the state machines. Notice that this function takes the
machine-agent and returns it with the new state in place.
This means we can use it with Clojure’s agent STM facility.

An agent is initialized with a data structure and then
serializes all updates to that data structure, thereby eliminating
all concurrent update issues. Here are the functions that create
the two different agent s:

Click here to view code image

(defn make-user-agent [name]

 (agent {:state :idle :name name :machine user-s

(defn make-telco-agent [name]

 (agent {:state :idle :name name :machine telco

We send events to our agents by using the agent ’s send
function:

Click here to view code image

(send caller transition :call [telco caller calle

In this example, we are send ing the transition function to
the caller agent. The send function returns immediately
and queues up the transition function to be executed in the
agent ’s thread. The arguments to the transition function
are the event (:call) and the data that should be passed to the
action function. In this case, the data is a list of the three
agent s that represent the finite state machines in the system.

The action functions are as follows:

Click here to view code image

(defn caller-off-hook

 [sm-agent [telco caller callee :as call-data]]

 (swap! log conj (str (:name @caller) " goes of

 (send telco transition :caller-off-hook call-da

(defn dial [sm-agent [telco caller callee :as cal

 (swap! log conj (str (:name @caller) " dials")

(send telco transition :dial call-data))

 (send telco transition :dial call-data))

(defn callee-off-hook

 [sm-agent [telco caller callee :as call-data]]

 (swap! log conj (str (:name @callee) " goes off

 (send telco transition :callee-off-hook call-da

(defn talk [sm-agent [telco caller callee :as cal

 (swap! log conj (str (:name sm-agent) " talks.

 (Thread/sleep 10)

 (swap! log conj (str (:name sm-agent) " hangs u

 (send telco transition :hangup call-data))

(defn dialtone [sm-agent [telco caller callee :as

 (swap! log conj (str "dialtone to " (:name @cal

 (send caller transition :dialtone call-data))

(defn ring [sm-agent [telco caller callee :as cal

 (swap! log conj (str "telco rings " (:name @cal

 (send callee transition :ring call-data)

 (send caller transition :ringback call-data))

(defn connect [sm-agent [telco caller callee :as

 (swap! log conj "telco connects")

 (send caller transition :connected call-data)

 (send callee transition :connected call-data))

(defn disconnect [sm-agent [telco caller callee

(swap! log conj "disconnect")

 (swap! log conj disconnect)

 (send callee transition :disconnect call-data)

 (send caller transition :disconnect call-data)

The second argument in each of the action functions is
destructured. So, for example, the call-data sent to
caller-off-hook is a list, the first element of which will be
placed in telco , the second in caller , the third in callee ,
and the whole list in call-data .

8. In short, destructuring is a convenient way of breaking a
complex data element into named components. See the Clojure
documentation for more details.

Given this implementation, we should be able to make a call
between Bob and Alice by executing the following code. I have
written it in the form of a test:

Click here to view code image

(it "should make and receive call"

 (let [caller (make-user "Bob")

 callee (make-user "Alice")

 telco (make-telco "telco")]

 (reset! log [])

 (send caller transition :call [telco caller c

8

 (Thread/sleep 100)

 (prn @log)

 (should= :idle (:state @caller))

 (should= :idle (:state @callee))

 (should= :idle (:state @telco))))

This test passes, which means that all the state machines
returned to the idle state by the time 100ms had passed. The log
output looks like this:

Click here to view code image

"Bob<-:call" "Bob goes off hook"

"telco<-:caller-off-hook" "dialtone to Bob"

"Bob<-:dialtone" "Bob dials"

"telco<-:dial" "telco rings Alice"

"Alice<-:ring" "Alice goes off hook"

"Bob<-:ringback"

"telco<-:callee-off-hook" "telco connects"

"Bob<-:connected" "Bob talks"

"Alice<-:connected" "Alice talks"

"Bob hangs up"

"Alice hangs up"

"telco<-:hangup" "disconnect"

"Alice<-:disconnect"

"Bob<-:disconnect"

"telco<-:hangup"

You can see how the threads interleaved with one another,
while all three finite state machines worked together to drive
the call to a successful completion.

The three agents have mutable state; but there can be no
concurrent update problems because the agents serialize their
operations. So no race conditions, right?

Not so fast there, Newt. Let’s investigate another scenario.

What I’m about to show you in Figure 15.4, is a race condition
that existed in the telephone system in the ‘60s. Once again, we
begin with Bob calling Alice. But this time Alice is just about to
call Bob.

9. It probably still exists today if you use landlines.

9

Figure 15.4. The race condition in the telephone system

Do you see what went wrong? Those crossed lines are the
problem. That’s a race condition. The telco tried to ring Alice’s
phone; but before it could make the sound, Alice picked up the
receiver in order to call Bob. From the point of view of the telco,
everything is fine. It rang the phone and Alice picked up. So the
telco happily connects Bob and Alice. But Alice is sitting there
waiting for a dial tone; and Bob is confused because nobody has
said hello and the ringback tone has stopped.

The most likely outcome is that both parties hang up without
talking to each other. Alternatively, Alice might say something
and Bob might respond, and they’d get into the comic routine of
who called who.

Can we make our state machines emulate this fault? Here’s the
setup, once again posed as a test:

Click here to view code image

(it "should race"

 (let [caller (make-user "Bob")

 callee (make-user "Alice")

 telco1 (make-telco "telco1")

 telco2 (make-telco "telco2")]

 (reset! log [])

 (send caller transition :call [telco1 caller

 (send callee transition :call [telco2 callee

 (Thread/sleep 100)

 (prn @log)

 (should= :idle (:state @caller))

 (should= :idle (:state @callee))

 (should= :idle (:state @telco1))

 (should= :idle (:state @telco2))))

Notice that we now have four state machines: one for Bob, one
for Alice, and one telco for each of the two calls. The test fails.
After 100ms, the state machines have not returned to the Idle
state.

So, what does the log tell us?

Click here to view code image

"Bob<-:call" "Bob goes off hook"

"telco1<-:caller-off-hook"

"Alice<-:call" "Alice goes off hook"

"telco2<-:caller-off-hook"

"dialtone to Bob"

"Bob<-:dialtone" "Bob dials"

"telco1<-:dial" "telco rings Alice"

"Bob<-:ringback"

"Alice<-:ring" "TILT!" …

This took me several tries, because the window for that
particular race condition is pretty narrow. But there it is. See
that TILT! ? That’s what our transition function puts in the
log if it is ever asked to make an invalid transition. Alice is still
in the :calling state waiting for the :dialtone event, and
has no way to deal with the :ring event.

The bottom line is that race conditions are still possible even
though concurrent updates are not. That’s because it is always
possible to construct interacting state machines that get out of
sync with one another.

Conclusion

Somewhere around the turn of the century, Moore’s law died.
Clock rates hit a maximum of about 3GHz and then just stopped
increasing. To drive more throughput, hardware engineers
started putting more processors on their chips. We went
through the dual-core stage and the quad-core stage—and we
thought we were going to see a doubling in cores every other
year or so. We started to fret about the possibility of dealing
with machines that had 32, or 64, or 128 cores.

This is about the time functional languages started to gain in
popularity. The thought was that since functional programs
don’t mutate data, multicore operations would be made much
simpler. If you are working with pure functions, it is
theoretically easy to spread those functions out over a plethora
of cores.

But Moore’s law wasn’t done dying. It died for clock speed a few
years before it died for component density. So, for the past
decade or more, our processors have been quad core (don’t talk
to me about hyperthreading); and that is not likely to change.
This has decreased the fear of the 128-core processor and
lessened the urgency behind functional programming.

And that’s probably a good thing because, as this chapter has
shown, the reasoning was somewhat faulty to begin with. Race

conditions might be more common in threads that have
mutable variables, but in any system where there are
concurrent finite state machines, the possibility exists that race
conditions might drive them out of sync with one another.

V

Design Patterns

The idea of design patterns was one of the most profound in
the software industry. It ranks up there with structured
programming, object-oriented programming, and functional
programming. It told us that applications consist, in part, of
repeatable and reusable elements. Those elements solved
problems common to many, if not all, applications.

1. The definitive work on this topic was Erich Gamma, Richard
Helm, Ralph Johnson, and John Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software (Addison-Wesley,
1994).

Of course, like all good ideas in software, design patterns have
been misunderstood, overused, abused, and even discarded as
archaic or specific to only very narrow contexts. This is a
shame, because design patterns are eminently useful.

1

16

Design Patterns Review

A design pattern is a named solution to a common problem in a
particular context. Yes, I know, another word salad. So let me
tell you a story.

Long ago, in a decade far, far away, I was a prolific writer on a
social network called comp.object. In this group, we debated
issues of OO design.

2. A newsgroup within the vast array of newsgroups
transmitted by Network News Transport Protocol (NNTP) over
Unix-to-Unix copy (UUCP) and the Internet.

One day someone posed a simple problem and suggested that
we all solve it in our own way and then debate the result. The
problem was:

Given a switch and a light, make the switch turn the light on.

The debates raged for months.

The simplest solution was, of course, Figure 16.1.

Figure 16.1. The simplest solution for the switch and the light

The Switch class calls the TurnOn method of the Light
class.

2

3

3. Remember, this was an OO forum. Don’t get hung up on the
word class.

The objection to this was that the Switch class could be used
to turn on other things like Fan s or Television s. Therefore,
the Switch class should not know about the Light class. An
abstraction should be imposed between the two, as shown in
Figure 16.2.

Figure 16.2. The Abstract Server

Now the Switch class uses an interface named Switchable .
The Light class implements Switchable .

This solves the problem. Now we could have any number of
devices controlled by the Switch . This solution is one of the
simplest expressions of the DIP, the OCP, and the LSP. It also has
a name. It’s called Abstract Server.4

4. Robert C. Martin, Agile Software Development: Principles,
Patterns, and Practices (Pearson, 2002), 318.

If we were on a team discussing how to protect our Switch
class from being explicitly coupled to our Light class,
someone on the team could pipe up and say, “We could use an
Abstract Server.” If all the team members knew that name and
what it implied, they could quickly decide whether that solution
was appropriate or not.

That’s a design pattern, a named solution to a problem in a
particular context. The value of design patterns is that the
names and the solutions are canonical, and therefore, people
who are familiar with that canon can understand one another
simply by using the name. You say “Abstract Server” and I
immediately understand that you mean “impose an interface
between the client and the server.”

But what about the context part of the design pattern? Well, let’s
go back to our team. Someone has just suggested using the
Abstract Server pattern. Another team member says, “No, you
don’t understand, we don’t own the Light class; it’s part of a
third-party library, so we can’t alter it to implement an
interface.”

So, the context of the problem is that we want to decouple
Switch from Light , but we can’t modify Light . So someone
else on the team says, “Well, we could use an Adapter.”

If you were on the team and didn’t know what the Adapter
pattern was, you wouldn’t understand their suggestion. But if
you were aware of the design patterns canon, you could swiftly
assess the suggestion. Again, the benefit of design patterns is
knowing the names and the canonical forms so that you can
quickly apply them.

The Adapter pattern looks like Figure 16.3.

Figure 16.3. The object form of the Adapter pattern

The LightAdapter implements the Switchable interface
and forwards the TurnOn call to the Light . Even before this
is drawn on the whiteboard, everyone on the team can see it in
their minds because they know the design patterns canon. So
they all nod in agreement with the idea.

Just as they are about to move on to the next issue, someone on
the team says, “Wait, which form of the Adapter should we
use?”

It turns out that the canonical name for a design pattern does
not necessarily describe a single solution. Some of the patterns
have multiple forms. The Adapter is one such pattern. It could
look like Figure 16.3, or it could look like Figure 16.4.

Figure 16.4. The class form of the Adapter pattern

The former is called the object form of the Adapter because the
LightAdapter is its own object. The latter is the class form of
the Adapter because the LightAdapter is a subclass of
Light .

The team members debate the two forms for a moment and
come to the decision that the class form of the Adapter is
sufficient for the moment and will relieve them of the
complication of constructing a separate LightAdapter object.

Patterns in Functional Programming

Among the strange rumors we have heard over the years is that
design patterns are hacks to get around the problems created
by OO languages and that in functional languages they are not
necessary.

As you’ll see in the pages that follow, there are indeed aspects of
certain design patterns that appear to be workarounds for
certain inadequacies in OO languages; but this is hardly
applicable to all design patterns. Moreover, even those
particular design patterns have a more general form in which
they are applicable in functional languages.

Abstract Server

So, what does the Abstract Server look like in a functional
language?

Consider the Switch/Light problem again. Here’s how we
might express it in Clojure:

(defn turn-on-light []

 ;turn on the bloody light!

)

(defn engage-switch []

 ;Some other stuff. . .

 (turn-on-light))

OK, that’s not rocket science. However, the original problem is
immediately evident. Our engage-switch function has a
direct dependency on turn-on-light , which means we can’t
use it to turn on a fan or a television or anything else. So, what
should we do?

We can use the Abstract Server pattern, of course. All we need
to do is insert an abstract interface between the engage-
switch function and the turn-on-light function. We could
do that by simply passing a function argument. Let’s call this
the function form of the Abstract Server:

Click here to view code image

(defn engage-switch [turn-on-function]

 ;Some other stuff. . .

 (turn-on-function))

That works in the simplest case. But let’s make the problem just
a bit more interesting. Let’s say that our engage-switch
function must turn the light both on and off at various times.
Perhaps it’s part of some home security system with special
timers for the lights. This changes the original problem to look
like this:

(defn turn-on-light []

 ;turn on the bloody light!

)

(defn turn-off-light []

 ;Criminy! just turn it off!

)

(defn engage-switch []

 ;Some other stuff...

 (turn-on-light)

 ;Some more other stuff...

 (turn-off-light))

Now the engage-switch function is twice as coupled to the
light. We could use the same function form of the Abstract
Server, but it’s a bit ugly passing in two arguments. So let’s pass
in a single vtable argument. We’ll call this the vtable form of the
Abstract Server:

Click here to view code image

(defn make-switchable-light []

 {:on turn-on-light

 :off turn-off-light})

(defn engage-switch [switchable]

 ;Some other stuff...

 ((:on switchable))

 ;Some more other stuff...

 ((:off switchable)))

Yeah, that’s actually pretty nice. And since Clojure is a
dynamically typed language, we don’t have the problem that an
inheritance or implements relationship would cause.

Of course, we could have solved this with the multi-method
form of the Abstract Server pattern:

Click here to view code image

(defmulti turn-on :type)

(defmulti turn-off :type)

(defmethod turn-on :light [switchable]

 (turn-on-light))

(defmethod turn-off :light [switchable]

 (turn-off-light))

(defn engage-switch [switchable]

 ;Some other stuff...

 (turn-on switchable)

 ;Some more other stuff...

 (turn-off switchable))

I tested this using the following test:

Click here to view code image

(describe "switch/light"

 (with-stubs)

 (it "turns light on and off"

 (with-redefs [turn-on-light (stub :turn-on-li

 turn-off-light (stub :turn-off

 (engage-switch {:type :light})

 (should-have-invoked :turn-on-light)

 (should-have-invoked :turn-off-light))))

The two stubs mock out the target functions. We invoke the
engage-switch function with the {:type :light}
argument. Then we test that the two target functions were, in
fact, called.

I’ll leave the protocol/record form of the Abstract Server pattern
as an exercise. At this point, it should be clear that the pattern is
both applicable and useful in a functional language.

Adapter

The Adapter pattern is used whenever you have a client who
wants to use a server, but the interface that the client expects
and the interface that the server expresses are incompatible.

As an example, let’s suppose that we have the engage-switch
function from the preceding discussion, but we want to pass it a
third-party :variable-light . The turn-on-light function
of the :variable-light accepts an argument for the
intensity of the light: 0 for off and 100 for full on.

The interface of the :variable-light does not match the
expectation of the engage-switch function. So we need an
Adapter.

Perhaps the simplest form of the Adapter might look like this:

Click here to view code image

(defn turn-on-light [intensity]

 ;Turn it on with intensity.

)

(defmulti turn-on :type)

(defmulti turn-off :type)

(defmethod turn-on :variable-light [switchable]

 (turn-on-light 100))

(defmethod turn-off :variable-light [switchable]

 (turn-on-light 0))

(defn engage-switch [switchable]

 ;Some other stuff...

 (turn-on switchable)

 ;Some more other stuff...

 (turn-off switchable))

I tested this with the following test:

Click here to view code image

(describe "Adapter"

 (with-stubs)

 (it "turns light on and off"

 (with-redefs [turn-on-light (stub :turn-on-li

 (engage-switch {:type :variable-light})

 (should-have-invoked :turn-on-light {:times

 (should-have-invoked :turn-on-light {:times

If I were to draw this structure in the UML, I’d likely draw
something like Figure 16.5.

Figure 16.5. The object form of the Adapter pattern

The defmulti functions correspond to the Switchable
interface. The {:type :variable-light} object, coupled to

the two defmethod functions, corresponds to the
VariableLightAdapter . The EngageSwitch and
VariableLight “classes” correspond to the two functions that
we are trying to adapt.

Perhaps you don’t find this convincing. After all, it’s just a
simple little program with a couple of defmulti functions.
There’s no obvious OO structure like that shown in the UML. So
let’s impose that structure by splitting up the source files.

