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Preface

The book provides different avenues to study algorithms. It also brings new techniques
and methodologies to problem solving in computational Sciences, Engineering, Scientific
Computing and Medicine (imaging, radiation therapy) to mention a few.

A plethora of algorithms which are universally applicable is presented on a sound ana-
lytical way.

The chapters are written independently of each other, so they can be understood with-
out reading earlier Chapters. But some knowledge of Analysis, Linear Algebra and some
Computing experience is required.

The organization and content of the book cater to senior undergraduate, graduate stu-
dents, researchers, practitioners, professionals and academicians in the aforementioned dis-
ciplines. It can also be used as a reference book and includes numerous references and open
problems.

In order to avoid repetitions whenever the “®”, “@”, “y”, “y”, “8”, “h” symboles are
used as functions connected to the local or semi-local convergence analysis of iterative
algorithms, then it is assume to be continuous, nondecreasing and defined on a domain with
nonnegative valued and with range in the real number system. Moreover, they are related to
the operator appearing on the equation to be solved, its derivative or its divided difference
of order one as follows for x* denoting a simple solution of equation F(x) =0:

1F" (")~ E () = F' () || < ([l —x7])
for all x € Q,
IF () ~HF (x) = F'0) | < oo([lx =)

for all x,y € Qo C Q,
IF' ()~ F () || < o (fle =)

for all x € Qy,
1 —alx,x" F| < vo([lx—x7[)),

1+ blx,x"s FI| < v(lle =),

1+ cle,x® FlI < vi(fle—x7),
1 +dpe,x™ FlI < va(fle—x7),

1+ Llx, x5 < va ([l —x"[]),
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where a,b,c,d € R, L a linear operator, and x* can be also replaced by x, in the preceding
conditions involving the “y” functions, and x € Q or x € Q.

1F' (")~ zx Pl < o[l =7, flx—x*])),

for all x,z € Q,

1F" ()™ ([, F] = b x ™ D)< @(flz =7 flx =[],

IF" () ([, F] = s F) | < @i (flz =7, [l =),
IF' () ([, F] = s FDI < @2 (flz =[] e =", [y —71)),

or
1F" )™ [y F = Do v FDIE< @z =27y =, [l = fly = ),

for all x,y,z,v € Q,

1F' ()~ e, 2" || < 8(fle— 7)),

for all x € Qy,

1F" () (b Fl = F ()| < @3 ([l =[],

for all x € Q,
1" (x0) ™ .20 F1| < 8([lx = o),

for all x € Qy,

1F (x0) ™ (b, 2" F] = F' (x0)) | < Wo(llz— o, [lx —2oll),
for all x € Q,

1F" (o)™ (x5 F] = v, FI) || < i (llz = o]l [1x = o], |y —2oll),

1 (x0) ™" ([2,0: F] = v zs FI) | < wa(llz =], [l —xoll, [y = xo)),

for all x,y,z € Q.

Moreover, the “@* and the "y* functions are assumed to be symmentric in each variable.
Furthermore, we use the same notation to denote the “¢@* or the ”y* functions in case on
variable other than x* or x; is missing in the corresponding condition.



Chapter 1

Local Convergence for a Two-Step
Third Order Secant-Like Method
without Bilinear Operators

1. Introduction

We are concerned with the convergence of the two-step Secant-like method of order three
for solving the equation

F(x) = 0. (L.1)

Here, F : Q C By — B3 is a nonlinear operator, By and B; are Banach spaces and Q # 0
open set. We denote the solution of (1.1) by x*. The convergence of the following iterative
method was studied in [15],

Yn = Xn +A;lF(x11)
and
Xn+l = Yn *A;lF(yn)» (1.2)

where A, = A(x,) = [xn — Vo (%) X0 + Yo F (x); F], [, s F] : @ x Q — L(By,By) is a di-
vided difference of order one [1,2,3,4,5,6,7] and v, are given linear operators chosen to
force convergence.

Throughout the chapter U(xo,R) = {x € X : ||x —xo|| < R} and Ulxo,R] = {x € X :
lx—x0|| < R} for some R > 0.

2. Convergence
It is convenient to introduce parameters and nonnegative functions. Let 7 = [0, ), and o, B

be nonnegative parameters.
Suppose there exist functions:
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(i) @o:T x T — T continuous and nondecreasing such that equation ¢y (o, t) — 1 =0
has a smallest solution p € T —{0}. Set 71 = [0, p). Define function y; : T — T by

oo, Br) +29(2)
i) = 1—(po(oct,[3tl)

for some continuous and nondecreasing functions @ : 7y x Ty — T and @, : T — T.
(ii) Equation y(¢) — 1 = 0 has a smallest solution r € (0,p), where

Q(ou + 1 (1)1, Br) i (1)
1 — o (o, Br)

Yo(t) =

The parameter r is shown to be a convergence radius for method (1.2). Set 7> = [0, r).
It follows by these definitions that for each ¢t € T

OS(PO(at?Bt)<17 (1.3)
0<wyi(r)<1 (1.4)

and
0<wi(r)<1. (1.5)

The conditions (H) shall be used.
Suppose:

(H1) There exists a simple solution x* € Q of equation F(x) = 0, and parameters o >
0, B > 0 such that

(11 =y(x) [, " F] ||| < avand |7 —v(x) [, x" F[I[| < B

(H2) [|F'(x") " (A(x = y(x) F (x),x +¥(x) F(x)) = F' (") < @o(|lx —y(x) F(x) — x|, [+
Y(x)F(x) —x|)).
Set Q, =U(x*,p) NQ.

(H3) [|F'(x") " (A(x = Y(x)F (x),x +¥(x) F (x)) = [x, x5 FD)|| < o([[v(x0) [, [l +v(x)F (x) —

DI IF (x0) ™ e, x5 FJ || < @1 (Jlx—x*|) for each x € Q;
and

(H4) Ulxo,R] C Q, where R = max{r,or, Br,y(r)r}.

The local convergence analysis of method (1.2) follows.

Theorem 1. Suppose conditions (H) hold. Then, iteration {x,} generated by method (1.2)
converges to x* provided that xy € U (xq,r) — {x*}.
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Proof. By hypothesis xo € U(xo,r) — {x"}. Then, by (H1), (H2), the definition of r and
(1.3), we obtain in turn

IF' (")~ (Ao — F'(x")) IF" (")~ ([0 = YoF (x0),.%0 +YoF (x0): F] = F'(x") )|

< @o([[(1 —vo[x0,x™; F)(xo — ")l
[ (1 +0[x0,x"; F]) (x0 —x)||)
< @o(af[xo —x"[, Bllxo —x"[|)
< @o(arnPr)<1.
So, Ay € L(B,,B)) and
1

AJF (x| < (1.6)
1o o < T el = 1Bl —= )

followed by the Banach Lemma on linear operators with inverses. Moreover, iterates yg and
x1 are defined by method (1.2) (first step). We can also write

yo—x* = xp—x* anlF(xo) +2A61F(x0)
Ay (Ao — [x0, "3 F]) (0 —x*) + 24, ' F (x0). 1.7

It follows by (H3), (1.6) and (1.7) that

(@(llxo —YoF (x0) —x" [, [lx0 +Y0F (x0) —x"[|) 421 ([[x0 —x"[))[lx0 — " |

Po=ll = 1= o (atf|xo —x*[], Bl|xo —x*[])
< (@(dflxo — x|, Bllxo —xI[) +2@1([lxo —x"[[))[}xo —x"]]
Bl 1= @o(atf|xo —x*[], Bllxo —x*[])
< Wi (o =) flxo — 7. (1.8)

Similarly, by the second substep of method (1.2), we can write in turn that
x—x" = yo—x"—A;'F(y)
= Ay (Ao— Do, x"; F]) (yo —x¥). (1.9)
Hence, by (1.5)- (1.9) and (H3), we get

@(llxo —YoF (x0) — yo —x" +x"|[, [[x0 + Yo (x0) —x|[) lyo — x"|
1= @o(atf|xo —x*[], Bllxo —x*[])

(@(orfloxo — x| + W ([|xo —x*[[) llx0 — [, Bllxo — x*[1)) llyo — "
1= o (atf|xo —x*[], Bllxo —x*[])

Wa([lxo = x7[)floxo — || < oo =¥ < 1

[l —x| <

A

sox; € U(x",r). If we simply replace xo, Yo, Y0, X1 BY X, Vs Yims Xm—+1, We get

|ms1 — x| < c|lxm —xF|| <1, (1.10)
4k 4k Y I 4k
where ¢ — (@0 =1t wi o —x Dl =+ Blro—x D)wilo =) _ 1
1 — o (atf|xo — x|, Bl|xo —x*])
Hence, we conclude by (1.10) that lin,, —cox,, = x*. O
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Concerning the uniqueness of the solution, we provide such information. But the fol-
lowing condition is used.

(H6)
IFGe) M (s F = F DI < @a(ly =71 (1.11)

forally € Q3 = U(x*,1) C Q for some T > 0.
In particular,
Proposition 1. Suppose
(i) The point x* is a simple solution of equation F (x) = 0 in Q3.
(ii) Condition (1.11) holds.

(iii) There exists Ty > T such that
¢ (1) < 1. (1.12)

Set Q4 = U[x",11] N Q. Then, the point x* is the only solution of equation F(x) = 0 in the
set 4.

Proof. Let g € Q4 with F(q) = 0. Then, using (1.11) and (1.12), we get for M = [x",¢; F] :
IF' ()~ (M = F' () < @2(llg —x*]) < @2(11) < 1,
thus, x* = g by invertibility of M and M (x* — q) = F(x*) — F(q) = 0. O

Conditions (H) have not been used. If we suppose they hold, then we can set T =r. These
ideas can also be used on methods studied in [1,2,3,4,5,6,7,8,9,10,11,12,13,14, 15].
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Chapter 2

Semi-Local Convergence for a
Derivative Free Method with Error

Controlled Controlled Iterates for
Solving Nonlinear Equations

1. Introduction

We study the convergence of a Secant-like method of order three for solving the equation
F(x)=0. (2.1)

Here, F : Q C X — Y is a nonlinear operator, X and Y are Banach spaces and Q # 0
open set. We denote the solution of (2.1) by x*. The convergence of the following iterative
method was studied in [15],

Yn = Xn +B;lF(x11)
and
Xn+l = Yn *B;lF(yn)» (2.2)

where B, = B(x,) = [x, — cnF (x), Xn + coF (%) F], [, 3 F] : Q@ x Q — L(X,Y) is a divided
difference of order one [1,2,3,4,5,6,7] and ¢, are given linear operators chosen to force
convergence. Relevant work can be found in [6,7,8,9,10,11,12,13,14,15].
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2. Convergence of Majorizing Sequences

Real sequences are developed to majorize the method (2.2). Let o, B,7,A > 0, and 1,8 >0
be given parameters. Define sequences {7, },{s,} by 7o = 0,50 =7,

Q(Sn - tn)z + ZA(Sn - tn)

n+1 Si’l + 1 *LO(G,‘F B)tn +2’Y§) ( )
and
_ L(tn+l —ty sy —ty+ Z'YA(Sn - tn)) (tn+l - Sn)
Sp+1 =In+1+ >
1 —Lo((0+B)tny1 +273)
where g = (1+2yA)L.
Next, the result of the convergence of these sequences is provided.
Lemma 1. Suppose
2Loyd < 1 (2.4)
and
1 —2LyY0
fy <t =—7— 2.5
n a+B ( )
foreachn=0,1,2,...
Then, the following hold
0<t, <8, <tyt1 < . (2.6)
and
= limy_ely, <t**. 2.7

Proof. By (2.3)-(2.5), estimates (2.6) and (2.7) hold, for * being the least upper(unique) of
sequence t,. |

The next result provides stronger convergence criteria but which are easier to check than
(2.4) and (2.5).
Let us develop auxiliary functions on the interval [0, 1) and parameters:

g1(t) = (g+Lo(a+P))t—q
and
g2(t) = Lt* + Lat — Lt — La+ Lo(0u 4 B)t*,a = 2(1 4+YA).

Notice that

q

RETATES R

P1
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is the only solution of equation g;(#) = 0. By the definition of g», we get g2(0) = —La, and
g2(1) = 2Ly(o+ B). Denote by p, the least solution of an equation g(#) = 0 assured to
exist by the intermediate value theorem. Moreover, define the function fj on [0, 1) by

filt) =12 = (1 4+N)t+A+Lo(o+B)m.
Suppose
4Lo(atPpm < (1-2)? (2.8)
and
2(A+Loyd) < 1, (2.9)
where A = 2(A + LyYd).

Then, we get £1(0) = A+ Lo (a4 P)n and f(1) = (1 —A)? —4Ly(a+ B)n < 0. Denote by
41 the smallest solution in [0,1). We also have

fi(r) <0 (2.10)
foreach t € [uy,1).
Define the function f, on [0,1) by
ht) = MJJLO\(SI. 2.11)
Set
~ Lo(a+B)n
1 —2LyY0
and suppose
2Lyy0+ Lo(oe+B)n < 1. (2.12)
Then, we get u € [0,1), and
H() <0 (2.13)
foreach z € [0, ).
Set
gn+2A L(ty +n+2YAn)(t; —n)
a) = a) =

1Ly’ n(1—Lo((o+B)t; +2v9)’

¢ = max{ay,az,u1 }, po = min{p1,p2}, and p = max{p1,p2}.
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Lemma 2. Under conditions (2.8),(2.9),(2.12), further suppose.

c<po<p<pu.

Then, the conclusion of Lemma 1 hold for sequence {t,} for t** = IL
-pP

Moreover, the following estimates hold

0<s,—1, < 8(.5‘,171 *tnfl) < Snn?

0< (tn+l *Sn) < 8(Snfl *tnfl) < 8111,]
and
1— Sn+l
tn S 1 - 8 T]

Proof. Mathematical induction is used to show

0< q(sk—1tx) +2A <

1= Lo((a+PB)ik +278)
and
Li(t —1 —1 2VA(sp —t 1, —
o< [(fr1 — 1) 4 (s — 1) + 2¥A (s — 1) (1 — k) < plse—10).

1= Lo((ot+B)tis1+279)
These estimates hold true for k = 0 by (2.14), so

to <so <11,
0<s1—11 < p(so—1to) = pm,
0<to—s0<pMm
and
lfp2
1-p n:

to<M+mp =

Suppose (2.18) and (2.19) hold for all integers smaller or equal to k — 1. Suppose

0<sp—tp <&,
0<tpyr—sp <!
and
| — ph+l
1—p

t < n.

Then, evidently (2.18) is true if

gp'n+2A <»p
1 —Lo((o+B)t +2v5 —

(2.14)

(2.15)
(2.16)

2.17)

(2.18)

(2.19)
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or

qp'n +2A — p+2LyYd+ Lo (ot + B) n<o0. (2.20)

I-p
Estimate (2.20) motivates us to define on the interval [0, 1) recurrent polynomial f,gl) (1) by
V() =g+ Lo(a+B)(1+1+ ... +"M+A—t. 2.21)
Then, a relationship can be found between two consecutive functions as follows:
RIOEEAIORYORW A0
=gt T+ Lo(a+B) (1414 ...+ " T+ A —1
+ (0 = g™ N = Lo(o+B) (141 442N — At 1
= 5" () + g0
In particular, by the definition of pi, estimate (2.20) holds if
M@ <0 at t=pr. (2.22)
Define function
FO(0) = limy o fi(2). (2.23)
Then, by (2.21) and (2.23), we obtain

Hence, (2.22) holds if
fi,l)(t) <0 or fl(l)(t) <0 at t=py,

which is true by (2.10) and (2.14).
Similarly, estimate (2.19) certainly holds if

L[p(sn - tn) + Z(Sn - tn) + Z'YA(Sn - tn)]p(sn - tn)

< plsn—1tn
1— Lo((0+ B)tyrs +270 < plsn=tn)
or
1— n+2
Lp" 'm+Lap™ + Lo (a+B) " +2Lp¥8—1<0
or
2 <0 ar 1= py, (2.24)

where

200 = L+ Lat™ + Lo(a+B) (141 +2 4 .+ +2Ly8 — 1. (2.25)
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This time, we have
2 2 2 2
Fih 0 =130 =520+ £70)

= A0+ L+ Lar™ = Lo(a+B) (141 + ...+
+2LoY8 — 1 —Li" "' — Lat"n — Lo(a+B) (1 +1 4.+ ) —2Lyd + 1

= £2(1) + g2 ()™
In particular, we have
K0 = £70) at 1= pa.

Define the function f{?)(¢) on the interval [0,1) by
FO) = limy i (1) (2.26)

Then, by (2.24) holds, since fo(f) (t) <0 by choice of u. The induction for (2.18) and (2.19)
is completed. Hence, estimates (2.15)-(2.17) hold. The rest is given in Lemma 2. ]

3. Convergence of Method (2.2)

The conditions (H) are used in the convergence analysis. Suppose:

1
(Hy) There exist xo € D, > 0,00 >0, >0,6>0,y>0,Ly >0,A € (0,5) such that

F(x)™ By €5(B,B),

1By ' F (x0) || <M, [|F (x0) || < & 11 —v(x) [x, %0 F]|| < o,
11 +v(x) [x,20: F] < B, Y[ < v, [|A(x) || <A

and

I (x0) ™! (I =YX F (), x+ Y F (0):F] — F (x0))|
< Lo(or— 1) F () o]l + [+ ¥ F (x) = xo ))-

Suppose 2LyYd < 1. Define

1 —2y8Ly
. L= 2¥0ko

aip )P

(H,) There exist L > 0 such that
1" (x0) " (2, w3 F] = A()) | < L(||z = x+¥()F (x) ||+ [lw = x = ¥(x) F (x)])

for all x,z,w € D;.

(H3) Hypothesis of Lemma 1 or Lemma 2 hold
and
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(Hy) U(xp,p) € D, where p = max{t*, o™ + v, pr* +v8}.
The main semi-local result for method (2.2) follows using conditions (H) and the preceding
terminology.

Theorem 2. Suppose conditions (H) hold. Then, iteration {x,} generated by method (2.2) is
well defined in U [x¢,*], remains in Ulxo,#*] for each n =0, 1,3, ... and converges to some
x* € Ulxo,t"] solving equation F(x) = 0. Moreover, the following estimates hold

yn = Xnll < 80— tn, (2.27)
%41 = Ynll < tw1—sn (2.28)

and
" — x| <1° 1. (2.29)

Proof. Tt follows by (H;) and (2.4) that
1Yo = xol| <M = 50 —10,

s0 (2.27) holds for n = 0 and yg € Ulx,t"]. Let v € Ulxo,t*]. Then, by (H;) and (H>,) we
get in turn

IF (x0) "By — F (x0) || < IF (x0) ™" ([0 — YaF (Xn) s 0+ Ya F ()1 F] — F (x0))

< Lo([J2n —YaF (%) — Xol| + || +YuF (Xa) — xol])

< Lo(tf|x, —xo || + Y[ F (x0)| + Bllxn — xol| +VIIF (x0) )

< Lo((ot+PB)lxn — xol +2v3)

< Lo(ot+B)t, +278) < 1. (2.30)

Thus, B, ' € §(X,X)
/ 1
1B, 'F (x0)]| < 2.31)

1 —Lo((oe+B)t, +2v0)

follows by a lemma due to Banach on linear operators with inverses [12],
where we also used

(|7 — X0 — Yu (F (Xa) — F (x0)) —YuF (x0) ||
<N = Y[, 05 F) (X0 — X0) —Yu I (x0) |
< or* 49,
and
(|0 — X0 + Y (F (Xa) — F (x0) +YaF (x0)[| < Pt* +78.

Therefore, the iterate x, + Y, F (x,), X, — YuF (x4) € Ulxo,p]. Then, we get by method
(2.2),2.31) and (H3) that

1 = Yull < 1B, F (o) [1F (x0) ™' F (y) |
< L(Sn —1Iy JFZ'YA(Sn *tn))(sn *tn) JFZA(Sn *tn)
- 1= Lo((ov+B)tn +2v0)

=1Int1— Sn,
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and

||xn+l *xOH < ||xn+l *ynH + ||yn *xOH
< thel —Sp+Sp— 1o = Int1,

where we also used

F(yn) =F(yn) = F (xn) + F (x3)
= F(yn) = F(xn) + Bn(yn — Xn)
= (s X3 F] = Bu) (0 — Xn) + 2By (Y0 — Xn), (2.32)
[y = X0 — Y () [| < 80—t + YA (S0 — 1)

and
||xn —Xp — YnF (xn) || < YA(S11 - tn)-

By method (2.2) and the identity

F(xn+l) = F(xn+l) *F(yn)JFF(yn)
= ([xn+17yn;F] *Bn)(xn+l *Yn)»

we obtain
||F,(x0)7lF(xn+l || < L(tn+l —ty sy —t+ ZYA(Sll - tn)) (233)

and

yn1 =Xt || < 1B F (o) [[I1F (x0) ™ F (1) |
< L(tyy1 —th+5n —tyn +2YA(sp — 1)) (tns1 — Sn)
- 1 —Lo((ot+B)tyr1+2Y0)
=Sp+1 —lptl- (2.34)

The induction for (2.27) and (2.28) is completed. Sequence {¢,} is fundamental since it
converges. These for a sequence {x,} is also fundamental in Banach space and as such it
converges to some x* € Ulxp,7"]. By letting n — oo in (2.33), we deduce that F (x*) = 0.
Then, for j > 0, we get from the

X j = x| < tngj =t (2.35)
Therefore, (2.29) follows by letting j — oo in (2.35) ]

Next, is the uniqueness of the solution result follows, where conditions (H) are not all
necessarily needed.

Proposition 2. Suppose:

(i) There exist a simple solution x* € U(xo,Ry) C D for equation F(x) = 0 for some
Ry > 0.
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(ii) There exist R > R such that

Lo(Ro+R) < 2. (2.36)
Set D, = Ulxo,R|ND.
Then, the element x* is the only solution of equation F(x) = 0 in the set D;.

Proof. Letv* € Dy with F(v*) = 0. Define T = [v*,x*]. Then, in view of (2.2) and (2.36)
we have in turn that

1F (x0) (T = F'(x0)) | < Lo([|v" = 0| +[|x* —xo]|)
<Ly(Ro+R) < 1.

Hence, v* = x* is implied by the invertibility of T and the identity
T(W'—x")=F(W)—F(x")=0 O

Remark. (1) Under conditions (H), we can set p = Ry.

1-2
7&)78 under Lemma 1 or N
+B 1-p

form can replace t* in Theorem 2.

(i) The parameter under Lemma 2 given in closed






Bibliography

[1] Argyros, LK., Computational theory of iterative methods. Series: Studies in Compu-
tational Mathematics, 15, Editors: C.K. Chui and L. Wuytack, Elsevier Publ. Co. New
York, U.S.A, 2007.

[2] Argyros, LK. Convergence and Applications of Newton-type Iterations, Springer Ver-
lag, Berlin, Germany, (2008).

[3] Argyros, LK., The theory and applications of iteration methods, 2nd Edition, Engi-
neering Series, CRC Press, Taylor and Francis Group, 2022.

[4] Argyros, LK., A Newton-Kantorvich theorem for equations involving m Frchet dif-
ferentiable operators and applications in radiative transfer, J. Comput. Appl. Math.,
131(1-2), (2001), 149-159.

[5] Argyros, 1. K., Unified Convergence Criteria for Iterative Banach Space Valued
Methods with Applications, Mathematics (MDPI) 2021, 9(16), 1942; https://doi.
org/10.3390/math9161942.

[6] Gutiérrez, J. M., A new semilocal convergence theorem for Newton’s method, J. Com-
put. Appl. Math., 79, (1997), 131-145.

[71 Hernandez, M. A., Romero,N., On a characterization of some Newton-like methods
of R-order at least three, J. Comput. Appl. Math., 183(1), (2005) 53-66.

[8] Herndndez, M. A., Romero,N., General Study of Iterative Processes of R-Order at
Least Three under Weak Convergence Conditions, J. Optim. Th. Appl., 133(2), (2007),
163-177.

[9] Hernédndez, M. A., Romero, N., A uniparametric family of iterative processes for
solving nondifferentiable equations, J. Math. Anal. Appl., 275(2), (2002), 821-834.

[10] Herndndez, M. A., Romero, N., Semilocal convergence of the secant method un-
der mild convergence conditions of differentiability, Comput, Math. Appli., 44(3-4),
(2002), 277-285.

[11] Ezquerro, J. A., Herndndez, M. A., Halley’s method for operators with unbounded
second derivative, Appl. Numer. Math., 57(3), (2007), 354-360.

[12] Kantorovich, L.V., Akilov, G.P., Functional Analysis, Pergamon Press, Oxford,
(1982).



18 C.I. Argyros, S. Regmi, I.K. Argyros and S. George

[13] Kou, J., Li, Y., Wang, X., A modification of Newton method with third-order conver-
gence, Appl. Math. Comput., 182, (2007), 1106-1111.

[14] Kou, J., Li, Y., A family of modified super-Halley methods with fourth-order conver-
gence, Appl. Math. Comput., 189, (2007), 366-370.

[15] Kou, J., Wang, X., Some variant of Chebyshev-Halley methods for solving nonlinear
equations, Appl. Math. Comput., 189, (2007), 1839-1843.



Chapter 3

On the Semi-Local Convergence of a
Sharma-Gupta Fifth Order Method
for Solving Nonlinear Equations

The semi-local convergence for a Sharma-Gupta method (not given before) of order five
is studied using assumptions only on the first derivative of the operator involved. The
convergence of this method was shown by assuming that the sixth order derivative of the
operator not on the method exists and hence it is limiting its applicability. Moreover, no
computational error bounds or uniqueness of the solution are given. We address all these
problems using only the first derivative that appears on the method. Hence, we extend
the applicability of the method. Our techniques can be used to obtain the convergence of
other similar higher-order methods using assumptions on the first derivative of the operator
involved.

1. Introduction

Let F : D C E; — E; be a nonlinear operator acting between Banach spaces E;| and E».
Consider the problem of solving the nonlinear equation

F(x) = 0. 3.1)

Iterative methods are used to approximate a solution x* of the equation (3.1). The following
iterative method was studied in [26],

Yn = X *'YFI(xn)ilF(xn)y
in = Xn *Fl(yn)ilF(xn) (3.2)
and
Xn+l = Zn— (ZFI(yn)il *Fl(xn)il)F(Zn)»

1
where Yy € R. If y= =, (3.2) reduces to the method in [26]. It was shown to be of order five

using hypotheses on the sixth derivative.
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In this study, we study the convergence of method (3.2) using assumptions only on the
first derivative of F, unlike earlier studies [26] where the convergence analysis required
assumptions on the derivatives of F' up to the order six. These methods can be used on
other methods and relevant topics along the same lines [1,2,3,4,5,6,7,8,9,10,11,12,13,
14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29].

1
For example: Let X =Y =R, D = [—5,%] Define f on D by

[ Plog?+2—t* ift#0
f(t)_{ 0 if t =0.

Then, we have f(1) =0,
f" (1) = 6logt® +60r* — 241 +22.

Obviously, f”(t) is not bounded by D. So, the convergence of the method (3.2) is not
guaranteed by the analysis in [26].

Throughout the article U (xo,R) = {x € X : ||x —xo|| <R} and U[xo,R] ={x € X : ||x—
xo|| < R} for some R > 0.

The chapter contains local convergence analysis in Section 2, and the numerical exam-
ples are given in Section 3.

2. Convergence
Let Loy, L, L; be positive parameters and 1 > 0. Define sequence {z,} by

Ip = O»SOZWM»

1 L(s,—t
u, = S;1+m(|71|+1(n7LoS’:,))(Snfn)7 (33)

I —1

thy1 = un‘i’z(un*fn)z‘i’lll (unisn)+ ‘YT‘LI (Snitn)

and
) _ N |fY| |: LL? (Sn *tn)
1 = 1
n+ nt 1 *Lotn+l (1 - (Lotn JFL(SH - tn)))z

LL? (un —ty+ %(tn+l - un))
(1 —Lot, JFL(Sn - tn))

(tn+l - un) .

Next, sufficient convergence criteria are given for sequence {¢,}.

Lemma 3. Suppose that foreachn=0,1,2,...

Loty < 1,Los, < 1 and Loty JFL(Sn *tn) <1 (3.4)

1
Then, sequence {f,} is non-decreasing, bounded from above by Lo and converges to its

1
L

unique least upper bound t* € [0,
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1
Proof. Tt follows by the definition of sequence {#,} that 0 <1, <s, < u, <t,11 < E’ SO

1
: 4%
nhmootn =t"e[0,—]. O

The conditions (H) are used in the semi-local convergence of method (3.2). Suppose:

(h1) Ixp € D,m > 0,8 > 0 such that F'(xo) "' € L(Y,X), ||F'(x0) 'F(xo)|| <m and
IF" (x0) ™| < 8.

(h2) 3Ly >0 suchthat Vx€ D

1F" (x0) =" (F' (x) = F' (x0)) || < Lollx —x .

1
Set D1 =DNU(xp,—).
1 (xo Lo)
(h3) 4L > 0,L; > 0 such that for all x,y € D,
1F" (x0) ™! (F'(y) = F' (x)[| < L|ly — ]|

and

IF (ol < 5

(h4) Conditions of Lemma 3 hold
and

(h5) Ulxo,t*] C D.

Next, the semi-local convergence of method (3.2) is presented using conditions (H).

Theorem 3. Suppose conditions (H) hold. Then, sequence {x,} produced by method (3.2)
is well defined in U[x, "], remains in U|[xo,"] and converges to a solutionx™ € U [xo,t"] of
equation F(x) = 0. Moreover, the following estimates hold

V0 — x| < 85—ty (3.5)
20— Yall <ty — sn (3.6)

and
[xn+1 = znll < tnr1 — tn. 3.7)

Proof. Let a € U|xo,t"]. Then, by (h2)

IF" (x0) ™' (F'(a) = F'(x0))|| < Lolla —xo | < Lot* < 1. (3.8)
In view of estimate (3.8) and the Banach lemma on linear invertible operators [15]
F'(a)"' € L(Y,X) and

1

F'(a)”'F' < —.
P (@) F )] < g

(3.9
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Iterate y is well defined by the first substep of method (3.2) and
o 0]l = I (x0) " F(xo)|| < [¥In = so—t0 <1

Hence, the iterate yp € U [xo,#*] and (3.5) holds for n = 0. We can write in turn by the second
substep of method (3.2) for n = 0 (since F’(yy) ! exists by (3.9) for a = y)

20 = yo+YF (x0) " F(x0) = F'(y0) " F(x0)
= Yo+ (y—1)F'(x0)"'F(x0)
+F (x0) " (F' (o) — ' (x0) ) F' (y0) ' F (x0)- (3.10)

It follows by (3.3), (h3), (3.9) and (3.10) that

o=l < {1 o=l +1£G0) ' (o)
17/ c0)” (/50 = F o) I o)™ )|
< % ||y07XOH+1*Lo||y0*XO|| ||yo|y|JCo||
< |_§(|<|71|+L1(S07L02))> (50— 10) = o — S0, (3.11)

and
llz0 — x0l| < [lzo —yoll + [lyo — Xol| < uo—s0+ 50 —10 = up <t*,

so (3.6) holds and zy € Ulxo,t"]. Iterate x; is well defined by the third substep of method
(3.2) for n =0, since F'(xo) " and F'(yy) ' exist. We can write

F(z) = F(ZO)F(XO)+F(XO)=F(ZO)F(XO)%F'(xo)(mxo)
= F(z0) —F(x0) — F'(x0)(z0 —x0) + F'(x0) (20 — X0)

—F'(x0) (Yo — x0) + F"(x0) (30 — ) — %F'(XO)(YOXO)

= /OI(FI(XOJFG(ZOXO))dGF'(xo)(szo)

+(1 - %)Fl(xo)(mxo)- (3.12)

In view of (3.9) (for a = xq, yo), (h3), (3.11) and (3.12), we get

_ L -1
1P PGl < Sl =l Lal ol + Lo ol

L
< E(uo —10)? + Ly (o — o)

—1
JF‘YT‘Ll(Soto):Vo. (3.13)

Then, we can write

x1—20 = —(F'(yo) ™' = F'(x0) ") F (z0) — F'(y0) "' F (z0), (3.14)
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)
L(S()*l‘()) 1
x1—xo|| < + Vo = t1 — U,
H H (I*Loto)(lfL()So) 1—Loyso
and
(|1 —xo| llx1 — zol| + [1z0 — Yol + [|lyo —xo |

IN A

1 —ug+ug —so+s0 —to =11 <t
Therefore, the iterate x; € U|[xo,#"] and (3.7) holds for n = 0. We can write
F(x;) = F(x1)—F(z0)+F(z0)
= /()I(F’(zo+e(x1 —X0))d0 —By) (x1 —xo), (3.15)
where By ' = (2F(yo) "' = F'(x0) ', s0 By = F'(x0) (2F' (x0) — F' (yo) ~'F'(0). Notice that

IF" (x0) ™" (2F" (x0) — F' (y0) — F"(x0))[| < Lo([lx0 — xo]| -+ [lyo —xol|) < L(so —t0) < 1.

It follows that,

1
2F —F' o < — .
I2F (50) = F' )™ F )l < =
1
Set / F'(z0+8(x; —x0))d6 = by. Then, we get
0
bo—Bo = bo—F'(x0)By'F'(yo) —boBy 'F'(y0) +boBy ' F'(y0)

= bo(I—By'F'(y0)) + (bo—F'(x0))By ' F' (y0)
= boBy ' (Bo—F'(y0)) + (bo— F'(x0))By ' F' (y0)
= boBy ' (F'(vo) — F'(x0))By ' F' (y0)
+(bo— F'(x0))By ' F' (o). (3.16)
It follows by (h3) that

LLS (so—to) LL} (ug—to+ 5(t — 1 —ug))
(1— (Lot +L(su —t)))2 11— (Loto+L(so—10))

IF'(x0) "' F(x1)]] < (3.17)

leading to
Iyt =xill < WIF Ge) ™ F (o) I (x0) ™ F (1) |

| |< LL?(S()*Z‘())
M 0= (Lotn + Lsy — 1))
LL3 (ug—to+ 3(t—1—u))
1 — (Loto+L(so — o)) (11 = uo)
= §1—1, (3.18)

IN

and

[ly1 = x| + [lx1 = 2ol + [[z0 — yol[ + [[yo — xo|
S| —t 1t —ug+uy — o+ 5o —1to =81 <t

[Iy1 = ol

IAIA
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Thus, the iterate y; € Ulxp,7"] and (3.5) holds.  Simply replace xo,yo,z0,X1 by
Xm-Ym,ZmsXm+1 in the preceding calculations to terminate the induction for items (3.5)-(3.7).
Hence, sequences {x,,},{ym},{zn} are fundamental in Banach space X and as such they
converge to some x* € Ulxo,#*]. Then, by the estimate (see (3.13)

_ L -1
|1 F'(x0) ' F(z)| < E(um — 1)+ Ly (thyy — 5p) + ‘ YT ‘ Li(sm—1tm) (3.19)
and the continuity of F we get F(x*) = 0 provided that m — oo. O

The uniqueness of the solution results under conditions (H) is found in earlier Chapters.
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Chapter 4

On the Semi-Local Convergence of a
Seventh Order Method for Nonlinear
Equations Convergence for a Seventh
Order Method for Equations

1. Introduction

The local convergence for a Xiao-Yin method of order seven is studied using assumptions
only on the first derivative of the operator involved. The convergence of this method was
shown by assuming that the eighth order derivative of the operator not on the method ex-
ists and hence it is limiting its applicability. Moreover, no computational error bounds or
uniqueness of the solution are given. We address all these problems using only the first
derivative that appears on the method. Hence, we extend the applicability of the method.
Our techniques can be used to obtain the convergence of other similar higher-order meth-
ods using assumptions only on the first derivative of the operator involved. The semi-local
convergence not given in [29] is also included.

Let F : Q C B — Bj be a nonlinear operator acting between Banach spaces B and B .
Consider the problem of solving the nonlinear equation

F(x)=0. (4.1)

Iterative methods are used to approximate a solution x™ of the equation (4.1). Define itera-
tive method by,

Vo = Xo—OF'(x,) 'F(x,),
in = xn*F’()’n)ilF(xn)»
Wn = Zn— (ZFI()’n)il *Fl(xn)il)F(Zn)
and
Xn+l = Wnp— (ZFI()’n)il *Fl(xn)il)F(Wn)-

1
SeR,ifd= 3 then, the method reduces to the one in [26].
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We develop the semi-local convergence of method (4.2) using assumptions only on the
first derivative of F, unlike earlier studies [26] where the convergence analysis required
assumptions on the derivatives of F up to the order eight. This technique can be used on
other methods and relevant topics along the same lines [1,2,3,4,5,6,7,8,9,10,11,12,13,
14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29].

1
For example: Let X =Y =R, D = [—5,%] Define f on D by
() = Plogt* +1 —t* ift#0
N 0 ift=0.
Then, we have f(1) =0,
f" (1) = 6logt® +60r* — 241 +22.

Obviously, f”(¢) is not bounded by D. So, the convergence of the method (4.2) is not
guaranteed by the analysis in [26].

Throughout this Chapter U (xo,R) = {x € X : ||x —xo|| < R} and U[xo,R] = {x € X :
lx—x0|| < R} for some R > 0.

2. Semi-Local Convergence

Let Ly, L,L; and M > 0 be given parameters. Define sequence {#,} by 7o = 0 ,s0 = |r|n,

1 L(s,—t
I/tn:Sn+m(|'Y1|+1(n7L0S’:1))(Snl'n), (42)
1 L(s,—1ty)
= 1
Pn = Un+ 1 *L()Sn( + 1—Los, )'Ym
L —1
Vn = E(un - tn)z +L (un - Sn) + |YT |Ll (Sn - tn)»
L(Sn - tn) _

1, = 1 —t
w1l =Pnt+ 1 *L()Sn( + 1—Los, )Vn)(pn n)»

5= LLlé(Sn*tn) LL13(un*tn+ %(pn*un))

" (1 - (LOtn JFL(Sn - tn)))z 1— (LOtn +L (Sn - tn)) '
v

Spt+1 =Ing1+ ﬁn)(tn+l *pn)

1— LOtn+l

and

= (1 - (LOtn JFL(Sn - tn)))z 1- (LOtn +L (Sn - tn))

Convergence criteria for sequences {#,}, {s,},{u,} are provided in the auxiliary result that
follows.

Lemma 4. Suppose that for each n = 0,1,2,...,Lot, < 1,Lps, < 1 and Lot, + L(s, — t,) <

= LLlé(Sn - tn) LL13(pn — i+ %(tn+l *pn))

1,(4.2). Then, sequence {t,} is non-decreasing, bounded from above by Lo and converges

1
to its unique least upper bound ¢* € [0, —].

Ly
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Proof. Tt follows by the definition of sequence {#,} and (4.2) that

1
Ogtngsngungpngtn+l < —,
Ly
“4.3)

SO

) 1
limy oty = 1" € [0, E].

O
The conditions (H) are used in the semi-local convergence of method (4.2). Suppose:

(h1) Ixp € D,m > 0,8 > 0 such that F'(xo)~" € L(Y,X), ||F'(x0) 'F(xo)|| <m and
IF' (x0) 7' < 8.

(h2) 3Ly >0 suchthat Vx€ D

1F" (x0) =" (F' (x) = F' (x0)) || < Lollx —xI.

1
Set D1 =DNU(xp,—).
1 (xo Lo)
(h3) 4L > 0,L; > 0 such that for all x,y € D,
IF' (x0) ' (F'(y) = F' (x) || < L[y — x|
and

Il < 5

(h4) Conditions of Lemma 4 hold
and

(h5) Ulxo,t*] C D.

Next, the semi-local convergence of method (4.2) is presented using conditions (H).

Theorem 4. Suppose conditions (H) hold. Then, sequence {x,} produced by method (4.2)
is well defined in U [xp, "], remains in U|[x,?"] and converges to a solution x* € U [xg, "] of
equation F(x) = 0. Moreover, the following estimates hold

Hyn*an S Sn*tnv (4-4)
120 =Yl < tty —Sn, (4.5)
Wi —zall < pn— tta (4.6)

and
||xn+l *ZnH Sty — Up. 4.7)
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Proof. Let a € U|xy,t"]. Then, by (h2)

1F' ()™ (F" (@) = F' (x6m)) | < Lolla — x| < Lot™ < 1. 4.8)
In view of estimate (4.14) and the Banach lemma on linear invertible operators [15]

F'(a)"" € L(Y,X) and

1

/ —1 -/
|F'(a) F(xm)||§m-

4.9)

Iterate y,, is well defined by the first substep of method (4.2) and

ym =Xl = YHE () ™ F () | < 1IN = 50— 1 < 17

Hence, the iterate y,, € Ulxo,t*] and (4.4) holds for n = m. We can write in turn by the
second substep of method (4.2) for n = m (since F’ (ym)fl exists by (4.9) for a = y,,)

Im = YmJFVFI(xm)ilF(xm)*FI(Ym)ilF(xm)
Ym+ (Y= I)Fl(xm)ilF(xm)
+F" () " (F' () = F' () )F' () ™' F (1) (4.10)

It follows by (4.2), (h3), (4.9) and (4.10) that

v—1 _
[zm = ymll < R ¥ =Xl [ ) ™ F () |
IIF’(xm)*l(F’(xm)f F' ) NIF' (o) ™' F () |
Y- 1 [y — X |
< || IYm—Xm Jr
| ol g
< %( Y—1]+ tm))(smtm):umsm 4.11)

and
lzm = X || < zm =Yl + 1Y — X || < thn — S+ S — tin = t4y < t,

s0 (4.5) holds and z,, € U [xy,t"]. Iterate x,,+ is well defined by the third substep of method
(4.2) for n = m, since F'(x,) ! and F'(y,,) ! exist. We can write
1
F(zm) = F(zm) = F(xm) +F (xm) = F(zm) = F (Xm) — ?Fl(xm) (Ym —Xm)
= F(zm) = F(xm) *Fl(xm) (2m — Xm) JrFl(xm)(zm —Xn)

() O — )+ F () O — ) — %F'(acm)(ymxm)

— P 00250110~ F (5) i)

+(1 = =) F (%) Ym — Xm)- (4.12)
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In view of (4.9) (for a = x;;, yi), (h3), (4.11) and (4.12), we get

_ L -1
1 () ™' F (zm) || < §||ZmxmllerLlllzmymllJrh(IYI |Lllly;rxmll
L 2
< E(um*tm) JFlll(’/‘mfsm)
—1
+‘Y—‘L1 (Sm— ) = V. (4.13)

Y

Then, we can also write

/ !

Wm —2Zm = *(F (ym)il —-F (xm)il)F(Zm)7F,(ym)7lF(Zm)7

L(sm—tm) N 1
(1 —Loty)(1 —Losy) 1—Losy

||Wmfzm||§( ))Vm:pm*um

and
Wi — X | Wi =zl + |z — Y| =+ |ym — X [
< Pm—Up+ Uy — S+ S+ Sm — Ty = P < t*v

s0 (4.6) holds for n = m and w,, € U|xo,"].
We can write

F(wm) = F(Wm) = F (z2m) + F (zm) = F (W) — F (2m) — Bn(Wim — 2m)
l !
= [ (' G+ 80im = 20))d8 = B) Oim = ) = (= Bo) (=)

where

/

l ! ! ! i
= [ F (000 = 2)) 0, and By = F'(5,) F (5) = F (52 F ().
Moreover, we obtain in turn Furthermore, we can write

am — B = anBy (F (yn) = F (x))By'F ()
+ (an —F (%))By ' F (ym),
IF ()™ (2F () = F ) = F xa)) | < INF () ™ (F (%) — F ()
HIF Con) " (F () = F () |
< Lo|[xm — X | + [y — X
< Loty +L(sy —tm) < 1,
1By < IF ) "I F (o) = F ) ™' F ) 1| (o) ™ F () |
< ﬂ L.
= 81— (Lotm+L(sm—1tm))
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LLY (s —t)
(1 — (Lot + L(sym — 1)) )?
LL3 (ttyy—ty + 3 (P — )
1— (Lotm +L(sm—1m))

Consequently, from the third substep of method (4.2), we also get

IF () ' F (wn) | < |

](pm*um) = Vm(pm*um)- (4.14)

1Xms1 — Wil = || — (F,(Ym)il *F,(xm)il)F(Wm) *F,(Ym)ilF,(Wm)H
L(sm—tm) 1 _ .y,
S((I*LOZ‘m)(I*LOSm)Jr liLOSm)wn(pm m)
=Im+1— Pm

and

[m+1 =% < [1Xmr1 = wmll + [[Wim =z + [z — Y[ + [[ym — o]
<twi1 —PmtPmt —Up+ Uy —Spm+Sm—1To
:tm+l S t*7

which show (4.7) forn =m+1 and x,, | € Ul[xo,t"]. So iterate y,,; is well defined and we
have the estimate

1t = Zm | < WIE Cone) ™ F (o) [1F (x0) ' F ()
By exchanging the role of w,, by x,, in (4.14), we get
IF (x0) " F G 1| < B
Hence, we get eventually

||Ym+l — Xm+1 || < lLﬁm = Sm4+1 —Im+1

*LOtm+l
and
[ym+1 = Xoll < [[ym+1 = Xms1(] + [[*ms1 — X0
< Sl — bl Hp1 — 10 = St < t*7

which completes the induction. Hence, the sequence {x,,} is fundamental in Banach space
X and as such it converges to some x* € Ulxp,7"]. By the continuity of F and if we let
m — oo in (4.14), we conclude F (x*) = 0. O
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Chapter 5

On the Semi-Local Convergence of a
Fifth Order Method for Solving
Nonlinear Equations

The semi-local convergence of a fifth-order method is studied using assumptions only on
the first derivative of the operator involved. The convergence of this method was shown by
assuming that the sixth-order derivative of the operator does not exist and hence it limiting
its applicability. Moreover, no computational error bounds or uniqueness of the solution
are given. We address all these problems using only the first derivative that appears on
the. Hence, we extend the applicability of the. Our techniques can be used to obtain the
convergence of other similar higher-order schemes using assumptions on the first derivative
of the operator involved.

1. Introduction

Let F : D C X — Y be a nonlinear operator acting between Banach spaces X and Y. Con-
sider the problem of solving the nonlinear equation

F(x) = 0. 5.1)

Iterative methods are used to approximate a solution x* of the equation ( 5.1). The following
iterative method was studied in [21],

Yn = xn*OCFI(xn)ilF(xn)»

1
in = yn*E(13I*9An)Fl(xn)7lF(xn)y (52)

1
Xn+1 = Yn— 5(51*3An)Fl(xn)7lF(Zn)y

2
where a0 € R, A, = F'(xn)*lF'(yn). If o= 3 ( 5.2) reduces to the method in [21]. This

method was shown to be of order five using hypotheses on the sixth derivative. The local
convergence was given in [21]. We present the semi-local convergence of method ( 5.2)
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using assumptions only on the first derivative of F, unlike earlier studies [21] where the
convergence analysis required assumptions on the derivatives of F up to the order six. This
technique can be used on other methods and relevant topics along the same lines [1,2,3,4,
5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29].

13
For example: Let X =Y =R, D = [—5,5] Define f on D by
(1) = Plogt* + —t* ift+#0
N 0 ift=0.

Then, we have f(1) =0,
f" (1) = 6logt® +60r* — 241 +22.

Obviously, f”(¢) is not bounded by D. So, the convergence of the method ( 5.2) is not
guaranteed by the analysis in [21].

Throughout the article U (xo,R) = {x € X : ||x —xo|| <R} and U[xo,R] ={x € X : ||x—
xo|| < R} for some R > 0.

2. Sequences Majorizing Method (5.2)

Let Ly,L,L; be positive and 1 be a nonnegative parameter. Define sequence {,} for n =
0,1,2,...by 1o =0,50 =M

1 3L(sp—ty) 1
n = 9S%n T a0\ 171 7 .\ A n*tn 9 53
3L(sy —1ty) 2

thyl = Uy + [

u )
4(1—Loty)?  3(1 —Lot,,)] "
L 1
Vn = E(un *tn)z +L1 (un *Sn) =+ |1 - (_X|Ll (Sn 71‘”)7

L(tn+l 71.’1)2 +2L4 (tn+l *Sn) +2|1 - é|Ll (Sn *tn)
Sn+1 = In+1 Z(I*Lol’ +l) .
n

Next, some convergence criteria are given for this sequence.

Lemma 5. Suppose that foralln =0,1,2, ...

1
L < — 54
r<L0 (5.4)

1
Then, sequence {f,} is non-decreasing, bounded from above by Lo and converges to its

1
unique least upper bound t* € [0, E]
1
Proof. Ttisimplied by ( 5.3) and (5.4) that 0 <¢, < s, <t,11 < a Hence, we conclude

that t* = lim, .ty € [0, a]. O
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We can provide a second result on a majorizing sequence where the convergence criteria
are stronger but easier to test than ( 5.3). But first, some polynomials and parameters are
needed.

Define recurrent polynomials on [0, 1) by

L
f,gl)() Za |”n+2Lor(1+t+ 41"
2Ly 1
L+t4 . "M —t+ ——
ﬂﬁ M g

312
f;gz) (l‘) — 7(1 +l‘)2 2nn2 Jr3LL tn+ln

2
+3LLy|1— —|t”n+ Ly t”n+3L1t

2L1

3
|1——|+2Lor(1+r+ A —
ey =L (1 +20) " +4Lot(1+1 + ... +t”“)n

1
+2L1(1+I)+2|1*(—X|L1*21’

3 3L , 2L
= _ =42 ==
$10) = 2o~ Fa] T2 30"
1
(1) = = —(1+=—)(1-2 —(1-2
foo (t) fl(t) t ( +3|(X|)( Lon)t+3|(x|( Lon)7
2 312 ; 312 ;
g (1) = - (L0 — = (1+0)’™
+3Lth2—§LL1t+3LL1|1—l|t
2 2
1
“3LLi1=—[+3 (1+r) (1+t)2+2L0t3,

3
1
fi(1) = (L = 1) +2((1 = 2Lon) +2[1 — bl
1 1
—(Li+[1=—[Li+[1=—]),
o o
and
g3(t) = L(14+2t)t — L(1+21) 4+ 4Lo?>.
By these definitions, we get

3L 1
<0,01(1) = 2Lo(1 — ——
“aj) <) = 2L -3

g3(0) = —L, and g3(1) = 4Ly > 0.

) >0,

Hence, polynomials g; and g3 have roots in the interval (0,1) by the intermediate value
theorem. Denote the smallest such roots by §; and 83 respectively. Equation f3(t) =0
has a unique positive root denoted by p3 by Descartes’ rule of signs(assuming L; > 0 and

2Lon < 1).
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Set
1
Ll Mﬁ)
Then, we have
1
=——(1-2
and
3L 1 1
1)=(—+4Ly(l — =—)N—(1 — —).
Suppose
n < MNo.

Then, fi(1) <0, and polynomial f; has roots in (0, 1). Denote by p; the smallest such root.
Moreover, define the polynomial

2 2 1 2L
falt) = GLi= DA (1= 2L00) 4 2L (11— | = = 2241 - 2]
Let
312 312
ga(1) = g17(1) = S- (140" n = =-(1+1)’m
3LL; , 3LL; 1
> t+3LL1|1—&|t
L 2 3
—3LL1|1——|+ (1+r) 3(1+r) +2Lot"°.
By this definition

L
22(0)=—3LL; — 3 < Oand g>(1) =2Ly > 0.

Denote by &, the smallest root of g5 in (0,1).
The preceding polynomials are connected.

Lemma 6. The following assertions hold:
W 120 =1"0+a0rm.
@ £ = 170+ 0m.
3) gii(1) > e2(0).

@ 130 = £20) +g3(0)m.

Proof. By the definition of these polynomials we get in turn:
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ey

BL o, 3L
4o 4o
+2Lot (1 41+ ...+ —2Lot (1 4+t 4 ... +1")n

2 2
3|L°|(1+r+ +r”“)n+—L°(1+r+ A+

3o
3L l,n+l 3L n
~ 4o o]

=gi()".

fih) =1 0) =

Lol.n+ln

2 l,n+2 .

2)

3L2 2.2n+2,.2 3 2 2n.,2
SO0 = F2 ) =2 (1R = 2 (10

1
+3LL 1" = 3LL " T+ 3LL, |1 — 5 "+ 1n

L
—3LLi|1 - —|t”n+ 1+1)? ”“n—z(lﬂ)zt”n

3 =
+2Lot" 2 = g2 (1)

€)
3L2 3L2
8§A(ﬂ**gfkt)2‘5—(1+tff”3ﬂ"‘5—(1+tff”an
3

312
n+l
> (142)%" I+ = 5 (141)%™

31 31
= (0= 1) = - (1+0)%"( - 1)

L2
= 37(1 +1)%(r —1)*"n > 0.

“)

£ = 12 (1) =L(1 + 20" ' = L(1 +-20)™
FaLot (1414 ..+ 2M —dLot (141 +...+1" )
= L(1+20)" ' — L(1+20)"n + 4Lot" 1
= g3(t)t"n.
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Set
31 3 2L, 11
- b= Z1Z2 4 Ly (uo — | — —|Lm]=,n #£0
a 2 " 3a]’ (4 +3[2uo+ 1 (1o —s0) +| oc| m]n,n#
:Ll’lerZLl(l’l*T])
In(1—Lot)
d = max{a,b,c},8 = min{d,,0,,93},
8= max{81782783}7p :min{plvp37 1 *4L0n}
and
= min{ 1
n = n074L0 .

Then, we can show the second convergence result for sequence ( 5.3).

Lemma 7. Suppose

n§n17L0t1<17 (55)
0<d<dyand d<p<l1. (5.6)
Then, sequence {f,} is non-decreasing, bounded from above by ** = s and converges
2
to its unique least upper bound ¢* € [0, %]

Notice that ( 5.5) and ( 5.6) determine the smallness of 1 for convergence. Moreover, the
following assertions hold

0<s,—1, < 8(.5‘,171 *tnfl) < Snny (57)
0<u,—s, < 8(Sn *tn) < 8ﬂ+ln, (5.8)
0<tyt1—uy < 8(Sn *tn) < 8ﬂ+ln 5.9)
and
0<1t,<sp<uy<tpy1. (5.10)

Proof. Mathematical induction is utilized to show

3L(sp—1ty,) 1

0 < b <, 5.11

4o](1—Loty) 3]0 .10

%, < 1, (5.12)
3L n *tn 2

0 < ( (S ) + )Vn < 8(Sn *tn) (5.13)

4(1—Lot,)?  3(1—Loty)
and

L(tn+l - tn)z +2L4 (tn+l - Sn) +2L, | 1— é|(sn - tn)
2(1 *LOtn+l)

These estimates hold for for n = 0 by the initial conditions, ( 5.5) and ( 5.6). It follows that
0<so—1t0=m,0<ug—s0<8(s0—10), 0 <11 —ug <8(so—10), 0<s1—11 <0(s0—10)-

< 850 — 1) (5.14)
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So, (5.7)-(5.10) hold at the beginning. Suppose that hold for all integer values smaller than
n. Then, notice that we can get in turn

ter1 < w4+ < s+ I+ I < 1+ §Fn + & In 48
g1 +2(N+8n) < . <+ I F2(8n+8 )

178k+2 Zn
< = :
<24 <51 (5.15)
Evidently, ( 5.11) certainly holds if
3L 1 ‘
< (68— =—)(1—2Lo(1
To = (07 3g) (12001 48+ +39m)
or
3L 1 2L
2Lo(1+8+..+8)M—04+ — =+ (14+8+...+8)Mm<o0
2ol +2Lo(148+...+8)n +3|a| 3|a|+( +8+...+8" )M <
or
ey <oart =8, (5.16)

In particular, by Lemma 6 (1) and the definition of 8;, we have
1 1
fh@0 = are =3,

Define the function £ (£) = limy_. f,fl)(t).
It follows by definition of polynomial f,gl) that

_ 2Lpm _ 1 2LoM

11—t 3laf 3ol

Thus, ( 5.16) holds if
@B <0art =8,
or
filt) <O0att =29,

which is true by ( 5.6).

Estimate ( 5.12) holds since

1
2, =2 211178 <1 by choice of § in ( 5.6). Then notice that 1~ Loty

(5.13) holds if

< 2. Hence, estimate

L

2
(L3 +3)(5

1
. (148)28" M +Lid+]1 — Sl +2Lo(148+...+8" )M —-3 <0

or

ﬁgz)(r) <0Oatt=25,. (5.17)
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By Lemma 6 (2) and (3), we have

SO

2 2
L0 2 57 @ att = pa.
by the definition of p,.
Define function £2) (1) = limy_... f,gz) (1).
It follows by the definition of polynomials f,gz) that
2Lyt

1
- — |+ %t
| OC|+1itn

2 1) = %thJr %
Hence, ( 5.17) holds if £2)(r) <0att = p, or
fat) <0att=p;
which is true by ( 5.6). Moreover, to show ( 5.15) it suffices to have
L(1428)8 M +4LoS(14+84... +8")m +2L; (1+8) +2|1 — é|L1 -28<0

or

1)y <oatt = 8s. (5.18)
By Lemma 6 (4), and the definition of 33, we have

3 3
0 =10y art =85,
Define function £ = limy_.. f,£3) (t). Then, we obtain
1
3o :4Lont+2L1(1—t2)+2L1|1—&|
1 1
+2|1 = =] =2|1 — = |Lyt — 2t +21%.
o o
Hence, ( 5.18) holds for £3)(r) < 0 or
5 1 1 1
(Ly— 1)t +2[(1—2Lon)+2L1|1—&|]t—(L1+L1|1—&|+|17&|) <0

or f3(t) <0, which is true by ( 5.6). The induction for items ( 5.11)-( 5.15) is furnished.
Hence, assertions ( 5.7)-( 5.10) hold true too. Therefore, we deduce liny ...ty =t* € [0,£*].
O
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3. Analysis for Method ( 5.2)

Consider conditions (T).

Suppose:

(T1) There exist xo € D,mn > 0 so that F (xo)*l exist and

IF" (x0) "' F (o) || <.

(T;) There exist Ly > 0 so that for all w € D

/

IF (x0) ™" (F (W) = F (x0)) | < Lolw —xo]-
1
Define D; = U (xp, —)ND
1=U( Lo)
(T3) There exist L > 0,L; > 1 so that for all w,w, € Dy

IF (x0) ™" (F (w2) = F ' (w1))|| < Ljwa —w |
and

I (x0) ' (w2) || < L.

(T;) Conditions of Lemma 5 or Lemma 7 hold
and

(T5) Ulxo,t"] C D
Next, conditions T are used to show convergence for ( 5.2).

Theorem 5. Under conditions T the following assertions hold

{x} < Ulxo,t,
[|lyn — |
||Zn*yn||

Sn —In,

Un — Sn

and
||xn+l *ZnH < Iyl — Up.

Moreover, limy,_...x, =x* € U|x,t*] and so that x* solves ( 5.1).

Proof. Conditions (77), method ( 5.2) and ( 5.3) give

lyo —oll = [1/'(x0) ' F (o) | <M =s0—10 <17,

47

(5.19)
(5.20)
(5.21)

(5.22)

s0 yo < Ulxo,#*] and ( 5.20) is true for n = 0. Pick w < U|[xo,¢*]. Then, by using (7}) and

(T»), we obtain

/

1 (x0) ™ (F'(w) = F (w0)) | < Lollw—xol| < Lot" < 1.

(5.23)
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Thus, F' (w)~! exists by (5.23) and a Lemma due to Banach on linear operators with in-
verses [15] and

1

F (w)™'F <
IO F ) < o

(5.24)
Then, iterates yg, zo and x| exist.

Suppose assertion ( 5.19)-( 5.22) hold for all £ < n. We need in turn the estimates taken
from method ( 5.2), using the induction hypothesis, ( 5.24)(for w = x;), and (73)

2= = — 35 (9~ 9A0F () Fw) = 3F ()~ F ()
— 2= AOF () F) — 3F () F)
0= F ) F ) () F ) = 3F () F )
== 3F ) F ) — F On)F ) F (o) = 3F () F (a0
el < § e L
< i gy ) 1) =
and

llzk —xol| < llzk = yiell + [[yk — Xol| < g — sk +sx —to = ux < 1*.

Therefore, ( 5.21) holds and z; € Ulxp,7*]. Similarly, by the second substep of method (
5.2), we get in turn

/

2F ()™ (F ()~ F () () Fz0)

_ %F'(xk)*lF(zk) = By F (2)

Xk+1 — 2k =

SO
3 Ly — x| 2
X1 — 2| < |+ T Y
e =2l < 3 ol e+ 30— L =™
3 L(sg—1t) 2
<[z = k1
—[4(1—Lotk)2+3(1*LOfk)]Vk k1 — Uy
and

1X+1 — %0 < ||xke1 — 2l + N2k — X0 || < th1 — g + g — 10 = tryy <t
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Thus, ( 5.22) holds and x4 € U|xo,t"].
We also used

F(zk) = F(z) — F (x) + F (x)
= F(zk) — F () — F (xi) (2 — ) + F () (2 — i)
(= DF () 0r— ),

SO

b L
IF (x0) ™' F (z1) || < §||Zk*Xk||2+L1||Zk*yk||

1
Ll = la =l < ve

1
Setbk:/ F (5 +0 (ke 1 —x2))dO(xst — x2)-

Moreover, by method ( 5.2), we can write instead
F(Xy1) = F (1) = F (xe) + F (%)
F'(x)

= by (X1 —xx) — (V& — xk)
= (st —x) — F () (3t —x) +F () (1 — k)

F'(x)

— F (x) ok = x1) + F () 0 —5¢) — (Vi — xx)
= (bx—F (%)) (¥es1 — X)
F(30) i =)+ 11— [ () 0 — ),

SO

/ B L
I (x0) " F (o)) < 5 Pt — x>+ Lo [ xesr — |
1
+|1*&|L1||yk*xk||
L ) 1
Sz(tlwl*tk) +L1(fk+1*Sk)+L1|1*&|(Sk*fk)-

Consequently, we obtain
st =Xl < NIF Gacir) ™ F (o) |F (x0) ' F (x|
< St —0)? + Li(tepr — i) +Li|1 = gl (s — )
1= Lollxi+1 —xo|

< Skl — tea
and

Vk+1 = X0l < [[Yks1 = Xps 1] + [ %41 — Xo|
Skt — et F e —to = Sgy1 <t

so (5.20) holds and yx; € U[0,77].
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1 2
Remark. The parameter —, % given in closed form can replace ¢* in (75) assuming that
conditions of Lemma 5 or Lemma 7 hold, respectively.

The uniqueness of the solution is provided.

Proposition 3. Assume
(1) The point x* € Ulx,8] C D is such that F (x*) = 0 for some 8 > 0 and F (x*)~" exists.
(2) Condition (T>) holds.

(3) There exist r > & such that

D) <1 (5.25)

Define Dy = U|[x*,r]ND,
l /
Set Q= / F (x* +0(A—x"))d6 for some A € Dy with F (L) =0. Then, in view of (T») and
0

(5.25), we have

IF (x0) ™ (@~ F (o)l <o [ 1) lxo —x°[| + 0]k~ ®

§%(r+5)<1.

Hence, we conclude . = x*.

O

Remark. Notice that not all conditions (H) are used in Proposition 3. But if they were used,
then we can certainly set po = 1*.
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Chapter 6

On the Semi-Local Convergence of a
Fifth Order Efficient Method for
Solving Nonlinear Equations

1. Introduction

The semi-local convergence for a Xiao-Yin method of order five is studied using assump-
tions only on the first derivative of the operator involved. The convergence of this method
was shown by assuming that the sixth order derivative of the operator not on the method
exists and hence it is limiting its applicability. Moreover, no computational error bounds
or uniqueness of the solution are given. We address all these problems using only the first
derivative that appears on the method. Hence, we extend the applicability of the method.
Our techniques can be used to obtain the convergence of other similar higher-order methods
using assumptions on the first derivative of the operator involved.

Let F : D C E; — E» be a nonlinear operator acting between Banach spaces E| and E,
and D # 0 be an open set. Consider the problem of solving the nonlinear equation

F(x)=0. (6.1)

Iterative methods are used to approximate a solution x* of the equation (6.1). The following
iterative method was studied in [26],

Yn = xn*BFl(xn)ilF(xn)»
1 _ _
in = Xp— Z(3Fl(yn) lJrFl(xn) I)F(xn)7
and

1 _ _
Xn+l = Z11*§(3Fl(yn) I*Fl(xn) I)F(Zn)-

In this chapter, we study the semi-local convergence of method (6.2) using assumptions
only on the first derivative of F, unlike earlier studies [26] where the convergence analysis
required assumptions on the derivatives of F' up to the order six. This method can be used
on other methods and relevant topics along the same lines [1,2,3,4,5,6,7,8,9,10,11,12,
13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29].
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3
. Define f on D by

For example: Let X =Y =R, D = [757 5]

 Plog?+12—t* ift#0
f(t)_{ 0 if 1 =0.

Then, we have f(1) =0,
f" (1) = 6logt® + 601> — 241 +22.

Obviously, f”(¢) is not bounded by D. So, the convergence of the method (6.2) is not
guaranteed by the analysis in [26].

Throughout the chapter U(xo,R) = {x € X : ||x —xo|| < R} and Ulxo,R] = {x € X :
lx—x0|| < R} for some R > 0.

The chapter contains a semi-local convergence analysis in Section 2.

2. Semi-Local Analysis

The convergence analysis is based on the majorizing sequence. Let B > 0,Ly > 0,L; >
0, L > 0 and R > 0 be given parameters. Define scalar sequence {#,} by o = 0, so = R,

L|1 - %Ksn 71.’1)2 +L (Sn *tn)

u = sp+ )
n n 1—Los,
vy = E(u —12)? Ly (u, — L 17l -
n = 3 n—In 1\Un Sn) + l| B|(Sn tn)»
1 L(s, —1ty)
bt = gt 4 2 ).
n+1 Up 1—Los, ( 2(1 *L()l’n) Vn
and
L(tn+l - tn)z +2L, (tn+l - Sn) + 2| 1— é|Ll (Sn - tn)
Sp+1 = Ipy1+ .

