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INTRODUCTION

According to the C# Language
Specification, “C# is intended

to be a simple, modern, general-purpose,
object-oriented programming language.”
C# may look simple on the surface, but it
has hidden depths even in its most
fundamental features. The type system is
a central element of C# and is the
foundation upon which all C# programs
are built. This has been true from the
earliest versions of C#, and will continue
to be relevant as the language evolves.
The C# Type System isn’t a gallery of the
latest language features, and we won’t
delve into every detail of the latest
edition, because C# is constantly
advancing; instead we’ll focus on the
language’s rich support for creating your
own types and examine how best to



employ the type system to improve your
designs and write clearer, simpler, more
efficient programs.

Many languages allow users to define their own types,
but C# is different in that it makes a clear distinction
between classes, which are reference types, and value
types. Classes are the default choice for implementing a
design in C# and the general-purpose mechanism for
custom types, as they support all the object-oriented
features that C# has to offer. In contrast, value types are
much more specialized, which is why they’re often
misunderstood and dismissed as an advanced feature that’s
irrelevant for most applications. It’s true that value types
aren’t suitable for many custom types in an application, and
they may not be necessary in every design, but they have
several advantages that are frequently underappreciated.

Using typical real-world examples, this book will walk
you through defining and implementing value types
effectively and efficiently so that they work successfully
with all the other types in your applications. Specifically,
we’ll explore the following:

Why C# distinguishes between value types and
reference types, and what that means in practice
What makes value types different, both syntactically
and semantically, from other types
How incorporating value types can improve your code
and help you express designs more clearly
Which characteristics of value types, beyond those
defined by the language, are most important to their
role in an application
Where you can use value types to enhance an
application’s performance



Who Should Read This Book

If you’ve learned the basics of C# and wish to expand your
understanding of the language to become a better
programmer, this book is for you. Nothing in the chapters
that follow is particularly advanced, but the content is
intended to help you understand some of the underlying
features, principles, and concepts of C# programming. My
hope is that this book will allow you to move beyond simply
writing runnable programs using correct C# syntax to
writing idiomatic and efficient C# programs that your
colleagues can easily understand.

To follow the examples, you’ll need experience with
creating your own classes; familiarity with constructors,
methods, and properties; and a basic understanding of how
virtual methods can be overridden by derived classes.
Some practice with exceptions, both in employing them and
handling them to manage errors, will also be useful. An
appreciation of the mechanics of defining generic types and
methods, although not essential, will also be helpful; in
particular, some experience using the generic collection
classes provided by the Standard Library will give you
insight into how generics work in C#. The C# Type System

isn’t a beginner’s guide and doesn’t discuss how to compile
and run your code, but you aren’t expected to know the
dark corners of the language. That said, I hope that some
parts of this book will amuse and perhaps even surprise
more advanced users.

When features are fundamental, we sometimes become
complacent about them. With that in mind, many chapters
in this book cover details that experienced C#
programmers might consider introductory. Those topics are
intended to set the scene for some less widely understood
concepts that depend on them.

If you have more than just a passing familiarity with C#
code or experience with another object-based language



such as Java or C++, I hope that the examples and
commentary here will help you better understand C#
syntax and semantics and better appreciate why C# is the
language it has become.

The book doesn’t cover all aspects of C# programming;
the focus is intentionally on the interactions between value
types and reference types. In that discussion, we’ll venture
into C# generics, collections, Language Integrated Query
(LINQ), and threading, but only superficially. We won’t be
discussing unsafe code or C# pointers. (Actually, there’s
one mention of managed pointers. Otherwise, we’re solid.)

We won’t cover how to create web services, interact
with databases, or write distributed programs intended for
deployment as cloud or microservice applications, but the
techniques and underlying principles of C# presented will
help improve the applications you create for those domains
and others.

If you’ve asked or been asked when a value type would
be a better choice than a reference type in a C# program
and found yourself unable to give a satisfactory response,
you should find this book useful.

Organization and Requirements

The book is organized into eight chapters, each presenting
a different aspect of value types in action:

Chapter 1: Making the Most of the Type System   
Examines the importance of user-defined value types
and how introducing even simple types in an application
can make the code easier to read and understand. It
covers the importance of accurate names, the benefits
of encapsulating application-specific behavior, and ways
to make your own types intuitive and simple to use.
Chapter 2: Value and Reference Types   Looks at why
C# has both reference types and value types and



compares them in detail. We consider how different
kinds of objects use memory, what that means for their
lifetimes, and how the differences between types affect
construction, equality, and copying. We review nullable
value types and compare them with the newer nullable
reference type feature.
Chapter 3: Reference and Value Parameters   
Examines the four types of method parameters and how
to pass arguments to them, as well as how passing
behavior differs between value types and reference
types. We distinguish between passing a reference type
variable and passing an argument by reference and
explore how that relates to mutability and side effects.
We also consider how to pass value type instances by
immutable reference to optimize performance.
Chapter 4: Implicit and Explicit Copying   Discusses
how values are copied in a program and how the
differences in copy behavior between value types and
reference types can have unintended consequences in
our code. In particular, we distinguish between
variables and values and explore how making value
types immutable can help prevent some common
copying-related errors. We also look at ways to mitigate
the potential inefficiencies that copying can introduce.
Chapter 5: Types of Equality   Covers the various
ways that values can be compared for equality and what
happens under the hood during these comparisons.
Implementing value-based equality comparisons is a
common source of error, so we’ll walk through how to
do so safely and correctly, as well as how to take
advantage of facilities provided by the compiler for this
purpose.
Chapter 6: The Nature of Values   Outlines the
characteristics and roles of different types in an



application and how a value type’s role is more than just
being a convenient way to store data. We examine what
value semantics means and what makes an object a
good candidate to be a value type. We also consider the
importance of ordering objects and distinguish between
equality and equivalence.
Chapter 7: Value Types and Polymorphism   
Explores why inheritance isn’t an appropriate form of
polymorphism for value types, working through an
example to demonstrate the problems that can arise.
We look in detail at the difference between subclassing
and subtyping, and we discuss how other kinds of
polymorphism are more suitable for working with
values.
Chapter 8: Performance and Efficiency   Considers
how different types affect an application’s performance
and how to precisely measure performance to make
evidence-based decisions. The chapter covers how
accepting default behavior can adversely affect our
code’s performance, while also addressing common
myths regarding compiler-generated code and
efficiency.
Many of the code snippets use a simple test to

demonstrate a behavior or language characteristic. The
examples use NUnit fluent-style assertions, which provide a
commonly understood and compact way to represent the
concepts being discussed. Several other unit-testing
frameworks are available for C#, and you should be able to
easily translate the NUnit test snippets to other styles.

It won’t take long for you to discover that the code
examples, on their own, usually don’t compile in the form in
which they’re presented. For the sake of brevity, some
details, such as importing namespaces or defining Main, are
omitted. The code examples are intended to focus your
attention on a concept rather than to show a legal program.



Modern Features

In recent years the language designers have put a great
deal of effort into enhancing C#’s support for creating
efficient, high-performance applications. While the central
ideas of the language have remained unchanged, new
facilities have been added, particularly with respect to
simple value types, and new features incorporated to
enable C# programmers to take advantage of value types
to maximize application performance. This book explores
some of those features but in the context of classic C#
programming, not just high-performance computing. Some
of those features can make your programs clearer for
human readers, as well as more efficient at run time.

Most of the code examples throughout the book
demonstrate concepts that have been widely used in C#
over several versions, some using features that have been
part of C# since version 1.0. For more recently introduced
features, the minimum compiler version is indicated.

Using value types effectively in your applications
requires some additional thought on your part, not just
about how those types are designed, but also about how
they’re used. The C# Type System describes in detail how
value types behave in a wide variety of scenarios, allowing
you to write C# in a modern, idiomatic, and effective
manner. Having a deeper understanding of how value types
fit into the C# type system will help you enrich your
designs and write better programs.

Why Value Types?

Whereas the class is the poster child of object-oriented
programming and design, the humble value type is often
overlooked. However, judicious use of value types can bring
many benefits, including better performance. Value type
instances aren’t individually allocated on the heap or
subject to garbage collection. Allocating objects on the



heap carries a small performance penalty since the garbage
collector must inspect every object in memory, whether or
not it’s in use, to ascertain whether it’s eligible for
collection.

Reducing the heap-based memory of a program is likely
to mean the garbage collector runs less often and has to do
less work when it does run. Reducing heap memory
pressure is likely to improve the speed of the code you
write. Although the garbage-collection algorithm has been
carefully tuned to minimize its impact on a running
program, avoiding garbage collection altogether is even
more efficient.

Making all your objects into value types almost
certainly won’t magically improve your programs’
performance, but there’s much more to the value type story
than simply performance, just as there’s more to source
code than a program, and more to programming than
typing. Understanding value semantics can help you
determine where you might employ value types in a design
and how to implement them to best achieve your goal.
Equally importantly, understanding value semantics will
help you determine where a value type would not be
appropriate.

Over the course of this book, you’ll learn what value
semantics means for C# programs, and how to use value
types successfully and efficiently. Along the way, we’ll look
in detail at both how and why value types behave as they
do. First, though, we’ll explore using simple value types to
make our code easier for humans to understand. Let’s get
started.



1

MAKING THE MOST OF THE TYPE

SYSTEM

Clear and readable source
code matters much more to

humans than it does to computers.
Whether we’re trying to debug existing
code or learning to use a new feature, we
inevitably find ourselves reading through
source code. It’s important to ensure that
our code is as readable as possible so that
its meaning is clear to other readers.
Code that’s hard to follow or easily
misunderstood is a breeding ground for
errors.

One way to improve the clarity of our code is to use the
type system to our advantage by creating our own types
and giving them names that clearly describe their purpose.
Good names are important for all the types in a system, but
it’s easy to neglect the simple value types that represent an
application’s most granular information.



In this chapter, we’ll examine a short but unclear piece
of code and improve it over several iterations through a
series of techniques that will help you learn how to use the
type system effectively. By the end of the chapter, you’ll
have a better understanding of how custom value types
contribute to easy-to-understand code and how to
incorporate a rich set of types into your designs.

We’ll explore the following:
How custom types can help express meaning and make
code more self-documenting
How to encapsulate domain-specific behavior to reduce
errors
Where to use some syntax features from C# v9.0 and
v10.0 for compact and readable code
How to make using custom types easy and natural in
commonplace code
To begin, let’s look at a simple example of value types in

action and why they’re such an important feature of our
designs

The Value of Good Names

Choosing good names for identifiers can be difficult but has
a major impact on the clarity of our code. Consider the
Displacement method in Listing 1-1.

public static (double, double) 

Displacement(double t, double v, double s) 

{ 

    var x = v * s * Math.Cos(t); 

    var y = v * s * Math.Sin(t) - 0.5 * 9.81 * Math.Pow(s,

 2); 

    return (x, y); 

}



Listing 1-1: An example of bad variable naming

The method’s three parameters—t, v, and s—are poorly
named, and their purpose isn’t immediately clear. We’ll use
this code throughout the chapter to explore a variety of
ways to improve it and better define its intent.

The purpose of the Displacement method is to calculate
the position of a projectile on its ballistic arc, given an
initial angle and velocity, and the time elapsed since the
projectile was launched. If you’re familiar with the
equations for projectile motion, you may recognize the
algorithm, but the variable names provide no clue
whatsoever to their purpose. When called, the Displacement
method calculates the coordinate value of the projectile
relative to its launch point, as illustrated in Figure 1-1.

Figure 1-1: Projectile displacement

The angle, initial speed, and time labels in Figure 1-1
correspond to the t, v, and s parameters for Displacement,
respectively. The x and y values correspond to the
components of the tuple returned by that method. The
projectile is launched with an initial speed, at a particular
angle, and follows a well-defined ballistic arc. The



Displacement method calculates the projectile’s position on
that arc after a given amount of time has passed.

We won’t go into the algorithm being used here, as our
focus is merely on making the purpose of this method more
immediately clear. The first barrier to our understanding of
the Displacement method is the meaning of its parameters
and return value.

I have deliberately exaggerated the issue with single-
letter names, but I’ve seen similar examples in the real
world and thought, What on earth do those parameters

represent? Even if we carefully inspect how the parameters
have been used, determining their meaning requires being
familiar with the equations. That is just poor code craft.
Not all of us have kept up with our ballistics studies.

We want to make it as easy as possible for the reader to
determine the purpose of the method, whether they’re
familiar with the topic or not. The quickest way to
accomplish this is to ensure that the parameter names
better reflect what they represent. In particular, code
should avoid relying on specialist jargon. The t here stands
for theta, which is typically used in physics to represent the
magnitude of an angle, but even if we replaced t with the
full word theta, readers unfamiliar with this mathematical
convention would be unlikely to make that connection.

Instead of using potentially obscure single-letter names,
let’s give the parameters names that properly signify their
meaning:

public static (double, double) 

Displacement(double angle, double speed, double elapsedTime) 

{ 

--snip--

By renaming t as angle, v as speed, and s as elapsedTime,
we’ve made their purpose clearer. Changing velocity to
speed might seem a minor change, but the names we use



matter. While the use of v for velocity is common, speed is a
more accurate description of this value’s purpose. Velocity

is a technical term with a specific meaning in physics; it
represents both magnitude (speed) and direction. If we
name code elements as accurately and properly as we can,
we reduce the risk of those names being misunderstood.

Selecting good names is a first step toward making
code clearer and easier to read. However, we can do much
more to improve our code’s clarity and remove ambiguity
about what those identifiers represent. We might
reasonably ask, for example, in what units the angle, speed,
and elapsedTime parameters are measured. We’ll address
that later in the chapter, but first we need a more
sophisticated mechanism than the double type allows.

Adding Clarity Through Types

All the Displacement method’s parameters are of the same
type: double. This makes it easy for anyone, including
ourselves, to accidentally mix up argument values when
calling the method—without any warning from the
compiler.

The double type itself is not the specific culprit here;
we’d have the same problem if the parameters were all
string or all bool types. Even if each parameter were of a
different built-in numeric type, plenty of potential for
problems would still remain because of the presence of the
implicit promotion rules between them. Moreover,
clarifying the parameter names doesn’t necessarily help the
calling code, especially if the method is called with plain
constant values like so:

var result = Displacement(.523, 65, 4);

Hard-coded values such as those used in this example
are called magic numbers because there’s no explanation



of their meaning or purpose. We could replace the magic
numbers with better-named variables to make their
purpose clearer, but the caller of the method might still
supply the arguments in the wrong order.

One common way for the calling code to address such
out-of-order errors is to specify the parameter name for
each argument. Let’s see that in practice before looking at
how to use different types to distinguish between the
argument values.

Named Arguments

Embedding the parameter name for each argument being
passed to a method makes the purpose of those arguments
much more visible in the calling code, as shown here:

var result = Displacement(angle: .523, speed: 65, elapsedTim

e: 4);

This call to the Displacement method specifies which
parameter receives each value being supplied. The caller
must match the parameter names of the method but can
order them in any way they like:

var result = Displacement(elapsedTime: 4, speed: 65, angle:

 .523);

Naming the arguments makes the order in which
they’re passed irrelevant. The compiler will ensure that
each argument value gets passed to the right parameter
according to its name, not its position.

This technique puts the responsibility of clarity onto the
caller of the method. If the caller forgets or doesn’t bother
to name the arguments, the compiler won’t warn them. The
compiler will also give no warning if the caller mixes up the
value for angle with speed. The code will compile, and the
program will run, but it will almost certainly give incorrect



results. Worse, the code might give a result that is almost
correct for one specific set of arguments and then fail at
the worst possible moment when different values are
passed. The causes of errors like this can be difficult to
track down.

Custom Types

The problems we’re seeing with the Displacement method
stem from using the double type to represent several
distinct concepts. This is a variation of the Primitive

Obsession code smell, which describes any code that has an
overreliance on primitive types—that is, those types that
are built into the language, such as int, double, and string.

Measurements and quantities such as speed commonly
have numerical representations, but the double type is too
general; it can be used to represent a wide variety of
values, including angle and speed in our example, making it
possible for the caller of the code to provide the wrong
values. The angle and speed quantities are measured in
different ways to mean different things. Using a raw double
does not express the distinctions between them clearly
enough. An angle of 45 degrees is a very different value
from a speed of 45 meters per second.

The well-known solution to primitive obsession is to
provide our own types with distinct purposes and to ensure
that no implicit conversions exist between them. This
enables the compiler to identify any arguments that are
used inappropriately. Instead of using double to store
quantities of angle and speed, Listing 1-2 defines two types
that more positively convey their differences.

public struct Angle 

{ 

    public double Size {get; set;} 

} 

public struct Speed 



{ 

    public double Amount {get; set;} 

}

Listing 1-2: Defining our own types

Our user-defined structs Angle and Speed are still quite
primitive; they’re merely wrappers around a public
property (Size and Amount, respectively) that allows us to
read or write the value being represented in each case.
We’ll improve this design, but for now it meets the
immediate need: to distinguish values of angle from values
of speed by their type rather than just by the parameter
names.

Listing 1-3 demonstrates how we use these new types
for the parameters to the Displacement method.

public static (double, double) 

Displacement(Angle angle, Speed speed, TimeSpan elapsedTime) 

{ 

--snip--

Listing 1-3: Using custom types as parameters

The C# Standard Library does not provide any
abstractions for angles or speeds, but it does have the
TimeSpan type, which is ideal for the elapsedTime parameter.
Now the type of each parameter describes its value, so the
parameter names have less responsibility. Any attempt to
provide the arguments in the incorrect order, like
substituting speed for angle, will cause the compiler to
complain with a fairly obvious error message about not
being able to convert Speed to Angle.

Encapsulation



Using distinct types for the values in a design emphasizes
each value’s role rather than its representation, making the
code more self-documenting for human readers and
allowing better error checking by the compiler. We’ve
achieved our stated goal of preventing arguments to
Displacement from being positioned incorrectly, but right
now Speed and Angle are simple types that just have a value,
rather than being a particular kind of value.

These types do not encapsulate their values in any way
because their values are exposed as the publicly mutable
Size and Amount properties. Those properties are currently
the only way to create instances of those types, as we do in
Listing 1-4, where we use object initialization to set the
property values.

var result = Displacement(angle: new Angle {Size = .523}, 

                          speed: new Speed {Amount = 65}, 

                          elapsedTime: seconds);

Listing 1-4: Using object initialization to create inline

argument instances

Using the public properties to set the values here is
unnecessarily verbose. Listing 1-5 simplifies the syntax by
adding constructors so we can create new instances
directly with a value instead of having to set a public
property.

public struct Speed 

{ 

    public Speed(double amount) 

        => Amount = amount; 

    public double Amount {get; set;} 

} 

public struct Angle 

{ 

    public Angle(double size) 



        => Size = size; 

    public double Size {get; set;} 

} 

❶ var result = Displacement(new Angle(.523), new Speed(65), s

econds);

Listing 1-5: Adding constructors for Speed and Angle

Here, when we call Displacement, we construct the Angle
and Speed instances with their values instead of setting their
properties ❶. Now that the type names are more
descriptive, the order of the arguments is not ambiguous,
so naming the arguments is no longer so important.

These constructors use the expression body syntax,
introduced for methods in C# v6.0 and available since C#
v7.0 for constructors. With this syntax, instead of a block
enclosed by braces {…}, the expression is a single
assignment separated from the constructor’s signature by
the => symbol. Since Speed and Angle each have only a single
property to initialize, the expression-bodied constructors
are concise and convenient.

Compare the final line with Listing 1-4. The changes to
Angle and Speed in Listing 1-5 allow us to construct the
values we want instead of using the object initializer in
each case. This reduces the amount of typing the caller has
to do but, more importantly, expresses more directly that a
Speed or Angle is a value instead of just having a value.

Immutability

Currently, our values are all mutable, but once we’ve given
an Angle or Speed a value in its constructor, we don’t need to
allow that value to change. If we require an Angle with a
different value, we can create a new instance with that
value.

We achieve this immutability by removing the set
accessor for the Size property of Angle to make it a read-only



property. Then the only way to provide a value is via the
constructor, and that value is permanent and immutable.
We’ll do the same for the Amount property of Speed, as shown
in Listing 1-6.

public readonly struct Speed 

{ 

    public Speed(double amount) 

        => Amount = amount; 

    public double Amount {get;} 

}

Listing 1-6: Making Speed immutable

To ensure that the Speed instance can’t change, we also
make it readonly. The compiler will then ensure that no
members of Speed can modify the state and will fail to
compile any attempt to change an instance.

Designing our types to be immutable makes our code
easier to reason about during code inspection because we
don’t need to consider the various ways that instances of
our type might change. This is especially important in
multithreaded programs, but making value types read-only
can also improve performance in some circumstances by
enabling the compiler to use certain optimizations.

Value Validation

Having introduced constructors for our types, we can use
those constructors to check for invalid arguments and raise
exceptions if the user passes illegal values. For example,
sensible values for a speed must be nonnegative. In Listing
1-7, we check that the value given the constructor is not
less than 0 and throw an exception if it is.

public Speed(double amount) 

{ 



    if(amount < 0) 

        throw new ArgumentOutOfRangeException( 

            paramName: nameof(amount), 

              message: "Speed must be positive"); 

    Amount = amount; 

}

Listing 1-7: Prohibiting out-of-range values

The constructor of Speed validates the value provided,
and since the constructor is the only way to provide a value
for Speed, we ensure that only legal Speed values can be
created. We should use the constructor to prohibit other
illegal argument values, such as double.NaN, and perhaps
even add an upper limit of the speed of light. If we attempt
to create a Speed with an illegal value, we get a run-time
exception.

The ArgumentOutOfRangeException type is defined in the
Standard Library and is a good example of a descriptively
named type. Note that in Listing 1-7, we name the
arguments for the ArgumentOutOfRangeException constructor,
which takes two plain string parameters (paramName: and
message:). Otherwise, the order of those arguments is easily
muddled, especially since the similarly named
ArgumentException takes the same parameters in the reverse
order!

Validating the parameter value in Speed’s constructor is
one example of encapsulation: we’ve put the validation
logic in one place instead of scattering it among any
methods that use it. Now, any methods that use a Speed
instance automatically benefit from the range check
performed by Speed’s constructor.

NOTE

A major benefit of creating our own types is that we

encapsulate their responsibilities, thereby reducing the



responsibilities of the methods that use them. Minimizing

duplicated code is yet another way we make our code

clearer, easier to use, and much less difficult to maintain.

The constructor for Speed establishes a class invariant—
a condition that must hold for the lifetime of any instance of
the type—specifying that a Speed value is never less than 0.
The invariant can never be broken because we made Speed
immutable. Once a valid Speed instance is created, its value
never changes, and it’s impossible to create a Speed
instance with an invalid value.

Testing

By encapsulating the validation within the Speed type, we
can also test the class invariant independently of any
algorithms that depend on it. In Listing 1-8, we attempt to
create a Speed instance with a negative value to test that the
constructor throws an exception.

[Test] 

public void Speed_cannot_be_negative() 

{ 

    Assert.That( 

        () => new Speed(-1), 

        Throws.TypeOf<ArgumentOutOfRangeException>()); 

}

Listing 1-8: Testing constraints on Speed

Because the validation code is encapsulated within the
Speed type, we need only this one test for it. We don’t need
to separately test that Displacement, or any other method
using Speed, rejects invalid speed values. All the testing for
Displacement can focus on ensuring that the algorithm is
correct, without being concerned about parameter
validation.



Using types for domain concepts, then, has several
advantages. Code using our types is clearer because of the
self-describing characteristics of the type. We separate
concerns, making the program easier to understand and
the testing more focused and specific. This makes the tests
simpler, and easier to maintain when the code being tested
needs to change.

Refactoring

Now that we’ve addressed the issues with the Displacement
method’s parameters, let’s look at its method body to see if
we can make further improvements by refactoring the
implementation. Listing 1-9 shows our current code for
Displacement.

public static (double, double) 

Displacement(Angle angle, Speed speed, TimeSpan elapsedTime) 

{ 

    var x = speed.Amount * elapsedTime.TotalSeconds * Math.C

os(angle.Size); 

    var y = speed.Amount * elapsedTime.TotalSeconds * Math.S

in(angle.Size) 

            - 0.5 * 9.81 * Math.Pow(elapsedTime.TotalSecond

s, 2); 

    return (x, y); 

}

Listing 1-9: The current Displacement implementation

This code works correctly, but we have some issues to
take care of. We’ve made the code more verbose by using
the Speed, Angle, and TimeSpan types as parameters, requiring
us to access properties of those parameters to obtain their
values. Note that we use the TotalSeconds property here; one
common error is to use the Seconds property of a TimeSpan
object when the intention is to obtain the total number of



seconds being represented, but Seconds returns only the
seconds component of the TimeSpan. Given a TimeSpan
representing 1 minute precisely, the Seconds property would
return 0, while the value for TotalSeconds would be 60.

The Displacement method would be clearer if we could
use the variables directly in the algorithm, like this:

    var x = speed * elapsedTime * Math.Cos(angle); 

    var y = speed * elapsedTime * Math.Sin(angle) 

            - 0.5 * 9.81 * Math.Pow(elapsedTime, 2);

The algorithm also relies on three hard-coded values.
Magic numbers like this often indicate that we need to
provide names to clarify their purpose. It’s common to find
the same magic number used in more than one place, so if
the value changed for any reason, we’d need to hunt for
every use and make sure we updated them all.

While we can see that multiplying by 0.5 is the same as
dividing by 2, the meaning of 9.81 is much less obvious. The
value 0.5 and the 2 used in the call to Math.Pow are simply
arithmetic values; giving them names might obscure their
purpose rather than clarifying it. The value 9.81, on the
other hand, stands out as having a more significant
purpose. Once again, to understand the meaning of this
number, we need prior knowledge that 9.81 is an
approximation of the effects of Earth’s gravity on an object.
We’ll address this issue first with the simple fix of naming
this value.

Replacing Magic Numbers with Named

Constants

Replacing magic numbers in code with a descriptive name
clarifies their meaning to readers unfamiliar with the
algorithm’s details. One way to do this is to create a new
value type, similar to Speed, to represent the measurement.
However, when we need only a few well-known values,



using named constants to represent them is often simpler.
For now, we need only a single value (for Earth’s gravity).
Listing 1-10 shows one way we could indicate that value’s
purpose by giving it a meaningful name.

public static class Gravity 

{ 

    public const double Earth = 9.81; 

}

Listing 1-10: Simple encoding of magic numbers

While the named constant for gravity is the simplest
replacement for the magic number, we’re passing up an
opportunity to benefit from a more general type named
Acceleration or something similar. Doing so would give us
the greatest flexibility but would also increase complexity
and maintenance. Keeping code simple has its own
benefits.

We should, however, keep in mind that const values like
this are baked into our code by the compiler, so if we
change the value of Gravity.Earth but compile against a
prebuilt assembly that uses the same constant, the overall
program could use two different values for the same
constant. In the interests of brevity and simplicity, we’ll
keep the const value and replace the hard-coded number in
Displacement with the Gravity.Earth constant so human
readers know immediately what it means:

  --snip-- - 0.5 * Gravity.Earth * Math.Pow(elapsedTime.TotalS

econds, 2);

Now if we want to use a more precise approximation of
gravity, we only need to change the constant’s value
instead of searching for all uses of the magic number 9.81,



with the caveat that we must remember to recompile any
other modules that use that constant.

Simplifying Properties and Values

Our Displacement method is now much more explicit about
the meanings of the variables it uses. Listing 1-11 shows its
current implementation.

public static (double, double) 

Displacement(Angle angle, Speed speed, TimeSpan elapsedTime) 

{ 

  ❶ var x = speed.Amount * elapsedTime.TotalSeconds 

          ❷ * Math.Cos(angle.Size); 

  ❸ var y = speed.Amount * elapsedTime.TotalSeconds * Math.

Sin(angle.Size) 

            - 0.5 * Gravity.Earth * Math.Pow(elapsedTime.Tot

alSeconds, 2); 

    return (x, y); 

}

Listing 1-11: Displacement using explicit property access

As noted earlier, accessing the properties of angle, speed,
and elapsedTime makes the implementation quite verbose.
The Displacement method would be tidier and easier still to
read if we could access these properties directly in the
operations where they were used. The speed variable’s
Amount property is being multiplied by
elapsedTime.TotalSeconds ❶, and angle.Size is used to call both
Math.Cos ❷ and Math.Sin ❸. Each use of our types requires us
to explicitly obtain the corresponding property value in
order to multiply two values together, and to pass them as
arguments to the Sin and Cos methods.

We can’t change the behavior of a TimeSpan variable to
allow it to be multiplied by a Speed, but a TimeSpan can be
multiplied by a double value. If we could use Speed instances



as if they were double values, we would avoid having to
explicitly use their properties in Displacement, making the
method less cluttered; that is, we would be able to multiply
speed and elapsedTime without using the speed.Amount
property. Likewise, with the Angle type, we could call
methods such as Math.Cos and Math.Sin, which both expect a
double argument, with the angle variable directly if we could
treat Angle instances as double values.

The result of the whole expression would be a TimeSpan,
which is the result type from multiplying a TimeSpan by a
number, so we’d need to access the TotalSeconds property at
some point. Still, removing the need to access the Amount
and Size properties of Speed and Angle would simplify and
shorten the method’s implementation.

One way to achieve that outcome is by defining our own
implicit conversion operators. This approach is superficially
appealing because it is simple to implement, but it has
several drawbacks. Let’s examine some of those potential
problems.

Implicit Conversions

We define an implicit conversion for our own types by
implementing an implicit conversion operator method and
specifying the target type we need, as shown for Speed in
Listing 1-12.

public readonly struct Speed 

{ 

    --snip-- 

    public static implicit operator double(Speed speed) 

        => speed.Amount; 

}

Listing 1-12: Defining an implicit conversion for Speed



The target type here is double, and we simply return the
value of the Amount property. We also add a similar
conversion operator for Angle (not shown here) that returns
its Size property. Now we no longer need to explicitly use
angle.Size when calling Math.Cos and Math.Sin, and we can
multiply speed by the elapsedTime.TotalSeconds value without
needing to get the speed.Amount property. Compare Listing 1-
13 with the earlier version in Listing 1-11.

var x = speed * elapsedTime.TotalSeconds * Math.Cos(angle); 

var y = speed * elapsedTime.TotalSeconds * Math.Sin(angle) 

        - 0.5 * Gravity.Earth * Math.Pow(elapsedTime.TotalSe

conds, 2);

Listing 1-13: Using implicit conversions

Our implementation of Displacement is now much more
compact—but we’ve introduced some hidden problems.

Unexpected Interactions

Implicit conversions weaken the interface to Speed and Angle
by allowing them to participate everywhere that a double
might be used, which means they can be used in
expressions where it’s not appropriate. For example,
dividing a speed by an angle would be a legal expression,
as demonstrated in Listing 1-14.

var angle = new Angle(.523); 

var speed = new Speed(65); 

var unknown = speed / angle;

Listing 1-14: Unplanned behavior resulting from an

implicit conversion

This expression is valid owing to the implicit
conversions from both Speed and Angle to double, but the
result is meaningless, and we get no warning from the



compiler. In addition, implicit conversions are usually
invisible in our code. If we pass a Speed value to Math.Cos
instead of an Angle, the resulting calculation errors could be
hard to find.

Discarded Invariants

One of the benefits we realized by introducing a custom
type for Speed was that we could encapsulate validation
logic in Speed’s constructor.

Allowing the implicit conversion from Speed to double
means that code using the double result can breach the
constraints on the allowable range of a Speed. In Listing 1-
15, we subtract one Speed from another smaller value,
leaving us with a result that’s less than 0.

var verySlow = new Speed(10); 

var reduceBy = new Speed(30); 

var outOfRange = verySlow - reduceBy;

Listing 1-15: Unchecked constraints resulting from an

implicit conversion

This subtraction expression, which is between two
double values as a result of the implicit conversion from
Speed to double, will run just fine. The result is negative and
thus out of range for a Speed, but it’s a perfectly legal double
value.

To address this out-of-range value, we need to restrict
the permitted operations on Speed and Angle so they make
sense for those measurements. This was the whole purpose
of introducing a class invariant for Speed to ensure that
instances of it always have a valid value. Furthermore, we
want to prohibit operations that make no sense, ideally in a
way that would allow the compiler to tell us when
something is wrong.



We introduced Speed and Angle as specific types so that
we could tell them apart, and because using a plain double
was simply too general to represent those measurements.
However, the implicit conversions make Speed and Angle
indistinguishable from double.

We can still achieve our objective of making our types
easy to use in arithmetic expressions, but we need to keep
control over which operations those types can perform.
We’ll allow specific operations on Speed and Angle without
sacrificing their natural usage or compromising the
encapsulation of the types.

Overloading Arithmetic Operators

Our initial motivation for introducing implicit conversions
for Speed was to support the multiplication operation
between a Speed and the TotalSeconds property of a TimeSpan
value. Currently, we must use the Amount property of a Speed
to make that calculation, as shown here:

var x = speed.Amount * elapsedTime.TotalSeconds * 

--snip--

Arithmetic operations such as * for multiplication are
predefined for the built-in numeric types like double. We can
define the meaning of these symbols for our own types by
providing arithmetic operator overloads.

Listing 1-16 shows the multiplication operator overload
for Speed.

public readonly struct Speed 

{ 

    public static Speed operator*(Speed left, double right) 

        => new (left.Amount * right); 

    --snip-- 

}



Listing 1-16: Supporting multiplication in Speed

We use a target-typed new expression, introduced in C#
v9.0, to create the value for operator* to return. The
compiler knows that the expected type is a Speed, as it’s
being directly returned, so we don’t need to explicitly
specify the type as new Speed(…). The compiler will infer the
type according to the value expected by the left side of the
expression.

Being able to multiply a speed value by a number makes
intuitive sense; something might be traveling at double the
speed of something else, for example. We implement the
operator by creating a new Speed from the product of the
Amount property and the value passed to the operator’s
parameter. The constructor for Speed will check that the
result is within the allowed range of a Speed and will throw
an exception if the result is out of range. We can
demonstrate that this works with a simple test, such as
Listing 1-17, where we attempt to multiply a Speed by a
negative number.

var speed = new Speed(4); 

Assert.That( 

    () => speed * -1, 

    Throws.TypeOf<ArgumentOutOfRangeException>()); 

var expect = new Speed(2); 

Assert.That(speed * 0.5, Is.EqualTo(expect));

Listing 1-17: Testing the multiplication operator

We create a Speed and then verify that when we try
multiplying it by -1, the constructor throws an exception.
We also ensure that when we halve the value, the operation
succeeds with the expected result.

We can define operator overloads for other arithmetic
operations and specify precisely the expressions in which



Speed is permitted to take part. Values commonly overload
arithmetic operators, where it is appropriate to do so.

Not all values are arithmetic in nature, so we need to
carefully consider whether to support those operations for
a type. For example, creating our own value type to
represent a UK postal code would be perfectly natural, but
multiplying a postal code by a number or by another postal
code makes no sense whatsoever, because postal codes are
not arithmetic values. Examples of other nonarithmetic
values include US ZIP codes and colors.

By contrast, Speed values should naturally take part in
some, but not all, arithmetic expressions. It makes sense to
be able to double a Speed, but not to multiply two Speed
values together. We can use custom arithmetic operator
overloads to control which expressions should be
permitted, and by adding explicit support for them, we
make Speed easier to use.

Determining a Need for New Types

Whenever we refactor a piece of code, we may discover a
requirement or opportunity to introduce a new type. The
need for the Speed and Angle types was fairly plain because
we introduced them to replace primitive parameter
variables. Not all missing abstractions are so obvious.

If we multiply a Speed by a number, the result is a new
Speed, but our Displacement method multiplies a Speed by the
elapsedTime value, which is not simply a number. Here we
split that calculation into separate parts to make it clearer:

var tmp = speed * elapsedTime.TotalSeconds; // a Speed value 

var x = tmp * Math.Cos(angle.Size);

As noted earlier, multiplying a Speed by a number
intuitively produces a new Speed. Both tmp and x here are
therefore instances of Speed, because of our implementation
of the multiplication operator, but note that the



elapsedTime.TotalSeconds value is not just any number but
rather a TimeSpan instance representing a time.
Mathematically, the result of this expression is not a speed
at all: multiplying a speed by a time produces a distance,
which we can represent directly in our code by introducing
a new Distance type, as shown in Listing 1-18.

public readonly struct Distance 

{ 

    public Distance(double amount) 

        => Amount = amount; 

    public double Amount {get;} 

}

Listing 1-18: The Distance type

We can now create a new overload of operator* for Speed
that multiplies a Speed directly by a TimeSpan and produces a
Distance. Even better, we can define this overload in
addition to the multiplication operator we’ve already
defined that takes a plain double and returns a new Speed.
Listing 1-19 shows both operator overloads.

public readonly struct Speed 

{ 

    public static Speed operator*(Speed left, double right) 

        => new (left.Amount * right); 

    public static Distance operator*(Speed left, TimeSpan ri

ght) 

        => new (left.Amount * right.TotalSeconds); 

    --snip-- 

}

Listing 1-19: Overloading operator*

Overloading is versatile. We can overload a method with
different types of parameters, and each overload can return



a different type. The rules for overloading consider only the
method signature—that is, the number and types of the
parameters. We can therefore return a Speed from the
overload taking a double and return a Distance from the
method taking a TimeSpan instance.

Refining the New Type

Next, we need to add behavior to the new Distance type so
that it will work correctly in our Displacement
implementation. Multiplying a Speed by a TimeSpan gives us a
Distance value, which we use in further arithmetic
expressions of its own, shown in Listing 1-20.

var distance = speed * elapsedTime;    // a Distance 

var x = distance * Math.Cos(angle.Size); 

var y = distance * Math.Sin(angle.Size) 

        - 0.5 * Gravity.Earth * Math.Pow(elapsedTime.TotalSe

conds, 2);

Listing 1-20: The Distance type in use

The expressions for x and y are both now multiplying a
Distance value by the double values returned from Math.Cos
and Math.Sin. This code will fail to compile because Distance
needs its own overload of operator*.

As with Speed values, multiplying a Distance by a simple
number produces a new Distance. The results of Math.Cos and
Math.Sin, apart from being out of our control, are scalar
values, so when we multiply them by a Distance, the result is
another Distance.

Distance also requires an overload of operator- so that the
subtraction operation used in the calculation for the y value
will compile. As with the multiplication, the expression on
the right of the subtraction gives a scalar value, so we add
the multiplication and subtraction operators for Distance in
Listing 1-21.



public static Distance operator*(Distance left, double righ

t) 

    => new (left.Amount * right); 

public static Distance operator-(Distance left, double righ

t) 

    => new (left.Amount - right);

Listing 1-21: Arithmetic operations for Distance values

With these overloads, we can use the Speed and TimeSpan
values naturally together to produce Distance values. Those
values, in turn, work seamlessly with the other required
expressions.

Dealing with Design Imperfection

Our Displacement method returns a tuple of two double
values. However, with our changes, the x and y values
being returned have become instances of Distance rather
than plain double values. This introduces another
terminology problem with respect to the return value: in
physics, a distance, like a speed, is always either 0 or a
positive value. Combining a distance with the result of a
trigonometric function like Cos is a coordinate position,
rather than a distance, and can be negative.

We identified the Distance type from the result of
multiplying a speed by a time, but there is no
straightforward way to distinguish the result of Math.Cos or
Math.Sin from a plain number like 0.5, denying us the
opportunity to add an overload of the multiplication
operator in Distance to return a new type, such as Position,
rather than another Distance. We have reached the limits of
exploiting the types we have chosen for modeling real-
world concepts.

An obstacle like this may be the symptom of a deeper
design smell, an indication that the problem might be
resolved by a change in design perspective. In this



instance, we may be able to achieve a more complete
solution by reworking Displacement’s algorithm in terms of a
full-fledged Velocity type instead of the relatively primitive
Speed and Angle types. Exploring that solution is fairly
complex, however, and best left to a text dedicated to
modeling physics problems, leaving us with a pragmatic
decision to make.

One option is to create a Position type, or something
similar, to replace Distance. This approach suffers from the
drawback that the arithmetic operations we defined for
Distance do not apply so naturally to a Position. Moreover, if
Distance is useful elsewhere in an application, it makes
complete sense that when we multiply a Speed by a TimeSpan,
the result is a Distance, not a Position.

An alternative approach is to do nothing and permit
Distance to have negative values in the context of our
application. While Distance would then be an imperfect
representation of its counterpart in physics, this approach
benefits from simple and natural uses in other areas. In
Listing 1-22, we change the return type of Displacement to
use Distance values directly, which further simplifies the
implementation.

public static (Distance, Distance) 

Displacement(Angle angle, Speed speed, TimeSpan elapsedTime) 

{ 

    var x = speed * elapsedTime * Math.Cos(angle.Size); 

    var y = speed * elapsedTime * Math.Sin(angle.Size) 

            - 0.5 * Gravity.Earth * Math.Pow(elapsedTime.Tot

alSeconds, 2); 

    return (x, y); 

}

Listing 1-22 The new Displacement method



We could have retained the existing return type by
returning the Amount property of the x and y variables. For
example, if Displacement is already widely used, altering the
type it returns might be intrusive. Nonetheless, introducing
the richer Distance type more widely in an application has
benefits similar to replacing the double parameters in
Displacement with the Speed, Angle, and TimeSpan types.

However we decide to best serve the requirements of
the application and its users, we can make more pressing
improvements to the types used by Displacement. We’re still
explicitly using angle.Size in the Displacement method when
we call methods in the standard Math static class. Before we
attempt to address that, we need to think carefully about
which units of measurement each type represents.

Encoding Units

Measurements like speeds, angles, and distances can have
multiple representations, according to the units we’re using
for them. As our code stands, our Speed, Angle, and Distance
types do not make those units clear. For example, is speed
in meters per second or miles per hour? Are the angles
measured in degrees or radians? Using the wrong unit of
measurement can introduce errors that are particularly
hard to diagnose.

All the equations used in Displacement assume that speed
is measured in meters per second. This is a reasonable
default, because meters per second is the universal
International System of Units (SI) unit of speed, but it is
implied. If we used a value for speed in kilometers per
hour, we’d certainly get unexpected results.

Similarly, we don’t currently specify the units for the
Angle type. Code that deals with trigonometry commonly
uses radians as the unit of measurement, and all the
trigonometric functions in the Math class, such as Sin, expect
angle values in radians. Most people, however, think of



angles in degrees, and confusing the two is a common
source of error.

This exposes the issue of usability: should our code
require units that are more convenient for their
implementation or more intuitive for the user? Let’s
consider this question and investigate whether it’s possible
to achieve both aims simultaneously.

C# has several features we can use to encode units, and
one common approach is to represent the different units by
using an enum. At first glance, this might seem the obvious
solution, but it can cause issues. We’ll explore this option
and then investigate an alternative solution using static
methods to create our types with the required units.

Itemizing Units with enums

An enumerated type, or enum, is a set of related strongly
typed constants. Using an enum allows us to specify all the
units our type supports. Listing 1-23 modifies our Speed type
to use an enum to account for units.

public readonly struct Speed 

{ 

    public enum Units 

    { 

        MetersPerSecond, 

        KmPerSecond, 

        KmPerHour 

    } 

    public Speed(double amount, Units unit) 

    { 

        if(amount < 0) 

            throw new ArgumentOutOfRangeException( 

               paramName: nameof(amount), 

               message: "Speed must be positive"); 

        Amount = amount; 

        In = unit; 

    } 



    public double Amount {get;} 

    public Units In {get;} 

}

Listing 1-23: Specifying units for Speed by using an

enum

In this code, the Units enumeration is a public type
nested within Speed, telling us that a speed can be
represented in meters per second, kilometers per second,
or kilometers per hour.

NOTE

While it’s tempting to abbreviate all the names, shortening

MetersPerSecond to Ms might be confused with

milliseconds, so it’s best to spell out the unit in this case.

The constructor for Speed takes a number for the
magnitude, and the user must provide one of the enum
values for the required units. The user can use the In
property later to discover which units were used when a
particular Speed instance was created. By supporting
several units of measurement, we make Speed more
generally useful in other applications.

Representing supported units with an enum is
superficially appealing because it seems simple to
implement. However, this approach suffers from drawbacks
that become apparent when we need to decide how to
handle two values that have different units.

Value Comparisons and Unit Conversions

We need to consider conversions between units in several
places in our Speed implementation. For instance, these two
Speed values use different units but nevertheless represent
the same speed:



var limit = new Speed(3.6, Speed.Units.KmPerHour); 

var unit  = new Speed(1,   Speed.Units.MetersPerSecond);

These two Speed variables do not compare equal by
default, because their Amount and In properties have
different values. We can address that problem by
customizing the behavior of equality comparisons for Speed,
perhaps by converting both values to meters per second
and comparing those values for equality. However, we have
other, more subtle problems to solve too.

Earlier, we added operator overloads to Speed to support
multiplying them by a scalar value or a time. Adding
support for other arithmetic operations, including adding
two Speeds, would be reasonable. We’d have to convert both
values to a common unit in order to add them together, but
what unit should the result be in?

One option would be to always scale every Speed value to
meters per second—as we do in Listing 1-24 by using
Speed’s constructor to convert the parameter value
according to the required units—but this approach
introduces different problems.

public Speed(double amount, Units unit) 

{ 

    if(amount < 0) 

        throw new ArgumentOutOfRangeException( 

            paramName: nameof(amount), 

            message: "Speed must be positive"); 

    Amount = unit switch 

    { 

        Units.KmPerHour       => amount * 1000 / 3600, 

        Units.KmPerSecond     => amount * 1000, 

        Units.MetersPerSecond => amount, 

         _                    => throw new ArgumentException

( 

                                    message: $"Unexpected un

it {unit}",



                                    paramName: nameof(unit)) 

    }; 

}

Listing 1-24: Scaling to a common value

This Amount property is assigned the value of a switch
expression, available as of C# v8.0, which uses the type of
the unit parameter value to scale the amount value to meters
per second. The final _ selector in the switch is an example
of a discard pattern and is used if the type of unit doesn’t
match any of the previous types. Here, we throw an
exception in these circumstances, which might occur if we
updated the Units enum with a new element without updating
the constructor.

Note that we use the unit parameter only to determine
how to scale the amount parameter. The units are not stored,
so there’s no In property either, because a Speed is always
reported in meters per second.

Storing all instances of Speed using the same units solves
the problem of equality comparisons and arithmetic
operations, but it has other drawbacks.

Limitations of Using enums for Units

Being able to create Speed instances using various units is
one thing, but users of the Speed type will also likely expect
to be able to obtain the value in different units. The
necessary conversions are straightforward to implement:
Listing 1-25 repurposes In as a method to convert from the
internal meters per second value to the units required.

public Speed In(Units unit) 

{ 

    var scaled = unit switch 

    { 

        Units.KmPerHour       => Amount / 1000 * 3600, 

        Units.KmPerSecond     => Amount / 1000, 



        Units.MetersPerSecond => Amount, 

        _                     => throw new ArgumentException

( 

                                    message: $"Unexpected un

it {unit}",

                                    paramName: nameof(unit)) 

    }; 

    return new Speed(scaled, unit); 

}

Listing 1-25: Obtaining converted values

The switch expressions, like those in Listings 1-24 and 1-
25, are a characteristic of code that uses enumerations to
distinguish different types. Those conversions can be
cumbersome and would be a maintenance headache if we
added new units.

Always converting Speed values to meters per second in
the constructor presents an additional problem: the amount
used to create a Speed is altered when we use units other
than MetersPerSecond. To demonstrate the issue, consider
Listing 1-26, where we copy a Speed value by using its Amount
property and the same units used to create the original.

var original = new Speed(3.6, Speed.Units.KmPerHour); 

var copy = new Speed(original.Amount, Speed.Units.KmPerHou

r); 

Assert.That(original.Equals(copy), Is.True);

Listing 1-26: Testing equality of copied values

Most people would expect this test to pass, but it fails
because original.Amount was converted to meters per second
by Speed’s constructor. The solution is to use the In method
to make the copy, like this:

copy = original.In(Speed.Units.KmPerHour);



Converting all Speed values to the common unit of
meters per second simplifies the implementation of Speed,
but it’s less convenient for users wishing to use Speed values
measured in a different unit.

In the same way, although representing Angle values in
radians is convenient when we need to use an angle in a
trigonometric method, it’s much less convenient for users.
As mentioned earlier, most humans naturally think of
angles in degrees rather than radians, and while the
conversion is relatively simple, it’s not part of the Standard
Library.

We therefore still need to bridge the gap between
what’s intuitive for a user and what our code uses
internally. Next, we look at an alternative approach to
enumerations: using static methods that make our types
convenient for humans to use and also work seamlessly
with standard methods like Math.Sin.

Static Creation Methods

Instead of using a constructor with an enum parameter to
represent units, we can employ the Class Factory Method

pattern, which replaces public constructors with static
methods to simplify creating instances. These methods
have names that reflect the units they represent instead of
requiring a separate enum value to identify those units.

In our Speed type, we use the class factory methods in
Listing 1-27 to convert the input value to the units used by
Speed internally, and return a new Speed instance with that
converted value.

public static Speed FromMetersPerSecond(double amount) 

    => new (amount); 

public static Speed FromKmPerSecond(double amount) 

    => new (amount * 1000); 

 



public static Speed FromKmPerHour(double amount) 

    => new (amount * 1000 / 3600);

Listing 1-27: Using class factory methods to encode

units

Here, we have three separate ways to create a new
Speed, each returning a Speed value converted from the units
indicated by the name of the method. When we require a
new Speed instance, we use the method representing the
units we want, as demonstrated in Listing 1-28.

var limit =  Speed.FromKmh(88); 

var sound =  Speed.FromMetersPerSecond(343); 

var escape = Speed.FromKmPerSecond(11.2);

Listing 1-28: Creating Speed values with our new class

factory methods

Now there’s no need for Speed’s constructor to be public.
If we allow our users to create Speed instances directly with
new, they’ll bypass the class factory methods and lose the
benefits of the conversions. To avoid that, in Listing 1-29
we make the constructor private.

private Speed(double amount) 

{ 

    if(amount < 0) 

    { 

        throw new ArgumentOutOfRangeException( 

            paramName: nameof(amount), 

            message: "Speed must be positive"); 

    } 

    Amount = amount; 

}

Listing 1-29: Making our Speed constructor private



The constructor still contains the validation logic, but
now it can be called only by our class factory methods, with
the argument suitably scaled to meters per second. We
can’t prevent instances of Speed from being default-
initialized, but that results in the value being 0, a value that
is the same regardless of the units. Note that this is not
always true, so we need to be alert for cases where this
does not hold. For example, 0 degrees Celsius is not the
same as 0 degrees Fahrenheit for temperature.

Symmetry in Design

While our class factory methods allow us to create Speed
values from values measured in different units, the internal
representation of a Speed value is in meters per second. To
improve usability, we need to provide corresponding
conversions in the other direction, so users of Speed can
choose the units they want when they obtain the value. In
Listing 1-30, we add properties to convert a Speed from its
internal value to the unit encoded in the name of the
property.

public readonly struct Speed 

{ 

    --snip-- 

    public double InMetersPerSecond => amount; 

    public double InKmPerSecond     => amount / 1000.0; 

    public double InKmPerHour       => amount / 1000 * 3600; 

    private readonly double amount; 

}

Listing 1-30: Viewing Speed in different units

We introduce a private data member that can be used
from each of these properties. Doing so avoids property

forwarding (one property invoking another to obtain the
needed value) but also allows us to use an expression body



for all three properties. This is largely an aesthetic choice;
the most obvious alternative employing property
forwarding is shown here:

public double InMetersPerSecond {get;} 

public double InKmPerSecond     => InMetersPerSecond / 1000.

0; 

public double InKmPerHour       => InMetersPerSecond / 1000

 * 3600;

Whichever approach we choose, we have, in effect,
renamed the vague Amount property as InMetersPerSecond,
whose purpose is to return the internal value of a Speed. The
new name better expresses the property’s meaning,
matches the naming convention used for the other
properties, and mirrors the class factory method
FromMetersPerSecond.

By using similar naming conventions for the From…
methods and the In… properties, we improve the clarity of
Speed’s interface. When we see a method such as
FromKmPerHour, we naturally expect a corresponding method
or property that provides the reverse conversion.

The class factory methods and corresponding properties
provide a compact way of expressing units in either
direction, and they force us to consciously make clear what
we mean when we use a Speed.

Making Units Explicit

The Displacement method does not directly use the units of a
Speed, because they are encapsulated in the multiplication
operator we created for Speed and TimeSpan. Displacement does

use the units of an angle, although those units are currently
implied in the Angle.Size property, as shown in Listing 1-31.

var x = speed * elapsedTime * Math.Cos(angle.Size); 

--snip--



Listing 1-31: Angles in Displacement

Both Math.Cos and Math.Sin require a measurement of an
angle in radians, the SI unit for measuring angles. In
Listing 1-32, we rename the Size property as InRadians to
make the units explicit, and add the conversions to and
from degrees as well.

public readonly struct Angle 

{ 

    private Angle(double size) 

        => radians = size; 

    public static Angle FromRadians(double size) 

        => new (size); 

    public static Angle FromDegrees(double size) 

        => new (size * Math.PI / 180); 

    public double InRadians => radians; 

    public double InDegrees => radians * 180 / Math.PI; 

    private readonly double radians; 

}

Listing 1-32: Adding unit conversions to Angle

Just as we did for Speed, we’ve added class factory
methods to create an Angle in either degrees or radians,
with corresponding properties to obtain the value in either
unit. Now we can use an Angle easily with methods that
require a value in radians, and using Angle is also much
more convenient for users, who tend to think in degrees.

Choosing the Most Natural Usage

The Math.Cos and Math.Sin methods take a double argument,
so we need to explicitly access the Angle.InRadians property
to call those methods. We can’t change the parameter type
of those methods because they’re part of the Standard
Library, but we can add similarly named methods to the
interface of Angle, which would allow us to encapsulate the



explicit need to express the units. We can take three main
approaches, each with its advantages and drawbacks, and
each implemented by forwarding an Angle value in radians
to its counterpart static Sin and Cos methods in the Math
static class.

The most direct approach is to introduce Sin and Cos
instance methods for Angle, passing the size field value to
the corresponding Math method, like this:

public readonly struct Angle 

{ 

    --snip-- 

    public double Sin() => Math.Sin(size); 

    public double Cos() => Math.Cos(size); 

    private readonly double size; 

}

This approach works because we’ve chosen radians as
the underlying unit for an Angle and we provide methods to
convert to and from degrees. Listing 1-33 shows how we
would use these instance methods in the Displacement
method. Compare this with Listing 1-31, where we called
Math.Cos directly.

var x = speed * elapsedTime * angle.Cos(); 

var y = speed * elapsedTime * angle.Sin() 

        - 0.5 * Gravity.Earth * Math.Pow(elapsedTime .TotalS

econds, 2);

Listing 1-33: Invoking our new instance trigonometric

methods

Our second option is to provide our own static class
mirroring the Math class with static Sin and Cos methods that
take an Angle rather than a plain double for their parameters.
Each method would need to access the InRadians property



because it would not have access to the private size field.
While this approach follows a common convention
established by the static Math class, we lose the more
compact usage of calling a member method.

The third alternative is to define extension methods,
which are used as if they’re instance methods but are
defined in a separate static class. Listing 1-34 defines Sin
and Cos extension methods to extend Angle’s interface.

public static class AngleExtensions 

{ 

    public static double Cos(this Angle angle) 

        => Math.Cos(angle.InRadians); 

    public static double Sin(this Angle angle) 

        => Math.Sin(angle.InRadians); 

}

Listing 1-34: Defining extension methods for Angle

The Cos and Sin methods in the static AngleExtensions
class use the special syntax this Angle for their parameter,
which tells the compiler that the method is an extension for
an Angle. Each method simply forwards the InRadians
property of the angle to its counterpart method in the Math
namespace. We use the extension methods in exactly the
same way we called the instance method versions in Listing
1-33.

One benefit of both the static and extension method
implementations that is sometimes overlooked is that
neither version depends on the internal representation of
Angle. The instance member methods could also be
implemented in terms of the InRadians property, but by
extracting methods into separate types if they don’t rely on
the private implementation of Angle, we make the definition
of Angle smaller and easier to comprehend. Chapter 6
explores this topic in more detail.



Whichever approach we choose, we’ll encapsulate the
explicit need to access the angle.InRadians property in order
to call the Math trigonometric methods, making it easy for
anyone to use our Angle type.

Returning Types Implied by Units

Class factory methods such as those we’ve introduced for
Speed and Angle are a common way of simplifying the
creation of value types. This technique is used by the
Standard Library in the TimeSpan type, which has methods
such as FromSeconds paired with a TotalSeconds property. The
methods encode the units in their names, so creating value
instances is very direct:

var speed = Speed.FromKmPerHour(234.0); 

var angle = Angle.FromDegrees(30.0); 

var seconds = TimeSpan.FromSeconds(4.0);

When we initialize these variables, we’re being explicit
about the expected type as well as the units, but a value of
234.0kmh must be a speed. We can’t express this directly, but
we can get close by using extension methods.

The value 234.0 is a double, and while we can’t change its
built-in definition, we can create extension methods for the
double type, as Listing 1-35 shows.

public static class DoubleExtensions 

{ 

    public static Speed Kmh(this double amount) 

        => Speed.FromKmPerHour(amount); 

    public static Angle Degrees(this double amount) 

        => Angle.FromDegrees(amount); 

    public static TimeSpan Seconds(this double amount) 

        => TimeSpan.FromSeconds(amount); 

    --snip-- 

}



Listing 1-35: Extending the interface of double

Each extension method returns a new instance of the
type implied by the units in the method’s name, so the Kmh
method returns a Speed created using the Speed.FromKmPerHour
class factory method. We use the new extension methods
for double like this:

var speed = 234.0.Kmh(); 

var angle = 30.0.Degrees(); 

var seconds = 4.0.Seconds();

To avoid having to explicitly add the decimal point for
the whole numbers, we could add overloads that extend int
too. While this technique can be useful to allow a compact
syntax for literal values, it works less well with variables
like this:

    double value = 234.0; 

    --snip-- 

    var speed = value.Kmh();

However we choose to represent the units of
measurement, they are a fundamental and intrinsic part of
those types. Without units, a number is merely a number,
even if the name of the type is descriptive. If we make the
units of our value types easy to define and, just as
importantly, make it easy to convert between common
units, our custom value types will be easier to use and
understand.

A Fully Formed Encapsulated Value

Long parameter lists are a hallmark of unclear code. They
often indicate that a method doesn’t have one clear
responsibility and so would benefit from being refactored.



Some or all of the parameters may be related in some way,
indicating a missing abstraction. In either case, reducing
method parameter lists is another way to improve the
clarity of our code.

The Displacement method used throughout this chapter
does have a single, clear responsibility and has only three
parameters. However, two of those parameters are related:
a velocity is a combination of a speed and a direction.
We’ve defined rich types to represent speeds and angles
that we can now combine to represent velocity with its own
type. Listing 1-36 shows our new Velocity struct.

public readonly struct Velocity 

{ 

    public Velocity(Speed speed, Angle angle) 

        => (Speed, Direction) = (speed, angle); 

    public Speed Speed {get;} 

    public Angle Direction {get;} 

}

Listing 1-36: Defining an encapsulated Velocity type

The Displacement method no longer needs separate speed
and angle values, because they’re now handled by the
Velocity type:

public static (Distance, Distance) 

Displacement(Velocity v0, TimeSpan elapsedTime) 

{ 

    --snip--

Wrapping Speed and Angle into Velocity has two related
benefits. First, methods like Displacement that required two
parameters to represent a velocity now need only one.
Second, Velocity is a new abstraction to represent a distinct
concept. We can give Velocity its own specific set of



behaviors and semantics and test the semantics
independently of anything else.

Deciding Whether to Abstract Types

Introducing a new type like Velocity is not always the most
appropriate approach. For example, consider the return
value from the Displacement method:

public static (Distance, Distance) Displacement( 

--snip--

With our discussion of using types to represent
concepts, abstracting the tuple of Distance values as a new
type may seem attractive. But we should consider several
factors, including how the values will be used, whether
there’s any domain-specific behavior we want to associate
with an independent type, and whether adding a new type
will increase clarity or obscure it.

If a value is used in only a few places, creating a custom
type to represent it may not be worthwhile, unless doing so
will also reduce code duplication. If there’s behavior that
we want to encapsulate, we’ll benefit from locating that
behavior in one place and being able to test it in one place
too.

Whether we can give a useful name to the new type is
another important consideration. For example, the tuple of
two Distance values is similar to a coordinate point, with the
x and y values representing distance traveled in two
dimensions from a point of origin. However, the name
Coordinate would be misleading, because the elements of a
coordinate are positions or points rather than distances.
Now that we’ve created a Velocity type, however, we might
consider revisiting the implementation of Displacement to try
to resolve the design problems noted earlier when we
introduced the Distance type. Our example doesn’t warrant



the extra complexity that would involve, so instead, we’ll
take a simpler approach.

In the value returned from Displacement, the names of
the tuple components are more important than giving a
name to a new type. Rather than defining a completely new
type to return from Displacement, we can take advantage of
rich tuple support in C# v7.0 and onward to directly
“unpack” the return value into named variables, as shown
in Listing 1-37.

var (range, elevation) = Displacement(velocity, TimeSpan.Fro

mSeconds(0.9)); 

Assert.That(range.InMeters, Is.EqualTo(19.09).Within(.01)); 

Assert.That(elevation.InMeters, Is.EqualTo(18.78).Within(.0

1));

Listing 1-37: Unpacking tuple values

In this example we use tuple deconstruction, giving
each member of the returned tuple value its own name. The
compiler deduces the type of the range and elevation
variables from the values in the tuple, so in this example
they’re both instances of the Distance type. This has the
advantages of being both compact and descriptive enough
for many purposes.

Summary

We define abstraction as selective ignorance—concentrating on the ideas that

are relevant to the task at hand, and ignoring everything else. [...] If

abstractions are well designed and well chosen, we believe that we can use

them even if we don’t understand all the details of how they work. We do not

need to be automotive engineers to drive a car.

—Andrew Koenig and Barbara Moo, Accelerated C++

C# provides a few primitive types, especially for numerical
values, and it can be tempting to use them as they are.
However, a method that just takes a long list of double



parameters can be difficult to decipher. This problem is not
restricted to double; methods with a long list of string or bool
parameters suffer from the same pitfalls, but the cure is
broadly the same.

The built-in types are intended to be applicable to a
wide range of problems and to be used as the building
blocks for more sophisticated types. C# is, after all, an
object-oriented language, and it allows us to model our
problems with domain-specific types.

Replacing primitive values with our own types has
several practical benefits. It can reduce accidental misuse
and defects in the code by ensuring that arguments to
methods are explicit. This allows us to take advantage of
the compiler’s type checking. If we mistakenly transpose
arguments, our code will fail to compile. This kind of early
failure prevents those mistakes from causing problems at
run time or, worse, making it into a live production system
and causing us considerable embarrassment.

Creating even simple types also allows us to provide
descriptive names that make our code more self-describing.
In turn, this spares us from having to produce a lot of
separate explanatory documentation, which has a tendency
to become stale.

By separating the behavior of a type from the
algorithms that use it, and encapsulating that behavior in
the type itself, we can test it independently of those
algorithms. The type is more cohesive, and the algorithms
are clearer and often simpler. Those algorithms themselves
become easier for us to test, without having to also test the
assumptions and implementations captured by the domain
type abstractions.



2

VALUE AND REFERENCE TYPES

We can create new types in C#
in several ways, and we need

to consider the individual characteristics
of each approach to determine which best
suits our goals. In particular, knowing
how value types differ from reference
types helps us choose the right way
forward, because these differences have
significant and sometimes unconsidered
implications when we’re defining our own
types. Certain trade-offs will affect how
we design our type and what we can use
it for. In this chapter, we’ll investigate
those differences and what they mean for
our programs.

We’ll explore the following:
What choices we have when creating our own types



Why C# has both reference types and value types
How choosing one or the other affects construction, null
checking, and other type behavior
Why value type is not the same as value semantics
Where different types are stored in memory and how
that affects an object’s lifetime

User-Defined Types

Most modern programming languages allow you to create
custom types. The basic principles of user-defined types in
C# will be familiar to programmers of many other
languages, but some of the details are different. Therefore,
in this section we’ll examine the four kinds of user-defined
types: structs, classes, and the newer records and record
structs (introduced in C# v9.0 and v10.0, respectively).

It’s important to recognize that the behavior of these
types relies heavily on whether they are reference types or
value types. Let’s look briefly at each kind of user-defined
type with these differences in mind.

Structs and Classes

Listing 2-1 defines a simple struct to represent colors.

public readonly struct Color 

{ 

    public Color(int r, int g, int b) 

        => (Red, Green, Blue) = (r, g, b); 

    public int Red {get;} 

    public int Green {get;} 

    public int Blue {get;} 

}

Listing 2-1: Defining a simple struct



The Color struct is marked readonly to indicate that
instances of Color are immutable—that is, they never
change their value. Correspondingly, none of the three
properties (Red, Green, and Blue) has a set accessor, so their
values can’t be changed after they’ve been given initial
values using the constructor.

The constructor in this example uses the expression
body syntax (=>), which you saw in Chapter 1, instead of a
body enclosed between braces {…}. We make the expression
body a single-line statement by using tuple assignment,
which assigns the tuple of three parameter values r, g, and
b to the tuple of three properties. The compiler translates
this syntax into an efficient assignment from the parameter
values directly to the respective backing fields for the Red,
Green, and Blue properties.

The readonly keyword in the struct’s definition is not
mandatory but reinforces that instances of Color are
immutable. Immutable value types make our code easier to
comprehend and may allow some optimizations by the
compiler.

By contrast, if we define a Color class instead of a struct,
we can’t use the readonly keyword in its definition, although
we can make it immutable by not providing set accessors
for the properties. The only other difference in defining
Color as a class is the use of the class keyword in the
definition:

public class Color 

{ 

--snip--

The definition of Color is otherwise identical to that in
Listing 2-1.

The principal difference between these two types is that
a class is a reference type, and a struct is a value type.



Before we analyze the implications of this difference, let’s
look at record and record struct types.

Records and Record Structs

As of C# v9.0, we can define a record type with the record
keyword. Records introduce a new syntax for compactly
defining a type. Listing 2-2 creates a record type named
Color.

public record Color(int Red, int Green, int Blue);

Listing 2-2: Defining a record

This example shows a positional record; the Color type
has no body, but the type definition has its own positional
parameters that are used by the compiler to generate a
complete type. Behind the scenes, the compiler translates
the record into a class definition, meaning that records are
reference types. The compiler also translates the parameter
names Red, Green, and Blue into public properties of the same
name, along with a public constructor with matching
parameters to initialize the property values. The positional
parameters are also used by the compiler to generate other
methods, including Equals, GetHashCode, and ToString, which
are overrides of their counterparts in the object base class.

Listing 2-3 creates a new instance of the Color record
and uses its properties exactly as if it were a class or a
struct.

var tomato = new Color(Red: 255, Green: 99, Blue: 71); 

Assert.That(tomato.Red, Is.EqualTo(255)); 

Assert.That(tomato.Green, Is.EqualTo(99)); 

Assert.That(tomato.Blue, Is.EqualTo(71));

Listing 2-3: Creating an instance of Color



Here, we use named arguments when constructing the
tomato variable of type Color to emphasize the names given
by the compiler to the constructor parameters. Note that
the property names used in the assertions are identical to
the names used in the constructor, and that both match the
names used in the record definition.

NOTE

One important difference between records and structs or

classes relates to handling equality comparisons between

two instances, a topic we’ll examine in more detail in

“Identity Equality vs. Value Equality” on page 47.

Very closely related to records are record structs,
introduced in C# v10.0. In contrast to records, which are
compiled as classes, record structs are translated by the
compiler into struct definitions, making them value types.
Otherwise, they’re the same as records. Record structs are
denoted by the record struct keywords, as shown here:

public readonly record struct Color(int Red, int Green, int

 Blue);

This record struct, much like the struct in Listing 2-1, is
marked readonly. If we left out the readonly keyword, the
properties generated by the compiler would be read-write
properties, with both get and set accessors. Using the
readonly keyword makes Color an immutable record struct.

Inheritance

One common way of representing relationships between
classes and between records is to use inheritance, or
deriving one type from another. However, we can’t apply
inheritance to structs or record structs; it’s available only
to reference types.



Another restriction of inheritance is that a record can
inherit from another record but not explicitly from a class.
Similarly, classes can’t inherit from records. In every other
respect, records follow the same rules and have the same
characteristics as classes as far as inheritance is
concerned. Classes and records can define virtual methods
and properties, allowing a more derived type to provide its
own behavior by overriding the method or property, and we
can choose to ignore, override, or hide any virtual methods
in a derived type.

In contrast, structs and record structs are implicitly
sealed, meaning that inheriting from them is prohibited. If
we attempt to derive from a struct or record struct, we get
a compile-time error. Structs and record structs can’t
inherit from another user-defined type either.

Another restriction for a class or record is that it can
inherit from only one base type. Any attempt at multiple
inheritance results in a compiler error. If no base type is
explicitly specified, object becomes the implied base class.
As you’ll see in “The Common Type System” on page 45,
every type ultimately inherits from object, either directly or
indirectly. For example, the Command class in Listing 2-4
implicitly derives from object, while the DummyCommand class
derives explicitly from Command, implicitly inheriting from
object via the Command base class.

public class Command 

{ 

    public virtual IEnumerable<Result> RunQuery(string quer

y) 

    { 

        using var transaction = connection.BeginTransaction

(); 

        return connection.Execute(transaction, query); 

    } 

    private readonly DatabaseConnection connection; 



} 

public class DummyCommand : Command 

{ 

    public override IEnumerable<Result> RunQuery(string quer

y) 

    { 

        return new List<Result>(); 

    } 

}

Listing 2-4: Inheritance syntax

This Command base class defines a virtual RunQuery method,
which is overridden in the derived DummyCommand class to alter
the method’s behavior. A stub implementation like
DummyCommand might be used during testing to avoid having
the test code depend on the underlying data store’s
contents.

Any type may implement multiple interfaces, but it’s
important to understand that inheritance is quite different
from interface implementation. When we implement an
interface, the implementing method is, by default, not

virtual. A class or record implementing a method from an
interface can choose to make its implementation of the
method virtual, but a struct or record struct cannot.

We can explicitly designate any member of a class or
record as protected, as opposed to public, private, or internal.
A protected member is accessible within the class declaring
it and to any types that inherit from that class, but it’s not
visible to any other code. Since value types are sealed, it
makes no sense for them to have virtual or protected
members. If we try to make a method virtual in a value type
definition or to define any protected fields, properties, or
methods, we’re rewarded with a compiler error.

We can choose to declare a class or record type as
sealed so that it can’t be used for further inheritance.



Sealing a class does not affect what it can inherit, only
what can inherit from it. It’s common to seal classes that
have value-like characteristics, such as string, or when we
wish to restrict a class’s behavior to that defined in our
own implementation. If a class is intended to be immutable,
whether or not it’s intended to have value-like
characteristics, sealing it ensures that its immutability
can’t be subverted by a mutable derived class.

Records are specifically intended to be value-like types
and have value-like behavior defined for them by the
compiler. This means we should seal record types unless
we have a compelling reason not to do so. We’ll look in
detail at the meaning of value-like and why such types
should be sealed in Chapters 6 and 7.

ABSTRACT BASE TYPES

An abstract type is one that can be used only as a base type for inheritance;

it can’t be instantiated directly with new. One implication is that while classes

and records can be abstract, structs and record structs can’t. It would make

no sense: we can’t inherit from a value type, so it could never be

instantiated.

In an abstract type, we can designate methods and properties as

abstract, meaning they have no implementation. Their purpose is simply to

define the operations that a concrete type must support. An abstract

method or property is implicitly virtual, but providing an implementation for

one prompts a compiler error. Abstract types don’t have to define any

abstract members, but only abstract classes or records can have abstract

methods and properties. Any abstract methods or properties remain

abstract unless they’re explicitly overridden in a derived class. Providing an

implementation for an abstract method in a derived type makes that

method concrete.

We can inherit one abstract type from another and choose to either

provide implementations for the base type’s abstract methods or leave

them as abstract. We can only directly create an instance of a class or

record that is fully concrete; that is, any and all abstract methods have been

overridden.

If we inherit from an abstract class, we can’t then inherit from any other

class because that would be a form of multiple inheritance, which is

prohibited.

It can be tempting to think of C# interfaces and their members as being

abstract (especially for users familiar with C++, where interfaces are



commonly implemented as classes with all pure-virtual methods), but that’s

not the case. An interface contains only signatures of methods and

properties; they are neither abstract nor virtual.

Inheritance is a central feature of object-oriented code,
but it applies exclusively to reference types. Inheritance—
as well as the features that support it, such as virtual
methods—is not appropriate for value types, in part
because of the way value type instances use memory.

Type Instance Lifetimes

Value types and reference types differ in the way each uses
memory and, more specifically, in the lifetime of their
instances. Value type instances are short-lived, and their
lifetime is bound to the lifetime of the variables that
represent them. For value types, the variable is the
instance; when we create a new instance of a value type,
the target variable effectively contains the instance data—
that is, the value of each field of the type.

In many cases, the lifetime of a variable is defined by a
block, such as a method body or a foreach loop. Any local
variables within the block cease to exist when the block
ends. Alternatively, a variable might be contained in
another object, in which case the variable’s lifetime is
defined by the lifetime of the enclosing object. Whenever
we copy a value type variable by assigning it to another
variable or passing it as an argument to a method, the copy
is a whole new instance of the type in a different variable.

Reference type instances, on the other hand, are
generally long-lived and can be referred to by many
variables. When we create a new instance of a reference
type, we’re given a reference to that instance in memory.
Whenever we copy that reference, we’re not also copying
the instance. The original reference and the copy both refer



to the same instance. References are stored in reference

variables.
All reference type instances are allocated on the heap.

Their lifetime is managed by automatic garbage collection,
which releases their memory when they’re no longer
needed by the program. An object is considered unused
when the garbage collector determines that no other live
references to that instance exist. While reference type
instances are not subject to their scope, reference variables
are subject to scope, so when one goes out of scope, it’s no
longer a live reference to an instance. The lifetime of a
reference type instance, then, is determined by the
lifetimes of all the references to that instance.

A cost is associated with being allocated on the heap,
because the garbage collection process takes time while
the program is running. Ensuring that unused heap
memory is properly cleaned up is a complex operation and
may interrupt a program’s normal execution for a short
time, so an overhead is associated with reference types.

Value types don’t require the overhead associated with
garbage collection. The memory used by a value type
instance can be freed when the lifetime of its variable ends.
To understand lifetime a little better, let’s look more closely
at what we mean by variable in different contexts.

Variables

A variable is simply a named area of memory. We use this
name—or identifier— to manipulate a memory location
during the variable’s lifetime. C# has five main kinds of
variables:
Local variables

These are block-scope variables, where a block might
be a method with a statement body, the body of a loop,
or any section of code delimited by matching braces, {}.



When control leaves a block at the closing brace, any
variables that are local to the block go out of scope.
When an exception is thrown in a block, the control flow
also leaves that scope and any containing scope until
the exception is caught or the program exits.

