Self-Service
Analytics

with———
Power Bl

Learn how to build an end-to-end analytics solution in Power BI

Annu Roy
Rishiraj Deb

Gaurav Aroraa
g

Self-Service Analytics with Power BI

Learn how to build an end-to-end analytics solution in Power BI

Annu Roy
Rishiraj Deb

Gaurav Aroraa

www.bpbonline.com

Copyright © 2024 BPB Online

All rights reserved. No part of this book may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means, without the
prior written permission of the publisher, except in the case of brief

quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the
accuracy of the information presented. However, the information
contained in this book is sold without warranty, either express or implied.
Neither the author, nor BPB Online or its dealers and distributors, will be
held liable for any damages caused or alleged to have been caused directly

or indirectly by this book.

BPB Online has endeavored to provide trademark information about all of
the companies and products mentioned in this book by the appropriate use
of capitals. However, BPB Online cannot guarantee the accuracy of this

information.

First published: 2024

Published by BPB Online

WeWork

119 Marylebone Road

London NW1 5PU

UK | UAE | INDIA | SINGAPORE

ISBN 978-93-55518-200

www.bpbonline.com

Foreword

Data, Analytics and Reporting have fascinated me ever since I started my
career as a software developer in IT industry. It has been a
transformational journey so far, wherein I worked on a wide spectrum of
products and technologies and helped customers across industries with the
best business intelligence solutions to meet their objectives. Being in
industry for more than 19 years and a leader of Analytics and Cloud
practice, I have had the opportunity to build capabilities in Analytics and
Reporting space and drive strategic initiatives to evangelize business
intelligence, maximize leverage of the best tools, and cultivate a culture
for continuous innovation, capability enrichment, top talent development,

process assurance, and quality.

Power Bl is a suite of business intelligence, reporting and data
visualization products and services that helps organizations to create a
data-driven culture with business intelligence for all. It is a range of
software services, apps, and connectors that work in conjunction to turn
unrelated data sources into insights that are cohesive, interactive, and
visually immersive. In any business, system generates a wide variety of
data in the size of terabytes, petabytes or more, and business intelligence
is used to analyze this data and create actionable insights. The
organization’s success relies on these decisions so its critical that
companies leverage the potential of business intelligence and reporting to
make complex business decision and be successful in the competitive

world.

Business intelligence is critical for making decisions in today’s
competitive market. Irrespective of the business size, to truly understand
the business performance and monitoring critical metrics is essential.
Another key aspect is the self-service that enables end-users to access,
analyze, and interpret data without relying on extensive I'T support or
expertise. With the help of self-service Business Intelligence, business
users can create their reports and visualizations using intuitive tools and
user-friendly interfaces. Power BI is one such powerful tool that can
generate insights into data and drive informed decisions. As per Gartner,
Power Bl is a powerful and flexible platform for self-service and
enterprise business intelligence. One of the standout features of Power BI
is its ability to connect to and visualize any data, enabling users to reveal

insights, and create visually stimulating reports quickly and easily.

This book provides a good overview of why business intelligence
reporting is critical to success of any business and how Power BI enables
any organization to provide data insights to support decision making. It
starts with “why” providing an insight into the importance of visualization
and musically taking you through journey of how Power BI addresses
different dimension of problems in this space. It provides a detailed view
of key features of Power BI and the capabilities of both built-in and
custom visuals. What I liked the most is the way authors have provided a
simplified step-by-step journey into wide range of features and
capabilities of Power BI. How it can be used to build customizable
dashboards, drag-and-drop report authoring, data modelling, managing
large data volume and more. The right mix of business scenarios,
challenges, and pictorial view of how Power BI features can be used to

solve the problems is commendable.

As areader, I find this book relevant. Its easy to follow details makes it
very helpful for me and anyone interested in Power BI. This book justifies
the title and provides adequate information on Power BI with clear
objectives and a step-by-step approach to enhance your knowledge and

provide you with good sources of information.

Kumar

Dedicated to

My son Shikhar an ardent reader and budding writer

Roy

My daughter Irene Deb with all my love and best wishes
Deb

My beloved wife Shuuby & My Daughter Aarchi

Aroraa

About the Authors

Annu Roy is a Service Area Leader managing and collaborating with a
team of technical experts to help clients adopt modern ways of working in
their IT landscape. She is a PMP certified, senior Program Manager with
experience in Complex Program Management. She has led diverse and
distributed, multi-disciplinary teams of Application Leads, Architects,
Business Analysts and technical resources located in different
geographies, spanning Government, Healthcare and Finance industries.
She is a certified Scrum Master, SAFe Agilist and ITIL V3 Expert. With
more than 2 decades of experience in the IT Industry working with
multiple big brands, she has a passion for mentoring students and
professionals and believes that every individual deserves an opportunity to

learn and grow.

Rishiraj Deb is a Senior Consultant and Subject Matter Expert, having
vast experience in designing & delivering complex data analytics and
business intelligence projects, helping businesses gain a better insight on
their data. Rishiraj strongly believes enterprise data is an asset and is
fascinated about creating data driven solutions using various data science
and data analytics platforms and frameworks. Rishiraj has a master’s
degree in computer science apart from having various professional
certifications. Having worked for multiple big enterprises across
industries, he is familiar with the real-life challenges businesses face today
regarding utilizing their data and making the most out of it. Various
concepts explained in the book should help address most of those

challenges.

Gaurav Aroraa is a passionate technology leader and hands-on
technologist, with a track record of driving technical innovation. Gaurav
has delivered solutions for enterprises and start-ups operating in
leadership, management, architectural, and development capacities.
Gaurav has over 26 years of experience, collaborating with some of the
most well-known technologies like Java, Microsoft, Angular, React,
Python, PHP etc. pertaining to the domains Medical, Media, Construction,
Gaming, Finance, ATM, Supply-chain, and so on. Gaurav has a doctorate
in computer science (Machine Learning) from California Public
University. Gaurav is a Microsoft MVP award recipient. He is a Mentor of
Change with AIM NITI Aayog, Govt. of India, Business Coach with
Business Blaster, Govt of NCT of Delhi. He is a lifetime member of the
Computer Society of India (CSI), an advisory member and senior mentor
at IndiaMentor. He has authored books across-the-technologies. Recently,
Gaurav has recognized as a world record holder for writing books in

exceptional technologies. His recent publications are:

Microservices by Examples Using .NET (BPB)

Data Analytics Principles, Tools, and Practices (BPB)

Enterprise Integration with MuleSoft (BPB)

About the Reviewers

Pujarini Mohapatra is a seasoned professional with more than 15 years in
Enterprise Software Services, Product Development & Management. With
deep expertise in Enterprise Software and strategic product delivery,
Pujarini has led large teams through dynamic business environments. She
has excelled in managing complex programs, overseeing Product
Development, and driving Customer Acquisition. Her domain spans

Finance, Banking, Sales, Media & Robotic Process Automation.

She is currently working as a Senior Engineering Manager Lead at
Microsoft, Power Platform Customer Advisory Team. In her previous role,
she worked as an Associate Director at Novartis, Co-founder at InteGen
IT Services, Wells Fargo, Tech Mahindra, and Microsoft, showcasing her

impact in architecture, automation, and leadership.

Pujarini holds an MCA from ICFAI University and completed the General
Management Program at the Indian School of Business. Her passion for

innovation and strategic leadership define her journey.

Abhishek Mittal is a Data Engineering & Analytics professional who has
more than 9 years of experience in business intelligence and data
warehousing space. He delivers exceptional value to customers by
designing high-quality solutions and leading their successful

implementations.

His work entails architecting solutions for complex data problems for
various clients across various business domains, managing technical scope

and client expectations, and managing implementation of the solution.

He 1s a Microsoft Azure, Power BI, Power Platform and Snowflake
certified professional and works as Senior Architect with Nagarro. He is
also a Microsoft Certified Trainer. He is very passionate towards learning
and exploring new skills. He is gregarious in nature and always believes in

sharing knowledge and helping others.

Acknowledgements

Annu Roy: My heartfelt gratitude goes out to my colleagues and mentors,
Dr. Gaurav Arora and Deepak Gupta, in this journey, for showing the path,

and then guiding continuously towards the goal.

My inspiration to undertake anything challenging always comes from my
mother, Ms. Krishna Roy, who brought up four of us and provided the best
education to us despite not having formal education herself. I continue to

draw my courage and belief to be able to undertake difficult tasks from
her.

The most special encouragement and motivation comes to me from my

son, who always inspires me to keep up with the digital generation.

Thanks to BPB for giving us this platform to share knowledge and grow
ourselves in the process. I would also like to thank Rishiraj Deb and
Gaurav Arora for their valuable contribution towards making this
endeavour a success, and the technical experts, reviewers and editors who

made every effort to help us produce a quality outcome.

Last but not the least, special gratitude to the readers for showing their
interest in this topic. I wish you a pleasant learning experience while
reading this book.

Rishiraj Deb: I would like to express my heartfelt gratitude to everyone
who contributed to the creation of this book. Your unwavering support and
encouragement have been a constant source of strength throughout this

writing journey for me.

First and foremost, I want to thank the publisher for believing in the
potential of this work and providing the platform to share my knowledge
and thoughts with the world.

To my dear mother, Anita Deb, and brother, Biswapriya Deb, your belief

in my abilities has fuelled my determination to bring this book to life.

Finally, my deepest appreciation goes to my loving wife, Deboshree Deb.
Your understanding, patience, and continuous encouragement have been

invaluable during the countless hours I spent writing this book.

To my co-authors, thank you for your collaboration and contributions.

Your insights and discussions have enriched the ideas within these pages.

To all the readers, it is with utmost sincerity that I share this
acknowledgement. I hope that the book proves to be useful to you, just as

it has been shaped by my own experiences and learnings.
Thank you all for being a part of this incredible journey with me. Your

support means the world.

Gaurav Aroraa: In life, it is hard to understand things when you do not

find support. My family is one such support system, and I am the luckiest

to have them. I would like to thank my wife, Shuuby Arora, and my little
angel, Aarchi Arora, who gave me permission to write and invest time in
this book.

A special thanks to the BPB team. Also, a big thanks to Rishiraj Deb,
Annu Roy, and Rajesh Kumar. It was a long journey of revisiting this
book, with valuable participation and collaboration of reviewers, technical

experts, and editors.

I would also like to acknowledge the valuable contribution of my
colleagues and co-worker during many years working in the tech industry,
who have taught me so much and provided valuable feedback on my

work.

Finally, I would like to thank all the readers who have taken an interest in
my books and for their support in making it a reality. Your encouragement

has been invaluable.

Preface

Data visualization and analysis is a critical task for enterprises that require
a comprehensive understanding of the latest technologies and
programming languages. Power Bl is one of the tools that have become
increasingly popular in the field of data analysis and visualization for

enterprises.

This book is designed to provide a comprehensive guide to touch every
shore of Data Analytics and Visualization with the help of Power BI. It
covers a wide range of topics, including Data discovery (ETL capabilities
etc.), Data Modeling, Report Distribution and management, covering

business use-cases.

Throughout the book, you will learn about the key features of Power BI
and various analytic tools. You will also learn about best practices for
building enterprise level analytics with numerous practical examples to

help you understand the concepts.

This book is intended for developers who are new in the field of analytics
and want to excel with the power of these tools. It is also helpful for
experienced developers who want to expand their knowledge of these
technologies/tools and improve their skills in building robust and reliable

applications for data visualization and analytics.

With this book, you will gain the knowledge and skills to become a

proficient developer in the field of enterprise development using Power Bl

and related tools.

Chanpter 1: Getting Started with Power Bl - elaborates the need of data

visualization in today’s data driven business world and explains why
Power BI can be a tool of choice. The building blocks of the tool will be
discussed here along with a quick overview of each of them. It would

hand-hold the readers with the required installation processes.

Chapter 2: Data Discovery Using Power Query - discusses the features of

Power Query and the capability of connecting to different data sources.
The common data transformations would be discussed to shape the data as
per business needs. Readers would get introduced to the M (Mashup)

language and its uses in the context of Power Query.

Chapter 3: Data Modeling in Power Bl - explains about modelling data in

Power BI desktop. Power Bl works best with a star schema instead of a
big denormalized table. Here we elaborate the star schema design and its
relevance to develop Power BI data models optimized for performance
and usability. Also, different ways of implementing custom calculation
using Data Analysis Expressions (DAX) would be discussed to enhance
the model.

Chapter 4: Visualizing Data in Power BI - elaborates how to create

visualizations in Power BI. Commonly used visuals will be discussed in
detail along with different formatting options to impart the knowledge of
creating a positive user experience. This chapter also discusses the default

visuals and the visuals from the marketplace.

Chapter 5: Managing Reports in Power Bl Service - gives special attention

with explanation of Power BI reports, hosted on an Azure SaaS platform
called Power BI Service. This chapter focuses on covering important
topics from the service including workspace management, access control
etc. along with data gateways and why to use them. This chapter also
explains topics like dataflows and apps along with outlines of how to

implement data security in Power BI.

Chapter 6: Working with Large Data Volumes - discusses concepts of big

data reporting, which is a pressing need across many industries, thanks to
the ever-growing volume of data. The chapter discusses a few of the key
capabilities and features of Power BI for handling very large amounts of
data. A few external tools that can be integrated easily with Power BI
would be discussed here - which help in terms of source control, scripting

& metadata deployment.

Chapter 7: DAX Reference Guide - provides a comprehensive guide of
Data Analysis Expressions The chapter also explains the various
commonly used DAX functions, using suitable examples. Readers can
also refer to the expressions and customize them as per the business

requirement.

Chanpter 8: Use Case- Creating a Risk Report in Power BI - discusses how

to make use of the concepts learnt with the help of a real-life business use-

casc.

Coloured Images

Please follow the link to download the

Coloured Images of the book:

We have code bundles from our rich catalogue of books and videos

available at Check them out!

Errata

We take immense pride in our work at BPB Publications and follow best
practices to ensure the accuracy of our content to provide with an
indulging reading experience to our subscribers. Our readers are our
mirrors, and we use their inputs to reflect and improve upon human errors,
if any, that may have occurred during the publishing processes involved.
To let us maintain the quality and help us reach out to any readers who
might be having difficulties due to any unforeseen errors, please write to

us at :

errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by the
BPB Publications’ Family.

Did you know that BPB offers eBook versions of every book published,
with PDF and ePub files available? You can upgrade to the eBook version
at www.bpbonline.com and as a print book customer, you are entitled to a

discount on the eBook copy. Get in touch with us at :

business@bpbonline.com for more details.

At you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on

BPB books and eBooks.
————————— "

Piracy

If you come across any illegal copies of our works in any form on the
internet, we would be grateful if you would provide us with the location

address or website name. Please contact us at business@bpbonline.com

with a link to the material.

If you are interested in becoming an author

If there is a topic that you have expertise in, and you are interested in
either writing or contributing to a book, please visit We have worked with
thousands of developers and tech professionals, just like you, to help them
share their insights with the global tech community. You can make a
general application, apply for a specific hot topic that we are recruiting an

author for, or submit your own idea.

Reviews

Please leave a review. Once you have read and used this book, why not
leave a review on the site that you purchased it from? Potential readers
can then see and use your unbiased opinion to make purchase decisions.
We at BPB can understand what you think about our products, and our

authors can see your feedback on their book. Thank you!