2( 1— LOtn+ l)
Next, a convergence result for a sequence (6.2) is provided.

Lemma 8. Suppose that foreachn =0,1,2,---

1 1
h<— and s,<—. 6.2
L L (6.2)

1
Then, sequence {f,} is non-decreasing, bounded from above by Lo and converges to its

1
L

unique least upper bound t* € [0,

1
Proof. Tt follows from (6.2) and (6.2) that 0 <1, <s, < u, <ty < Lo so limf, =t €
n—oo

0. -
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Sequence {7, } shall be shown to be majorizing for method (1.2). But first we introduce
the needed conditions (A).
Suppose:

(A}) There exists xo € Q, R > 0 such that F'(xo) ! € L(Y,X) and |F' (x0) 'F (x)|| <R.
(Ay) There exists Ly > 0 such that for all x € Q, || F' (xo) ™" (F'(x) — F'(x0)) || < LolJx—xo]|-
1
Define Q| = U(xg,—) N Q.
1=U( Lo)

(A3) There exist L > 0, L; > 0 such that for each x,y € Q, ||F'(xo) ' (F'(y) — F'(x))| <
Li|y —x|| and [|F" (x0)~'F'(x)|| < Ly.
(A4) Conditions of Lemma 8 hold.

and
(A5) U[xo,t*] C Q.

Next, the semi-local convergence of method (1.2) is presented based on conditions A.

Theorem 6. Suppose conditions A hold. Then, sequence {x,} generated by method (1.2) is
well defined in Ulxo,?*], remains in U [xo,*] and converges to a solution x* € U [xo,t*] of
equation F(x) = 0. Moreover, the following items hold
[yn—xall < sn—1tn,
lzn =ynll < [lun—sall,
1 = 2nll < tyr —uy

and
I —xu|| < 1% —t,. (6.3)

Proof. Estimates (6.3) — (6.3) are shown using 1nduct10n By (6.2) and (A;) we have
lyo — Xo|| = [|F’ (x0) "' F(x0)|| < R=s0—to =50 < 1**, 50y € Ulxp, 1 ] and (6.3) holds for
n=0. Let x € Ulxo,t*]. Then, using (A;) and (4,), we get ||F’(xo) ' (F'(x) — F'(x0))| <
Lo||x —xo|| < Lot* < 1,50 F'(x)"! € L(Y,X) and
1
< T
x—xol|
by the Banach lemma on invertible linear operators [1, 2, 3,4,5,6,7, 15,19]. Moreover,
iterates zo and x; exist by (6.4) and since xy and yg belong in U|[xq,*]. We can write by
the first two substeps of method (1.2) and supposing estimates (6.3) hold for all values k
smaller than n.

IF'(x) " F'(xo) (6.4)

% = o BF () - S GF 0 F ) (u)
= et (B3 F e = 2 F 00 R ()
= e [(B= 2 )00 F ) ™)~ BF () (s
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Using (6.2), (A3), (6.4) (for x = xx,yx), (6.5) we obtain in turn that

|B— %ILllyk*Xkllﬁllyk*Xkll + Ly || yx — x|
1 — Lo ||yx — xo|
LI = Zlllse—tell* + L llse —tell ;
1 —Losi N

=yl <

— Sk

and
llzk —xo|| < llzk = yiell + [[yx — xol| < wx — s+ sk —t0 = up <17,

s0 (6.3) holds and the iterate z; € U [xg,1"].
We need an estimate:

F(z) = F(zx) = F(x) +F(xx)
= R Flu) - o )
= Flz) = F () — F' () (2 — x) +F' (o) (2 —xx)
F'(xi)
g k)
= Flz) = F(x) — F' () (2 —x) +F' (o) (2 — k)
() 0 30) — F () 0 x0) — o (3 )

= F(zk) = F (o) = F' (u) (2 — ) + F' (0) (2 — i)
= )F () —x0),

_ L 1
IF' (x0) ™' F(z)]| - < §||Zk*Xk||2+L1||Zk*yk||+|1*§|L1||yk*Xk||

L 1
< E(ukftk)erLl(ukfsk)JrH — E|L1(Sk*fk)

= .

Then, by the third substep of method (1.2), we can write in turn that

sz =~ ) - F ) @)~ F o0 Fla)
= *% ") T (F" () = F' () F (o) ™ F (zi) = F' () ™' F ().

Using (6.2),6.4 (for x = xx,yx,) (A3),(6.5) and (6.5), we get in turn that

L||yx — x| 1
+ Vi
2(1 = Lo|lyk —xo) (1 — Lollxk —xo[]) 1 —Lo|[yx — ol

1 L(Sk*l‘k) . B
1~ Lost <1+m>\/k—l’k+l Uy

et —zll < [
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and

X1 —xoll < st —zell + llzx — X0 || < tagr — uge +ug — 1o
= fp1 <t%,

so (6.3) holds and the iterate x;; € U[xo,1*].
1

Setd; = / F'(x¢ +0(x¢ 1 —xx))dB. Then, we can write in turn by the first substep of
0
method (1.2)

F(xie1) = F(ug) = F (o) +F ()
F'(x
= di(x—xx) — ;k)()’kxk)
= di(orr —x) = F (o) (e —x) 4+ F' (o) (e — ) — F () (% — X))
F'(x
() Ok —50) — o )
1
= (e F'(00) (k1 =30) + F () (o =) + (1= 2 ) ) (= ),
' —1 L 2 1
1E"Coo) ™ F (o) | = 5 vkt =174 Lo = il | 11 = gL [y — x|
L , 1
< E(tk+l*tk) +L1(fk+1*Sk)+|1*§|L1(Sk*fk)7
SO
ert =il < IF (i) ™ F (x0) [[1F (x0) ™" F (i) |
< L(tge1 — 1) + 2Ly (tigr — ) + 2|1 — F|L1 (56 — 1)
- 2(1 —Lotk11)
= Sk4+1—Ik41
and

v =l < et =Xl + e —xoll < skt —ter1 + 1 —to
= Sk+l<t*7

s0 (6.3) holds and yi+1 € Ulxo,"].

The induction for items (6.3) — (6.3) is completed. Hence, sequence {x; } is fundamen-
tal in Banach space X, so it converges to some x* € U|[xo,?*]. By letting k — oo in (6.5) and
using the continuity of F we conclude F (x*) = 0. O

Concerning the uniqueness of the solution x* we have:
Proposition 4. Suppose

(1) There exists a solution x* € Ulxo,r] C Q for some r > 0 and F'(x*) "' € L(Y,X).
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(2) Condition (Az) holds and

(3) There exists ry > r such that
Lo(r+r) <2. (6.5)

Define Q; = U xq,r1] M. Then, the solution x* is unique in the set Q;.

1
Proof. Define T = / F'(x* +1(b — x*))dz for some b € Q, with F(b) = 0. Using (A;)
0

and (6.5), we get in turn

1
1F"(x0) (T — F'(x0)) || < /O Lo((1 =) [lxo —x"[ +7l|b—x0[[)d7
< %(rJrrl) <1,
so b = x* by the invertibility of 7" and the identity T'(x* — b) = F (x*) — F(b) = 0. O

1
Remark. (1) The parameter Lo given in the closed form can be replace * in As.

(2) Conditions A with the exception of (A;) are not assume in Proposition 4. But if they
are, then, we can certainly set » = t* and drop (1) in Proposition 4
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Chapter 7

Improved Convergence of
Derivative-Free Halley’s Scheme
with Two Parameters

Halley’s scheme for nonlinear equations is extended with no additional conditions. Iterates
are shown to belong to a smaller domain resulting in tighter Lipschitz constants and a finer
convergence analysis than in earlier works.

1. Introduction

Many applications in computational Sciences require finding a solution x* of the nonlinear
equation

G(x)=0, (7.1)

where G : Q C E; — E; acting between Banach spaces E| and E;. Higher convergence
order schemes have been used extensively to generate a sequence approximating x* under
certain conditions [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25].
In particular, the third order scheme [25] has been used to define for eachi =0,1,2,...by

Xie1 = -G (x) 7 (G(x), (7.2)

1 1
where a € R, K; = G'(x) ' 6" (x)G'(x;) "' G(x;), and T; = 5K,~(17aK,~)*l. Ifa=0,2,1,
then (7.2) reduces to Chebyshev, Halley, and Super-Halley Schemes, respectively.

The convergence conditions used are:

R1) [|G"(x0)"'[| < B.
R2) |G (x0) ™" G(x0)| <.
(R3) ||G"(x)]| < K| for each x € D.

R4) [|G"(x) = G"(y)|| < Ki[lx— ]| for each x,y € D.

63
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But there are examples [25] where condition (R4) is not satisfied. That is why in references
[25] the following conditions are used

(S3) ||G"(x)|] < K foreach x € D.

S4) 16" (x) = G"(y)|| £ wi(|]x—y]|) for each x,y € D, where w;(0) > 0, and for ¢ > 0,
function wy is continuous and nondecreasing.

(S5) There exists wy (zs) < wy(t)wi(s) for € [0,1] and s € (0, +o0).
Using (R1), (R2), (S3)-(S5) the Halley scheme was shown to be of R—order at least two

J
[25]. In particular, if wy(t) = ZKitq", the Halley scheme is of R— order at least 2 + ¢,
i=1
where Y= min{y,Y»,...v;}, i € [0,1].i=1,2,..., .
If a # 0, scheme (7.2) requires the evaluation of the inverse of the linear operator I —aKk;
at each step. That is why to reduce the computational cost of this inversion and increase the
R—order scheme

i = x—G'x)"'Gx),
i = x—AG (%) G(x) (7.3)

and
X1 = z—BiG'(x) 7' Gn).

was studied in [25], where D; = 3G'(x;) "' (G'(x;) — G’ (xi — %g'(xi)*l G(xi)),

1 1
Ai=1+5D;+ ED?(I—aDi)’l, Bi=1+4D;+bD? ac|0,1]and b € [-1,1]. Consider
condition

(T4) [[G"(x) = G" ()l < wa(llx—y|) for each x,y € Dy € D,

where D is a non-empty convex set, wy () is continuous and nondecreasing scalar function
with w;(0) > 0, and there exists non-negative real function ws € C[0, 1] satisfying w3 (r) < 1
and wy(ts) < wa(t)wa(s), 7 € [0,1],s € (0,0).

Using conditions (R1)-(R3) and (T4) the R—order was increased. In particular, if the
second derivative satisfies (R4) the R—order of the scheme (7.3) is at least five which is
higher than Chebyshev’s, Halley’s, and Super-Halley’s.

In this chapter, we are concerned with optimization considerations. We raise the fol-
lowing questions. Can we:

(Q1) Increase the convergence domain?

(Q2) Weaken the sufficient semi-local convergence criteria?

(Q3) Improve the estimate on error bounds on the distances ||xg+1 —x; ||, ||x; —x*[|?
(Q4) Can we improve the uniqueness information on the location of x*?

(Q5) Can we use weaker conditions ?
and
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(Q6) Provide the radius in affine invariant form.

The advantages of (Q6) are well known [25]. Denote this set of questions by (Q). We would
like question Q to be answered positively without additional or even weaker conditions.
This can be achieved by finding at least as small Ky, Kj, wy,w;,w, and ws.

Note that the conditions on the higher-order derivatives, reduce the applicability of the
method.

1
For example: Let E; = E; =R, Q= é] Define f on Q by

272
3 2 5 4 .
t’logt”+¢t> —t t 0
fy=1 e i1
0 ift=0.

Then, we have ¢, = 1, and
f" (1) = 6logt® + 601> — 241 +22.

Obviously, f”(t) is not bounded on Q. So, the convergence of the above schemes is not
guaranteed by the analysis in earlier papers.

In Section 2 we achieve this goal. Another concern involves conditions (R4) or (S4)
or (Q4). Denote the set of nonlinear equations where the operator G satisfies say (T4) by
S1. Moreover, denote by S2 the set of nonlinear equations where the operator G’ does not
satisfy (Q4). Then, clearly, S1 is a strict subset of S2. Therefore, working on S2 instead of
S1 is interesting, since the applicability of scheme (7.3) is extended. We show how to do
this by dropping condition (T4) in Section 3.

2. Semi-Local Convergence I

The results are presented in the affine invariant form. So condition (R1) is dropped. Condi-
tions (U) are used:

UD 16" (x0) " (G'(x) — G'(x0))]| < Kol|x —x0]| for each x € D.

1
Set Dy = B[xp,—]ND.
Ko

(U2) |G’ (x0) "' G"(x)|| < K for each x € Dy.

(U3) [G'(x0) " (G"(x) = "))l < w(llx = y[})|| for each x,y € Dy,

where w is a continuous and nondecreasing function with w(0) > 0, and there exists
non-negative function wy € C[0, 1] such that wo(¢) < 1 and w(zs) < wo(t)w(s),t € [0,1],s €
(0, 00).

Remark. It follows by the definition of the set Dy that

Dy C D, (7.4)

SO
Koy <BKj, (7.5)
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K < BK (7.6)
and
w(t) < Bwi (7). (7.7)
Notice also that using (R3) the following estimate was used in the earlier studies [25]:
O [ E— 8)
= BKi [ —o]
But using weaker and actually needed (U1) we obtained an instead tighter estimate
1
") G (x0)|| € ——, (7.9)
160976 o)l < g
Moreover, suppose
Ko <K. (7.10)

Otherwise, the results that follow hold with Ky replacing M.
Next, we state the semi-local convergence result [25], but first, we define some scalar
functions. Consider real functions given by

01

0
g(81) = p(81)+—-(1+6; +[b]63)[1 + +p(01)7,
2 1 —aB;
1
o) =—
(81) 1—0,2(61)
f1(01,6,) = L+e2(1+|b|+|b|e)+L(1+e +16|63)8,] /2(81,65)
1\Y1,92 Q+1)3Q 1 1 Q+1 1 1)92]J2\Y1,92
02 0 )
+—(1+ )(1+61 +1b[67) f2(61,02)
2 1 —ab;
0
+71(1+91+|b|9%)f2(91»92)2,
where
)1+ L0401
P = T S —aey)
02 1 0 03 0 .,
- Y 1
f2(61,62) > +1—a61+1—a61)+ 8( +1—ael)
0 0
+ 2 2

2(Q+1)34 " (Q+1)(Q+2)

1 27
Let f3(0;) =012(0;) — 1, since, f3(0)=—1 <0, f3(§) > 756 > 0, we know that f3(0;) =0

1
has a root in (0, 5) Define 5™ as the smallest positive root of equation 8;g(8;) — 1 =0, then
1

s < =,
2
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Theorem 1. Suppose: G : Q C E; — E; is twice Fréchet differentiable and conditions
(R1)-(R3) and (T4) hold,

p(ao)

1—dy’

where ag = Kipn, bo = Pnwa(n), do = h(ao) f2(ao, bo) satisfy ag < s* and h(ap)dy < 1.
Then, the following items hold

Blxo,pn] C Q, p =

{xi} - B[X(), Pn]»
and there exists lim x; = x" € Blxp,pn] with G(x*) =0,

k——00

21
x* —x;|| <7 = pag)mAty 2 Tt
1
where Y = h(ap)dp and A = h(ao) only solution of equation G(x) = 0 in the region
ao
2
B(xo,p1m) N, where Rj = — —p.
ao

But in the new case:

Theorem 8. Suppose G : Q C E; — E; is twice Fréchet differentiable and conditions (U)

hold. (@)
a
B[x()?pon] C Q? Po = p—o—7
1—d
where @y = MPn, b = nw(n), d=h(ao) f>(ao, bo) satisfy ay < s* and h(ag)dy < 1. Then,
the following items hold
{xi} C B[x07 POT]]»

and there exists lim x; =x™ € Blxo, po1] so that G(x*) =0,

—00

R
o \aak
" —xil| <7 = p(@o)nhoYy T a0

where Yy = h(dg)dy and Ay = Moreover, the point x* is the only solution of equation

h(é_lo)‘ )
G (x) =0 in the region B(xo,p1M) N, where p1 = -~ — po.
0

Proof. Simply use  Kj,wa,ag,bo,do,p,p1,A,Y used in Theorem 7  with
M, w,ao, bo, do, pop1, Mo, Yo respectively. [

Remark. In view of (7.4)-(7.7), we have
ap < s* = ap < s”,
ap < ap,

h(ao)do <l= h(C_lo)d_() <1

Fi<rg
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and
p1 <Pr1.

These estimates show that questions (Q) have been answered positively under our tech-
nique.

3. Semi-Local Convergence Part 2
The results are also presented in an affine invariant form and the restrictive condition (T4)

is dropped.
Suppose

(U4 [1G"(x0)~(G"(x) = ')l < v(|lx— ) for all x,y € Dy,

where v is a real continuous and nondecreasing function defined on the interval [0,co).
Denote conditions (R2), (Ul), (U2) and weaker (U3) or (T4) or (S4) or (R4). The
semi-local convergence is based on conditions (U)’:

Consider nonnegative scalar sequences {#;}, {s;} and {u;} fori =0,1,2,... by

Iy = 07S0:n7
wi = si+Yi(si—1),
Bioy;
t; = u; 7.11
i+1 ulJrl*Kot,' ( )
and
Sl = g ! (7.12)
1 —Kotip1’
where
1 ) quZ(sift,)2
= —K(si—t :
i K= t) 45—
1
+K [ v(O(u;—1;))dO(u; —1;),
0
K(S,'*l’,') K(S,'*l’,') 2
R T S ALV} Y e SRV
Bl + 1 —Kot; +| | 1 —Kot; ’
B 1
qi = 1*]%'7
a|lK(s;—t; K2(s; —1;)*
p o K= | K
1 *Kot,' (1 *Kot,')
K(s;,—1t K(s;—t;
y = Sty Kt
1 — Kot; 1 — Kot;
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and
5 . ZKOC,'(S,'*Z’,') |b|K(S,'*Z’,')
i+l = +
1 — Kot; 1 — Kot;
K(si—t) |b|K*(si—1;)? ;
YK (si—1) (si—t:) | |DbIK*(si—1) O
1 —Kot; (1 *Kol‘,’) 1 —Kot;

+2K (s — 1) (tip1 — i) + K (u; — 5:) (tip1 — w;)

+/ 0111 — ;) dO 111 — ).

Sequence {#;} shall be shown to be majorizing for the scheme (7.3). But first, we need some
auxiliary convergence results for it.

Lemma 9. Suppose

Kot; < 1foreachi=0,1,2,.... (7.13)
Then, the following hold
HEs S < (7.14)
and
i@mxi =<t = io’ (7.15)

where the point t* is the upper bound of sequence {7;}.
Proof. By using (7.11) and (7.13), we see that (7.14) holds and so (7.15) follows too. [

Stronger convergence criteria than (7.13) are provided in the second convergence result.
But they are considered easier to verify.

Lemma 10. Suppose for eachi=0,1,2,...

0<si—t;<m, (7.16)
2Kol’i+1 <1 (7.17)

and
2p; < 1. (7.18)

Then, the following estimates hold:

Yi < Kn(l+4Kn) = pus,

G < (5N 2k K [ (O 461 +pm)
= wo(si—1),

< 2(142K0+4[b|K* N o (si — ;)

= w(si—t)

Bio
1 — Kot;
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and

8i+l

—_— 214K 2|b|K
T < 24Kum 2]

+2K (2KN +2[b[0)uon + 2K o
1
+Kuzuom + /O v(6pam)dOpa] (si — ;)
= w(si—t).

Lemma 11. Under conditions (7.14) and (7.15) further suppose m = max{u,u,u3} for
lo = max{m, uy — So, t1 —uo }, {1 = min{uy,ur, u3} and

20alkn<1,0< < b <m<1-2Ko. (7.19)

Then, the following assertions hold

0<up—sp <m(sp—1) <m'm, (7.20)
0 <sp—tx < m(sg_1—tx—1) < m'n, (7.21)
0 <t —ux <mlsp—t) <m“t'n, (7.22)
1-m~! B
0<ti—t <Bymb 1 < 2N ket (7.23)
1—m 1—m
and there exists " = lim # such that
B
0<r—p < 0 k-t (7.24)
1—m
and
2Kt < 1, (7.25)

where B = 1 +m +m>.

Proof. 1t follows from (7.11), (7.13), (7.15) and (7.16) that estimates (7.17)-(7.19) hold.
Let i > 0 be an integer. Then, we can write in turn that

0

IN

tktri —te = (ki — terio1) + (Tgio1 — tigi—2)
+...+(l’k+1 *l’k)

< Bn(mT
—1

i k—1
_ Bnmk”l m SBnm
1—m 1—m

) (7.26)

so (7.20) holds. Hence, the sequence {#;} is complete, and as such it converges to some ¢ .
By letting k — oo in (7.26), we obtain (7.21). Notice also that

1 —mkt! 2K,
2Kot; < 2Ky = ﬂéli;l

<1,
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by the right hand side of (7.16), so

! <2
1 — Koty —

Similarly, we have

2p;i <2lalK(si—t;) <2|a|lKn < 1,
which holds by condition (7.19). ]
Remark. Condition (7.16) is the sufficient convergence criterion for a sequence {#;}. Such
a criterion is standard in this type of study. It shows how close xy should be to the solution

(i.e. how small 1 should be) to obtain convergence.

Notice also thateach u; < 1,i =1,2,3 can be solved for 1, which depends on Ky, M, b, c,
and v, i.e., the initial data.

The following Ostrowski-like representations are needed.

Lemma 12. [25] Suppose iterates {x;} exists for each i =0,1,2,.... Then, the following
items hold.

+3b(G' (xi — lG'(xi)*l G(x)) = G'(x))DiG'(x1) "' G (z)
—G"(x))(vi —x:)(Di +bD}) G'(x;) "' G () (7.27)

+ Ol g”(x,'Jre( ))de( x,')(x,'+1fzi)
G" (xi) (i —x:) (i1 —2)
1
+ 0 g”(lere(Z, yi))de(xt+l Z)
+/01(G’(z,~+6(xi+1 —2)) = G'(z)) (xir1 —2)d® (7.28)

and
Gz) = *E(Gl(xi) —G'(xi— %G'(xi)AG(xi)))G'(xi)*lG(xi)
~2(6() — 6/ %g’<x,~>*g<x,~>>>D,~<1faA,~>*‘g’<x,~>*‘g<x,~>
+ / (x4 8(zi —x;)) — G'(x:))dO(zi— x1). (7.29)

Next, we present the second semi-local convergence result for the scheme (7.3).
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Theorem 9. Under the conditions (U)’ further suppose B[x,t*] C D, if conditions of Lemma
9 or Lemma 10 hold. Then, the following assertions hold {x;} C Blxo,"] and there exists
klim x;i =x" € B[x,t"] so that

[ —xi|| <t —t;. (7.30)
Proof. Estimates
llyi —xil| < si—1;, (7.31)
l|zi —yill < 6;—s; (7.32)
and
lxit1 —zil| < tig1—6;, (7.33)

shall be shown using induction. By (7.11) and the first substep of method (7.3), we have

lyo =0l = 16" (x0) ™' Gxo)l| <M =50 —10 <17,

$0 Yo € Blxo,t"] and (7.31) holds for n = 0.
Consider u € B[xy,t"]. Using (U1), we have

16 (x0) ™' (G (u) = G'(x0)) || < Kollu —2xo| < Kor™ < 1,
leading to G'(u) ! € L(E», E;) with

1

< 7.34

16" (u)~' G (x0)

by the celebrated lemma due to Banach on linear operators that are invertible [2]. Numerous
estimates are needed to be derived by conditions (U)” and Lemma 12. We get in turn

3K 5y —xill
1 — Ko||x; — xo|
Klly il _ K(si—t)
- I*K()H)C,'*X()H - 1—Kpt; ’
|a|K (si—1)
1 — Kot;

1D

laDil| - < lal[Dil| < <1,

SO
11 —aD)~" < i,

16'60) " Gl < 5Kl

31 Ky —xila

231~ Kol[xi —xo Iy =il

1
+K /O V(82 — i )d8|zi —xi]| < o,
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o= x—G'(2)7 G +I-A)G () Gx)
Yit+(I=4) G (x) ' G (),

1 1 _
llzi =il < ||§Di+§Di2(1*aDi) i =2l

2
1 K|y, —x; K|y —x;
_ ly: — il +< i —xi] >61i llyi — x|
2\ 1—Kolx;i —xo 1 — KolJx; — xo|

Yulsi—t;) < ui—s;,

IN

IN

K|y — x|
1 — Ko||x; — xo|

Kllyi—x] \* o
+ 6l — 77— —
1= Ko lx; —xol|) 1 — Ko[x; —xo|
1+K(Slitl)+|b| K(Sl'itl') 2 (x‘i
1 — Kot; 1 — Kot; 1 —Kot;

Bio
1 — Kot;

bt —al < Q+

IN

<tiv1—u,

IN

16" (xix1) ™' G' (x0)I1 G (x0) ™" G (xi1)
1 [ K|y —xif o
1 —Ko||xit1 —xol| [ 1 —Kollxi —xo|
K||yi — xillou |bIK]]y; —xi|?
1 —Kpl|xi —xol| 1 —Kop||x; —xo|

K|y — x| < Kllyi —xi| >2
+K i~ i
il <1Ko||xi+1x0|| o 1= Kol 1 —xol|

+2K||y: —xill i1 — zill + K|z = yill [[xi1 — zill

1
+Avwmﬂfmmmmﬂfmn

Oit1
1 — Ko ||xi-1 — xo|

lyie1 — Xit1 ||

IN

<

8i+l
< —<gS§1—L
>~ I*KOtHl > 341 i+15

where we also used

llzi —yill <wi—si,
i1 =zl < tipr —u,
lzi —xoll < llzi —yill + llyi —x0ll < i —si+si—to = u; <1,
l|lxi1 —x0] < ||xip1 —zil| + ||zi — 20| < tig1 —ui+ui —to =tipq <17,
[[x; +0(yi —x:) —xo| < (1 —0)]]x; —x0|| +6]|y; —x0]
<(l—-0)y"+6r =r"
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1
and for i1; = x; — 3 g’(xi)’l G(xi),

@i —xoll < it —xil + [xi — xol|

1
< §||G'(xz')71G(xz' [+ [lxi —xol|

IN

(S,'JrZZ’,') < l’*,

W] = =

1
E(S,'*l‘,')th,' =

(1=8)]lzi —xol[ +6[lxi 1 —xo]
(1—-0)"+0r" =17,

llzi +0(xir1 —zi) —x0l| <
<
and

Vi1 = Xig1 || + || X1 — X0 |

Siyl —lip1 +tig1 —to = siy1 <17,

[yir1 —x0l <
<
80, Zj,Xit1,% +0(yi — xi), zi +0(xix1 — 2i), Yit1 € B(xo,1") and the induction for estimates
is completed.

It follows that sequence {#;} is complete in E; and as such it converges to some x* €
Blxo,1"]. By letting n — oo in the estimation (see (7.33))

16" (x0) ™! G (xi1)I| < B

and using the continuity of G we obtain G(x*) = 0. Moreover, see (7.21) for the proof of
(7.28). O

1
Remark. The condition Blxo,t*] C D can be replaced by Blx, f] C D if conditions of
0

Lemma 9 hold or Blxy, IL] C D under conditions of Lemma 11 where z and are

—m 0 1—m
given in closed form in contrast to ¢*.

The uniqueness of the solution x* result follows without necessarily using conditions of
Theorem 7 or Theorem 8 or Theorem 9.

Proposition 5. Suppose x* € B(xo,&0) C D is a simple solution of equation G(x) = 0;
Condition (U2) holds and there exists § > &y such that

Ko(&o+E&) < 2. (7.35)

Set G = B[xo,&| N D. Then, the point x* is the only solution of equation G(x) =0 in the set
G.

1
Proof. Lety* € G with G(y*) = 0. Define linear operator Q = / G (x*+6(y" —x*))de.
0
By using (U2) and (7.35) we get in turn

16" (x0) (@~ G'(x))|l < Ko/ol((l9)||X"%o||+9||y*xoll)de

< Dy <,

so x* = y* is implied since Q"' € L(E»,E;) and Q(y* —x*) = G(y*) — G (x*) = 0. O



Bibliography

[1] Argyros, LK. Hilout, S., Inexact Newton-type procedures. J Complex, 26(6), (2010),
577-590.

[2] Argyros, LK., The theory and applications of iteration 2nd Edition, Engineering Se-
ries, CRC Press, Taylor and Francis Group, 2022.

[3] Argyros, LK., Magréiian, A.A., A contemporary study of iterative procedures, Elsevier
(Academic Press), New York, 2018.

[4] Argyros, LK. George, S., Mathematical modeling for the solution of equations and
systems of equations with applications, Volume-1V, Nova Publishers, NY, 2021.

[S] Argyros, LK., Unified Convergence Criteria for Iterative Banach Space Val-
ued Methods with Applications, Mathematics, 2021, 9(16), 1942; https://doi.
org/10.3390/math9161942.

[6] Behl, R. Maroju, P., Martinez, E., Singh, S., A study of the local convergence of a fifth
order iterative method, Indian J. Pure Appl. Math., 51, 2, (2020), 439-455.

[7] Ortega, J.M., Rheinboldt, W.C., Iterative Solution of Nonlinear Equation in Several
Variables, Academic Press, New York, 1970.

[8] Gutiérrez, J.M., Herndndez, M.A., A family of ChebyshevHalley type methods in
Banach spaces, Bull. Aust. Math. Soc., 55, (1997), 113130.

[9] Gutiérrez, J.M., Herndndez, M.A., Recurrence relations for the super-Halley method,
Comput. Math. Appl., 36, (1998) 18.

[10] Argyros, LK., Chen, D., Results on the Chebyshev method in Banach spaces, Proyec-
ciones, 12 (2), (1993), 119128.

[11] Babajee, D.K.R., Dauhoo, M.Z., Darvishi, M.T., Karami, A., Barati, A.: Analysis
of two Chebyshev-like third order methods free from second derivatives for solving
systems of nonlinear equations. J. Comput. Appl. Math., 233, (2010), 20022012.

[12] Candela, V. Marquina, A., Recurrence relations for rational cubic methods i, The Hal-
ley Method Comput., 44, (1990), 169184.

[13] Chen, D., Argyros, LK., Qian, Q.S., A note on the Halley method in Banach spaces,
Appl. Math. Comput., 58, (1993), 215224.



76 C.I. Argyros, S. Regmi, I.K. Argyros and S. George

[14] Candela, V. Marquina, A., Recurrence relations for rational cubic methods II, The
Chebyshev Method Comput., 45, (1990), 355367.

[15] Ezquerro, J.A., Herndndez, M.A., On the r-order of the Halley method, J. Math. Anal.
Appl., 303, (2005), 591601.

[16] Ezquerro, J.A., Herndndez, M.A., Recurrence relations for Chebyshev-type methods.
Appl. Math. Optim, 41(2), (2000), 227236.

[17] Ezquerro, J.A., Herndndez, M.A., On the R-order of the Halley method. J. Math. Anal.
Appl 303, 591601, (2005).

[18] Ezquerro, J.A., Herndndez, M.A., New iterations of R-order four with reduced com-
putational cost, BIT Numer Math, 49, 325342, (2009).

[19] Gutiérrez, J.M., Herndndez, M.A., A family of Chebyshev-Halley type methods in
banach spaces. Bull. Aust. Math. Soc., 55, 113130, (1997).

[20] Gutiérrez, J.M., Herndndez, M.A., Recurrence relations for the super-Halley method,
Comput. Math. Appl., 36, 18, (1998).

[21] Ganesh, M., Joshi, M.C., Numerical solvability of Hammerstein integral equations of
mixed type, IMA J. Numer. Anal., 11, (1991), 21-31.

[22] Herndndez, M.A., Reduced recurrence relations for the Chebyshev method, J. Optim.
Theory Appl., 98, (1998), 385397.

[23] Herndndez, M.A., Chebyshev’s approximation algorithms and applications, Comput.
Math. Appl., 41, (2001), 433445.

[24] Kou, J., Li, Y.: A family of modified super-Halley methods with fourth-order conver-
gence. Appl Math. Comput., 189, 366370, (2007).

[25] Wang X., Kou, J., Semilocal convergence of multipoint improved super-Halley-type
methods without the second derivative under generalized conditions, Numer. Algor.,
71, (2016), 567-584.



Chapter 8

Extended Convergence for a Third
Order Traub-Like Method with
Parameter for Solving Equations

The local convergence for a Traub-like method of order three is studied using assumptions
only on the first derivative of the operator involved. The convergence of this method was
shown by assuming that the fourth order derivative of the operator not on the method ex-
ists and hence it is limiting its applicability. Moreover, no computational error bounds or
uniqueness of the solution are given. We address all these problems using only the first
derivative that appears on the method. Hence, we extend the applicability of the method.
Our techniques can be used to obtain the convergence of other similar higher-order methods
using assumptions on the first derivative of the operator involved.

1. Introduction

In this Chapter, we are concerned with the semi-local convergence of the Traub-like method
of order three for solving the equation

F(x) = 0. (8.1)

Here F : D C B; — Bj; be a nonlinear operator, B; and B, are Banach spaces and D # 0
open set. We denote the solution of (8.1) by x*. The local convergence of the following
iterative method was studied in [7],

in = Xp +'YFI(x11)71F(x11)
and (8.2)

_ - 7i i / =1 ! -1
Xop1 = Xp—[( 27)+27F (xXn) " F'(20) [F" (%) F (Xn).



78 C.I. Argyros, S. Regmi, I.K. Argyros and S. George

But, the more interesting semi-local convergence case was not given in [7]. In this Chapter,
we study the semi-local convergence of the simplified form of (8.2) defined by

Yn = xn*Fl(xn)ilF(xn)
and (8.3)
1 _
Xnrl = Ynt 2_'YFI(xn) I(Fl(xn) *Fl(yn)(yn *xn)-

Our convergence analysis uses assumptions only on the first derivative of F, unlike earlier
studies [7] where the convergence analysis required assumptions on the derivatives of F' up
to the order four. This method can be used on other methods and relevant topics along the
same lines [6,8,9,10,12,13,15,16,17,18,19,20,21,22]. The assumptions on the fourth-order
derivative reduce the applicability of the method (8.3).

1
For example: Let B=B; =R, D = [—5, %] Define f on D by

[ Plog?+15—1t* ift#0
f(t)_{ 0 if t =0.

Then, we have f(1) =0,
f" (1) = 6logt® + 601> — 24z +22.

Obviously, f”(¢) is not bounded by D. So, the convergence of the method (8.3) is not
guaranteed by the analysis in [7]. Throughout the chapter U (xo,R) = {x € X : ||x—xo|| < R}
and Ulxo,R] = {x € X : |[x—x0|| <R} for some R > 0.

The chapter contains the semi-local convergence analysis in Section 2, and the numeri-
cal examples are given in Section 3.

2. Majorizing Sequence

Let Ly, L,L; and m be positive parameters. Define sequence {¢,} foreachn=0,1,2,...by

Iy, = 07S0:n7
L(s, —1,)?
Iny1 = SnJrﬁ (8.4)
n
and
L(tyy1 —t2)? 4+ 2L (tyy1 —s
Sup1 = tn+l+ (n+l n) l(n+l n)‘

2(1 *LOtn+l)

This sequence is shown to be majorizing in Section 3. But first, we present two convergence
results for it.

Lemma 13. Suppose
Lot, <1Vn=0,1,2,.... (8.5)

Then, the following assertions hold

O§t11§5n§tn+l <t =—
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and there exists t* € [0,7""] such that

lim ¢, =t".

n—-—o0

1
Proof. By (8.4) and (8.5) sequence {7, } is nondecreasing, bounded from above by Lo so it

converges to its unique least upper bound ¢*. U

The second result uses stronger convergence conditions but which are easier to verify
(8.5). It is convenient for us to define recurrent polynomials defined on the interval [0, 1) by

h;(11)(l') :Ll’nilnﬁ»ZLO(l+t+_”+l,n)n727

B2 (6) = L1+ 0%+ 2L L'+ 2L (1 +1 + ...+ ) —2,

polynomials on the same interval
p1(t) =2Lot> +Lt — L

and
p2(t) = L(1 4+1)%t — L(1 41)* +- 2L Lt — 2L L+ 2Lot°>.

By these definitions we have p;(0) = —L, p;(1) =2Lo, p2(0) = —L(1+2L;) and ps(1) =
2Ly. The intermediate value theorem assures the existence of zeros for polynomials p;
and p; on (0,1). Denote by 9; and d, the smallest such zeros for p; and p,, respectively.
Moreover, define parameters

o LT] . L(l’l *l’o)erZLl (l’l *So)
a) = —_,a =

2 2n(1—Lot)

, forn #0

a =max{aj,ar}, b=min{d;,8,} and d = max{d;,d}.
Then, we can show the second convergence result for a sequence {,}.

Lemma 14. Suppose
Loty <1 (8.6)

and
a<b<d<1-2Lym. (8.7)

N
1-8

Then, the conclusions of Lemma 13 hold for sequence {z,} with 7™ = . Moreover, the

following assertions hold
0<s,—1, < 8(.5‘,171 *tnfl) < Snn- (8.8)

and
0< Inyl —Sn < 8(Sn *tn) < 8ﬂ+ln- (89)
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Proof. Assertions (8.8) and (8.9) can be shown if

L(Sk*l‘k)
0<——2<9b
- 2(1 *L()l‘k) -
and

0< L(l‘k+1 *l‘k)z + 2L (l‘k+1 *Sk)
- 2(1—Lotx+1)

< S(Sk*l‘k).

(8.10)

8.11)

These shall be shown using induction on k. Assertions (8.10) and (8.11) hold true for k =0

by the choice of a, (8.6) and (8.7). It follows that
0<t;—s50<8(so—1), 0<s1—11 <0(s0—1t0),

so (8.8) and (8.9) hold for n = 0. We also get

2

f<so+dm=(1+3n= 17811<t*.
Suppose
Ogsk—tk§8kn,Ogtkﬂfskgék“n
and
178k+1
t < .
k= _§ "

Then, evidently (8.10) certainly holds if
LN +28Lg(14+8+...+8m—-28<0
or
r (1) <0atr =3,

Two consecutive polynomials h,({l) are related as follows:

@ = B0+ -0
= Lfn+2Lo(1+1+.. .+ -2
—L I 2L (T4t 4. M +-2
= h,(cl)(t) 4 Lifn — LI 4- 2Lt
— V@O +pi ().

In particular h,(cgl(t) = h,(cl)(t) at 7 = 8. Define function /) on [0, 1) by

A (1) = 1im A" (2).

oo
k——o0

It follows by the definition of polynomial h,(cl) and (8.4) that

Wy — o (Lo
hm(t)—2<1t 1>‘

(8.12)

(8.13)

(8.14)

(8.15)
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Hence, (8.12) holds if
Lom
1—1t
which is true by (8.7). Similarly, by the first substep of sequence (8.4) and (8.10), estimate
(8.11) holds for

—1<0atr =39,

il —th =t —Su+ S — 1, < (1 +8)(S” 71’”)
if
2
( ) ( n n) 1—Lot, < S(Sn*tn)- (816)
2(1 *Lotn+l)

By the right hand side of (8.7), the induction hypotheses and the definition of 7**, we have

1 .
2t,Ly < 2L01nT§ <1,so0 m < 2. Then, (8.16) holds if

L(l + 8)2(511 - tn) + ZLIL(Sn - tn)

<3
2(1 *LOtn+l)
or
_ Sn+2
L(1+8)28™ + 2L L8 + 2Ly —5 280
or
(1) <0att =35, (8.17)

We also have

2 2 ) 2
W20 = B2 )+ ) - 0)
= L(l+t)2tkn+2L1Ltkn+2Lo(1+t+...+l‘k+2)1’]—2
—L(1+1)% I 2L LI — 2L (1 + 1+ ...+ 5T m 42
BP0 = BP0 +LO 40— L1410
+2L1Lfk1'] —2L— lLtkfln 4 2L0tk+2n

= B2@) +pa()F .

In particular h,(i)l(t) = h,(cz)(t) at 1 = 8. Define function /) on [0, 1) by

h@ (1) = lim A% (1). (8.18)

k——00

In view of (8.18) and the definition of polynomial h,(cz), we also deduce

) — o (Lo _
hm(t)—2<1t 1),

so (8.17) holds, since hf)(t) < 0att=29,. Sequence {t,} is nondecreasing by (8.4), (8.10)
and (8.11), and bounded from above **. Hence, it converges to ¢*. O
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3. Convergence of Method (8.3)

We introduce conditions (H) to be used in the semilocal convergence of method (8.3).

Suppose:

(H1) There exists xo € D,n > 0 such that F'(xy) "' € L(B,,B;) and
IF" (x0) ™' F' (x0) | <.

(H2) ||F'(xo)’l(F'(u)l—F'(xo))H < Lo||u—xo|| for all u € D.
Set D; = U(xo,g)ﬂD.

(H3)
1" (xo) ™ (F"(u) = F'(v)) | < Lllue—v]|

and
IF (x0) "' F'(u) | < Ly.

for all u,v € Dy oru € Dy and v =u—F'(u) "' F(u).

(H4) Conditions of Lemma 13 or Lemma 14 hold.
and

(H5) U[xo,t*] CD.

Notice that under the second choice of u and v parameter L can be smaller. Denote by L the
corresponding parameter.
Next, the semilocal convergence of method (8.3) is developed.

Theorem 10. Under the conditions (H) the following items hold:{x,} C U (xo,t"), and there
exists x* € Ulxp, "] solving equation F (x) = 0 such that x* = lim x, and

n—-—o0

|X" —x,|| <" —1t,. (8.19)
Proof. Estimates
v = xk || < s — (8.20)
and
[0t — Xk || < thes1 — sk (8.21)

are shown using induction on k. By (8.4), (H1) and the first substep of method (8.3), we
have

lyo =0l = [1F"(x0) "' F (x0) | <M= s0—10 <1,

0y € U(xp,t") and (8.20) holds for k = 0. Let v € U (x,¢*). In view of (H1), (H2) and the
definition of *, we get

IF" (x0) ™ (F'(v) = F' (x0))|| < Lollv—xo]| < Lot* <1,
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F'(v)~' € L(B,,B;) and

1

FI 71FI <
P00 P (o) < o

(8.22)

by a lemma due to Banach on linear operators with inverses [12]. We have

lzo—xoll = [I¥F'(x0) ™' F(x0) |
VI (x0) ™' F (o)

<
< |IF'(x0) T F (x| <m <17,

s0 79 € Ul(xo,t*). Suppose xi,yk,zx € U(xo,t*). Then, by the second substep of method
(8.3), (H3), (8.22) (for v = xy), and (8.4), we get

e =yl < o |||F ()™ F' (xo) |
X|[F (x0) ™ (F' () = F' (2 I F () ™ F ()|

1 — x|
R < e — si,
209 1= Lo|Jxx —xo |

IN

and

[[5+-1 = el + 1y — o]
Tkl — Sk + Sk —1to =t <17,

X1 =l <
<

so (8.21) holds and x4 € U (xp,").
Next, using the first substep of method (8.3) we can write

F(xz) + F (x¢)
1) = F (x) = F' () (ke — xx)

Flx1) = F(xeer) —

) —
F' (o) (o1 — ) + F' () (g1 — X))
) —

)

= F(

Xk+1
Xk+

= F(xrs1) —F () = F' (o) (kg1 — xe)

+F" (o) (X1 — Vi) (8.23)

It folloows by (8.4), (H3), (8.23) and the induction hypotheses

_ L
1F"(Geo) ™ F (o)l < Sk =2l + Lo iess =y

L
< St — 1) +Li(feer —s0)- (8.24)

Then, by (8.4), the first substep of method (8.3), (8.22) (for v = xx11) and (8.24) we obtain
st —xertll < 1F G F o) [ (x0) ™ F ()|

L(tis1 —t)? + 2Ly (tr1 — %)
2(1 — Lo||xk+1 —xol|)

IN

< Skt — tea
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and

Vi1 — X1 || + || x+1 — X0 |

Skl =tk 1 g1 —to = Sk <1t

lVies1 —x0] <
<

Thus, yx+1 € U(xo,t*) and the induction for (8.20) is completed too. Sequence {#} is
fundamental as convergent. In view of (8.20) and (8.21), sequence {x } is fundamental too
in Banach space Bj. Hence, it converges to some x* € U [xg,1"]. By letting k — o0 in (8.24),
we conclude F(x*) = 0. O

The uniqueness of the solution x* result follows without necessarily using conditions of
Theorem 10.

Proposition 6. Suppose x* € U(xy,&y) C D for some &y > 0 is a simple solution of equation
F(x) = 0; Condition (H2) holds and there exists § > & such that

Mo(Eo+E) < 2. (8.25)

Set G = Ulxy,&] N D. Then, the point x* is the only solution of equation F (x) = 0 in the set
G.
1
Proof. Let y* € G with F(y*) = 0. Define linear operator Q = / F'(x* +0(y" —x*))d6.
0
By using (H2) and (8.25) we get in turn

I (x0) 1 (Q = F'(x0))[| < Mo/ol((le)llx*xollJrelly*xoll)de
< %@04&) <1.

Thus, x* = y* is implied since Q! € L(B,,B;) and Q(y* —x*) = F(y*) —F(x*)=0. O

Remark. (1) The conclusions of Theorem 10 hold if (HS) is replaced by

1
(H5)’ U|xo, E] C D if conditions of Lemma 13 hold
or

1
(H5)” Ulxo, 111—8] C D if conditions of Lemma 14 hold. Notice that Lo and

are given in closed form.

N
1-6

(2) Condition (H3) can be replaced by stronger
(H3)" ||[F'(x0) ' (F'(u) = F' (")) || < Laflu— |
IF" (x0) ' F'(u)|| < Ls

for all u,v € Dy used by usin [1,2,3,4,5]
or
(H3)”||F'(x0) ™" (F"(u) = F'(v))|| < Lalju—v]|

1F" (xo) ™ F' () || < Ls

for all u,v € D used by us others.
Noticethat Lo < Lg and L < [, < L4.
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(3) Tighter Lipschitz constant will further improve the convergence criteria. As an ex-
1
ample. Define S = U(x, Lo —m) N D provided that Lon < 1 and suppose S C D.

Then, we have S C Dy. Hence, the tighter Lipschitz constants on S can be used.

It is worth noticing that in all these cases we use the initial information, since
~1

x1 =x0 — F'(x0) "' F (x0).

(4) The second condition in (H3) can be dropped if we replace L —1 by 1+ Lot, since

1F" (xo) ' F () | 1F" (x0) " (F' () = F'(x0) + F'(x0)) |

lJrL()Hu*xOH.

VANVAN

Then, 1 4 Lot can replace L;. This is important when 1 + Lot < L.

(5) Under all the conditions (H), set &y = ¢*.

4. Numerical Experiments

We compute the radius of convergence in this section.

Example 1. Let By = B, = R. Let us consider a scalar function F' defined on the set Q =
Ulxo, 1 —g] for g € (0,1) by
F(x)=x—gq.

1—
Choose xop = 1. Then, we obtain the estimates N = Tq’

[F'(x0) "' (F'(x) = F'(x0))| = |¥*—xg]
< x+xo|lx—xo| < (Jx—xo0| +2|x0]) |x — x0]
(1=g+2)]x—x0| = (3—¢q)lx—xo,

1 1
forallx € Q,s0 Ly =3—¢q, Qy=U(xp,—)NQ =U(x9,—),
q, Q0 (OLO) (OLO)

y* — 27|
<y x|y —x| < (ly—x0 +x—x0 +2x0) [y — x|

[F' (x0) ™! (F'(y) = F'(x)]

(ly 0] + e 0| + 2] by~
1 1 1

— 4+ —+2)y—x| =2(1+—)|y—x,
(- + -+ b=l =20+ )by

IN

1
forall x,y € Q and so L = 2(1+E).

[F'(x0) ™ (F'(y) — F'(x)] (Iy = o[ + |x = xo[ +2[xo[ ) [y — x|

(1—=g+1—qg+2)ly—x]=2(2—q)ly—x,

IN

forall x,y € Dand L, =2(2—gq).



86 C.I Argyros, S. Regmi, LK. Argyros and S. George
1
Notice that for all ¢ € (0,1),L; = (1 + a)27
Ly <L<L,.

Next, set y = x — F/(x) "' F(x),x € D. Then, we have

5 3
y+x=x—F'(x)"'F(x)+x= );T;rq
Define function F on the interval D = [¢q,2 —g] by
_ 583 +¢q
Then, we get by this definition that
F(x) 15x* — 6xq
X) = ———
9x*
_ S—q)(P+xg+q°)
N 3x3 ’

/2 _
where p = { ?q is the critical point of function F'. Notice that ¢ < p < 2 —gq. It follows that

this function is decreasing on the interval (g, p) and increasing on the interval (¢,2 — q),
since x> +xg+¢> > 0 and x> > 0. Hence, we can set

52-9)*+q
k=21 4
9(2—-q)?
and
K, < Ly.
Butifx € Dy =1 ! 1+ 1] then
X = -7 FRE
0 Ly Lo
3
Z:Sp Jrq?
9p2

4—q

where p = and K < K, forall g € (0,1).
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Chapter 9

Ball Convergence Comparison for
Methods Whose First Step is Given
by Newton’s for Solving Nonlinear
Equations

1. Introduction

A plethora of applications from diverse areas can be brought in the form
F(x)=0, 9.1)

where F : Q C X — Y is a continuous operator between Banach spaces X,Y and Q # ¢ is
an open or closed set. The solution x* if it exists of the non-linear (9.1) is needed in closed
form. But this is possible only in special cases. That is why researchers and practitioners
resort to the conclusion of iterative methods of approximating x*.

Newton’s method defined forxp € Q,n=0,1,2,..... as
Xn4-1 = Xn *Fl(xn)ilF(xn) 9.2)

is by no doubt the most popular quadratically convergent method. But to increase the order
of convergence too numerous methods have been proposed with (9.2) as a first step. Below
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we provide an incomplete list of popular methods of order higher than two:

X1 = Yo —F ()" F (), 93)
St =t 3 L1 1L) " F () F ), ©0.4)
Ly =F'(x,) " F" (xa)F ()" F(x),

Xna1 = Yn+ %L,, (I+ Ly (I —YL,) ") F' (x,) " F (%), 9.5)
Suet = 3Kl K1 —¥K) ™) () F ), ©6
K= F ()™ F" (o 3 ()™ F (o) ()™ F (),

b =3 F ) Pt 2 umx) = P 0w ), O

in=%Xn — [IJF %Qn + %an(lf(len)il]Fl(xn)il

Xn+1=2n — [IJFQn +(x2Qn2)]Fl(xn)7lF(Zn)7 (99)

F(x,), 9.8)

-1

_ 1
On :Fl(xn) I(Fl(xn) *FI(Vn))v Vo =x,— gFl(xn) F(xn)7
1 2 _
=0 = 1+ 3La+ %an + %L,,3]F'(xn) 'F(x), 9.10)
Xn+1 =2n — [IJFLn JFBAn]FI(xn)ilF(Zn) (9.11)

and

1

Ay =F'(x3) ' F" (x2)F (x3) ' F ().

Here o, B,y are real parameters. Methods (9.2),(9.3); (9.2),(9.4); (9.2),(9.5); (9.2),(9.6);
(9.2),(9.7); (9.2),(9.2),(9.8),(9.9); and (9.2),(9.10),(9.11), are of order three or higher.

In this chapter, we determine the ball of convergence for these methods, so we can
compute them under the same set of conditions. As far as we know such a study has not
been done. Our technique is very general so it can be used even if we exchange (9.2) by

Yo = X0+ F'(x2) " F () (9.12)
and use as a second step say
Xa1 =0 — F' ()" F(yn) 9.13)
or
St =% — F' ()™ Dy FIF (5) ™ F (). 9.14)

2. Ball Convergence

Let @g,9,9; and @, be continuous and non-decreasing function defined on the interval
T = [0, +o0). The common conditions used are:

Suppose
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(Cy) F:Q —Y is twice continuously differentiable, and there exists a simple solution
x" € Q of equation (9.1).

(C>) Function @y (7) — 1 has the smallest zero p € T — {0}.
Set @ = U(x*,p) N Q.

(G3)
IF () (F'(w) = F'(x*) | < @o(flw—x|

for each w € Q.

(Cq)
IF () (F'(u) = F'0)[| < (|l —v])),

I ()™ P ()] < @1 (flu—7]))

and
~1
IF (") F" ()] < @2 (|l —x7))
for each u,v € Q.

(Cs) Ulx*,s] C Q, where s is determined later depending on the method.

In view of conditions (C), we have in turn the estimates :

Method (9.2) [1,2,3,4,5,6,7]

Xpo1 — X" =x, —x" —F'(x, N (xn)
— [P (% F () / F () F (400 —x°)) — F' ()0 0 — )],
SO,
1
1-0)|x, —x*||)d06||x, —x*
— Qo ([[xn —x*||)
< @1([Jxns *X*H)Hxnﬂ *X*H < %xas1 *X*H <"

where

Jo ((1—0)1)d®

() = 1—@o(1)

and r is (if it exists) the smallest solution of an equation ¢; () — 1 = 0 in (0,1).
Then, {x,} C U[x",r] and

lim x, = x*. 9.15)

n—-—oo
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Method (9.2), (9.3) [13,14,15]
As in the previous case we deduce ||y, —x"|| < @1 (||xy —x"||) [|lxn — x| < [J, —x"|| < 7.
It then follows in turn from the second sub-step.

%41 = X" = [lyn —x* *FI(Yn)ilF(Yn)JF(FI()’n)il 7Fl(xn)7l)F()7n)||
< Jo (1 =) [lya=x")dBllyn —x[| | ma Jo 91(8]lyn—x"])dO]ly, — "
- 1= o([lyn —x*])) 1= @o([lyn —x*[1) (1 = @o([lxn —x*|)
< Jo @((1 = 0)@1 ([l —x* 1) [l —x* B ([l — x| [0 — "]
- 1 —@o (@1 ([|xn —x*[]) lxn —x*[])
mnfol Q0P ([Ixn — " | llxn — x*[|)dO@1 (|| — ™ ) [[ 202 — X"
(1= @0 (@1 ([[xn —x* 1) [} —x*1)) (1 — @o ([ —x*))
< @2(lvn —x* D) [l — x| < [l — x|

where
My = Qo(|[yn —x*[]) + o (|lxn —x"|)
My = Q(|[yn — X)),
a(t) = Jo @((1=8)@i(1))dB@i(1) | my fo @(001(1)1)dBps (1)
1= @0 (91 (1)7) (1 —=@o(@1(1)1)(1 —@o()
m(t) = @o(t) +@o(@1(2)1)

m=@((1+¢(?)t)

and r is the smallest solution (if it exists in (0, p) ) of the solutions @; (1) —1=0,¢(t) — 1 =
0.
Then, (9.15) holds for this method.

Method (9.2),(9.4) [17,18,19]

It follows from the second sub-step (9.4)

* * — 1 —_ —_
[Xn 1 —x*|| = x, —x *Fl(xn) IF(xn) - ELn(I*VLn) lFl(xn) IF(xn)»
SO

Jo @((1 = 8) |13, —x[|) || —x*| lp Jo @1 (8l —x* )8 lx, — x|
1= o ([}xn —x*]) 257 (1 = [¥lpalben = x*{1) (1 = 0ol — 1)
< @2([lxn —x7)

(X011 *X*H <
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where we used

@1 (1 =X [ @a(lloin —x*[[) I — X"

= |Y|pallxn —x*||,
1= o ([l —x*[|) Y] pallon — x|

IVLn|l < [Y]

_ 0i(1)a(1)
(t)_ lf(P()(l') 9

and

_ Jo9((1-8)1)de Iy @1 (61)d6t
1= o(r) (1= vlp())(1 = @o(1))

Then r is determined as in the previous case and (9.15) holds for this method too.

001 +30(0)

Method(9.2),(9.5) [19]
As in the previous case, we get

1 _ 1 _ _
[|Xn+1 *X*H = ||¥n —x"+ ELnFI(xn) IF(xn) + EL%(I*VLn) lFl(xn) IF(xn)H

1 1
< IIyn—x*||+§1zan/0 ©1(0]]x, —x* || )0, — x*||?
1 2 fOl (P1(9||xn*X*||)d6||xn—x*||3

+ 5P " "
2 (17|'Y|pﬂ||xn*x ||)(1*(P0(||xn*x ||)

< @[l — X"l — x| < e — X7 <, (9.16)

where

Jo 1(61)d6r*
(1=[1lp(0)(1—o(r))’

Jo @1(8t)der

1
o o)+ 5p()°

02(0) = @1(0) + 3p(0)

Method(9.2),(9.6) [20]
1
As in the previous case for @; and ¢,. But we also have to show v,, =x,, — §F ! (xn)~ ya (xn) €

Ulx",r).
But we have

_ 2 _
||Vn*x>k|| = ||xn*x>k *Fl(xn) IF(xn)JrgFl(xn) lF(xn)H

* - 2 — * *\ —
<oy —x *Fl(xn) IF(xn)HJFgHFI(xn) lFl(x )HHFI(X ) lF(xn)H

Lo @((1—0) [y —x*[)dO+ 2 [ 01 (8]lxcy — x*|)d0] ||, — x*|
1 —@o ({2, —x*[])
< (P3(||xn*x>k||)||xn*x>k” < ||xn*x>k|| <r

<

where,

~ Joo((1-8)1)d0+3 [y ¢1(6)dd
- 1—qo(t) '

@3 (1)
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Then, r is taken as the smallest solution in (0,p) of equation ¢;(¢) = 0,¢,(#) —1 =0 and
03 (l‘) —1=0

Method(9.2),(9.7) [18]
By the second sub-step, we get in turn that

A Jo @1(8ta —x*[)) 8], — x|
(1= @o(n —x°])2
Mo Sy @1(8]|x, —x*|)d0
(1= @o([lxn —x*]1)
< @2l =)l — x| < [l =2 < 15

[ 1 =X < [lyn ="+

< [@1([}xn —x*[) + e — x|
1
Wherevy\'n = (P(EHyn *an)
1 * * *
0’”»7‘11:(P0(§(1+(P1(||xn*x D)l —x*[|) + Qo ([l xn —x"|1),

A=A(r) = (p(%(l +@1(1))1)

and

_ Jo @1(61)d®
¢2(1) = @i(2) + (—got)2

Method (9.2),(9.8),(9.9) [16]
By (9.8), we have in turn that

4 Sy 9i(®l —x )], — x|
17|O{'1|q” li(PO(Hxn*X*H)
< @2l —x s =2 < o =" <

1
120 =X < llyn = *"[1 + 5gn(1
2

where

g\ Joei(d8)ds
I—Jailg’ 1T—@o(t)

@2(0) =0 (1) + (1 +

)

and we also used the estimate

¢(%Fl(x11)7lF(x11))

lf(PO(Hxn*X*H)
L0l )0l
0 01 (T (o)

1= Qo ([ —x*[])

||(len|| = |(xl|||Qn|| < 3|061|

<3|oy|

S |0€1|61n-
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We also consider equation @3(z) — 1 = 0 given before required to show v, € U[x",r).
Moreover, in view of the third sub-step, we obtain in turn that

([0 —x*[| = [|zn — " *FI(Zn)ilF(Zn)JF(FI(Zn)il *Fl(xn)il)F(Zn)H
[F" (zn)~ F ) F (o)~ (F! (x0) — F' (z0)) |
1F () =) F! () [ 1FY (%) =) F (2n)
_ Jo ©((1 = 8) 2y —x"[)d6|z, —x"]|
- 1 —@o([[zn —x*[])
N (@020 =" 1) + Po[xn —x*11)) Jo @1 (Bllza —x*|)@8]|z0 — x°|
(1= @o([lzn —x*[) (1 = @o([lxa —x*]))

Jo @1(8]1z0 —x*[|)d8]zn —x*|

1 — @o([[oxn — x|
< @a(floen — XD floen — x| < [l — x|

S Hzn*x>|< *FI(Zn)ilF(Zn)H +

Jrqn(l + |062|61n)

where

Jo 0((1=0)¢2(1)1) (1)
1 —@o(@2(2)1)
(9o(@2(1)1) + 9o(1)) Jo @1 (00a(1)1)dO@s (1)
1 —@o(@2(1)1)) (1 —o(1))
q(1+0a]q) fy @1(0ga(t)t )de(Pz(f)
1—@o(t)

P4(1) =

+

Then, the smallest of the solution of equations(if it exists)
¢i(t)—1=0,i=1,2,3,4shall ber.

Method (9.2),(9.10),(9.11) [15]
By (9.10),we in turn that

l >k k
1pa(1+|otpn+[0*pp) Jo 18], —x*[|)dB]]x, —x*||
1 —@o ({2, —x*[])
< (P2(||xn*x>k||)||xn*x>k” <l —x* <1y

e N

9.17)

where,

2 2\ rl
0 (t) = @1 (1) + %P(l‘)(l + |OC|P(Z‘)1+|((XPL£§I) ) o (pl(et)de‘
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Moreover, from (9.11), we get in turn that

(1 =7 = ||z —x" — (FI(Zn)ilF(Zn))+(FI(211)71(FI(x11) *FI(Zn))FI(xn)ilF(Zn)
*Ln(Fl(xn)ilF(Zn) *BVn(FI(xn)ilF(Zn)H
_ St 0]z —x a8z, |
- 1= @o(l[za —x*[])
o (@olllzn =[[) + Po(lxn —x" 1)) Jo @1(8llzn —x*[))d8|z — x|
(1 =@o(llzn —x*[1)) (1 = @o(flocn —x*[]))
pnfol<P1(9||Zn*X*II)d9 L IBIlA Jo @1(8]z0 —x"]))
1= @o([}xn —x*[]) (1= o([lxn —x7))?

< @3 (loen — x| floen — x| < floew — 2],

where we used

@2 (|, —x*|) fol 01(8]|z, —x*||)d0||z, — x| <

18] < , <
1= @o([lxn —x*))?

and

1
b 9ELDBRL) 4 (alox(t)+u(1) || 010010100
Jo 91(892(1)1)d09s(t) | |BIS f @1 (Ba(1)1)dOa(1)
1—@o(1) 1—@o(1)
Method (9.12),(9.13) [21]
By (9.12),we can write

@3(1) =

+P

Yn —x = Xn —x *Fl(xn)ilF(xn) JFZFI(xn)ilF(xn)»

o @((1—8)lxy —x*[[dB+2 fy @1 (Blxy —x* )] [0 —x°]|
1= o ([}xn —x*[])

< @1 (0) |l — 27| = @l —x"|| <ar,

so, HYn *X*H <

where

1(1) = fO o((1— )l)d?p;r(z)fo ¢1(01)d0

and

I1]262-+1 7X*|| = ||yn*x>k *FI(Yn)ilF(Yn)JF(FI()’n)il 7Fl(xn)7l)F()7n)||
Jo @((1—8) [y —x*[))d8][y, — x|
lf(PO(HYn*X*H)

fo @1 (6lyn —x"[))dB]lyn — x*[[ (@o[xn — 2" || + Y0 (llyn —x"|]))
(1= @o ([l —x*[1)) (1 — @o([lyn —x*[)
< @[]y —x ||)||xn—x | < ||xn*x>k|| <,




Ball Convergence Comparison for Methods Whose First Step ... 97

where

Jo @((1—8)ar)dBa  fo @1 (8ar)dBa(po(r) +o(ar))
1 —@o(ar) 1= (1)) (1 = @o(ar)

$2(1) =

and a = ().
Then the radius r is chosen as the smallest solution of an equation @,(z) —1 =0, in (0,p)
and provided that (Cs) is replaced by (Cs)'U[x*,ar] C Q.

In order to study method (9.12),(9.14) we suppose instead of the last condition in (Cy)

1F" () (e, s F] = F o) | < @2l =571, 1y — 271D,

where @, : [0,p) x [0,p) — T is continuous and non-decreasing in both arguments.

Method (9.12),(9.14) [22]
As in the previous case

[[yn =X < @l =7

and

Hx”*x*H:Hx”ix**Fl(xn)ilF(xn)JrFl(xn) lF(xn) Fl(xn) [xn,yn,F]F'(xn)*lF(xn)||
< lon = — F'(50) " F o) [ [ (5) ™ (F () — [y s FIF ()~ F ()|
< Jo @((1=8)]lx, —x* )] x, —x* |
a 1= @o([lxn —x*|)

@2 ([0 = x|l 1y = x*[| fo @1 (8] —x*[|) @8] |, —x*|

(1 —=@o ([l —x*1))?
< @[l =X Dl —x*|| <l — x| < 1y

+

where

Jo @((1—8)1)d® a1 at) [y ¢1(6r)d®
1= @o(7) (I=@o())*

Here, the radius r is determined by solving ¢,(¢#) — 1 = 0, and choosing the smallest
solution r € (0,p). Moreover ,(Cs) is replaced by Cs)'.

P2(1) =

Remark. Notice that in the first condition in (C4), we can suppose instead

1F" (")~ (F" () = F' )| < §(fJu—v]
forall u € Qiand v =u—F'(u) "' F(u),

50 §(t) = 0(7).
Then, the tighter function ¢ can replace @ in all previous results to obtain tighter error
bounds and larger radius r.

Next, the uniqueness of the solution x* result follows which is the same for all methods.

Proposition 7. Suppose:
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(1) The element x* € U(x",Ry) C Q for some s* > 0 is a simple solution of equation
F(x)=0.

(2) Condition (C3) holds.

(3) There exists R > Ry so that

/Ol(Po((le)RJreRo)d6< 1. (9.18)

Set Qy = QNU|[x*,R]. Then, x* is the unique solution of equation (9.1) in the domain Q.