We begin with the switchable interface. In the ns statement,
I used the convention that turn-on-light was the overall
namespace for the project that contains the switchable
namespace:

(ns turn-on-light.switchable)

(defmulti turn-on :type)

(defmulti turn-off :type)

This is a polymorphic interface. Notice that it has no source
code dependencies. Also, keep in mind that the ns statement in
Clojure has the same kind of source file requirement that Java
has for classes. The source file and the namespace have to have
corresponding names. So, as we move the elements of this code5

into separate namespaces, we are also moving them into
separate source files.

5. In particular, the turn-on-light.switchable namespace
must be in a file named switchable.clj within a directory
named turn_on_light .

Next, let’s see the engage-switch and variable-light
namespaces:

Click here to view code image

(ns turn-on-light.engage-switch

 (:require [turn-on-light.switchable :as s]))

(defn engage-switch [switchable]

 ;Some other stuff...

 (s/turn-on switchable)

 ;Some more other stuff...

 (s/turn-off switchable))

————————————————

(ns turn-on-light.variable-light)

(defn turn-on-light [intensity]

 ;Turn it on with intensity.

)

No real surprises here. The engage-switch namespace
depends upon the switchable interface. The variable-
light namespace has no outgoing source code dependencies.

The variable-light-adapter namespace connects the
switchable interface to the variable-light . Notice the
make-adapter constructor. The tests will use that:

Click here to view code image

(ns turn-on-light.variable-light-adapter

 (:require [turn-on-light.switchable :as s]

 [turn-on-light.variable-light :as v-l

(defn make-adapter []

 {:type :variable-light})

(defmethod s/turn-on :variable-light [switchable

 (v-l/turn-on-light 100))

(defmethod s/turn-off :variable-light [switchable

 (v-l/turn-on-light 0))

And lastly, the test ties everything together in a nice, neat little
ball by depending upon all the concrete namespaces:

Click here to view code image

(ns turn-on-light.turn-on-spec

 (:require [speclj.core :refer :all]

 [turn-on-light.engage-switch :refer

 [turn-on-light.variable-light :as v-l

 [turn-on-light.variable-light-adapte

 :as v-l-adapter]))

(describe "Adapter"

 (with-stubs)

 (it "turns light on and off"

 (with-redefs [v-l/turn-on-light (stub :turn-o

 (engage-switch (v-l-adapter/make-adapter))

 (should-have-invoked :turn-on-light

 {:times 1 :with [100]}

 (should-have-invoked :turn-on-light

 {:times 1 :with [0]})

Look through those source code dependencies and compare
them to the UML diagram, and you’ll see that they match
perfectly.

So which form of the Adapter pattern was this? We might call it
the multi-method form; but it is also the object form.

Would it be possible, in Clojure, to build the class form of the
Adapter pattern? No, because Clojure does not have inheritance
of implementation, and that’s what the class form of the
Adapter pattern depends upon.

So, although the Adapter pattern is not language specific, there
are forms that are. It would not be possible, for example, to
create the multi-method form of the Adapter pattern in Java.

Is That Really an Adapter Object?

Perhaps you think that since the only data element in the
variable-light-adapter is the :type , it is not really
worthy of being called an object. OK then, here is a different
version of the variable-light-adapter that you might find
more convincing:

Click here to view code image

(ns turn-on-light.variable-light-adapter

 (:require [turn-on-light.switchable :as s]

 [turn-on-light.variable-light :as v-l

(defn make-adapter [min-intensity max-intensity]

{ t i bl li ht

 {:type :variable-light

 :min-intensity min-intensity

 :max-intensity max-intensity})

(defmethod s/turn-on :variable-light [variable-li

 (v-l/turn-on-light (:max-intensity variable-lig

(defmethod s/turn-off :variable-light [variable-l

 (v-l/turn-on-light (:min-intensity variable-lig

————————

(ns turn-on-light.turn-on-spec

 (:require [speclj.core :refer :all]

 [turn-on-light.engage-switch :refer

 [turn-on-light.variable-light :as v-l

 [turn-on-light.variable-light-adapte

 :as v-l-adapter]))

(describe "Adapter"

 (with-stubs)

 (it "turns light on and off"

 (with-redefs [v-l/turn-on-light (stub :turn-o

 (engage-switch (v-l-adapter/make-adapter 5

 (should-have-invoked :turn-on-light

 {:times 1 :with [90]}

 (should-have-invoked :turn-on-light

 {:times 1 :with [5]})

By now, you should be convinced that this is the Adapter
pattern, right out of the GOF book. You should also be
expecting that many of the other GOF patterns can be expressed
in functional languages like Clojure. And, perhaps more
importantly, you should be thinking about namespace/source
file structures as part of the design and architecture of
functional programs.

6. GOF is the affectionate name we gave to the Design Patterns
book back in the ‘90s. It stands for “Gang of Four” because there
were four authors: Erich Gamma, John Vlissides, Ralph Johnson,
and Richard Helm.

Command

6

Of all the design patterns in the GOF book, Command is the one
that intrigues me the most. Not because it is complicated, but
because it is simple. Very, very simple.

As an aside, this is also what intrigues me about Clojure. As I
said in the introduction to this book, Clojure is semantically rich
but syntactically trivial. Well, the Command pattern has the
same attributes. Its richness is in its outrageous simplicity.

In C++, we might write the Command pattern as follows:

class Command {

 public:

 virtual void execute() = 0;

};

That’s it. Just one abstract class (interface) with a single, pure,
virtual (abstract) function. So simple. But there are just so many
interesting things you can do with this pattern. For a deep dive
into this richness, see the corresponding chapter in Agile
Software Development: Principles, Patterns, and Practices.

7. Martin, Agile Software Development, p. 181.

In a functional language like Clojure, you might think that this
pattern just disappears. After all, if you want to pass a
command to some other function, you can just pass the
command function. You don’t need to make an object out of it,
because in functional languages, functions are objects:

Click here to view code image

(ns command.core)

(defn execute []

)

7

(defn some-app [command]

 ;Some other stuff. . .

 (command)

 ;Some more other stuff. . .

)

———————

(ns command.core-spec

 (:require [speclj.core :refer :all]

 [command.core :refer :all]))

(describe "command"

 (with-stubs)

 (it "executes the command"

 (with-redefs [execute (stub :execute)]

 (some-app execute)

 (should-have-invoked :execute))))

8. The careful reader will recognize that the command, as it is
written, is not a pure (referentially transparent) function. It
should be clear, however, that pure functions can be passed in
the manner shown.

8

As you can see, the test passes the execute function to some-
app , and the some-app function invokes that command. No
big deal.

Now, what if you wanted to create the command with a data
element that will get passed as an argument to the execute
function? In C++, we’d do that this way (pardon the inline
functions):

Click here to view code image

class CommandWithArgument : public Command {

 public:

 CommandWithArgument(int argument)

 :argument(argument)

 {}

 virtual void execute()

 {theFunctionToExecute(argument);}

 private:

 int argument;

 void theFunctionToExecute(int argument)

 {

 //do something with that argument!

 }

};

In Clojure we’d do it like this, once again demonstrating that
functions, in functional languages, are actually objects:

Click here to view code image

(describe "command"

 (with-stubs)

 (it "executes the command"

 (with-redefs [execute (stub :execute)]

 (some-app (partial execute :the-argument))

 (should-have-invoked :execute {:with [:the

—————

(defn execute [argument]

)

(defn some-app [command]

 ;Some other stuff. . .

 (command)

 ;Some more other stuff. . .

)

Undo

One of the more useful variations of the Command pattern can
be seen in the following C++ code:

Click here to view code image

class UndoableCommand : public Command {

 public:

 virtual void undo() = 0;

};

That undo() function opens up so many interesting
possibilities.

Long ago, I worked on a GUI application that was an analog of
AutoCAD. It was a drawing tool for architectural floor plans,
roof plans, property line plans, and so on. The GUI was a typical
palette/canvas. Users clicked in the palette to select the function
they wanted, such as Add a Room, and then they’d click in the
canvas for placement and size.

Every click in the palette caused the appropriate derivative of
the UndoableCommand to be instantiated and executed. The
execution managed the mouse/keyboard gestures in the canvas
and then made the appropriate modifications to the internal
data model. Thus, there was an UndoableCommand derivative
for every different function that the palette could offer.

When an UndoableCommand had finished execution, it was
pushed onto the undo stack. Whenever the user clicked on the
undo icon in the palette, the UndoableCommand on the top of
the undo stack was popped off and its undo function was
called.

As an UndoableCommand object executed, it recorded what it
did in such a way that the undo function could reverse those
changes. In C++, that recording was kept in the member
variables of the particular UndoableCommand object itself:

Click here to view code image

class AddRoomCommand : public UndoableCommand {

 public:

 virtual void execute() {

 // manage canvas events to add room

 // record what was done in theAddedRoom

 }

 virtual void undo() {

 // remove theAddedRoom from the canvas

 }

 private:

 Room* theAddedRoom;

};

This is not functional, because the AddRoomCommand object is
mutable. But in a functional language, we can simply have the
execute function create a new instance of
UndoableCommand . Something like this:

Click here to view code image

(ns command.undoable-command)

(defmulti execute :type)

(defmulti undo :type)

—————

(ns command.add-room-command

 (:require [command.undoable-command :as uc]))

(defn add-room []

 ;stuff that adds rooms to the canvas

 ;and returns the added room

)

(defn delete-room [room]

 ;stuff that deletes the specified room from the

)

(defn make-add-room-command []

([]

 {:type :add-room-command})

(defmethod uc/execute :add-room-command [command

 (assoc (make-add-room-command) :the-added-room

(defmethod uc/undo :add-room-command [command]

 (delete-room (:the-added-room command)))

——————

(ns command.core

 (:require [command.undoable-command :as uc]

 [command.add-room-command :as ar]))

(defn gui-app [actions]

 (loop [actions actions

 undo-list (list)]

 (if (empty? actions)

 :DONE

 (condp = (first actions)

 :add-room-action

 (let [executed-command (uc/execute

 (ar/make-add-roo

 (recur (rest actions)

 (conj undo-list executed-command

 :undo-action

 (let [command-to-undo (first undo-list)]

([()]

 (uc/undo command-to-undo)

 (recur (rest actions)

 (rest undo-list)))

 :TILT))))

————————

(ns command.core-spec

 (:require [speclj.core :refer :all]

 [command.core :refer :all]

 [command.add-room-command :as ar]))

(describe "command"

 (with-stubs)

 (it "executes the command"

 (with-redefs [ar/add-room (stub :add-room {:

 ar/delete-room (stub :delete-ro

 (gui-app [:add-room-action :undo-action])

 (should-have-invoked :add-room)

 (should-have-invoked :delete-room {:with [

We create the undoable-command interface using defmulti
functions. We implement that interface in the add-room-
command namespace, and we simulate the GUI in the gui-app
function of the command.core namespace.

The test stubs out the low-level functions of the add-room-
command and makes sure they are called correctly. It calls the
gui-app with a list of palette-actions .

The two methods of the add-room-command are
polymorphically dispatched. That might not seem necessary for
the execute case, since the gui-app has just created the
add-room-command object. But were we to add more
commands to this system, the polymorphic dispatch of
execute would become more necessary.

The polymorphic dispatch of undo is clearly necessary, even in
this small example, because by the time the :undo-action is
received from the palette, we have no idea which command is
being undone.

Here, again, we see that as we add complexity to the
application, the canonical form of the GOF pattern begins to
assert itself. With the single method command, we could get
away with using plain old functions (function objects, really).
But when the application needed a richer kind of command, we
fell back on the GOF style.

Composite

Composite continues the theme of semantic richness and
syntactic triviality. It is a wonderful example of the old
handle/body approach that I first read about in one of Jim
Coplien’s books. The structure of the Composite pattern is
depicted in the UML in Figure 16.6.

9. James O. Coplien, Advanced C++ Programming Styles and
Idioms (Addison-Wesley, 1991).

9

Figure 16.6. The Composite pattern

Our old friend the Switchable interface is implemented by
our other old friends, the Light and the VariableLight . The
CompositeSwitchable also implements Switchable and
contains a list of other instances of Switchable .

The implementation of TurnOn and TurnOff in the
CompositeSwitchable simply propagates calls of the same
functions to all the instances in the list. Thus, when you call
TurnOn on an instance of a CompositeSwitchable , it will
call TurnOn on all the Switchable instances it contains.

In Java, we might implement CompositeSwitchable as
follows:

Click here to view code image

public class CompositeSwitchable implements Switc

 private List<Switchable> switchables = new Arra

 public void addSwitchable(Switchable s) {

 switchables.add(s):

 }

 public void turnOn() {

 for (var s : switchables)

 s.turnOn();

 }

 public void turnOff() {

 for (var s : switchables)

 s.turnOff();

 }

}

In a functional language, like Clojure, the temptation is to avoid
the Composite pattern and simply use the map or doseq
function, as you can see in the test below:

Click here to view code image

(ns composite-example.switchable)

(defmulti turn-on :type)

(defmulti turn-off :type)

—————

(ns composite-example.light

 (:require [composite-example.switchable :as s]

(defn make-light [] {:type :light})

(defn turn-on-light [])

(defn turn-off-light [])

(defmethod s/turn-on :light [switchable]

 (turn-on-light))

(defmethod s/turn-off :light [switchable]

 (turn-off-light))

———————

(ns composite-example.variable-light

 (:require [composite-example.switchable :as s]

(defn make-variable-light [] {:type :variable-lig

(defn set-light-intensity [intensity])

(defmethod s/turn-on :variable-light [switchable

 (set-light-intensity 100))

(defmethod s/turn-off :variable-light [switchable

(set-light-intensity 0))

 (set light intensity 0))

———————————

(ns composite-example.core-spec

 (:require [speclj.core :refer :all]

 [composite-example

 [light :as l]

 [variable-light :as v]

 [switchable :as s]]))

(describe "composite-switchable"

 (with-stubs)

 (it "turns all on"

 (with-redefs

 [l/turn-on-light (stub :turn-on-light)

 v/set-light-intensity (stub :set-light-int

 (let [switchables [(l/make-light) (v/make-v

 (doseq [s-able switchables] (s/turn-on s

 (should-have-invoked :turn-on-light)

 (should-have-invoked :set-light-intensity

 {:with [100]})))))

This accomplishes the goal of turning on all the lights, but it
does so at the expense of externalizing the plurality of the
lights. The point of the Composite pattern is to hide that
plurality. So let’s use the actual Composite pattern:

Click here to view code image

(ns composite-example.composite-switchable

 (:require [composite-example.switchable :as s]

(defn make-composite-switchable []

 {:type :composite-switchable

 :switchables []})

(defn add [composite-switchable switchable]

 (update composite-switchable :switchables conj

(defmethod s/turn-on :composite-switchable [c-swi

 (doseq [s-able (:switchables c-switchable)]

 (s/turn-on s-able)))

(defmethod s/turn-off :composite-switchable [c-sw

 (doseq [s-able (:switchables c-switchable)]

 (s/turn-off s-able)))

——————

(ns composite-example.core-spec

 (:require [speclj.core :refer :all]

 [composite-example

 [light :as l]

 [variable-light :as v]

 [switchable :as s]

 [composite-switchable :as cs]]))

(describe "composite-switchable"

 (with-stubs)

 (it "turns all on"

 (with-redefs

 [l/turn-on-light (stub :turn-on-light)

 v/set-light-intensity (stub :set-light-int

 (let [group (-> (cs/make-composite-switchab

 (cs/add (l/make-light))

 (cs/add (v/make-variable-li

 (s/turn-on group)

 (should-have-invoked :turn-on-light)

 (should-have-invoked :set-light-intensity

 {:with [100]})))))

The composite-switchable implements the switchable
interface. The add function is functional in that it returns a
new composite-switchable with the argument added to the
:switchables list. The turn-on and turn-off methods
use doseq to iterate through the :switchables list and
propagate the appropriate function call. Finally, the test creates
the composite-switchable , adds a light and variable-
light , and then invokes turn-on . And we see both lights
turned on appropriately.

Functional?

At this point, you might be thinking that this is all well and good
for objects that have side effects, like lights and variable lights.
Indeed, the entire switchable interface is oriented around
the side effect of turning something on or off. So is this pattern
only for objects with side effects?

Let’s consider a shape abstraction that looks like this:

Click here to view code image

(ns composite-example.shape

 (:require [clojure.spec.alpha :as s]))

(s/def ::type keyword?)

(s/def ::shape-type (s/keys :req [::type]))

(defmulti translate (fn [shape dx dy] (::type sha

(defmulti scale (fn [shape factor] (::type shape

It’s a straightforward interface with two methods: translate
and scale . I also added a type specification for safety’s sake.
(This would be a good time to brush up on the double-colon
syntax of namespaced keywords.) Every shape will be a map
that has a ::shape/type element.

The circle and square implementations are also pretty
straightforward, including their type specifications:

Click here to view code image

(ns composite-example.circle

 (:require [clojure.spec.alpha :as s]

 [composite-example.shape :as shape])

(s/def ::center (s/tuple number? number?))

(s/def ::radius number?)

(s/def ::circle (s/keys :req [::shape/type

 ::radius

 ::center]))

(defn make-circle [center radius]

 {:post [(s/valid? ::circle %)]}

 {::shape/type ::circle

 ::center center

 ::radius radius})

(defmethod shape/translate ::circle [circle dx dy

 {:pre [(s/valid? ::circle circle)

 (number? dx) (number? dy)]

 :post [(s/valid? ::circle %)]}

 (let [[x y] (::center circle)]

 (assoc circle ::center [(+ x dx) (+ y dy)]))

(defmethod shape/scale ::circle [circle factor]

 {:pre [(s/valid? ::circle circle)

 (number? factor)]

 :post [(s/valid? ::circle %)]}

 (let [radius (::radius circle)]

 (assoc circle ::radius (* radius factor))))

———————

(ns composite-example.square

 (:require [clojure.spec.alpha :as s]

 [composite-example.shape :as shape])

(s/def ::top-left (s/tuple number? number?))