Instance fields

These are normal data members, known as fields, of
structs and non-static classes. Each instance of a type
has its own copies of any instance fields. The lifetime of
an instance field is defined by the lifetime of the object
to which it belongs.

Static fields

These fields are associated with a type, rather than
individual instances of the type. The lifetime of a static
field is normally tied to an application, so the instances
associated with static fields are usually released when
an application exits.

Array elements

Individual elements in an array are all variables. We can
access a particular element by its index and alter the
element instance if it is mutable.

Method parameters

The parameters in a method definition are technically
called formal parameters but are commonly known as
just parameters. A parameter’s scope is the body of the
method, exactly as if the parameter were declared as a
local variable within the method’s body. In code that
calls a method, we pass actual parameters, better
known as arguments, that correspond to the method’s
parameters.
Regardless of its kind, a variable always has an

associated type. This might be an explicitly declared type,
as in the declaration int size, or, for local variables, the



type might be implied with the var keyword. If the
variable’s type is a reference type, the variable’s value is a
reference. A non-null reference is a handle to an instance
somewhere on the heap. If the variable’s type is a value
type, the variable’s value is an instance of the type.

Variables vs. Values

It’s not always easy to intuit what counts as a variable and
what counts as a value, but the distinction is important:

Variables can be assigned to, although a readonly field
variable can be assigned only within a constructor of
the type of which it is a member, or using field
initialization (which we’ll discuss in “Field Initializers”
on page 58).
Values are the results of expressions—such as the result
of calling new, the return value from a method, or a
constant expression such as a literal number or string
literal. Values can’t be assigned to, but we use them to
initialize variables by using assignment or passing them
as arguments to method parameters.
Variables, for the most part, have names. Strictly

speaking, individual array elements don’t have their own
names, but for an array variable arr, the expression
arr[index] is essentially the element’s identifier. A value can
have a name but doesn’t require one: the expression 2 + 2
produces a new value, but it is anonymous unless we assign
that value to a variable.

The type of a value defines what an instance looks like.
Among other things, the type might have multiple fields
that need space allocated in memory when an instance of
the type is created. The type of a variable defines the sort
of value it can contain.

A value is just a pattern of bits. The type is a formal
specification for interpreting that bit pattern to give it
meaning in a program. Two values with identical bit



patterns may be interpreted differently if they are different
types. A pattern of bits that are all 0 means one thing if the
type is long, but something else entirely if the type is
DateTime.

A variable of value type directly contains its data,
whereas a variable of reference type contains a reference
to its data. More precisely, reference variables have a value
that is a reference to an object somewhere on the heap. Put
simply, a reference refers to an instance of a reference
type; the value of a reference type variable is a reference.

The relationship between variables and values is that all
variables have a value, although the value can’t be
accessed until the variable has been definitely assigned.

Definite Assignment

We can’t read the value of a variable unless the compiler is
satisfied that the variable has definitely been given an
initial value. More formally, a variable can be read only
after a value has been definitely assigned to it. The C#
Language Specification precisely defines what constitutes
definite assignment, but the essence is that a variable must
have been assigned or initialized with a value at least once
before its value is read.

If we try to obtain the value of any variable that hasn’t
been definitely assigned, the compiler raises an error to tell
us that this isn’t allowed. For example, when we declare a
local variable within a method, it is uninitialized unless or
until we assign a value to it. Such variables are initially
considered unassigned. Conceptually, at least, an
unassigned variable doesn’t have a value.

When we assign something to a variable, we give that
variable a new value. When we read from a variable, we
obtain its value. Variables and values are both expressions,
meaning we can evaluate them to produce a value, as long
as they have been definitely assigned.



To reiterate, attempting to read a value from any
variable that hasn’t yet been definitely assigned is an error.
When we use a var declaration for a local variable, we must
provide an initial value where the variable is declared,
because the type of the variable is inferred from the type of
the value being assigned to it.

Instances and Storage

Now that we’ve clearly defined variables and values, we
can explore how they relate to type instances. Whether an
instance is a value type or a reference type affects where it
is allocated and managed in memory; as a result, value type
variables have some peculiarities that don’t apply to
references.

Value types do not always live on the stack, despite
common misconceptions. Values for local variables are
most often tied to the block scope of a method, and so
might be associated with a stack frame for the method, but
values can also be contained within another object as a
member or an element in an array. Let’s examine this more
closely by looking at some examples of how variables are
embedded in objects.

Embedded Values

If a variable is a field embedded within an instance of
another type, its value is allocated within the memory for
its enclosing object. This is especially important for value
type variables that directly contain the instance of their
type. Consider the Color struct in Listing 2-5.

public readonly struct Color 

{ 

    public Color(int r, int g, int b) 

        => (Red, Green, Blue) = (r, g, b); 

    public int Red {get;} 

    public int Green {get;} 



    public int Blue {get;} 

}

Listing 2-5: Defining a Color struct with multiple fields

The Color struct has three properties representing the
components of an RGB color. When a Color value is used as
a field or property in a class, an instance of that class will
wholly contain a Color value on the heap. Take, for example,
the Brush class in Listing 2-6, which has several fields, one
of which is a Color type.

public class Brush 

{ 

--snip-- 

    public enum BrushStyle {Solid, Gradient, Texture} 

    private readonly int width; 

    private readonly Color color; 

    private readonly BrushStyle style; 

}

Listing 2-6: A Color value embedded within the Brush

class

The Brush type is a class and therefore a reference type.
When we create an instance of any reference type, it’s
allocated on the heap. The Brush class has three fields, one
of which is a Color instance, which itself has three fields
(Red, Green, and Blue). An instance of Brush might look
roughly like Figure 2-1 in memory.



Figure 2-1: A Color value embedded in a Brush instance on the heap

When we create a new Brush, the instance is created on
the heap and we’re given a reference to it. The color field
occupies memory directly within the memory space for the
Brush instance. If we implemented Color as a record struct
instead of a struct, the outcome would be the same. Record
structs are value types in exactly the same way as structs
and are allocated directly within the memory space of any
enclosing object.

Value type instances are not individually garbage
collected, but if a value type instance is embedded in
another object that has been allocated on the heap, the
memory used by the value type instance will be reclaimed
during garbage collection of the enclosing object.

The lifetime of the Color instance represented by the
color field is tied to the lifetime of the Brush instance. When
the garbage collector determines that the Brush instance is
no longer used, it will free up the memory for that instance,
including the embedded Color value.

Array Elements

When a value type instance is an element in an array, it
isn’t (strictly speaking) a field of the array object, but the
value is still embedded within the memory for the array.
Arrays are always allocated on the heap, regardless of the
type of their elements. When we create an array, we’re



given a reference to it. To illustrate, consider this array of
Color values, where Color is a struct:

var colors = new Color[3];

The colors variable here is a reference to an array of
three Color instances on the heap. The memory layout of the
colors array might look like Figure 2-2.

Figure 2-2: An array of Color structs in memory

In the colors array, each element is large enough to
store the three int backing fields. If the element type had
more fields, each element would require more space on the
heap. If the Color type were a record struct rather than a
struct, the layout would be identical; recall that the
compiler translates record structs into structs.

Reference variables, by contrast, are all the same size,
regardless of the number of fields declared in the type
definition. The memory required for an array of references
is determined only by the number of elements, not the size
of each instance.

Whether the elements of an array are references or
value type instances, the array is always on the heap, and
the array variable refers to its elements. If the garbage
collector determines that the array is no longer in use—that
is, no live reference variables to it exist—then the memory
for all of its elements is freed in one go.

Embedded References



Reference fields are also embedded in their enclosing type,
but their instances are not. If we had implemented Color as
a reference type in Listing 2-5, rather than a value type, the
layout of a Brush instance would be somewhat different. The
color field of the Brush class would be a reference, as
illustrated in Figure 2-3.

Figure 2-3: A color reference field embedded in a Brush instance

Instead of containing the entire instance of Color within
its own memory, the Brush type’s color field refers to a
separate Color instance somewhere else on the heap.
Reference type instances are always allocated on the heap
and are independent of one another. This applies to any
reference type, so it would be true if we implemented Color
as either a class or a record.

The lifetime of the Color instance here is independent of
the Brush instance. When the Brush instance is no longer
used and its memory is released, the Color instance will
remain in memory until the garbage collector determines
that it’s no longer needed.

Field and Property Layout



All user-defined types can contain instance fields and
properties. However, structs and record structs have one
restriction that does not apply to classes or records: a value
type definition can’t embed a field of its own type.

You’ve already seen how value type instances directly
contain their fields. If a type has a field that is itself a value
type, that field also directly contains its data. If the type of
that field is the same as its containing type, the compiler is
unable to determine how to create it. Consider the simple
struct in Listing 2-7 that embeds an instance of itself as a
field.

struct Node

{ 

    Node p;

}

Listing 2-7: A struct containing an instance of itself

This example will not compile. The compiler can’t know
how to lay out the contained field named p, because p’s type
isn’t fully defined at the point where it is declared. The
same is true of properties, because even automatic
properties require a backing field, though that field is
hidden from us.

The same reasoning applies to an indirect dependency,
illustrated in Listing 2-8.

struct Tree

{ 

    Node root; 

} 

struct Node

{ 

    Tree leftChild, rightChild; 

}



Listing 2-8: A struct with a cyclic dependency

Neither the Tree type nor the Node type can be created
here because the layout of each depends on the other. This
might sound draconian, but in practice it’s rarely a
problem, and we have an easy workaround: if we change
the definition of either Tree or Node to make it a reference
type, the compiler will accept this code. The rule applies
only to value types because, as mentioned previously,
references are always the same size regardless of the type
to which they refer. This means the compiler doesn’t need
to know the layout of a class or record to establish a
reference to it.

Boxed Values

References can refer only to objects on the heap and can’t
refer to individual value type instances, even those
enclosed within a reference type object. The only way for a
reference variable to individually refer to a value type
instance is to make a copy of the value, put that copy on
the heap, and refer to the copy with a new reference. The
process of creating a copy and storing it on the heap,
known as boxing, is automatic when the type of the variable
is a reference type. A boxed value can always be converted
back to its original value type, a process called unboxing,
where the value contained in the box is copied into the
target variable.

Boxing happens automatically when we refer to a value
using a reference variable such as object, or when we pass
a value as an argument to a method that takes a reference
type parameter. Unboxing is always explicit: we need to
cast the boxed variable back to its correct value type, as
shown in Listing 2-9.

public readonly struct Color 

{ 



    public Color(int r, int g, int b) 

        => (Red, Green, Blue) = (r, g, b); 

    public int Red {get;} 

    public int Green {get;} 

    public int Blue {get;} 

} 

var red = new Color(0xFF, 0, 0); 

var green = new Color(0, 0xFF, 0); 

❶ object copy = green; 

Assert.That(object.Equals(❷ red, copy), Is.False); 

var copyGreen = ❸ (Color)copy;

Listing 2-9: Boxing and unboxing

The type of the copy variable is object, and is therefore a
reference, so the value of green gets boxed into copy ❶.
Similarly, calling the object.Equals method boxes the value
of red, because the method takes two object parameters ❷.
We don’t need to explicitly cast the value to the object type;
it’s boxed implicitly. We do require an explicit cast to unbox
the value stored in copy into a new variable ❸.

As you’ll see shortly when we cover the Common Type
System, object is the base class of every type, meaning we
can always use object to refer to any other variable,
including value type instances. A struct can also implement
one or more interfaces. Interfaces are reference types, so if
we use either object or an interface type to refer to a value,
that value is automatically boxed onto the heap.

A boxed value can be unboxed only to its original type.
We can’t, for instance, unbox an int value into a double,
even though an implicit built-in conversion exists from int
to double. If we attempt to unbox a value to anything other
than its original type, we’ll get an InvalidCastException at run
time.

Boxed values are copied to the heap, which means the
box is no longer subject to the scope of its variable and may



exist beyond the lifespan of its original value. It’s up to the
garbage collector to clean up boxed values. Chapter 4
discusses boxing in more detail.

Semantics and Type

Value types have semantic implications that go beyond
being an instance of a struct or record struct. Choosing a
value type instead of a reference type when we define our
own types requires much more than a consideration of
possible optimizations. Records, in particular, differ from
classes, because even though records are compiled into
classes and are therefore reference types, they share some
important behavioral characteristics with value types.

Before delving into the behavior of record and record
struct types, we need to better understand how structs
differ from classes.

The Common Type System

C# has a hierarchical type system, known as the Common

Type System, in which all types derive from object, a
keyword alias for the System.Object type. This is why we can
always use object to refer to any other variable—although,
as you just saw, in the case of value types, the instances are
boxed so they can be referred to by object references.

Even the built-in types, such as int and float, inherit
from object. In fact, all built-in types are aliases for types in
the System namespace. The System types that underlie the
numeric types are all structs and therefore value types. For
example, int is an alias for the System type public readonly
struct Int32.

Enumeration types created with the enum keyword are
not aliases to System types, although they all derive from the
System.Enum class. The individual values of an enum
declaration have an underlying numeric type, which by
default is int. We could specify a different numeric type—



for example, if we wanted to allow the enum elements to
have values larger or smaller than is permitted for an int.

The non-numeric built-ins string and object are aliases
to classes in the System namespace, so they’re both
reference types.

When we use the class or record keyword to define our
own reference type, our new type derives directly from the
object base class unless it explicitly inherits from another
type. The object base class is neither an interface nor
abstract. It has a mix of virtual, nonvirtual, and static
members, which provide the default implementations
common to all objects.

All struct types (including record structs) and the
System.Enum type implicitly derive from System.ValueType (for
which there’s no keyword alias), which in turn derives from
the object base class, so all struct types derive indirectly

from object. Value types, unlike reference types, have an
intermediate base class defined by the language.

NOTE

ValueType itself is not a struct, which is sometimes

overlooked. All structs implicitly inherit from ValueType, so

ValueType itself must be a class. Moreover, ValueType is an

abstract class, meaning we can create an instance of object

but not of ValueType.

The ValueType class overrides all the virtual methods
defined in the object base class—Equals, GetHashCode, and
ToString—and customizes their implementations to provide
behavior tailored for value types. The ValueType
implementations for Equals and GetHashCode are extremely
important because they provide the value-based definition
of equality that distinguishes value types from reference
types. The difference between these implementations has
to do with the way values are copied.



Copy Semantics

The difference between where reference types and value
types store their instance data has important implications
when we copy variables, because copying a reference does
not copy the instance. Listing 2-10 shows a simple example
to illustrate the difference.

var thing = new Thing {Host = "Palmer"}; 

❶ var copy = thing; 

❷ copy.Host = "Bennings"; 

Assert.That(thing.Host, Is.EqualTo("Palmer"));

Listing 2-10: Copying a variable

Here we’re copying the value of the thing variable into a
new variable called copy ❶. Then we assign a new value to
the Host property of copy ❷. The test checks that the
properties of the original variable haven’t changed. The
success of the test assertion depends on whether Thing is a
value type or a reference type.

As noted earlier, all variables have a value that we may
copy to a new variable. If Thing is a value type, any copy we
make is a new instance of the type, so if we modify any
fields of that copy, those changes have no effect on the
fields of the original value. Therefore, if Thing is a struct or
a record struct, the test will pass.

If Thing is a reference type, on the other hand, the thing
variable’s value is a reference. When we copy a reference,
only the value of the reference is copied, and it refers to
the same instance as the original variable’s value. This
means if we modify the instance using one reference, that
change is reflected in all the references to it. Thus, if Thing
is a class or a record, the test will fail.

Locks and Reference Semantics



Some situations require the behavior of reference type
variables, and using a value type instance would be
incorrect or even disallowed. For example, we can’t use a
value type in a lock statement to prevent a section of code
from being executed concurrently by multiple threads. The
compiler forbids it because the variable used as a lock
needs to be a reference to an object on the heap. The
purpose of locking an object is to allow only a single thread
to execute the code it protects at any given time. The object
instance identifies the lock and can then have multiple
references to it from different threads.

The underlying mechanism for the lock statement is the
System .Threading.Monitor class. The lock statement translates
to the Enter method of Monitor, which takes object as its
parameter. Any instance of a value type passed to
Monitor.Enter as an argument will automatically be boxed.
Each thread calling Monitor.Enter will box the value
separately, and the acquisition of the lock would never fail,
rendering it pointless.

When we’ve finished with the lock, we need to call
Monitor.Exit and pass the same reference used to acquire
the lock with Monitor.Enter. The compiler inserts the code to
call Monitor.Exit at the closing brace of a lock block. If we
use a value type, the call to Exit will result in a new boxed
value on the heap, and so will be a different reference to
that used in the call to Enter. The result is that releasing the
lock will fail with a SynchronizationLockException error.

This is one situation actively requiring reference
semantics, because passing a reference to the Enter method
doesn’t copy the instance. The monitor and the code using
the lock both have a reference to the same instance.

Identity Equality vs. Value Equality

When we say we’re comparing variables to see whether
they’re equal, what we really mean is that we’re comparing
the variables’ values. If two variables have the same value,



they’re considered equal. The type of each value plays an
important role: the values being compared must be the
same type, although one or both values may have resulted
from an implicit conversion.

If we compare the values of two variables of the same
reference type, their respective values are references,
which compare equal by default if they both refer to the
same object in memory. This is known as an identity

comparison. We can override the default identity
comparison behavior in our own reference types (a topic
we’ll examine in detail in Chapter 5), but two references to
separate instances that have identical field values compare
unequal according to the default identity comparison
because they refer to different objects.

By contrast, two value type instances compare equal—
again by default, because we can modify this behavior—if
all the fields of one compare equal with their counterparts
on the other. The difference in equality comparison
behavior between value type instances and reference type
instances is directly related to their respective copy
semantics. Since a copy of a value type instance is a new
independent instance with identical state, an identity
comparison makes no sense. The two concepts of copying
and equality are therefore intimately related.

The ability to compare two values to see whether they
are equal is often underappreciated. Even if we rarely need
to compare variables in our own code, commonly used
classes such as List< T >, Dictionary< T >, and the LINQ
methods that work on collections may be making those
comparisons out of sight. Equals is a virtual method defined
by the object base class, which is a clue to how fundamental
it really is, because it means we can call the Equals method
on any value to compare it with any other.

However, the object.Equals implementation always
performs an identity comparison, which, again, is pointless



for value types. For this reason, all structs implicitly inherit
the ValueType class. ValueType overrides the Equals method to
perform a value-based comparison.

The difference between what equality means for
reference types and value types affects the way our code
behaves at run time. Consider Listing 2-11, where the Thing
type has not yet been allocated as a reference type or value
type and does not explicitly override the Equals method.
Here, we create two instances of Thing with the same value
for their Host property. What happens when we call Equals
depends entirely on whether Thing is a class, record, struct,
or record struct.

public ??? Thing 

{ 

    public string Host {get; set;} 

} 

var thing = new Thing {Host = "Palmer"}; 

var clone = new Thing {Host = "Palmer"}; 

Assert.That(clone.Equals(thing), Is.True);

Listing 2-11: Comparing equality of two independent

variables

This assertion will fail if Thing is a class, because the
object.Equals method will return true only if both clone and
thing are references to the same instance, and they’re not.
The assertion will pass if Thing is a struct, because the
ValueType implementation of Equals returns true if both clone
and thing have the same value; that is, all their fields
compare equal.

The clone and thing variables also compare equal if Thing
is either a record or a record struct because they also use a
value-based comparison for equality.

Records, Structs, and Value Semantics



Records are reference types but have value-like behavior
when it comes to comparing two record variables for
equality. When a record type is compiled, the compiler
generates a class definition with an overridden
implementation of the Equals method unless we define one
ourselves. The Equals method generated for records
compares two instances to determine if they have the same
state, rather than just comparing two references to
determine if they refer to the same instance.

In a struct, on the other hand, if we don’t override
Equals, the equality comparison relies on the
implementation of Equals provided by the ValueType base
class. Records, as reference types, don’t inherit from
ValueType. Record structs do inherit from ValueType, but, as
with records, Equals is overridden by a compiler-generated
implementation, because ValueType.Equals might not be the
optimal implementation.

The ValueType implementation is necessarily general; it
must work for any struct type, regardless of the types of
the struct’s fields. If a field of the type has a custom
implementation of Equals, instances of the containing type
must use that field’s implementation for comparisons; a
simple structural or bitwise comparison of the instances
may not always be correct. The implementation of Equals
provided by ValueType relies on reflection at run time to
determine how to compare the fields and will use an
overridden implementation of Equals to compare a field if
the type of that field has one.

If we want to avoid the overhead of reflection in a
struct, we must override Equals with our own
implementation to compare each field and property with its
corresponding field or property in the instance being
compared. If each field and property value compares equal,
using its Equals method where required, then the two



instances are equal. This is essentially the implementation
provided by the compiler for records and record structs.

To reiterate, structs, records, and record structs all
employ a value-based comparison of their state to
implement the Equals method, but for records and record
structs, the implementation is generated automatically by
the compiler, freeing us from the responsibility of providing
our own custom implementation.

The variables we use for records—but not record
structs—are references, and when we assign one record
reference to another variable, we still get two references to
the same record instance, just as we do if the type is a
class. Records therefore have reference semantics for
copying and value semantics for equality comparison.

The different comparison and copy semantics for value
types and reference types have important consequences for
the way instances of those types behave at run time.
However, important differences also exist in the way those
instances are created in the first place. In the next section,
we’ll look at how construction and initialization differ
depending on whether the type of the instance is a value
type or reference type.

Construction and Initialization

Creating a new object is superficially a simple operation,
but behind the scenes the compiler goes to a great deal of
trouble to make the process as efficient as possible. In
principle, creating an object involves allocating the memory
for an instance of a type and then calling a constructor
whose job is to initialize the instance’s fields. The syntax is
identical for both value types and reference types, but new
treats them differently and hides some complexity around
how and where different types are allocated in memory. In
other words, the new expression is an abstraction that



shields us from the implementation details of how memory
is allocated and used.

Specifically, the memory for reference type instances is
allocated dynamically. When a new instance of a class or
record type is created, the memory is allocated on the heap
at run time. Instances of struct and record struct types are
allocated differently, depending on how the resulting
instance is used. Consider this code, which initializes a
variable with a new instance of a type named Thing:

var thing = new Thing();

This basic syntax for creating an object and assigning it
to a variable is the same whether Thing is a class, struct,
record, or record struct. As you’ll see over the coming
sections, this code depends on Thing having an accessible
constructor that can be invoked with no arguments, which
isn’t necessarily the case when Thing is a reference type.
For the time being, though, let’s assume that Thing
instances can be created this way. If Thing is a class or a
record, new causes memory to be allocated on the heap at
run time and returns a reference to the new object, which
is assigned to the thing variable.

If Thing is a struct or a record struct, the new instance is
assigned to the thing variable. However, this code may or
may not allocate memory for a new instance of Thing and
may or may not call a constructor. The reason is that
construction and initialization are separate processes. Part
of the difference is related to whether a Thing is a value
type or reference type.

Default Initialization

Default initialization means that each of a type’s fields,
including the backing fields for properties, is given a



default value, which is defined in the language to mean one
of the following:

References are set to null.
Built-in numeric value type variables are set to 0.
All other value types are default-initialized.
Default-initialized reference type fields are a common

cause of errors. For example, the simple MusicTrack struct in
Listing 2-12 relies on us manually initializing an instance by
setting its properties. If we neglect to set suitable values
for the properties of a MusicTrack instance, we may be
rewarded with an exception when we use the instance.

public struct MusicTrack 

{ 

    public string Artist {get; set;} 

    public string Name {get; set;} 

    public override string ToString() 

        => $"{Artist.ToUpper()}: {Name.ToUpper()}"; 

} 

 

var defaultTrack = new MusicTrack(); 

var print = defaultTrack.ToString();

Listing 2-12: Initializing reference type fields

The call to ToString causes a null reference exception
because the defaultTrack value has been default-initialized.
The ToString method calls ToUpper on its Artist and Name
properties, whose default-initialized value is null. We need
to be alert to any uses of default-initialized references in
order to avoid such problems resulting from accessing a
null reference. One way to minimize the impact of default-
initialized values is by providing our own instance
constructors.

Instance Constructors



An instance constructor, like a method, can have zero or
more parameters. Also like methods, constructors can be
overloaded, so we can define several constructors for a
type, each with a different number of parameters, or
parameters of different types. Constructor definitions for
classes, structs, records, and record structs have many
similarities, but several important differences exist.

In Listing 2-13, we add a constructor for the MusicTrack
struct and use the parameter values to initialize the
instance’s property values. We use the null-coalescing
operator ?? to assign an empty string for each property if
its corresponding parameter is null.

public readonly struct MusicTrack 

{ 

    public MusicTrack(string artist, string name) 

    => (Artist, Name) = (artist ?? string.Empty, name ?? str

ing.Empty);

    public string Artist {get;} 

    public string Name {get;} 

    public override string ToString() 

        => $"{Artist.ToUpper()}: {Name.ToUpper()}"; 

}

Listing 2-13: Adding an instance constructor with

parameters

By adding a constructor, we no longer have to rely on
MusicTrack users setting the properties explicitly, since the
initial values for those properties are set in the constructor.
We have made those properties get-only—that is, they can
be given a value only in the constructor—and made
MusicTrack a readonly struct. However, we must still be
cautious of using the property values inside the ToString
method because instances of any value type can always be
default-initialized, regardless of the presence of a user-



defined constructor definition. Adding our own constructor
for MusicTrack to give meaningful values to the properties
isn’t sufficient protection against exceptions that occur
from calling methods using a null reference, because
MusicTrack is a struct type.

If the nullable reference type feature is enabled (see
“Nullable Reference Types” on page 64 for more), the
constructor’s parameters will be non-nullable variables,
meaning that passing null for either argument would cause
a compiler warning. Using non-nullable parameters doesn’t
mean that null can’t be passed as an argument, but we may
decide that the warning is sufficient protection, potentially
allowing us to omit the null-coalescing assignments in the
constructor. The nullable reference type feature doesn’t,
however, mean we can avoid verifying that the property
values are not null prior to using them in the ToString
method. Fortunately, the null-conditional operator makes
the check straightforward and safe:

public override string ToString() 

    => $"{Artist?.ToUpper()}: {Name?.ToUpper()}";

Here the presence of the null-conditional operator, a ?
appended to each property name, means that in each case
the ToUpper method will be called only if the property is a
non-null value. If either property is null, the result of the
expression between the braces within the string is null,
which the string interpolation treats as an empty string.

If MusicTrack were a class or record, the presence of our
own constructor would mean we could no longer create an
instance without passing arguments like this:

var track = new MusicTrack();



If we attempt to create a default-constructed instance,
we get the following compiler error:

[CS7036] There is no argument given that corresponds to the

 required formal parameter 'artist' 

of 'MusicTrack.MusicTrack(string, string)'

If we don’t provide any constructors for a class or
record, the compiler inserts a default constructor for us. If
we define a constructor when we define our own reference
type, however, the compiler will not generate the default
constructor. The compiler doesn’t create a default
constructor for value types, but an instance of a struct or
record struct can be default-initialized whether or not we
define our own constructor.

Default and Generated Constructors

The behavior of reference types and value types differs
partly because reference types are allocated on the heap,
but value types might not be. The compiler generates a
default constructor for reference types because instances
of such types are allocated dynamically, and their instances
are initialized at run time. When a reference type instance
is allocated on the heap, the memory for it is set to zero,
effectively default-initializing the instance.

Value types are treated differently because their
memory isn’t necessarily allocated at run time: for local
value type variables, the compiler may reserve memory for
the instance data, and the program accesses that memory
directly. The underlying Common Intermediate Language
(CIL) has an efficient instruction for default-initializing
value type instances that effectively zeroes out the memory
used by the instance, wherever its memory actually resides.

We can think of the default initialization of a struct or
record struct as being performed by a compiler-provided
default constructor, because the result is identical in any



case. Default-initializing value types offers a minor
performance advantage because it doesn’t require a
method call to a constructor, although it’s almost never the
most significant optimization.

In a positional record or a positional record struct, the
compiler generates a public constructor based on the
parameters we use in the type definition, like this:

public sealed record Color(int Red, int Green, int Blue);

The parameters to Color in this example tell the
compiler to create public properties using those names and
their types. The compiler also creates a constructor with
the same signature as the record’s parameter list, where
the properties are assigned their values. The constructor
generated by the compiler is the equivalent of this:

public Color(int Red, int Green, int Blue) 

    => (this.Red, this.Green, this.Blue) = (Red, Green, Blu

e);

Although the constructor has been generated by the
compiler, it’s still considered a user-defined constructor
and therefore still suppresses the default constructor for
the Color record.

Regardless of its type, an instance is always default-
initialized when it’s first created, whether its memory is
being allocated on the heap or elsewhere.

When we define our own constructor for a class, we can
rely on all the fields having been default-initialized prior to
the constructor’s body; the fields of a class are considered
initially assigned within the constructor. In a struct’s
constructor, the fields are initially unassigned, so we must
definitely assign a value for every field of a struct or record



struct, even if it’s simply to replace the value with its
default-initialized equivalent.

Overloaded Constructors

We can provide a constructor with parameters for any type,
and we can overload the constructor by defining several
constructors that have different numbers or types of
parameters. This is useful when we want to support
different ways to construct our type. For instance, Listing
2-14 shows a struct that has two constructors with differing
signatures.

public readonly struct Color 

{ 

    public Color(int red, int green, int blue) 

        => (Red, Green, Blue) = (red, green, blue); 

    public Color(uint rgb) 

        => (Red, Green, Blue) = Unpack(rgb); 

    public int Red {get;} 

    public int Green {get;} 

    public int Blue {get;} 

}

Listing 2-14: Overloading constructors

The first constructor initializes the three properties
from three separate parameters (red, green, blue). The
second constructor receives a numeric representation of an
RGB value and initializes the Red, Green, and Blue properties
by calling the Unpack method (not shown here) to unpack the
number into its component parts. We select the different
overloads when using the constructor by passing different
arguments, as shown in Listing 2-15.

var orange = new Color(0xFFA500); 

var yellow = new Color(0xFF, 0xFF, 0);



Listing 2-15: Selecting the correct overload

Here, the orange variable is created using the
constructor with a single uint parameter (the second
constructor in Listing 2-14), and the yellow variable uses
the constructor with three int parameters (the first
constructor in Listing 2-14).

Parameterless Constructors

As noted earlier, defining our own constructor for a class
type will inhibit the compiler-generated default
constructor, meaning that we can create new instances of
the type only by passing arguments to our own
constructor’s parameters. If we need to create instances of
such a reference type without arguments, we can define
our own parameterless constructor, which we might use to
initialize reference type fields and properties to non-null
values. This is common when a class contains a collection
that needs to be initialized but can be empty, as
demonstrated in Listing 2-16.

public sealed class Playlist 

{ 

    public Playlist(IEnumerable<MusicTrack> items) 

      ❶ => queue = new(items); 

    public Playlist() 

      ❷ => queue = new(); 

 

    public void Append(MusicTrack item) 

        => queue.Add(item); 

--snip-- 

    private Queue<MusicTrack> queue; 

}

Listing 2-16: Defining a parameterless constructor



The two constructors defined here allow us to create a
Playlist either by passing a sequence of items to populate
the queue ❶ or by passing no arguments ❷. If we pass no
arguments, the queue field is initialized as an empty queue,
ensuring that it isn’t null.

Both constructors initialize the queue field by using type
inference, a feature called target-typed new, introduced in
C# v9.0. The compiler deduces the type required by new
from the type of the target variable being initialized—in
this example, a Queue< MusicTrack>. The queue field is
guaranteed to be non-null for any Playlist instance, so we
don’t need to check for null in the Playlist.Append method.

In a positional record, the compiler creates a
constructor based on the positional arguments for the
record, so by default, instances of a positional record can’t
be created without arguments. We can define our own
parameterless constructor for a positional record if we
require that behavior. A struct or positional record struct,
on the other hand, can always be created without
arguments, whether or not we define our own constructors.

Structs and Default Values

As of C# v10.0, we can define our own parameterless
constructors for value types to help ensure that any
reference fields are non-null. However, we still need to
check for null in a value type’s implementation because an
instance of a struct or record struct can always be default-
initialized, effectively bypassing any constructors we
define. This is illustrated in Listing 2-17, where we add a
parameterless constructor for the MusicTrack struct that
explicitly initializes the two string properties.

public readonly struct MusicTrack 

{ 

    public MusicTrack() 

        => (Artist, Name) = (string.Empty, string.Empty); 



    public MusicTrack(string artist, string name) 

        => (Artist, Name) = (artist, name); 

    public string Artist {get;} 

    public string Name {get;} 

    public override string ToString() 

        => $"{Artist?.ToUpper()}: {Name?.ToUpper()}"; 

}

Listing 2-17: Adding a parameterless constructor for a

struct

The parameterless constructor sets both reference type
properties to a non-null value, so calling ToUpper on either
property is safe when we’re using a MusicTrack instance that
was created using new MusicTrack. However, this doesn’t
mean we can omit the null-conditional checks in ToString.
It’s still possible for Artist or Name to be null if the instance
is a default-initialized MusicTrack—for example, when it’s an
element in an array:

var favorites = new MusicTrack[3]; 

var print = favorites[0].ToString();

Without the checks for null in ToString, this code would
cause ToString to throw a NullReferenceException because the
creation of the favorites array doesn’t call our
parameterless constructor on its elements. Each element is
default-initialized, leaving the Name and Artist properties
with their default value of null, so attempting to call the
ToUpper method on a null reference causes the exception.

Array elements are default-initialized without invoking
any parameterless constructor we provide. The
parameterless constructor is reserved for when we create a
new instance by using the new keyword.

Value Type Initialization



One quite subtle consequence of the way value type
instances are allocated in memory is that if a value type’s
fields are all public, we can definitely assign a value for
each field outside the constructor (as long as they’re not
read-only), which results in the whole instance being fully
assigned.

For example, Listing 2-18 assigns a value to each field
of an uninitialized struct variable.

public struct Color 

{ 

    public int red; 

    public int green; 

    public int blue; 

} 

Color background;   // initially unassigned variable 

background.red = 0xFF; 

background.green = 0xA5; 

background.blue = 0; 

Assert.That(background.red, Is.EqualTo(0xFF));

Listing 2-18: Definitely assigning a struct

This code compiles, and the test passes. We can read
the value of the red field, even though we’ve never allocated
the background variable with new or invoked a constructor for
it. The same would be true if Color were a record struct
instead.

This example demonstrates that value type variables
directly contain an instance of their type. Assigning to each
field means we don’t need to explicitly construct an
instance. However, relying on this behavior is likely to
cause other problems, not the least of which is that using
public fields leaves the Color type open to misuse, intended
or not. In practice, a constructor is a much better way to
initialize a value type’s fields, which should all be private
and read-only.



Note that if we alter the public fields to be publicly
mutable properties, this code will fail to compile. We can’t
access a property of a value type in any way until the
instance itself has been fully, and definitely, assigned.
Every property has a backing field generated by the
compiler, and that backing field is always private.

Constructor Accessibility

Constructors with parameters can be made public or
private in any type. Private constructors are useful when
we want to prevent users from creating instances with
certain arguments. We used this technique in “Static
Creation Methods” in Chapter 1 to force users to call the
static class factory methods we defined in order to create
certain values, rather than using the new keyword directly.
In a class or record, we can make the parameterless
constructor private to prevent users from creating default-
constructed instances, shown for the Color record in Listing
2-19.

public sealed record Color 

{ 

    private Color() {} 

    public static Color Black {get;} = new Color(); 

--snip-- 

}

Listing 2-19: Making constructors private for reference

types

Since the constructor for Color is marked private, we can
use it to initialize the static Black property value and any
other static or instance members of Color, but it’s
inaccessible to code outside of the Color type. If users of
Color forget and attempt to create an instance with new, the
compiler forbids it:



var black = new Color(); 

[CS0122] 'Color.Color()' is inaccessible due to its protecti

on level

Classes and records can also use the protected keyword
on a constructor, making it available to inheriting types.
Since structs and record structs can’t be inherited, the
compiler will prevent the use of protected in a value type.

In a struct or record struct, if we define our own
parameterless constructor, it must be public. Struct and
record struct instances can always be default-initialized,
whether or not we provide a parameterless constructor.

Field Initializers

In a class or record definition, and in structs or record
structs after C# v10.0, we can assign initial values to fields
inline by using field initializers. We can do the same with
automatic properties by using property initializers, which
initialize the hidden backing field associated with the
property. Listing 2-20 uses a field initializer for the queue
field of the Playlist class from Listing 2-16 to assign an
initial value and adds a Name property for Playlist that we
also assign an initial value by using a property initializer.

public sealed class Playlist 

{ 

--snip-- 

    public string Name {get; set;} = "_playlist"; 

    private Queue<MusicTrack> queue = new(); 

}

Listing 2-20: Assigning initial values for fields and

properties

Field and property initializers are part of object
construction but are not applied when a value type instance



is being default-initialized. Conceptually, initializers are
applied just before the body of a constructor. As noted
previously, the compiler creates a default constructor for
class and record types if no user-defined or positional
constructors are present; however, the compiler won’t
synthesize a parameterless constructor for any value type.
Therefore, if we want to use field or property initializers for
struct or record struct types, we must also define at least
one constructor of our own. This can be a parameterless
constructor or a constructor taking one or more
parameters.

Field initializers can’t reference any instance members.
However, since static fields are guaranteed to be definitely
assigned before any instance fields, a field initializer can
reference a static value. Static fields can also have
initializers and can reference other static fields. However,
we need to take care when referencing one static field from
another static field because they’re initialized in the order
in which they appear in the class.

Object Initializers

With object initializers, we set values for publicly mutable
properties of a variable at the point of creating a new
instance, like this:

var fineBrush = new Brush {Width = 2};

Classes, records, structs, and record structs accept this
syntax, and they all behave the same way. The initialization
process is the same for each: a constructor is invoked in
the usual way to create an instance, and then the value is
assigned to the property of the instance. In this example, a
Brush is created using a parameterless constructor (or one
with all-optional parameters), but we can call any
constructor before the initialization expression inside the



braces. In the special case of a constructor that requires no
arguments, we can leave out the parentheses for the
constructor.

Classes and records require an accessible
parameterless constructor to use this syntax. If the
parameterless constructor of a class or record is hidden or
nonpublic, we must invoke a valid constructor before the
object initialization within the braces. We don’t have to
worry about this for struct or record struct types because
they can always be default-initialized if the type has no
parameterless constructor.

init-Only Properties

As of C# v9.0, any property can be init-only, meaning it can
be written to only during the creation of a new instance.
Prior to C# v9.0, object initialization required properties to
have a public set accessor, meaning object initialization
couldn’t be used with immutable properties. Object
initialization requires the value of the property to be set
after the constructor has completed, which wasn’t
permitted for properties without a public set accessor. An
init accessor allows a property to be set during object
initialization and then makes the property immutable after
the initialization is complete.

The Color struct in Listing 2-21 demonstrates how init-
only properties are used during object initialization.

public readonly struct Color 

{ 

    public int Red {get; init;} 

    public int Green {get; init;} 

    public int Blue {get; init;} 

} 

var orange = new Color {Red = 0xFF, Green = 0xA5}; 

Assert.That(orange.Red, Is.EqualTo(0xFF)); 

Assert.That(orange.Green, Is.EqualTo(0xA5)); 

Assert.That(orange.Blue, Is.EqualTo(0));



Listing 2-21: Setting properties as init-only

When we create the orange variable, a new Color is first
default-constructed, giving each property its default value
of 0. The object initializer between the braces gives new
values to the Red and Green properties, leaving the Blue
property with its default value. Note that Color is a readonly
struct, which requires that the struct has no mutable
properties.

We can assign a value to an init-only property in an
instance constructor or by using object initialization, but
we can’t assign a new value after the instance has been
created. An init-only property is immutable. The init
accessor syntax can be used for properties and indexers for
any type, although it was introduced in C# v9.0 to support
a special initialization syntax supported by records and
known as non-destructive mutation.

Non-destructive Mutation

Records and record structs support the non-destructive
mutation syntax, and as of C# v10.0, so do structs and
anonymous types. Syntactically, non-destructive mutation is
similar to object initialization, except that it initializes a
new instance by copying an existing one and providing new
values for selected properties in that copy. Listing 2-22
demonstrates this syntax, using the with keyword to copy
the orange record variable to a new variable named yellow,
and then assigning a new value to one of the properties of
the copy.

public sealed record Color(int Red, int Green, int Blue); 

var orange = new Color(0xFF, 0xA5, 0); 

var yellow = orange with {Green = 0xFF}; 

Assert.That(yellow.Red, Is.EqualTo(0xFF)); 

Assert.That(yellow.Green, Is.EqualTo(0xFF)); 

Assert.That(orange.Green, Is.EqualTo(0xA5)); // unchanged in 



orange 

Assert.That(orange.Blue, Is.EqualTo(0));

Listing 2-22: Initializing a copy of a record with non-

destructive mutation

The with expression we use when we create the yellow
variable creates a new instance of the Color record with
property values identical to the original orange instance.
Those properties specified between the braces following
with are then assigned the values by using the same syntax
as object initialization. This approach is called non-

destructive mutation because no changes are made to the
original record.

Constructors and initializers are both ways we can
create new instances with known values. However,
sometimes we can’t provide an initial value for a variable,
but leaving it uninitialized is too restrictive: we can’t even
test it to see whether it has a value, owing to the rules
governing definite assignment. In the next section, we’ll
examine the options open to us when we need a variable
with no value, and how value types and reference types
differ here too.

null Values and Default Values

A plain value type variable can never be null. An instance of
a value type directly contains all of its fields, and there’s
not necessarily a representation of “no value.” A default-
initialized instance of a value type is not the same thing—
it’s a complete instance of the type, just with the default-
initialized values for each of its fields.

We can employ a nullable value type, which can be
assigned and compared with the value null, as you’ll see
shortly, but plain value type instances are incompatible
with null. The null constant expression is a reference and



therefore can be assigned only to reference variables. One
of the implications of not being able to assign null to a
value type variable is that we can’t pass null as an
argument to a value type method parameter.

Similarly, attempting to compare a value with null
makes no sense. If we do, as shown in Listing 2-23, the
compiler rejects the code.

public readonly struct Speed 

{ 

--snip-- 

} 

var c = new Speed(); 

Assert.That(c == null, Is.False);

Listing 2-23: Comparing a value type variable with null

The error from the compiler is shown here:

[CS0019] Operator '==' cannot be applied to operands of type 

'Speed' and '<null>'

We can, however, compare any reference type with null,
and, as of C# v8.0, we can use a constant pattern to make
this comparison more direct by using the is keyword:

Assert.That(someObject is null, Is.True);

Comparing any value type with null makes no sense,
whatever method we choose, because null is a reference
and as such is represented differently than a value type.
That said, the rule against comparing value types with null
has one exception: generic types.

Generics and null



In a generic class or method, an unconstrained type
parameter variable can be compared with null. An
unconstrained generic type can be either a value type or a
reference type. To illustrate, the simple example in Listing
2-24 compares an instance of a generic parameter type
with null.

public static int Compare<T>(T left, T right) 

{ 

    if(left is null) return right is null ? 0 : -1; 

--snip-- 

}

Listing 2-24: Comparing a generic type parameter

instance with null

The Compare generic method has a type parameter
named T that might represent either a value type or a
reference type, because it has no type constraints. In this
instance, T is not known to be a value type, so the compiler
allows the syntax. If T’s type is determined at run time to be
a value type, the whole expression simply evaluates as
false.

The compiler still prevents us from assigning null to a
variable of type T, because if T were a value type, the
assignment would fail at run time. Similarly, we can’t
return null through an unconstrained type parameter,
demonstrated in Listing 2-25.

public static T Consume<T>(IProducerConsumerCollection<T> co

llection) 

    => collection.TryTake(out var item) ? item : null;

Listing 2-25: Trying to return null as a generic parameter

type



This gives the following error:

[CS0403] Cannot convert null to type parameter 'T' because i

t could be a non-nullable value 

type. Consider using 'default(T)' instead.

In this example, the difficulty arises because T is
unconstrained. It might represent a struct or record struct
type, for which null is not a valid value. The error message
gives us a clue that instead of returning null, we can return
a default value for T. Default values have other, more
significant use cases too, but also some limitations.

Generics and Default Values

The concept of a default value is closely related to a null
value, especially in the context of generic types and
methods. At times, we—and the compiler—must ensure that
an instance of a generic parameter type T is definitely
assigned, even when T’s type is not known at compile time.
We can’t just use new to make a new instance of type T
because the compiler isn’t able to determine which
constructors are available for T.

If T is a value type, we can always make a default
instance by using default initialization or by calling a
parameterless constructor, but if T is a reference type, it
might not have an accessible default or parameterless
constructor. We can use the new constraint on T, meaning
that our generic type or method will work only with types
that have an accessible parameterless constructor, but this
might be too restrictive.

In a generic type, we can use the generic parameter to
denote a field or property of the generic parameter type.
Generic value types must ensure that all their fields are
definitely assigned before control leaves the constructor.
To make that possible, we use the default keyword to



initialize a default instance of T, as in the generic struct
shown in Listing 2-26.

public readonly struct Node<T> 

{ 

    public Node(int index) 

    { 

        idx = index; 

        contained = default; 

    } 

 

    private readonly int idx; 

    private readonly T contained; 

}

Listing 2-26: Initializing a default instance of a type

parameter

In the Node constructor, the contained field is assigned
the default value of its type by using the target-typed
default literal (available since C# v7.1), which is equivalent
to the expression default(T). Where T is a class or record, its
default value is null, and where T is a struct or record
struct, the default value is a default-initialized instance.
Note that initializing a value by using default does not
invoke a parameterless constructor, if we have defined one.
This code is valid because we can always create a default
value for a variable of type T: if T is a value type, the value
is a default instance of T, and if T is a reference type, a
default T is null. The default keyword has many uses outside
of generic types and methods, but within generic code it’s
indispensable.

Default values are useful, but they’re not sufficient to
identify a particular value type instance as invalid. In other
words, we can’t use a default when what we really mean is
no value present. The default value of a struct or record



struct is a default-initialized instance and might therefore
be a valid value. Consider Listing 2-27.

int x = default; 

int y = 0; 

Assert.That(x.Equals(y), Is.True);

Listing 2-27: Default values can be valid.

The default value for an int type is 0, which we may use
to indicate an invalid number in some circumstances but
not all. Whether that matters, especially for our own value
types, depends on the context in which instances of the
type are used, but limiting valid integers to only nonzero
values would be very restrictive. Fortunately, we have an
alternative.

Nullable Value Types

Nullable value types allow us to have a representation of a
value type that means no value present. A nullable value
type is a wrapper around a value type, and a nullable value
type variable may or may not have a value. A nullable value
type variable can also be assigned the value null,
demonstrated by using a simple test in Listing 2-28.

int? x = null; 

int y = 0; 

Assert.That(x.Equals(y), Is.False);

Listing 2-28: Using nullable values

The ? following the int type of the x variable is
shorthand for saying that x is a Nullable< int>. We can now
represent an invalid value for x that’s distinct from any
valid values for int. We can use a nullable variable for any



value type, not just built-ins. The default value for a
nullable is null, as shown here:

int? x = default; 

int? y = null; 

Assert.That(x.Equals(y), Is.True);

This test passes because x and y are both null. The
declaration of x in the first line doesn’t initialize a default
int but rather a default Nullable< int>. Equality comparison
between nullable values compares the underlying value if
there is one. Two nullable values are equal if they both
have no value, or values that themselves compare equal.
Nullable< T > is a struct and overrides the Equals method to
provide this behavior.

As a consequence of not being able to assign null to a
plain value type variable, we can’t use a plain value type on
the right-hand side of an as expression, like this:

object speed = new Speed(); 

var actual = speed as Speed;

If Speed is a struct or record struct, this code won’t
compile, because if the cast fails, the as operator will return
null. As we know, null can’t be assigned to a value. The
solution is to use a nullable value type as the source of the
conversion, as shown here:

var actual = speed as Speed?;

The type of the actual variable is a nullable Speed in this
example and will have the value null if the conversion fails
—that is, if the speed variable is not in fact a Speed type.

Nullable Reference Types



C# v8.0 introduced nullable reference types, a feature that
allows the compiler to warn us when a reference is or
might be null and we expect it to have a real value. While
reference variables have always been able to have a null
value, the nullable reference type feature allows us to
express whether we intend for them to. In other words,
when we use a nullable reference type variable, we’re
being explicit about our intention that null is an expected

potential value for a variable.
Reference variables are non-nullable by default. In the

declaration in Listing 2-29, the brush variable is a non-

nullable reference.

object brush = null;

Listing 2-29: Declaring a non-nullable reference variable

The compiler performs static analysis that enables it to
issue a warning if a non-nullable reference can’t be
guaranteed to be non-null. To state that with fewer
negatives, the compiler issues a warning if a value that may
be null is assigned to a non-nullable reference. In
particular, assigning null to a non-nullable reference, as we
just did, provokes this warning:

[CS8600] Converting null literal or possible null value to n

on-nullable type

If we attempt to pass a possibly null value as an
argument to a non-nullable method parameter, we’ll get a
warning from the compiler. Consider the method in Listing
2-30, which capitalizes the first character of each word in a
string.

public static string ToTitleCase(string original) 

{ 



    var txtInfo = Thread.CurrentThread.CurrentCulture.TextIn

fo; 

    return txtInfo.ToTitleCase(original.Trim()); 

}

Listing 2-30: Defining the ToTitleCase method with a

non-nullable reference parameter

Within the ToTitleCase method, we should be able to
depend on the original parameter having a real, non-null
value, because it’s a non-nullable string. That means we
can avoid explicitly writing code to check that it isn’t null.
When we call ToTitleCase, if the compiler can’t guarantee
that the argument we pass isn’t null, it will give us a
warning.

We might have a legitimate need for a null reference,
however, in which case we mark the type of a variable as
nullable to suppress the compiler warnings about possible
null assignment. The syntax is the same as for nullable
value types: we append a ? to the type. Listing 2-31 shows a
collection of nullable string elements designated by the
string? type name.

var names = new List<string?>(); 

// Load names from somewhere, may contain null elements 

--snip-- 

var properNames = names.Select(name => ToTitleCase(name));

Listing 2-31: Passing a possibly null argument for a non-

nullable parameter

If we apply the ToTitleCase method from Listing 2-30 to
this collection, we get a similar compiler warning as with
Listing 2-29, where we explicitly assigned null to a non-
nullable reference type variable:



[CS8604] Possible null reference argument for parameter 'ori

ginal' in 'string 

ToTitleCase(string original)'.

We’re given this warning because the compiler can’t
guarantee that the collection contains no null elements.
The compiler assumes any of the elements may be null
because the element type of the collection is a nullable
reference.

If we explicitly check each element before making the
call to ToTitleCase, the compiler can determine that we’re
not using a null reference as an argument to the method.
To achieve that, we could unpack the Select expression into
a loop, such as the foreach loop in Listing 2-32.

foreach (var name in names) 

{ 

    if(name is not null) 

        properNames.Add(ToTitleCase(name)); 

}

Listing 2-32: Explicitly using a non-null reference

This code doesn’t prompt a warning about the argument
in the call to ToTitleCase because the compiler can perform
enough analysis on the code preceding the method call to
guarantee that the name argument isn’t null.

However, sometimes the compiler needs our help to
determine whether it’s safe to assign a variable to a non-
nullable reference or to call a method with a non-nullable
parameter. Listing 2-33 shows a slightly modified version of
Listing 2-31 calling ToTitleCase, where any null elements are
filtered out before the method is called.

var properNames = names 

    .Where(name => name is not null) 



    .Select(name => ToTitleCase(name));

Listing 2-33: Removing null elements before the method

call

This code gives us the same warning as in Listing 2-31,
however, because the compiler can’t be certain ToTitleCase
won’t be invoked with a null argument. Although it looks as
if the check for null is being made inline, in fact we’re
calling a lambda function to make that comparison, and the
compiler doesn’t attempt to analyze every possible code
path to make this safe. Fortunately, we have a workaround.

The Null-Forgiving Operator

We can use the null-forgiving operator to inform the
compiler that we definitely know what we’re doing and that
no null references are used as arguments to a non-nullable
parameter. The null-forgiving operator is an ! appended to
the variable, which is why it’s also referred to as the
dammit operator, as in, “It’s definitely not null, dammit!”
When we’ve filtered out all the null elements from our
collection, we apply the dammit operator to the argument
for ToTitleCase, as shown in Listing 2-34.

var properNames = names 

    .Where(name => name is not null) 

    .Select(name => ToTitleCase(name!));

Listing 2-34: Using the null-forgiving operator

Using the null-forgiving operator with the argument to
ToTitleCase convinces the compiler that it is safe to call the
method having a non-null reference type parameter. If we
were to inadvertently pass a null reference, we’d
(justifiably) get the dreaded Object reference not set to an
instance of an object exception. We must take care when



using the null-forgiving operator that we really do know
that the variable can’t be null.

Nullable reference types, while having the same syntax
as nullable value types, are just a device that indicates to
the compiler that we’re making certain assumptions about
the variable. Unlike nullable value types, which are
underpinned by a distinct type with behavior injected by
the compiler, nullable reference types are a purely compile-
time mechanism, used for static analysis, and do not
change the behavior of our code in any way. At run time,
nullable and non-nullable references are just references.
Nevertheless, distinguishing between them in code is
useful for encoding our assumptions about nullability.

Unexpected null reference exceptions are the curse of
many programs and a class of error that programmers
everywhere go to great lengths to try to avoid. The nullable
reference type feature of modern C# is one that shifts some
of that responsibility away from the programmer and onto
the compiler.

Summary

My goal was to ensure that all use of references should be absolutely safe, with

checking performed automatically by the compiler. But I couldn’t resist the

temptation to put in a null reference, simply because it was so easy to

implement. This has led to innumerable errors, vulnerabilities, and system

crashes, which have probably caused a billion dollars of pain and damage in the

last forty years.

—Tony (C.A.R.) Hoare

The type system in C# is broadly similar to many other
programming languages, including its support for user-
defined types. C# differs in its distinction between
reference types and value types. Although there are various
recommendations on when to choose to define a value type
instead of a reference type, including documentation from
Microsoft, those guidelines often take only part of the story
into consideration.



The technical purpose of distinguishing value types
from reference types is to allow the compiler and Common
Language Runtime to make assumptions about values that
may allow certain opportunities for optimization. Some of
the differences we’ve discussed result from the way
reference and value type instances are stored and managed
in memory. That value type variables are not independently
subject to garbage collection can itself be a big win.
However, we can’t just turn our classes into structs or
record structs and expect that our programs will suddenly
use less memory or run more quickly. Value semantics
involves much more than just declaring something as a
value type.

Likewise, the copy-by-value behavior of value types is
more than just a side effect of the way values use memory.
Copying by value gives rise to many of the constraints that
are imposed on value types and for which reference types
have no need. Using value types where they’re appropriate
can make our code clearer and simpler in subtle ways, like
not having to check for null values on every use of a value.
The characteristics of copying values also affect the
behavior of the Equals method; although comparing
variables to see if they are equal may sound
inconsequential, it’s an essential aspect of working with
variables.

The distinction between value types and reference
types, then, is not just a list of restrictions. Genuine
semantic differences affect our programs’ behavior and can
bring tangible benefits. One advantage of value types is
that they can never be null. Constantly having to check
references to ensure that they’re valid can be tiresome and
error-prone. Using the non-nullable reference type feature
is one way we reduce the occurrence of unexpected errors
arising from dereferencing a null reference.



One of the great strengths of C# being a compiled and
type-safe language is that the compiler can identify many
kinds of errors before our program is ever run.



3

REFERENCE AND VALUE PARAMETERS

In this chapter, we’ll look at
how method parameters and

arguments relate to reference and value
types. We’ll revisit the idea that all
variables have a value, regardless of their
type, and see how to pass values of
different types by value or by reference as
arguments for methods.

We’ll explore the following:
How reference and by reference differ in meaning
Why aliasing and mutability are so closely related
How avoiding side effects can make our code clearer
When to pass values by reference as an optimization
Passing method parameters by value or by reference

isn’t the same as those parameters being value or
reference types. In other words, the parameter’s type
(value or reference) differs from how the method uses that
parameter (by value or by reference). Passing in this
context refers to the mechanism for supplying values to a



method’s parameters and receiving the result the method
returns.

Before we get into those distinctions in detail, let’s look
at how method parameters and arguments work.

Method Parameters and Arguments

As explained in Chapter 2, method parameters are a
particular kind of variable. A parameter variable is
declared with a name and explicit type in the method’s
definition and goes out of scope when the method ends. If
the method is defined in a generic type or the method itself
is generic, the parameter type can be generic. When we
call the method, we pass arguments to each parameter.

C# has four kinds of method parameters:
Value parameters

The most common kind of parameter, value parameters,
behave as if they’re local variables in the method. A
value parameter is initialized with the value of the
argument passed to it.

Reference parameters

These parameters take the ref modifier, signifying that
they’re passed by reference. The arguments passed also
use the ref modifier to reinforce that the argument and
the parameter both refer to the same memory location.

Output parameters

These are parameters that use the out modifier,
meaning they’re given a new value by the method.
Output parameters are also passed by reference. As
with the ref modifier for reference parameters, we use
the out modifier for both the argument being passed and
the parameter.

Input parameters



This special kind of reference parameter uses the in
modifier to indicate that its value doesn’t change within
the method. Unlike ref or out parameters, the argument
passed to an input parameter doesn’t require the in
modifier, because in is designed to be transparent to
calling code.
Reference, output, and input parameters are special

variables in that they indicate a level of indirection to an
actual variable. They are known collectively as by-reference

parameters.
When we call a method, the arguments we pass

populate the parameters we’ve declared for that method.
When the parameter is a value parameter, our argument
for it is passed by value. When the parameter is any of the
by-reference parameters, our argument is passed by
reference.

Reference Types vs. By-Reference Parameters

By-reference parameters are sometimes confused with
reference type variables, in part because the phrase pass

by reference is often used along with its companion, pass

by value, to describe how reference types differ from value
types. Consider Microsoft’s guide to framework design
(http://msdn.microsoft.com/en-us/library/ms229017.aspx),
which includes the following statement:

Reference types are passed by reference, whereas value types are
passed by value.

This is a not-quite-accurate description of the
mechanics of passing by reference. To say that reference
types are passed by reference is conflating the concepts of
type and passing. Arguments for by-reference parameters
are passed by reference, no matter the argument’s type.
Put another way, arguments of either reference or value
type may be passed either by reference or by value,
according to the presence or absence of a ref, out, or in

http://msdn.microsoft.com/en-us/library/ms229017.aspx


modifier for the method’s parameters. A by-reference
parameter is not itself a reference, but the variable it refers
to might be. Terminology is fun, isn’t it?

In Chapter 2, we explored how reference types and
value types have different copy semantics, and passing
arguments and copying variable values are related ideas. In
particular, when we pass an argument by value, we make a
copy of its value. The Microsoft documentation article
quoted earlier goes on to say this:

Changes to an instance of a reference type affect all references pointing
to the instance. [...] When an instance of a value type is changed, it of
course does not affect any of its copies.

The operative word here is instance. We can have
multiple references to a single instance of a reference type.
Copying a reference doesn’t make a copy of the instance,
just a copy of the reference’s value. By contrast, a copy of a
value type variable is a new instance, independent of the
original value. The value is the instance.

Value Types and Parameters

A value type variable directly contains the data represented
by the member fields of the type. This is true whether the
variable is a local instance, a field stored in another object,
or a parameter for a method. Consider the simple value
type in Listing 3-1 representing a two-dimensional
coordinate.

public readonly struct Coordinate 

{ 

    public int X {get; init;} 

    public int Y {get; init;} 

} 

var position = new Coordinate {X = 10, Y = 20};

Listing 3-1: A simple Coordinate value type



The Coordinate type has two int fields, each of which
takes up a single location in memory. A variable of this
type, such as the position variable in Listing 3-1, will
directly contain the entire instance. The memory used by
the position variable would look more or less like Figure 3-
1.

Figure 3-1: Memory representation of a simple value

The position variable doesn’t refer to the data in
memory but rather stores the contents of each field of a
Coordinate directly in place. If a type has multiple fields,
those fields are stored in consecutive locations. If we copy
position into another variable, each field’s value in the new
variable is an independent copy of the corresponding field’s
value in the original position variable.

If we pass a Coordinate value as an argument to a
method’s value parameter, the whole value is copied into
the parameter. In Listing 3-2, we have a method, Difference,
with two Coordinate value parameters, start and end, and we
pass the position variable as an argument to both
parameters.

public Coordinate Difference(Coordinate start, Coordinate en

d) 

{ 

    --snip-- 

} 



var position = new Coordinate {X = 10, Y = 20}; 

var distance = Difference(position, position);

Listing 3-2: A method with two value parameters

Because the Difference method’s parameters are both
taken by value, each parameter receives its own copy that’s
independent of the original value. The result looks
something like Figure 3-2 in memory.

Figure 3-2: Memory representation of a copied value

The start and end parameters are initialized with the
value of the position argument passed to them, and each
has its own copy within the method itself.

When we assign one value to another or pass a value
type instance as an argument by value, we copy the value.
Two value type variables are always independent instances.
This is the essence of copy-by-value semantics.

Reference type variables behave differently because
their value is a reference. A reference’s value is used to
identify an instance of the type on the heap or is null.

The Value of a Reference

When we create an instance of a reference type, memory is
allocated on the heap, and a reference identifying the
location of that memory is stored in the variable.



Syntactically, it appears that the type of a reference
variable is the type of the instance to which it refers, as
illustrated here with a string variable:

string name = "Alfred";

We’d normally refer to the name variable as a string.
However, that’s not completely accurate. It’s more precise
to say that name is a variable whose type is string and whose
value is a reference to an instance of the string type. The
type of a reference variable need not exactly match the
type of the instance. For example, we can use a base class
reference variable, such as object, to refer to a more
specific reference type instance, such as string.

A reference’s value is an opaque handle used by the
Common Language Runtime (CLR) to identify an object.
We’re not really interested in what the value of a reference
is; references are just the mechanism by which we access
and manipulate instances of a reference type, as illustrated
in Figure 3-3.

Figure 3-3: Memory representation of a string reference



In Figure 3-3, name is a variable whose value is a
reference. A reference does not itself have a distinct type
(certainly not one we can name), but it does have a value.
The value of a non-null reference is a handle to an area of
memory allocated on the heap that contains the instance of
a reference type.

This precision matters because when we’re talking
about passing or copying variables, we really mean passing
or copying values. For value types, this distinction doesn’t
exist: the value of a struct variable is the instance.
However, reference variables are distinct from the
instances they refer to—when we copy a reference
variable’s value, we’re making a copy of the reference, not
the instance.

Some languages use pointers to objects in memory, but
a reference isn’t quite the same as a pointer. References
can’t be used for just anything in memory. They’re
specifically used to access reference type objects on the
heap and to track those objects when they move around as
a result of garbage collection and memory compaction. The
details of those processes are hidden from us and handled
automatically as part of the memory management for
reference types.

We can think of the value of a reference as being a kind
of address. In this respect, a reference value behaves very
much like a value type instance. Like a value type variable,
a reference type variable directly contains its value (an
address) and lives within the scope of its parent, which
might be the stack frame for the local variables of a
method.

With that in mind, consider this: all variables, whether
they represent reference or value types, have values that
may be copied. More than that, by default, all variable
values are copied—and passed—by value.

Reference Variables and Aliasing



Aliasing refers to accessing a single memory location via
multiple variables. As you’ve seen, when we copy one
reference to another, such as when we pass a reference as
an argument to a method, we create two aliasing
references—the argument variable and the parameter
variable—to the same object in memory.

In contrast, when we pass a value type instance as an
argument, the argument variable and parameter variable
are identical but independent copies of each other. The
difference between reference types and values in this
respect is most significant when the instances are mutable
(that is, their state can be altered).

Aliasing can be intentional and useful, such as when we
want changes to an object to be observable by all
references to it, wherever they might be. For example, see
the Command and DataStore classes in Listing 3-3; we create an
instance of the Command type by using the CreateCommand
method of DataStore, and the Command object stores a
reference to the DataStore instance used to create the
Command instance.

public class Command 

{ 

    public Command(DataStore store) 

        => Connection = store; 

    public DataStore Connection {get;} 

} 

 

public class DataStore 

{ 

    public enum ConnectionState {Closed, Open} 

    public Command CreateCommand() 

        => new Command(this); 

    public void Open() => State = ConnectionState.Open; 

    public void Close() => State = ConnectionState.Closed; 

    public ConnectionState State {get; private set;} 

}



Listing 3-3: Storing a reference to a DataStore as a

property of Command

The CreateCommand method returns a reference to the
newly created Command object, with its reference to the
DataStore instance. We can mutate—change the state of—
the DataStore object by using its Open or Close methods, and
whether we use a local DataStore variable or the Connection
property of a Command object returned from CreateCommand,
we’ll update the same DataStore instance because both
references are aliases for the same object, as demonstrated
in Listing 3-4.

var store = new DataStore(…); 

Command command = store.CreateCommand(); 

// Open the connection. 

command.Connection.Open(); 

Assert.That(store.State, Is.EqualTo(ConnectionState.Open));

Listing 3-4: Mutating the DataStore instance via an alias

We call the Open method by using the Connection property
of the command variable and test that the state of the local
variable named store has been changed.

Value type variables are never aliases for a single
instance, so changes to an instance are visible only in the
variable used to make the change. Value type instances are
copied by value, so each copy is an independent instance.
This process is analogous to me sending you a document as
an email attachment: we both have our own copy of the
document, so if I change my copy, your copy is unaffected,
and vice versa.

However, if I instead send a link to a shared document
that we can both edit, any change either of us makes will
be visible to us both via that link. The link is similar to a
reference; it’s a kind of address for the document, but it’s



not the document itself. The link represents a level of
indirection to the real document. In exactly the same way, a
reference variable doesn’t contain an object but instead a
reference, and the object’s instance is accessed indirectly
via that reference.

Mutable By-Reference Parameters

By default, method parameters are value parameters,
meaning that arguments passed to them are passed by
value, regardless of the argument’s type. In this section,
we’ll look at the mutable by-reference parameters, ref and
out, which cause arguments to be passed instead by
reference.

Value type instances and references can both be passed
by reference by using the ref or out modifiers, so it’s
important to understand that by-reference parameters are
different from reference type value parameters. When we
pass a reference as an argument to a reference type value
parameter, the same object instance is referenced by both
the argument and parameter variables, and any change to
the instance is visible via either variable. A by-reference
parameter, in contrast, is an alias for the value of the
argument variable, whether that value is a reference or
value type instance.

The presence of a ref or out modifier on a parameter
means that when we call the method, the address of the
argument’s value is passed rather than a copy of the value.
This extra level of indirection means that regardless of the
argument’s type, both the caller and the method directly
access the same value. If the argument’s value is a
reference, we can change it to refer to a new instance or
assign null to it, and that change is visible via both the
argument and the parameter variables.

To illustrate the difference between reference variables
and by-reference parameters, consider Listing 3-5, where



we pass a reference by value to the AutoAppend method that
attempts to change its name parameter.

public void AutoAppend(string name, string extension) 

{ 

    if(!name.EndsWith(extension)) 

        name += extension; 

} 

var saveName = "Alfred"; 

AutoAppend(saveName, ".docx"); 

Assert.That(saveName, Is.EqualTo("Alfred.docx"));

Listing 3-5: Creating a new instance versus changing an

instance

This test fails, even though string is a reference type.
Although the += operator appears as though it’s mutating
the string, it actually creates a new string with the updated
contents and returns a new reference to it. The new
reference and instance are visible within the AutoAppend
method but not outside it. The original string is unchanged.

The AutoAppend method isn’t changing the shared string
instance, but rather the value of its name parameter. Calling
+= here changes the reference to refer to a new, different
instance. The saveName variable used as an argument for
AutoAppend still refers to the original, unchanged instance.

This demonstrates clearly that when we pass a
reference as an argument, it is, by default, passed by value.
For the AutoAppend method in Listing 3-5 to work as
expected, we need to pass the saveName reference by
reference so that when the method alters the value of the
reference variable, the change is visible to the calling code.

Passing References by Reference

The most direct way to make our test in Listing 3-5 pass is
to use the ref modifier to make name a by-reference



parameter. Listing 3-6 shows the same AutoAppend method as
Listing 3-5, except in this version we pass the name
parameter by reference by using the ref modifier on it.

public void AutoAppend(ref string name, string extension) 

{ 

    if(!name.EndsWith(extension)) 

        name += extension; 

} 

var saveName = "Alfred"; 

AutoAppend(ref saveName, ".docx"); 

Assert.That(saveName, Is.EqualTo("Alfred.docx"));

Listing 3-6: Using the ref modifier to pass name by

reference

We use the ref modifier on both the method’s parameter
and the argument we pass to it because we’re passing a
reference to a variable. The test now passes because the
changes that the AutoAppend method makes to the value of
the reference variable are visible via the saveName variable in
the calling code.

The name parameter is, in effect, an alias for the saveName
variable, as illustrated in Figure 3-4.



Figure 3-4: A by-reference parameter aliases a variable.

The consequence of using a by-reference parameter is
that the argument and the parameter variables don’t just
refer to the same instance—they’re effectively the same
reference. We can still use the name parameter to access the
string instance (for example, to access properties or call
methods), and the compiler hides the extra level of
indirection afforded by the ref modifier on the parameter.

Passing Values by Reference

We can pass value type variables by reference too. Keep in
mind that passing arguments by reference doesn’t imply
that the parameter is a reference variable.

When we pass a value type instance as an argument to
a method, the method normally gets a copy of the instance
because of the copy-by-value semantics of value types. As
you’ve seen previously, any changes made to the fields of
the instance inside the method aren’t visible to the calling
code.

If we require those changes to be visible outside the
method, we need to pass the value by reference. In Listing



3-7, we introduce an Increment method that takes a mutable
Speed value type parameter by reference and changes its
value. Value types like Speed should almost always be
immutable, and you’ll see in “Mutation vs. Creation” on
page 89 how to express this differently. This example
merely demonstrates that the mechanism for passing value
types by reference is identical to passing references by
reference.

public struct Speed 

{ 

    public double InMetersPerSecond {get; set;} 

} 

public void Increment(ref Speed initial, double amount) 

    => initial.InMetersPerSecond += amount;

Listing 3-7: Value type by-reference parameters

When we call the Increment method, we use the ref
modifier to pass the argument for the initial parameter by
reference, just as we did for the name parameter in Listing 3-
6. As a result, the change to initial’s InMetersPerSecond
property within Increment is visible to the calling code, as
shown in Listing 3-8.

var speed = new Speed {InMetersPerSecond = 50.0}; 

Increment(ref speed, 20); 

Assert.That(speed.InMetersPerSecond, Is.EqualTo(70.0));

Listing 3-8: Using the ref modifier to pass speed by

reference

Because the speed variable is passed to Increment by
reference, speed is aliased in the Increment method. Both the
calling code and Increment are effectively using the same
variable, so any changes to the value of the initial



parameter are visible within both the Increment method and
the code that calls it. The test shows that we’re expecting
the value to be changed.

NOTE

To reiterate, by-reference parameters aren’t the same as

reference type variables. A reference type variable refers to

an instance of a reference type, whereas a by-reference
parameter refers to a variable, which can be either a

reference type or a value type.

References can refer only to an object on the heap. If
we assign a reference type variable to an instance of a
value type, the value is boxed onto the heap, and the
variable refers to the boxed copy. A by-reference parameter
adds an extra level of indirection to a variable’s value.
When we pass a value type instance by reference, the value
is neither boxed nor copied.

Working with Output Parameters

Output parameters, designated by the out modifier, are
mutable by-reference parameters and are usually used
when we require a method to create a new instance of an
object for that parameter variable. They’re similar to
reference parameters in that they, too, alias the variable
used as the argument. The argument we pass to the
method is usually uninitialized, and the method will
initialize it by assigning a value to populate the output
parameter variable.

More formally, the difference between a reference
parameter and an output parameter is that a reference
argument must be definitely assigned before it’s passed,
whereas an output argument may or may not be initialized
when it’s passed, but the parameter must be assigned a
value within the method either way.



Output parameters are typically used when acquiring a
new instance of an object could fail without the failure
being a fatal or even serious problem. Examples include
parsing a string for a specifically formatted value,
connecting to an unreliable service, and reading a value
from a shared resource such as a queue, which could be
empty. In cases like these, we often want a way to attempt
the process and be able to either ignore a failure or retry
the operation. If the operation succeeds, we receive a valid
object as a result.

The common approach to this use case is to define a
method that takes at least one output parameter and
returns a bool indicating success or failure. If the method
succeeds, the out parameter is initialized with a new object,
and the method returns true, indicating that the argument
passed has been successfully initialized. If the operation is
unsuccessful, the method returns false, indicating to the
caller that the output argument’s value should be ignored.
This is a common technique in C# known as TryXXX.

Using the TryXXX Idiom

The Standard Library has several examples of using TryXXX
to parse a string for a specific kind of value, such as a
DateTime object. The DateTime.TryParse method takes a string
parameter and an output parameter for a DateTime value. If
the parse fails, the method returns false. If the parse
succeeds, the DateTime value will contain the date parsed
from the string. Listing 3-9 demonstrates how we might use
this idiom.

string logTime = --snip-- 

if(DateTime.TryParse(logTime, out DateTime timeStamp)) 

{ 

    var elapsed = DateTime.Now - timeStamp; 

    --snip--



Listing 3-9: The TryXXX idiom

The logTime variable passed as an argument to TryParse
may come from an unreliable source, such as user input or
a file. Incorrectly formatted dates are an error but
shouldn’t be considered an exceptional case. A successful
call to TryParse means the timeStamp variable is a valid
DateTime instance. If TryParse returns false, the timeStamp
variable is default-initialized instead.

NOTE

The documentation for DateTime specifies that the failure

case initializes the variable to the value of the MinValue

property, but that’s equivalent to a default DateTime.

TryXXX methods often have a companion version that will

throw an exception when the operation fails. The exception
version of the DateTime.TryParse method, for example, is
DateTime.Parse, which returns a DateTime value upon success
and throws a FormatException error upon failure. Handling
exceptions can be intrusive, and failing to parse a string for
a valid DateTime is the kind of error we’d probably want to
handle as soon as it occurs.

If we had used the plain Parse method, we might have
wrapped the call in a try…catch block, but this could become
cumbersome if we had several strings to parse: to catch a
failure on any one value, we’d have to wrap each call in its
own try block. Using TryParse instead is more direct and less
verbose.

Making a Definite Assignment

The underlying mechanism for ref and out parameters is
identical in the CIL, which has native support for by-
reference parameters and arguments. They differ in the
semantics imposed by the compiler: a ref parameter is
considered initially assigned within the method, meaning a



ref argument must be definitely assigned before being
passed; an out parameter, on the other hand, is considered
initially unassigned within the method, regardless of
whether it had been assigned a value before the call. We
must therefore definitely assign all out parameters before
the method returns. Not doing so results in a compile-time
failure, as shown by this method, which attempts to return
before the connection parameter has been assigned:

public bool TryRemote(string address, out DataStore connecti

on) 

{ 

    if(string.IsNullOrEmpty(address)) 

        return false; 

    --snip--

We receive this error:

[CS0177] The out parameter 'connection' must be assigned to

 before control 

leaves the current method

The most straightforward way to avoid the error in this
example would be to preemptively assign null to the
connection parameter before returning false. By convention,
an argument passed to the out parameter of a TryXXX method
should be considered to have a valid value in the calling
code only if the method returns true.