1
Proof. Let A € Q; with F(A) = 0. Define S = / F'(A+6(x* — 1))d6. Using (C3) and
0
(9.18) one obtains

IF (x0) "' (S=F'(x0))[| < /OI(PO((l(3)||7v960||+9||X*?CO||)07e
< /Ol(po((le)RJreRo)d6<1,

so A = x", follows from the invertibility of S and the identity S(A —x*) = F(A) — F(x™)
0-0=0.

ool
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Chapter 10

Extending the Convergence of a
Steffensen-Like Method without
Derivatives for Solving Nonlinear
Equations

1. Introduction

By eliminating the Taylor series tool from the existing convergence theorem, an extended
local convergence of a seventh-order method without derivatives is developed. The first
derivative is all that is required for our convergence result, unlike the preceding concept.
In addition, the error estimates, convergence radius, and region of uniqueness for the so-
lution are calculated. As a result, the usefulness of this effective algorithm is enhanced.
The convergence zones of this algorithm for solving polynomial equations with complex
coefficients are also shown. This aids in the selection of beginning points with the pur-
pose of obtaining solutions to nonlinear equations. Our convergence result is validated by
numerical testing. Let F : Q C X — Y such that

F(x)=0 (10.1)
Sharma, Arora fifth order method [7]

Yn=Xn *A;lF(xn)»

Xn+1=Yn *BnA;;lF(yn)v
An = 20, %03 F 20 = X0 + F (xn) (10.2)

and

Bn — 3I*A;l([ymxn;F] - [ymzn;F])y

where [+, -] : Q x Q — d(x,y) is a divided difference of order one [1,2,3].



102 C.I. Argyros, S. Regmi, I.K. Argyros and S. George
2. Majorizing Sequences

Letb, L, Ly, L, L, > 0 and a,R > 0 be parameters. Define sequences {t,},{s,} by o, so =
R,

Vo = L(sp—1tn) +Lo(tn+a)(sn—ta),
. R L(Sn - tn) + Loty +a+Ly 2 v
na-1 n (1 fLo(Zer)tn)z 1 —LO(Zer)l’n ns

and

L(ty1—5n) +L(sy —t, + Loty +a) (s, —1tn)

1 —Lo(2+D)tys1 '
These scalar sequences shall be shown to be majorizing for the method (10.2). But first, we
need some convergence results for them.

Sp+1 =In+1+ (103)

Lemma 15. Suppose that foralln =0,1,2,---

1
24+b)ty < —. 10.4
(2+b)n < - (10.4)

Then, sequence {#,} is non-decreasing, bounded from above by and converges

1
(2+4b)Ly

1
to its unique least upper bound #* € [0, E]

1 1
Proof. Tt follows from (10.3) and (10.4) thatz, <s, <ty < Lo so t* = lim¢t, € [0, g]
n—oo
|

The semilocal convergence of method (10.2) is based on conditions (C).
Suppose:

(C1) There exists xp € Q,a > 0,b > 0,R > 0 such that A;' € L(V,X), ||[F(x0)| <
a, [x,x0; F] < b and ||A61F(xo)|| <R.

(C2) |1Ag ! ([z,x:F] — Ao) || < Lo(l|lz— 20| + [|x — x0]|) for some Lo > 0 and all z,x € Q.

Set Q; = U (xo, )NQ.

1
(24b)Ly

(C3) [|Ag" ([zow, F] = [y, FDIl < LIz =yl + lw—x])), |Ag"' v, z: F]|| <Ly and ||F(x) —
F(x0)|| < Ly||x —xo]|, for some L,L;,L, > 0 and all x,y,z,w € Q,

(C4) Conditions of Lemma 15 hold

and
(Cs) Ulxo,r] C Q, where r = (1+Ly)t* +a.

Next, we present the semilocal convergence of method (10.2) using conditions (C) and the
aforementioned terminology.
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Theorem 11. Suppose conditions C hold. Then, sequence {x,} generated by method (10.2)
is well defined in Ulxo,#*], remains in U|x,t*| for all n =0,1,2,--- and converges to a
solution x* € U|xy,#*] of equation F(x) = 0. Moreover, the following error estimates hold

HYn*an < Sp—ty,
X1 =yall < tar1—sa
and
| — x| < ° =ty (10.5)

Proof. Mathematical induction is used to show (10.5) and (10.5). Using (10.3) and (C))
we get [lyo—xo| = |4y ' F(x0)|| < R = s0—19 < t*, 50 yo € Ulxo,#*] and (10.5) holds for
n=0. Let zx,xx € Ul[xo,t*]. Then, by (C;) — (C3) we have

14 (A =A0) |l < Lo(llzx — zol| + [Pk — xoll)
< Lo(tr+bty+1) =Lo(2+ b))ty < 1,

where we also used

[+ F (i) —x0 — F (xo) || < ok — 01| + [[F (x) — F (x0) |
< t+bty=(14b)k.

l|z& — zo|

It follows by the Banach lemma on invertible linear operators [1,2,6] and (10.6) that
At e L(Y,X) and

B 1
4 Aol < 5 (10.6)

*Lo(Zer)tk '
By the second substep of method (10.2) we can write
X1 =Yk = —Ag ([ F] = o X Fl+ Do 2o FDA F () +2A0 ' F(w). - (10.7)

By (C3), we obtain in turn using (10.2), (10.3) and (C3) the estimates:

F(ye) = F(y) —F () +F ()
= F(y) —F (o) — A (e —x)
= (woxis Fl = [zk,x6 F) (v — k),

|AG'F i)l < Lllze—yillllye — x|
< L(sk—te+ Lot +a) (s — 1) = v,
where we also used
lae—yel = Tt F () =il < e —xell + 1 F ()|

sk =tk + [|F (i) — F (xo) || + [|F (xo) |
Sy —t + 1oty +a.
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Moreover, we have

317A]:l([yk,)Ck;F] - [ykvzk;F]) = A]:l(3Ak — [y]ﬁxk;F] _ [yk,Zk;F])
= A (A= Dioxis F] = [, s Fl) 421
= Ap (o5 Fl = [ F) = e 2 F)) +21,

so by (10.3) and (10.7) summing up we obtain

L(sg—tx) + Loty +a+ Ly n 2 ;
(1—Lo(2+b)1)? 1—Lo2+b) | *

= Ik+1— Sk

X1 —ykl] <

and
llxke1 —xo] < [Jxkg1 — Yl + vk — X0 || < tesr — sk + sk —t0 =ty <1

Thus, (10.5) holds and the iterate x,; € Ulxo,?*]. Then, in view of method (10.2), we can
write in turn

Fx1) = F(xer) = F() +F (k) = F (o) + F ()
= 1,906 F] (o1t — i) + s X5 F] (0 — X)) — Awe (v — %)
= [ 1,6 F] (o1 = i) + (Vi X F] = (206065 F]) (0 — Xk)-

By taking norms in (10.8), we get in turn

1AG ' F (k1) | L[|y v = yill + Lllye = 2l llye — x|

<
< Ly(tgp1—sk) +L(sg — tx + Loty +a).

Then, by (10.2), (10.3), (10.6), we obtain

it —xeetll < A AollIAG F (xieq1) |
Ly (tk1 — sk) + L(sk — ti + Lot +a) (sg — )

<
1 *L0(2+b)tk+l

= Sk+1 —lk+1
and

v =l < Iveer =Xl + P —xoll < skt —ter1 + 1 —to
= S <tN

Hence, the iterate y;.; € Ulxp,7*] and the induction for assertions (10.5) and (10.5) is
completed. Sequence {7} is fundamental as convergent. Consequently, {x; } is fundamental
too by (10.5) and (10.5) in Banach space X. Hence, it converges to some x* € U [xo,#*]. By
letting k — oo in (10.8) and using the continuity of F we conclude F(x*) = 0. O

The uniqueness of the solution result follows.
Proposition 8. Suppose

(1) There exists a simple solution x* € Ulxo,p] C D for some p > 0.
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(2) Condition (Cy) holds.
(3) There exists py > p such that
Ly(p+pi+a)<1. (10.8)

Set Qp = U|xq,p1] NQ. Then, the only solution of the equation F(x) = 0 in the region
Q5 isx*.
Proof. Let d € Q, with F(d) = 0. Set [x*,d;F] = T. Then, by G5, (1), (2) and (10.8) we

have in turn

Lo(|lx* —zol| +[ly* —xol)
Lo(p+a+py) <1,

14, (T — Ao) ||

VANVAN

where we also used
[[x* —zo] < [[x* —xo| + [|F (x0) | < p+a.

It follows by (10.9) and the identity 7' (x* —d) = F (x*) — F(d) = 0 that d = x™. O
Remark. (1) In the view of (10.4), we can replace r by r; in (Cs), where

(1 +L2)
L) @

ry =
which is given in closed form.

(2) The only Condition from the C conditions used in Proposition 8 is (C;). But if we
use all conditions C, then we can certainly set p = ¢* in this Proposition.
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Chapter 11

On the Semi-Local Convergence of a
Fourth Order Derivative Free
Two-Step Steffensen Method for

Solving Equations

1. Introduction

A fourth order two-step Steffensen method for solving equations is studied in this Chapter.
Let X and Y be Banach spaces and  C X be an open set. We are concerned with the
problem of approximating a locally unique solution x* € Q of the nonlinear equation

F(x) =0, (11.1)

where F : D — Y is a nonlinear operator. A plethora of applications reduces to solving
equation (11.1) [1,2,3,4,5,6,7,8]. The solution x* is needed in a closed form. But this
is attainable only in special cases. That explains why most solution methods are iterative.
In particular, we study the semi-local convergence of the Steffensenmethod (SM) defined
vn=0,1,2,...by

Yn = Xn *A;lF(xn)
and
Xn+1 = yn*B;lF(yn)» (11.2)

where A, = [uy, Vs F|, By = 2[yn, X3 F] — [tn, va; F), [, 3 F] : D x D — L(B, B) is a divided
difference of order one for operator F,u,, = x,, — F (x,) and n, = x, — F (x,,). It was found to
be of a fourth convergence order. In particular, the radius of convergence was established.
We show that this radius can be enlarged without new conditions. Other benefits include
tighter error bounds on distances ||x,, —x*|| and better information on the uniqueness of the
solution. The technique is independent of method (11.2). Thus, it can be used to extend the
applicability of other methods. This process provides the location of the SM iterates and
computable error distances ||x, 1 —x, || and ||x, —x*||.
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2. Majorizing Sequences

Let Ly,L,L; > 0and a > 0,m > 0 be parameters. Define scalar sequence {z,} by 1o =0, 59 =
n,

L(Sn —t, 2Lt + 261) (Sn - tn)
Lo(sp+t,+2a)+ L(sy, —t, +2L1t, +2a))

i1 = SnJrli[ (11.3)

and
L(tn+l — S+ Z(Sn - tn) +2Lt, + 261) (tn+l - Sn)
1 *ZL()(I JrLl)l’n+1

Sp+1 = Ipp1+

Sequence {t,} shall be shown to be majorizing for method (11.2) in the next section. But
first, we develop two convergence results for it.

Lemma 16. Suppose that foralln =0,1,2,...
Lo(sy+1t,+2a)+L(s, —t, +2L11, 4+ 2a) < 1 (11.4)

and
2Lo(1+ L)ty < 1. (11.5)

Then, the following assertions hold

1

0<t,<s,<t —_ 11.6
ShSsi St < 2L0(1+L1) ( )
and
1
t*= lim ¢ . 11.7
ngloo n € |:O7 2L0(1+L1):| ( )

Proof. Ttfollows from (11.3)-(11.5) that sequence {, } is non-decreasing and bounded from

above by oL = 17" and as such it converges to its unique least upper bound t* €

(1+Ly)
[0,277]. O

In order to develop the second convergence result for sequence {#,} we need to define
recurrent polynomials on the interval [0, 1) by

n(6) = LM+2LLL(1+1+ -+ +2La+2Lot (1 +1 -+ +1")n) +2aLot
LTI 4 2LL ¢ (14t 4+ - - ")+ 2Lat — 1,

P (1) = Le"t'm42L'n4-2LL (1 +t+---+t" )M +2La
+2Lo(1+Ly) (1 41+ +1")M—t,

polynomials on [0, 1)

pi(t) = Lt—142LLit+Lt* — Lt +2LL; 1%,
pa(t) = Li* —Lt+2Lt —2L+2LL 1t +2Lo(14+ L)1
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and parameters

b L(m+2a)
"7 1-[Lo(n+2a)+L(n+2a)]
by L(t1+n+2a)
I*L()(l JrLl)l’l7
b 2La
. 1—2a(Lo+L)

and b = max{by,by,b3}. By the definition of polynomials p; and p,, we have p;(0) =
—L<0,p;(1)=4LL; > 0,p2(0) = —2L < 0and py(1) =2LL; +2Ly(HL;) > 0. Then, the
intermediate value theorem assures that the polynomials have roots in (0, 1). Denote by S
and S, the least such roots of polynomials p; and p,, respectively. Define » = min{S;,S>}
and § = max{S;,S2}.

The convergence of sequence {7,} is shown under the conditions (A) :

(Lo+L)M+2a) < 1, (11.8)
Lo(1+L)t < 1, (11.9)
2a(Ly+L) < 1, (11.10)
M) < 0, atr=s (11.11)
M@ < 0 atr=s (11.12)
and
b<r<s. (11.13)

Conditions (11.8)-(11.10) assure that parameters by, b,,bs3,b are well-defined. Moreover
conditions (11.11) and (11.12) can be written respectively as

(Lt +2LLy (1 +1) 4 2Lot (1 41) + Lt> + 2LLyt (1 +1)In+t[2La + 2aLy — 1]+ 2La < 0
and
(Lt +2Lt + 2Ly (1 +1) +2Lo(1 + Ly )t (1 +t +1*)n+2La—1 <0

which can certainly hold for i sufficiently small and the choice of b3. The second conver-
gence result on sequence {7, } is based on conditions (A) and the preceding terminology.

Lemma 17. Under conditions A the following assertions hold:

Ogtn+lfsn SS(Sn*tn) §S2n+ln7 (1114)
OSS,,*Z’,,SS(Z’,,*Sn,l) §S2nn (11.15)

and
= Tim 5, €[0,],1" = 1%9 (11.16)

Proof. Mathematical induction is used to show
0< L(sy —t,+2Lt,+2a)
~ 1—[Lo(sp+ta+2a)+L(sy —t, +2L1 1, + 2a)]
0< L(tn+l — S+ Z(Sn - tn) +2L1t, + a)

- 1*2L0(1+L1)l’n+1
0<t,<s,<tps1. (11.19)

IA
195

(11.17)

IN

S (11.18)
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Estimates (11.17)-(11.19) hold true for n = 0 by (11.3),the definition of b; and b, and
(11.13). Suppose (11.17)-(11.19) hold true for all k = 1,2, ..., n. In view of (11.14),(11.15)
and the induction hypothesis we have in turn that

1*S2k+l
se <t +SHn < s+ I 8% <n+ S+ 45 = 4 "< * (11.20)
and
1 — §2k+2
fir1 <sp+SH N <+ 5P 457N <so+Sn -+ 5% In = — 5 <
(11.21)
Notice that $?* < §*. Hence, (11.17) holds if
_ Qk+1 1 — sl
LS +2LL, g M+2La—S+2LoS—— N+ 2aLlyS+ 8" In
_ qn+l1
F2LLS———M+2LaS <0
or
() <0 atr=Ss. (11.22)

Recurrent polynomials h,(,l) (¢) are connected . Indeed, we have in turn

h(l)l(l‘) 7h’(11) _ Ltn+ln *Ll‘nT] Jr2LL”J1+11,] +2Lol‘n+21'] +Ltn+2n *Ll‘n+l1'] Jr2LL”J1+2T]

n+
=p1(t)t".
In particular, we have
W =m0 atr=s,. (11.23)
So, (11.22) holds by (11.11). Similarly, estimate (11.18) holds if
_ qn+l 1— k+2
LS**m+2LS*n +2LL, - N+2La+2LyS(1+Ly) 5 M-S<0
or
A2 () <0 atr=5,. (11.24)

This time we have
W (1) = b (1) = L — L' = 2L 4 2LL, A4 4 2L (14 L1 = pa ().

In particular, we have

w0 =h (@) atr=5,.

Hence, (11.24) holds by (11.12). It then follows from (11.17),(11.18) and (11.3) that (11.19)
holds. Using (11.19) and (11.21) we deduce that

lim 7, =" € [0,£™].

n—-—0o0
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3. Convergence for Method (11.2)
The conditions (C) are needed: Suppose
(C1) There exist xy € Q such thatAal € L(Y,X)

IF (x0) || < aand [|Ag"F (x0) || <.

(C2) There exists Ly > 0 such that for all x,y € Q

1Ag " (be. y: F] = Ao )| < Lo([lx—uo|| + [y = voll)-

Define Q; = U (xo, )NQ and || F(x) — F(x0)|| < L ||x —xo]-

1
2Lo(1+Ly)
(C3) There exist L > 0,L; > 0 such that for all x,y,z,w € Q

1Ag " (b ys F) = [zows FDI| < Ll =z + [ly —wl)).

(C4) Conditions of Lemma 16 or Lemma 17 hold.
(C5) Ulxo, T] C QT =t"+a.

The semi-local convergence of method(11.2) uses conditions (C).

Theorem 12. Suppose conditions (C) hold. Then, sequence {x, } generated by method(11.2)
is well-defined in U|xo, "], remains in U [xo,t"] for all n = 1,2, ... and converges to a solu-
tion x* € U|xo,#"] of equation F(x) = 0, so that

||yn*xn|| < Sp—1n, (11.25)
||xn+l *ynH <tpi1l—Sn (11.26)

and
|x* — x| < tF — 1. (11.27)

Proof. Using (C1) and (11.3), we get
Iyo —xoll = [1Ag 'F (x0) || <M = s0—1t0 <50 <17,
so (11.25) holds for n = 0 and yy € U|xo,"]. We have
[va = voll = [|xn — F (1) —x0 — F (x0) || < |lxn — X0l + [|F (%) — F (x0)[| < (14 L) |20 — 0|

and
llutn —uo || = [|xn + F (x2) —x0 — F (x0)|| < (1+L1) ]2 — ol
In view of (Cy) and (C)

145" (An—A0)[| = 1A " ([tn, vn: F] — [0, vo: F1) || < Lo(l|un — uto|| 4 [[va — o)
< ZL()(IJFL[)H)C,,*X()H < ZL()(IJFL[)H)C,,*X()H < 2L0(1+L1)l‘* < 1.
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Thus, A, ' € £(¥,X) by the Banach lemma on invertible operators [1] and

1
*ZL()(IJFL[)H)C”*X()H '

A, Aol < ; (11.28)

We need the estimates

120 = vall = 130 = v +F Qan) | < [1F () [| < 1 (xn) = F (o) [| 4+ [1F (x0) || < La[[xa = x0[[ +a,

HYn*unH = ||)7n*xn *F(xn) *F(XO)JFF(XO)H
< lyn = 2ull + | F (xa) = F (x0) || + [|F (x0)[| < $0 —ta + L1ty +a,

[l =voll = Ilxa —x0 4+ F (x0) | < [lxa — x| + [|F (x0)[| <t +a,
[yn—uoll = [lyn—x0 = F(x0)|| < llyn —%0l[ + [|F (x0) | < s0 +a,
lun —x0l| = llxn—x0 = F(x0)[| <" +a,

and
Ve =x0ll = llxa—x0+F(xo)| <t"+a

Then, by (C;) and (C3)

1Ay (B —A0)l| < [1AG" (v Xu: F] = [0, vo: F1) |+ [|Ag " ([VnsX0: F] — [tt, va: F])|
< Lo([lyn —uoll + 12 = voll) +L(I[yn — sall + |2 — val|)
< LO(SnJFthrza)JFL(Sn *thFlethrza) < 17
SO |
B, 'A|| < . 11.29
1B, Aoll < 1 —[Lo(sy+1t,+2a)+L(s, —t, +2Lt,+2a)] ( )

Moreover, iterate x; is well-defined. We can write

F(yn) = F(yn) = F (xn) +F (xn) = ([Yn, %03 F] = [t4n, V3 F]) (Y0 — %n)

146" F o)1l < L(lyn = tnll + 160 = vl lyn — %
<L(s,—ty+Lity+a+Lity+a)(sp—t,)

and

11—yl < [I1B, Aol A F () | < w1 — s,
%01 = X0 || < [[xns1 =yl F[yn = X0 Stngt —Sn+80 —to =tn1 —Su+8p —to =ty < t,

so (11.26) holds and x,,11 € Ulxo,1"].
Furthermore, we can write

F(xn+l) = F(xn+l) *F(yn) JFF(xn) = ([xn+17yn;F] *Bn)(xn+l *yn)v
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SO

1Ag F (onsr) | L([Prasr =yl + [y = xal[)

L(tn+l —Sp+ Sy —th 85, —ty, +Lity+a+Lit, Jra)(tn+l *Sn)

IN A

and

Iyt =t || < 1AL AollIAg F (xn) |
< Sptl —Intd
[yn+1 = %ol < [[yn+1—Xns1[] + |01 — 0|
< Snpl —tnp1 Hag1r —to = Spp1 <17

Hence, the iterate y,; € Ulxo,#*]. The induction for assertions (11.25) and (11.26) is ter-
minated. It follows that sequence {x,} is complete in a Banach Space X and as such it
converges some x* € Ulxo,"]. Finally using the continuity of F and letting n — oo we
conclude F(x*) = 0. O

Next, the uniqueness of the solution result follows.
Proposition 9. Assume
(1) There exist a simple solution x* € U(xp,p) C Q of equation F (x) = 0.
(2) Condition (Cy) holds and ||F (xp)|| < a.
(3) There exist p; > p such that

Lo(p+p1+2a)<1 (11.30)

Define Q; = U xq,p1] NQ. Then,x* is the only solution of equation F(x) = 0 in the set Q;.

Proof. Letv" € Q, be such that F(v*) = 0. Define M = [v*,x"; F|. Then, in view of (C)),
and (1)-(3), we get

145" (M —Ao)|l < Lo(|[v~uoll + [lx—wo )
< Lo([[v* —xol| + [|F (x0) | + [|Ix" —xol| + [ F (x0)[|)
<Ly(pi+a+p+a)<l.

Therefore, we deduce v = x* by the invertability of M and the identity
MWV —x")=F(W")—F (") =0.
O

Remark. (1) The parameters ¢]* and IL given in closed form can replace ¢ in condi-
tions (C4) and (Cs).

(2) Notice that in proposition 3.2 we did not use all conditions C. But if they were used
then we can setp =1".
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Chapter 12

A Semi-Local Convergence for a
Class of Fourth Order Method for
Solving Equations

1. Introduction

Let X and Y be Banach spaces and D C X be an open set. We are concerned with the
problem of approximating a locally unique solution x* € D of the nonlinear equation

F(x) =0, (12.1)

where F : D — Y is a nonlinear operator. A plethora of applications reduces to solving
equation (12.1). The solution x* is needed in a closed form. But this is attainable only
in special cases. That explains why most solution methods are iterative. In particular, we
study the semi-local convergence of the method defined Vrn =0, 1,2, ... by

x €D,z = x4 JFF(xn)»
Yn = Xn *A;lF(xn)
and
Xn+1 = Yn *M;;anM;;lF(yn)» (12.2)

where A, = [Zn»xn;F]» M, = [yn»xn;F]» B, = [ymxn;F] - [Zn»xn;F]» [-» -;F] :DxD —
L(B, B) is a divided difference of order one for operator F [1,2,3,6]. This method was stud-
ied in [12]. It was found to be of a fourth convergence order. In particular, the radius of con-
vergence was established. We show that this radius can be enlarged without new conditions.
Other benefits include tighter error bounds on distances ||x, —x*|| and better information on
the uniqueness of the solution. The technique is independent of method (12.2). Thus, it can
be used to extend the applicability of other methods. This process specifies a more precise
location of the method iterates leading to an at least as tight Lipschitz parameters which are
specializations of the ones in [12]. Hence, no additional computational effort is required for
these benefits either. Relevant work can be found in [1,2,3,4,5,6,7,8,9,10,11,12,13, 14].



120 C.I. Argyros, S. Regmi, I.K. Argyros and S. George
2. Semi-Local Convergence

LetLy>0,L>0,L; >1,a>0,b>0andn > 0 be parameters. The convergence of method
(12.2) is based on these parameters and scalar sequence {#,} defined for all n =0,1,2,...

by

Ip = 07S0 =n,
gn = Lo(sp+t,+Db), (12.3)
foil = Sut <1 + L(Sn - tn)) L(Sn —lytaty er) (Sn - tn) 7
1—gqy 1 —qgn

P, = LO(ZJFa)tn»
Vo = LO(SnJFthFb)JFL(Sn*tn)

and
L (1 —Vy, +L1)(f;1+1 *Sn)

(1=vu)(1 = Pys1)

Sequence {f,} shall be shown to be majorizing for method (12.2). But first, we show a
convergence result for it.

Sp+1 = Ipp1+

Lemma 18. Suppose that foreachn =0,1,2,...

0<P,<1,0<¢g, <1 and 0 <y, < 1. (12.4)
Then, the following assertions hold
P
0 S Iy S Sn S l’n+1 < m (125)
and
lim¢, =1, < P (12.6)
imt, = —_—. .
oo = L()(ZJra)

Proof. By the definition of sequence {z,} and condition (12.4), it follows that sequence

{t,} is non-decreasing, bounded from above by so it converges to t* satisfying

Lo(2+a)
(12.6). O
The semi-local convergence relies on conditions (H).
Suppose:
(h1) There exist xo € D,Ly > 0,m > 0,a > 0,b > 0 such that for all x,y € D,
Ayl € L(By,By),
1A ([z.x: F] = [e,ys FD)Il < Ll =],
1A' F(xo) < m,
[F(x) =F(xo)ll < alx—xol],
and
[F(o) < b

1
Define D; =U ,——— | ND.
1 <x° Lo(2+a)>
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(hy) There exist L > 0 and L; > 1 such that for all x,y,z € D,
14g " (2. F) = [z, 3 F]) || < Ll|x —yl|

and
|Ag  [x,y; F) < Ly.

(h3) Conditions of Lemma 18 hold.
and

(ha) Ulxo,p] C D, where p = (1+4a)t.+b.

Theorem 13. Suppose conditions (H) hold. Then, sequence {x,} generated by method
(12.2) is well defined in U [xy, .|, remains in U [xo, ] foreach A =0,1,2, ... and converges
to a solution x,. € U|[xo,t,] of equation F(x) = 0. Moreover, the following assertion holds

||x**xn|| <ti—ty. (12.7)
Proof. Mathematical Induction is employed to show
||yn —Xn || <Sp—1ty (12.8)

and
||xn+l *ynH < thrl — Sp- (129)

By condition (%) and sequence {1, } it follows
lyo =20l = |45 ' F (x0) | <M =50 —10 <1...

Thus, yo € U|xp,¢"] and (12.8) holds for n = 0.
Using (hy), (hy) for z,,x, € Ulxo, 1]

||A61(An *AO)H < LO(HZn *ZOH + ||xn *xOH) < LO(thratn thn) = LO(ZJFa)tn =P, <1,

s0 A,! € L(B,,B;) and
1
A A € —— 12.1
|4, Aol < 1—-P, ( 0)

by the Banach Lemma for linear invertible operators [2,3,4,5,6,7,8,9, 10], where

lza =20l =[x+ F(xn) —x0 — F(x0) < ||[x0 — X0l + [|F (x4 — F (x0)) |
< tptalx, —xol| < (1+at,

and
lzn =x0ll < llzn = 20l[ +llz0 =30l < (1 +@)tn +b < (1 + @)t +b=s.
Similarly,

||A61([yn,xn;F] —[z0,x0: F])|| < Lo(|lyn —20) || +[|2n —x0ll) < Lo(sn+b+1,) =qn <1,
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SO,
P
1 *Qn7

| s s F] Ao <
where

yn =20l = [lya—=x0 = F (x0) | < [[yn =xoll +[|F (x0) | < 5+

is well-defined. It also follows that x4 is well-defined.
Then, by the second substep of method (12.2),(3) and (12.3), one gets in turn

Ponr =yall < I+ D) ™" (2,203 F] = [z, v F) |
< 1w xni F]™ Aol 1A ' F (va) |

Llyn—x2\ L||yn—z -
<1+ [l xn> 19 — zall [l x””gr,,ﬂfs,,
1 —gn 1—q,

and

%041 =Yl 4 llyn — o]l
tial —Sn 8y —to =ty < 1.

[ X1 = xoll

VANVAN

Hence, x,,11 € Ulxo,t*] and (12.9) hold. The following estimate was also used.

F(yn) = F(yn) *F(xn) JrF(xn) = ([ynvxn;F] *An)(yn *xn)v

SO

145 FOa)l - < LIy —zallllya =%l < Lya =2l 4 1 (ia) D130 — %]
< L(sn—tn+ ||F (xa) = F (x0)) || + [|F (x0) 1) (50 — 1)

< L(sp—ty+at,+Db) (s, —t).

Then, by method (12.2) it follows that

F(xp11) = Fur1) —F(yn) +F ()
= F(xu+1) = F () — Cu(Xnt1—Yn)
= (1,90 F] = Go) (%nt1 = yn),
where C, = [y, X F1B,, ! [yn, %3 F].
Notice that B;, ! exists, since
145 By —A0)ll < |Ag" (vns s F] = [z0, %03 F) |+ 1Ag " ([2n X3 F] = [z, v F]) |
LO(Hyn*ZOHJFHxn*xOH)JFL(yn*xn)

<
< LO(Sn +1, er) JFL(Sn *tn) = < 17

SO

B, A < :
B, Aol < 1—v,
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It then follows from (12.11) and (12.11) that
L,

—> (tn+l - Sn)»

—Vn

g Flr)l < Ly <1+

Vst = X1l < A AIAG F ()|
Ly 1
< L 1 1 — = —1
=~ 1 < + 1 Vn> 1 *Pn+l ( n+1 Sn) Sn+1 n+1

and

||yn+l *xOH < ||yn+l *xn+l|| + ||xn+l *xOH < Spt1 —Ing1 Tl — 10 = Spt1 <t

Thus, y,+1 € Ulxo,t.] and the induction for items (12.8) and (12.9) is completed.
It follows that sequence {x,} is Cauchy in Banach space By, so it converges to some x, €

Ulxo,t.]. By using the continuity of F and letting n — oo in estimate (12.11) we conclude
F(x,)=0. O

Concerning the uniqueness of the solution.
Proposition 10. Suppose:

1. The point x,. € Ulxo,p1] C D is a simple solution of equation F(x) = 0 for some
p1 > 0.

2. The fourth estimate in (hy) and (hy) hold.

3. There exists py > p1 such that
Lo(p1+p2+b) <. (12.11)

Define Dy = U [xq,p2] ND.
Then, the point x, is the only solution of equation F(x) = 0 in the region D,.

Proof. Consider d € D, such that F(d) = 0. Define S = [x,,d, F]. Then, it follows from
1 —3 that

1451 (S=A0)l < Lo(llxs —zoll +[|d —xo])
< Lo(pr1+b+p2)<l1.

Hence, d = x, is implied by the invertibility of S and the identity S(x, —d) = F (x,) —F (d) =

0. O
Remark. (1) The parameter p given in closed form can replace p in condition (h4), where
- (l+a)
=——""+b.
P= L2+a)

(2) Notice that not all conditions of Theorem 13 are used in Proposition 10. Otherwise,
sets1 =1,.
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Chapter 13

Local Convergence Comparison
between Two Competing Fifth Order
Iterations

1. Introduction

The radius of convergence between two fifth convergence order iterations is determined for
solving equations in Banach spaces. Let F': D C X — Y be a nonlinear operator acting
between Banach spaces X and Y. Consider the problem of solving the nonlinear equation

F(x)=0. (13.1)

Iterative methods are used to approximate a solution x* of the equation (13.1). The follow-
ing iterative method was studied by Sharma and Gupta in [2],

1 _
Yn = xn*_Fl(xn) lF(xn)7

2
1
in = Yn— E(ZFI(yn)il *Fl(xn)il)F(xn) (13.2)
and
Xn+1 = Zn*(ZFI(yn)il *Fl(xn)il)F(Zn)

and Cordero-Torregrosa in [1] considered the following iterative method

Yn = xn*Fl(xn)ilF(xn)»
e = Xn—(F'(n) +F (x)) ") F (x) (13.3)
and
Xntl = Zn*F’()’n)ilF(Zn)-

These methods were shown to be of order five using hypotheses on the sixth derivative.
We present the semi-local convergence of method (13.2) using assumptions only on the
first derivative of F, unlike earlier studies [1, 2] where the convergence analysis required
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assumptions on the derivatives of F up to the order six. This technique can be used on other
methods and relevant topics along the same lines.

3
For example: Let X =Y =R, D = [—5,5] Define f on D by

[ Plog?+12—t* ift#0
f(t)_{ 0 if t =0.

Then, we have f(1) =0,
f" (1) = 6logt* +60r> — 241 +22.

Obviously, f”(t) is not bounded by D. So, the convergence of the method (13.2) is not
guaranteed by the analysis in [1,2].

Throughout the chapter, U(xo,R) = {x € X : ||[x—xo|| <R} and Ulxp,R] ={x € X :
lx—x0|| < R} for some R > 0.

2. Real Majorizing Function

The convergence of method (13.2) is presented first. Set S = [0, o).
Suppose:

(1) 3 function wy : S — S continuous and nondecreasing such that equation
wo(t)—1=0
has a smallest positive solution py. Set S; = [0, po).
(2) dfunctions w: S — Sy, W) : S§ — S such that equation
ei1(t)—1=0
has a smallest solution r; € S| — {0}, where function @; : S — S is defined by

_ Jow((1—8)t)de+1 [ wi(6r)d6
N 1 —wy (l‘) ’

¢1(7)

(3) Equation
wo(@1(2)t)—1=0

has a smallest solution p; € S} —{0}. Set p = min{po, p;} and S, = [0,p).

(4) Define rp by r, = @(ry)r, where

1 2 1 1
Q1) =1+ 5 <1 o (01 (0)0) + lwo(t)> /o wi(01)d8.
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(5) Equation
03 (l‘) —1=0

has a smallest solution r3 € S — {0}, where

03 (t) = <1+ < 1 WO(Z(PI an liw)> /O lwl(e(Pz(l‘)t)d9> 0 (1).

The parameter

r:min{rm},m: 1,2,3 (13.4)

is shown to be a radius of convergence for iteration (13.2). Let S3 = [0, r). Then, it
follows by these definitions that for ¢ € S3

0 < wo(r)<l1, (13.5)
0 < wo(e1(2)r) < (13.6)
0 < ()<, (13.7)
0 < gat)t<nm (13.8)
and
0<¢s(r) <1 (13.9)

In a similar way radii, R; and function \; are defined. Suppose
(6) Equation
LUA1 (l’) —1=0
has a smallest solution R; € S| — {0}, where

Jow((1—8)1)de
1 —wy (l‘) '

v (1) =

(7) Equation
p(1)—1=0

has a smallest solution p, € S —{0}. Let po = min{po,p,}, and S4 = [0,p>), where
1
p(1) = 5 (wo(t) +wo(y1()1)).

(8) Equation
5} (l‘) —1=0

has a smallest solution R, € S4 — {0}, where

_ wo (W1 (f)f)JrWo(t))folwl(et)de
Vo (1) =y (t) + 2w pl)




130 C.I. Argyros, S. Regmi, I.K. Argyros and S. George

(9) Equation
wo(yi(£)t)—1=0
and
Wo(\|!2(l‘)l‘) —1=0
have smallest solutions p3,ps € S — {0}, respectively. Let ps = min{p,, p3,p4} and
Ss = [0, p5].
(10) Equation
yi(r)—1=0

has a smallest solution R3 € S5 — {0}, where

vi(t) = [yi(ya(r))
(wo(w1(1)) +wo(wa(0)1)) Jo wi(Bwa(1)1)d®

T U wo(wi (00)91 —wo(wa(1)))

Y2 (1)
The parameter
R=min{R;},i=1,2,3 (13.10)

is shown to be a radius of convergence for iteration (13.3). Let Sg = [0, R). It follows
by these definitions that for each ¢ € S¢

0 < wo(r)<1, (13.11)
0 < wo(e(0)r) <1, (13.12)
0 < wolpa(t)r) <1 (13.13)
and
0<q(r) <l (13.14)

Let U(x",d) and U[x",d] stand for the open and closed ball in X with center x* € X and
radius d > 0.

3. Local Analysis

The common set of conditions for both iterations connecting the scalar functions of the
previous section to operator D,x*, and F’ are conditions (A). Suppose:

(A1) 3 a simple solution x™ of equation F(x) = 0.
(A2) ||F'(x") "' (F'(x) = F'(x0)) || < wo(llx—xol]) ¥x € D.
Set Dy :DQU()C*,[)()).

(A3)
IF(x*) " (F'(y) = F' ()| < w(llx =]
and
|F' (<) F ()| < wi(llx—°]) ¥,y € Dy
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(A4) U[x",1] C D, where T = max{r,r} is case of iteration (13.2) and T = R in case of
iteration (13.3). Denote by (I), (II) aforementioned conditions for iterations (13.2)
and (13.3), respectively.

Theorem 14. Under condition (I), sequence {x,} generated by iteration (13.2) is well de-
fined, remains in U (x*,r)Vn=0,1,2, ... and converges to x* according to

[y =21 < @1 ([lxn — 2" [)]o0n = x| < [Joen —x*[| <15 (13.15)
len =[] < @2(r1 )1 < 12 (13.16)

and
(41 =" < @3 ([ — 2" [ flvn — 7| < [Joen —x*[| < 1 (13.17)

Proof. Estimates (13.15)-(13.17) and the conclusions follow from the calculations

1F" () F () = F' ()| < wol(flu =) < 1Vu € UG, r):;

1
Yo — X =x, —x* —F'(xn)le(xn) + EF'(xn)71F9xn),

(Jo w((1=8)[lxu =x"[)d0 + 3 fo w1 (B]|xn —x*|)dB) [, —x"]|
1 =wo(ll —x*])
< @1(llan =2 Do =27 < oo =27 <

A

HYn x|| >

lzn=xl < Alya =X 45 [IIF'(yn) F'(x")|

I (o) F G IF () 1F<xn>||
< (o1l —x )+ o
x J—
= e 2 \ T —wo( ||yn )
+ 01, —x*[|)d8)] [lx, — x*
1WO(HW*H))/WI< [ )], |
< @allxn =2l 21| <
2
Xpr1 — X <z —x" +<
L Ll G putvn ey oy ) ey
1 1
+ /wex—x* dollx, —x*
) W@l Dol |
< (P3(||xn*x>k||)||xn*x>k” < ||xn*x>k|| <r,

and

X1 — X" <ellxn —x"[| <1,

where ¢ = @3(||x, —x||) € [0,1). O
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Theorem 15. Under condition (II), sequence {x,} generated by iteration (13.3) is well
defined, remains in U (x*,R)Vn =0,1,2,... and converges to x* according to

lyn =2 | <y (lloen — 2D [l —x* || < [l — ™| <R, (13.18)
a2 < Wb~ Dl 1) <l —x° | < R (13.19

and
[l X011 *X*H < W3(||xn*x>k||)||xn*x>k” < ||xn*x>k|| <R. (13.20)

Proof. As in the previous calculations

Jo w((1 =) [y —x"|)d®]lx, —x° |

*
Yn—X <
I =] T—wo ()

< Wl(Hxn*X*H)Hxn*X*H < ||xn*x>k|| <Ry;
||Zn*x>k|| < X +Fl(x11)7l(Fl(y;1) *Fl(xn))(Fl(xn)

+Fl(y11))7lF(x11)7

(wo(lln —x"[1) +wo (lly. —x"1)))
2(1 = wo([lxa —=x*[[))(1 = pn)

1
| i@l —x a6l v, —'|

ln—2|| < [w1<||xnx*||>+

< Wl =X ) [l — x| < Ra;
%1 =" < ||Zn*x>k*Fl(Zn)71F(Zn)
HF (20) " (F (n) — F(2) )F' (y0) ' F (20) |
(wo(llyn —x*[]) + wo([lza —x*[)) .
< [W(llza —x*|]) + Xy —X
Wl =) gz = D) T —woa—x | 7~
< \|’3(||xn*x>k||)||xn*x>k” < ||xn*x>k|| < Rs,

[ 1 —x7[] < dfjxa —x"|| <R,

d =y3(||x, —x*||) € [0, 1), where we also used

12F" ()~ (F () + F' (va) = 2" (x)) |

< SUF G )~ F @I+ IF ) () — /)]
< 3Ol —x )+ wollyn—1)) < pu < 1.
P ()4 F/ )P )| € s,

Concerning the uniqueness of the solution ball:

Proposition 11. Suppose:



Local Convergence Comparison between Two Competing Fifth Order. .. 133

(1) x* is a simple solution of equation (13.1) in U (x*,pg) for some py > 0.
(2) Condition (A2) holds.
(3) Ap > po such that

/Olwo((l —6)po+6p)dd < 1.

SetUy =U|x",p|ND. Then, x* is the only solution of equation F (x) = 0 in the domain
U.

1
Proof. Let g € Uy with F(g) =0. Set M = / F'(x* 4 6(q —x"))d®. Then, by (1)-(3) and
0

the following calculation

IF' ()~ (M = F' (")) < 0)x" — x| +6llg —x*)a6

< 0)po+0p)dd < 1,

g=x",sinceM ' € L(Y,X)and M(q—x*) = F(q) —F(x*) =0—-0=0. O

Numerical examples where we choose functions wy,w and w; and find 7, R in concrete
applications can be found in earlier Chapters using different iterations.
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Chapter 14

Semi-Local Convergence Analysis of
High Convergence Order Iterations
under the Same Set of Conditions

The semi-local convergence analysis of efficient third, fourth and fifth convergence order
iterations is presented for solving equations in a Banach space setting. The convergence
analysis uses conditions only on the first derivative.

1. Introduction

Let B; and B, be Banach spaces and D C Bj be an open and convex set. The determination
of a solution x™ € D of the nonlinear equation

F(x) =0, (14.1)

where F' : D C By — Bj is a continuous operator, is one of the most challenging problems
in computational Mathematics. Most solution procedures are iterative since the analytic
representation of x* is rarely attainable. A plethora of problems from diverse disciplines
reduces to solving equations (14.1) [1,2,10].

The local convergence analysis has been provided for the following efficient and popular
iterations:

Fifth order [3]

Yn = xn*Fl(xn)ilF(xn)»
in = xn*Z(Fl(yn)+Fl(x11))7lF(x11) (142)
and
Xn+1 = Zn*Fl(yn)ilF(Zn)-
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Fifth order [9]
1 _
Yn = xn*EFl(xn) lF(xn)7
in = xn*Fl(yn)ilF(xn) (143)
and
Xn+1 = Zn*(ZFI(yn)il *Fl(xn)il)F(Zn)-
Fifth order [8]
_ Xn+ —X
Yn = xn*Fl(xn) lF(xn)7 Un = nTynyvn = y’;\/gn7
= X —24A,'F(x,), (14.4)
A, = Fl(un*Vn)JrFl(unJrvn)
and
Xn+1 = Zn*Fl(yn)ilF(Zn)-
Fourth order [5]
Yn = xn*Fl(xn)ilF(xn)»
in = xn*Fl(xn)ilF(xn)» (145)
Xn+l = xn*A;lF(xn)
and
1 2 ., x,+z 1
An = gFl(xn)JrgFl( - 2 n)JrgFl(Zn)‘
Third order [4]
Yn = xn*Fl(xn)ilF(xn)v
Xop1 = X, —O6A,'F(x,) (14.6)
and
4
Ay = F'(x,,)+4F'(’%)+F'(y,,).
Third order [4]
Yn = xn*Fl(xn)ilF(xn)v
Xor1 = Xy —3A 'F(x,) (14.7)
and
A, = 2F/(3xn+yn)7F/(xn+yn)+2F/(xn+3yn)‘
4 2 4
Third order [7]
Yn = xn*Fl(xn)ilF(xn)v
Xor1 = X, —8A,'F(x,) (14.8)
and
2 2
A, = F'(x,,)+3F'(%)+3F'(@)+F'@n).
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and
Third order [6]
Yn = Xn— %Fl(xn)ilF(xn) (14.9)
and
1 _ _
Xn+l = Xp— 5(3Fl(yn) *Fl(xn)) 1(3Fl(yn)JFFI(xn))FI(xn) lF(xn)-

The local convergence of the preceding iterations was given using Taylor series equations
and conditions reaching derivatives one higher than the convergence order of the iteration at
least. Hence, for the convergence of a fifth-order iteration F () should exist. But this limits
the applicability to equations involving operators that are that many times differentiable.

31
Example?2. Let Bj =B, =R, D = [—5,5] Define F on D by

F(x) =x*loga® +x° —x*

Then
F'(x) = 3x* logx® 4+ 5x* — 4x® + 222,

F"(x) = 6xlogx® +20x° — 12x% + 10x

and
F"(x) = 6logx® + 60x* — 24x+22.

Obviously F”(x) is not bounded on S. Hence, the applicability of the methods is limited.

Thus, these results cannot guarantee convergence. However, the iteration may converge.
On the other hand, these iterations do not use derivatives of orders higher than one. In
order to extend the applicability of these iterations we use only conditions on the derivative
appearing on them and in the more interesting semi-local case.

2. Semi-Local Analysis
The same set of conditions (C) is used for all iterations:
(C1) Ix9 € D,d > 0 such that F'(xy) € L(By,By) and ||F'(x9) ' F(x0)|| < d.

(C2) [|F'(x0) ™" (F'(x) = F'(x0)) || < Lollx—xoll, Lo > 0 Vx € D.

1
Let Dy = DNUlxo, —].
| [OLO]

(C3) [|F"(xo) ™" (F'(y) = F'(x))|| < Llly —x[|, L > 0 ¥x,y € Dy.

(C4) Ulxo,t*] C D, where " is the limit point of corresponding majorizing sequences for
iterations (14.2)-(14.9).
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(C5) 3¢ > 1" such that
Lo(t" +17) < 2.
Let D, = DﬂU[xo,tﬂ.
Theorem 16. Under conditions (C1)-(C5) iterations (14.2)-(14.9) are well defined, remains
in U|xo,7"] and converges to a unique solution x* of equation F(x) = 0 in the region D,.

The proof is based on majorizing sequences.

Majorizing sequence for iteration (14.2)

Iy = 07 So =1,
(1 JFLOl'n)L(Sn*l’n)2 1
n— 5 n 1),
2(1 *LOtn)(l *Qn) 4 ZLO(S N )
I (1 JFLOZ’n)(Sn *tn) + (1 + %(”n thn))(un *tn)
1 —Los,

U, = S$p+

i1 = Uy

and
L(tn+l - tn)z + 2(1 JFLOZ’n)(Z'n+l - Sn)
2(1 *LOtn+l) ‘

Next, conditions are presented for the convergence of the majorizing sequence.

Sp+1 = Ipp1+

Lemma 19. Suppose
Lot, <1 and Lys,<1Vn=0,1,2,....

Then, the sequence {#,} is strictly increasing and converges to its unique least upper bound

1
t*eld,—].
4. 7]
Proof. If follows immediately by the condition of the Lemma and the definition of the
sequence. U

Proof. Proof of Theorem 16 using Lemma 19: If follows by the first two substeps

in—Yn = Fl(xn)ilF(xn) *Z(Fl(yn)JFFI(xn))ilF(xn)
= Fl(xn)il(Fl(Yn)JFFI(xn) *ZFI(xn))(FI(Yn)+Fl(x11))7lF(x11)
Fl(xn)il(Fl(Yn) *Fl(xn))(Fl(Yn)+Fl(x11))7lF(x11)-

But

12F" (x0)) ™" (F' (y) + F' (xn) = 2F"(x0)) |

< %[HF'(XO)*I(F'(yn)*FI(XO))H 1 F (o) (F' (xa) = F' (x0)) ]
1

< 5Lolllyn —xol[ + [l = xo]

< %(Sn thn) =q, <1



Semi-Local Convergence Analysis of High Convergence Order ... 141

Hence,

/ / — / 1
1I(F'(yn) = F' (x0)) "' F'(x0) | < 20—a)

and
L(l JFLOZ’n)(Sn - tn)z
291 — Lot,) (1 —gp)

||Zn *ynH <

= Up — Sn,
where it is also used

F(x,) = Fl(xn)(Yn*xn) = ((Fl(xn) *FI(XO)) JFFI(XO))()’n*xn)»

SO
||Fl(x0)7lF(xn)|| < (1 JFLOZ'n)(Sn*Z’n)-

Moreover, the third substep can be written as
Xt =20 = —F'(ya) " (F (20) = F (xn) + F ().
Therefore, by
F(z)) —F(x,) = /01 F' (x4 6(z0 —x,))d0(z, — X,

= ([ (P 40z 32))d0 ' (20)) 4 F'(a0)) o x)
and
HFWﬁWékﬁwﬁemlxmF%MMGHWMM@%W
(
(

IA
SIESEPS

(ren =201 + [12n = x011) + 1) [z = x|

IN

(ta+un) + 1) (uy — ).
Hence, it follows

(1+Lotn) (s —ta) + (1 + %(”nthn)))(un*tn)

||xn+l *ZnH < 1—Los,
= Ipy1—Up.
By the first substep
F(Xpp1) = F(an)*F(xn)*Fl(xn)(Yn*xn)

= F(n+l) *F(xn) *Fl(xn)(xn+l *xn) +Fl(xn)(xn+l *yn)v

Ii(l‘n+1 - l‘n)z + (1 +Lol‘,,)(l‘,,+1 - Sn)
1 *LOtn+l

||yn+l *xn+l|| <

= Spt+1 —Int1-
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Therefore, the sequence {7, } majorizes sequence {x,}. Thus, {x,} is complete in a Banach
space Bj and as such it converges to some x* € U|[xo,¢"]. By letting n — oo in the estimate

_ L
||Fl(x0) lF(xn+l)|| < §(t11+1 *tn)62+ (1 JFLOZ'n)(Z'n+l *Sn)-

Moreover, using the continuity of F, F(x*) = 0. That is limit point x* solves equation F (x) =

0. Finally, in order to show the uniqueness part, let M = / F'(x* +6(p —x"))d8 for some
0
p € Dy with F(p) = 0. It then follows from (C2) and (C5)

/ — / 1 £
1F"(x0) (M = F'(xo)) | < 5SLo([lx" =0l + | =0}
1 * *
< E(t +17) < 1.

Hence, it follows p = x* by the invertibility of M guaranteed by the Banach lemma on
invertible operators and the identity M(p —x*) = F(p) — F(x*) =0—0=0. O

Similarly, convergence is established for the rest of the iterations.

Majorizing sequence for iteration (14.3)

tp = 0,s50=d,
1 L(s,—t
U, = SnJFm <1+1(n7L0;’11)> (IJFLOtn)(Sn*tn)»
L(Sn *tn)
t = 1
n+1 unJrl*LoSn < + 1— Lot,
Ly
X [(1 + 7 (un JFl’n)(”n - tn) + 2(1 JFLOZ’n)(Sn - tn)]
and
_ L(tn+l 71.’1)2 +2(1 JFLOZ’n)(Z'n+l *Sn) +2(1 JFLOZ’n)(Sn *tn)
Sp+1 = Ipy1+ .

2(1 *LOtn+l)

Lemma 20. Suppose
Lot, < land Lys, <1VYn=0,1,2,....

Then, sequence {7,} is increasing and convergent to its unique least upper bound t* €

[d7g]'

Proof. It is given in Lemma 19. O

Proof. Proof of Theorem 16 using Lemma 20: It follows from the first two substeps of
the method (14.3)

Zn*yn = %Fl(xn)ilF(xn)7Fl(yn)7lF(xn)
= %(Fl(xn)il *Fl(yfl)il)F(xn) - %Fl(yfz)ilF(xn)

= %Fl(x11)7l(Fl(yn) *Fl(xn))Fl(yn)ilF(xn) - %Fl(yn)ilF(xn)v
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SO
1 L(s, —1ty)
n~— Jn S_ 2 1 Z’n n*tn = Up — Sn-
lzn=yall < 3 <(1L0r,,)(1Los,,) + lLosn> (14 Lotn) (3o =tn) = ttn =
Similarly,
[Xn1—zall < ||[(FI()7n)7l *Fl(xn)il)+F’(Y11)71]F(211)||
L(s, —ty) 1
< +
o (I*Lotn)(l*L*OSn) 1 —Los,
(1 + %(”n thn))(un *tn) +2(1 JFLOZ’n)(Sn *tn)
= Iyl —Up;
F(xn+l) = F(xn+l)*F(xn)*ZFI(xn)(yn*xn)
= F(xn+l) *F(xn) *Fl(xn)(xn+l *xn)
JFFI(xn)(xn+l *xn) *Fl(xn)(yn *xn) *Fl(xn)(yn *xn)-
Thus,

%(tn+l - tn)z + (1 JFLOZ’n)(Z'n+l - Sn) + (1 JFLOZ’n)(Sn - tn)
1 *LOtn+l

||yn+l*xn+l|| < = Sp4+1 —Iyri,

where it is also used

F(xn) = ZFI(xn)(yn *xn) = ||Fl(x0)7lF(xn)|| < 2(1 JFLOZ’n)(Sn *tn)

and

1

F(Zn) *F(xn) = /O Fl(xn JFe(Zn *xn))de(Zn *xn)
1
- /0 [F (5 + 820 — ) — F' (x0) + ' (x0) 420 — 1)
SO Lo
||FI()CO)7l (F(xa) = F(x))|| < (1+ 7(”11 +10)) (Un —1n).

The rest follows as in the previous proof. U

Majorizing sequence for iteration (14.4)

top = 0,50=d,
2
Wo = Sp+ L(IJI:)LOZ'n)(Sn tn) 7
2(1 —Lota)[1 = (V3= Dty + (V3 +1)sy
(1JF%(thFWn))(Wn*tn)Jr(lJFLOtn)(Sn*tn)
4
1 —Los,

i1 = Wy
and
L(tn+l - tn)z + 2(1 JFLOZ’n)(Z'n+l - Sn)
2(1 *LOtn+l) ‘

Sp+1 = Ipp1+
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Lemma 21. Suppose

Lor,,<1,Los,,<1andﬂ((\/§ Dty +(V3+1)s,) <1¥n=0,1,2,..

V3
Then, sequence {7,} is increasing and convergent to its unique least upper bound t* €
1
d,—].
d.7]
Proof. It is given in Lemma 19. O

Proof. Proof of Theorem 16 using Lemma 21 It follows from the first two substeps of the
method (14.4)

in = ynJF(FI(xn)il ZAil) (xn)
ynJF(FI(xn)7 (An*ZF (xn))A lF(xn)

SO
L(IJFLOtn)(Sn tn)
||Zn*yn|| < = Wn — Sn,
2(1=L—0,)[1 = (V3= Dta+ (V3 +1)s50)]
where the estimates were also used
1
llun+vn =20l < F((\/g*nt’ﬂr(\/g:l)sn)»
lun—vn —x0ll = [(\/_Jrl)xn (\/5*1))7;1*2\/§XO]H
Z\f
1
< —= \/gflthF\/gJFlsn»
< (V3o )
1
Upn —Vn —Xn = —= \/5*1 n — Xn
| | 2\/5( My |
V3-1

< ——n—1ta),
< 2\/5( )

||Fl(x0)7l(An*ZFI(xn))H < ||Fl(x0)7l(Fl(”n*Vn)*Fl(xn))H
+||Fl(x0)7l(Fl(”n+Vn)*Fl(xn))H
< L([Jun—vn = x| + [t + v — xa]),
||(2Fl(x0))7l(An —2F (xo))l < Lo(llun —vi —x0l| 4 lltn +vi —0]]) < 1,

S0,

1
2(1 = (V3= Dt + (V3+1)sa)]

147 ' F' (xo) | <

IN

| *FI(Yn)il(F(Zn)*F(xn)JrF(xn))H
(1+ %(tn +wn))(Wn —tn) + (14 Loty) (S0 —tn)
1 —Losy,

X011 = zall

= Iny1 —Wp;
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and as in the proof using iteration (14.2)
[¥ns1 = X1 [| < Spt = tngr-
The rest follows as in the proof using iteration (14.2). U

Majorizing sequence for iteration (14.5)

hy = 07 S0 = d’
(15 -0)) (1 4-Lot)] (51— 1)
Up = Sn 7
1 — Loty
_ L(un - tn)(l +L0t”)(sn _ tn)
Int1 = Un Lo
2(1 *LOtn)(l - 7(t’1 JrSn))
(1 5 (s 1)) + (1 Lota)] (50— )
2(1 *LOtn)(l - %(Z’”Jrsn))
and
L(t;1+l 71»’1)2 +2(1 JrLOtn)(tn+l *Sn)
Sn+l = Inp1t ‘

2( 1— Lotn+ l)
Lemma 22. Suppose

Lot, < 1and %(t,ﬂrsn) <1vVn=0,1,2,....

Then, sequence {t#,} is increasing and convergent to its unique least upper bound * €
d,—].
4. 7]
Proof. It is given in Lemma 19. O

Proof. Proof of Theorem 16 using Lemma 22: It follows from the first two substeps of
the method (14.5)

in = y11+(Fl(x11)71F(x11)*Fl(xn)il)(F(xn)JFF(yn))
= Yn— (Fl(xn)il((F(yn) *F(xn) JFF(xn))»
" [1 + % (tn Jan) + (1 JFLOZ’n)] (Sn - tn)
1—-L—0¢,

||Zn*yn|| < = Up — Sp-

Similarly,
X1 —zall < ||Fl(xn)7l(An*Fl(xn))A;;lF(xn)H
+||Fl(xn)7lF()7n)

If(un - tn)(l JFLOl’n)(Sn - tn) + (1 + % (tn Jrsn))(sn - tn) + (1 JFLOl’n)(Sn - tn)
(1 *L()Sn)((l - %(thFSn))

= Iny1— Up,
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where the estimates are also used

F(yn)*F(xn) = /Ol((Fl(anre(ynxn))FI(xO))deJrFI(xO))(ynxn)-

Hence, Lo
||Fl(x0)7l(F()7n)*F(xn))H < (IJF?(thFSn))(Sn*tn)»
! — ! 2 ! — ! n+ N !
1F(x0) ™ (An = F )| < SIF (o)~ (F/(F =) = F ()]
1 ! — ! !
gIIF (x0) "' (F'(z0) = F'(x0)) |
< 2L (u, —t, n 1( )
= ? 3 6 Up n
= g(un tn)v
/ 0, / 4 XntYn /
[F"(x0) (E(F (xn) — F (XO))Jrg(F( 5 )~ F(x0))
1 ! !
+6(F (zn) = F'(x0))]|
< %(t11+2(t11+un) JFun) = %(l’nJrun) <1
Thus, .
A'F < -
I Pl < s
Moreover,

||yn+l —Xn+1 || <Spp1 — eyt

is obtained as previously. The rest follows as in the proof of Theorem 16 using iteration
(14.2). O

Majorizing sequence for iteration (14.6)

Iy = 07 S0 = d7
L(l JFLOl’n)(Sn*tn)2
2(1 *LOtn)(l - %(l’nJFSn)

Iit1 = Sp

and
L(tn+l - tn)z + 2(1 JFLOZ’n)(Z'n+l - Sn)
2(1 *LOtn+l) ‘

Sp+1 = Ipy1+
Lemma 23. Suppose
Lo _
Lot, < 1and ?(t,,Jrsn) <1vn=0,1,2,....
Then, sequence {t#,} is increasing and convergent to its unique least upper bound * €

[d7g]'
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Proof. It is given in Lemma 19. O

Proof. Proof of Theorem 16 using Lemma 23: It follows from the first two substeps of
the method (14.6)

Xn+l —Yn = Fl(xn)il (An - 6Fl(xn))A;;lF(xn)7

Ny L(1+Lot,) (50— t”)z
(1 *L()tn)(l - %(Z’,,Jrsn))

where the following estimates are also used

||xn+l *ynH < =1Ilntl — Su,
2

Ap—6F(x)) = 4(F'(@) _

Fl(xn))Jr(Fl(Yn)*Fl(xn))»

||Fl(x0)7l(An*Fl(xn))H < L2y —xall +[yn —xall)
< 3L||yn *an < 3L(Sn *tn)v
- Lo
1(6F" (x0)) ™' (A — 6F'(x0))|| < g(Hxn*XOIIJrIIyanOll
+2({lxn — X0l + Iy —x0[1))
Lo
= 7(r,,Jrs,,)<1.
Hence,
1
14, F(x0) || < :
! 6(1*%(51 +5n))
Moreover,

||yn+l —Xn+1 || <Spp1 — eyt

is obtained as previously. The rest follows as in the proof of Theorem 16 using iteration
(14.2). O

Majorizing sequence for iteration (14.7)

tp = 0,50=d,
= s 2L(1+ Loty ) (s, —1,)?
3(1—Lot) (1 — 222 (8, +s,)
and
_ L(tn+l - tn)z + 2(1 JFLOl‘n)(l‘iHl - Sn)
Sp+l = It .

2(1 *LOtn+l)
Lemma 24. Suppose
5
Lot, < 1and ?Lo(t,ﬂrsn) <1vn=0,1,2,....
Then, sequence {t#,} is increasing and convergent to its unique least upper bound * €

[d7g]'
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Proof. It follows as the proof of Lemma 19 for iteration (14.2). ]

Proof. Proof of Theorem 16 using Lemma 24: It follows from the first two substeps of
the method (14.7)

Xn+1—Yn = Fl(xn)il (An - 3Fl(xn))A;;lF(xn)7

SO
2L(1 JFLOl’n) (Sn - tn)z

(X1 = | < = Int1 = Sn,
n—+ n 3(1 fLol’n)(l — STLO(Z’n Jrsn)) n+ n
where the following estimates are also used.
3x, + Xn+ 3x, +
Ay=3F/(x) = 4(F/(Z0) = F/(F20) + (F () = F ()

+3
F2(F/(22) — F(x,),
S0,
3x, —2 -2 —
||FI()C())71(A”*3Fl(xn))|| < L<|| Xn xn:yn yn||+||yn4xn||)
3
JFEH)’n*an)
< 2L||yn *an < ZL(Sn *tn)
and
3 —4 2x0 — X, —
||(3Fl(x0))7l(An*3Fl(x0))|| < @ H Xn +Yn xOH n || X0 — Xn ynH
3 2 2
+||xn+3);14x0”]
< Ly
=~ €(3Z’n+sn+Si1+t11+t11+3sn)
5Ly
- ?(Z’n +Sn) < 17
SO 1
A7 F ()] <

31t +50))
Moreover, estimate
[¥n+1 = Xns1l] < Sp1 — g
is shown as before.
Finally, the rest is given as in the proof of Theorem 16 using iteration (14.2). O

Majorizing sequence for iteration (14.8)
top = 0,50=d,
3L(14Lot,)(sn —t,)?
8(1— Loty) (1 — 2ty +s,)

Iit1 = Sp

and
L(tn+l - tn)z + 2(1 JFLOl’n)(l'n+l - Sn)
2(1 *Lotn+l) ‘

Sp+1 = Ipp1+
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Lemma 25. Suppose
Lo -
Lot, < 1 and > (th+s,) <1Vn=0,1,2,....

Then, sequence {7,} is increasing and convergent to its unique least upper bound ¢* €

1
[d7g]'

Proof. 1t is similar to the proof of Lemma 19 for iteration (14.2). ]

Proof. Proof of Theorem 16 using Lemma 25: It follows from the first two substeps of
the method (14.8)

Xn+l1 —Yn = Fl(xn)il (An - 8Fl(xn))A;;lF(xn)-

Thus
3L(1 JFLOZ’n) (Sn - tn)z
(1 *LOtn)(l - %(t11+511))

where the following estimates are also used.

||xn+l *ynH < =1Ilnt1 — Su,
8

An*gFl(xn) = 3(FI(2xn;ryn)*Fl(xfl))+3(Fl(T)*Fl(xn))

JF(FI()’n) *Fl(xn))v

||Fl(x0)7l(An*8Fl(xn))|| < 3L[|yn —xal|
< 3L(Sn - tn)
and

I8 (o)™ (4n = 8F o))l < g (I1F ()™ (F' ()~ F' ()]
3 (o)™ (/2 ()|
3 (o)™ (F/ (2 ()|
I (x0) ™ () — ' (xo)) )

< %(t11+sn)<17

I
1A F' (xo) || < :
8(1— 2 (1 +50))

The estimate
||yn+l —Xn+1 || < Spa1 — Iyt
is given previously.
The rest follows from as in the proof of Theorem 16 using iteration (14.2). O
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Majorizing sequence for iteration (14.9)
top = 0,50=d,
3L(sp— tn)2
8(1— %(tn +55)

i1 = Spt

and
L(tn+l - tn)z + 2(1 JFLOZ'n)(Z'n+l - Sn) + (1 JFLOZ’n)(Sn - tn)
2(1 *LOtn+l)

Sp+1 = Ipp1+

Lemma 26. Suppose
Lot, < 1and %(r,,+3sn) <1vn=0,1,2,....
Then, sequence {7,} is increasing and convergent to its unique least upper bound t* €
d,—].
d.7]
Proof. 1t is similar to the proof of Lemma 19 for iteration (14.2). ]

Proof. Proof of Theorem 16 using Lemma 26: It follows from the first two substeps of
the method (14.9)

Xp+1 —Yn = %Fl(xn)ilF(xn)
L3P 0) = F(5) 7 B )+ ) P (5) F ()

= *%(3}71()7;1)*Fl(xn))il(Fl(Yn)*Fl(xn))%(yn*xn)‘

Hence,
3L(sp— tn)2

8(1 - % (tn + 3511))
where the following estimates are also used.

||xn+l*yn|| < =1lntr1— Su,

IF(x0) ™ (3F () — F'(5) =38 (o) + Fso)| < ot 380) < 1
SO 1
3F (y,) = F'(x,)) " 'F’ < .
3750~ F () F ) < 3
Moreover,
F(xn+l) = F(xn+l)*F(xn)*Fl(xn)(xn+l*xn)
/ 3,
+F (xn)(xn+l *xn) - EF (xn)(yn *xn)v
SO

L(tn+l - tn)z + 2(1 JFLOZ’n)(Z'n+l - Sn) + (1 JFLOZ’n)(Sn - tn)
2(1 *LOtn+l)

|yn+l —Xn+1 || <

= Sp+1 —Int1.

The rest follows from as in the proof of Theorem 16 using iteration (14.2). O
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3. Numerical Example

We verify convergence criteria using method (14.2).
Example 3. Let By = B, = R. Let us consider a scalar function F defined on the set D =
1
Ulxo, 1 —g] for g € (0, 7) by
F(x)=x—q.
1—
Choose xy = 1. Then, the conditions (C1)-(C3) are verified for d = Tq, Ly =3—gq,
1 1 1

D, =U(xp, —)ND=U(xg,—),and L=2(1+—).