(s/def ::side number?)

(s/def ::square (s/keys :req [::shape/type

 ::side

 ::top-left]))

(defn make-square [top-left side]

 {:post [(s/valid? ::square %)]}

 {::shape/type ::square

 ::top-left top-left

 ::side side})

(defmethod shape/translate ::square [square dx dy

 {:pre [(s/valid? ::square square)

 (number? dx) (number? dy)]

 :post [(s/assert ::square %)]}

 (let [[x y] (::top-left square)]

 (assoc square ::top-left [(+ x dx) (+ y dy)]

(defmethod shape/scale ::square [square factor]

 {:pre [(s/valid? ::square square)

 (number? factor)]

 :post [(s/valid? ::square %)]}

 (let [side (::side square)]

 (assoc square ::side (* side factor))))

Notice the :pre and :post conditions on the methods. I’m
using these to check the types coming into and going out of the
functions. You could rightly be concerned about the runtime
penalty of all those checks. I’d either globally disable them, or
strategically comment them out once I was happy that my types
were being managed properly.

10. There is a compile-time switch that disables all asserts,
including :pre and :post .

Notice that the translate and scale functions return new
shape instances. They are fully functional in their behavior.

So, now let’s look at composite-shape :

Click here to view code image

10

(ns composite-example.composite-shape

 (:require [clojure.spec.alpha :as s]

 [composite-example.shape :as shape])

(s/def ::shapes (s/coll-of ::shape/shape-type))

(s/def ::composite-shape (s/keys :req [::shape/ty

 ::shapes]

(defn make []

 {:post [(s/assert ::composite-shape %)]}

 {::shape/type ::composite-shape

 ::shapes []})

(defn add [cs shape]

 {:pre [(s/valid? ::composite-shape cs)

 (s/valid? ::shape/shape-type shape)]

 :post [(s/valid? ::composite-shape %)]}

 (update cs ::shapes conj shape))

(defmethod shape/translate ::composite-shape [cs

 {:pre [(s/valid? ::composite-shape cs)

 (number? dx) (number? dy)]

 :post [(s/valid? ::composite-shape %)]}

 (let [translated-shapes (map #(shape/translate

 (::shapes cs))]

 (assoc cs ::shapes translated-shapes)))

(defmethod shape/scale ::composite-shape [cs fact

 {:pre [(s/valid? ::composite-shape cs)

 (number? factor)]

 :post [(s/valid? ::composite-shape %)]}

 (let [scaled-shapes (map #(shape/scale % facto

 (::shapes cs))]

 (assoc cs ::shapes scaled-shapes)))

We’ve seen this pattern before in the light / variable-light
example. This time, however, the composite-shape returns a
new composite-shape with the new shape instances. And
so it is functional.

For those of you who are curious, here are the tests I used:

Click here to view code image

(ns composite-example.core-spec

 (:require [speclj.core :refer :all]

 [composite-example

 [square :as square]

 [shape :as shape]

 [circle :as circle]

 [composite-shape :as cs]]))

(describe "square"

 (it "translates"

 (let [s (square/make-square [3 4] 1)

 translated-square (shape/translate s 1

 (should= [4 5] (::square/top-left translate

 (should= 1 (::square/side translated-square

 (it "scales"

 (let [s (square/make-square [1 2] 2)

 scaled-square (shape/scale s 5)]

 (should= [1 2] (::square/top-left scaled-sq

 (should= 10 (::square/side scaled-square))

(describe "circle"

 (it "translates"

 (let [c (circle/make-circle [3 4] 10)

 translated-circle (shape/translate c 2

 (should= [5 7] (::circle/center translated

 (should= 10 (::circle/radius translated-ci

 (it "scales"

 (let [c (circle/make-circle [1 2] 2)

 scaled-circle (shape/scale c 5)]

 (should= [1 2] (::circle/center scaled-circ

 (should= 10 (::circle/radius scaled-circle

(describe "composite shape"

 (it "translates"

 (let [cs (-> (cs/make)

 (cs/add (square/make-square [0 0

 (cs/add (circle/make-circle [10

 translated-cs (shape/translate cs 3 4)

 (should= #{{::shape/type ::square/square

 ::square/top-left [3 4]

 ::square/side 1}

 {::shape/type ::circle/circle

 ::circle/center [13 14]

 ::circle/radius 10}}

 (set (::cs/shapes translated-cs))

 (it "scales"

 (let [cs (-> (cs/make)

 (cs/add (square/make-square [0 0

 (cs/add (circle/make-circle [10

 scaled-cs (shape/scale cs 12)]

 (should= #{{::shape/type ::square/square

 ::square/top-left [0 0]

 ::square/side 12}

 {::shape/type ::circle/circle

 ::circle/center [10 10]

 ::circle/radius 120}}

 (set (::cs/shapes scaled-cs))))))

You may have noticed that as we proceed in these chapters, I’m
using more of the nuanced features of Clojure. This is
intentional. I expect that as you read this book, you will have a
good Clojure reference nearby, so I’m giving you a series of

opportunities to look things up and get more familiar with the
language.

As we have seen, Composite is yet another GOF pattern that fits
well into the functional world. Once we start taking advantage
of polymorphic dispatch, with either vtables, multi-methods, or
protocol/record structures, the GOF patterns fit right in, more or
less as the GOF described them.

Decorator

Yet another of the handle/body patterns is Decorator. The
Decorator pattern is a way to add functionality to a type model
without directly modifying the type model.

For example, let’s continue with our shape project. We have a
shape type model that supports circle and square
subtypes. Within that type model, so long as it conforms to the
LSP, we can translate and scale any of the subtypes of

shape without knowing the explicit subtype we are
manipulating.

Now let’s add a new, optional functionality: a journaled-
shape . A journaled-shape is a shape that remembers the
operations that have been performed on it since its creation.
We want to be able to keep journals on square s and circle s;
but only certain square s and circle s. We don’t want every
circle and square to be journaled, because the memory
and processing penalty is too high.

Now, of course, we could implement this by adding a
:journaled? flag to the shape abstraction and then putting
an if statement in the circle and square
implementations. But that’s messy. What we really want is a
way to add this functionality without changing the shape
abstraction or any of its subtypes, including circle , square ,
and composite-shape (the OCP).

Enter the Decorator pattern. The UML looks like Figure 16.7.

Figure 16.7. The Decorator pattern

I’ve included the composite-shape because it is currently
part of the shape type model. The journaled-shape is the
Decorator. The journaled-shape derives from shape and
holds a reference to a shape . When translate or scale is
called on a journaled-shape it creates an entry in the
journal and then delegates the call to the contained shape .

Here’s the Clojure implementation:

Click here to view code image

(ns decorator-example.journaled-shape

 (:require [decorator-example.shape :as shape]

 [clojure.spec.alpha :as s]))

(s/def ::journal-entry

 (s/or :translate (s/tuple #{:translate}

 :scale (s/tuple #{:scale} number?))

(s/def ::journal (s/coll-of ::journal-entry))

(s/def ::shape ::shape/shape-type)

(s/def ::journaled-shape (s/and

 (s/keys :req [::shape/

 ::journa

 ::shape

 #(= ::journaled-shape

 (::shape/type %))

(defn make [shape]

 {:post [(s/valid? ::journaled-shape %)]}

 {::shape/type ::journaled-shape

 ::journal []

 ::shape shape})

(defmethod shape/translate ::journaled-shape [js

 {:pre [(s/valid? ::journaled-shape js)

 (number? dx) (number? dy)]

 :post [(s/valid? ::journaled-shape %)]}

 (-> js (update ::journal conj [:translate dx dy

 (assoc ::shape (shape/translate (::shape js

(defmethod shape/scale ::journaled-shape [js fact

 {:pre [(s/valid? ::journaled-shape js)

(number? factor)]

11

 (number? factor)]

 :post [(s/valid? ::journaled-shape %)]}

 (-> js (update ::journal conj [:scale factor])

 (assoc ::shape (shape/scale (::shape js) fa

11. A set can be used as a function that tests for membership.

The ::journaled-shape object has ::shape and
::journal fields. The ::journal field is a collection of
::journal-entry tuples that are of the form [:translate
dx dy] or [:scale factor] where dx , dy , and factor
are numbers. The ::shape field must contain a valid shape .

The make constructor creates a valid journaled-shape (as
checked by the :post condition).

The translate and scale functions add the appropriate
journal entry to the ::journal and then delegate their
respective functions to the ::shape , returning a new
journaled-shape with the updated ::journal and the
modified ::shape .

Here’s the test. I only tested the journaled-shape with a
square because if it works for square , it will work for every
shape :

Click here to view code image

(describe "journaled shape decorator"

 (it "journals scale and translate operations"

 (let [jsd (-> (js/make (square/make-square [0

 (shape/translate 2 3)

 (shape/scale 5))]

 (should= [[:translate 2 3] [:scale 5]]

 (::js/journal jsd))

 (should= {::shape/type ::square/square

 ::square/top-left [2 3]

 ::square/side 5}

 (::js/shape jsd)))))

We make a journaled-shape with a square in it. We
translate and scale it, and then we make sure the
::journal has recorded the translate and scale calls
and that the square has the translated and scaled values.

Once again, I’ve included the type specifications just to give you
a challenge and to demonstrate how they can be used. Frankly,
however, I think the tests do an adequate job of checking the
types; so in real life, I doubt I would use such detailed type
specifications for this kind of small problem. On the other hand,
it is kind of nice to see the types all spelled out like that.

In any case, notice that the journaled-shape Decorator will
work for any shape , including a composite-shape . So we
have effectively added a new functionality to the type model
without making any changes to the existing element of that type
model. That’s the OCP at work.

Visitor

Oh, no! Not the. . . Visitor! Yes, we’re going to investigate the
much-maligned Visitor pattern. Visitor is not one of the

handle/body patterns. It has its own unique structure that, as
we’ll see, is complicated by certain language choices.

The purpose of the Visitor pattern is similar to that of the
Decorator pattern. We want to add a new function to an
existing type model without changing that type model (the
OCP). The Decorator is appropriate when the new function is
independent of the other subtypes in the type model. Look back
at the journaled-shape to verify this constraint. The
journaling was independent of whether the contained shape
was a circle or a square . The journaled-shape
Decorator never knew the subtype of the contained shape .

We use the Visitor pattern when the function we wish to add is
dependent upon the subtypes in the type model.

So, for example, what if we wanted to add a function to our
shape abstraction for converting the shape to a string for
serialization purposes? We could add a to-string function to
the shape interface. Easy-peasy.

But wait! What if one of our customers wanted the shapes in
XML? I suppose we could add a to-xml function as well as the
to-string function.

But, wait again! What if another of our customers wanted the
shapes in JSON, and yet another wanted them in YAML, and. . .

At some point, you realize that there is no end to these data
formats and that customers are going to continually ask you for
more and more and more. And you don’t want to pollute the
shape interface with all those horrible methods.

The Visitor pattern gives us a way out of this dilemma. The UML
looks something like Figure 16.8.

Figure 16.8. The Visitor pattern

The first thing I want to point out is the 90-degree rotation of
the Shape subtypes into methods in the ShapeVisitor . Each
of the subtypes, Square and Circle , is the type of the
argument of a visit function in the ShapeVisitor . I call the
subtype-to-method transformation a 90-degree rotation because
it pleases some neurons in my hindbrain.

We see our Shape abstraction and all its subtypes over on the
left. On the right, we see the ShapeVisitor hierarchy. The
pattern adds the accept function to the Shape interface. That
function takes a single argument, which is a ShapeVisitor .
This violates the OCP, but only once.

In Java, the implementation of the accept function is trivial:

void accept(ShapeVisitor v) {

 v.visit(this);

}

If you’ve never studied the Visitor pattern before, then this
might be a little difficult to follow. So take your time and walk
through this with me.

Let’s say we want a JSON string for some Shape we’ve got. In
Java, or C++ or other similar languages, here’s how we’d get it:

Click here to view code image

Shape s = // get a shape without knowing the subt

ShapeVisitor v = new JsonVisitor();

s.accept(v);

String json = v.getJson();

We get a Shape object from somewhere. We create the
JsonVisitor . We pass the JsonVisitor to our Shape using
the accept method. The accept method polymorphically
dispatches to the proper subtype of Shape —let’s say it’s a
Square . The accept method of Square calls visit(this)
on the JsonVisitor . The type of this is Square , so the
visit(Square s) function of the JsonVisitor is called.
That function generates the JSON string for the Square and
saves it in a member variable of the JsonVisitor . The
getJson() function returns the contents of that member
variable.

You may have to read that over a few times to follow it. This is a
technique called double-dispatch. The first dispatch deploys to
the subtype of the Shape , so now we know the type of that
subtype. The second dispatch deploys to the proper subtype of
the visitor passing along the true type of the subtype.

If you followed all of that, you can see that each of the
derivatives of the ShapeVisitor is a new “method” of the
Shape type model, but the only thing we had to add to Shape
was the accept method. So ~(the OCP). You should also now
understand why we couldn’t use a Decorator. The new
functions depend strongly on the subtypes. You can’t make a
JSON string for a Square if you don’t know it’s a Square .

Now, I told you all that so I could tell you this. All that horrible
complexity is there because of a language constraint. Yes, yes. . .
this is where all those design pattern naysayers actually do
have a point. The Visitor pattern is as complex as it is because
of a particular language feature.

What feature is that? Closed classes.

To Close, or to Clojure?

In languages like C++ and Java, we create classes that are closed.
What that means is that we cannot add a new method to a class
by putting that new method’s declaration in a new source file. If
we want to add a new method to a class, in a closed language,
we have to open the source file of that class and add the method
within the definition of that class.

Clojure does not have this constraint. Neither, to some extent,
does C#. Indeed, many languages allow you to add methods to
classes without changing the source file that contains the
declaration of those classes.

The reason Clojure does not have this constraint is that classes
are not a feature of the language. We create them by
convention, not by syntax.

So, wait, does that mean we don’t need the Decorator or Visitor
pattern in Clojure? No, it doesn’t mean that at all. Indeed, as we
saw, we still need the Decorator in its GOF form. How else
would you do the journaled-shape ?

However, the GOF form of the Visitor is not necessary in
languages that have open classes. Or rather, some of the details
of the GOF form are not necessary.

So let me show you this particular Visitor in Clojure. First, the
tests:

Click here to view code image

(ns visitor-example.core-spec

 (:require [speclj.core :refer :all]

 [visitor-example

 [square :as square]

 [json-shape-visitor :as jv]

 [circle :as circle]]))

(describe "shape-visitor"

 (it "makes json square"

 (should= "{\"top-left\": [0,0], \"side\": 1}

 (jv/to-json (square/make [0 0] 1)))

 (it "makes json circle"

 (should= "{\"center\": [3,4], \"radius\": 1}

 (jv/to-json (circle/make [3 4] 1)))

This shouldn’t be too surprising; although you should pay
special attention to the source code dependencies. This test
needs pretty much everything.

Now let’s remember what the shape type model looks like. Just
to keep things simple, I’ve removed all the clojure.spec type
specifications:

Click here to view code image

(ns visitor-example.shape)

(defmulti translate (fn [shape dx dy] (::type sha

(defmulti scale (fn [shape factor] (::type shape

———————

(ns visitor-example.square

 (:require

 [visitor-example.shape :as shape]))

(defn make [top-left side]

 {::shape/type ::square

 ::top-left top-left

 ::side side})

(defmethod shape/translate ::square [square dx dy

 (let [[x y] (::top-left square)]

 (assoc square ::top-left [(+ x dx) (+ y dy)]

(defmethod shape/scale ::square [square factor]

 (let [side (::side square)]

 (assoc square ::side (* side factor))))

————————

(ns visitor-example.circle

 (:require

 [visitor-example.shape :as shape]))

(defn make [center radius]

 {::shape/type ::circle

 ::center center

 ::radius radius})

(defmethod shape/translate ::circle [circle dx dy

 (let [[x y] (::center circle)]

 (assoc circle ::center [(+ x dx) (+ y dy)]))

(defmethod shape/scale ::circle [circle factor]

 (let [radius (::radius circle)]

 (assoc circle ::radius (* radius factor))))

That should all look pretty familiar. Now for the json-shape-
visitor :

Click here to view code image

(ns visitor-example.json-shape-visitor

 (:require [visitor-example

 [shape :as shape]

 [circle :as circle]

 [square :as square]]))

(defmulti to-json ::shape/type)

(defmethod to-json ::square/square [square]

 (let [{:keys [::square/top-left ::square/side

 [x y] top-left]

 (format "{\"top-left\": [%s,%s], \"side\": %s

12

(defmethod to-json ::circle/circle [circle]

 (let [{:keys [::circle/center ::circle/radius]}

 [x y] center]

 (format "{\"center\": [%s,%s], \"radius\": %s

12. The namespaced keyword destructuring creates a local var
named for the local part of the key— top-left in this case.

Look at this carefully. That defmulti in the json-shape-
visitor adds the to-json method directly into the shape
type model. You probably understand it well enough at this
point; but do you see why this is a Visitor?

Can you see the 90-degree rotation from subtypes to functions?

Just like the Java version of the Visitor, all the subtypes for the
to-json operation are gathered into the json-shape-
visitor module.