The target out variables in the calling code are
considered definitely assigned only after a normal return
from a method. It’s possible for control to leave the method
abnormally by throwing an exception before all of its out
parameters have been assigned. If the method exits with an
exception, the variables used as out arguments that weren’t
definitely assigned prior to the method call remain not
definitely assigned. Any arguments that were already



definitely assigned before the call remain definitely
assigned, although they may still have been given a new
value within the method before the exception was thrown.

However, we’d usually use the TryXXX idiom to avoid

exceptions, as most users will expect such methods to not
throw any exceptions.

Selecting Operations

Using the TryXXX idiom with an out parameter, like that
shown in Listing 3-9, is appealing because the method can
be used inline in a simple if statement to test the return
value and capture the required output argument’s value all
in one place. In Listing 3-10, we use the TryRemote method to
determine how to obtain a list of results, using the ternary
conditional operator ?: rather than if…else blocks. The
connection output variable is declared inline in the argument
list for the method.

List<Record> results = TryRemote(remoteName, out DataStore c

onnection) 

    ? connection.LoadData() 

    : LoadFromCache();

Listing 3-10: Using a simple out parameter

If TryRemote returns true, the branch following ? is taken,
and we can use the connection output variable in the call to
TryRemote. If the method returns false, indicating the
connection to the remote resource failed, our code takes
the branch following the : and loads the results from a
cache instead.

Note that we can also use var to declare the type of the
inline connection argument, in which case the compiler will
determine its type according to the type of the parameter
in the method’s definition. The TryRemote method allows us
to handle the failure to connect without the extra cost and



complexity of handling an exception, and to attempt a
different approach to obtain the list of results.

We can think of a TryXXX method as returning multiple
values: a bool to indicate the success or failure of
attempting to obtain a resource, and the resource itself
when its acquisition succeeds.

Limitations of By-Reference Parameters

While methods with by-reference parameters are well
suited for certain situations, such as the TryXXX technique,
by-reference parameters are not appropriate for every
case, and the rules around definite assignment can
sometimes require a different approach. Other restrictions
can also affect where we can use these parameters. We’ll
look at these restrictions in this section.

Property Values

The result of getting a property or indexer value can’t be
used directly as a ref or out argument. In Listing 3-11, we
attempt to pass the Speed property of a Velocity instance as
an argument to a ref parameter.

public readonly struct Velocity 

{ 

    public Speed Speed {get;} 

    public Angle Direction {get;} 

} 

public void Increment(ref Speed initial, double amount) 

    => initial.InMetersPerSecond += amount; 

var start = new Velocity (--snip--); 

Increment(ref start.Speed, 25);

Listing 3-11: Passing properties to ref parameters

The compiler rejects this code with the following error:



[CS0206] A property or indexer may not be passed as an out o

r ref parameter

The compiler doesn’t allow this code because a property
result is a value and not a variable. In Chapter 2, you saw
how variables can be assigned to, but values can’t.
Accessing a property is exactly the same as reading the
return value from a method call—something we look at in
detail in Chapter 4—and methods return values, not
variables. We usually use a ref parameter when we expect
the called method to modify its argument, but because a
property isn’t a variable, it can’t be modified.

It makes no difference whether Speed is a reference type
or a value type. Passing a ref or out argument is essentially
passing the address of the argument, and we can’t pass the
address of a nonvariable.

Overloading on By-Reference Parameters

By-reference parameter modifiers are part of the signature
of a method. A reference or output parameter is effectively
a different type than its value parameter equivalent. If we
have a method that takes a ref parameter, we can overload
it with a method that takes that parameter by value.

Method overloads can have different return types, so
we can write a method that takes its parameters by value
and returns a new object, and overload it with a version
taking a ref parameter that modifies the object in place, as
shown in Listing 3-12.

public Speed Increment(Speed initial, double amount) 

    => new Speed {InMetersPerSecond = initial.InMetersPerSec

ond + amount}; 

public void Increment(ref Speed initial, double amount) 

    => initial.InMetersPerSecond += amount;

Listing 3-12: Overloading on by-reference modifiers



When we call the Increment method, the compiler selects
the correct overload based on whether we modify the Speed
argument with the ref keyword to pass it by reference or
omit the modifier to call the version with a value
parameter.

We can’t, however, overload a method when the only
difference is the kind of by-reference modifier for its
parameters, as we try to do in Listing 3-13.

public void Increment(ref Speed initial, double amount) 

    => initial.InMetersPerSecond += amount; 

public void Increment(out Speed initial, double amount) 

    => initial = new Speed {InMetersPerSecond = amount};

Listing 3-13: Overloading on different modifiers

This might seem an arbitrary restriction. After all,
calling code must differentiate between passing a ref
argument and passing an out argument. However, the
compiler rejects this overload because the Common
Language Infrastructure (CLI) has no way to distinguish
between ref and out in the method signature. Both are just
by-reference parameters, so the two overloads have the
same signature, as far as the CLI is concerned, resulting in
ambiguity.

The same restriction applies with in parameters, which
we cover in “Read-Only References and Returning by
Reference” on page 92. As with ref and out parameters, an
in parameter is simply another kind of by- reference
parameter, as far as the CLI is concerned.

Overloading a method based purely on whether one or
more parameters is taken by reference or by value is
probably best avoided in any case. Anyone calling such a
method needs a thorough knowledge of this somewhat
arcane corner of overloading rules, so such code could
easily be confusing.



Using Fields

Making a field a by-reference variable is impossible. Again,
this might seem arbitrary, but otherwise a by-reference
field could become a dangling reference—that is, it could
refer to an object that no longer exists.

NOTE

As of C# v11.0, by-reference fields are permitted within ref

struct types, which are specialized value types intended for

high-performance applications. Numerous restrictions on

ref struct types make them less suitable for most general-

purpose code, so we don’t cover them in this book.

Consider a class like Reminder in Listing 3-14, which
attempts to store a ref parameter in a ref field.

public class Reminder 

{ 

    public Reminder(ref DateTime start) 

        => time = start; 

    private readonly ref DateTime time; 

}

Listing 3-14: A hypothetical Reminder class that stores a

field by reference

Although this approach might seem attractive in
principle—say, if we want the Reminder class to deliberately
alias the argument to its constructor, or we want to avoid
copying the DateTime instance—this code doesn’t compile.
The compiler rejects it as simply invalid syntax because the
Reminder instance could be used after the referenced DateTime
variable has gone out of scope, meaning the field would
become a reference to memory that no longer exists or,
perhaps worse, memory that has been allocated to
something else. The time field would be a dangling



reference, something the rules of C# go to great lengths to
prevent.

Although reference types have different lifetimes and
enjoy automatic memory management, allowing ref fields
only for reference types would indeed be arbitrary and a
source of potential confusion and error. This capability
would also serve little purpose because reference variables
already exhibit aliasing behavior, and by-reference
variables are the same size as references for the purposes
of copying, so the compiler forbids it.

Closures

The prohibition of ref and out fields is also the reason we
can’t use a by-reference parameter inside a closure. A
closure is a method that encapsulates behavior along with
its context—that is, the state of any variables declared
outside the method’s own scope but used within its
implementation. Those external variables are said to have
been closed over by the method, hence the term closure.
Listing 3-15 shows a method trying to use a ref parameter
inside a lambda expression.

public static Reminder 

NextAppointment(ref DateTime time, IEnumerable<Reminder> ite

ms) 

{ 

    var results = items.Where(item => item.Date == time.Date

); 

    return results.FirstOrDefault(); 

}

Listing 3-15: Anonymous closure capturing a ref

parameter

The compiler rejects the NextAppointment method, giving
us the following error:



[CS1628] Cannot use ref, out, or in parameter 'time' inside

 an anonymous method, lambda 

expression, query expression, or local function

The closure in the NextAppointment method is the lambda
expression used by the Where method. The lambda is an
anonymous method that uses the captured time parameter,
which belongs to the scope of NextAppointment. Closure
functions are implemented by the compiler as a small,
unnamable class with fields for each of the closed-over
variables. In this example, the variable being captured is a
ref parameter, which, as you saw in Listing 3-14, isn’t a
valid field.

As the error message indicates, the same problem
applies equally to nested local functions and anonymous
methods, which can also capture the outer method’s
variables, including its parameters. Anonymous methods,
lambda expressions, and local functions are all
implemented the same way: using a hidden class
synthesized by the compiler. Any captured variables
become fields of that class.

Iterator Blocks

An iterator block is a compiler-generated class that
implements the standard IEnumerable< T > interface to
iterate over the elements of a sequence, such as an array or
a List< T >, using deferred execution. Also known as lazy

enumeration, deferred execution means that the next
element is obtained from the sequence only when the user
requests it; the sequence is produced on demand and
theoretically may even be infinite.

An iterator block is created whenever we use the yield
statement, as shown in Listing 3-16. However, the compiler
rejects the AppointmentsForDay method because it has a ref
parameter.



public static IEnumerable<Reminder> 

AppointmentsForDay(ref DateTime time, IEnumerable<Reminder>

 items) 

{ 

    foreach (var item in items) 

    { 

        if(item.Time.Date == time.Date) 

            yield return item; 

    } 

}

Listing 3-16: A ref parameter in an iterator

Here the AppointmentsForDay method is attempting to
filter the items sequence passed as a parameter for
elements that match the time parameter. However, like
closures, methods that use iterator blocks can’t have by-
reference parameters, so the method in Listing 3-16 fails to
compile, with this error:

[CS1623] Iterators cannot have ref, in or out parameters

Each time the method yields a value, control returns to
the calling code. When the next item is requested, the
method must continue at the statement following the yield
and must do so with the same state. The compiler
transforms the yield statement to return an instance of the
iterator block class that captures the state between
requests for each element, similar to the way closures
work.

The compiler-generated class needs to capture all the
method parameters and any local variables as fields to
preserve the method’s state between each request for a
value, which is why iterator methods can’t have by-
reference parameters.

Asynchronous Methods



Lastly, and for exactly the same reason as closures and
iterator blocks, we can’t declare by-reference parameters
for async methods like the TryGetResponse method in Listing 3-
17.

public static async Task<bool> TryGetResponse(out string res

ponse) 

{ 

    response = await Task.Run(() => GetUserInput()); 

    return !string.IsNullOrEmpty(response); 

}

Listing 3-17: An out parameter in an asynchronous

method

This method fails to compile with the following error:

[CS1988] Async methods cannot have ref, in or out parameters

In this instance, the compiler synthesizes a hidden class
to manage the asynchronous invocation of the Task.Run
method. Asynchronous methods return control to their
caller when the await statement is reached, and so, like
iterator blocks, they must preserve the state of all their
variables. The compiler-generated class captures all local
variables and parameters as fields, so by-reference
parameters aren’t allowed for any method that has the
async modifier.

Extension Methods

We can use by-reference parameters in any method that
doesn’t use a closure, an iterator block, or asynchronous
operations using the await keyword. However, caveats exist
for extension methods, static methods that extend the
interface of another type. The first parameter of an
extension method is of the type being extended and uses



the special this modifier. Extension methods have some
restrictions on using by-reference parameters for the this
parameter. First, the this parameter of an extension
method can’t be an out parameter, as demonstrated by
Listing 3-18.

public static void 

FormatConnection(out this string connString, string host, st

ring source) 

{ 

    connString = $"Server={host};Database={source};Trusted_C

onnection=True;"; 

}

Listing 3-18: Extension method using an out parameter

This code produces the following error message:

[CS8328] The parameter modifier 'this' cannot be used with

 'out'

If this syntax were permitted, code using the
FormatConnection method could appear to call a method using
an uninitialized variable, like this:

string connection;  // uninitialized variable 

connection.FormatConnection(host, source);

Most users would probably find this code confusing
because using an uninitialized variable to invoke a method
isn’t allowed in any other circumstances. In any case, we
have much better alternatives to achieve the same result,
and the syntax for this parameters is also an error. We can
use an out modifier with any of the other parameters, just
as we can with any regular method, but we can’t make this
an output parameter.



Using ref for the this parameter is permitted if the
parameter is a value type, but not if it’s a reference type.
This restriction might also seem unreasonable at first
glance, but it’s intended to explicitly prohibit code like the
following:

public static void Nullify(ref this string val) 

    => val = null;

The compiler rejects the Nullify method with the
following error:

[CS8337] The first parameter of a 'ref' extension method 'Nu

llify' must be a value type or a 

generic type constrained to struct.

If this code were permitted, the variable used to call the
method could refer to a different variable, or—as in this
example—be set to null after the method returned. Most
users would likely be surprised by such behavior, so, once
again, the compiler forbids it.

We can use ref for the this parameter when the
parameter is a value type, which avoids copying the this
argument’s value. While there’s no benefit to avoiding the
copy of a reference, copying a large value might be
relatively expensive. A value type variable can’t be
assigned the value null, but the method can assign a new
value to the ref this parameter, thus changing the
argument’s value. Again, doing so would likely surprise
most users of the method, so even though the syntax is
legal, we should avoid using ref this parameters. If we
really want to avoid copying the argument for a this
parameter, then instead of using ref, we can use the in
modifier to make this a read-only reference parameter, as
discussed in more detail in “Read-Only References and
Returning by Reference” on page 92.



In spite of their limitations, by-reference parameters
are a core part of C#, and understanding their semantics is
important. None of these restrictions is particularly
onerous, not least because the use cases for these
parameters are limited. The use of ref this value type
parameters in extension methods would be considered
unusual by most programmers and is a niche-enough
feature that it’s probably best avoided in any case.

Fields must be real variables, and C# provides no way
to store a by-reference variable as a field of a general-
purpose type. Every other example in this section can be
expressed differently to achieve the same result.

Side Effects and Direct Effects

Methods with by-reference parameters intentionally alias
variables in the calling code, and therefore changes made
to those parameters within the method are visible outside
the method’s scope. Altering the state of an aliased object
is an example of a side effect, which is more generally
defined as any change of state that’s visible to code outside
the scope where the change occurs.

Side effects aren’t intrinsically bad, but programs that
depend on them heavily can be more difficult to follow than
those that rely only on direct effects. The direct effect of a
method is whatever it returns, normally referred to as the
method’s output, with the inputs being the method’s formal
parameters. By-reference parameters, especially out
parameters, blur the distinction between the inputs and
outputs of a method, since side effects may alter state that
is unrelated to the method’s direct effect.

Consider how TryXXX methods are commonly used to
initialize variables, as shown in Listing 3-19.

if(TryRemote(remoteName, out var connection)) 

{ 



    // Perform activities using connection 

}

Listing 3-19 Using TryRemote with an output parameter

to initialize the connection variable

The direct effect of the TryRemote method is the bool
return value indicating the success or failure of initializing
its output parameter. We use the return value to determine
whether the connection variable has been initialized; in other
words, the direct effect tells us whether the side effect was
successful. In this case, a connection exists between the
side and direct effects of TryRemote, but, as with other TryXXX
methods, the direct effect seems secondary to the side
effect!

Methods with by-reference parameters, and more
generally those that rely substantially on operating by side
effect, often result in very procedural code comprising a set
of logical steps or instructions to accomplish a task.
Procedural solutions are described as imperative code

because they’re an explicit sequence of instructions to be
processed to achieve a result. The contrasting approach is
declarative code, which emphasizes outcomes over specific
implementation. A more declarative approach pulls the
focus away from how things get done and allows us to
concentrate instead on the outcomes.

One aspect of a declarative style is that we attach more
importance to the direct effect of a method and make a
clear separation between a method’s inputs and its output.

We could make our TryRemote method in Listing 3-19
more declarative by removing the out parameter and
returning the required DataStore reference directly; since
DataStore is a reference type, we can return null if the
TryRemote method fails. However, the side effects associated
with by-reference parameters aren’t really an issue when
those parameters are reference types. Reference types are



often mutable—by design, and for good reason—and the
fact that multiple variables can refer to a single instance is
often desirable behavior, as you saw in “Reference
Variables and Aliasing” on page 74. The benefits of
declarative code are much more important when we’re
using value types, which should be immutable.

Mutation vs. Creation

A method that uses ref and out parameters is giving a
strong signal that those parameters will change within the
method. Since such parameters are aliases for the variables
passed as arguments to them, we need to pay attention to
which variables may be changed. Unexpected modifications
to variables can cause errors that are hard to identify,
especially in code that uses multiple threads. If we follow
the common advice to make our own value types
immutable, we reduce the likelihood of such problems
occurring, which means we should also avoid mutable by-
reference parameters of value type. Then, there’s only one
way that a value type variable can change: by assignment.

If we have an instance of a value and require an
instance with different properties, we simply create a new
one with the state we want, leaving the original unchanged.
Compare the Incremented method in Listing 3-20 with the
similar Increment method in Listing 3-7.

public Speed Incremented(Speed initial, double amount) 

    => Speed.FromMetersPerSecond(initial.InMetersPerSecond + 

amount);

Listing 3-20: Creating a new value rather than mutating

an existing variable

We create and return a new instance of a Speed that’s
initialized using the InMetersPerSecond property of a
parameter variable, instead of altering the properties of a



value that has been passed by reference. Note that the
method name is Incremented rather than Increment. The name
Increment is a direct verb and might imply that the Speed
parameter was somehow being altered. In contrast, the
name Incremented is an adjective describing the result. Using
adjectives for nonmutating methods is another indication
that no state is being altered. Other examples of this
naming convention include Sorted, UpperCased, and Rounded.

To call the Incremented method, we pass an existing Speed
value along with a numeric amount by which to increment
its value, as shown here:

var speed = Speed.FromMetersPerSecond(50.0); 

var newSpeed = Incremented(speed, 20); 

Assert.That(speed.InMetersPerSecond, Is.EqualTo(50)); 

Assert.That(newSpeed.InMetersPerSecond, Is.EqualTo(70));

The speed variable in the calling code isn’t changed; the
Incremented method returns a new Speed instance with the
required value. We assign the new value to a different
variable here, but we could have overwritten the original
speed variable with the new instance instead.

Not all objects are values, and sometimes it’s
convenient for certain objects to be mutable; the DataStore
object you saw earlier has mutable state that can be
changed via its Open and Close methods.

Aliasing is useful when we require changes to an object
to be visible via all references to that object, but the
benefits of such side effects aren’t so clear for value types.
Side effects aren’t limited to output parameters. They occur
anytime we can modify the state of an object that’s visible
outside the scope in which we make the change, including
via a plain reference variable.

Changing the state of any object requires special care
and attention, especially in the presence of multiple
threads, so if we limit the need to modify our objects, we



reduce the potential for problems. If we make all value
types immutable, we reduce the prevalence of side effects,
which can be difficult to identify and sometimes make our
logic less clear.

An alternative approach to creating a new value based
on the properties of an existing instance is to use the non-
destructive mutation syntax, introduced in Chapter 2.
Listing 3-21 uses the with keyword to copy an existing
Velocity variable and provide a new value for the Direction
property of the copy.

public readonly struct Velocity 

{ 

    public Speed Speed {get; init;} 

    public Angle Direction {get; init;} 

} 

 

var velocity = new Velocity 

    { 

        Speed = Speed.FromMetersPerSecond(10), 

        Direction = Angle.FromRadians(.88) 

    }; 

var copy = velocity with {Direction = Angle.FromRadians(.9

9)};

Listing 3-21: Copying an instance as a template

The init accessors on each property of the Velocity type
enable us to copy an instance and change selected
properties for the new instance by using the with keyword.
Non-destructive mutation was introduced for record types
in C# v9.0, and since C# v10.0, we can also use it with
structs and record structs, and even anonymous types.

The init accessor also allows us to give a property a
value by using object initialization (as shown for the
velocity variable in Listing 3-21) or via a constructor, but
once its value is set via init, the property is immutable. If



we’d used private set accessors for the properties instead
of init, the object initialization and non-destructive
mutation syntax wouldn’t be possible. Non-destructive
mutation and object initialization both require either a
public init or public set accessor.

Copying selected properties of immutable values is
another aspect of a declarative approach to problem-
solving, and in some circumstances makes it simpler and
more direct to create new values by using existing
variables as a kind of template.

Declarative Code and Performance

Using a declarative style can lead to code that is clearer
and more direct but often results in more copies of
variables being created, adding storage expense. This is
particularly relevant for value types for which the cost of
copying large instances may impact a program’s
performance. Up to this point, we have considered only
quite small instances, which would be unlikely to negatively
impact performance significantly. While reference variables
are always all the same size, values can be any size. To an
extent, size matters when we’re copying values around. A
value type that simply wraps a single int field will be
cheaper to copy than one that has lots of fields, which is
why we’re often advised to keep value types small.

The definition of small varies but is commonly between
16 and 24 bytes. Note that on a 64-bit architecture,
references are 8 bytes each, so it’s not hard to imagine a
useful value type that exceeds the recommended size limit.
We’ll explore some of the performance characteristics of
large value types in Chapter 8.

Nevertheless, the size of a value type shouldn’t be the
primary motivation for choosing a class or record over a
struct or record struct. If we want instances of a type to
have value semantics, we should make it a value type,
regardless of how large it might be. When we pass value



type variables as arguments for ref or out parameters, no
copy of the instance is made because those arguments are
passed by reference. Might the preference for returning
values over using ref or out parameters affect the efficiency
of our code?

For values with several fields, avoiding the copying
might well represent a net performance gain, but we
should also consider the impact of our choices on human

readers. It might seem attractive to use by-reference
parameters to avoid copying large values, except that using
a ref or out parameter strongly implies that the argument
passed is likely to change. If we want our code to be as self-
documenting as possible, using ref parameters as an
optimization might be surprising.

Rather than using the mutable out or ref parameters, we
can use in parameters, which are immutable by-reference
parameters. Arguments for in parameters are passed by
reference in exactly the same way as ref and out
arguments, but an in parameter variable is read-only within
the method. In the next section, we’ll explore how to avoid
copying value type method arguments by using read-only
reference parameters, as well as how to return values by
reference.

Read-Only References and Returning by

Reference

Read-only references and returning by reference are
related concepts, and both can help us reduce the number
of copies of value type instances in our code. First we’ll
look at read-only reference parameters, which we denote
using the in keyword on a method parameter. The in
modifier, like the ref and out modifiers, makes a by-
reference parameter, but, unlike ref or out parameters, it
prevents the value of the underlying variable from being
changed. In other words, an in parameter variable is



immutable. Using in parameters when we’re passing large
value type instances as arguments might be beneficial
because we avoid copying the instance.

Technically, we can also pass a reference to an in
parameter, but there’s no reason to do so. Passing a
reference by reference is useful only if we need to change
the reference to refer to a new instance. For that to work,
we need a ref or out parameter. No performance benefit is
associated with passing a reference by reference, as there
may be with value types.

Listing 3-22 shows a simple expression-bodied method,
DistanceInKm, that calculates a distance from its speed and
time parameter values, both of which are value types.

public double DistanceInKm(in Speed speed, in TimeSpan time)

    => speed.InKmh * time.TotalHours;

Listing 3-22: Read-only reference parameters

Both the speed and time variables use the in modifier,
making them read-only reference parameters in the
DistanceInKm method. Since the parameter variables are
read-only, the compiler will reject any attempt to set
mutable properties, change public fields, or assign a new
value to either of them.

When we call a method that has a ref or out parameter,
we must also modify the argument we’re passing with the
ref or out keyword. By contrast, arguments passed to in
parameters do not require the in modifier, as shown here:

var time = TimeSpan.FromHours(2.5); 

var speed = Speed.FromKmh(20); 

var distance = DistanceInKm(speed, time); 

Assert.That(distance, Is.EqualTo(50.0));



As with reference and output parameters, we can
overload DistanceInKm with a version that has value
parameters. The overload without modifiers takes
precedence in overload resolution if we don’t specify the in
modifier for the argument. We can explicitly use in for an
argument passed to an input parameter to select the
version taking its parameters by reference. As mentioned
earlier in the chapter, overloading methods based solely on
whether a parameter is passed by reference or by value is
likely to be a source of confusion.

Read-only reference parameters are designed to be
transparent in the calling code; that is, passing an
argument to an in parameter appears the same as passing
an argument by value. One consequence is that a method
may be modified to receive its parameters by read-only
reference instead of by value, but without requiring
changes to the calling code. Arguments that were
previously passed by value would then be passed by
reference. This matters only if the argument variables may
change—perhaps within a different thread. Bear in mind
that only the parameter variables within the method are
read-only; the argument variables usually aren’t. Since the
argument passed to an in parameter is passed by
reference, any change to the argument’s value will be
reflected in the value of the parameter variable inside the
method. Listing 3-23 demonstrates that it’s possible to
modify the value of an argument passed to an in parameter
even without multiple threads.

void ModifyByCallback(in int value, Action callback) 

{ 

  ❶ var temp = value; 

  ❷ callback(); 

    Assert.That(value, Is.Not.EqualTo(temp)); 

} 

int input = 100; 



❸ ModifyByCallback(value: input, callback: () => input = 20

0);

Listing 3-23: Modifying a read-only parameter’s value via

a callback delegate

The ModifyByCallback method takes an int value by read-
only reference and an Action delegate. A delegate is a
variable that refers to a method; here, we use the standard
Action type for the delegate that represents a method with
no parameters and returns void. Within the ModifyByCallback
method, we copy the value of the value parameter into a
temporary variable ❶. Then we call the callback delegate
before testing that the value parameter’s value is now
different from the value copied to temp before we called the
delegate ❷. When we call ModifyByCallback, we pass the input
value along with a lambda for the callback parameter. The
lambda closes over the input variable, whose value is
changed by the lambda ❸.

The test within the ModifyByCallback method passes
because the value parameter is an alias to the calling code’s
input variable. When the input variable’s value changes
inside the lambda, the value parameter’s value is also
changed. We should therefore be cautious of methods that
have both in parameters and delegate parameters. More
generally, we should be suspicious of code that changes the
values of any variable passed as an argument to a method,
especially if the method and calling code can run on
different threads of execution. The potential errors caused
by changing an apparently read-only variable could be
difficult to track down.

Returning Values by Reference

Although instances of value type aren’t generally copied by
reference, we can return a value type instance by
reference, and receive the returned reference by using a



by-reference variable. This can be useful if we’re
particularly sensitive to the cost of copying large instances,
although the technique is sufficiently complex that we
probably shouldn’t use it routinely. Listing 3-24 shows a
struct whose instances will be larger than a reference
variable.

public readonly struct Address 

{ 

    public Address(string street, string city, string state, 

string zip)

        => (Street, City, State, Zip) = (street, city, stat

e, zip); 

    public string Street {get;} 

    public string City   {get;} 

    public string State  {get;} 

    public string Zip    {get;} 

}

Listing 3-24: An Address struct with multiple fields

This Address struct has four string backing fields, so an
instance of the struct is somewhat larger and more
expensive to copy than a single reference. If huge numbers
of instances were being copied around, we might want to
address the cost of some of those copies. However,
returning by reference isn’t guaranteed to be cheaper than
returning even large values by value, and may even
represent a performance cost. Even so, if careful
performance analysis identified instance copying as an
issue, returning values by reference might prove beneficial.

When we access a property, we inadvertently make a
copy of the property’s value. We can avoid making this copy
by returning the value by reference, known as a reference

return value, or simply a ref return. We mark a value as
being a ref return by adding the ref keyword, as we do
when modifying by-reference method parameters. The Mail



class in Listing 3-25 has a Destination property that returns
the destination field value by reference.

public sealed class Mail 

{ 

    public Mail(string name, Address address) 

        => (Addressee, destination) = (name, address); 

    public string Addressee {get;} 

    public ref Address Destination => ref destination; 

    private Address destination; 

}

Listing 3-25: The Destination property returning the

destination field value by reference

Note that we need to add the ref keyword to the
property and to the variable being returned by reference.

When we access a property that returns its value by
reference, we can also receive that value by reference
without copying it at all. A by-reference variable, or ref

local, is a local variable that refers to the same variable as
the ref return. This is best illustrated with a simple
example. In Listing 3-26, we receive the ref return value
from Mail.Destination by using a local reference variable.

var address = new Address ("62 West Wallaby Street", 

                           "Wigan", "Lancashire", "WG7 7F

U"); 

var letter = new Mail("G Lad Esq.", address); 

ref var local = ref letter.Destination;

Listing 3-26: Consuming a value returned by reference

This local variable is an alias to the destination field
within the letter instance, not a copy of its value. Again,
note that we have to use the ref modifier on both the target
variable and the property access; if we forget either, the



compiler will give us an error. If we omit both, we simply
copy the property’s value by value into a normal variable.

Preventing Modifications to Data

Just as with by-reference parameters, ref return values and
ref locals introduce an alias to a value. If we modify a value
through such an alias, we need to make sure we know
where those changes will be visible.

We can use the ref local reference to mutate the field in
letter too, although in this example we can only assign it a
completely new value, since Address is a read-only struct.
Listing 3-27 demonstrates that modifying the ref local also
changes the field of the letter variable.

var letter = new Mail("G Lad Esq.", 

    new ("62 West Wallaby Street", "Wigan", "Lancashire", "W

G7 7FU")); 

ref var address = ref letter.Destination; 

Assert.That(address.Street, Is.EqualTo("62 West Wallaby Stre

et")); 

address = new Address("1619 Pine Street", "Boulder", "CO",

 "80302"); 

Assert.That(letter.Destination.Street, 

    Is.EqualTo("1619 Pine Street"));

Listing 3-27: Mutating a field by using a ref local variable

Being able to modify a private field of an instance in
this way might not be desirable. First, it violates the
encapsulation of the field in the Mail class, and second, as
with any alias, directly altering an object would likely cause
problems in multithreaded code. A race condition occurs
whenever an object’s state can be altered by multiple
threads simultaneously, or when one thread can read an
object before another thread has finished changing it. The
size of the Address type means that assigning a new value



won’t be an atomic operation, meaning that a second
thread could read a partly initialized instance.

One common approach to addressing race conditions is
to protect access to a variable from multiple threads by
using a lock. Locking access to the data within the property
itself isn’t sufficient in this situation because the underlying
data can be modified outside the property definition; we’d
need to lock every use of the property, which would likely
hamper our code’s performance. Fortunately, we have a
less intrusive solution: we can simply make the property
immutable. Sharing immutable state has none of the
drawbacks associated with changing data from multiple
threads.

To protect the destination field in Mail from
modifications, we can change the Destination property to
return a read-only reference to the destination field. If we
return such a ref readonly variable, the calling code needs
to also use the readonly keyword for the target variable, as
Listing 3-28 shows.

public sealed class Mail 

{ 

    --snip-- 

    public ref readonly Address Destination => ref destinati

on; 

    private readonly Address destination; 

} 

var address = new Address ("62 West Wallaby Street", "Wiga

n", "Lancashire", "WG7 7FU"); 

var letter = new Mail("G Lad Esq.", address); 

ref readonly var local = ref letter.Destination;

Listing 3-28: Preventing mutation of a ref return

The compiler won’t allow any modifications via the
read-only local reference variable. We’ve also made the
destination field read-only in the Mail class. This means that



we must use a read-only reference if we return a reference
to the destination field. If we attempt to return a read-only
field by reference without the readonly ref modifier, the
compiler gives us this error:

[CS8160] A readonly field cannot be returned by writable ref

erence

We can assign one ref variable to another by using the
same syntax as assigning a ref local to the result of a
property. Note that a ref readonly variable can be assigned
from a non-read-only reference. An automatic and implicit
conversion occurs from a plain—or writable—ref return or
a ref local to a ref readonly variable, but not in the other
direction. A read-only reference can’t be assigned to a
writable ref local. Doing so would break the immutability
guarantees of a read-only reference.

Keeping By-Reference Variables Within Scope

Methods can return values by reference too, and the syntax
is the same as for properties. However, the lifetime of the
variable returned by reference must be guaranteed to last
at least as long as the reference’s lifetime. More formally,
the scope of the variable being referenced must include the
method or property that returns a reference to that
variable.

One implication of this rule is that we can’t return a
reference to a local variable, because the variable will go
out of scope as soon as the method or property
implementation returns. This is most clearly apparent for
value types. The lifetime of a value ends when the scope
ends, so its lifetime is shorter than that of the reference.
The method in Listing 3-29 fails to compile because it’s
attempting to return a reference to a local variable.



public ref Address Get() 

{ 

    var val = new Address(); 

    return ref val; 

}

Listing 3-29: Trying to return a reference to a local

variable

If we could return a reference to the val variable, the
code calling this method would get a reference to a value
that no longer exists. The compiler prevents such a
situation by refusing to compile the code, giving this error:

[CS8168] Cannot return local 'val' by reference because it i

s not a ref local

This rule applies regardless of whether the value of the
local variable is a reference or an instance of a struct. The
variable still goes out of scope, even when the instance

exists on the heap. By-reference variables and by-reference
returns are references to variables, not instances, in
exactly the same way as by-reference parameters.

Instance Fields of Value Types

The compiler will prevent us from returning a variable by
reference if it can’t guarantee that the variable will be valid
for at least as long as any reference to it. A less obvious
consequence of this rule is that a method or property of a
value type can’t return a reference to one of that type’s
instance fields. The code in Listing 3-30, for instance, won’t
compile.

public readonly struct Color 

{ 

    --snip-- 



    public ref readonly uint Rgb => ref rgbValue; 

    private readonly uint rgbValue; 

}

Listing 3-30: Returning a struct field by reference

The compiler gives us this error message:

[CS8170] Struct members cannot return 'this' or other instan

ce members by reference

This operation is prohibited because the compiler can’t
easily determine that the Color instance will outlive any
reference to a field within it. Listing 3-31 shows a
pathological example to demonstrate why that might be a
problem.

public ref readonly uint DefaultRgb() 

{ 

    var source = new Color(); 

    ref readonly var rgb = ref source.Rgb; 

    return ref rgb; 

}

Listing 3-31: Invalid code returning a reference to a

struct’s field

If the Color struct in Listing 3-30 could legally return
one of its fields by reference, the DefaultRgb method in
Listing 3-31 would be returning a reference to a field of an
object that has gone out of scope. This is a similar problem
to returning a reference to a local variable, but this time
the problem is directly related to Color being a struct. When
a Color variable goes out of scope, each of its fields goes out
of scope too. The compiler forbids returning any instance



field of a value type by reference to avoid even the
possibility of this happening.

Member methods and properties of a value type are
also prevented from returning this by reference. It’s
disallowed for exactly the same reason as for instance
fields: if it were permitted, we would be returning a
reference to a local value—an instance of the type—that
goes out of scope.

References to References

When a reference variable goes out of scope, the instance it
represented still exists on the heap until it is garbage
collected. We can, therefore, safely return a reference to an
instance field from a property or method of a class or a
record. In fact, holding such a by-reference variable
prevents the instance from being garbage collected. In
Listing 3-32, we take a reference to an instance field of a
local reference type object and return it.

public ref readonly Address GetAddress() 

{ 

    var local = new Mail("G Lad Esq.", 

        new ("62 West Wallaby Street", "Wigan", "Lancashir

e", "WG7 7FU")); 

    ref readonly var address = ref local.Destination; 

    return ref address; 

}

Listing 3-32: Returning a reference to a field of a local

object

The compiler accepts this code, and it’s safe to use this
method, although we should certainly be cautious because
this technique relies on a somewhat esoteric feature of the
garbage collector. When GetAddress returns, the local
variable goes out of scope, leaving no live reference
variables directly to the Mail instance created inside the



GetAddress method. Normally, that instance would then
become eligible for garbage collection, making the by-
reference return value a dangling reference. However, the
returned by-reference variable is enough to prevent the
garbage collector from destroying the Mail instance, so
holding a by-reference variable to one of its fields remains
valid.

Behind the scenes, a by-reference variable or parameter
to a field within a class or record instance represents a
managed pointer. Managed pointers are an implementation
detail of the CLR, but the takeaway here is that they’re
tracked by the garbage collector and considered object

roots—simply put, references or managed pointers to
objects known to be live when the garbage collector runs.
Those objects, in turn, may contain references to other
objects on the heap, so the chain of references forms a
graph of objects currently in use at the time the garbage
collector runs.

The garbage collector uses object roots to determine
whether object instances can be collected: any instance it
can’t reach from an object root by following the object
graph is eligible for collection, and any object that is
reachable survives. Storing a ref local variable is enough to
keep the owning object from being garbage collected.

We can always safely return a by-reference parameter
variable by reference because the variable aliased by the
parameter must be in scope for the calling code. Strictly,
the scope of the variable includes the method accepting the
parameter by reference, as shown in Listing 3-33.

public ref Color RemoveRed(ref Color color) 

{ 

    color = new Color(0, color.Green, color.Blue); 

    return ref color; 

} 

var hasRed = new Color(0x77, 0xFF, 0x11); 



ref var noRed = ref RemoveRed(ref hasRed); 

Assert.That(noRed.Red, Is.EqualTo(0)); 

Assert.That(hasRed.Red, Is.EqualTo(0));

Listing 3-33: Returning a ref parameter by reference

The RemoveRed method’s color parameter can be returned
by reference because the reference can’t outlive the
variable underlying it, since the scope of the hasRed variable
in the calling code includes RemoveRed. Listing 3-34 shows
that the same is true of out parameters, even though they
look like they’re returning a reference to a local variable.

public ref Color CreateColor(out Color result) 

{ 

    result = new Color(); 

    return ref result; 

} 

ref var created = ref CreateColor(out Color color); 

Assert.That(created.Red, Is.EqualTo(0)); 

Assert.That(color.Red, Is.EqualTo(0));

Listing 3-34: Returning an out parameter by reference

The result parameter in the CreateColor method is a
reference to a variable in the calling code, whose scope
also includes the CreateColor method itself.

NOTE

Returning out parameters by reference is prohibited as of

C# v11.0, although returning ref parameters by reference

is still permitted.

We can also return in parameters by reference, but they
must be returned as ref readonly, because an in parameter



is immutable. If we forget to make the returned reference
readonly, the compiler gives us a predictable error:

[CS8333] Cannot return variable 'in Color' by writable refer

ence because it is a readonly 

variable

Given that the variable used to populate the in
parameter must already be part of the calling code and we
can’t modify it in any way, returning an in parameter by
reference typically isn’t useful. We can pass the variable to
an in parameter to avoid copying it, but the method could
just as easily return void because the calling code must
already know about the variable, which could not be
modified by the method.

Mutable Immutable Properties

Properties that return by reference can’t have a set
accessor and thus are apparently immutable. However, ref
returns have a peculiarity: if we return by writable

reference, as shown in the Color property in Listing 3-35,
we can use the reference to mutate the underlying value,
just as we would use a setter for the property.

public class Brush 

{ 

    public Brush(Color c) => color = c; 

    public ref Color Color => ref color; 

    private Color color; 

} 

var brush = new Brush(new Color(0x77, 0x33, 0xFF)); 

brush.Color = new Color(); 

Assert.That(brush.Color.Red, Is.EqualTo(0));

Listing 3-35: Setting a new value for a writable reference

property



It may look like we’re setting the Color property of the
brush variable to a new instance of Color, but in fact we’re
assigning a new value to the field in the Brush class directly,
by reference. The semantic difference is somewhat subtle.
Part of the purpose of a property is to encapsulate access
to a value, but here we deliberately sidestep that
encapsulation by returning a reference to the field.

If the Color property returned a ref readonly, this code
wouldn’t compile because we’d be attempting to modify a
read-only variable. A set accessor for the Color property
would enable us to change its value, but permitting a set
accessor for something that is read-only seems perverse.

Considering Performance vs. Simplicity

Ref returns, used in conjunction with ref locals, may be
beneficial when we’d otherwise be copying large value type
instances around, particularly if many copies would be
generated. Ref locals and ref returns are a relatively
complex optimization feature and need to be introduced
with care. When the values are small, creating references
to them carries no benefit and might even result in added
cost due to the extra indirection required to access the
value. We can use ref returns and ref locals for reference
variables too, but, again, doing so provides no advantage;
C# allows it just for the symmetry.

We need to be aware of the costs of all by-reference
variables, whether they’re parameters, return values, or
locals. Any by-reference variable introduces extra
indirection in order to obtain the actual underlying value.

Final Word on Mutable By-Reference

Parameters

As mentioned previously, using the mutable by-reference
parameter types ref and out often indicates very procedural
code. In general, if we prefer a more declarative style, we



make our code more self-describing and often more
compact. However, output parameters have one use in
modern C# that supports that same declarative approach.
The term of art is object deconstruction, although the
relevance of out parameters here may not be immediately
obvious.

We begin with the value tuple, introduced in C# v7.0 to
simplify the creation of lightweight aggregate types such as
the point variable in Listing 3-36.

var point = (X: 30, Y: 50); 

Assert.That(point.X, Is.EqualTo(30)); 

Assert.That(point.Y, Is.EqualTo(50));

Listing 3-36: A value tuple for a point

This point variable is a named tuple, where we give a
name to each component. The tests show how we use those
names like properties to obtain their respective values.
Value tuples support deconstruction: we can decompose
the point variable into individual variables with names
unrelated to the names we gave the components. Listing 3-
37 uses the deconstruction syntax to assign two separate
variables from the fields of the point tuple from Listing 3-
36.

var (horizontal, vertical) = point; 

Assert.That(horizontal, Is.EqualTo(30)); 

Assert.That(vertical, Is.EqualTo(50));

Listing 3-37: Tuple deconstruction

In this code, the types of the horizontal and vertical
variables are inferred from the components of the point
value tuple, and we use them individually without needing
to refer to point at all. We can support this same syntax in



our own types by writing a public Deconstruct method, which
uses out parameters to take all of its parameters by
reference. Listing 3-38 shows a Coordinate struct type with
such a method.

public readonly struct Coordinate 

{ 

    public Coordinate(int x, int y) => (X, Y) = (x, y); 

 

    int X {get; init;} 

    int Y {get; init;} 

    public void Deconstruct(out int x, out int y) 

    { 

        x = X; 

        y = Y; 

    } 

}

Listing 3-38: User-defined type deconstruction

We can use identical syntax to that shown in Listing 3-
37 to deconstruct a Coordinate value into individual
variables:

var point = new Coordinate(30, 50); 

var (horizontal, vertical) = point;

The compiler translates this code to call the Deconstruct
method of the Coordinate struct, so the calling code has no
mention of out arguments, or even a call to a method. The
compiler’s support for object deconstruction allows the
code using Coordinate to access its properties as individual
variables in a compact and clear way.

The same syntax for the Deconstruct method is also
supported for classes. The compiler generates a Deconstruct
method for both records and record structs, saving us from
having to define our own implementation of it.



Simple value types like Coordinate and the point value
tuple are common in functional programs because they
encapsulate simple abstractions with a minimum of
syntactical overhead. They also present little or no
performance overhead, allowing us to write expressive and
efficient programs more simply.

Summary

How do we convince people that in programming simplicity and clarity [...] are

not a dispensable luxury, but a crucial matter that decides between success and

failure?

—Edsger W. Dijkstra, Selected Writings on Computing: A Personal Perspective

The concept of pass-by-reference, and how it differs from
pass-by-value, is much less straightforward than a first
glance might suggest. The common explanation—that value
types are passed by value and reference types by reference
—is misleading. We don’t pass types around; we pass
values. What’s more, by default all values are passed by
value.

Understanding what the value of a variable actually is
helps us more precisely define what passing by reference
really entails. Passing by value is merely the default; we
have to actively choose to pass a value by reference.
Reference and value types differ semantically because the
value of a reference variable isn’t the same as the instance
of the type it represents. For value type variables, however,
the value and the instance are the same thing.

Moreover, we can pass a variable by reference in
several ways, each with different behavior and restrictions.
We’ve looked at using by-reference method parameters to
change variables in different ways, as well as at
alternatives that can make our programs more direct and
comprehensible by avoiding side effects and making values
immutable. Immutability is an important aspect of avoiding
problems associated with unwanted aliasing, even when by-



reference variables are being used. If we use read-only
properties and read-only structs judiciously, we can take
advantage of some of the performance benefits of passing
by reference, without suffering from the complications of
managing access to shared mutable data.

When an immutable value is shared by several
references, aliasing can never present a problem. This is
the basic principle behind in parameters and read-only
local references, but it’s also a consideration when we want
value semantics for a type but also want the benefits of
reference semantics for performance.

However, passing by reference isn’t without cost. Every
access to a by-reference parameter involves an extra level
of indirection. This cost is likely to be negligible but could
adversely affect performance if the method is used in “hot
paths” through the code. As with any performance
optimization, we must measure the outcome to determine
whether the optimization is worthwhile.



4

IMPLICIT AND EXPLICIT COPYING

In almost any useful program,
the values of variables are

constantly being copied, even when we
don’t realize it. In this chapter, we’ll
examine the causes and the possible
consequences of copying. This topic might
seem trivial, but copying can have hidden
costs that can prove problematic when
it’s not clear that a section of code is
making copies.

We’ll explore the following:
Why knowing whether a value is a copy is vital to
understanding a program
How to avoid copying values in certain circumstances
Where the compiler may be making hidden copies of
values
What we can do to prevent the need for the compiler to
make hidden copies



You know from previous chapters that copying
references is always a cheap operation, because it doesn’t
also copy the instance. When we copy a value type
instance, however, the value of each field is also copied,
costing time and memory space, especially if the instance
consists of several fields. Knowing when copying might
occur, then, may help us identify opportunities to avoid
some copies, thereby improving our program’s memory
usage and speed.

The relative cost difference between copying a
reference and copying an instance is part of the rationale
behind the common advice to make value types small.
However, the cost of copying is only one part of the story.
Copying value type instances around is usually cheap,
although some pathological cases may be cause for
concern, but working with a copy might also have semantic

implications. In particular, if we haven’t noticed that we’ve
made a copy, we might be surprised that changes we’ve
made to a value aren’t visible in the way we expect.
Correspondingly, unexpected changes to an instance that
have occurred using a copied reference can be the cause of
subtle problems.

Copying by Simple Assignment

The differences in copy behavior of value types and
reference types can have subtle consequences that can be
hidden in apparently simple expressions that make a copy.
The simplest example of copying occurs as the result of
assignment:

var copy = existing;

Assigning the value of one variable to another like this
is called simple assignment, and the left side—the target of
the assignment—must be either a variable, or a property or



indexer with an accessible set accessor. The right side is an
expression, which describes anything that can be evaluated
to produce a value. The expression might be a simple value
like a literal or an enum member, another variable, or a more
complex expression, such as a call to a method.

Both variables and values are associated with a type.
Since in the preceding example we use type deduction for
copy with the var declaration, the compiler deduces the type
of the copy variable from the type of the value of existing.
The type of the target variable doesn’t necessarily need to
be identical to the type of the value being assigned. If we
specify a different type for the target variable, the type of
the value on the right must be implicitly convertible to the
type of the variable on the left.

We can try to explicitly coerce the value to the target
type by using an explicit cast, which you saw in Chapter 2.
For example, a double can be explicitly cast to an int,
although the conversion may lose information because the
value is truncated. If the compiler detects that an explicit
conversion can never succeed, such as from a string to an
int, the code won’t compile. Otherwise, the conversion
happens at run time and may fail with an
InvalidCastException if the conversion fails.

Value Copy Behavior

We know a copy of a non-null reference refers to the same
instance in memory as the original reference. That means
any change we make to an instance of a reference type is
visible via all the references to that instance. By
comparison, when we copy an instance of a value type, the
copy is a new, independent instance of the type, with
copies of the original value’s fields.

However, it’s not always the case that changes to one
instance of a value type can’t be observed by other
instances. If any of the fields copied from the original value



type instance are references, the copied instances will have
copies of those references. Therefore, a copy of a value
type instance can still alias an object on the heap via its
fields. To illustrate, consider the ill-advised example in
Listing 4-1, where the Item property of the Purchase struct is
a reference to a mutable Product class.

public sealed class Product 

{ 

    public int     Id {get; set;} 

    public decimal Price {get; set;} 

} 

public readonly struct Purchase 

{ 

    public Product  Item {get; init;} 

    public DateTime Ordered {get; init;} 

    public int      Quantity {get; init;} 

}

Listing 4-1: Mutable reference fields

Here, Product is a simple data-carrier class, similar to
types often used to read data from a database or message
queue. A common characteristic of simple data carriers like
Product is to have mutable properties to read and write their
values. The Purchase type, meanwhile, is a struct and a well-
behaved value type; it’s marked readonly, and all of its
properties are init-only, meaning they can be given a value
only when a new Purchase instance is initialized.

Even though Purchase is a readonly struct, it is not

immutable because its Item property is a mutable type.
Moreover, that property is a reference because Product is a
reference type. Two Purchase instances, therefore, can refer
to the same mutable Product instance on the heap. To
illustrate this, let’s look at how instances of these types are
set out in memory.



We create instances of the Purchase type and its
properties from Listing 4-1 like this:

var existing = new Purchase 

    { 

        Item = new Product {Id = 10990, Price = 12.99m}, 

        Ordered = DateTime.Parse("2024-02-02"), 

        Quantity = 12 

    };

The memory used by the existing variable might look
something like Figure 4-1.

Figure 4-1: The memory layout of a reference in a struct

Since Purchase is a value type, a variable of type Purchase
contains a complete instance in place wherever the variable
is declared. In Figure 4-1, the existing identifier is a name
representing a memory location containing the values of
the three fields of a Purchase type. One of those fields is a
backing field for the Item property, whose type is the Product
class. As a reference type, the Product instance is allocated
on the heap, and the Item property stores a reference to it.
The content of the other property values, being value type



instances, is stored directly within the existing variable.
Now consider what happens when we copy the existing
variable in Listing 4-2.

var existing = new Purchase 

    { 

        Item = new Product {Id = 10990, Price = 12.99m}, 

        Ordered = DateTime.Parse("2024-02-02"), 

        Quantity = 12 

    }; 

--snip-- 

var copy = existing;

Listing 4-2: Copying the value of the existing variable

Because the type of the Item property is a class, only the
reference is copied to the new copy variable’s instance,
leaving both the existing and copy variables referring to the
same Product instance on the heap, as depicted in Figure 4-
2.

Figure 4-2: The memory layout after copying a struct instance

Having copied existing to copy, we now have two Purchase
instances in memory, but the instance data for Item hasn’t



been copied. Each Purchase instance has a reference to the
same Product on the heap.

Read-Only Properties vs. Immutable Types

Making the Purchase struct in Listing 4-1 read-only doesn’t
protect it from unintended side effects associated with
aliasing references, nor does the fact that its Item property
has no set accessor. We could still inadvertently modify the
object referred to by the Item property because even though
Purchase.Item has no set accessor, the Product type it refers
to has mutable properties. If we alter a property of the
Product instance via the copy variable, that change is visible
in the existing variable, as demonstrated in Listing 4-3.

var existing = new Purchase 

    { 

        Item = new Product {Id = 10990, Price = 12.99m}, 

        Ordered = DateTime.Parse("2024-02-02"), 

        Quantity = 12 

    }; 

var copy = existing; 

copy.Item.Price = 14.99; 

Assert.That(existing.Item.Price, Is.EqualTo(14.99));

Listing 4-3: Altering the state of a Product via a shared

reference

Because the properties of the Product type are writable,
we can change the instance by using any reference to it. If
we make the Product type immutable, we can’t change the
data in a Product instance via any reference to it, so it
doesn’t matter that it’s shared among multiple reference
variables. It isn’t especially unusual for value types to
contain references as fields or properties, but we must be
cautious about the kinds of references we store in a value
type. If we want to avoid the issues associated with



unexpected changes to Purchase instances, we must make
sure that the object referred to by Purchase.Item can’t be
changed via any reference; it’s not enough to simply ensure
that the referenced object can’t be changed via Purchase
itself. The simplest way to achieve that would be to make
Product immutable. More generally, value types with
reference type fields should refer only to immutable types.

Knowing whether we have a copy of a reference or a
copy of a complete instance is valuable information.
Assigning one variable to another is the most visible
example of how values are copied in a program. In the next
few sections, we’ll look at some less obvious examples of
values being copied and see how our programs may be
making more copies than we think.

Creating New Objects

Most of the time, we don’t need to worry about how object
instances use memory; that’s the CLR’s responsibility. We
create object instances with the new expression, which
abstracts the details of how and where memory for the
object is allocated. New objects are always created by
calling a constructor, although, as you saw in Chapter 2,
when we use the object initialization syntax, the
constructor call may be implicitly inserted by the compiler.
Either approach may require an extra copy of a new value
type instance, so to more closely monitor the memory our
programs use, we need to pay extra attention to how we
construct new objects.

For example, Listing 4-4 shows an instance of a Purchase
value type being created via object initialization. Although
not visible in the code, an extra copy of the Purchase
instance is used to perform the initialization.

public readonly struct Purchase 

{ 



    public Product   Item {get; init;} 

    public DateTime  Ordered {get; init;} 

    public int       Quantity {get; init;} 

} 

var order = new Purchase 

    { 

        Item = new Product {Id = 10990, Price = 12.99m}, 

        Ordered = DateTime.Parse("2024-02-02"), 

        Quantity = 12 

    };

Listing 4-4: Creating a new instance of the Purchase

value type via object initialization

NOTE

The extra copy of Purchase is required only if we actually

access its properties, but setting property values that are

never read probably isn’t common.

When we use object initialization to create a new object,
the constructor is still invoked, even when it isn’t specified.
Since Purchase is a struct and has no user-defined
constructors, the new instance is first default-initialized
and then its properties are assigned according to the values
specified between the braces.

The default-initialized instance created by the
constructor call is not observable by our code. The
properties of the new instance are initialized via a hidden
variable, which is then copied to the target variable—the
order variable in Listing 4-4—after the object initialization
has completed. When the code to initialize a Purchase is
compiled, the compiler emits the equivalent of Listing 4-5.

var __temp = new Purchase(); 

__temp.Item = new Product {Id = 10990, Price = 12.99m}; 

__temp.Ordered = DateTime.Parse("2024-02-02"); 



__temp.Quantity = 12; 

var order = __temp;

Listing 4-5: Code that’s equivalent to object initialization

syntax

NOTE

We couldn’t have written the same code ourselves, because

the Purchase type’s Item, Ordered, and Quantity properties

are init-only. The compiler would also translate the

initialization of the Item property into a call to the

constructor and separately set its properties, but for

brevity’s sake, the object-initialization syntax has been left

intact here.

After the constructor has completed, the instance has
only been default-initialized, and, in particular, the Item
property will be null since it’s a reference type. The
purpose of this two-stage initialization is to prevent that
incomplete instance from being observed. The value of the
hidden __temp variable is copied to the target order variable
when the initialization is complete, after all the properties
have been assigned.

Overwriting a Value

A hidden variable also allows us to reassign a variable by
using properties of its previous value. Listing 4-6
reinitializes the order variable with a new instance and uses
the existing value of order.Item for the Item property of the
new instance.

order = new Purchase 

    { 

        Item = order.Item, 

        Ordered = DateTime.Parse("2024-02-03"), 



        Quantity = 5 

    };

Listing 4-6: Reinitializing the order variable by using its

own properties

Without the hidden __temp variable introduced by the
compiler, the result of the new expression would be assigned
to order before the value of the Item property had been
obtained. The initialization of the order variable would be
similar to the following:

order = new Purchase(); 

order.Item = order.Item; 

order.Ordered = DateTime.Parse("2024-02-03"); 

order.Quantity = 5;

Notice that the order variable being assigned to is
default-initialized before its properties are set. The Item
property is effectively being used to reinitialize itself.
Without the hidden __temp variable, Item will be initialized to
null during the order variable’s initialization and then
reassigned that same null value. As a result, the order
variable’s Item property will end up with the value null,
which is certainly not what we intend. The approach shown
in Listing 4-5 correctly handles this behavior by not
overwriting the order instance until the temporary copy has
been fully initialized.

When Purchase is a value type, as in these examples, the
extra __temp copy might be significant, because it’s a copy of
the whole instance value. When the type is a class or a
record, the copy is just a new reference to the same
instance, so the cost of the extra copy is negligible.

Prior to C# v9.0, object initialization could be used only
for properties with a public set accessor. This restriction
was removed with the introduction of init-only properties,



but in general a constructor is a more direct method for
initializing an instance, at least in part because it avoids
the need for a hidden variable—well, most of the time. As
you’ll see next, this is not universally true for value types.

Constructing Value Types

When we create a local variable instance of a struct or
record struct type via a user-defined constructor, the
compiler can introduce a variation on the two-stage
initialization we saw with object initialization. The compiler
still inserts a hidden variable, but instead of setting
properties, it adds code to directly call the required
constructor on the hidden instance before copying its value
to the target variable.

Listing 4-7 shows a Color struct whose properties have
neither set nor init accessors, so we must use a constructor
to initialize the properties.

public readonly struct Color 

{ 

    public Color(int red, int green, int blue) 

        => (Red, Green, Blue) = (red, green, blue); 

    public int Red {get;} 

    public int Green {get;} 

    public int Blue {get;} 

} 

var background = new Color(red: 0xFF, green: 0xA5, blue: 0x

0);

Listing 4-7: Calling a constructor to initialize the Color

struct’s properties

A constructor has the special name .ctor in the
compiled code, so creating an instance of Color with
arguments is broadly equivalent to this:



Color __temp; 

__temp..ctor(red: 0xFF, green: 0xA5, blue: 0x0); 

Color background = __temp;

The constructor is invoked on the __temp value in place

on the second line. The declaration of the __temp variable
causes the compiler to reserve enough space for a default
instance of Color, and, at run time, the constructor is
invoked on that instance as if it were a normal method.

Since Color is a value type, the hidden variable
represents a full instance, and that instance is copied in full
to the target variable. This behavior applies only to user-
defined constructors of struct and record struct types; the
default constructor for a value type simply default-
initializes each field and thus doesn’t require a hidden
copy.

As we saw with object initialization, the hidden __temp
variable prevents a partially constructed instance from ever
being observable. In practice, the compiler can typically
optimize away the hidden instance altogether, but in some
circumstances, such as when constructing an instance
might fail with an exception, a hidden copy can’t be
avoided. Consider the Brush class in Listing 4-8, whose
background field is initialized using a field initializer. In the
Assign method, we assign a new value for background.

public class Brush 

{ 

    public void Assign(int r, int g, int b) 

    { 

        background = new Color(red: r, green: g, blue: b); 

    } 

    private Color background = new Color(red: 0xFF, green: 0

xA5, blue: 0); 

}



Listing 4-8: Calling a struct constructor that might throw

an exception

The hidden temporary copy of Color is essential when
we reassign the background field within the Assign method of
Brush, as it ensures that background always has a valid and
predictable value. If the Color constructor were called
directly on the background instance and failed with an
exception, it might leave background in an indeterminate
state. In the Assign method, the compiler must ensure that
the existing value for the background field can be used, even
if the constructor for Color throws an exception.

By separating the construction of the Color instance
from assigning to the background field, the compiler ensures
that the only observable states for the variable are either
the fully constructed value, if no exception occurred, or its
previous value, if the constructor throws an exception.
Note that copying a value type instance will never throw an
exception; copying the value from one memory location to
another is always safe and doesn’t require new memory to
be allocated at run time.

Copying value type instances isn’t guaranteed to be
atomic. For example, if the type has multiple fields or
floating-point values, a different thread could observe the
target value partway through the copy operation, a risk
known as memory tearing. This is an issue only when
multiple threads share memory that can be written.
However, it’s important to remember that mutability isn’t
just about setting properties; immutable values can be
copied as well. The simplest protection against memory
tearing is to make sure that memory accessible to multiple
threads is truly read-only.

Copying Records Like Value Types

Chapter 2 showed how to use non-destructive mutation to
copy an existing record instance and alter selected



properties of that copy by using the with keyword. Listing 4-
9 shows how a Color record can be cloned this way.

public sealed record Color(int Red, int Green, int Blue); 

var pink = new Color(Red: 0xFF, Green: 0xA5, Blue: 0xFF); 

var orange = pink with {Blue = 0};

Listing 4-9: Cloning a record instance by using with

Cloning an instance by using non-destructive mutation
means that the original instance is preserved while the
copied instance is changed. In Listing 4-9, the cloned
variable orange takes all the properties from pink except the
Blue property, which is explicitly given the value 0.

The same syntax can be used to copy structs and record
structs and provides a convenient way to set init-only
properties on the target variable. Record types have an
additional benefit because they’re reference types and thus
don’t have the copy-by-value semantics of a true value type.
If we just assign a record variable to another variable, we
still get two references to the same instance, as shown
here:

var black = pink; 

Assert.That(ReferenceEquals(black, pink), Is.True);

If the pink variable were a value type, black would be a
copy of the instance. The with keyword always copies an
instance, regardless of whether it’s a value type or
reference type.

Just as with object initialization, the compiler creates a
hidden temporary instance and sets its properties before
copying it to the target variable. Non-destructive mutation
differs from object initialization in that, for records, the
new instance is created using a virtual compiler-generated
Clone method. This method is essential because, by default,



positional records like the Color record in this example do
not have an accessible parameterless constructor.

Record structs and structs can always be constructed
without arguments and are always copied by value,
meaning they don’t have or need a Clone method. The with
syntax isn’t supported by class types because, among other
challenges, most classes aren’t intended to model value
semantics.

The initialization process for reference type instances
differs from the process for value types, mainly because of
the way the different types are allocated and stored in
memory. That has consequences for the variables we use to
access those instances too, especially when we need to use
a reference variable to refer to a value type instance,
causing the value to be boxed.

Identifying Unnecessary Boxing

Value type instances don’t exist on the heap except as part
of another object, so we can’t use a reference to refer to
them directly. Boxing, as you know from Chapter 2, solves
this by copying the value to a known place on the heap and
allowing us to reference that copy.

However, because boxing always copies to the heap, the
box is subject to garbage collection and other heap
management tasks. If we box values indiscriminately, then
our program’s performance and memory use will suffer.
Taking the time to identify and remove unnecessary boxing
will improve our code’s efficiency.

Boxing occurs anytime we use a reference type variable
to refer to a value type instance. It usually happens
implicitly (although we can explicitly box a value, it’s rarely
necessary). Recall from Chapter 2 that all types ultimately
derive from object, so we can always implicitly cast a value
of any type to object. When that value isn’t already a
reference, the result is a reference to a boxed instance.



Let’s look at an example. The Clone method in Listing 4-
10 creates a new local instance of the Coordinate value type
and returns an object reference to it. The returned value is
a reference to a Coordinate that has been boxed.

public readonly struct Coordinate 

{ 

    public int X {get; init;} 

    public int Y {get; init;} 

    public object Clone() 

    { 

        var item = new Coordinate {X = this.X, Y = this.Y}; 

        return item; 

    } 

    --snip-- 

}

Listing 4-10: Returning a reference to a boxed value

type variable

When we call the Clone method, we are returned an
object reference to a boxed Coordinate instance. The boxing
occurs just before the method exits; space is allocated on
the heap for a copy of item’s value, and a reference to that
box is returned from the method.

Unboxing, the reverse of boxing, copies the value inside
a box on the heap into an instance of its original value type.
Unboxing must always be done explicitly and is
syntactically the same as an explicit cast from the boxed
value to the target type, as shown in Listing 4-11.

var original = new Coordinate(--snip--); 

object box = original.Clone(); 

Coordinate clone = (Coordinate)box;

Listing 4-11: Unboxing to the original type



When a value type implements one or more interfaces,
instances can also be referred to by a variable of any of
those interface types, and this also requires the instance to
be boxed.

To an Interface

A value can be boxed only when it can be implicitly
converted to the target reference type. Since all value types
are sealed—meaning inheritance is prohibited—that valid
conversion can be to an object variable reference, a
System.ValueType (which itself is not a value type), or an
interface implemented by the value type. If the value is an
enum member, it can also be converted to the System.Enum
class or any of the interfaces implemented by System.Enum.

We need a direct object reference to a value in only a
very few cases, and there’s no excuse for boxing to a
System.ValueType, except perhaps for purely didactic
examples. A value type variable can implicitly convert to
any interface implemented by the type, such as the
IComparable interface implemented by the Color struct in
Listing 4-12.

public readonly struct Color : IComparable<Color> 

{ 

    public Color(uint val) => rgb = val; 

    int IComparable<Color>.CompareTo(Color other) 

        => rgb.CompareTo(other.rgb); 

    private readonly uint rgb; 

}

Listing 4-12: The IComparable interface implemented by

the Color struct

The IComparable< T > interface specifies a single method
named CompareTo, in which we define the comparison
operation allowing collections of T to be sorted. The



implementation for Color here simply defers to its uint field,
which implements the IComparable< uint> interface.

Note that the implementation of IComparable<
Color>.CompareTo is an explicit implementation, meaning we
can invoke CompareTo only by using a reference to the
interface type. Any attempt to call CompareTo directly on a
Color variable results in a compile error. If we cast a Color
variable to the IComparable< Color> interface, the value will
be boxed into an IComparable< Color> reference, as in Listing
4-13.

var red = new Color(0xFF0000); 

var green = new Color(0x00FF00); 

IComparable<Color> compare = red; 

var less = compare.CompareTo(green);

Listing 4-13: Explicitly boxing to an interface type

When we initialize this compare variable, the value of red
is boxed, because variables of any interface type are
references. We could avoid the box by making CompareTo
nonexplicit, allowing us to call it directly using the red
variable without casting to the interface. That’s not to say
that we should prefer nonexplicit implementations; explicit
interface methods are a good way to segregate the public
interface of a type.

We can call an explicit interface implementation by
using a generic type parameter that has been constrained
to the interface type. In this case, no cast is needed, and no
boxing takes place. To demonstrate, the generic LessThan
method in Listing 4-14 doesn’t box its parameters, even
when we pass Color values as arguments for it, because the
generic parameter T is constrained to the IComparable< T >
interface.



public static bool LessThan<T>(T left, T right) 

    where T : IComparable<T> 

{ 

    return left.CompareTo(right) < 0; 

} 

var red = new Color(0xFF0000); 

var green = new Color(0x00FF00); 

Assert.That(LessThan(green, red), Is.True);

Listing 4-14: Constraining the generic type parameter T

to the IComparable< T > interface type

When a generic type parameter is constrained in this
way, a variable of the generic type is considered to be of
the type used for the constraint. In this example, left is
used as if it were an IComparable< T > variable. We can
invoke the method directly on whatever value T represents,
even when the implementing method is an explicit
implementation.

In Method Calls

Boxing a value type instance by assigning it to a reference
variable is often conspicuous in our code, but boxing also
occurs when we pass a value type instance as an argument
for a reference type method parameter. As with assigning
to a reference variable, the value is boxed implicitly if an
implicit conversion to the type of the parameter exists.
Since boxing is usually implicit, it can be hard to spot. For
example, Listing 4-15 boxes the now variable because
DateTime is a value type, and Console.WriteLine takes an
object? parameter following the format string parameter.

DateTime now = DateTime.Now; 

--snip-- 

Console.WriteLine("Time now: {0}", now);



Listing 4-15: Boxing the now argument for

Console.WriteLine

If we remain aware when we’re passing value types as
arguments for reference type parameters, we can minimize
the need to box the arguments or alter the code to avoid
the box. However, it’s important to weigh the costs of
boxing against the context of the rest of the code.

For example, rather than just passing the now variable as
the argument to Console.WriteLine in Listing 4-15, we could
pass now.ToString, which doesn’t need a box because the
DateTime struct overrides the ToString method, and the
WriteLine method would call it anyway. Arguably, though,
explicitly calling ToString reduces the directness of the
code, and the cost of boxing the now variable is minimal
compared to that of writing to the console.

When we call a base class virtual method on a value
type instance that doesn’t specifically override that
method, the instance is boxed in order to call the base class
implementation. If the method is overridden by the type, as
ToString is in DateTime, then no boxing occurs. We avoid the
need to box our own value types in such situations by
overriding all the virtual methods inherited from object:
ToString, Equals, and GetHashCode.

Calling the GetType method on a value, however, will
always cause the value to be boxed. The GetType method is
used to obtain the run-time type of a variable and is
implemented on object. However, GetType isn’t virtual, so it
can’t be overridden.

The lesson here is that we should avoid calling GetType
for value types. If we need type information on a value, we
can use typeof instead. Since value types are sealed and
can’t inherit any other type, the compile-time type returned
by typeof will always match the run-time type given by
GetType.



Method Parameters and Arguments

Most copies of values aren’t so easily avoided, and passing
arguments to methods is perhaps where the majority of
copies are made. Trying to avoid such copying is not always
beneficial, but understanding the mechanics of method
calls is essential. This section examines where hidden
copies can be found in properties, indexers, operators, and
conversions, often as the result of behind-the-scenes
method calls.

Methods can take their parameters either by value or
by reference. As you saw in Chapter 3, reference
parameters are distinctive in that we need to use one of the
ref, out, or in keywords to declare them as well as, for ref
and out parameters, on the arguments passed to them.
Parameters that are not reference parameters are known
as value parameters. Passing an argument to a value
parameter is so common that it’s easy to forget it results in
a copy. Capturing the result of a method call also generally
makes a copy of the returned value.

Additionally, the semantic and behavioral differences
between value types and reference types have important
consequences when we’re using the value returned from a
method. It’s not even always obvious that we are calling a
method or using a value returned from one. However,
before we investigate those circumstances, let’s revisit the
essential mechanics of value parameters and return values.

Passing and Returning by Value

Listing 4-16 shows a simple value type, Speed, that has a
static Incremented method that takes a value parameter,
original, and returns a new value. Both the parameter and
the return statement in the Incremented method represent
copies of Speed instances.



public readonly struct Speed 

{ 

    private Speed(double ms) => InMetersPerSecond = ms; 

    public double InMetersPerSecond {get;} 

    public static Speed FromMetersPerSecond(double val) => n

ew Speed(val); 

    public static Speed Incremented(Speed original) 

    { 

        var result = 

            Speed.FromMetersPerSecond(original.InMetersPerSe

cond + 10); 

        return result; 

    } 

} 

var start = Speed.FromMetersPerSecond(40); 

var end = Speed.Incremented(start); 

Assert.That(end.InMetersPerSecond, Is.EqualTo(50));

Listing 4-16: Passing and returning Speed instances by

value

The Incremented method receives its original parameter
by value, meaning original is a local variable within the
method. The return is also by value, so a whole new
instance of Speed is returned as a new value when we call
the method. As an optimization, the compiler may be able
to avoid that copy by using the result local variable to
assign the target variable directly, as long as the
observable effect is identical to making a copy. We can
either assign the value to a new variable, as we do here, or
use the new value to overwrite the value of the start
variable passed as the argument in the first place.

Instead of a plain static method, we could use an
extension method, which we call as if it were an instance
method. The first parameter of an extension method is
special because it represents the this identifier that would
be implicitly available within an ordinary instance member.



An extension method is a good candidate for providing
different, perhaps less common, units of measurement.
Listing 4-17 uses an extension method called InMph to obtain
the value of a Speed in miles per hour.

public static class SpeedExtensions 

{ 

    public static double InMph(this Speed speed) 

        => speed.InMetersPerSecond * 2.236936; 

} 

var mph = initial.InMph();

Listing 4-17: Defining the InMph extension method for

Speed

Despite the special this syntax in the InMph extension
method’s declaration, the first parameter is still just a value
parameter, taking its argument by value. The initial
variable’s value will therefore be copied into the speed
parameter in order to call the method. The Speed type is a
struct, so every copy we make represents a whole instance
of Speed.

NOTE

We have many online converters to choose from for this

type of conversion. The one used for Listing 4-17 is from

the Inch Calculator website,

https://www.inchcalculator.com/convert/meter-per-second-
to-mile-per-hour/.

Accessing Properties

Whenever we access a property, we’re really making a call
to a method, either to obtain its value or to set a new one.
Both get and set accessors are implemented as hidden
methods on a type. By default, set has a value parameter,
and get returns by value. In either case, therefore, when we

https://www.inchcalculator.com/convert/meter-per-second-to-mile-per-hour/


access the property, we make a copy of the value. This
process is easy to overlook because the syntax for using a
property looks like it’s directly getting or setting a field.

Consider the Speed property of the Velocity value type
shown in Listing 4-18.

public readonly struct Velocity 

{ 

    public Velocity(Speed speed, Angle angle) 

        => (Speed, Direction) = (speed, angle); 

    public Speed Speed {get;} 

    public Angle Direction {get;} 

}

Listing 4-18: Defining properties of the Velocity struct

Looking at the compiled CIL for the Speed property of
the Velocity struct, we see that the property accessor is
emitted as a call to the hidden get_Speed method:

.property instance valuetype Speed Speed() 

{ 

    .get instance valuetype Speed Velocity::get_Speed() 

} // end of property Velocity::Speed

Apart from the CIL-specific markers .property, instance,
and valuetype, the call to get_Speed is a regular method call.
The compiler has synthesized the get_Speed method too, and
its signature looks like this in the CIL:

.method public hidebysig specialname instance valuetype Spee

d 

    get_Speed() cil managed 

{ 

    --snip--



If Speed had a corresponding set accessor, it would be
emitted as a method named set_Speed that takes a Speed
parameter and returns void. The CIL markers hidebysig and
specialname aren’t used during execution, but they’re used
by tools that work with CIL.

The compiler implements the get_Speed accessor as a
method that takes no parameters and returns a value of
Speed by value. It’s almost exactly as if we’d written our own
method returning a Speed like this:

public Speed get_Speed() 

{ 

    // return a Speed value 

}

The Speed property’s get accessor returns a copy of a
Speed instance by value, in exactly the same way as any
method returning a Speed by value.

It’s easy to mistake using a property or indexer for
directly accessing a field, since the method calls injected by
the compiler are conveniently hidden. However, it’s
important to be aware that accessing a property or indexer
calls a method and typically copies values.

NOTE

Indexers are special instance methods that allow an object

to be accessed as if it were an array or similar sequence-

like object. They’re implemented via methods in the same

way as properties.

Using Expressions with Operators

Expressions with operators, such as + or ==, often also
represent method calls, requiring copies for parameters
and return values and perhaps making other copies



internally. For example, in Listing 4-19 we add two Speed
values.

var start = Speed.FromMetersPerSecond(55); 

var increase = Speed.FromMetersPerSecond(15); 

var final = start + increase;

Listing 4-19: Adding two Speed values

The method call behind this addition may not be
immediately apparent, but a closer look shows that simply
adding instances together might represent several copies.
Listing 4-20 shows the canonical form of operator+ for
adding two Speed values.

public static Speed operator+(Speed left, Speed right) 

    => new Speed(left.InMetersPerSecond + right.InMetersPerS

econd);

Listing 4-20: Defining the addition operator for Speed

The left and right parameters for operator+ represent
one copy each. Conceptually, a copy is also made for the
return value, although the compiler is free to optimize that
copy away and construct the new Speed instance directly in
the target variable being assigned.

We might also overload the == equality operator,
comparisons like operator<, the binary combination
operators | and &, and even the truth operators true and
false, allowing us to include a variable in a Boolean test
expression like if(speed) {…}. Hopefully, we would not be
tempted to overload the truth operators for a type like
Speed.