For more information about BPB, please visit

Join our book’s Discord space

Join the book’s Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the
Authors:

https://discord.bpbonline.com

Table of Contents

1. Getting Started with Power BI

Introduction

Structure

Objectives

Importance of visualization

Introduction to Power Bl

Building blocks of Power BI

Installing Power BI

Quick Tour of Power BI Components

Flow of work in Power Bl

Power Bl licensing details

Conclusion

Knowledge check

2. Data Discovery Using Power Query

Introduction

Structure

Objectives

Connecting data sources

Data connectivity modes in Power Bl

Query folding

Introduction to the Mashup language

Common data transformations in the query_editor

Data cleansing in the query_editor

Appending and merging data

Power Query parameters

Conclusion

Knowledge check

3. Data Modeling in Power Bl

Introduction

Structure

Objectives

Star schema overview

Relationships in the Power BI data model

Implementing a star schema in Power BI

Introduction to DAX

Calculated tables

Calculated columns

Measures

Optimizing models in Power Bl

Conclusion

Knowledge check

4. Visualizing Data in Power BI

Introduction

Structure

Objectives

Creating a report template

Creating the first visual on Power BI

Bar charts and column charts

Slicers

Trend analysis

Visualizing geographical data using maps

Use of cards

Tables

Matrix

Introduction to custom visuals

Bookmarks pane and Selection pane

Report tooltips

Visual interactions in Power Bl

Analyzing report performance

Conclusion

Knowledge check

5. Managing Reports in Power BI Service

Introduction

Structure

Objectives

Workspaces in Power Bl Service

Publishing reports

Working with reports on Power BI Service

Exporting data from a report

Admin Portal

Workspace user roles

Managing security,

Dashboards and alerts

Refreshing data and data gateways

Apps

Dataflows

Conclusion

Knowledge check

6. Working with Large Data Volumes

Introduction

Structure

Objectives

Power Bl premium features

Table partitioning

Configuring an incremental refresh

Refresh management using SSMS

Managing datasets using the Tabular Editor

Metadata deployment using the ALM Toolkit

Conclusion

Knowledge Check

7. DAX Reference Guide

Introduction

Structure

Objectives

Aggregation functions

Date-Time functions

Filter functions

Information functions

Logical functions

Relationship management functions

Text functions

Table specific functions

Time intelligence functions

Other functions

Conclusion

Knowledge Check

8. Use Case - Creating a Risk Report in Power Bl

Introduction

Structure

Objectives

The reporting requirements

Creating the design

Performing transformations

Creating the report

Publishing reports and scheduling refreshes

Creating a cross-workspace design

Report personalization

Analyze in Excel

Conclusion

Knowledge Check

Knowledge Check Answers

Index

C
HAPTER
1

Getting Started with Power Bl

Introduction

Introducing readers to the world of business intelligence, and one of the
most popular tools in this domain which is Power BI. In this chapter, we
will try to understand why we need Power BI in the first place and what
different dimensions of problems it addresses. We will get familiarized
with the tool and the components, see how to set up the environment as
well as understand the cost factors involved with different licensing
options, which should help us to create a solid foundation for the journey

we begin with this book.

Structure

In this chapter, we will discuss the following topics:

Importance of visualization

Introduction to Power BI

Building blocks of Power BI

Installing Power BI

Quick tour of Power BI components

Flow of work in Power BI

Power BI licensing details

Objectives

This chapter aims to make the readers understand the core concepts of the
tool without covering individual topics in detail. By the end of the chapter,
readers should be familiar with the common terminologies and have an
understanding of the general working principles. This should help us to
dive deep into individual components in the subsequent chapters of the
book.

Importance of visualization

Data is the new currency — maybe all of us who work with data are familiar
with this phrase. However, it is not of much use if the data is not structured or
modeled and cannot be visualized. Our minds remember and understand
visuals in a much better way in comparison with flat tabular data, and hence,
comes the need of creating visuals from raw data, which should be

representative of the dataset on which they are built.

If we want to understand this concept further with an example, let us consider

the small sample dataset as illustrated in Figure

razsseler B pecounts B neles

[v [Cmireies Miir = FIRE 5 A0 5 B & BaMA § £ WA IEE550 § TEARRGR | V10 S 34
Pliitea 1 siinsa o Bt s Wit it Miii 1 IEra I A 5 o 8 AN 5] Pk LEEIL N SRIAEAG | 101 M 2P
M ezt kuaree GBI Mg £17E 5 LT] P] LA G 3 (1 Ny LDV | UL A 2004 BN
Mdwarer wermany L) Marg S ERTE Ly 5§ L3I 5 b 1 LR 5 AT L 200 :dJ»l‘
Midnzake. Kigsiey Careras Myre 25 EXTER FEXTTINE T T T T 5 SEM AT T LELSUAC | ULUeR0L4 200
Cazanna e Gy Crrsie = Mur 1513 5 AN 5 WL 5 SMEI0AN 5 5 SELERM 5 1IEIILEN | 01120 1 B
Miad sk Gty Flimnian e, Piin s wE S0 5 1560 5 1351500 5] 20 5 AGTRAT |71 CE AL T
Chanm® Famars Canada fnnvars Mare I8 & an s 1200 § A01Enn 3 5 TR FREEIEA | 010G A £ P14
Erhin gt [fenars Mg P § P I 1 [[T T ARDUNL | UL 201 A
Lhareir feilners U s [T Myte w1 3 XTI P o |] LTI LARBEY | 20l R
Miknsaie Kisslen Fliwaars L T % LU LLTOTE I v T I 5] R AR 2 B
Fuilsaipries [Miwaars By IFFRE £ A1 5§ DS 5 ANARIEN 3 - " B 5 LT b AT
Siail Rarsass Keses FAnnvars Mare s S 501 5 AN 2ATA00On 3§ 5 AWM 5 & 20 £ B
GoyErRmonT Hermany donsars Merc i & LUy PRSI Fhee 1100 5 Lo 5 JLu 00s 200s
Litemrize Lavads TMencars More FIPES P R P T E T T 5 AW G Lidsie | J1HEI0LI 2
Mukinsike. ittt el alAenwiig WMirusre Miute Ay ¢ EXTE I PEATT YA ¥] LTI} PO X P Y]
Cillteist St Fintimiln P i m S 10§ nmen b ERa0An 5 5 Ewm § EXL R TP R L T
Mk wrarhs Il wlii Powra L 1T pi LR a3 1401800 3 1 Annm 3 SATLAN P A &1
Lranne Fartads Uatads e Mare Eel¥ 3 Wty Lin 5 Al G % ¥ P JI-LC-!(‘L-'-!-:JH
Uinnmmen: Lisrmany Fases Mare 1% 5 | [ELTR LT R L T T 5 v H RE L. e B
Lharne Farlners Lenmane Peses Mur e W% LU % LU 5 LA 3 5 H o | orvezens B
Ctsions s Knsics Pt Bliir = 3 5 0o 5 ELL EREIE 5 H Aerge £ B
Mk ik Fuiis Pusati Miii o e & 10 5 1500 4 £23500 3 8 3 R E s (E
S| Rartasaty Whawidii ILeans A XX 5 [[FUTR] R LT T T 5 F U
M sty e Mg &8 Wy PR I T LU] H] ¥ Ja A 20 2l
Ui s, A Llimgiog Pesed MurE w3 TN ERIT] ATOLA Y 5 3 ST Tt
Faranar e s Bl e 175 W s WIS AmERI % 5 a0 3 At T
Chuses = Parine: noicn Pz B S (LA 1200 5 10 5 5 nasan 4 RIE S EZICERT | 7111 30 TR

Figure Sample Raw Data

Now, let us understand the data first.

This is sales data for products across different segments, which includes

information like manufacturing cost, sales price, number of units sold, gross

sales, total cost, profit, discount information in the case offered for any
product, date of the transaction and the country where the transaction took
place.

Looking at the data one can say it is not really intuitive in terms of deriving
insights, isn’t it?

Considering the fact that in a real-life business scenario, for potentially
millions of records, someone cannot just take a glance at the data and make
something out of it. It requires queries to pass to this dataset or table, to
retrieve some meaningful information. Data visualization addresses this issue
and enables users to gain meaningful insights from a plethora of data, in a

quick, universal, and efficient way.

Now, let us create some visuals using the same records and see how that helps

as shown in Figure

Units Sold, Sales
BY DATE

60K BOK 100K
Units Sold

Liscounts

BY SEGMENT

5

T

W

Midmarket I
Channel Partners I
oM ™ M M 4M
Discounts

Average of Sale Price
BY SEGMENT

€
£ e
L
0
Midmarket I
Channel Partners I
0 100 200 300
Average of Sale Price
Liscounts
BY DISCOUNT BAND
0.89M (9.62%)
Discount Band
@ High
@ Medium
@ Low
@ None
(32.62%)
5.32M (57.76%)

Figure Visualizing the sample raw data

Looking at the above visuals, one can instantly draw the following

conclusions:

There is an obvious correlation between units sold and the sales amount.

The segment Small Business has significantly more Sale Price.

Government & Small Business segments also offered more discounts than

others.

Cases where discounts have been offered, High accounts for the majority.

In today’s fast-paced world of ever-growing data, it would increasingly
become difficult to analyse and gain insights from flat tabular data. Hence,
effective visualization is becoming the pressing need for telling a story which
is based on and can be substantiated by data, also helps businesses across

industries to find actionable insights.

Though visualization is important, alone it cannot meet the diverse business
intelligence needs of today’s enterprises. In the next section, we will see the
common requirements of business intelligence projects and understand why

Power BI can be a tool of choice.

Introduction to Power Bl

As we have seen now why visuals are important, that is not always the
only outcome looked for in a report. Visualization is a very important
aspect of analytical reports, where we analyse the existing data and try to
find trends, patterns in it which otherwise is not intuitively available.
Also, it plays an important part in telling a story which best describes the

data we are working on and the key outcomes we can get out of it.

However, the requirement might be an operational kind of report to track
the day-to-day operational activities of an organization. Probably, a table
is all that would be required to be used as a visual in this case, what would
matter more is the ability to integrate with the database or data warehouse

that stores the data and the ability to process large data volumes.

For a wide range of business users, Excel has been the most popular tool
for decades to analyse data and report. Maybe the requirement is to move
the users from Excel-based report silos to a centralized online reporting
framework. Often one of the biggest challenges with these kinds of
scenarios is that people have invested so much time and effort in
perfecting their Excel skills that they are reluctant to come out of their
comfort zone. Here, it might be wiser not to force users into an abrupt
change, rather we need to create something which closely mimics their
existing ways of working so that they can self-serve and eventually move

to a more robust BI (business intelligence) solution.

Power Bl is a business intelligence tool that can meet all the requirements

mentioned above, and many more! It excels in:

Integration: Power BI has hundreds of different data source connectors

which help to integrate with various platforms for reporting.

Transformation: The data available in real-life business use cases is often
far from what is ideal for a data model. Hence, it needs to be shaped and
transformed to meet the modeling requirements. Power BI has a rich set of
ready-to-use transformations using just a few button clicks, with the
capability of easily customizing those transformations as and when

required.

Data Modeling: It is easy to create different data models in Power BI; also
one can easily enhance those models with custom calculations using an
expression language (DAX) which is very similar to Excel formulas in

terms of syntax.

Visualization: Power BI has a wide array of visuals readily available for
the users once they install the tool. Additionally, there is a marketplace for
certified free and paid visuals created by third parties which users can
import in the development environment by matter of a click. If that is not
enough, there are provisions for creating custom visuals using R or Python

scripting!

Distribution: There is a Software as a Service (SaaS) platform built in
Azure cloud, called Power BI which hosts all the published Power BI

reports and provides different options for collaboration & management.

Security: Multiple layers of data security can be implemented in Power Bl
which includes access control on Power BI Service as well as role-based

security for individual records of a table.

Support Framework: Being a Microsoft product, it has excellent
integration with other Microsoft Power Platform components like Power
Apps and Power Automate, which enables to create end-to-end solutions.
Also, it has integration with multiple external tools which can be used for
a range of activities starting from model optimization to big data

processing.

Licensing Options: Power BI Desktop is a free software which anyone can
download, install, and start learning which eliminates the need for
expensive sandboxes. There are other user-based and capacity-based

licensing options which can be adopted on a need-to-have basis.

Convenience of Use: It’s convenient to try out and learn, easy to get
support from online communities and one can start value addition to the

work in a matter of hours!

The increasing popularity and adoption of Power BI by every size of
enterprise across industries is a testimonial of how useful the product can
be in terms of automating routine project reports as well as deploying

enterprise-scale BI solutions.

Building blocks of Power BI

The basic elements or building blocks of Power BI content can be categorized

as:

Datasets are the collection of data on top of which the Power BI contents are
built.

These are visuals that are created based on the underlying dataset. They can

be a table, a graph, a chart, a card, or any other visual representation of data.

Reports are a collection of visuals, in one or more pages, used to convey
insights about the data in the dataset. Reports can be directly consumed by the

users or can be distributed via Apps.

Dashboards are single pages which bring together visuals from one or more
reports. Reports are usually function specific, for example, Sales Reports,
Inventory Reports, and so on. while dashboards can provide quick overviews

across the spectrum of reports.

Tiles are individual visuals of a dashboard. They can separately be interacted

with and can be used to trigger data-based alerts.

A pictorial representation of Power BI building blocks can look like Figure

0 O

Dataset | Dataset 2

[:] Vistializations
Dashboard

| SR
g

Dashboard

O 20

Tiles

Tile 1 Tile 2

Figure Power BI Building Blocks

These elements can be used in different components of the tool, which we

will discuss more in the subsequent chapters of the book.

Installing Power BI

Power BI Desktop is a free desktop application which can be downloaded and
installed from the Microsoft official webpage. Contents can be developed in
both Power BI Service (online) and Power BI Desktop (offline), while the
latter provides more control and flexibility in terms of features and usability.
Power BI Service does not require any installation and users can login to it
using their organizational account. We will dive deep into Power BI Service
later in the book, this section will focus on setting up the Power BI Desktop
which also should be the preferred development environment for majority of

the Windows users.

Power BI Desktop gets an update each month, to install the latest version
please type in the following URL or link (or keywords) on your web browser

of choice:

https://www.microsoft.com/en-us/download/details.aspx?1d=58494

Keywords: Download Power BI Desktop

The link should direct you to a webpage where you should be able to see the

Download option as shown in Figure

o & https://www.microsoft.com/en-us/download/details.aspx?id = 58494

Microsoft Power Bl Desktop

Important! Selecting a language below will dynamically change the complete page content to that language.

Figure Power BI Desktop download page

Clicking on the download button should redirect the user to the download
options where the user needs to select the file depending on the bit version of

Windows and proceed, refer to Figure

Choose the download you want

D File Name Size
PBIDesktopSetup x64.exe 377.2 MB
[] peiDesktopsetup.exe 341.9 MB

Figure Power BI Desktop download files

Tip: To check the Windows bit version, please follow the steps outlined in the

given link:

https://support.microsoft.com/en-us/office/determine-whether-your-computer-

1s-running-a-32-bit-version-or-64-bit-version-of-the-windows-operating-
system-aac162al1-0cb3-46f2-888f-222897396¢ce

Keywords: Check Windows bit version

This should download the executable installer on the user’s PC. The installer
then should be executed by double clicking and the setup instructions need to
be followed to complete the installation process.

Tip: During the installation process, please check on the ‘Create a Desktop

Shortcut’ option to get the app launcher by default on the user’s desktop.

Quick Tour of Power BI Components

Power BI has some layers or components that work in tandem to provide a
complete BI solution experience. The primary components of Power BI can

be categorized as:

Power Query or Query Editor

Power BI Desktop

Power BI Service

Now, let’s do a quick tour of each of these components to understand what
they actually do. The details of all these components will be discussed

throughout the rest of the book in the subsequent chapters.

Power Query or Query Editor: Power Query is the component to perform the
ETL of data from the data source systems, the data as per the need of the data
model, the transformed data to the next layer) tasks that are required to shape

the data for the requirement.
Power Query is integrated with Power BI Desktop and gets installed at the

same time.