If you follow all the source code dependencies and compare
them to the UML diagram, you’ll see that they are all there. The
only things missing are the ShapeVisitor interface and the
dual dispatch. Those were just there to get around the fact that
languages like C++ and Java have closed classes.

This tells us that the GOF got this pattern a bit wrong. The dual
dispatch is ancillary to the Visitor pattern and is only necessary
in languages with closed classes.

The 90-degree Problem

But wait. That 90-degree rotation has a problem. Whenever you
have a module that has methods for each of the subtypes of
some type model, that module must be changed whenever the
type model is changed. For example, if we were to add a
triangle to our shape hierarchy, our json-shape-
visitor would need a ::triangle/triangle defmethod
of to-json . This violates the OCP.

This is also a problem because it violates the Dependency Rule of
Clean Architecture by forcing higher-level modules to have
source code dependencies upon lower-level modules across an
architectural boundary. This is shown in the UML in Figure
16.9.

13. Robert C. Martin, Clean Architecture (Pearson, 2017), p. 203.

14. Martin, Clean Architecture, p. 159.

13

14

Figure 16.9. Violation of the Dependency Rule

In general, we want the shape implementations to be plug-ins
to the App . But the json-shape-visitor thwarts that
because the only way for our App to emit JSON is to invoke the
json-shape-visitor , which depends directly on circle
and square .

In Java, C#, and C++, we can solve this by using an abstract
factory, which the App could use to instantiate the visitor
object without depending directly upon it.

In Clojure, we have another—and much better—option. We can
just separate the interface of the json-shape-visitor from
its implementation as follows:

Click here to view code image

(ns visitor-example.json-shape-visitor

 (:require [visitor-example

 [shape :as shape]]))

(defmulti to-json ::shape/type)

————————

(ns visitor-example.json-shape-visitor-implementa

 (:require [visitor-example

 [json-shape-visitor :as v]

 [circle :as circle]

 [square :as square]]))

(defmethod v/to-json ::square/square [square]

 (let [{:keys [::square/top-left ::square/side]}

 [x y] top-left]

 (format "{\"top-left\": [%s,%s], \"side\": %s

(defmethod v/to-json ::circle/circle [circle]

 (let [{:keys [::circle/center ::circle/radius]}

 [x y] center]

 (format "{\"center\": [%s,%s], \"radius\": %s

The trick to this is to make sure that the json-shape-
visitor-implementation module is require d by main so
that the defmethod s are properly registered with the
defmulti :

Click here to view code image

(ns visitor-example.main

 (:require [visitor-example

 [json-shape-visitor-implementation]

Typically, main is invoked before any part of the application,
and thus, the application does not have a source code
dependency on main . Unfortunately, my tests do not have
access to a true main , so the dependency has to be included:

15. Martin, Clean Architecture, p. 231.

Click here to view code image

(ns visitor-example.core-spec

 (:require [speclj.core :refer :all]

 [visitor-example

 [square :as square]

 [json-shape-visitor :as jv]

 [circle :as circle]

 [main]]))

(describe "shape-visitor"

 (it "makes json square"

 (should= "{\"top-left\": [0,0], \"side\": 1}

 (jv/to-json (square/make [0 0] 1)))

 (it "makes json circle"

15

j

 (should= "{\"center\": [3,4], \"radius\": 1}

 (jv/to-json (circle/make [3 4] 1)))

So there it is, a functional, and architecturally competent,
Visitor in Clojure. As the UML in Figure 16.10 shows, all the
dependencies cross the architectural boundary pointing to the
higher-level (abstract) side of that boundary. Hallelujah!

Figure 16.10. Functional and architecturally competent Visitor

So the Visitor pattern is a case where the GOF form was
polluted by the language constraints of the day. In 1995, when
the GOF book was published, closed classes were considered a
necessary attribute of statically typed languages and were
therefore almost ubiquitous.

Abstract Factory

The DIP advises us to avoid source code dependencies upon
things that are both volatile and concrete. So we create abstract
structures and try to route our dependencies upon them.
However, when we create instances of objects, we often have to
violate that advice; and this can cause architectural difficulties,
as shown by the UML in Figure 16.11.

Figure 16.11. DIP violation due to creation

The App in Figure 16.11 uses the Shape interface. Everything
it needs to do can be done through that interface, with one
exception. The App must create instances of the Circle and
Square derivatives; and that forces the App to hang source
code dependencies upon the corresponding modules.

We’ve actually seen this situation in our previous examples.
Consider, for example, the code from the tests from the
visitor-example earlier in this chapter. Notice that the test
requires source code dependencies upon square and circle
for the sole purpose of calling those make functions:

Click here to view code image

(ns visitor-example.core-spec

 (:require [speclj.core :refer :all]

 [visitor-example

 [square :as square]

 [json-shape-visitor :as jv]

 [circle :as circle]]))

(describe "shape-visitor"

 (it "makes json square"

 (should= "{\"top-left\": [0,0], \"side\": 1}

 (jv/to-json (square/make [0 0] 1)))

 (it "makes json circle"

 (should= "{\"center\": [3,4], \"radius\": 1}

 (jv/to-json (circle/make [3 4] 1)))

Perhaps this seems a small price to pay. But if, as shown in
Figure 16.12, we add an architectural boundary to that UML
diagram, the true cost becomes clear.

Figure 16.12. Violation of the Dependency Rule across the architectural boundary

Here we can see that the Dependency Rule of Clean
Architecture has been violated by that <creates>
dependency. That rule states that all source code dependencies
that cross an architectural boundary must point toward the
higher-level side of that boundary. The Circle and Square
modules are low-level details that are plug-ins to the App .
Thus, to preserve the architecture, we need to somehow deal
with those <creates> dependencies.

16. Robert C. Martin, Clean Architecture (Pearson, 2017).

The Abstract Factory pattern provides a good solution. It looks
like Figure 16.13.

Figure 16.13. Abstract Factory pattern resolves Dependency Rule

16

All the source code dependencies that cross the boundary now
point toward the higher-level side, so the Dependency Rule
violation has been resolved. The Circle and Square can still
be independent plug-ins to the App . The App can still create
Circle and Square instances but indirectly through the
ShapeFactory interface, which inverts the source code
dependency (the DIP).

This is easy to implement in Clojure. All we need is the shape-
factory interface and its implementation:

Click here to view code image

(ns abstract-factory-example.shape-factory)

(defmulti make-circle

 (fn [factory center radius] (::type factory)))

(defmulti make-square

 (fn [factory top-left side] (::type factory)))

—————

(ns abstract-factory-example.shape-factory-implem

 (:require [abstract-factory-example

 [shape-factory :as factory]

 [square :as square]

 [circle :as circle]]))

(defn make []

 {::factory/type ::implementation})

(defmethod factory/make-square ::implementation

 [factory top-left side]

 (square/make top-left side))

(defmethod factory/make-circle ::implementation

 [factory center radius]

 (circle/make center radius))

And with that, we can write a test that simulates our App :

Click here to view code image

(ns abstract-factory-example.core-spec

 (:require [speclj.core :refer :all]

 [abstract-factory-example

 [shape :as shape]

 [shape-factory :as factory]

 [main :as main]]))

(describe "Shape Factory"

 (before-all (main/init))

 (it "creates a square"

 (let [square (factory/make-square

 @main/shape-factory

 [100 100] 10)]

 (should= "Square top-left: [100,100] side:

 (shape/to-string square))))

 (it "creates a circle"

 (let [circle (factory/make-circle

 @main/shape-factory

 [100 100] 10)]

 (should= "Circle center: [100,100] radius

 (shape/to-string circle)))))

The first thing to notice about this test is that it has no source
file dependencies on circle or square . It depends only on
the two interfaces: shape and shape-factory . That was our
architectural goal.

But what is that main dependency? Do you see the (before-
all (main/init)) line at the start of the test? That tells the
test runner to call (main/init) before any of the tests. This
simulates the main module initializing everything before
starting the App .

Here’s main :

Click here to view code image

(ns abstract-factory-example.main

 (:require [abstract-factory-example

 [shape-factory-implementation :as imp

(def shape-factory (atom nil))

(defn init[]

 (reset! shape-factory (imp/make)))

Oh, HO! We’ve got a global atom named shape-factory ! And
that atom is being initialized to the shape-factory-
implementation by the init function.

So, looking back at the test, we see that the make-circle and
make-square methods were passing the dereferenced atom .

Setting a global like this is a pretty common strategy for dealing
with factories. The main program creates the concrete factory
implementations and then loads it into a global that everyone
can access. In a statically typed language, that global would
have the type of the interface ShapeFactory . In dynamically
typed languages, no such type declaration is required.

90 Degrees Again

Look at that UML diagram in Figure 16.13 again. Do you see the
90-degree rotation in the ShapeFactory ? You can see it in the
shape-factory code too. The ShapeFactory (and the
shape-factory) have methods that correspond to the
subtypes of Shape .

The problem that this caused for Visitor is also present here,
although in a slightly different form. Whenever a new subtype
of shape is added, the shape-factory must be modified.
That violates the OCP because we must modify a module on the
high-level side of the architectural boundary. If the OCP matters
at all, it matters most especially across such boundaries. Study
that UML diagram until you see what I mean.

We can resolve this problem by replacing the 90-degree rotation
with a single method that takes an opaque token. Something
like this:

Click here to view code image

(ns abstract-factory-example.shape-factory)

(defmulti make (fn [factory type & args] (::type

——————————

(ns abstract-factory-example.shape-factory-implem

 (:require [abstract-factory-example

 [shape-factory :as factory]

 [square :as square]

 [circle :as circle]]))

(defn make []

 {::factory/type ::implementation})

(defmethod factory/make ::implementation

 [factory type & args]

 (condp = type

 :square (apply square/make args)

 :circle (apply circle/make args)))

————————————————

(ns abstract-factory-example.core-spec

 (:require [speclj.core :refer :all]

 [abstract-factory-example

 [shape :as shape]

 [shape-factory :as factory]

 [main :as main]]))

(describe "Shape Factory"

 (before-all (main/init))

 (it "creates a square"

 (let [square (factory/make

 @main/shape-factory

 :square

 [100 100] 10)]

 (should= "Square top-left: [100,100] side:

 (shape/to-string square))))

 (it "creates a circle"

 (let [circle (factory/make

 @main/shape-factory

 :circle

 [100 100] 10)]

 (should= "Circle center: [100,100] radius

 (shape/to-string circle)))))

Notice that the argument passed into shape-factory/make is
opaque. That is, it is not defined by any of the other modules,
including—and especially—the square and circle modules.
The :square and :circle keywords are not namespaced,
nor are they declared anywhere. They are simply opaque
values that happen to have names. I might as well have used 1
for square and 2 for circle , or used "square" and
"circle" strings.

This opacity is the key to this solution. If we ever need to add a
triangle subtype, nothing above the boundary line will have
to change (the OCP).

Type Safety?

In a statically typed language, like Java, this technique
abandons type safety. Opaque values cannot be type safe. There
is no way, for example, to use an enum in Java to solve this
issue.

In Clojure, we aren’t concerned about static type safety, but
what about dynamic type specifications? We’re out of luck there
too. There is no way to gain an advantage by using
clojure.spec since all errors, either with or without
clojure.spec , will be runtime errors.

For example, nothing stops me from calling shape-
factory/make with :sqare (intentionally misspelled). The
condp in shape-factory-implementation will simply
throw an exception. If I were to set up some type constraint in
clojure.spec forcing the type argument of shape-
factory/make to be either :square or :circle , it would
still just throw a runtime exception.

There is no escape from this in any language. Whether in Java,
C++, Ruby, Clojure, or C#, if you want to maintain the OCP across
architectural boundaries (and you usually do), then at some
point across that boundary you are going to have to abandon

type safety and rely on runtime exceptions. This is just simply
software physics.

Conclusion

I’ll leave the rest of the GOF patterns, and any other patterns
you might be familiar with, as an exercise. By now, I’m pretty
sure you understand that functional languages that have
facilities similar to Clojure are as OO as Java, C#, Ruby, and
Python, and that the patterns described in the GOF book
generally apply so long as the constraint of immutability is
enforced.

And as for Singleton: Just create one.

Postscript: OO Poison?

I thought it wise to revisit here my hope and goal from the
introduction. By now, it should be clear that functional
programming and OOP are compatible and mutually beneficial
styles.

The design pattern examples that I have presented so far are
not unusual. Clojure programmers frequently use defmulti
and defmethod to express polymorphism. They typically use
maps to express encapsulated data structures (i.e., objects).
They often even build constructors for those objects. They
might not realize it, but they are building OO programs.

What might seem unusual to some functional programmers,
and even to some Clojure programmers, is the way I have

organized the source files and namespaces. That organization is
so reminiscent of Java, C++, C#, Ruby, and even Python that it
screams “OO” to folks who’d thought that they’d left OO behind
many long years ago.

It should be very clear by now that Clojure is every bit as object
oriented as Java, C++, C#, Python, and Ruby. Clojure is also as
functional as F#, Scala, Elixir, and (dare I say it?) Haskell.

Let’s examine the OO claim just a bit.

Clojure does not have inheritance; but it does have at least
three very effective mechanisms of polymorphism. At least two
of those mechanisms support open classes.

Clojure does not have public / private / protected
modifiers; but it does have namespaced keywords and dynamic
type specification, which allows encapsulation to be strongly
expressed and dynamically, if not statically, enforced. Clojure
also has private functions (created with defn-) that can only
be seen within the containing source file.

Clojure supports, but does not enforce, a source file and
namespace structure that affords the same architectural
partitioning we find so familiar in any of the (so-called)
enterprise languages.

And so Clojure is an OO/functional language. As are, to one
extent or another, languages like Scala, Elixir, and F#, to name
just a few. And, since that is true, the OO mindset is still a
perfectly valid way of modeling applications in those languages.

17. OOFL? FOOL? Hmm, perhaps we should avoid the acronyms.

We can still describe our functional programs using interfaces
and classes, types and subtypes. We can still partition the
source files and manage their dependencies in order to create
robust, independently deployable and independently
developable architectures. Nothing in that regard has changed
at all.

What has changed is the extra constraint that functional
programming places upon us, which is the elimination, or at
least the strong sequestration, of side effects. Our classes and
modules will strongly prefer immutable, as opposed to mutable,
objects. But they are still objects, and they can still be expressed
and organized as classes that implement interfaces.

And that means that the vast majority of the design principles
and design patterns that we found so helpful in OO languages
still apply, and are still useful, in functional languages like
Clojure and others.

17

VI

Case Study

17

Wa-Tor

In the final chapter of this book, you and I are going to play a
little game about a little game. The little game our little game
will be about is called Wa-Tor; a simple little cellular automaton
described by A. K. Dewdney in the December 1984 issue of
Scientific American. The game you and I are going to play is to1

pretend that Wa-Tor is an enterprise-level application requiring
significant effort in architecture and design.

1. Alas, SciAm, I knew it well. . .

I mean, honestly, I could hack together Wa-Tor in a few hours
and walk away happy. But for this chapter, I want us to really
think about the issues as though this were a 50 mega line of
code (LOC) monster.

So what is Wa-Tor? The Wikipedia article referenced in the
footnote should give you all the information you need to
understand it in the required depth (which is not much). But
essentially, Wa-Tor is a typical predator/prey simulation using
fish and sharks. The fish move around randomly and
occasionally reproduce. The sharks also move around randomly
but will eat a fish if one is adjacent. Sharks will occasionally
reproduce if they eat enough fish. Sharks will die if they do not
eat a fish before they starve.

2. https://en.wikipedia.org/wiki/Wa-Tor

The world that the fish and sharks live in has no land; it’s all
water. Moreover, the top meets the bottom and the left meets

2

https://en.wikipedia.org/wiki/Wa-Tor

the right, so the world is topologically a torus. Thus, Wa-Tor
stands for WAter TORus.

We’ll talk more about the features of the program later. For the
moment, what are the architectural and design considerations?

Let’s start with the basics. SRP. Who are the actors—whom do
we want to keep separate?

In most large enterprise systems, there are many different
actors. But in this little app, there are only two to worry about.
There are the user experience (UX) designers, who will
undoubtedly change their minds a dozen or so times before
they actually like what they see on the screen. And then there
are the modelers who will also likely fiddle with the internal
shark/fish behavior and might possibly add more animals to the
mix.

So we start out with Figure 17.1, a very obvious and very
traditional partitioning.

Figure 17.1. The obvious and traditional partitioning of Wa-Tor

The WatorUI component is lower level than the WatorModel
component. According to the Dependency Rule, this means that
the source code dependencies must cross the architectural
boundary pointing toward the WatorModel . Because of this,
the WatorUI will be a plug-in to the WatorModel .

3. The definition of high and low “level” that I’m using here is
“distance from I/O.” See Robert C. Martin, Clean Architecture
(Pearson, 2017), p. 183.

There are only two components and one boundary in this
partitioning so far. In larger systems, we would see many more
boundaries and many more components within each.

4. See Martin, Clean Architecture, p. 93.

Let’s focus on the model first. What kinds of classes are we
going to need?

5. http://wiki.c2.com/?ModelFirst

Yes, I said classes. We may be using a functional language, but if
you’ve learned anything in this book so far, it is that functional

3

4

5

http://wiki.c2.com/?ModelFirst

design and OO design are two sides of the same coin.

So, at first blush, I think the object model looks something like
Figure 17.2.