= U0, )P = Ul ) (1+4)

The conditions of Lemma 23 are satisfied.

Table 14.1. Sequence for (14.6)

n 1 2 3 4 5 6
S 0.0333 | 0.0388 | 0.0389 | 0.0389 | 0.0389 | 0.0389
1| 0.0350 | 0.0388 | 0.0389 | 0.0389 | 0.0389 | 0.0389
Los, | 0.0736 | 0.0816 | 0.0817 | 0.0817 | 0.0817 | 0.0817

Lo(tn+5,) | 0.0350 | 0.0775 | 0.0816 | 0.0817 | 0.0817 | 0.0817
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Chapter 15

A Collection of Iterative Methods
with Order Five, Six and Seven and
Their Semi-Local Convergence

1. Introduction

This Chapter uses conditions and proving techniques from the preceding one. The conclu-
sions are the same but for different iterative methods. That is why only the method and
its majorizing sequence are reported. The notation (/) stands for iteration of convergence
order g. The studied methods are listed below:

(ls) [3]:
Yn = X *Fl(xn)ilF(xn)»
1 _ _
in = Xp— E(Fl(yn) lJrFl(xn) I)F(xn) (15.1)
and
1 ! -1 / —1 / —1
Xn+1 = Zn— E(F (xn) +F (yn) F (xn)F (yn) )F(Zn)-
The corresponding majorizing sequence is given for fyp = 0,59 > 0 by
L(Sn 71.’1)2
Up = SpT 5777
2(1—Losy)
(1+ 2 (1 4 ) ) (ty — 1)
i1 = un+§ Sp—th+ 2 ’llfL’:)l’n -
X (1 + % (tn + un)(l JFLOZ'n)(un - tn)
(1 *L()Sn)z
(1 JrL()l’n)z(sn - tn):|
(1 *L()Sn)z

and

Syl = il + L(tn+1 71,’1)2 +2(1 JFLOtn)(th *Sn)
n+ — n—+ .
2(1 *LOtn+l)
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(Is) [10]:
Yn = xn*Fl(xn)ilF(xn)»
1
in = Xp— E(Fl(yn)il +Fl(x11)7l)F(x11) (152)
and
Xn+1 = Zn*Fl(yn)il)F(Zn)-

The corresponding majorizing sequence is given for fyp = 0,59 > 0 by

L(sp —1,)?
u, = Sp+ (Sn n)

2(1—Los,)’
(1 + %(l’n + un))(”n - tn) + (1 JFLOZ’n)(Sn - tn)
i1 = Uy
1 *LOtn
and
L(tn+l - tn)z + 2(1 JFLOZ’n)(Z'n+l - Sn)
Sp+1 = Int1+ .
2(1 *LOtn+l)
(le) [12]:
2
Yn = Xn— gFl(x11)7lF(x11)7 (15.3)
1 _ _
in = Xn— 5(3FI(Yn) *Fl(xn)) 1(3F1()7n)JFFI(xn))FI(xn) IF(xn)
and

Xn+l = Zn— [(%(3}71()7;1) *Fl(xn))il(?sFl(Yn)JFFl(xn))]Fl(xn)il)F(Zn)-

The corresponding majorizing sequence is given for fyp = 0,59 > 0 by
(3L(Sn - tn) + 4(1 +L0t11)) (Sn - tn)

Up = Sp )
8(1 *pn)
1
Ih = n T T 77 .\ 4 In n 2
+1 Uy + 16(1*}?”)2( +LO( +3S ))
1 Lo 3
1 ~ \Un n n— ‘tn A\Pn T in
e (0 2 ) )+ 3 50 0)
and
L(tn+l 71.’1)2 +2(1 JFLOZ’n)(Z'n+l *Sn) + (1 JFLOZ'n)(Sn *tn)
Sp+1 = Ipp1+ s
2(1 *LOtn+l)
where p, = %(tn +3sy).
(le) [13]:
2 / —1
Yn = xnng (xn) F(xn)7
1
in = Xp— 5(3Fl(yn) *Fl(xn))il(3Fl(yn)JFFI(xn))FI(xn)ilF(xn)
and (15.4)

3 _ 1 _
Xn+1 = Zn*(EFI(yn) I*EFI(xn) I)F(Zn)-
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The corresponding majorizing sequence is given for fyp = 0,59 > 0 by

(3L(sy —tn) +4(1+Loty)) (s —1,)

U, = Sp+

8(1—pn) ’
1 L(s, —1ty)
Ih = n 1
+l ¥ 1*LOSn( JrZ(I*LOl’n)
Ly

1+ ? (un thn)(un - tn) + (1 JFLOZ’n)(Sn - tn)

L+ B (ot ) (14 Lota) (1~ 1)
(1 *Losn)z

and

Sp+1 = Ipp1+

157

L(tn+l - tn)z + 2(1 JFLOZ’n)(Z'n+l - Sn) + (1 JFLOZ'n)(Sn - tn)

2(1 *LOtn+l)

Ly
where p, = ?(tn +5p).

)

(ls) [4]
Yn = xn*Fl(xn)ilF(xn)»
in = xn*Z(Fl(xn)+Fl(y11))7lF(x11) (15.5)
and
7 _ 3 _
Xn+l = Zn— (51*4Fl(xn) lFI()’n)JF 5(FI(xn)FI(Yn))z]Fl(xn) IF(Zn)-
The corresponding majorizing sequence is given for fyp = 0,59 > 0 by
L(Sn 71.’1)2
- + ,
tn o 2(1 *LO(SnJFtn))

thy1 = up+ [Sn —ty+ m (un JFl’n)(”n - tn)]

3 < L(Sn*tn) >2+2 <L(Sn tn))
2(1 *L()l’n) 1 *LOtn)
and
s — 4 L(tn+l 71.’1)2 +2(1 JFLOZ’n)(Z'n+l *Sn)
n+1 n+1 2(1*Lol’,1+1) .
(ls) [2]
Yn = xn*Fl(xn)ilF(xn)»
1 _ _
n = Yut g(Fl(xn) IJFZ(FI(xn) *3Fl(yn)) lF(xn) (15.6)
and
1 _ _
Xn+l = anrg(*Fl(xn) 1+4(Fl(xn)*3Fl()7n)) I)FI(Zn)-
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The corresponding majorizing sequence is given for fp = 0,59 > 0 by

L(Sn - tn)z
2(1-23s,+1,))

U, = Sp+

1 (1 + %(unJFtn))(un*tn)
4 = Upt+Z|Sn—tht+
n+1 n 3 [ n n 1 *L()Sn ]
Ly
(1 + 7)(”11 *tn) + (1 JFLOZ’n)(Sn *tn)
and
s — 4 L(tn+l 71,’1)2 +2(1 JFLOZ’n)(Z'n+l *Sn)
n+1 n+1 2(1 *Lotn+1) .
(I [11]
Yn = X +Fl(x11)7lF(x11)7
in = yn*Fl(xn)ilF(yn)v
Wn = Zn*Fl(xn)ilFl(yn)Fl(xn)iIF(Zn)
and
Xn+1 = Wn*Fl(xn)7lFl(yn)Fl(xn)ilF(Wn)-

The corresponding majorizing sequence is given for ag = 0,by > 0 by

(142 (ay+by)) + (14 Loan)) (by — an)

(15.7)

cn = by+ | Loa, ,
(1+Lob,)D
dy Cht (1= Loy’
o = dt (1+Loba)[(1+ % (by +ca)(dy—cn) + D]
(1—Loan)?
and
bt =yt (1+ %(anﬂ +ay))(ant1 —an) + (14 Loay) (by — an)

1 —Loay1

)

where D = (14 22 (by 4 e)) (e — ) + (14 2 (ay + b)) + (1 4+ Loy ) (by — ).

2 2
(Is) [4]

Vo = Xp+F'(x,) 'F(xn),
In = Yn*Fl(xn)ilF(Yn)
and
Xnt1 = Znt (FI(Yn)il *ZFI(xn)il)F(Zn)-

(15.8)
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The corresponding majorizing sequence is given for fyp = 0,59 > 0 by

(2 + % (3tn + Sn)) (Sn - tn)

Wy = Sp+ 1— Lot, )

1 L(s,—t Lo

bt = Wak T (1+ 1(”L0S’;) )24 = it +wn)) (W —52)
and
(1 + % (tn+l thn))(tn+l - tn) + (1 JFLOZ’n)(Sn - tn)
Sp+1 = Ipp1+ .
1 *LOtn+l
(Is) [1]
Yn = xn*Fl(xn)ilF(xn) (15.9)
and

1 _ _ -
Xntl = Yn— Z(SI*ZFI()’n) lFl(xn) +(F'(yn) lFl(xn)z)Fl(Yn) lF()’n)-
The corresponding majorizing sequence is given for fp = 0,59 > 0 by

1 ZL(Sn - tn) 1+ Loty :
(1 *LOSn) (3+ 1—Loysy )Jr <1 LOSn> )

X (2 2 Gtk 50)) (50— 1)

i1 = SnJF4

and
Spil = Lol + L(tn+l 71.’1)2 +2(1 JFLOZ’n)(Z'n+l *Sn)
n+ - n+ .
2(1 *LOtn+l)
(I5) [5]
Yn = xn*Fl(xn)ilF(xn)» (1510)
in = Xpn— ZA;lF(xn)
and
Xn+1 = Zn*Fl(yn)ilF(Zn)v
1 X TV Yn—Xn 1 X TYn Yn—Xa .
where A, = F'( + )+ F'( - ). The corresponding ma-

2 23 2 243
jorizing sequence is given for typ = 0,59 > 0 by
L(1+ %)(sn — t,,)2
2(1 *LOtn)(l *Pn)’
I (1 + % (un thn))(un - tn) + (1 JFLOZ’n)(Sn - tn)
1 —Los,

U, = Sp+

il = Uy
and
L(tn+l - tn)z + 2(1 JFLOZ'n)(Z'n+l - Sn)
2(1 *LOtn+l) ‘

Sp+1 = Ipp1+
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(Is) [11]
Yn = xn*Fl(xn)ilF(xn)» (15.11)
in = Xn *A;lF(xﬂ)
and
Xn+1 = Zn*Fl(yn)ilF(Zn)v

where A, is as method (15.10). The corresponding majorizing sequence is given for
to =0,50 > 0 by

(1 + Loty + 3L(Sn - tn)) (Sn - tn)

173 = S )
" " 16(1 - %(l’nJFSn))(l *LOtn)
(1 + % (un thn))(un - tn) + (1 JFLOZ’n)(Sn - tn)
i1 = Up+ 1—Los
n
and
s — i L(tn+l 71.’1)2 +2(1 JFLOZ'n)(Z'n+l *Sn)
n+1 n+1 2(1 *L()l’n+1) .
(Is) [12]
1 _
Yn = Xn— EFI(xn) lF(xn)7 (15.12)
in = xn*Fl(yn)ilF(xn)
and
Xp+1l = Zn— (ZFI(yn)il *Fl(xn)il)F(Zn)-

The corresponding majorizing sequence is given for fyp = 0,59 > 0 by

1
u, = s+ 1—Los, (5 JFLO(Sn 71,’1)2)(1 JFLOZ’n)(Sn *tn)v
1 L(s, —1ty)
t = 1
m tn 1*LOSn( * 1 —Lot, )
Ly
X [(1 + T(Z’n Jrun))(un *tn) +2(1 JFLOZ’n)(Sn *tn)]
and
Syl = t lJrL(tn+l*tn)erz(l+L0t11)(tn+l*tn)
n+ — n+ .
2(1 *LOtn+l)
(I5) [15]
1 _
Yn = xn*EFl(xn) lF(xn)7 (15.13)
1 _
in = xn*EFl(yn) lF(xn)v
wn = Zn*A;;lF(Zn)
and

Xn+l = Wy *A,IIF(Wn)»
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where A, = 2F'(y,) — F'(x,). The corresponding majorizing sequence is given for
ap=0,ap > 0by

2 1
cn = by+ m(i JFLO(bn - an)z)(l JFLOan)(bn - an)»
d — ¢ & (1 + %(an JFcn)(cn *an) + (1 JFLOan)(bn *an)
" " 1— (L(bn - an) JrL()(bn - an)) 7
4 _ 4 (1JF%(anern))(dn*an)Jrz(lJFLOan)(bn*an)
i " 1— (L(bn - an) JFLO(bn - an))
and
L(an+l - an)2 + 2(1 JFLOan)(an+l - an)
b = .
n+1 apy1+ 1 ~Lodnit
() [14]
1 _
Yn = Xp— EFI(xn) lF(xn)7 (1514)
in = xn*Fl(yn)ilF(xn)v
Wn = Zp—B,F (Zn)
and
Xn+1 = Wp *BnF(Wn)y

where B, = 2F'(y,) "' — F'(x,) . The corresponding majorizing sequence is given
for ay = 0,a9 > 0 by

2 1

cp = bn+717L0bn(E+L(bn7an)2)(1+L0an)(bn7an),
1 L(b,—a L
dn = Cn+17L0bn(1+ l(jLan))((1+To(an‘f’cn)(cn*an)+2(1+L0an)(bn7an)),
1 L(b,—a L
a1 = d”+1—L0bn(1+ l(jLoaz))((1+TO(amLcn)(cnfan)+2(1+L0an)(bn,an))
and
L(ani1—an)* +2(1+ 1L, _
bn+1 = api1+ (an+1 an) + ( + Oan)(an+l an).

2(1 = Loap+1)

2. Convergence Criteria

Recall that according to the previous Chapter the convergence criteria for the fifteen ma-
jorizing sequences are respectively. Suppose Vn =0,1,2,...

Loty < 1,Los, < 1, (15.15)
Loty < 1,Los, < 1, (15.16)
Lot, < 1, %(r,,+3sn) <1, (15.17)
Lot, < 1, @(t,ﬂrsn) <1, (15.18)

2
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Loty <1, Lo(sp +1a) <1,

Ly
Lot, < 17 ?(t11+3sn) < 17

Loa, <1,
Loty <1, Los, < 1,
Loty <1, Los, < 1,

Sy, —1
Lol‘n<I,L()Sn<I,LO(l‘nJFSnJr - n)<17

V3
Lot, < 1, Los, < 1,

Lot, < 1, Los, < 1,
Loty <1, Losy < 17L0Sn+L(Sn*tn) <1,

and
Loa, < 1, Lob, < 1.

(15.19)

(15.20)

(15.21)
(15.22)
(15.23)

(15.24)

(15.25)
(15.26)
(15.27)

(15.28)

Numerical examples involving majorizing sequences can be found in the previous Chapters.
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Chapter 16

Extended Semi-Local Convergence
Analysis for the Two-Step Newton
Method under Generalized Lipschitz
Conditions

1. Introduction

Let By, B, denote Banach spaces and € be a nonempty and open convex subset of B;. Let
also L(By,B;) stand for the space of bounded linear operators from Bj into B,. A plethora
of applications from diverse disciplines can be brought in the form of the nonlinear equation

F(x) =0, (16.1)

using mathematical modeling [1,2,3,4, 5], where F : Q — B, is a Fréchet differentiable
operator. A solution x* of equation (16.1) is needed in closed form. However, this is
attainable only in special cases. That explains most solution methods for equation F(x) =0
are iterative. The most popular iterative method for solving equation (16.1) is Newton’s
(NM) which is defined by

X0 €Q, Xp11 =X, —F'(x,) 'F(x,)Vn=0,1,2,.... (16.2)

Here, F’(x) denotes the Fréchet-derivative of F. The local, as well as the semi-local conver-
gence of NM, has been studied under various Lipschitz, Holder and generalized conditions
of F'[1,2,3,4,5,6,7,8]. The same has been done for the two-step Newton method (TSNM)
defined by

Yn = xn*Fl(xn)ilF(xn)
and

Xn+1 = yn*Fl(xn)ilF(yn)-

In particular, the semi-local convergence of TSNM was given in [8] under generalized
Lipschitz conditions. The convergence domain is small in general. That is why in the
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present Chapter we extended the convergence domain without additional conditions. More
benefits are weaker sufficient convergence criteria; tighter error estimates on the distances
1141 — Xal|, ||%2 —x*||, and a piece of more precise information on the location of the so-
lution. From now on U (x, r) denotes an open ball with center x € B; and of radius p > 0.
Then, by U [xo, r] we denote the closure of the open ball U (xo, 7).

2. Semi-Local Convergence

Some generalized Lipschitz conditions are introduced and compared. Suppose that there
exists xg € Q such that F'(xo) ' € L(By,B;). We assume from now on

S=sup{r >0:U(xo,1) C Q}.

We also set D = U (xo,p).

Definition 1. Operator F' is said to satisfy the center —Lo— average Lipschitz condition on
Dif Vx € Q

[lx=2xol|
1" (x0) ™ (F'(x) = F'(x0)) | S/O Lo(u)du, (16.3)
where Ly is a positive nondecreasing function on the interval [0, p).
Suppose that equation
-
/ Lo(u)du—1=0 (16.4)
0

has a smallest solution pg € (0, r). Define the set Dy = U (xo, o).

Definition 2. Operator F’ is said to satisfy the restricted center —L— average Lipschitz
condition on the set Dy if Vx,y € Dy

[le—xoll+lly—xll

1F (x0) ™' (F'(y) = F'(x)) | S/ L(u)du, (16.5)

[lx=xo]|

where L is a positive nondecreasing function on the interval [0, p).
Definition 3. Operator F’ is said to satisfy the —L; average Lipschitz condition on the set
Dif Vx,y € D with ||x —xo|| + ||y —x|| <p

[lxe—xo|+[|y—x]l

IF" (x0) ™" (F'(y) = F'(x)) | S/ Ly(u)du, (16.6)

[lx—xol|
where L, is a positive nondecreasing function on the interval [0, p).
Remark. By the definition of sets Dy and D, we get

Do C D. (16.7)

It follows that
Lo(u) < Li (u) (16.8)

and
L(u) < Ly (u) (16.9)
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Yu € [0,po). It is assumed from now on that
Lo(u) < L(u) Yu € [0, po). (16.10)

If not, replaced L by L, where the latter function is the largest of functions Ly and L on the
interval [0, po). The crucial modification in our analysis is the fact that Ly can replace L in
the computation of the upper bounds on ||F’(x)"'F'(x)|. Indeed, let us define functions
ho,h and h; on the interval [0, pg) for some b > 0 by

hot) :btJr/OlLo(u)(tu)du,

h(t):btJr/OlL(u)(tu)du
and |
hl(t):bftJr/O Lo()(t — u)du.

It follows from these definitions that

ho() < h(t) < () V1 € [0, o). (16.11)
Set 0o
b::/ L(w)uduand p = |F'(x0)"'F (x0)|. (16.12)
0
Moreover, define the scalar sequence {z,}, {s,} Vn=0,1,2,... by
nh = 0,
Sn = ta—h (1) () (16.13)

and
iyt = Sp— hl(tn)ilh(sn)-
These sequences shall be shown to be majorizing for TSNM at the end of this Section. A
convergence criterion for these iterations has been given in [8].

Lemma 27. 1f 0 < B < b, then h is decreasing on [0, py] and increasing on [pg, R], and
h(B) >0, h(po) = B—b <0, h(R) = >0.

Moreover, i has a unique zero in each interval, denoted by ¢* and t**. They satisfy
« _ Po Hok
B<r<;,[3<po<r <R.

The following Lemmas relate operators to functions “A” and scalar majorizing se-
quences {z,} and {s,}.

Lemma 28. Assume that ||x —xo|| < ¢ < t*. If the first derivative F’ satisfies the center Lo—
average Lipschitz condition (16.3) in U (x*,t), then F'(x) is nonsingular and
1 1

1! - .
[ IA0)

In particular, F’ is nonsingular in U (xo,").
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Proof. Take x € U[x",1],0 <t < t*. By using the center Ly— average Lipschitz condition
(16.3) we have

! —1pr =l / /
1P (o) P =1 < [ Ll =K (Jx =)~ (0).

But 4'(0) = —1 and A’ is strictly increasing in (0,t*). Therefore, the Banach lemma is
applicable to conclude the result. U

Lemma 29. Let {s;} and {1, } be generated by (16.13). Assume that F’ satisfies the restricted
L— average Lipschitz condition (16.4) i U(xo,t"). If 0 < B < b, then the sequence {x;}
and {y;} generated by the TSNM with initial guess xo are well defined and contained in
U (xo,t"). Moreover, Vk=0,1,2,..., we have

1 1

. / —1 . / —1 7
(i) F'(xx) " existsand ||[F'(x¢) " F'(x0)| < W=l < et

(i) [[F'(x0) ™" F (i) | < h(ty),

(i) [Jyx — x| < sk —te.

2
) Vi — X
Gv) || xrg1 =yl < (tee1 — sk) <7” H> <tg=1— Sk
Sk — Iy

V) |1 = x| < tige1 — 1

Proof. Replace h; by h in the proof of Lemma 4 in [5]. O

Lemma 30. Under the same assumptions of Lemma 29. Then, the sequence {x; } converges
to a point x* € U|xo,#*] with F(x*) = 0. Moreover, we have

lx* —xi|| <t*—1, k>0,

and
Ix" — vl < (2" —s¢) Il = el ’ k> 0.
- =t )T
Proof. Replace h; by h in the proof of Lemma 5 in [5]. O
. ) . hll(l.*)
Lemma 31. Under the same assumptions of Lemma 30 and the assumption 2 +¢ ) >0,

we have
1 h//(t*)
vk — x| W

<

_ - ' (t*
Sk Tk 1+ 21]1’((t*)

(" = 1) ||x* — x|

(t**tk) t**tk

k>0,

— | |

Proof. Replace h; by h in the proof of Lemma 6 in [5]. O
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Remark. The corresponding estimate of Lemma 28 in [6] gives using (16.6) the less precise

estimate |

")V (x o _
IF/)™F o) | < s

But by (16.11) the following holds

1 1 1
- <— < - .
ho(llx=xoll) = A (e =xoll) = A (Jlx = xol])

Hence, the sequence {7,},{5,} used in [5] and defined Vn = 0,1,2,... by

IF'(x) ' F"(xo) | <

fh = 0,

5, = t,—hi(5) K5 (16.14)
and

fort = Su—hy(7) " h(5,). (16.15)

are less precise than the new majorizing sequence {#,} and {s,}.
Next, the main semi-local result for TSNM is presented.

Theorem 17. Let F : D C X — Y be a continuously Fréchet differentiable nonlinear op-
erator in open convex subset D. Assume that there exists an initial guess xo € D such that
F'(x0) " exists and that F’ satisfies the L— average Lipschitz condition (16.5) in U (xg,*).
Let {x;} be the iterates generated by the TSNM with initial guess xo. If 0 < B < b, then
{x¢} is well defined and converges Q— super quadratically to a solution x* € U [xp,t"] of
(16.1) and this solution x* is unique on U|xo, r|, where t* < r < t**. Moreover, if

(" tL(t*
( )>0@27 (t")

2+ ——
H(t) 1— [ L(u)du

>0,

then the order of convergence is cubic at least and we have the following error bounds

1 2—t*H, 3
||x* —Xn+1 || < EH*622+Z’*H* ||x* *ka ’ k> 07
hll(l.*)
where H, = W
Proof. Simply replace function 2 — 1 by 4 in the proof of Theorem 1 in [5]. O

Remark. Popular choices for the “L” functions are
Kantorovich-type Case [1,4,5,6]:
_ Ly

ho(t) = 71‘2 —1+B,

L
h(t)==r>—t+B
2
and

L
hi(t) = 71t2—t+[3,
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1
where Ly, L and L; are constant functions and b = Tk Notice that

Smale-Wang-type Case [7,8]:

and

where b = %(3 —2V2).
Notice that

Lo <L<L. (16.16)
Yot* 7 1
()=~ HBYIE ),
,Yt2
(r)_li —t+BVrel0,-)
nt 1
hl(r)_l—ylr t+BVrelo, l),
Yo <Y< (16.17)

Examples where (16.16) and (16.17) (therefore the aforementioned advantages hold) can

be found in [1,4, 6].
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Chapter 17

Semi-Local Convergence for
Jarratt-Like Methods under
Generalized Conditions for Solving
Equations

The semi-local convergence is presented for sixth convergence order Jarratt-like methods
for solving a nonlinear equation. The convergence analysis is based on the first Fréchet
derivative that only appears in the method. Numerical examples are provided where the
theoretical results are tested.

1. Introduction

The semi-local convergence is developed for two sixth convergence order Jarratt-like meth-
ods for solving the nonlinear equation

F(x)=0, 17.1)
where F': Q C X — 9 is continuously Fréchet differentiable, X, are Banach spaces,

and € is a nonempty convex set.
The methods under consideration in this chapter are:

2 _
Yn = xn*_Fl(xn) lF(xn)7

3
23 3, 1y 9 i
in = yn*(KI*EF (xn) lF (yn)(31*§F (xn) lF (yn))]
X F' () F (x,) (17.2)

and

5 3 _ _
Xn+1 = Zn— (51* EFI(xn) lFl(yn))Fl(xn) IF(Zn)-
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and

2 _
Yn = xn*_Fl(xn) lF(xn)7

3
21 9 15 _
in = Xp— (IJF ?Tn - ETnz + ?T;?)Fl(xn) lF(xn) (17.3)
and
5 1 2 / —1
Xpp1 = Zp— (31— ETnJF 5’1;1 V' (x0) ") F (z0),

where T, = Fl(xn)lel()’n)-

The sixth local convergence order of these methods was shown in [1, 9], respectively
when X = 9 = R" using Taylor expansions and conditions up to the seven order derivative
which does not appear on these methods. These conditions restrict the applicability of these
methods.

1
For example: Let X =9 =R, Q= [—5, %] Define f on Q by

_ 0 ift=0
f(t)_{ logt> +1°—t* ift#0.

Then, the third derivative is given as
f" (1) = 6logt® + 601> — 241 +22.

Obviously, f(¢) is not bounded on Q. Thus the convergence of these methods is not guar-
anteed by the analysis in these papers. But these methods may converge. Our convergence
analysis is based on the first Fréchet derivative that only appears in the method. The analy-
sis includes computable error estimates on ||x,,+1 — x|, ||x, —x*|| and the uniqueness ball of
the solution. The results significantly extend the applicability of these methods. This new
process provides a new way of looking at iterative methods. Notice also that the semi-local
convergence is more challenging than the local one.

The semi-local convergence analysis is given in Section 2 and the numerical examples
are in Section 3.
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2. SL of Method (17.3) and Method (17.2)

Let Lop,L and m denote positive parameters. Define the scalar sequences
{Sn}7 {un}7 {tn}7vn =0,1,...by
Ih = = 07 So=",
3/1 15L2(14Los,)(sn—tn)?
= —| = 17.1
Un SnJF2<3+ 8(1*[;()1’”)3 ( )
3L(1 JFLOSn)(Sn - tn)
—1,
T Lon)? (50 =1n)
1 3L(Sn - tn) L? (Sn - tn)z
t = 2
s unJr 1*LOl'n < * 1*LOl'n * (1 *LOtn)z

[(1 + %(l’n + un))(”n - tn) + %(Sn - tn)]

and
3L(tn+l - tn)z +4(1 JFLOZ’n)(Z'n+l - Sn) + 2(1 *LOtn)(tn+l - tn)
6(1 *LOtn+l)

These sequences shall be shown to be majorizing for method (17.3) in Theorem 18.
Next, a convergence result is presented for these methods.

Sprl = Iny1

Lemma 32. Suppose:
1
t,,<aVn:O,1,2,.... 17.2)
Then, sequence given by formula (17.1) are strictly increasing and convergent to t, €

(0, g] The limit ¢, is the unique least upper bound of these sequences.

Proof. The assertions follow from the definition (17.1) of these sequences and condition
(17.2). O

The aforementioned parameters Lo,L and m are connected to the initial data
(Q,x0, F,F") as follows. Suppose

(A1) There exist xg € D,n > 0 such that F'(xo) ' € L(9, X) with ||F'(x0) "' F(xo)|| < 7.
(A2) There exists Ly > 0 such that Vx € Q

1F" (x0) " (F' (x) = F' (x0)) || < Lo|lx — xol-

1
Define the set My = U (xo, E) NQ.

(A3) There exists L > 0 such that Vx,y € M
IF' (x0) ' (F'(y) = F'(x)) | < L|ly — ]|

(A4) Conditions of Lemma 32 hold.
and
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(A5) Ulxo,t.] C Q.

The SL of method (17.3) uses the conditions (A1)-(AS).

Theorem 18. Suppose that the conditions (A1)-(A5) hold. Then, sequences {x, },{yn},{z:}
are well defined in the ball U (xy,,) remain in the ball U|xo,#,]Vn =0, 1,2,... and converge
to a solution x, € Ulxo,?.] of equation F(x) = 0. Moreover, the following error estimates
holdVn = 0,1,2, ...

I — xu|| <t — 1. (17.3)

Proof. The following items shall be shown Vm = 0, 1,2,. .. by mathematical induction

||ym*xm|| < Sm—Im, (17.4)
||Zm*ym|| < U —Sm (17.5)

and
[m41 = Zm || < tmg1 — tm. (17.6)

Condition (A1) and the formula (17.1) imply
[y =0l = [[F"(x0) " F (x0) || <M = s0 — 10 < 1.

Thus the item (17.4) holds for m = 0 and the iterate yy € U(xo,1.). It also follows by the
formula (17.1) that iterates zo and x; are well defined. Let w € U (xy,z.). By applying
condition (A2) and Lemma 32

1" (x0) ™ (F' (w) = F'(x0)) | < Lollw 2ol < Lot < 1.
Hence, F'(w)~! € L(, X) and the estimate

1

FI 71FI < - -
P00 F (x0) | < g

(17.7)

follows by the Banach perturbation lemma on invertible operators [3, 6]. Suppose items
(17.4)-(17.6) hold Vm = 0, 1,2, ..., n. By the first two substeps of method (17.3)

3.1
in—=Yn = _(_IJFBn)(yn *xn)v (17.8)
2°3

21 1 1
where B, = =T, — ngz + §5T,3 = Tn(g(l— T,) + 21) (I—T;,). It then follows by (17.7)

for w = x,, and the conditions (A2) and (A3) that

15L2(1 JFLOSn)(Sn - tn)z 4 3L(1 JFLOSn)(Sn - tn)
8(1—Loty,)? 4(1 — Lot,)? ’

Bl < 17.9)

where we also used

IF (o) F' )l = 1F (o)™ ((F" () — F' (x0)) + F (x0)) |
< lJFLOHyn*xOH < 1+Lys,.
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Therefore, the identity (17.1), formula (17.1) and (17.9) give

1 15L2(1 4 Losy) (50— 1)
lzn =yl < <§+ 8(1—Lota)’
3L(1 JrLOSn)(Sn - tn)
4(1— Loty)?
x[(1+%(r,,+un))(un—rn)+%(snftn)]
= Un—3S8n

and
llzn =0l < [lzn = yall +[lyn — %0l < tn — s+ 50 —t0 =t <1,
so item (17.5) holds and the iterate z, € U (x,.). Moreover, by the third substep of method
(17.3)
Xai1 = 2all = 1CaF” (xa) ™' F (za) I, (17.10)
5

1
where C, = 31— 5T, + ET,,Z = (T, —1)*> =3(T, —I)+2I, so

L2 (s, —1,)? N 3L(sp—1ty,)
(1 *LOtn)z 1 *LOtn

Consequently, (17.1), (17.10) and (17.11) give

[Call < +2. (17.11)

1 L2 n*l’n2 L n*tn
(o4 Bl =2 | 30, =)
1 —Lyt, (1 —Loty) 1—-L—0¢,

(12 ) it =)+ (50— 1)

= Iyl — Uy,

)

||xn+l *ZnH <

and
||xn+l *xOH < ||xn+l *ZnH + ||Zn *xOH <ty —Up+uy —ty =ty < Ly

Thus, item (17.6) holds and the iterate x,,+1 € U(xo,.), where the identity
F(zn) = F(zn) —F(xn) +F(xn)
1 3
= /o F' (3, 4+ 0(zy — %) )dO (2, — X)) — EFI(xn)(Yn —Xn)

is used to obtain

IF' (x0) ™' F(za)ll - < II/OIF'(Xo)l(F'(XﬁG(Znxn))deF'(Xo))
H|[]zn = xa]l
+%(||1||+IIF'(xo)’l(F'(xn)*F'(xo))ll)llynfxnll

IN

(1+%(un+tn)(unftn)+%(l+Lot,,)(s,,ft,,).
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It also follows that iterate v, is well defined, since x,,— € U (xo,.). Then, the first substep
of method (17.3) gives

F(xps1) = F(xur1) = F () = F'(x0) (Xn 41— Xn)
! 2 !
+F (xn)(xn+l*xn)*§F (xn)(Yn*xn)
= (F(xnr1) = F (%) = F' (%) (X1 — X))
2 1
+§Fl(xn)(xn+l*)’n)JrgFl(xn)(an*xn)?
leading to
! —1 L 2 2
||F ()C()) F(xn+l)|| S E(tn+l*tn) +§(1+L0tn)(tn+lfsn)
+%(1+L0t11)(t11+1*tn)- (17.12)

Consequently, it follows by formula (17.1), estimate (17.7) (for w = x,,1) and (17.12) that

ynet =t | < IF (ae) ™ F (o) [I1F (x0) ™' F ()|

1L ,

< (Gt — 1

S T Loy 2 e )
2 1
Jrg(lJFLOtn)(tn+l*Sn)JF5(1+L0t11)(tn+l*tn))

= Sp+1—Int1 (17.13)

and

||yn+l *xOH < ||yn+l —Xn+1 || + ||xn+l *xOH < Spt1 —Ing1 g1 — o = Spp1 <ty

Thus item (17.4) holds and the iterate y, 1 € U (xo, ). The induction for items (17.4)-(17.6)
is completed. The scalar sequence {f,} is complete by condition (A4) (as convergent).
Hence, sequence {x,} is convergent too. So, there exists x, € U|[x, ] such that F(x,) = 0.
By letting n — oo in (17.12) and using the continuity of operator F it follows that F (x,) =
0. Finally, estimate (17.3) follows by letting i — oo in the estimate

||xi+n —Xn || < tivn—1In.
|

Next, the uniqueness of the solution result is provided but where not all conditions
(AT1)-(AS) are used.

Proposition 12. Suppose:
(a) There exists a solution p € U(xy, p) for some p > 0 of equation F(x) = 0.

(b) Condition (A2) holds such that U (xo,p) C €.
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(c) There exists p; > p such that
Lo(p+p1) <2. (17.14)

Define the set My = U (xo,p1) N Q. Then, the only solution of equation F(x) =0 in
the set M| is the point p.

1
Proof. Let g € M, be such that F(q) = 0. Define the linear operator S = / F'(g+6(p—
0
q))d6. It follows by the conditions (A2) and (17.14) that

1F (x0) = (S = F'(x0)) | < Lo/ol((l9)IIPX*||+9||qX*II)d9

Ly
s 5 (p+p1) <1
Therefore, the estimate p = g follows by the invertibility of linear operator S and the identity
S(p—q)=F(p)—F(q)=0-0=0.

]
If all conditions (A1)-(AS) hold then, set p = ¢, in the Proposition 12.
Method (17.2) is studied in a similar way. Define the sequences {#,}, {s,}, {u,} by
Ih = = 07 So =",
1 L(si—12)\*
= — (1427 ———= 17.15
Up SnJF24< + <1L()l’n ( )

L(Sn *tn)
+ 18 <17Lol’n>> (Sn *l’n),
1 3L(sp —1ty)

1S e o
Lo 3
[(1 + 7 (tn + un))(”n - tn) + 5 (Sn - tn)]
and
o 3L(tn+l - tn)z +4(1 JFLOZ’n)(Z'n+l - Sn) + 2(1 *LOtn)(tn+l - tn)
Sprl = Iny1 .

6( 1— LOtn+ 1 )
Then, these sequences are also increasing and convergent to their least upper bound and the
conditions of Lemma 32. Moreover, notice that under conditions (A1)-(AS) the following
estimates are obtained:

23 3 9 3
?I* 5’1;1(31* ng))E(yn *xn)

= 2T 1) 18(T 1),

1 L(sp—12)\? L(sy—1,)
— < I _~ - 7 _~ 7
||Zn ynH > 6 <Z7< 1= Lot, > +18< 1— Lot, +1

I
2
3

in—Yn = (

implying

(Sn - tn) = Up — Sn-
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Moreover,
1 _
Xn+l —Zn = *5(21+3(1* Tn)Fl(xn) IF(Zn)7

1 L(s, —1ty)
n —<n S ~N 2 3 - 5 .
a3 (243 (K22))

SO

3
[(1 + %(”n thn))(un - tn) + 5 (Sn - tn)]
= Int1— Uy

The rest follows as in the proof of Theorem 18. Hence, the conclusions of Theorem 18 hold
for method (17.2). Clearly, the same is true for the conclusions of Proposition 12.
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Chapter 18

On the Semi-Local Convergence of a
Derivative Free Fourth Order
Method for Solving Equations

1. Introduction

The semi-local convergence is developed for fourth convergence order methods for solving
the nonlinear equation

F(x)=0, (18.1)

where F' : D C B — B is continuously Fréchet differentiable, B is a Banach spaces, and D
is a nonempty convex set.

The methods under consideration in this chapter are defined by

x €Dy, = x,— [un»xn;F]ilF(xn)»
u, = Xx,+bF (xn)
and (18.2)
Xp+1 = Yn— (31* Gn(31* Gn))[u11»x11;F]71F(y11)7

where a,b € R, 2z, =y +cF (), Gu = [ttn, X3 F] " [zn, yu: F] and [, .;F] : Bx B— L(B, B)
is a divided difference of order one [11, 12, 13]. The fourth order of method (18.2) is
established in [11,12,13] for B = R using the fifth order derivative, not on these methods.
The analysis involved local convergence. But we examine the most interesting semi-local
convergence analysis by utilizing only the first divided difference appearing on the method
and in the more general setting of a Banach space. Hence, the applicability of the method
is extended. The technique can be used in other methods [1,2,3,4,5,6,7,8,9,10,11,12,13,
14, 15]. The notation U (x, R0 is used for the open ball in B of center x € B and of radius
R>0.
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2. Majorizing Sequence

Let Mo,N, A, B,y and & be nonnegative parameters. Let also w,wy, k = 0,1,2 be continuous
and nondecreasing functions. Define sequences

P;l1 = Pty +[bMo,

Pi = Syt +|bMo,
P = 8s,+|co,

Py = PutDy

P;Sz = |b[Aty+[bIno

and
qn = 1 —wy (p;lwtn)-

Moreover, define scalar sequences {z,} and {s,} by
th = =0,50= n,

1
Int1 = Spt ?(317;2 + w2 (P;31»Sn))W(P;SnfmSmp;ll)(sn —ty) (18.3)

n
and

W(P;Smfn»an»P;lz)(th —1n) + W2 (Phstn) (tns1 — Sn)
qn+1

Sp+1 = Ipp1+

The sequence defined by formula (18.3) shall be shown to be majorizing for method (18.2).
But first, we presented a convergence result for it.

Lemma 33. Suppose:
wo(pl,t,) <1landt, <uforsomeu>0 Vn=0,1,2,.... (18.4)

Then, the sequence {#,}is non-decreasing and convergent to its unique least upper bound
t* € [0,ul.

Proof. Tt follow by (18.3) and (18.4) that sequences {t,} is nondecreasing and bounded
from above by u and as such it converges to *. U

3. Semi-Local Convergence

The analysis is based on the following conditions:

(h1) There exist xo € D,m > 0 and 1 > 0 such that [ug,x0; F] ™', F'(x0) ' € L(B,B) with
IF" (x0) || < Mo and [u, x0: F] ™' F(xo) || <.

(h2)
1F (o)~ ([, : F] = F'(xo)) | < wo(llu—2xoll, [x—xo]) ¥x,u € D,
IPexo: FII < A
[1+blxxo FI[| < B,
[ =blx,xo: FI[| < v
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and
11+ c[y, x0; F]I| < 8Vx,y,u,z € Ul(xo,p)-

(h3) Suppose that there exists a smallest solution p € (0,0) of equation
wo (Pt +|bno,t) — 1 =0.
Set T = [0,p).

(h4)
1F" (x0) ™" ([, F] = [u, 5 F1) | < w(ly = ull, [[x—xo]l, Ily —xoll, [« —xo]),
1F" (x0) ™! ([, F] = 2,3 FI) | < wi(Jlu—z|, [l x—yl|)
and

1F' (x0) ™ 2,32 F1Il < walllz—xo]l, [[y = o)),

(h5) Conditions of Lemma 33 hold.
and

(h6) Ulxo,R] C D, where R = max{t*, R, Ry}, with Ry = Bt* + |b|ng and Ry = &* +|c|no.

Next, the semi-local convergence analysis of the method (18.2) is presented using the de-
veloped conditions and terminology.

Theorem 19. Suppose that the conditions (h1)-(h6) hold. Then, sequences {x,}, is well de-
fined, remain in U[xp,R]Vn=0,1,2, ... and converge to a solutionx™ € U [xo, R] of equation
F (x) = 0. Moreover, the following error estimates hold Vn =0, 1,2, ...

||yn*xn|| < sy —1y. (18.5)

and
||xn+l*yn|| Stn+lfsn- (186)

Proof. Tt follows by (h1), (h2) and the definition of p that

1F" (x0) ™" ([t 203 F] = F' (x0)) | wo([lun — o[, [l —x01])

<
< gn <1 (by Lemma 33).

Thus, by the Banach Lemma on invertible operators [1,2,3] [u,,x,;F] ' € L(B,B) and

_ 1
||[umxn;F] lFl(xO)H <—, (18.7)

n

where we also used
Uy — X0 = Xy — X0 +bF (x,) = (I +D[xp,x0; F]) (%, —x0) + DF (x0)

SO
< 1 < R < R
>~ FPpn > I
||un xOH P 1 .
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Using the first substep of method (18.2), we have

F(yn) = F(yn)*F(xn)*[unvxn;F](yn*xn)
([yns X3 F] = [, X3 F]) (Y0 — Xn)
w(prsntnvsnvprlz)(snitn)

IN

and by (h3)
1 (x0) ™ F () | < wllyn —all, Iln =01, I3 =0, 1t — %0} |0 —26a]].
Moreover, by the second substep of method (18.2) we get
X1 —Yn = (=3I = G [ty X3 F1 71 = G2 [, 03 F] V) F ().

The following estimates are needed

=Gy = 1 —[un, %3 F) " [zn, v F]

= [t %03 F1™" ([, %03 F) = [2, 03 F)).

It follows by formula (18.3), (18.7)-(18.9) and (h4) in turn that

3pt wa(pl,s
ot —yall < (7+% WD s D) (50— 1)
n n

= Int1— Sn,
where we also used ||y, — x| < s, — 1,

Vo —ttnll = |[yn—x0 +DF (x,) ]|
= lyw—x0+x0 —Xn 4+ b(F (xn) — F(x0)) +bF (x0) ||

< lyn —xol 4+ [[(Z = blxa, x05 F1) (%2 — x0) || + [B[|F (x0) |
< Sn+an+|b|ﬂo=Pﬁ,
len—ol = [l =30+ c(F () — F(30)) + F (x0)]
< 1+ 203 F]) G —x0)| + el F (30) |
< pi<R-2<R
and
||un*Zn|| = ||un*x0+x0*2n||
< lun—xol| + |20 — X0l
< pytpy =D

Furthermore, by the first substep of method (18.2) it follows that

F(xn+l) = F(xn+l) *F(xn) - [un»xn;F](yn*xn)
= ([xn+17xn;F] - [u117x11;F])(x11+1 *xn))
Jr[umxn;F] (xn+l *yn)v

(18.8)

(18.9)

(18.10)
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SO

1F' (x0) "F(xur) | < w(p)tustust, Pa) (a1 —ta)
w2 (pr61, 1) (tas1 —1n)- (18.11)

Consequently, we obtain

Vst =Xnet ]l < 1,003 F] 7 F (o) [HIF (x0) ™ F (1) |
= Sp+1—Iny1- (18.12)

Hence, sequence {x,} is fundamental and sequence {t,} is fundamental too as convergent.
That is there exists x, € U|[x,t,] such that lim x, = x". By lettingn — o in (18.11) and
n—-—0o0

using the continuity of operator F' we deduce F (x,) = 0. O
Next, we present a uniqueness result for the solution of equation F(x) = 0.
Proposition 13. Suppose:
(1) There exists a solution x* € U(xo,p1) for some py > 0 of equation F (x) = 0.
(2) Condition (h2) holds.

(3) There exists pa > p1 such that

wo(p2,p1) < 1. (18.13)

Set Dy = U [xq,p2] N D. Then, the only solution of equation F (x) = 0 in the region D,
is the point x*.

Proof. Let y* € D; be such that F(y*) = 0. Define the linear operator S = [y*,x"; F|. It
follows by the conditions (h2) and (18.13) that

IF (x0) =1 (S — F'(x0)) | wo([ly" = xoll, [l —xo[)

<

< wo(p2,p1) < 1.

Hence, we conclude that x* = y* by the invertibility of the linear operator S and the identity
Sy —x")=F(")—F(x")=0-0=0.

O

Remark. Notice that not all conditions of Theorem 19 hold. But if we assume all conditions
of Theorem 19, then we can set p; = ™.
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Chapter 19

Extended and Unified Kantorovich
Theory for Solving Generalized
Nonlinear Equations

1. Introduction

Let B; and B, stand for Banach spaces; L(B,B;) be the space of bounded linear operators
mapping B, into By; F : B = B, be a multi-operator and G : B = B, be a differentiable
operator in the Frechet sense. Numerous problems from diverse disciplines such as opti-
mization, Mathematical Biology, Chemistry, Economics, Physics, Programming, Scientific
Computing and also Engineering to mention a few can be written in the form of generalized

nonlinear equation (GNE)
0€F(x)+G(x). (19.1)

Equation (19.1) specializes to two popular cases:
(a) F =0 leading to the generalized nonlinear equation [1,2,3,4,5,6,7,8,9,10].
G(x)=0.
(b) F is Nk. That is the normal cone of convex and closed subset K C Bj. In this case
GNE is called a variational inequality problem (VIP) [11,12,13,14,15,16,17,18].

A solution x* of GNE is desired in closed form. But this is possible only in special cases.
That is why most solution methods of GNE are iterative when a sequence is generated
converging to x* under certain conditions [1,2,3,4].

A generalized iterative scheme (GIS) is

0€ G(xp) + T (xps1 —x0) +F(xp41) Vn=0,1,2,..., (19.2)

where A, = A(x,),A : B — L(B1,B5). Linear operator A, is an approximation to the
Fréchet derivative F’ of operator F.

If A(x) = F'(x) GIS reduces to a scheme studied by many authors [1, 2,4, 18] under
Lipschitz-type conditions on F’ and various techniques. GIS was also studied in [2] under
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Holder-type conditions. But there are even simple examples [3,4] where operators F’ or
A do not satisfy Lipschitz-type or Holder-type conditions. That is why a semi-local con-
vergence is presented using more general conditions on F’ and A as well as a majorizing
sequence. This way the applicability of GIS is extended.

The background is given in Section 2 followed by the properties of majorizing se-
quences in Section 3, and the semi-local convergence of GIS in Section 4.

2. Mathematical Background

Denote by U (x,7y) the open ball with center x € By and of radius y > 0. Let also G : D C
By — B, where D is an open set. The following standard definitions are needed:

gphF ={(ui,u2) € By xBy:uy € F(uy)};
domF ={u € By : F(u) # 0};
rgeF ={v € By :3v=F(u) for someu € B; };
F~! : B — Bj is such that
F Y uy) ={uy €By:uo =F(u1)};
for C; C B and C, C By,
A(w.C) = inf s~

and
e(C1,Cy) = sup d(u,Cy).

u1€Cy
The following conventions are used:
d(x, Cz) = +oo for C; =0,
e(0,C) =0forC, #0
and
e(0,0) = +oo.
Definition 4. [2] A multifunction S : B =2 B; is Aubin continuous at (u,v) € gph(S) with
parameter > 0 if 3 parameters 8; > 0 and &, > 0 such that neighborhoods M, and M, of
v satisfy Ywi,wp € U(v,8,)
e(S(w1) NU (u,81)) < Bllu—v|.

Theorem 20. [2] Let M : B; = B; be a multifunction and point u € B;. Suppose that 3
parameter r > 0 and T € (0, 1) such that the set gphM N (U[u,r] X U[u,r]) is closed and the
following conditions hold:
(@ d(u,M(x)) < R(1—7)
and
(b) VPI»PZ € U[uvr]
e(M(p1) NUu,r],M(p2)) <t|p2—pill-
Then, operator M has a fixed pointin U [u, R], i.e., Jup € U[u, R] such that ug € M (u).
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3. Majorizing Sequence

Let us define the scalar sequence {#,} for some continuous functions @ : [0,c0) —
(*00700)7 Yo ! [0700) - (700700) and\lfi [0700) - (*00700) and some A > 0 by

fh = 0,61=A
and (19.3)

B(fo Q((1 —0)(tnr1 —12))dO +(tn)) (tn1 —1n)
1=B(w(0) +wo(tn+1)) ’

Vn=0,1,2,.... Sequence {z,} shall be shown to be majorizing for sequence {x,} in the
next section. But first, some convergence results for it are needed.

o = I+

Lemma 34. Suppose that condition
B(yw(0)+w(tyt1)) <1Vn=0,1,2... (19.4)
holds. Then, sequence {#, } defined by formula (19.3) is non-decreasing. Moreover, suppose
t, < ufor some u > 0. (19.5)
Then, sequence {7, } converges to its unique least upper bound 7, € [0, u].

Proof. Tt follows by formula (19.3) and conditions (19.4), (19.5) that sequence {¢,} is non-
decreasing and bounded from above by u, and as such it converges to 7*. O

Next, a second and strong convergence result is provided.

Lemma 35. Suppose that there exists parameter o € (0, 1) so that

B(Ji o((1—8)2)d0 -+ y(0))
0= B0 )

(19.6)

and

_ BUo 9((1-0)1)d8 +y(25))
1 —B(w(0) +yo(25))

<a. (19.7)

Then, sequence {f,} is non-decreasing, bounded from above by I and converges to its

unique least upper bound ¢, such that 7, € [0, %]
Proof. Mathematical induction is used to show

0<tyi1—th<alty—t,—1)Vn=1,2,.... (19.8)
Assertion (19.8) holds for n = 1 by formula (19.3) and condition (19.6). Assume

0 <tir1 —tx SOt — 1) < o (11 —to) = kM (19.9)
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holds for all integer values k smaller than . then, it follows from (19.9)

L1 = thr(Xk?\. <ftr_1 Jr(inl?\.JrOCk?\.

1*06k+1 A
< <4 oA+... Fo)r= A< .
-« 11—«

Evidently (19.8) holds by condition (19.7). Hence, the induction for (19.8) is completed.

and as

It follows that sequence {#;} is non-decreasing and bounded from above by I

such it converges to its unique least upper bound 7, € [0, 1—] U

4. Main Result

The semi-local convergence of GIS is provided. Let xo € B; and A > 0 be given, G : Qo C
B — B, is Frechet-differentiable and F has a closed graph.

Theorem 21. Suppose:

(a) Jcontinuous functions @ : [0,00) — (—o0,00), Yy : [0,00) — (—o0,00), Y : [0, 00) —
(—o0,00) such that Vx,y € Qo

1G'(y) = G' ()] < o(lly—xI)), (19.10)

17(x) =T (xo) || < wo(llx—xol|) (19.11)
and

1G'(x) = T (1) || < w(|lx—xol])- (19.12)

(b) Ix; € Qq defined by GIS such that ||x; —xp|| < A and the multifunction (G(xo) +
G'(x0)(. —x0) + F(.))"! is Aubin continuous at (0,x;) with corresponding radii &;
and &, and modulus 3 > 0.

(c) Conditions of Lemma 35 hold.

(d)

25— A< 8, (19.13)

1 1
(2/ (p(2(1—6)s)d6+/ O((1—8)5)dB+y(s))s < &, (19.14)

0 0
B(w(0) +wo(s) <1 (19.15)

and

s(a—1)+A1<0. (19.16)

Then, the sequence {x,} generated by GIS is well defined in U (xo,z.) remains in
U (xo,t.) Yn=0,1,2,... and converges to a point x, € U[xp,%.] such that 0 € G(x,) +
F(x.).

The following auxiliary result is needed.
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Lemma 36. Suppose that conditions of Theorem 21 hold. Then, if {x,,} and {7, } are the
sequences generated by GIS and (19.3), respectively. Then, the following assertion holds.

Xt — Xl < tpas1 — 1, ¥m=0,1,2, ... (19.17)

Proof. We prove (19.17) by induction. Since ty = 0 and #; = A, by condition (b), we have
lx1 —x0|| = A <t —to. Suppose Ixy,x2,...,x, obtained by GIS such that

Ity —xn—1|| < th—t,—1Vn=0,1,...m—1. (19.18)

Hence, if n =0,1,2,...m then

n—1 n—1

||xn*x0|| < ||)C'+1*)C'|| < tim=1 —tj =1ty <ty (19.19)
J J J J
j=0 Jj=0
SO
n—1
||xn*xl|| < th+l —1; <t,—ti <t — A (19.20)
j=1
Therefore, Vx € U (x, |xn — X0]|), we have
lx —x1 ]| < JJx—xm | + || —x1]] <28 —A <8y (19.21)

Let po(x) = f(x0) + ' (x0) (x —x0) + F (x). Define the multifunction

Dyu(x) = py ' [F(x0) + 1 (x0) (x —x0) = f () — Ton (x = )]

Next, we check all the conditions in Theorem 21. First, we have from the definition of the
method that

1£ (xo) + ' (x0) (x —X0) — f (xm) — Ton (xx =25 ) |

< 00 =) = (o) (e —0)|
) = ) = (o) =5 |
HI(F ) = To) (5= )|
1
< [ o((1-8)r—sol)d0]lx—xo|

1
+ [ 0((1-0)lx—xul)dllx —x,
W(n =0 ¥
It follows that Vx € U (X, || X, — x0]|)
1 x0) + f (30) =30) = £ () = T (=3
1
< 2 [ 9(2(1-0) bt — 0] v — 0]

1
+ [ 0(1=8) v =0l 8 —0]
#wln =301 5 = 0]
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Hence, by (19.19) for n = m it follows
1
[1£(x0) + £ (x0) (x = x0) = f(m) = T (x —26m) || < (2/0 ©(2(1—6)z,)d6

1
Jr/o O((1—0)t.)d6 +y(t.) ).

for ||x,, — xo|| < t.. Therefore, since t — * < s, we get
1
1f (x0) + f (x0) (x = x0) = f (xm) = T (x —2m) || < (2/0 ¢(2(1-6)s)d6
1
+ /O o((1—6)s)dOy(s))s < 5.

Second, we note that x,, € py ' [f(x0) + f(x0) (Xm —%0) — f (Xm—1) — Tn—1 (Xm — Xm—1)]. Us-
ing the Aubin property of p,'(.) at (0,x;) with modulus k and constants §; and §,, we
obtain

d (X, @pu(xm)) e{Pal [f(x0) JFfl(xo)(xm —x0) = f(%m—1) = Tn—1 (X — Xm—1)]
NU (x1,01), @p(xm) }
K[| f(m) — f(m—1) = T 1 (X — Xim—1)]

K[ (f (1) = 1) (m = Xm—1)) |

1
B(/O O((1 = 0)(tm —tm—1))dO +W(tm—1)) [ n — X1 |
R(1=B(w(0) +wo(1m))),

By @((1 —8)(tr —t—1))d® +Y(tn—1))
1=B(w(0) +wo(m)))

U (X, || Xm — x0||) we can write

e{ P (p) VU (i, [|Xim —x0]1); Pm() }

IN

IN A

IN

lXn — xm—1]|- But, if p,q €

where R =

e{Pu(p) U (X, 81), Pr(q) }
BII(f(x0) = Tw) (P =)l

Bl (x0) = Toll + 11 To — Tl 1l — 4|
B(wW(0) +wo([lxm —xo0l)) P —qll-

(VAN VAN VAN VAN

In view of ||x,, —xo|| <. <sand B(W(0) +Wo(|[xm —x0||)) < 1, the application of Theorem
21 with ® = P, ¥ = x, and T = B(y(0) + o (||xm —x0||)) to deduce that Ix,,,; € Ulx,,R]
such that

Xm+1 € Pal [f (x0) JFfl(xo)(xmﬂ —x0) = f(xm) = Tn(Xmt1 —Xm)]-
Thus, x,,41 is a Newton iterative. It also follows by the induction hypotheses

BJo @((1—8)1xim —xn—11)d® +W(||xn—1 —ol))

e =mll < T (w(0) + Vollm —%o ) en =1
B (L1 00—t )00 V(1)
: “B(w(0) + yoltn) (= tn—1)-
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Thus, we have

X1 = x| <
<

- tm+1 *tm

Proof of Theorem 21 Using Lemma 36, sequence {#,,} converges to t.. Moreovere, it
follows by Lemma 36

Z ||xm+l *me < Z (tm+l *tm) =1 — 1ty < o0,

m=myq m=myq

for any mg € N. Hence, {x,,} is a complete sequence in U (xo,,) and as such it converges
to some x, € U|x,.]. Consequently,

X — X| <t —t.
By the definition of {x,, } in GIS we get
0€ f(xm) +A(m) (Xmtp1 —xm) +F (xm=1) Vm=0,1,....
By letting m — oo we can conclude that
0€ f(x:)+F(xs), xe € U(x0,24).
U

Proposition 14. Suppose conditions of Theorem 21 hold. Then, the following assertions
hold
>~ m(l’n*fnfl) Vn = 07 1,. ..
and
;\' n
Ity — x| < ——a"Vn=0,1,....
l1-o

Proof. By the proof of Lemma 36, we have

||xm+l *me <tnp1—tm < OC(l'm*l'mfl < (xm7\-7
we show that

Ik — x|l <1 +0+... +Ock*1)(tn—tn,1).

It follows that since o < 1
(04
||xk+n —Xn || < m (tn - tnfl)-

By letting k — +-oo, the proof is complete. U
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Chapter 20

A Derivative Free Two-Step Fourth
Order Method for Solving Equations
in Banach Space

1. Introduction

Let B be a Banach space and D C B be an open set. We are concerned with the problem of
approximating a locally unique solution x* € D of equation

F(x) =0, (20.1)

where F : D C B — B is a Fréchet differentiable, operator. The solution x* is being ap-
proximated by the method

Yn = Xn— [u117x11;F]71F(x11)
and (20.2)
Xnrl = Ynt (aIJFMn(3 - Za)IJF (a - Z)Mn)) [un»xn;F]ilF(yn)»

where a,b,c € R,u, = x, + bF(xn)yzn = Yn + CF(yn)yMn = [un»xn;F]il[Zn»yn;F] and
[.,.;F]: D xD — L(B,B) is a divided difference of order one [1,2,3,4,5,6,7,8,9,10]. The
fourth convergence order of method (20.2) was shown in [15] under hypotheses on the fifth
derivative of operator F when B = R¥. But we extend the applicability of method (20.2) in
a Banach space setting and using any conditions on the divided difference of order one that
only appears on the method (20.2).

2. Local Convergence Analysis
Let a,b,c and J be parameters. It is convenient to define some scalar functions and param-

eters. Set 7 = [0, 00).
Suppose that there exists:
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(1) The function wg : T x T — R is continuous and nondecreasing such that equation

q(t) =0, where
q(t) =wo((1+1[b|8(14+wp(1),0))r,1) —1

has a smallest solution p € T —{0}. Set 7; = [0, p).

(2) The function w : T} X T} — R is continuous and decreasing such that equation

g1 (l’) —1=0
has a smallest solution r; € T —1— {0}, where

_ w((Bl3(1+wo(,0))r,1)
q(t)

g1(t)

(3) The functions wy : T} x Ty — R, wy : T} x T} — R are continuous and nondecreas-

ing such that equation
gz(l‘ ) —1=0
has a smallest solution r, € T} — {0}, where

(1) = <1 + Y(I)wzflff)(t)t’o)> &1(1),

N la—2|wa(B3(2), (1+g1(2)t)wi(Bi(r), Ba(r))
2
q*(t)

=
—
—
~
S~—
I

[b|8wa (2, (1481(2)1)) (1 +g1(2))1
|b—c|dwa((1+g1(2))1,0)g2(t)t,
Ba(r) = (I+a&(n))r

and
B3(r) = (1 + |c|Bwa((1+g1(1)1,0))ga(1)r.
The parameter r defined by

r=min{r;}, i=1,2

)

(20.3)

shall be shown to be a radius of convergence for method (20.2). Set 7> = [0,r). It

follows from these definitions that
q(t) <0

and
gi(t) <1
foreachr € T5.

(20.4)

(20.5)
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Let U(x,&) stand for the open ball with center x € B and of radius & > 0. Then, the set
U [x,&] denotes the corresponding closed ball.
The following conditions relate operators to scalar functions. Suppose:

(H1) There exist a solution x* € D, § > 0 such that F'(x*) ! € L(B,B) and ||F'(x")|| <.

(H2) ||F'(x*)7l([u,x;F] —F'(x)|| < wo(|lu—x*||,||x—x*|)) for each x,u € D.
Set Uy =U(x*,p)ND.

(H3)
1F" (")~ (6 F) = Peox™ )< w(llu =], [lx—x"|)),
1F' ()~ (v F] = [z wi FD | S wa((lx =z, ly—wl)
and
1F" ()~ e s FY < wa (e[|, Ly —=71)).
and

(H4) U[x",R] C D, where R; = (c+ |b|8(14+wq(r,0)))r, Ry = (c+|b|dw2(g1(r)r,0))g1(r)r
and R = max{R,R,,r}.

But first, it is convenient to define items (if they exist)

of = [BIowa([lxe — x|, llyw — x| (1 +& = 1([lxw =[] [n — 27
+[b —c|dwa ([lyn —x*1],0)g2([[xn — X[ ) |2 — 2",
o2 = (14 gi(|po—x]) e — ],
o = (1+[c|dwa([lyn—x*[,0)) [[yn— "]
and
|a|w1(06,11,06%)
'Yn

1= wo([lun = x*[[, lloen — 1)
w2 (0, (1 +gu([ln —x*[1) [ln —x* |
1= wo([lwn = x*[[, oo — 1)
| a=20wa (06, (1 -+ g1 ([l =" [) 160 = x* [ w (04, ©,62)
1= wo([lun = x*[[, oo — 1)

+

Moreover, notice that after some algebraic manipulation linear operator A,, can be rewritten
as

A, = a[”n7xn;F]7l([”nvxn;F] — [z, yn3 F])
it X3 F] V20, s F1 4 (@ — 2) [, X3 F] 71
X 2, Y3 F s %03 F) ™" (2, Y03 F] = [ty 05 F ),
up —x" = x,—x"+bF(x,),
up—x, = bF(x,;) =blx,,x";F](x, —x")
= DbF'(x")F'(x*) Y[, x": F] = F'(x*) + F'(x*) ) (x, — x*)



204 C.I. Argyros, S. Regmi, I.K. Argyros and S. George

and
up—2n = b(F(xy) = F(yn)) +(b—c)F(yn)
bFl(x*)Fl(x*)il[xmyn;F](xn*yn)
Jr(b7C)FI(X*)FI(X*)A[)7117X*;F](y'1*X*)-

Theorem 22. Under conditions (H1)-(H4), sequence {x,} generated by method (20.2) is
well defined in U (x*, r) and converges to x*. Moreover, the following estimates hold

[[yn =21 < g (lloen = 2" () [}2n — 2" | < e — x| <7 (20.6)

and
[l X011 *X*H < 82(||xn*x>k||)||xn*x>k” < ||xn*x>k||» (20.7)

where the functions g; are defined previously and the radius r is given by formula (20.3).
Proof. It follows by (H1), (H2), (20.3) and (20.4) that

1 )" [, 0 F) = F' (7))

wo ([ — x|, [[x2 —x"|)

wo (14 [BI8(1 +wo([lxn —x"[1,0)) [lxn = X", [l —x")
wo((1+416[8(1 +wo(r,0))r,r) < 1

VAN VAN VAN

SO
1
|| [ty x5 F] ' F! (x%)]] < — (20.8)

n
(by the Banach Lemma on invertible operators [1,2,3,4,5,6,7, 8,9, 10]), where we also
used that |lu, — x| < (14 1b|8(1 +wo(r,0))r <R, so u, € U[x",R]. Hence, iterate y, is
well defined. Then, we can write by the first substep of method (20.2)

yn*x* = x,—x — [umxn;F]ilF(xﬂ)

= [umxn;F]il([u117x11;F] - [xn»)C*;F])(xn*X*)- (209)
By (20.3), (20.5), (H3), (20.7) and (20.8), we get in turn that
w([B18(L +wo([[xn —x*[], 0)) [[en — x" ||, [ — ™ [[) ][22 — x* ]

qn
< =Xt < (20.10)

Thus, the iterate y, € U(x", r) and estimate (20.6) holds. We need an upper bound on [|A,||.
It follows by (20.7) and (H3) that

lalwi (|un — zall; [|lyn — X)) i wa([|za —x*||, [|yn —x*|)

N

HYn *X*H >

[Aa]l <
qn qn
+|a—2|wz(||z,,—x*||,||y,,—x*||)w1(||z,,—u,,||,||y,,—x,,||)
qa
< |a|W1(0°,11»0°%)JrWz(“ﬁﬂ+gl(||xn*x*||))||xn*x*||
o qn qn
+|a*2|W2(0°,31»(1+81(||xn*x*||))||xn*x*||)W1(0°,1170€,31)
2 )
dn

(20.11)
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where we also used

IN

618w ([l = x|, 1y =" 1) (1 + g1 ([l —x" )60 —x"]]
He—bldwa([lyn —x"[1,0)g2([lx —x7[) = o

=l < (U galln = D) o~ = 2

llun —za|

and

lzn =2l = {lyn = X" +cyn, x5 F](yn —x7) |
< (L leldwa(llyn —x7[1,0)) lyn — x| = 0.