Once Power BI Desktop is installed with a desktop shortcut, the tool can be

launched and logged into with a school or work account. The authentication

process is not mandatory at this stage and can be skipped to continue working
with the tool, however logging in provides a more integrated experience in

terms of working with Power BI Service. Power BI home screen can be seen

in Figure

Fle Home Iwanl Mok g Vi Hed e

i Falenra kex

BhibbEde b P i [7]
fun el Nem SO0 Feesr Deamrrss Revess =re d= w R
i s e e ke ||)

J— o
4 vigualizations »
< Buldviewal

E D

ERETKE L

b b A b et

; HFE®H

Add data to your report CHAEE®

Cnce baaded, your data will appear in the Fields pane. BEE R PYE
i 0PGRS

7

P s

Si0ipg

b -] sl Q
alues

Ao Jata tekds fene
a4t duki from sl e St ar S0L Sorm Pashc Saa 1°55 Blara lab's Ty asamps desact

Crill Wby
R e o
Krop ol iers o]

Al e rhem ket e

Get data from amother source =

Figure Power BI Desktop home screen

On the home screen, from the ‘Transform Data’ option, the query editor can
be launched. Figure 1.7 illustrates a few of the data transformations available
in the Power Query editor once we connect to a data source and get some

data:

X == =, =Properics H JL ¢ Dika Troe: Ted = merge Quanes = = Texd Analdics
= ®r o advanced Sdior X 1 il " 7T e First Row s Headers = o, Apperd Cueries = @ Vision
Tone & ' Reliiih) . (hoese Remare SpM Groug | _ n
Apgly Iy = L Colurras ™ Cobmas = cokawe~ By vz eEaE Vel A Azre Moching Leaning
Chose Mew Query Oy Manoge Lol Sort Tromform omibne Al gl
— =B ranpore Data Tpws Tt = 4, 3 Replace values = S5 Linpivot Columns = T v Merge Coumns (T Trigonceratry - R Py
N — iy [wdc] : {
' "M Reverse Rows. T Detest Data Type [T Fll = B v - 425 Entract - z R LA
Growp Use First Roa o) - . — Spit Formst Lo Siwtisticy Wancard Scantific o Date Tiew Duraton Ren B fin Bythom
I comt Pooe] Ranamo 5., Piven Colrmn Coamer o sk PO s parce i inbormaik wr Te e

By At Headen

Table Any Column Tt Codumn, Mumber Column Dane & Tine Codumn Sonpes
e ¥ | -~ - E Candtional Cokumn - -_ Merge Calum ngunamets e h
T Em 9 g \
d Bl Bx g] e = O @ A
ok B | Index Column = 455 Extract = Rounding p—
Column From Castom Invoke Custam Format Statiztics Stancard Scientific Date Tieme Duration Test Vigion Azwre Maching

[C abx - formatio
Examples = Column Function - Dupbcate Columa - = Parse Infarmatic - - Analytics Learning

General From Toxt From humber From Date & Time &l ingights

Figure Power Query transformation options

Power BI Desktop: Power BI Desktop is the development environment for
most of the users where reports are being created and then published to the
Power BI Service for collaboration. With Power BI Desktop, we can connect
to a variety of data sources, shape and clean the data using Query Editor,

model the data as required, and then create visuals on top of the model.

Figure 1.8 illustrates the common functionalities of the desktop version:

Heme wern Modeing iew #p Doeme Togls [}|
= + | M 7 =5 : g o) a
iz rn |_|| = @ D“ 1 af
o | e SUL broer Ustierss Hpcees 1o e sy | Py
T -I".'-\ ke erver BaIcH > @ @
¥ Pl + ¥ | | visualzation el | Fickds
. ume o =
0 earcs = £ T
. =
|| ol L
Filtens or fis gt -1
BB E W E I e
A ci i Pare b ol bl L e = :._,_.
Build wisuals with your data i HFLEEOOE
Wi o Sl ERH 2=
alect or drag fs'ds rom the Fields pare oo the report cames QB =0 |:I =
BE@e Py E
ACDREE
| O T
e aor
| anene thers -
i e < Fre
rrrrrrr - & e e
ment
:::::::::: D) = i
[P —— T e

Figure Power BI Desktop common usage

The most common functionalities of Power BI Desktop are:

Get Data: The get data option allows users to connect to different data
sources.

Transform Data: Using the transform data option, a query editor can be
launched for data transformations.

Fields Pane: Under the fields pane, all the tables and columns would be
visible to the users.

Data View: The data view can be used to view and validate the imported data.

Model View: The model view is used to manage relationships between tables

and eventually create the data model.

Visualization Pane: From the visualization pane, visuals can be added to the
canvas and then required fields can be added from the fields pane.

Report Canvas: This is where the magic happens! All the visuals would get
created here to come up with a report page.

Filter Pane: Filters can be added here from the fields pane, which would get
applied to the report or any specific visual.

New Page: This is used to create multi-page reports.

Publish: Using the publish button, reports can be published to the Power BI

Service.

When a Power BI Desktop file is saved, it gets saved as a Power BI Desktop

document (with an extension .pbix).

Power BI Service: Power BI Service is the cloud platform which hosts all the
Power BI contents. It is a Software as a Service (SaaS) platform built on

Azure cloud and managed by Microsoft.

The most basic elements of Power BI Service are Workspaces and Apps, as

shown in Figure

@ Mo Good evening, Rishiraj + Newmpen | =
= Tl Select a tle 1= find and share data-driven insights
(=00
O Do hib Recommonded
F s nadaveriser this U Getilng sraried with Fower BI 2 Explons this daw siory 19 Gertleg stor
- ==
a = .
- Werks 3
Ry bt n H E)

by denady sl Euplorr baske Power Ol concepts Explare the W0 raa wschul producthin Cancer waswle bn the USA Inbro—Whas b Pow
L

Figure Power BI Service home screen

Workspaces are containers for all the published Power BI reports. Users
should create workspaces on the service with meaningful names, and while
publishing reports from the desktop version, they need to select the
corresponding workspace where they wish the report to get published. Basic

elements that a workspace can contain are:

Datasets: When a .pbix file gets published, the underlying imported data gets
uploaded to the service as a dataset in the workspace. We can schedule

refreshes for the dataset which will update the report(s) that are attached to it.

Reports: This is the report page(s) created in the desktop version and attached
to the underlying dataset. The reports can be further modified in the service,

or even created from scratch on the service itself.

Dashboards: Collections of visuals from one or more reports on a single page

which helps to provide an overview of the business.

DataFlows: This 1s a component having similar capabilities to Power Query;
mostly useful in scenarios when we want to do centralized transformations on

imported data.

Apart from the workspaces, another important (but optional) element of
Power BI Service is the Apps. Apps are collections of dashboards and reports
in one place, which is helpful in terms of content navigation as well as

controlling access.

In this section, we went through the basic elements and components of the
tool, mostly for becoming familiar with the terminologies and also for getting
an idea of how things work. This basic understanding should help us when we

move forward along with the book.

Flow of work in Power BI

There can be multiple different ways of designing a Power BI project based
on requirements and preferences, however in a typical reporting scenario, it
all starts with Power BI Desktop. First, a connection is established with the
data source, then required transformations are done in the query editor to
shape the data as required. In the next step, the data is modeled in Power BI
Desktop and a report is created. Finally, the report is published in a

workspace in Power BI Service.

What remains then is to set up a refresh mechanism so that the reports can
refresh as scheduled or on-demand basis. On Power BI Service, user
credentials are set up using which the reports can refresh directly from the
source. In the case of an on-premises data source, a data gateway is required
to be used, which we will explore in detail in the upcoming chapters. The
reports are then shared with the end users who can view and interact with

them.

Figure 1.10 illustrates a common flow of work in Power BI:

Pt 5
/" Power BI Desktop /" Power BI Service
I ‘l-’ l\-
—) Transforming Data Modelling User access
— | Data Source Connection data in Power and Creating Publish Report N control in . ;.;
| ' Query Editor report [Workspace C
— \ A A End Users

:
Data °, |
Source™s, A

Report Refresh Mechanism

Figure Common flow of work in Power BI

Power BI licensing details

All users of Power BI Service need a license, while Power BI Desktop 1s a
free-to-use application as of now. There are two types of licenses in Power

BI Service; per-user-based and capacity based.

Per User Based: There are three user-based licenses:

Free License: Provides a personal sandbox environment to try out and
learn Power BI. It is limited to content creation on personal workspace,
users would not be able to share content or consume content created by
others. Anyone logged in to Power BI Service using a work or school

account would by default be assigned a free license on their tenant.

Pro License: Pro license allows you to create new workspaces, share
content with other users and consume content shared by others. It costs a
standard $9.99 per user per month and comes with most of the basic
functionalities. Pro should be the license of choice for developers who do

not really need premium features.

Limitations to consider: There is a 1-gigabyte limit for each model size &
10-gigabyte storage limit per user of the tenant. The scheduled refreshes

of a model would be limited to 8 times a day.

Premium per user License: Comes with all the features of a Pro license,
with additional premium capabilities like XMLA endpoint read/write
connectivity (useful for big data processing), Application lifecycle
management (using external tools like ALM Toolkit, Tabular editor),
increased model size limit up to 100 gigabyte and total storage limit up to
100 Terabyte, maximum of 48 refreshes per day and so on. The standard

cost is $20 per user per month.

Capacity Based: Commonly known as Power BI Premium, this is a
dedicated capacity that can be assigned to individual workspaces across an
organization. Premium workspaces provide all premium features (as in
premium per-user license) and more! It also offers greater scale and
performance for the contents. Additionally, it also enables users to embed

content into external applications.

Apart from features, Power BI Premium also simplifies user access at an
enterprise scale. Contents from a workspace backed by premium capacity
can be consumed by free users as well, however, a Power BI Pro or
Premium Per User would be required for publishing content. A common
scenario where premium becomes cost-effective is where thousands of
end users just need to consume reports or dashboards in Power BI. Here, it
would probably make more sense to assign premium capacity to the
workspaces so that free users can access the content while the developers

can have Pro or PPU to publish content.

The cost of dedicated capacity starts from $4995 per month and can be

scaled up based on requirements.

Conclusion

In this chapter, we saw why visualizations are important and the common
requirements that business intelligence projects have these days. We
discussed why Power BI can be a tool of choice to meet the expectations.
We walked you through the required steps for setting up the environment.
The basic elements or building blocks of a Power BI report have been
discussed along with the key components of the tool. We saw how a
typical Power BI project is structured and went through the licensing
details of the product. This should provide a holistic view of the

framework which should help as we go along with the rest of the book.

In the next chapter, we will learn about performing transformations in the

query editor and shaping data as per reporting requirements.

Knowledge check

Power Query Editor helps in:

Transforming data

Creating visualization

Modeling data

Providing user access

You must sign in to your account while working with Power BI Desktop:

True

False

Which of the following is NOT an element of a workspace?

Dataset

Report

App

Dashboard

If a workspace is backed by premium capacity, then a free user would be

able to publish a report to that workspace:

True

False

All ‘Knowledge Check’ answers are provided at the end of the book.

C
HAPTER
2

Data Discovery Using Power Query

Introduction

The ability to integrate with a wide variety of data sources is a distinctive
feature of Power BI, which we are going to explore in detail in this
chapter. After establishing a connection to the data sources, we will see
which connectivity mode to use and how to shape the data in the Power
Query editor. We are going to understand concepts like query folding to
optimize our queries, explore data cleansing techniques, and see how to

combine data from different data sources as well. Welcome to Power

Query!

Structure

In this chapter, we will discuss the following topics:

Connecting data sources

Data connectivity modes in Power BI

Query folding

Introduction to the Mashup

Common data transformations in the Query Editor

Data cleansing in the Query Editor

Appending and merging data

Power Query parameters

Objectives

The objective of this chapter is to introduce the readers to the world of
Power Query so that they can effectively perform data transformations
required for their business reports without the help of their IT team!
Business users understand the business requirements best and IT guys,
obviously, have the technical skills! It is not always possible to cross-skill
these people in a fast-paced environment, and hence, often roles are
sought after who can bridge the gap and translate business requirements
into technical specifications. Query Editor attempts to solve this problem
and enables business users to integrate their reports with different data
sources and performs effective transformations. However, to do all these
efficiently, some understanding is required of the tool and related
concepts. This chapter aims to provide that understanding, with minimal

technical jargons.

Connecting data sources

One of the main advantages of using Power BI as a reporting solution is its
ability to integrate with a wide variety of data sources that are available today,
and the number of supported data sources grows with new releases. Also, it
allows to create custom connectors if required, enabling it to connect to
virtually any data source. In this chapter, we will discuss the skills that are
required to consume data in Power BI. Starting from the steps that need to be
followed to connect to different data sources, we will discuss the connectivity
modes, the transformation options available to shape the data and various
other useful ETL techniques. Refer to Figure 2.35 for the sample dataset

which has been used for many illustrations throughout the book.

Before visualizing data and creating reports, at first data needs to be loaded
into the environment connecting one or more data sources. While connecting,
we need to keep in mind an important design-related approach, which is,
connectivity mode, which we will understand in the next section of this
chapter. As of now, we will see how to effectively use the connectors to load
data into Power BI from a few commonly used data sources to see how that

works.

On Power BI Desktop, the ‘Get Data’ window can be launched using the get
data option under the home tab, in the data group. The pop-up window lists
all the default or out-of-the-box connectors Power BI supports. On the left
hand, the connectors are categorized for ease of navigation. One can also

search for a specific connector using the text search box provided.

The categories are:

File: for example, Excel, Text, JSON, SharePoint folder, and so on.

Database: SQL Server, Amazon Redshift, and so on.

Power BI datasets, Dataflows, and so on.

Azure: Azure SQL Database, Azure Synapse Analytics, and so on.

Online Services: SharePoint Online List, Microsoft Exchange Online, and so

on.

Others: Generic connectors like OLE DB, ODBC, REST APIs, and so on.

Figure 2.1 shows the ‘Get Data’ option in Power BI Desktop:

=¢¥o Boemal Taols

PEe [P il 2] o2

e

Get Data

™ u Eartd dierinnok ~
Hig

Catabase
Power Platiormm
Anae

Cnline Services

Caher

Figure 2.1: Power BI Get Data Window

sl 5 5

Visualizatisns »
ot vinmanl

= [

ERZEELR
b b B b e
i Rl Al T
CWaDER
FEERrRPE
#OPREe
TR

A5E It by have

il dhongh

Lross-TROONT "o
Koy ol e e]

actd e 1 hervagh Sicks here

>

SPRE &

Let us explore a few connectors from these categories to get familiarized with

the concept:

Connecting a SharePoint folder: SharePoint has been one of the most popular
repositories to store day-to-day project files, and hence, it often serves as a
data source for Power BI reports. Let us assume that the data reside in
multiple Excel workbooks and the files are saved in a SharePoint folder, from

where we need to get the combined data and create a report.

From Power BI Desktop, Get Data | SharePoint Folder should launch the
SharePoint folder connector. The site URL needs to be specified, which is the
root URL of the SharePoint site, not including any subfolders. Figure 2.2

shows the SharePoint Folder connector:

SharePoint folder

Site URL ()

OK Cancel

Figure 2.2: SharePoint Folder Connector

Tip: To find out the root URL of any SharePoint folder, open a page under
that folder and click ‘Home’ on the left-hand navigation pane. The address of
the home page should be the root URL of that site.

Figure 2.3 highlights SharePoint root URL*:

&« c QO B httpsyy sharepoint.com/sites/PowerBIBook

SharePoint

]
ﬂ Power Bl Book

L2
| + New ~ Bl Page details Analytics
2

Conversations

b News
Figure 2.3: SharePoint Folder root URL

* Identifiable information are hidden on the images to maintain

confidentiality

After specifying the root URL, clicking on ‘OK’ should take us to the
credentials window where 3 options should be available to authenticate first-
time site visitors. As an anonymous user, using Windows credentials or using
a Microsoft account. After selecting the appropriate authentication method,
the SharePoint folder can be connected by providing credentials and choosing
the level these settings need to get applied to. Figure 2.4 shows the credential

window:

SharePoint X

Anonymous & https:// .sharepoint.com/sites/PowerBIBook

: You are currently signed in.
Windows

Sign in as different user

Microsoft account
Select which level to apply these settings to

https:// .sharepoint.com/ v

Back Connect Cancel

Figure 2.4: Credential Window of SharePoint Connector

Once connected, all files that are saved in that folder and associated
subfolders should be visible in binary format under the ‘Content’ field, along
with additional attributes like file name, file extension, creation date, folder
path, and so on. At this point, one can choose either to combine files directly
or load the file list to the Power Query editor using the ‘Transform Data’

option. File list on SharePoint folder as displayed in Figure

https:// .sharepoint.com/sites/PowerBIBook

Folder Path

Combing = Load Trangform Data

Figure 2.5: File list in SharePoint folder

In Query Editor, we can select the required files by applying appropriate
filters and effectively combine those files in case the files have identical
structures or schema. For example, a common scenario can be, files with the
same metadata or schema get saved in the SharePoint folder on a daily basis
through an automated process, and we need to report combining all those
files. To apply the required filters effectively, the unique features of these files
need to be identified. For instance, they can always be saved in a specific
subfolder, or the file names can have specific keywords in them. For the first
case, a filter can be applied on the ‘Folder Path’ field for a specific path. For
the latter, a filter can be applied to the ‘Name’ field which should select only

the files containing that keyword as part of the file name. Whenever a new
file would get added, the query would pick that up based on the applied
filters, and the data would get included in the report during refresh

accordingly.