Figure 17.2. Initial object model of Wa-Tor

The world contains a bunch of cell s. Each cell can
process a tick of time. I guessed that cell is abstract rather
than an interface because I expect that there will be concrete
functions at this level.

6. Dewdney called these chronons.

6

Each cell can be water , or an animal that can move and
reproduce . The two possible subtypes of animal are fish
and sharks that can eat .

Let’s see if we can code this. No tests yet, because we haven’t
defined any behavior:

Click here to view code image

(ns wator.cell)

(defmulti tick ::type)

——————

(ns wator.water

 (:require [wator

 [cell :as cell]]))

(defn make [] {::cell/type ::water})

(defmethod cell/tick ::water [water]

)

———————

(ns wator.animal)

(defmulti move ::type)

(defmulti reproduce ::type)

(defn tick [animal]

)

—————

(ns wator.fish

 (:require [wator

 [cell :as cell]

 [animal :as animal]]))

(defn make [] {::cell/type ::fish})

(defmethod cell/tick ::fish [fish]

 (animal/tick fish)

)

(defmethod animal/move ::fish [fish]

)

(defmethod animal/reproduce ::fish [fish]

)

—————

(ns wator.shark

 (:require [wator

 [cell :as cell]

 [animal :as animal]]))

(defmethod cell/tick ::shark [shark]

 (animal/tick shark)

)

(defmethod animal/move ::shark [shark]

)

(defmethod animal/reproduce ::shark [shark]

)

(defn eat [shark]

)

This looks pretty standard. The cell module looks like an
interface so far. The water module implements it trivially. The
dangling parentheses are there to remind me that I want to add
something to that function.

The animal module does not implement tick , but it does
have a function named tick that can be called by its subtypes.
I put this in as a guess. It’s a bit of hubris, I suppose; but I have a
feeling that it’ll be necessary.7

7. Yeah, I know. You Aren’t Gonna Need It (YAGNI). Well, we’ll
see.

The fish trivially implements both the cell and animal .
This actually looks more like multiple inheritance than the UML
diagram. On the other hand, there’s no inheritance anywhere in
this code, so. . .

Finally, shark also trivially implements both cell and
animal and adds its own eat function.

I didn’t code the world because I don’t know enough to even
start. However, there are a few issues that I think the world
will have to deal with. We don’t want the world to depend
upon the GUI, and yet the GUI is going to put a lot of constraints
on the world . For example, it seems to me that the GUI is going
to tell us the size of the world . I also think that since the GUI is
likely to repaint the screen N times per second, the GUI will
define time.

But let’s set all that aside for the time being. Enough of this up-
front design. Let’s see if we can code some of the behavior.

What is the behavior of water ? We ask our modelers, and they
tell us that a water cell will randomly evolve into a fish cell

if given enough time. Here’s my implementation of that rule:

Click here to view code image

(ns wator.core-spec

 (:require [speclj.core :refer :all]

 [wator

 [cell :as cell]

 [water :as water]

 [fish :as fish]]))

(describe "Wator"

 (with-stubs)

 (context "Water"

 (it "usually remains water"

 (with-redefs [rand (stub :rand {:return

 (let [water (water/make)

 evolved (cell/tick water)]

 (should= ::water/water (::cell/type

 (it "occasionally evolves into a fish"

 (with-redefs [rand (stub :rand {:return 1.0

 (let [water (water/make)

 evolved (cell/tick water)]

 (should= ::fish/fish (::cell/type evolv

———

(ns wator.water

 (:require [wator

 [cell :as cell]

 [fish :as fish]

 [config :as config]]))

(defn make [] {::cell/type ::water})

(defmethod cell/tick ::water [water]

 (if (> (rand) config/water-evolution-rate)

 (fish/make)

 water))

——————

(ns wator.config)

(def water-evolution-rate 0.99999)

So, right away we see the “functional” nature of this program.
The return value of tick is a new cell . I don’t know if that
water-evolution-rate is correct. The modelers haven’t told
us what the rate should be. So I just guessed. I expect that they’ll
wait until they see how the model behaves and then tell us to
change it.

8

8. Almost. The (rand) invocation is impure.

So far, I haven’t specified any dynamic types. It seems a bit early
for that. But I’m pretty sure it’s coming.

Anyway, let’s see if we can make a fish move.

Wait. How do you move a fish ? Where is the fish ? Does the
fish know its location, or is that something the world
knows?

The cell s are arranged in a two-dimensional rectangular
Cartesian grid that wraps left to right and top to bottom. So the
location of a cell is the tuple [x y] . The world could hold
the cell s in a two-dimensioned array, or in a map keyed by
the position tuple.

I like using maps for things like this, so let’s make a world full
of water cells:

Click here to view code image

(context "world"

 (it "creates a world full of water cells"

 (let [world (world/make 2 2)

 cells (:cells world)

 positions (set (keys cells))]

 (should= #{[0 0] [0 1]

 [1 0] [1 1]} positions)

 (should (every? #(= ::water/water (::cell/t

 (vals cells))))))

————

(ns wator.world

 (:require [wator

 [water :as water]]))

(defn make [w h]

 (let [locs (for [x (range w) y (range h)] [x y

 loc-water (interleave locs (repeat (wate

 cells (apply hash-map loc-water)]

 {:cells cells}))

Did you catch the use of the lazy list of water cells passed into
interleave ? Now we should be able to put a fish in the
world and move it around. Here’s my first try at a test:

Click here to view code image

(context "animal"

 (it "moves"

 (let [fish (fish/make)

 world (-> (world/make 3 3)

 (world/set-cell [1 1] fish))

 [loc cell] (animal/move fish [1 1] worl

 (should= cell fish)

 (should (#{[0 0] [0 1] [0 2]

 [1 0] [1 2]

 [2 0] [2 1] [2 2]}

 loc)))))

This is pretty straightforward. We create a 3-by-3 world with a
fish in the center. Then we move the fish . Finally, we make
sure it’s still a fish and that its destination is one of the
neighboring cells.

I made a ton of design decisions while composing this test.
Those kinds of decisions are why the last D in TDD often stands
for design. I’ll walk you through those decisions in a moment,
but first let me show you the code that passes this test:

Click here to view code image

(ns wator.world

 (:require [wator

 [water :as water]]))

(defn make [w h] . . .)

(d f t ll [ld l ll]

(defn set-cell [world loc cell]

 (assoc-in world [:cells loc] cell))

——————

(ns wator.animal

 (:require [wator

 [cell :as cell]]))

(defmulti move (fn [animal & args] (::cell/type a

(defmulti reproduce (fn [animal & args] (::cell/t

(defn tick [animal]

)

(defn do-move [animal loc world]

 [[0 0] animal])

——————

(ns wator.fish

 (:require [wator

 [cell :as cell]

 [animal :as animal]]))

(defn make [] {::cell/type ::fish})

(defmethod cell/tick ::fish [fish]

 (animal/tick fish)

)

(defmethod animal/move ::fish [fish loc world]

 (animal/do-move fish loc world))

(defmethod animal/reproduce ::fish [fish]

)

When you see . . . in a method body, it means that there has
been no change to that method since the last time I presented it.

There’s nothing really astonishing here. I changed the
defmulti definitions in animal to accept multiple
arguments, and I created a default do-move method in
animal that the subtypes can call if they like. The
implementation of do-move is degenerate and is there only to
test the test.

9. This is kind of like implementing a method in a base class and
allowing subclasses to either override it or not.

So, on to the design decisions that I made while composing this
test. My first problem was that an animal can’t move if it

9

can’t see the world . So either every animal should hold a
reference to the world , or the world should be a global
atom , or the world should be passed in as an argument to the
move function. I chose the latter because I feel a kind of mild
disdain for abandoning the functional paradigm and falling
back on atom s and STM.

10. Perhaps that disdain is misplaced, but this IS a book about
functional design, so. . .

My next problem was that the animal does not know its
location. So I need to pass the location of the animal into the
move function along with the world .

Finally, and most importantly, I puzzled over what the move
function should return. At first, I thought it should return the
updated world . But this creates the following inconsistency
problem.

Imagine the update process for the world . It begins at location
[0 0] and walks through the world updating each cell in
turn. Now imagine there is a fish at [0 0] and that the
update moves it to [0 1] . But [0 1] is the cell that the
world updates next. So that same fish moves again. A fish
should not move twice in a single turn.

10

So the move function cannot update the world . Instead, the
world is going to have to build up a new world from the old
world, one cell at a time. I imagine we could do it something
like this:

11. Remember that :cells holds a map, so the update-cell
function will take [key val] pairs and return [key val]
pairs.

Click here to view code image

(let [new-world-cells (apply hash-map

 (map update-cell old

So now let’s actually implement the degenerate do-move
function. What is the process for moving an animal ? I think
it’s pretty simple. We just get the neighbors of the animal’s
location, determine which are valid destinations (i.e., are
water), and then randomly choose from that list. So do-move
should look like this:

Click here to view code image

(defn do-move [animal loc world]

 (let [neighbors (world/neighbors world loc)

11

 destinations (filter

 #(water/is?

 (world/get-cell world %

 neighbors)

 new-location (rand-nth destinations)]

 [new-location animal]))

Very pretty. We ask the world for the neighbors of the
location, filter out any that aren’t water , and then randomly
choose one. Cool.

I thought it best to make sure that all the torus math was nicely
sequestered within world . I didn’t want it leaking out into all
the animal s:

Click here to view code image

(defn wrap [world [x y]]

 (let [[w h] (::bounds world)]

 [(mod x w) (mod y h)])

)

(defn neighbors [world loc]

 (let [[x y] loc

 neighbors (for [dx (range -1 2) dy (range

 (wrap world [(+ x dx) (+ y dy

(remove #(= loc %) neighbors))

 (remove #(loc %) neighbors))

Are you ready for the stuff that’s not pretty? The code above
refused to compile, because (are you ready for this?) water
depends upon fish (for the evolution), fish depends upon
animal (for do-move), and animal depends upon water .
That’s a dependency cycle, and Clojure hates dependency
cycles. See Figure 17.3.

Figure 17.3. A dependency cycle

OK, take a deep breath. Remember, we’re playing a game here.
In a simple application like Wa-Tor, I would not be partitioning
these files so ruthlessly. In fact, there’s a good chance I’d just

write the whole program in a single file and let the devil have
his way with me. But we are pretending that this is a multi-
mega-line enterprise application, and so we’re going to be
assiduously careful with all these source code dependencies.
Right?

So the way we have to solve this is by falling back on something
like the old C mechanism of declarations and implementations.
See Figure 17.4.

Figure 17.4. Breaking the dependency cycle

By splitting water such that its fish dependency is in
water-imp , and by making sure that water-imp depends
upon water instead of the other way around (the DIP), the
cycle is broken. I also split up fish and shark for
consistency. I’ll probably have to split up animal pretty soon
too.

12. Actually, just fish . I split shark on the diagram but not in
the code. YAGNI, YAGNI, YAGNI.

13. Future Uncle Bob: . . .nope.

So now the code looks like this:

Click here to view code image

(ns wator.world

 (:require [wator

 [water :as water]]))

(defn make [w h]

 (let [locs (for [x (range w) y (range h)] [x y

 loc-water (interleave locs (repeat (wate

 cells (apply hash-map loc-water)]

 {::cells cells

 ::bounds [w h]}))

(defn set-cell [world loc cell]

12

13

([]

 (assoc-in world [::cells loc] cell))

(defn get-cell [world loc]

 (get-in world [::cells loc]))

; . . .

—————

(ns wator.cell)

(defmulti tick ::type)

—————

(ns wator.water

 (:require [wator

 [cell :as cell]]))

(defn make [] {::cell/type ::water})

(defn is? [cell]

 (= ::water (::cell/type cell)))

——————————

(ns wator.water-imp

 (:require [wator

[cell :as cell]

 [cell :as cell]

 [water :as water]

 [fish :as fish]

 [config :as config]]))

(defmethod cell/tick ::water/water [water]

 (if (> (rand) config/water-evolution-rate)

 (fish/make)

 water))

———————

(ns wator.animal

 (:require [wator

 [world :as world]

 [cell :as cell]

 [water :as water]]))

(defmulti move (fn [animal & args] (::cell/type a

(defmulti reproduce (fn [animal & args] (::cell/t

(defn tick [animal]

)

(defn do-move [animal loc world]

 (let [neighbors (world/neighbors world loc)

 destinations (filter #(water/is?

 (world/get-cell wo

neighbors)

 neighbors)

 new-location (rand-nth destinations)]

 [new-location animal]))

————

(ns wator.fish

 (:require [wator

 [cell :as cell]]))

(defn make [] {::cell/type ::fish})

——————

(ns wator.fish-imp

 (:require [wator

 [cell :as cell]

 [animal :as animal]

 [fish :as fish]]))

(defmethod cell/tick ::fish/fish [fish]

 (animal/tick fish)

)

(defmethod animal/move ::fish/fish [fish loc worl

 (animal/do-move fish loc world))

(defmethod animal/reproduce ::fish/fish [fish]

)

The shark isn’t relevant yet, so I didn’t show it.

The criterion for splitting water and fish is pretty easy to
see. Any function that references a file outside of the direct type
hierarchy gets put into the imp file. Pay special attention to the
namespaces and the namespaced keywords. For example,
notice that the defmethod s in fish-imp will still be
dispatched on ::fish/fish .

And just in case you thought I’d forgotten, here are the current
tests:

Click here to view code image

(ns wator.core-spec

 (:require [speclj.core :refer :all]

 [wator

 [cell :as cell]

 [water :as water]

 [water-imp]

 [animal :as animal]

 [fish :as fish]

 [fish-imp]

 [world :as world]]))

(describe "Wator"

 (with-stubs)

(context "Water"

 (context Water

 (it "usually remains water"

 (with-redefs [rand (stub :rand {:return 0.0

 (let [water (water/make)

 evolved (cell/tick water)]

 (should= ::water/water (::cell/type evo

 (it "occasionally evolves into a fish"

 (with-redefs [rand (stub :rand {:return 1.0

 (let [water (water/make)

 evolved (cell/tick water)]

 (should= ::fish/fish (::cell/type evolv

 (context "world"

 (it "creates a world full of water cells"

 (let [world (world/make 2 2)

 cells (::world/cells world)

 positions (set (keys cells))]

 (should= #{[0 0] [0 1]

 [1 0] [1 1]} positions)

 (should (every? #(= ::water/water (::cell

 (vals cells)))))

 (it "makes neighbors"

 (let [world (world/make 5 5)]

 (should= [[0 0] [0 1] [0 2]

 [1 0] [1 2]

 [2 0] [2 1] [2 2]]

 (world/neighbors world [1 1]))

g

 (should= [[4 4] [4 0] [4 1]

 [0 4] [0 1]

 [1 4] [1 0] [1 1]]

 (world/neighbors world [0 0]))

 (should= [[3 3] [3 4] [3 0]

 [4 3] [4 0]

 [0 3] [0 4] [0 0]]

 (world/neighbors world [4 4])))

 (context "animal"

 (it "moves"

 (let [fish (fish/make)

 world (-> (world/make 3 3)

 (world/set-cell [1 1] fish

 [loc cell] (animal/move fish [1 1] wo

 (should= cell fish)

 (should (#{[0 0] [0 1] [0 2]

 [1 0] [1 2]

 [2 0] [2 1] [2 2]}

 loc))))))

Look at the :require up in the ns statement. Notice that we
are requiring the imp s but not explicitly using them. Requiring
them registers the defmethod s that they contain.

OK, now that we can move the fish , I’m pretty sure the
shark s will move too. So next we should try some
reproduction. But before we do that, I’m getting (pretend)
concerned about the type system for the world . Let’s get that
set up first:

Click here to view code image

(ns wator.world

 (:require [clojure.spec.alpha :as s]

 [wator

 [cell :as cell]

 [water :as water]]))

(s/def ::location (s/tuple int? int?))

(s/def ::cell #(contains? % ::cell/type))

(s/def ::cells (s/map-of ::location ::cell))

(s/def ::bounds ::location)

(s/def ::world (s/keys :req [::cells ::bounds]))

(defn make [w h]

 {:post [(s/valid? ::world %)]}

 …)

OK, that’s better. Now, what do we need for reproduction? The
modelers said that a fish will reproduce if it is next to a

water cell and is above a certain age. The two daughter fish
have their ages reset to zero. Otherwise, the ::age of a fish
increases with time.

Here are the tests:

Click here to view code image

(it "reproduces"

 (let [fish (-> (fish/make)

 (animal/set-age config/fish-rep

 world (-> (world/make 3 3)

 (world/set-cell [1 1] fish))

 [loc1 cell1 loc2 cell2] (animal/reproduce

 fish [1 1] worl

 (should= loc1 [1 1])

 (should (fish/is? cell1))

 (should= 0 (animal/age cell1))

 (should (#{[0 0] [0 1] [0 2]

 [1 0] [1 2]

 [2 0] [2 1] [2 2]}

 loc2))

 (should (fish/is? cell2))

 (should= 0 (animal/age cell2))))

(it "doesn't reproduce if there is no room"

 (let [fish (-> (fish/make)

 (animal/set-age config/fish-rep

 world (-> (world/make 1 1)

 (world/set-cell [0 0] fish))

 failed (animal/reproduce fish [0 0] world

 (should-be-nil failed)))

(it "doesn't reproduce if too young"

 (let [fish (-> (fish/make)

 (animal/set-age

 (dec config/fish-reproduct

 world (-> (world/make 3 3)

 (world/set-cell [1 1] fish

 failed (animal/reproduce fish [1 1] w

 (should-be-nil failed)))

Notice that if the fish reproduces, the return value contains
both daughters. But if something goes wrong, we return nil .
This is because I reckon that the high-level policy of a fish
includes something like this:

Click here to view code image

(if-let [result (animal/reproduce …)]

 result

 (animal/move …))

Anyway, here’s the abbreviated code that passes that test:

Click here to view code image

(ns wator.animal

 (:require [clojure.spec.alpha :as s]

 [wator

 [world :as world]

 [cell :as cell]

 [water :as water]

 [config :as config]]))

(s/def ::age int?)