It then follows from the second substep of method (20.2) and the preceding estimates that

(X011 7X*|| = ||yn*x>k JFAn[un»XnQF]il[Yn»X*;F](Yn*X*)H
A —x*[|,0
S (1+ || n||W2(||yn X ||7 ))Hyn*)‘:*H
n
< ga([[xn =X D Jxn = x| < JJxn — x| < 1. (20.12)

Hence, the iterate x,+; € U(x",r) and (20.7) holds, where we also used
lln —x*|| < (14 1b]8(1 +wo(r,0)))r=R; <R

and
llzn —x*|| < (14 c[dw2(g1(r)r,0))g1(r)r = Ry < R.

]
Next, a uniqueness result follows for the solution of an equation F(x) = 0.
Proposition 15. Suppose:
(i) The point x* € D is a simple solution of equation F(x) = 0.
(ii) Condition (H2) holds.

(iii) There exists A > r such that

wo(A,0) < 1. (20.13)

Set Dy = DNU|[x*,A]. Then, the point x* is the only solution of equation F(x) =0 in

the set D,.

Proof. Let p € D, be a solution of equation F(x) = 0. Define the linear operator S =
[x*, p; F]. Then, by (H2) and (20.13)
IF" () =S = F' ()| wo([lp —x"1,0)

<
< wo(A,0) <1,

so linear operator is S invertible and the identity S(p —x*) = F(p) — F(x*) = 0 implies
*
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Chapter 21

Local Convergence for an Efficient
Derivative Free Fourth Order
Method for Solving Equations in
Banach Space

1. Introduction

Let B be a Banach space and D C B be an open set. We are concerned with the problem of
approximating a locally unique solution x* € D of equation

F(x)=0, (21.1)

where F : D C B — B is a Fréchet differentiable, operator. The solution x™ is being ap-
proximated by the fourth-order method

Yn = Xu *A;lF(xn)
and 21.2)
Xn+l = Yn *BnF(yn)v

where A, = [anFF(xn)»xn;F]» B, = [yn»xn;F]ilCn[ynyyn;F]717 G = [ymxn;F] - [yn»xn +
F(xy);F] 4+ [x, + F(x,),x,;F] and [.,.;F] : D x D — L(B,B) is a divided difference of
order one [1,2,3]. The fourth convergence order of method (21.2) was shown in [11]
under hypotheses on the fifth derivative of operator F when B = R¥. But we extend the
applicability of method (21.2) in a Banach space setting and using only conditions on the
divided difference of order one that only appears on the method (21.2). Relevant work can
be found in [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15].

2. Convergence

The local convergence analysis uses real functions and parameters. Set M = [0, ).
Suppose that there exists:



210 C.I. Argyros, S. Regmi, I.K. Argyros and S. George
(al) Functions wy : M — R, wg : M x M — R continuous and nondecreasing such that
equation p(t) =0, where p : M — M is given by
p(t) =1—wo(t+wy(t),1)
has a smallest solution denoted by r € M —{0}. Set My = [0, r).

(a2) Functions ws,wy : Mg x My — R, wz,ws : My — R continuous and decreasing such
that the equations
hy (l’) —-1=0

and
hz(l‘ ) =0
have smallest solutions py, pa € My — {0}, respectively, where

_ wi(wa(t),1)

M =00
and
e ]
The parameter p given by
p=min{p;}, i=1,2 (21.3)

shall be shown to be a radius of convergence for method (21.2). Set M; = [0,p). It
follows by these definitions that for all t € M,

p(t)>0 (21.4)

and
hi(t) < 1. (21.5)

By U(x,0) we denote the open ball with center x € D and of radius o > 0. The ball
Ux, 0] denotes its closure.
Next, the “w” functions and parameter B are related to the conditions:

(a3) There exists a solution x* € D of equation F(x) = 0 such that F'(x*) "' € L(B,,By).
@) /() (s F] - F N < wollly [, Jx— 7)),
I|IF (x)|| < wa(|jx—x"||) for all x,y € D.
Set Dy =DNU(x%,r).
@5) [|F' (")~ ([ + F (x), 0 F] =[x, 2" FD)L < wa([[F GO, =[],
1 x5 FII < wa(lly —x"[1),
1F' ()~ (v F) = [+ F (0 F]) | < wa([[F (1))

and
IF () v, F] || < ws(Jly —x*|], [lx—x*|])

for all x,y € D;.
and
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(a6) U[x*,R] C D,. where R = p+wy(p).

Next, the local convergence of method (21.2) is presented using the preceding terminology.

Theorem 23. Under conditions (al)-(a6) hold. Then, sequence {x,} generated by method
(21.2) for xg € U (x*,p) is well defined in the ball U[x*,p] and converges to x* so that

I = < o (e = ) s = *[| < [l =" < p (21.6)

and
(41 =" < Ao ({260 — x| [0 — ¥ < [l — X7 (21.7)

where the functions 4; are defined previously and the radius r is given by formula (21.3).
Proof. The first substep of method (21.2) gives

yn—x" = x,—x*—A;'Fox,)
= A ([ F (6),205 F] = P, X5 F) (36, — x%)

leading by (a3)-(a5) to

wi (wa ([l = x|, [ = x*[]) [0 — "

fx* <
b =2l < T e — e T = ) T =)
< Ryl =X ) [0 — 27| < [lx, — X7 < p, (21.8)
where we also used |
1A, F' ()] < — (21.9)
DPn

implied by the Banach lemma on invertible operators [1,2,3] and the estimate

1E' ()™ (e F () 5 F] = /)| < ol ="+ F ()] oo =)
wo (o =+ [ F el oo — )

wo(p+wa(p),p) < 1.

IN A CIA

Notice that we also used
[[xn =" +F(x) | < p+wa(p) =R

It follows by (21.3), (21.4) and (21.8) that (21.6) holds (for n = 0) and y, € U (x*,p). Simi-
larly, from the second substep of method (21.2) we can write

Xn+1 —x* = ([me*;F] - [yn»xn;F])71([ymxn;F] - [ymxn JFF(xn);F]
Jr[xn JFF(xn)»xn;F])[yn»xn;F]il[y117X*;F](y11*x*)

leading to

w3 ([[yn —x*

Prusa =2l = Do+ 22D
n

(ool =" 1)) (5= e = ) 3]

ha (Jloen =27 [) [0 = 27| < logn =7

IN
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Therefore, (21.7) holds and x,,; € U(x",p) (for n = 1). Using induction the same calcula-
tions complete the induction for (21.6) and (21.7). Then, the estimate

g1 =X < Ylloon — x| <Y lwo — x| < p
leads to lim x, = x". O

n—-—o0

The uniqueness of the solution of results as similar to [1,2,3] is omitted.
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Chapter 22

Extended Local Convergence of
Steffensen-Type Methods for Solving
Nonlinear Equations in Banach
Space

1. Introduction

Let B be a Banach space and D C B be an open set. We are concerned with the problem of
approximating a locally unique solution x* € D of the nonlinear equation

F(x) =0, (22.1)

where F' : D — B is a Fréchet-differentiable operator. A plethora of applications reduces
to solving equation (22.1). The solution x* is needed in a closed form. But this is at-
tainable only in special cases. That explains why most solution methods are iterative. In
particular, we study the local convergence of the Steffensen-type method (STM) defined
vn=0,1,2,...by

Yn = X *A;lF(xn)
and (22.2)
Xn+l = Yn *B;lF(yn)v

where A, = [x,,wy; F], [.,.;F] : D x D — L(B, B) is a divided difference of order one for
operator F,w,, = x,, + F (x,) and By, = [yn, Wn; F| + [V, X3 F|] — [%, Wy F]. STM was studied
in [13]. It was found to be of a fourth convergence order. In particular, the radius of conver-
gence was established. We show that this radius can be enlarged without new conditions.
Other benefits include tighter error bounds on distances ||x, —x*|| and better information
on the uniqueness of the solution. The technique is independent of method (22.2). Thus,
it can be used to extend the applicability of other methods. This process specifies a more
precise location of the STM iterates leading to at least as tight Lipschitz parameters which
are specializations of the ones in [13]. Hence, no additional computational effort is required
for these benefits either.
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2. Local Analysis of STM

The analysis is based on certain parameters and real functions. Let Ly, L, and o be positive

parameters. Set 77 = [0, | provided that (2+o)Lo < 1.

1
2+l
Define function /2 : T} — R by

(14 o)Lt

R T

Notice that parameter p
1

1+0)L+ (24 a)Lg

p =
(
is the only solution to the equation
hy (l’) —1=0

in the set 77. Define the parameter py by

1
P B LoD

Notice that py < p. Set Ty = [0, po).

Define function &, : Ty — R by

() = (2+200+hy(t))Lhy (1)t
z 1= Q2+a)(Lo+L)t
The equation
hz(l‘) —1=0
has a smallest solution R € Ty — {0} by the intermediate value theorem, since 7, (0) — 1= —1

and h;(t) — oo as y — p,, . It shall be shown that R is a radius of convergence for method
(22.2). It follows by these definitions that V¢ € T

0<(Lo+L)(2+a)t <1, (22.3)
0<h(t)<1 (22.4)

and
0<hy(r) <1. (22.5)

Let U(xo,A) ={x € B: |[x—xo|| <A} and U[xp,A] = {x € B: ||x—x0|| < A} for some A > 0.
The following conditions are used:

(C1) There exists a solution x* € D of equation F(x) = 0 such that F/(x*)~! € L(B,B).
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(C2) There exist positive parameters L and o such that Vv,z € D
1F' ()~ (v 2 F] = F' ()| < Lo(llv =] + [l "))

and
[F ()] < offx—x".

Set Dy =U(x",p)ND.
(C3) There exists a positive constant L > 0 such that Vx,y,v,z € D
1F" ()~ (e ys F] = v zs FD) < L(1x = vl + [y =)

and

(C4) Ulxo,R] C D.

Next, the local convergence of method (22.2) is presented using the preceding terminology
and conditions.

Theorem 24. Under conditions (C1)-(C4) further suppose that xo € U(x*,R). Then, se-
quence STM generated by method (22.2) is well defined in U (x*, R), Stays in U (x*,R) Vn =
0,1,2,...and is convergent to x* so that

[[yn =" 1 < A (lloen =X [ [0 =27 <l — x| <R (22.6)

and
(X011 *X*H < h2(||xn—x*||)||xn—x*|| < ||xn*x>k||» (22.7)

where functions /1, i, and radius R are defined previously.
Proof. Tt follows by method (22.2), (C1), (C2) and xy € U (x*,R) in turn that
IF' ()" (A= F'(NI = IF' (")~ ([vo,x0 + F (x0): F] = F'(x"))|

< Lo@lso—2 ]I+ IF(x0) — F(x*)]
< Lo(2+0) [xo — x|

It follows by (22.8) and the Banach lemma on invertible operators [2] that A, "'c L(B,B)

and
1

(2+a)Lollxo —x*||°
Hence, iterate yy exists by the first substep of method (22.2) for n = 0. It follows from the
first substep of method (22.2), (C2) and (C3) that

(22.9)

45 F )l < —

lyo =2l < flvo —x" —Ag ' F(xo)
1Ag ' F' (x")F'(x") ! (Ao — (F (x0) — F (x))) (0 — ") |

< AT N IF () (Ao — (F(x0) — F (x*)))]|[|lxo — x*||
L(||xo —x*[| + [|F (x0) — F (x*))
22.1
S T L2t —x] (22.10)
< (||lxo — x| ||lxo — x*|| < [Jxo —x*|| <R.
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Thus, yo € U(x",R) and (22.6) holds for n = 0. Similarly, by the second substep of method
(22.2), we have

IF' (")~  (Bo—F'(x"))| 1F" (")~ ([vo, wo: F] = [yo, %03 F] — [x0, wo: F] — [x",x"; F]) |

< Lllyo—wol +Lo(llyo—x"|[ + [[wo —x"[)
< L(|lyo —x*|| + [[wo —x*[|) + Lo(|[yo — x*|| + [|wo — x*[|)
L+Lo
< (L+ 240)R< —— =1, 2211
< (LrL)CraR< @2.11)
s0, By ' € L(B,B) and
1

1By F' () < 1= (22.12)

(L+Lo)(2+a)flxo —x*||

Hence, iterate x; exists by the second sub-step of method (22.2). Then, as in (22.14) we get
in turn that

i =x| < [lyo—x" =By 'F(yo)|
< 1By () [IF ()~ (Bo = (F (vo) = F (x) [ lyo — x*]|
< IIF'(X*)"([yo,WO;F]+[yo,XO;F]*[XO»WO;F]*[yo,X*:F])IIHyoix*H
- 1= (L+Lo)(2+ ) [[xo —x*]
o
< ha(llxo —x"[)[lxo — ™[] < [l —x7[| <R

Therefore, x; € U(x*,R) and (22.7) holds for n = 0.
Simply replace xq, yo, X1 bY X, Vi Xm+-1, Y =0,1,2. .. in the preceding calculations to
complete the induction for (22.6) and (22.7). It then follows from the estimate

g1 — x| < bllw — x| <R, (22.14)
4 where, b = hy(||xo —x*||) € [0,1) that x,,1 | € U(x",R) and lin,, —.cox,, = x*. O
Concerning the uniqueness of the solution x* (not given n [13]), we provide the result.

Proposition 16. Suppose:

(i) The point x* is a simple solutionx™ € U (x*,r) C D for some r > 0 of equation F (x) =
0.

(ii) There exists positive parameter Ly such that ¥y € D
IF () (e ys F] = F ()| < Lally— x| (22.15)
(iii) There exists ri > r such that
Lirp <1. (22.16)

Set D, = U[x*,r1]ND. Then, x* is the only solution of equation F(x) = 0 in the set
Ds.
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Proof. Set S = [x*,y"; F] for some y* € D, with F(y*) = 0. It follows by (i), (22.15) and
(22.16) that

IF' ()T S = F (N < Lilly” =2"[) < 1,
so, x* = y* by invertibility of S and identity S(x* —y*) = F(x*) — F(y*) = 0. O

Remark. (i) Notice that not all conditions of Theorem 24 are used in Proposition 16.
But if they were, then we can set r| = R.

(i) By the definition of set D; we have
D; CD. (22.17)

Therefore, the parameter
L<M, (22.18)

where M is the corresponding Lipschitz constant in [1, 11, 12, 13] appearing in the
condition Vx,y,z € D

IF' (")~ (e, ys F] = s FI) || < M([lx =]l + |y —2])- (22.19)
So, the radius of convergence Ry in [1,11,12] uses M instead of L. That is by (22.18)
Ry <R. (22.20)

Examples where (22.17), (22.18) and (22.20) holds can be found in [2, 3,4,5,6,7,8,9,
10, 14]. Hence, the claims made in the introduction have been justified.
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Chapter 23

Extended Convergence Analysis of
Optimal Eighth Order Methods for
Solving Nonlinear Equations in
Banach Space

1. Introduction

Let X and Y be a Banach space and  C X be an open set. We are concerned with the
problem of approximating a locally unique solution x* € Q of the nonlinear equation

F(x) =0, (23.1)

where F : Q — Y is a Fréchet-differentiable operator. We consider the iterative method
defined Vn =0,1,2,... by

Yn = xn*OCFI(xn)ilF(xn)»
Zn = da (xn 5 yn) (23.2)
and
Xpp1 = dg (xn yVny Zn)»

where o is a real parameter and d;, : Q X Q — X, dg : Q X Q x Q :— X are continuous
operators. If X =Y =R, oo = 1, and d4,dsg are iteration functions of order four and eight
respectively, then method (23.2) was shown to be of order eight in [5].

2. Local Convergence
The local convergence analysis uses some scalar functions and positive parameters. Let

S =10,00).
Suppose there exist:
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(i) function wy : S — R continuous and nondecreasing such that equation
wo(t)—1=0
has a smallest solution pg € S —{0}. Let Sp = [0, po).
(ii) functionw : Sy — R continuous and nondecreasing such that equation
gi(t)—1=0

has a smallest solution r; € Sp — {0}, where function g; : S) — R is defined by

_ Jo w((1=8)1)d® + |1 —ot|(1+ Jy wo(6r)dB)

&il) T—wo(t)

(iii) functions g, g3 : So — R continuous and nondecreasing such that equations

gz(l‘ ) —1=0
and
g3 (l‘ ) —1=0
has smallest solutions r,,r3 in So — {0}, respectively. The parameter r defined by

r=min{ry,}, m=1,2,3 (23.3)

shall be shown to be a radius of convergence for method (23.2). Set S; = [0,r). it
follows by this definition and (23.3) that V¢ € S

0<wp(r)<1 (23.4)

and
0<gn(t) <1. (23.5)

Let U(x,u) ={x € B ||x—xo|| <u} and Ulx,u] = {x € B: ||x—xo|| < u} for some u > 0.

The aforementioned functions and parameters are connected to the following condi-
tions:

(h1) 3 a simple solution x* € Q of equation F(x) = 0.

(h2)
IF (") "1 (F' (x) — F'(x*))|| < wo(|lx—x*||) for each x € Q.

Set Uy = U(x*,pg) NQ.

(h3)
IF' (")~ (F' () = F'(x)) || < w(|ly —x]|) for each x,y € Up.
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(h4)
[l (o, y) =" || < ga([lx — ") lxr — 7|
for each x € Qg and y = x — oF'(x) "' F(x).

(h5)
l|ds(x,,2) —x"[| < ga([lx—x"||)[lx — x|

for each x € Up,y = x — oF' (x) "' F(x), dy(x,x — oF'(x) "' F(x)).
(h6) Ulx*,r] C Q.
Next, the main local convergence result is presented using the developed terminology and

the “h” conditions.

Theorem 25. Under conditions (h1)-(h6) hold, choose xy € U (x*,r) — {x"}. Then, sequence
{xn} generated by method (23.2) is well defined in U (x*, r), and is convergent to x*. More-
over, the following estimates hold for alln =0,1,2,...

||)7n*x>k|| < gl(Hxn*X*H)Hxn*X*H < ||xn*x>k|| <" (23.6)
20— x*[| < ga([[oen — x| [lovn — x| < |26 — x| (23.7)

and
[l X011 *X*H < g3(||xn*x>k||)||xn*x>k” < ||xn*x>k||» (23.8)

where functions g, are previously defined and parameter r is given by formula (23.3).

Proof. Letv € U(x",r). Then, it follows by applying (h1), (h2) and using (23.3) that
|F/ () (F () = F () < wollv—2]) < 1,

thus F'(v)~' € L(¥,X) and

1
<
< T =)

|F'(v)"'F'(x*)]| (23.9)
by the Banach Lemma on linear operators with inverses [4]. If v = xq, then (23.9) implies
F'(x0)~ ! is invertible. Hence, iterate y, is well defined by method (23.2) for n = 0. We can
also write

yo—x" =x9 —x* — F'(x0) "' F(x0) + (1 — &) F'(x0) "' F (x0). (23.10)

By using (23.3), (23.5) (for m = 1), (23.9) (for v = xp) and (h1)-(h3) we get

1 1
x| < /w 1—0)|lxp—x*||)de
ol < s [ (10— )
1
+|1*0°|(1+/0 wo(8]|x0 —x*[[)d8)][|xo — x|
< gi([lxo —x*[|) [Jxo —x"|| < [lxo —x*|| <7, (23.11)
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proving (23.6) for n =0 and yy € U(x", r). Similarly, using (23.2), (h4) and (h5)
[1z0 = x"[ < ga([lxo —x" ) o — x| < [0 — 7 (23.12)

and
[xo —x*[| < g3(Ilxo —x"[)flxo —x*[| < [Jxo —x*], (23.13)

showing (23.7), (23.8), respectively and zo,x; € U(x*,r). By simply replacing xo, yo, 20, X1
by x;,vi,zi,Xi+1, in the preceding calculations to complete the induction for estimates (23.6)-
(23.8). Then, by the estimate

lxie1 — x| < bljx; —x"|| <y (23.14)
where, b = g3(|lxo —x*||) € [0, 1), we conclude lim;__...x; = x* and x;+1 € U(x",r). O
Next, a uniqueness of the solution result for equation F(x) = 0 is presented.
Proposition 17. Assume:
(i) There exists a simple solution x* € U (x*,p) of equation F (x) = 0 for some p > 0.
(ii) The condition (h2) holds.

(iii) There exists p1 > p such that

1
/ wo(0p1)do < 1. (23.15)
0

Set Uy = Ulx*,p1] N Q. Then, the point x* is the only solution of equation F(x) =0
in the set Uj.

1
Proof. Lety" € U; with F(y") = 0. Define the linear operator T’ = / F'(x*+0(y" —x*))d®.
0
Then, by using (h2) and (23.15) we obtain

IF) T - < [ @l )0 < [ wo(@p1)a0 < 1.

Therefore, x* = y* by invertibility of 7 and identity 7 (x* —y*) = F(x*) —F(y*) =0. O

Remark. The uniqueness of the solution x* was shown in Proposition by using only condi-
tion (h2). However, if all “h” conditions are used, then set r = p.

3. Special Cases

In this Section we specialize method (23.2), to determine functions g, and g3.
Case 1 Choose

d4(x117y11) =Yn *AnF(yn)

and
dS =Zn *BnF (211)7
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where A, = (2[yn, X3 F] = F'(x,)) ™", By = [z, %03 F] " 20,y FIC, ' and €, = 2[z, 3 F] —
[Zn, X3 F]. Let functions wy, wa, w3, ws : Sp X Sog — R, wy : Sg X S X Sp — R be continuous
and nondecreasing. Moreover, define scalar sequences and functions provided that iterates
Xy Vs Zn exist and ||x, —x*|| <t.

pn = willlzn =" [[yn =X I) +wa(llx, — x|, lyn —x*[])
wi(g2(t)t,81(2)t) +wa(ga(1)t,g1(2)t) = p(2),

Ly
1—p —1-p(n) 1)

sn = walllxn =2, [[yn =27, lzn = ") + w3 ([l =[], lya —x"(])
W4(t7gl(t)t7g2(t)t)+w3(t7gl(t)t) = S(t)‘

IN

qn

IN

Define functions g, and g3 by

(wa(r,81(2)1) +ws(t,81(1)1)g1(2)
1—(wi(t,81(2)t) +wa(t,g1(1)t))

g(t) =

and
(wa(t,81(t)1,82(1)1) +q(2)s(t)ws(g2(2)t,81(¢)1))ga(t)
1 —wy(ga(t)t,1) '

Notice that function g, and g3 are well defined on S; = [0,7) provided that equation

g3(t) =

Wl(tvgl(t)t) +W2(l’,g1(l’)l’) —-1=0
and
wi(gi(t)t,t)—1=0
have smallest solutions y; and >, respectively in Sp — {0} and

Y =min{p,y1,Y2}.

Then, consider conditions (h7) replacing (h4) and (hS5):

(h7)
IF" ()™ (b ys F = F ()< wa ([l =[] fly = 27D,
1F ()~ (B yi F] = FY )< wa(fle =27,y =),
IF' () (s F] = yox s FD L < wis([ly =7 =7,
1F' ()~ (23 F) = [,y FD < wa(llx =[] ly =2, flz =),
IF' () ey FIll < ws(flz =71 Ly = 271D,
IF' () F ()] < we(flx =71,
1F" () (beox™s F = F' o))< w (lx =, lly = x*[])

and

1F' ()~ e, 2o P < ws([fx—7])).
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Then, we use the estimates

IF' )AL = F NI < willlxn =[] ya—x7]))
Awa ([ben = x|, [[yn —x") = pu < 1,

SO !
A FI * <
40" ()] < 7=,
Zn*X* = yn*X**(Z[ynvxn;F]*Fl(xn))ilF(yn)
= An(2[yn; X0 F] *Fl(xn)* Vs X5 F]) (yn —X7),
thus
lza = < AF G IF ) ([yny 03 F] = F' ()
A+ (ns %03 F] = {20, X5 F]) || [yn — 7|
< gl —x* D Ixn — x| < [l — x| <1
IF'()  Co=F' NI < willlzo—x" [ lyn—x))
Awa ([l =" [y — x|, llza —x*[])
S pn-
Hence |
C*lF/ * < — .
16 F ) < = = a

Moreover, we can write in turn that

Zn =" = 20, %0 F] 7 20,y FIC, [z, X F) (20 — X7)
= [ZmYn;F]il{([vaxn;F] — [2n, %03 F])
+ 2 i F1C; ' (2[2n, Yni F] = [2ns X F] = [2n, %™ F]) Hza — x°),

SO

||xn+l*x>k|| = ||Zn*X**BnF(Zn)||
1

L= wi(llzn = 2], oo — 1)
wallxn =" lyn =711, 1z — 1))
+qnsuws ([|2n =X [, llyn =X [D]llzn — x|

83([[xn = x"[)[lxn —x7[| < [lx—n—x7|.

IN

IN

Thus, we arrived:

Theorem 26. Suppose that conditions (h1), (h2), (h3), (h6), and (h7) hold. Then, the con-
clusions of Theorem 25 hold. Concerning the uniqueness of the solution, we can also use
function w; (see (h7)) instead of wy (see (h2)).

Proposition 18. Suppose:
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(i) There exists a simple solution x* € U (x*,p) of equation F (x) = 0 for some p > 0.

(ii) The first condition in (h7) holds.

(iii) There exists p* > p such that

wi(0,p%) < 1. (23.16)

Set Uy = Ux*,p*| N Q. Then, the point x* is the only solution of equation F(x) =0
in the set U,.

Proof. Let y* € U, with F(y*) = 0. Define the linear operator 7} = [x*,y"; F]. Then, by
using the first condition in (h7) and (23.16), we get

1F' (") ~H T = F' ()| < wi 0, ly* —x[)) < wi(0,p%) < 1,

implying x* = y*. O
Comments similar to Remark 2. can follow.
Case 2 Choose:
d4(xn7yn) =JYn *AnF(yn)v
where

A, = [ynvxn;F]ilFl(xn)[ynyxn;F]il-

Then, assuming the iterates x,,,y, exist, we have the estimate

*

=X = yu—x— b’nvxn;F]ilFl(xn)[men;FTI[Yn7X*§F](Yn*X*)
= {I— s F) 7 F (00) [y %03 F) 7 [, X5 F ) (00 — x°)

The expression inside the braces can be written as

s X F1 (s Xs F] = F' (x0)) + F (x0) s X3 ] (s X3 F] = [y, X5 F]).

Composing by F'(x*) ™! and using the condition (h7) we get

SO

1 ()™ (DXt F] = F' i) )|+ 7 () 7 F () |

1D, %3 F)F Y NE ()™ (Dm0 F) = s x5 F) |

e ([ —x*[lws ([bxa = x*[|, [lyn —x1[)
E=wi(llagn =2 lyn = x*[])

IN

wa ([l =2 [, llyn —x"[1) +

= é€p,

1

= wi ([l =[], [lyn = x*])

lon ="l < £ exllya =]

It follows that function g, can be defined by

_ 1 we(t)ws(t,81(2)t)
= mn e+ l—wl(t,gll(t)t)

).

g2(t)

Case 3 Choose:

d4(xn7yn) =Yn *AnF(yn)v
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where
A, = Z[yn,xn;F]fl fF'(xn)fl.

This time we get

Zn*x>|< = yn*X* *An[ynv)C*’F](ynix*)
U A ) ).

The expression inside the braces can be written as

F' () ™ (F' () = [y, X3 F1) = 2y, 03 F] !
(F" (xn) = [yns 203 F1)F' ()™ [ys x5 F .

Using the conditions (h7) we obtain

1F" Con) = F N E () ™ (F () = [y, 5 F) |
+2[|[yn, X2 F]HF ) I1F ()™ (6n) = s 5 FD)
1 (o) ™ F/ GV IE () ™ [y, 6”5 F|
wi ([Pen = x*], llyn — 1))
= wo ([l —x*1)
wa ([0 =" ||, [lyn — X" ) ws (llyn —x*[]) )
(1= wi([lxn =[], [lyn == D)) (T = wo([lxa —x7[)) ™™

IN

+2

thus
llzn =X || < Anllyn —x*].

Hence, the function g, can be defined by

s . w0 ws(si(0)0)
()= T 0@ T w1 w00
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Chapter 24

Efficient Fifth Convergence Order
Methods for Solving Equations in
Banach Space

1. Introduction

Sharma and Guha (2014) in [14], studied the following iterative method of order five defined
vn=0,1,2,...by

Yn = xn*Fl(xn)ilF(xn)»
in = yn*SFl(xn)ilF(yn) (24.1)
and
9 ! —1 1 ! —1
Xn+l = ynng (xn) F(yn)*gF (xn) F(Zn)7

for approximating a locally unique solution x* of the nonlinear equation
F(x)=0. (24.2)

Here F : D C By — B, is a Fréchet-differentiable operator between Banach spaces By, B>,
and D is an open convex set in By. A plethora of applications reduce to solving equation
(24.2). The solution x* is needed in a closed form. But this is attainable only in special
cases. That explains why most solution methods are iterative.

We show that the radius can be enlarged without new conditions than the conditions
used in [14]. Other benefits include tighter error bounds on distances ||x, —x*|| and better
information on the uniqueness of the solution. The technique is independent of method
(24.1). Thus, it can be used to extend the applicability of other methods [1,2,3,4,5,6,7,8,
9,10,11,12,13,15,16,17,18, 19]. Moreover, the semi-local convergence of method (24.1)
not given before in [14] is presented.
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2. Local Convergence

The local convergence analysis of method (24.1) utilizes some function parameters. Let
S = [0,00). Suppose:

(i) 3 function wp : S — R continuous and nondecreasing such that equation
wo(t)—1=0
has a smallest solution Ry € S —{0}. Let Sy = [0, Rp).
(i1) 3 function w : Sy — R continuous and nondecreasing such that equation
gi(t)—1=0
has a smallest solution r; € Sp — {0}, where the function g : So — R defined by

Jo w((1-6)r)de
1 —wy (l‘) '

gi(t) =
(iii) Equation
wo(g1(t)t)—1=0
has a smallest solution R; € Sp —{0}. Let
R =min{Ry,R,}
and S; = [0,R).

(iv) Equation
gz(l‘) —1=0

has a smallest solution r, € S| — {0}, where the function g, : S — R is defined as

Jo w((1—8)g1(1)1)d®
I —wo(g1(2)r)
w((1+g1(6)1) (1 + Jy wo(63:1(1)1)d6)
(1 =wo(2)) (1 —wo(g1(1)1))

1

1
4(1+f(1)w2£05 1)) g1(t).

g(t) =

(v) Equation
g3 (l‘) —1=0

has a smallest solution r3 € S| — {0}, where the function g3 : S — R is defined by

91+ J wo(0g1(1)1)d0)g. (1)
Bl) = B0 I )

«(1+ / 0 (60)d8) g (1).
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The parameter r defined by
r=min{r;} j=1,2,3 (24.3)

shall be shown to be a radius of convergence for method (24.1) in Theorem 27. Let
S2 = [0, r). Then, it follows by these definitions that for each ¢ € S,

0<wo(t) <1, (24.4)
0 < wo(gi(t)r) < 1 (24.5)
and
0<gt) <l (24.6)
Let U(xo,A) ={x € By : ||x—x0|| <A} and U[xp,A| = {x € B; : ||[x—x0|| <A} for
some A > 0.

The conditions required are:
(C1) Equation F(x) = 0 has a simple solution x* € D.
(C2) ||[F'(x*) "' (F'(x) = F'(x*))|| < wo(||x —x*||) for all x € D. Set D; = U(x*,Ro) N D.

(C3) [|F'(x") " (F'(y) = F'(x)) | < w(|ly—x|) for all x,y € Dy.
and

(C4) Ulxp,r] CD.

Next, the main local convergence result follows for method (24.1).

Theorem 27. Suppose that conditions (C1)-(C4) hold and xo € U(x",r) — {x*}. Then,
sequence {x,} generated by method (24.1) is well defined in U(x",R), remains in
U(x*,R)Vn=0,1,2,...and is convergent to x*. Moreover, the following estimates hold

||)7n*x>k|| < gl(Hxn*X*H)Hxn*X*H < ||xn*x>k|| < (24.7)
||Zn*x>k|| < 82(||xn*x>k||)||xn*x>k” < ||xn*x>k|| (24.8)

and
[l X011 *X*H < g3(||xn*x>k||)||xn*x>k” < ||xn*x>k||» (24.9)

where functions g; are defined previously and the radius r is given by (24.3).
Proof. Letu € U(x",r) —{x"}. By using conditions (C1), (C2) and (24.3) we have that
IF' ()~ F () = F' ) < wollleo —2"]]) < wolr) < 1. (24.10)

It follows by (24.10) and the Banach lemma on invertible operators [2] that F '(u)fl €

L(B,,B;) and
1

< . 24.11
I T w1y @1

IF'(u)~'F' (x7)
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If u = xo, then iterate yg is well defined by the first substep of method (24.1) and we can
write

xo —x* —F'(x0) "' F(xo)

yo—x"
= F'(xo)l/ol(F'(x*JrG(xox*))deF'(xo))(xox*). (24.12)

In view of (C1) - (C3), (24.11) (for u = xp), (24.6) (for j = 1) and (24.12), we get in turn
that

Jo w((1—8)|lxo —x"|)d®]lxo —x"|
1= wo([lxo —x*])
< gilllro =27 llro — x| <l —x"[| <, (24.13)

lyo—x"| <

so, iterate yp € U(x",r) and (24.7) holds for n = 0. Iterate z( is well defined by the second
substep of the method and we can write

20—x" = yo—x0—5F(x0) 'F(yo)
= yo—x"—F'(y0)"'F(y0)
+F'(yo) ' (F(x0) = F'(y0))F'(x0) "' F (30)
—4F'(x0) ' F (y0)- (24.14)

Notice that linear operator F '(yo)*l exists by (24.11) (for u = yp). It follows by (24.3),
(24.6) (for j=1), (C3), (24.11) (for u = xp,yp), in turn that

Jo w((1=8)]lyo —x"[|)d®

leo =l < A o —= )
w(llyo — %o )(1+ fy61wo(8llyo —x*[)6)
(0 —wollxo—= (T —wo(lo =)
40+ G wolOlo—x 6] |
T—wolllo =)
< gl Do~ < oo~ (24.15)

Thus, iterate zg € U (x*,r) and (24.8) holds for n = 0, where we also used (C1) and (C2) to
obtain the estimate

IF'(x*) = F (vo) |

1
IF" ()~ [/ F'(x"+8(yo —x"))d0 — F'(x*) + F'(x")] (yo —x") |
0
1
< (4 [ wo(8lso—')d8) lyo—+'].
Moreover, iterate x; is well defined by the third substep of method (24.1), and we can write

1
xp—x =yg—x"— gF'(xo)71(9F(yo) +F(z0)),
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leading to

. . 1 {91+ [} wo(B]lyo —x*||)d0)]|yo — x*
O N A R et P
5 1 —wo(llyo —x*[])

Y RUCEES TIPS
< g3(llvo—x"[Dllvo—2" < flxo "] < (24.16)
so, iterate x; € U(x",r) and (24.9) holds for n = 0.
Simply replace xg, y0,20,X1 BY Xy Vi, Vis Xm+-1, Vi = 0,1,2 ... in the preceding calcu-
lations to complete the induction for (24.7)- (24.9). Then, by the estimate
|me1 — X || < d||xm—xF|| < 1, (24.17)
where, d = g3(||xo —x*||) € [0,1) that x,,.1 € U(x",r) and lim,,, Xy = X" O
The uniqueness of the solution result for method (24.1) follows.
Proposition 19. Suppose:
(i) Equation F(x) =0 has a simple solutionx* € U(x",p) C D for some p > 0.
(ii) Condition (C2) holds.

(iii) There exists p1 > p such that

1
/ wo(0p1)do < 1. (24.18)
0

Set D, = U[x",p1] N D. Then, the only solution of equation F (x) = 0 in the set D, is
x*.

1
Proof. Lety* € D, be such that F(y*) = 0. Define a linear operator 7' = / F'(x*+0(y" —
0
x*))d8. It then follows by (ii) and (24.18) that

1
IF' ()" HT = F'(x)] < /0W0(9||y**x’k||)de
1
< /()W()(epl)de<1,

so, we deduce x* = y* by invertibility of 7" and the estimate 7' (x* —y*) = F(x*) — F(y")
0.

Ol

Remark. Under all conditions of Theorem 27, we can set p =r.
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3. Semi-Local Convergence

As in the local case, we use some functions and parameters. Suppose:
There exists function vy : S — R continuous and nondecreasing such that equation

VO(Z‘)*IZO

has a smallest solution Ty € S —{0}. COnsider function v : Sy — R continuous and non-
decreasing. Define scalar sequences for >0 and alln=0,1,2,... by

Ip = 07 so =",
WS Jo v(8(s, —1,))dB(s, — 1,,)
n n 1— v (tn) s
1
i1 = Up+——— [(1 JF/ VO(un + e(un - Sn))de(un - Sn) (2419)
1- VO(tn) 0

=y (B(50—12))dB (50— 1,)]

and

1

1
T . N ) i1 —1In do i1 — Iy
L) YO )80 1)

1
1+ /O 0 (86)dB (1 — 51)].

Sp+1 = Ipp1+

This sequence shall be shown to be majorizing for method (24.1) in Theorem 28. But first,
we provide a general convergence result for sequence (24.19).

Lemma 37. Suppose that foralln =0,1,2,...9
vo(ty) < 1 (24.20)

and there exists T € [0, 7o) such that
th <T. (24.21)

Then, sequence {t,} converges to some ¢t* € [0,T|.

Proof. Ttfollows by (24.19)-(24.21) that sequence {7, } is non-decreasing and bounded from
above by T and as such it converges to its unique least upper bound ¢*. O

Next, the operator F is connected to the scalar functions. Suppose:
(h1) There exists xo € D,n > 0 such that F/(xo) "'L(B,,B;) and ||F'(xo) "' F (xo)|| < 7.

(h2) [|F'(x0) " N(F'(x) — F'(x0))|| < vo(||lx —x0]) for all x € D.
Set D3 :DQU()C(),‘C()).

(h3) [|F'(x0) ™ (F'(y) = F'(x)) || < v(lly— ]| for all x,y € D;.

(h4) Conditions of Lemma 37 hold.
and
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(h5) Ulxo,t*] C D.

Next, we present the semi-local convergence result for method (24.1).

Theorem 28. Suppose that conditions (h1)-(h5) hold. Then, sequence {x,} is well defined,
remains in U [xo,#*] and converges to a solution x* € U [xo,#*] of equation F (x) = 0. More-
over, the following estimates hold

||yn —Xn || < Sy —1In, (24.22)
|20 = Ynll < ttn — $n (24.23)

and
%11 = 2nll < tng1 — . (24.24)

Proof. Mathematical induction is utilized to show estimates (24.22)-(24.24). Using (h1)
and method (24.1) forn =0

[yo—xol = [|F (x0) "' F(xo)|| <M =s0—10 <1*

so, iterate yo € Ulxo,"] and (24.22) holds for n = 0.
Let u € Ulxo,t*]. Then, as in Theorem 27, we get

1

F'(u) 'F'(x)|| € —————.
P (@) F )] < e

(24.25)

Thus, if u = xy iterates yg,zo and x; are well defined by method (24.1) for n = 0. Suppose
iterates X, Yk, 2k, Xx+1 also exist for all integer values k smaller than n. Then, we have the
estimates

SIF (an) ™ F () |

2o —ynll =
5 Jo v(6llyn — 1) dO]|yn — x|
B 1 —vo([Jx, —xol|)
5 Jo v(Bllsn —1))dO(sn—tn) _
1 _ _
X1 —zall = ||§Fl(xn) I(F()’n)*F(Zn))Jr?sFl(xn) lF()’n)H
1 1 /!
< [(1+—/ Vo (|20 — Xol| + 61|20 — yn)d) [y — Xa]|
1 —vo({lx, —xol|) 5Jo

1
43 [ v(6llyn 8]y, )

Tnt1 —Up

IN
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and

Y1 = Xns1] IF (i) ™ F ()

< F ) F G F (20) ™ P ()|
1 1
< V(0| Xnr1 —xnl|)dO||xpr1 —x
(e AR(CI TR IEC AT
1
U+ [ v0(Bllxa—x01)8) 41l
< Sutl —Intls

where we also used

F(y,) = F(yn)*F(xn)*Fl(xn)(yn*xn)

_ /OI[F'(x,,JrG(ynxn))dGF'(xn)](ynxn),

SO
1
1F (x0) ™' F () S/O V(6[yn — X 1)dO|yn — x|
and
F(xu1) = F(ns1) = F (%) = F'(x0) (90 — %)
—F'(xn)(an —Xp) JFFI(xn)(an —Xn)
= F(an)*F(xn)*Fl(xn)(an*xn)JrFl(xn)(an*Yn)?
SO
/ 1 !
[F"(x0) " F (xnt1) || < /O V(6[xn+1 =X |1 dO]| X1 — x|
(1 +vo([Jx —x0 ) [|Xn-+1 =yl
1
< /O V(O(ts 1 — 1)) dO(tns1 — 1)
Jr(l +vo (tn))(tn+l - Sn)v (24.26)
lza =xoll < llzn = Yull +[lyn — X0l (24.27)
< un*SnJFSn*tOSt*
and
||xn+l*x0|| < ||xn+lfzn||+||2n*x0||
< tn+l*un+un*t0§t*-

Hence, sequence {7, } is majorizing for method (24.1) and iterates {x,},{y.},{z.} belong
in Ul[xo,7"]. The sequence {x,} is complete in Banach space B and as such it converges to
some x* € Ulxg,t*]. By using the continuity of F and letting n — oo in (24.26) we conclude
F(x*) =0. O



Efficient Fifth Convergence Order Methods for Solving ... 241
Proposition 20. Suppose:
(i) There exists a solution x* € U(xo,p) of equation F (x) = 0 for some p > 0.
(ii) Condition (h2) holds.
(iii) There exists p1 > p such that

1
/O vo((1—8)p+6p;)d6 < 1. (24.28)

Set Dy =DNU |xo,p1]. Then, x* is the only solution of equation F (x) = 0 in the region
Dy.

1
Proof. Let y* € Dy with F(y*) = 0. Define the linear operator Q = / F'(x*+0(y" —
0
x*))d®. Then, by (h2) and (24.28), we obtain in turn that

IF"(x0) " (@ = F'(xo))l| < /01110((19)||)€oy*||+9||)CoX"Il)de

1
< /O vo((1-8)p1+6p)dp <1,

so, x* = y*. O
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Chapter 25

Efficient Derivative Free Seventh
Order Methods for Solving
Equations in Banach Space

1. Introduction

Let X be a Banach space and Q C X be an open set. We are concerned with the problem of
approximating a locally unique solution x* € Q of the nonlinear equation

F(x) =0, (25.1)

where F : Q — X is a Fréchet-differentiable operator. Iterative methods are used to ap-
proximate x*. The well-known iterative methods are:

Newton Method (Second order [1,2,10]:
Xpa1 = Xp — F'(x,) " 'F(x,),¥n=0,1,2,..., (25.2)

where F’ denote the Fréchet derivative of operator F [7,8].

In order to avoid the expensive in the general computation of F’, Traub suggested:
Traub Method (second order) [12]:

Xp = Xxp,+oF (xn)
and (25.3)

Xn+1 = xn*[wn»xn;F]ilF(xn)»

where o € R or o € C is a given parameter, operator |[.,.; F| : Q x Q — L(X,X) is a divided
difference of order one. In order to increase the convergence order some seventh-order
methods are developed.
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Wang-Zang Method (seventh order) [13]:

Wy = X, +OF(x,),
Vo = Xp—[WnXxpF]7F(x,), (25.4)
Zn = da(Xn,Yn)
and
Xnt+l = Zn *A;IIF(Zn)»

where, o0 € R or a € C, dy(x,,y,) is any fourth-order Steffensen-type iteration method and
Ay = [zns X0 F| + [2ny Yns F] — [VnyXns F]. Some interesting special cases of this class are de-
fined by

Wy = Xp+OF(x,),
Vo = Xp—[WnXxnF]7F(x,), (25.5)
In = dz{ (X5 Yn) = Yn *B;IIF(Yn)
and
Xntl = Zn *A;IIF(Zn)»

where B, = [ymxn;F] + [ymWn;F] - [W117x11;F] and

Wy = Xp+OF(x,),
Yo = Xp—[Wnxa: F]7UF (x,), (25.6)
in = dz% (X2, Yn) = Yn — CuF ()
and
Xn+l = Zn *A;IIF(Zn)»

where C, = [ymxn;F]il([ymxn;F] - [ymWn;F] + [Wn»xn;F])[yn»xn;F]‘

Sharma-Arora Method (seven order) [13]:

Wy = Xp+0aF(x,),
Vo = Xp—[WnX0:F]7F(xy), (25.7)
Zn = ya— (31— [anxn;F]il([Yn»xn;FJF [Yn»Wn;FD)[Wn»xzﬁF]ilF(Yn)
and
Xn+l = Zn— [Zn»Yn;F]il([men;FJF [V X3 F]) — [Zn»xn;F])[Wn»xn;F]ilF(Zn)-

Method (25.5) and method (25.6) use four operators, five divided differences, and three lin-
ear operator inversions. But method (25.7) utilizes four operators, five divided differences,
and two linear operator inversions.

2. Convergence for Method (25.4)

The convergence for all methods of the introduction requires the introduction of real func-
tions and parameters. Set M = [0, o).
Suppose:
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(i) dfunctionsvy: M xM — R, v; : M — R continuous and nondecreasing such that
equation
vo(vi(t)t,t) —1=0

has a smallest solution denoted by pp € M —{0}. Let My = [0, po).

(ii) dfunction v : My x My — R continuous and nondecreasing such that equation
g1 (l’) —1=0
has a smallest solution r; € My — {0}, where function g : My — R is defined by

)= v(vi(t)t,t)

)= T mony

(iii) d functions g7, g3 : My — R continuous and nondecreasing such that equations
gz(l‘ ) —1=0
has smallest solutions p, € My —{0}.

(iv) dfunction v, : My — R continuous and nondecreasing such that equation

vo(8a2(1)1,81(1)t) +va(t, 81 (1)1, g2(t)1) =1 =10
has a smallest solution p € My —{0}. Set p = min{py,p} and M; = [0,p).
(v) Equation
g3(t) —1=0
has a smallest solution p3 € My — {0}, where

(v(82(2)1,1) +va(t, 81()1, 82(1)1))82(t)
1—s(t) ’

g3(t) =

where
s(1) = vo(ga(1)t, g1(1)t) +va(t, g1 (1), g2(1)1).
The parameter p defined by
p =min{p}, k=1,2,3 (25.8)

shall be shown to be a radius of convergence for method (25.2). Set M, = [0,p).
Then, it follows that V¢t € M>

0<wvo(vi(t)t,1) < 1, (25.9)

0<s(r)<1 (25.10)

and
0<g(t) <l (25.11)
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The sets U(x,T),U [x,7] denote open and closed balls respectively of center x € X and of

radius T > 0.
The following conditions (H) shall be used although not all of them for each method.

Suppose:

(H1) There exists a simple solution x* € Q of equation F(x) = 0.

(H2)
IF' ()~ ([P, F1 = F' () < vo(llp =[] Jlx = x"]])

and
17+ e, xs F|| < wi([lx—x"]))

Vp,x € Q. Set Q; = U(x",po) NQ.

(H3)
1 () (g F] — [ FDI| < v(llg = Jle—° ),
IF' ()" ([, y: F) = [, 5 FD|| < va ([l =5 [y —x* ||, lz—x*),
1F (x) s F|| < va(fle =)
and
1)~ (s F] = b s F) < v =y = =)
VX,y,2,P,q € Q1.
(H4)
llda(x,y) —x*|| < ga(flx—x"|) flr—x"|
Vx,y € Qi
and

(H5) Ulx*,r] C Q, where r = max{p,vi(p)p}-

Notice that in the case of method (25.4) we shall use only the first two conditions from
(H3).
Next, the following convergence result follows for method (25.4).

Theorem 29. Under conditions (H) hold and xo € U(x*,p) — {x"}. Then, sequence {x,}
generated by method (25.4) with starter xg is well defined and converges to the solution x*
of equation F(x) = 0.

Proof. By applying conditions (H1), (H2), (H3) using (25.8) and (25.9) we have in turn
that
wo—x"[| = |lxo —x" +a[F (x) = F(x")]]
= [I+axx" F])(x—x")
11+ afxo, X" Fllxo —x"[| < vi(p)p <R

IN

and
[F" (x*) =" ([wo, x0: F] = F'(x")) |

IN

vo (v ([lxo —x*[[[lxo — 7], floeo —x*[) < 1.



Efficient Derivative Free Seventh Order Methods for Solving ... 249
It follows by the last estimate and a lemma due to Banach on linear invertible operators
[1,2,7,10] that [wo,x0; F] ™' € L(X,X)

1

< (25.12)
| 1—=vo(vi(Ilxo —x* )]l —x* |, [lxo — x*[|)

ITwo,x0: F]~'F'(x”)]

and iterate yq is well defined by the first substep of method (25.4) for n = 0. Then, we can
also write that

yo—x" = xofx*f[wo,xo;F]le(xo)
= [wo,x0;F]" " ([wo, %05 F] — [x0, "3 F]) (x0 — x*). (25.13)

Using the first condition in (H3), (25.8), (25.11) (for k = 1), (25.13) we get

v(va(llro — x| [lxo —x*}, [lxo — x*[) ll.x0 — "]

A

*
Yo —X <
CON T—vo0r1 (%o Mo —x°TT, x0T

< g1(llwo —=x"[)[bxo = x| < flxo —x"[| <p- (25.14)

It follows by (H4), (25.11) (for k = 0) and the definition of the second substep of method
(25.4) that
llzo —=x"[| < ga(llxo —x"[}) [0 — x| < ([ —x"|. (25.15)

As in the derivation of (25.12) we obtain in turn

IF' )" (A= F'NI < IF' (")~ (20, y0: F] = F' (7))
HIF' (")~ ([z0,%0: F] = [vo,%0: F])|

< vol(llzo—x*[I, [lyo —x"|)
+va([lx0 —x*[[, [lyo —x* ||, llz0 — x*[])
< s(flro—x*[) <1,
SO |
Ay 'F'(06) € = (25.16)
1456 < Ty

and iterate x; is well defined by the third substep of method (25.4). We can also write
xp —x* =z —x" — Ay 'F9z0) = Ay (Ao — [20,X"; F]) (20— x*)
leading to

lxo ="l < flAg"F' G IIF' (x*) ™" (Ao — [z0,x": F])l|z0 — x°]|

v(llzo = *"I, [lx0 = x*1[) +va(llxo = x*[|, [lyo = x*1[, llz0 — x*[])]
1= s([lxo —x*[[)
< &3(llvo —=x"[Dflxo = x| < [lxo — 27, 25.17)

IN

[lz0 =7

where we also used (25.11) (for k = 3), (H3) and (25.16), to obtain

1F' (")~ (Ao — 20,4 FI) | < w(llz0 = x* [, [lxo —2[1) +va(llxo — 2", lyo =", llzo —x*[])-
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By simply revisiting these calculations for xg, wo, o, 20, X1 by x;, wi, vi, 2i, Xi+1, We get
[1yi = x| < g1(llxo =" ) bi =[] < fli =27,

[lzi =" [l < ga(llro = x* [l = x| < [l =],

and

1 =) < b =) < =],
where, u = g3(||xo —x*||) € [0,1), concluding that lim;__,..x; = x* and x;4; € U(x",p). O
Next, we present a result on the uniqueness of the solution.
Proposition 21. Suppose:
(i) There exists a simple solution x* € U(x",p4) of equation F (x) = 0 for some p4 > 0.
(ii) The first condition in (H2) holds and there exists ps > p4 such that
vo(0,ps)dd < 1. (25.18)

Set Qy = U[x",ps| N Q. Then, the is the only solution of equation F(x) = 0 in the
region Qy is x*.

Proof. Lety* € Q; with F(y*) = 0. Define the operator T = [x®,y*; F]. By applying the first
condition in (H2) and (25.18) we obtain

1F' () ~HT = F' ()| < vo([lx* =2 ly* = x[]) < wo(0,ps) < 1.

Hence x* = y* follows from the invertibility of 7' and the identity 7 (x* —y*) = F(x") —
F(y*)=0. O

Remark. If all conditions H are used, then certainly we can set ps = p.

3. Special Cases

The functions g; is determined for method (25.5) and method (25.6), respectively.
Case of method (25.5) The function g, is defined by

() = LB a8 () 510

11— (vo(t,g1(0)t) +valt, g1 (1)1, v ()1))

Indeed, following the proof of Theorem 29, we can write by the second substep of the
method

n —x* =Yn —x* *B;lF(yn) =B,

n

(Bu = [yns x5 F]) (= x%). (25.20)
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We need the estimates

1F' ()7 (Bo = Do s FD = F () [ s F)
[ X5 F]) A+ (s Wi F] = [Wa, 3 )]

< IFG)” ([yn,xn,] [, x" F])
HIF () (s Wi F] = [wa, 20 F]) |
< vl =" [lya —27)

va ([0 =[], [[yn = [, vi (e — x|l — X7 |
(25.21)

and

IF' ()7 By = F'(x*)) < volllx =27, lyn —x7I])
Ava ([l = X[, lyn =" va (e = X[ 10 —x7[]).

(25.22)
Then, the choice of function g, follows from (25.20)-(25.22).
Case of method (25.6) The function g, is defined by
v(t,g1(t)t) V3(g1(t)t)vz(t,gl(t)t,vl(t)t)>
t) = + t). (25.23)
e0= (e o a8
It follows by the second substep of method (25.6) that
Zn —Xx* = Dy(y, —x*), (25.24)
where
D, = I- b’nvxn’F]il([anxn;F] = [y Was F] + [Way Xn3 F])
Vs X3 F] ™ b’mX*'F]
= s ) (o0 F] = [y X5 F]) = [y a3 F]
([Wims X3 F] — b’nvwn’F])[men;F]il[Yn7X*§F]
and
V({[yn = x| [[a —x*])
. Bt A L
vo ([[yn = x| [[xn — x*|)
3= v = o = =) s

(L =vo(llyn —x*[I, lltn —x*]]))?

Estimates (25.24) and (25.25) justify the choice of function g,. Then, with these choices of
function g; the conclusions of Theorem 29 hold for method (25.5) and method (25.6).
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4. Convergence of Method (25.7)

In this Section, the proof of Theorem 29 is also followed.
The second substep of method (25.7) can be written as

=X = Ey(yn *X*%
where
— (31—
[Wnyxn, ]

[men, ]

JF[anxn,F]

[wn,xn;F]
!yns x5 F]
YWy xp; F] —
i,

and

Vs X3 F) Wiy X F[yn, x5 F] —
+ s Was F) Wiy X F~
(Vs Xns F) = [Wis X5 F) [Wiy X3 F ]~
A ([, Was F]

SO

N

||[Wn»xn;F]il([anxn;F]
+[[Wn, Xs F ™
va([[xn —x"||s lyn —

1= ([ = x*[|, || wa

va(lben = x|, [lyn —

£

Xl lwa —x1))

—x*[])

Xl wn

IN

+2

l[ynvx*;F] -
l[yn7X*;F]

- [men;F])[Wn»xn;F]il[y117X*;F]7
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(25.26)

71([anxn;F] + [y was F]))

[yny)C*;F])

(25.27)

[ynv)C*;F]

[yn,x*;F]

= DX ]
F ) [IIF ()~ Gl

—x[Dvs(llyn —x*]]

E=wo ([l =l [[wn

Hence, we can choose

.
1 —vo(t,vi(2)t)

g2(t)

—x*[])

va(z,81(2)1),v1(2)z)
va(t, g1(t)t,vi(0)r)vs(gi(1)t)

+2 t).
1 —vo(t,81(2)1) &)
The third substep of method (25.7) can be written as
Xn4-1 —x" :Hn(zn*X*)v
where
H, = I- [Zan’F]il([men;F]JF[Yn?xn;F] — (20, %03 F])
[Wnyxna ] [Zn7-X*aF]
= [y F1 ([2nsyns F) = [z, X5 F1) + [2ny yus F]
(y—n,x0:F] — [vaxn;F])[men;F]il[va)C*;F]»
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SO

V(llyn = x|l 120 = x*11)
L=wo(llzn =[], lyn —x*1)
va([Pen = x|, [[yn = X1, |20 = x*[)v3([l2n = *"[])
(1 =vo(llzn=x*[I; [lyn =x* ) (1 = vo([wn —x* |, llxn —x*[1))”

||l

Thus, the choice of the function g3 is

v(g1(2)t,82(1)t)
1 —vo(g2(1)t,81(1)1)
va(t,81(1)t, g2(1)t)va(g2(2)1) Tea(t)
(1 —=vo(ga(t)t,81(t)1)) (1 —vo(vi(t)t,1))

Then, the conclusions of Theorem 29 with g; and g, hold for method (25.7).

g(t) =
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Chapter 26

Necessary and Sufficient Conditions
for the 0-Order of Convergence of
Iterative Methods

1. Introduction

Let X and Y be a Banach space and D C X be an open set. We are concerned with the
problem of approximating a locally unique solution x* € D of the nonlinear equation

F(x) =0, (26.1)

where F : D — Y is a Fréchet-differentiable operator. Iterative methods are used to ap-
proximate x*. In this Chapter, we consider the necessary and sufficient conditions for the
convergence of the following method

Yn = X *Fl(xn)F(xn)»
in = Yn *anFl(xn)ilF(yn) (26.2)
and
Xn+1 = Zn *anl(xn)ilF(Zn)v

where, a, = a(x, —y,),a:DxD — L(X,Y), b, = b(Xy,Yn,2n), b: DX D xD — L(X,Y).
Relevant work but for special choices of the sequences {a,} and {b,} can be found in [4].

2. Local Convergence

The convergence uses some real functions and parameters. Set 7 = [0, o).
Suppose:

(i) There exists function g : T — R continuous and nondecreasing such that equation

lllo(t)*lzo

has a smallest solution pg € T —{0}. Set 7o = [0, po).
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(i) There exists function y : 7o — R continuous and nondecreasing such that equation
hy (l’) —1=0

has a smallest solution | € Ty — {0}, where function &; : T) — R is defined by

mm:ﬁ%uemw
—Vo(7)
(iii) Equations
Yo(hi(1)t)—1=0
has smallest solutions p; € Ty — {0}.
Set p» = min{pg,p;} and 71 = [0,p2).

(iv) There exist functions y; : 7} x 71 — R, y3 : T} — R continuous and nondecreasing
such that equation
hz(l‘ ) —1=0

has a smallest solution r, € T} — {0}, where the function h; : T} — R is defined by
Jo W(Bhy(t)t)d®
1—wyo(hi (1))

n (LR (0)1) i (2, 2 (D)) W3 (ha (1)1) (14 Jo Wo (B (1)1)dB)
(1 =wo(1)) (1 —wo(hi(2)1))

ho(t) =

hl(l’)‘

(v) Equation
Wo(hz(t)t) —1=0
has a smallest solution p3 € Ty —{0}. Set p = min{p,,p3} and T» = [0,p).

(vi) There exists function y; : T, x T> X T, — R continuous and nondecreasing such that
equation
hs (l‘ ) —-1=0

has a smallest solution r3 € T, — {0}, where the function k3 : T, — R is defined by
Jo W(Ohy(1)1)d®
1= wo(ho(1)1)

L (W ha(0)0) +a(t, ha ()1 ha(0)1) W (o (1)) (1 + Jo Wo(Bha(t)1)dB
(1=wo()) (1 = wo(ha(2)1))

h3(l‘) =

hz(l‘).

The parameter r defined by
r=min{r;},i=1,2,3 (26.3)

shall be shown to be a radius of convergence in Theorem 30 for method (26.2). Set
;= [07 I’).
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It follows by (26.3) that V¢ € T

0<wo(r) <1, (26.4)
< WYo(hi (1)) <1, (26.5)
0 <wyo(ha(t)r) <1 (26.6)
and
0<hi(t) < 1. (26.7)

By U(x,R),U|x,R] we denote the open and closed balls in X of center x € X and of radius
R > 0, respectively.

The following conditions are needed.
Suppose:

(cl) There exists a simple solution x* € D of equation F (x) = 0.
P q

(c2)
IF' (x) 7 (F'(x) = F'(x) | < wol[lx—x*)) ¥x € D.

Set U, = U(x*,po) ND.

(c3)
17 = a(x)) || < wi(fle—x"[], [y —x"]])
and
IF' (&)~ F ()| < wa(fle =)

for each x,y € Uy. Set U, = DNU (x*,p).

(c4)

1= b)) [ < wa(lle =27, [ly =x"[], [l —=x7[])
for each x,y,z € Us.
(c5) U[x*,r] C D.
Next, the main local convergence analysis of method (26.2) follows using the conditions
(c1)-(c5).
Theorem 30. Suppose conditions (c1)-(c5) hold. Then, sequence {x,} generated by method

(26.2) is well defined, remains in U (x*, r), and converges to x* provided that xo € U (x",r) —
{0}. Moreover, the following estimates hold for each n =0,1,2,...

[y =" < Al — X" (D00 = x| < [l = x| <7, (26.8)
||Zn*x>k|| < h2(||xn—x*||)||xn—x*|| < ||xn*x>k|| (26.9)

and
[[xn1 = x| < ha ([l —x*]) 1 — || < | — 2" (26.10)

where functions 4; are previously defined and the radius r is given by formula (26.3).
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Proof. Assertions (26.8)-(26.10) are shown using mathematical induction. Let u €
U(x*,r) —{x"}. By applying (c1), (c2), (26.3) and (26.4) we obtain
1F" ()~ (F () = F' () | < wolllu—x*[) < wo(r) <1,
implying F'(u)~! € L(Y,X) and
1

Fu 'Fo|< ——
1P F ) <€ g

26.11)

in view of the Banach Lemma on linear operators with inverses [1, 2, 3]. If follows by
method (26.2) and (26.9) that iterate yg, zo and x; are well defined. Then, we can write by
the first substep of method (26.2)

yo—x* =xp—x* —F'(x0) "'F(xp),
so by (26.11) (for u = xg), (c2), (26.3)and (26.7) (fori = 1)
Jo W((1—8)]lx0 —x*[|)d8]lxo — x°|

1 —wyo([lxo —x*[|)
< hy(J|xo — x| ||xo — x| < ||xo —x*|| < 7 (26.12)

A

yo—x"|| <

Thus, the iterate yo € U(x",r) and (26.8) holds for n = 0.
Then, by the second substep of method (26.2) we can write

0—x" = yo—x"—F'(y0)'F(y0) +F'(y0) ' F (o) —aoF'(x0) ' F(y0)
= (yo—x"—F'(0)'F(y)
+F'(yo) "' [(F(x0) = F' (y0)) + F' (y0) (I — a0)]F' (x0) ~'F (yo).
(26.13)

It follows by (26.3), (26.5), (26.7) (for i = 2), (26.11) (for u = yp), (c1)-(c3) and (26.13)
that

* S (Ol - [)do
- <
leo =l < Mo ==
(wllso—2 1)+ 1 —ao) l1E ) F G T o1
F F
T ol D)0 —wollo )y | = &) Fbo)
< oo —' livo— '] < o 1] (26.14)

implying zo € U (x*,r) and (26.9) holds for n = 0, where we also used

Flyo) = F(yo) — F(x*) = /OIF'(x* +0(y0 —x*))d8(yo—x*).
Hence,
IF6) o0l < 1P [ 800 - ))de - F )
+F'(x*)](yo —x")||

1
(”/o W0 (81y, — ")) [y —x°]|.

IN
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Similarly with the derivation of (26.14) but using the third substep of method (26.2) and the
estimate

x—x" = (20—x"—F'(20)'F(20)

+F'(20) " [(F (x0) — F'(20))
+F'(20) (I — bo)]F' (x0) "'F (z0). (26.15)

Then, by exchanging yo,zo by 2o, bo in (26.14), we get
[ler = x| < s ([lxo = x" () [lx0 =" | < [lxo —x7]], (26.16)

showing x; € U(x",r) and (26.10) holds for n = 0. By simply replacing xo,yo,z0,X1 by
Xk, Yk, Zks Xk+1, 10 the preceding calculations to complete the induction for estimates (26.8)-
(26.10). Then, by the estimate

s =l < M —x°]) < 26.17)
where, A = h3(||xo —x*||) € [0,1), we conclude limy__..ox;y = x" and x4y € U(x",r). O

The proof of uniqueness result that follows is omitted since it is given in an earlier
Chapter.

Proposition 22. Suppose:
(i) There exists a simple solution x* € U (x",u) of equation F (x) = 0 for some u > 0.
(ii) The condition (cl1) and (c2) holds

(iii) There exists uy > u such that

1
/O Yo (6u1)do < 1. (26.18)

Set M = U|x", 1] N D. Then, the point x* is the only solution of equation F(x) =0 in
the set M.

The convergence of method (26.2) has been given under weak conditions. Stronger
conditions are needed to show the order of convergence. That is why we state the following
results but for X =Y = R/.

Theorem 31. [4] Suppose F : D C R/ — R/ is sufficiently many times differentiable and
x* is a simple solution of equation F(x) = 0. Then, if xo is closed enough to the solution x*,
then the sequence

Xpt1 = Xp — a,,F'(xn)le(xn)

has order four if and only if a, = I + G, + 2G>+ O(h®), where h = ||F(x,)|| and G, =

1

EF'(xn)flF”(x,,)F'(xn)le(xn).
Theorem 32. [4] Suppose conditions of Theorem 31 hold. Then, method (26.2) has an
order of convergence ¢ if and only if operators a,, and b, are given by the formulas in Table

1.