Once all the required files are selected, click on the ‘Combine Files’ option
on the home ribbon and Power BI will combine the data from selected binary
contents and create a single table out of that. While combining files, one file
needs to be chosen as a sample based on which the table structure gets

defined. Figure 2.6 shows the options to combine files in the query editor:

Wiew Teols Help
[F Properties I] T 8] 1 . Data Type: Binary = [Merge Queries = Text Anakics
e [Advanced Editor x £l [Use First Fiow as Headers = & Append Cueres = 48 Vision
Manage Refresh M Choose Remdowe Eeep Remowve Spit Group 4 Regi " C - i é Machi
[- , Replace 1l bine Fi Azur ine Learnin
Parameters * Praview > L anage Columns ~ Columns ~ Rows~ Rows ™ Column= By 2 reace Vahues SAE TR DRSS
Parameters Query Manage Colmms Recduce Rows 5o Trangform Combing A Ingights
i H ; - — — — —
e |=| Content *=| K% Name * | A% Extension - || Date accessed - Date modified = | {54, Date created
I"‘Dﬂ\: al fample testladss B nul L1 0F 20220 1819048 S 0F 2002 18
Financial Sample test2.dsx «lsx null 21-07-2022 18:19:46 21-07-2022 18:1!

Figure Combining contents in Power Query editor

Once Power BI does its job of combining the files, the data can be previewed

in a single table, as shown in Figure

2l T e Wl g i [E o visiiz = i snhine
] T B B midensar e T dppeedfy st e
E LT e
faumes b =

A R

e IrageT LorB L]

o Divcsust Uund 13 Ui sl = 1y maaalasaing ¥ b - Wy o A .
e s b -
ki VI A Bl
i sae 4 a e
Yorr EEn = reamn
o T 1 ' fEe
Y- e 2 1y

- A ¥ A

hure s a2 i
Az 558 x® 1rae
- ar - ' e

ree 1ar# (5 L
di Sk i i
dine s 2 =

o Hi ¢ 7 =
P—— " Hrra e " " P
& Businees Wit h Teen Flrer e " ane EET
Tl - 3 L (LT
& rued San gl neal Lok Lo Fabod Satea s drenze L Hune EPPR ks - nom
T RemEd SRR LA A nnen ey i rzn 2 " (1 o

Figure 2.7: Combined data in Power Query table

The first column of the table ‘Source.Name’ can be referred to understand
which record came from which file; however, if required, we can now safely

get rid of that column at this point.

This table can now be loaded into the Power BI Desktop using the ‘Close &
Apply’ option under the ‘Home’ tab for modeling and visualization, or we

can continue performing further transformations in the query editor.

Connecting an Azure SQL Database: Microsoft Azure SQL database is a
managed cloud database running on Power BI Desktop, Get Data > Azure
SQL Database should launch the database connector.

The Azure SQL database connector is illustrated in Figure

SQL Server database

Server (1)

Specify Server Name

Database (optional)
Database Name

Data Connectivity mode (3)
= Import
O DirectQuery

4 Advanced options

Command timeout in minutes (optional)

SQL statement (optional, requires database)

Select * from "Table Name'

¥ Include relationship columns
[Navigate using full hierarchy
] Enable SQL Server Failover support

OK Cancel

Figure 2.8: Azure SQL Database connector

Mandatorily, the server address and the connectivity mode need to be
specified here, having ‘import’ as the default connectivity mode. Let us not
go into connectivity mode in detail here as we are going to understand this in
a separate section; and move ahead with the default selection which will load
the data into Power BI Desktop. The name of the database is optional;
without it, the connection would get established with the server and all the
available databases would be visible based on user access, otherwise, the

specified database would be connected to.

There are a few additional parameters available under advanced options:

The connector allows passing a SQL statement as optional, which would get
executed on the server and load the query output to Power BI. In case we
want to pass a SQL statement, the database name must be specified and
cannot be left blank.

If a connection lasts longer than 10 minutes, it gets timed out by default.
Using the optional ‘Command Timeout” option, the connection can be kept
open for longer if required, from the Power BI Desktop. This option should

ideally be explored only in case the requirement demands.

Checking the ‘include relationship columns’ checkbox ensures to include

columns having relationships with other tables.

The ‘navigate using full hierarchy’ option, if checked, the navigator displays

the existing hierarchy of tables in the database.

The ‘SQL server failover support’ option, if checked, when a node in the
Azure SQL failover group isn’t available, it can move to another node in case
of a failover. This option again should ideally be explored only in case the

requirement demands.

For most scenarios, going ahead with just the mandatory parameters (server

name and connectivity mode) should be fine.

After providing all the required details, clicking ‘OK’ should take us to the
credential window. Apart from the Windows credential and Microsoft
account, one can authenticate using a database user as well. In case of
connecting the server for the first time, after choosing the authentication

method and providing credentials, clicking ‘Connect’ should establish a

connection to the database server. Figure 2.9 shows the credential window of
the Azure SQL database:

SQL Server database
Windows .database.windows.net
User name
Database ‘
Microsoft account Password
Back Connect I Cancel \

Figure 2.9: Credential window

Once connected to the database, all available database objects should be
visible on the left-hand side panel. The preview of the database object is

shown in Figure

Navigator

samplefinancial
Display Options -

a .database windows.net
4 -db

¥ [x_samplefinancial

Search results are limited to already expanded items

Select Related Tables

.
¥_samp

Segment
Government
Government
Midmarket
Midmarket
Midmarket
Government
Midmarket
Channel Partners
Gowvernment
Channel Partners
Midmarket
Enterprise

Small Business
Gowernment
Enterprise
Midmarket
Government
Midmarket
Channel Partners
Government
Channel Partners
Government
Midmarket

£

efinancia

Country Product
Canada Carretera
Germany Carretera
England Carretera
Germany Carretera
Mexico Carretera
Germany Carretera
Germany Mantana
Canada Montana
England Montana
Germany Maontana
Mexico Montana
Canada Montana
Mexico Montana
Germany Montana
Canada Maontana
United States of America Montana
Canada Paseo
Mexico Paseo
Canada Paseo
Germany Paseo
Germany Paseo
Mexico Paseo
England Paseo
>
Load Transform Data . Cancel

Figure 2.10: Database table preview

At this point, one or more tables can be selected to load the data or transform

further in the Power Query editor.

The Azure SQL Database connector is one of the most comprehensive

database connectors in terms of features, others may or may not support all

the features. However, the working principles of most of the database

connectors are almost similar.

Note: The client IP address of the machine Power BI Desktop is installed on

may need to be added to the Azure SQL Database firewall settings.

Connecting an Amazon Redshift Database: Just like any other database,
Amazon Redshift can be connected from Power BI launch the native Redshift
connector, Get Data | Amazon Redshift. Figure 2.11 shows the Amazon

Redshift connector:

Amazon Redshift

Server

Database

4 Advanced options
Specify a text value to use as Provider Name (optional)

Batch size

SQL statement (optional, requires database)

OK Cancel

Figure 2.11: Amazon Redshift connector

The server name and database name need to be provided to be able to
establish a connection. The advanced options are optional and can be used in
case required. After successful authentication, the connection should be
established and all the available database objects should be visible, from
which we can select one or multiple tables as required and either directly load

the data or start transformations in the Power Query editor.

Connecting to Power BI Dataflow: Power BI Desktop allows to connect to

Power BI dataflows which is a workspace component in Power BI Service.

Dataflows have capabilities similar to Power Query editor while being on the

cloud enables it to create reusable transformation logics which can be shared

across multiple datasets and reports inside Power BI. Get Data | Power BI

dataflows should launch the Power BI dataflow connector. If connecting for

the first time, the user needs to authenticate using the Power BI Service

account and connect. The Power BI dataflow navigator is shown in Figure

Navigator

Display Options =
4 Power Bl dataflows
4 Build & Test
- Demo DataFlow

¥ B Query

L Query

EH Segment
Government
Government
Midmarket
mMidmarket
Midmarket
Government
Midmarket
Channel Partners
Government
Midmarket
Channel Partners
Government
Channel Partners
Government
Midmarket
Small Business
Midmarket
Government

Government

Country Product
Canada Carretera
Garmany Carretera
France Carretera
Garmany Carretera
Mexica Carretera
Garmany Carretera
Germany Montana
Canada Mantana
France Montana
Mexico Paseo
Canada Paseo
Germany Pas=o
Germany Pasen
Mexico Paseo
France Paseo
Mexico Masco
Mexico Pazeo
United States of America Paseo
Canada Paseo
>
Load

Figure 2.12: Power BI dataflow navigator

Transform Data Cancel

Once connected, all the workspaces user has access to and which have at least
one dataflow in it should be visible on the left-hand side panel of the
navigator. One can navigate from a workspace to the dataflows inside it, and
then from dataflow to the respective entities (tables). In Figure ‘Build & Test’
is the workspace name, ‘Demo DataFlow’ is the dataflow inside it and
‘Query’ is the table name. One or more tables can be selected at once, and
then the data can either be loaded or can be transformed in the Power Query

editor.

Now, let us explore one of the most common requirements for project-related

internal reporting:

Connecting to an Excel file: There are many ways to connect to a single
Excel file from Power BI. However, in case the file is saved on the local
machine of the user, we need to keep in mind that once the report is published
on Power BI Service, it would require a data gateway to refresh. This is
because the published report would sit on the Azure cloud, and the Microsoft
datacenter would only be able to communicate to an on-premises data source

(here the file on a local machine) via a data gateway.

Instead of going through the hassles of setting up a data gateway (which we
will go through later in the book while we discuss Power BI Service in
detail), for this scenario, one popular way is to save the file on a cloud
service, like SharePoint online, which should not require a gateway for
refreshing data. And the easiest way to connect to such files is to use the
‘Web’ connector of Power BI. Get Data | Web should launch the connector.

Power BI Web connector, as shown in Figure

From Web

® Basic O Advanced
URL

oK Cancel

Figure 2.13: Power BI Web connector

We need to specify the direct file path here. For SharePoint, we need to go to
the page having the file, select the file and the direct path can be copied from

‘More details’ as shown in Figure

H Power Bl Book #

Home B Editin gridview @ Open * 1 Share & Copylink 1 Download [i] Delete == Pintotop - x
Conversations D2 Financial Sample testiodsx
Documents > General
Documents
More detais|
. -
Name Medified
Metebook = b Activity
Pages -] o Financial Sample test].xdsx = 4 hourt 3Go Today
Site contents a Financial Sample test2.sdsx 4 hours ago o Veu edited this e
4 hours sgo
Recycle bin
Last week
Edit
4 You created this file
5 days age

Type
MLEX Fibe

Modified
4 hours ago

path [

Power Bl Book » Documents » General » Financial Sample testxlsx

Size
19.2 KB

Figure 2.14: SharePoint direct file path

After providing the path on the Web connector, clicking on ‘OK” should

launch the authentication window for first time users. Successful

authentication should open the navigator where all worksheets and tables in
the Excel file should be visible. Required tables or sheets can be selected and

either loaded or transformed in the Power Query editor.

Apart from the default native connectors available in Get Data, Power BI
allows you to connect to other data sources as well, using generic interfaces
like ODBC, OLE DB etcetera.

The ODBC connector allows to connect to data sources using the available
ODBC driver for the source. The third-party ODBC driver needs to be
installed and configured first with parameters like Server address, Database
name, user credentials etc., along with a Data Source Name Get Data | ODBC
should launch the ODBC driver, and the DSN needs to be selected to be able
to connect to the respective data source. Optionally, a SQL statement can also
be specified to execute against the ODBC driver. Figure 2.15 displays the
Power BI ODBC connector:

From ODBC

Data source name (DSN)
‘ (None) -

..

Connection string (non-credential properties) (optional)
Example: Driv...

SQL statement (optional)

Supported row reduction clauses (optional)

(None) * | | oetect |

Figure Power BI ODBC connector

WS (o |

Data connectivity modes in Power BI

Let us now understand the data connectivity modes, which we already have
seen as required to specify for some data source connectors (refer to Figure
Azure SQL Database

Connectivity mode plays an important role in terms of the report architecture.
Here are the options that we have:

Import Mode: mode enables to load the data physically from data source to
the Power BI file and store it in a compressed format, using an in-memory
engine called VertiPaq (also known as xVelocity). Import should be the
default choice unless required otherwise, for multiple reasons. The report
responsiveness would be fastest in case of import as query would run against
in-memory data. In terms of features, it provides maximum flexibility as the
Power BI native languages like M & DAX can be fully utilized. One
important limitation of import mode is that there is a 1 gigabyte limit

imposed, after compression, per data model for Power BI Pro license.

DirectQuery Mode: In DirectQuery mode, only the metadata (or table
structure like field names, data types etcetera.) gets loaded into Power BI. No
physical transfer of actual data happens. DirectQuery is primarily intended
for near real-time reporting as every time user interacts with the report, all
queries directly hit the data source, get evaluated and retrieve data to Power
BI. For DirectQuery, query folding or the ability to translate the query to the

data source’s native language is a must (which we will explore later in detail).

DirectQuery mode comes with several downsides, first of which is
compromising with performance. As all the queries go back to the data source
and get evaluated there, the response time drastically increases in comparison
with import mode, and the performance largely depends on the optimization
at the data source end. Also, not every feature is available with DirectQuery,
nor every data source supports it. The data view in Power Bl Desktop would

not be available in DirectQuery.

Live Connection Mode: This to DirectQuery; however, only available for data
sources like SQL Server Analysis Services (SSAS), Azure Analysis Services
and so on. In the case of a live connection, the performance would be better
than DirectQuery as this is based on the analytical engine of SSAS Tabular;

the same engine which powers published Power BI datasets.

Composite Mode: Composite modes are a mix of DirectQuery and import
mode. In a model, there can be multiple tables where few can be imported,
and a few can have DirectQuery connectivity. The table storage mode can be
configured as Import, DirectQuery or Dual. Before the introduction of
composite models, when DirectQuery was used in a report, no other data
connections were allowed for that report. Data views of a composite model

are shown in Figure

Ficlds 2

segras (=] imanary [+] rdecs [=] nermen nand (=] i sodd = | naursadarnaring rriee [= | sale e (=] tumnsales =] miwnums (=] swles =] wines [7] vl [7] seme =] wterh rasber [= || nasemh wame =] veur
BT e e T]) anel mamea e wlpsewe]
g e Gewes e e i E:] CONE T T S 1 by 2 B bt
4 LR e AR L Fian '] i R " LT o0 A 0P e srid o ~l }.*m
e Ty e w— A ¥ i —ddid - addit dain il G e S0 ¢ -
e Siasian dretes e fre) i 13 s B ONED MAWC AN lheedld G hae x
e setman ST o o i 136 Fres 9 IR BAAMSD MITC 30 Dseewberidid 15 Deezrbar »
et Gy Meetns ek o 5 1 o 9 M S0 A0 Giemevadd 3 A 2
fraanciformen Girefs Moo W e s T o ® e MM ue clemelin § nne x
Sovwe Fuare T a5 3 i o 2 MO URG B Glhewdld & hue x

| ive connected to "ower Bl |Jataset

Figure 2.16: Data view visible for imported table, but not for DirectQuery, in
a composite model

Query folding

Apart from connectivity modes, another important aspect of integrating
Power BI with different data sources is query folding, especially for scenarios

where large data volumes are involved.

Query folding is the ability to translate any transformation step into the data
source’s native language. Any specific transformation step folds mean that

will get executed at the data source’s end.

Before going further into it, let us have a closer look at the Power Query
editor itself, using a table imported from Azure SQL DB for illustration. Once
the data gets loaded into the query editor, it can be previewed and

transformed using different transformation options that are available.

The query editor can be divided into four categories as illustrated in Figure

& PROPERTHS
Hars

Lt 2 i 803 g
Cranal furtssn puted ane f A amarin e w00 X Filtered Rows

Figure 2.17: Power Query overview

Transformation ribbon: Different transformation options can be found here.
Queries Panel: every connection to the data source(s) would appear as a query
here.