(s/def ::animal (s/keys :req [::age]))

(defmulti move (fn [animal & args] (::cell/type a

(defmulti reproduce (fn [animal & args] (::cell/t

(defmulti make-child ::cell/type)

(defn make []

 {::age 0})

(defn age [animal]

 (::age animal))

(defn set-age [animal age]

 (assoc animal ::age age))

;. . .

(defn do-reproduce [animal loc world]

 (if (>= (age animal) config/fish-reproduction-a

 (let [neighbors (world/neighbors world loc)

 birth-places (filter #(water/is? (world

 neighbors)]

 (if (empty? birth-places)

 nil

 [loc (set-age animal 0)

 (rand-nth birth-places) (make-child anim

 nil))

————

(ns wator.fish

 (:require [clojure.spec.alpha :as s]

 [wator

 [cell :as cell]

 [animal :as animal]]))

(s/def ::fish (s/and #(= ::fish (::cell/type %))

 ::animal/animal))

(defn is? [cell]

 (= ::fish (::cell/type cell)))

(defn make []

 {:post [(s/valid? ::fish %)]}

 (merge {::cell/type ::fish}

(animal/make)))

 (animal/make)))

(defmethod animal/make-child ::fish [fish]

 (make))

——————

(ns wator.fish-imp

 (:require [wator

 [cell :as cell]

 [animal :as animal]

 [fish :as fish]]))

;. . .

(defmethod animal/reproduce ::fish/fish [fish loc

 (animal/do-reproduce fish loc world))

Again, notice that I am deferring the fish/reproduce
function to animal/do-reproduce . This allows me to specify
the common behavior of reproduce in animal while
allowing fish to override or augment it. I don’t know if this
will be necessary, but it’s pretty cheap to add and it eliminates
the duplication in shark and fish .

14. Yeah, I know, YAGNI and all that. But rules are meant to be
broken.

14

Scratch That Itch

I’m getting an itchy feeling that I should have implemented
world/tick first. I’ve made a lot of decisions about the return
values of move and reproduce based upon what I think
world/tick is going to need. So let’s switch gears and focus on
that before we continue to add more, possibly errant, goop to
the animal s.

Here’s the first test:

Click here to view code image

(it "moves a fish around each tick"

 (let [fish (fish/make)

 small-world (-> (world/make 1 2)

 (world/set-cell [0 0] fis

 (world/tick))

 vacated-cell (world/get-cell small-world

 occupied-cell (world/get-cell small-world

 (should (water/is? vacated-cell))

 (should (fish/is? occupied-cell))

 (should= 1 (animal/age occupied-cell))))

It’s pretty simple. We make a small-world with two cells, one
of which is a fish . We call tick on that world , and then we
make sure that the fish moves to the vacant cell and that it
leaves water behind.

Next, I wrote a dummy implementation for tick , just to see
the test pass:

Click here to view code image

(defn tick [world]

 (-> (make 2 1)

 (set-cell [0 0] (water/make))

 (set-cell [0 1] (animal/set-age (fish/mak

Lo and behold, this won’t compile because world now
depends upon fish , which depends upon animal , which
depends back upon world . Sigh. Cyclic dependencies are the
bane of source code structures that are thought through poorly.

But we know how to solve this. We simply have to invert a
dependency (the DIP) by splitting world-imp out of world .
The UML looks like Figure 17.5.

Figure 17.5. Breaking another dependency cycle

The =0 next to tick in the World class is my way of
indicating that it is an abstract method. So here’s the code:

Click here to view code image

(ns wator.world

 (:require [clojure.spec.alpha :as s]

 [wator

 [cell :as cell]

 [water :as water]]))

(s/def ::location (s/tuple int? int?))

(d f ll (i ll))

(s/def ::cell #(contains? % ::cell/type))

(s/def ::cells (s/map-of ::location ::cell))

(s/def ::bounds ::location)

(s/def ::world (s/and (s/keys :req [::cells ::bou

 #(= (::type %) ::world)))

(defmulti tick ::type)

(defn make [w h]

 {:post [(s/valid? ::world %)]}

 (let [locs (for [x (range w) y (range h)] [x y

 loc-water (interleave locs (repeat (wate

 cells (apply hash-map loc-water)]

 {::type ::world

 ::cells cells

 ::bounds [w h]}))

; . . .

—————

(ns wator.world-imp

 (:require [wator

 [world :as world :refer :all]

 [animal :as animal]

 [fish :as fish]

 [water :as water]]))

(defmethod world/tick ::world/world [world]

 (-> (make 2 1)

 (set-cell [0 0] (water/make))

 (set-cell [0 1] (animal/set-age (fish/mak

This passed the test once I added [world-imp] to the
:require list in the test. Take note that tick is now a multi-
method with only one implementation. That’s the dependency
inversion that we needed.

But now I’m bothered by that water dependency in world .
There’s a technical term for how I feel about it. That term is
icky. That dependency is wrong somehow.

I need a shower. I resolve lots of issues while in the shower.

Showers Solve Problems

OK, I’m back from my shower, and this is the conversation I had
with myself while under the spray.

“Creating water in world is icky. I mean, I just split world in
two because creating a fish led to a cycle. So creating water
could lead to a cycle too. But wait, this is all about creation.
Maybe what I need is a factory! Yeah, an Abstract Factory
named cell-factory , and it will take opaque tokens like
:fish and :water , and. . . (OH!). . . and :default-cell .
Yeah, and. . . Wait, why do I need a whole new factory? Why

can’t world BE the factory? Yeah! That’s the Factory Method
pattern. That’s the ticket!”

The UML for this (in Figure 17.6) is revealing.

An architectural boundary just appeared. All dependencies
cross it going toward the high-level side, following the
Dependency Rule. I may not use this boundary in the actual
architecture, but it’s there if I need it.

Figure 17.6. Wa-Tor with the Factory Method pattern

So now the code looks like this:

Click here to view code image

(ns wator.world

 (:require [clojure.spec.alpha :as s]

 [wator

 [cell :as cell]

 [water :as water]]))

(s/def ::location (s/tuple int? int?))

(s/def ::cell #(contains? % ::cell/type))

(s/def ::cells (s/map-of ::location ::cell))

(s/def ::bounds ::location)

(s/def ::world (s/and (s/keys :req [::cells ::bou

 #(= (::type %) ::world)))

(defmulti tick ::type)

(defmulti make-cell (fn [factory-type cell-type]

(defn make [w h]

 {:post [(s/valid? ::world %)]}

 (let [locs (for [x (range w) y (range h)] [x y

 default-cell (make-cell ::world :default

 loc-water (interleave locs (repeat defaul

 cells (apply hash-map loc-water)]

 {::type ::world

 ::cells cells

::bounds [w h]}))

 ::bounds [w h]}))

;. . .

———————

(ns wator.world-imp

 (:require [wator

 [world :as world :refer :all]

 [animal :as animal]

 [fish :as fish]

 [shark :as shark]

 [water :as water]]))

(defmethod world/tick ::world/world [world]

 (-> (make 2 1)

 (set-cell [0 0] (water/make))

 (set-cell [0 1] (animal/set-age (fish/mak

(defmethod world/make-cell ::world/world [world c

 (condp = cell-type

 :default-cell (water/make)

 :water (water/make)

 :fish (fish/make)

 :shark (shark/make)))

The factory-type in make-cell is simply passed in as
::world . That allows the defmethod ::world/world to

resolve it.

I have high hopes for this change. And please note, this whole
change was driven by one test that I made to pass using a
dummy implementation in tick , reminding us yet again that
TDD is a design technique.

OK, now let’s make that dummy implementation fail. Here’s the
test that fails:

Click here to view code image

(it "moves a fish around each tick"

 (doseq [scenario

 [{:dimension [2 1] :starting [0 0] :end

 {:dimension [2 1] :starting [1 0] :end

 {:dimension [1 2] :starting [0 0] :end

 {:dimension [1 2] :starting [0 1] :end

 (let [fish (fish/make)

 {:keys [dimension starting ending]} sce

 [h w] dimension

 small-world (-> (world/make h w)

 (world/set-cell startin

 (world/tick))

 vacated-cell (world/get-cell small-worl

 occupied-cell (world/get-cell small-wo

 (should (water/is? vacated-cell))

 (should (fish/is? occupied-cell))

 (should= 1 (animal/age occupied-cell)))))

I created the four possible 1-by-2 scenarios and made sure the
world got updated properly after a tick .

Making this pass forced me to change the design yet again. The
animal/move , animal/reproduce , and cell/tick
functions must return a [from to] list in which each is a
single-element map containing {loc cell} . Look at the
world-imp and you’ll see why:

Click here to view code image

(ns wator.world-imp

 . . .)

(defmethod world/tick ::world/world [world]

 (let [cells (::world/cells world)]

 (loop [locs (keys cells)

 new-cells {}

 moved-into #{}]

 (cond

 (empty? locs)

 (assoc world ::world/cells new-cells)

 (contains? moved-into (first locs))

 (recur (rest locs) new-cells moved-into)

 :else

 (let [loc (first locs)

 cell (get cells loc)

 [from to] (cell/tick cell loc world

 new-cells (-> new-cells (merge from

 to-loc (first (keys to))]

 (recur (rest locs)

 new-cells

 (conj moved-into to-loc)))))))

; . . .

It turns out that every operation makes changes to either one or
two cells. When an animal moves, reproduces, or eats, only
two cells are involved. If an animal fails to move, or if it
starves, only one cell is involved. In the first case the operation
will return [from to] , and in the second case it will return
[nil to] . In either case, both from and to are merge d
into new-cells .

15. merge is well behaved if you merge in a nil.

Notice the moved-into argument of the loop. At first, I didn’t
have it there, and the tests failed because world/tick moved

15

the fish to the remaining water cell. But then world/tick
called cell/tick on the water cell, which replaced itself
with water . When the new-cells were merged in, the
water overwrote the fish .

So moved-into is a set of all the to cell locations. The
cell/tick function should not be called on them because
they’ve been moved into by a previous tick , and so the
animal there has already been tick ed.

Quite a few changes had to be made throughout the structure to
get this to work. So my “itch” from a few pages back was
correct. It’s a good thing I paid attention to it early enough to
make the change doable:

Click here to view code image

(ns wator.cell)

(defmulti tick (fn [cell & args] (::type cell)))

——————

(ns wator.water-imp

 (:require [wator

 [cell :as cell]

[t t]

 [water :as water]

 [fish :as fish]

 [config :as config]]))

(defmethod cell/tick ::water/water [water loc wo

 (if (> (rand) config/water-evolution-rate)

 [nil {loc (fish/make)}]

 [nil {loc water}]))

————

(ns wator.animal . . .)

;. . .

(defn increment-age [animal]

 (update animal ::age inc))

(defn tick [animal loc world]

 (-> animal

 increment-age

 (move loc world)))

(defn do-move [animal loc world]

 (let [neighbors (world/neighbors world loc)

 destinations (filter #(water/is?

 (world/get-cell wo

 neighbors)

l ti (if (t ? d ti ti)

 new-location (if (empty? destinations)

 loc

 (rand-nth destinations))]

 (if (= new-location loc)

 [nil {loc animal}]

 [{loc (water/make)} {new-location animal}]

;. . .

————

(ns wator.fish-imp . . .)

(defmethod cell/tick ::fish/fish [fish loc world

 (animal/tick fish loc world)

)

; . . .

And, of course, a few of the tests needed to change:

Click here to view code image

(ns wator.core-spec . . .)

(describe "Wator"

 (with-stubs)

 (context "Water"

 (it "usually remains water"

 (with-redefs [rand (stub :rand {:return 0.0

 (let [water (water/make)

 world (world/make 1 1)

 [from to] (cell/tick water [0 0] wo

 (should-be-nil from)

 (should (water/is? (get to [0 0])))

)))

 (it "occasionally evolves into a fish"

 (with-redefs [rand (stub :rand {:return 1.0

 (let [water (water/make)

 world (world/make 1 1)

 [from to] (cell/tick water [0 0] wo

 (should-be-nil from)

 (should (fish/is? (get to [0 0])))))))

;. . .

 (context "animal"

 (it "moves"

 (let [fish (fish/make)

 world (-> (world/make 3 3)

 (world/set-cell [1 1] fish

 [from to] (animal/move fish [1 1] wo

 loc (first (keys to))]

 (should (water/is? (get from [1 1])))

 (should (fish/is? (get to loc)))

 (should (#{[0 0] [0 1] [0 2]

[1 0] [1 2]

 [1 0] [1 2]

 [2 0] [2 1] [2 2]}

 loc))))

 (it "doesn't move if there are no spaces"

 (let [fish (fish/make)

 world (-> (world/make 1 1)

 (world/set-cell [0 0] fish

 [from to] (animal/move fish [0 0] wo

 (should (fish/is? (get to [0 0])))

 (should (nil? from)))

There’s another scenario that I think will fail—two fish
competing for the same spot:

Click here to view code image

(it "move two fish who compete for the same spot

 (let [fish (fish/make)

 competitive-world (-> (world/make 3 1)

 (world/set-cell [0

 (world/set-cell [2

 (world/tick))

 start-00 (world/get-cell competitive-worl

 start-20 (world/get-cell competitive-worl

 end-10 (world/get-cell competitive-world

 (should (fish/is? end-10))

(should (or (fish/is? start 00)

 (should (or (fish/is? start-00)

 (fish/is? start-20)))

 (should (or (water/is? start-00)

 (water/is? start-20)))))

A simple 3-by-1 world with fish at either end. Only one of
them can move into the center slot. The other will have to
remain where it was. This test fails because the animal/move
function does not know that a fish already moved into the
target slot.

Solving this means somehow sending the moved-into list to
animal/move . I hate the idea of adding yet another argument
to animal/move , so perhaps we can squirrel this information
away in the world that we pass to animal/move :

Click here to view code image

(ns wator.world-imp . . .)

(defmethod world/tick ::world/world [world]

 (let [cells (::world/cells world)]

 (loop [locs (keys cells)

 new-cells {}

 moved-into #{}]

 (cond

(t ? l)

 (empty? locs)

 (assoc world ::world/cells new-cells)

 (contains? moved-into (first locs))

 (recur (rest locs) new-cells moved-into)

 :else

 (let [loc (first locs)

 cell (get cells loc)

 [from to] (cell/tick

 cell loc

 (assoc world :moved-int

 new-cells (-> new-cells (merge from

 to-loc (first (keys to))

 to-cell (get to to-loc)

 moved-into (if (water/is? to-cell)

 moved-into

 (conj moved-into to-l

 (recur (rest locs) new-cells moved-into

———————

(ns wator.animal . . .)

; . . .

(defn do-move [animal loc world]

 (let [neighbors (world/neighbors world loc)

d i t (t ld d i t #{})

 moved-into (get world :moved-into #{})

 available-neighbors (remove moved-into ne

 destinations (filter #(water/is?

 (world/get-cell wo

 available-neighbors

 new-location (if (empty? destinations)

 loc

 (rand-nth destinations))]

 (if (= new-location loc)

 [nil {loc animal}]

 [{loc (water/make)} {new-location animal}]

Note that I did not use a namespaced keyword for :moved-
into . That’s because I consider it to be tramp data that is not
really part of the world and is just kind of hitching a ride. This
feels a little dirty, but it works.

16. Welcome to real-world engineering trade-offs.

Note that we only put locations into moved-into if the cell
being moved in is not water .

It’s Time to Wildly Reproduce

17. Ugliness breeds ugliness.

OK, let’s see if we can fill the world with fish:

16

17

Click here to view code image

(it "fills the world with reproducing fish"

 (loop [world (-> (world/make 10 10)

 (world/set-cell [5 5] (fish/ma

 n 100]

 (if (zero? n)

 (let [cells (-> world ::world/cells vals)

 fishies (filter fish/is? cells)

 fish-count (count fishies)]

 (should (< 50 fish-count)))

 (recur (world/tick world) (dec n)))))

Nifty. Create a 10-by-10 world . Load it with one fish . Send it
100 tick s, and make sure there are more than 50 fish . I
mean, the fish are moving around and reproducing like crazy in
there!

Of course, this test fails; but only because we didn’t call
reproduce in animal/tick . So let’s fix that:

Click here to view code image

(defn tick [animal loc world]

 (let [aged-animal (increment-age animal)

 reproduction (reproduce aged-animal loc w

 (if reproduction

 reproduction

 (move aged-animal loc world))))

Yup. Age the animal, then see if it will reproduce. If not, then
move it. Simple. Easy.

Of course, I had to fix the fact that reproduce didn’t use our
new [from to] convention:

Click here to view code image

(defn do-reproduce [animal loc world]

 (if (>= (age animal) config/fish-reproduction-a

 (let [neighbors (world/neighbors world loc)

 birth-places (filter #(water/is?