All such operator overloads are implemented as static
methods for a type, and all take at least one parameter,



which is the type to which they belong. That parameter is
usually taken by value and thus represents a copy.

User-defined conversion operators are methods too, and
when their parameter or return type is a value type, it is
copied by value in the same way. Spotting where an
implicit conversion is being invoked can be particularly
difficult because the process leaves few syntactic clues in
the code. To illustrate, consider the Velocity type in Listing
4-21, which defines an implicit conversion from a Velocity
to a Speed.

public readonly struct Velocity 

{ 

    public Velocity(Speed speed, Angle angle) 

        => (Speed, Direction) = (speed, angle); 

    public Speed Speed {get;} 

    public Angle Direction {get;} 

    public static implicit operator Speed(Velocity velocity) 

        => velocity.Speed; 

}

Listing 4-21: A user-defined implicit conversion

This conversion operator uses one copy of Velocity for
the parameter, and two copies of Speed—one to access the
property of the velocity parameter, and another to return
the value. As with other methods, the compiler may be able
to avoid an explicit copy of the return value. In Listing 4-22,
the DistanceInKm method takes a Speed parameter and is
called with an instance of Velocity, rather than the
velocity.Speed property.

public double DistanceInKm(Speed speed, TimeSpan elapsed) 

    => speed.InMetersPerSecond / 1000 * elapsed.TotalSecond

s; 

var velocity = new Velocity(initial, direction); 



var distance = DistanceInKm(velocity, TimeSpan.FromHours

(2));

Listing 4-22: Using an implicit conversion to pass an

argument

Although this looks to be a regular call to the
DistanceInKm method, the velocity argument first needs to be
converted to a Speed. Our type conversion operator makes
this possible, and since we made the conversion implicit,
the compiler simply inserts the call to that operator when
we call DistanceInKm, copying the Velocity argument and
Speed return value in the process.

Type conversions need to be used wisely. They can hide
all sorts of complexity, quite apart from the copies they
usually represent. Implicit conversions happen invisibly by
design, leaving only subtle clues in code that employs them,
such as in method calls like DistanceInKm in Listing 4-22.
Explicit user-defined conversions are syntactically more
obvious in the code that uses them, but it’s still easy to
overlook that they, too, represent a call to a method.

When a method returns a variable by reference—which
we first examined in Chapter 3—we can use that by-
reference variable to directly alter the underlying variable,
provided neither is read-only. However, remember that ref
returns are an optimization feature and shouldn’t be
introduced indiscriminately.

All other non-void methods produce values, not
variables, meaning we can’t assign to the result directly. If
we forget this and misuse a return value, it can result in
surprising behavior.

Modifying Return Type Instances

You saw in Chapter 2 that a variable can be assigned to,
but a value can’t. Values are the result of expressions,



including method calls, and are immutable. We can’t
directly modify the value returned from any method.

One common source of confusion is that value type
instances and reference type instances have different
behavior in this regard: if the method returns a reference
to a mutable type, we can use the returned reference to
directly modify the instance in memory, but we can’t
modify a mutable value type instance unless we first copy
the returned value to a variable. Understanding how value
types differ from reference types in this respect will help us
avoid some common hazards and better appreciate the best
practice of making all value types immutable.

When a return value is a value type instance, we can’t
use it to set property values or change any of the value’s
public fields. We must assign that value to a variable before
we can change it. To demonstrate, Listing 4-23 shows a
struct with an intentionally mutable InMetersPerSecond
property and a static class factory method named FromKmh.

public struct Speed 

{ 

    public double InMetersPerSecond {get; set;} 

    public static Speed FromKmh(double val) 

        => new Speed(val * 1000 / 3600); 

    private Speed(double ms) => InMetersPerSecond = ms; 

} 

Speed.FromKmh(70).InMetersPerSecond = 15.2;

Listing 4-23: Attempting to modify the return value of

FromKmh

On the last line, we attempt to set a value for the
InMetersPerSecond property of the value returned from the
static method, which gives us a compilation error:



[CS1612] Cannot modify the return value of 'Speed.FromKmh(do

uble)' because it is not a variable

This example fails to compile because the FromKmh
method returns a Speed value. The compiler rejects any
modifications to the value, even though the InMetersPerSecond
property has a public set accessor.

NOTE

C++ programmers would refer to the returned value as an

rvalue.

If modifications to a return value were permitted, they
would be made on a temporary instance introduced by the
compiler to capture the value returned by the method. The
lifetime of the Speed instance created in the FromKmh method
in Listing 4-23 ends when the method returns, so the return
value needs to be stored somewhere—namely, in a hidden
copy of the instance.

In any case, we would normally assign the Speed value
returned by FromKmh to another variable. We are permitted
to modify the InMetersPerSecond property of the target
variable because Speed has a public set accessor, as shown
here:

var start = Speed.FromKmh(70); 

start.InMetersPerSecond = 15.2;

The prohibition against modifying a returned value is
not specific to properties; it also applies if we try to modify
a public field on the return value. The compiler prevents
such modifications because the return value from a method
isn’t a variable. However, as you’ve already seen, several
parts of code don’t look like methods but are represented
in the compiled code as methods. This restriction on



modifying return values applies equally to them because
they also produce temporary copies.

Reference Type Properties

If the value returned from a method—or property, indexer,
or operator—is a reference, we can modify the instance
referred to because the temporary copy of the value is
another reference to that same instance. We can therefore
use the returned reference to set publicly mutable
properties, although we can’t change the value of the
reference itself by assigning it to refer to a different object.

Consider Listing 4-24, which uses the value returned
from the Data method to set a property of a reference type
instance.

public class ReadBuffer 

{ 

    public StringBuilder Data() 

        => buffer; 

    private readonly StringBuilder buffer = new(); 

} 

var buffer = new ReadBuffer(); 

buffer.Data().Capacity = 128;

Listing 4-24: Setting a reference type property

The StringBuilder type is a class with a publicly writable
Capacity property. The value returned from ReadBuffer.Data is
a reference to the StringBuilder instance stored as a field of
ReadBuffer. Therefore, we can use the reference returned
from the Data method to set the Capacity of the instance
stored as a field of buffer.

We can’t assign that reference to a new instance of
StringBuilder, however, as that would be changing the value
being returned, not the instance:



buffer.Data() = new StringBuilder();

This fails to compile because we’re attempting to assign
to a value, not a variable:

[CS0131] The left-hand side of an assignment must be a varia

ble, property or indexer

The difference in behavior between methods returning
references and those returning value type instances is one
of the reasons it’s recommended to make all value types
immutable. By doing so, we remove any confusion over
where a value type instance can be modified, because it
can’t be modified by anything. When we attempt to modify
a returned value, our code fails to compile. When the value
is a value type instance, the failure to compile is a good
thing: if the modification were permitted, we wouldn’t be
changing the instance we might think we were changing.
Unless a value type is truly immutable, preferably by being
a read-only struct or read-only record struct, an instance
can still be modified by its instance methods, even when
it’s a hidden copy.

Instance Methods and Mutability

Although we can’t set the value of a property on a returned
value type instance, we can call methods on that instance.
If the type has non-read-only fields, or properties with a set
accessor, the method we call can mutate the instance. In
this next example, we have a mutable Speed struct with a
Reset method that changes the value of the InMetersPerSecond
property:

public struct Speed 

{ 

    public double InMetersPerSecond {get; set;} 

    public void Reset() => InMetersPerSecond = 0;



    --snip-- 

}

The Reset method can be called on any Speed value,
including one returned from a method or property. In
Listing 4-25, we use the value of the Speed property of a
Velocity object to call Reset.

var velocity = new Velocity(Speed.FromKmh(55), Angle.FromDeg

rees(45)); 

velocity.Speed.Reset(); 

Assert.That(velocity.Speed.InMetersPerSecond, Is.EqualTo

(0));

Listing 4-25: Calling the Reset method on the value

returned by Velocity’s Speed property

When we call Reset on velocity.Speed, we might be
tempted to think we’ve changed the value stored in the
velocity variable, but velocity doesn’t change here, and the
test fails, because the Reset method mutates only the
instance used to call it. The instance returned from the
Speed property is a temporary value. Recall from Listing 4-
23 that we can’t use the value to directly set the
InMetersPerSecond property, but we can change that property
via an instance method of Speed.

We can mutate a value obtained from an indexer in a
similar way, and we can just as easily overlook that only the
hidden copy gets altered. Consider Listing 4-26, which calls
a method on the value returned from the Journey type’s
indexer.

public class Journey 

{ 

    --snip-- 

    public Velocity this[int idx] 

    { 



        get => legs[idx]; 

        set => legs[idx] = value; 

  } 

    private List<Velocity> legs = new List<Velocity>(); 

} 

journey[0].Speed.Reset();

Listing 4-26: Calling a method on the value returned by

Journey’s indexer

An indexer is implemented as a method, in the same
way as a property, and has precisely the same behavior.
Again, it’s easy to forget that properties are not variables,
especially when they’re value type instances. The compiler
can’t prevent us from calling a method on a returned value,
because it’s a perfectly reasonable thing to want to do. The
only way to prevent this erroneous behavior is to make
Speed an immutable type, thereby disallowing any mutating
methods entirely. This is another good reason to make all
value types immutable.

Properties as Arguments for Read-Only

Parameters

Another consequence of method returns being values
rather than variables is that they can’t be directly passed
as arguments for ref or out parameters. As you saw in
Chapter 3, by-reference parameters receive the address of
their arguments, but only variables have addresses. If we
first assign a method return or property result to a
variable, we can pass the variable by reference.

Chapter 3 also explained that an in parameter is an
immutable by- reference variable. Although in parameters
take the address of their argument in exactly the same way
that ref and out parameters do, they’re designed to behave
as if they’re value parameters. The compiler therefore
allows us to pass a nonvariable as an argument for an in



parameter but copies the value to a hidden variable, and
it’s that variable’s address that’s passed.

Listing 4-27 defines a BallisticRange method with two in
parameters, and calls it using the Speed and Direction
properties of a Velocity type.

public static double BallisticRange(in Speed initialSpeed, i

n Angle initialDirection) 

{ 

    const double Gravity = 9.81; 

    return initialSpeed.InMetersPerSecond * initialSpeed.InM

etersPerSecond * 

            Math.Sin(initialDirection.InRadians * 2) / Gravi

ty; 

} 

public readonly struct Velocity 

{ 

    public Velocity(Speed speed, Angle angle) 

        => (Speed, Direction) = (speed, angle); 

 

    public Speed Speed {get;} 

    public Angle Direction {get;} 

} 

var velocity = new Velocity(Speed.FromMetersPerSecond(55), 

                            Angle.FromRadians(0.78)); 

var distance = BallisticRange(velocity.Speed, velocity.Direc

tion);

Listing 4-27: Passing properties as in arguments

Recall that, unlike with ref and out arguments, we don’t
need to modify the arguments passed for in parameters
with the in keyword.

Here, the compiler takes copies of the values it has
obtained from velocity.Speed and velocity.Direction and
passes references to those copies to the BallisticRange
method’s in parameters. It’s as if we’d written this:



var __temp_Speed = velocity.Speed; 

var __temp_Angle = velocity.Direction; 

var distance = BallisticRange(in __temp_Speed, in __temp_Ang

le);

The __temp_Speed and __temp_Angle copies are made
because accessing a property’s get accessor produces a
value, not a variable. Passing an argument by reference
effectively requires the compiler to take its address in
memory, but only variables have addresses. The get
accessor returns a temporary value that needs to be either
assigned to a variable so its address can be taken or passed
to a value parameter, which makes a copy of the value.
Although in parameters can help reduce the number of
copies our applications make, we see their benefits only
when we’re passing variables as arguments.

A hidden copy is also made for other expressions that
are not variables, such as constants and value type method
return values. These copies are made only for the read-only
in parameters. If we try to pass a property value or other
nonvariable to a ref or out parameter, the compiler simply
rejects our code. Such mutable reference variables are
intended to be modified by the called method, and those
modifications would be illegal on a constant or the
temporary value returned by a get accessor.

Defensive Copies

Whenever the compiler requires a read-only variable but
can’t guarantee that its value will never change, the
compiler will make a defensive copy. As a result, any
change, however inadvertent, is made to the hidden copy
and not the visible variable, so the change can’t be
observed.

You saw one example of the compiler making a
defensive copy of a value type instance in Listing 4-8,



where constructing a value type with arguments makes a
hidden temporary instance, and then the compiler copies it
to the target variable when the constructor has completed.
This process protects an existing value from any exceptions
that may occur inside the constructor body. If an exception
occurs, the original value remains intact.

The compiler may also make a defensive copy of a value
type instance to protect a read-only variable from
modifications.

Defensive copies aren’t required for references because
the compiler can always detect a change to the value of a
reference. If a reference variable is read-only, any attempt
to assign a new reference to it fails to compile. Whether or
not the instance being referred to is immutable makes no
difference here; if we require the instance to be read-only,
it’s up to us to ensure that it doesn’t change. The value of a
value type variable is the instance, and a mutable value can
be changed by its instance methods, so the compiler may
introduce a defensive copy when we call those methods if
the variable is supposed to be read-only.

Mutable Value Types and in Parameters

In Chapter 3, you saw how to use the in modifier for a
method parameter to avoid copying the argument if the
method’s implementation won’t modify the corresponding
parameter variable’s value. However, unless the compiler
can guarantee that even inadvertent changes to the
parameter values aren’t possible, it will make defensive
copies of those values.

Listing 4-27 showed the BallisticRange method, which
has two read-only reference parameters, initialSpeed and
initialDirection. The method implementation uses
properties of those parameter variables (InMetersPerSecond
and InRadians, respectively) to calculate its return value. If
the types of those properties aren’t explicitly immutable,
the compiler will make defensive copies of their values to



guarantee the read-only characteristics of the in
parameters. The Speed and Angle struct types used by
BallisticRange are shown in Listing 4-28. Neither type’s
properties are mutable, but note that the types themselves
aren’t marked readonly.

public struct Speed 

{ 

      --snip-- 

    public double InMetersPerSecond => amount; 

    private readonly double amount; 

} 

public struct Angle 

{ 

    public double InRadians {get;} 

      --snip-- 

} 

public static double BallisticRange(in Speed initialSpeed, i

n Angle initialDirection) 

{ 

    const double Gravity = 9.81; 

    return initialSpeed.InMetersPerSecond * initialSpeed.InM

etersPerSecond * 

            Math.Sin(initialDirection.InRadians * 2) / Gravi

ty; 

}

Listing 4-28: Using in parameter properties for the

BallisticRange method

Within BallisticRange, the compiler makes a copy of the
initial parameter for each use of the
initialspeed.InMetersPerSecond property (so two copies in all),
even though there’s no attempt to modify the initialSpeed
parameter variable in BallisticRange. The initialDirection
parameter, on the other hand, isn’t copied when its



InRadians property is accessed, although, like Speed, the Angle
struct isn’t a read-only type.

To determine why the Speed parameter is copied, but the
Angle parameter is not, we need to understand what the
compiler provides and what assumptions it makes.

Automatic vs. Nonautomatic Properties

Although the properties of both the Speed and Angle types in
Listing 4-28 are get-only, they differ in the way they’re
implemented. The InRadians property of Angle is an
automatic property, meaning the compiler introduces a
hidden backing field for it and generates the
implementation of the get accessor to obtain the field’s
value. If we had also specified a set accessor for InRadians,
the compiler would generate the corresponding
implementation to set the backing field’s value.

By contrast, the InMetersPerSecond property of Speed is an
expression-bodied property, meaning it returns the value of
an explicitly declared private field. An expression-bodied
property is equivalent to a nonautomatic property with no
set accessor, like this:

public double InMetersPerSecond 

{ 

    get {return amount;} 

}

We’d normally understand this to be a read-only
property, since we can’t usually change the value of a
property with no set accessor. However, C# has no rule
that says get accessors can’t modify the fields of a type; it’s
merely a convention. Within BallisticRange, the
InMetersPerSecond property is accessed via an immutable
reference; if the get accessor did indeed modify the value of
the parameter, that change would be visible outside the



BallisticRange method because the argument was passed by
reference.

If the parameter variable is supposed to be immutable,
as with in parameters, the compiler must satisfy itself that
using the variable in any way won’t change its value.
Without this guarantee, the compiler makes defensive
copies of the value everywhere the parameter is used to
access a property or call a method. If the method or
property did mutate the value, only the hidden copy would
be affected. The change would never be observable outside
the BallisticRange method via the argument passed to the
method’s parameter.

The InRadians property of Angle in Listing 4-28 is also get-
only, but because it’s an automatic property, the compiler
adds a special attribute to the get accessor method to
indicate that it’s a read-only implementation. Listing 4-29
shows the generated CIL for the get_InRadians method.

.method public hidebysig specialname instance float64 

get_InRadians() cil managed 

{ 

  .custom instance void [System.Runtime] 

          System.Runtime.CompilerServices.IsReadOnlyAttribut

e::.ctor() 

   = (01 00 00 00) 

--snip--

Listing 4-29: A read-only automatic property

The compiler adds the IsReadOnlyAttribute indicator for
automatic properties in the compiled code and can check
for the presence of the attribute cheaply, even when the
type of the parameter is declared in a different compiled
assembly. In a positional record struct, the compiler
generates the properties for the parameters given to the



type. The get accessors of those generated properties also
have IsReadOnlyAttribute applied.

When we use an in parameter variable to call methods
or access property values, the compiler checks those
methods and properties. If this attribute is present, the
compiler knows it can avoid making defensive copies.

Read-Only Reference Variables

Defensive copies are also required when we use read-only
local reference variables, unless the compiler is satisfied
that accessing the variable can’t change its value. We
explored in Chapter 3 how local reference variables are
used in cooperation with reference return values.

A method or property of a class or a record—but not a
struct or record struct—can return an instance field by
reference. If we return a value by reference, no copy of the
value is made. Making it read-only ensures that the value
can’t be modified using that reference. For example, the
Projectile class in Listing 4-30 has properties that return
instance fields by reference.

public sealed class Projectile 

{ 

    public Projectile(Speed speed, Angle angle) 

        => (initial, direction) = (speed, angle); 

    public ref readonly Speed Speed => ref initialSpeed; 

    public ref readonly Angle Angle => ref initialDirection; 

    private readonly Speed initialSpeed; 

    private readonly Angle initialDirection; 

}

Listing 4-30: Defining ref return values for the Projectile

class

The references returned by these Angle and Speed
properties can never outlive the Projectile instance because



Projectile is a class, so its instances are allocated on the
heap and their lifetimes are governed by the garbage
collector. Value types are not permitted to return their
fields by reference because the instance’s lifetime might
end before any reference to its internals.

With ref readonly properties, we would usually also
capture the returned reference in a local read-only
reference variable, also called a ref readonly local. In the
following code, we use ref readonly locals to receive the
references returned from the properties of Projectile from
Listing 4-30:

var dart = new Projectile(initial, direction); 

ref readonly var speed = ref dart.Speed; 

ref readonly var angle = ref dart.Angle; 

var kmh = speed.InMetersPerSecond; 

var degrees = angle.InRadians;

Because the properties of Projectile return read-only
references, we must assign them to read-only reference
variables, or explicitly copy their value by omitting the ref
keyword altogether on the target variables.

A read-only reference variable must be guaranteed to
be immutable in the same way as an in parameter. The
compiler therefore makes a defensive copy of the speed
variable when we later use its InMetersPerSecond property, in
case that property mutates the value.

The InRadians property of Angle, being an automatic
property, has the IsReadOnlyAttribute indicator, so the
compiler doesn’t require a copy of the angle variable. If we
manually copy the value of a ref return, there’s no danger
of Projectile’s read-only field being changed via that
variable, so the compiler doesn’t introduce an additional
copy in that case.

Read-Only Fields



Each access to a property of a read-only field will produce a
defensive copy, unless the compiler is satisfied that the
property doesn’t change its instance. The same is true
when we call an instance method of a read-only field.

In Listing 4-31, we make the BallisticRange method from
Listing 4-28 an instance member of the Projectile class and
alter its implementation to use instance fields of the class
instead of taking in parameters.

public sealed class Projectile 

{ 

    public double BallisticRange() 

    { 

        const double Gravity = 9.81; 

        return initialSpeed.InMetersPerSecond * initialSpee

d.InMetersPerSecond * 

               Math.Sin(initialDirection.InRadians * 2) / Gr

avity; 

    } 

    private readonly Speed initialSpeed; 

    private readonly Angle initialDirection; 

}

Listing 4-31: Accessing properties of read-only fields of

the Projectile class

The Speed and Angle types are the same as those in
Listing 4-28, but they’re read-only fields rather than
parameters. Since read-only fields must be immutable, the
compiler makes a defensive copy of the initialSpeed field’s
value for each access to the field’s InMetersPerSecond
property. Using the Angle.InRadians property doesn’t cause a
defensive copy, because it’s an automatic property.

Interestingly, if we made the fields of Projectile non-
read-only, the compiler would omit the defensive copies.
The reason should be clear by now: the defensive copies
are required to prevent unwanted modifications to read-



only variables from being visible. If the variables are not
read-only, allowing them to be altered causes no problems
and requires no defensive intervention by the compiler.

However, making conceptually immutable fields and
properties mutable isn’t really a solution. What we’d really
like are stronger guarantees of immutability, rather than
sacrificing immutability in favor of fewer defensive copies.
We can take measures that allow us to use in parameters,
ref local variables, and read-only fields without incurring
the cost of extra defensive copies made by the compiler.

THE CAUSES OF DEFENSIVE COPIES

Many caveats exist around read-only references and read-only fields, so if

we’re to avoid the potential copies introduced by the compiler, we have a

lot to consider. The compiler may introduce defensive copying in several

situations, but the rules can be summarized quite simply:

For some expression x.Y, where Y might be a property or a method, the

compiler makes a defensive copy of the value of x if all of the following are

true:

x is a read-only field, an in parameter, or a ref readonly local.

The type of x is a non-read-only value type.

Y is not marked readonly.

If Y is a field, no defensive copy is needed in any circumstance because

just reading a field can’t possibly mutate it. Any attempt to write to Y will be

caught by the compiler because x is read-only. However, avoiding defensive

copies isn’t a good reason to expose public fields on structs or record

structs, because in doing so we lose all the benefits of encapsulated data.

Using the readonly modifier on the type, or at least the properties and

methods, encodes the intent of immutability much more effectively.

Defending Against Mutation

We can alter our code in a few ways to avoid the need for
defensive copying. In each approach, we provide a
guarantee that a method or property never alters the value
of an instance, meaning the compiler doesn’t need to make
a copy to protect a read-only variable.

To recap, the following kinds of variables are read-only:



in parameters
ref readonly local variables
Read-only fields
When we use read-only value type variables to access a

property or call a method, the compiler may require a
defensive copy of the value. If the variable’s type is a
reference type, there’s no need for a defensive copy,
although we must remember that even when a reference
variable is read-only, the instance can still be changed.
Defensive copies of value type instances are required when
the compiler can’t guarantee that the value is immutable.

One simple way to avoid many defensive copies is to use
automatic rather than manually implemented properties. As
we’ve discussed, the compiler adds the IsReadOnlyAttribute
marker to the get accessor of an automatic property to
confirm that it doesn’t alter the value in any way. When the
property is accessed, the presence of the attribute proves
to the compiler that a defensive copy isn’t required.

However, using automatic properties is not always
possible or desirable, such as when we want a common
backing field that’s used by several properties, or a
property that performs a calculation. Making properties
automatic also doesn’t prevent the compiler from making
defensive copies when calling methods via a read-only
variable. Fortunately, we can employ several alternatives to
automatic properties to help avoid defensive copying.
Which approach we choose will depend on the specific
needs of an application, but in each case we’re explicitly
guaranteeing that calling a method or accessing a property
can’t alter the state of the instance.

Read-Only Accessors and Methods

One option for avoiding defensive copies when accessing a
nonautomatic property is to add the readonly modifier to the
property, as shown for the InMetersPerSecond property in



Listing 4-32. For properties that also need a set accessor,
like the InKmh property shown here, we can use readonly just
for the get accessor.

public struct Speed 

{ 

    --snip-- 

    public readonly double InMetersPerSecond => amount; 

    public double InKmh 

    { 

        readonly get => amount / 1000 * 3600; 

        private set {amount = value / 3.6;} 

  } 

    private double amount; 

}

Listing 4-32: Declaring a read-only get accessor

Note that if we attempt to set a value for the mutable
InKmh property by using a read-only variable, such as an in
parameter, the compiler will give an error message saying
that the variable is read-only. Similarly, a read-only
property can’t modify instance fields of the type;
attempting to do so results in a compiler error.

Individual instance methods of structs and record
structs can also be marked readonly, as shown here with the
Sin method for our Angle type:

public struct Angle 

{ 

    public readonly double InRadians {get;} 

    public readonly double Sin() 

        => Math.Sin(InRadians); 

}

Adding the readonly modifier for property accessors and
methods causes the compiler to annotate the compiled



methods with the IsReadOnlyAttribute, which the compiler
can easily check for when the property or method is used
with a read-only variable.

Read-Only Types

When a struct or record struct doesn’t need to modify its
fields or properties, we can make the whole type read-only.
Listing 4-33 makes the Speed struct entirely immutable by
adding the readonly keyword to the type declaration.

public readonly struct Speed 

{ 

    public Speed(double amount) => this.amount = amount; 

    public double InMetersPerSecond => amount; 

    public double InKmh => amount / 1000 * 3600; 

    private readonly double amount; 

}

Listing 4-33: Declaring a read-only struct

This is the ultimate move in immutability: all fields of a
read-only struct must be read-only, and its properties can’t
have set accessors. We don’t need to add the readonly
modifier to the individual properties or any methods of
Speed. The compiler adds the IsReadOnlyAttribute attribute to
every method and property of a read-only type.

We can avoid almost all defensive copies by making our
value types read-only because this provides the strongest
possible guarantee to the compiler that its instance
methods and properties don’t mutate the value.

Making a value type read-only isn’t sufficient to avoid
all invisible copies the compiler makes. Using a property as
an argument to an in parameter will always copy the
property value if it’s a value type. Regardless of the type’s
immutability, a property isn’t a variable, so the compiler



must copy its value so that a reference to it can be passed
to an in parameter.

When the compiler determines that a defensive copy is
required to protect a value from potential change, the copy
is invisible. The purpose of reference parameters, and local
reference variables in particular, is to avoid unnecessary
copying to make our code more efficient. Defensive copies
negate any advantage of passing value type instances by
reference. Using the readonly keyword on all structs and
record structs is the most effective way to reduce the need
for those invisible copies.

Summary

The real problem is that programmers have spent far too much time worrying

about efficiency in the wrong places and at the wrong times.

—Donald E. Knuth, “Computer Programming as an Art,” Communications of the

ACM 1974

Values are copied a lot in most programs—perhaps more
than many programmers think. It’s easy, for example, to
overlook the fact that when we access a property, we’re
making a copy of the value, and the pass-by-value nature of
value type instances can make this a hidden cost.
Practically every access of a value type instance involves a
copy. Some copies are obvious, immediately apparent when
we read the code. Other copies are more subtle, and still
others are completely invisible and might even be
surprising. Whether it’s references or instances that we’re
copying, those copies happen frequently, often implicitly,
and sometimes unexpectedly.

It’s widely recommended to make value types small to
minimize the cost of copying them. In practice, however,
too much emphasis is placed on their size. Making copies of
values, even when they’re instances with several fields, is
generally inexpensive but may still be costlier than copying
a reference.



We can model values as classes or use records that
have value-like behavior to try to alleviate the cost of
copies. Knowing when copies occur—and how often—can
help us choose between implementing a value as a value
type or a reference type. This knowledge can also play an
important role in identifying algorithm bottlenecks in
existing programs. Minimizing copying is certainly a micro-
optimization, however, and whether the cost of copying is
significant is something we can judge only by measuring it.
We need to weigh the cost of copying value type instances
against other penalties, such as the garbage-collection
overhead we’d add by introducing a reference type instead.

Even hidden copies might represent little or no
performance impact. In many cases, even if the compiler
introduces defensive copies, the just-in-time (JIT) compiler
may be able to optimize those copies away. Nevertheless,
we can employ some useful techniques to help both the
compiler and the JIT compiler maximize performance. We
shouldn’t be too careless with copies because memory is a
finite resource.

Making our value types immutable can make our
programs more efficient, but doing so has other important
benefits. Mutable values can lead to surprising behavior,
which in turn leads to errors. If we make our value types
immutable by default, we won’t suffer many of the
problems associated with unexpected aliasing. We also get
the best advantage from the assumptions the compiler
makes for truly read-only values. This is not premature
optimization—it’s deliberately choosing not to make our
programs less efficient.

Copying values is usually not expensive, unless the
instances are exceedingly large. We face many other
considerations beyond how performance is affected by
copying value type instances. If the behavior we want from
a type is best modeled by a value type, we should choose to
implement it as a struct or a record struct.



5

TYPES OF EQUALITY

Programs frequently compare
variables to see if their values

are equal, although this operation is often
overlooked because it’s done implicitly.
Every type inherits the Equals method
from the object base class, so given any
two values x and y, the expression
x.Equals(y) is always valid.

C# also provides ==, or the equals-equals operator, for
explicitly checking equality of two values. Using == for
comparisons differs from using the Equals method in
multiple ways. In this chapter, we’ll look at why C#
supports two techniques for equality comparison and how
each is affected by the differences between types.

We’ll explore the following:
How the differences between comparisons using the
Equals method versus == affect our programs
What support the compiler provides for comparisons,
and what we must provide ourselves



Why equality comparisons and hash codes are so closely
related
When we need to customize equality comparisons for
our own types
How a variable’s type affects equality behavior
We’ll take a forensic approach to see how the compiler

treats equality for different types and explore why there’s
more to the topic of equality than just Equals and ==. Having
more than one way to compare values underscores just how
important this most basic comparison is. First, let’s look at
how equality works for the built-in types.

Built-in Equality

In this section, we’ll look at the basics of equality
comparisons between C#’s built-in types—including
integers and floating-point numbers, reference variables,
and arrays—and how some built-in types override the
default behavior of equality.

NOTE

The convention equals-equals, or double-equals as it’s

sometimes known, is used by several languages to

distinguish the comparison for equality from the

assignment operator =, which is just equals. JavaScript has

a third variation, equals-equals-equals, to check that two

variables have the same type and value.

Because every type in C# inherits the Equals method
from object, we can compare any two variables with that
method. However, using == to compare variables of the
built-in types is more efficient and may even result in
different behavior than using Equals, as you’ll soon see.

Equality comparisons using == are baked into the CLR
for all the intrinsic types—that is, all the numeric types



except decimal (which has built-in compiler support but isn’t
a native CLR type), the char and bool types, and references.
The CLR has a built-in instruction to compare two intrinsic
values, so we can always compare those values with ==, and
it’s as efficient as it could possibly be.

Whole Numbers

The built-in integral types—int, short, long, and byte—
represent whole numbers, and the char type represents
UTF-16 characters. They all have the same behavior for the
purposes of equality comparison. Values of bool type, while
not strictly speaking numeric values, are compared the
same way too. Listing 5-1 compares two integer values by
using the == operator.

int x = 10;

int y = x; 

Assert.That(x == y, Is.True);

Listing 5-1: Built-in numeric comparison

Here, we copy the value of x and assign it to y so that
the two variables have identical values. The result is that
they compare equal. If we look at the CIL generated by the
compiler, we see how these built-in types get special
support at run time:

❶ L_0001: ldc.i4.s 10 

L_0003: stloc.0  // x 

❷ L_0004: ldloc.0  // x 

L_0006: stloc.1  // y 

❸ L_0007: ldloc.0  // x 

L_0008: ldloc.1  // y 

❹ L_0009: ceq



CIL instructions all follow a similar low-level format.
Each line has a label in the format L_0XXX, followed by the
instruction itself and any arguments it needs. The first
instruction, ldc.i4.s, pushes its argument, the value 10, onto
the evaluation stack ❶. The next instruction, stloc.0, has no
arguments but pops the value at the top of the evaluation
stack into the variable at location 0, which, as the
decompiler helpfully tells us in a comment, is the x variable.
The outcome of these first two lines is that the x variable is
assigned the value 10.

Next, the previously stored value of x is loaded and then
stored in y ❷. Then, the values of both x and y are pushed
back onto the evaluation stack so they can be interpreted
by the next instruction ❸. Lastly, the built-in instruction ceq
compares the two values on the top of the evaluation stack
for equality ❹. The ceq instruction corresponds directly with
the == comparison between two built-in values.

The way the comparison using ceq is performed is up to
the JIT compiler, which translates CIL to machine code at
run time, but we can think of it as a bitwise comparison
between two numeric values. If they compare equal, the
integer 1, interpreted as the Boolean value true, is pushed
onto the evaluation stack; otherwise, a 0 is pushed and
interpreted as false.

The Boolean result is passed as the first argument to
the Assert.That method (not shown in the CIL listing). The
test passes because x and y have the same numeric value.

Floating-Point Values

The same ceq instruction is used when we compare float
and double values with the == operator. However, for
floating-point numbers, this method of comparison doesn’t
necessarily behave as we might expect. In C#, float and
double values are represented in a binary format defined by
the Standard for Floating-Point Arithmetic published by the



Institute of Electrical and Electronics Engineers (IEEE).
The IEEE-754 standard specifies a fixed precision for those
types, with the result that many numbers can’t be
represented exactly.

When a number has no exact representation, it’s
rounded to the nearest number that can be exactly
represented. The next nearest representable number may
be relatively larger or smaller than the original value. The
difference between two neighboring exact representations
is proportional to the magnitude of those numbers, so the
rounding difference of a very large number will generally
be much greater than that for a very small number.
Calculations with multiple numbers that have been rounded
will compound the resulting rounding error, a problem that
isn’t restricted to either very large or very small numbers.
Listing 5-2 compares two double values that we might
intuitively expect to be equal.

double x = 0.3; 

double y = 0.1 + 0.2; 

Assert.That(x == y, Is.True);

Listing 5-2: A simple floating-point calculation

This test fails because none of the constant values can
be represented exactly in the format of a double. The values
given to x and y will be rounded to the nearest
representable value. On top of that, the result of the
addition has an inexact representation and so is rounded
again, producing a value that differs from the value
assigned to x. The test for equality between x and y fails
because the values differ in their least significant digits.

Subtracting one floating-point number from another can
also produce unexpected results: if the two numbers are
nearly equal, the result will have values only in those least
significant places, which is exactly where rounding will be



noticeable. The consequence is that some or all of the
significant digits in the result may be lost, a problem
sometimes called cancellation.

Rounding and cancellation issues are inherent in the
IEEE-754 representation of floating-point values and not
specific to C#. It’s possible to alleviate some of the
problems that arise from them, however, depending on
exactly what we want to achieve.

Mitigating the Limitations of Rounding and

Cancellation

The magnitude of rounding is predictable, as it’s directly
related to the precision of the binary representation.
Precision here means the number of binary digits that can
be stored in the type. Importantly, that means any number
without an exact representation in a given type will always
round the same way for the same type.

The compounded error caused by repeated calculations
is harder to predict, and the order of operations in a
calculation can significantly affect the result. Performing
the same sequence of operations twice might even produce
different results, depending on factors such as optimization
and the location of the result being stored. A complete
analysis of the different approaches to comparing floating-
point numbers is far too large a topic to cover here, but in
essence, rather than comparing floating-point numbers for
exact equality, we can provide an implementation that
determines whether two numbers are approximately equal.

One approach is to compare whether two numbers are
equal within a certain number of decimal places, as shown
in Listing 5-3.

public static bool ApproximatelyEqual(double x, double y) 

    => Math.Round(Math.Abs(x - y), 7) == 0;



Listing 5-3: A simple approximate comparison of

floating-point numbers

We use the Math.Round method to determine whether two
values are equal within an absolute number of decimal
places—seven digits, in this example. We might also
consider passing the number of required decimal places as
a parameter rather than relying on a hard-coded constant.
Either way, this is a quick and simple method for
comparing floating-point values. The disadvantage is that
it’s insensitive to differences smaller than the number of
decimal places we’ve specified and inaccurate when
comparing very large numbers.

A second approach is to find out whether the difference
between two numbers is smaller than a certain tolerance,
like this:

public static bool ApproximatelyEqual(double x, double y) 

    => Math.Abs(x - y) < Tolerance;

This ApproximatelyEqual method returns true if the
absolute difference between two floating-point numbers is
smaller than a predefined tolerance, but we need to define
a sensible value for the Tolerance. Doing so isn’t
straightforward, because the difference between two
floating-point values can vary according to their magnitude.
Listing 5-4 uses a value for tolerance that is weighted
according to the magnitude of the smaller of the numbers
being compared.

private const double Tolerance = 1E-15; 

public static bool ApproximatelyEqual(double x, double y) 

    => Math.Abs(x - y) < 

       Math.Max(Tolerance, Math.Min(x, y)) * Tolerance;



Listing 5-4: Approximate comparison using a weighted

tolerance

We’ve added a Tolerance constant to represent how
sensitive we want our comparison to be, although we don’t
use its unqualified value in the comparison. The rounding
error for very large values has a far greater magnitude
than the error for very small numbers, and our tolerance
needs to be sensitive to that. Instead, we scale the
tolerance according to the numbers being compared. We
use the smaller of the two values for scaling because that’s
probably where we’re most sensitive to the rounding error.
As a compromise to avoid multiplying by 0, if the smallest
value is smaller than Tolerance, we scale Tolerance by itself,
which might cost us some precision in comparing tiny
values.

The value chosen for Tolerance here is sensitive enough
to be able to distinguish differences within around 25
decimal places when the values are close to 0. When the
values are closer to 1.0, the scaling means that differences
can be detected within 15 or 16 decimal places, and the
sensitivity decreases as the size of the values increases.
This approach to determining equality between floating-
point numbers isn’t universally suitable, and specific
applications may require a much more refined
implementation.

Using Alternative Number Representations

We must always keep in mind that floating-point numbers
aren’t real numbers in the mathematical sense, inasmuch
as many real numbers can’t be expressed as a floating-
point value. Real numbers have infinite precision, but
computer memory is finite, so the fixed and limited
precision of double and float values is a compromise.

Whether the imprecision of floating-point values
matters will depend on our objective. One alternative is to



use a different representation, such as the decimal type
that’s represented in decimal rather than binary and has a
greater precision than a double. In practice, a decimal can
represent more real numbers exactly, because it has a
greater number of significant digits with which to
represent them. This means decimal values are less prone to
rounding. However, each type has its own trade-offs, and
decimal isn’t a general-purpose type: it’s intended for
calculations that are most naturally represented in decimal,
such as financial calculations. The representation of a
decimal has a smaller range than either float or double, so
the largest positive and negative values are smaller than
either float or double can represent. Another consideration
is that a decimal value requires more memory than a double.

As an example of the practical implications of choosing
between double and decimal, consider the trigonometry
methods in the Math class, such as Sin and Cos, which take
double as their parameter and don’t provide overloads
taking decimal values. If our code uses these methods, we
can’t substitute double for decimal, because the decimal type
is specifically designed for monetary values and thus can’t
represent the results of trigonometric operations.

Handling Invalid Numbers

Another consequence of working with double and float
values is that some operations can produce a NaN (not a
number) result, which has no numerical representation.
When we’re using double or float values, we need to make
sure we correctly identify when the result of a calculation is
NaN, because NaN is viral: any calculation involving NaN
produces NaN as its result. We would get a NaN, for example,
if we tried to divide 0.0 by 0.0.

We might expect that we could identify a NaN with a
direct comparison using ==, as in Listing 5-5.



var x = 0.0 / 0.0; 

Assert.That(x == double.NaN, Is.True);

Listing 5-5: Comparing NaNs

Dividing 0.0 by 0.0 certainly produces a NaN, so many
programmers would expect this equality test with NaN to
pass, but it doesn’t. The IEEE-754 standard states that two
NaN values don’t compare equal, so this test’s failure is
correct behavior. Instead, C# provides the IsNaN static
method, which we use like this:

Assert.That(double.IsNaN(x), Is.True);

As of C# v8.0, we can use a constant pattern to make
the comparison more naturally:

Assert.That(x is double.NaN, Is.True);

The compiler translates the pattern expression into
double.IsNaN(x), so there’s no comparison using either == or
Equals. The IsNaN method will always give us the correct
result. It also highlights one important difference between
comparing floating-point values with == and using the
double.Equals method: the Equals method compares floating-
point values with ceq, but, unlike the == operator, Equals also
calls IsNaN when the values are not equal. Consider the
following test, where we compare two NaN values by using
the Equals method:

var x = 0.0 / 0.0; 

Assert.That(x.Equals(Double.NaN), Is.True);

This test passes because, according to the Equals
method, double and float values compare equal when the



values are exactly equal or are both NaN. The result of Equals
for floating-point numbers may therefore differ from the
result of using ==, which doesn’t compare the results of
IsNaN. Both Equals and == ultimately make a strict
comparison of float and double values using ceq, so we
shouldn’t rely on using either approach to compare
floating-point numbers, because the result might not be
what we expect.

NOTE

Some calculations can result in positive or negative infinity,

represented as double.PositiveInfinity and

double.NegativeInfinity, respectively. While either value

may be an incorrect result, infinite values aren’t usually

considered invalid in the same way as NaN. We can

compare a value with double.PositiveInfinity or

double.NegativeInfinity in a constant pattern by using the

is keyword, but values can also be directly compared using

== with either kind of infinity.

Reference Equality

As Chapter 2 explained, a reference is either null or an
opaque handle to an object on the heap. An object can have
several references to it, and two references to the same
object compare equal. Every object instance has a unique
identity, and the value of a non-null reference is the
identity of the object to which it refers. To tell whether two
references refer to the same object or different instances,
then, we use an identity comparison.

We might also be interested in whether a reference is
null, so let’s look at the mechanics of comparing one
reference with either another reference or the null
reference.

Comparing Two References



If x and y are both references to the same object, they have
the same identity and so compare equal via either == or
Equals. If they refer to different objects, even if those
objects have the same state, x and y won’t compare equal.
In Listing 5-6 we use == to compare two reference
variables.

public sealed class MusicTrack 

{ 

} 

var x = new MusicTrack(); 

var y = new MusicTrack(); 

Assert.That(x == y, Is.False);

Listing 5-6: Comparing references

These x and y reference variables aren’t equal because
they refer to different objects, even though both objects
have the same state. Rather than assigning constant values
to two variables as we did in Listing 5-1, we’re creating
new objects on the heap, and the variables are references
to those objects. When we examine the generated CIL, on
the last line we can see that the two references are
compared for equality by using the same ceq instruction as
in Listing 5-1:

IL_0001:  newobj    instance void MusicTrack::.ctor() 

IL_0006:  stloc.0   // x 

IL_0007:  newobj    instance void MusicTrack::.ctor() 

IL_000c:  stloc.1   // y 

IL_000d:  ldloc.0 

IL_000e:  ldloc.1 

IL_000f:  ceq

The newobj instruction creates a new instance of a type
and stores a reference to it on the evaluation stack. We
create two instances of MusicTrack on the heap, since



MusicTrack is a class, and store references to them in the x
and y variables, respectively. Since x and y refer to different
instances, the variables have different values and thus
aren’t equal when compared using ceq.

As far as the ceq instruction is concerned, at run time a
reference is just a sequence of bits, in much the same way
as a number is represented as a sequence of bits. The ceq
instruction merely compares two bit patterns to determine
whether they match. Two references to different object
instances on the heap have different bit patterns, so they
don’t compare equal.

Comparing with the null Reference

The value of a reference variable is either a reference to an
object on the heap or null. We can use == to compare any
reference with null to determine whether it refers to an
object. If the reference refers to an object, as in Listing 5-7,
the reference isn’t equal to null.

var x = new MusicTrack(); 

Assert.That(x == null, Is.False);

Listing 5-7: Comparing a reference with null

This comparison also uses the built-in ceq instruction:

IL_0016: newobj    instance void MusicTrack::.ctor() 

IL_001c: ldloc.1   // x 

IL_001d: ldnull 

IL_001e: ceq

The null reference is a constant value pushed onto the
evaluation stack by the ldnull instruction; null doesn’t have
a type of its own but can be implicitly converted to any

reference type. When we assign null to a reference variable
or pass it as an argument to a method, it’s converted



automatically to the type of the target variable. Here we
can compare x with null because the null reference is
compatible with the MusicTrack reference type.

Comparing Array Variables

C# arrays are always reference types, so comparing array
variables works the same way as comparing references. C#
arrays are the built-in syntax for declaring and using a
sequence of elements that are always allocated on the
heap. An array variable is a reference to the elements of
the array. In Listing 5-8, we create two arrays with
identical elements and use == to compare them.

int[] x = {10, 20}; 

int[] y = {10, 20}; 

Assert.That(x == y, Is.False);

Listing 5-8: Implicitly initializing and comparing two

arrays

The compiler deduces the size of each array based on
the values we use to initialize them. The two arrays have
identical elements but compare unequal because
comparing two arrays with == performs a reference
comparison using the intrinsic ceq instruction. The x and y
variables in Listing 5-8 are references to different arrays
and thus don’t compare equal, so the test passes.

When we compare two array variables, the comparison
doesn’t consider the array elements; it uses only the
identity of the two array variables, so two array references
compare equal only if they refer to the same array instance.
To check whether two arrays have the same elements, we
must manually compare each individual element or use a
library facility such as System.Enumerable.SequenceEqual.

Strings and Value Equality



Although string variables are references, when we compare
them we’re usually more concerned with whether their
contents are the same rather than whether they refer to the
same string instance.

The string class overloads the default behavior of == and
Equals to give strings value-like semantics. Comparing
strings with either == or Equals performs a value-based
rather than reference-based comparison. It’s possible to
have more than one reference to a single string instance on
the heap, and those references will still compare equal.
However, it’s also possible to have two independent string
instances that have the same content, and those instances
also compare equal.

For example, in Listing 5-9, the x and y variables don’t
refer to the same string instance but do have the same
value at run time.

var monarch = "Henry"; 

var number = "IV"; 

var x = $"{monarch} the {number}"; 

var y = $"{monarch} the {number}"; 

Assert.That(x == y, Is.True); 

Assert.That(x.Equals(y), Is.True); 

Assert.That(ReferenceEquals(x, y), Is.False);

Listing 5-9: Comparing string values

The string class customizes the behavior of both == and
the Equals method, so the x and y variables compare equal
because they both have the same content, although they’re
references to distinct instances. Since string overrides the
behavior of ==, we use the ReferenceEquals method here to
perform a reference comparison. ReferenceEquals is a static
method defined on object and performs an identity
comparison between any two reference type variables. In



this example, ReferenceEquals returns false because its
arguments are references to different objects on the heap.

The x and y variables in Listing 5-9 both use string
interpolation to insert the values of named variables within
the string, ensuring that x and y really are distinct
instances—at least in debug mode. If we use two simple
string literals, as we do in Listing 5-10, ReferenceEquals gives
us a different result.

var x = "Henry the IV"; 

var y = "Henry the IV"; 

Assert.That(ReferenceEquals(x, y), Is.True);

Listing 5-10: Comparing string literal values

This test shows that x and y really are the same instance
in memory, even though they were independently assigned
to two apparently separate strings. The reason for the
different behavior is that the compiler conserves memory
by using string interning, whereby it maintains an intern

pool containing a single instance of each unique string
literal used in a program. This way, even if the same string
literal appears more than once in the code, only one
instance is in memory. Strings are immutable, so having
multiple references to one instance can never cause
aliasing issues.

We can use the intern pool ourselves at run time,
although we have other memory considerations to take into
account. We might save memory on individual string
values, but the intern pool itself isn’t routinely garbage
collected and will most likely stay in memory until the
program terminates.

We can determine whether two string variables refer to
separate instances with ReferenceEquals or another method,
but it rarely matters. Whether two string variables are



references to one string instance or two separate instances
with the same contents, they still compare equal.

Custom Equality for Classes

If we want value-based rather than reference-based
equality for our own class types, we override the Equals
method and define operator== for the class to customize the
behavior of equality comparisons. There are several aspects
to a complete implementation of equality comparisons in a
class, so we’ll build it up in stages and implement each part
in turn so you can better understand how all the
components fit together.

Our first task is to customize the virtual Equals method
for the class. The MusicTrack class in Listing 5-11 has two
string properties, and we define Equals so that two instances
of MusicTrack compare equal if the values for both fields
compare equal.

public sealed class MusicTrack 

{ 

    public MusicTrack(string artist, string name) 

        => (Artist, Name) = (artist, name); 

    public string Artist {get;} 

    public string Name {get;} 

    public override bool Equals(object? obj) 

        => obj is MusicTrack other && 

            this.Artist == other.Artist && 

            this.Name == other.Name; 

}

Listing 5-11: Overriding the Equals method

Because we’re customizing the implementation of an
inherited virtual method, we use the override keyword, and
the method’s signature must match the signature of the
base class method being overridden. Note that compiling



this code will issue a warning that we haven’t overridden
GetHashCode. We’ll address that shortly.

The virtual Equals method takes a single nullable object
reference, which we need to cast to our implementing type
in order to compare it with the current instance. Here we
use a declaration pattern to declare the other variable if the
obj parameter is non-null and there’s an identity conversion
or implicit reference conversion from the type of obj to
MusicTrack. An identity conversion simply means a type can
be converted to itself. An implicit reference conversion can
take several forms, but for simplicity here it means that
MusicTrack is a base type of the run-time type of obj. In this
example, since MusicTrack is a sealed class, the type will
match exactly (an identity conversion) or not match at all.

If the obj variable’s type matches the pattern, obj is cast
to the specified type and assigned to the other variable. The
other variable is therefore a MusicTrack reference, and we
use it to compare its properties with those of the current
instance to see if they’re equal.

Defining Equality Operators

The Equals method is seldom used directly, because most
programmers find using == more natural than calling Equals.
It’s generally desirable that == and Equals have identical
behavior, and we achieve that most simply by implementing
operator== for the MusicTrack class to call the Equals method
we’ve already defined.

Operator definitions such as operator== are static
methods. The operator== definition takes two parameters, at
least one of which must be of the type implementing the
operator. The return type is most often bool, although that’s
not a strict requirement. The usual implementation has
both parameters of the same type, allowing us to use == to
compare two instances, as shown in Listing 5-12.



public static bool operator==(MusicTrack? left, MusicTrack?

 right) 

{ 

    if(left is null) 

    { 

        return right is null; 

    } 

    else 

    { 

        return left.Equals(right); 

    } 

} 

public static bool operator!=(MusicTrack? left, MusicTrack?

 right) 

    => !(left == right);

Listing 5-12: Defining operator== for the MusicTrack class

If we provide operator==, we must also implement a
matching operator!=, which we do simply by inverting the
result of calling the == operator method.

Since MusicTrack is a class, either or both of the
arguments to the operators could be null, so we make that
expectation explicit by using the nullable reference syntax
for the parameters. If both arguments are null, they
compare equal. If left is non-null, we call the Equals
method, passing right as the argument even where right is
a null reference. Our implementation of Equals already
handles null being passed to its parameter.

Handling Comparisons with null

In Listing 5-12, we used the constant pattern and the is
keyword to compare the left and right parameters with
null. If we compared them with == instead, operator== would
call itself recursively because null is implicitly converted to
MusicTrack in those comparisons. Applying the constant
pattern here avoids that pitfall because the is null



expression never calls a user-defined operator==
implementation. The compiler translates all such
comparisons to use the intrinsic ceq instruction.

Since the contents of the if and else blocks are simple
expressions, we make the implementation of operator==
more compact in Listing 5-13 by using the ternary
operator, which has the form expression ? result if true :
result if false.

public static bool operator==(MusicTrack? left, MusicTrack?

 right) 

{ 

    return left is null ? right is null : left.Equals(righ

t); 

}

Listing 5-13: A more compact implementation of

operator==

We can further simplify the code for operator== by
employing the null-conditional operator ?., which invokes
an instance method only if the variable used to make the
call is non-null. In the expression x?.y, if x is null, the result
of the whole expression is null; otherwise, the result is x.y.
Using the null-conditional operator to implement operator==
makes the implementation much more compact, especially
if we also make the operator an expression-bodied method,
like so:

public static bool operator==(MusicTrack? left, MusicTrack?

 right) 

    => left?.Equals(right) ?? right is null;

Here, the Equals method is called only if the left
parameter is not null, since we’ve used the null-conditional
operator on the left variable. We combine the null-



conditional operator with the null-coalescing operator ??,
which evaluates its right-hand expression only if the whole
left expression is null. If left is null, then left and right are
equal if right is also null.

The null constant pattern, the null-conditional operator,
and the null-coalescing operator are all different ways of
testing whether a reference is equal to null without
invoking an Equals method or ever calling a user-defined
operator== implementation. While we can customize both
Equals and operator==, we can’t change the behavior of
comparisons made with the is keyword or the null-
conditional and null-coalescing operators.

Making Type-Safe Comparisons

When we compare values for equality, we’re most
commonly comparing two values of the same type, which is
why the usual implementation of operator== has two
matching parameters. Our Equals method, however, takes
an object parameter, which must be cast back to MusicTrack
so we can compare its individual property values. We can
avoid this cast by writing an overload of Equals that takes a
MusicTrack parameter, shown in Listing 5-14.

public bool Equals(MusicTrack? other) 

    => other is not null && 

        this.Artist == other.Artist && 

        this.Name == other.Name;

Listing 5-14: A type-safe Equals method

We still need to compare the argument with null, and,
as we did for operator==, we use the constant pattern to
make that comparison as efficient as possible. To avoid
duplicating the code for comparing the property values, we
alter the Equals(object?) method to call the type-safe
overload like this:



public override bool Equals(object? obj) 

    => Equals(obj as MusicTrack);

Although we’re employing a run-time cast using the as
keyword, Listing 5-14’s overload of Equals taking a
MusicTrack? parameter is much more likely to be called than
this overridden method with an object? parameter. In
particular, our implementation of operator== will always call
the type-specific overload because the parameters to the
operator are both MusicTrack variables.

Since we’ve overridden Equals for the MusicTrack class,
the compiler will warn us that we should override
GetHashCode too.

Working with Hash Codes

The Equals and GetHashCode methods are closely associated.
Like Equals, GetHashCode is defined on object and is virtual.
The GetHashCode method is used by collection types like
Dictionary and HashSet to efficiently store and look up keys.
Essentially, a data structure such as a hash table uses an
object’s hash code to identify its location within the data
structure. When we add a new key or try to locate an
existing one, the lookup algorithm quickly identifies the
correct place in the table by using a hash code.

However, a particular hash code in the table may
identify several different keys, because although the items
in a hash table are usually unique, hash codes don’t have to
be. When we add a new item to a hash table and the item’s
hash code already exists in the table—a scenario known as
a collision—the Equals method is used on each key with a
matching hash code to verify whether the table already
contains the new item. This is why Equals and GetHashCode are
so closely related.

A key can be any object, as long as these two rules are
followed:



Objects that are equal according to Equals have the
same hash code.
The hash code for an object being used as a key doesn’t
change.
Ideally, each unique hash code will identify a single key

—meaning we avoid the need to compare several objects
via Equals—and so searching for a key is much faster. When
we search for a key in the table, if the hash code is
matched by only a single key, it must be the required key
as long as the two rules have been followed. Ensuring that
hash codes are widely distributed is recommended to
increase the likelihood that each hash code uniquely
identifies one key.

For class types, the default implementation of
GetHashCode uses an object’s identity rather than its value to
create a hash code, just as the default implementation of
Equals compares object identities, not their state. If two
references are equal, they must also have the same hash
value, because they refer to the same instance. The default
hash code for an instance also never changes. However, if
we accept the default behavior of GetHashCode for classes, we
must take extra care when using class types as keys.

We can safely use any class type that doesn’t override
the GetHashCode method as a key, but when we search for an
object in a hashing collection like a Dictionary or HashSet, we
must make sure to use the exact same instance of the
object that was originally inserted. If we try to look up an
item with a different instance, the item won’t be found. To
demonstrate, consider Listing 5-15, where we use a new
object instance to find a key in a HashSet.

public sealed class Character 

{ 

    public Character(string name) 

            => Name = name; 



    public string Name {get;} 

} 

var cast = new HashSet<Character> 

    { 

        new Character("MacReady") 

    }; 

var key = new Character("MacReady"); 

Assert.That(cast.Contains(key), Is.True);

Listing 5-15: Using a Character class identity as a key

The test in this example fails because we’re searching
for a different instance of the Character class than was
added to the HashSet. Since Character doesn’t override the
GetHashCode method, the instance being looked up has a
different hash code than the item contained in the HashSet,
even though both instances have the same state.

Creating a Suitable Key

Failing to find a key in a collection has important
consequences. Elements in a HashSet and keys in a Dictionary
should be unique. When we attempt to insert a new key, it
should be added only if it isn’t already in the collection.
However, if the key exists but can’t be found, we’ll get a
duplicated key. The new object will be erroneously added
to the table, effectively corrupting the collection.

Needing to rely on using a single object instance to both
insert and search for any particular key in a hashing
collection is usually overly restrictive. If, for example, the
collection is populated from a file or user input, the original
instances frequently aren’t immediately at hand when we
come to search for a specific item. It’s much more
convenient for objects used as keys to generate their hash
codes according to their state, not their identity. That way,
we can use any key with the same state to identify an
object in the table.



As things stand, the MusicTrack class we defined in
Listing 5-11 isn’t suitable as a key for a HashSet or Dictionary
because it breaks the first of the two cardinal rules—that
equal objects produce identical hash codes—because we’ve
customized equality to compare the objects’ state. To make
MusicTrack behave correctly, we must also override
GetHashCode and ensure that two instances of MusicTrack that
compare equal according to our customized Equals method
produce identical hash codes. To do that, we’ll generate a
hash code using the same properties that determine
whether two instances are equal. Listing 5-16 shows one
way to implement GetHashCode for the MusicTrack class.

public override int GetHashCode() 

    => HashCode.Combine(Artist, Name);

Listing 5-16: Overriding GetHashCode

We use the HashCode static class from the Standard
Library, which combines multiple arguments to create
reasonably well-distributed hash codes. Our
implementation of GetHashCode uses the same properties of
MusicTrack as the Equals method in Listing 5-14, so two
objects that compare equal will always generate identical
hash codes.

Using Floating-Point Numbers as Keys

Using a floating-point number as the key in a hash table
can result in keys being lost, in much the same way as
relying on the default object implementation of GetHashCode
for class types. As you saw earlier, comparing floating-point
numbers for strict equality isn’t reliable. In Listing 5-17, we
try to identify whether the collection has a specific double
value.



var history = new HashSet<double>(); 

var rate = 0.1 + 0.2; 

history.Add(rate); 

Assert.That(history.Contains(0.3));

Listing 5-17: Using floating-point numbers as keys

This test fails because the value 0.3 doesn’t exactly
match the representation of 0.1 + 0.2. Because calculations
using double values are imprecise, they’re generally a bad
choice as keys in a hashed collection. By extension, the
same reasoning applies to user-defined types that have
floating-point field values; comparing objects of such a type
for equality necessarily means comparing any floating-point
fields, with the same potential for errors.

In a type with floating-point fields, we might be tempted
to override its Equals method by using an approach similar
to the ApproximatelyEqual implementations from Listings 5-3
and 5-4, but doing so would introduce two problems. First,
equality is a transitive relationship between values: for
three values x, y, and z, if x is equal to y, and y is equal to z,
then x must be equal to z. Implementing Equals to mean
approximately equal means the transitive relationship
wouldn’t necessarily hold, because the difference between
x and z could be larger than any tolerance we define, even
when x.Equals(y) and y.Equals(z) are both true.

The second issue is directly related to hash codes.
Recall that objects that compare equal should have the
same hash code. Using ApproximatelyEqual to implement
Equals could easily break that rule, because two almost

equal values will still produce different hash codes. We
could implement GetHashCode to ignore any floating-point
fields, but doing so would compromise how well our
objects’ hash codes are distributed. It also raises the
question of what to do about types that have only a single



field that’s a floating-point value, such as the Speed and
Angle types we developed in Chapter 1.

Floating-point numbers and types containing floating-
point values, then, don’t make good keys for hash tables,
dictionaries, and other data structures that depend on the
implementation of GetHashCode. Unfortunately, C# doesn’t
allow us to prevent a particular type from being used as a
key in a hash table or similar data structure, because
GetHashCode is defined on object and can’t be hidden. It’s up
to us to make sure that the keys we use are suitable for
that purpose.

Strings make excellent keys for hash tables, because
the string class overrides Equals and GetHashCode to compare
the string contents. This is the same behavior the compiler
adds for us in record and record struct types. Both the
Equals method and GetHashCode are synthesized by the
compiler, so record and record struct instances use their
value for equality comparisons and for generating their
hash codes. Although records are reference types, like
strings they work very well as keys, subject to the caveats
we’ve just discussed regarding floating-point fields.

The compiler also generates operator== and its
companion operator!= for records and record structs. They
follow the same general pattern we’ve used for MusicTrack,
where operator== uses the Equals method, and operator!=
returns the inverse of the result of operator==. The compiler
does not generate any of these methods for ordinary
structs, which instead rely on the ValueType base class
common to all struct types.

Structs and Equality

Since value type instances are copied by value, every value
type variable is a distinct instance of the type, so two
instances can never compare equal according to their
identity. We need to compare their values, meaning that we



compare their state instead. This usually involves
comparing each field of one instance with the
corresponding field of another.

Structs implicitly inherit from the System.ValueType class,
which provides the value-based equality required for value
types. By default, calling Equals on a struct will use the
ValueType implementation, because Equals is a virtual
method. As Chapter 2 explained, for its implementation, the
ValueType.Equals method relies on reflection, which provides
the correct behavior for any possible struct type at the
expense of performance. While it might not be the most
efficient comparison, the ValueType.Equals method uses each
field’s Equals method to compare the field with its
companion, so it has the behavior we require. Similarly,
ValueType also overrides GetHashCode to create hash codes
based on a struct’s fields, ensuring that any two struct
instances that are equal according to Equals also generate
identical hash codes.

Overriding Equals for Structs

Overriding the default Equals and GetHashCode methods for
struct types is common in order to address that the
ValueType implementations of those methods may not be
optimal. Implementing efficient equality for structs follows
a similar pattern as for classes, as shown in Listing 5-18,
where we create a struct to represent color values.

public readonly struct Color 

{ 

    public Color(int r, int g, int b) 

        => (Red, Green, Blue) = (r, g, b); 

    public int Red {get;} 

    public int Green {get;} 

    public int Blue {get;} 

    public bool Equals(Color other) 

        => Red == other.Red && 



           Green == other.Green && 

           Blue == other.Blue; 

 

    public override bool Equals(object? obj) 

        => obj is Color color && Equals(color); 

    public override int GetHashCode() 

        => HashCode.Combine(Red, Green, Blue); 

}

Listing 5-18: Overriding equality for a Color struct

As we did with MusicTrack in the previous section, we
override the base class Equals method and add a type-
specific overload taking a Color parameter. There are subtle
differences, related to null, from the MusicTrack
implementations of those methods. As a struct type, Color
instances can’t be null, so the type-safe Equals method takes
its Color parameters by value rather than nullable
references, and we don’t check for null in the
implementation of Equals(Color).

In the Equals(object?) override, we use a declaration
pattern to cast the obj variable to the correct type. We used
a declaration pattern in Listing 5-11 for MusicTrack but later
switched it for the simpler as run-time cast. We can’t use as
in our struct implementation because if the cast fails, the
result is null, which can’t be assigned to a struct variable.
As noted in Chapter 2, we can use as to cast to a nullable
Color, but in that case the argument would match the Equals
method with an object? parameter instead of our type-safe
overload, making the method recursive. Applying the
declaration pattern here avoids that issue.

The GetHashCode implementation is identical in principle
to the MusicTrack implementation from Listing 5-16.

Struct types don’t allow comparison with == by default.
If we want to support such comparisons, we must define
our own operator== for the type. The equality operator is



straightforward to implement in terms of our Equals
method, as shown here:

public static bool operator==(Color left, Color right) 

    => left.Equals(right); 

public static bool operator!=(Color left, Color right) 

    => !left.Equals(right);

While Equals is a virtual instance method and is
overridden by ValueType, operator== is a static method and
therefore can’t be virtual. Static methods are never
inherited, so these operators couldn’t usefully be
implemented by the ValueType class.

Since a Color variable can’t be null, we can simply use
the left variable to call Equals, passing right as the
argument to invoke our type-safe implementation that takes
a Color parameter by value. The equality operators are
therefore simpler than their equivalents for a class, and,
more significantly, the left and right variables won’t be
boxed when calling Equals. Notice that rather than inverting
the result of ==, we invert the result of calling Equals. The
effect is identical in both cases, but this version of != avoids
the extra indirection of also calling operator== and the
additional copies of the arguments it would involve.

Another reason a default implementation for structs
provided by ValueType would be useless is that, as discussed
earlier, an operator overload requires the type of at least
one of its parameters to match the implementing type. We
can’t, for instance, define our own operator== to compare
two object variables because that would hijack the default
behavior of == for object variables. Comparing two object
variables with == always compares identities, since those
variables are references. This has important consequences
when an object variable refers to an instance of a value type
like Color that’s been boxed.



Boxing Values and Comparing by Identity

Values are implicitly boxed anytime we use a reference
type variable to refer to a value type instance. Because
value types have value-based equality and reference type
variables have reference-based equality, boxing has
implications for object identity and equality. We went to
some effort to ensure that Equals and == have identical
behavior when comparing Color instances, but when we
compare Color values that have been boxed, Equals and ==
behave differently.

To illustrate how boxing affects equality, Listing 5-19
creates two instances of the Color struct, but instead of
having the compiler deduce the variable types as Color, we
explicitly declare them as object, causing the values to be
boxed. The variables aren’t equal when we use == to
compare them.

object x = new Color(0xFF, 0xA0, 0); 

object y = new Color(0xFF, 0xA0, 0); 

Assert.That(x == y, Is.False);

Listing 5-19: Explicitly boxing values

This test passes because reference variables are
compared by their identity. These x and y variables are
references to different boxed Color values on the heap,
approximately as shown in Figure 5-1.



Figure 5-1: Boxed values in memory

The boxes for the two Color instances in Figure 5-1
could be anywhere on the heap; the way that memory is
allocated is determined by the CLR. When we use == to
compare the x and y variables, the instance values aren’t
considered. Even though Color has an overload of operator==
to allow comparisons using == between two Color values,
that custom equality implementation isn’t invoked when we
compare the two object references. This is because
operator== is a static method that requires two Color
arguments, not two object arguments. The comparison with
== therefore correctly returns false, because the two object
variables refer to independent instances.

If we make the comparison using the Equals method
instead, the variables compare equal because the Equals
method is virtual:

Assert.That(x.Equals(y), Is.True);

The x variable used to invoke Equals is an object
reference but still refers to an instance of Color, so here it’s
our override of Equals that’s called. If Color didn’t override
Equals, the ValueType implementation would be called
instead. In either case, Equals returns true because the two
instances of Color have exactly the same state.



We can think of a boxed value as an instance of a simple
reference type on the heap that contains a copy of the value
in a field with the same type as the original value. Since the
box is on the heap, it can be referenced by more than one
reference variable, as shown in Listing 5-20.

var color = new Color(0xFF, 0xA0, 0); 

object x = color; 

object y = x; 

Assert.That(x == y, Is.True); 

Assert.That(x.Equals(y), Is.True);

Listing 5-20: Two references to one boxed value

In this example, x is a reference to a boxed value, and y
is a different reference to the same box, illustrated in
Figure 5-2.

Figure 5-2: Adding a reference to an existing box

The x and y variables compare equal with == because
both x and y are references to a single instance. The
comparison with the virtual call to Equals also returns true
because an instance will always compare equal with itself.

Boxed Method Parameters

A value will be automatically boxed when we pass it to a
method that takes an object or other reference type
parameter. The effects are the same as assigning directly



to an object variable, as we did in Listing 5-19, but the box
is less obvious in our code.

Consider Listing 5-21, where we pass the same value
twice to the object.ReferenceEquals method, which takes two
object parameters and compares them for identity equality.

Color x = new Color(); 

Assert.That(object.ReferenceEquals(x, x), Is.False);

Listing 5-21: Passing values as boxed arguments

This test asserts that the two arguments to
ReferenceEquals are not equal. Should the test pass?

Yes, it should. The arguments to ReferenceEquals are
different object variables. Passing a value type as an
argument to an object parameter boxes the value. Even
though the same value is passed to both parameters, each
argument is boxed separately, resulting in two independent
boxes. The outcome is identical to explicitly boxing the
same value into separate object variables, like this:

object a = x; 

object b = x; 

Assert.That(object.ReferenceEquals(a, b), Is.False);

The value of x is explicitly boxed into two separate
object references. The call to ReferenceEquals is equivalent to
a == b, and they do not compare equal because they’re
different objects.

Compare Listing 5-21 with the following, where we
explicitly box the value to an object variable before calling
ReferenceEquals:

object x = new Color(); 

Assert.That(object.ReferenceEquals(x, x), Is.True);



We pass the same reference for both arguments to
ReferenceEquals, so they compare equal. The call to
ReferenceEquals in this instance is identical to the expression
x == x, and the x variable is a reference to a boxed Color, as
shown in Figure 5-3.

Figure 5-3: Passing an already-boxed value to a method

The ReferenceEquals method receives two arguments, but
they’re references to the same boxed value on the heap.

Quite apart from testing variables for equality, we need
to be sure we understand where values are being boxed
and whether our own code is using a boxed value. Boxing
affects what identity means for a value—and while this is
most apparent when we’re comparing two values, it also
has wider implications, such as whether we need to be
concerned about aliasing or side effects.

Interface Boxes

We can refer to an object via any of the interfaces
implemented by the type. To demonstrate, in Listing 5-22
the Angle value type implements IFormattable, one of the
common system interfaces provided by the Standard
Library. In this code snippet, we use the interface name to
refer to two instances of Angle.

public readonly struct Angle : IFormattable 

{ 

    --snip-- 



} 

IFormattable x = new Angle(); 

IFormattable y = new Angle(); 

Assert.That(x == y, Is.False);

Listing 5-22: Referring to a value via interface name

An interface type is a reference type that defines the
public operations guaranteed to be available for a type that
implements it. Variables of interface type are always
references, regardless of the implementing type. Referring
to value type instances via interface variables must
therefore box the value, with the result that the comparison
in Listing 5-22 is effectively the same as when the values
were boxed into object variables in Listing 5-19.

The x == y expression in this example, then, performs a
reference check for equality that will compare object
identities. The values returned from each of the new Angle
expressions will be boxed so that the references x and y can
refer to them, and each will refer to different boxes. The x
and y variables will compare equal if we use x.Equals(y),
owing to the virtual nature of the Equals method.

Comparing Generic Variables

We use a generic type or method to implement functionality
that works for a range of other types, often for both
reference types and value types transparently. In the
context of a generic type or a generic method, a given
variable might represent either a value or a reference at
different times during a program’s execution.

This poses an issue for equality comparisons of generic
variables; in particular, using == to compare variables typed
by a generic parameter will never invoke a user-defined
operator== implementation. If a generic parameter is
unconstrained, we can’t even use == to compare two
variables of the same generic type.



NOTE

C# v11.0 introduces a preview feature named static
abstract interface members that enables you to use user-

defined operators, including operator==, in generic code.

For more information on this feature, see

https://learn.microsoft.com/en-us/dotnet/csharp/whats-
new/tutorials/static-virtual-interface-members.

Consider the simple generic class in Listing 5-23, which
uses == to compare two variables declared using the
generic type parameter T. As it stands, this class won’t
compile.

public class Playlist<T> 

{ 

    public void PlayNow(T item) 

    { 

        if(item == current) 

        { 

           --snip-- 

        } 

    } 

    private T current; 

}

Listing 5-23: Generic type parameter comparison

Playlist is a generic class with a type parameter that by
convention is named T. We’d generally refer to this class as
a Playlist of T.

We can’t use == to compare the item parameter with the
field current because when T is an unconstrained type
parameter like this, the == and != operators can be used
only to check instances of T for equality or inequality with
null.

https://learn.microsoft.com/en-us/dotnet/csharp/whats-new/tutorials/static-virtual-interface-members


If we add a general class constraint, or a specific base
class or interface type constraint for T, the comparison item
== current will compile, but it will always represent a
reference comparison. C# has no generic constraint we can
add for T to allow the expression x == y to invoke an
overloaded operator==, where x or y is typed by a generic
parameter.

We can invoke the Equals method, which will call an
overridden implementation if one exists on whatever type T
represents at run time. The Equals method is defined on the
object base class and so is available to any variable,
regardless of its actual type. However, when the type of T is
a value type, the argument may be boxed by calling the
Equals method that takes object? as its parameter.

Generic Code and the Equals Method

In Listing 5-11, we implemented equality for our MusicTrack
type so that instances of them compare by value rather
than by identity. In Listing 5-18, we did the same for the
Color struct to override the ValueType.Equals method. To
make the comparison more efficient, we added a type-safe
overload of Equals for both types by taking the parameter as
MusicTrack and Color, respectively, rather than object,
thereby preventing the argument from being boxed.

In the current implementations of MusicTrack and Color,
however, their type-safe overloads of Equals won’t be used if
called using a generic type parameter variable. When Equals
is called using a generic variable, the virtual method with
an object? parameter is called by default. For the MusicTrack
class, that merely results in an extra run-time cast, but for
the Color struct, the parameter will be boxed to object and
then unboxed again to compare Color’s properties.

To demonstrate, Listing 5-24 uses Color as a type
argument for the generic HashSet collection type. The
HashSet< T >.Contains method uses a combination of



GetHashCode and Equals to determine whether any item in the
collection matches the orange argument.

var colors = new HashSet<Color>(); 

var orange = new Color(0xFF, 0xA0, 0); 

colors.Add(orange); 

Assert.That(colors.Contains(orange), Is.True);

Listing 5-24: Searching a collection of Color values

The test passes, but the Equals(object?) method will be
used, because the HashSet.Contains implementation has no
way of knowing that Color implements a type-safe overload
of Equals that takes a Color parameter directly. This matters
for Color because it’s a struct, and so every comparison will
box the argument to an object reference. If the HashSet
contains a large number of elements, that boxing could well
represent many unnecessary copies of Color.

The same would be true of a HashSet containing
MusicTrack elements, and although the impact is a little less
costly, it’s still an unnecessary inefficiency.

To have generic code prefer our type-safe Equals over
the more general implementation inherited from object, our
types must implement the IEquatable< T > interface.

The IEquatable<T> Interface

When we implement the IEquatable< T > interface on any
class or struct, we’re signaling to generic code that the
type has a public type-safe implementation of Equals. The
IEquatable< T > interface specifies that the type represented
by T contains an implementation of Equals taking a T as its
parameter. Generic code such as HashSet< T > can detect
that a generic type implements IEquatable< T > and will use
the type-specific overload of Equals if it’s available. Listing
5-25 shows how our Color struct would implement the
IEquatable< T > interface.



public readonly struct Color : IEquatable<Color> 

{ 

    --snip-- 

    public bool Equals(Color other) 

        => other.Red == Red && 

           other.Green == Green && 

           other.Blue == Blue; 

    --snip-- 

}

Listing 5-25: The IEquatable< T > interface

This Equals method is identical to the original type-safe
method from Listing 5-18; the difference is that Color
indicates the presence of that overload by explicitly
implementing IEquatable< Color>. Now when we use a Color
as the element type for a HashSet or other generic collection,
any comparison using Equals will use our type-safe
implementation and avoid the need to box the argument.