Query Settings: All transformations applied to a specific query would be
listed here under Applied The query editor records every step of
transformation whereas the last step provides the query output. These steps
get automatically applied to the query sequentially during each subsequent
data refresh.

Data Preview: A sample data can be previewed here.

Coming back to query folding, suppose we need to report only for a specific
country which is and hence, we apply a filter on the Country field for
England so that all other countries get filtered out. Now if the step folds, then
the data would get filtered on the database itself and only a subset of data,
which is relevant for would get imported to Power BI. Contrarily if that step

does not fold, the entire dataset would get imported to Power BI, and on top

of that, the filter Country = England would get applied locally. This feature
becomes invaluable, especially while working with large data volumes as it
can drastically reduce the data that we are actually bringing into Power BI,

resulting in improved performance and usability.

Now that we have seen why query folding is important, let us try to figure out
how to confirm whether it is happening or not, which can sometimes be
tricky!

After applying transformation steps to a specific query, we can right click on
any step to check the View Native Query option. If the option is enabled, that
means the query is folding up to that specific step. So, in case the option is
enabled (not greyed out) on the last applied step of any query means the

entire query is folding.

Let us perform a basic transformation on the data we have imported from
Azure SQL DB and see how we can determine whether query folding is
happening or not. Let us assume we do not really require the Segment column
as we just want to report on a country level, hence we can remove that
column from our table. Just selecting the column and clicking on the Remove
Columns button on the transformation ribbon should do the trick as well as
add a new step Removed Columns under Applied Steps list. Now, let us right
click on Removed Columns to check query folding. The View Native Query

option is shown in Figure 2.18 to help determine query folding:

i3 T, —_— Cgropetics = Lo = D33 Toe T - Ewerge ooories * = o anaics
- L= ke & jasmctar S | X e e 4 = TS S
.\:;E 1-::.‘-5:\-“*' :n E.illls\la .Um-y ; :'"'”.l‘:w-wc-' hosar | Ranive o Famom O e e e e B soure Atabioe s
. o L L LT LR [- By
L= How Cunny D3 SwTe Paramdion oy Leamsai (ol Fudety Rt o ™ {pmamg & gl
s L € . Povnden L2 ety Skl | § w Miw |+ 5 Sabebeine - 5 Gwsiem
[* Pamala [ares Lo e 1
Oitoen G | z sy frers 2w waxr Aun »
B Gura 3 Enend Cavalwa nn B0 18 2
4 Gormasy o L) Loo 1500 pia
c Bla Lo L= N oo 150 i
[0 a empienancia Frr— . o v . -
O ey L a1 a0 1300 s
+ arada Warties Fetl ik Lrgm
¥ Englend Morlss s 00 000 i
crmasy wcrtans 254 0 Lram "
Mo Worleg Eat 00 1300 &
Canada [ra— s wm L Lt
Monk Weortira e 00 P B 247,
4 Germasy Wortang Fidd o Py i,
Canaa Mhsetina B3 50 LR 4k
et 10 x wurim 1 1 1um 1
Canada Paes m 1000 0 5
------ Fusen a4 e ["
9 Comada Fae] 100 hi I
Teomany e e e e
Gormany Puite n 1000 L0 4
22 e Psn o= um sam “
Erghee] Fare L) 1e00 1500 &
4 Miees Pidad MmO e EEm A0
o o 272 1800 1900 m
Lo Urited Bnes 0 Snein Fae aa4d 1000 0 &
77 Campdy e et Al dsugm LEEN
24 Uitad Bt & Avidia Pudec d eoe i R
M casoda Fes s .00 1500 &2
£ 4 >

Figure 2.18: Determining query folding

As the option is enabled, it indicates the query is folding. To view the folded

query, the View Native Query option can be clicked, and the actual query will

be presented which is getting passed to the data source. Native Query is

shown in Figure

Native Query

select [Country],
[Product],
[Units Sold],
[Manufacturing Price],
[Sale Price],
[Gross Sales],
[Discounts],
[Sales],
[coas],
[Profit],
[Date],
[Month Number],
[Month Name],
[Year],
[disc_bucket]
from [dbo].[x_samplefinancial] as [$Table]

Figure 2.19: Native Query

As can be seen here, the Segment column that we have removed is not part of
the SELECT statement that is getting passed to the data source, which is,
Azure SQL DB.

However, if the View Native Query option is not enabled or greyed out, that
does not necessarily mean that the query involved is not folding. Firstly, it
could mean a subset of earlier steps are still folding in that query, secondly,

the View Native Query option is not supported for all data sources.

The more accurate way to confirm query folding and conclusively track the
query that is getting passed to any data source is to either use the Query
Diagnostic tool, which is now integrated with Power Query editor or use
external tools like SQL Profiler to analyse traces in real time. DataFlows or
Power Query Online also have step folding indicators which can help to get

an early indication regarding query folding.

Tips: In case all transformation steps in a query cannot be folded, it is
important to identify the step that is preventing or breaking the query folding.
The best practice is to keep the steps which are indeed folding on the top
together in a logical order for ensuring to delegate as much processing as
possible to the data source itself. This should enhance the overall
performance of the model and will limit the resource utilization on the Power
BI end.

Introduction to the Mashup language

Now, let us talk about data transformation. Often, we experience that the data
that we get from different sources need to be shaped or transformed in order
to use it effectively for the specific requirement we are working on. This is
because data is stored in data warehouses or databases not to meet a specific
requirement, but rather to cater to different purposes from a common

repository or single point of truth.

The transformation options on the Power Query editor can be found either on
the transformation ribbon or by right clicking on the column headers on the
data preview. Transformation options are categorised by tabs present just
above the transformation ribbon. For example, under the Transform tab, the
options to transform existing columns can be found while under the Add
Column tab, different options to create new columns can be explored.

Transformation categories highlighted in Figure

* PROPERTIES
Hame

s o

O x samoswnancs . 4 AFFULD STIFS

Mg
¥ Ha i L2

Figure 2.20: Transformation options in query editor

In case we create a transformation step, which later needs to be removed or
reversed, that can be done by simply removing the step itself. For instance,
assume that we actually need that the Segment column which we earlier
removed considering as redundant. If we just remove that transformation step,

we will get our column back. The transformation step is shown in Figure

ST 3 Seude Carenen] JLitE Ly 4 PROPERTIES
A

R _I‘ — =| 8 Fredact =12 i 5o = § Mardacwisgiie | § S
= PROPENTIES - - - - —

"
p— #apand Carnrnen

p——
s & Micwarker
“ APPLILD TIPS - 3 M
Lo b Goveneest

4 APPUED STEPS

hsgarion

L

Figure 2.21: Removing a transformation step

Tip: Care should be taken while removing a step, as in case any subsequent
step has a dependency on the step we are trying to remove, the query might
break.

The query editor has a native language called M, which stands for the
Mashup language, which is extremely useful while performing
transformations. One necessarily need not master M for using query editor
effectively; however, knowing how to use it can make the life of a developer

a lot easier in comparison with only using wizards.

From the menu bar, under the View tab, the Formula Bar checkbox can be
used to enable the formula bar, if not already enabled. The M code
corresponding to any step of a query can be viewed on the formula bar by
selecting the step. The M code for an entire query can be seen using the
Advanced Editor under the Home tab.

Let us now understand the importance of M with a very simple example.
Transformation options like renaming columns, removing columns etcetera
are self-explanatory; however, we need to keep in mind that whenever we are
performing any transformation, that step would get recorded under Applied
Steps and get applied every time the data is refreshed. Hence, it becomes
important to avoid repetitive steps whenever possible for improved
performance and efficiency. Continuing with our imported data, let us assume
the requirement is to filter the data only for segment Government and change
the column name Country to Country of For filtering the segment column,
just like in Excel, the value Government can be chosen from the column
drop-down, or a text filter available under the drop-down menu can be
applied.

The column name can be changed either by right clicking on the column
header and using the Rename option, or directly by double clicking on the
column header. The Power Query formula bar and the option to launch the

advanced editor are highlighted in Figure

oo P o Gy [2]

= L2 i dald =1 § Bunsdarburing rice - % ke ol - PROPIRTIE
[

.............

* APPLIED STEPS

Souiin

P—— Pases 200

- Patss 211 1000 —
_? Reviniad Colarns

United State o Armerica Pases 114 1000

Garaii

.....

.....

Figure 2.22: Advanced Editor, formula bar & available segments

Change is the only constant - proving the saying correct; let us say we now
have a requirement to include data for segment Small Business as well! As
we have already filtered out all other segments apart from Government in an
earlier step, other segments would not be available on the field dropdown
anymore. Here, the most convenient way to incorporate the change would be
to tweak the M code, either on the formula bar by selecting the step where we
actually filtered the data, or on the advanced editor at the query level. A

transformation step with updated M code is depicted in Figure

> v fx = Table.SelectRows(dbo_x_samplefinancial, each [[Segment] = "Goverament™))

!

X S = Table.SelectRows(dbo_x_ssmplefinancial, each ([Segment] = 'L;;'-'e""n-:l't”lcr [Segment] = "Small ’."a.;nrln:"b:ll

¥ Consasdt Chissare

Figure 2.23: Updating M code and committing changes

After updating the M code with the required changes (here, including the
segment Small Business in our data), we need to commit the change and we

should now have the data filtered for both the segments as required.

Tip: M is a functional case sensitive language; hence, care should be taken

while using uppercase or lowercase letters.

Now, if we take a look at the advanced editor, we should be able to view and
interact with the M code for the entire query, as created against all the
transformation steps under Applied Figure 2.24 shows all the transformation

steps for a query in the advanced editor:

Query SeTings
4 PROPERTIES - o
N X_SEJ 4 .:lleﬂnc.f cla Duphy Dptert =
1 st
All Properies Sowrce - $ql Batabases! atabane.wl
o St Telararce” - Soucca|[hane- "1 [ew
& o_x_semplefinanclal = B*5tep Referonue™{[Scbeme="ub
“ APPLIED STEPS ” O Filvaced Ron™ = Table, SeleceRous (e _x_pamplafingn 11
c & FBrvmed Colomnn”™ = Table, Reneowlolom {8 F Il iered R
Sourge T gn
Navigation : T Renamad Colwmns”
Filtersd Rows

> Renamed Columns

Dere

Figure 2.24: M code for the query

By now, we should have the basic understanding of how data transformation
works in Power Query editor, as well as how M can help in performing those

transformations. Time to explore some interesting transformations now.

| Advarced Edier (]

Common data transformations in the query_editor

We already have seen how to remove columns, rename columns and filter
data in the previous sections. Let us now have a look at a few of the other

most common transformations in the query editor:

Changing Data Data types are defined at the field level and determine how
the field values would get stored in the dataset. In the query editor, usually,
there are multiple ways to perform a transformation. For instance, to change
the data type of any field, one can right click on the field name and open the
Change Type menu to see all available options. The same menu can be
populated by clicking on the Data Type option, on the Home tab, under the
Transform group. Clicking on the left icon on any field name populates the

same menu as well. Different options for changing data types can be seen in

Figure

|| far sernn:

= & Sale Proe « PROFERTIES

4 BEFUNED STEFS
Seurte
THaaghon
Py Roat

e ww o oww

r Ramamie Cobwns

Bemgsl Gl i e

=t Fasme

o
2
*
]
i
¥
nEoE
a= 2
]
w
&

Figure 2.25: Changing data type options

Someone inquisitive enough can even find the same Data Type option on the
Transform tab under Any Column group as well! All these options work in

the same way and the user can use any of them as per convenience.

Let us say we want to see Units Sold as a whole number and want to
disregard the decimal part. By clicking on the Whole Number option on the
menu should store the field values as whole numbers. Figure 2.26 highlights
the updated data type for the field:

ML A% Seginat =| A% Comntry @t g - Al Peedunt -ll’]!—l‘ulliml -| § Mimibwtariog P = & sl P 4 FROPERTIES
Commment Cirada Carrgsara 2616 160 Mz

Al Froparaas

4 APPLIED STERS

vy
canada Pass 2 Fry e
FlRgres Rows
aken i 160
Bopceeos Colurn

. i 3808
x Changed Type
10 | Small Susinass Adsizo Bass= 75 1808 I e 1Y

P
B OR

[TT Y

Figure 2.26: Data type changed from decimal to whole number

Note that the left-hand icon of the field has also changed to indicate the new

data type, also a new transformation step has been added under Applied

recording the change as expected.

Case Let us now see how to perform case transformations which is often a
common requirement. To convert text values to either lowercase letters or
uppercase letters, or to capitalize every first letter of a word, no complex
string operations are required in the Power Query editor. The relevant options
can be seen after right clicking on any column having text values and

exploring the Transform option, as shown in Figure

. AL Seement - A% Cowntryolc ** . |'2* Uinits Sold =~ & mManulaciuring Price ~| % salePrice
iR Lopy
Governmant Canada . 1618 3.0
W Remaove
Governmant Sarman 2221 rco
- v Remaove Other Columng
Gaverament GEAMAnY . 1510 roo
Duplicate Colunrn
Governman ' England _ FrT S0
Fl Add Column From Examples...
Smail Business Mexico 55 S.00
Femow aplicat
Goverament Sermany amaye Duglicoras 2146 s.c0
Government canada SRS ook FE 10.c0
Goverament Germany Change Type 1006 10.c0
Soverarment Moo Trang'om lowercase 10.60
Small Business Mexico L, Replace Values.. UPFERCASE 10.c0
E "
Covernmant United States of Replace Errors... Capitalize Each Word 10.00
Trim
Governmant Canada n 10.00
- . - v Split Column Clean o
overnman Canada . 2
= Group By.. Lenath
Government Germany mil . o 10.00
Goveramant AAwwhco :+ Unphot Columns AL 2000
Government Germany Unpiio Other Colurrns TOOE 20.00
Small Business Canada Unpivet Cnly Selected Columng 2001 230.00
amaramant Englana 1327 130.00
s =l Rename..
Small Bustiness England 2151 250.00
Move
ST el canada 181r 23.C0
il v
Goverament England Orill Do 2750 260.60
T
Beverament Englind Add &3 New Query 1899 260.c0
X ¥ f I b Table. TranifersColums{@-Cranged Type™, {{"Country of origin®, Text.Upper, type text))) I |
2. % sepment = A% Country of arigin = | A% Product = | ¥ Unins Sold = § sasubsctarisgPrice |+ § SalePrice + PROFERTIES
1 Governmant CARDA Cannters 1618 200 I Lo
2 Gowernmani GERMART Carmters 1838 100 R
I Gomarrmant GRRMANT Carmuters ifiE B0 Al Properties
4 wover rnant ERLAN ASOOTERE 1895 300
4 APPUED STEPS
5 Small Business MEXO Mortasa 8 500
b Covernme ik CORMARY Biortans 2148 $00 Source
Sowernment CarAbA Paseo 292 1000 oisce
Fit
Gowtr st GERMANT Pasio 1006 1000 izl
Fenamsd Coumns
Dirvtr it MO Pazes a8 o000
Senall fusine MO Pasts TR 000 r et
[usimn sTares o apncs | Puies a4y 1000
GORT Tl LAMAIA L 0] i v
Gorvar nmant CENALE Pasto 187 1000
RO GERMANY Pasen 518 000
Gover mant MEXO el 1283 12000
Governmant GERMANT vaig 1006 12000
Aol baisi CAMADA VIt 2000 23000
Gowar iRt ENGLAND T 1827 5000

Figure 2.27: Transforming case of text values

Performing the transformation, as applied above for Country of should

convert all the country names to uppercases. Also, this would create a new

step under Applied Steps and the corresponding M code can be seen on the

formula bar.

Unpivot This is an interesting transformation option in the query editor which

otherwise, may not be as easy to implement. Sometimes, it makes sense to

flatten the data in a matrix format to make it more suitable for BI reporting.