 (world/get-cell

 neighbors)]

 (if (empty? birth-places)

 nil

 [{loc (set-age animal 0)}

 {(rand-nth birth-places) (make-child ani

 nil))

And that broke an earlier test:

Click here to view code image

(it "reproduces"

 (let [fish (-> (fish/make)

 (animal/set-age config/fish-rep

 world (-> (world/make 3 3)

 (world/set-cell [1 1] fish))

 [from to] (animal/reproduce fish [1 1] wo

 from-loc (-> from keys first)

 from-cell (-> from vals first)

 to-loc (-> to keys first)

 to-cell (-> to vals first)]

 (should= from-loc [1 1])

 (should (fish/is? from-cell))

 (should= 0 (animal/age from-cell))

 (should (#{[0 0] [0 1] [0 2]

 [1 0] [1 2]

 [2 0] [2 1] [2 2]}

 to-loc))

 (should (fish/is? to-cell))

 (should= 0 (animal/age to-cell))))

But with that, the fish reproduce like. . . fish. That was pretty
easy. I think our design is coming together.

What about the Sharks?

I’ve neglected the shark class so far because its behavior is
almost identical to fish and is mostly governed by the
animal abstraction. But now let’s see if we can get shark
objects to move and reproduce .

This required me to flesh out the shark module and also make
one small design change. I used the Template Method pattern to
get the reproduction age of an animal. The tests hint at that
change:

Click here to view code image

(context "animal"

 (it "moves"

 (doseq [scenario

 [{:constructor fish/make :tester fis

 {:constructor shark/make :tester sh

 (let [animal ((:constructor scenario))

 world (-> (world/make 3 3)

 (world/set-cell [1 1] anima

 [from to] (animal/move animal [1 1] w

 loc (first (keys to))]

 (should (water/is? (get from [1 1])))

 (should ((:tester scenario) (get to loc)

 (should (#{[0 0] [0 1] [0 2]

 [1 0] [1 2]

 [2 0] [2 1] [2 2]}

loc)))))

 loc)))))

 (it "doesn't move if there are no spaces"

 (doseq [scenario

 [{:constructor fish/make :tester fis

 {:constructor shark/make :tester sh

 (let [animal ((:constructor scenario))

 world (-> (world/make 1 1)

 (world/set-cell [0 0] anima

 [from to] (animal/move animal [0 0] w

 (should ((:tester scenario) (get to [0 0

 (should (nil? from)))))

 (it "reproduces"

 (doseq [scenario

 [{:constructor fish/make :tester fis

 {:constructor shark/make :tester sh

 (let [animal ((:constructor scenario))

 reproduction-age (animal/get-reproduc

 animal (animal/set-age animal reprodu

 world (-> (world/make 3 3)

 (world/set-cell [1 1] anima

 [from to] (animal/reproduce animal [

 from-loc (-> from keys first)

 from-cell (-> from vals first)

 to-loc (-> to keys first)

 to-cell (-> to vals first)]

 (should= from-loc [1 1])

 (should ((:tester scenario) from-cell))

 (should= 0 (animal/age from-cell))

((/ g))

 (should (#{[0 0] [0 1] [0 2]

 [1 0] [1 2]

 [2 0] [2 1] [2 2]}

 to-loc))

 (should ((:tester scenario) to-cell))

 (should= 0 (animal/age to-cell)))))

 (it "doesn't reproduce if there is no room"

 (doseq [scenario

 [{:constructor fish/make :tester fis

 {:constructor shark/make :tester sh

 (let [animal ((:constructor scenario))

 reproduction-age (animal/get-reproduc

 animal (animal/set-age animal reprodu

 world (-> (world/make 1 1)

 (world/set-cell [0 0] anima

 failed (animal/reproduce animal [0 0

 (should-be-nil failed))))

 (it "doesn't reproduce if too young"

 (doseq [scenario

 [{:constructor fish/make :tester fis

 {:constructor shark/make :tester sh

 (let [animal ((:constructor scenario))

 reproduction-age (animal/get-reproduc

 animal (animal/set-age animal (dec re

 world (-> (world/make 3 3)

 (world/set-cell [1 1] anima

(/ []

 failed (animal/reproduce animal [1 1

 (should-be-nil failed)))))

————————

(ns wator.animal …)

(defmulti move (fn [animal & args] (::cell/type a

(defmulti reproduce (fn [animal & args] (::cell/t

(defmulti make-child ::cell/type)

(defmulti get-reproduction-age ::cell/type)

; . . .

————————

(ns wator.fish . . .)

(defmethod animal/get-reproduction-age ::fish [fi

 config/fish-reproduction-age)

; . . .

——————

(ns wator.shark

 (:require [clojure.spec.alpha :as s]

 [wator

[

 [config :as config]

 [cell :as cell]

 [animal :as animal]]))

(s/def ::shark (s/and #(= ::shark (::cell/type %

 ::animal/animal))

(defn is? [cell]

 (= ::shark (::cell/type cell)))

(defn make []

 {:post [(s/valid? ::shark %)]}

 (merge {::cell/type ::shark}

 (animal/make)))

(defmethod animal/make-child ::shark [fish]

 (make))

(defmethod animal/get-reproduction-age ::shark [s

 config/shark-reproduction-age)

; . . .

So far, with the exception of the reproduction age, the behavior
of both the shark and fish is “inherited” from (actually it is
delegated to) animal . But the shark class has extra
constraints that we need to implement now.

The modelers have told us that a shark only reproduces if its
:health is above a certain threshold. The :health of a
shark is increased by eating a fish , and it decreases with
time. If the :health of a shark reaches zero, the shark
starves, leaving behind water . When a shark reproduces, its
:health is split between the two daughters.

OK, so let’s test that the :health decreases with age:

Click here to view code image

(context "shark"

 (it "starts with some health"

 (let [shark (shark/make)]

 (should= config/shark-starting-health

 (shark/health shark))))

 (it "loses health with time"

 (let [small-world (-> (world/make 1 1)

 (world/set-cell [0 0]

 aged-world (world/tick small-world)

 aged-shark (world/get-cell aged-world

 (should= (dec config/shark-starting-health

 (shark/health aged-shark)))))

—————

(ns wator.shark . . .)

(s/def ::health int?)

(s/def ::shark (s/and #(= ::shark (::cell/type %

 ::animal/animal

 (s/keys :req [::health])))

(defn make []

 {:post [(s/valid? ::shark %)]}

 (merge {::cell/type ::shark

 ::health config/shark-starting-health}

 (animal/make)))

(defn health [shark]

 (::health shark))

(defn decrement-health [shark]

 (update shark ::health dec))

(defmethod cell/tick ::shark [shark loc world]

 (-> shark

 (decrement-health)

 (animal/tick loc world))

)

; . . .

Pretty easy. We just added the ::health field to the ::shark
spec and shark/make , and then we decremented the
::health in the tick function just before delegating the rest
of the behavior to the superclass animal .

Now let’s test that a shark will die when its ::health goes to
zero:

Click here to view code image

(it "dies when health goes to zero"

 (let [sick-shark (-> (shark/make)

 (shark/set-health 1))

 small-world (-> (world/make 1 1)

 (world/set-cell [0 0

 aged-world (world/tick small-world)

 dead-shark (world/get-cell aged-world

 (should (water/is? dead-shark))))

————

(ns wator.shark . . .)

(defmethod cell/tick ::shark [shark loc world]

 (if (= 1 (health shark))

 [nil {loc (water/make)}]

 (-> shark

(decrement health)

 (decrement-health)

 (animal/tick loc world))))

; . . .

Pretty easy. OK, so now let’s test that sharks will eat when given
the opportunity:

Click here to view code image

(it "eats when a fish is adjacent"

 (let [world (-> (world/make 2 1)

 (world/set-cell [0 0] (fish/mak

 (world/set-cell [1 0] (shark/ma

 shark-ate-world (world/tick world)

 full-shark (world/get-cell shark-ate-worl

 where-shark-was (world/get-cell shark-ate

 expected-health (+ config/shark-starting

 config/shark-eating-he

 -1)]

 (should (shark/is? full-shark))

 (should (water/is? where-shark-was))

 (should= expected-health (shark/health full-s

We create a 2-by-1 world with a shark next to a fish . After
one tick , the shark should be where the fish was, and

water should be where the shark was, and the shark ’s
::health should have increased.

Getting this to pass forced me to abandon the delegation to
animal/tick because a shark should try to reproduce
first, then try to eat next, and then finally try to move :

Click here to view code image

(ns wator.shark . . .)

(defn eat [shark loc world]

 (let [neighbors (world/neighbors world loc)

 fishy-neighbors (filter #(fish/is?

 (world/get-cell

 neighbors)]

 (if (empty? fishy-neighbors)

 nil

 [{loc (water/make)}

 {(rand-nth fishy-neighbors) (feed shark)}

)

(defmethod cell/tick ::shark [shark loc world]

 (if (= 1 (health shark))

 [nil {loc (water/make)}]

 (let [aged-shark (-> shark

 (animal/increment-age)

(d t h lth))]

 (decrement-health))]

 (if-let [reproduction (animal/reproduce

 aged-shark loc worl

 reproduction

 (if-let [eaten (eat aged-shark loc world

 eaten

 (animal/move aged-shark loc world)))))

All this slipped in with little hassle. We’ve passed through the
design bottleneck and are now reaping the benefits.

The modelers told us that a shark will only reproduce if its
health is above a threshold. Let’s test that. In fact, let’s make
that change first and see which tests break:

18. TDD VIOLATION! ALERT! ALERT!

Click here to view code image

(ns wator.shark . . .)

(defmethod animal/reproduce ::shark [shark loc wo

 (if (>= (health shark) config/shark-reproductio

 (animal/do-reproduce shark loc world)

 nil))

18

As expected, the test for animal reproduction fails in the shark
scenario. We can address this by putting a little hack in that
test:

Click here to view code image

(it "reproduces"

 (doseq [scenario [{:constructor fish/make :test

 {:constructor

 #(-> (shark/make)

 (shark/set-health

 (inc config/shark-

 health)))

 :tester shark/is?}]]

; . . .

Yes, that’s a bit ugly, but it does the job. I suppose I should add a
test for checking the other side of that threshold:

Click here to view code image

(it "doesn't reproduce if not healthy enough"

 (let [shark (-> (shark/make)

 (shark/set-health

 (dec config/shark-reproductio

 (animal/set-age config/shark-re

 world (-> (world/make 3 3)

 (world/set-cell [1 1] shark))

 failed (animal/reproduce shark [1 1] worl

 (should-be-nil failed)))

OK. One last thing. The health of the parent shark is split
between the two daughter sharks:

Click here to view code image

(it "shares health with both daughters after rep

 (let [initial-health (inc config/shark-reproduc

 pregnant-shark (-> (shark/make)

 (animal/set-age

 (inc config/shark-re

 (shark/set-health init

 world (-> (world/make 2 1)

 (world/set-cell [0 0] pregnant

 new-world (world/tick world)

 daughter1 (world/get-cell new-world [0 0

 daughter2 (world/get-cell new-world [1 0

 expected-health (quot (dec initial-health

 (should (shark/is? daughter1))

 (should (shark/is? daughter2))

 (should= expected-health (shark/health daught

 (should= expected-health (shark/health daught

Yup. That fails because the expected health isn’t correct. That
should be simple to fix:

Click here to view code image

(ns wator.shark . . .)

(defmethod animal/reproduce ::shark [shark loc wo

 (if (< (health shark) config/shark-reproduction

 nil

 (if-let [reproduction (animal/do-reproduce sh

 (let [[from to] reproduction

 from-loc (-> from keys first)

 to-loc (-> to keys first)

 daughter-health (quot (health shark)

 from-shark (-> from vals first

 (set-health daughter-h

 to-shark (-> to vals first

 (set-health daughter-hea

 [{from-loc from-shark} {to-loc to-shark}

 nil)))

And with that, I think the model is complete. Let’s see if we can
put a GUI on top of it:

Click here to view code image

(ns wator-gui.main

 (:require [quil.core :as q]

 [quil.middleware :as m]

 [wator

 [world :as world]

 [water :as water]

 [fish :as fish]

 [shark :as shark]

 [world-imp]

 [water-imp]

 [fish-imp]]))

(defn setup []

 (q/frame-rate 60)

 (q/color-mode :rgb)

 (-> (world/make 80 80)

 (world/set-cell [40 40] (fish/make)))

)

(defn update-state [world]

 (world/tick world))

(defn draw-state [world]

 (q/background 240)

 (let [cells (::world/cells world)]

 (doseq [loc (keys cells)]

 (let [[x y] loc

 cell (get cells loc)

 x (* 12 x)

 y (* 12 y)

 color (cond

 (water/is? cell) [255 255 255

 (fish/is? cell) [0 0 255]

 (shark/is? cell) [255 0 0])]

 (q/no-stroke)

 (apply q/fill color)

 (q/rect x y 11 11)))))

(declare wator)

(defn ^:export -main [& args]

 (q/defsketch wator

 :title "Wator"

 :size [960 960]

 :setup setup

 :update update-state

 :draw draw-state

 :features [:keep-on-top]

 :middleware [m/fun-mode])

 args)

Yeah, that wasn’t too hard. Figure 17.7 is a screenshot of the
game in progress.

It’s not super-fast; but that’s not a big surprise. There are a
bunch of things we could do to speed it up. But never mind that.
Look at that GUI code. It depends on the model, yet the model
knows nothing of the GUI. And that satisfies our original
architectural goal.

Figure 17.7. Screenshot of Wa-Tor in progress

Conclusion

Wa-Tor is a program that is “functional” and object oriented;
complete with several OO design patterns right out of the GOF
book. Indeed, it was the OO partitioning that helped the design
congeal so nicely.

19. Why the quotes? Because random numbers aren’t
referentially transparent, so this program is not purely
functional.

The OO partitioning separates and isolates the various data
types very nicely, and it provides pleasant locations for the
related functions. Any OO programmer would be very
comfortable with this.

However, at its heart, this is a data flow model. The world
flows through the behaviors in the various objects, without any
mutation. The plumbing model of functional programming still
holds.

Is this a hybrid approach? Have we created an unholy alliance. .
. a Frankenstein’s Monster of a program?

I think not. Indeed, I think this combination of approaches is
entirely natural and very beneficial. Data is encapsulated and

19

immutable. Behavior is associated with the data it operates on.
And yet the data elements flow through the behaviors as
opposed to the behaviors iterating over the data.

In the end, I think this is the way software was meant to be.

By the way, you can find all the source code at
https://github.com/unclebob/wator.

https://github.com/unclebob/wator

Afterword

In March 2022, I attended a friend’s birthday party where I
overheard a couple of guys bantering about code. I introduced
myself—I was in the market for some coding friends. Once we’d
gotten the obvious exchanges of small talk out of the way, one
of them dropped a bomb of a question on me.

He asked, “So, what’s your preferred stack?”

All the little bits in my brain frantically searched for an answer
while I was simultaneously trying to understand what he was
asking me, until finally I very unconfidently answered,
“Clojure?”

With a step back and obvious surprise, he exclaimed, “Really?!
Like full-stack?”

[Confetti drops in my brain—nailed it!]

In shock, he continued . . . “Front end and back end all in
Clojure? I’ve never heard of that before. How does that work?
Clojure is a Lisp language, right? It’s functional.”

Yes, it is, but Oh no! Another question . . . “How does that work?”

Well, if you’re reading this, then I assume you’ve read the
preceding pages and thus have already received a much better
and more elaborate explanation than I could offer you here, so
let’s address the elephant in the room: Why was asking me my
preferred stack a bomb of a question?

Almost exactly 11 years prior to this birthday party, I began my
career as a chemical engineer and a union scab in Metropolis,
IL, where I was trained to operate processes and equipment in
the manufacturing of uranium hexafluoride. Over the next ten
years, I progressed my career into production leadership of
various chemical manufacturing plants.

Across that decade, I learned a lot about procedures, state,
people, corporate culture, and broken processes for which I
lacked the skills to fix. Then, in March 2020, as I was balancing
demands based on said broken processes with overwhelming
life changes, the world as we knew it shut down. For eight
weeks, I suddenly found myself in the near-constant presence
of someone whom I knew not only had the skills I lacked, but
had developed the rules for mastering those skills.

So I asked my dad, or as you might know him, “Uncle Bob,”
what it would take to learn software to the depths necessary to
fix those problems I so desperately wanted to fix.

That evening he showed me one of his current projects—an
automated daily chart on COVID-19 infections and deaths by
county. When I didn’t recognize the syntax, he took the
opportunity to tell me about Clojure.

I immediately had questions because I’d only ever known the
basics of languages like Java and Python. He explained the basic
differences of OO procedural languages and functional
languages and why he liked Clojure. In one example, he showed
me why functional languages are “safer” and less complicated
than those that rely heavily on mutable states by depicting a
race condition for me that was almost identical to that of the
phone call between Bob and Alice found in Chapter 15.

Then we dove into the code, and he allowed me an opportunity
that I do not take lightly: to work with him on his COVID chart. I
mostly just wrote a few basic arithmetic functions (after we
wrote tests for those, of course).

He walked me through Quil too, and how even it was mostly
functional and how instead of changing a state, it simply
recurred a new state at each iteration. This went a little over my
head at the time, but I fell back on this conversation a lot over
the next year—I even have in front of me right now the

printout of the source code we’d written that night as
inspiration for writing this.

A little over a year later, I “graduated” from my software
apprenticeship and became a full-time developer for Clean
Coders Studio.