262 C.I. Argyros, S. Regmi, I.K. Argyros and S. George

q ay bn
5 1+0(G,) 1+2G, +BG>
142G, +BG>? 1+0(G))

6| 1+2G,+0(G>) |1+2G,+0(G,)?)
7| 1+2G,+6G>+3d, | 1+2G,+0(G?)
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Chapter 27

Necessary and Sufficient Conditions
for the Convergence of Sixth Order
or Higher Derivative Free Methods

1. Introduction

Let F : Q C X — Y, be a nonlinear operator between the Banach spaces X and ¥ and Q be
a non empty convex subset of X. Consider the nonlinear equation

F(x)=0. 27.1)

Iterative methods are used to approximate the solution x* of (27.1) since a closed-form
solution is not easy to find. In this Chapter, we consider the iterative method defined for
n=0,1,2,... by

Wy =Xy + OF ()Cn), Vn = Xp — OF (xn)7
Yn=Xn — [W117V11;F]71F(xn)»

Zn=Yn — 0Oy [Wmvn;F]ilF(yn) (27.2)
and

Xn+1 = Zn *Bn[wnvvn;F]ilF(Zn)y

d € S where S € Ror S € Cis a given parameter, [.,.;F]: Q x Q — L(X,Y) is a divided
difference of order one [1,2,3] and o, : Q — Q are linear operator with o, = o.(x,) and

B = Blxn).-
2. Local Convergence

It is convenient to define some functions and parameters. Set 7 = [0, o).
Suppose:
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1. There exist functionsa: T — R,b: T — R and @y : T x T — R continuous and
nondecreasing such that the equation

Qo (b(t)t,a(t)t)—1=0

has a smallest solution Ry € T — {0}.
Set Ty = [O,Ro).

2. There exist function @ : Ty X Ty — R such that the equation
hy (l’) —1=0
has a smallest solution r; € Ty — {0}, where the function &; : Ty — R is defined by

Q((1+b())t,alt)t)
1—@o(b(t)t,a(t)t)’

hi(t) =
3. There exist functions @; : Tp — R, @y : To x Ty — R, @3 : Ty x Ty X Ty — R con-
tinuous and nondecreasing such that the equations

Qo (h1(2)1,0)—1=0
and
(po(hz(l‘)t,()) —1=0

have smallest solutions Ry, R, € Ty — {0}, respectively.
Set 71 = [0,min{Ry,R,R>}). The equations

and

have smallest solutions rp,r3 € T} — {0}, respectively, where

[9(h1 (1) +b(1))1,a(e)t) + @a(t, ki (£)1) @1 (B (2)1] i (2)

ha(r) = (1= @o(1(1)1,0)) (1 — @o(b (1)1, a()1))
and
a(r) = QU2 b)) +Qalt, I (00). ha0)1 @1 (ka0 ale)

(1= o (h2(2)1,0)) (1 = @o(b(1)t,a(1)t))
The parameter r is defined by

r=min{rj}, j=1,2,3 (27.3)
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shall be shown to be a radius of convergence for method (27.2). Set 7> = [0, 7).
Then, it follows by these definitions that for each ¢t € T
0 < @o(b(t)t,a(t)t) < 1, (27.4)
0 < @o(ha(1)t,0) < 1, (27.5)
0 < @o(ha(1)2,0) < 1 (27.6)
and
0<hj(t)<l. (27.7)

Denote by U (x,A), U|x,A] the open and closed balls in X with center x € X and of radius
A > 0. The following conditions are utilized:

(C1) There exist a simple solution x* € Q of equation F (x) = 0.

()
11 —8[x,x™; Fl|| < a(|lx—x*[]),
1148, x™; F|| < b([|lx—x*[])
and
IF ()~ ([, y: F] = F (x*) | < @o([lx = x|, [ly — ")
for all x,y € Q.
(G3)

IF ()~ ([, x5 Fll| < @i (lx—x"|)) forallx €T,
11— a(x)|| < @a(lfx—x"|[,[ly—=x"[]) forall x,y€Ti,
and
1 =bx)[| < @s([lx ="l ly =x*[|, [z =x*[|) forall x,y,z € Ti.

(Cq) Ulx*,r*] C Q, where x* = max{r,b(r)r,a(r)r}.

Next, the local convergence analysis of method (27.2) is presented based on the developed
terminology and the conditions (C;) — (Cy)

Theorem 33. Suppose that the conditions (C;) — (Cy4) hold. Then, the sequence {x, } gen-
erated by the method (27.2) is well defined, remains in U[x",r") for alln =0, 1,2, ... and
converges to x*, provided that the initial pointxy € U[x*,r) — {x"}. Moreover, the following
assertions hold for alln =0,1,2, ...

[y =" < Al — X" D260 = x| < [l = x| <7, (27.8)

[y =[] < Ao (Il — " () [0 — x| < {26, —x7 ] (27.9)
and

(X011 *X*H < h3(||xn—x*||)||xn—x*|| < ||xn*x>k||» (27.10)

where the functions /; are defined previously and the radius of convergence r is given by
formula (27.3).
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Proof. Mathematical induction is used to show assertions (27.8)-(27.10), and the esti-
mates(as in the previous chapter)

1
I < ,
L=@o([[wn =x*[], [[va = x*[])

[Wa, vas ]~ F () @7.11)

Vo — X =X, —x* — [Wp, v F] 7 F (x)
= Wy Vs F] 7Y (Wi v F] = [0, X7 F)) (30, — x*),
Q(llwn — x|, [[vn — x| flxn — X" |
1= @o([[wy —x*[], [[ve, —x*[])
Q((1 + b([[2cn —x" |20 — " [, a([|260 — ™[] []xn =[] []xtn — x|
1 — o (b([lxn — x*{) [|xn — x*{|, @(floen — x*[[) [} 02 — x|
< By (floen =X ) [len — x| < Jlen —x*[| <,
[[wn — x| = (1 + 8xn,x™; F]) (xa —x") | < a(floen — x| floxn — x7|

[lyn =2 <

<b(ryr<rt,
, 1
XSF]TUVF (3] < ,
I FTF OO < T T = Dl == 1,0)
1

[z x"s F]'F ()] <

1= @0 (o ([l — x*[[) [1x — %], 0)”

a0 =X = yu =X = [Yn, X s F]F (yn) + [Yn, " F] 7 F ()
— [ W, Vi F] ' F ()
= s X s F] 7 (W Vs F] = [y, X5 F] o+ [y, X1 F]

X [Wn7Vn;F]7l(I*an))(Yn*X*)v
and

Yn =X = [, X5 FIF (yn) = yn = %" = [y, 5 F][yn, X3 F] (yn — ™) = 0.
In the special case when X = Y = R/, the following results were given in [4]. U

Theorem 34. [4]. Suppose that operator F is sufficiently many times differentiable and
x* € Q is a simple solution of equation F(x) = 0.
Then, the sequence {x, } generated by

Yn =Xn *LilF(xn) (27.12)
and

Xnt1 = Yn —anl ™ F ()
ha order of convergence equal to four if and only if
an =F (y) 'L+ O(), h=F(x)],
where

L, = [wp,xn; F).
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Theorem 35. [4] Suppose that conditions of Theorem 34 hold: Then, the convergence order
of method(27.2) is equal to six if and only if

a, = I+2pn +gn+ O(hz)v
where
1. - " ’ _
Pn = EF (xn) 'F (xX)F (xn) IF(xn)7
and

1 ’ _ "
qn = EF (x) "'F (x,)8F (x),
Notice that the results in the last two theorems hold provided that F is sufficiently many
times differentiable limiting the applicability of method (27.12) and method (27.2) in the
special case although these methods may converge.

Similar results have been provided for methods with convergence orders higher than six
in [4].
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Chapter 28

The Convergence Analysis of Some
Fourth and Fifth Order Methods

1. Introduction

The local as well as the semi-local convergence analysis of certain fourth and fifth-order
methods under the same conditions as in the previous chapter.

Cordero et al. method (Fourth order) [3]

Yn = xn*Fl(xn)ilF(xn)
and (28.1)
Xn+1 = Yn— (ZI*FI(xn))ilF(yn)-

Sharma et al. method (Fourth order) [5]

Yn = xn*Fl(xn)ilF(xn)
and (28.2)
Xn+1 = Yn— (31*Fl(xn)il[ymxn;F])Fl(xn)ilF(yn)-

Grau et al. method (Fifth order) [4]

Yn = xn*Fl(xn)ilF(xn)»

1
in = Yn— 5(1JrFl(yn)7lFl(xn))Fl(xn)ilF(yn) (283)

and
Xn+1 = Zn*Fl(yn)ilF(Zn)-
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Xiao et al. method (Fifth order) [6]

Vo = Xp— OLF'(xn)le(xn), acR—{0}

in = Yn *AilFl(xn)ilF(yn)» (28.4)
1 1
A, = (1*@)”2 F'(x,)"'F (y,))
and
Xn+1 = Zn*BnFl(xn)ilF(Zn)v
where

1

1
B, = I+2(—F'(yn)+(1fﬁ)F'(xn)*lF'(xn).

200

2. Local Convergence

As in the previous Chapters the convergence theorems rely on some estimates and the
corresponding functions.

Method (28.1)
It follows in turn from the two substeps of method (28.1), respectively

Jo @((1 = 8)[lxs —x[|) | —x*|

yn*X* < <g X, — x| ||x,0 — x*
[ P () |
and
||xn+l *X*H = ||yn*x>k *Fl(yn)ilF(yn) Fl(xn) (Fl(xn) Fl(yn))F(yn)
+F’(Y11)71(Fl(x11) (Yn))Fl(xn) F(ya)|l
< Jo (P((l*9)||yn*x*||)019Jr <(Po(||an*||)+(Po(||ynX*II)

1—@o(|[yn —x*]) 1— o ([, —x*]))

Qo (llxn —x"[1) +@o(llyn —x"[]) >
(1= @0 ([lxa =x*[[)) (1 = @o([ly. —x*[))

1
< (14 [ u(Ol,—x1)d0)| Iy, |

< ga(llren =" )l —x"]-

Hence, we can define
Jo ©((1—6)1)d8
1—@o(t)

gi1(t) =

and

[l e(1=0)si0)d8 ( gole) + @olei (1))
2 ‘[ B oo G

e ) 1 w0
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Method (28.2)
[Xns1 =X = |lyp—x *Fl(yfz)ilF(Yn)+FI(Yz1)7l(FI(x11) *FI()’n))ilFl(xn)ilF()’n)
+2Fl(xn)7l(Fl(xn) - [ymxn;F])F(yn)H
< Jo 9((1—8)|lyn —x*||)d0 Qo (llxn —x*[1) + @o(llyn —x"|)

=0 ([[yn—x*[]) +< (1 =@o([loen = x*[)) (1 = @o([lyn —x*[))

Z(Pl(Hxn x|l ||)7n
1*(PO |xn

al
<t [ @l —x nwﬁwnfw

*

Thus, the function g; is the same as in method (28.1), where the function g, is defined by

&) =

Jo @((1—0)g1(t)1)d +< @o(?) +o(g1(2)t)
1 —@o(g1(1)1) (1=o(1)) (1 —po(g1(2)1))
@1 (7, 81(1)1)
2 1—@o(t) >

x (1 +/Ol(po(6g1(t)t)d6)] g1(1)t.

Method (28.3)

||Zn*x>k|| = HYn*X**FI(Yn)ilF(Yn)
1 _ _
JF(FI()’n) t— E(Fl(xn) lJFFI()’n) I)F(Yn)”

fOl Q((1—0)]|yn—x"[)d6 Lo < Qo (|]xn —x*[]) + @o(||yn —x*|)
T=go(lye == 2 \(T=0(lx —x 1)1 = 0o(lya —=TD)

1
< (14 u(Ol—x 1)49)| I3, ']

and

||xn+l*x>k|| = ||Zn*x**Fl(Zn)7lF(Zn)
+FI(211)71(FI(Y;1) *FI(Zn))FI(Yn)il)F(Zn)||

Jo @((1—8)|z, —x"|))d8 + < Q0 (llyn —x*11) + @o(llza —x* 1)
1—@o(|lza —x*[]) =0 ([m—2 )1 —0o(lzn—x 1))

1
(1 [ oo(Olls - 1)48)| Iz, ']
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Hence, the function g is the same as in method (28.2) and

Ji 0((1- )¢ (1)r)do 90l1) + 00l (1))
S [ oD R sy

X (1+/Ol(po(6g1(t)t)d6)] 21(1)

and
olt) < fol(P((l*e)é’z(f)f)deJr Qo(g1(1)1) + Po(g2(1)1)
1 —@o(g2(1)1) (1 —=@o(g1(t()1))(1 — @o(82(1)1))
X (1+/Ol(po(6g2(t)t)d6)] 22(1).
Method (28.4)
[yn =2 = ||xn*x>k*Fl(xn)ilF(xn)Jr(l*O‘)Fl(xn)il)F(xn)H
< [fol(P((l*9)||xn*x*||)d9+|1*0°|(1+fol(P0(9||xn*x*||)d9)]
- 1= @o(lxa —x*[)
[[262 — X1,
lzn =" = HYn*X**FI(Yn)ilF(Yn)JF(FI()’n)il7Cnil)F(Yn)||

Jo @((1=6) ||y, —x"||)a8
1=@o(|lyn—x*]])

<1+ ! >(<Po(||xnX*||)+<Po(||ynX*II))(Hfol(Po(ellynX*Il)de)
2|a (1 =@o([loen = x*[1)) (1 = p(llocn = x*[]))

||)7n*x>k||7

where we also used

C, = (1 - %)Fl(xn)Jr %Fl(yn)JrFl(yn)v

IF' ()N Cam FDI < IF' ()7 F () = F/(67))

1 1rs\N—1 7t /

+m||F ()T F (o) = F' )|
1
< (14 e —x 1)+ ze-w(lon =)
< p(llxn—x"]),
where

()= (1 3e0)(0) + e ()
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and

[[xn+1 —x"[| = ||Zn*x>k*Fl(Zn)71F(Zn)
+FI(211)71(FI(x11)*FI(Zn))FI(xn) ) (zn) —2GC, F(Zn)H

Jo ALl D8 (e —r Dt 1)
=go(lz—xT) \T=o(ln—x 1)1 —@o(za—x"T))

) a+f lcpo<e||znx*||>de>] —)

+ —
1= p([lxo =]

Therefore, the corresponding functions are

Jo @((1—8)1)dB+[1 —at|(1+ fy @o(6r)dB)

ailt) = 1— o) 7
[ e((1—8)g,(1)r)d6
) = T e (1)
(90(6) + @olr (1)) (1 + f go(6g:1 (1)1)d)
+ (14 3 ) ]gl(”
and
(1 - 0)ga(r)r)de 9o(1) + Qolg2(1))
s = 1T palea ) +<<1<po<r>><1<po<g2<r>r>>

+1#p(t)> (1 +/Ol(po(6g2(t)t)de)] g2(1).

3. Semi-Local Convergence

We have in turn the estimates

X1 —zall = ||(1*Fl(xnrlFI()’z1))FI(x11)71F()7n)*Fl(xn)ilF(Yn)H
[\Ifo(llxn?C"ll)Jr\Ifo(llynxoll)Jr 1
(T —=wo(|lx. —xol1))? 1 —yo([lxn —xoll)
1
w1 =0l )8y,
< lp1— Sy

and as before

||yn+l —Xn+1 || < Spa1 —Ipa1.
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Hence, we define

Wo(t:) +Wo(sn) 1 >
1 = Sn+<
i (1—wo(t))? 1—wyo(t)
1
« / W((1—0) (50— 1)) dO(5n — 1)
0
and
_ fo (( )(th tn))de(tnﬂ*tn)Jr(lJFWO(tn))(th*Sn)
Sprl = Iyt .
I*WO(tn+l)
Method (28.2)
[Xns1=yull = ||2(I*Fl(xn)71[)’nvxn;F])Fl(xn)ilF(Yn)+Fl(x11)7lF(Yz1)||
<2W1(||xn x| IIyWJColl)Jr 1 >
(T —=wo(llx. —xol)))? 1 —wyo(|lxn —xoll)
/ W ||yn xn”)deHyn*an
and
||yn+l *xn+l|| < Spa1 —tha 1,
where
ZWl(tnvsn) >/
i1 =8p+ + 1*6 Sy, —1,))d0(s, —t,
s (P L) [ (1 -0) 500005, )
and s, is given as in method (28.1).
Method (28.3)
1 _ _
2o —ynll = EIIF'(xn) Y F (3a) TF ()|
1 < 1 1 >
< = +
2\ 1=wo(l[xn—x0l) 1 —wo(l[yn—xoll)
1
< [ W1 =0)llya—a )0,
and
||xn+lfzn|| = ||FI(Z;1)71F(ZN)
< 1
B I*WO HYn xOH)
1+/ W ||Zn ynH)de)Hzn*ynH

+A\wufmwfﬁmww%fMML
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where we also used

F(Zn) = F(Zn)*F(yn)JrF(yn)

— /lFl(ynJre(ZnYn))de(Znyn)

+/ (040 — 1)) 40 — F' (0)] (v — ).

Thus, the sequences are chosen as

1 1 1 1
u, = sn+§ <1\|!o(fn) + 1\|10(Sn)>/0 y(0(s, —1,))dO(s,—1,)

1 1
Iny1 = uner(lJr/o Yo (8 (un —s))dO) (un — s1)

+ /01 Y(0(s, —1,))d0(s, — fn))

and

where the iterate s, is given as in the previous method.
Method (28.4)
2w =yall = NG F ()l

(Jo W(B1Lyn = xal1)d6 + 57 (1 +Wo lxs = x01))) [y —
1= gn([Jn = xoll)

)

where we also used

G Flx) = F(u)~F'(x) + ;gF@» F'(s).
IF' (x0) ™ (Cu=F' (o)) | < Wolllxn —xol]) + 2| v Y(l[yn —xall)
< Qn(Hxn*xOH)v
1
qn = Yo(lxa —xol]) + e ¥ Y([[yn —xall),
F(yn) = F(yn)*F(xn)*(lel(xn)(yn*xn)*Fl(xn)(yn*xn)v

170 F O < (Ol 50+ (1wl ol ) Il
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[xnt1—zall = | *Fl(xn)ilF(Zn)JFZC;IIF(Zn)H
= ||(C;;l *Fl(xn)il)F(Zn)+C;171F(211)||
= C;;l(Fl(xn) *Dn)Fl(xn)iF(Zn)JFC;IIF(Zn)H

W(|[yn —xal|)
<2|0°|(1 “VollFa—x0 )1 =) 161n>
1
|:(1+/0 WO(eHZn*ynH)de)HZn*ynH

1 1
(w0l =)0+ e (1 vo(bu D) b=
0 2|t

st =il < s | W= O~ DBl ]
(LYo =30t =3+ ol =3
where we also used
Fla) = Flsnen) = PO+ /(s )

1
*(_xFl(xn)(yn *xn) +Fl(x11)(xn+l *xn)7

leading to the numerator of the previous expression if composed in norm by
F'(x0) "'F(x,41). Thus, we define the sequences by

(fol Y(0(sy —1,))d6 + ﬁ (14+Wo(tn))) (50— 1)

Up = Sp+ 1—gq ’
n
1
qdn = WO(tn) + m\p(éﬁ - tn)»
W(Sn *tn) 1 >
1, = u,+ +
. " <2|O°|(1\|!0(tn))(1‘]n) 1 —gn

[(1 + /O (8 — 5,))d0) 1y —5,)

WOl =)0+ (1 vo(0)) 5,1

and
1

1— Yo (tn+l)

[/Ol W((l - e)(t11+l - Z'n)de(l'n+l - tn) + (1 JFWO (tn))(tn+l —1Iy + ﬁ(sn - tn)]-

Sp+1 = Ipp1+
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Chapter 29

High Convergence Order Derivative
Free Methods-1

1. Introduction

The solution of the nonlinear equation

F(x) =0 (29.1)

are approximated using the following fourth-order derivative-free methods defined for all

n=0,1,2,..., starting point xo € D and for some parameter o« € R — {0} by

Yn=Xn — [Vn»xn;F]ilF(xn)» Vn = Xn JFOCF(xn) (292)

and

Xn+1=Yn — (31* [Vn»xn;F]il([ymxn;F] + [VmVn;F]))[V11»x11;F]71F(y11)-

Yn=Xn— [Vn»xn;F]ilF(xn) (293)

and

Xn+1=Yn — [ymxn;F]71A11[y117x11;F]ilF(xn)-

where
An = Vs X3 F| = [V, Vs F] A+ [V, X3 F,
Vo = Xn — Vi, X0 F]71F ()
and
Tn1 = Yn = By ' F () (294)
for

B, = [ymxn;F] + [ymVn;F] - [men;F]-

The local convergence order is shown using the condition on the fifth derivative when

B=R"[1,2,3,4,5,6,7,8,9,10,11].

The semi-local convergence is not given. In this chapter, both the local as well as
the semi-local convergence are presented in the more general setting of a Banach space.
Moreover, conditions only on the operators appearing in these methods are used in the

analysis. Hence, the applicability of these methods is extended.
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2. Local Convergence Analysis
The analysis uses the same conditions for both methods. Let M = [0, ). Suppose:
(i) There exist functions @y : M — R,y: M — R such that the equation
Qo(y(1)1,1) ~1=0

has the smallest solutionp € M — {0}.
Let My : [0,p).

(ii) There exist functions & : My — R, @ : My x My — R,

(0J] Moy x My x My HR,(pz Moy xX My x My — R
such that the equations

have the smallest solutions y; € My — {0}, where

).t
(1) — 200D
L= @o(v(1)1,1)
and
e (@) 1(0)r) (@i (V(0),1,81(0)1) + @2(v(0)1,1,81(2)1))8(2)1
g(1) =1 3 J81(2).
1= @o(v(t)t,1) (1 =@o(¥(1)1,1))
We assume that the functions @, @;, and @, are symmetric.
The parameter r defined by
r=min{ry,r} (29.5)
shall be shown to be a radius of convergence for method (29.2) in Theorem 2.1.
Let M| = [0,9). Then, it follows by these definitions that for all 7 € M,
0 < @o(y(r)r,1) <1 (29.6)
and
0<gi(r) < 1. (29.7)

By U(x",A),U[x",A] we denote the open and closed balls in B with center x* and of radius
A>0.

The scalar functions are connected to the operators appearing on the methods as follows,
Suppose:

(a1) There exist a simple solution x* € D of the equation F(x) = 0 such that F ,(x*)fl €
d(By,B).
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17+ afe, x5 || < y(llx—x*||)
and
IF () ([ox F) = F ()| < @olz—x|], llx —x*[])
for all x,z € D.
Set Dy = U[x*,8) N D.
(a3)
IF (")~ [y, F] | < 8([ly — 7],
IF (")~ [z, F) — [, x5 F]) || < @(Jlz—x7 ||, x—x7]]),
IF ()" ([z.x: F] = [y, FDI| < @1 (o —x*||, |y =[], [l —x*]])
and

1F () (2 F] = D FDI < @2 (llz= x| e =" [y —<°1)

for all x,y,z € Dy.
and

(aq) Ulx*,R] C D,R = max{r,y(r)r}
Next, the local convergence analysis for method (29.2) is presented which is based on the

conditions (a;) — (a4) and the developed terminology.

Theorem 36. Suppose that the conditions (a;) — (a4) hold. Then, if xo € U (x*,r) — {x*} the
sequence {x,} generated by method (29.2) is well defined, remains in U (x*,r) for all n =
0,1,2,... and converges to x*. Moreover, the following assertion hold for e,, = ||x, — x| :

Hyn *X*H < gl(en)en <e, <r (298)

and
enr1 < gZ(en)en <ey, (29.9)

where the functions y; are defined previously and the convergence radius r is given by
formula (29.5).

Proof. Estimates (29.8) and (29.9) are shown using mathematical induction. Let y = x+
oF(x) € U(x*,r) —{x"}. By applying (a;) and using (a;),(az) and (29.5) we obtain in turn

IF () (s F] = F ()| < ol =[], lx = x7])
< Qo (¥([lx —x7[|, [lx = x"[]), [lx —x7[])
< Qo(Y(r)rr) <1, (29.10)

since [[u— x| = [[(1 + [x,x"5 F]) (x = x") || < y([lx —x7[]) [} =27

It follows that [u, x; F] ' € 8! (B, B) according to the Banach lemma on invertible operators
[1,2,3,4], and

1

X x), x5, F]7'F (x* ’
Ibet el ) OO < g = D= T T =)

(29.11)
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In particular, if x = x¢, the iterate yy is well defined by the first sub-step of the method
(29.2). Moreover, we can write

Yo —x" = ([vo,x): F]'F (x) ™" ([vo, x0: F] — [x0,x": F]) (vo —x°). (29.12)
Using (29.5),(C3),(29.7) (for i = 1),(29.11)(for x = xo) and (29.12)

@(|tIB([1xo —x*[1) xo — "1 flxo — ) o ="
L= 9o (¥([Ffo—x o —='[I, Jxo —x*[}
< g1(llx0 =" )lxo —2| < lro —x" < 7 (29.13)

lyo—x"|| <

Hence, the iterate xo € U(x",r) and assertion (29.8) hold for n = 0. Notice that the iterate
x1 is also well defined by the second sub-step of method (29.2) for n = 0. Furthermore, we
can write in turn that

x1—x" =yo—x" —[vo,x0; F] "' F (y0)
+ (21— [vo,x0: F] ™" ([yo, %0 F] = [y0, vo3 F]) [vo, %03 F] ™' F (o)
=yo —x" = [vo,x0: F] ' F (30)
+{[vo, x0: F1 7 ([vo, x0: F] — [0, x0: F]) + [vo,x0: F] !
([vo, x0; F] — [vo,vo: F]) }vo, yo: F] 1 F (o). (29.14)

Then, as in (29.13) but using (29.7) for i = 2 and (29.14) we get in turn that

@1([lvo —2* . Jxo —* I lyo —x*[)
T qo(¥([Txo — N o —*[[. Jro ')
1

1= o (Y(llxo —x*[1) [lxo —x*[], [lxo —x*]))?

(@1 ([lvo =], ll2xo = 27[], [lyo = x7[])

+@2([lvo =21, lxo =", [lyo = x*())8(llyo =™ )] lly0 —x"]|

< g2([lwo —x[[) llxo — X" < [l — 7] (29.15)

[l =2 <

1

Thus, the iterate x; € U(x",r) and the assertion (29.9) holds for n = 0. Suppose these
assertions hold for all integer values of the index smaller than n. Then, simply switch
X0,Y0520,X1 DY Xk, V&, 2k, Xk+1 in the preceding calculations to terminate the induction for the
assertions (29.8) and (29.9). Then, in view of the estimate

er+1 Jaep <, (29.16)

where a = g,(||xo — x*||), we conclude that the iterate x;+1 € U(x™,r) and lim, X3 =
x*. O

Next, The uniqueness of the solution result is presented.
Proposition 23. Suppose:

(i) There exist a simple solution x* € U(x*,p1) of the equation F (x) = 0.
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(ii) ||IF ()Y ([x, x5 F] — F (x"))|| < @3(||x — x*||) for all x € D and some function @3 :

M — R which is continuous and nondecreasing.
and

(iii) There exist p, > py such that

03(p2) < 1. (29.17)

Let D; = U[x*,p2]ND.
Then, the point x* is the only solution of the equation F(x) = 0 in the region D;.

Proof. Define the linear operator T = [x*,y";F|, where y* € Dy with F(y") = 0. Using
(i), (i) and (29.17), we have

IF' )T = F ()l < sy =) < @a(p2) < 1,

tending to x* =¢* by the invertibility of the operator T and the identity 7' (y* —x*) = F (y*) —
F(x*) =0. [

Remark. It is worth noticing that not all hypotheses of Theorem 36 are used to establish the
uniqueness of the solution in Proposition 23.

Next, we similarly present the local convergence of method (29.3) under the conditions
(a1) — (a4) but we define the function g, by

T oeta))  (e(0)mngi0n)E0))
0= | atamn T Goetamn? |20

The definition of the function g; is a consequence of the estimate obtained from the second
sub-step of the method (29.3) as follows

Xn+1 —x =Yn —x* - [ynvxn;F]ilF(yn)
=+ [yn»xn;F]il([Vn»xn;F] - [ynvvn;F])[ynyxn;F]ilF(yn%

o)
(| X011 *X*H < 82(||xn*x>k||)||xn*x>k” < ||xn*x>k|| <7

where we also used the estimate

1
| < .
1—@o(|lyn —x*[], ]2 —x*[|)

H [yn»xzﬁF]ilF,(X*)

Then, the result in Theorem 36 and Proposition 23 can be rewritten with the above changes
but for method (29.3) replacing method (29.2).
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3. Semi-Local Convergence

The analysis is given based on majorizing sequence
The following sequence {7, } shall be shown to be majorizing in Theorem 37. This sequence
is defined foralln =0,1,2,...,50 = 0,50 = Q by

¢ + [(Pl (C(tn)thrbvtmsn) 1
n+1 = Sn
! L= @o(c(ta)tn +b,) " (1—@o(c(ta)tu+b,51))?
(@1 (c(tn)tn+D,tn, $n) + @2 (c(ta)tn + b, tn,50)) (29.18)

Q1 (c(tn)ty+b,ty,50)] (sn — 1)
and
On+1
1 —@o(c(tuy1)tnr1 +b,tuy1)

Sp+1 =Itpt1+

where

On+1 :(1 + ®o (tn+17tn))(tn+l - tn)
+ (140 (c(tn)tn +b,t0)) (S0 —1n),

where the functions ”@” are as the ”¢” functions of the previous section. But first we present
a convergence result for sequence {¢,}.
The conditions for the semi-local convergence for both methods are:

(h1) There exist xo € D,Q > 0 such that

F(x0)™" € 8(B,B), |otf[|F(x0)|| <band ||[vo,x03 F]~'F(x0)[| < Q.

(h2)
1+ ofx, x0; || < e([]x —xo|
and
1 (x0) ™" ([2,%03 F] = F (x0))) || < @o(llz =0l [ —xo]|)
for all x,z € D. Set D, = U (xq,bo) ND.
(h3)

IF (x0) ™ ([z,x: F] — 1,2 FD)I| < @1 (v —2xo ], Ilx —xo]l, lly —xol])
and

1 (x0) " [z, F] = [y, FD) | < @2([[v =0, [le = xo | [ly = xol))-

(hs4) Conditions of Lemma 38 hold
and

(hs) Ulxo,R*] C D, where R* = c(¢*)t* +b.
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Lemma 38. Suppose
Qo(c(ty)ty+ || Qo,1,) < 1,8, <T for somet >0 (29.19)

foralln =0,1,2,.... Then, the sequence {7,} is non-decreasing and converges to its unique
least upper bound ¢* € [0, T].

Proof. Tt follows by (29.18) and (29.19) that sequence {7, } is nondecreasing and bounded
from above by T and as such it converges to ¢*. U

We left the choice of T in (29.19) as uncluttered as possible. A possible choice is given as
follows. Suppose there exist a smallest positive solution of the equation

Qo(@(t)t+b,1)—1=0 (29.20)
denoted by Ty. Then, we can set T = Ty in (29.19)

Next, the semi-local convergence analysis of the method (29.2) is presented.

Theorem 37. Suppose that the conditions (/1) — (hs) hold. Then, the sequence {x,} gen-
erated by method (29.2) is well defined and converges to a solution x* € U|[xg,"| of the
equation F(x) = 0. Moreover, the following assertions hold for alln =0, 1,2, ...

||yn —Xn || SSp—1In (29.21)
and
||xn+l *ynH <tyt1—Sn (29.22)

Proof. Mathematical induction is used to show assertions (29.21) and (29.22) as well as the
methodology of Theorem 36.
The following estimates are needed:

%01 = yall = ||[anxn;F]71F(Yn)
+ [Vn»xn;F]il([Vn»xn;F] - [Yn»xn;F])[men;F]ilF(Yn)
+ i X3 F) ([ X3 F) = [V %03 F 1) Vs X3 F1 7 ()]
< 91(@(ben — o[ [1x2 —Xoll +b, [0 —xol], [[y2 —xoll)

1= o ((|l26n —x0[]) [ = x0| + b, [} 2 = x0]])
1

1= o (@([xn —xo[[) [1Xn = xo0| + b, [[xn —x0]))?
(@1 (@([1xn —x0]) [ —x01[ + b, [[60 = xol], [[y2 —x01])
(@2(@([xn = x0[ )12 = x0[ + b, [lxa = x0l], [[y2 —x01[))
<tlnt1—Sn

A
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where we also used

= o1l =+ 0 (i) o]
— /(1 + 0 03 F1) (5 — 30) + @ (30)|
< 117+ tf, 03 FDI s — ol + [l 7 x|
< 00 —x0l)lln — ol + b < @t )in b < '
13— o) < 5y [0 0] < 1
and
F(yn) = F(yn) = F (%n) = [V Xn3 F] (0 — %n)
= (s Xns F] = [vn, %03 F) (Vi — X,
)
1F (x0) " F )| < @1 (@(l[x — %ol ) 2 — o[l B, [1xn — o[, |yn = X0 1) [y — %ol
< QU(Q(tn)tn+D,tny50) (50— 1),
and
1

L= ([[va =20l len —x0[)
1

= T (@)t btn)
Moreover, by the second substep of method (29.2), we can write
F(xny1) = F(Xng1) — F (%) = [V, Xn3 F] (Y0 — Xn)
— X1, X0 F] (Xp1 — x)
A+ X 15 %03 F ] (X1 — Xn)
= [0t 1,003 F] (X1 — X)) — [V, %03 F] (yn — Xn)
= ([Xn+1,%0; F] *F,(XO)JFF,(XO))(an —Xn)
= ([vn,%3 F] = F (x0) + F (x0)) (yn — %)
S0
1 (x0) ™ F Cen1) | < (14 @0 ([t 1 = %01, 16 —x0]1)) 41 =
+ (L4 Qo ([lva —xoll, lla —x0[1)) lyn —xa]l (29.23)
< (L4 Qo(tn+1,10)) (a1 — 1)
+ (14 Qo (@(ta)tn +b, 1) (52 — 1)
= Op+1-

s3] F (x0) |

It follows that

et =S| < st ] F (o) [ (x0) ™ F ()
< Ont1
1= Qo (@(tnt1tnt1 +b,ns1)
The induction is terminated. Hence, sequence {x,} is complete in a Banach space B,

and as such it converges to some x*U[x",#*]. By letting n — o0 in (29.23), we conclude
limy,— oo, = X~ O

= Sp+1—In+1-
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The uniqueness of the solution is given in the following result.
Proposition 24. Suppose
(i) There exists a solution x™ € U(xo,Ao) for some Lo > 0.
(ii) The second condition in (hy) holds in U (xo,Ao) for x = x*.
(iii) There exist A > Ay such that
$o(0,1) <1 (29.24)
Set D3 = Ulxo,A]ND.
Then, the only solution of the equation F (x) = 0 in the region D3 is x".

Proof. Lety" € D3 with F(y*) =0. Set Q = [x",y"; F]. It then follows from (ii) and (29.24)
that

1F (x0) (@ = F (x0)) | < Go[lx" =], [y =x"[}) < @o(0,1) < 1.

Hence, we deduce x* = y*, since the linear operator Q is invertible and
O(x"—y")=F(x")—F(y")=0. O

Notice that the function @y is at least as small as @. Hence, the radius of uniqueness is
at least as large as if function @ is used.
The majorizing sequence for method (29.3) is similarly defined by #y = 0,59 = Q

(P2(C(tn)tn + |(X‘|Q()7 tn» Sn)

thy1 =S+ (1 +

1— @o (Smtn)

((Pl (C(Z’n)tn+ |(X,|Q(),l’n,Sn) (2925)

1— (PO(Smtn)

Cn+1
s =t + :
n+1 n+1 1—(po(c(l‘n+1)fn+l+|(X|Qo7t”+l)

Lemma 39. Suppose that for alln =0,1,2, ...

(PO((P(tn)tn er»tn) <l (PO(thn) <landt, <7 for somet>0 (29:26)

Then, the sequence {¢,} generated by (29.25) is nondecreasing and convergent to its unique
least upper bound 7*.

Proof. Tt follows from (29.25) and (29.26) that sequence {¢, } is nondecreasing and bounded
above by T and as such it converges to ¢*. U

Theorem 38. Suppose that the conditions () — (hs) but with Lemma 39 replacing Lemma
38. Then, the conclusions of Theorem 37 hold for the method (29.3).
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Proof. It follows as in the proof of Theorem 37 but we have used instead

%01 =Yl = | ns X F]~'F (yn)
s X0 F] ™ (s s F] = [y X3 F]) [V X0 F1 7' F ()|
@2([lve —xo I, |2 — xoll, [[va — X0 )
1= @0 ([[yn —xoll, [|%2 — x0l])
IF' (x0) ~"F (y) |
1= @0 ([[yn —xoll, [|%2 — xol])
<tytl — Sn,

< (14

where we also used

1

p1E < —.
Do FIZF (o)l < 3=~

O

Concerning the local convergence analysis of method (29.4) we use the second substep
of it to get

Xn+1 —x" :yn*X* - [yn7X*;F]71F(yn)
+ (X F] 7 =By YF (y0) = 0+ (v, x* s F1 7' =B, ) F (va)
= [V, X F] 7 (B — [0y X5 F)) By [y, 75 F (3 — X°)

leading to

1
(1=pn) (1= @o(lly. —x*[,0))
(@1 ([va = x"[], [lxn = x"[[, lyn — 1)
Qv =X, lyn =" 1))8(1[yn = x D [lya —x7), (29.27)

X1 =" <

where we also used
IF'(x) " (By = F (x* )| < [IF ()~ ([yn, X" F] = [y, & F] |
FIF () (VS F) = F ()]
< Q1([[vn =" llxn =25 lyn — "]

+O([[va =X [Iyn —=x"1]) = pa-

Hence, the function g; is defined by

_ (g1 (1)) (@1(¥(1),1,81(2)1) + (v(1)1, 81(2)1) )81 (1)
g2(t) N 1 1)t )

where

p(t) = 01(vY(1)1,1,81(2)1) + @ (v(1)t, 81(2)1).
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Under this modification of function g; the conclusions of Theorem 36 hold for the method
(29.4).
The semilocal convergence of method (29.4) requires the estimate

Fn1 = yall = 1By Fa) I < 1B ' F (x0) |IF (x0) ™' F ()|

But
IF (x0) ™ By = F (x0)) 1 < |1F (x0) ™" (ns X3 F] = [V, X3 F1) |
+F (x0) ™ ([yns vis F] = F (x0)) |
< @1([[ve —xoll llxn —xol[, [[y2 —xo|)
+@o([[yn —xoll, v —xoll)
< (0] ((P(tn)tn +b—t, *Sn)
JF(PO(Sm(p(l’n)l’n er) = {n,
SO

||x -y || < (0] ((P(tn)tmtmsn)(sn*tn)
n nll = .

1 =g
Hence, we define
e = sy PN ) (50—l (29.28)
1 =g
The iterate 5,1 is defined as in (29.25), i.e.
On+t1

Spt+1 =Ilpt1 + .
" - Qo (Q(tns1)tnr1+b,tay1)

The corresponding Lemma 38 to Lemma 39 for method (29.4) uses the condition
Qo (Q(ta)ty +b,1,) < 1,q, < landt, <1 (29.29)

instead of (29.26).
Under these modifications, the conclusions of Theorem 37 hold for method (29.4).
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Chapter 30

High Convergence Order Derivative
Free Methods-11

1. Introduction

The study of the local and semi-local convergence of iterative methods continues with the
following sixth convergence order derivative-free methods [6,7,8,9,10].

Yn = Xp— [anvn;F]ilF(xn)»Wn = Xn JFF(xn)»Vn = Xn *F(xn)y
in = Yn *A;lF(yn)
and (30.1)
Xn+1 = Zn *A;IIF(Zn)»
where
A, = Z[Xn»yn;F] - [Wnyvn;F]»
Yn = Xp— [Wnyyn;F]ilF(xn)»
in = Yn— (31*Z[Wnyvn;F]il[yn»xn;F])[Wnyvn»F]ilF(yn) (30.2)
and

Xn+1l = Zn— (31*Z[Wnyvn;F]il[ymxn;F])[Wnyvn;F]ilE(Zn)-

2. Local Convergence

The conditions for both methods are:
(c1) There exists a simple solution x* € D of the equation F (x) = 0.
(c2)
(1= be, s FII < vo(lle =71,
1+ P, FII < v(lle—x1)

and
1 (x*) =" (w,v, F] = F' (X)) < @o(|lx —x*|[]|[ly —x*,

for all w,v € D.
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(c3) There exists a smallest positive solution p of the equation

@0 (Y(1)t,Y0()t) —1=0.
Set Dy =U(x*,p)ND

(c4)
1F" ()~ (D, vi F] = e s FDL < @(lw =27 v =7, [l =),

1 ()~ (e, F) = [y xS FD) | < 0 (e — x|, fly —x*]1)
and
1" ()~ ([, F] = [w, v F][| < @a([[w— x|, [lv =" ||, [y — x|, [|x = x*]]),

for all x,y,v,w € Dy.
and

(c4) Ulx*,R] C D, where R = max{r,Yo(r)r,y(r)r}, with the radius r to be defined later.

Let M = [0,p). Define the functions g; : M — R,i=1,2,3 by

e(v(1)1,v0(1)1,1)
L= o (v(1)t,0(1)t)’

(@2(Y(1)1,y0(1)1, g1(0)1,1) + @1 (2, 81(1)1)) g1 ()
1—p(r) ’

p(t) = 200(t, 81(1)t) + @o(V(1),70(1)1)

gi1(t) =

g(t) =

and

_ (@2(v()t, w0(1)t,1,81(1)1) + Qo(t, 81()1, 82(1)1)82(1)
&sle) = 1—p(t) '

Suppose that there exist smallest positive solutions p; € (0, p) of the equations
gi(t)—1=0.

Then, a radius of convergence for method (30.1) is defined by
r =min{r;}. (30.3)

The motivation for the introduction of the function g; follows as previously from the series
of estimates:

||Wn*x*|| = ||(I+ [xn»)C*;F])(xn*X*)H < 'Y(Hxn*X*H)Hxn*ka»
v =211 = 11 (6,65 F]) Gon =2 | < Yol =" ) [0 =2,
|| !
= 1= o (Jwn—x ), [va—x)°

||[anvn;F]71Fl(X*)



IF'(x*)~

|2

and

||xn+l
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=1 = [y Vs 17 (W Vs F] = [, X5 F) (3
< QUwa =X [[va = X" ||, [Pen =[] —
B 1= @o([lwa =[], [va —x*[))
< g1l =" [lxn — "]
< e —x"<r,
HA=F DI < 20F () ([ yms F1 = F' ()|
+F' (x) " ([Wa, vs F] = F'(x))|
< 2¢0([Jxn =X, [y —x7])
+Qo([[w—x"|, [[va —x"[]) = Pa,
x| =y F ()
= ||A71( [yn,x S FT) n—x") |
< ATF CONITE ) ™ (s yns F] = Wiy vas )
HIF ) (Pons s F1 = [ms s D[y — 7|
< 7 @2(llwn =[], v =]l = 2711, [y — ¢
Pn
1 ([ =[], [[yn =2 [) [y — 7
< gl =) len — ™[] <l — 7]
x| =z =¥ A F(za)|

= A7 (An = [z 2" F]) (2 =) |

< AT F CVIINE ()™ (B yas Fl = [, vai F)

HIF () (Pon, 3 Fl = [z, s F]) |2 — 27

IN

lfpn
Q[0 =X, [lyn = x|, llzn =27 [) llzn — x|
< g3(llan =X [l = 27| < o — 27|

Concerning, the convergence of method (30.2) we add the condition

(c4) ||F'(x*)!

[x,x"; F]|| < 8(||x —x*||) for all x € Dy.

(@2(l[wn =X, v = X" [ben = 2], [y = %"

299

Then, the function g is the same as for the method (30.1), whereas the functions g, and g3

are defined by.

@1 (,v(0)1,70(1)1)
1 —qo (v(1)2,v0(2)1)
+2(P2 (Yl(t)t7yo(t)t7gl(t)t7t)8(gl(t)t) gl(t)
(1= o (Y(1)1,v0(1)1))?

(1)
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@ (82(1)1,¥(1)t, Yo(1)1)
1 —o(v(t)1,70(2)1)
200060080003 00]
(1 =0 (¥(1)1,70(1)1))

g3(1)

The motivation for the introduction of the function g; is already given, whereas for the
functions g, and g3, we have the estimates

lza =X = |lya—x"— [Wn»Vn;F]ilF(yn)
+2 [WmVn;F]il ([wny Vs F] = [Yns Xn3 F]) [WmVn;F]il Vs X5 F] (yn —x) ||
Q1 ([[yn = x|, [wn — "], [lva —x*)
(L =0 ([[wn —x*[|, [[wp —x%))?
g2([Jxn —x"|) ([l — x| < [lxn — X7

IN

and

Q(llzn =" |I, [lwn —x" I, [[va —x*[])
(1= @o([lwn —x*[], lve —x*[]))?
83 ({2 —x"{|) [|xn — x| < {26 — x|

[l X011 *X*H <

IN

Under these modifications of the functions g, and g3, the radius of convergence is given
again by formula (30.3).

Hence, we arrived at the common local convergence result of method (30.1) and method
(30.2).

Theorem 39. Under the conditions (c1)-(c5) for method (30.1) or the conditions (c1)-(c5)
and (c4’) for method (30.2) these methods converge to x* provided that xo € U (x*,r) — {x"}.
Moreover, the following estimates hold

||)7n*x>k|| < gl(Hxn*X*H)Hxn*X*H < ||xn*x>k|| <"

||Zn*x>k|| < 82(||xn*x>k||)||xn*x>k” < ||xn*x>k||

and

[l X011 *X*H < g3(||xn*x>k||)||xn*x>k” < ||xn*x>k||-

The uniqueness of the solution results as identical to the ones given before in earlier Chap-
ters are omitted.

3. Semi-Local Convergence

The common conditions are:

(h1) There exists a point xy € D and parameters b > 0,1 > 0 such that F’ (xo)fl Ay e
L(Y,X). |IF (x0)|| <band [Ag'F (xo)]| <m.
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(h2)
(1= [x,x0; F]I < v (llx —xoll)
1+ [x,x0; F]I[ < Yo ([be—xo][)

and
|77 o)™ (bw: ) = F (0)) | < wo (b =0l v =01l

for all x,w,v € D.

(h3) The equation o (Y(¢)t+b,Y0(¢)t +b) — 1 = 0 has a smallest positive solution p. Set
D) = [O,p)

for all x,y,w,v € Dj.

(h4)

F' (x0) ™" (b33 F = b i FD)|| < wllle= ol ly = o1l w = o |, v o )

(h5) The conditions of Lemma 40 hold for method (30.1) or the conditions of Lemma 41
hold for method (30.2)(see below (30.5))
and

(h6) U [xo,R*| C D, where R* = min {¢*,y(t*)t* + b, (t*)t* + b} and the point ¢* is given
in the Lemmas that follow.

Define the scalar sequences {t,}, respectively for method (30.1) and method (30.2)for ¢y =
07S0 =" by

W(t117 Sn;s Y(tll)t117 'YO(tn)tn) (Sn - tn)

Up = Sp )
1 —dqn
qn = W(tIMSm'Y(tn)tm'YO(tn)tn) + VYo (tmsn)7 (304)
_ (1 + WO(um Sn)) (un - Sn) + W(tilv Sn;s Y(t11)t11 + b7 Yo (tn)tn + b) (Sn - tn)
i1 = Up+ 1 s
—dqn
o W(tilvSm'Y(tn)tm'YO(tn)tn))(tn+l - tn)
Sp+1 = Ipp1+
1— Yo ('Y(tn+l)tn+l erv'YO (tn+l)tn+l er)
(1 +wo (Y(t)tn +b,Yo(tn)tn + b)) (tn 1 — Sn)
1= yo(Y(tar1)tns1 +0,%0(tnr1)tnr1+b)
w, = s,+ 1 +2\|!(tmsm'Y(tn)tn ery'YO(tn)tn er)

1—yo (Y(ta)tn +b,Yo(tn)tn + b)
Y(tn, Sn, Y(tn)ta + b, Y0 (tn)t, +b)
1 —yo (Y(ta)ta +b,Yo(tn)tn +b)
thsr = Up+ LW, 03Y(E0)tn + b, Yo (8:) 1, + )]
(14 Wo (tn; 5n) ) (n = Sn) + W, 3 Y(t)tn + b, Yo (1) tn +b) (0 — 1)
1 —yo (Y(ta)tn + b, Yo(tn)tn + b)
and s, is defined as in sequence (30.4).

The next two Lemmas provide sufficient convergence conditions for majorizing se-
quences (30.4) and (30.5).

(30.5)

)
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Lemma 40. suppose that foralln =0,1,2,...
Yo(Y(t )ty +b,Y0(t)t, +b) < 1,q, < 1, andt, <1 (30.6)

for some T € [0,p). Then, the sequence {7,} is non-decreasing and converges to its unique
least upper bound ¢* € [0, T].

Proof. The sequence {f,} is nondecreasing and bounded form above by t. Hence, it con-
verges to ", O

Lemma 41. Suppose that foralln =0,1,2,...

Yo (Y(ta) ta+b,%0 (tn) ta +b) < 1..
Then, the conclusions of Lemma 40 hold for the sequence {z,} given by (30.6).
The motivation for the introduction of these sequences is due as before to the following
estimates:
W =x0l| = [I(Z+ [xn, %03 F] (2 —x0) + F (x0)) |
1+ (s x03 F 1 = xo| + [[F (x0)
V(llxn —x0l) [0 = x0[| +-b < ¥(r)r +b < R,

IAIA

lva=x0ll = [|(I—[xn,%0: F](x —X0) +F(x0))||

11— [xn, 05 F] || 12 — xo | + || F (x0) [

Y(llxn — xo0[))[1%. — xo | +b < ¥(r)r+b < R",
1

(lwn = xoll, lva —xoll)”

IA A

|[Wn7xn;F]7lFl(x0)|| < 17\"

1F" (o)~ (An = F' (o))l < [1F"(x0) ™" (Ptn, 3 F] = F' (x0) )|
1F" (x0) ™" (s Y F] = [wa vas F]) |
< Wolloen = xoll, [lyn —xoll)
AV =xoll; [1yn =xol[, [[va = xoll, [[wa —xoll)

= {Y4n;

Ay (xo)]| <

n

lzn =yall < AL F (x0) [1F" (x0) ™" F (|
Y([lxa —xoll, lyn = Xoll, [Wn = Xoll, [[va — X0 [ [[yn — X0l

<
B I*qn
< Uy — Sy,
||Xn+l *Zn” < ||A,IIFI(X())|| ||FI(xO)7l(F(zn) —F(yn) +F(yn))||
< [+ W((tmsmy(tn)tnJFb»VO(fn)fner)]
N 1*WO('Y(tn)tnJFb»YO(tn)thrb)
[(1 ero(umsn))(un - Sn) JrW(tn»Snv'Y(tn)tn er,'YO(fn)fn er) (Sn — Z‘n)]
L= Wo(Y(ta)tn + b, Yo (tn)tn + D)
< =1 — Uy,
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IF'(x0) ' Fa)ll = [1F'(x0) ™ (F (on) = F () = Wiy 203 F] (30 = %)) |
1F" (x0) ™" (Pon 1,03 F] = Wiy vs F) |
1 wns Vs F] (X041 — )

IN

< W(llxar1 —xolls [wa —xoll; [[va — Xol[, [ — x0])
+(1+Wo(llwn —xoll, [[va —xo[) 1 Xn-+1 = yull,
SO
nrt=%oll < N Was 1 var s F1F (o) [HIF (x0) ™' F (x|
< Spa1 —Ina1-

Concerning the estimates for the method (30.2), we get similarly

(1, S03Y(t)tn + D, Yo (1)1, + D)
1 — o (Y(tn)tn +D,Yo(ta) 10+ b)
(1, 03 Y(t0) 1w + b, Yo (1)1, + b)
1=y (Y(tn)tn + b, Yo (tn)1n + b)

< Up—Sy

||Zn*yn|| < 142

and

||xn+l *ZnH < tyy1 — Up.

The iterate s, is defined as in the sequence (30.4). Hence, we arrived at the semi-local
convergence of both methods (30.1) and method (30.2).

Theorem 40. suppose that the conditions (h1)-(h6) hold. Then, the sequences generated
by method (30.1) or the method(30.2) converge to a solution x* € U [xg,¢*] of the equation
F (x) = 0. Moreover, the following estimates hold

Hyn*an Sn—1In,

<
||Zn *ynH <

Un —Sn

and
||xn+l *ZnH < tyy1 — Up.

The uniqueness of the solution results can be found in previous Chapters.
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Chapter 31

High Convergence Order Derivative
Free Methods-111

1. Introduction

The investigation of high convergence order derivative-free methods continues. In particu-
lar, we present the local and semi-local convergence of the following methods:

Zheng et al. [15] (fourth order):

Vo = Xp— [WnXn: F]7VF (x,), W, = X, + F(x,)
and G1.1)
Xn+1 = Yn *A;l [YI1»x11§F]71F(YI1)»
where
Ay = [y Xns F] 4 2[yn, was F| — Wi, x03 F).

Narang et al. [7] (seventh order):

Yn = Xp— Q;;lF(xn)v On= [Wnyvn;F]»

W, = xp+afF (xn)» Vp =X, —alF (xn)»
in = yn*Q;lF(yn)y
17 _
Xn+1 = Zn— (ZIJF 0, an (31.2)
27 _ 19 5
(7ZI+Qn IBN(ZI* ZQn an))) 111F(Zn)v

where
B, = [pn»Qn;F]» DPn=2n JFbF(Zn)»Qn =2Zn *bF(Zn)»
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Yn = Xn— [Wn»Vn;F]ilF(xn)»
Wn Xn JFF(xn)» Vn = Xp — F(xn)7
in = Yn— (31*Z[Wn»Vn;F]il[ymxn;F])[W117V11;F]71F(yn)

and (31.3)
13 B
Xn+1 = n— (ZIJF [Wnyvn;F] [Znyyn;F]
7
X <Zl %[anvn;F]l[vayn;F]>>

X W, Vs F] 7V (2).

Related work can be found in previous chapters and [1,2,3,4,5,6,7,8,9,10,11,12,13, 14]

2. Local Convergence

[Pl

As before we define the function “g” under the same conditions.
Method (31.1)

The estimates are in turn:
1
| < . —,
1—@o ([|wn — x|, [|2, —x*[])

1[Wn, 203 F] 7' (x7)

Yn—X = Xn —x"— [Wn»xn;F]il[xm)C*;F](xn*X*)
= [Wn»xn;F]il([men;F] - [xn»)C*;F])(xn*X*)»

Q([Iwn =" |, llxn — 2" [) |26 —x" |
L= @o([[wn —x*|[, [lxn —x*|[)

Xor1 =X = =X AT+ [yp,x0: F] 7!

([Yns W3 F] = [Wa, X3 F])F (yn),

)

HYn *X*H <

1
L= @o([lyn —x*[|, [lxn —x*])’
IF' ) A= F DI < IF OF) ™ (Do F] = F'(x9) |
2/ F (2) ™ (Vs %03 F] = [Was %3 F) |
Q0 ([lyn — "I, [lxn —x71)
201 ([Jxn =[], [lyn = x"[[, [lwn —x"]))
= pn<l,

s X ] F (1) |

IN

and

)

1 1
o —x < 4+ 1+
s =l TRy L g ( Ty ey

XB([[yn =" [Dl[yn =27
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Hence, we can define

1)t,t
(1= 0D
1—@o(Y(?)t,1)
and
() = M4l )3 (O0)]er(1)
r=min{ry,r}, R=max{r,y(r)r}.
Method (31.2)
l0, 'F'(x")] < :
" = =@ (Y(llxn — 2 ) 10 =2 ||, Yo llxn — 2 [|) 1 — 2 ])”
yn*X* :xn*X* *Q;lF(xn) = Q;l([WmVn;F] - [xn»)C*;F])(xn*X*)»
% xn*x>|< 5 Vn*x>|< 5 Wn*x>|< xn*X*
T (o N e N T
1 — @0 (Y([J260 — x*[|) |26 — x* ||, Yo( || —x*[]) || — x*]])
—x = Q;l([wmvn;F] = D, X5 F]) (v — X7),
w2 < Oy = x[[; [[va = 2" ||, [[wn — X" |) Iy — x"||
= 1 =0 (Y(llxn — 2 [ lln = x|, Yo lln — 2% [|) |20 — x*])
* * —1 1 -1
Xn4+1—X = n—X *Qn F(Zn)*Z(I*Qn Bn)
x[5(I— Q;;an) —9(1 - Q;;an) +4]Q51F(Zn)
and
ot — x| < [ (P(Hzn:x ||»||Wn:x ||»||Vn*x* ) .
1 — @0 (Y([]260 — x*[|) |26 — x* ||, Yo (|60 —x*[]) || — x*]])
1
+ ZBn(xn:| ||Zn*x>k||7
where 5
o — (5B +9Bn +4)8([|zn —x" 1)
1 — @0 (Y([260 — x* 1) 260 — x* ||, Yo (|0 — 2*[]) || — 2*])
B, — Q1 ([[wn =2 ||, [[va = X" ||, |pn — 2", lgn —x"])

1 — @0 (Y(|[oen — 2 1) [|262 — 2 ||, Yo (|20 — x*[|) |60 — x*]])

Thus, we can choose

()Y
810 = T gy ) 1o0)0)”
ol (L) YD&)
&) = T e )
aalr) = (SISO BOan]eat)

309
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where

B(l,) _ ?1 (Y(t)t7'YO(t)tv'Yl(t)t,gl(l’)l’)
1= o (Y(t)2,v0(t)1)
and
(SB(1)*+9B(r) +4)3(g2(1)1)
L=o(v(®)t,v0(t)r)

where we also added the conditions |I — blx,x";F]|| < vi(]]x — x*|]) and
Il + blx,x";F]|| < v2(||x — x*||), and vi,Y, are continuous and nondecreasing func-
tions with the same domain as Y and 7. Then, we also define r = min{ry,rp,r3} and

R = max{r,Yo(r)r,y(r)r,y1(r)r,y2(r)r}.

ot) =

Method (31.3)
The estimate on ||y, —x*|| is as in method (31.2) but a = 1. Then,

*

=X = yn*x*f[wn,vn;F]’lF(yn)
+2[Wn7Vn;F]7l([Wn7Vn;F] — [ynvxn;F])[WmVn;F]ilF(Zn),
P N e P
1= @0 (Y(lloen —*{]) lxn = x* ||, Yo (lloe — *[[) 120 — x*]|)
201 (1 =", I3 =l v — 271, Ibwa —3°1)
(T 00Cr(lea—2 D v [ 10(Tes ¢ D)2
X[|yn — X"

lzn =27 <

DPn = [Wn»Vn;F]» T, = [2117)7;1;F]7

_ 1 _
Xpp1 =X = Zn*X**pan(Zn)iz(I*P lTn)

X(5(I—p, ' T,)* =9(I — p, ' T,) +41)p, ' F (z,),
O([|zn — x|, lwn —x" ||, [[va — x*])
1 — @0 (v([[2n — x*[[)[oen — x*{[, Yo ([0 — x*[[) 260 —x*[[)

1
thatelzn =

X1 —x| <

where
s — @ =Xy =[] [[va —x7][, [[wn — ")
n —
1 — @0 (v([[26n — x*[) {1262 — x*{[, Yo ([ 262 — x*[[ )26 — x*[[)

and
(5A7+ 9 +4)3(|| 20 — x*]))

1= @0 (Y(llxn = x* [ e — [, Yo(lln —x*[ )12 —*][)

Therefore, we choose the function g; as in method (31.2) but fora =1,

Ple1 ()1, ¥(0), Yo(1)1)

=00 (v(1)2,v0(1)1)

» P1(t,81(1)1,¥(1)1,0(2)1)
(1= o (v(1)1,v0(2)1))?

Mn =

gt) =

g1(t),
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OV OINTOLIN
850 = 5= o g el

where

1, 81(1)t,Y0(2)t,Y0(2)t)
M= )
(SMOP9¥(1) + 4)8(ga(0)1)
M) = T )
r =min{ry,r,r3} and R = max{r,Yo(r)r,y(r)r}.

3. Semi-Local Convergence

The majorizing sequences are defined for each method using the estimates depending on
the function “y*.

Method (31.1)

IF" (x0) ™ (An = F (o))l < 11F'(x0) ™" (s n F] = F' (x0)) |
+2([F" (x0) ™ (s Was F) = (W, 23 F) |
Yo (llyn —xoll, [lxn —xol1)

FY1(llyn = xoll, [lxa —xo]l, [[wn —x0]])
= qn <1,

IN

1
I*qn

147 F' (xo) | <

F(yn) = F(yn)*F(xn)*[anxn;F](yn*xn)
= (DnsXns F] = [wn, v F1) (90— X0) 5

1F (x0) ™ F ()| < Wi (=011, [y = %ol [1wn = %01l [[va = xol]) 1y =01,

vl =soll [y =00l v — 5ol a0l
Xpr1 =yl < —(1+
b=l < 2 A P — )
o1 (1 = 5011 i — %011 1 — %o I, [ —50 1) i = | < st -2

where
F(xn+l) = F(xn+l)*F(xn)* [Wn»xn;F](yn*xn)
*[Wn»xn;F] (xn+l *xn) + [W117x11;F] (xn+l *xn)
= ([xn+17xn;F] - [men;F])(xn+l *xn)

JF[Wn»xn;F] (xn+l *yn)v

||Fl(x0)7lF(xn+l)|| < W([lxn —xoll, [lwn —xol[ [[%a+1 — x0][) |20, — 2 ])
+(1+o([[wn —xo |, [lxn — X0l [| %1 = yall,
a1t =Xl < Wk, Vs F17VF (o) [1F (30) ™ F (1) |
< Sngl —Intl



312 C.I. Argyros, S. Regmi, I.K. Argyros and S. George

Hence, the sequence {7,} is defined for #) = 0,59 =1 by

qn = VYo (tm Sn) + Y1 (tm Sn, Y(tll)t117 YO(%)%)»
1 Y1 (tm Sn;s Y(tn)ti17 YO(%)%)
n = n = 1
fr+1 g Jrl*Qn( * I*WO(tnvsn) )
XY (ty Sns Y(En) s Yo (tn) 1) (S0 — 1)
and
thy1 + !
Sn = In
i i 1 — VYo (Y(t11+l)t11+17YO(t11+l)t11+l)
X (\lj(tn? Y(t11)t117 tn+l) (tn+l - tn) + (1 + WO (tnv Y(%)%)) (tn+l - Sn) .
Method (31.2)

Iz =yall < Q0 F (x0) [[[1F' (x0) ™' F ()
Y1 (tm Sn;s Y(t11)t117 YO(%)%)
I*qn

IN

(Sn—1tn)

IN

Un — Sn,

F(zp) = F(zn) = F (yn) +F (ya),

F'(x0) 'F(zn)ll < (14 Wo(llza —Xoll, [lya = %ol1)) |22 — yul|
W1 ([ —xolls lyn —xoll, [[wa —xo |, [[va — X0l])
XHyn *an = ‘tgn»

||xn+l *ZnH dn‘tgn < Iny1 —Up

1
<
B 4(1*%1)

W1 ({20 = xoll, [y = xoll, [[wn — xol], [[ve — x0]])

Cy =
' L =Wo ([l =l lya —xoll)

)

where we also used

17 27 19 5
—I+0.'B,(-=—1+0;'B,(—=1—=>0.'B,

= %(50 ~0,'B.)* +4(1- 0, 'B.)* +4(1 - 0, By) +4),

F(xn+l) = ([xn+17xn;F]*[Wn»Vn;F])(xn+l*xn)

JF[Wn» Vn;F] (xn+l *yn)v

||Fl(x0)7lF(xn+l)|| < Wi ([Jxagr —xoll; [0 = xolls [[wn — oI, [[va — Xol[) | Xns1 — Xn]|
+(I+wo([|lwa —xoll [[va —x0))
X ||xn+l *ynH = Op+1,

Opn=1

||yn+l —Xn+1 || < 1 < Spa1 —Ina1-

—qn+1
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Hence, we can define

B W1 (s Sy V()b Yo (B )t Y(E0) 1) (S — 1)
Uy = Sy + g s
n

qn =V (tm Sn) + 2\|!1 (tm Sn, Y(tll)t117 'YO(tn)tn)y

i1 =up+ mdjﬁm

5ot Y1 (tmSm'Y(tn)tm'YO(tn)tn)
" 1 — VYo (tmsn)

d, =58 443> + 46, + 4,

)

and the iterate s, is as defined in the method (31.1).

Method (31.3)
We have in turn

lza =ynll = ||[I*2[Wn»vn;F]71
([W117V11;F] - [ymxn;F])[Wn»Vn;F]ilF(yn)H

< o WillPn = oll, [lyn = %oll, [Iva = Xo[l, W —2oll)
1- Yo ('Y(tn)tm'YO(tn)tn)
« Vi (Hxn *)C()H, ||yn *)C()H, ||Vn *)C()H, ||Wn 7x0||))||yn *an
1- Yo ('Y(tn)tm'YO(tn)tn)
< Uy —Sp.
Thus, we define
u, = s+ (1 + Y1 (tmsm'Y(tn)tm'YO(tn)tn)

1 —yo (Y(ta)tns Yo(tn)1n))
x Y1 (tm Sn,y Y(t11)t117 YO(%)%) (Sn . tn),
1 —Wo (Y(ta)tn, Yo(tn)tn))

whereas t, ;1 and s, as define in the method (31.2).

Concerning the convergence of the majorizing sequences, the conditions are imposed
as in the previous lemmas. As an example for the majorizing sequence corresponding to
the method (31.1) the conditions are:

qn < 17 \|!()(l’n,Sn) < land wo('Y(tn)tm'YO(tn)tn) <1

foralln=0,1,2,....
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Chapter 32

Fourth Convergence Order
Derivative Free Methods with or
without Memory

1. Introduction

The local convergence of the following methods using high-order derivatives in the finite-
dimensional Euclidean space given in [5, 6,7] is defined by

Yn = Xp— [Vn»xn;F]ilF(xn)»vn = Xn JFaF(xn)
and 32.1)
Xn+1 = Yn— (OCI +A11((3 - ZOC)IJF (OC - Z)An)) [V117x11;F]71F(y11)
where
A, = [Vn»xn;F]il[Zn»yn;F]»Zn =Yn JFbF(yn)
and
Yn = Xp— [Vn»xn;F]ilF(xn)»Wn = Xn JFBnF(xn)»
B, = *[anl»xnfl;F]il
and (32.2)

Xn+1 = Yn— (OCIJFAn((3 - ZOC)IJF (OC* Z)An))[Wn»xn;F]ilF(yn)-

Both methods are variations of the Steffensen method. The first one is without memory
with order 2+ v/5 and the second one is with memory with order 2 ++/6.