Often data is maintained by pairing attributes with values which needs to be

unpacked to meet reporting requirements. The concept can be understood by

referring to Figure

Attributes

V1 v2 vi Al V1
A2 vz

Vi V5 V6

Values - . ‘_>

A3 V3

V7 V8 va
Al V4
A2 V3
A3 3
Al V7
A2 V8
A3 V9

Figure 2.28: Unpairing attribute-value pairs

Let us now see a real-life example. Consider we have the below data in a

table as shown in Figure

A% Region/Product = | 123 Aspen ~| 123 Bellen = | 123 carlota ~| 123 Yanaki

East
Midwest
South
West

10
74
14
67

77
47
[:¥}
51

38
37
g9
56

42
26
20
77

Figure 2.29: Partially structured data

The matrix captures the no. of products sold for different regions. This type of
representation is not ideal for reporting where we slice and dice the data,

hence, this needs to be flattened.

The first required step would be to select all the columns that we need to
unpivot (here, all product columns), right-click and use the Unpivot Columns

option. This should create two columns, one for the attributes like product

names and another for the values. The original product columns would be

removed.

Figure 2.30 illustrates the unpivot operation, applied on the matrix as shown

in Figure

3 Carbuta - | e = f = Tasls.UnpivordtharColuens (# Changed Type™, [“Reglon/Product™}, “Attribute™, “Valus

rrrrrrrr

Figure Unpivoting Columns

The table now is ready for reporting and can be loaded to the Power BI

Desktop model using the Close & Apply option.

Add Conditional One common requirement for data transformation is to be
able to create additional columns based on the existing data that we have.
There are multiple ways to do it in Power Query Editor, conditional columns
are one of them. Conditional columns in the query editor provide a no-code
way of implementing simple IF-ELSE conditions, in a matter of few clicks!
Let us assume that we are working on the same table imported from Azure
SQL DB (refer to Figure Just to quickly refer to the columns that this table
has, we can click the Choose Column option under the Home tab, which
should provide us with a view of all available fields in the table, to choose

from. The field list for our imported table is shown in Figure

B o Transform Add Column
= 3 y —
-t &+
Close & MNew Recent Enter Data source
Apply = Source ~ Sources ~ Data Settings

Close MNew Query Data Sources

Queries [8]

Transform File from Query1 [2]
E Other Queries [4]
B quey!
[financials

4 Partial_Structured_Data

x_samplefinancial

Wiew Tools

Manage

Help

‘b Properties

g Advanced Editor

Parameters = Proview _M’n"ge-
Parametess Query
< Jx = Table.Transform{olumns (&
7. A% Segment - | A% Country of origin
1 Governmeant CANADA
2 Government GERMANY
3 Government GERMANY
4 Government ENGLAND
5 Small Business MEXICO
& Government GERMANY
| Government CANADA
3 Government GERMANY
9 Government MEXICO
) Small Busingss MEXICO

11 Governmant
12 Gowernment
13 Government

14 Government

UNITED STATES OF Al
CANADA

CANADA

GERMANY

Choose Columns

Choose the columns to keep

A EEEREEEEEEEEE NN

Select All Columng)
Segment

Country of origin
Product

Uinits Sold
Manufacturing Mrice
Sale Price

Gross Sales
Discounts

Sales

COGS

Profit

Date

Month Number
Month Name

Year

disc_bucket

Figure 2.31: Columns available in the table

Assuming that we need to introduce a new field Market where for Country of
origin - UNITED STATES OF AMERICA it should be and for the rest it
should be The logic can be implemented by creating a conditional column,
using the Add Conditional Column dialog box which can be launched from

the Add Column tab, as shown in Figure

E. # sogment - | ¥% oty of origin - | §55 Warkot Sis

Addl Conditional Colsmn " T e
" Ly [
rRIANY [y
e ERBAND acdun

o~ - e " [
e T O o - Lo - LRERANY edun

reiah -
- AR by
CIRLAASY [T
Fakd Lam

Ece [N

——r ¥ [

W AT AT g

- LA Ly

Figure 2.32: Adding a conditional column

The options on the dialog box are self-explanatory: a name for the new

column needs to be provided, then we need to select the column on which the

logic would get applied to (here Country of After that, we need to select a
comparison operator as shown in the preceding figure; finally, we need to
provide the value to compare and the desired output. After the new column
gets created, it can be dragged to re-order, like any other columns on the data
preview in the query editor. The condition can be modified using the gear
icon, next to the Added Conditional Column step, in the Applied Steps of the

Query Settings pane, as shown in Figure

Add Conditional Column 4 PROPERTIES

Mlarket Size
“ APPLIED STEPS.

f try of origin = | | equa | 155 » UNITED STATES OF AMERICA ~ Then 135 * Large

oK

Figure 2.33: Modifying a conditional column

Conditional columns are great for simple logic implementation, however
there 1s another option for introducing new columns with more control, which

1s, Custom which we will explore next.

Add Custom Custom columns provide more control while adding new
columns as the logic can be implemented using M code. Continuing with the
same table, let us see how to add a new column which is based on two
columns, Segment and Market If Segment is Government and Market Size is
then the Rating should be 1, otherwise 2.

The dialog box to create a custom column can be launched from Add Column
| Custom and the required logic can be implemented using M, as shown in

Figure

Home Transform add Column View Toaols Help

R Custom Column

Colurmn Fron] Custom |rvoke Custom
Examples = | Column | Function

Add a column that is computed from the cther columns.
General
Queries [9] — e
Rating
Transform File from Query Custom column 'lfrJrr'.u.'I.-: @ Available columns
4 Other Queries [5] = if [Segment] = “Government” and [Market Size] = “Large" Segment
. e
_? Queryl then 1 else 2 Country of origin
Market i
[financials Market Size
)) Product
1. x_samplefinancial .
Discount Band
[Partial_Structured_Data Units Sold
[] samplefinancial Manufacturing Price v
<< Insert
Learn about Power Query formulas
v' Mo syntax errors have been detected. oK | Cancel

Figure 2.34: Creating a Custom Column

All the available fields for the table can be accessed on the right-hand side
panel to include in the formula, and it requires a simple self-explanatory IF-
ELSE statement to implement the logic, as shown in the figure above. Once
created, the column should be available on the data preview and can be
modified using the gear icon, next to the Added Custom step, in the Applied
Steps of the Query Settings pane.

There are a whole lot of other transformations available in the query editor,

which readers are encouraged to try out themselves and explore!

Tip: Microsoft provides a sample dataset to practice the concepts, which can
be loaded to a blank Power BI file from the home screen by matter of few

clicks, as illustrated in Figure

N Gwme et kg Veu ey e
RLREEE® B B L G038 ?

o s v o e | e — e N Two ways to use sample data
-

Add oty W your fepert
it o s ot il -
a a i a Takoe & tutorial orline Expreriment on your gy
Lears ‘s L 2ol o pobmesd pooml T slaael cronling st on your e,
—— . NP r—— depdypon e <arrpl= ki
aurch numadal CF

Load samgle data

A Visualizatiens ® Felds » Hoviguior
E-I oy ;
¥ = I foends o
EMENEN 2= =
ol b e i
HELEOSE ~
CEaUEE Cecowr bzne
BTEr PYE ¥ Cincoee
ACBLES E o S -
&R E wmnrnrny
LA N
e F——— = =
h. g Produn | - u
S
g -
I e bed [
=

Figure 2.35: Getting ready-to-use data to practice

It is the same dataset that we have been using for many explanations and will

continue to use throughout the book.

Data cleansing in the query editor

There are some transformations specifically used for data cleansing; we will
explore a few of those now. We may need to cleanse data on the reporting
layer unless the data cleansing aspect is managed on the data source. Few

commonly used data cleansing transformations are:

Managing Missing Values: Let us assume the table that we have imported has
some missing values for the Sale Price Column which we want to replace
with suitable alternatives, in this case, with the average sale price of the
records. There are multiple ways of doing it, we can directly write a piece of
code in M in a custom column; however, let us see how we can derive a
scalar value first from a column using some available transformation options,

and use it for this purpose. The table with the missing values is shown in

Figure

AR Segment - | A% Country = AR product = 1.2 Units Sold » 123 sale Price = 123 Manufacturing Price
Government Canada Carretera 16185 20

Government Germany Carretera 1321 20

Midmarket France Carretera 2178 15

Midmarket Germany Carretera 888

Midmarket Mexico Carretera 2470 15

Government Germany Carratera 1512 350

Midmarket Germany Maontana 521

Channel Partners Canada Montana 2518

Government France Montana 1899 20

Figure Table with missing values

To calculate the average value, right-click on the Sale Price column and then

select Add as New This should create a new query, only for this column, in

the form of a list. The query icon should change as well, representing a list

now. At this point, few options would be available to transform the list using

the List for our purpose, Statistics | Average should calculate the average
value of the list. This should also transform the list into a scalar value (the

icon would change again to represent a scalar value this time), which can be

used to replace the missing values in the original query. The transformations

are illustrated in Figure

- 1y sabs Prive Bs com g o
— — ¢ ¥ ™
™ , > Transonm File from Cuery? [#)
= PRerowe
= Rerr e Cther Colurng 4 Oher (uenes 7] 1 0
uTE) -
Suphcae Lok 2 2
o B Dhapiic p-u'rn) b Query? < o]
=1 Add Column From Examgles. 15
W E hnancials
o Remcve Duplicates o
Remoue Erras E w_sampletinancial
a1 - = 15
1518 Chiarmge Tyoe . E Parhal Struchured_[ata P a0
N Trwre e ¥ !
W
E samplefinancial 7 Al
Lo Replace Valuss
Replace Frrer [financials raw 8 17
2, Group By.. | [sale Prce | 9 0
.
g Urpivet Columng
Urpivet Ot |
Urgives Sty Selecsad Do
=} Rename.
(R ; 1l W~
Dl Doy n Hame Transiorm Add Colum inn Tools Halp
Add a5 New Cuery :
) Y R B remose Cuplcates 4] b4 i
=L — userserems El | =
1e dEep Asmave “aatist 8
- < Tabe Ny = flemms ~ =
Clueries [1 fx . Comven Marage BETS sert b U
- - Couseriess [17) < bk
ransform File from Query1 [2] 64.571428571428569 A Miimum
el

Crther Queries [7] Transfoarn Fils v Cueryd (2] Wedian

L Quenyl o Othver Quenes [7] _m
t Y Standad D
[financials — B Queery? anda-d Dev-aion

M finsnials O L
E x_samplefinancial Counk istinet Vb
[x samplefinancia | o l’l" e
ial % Y 15
[Partal_Structured_Data [romol Stuerred_Dana

3 G 50
] samplefinancial T e : -
[financials raw [finencials raw B 22
¥ Sale Price T Sale Prise % m

Figure 2.37: Calculating Average value for a column without M functions

Now, this pre-calculated average value can be used in a custom column, in

the original query, to replace the null values as shown in Figure

Liz Tools

Transtama

woved Cols

Custom Column

Add a column that is computed from the other columns.

New column name

MNew Sale Price

Custom column formula @ Available columns
= if [Sale Price] is null then #"Sale Price" else [Sale Segment
Price] Country ~
Product
Units Sold
Sale Price
Manufacturing Price
Gross Sales hd
<< Insert
Learn about Power Query formulas
v No syntax errors have been detected. OK | Cancel

Figure 2.38: Custom formula to replace null using pre-calculated average

value

Tip: In M, columns can be referred by enclosing the column names in square
brackets, and queries, parameters etcetera can be referred by their names
enclosing in double quotation marks and adding a hash (#) prefix; as shown

in the preceding figure.

Managing Data Quality: The query editor has multiple features to maintain
the quality of data. There i1s a Remove Duplicate option that can be applied on
a column level to maintain unique values for a field, for example, in case the
key values of a dimension table has duplicates due to some technical debt.
There are ways to handle errors as well, errors can be filtered out, or replaced,

depending on the business objective.

Removing extra spaces: In case a text field has leading or trailing
whitespaces, the Trim transformation can be used to remove apply the
transformation, right click on any text column header and select Transform |
Alternatively, on the Transform tab, Format | Trim can be used to apply the

same transformation on any text field.

Removing non-printable characters: In case a text field has non-printable
characters, such as line feeds, the same can be removed using the in the query
editor. The transformation can be applied either using Transform | Clean or on

the Transform tab using Format |

Tip: A few of these transformations might prevent query folding. All the steps
that support query folding should be placed before the one that might break it.
Also, a few of these can be performance heavy, so it is recommended,
especially while working with large volumes of data to push the

transformations as much as possible to the data source end.

Appending and merging data

Now, we will see how to effectively combine data from same or different data

sources. There are two basic ways to combine: Appending and Merging:

Append The append operation in the query editor creates a single table from
the content of two or more tables, by adding data vertically, resulting in an
increased number of rows. However, if the tables do not have the exact same
column names, all column headers from all the tables would be present in the
appended table and missing values of any of the tables would get displayed as
which can increase the number of columns as well. Let us understand the

concept by referring to Figure

Table 1

Resulting Table

1 3
7 5 .. . A | B | c | D |
7 8 9 : 2 3

1 null
4 5 6 null
o 7 8 9 null
: null 10 11 12
Table 2 :
' null 13 14 15
| 8 | ¢ [D | :
ot null 16 17 18
10 11 12 o
13 14 15
16 17 18

Figure 2.39: Append operation working principle

In Figure Table 1 does not have column D and Table 2 does not have Column

A. The resulting table has all 4 columns, with null values populated for the

missing data in respective tables.

In the query editor, the option to append queries can be found under the

Home tab and Combine group, as highlighted in Figure

Figure 2.40: Append Queries on query editor

The append operation can be applied on two or more tables, either to add data

to an existing table or to create a new resulting table.

Merge Merging queries is another way to combine data, which adds data
horizontally based on columns that drive the join, potentially increasing the
number of columns in the resulting table. Common columns (key field or
identifier) need to be selected for performing a merge operation; however, it
1s not required for the column headers to match as in this case, as we will

explicitly select the column.

In the query editor, the option to merge queries can be found under the Home

tab and Combine group, as highlighted in Figure

Figure 2.41: Merge Queries on query editor

The merge operation requires to select two tables, where the first table is
considered as the Left table and the second table is considered as the Right
After selecting the tables, the columns in each table need to be selected based
on which the join will happen. Then, the Join Kind will require to be chosen,
which determines how a merge operation will be performed. Figure 2.42

illustrates different join kinds available in Power Query

“
Left Outer All rewes Tram left table, matching rows from
right table)

Right Quter All rows from right table, matching rows from '/'"
left table |

Full Owuter All rows from both tables @
Inner Omly matching rows from both tables ”‘\'
@/’
Left Anti Only rows fram the left table @
Right Anti Only rens from the right table @
|
L

Figure 2.42: Available Join Kinds on query editor

For example, let us assume that we have two tables, dimension and where the
dimension table has Country Id (as a key field) and country the fact table has

date-wise information of the Country Code and as shown in Figure

Table: dimension Table: fact
123 Country ID [~] 8 Name - . [pate |~ | 123 country code =] 13 sales -
-1 USA 1 01-08-2022 2 10000
2 India 2 09-08-2022 3 5000
J Ccanada 3 11-08-2022 1 BOO0
4 15-08-2022 2 2000

Figure Tables need to be merged

If we want to create a new merged table which should have the aggregated
sales amount for each country, we can do a Left Outer join between the
dimension table (left table) and the fact table (right table) based on the
common Country Code columns, so that the aggregated sales amount gets
populated for each country as in the dimension table. Figure 2.44 illustrates

the merge operation that can be used:

Merge
Select tables and matching columns to create a merged table.

dimension

Country ID Name

USA

L

2 India

3 Canada

fact

Date Country Code Sales

01-08-2022 2 10000
09-08-2022 3 5000

11-08-2022 1 8000

15-08-2022 2 2000
Join Kind

Left Outer (all from first, matching from second) -

L] Use fuzzy matching to perform the merge

Fuzzy matching options

OK Cancel

Figure 2.44: Merging in Query Editor

After selecting OK on the merge dialog box, the resulting table would have
all columns from the left table (here and a new column would get added with
the same name as the right table (here The column would hold the values of
the fact table on a row-by-row basis. From that column, we can either Expand
or Aggregate the fields as required. For this instance, we use Aggregate and
choose Sum of Sales to be shown on the final table output, as illustrated in

Figure

- 2 et - . #; CountryiD - | Ah Name - 455 sum of sales

p—
. ! . = 1 1 USA 8000
Expand ' Aggregate
£ 2 Indsa 12000
St Al Coliins)

3 Canada 5000

Figure 2.45: Aggregating the merged table column

Combining data can particularly be useful while working with multiple data
sources; however, we should always consider the performance aspect as these
transformations can increase the refresh time of the datasets, especially while

working with large data volumes.