This works because generic collections like HashSet don’t
invoke Equals directly; instead, they defer the comparison to
a helper class named EqualityComparer< T >, which internally
selects a type-specific Equals method if T implements the
IEquatable< T > interface. If T doesn’t implement the
interface, the virtual Equals(object?) is used instead.

We can use the EqualityComparer class in our own generic
code to automatically select the best available
implementation of the Equals method for a generic
parameter type variable. Listing 5-26 shows the usual
pattern for checking equality via an EqualityComparer object.

public void PlayNow(T item) 

{ 

    var comparer = EqualityComparer<T>.Default; 

    if(!comparer.Equals(Current, item)) 

        Current = item; 

}



Listing 5-26: Equality using the EqualityComparer< T >

class

The EqualityComparer< T >.Default static property returns
an implementation of the standard IEqualityComparer< T >
interface with the appropriate behavior for the T type
parameter. When T implements IEquatable< T >, the Default
property returns an implementation of IEqualityComparer< T >
that uses the type-specific overload of the Equals method.

Besides HashSet, the Dictionary collection and some LINQ
algorithms use IEqualityComparer< T > to define equality
between elements. They can all be given a specific
IEqualityComparer< T > implementation, so we can provide
our own implementation of it to customize that behavior.
We’ll use this technique in Chapter 8 to modify the
behavior of the SequenceEqual method.

The EqualityComparer< T > class is designed for generic
code but can be useful when equality comparisons need to
be made in the most general and efficient manner possible.
One such situation is in code generated by the compiler.

Compiler-Generated Equality

The compiler itself is capable of synthesizing a correct and
complete implementation of equality for some types. The
code generated by the compiler uses the same techniques
we’ve been exploring. In this section, we’ll look at examples
to better appreciate what the compiler is prepared to
generate on our behalf, even for something as fundamental
as equality comparison of variables.

Records and Record Structs

Records and record structs give us a compact way of
creating a type that has value semantics built in. Records
are syntactically different from both classes and structs,



but in the CIL they’re just classes with some compiler-
generated features, including overrides of the Equals and
GetHashCode methods. Similarly, record structs are structs in
the compiled code and have most of the same compiler-
provided features as records.

The notable exception is that the compiler implements a
Clone method for records, but not for record structs. Clone
emulates copying a record instance by value to support
non-destructive mutation, which we examined in Chapter 4.
Since record structs are natively copied by value, they have
no need for a Clone method.

Both records and record structs implement IEquatable< T
>, and the compiler-generated type-specific overload of the
Equals method compares each field of the type, exactly as
we did earlier in MusicTrack and Color. The GetHashCode
method implementation uses all the fields to provide well-
distributed hash codes. All this is in contrast to plain
structs, where the default value-based equality behavior is
provided by a common base class, ValueType.

This simple Color type is implemented as a positional
record and demonstrates admirably how compact a record
definition can be:

public sealed record Color(int Red, int Green, int Blue);

This positional syntax for a record causes the compiler
to create three properties for Color, each with the same
name and type as the respective positional parameters
defined for the type. The compiler also provides a public
constructor with those three parameters to initialize the
three property values. This positional syntax can be used
for records and record structs.

Inside Record Equality

All records are classes, but they have value-based equality
semantics, courtesy of the implementation of the IEquatable<



T > interface provided automatically by the compiler. The
Equals methods shown in Listing 5-27 are almost—but not
quite—the same as those generated for the Color record by
the compiler.

public bool Equals(Color? other) 

    => (object?)other != null && 

       GetType() == other.GetType() && 

       EqualityComparer<int>.Default.Equals(Red, other.Red)

 && 

       EqualityComparer<int>.Default.Equals(Green, other.Gre

en) && 

       EqualityComparer<int>.Default.Equals(Blue, other.Blu

e); 

public override bool Equals(object? obj) 

    => Equals(obj as Color);

Listing 5-27: Equality implementation generated for a

record

The compiler-generated type-safe Equals method can
directly access the backing fields for the Red, Green, and Blue
properties and thus avoids the extra method calls shown
here for reading the property values. Note how the Equals
method uses the EqualityComparer< T > class to compare each
value, so if the type of any property implements IEquatable<
T >, the type-safe implementation of Equals will be used.

Records can, by default, inherit from other records, so
equality isn’t quite as simple as comparing each object’s
fields. The other parameter for Equals could in that case
refer to an instance of a more derived record. Checking for
equality of objects that could have different run-time types
requires extra care. In most cases, objects of different
types aren’t equal, which is why we use GetType on the
second line of the Equals(Color?) method in Listing 5-27.

Our Color record is sealed and doesn’t inherit from
another record. Therefore, checking the type is redundant



because the other parameter can’t refer to anything other
than an instance of Color.

Since the Color record is sealed and has no base types,
we should consider making it a record struct. Record
structs compile down to struct definitions, which can’t be
inherited or have null values, making their internals
simpler. The type-safe Equals method for a record struct
type doesn’t check for null or whether the types match but
is otherwise the same as for a record.

In addition to implementations of the Equals and
GetHashCode methods, the compiler generates operator== and
a corresponding operator!= for records and record structs.
The implementation of operator== invokes the Equals method,
so record variables exhibit value-based equality when
they’re compared with ==, rather than the default identity-
based comparison that classes have. We confirm this
behavior for our Color record in Listing 5-28.

var red1 = new Color(0xFF, 0, 0); 

var red2 = new Color(0xFF, 0, 0); 

Assert.That(red1 == red2, Is.True); 

Assert.That(ReferenceEquals(red1, red2), Is.False);

Listing 5-28: Comparing records with ==

Here we see that two Color variables compare equal,
because even though they’re definitely not two references
to a single instance, the state of the instances is the same.

Custom Implementations for Record Equality

The compiler will normally generate at least two versions of
Equals for a record or a record struct: one taking an object
parameter (or object? within a nullable context) and the
other implementing the IEquatable< T > interface, which
performs the comparison of each instance’s fields. The
version taking an object parameter casts its argument to



the required type and invokes the type-specific overload if
the cast is successful, as we did for the Color record in
Listing 5-27. We can provide our own implementation of
the type-safe Equals method for a record or record struct
type, in which case the compiler uses our implementation
instead of generating one. If we do so, we should
implement our own GetHashCode to match, which will also
replace the compiler-generated implementation.

However, we can’t provide our own implementation of
operator== or operator!= for comparing two record or record
struct instances. If we attempt to do so, the compiler gives
us an error:

[CS0111] Type 'Color' already defines a member called 'op_Eq

uality' with the same parameter 

types

op_Equality is the name of the static method to which the
compiler translates operator==. The name for operator!= is
op_Inequality, and the compiler always provides both
methods, preventing us from defining our own.

We should almost always accept the default
implementation of equality for records and record structs,
as the compiler-generated code is both correct and
efficient. However, if we need to customize the behavior of
equality for a record or record struct, we need only
override the type-safe Equals method. Each of the other
equality methods, including the overridden Equals method
taking an object parameter, ultimately calls the type-
specific overload to perform the actual comparison. The
compiler’s implementation of the == operator is identical to
that shown here for Color, so if we alter the behavior of the
Equals method, that behavior is also reflected in the
implementations of operator== and operator!= provided by the
compiler:



public static bool operator==(Color left, Color right) 

{ 

    if((object)left == (object)right) return true; 

    return (object)left != null && left.Equals(right); 

} 

public static bool operator!=(Color left, Color right) 

    => !(left == right);

When we define a positional record or positional record
struct, the compiler synthesizes a complete type, along
with methods to support equality comparisons. The
compiler generates code to support equality for nullable
value types, too, although in a very different way.

Equality for Nullable Values

We denote a nullable value type by using the special ?
notation on a value type variable. The compiler translates a
nullable value type to an instance of the system type
Nullable< T >, where T is the declared type for the variable.
Nullable< T > is a struct, instances of which may have a
value of type T or no value (represented by null).

Comparing nullable value type variables differs from
comparing references, which may be null, because for two
nullable value type variables, we must always compare
each underlying value if one exists. To illustrate, consider
Listing 5-29, where we compare two nullable value type
variables, one with a value and the other null.

public readonly struct Color 

{ 

    --snip-- 

    public static bool operator==(Color left, Color right) 

        => left.Equals(right); 

    public static bool operator!=(Color left, Color right) 

        => !left.Equals(right); 

} 

Color? fg = new Color(0xFF, 0xA0, 0); 



Color? bg = null; 

Assert.That(fg == bg, Is.False);

Listing 5-29: Comparing nullable values

Both fg and bg in this example are nullable, but while fg
has a Color value, bg is null. The test passes because the
values aren’t equal. Two nullable value type variables are
equal if both have no value, or if both have a value and
those values are themselves equal. What’s interesting
about this example is that while Color has a custom
operator== to compare two Color values, it accepts two non-
nullable Color parameters. Since Color is a struct, null isn’t a
valid value for it, although null is a valid value for a
nullable Color.

The Nullable< T > struct doesn’t have an overloaded
operator== of its own. When the compiler encounters code
comparing two nullable value types, or a nullable value
type and a normal value type instance, it rewrites the
comparison by inserting the implementation from the
corresponding operator definition for the underlying—non-
nullable—value type. This process is known as lifting the
operator. Since one or both of those arguments may have
no value, the lifted operation makes the additional checks
for the existence of a value before finally comparing those
values by using the original, non-nullable comparison.

For this reason, if T has no operator== defined, the
comparison of two T? variables fails to compile, because the
compiler has no operator implementation to lift. The
lifted_op_Equality method in Listing 5-30 is fictional but
demonstrates the basic algorithm for the lifted equality
comparison operation.

bool lifted_op_Equality(Color? fg, Color? bg) 

{ 

    if(fg.HasValue && bg.HasValue) 



        return fg.Value == bg.Value; // uses Color.operator=

= 

    else 

        return !fg.HasValue && !bg.HasValue; 

}

Listing 5-30: The lifted equality operator

The compiler doesn’t generate a new method for this
algorithm but simply inserts logic inline in our code,
replacing the original comparison using == in Listing 5-29
with the equivalent of the following:

Assert.That( 

    fg.HasValue == bg.HasValue && 

    (!fg.HasValue || fg.GetValueOrDefault() == bg.GetValueOr

Default()),

Is.False);

The logic of this code is essentially identical to that in
Listing 5-30, but it’s a single expression and thus easier for
the compiler to inline. The reason for using GetValueOrDefault
instead of the Value property is that the latter needs to
check that a valid value exists and will throw an exception
if it doesn’t. GetValueOrDefault is therefore slightly more
efficient.

Although nullable value types are instances of the
special system type Nullable< T >, the same functionality
couldn’t be implemented by Nullable< T > simply having its
own operator== to perform the comparison. The purpose of
lifting the underlying type’s operator== is to ensure that
when both variables have a value, they’re compared exactly
as if they were non-nullable types—that is, direct instances
of the original value type. An operator== implementation for
Nullable< T > would need to use == to compare two instances
of the generic type T, which, as we know, isn’t allowed.



By lifting the underlying type’s operator==, the compiler
ensures that the correct behavior is maintained and that
values compare the same way whether or not they’re
nullable types.

The compiler also generates code inline to support
comparisons of value tuple variables, introduced in C#
v7.0, although the process for value tuples is a little
different.

Value Tuples and Equality

Tuples are a common feature of many modern
programming languages to gather several related values
together into a single lightweight data structure. A tuple in
C# is similar to a struct with all public fields and no
member methods, although the syntax for declaring and
using a tuple is different from doing so for such a struct.

Compiler support for tuple types supersedes the
System.Tuple class introduced in .NET v4.0. The more
modern feature, available since C# v7.0, is known as a
value tuple. Value tuples are underpinned by a system type
named ValueTuple, but that type isn’t intended to be used
directly. Instead, when we want to relate several fields
together without the overhead of adding a full user-defined
class or struct, we use the value tuple syntax.

Value tuples enjoy sophisticated support from the
compiler, both in how variables are declared and in how
they can be used. Listing 5-31 shows an example of
comparing value tuple variables for equality.

var x = (10, "October"); 

var y = (ShortMonth: 10, LongMonth: "October"); 

Assert.That(x == y, Is.True);

Listing 5-31: Comparing value tuple variables for

equality



We’re declaring two tuple variables, x and y, by
surrounding multiple values with parentheses; this syntax
is common in several languages with tuple support and
probably familiar to many programmers. However,
although the x and y variables have the same values, they
look distinctly different from each other in their
declarations. In particular, y gives names to its component
parts, whereas x doesn’t. The test determines that x and y
are equal and passes.

NOTE

Support for using == to compare value tuples was

introduced in C# v7.3, shortly after value tuples were

introduced.

When we compare value tuple variables with ==, the
compiler generates code to compare each element of the
value tuple with the corresponding element in the other
value tuple. The elements of a value tuple are public fields,
not properties, meaning that reading or writing a value
accesses the field directly. As with nullable values, the
compiler rewrites our comparison expression by inserting
the code to compare the fields of x and y directly.

The CIL extract in Listing 5-32 shows just the
comparison of the tuples’ first component in Listing 5-31.

IL_0021: ldloc.2    // V_2 

IL_0022: ldfld      !0/*int32*/ valuetype System.ValueTuple`

2<int32, string>::Item1 

IL_0027: ldloc.3    // V_3 

IL_0028: ldfld      !0/*int32*/ valuetype System.ValueTuple`

2<int32, string>::Item1 

IL_002d: bne.un.s   IL_0042

Listing 5-32: New-style value tuple comparison CIL



The compiler directly loads the fields by using the ldfld
instruction and then compares those values by using the bne
instruction, which stands for break if not equal. The bne
instruction is a companion to the ceq instruction we
encountered in Listing 5-1. Whereas ceq pushes its result
onto the evaluation stack, bne jumps to the specified label
(IL_0042 in this example) if the values being compared are
not equal; otherwise, processing continues from the next
instruction following bne.

The fact that we’re attempting to compare a simple
tuple with a tuple that has named elements is irrelevant.
The generated code doesn’t attempt to use the names
we’ve given the fields. It’s comparing only their values, so
the result of x == y is true. We could compare x with a tuple
using different names with the same result; only the types
and values of the fields matter.

The names we give the tuple components are a purely
compile-time construct for our convenience. In fact, the
names we give the y variable’s components never even
make it into the compiled code.

As with the generated code for comparing Nullable< T >
values, the compiler will inject code to call a user-defined
operator== if needed. You can see this in Listing 5-33, which
shows the CIL for the comparison of the second component
of our tuples, a string field.

IL_002f: ldloc.2   // V_2 

IL_0030: ldfld     !1/*string*/ valuetype System.ValueTuple`

2<int32, string>::Item2 

IL_0035: ldloc.3   // V_3 

IL_0036: ldfld     !1/*string*/ valuetype System.ValueTuple`

2<int32, string>::Item2 

IL_003b: call      bool [System.Runtime] System.String::op_E

quality(string, string)



Listing 5-33: The call to a user-defined equality operator

inserted by the compiler

Instead of the bne instruction used for the int field, the
compiler has synthesized a call to op_Equality, exactly as if
we’d handwritten the code. Fields of a value tuple are
compared in the order in which they appear, so the first
field of one is compared with the first field of the
corresponding variable, and so on.

This approach differs from records, which use the
EqualityComparer protocol instead of == to compare their
fields. For records, the compiler generates the right
methods on the underlying class or struct type to
implement equality. When we compare two records with ==,
we’re invoking the op_Equality method generated for the
record type. That method compares each field of the record
in turn by using its Equals method.

For value tuples, as with nullable value types, the
compiler generates the comparison code inline, effectively
replacing the comparison of two tuples with a direct
comparison of the component fields of each tuple type. If a
component field of the tuple has an operator== defined for it,
that implementation is used, but like Nullable< T >, the
ValueTuple type used to implement value tuples has no
operator== of its own.

If the fields can’t be compared using either ceq or
operator==, our code using == to compare the value tuple
fails to compile. The ValueTuple type does override the Equals
method and also implements the IEquatable< T > interface.
Therefore, if a field has no operator==, we can still compare
value tuple variables with Equals, which in turn will call
each field’s Equals method, safe in the knowledge that Equals
is always there, whatever type we’re using.

Summary



All animals are equal, but some animals are more equal than others.

—George Orwell, Animal Farm

For such a simple expression, comparing two variables for
equality can represent a wide variety of behavior, from
using a simple built-in equality check with ceq in the
compiled code all the way up to the compiler automatically
generating the correct code to perform a comparison.
We’ve looked at how references are compared, how
overriding the Equals method and == operator can affect
behavior, and how the compiler can generate code to make
sure the “right thing” happens.

For many programmers, using == to compare variables
comes more naturally than calling the Equals method. For
the built-in numeric types, using == is always more efficient,
although with the binary floating-point types float and
double, we have to be cautious of using either approach.
Notwithstanding that, the cost of calling a method is very
small, but it can never be as fast as the intrinsic ceq
instruction.

The purpose of examining these effects in such intricate
detail is to demonstrate that we can’t necessarily take for
granted what such a simple expression does when a
program runs. The run-time complexity of any expression
may be hidden from view, perhaps masked by the compiler
choosing an unexpected method overload or override
instead of a direct comparison between two variables.
Certainly the performance costs in such examples are
small, but they might be significant in “hot” paths through
a program.

Boxing value type instances can have a significant effect
on performance, not only because boxing generates copies
of the value, but also because those copies are put on the
heap and add pressure to the garbage collector. The
standard IEquatable< T > and EqualityComparer< T > types help



us avoid many cases where boxing would otherwise be
required, especially in generic code.

We should always be aware of those circumstances
where the compiler generates code on our behalf, but in
the case of equality comparisons, the compiler goes to
quite a lot of trouble to make sure that code is as efficient
as possible.



6

THE NATURE OF VALUES

C# gives special meaning to
the term value type, but the

concept of a value certainly isn’t unique
to C#. In this chapter, we’ll revisit values
more generally and identify some key
characteristics that indicate whether we
should implement something as a value
type. We’ll look at the unique and
important role of values and value types
in our programs, and how implementing a
well-behaved value type requires more
than just using a struct or a record struct.

We’ll explore the following:
How to improve our designs by employing value type
objects to encapsulate behavior
How overriding the native reference semantics for some
types adversely affects their behavior



What application roles are fulfilled by different object
types, and what characteristics define those roles
Why equality isn’t the same as equivalence
How to identify appropriate candidates for value types
in our applications
Every application is different, and it’s our responsibility

to create solutions to problems that are specific to a
particular program. Ultimately, that requires us to use our
own judgment on how best to apply our chosen
programming language. In C#, to some extent, that means
selecting whether we want to use classes, structs, records,
or record structs for the types we create.

It’s not appropriate for everything to be a value type;
sometimes value semantics isn’t suitable for the
functionality we need. When choosing among the different
types, we need to decide when value semantics makes
sense for a type—and, equally importantly, when it doesn’t.

Value vs. Reference Semantics

The term value semantics is widely used to describe value
types, usually in contrast with its counterpart, reference

semantics. However, while reference semantics is easily
defined in terms of indirect access to instances via
reference variables (or similar mechanisms in other
languages), value semantics is often ill-defined or
superficially explained as something value types possess. In
C#, value types are epitomized by the struct.

Structs differ from classes in C# most conspicuously in
that struct instances are copied by value, meaning the copy
is a whole new instance. As a result, structs are commonly
referred to as having value semantics. We might infer,
then, that value semantics means that an instance is copied
by value, and the C# Language Specification certainly
supports this definition (https://docs.microsoft.com/en-gb

https://docs.microsoft.com/en-gb/dotnet/csharp/language-reference/language-specification/structs):


/dotnet/csharp/language-reference/language-specification

/structs):
[Structs] can be conveniently implemented using value semantics where
assignment copies the value instead of the reference.

As we’ve discussed in earlier chapters, copying by value
is a direct consequence of the way value type variables use
memory. The value of every value type variable is a
complete instance of the type. When the value is copied,
the copy is necessarily a whole new instance of the type,
including copies of each field’s value from the original
instance. This differs from copying reference variables,
where the copy is a new reference to the same instance in
memory as the original variable. The original object’s field
values aren’t copied at all.

The difference in copying behavior is merely a result of
how value types and reference types are represented.
Reference variables may be copied frequently, but the
instances they refer to are rarely copied, which is a
convenient and efficient use of memory. Struct and record
struct variables are copied by value because they can’t be
copied any other way. However, copying behavior is only
one part of the difference between value and reference
semantics.

Copying and Equality Comparison Behavior

Equality comparison behavior is closely related to the way
variables are copied. When we make a copy of a variable,
the copy should compare equal to the original variable.
That may seem obvious, but it’s the reason all structs
inherit Equals from ValueType and why that default
implementation of Equals for structs is so important.
Without ValueType, a copy of a struct variable wouldn’t
compare equal with the original value, because struct
variables are copied by value. The copy is a distinct
instance in its own right, and the default reference
comparison offered by object.Equals would never compare

https://docs.microsoft.com/en-gb/dotnet/csharp/language-reference/language-specification/structs):


the copy and original values as equal. The Equals method
inherited from ValueType performs a value-based comparison
to ensure that when we copy a value type instance, the
copy and original variable will compare equal.

When we compare references, we’re checking to see
whether they represent the same specific instance, not
whether those instances look alike. The behavior of the
Equals method inherited by class types from object matches
the copying behavior of references, because copying a
reference variable doesn’t also copy the instance.

Being copied by value isn’t, on its own, what endows a
value type with value semantics; it’s simply the mechanism
defined in the language for copying variables of struct type.
In fact, copy-by-value behavior isn’t even a necessary
ingredient of value semantics. Take, for example, the string
class, which overrides the default behavior of Equals and
operator== to perform a value-based comparison. As noted in
Chapter 5, string is a class, and string variables are
references, but when we compare two string variables,
we’re most often interested in whether they both have the
same content—that is, whether their character sequences
are the same.

For the purposes of equality comparisons, at least, a
string’s value is the sequence of characters, not the actual
value of the reference. Whether the two variables refer to
the same string in memory is almost always irrelevant.
Since string variables are references, string instances
aren’t routinely copied by value, but they are compared by
value.

When we’re trying to define or understand value
semantics, equality behavior is more significant than the
way variables are copied. In the broader sense, a value type
is any type that bases its equality comparisons on its state;
that is, two value type objects are equal if they have the
same value. By extension, there’s more to value semantics



than a type being implemented as a struct or record struct;
having value semantics is what makes a type a value type,
if we accept a wider interpretation of the term value type

than the definition in the C# Language Specification.
We can override that behavior for any of our own class

types too, but doing so is not always appropriate.

Reference-Based Comparisons

Most objects have some state, whether that’s private
instance fields or public property values. We might be
tempted to override the default reference equality behavior
for all our classes and always use that state as an object’s
value for comparisons. However, although we can model
values by using a class, as C# does with string, having a
value and being a value are very different. Most types
aren’t intended to be values, and the default reference
comparison is more appropriate for the majority of the
classes we create.

As an example of reference-based comparisons being
important for an object, consider the Login class in Listing
6-1 for a system tracking logged-in users. Since Login is a
class, the semantics of reference comparisons makes sense
for it because we need to be able to distinguish between
individual instances.

public sealed class Login 

{ 

    public string   UserName {get;} 

    public DateTime Established {get;} 

    public bool     Active {get; private set;} 

    --snip-- 

    public void Disconnect() 

    { 

        Active = false; 

    } 

}



Listing 6-1: Reference-based equality matters for class

types.

Even though the public properties directly expose the
state of a Login instance, using those properties to
implement equality would be a mistake. Two instances of
Login with the same property values might easily represent
different connections. Even if we presume that the UserName
property is unique across all users, we may still need to
identify an individual login in systems that allow multiple
connections by the same user. The same user might even
log in twice at exactly the same moment, so distinguishing
different connections by their Established property isn’t
sufficient.

If we overrode the Equals method for Login to compare
its property values, we couldn’t use Equals to distinguish
between different instances with identical properties. If we
needed to forcibly disconnect a specific connection by
calling its Disconnect method, we’d want to be certain we
were disconnecting the right one! We therefore need to be
able to identify a specific instance of a login, regardless of
the values of its public properties.

We could use a mechanism other than Equals to
distinguish between different instances with identical state,
but we’d be adding extra complexity to support
functionality that a normal reference-based comparison
already provides.

Reference Semantics and Side Effects

The difference between value semantics and reference
semantics is also defined partly by the potential for side
effects via aliasing references, which in turn is closely
associated with mutability. If we change an object via one
variable and expect the change to be visible via another
variable, we need reference semantics.



The Login class from Listing 6-1 has a Disconnect method
that alters the internal state of an instance. If we call the
Disconnect method by using one reference variable, we
expect every reference to that instance to become inactive.
As Listing 6-2 demonstrates, we also expect no other
instances to be affected.

var mac = new Login("macreadyrj"); 

var norris = new Login("norrisv"); 

Assert.That(mac.Active, Is.True); 

Assert.That(norris.Active, Is.True); 

var thing = norris; 

thing.Disconnect(); 

Assert.That(norris.Active, Is.False); 

Assert.That(mac.Active, Is.True);

Listing 6-2: Intentionally changing an instance via a

shared reference

Here, we copy the norris reference variable and call the
Disconnect method on the copy, setting its Active property to
false. Although we never use the norris variable to call
Disconnect, the state of the instance norris refers to is
changed after Disconnect is called because that instance has
been modified via a different reference. The mac variable
refers to a separate instance of Login, so it’s not affected by
the change to thing.

We want reference semantics for the Login class
because it means we can have many references to a
specific Login instance. We can pass a reference as an
argument to methods and arrange for those methods to
intentionally modify that instance. We don’t need to worry
about searching for all other references to the modified
instance to make sure they’ve been updated with our
changes, because references have that behavior built in.



A slightly more subtle outcome of reference semantics
is that if we change the state of a reference type instance
via one reference, the variable will still compare equal to
any other references to the same instance. Listing 6-3
checks that two references compare equal even after the
instance has been modified by one of those variables.

var norris = new Login("norrisv"); 

var thing = norris; 

Assert.That(norris.Equals(thing), Is.True); 

thing.Disconnect(); 

Assert.That(norris.Equals(thing), Is.True);

Listing 6-3: Checking for reference equality

This example demonstrates that when we change an
instance of a reference type, that change is visible via all
other references that are equal to the reference used to
make the change. The outcome is that if two reference
variables compare equal once in a reference-based
comparison, and neither variable is assigned to a different
instance, they’ll always compare equal because references
are equal when they have the same identity.

Object Identity

The identity of an object is what distinguishes it from other
objects of the same type. Two reference type instances
have different identities—they’re independent objects—
regardless of whether they have fields containing the same
values. We can think of the address of an object as its
identity, although this is only an analogy: an object’s
address can change if it’s moved in memory because of
heap defragmentation or other memory management tasks,
but the object retains its identity.

In Chapter 2, you saw how the lock statement relies on
reference semantics; that’s one example of an object’s



identity being more important than the state it contains,
even though the underlying Monitor class doesn’t attempt to
mutate the object used as a lock in any way. The
implementation of Monitor relies on knowing the identity of
a specific object instance, and that the identity is valid
across multiple threads of execution.

Reference semantics is an important element in our
toolbox so that we can identify a specific object instance,
not just an object that has the same state as another object.
Two reference variables to different class instances with
exactly the same state shouldn’t usually compare equal.

The one exception occurs when we’re using a class to
model a value type. In this case, the identity isn’t
important, because we’re deliberately giving the class
value semantics. The string type is a classic example. This
type isn’t a struct for valid reasons that are mostly
concerned with efficiency: as a class, a string’s contents
won’t be copied frequently, and its values will never be
boxed. Nevertheless, string variables are compared by
value, and using them is intuitive and straightforward
thanks to value semantics for equality. Most classes,
however, aren’t intended to model values.

For types intended to have value semantics, instance
identity has little or no significance. Values should be
referentially transparent: we can switch one instance of a
value with a different instance without affecting the
program’s logic or behavior, provided both instances have
identical state.

An object’s identity is important when we can alter that
object’s state, because identity is the only characteristic
that distinguishes one object instance from another. The
native reference equality of reference types tells us which

variables will reflect a change we make to a particular
instance.

Value-Based Comparisons



If the Login type in Listing 6-1 were a struct or record struct
instead of a class, the final assertions in Listings 6-2 and 6-
3 would fail because the Disconnect method would be
changing a different instance from the variable used in the
assertion. Value types are useful when we don’t need the
aliasing behavior of reference semantics or the ability to
have multiple references to a single instance. Contrast the
Login type in Listing 6-1 with the Color type in Listing 6-4.

public readonly struct Color 

{ 

    public int Red {get; init;} 

    public int Green {get; init;} 

    public int Blue {get; init;} 

} 

var crayon = new Color {Red = 0xFF}; 

var pencil = new Color {Red = 0xFF};

Listing 6-4: Comparing the state of two Color values

This Color type is a struct, making it a value type. The
two variables crayon and pencil are clearly different
instances, but they have the same color value and thus
should compare equal. The only interesting aspect of the
Color type, at least as far as testing two instances for
equality is concerned, is its state. Two Color instances
should compare equal if—and only if—their externally
visible property values match.

From one perspective, the value of a Color is its identity,
because identity is what distinguishes one object from
another. Values are transient in that we can make one at
any time with a given state. If we create multiple instances
of a value type with the same state at different times or in
different methods, then for all intents and purposes, they’re
the same value because they’re indistinguishable, although



the mechanics of the language means they’re necessarily
separate instances.

It is legitimate to say that equal values can be
substituted for one another. Take, for example, the
archetypal value type in C#: the int. Two integers with the
same value might as well be the same integer. That may
sound obvious, but the important point is that we—and our
programs—don’t care whether they’re the same int in
memory or two independent variables. All that matters is
whether they have the same value.

In a sense, values have lifetimes that are beyond the
technical boundaries imposed by scope or memory
management. If two value type instances have exactly the
same contents, and that’s all that matters, they’re
indistinguishable from each other. For this reason, as you’ll
see next, values are usually immutable.

Mutability

Values are sometimes characterized as being eternal: their
lifetimes aren’t bounded by a variable’s scope within a
program or even by the lifetime of the program itself. We
can, in a sense, pluck values out of thin air to use them.
When we need the number 100, we just “materialize” it as a
constant value.

This characteristic isn’t limited to the built-in value
types. The same is true of other values, such as a monetary
amount like $9.99, the string "To be, or not to be", and the
date January 1st 2024. They’re just there when we need
them.

In practice, real variables certainly do have a
measurable lifetime, and each instance requires storage, so
we can’t simply dismiss the technical needs of our
environment. Nonetheless, the theoretical view of eternal,
immutable values is a useful way to model the way our own
value types should behave.



When we add two numbers, we don’t change either of
them; rather, we get a new number representing their sum.
Similarly, adding a day to a DateTime or rounding an amount
of money to the nearest whole dollar doesn’t alter the
original—it produces a new value.

We can’t change the value of the number 100,1 but we
can produce a new number by using 100 in an expression
with another number. If we add 1 to 100, the value of 100
doesn’t go away, even though we have a new number as a
result of the expression. The same holds true for dates,
speeds, lengths, temperatures, and other natural values.
Values are immutable by nature.

Immutability can seem like an unnecessary restriction
when we’re creating types that represent values. After all,
if we increase a speed value, we might not care about the
previous value. Isn’t it usually more efficient to change a
value in place than to create a new instance with a changed
value? Well, perhaps—we’d have to measure that. However,
immutability has other, more subtle consequences and
benefits.

Two immutable values—and remember from Chapter 4
that read-only isn’t always the same thing as immutable—
that compare equal will always do so. This has important
implications for keys in hashed containers such as
Dictionary collections. Hashed containers depend on the
invariance of their keys. If we change the value of a
particular key after it’s been added to a container, we can’t
subsequently use the value to look up an item because, in a
sense, we’ve altered that key’s identity by changing its
value.

The difference between state and instance identity is
largely about equality. Specifically, when we check to see if
one value equals another, are we interested in whether
they have the same state or whether they’re the same
object? If it’s the latter, we need a class. If it’s the former—



we’re interested in the content and don’t care whether the
variables are the same instance—we need a value type.

Mechanics vs. Semantics

The Microsoft documentation has a section entitled
Framework Design Guidelines that includes advice on
choosing between classes and structs but not much
guidance on when value semantics are a positive choice for
a type. Among other suggestions, the guidelines offer this
(https://docs.microsoft.com/en-us/dotnet/standard/design-

guidelines/choosing-between-class-and-struct):
Consider defining a struct instead of a class if instances of the type are
small and commonly short-lived or are commonly embedded in other
objects.

This doesn’t seem unreasonable if we take it at face
value. In particular, the rationale behind value types being
small is directly related to memory usage and copy-by-value
behavior: structs that have many fields take up more
memory space, and the cost of copying a value from one
location to another is correspondingly higher.

However, this advice is focused purely on memory use
and performance implications, and it’s silent on when we
should use records or record structs. Other semantic
differences between value types and other types exist that
we should take into account. While recommendations like
this can guide us, they tell only a small part of the story.
Every application will have its own requirements,
constraints, and behavior. We don’t have one single rule to
apply that will be appropriate universally.

Policies that insist, or at least suggest, that value types
have few data members and be short-lived focus on the
technical mechanisms of memory representation and use,
rather than the more conceptual premise of what behavior
the type should exhibit. Values might often be small, but
that doesn’t mean that all small types should be structs. A
reference type might have only a single field, but that

https://docs.microsoft.com/en-us/dotnet/standard/design-guidelines/choosing-between-class-and-struct):


doesn’t automatically indicate that it should be a struct or
other value-like type.

Correspondingly, just because we require a type that
has several fields doesn’t mean that it can’t be a value type.
If value semantics make sense for our type, we should
make it a value type, regardless of how much data it carries
with it. The number of fields required by an object
shouldn’t be the main factor in our decision-making. If
we’re worried about the cost of copying large values, we
might endow a reference type with value-like behavior to
address those concerns, a topic we’ll revisit in Chapter 8.

One way we can determine where we might use value
types is to compare their characteristics with other types in
a program. Although we can’t consider every possible
object type for any potential application, some common
categories of object roles are shared by many programs, as
we’ll discuss next.

Object Relationships

Object-oriented applications comprise a variety of objects
with different roles, responsibilities, and interactions.
These roles are characterized by the relationships between
objects and how those objects collaborate to form a
coherent application.

When we’re designing an application, it’s easy to
overlook the central role played by values and value types.
If we recognize their importance, we can often simplify our
designs and make our programs clearer and easier to
reason about.

We might think of a value as simply the payload of a
variable, whether that’s the representation of an int or the
properties of an object on the heap. It’s tempting to view
the values we use as incidental to an application’s purpose.
Doing so can lead us to unduly rely on the built-in types and
to oversimplify our custom value type implementations,



resulting in what Martin Fowler describes as an anemic

domain model.
The types used in an anemic design are perfunctory

representations for common concepts in the design,
especially for the value types. Such types often consist only
of public properties, all of which have public getters and
setters. They have no other associated behavior, instead
relying on the surrounding code to perform common tasks
such as data validation, calculations, and even managing
comparisons. In turn, this leads to duplicated code,
scattered error handling, and fragmented responsibilities.

The antidote to anemic design is a rich domain model,
in which different kinds of types have individual roles and
well-defined responsibilities. Each type incorporates
behavior specific to it, rather than the behavior being
scattered around the rest of the code. To successfully
identify the types our applications require, we must
recognize that objects aren’t all the same; however, objects
in even the most complicated systems do fall into a few
categories.

Kinds of Objects

If we don’t take care to partition our application’s roles,
our design can end up becoming incoherent, making it
difficult to manage and maintain. Once we recognize the
main roles that different kinds of objects can play, we can
classify the types we create by those roles, giving our
designs more structure and making them easier to
understand and work with. Objects fall broadly into one of
four categories:
Values

Values are responsible for ensuring that an
application’s data is valid and consistent and for
controlling access to that data. They don’t usually
outwardly collaborate with other objects in a system,



except to contain other values. A value’s properties
commonly don’t change over time, but new values with
different properties occur frequently.

Services

Services are boundary objects that represent interfaces
to systems that are external to the application. Services
are often stateless; they can be used and accessed as
they’re needed. They may be perpetual, meaning they
are static types or have a global instance, or they’re
ephemeral and instantiated as and when required.
Services may be used by many objects but generally
have few collaborations of their own.

Entities

Entities are the higher-order design elements in an
application. Whereas values are the currency of
information, entities represent the transactions that use
or act upon that information. They are often persistent,
in the sense that they remain in memory rather than
being created and destroyed often. They may change
their properties over time—perhaps frequently—
according to the needs of the system, and they
collaborate often with other entities. An entity’s
properties are generally either other entities or values.

Controllers

Controllers are the task objects in a system: they do
things. Entities and controllers generally cooperate to
perform activities. Controllers are often also persistent
and may have some state, which is usually related to
their collaborations with other objects. Controllers are
frequently employed to mediate the interactions
between entities and services.
These are the application roles that define the behavior

of a specific design and solution domain. These four are
common in most systems, although not all applications will



use or need all of them. Other categories of objects—such
as collections, lifetime managers, and exceptions—have
supporting roles in an application rather than being design
elements in a system.

Values in C# are usually represented by structs,
records, or record structs, although they can be modeled
using classes, as you’ve seen with string. Each of the other
roles will almost always be fulfilled by a class. Up to this
point, the term object has been reserved for reference type
instances. If we consider a value to be another kind of
object, we have a common and uniform basis for comparing
the characteristics of all the objects in an application.

The characteristics of a particular object, then, suggest
the role it’s fulfilling. Put another way, we can identify an
object’s role by looking at the characteristics of that
object’s implementation.

Object Characteristics

The three non-value roles—service, entity, and controller—
are strongly behavioral in the sense that we use them to
perform operations or tasks. By contrast, values tend to
have a passive role in a system and are generally used by
other objects.

Behavior is one of three main characteristics shared by
all objects in a system, as described by Grady Booch and
his coauthors in Object-Oriented Analysis and Design with

Applications (Addison-Wesley, 2007). The other two
primary characteristics are state and identity (see Figure 6-
1), and the importance of each relative to the others is
different for every application role.



Figure 6-1: Characteristics of objects

Booch and his coauthors describe the three
characteristics as follows:
Behavior

An object’s behavior describes what it can do or its
visible attributes. Those two aspects are frequently
interrelated: when an object performs an action, the
result may change its visible properties. The visible
properties may form part or all of an object’s state. A
type’s public interface defines the behavior of instances
of that type; that is, the interface tells us what an object
can do rather than how it’s implemented.

State

The state of an object is defined by its member data,
which may be persistent and immutable or may change
over time. As just indicated, the state may be publicly
visible in the interface or private and hidden, used only
within the internal implementation of the type.

Identity

Every instance of a type has a distinct identity, which,
as you’ve seen, allows us to distinguish one object from
another. Identity is important when we need to know
whether a variable represents a shared instance or a
local value.



Each object role prioritizes different object
characteristics, and in some cases, multiple characteristics
are important for a given role. We can identify which role
an object fulfills by looking at its profile in terms of these
characteristics.

Values

Of all the application roles, values attach the most
importance to their state; it is literally their distinguishing
feature. Values always have some kind of behavior
associated with the concept they represent, but that
behavior doesn’t alter the state. In most cases, the behavior
is represented by properties to access the component parts
of the state. A value might also have methods to return
different representations of its state, or factory methods for
creating new values. In any case, all of a value object’s
behavior is directly related to its state.

Values are strongly typified by their equality semantics,
where one value is equal to any other with the same state.
They’re immutable and don’t usually collaborate with other
object types. Values frequently use other value types as
fields, as demonstrated by the Product and Purchase types in
Listing 6-5.

public readonly struct Product : IEquatable<Product> 

{ 

    public Product(string desc, decimal amount) 

        => (Description, Price) = (desc, amount); 

    public string Description {get;} 

    public decimal Price {get;} 

 

    --snip-- 

} 

public readonly struct Purchase : IEquatable<Purchase> 

{ 

    public Purchase(DateTime time, Product product, int qty) 

        => (Time, Product, Quantity) = (time, product, qty); 



    public DateTime Time {get;} 

    public Product Product{get;} 

    public int Quantity {get;} 

    --snip-- 

}

Listing 6-5: Defining value objects

Both the Product and Purchase structs implement the
IEquatable< T > interface, similar to the value types we
examined in Chapter 5. Along with their properties, Product
and Purchase both emphasize equality behavior, represented
by the IEquatable< T > protocol, although that behavior is
secondary to and entirely dependent on their state (see
Figure 6-2).

Figure 6-2: Value object characteristics

Here, you can see how the state of a value object is its
primary feature; we distinguish different values by their
state rather than identity, and values with identical state
can be used interchangeably. The behavior characteristic
for values is less prominent than the state, although
equality semantics certainly make it important. However,
the identity of a value is immaterial, so it’s not shaded.

Services



Service objects often only encapsulate behavior and have
no state. They generally provide some kind of façade or
adaptation logic to interfaces that represent systems
outside an application.

Identity usually isn’t important for service objects.
Services may be global and have a well-known instance
available throughout the application, or they may be
created as required, but each instance is indistinguishable
from all the others, since none has any state. Services are
sometimes implemented as purely static interfaces (as a
static class with only static methods), like the InternetTime
class in Listing 6-6.

public static class InternetTime 

{ 

    public static async Task<DateTime> CurrentTime(Uri provi

der) 

    { 

        using var client = new HttpClient(); 

        var body = await client.GetStringAsync(provider); 

        return Deserialize.DateAndTime(body); 

    } 

}

Listing 6-6: Implementing a static service

This InternetTime class is a service that merely exposes a
static method; it has no identity because there is no object.

Figure 6-3 illustrates that the behavior of a service
object isn’t just its most important characteristic—it’s
frequently its only characteristic.



Figure 6-3: Service object characteristics

For services, like values, object identity is irrelevant,
but for slightly different reasons. When a service object has
an identity, such as when it’s implemented as a globally
accessible object, we can substitute that instance with a
different object, as long as its public interface is the same.
As we know, values are interchangeable if they have the
same state. Unlike values, services rarely have any state, so
state and identity are both unshaded in Figure 6-3.

Entities

Entities often do have some kind of state, which means we
need to be able to distinguish one instance from another.
An entity’s state is usually observable only through its
behavior, which may involve either reading or modifying
the state. Entities commonly don’t directly expose their
state but instead provide methods to manipulate or access
representations of it in different forms.

Consider the Account class in Listing 6-7, which has a
method to add purchases to the account, affecting the
account balance. The balance itself isn’t represented
directly as state in the Account class but is calculated from
outstanding charges.



public class Account 

{ 

    public virtual decimal ChargeToAccount(Purchase item) 

    { 

        activity.Add(item); 

        return CalculateBalance(); 

    } 

    public virtual decimal CalculateBalance() 

        => activity.Sum(item => item.Product.Price * item.Qu

antity); 

    public virtual IEnumerable<Purchase> Statement 

        => activity.OrderBy(item => item.Time); 

    private readonly List<Purchase> activity = new(); 

}

Listing 6-7: Creating an entity object

Entities may also have behavior that doesn’t relate
directly to their state but perhaps updates or modifies
another entity object parameter. Abstract and virtual
methods are a fairly common feature of entity types (as in
the Account entity here), allowing them to be inherited, with
derived types customizing the base class behavior.

We’re usually interested in using a specific instance of
an entity type, so object identity is critical, regardless of
whether we have multiple instances with identical state.

As shown in Figure 6-4, then, entities place fairly high
importance on all three object characteristics.



Figure 6-4: Entity object characteristics

Controllers

Controllers also often have some state, but they differ from
entities in that the state affects the way controllers perform
their task. One example is a database Command object whose
state includes a connection to a data source and a
representation of an SQL instruction. A controller may well
expose its state publicly and even allow it to be directly
changed, affecting the controller’s behavior. For example,
consider how the Command class’s Execute method uses the
Query property in Listing 6-8.

public class Command 

{ 

    public Command(DatabaseConnection connection) 

        => (this.connection, Query) = (connection, string.Em

pty); 

    public string Query {get; set;} 

    public QueryResult Execute() 

    { 

        connection.Open(); 

        var result = connection.ExecuteQuery(Query); 

        connection.Close(); 

        return result; 

    } 

    private readonly DatabaseConnection connection; 

}



Listing 6-8: Defining a controller

The Command object allows us to change its SQL
instruction via the mutable Query property. We can
repeatedly call the Execute method on one Command instance
to obtain different results, rather than creating a new
Command object for every query.

Controllers, as illustrated in Figure 6-5, are principally
characterized by identity and behavior. They depend on
their state to some degree but tend to rely on it less than
entities do, because that data is used to support or modify
the controller’s behavior rather than being a hidden
implementation detail.

Figure 6-5: Controller object characteristics

Individual implementations of controller objects may
attach more or less importance to their state or their
behavior, depending on their specific requirements.
However, as with entities, a controller object’s identity is
almost always significant, because we need to be able to
distinguish between different instances. Reference
semantics are often important for both entities and
controllers so that any changes to an instance are reflected
by all references to it.



Design Refinement to Model Object Roles

The three characteristics of identity, state, and behavior
give us a relatively simple metric we can apply to
determine whether an object most closely resembles a
value, entity, controller, or service. We can use this
information to refine a design or to refactor code. Looking
at an object’s characteristics might tell us that it has too
much responsibility or represents a mixture of application
roles, and we should adjust the code accordingly.

An object that’s highly dependent on its state, and that
has different instances with identical state that are
considered equal, is a strong contender for being a value. If
the identity of a specific instance is important, however, it
most likely shouldn’t be a value, so we’d look to the other
characteristics to determine which of the non-value roles it
best represents. If we can’t clearly identify a specific role
based on an object’s characteristics, we should take the
opportunity to decompose the type to better model
individual roles with separate abstractions.

When designing a system, programmers often look for
the main characters—that is, the service, entity, and
controller roles. Identifying value type candidates isn’t
always so straightforward, which may be one reason
they’re often represented by the built-in types, such as int,
double, or string.

An object should have a single responsibility and fulfill
just one application role. By being mindful of the relative
merits of identity, state, and behavior, we can more closely
and clearly model our objects’ roles. Because values place
so much importance on their state, everything about a
value is focused on that state, whether obtaining,
reporting, or manipulating it. Identifying the value types in
an application helps us simplify our design by partitioning
responsibilities and encapsulating behavior.



Abstraction and Vocabulary

Some objects stand out as good candidates to be values—
for example, simple measurements and quantities, such as
speed, temperature, distance, length, and money. Such
objects are often simple wrappers around primitive types
like int and double. Each logically represents a single
concept as an abstraction. We can’t easily decompose them
other than to revert to using primitive types.

We use the names of these types to form part of the
vocabulary of a program. We write the program in terms of
specific concepts like Speed and Length rather than more
general-purpose types like double. More than that, when we
talk to other people working on the same project, the
names we use match the names in the code.

Using a specific named type instead of a built-in
primitive type also prevents simple errors, such as
mistakenly using a temperature value when we mean to use
a length. If, for example, we pass an instance of a
Temperature type to a method expecting a Length, the
program won’t compile. Such errors are easy to miss when
we use built-in types like double to represent values for both
length and temperature.

Other value candidates are less easily represented with
primitive types because they consist of multiple
components. Types to represent concepts such as currency
rates of exchange, color spaces, Cartesian coordinates, and
telephone numbers each have several related parts. Still,
they all represent distinct abstractions to which we can
give meaningful names like FxRate, Color, Coordinate, and
PhoneNumber.

The names we give our types should provide vital
information about their purpose. We could collect the red,
green, and blue components of an RGB color space into a
simple tuple type, but it would be hard to distinguish such a
value from a tuple containing the x, y, and z components of



a three-dimensional coordinate value. Creating separate
user-defined types for Color and Coordinate makes our code
easier for other programmers to understand.

When we use the name of an abstraction, we’re
implicitly referring to the behavior associated with that
abstraction. The name becomes shorthand for the concept
and is most easily understood when the type representing
that abstraction is a single, cohesive idea and its behavior
is well encapsulated. Value types are a rich vein for
exploring those ideas, although the same principles apply
for all types.

Encapsulation and Cohesion

When we’re designing our own type, beyond giving it a
name that conveys its purpose, it’s also beneficial to collect
the behavior that’s appropriate for the abstraction we’re
modeling. This is what’s commonly meant by encapsulation:
assembling the object’s data and the methods that support
it. However, encapsulation is much more than just adding
member methods; we also need to keep in mind a type’s
cohesion, which is a much less tangible concept.

A type is cohesive if the operations defined for it all
work together to provide a well-defined and sensible
interface for using instances of the type. In other words,
cohesion means that the concept of the type makes sense
as a whole. In this context, we’re talking about whether
other programmers find a type easy to comprehend. The
compiler cares only about what’s syntactically correct, but
we’d likely be surprised to find a method for converting a
string to uppercase on a type mostly concerned with
money.

A type is more than just a place for defining methods;
those methods should contribute to the abstraction we’re
trying to represent. Conversely, as mentioned earlier, a



type with no behavior at all, such as the Speed type in
Listing 6-9, is often simplistic.

public struct Speed 

{ 

    public double InMetersPerSecond {get; set;} 

}

Listing 6-9: Anemic type design

This Speed struct isn’t encapsulating anything, and its
InMetersPerSecond property might just as well be a public
field. Although the name of the type gives us a clue as to its
intended purpose and at least allows the compiler to catch
many inappropriate uses, Speed is an example of an anemic
type. Any behavior we add should support and contribute to
the abstraction implied by the name Speed.

This advice applies equally to all types in a system, not
just the value types. Whatever the purpose of the types we
create, we need to capture individual abstractions in our
designs. Good abstractions are well encapsulated; they
don’t leak their implementation details. A type that is
cohesive is easier to comprehend than one that’s just a
collection of methods. Encapsulation and cohesion both
contribute to the quality of the abstraction.

Many of the objects we create have some kind of state,
but that’s not the same as them representing values. For
value types, the abstraction we’re representing is that
value. If we’re defining a type to represent a speed, the
operations we define for the type should present an
interface consistent with a generally accepted notion of a
Speed. The value is the core of the encapsulation and
cohesion we want to achieve.

NOTE



The term encapsulation is sometimes used to mean merely

data hiding. While it’s certainly true that exposing fields

directly is usually a bad idea, as we’ll talk about shortly,

encapsulation involves more than making data private.

Encapsulation has a close relationship with cohesion, and

in concert they play an important role in designing types

that are easy to use correctly and hard to use incorrectly.2

Eliminating Duplication

Encapsulating behavior into a named type allows us to
capture common code in one place. As you saw in Chapter
1, sensible values for a speed fall within a specific range, so
attempting to use a speed with a value outside that range
should be an error. If we use an overly simple type to
represent a speed, we must duplicate those validation
checks everywhere a speed value is used, which might be
in multiple places. Consider the methods in Listing 6-10,
which use the Speed struct from Listing 6-9. We must
validate the value for every use of Speed.

private const double C = 299792458; 

public static double Distance(Speed speed, double time) 

{ 

    if(speed.InMetersPerSecond > C || 

       speed.InMetersPerSecond < 0 || 

       speed.InMetersPerSecond is double.NaN) 

    { 

        throw new ArgumentOutOfRangeException(… 

    --snip-- 

} 

public static double Time(Speed speed, double distance) 

{ 

    if(speed.InMetersPerSecond > C || 

       speed.InMetersPerSecond < 0 || 

       speed.InMetersPerSecond is double.NaN) 

    { 

        throw new ArgumentOutOfRangeException(… 



    --snip-- 

}

Listing 6-10: Duplicated validation code

To protect these methods from invalid speed values
being passed as arguments, we must validate the
parameter to ensure that it’s not larger than the maximum
allowed value, it’s not negative, and it’s a real number. The
tests we use are the same for every method using a Speed,
and we should also validate the values for the time and
distance parameters. It would be easy to forget one of these
checks when we write a new function that uses a speed,
time, or distance, or to accidentally use the wrong value for
the maximum allowable speed.

The duplication of the validation code is also a
maintenance problem. If we need to alter the acceptable
range of values for speeds, we have to make sure we
change it everywhere it occurs. We also need to test the
validation logic in every method where it’s applied, so those
tests will also be duplicated.

If we instead encapsulate the validation logic within a
constructor for Speed, we can test its characteristics in only
one place and in isolation from other tests we need. We
won’t need to worry that the values might be out of range
for methods using Speed values. Any method using a Speed
can rely on the validation it encapsulates. We can remove
the duplicated validation code as well as any duplicated
tests.

Establishing Class Invariants

Having a constructor that performs all the necessary
validation for a type’s value is an example of establishing a
class invariant (where class has to do with type theory
rather than the class keyword). This approach ensures that
all instances have values that make sense for the type.



Listing 6-11 shows how we can combine a switch
expression with pattern matching to efficiently perform
numeric validation in a constructor.

public readonly struct Speed 

{ 

    private const double C = 299792458; 

    public Speed(double val) 

        => amount = val switch 

        { 

          ❶ double.NaN => throw new ArgumentException( 

                             message: "Must be a number", 

                             paramName: nameof(val)), 

          ❷ < 0 or > C => throw new ArgumentOutOfRangeExcep

tion( 

                             paramName: nameof(val), 

                             message: $"Must be between 0 an

d {C}"), 

          ❸            => val 

        }; 

    --snip-- 

    private readonly double amount; 

}

Listing 6-11: Defining a simple value type with validation

The constructor for Speed ensures that we’ll never have
a value that is not a number, is negative, or is greater than
the speed of light.

The patterns within the switch expression are matched
from top to bottom, and wherever the value being tested—
the val parameter in this case—matches the pattern, the
associated expression is evaluated to produce a result. The
first two patterns here are the error conditions and throw
exceptions instead of producing a value.

The first pattern is a constant pattern matching NaN, as
you saw in Chapter 5 ❶. The second pattern throws an



ArgumentOutOfRange exception if val is either less than 0 or
greater than the constant C ❷. This pattern uses a
combination of facilities available since C# v9.0: a
relational pattern and a disjunctive pattern.

The relational pattern, which is appropriate for any of
the built-in numeric types, uses the relational operators <,
>, <=, or >= to determine whether a number is within a given
range. The disjunctive pattern combines other patterns by
using the or keyword, and the pattern matches if any of its
expressions match. The similar conjunctive pattern (not
used here) uses the and keyword and matches if all of its
component expressions match.

If the val value doesn’t match either of the first two
patterns, it matches the final discard pattern, whose
expression is simply the value of val ❸. This becomes the
result of the whole switch expression and is assigned to the
amount field. Since the discard is always a match, it must be
the final pattern in the switch expression.

In addition to encapsulating validation logic within the
Speed type, we’ve made Speed immutable to ensure that an
instance, once successfully validated, can never become
invalid. If the state can’t be changed, the class invariant
needs to be checked only once—in the constructor.

Clarifying with Symmetry

The role of symmetry in an interface is often
underestimated, but it can be important in making our
types easy to use and understand. For instance, you saw in
Chapter 1 how class factory methods can help us represent
units for a type like Speed. We use such methods instead of
directly accessing a public constructor, and each method
encapsulates the name of the units it represents. Listing 6-
12 shows how we can couple the class factory methods
with their corresponding properties to obtain a value in
different units.



public static Speed FromMetersPerSecond(double value) => new 

Speed(value); 

public      double InMetersPerSecond => amount; 

public static Speed FromKmh(double value) => new Speed(value 

* 1000 / 3600); 

public      double InKmh => amount * 3600 / 1000;

Listing 6-12: Applying symmetry by pairing class factory

methods with their respective properties

We’d probably expect that if we can create a Speed by
using a value in kilometers per hour, we could get the value
in the same unit at a later stage. We emphasize the
symmetry between each class factory method and its
corresponding property by declaring each pair for a
particular unit together.

The methods and properties in Listing 6-12 don’t
prevent us from using the wrong units. We could still pass a
value in kmh to the FromMetersPerSecond factory method.
However, by encoding the units that we’re using in the
names of the class factory methods and properties, we
make them more explicit and more expressive than using a
plain constructor.

Being explicit helps to make the interface to Speed
consistent and easier to use correctly than incorrectly. Our
Speed type has become much more than a simple wrapper
around a primitive value.

Using explicit names like FromKmh and InKmh to represent
the available conversions for a Speed instance helps
maintain the encapsulation of the internal representation. A
constructor taking a double parameter, along with a vaguely
named property to simply return that value, leaks the detail
that Speed has a particular underlying representation. The
class factory methods and properties shown here hide
these implementation details and add value for users in the
form of some common conversions.



We can easily imagine using similar class factory
methods and properties to convert between units for other
types, such as between Celsius and Fahrenheit for
temperature, or meters and feet for length.

Encapsulation and the Public Interface

While it involves more than making data private,
encapsulation is built on the premise that a type’s internal
data can’t be directly accessed—and especially can’t be
changed—by code other than the type’s methods. Access to
private data is controlled by the type’s public interface.

Well-encapsulated types aid us in reasoning about code
because we can always be sure that private fields have
consistent values, and that those values can never change
without our knowing about it. More than that, it means
that, as designers, we can change the underlying
representation without changing the interface. If we never
directly expose a type’s data, no code other than that type’s
member instance methods can ever depend on its
representation.

By encapsulating the double amount field of Speed as
private and exposing or operating on it only under the
controlled conditions afforded by member methods and
properties, we limit the scope and impact of changing the
representation to just those members.

Correspondingly, if we limit the number of members
with direct access to a field, we reduce the scope of the
change even further. If we write methods that depend only
on the public interface of Speed, they’ll continue to work
even if we change the underlying data type.

Extending the Interface

If we add too many instance methods to any type, we risk
cluttering its interface. The core interface of a type is
harder to discover when the type has methods that are only



occasionally useful. By contrast, keeping the methods of a
type to a reasonable minimum makes the code easier to
understand.

One alternative to instance member methods is to use
extension methods, which are defined outside the type they
extend. An example extension method for Speed is shown in
Listing 6-13, where the WithPercentAdded method uses the
public methods and properties defined in Speed to create a
new Speed with a different value.

public static class SpeedExtensions 

{ 

    public static Speed WithPercentAdded(this Speed speed, d

ouble percent) 

        => Speed.FromMetersPerSecond(speed.InMetersPerSecond 

+ 

                     percent / 100 * speed.InMetersPerSecon

d); 

} 

var start = Speed.FromMetersPerSecond(100); 

var end = start.WithPercentAdded(25); 

Assert.That(end.InMetersPerSecond, Is.EqualTo(125));

Listing 6-13: Extending the interface of Speed

The WithPercentAdded method doesn’t modify the instance
of Speed passed to it—it can’t, because Speed is a read-only
struct. Instead, we return a new instance of Speed with the
desired value. An extension method must be defined in a
static class, so it’s always a static method. It’s common to
group methods that extend a particular type together in
one static class definition, so the SpeedExtensions class might
include several methods to extend the interface of Speed.

Extension methods are useful for adding utility methods
to a type without overburdening its principal internal
interface.



Reducing the Internal Interface

A type’s interface defines the collaborations that objects of
that type can have with other objects in a system. The
public methods, constructors, and properties defined within
the type form the internal, or intrinsic, interface and define
what other objects can do with instances of the type. A type
also has an external, or incidental, interface comprising
methods that take parameters of the type but are defined
outside it. The external interface defines which other
objects depend on the type. Those external methods can’t
access the type’s internals, so they’re unaffected by any
changes to the underlying representation.

The essential characteristics of a type with many public
members can be difficult to discern because the physical
definition of the class becomes large. If we restrict the
internal interface members to those that require access to
the type’s private implementation details, the type
definition becomes shorter and thereby easier to
comprehend. Methods that can be implemented entirely in
terms of the internal public interface can be factored out
into separate classes. Whether to make them extension
methods or plain static methods depends on which is the
most natural usage.

The logical conclusion is that, where possible, we
should actively try to reduce the internal interface as much
as we can without breaking the type’s encapsulation or
reducing its cohesion. This approach has two competing
perspectives. On one hand, by extracting methods like
WithPercentAdded that are implemented in terms of Speed’s
other public methods, we make Speed smaller and easier to
comprehend. We also reduce the potential impact of any
changes we might make to Speed’s internal representation.
On the other hand, WithPercentAdded is still part of the overall
accessible interface of Speed, and by extracting that method
out separately, we make it harder to discover.



We must find the balance between the internal and
external interfaces of Speed. Although the WithPercentAdded
method may be a useful utility for Speed values, it isn’t really
intrinsic to the concept of Speed. Extracting it as an
extension method doesn’t reduce Speed’s cohesion or break
its encapsulation by requiring us to introduce a new
property that would otherwise be unneeded or change a
private member to be public. Collecting extension methods
like WithPercentAdded in one place is one way to make the
external interface easier to discover.

The FromKmh class factory method, on the other hand, is
much better suited as a member of Speed. We could
implement it as a static method on a different type and in
terms of FromMetersPerSecond. However, doing so would
reduce the cohesion of Speed because FromKmh and
FromMetersPerSecond naturally go together. If we extracted
both of those methods to a separate type, we’d need to
make Speed’s constructor public, reducing its encapsulation.
The FromKmh method is intrinsic to the interface of Speed
because it represents a way to create a Speed in specific
units and has a natural affinity with other intrinsic
methods.

Some methods must be members of their type, even if
they could conceivably be implemented in terms of other
public properties and methods. The Equals(object?) method
overrides a base class implementation and must be an
instance method. Overloaded operators must all also be
static member methods. An operator overload takes at least
one parameter of the type of which it’s a member, so we
can’t implement it in a separate type.

Composing Abstractions

Values can be more than simple wrappers around primitive
types such as double. A struct can contain other user-
defined types as fields, so we can create new abstractions
by composing existing ones. We might, for instance, create



our own type to represent a Velocity, which combines a
Speed type with an Angle type. Although the Velocity type in
Listing 6-14 has no behavior of its own, it can take
advantage of the richer abstractions represented by Angle
and Speed.

public readonly struct Velocity 

{ 

    public Velocity(Speed speed, Angle angle) 

        => (Speed, Angle) = (speed, angle); 

    public Speed Speed {get;} 

    public Angle Angle {get;} 

} 

var velocity = new Velocity(100.Kmh(), 45.Degrees());

Listing 6-14: Composing a new abstraction for Velocity

The Velocity type benefits from the validated constraints
on the possible values of Speed and Angle and can use any of
their public operations and properties, including any
extension methods. Building on those contained types, we
can add to Velocity any behavior that’s specific to it, such as
arithmetic operations or conversions to and from different
representations.

Velocity represents a specific single concept, even
though it’s a kind of container for values of other types. The
Speed and Angle properties of Velocity aren’t arbitrary; they
define what it means to be a measurement of velocity. The
Velocity abstraction forms part of the vocabulary of a
program, along with Speed and Angle.

Velocity is a good candidate for implementation as a
record or record struct, particularly using the compact
positional syntax available for those types. However, the
positional syntax is less well suited for the Speed and Angle
types. To explain why, in the next section we’ll look at some



of the trade-offs and compromises among the different
ways of defining types.

Choosing Between Value and Reference

Semantics

In most programs, the majority of user-defined types will be
classes, which support the widest array of features offered
by C#. Classes are the most general-purpose way in C# of
creating our own types because they support all the object-
oriented facilities of the language, such as inheritance and
virtual methods. Class instances also benefit from the
automatic memory management afforded to objects
allocated on the heap. Generally, only when we need the
behavior associated with value semantics should we define
a type differently.

We have a few indicators that value semantics are
appropriate for a type we’re defining. Values shouldn’t
support changes to their state, which is why it’s
recommended that value types contain only other values.
When all value types are immutable, regardless of whether
they’re implemented using classes, records, structs, or
record structs, we don’t have to worry about the state of an
object changing unexpectedly, because the behavior of our
code is more predictable. A type that requires unrestricted
write access to its state is usually a poor candidate for
being a value.

A related indicator is needing the type to support a full
deep copy of its state. We need a deep copy, also known as
a clone, to copy mutable state when we want to avoid the
side effects associated with aliasing references. Most
commonly, the state needs to be written only immediately
after cloning so that the new object can have different
properties than the original. The non-destructive mutation
facility we examined in Chapters 2 and 4 is a good example
of providing limited mutability for value-like types.



Anytime we customize equality behavior for a class so
that two instances can be compared according to their
state, it’s another strong indicator that the type should be
implemented as a full-fledged value. Cloning is often
accompanied by an overridden Equals method.

State-based equality behavior and support for deep
copies to avoid aliasing problems are two of the strongest
signs that value semantics are needed. Although it’s
possible to use a class to implement a value (as we’ve seen
with string), the other kinds of type definition are usually
preferable.

Records, structs, and record structs are all facilities for
creating types that represent values—that is, for defining
types that have value semantics. The choice between them
isn’t necessarily obvious, as each has different advantages
and disadvantages.

Avoiding the Pitfalls of Default Variables

For struct and record struct types, we need to remember
that instances can always be default-initialized, so the
default value must be considered valid both by the type’s
implementation and by code using the type. For simple
numeric types like Speed or Length, this isn’t a problem. The
default value for such types is 0, which is a perfectly
acceptable state no matter the unit: 0 meters is precisely
the same value as 0 miles or 0 inches.

The same is not universally true for all values. In
temperature measurements, for example, the unit of the
stored value matters: 0°C is 32°F, and 0°F is approximately
–17.78°C. We might establish the convention that the
default unit for Temperature is Celsius, but it’s hard to make
that explicit without having a separate type for each unit,
which seems unnecessary.

If we use a class or record instead of a struct or record
struct, we can prevent default values and force our users to
specify the correct units when creating instances. However,



classes and records are both reference types, meaning that
variables can have a null value. We can mitigate that in C#
v8.0 and later by taking as much advantage of non-nullable
references as we can, although that might not prevent
every possible misuse.

Notwithstanding that, when we’re deciding between a
class or record to model a type that has value-like
characteristics, a record is almost always preferable.
Records are specifically intended to define types that have
value semantics, and the compiler provides the default
equality behavior for records based on the state of the
instances being compared.

Implementing Custom vs. Generated Behavior

If we want a class to have value-based equality, we must
define it ourselves. As a minimum, we should override the
Equals(object?) and GetHashCode methods, but, as you saw in
Chapter 5, a more complete definition includes
implementing the IEquatable< T > interface and overloading
operator==, and its companion operator!=, to make equality
comparisons natural and easy.

For most value-like types, implementing those methods
is straightforward as long as we’re careful to avoid
common mistakes. However, if we use record instead of
class, the compiler generates implementations for all those
methods. This makes a record type definition smaller and
easier to comprehend and saves us from having to
remember all the potential pitfalls.

For our prospective Temperature type, we might consider
a positional record, saving us the trouble of a complete
definition. A provisional implementation of Temperature as a
positional record might look like the definition in Listing 6-
15, but positional records have limitations to take into
account.



public sealed record Temperature(double InCelsius) 

{ 

    public static Temperature FromCelsius(double val) 

        => new Temperature(val); 

    public double InFahrenheit => InCelsius * 1.8 + 32; 

    public static Temperature FromFahrenheit(double val) 

        => new Temperature((val - 32) / 1.8); 

};

Listing 6-15: A positional Temperature record

The compiler uses the parameters of Temperature’s
definition to automatically generate a property named
InCelsius, but we must write our own InFahrenheit property
so we can add the code to perform the conversion. Users
can invoke the class factory methods to create Temperature
instances with different units, but the constructor for
Temperature generated by the compiler is public. The
generated constructor also won’t validate its parameters,
and we might want to ensure that a Temperature can’t be
below absolute zero.

If we want users to be explicit about the units, we need
to force them to use those class factory methods, so a
positional record doesn’t meet our needs. For the same
reasons, the positional syntax isn’t appropriate for the Speed
and Angle types we used in Velocity in Listing 6-14.

Overriding Generated Methods

When the positional record syntax won’t meet our needs,
we can use a full record definition, which doesn’t have the
positional type arguments. We can then provide our own
private constructor and use that to validate the initial
value.

We sacrifice some of the convenience of using a
positional record for Temperature because we have to write
our own InCelsius property, since the compiler generates



properties only for positional records. The record definition
in Listing 6-16 shows how we can customize behavior for a
record type while still enjoying the benefits of the other
code provided by the compiler.

public sealed record Temperature 

{ 

    private const double ZeroKelvin = -273.15; 

    private Temperature(double celsius) 

        => value = celsius switch 

            { 

               Double.PositiveInfinity or < ZeroKelvin 

                  => throw new ArgumentOutOfRangeException(-

-snip--), 

               double.NaN =>  throw new ArgumentException(--

snip--), 

                           => celsius 

            }; 

    public double             InCelsius => value; 

    public static Temperature FromCelsius(double val) 

        => new Temperature(val); 

    public double             InFahrenheit => value * 1.8 +

 32; 

    public static Temperature FromFahrenheit(double val) 

        => new Temperature((val - 32) / 1.8); 

    public static Temperature AbsoluteZero 

        => new Temperature(ZeroKelvin); 

    private readonly double value; 

}

Listing 6-16: A full record definition for Temperature

The compiler will still generate the methods to
implement value-based equality for a nonpositional record,
leaving us to concentrate on correctly implementing any
other behavior specific to a record type like Temperature.

Records and record structs offer the greatest benefit
over classes and structs, respectively, when we can accept



all the default behavior of the positional syntax. A good
example is the Color type from Listing 6-4, which as a
positional record struct would look like this:

public readonly record struct Color(int Red, int Green, int

 Blue);

For Color, a default-initialized instance is a valid Color
and compares equal to an instance with properties that are
all 0, as shown in this example:

var background = new Color(); 

var black = new Color(0, 0, 0); 

Assert.That(background == black, Is.True);

We don’t have to add any of our own methods or
properties, so the positional syntax is compact and does
exactly what we need.

Records and record structs can be convenient for
defining simple value types like Color, although the
compiler might not provide everything required by a type.
In particular, if we need to compare two values to see if one
is less than the other, we must always provide our own
implementation of that comparison.

Comparison for Ordering

The principle of value-based equality is the one thing that
defines what it means to be a value. When we talk about
whether something is a value type, that’s really shorthand
for whether two instances compare equal according to their
state or according to their identity. Using state as the basis
for equality is intrinsic to all values. However, some values
may be equivalent but not necessarily equal.

Normally, two values are equal if they have exactly the
same state. Two instances of the LogEntry record struct in



Listing 6-17 are equal if all the properties are also equal,
whereas the identity of individual LogEntry instances isn’t
important.

public enum Severity {Debug, Info, Warning, Error} 

public readonly record struct LogEntry(DateTime stamp, 

                                       Severity Level, 

                                       string Message);

Listing 6-17: Value type equality

Some, but not all, values have a natural ordering, which
enables us to sort collections of them. Many sorting
algorithms exist, but all generally work by comparing each
item in a collection with the others in turn to determine
whether one is less than the other. If the left-hand value is
less than the right, the items are considered to be in order.

We can customize the meaning of less than, and
therefore in order, for our own purposes. In C#, the
protocol for defining less than is the IComparable< T >
interface, which requires us to implement a single method
named CompareTo for a type. If the left argument is less than
the right, CompareTo returns a negative integer; if the right is
less than the left, the result is positive. Otherwise, the
result is 0.

When we compare two LogEntry values to see if they’re
equal, we use all the properties. For ordering, however, we
might care only about the TimeStamp property, because we
merely want to put the entries in the order in which they
were logged. Ordering LogEntry values by message makes
little sense, and ordering them by severity isn’t necessary
for our use case.

The TimeStamp property of LogEntry is a DateTime instance,
which itself implements the IComparable interface, so Listing
6-18 implements CompareTo for LogEntry simply by comparing
only the TimeStamp properties.



public readonly record struct LogEntry(DateTime TimeStamp, 

                                       Severity Level, 

                                       string Message) 

    : IComparable<LogEntry> 

{ 

    public int CompareTo(LogEntry other) 

        => TimeStamp.CompareTo(other.TimeStamp); 

}

Listing 6-18: Defining ordering by TimeStamp for a

LogEntry value

We normally wouldn’t call CompareTo on a LogEntry
instance directly; it would usually be invoked indirectly
when we sort a collection of LogEntry values. Unless we
explicitly specify a different comparison to be used for
sorting, our CompareTo method will be used to determine how
to order LogEntry elements, so the default ordering for
LogEntry values is based solely on the TimeStamp property.

Values have extensionality: two instances are equal if
they have the same observable properties. This isn’t
necessarily the same as having the same structural
definition, called intentionality. It’s possible, although
relatively rare, to need extra data that doesn’t contribute to
the value in a meaningful way and thus isn’t used in a test
for equality. Such data is usually also a private detail of the
implementation.

The distinction between intentionality and
extensionality becomes more important when we want not
only to compare values for equality but also to order them.
Putting values in order requires a different but closely
related comparison, which may result in two unequal
values being equivalent for the purposes of sorting them.

Equivalence vs. Equality



For most value types, if CompareTo returns 0, then the two
values are indeed equal, and calling Equals will return true.
This is the case for the DateTime value underlying our
TimeStamp property. However, while this result is what we’d
normally expect, it’s not a strict requirement. The CompareTo
method should return 0 when neither value is less than the
other, although those values may not actually be equal.
Rather, the values are equivalent for the purposes of
ordering.

With our LogEntry value, two values are equivalent when
their TimeStamp properties exactly match. Even so, the two
values might very well be unequal because their Severity or
Message properties might be different, as the simple test in
Listing 6-19 demonstrates.

var logTime = new DateTime(year:2020, month:5, day:31, 15, 3

5, 01, 12);

var log1 = new LogEntry(logTime, Severity.Debug, "Debug Mess

age"); 

var log2 = new LogEntry(logTime, Severity.Info, "Info Messag

e"); 

Assert.That(log1.Equals(log2), Is.False); 

Assert.That(log1.CompareTo(log2), Is.Zero);

Listing 6-19: Equality versus equivalence for LogEntry

This code shows no contradiction: the two entries have
clearly different values, but for the purpose of sorting
LogEntry instances, they’re nevertheless equivalent because
it doesn’t matter whether one goes before or after the
other. Equivalence doesn’t necessarily imply equality, and
we should avoid the temptation to implement equality in
terms of CompareTo.

A fairly common example demonstrating the difference
between equivalence and equality is comparing string
values. Sometimes we want to use a case-insensitive string



comparison for ordering but not for equality. The two string
values "September" and "september" might be considered
equivalent for sorting, but they’re clearly not equal.

The Contract for Comparisons

We must meet certain expectations for the CompareTo
method. In particular, comparing a single value with itself
should report equivalence; that is, x.CompareTo(x) must be 0.
More generally, for two objects that are equal according to
the Equals method, CompareTo should return 0. The IComparable
interface is a contract, and the semantics of comparing one
object with itself is just one aspect of that contract.

We can use the CompareTo implementation to define the
comparison operator < for LogEntry, which gives us a natural
way to see if log1 < log2 and a more compact way of
expressing the rest of the contract. The contract for the
less-than relationship specifies that it has the following
characteristics:
Irreflexive

x < x is always false.
Antisymmetric

If x < y is true, then y < x must be false.
Transitive

If x < y and y < z are true, then x < z must also be true.
Stable

The result of x < y remains the same as long as neither
value is changed.