The benefits of using these methods have been well explained in [5, 6, 7] We present a
local convergence analysis based only on the divided difference in these methods. Hence,
we extend their applicability in a Banach space setting. We also provide the semi-local
convergence (not given in [5,6,7]) under the conditions of the previous Chapters.
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2. Local Convergence

Method (32.1)
We obtain in turn the estimates
Yn —x* = Xn —x"— [V117x11;F]71F(x11)
= [Vn»xn;F]71([men;F] - [me*;F])(xn 7-X*)7

1
1 =0 ([lvn —=x*[1; [ben = x*[1)”

||[Vn7xn;F]7lFl(X*)” <

Qo ([|[vi — x|, |20 — x*[) |20 — x7||

%
b= = e L)
[va =Xl = ||l +alxu, x*; F]) (x, —x7)|

< Yl =2 [ flen — 2"l
Xpp1 — X" = Yn*X**[anxzﬁF]ilF(Yn)

—((v=2)I+A,((3—2a)]
+(00—2)A)) (Vs X3 F] ™' F (),
%01 =2 < [g1(llyn —x"]]) +0n(1 + [0 —2[5y)
8|y, — x|
1= Qo ([lva —x*[[, [lxn —x*||

] [[yn =27

Notice that ||z, — x*|| < ¥(||x, — x"||)||x, —x*||, where we also imposed ||I — b[x,x™; F]|| <
¥(||x —x*|) for all x € Q and the function ¥ is as the function Y.

g(t) = [g1(g1(t)t) +o(r)(1+ |oc2|)%

where
_ Q1 (v = x|, [0 — "I, |20 — x"|

L=@o([lva =], lloen —x*[[)

()
o) = i)

Method (32.2) Similarly, we have in turn

Gn

and

lyn —x"|| = ||[Wn»xn;F]il([men;F] — [, X5 F]) (W —x7) |
O([lwn —x*|[, 202 —x* 1) |20 — x*|
L= @o([[wn —x*|[, [lxn —x*|[)
wa =" = (= [n1,015F) ) (e =) |

h(|[va—1 *X*H» [|xn—1 *X*H»

)

IN

where we also impose the condition

17 = [, F]H < Ay =] e —x7]))
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for all v,x € Q,

Xppl =X =y —x - [Wn»xn;F]ilF(Yn)»
—(I—=A,)(I+ (O‘*2)(1*1411))[Wn»xn;F]ilF(Yn))
Q([lwn —x" ||, llxn —x*[)
L= @o(flwn —x*[], |20 —x*])

(X011 *X*H <

8”)711 *X*H
JF;\-n 1+ (X*Z?\.n yn*X* ’
R S ([ P ) LG
where i i i
s — OUwn =], [bn —x71], flyn —"])
1—@o(||wn —x*[], [, —x*||)
Hence, we define O 0.0)
o(h(y(t)t,t),t
) =
810 = T g (b)) 1)
n 3 (1))
1)t
2(0)781(0) +10) (14l 2 0) g 1),
where
_ (Pl(h(Y(t)t7t)7t7gl(t)t)
At) = .
1 *(PO(h('Y(t)tJ)?t)
Notice that v_y,x_; € U(x",r), r = min{r;,r,} and
R = max{r,y(r)r,Y(r)r,h(Y(r)r,r)}.
3. Semi-Local Convergence
The majorizing sequences for these methods are respectively
W('_Y(tn)tmtmsn)
In = sp+(1+d,(1+|0—2ld, Sp — 1y
+1 ( ( | | )) 1— WO('Y(tn)tmtn) ( )
and
t + !
Sn = I
! T o (Vw1 )tns 1 Tnsr)
((1 +\|!O(t11+17tn))(tn+l *tn) + (1 +\|!O(t11+17tn))(tn+l *tn)
+(1 + WO) ('Y(tn)tm tn) (Sn - tn))v
1
In = S+t 1+q;1 1+ OC*ZQn PR ISR
+1 ( ( | | )) 1 7"’0(7(1’11)71’11)
(W(h('Y(tn)tm tn)ytm Sn) (Sn - tn)
and
1
Sprl = Iyt

1— Yo (Y(t11+l)t11+17t11+1)
((1 JFWO (tn+17tn))(tn+l - tn) + (1 JFWO (h('Y(tn)tn»t117t11))(5117t11)7
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where .
— Vi (Y(tn)t117Y(til)t117sll7t11)
1- Yo ('Y(tn)tm tn)

and
_ Wl (h('Y(tn)tn)»'_Y(tn)tmsmtn)
1— Yo (V(tn)tnv tn)

The convergence criteria of the corresponding Lemma for these methods

\ljo (Y(tll)t117 tn) < 1

and
Yo (h(Y(ti1)t117 fn) < 1.

The motivation for the introduction of these real sequences follows from some estimates.

Method (32.1)
We have in turn
||xn+1 *YnH = ||(*I+ (I*A,,)(IJr (OC*Z)An))[Vn»xn;F]ilF(;Yn)H
< (4 (14 ]oe—2|cy))

Y ([[ve —xoll, 12 — X0l [[ya — X0 1) [|yn — Xal|
1=y (Y(Ilxn —xo|) |22 — X0l |22 — xol])

< Il — Sn,
where we used
_ W1 ([[ve —xolls |zn —xoll, [|ya — X0l [[x: —Xo|)
Cp =
1=y (Y([]2%2 — xo[|) |22 — Xol], [|%2 — x0l])
iy 81’!
IF' (x0) '"Fn)l = [IF'(x0) " (F (yn) = F (xn) = [Vits X3 F] (0 — X)) |

= ||Fl(x0)7l([£mxn;F] = Vs X3 F]) (90 — %) |
Y(l[va —xol[, [0 — X0l [[yn —ol|)
1 —yo (Y([|xn —xol[) [} — x0[)
F(xnr1) = F(xn1) = F () — [Xn1,%03 F] (a1 — Xn)
04 15%03 F1(Xn1 = Xn) = [V, %03 F] (Y0 — Xn) 5

||Fl(x0)7lF(xn+l)|| < (T wo(llxne1 —xoll; [l —x0 1)) X011 — |
+(L+Wo([[va —xoll; 12 —x0 1)) 1yn — xall,

SO

1" (x0) ™' F (1) 1 (x0) ™ F (1)

Sn+1 —In+1-

||yn+l —Xn+1 ||

IAIA
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Method (32.2)
As in the method (32.1) but replace v,y by w,, h to obtain

[xn+1 = Yall < tug1 — s
Similarly, replace v,,y by wy, h to get
[yn+1 = Xnt1 ]| < Snp1 — tas1

Notice that in the case of the method (32.2), x_1,v_; € U(x,t).

321






Bibliography

[1] Argyros, LK., The theory and applications of iteration methods, 2nd Edition, Engi-
neering Series, CRC Press, Taylor and Francis Group, 2022.

[2] Argyros, 1.K., Unified Convergence Criteria for Iterative Banach Space Valued
Methods with Applications, Mathematics (MDPI), 2021, 9(16), 1942; https://doi.
org/10.3390/math9161942.

[3] Regmi, S., Argyros, LK., George, S., Argyros, C.I., Extended Convergence of Three
Step Iterative Methods for Solving Equations in Banach Space with Applications,
Symmetry, 14, (7), 1484.

[4] Regmi, S., Argyros, I. K., George, S., Argyros, C.I., Numerical Processes for Approx-
imating Solutions of Nonlinear Equations, Axioms, 11, (7), 307.

[5] Grau-Sanchez, M., Noguera, M., A technique to choose the most efficient method
between secant method and some variants, Appl Math. Comput., 218, 6415-6426,
(2012).

[6] Grau-Sanchez, M., Peris, J.M., Gutiérrez, J.M., Accelerated iterative methods for find-

ing solutions of a system of nonlinear equations, Appl. Math. Comput., 190, 1815-
1823, (2007).

[7] Sharma, J.R., Arora, H., Petkovié, M.S., An efficient derivative free family of fourth

order methods for solving systems of nonlinear equations, Appl. Math. Comput., 235,
383-393, (2014).

[8] Steffensen, J.F., Remarks on iteration, Skand. Aktuar Tidskr, 16, 64-72, (1933).






Chapter 33

Convergence Radius of an Efficient
Iterative Method with Frozen
Derivatives

We determine a radius of convergence for an efficient iterative method with frozen deriva-
tives to solve Banach space-defined equations. Our convergence analysis used ®w— conti-
nuity conditions only on the first derivative. Earlier studies have used hypotheses up to the
seventh derivative, limiting the applicability of the method. Numerical examples complete
the article.

1. Introduction

We consider solving an equation
F(x)=0, (33.1)

where F' : D C X — Y is continuously Fréchet differentiable, X,Y are Banach spaces and
D is a nonempty convex set.

Iterative methods are used to generate a sequence converging to a solution x, of equa-
tion (33.1) under certain conditions [1,2,3,4,5,6,7,8,9,10,11,12]. Recently a surge has
been noticed in the development of efficient iterative methods with frozen derivatives. The
convergence order is obtained using Taylor expansions and conditions on high-order deriva-
tives not appearing in the method. These conditions limit the applicability of the methods.

13
For example: Let X =Y =R, D = [—5,5] Define f on D by

_ sPlogs’ +5° —s* ifs#0
f(s)_{ 0 if s=0.

Then, we have x, = 1, and
f(s) = 3s%logs® + 55* — s> +-25%,

f"(s) = 6xlogs* +20s> — 125> + 10s
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and
1" (s) = 6logs* 4 605> — 24s +22.

Obviously, f”(s) is not bounded on D. So, the convergence of these methods is not guar-
anteed by the analysis in these papers.

Moreover, no comparable error estimates are given on the distances involved or the
uniqueness of the solution results. That is why we develop a technique so general that it can
be used on iterative methods and address these problems by using only the first derivative
which only appears in these methods.

We demonstrate this technique on the 3(i+ 1), (i = 1,2,...) convergence order method

B 7
defined for all n = 0,1,2,..., y" =y, and h, = h(xp, y,) = ST+ An(—41 4 %A,,),An -
Fl(xn)ilFl(Yn) by

Yn = xn*Fl(xn)iF(xn)»
1 _
yl(’lO) = Yn— E(I*An)Fl(xn) lF(xn)7
y;(1l) = y;(10) *h(xn»yn)Fl(xn)ilF(yi(l()))»
W= ) = () F ) TEORY), (332)
y;(13) = y;(12) *h(xn»yn)Fl(xn)ilF(yi(lz))7
y;(;;l) = y;(fiz) *h(xn»yn)Fl(xn)ilF(yi(:iz))
and
y;(f) = Xp+1 :)71(1171) *h(xn»yn)Fl(xn)ilF(yi(;il))-

The efficiency, convergence order, and comparisons with other methods using similar in-
formation were given in [10] when X =Y = R¥. The convergence was shown using the
seventh derivative. We include error bounds on ||x,, — x, || and uniqueness results not given
in [10]. Our technique is so general that it can be used to extend the usage of other meth-
ods [1,2,3,4,5,6,7,8,9,10,11,12]

The chapter contains local convergence analysis in Section 2 and numerical examples
in Section 3.

2. Convergence for Method (33.2)

Set § = [0,00). Let wy : S — S be a continuous and nondecreasing function. Suppose that
equation
wo(t)—1=0 (33.3)

has a least positive solution py. Set Sop = [0,po). Let ® : So — S and ®; : Sy — S be
continuous and nondecreasing functions.
Suppose that equations
Q_1(t)—1=0, 334)

Qo(1)—1=0 (33.3)
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and
v (t)eo(t) —1=0,m=1,2,...,i (33.6)

have least solutions r_1, ro, r,, € (0, po), respectively, where

1*030(1‘)
_ (@0(2) + @0 (@1 (1)1)) fy @1(87)d6
Qo(t) = o1 (1)1 + 2(1—loao(t))2o l ;
and
_ (a0 (1) +0o(9—1(1)1)) Jy @1 (81)d®
W(t) - (Pfl((PO(t)t)+ (1710\)0(1,))20 l
1 (1) + (-1 (1)1) ) @o(t) + 0o (Q-1(1)7)
2 <3< e ) (MR ))
« /l (O]} (Gt)de
0 1*030(1‘)‘
Define
r=min{r;}, j=—1,0,1,...,m. (33.7)
It follows by the definition of r that for each ¢ € [0, r)
0<wmp(r)<1 (33.8)
and
0<i(r) < 1. (33.9)

We shall show that r is a radius of convergence for method (33.2). Let B(x,a),B(x,a)
denote the open and closed balls respectively in X with center x € X and of radius o > 0.

The following set of conditions (A) shall be used in the local convergence analysis of
the method (33.2).

(Al) F:D C X — Y is Fréchet continuously differentiable and there exists x, € D such
that F (x,) =0 and F'(x,) "' € L(Y,X).

(A2) There exists function @g : S — S continuous and nondecreasing such that for each
xeD
1F" () ™ (F' (x) = F'(x:)) | < @0 ([x = xe]])-

Set Dy :DﬂB(x*,po)

(A3) There exists functions ® : So — S, ®; : So — S continuous and nondecreasing such
that for each x,y € Dy

IF" (o)™ (F' () = F'(2)) || < @o([ly = ]])

and
1F' ()™ F ()| < o (Jle =i ])-
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(A4) B(x.,r) C D, where r is defined by (33.7).

(AS5) There exists r, > r such that

1
/ 0o (0r.)d0 < 1.
0

Set D1 = DN B(xy,ry).
Next, the local convergence of method (33.2) is given using the conditions (A) and the
aforementioned notation.

Theorem 41. Suppose that condition (A) holds. Then, sequence {x,} generated by method
(33.2) for any starting point xo € B(x,,r) — {x.} is well defined in B(x,,r), remains in

B(x,,r) and converges to x, so thatforalln =0,1,2,....m=1,2,...,i,
yn = xell < @1 ([Pn = x| n = el < [0 — 2| < 1 (33.10)
0
I3 =l < @0 (1w — x| [P0 — 20| < [0 — ., (33.11)
3™ = x|l < W (1 = 0 ) Q0[50 — 0[] [P0 — | < [0 — . | (33.12)
and '
o1 = x| < W' ({200 = [ ) @o [0 — 0[]0 — ]| < {200 — x| (33.13)

Proof. Letv € B(x,,r) —{x.}. Using (33.7), (33.8), (A1) and (A2), we get in turn
1F" e )~ (F' (v) = F'(x)) | < @o([lv—x. ) < wo(r) < 1. (33.14)
It follows by (33.14) and a perturbation Lemma by Banach [2,8] that F'(v) ™! € L(¥, X) and

1
< .
I < T=eetv=xD

IF'(v) "' F' (x,) (33.15)

It also follows that yo,y(()o), .. .y(()m) exist by method (33.2). By the first substep of method
(33.2), (33.9) for j = —1, (A3) and (33.15), we have in turn

o—xl = lxo—x.—F/(xo)"'Flxo)]
1
= P G0)™" (x4 Bl =) — F(x0)dB (o —x.) |
Jo (1) xo — x| )8} —x. |

1= o (floxo —x.1)
@1 ([lxo = xulDllxo = x| < flxo — x| <7, (33.16)

S0 Yo € B(xy,r). Then, by the second substep of method (33.2), (33.9) for j =0, (A3) and
(33.15), we obtain in turn

IN

1
36" =l = llyo =+ 5 F'(x0) ™ F (e ) F'(0) ™ (F' () = F'(30)
X F'(x0) VF (x,)F' (x,) " 'F (x0) | (33.17)
< [p-1(lwvo—x.lDlvo x|

1 (@0([}xo = x:[1) + @0 ([lyo — 1) Jo ©1(8]lx0 —x.]|)d8
2 (1= oo([lxo —x.[))?

Po([lx0 = x:[[) o0 — 2 || < oo — x| <1 (33.18)

+

[0 — x|

IN
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o) y(() )¢ B(x,,r). Next, by the rest of the substeps of method (33.2), (33.9)for j=1,2,...,m
and (33.15), we have in turn

7 3
Wox, = y(()o)—x**(§I+Ao(*41+EAO))FI(XO)ilF(y(()O))
(

= 3 —x —F(x) 'F()

2 (30— ~2(A0 ) F'(x0) " F )
= W x —F O FGY
+H(F' (36 ) " = F'(xo) HF ()
1

—5(3(4 D)2 —2(A0—D))F'(x0) 'F ), (33.19)

which by the triangle inequality leads to

0
I —xl < loa (v —x.)

0 0
L (@0(lxo o) + @0 (g ~x:[) Jo @1 (Bllyy” ~ [ (0

Iy — x|
0
(10 (lyg” —x.[1)) (1 = @p( o — x. )
2
(5 ((@ollio =) +on(lsh” 1)
2 T— oo ([[xo —x-)
0 0
o [(@olllo—x ) +on(lsh” —x [ | Jo @1 (8llyy” —x. a0
T—ao([[x0 ) 1= oo (]lx0 —x.)
< @1([l0 —x: )@ (llxo —x ) 10 — x|
< xo—x < (33.20)
Thus, y(()m) € B(xy,r).
Similarly,
oy o olxo—xl) . elo—xl) o -
g x|l < A Q10 —x. )30 — .|
= " (o — % 1)@ lxo —x. [ [[x0 — x|
< Jwo—axl.
Hence, y(()m) € B(xy,r), and
ey — x| < W (11t — . )90l 0 —x: ) [lx0 — || < [lxo — . I (33.21)

Therefore, x; € B(x,,r). Hence, estimates (33.10)-(33.13) are shown for n = 0. By replac-

ing x0,50,0", .. 35" x1 by X, vyt W xear,k=0,1,...n, we show (33.10)-(33.13)

hold foreachn =0,1,2,...,j=—1,0,1,...i. Thus, we get

ot — .| < elle— . (33.22)
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where ¢ = W' (||lxo — x.||)@o(||xo — x.]|) € [0,1), concluding that khinmxk =X, and x4 €
B(x,r1).

Finally, let x,.. € Dy with F (x,,) =0. Set Q = /l F (X5 +0(x, — X4 ))d0. Using (A1),
(A2), (AS) and (33.14), we get ‘

1 1
||F'(x*)*l(Q—F'(x*))||§/ wo(6||x*—x**)||d6§/ @o(0r...)d0 < 1,
0 0

soQ e L(Y,X). Consequently, from 0 = F (x.,) — F(x,) = O(x.x — X, ), We obtain x,, =
X O

Remark. If {x,} is an iterative sequence converging to x,, then the COC is defined as

%:1n<||xn+lx*”>/ln< ||x,,—:c*|| >
[l — x| (|01 — x|
where the ACOC is

& :1n<||xn+lxn”>/ln< [[xn — Xn—1| >
||xn —Xn—1 || ||xnfl *xnf2|| ’

The calculation of these parameters not needing high order derivatives.

3. Numerical Examples
Example 4. Consider the kinematic system
Fl(x)=¢ F(y)=(e—1)y+1,F(z) =1

with F1(0) = F»(0) = F3(0) = 0. Let F = (F,F>, F3). Let By = B, =R*, D= B(0,1),p =
(0,0,0)". Define function F on D for w = (x,y,z)" by

e—1

F(W) = (ex* 17 2 y2+y7z)t‘
Then, we get
e 0 0
F'v)=] 0 (e—1)y+1 0 |,
0 0 1

so (1) =(e—1)t,0(t) = eﬁt,wl(t) = ¢#1. Then, the radii are
r—1 =0.382692, rg =0.234496,r; = 0.11851.

Example 5. Consider By = B, = C[0,1],D =B(0,1) and F : D — B, defined by

F(0)(x) = ¢(x) — 5 /0 ' 100(6)%d6. (33.23)
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We have that

1
F/(0(8)) (x) = E(x) — 15 / 00(8)2£(8)d, for each & € D.
0
Then, we get that x* =0, so y(¢) = 7.5¢,(7) = 15¢ and ®; () = 2. Then, the radii are
r—1 =0.06667, ro = 0.0420116, r; = 0.0182586.

Example 6. By the academic example of the introduction, we have wy(r) = ®(r) =
96.6629073t and ®; (1) = 2. Then, the radii are

r—1 = 0.00689682, ro = 0.003543946, r; = 0.00150425.
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Chapter 34

A Comparison between Some
Derivative Free Methods

1. Introduction

In this Chapter, we study derivative-free iterative methods for approximately solving the
nonlinear equation
F(x)=0,G:QCX —X, (34.1)

where F' : Q C X — X are nonlinear operators, X is a Banach space and Q is an open
convex subset of X.

The methods are defined by

Yn = xn*[x117V11;F]71F(x11)»V11 = Xn JFF(xn)»

D, = [xmvn;F] + [yn»‘jn;F]y
in = Xp— ZD;lF(yn)» Vi =Yn JFF(yn) (34.2)
and
Xn+1 = n— [y117ﬁ11;F]71F(111)»
1,
Yn = Xp— EAn F(xn)yAn = [me(xn);F]
and
in = Xn *B;lF(xn)v
Xn+l = Zn— (ZB;l *A;l)F(Zn)y (34.3)
where

B, = [yn»G(xn);F]»
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Yn = Xp— [V117x11;F]71F(xn)7
Xn JFF(xn)» Wn = Xn *F(xn)v
in = yn*M;;lF(yn)

Vn

and
Xn+l = Zn*M;;lF(Zn)v
where
M, = 2[yn,Xu F]— [vn, wn; F)
and
Yn = Xn— [anxn;F]ilF(xn)»
Vo = Xp+dF(x,),

in = Yn— [ymxn;F]ilTn[y117x11;F]71F(y11)
and

Xn+1 = Zn *Q;IIF(Zn)y

344)

(34.5)

where d € ]Ran = [ymxn;F] - [ymVn;F] + [men;F] and On = [men;F] + [Zn»yn;F] -

[V, Xn3 F]. The local convergence of these methods using similar information was

given

in [6] and [8], respectively. The convergence orders are five, five, seven, and seven, respec-

tively. We extend the local as well as the semi-local convergence (not given in [6

9

,7,8])

under weaker conditions. The functions “®*, ”¢@* and ”y* are as given in the preface. The

proofs and conditions similar to the ones given before are omitted.
Related work can be found in the previous chapters and [1,2, 3,4, 5].

2. Local Convergence

Method (34.2)
The estimates are:
Yn—x = [xn,vn;F]fl([xn,vn;F] - [xn,x*;F])(xn—x*),
4k 4k 4k
lym—x*|| < @(||xn x||,||vn*x||)||xn*x||7
1 —@o ([]2n — x*[], [[va —x*[])
e —x" = (T4 [x, X" F]) (x, —x7),
‘711*35>|< = (IJF[me*;FD(yn*X*)»
1QF () (Da—2F' )| < 1QF () (v F1+ b 75 F] — 28 ()|
1 _
< §(||F'(x*) ([, vas F1 = F'(x))]
H|IF' () ([yns s F]1 = F'(x)
1 _
< 5((Po(||xn*x*||7||Vn*x*||)+<Po(||yn*x*||,||Vn*x*||)

= Gn <(qn,
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1 1

D;'F'(x")| < < ,
1N = 25 =204

Zn*x>|< xn—x* *ZD;lF(xn)
D, YD, —2[x,,x"; F]) (x, —x*),

lza—x"| < D F ) F ()~ ([, v F]
—[x0, X5 F]) 4+ ([yn, Vs F] — [x0,x" F)) |

Pn £
< _
= lfqnllxn x|l
Pn = (P(Hxn*X*Hv||Vn*X*H)JF(PI(Hxn*X*H»||)7n*x>k||»||‘7n*x>k||)»
Xn+1 —x" = [ymVn;F]il([ymﬁn;F] - [Zn»x*;F])(Zn*x*)
and

(Pl(Hyn*)‘:*H? ||‘7’17x*||7 ||Zn*x>k||))||z . >|<||
n

e e =
" =0 (flyn = x*[], [} — x*[})

Hence, the majorizing functions can be chosen to be

o)
M) = T el

P Q(t,y(t)t) + @1 (¢, he (1)t ¥(h1(2)t) i (2)2)
Z(t) - 1
2(1-34(1))
and
ha(t) @1 (A ()t ¥(ha(2)1) ha (2)t, ho(2)t) ) ha(t)
’ 1= o (h ()1, (i (1)) (1)1)
where

R =min{r,y(r)r},r = min{ry,r,r}

and r; are the smallest positive solutions of equations A;(t) — 1 =0,i =1,2,3.
Local (34.3)
In view of the appearance of the operator G the following conditions are imposed

1F" (")~ (B, G ) F] = [, s FD) || < a(flx— 7)),
1F" ()~ (b, GO Fl = F' ()| < bl —27])),
1F ()~ (D, GO): F] =[x, G)s FI) | < e[ fx 7)),
for each x € Q. This way we have the following estimates, in turn, assuming that the inter-

ates exist:

1
yp—x" = xn—x*—EAn IF (x,)
1

_ 1
— EA” l[An — [, X" F]) (36 — X)) + 51,
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)

]

Hyn*X*H < 5 lfb(Hxn*x*H)Jrl Hxn*X*H
< gl(Hxn*X*HHXn*X*H < ||xn*x>k||»
n—x" = yn—x*Jr%(A,;l—B;l)F(xn)Jr%B;lF(xn)
= Yn —x" 4 %A;l(Bn *An)B;lF(xn) + %BJIF(XH)
o - c(llx. —x)
Ao =) = T = A== )
* e, 1 . 1
o=l < llyn ="l + 5 (d ([l XI|+17b(”yn7
1
(1+ [ wol®lle, —x")d8) |
< 82(||xn*x>k||)||xn*x>k” < ||xn*x>k||»
Xppl =X =z =X — (B;;l *A;l)F(Zn) *B;IIF(Zn)
and
[xn+1 —x"| < [1+d([[xn H)Jrl—b(Hyn*X*H)
1
(1 [ wol@llzs = )a®)]jzs—x'|
< g3(||xn*x>k||)||xn*x>k” < ||xn*x>k||v
provided that
) = 51+ 72505),
d(t) = f)
(1=b(1))(1 =b(g1(t)1))’
1
Q) = (1+d(0) + g (1 [ wo(0ga(1)1)ao).
and | |
£30) = £1(0) +5(d0) + s (15 [ wo@r)ae)es().
Local (34.4)
_ (P('Yo(t)t77(t)t7t)
gi(t) = 1*—190)7
p(t) = @o(yo(r)r,y(0)r),
al) = (@1 (t, 81(1)1, ()1, ¥(0)1) + 9(2, 81(1)1, 81(1)1)) g1 (1)
1—q(t)
q(t) = 200(t,81(1)1) +Qo(Yo(1)1,Y(1)t),
and
() = (@1 (¢, 81(1)1, ()1, ¥(0)1) + @(2, 81(1)1, 82(1)1)) g2(1)

1—q(t)

)
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The estimates are:

Vao—=X" = Wi F] N[y Wi F] = [, 63 F]) (0 — X¥)
Ve —x" = (T4 [x,, x5 F]) (2 — Xx*),
wp—x" = (I =[x, x" F])(x, —x"),
IF )7 My = F DI <0 20F (68) ™ (s Fl = F' () |
HF &) ([ was F] = F'(x4) |
< 2Q0(flyn ="l [ben = x"[1) + @o([lve = x7[], [[wa —x"[[)
< Gn<qgn<l,
=X = Mrjl(Mn*[YnJ*;F])(Yn*X*)

IF' (x *)71(M [ns X" F)|

1F" ()~ (([yny X3 F] = [V, was F)
+([ns X Fl = [y, x™5 F)|

Q1 ([lxn = x" [, [lyn =[], [[va — "], [wn —x711)
FO([ltn —x"{[; [y =[],y —x"11),
D M;;l(Mn*[Zn;X*;FD(Zn*X*)

and

IN

IN

||xn+l*x>k|| < AHZn*X*H»

1
where A = 7= (@1 (lon =71, iy = 7l v = 27l [ = 2711) + @Cfben = 27, flyn =
n
Xl llza=x71))-

Local (34.5)
el
SN ETTETOn)
b(r) = [1+ Qo(¥o(1)r.1) + 0(1,&1(0), W0 )0) (1)),
_ b()
) = gt

aal0) =1+ 320 )

where

c(t) =0(t,81(2)t,82(1)t) + @1 (g1(1)t, g2(1)1).
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We use the estimates

Vo—x = WX F17 (Vs x0s F] = [x0, X7 F]) (6, — x7),

=X = yp—x - [Yn»xn;F]ilTn[Yn»xn;F]ilF(Yn)»

1F ) T Tl [ F ()™ o™ F |

(14 Qo ([[vn = x"[], [l —x7)

Q[0 = X[, [lyn =21, [[va = x"[1)) 8([[yn —x7|1)

by < by,

IF' ()M Qn = F' (NI < @a(lln—x* [y =, llzn —x7[1)
F@o(|lyn — x|, [lza —x71)

IN

= & <cy
and
O(||z, —x*
g =l < (14 2y,
—¢,
Semi-local Convergence
Method (34.2)
a, = Y (tm Sn;s YO(t11)t11 JrnOv'Y(tn)tn JFT]O) + VYo (tm Sn)»
un = Sn + ll!l (t’17S’17YO(t’1)I’1+no7y(t’1)t’1+no) (Sn *tn)7
—a,
1
thy1 = up,+ 1 (IJFWO(unySn))(un*Sn)
—a,
Y1 (tny S, Yo () tn + M0, V(1)1 +M0)
and

1
1=y (YO(tn+l)tn+l +n077(tn+l)tn+l JrT]O)
X (1 + Yo (YO(%)% + Mo, Y(t11)t11 JFT]O)) (Sn - tn)
+(1 JFWO (tmtn+l)(tn+l *tn)-

Sp+1 = Ipp1+

The estimates are:

1F"(x0) ™' (D = F'(xo)) Il < W1 (s =0l [[ya =0l [V = %ol [Iwn = x0]])

Yo ([lxn —xol], lyn —xoll)

a, <a, <1,

1D, F' (xo) | F (x0) ™' F (va) |

Vi ([[xn —xo |, llyn —xol], [lva — X0l [[wn — x0])
1—a,

IN

||Zn*yn||

IN

X || yn = xal[5

F(Zn) :F(Zn)*F(yn)JrF(yn) = [Zmyn;F](Zn*yn)JFF(yn)v
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IN

st —zall < 103 F o) I11F (x0) ™" F (2]

IN

T (Lt Wolllzn —xoll, [y =x01))llzn =yl
—a,

Wi ([[xn — o[, lyn —xolls [V —xo I, [Ilwn —x0 ) [|yn — Xl
F(xn41) = Xt 15X F] (n g1 — %) = [V W F] (Y — %)

and
Y1 = Xng1 | < Dy L F (o) IF (x0) ™' F (1) |-

Method (34.3)
Under the conditions of the local case with x* = x, we obtain the estimates

n n

1, _ |
*ynZE(A liB I)F(xn)iiBn lF(xn)v

1 1
1zn = yall < E(UlnJr T(s,,))e" = Up — Sp,
since
F(xy) = —2A,(Yn — Xn),
1F" (x0) ™ F () | < 2(1+b(t)) (50— tn) = €n
and
d. — c(tn)
" (1 =b(12)) (1 = b(sn))’
X1 —zll = (=B, (Du—Bu)D, ' =B, )F ()]
1
< (dnt T(s,,))f” =lyi1— Uy

since F(z,) = F(zn) — F (x4) — 2Dy (yn — X)),

1
||Fl(x0)7lF(Zn)|| < /Ow(thre(”n*tn)) 0(un—1ta)

F2(1+b(10)) (S0 = tn) = S
IF (o) F (ras) | = I1F (x0) ™ (F (n1) = F () = 2D (v —x0)) |

< (1+/0 wo(tn +0(tn1—12))d0) (tni1 — 1)
+2(14b(tp)) ($n— tg) = hng1

and

N

[Ynt1 =Xl < ||Dn+1F (o) [11F" (x0) ™" F (1)

lﬂzs .
21 *b(tn+l) n+1 n+l-

IN
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Method (34.4)

1F' (x0) ™" (M = F'(xo)) | < 1IF" (x0) ™" (ns X3 F] = [V Wi F) |
HIIF' (x0) " (s a3 F] = F' (x0)) |
< WSy Ty Yo (2 ) s Y(En) tn + W0 (Sns 1) = @
F(yn) = F(yn) —F(xn) +F(xa)

= [ F G+ 00n a0 - )

[men’F] (Yn xn)7

IF (x0) ™" F ()

IN

(1 +wo(sn,tn)) (50 —tn)

(14 Wo (tns Yo(tn)tn) (Sn — tn) = by

zn=yall < [IM, 'F' (o) [|1F (x0) ' F (3)
by

1—a,

F(z,) = F(zp) —F(xy) +F(xa),

A

= Uy — Sn,

IF"(x0) " 'F )l < (14 Wotn, ) (n — 1)
+(1+Wo(tn, Yo(tu)tn) (S0 —tn) = Cn,

ns1 =zl < (1M, F Coo) 1 (x0) ™ F ()|
C
< ﬁ:tn+l*un
n

F(xnq1) = F(Xn1) = F (%) = [Va, X3 F1 (Y0 — Xa),

IF (x0) "F )l < (L4 Woltnstns1)) (tast — 1)
+(1+Wo(tn, Yo(tn)t)) (S0 — tn) = dn+1

and
dn 1
—x <
lyns1 wrtl < 1 —wo(tn,Yo(tn)t)
= Sn+1*tn+l'
Method (34.5)
Hn
u = S +—7
T T T ot )2
tn = 14+29(tn, 50, Y0 (tn)tn +M0) +Wo (tn, Yo (tn)tn +Mo0) ),
14
et =

ly = Y(tn,Sp,tty) +Wo(ttn,n)),
Cnr1 = (14+Wo(twtusr1)) (tar1—1n)
Jr(lJF\VO(Z‘nv'YO(Z‘n)Z‘nJFT]O))(Sn*l‘n)
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and
6n+l

1 —o(Yo(tns1)tns14+M05 V(g 1)tnsr 1 +Mo)

Spt+1 =Ing1+
The estimates are:

IF'(x0) "' Tl < (1 W([lx0 = o]l lyn —xoll, [[va =0}
FWo([lxn = xoll, [[va —xo0l[)

+W([[x0 —oll, [[yn —oll, [V —X0l[)

Hp < Hp,

1F'(x0) " (Qu—F'(xo)) Il < W(llxu = ol [lyn —x0ll, llza —x0l|)

+Wo(llzn —xoll, 1% —xoll)

M <A <1,

Hn
(1= wo(tn,$0))?’

F(z4) = F(zn) = F (yn) + F (Yn) = [20, Y03 F(z0 = Yn) + F (yn),

||Zn *ynH <

IF' (o) F @)l < (1 Wollyn =0l 2 —x0[1) |z — yu
AW (e = xolls [[ya = x0[, [va =01 1y = xoll

— anfnv
%1 —zall < 1100 ' F (x0)[[|F'(x0) "' F(z) |
- l, - ‘4,
B P By W

F(xn41) = Xt 1,%05 F] (X1 1 — %) — [V X3 F ] (Y0 — Xn) 5

I1F"(xo) ™ F (i)l < (1 Wolla —xoll, w41 = %0 11) 1641 — x|
+(+Wo ([l —xoll; [[va = x0[[)) lyn — 2|

= 6n+l§6n+l
and
Vet = X1l < F () ™ F (x0) [HIF' (x0) ™' F (x|
< Cn+1
= 1=vo(Yo(ta)tn+Mo,10)’
where we also used
[va=xoll = [[(I+ [xa,%0; F]) (%a —X0) +F (x0) |

Yo([l = xo[D) 12 —x0[[ + [|F (o)
Yo([lxn = xo[D) {12 —x0[l +mo ([[F(x0) <Mo)-

IAIA
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Chapter 35

High Convergence Order Methods

1. Introduction

A plethora of iterative methods for solving nonlinear equations in a Banach space is pre-
sented together with their majorizing sequences. The convergence conditions relating these
sequences with the corresponding methods have been given in the preface. The local con-
vergence analysis of these methods has been reported in the corresponding references. But
we present the more interesting semi-local case under conditions involving the first deriva-
tive or divided difference of order one. This approach is in contrast to the local convergence
case where derivatives or divided differences of order higher than one are required to show
convergence. Hence, the applicability of these methods is extended.

2. Semi-Local Convergence

As before the method is presented followed by its majorizing sequence and the estimates
motivating these choices.
Method [1,2,3,4]:

Yn = xn*Fl(xn)ilF(xn)
and

Xn+1 = Yn— (ZFI(xn)il *Fl(xn)ilFl(yn)Fl(xn)iI)F(yn)- (351)

The majorizing sequence is defined for o = 0,59 = Q > 0 by

1 Vn 1
t = 1 1-6 —1,)|dO(s, —t
n+1 Sy + 1 —wo (l'n) < + —wo (l'n)> /O w [( ) (Sn n)] (Sn n)
and
ap+1
= t -
Sn+1 n+1+ 1 *W()(l’n)’
where
W(Sn *tn)
v, =< or

wo (tn) +wo (Sn)
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and

ns1 = / (b1 — 1))8 (i1 — 1) + (1w (£)) (11 — ).

The estimates leading to these choices are, respectively

Xnt1—Yn = *Fl(xn)ilF(Yn) *Fl(xn)il(1*FI()’n)FI(xn)il)F(Yn)
= *Fl(xn)ilF(Yn)*Fl(xn)il
X (F'(xn) *FI()’n))FI(xn)ilF(Yn)»
F(ya) = F(yn) = F(xa) = F'(x2) (n —%n)

1
= | PO -0)ly—xl)do(r, ).

[%ns1 =yl < lx X, <1 Xn — X >
X
ntl ™ Jn 1 —wo(|lx, —x0l]) 1 —wo(lxn —xol[)

1
< [ (1= 8) =)l
< Il = Sny
F(xu1) = F(an)*F(xn)*Fl(xn)(Yn*xn)
F'(x2) (1 —%n) +F' (x0) (g1 — %n)
= F(xup1) = F (%) = F' (%) (41 — Xn)
)

(xn (xn+l Yn)

and
ap+1
Yort —Xng1]] <
N N B Py )
ap+1
1 —wo(tas1)
= Spr1—Inti-

A convergence criterion for the sequence (35.1) is wy(#,) < 1 and#, < tforalln=0,1,2,...
and some T > 0. The proof that sequence {z,} majorizes method (35.1) is standard and is
given as in previous chapters.

Method [1,2,3,4]:

Yn = xn*Fl(xn)ilFl(xn)
Xop1 = X —A, F(x), (35.2)

and

k k
An,k = ZCiFl(xn*del(xn)ilF(xn)%An,k = Ay, ch =1,
i=1 Jj=1

kis fixed and c;,d; € R.
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The majorizing sequence is for o = 0,50 = Q,

k
Pn = Z|Cj|w(dj(sn*tn))v
j=1

k
qn = Z |cjlwo(tn+|dj| (s —1n)),
=
—1,
1 = Sn pnfsn n)
—dqn
and
ap+1
= t _
Sn+1 n+1+ I*WO(tn+l)7

where a,, 1 is given in method (35.1).
The estimates are:

k
1F"(xo) ™ (An = F'(xo)) [l = [IF"(x0) ™" Y ¢ (F' (= djF" (x) ' F (xa) = F' (x0))) |
j=1
k
(since chF'(xo) = F'(x0))
j=1
k
< Y lesbwolllon —oll + a1l —5l) = < au=1,
j=1
1
A 'F <
4 F ool <
Xn+l = ynJF(FI(xn)il*A;;l)F(xn)
= yn*(A;;l*Fl(xn)il)F(xn%
Xop1—=Yn = A (F'(xn) = Ap)F' () F(x)

k
A —F'(x,) = Zlcj(F'(xn —d;F'(x,) " 'F (x,)) — F'(xn)),
=

k
Y lejlw(ldjllyn —xall) = Pu < pa,

||Fl(x0)7l(An*Fl(xn))H <
j=1
et =l < p_nlllyn jn“ < Pn(Sn—1n) _ —
—qn 1 —gn
and
Va1 =X 1]l < Snp1 —tugr-
The last estimate is given in method (35.1).
Method [1,2,3,4] :
Vo = Xp—0F'(x,) 'F(x,),
= Xn—F'(x)  (F(ya) +0F (x,)) (35.3)

and
Xn+1 = xn*Fl(xn)il(F(Zn)JFF(yn)JFOCF(xn))-
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The majorizing sequence {t,} is defined for 7y = 0,59 = |ot| €,

1 1
Py = /Ow((l—6)(snftn))d6(snftn)+|1—&|(1+wo(tn))(sn—tn),

_ Pn
U, = Sp+ I*W()(l'ny
1
qn = <1+/0 WO(SnthFe(unsn))de> (unfsn)ernv
qn
t = U+-——7—,

buy1 = /OIW((Ie)(tn+ltn))de(tn+ltn)+|1é|(1+w0(tn))(sntn)
Jr(l +W0(t11))(tn+l *Sn)

and
b
LA e
n
The estimates are:
1
F()’n) = F()’n) *F(xn) - &Fl(xn)(Yn *xn) *Fl(xn)(Yn *xn)

JrFl(xn)(Yn *xn)7

1
1" (x0) =" F () /O w((1—=0)lyn —xn1)dB]lyn — x|

IN

+'1*él(l+wo(||x,,—xoll))llynﬁnll
— p_ngpnv
in = xn*OCF(xn)*Fl(xn)ilF(y”)
= o= F'(x) " F(m)

in—"Yn = *Fl(xn)ilF(yn)
Pn Pn
_ < < = —S,.
R e e e YR
X1 = Xo—F'(x) "N F (yn) + 0F (x,)) — F'(x,) "' F(z,)

Zn*Fl(xn)ilF(Zn)
F(z,) = F(zp) =F(ya) +F(yn),

1
7o) F )l < (14 wollon = +0lz, )48 ) Iz, -l + 75
Xn+l —Zn = *Fl(yn)JrF(yn)v
||xn+lfzn|| < I < n = Iyl — Uy,
ol o) = T-wolt)
F(xur1) = F(xa1) = F () = F'(x0) (V41 —Xn)

+ <1 B (lx> Fl(xn)(yn —Xn) +Fl(xn)(xn+1 —n),
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1
IF' (x0) ' F (rusn) | < /OW((l—G)IIan—xnll)dellxn+1—xnll

1
H1 = [+ wo(llxa —xo0l)) 1yn =26l
+(1+wo (Il —x0[)) 11 =yl

= Guy1 < apy1,
ap+1 ap+1
— X < =5 —the1-
||yn+l n+l|| = 1*W0(||xn+l*x0||) = I*WO(l’n+l) n+1 n+1
Method [1,2,3,4] :
Yn = xn*Fl(xn)ilF(xn)v
2 = %= 2(F (yn) +F(x2)) "' () (354)
and
Xn+l = Zn*F’(Yn)ilF(Zn)-

The majorizing sequence {#,} is defined for 7y = 0,59 = Q by

G = (wolsn) +wo(a)
and
w(sp—1n)(Sn—1ty)
2(1 *Qn)

The iterate t,41 is given in method (35.3), whereas the iterate s, in method (35.1).
The estimates are,

U, = Sp+

1

[(2F (x0)) ™' (F' (ya) + F' (xa) = 2F'(x0)) || < 5 wo(llyn —o01) +wo(llxa —xo))
= @2 <qgn<l1,
/ ’ oy 1
[(F'(yu) +F' (%)) " 'F'(x0)|| < 20—q,)
In—Yn = (Z(Fl(yn)+Fl(xn))7l *Fl(xn)il)F(xn)

(F'(yn) + F'(x2)) " 2F (x2) = F' (ya) = F'(x))
xF'(xn)le(xn)
W(llyn =X D) llyn —xall

||Zn*yn|| < Z(I*Qn) = Up — Sn.

Method [1,2,3,4] :

Yn = xn*Fl(xn)ilF(xn)v
= X —F'(yn) ' F(x) (35.5)
and
Xnrl = Zn*(ZFI(yn)il *Fl(xn)il)F(Zn)-
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1
The majorizing sequence {#,} is defined for 7y = 0,59 = EQ by

1 —t

Uy = S”+1wo(sn)< lin %) (1+wo(tn)) (s —1n),

a, = <1+/ wo (tn+0(tn —1,))d0 ) (tn — 1) +2(1 +wo () (50— ta),
1 —t

1 = unJrle(Sn)( lfwo :3)

bus1 = <1+/ Wo(ty +0(th1 — 1) de) tugt — ) +2(1 +wo () (50— )

and
Sp+1 = Iyt t Dus1

2(1 *WO(tn+l)) ‘

The estimates are:

IN

||Zn*yn||

1|3 = F 0 = 3700 s
I (B

ool | T wolle —xal)

(1wl =0 D)yl

F(z,) = F(Zn)*F(xn)*ZFl(xn)(Yn*xn%

IN

1
||Fl(x0)7lF(Zn)|| < <1+/0 WO(HxnxOHJFeHZnxn”)de> |20 — |
+2(1+wo([[xn —x0[)) lyn —Xn |l = @ < an
Xnr1—zall = (F )™+ (F )™ = F'(20) ")) F ()]
1 w(llyn —xall) ]_
< ap <ty — Uy
~ 1=wo(|[ya—xoll) [ 1 —wo(|lx, —xol|) !
F(xpp1) = F(an)*F(xn)*ZFl(xn)(Yn*xn%

1
17 ) Fsell < (1 [ b0l + 811 <3148 ) i ]

+2(1+wo([J2n =20l |Iyn = Xn |l = bus1 < bpgr
and

IN

1 _ _
Y1 =X | S 1 (at1) P! (x0) 1| (x0) ™' F (x|

S

n+1 < bn+l = Spiq — byt
2(1—wo([Prasrt —xoll) = 2(1—woltagr)) — H "

IN
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Method [1,2,3,4]:

2
Yo = xn—gF’(x,,)_lF(xn), (35.6)

G = =5 (F ) = F(50) BF () + F () F' () F )
and
Xn41 = Zn_2(3F/(le)_F/(xﬂ))_lF(Zﬂ)‘

2
The majorizing sequence {t,} is defined for 7y = 0,59 = 59 by

1
qdn = E(SWO(Sn)"‘WO(tn))’
1
u, = sn+m(3w(sn—tn)+4(l-l—wo(tn)))(sn—tn),
1 3
a, = <1—|—/0 wo(tn+9(un—tn))d9> (un—tn)+E(l—kwo(tn))(sn—tn),
a
Iyl = Mnl—n,
—qn
1 3
bpy1 = <1+A WO(tn+e(tn+l_tn))de>(tn+l_tn)+§(1+W0(tn))(sn_tn),
and
2b
Sp+1 = Ipp1+ das

3(1 - WO(tn+l)) ‘
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The estimates are for A, = 3F’(y,) — F'(x,),

F (o)™ (A~ 2F o)l < 5 Gwolllva —oll) + v —ol)
= ¢u<qgn<l,
1 1
14, ' F (xo) || < 0 —an)
ol = glAL GBF ()~ TF () F () F )]
1
< mBW(H)’n*an)
401 w0l 0l)] 3y~
< Up—Sp,

Fle) = Fla) =) = 2F ) 0n =)

1
1F (o) o)l < <1+ / wo<||xnxo||+e||znxn||>de) (P
3 _
43 (14wl =0l 3 =5 = By < .
b=zl < 2045 F (o) [ (v0)F (z0)]
2a, a,
< <

=1 —
2(1-g) —1—q, ™'

Flnet) = Flen) = F (o) = 3F ()00 ),

F
1
17Go) F sl = (1 ol ol + Ot =510 ) e
+

3 -
5 (L wo(lln =x0]))llyn = xall = bas1 < bt

and
2 _ _
[yne1 = Xpgal] < §||F'(xn+1) L (xo) 1|1 F' (x0) " F (0 r0)
< % bn+l
= 3 1=wo(|lxn+1—xol])
< 2 bn+l

—— =5y — -
3(1—woltrr)) 0

Method [1,2,3,4] :
Y= a3 ) () A = 3 (50) = F (5,

n = xnf%A;1(3F'(yn)+F'(xn))F'(x,,)71F(xn) (35.7)

and

Xn+l = Zn— Fl(xn)ilF(Zn)-

(4a6P G0+
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2
The majorizing sequence {z,} is defined for 7o = 0,59 = 59 as follows: The iterates uy,, 5,1
are as given in method(35.6) and

1 (3(14+wo(s,)) + (1 +wo(tn)))*an
16 (1—qn)2(1 —wo(ts))

thy1 = up,+
The estimate is

1, _
b1 =zl < 1A F ) IPIF (x0) ™ (BF () + F/ () [1*

< |[F" (on) = F (o) 1| ' (x0) ™ F (2)
(3(1 +wo(llyn —x0l) + (1 +wo([lxa —xol1)))*@n

< ;)
16(1 = gn)*(1 = wo (tn))
<ty — Up.
Method [5]:
Yn = xn*Fl(xn)ilF(xn)v (35.8)
1
7 = yn+g(F'(xn)*lJrZA;l)F(xn),An:F'(xn)—3F'(yn)
and
1
Xntl = ZnJrg(A;;l *Fl(xn)il)F(Zn)-

The majorizing sequence {#,} is defined for 7y = 0,59 = Q by

1
g = E[w(sn—tn)JrZwo(sn)],
- SnJrw(s,,ftn)(snftn)7
Z(I*Qn)

pn = <1+/Olwo(sn+6(unsn))d6> (tty — n)
+/Olw((1 —0) (50— 1))dO(5n—1,)

and
(L+wo(sn))Pn
2(1—gn) (1 —wol(ta))

i1 = Uy

The iterate 5,11 is as defined in method (35.1).
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The estimates are:

3 [0 F )~ F )]
+ 2[[F' (x0) "' (F'(y) = F' (x0))]
Tn <qn <1,
1
2(1 *Qn)’
lza =yull = %||A;l(2Fl(xn) +An)Fl(xn)7lF(xn)||

1F" (x0) " (F'(xa) — F" (yn) ) 111y —%a |
2(1-4x)
W(llyn = %a ) llyn — Xl
2(1-4n)

W(sy —1n) (S — 1) s

2(17%1) n ns
Xnt1—2n = %A;lFl(yn)Fl(xn)ilF(Zn%

F(z1) = F(zn) =F(yn) +F(yn)

= /OlFl(ynJre(ZnYn))de(znyn)JrF(yn)?

1(=2F"(x0)) ™" (An = F'(x0)) |

IN

IN

1A F' (xo)

IN

IN

IN

IN

1
IF"(x0) ™ F (za)| < (1+/0 wo([[yn =0l +8l[zn — yull)) 6|20 — ynll

1
+ [ (1 =8) 3 =l —

= Pn<DPn
and
(L+wo(|[yn —x0[]))Pn
2(1 =) (1 = wo(|lxn —x0l]))

IN

||xn+1*Zn|| <1 — Uy,

Finally, the iterate s, is as given in method (35.1).

Method [12] :

Yn = xn—gF’(xn)*lF(xn) (35.9)

and

Xnt1 = xn*% <I+ ZFI(yn)lFl(xn)> + Z(Fl(xnrlF(yn))Fl(xn)ilF(xn)-
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The majorizing sequence {#,} is defined for 7y = 0,59 = 59,

PR (L N G ) N ) (52 —1n)
ntl = Sn 5\ 3 8(L—wo(sn))  8(1—wo(tn)) o
| 3
Apn+1 = <1 JF/O WO(f;1+e(l’n+l tﬂ))de> (tn+l *l'n)Jr 5(1 ero(t”))(snit”)
and
2 n
Sprl = Inp1t+ 3 St

3 (1 *WO(tn+l))‘

The estimates are:

[2 1 1/9 _
o=l = 1|31+ 57 -5 (700 F )

+ ZFI(xn)lFl(yn)] F'(xa) ™ F (o)1

= | féf+§<w'<ym'<xn>>

+ 3 =F) P On) 1765 PG

¢ 3Ly 2lbuzsl
2\3 " 8(L—wo(|[yn—x0ll))
3w(|[yn —xall) >
[[ Y0 —%all
8(1 —wo([[x, —x0))
S tn+lfsnv

3
F(xpy1) = F(an)*F(xn)*EFI(xn)(Yn*xn)v
1
17Go) Fsenll < (15 [ ol ol + Ot =)0 ) e

3
+5 (L wo([lxn = xo0l[)) [lyn —xa |

= Gpy1 < apy
and
2 _ _
et =seil € 1P o) F o)1 a0) Pt
2 ap+1 2 ani1
< — < — =g —1 .
= 3 —wo(r —xol) T 3T—wolter)
Method [12] :
Yn = xn*Fl(xn)ilF(xn)» (35.10)
in = xn*Fl(xn)il(F(xn)JFF(yn))
and
_ 1 2 xX,+z 1
Xn+1 = xn*An lF(xn)7An:8Fl(xn)+§Fl( n2 n)JrgFl(Zn)
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The majorizing sequence {#,} is defined for 7y = 0,59 = Qo by,

o w((1=0) (55— 12))dB(s, — 1)

1 —wo(t,) ’
a, = %w(un;tn)Jréw(un tn),
g = éwo(tn) + %wo( n ;rtn )+ éwo(un)
and
P fo w((1—6)(sn—1,))d6 (50— 1)

The iterate y,4 is as given in method (35.1).

The estimates are:

o=l < 1) E o) (o)~ F O
B (| D e I
= ol -wl) S
17 G) o= Pl = 3w (B
+gwollzn =l
= a, <ay,
I1F(20) ™ (A= oF o) < gwolllon— )
Jr%WO<HZn)COHJZrH)Cn XO||>+6WO(||Zn xOH)
= qn<qn<l,
4 P ool <
v —zall = 1O/ Co) ™" = A, VF o) +F ) F O
< 1A (P )~ A (o)~ F )|
HIE o) F o) L o)~ F )
< an(sn— n)JrfolW(( 0)(sn—12))dO(5n —1n)

I*Qn 1*WO(l‘n)
= tn+1*un.
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Vo = Xp—F'(x,)"'F(x,) (35.11)
in = Xp— ZA;lF(xn)vAn = Fl(xn) JrFl(yn)
Vp = Zn*BnFl(xn)ilF(xn)»
7 _ 3 _
B, = 51*4Fl(xn) lFl(yn)JFE(FI(xn) lFI()’n))z
U, = vy anF'(xn)le(vn)
Xop1 = Up—BF'(x) 7 F (uy).

The majorizing sequence {a, } is defined for ay = 0,by = Q by

Qn

Cn

Pn

and

3 O +vo b)),
w(b, —ay) (b, —ay)
2(1 *Qn)
w(b, —ay)
1 —wo(a,)’

<1 +/()1W0(an+e(cnan))de> (cn—an) + (1 +wo(an))(by—ay),

442p, +3pi,

by +

1
dy+ 0, <1+/ wo(c,,+e(d,,c,,))de> (dy — ) +
0

/Ol w((1—=0)(ant1—an))d0(ant1—ay) + (1 +wo(an))(@n+1—by),

On+1

bn+l = 1 t+t——-
1 —wo(ant1)
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The estimates are:

12F" (x0) ' (A4n = 2F'(x0)) < %(WO(len —xol|) +wo(llys —x0ll))

1
< Llwnlan) twolba) = gu< 1.
1
AT'F <
Ao < e,
lzn=yall < A (2F () — A IIF () ™' F (x)]]
< 1A F (xo) || F' (x0) ™' (F' (xa) = F' (ya))
X||Fl(xn)7lF(xn)||
< W(bn*an)(bn*an) :dnfcny
B Z(I*Qn)
1 _
Vi —zall < §||4I+2(I*Fl(xn) lFI()’n))
+3(I—F'(x0) "' F (3u) 11 F (xa) ™ F (z0) |
1 oy,h,
< 2 Gl g
— 21—wo(a,) n= Cns
L 1
= (1) ol ol + 0l )0 ) [z,

(T wo([lra =xo ) 1yn =2l < An,

P = W(||yn —xal]) < w(b, —ay) — P,
L=wo(llxn —x0l]) = 1—wo(an)

o, (1 Jrfol wo ||z —x0|| +6||vi — zal|)dB||v, — 2| + 1)

U, —V <
i =]l < T— w0l — o)
< en*dn»
1
I (x0) ™' F (xng1)[| - < /OW((l*e)llxnﬂ*xnll)dellxnﬂfxnll
(1 +wo([lxn —x0 ) [%n+1—yall
S 6n+17
So,
c o}
IVne1r —Xng1|| < i < ntl =byi1—any1-
1 —wo(an+1) = 1=wo(ant1)
Method [12]:
1 _
Vo = x,,sz'(x,,) TF (x,) (35.12)
1
in = §(4yn*xn)

Vo = Ya+AF(x,),A,=F'(x,) —3F (z,),
D VnJFA;;lF(Zn)-
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1
The majorizing sequence {a, } is defined for ag = 0,by = EQ by

1
cn = by+ _(bn *an)v

3
1
qn = 5(3W0(Cn)+WO(an))7
1 3(1+wo(an))(bp—an)
dn = nT 7\Ch—dp )
c +4(c an) + 2(T=a)
1 1
a, = dy+=——— 1+/w a,+9(c,—a,))do | (c, —a,
" s (14 ol oes— a)ao) (e )
+2(1+wo(an)) (b, —an)
1
Gui1 = <1+/0 wo(anJrG(anHan))dG) (an+1—an)
and
Gn+l
bn = n T 7 -
H Gn1 T 1 —wo(ans1)

The estimates are,

le—yall = 1221 -y
3 3
1
= §||)7n*xn||§§||bn*an||zcn*bn,
_ 1 _
1CF () (A =2F )| < 53wz —0l) +wo(llxa o)) = G < g
1
AlF <
14, F o)l < g
(1445 wollls =]l +8l1z, —x0)d0) |z =
— <
||xn+l Vﬂ” = 2(1 7qn)
21+ wo ([l = xol1)) 3 —
Z(I*Qn)

< un+l*dn7
FXpp1) = F(an)*F(xn)*ZFl(xn)(Yn*xn%

1
1760 Fesenll < (14 [ b=l + 8L )00 )
X g1 = X || 4+ 2(1 -+ wo ([l = x01)) [1yn — x|
= Opt+1 < Opyi,
s =mall < 1) F o)1 (0) ™ Fi) |
< Cn+1
= Tl )
Ont1

————— = byl — Apy1-
1 —wo(any1) " "
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Method [13]:
Yn = X —F'(x)7'F (x) (35.13)
= ya—F'(3a) ' Fyn)
Gt =z (L) Gn)  Fla)
Ly = F'(y) 'F"(3u)F (ya) ' F (a)-

The majorizing sequence {#,} is given for 7o = 0,59 = Q by

fol w((1—=0)(sn —1))dO (s, —1n)
Sn ¥ 1 —wo(sn)
(b+v(sa)) fol w((1—0)(sn —1))dO (50— 1)
(1 *WO(Sn))z

dy In
by = A (g
n+1 Uy + 1*W()(Sn) < + 2> )

d, = <1+/Olwo(sn+6(uns,,))dG) (tty — $n)
+ /O (1= 8) (55— 1)) d0(s, — 1)

The iterate s, is as given in method (35.1).
In the estimate, we also use the additional conditions

1" (x0) =" (F" (%) = F" (x0)) || < v([lx —xo]|)

and
IF'(x0) "' F"(x0)|| < b

where the function v is as w and b > 0.
Thus we obtain

Jaw((1=8)lyn— 1) d8|[yn — x|

_ < <y —
||Zﬂ ynH — l—wo(Hyn—xOH) _un S"H
Ll < |F'(x0) " (F" (yn) = F" (x0) + F" (x0) ||| F(x0) ™" F (ya) |
n iy
(L —=wo([lyn —xol|))?
< (bJFV(H)’n*xOH))folW((l*e)(sn*tn))de(sn*tn)
N (1 *WO(Sn))z
= lngln»
_ 1 _
i1 —zall < 11F () IF(Zn)H+§||L11||||Fl(yn) 'F(zy)]]
1 E>_
1+—= |4
1 —wo(|lyn —xoll) < 2 "
1 L,
< — 14+ =|d,=t,+1—u,.
> 1W()(S,1)< +2> n n+1 — Un
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Method [11]:
Yoo = = F' () F (), An = 2, yui F] = F' (35) (35.14)
Xutt = Ya—Ay F ().
The majorizing sequence {#,} is defined for 7y = 0,59 = Q by
+ fol w((L—8)(sn—1))dO(sp —1n)

I*qn
qn = W(tmsn)JFWO(tmsn)

Iit1 = Sp

The iterate s, is as given in method (35.1).
The estimates are:
IF'(x0) " (A= F'o))ll < 1F (x0) ™ ([ yns F] = F' (x0)) |
+IIF' (x0) " ([, yus F1 = F' (x0)) |
Y([lxn = xoll, llyn —xoll) +Wo(llxa —xoll, l[ya —oll)

= ¢u<q.<l,
_ 1
145 Pl < =
and
xnr1 =yl < A F (o) HIF (x0) ™ F ()| < tut — s
Method [7]:
Vo = Xp—F'(x,) 'F(x,) (35.15)
Xn+1 = yn*(z[xn»yn;F]il*Fl(xn)il)F(Yn)-

The majorizing sequence {z,} is defined for 7y = 0 and sy) = Q by

2 1 1
= st (g o)y (9,0l 1)

The iterate 5,11 is as defined in method (35.1).
The estimates are

1F" (x0) ™" (P yas F] = F'(xo) [l < Wo([lxa —2ol], [[ya —ol])
< WO(thn)<17
1
ns n;F 71FI < T .. .\
i F1 7 ) < s

and

2 1
X — < +
ot = <1\I10(||xnx0||»||ynx0||) 1W0(||xnx0||)>

1
< [ w1 =0l =)0l =5 < 1yt =5
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Method [13]:
Vi = X fF'(xn)le(xn) (35.16)
in = Yn— (Z[Xn»yn;F]il *Fl(xn)il)F(Yn)
Xn+1 = Zn— (Z[Xn»yn;F]il *Fl(xn)il)F(Zn)-

The majorizing sequence {#,} is given for 7o = 0,59 = Q by
H o o)
Up = Sn
1 *Wo(tn,sn) 1 *Wo(l‘n)
1
| w1 =8) (50— 1))d8(5, 1)
0
1
b, = <1 +/ wo (s, + 0(up s,,))dG) (tty — $n)
0

+/Olw((1 —0) (50— 1))dO (54 — 1)

2 1
t = b
=t <1wo<rn,sn> * 1wo<rn>> "

and the iterate s, is as defined in method (35.1).
The estimates are given in the previous method with the exception of

X1 —zall < ||(2[xn»)7n;Frl *Fl(xn)il)F(Zn)H
< (e o)
- 1 *Wo(tmsn) 1 —wy (l‘n) "

F(zp) = F(zn) = F (yn) +F (ya),

where we used

SO
7o) < (14 ollon =l +6lz, -l ) do
+IF(x0) ™' F ()| = bn < b
Method [13]:
Yo = X —F' ()7 F(x) (35.17)
Bt = F ) (F () +F )

The majorizing sequence {#,} is given for 7o = 0,59 = Q by

i fol w((1—=0)(sn —1))dO(sn — 1)
I*WO(l‘n)

Iit1 = Sp

The iterate 5,11 is as defined in method (35.1).
The estimates are

Xn+1 :xn*Fl(xn)ilF(xn)*Fl(xn)ilF(Yn) ZYn*FI(xn)ilF(Yn)v
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SO
Jo w(1—8) (s, —1,)dO(s, — 1,,)
a1 — Yn|| < =11 — Sp-
||x +1 =Y || I*WO(Z’n) +1 =S
Method [7]:
Yn = xn*Fl(xn)ilF(xn) (35.18)
Xn+1 = xn*Fl(xn)ilF(xn) *ZFI(xn)ilF(yn)

+Fl(x11)7lFl(yn)Fl(yn)Fl(xn)7lF(yn)

The majorizing sequence {#,} is defined for 7y = 0,59 = Q by

_ (wo(sn) +1)?
S, = 2+m
' - Sy — S, —
il = Snt 811 f() W((l f)(wno(;n)))de( n l’n)

The iterate s, is given in method (35.1).
Method [7]:

Yn = xn*Fl(xn)ilF(xn) (35.19)
lin = xn*diFl(xn)ilF(xn)

k
Xn+1 = xn*Fl(xn)il ZaiF(Zi,n)
i=1

The majorizinfg sequence {t,} is defined for 7o = 0,59 = Q by
k
a = Zaiv
i=1

k 1
Pin = Z|al|(1+/0 WO(thFe|di|(Sn*tn))de)|di|(sn*tn)
i=1

Pin (Sn - tn)

hy1r = Sn+|1*a|(sn*tn)+ I*WO(l’n)

The iterate s, is given in method (35.1).
The estimates are:

k
Xn+1 = Yn JFFI(xn)ilF(xn)*Fl(xn)il (ZaiF(Zi,n)> 5

i=1

Xpt1—Yn = (lfa)F'(xn)le(xn)
k
+F'(x) 'Y ai(F (x0) — F (zin))
i=1
DinlsSy,—1
o=l < (1 =allyy o+ B g,
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where we also used

IF (x0) ™" (F (xn) = F (i) |

k 1
B Z <1+/0 wo ({22 — xo| JreHZi,nan)de) ||Zi,n*xn||
i=0
= IT,nHYn*an < Pi,n(sn*tn)-
Method [8]:
Yo = Qxn) (35.20)
Xn+1 = Q(xn)*Fl(xn)ilF(yn)v

where Q is a method of order p.
The majorizing sequence {#,} is given for zy = 0,59 = Q by

pn = <1+ /O lwo(e(s,,))de> 50t Q

pn
¢ = —
n+1 Sy + 1 *WO(tn)
Sp+1 = Inti Jth+l-
In suppose
Va1 =Xl = (1QGns1) —Xnt1 |

< h(Hxn *x0||7 ||yn *xOHv

||xn+l *)C()H, ||xn+l *ynH» ||xn+l *an)v

= h,

where £ is a continuous and nondecreasing function in each variable.
The estimates are

F(yn) = F(yn)—F(x0)+F(xo)
1
= /O [F'(onre(yn*xo))de*Fl(XO)
+F'(x0)] (ya — X0) + F (x0),
1
1F (o) FO)ll < <1+ / wO<e||ynxo||>de) Iy =]l +€2

The iterate 5,1 is defined by the additional condition.
Method [1,2,3,4]:

Ya = xn>»F'<xn)1F<xn),7»=‘521 (35.21)
in = xn*IUFI(xn)ilF(yn)?x‘: \/§2+3

Xn+l = Zn*Fl(xn)ilF(Zn)-
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The majorizing sequence {z,} is defined for #o = 0,59 = |A|Q by
1
b, = <1 JF/O WO(til) + e(sn - tn)) de(sn - tn)

1
+m(1 +wo(tn)) (50— 1),

|:U|bn
U, = 28—th+-——,
n n n lin(tn)
I
o = (1 (5,400,180 ) 1 5.) + b,
0
Cn
a1 = u"Jrlfwo(t)’
n

1
Gui1 = <1+/0 wo(l‘nJrG(thtn))d6>(tn+1tn)

L wot) (s —ta).