Tip: The Query Dependency view on query editor, which can be found under
the View tab, can be referred to understand how different queries are linked
together inside Power BI. For example, the query dependencies for the merge

operation that we performed is illustrated in Figure

Query Dependencies

™
. c:\users\ I\ desk...

B fact B dimension

Mergel

Figure 2.46: Query dependency view for the merge operation

Power Query parameters

One important feature of query editor is query which can store and manage a

value which can be reused as required. Parameters allow to dynamically

change the query output, depending on the value that it holds. Let us quickly

understand the concept through an example.

Parameters can be created or managed using the Manage Parameters option

under the Home tab. Consider we want to be able to import data specific for

the country we want. For this, we can first create a parameter which would

hold the name of the country we select. The value of the parameter can be a

query output, any input by user or a list of possible values, as shown in Figure

4 Other Queries [13]
Query 1
financials

E x_samplefinancial

[Panial_Structured_Data
D Query2

I financials raw

¥y Sale Price

B Tablel

M Table2

Appendl

fact

dimension

Mergel

. A Segment

T Help
‘= Properties
& dvanced Edtor Manage Parameters
Refoesh — Choose R
Privigw = S Manage Columng * Col .
Query 15! e Colu
. e 5 Parameter2 Country
= Table.ResoveColusns(#"Changed Ty % Country * escription

Parameter to capture name of individual countries

1 GOvernmant

Governmart

i e et

4 Midmariet

5 it et

Governmant

J Wkt
Channal Partrers Canada
] Government
100 Wedmariet
1 Chamnel Partrers
1 Governmenit
Charnel Parirers Germay
14 Governmant
5 Midmarioet
16 Senall Business
17 Midmarket
18 Governmant

J GOVEneenT

Mexico
united States of Amenica

Canads

Figure 2.47: Creating a parameter for different countries

We have named the parameter as now to use the parameter we need to go to
the column dropdown on which the filter needs to be applied, then clicking on
Text Filter should populate the Filter Rows dialog box where the parameter

can be applied, as shown in Figure

Filter Rows

Apply one or more filter conditions to the rows in this table.
® Basic O Advanced

Keep rows where "Country’
'

equals r | = || Country v

- B
sand OO Ne Text

‘ [§ Parameter
- b -
MNew Parameter... b

OK Cancel

Figure 2.48: Filtering records using parameter

Once the column is filtered by the parameter, then each time the parameter
value 1s changed, the dataset would import only the data relevant for the
parameter, provided query folding is happening for the transformation step. In
the subsequent chapters, we will see how to interact with the parameters from

both Power BI Desktop as well as Power BI Service.

Conclusion

In this chapter, we explored how to integrate with various external data
sources from Power BI along with the architectural design considerations
like connectivity modes. We have seen why concepts like query folding is
important and how to perform transformations in suitable order to
optimize performance. We discussed the Power Query native language M
and how effective it can be to perform certain transformations. There is a
plethora of transformation options available in the query editor, and we
explored few commonly used ones, including those which are used for
data cleansing. We also saw how data can be combined inside Power BI
from multiple data sources. Finally, we discussed the usefulness of query
parameters. With this knowledge, even business users should be able to
integrate Power BI with external data sources and perform effective

transformations on their own.

In the next chapter, we will discuss how to model the data that we are
bringing into Power BI, so that ultimately, we can create those good-

looking visuals on top of that data model.

Knowledge check

The requirement 1s to create a Power BI report to show near real-time

data. Which connectivity mode should ideally be used in this scenario?

Import mode

DirectQuery mode

Composite mode

In case a transformation step prevents query folding, the step should

ideally be placed in which order?

Should be placed at the top

Order does not matter

After all the steps that fold

Query parameters are useful because:

They enable users to dynamically change the query output.

They ensure that query folding happens.

They can help to avoid writing M formulas.

Data can be combined in query editor only if they come from the same

data source:

True

False

All Knowledge Check answers are provided at the end of the book.

Join our book’s Discord space

Join the book's Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the
Authors:

https://discord.bpbonline.com

5]

C
HAPTER
3

Data Modeling in Power BI

Introduction

So far, we have seen how to integrate Power BI with different data sources
and then shape or transform the data as per reporting requirements and
load the transformed data to Power BI Desktop. At this point, we may
have multiple different tables which are not connected to each other and
thus cannot really work in synergy, for which a data model is required.
Power BI works best with a star schema instead of a single denormalized
table; here in this chapter, we elaborate on the star schema design and its
relevance to develop Power BI data models optimized for performance
and usability. Also, different ways of implementing custom calculations
using Data Analysis Expressions would be discussed to enhance the

model.

Structure

In this chapter, we will discuss the following topics:

Star schema overview

Relationships in the Power BI data model

Implementing a star schema in Power Bl

Introduction to DAX

Calculated tables

Calculated columns

Measures

Optimizing models in Power BI

Objectives

The objective of this chapter is to enable readers to create data models in
Power BI without having any prior experience. Business users often do
not have in-depth knowledge or expertise and are reluctant to perform data
modeling exercises. A good data model is the key to create a sustainable
report which also performs well. By the end of this chapter, readers should
be aware of how to create an effective data model in Power BI, and how to
enhance the model by creating calculated entities like calculated columns,

calculated tables, and measures, to achieve specific visualization goals.

Star schema overview

Firstly, it is not mandatory to have a star schema for creating a Power BI
report. Not always it is possible to have a star schema depending on how the
data is managed in the data source, and we may need to work with a single
denormalized table which should be absolutely fine as well. However, Power

BI loves a star schema, as it performs best with one.

In this chapter, we will explore how to implement a quick star schema data
model from Power BI reporting perspective, without going into minute details
about the star schema design which is a vast topic in itself. We would focus
towards understanding what a star schema actually is and then see how to

implement one in Power BI.

Star schema 1s a modeling approach which requires classifying the tables in
scope as either fact or There is no table property available for the modeler to
configure the table classification; it is actually determined by the relationships

that exist between tables, as we will see later in this chapter.

In a star schema model, dimension tables describe business entities like
products, people, time, and so on (for example, a date dimension table). A
dimension table should contain one or more key columns, which act as
unique identifiers. Apart from that, a dimension table usually has descriptive
columns which represent additional information about the entity. Figure 3.1

illustrates how a typical date dimension table looks like:

13 11 fely 2026 2 Monday July 2 3 e w1 MK

Figure 3.1: Date dimension table

Here, the Date field is the unique identifier for the table while the other
columns represent additional information like day name, month name,

calendar year, and so on.

Fact tables store observations or transactions of events like sales, orders. A
fact table should ideally contain the key columns from the dimension tables,
as well as the numeric values. For example, let us consider a fact table which
stores daily sales data having a dimension key column Order which
represents the date on which the order has been placed. Now in the same
model, we have the dimension table dim_date having a unique identifier Date
which corresponds to Order Date in the fact table. Here, the values of the
dimension key column would determine the granularity of the fact table,

which would be at a daily level for this instance.

Usually, dimension tables have relatively fewer rows, while fact tables tend to
have a large number of records as the transactional data continue to grow over

time. Figure 3.2 shows a sample fact table containing dimension key columns

like etc. as well as numeric fields like UnitPrice and

Owderate | = | Mudemate Koy = | Pmdidisy =

2 dng JULS
a2 dume 2047
a2 Line 207
O dune 2017
a2.4ine 2007
OF dane 3017

2iume J00F
A i 2007

e SUTS
OF jne 2047
0% Lina 2017
QFdane 1T
06 Line 2017

09 e 2017

(L
P9 can ST
11 Loma 2007
J0ime 2007
1Q4ame 2017
idme 2017

Prae
26170808
AN
2ertedor
20170602
007080
2610000
36170600
Fra
20170605
FNIIOEYS
203 redcs
2017606
P
2o1red0r
A TeENT
Ry
20170603
20170608
b
S0ITEE0F
U ol
At mAa
FTTOEIY
2017610
20170610
6170610

Cistomertey | | SasaTeriinoykey | =

oW e e 3 W 0 W WM WMo B 8 W WMo W W W W m oW e W

* Shiahate ¥

IFMerc 217

I e 017

Mty

Figure 3.2: Sample fact table

UnitPyice | = | Fatpadedmeant | =

IS

dal s
SX1OBD
LT
anaar
ELr
vy
Aarans
5727
ETLTEH)
A
asran
aanear
379595
FrY
AL TEE
RRARAD
aresa9
FTRIF
287427

a0t
TEEL
IR IT
yer82T
57827
b e
e
BARL
ey
39,5002
LT
yarsar
57827
Ecech)
ST
RO
eme 37
#7458
57827
rraar
F355.59
Er k)
e 37
A9 AR
1459.99
757827
237827

L DT

In a typical star schema model, there are usually one or more fact table(s)

surrounded by multiple dimension tables connected via relationships between
the key columns in the dimension table and the dimension key columns in the

fact tables, resembling the shape of a star, as shown in Figure

o e e 3 30 0000330000300 00080300

Mémoven

-

; \
f N
JII‘ .',
& \
fr' T \"‘
f L 3
\
! b
/ \
/ \
- l' .i.
.
. /}J
- m 2 dim 5 -
S _.J”f;
. L8 ',/
. -
h \-."\-_“ -J--.,/
o /{J
~ -
-u.__‘r _'_,,-F'"
/ Y
'." im 3 m 4 Y
i
P
/! P b
) o o !
- ~
/ - ot
4 - s \
o T \
/ /,.-"'- \\“-.‘H \
/ /,-' . \
! S !
- s \
f/ \.\ Y
"_,.-" \"‘-\\'\

Figure 3.3: A typical star schema

Let us now try to understand the reasons for which a star schema is preferred
by data modelers over a single table. In a star schema, the fact table(s) should
be This term is used to describe data that is stored in a way to reduce
repetitiveness or redundancy. Let us consider a dimension table product
which has the ProductKey as the unique identifier, and additional columns
which represent product characteristics like product name, colour, and so on.
A fact table would be considered normalized when it would store only the
dimension key column which is the ProductKey and not the additional
characteristic columns from a dimension table. Figure 3.4 illustrates a

normalized fact table

15rRT

Figure 3.4: Normalized fact sales

In this case, the fact table does not store additional characteristics related to
the product, limiting the number of columns that it has to store. To create a
star schema, fact sales can be related to via a relationship involving

fact sales and dim_product This would allow these two tables to work in
synergy and the product characteristics can be populated in run-time from

alongside fact_sales values on a single visual, if required.

Contrarily, there could have been one single table fact sales having all
required product attributes in it. In that case for each record, the table would
have to store all the product characteristics repeatedly. As fact tables have a
large number of records which tend to grow over time; this approach would
result into higher redundancy and inefficiency as each time a product is sold,
all the additional product characteristics need to get stored against the same
product key over and over again. However, in case of a star schema, there
would be a normalized fact table and a dimension table with unique product
keys, for this instance. The latter would serve the same purpose, only with

improved performance and efficiency!

In Power BI, each visual generates a query that hits the underlying dataset for
filtering and summarizing data. In a star schema design, generally dimension
tables are used for filtering and grouping categorical data, while fact tables
are used for summarization or aggregation of values. A typical star schema
requires a one-to-many relationship cardinality between the dimension and
the fact table; the concept we are going to understand in the upcoming

section.

Relationships in the Power BI data model

When a model uses multiple tables, it is likely that data from all the tables
would be used in some way. Once data is loaded into Power BI, all the table
schemas or metadata become visible under the Model view. It is the
relationships between the tables which make it possible for the data model to
work as a single unit and accurately calculate the aggregation results. In
Power BI, a relationship can get created in two ways: either it can be auto

detected, or it can be created manually:

Auto-detection during In case the data model has multiple tables and in
Power BI Desktop the option to detect relationship is enabled, then Power BI
tries to match the column names in different tables to determine any potential
relationship during data load. If it finds a match with a high level of
confidence, then it creates the relationship automatically, otherwise it does
not. In case of the latter, any new relationship needs to be created manually
inside the tool. In Power BI Desktop, File | Options and settings | Options |
Data Load (CURRENT FILE) should populate the dialog box where relevant

options can be found to control relationship detection, as shown in Figure

Options

GLOBAL ~ Type Detection

Data Load » Detect column types and headers for unstructured sources
Ponanger Ciaary Edior Relationships
DirectQuery ¥ Import relationships from data sources on first load (3
R scripting [0 Update or delete relationships when refreshing data (@)
Pyth cript -

ython scripting ¥ Autodetect new relationships after data is loaded (0
Security —
Privacy . . .

_ Time intelligence
Regional Settings
) O Auto dateftime () Learn more
Updates -
Usage Data Background Data
Diagnostics 0 Allow data previews to download in the background
Preview features .
o Parallel loading of tables
Auto recovery
¥ Enable parallel loading of tables (3)
Report settings
Q&A
CURRENT FILE ¥ Turn on Q&A to ask natural language guestions about Learmn

[ata Load your dafa {1 mere

Figure 3.5: Autodetecting relationships

Enabling the relationship detection options can cause issues for various
reasons like it might create relationships which do not make sense from a
business perspective. And hence, probably it is safer not to blindly depend on
autodetection, and manually verify or create all required relationships after

data gets loaded to Power BI.

Manually creating Once the tables are loaded in Power BI, relationships can
be created manually between them from the Model view of Power BI
Desktop. In the Model view, selecting Manage relationships | New should
bring up Create relationship dialog box where first both the tables need to be
selected for which we want to create the relationship. After that on each table,
we need to select the columns which will be used in the relationship. Once

these are done, after clicking on BI will automatically configure other

relevant properties for a relationship like Cross filter direction and Active
relationship — which we will understand in a while. Once a relationship is
created, it can be seen as a line connecting the tables, on the canvas of the
model view. Figure 3.6 illustrates the steps involved to create a new

relationship manually:

. |_ | |_"] o) ;: Create relationship
R PR HE[(RRL
o a | Ve | & ——p— !
Manage relationships Crdeilabe Oedeibabe By | Prede ity | dustomes My SebeiTewiegey Sekslmiorrber Shiphiele
BT T, ! 3 S e

i

L

Relationship created between tables
i
[B] Products - g

1 |
< ey

Figure 3.6: Creating a new relationship manually

When a relationship is created or edited, additional important options can be

configured, which we will explore now:

Relationship cardinalities define how the columns involved in the relationship
are connected to each other. The cardinality option can have one of the below

configurations:

One to one In a one-to-one relationship, both the columns in the related tables

have unique values (only one instance of a particular value).

One to many In a one-to-many relationship, the column in one table has only
one instance of a particular value, while the related table column can have

many instances of a value.

For example, let us assume we have a customer dimension table which holds
details of all unique customers of a business. We also have a fact table for
orders which has details of all the orders being placed. Now in the fact table,
the customer ID is likely to get repeated as the same customer can place
multiple orders. In case we relate these two tables based on customer ID, then
the relationship between the dimension and the fact tables would be one-to-

many, for this instance.

Many to one In a many-to-one relationship, a column in a given table can
have multiple instances of the same value, while the related table column

would have only one instance of a particular value.

A many-to-one relationship is similar to a one-to-many relationship, only
viewed from a different perspective. Continuing with the previous customer
and order table example, the relationship between the customer and order
would be one-to-many while the relationship between the order and customer
would be many-to-one. The latter can be interpreted as — multiple orders can

be placed by the same customer.

Many to many Power BI supports creating a many-to-many relationship,
which means that both the columns in the related tables can have multiple

instances of a particular value.

As dimension tables should have unique values on the key field in a star
schema, it is quite obvious that for a star schema model, the relationship
cardinality would be many to one, from the fact to the dimension The use of
many-to-many relationship cardinality should be avoided generally as that
can introduce ambiguity. Alternatively, a bridge table can be created
containing all the distinct key values, which can then be linked to both the

original columns of the related tables.

Cardinalities are represented by 1 and an asterisk (*) to indicate one and

many, respectively.