So, back to the elephant: As of March 2022, I was still pretty new
to software; due to COVID-19, there hadn’t been many large-
group events that had taken place yet; and because Baton
Rouge, LA, has some opportunity for growth in the software
sector, I had been pretty isolated as a developer and had
experienced little exposure to common industry lingo.

That birthday party offered me my first live interaction with a
fellow developer outside of Clean Coders, and when I was asked
my preferred stack, I had only enough knowledge to translate
and puzzle together the question. And it was a bomb of a
question because I wasn’t confident that I had all the pieces.

With that out of the way, I’ll leave you with two final tidbits.

1. The real-life moment Clojure blew my mind was when we
were working on a project that built off a Java project that
used Angular for the front end. When implementing
anything in Angular, we of course had to test and create

almost identical methods in Angular and Java (and
sometimes in Clojure, as we were migrating a legacy system).
Double work everywhere!
Then they asked for a mobile application using all the same
functionality as our Clojure features. We extracted much of
the core functionality into a cljc library, and from there we
were able to build the mobile app with little to no code
duplication or rewrites.
We used common functions for the cljs mobile application,
as we did for the back end, by utilizing Clojure common
namespaces.
In how many languages can you say you’ve done that—had
the back end and, potentially, multiple front ends all
functioning on the same, simultaneously tested code?

2. This got me, as I’ve seen it get others, and if you’re used to OO
it will probably get you. for in Clojure is not a loop. It is a
list comprehension macro, and it does not force side effects.
Instead, use doseq , which returns nil but will accomplish
what you are incorrectly trying to achieve with for .

Good luck!

—Gina Martiny, Clean Coders

Index

Page numbers with “n” indicate footnotes.

Symbols

: (colon), 112
#(…) form, 73n5
#{…} form, 88n
:post feature, 113–114, 256
:pre feature, 113–114, 256
[…] (square brackets), 29n
->> (threading macro), 45, 46

A

Abstract Factory pattern
shape example, 276–281
usage, 271, 276

Abstract Server pattern
in switch and light problem, 233–236
usage, 230–231

access points, 150
actors, 127, 129, 288–289
Adapter pattern

forms, 231–233, 240–242
in switch and light problem, 236–240

Advanced C++ Programming Styles and Idioms (Coplien), 250n
Advent of Code 2022 problem

Clojure solution, 121–123
description, 118–119
Java solution, 119–121

agent , 220
Agile Software Development: Principles, Patterns, and
Practices (Martin), 53, 96, 126, 184n, 231n4, 243
architectural boundaries

maintaining OCP across, 281
in Payroll example, 98, 100, 105
in shape example, 271, 273, 275–276
in Wa-Tor app, 289, 312–313

architecture. See Dependency Rule of Clean Architecture
arrays

and n-ary trees, 23–25
in Sieve of Eratosthenes algorithm, 20–22

assignment
defined, 7–8
programming without, 4–6, 20–22

assoc , 90n5
async/>!! function, 213

async/go function, 205
atom (atomic value), 50–51
atomic operations, 50

B

batch vs. interactive applications, 44
behavioral cohesion, 94, 336
binary trees. See n-ary trees
Bowling Game problem

Clojure version, 71–75
comparison of solutions, 75–76
Java version, 66–71

business rules
and dependencies, 154–155
tests, 127–131

C

cathode ray tubes (CRTs), 118
change requests and Single Responsibility Principle, 126–131
Church, Alonzo, xvi–xvii
Church-Turing thesis, xvi–xvii, 19
classes

closed, 267, 273

and interfaces, 132, 283–284
vs. namespaces, 107

Clean Architecture (Martin), 96, 126
Cleancoders, 126, 213
Clean Craftsmanship (Martin), 53, 79n
Clojure

and classes, 267
compiling, 137, 150, 256n, 300
features and constraints, 41, 281, 282–284
interface segregation, 149–150
keyword syntax, 45n
on learning, xvii–xviii
namespaces and source files, 107–108
source code dependency, 104–105
syntax overview, 29–32

clojure.spec library, 47, 110
cogency, 151
cohesion, 94
Command pattern

Undo variation, 245–249
usage, 242–245

compare-and-swap protocol, 48–51
comp.object (social network), 230
Composite pattern

shape example, 254–259
in switch and light problem, 249–254

concat function, 73
constants, and functional programs, 16
Coplien, Jim, Advanced C++ Programming Styles and Idioms,
250
copy example

in C, 131–132
in Clojure, 133–136

copy-making, 20–22
coupling

avoidance with laziness, 41–42
in Bowling Game, 76
temporal, 8–10
and testing, 166

CRT. See cathode ray tubes (CRTs)
cycle , 90n6

D

Dahl, Ole-Johan, 78, 153
data cohesion, 94, 96, 336
data flow. See also Advent of Code 2022 problem

in command line shells, 123
as programming style, 118, 124

data flow diagrams (DFDs), examples, 99
data structures. See also n-ary trees

persistent, 25
deadly embrace (aka deadlock), 49
declare function, 35
Decorator pattern

shape example, 260–263
usage, 260, 264

def form, 39
defmulti , 103
dependencies

source code and runtime, 152–155
source code inversion, 104–105

Dependency Inversion Principle (DIP)
and shape example, 274
source code and run time dependency, 152–155
in Video Store problem, 165–174
in Wa-Tor, 300, 310

Dependency Rule of Clean Architecture, 271, 275–276
design patterns. See also Abstract Factories; Abstract Server
pattern; Adapter pattern; Command pattern; Composite
pattern; Decorator pattern; Visitor pattern

about, 227, 230–231

Design Patterns: Elements of Reusable Object-Oriented
Software (Gamma et al aka GOF book), 98, 227n, 259, 270, 273
Dewdney, A. K., 288
DFDs. See data flow diagrams (DFDs)
diagnostic tests, 190–197
discrete event simulation. See Gossiping Bus Drivers problem
dispatching functions, 135
doall function, 40
doseq function, 251
double (or dual) dispatch, 266, 270
duck typing, 132, 139, 149. See also multi-methods

E

Euler Project, The, 213
extensions vs. modifications, 131

F

Fibonacci numbers example
with iteration, 28–32
with lazy lists, 38–40
with true recursion, 32–35

Fikes, Mike, 200
filter , 102n5

finite state machines
and programming style, 93–94
subway turnstile example, 13–15
telephone system example, 216–225

flatten , 91n10
for function, 102n7
Fowler, Martin, Refactoring, 155
F# programming language, 41, 132
fragility, 127
functional languages. See also Clojure

and design patterns, 233
features, 7, 34, 41, 124, 185, 245, 281
interface mechanisms, 132, 150
and mutation, 48
typing in, 110
usage, 225

functional programming
defined, 4
and lambda calculus, xvii
and Moore’s law, 225–226
and OOP compatibility, 282–284
and resource costs, 19–20, 25
and state change problems, 12–15, 93–94
and tests, 63, 184

and variables, 7–8
functional programs

characteristics, 10–12, 15–16, 18, 100, 335–336
GUI frameworks in, 200
vs. Object Oriented programs, 93, 108, 167
and race conditions, 216

functions
as abstraction layer, 133
in mathematics, 10
private, 103n8, 283

G

garbage collection, 9, 42
get , 103n9
GOF book. See Design Patterns: Elements of Reusable Object-
Oriented Software (Gamma et al)
GOF (Gang of Four), 242n
Gossiping Bus Drivers problem

Clojure solution, 88–92
comparison of solutions, 92–93
description, 78
Java solution, 78–88

graphics. See turtle graphics
GUI

architectural application example, 245–249
frameworks, 200

H

handle/body patterns. See Composite pattern; Decorator
pattern
Haskell programming language, xiv, 41, 283
high-level policy and low-level detail, 132, 136–138, 154–155
higher-order functions, 133n

I

immutability, 15-16, 47, 93-94, 281. See also mutability
independent deployability, 136–138
initialization, 6, 7–8, 18, 19
integration tests, 165–166
interactive programs, 44
Interface Segregation Principle (ISP)

examples, 147–150
usage, 150–151

ISA rule, 142–145, 179
iteration

Fibonacci example, 28, 30–32
vs. recursion, 35

iterators, 38, 40

J

jar files, 136–137
Java virtual machine (JVM), 7n, 32, 138

L

lambda calculus, xvi–xvii, 19
languages. See also Clojure; functional languages

coupling characteristics, 150
type characteristics, 147

laziness
Fibonacci example, 38–40
list accumulation, 40
usage, 41–42

lazy lists, 38–40
Liskov Substitution Principle (LSP)

code example and tests, 139–142
and ISA rule, 142–145
principle, 138–139
and representative rule, 146–147

locking, 49
low-level detail. See high-level policy and low-level detail

M

map function, 33
Martin, Robert C.

Agile Software Development: Principles, Patterns, and
Practices, 53, 96, 126, 184n, 231n4, 243
Clean Architecture, 96, 126
Clean Craftsmanship, 53, 79n
Refactoring, 155

memoization, 34–35
memoize function, 35
memory usage

garbage collection, 9, 42
and laziness, 39–41
with n-ary trees, 24–25
in Sieve of Eratosthenes algorithm, 22

message sequence charts, 216–217
Meyer, Bertrand, Object-Oriented Software Construction, 131
mocks, 184–186, 236
modifications vs. extensions, 131
modules

dependencies, 150–151
extensions vs. modifications, 131–132

Moore’s law, 225
more-speech application, 48n, 185

multi-methods
in ATM interactor example, 149–150
in copy example, 135–136
in switch and light problem, 235–236, 240–241
in video statement formatting example, 167–179
in Wa-Tor, 312

mutability. See also immutability
and concurrency, 216
in languages and frameworks, 47–48, 124, 200
and testing, 197

N

namespaces and source files, 106–108, 238–239
n-ary trees, 23–25
90-degree rotations, 265, 270–271, 279
ns (namespace), 159n, 238
Nygaard, Kristen, 78, 153

O

object orientation (OO)
and functional programming, 53, 93–94, 108, 282–283
origins, 78, 153
program characteristics, 93, 96

Object-Oriented Software Construction (Meyer), 131
OCP. See Open-Closed Principle (OCP)
opaque arguments, 279–281
Open-Closed Principle (OCP)

with functions, 133–134
independent deployability, 136–138
with multi-methods, 135–136
usage, 131–132
with vtables, 134

P

Papert, Seymour, 201
partial function, 102n6
partition function, 72n4
partitioning

in Gossiping Bus Drivers problem, 93
in Wa-Tor, 335

Payroll problem
Clojure solution, 98–107
Java solution, 97–98
requirements, 96–97
type specifications, 110–113

persistent data structures, 25
pointer to implementation (PIMPL) pattern, 140

polymorphic interfaces, in architectural drawing application,
248–249
polymorphism

mechanisms in Clojure, 134, 238–239, 249, 282, 283
and mocks, 185
in OO, 96, 132

prime factors example, 186–189
Prime Factors problem

Clojure version, 60–63
comparison of solutions, 63–64
Java version, 56–60

private functions, 103n8, 283
Processing framework, 47n, 200
property-based testing, 186–189
protocol/record mechanism, 137–138

Q

quick-check , 194, 195, 197
QuickCheck, 188
Quil framework, 47, 200

R

race conditions

defined, 9
in finite state machines, 226
in telephone system examples, 223–225

range function, 33, 38
recursion

vs. assignment statements, 6–7
in Fibonacci example, 32–35
vs. iteration, 35
state changes in, 15–16

reduce function, 72
Refactoring (Martin), 155
referential transparency, 11–12, 34
repeat function, 71n
REPL, 184
representatives, 146–147
rest function, 38
runtime dependencies, 152–155

S

Scala programming language, 41, 132
SeeSaw framework, 200
semantic validation vs. business rule tests, 127–131
sequential coupling. See temporal coupling
shape example

Abstract Factory pattern, 276–281
Composite pattern, 254–259
Decorator pattern, 260–263
and instance creation, 274–276
Visitor pattern, 264–267, 268–270, 271–273

side effects, 254, 283–284
Sieve of Eratosthenes, 18–19, 20–22
SIMULA-67, 78, 153n20
Single Responsibility Principle (SRP)

defined, 126–127
usage, 130–131, 288
violation examples, 76, 127–130, 159

Software Transactional Memory (STM), 48–51
SOLID principles. See also Dependency Inversion Principle
(DIP); Interface Segregation Principle (ISP); Liskov
Substitution Principle (LSP); Open-Closed Principle (OCP);
Single Responsibility Principle (SRP)

resources, 126
source code dependencies

and instance creation, 274–276
inversion, 104–105
and runtime dependencies, 152–155

source files
loading from, 137

and namespaces, 106–108
Spacewar!, 45–47, 114, 200
speclj framework, 184
squares and rectangles example, 142–147
state of the system. See also finite state machines

in functional programs, 12–13, 15–16, 44–45
and structural sharing, 23–25
and temporal couplings, 8

subway turnstile example, 13–15
sum of squares example, 4–6, 9–10, 11
Swing framework, 48, 200
switch and light problem

Abstract Server pattern, 234–236
Adapter pattern, 236–242
Composite pattern, 250–254
description, 230–233

T

tail call functions, 28
tail call optimization (TCO)

defined, 7
explicitly invoked, 32
usage, 19–20, 35

take function, 39, 40, 73

TCO. See tail call optimization (TCO)
TDD. See test-driven development (TDD)
telephone system example

in Clojure, 219–223
finite state machines, 216–217
race condition, 223–225

Template Method pattern, 175, 324
temporal coupling, 8–10
test-driven development (TDD), 53, 184. See also specific
examples and problems
tests

mocks, 184–186
property-based testing, 186–189

threading macro (->>), 45, 46
threads

and race conditions, 216
usage, 9, 48–51

TILT error message, 122n
Turing, Alan, xvi–xvii
Turing machines, xvi–xvii, 19
turtle graphics

command handling, 210–212
framework and drawing functions, 202–210
usage, 200–202

turtles (printing devices), 200–201
type integrity

with clojure.spec library, 110–113
with :pre and :post , 113–114

type models, and Decorator pattern, 260–263
type safety, 281
types. See also duck typing

in Liskov Substitution Principle, 139

U

Undo Command pattern, 245–249
unified modeling language (UML) diagrams, 97
union function, 91n8
update function, 91n7

V

vals , 91n9
variables

assignment, 7–8
in functional programs, 15–16, 18–19

Video Store problem, 155–165, 166–179, 190–197
Visitor pattern

in shape example, 264–267, 268–270, 271–273

usage, 264
vtables, 134, 139, 235

W

Wa-Tor app
10x10 test, 322–323
actors, 288–289
Factory Method solution, 312–322
fish movement behavior, 295–305
fish reproduction behavior, 305–309
as functional and object oriented, 335–336
game concept, 288
objects, 289–292
screenshot, 335
shark class, 324–334
water behavior, 293–295
world dependency, 309–312

Y

YAGNI (You Aren’t Gonna Need It), 292n

Code Snippets

Many titles include programming code or configuration
examples. To optimize the presentation of these elements, view
the eBook in single-column, landscape mode and adjust the font
size to the smallest setting. In addition to presenting code and
configurations in the reflowable text format, we have included
images of the code that mimic the presentation found in the
print book; therefore, where the reflowable format may
compromise the presentation of the code listing, you will see a
“Click here to view code image” link. Click the link to view the
print-fidelity code image. To return to the previous page
viewed, click the Back button on your device or app.

	Cover Page
	About This eBook
	Halftitle Page
	Title Page
	Copyright Page
	Dedication
	Contents
	Foreword
	Preface
	A Brief History of Functional and Procedural Programming
	On Clojure
	On Architecture and Design
	On Object Orientation
	On “Functional”

	Acknowledgments
	About the Author
	I: Functional Basics
	1. Immutability
	What Is Functional Programming?
	The Problem with Assignment
	So Why Is It Called Functional?
	No Change of State?
	Immutability

	2. Persistent Data
	On Cheating
	Making Copies
	Structural Sharing

	3. Recursion and Iteration
	Iteration
	Recursion

	4. Laziness
	Lazy Accumulation
	OK, but Why?
	Coda

	5. Statefulness
	When We MUST Mutate
	Software Transactional Memory (STM)
	Life Is Hard, Software Is Harder

	II: Comparative Analysis
	6. Prime Factors
	Java Version
	Clojure Version
	Conclusion

	7. Bowling Game
	Java Version
	Clojure Version
	Conclusion

	8. Gossiping Bus Drivers
	Java Solution
	Clojure
	Conclusion

	9. Object-Oriented Programming
	Functional Payroll
	Namespaces and Source Files
	Conclusion

	10. Types
	Conclusion

	III: Functional Design
	11. Data Flow
	12. Solid
	The Single Responsibility Principle (SRP)
	The Open-Closed Principle (OCP)
	The Liskov Substitution Principle (LSP)
	The Interface Segregation Principle (ISP)
	The Dependency Inversion Principle (DIP)

	IV: Functional Pragmatics
	13. Tests
	But What about the REPL?
	What about Mocks?
	Property-Based Testing
	A Diagnostic Technique
	Functional

	14. GUI
	Turtle-Graphics in Quil

	15. Concurrency
	Conclusion

	V: Design Patterns
	16. Design Patterns Review
	Patterns in Functional Programming
	Abstract Server
	Adapter
	Command
	Composite
	Decorator
	Visitor
	Abstract Factory
	Conclusion
	Postscript: OO Poison?

	VI: Case Study
	17. Wa-Tor
	Scratch That Itch
	Showers Solve Problems
	It’s Time to Wildly Reproduce
	What about the Sharks?
	Conclusion

	Afterword
	Index
	Code Snippets