Safe

Comparing values of the same type does not throw
exceptions.
We can define CompareTo and operator< for reference types

in a similar way, although we also need to consider the null



reference, which should always compare less than any non-
null value.

Other Kinds of Ordering

Ordering by DateTime or number is an example of ordering by
magnitude, but other orderings are possible. Strings
commonly use a lexicographical ordering, which broadly
means that one string is less than another if it would
appear before the other in a lexicon, better known as a
dictionary.

Other values are ordinal in nature, such as months of
the year. Ordinal comparisons sometimes need a bit of
care. Take days of the week in English as an example:
should Sunday come before Monday? The answer to that
question depends on how we define the first day of the
week.

Some values aren’t intrinsically less than another. The
Color type is an example: red comes before blue when we
enumerate the colors in a rainbow—a property of their
relative wavelengths—but blue certainly comes before red
in an English dictionary. We might apply one of several
orderings to Color objects under different circumstances,
but those definitions of ordering are external to the concept
of a color.

We can customize the ordering of elements in a
sequence on a case-by-case basis by creating our own
comparer, or even multiple comparers to address different
scenarios. The IComparer< T > interface complements the
IEqualityComparer< T > interface from Chapter 5. Just as
IEqualityComparer< T > establishes an equality comparison
that’s external to the types being compared, an
implementation of IComparer< T > is an externally defined
ordering comparison. Listing 6-20 shows a custom
comparer type for ordering LogEntry objects by their Message
property rather than by time.



public sealed class LogEntryComparer : IComparer<LogEntry> 

{ 

    public int Compare(LogEntry x, LogEntry y) 

        => string.Compare(x.Message, y.Message, StringCompar

ison.Ordinal); 

}

Listing 6-20: Defining an external comparer for LogEntry

objects

The semantics of the Compare method match those of
IComparable.CompareTo, returning a negative integer when x is
less than y, a positive integer when y is less than x, and 0
otherwise. Several of the sorting algorithms in the
Standard Library have overloads that accept an explicit
comparer object as an argument, including the Order
method shown here:

var log = new List<LogEntry>(); 

--snip-- 

var comparer = new LogEntryComparer(); 

var alphabeticalLog = log.Order(comparer).ToList();

This alphabeticalLog is a new list of LogEntry elements
sorted alphabetically by using the LogEntryComparer.Compare
comparison. Similar overloads are provided for List< T
>.Sort and List< T >.BinarySearch and the constructor for
SortedList.

Ordering is a common characteristic of values, but not
an essential one in the same way that value-based equality
is. When a value has a natural ordering, implementing the
CompareTo method makes sense. Reference types, on the
other hand, generally don’t override CompareTo unless they
also override Equals. Mixing identity-based equality with
value-based ordering, or vice versa, will likely lead to
confusion and probably errors that are hard to track down.



In particular, references have no natural ordering; saying
that the value of one reference is less than another makes
no sense.

The Perils of Uniformity and Consistency

Sometimes coding guidelines advise that we should
override Equals and implement CompareTo for every type. The
thinking behind such rules is usually to try to remove
restrictions on the use of objects. Types that don’t
implement IComparable can’t be used as keys in a SortedList.
Types that don’t override Equals and GetHashCode can’t be
used reliably as keys in a Dictionary. While we can use an
implementation of IComparer< T > to address the former, and
a custom IEqualityComparer< T > for the latter, we must
remember to explicitly use those implementations.

Such guidelines aim to improve consistency and remove
the barriers to commonplace requirements. The goal is
usually to enable any object to be used as a key in a
hashing container, or collections of them to be sorted
according to their state, without needing explicitly defined
external comparers.

Guidelines that suggest this kind of uniformity ignore
the fact that values and non-values are semantically and
conceptually different, and the differences go far beyond
the technical characteristics of reference types and value
types. Reference semantics have their own desirable
characteristics, especially when we actively need multiple
aliasing references to a single, mutable instance. Those
characteristics don’t lend themselves well to being used as
keys in collections, and they often cause conflict with
ordering too. A sorted collection of mutable objects can
easily become unordered by altering the state of its
elements, which gives us one more reason for all our value
types to be immutable. A collection of values that has been
sorted should remain sorted.



As we’ve discussed, some types have no natural
ordering. Let’s revisit the example of Color. Insisting that a
Color type implement the IComparable interface would leave
us with a problem: how should CompareTo behave for two
Color values? We could choose one plausible
implementation, but that might not satisfy every use case,
leading to difficulties in other aspects of our code. This is
why, while records and record structs provide a default
implementation of the IEquatable< T > interface, they don’t
also implement IComparable< T >. Even when the individual
fields can be compared with CompareTo, it doesn’t always
mean that the whole type can be compared that way. All
the fields for Color are int values that implement
IComparable< int >, after all, but less than isn’t a meaningful
comparison for Color values.

The purpose of overriding the Equals method for value
types isn’t primarily to allow them to be used as keys.
Values have no use for referential equality, because one
value is as good as any other value with the same
properties. Value-based equality is the single, natural way
to compare those variables that are values.

Reference types, by contrast, often depend on identity-
based equality. Any type not specifically intended to have
value semantics probably shouldn’t be used as a key in a
Dictionary.

Arithmetic and Nonarithmetic Types

Just as not all values have a natural ordering, some values
are arithmetic by nature, and some are not. We might, for
example, define operations to allow instances of the Speed
type from Listing 6-11 to be added together. Operations
like addition have a natural representation with arithmetic
operators, such as in an expression like startingSpeed +
Speed.FromKmh(10).

Introducing support for arithmetic operations, or indeed
any operation, requires a certain amount of discretion on



our part as designers. We need to be mindful of both the
common use cases for the types we create and the wider
expectation from, for example, being able to add two
instances together with a + operator.

Unlike Speed, the LogEntry type in Listing 6-17 isn’t
arithmetic in nature, so we should avoid overloading the
arithmetic operators for it. Adding two LogEntry instances
makes no sense.

It does make sense for LogEntry to overload operator==
and its counterpart operator!= for equality comparisons. The
LogEntry type is a record struct, so the compiler will provide
the equality operator definitions automatically. Since we’ve
implemented IComparable< LogEntry> for LogEntry, we should
also consider overloading operator< and operator>, which the
compiler won’t provide. Listing 6-21 shows that
implementing these operators in terms of the CompareTo
method is straightforward.

public static bool operator<(LogEntry left, LogEntry right) 

    => left.CompareTo(right) < 0; 

public static bool operator>(LogEntry left, LogEntry right) 

    => left.CompareTo(right) > 0;

Listing 6-21: Equivalence comparison operator

definitions

These operator definitions make handling equality and
comparisons much more natural for LogEntry instances.

Nonstandard Operator Behavior

Occasionally, arithmetic operators are useful beyond truly
arithmetic operations. For example, string instances can be
“added” together, and most programmers understand that
adding two strings concatenates them, so "key" + "board"
becomes "keyboard". In arithmetic, addition is commutative,
so a + b gives the same result as b + a. This clearly isn’t true



when used with string instances, but concatenating two
strings with + is a widely used and accepted convention.

When we bend the rules this way, it’s especially
important that we’re mindful of conventions, natural usage,
and expectations. For instance, in arithmetic the ability to
add numbers together goes hand in hand with the facility
for subtraction. Consider what subtracting one string from
another might mean. Would it remove all instances of the
right-hand argument from the left-hand string? Only if it
appeared at the end of the string? String subtraction
doesn’t have the natural and conventional appeal that
string addition/concatenation does.

We’d normally expect to find a symmetry between + and
-, and symmetry is usually a desirable quality. When we
overload ==, the compiler insists that we also implement the
!= operator. Coupling addition with subtraction for string
values is one example where symmetry is undesirable,
because it introduces conflicting expectations.

Symmetry is inappropriate in other situations too. For
example, matching every property get accessor with a
corresponding set is superficially attractive but contradicts
the recommendation that value types are immutable. This
is another instance where we need to apply our own
judgment on whether symmetry is a positive characteristic.

Summary

It’s not hard to make decisions when you know what your values are.

—Roy Disney, American film writer and producer

Although C# has its own definition of ValueType, the broader
concept of a value isn’t specific to C#. That more general
idea of a value type has commonalities with the C#
definition, but notable differences exist.

The language definition of a value type focuses mainly
on the memory requirements and behavior associated with
structs. We need to take other factors into account,



however, in order to decide when and how to introduce
values into our programs. In this chapter, we’ve explored
some of those considerations by contrasting values with
reference types—in particular, by examining how values
fulfill specific and important roles in a program.

Object-oriented systems are made up of several kinds of
objects with varying emphasis on the characteristics of
identity, state, and behavior. When an object’s role places a
high importance on instance identity, it’s a strong indicator
that the type shouldn’t be a value type. When the priority is
an object’s state and identity is unimportant, the type is
almost certainly best modeled as a value.

Whether a type has a single field or many fields isn’t
necessarily the best metric for choosing whether to make it
a value. Sometimes we want value semantics, and
sometimes reference semantics are more important. The
phrases value semantics and copy by value are sometimes
used interchangeably and even defined in terms of each
other. However, value semantics has more to do with value-
based equality than with copying.

Distinguishing value types from other kinds of types is
an important first step in partitioning their responsibilities
in an application. Identifying candidate value types helps us
clarify our designs by introducing specialized types that
encapsulate behavior and responsibilities. In turn, we
benefit from a more modular system, both in its
implementation and in the testing it requires. Having
decided a type should be modeled as a value, we have more
options for implementing it. C# has rich support for all
user-defined types, but its facilities for value types are
sometimes unappreciated.

 

1 FORTRAN programmers, please remain silent on this (https://

softwareengineering.stackexchange.com/questions/254799/ever-change-the-

value-of-4-how-did-this-come-into-hayes-thomas-quiz).

https://softwareengineering.stackexchange.com/questions/254799/ever-change-the-value-of-4-how-did-this-come-into-hayes-thomas-quiz


2 With thanks and apologies to Scott Meyers.



7

VALUE TYPES AND POLYMORPHISM

As an object-oriented
programming (OOP) language,

C# has good support for features that
allow us to capture complex ideas and
express them intuitively, such as classes,
virtual methods, and inheritance.
However, the language support for
inheritance doesn’t extend to value types.
Structs and record structs implicitly
derive from the ValueType class, which is
derived directly from object,
but they can’t inherit any other type and can’t themselves
be inherited; that is, structs and record structs are
implicitly sealed. Inheritance is a central feature of OOP
that enables us to treat a reference to a derived class as
though it refers to the base class, overriding the base
class’s properties and methods to have new behavior as
needed. These features don’t apply to value types, but that
doesn’t mean value types are inferior.



Using the term polymorphism interchangeably with
inheritance is common, but polymorphism is a more
general concept; it relates to writing code that works
uniformly for a variety of types to reduce duplication. As
this chapter discusses, inheritance is just one kind of
polymorphism, and while there are sound technical and
semantic reasons for why value types can’t employ
inheritance relationships, they can take advantage of other
kinds of polymorphism.

We’ll explore the following:
Why value types are sealed and why value-like types in
general shouldn’t use inheritance
How subtyping differs from subclassing and why it
matters
What type substitutability means and how it relates to
inheritance
Where to use other kinds of polymorphism, rather than
inheritance, to model relationships between objects

Why Value Types Are Sealed

The principal technical reason for prohibiting inheritance
for structs, and by extension record structs, is that they
have different lifetime and storage characteristics than
reference types. The restriction is more than an arbitrary
rule: it results directly from how value type variables
behave in memory, and how that behavior differs from
reference types.

Inheritance between classes allows us to use a
reference to a base class type to refer to an instance of a
derived class, so the static, compile-time type of a
reference variable isn’t necessarily the same as the
dynamic, run-time instance type. This characteristic
permits virtual dispatch for method calls—the mechanism
whereby the appropriate method implementation will be



called based on the actual type of the object at run time—
and relies on the extra level of indirection afforded by
references; therefore, inheritance is appropriate only for
reference types.

Value type variables directly contain their data, so we
can’t declare a variable as one type to represent an
instance of a different type, other than via boxing.
Inheriting from a struct thus makes no sense, and the
compiler forbids it.

Remember, though, that we can use classes to model
value-like behavior. As you saw in Chapter 6, string
behaves like a value but is implemented as a reference
type. The string type uses a value-based (rather than
identity-based) equality comparison, is immutable, and has
various other characteristics that identify it as a value.
Being a class, string could support virtual method dispatch,
but we can’t derive from the string class because it’s
explicitly sealed. This means we can’t create our own
augmented subclass of string any more than we could
inherit from DateTime, Guid, or any other value type.

Like the string class, records are reference types but
have value-like equality behavior. Records can derive from
other records and can also have virtual methods, so they
seemingly unify the ideas of values and inheritance.
However, using records is not that straightforward. We
need to note the subtleties and avoid the pitfalls when
using any inheritance, whether between classes or records.

When we allow our types to participate in inheritance
relationships, we need to be mindful of what deriving from
those types might entail. There’s a difference between
implementation and interface inheritance. Inheriting an
implementation presents some of the same difficulties as
deriving from a value type. To explore why doing so is ill-
advised, let’s look at a class with value-like characteristics



and use implementation inheritance to demonstrate some
of the problems that can result.

Implementation Inheritance

Anytime we inherit from a concrete class—that is, one
that’s not fully abstract—we are, by definition, inheriting its
implementation. Listing 7-1 shows a simple inheritance
relationship: a TranslucentColor class derives from a Color
base class and adds a new feature of its own.

public class Color 

{ 

    public Color(int red, int green, int blue) 

        => (Red, Green, Blue) = (red, green, blue); 

    public int Red   {get;} 

    public int Green {get;} 

    public int Blue  {get;} 

} 

public class TranslucentColor : Color 

{ 

    public TranslucentColor(int red, int green, int blue, in

t alpha) 

        : base(red, green, blue) => Alpha = alpha; 

    public int Alpha {get;} 

}

Listing 7-1: Creating a derived class, TranslucentColor,

that inherits the implementation of Color

This TranslucentColor class subclasses the Color class and
inherits all of Color’s structural representation, along with
its methods and properties. Both classes have automatic
properties, which are each given a backing field of the
same type as the property—int in this example—and every
field of Color is inherited by TranslucentColor.

Even if we’d used private fields in Color and returned
their values via the properties, those fields would be



inherited by the TranslucentColor class, although they’d still
be accessible only via the inherited public properties.

The implementation inherited by TranslucentColor from
Color depends on those private fields. An instance of
TranslucentColor requires its own copies of all the fields
declared by its base class so that the properties inherited
from Color work correctly. We can use Color’s properties via
a TranslucentColor variable as if they were declared as
members of TranslucentColor, as shown here:

var foreground = new TranslucentColor(red: 0xFF, green: 0, b

lue: 0, alpha: 0x77); 

Assert.That(foreground.Red, Is.EqualTo(0xFF)); 

Assert.That(foreground.Alpha, Is.EqualTo(0x77));

In this simple test, we use the Red property of a
TranslucentColor variable, which inherited that property from
Color. We can also use the Alpha property, which was
declared as a member of TranslucentColor.

Using inheritance like this—to reuse the
implementation of Color in TranslucentColor—is attractive,
because it means that the TranslucentColor type definition
doesn’t duplicate Color’s properties. By deriving from Color,
the TranslucentColor class gets those properties for free.

Both Color and TranslucentColor look like good candidates
to be value types because an equality comparison should
compare each instance’s state. However, making value-
based equality behave correctly in an inheritance hierarchy
hides complexity that can easily result in undesirable
behavior. To demonstrate that, let’s give Color and
TranslucentColor value semantics by following the
recommendations from Chapter 5 to override Equals and its
companions for both classes.

Value-Based Equality for Classes



We begin with the base class, Color. With the
implementation in Listing 7-2, we can compare two Color
instances to see whether their properties are equal.

public class Color : IEquatable<Color> 

{ 

    public int Red   {get;} 

    public int Green {get;} 

    public int Blue  {get;} 

    public bool Equals(Color? other) 

        => (object?)this == (object?)other || 

           other is not null && 

           GetType() == other.GetType() && 

           Red == other.Red && Green == other.Green && Blue

 == other.Blue; 

    public override bool Equals(object? obj) 

        => Equals(obj as Color); 

    public override int GetHashCode() 

        => HashCode.Combine(Red, Green, Blue); 

    public static bool operator==(Color? left, Color? right) 

        => left?.Equals(right) ?? right is null; 

 

    public static bool operator!=(Color? left, Color? right) 

        => !left?.Equals(right) ?? right is not null; 

}

Listing 7-2: Defining value equality in the base class,

Color

This implementation of equality follows common
practice for implementing value-based equality for classes,
including the guidelines given in the Microsoft
documentation. The Color class implements the IEquatable<
Color> interface, which requires an overload of the Equals
method specifically for Color. We use this overload to
provide the full implementation, which we can call from any
other method, including the Equals method overridden from
the object base class. Since we’ve overridden



Equals(object?), we also override GetHashCode to ensure that
two instances of Color produce the same hash code if they
compare equal. Finally, we provide implementations for the
== and != equality operators.

Let’s examine each step in detail.

The Canonical Form of Equals

First we have to override the virtual Equals method
inherited from object, as shown in Listing 7-3. Since Color is
a class, by default Equals compares object identities, so we
need to override that behavior to give Color a value-based
implementation.

public override bool Equals(object? obj) 

    => Equals(obj as Color);

Listing 7-3: Overriding Equals

The override of Equals must match the base-class
signature. In this example, we declare the types within a
nullable context, so we use object? as the parameter type
for Equals, indicating that we know the parameter could be
null and can handle that circumstance safely. Here we use
the as operator to cast obj to Color in order to call the type-
safe Equals method. If obj isn’t a Color or is null, the
argument passed will be null, which is explicitly handled by
the type-safe overload in Listing 7-4.

public bool Equals(Color? other) 

    => (object?)this == (object?)other || 

       other is not null && 

       GetType() == other.GetType() && 

       Red == other.Red && Green == other.Green && Blue == o

ther.Blue;

Listing 7-4: Implementing IEquatable< Color>



The type-safe Equals implementation of the IEquatable<
Color> interface takes a nullable Color parameter. This
overload will always be preferred over the method taking
an object? parameter when we’re comparing two variables
whose static type is Color, including when we call it from
the operator== or operator!= methods.

One implication of Color being a reference type is that
it’s possible for the other parameter to refer to the same
instance as this. To handle this scenario, Listing 7-4 casts
both this and other to object to make it clear that we intend
a reference comparison. While the cast we used in Listing
7-3 from object to a more derived type is a relatively costly
run-time conversion, the conversion from Color to its object
base class is very efficient and allows the comparison to be
made with the intrinsic ceq instruction introduced in
Chapter 5. One alternative would be to use
ReferenceEquals(this, other) here, making the reference-
based comparison explicit.

Comparing the two variables to see whether they
reference the same object is a simple but not mandatory
optimization. The logical || operator short-circuits if its left-
hand expression is true, so the rest of the comparisons are
attempted only if this and other are references to different
instances. Note that the order of comparisons in this code
relies on operator precedence; the logical AND operator (&&)
has a higher precedence than logical OR (||), so the
comparisons on the right side of || all bind together as if
they were explicitly grouped within a pair of parentheses.
Although redundant, the extra parentheses don’t affect the
behavior in any way, and some programmers prefer to add
them to avoid having to remember the operator precedence
rules.

Because Color is a reference type, the argument passed
could be null, so we use the is not constant pattern to
compare other with null and avoid the common trap of
calling our own Equals method recursively.



The Color class is intentionally not sealed, so we also
check that the other value is exactly the same type as this
by using the GetType method, defined on the object base
class. This method returns the run-time type of an instance,
and the types won’t match if other is a reference to a more
derived type such as TranslucentColor. Objects of different
types don’t normally compare equal, even if their types are
related by inheritance.

Finally, if the types match, we compare each property’s
value in turn. If they all match, our Equals method returns
true. We use == rather than Equals here because all the
properties of a Color are simple int values. Built-in values
such as these can be compared intrinsically, and much
more compactly than calling the Equals method for each of
them.

To make comparing Color instances natural, we also
implement operator== and operator!=, which both defer to the
type-safe Equals method, like this:

public static bool operator==(Color? left, Color? right) 

    => left?.Equals(right) ?? right is null; 

public static bool operator!=(Color? left, Color? right) 

    => !left?.Equals(right) ?? right is not null;

The == operator will return the result of Equals if the left
parameter is not null; otherwise, it returns true if both the
parameters are null. The != operator returns the opposite of
== by inverting the comparisons.

The Contract for Equality

Implementing equality in a way that is self-consistent is
critical. It would be a strange state of affairs if we had two
references to the same instance of Color that did not

compare equal, and stranger still if Equals could return false
when comparing a value with itself. Equality has a contract
similar to the one you saw for less-than comparisons in



Chapter 6. Namely, equality has the following
characteristics:
Reflexive

x == x is always true.
Symmetric

If x == y, then y == x.
Transitive

If x == y and y == z, then it follows that x == z.
Safe

Non-null values are never equal to null.
Stable

The result of x == y doesn’t change as long as x and y
don’t change.
In Listing 7-5, we write some tests to prove that we’ve

met the requirements of the equality contract.

NOTE

These tests are presented this way for emphasis, not to

demonstrate a good style of assertion writing.

The first test also ensures that we’re comparing the
variables by value, not merely comparing references.

var pencil = new Color(0xFF, 0, 0); 

var crayon = new Color(0xFF, 0, 0); 

var brush =  new Color(0xFF, 0, 0); 

// Reflexive, value-based equality 

Assert.That(pencil == pencil, Is.True); 

Assert.That(pencil == new Color(0xFF, 0, 0), Is.True); 

// Symmetric 

Assert.That(pencil == crayon, Is.True); 

Assert.That(crayon == pencil, Is.True); 

// Transitive 

Assert.That(pencil == crayon, Is.True); 



Assert.That(crayon == brush, Is.True); 

Assert.That(pencil == brush, Is.True); 

// Safe with null 

Assert.That(pencil != null, Is.True); 

Assert.That(null != pencil, Is.True);

Listing 7-5: Testing the contract for equality for Color

Writing a test for comparison stability is more difficult,
so in Listing 7-6 we test the opposite: that if one of the
values changes, the instances are no longer equal.

var pencil = new Color(0xFF, 0, 0); 

var crayon = new Color(0xFF, 0, 0); 

Assert.That(pencil == crayon, Is.True); 

pencil = new Color(0, 0xFF, 0); 

Assert.That(pencil != crayon, Is.True);

Listing 7-6: Testing that equality is stable

Since Color’s properties are immutable, we can change
the value of pencil only by assigning it to a new instance.
However, the effect is the same as if we had mutated one
or more of the properties, because we have arranged for
Color instances to be compared by value.

We have one other requirement for the Equals method
and its operator counterparts: they must never throw an
exception. Our implementation has no danger of that, since
we have already tested that it is safe with null.

Equality Behavior in Derived Classes

The next step is to implement equality for the derived
TranslucentColor class, which, as we know, inherits all the
methods and properties from Color. Since TranslucentColor is
a value-like type, it should implement the IEquatable< T >
interface for itself, substituting the T for TranslucentColor. As
Listing 7-7 shows, implementing IEquatable<



TranslucentColor> is a little simpler than the Color base class,
which already does most of the work.

public class TranslucentColor : Color, IEquatable<Translucen

tColor> 

{ 

    public int Alpha {get;} 

    public bool Equals(TranslucentColor? other) ❶ 

        => base.Equals(other) && Alpha == other.Alpha; 

    public override bool Equals(object? obj) 

        => Equals(obj as TranslucentColor); 

 

    public override int GetHashCode() 

        => HashCode.Combine(Alpha, base.GetHashCode()); 

    public static bool operator==(TranslucentColor? left, Tr

anslucentColor? right) ❷ 

        => left?.Equals(right) ?? right is null; 

    public static bool operator!=(TranslucentColor? left, Tr

anslucentColor? right) 

        => !left?.Equals(right) ?? right is not null; 

}

Listing 7-7: Behavior inheritance in the derived class,

TranslucentColor

As with the Color implementation, TranslucentColor
overrides the Equals(object?) method, converting the object
parameter to TranslucentColor in order to call the
Equals(TranslucentColor?) method ❶. That method also
checks whether we’re comparing two references to a single
instance and ensures that the other parameter isn’t null.

Since Color already performs the check for identical
references, the comparison with null, and the type check,
as well as comparing the Red, Green, and Blue properties, we
don’t need to duplicate those comparisons and can simply
invoke the base class’s Equals method before finally
comparing the Alpha properties that are specific to



TranslucentColor. Passing other to base.Equals is fine because
a TranslucentColor reference will convert implicitly to its
Color base class type.

We also give TranslucentColor its own implementations of
operator== and operator!=, and they, too, follow the same
pattern as in Color, except that they take two
TranslucentColor parameters ❷.

The contract for equality applies not only to Color but
also to TranslucentColor. We can use a test similar to the one
from Listing 7-5 to ensure that TranslucentColor meets the
contract’s requirements. Listing 7-8 shows a variation on
Listing 7-6’s stability check for Color as we test that
differences in the TranslucentColor class’s Alpha property
value will cause instances of TranslucentColor to compare
unequal.

var pencil = new TranslucentColor(0xFF, 0, 0xFF, 0x77); 

var crayon = new TranslucentColor(0xFF, 0, 0xFF, 0x77); 

Assert.That(pencil == crayon, Is.True); 

pencil = new TranslucentColor(0xFF, 0, 0xFF, 0); 

Assert.That(pencil != crayon, Is.True);

Listing 7-8: Testing the equality contract for

TranslucentColor

In this example, the two TranslucentColor instances differ
only in their Alpha property and correctly compare not

equal. We might conclude, then, that all is right with the
world—but we’d be wrong.

Equality Comparisons and Type Substitution

We’ve used a suite of tests to reassure us that the equality
contract is intact for both Color and TranslucentColor when
we’re using variables whose dynamic (run-time) instance
type is the same as their static (compile-time) variable
type. However, the types might not always match. The



compiler allows us to pass a reference to a TranslucentColor
anywhere a Color reference is required because Color is a
direct base class of TranslucentColor. In other words, the
Color type can be substituted by a TranslucentColor. At run
time, any Color reference may, in fact, refer to a
TranslucentColor instance.

To illustrate the effect on equality of using a base class
reference to a derived class instance, Listing 7-9 explicitly
uses a Color base class reference to declare two
TranslucentColor values that aren’t equal because their Alpha
properties differ.

Color pencil = new TranslucentColor(0xFF, 0, 0xFF, 0x77); 

Color crayon = new TranslucentColor(0xFF, 0, 0xFF, 0); 

Assert.That(pencil == crayon, Is.False);

Listing 7-9: Testing equality from the base class

This test fails: the pencil and crayon variables compare
equal even though the instances have different values. It
makes no difference whether we compare the variables
with == or call the Equals method; the outcome is the same.

The static types being compared are Color variables, so
what’s invoked here is the base class implementation of
operator==, which in turn calls the Equals method. The Equals
method in Color knows nothing about the Alpha property of
TranslucentColor, so Equals determines equality by using only
the Red, Green, and Blue properties. Those properties are all
identical, so according to Color.Equals, the two objects are
equal.

Those are the mechanics that explain why our pencil
and crayon variables incorrectly compare equal, but type
substitution isn’t always so easy to spot, and its
consequences are far-reaching.

The Effects of Type Substitution



We would rarely explicitly use a Color reference for a
TranslucentColor object, but we can use a TranslucentColor
reference as an argument to a method with a Color
parameter. We can substitute a TranslucentColor when a
Color is expected.

Listing 7-10 shows that if we pass two references to
TranslucentColor objects that differ only in their Alpha values
to a method with Color parameters, those parameter
variables compare equal within the method. If we pass the
same two references to a method that takes TranslucentColor
parameters, the values won’t compare equal even though
they haven’t changed.

bool EqualViaBase(Color left, Color right) 

    => left.Equals(right); 

bool EqualViaDerived(TranslucentColor left, TranslucentColor 

right) 

    => left.Equals(right); 

 

var pencil = new TranslucentColor(0xFF, 0, 0xFF, 0x77); 

var crayon = new TranslucentColor(0xFF, 0, 0xFF, 0); 

Assert.That(EqualViaBase(pencil, crayon), Is.True); 

Assert.That(EqualViaDerived(pencil, crayon), Is.False);

Listing 7-10: Testing the stability promise

In the first assertion, the pencil and crayon references
are automatically converted to Color references when we
call the EqualViaBase method because a reference to a
derived class is implicitly convertible to a reference to any
of its base classes. The call to Equals within EqualViaBase
invokes Color’s implementation, which incorrectly
determines the parameter variables to be equal. The
EqualViaDerived method calls TranslucentColor.Equals directly,
which correctly reports that the parameter variables are
not equal.



The equality implementation for TranslucentColor isn’t
stable: it can produce a different result for the same two
instances depending on the static type of the variable used
to refer to those instances, even when their underlying
state remains unchanged.

Breach of Contract

The behavior of the tests in Listing 7-10 demonstrates that
TranslucentColor breaks the promise of stability established
by the contract for equality— namely, that the result of
Equals doesn’t change if the values being compared don’t
change. When we compare two variables that have
different values, they should compare not equal, and as
long as no changes are made to either variable’s state, the
result of the comparison shouldn’t change.

One problem with our Equals implementation is that the
type-specific overload of Equals in the Color class isn’t
virtual, and therefore it can’t be overridden in
TranslucentColor. The virtual version of Equals, which takes
an object parameter, isn’t considered in overload resolution
because the overload with a Color parameter is a much
better match, even when the run-time type is derived from
Color.

To get the test in Listing 7-9 to pass, we could make the
type-specific Equals method virtual in Color and add an
override for it in TranslucentColor. Another possibility would
be to remove the implementation of the IEquatable< T >
interface for Color so that the only Equals method would be
virtual. We’d lose the facility for type-specific comparisons,
with a small performance cost, but this option would
address the problem of stability. However, either approach
would be solving the wrong problem.

The real underlying problem is that we’ve used
inheritance inappropriately, not that our implementation of
equality is incorrect. To fully appreciate why, we need to be
clear on the difference between subclasses and subtypes.



Inclusion Polymorphism and Subtyping

We think of the classes, structs, records, and record structs
we write as being user-defined types. By extension, then,
it’s natural to think that the definition of a class is its type.
That perception is partially true, but a more formal
distinction between type and class exists.

The polymorphism afforded by using inheritance is
known as inclusion polymorphism. If we were to group all
the objects in a system by type, each group of any specific
type would include all the types that inherit from it, known
as subtypes. In our example, the group for the Color type
includes both the Color and TranslucentColor types.

An object’s type is a contract for its interface and
describes the allowable operations on the object. The
operations defined by a type are, therefore, valid for any
subtypes in its group. Practically speaking, if we derive
from a given type, all the operations that are valid for an
object of the base type must be valid—and behave correctly
—for an object of the derived type.

In our example, a TranslucentColor object is an instance
of a Color type as well as being a TranslucentColor. This
relationship means we can invoke any Color operation on a
TranslucentColor, which in turn means we can pass a
TranslucentColor instance to a method taking a Color
parameter. As far as the compiler is concerned, a
TranslucentColor must be able to support all the operations
of its base type, so it allows the substitution.

The type of an object establishes which operations a
subtype must support, but it doesn’t specify any structural
details or specific implementation. We’re free to implement
the same interface in different ways, using various classes.
However, while the contract for a type doesn’t mandate a
specific implementation, it does define the expected
behavior of any of its operations. When we inherit from a
concrete class, we inherit its implementation, and this sets



an expectation for that behavior. When implementing a
type as a class or record, we must be mindful of the
distinction between subtyping and subclassing, since we
can inherit from reference types unless they’re explicitly
sealed. For value types in C#, this isn’t an issue, because
they’re implicitly sealed and so can’t have derived types.

As noted earlier in this chapter, implementation and
interface inheritance differ. In other words, simply
inheriting from a class isn’t the same as actually respecting
its behavioral characteristics. Code written in terms of the
more general type, which defines the interface, may well
depend on the specific characteristics of the class, which
represents a particular implementation. If the derived class
doesn’t respect the behavioral aspect of the type’s contract,
when we use an instance of the derived class in code
written for the base type, that code will very likely have
unexpected behavior.

When we inherit from a class, we inherit its behavior,
characteristics, and expectations. A class that inherits from
another concrete class is, then, a subclass, and only a true
subtype if code using the base class type can use the
derived class transparently with no change in observable
behavior. When we inherit only the type, we have no
implementation behavior to consider.

Mechanically speaking, we can substitute a reference to
a TranslucentColor where a Color is required because we can
use a reference to the derived type as an argument to a
method expecting the base type. However, as you’ve seen
with the behavior of Equals, using Color and TranslucentColor
instances interchangeably is not really possible.

The lack of substitutability between Color and
TranslucentColor arises because TranslucentColor is a subclass

but not a true subtype of Color.



Working with Input and Output Types of Virtual

Methods

The difference between a subtype and a subclass has
implications that go beyond how an inherited Equals method
is implemented. We can override any virtual method with
an implementation that is appropriate for the derived class.
If the observable effects, including any side effects, of
calling the more derived method are identical to the effects
of the base class, then the derived type is a good substitute
for its base type—that is, the derived type is a proper
subtype. Side effects might include writing to a file or to
the screen, or perhaps updating the value of a variable
visible outside the method. If a derived class does any of
these things when its base class doesn’t, it’s not a true
subtype.

A method’s behavior includes what the method
considers to be valid inputs and outputs—that is, what
parameters a method accepts and what it may return—each
of which directly affects the method caller. To illustrate,
suppose we add a virtual method to the Color class like the
one in Listing 7-11 to subtract one Color value from
another.

public virtual Color Subtract(Color? other) 

{ 

    --snip-- 

}

Listing 7-11: Adding a virtual Subtract method to Color

Since the Subtract method is virtual, we can specialize
its implementation in TranslucentColor to handle subtraction
appropriately for TranslucentColor instances. Regardless of
the actual algorithm used to implement Subtract, its return



value is the observable behavior of the method, as long as it
has no side effects.

If the Subtract implementation in Color never returns a
null reference but the overridden version in TranslucentColor
might, then the TranslucentColor method has a weaker
behavioral contract than the base class method. Allowing
the TranslucentColor implementation to return a null value
requires extra checking in the calling code to avoid null-
reference exceptions. The calling code, knowing only about
the Color type, might reasonably expect only non-null
values. The weaker requirements on the return type mean
that TranslucentColor isn’t substitutable for Color.

A corresponding situation arises when we strengthen

requirements on the parameters in an overridden method.
If we insist on non-null values in the derived type but the
base class accepts null references, we break the contract
established by the base class method. Once again, code
written in terms of the base class has no notion of those
requirements in derived classes and can easily violate
them.

The Subtract method shown in Listing 7-11 mitigates
both of these potential problems by using the nullable
reference type feature available since C# v8.0. The return
type of the base Subtract method is non-nullable, and the
compiler will warn us if we override it with a method
having a nullable reference type or if that method attempts
to return a null reference. Similarly, the parameter to the
Color.Subtract method is a nullable reference, indicating
that null is an acceptable argument. If we override the
method with a non-nullable reference type, the compiler
will warn us that the method signature doesn’t match the
base declaration.

Note that if the base method returns a nullable
reference and we override it to return a non-nullable
reference, the compiler won’t give a warning. That is



because in this case we’re strengthening the behavioral
contract in the derived method, and it’s entirely reasonable
for the more derived method to prohibit null, even if the
base method allows it. The requirements on any code
calling the method from a base type reference aren’t
affected.

Likewise, the compiler is silent if the base method has a
non-nullable parameter and we override it to allow a null
reference to be passed to the derived method, because
weakening the parameter’s contract in the more derived
type is safe and reasonable. The change is visible only to
code using the more derived type directly rather than via a
base type reference.

Upholding a Type’s Contract

Our test for equality using base class references in Listing
7-9 fails because the contract for Color.Equals isn’t properly
fulfilled by the derived class. The expectations set out by
Color aren’t met by TranslucentColor, which imposes a new
requirement on Equals because equality between
TranslucentColor instances must also compare the Alpha
property. Our test fails as a direct result of our using
implementation inheritance and expecting type
substitutability, when in fact TranslucentColor isn’t
substitutable for a Color. The implications of
implementation inheritance apply to all inheritance
relationships, not just when we’re modeling value
semantics.

Upholding a type’s contract matters in practical ways.
The behavior of an inherited method is part of that
contract, and failing to uphold it can result in extremely
hard-to-diagnose errors. If we fail to meet the interface

contract of a base class—for instance, by using a different
signature in an overridden method—the compiler will
inform us with an error. However, the compiler can’t check
that we’ve also kept the behavioral promises of a base



class. Here we must use our own judgment, and that’s not
necessarily as straightforward as it might seem.

One rule of thumb is to avoid implementation
inheritance whenever we use inheritance. The simplest way
to be certain of that is to never derive from a class that has
any concrete behavior—including abstract classes with any
nonabstract methods. Types defined with the interface
keyword can’t have any implementation, and any class
implementing an interface is a true subtype.

Another rule is that value types implemented as classes
shouldn’t inherit from anything and should be sealed. In
fact, this second rule arises as a result of the first: it makes
little sense for a value type to be fully abstract, since a
defining feature of value and value-like types is that we
compare them according to the value they represent. It
follows, then, that value types are concrete types. The built-
in value-like class string leads the way with this advice,
which is why string is intentionally a sealed class.

Similar to strings, records are reference types that have
value semantics for the purpose of comparisons with Equals.
Unlike strings, records can inherit from other records, but
just as when we derive from a concrete class, a derived
record inherits all the base record’s behavior. Therefore,
we must still take care to uphold the base record’s
promises in a derived record; however, as with classes,
doing so isn’t always as simple as it might seem. Even
though records permit inheritance, they’re specifically
intended to model value types, so the advice to seal value
types applies equally to them.

Inheriting Record Types

When compiled, a record type is a class with some
compiler-generated methods, including everything required
for value-based equality. Moreover, records defined using
the positional syntax are immutable by default. Using
records instead of classes for creating value-like types,



then, saves us from having to write a lot of boilerplate
code.

Records, unlike structs, can inherit from other records,
although they can’t be part of an inheritance relationship
with a class. We might therefore recast our Color and
TranslucentColor types as records, as in Listing 7-12.

public record Color(int Red, int Green, int Blue); 

public record TranslucentColor(int Red, int Green, int Blue, 

int Alpha) 

            : Color(Red, Green, Blue);

Listing 7-12: Inheriting record types

Here we define Color and TranslucentColor as positional
records with positional parameters that represent read-only
properties with those names, and a constructor taking
parameters of the same type. The inheritance syntax for
records differs slightly from that for classes because we
need to initialize the positional parameters in the base
record. The TranslucentColor record derives from Color and
passes its Red, Green, and Blue parameter values to the
respective positional parameters of Color.

As we explored in Chapter 5, the compiler generates
the implementations of the constructor and properties for
us, along with implementations for various overrides of
Equals and a few methods, including a value-based
implementation of GetHashCode, ToString, and others. Equality
comparisons between record variables compare the value
of each property, so two record variables are equal if all
their properties are equal.

We can write our own implementation of the type-safe
Equals method created by the compiler if we wish. However,
the implementation of Equals provided by the compiler is
specially crafted to take inheritance into account.



Records and the Equality Contract

The contract for equality applies to records just as for any
other type, and the code provided by the compiler ensures
that every aspect of the contract is respected, including the
stability of comparisons via base class references. The test
in Listing 7-13 differs from the test in Listing 7-10 in that
the Color and TranslucentColor types are records rather than
classes. Here we compare two TranslucentColor record
values with different Alpha properties and assert that they
compare unequal whether we compare them directly using
their concrete type or indirectly via a base class reference.

bool EqualViaBase(Color left, Color right) 

    => left.Equals(right); 

bool EqualViaDerived(TranslucentColor left, TranslucentColor 

right) 

    => left.Equals(right); 

var pencil = new TranslucentColor(0xFF, 0, 0xFF, 0x77); 

var crayon = new TranslucentColor(0xFF, 0, 0xFF, 0); 

Assert.That(EqualViaBase(pencil, crayon), Is.False); 

Assert.That(EqualViaDerived(pencil, crayon), Is.False);

Listing 7-13: Equality between record types

This test passes, and the pencil and crayon variables
compare not equal whichever method we call,
EqualViaDerived or EqualViaBase.

Because the compiler-generated implementation of
equality pays particular attention to the equality contract,
the variables compare not equal whether we use a base
Color record reference or the derived TranslucentColor
reference. In particular, the type-safe implementation of
Color.Equals(Color) is virtual in a record implementation and
is overridden in the derived TranslucentColor record. As
mentioned, doing this for our class implementations would



make the test behave correctly. With records, the compiler
injects those implementations for us.

We can override the Equals methods ourselves, in which
case the compiler won’t synthesize methods whose
signature matches our own custom implementations.
However, if we do so, we must pay the same attention to
the equality contract as the compiler would in its generated
version.

In nonsealed records, the compiler creates a virtual
property named EqualityContract, which uses typeof to report
the static (compile-time) type of its containing record. The
implementation of Equals for the Color record shown in
Listing 7-14 is equivalent to the one generated by the
compiler, although, as you saw in Chapter 5, some
implementation details differ.

public class Color : IEquatable<Color> 

{ 

    --snip-- 

    protected virtual Type EqualityContract 

        => typeof(Color); 

 

    public virtual bool Equals(Color? other) 

        => (object?)this == (object?)other || 

           other is not null && 

           EqualityContract == other.EqualityContract && 

           Red == other.Red && Green == other.Green && Blue

 == other.Blue; 

}

Listing 7-14: Using the equality contract in a nonsealed

record

When one record derives from another, as
TranslucentColor does from Color, the compiler adds an
override of EqualityContract in the derived record to report
its static type. The compiler-generated implementation of



Equals in the base class checks that the EqualityContract
properties match for both objects. If they don’t, Equals
returns false.

Notwithstanding the EqualityContract property, the
implementation of Equals follows the canonical form shown
in Listing 7-4. Since TranslucentColor derives from Color, the
other parameter could refer to an instance of
TranslucentColor. If we attempt to compare a Color record
with a TranslucentColor, the EqualityContract properties won’t
match, and the objects will (correctly) compare not equal.
Checking the EqualityContract property is analogous to our
original Color class in Listing 7-4 checking that GetType
returned the same type for both objects. Using the static
type as EqualityContract does has a slight benefit over
GetType because typeof is evaluated at compile time, whereas
GetType is evaluated at run time.

The EqualityContract property is protected so that it can
be overridden by the derived type, but it can’t be called
publicly. As Listing 7-15 shows, the virtual EqualityContract
property is overridden in the TranslucentColor record to
return the type of TranslucentColor.

public class TranslucentColor : Color, IEquatable<Translucen

tColor> 

{ 

    --snip-- 

    protected override Type EqualityContract 

        => typeof(TranslucentColor); 

    public override bool Equals(Color? obj) 

        => Equals(obj as TranslucentColor); 

    public virtual bool Equals(TranslucentColor? other) 

        => base.Equals(other) && Alpha == other.Alpha; 

}

Listing 7-15: Overriding the equality contract in the

TranslucentColor record



The implementation of Equals in TranslucentColor calls the
base class implementation before comparing the local
properties of each object, ensuring that the contract
properties are always compared. Crucially, the virtual
Equals(Color?) method is overridden in TranslucentColor and
casts its argument to a TranslucentColor. If that cast fails, the
argument passed will be null. When we compare two
TranslucentColor instances using Color reference variables, as
when we call the EqualViaBase method in Listing 7-13, it’s
this override of Equals that’s executed via virtual dispatch.

If we write our own Equals method, it must also compare
the EqualityContract properties because it rarely makes
sense for instances of different types to compare equal.

The EqualityContract property alone doesn’t solve the
problem of comparing two TranslucentColor instances using
Color references. Our test in Listing 7-13 passes because
the compiler generates a virtual type-safe Equals method for
Color and overrides it in the derived record. When we call
Equals on a Color variable, if the run-time instance is a
TranslucentColor, we call the more derived implementation.
Note that the Equals(TranslucentColor?) method is also
virtual, because TranslucentColor can itself be inherited. A
record deriving from TranslucentColor will have compiler-
generated overrides of both Equals(TranslucentColor?) and
Equals(Color?) alongside its own type-safe Equals method.

However, equality isn’t the only implementation we can
inherit from a class or a record. We can define our own
virtual and nonvirtual methods for a record exactly as we
do for a class.

Contracts Other Than Equality

The behavioral contract established by a base class or
record applies to all its methods, not just Equals. The
compiler generates the right implementations to compare
two record instances for equality, but we have to supply
any other implementations for ourselves. One common



interface implemented by value types is IComparable< T >,
which, as you saw in Chapter 6, allows us to sort collections
of value types. The Area and Volume records in Listing 7-16
are related by inheritance, and each implements the
IComparable< T > interface by defining a CompareTo method.

public record Area(double Width, double Height) 

    : IComparable<Area> 

{ 

    public int CompareTo(Area? other) 

    { 

        if(other is null) return 1; 

        return (int)(Width * Height - other.Width * other.He

ight); 

    } 

    public static bool operator<(Area left, Area right) 

        => left.CompareTo(right) < 0; 

    public static bool operator>(Area left, Area right) 

        => left.CompareTo(right) > 0; 

} 

public record Volume(double Width, double Height, double Dep

th) 

    : Area(Width, Height), IComparable<Volume> 

{ 

    public int CompareTo(Volume? other) 

    { 

        if(other is null) return 1; 

        return (int)(Width * Height * Depth - 

                     other.Width * other.Height * other.Dept

h); 

    } 

    public static bool operator<(Volume left, Volume right) 

       => left.CompareTo(right) < 0; 

    public static bool operator>(Volume left, Volume right) 

       => left.CompareTo(right) > 0; 

}



Listing 7-16: Sorting Area and Volume records with

IComparable< T >

The compiler will generate the code to implement
IEquatable< T > for both Area and Volume, although we should
keep in mind that Equals is comparing double values in each
case, leading to possible problems, as we discovered in
Chapter 5. However, the compiler doesn’t provide the
implementation for IComparable< T >, so we must write our
own. Here, we define the ordering for Area so that one
object is less than another if its total area is smaller.
Similarly, for Volume, one is less than another if its total
volume is smaller. We also add operator< and operator> for
both Area and Volume, implemented in terms of the CompareTo
method.

As we explored in Chapter 6, ordering comparisons
have their own contract, and the implementations of
IComparable< T > in Listing 7-16 effectively suffer the same
problems as our original implementation of the IEquatable< T
> interface in the Color and TranslucentColor classes.

Although we’re using record instead of class in the
declarations, we’re still employing implementation
inheritance. Subclassing is as much an issue for records as
it is for classes. We can demonstrate this with a new test in
the same vein as checking whether two TranslucentColor
instances compare not equal when their Alpha properties
differ. In Listing 7-17, two Volume instances differ only in
their Depth property, but we compare them with < by using
references to the base record type.

Area door =   new Volume(Width: 100, Height: 200, Depth: 2

5); 

Area window = new Volume(Width: 100, Height: 200, Depth: 5); 

Assert.That(window < door, Is.True);



Listing 7-17: Testing the contract for CompareTo in two

Volume instances

This test fails because the static, compile-time types of
the door and window variables differ from their dynamic, run-
time types. When we compare them using the base class
static type, the Depth property of the derived record is
ignored, giving an incorrect result.

As with the compiler implementation of IEquatable< T >,
we could make the implementation of CompareTo virtual in
the Area record and override it in the Volume type. While
doing so would address the immediate problem of this
failing test, it wouldn’t solve every problem with our
implementation. For example, when we compare an Area
with a Volume, what should CompareTo return? An equality
comparison between instances that aren’t the same type
simply returns false, but it’s not so straightforward for
CompareTo. We might choose to compare any Area as less than
any Volume, but that too may lead to confusion.

The question of whether an Area is less than a Volume is
not a meaningful one, but disallowing ordering
comparisons for the Area and Volume types individually would
be extremely prohibitive; it makes perfect sense to see if
one Area is less than another, and likewise for Volume. We
can arrange for CompareTo to throw an exception if the
objects being compared have different run-time types, but
this will add complexity to the calling code and may
surprise some users.

This demonstrates first that records are not a “silver
bullet,” and second—and more importantly—that we might
still be trying to solve the wrong problem.

Avoiding Implementation Inheritance

Our problems with inheriting Equals and CompareTo
demonstrate why value types don’t make good base types,
regardless of whether we use class or record to define them.



More generally, inheriting any implemented behavior
makes it challenging to ensure that code written for the
base type will work correctly if we substitute an inherited
type. Even if we don’t override the base type’s methods, we
can’t easily guarantee that those methods will work
correctly for any derived type. While inheritance is a
popular mechanism for reusing a base type’s
implementation, fulfilling the base type behavioral contract
in a derived type is often much more difficult than it
appears.

One way to ensure that one type can be substituted for
another is to avoid implementation inheritance entirely.
Remember, when we implement an interface, the
implementing class is truly a subtype of the interface type;
there’s no behavioral contract to consider because
interfaces have no implementation. An interface type
defines what an implementing type must be able to do but
doesn’t prescribe any specific implementation. An
interface, in effect, defines only a type, not a class.

An interface type can be substituted by any
implementing type, so we can use different
implementations under different circumstances. Code that
depends only on an interface type—whether as a parameter
in a method or a field in a type—is completely decoupled
from the way that interface is implemented. This means
that interfaces are seams—customization points in our code
where we can swap one implementation for another.

Code that’s written in terms of interface types rather
than concrete implementations is more flexible because it
doesn’t depend on a particular implementation. It’s also
easier to test because we can switch out concrete
implementations of an interface with our own test double,
sometimes known as a stub, fake, or mock object.

It’s common to see interface types represent the
controllers and services described in Chapter 6, sometimes



with several implementations. A specific concrete
implementation may be selected at run time, perhaps
according to configuration parameters or the run-time
environment. However, code using the controller or service
—frequently in the entity types—doesn’t need to change
because its behavior depends only on the interface, not the
specific concrete type. The controllers and services are also
where we’re most likely to want a fake implementation
during testing so that the testing doesn’t need access to an
external or expensive resource, such as a real database.

When value types implement one or more interfaces, it’s
to define specific protocols, such as IEquatable< T > and
IComparable< T >, rather than to allow client code to use
different implementations. Value types, no matter the
mechanism we use to implement them, should stand alone
and be largely, if not wholly, independent of other types in
an application.

The advice to avoid implementation inheritance leads to
the recommendation that records should always be sealed,
because they’re specifically designed for modeling value
types. Classes should also be sealed by default, whether or
not we’re using them to model values, and inheritance
enabled only when we have a specific design rationale for
it.

Although this advice might seem to limit the flexibility
of our designs, we can use other ways to define
relationships in our code without deriving new types from
existing ones. Inheritance isn’t the only option for reusing
the implementation of an existing type to extend its
capabilities.

Containing Instead of Inheriting Types

One way we can use the behavior of one concrete type to
implement another is to simply contain (or compose) an
instance of the type as a field or property. This is especially



true when we need a value type, like TranslucentColor, that’s
easily implemented in terms of a simpler type, like Color,
but without implying any type substitutability between
them. While value types should generally be stand-alone,
containing another value as a field is one exception that’s
frequently beneficial.

We implemented Color as a class and then as a record so
we could take advantage of inheritance. Modeling values
with a class is not unreasonable—and, as we know, records
are specifically provided for that purpose. But if we contain
a Color in TranslucentColor instead of deriving from Color,
using struct to implement both types is much simpler.
Using record struct is even simpler still, as we do in Listing
7-18, where a TranslucentColor contains an instance of Color.

public readonly record struct Color(int Red, int Green, int

 Blue); 

public readonly record struct TranslucentColor(Color Color,

 int Alpha)

{ 

    public TranslucentColor(int red, int green, int blue, in

t alpha) 

        : this(new Color(red, green, blue), alpha) 

    { 

    } 

 

    public int Red => Color.Red; 

    public int Green => Color.Green; 

    public int Blue => Color.Blue; 

}

Listing 7-18: Containing Color rather than inheriting from

it

Here, the compiler provides the implementation for
IEquatable< T > for each type, leaving us to define just the
properties and behavior for them. The TranslucentColor type



contains a read-only Color instance, and we add a new
constructor as a convenience for our users, who can either
create a new Color value to pass to TranslucentColor’s
generated constructor or call our new constructor with
each component part separately. We also mirror Color’s
properties in TranslucentColor and forward them to the
contained Color value. We don’t get those properties for
free, but they afford users of TranslucentColor a much more
natural interface, like this:

var bg = new TranslucentColor(0xFF, 0xA0, 0, 0x77); 

Assert.That(bg.Red,   Is.EqualTo(0xFF)); 

Assert.That(bg.Green, Is.EqualTo(0xA0)); 

Assert.That(bg.Blue,  Is.EqualTo(0)); 

Assert.That(bg.Alpha, Is.EqualTo(0x77)); 

--snip--

The alternative would force users to explicitly obtain
the Color property in order to access its properties, like so:

Assert.That(bg.Color.Red,   Is.EqualTo(0xFF)); 

Assert.That(bg.Color.Green, Is.EqualTo(0xA0)); 

Assert.That(bg.Color.Blue,  Is.EqualTo(0)); 

Assert.That(bg.Alpha,       Is.EqualTo(0x77)); 

--snip--

Whether we use structs or define our value types with
sealed records or classes, or record structs, testing our
new types is much simpler to reason about now, as we
don’t need to consider cases where TranslucentColor
instances are referred to by Color references. That in itself
is a large consideration because those tests will be not only
easier to write but also easier to read by the next
programmers who visit the code.

Composing types isn’t a perfect match for the version
that employed inheritance, because we can’t use a



TranslucentColor instance as an argument to a method
expecting a Color. As you’ve seen, sometimes that
substitutability isn’t appropriate.

Inheritance isn’t the only form of polymorphism nor the
only mechanism that exhibits type substitutability, but
other approaches allow the compiler to inform us when we
incorrectly substitute one type for another. Let’s take a
look at some of them.

Parametric Polymorphism with Generics

C# generics offer parametric polymorphism, a form of
polymorphism that allows us to write code once that works
for multiple types by using generic type parameters instead
of actual types. This approach provides a common form and
purpose for all the types that can be substituted for those
parameters.

This is most clearly demonstrated by the generic
collection classes in the Standard Library, such as List< T >,
where T is a generic parameter type that can be substituted
by any run-time type, including any types we define
ourselves. For example, in Listing 7-19 we declare two List<
T > variables parameterized with different, unrelated types.

var colors = new List<Color>(); 

var names = new List<string>();

Listing 7-19: Using a generic type

Although the List implementation’s behavior doesn’t
change, a List< Color> is a distinct type from List< string>,
and there’s no relationship between the two types. The
generic List< T > code is written in terms of the T generic
parameter, and since List< T > doesn’t need to know
anything about the structural or behavioral characteristics
of T, it can be used with any type.



To put that another way, in the context of List< T >, any
type can be substituted for the T parameter without
implying any subtype relationship. We have no behavioral
contract to take into account, because List< T > makes no
assumptions about T.

If we need to be more selective about the types that are
suitable for a generic parameter type in our own generic
code, or if we require the generic code to use methods and
properties beyond those provided by object, we can
constrain the parameter to allow only types having specific
behavior.

Generic Constraints and Protocol Interfaces

Since object is the base class of every type, generics can
use its methods via a variable of type T, but to access
anything else, the compiler needs more information on
what T can be. We provide that information through generic
type constraints. One example is an interface constraint,
which restricts T to a type that implements the specified
interface, ensuring that all interface operations are legal
for a variable of that generic type. Consider, for instance,
the interface shown in Listing 7-20.

public interface IParser<T> 

{ 

    public T Parse(string input); 

}

Listing 7-20: A contract interface

The generic IParser< T > interface defines a single Parse
method for turning a string value into an object instance of
type T. The T parameter in IParser< T > is unconstrained, so
this interface can be implemented by any type. In Listing 7-
21, we use the IParser< T > interface to constrain the TParser
parameter of the DataAdapter generic class.



public sealed class DataAdapter<TParser, TResult> 

    where TParser : IParser<TResult> 

{ 

    public DataAdapter(TParser parser, IEnumerable<string> s

ource) 

        => (this.parser, items) = (parser, source); 

    public IEnumerable<TResult> Read() 

    { 

        foreach (var item in items) 

        { 

            yield return parser.Parse(item); 

        } 

    } 

    private readonly TParser parser; 

    private readonly IEnumerable<string> items; 

}

Listing 7-21: Constraining a type for its API

The DataAdapter class has two generic parameters. The
TParser parameter is constrained to the IParser< T >
interface in the where clause following the type definition.
TParser is constrained using the second generic parameter
TResult, which also corresponds to the return type from the
Read method, meaning that TParser can be substituted by an
implementation of IParser< TResult >. The constructor for
DataAdapter takes a TParser parameter, so the argument
passed must be an implementation of IParser< T >, with the
T substituted by the same type as the TResult parameter for
DataAdapter.

For simplicity, the DataAdapter constructor takes a
sequence of string values to represent the input values, but
in a real application, DataAdapter might be obtaining its data
from a database or more elaborate source.

The interface type constraint on the TParser generic type
parameter enables us to call parser.Parse in the Read method,
which returns a sequence of TResult elements. Without the



where constraint for TParser, the Read method would fail to
compile because object has no Parse method.

The IParser< T > interface in Listing 7-20 isn’t intended
to be used as the type of a variable; rather, it’s a contract
interface whose purpose is to describe the protocol for
parsing a string into an object. We even use TParser as the
type of a field in the DataAdapter class rather than declaring
the field as IParser< T >.

The presence of the constraint on the TParser generic
parameter of DataAdapter means that we can create a
DataAdapter only by providing an implementation of the
IParser< T > protocol. The constraint guarantees that
whatever type is substituted for TParser at run time will
have a Parse method whose signature matches the
operation defined in the IParser< T > interface.

Implementing the IParser<T> Protocol

The IParser< T > interface is itself generic, allowing an
implementing type to specify the return type from the Parse
method. The ColorParser class in Listing 7-22 implements
IParser< Color> to convert a string to a Color object. In this
example, the input string represents each color component
as a two-digit hexadecimal value, so the entire value is in
the format "RRGGBB".

public interface IParser<T> 

{ 

    public T Parse(string input); 

} 

public sealed class ColorParser : IParser<Color> 

{ 

    public static int FromHex(string part) 

        => int.Parse(part, NumberStyles.HexNumber); 

    public Color Parse(string input) 

        => new(Red:   FromHex(input[0..2]), 

               Green: FromHex(input[2..4]), 



               Blue:  FromHex(input[4..6])); 

}

Listing 7-22: Implementing a contract interface

The Parse method of the ColorParser class uses the range
operator syntax, introduced in C# v8.0, on the input
parameter to split the string into three parts of two
characters each. A range like [begin..end], also called a
slice, specifies a substring from the begin index up to but
not including the end index. Ranges can also be used with
arrays to specify a subrange of the array.

NOTE

A range is a half-open interval of indices and would more

properly be written [begin..end), but C# syntax doesn’t

allow nonmatching brackets or parentheses. Be careful not

to confuse this syntax with the Enumerable.Range method,

which takes the starting index and a count of items to

include as its parameters.

Parameterizing the DataAdapter Class

Since ColorParser implements the IParser< T > interface, we
can use a ColorParser with the DataAdapter class, as shown in
Listing 7-23.

string messages = "FFA000 A0FF00 00F0F0"; … 

var provider = new DataAdapter<ColorParser, Color> 

                        (new ColorParser(), messages.Split(' 

')); 

foreach(Color color in provider.Read()) 

{ 

    --snip-- 

    // Do something with a color 

}



Listing 7-23: Using the generic type

While the DataAdapter class itself is written in a
polymorphic way (inasmuch as it works on any type
implementing the required IParser< T > protocol), using it
requires us to explicitly indicate the concrete type we’re
substituting for both the TParser parameter and the TResult
parameter type to be returned by the Read method.

This prevents us from accidentally using TranslucentColor
for the TResult parameter of DataAdapter along with a
ColorParser class like this:

var other = new DataAdapter<ColorParser, TranslucentColor> 

                    (new ColorParser(), messages.Split('

 '));

The ColorParser class is specific to Color types because it
implements the IParser< Color> interface. The compiler will
catch such transgressions and report an error:

[CS0311] The type 'ColorParser' cannot be used as type param

eter 'TParser' in the generic 

type or method 'DataAdapter<TParser, T>'. There is no implic

it reference conversion from 

'ColorParser' to 'IParser<TranslucentColor>'.

However, the TResult generic parameter of DataAdapter is
already implied by the concrete type of the IParser< T >
implementation we provide, as it must be the same type
that’s returned by IParser< T >.Parse. The type constraint we
used for the TParser generic parameter for DataAdapter in
Listing 7-21 makes this relationship explicit:

public sealed class DataAdapter<TParser, TResult> 

    where TParser : IParser<TResult> 

--snip--



Since we’ve gone to the trouble of ensuring that the
DataAdapter class can work with any IParser< T >
implementation, having to specify which implementation
we mean seems superfluous. Instead, we can have the
compiler deduce the correct type for the TParser parameter
based on the actual type we use.

Generic Method Parameters and Type

Deduction

Although the compiler doesn’t infer the actual type for any
parameters of a generic class, it may do so for a generic
method if a generic parameter type is used in the method’s
formal parameters. Since the TParser type parameter is
used only by the DataAdapter.Read method, we can move it
from the DataAdapter class and add it instead to the Read
method, making Read a generic method, as shown in Listing
7-24.

public sealed class DataAdapter<TResult> 

{ 

    public DataAdapter(IEnumerable<string> source) 

        => items = source; 

    public IEnumerable<TResult> Read<TParser>(TParser parse

r) 

        where TParser : IParser<TResult> 

    { 

        foreach (var item in items) 

        { 

            yield return parser.Parse(item); 

        } 

    } 

    private readonly IEnumerable<string> items; 

}

Listing 7-24: Defining DataAdapter.Read as a generic

method



The DataAdapter no longer needs a field to store a TParser
object since it’s passed to the Read method. The generic
method still requires the interface constraint so that we
can call the Parse method via the parser variable, but we
don’t need to specify the type of the parser argument when
passing it; the compiler infers the type of TParser based on
the argument we pass to Read, as shown in Listing 7-25.

var provider = new DataAdapter<Color>(messages); 

foreach (Color color in provider.Read(new ColorParser())) 

{ 

    --snip-- 

}

Listing 7-25: Parameter type inference

We mention the ColorParser type just once, when we
create an instance of it to pass to the Read method. Compare
this with Listing 7-23, where we not only required an
instance of ColorParser but also needed to specify its type
for the TParser parameter of DataAdapter. By taking
advantage of the type inference afforded by a generic
method, we avoid the redundant code.

Parameterized Types

We still need to specify Color for the TResult parameter of
DataAdapter in Listing 7-25, even though TResult is used only
by the Read method. The compiler can only infer the real
type of a generic parameter from the arguments we pass to
a method, and TResult isn’t used as the type for any
parameter in Read. If a method has generic parameters, they
must all be either explicitly specified or deduced from the
arguments; the compiler won’t partially deduce the types
just from available arguments.

However, this is a benefit of the DataAdapter class,
because it ensures that the T parameter of IParser< T >



matches the TResult parameter of DataAdapter. If we want a
different type to stand in for TResult, we need a different
parser implementation. In Listing 7-26, we implement the
IParser< T > interface in a TranslucentColor type and create a
DataAdapter for the new type.

public sealed class TranslucentColorParser : IParser<Translu

centColor> 

{ 

    public TranslucentColor Parse(string input) 

        => new(Color: color.Parse(input[0..6]), 

              Alpha: ColorParser.FromHex(input[6..8])); 

    private readonly ColorParser color = new(); 

} 

--snip-- 

var provider = new DataAdapter<TranslucentColor>(messages); 

var colors = provider.Read(new TranslucentColorParser()).ToL

ist();

Listing 7-26: Parameterizing DataAdapter with a

different type

We specify TranslucentColor instead of Color to implement
IParser< T > in the TranslucentColorParser class, and we
specify TranslucentColor as the type for the TResult parameter
of DataAdapter. The TranslucentColorParser implementation
uses a ColorParser object to parse the Color portion of
TranslucentColor as a convenience, but otherwise it’s an
entirely new type. Similarly, the DataAdapter<
TranslucentColor> type is unrelated to DataAdapter< Color>.

The DataAdapter class is polymorphic according to the
type we provide as an argument for its TResult parameter
because that type affects what the Read method returns. The
Read method is itself polymorphic, as it has its own generic
parameter. We need to write the Read method only once,
and it works for any type that implements IParser< T >,
where T matches the TResult type of DataAdapter.



We can think of a generic method as representing
multiple method overloads, each with different parameter
types but all having an identical implementation. Even
without generics, overloaded methods represent their own
kind of polymorphism, known as ad hoc polymorphism.

Ad Hoc Polymorphism with Overloading

Ad hoc polymorphism, or method overloading, is how we
define a family of operations that have the same name but
differ in the type or number of their parameters. The
compiler selects the correct method overload based on the
method name and the arguments we use to call it. Each
method can have a different implementation, so the method
name is polymorphic with respect to its parameters.

You’ve seen a few examples of overloading instance
methods in this and other chapters, where we’ve
overridden the virtual Equals method and then overloaded it
with a type-safe implementation. The compiler will select
the type-safe overload of Equals if the static type of the
argument matches the implementing type rather than
being an object or another type. In a record struct, the
compiler provides implementations for both methods,
although we can provide our own type-safe Equals if we
wish. Listing 7-27 shows how using different arguments
changes which method is called when the variables being
compared are value types.

public readonly record struct Color(int Red, int Green, int

 Blue); 

var plum = new Color(0xDD, 0xA0, 0xDD); 

var other = new Color(0xDD, 0xA0, 0xDD); 

Assert.That(plum.Equals(null), Is.False); 

Assert.That(plum.Equals(other), Is.True);

Listing 7-27: Selecting method overloads



The first assertion, which compares the plum variable
with null, will call the Equals method override with an
object? parameter because object is a reference type, and
null will automatically convert to a reference parameter. In
the second assertion, the method taking a Color as its
parameter is a better match for the other argument because
the types match exactly, so the type-specific overload is
called. If Color were a record instead of a record struct,
both assertions would directly invoke the Equals(Color)
overload, since in that case Color would be a reference type
but a more specific one than object, making it a better
conversion target for overload resolution when the
argument is null.

When we call an overloaded instance method, the
compiler identifies the candidate methods by using the
static type of the variable used to invoke the method. The
candidate methods may include extension methods with the
same name if they’re in scope where the method is called.
It’s always the invoking variable that determines how the
list of possible overloads is selected, and the arguments
passed determine the specific overload from that candidate
list. In Listing 7-28, we change the static type of the plum
variable to be object instead of Color before calling its Equals
method.

object plum = new Color(0xDD, 0xA0, 0xDD); 

Color other = new Color(0xDD, 0xA0, 0xDD); 

Assert.That(plum.Equals(other), Is.True);

Listing 7-28: Argument type versus invoking type

The candidates for Equals are selected from the methods
defined on object because that’s the compile-time type of
the plum variable. We have only one such method, which
takes a parameter of object?, so that’s automatically a
match, even though the other argument is a Color, and plum



is still a reference to a Color that has an overloaded Equals
method taking a Color parameter. The same would be true if
Color were a reference type: the type-specific overload isn’t
even considered during overload resolution because it’s not
a member of the type of the variable used to call the
method.

Static methods can be overloaded too, although the
candidate overloads are identified from the type name used
by the caller. In either case, from this list of candidates,
called a method group, the compiler chooses the best
match according to the arguments being passed.

If no match is found—that is, the arguments aren’t
implicitly convertible to any of the parameter types—or
there are multiple equally good candidates with no single
best match, our program fails to compile.

Symbolic Polymorphism with Overloaded

Operators

Overloading can be especially powerful in conjunction with
custom operators. It’s common for value types to overload
operator== to correspond with the Equals method. Not only is
this more compact, but it also looks more natural to
compare values with == than to compare them by calling a
method.

We have to write our own operator implementations for
structs, but the compiler provides operator== and operator!=
for records and record structs, making it convenient to
compare two variables of the same type like this:

var plum = new Color(0xDD, 0xA0, 0xDD); 

var pink = new Color(0xFF, 0xCC, 0xCC); 

Assert.That(plum != pink, Is.True);

We’re not permitted to alter the implementations of
operator== or operator!= synthesized by the compiler for
records and record structs, but we can add overloads of



them to accept different types, just as we can with other
methods. For instance, in Listing 7-29, we overload
operator== for Color to permit comparisons between a Color
and an int.

public static bool operator==(Color left, int right) 

    => left.Equals(new (right)); 

public static bool operator==(int left, Color right) 

    => right.Equals(new (left));

Listing 7-29: Overloading operators

We need to add a corresponding operator!= for each
overload (not shown here). These overloads are a
convenience for users, who don’t need to explicitly
construct Color instances in order to compare them with
their raw RGB value and who can compare values like this:

var plum = new Color(Red: 0xDD, Green: 0xA0, Blue: 0xDD); 

Assert.That(plum == 0xDDA0DD, Is.True); 

Assert.That(0xDDA0DD == plum, Is.True);

Overloading operators isn’t essentially different from
overloading other methods, but rather than using named
methods, we’re overloading symbols to behave in a
polymorphic way with our types. A good example of
symbolic polymorphism is embodied in the string class,
which defines the + symbol to mean concatenation rather
than addition. This is a widely accepted convention familiar
to most programmers.

We should be cautious of introducing our own
operations that don’t follow the usual rules. Overloading
methods, and especially operators, requires careful thought
and a hefty dose of what we might call “good taste.”
Families of methods overloaded for different types give the
impression of type substitutability by giving one common



name to an operation that may be implemented differently
for each type.

The string class doesn’t, for example, allow us to add a
number with a string, for the simple reason that the type of
the result may be misinterpreted: should "5" + 0.5 be the
same as 0.5 + "5"? The designers of the string class decided
to disallow either use to avoid any potential confusion.

Generic Delegates for Polymorphism

A delegate is a type that represents a method with a
specific signature—the type and number of parameters—
and a delegate object can be constructed from different
methods as long as the signature matches the delegate
type. Delegates are a central feature of the LINQ libraries;
for example, the Select method takes a delegate parameter
to represent the method for transforming one element of a
sequence into a different type. We most commonly see
lambdas being used as the arguments for methods with
delegate type parameters, as shown in Listing 7-30.

var colors = new List<Color> 

    { 

        --snip-- 

    }; 

var formatted = colors.Select( 

    color => $"{color.Red:X2}{color.Green:X2}{color.Blue:X

2}");

Listing 7-30: Passing a lambda for a delegate parameter

Select is an extension method for IEnumerable< T >, and
here we call it via the colors variable, passing a lambda to
represent a method taking a Color parameter, since that’s
the element type of the colors sequence. The lambda is
invoked for each element in the sequence and returns a
hexadecimal representation of the value as a string



formatted to "RRGGBB"—the reverse operation of the Parse
method defined in Listing 7-22.

Inline lambdas like the one in Listing 7-30 are
convenient but generally lack the flexibility offered by
method overloads. For example, if we change the element
type of colors to be TranslucentColor instead of Color, our
code still compiles, and the lambda implementation will
continue to work with the TranslucentColor type defined in
Listing 7-18, but the result won’t have the extra 2 bytes for
the Alpha property. We have to write a new lambda for
TranslucentColor, and if we need to support both Color and
TranslucentColor elements, we have to handle them
separately.

Overloaded methods are a perfect way to capture the
common purpose we need while simultaneously enabling us
to encapsulate the different implementations required.
Consider the two static methods in Listing 7-31.

public static class Formatter 

{ 

    public static string Format(Color color) 

        => $"{color.Red:X2}{color.Green:X2}{color.Blue:X2}"; 

    public static string Format(TranslucentColor color) 

        => $"{Format(color.Color)}{color.Alpha:X2}"; 

}

Listing 7-31: Overloaded methods for different types

Notice that the Format(TranslucentColor) method’s
implementation calls the Format(Color) overload—something
we couldn’t do with separate anonymous lambda
expressions.

Rather than passing a lambda as the argument for
Select, we can pass the Format method group, as shown in
Listing 7-32.



var colors = new List<TranslucentColor> 

{ 

    --snip-- 

}; 

var formatted = colors.Select(Formatter.Format);

Listing 7-32: A method group as an argument

Here, Formatter.Format is the common name for two
method overloads and represents a method group. The
compiler selects the correct overload in the group based on
the element type of the sequence used to call Select. The
delegate parameter for Select is a generic delegate—that is,
one that has its own generic type parameters. Like generic
methods, the compiler will infer the actual types based on
the arguments passed to the delegate.

The Formatter.Format method group is polymorphic
according to the arguments that are passed by the Select
method internally. Here, the Format(TranslucentColor) method
from Listing 7-31 is called because the element type of the
colors sequence is TranslucentColor. If we changed the colors
variable to be a List< Color> instead, the Select method
would call Format(Color), but without us needing to change
the Select expression in any way.

Coercion Polymorphism Using Conversions

As you’ve seen, inheritance allows us to use a reference to
an instance of one type when a different type is expected,
as long as the first type inherits from the second type. A
derived class is syntactically substitutable for its base class
because there’s a natural implicit conversion from a
specific type to any of its parent types.

We can implement our own type conversions to mimic
substitutability between two otherwise unrelated types.
Casting—or coercing—a variable to a different type can be



convenient, whether via implicit or explicit conversions, but
doing so may mask problems beneath the surface.
However, applied carefully, conversions between unrelated
types can be an effective and concise way to express a
design.

To demonstrate some of the problems with implicit
conversions that we haven’t yet explored, Listing 7-33
implements an implicit conversion operator in
TranslucentColor to convert an instance to a Color type.

public readonly record struct TranslucentColor(Color Color,

 int Alpha)

{ 

    --snip-- 

    public static implicit operator Color(TranslucentColor c

olor) 

        => color.Color; 

}

Listing 7-33: Implicit conversion operator

The conversion operator in TranslucentColor is an
outward conversion: we’re converting from an instance of
the implementing type to something else. It will allow us to
call a method expecting a Color value when we have a
TranslucentColor at hand, as we do when we call the
EqualViaColor method in Listing 7-34.

public bool EqualViaColor(Color left, Color right) 

    => left.Equals(right); 

var red = new TranslucentColor(0xFF, 0, 0, 0); 

var blue = new TranslucentColor(0, 0, 0xFF, 0); 

Assert.That(EqualViaColor(red, blue), Is.False);

Listing 7-34: Implicit conversions in action



Owing to the implicit conversion operator, the red and
blue variables are converted to Color instances when we
pass them as arguments to the EqualViaColor method. The
conversion happens invisibly because the conversion
operator is defined as implicit.

We could achieve the same effect by defining an inward
conversion operator on the Color type taking a
TranslucentColor parameter. The difference is merely about
where we choose to define the operator. Since
TranslucentColor already depends on the Color type, and Color
otherwise has no knowledge of TranslucentColor, the
outward conversion defined in TranslucentColor makes better
sense here.