Al
Ont1
Sn+1 n+1 1 *Wo(tn+1)
The estimates are:
F(yn) = F(yn)—F(x0) +F(xn)
1
17Go) Fonl < (14 wollan =01 +6l3 ~3,1)a8 ) I ]
1 —
(1wl o) =l = 57 < b,
o —all < G E )+l ) )
b
< sl sy

—wo ([l —xol])
F(Zn) = F(Zn)*F(yn)JrF(yn)»

1
17 o) Fal < (14 ol ol + 0l 3o )
X[z = yall +b0 = < €,
Cn c
[t =zl < . .

< =lpy1—U
L=wollln —0l) = T=wolta) " "

Flnet) = Flanet) = F(n) = 3/ ()0n =),

o)l < <”/01W0<||ano||+e||xnﬂxnn)de)
X |41 — 2|
o -+ =) on —ll 5577
< Ontl
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and

On+1
lyne1 —Xng1|| < #@nﬂ) = Sp+1 —In+1-
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Chapter 36

On a Family of Optimal Eighth
Order Methods for Equations in
Banach Space

1. Introduction

Consider the nonlinear equation
F(x)=0, (36.1)

where F : D C X; — X; is a Fréchet differentiable operator between the Banach spaces X;
and X;. Here D is an open convex subset of X;. Since closed-form solution is possible only
in special cases, iterative methods are used to approximate the solution x* of (36.1). In this
study, we consider the iterative method defined for alln =0,1,2,..., by

Yn = Xa *Fl(xn)ilF(xn)»
in = Yn *AnFl(xn)ilF(yn)
and (36.2)
Xn+1 = Zn— BnFI (xn)7 lF (Zn)y
where
An = A(xnvyn)vA:DXD*)L(XMXZ)?
B, = B(Yn,Xu,2n),B:DxDxD — L(X;,X3).
The local convergence order eighth was shown using condition on the ninth derivative when
X1 =X, =R [11]. In this Chapter, the local is presented in the more general setting of a

Banach space. Moreover, conditions only on the operators appearing in these methods are
used in the analysis. Hence, the applicability of these methods is extended.

2. Local Analysis

We develop functions and parameters to be used in the local convergence analysis of the
method (36.2). Set M = [0, 0). Suppose function:
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(i) op(¢)— 1 has a minimal zero &y € M — {0} for some fucntion @y : M — M which is
continuous and nondecreasing. Set My = [0, dp).

(ii) g1(¢r)— 1 has a minimal zero d; € By — {0} for some fucntion w : My — M which is
continuous and nondecreasing and g; : By — M defined by

_ Jy o((1—8)r)de

- 1—wm (l‘ )

g1(2)

(iii) @o(g1(¢)t) — 1 ha a minimal zero §; € By —{0}. Set
82 = min{80,81}
and M, = [0,8,).

(iv) ga(t) — 1 has a minimal zero d, € M| — {0} for some functions @, : M —1 — M, p:
M| — M which are continuous and nondecreasing and g, : M| — M defined by

(0 (1) + o1 (g1(1)1)) Jy ©1(Bg1(1)1)dB

g@) = [gi(gi()r)+ (1—wo(t))(1—wo(gi1(t)t))
1
P folohiiézgf)f)de]gl(t).

(V) 0o(g2(r)r) — 1 has a minimal zero 83 € M| — {0}. Set 8 = min{d,,d3} and M, =

[0,9).
(vi) g3(r) —1 has a minimal zero d3 € M, — {0} for some function g : M, — M defined
by
_ (0 (1) + o1 (82(0)1)) Jy 1 (Bga(t)1)dB
alt) = el oy )1 oulga(0)0)
1
JrCI(f) fol‘”l foiigf)f)de]gz(t).
Define
d = min{dy}, k=1,2,3. 36.1)

It shall be shown that d is a radius of convergence for method (36.2).
Denote by U [x, u] the closure of the open ball U (x,u) of center x € D and radius u > 0.
The hypotheses (H) are developed provided x, is a simple zero of F and functions ®, p, g
are as previously given.
Suppose:

(H1) Foreachx € D
IF' (x) " (F' (x) = F'(x) | < o ([lx—x*]))-

Set Qp = U (x*,80) ND.
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(H2) Foreach x,y € Qy,y=x—F'(x)"'F(x),
IF' ()~ (F' (x) = F'(9) ]| < @0 ([l =),
IF () 7 F ()| < o1 (fle =),

11 =A(x )| < p(llx—x])
and
11 = B(x,y)|| < g([lx—x"]]).

(H3) U[x*,d] C D,
and

(H5) There exists d, > d satisfying

1
/ 00 (6d,)d0 < 1.
0

Set Q, = U[x*,d,] ND.

Next, the local convergence analysis of method (36.2) is given using hypotheses H.
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Theorem 42. Suppose hypotheses (H) hold. Then, the following assertions hold provided

that xo € U (x*,d) — {x"} :
{x.} CUR", ),

||yn *X*H < gl(en)en <e, < d7
||Zn *X*H < gZ(en)en <e, < d7

€n+1 < 83(6;1)6;1 < ey,

(36.2)
(36.3)
(36.4)
(36.5)

where e, = ||x, —x*||, radius d is defined by (36.1) and the functions g, are as given previ-

ously. Moreover, the only zero of F in the set Q is x™.

Proof. Set M — 3 = [0,d). It follows from the definition of d that for each r € M3 the

following hold
0<m(t) <1
0<mo(gi(t)r) <1
0 < amp(ga(t)r) < 1
and

0 <g(t) <1

(36.6)
(36.7)
(36.8)

(36.9)

We have that (36.2) holds forn =0. Let u € U (x*,d) — {x" }. Using (36.1), (36.6) and (H1),

we have in turn

1F" (")~ (F" (u) = F'(x*)) | < @([lue —x7]]) < wo(d) < 1.

(36.10)
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Then, (36.10) together with the Banach lemma on linear operators with inverses [4] give
F'(u)~! € L(X5,X;) with

1

. 36.11
I e @G6.11)

1F" ()~ F' (x)

Notice that iterates yg, zp,x; are well defined by method (36.2) for n = 0 and we can write

yo—x' = xo—x"—F'(x0) ' F(x0)
(F'(x0)'F(x%))

x(/o F'(¢) " (F'(x0) — F'(x* + (0 — x)))d0(xo — x°).
(36.12)
By (36.1), (36.11) (for u = x¢,(36.9)(for k = 1), (H2) and (36.12) we get in turn that

o((1 —8)lxo —x"[[)dB]jxo — x|

X 36.13
b= T v ) o1
< g1l —=x"[) o — x| < [lxo —x"[| < d, (36.14)
showing (36.2) and (36.3) for n = 0.
We can also write by the second substep of method (36.2) that
20—x = yo—x"—F'(y0)"'F(%)
+(F'(y0) ™" = F'(x0) ")) (y0)
+(I = Ao)F'(x0) "' F (vo)
= yo—x"—F'(yo)"'F(y0) +F'(y0) ™' (F'(x0) = F'(y0))F' (x0) "' F (¥o0)
+(I—A0)F'(x0) ™' F (yo)- (36.15)

Using (36.1), (36.7), (36.9) (for k = 2), (H2), (H3), (36.11) (for u = yy), (36.14), (36.15)
and the triangle inequality, we obtain in turn

lzo=x"[ < [g1(llyo—x"[])
(a0 (Jlxo —x[|) + @0 (Jlyo —**[])) Jo @1(8]lyo —x[|)d®
(1 = o]0 —x*[})) (1 = @ ([[yo —x*[]))
P[0 —x7) Jo @1 (8llyo —x*[|)d6 "
—X
I*OJO(HXO*X*H ]HyO ||
< ga(llxo—x7[)llxo — x| < flxo —x"], (36.16)

+

+

showing (36.2) and (36.3) for n = 0.
Moreover, by the third substep of method (36.2) for n = 0, we can write analogously

x1—x" = z0—x"—F'(z0)'F(z0)
+(F'(20) ' (F'(x0) = F'(20))F'(x0) ") F (20)
+(I—Bo)F'(x0) "' F (20)- (36.17)
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Using (36.1), (36.8), (36.9) (for k = 3), (H2), (H3), (36.11) (for u = z¢), (36.18), (36.17)
and the triangle inequality, we obtain in turn

lxr =" < [g1([Jzo—x"])
(o0 ([lx0 —x*[|) + @0 (|20 —x*[])) fy @1(8]]z0 — x*[|)d®
(1 =00 ([l2x0 —2*[)) (1 — @o([lz0 —x*|1))
q(|lxo—x"[]) Jo @1 (Bllzo—x*|)d0,
- — llzo — x|
1 — o ([lxo —x*|
< g3([lxo =2 Ixo — x| < [lxo — 271, (36.18)

+

+

showing (36.2) and (36.5) for n = 0. Simply substitute x;,y;,z;,X;+1 for xo, yo,z0,x in the
previous calculations, we finish the induction for assertions (36.2)- (36.5). It follows from
the estimation

€jt1 §Y€j<d, (36.19)
1
where Y= g3(||xo —x||), that (36.2) and (36.6) hold. Set T' = / F'(x* +06(b—x"))de, for
0
some b € Q with F(b) = 0. Then, in view of (H1) and (H4), we get in turn
, . 1 1
IF ()~ N(T — F (x| g/ oao(6||bfx*||)d6§/ @0(6d,)d8 < 1,
0 0

leading to x* = b, since T~ € L(X»,X;) and T(b —x*) = F(b) — F(x*) = 0. O
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Chapter 37

Extended Ball Convergence of a
Xiao-Yin Fifth Order Scheme for
Equations

The local convergence for a Xiao-Yin method of order five is studied using assumptions
only on the first derivative of the operator involved. The convergence of this method was
shown by assuming that the sixth order derivative of the operator not on the method ex-
ists and hence it is limiting its applicability. Moreover, no computational error bounds or
uniqueness of the solution are given. We address all these problems using only the first
derivative that appears on the method. Hence, we extend the applicability of the method.
Our techniques can be used to obtain the convergence of other similar higher-order methods
using assumptions on the first derivative of the operator involved.

1. Introduction

Let F : D C E; — E; be a nonlinear operator acting between Banach spaces £ and E; and
D # 0 be an open set. Consider the problem of solving the nonlinear equation

F(x)=0. (37.1)

Iterative methods are used to approximate a solution x* of the equation (37.1). The follow-
ing iterative method was studied in [26],

Yn = xn*BFl(xn)ilF(xn)»
1 _ _
in = Xpn— Z(3Fl(yn) lJrFl(xn) I)F(xn)
and

1 _ _
Xn+1 = Z11*§(3Fl(yn) I*Fl(xn) I)F(Zn)-

In this chapter, we study the convergence of method (37.2) using assumptions only on the
first derivative of F, unlike earlier studies [26] where the convergence analysis required
assumptions on the derivatives of F up to the order six. This method can be used on other
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methods and relevant topics along the same lines [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,
16,17,18,19,20,21,22,23,24,25,26,27,28,29].

For example: Let X =Y =R, D =[— X 2] Define f on D by
() = Plogt* +1 —t* ift+#0
N 0 ift=0.

Then, we have f(1) =
f" (1) = 6logt® +60r* — 241 +22.

Obviously, f(t) is not bounded by D. So, the convergence of the method (37.2) is not
guaranteed by the analysis in [26].

Throughout the chapter U(xo,R) = {x € X : ||x —xo|| < R} and Ulxo,R] = {x € X :
lx—xo0|| < R} for some R > 0.

The chapter contains local convergence analysis in Section 2, and the numerical exam-
ples are given in Section 3.

2. Ball Convergence

The convergence uses real functions and parameters. Set A = [0,0). Suppose functions:
(1) ho:A — A is continuous, non-decreasing and such that /(¢) — 1 has a smallest zero
poEA— {O} SetAg = [O,po).

(2) ho:Ao— A,hy : Ag — A are continuous, non-decreasing and such that fi(¢) — 1 has
a smallest zero R; € Ao — {0}, where f} : Ag — A is defined by

Jo h((1=0)t)do+[1-B| fy h (8r)d6
1 —ho(t)

(3) ho(f1(z)) — 1 has a smallest zero p; € Ag — {0}. Set p» = min{po,p;} and A; =
[Ova)‘
(4) f2(t) — 1 has a smallest zero R, € A; — {0}, where f is defined by
JLR((1=8)1)d8 3 (ho(1)) +holfu(0)r) Ji 1 (61)d8
1= ho(t) 4 (I=ho()(1=ho(fi(1)1))
(5) ho(f2(r)t) — 1 has a smallest zero p € A} — {0},

fit) =

L(t) =

(6) f3(t)— 1 has a smallest zero R3 € A} — {0}, where

Jo h((1=8)f5(t)1)d®
1 —ho(f2(t)1)
Jr(hO(fz(f)f)JrhO(fl(f)f))folhl(efz(f)f)de

(L—=ho(f2(2)1))(1 —ho(f1(2)t))
(ho() +ho(f1(1)1)) Jo h(Bf2(1)1)d®
2(1=ho(1))(1 = ho(f1(2)1))

f(1)

fz(l‘).
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The parameter
R=min{R;}, j=1,2,3 (37.2)

shall be shown to be a convergence radius for the scheme (37.2). The definition of R
implies that for all z € [0, R)

0<ho(t)<1, (37.3)
0<ho(fi(t)r) <1, (37.4)
0<ho(fa(t)r) <1 (37.5)
and
0< fi(r) < 1. (37.6)

Moreover, hypotheses (H) shall be used.
Suppose:

(H1) Element x* € D is a simple solution of equation (37.1).
(H2) ||F'(x*) "N (F'(w) = F'(x*))|| < ho(||w—x*|| for all w € D. Set Dy = U (x*, po) N D.
H3) [[F'(x") ' (F'(w) = F'("))]| < h(||w—v|| and

IF () (w) | < i (flw—x71))

for all w,v € Dy.

(H4) U[x*,R] C D.

Next, the main ball convergence for the scheme (37.2) follows.

Theorem 43. Suppose hypotheses (H) hold, and choose xo € U(x*,R) — {x*}. Then, se-
quence {x,} generated by scheme (37.2) is such that lim x,, = x*.
n—oo

Proof. Letu € U(x*,R). Using (H) one gets
1F" (")~ (F () = F' ()| < ho ([ =) < ho(R) < 1,
so F'(u)~' € (B, B;) and

1
<
< =Ty

[F" ()~ F (x%) (37.7)

follow by a standard perturbation lemma due to Banach [15]. In particular, if u = x, iterate
Yo exists by the first sub-step of scheme (37.2) for n = 0. Moreover, one gets

Yo —x* =x0 —x* — F'(x0) "' F (x0) + (1 —B)F'(x0) ' F(x0). (37.8)
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By (2.5) for j =0, (37.7) for u = x¢, (H3) and (37.8) one has
lyo =l < |IF(x0) ™' F' (")
1
><||/O F/ ()7 (F'(x" +8(x0 —x"))d8 — F' (x0)) (x0 —x*) |

H1=BIIF (o) ™ F () IIF' ()~ F (xo)
_ (o h((1=8)lxo—x*[)d® + |1 B fy h1(]x0 —x*[|)d8) |0 — "
- 1= ho([lxo —x*)
= Silllxo =x"1)[lxo = x"]| < [lxo —x"[| <R

So, yo € U(x*,R), and zp, r are well defined by scheme (37.2) for n = 0.
Furthermore, one can write

20—x" = x9—x* —F'(x0) 'F(xp) + ZF'()CO)*l (F'(yo) — F'(x0))F'(yo) 'F(x0). (37.9)

In view of (2.5) (for j =2), (H3),(37.7) for u = x¢,y0, (37.9) and (37.9) one obtains
lzo =2l < o —x* = F'(x0) ~'F' (x0) |
3 — * *\ — — *
+ 7 1F (o)™ F G ()~ (F (v0) = F' (o)) [1F (o)~ F' (x|
|| F'(x*) 7' F (xo) |
Jo h(1=8)|lxo —x*)d®

- 1= ho([lxo —x*[[)
3 (o(lxo —x* 1) +ho(llyo —x*11)) Jo 71 (Blxo —x*)d® o — 2
4 (1= ho(floxo — %)) (1 = Ro([lyo —x*[]))

IN

Sallxo =2 [[) oo — "] < lloco — ][,

s0 zo € U(x*,R). By the third sub-step of scheme (37.2) similarly one can write

X=X = z—x"—F'(20) ' F(z0)+ % [ZF'(Zo)fl(F'(yo) —F'(20))F'(yo) ™"
+F'(x0) ™ (F'(v0) = F'(x0))F'(30) | F (z0).
Hence, we obtain
_ [ LA =8z — D)o
= | 1ol —+T)

(ho(lIz0 —x*[1) +o|lyo = x*11)) Jo A1 (Bllz0 —x* )l
(1 =ho(llzo =x*)) (1 = ho(llyo —x*])))

1 (o(lxo —x* 1) +ho(llyo = x* ) Jo 71 (8llz0 —x*]|)d®

2 (1= ho(flrxo —x*)) (1 = Ro([lyo —x*[]))

S3([lxo = x"[]) oo — ™| < [lxo — 7.

[l — x|

+

[lz0 =7

IN



Extended Ball Convergence of A Xiao-Yin Fifth Order Scheme for Equations 383

Then, we have x; € U(x*,R). By repeating the preceding computations with x¢, o, 2o, X1
replaced by X, Vi, Zm, Xm+1 We get

1m1 — x| < cllxm — x| <R, (37.10)

where ¢ = f3(||xo —x*||) € [0,1), one deduces that x,,41 € U(x*,R) and lim x,, =x*. O

m—oo
Proposition 25. Suppose:

(1) The element x* € U(x*,s*), subset of D for some s* > 0 is a simple solution of (37.1),
and (H2) holds.

(2) There exists & > s* so that
Kol(s* +8) < 2. (37.11)

Set D1 =DNU|x*,d]. Then, x* is the unique solution of equation (37.1) in the domain
D;.

1
Proof. Let g € D; with F(q) = 0. Define S = / F'(q+6(x* — q))d8. Using (H2) and
0
(37.11) one obtains

IF'(x0) =" (S = F'(x0)) |l < Ko/ol((l9)||61Xo||+9||95‘)Coll)de

Koy, .
7( +8) < 1,

IN

so ¢ = x*, follows from the invertibility of S and the identity S(¢ —x*) = F(q) — F(x")
0-0=0.

Ol

3. Numerical Experiments

We compute the radius of convergence in this section.

Example 7. Let E| = E; = R*,D = B[0,1],x* = (0,0,0)”. Define function F on D for
w=(x,y2)" by
e—1

F(W) = (ex* 17 2 y2+y7Z)T‘
Then, we get
e 0 0
F'v)=1] 0 (e—1)y+1 0 |,
0 0 1

1
so for ho(t) = (e —1)t,h(t) = ™7t and h(t) = eﬁ, we have for B = X

Ry =0.0403 =R, R, = 0.0876, R3 = 0.0612.
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Example 8. Let By = B, = CJ0, 1], the space of continuous functions defined on [0, 1] be
equipped with the max norm. Let D = U(0, 1). Define function F on D by

F(9)(x) = ¢(x) -5 /0 lxeq>(e)3de. (37.12)

We have that
F'(9(€))(x) = &(x) — 15 /()1x6¢(6)2§(6)d6, foreach & € D.

1
Then, for x* =0, we get ho(t) = 7.5¢,h(¢) = 15¢ and h;(t) = 2. Then, for p = 7 the radii
are
Ry =0.0333,R, =0.0167,R3 =0.0136 =R.

Example 9. Returning back to the motivational example at the introduction of this study,
we have hg(t) = h(r) = 96.6629073¢ and h; (1) = 2.

Then, for B = %, the radii are

R; =0.0034, R, = 0.0014, Ry = 0.0011 = R.
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Chapter 38

On the Semi-Local Convergence of
King’s Fourth Order Method for
Solving Equations

We provide a semi-local convergence analysis of King’s fourth order method for solving
nonlinear equations using majorizing sequences. Earlier studies on the local convergence
have used conditions on the fifth derivative which is not on the method. But we only use the
first derivative. Hence we extend the usage of this method in the more interesting semi-local
convergence case.

1. Introduction

A Plethora of problems in diverse disciplines such as Applied Mathematics, Mathematical
Programming, Economics, Physics, Engineering, and Transport theory to mention a few
can be formulated as

F(x)=0, (38.1)

where F : Q C S — T Q open, S =R or T = C. Iterative methods are mostly used to
generate a sequence converging to a solutionx™ of (38.1). Consider

King’s Fourth Order Method

Yn = Xn *Fl(xn)ilF(xn)
and (38.2)
Xn+l = Yn *A;anFl(xn)ilF(Yn)»
where (38.3)
Ay = F(x)+(Y—2)F()
B, = F(x,)+YF(m),YET.

In this chapter, we study the more interesting semi-local case. Moreover, we use conditions
only on the first derivative appearing on (38.3). Hence, we extend its applicability. The
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local convergence of this method was shown [6, 8, 9] using conditions reaching the fifth
derivative which is not on (38.3).
But these restrictions limit the applicability of the method (38.3) although they may

converge.
For example: Let S =T =R, Q = [-0.5,1.5]. Define ¥ on Q by

W(r) = Plogt* + —t* ift#0
N 0 ift=0.

Then, we get t* = 1, and
W (1) = 6logt® + 601> — 241 +22.

Obviously ‘P’”(r) is not bounded on Q. Hence, the results in [6, 8, 9] utilizing the fifth
derivative in the local case cannot guarantee convergence. We use only conditions on the
first derivative and in the more interesting semi-local case. The technique is very general.
Hence, it can be used to extend the applicability of other methods [1,2,3,4,5,6,7,8,9].
Majorizing sequences for method (38.3) are given in Section 2, the analysis of the method
in Section 3, and the examples in Section 4.

2. Scalar Majorizing Sequences

L
Let Ly,L,Ly,L,L3,L4,Ls > 0 and n > 0 be parameters. Set Lg = §,L7 =LiLs+LLyLg=

|—§|LL5 and Lo = %L} Define scalar sequences {f,},{s,} by to = 0,1 = mM,s1 =N+

Lo (L3 +Lom) 1,

Ol t1 (tn+l - Sn)

Sptel = Inpti + 1 L()l’ ; (384)
- n+
: — +L6(L3 JFLQ(Sn+l*tn+l))(sn+l*tn+l)3
n+2 n+1 (1*pn+l)(1*Lotn+l) b

where,

pn = L3(ta+[y—2[(sn—7)),

b, = ! ,
1 —Yn
Yo = La(ta+[¥l(sn—m)),
Oyr1 = Lg (l‘n+1 — Sn) +b, (L7 +Lg (Sn — l‘n))(sn — l‘n)2
and
U1 = Le(tyer —sn) +M(s,— 1),

where, M = 2(L7 + Lgm)n. Sequence {r,} shall be shown in Section 3 to be majorizing for
method (38.3).
Next, we present a general convergence result for a sequence {¢,}.
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Lemma 42. Suppose,
LOtn+l < 17pn+l <1 and Yo < 1. (385)

Then, the following assertions hold for sequence {#,}

0<<s, < Ihe (386)
and limz, =1", (38.7)

n—oo

1
where ¢* is the least upper bound of sequence {z,} satisfying t* € [, a], (Lo #0).

Proof. Tt follows by the definitions of sequences {7,} and (38.5) that it is non-decreasing

and bounded from above by Lo and as such it converges to ¢*. U

Next, we present another convergence result for a sequence {f,} under stronger than
(38.5) conditions but which are easier to verify.
But first, it is convenient to define polynomials on the interval [0, 1) by

h,(ll)(l‘) = LétnnJrjwtnfanrLo(lJFZ‘JFH‘JFZle)T]i17
g1(t) = Let>—Let+Mt —M + Lot>,
m () = N Lo(1+r+ L+ -1

and
g2(t)=(N+Lo)t—N,
where N = 2L¢(L3 + Lon)m.
Notice that g; (0) = —M and g (1) = L. Then, it follows by the intermediate value theorem
that polynomial g; has zeros in (0,1). Denote by 8; the smallest such zero and let &, =

NTL Parameters M and N can be chosen to be independent of 1 as follows. Pick €1,&, €

(0, 1) such that
M <eg and N < g.

Then, §; and &, become independent of 1. Moreover, set

o —
a= —i(&ff) b= Lo(Ls +Lon)n?,
¢ =max{a,b},8;3 = min{d;,8,},0 = max{8;,d,},
1-2L 1-2L
A= 1—Lon, A, = gl Sl

1+2Lmpy "™~ T2Lmly—2]
and % = min{A1, A, As}.

Next, use this terminology to show a second convergence for a sequence {t,}. But first
it is convenient to define polynomials on the interval [0, 1) by

(1) = Le™+M" " M+Lo(1+1+...+" ) —1.
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Lemma 43. Suppose
c<dB<O<ALL.

(38.8)

Then, the conclusions of Lemma 42 hold for sequence {z,}, where t* € [n, IL] More-

over, the following estimates hold
0< Inrl —Sn < 8(Sn *tn) < 82”+1(SO *tO) = 82”+1n
and
0<s,—t, < 8(l'n - Snfl) < 82”11-
Proof. Mathematical Induction is used to show

0< S <3$,
1 — Lot
0< Lo(Ls + Lo(sk1—tir1)) (Sk1 — ter1)? <5,
(1= prs1) (1 — Lotet1)
2L4(l‘k+sk+ |’Y|(Sk*1’])) <1

and
2L3(l‘k+ |'Y*2|(Sk *l‘k)) <1.

S

(38.9)

(38.10)

(38.11)

(38.12)
(38.13)

(38.14)

If kK = 0 estimates (38.11), (38.12) hold by the choice of a,b,\,, A3, respectively. Notice

that by (38.13) and (38.14)., 5 <2and by < 2.

— Pk+1

So, 38.9 and 38.10 hold for k = 0. Suppose these estimates hold for all integers smaller

than n. Then, by (38.9) and (38.10), we have

IN

t + 82k1'] <sp_1+ 52]{711'] + 82k1']
1— 82k+1

Sk

L
1—o "<71-5 "

and

IN

Sk+82k+ln < tk+82kn+82k+ln
1— 82k+2

1-6
Then, by the induction hypotheses and since & € [0, 1), (38.11) certainly holds if

Tkt

< ...§n+8n+...+82k+ln: n <.

0< Le(txt1—sk) +M(sx —tx) <3
1 — Loty

or since d € [0, 1),

2%+1 2%k 1 -8+ _
Led™ ™ N+ M N+ Lyd 5 " 5<0

or
hi(t)<Oat t=3§.

(38.15)

(38.16)

(38.17)

(38.18)
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A relationship between two consecutive polynomials h,i is needed. By the definition of

these polynomials

M (t) = Let"T'm+Min+Lo(1+t+...+£)n—1
+ hi(t) —Let*n—Mt* ' —Lo(1 +1 4., +1

= hi(t)+g () .

In particular, we have
hisr (81) = hi(81)

by the definition of 9;.
Define function

FL(e) = lim (1),
By the definition of h,i and (38.21) we get,

Lom

(38.19)

(38.20)

(38.21)

(38.22)

(38.23)

1
t)=——1.
£ =72
Hence, (38.18) holds if fi,(t) < 0 atz = §;, which holds by (38.8). Similarly, (38.12) holds
provided that
2L6(L3 + Lo(skr1 — ter1)) (Sk1 — te1)? <5
1 — Lot 11 -
or
N(Sty1—1trr1) <38
1 — Loty
or
1 — §2k+2
N&*+2n +8Ly(——5— M-8 <0
or

R2(t) <0 at 1 =35,
This time we have,

W (t) = hiy () = hg(e) + ki (¢)
= R(t) N Lo(L 41+ 25 2m -1
— NI —Lo(1 41+ + 5 m+1

= (1) +g2(1)" ',

Hence, we get
hia(t) = i () +g2(0)r" .

In particular, we have
hi1(82) = i (82)

(38.24)

(38.25)

(38.26)
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by the definition of J,. Define function

R2(1) = lim ki (1).

k—o0

Then, we get

Lom _

1—¢

So, h2 (1) < 0 att = &, holds if h2 (r) < 0 at r = §, which is true by (38.8).
Instead of (38.13), we can show

h%(r) =

2Ly(1 + () < 1,
or 8 < Ay, which is true by (38.8). Similarly, we can show instead of (38.14)
2a(Tos + =20 () < 1,
or & < A3, which is also true by (38.8). The induction for items (38.11) - (38.14) is com-
pleted. It follows that sequence {#,} is non decreasing and bounded above by —s and as
such it converges to r*. U

3. Analysis

The semi-local convergence analysis of method (38.3) is based on majorizing sequence {t, }
and hypothesis C.
Suppose :

(C1) There existxp € Q,m >0,b > 0 such that F'(xo) "' € L(Y,X),B, ' € L(Y,X),||By || <
band ||F'(x0) "'F(x0)[| < 7.

C,) There exists Ly > 0 such that for all w € Q
(©2) ;
[1F" (x0) ™" (F (w) = F (x0)) || < Lo|lw —xoll-
1
Define Qg = U(xo,g) NQ, (Ly #0).
(C3) There exists L,Ly,Ly,L3,Ls,Ls > 0 such that for all z,w € Qg
I(F'(z) = F'(w))|| < Lllz—w,
IF' (x0) ™' F'(2)[| < L1,

IF" (x0) ™' (F'(2) = F'(w))|| < Lallz—w],
145 'F' (2)]| < Ls,

1By 'F' (o) < Ls

and
1By (F'(z) = F'(W)) || < Lslz—wl.
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(C4) Hypotheses of lemma 42 or lemma 43 hold.

n

1
(Cs) Ulxo,t*] € Q (or Ulxg,t"*] C Q),where t*x = L (or t** = I ) in the case of

Lemma 42 (or Lemma 43)

4. Convergence Result for Method 38.3

Theorem 44. Suppose conditions C hold.Then,iteration {x,} generated by method(38.3)
exists in U (xg,1”), stays in U [xp,t*] for all n =0, 1,2,... and converges to a solution x* €
U xo,t"] of equation F (x) = 0 so that

|x" — x| <t*—1, (38.27)
Proof. Estimates
vk — Xk < sk — 1 (38.28)
and
k1 — yell < tesr — sk (38.29)

are shown using induction.It follows from (C;) and (38.4) for n = 0 that
lyo =0l = [1F'(yo) "' F(x0) | <M =s50—10 =50 <1",

s0 (38.28) holds for k = 0 and yy € U(x¢,t"). Suppose (38.28) holds for integer values up
to k. We can write

F(x,) = —F () —x)
Fy) = Fu)—F Q) —F () k —x)-

Hence, by (C3), we get

1
IF'(x0) 'F(y)ll < ||/OFl(xo)il(Fl(kaFe(Yk*xk))*Fl(xk))de(Yk*xk)H
< Shw—xl?
< E(Sk—rk)z. (38.30)

2
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By the definition of A and (Cs3),we have

1A (Ax—Ao)ll - < [|Ag " (F () + (= 2))F () — F (x0) — (Y= 2)F (yo)|
= [lAg " [(F(xe) = F (x0)) + (Y= 2) (F (5 — F (o))l |

I [ 45" o+ 0 —xo))

IN

1
Hy=201 [ 45 (F (o +80x ~30))d8( — o)
La([ls =l + Iy =2l le = o)
L3 (ta =10 + Y= 2|(sk —50))
Lt +[y=2|(" =)

LI no_
L3<15+|v 2|<18 n))

1. (38.31)

VAN VAN VAN

It follows from Banach Lemma on invertible functions [1,2,3,4] and (38.31) that Ay £ 0
and

1
1A Aol € ——. (38.32)
1 —pi
Using (C}) and (C,) for z € U (xo,1*), we get
1" (x0)™ (F'(2) — F'(x0)) | < Lollz—xoll < Lot” < 1,

SO

/ —1 1
IF' @)™ F )l < y— ot (38.33)
It follows from (38.33) (for z = x0),(38.32),(C3),(38.30) and (1.2) that
et =il < 1A Aol 1A P (el + llAg 'F ()]l (38.34)
1F" ()~ F' (xo) 1| F (x0) ™" F () |
(Eallyi = el + FLallye—xel12) & vk —xel
<
B (1= pi) (1 —Lotx)
< Le(L3(sg — t) + Lo (sk — 1)) (sx — tx)*
B (1= pi) (1 = Lotx)
= fei1 — Sk, (38.35)

where we also used method (38.3) to obtain the estimate
F(xie) = F' () (v — k)
So
1AG " F (o) 14 F” (o) (v — xe) |
145 F' () 13— %
L3 ||y — x|
Ls (Sk *l‘k). (38.36)

VANVAN
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We also have,
61 =0l < [t = yell + lve =0l < tipr —se+sp—to =t <7, (38.37)
80 xg+1 € U(xp,1").By (C3) we get as in (38.31) estimate

1By (B —Bo)| 1By (F (xx) — F (x0)) | + [/[|By ' (F' (i) = F' (0))
La(tx+ |Y] (s — 0))

L (g ()

1.

VANVAN

IN

A

That is

1
1B, 'Bol| < T = b. (38.38)

By method (1.2), we get
F(xer1) = Flagr) —F (i) —F (k) Gorr1 — k)
+F' (yi) (X1 — yi) — AnBy ' F' (x0) (X1 — Yi)

= [P OB 3008 F(50) (5130

JrB]:l (BkFl(yk) fAkF'(xk))(ka —yk). (38.39)
We can write
Ti = BiF'(yi) —AcF' (i)
= (F(x) +YF () F' (&) = (F (x) + (Y= 2)F (yi) ) F' ()

= F(x)(F' (ye) = F'(xi)) +YF ) (F' (k) = F' (xx))
+2F (v ) F' (xz). (38.40)
It then follows from (C3),(38.28), and (38.40) that
IF (x0) ™ By ' Tl < (1F (xo) ™ Fx) 1By (F () = F (o)) |
I E (xo) ™ F )1 1By ' (F' (k) — F' () |
+2([F" (x0) " F ()| 1By F (x) |
v

IN

LiLs ||y — x| * +
L 4

LR
Ikaﬂczcll2
< <L7+Lg<sk—rk>)<sk—rk)2. (38.41)

It then follows from (38.30),(38.33),(38.39),(38.4) and (38.41) that
~ L o
I (x0) " F (1) || < Ellyk+1*Xk+1||2+llF'(XO) "By Tl ek — x|

< okt + (L4 Lok — 1)) (52— 1)°)

X (Skt1 *fkﬂ)z
(38.42)
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Hence we have by (38.4),(38.33) and (38.42)

st =Xl < IF Coer) ™ F (o) 1 (x0) ™ F (eI < seen =i (38.43)

Moreover, we can obtain,

kst = X0l < [[yae1 = X1l + X1 —Xoll < skt —tiyt H o1 —to = spy1 <t7. (38.44)

S0, yi+1 € U(xp,1"). The induction for xg, yx € U(xo,1"), and (38.29) is completed.

Sequence {#;} is Cauchy is convergent. Therefore, sequence {x;} is Cauchy too in S, so
it converges to some x* € U[xp,7"]. (Since U[xo,7"] is a closed set.) By letting k — oo in
(38.42) we get F(x*) = 0. O

Next, the uniqueness of the solution x* result is provided.
Proposition 26. Suppose,
(i) The point x* € U(xy,r) C Q is a solution of equation F (x) = 0 for some r > 0.
(ii) Condition (Cy) holds.

(iii) There exists ry > r such that
Lo(ri+r) <2. (38.45)

Set Q1 = U (xo,r1) NQ. Then, the only solution of equation F(x) = 0 in Q; is x".

1
Proof. Define Q = / F'(x* +6(x—x*))d6. Using (C,) and (38.45), we obtain in turn that
0

IF" (x0) " (Q—F'(x0))|| < /01((1 —0)||x" —xol[ +6][y" —xol| )26
< %(ﬂrrl) <1,
Sox=ux",since Q #0and Q(x—x") = F(X) —F(x")=0. O
Remark. We only assumed (C2) from conditions C. But if all conditions are assumed, then,
we can set r =1t".
S. Applications

Example 10. Let S=T =R, U =[q,2—¢q|forqe M = (0,1),q =1 and typ = 1. Define real
function F on Q as

F(t)=1>—gq. (38.46)
1
Then, the parameters aren:§(1—q),Lo:3—q. Moreover, one gets Qo =U(1,1—¢)N
1 1 1
U(ll,—)=U(,—),soL=6(1+-—).
(1) = Ul ) so L=6(1+5—)

Sety=0,b=(1—g)" then
Li=(2-q)* L=L/3,Ls=3(2—q)*[1-q—2((2+4)/3))’—1)] "', Li=3b(2—¢q)? Ls =Lb.

Then for ¢ = 0.98, we have
Hence, the conditions of Lemma 42 and Theorem 44 hold.
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Table 38.1. Sequence (38.4) and condition (38.5)

n 1 2
Spe1 | 0.0067 | 0.0067
thro | 0.0067 | 0.0067

Lotyt1 | 0.0069 | 0.0069
P+l 0.0 0.0
Vi 0.0 0.0
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Chapter 39

On the Convergence of Two Eighth
Order Methods with Divided
Differences and Derivatives

1. Introduction

We solve the nonlinear equation
F(x)=0, (39.1)

where F' : D C X — Y is a Fréchet-differentiable operator, X,Y are Banach spaces and D
is a nonempty open and convex set. A solution x™ of the equation (40.1) is found using the
two three step iterative methods defined for alln =0,1,2,... by

Yn = xn*Fl(xn)ilF(xn)»

in = Yn— (31* ZFI(xn)il [ymxn;F])Fl(x”)ilF(yn)’ (39.2)
C, = Z[Zn,yn;F] - [Zn»xn;F]?
Dn = Fl(xn) - [yn?xn;F] + [Znyyn;F]
and
Xn+l = Zn *CnianFl(xn)ilF(Z”)
and
Yn = xn*Fl(xn)ilF(x”)’
in = Yn *A;lF(yn)» A, = Z[ymxn;F] 7Fl(x”)’ (39.3)
and
Xn+1 = Zn— [Zn»xn;F]il[Zmyn;F]B;lF(Z”)’
where
B, = Z[Zn»yn;F] - [Zn»xn;F]’

The eighth order of local convergence for these methods was established in [11, 12], re-
spectively, when X =Y = R. But condition on the ninth derivative were used not on these
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methods. We only use conditions on the operators appearing on these methods and in a
Banach space setting.

Moreover, computable error bounds and uniqueness of the solution results not given
earlier are also provided. Hence, we extend the applicability of these methods in both the
local and the semi-local convergence (which is also not given before).

We use the same notation for the majorizing “w” and ¢* in both types of convergence.
But notice that in the local case they relate to x* whereas in the semi-local case they relate

to xgp.

2. Local Convergence

The auxiliary functions are needed first for the method (40.2):
_ Jow((1—0)1)de
- 1— wo (l‘ )

gzg)zzllF<1+2¢<n><14ﬁ}w@<egwrﬁ>de>]g1@)
Wo(l‘)

g1(t)

Jo w((1-8)ga(1)1)d®

w(t)
1 —wo(ga(r)1) (1 =wo(r))(1 =

g(t) = [

wo(g2(1)t))

a(t)(1+ [, 61wy (0g2(r)t)d0)
(= 6@ (1 —wold)) PN”
where
o Q1(r,81(2)t)
“”‘{wm+%m&mm
o W)
””‘{wm+w@mm,
a(t) = (P(t7gl(t)t7g2(t)t+q)l (tngl(t)t)
and

b(1) = (1,81 (1)1, 82(1)1) + Po(g1 (1)1, &2(1)1).-
Suppose that there exists a smallest positive number p such that
0<wp(r) <1,

0<D(r)<1

and
0 <wp(ga2(t)t) < 1

for all t € [0,p). Then, the functions g;, i = 1,2,3 are well defined on the interval [0,p).
Moreover, suppose that there exist smallest positive solutions of the equations

gi(t)—le
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in the interval [0, p). Denote such solutions by r;, respectively. Then, the parameter r efined
by
r = min{r;} (39.1)

shall be shown to be a radius of convergence for the method (40.2). It follows by this
definition that for all 7 € [0, r)

0<gi(r) <1 (39.2)

Notice that in practice the smallest version of the bar functions shall be used.
The motivational estimates for the definition of the functions g; are given, respectively
by

yn =X < |F ()~ F/ ()|
1
><||/ F'(0x) 7 (F' (6" +8(x, —x*))d0 — F' (x,)) (2, — ) |
0
< Jo w((1 =) [lxy —x*[|) O, — x*|
- 1 —wo(lxn —x*[])
= g1([[xn =" Ixn —x"[| < [l —x7[| <7,
lzn =2 = [lyn—x" =2F"(x0) " (F' () = Vs %03 F1) ' (360) ~'F ()|
1429,)(1+ fy wo(8][y, —x*||)d® .
1 —wo([lxn —x*])
< gl =2 vn — x| < [l — X7,
C,—D, = Z[Znyyn;F] - [Znyxn;F] *Fl(xn)* [ynyxn;F] - [Znyyn;F]

(20, Y03 F] [y X3 F] = [z, %03 F] = F' (%),
IF' () (Co=Da) | < @l —=x" 1, Iy =", |20 —x*[])

@1 ([0 —x* ||, [[yn —x*[|) +@n < an,

IF" ()~ (2lzns yus F] = [znyXns F] = F'(x%)) |

< @(llen =X s [lyn =X, llzn —x"|)
+Qo([[yn —x*[|; |za = x*[|) = by = by < 1
and
X1 =2 = flza—x" *Fl9zn)7l JF(FI(Zn)il *Fl(xn)il)F(Zn)H
JFC;;l(Cfl*Dn)Fl(xn)ilF(Zn)H
Jo w((1=8) ][z —x*]|)d® W
- 1 —wo(l|lzn —x*]]) (1 = wo([lxn —x*[1)) (1 —wo(llzn —x*[1))

an(1+ o wo(8l|zn —x*|)d6)
(1 =) (1 =wo([lxn —x*]1))

83 (lln —x" 1) [l2n = X" < floen — 7.

l2n —x"]|

IN

Hence, we arrive at:
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Theorem 45. Under the conditions stated previously, the method (40.2) is convergent to x*.

Similarly, we present the local convergence of the method (39.3). The functions g, and
g3 are defined by

dw((1—8)g1 (t)r)do
T—wolg1(0)1)
a(t)(1+ fy wo(Bgi()r)d) »
(1=b(0) (1 —wo(e1 (1)) ’
VO (1+ s o000 |
(1—h(0)(1— @o(t,2a(0)0)) | 521

gt) =

+

1+

where
B(t) =1 (t,81(1)1) +@o(t,81(2)1),
a(t) =2¢1(t,81(1)1),
Y(t) = 1+ @o(t,82(2)1)
and
h(t) = @(t,81(1)t,82(1)1) + @o(g1(2)1, 82(1)1).

This time the conditions are: There exist a smallest positive number p such that

wo(t) <1,
wo(g1(2)r) <1,
P(r) <1,
Qo(r,82(1)t) < 1

o o o o
(VAN VAN VARSI VAN

and
0<h(r)<1

forallz € [0,p).
The motivation is respectively
lzn =" = |lyn—2" *FI(Yn)ilF(Yn) JFFI(Yn)il(An7FI()7n))F(Yn)”
[fo‘ w((1=0) |y, —x"[) )0

L=wo(llyn =)

(1 =Bu) (L =wo(llyn —x*1))
< ga(llxn =X lxn = x| < [l = x| <,
. (14 [ wo(0]|z, —x*||)dO .
[ =7 < [1+ L fo o(0] * ) X ]Han |
(1=Ba) (1= @o([lxs —x* ||, 122 —x*[1))

83 (llpen =" D) ew = x| < [l =27,

IN
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where we also used

An*Fl(yn) = Z[men;F] *Fl(xn)*Fl(yn)»

IF' ()" (An = F DI < on(lx =2 lva =)
Q0 ([[x0 = x|, [[yn —x")) = Bn <1,
||FI(X*)71(An*FI(Yn))H < 201 ([Jxn =X, [[yn — X7
||FI(X*)71[men;F]H < 1+@o([lx =X, [lza —X*[|) = Va

and

IF/) ' Ball < @l =, lyn =[] |2 — 2]
@0 ([lyn — x|, |22 —x*||) = hn < 1.

Then, the conclusions of Theorem 47 hold for method (39.3) under these modifications.

3. Semi-Local Convergence

The majorizing sequence for the methods (40.2) and (39.3) are given, respectively for fg =
0,50 =m >0 by

1
dn = / W((l *e)(sn*t;'l))de(silitl’l)?
0
1 1 2(Pl (tmsn)

= d 39.1
un Sn+ 1 7w0(tn) 1 fWO(Z’O)) ny ( )
qn = (P(tnwgm un) + (PO(u1175n)7
hy, = 14wy (tn) + (P(tmsm un)»

1
DPn = (1 JF/O wo (Sn + e(un - Sn))de)(un - Sn) ern»
hupn
1, = U+
T (=g (1= wo(in)
and
_ fo w((1—0)(tat1 —1a))dO(tar1 —tn) + (1 +wo(tn)) (tar1 — Sn)
Sp+1 = Ipp1+
1 —wp (tn+l)
and
u, = fo w((1—6)(s,—1,))d0(s, — 1) : (39.2)
1-9,
€, = (P(tmsmun) + Qo (Smun)

8n = 0O (tmsn) + Qo (Smun)
1
0, = (1 Jr/ WO(SnJFe(un*Sn))de)(unfsn)

JF/ Sn tn))de(sn*tn)

(1 Jr(PO(’/‘n»Sn))®n
(1 76”)(1 *(PO(tmsn))?

i1 = Up+
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and
fo w((1—=0)(thy1 —12))dO(tn1—1n) + (1 +wo(tn)) (tas 1 —5n)
1 —wo(tnt1) '

Next, we present a local convergence result first for method (40.2).

Sp+1 = tpt1+

Lemma 44. Suppose that foralln =0,1,2,...
wo(ty) < 1,b(t,) <1, wo(u,) <1 (39.3)

and
t, < T for some T > 0. (39.4)

Then, the sequence {#,} given by the formula (40.1) is nondecreasing and converging to its
unique least upper bound t* € [0, 1].

Proof. Tt is immediate by (40.1), (40.3) and (40.4). O

Lemma 45. Suppose that foralln =0,1,2,...
O(ty) < 1, wo(ty) < 1,e(ty) < 1, Qo(tn,s,) <1 (39.5)

and
T, <T. (39.6)

Then, the sequence {7, } given by the formula (40.2) is nondecreasing and converging to its
unique least upper bound t* € [0, 7].

Proof. It is immediate by (40.2), (40.5) and (40.6). O
The motivation for the construction of the majorizing sequences are respectively

lzn =yull =1 =F'(xa) " F(2a)
+2F" () ™ (F () — [ns X3 F)F () ™' F () |

! 201 (s — 0 . lyu — 0] >
SIMM%MMP ol —xl) |
< up— Sy,

F(ya) = F(n)—F(xa) = F (yn) 0 —Xn),
F(z,) = (zn) F(yn) +F(ya)

1
IF' (x0) ™ F(za)ll - < (1+/ wo([[yn = X0l +8l[zn — yull)d0) |20 — yu |

+ [ (=)0l

p11§p117
nr1 —zall - < ICTF (xo) 1| ' (x0) ™" D
| F" () = F)x0) [ | F (x0) ™' F 92 |

Tnt1 — Up,

IN
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since
IF' (o) ™' Dall - < [1F"(x0) ™ (F" (xn) = F' (x0) + [z, a1 F]
= [y X3 F] 4 F' (x0)) |
< T wo(llren —x0l1) +@([lxa —xo0ll, llya =0l 12 —x0[)
}_lnghny
_ 1
di = [ w((1=8)ls = l)d8lyn—x,] <,
IF' (x0)~'Cull < @(llxa = o, [y —xoll, |z — xo])
+¢0([1zn = xoll, [[y2 —x0l[)
= qgn<qn<l1
and ) |
F'(x0) 'F(x
Y1 = X1 || < )l < Snt1 ~Ing1s
1= wo([xn11 = xol])
since
F(xus1) = F(xn41) = F (%) = F'(0) (1) + F (%) (X1 = )
SO

IF o) Flni)ll < [ (01 =0) il 0l il
I (30) ™ (P (30) 4 F/ (32) = F'(30)) 1 =3 |

1
< [ w1 - 0)(t —1)dB(t, 1 1)
(1m0 (60)) (tn 1 — ).

Hence, we arrive at:
Theorem 46. Under the conditions of Lemma 46 and the conditions connected the ”¢* and
“w* functions to the operators on the method (40.2) this sequence converges to a solution
x* € Ulxo,t"] of the equation F(x) = 0. Moreover, the following error bounds hold for all
n=0,1,2,...
[y =Xl < $0—tn,
20— yull <ty —sn
and
[xn+1 = znll <t —un
Similarly, the motivation for the method (40.2) is:
Similarly, for the method (39.3) we have

1F (x0) ™ (An = F'(xo)) [l < @1 ([lxn 0]l lyn —20]l)
+@o([lxn —xol[, lyn —x0l) = 8 < 8y < 1,
lew—yull < (1AL F o) [HIF” (o) = F (v

fOl W((l *G)Hyn *an)deHyn *an <
1-9, -

IN

n —Sn,
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en = O(|[xn —xoll;[[yn —xoll; |z — Xoll)
+@o([lyn —xoll; l|lzn —x0l]) < en <1,
F(z,) = F(z0) —F(n)+F(n),

1
IF' (x0) ™' F(za)ll < (1+/O wo([[yn —x0]| +8llzn — yn | )dO]|2n — ynll

1
+ [ (1 =8) =l

Pnet = zall < Wznsyus F17'F (o) [1F (x0) ™z, v F |
1By F! (x0) [ [|F' (x0) ™ F (za) | i
(1+@o(llzn —x0ll, [lyn —x0]1)) ©n

(1 =@o(llxn —xoll, [lyn —xoll)) (1 — &)
S tn+1*un.

IN

The estimate for the iterate s, is given in the previous method. Then, the conclusions of
Theorem 46 hold for the method (39.3) under these modifications.
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Chapter 40

Bilinear Operator Free Method for
Solving Nonlinear Equations

1. Introduction

The aim of this chapter is to extend the applicability of a third order Newton-like method
free of bilinear operators for solving Banach space valued equations. Using majorant func-
tions that are actually needed, we present a finer convergence analysis than in earlier studies.
Let By, B, be Banach spaces, Q C B; be a nonempty open set and F': Q — B, be a
C! (Q) operator. A plethora of applications from computational sciences can be formulated
like nonlinear equation
G(x)=0. (40.1)
The task of finding a solution x,. € Q in closed form is achieved only in special cases. That is
why iterative procedures are mostly utilize to generate iterates approximating x,. A survey
of iterative procedures can be found in [1] and the references there in (see also [2, 3,4]).

In particular, consider the following third-order Newton-like procedure defined for xy €
Qandeachn=20,1,2,...by

Yo = Xp+ gl(xk)il g(xk)
and (40.2)

Xn+l = Xn *A;l g(xn)v

has been used [1], where A, = g'(xn)[xn,y;g]*lg(xn), [,3G]: QxQ — L(B;,B) is
a divided difference of order one [2, 3,4]. The motivation, derivation and benefits out of
using procedure (40.2) over third-order ones such as e.g. Chebyshev’s (containing a bilinear
operator) have been also well explained in [2,3,4].

The semi-local convergence analysis was based on generalized continuity conditions,
and the results are given in non-affine invariant form. Motivated by optimization consid-
erations we present a finer semi-local convergence analysis with benefits: results are pre-
sented in affine invariant form and under weaker conditions. Relevant work can be found
in [6,7,8,9,10,11,12,13,14].

The results in [1] are presented in the next Section to make the chapter as self contained
as possible and for comparison. More details can be found in [1]. The new semi-local

411
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convergence analysis can be found in Section 3. The examples appear in Section 4 followed
by the conclusion in Section 5.

2. History of the Procedure

Throughout the chapter U (xo,p) = {x € B; : ||[x—xo|| < p} and U[xp,p] ={x € By : ||x—
xo|| < p} for some p > 0.

The following semi-local convergence result for procedure (40.2) was shown in [1, 2,
Theorem 3].

Theorem 4. Suppose:

(D
1be,y: G] =[5 3: Gl < f([lx =], [y =) (40.1)
for all x,x,y,y € Q, where f:S§ xS — Sis anon-decreasing and continuous function
satisfying
1
f(07t):f(t70):§f(t7t)' (40.2)

Q) |G (x0) "] < B for some xg € Q with G'(x¢) " € L(By, By).

(3) Max{[|G'(x0) "' G (x0) I, |45 G (x0)[|} < a.

My

(4) Equation <1Tf(t,t)

Bf(a,a).

>t 1 = 0 has a smallest solution 7, where My =

My
1 —2Bf(T,T)
ation {x,} given by method (40.2) exists in U(xo,T), stays in U(xp,T) for each
n=0,1,2,..., lim x, =x, € U[xp,T] and F (x,) = 0. Moreover, the limit point x, is
n——00

1
S If BF(T,T) < 3 and Ulxy,T] C Q, then M = € (0,1). Then, iter-

the only solution of equation F(x) = 0 in U [xo, T].

Remark. Conditions (40.1) and (40.2) are in general restrictive and may not hold although
method can converge. Results are given in non-affine invariant form. The disadvantages
over affine invariant results are well explained in the literature [2, 3,4, 8,9]. The error
bounds on ||x,+1 — X,||, ||x« — x,|| can be tighter, if function f is replaced by a tighter one.
The uniqueness of solution may be extended. We positively answer to all these concerns in
Section 3.

3. Convergence Analysis

The semi-local convergence analysis is based on some constants and real functions. Let A
and u be non-negative constants. Set § = [0, o).
Suppose there exists:
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(i) Function gp : S — S non-decreasing and continuous such that equation
go(t)—1=0
has a smallest solution pg € § — {0} with pg > A. Set Sp = [0, po).

(i) Function hg : So X So — S non-decreasing and continuous in both variables such that
equation
ho(t,t)—1=0
has a smallest solution p; € So — {0} with p; > u. Set p» = min{pg,p1},p3 =
maX{p07 pl} and S = [07 PZ)
(iii) Equation
p(1)—1=0
has a smallest solution p € S} — {0} with p > ps3. Set S, = [0,p). Define function
q:S> — Sby

where
g0(t)* +2g0(t) + ho(t,1)
plt) = : l—l(z)o(t,t) :

Consider function & : S5 — S,k : So — S to be non-decreasing and continuous.

Define constants (1 (0))hy(u)
+ g0 1
o = h(}) + 1—ho(0,u)

ne—H = 80(7»)2+2go(7u)+h0(07y)7
I =go(A) 1— o (0, 1)
1
1—pi ’

8 =qi04,q1 =
functions on the interval S, with values in S by

o(t) =h(A)+ (1+g0(2))m(Viu)

1—ho(t,t)
1) = 20 8(0) = a()a)
()

(P(l’) = ('Yl + m +81 + 1)7\.* 1.
(iv) Equations
V() —1=0

and

8(1)—1=0

have smallest solutions p4, ps € S; — {0}, respectively with p4 > p3 and ps > p3 and
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(v) Equation

¢(t) =0
has a smallest solution r € S, —{0}. Set S3 = [0,r). Then, it follows from these
definitions that
0<go(A) <1,0<go(t) <1, (40.1)
0<p1 <1, (40.3)
0<p(r) <1, (40.4)
0<vy() <1, (40.5)
0<9(r) <1, (40.6)
and
0<o(t) <1, (40.7)

hold for all # € S5. Additionally the following conditions are used:

(vi) There exists xo € Q, A > 0,u > 0 such that g'(xo)fl,Aal € L(B,By),
16" (x0) ™' G (x0) | < s,

A G(xo)| <M.

and

16" (x0) ™! ([, G1 = G'(x0)) | < ho([|x = o], Iy —xol]).
vii) || G'(x0) " (G"(x) — G (x0)) || < go([lx —xo0]|) for each x € Q. Set Qo = U (x,po) N Q.
viiD) |G (x0) ™ ([ G] = G'(x)| < A([ly —x|) and
16 (x0) ™" (Ix,y: 6] = G'(0)) || < A ([ly =)
for all x,y € Qg and
(ix) Ulxo,r] C Q.

Next, we need some relations connecting the iterates {x,},{y,}.

Lemma 46. Suppose iterates {x,},{y,} exist for each n =0,1,2,.... Then, the following
assertions hold:

Bn+l = [xn+17xn; g] —A,
= [xn+17xn; g] - gl(xn) (408)
+G (%) [Xn, Y3 grl([xn»)’n; Gl —G'(x)),
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G'(x0) (A1 = G'(0) = G'(x)7(G(mr1) — G'(x0))

X [Xn,yn: G171 G (%0) G (x0) (G (Xng1) — G'(x0))
+G'(x0) (G (xns1) — G'(x0)) [xn, yn: G171 G'(x0)
Xy G171 G (x0) G (x0) !

X (G (xnt1) = X, yn3 G) (40.9)
gl(xo)flg(xnﬂ) = gl(xo)lenH(an*xn) (40.10)
Knt2 =Xngl = ;+1g(xn+l)
= An+an+l(xn+l —Xp)
= A 1G'(%0)G (x0) " Bus1 (Xng1 —Xn).- (40.11)

Proof. By the definition of A, and B, |, we have in turn that

Buyi = [as1,%03 Gl — ( n)
+G' () = G (%) [, 303 G171 G (x)
= 1,20 G — (xn) ( n) (1= [, yu3 QTIG'(xn))
= [ur1,203 G — (xn)
+G () s s G171 (B v G1 = G (),

showing (40.8). Using the definition of A, |, we get in turn that

SO

Apy1— gl(xo) = (gl(xnﬂ) - gl(xo))[xann; g]ilgl(xnﬂ)
+G'(x0) [Xu, Yn: G1' G (Xn 1) — G (x0)
= (6" (1) = §"(x0)) sy G171 (G' (1) — G'(x0))
(G (1) = G'(x0)) [ yus G1' (G (xa41) — G'(x0))
H(G' (nt1) = G (%0)) [, v G171 G (x0)
+G'(%0) [Xn, 03 G' G (1) — G (x0),

~— —

G'(x0) (A1 = G'(x0) = G'(x0)(G'(xur1) — G'(x0))
X[, yn3 G1' G (%0) G'(x0) (G (xns1) — G'(x0))
+G'(x0) (G (xus1) — G (%0)) ¥, yus G1' G (x0)
+ 1,y G1G'(%0) G'(%0) ™ (G (Kn 1) — [, ym3 G,

showing (40.9). Moreover, by the definition of method (40.2) we can write

G(nt1) = G@nt1) — G(xn) + G (xn)
= ([xn+17xn; g] *An+l)(xn+l *xn)

= Bn+l(xn+l *xn)y
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o)
G'(x0) "' G (nr1) = G'(x0) ™ Bug1 (Xn1 — Xa),
showing (40.10). Furthermore, by the second substep of method (40.2) and (40.10) we
obtain
X2 =X+l = A;;llg(xnﬂ)
A;;lanH (Xns1—Xn)
= A;;+11gl(xo)gl(xo)ilBIHI(szl*xn)-

Next, we show the semi-local convergence result for method (40.2).

Theorem 48. Suppose conditions (i)-(ix) hold. Then, iterations {x, }, {y, } initiated at xo € Q

and produced by method (40.2) exist in U (xo,r), stay in U(x,r) for each n =0,1,2,...,
lim x, =x, and G(x.) =0.

Nn—-o0

Proof. It follows from (vi), the definition of 7 that yg is well defined, and

lyo —x0ll = 116" (x0) ' G (xo) | S < 1.

Thus, yo € U(xo,r). Iterate x; is well defined by method (40.2) for n =0 and ||x; — x| <
u<r,sox; €U(xp,r). Letw € U(xo,r). Then, by (vii)

16'9%0) ™ (6" (W) — G'(x0))I| < go(llw —2x0]) < go(r) < 1. (40.12)
Hence, G'(w)~! € L(B,,B,), and
1

[Iw—2o[)

16'(w)~' G (x0) || < T (40.13)

follow by a Lemma due to Banach for invertible linear operators [3,9,11]. By (40.9) and
(viii), we get

o[l 1 —xol)?
1 —ho ([l —xo [, [[yx —xoll)
8o([[x%+1 — xo]|
1 —ho ([l —xo [, [|yx —xol|
go([|xx+1 —x0l|) +o(|]xx — xol], [|yx — xol])
1 —ho ([l —xo |, [[yx —xoll)
= pr1<l,

16" (x0) (A1 = G'(xo) [l <

+

SO
1Al 6/ (o)l < qes (40.14)

and iterate xi4, is well defined by the second substep of method (40.2). By the definition
of By in (40.8) and 0| we get in turn that

1G"(x0) "' Bearll < h(]lxer1 — x|

L (U go(floe = xo [ ) (e —xell) Gt (40.15)

1= go ([l —xol[, llyk = xoll)
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It then follows from (40.11), (40.14) and (40.15)

1At G (x0) 11| G (x0) ™" Bit | k1 — x|
e+ 1041 || X1 — Xk |
3(r)[|6-+1 — x| (40.16)

||xk+2*xk+1||

VAN VAN VAN

where

SN o ifk=0

8(r) = { 8(r) ifk=1,2,....
Similarly, by the first substep of method (40.2), (40.13) (for w = x;11) and (40.8), we have
the estimate

e—xell < 116" (0) " 6 o)l 6/ (x0) " G (x0)
< h e
= T go(lxe—xol])
< ()l — x|l (40.17)

where
o m itk=1
V(r)_{ V) ifk=2,....

Notice that we also used

1 —xoll < Il —xel] 4+ e — x|+ 4 [lea — 21 || + [|]x1 — xo|
S oy W Ly WY 2 WP 3 WY §
1—8" !
(8 s +06; +1)A
82
< (T8N (40.18)

(by (v)), s0 xx+1 € U(xp,r). Similarly,

[Iye=xoll < [y = x| =+ [l = xol
2

< YA+t +82x+(f—8+81+1)x
2

< (yl+18—8+81+1)x<n (40.19)

Hence, iterate y; € U (xo, r). Similarly, we have xx 2, ye+1 € U (xg, 7). It follows from (40.16)
that
k42— xeq1 ]| < 81 (40.20)

Let m > 1 be a positive integer. Then, it follows by (40.20) that

[ktm — X1l < Xk — Xem—1 ||
I Xrm—1 = Xgm—2|l - X2 — X1 |
(8k+m71+8k+m72+”‘+8k+1)?\‘
(sm*2+5m*3+...+1)5k+1x

8m 1

= 178 — I < I (40.21)

A
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It follows that sequence {x;} is complete in a Banach space B;, and such it converges to
some x, € Ulxo, ], (since U [xy, r] is a closed set.). Moreover, using (40.10) and (40.15), we
obtain

16" (x0) ™" G (1) || < 0(r) vkt — x| (40.22)

By letting k — oo in (40.22) and using the continuity of G we deduce G (x,) = 0. Further-
more, by letting m — o= in (40.21), we conclude

e, — x| < & (40.23)
O

Next, we present a uniqueness of the solution result by not necessarily using all the
conditions of Theorem 48.

Proposition 27. Suppose

167" (x0)(G"(x) = G'(x0)) || < go(llx—x0]|)

for all x € Q, the point x, is a solution of equation G(x) =0 with x, € Ul[xo,b] C Q for
some b > 0 and these exists ¢ > b such that

/()lgo((le)b+ec)d6< 1.

Define Q| = Ulxo,c] N Q. Then, the point x, is the only solution of equation G (x) =0 in the
set .

1
Proof. Lety, € Qi with G(y.) = 0. Define operator Q = / G'(x. +6(yx —x.))d0. Then,
0

we obtain in turn that

1G"(x0) "' (@ = G'(x))|| < /Olgo((l9)||x*x0||+9||y*x)||]d9
< /()lgo((le)b+ec)d6<1.

So, we conclude y, = x, by the using the identity 0 = G (y.) — G(x.) = Q(y« —x.), and the
invertibility of linear operator Q. U

Remark. The concerns in Remark 2. were addressed by Theorem 48. In particular, notice

that majorant functions are tighter than f, g and the latter implies the new functions but not
necessarily vice versa.

4. Numerical Experiments

We compute the radius of convergence in this section.
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Example 11. Let us consider a scalar function G defined on the set D = Ulug, 1 — s| for
s€(0,1) by

Gx)=x"—s.
1—
Choose xg = 1. The conditions of Theorem 48 are satisfied provided that y = TS, go(t) =
1 1 1—s
3—s)t,ho(u,t) = =(3—s)(u+1t), h(t) =) =1+ —)t, A= 5———,y0 =
(B =), holu,t) = 53 =s)(u+1), h(t) = m(r) = (1+5—) ——L

xXp — g'(xo)*l G (x0). Then, we have

Po=pP1 = P2 =p3 =0.4878,p =0.1152, ps = 0.3565, ps = 0.1079 and r = 0.0962.
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