However, we must be careful with all conversions,
especially implicit ones. As you saw in Chapter 1, implicit
conversions may hide complexity and can even lead to
undesired behavior. A user-defined coercion is not quite the
same as the implicit reference conversion from a derived
type to its base type.

Widening vs. Narrowing Conversions

When TranslucentColor inherited from Color, we could pass a
TranslucentColor reference to a method expecting a Color, but
it was still a reference to the same instance of a
TranslucentColor, and only a copy of the reference would be
made. In Listing 7-33, TranslucentColor and Color are record
structs and therefore value types. When we invoke the
conversion operator of TranslucentColor, we’re simply
creating a new Color instance, so the copy has lost some of
the information specific to TranslucentColor—namely, the
Alpha property.

A conversion from a derived class reference to a base
class reference is a widening conversion. We can refer to a
specific instance by using a more general (base) type, but
no loss of information occurs. We’re still able to explicitly
cast the base class reference back to the original derived



instance, although that’s a relatively expensive run-time
operation. Our implicit conversion from a TranslucentColor
struct to a Color via our own operator method is narrowing:
neither type is really more specific or general than the
other, and they’re independent values, but the act of
conversion loses information.

While we’ve replicated the behavior of converting from
a derived class to a base class, it doesn’t give us the same
flexibility. The converted value really is just a Color, and we
need other means of capturing the extra properties of a
TranslucentColor if we need to reinstate them.

Conversions aren’t appropriate for trying to replicate
the characteristics of inheritance, but they can be useful
for other scenarios.

For Representation

Conversions between unrelated types make more sense
when the types have a common meaning with different
representation. For instance, we might need to use an
external API that uses the common int representation of
the hexadecimal RGB value of colors. Changing a value’s
representation is usually better implemented as an explicit
rather than implicit conversion, as shown in Listing 7-35.
However, any conversions—whether explicit or implicit—
require careful consideration of alternate approaches.

public readonly struct Color 

{ 

    --snip-- 

    public static explicit operator int(Color color) 

        => color.Red << 16 | color.Green << 8 | color.Blue; 

}

Listing 7-35: Converting to a different type

representation



In Listing 7-36, we test the explicit conversion
operator’s implementation by casting the plum value to int
in order to pass it as an argument for a method taking an
int parameter.

int Converted(int color) 

{ 

    return color; 

} 

var plum = new Color(0xDD, 0xA0, 0xDD); 

Assert.That(Converted((int)plum), Is.EqualTo(0xDDA0DD));

Listing 7-36: Testing an explicit conversion

This local Converted function takes an int parameter and,
for the purposes of the test, simply returns its parameter
value. Since the conversion operator is explicit, we must
cast the Color value when we call the Converted method; the
compiler will complain if we try to use a Color value directly
as an argument for Converted. The compiler will also catch
any unintentionally inappropriate expressions like this:

var blue = new Color(0, 0, 0xFF); 

var green = new Color(0, 0xFF, 0); 

Assert.That(blue < green, Is.True);

If we had made the conversion operator implicit in
Color, this code would compile but would compare two int
values, probably with unexpected results.

The cast to int in Listing 7-36, while explicit and
obvious in the code, doesn’t say much about the intention
behind the conversion, which is implied to some extent by
the use. We might consider replacing an explicit outward
conversion like this with a method or property that more
definitively describes the intent of the conversion, perhaps
by calling it ToWebColor.



Naming the conversion allows us to better express what
we mean and why, making the code more self-documenting
without being overly intrusive or syntax-heavy compared to
an explicit cast. One frequently overlooked consequence of
using a named property instead of a cast is that the
property name is easier to search for, should we need to
find everywhere it’s used.

For Purpose

Conversion operators, even implicit conversions, aren’t
exclusively a bad choice. Conversions are commonly used
to allow a value to be represented by unrelated types that
support different operations, although the value itself has a
common representation. For example, Color is an
immutable value type, but we might want to build up its
value incrementally. A Color has multiple properties, and
sometimes setting them individually might be more
convenient than setting them all at once in a constructor.

Rather than compromising the immutable nature of
Color by adding set accessors for its properties, we
introduce a new companion type that looks very much like
Color, except that it allows its properties to be changed.
When the values are in their final state, we can then
materialize an instance of the mutable type into an
immutable Color. Key to this is that we can easily convert
from the companion type to the target value type. Listing 7-
37 shows such a mutable companion type for Color that
allows an implicit conversion to the immutable target value.

public class ColorBuilder 

{ 

    public int Red {get; set;} 

    public int Green {get; set;} 

    public int Blue {get; set;} 

    public static implicit operator Color(ColorBuilder colo

r) 



        => new Color(color.Red, color.Green, color.Blue); 

}

Listing 7-37: A mutable companion for Color

The ColorBuilder type isn’t itself a value type; its sole
purpose is to provide a kind of factory for Color values.

Applications of the Mutable Companion pattern are
fairly common, and we see it in the Standard Library with
string and StringBuilder. The string type is immutable, and
when we need to build up a string variable from several
parts, using its mutable companion, StringBuilder, is
efficient. When we’ve finished “building” the string, we
turn it into its immutable state.

Unlike with ColorBuilder, we must call the ToString
method of StringBuilder to turn it into a string, but an
implicit conversion can be used to good effect here. Since
ColorBuilder is implicitly convertible to a Color, we can call a
method taking a Color parameter with a ColorBuilder value,
as we see in Listing 7-38, where we call the
RelativeLuminance method with both a ColorBuilder and Color
value.

public static double RelativeLuminance(Color color) 

    => 0.2126 * color.Red + 0.7152 * color.Green + 0.0722 *

 color.Blue; 

var background = new Color(0, 0, 0); 

var builder = new ColorBuilder(); 

builder.Red = 0xFF; 

builder.Green = 0xFF; 

builder.Blue = 0; 

if(RelativeLuminance(builder) < RelativeLuminance(backgroun

d)) 

    background = builder;

Listing 7-38: Converting a companion type



The implicit conversion operator we defined for
ColorBuilder in Listing 7-37 permits us to pass the mutable
builder variable as an argument to any method that expects
a Color. Any code written for Color instances won’t be
expecting to be able to use the mutating properties of the
companion class, so the conversion is safe and convenient.

The ColorBuilder can be substituted for Color courtesy of
the implicit conversion. No information is lost because the
two types share a common representation; however, a
narrowing of the interface occurs, because the Color target
type has no set accessors for its properties.

Conversions represent a form of polymorphism, as we
explicitly allow a variable of one type to be coerced to a
variable of a different but unrelated type. Like parametric
polymorphism using generics, and ad hoc polymorphism
with overloading, coercion polymorphism is a compile-time
activity, in contrast to the dynamic, run-time characteristic
of inclusion polymorphism using inheritance. Inclusion
polymorphism is a powerful tool, but because the type
relationships are resolved at run time, the compiler can’t
identify many of the errors that may occur. When we
improperly use generics, overloading, or coercions, we can
rely on the compiler to tell us about most errors in our
code.

Summary

Trying to outsmart a compiler defeats much of the purpose of using one.

—Brian Kernighan and P.J. Plauger, The Elements of Programming Style

Asking how to make value types behave correctly when
used polymorphically is the wrong question: polymorphism
itself takes many forms! Combining value types and
inheritance can cause hard-to-diagnose errors, but
inheritance is only one kind of polymorphism. The dynamic
nature of inclusion polymorphism with virtual dispatch



brings an expectation of type substitutability and doesn’t
sit well with value-based equality.

Inheriting one type from another imposes a
responsibility on the derived type to respect the contract
established by the base class. Failing to uphold that
contract can lead to undesirable behavior. One type is
genuinely substitutable for another only if they share the
same behavioral contract, which is something the compiler
can’t enforce. It’s up to us, the programmers, to judge
whether inheritance is appropriate. In the case of structs,
it’s not even permitted, freeing us from that particular
responsibility.

With records, we need to pay just as much attention to
the base class contract as we do with classes. Although the
compiler carefully crafts its implementation of equality to
ensure that Equals behaves correctly for records, it doesn’t
do the same for any of our own virtual and overridden
methods in those types.

Records aren’t necessarily appropriate for everything,
and as noted earlier, making Equals “just work” for values
using inheritance is an incomplete solution to the wrong
problem. In particular, records are reference types and
thus subject to garbage collection. The implementations of
Equals are all virtual, as is the EqualityContract property, and
they all carry an associated cost. Records are a very
compact way of declaring immutable value-like types, but
programming is more than the amount of typing required of
us.

Value types do combine much better with the other
ways of representing polymorphic behavior: coercion,
overloading, and generic. These three forms of
polymorphism are static in nature; that is, they are resolved
by the compiler. Although type parameters in generic
classes and methods are resolved at run time, we must still
provide compile-time guarantees about which operations
those parameters support.



It can be tempting to use inheritance in order to reuse
code from a base class. This is a bad idea because
inheriting a class implies that the base class can be
substituted by the inheriting class, but it can be difficult to
ensure that the base class’s behavioral characteristics are
properly met. We can still reuse another type’s
implementation by containing an instance of the type and
using the contained instance privately to implement our
new type.

Inheriting from concrete types—that is, nonabstract
classes—in general presents us with the challenges of
respecting the contracts established by those base classes.
When we override an abstract method or implement an
interface, we don’t suffer from those issues because there
is no base class implementation to respect. In those cases,
we’re inheriting only the interface contract, which is much
easier to uphold.

The moral of the story is that if we always implement
true interfaces or inherit from fully abstract classes, the
problems we’ve encountered in this chapter will never
cause us difficulties. Correspondingly, we should seal any
class or record that models a value type and ensure that it
has no user-defined base types. We can still write code that
behaves polymorphically with the value types we use and
create, but we should express it differently by employing
generics, overloading methods, and permitting type
conversions.



8

PERFORMANCE AND EFFICIENCY

Few programmers set out to write
inefficient code, but we don’t
always have time to fine-tune an

algorithm to extract the maximum possible
performance. Nevertheless, it’s important to
understand how some coding practices can hurt
performance and how we can employ
alternative approaches to make our code more
efficient. In this chapter, we’ll put some
common techniques and practices under the
microscope to examine their performance and
compare their characteristics with potential
alternatives.

We’ll explore the following:
Where default code behavior may not be optimally efficient
Why some common performance concerns are misconceptions
How to evaluate code performance and target its bottlenecks
When making small optimizations may be worth the trouble

Measuring and Optimizing Performance

The term optimization is often used to mean altering code to make
a program run more quickly, but we might want to optimize for



many other outcomes: lower memory use, higher numeric
calculation precision, increased data throughput, and ease of
deployment, to name just a few. Sometimes we trade raw
performance for code readability or even convenience. We may
decide that making our code easy to test is more important than
making the program run at maximum speed. However, optimizing
for one area can often adversely affect one or more other areas of
an application, so we must make sure that the potential benefits are
worth the cost and that our efforts aren’t actually leading to
pessimization: writing or using code that prevents a program from
running efficiently.

The easiest and most direct method for optimizing a program’s
performance is to enable optimizations in the build configuration. A
release build configuration has optimizations enabled by default.
When building the debug configuration, the compiler generates
code that closely matches the source code’s structure and logic,
which allows for setting diagnostic features like breakpoints, step-
by-step debugging, and inspecting variables. The optimizations
enabled in a release build may change the code’s logical structure
in subtle ways, making debugging much more difficult but
potentially improving the code’s efficiency or reducing the
program’s size.

The C# compiler itself performs very little in the way of
optimizing the code, leaving the majority of that work to the JIT
compiler.

The JIT Compiler

The C# compiler translates our C# code into CIL format, which in
turn is translated to native machine code either ahead of time
(AOT) by a tool such as the CrossGen utility or at run time by the
JIT compiler, the latter being the default. In normal operation, the
JIT compiler translates the program piecemeal; rather than
producing the machine code for the entire program all at once
before running it (as AOT tools do), the JIT compiler translates
portions of the CIL to native format just in time. A portion would
generally be a method, but in principle it could be part of a method,
such as a loop or if block.

Because JIT compiler optimizations occur during a program’s
execution, they’ll vary among platforms and run-time environments.
While AOT compilation may improve a program’s startup time, the



JIT compiler can take advantage of optimizations specific to a
particular CPU, register set, operating system, and program state
to produce efficient code on the fly.

One common optimization is to inline the code within a method,
avoiding the overhead of a method call. The JIT compiler may also
be able to replace some method calls with native intrinsic CPU
instructions, further improving performance. Once a block has been
translated by the JIT compiler, its native code remains in memory,
so it usually doesn’t need to be recompiled if the program runs it
more than once.

In a debug build, the JIT compiler is much less aggressive in the
optimizations it applies so that normal debugging operations are
supported. When we’re trying to assess our code’s performance, it
usually makes the most sense to base that assessment on a release
build so it will account for all of the optimizations performed by the
JIT compiler.

Performance Benchmarks

When our code runs more slowly than we expect, simply observing
the running application may give us some insights, but measuring
performance precisely will allow us to target our optimization
efforts more effectively.

Recording the time it takes for code to run—whether it’s a
complete end-to-end run or just a portion of a program—is known
as benchmarking. More generally, a benchmark is a standard
against which something is measured. By timing our code, we
establish a benchmark with which to compare a new version, to
determine whether our changes have made the code faster or
slower, or have had no discernible effect.

Many unit-testing frameworks report how long it takes for the
tests to run, and even the elapsed time taken for individual tests.
Keeping an eye on these numbers is certainly worthwhile because a
sudden increase can indicate that an efficiency problem has been
introduced somewhere. This approach can be particularly valuable
in an automated continuous integration (CI) service, in which
changes from multiple contributors are automatically integrated
into a program; we can set up a CI service to alert us if the timing
of the unit tests begins to change. If a particular test that usually
runs in a few hundred milliseconds starts taking considerably



longer, we can focus on the piece of code being tested to see if
further investigation is warranted.

A more fine-grained and precise approach to measuring how
fast a section of code runs is to instrument the code itself. The basic
technique is simple in principle: just before running the code to be
measured, we create a timer to record the elapsed time, and when
the code has finished running, we record the timer’s measurement.
Listing 8-1 shows a simple but naïve benchmark using the Stopwatch
class from the System.Diagnostics namespace.

// Start the clock 

var clock = Stopwatch.StartNew(); 

// Run the code to be measured 

var result = SomeTask(); 

// Stop the clock, and record elapsed time 

clock.Stop(); 

var millisecs = clock.ElapsedTicks * 1000.0 / Stopwatch.Frequency;

Listing 8-1: A simple benchmarking approach

The Stopwatch class is a lightweight high-resolution timer that
records elapsed time with very high precision. The
Stopwatch.Frequency value is the number of ticks per second, so by
multiplying the count of elapsed ticks by 1000.0 before dividing by
the frequency, we can report the time taken with millisecond
granularity. This technique simply measures the elapsed time since
the clock was started, so it can’t, for instance, determine whether
the code being measured is actually running for all that time. The
clock continues to tick even if the code is interrupted (for example,
by switching to a different thread).

Instrumenting code with a timer and recording it in the log or
another audit trail can be a useful way to measure code running in
a live system. However, measuring and reporting the performance
takes time too, so we must be sure to take the measurements at a
relatively high level. For instance, measuring and reporting how
long code takes to respond to an HTTP request or call a remote
procedure probably wouldn’t significantly impact the application’s
performance. On the other hand, using this technique in a tight
loop might well introduce more overhead than the cost of the loop
itself.



Benchmarking is also a useful way to explore performance in a
test environment, perhaps to compare alternative approaches to
solving a specific problem. The technique in Listing 8-1 is naïve in
that it measures the code only once. A more accurate approach for
measuring performance would run the code many times and report
the average time. We could write our own framework based on
Listing 8-1, although a few freely available libraries for C# will do
the heavy lifting for us, producing a report of the recorded
performance along with other useful statistics, such as margin for
error.

The Profiler

Benchmarking will tell us overall how quickly a piece of code runs,
but to determine what the code does in detail, we need a profiler.
Using a benchmarking tool in combination with profiling will give
us the most accurate measurements. Among the several kinds of
profiler available, the two most common are performance profilers
and memory profilers.

A memory profiler will show us where our program allocates
memory, how much is being used, and when it’s garbage collected.
If we need to find out which parts of our code are using the most
CPU time or which methods are being called most often, a
performance profiler will give us precise measurements, allowing
us to target specific hot spots in the code and optimize them if
necessary. While optimizing memory usage is important, in this
chapter we’ll focus on discovering bottlenecks in our code by using
a performance profiler.

Performance profilers usually operate on a release build of a
program and so take into account any optimizations applied by the
compiler and JIT compiler. Measuring a debug build for its
performance usually makes little sense, although sometimes it can
be useful: comparing the results of profiling both a debug build and
a release build of the same code, for instance, can provide insights
into some of the optimizations the JIT compiler performs.

While performance measurements can give us an idea of where
bottlenecks may be slowing our code, it’s vital to keep in mind that
a program’s performance is affected by many factors other than the
code, including the version of the CLR or the version of the
software development kit (SDK) we use. Even running the same
program twice on the same machine can produce a different result,



depending on how cache memory is allocated or how instructions
are pipelined by the CPU’s scheduler. The JIT compiler may also
apply different optimizations for each run, possibly further affecting
the result. We must therefore be cautious of attaching too much
importance to the absolute times in a profiler’s report, and instead
look for trends or obvious anomalies, such as results differing by an
order of magnitude or more.

We’ll use a performance profiler to selectively measure specific
aspects of code and analyze the profiler’s results. Remember that
the specific results shown in this chapter are particular to the
machine on which the test was performed, but we’ll try multiple
approaches, measuring each attempt so that we can identify some
common, repeatable patterns in the results.

To demonstrate how this works, next we’ll examine how simply
changing a field’s type can dramatically affect the performance of
code that relies on using Equals.

Measuring Basic Performance with Equals

The Equals method is an often neglected aspect of code optimization
in C#. This method is a good candidate for performance
measurement because it’s always available (since every type
inherits it from the object base class) but also customizable (as a
virtual member of object). In this section, we measure the default
behavior of Equals for a simple value type so that we can compare
the profiler’s results with the results from overriding Equals with
our own implementation.

Struct types inherit a value-based equality comparison from the
ValueType class, overriding the default implementation defined by
the object universal base class. This ensures that when we copy an
instance of a struct, the copy compares equal to the original by
comparing the fields of each instance. We might be tempted to rely
on this behavior, rather than implementing our own override of the
Equals method, because it keeps our type definitions shorter and
simpler, like the Color struct in Listing 8-2.

public readonly struct Color 

{ 

    public Color(int r, int g, int b) 

        => (Red, Green, Blue) = (r, g, b); 

    public int Red {get;} 



    public int Green {get;} 

    public int Blue {get;} 

}

Listing 8-2: Defining a simple struct type

Two instances of Color that have the same property values will
compare equal. Furthermore, like all structs, Color inherits a value-
based implementation of GetHashCode from ValueType, ensuring that
two equal Color values always produce the same hash code.
Additionally, Color is an immutable type, making it suitable for use
as a key in a data structure that relies on hash codes for efficiency.
In Listing 8-3, we create many random Color instances and then add
them to a HashSet in a simple test that we can use to measure how
well the Color struct performs.

var rng = new Random(1); 

var items = Enumerable.Range(0, 25000) 

    .Select(_ => rng.Next()) 

    .Select(r => new Color(r >> 16 & 0xFF, r >> 8 & 0xFF, r & 0xFF)) 

    .ToHashSet();

Listing 8-3: Generating a hashing collection

This Random class is the Standard Library’s pseudorandom

number generator, the name for an algorithm that uses a
deterministic process to produce a sequence of numbers that
appear random. Notably, the Random class will produce the same
sequence if it’s initialized with the same seed—that is, the value
used to calculate the first number of the sequence.

NOTE

Different versions of .NET (or .NET Core) may produce different

sequences for a given seed.

In Listing 8-3, we use 1 as the seed and create new Color
instances using the numbers generated by calling Next on the
random-number generator. Since we use the same seed each time,
we’ll get the same sequence of Color instances each time the code
runs. This characteristic is most often considered a downside of
pseudorandom numbers, but it suits our purpose perfectly because



we can run this code multiple times, and the same values for the
Color instances will be generated for each run. In turn, comparing
the performance of different runs is fair in that each run will be
comparing identical sequences of Color values. We’re using a
randomly generated sequence to ensure that the final HashSet
contains a reasonably realistic population of Color values.

In Listing 8-3, we create each Color instance by masking off the
Red, Green, and Blue values from each random number. The profiler
output in Table 8-1 shows the performance of the hash table’s
constructor. For this test, we’re simply measuring elapsed time,
also called CPU sampling, for each method.

Table 8-1: Profile Report of Creating the HashSet

Method

Time

(ms) Signature

87.9%

HashSet'1..ctor

50 System.Collections.Generic.HashSet`1..ctor

(IEnumerable, IEqualityComparer)

87.9% UnionWith 50 System.Collections.Generic.HashSet`1.UnionWith

(IEnumerable)

87.9%

AddIfNotPresent

50 System.Collections.Generic.HashSet`1.AddIfNot

Present(T, out Int32)

36.5% Equals 21 System.ValueType.Equals(Object)

14.0%

[Garbage

collection]

7.9

We’re focusing on the creation of the HashSet and ignoring
everything else, including the random-number generation and
creation of individual Color objects. Different profilers represent
their reports differently, but the information presented is generally
similar.

The indentation in the first column of this report shows the call
stack being measured. The HashSet constructor on the first line calls
a method named UnionWith, which in turn calls AddIfNotPresent. This
last method eventually calls the Equals method. The leftmost value
in the output shows the time spent by that method as a percentage
of the test’s total time. In our test, creating the initial sequence of
Color values takes up the remainder of the time but isn’t really



relevant to testing Equals. The next field is the simple name of the
method, followed by the absolute time in milliseconds spent in that
method.

Finally, the fully qualified name of the method indicates which
specific method is being reported. Since our simple Color struct
doesn’t provide its own implementation of Equals, the output shows
that ValueType.Equals is used to add unique keys to the hash table.

As noted earlier, the actual times in milliseconds reported here
could change based on a combination of many factors, so they
shouldn’t be taken literally. However, they establish a baseline we
can use to compare the results of other tests.

Hidden Costs of Simplicity

Our Color type uses three values for the RGB components. Although
they’re being stored in int properties, each one 4 bytes wide, we
use only 1 byte for each value by masking off the lowest 8 bits of
each argument to Color’s constructor. We might infer that we can
save on storage space by storing the properties as byte fields rather
than int. Listing 8-4 shows the changed Color struct.

public readonly struct Color 

{ 

    public Color(int r, int g, int b) 

        => (Red, Green, Blue) = ((byte)r, (byte)g, (byte)b);

 

    public byte Red {get;} 

    public byte Green {get;} 

    public byte Blue {get;} 

}

Listing 8-4: Storing byte fields for color components

We still allow int arguments to the Color constructor so that our
users won’t have to explicitly cast the arguments to byte when
creating Color values. Casting the int values explicitly to byte has
the same effect as the masking operations we used in Listing 8-3:
the value is truncated to just the lowest 8 bits. If we use this
version of Color in the test to produce a HashSet from Listing 8-3, the
results are quite different. Table 8-2 shows just the call tree for
AddIfNotPresent.



Table 8-2: Profile Report of Adding Objects with byte Fields to the HashSet

Method

Time

(ms) Signature

99.9%

AddIfNotPresent

7,494 System.Collections.Generic.HashSet`1

.AddIfNotPresent(T, out Int32)

39.6% Equals 2,967 System.ValueType.Equals(Object)

8.66% [Garbage

collection]

650

0.16% [Thread

suspended]

12

We see a dramatic change in the execution profile of the code,
with the AddIfNotPresent method taking well over seven full seconds
to complete. Comparing this report to Table 8-1, we can see clearly
that the main reason for the extra time is the Equals method
inherited by Color from the ValueType base class.

In some instances, ValueType.Equals can perform a very fast
bitwise comparison, but with several caveats: this comparison can’t
be used if any field is a reference, a floating-point number, or a type
that itself overrides Equals. Two different reference values could
refer to objects of a type with its own Equals method, and a bitwise
comparison would compare them as not equal, even if Equals would
return true. For the same reason, any value type with its own Equals
method could use that method to compare some values with
different bit patterns as equal. Two floating-point numbers with
matching bit patterns aren’t necessarily equal; in particular, if both
values are NaN, they shouldn’t compare equal.

Another condition for the fast comparison to be used is that a
struct must be tightly packed, meaning its fields don’t require any
padding to be properly aligned in memory. The three int fields in
the original implementation of Color would automatically be aligned
in memory. However, using byte instead means the fields aren’t
tightly packed, so we must use another, much slower comparison,
with the substantial performance penalty shown in Table 8-2.

The ValueType.Equals Method

When the fast bitwise comparison isn’t applicable, the
implementation of Equals in ValueType is necessarily very general,
because it must work for any struct type, regardless of the number



of fields the struct has or their type. In addition to having fields of
built-in primitive types, a struct can contain references to class
instances and instances of other user-defined values, any of which
may have its own custom Equals implementation.

The implementation of ValueType.Equals first must determine
which fields need to be compared. It does this by using reflection—
programmatically inspecting (or changing) the run-time structure
of the program—to discover all the instance fields, which
immediately comes with a quite significant run-time cost. Reflection
isn’t usually associated with high-performance algorithms, and this
certainly accounts for the reduction in performance caused by
altering our struct’s int fields to use byte instead.

After determining the array of fields, ValueType.Equals obtains
each field’s value. If the field value isn’t a null reference, its Equals
method is called with the value from the corresponding field in the
struct being compared. As a result, every value type field in both
structs will be boxed in order to perform the comparison, because
using reflection to obtain the values means each value is accessed
via an object reference, adding further cost.

The root cause of our performance problem is that the change
from using int properties to byte values means that the underlying
backing fields of Color are no longer tightly packed. Consequently,
ValueType.Equals can’t use the fast bitwise comparison and instead
employs reflection to discover the values to be compared. To
address this issue, in Listing 8-5 we override the Equals method and
provide our own implementation to compare the property values.

public readonly struct Color 

{ 

    public Color(int r, int g, int b) 

        => (Red, Green, Blue) = ((byte)r, (byte)g, (byte)b); 

    public byte Red {get;} 

    public byte Green {get;} 

    public byte Blue {get;} 

    public override bool Equals(object? obj) 

        => obj is Color other && 

           Red == other.Red && Green == other.Green && Blue == othe

r.Blue; 

}

Listing 8-5: Overriding the Equals method



The report in Table 8-3 from rerunning the test shows that while
we’ve substantially improved its speed, we still have work to do.

Table 8-3: How the Overridden Equals Method Performs

Method

Time

(ms) Signature

100%

AddIfNotPresent

2,889 System.Collections.Generic.HashSet`1

.AddIfNotPresent(T, out Int32)

20.4% Equals 588 Color.Equals(Object)

8.15% [Garbage

collection]

236

Notice that our override of Equals is consuming a much smaller
percentage of the overall time in AddIfNotPresent, although this
approach is still much slower than the test using our original
version of Color that had int properties.

This report tells us that the majority of the time was spent in the
code of AddIfNotPresent as opposed to any methods called by it. To
discover why, we’ll use a different kind of profiling, sometimes
known as instrumentation profiling, or tracing, which records the
number of times each method is called in a program. Because this
requires the profiler to intrusively measure a running program, the
time measurements are often much higher; however, knowing
which methods are being called most often is valuable information.
Table 8-4 shows the tracing report for AddIfNotPresent and the
methods called within it, including the number of times each
method was called.

Table 8-4: Tracing Report for Equals

Method

Time

(ms)

Number of

calls Signature

99.9% AddIfNotPresent 16,681 25,000 [...]

40.3% Equals 6,724 312,222,485 Color.Equals(Object)

1.76% [Garbage

collection]

293 1,593



This report has an extra column that shows the number of times
each method was called during the program’s execution. The
tracing report took significantly longer to run, but more
importantly, it shows the Equals method being invoked a huge
number of times. In fact, the number of invocations of Equals is
suspiciously close to the triangular number of 25,000—the number
of elements in the original sequence. The triangular number of
some number n is the sum of the whole numbers from 1 to n. When
n is 25,000, the triangular number is 312,512,500.

While we’ve customized Equals for the Color struct, the HashSet
class also uses GetHashCode when adding or searching for a key, and
our Color type relies on the default GetHashCode implementation
inherited from ValueType. Let’s look at how this relates to the
number of times Equals is called in our test.

The ValueType.GetHashCode Method

As Chapter 5 explained, the elements in a HashSet are unique; every
key in the table exists only once. A new object is added to a HashSet
only if it doesn’t already exist in the table; otherwise, it’s ignored.

When we add an item to the HashSet in this example, the
implementation uses GetHashCode to identify existing keys with the
same hash code. The fact that the hash codes are the same doesn’t
necessarily mean any of the existing keys have the same value as
the new item. If no existing key has the same hash code as the new
item, the new object is added to the table. If one or more existing
keys have hash codes that match the new item’s hash code, the
Equals method is used to determine whether the item should be
added. Each key with the same hash code is compared with the new
item in turn, and if no match is found, the new item is added to the
table as a new key.

Having Equals being called so often in our test indicates that
GetHashCode for our Color type is producing hash codes that aren’t
well distributed. When the first element is added to the hash table,
Equals isn’t called at all, because there’s nothing to compare with. If
the second element has an identical hash code to the first, Equals is
called to determine if they’re identical keys. This process will
repeat for each subsequent element that has the same hash code as
an existing key.

If all of the Color objects in the initial sequence of 25,000
elements produce identical hash codes but have different values,



adding the final new element will require a call to Equals for all of
the existing 24,999 keys.

In fact, the default implementation of ValueType.GetHashCode
inherited by the Color struct will likely produce many identical hash
codes, regardless of whether the Color instances have different
values. The reason is related to the poor performance of the
implementation of Equals provided by ValueType, and it explains why
the number of calls to Equals is so close to the triangular number of
the sequence length.

If instances of a struct can be compared using the fast bitwise
comparison for Equals, the ValueType.GetHashCode method produces
hash codes based on the bit pattern of the instance in memory. If,
on the other hand, the struct isn’t eligible for the fast bitwise
comparison, the default GetHashCode implementation considers only
the first non-null instance field of the struct—the Red property in our
Color type—with the result that we can get a maximum of only 256
unique hash codes. We solve that problem by implementing our
own GetHashCode method to produce more unique hash codes,
preferably so that each distinct Color value produces a unique hash
code.

The HashCode.Combine Method

In Listing 8-6, we add our own override of GetHashCode for the Color
struct to complement our overridden Equals method, and implement
the new GetHashCode by using the HashCode.Combine method from the
Standard Library.

public override bool Equals(object? obj) 

    => obj is Color other && 

       Red == other.Red && Green == other.Green && Blue == other.Blu

e; 

public override int GetHashCode() 

    => HashCode.Combine(Red, Green, Blue);

Listing 8-6: Overriding a GetHashCode method

The Combine method produces well-distributed hash codes based
on its inputs, and while we might be able to write our own carefully
optimized replacement, doing so is far from trivial. Now when we
run the test, we see that the combined effect of overriding both



Equals and GetHashCode reduces the number of calls to the Equals
method by a considerable amount, as shown in Table 8-5.

Table 8-5: Tracing Report for the Overridden GetHashCode

Method

Time

(ms)

Number

of calls Signature

48.8%

AddIfNotPresent

16 25,000 [...]

38.1%

Combine

12 25,000 System.HashCode.Combine(T1, T2, T3)

1.42% Resize 0.5 12 System.Collections.Generic.HashSet`1

.Resize(Int32, Boolean)

0.27% Equals 0.09 18 Color.Equals(Object)

Even accounting for the overhead of counting the method calls,
this report shows a vast improvement in speed compared with our
previous results and demonstrates the close relationship between
Equals and GetHashCode. We pay a high cost in efficiency if we accept
the default behavior of Equals and GetHashCode provided by ValueType
rather than implementing those methods ourselves in our custom
struct types.

If we revisit the profile of our original struct that had int fields
but no method overrides, we can see that even though that struct
could be packed efficiently, the Equals method is still invoked much
more frequently than in our latest version (see Table 8-6).

Table 8-6: Tracing Report for a Packed Struct with No Overrides

Method

Time

(ms)

Number

of calls Signature

85.6%

AddIfNotPresent

101 25,000 [...]

30.1% Equals 36 1,219,104 System.ValueType.Equals(Object)

7.54% [Garbage

collection]

8.9 17

0.42% Resize 0.5 12 System.Collections.Generic.HashSet`1

.Resize(Int32, Boolean)



We’d certainly notice a performance problem if we were to scale
up the number of elements being added to the HashSet.

Besides HashSet, several other collection types rely on hash
codes for efficiency, including Dictionary and Lookup types.
Therefore, it’s essential that we override both Equals and GetHashCode
methods for any type that could be used as a key for hashing
collections.

Optimizing Equality

While overriding both Equals and GetHashCode produces the most
impressive performance improvements, we can do more to fine-
tune equality comparisons. After all, the Equals method is used in
circumstances other than when we’re creating data structures that
rely on hash codes.

Our Color struct is a relatively simple data type, and its Equals
method is already quite efficient. To probe the characteristics of
Equals, we’ll make a much more complex Purchase value type, shown
in Listing 8-7. The Purchase struct overrides both Equals and
GetHashCode with custom implementations but doesn’t yet implement
the IEquatable< Purchase> interface. We’ll implement that interface
for Purchase later to see how that affects the performance of Equals.

public readonly struct Purchase 

{ 

    public Purchase(Product item, DateTime ordered, int quantity) 

        => (Item, Ordered, Quantity) = (item, ordered, quantity); 

    public Product   Item {get;} 

    public DateTime  Ordered {get;} 

    public int       Quantity {get;} 

    public override bool Equals(object? obj) 

        => obj is Purchase other && 

           Item.Equals(other.Item) && 

           Ordered == other.Ordered && Quantity == other.Quantity; 

    public override int GetHashCode() 

        => HashCode.Combine(Item, Ordered, Quantity); 

}

Listing 8-7: Defining a more complex data type, Purchase

The Purchase type has three fields, one of which is another
nontrivial type named Product, shown here:



public readonly struct Product 

{ 

    public Product(int id, decimal price, string name) 

        => (Id, Price, Name) = (id, price, name); 

    public int     Id {get;} 

    public decimal Price {get;} 

    public string  Name {get;} 

    public override bool Equals(object? obj) 

        => obj is Product other && 

           Id == other.Id && Price == other.Price && Name == other.N

ame; 

    public override int GetHashCode() 

        => HashCode.Combine(Id, Price, Name); 

}

The Equals method of Purchase needs to do a little more work than
the Equals method for the Color type back in Listing 8-5. When we
compare two Purchase instances for equality, the Equals method must
also ensure that the Item properties match, which involves a method
call to Product.Equals.

NOTE

The Purchase type is quite large—40 bytes plus padding, assuming

a 64-bit architecture—so we should expect copying instances

around to be less efficient than for the smaller Color type. That

won’t affect our profiling, though, as we’ll still be comparing

reports for the same types. We’ll return to the cost of copying large

struct instances in “Copying Large Instances” on page 272.

Instead of a HashSet, we’ll use the SequenceEqual method to
compare two very large lists of Purchase objects, as shown in Listing
8-8. This process will exercise the Equals method, allowing us to
measure its efficiency. To magnify the performance of Equals
compared to the cost of the surrounding code, we increase the
number of elements to 10 million.

var items = Enumerable.Range(0, 10_000_000) 

    .Select(id => new Purchase(new Product(id, id, "Some Descriptio

n"), 

                               DateTime.MinValue, id)) 



    .ToList(); 

Assert.That(items.SequenceEqual(items), Is.True);

Listing 8-8: Testing to exercise equality

In the Enumerable.Range method, we use digit separators, available
since C# v7.0, to make the large literal number easy for human
readers to parse. Digit separators make no difference to the
compiler: the number we use for the length of the initial sequence
is still a plain int value.

The SequenceEqual method compares two sequences and returns
true if they have the same elements in the same order. The
algorithm obtains an element from each sequence and compares
those elements by using the Equals method. SequenceEqual doesn’t try
to optimize its result by checking if the two sequences are in fact
the same sequence, so here we create only one sequence of 10
million elements and compare it with itself. Table 8-7 shows the
profiler report for the call to SequenceEqual.

Table 8-7: Exercising the Equals Method

Method

Time

(ms) Signature

77.5% SequenceEqual 1,227 System.Linq.Enumerable

.SequenceEqual(IEnumerable, IEnumerable)

49.3% Equals 781 Purchase.Equals(Object)

24.3% [Garbage

collection]

384

10.6% Equals 168 Product.Equals(Object)

0.75% get_Item 12 Purchase.get_Item()

0.38% Unbox 6.0 System.Runtime.CompilerServices

.CastHelpers.Unbox(Void*, Object)

We can see that garbage collection contributes a significant
portion of the time required by Equals. Each call to Equals with a
Purchase instance results in the argument being boxed, as Purchase is
a struct and the parameter type of the Equals override is object, a
reference type. Furthermore, the Purchase.Equals method calls
Product.Equals, which also requires its argument to be boxed. The



consequence is that we’re allocating many boxed objects on the
heap, placing the garbage collector under fairly significant
pressure to keep memory usage under control.

In each Equals method, the parameter needs to be unboxed back
to its original type so that its properties can be compared; the cost
of unboxing the object parameter for each of the Equals methods is
tiny but has a measurable impact. We can avoid the costs of boxing,
and much of the associated cost of garbage collection, by
implementing IEquatable< T > for both Purchase and Product types.

The Effect of IEquatable<T>

The SequenceEqual method automatically selects the best (the most
efficient) implementation of Equals available to perform the
comparisons. Internally, SequenceEqual uses the EqualityComparer
helper class from Chapter 5 to determine how to compare
elements. If the element type T implements IEquatable< T >, it’s
guaranteed to implement a type-safe overload of Equals, and that
overload will be called by SequenceEqual.

If we implement the IEquatable< Purchase> interface and provide
our own type-safe overload of Equals, the SequenceEqual method will
use the IEquatable< Purchase> interface method by default, avoiding
the need for boxing and then unboxing the argument to Equals. In
turn, this reduces memory pressure because the arguments aren’t
copied to the heap, resulting in fewer objects for the garbage
collector to inspect. In our example, those reductions are
considerable, so implementing the IEquatable< Purchase> interface
should produce a measurable benefit. Listing 8-9 shows the
changes required in Purchase.

public readonly struct Purchase : IEquatable<Purchase> 

{ 

    --snip-- 

    public bool Equals(Purchase other) 

        => Item.Equals(other.Item) && 

           Ordered == other.Ordered && Quantity == other.Quantity; 

    public override bool Equals(object? obj) 

        => obj is Purchase other && Equals(other); 

}

Listing 8-9: The IEquatable< Purchase> implementation



We’ve added an Equals(Purchase other) overload to perform the
comparisons between each of the property values. The original
Equals override still needs to unbox its object parameter in order to
call the type-safe Equals overload, but the SequenceEqual method
won’t call Equals(object?) because we’ve also changed the Purchase
declaration to implement the IEquatable< Purchase> interface. In
Listing 8-10, we make similar changes in Product so that calling
Product.Equals from the Purchase.Equals method won’t require boxing
the Product instance.

public readonly struct Product : IEquatable<Product> 

{ 

    --snip-- 

    public bool Equals(Product other) 

        => Id == other.Id && Price == other.Price && Name == other.N

ame; 

    public override bool Equals(object? obj) 

        => obj is Product other && Equals(other); 

}

Listing 8-10: Implementing IEquatable< Product>

The results of the test from Listing 8-8, incorporating the
changes from Listings 8-9 and 8-10, still with 10 million Purchase
elements, are shown in Table 8-8.

Table 8-8: Measuring the Type-Safe Equals Method

Method

Time

(ms) Signature

62.6%

SequenceEqual

546 System.Linq.Enumerable

.SequenceEqual(IEnumerable, IEnumerable)

13.0% Equals 114 Purchase.Equals(Purchase)

5.48%

Equals

48 Product.Equals(Product)

2.05%

op_Equality

18 System.DateTime.op_Equality(DateTime, DateTime)

1.37%

get_Ordered

12 Purchase.get_Ordered()



Method

Time

(ms) Signature

1.37%

get_Item

12 Purchase.get_Item()

Comparing this report with Table 8-7, we can see that the total
time for SequenceEqual has been greatly reduced, but also that our
new Equals method is significantly faster than the original Purchase
type’s version without the type-safe implementation of IEquatable<
Purchase>. Much of the difference is thanks to the lack of garbage
collection, but we’re also benefiting from removing the need to box
and unbox the Purchase and Product values.

Property Accesses

Our Equals(Purchase) method spends a measurable portion of its time
accessing properties to compare them. All of the properties of both
Purchase and Product are automatic properties, and every access to
those properties is a method call—for example, the calls to get_Item
and get_Ordered shown in Table 8-8. While the JIT compiler may
often be able to optimize such calls away by inlining the underlying
method, there’s no guarantee that it will. In Listing 8-11, we
change Purchase to introduce our own private fields and alter Equals
to compare the fields directly rather than accessing the property
values for comparison.

public readonly struct Purchase : IEquatable<Purchase> 

{ 

    public Purchase(Product item, DateTime ordered, int quantity) 

        => (this.item, this.ordered, this.quantity) = (item, ordere

d, quantity); 

    public Product  Item => item; 

    public DateTime Ordered => ordered; 

    public int      Quantity => quantity; 

    public bool Equals(Purchase other) 

        => item.Equals(other.item) && 

           ordered == other.ordered && quantity == other.quantity; 

    public override bool Equals(object? obj) 

        => obj is Purchase other && Equals(other); 

    public override int GetHashCode() 

        => HashCode.Combine(item, ordered, quantity); 

    private readonly Product item; 

    private readonly DateTime ordered; 



    private readonly int quantity; 

}

Listing 8-11: Comparing fields rather than properties

Although not shown here, we also change Product to replace its
automatic properties with private fields. Table 8-9 shows the
results of comparing 10 million elements the same way we have
previously.

Table 8-9: Comparing the Performance of Fields vs. Properties

Method

Time

(ms) Signature

51.2%

SequenceEqual

442 System.Linq.Enumerable

.SequenceEqual(IEnumerable, IEnumerable)

9.73% Equals 84 Purchase.Equals(Purchase)

3.47%

Equals

30 Product.Equals(Product)

1.41%

op_Equality

12 System.DateTime.op_Equality(DateTime, DateTime)

Although replacing automatic properties with fields shows a
small improvement, it’s an example of a micro-optimization. We’ve
cut the time needed for SequenceEqual by more than half compared to
the version that didn’t implement IEquatable< Purchase>, but we’re
still talking about only a few hundred milliseconds in absolute time.
We had to dramatically increase the size of the sequence to amplify
the results enough to be observable, and most applications don’t
routinely need to compare lists of 10 million elements.

Implementing the IEquatable< T > interface is a much more
important step. Not only do we benefit from an increase in speed,
but our type makes much more efficient use of memory by not
needing to box the argument to Equals. Implementing IEquatable< T >
for value types is more than a performance optimization; it
establishes that our type follows that protocol, enabling certain
library features to operate more efficiently and signaling efficiency
to human readers too.

The Equality Operators



The final part of implementing a full set of equality comparisons for
a type is to write our own operator== with its companion operator!=.
Listing 8-12 shows those operators implemented for Purchase.

public readonly struct Purchase : IEquatable<Purchase> 

{ 

    --snip-- 

    public bool Equals(Purchase other) 

        => item == other.item && 

           ordered == other.ordered && quantity == other.quantity; 

    public static bool operator==(Purchase left, Purchase right) 

        => left.Equals(right); 

    public static bool operator!=(Purchase left, Purchase right) 

        => !left.Equals(right); 

}

Listing 8-12: Implementing equality operators for Purchase

Again, we also add equality operators to the Product type (not
shown), allowing us to compare the item field in Purchase by using ==
instead of calling its Equals method. Each operator implementation
simply forwards to our type-safe Equals method, where the
comparison is performed.

While we can write a test to call operator== in order to measure
its performance characteristics, we can also arrange for the
SequenceEqual method to call the operator rather than Equals by
providing our own equality comparer.

The Generic IEqualityComparer<T> Interface

The SequenceEqual method doesn’t invoke Equals directly on the
sequence elements to compare them. Instead, it relies on an
implementation of IEqualityComparer< T >, which is part of the
Standard Library and declared in the System.Collections.Generic
namespace.

An implementation of IEqualityComparer< T > requires an Equals
method taking two parameters of type T, and a GetHashCode method
with a single T parameter. The Standard Library provides some
default implementations of IEqualityComparer< T >, including one for
instances of T that implement the IEquatable< T > interface, which is
what our uses of SequenceEqual have relied upon thus far.

The SequenceEqual method has an overload that takes a second
parameter whose type is IEqualityComparer< T >, so we can provide



our own implementation to be used instead of the default comparer.
In Listing 8-13, we create our own implementation of the
IEqualityComparer< T > interface, substituting Purchase as the generic
parameter, and pass an instance of our custom comparer to
SequenceEqual.

public sealed class EqualsOperatorComparer : IEqualityComparer<Purch

ase> 

{ 

    public bool Equals(Purchase x, Purchase y) 

        => x == y; 

    public int GetHashCode(Purchase obj) 

        => obj.GetHashCode(); 

} 

var items = Enumerable.Range(0, 10_000_000) 

    .Select(MakePurchase) 

    .ToList(); 

Assert.That(items.SequenceEqual(items, new EqualsOperatorComparer()

));

Listing 8-13: Creating a custom IEqualityComparer< T >

implementation

Our implementation of IEqualityComparer< Purchase> defines its
Equals method to compare its two parameter values with == instead
of the parameter type’s Equals method. We don’t need a separate
implementation for Product because the Equals member method in
Purchase uses == directly to compare the Product values. Now, when
we use SequenceEqual to compare two sequences of Purchase items,
the algorithm will use operator== for the comparisons. Table 8-10
shows the profiler report for comparing 10 million Purchase items.

Table 8-10: How operator== Performs

Method

Time

(ms) Signature

48.8% SequenceEqual 475 System.Linq.Enumerable.SequenceEqual

[...]

22.2% Equals 216 EqualsOperatorComparer .Equals(Purchase,

Purchase)



Method

Time

(ms) Signature

9.28%

op_Equality

90 Purchase.op_Equality(Purchase, Purchase)

9.28% Equals 90 Purchase.Equals(Purchase)

5.53%

op_Equality

54 Product.op_Equality(Product, Product)

3.69%

Equals

36 Product.Equals(Product)

When we define operator== for any type, the compiler translates
it to a static method named op_Equality, shown in this profiler
report. That method takes both of its parameters by value, so we’re
making a lot of copies of both Purchase and Product instances. We can
reduce the number of copies needed by changing the operator==
methods to take their parameters by reference instead.

Read-Only in Parameters

To reap the benefits of altering our operator== methods to take their
parameters by reference rather than by value, we can use read-only
in parameters. They are specifically intended for avoiding copies of
large value type instances and are appropriate when we don’t need
to mutate the parameter variables.

We shouldn’t expect a huge improvement, however, because we
can’t avoid all the copies being made when comparing the Purchase
elements in our sequence. In particular, the
EqualsOperatorComparer.Equals method must take its parameters by
value to match the signature defined in the IEqualityComparer< T >
interface.

Similarly, as shown in Listing 8-14, the type-safe Equals method
defined in Purchase itself takes its parameter by value according to
the IEquatable< T > interface, but we can add a new overload of
Equals that uses an in parameter and use the same mechanism to
alter the equality operators to take all their parameters by
reference.

public readonly struct Purchase : IEquatable<Purchase> 

{ 

    --snip-- 

    public bool Equals(in Purchase other) 



        => item == other.item && 

           ordered == other.ordered && quantity == other.quantity; 

    public bool Equals(Purchase other) 

        => Equals(in other); 

    public static bool operator==(in Purchase left, in Purchase righ

t) 

        => left.Equals(in right); 

    public static bool operator!=(in Purchase left, in Purchase righ

t) 

        => !left.Equals(in right); 

}

Listing 8-14: Overloading using in parameters

We make the Equals method with an in parameter the main
implementation and forward to it from the equality operators and
the implementation of IEquatable< Purchase>. Although in parameters
are transparent to calling code, the rules for overloading will give
preference to the method with no parameter modifiers, unless we
add an in modifier to the argument when calling the method.
Therefore, we explicitly select the overload with in parameters by
adding the in keyword to the argument we pass wherever we call
Equals.

NOTE

Replacing value parameters with in parameters is a version-

breaking change, requiring extra care if binary compatibility is a

consideration.

We don’t need to change the implementation of our
EqualsOperatorComparer to pass the arguments by reference, since our
operator== method doesn’t have an overload taking parameters by
value. We can reuse the EqualsOperatorComparer from Listing 8-13 to
run the test, with the results shown in Table 8-11.

Table 8-11: Results of Passing by Reference to operator==

Method

Time

(ms) Signature

45.1% SequenceEqual 437 System.Linq.Enumerable.SequenceEqual

[...]



Method

Time

(ms) Signature

20.9% Equals 203 EqualsOperatorComparer.Equals(Purchase,

Purchase)

10.5%

op_Equality

102 Purchase.op_Equality(in Purchase, in

Purchase)

9.23% Equals 90 Purchase.Equals(in Purchase)

7.38%

op_Equality

72 Product.op_Equality(in Product, in

Product)

7.38%

Equals

72 Product.Equals(in Product)

Comparing these results to Table 8-10, we can see the
improvement is quite modest. While we certainly get some benefit
from avoiding copying Purchase objects, that benefit is limited to
operator== actually being called. Table 8-12 shows a tracing report
with counts of the number of method calls, showing that the JIT
compiler is inlining all but a very few calls to operator==.

Table 8-12: Tracing Report for Comparing in Parameter Values

Method

Time

(ms)

Number of

calls Signature

1.88%

SequenceEqual

2,013 1 call System.Linq.Enumerable.SequenceEqual

[...]

0.69% Equals 735 10,000,000

calls

EqualsOperatorComparer.Equals(Purchase,

Purchase)

[...]

0.08%

op_Equality

82 126,402

calls

Purchase.op_Equality(in Purchase, in

Purchase)

While using in parameters in our definition of operator== is free
in that it requires no changes to calling code, we shouldn’t expect
too much from it. We also shouldn’t simply apply in parameters
routinely, even when using them wouldn’t detract from a method’s
readability. Passing small value types by reference may incur a
penalty due to the extra level of indirection required to access the
value itself via a by-reference variable. As with any optimization



feature in the code, we should introduce in parameters only where
our measurements show that they’re warranted.

How Type Affects Performance

Our choice of types in an application can affect its overall
performance in various ways. The types we use to represent values
in an application are the most important part of that choice because
the other types will usually be classes in any case. Values, on the
other hand, can be represented as structs, classes, records, or
record structs. In this section, we’ll examine some of the factors
that can help us decide between using struct types and class types
to implement those value types, and how much those factors affect
performance.

We often hear that structs, and therefore record structs, should
be small because it’s expensive to copy large instances around in
memory. With that in mind, we’ll start by attempting to isolate the
cost of copying instances from the other factors affecting
performance.

Measuring the Cost of Copying

As with our previous performance measurements, we need to
establish a simple baseline against which we can compare further
performance reports. Since we want to measure the cost of copying
a large value type, first we have to measure the cost of copying a
small, simple type, like the IntField struct we create in Listing 8-15.

public readonly struct IntField : IEquatable<IntField> 

{ 

    public IntField(int value) 

        => this.value = value; 

    public bool Equals(IntField other) 

        => value == other.value; 

    private readonly int value; 

}

Listing 8-15: Creating a simple struct with a single int field

To exercise copying, we’ll again use the SequenceEqual method,
which copies elements from the sequences to compare them and
will copy them again to call the IEqualityComparer< T >.Equals method.
Here, we return to using the default equality comparer, which will



call our type-safe Equals method, passing its argument by value.
Listing 8-16 shows the code we’ll use to produce our benchmark
performance profile.

var items = Enumerable.Range(0, 10_000_000) 

    .Select(i => new IntField(i)) 

    .ToList(); 

Assert.That(items.SequenceEqual(items));

Listing 8-16: Testing simple copies

For this test, we’ll profile a debug build of this code to try to
minimize the effects of the method inlining performed by the JIT
compiler. Method arguments are copied only if the method is
invoked normally, and inlining would make measuring the cost of
those copies unreliable; two different runs of the code could easily
make a different number of copies. Table 8-13 shows the CPU
sampling report for comparing two sequences of 10 million IntField
items in a debug build, which inhibits the JIT compiler from inlining
method calls.

Table 8-13: Measuring the Cost of Copying a Simple Struct

Method

Time

(ms) Signature

57.0%

SequenceEqual

90 System.Linq.Enumerable

.SequenceEqual(IEnumerable, IEnumerable)

7.60% Equals 12 IntField.Equals(IntField)

The SequenceEqual algorithm does little other than obtain an
element from each sequence and compare one to the other with
Equals. The difference between the time taken by Equals and the
total time spent in SequenceEqual here is all overhead, representing
the time taken to obtain each pair of elements from the sequences
and copy the arguments for Equals.

Copying Large Instances

Copying a simple struct type such as the IntField struct in Listing 8-
15 is no more expensive than copying a plain int value; a simple
test (not shown here) that compares two sequences of int values
will confirm it. The IntPlus3x16 struct in Listing 8-17, which adds



three entirely redundant Guid fields, is significantly larger than the
IntField struct. Each Guid is 16 bytes, making this struct somewhat
larger than even the most generous recommended limit for the size
of a value type.

public readonly struct IntPlus3x16 : IEquatable<IntPlus3x16> 

{ 

    public IntPlus3x16(int value) 

        => this.value = value; 

    public bool Equals(IntPlus3x16 other) 

        => value == other.value; 

    private readonly int value; 

    private readonly Guid _padding1 = Guid.Empty; 

    private readonly Guid _padding2 = Guid.Empty; 

    private readonly Guid _padding3 = Guid.Empty; 

}

Listing 8-17: Creating an extremely large struct

Note one subtlety in the IntPlus3x16 struct: the Equals method
doesn’t consider any of the Guid fields of the type, because they’re
always all identical in any case. The reason is that we’re trying to
measure just the cost of copying, so this Equals method performs
precisely the same operations as the IntField type in Listing 8-15.
While the padding fields play no part in the Equals method or any
other operation, the IntPlus3x16 type is a struct and therefore copied
by value, so every field will be copied. We run the same test from
Listing 8-16, with the results shown in Table 8-14.

Table 8-14: Measuring the Cost of Copying an Extra-Large Struct

Method

Time

(ms) Signature

52.5%

SequenceEqual

228 System.Linq.Enumerable

.SequenceEqual(IEnumerable, IEnumerable)

2.71% Equals 12 IntPlus3x16.Equals(IntPlus3x16)

Compare Table 8-14 with Table 8-13: the time spent in the
Equals method is identical in both reports, although the SequenceEqual
method has taken over twice as long to complete because of the
extra overhead of copying the instances of the larger IntPlus3x16



type. The Equals method in both tests is performing the same
operation, so the increase in time must be entirely due to the cost
of copying instances.

Weighing Object Construction Costs

The cost of copying a large struct is not the only aspect to consider
when using a type with several fields. For one thing, equality
comparisons will usually take every field or property into account,
making those comparisons more costly than for a type with only
one or two fields. Initializing an instance of a type with several
fields also comes with a cost.

The Purchase and Product types in Listing 8-18 are the positional
record struct equivalents of the Purchase and Product structs we
defined earlier in Listing 8-7. Because they’re record struct types,
the compiler generates all the equality comparisons, making them
much simpler to define than their struct counterparts.

public readonly record struct Product 

    (int Id, decimal Price, string Name); 

public readonly record struct Purchase 

    (Product Item, DateTime Ordered, int Quantity);

Listing 8-18: Defining Product and Purchase as record structs

We’ll use the CompareSequences method shown in Listing 8-19 to
create a sequence of Purchase instances and record the
performance. We return here to profiling a release build so that the
results account for any optimizations afforded by the JIT (or AOT)
compiler.

private static Purchase MakePurchase(int id) 

    => new Purchase(new Product(id, id, "Some Description"), 

        DateTime.MinValue, id); 

public static void CompareSequences(int count) 

{ 

    var items = Enumerable.Range(0, count) 

        .Select(MakePurchase) 

        .ToList(); 

    Assert.That(items.SequenceEqual(items)); 

}

Listing 8-19: Creating a sequence of randomly generated objects



The CompareSequences method follows a pattern similar to that
we’ve used previously to create a sequence and then call
SequenceEqual to compare the elements. For the purposes of making
the performance report clear, we use MakePurchase as a method
group argument for the Select expression. That way, we can
measure its performance directly, without introducing any
overhead by using a lambda expression—something we’ll return to
in “How Common Idioms and Practices Affect Performance” on
page 279. Table 8-15 shows the profiler report for creating 10
million Purchase objects using the MakePurchase method.

Table 8-15: Performance Report for Creating the Purchase Sequence

Method

Time

(ms) Signature

29.4% MakePurchase 294 MakePurchase(Int32)

2.45% op_Implicit 25 System.Decimal.op_Implicit(Int32)

2.03%

Purchase..ctor

20 Purchase..ctor(Product, DateTime,

Int32)

1.41% Product..ctor 14 Product..ctor(Int32, Decimal, String)

While the nested constructor for the Product type increases the
time taken to create Purchase objects, the majority of the time is
spent within the implementation of MakePurchase, suggesting that
initializing the instances and copying them around is the costlier
factor. In particular, creating a new Product and then copying the
instance to the Purchase constructor is one copy we can avoid by
making Product a reference type.

Reference Type Performance

When we copy a reference variable, the object instance isn’t copied
at all, making the copy inexpensive. Here we make Product a sealed
record instead of a read-only record struct:

public sealed record Product 

    (int Id, decimal Price, string Name);

Records using this positional syntax are immutable reference
types by default. For the Product type, the compiler inserts init-only
properties for the Id, Price, and Name properties, meaning that one



instance can be safely and efficiently referenced by several
containing objects. Since none of the properties has a set accessor,
there’s no risk of inadvertent changes being made via aliasing
references. More pertinently for our test, once the Product instance
is created, only the reference to it needs to be passed to the
Purchase constructor.

For this test, we leave the Purchase type as a record struct, since
we’re trying to avoid having to copy its nested Product. However,
using a reference type for Product introduces other overhead, as we
can see in the profiler report in Table 8-16 for creating 10 million
Purchase objects.

Table 8-16: Performance Report for Creating Reference Type Values

Method

Time

(ms) Signature

77.8% MakePurchase 1,409 MakePurchase(Int32)

34.9% [Garbage

collection]

632

0.33% Product..ctor 6.0 Product..ctor(Int32, Decimal,

String)

0.33% Purchase..ctor 6.0 Purchase..ctor(Product, DateTime,

Int32)

The MakePurchase method is significantly slower than in Table 8-
15, with the main culprit being garbage collection. Changing Product
to be a record rather than a record struct has put considerable
pressure on the garbage collector, which takes time even if it can’t
collect any objects.

The lesson here is that the common advice to use value types
for objects that are short-lived is at least partly related to memory
pressure and the cost of garbage collection. Value type instances,
because they aren’t allocated on the heap, don’t incur those costs.
Copying even huge object instances isn’t always the most
significant expense, so changing large value types to be reference
types to avoid copying can, as in this example, have a detrimental
effect on a program’s overall performance.

We have other factors to consider. If, for instance, we expect
many of the Purchase objects in an application to have identical
Product values, we may benefit considerably by having all those



Purchase instances sharing the same Product instance, making a
reference type implementation much more attractive.

Benefits of Reference Equality

The MakePurchase method from Listing 8-19 that we’ve been using to
create Purchase instances creates a new Product object for each
Purchase object. In Listing 8-20, we change MakePurchase so that
rather than creating a new Product each time, we assign one of a
small number of shared Product instances to each new Purchase.
Since Product is a record and therefore a reference type, each
Product will be shared by many Purchase objects.

private static readonly List<Product> SharedProducts = new() 

{ 

    new Product(0, 0, "Some Description"), 

    new Product(1, 1, "Some Description"), 

    new Product(2, 2, "Some Description"), 

    new Product(3, 3, "Some Description"), 

    new Product(4, 4, "Some Description"), 

}; 

private static Purchase MakePurchase(int id) 

{ 

    var component = SharedProducts[id % SharedProducts.Count]; 

    return new Purchase(component, DateTime.MinValue, id); 

}

Listing 8-20: Sharing references among objects

We initialize a short list of Product instances before creating any
Purchase objects. A Product reference is selected from this list
according to the id value used to create a Purchase. Now that the
MakePurchase method isn’t creating any new Product instances, we’d
expect it to run much more quickly, which the report in Table 8-17
confirms.

Table 8-17: Assigning Preallocated Product Objects

Method

Time

(ms) Signature

17.1% MakePurchase 86 MakePurchase(Int32)

2.38%

Purchase..ctor

12 Purchase..ctor(Product, DateTime, Int32)



Method

Time

(ms) Signature

1.18% get_Item 5.9 System.Collections.Generic.List`1

.get_Item(Int32)

More significantly, comparing Purchase instances for equality will
now be much faster because so many of them share a Product
instance. The implementation of Equals for record types includes the
simple optimization of starting with an identity comparison of the
two references. When two Product variables that are being
compared both refer to the same instance in memory, there’s no
need to continue checking the individual fields, since they must be
identical. Table 8-18 shows the report for comparing sequence
elements for 10 million Purchase objects.

Table 8-18: Comparing Sequences with Shared References

Method

Time

(ms) Signature

68.3%

SequenceEqual

350 System.Linq.Enumerable

.SequenceEqual(IEnumerable, IEnumerable)

27.1% Equals 139 Purchase.Equals(Purchase)

11.7%

get_Default

60 System.Collections.Generic

.EqualityComparer`1.get_Default()

9.36%

Equals

48 System.Collections.Generic

.GenericEqualityComparer`1.Equals(T, T)

3.52% Equals 18 Product.Equals(Product)

If we run the same test by using a record struct for Product—that
is, assigning one of a few precreated instances of Product to each
Purchase—we can compare the performance of sharing references
versus copying each Product. Table 8-19 shows the report for
SequenceEqual for 10 million Purchase objects when Product is a record
struct.

Table 8-19: Comparing Sequences with Copied Instances

Method

Time

(ms) Signature



Method

Time

(ms) Signature

59.5%

SequenceEqual

591 System.Linq.Enumerable

.SequenceEqual(IEnumerable, IEnumerable)

13.3% Equals 132 Purchase.Equals(Purchase)

12.7%

Equals

126 System.Collections.Generic

.GenericEqualityComparer`1.Equals(T, T)

9.01%

Equals

89 Product.Equals(Product)

1.22%

Equals

12 System.DateTime.Equals(DateTime)

0.60%

get_Default

6.0 System.Collections.Generic

.EqualityComparer`1.get_Default()

Although the headline time for the Purchase.Equals method is
almost identical in each case, the SequenceEqual method using the
record struct in Table 8-19 is considerably slower than for the
record in Table 8-18. Record structs can’t take advantage of the
simple reference identity optimization available to records,
although many of the calls to Product.Equals will have been inlined
by the JIT compiler. The result is that we see the extra cost of
having to copy the record struct values and compare their fields in
SequenceEqual, rather than Purchase.Equals.

Measuring the Compiler-Generated Equals Method

The positional record struct syntax used in Listing 8-18 for the
Purchase and Product types makes their definition compact, but that
comes with minor, although measurable, efficiency compromises.
The type-safe Equals method implementing the IEquatable< T >
interface for records and record structs is generated by the
compiler, whether or not they use the positional syntax. While
convenient, that’s not necessarily the most efficient
implementation. When we’re working with many objects, it can be
worth our while to write our own Equals method for record and
record struct types, in which case the compiler won’t generate one
for us.

You saw in Chapter 5 that the compiler inserts code to obtain
the default EqualityComparer object for each field. For example,



Listing 8-21 shows roughly the Equals method created by the
compiler for the Purchase record struct in Listing 8-18.

public bool Equals(Purchase other) 

    => EqualityComparer<Product>.Default.Equals(_Item_field, other._

Item_field) && 

       EqualityComparer<DateTime>.Default.Equals(_Ordered_field, oth

er._Ordered_field) && 

       EqualityComparer<int>.Default.Equals(_Quantity_field, other._

Quantity_field);

Listing 8-21: A record struct’s Equals method

The real names of the backing fields assigned by the compiler
are invalid in regular C#, so there’s no chance they could clash
with any of our own identifiers; the names used here merely
illustrate the idea. Despite using the backing fields directly rather
than accessing the properties to perform the comparisons,
obtaining the default EqualityComparer implementation for each field
on every call to Equals could impair efficiency. Table 8-20 shows the
profiler output when using the SequenceEqual method to compare two
lists of 10 million Purchase record struct objects.

Table 8-20: Comparing Sequences with Record Struct Instances

Method

Time

(ms) Signature

55.7%

SequenceEqual

558 System.Linq.Enumerable

.SequenceEqual(IEnumerable, IEnumerable)

13.7% Equals 138 Purchase.Equals(Purchase)

10.2%

Equals

102 System.Collections.Generic

.GenericEqualityComparer`1.Equals(T, T)

3.58%

Equals

36 Product.Equals(Product)

1.80%

Equals

18 System.Decimal.Equals(Decimal)

0.60%

Equals

6.0 System.Int32.Equals(Int32)



Method

Time

(ms) Signature

0.60%

get_Default

6.0 System.Collections.Generic

.EqualityComparer`1.get_Default()

While the JIT compiler may inline some or all of the uses of the
EqualityComparer< T >.Default property and the calls to its Equals
method, there’s no guarantee that it will be able to do so. As we did
earlier when replacing property accesses with fields, we can define
our own Equals method to directly compare the values without
needing to use EqualityComparer< T >. However, we can’t access the
compiler-generated backing fields for the properties generated for
a positional record struct. Instead, in Listing 8-22 we use a simple
record struct for Purchase, where we define our own private fields
and a constructor to initialize them.

public readonly record struct Purchase 

{ 

    public Purchase(Product item, DateTime ordered, int quantity) 

        => (this.item, this.ordered, this.quantity) = 

              (item, ordered, quantity); 

    --snip-- 

    public bool Equals(Purchase other) 

        => item.Equals(other.item) && 

           ordered.Equals(other.ordered) && quantity == other.quanti

ty; 

    private readonly Product item; 

    private readonly DateTime ordered; 

    private readonly int quantity; 

}

Listing 8-22: Constructing a private field for the Purchase struct

We also add our own implementation of Equals to directly
compare the fields we’ve defined. This custom Equals replaces the
implementation that the compiler would have introduced had we
not defined our own. We’d also need to add properties to expose
the field values, although neither that nor the Product type, which
changes in a similar way, is shown here. Rerunning the code to
compare two sequences of 10 million Purchase items produces the
report shown in Table 8-21.



Table 8-21: A Comparison Using Customized Equals

Method

Time

(ms) Signature

100%

SequenceEqual

440 System.Linq.Enumerable

.SequenceEqual(IEnumerable, IEnumerable)

12.3%

Equals

54 Purchase.Equals(Purchase)

8.18%

Equals

36 Product.Equals(Product)

1.36%

Equals

6.0 System.DateTime.Equals(DateTime)

By providing our own Equals method, we’ve improved the
performance of SequenceEqual by around 20 percent compared with
the results in Table 8-20, partly because our implementation may
be giving the JIT compiler more effective opportunities for inlining
code. Comparing larger sequences produces similar results, so if
we’re particularly sensitive to performance and frequently compare
many items, this kind of optimization may be beneficial.

The performance improvement we see here occurs primarily
because Purchase is a relatively complex type. A much simpler
positional record struct—for example, one with a single int field—
most likely wouldn’t benefit from the optimizations we made in
Purchase and Product. The principal benefit of the positional record
syntax is its simplicity, which makes it clear to any reader what the
type represents. We sacrificed that simplicity for a small gain in
raw performance, an improvement that was visible only with the
help of a profiler. This example highlights the importance of
measuring performance before trying to hand-optimize our code by
second-guessing the compiler.

How Common Idioms and Practices Affect

Performance

Some common practices in C# draw undue criticism regarding
performance. It’s natural and common to believe that a higher level
of abstraction in source code comes with a cost in performance,
and that’s true to some extent: C# is a high-level programming
language, and our programs are ultimately translated to native
machine code over multiple steps. We could handcraft our own



machine code to perform the same task, but C# code is more
portable, more easily maintained, considerably less error-prone,
and much easier to read and write than machine code. Those
benefits usually far outweigh any cost in performance.

It’s not, however, universally true that high-level code results in
performance penalties. In this section, we’ll investigate looping and
pattern matching, two common C# features that enable us to
succinctly express complex ideas in C# while providing
performance comparable or even superior to their lower-level
counterparts.

Looping and Iteration

In this chapter, we’ve used LINQ in its fluent syntax form several
times for the purposes of creating sequences of objects. LINQ,
which has been part of C# for many years, will be recognizable to
most programmers with more than a passing familiarity for the
language and its idioms. Listing 8-23 shows an example of using the
fluent syntax to create a list of Purchase objects.

private static Purchase MakePurchase(int id) 

    => new Purchase(new Product(id, id, "Some Description"), 

        DateTime.MinValue, id); 

var items = Enumerable.Range(0, count) 

    .Select(i => MakePurchase(i)) 

    .ToList();

Listing 8-23: LINQ fluent syntax

LINQ has an alternative query syntax that some C#
programmers find more agreeable. Listing 8-24 shows the
equivalent query syntax for creating the items sequence in Listing 8-
23.

var query = from i in Enumerable.Range(0, count) 

            select MakePurchase(i); 

var items = query.ToList();

Listing 8-24: LINQ query syntax

The compiler generates identical CIL for both Listings 8-23 and
8-24, so the choice between them is primarily driven by which we



find clearer to read. One optimization is possible, although it can be
applied only to the fluent version: avoiding the lambda as an
argument to the Select method. That lambda needs to capture the i
variable so the compiler will generate a closure object, which
results in an extra level of indirection to call the MakePurchase
method. To avoid the closure, we can instead pass MakePurchase as a
method group argument, as shown in Listing 8-25.

var items = Enumerable.Range(0, count) 

    .Select(MakePurchase) 

    .ToList();

Listing 8-25: Optimizing LINQ by using a method group

To compare the efficiency of each approach, first we profile the
version from Listing 8-23, which uses a lambda. Table 8-22 shows
the report for creating a list of 10 million items.

Table 8-22: Performance of Creating a Sequence Using LINQ with a Lambda

Method

Time

(ms) Signature

98.1% ToList 415 System.Linq.Enumerable

.ToList(IEnumerable)

36.0% MakePurchase 152 MakePurchase(Int32)

31.3% <

Closure>b__3_0

132 <>c.< Closure>b__3_0(Int32)

31.3%

MakePurchase

132 MakePurchase(Int32)

The identifier name <> c is the closure object the compiler
generates to capture the i variable, and one example of the
compiler introducing names that would be illegal in our own code.
The closure has an instance method, < Closure>b__3_0, which in turn
calls our MakePurchase method. The MakePurchase method makes two
appearances in this report—both inside and outside the closure
method—as a result of the JIT compiler inlining some calls to the <
Closure>b__3_0 method and calling MakePurchase directly.

The report in Table 8-23 shows the performance when using the
method group approach to create 10 million items.



Table 8-23: Performance of Creating a Sequence Using LINQ with a Method Group

Method

Time

(ms) Signature

100% ToList 430 System.Linq.Enumerable.ToList(IEnumerable)

71.9%

MakePurchase

309 MakePurchase(Int32)

Somewhat counterintuitively, the version with the closure object
was just slightly faster than that with the method group. We
shouldn’t read too much into that, as the difference is well within
the margin for error when comparing runs. However, it does tell us
that no matter the absolute difference, using a lambda carries no
significant performance penalty.

The closure object representing the lambda is created only once
for the whole expression, not for every element produced for the
Select method. Even though the closure object represents an extra
level of indirection for each call to MakePurchase, the JIT compiler
inlines many of the calls to the closure’s < Closure>b__3_0 method
and either calls MakePurchase directly or inlines its contents too.

We could create a similar sequence in a few other ways. Let’s
investigate two common approaches to see how their performance
compares with using LINQ.

The Iterator Approach

Iterators are a fundamental part of C# and underpin other higher-
level features, including LINQ. In fact, LINQ has become so
ubiquitous in modern C# that it can be easy to forget that it’s based
on two system interfaces: the IEnumerable< T > interface, which is an
abstract view of a sequence of elements of type T, and the
IEnumerator< T > interface, which represents an iterator that can get
each element of an IEnumerable< T > one at a time. The basic
mechanics are that the IEnumerable< T > interface has a single
method named GetEnumerator that returns an implementation of
IEnumerator< T >.

Both interfaces are largely hidden in modern code, although
IEnumerable< T > remains important as the protocol for types that
represent sequences and as the home of the extension methods,
such as Select and Where, that make up most of the LINQ system.

The IEnumerator< T > interface also forms the basis for the foreach
loop, which is one way of enumerating the elements of a sequence



that implements IEnumerable< T >. In Listing 8-26, we write our own
simple ToList method, which allows us to record its performance for
comparison with the LINQ equivalents. Our ToList uses foreach to
populate a list of Purchase objects and therefore depends on the
iterator provided by the Enumerable.Range method.

public static List<Purchase> ToList(int count) 

{ 

    var items = new List<Purchase>(); 

    foreach(var i in Enumerable.Range(0, count)) 

    { 

        items.Add(MakePurchase(i)); 

    } 

    return items; 

}

Listing 8-26: Populating a list using foreach

Comparing our ToList method with the LINQ version in Listing
8-23, the first thing to notice is that we need to declare the target
list of Purchase objects before the loop. The foreach loop obtains an
IEnumerator< int> from Enumerable.Range, and the body of the foreach
block is run for each element in the iterator. We can see the basic
mechanics when we look at the profiler’s report for the ToList
method in Table 8-24.

Table 8-24: Profiling the Iterator Approach

Method

Time

(ms) Signature

100% ToList 638 ToList(Int32)

41.2%

AddWithResize

263 System.Collections.Generic.List`1

.AddWithResize(T)

38.1%

MakePurchase

243 MakePurchase(Int32)

0.95% MoveNext 6.1 System.Linq.Enumerable+RangeIterator

.MoveNext()

0.95%

get_Current

6.0 System.Linq.Enumerable+Iterator`1

.get_Current()



This profile report shows the workings of the foreach construct;
the get_Current and MoveNext methods belong to the IEnumerator< T >
interface and, as their names suggest, allow us to obtain the
current element and move the iterator to the next item in the
sequence.

This report also shows that our handcrafted ToList is
considerably slower than the LINQ version reported in Table 8-22,
but we haven’t made optimal use of the List< Purchase> facilities.
Since we know in advance the number of items we need, we can
avoid most of the expense of the AddWithResize method and specify
the list’s capacity in the constructor call like this:

var items = new List<Purchase>(count);

By explicitly requesting a capacity, we allocate enough memory
for count items before adding new elements so that the list won’t
need resizing when it runs out of space. If we rerun our profile test,
as Table 8-25 shows, it’s much more in line with the previous tests.

Table 8-25: Preallocating a List’s Capacity

Method

Time

(ms) Signature

100% ToList 426 ToList(Int32)

63.0%

MakePurchase

268 MakePurchase(Int32)

4.28% MoveNext 18 System.Linq.Enumerable+RangeIterator

.MoveNext()

1.41%

get_Current

6.0 System.Linq.Enumerable+Iterator`1

.get_Current()

Our tests demonstrate that using LINQ, at least for the
reasonably simple task of generating a sequence of elements, is at
least as efficient as using the foreach loop. We can try one other
approach, however: the for loop.

The Loop Approach

Our method of creating a list of Purchase objects is based on creating
a sequence of int values and translating them with the Select
method into a new sequence of Purchase objects. Listing 8-27 shows



how we achieve the same result with a basic for loop, which doesn’t
rely on iterators and merely runs the body of the loop the number
of times specified in the loop condition.

public static List<Purchase> ToList(int count) 

{ 

    var items = new List<Purchase>(count); 

    for(int i = 0; i != count; ++i) 

    { 

        items.Add(MakePurchase(i)); 

    } 

    return items; 

}

Listing 8-27: Using a simple for loop

As we did for the foreach loop, we must create the target List<
Purchase> before entering the loop, and we use the constructor to set
its capacity. In the loop’s body, we use the MakePurchase method to
add a new Purchase as we have previously. Table 8-26 shows the
profiler report for creating a list of 10 million Purchase objects with
the for loop.

Table 8-26: The Direct for Loop Performance

Method Time (ms) Signature

100% ToList 417 ToList(Int32)

67.3% MakePurchase 281 MakePurchase(Int32)

5.70% op_Implicit 24 System.Decimal.op_Implicit(Int32)

Once again, there’s no significant difference between the
performance of the for loop approach and that of the other
approaches we’ve tried. The main difference between using LINQ
and using either the foreach or for loop is one of style: the LINQ
code is more direct and allows us to express our intent
declaratively, whereas the for and foreach loops are more
procedural. The LINQ expression allows us to focus on the outcome
we require, whereas both looping approaches focus on the steps or
instructions to follow.

Pattern Matching and Selection



One common benefit of a declarative rather than procedural style is
that we write less code to achieve the same result. While this saves
on the amount of typing we do, that is just a side effect. The real
benefit comes from having less syntax for a human reader to
comprehend. Replacing explicit loops with LINQ-style functional
expressions is one example. Many of the LINQ expressions are
based on loops internally, but the loop constructs themselves are
hidden from user code. Manually iterating sequences with loops
and explicit conditions can be prone to errors, and complex loop
constructs are generally harder for a human reader to follow than a
call to a method like Select or ToList.

The other common application of declarative techniques is in
selection code: replacing if and switch statements with pattern-
matching expressions.

Consider the constructor in Listing 8-28, which validates the
parameter value by matching it against the rules specified by some
patterns.

private const double ZeroKelvin = -273.15; 

private Temperature(double celsius) 

    => amount = celsius switch 

    { 

        double.NaN 

            => throw new ArgumentException(--snip--), 

        < ZeroKelvin or double.PositiveInfinity 

            => throw new ArgumentOutOfRangeException(--snip--), 

        _ => celsius 

    };

Listing 8-28: Pattern matching for validation

The Temperature constructor throws an exception if the argument
given is double.NaN and also prohibits values that are less than
ZeroKelvin or equal to PositiveInfinity. Values for the celsius
parameter that don’t match either of those rules are assigned to the
amount field by the discard pattern, which is the final pattern in the
switch expression.

Compare Listing 8-28 with Listing 8-29, which achieves exactly
the same outcome but uses if…else statements to test the incoming
parameter value.



private Temperature(double celsius) 

{ 

    if(celsius is double.NaN) 

    { 

        throw new ArgumentException(--snip--); 

    } 

    else if(celsius < ZeroKelvin || celsius is double.PositiveInfini

ty) 

    { 

        throw new ArgumentOutOfRangeException(--snip--); 

    } 

    else 

    { 

        this.amount = celsius; 

    } 

}

Listing 8-29: Chaining if and else for validation

We could make this code less syntax-heavy by removing the
redundant else statements and allowing the if blocks to fall through
if the value doesn’t meet the if condition. While doing so would
make the code shorter, it’s more error-prone if new conditions are
added.

Another alternative is to use a switch statement, as shown in
Listing 8-30.

switch (celsius) 

{ 

    case double.NaN: 

         throw new ArgumentException(--snip--); 

    case < ZeroKelvin: 

    case double.PositiveInfinity: 

         throw new ArgumentOutOfRangeException(--snip--); 

    default: 

         this.amount = celsius; 

         break; 

}

Listing 8-30: Using a switch statement for validation

This version is closer to the switch expression in Listing 8-28,
and the two forms of switch can be easily confused. The principal



difference is that here we assign the amount field as part of the
default leg, whereas in the switch expression, the amount field is
assigned the value of the whole expression.

In a departure from the rest of this chapter, we don’t need to
run a performance profile to compare Listings 8-28 through 8-30
because the compiler produces almost identical code for each—
broadly, the same code as shown in Listing 8-29. The compiler may
change the order of the conditions in the CIL, but that doesn’t
change the logic in any way.

Summary

We do not consider it as good engineering practice to consume a resource lavishly just

because it happens to be cheap.

—Niklaus Wirth, Project Oberon: The Design of an Operating System, a Compiler, and a

Computer

Code optimized by hand is often harder for a human reader to
follow, usually because it frequently involves replacing simple
idioms, such as loops and pattern matching, with lower-level
constructs. When a program runs more slowly than we think it
should, it can be tempting to dive straight in and change the parts
of the code we suspect are bottlenecks. Programmers’ optimization
instincts are, however, notoriously unreliable. We’re likely to make
our code more difficult to read while failing to improve
performance in any meaningful way.

Optimizing code by hand is almost always an exercise in
exchanging clarity and simplicity for performance. We can judge
whether this is a reasonable trade only by measuring the
performance before and after the change. Even when we improve
performance in a section of code, we must still decide whether
we’ve made the code less clear and, if so, whether the change is
justified. We must also be certain that our optimizations haven’t
changed the program’s behavior in any way. Slow, correct code is
always preferable to incorrect code, however good its performance.
That’s not to say that good enough can’t be correct—frequently a
compromise is necessary between performance and accuracy or
precision—but we need to know the point at which inaccurate really
does mean incorrect.

The use of well-known idioms and patterns helps human readers
easily understand code. Correspondingly, when we depart from
those common designs, we make our code harder to follow.



Therefore, we must be selective in applying optimizations to the
areas of code that will bring the greatest benefits.

Overriding the behavior of Equals isn’t difficult for the vast
majority of types, but it adds an implementation detail that
represents extra cognitive overhead for anyone who needs to
understand our code.

Using records to represent value-like types removes much of
that added complexity because the compiler generates the correct
implementations for us. However, even accepting that default
behavior won’t necessarily yield the most efficient code.

Careful code optimization, supported by evidence from a
profiler, can yield better performance in both speed and memory
use. Modern computers are fast and usually have more than enough
memory, but that doesn’t mean we should waste either resource.



AFTERWORD

There are two ways of constructing a software design: One way is to make it so

simple that there are obviously no deficiencies, and the other way is to make it

so complicated that there are no obvious deficiencies. The first method is far

more difficult.

—Tony (C.A.R.) Hoare, 1980 Turing Award Lecture

Computer programming is a
subtle art. A successful

programmer needs more than knowledge
of a programming language’s syntax.
Getting the most out of any programming
language requires a deep understanding
of its mechanics (how the syntax elements
fit together) and its semantics (how those
elements define and control the resulting
program’s behavior).

Semantics can be low level, such as the effects of copy-
by-value behavior on equality comparisons between
objects, or more conceptual, such as the application of
different kinds of polymorphism. Semantics also plays a
part in application design: carefully designed objects can
express different concepts in a system, giving the code
structure and meaning.

Understanding the mechanics and semantics of C#
allows us to write code that makes better use of the



language constructs. This comes with several potential
benefits: more efficient use of memory and processor
resources; simpler, easier-to-understand code (by other
programmers as well as ourselves); and an enhanced
capability to add new features and diagnose errors.

When designing a system, whatever its size and
purpose, it’s easy to focus on the big architectural
components that form the application’s overall shape. Even
when a design is emergent—that is, it takes shape
organically as we start creating features—the fine-grained
values are easily forgotten or dismissed as the small,
passive bits of data passed between the more interesting
system interfaces. In this book, we’ve explored the
relationship between those values and other application
elements because recognizing value types as the currency

of information in a system gives us opportunities not only to
better express the overall design, but also to clarify the
purpose of the code that uses them. Rich custom value
types help us establish a ubiquitous language in an
application that plays an important part in conveying a
design and its overall purpose. They also enable the
compiler to catch more errors before run time.

Addressing every feature of a complex language like C#
in a book like this is not practical, partly because C# is an
evolving language. Its features expand constantly to meet
the needs of programmers in all domains. This is a Good
Thing™ because the software development landscape is
also continually evolving, but C# programming
practitioners are responsible for keeping up with that
progress. In this book, I’ve presented numerous techniques
and features to help you better understand C# as it is
today, and I hope I’ve also inspired you to explore the
characteristics, performance, and semantics of features
that the C# language designers add in the future.



Understanding the intricacies of C# semantics for value
and value-like types can be challenging, but your effort will
be rewarded with richer, clearer designs that are easier to
maintain and extend. I hope this book has given you a
deeper appreciation for and knowledge of the diverse
facilities that C# provides for creating these types, and,
most importantly, I hope it has made you a better
programmer.



APPENDIX

FURTHER READING



Chapter 1

The simplified equations for projectile motion used in
the examples are explained on Wikipedia at https://en

.wikipedia.org/wiki/Projectile_motion.
Frances Buontempo’s Genetic Algorithms and Machine

Learning for Programmers (Pragmatic Bookshelf, 2019)
has a whole section on ballistics. This chapter’s initial
example was taken from that book and then abused for
didactic reasons.
You can find out more about the problem of primitive
obsession, and its antidotes, here:

“Primitive Obsession” wiki page, https://wiki.c2.com/

?PrimitiveObsession

Refactoring Guru website, https://refactoring.guru

/smells/primitive-obsession

Fit wiki page, http://fit.c2.com/wiki.cgi?WholeValue

“The CHECKS Pattern Language of Information
Integrity,” by Ward Cunningham, http://c2.com/ppr

/checks.xhtml

The Quantity pattern is described in Martin Fowler’s
Analysis Patterns: Reusable Object Models (Addison-
Wesley Professional, 1996). The Primitive Obsession
code smell is identified in his book Refactoring:

Improving the Design of Existing Code (Addison-Wesley
Professional, 2018).
Mixing up the units of values in calculations can have
serious consequences; see “When NASA Lost a
Spacecraft Due to a Metric Math Mistake” by Ajay
Harish: https://www.simscale.com/blog/2017/12/nasa-

mars-climate-orbiter-metric/.
Kevlin Henney’s book 97 Things Every Programmer

Should Know (O’Reilly, 2010) has lots of good advice on
this general subject and many others. Representing

https://en.wikipedia.org/wiki/Projectile_motion
https://wiki.c2.com/?PrimitiveObsession
https://refactoring.guru/smells/primitive-obsession
http://fit.c2.com/wiki.cgi?WholeValue
http://c2.com/ppr/checks.xhtml
https://www.simscale.com/blog/2017/12/nasa-mars-climate-orbiter-metric/


domain concepts in the code is nicely captured by Dan
North in Chapter 11, and by Einar Landre in Chapter
65.
Henney also looks at Value Object, Whole Value, Class
Factory Method, and other patterns for values in
“Patterns in Java,” which applies equally well to C#:
https://www.slideshare.net/Kevlin/value-added-

43542768. Also see his paper “Factory and Disposal
Methods: A Complementary and Symmetric Pair of
Patterns,” from the 2003 VikingPLoP (Pattern
Languages of Programs) conference, at https://www

.researchgate.net/publication/238075361.
It has long been recognized that keeping objects simple
helps in creating programs that are understandable.
The single responsibility principle—the S in SOLID—is
perhaps the most well-known guidance on this: https://

en.wikipedia.org/wiki/SOLID.
However, the benefits of separate responsibilities were
recognized in the 1970s, if not earlier, when Edsger
Dijkstra wrote about separating concerns:

“The Effective Arrangement of Logical Systems,”
https://www.cs.utexas.edu/users/EWD/transcriptions

/EWD05xx/EWD562.xhtml

“On the Role of Scientific Thought,” https://www.cs

.utexas.edu/users/EWD/transcriptions/EWD04xx

/EWD447.xhtml

https://www.slideshare.net/Kevlin/value-added-43542768
https://www.researchgate.net/publication/238075361
https://en.wikipedia.org/wiki/SOLID
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD05xx/EWD562.xhtml
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD04xx/EWD447.xhtml


Chapter 2

The Common Type System is summarized in the
following Microsoft documentation:

https://docs.microsoft.com/en-us/dotnet/csharp

/programming-guide/types/#the-common-type-

system

https://docs.microsoft.com/en-us/dotnet/standard

/base-types/common-type-system

The Microsoft documentation for the language rules
around struct types is at https://docs.microsoft.com/en-

us/dotnet/csharp/language-reference/language-

specification/structs.
More information on the behavior of
System.Threading.Monitor with respect to lock objects can
be found at https://docs.microsoft.com/en-us/dotnet/api

/system.threading.monitor?view=net-6.0#Lock.
The specific overload resolution rules regarding
optional parameters are explained at https://docs

.microsoft.com/en-us/dotnet/csharp/programming-guide

/classes-and-structs/named-and-optional-

arguments#overload-resolution.
Eric Lippert explains why initializers for read-only fields
and constructors run in the order they do at https://docs

.microsoft.com/en-gb/archive/blogs/ericlippert/why-do-

initializers-run-in-the-opposite-order-as-constructors-

part-one.
Lippert has written extensively on the subject of value
types in C#, including the following:

“The Truth About Value Types,” https://docs

.microsoft.com/en-gb/archive/blogs/ericlippert/the-

truth-about-value-types

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/#the-common-type-system
https://docs.microsoft.com/en-us/dotnet/standard/base-types/common-type-system
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/structs
https://docs.microsoft.com/en-us/dotnet/api/system.threading.monitor?view=net-6.0#Lock
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/named-and-optional-arguments#overload-resolution
https://docs.microsoft.com/en-gb/archive/blogs/ericlippert/why-do-initializers-run-in-the-opposite-order-as-constructors-part-one
https://docs.microsoft.com/en-gb/archive/blogs/ericlippert/the-truth-about-value-types


“The Stack Is an Implementation Detail, Part One,”
https://docs.microsoft.com/en-gb/archive/blogs

/ericlippert/the-stack-is-an-implementation-detail-

part-one

“The Stack Is an Implementation Detail, Part Two,”
https://docs.microsoft.com/en-gb/archive/blogs

/ericlippert/the-stack-is-an-implementation-detail-

part-two

Nullable reference types are documented by Microsoft
at https://docs.microsoft.com/en-us/dotnet/csharp

/nullable-references.
Additionally, Jon Skeet blogs about his early
experiences with nullable reference types at https://

codeblog.jonskeet.uk/2018/04/21/first-steps-with-

nullable-reference-types/.
Tony Hoare made his famous apology for the null
reference at the QCon conference in 2009. The abstract
is available at https://qconlondon.com/london-2009

/qconlondon.com/london-2009/presentation

/Null%2bReferences

_%2bThe%2bBillion%2bDollar%2bMistake.xhtml.

https://docs.microsoft.com/en-gb/archive/blogs/ericlippert/the-stack-is-an-implementation-detail-part-one
https://docs.microsoft.com/en-gb/archive/blogs/ericlippert/the-stack-is-an-implementation-detail-part-two
https://docs.microsoft.com/en-us/dotnet/csharp/nullable-references
https://codeblog.jonskeet.uk/2018/04/21/first-steps-with-nullable-reference-types/
https://qconlondon.com/london-2009/qconlondon.com/london-2009/presentation/Null%2bReferences_%2bThe%2bBillion%2bDollar%2bMistake.xhtml


Chapter 3

The C# Language Specification describes the variable
categories at https://docs.microsoft.com/en-us/dotnet

/csharp/language-reference/language-specification

/variables.
The rules regarding definite assignment are also
described in the C# Language Reference at https://docs

.microsoft.com/en-us/dotnet/csharp/language-reference

/language-specification/variables#94-definite-

assignment.
Jon Skeet looks at parameter passing by reference and
by value in his blog at https://jonskeet.uk/csharp

/parameters.xhtml.
The third edition of C# in Depth by Jon Skeet (Manning,
2014) has a detailed analysis of closures in Chapters 5
and 16.
Closures are not new to C#, but their behavior has
changed in some ways; capturing a loop variable is one
example. Eric Lippert’s blog has a good article on the
rationale behind the old (pre–C# v5) behavior of
capturing loop variables in function objects: https://

ericlippert.com/2009/11/12/closing-over-the-loop-

variable-considered-harmful-part-one/.
An overview of several C# features for efficient code,
including read-only structs and in parameters, is at
https://docs.microsoft.com/en-us/dotnet/csharp/write-

safe-efficient-code.
The C# Programming Guide describes ref returns and
ref locals at https://docs.microsoft.com/en-us/dotnet

/csharp/programming-guide/classes-and-structs/ref-

returns.
Although ref returns and ref locals weren’t introduced
until C# v7.0, the idea has been around much longer, as

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/variables
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/variables#94-definite-assignment
https://jonskeet.uk/csharp/parameters.xhtml
https://ericlippert.com/2009/11/12/closing-over-the-loop-variable-considered-harmful-part-one/
https://docs.microsoft.com/en-us/dotnet/csharp/write-safe-efficient-code
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/ref-returns


Eric Lippert explains at https://ericlippert.com/2011/06

/23/ref-returns-and-ref-locals/.
Vladimir Sadov examines the rules around whether a
ref local is safe to return at http://mustoverride.com

/safe-to-return/.
The operation of the garbage collector is a complex
topic, but a good starting point is the Microsoft
documentation at https://docs.microsoft.com/en-us

/dotnet/standard/garbage-collection/fundamentals.
Andrew Hunter also describes garbage collection in his
blog at https://www.red-gate.com/simple-talk

/development/dotnet-development/understanding-

garbage-collection-in-net/.
The Microsoft documentation on value tuple support
from C# v7.0 onward is at https://docs.microsoft.com

/en-us/dotnet/csharp/language-reference/builtin-types

/value-tuples.

https://ericlippert.com/2011/06/23/ref-returns-and-ref-locals/
http://mustoverride.com/safe-to-return/
https://docs.microsoft.com/en-us/dotnet/standard/garbage-collection/fundamentals
https://www.red-gate.com/simple-talk/development/dotnet-development/understanding-garbage-collection-in-net/
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/value-tuples


Chapter 4

Eric Lippert has written extensively about value types
and touches on modifying returned values at https://

ericlippert.com/2008/05/14/mutating-readonly-structs/.
Lippert examines the construction of value types and
the use of an intermediate temporary instance in this
post: https://ericlippert.com/2010/10/11/debunking-

another-myth-about-value-types/.
The C# Language Specification on object creation can
be read online at https://docs.microsoft.com/en-us

/dotnet/csharp/language-reference/language-

specification/expressions#117152-object-creation-

expressions. Object initializers are covered at https://

docs.microsoft.com/en-us/dotnet/csharp/language-

reference/language-specification/expressions#117153-

object-initializers.
The Microsoft documentation on casts, including a link
to user-defined conversion methods, is at https://docs

.microsoft.com/en-us/dotnet/csharp/programming-guide

/types/casting-and-type-conversions#implicit-

conversions.
Jon Skeet investigates read-only fields in his blog at
https://codeblog.jonskeet.uk/2014/07/16/micro-

optimization-the-surprising-inefficiency-of-readonly-

fields/.
The Microsoft documentation for in parameters (https://

docs.microsoft.com/en-us/dotnet/csharp/language-

reference/keywords/in-parameter-modifier) and ref
readonly return values and locals (https://docs.microsoft

.com/en-us/dotnet/csharp/language-reference/keywords

/ref#reference-return-values) has good information on
the caveats and rules for correctly using them.

https://ericlippert.com/2008/05/14/mutating-readonly-structs/
https://ericlippert.com/2010/10/11/debunking-another-myth-about-value-types/
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/expressions#117152-object-creation-expressions
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/expressions#117153-object-initializers
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/casting-and-type-conversions#implicit-conversions
https://codeblog.jonskeet.uk/2014/07/16/micro-optimization-the-surprising-inefficiency-of-readonly-fields/
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/in-parameter-modifier
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/ref#reference-return-values


Sergey Tepliakov’s blog has some enlightening articles
on in and ref readonly performance too, at https://

devblogs.microsoft.com/premier-developer/the-in-

modifier-and-the-readonly-structs-in-c/ and https://

devblogs.microsoft.com/premier-developer/performance

-traps-of-ref-locals-and-ref-returns-in-c/.
The quote from Donald Knuth is from his ACM Turing
Award lecture in 1974. He went on to say—much more
famously—that “premature optimization is the root of
all evil.” The full text is available at https://dl.acm.org

/doi/10.1145/1283920.1283929.

https://devblogs.microsoft.com/premier-developer/the-in-modifier-and-the-readonly-structs-in-c/
https://devblogs.microsoft.com/premier-developer/performance-traps-of-ref-locals-and-ref-returns-in-c/
https://dl.acm.org/doi/10.1145/1283920.1283929


Chapter 5

Eric Lippert’s blog post on the subject of null is
enlightening: https://ericlippert.com/2013/07/25/what-is

-the-type-of-the-null-literal/.
String interning is documented by Microsoft at https://

docs.microsoft.com/en-us/dotnet/api/system.string

.intern?view=net-5.0.
A variety of articles address floating-point
representation and the pitfalls that can arise. Frances
Buontempo gives an overview with examples and
further references for those who want to dig deeper in
her Overload article “Floating Point Fun and Frolics” at
https://accu.org/journals/overload/17/91/buontempo

_1558.
Richard Harris has written extensively about floating-
point comparisons and arithmetic. This series of
Overload articles examines the common alternatives to
IEEE-754 floating-point:

“You’re Going To Have To Think!,” https://accu.org

/journals/overload/18/99/harris_1702

“Why Fixed Point Won’t Cure Your Floating Point
Blues,” https://accu.org/journals/overload/18/100

/harris_1717

“Why Rationals Won’t Cure Your Floating Point
Blues,” https://accu.org/journals/overload/19/101

/harris_1986

“Why Computer Algebra Won’t Cure Your Floating
Point Blues,” https://accu.org/journals/overload/19

/102/harris_1979

“Why Interval Arithmetic Won’t Cure Your Floating
Point Blues,” https://accu.org/journals/overload/19

/103/harris_1974

https://ericlippert.com/2013/07/25/what-is-the-type-of-the-null-literal/
https://docs.microsoft.com/en-us/dotnet/api/system.string.intern?view=net-5.0
https://accu.org/journals/overload/17/91/buontempo_1558
https://accu.org/journals/overload/18/99/harris_1702
https://accu.org/journals/overload/18/100/harris_1717
https://accu.org/journals/overload/19/101/harris_1986
https://accu.org/journals/overload/19/102/harris_1979
https://accu.org/journals/overload/19/103/harris_1974


A comparison of C#’s floating-point types can be found
in the Microsoft documentation at https://docs.microsoft

.com/en-us/dotnet/csharp/language-reference/language-

specification/types#floating-point-types.
The Microsoft documentation gives an overview of the
constant pattern at https://docs.microsoft.com/en-us

/dotnet/csharp/language-reference/operators

/patterns#constant-pattern.
The declaration pattern is described in the Microsoft
documentation at https://docs.microsoft.com/en-us

/dotnet/csharp/language-reference/operators

/patterns#declaration-and-type-patterns.
Nullable value type operator overloads are described in
the C# Language Specification, which has a short
remark about operator==, at https://docs.microsoft.com

/en-us/dotnet/csharp/language-reference/builtin-types

/nullable-value-types#lifted-operators.
The C# Language Specification also has a section on
nullable reference types at https://docs.microsoft.com

/en-us/dotnet/csharp/language-reference/builtin-types

/nullable-reference-types.
Lippert has a great series of blogs about nullable value
types starting here: https://ericlippert.com/2012/12/20

/nullable-micro-optimizations-part-one/.
Lippert examines the concept of lifted operators at
https://docs.microsoft.com/en-us/archive/blogs

/ericlippert/what-exactly-does-lifted-mean.
MSDN Magazine looks at why value tuples aren’t
immutable at https://docs.microsoft.com/en-us/archive

/msdn-magazine/2018/june/csharp-tuple-trouble-why-

csharp-tuples-get-to-break-the-guidelines.

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/types#floating-point-types
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/patterns#constant-pattern
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/patterns#declaration-and-type-patterns
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/nullable-value-types#lifted-operators
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/nullable-reference-types
https://ericlippert.com/2012/12/20/nullable-micro-optimizations-part-one/
https://docs.microsoft.com/en-us/archive/blogs/ericlippert/what-exactly-does-lifted-mean
https://docs.microsoft.com/en-us/archive/msdn-magazine/2018/june/csharp-tuple-trouble-why-csharp-tuples-get-to-break-the-guidelines


Chapter 6

For an in-depth look at value types in modeling complex
systems, see Dirk Bäumer et al., “Values in Object
Systems,” Ubilab Technical Report, https://riehle.org

/computer-science/research/1998/ubilab-tr-1998-10-1

.pdf.
Kevlin Henney covers the taxonomy of object types and
offers other valuable insights regarding object
comparisons in C++ and C# at https://www.slideshare

.net/Kevlin/objects-of-value.
Martin Fowler describes the anemic domain model at
https://www.martinfowler.com/bliki

/AnemicDomainModel.xhtml.
Fowler describes aliasing an object causing bugs at
https://www.martinfowler.com/bliki/AliasingBug.xhtml.
Aliasing is not a new idea, either, as you can see in Eric
S. Raymond’s The Jargon File: http://www.catb.org

/jargon/html/A/aliasing-bug.xhtml.
Scott Stanchfield’s article on the perils of using a
language that has no concept of pass-by value is quite
old and focused on the Java of the era, but still
enlightening: http://www.javadude.com/articles

/passbyvalue.htm.
The contract for IComparable implementations is
described in the Microsoft documentation at
https://docs.microsoft.com/en-

us/dotnet/api/system.icomparable-1.compareto?

view=net-5.0#notes-to-implementers.
Henney looks at some patterns for value types,
including symmetry, in this conference paper: https://

www.researchgate.net/publication/244405850_The

_Good_the_Bad_and_the_Koyaanisqatsi_Consideration

_of_Some_Patterns_for_Value_Objects.

https://riehle.org/computer-science/research/1998/ubilab-tr-1998-10-1.pdf
https://www.slideshare.net/Kevlin/objects-of-value
https://www.martinfowler.com/bliki/AnemicDomainModel.xhtml
https://www.martinfowler.com/bliki/AliasingBug.xhtml
http://www.catb.org/jargon/html/A/aliasing-bug.xhtml
http://www.javadude.com/articles/passbyvalue.htm
https://docs.microsoft.com/en-us/dotnet/api/system.icomparable-1.compareto?view=net-5.0#notes-to-implementers
https://www.researchgate.net/publication/244405850_The_Good_the_Bad_and_the_Koyaanisqatsi_Consideration_of_Some_Patterns_for_Value_Objects


Scott Meyers wrote seminal books that will be
recognized instantly by C++ programmers everywhere,
but he has much to say that’s relevant to programmers
in any language. In particular, Effective C++, 3rd
edition (Addison-Wesley, 2005), and More Effective

C++ (Addison-Wesley, 1996) look at making interfaces
easy to use correctly and hard to use incorrectly, as
well as the benefits of moving functions outside of the
class.
Intransitive or non-transitive dice are a fun way to
explore and challenge the idea of less-than and intrinsic
ordering; see the Rosetta Code site at https://

rosettacode.org/wiki/Non-transitive_dice.

https://rosettacode.org/wiki/Non-transitive_dice


Chapter 7

For the Microsoft Developer Network (MSDN) advice
on overriding the Equals method for values, see https://

docs.microsoft.com/en-us/dotnet/csharp/programming-

guide/statements-expressions-operators/how-to-define-

value-equality-for-a-type.
This 2005 MSDN Magazine article on the internals of
how the CLR manages object instances, although
clearly out-of-date now, is still enlightening: https://docs

.microsoft.com/en-us/archive/msdn-magazine/2005/may

/net-framework-internals-how-the-clr-creates-runtime-

objects. For a more recent analysis by Adam Sitnik, see
https://adamsitnik.com/Value-Types-vs-Reference-Types

/.
For a detailed analysis of the kinds of polymorphism,
see “On Understanding Types, Data Abstraction, and
Polymorphism” by Luca Cardelli and Peter Wegner in
Computing Surveys, http://lucacardelli.name/Papers

/OnUnderstanding.A4.pdf.
For a formal definition of subtyping, see “A Behavioral
Notion of Subtyping” by Barbara H. Liskov and
Jeannette M. Wing, ACM Transactions on Programming

Languages and Systems, https://dl.acm.org/doi/10.1145

/197320.197383.
Eric Lippert discusses the Liskov substitutability
principle more generally in a series of articles starting
here: https://ericlippert.com/2015/04/27/wizards-and-

warriors-part-one/.
Lippert argues that all equality can be derived simply
from a conforming implementation of CompareTo at
https://www.informit.com/articles/article.aspx?p

=2425867.

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/how-to-define-value-equality-for-a-type
https://docs.microsoft.com/en-us/archive/msdn-magazine/2005/may/net-framework-internals-how-the-clr-creates-runtime-objects
https://adamsitnik.com/Value-Types-vs-Reference-Types/
http://lucacardelli.name/Papers/OnUnderstanding.A4.pdf
https://dl.acm.org/doi/10.1145/197320.197383
https://ericlippert.com/2015/04/27/wizards-and-warriors-part-one/
https://www.informit.com/articles/article.aspx?p=2425867


This article by Kevlin Henney on strings and value types
is based on the C++ string, but many of the
observations are relevant to C#: https://www.slideshare

.net/Kevlin/highly-strung.
The term seam is usually attributed to Michael Feathers
from his book Working Effectively with Legacy Code

(Pearson, 2004). The relevant chapter is available
online at https://www.informit.com/articles/article.aspx?

p=359417&seqNum=2.
Mock objects have been a feature of object-oriented
unit testing for a long time, and Wikipedia has a good
overview at https://en.wikipedia.org/wiki/Mock_object.
Gerard Meszaros describes the more general concept of
a test double in his book xUnit Test Patterns (Addison-
Wesley, 2007) and online at http://xunitpatterns.com

/Test%20Double.xhtml.
Henney makes a case against the term reuse at https://

kevlinhenney.medium.com/simplicity-before-generality-

use-before-reuse-722a8f967eb9.
For a summary of C# v8.0 ranges that includes the
related specification for a generalized index operator,
see the Microsoft documentation at https://docs

.microsoft.com/en-us/dotnet/csharp/language-reference

/proposals/csharp-8.0/ranges.
The calculation for relative luminance was lifted
approximately from the International
Telecommunication Union Radiocommunication Sector
(ITU-R) recommendation on Wikipedia at https://en

.wikipedia.org/wiki/Luma_(video), but it’s used in this
chapter only to demonstrate implicit conversions.
C# has a few ways to represent conversions between
types. Lippert’s description of is and as is at https://docs

.microsoft.com/en-us/archive/blogs/ericlippert/is-is-as-or

https://www.slideshare.net/Kevlin/highly-strung
https://www.informit.com/articles/article.aspx?p=359417&seqNum=2
https://en.wikipedia.org/wiki/Mock_object
http://xunitpatterns.com/Test%20Double.xhtml
https://kevlinhenney.medium.com/simplicity-before-generality-use-before-reuse-722a8f967eb9
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/proposals/csharp-8.0/ranges
https://en.wikipedia.org/wiki/Luma_(video
https://docs.microsoft.com/en-us/archive/blogs/ericlippert/is-is-as-or-is-as-is


-is-as-is and https://ericlippert.com/2013/05/30/what-the

-meaning-of-is-is/.
These articles by Henney are targeted at C++

programmers, but the principles are broadly applicable
in any object-oriented language, including C#: https://

www.slideshare.net/Kevlin/promoting-polymorphism

and https://www.slideshare.net/Kevlin/substitutability.
The rules for overload resolution can be found in the C#
Language Specification at https://docs.microsoft.com/en

-us/dotnet/csharp/language-reference/language-

specification/expressions#1164-overload-resolution.
Jon Skeet has blogged about overloading at https://

csharpindepth.com/articles/Overloading.
Lippert looks at some interesting gotchas with respect
to overload resolution at https://ericlippert.com/2006/04

/05/odious-ambiguous-overloads-part-one/ and https://

ericlippert.com/2006/04/06/odious-ambiguous-overloads

-part-two/.
For a high-level description of record types in C# v9.0,
see the Microsoft documentation: https://docs.microsoft

.com/en-us/dotnet/csharp/whats-new/csharp-9#record-

types.
Type builders are a variation on the Factory pattern.
See Erich Gamma et al., Design Patterns: Elements of

Reusable Object-Oriented Software (Addison-Wesley,
1995).
Henney describes mutable companions and other value
object patterns in his paper “The Good, the Bad, and the
Koyaanisqatsi: Consideration of Some Patterns for
Value Objects,” from the 2003 VikingPLoP (Pattern
Languages of Programs) conference, at https://www

.researchgate.net/publication/244405850.

https://docs.microsoft.com/en-us/archive/blogs/ericlippert/is-is-as-or-is-as-is
https://ericlippert.com/2013/05/30/what-the-meaning-of-is-is/
https://www.slideshare.net/Kevlin/promoting-polymorphism
https://www.slideshare.net/Kevlin/substitutability
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/expressions#1164-overload-resolution
https://csharpindepth.com/articles/Overloading
https://ericlippert.com/2006/04/05/odious-ambiguous-overloads-part-one/
https://ericlippert.com/2006/04/06/odious-ambiguous-overloads-part-two/
https://docs.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-9#record-types
https://www.researchgate.net/publication/244405850


Chapter 8

One example of an intentionally slow algorithm is the
bogosort, which is sometimes used as a simple way to
deliberately keep a CPU busy; Wikipedia has details at
https://en.wikipedia.org/wiki/Bogosort.
One popular library to benchmark code for performance
measurement is BenchmarkDotNet, described at https://

benchmarkdotnet.org.
Joe Duffy’s blog about performance and optimization is
now more than a decade old but still thought-provoking,
and the principles remain relevant: http://joeduffyblog

.com/2010/09/06/the-premature-optimization-is-evil-

myth/.
The Microsoft documentation for the ValueType override
of Equals is at https://docs.microsoft.com/en-

us/dotnet/api/system.valuetype.equals?view=net-6.0.
Sergey Tepliakov’s blog has a wealth of information on
why overriding Equals is so important, and some good
advice and interesting background on
ValueType.GetHashCode: https://devblogs.microsoft.com

/premier-developer/performance-implications-of-default-

struct-equality-in-c/.
For the .NET 6 implementation of the default GetHashCode
method, see https://github.com/dotnet/runtime/blob

/release/6.0/src/coreclr/vm/comutilnative.cpp#L1878.
The default equality for structs is defined in ValueType at
https://github.com/dotnet/runtime/blob/release/6.0/src

/coreclr/System.Private.CoreLib/src/System/ValueType

.cs#L21.
Niklaus Wirth’s documentation for Project Oberon can
be found at https://people.inf.ethz.ch/wirth

/ProjectOberon/PO.System.pdf.

https://en.wikipedia.org/wiki/Bogosort
https://benchmarkdotnet.org/
http://joeduffyblog.com/2010/09/06/the-premature-optimization-is-evil-myth/
https://docs.microsoft.com/en-us/dotnet/api/system.valuetype.equals?view=net-6.0
https://devblogs.microsoft.com/premier-developer/performance-implications-of-default-struct-equality-in-c/
https://github.com/dotnet/runtime/blob/release/6.0/src/coreclr/vm/comutilnative.cpp#L1878
https://github.com/dotnet/runtime/blob/release/6.0/src/coreclr/System.Private.CoreLib/src/System/ValueType.cs#L21
https://people.inf.ethz.ch/wirth/ProjectOberon/PO.System.pdf


INDEX

Symbols
! (null-forgiving; dammit) operator, 66–67
!= operator, 150, 167–168, 215–217

arithmetic and nonarithmetic types, 208
comparing generic variables, 162
equality behavior in derived classes, 219
implementing custom vs. generated behavior, 201
method overloading, 240
nonstandard operator behavior, 209
optimizing equality, 266–267
value-based equality for classes, 215–217

& (binary combination) operator, 122
&& (logical AND) operator, 216
* operator, 14–17
?? (null-coalescing) operator, 51, 151–152
| (binary combination) operator, 122
|| (logical OR) operator, 216
- operator, 17
+ (concatenation) operator, 241
+ operator, 122
+= operator, 76
< operator, 122, 206, 208, 229
== (equals-equals) operator, 122, 139–140, 150

boxing values and identity comparison, 158–161
class equality, 151–152, 156
compiler-generated equality, 167–172
custom vs. generated behavior, 201
equality behavior in derived classes, 219–220
floating-point values, 141–142, 145
generic variable comparison, 162–163
interface boxes, 161
method overloading, 240
nonstandard behavior, 209
optimizing equality, 266–270
reference equality, 146–148
struct equality, 157–158



value-based equality for classes, 215–217
value semantics vs. reference semantics, 177
whole numbers, 140

=> (expression body) syntax, 7, 24, 32, 92, 151
> operator, 208, 229

A
abstraction

abstract types, 29, 36
composing, 199
encapsulation and cohesion, 192–193
missing abstractions, 15, 28
new expression, 50
performance, 279
vocabulary and, 191–192

accessors, read-only, 134–135
Action type, 93–94
actual parameters, 38. See also arguments
address

of an object, 74–75
of a variable, 128

ad hoc polymorphism (method overloading), 238–242
generic delegates for polymorphism, 241–242
symbolic polymorphism with overloaded operators, 240–241

anemic domain model, 184, 192–193
AngleExtensions class, 26
angle parameter, 3–5, 11
Angle type

automatic vs. nonautomatic properties, 129–133, 135
boxing, 161
composition, 199
encapsulation, 5–7, 10
floating-point fields, 155
unit conversions, 24–28

anonymous methods, 85, 242
anonymous types, 60, 91
ApproximatelyEqual method, 143, 155
Area type, implementation inheritance and, 228–230
arguments, 69–103. See also methods; actual parameters

by-reference parameters, 76–82, 102–103
checking for invalid, 8
copying, 118–123
custom types, 5–6
double type and, 4–5
method arguments, 70–75, 118–123
method calls, 38
named, 4–5, 7–8, 33



null-forgiving operator, 66–67
object initialization, 6
ordering, 5

ArgumentException and ArgumentOutOfRange Exception type, 8
overloading constructors, 54
parameterless constructors, 54–55
passing null as, 52, 61, 65–66
passing variables as, 37–38, 44, 47
private constructors, 57
properties as, for read-only parameters, 127–128
read-only references, 92–102

arithmetic operators, 14–15, 208–209
array elements

accessibility, 38
default initialization, 56
identifiers, 38
instance storage, 41–42
variables, 38, 42, 147–148

asynchronous methods, 86–87
AutoAppend method, by-reference parameters and, 76–77
automatic properties, 43, 58, 130–134, 213, 265–266
await keyword and statements, 86–87

B
BallisticRange method

address of a variable, 127–130
defensive copying, 132–133

benchmarking, 251–252, 271
binary combination (| and &) operators, 122
bitwise comparison, 49, 141, 256–257, 259
bne instruction, 171
boxed values, 44–45

generic code and Equals method, 163
identifying unnecessary boxing, 115–118
identity comparisons, 158–162
lock statements, 47
optimizing equality, 263–265
passing values by reference, 79
performance and, 172–173

Brush type
returning by-reference, 101
value type member layout, 40–42
value type reassignment, 113

by-reference fields, 84–87
asynchronous methods, 86–87
closures, 84–85
iterator blocks, 85–86



by-reference parameters, 76–92, 99, 102–103
defined, 70
kinds of, 70
limitations of, 82–88
output parameters, 79–82
passing arguments by reference, 70–71
passing references by reference, 77–78
passing values by reference, 78–79
reference types vs., 70–71
reference type variables vs., 76–77
side effects and direct effects, 88–92

by-reference returns, 97, 99
by-reference variables (ref locals), 84, 94, 97–102, 104, 123, 133, 270

defined, 95
keeping within scope, 97–101
performance vs. simplicity, 101–102

C
callback delegate, mutating arguments for read-only parameters and, 93–94
cancellation

defined, 142
mitigating limitations of, 142–144

ceq instruction, 141, 145–147, 151
bne instruction vs., 171–172
efficiency of, 216

Character class, default object hash codes and, 153–154
CI (continuous integration) services, 251
classes, xx, xxiii

abstract, 36
records vs., 33, 200–201
default constructors, 52
defining, 33
embedded references, 42
embedded values, 40
equality behavior in derived classes, 218–219
equality comparisons, 149–156
field assignment, 53
field initializers, 58
generics and null, 61, 63
immutability, 33, 35
inheritance, 34–35
iterator blocks, 85–86
memory allocation, 50
object initializers, 58–59
parameterless constructors, 54, 57, 59
protected members, 35
sealed, 35



value equality, 48, 214–218
class factory methods, 22–25, 57

custom vs. generated behavior, 201–202
returning types implied by units, 27
symmetry, 23–24, 196

class invariants
defined, 9
discarded, 13–14
establishing, 194–195
testing, 9

class keyword, 33, 45
Clone method

boxing, 115
of record types, 114, 165

clones (deep copies), 200
Close method, reference semantics and, 75
closures

by-reference parameters and, 84–85
defined, 84–85
looping and iteration, 280–281

code craft, 3
coercion polymorphism, 242–247

conversions for purpose, 245–247
conversions for representation, 244–245
widening vs. narrowing conversions, 244

cohesion, 192–196, 198
clarifying with symmetry, 196
eliminating duplication, 193–194
establishing class invariants, 194–195

collisions of hash table elements, 153
ColorBuilder type, as mutable companion type, 246–247
ColorParser type, generic type constraints and, 235–238
Color type

ad hoc polymorphism, 239–242
array elements, 41–42
boxed values, 44
classes, 33
coercion polymorphism, 243–247
compiler-generated equality, 165–169
constructing value types, 112–113
constructor accessibility, 57
conversion to interfaces, 116–117
copying records like value type, 114
default and generated constructors, 53
embedded values, 40–42
generic code and Equals method, 163
IEquatable interface, 164
inclusion polymorphism and subtyping, 222–229, 231–232



init-only properties, 59
instance fields of value types, 98
measuring performance with Equals, 253–259
non-destructive mutation, 60
ordering, 206
overloaded constructors, 54
overriding Equals for structs, 157–159
overriding generated methods, 203
parametric polymorphism with generics, 233, 235–238
records, 33
record structs, 34
references to references, 100
sealed value types, 213–221
structs, 32–33
uniformity and consistency, 207
value-based comparisons, 181
value type initialization, 56–57

Combine method, of HashCode, 259–261
Command type

controller object role, 190
inheritance, 34–35
reference semantics, 74–75

Common Type System, 45–46
CompareTo method

boxing, 116–117
inheriting, 228–230
sorting, 204–208

comparison operators, 122, 205, 208
composition, 199
concatenation (+) operator, 241
concrete types, 36
conjunctive pattern, 195
constant pattern, 61, 145, 151–152, 195, 216
constants

enums, 19
hidden copies, 128
replacing magic numbers with named constants, 10–11

constructors, 49–57
accessibility, 57
default and generated, 52–53
expression body syntax, 7, 32
field and property initializers, 58
new object creation, 110–111
object initializers, 58–59
overloaded, 53–54
parameterless, 54–55, 62–63
private, 57
replacing public constructors with static methods, 22–23



structs and default values, 55–56
value type construction and initialization, 56–57, 112–113
value validation, 8–9

continuous integration (CI) services, 251
contract for comparisons, 205–206

antisymmetric, 205
irreflexive, 205
safe, 206
stable, 206
transitive, 205

contract for equality, 217–218
breach of, 221
reflexive, 217
safe, 217
stable, 217
symmetric, 217
transitive, 217
upholding, 224–225

controllers
avoiding implementation inheritance, 230–231
characteristics of, 190–191
defined, 185

conversion operators, 7, 12, 122–123, 243–246
Coordinate type

boxing, 115–116
value type memory layout, 71–72
value tuples, 102–103

copying, 46–48, 105–137
copy-by-value semantics, 73–74
defensive copies, 128–133
identifying unnecessary boxing, 115–118
large instances, 272
locks and reference semantics, 46–47
measuring cost of, 270–271
method parameters and arguments, 118–123
modifying return type instances, 123–128
new object creation, 110–115
references vs. instances, 105–106
simple assignment, 106–110
value equality, 47–48
value semantics vs. reference semantics, 177–181

CPU sampling, 254, 271
CreateColor method, returning by reference and, 100
CrossGen utility, 250

D
dammit (!; null-forgiving) operator, 66–67



dangling references, 84, 99
DataAdapter type, generic type constraints and, 234–238
DataStore type, reference semantics and, 74–75
DateTime type

boxing, 118
IComparable interface, 206
TryXXX idiom, 79–80

decimal type, 143
declaration patterns, 150, 157
declarative code

defined, 89
immutability, 89
performance and, 91–92
vs. procedural code, 89, 284

Deconstruct method, 102–103
deep copies (clones), 200
default constructor, 52–54, 58
default keyword, 62–63
default values

avoiding pitfalls of default variables, 200–201
default initialization, 50, 56
generics and, 62–63
null, 64
object initializers, 59
valid, 63

defensive copies, 128–133
automatic vs. nonautomatic properties, 130–131
avoiding, 133–136
causes of, 133
defending against mutation, 133–134, 136
mutable value types and in parameters, 129–130
read-only fields, 132–133
read-only reference variables, 131–132

definite assignment, 39
generics, 62
ref and out parameters, 79
static fields, 58
struct variables, 56–57

deferred execution (lazy enumeration), 85
delegates

callback delegate, 93–94
defined, 93, 241
generic, for polymorphism, 241–242

derived type, 34
Difference method, memory layout of method parameters and, 72
digit separators, 262
Direction property, nondestructive mutation and, 90–91, 127–128
discard pattern, 20–21, 195, 284–285



Disconnect method, reference semantics and, 178–179, 181
disjunctive pattern, 195
Displacement method, 2–29

custom types, 5–6
encoding units, 18–28
importance and value of good names, 2–3
named arguments, 4–5
refactoring implementation, 9–18
value validation, 8–9

DistanceInKm method
read-only reference parameters, 92–93
user-defined conversions, 122–123

Distance type, refactoring and, 16–18
domain-specific types, 9
double argument, 12, 25
double values

custom types vs., 4–5
equality comparisons, 141–142, 145, 155, 229

E
embedded values, 40–43

array elements, 41–42
embedded references, 42–43
field and property layout, 43

encapsulation, 6–7, 25–26, 28, 192–196
abstracting types, 29
clarifying with symmetry, 196
cohesion and, 192
eliminating duplication, 193–194
establishing class invariants, 194–195
public interface and, 196–199
testing, 9

entities
characteristics of, 188–189
defined, 184–185

Enumerable class, 262, 282
enum (enumerated types)

Common Type System, 45
defined, 19
itemizing units with, 19–22

EqualityComparer class, 263
IEquatable interface and, 164–166
performance of, 277–278

equality comparisons, 139–172
boxing, 158–161, 163
built-in, 140–149
classes, 149–156



compiler-generated, 165–172
contract, 217
equality behavior in derived classes, 218–219
equivalence vs., 203–205
floating-point numbers, 141–142, 144–145
generics, 162–165
records, 165–168
reference-based, 47–48, 146–152, 177–178
strings, 148–149
structs, 156–162
transitivity, 155
type safe, 152
type substitution, 220–221
value-based equality for classes, 214–218
value semantics vs. reference semantics, 177–181

EqualityContract property, 226–228, 247
equals-equals operator. See == operator
Equals method, 33, 44, 46, 64, 139–140, 150–151

boxing values and identity comparison, 158–159, 161
canonical form of, 215–217
class equality, 151–152, 155–156
compiler-generated equality, 165–166, 172, 277–279
copying large instances, 272
custom vs. generated behavior, 201
equality behavior in derived classes, 219, 221
floating-point values, 145
generic variable comparison, 163–164
GetHashCode method and, 152–156, 259–261
IEquatable interface, 164–165
inheriting classes, 218–221
inheriting record types, 225–228
input and output types of virtual methods, 223, 225
measuring basic performance with, 253–261
measuring cost of copying, 271
method overloading, 238–239
object base class, 47–48, 158–161, 163–164
optimizing equality, 261–265, 268–269
overloading, 152, 164–165
overriding base class implementation, 199
overriding for structs, 156–158
records and structs, 48–49
reference equality, 146, 148, 276–277
struct equality, 156–158
value-based equality for classes, 215–217
value equality, 48
value semantics vs. reference semantics, 177
ValueType base class, 156, 256–258



EqualsOperatorComparer class, 268
EqualViaBase method, 221, 226, 228
EqualViaDerived method, 221, 226
equivalence vs. equality, 203–205
explicit conversions, 106, 243, 245
explicit interface conversion, 116–117
expressions, using with operators, 121–123

expression-bodied properties (nonautomatic properties), 130
expression body (=>) syntax, 7, 24, 32, 92, 151

extension methods
ad hoc polymorphism, 239
of built-in types, 26
by-reference parameters and, 87–88
composing abstractions, 199
extending interfaces, 197–198
iterators, 281
passing and returning by value, 119–120
returning types implied by units, 27

external interface, 198
extensionality, 204

F
fakes (test doubles), 230
field initializers, 58, 113
fields

array elements, 41–42
by-reference, 84–87
copy semantics, 46
default initialization, 50, 53
embedded fields, 40–41
embedded references, 42
embedded values, 43
field and property layout, 43
generics, 62
identity equality vs. value equality, 47–48
initializers, 58
instance, 37, 98
parameterless constructors, 54–55
properties vs., 265–266
protected, 35
read-only, 132–134
return by reference, 131–132
static, 38, 58
value semantics, 49
value type initialization, 56–57

floating-point values equality comparisons, 141–145
rounding and cancellation errors, 141–144



using as keys with hash codes, 154–156
fluent syntax form of LINQ (Language-Integrated Query), 279–280
foreach loop, 36, 66, 281–284
for loop, 283–284
formal parameters See parameters
FormatConnection method, output parameters of extension methods and, 87
Format method, method group overloading and, 242
FORTRAN, 182

G
garbage collection, xxiii, 37, 41, 74,

boxing, 115
managed pointers, 99
performance, 263, 275
read-only references, 131

generics, xx–xxii
arithmetic, 162
base-class constraint, 162–163
deduced type parameters, 236–238
default values, 62–63
equality comparisons, 162–165
generic delegates for polymorphism, 241–242
interface constraint, 116–117
null values, 61–62
parametric polymorphism, 233–238
partial deduction of generic parameters, 237

get accessor, 32–34, 128
automatic vs. nonautomatic, 130–131
methods for, 120–121
read-only, 134–135
symmetry with set accessor, 209

GetAddress method, 99
returning by reference, 99

get_Current method, 282
GetEnumerator method, 281
GetHashCode method

collision, 152–153
defining, 154, 157
performance, 259–261
ValueType definition, 156, 259
where used, 152

get_Speed method, 120–121
GetType method, 118, 166, 216, 227
GetValueOrDefault method, 169
Gravity.Earth constant, replacing magic numbers with, 11

H



HashCode class, 154, 259–261
hash codes, 152–156

collision, 152–153
creating suitable keys, 154
distribution, 152–153, 259
Equals and ValueType.GetHashCode methods, 259
using floating-point numbers as keys, 154–15

heap, xxiii–xxiv, 37, 40, 50, 73–74, 107–108
boxing, 158–161
identity, 180

hidden copies, 130, 137
boxes, 118
parameter passing, 128
return values, 124–126
value type construction, 118

I
IComparable interface, 116–117, 204–208, 228–229, 231
IComparer interface, 206–207
IEEE-754, 141
identifiers for variables, 37
identity comparison, 145, 148, 276

boxed values, 158–162
identity equality vs. value equality, 47–48, 158–159

identity conversions, 150
IEnumerable interface, 85, 241, 281–282
IEnumerator interface, 281–282
IEqualityComparer interface, 165, 206–207, 267–268, 271
IEquatable interface

avoiding boxing, 164
contract for, 217
IComparable interface vs., 203–205
implementing, 164, 215–216
performance effects, 263–265

if…else statements, 81, 285
IFormattable interface, 161
if statements, 284–285
immutability. See mutation and immutability
imperative code, 89
implementation inheritance, 213–214

avoiding, 230–232
containing instead of inheriting types, 231–232
interface inheritance vs., 213
upholding a type’s contract, 224

implicit conversions, 47, 97, 117, 150
boxing, 117–118
by-reference variables, 95–97



coercion polymorphism, 242–247
defining, 12–13
discarded invariants, 13–14
implicit reference conversion, 150, 220–221
primitive obsession, 5
to and from null, 147
unexpected interactions, 13
user defined, 122–123

Inch Calculator (online unit conversions), 120
inclusion polymorphism, 222–232

avoiding implementation inheritance, 230–232
inheriting record types, 225–230
input and output types of virtual methods, 223–224
upholding contract, 224–225

Incremented method
naming conventions, 89–90
passing by value, 119

Increment method
overloading by-reference parameters, 83
passing by reference, 78

indexers, 82, 106, 118, 125
defined, 121
mutating values from, 126–127

infinity, 145
inheritance, 34–36. See also inclusion polymorphism
init accessor, 59, 91, 112
init-only properties, 59, 112, 114, 274
In method, using for unit conversion, 21–22
in modifier and parameter

definition, 70–71
as optimization, 268–270
property values as arguments for, 127–133
using, 92–93

InMph extension method, 120
input parameters, 70, 93
InRadians property

automatic vs. nonautomatic properties, 129–130
defensive copying, 132–133
unit conversions, 24–26

instrumentation profiling (tracing), 258
intentionality, 204
interface constraints, 233–235
interface keyword, 224
interfaces

abstractness, 36
boxed values, 44, 116–117, 161–162
extension methods, 27



generic constraints and protocol, 233–236
implementing and inheritance, 35
interface inheritance, 213, 222
parametric polymorphism, 233–236
types, defined, 161

internal interface, 198–199
InternetTime class, as service object, 188
intern pools, 149
InvalidCastException error, 45, 107
IParser interface, generic type constraints and, 234–238
IsNaN static method, 145
IsReadOnlyAttribute indicator, 131–132, 134–136
iterator approach to creating sequences, 281–283
iterator blocks, 85–86
iterators, 281–282

J
JIT (just-in-time) compiler, 137, 141, 250–253, 265, 270–271, 273, 277–279,

281
Journey type indexer values, 126–127

K
keys, 152–156

creating suitable, 154
using floating-point numbers as, 154–156

L
lambdas, 66, 85, 94, 241–242, 273, 280–281
lazy enumeration (deferred execution), 85
ldnull instruction, 147
level of indirection, 70, 75, 79, 212
lexicographical ordering, 206
lifting operators, 169
local functions, 85
local variables

associated type, 38
constructing value types, 112
defined, 37
definite assignment, 39
instance storage, 43
keeping by-reference variables within scope, 97–100
lifetime of, 36
local read-only reference variables (ref readonly locals), 132–134
passing and returning by value, 119

lock statements, 47, 180
LogEntry type, equality vs. equivalence and, 203–209
logical AND (&&) operator, 216



logical OR (||) operator, 216
Login type, reference semantics and, 178–181
loop approach to creating sequences, 283–284

M
magic numbers, 4, 10–11
magnitudinal ordering, 206
Mail type, returning by reference and, 95–97, 99
managed pointers, 99
Math class, 10, 12–13, 17–19, 24–26, 143–144
memory profilers, 252
memory tearing, 114
method groups, 240, 242, 273, 280–281
method overloading (ad hoc polymorphism), 238–242
methods. See also arguments; actual parameters

abstract, 36
adjectives as names, 90
anonymous, 85, 242
asynchronous, 86–87
class factory, 22–25, 27, 57, 196, 201–202
encapsulation, 9
encoding units, 22–27
extension, 26, 197-199

ad hoc polymorphism, 239
of built-in types, 27
by-reference parameters and, 87–88
passing and returning by value, 119–120

generics, 61–63
identifying unnecessary boxing in method calls, 117–118
implementing from interfaces, 35
inheritance, 34–36
naming identifiers, 2–5
overloading, 16, 83–84
overriding generated, 202–203
protected, 35
read-only, 134–135
return type instance modification and mutability, 126–127
static creation, 22–23
value equality, 48

mock objects (test doubles), 230
ModifyByCallback method, mutating read-only reference parameter arguments

and, 93–94
Monitor class, 47, 180
MoveNext method, 282
multiple inheritance, 34, 36
MusicTrack type

customizing equality, 154, 156–157



reference type field initialization, 50–52, 55–56
Mutable Companion pattern, 246
mutation and immutability, 7–8

classes, 33, 35
declarative code, 89
defending against mutation with defensive copies, 133–134, 136
immutable types vs. read-only properties, 109–110
init-only properties, 59
instance methods and mutability, 126–127
mutable immutable properties, 101
mutable value types and in parameters, 129–130
mutating values from indexers, 126–127
mutation vs. creation, 89–91
non-destructive mutation, 60
in parameter, 92
read-only properties vs. immutable types, 109–110
record structs, 34
return type instance modification and mutability, 126–127
structs, 32–33
value semantics vs. reference semantics, 181–182

N
NaN (not a number), 8, 144–145, 195, 256, 285
narrowing conversions, 244
NegativeInfinity method, 145
new keyword and expression, 14, 50–51, 56–57, 110
newobj instruction, 146
NextAppointment method, capturing by-reference parameters and, 85
nonautomatic properties (expression-bodied properties), 130
non-destructive mutation, 60
not a number (NaN), 8, 144–145, 195, 256, 285
not constant pattern, 216
nullable reference types, 52, 64–67, 151, 224
Nullable type, 64, 168–172
nullable value types, 60, 63–64, 168–170
null-coalescing (??) operator, 51, 151–152
null-conditional (?) operator, 52, 151
null-forgiving (!; dammit) operator, 66–67
Nullify method, by-reference parameters for extension methods and, 87
NullReferenceException error, 56
null references, 51–52, 56, 65–67, 146–147, 151, 206, 233–234

comparing reference types with null, 61
comparing value types with null, 61
equality comparisons with classes, 151–152
generics and, 61–62
nullable reference types, 52, 64–67, 151, 224
nullable value types, 60, 63–64, 168–170



null-forgiving operator, 66–67
parameterless constructors, 54

O
object address, 180
object base class

Common Type System, 33, 44–46
default equality, 48, 139, 163, 215–216, 253
generic type parameters, 233

object construction and initialization, 49–60
constructors, 51–57
copying value type instances, 110–115
default initialization, 50–51
field and property initializers, 58
measuring cost of, 273–277
memory allocation, 49–50
object initializers, 7, 58–60

init-only properties, 59
non-destructive mutation, 60

object deconstruction, 102–103
object identity, 180, 185–191

and boxing, 158, 161
hash codes, 153

object-oriented programming (OOP), 183–184, 211
object relationships, 183–191

characteristics of, 185–191
design refinement to model object roles, 191
kinds of objects, 184–185

object roots, 99
OOP. See object-oriented programming
op_Equality method, 167, 171–172, 268
operators

arithmetic, 14–15, 121–122, 208–209
lifting, 168–170
nonstandard behavior, 209
symbolic polymorphism with overloaded operators, 240–241
using expressions with, 121–123

optimization, 101, 142, 250
boxing, 118
mutable by-reference parameters, 91–92

ordering, comparison for, 203–207
contract for comparisons, 205–206
equivalence vs. equality, 204–205
lexicographical ordering, 206
ordinal comparisons, 206

output parameters, 79–82, 93, 102
deconstruction, 102–103



defined, 70
definite assignment, 80–81
object deconstruction, 102
reference parameters vs., 79
returning by reference, 100
selecting operations, 81–82
TryXXX idiom, 79–82

overloading, 16, 152, 238–241
by-reference parameters, 83–84
constructors, 53–55
operators, 14–15, 208–209
overriding vs., 221

override keyword, 149

P
parameterized types, 237–238
parameterless constructors, 54–59, 62–63
parameters, 69–103

aliasing, 74–75
arguments, 38, 118–120
boxed, 160–161
by-reference, 70–71, 76–92, 99, 102–103
custom types as, 6
defining interfaces, 223–224
formal vs. actual, 38
generic, 61–62, 162–163, 233–238
input, 70, 92–93, 127–128, 268–270
kinds of, 70
modifiers, 70
naming, 2–5
non-nullable, 52, 66–67
output, 70, 79–82, 93, 102
overloading constructors, 53
overloading methods, 16
passing, defined, 69–70
read-only, 92–102, 127–128, 268–270
reference, 70–71, 73–74
ref returns, 92–102
value, 70–73

parametric polymorphism, 233–238
generic constraints and protocol interfaces, 233–236
generic method parameters and type deduction, 236–237
parameterized types, 237–238

Parse method, TryParse vs., 80
passing arguments

defined, 69–70
by reference, 70–71, 77–79



by value, 70–71, 119–120
pattern matching and selection

conjunctive pattern, 195
disjunctive pattern, 195
is constant pattern, 61, 145, 194–195
performance of, 284-286
relational pattern, 195
switch expression, 20–21, 284–286

performance, 249–286
effect of common idioms and practices on, 279–286
effect of types on, 270–279
measuring and optimizing, 250–253
measuring with Equals, 253–261
optimizing equality, 261–270
profilers, 252–253

pessimization, 250
Playlist class

field initializers, 58
generic type parameter comparisons, 162
parameterless constructors, 54–55

pointers
managed, 99
reference types vs., 74

polymorphism, 211–247
ad hoc, with overloading, 238–242
coercion, using conversions, 242–247
inclusion and subtyping, 222–232
inheritance vs., 211–212
parametric, with generics, 233–238
sealed value types, 212–221

positional records and record structs, 33, 53, 55, 131, 201–203, 273
copying, 114
equality, 165–168, 277–279
inheritance, 225–227

PositiveInfinity method, 145, 285
precision, 142–144
Primitive Obsession code smell, 5
private constructors, 23, 57
procedural code

declarative code vs., 89, 284
defined, 89

Product type
copying large value types, 273–279
optimizing equality comparisons, 261–268
read-only vs. immutable, 107–110
value object role, 186–187

profilers, 252–253
Projectile type, returning by reference, 131–133



properties
abstract, 36
accessing, 120–121, 265–266
as arguments for read-only parameters, 127–128
automatic

initializers, 58
memory layout, 43
nonautomatic vs., 130–134
performance of fields vs., 265–266

by-reference parameters and property values, 82–83
circular dependency, 43
expression-bodied, 130–131
init-only, 59, 112, 114, 274
mutable immutable, 101
property forwarding, 24
property initializers, 58
read-only. See read-only properties
returned reference type instance modification, 125–126
simplifying, 11–14
value of, 82

protocol interfaces, 231, 233–238
pseudorandom number generator, 254
public interface, encapsulation and, 196–199

composing abstractions, 199
extending interface, 197–198
reducing internal interface, 198–199

Purchase type
copying large value types, 273–280, 282–283
optimizing equality comparisons, 261–269
read-only vs. immutable, 107–112
value object role, 186–187

Q
query syntax form of LINQ (Language-Integrated Query), 280–281

R
race conditions, 96
Random class, 254
ranges (slices), 235
reachable objects, 99
readonly keyword, 32–34

ref locals, 96
structs, 135–136

read-only properties, 7
as arguments for read-only parameters, 130
avoiding defensive copies, 135
immutability vs., 109–110



and ref returns, 104
read-only reference parameters, 88, 92–95, 129, 131–132

mutable immutable properties, 101
performance vs. simplicity, 101–102
preventing modifications to data, 95–97

read-only type, 135–136
real number, 144
record keyword, 33, 45
records

abstract, 36
copying like value types, 114–115
defining, 33–34
equality comparisons, 165–168
inheritance, 34
inheriting record types, 225–230
protected, 35
sealed, 35
value semantics, 48

record struct keywords, 34
record structs

defining, 34
equality comparisons, 165–168
immutability, 34
inheritance, 34
value semantics, 49

refactoring, 9–10, 191
reference equality, 145–148, 178–180, 275–277
ReferenceEquals method, 148–149, 160–161, 216
reference parameters, 65, 70–71, 73–74, 79, 239
reference return values. See ref returns
reference semantics, 45–48, 176–183, 199–203

avoiding pitfalls of default variables, 200–201
Common Type System, 45–46
copying and equality comparison behavior, 177–181
copying variables, 46–48
implementing custom vs. generated behavior, 201–202
mechanics vs. semantics, 182–183
mutability, 181–182
overriding generated methods, 202–203

reference types
array elements, 42
by-reference parameters vs., 70–71
classes, 33
default initialization, 52–53
identity comparison, 47
inheritance, 34, 36
instance lifetime, 37



instance storage, 40
locks and semantics, 46–47, 180
nullable, 64–66
performance, 274–275
pointers vs., 74
records, 33
return type instance modification, 123, 125–126
value of, 73–74
value-like performance, 274–277
value types vs., xx, 31, 70–71, 123–126, 176–181, 212–213, 273–277

reference variables
aliasing and, 74–75, 88, 96, 107–110, 125, 178–180
boxing and unboxing, 44
by-reference parameters vs., 76–77
defensive copies, 131–132
equality comparisons, 145–148, 177
fields of value types, 107–110
instance storage, 42
non-nullable reference variables, 64–65
passing by reference, 77–78
reference storage, 37
scope, 37
value of, 39

referential transparency, 180
reflection, 49, 156, 257–258
ref locals, 95–96, 132–134. See also by-reference variables
ref parameter modifier, 76–78, 80, 82–88

defined, 70–71
passing by reference, 77
property value arguments for, 127–128
returning by reference, 94–97

ref readonly locals (local read-only reference variables), 96, 132–134
ref returns (reference return values), 92

keeping by-reference variables within scope, 97–101
performance vs. simplicity, 101–102
preventing modifications to data, 95–97
returning values by reference, 94–95

relational operators, 195
relational pattern, 195
RelativeLuminance method, user-defined conversions and, 246
Reminder class, by-reference fields and, 84
RemoveRed method, returning by-reference parameters by reference and, 100
Reset method, variables vs. values and, 126
return type instance modification, 123–128

instance methods and mutability, 126–127
properties as arguments for read-only parameters, 127–128
reference type properties, 125–126



rich domain model, 184
rounding, mitigating limitations of, 142–144
run-time type, 166, 220–221
rvalue, 124

S
sealed, 34, 212–213, 224–225, 231
seam, 230–231
Select method, 241–242, 273, 280–281, 283–284
self-documenting code, 6
semantics

copying, 46–47, 75, 177
equality, 166–167, 177
reference, 46–47, 176–177

separation of concerns, 9, 117
SequenceEqual method

comparing array elements, 148
effect of IEquatable interface, 262–267

services
characteristics of, 187–188
defined, 184

set accessor, 7, 32–34
mutable value types, 78, 89, 107–110
object initialization, 58–59, 91, 100–112
value type properties, 123–124

side effects and direct effects, 88–92
declarative code and performance, 91–92
mutation vs. creation, 89–91
reference semantics and, 178–180

simple assignment, 106–110
value copy behavior, 107–109

single responsibility, 28–29
slices (ranges), 235
sorting collections of values, 203–204
SpeedExtensions type, internal vs. external interface and, 197
Speed type

anemic type, 192
automatic vs. nonautomatic properties, 133
encapsulation, 192–199
passing and returning by value, 119–120
replacing built-in types, 5–10, 12–24, 27–28
variable vs. value, 129–130

stack, value types and, 39
static abstract interface members, 162
static creation methods, 22–23
Stopwatch class, 251–252
StringBuilder type, 125, 246



Capacity property, mutating property values and, 125
string class

concatenation, 209, 241
equality, 148–149, 177
interpolation, 52, 148
StringBuilder vs., 246
value of, 177

string interning, 149
structs

cyclic dependencies, 43
defining, 32–33
equality comparisons, 156–162
immutability, 32–33
inheritance, 34
tightly packed, 256
value semantics, 49

stubs (test doubles), 230
Subtract method, 223–224

derived method behavior, 223–224
subtyping, 222–232

avoiding implementation inheritance, 230–232
defined, 222
inheriting record types, 225–230
input and output types of virtual methods, 223–224
substitutability, 222–223
upholding contract, 224–225

switch expressions, 21, 194–195, 284–285
switch statement vs., 285

symbolic polymorphism, 240–241
symmetry

class factory methods, 23–24, 196
contract for equality, 217
encapsulation and cohesion, 196

SynchronizationLockException error, 47
System.Diagnostics namespace, 251
System types, 45

T
target-typed default feature, 63
target-typed new feature, 14, 55
Temperature type

pattern matching, 285
positional records, 200–202

ternary condition (?:) operator, 81, 151
test doubles (stubs; fakes; mock objects), 230
testing, 9, 15, 22, 218–221, 229, 245, 262
theta, 3



this parameter, 87–88, 120
TimeSpan type

arithmetic operations, 14–18
replacing built-in types, 6, 10, 12
unit conversions, 24, 27

Tolerance constant, setting for floating-point comparisons, 143
ToString method

boxing, 118
default reference field values, 56
implicit conversion vs., 246

TotalSeconds property of TimeSpan type
arithmetic operations, 14–15
Seconds property vs., 10
unit conversions, 27

ToTitleCase method, nullable reference types and, 65–66
TParser parameter, generic type constraints and, 234–237
tracing (instrumentation profiling), 258
transitivity

equality comparisons, 155, 217
ordering comparisons, 206

TranslucentColorParser class, overloading method groups with, 238
TranslucentColor type

composition, 231–232
generic type constraints, 236, 238
implementation inheritance, 213–214, 216, 218–229
user-defined conversions, 241–244

triangular number, 258–259
truth operators, 122
try…catch blocks, 80
TryXXX idiom, 79–82

selecting operations, 81–82
side effects and direct effects, 88–89

tuples
equality comparisons, 170–172
named, 102
tuple assignment, 32
tuple deconstruction, 29, 102–103

two-stage initialization, 110–113
typeof method

EqualityContract property, 226–227
GetType vs., 118

types, 1–30. See also reference types; value types
abstracting, 29, 36
adding clarity through, 4–9
benefits of understanding, xix, xxiii
clarity, adding through, 4–9
class vs., 222–223



deduction, of generic type parameters, 236–237
deduction, of var declarations, 106
determining need for new types, 15–18
effect on performance, 270–279
encoding units, 18–28
generic constraint, 117, 162–163, 233–234
implied by units, returning, 27–28
inference, 106
instances and storage, 39–45
naming, 2–4
new features in C3, xxiii
null values and default values, 60–67
object construction and initialization, 49–60
purpose and focus of book, xx–xxi
refactoring implementation, 9–18
semantics, 45–49
user defined, 32–37

type substitution, 220–221
breach of contract, 221
effects of, 220–221

U
ubiquitous language, 191–192, 288
unboxing, 44–45, 116, 163, 263
unconstrained generic type, 61–62, 162–163
uninitialized variables, 39
units, 18–28

choosing most natural usage, 25–26
itemizing with enumeration types, 19–22
making explicit, 24–25
returning types implied by, 27–28
static creation methods, 22–23
symmetry in design, 23–24

Units enumeration type, 19–21
unit testing, 251. See also testing
user-defined types. See classes; records; record structs; structs

V
validation, 8–9, 184, 193–194
value-based comparisons, 48, 177, 180–181, 215–216

records, 166–168
reference equality vs., 156, 158, 162–163
strings, 148–149, 177

value-like behavior and characteristics
classes and records, 35
records, 48

value object role, 184, 186–187



value parameters, 71–73
by-reference parameters vs., 76
defined, 70, 118
passing and returning by value, 119–120
passing arguments, 70
replacing with in parameters, 269

values, 175–210
abstraction and vocabulary, 191–192
boxed, 44–45, 47, 79, 115–118, 158–163

by-reference vs., 79
optimizing equality, 263–265

characteristics of, 186–187
comparison for ordering, 203–207
default, 50, 56, 59, 62–64, 200–201
defined, 184
definite assignment, 39
embedded, 40–43
encapsulation and cohesion, 192–196
encapsulation and public interface, 196–199
equality, 47–48
extensionality vs. intentionality, 204
identity comparison, 47–48
object relationships, 183–191
passing and returning by, 119–120
perils of uniformity and consistency, 207–209
simplifying, 11–14
unit conversions and value comparisons, 20–21
validation of, 8–9
variables vs., 38–39

value semantics
benefits of understanding, xxiv
reference semantics vs., 176–183, 199–203

value tuples
equality comparisons, 170–172
tuple deconstruction, 102–103

ValueTuple type, 170, 172
ValueType class

Common Type System, 45–46, 211
copying and identity, 48–49, 177–8
default equality, 156–159, 163, 165, 253–260

value types
advantages of, xxiii–xxiv
arithmetic, 14–15
avoiding defensive copies, 135–136
construction, 52–53, 112–113
copying, 110–115
defensive copies, 129–130
embedded fields, 43



identity comparison, 47
inheritance, 36
initialization, 56–57
instance fields of, 98
instance lifetime, 36–37
instance storage, 39
nullable, 63–64
parameters and, 71–73
passing variables by reference, 78–79
polymorphism, 211–247
record structs, 34
reference types vs., xx, 31, 70–71, 123–126, 176–181, 212–213, 273–277
return type instance modification, 123–124
sealed, 35, 212–221
semantics, 45–48
size of instances, 91–92, 136, 270–274
structs, 33

variables, 37–39. See also array variables; by-reference variables; local
variables; parameters; reference variables

associated types, 38
avoiding pitfalls of default variables, 200–201
capturing, 84–85
copy-by-value semantics, 73–74
copying, 46–48
defined, 37
definite assignment, 39
embedded, 40–43
identifiers, 37
kinds of, 37–38
lifetime of, 36–37, 131–132
read-only, 134–136
values vs., 38–39, 82, 123–127

Velocity type
abstraction, 17, 28–29, 199
by-reference parameter limitations, 82
non-destructive mutation, 90–91
perils of mutable value types, 126–127
property methods, 120–123

virtual dispatch, 212, 228
virtual methods, 34, 36, 118
vocabulary, 191–192, 199
Volume type, implementation inheritance and, 228–230

W
Where method, 85, 281
whole numbers, 140–141
widening conversions, 244



with keyword, 60, 90–91, 114–115
WithPercentAdded method, 197–198
WriteLine method, 118

Y
yield statement, 85–86

Z
ZeroKelvin constant, using for validation, 285
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