Cross filter The cross-filter direction option determines how any filter would

propagate between the tables involved. The available configurations are:

The default and most common option, which means that when a table is
filtered on the one (1) side of a relationship, the filter propagates to the table
which is on the many (*) side of the relationship as well. However, filtering
the many (*) side of the table does not automatically filter the one (1) side of
the table.

For example, if a one-to-many relationship exists between the customer and
the order table, with the cross-filter direction configured as the customer table

would filter the order table, but not the other way round.

Also known as a bidirectional filter, ensures both the tables, on one (1) side as
well as the many (*) side of a relationship, filters each other. This option
should be considered carefully as it can have a negative performance impact

and hence is not considered a best practice to follow for general data models.

Cross filter directions are represented by an arrow on the relationship line.

The head of the arrow indicates the filter propagation direction.

Active/Inactive The relationship property Make this relationship when
checked or enabled, the relationship serves as an active relationship,
represented by a solid, continuous line. An active relationship enables Power
BI to create visuals from both the related table objects. There can be only one
active relationship between two tables at any point in time. However, there
might exist inactive relationships, which programmatically can be activated
and used during run-time. The Make this relationship active property needs to
be checked off for any inactive relationship. An inactive relationship is

represented by a dashed line between the tables.

One use case of having multiple relationships can be to avoid duplicating
dimension tables in the model, for filtering the same fact table using different
keys. For instance, there might be a requirement of filtering the same sales
fact table by order date as well as by delivery Instead of having two date
dimension tables in the model, two relationships can be created between the
dim_date and fact sales tables, where only one can be made active, let us say
the relationship involving order When the fact table needs to be filtered by
delivery the inactive relationship can be activated using the DAX
USERELATIONSHIP function, which we will explore later in the book.

A relationship can be edited or modified by double clicking on the

relationship line and can be deleted by right clicking on it and selecting

Implementing a star schema in Power BI

Time to create an actual star schema data model in Power BI, which can be
simple as a process in itself for one who has the required business
understanding! Let us say we have a fact table fact Sales and five dimension
tables dim_BudgetPeriod and

Fact Sales stores the daily transactional sales data and has dimension key
columns like and Apart from these, the fact table stores values like unit sales
amount, and so on. As required ideally, the dimension key columns are the
unique identifiers in each of the respective dimension tables. That means
ProductKey is a unique field in CustomerKey is a unique field in Territory
Key is a unique field in Period is a unique field in dim BudgetPeriod, and

Date is a unique field in

Looking at the unique fields of the dimension tables, it seems that though few
fields have slightly different names; however, as the values match with the

corresponding dimension key columns of the fact table, refer to Table they

may be related:

Table 3.1: Field mappings between fact and dimensions

At this point in time, we need to make a judgement whether relating or
mapping these fields would make valid business sense or not, as once done,
the model would start to behave as a single unit based on the relationship

configurations chosen. For this instance, the mappings seem to make perfect

sense as we want to slice and dice our fact table’s aggregated values by the

dimension table filters based on the mappings as maintained in Table

To relate the tables, on the Model view, Manage Relationships | New should
bring up the Create relationship dialog box where the mappings can be
chosen and required relationship properties can be configured, as shown in

Figure

Edit relationship

Select tables and columns that are related.

fact_Sales -

OrderDate OrderDate Key ProductKey Customerkey SalesTerritoryKey SalesOrderNumber ShipDate
01 june 2017 20170601 312 20995 9 5046391 08 june 20
02 June 2017 20170602 314 20820 9 5046399 09 June 20
02 lune 2017 20170602 314 20987 9 5046400 09 june 20

£ >

dim_Products b

ProductKey ProductSubcategoryKey ProductMame StandardCost Color safetyStockLevel ListP

397 4 LL Mountain Handlebars 17.978 NA 500 4
398 4 LL Mountain Handlebars 19.7758 NA 500
393 4 ML Mountain Handlebars 24,9932 NA 500 5
< >
Cardinality Cross filter direction
Many to one (*:1) = | Single N

o Make this relationship active

oK Cancel

Figure 3.7: Relationship properties between fact Sales and dim Products

Here, we can see the relationship cardinality between fact Sales and

dim_Products is Many to one which indicates that there are many instances of

the same product in the fact table; however, the dimension table only has
unique products stored, which is ideal for a star schema. The cross-filter
direction is which signifies that dim_Products would filter fact Sales based
on exactly the way we want it. Lastly, the single relationship between the

tables, by default would be an active relationship.

Once all required relationships are created between the tables, clicking on
Manage relationships should populate the dialog box to manage existing
relationships or to create any new relationship required. All relationship

mappings for our model, as well as the model diagram, is illustrated in Figure

Figure 3.8: Star schema data model

At this point, all the tables in our data model is related to each other with

valid relationships, and the model should be ready for reporting.

For complicated data models, there can be a large number of inter-related
tables in the relationship view, hence it might increasingly become difficult to
understand and maintain the network of relationships in a single diagram. To
address this issue, the Model view allows you to create additional layouts
while the default All tables layout includes all the tables used in the model.

Tables can be added to a layout by dragging from the right-hand side Fields

pane, as shown in Figure

[n]!aci

[E] Prodhuscts

Figure 3.9: Additional model layout

The same Model view of Power BI Desktop can also be used to configure

properties for any imported table by selecting that table, as shown in Figure

EREEES

Figure 3.10: Configuring table properties

Now as we have seen how to create a quick and effective data model in
Power BI, time to explore techniques that can help us to further enhance the

model we have created so that it can meet the reporting requirements.

Introduction to DAX

Having a well-built data model makes reporting a lot easier besides ensuring
that all the calculations that are done on the reporting layer are accurate.
Power BI allows you to implement custom business logic on the reporting
layer by use of an expression language called DAX, which stands for Data

Analysis Expressions.

Using DAX, a data model can be enhanced in various ways by introducing
Calculated Calculated Columns and Apart from that DAX is also useful in
terms of defining Row Level Security in Power BI. We will discuss each of

these concepts in detail in subsequent sections and chapters of the book.

DAX is a functional language that to some extent resembles Excel formulas,
and there are many common functions that appear in both. Unlike the Power
Query M language, DAX is not case-sensitive in general and has the

following important characteristics:

Unlike Excel, there is no concept of cells in DAX. To get a specific value
from a column, appropriate filters would require to be applied to that column

down to the value.

DAX does not allow to mix values of different data types in the same column.

DAX formulas or expressions can range from being very simple to extremely

complicated. To build a DAX formula, the DAX formula editor can be used

on Power BI Desktop which gets activated while creating a Calculated

Column or Calculated Figure 3.11 shows the DAX editor or formula bar on

Power BI Desktop while creating a new measure:

ile et Modeling Wigw Help Extemnal Tooks Table toals Measiire toals

F Home Inse

. O M 7

o8 8 EHE B AR A A
Manage New Quick MNew Hew MNew Manage View Q&A Language Lingustic
relatiorafips | measure measure column table e BTl reles a8 18ty - achemnas

B 3 o |L Heasare « Si{Sales[Salessmcunt] Visualizations

<

Commit

Figure DAX formula bar on Power BI Desktop

The following steps can be followed while creating any DAX formula:

Each formula must begin with an equal (=) sign, after specifying the name of

the measure or calculated column or calculated table.

While typing the first few letters of any function name, AutoComplete
displays a list of possible functions to choose from, which can be selected by

using the Up/Down arrows and eventually added using the TAB key.

The AutoComplete feature also suggests a list of tables and columns, which

can be passed as function arguments or used in the expression.

After completing the formula, pressing ENTER key or clicking the commit
icon will save the formula if no syntax error has been found. AutoComplete

does not rectify syntax errors like missing parenthesis, and so on.

DAX has a rich set of functions. A function always returns a value; however,

many DAX functions return a table instead of a single value, which can be

used as input for other functions. Popular DAX functions can be categorized

as follows depending on their usage:

Aggregation functions

Date-Time functions

Filter functions

Information functions

Logical functions

Relationship Management functions

Text functions

Table Specific functions

Time Intelligence functions

Other functions

We would dive deep into each of these categories and see examples of
commonly used functions in a separate chapter of the book. Apart from that,
whenever we are going to use a new DAX function from now on for the rest

of the book, we will also discuss that function in detail.

When data is imported into a Power BI data model, the data is converted to a
tabular model data type. When the data is used in a calculation, the data is
then converted to a DAX data type. A few common data types supported by
DAX are:

Decimal This can store both integers and fractions.

Whole This stores integers.

This stores dates and time.

This stores Text strings

This stores either a True or a False value.

DAX uses operators to create expressions that compare values or perform

calculations. Operators in DAX can be categorized as follows:

Arithmetic Operators: Perform basic mathematical operations, example:
Addition (+), Subtraction (-), Multiplication (*), Division (/) and so on.

Comparison Operators: Used for comparing values and returning a logical
TRUE or FALSE as a result. The operators are Equal to (=), Greater than (>),
Less than (<), Greater than or equal to (>=), Less than or equal to (<=), Not

equal to (<>), and so on.

Concatenation Operator: The ampersand (&) or concatenation operator is

used to join two or more text strings together and produce a single text.

Logical Operators: Logical operators like AND/OR are used to combine

expressions.

Now that we have a brief idea about what DAX is, time to see it in action and

understand more about it along the way!

Calculated tables

Calculated tables are computed dynamically based on a DAX expression and
can be derived from other tables in the data model, which can be very useful in
terms of enhancing the data model which is already in place. Instead of loading
values from the data source, in calculated tables, data is loaded from other
imported tables. Once loaded, it behaves exactly the same way as any other
table in the model and supports relationships with other tables. Calculated tables
are re-calculated if any of the underlying tables, it pulls data from are refreshed

or updated.

As mentioned earlier, some of the DAX functions return tables and can be used

to create calculated tables to implement different business logic.

To create a calculated table, the DAX formula editor can be enabled or activated
from both the Report view and Data view of the Power BI Desktop. From the
Report view, Modeling | New table should activate the formula editor, while
from the Data view Home | New table should do the trick. One advantage of
creating a calculated table from the Data view is that the user would be able to
immediately view the newly created table. Figure 3.12 illustrates how to
activate the DAX formula editor for creating a calculated table from the Data

View:

File Home Help External Tools

£ —_—

= k L T =y | 48)

GLhELhE® b P R EEBHEH ALK § 4

Get Eaugel Data SQL Enter Daloverse Recent Transforrr Refresh Manage New Quick Mew | New Manage View Sensilaly Publish
v

datav wiwkbook hub~ Scrver dola SOUILCS ¥ ta relationships | measwee moasure oodumn table 1oles a@s W

(- <] Quire Rglpizagrgy g i G - ey ArgeaTy Shary

¥

WX o |1 Taies = ‘

Column |~
] Fumuals sifur Lov caloalatid talibes |

m

Figure Enabling DAX formula bar to create a calculated table

We will see now few scenarios which require to create a calculated table and

how we can create those using DAX:

Creating a calculated duplicate In case we need to duplicate a dimension table
(example: for the data model that we have, instead of importing it again from
the source, we can simply create a calculated table which will get populated
with values from the original dim_Calendar table and will get updated

automatically whenever dim_Calendar gets refreshed.

To create a duplicate or referenced table, on the formula editor for calculated
tables, we need to provide the new table name and then start typing the name of
the table to which we want to refer. The AutoComplete should prompt the
matching table list from where the required table can be selected. After pressing
ENTER or hitting the Commit button, the table can be created, as shown in

Figure

M dis BudperPericd

W a |1 e _Calersar - din talerca Fialds

.......

........

Figure Creating a calculated duplicate table

It can be noticed on the right-hand side Fields pane that the icon for the
calculated table is different than that of a regular imported table.

Creating a calculated lookup We may have a requirement of having a lookup
table in the model with all the unique values for a specific field. Let us say we
have a fact table which records all financial transactions, and we need to have a
single column table listing all the unique countries where the transactions took
place. We can simply create a calculated table from the original fact table using
the DISTINCT function of DAX.

DISTINCT: This returns a one-column table containing distinct values from the

column which is passed as a parameter to this function.

Syntax: DISTINCT()

Parameter: The column from which unique values are to be returned.

Figure 3.14 shows a preview of the actual fact table

13320

Figure 3.14: Preview of underlying fact table

In the formula editor, after providing the calculated table name (ex: once we
select the DISTINCT function, AutoComplete should suggest all the columns
that are available to be used in the function. We need to choose the Country
column from the fact table, as that is the column from which we want to get our

unique values, and hence need to be passed as a parameter to the function.

After pressing ENTER, we should be able to see our calculated table having all

the unique country names as shown in Figure

[nsl X " |1 dim_Country = DISTINCT(financials[Country]) T Fields
Country |~ |
Search
@ Canada P
&8 Germany > B Append1

France > Bf| dim_Country

Mexico
» B dimension

> B fact
> B financials

Figure 3.15: Calculated table dim Country

Creating a calculated combined Let us now see another use case of calculated
tables. We already have seen how to append table in the Power Query editor in
the previous chapter. It is possible to combine multiple table on the reporting
layer as well if required, using the DAX UNION function.

UNION: Create a combined table from a pair of tables having the same number

of columns.

Syntax: UNION(,)

Parameter: Any DAX expression that returns a table.

Let us assume that we have two dimension tables in our model, Productl and
which store different product names and the corresponding prices. We can
combine these two files and create a single dim_Product table in the reporting
layer by creating a calculated table. After selecting the UNION function in the
formula editor, we can select the two individual tables as function parameters to

create the calculated combined table, as shown in Figure

Products |~ | Price |~ >< |1 dim_Product = UNION(Productl,Product2)

Aspen 21
Bellen 22.895 Products |~ | Price |~
Carlota 22.95 ﬁlﬁ}‘.l(ﬂﬁ 21
Crested Beaut 25 Bellen 22.85
Doublers 79,65 Carlota 22.95
FlatTop 27.5 Crested Beaut 25
T — Doublers 79.95
FlatTop 27.5

Products |~ Price |~
Majectic Beaut 30

Majectic Beaut 30
Quad 24

Quad 34
Sunbell 25

Sunbell 25
sunset 23.5

Sunset 23.5
Sunshine 15.895

Sunshine 19.95
V-Rang 18

V-Rang 15

Figure 3.16: Calculated combined table using UNION

The column names in the return table will match the column names in

table expressionl and the columns would be combined by position in their
respective tables. UNION will retain any duplicate rows that are present in the
tables.

Creating a calculated subset One of the most common requirements while
working towards implementing business logic come in the form of the ability to
be able to reduce the number of records in a table and use only a subset of the
data for calculations. This can be done by creating a subset table using the
FILTER function of DAX.

FILTER: This returns a table that represents a subset of another table or

expression.

Syntax: FILTER(,)

Parameters:

The table (or expression returning a table) to be filtered.

An expression that is to be evaluated for each row of the table.

Let us say we want to create a subset of our financial fact table (refer to Figure
where we want to keep records only for a specific country, ex: For this, after
selecting the FILTER function in the formula editor, we need to pass two
parameters required for the function, which are, the table that we want to filter
and the filter expression: financials[Country] = After executing the formula, the

calculated subset table can be seen as shown in Figure

% o [financials_Germany = FILTER{financials,financials[Country] = "Germany™]]

segment | = [Country | =

Government | Germany
Midmarket Germany
Government | Germany

Midmarket Germany

Carratara
[Carretera
Carretara

Montana

Product | =

Discount Band | =

None
MNaone
Mong

Mane

Units Soid | =

Manufacturing Price

= | Sale Price | =

Gross Sales |«
28420

13320

229330

13815

Discounts | =

(4]
o
e
o

|~ Fields
Sales = CO
st | £ Search
13320

13815

> @ Appendi

> B® dim_Country
; Erj dirm_Praduct
> B dimension

> B fact

> BH financials

> ER financials raw

b B financials_Germany

> B8 Mergei

Figure 3.17: Creating calculated subset table using FILTER

The FILTER function is mostly used in combination with other functions

which require a table as an argument, we will further explore it in detail

later in time while discussing

In this section, we have seen how to make use of calculated tables using

DAX. Time to move to the next element in the list, which 1s, Calculated

Calculated columns

A calculated column is an additional column that can be defined in a table
using DAX, based on the already loaded data in the model. Once created,
the calculated columns would appear on the right-hand side Fields pane of
Power BI Desktop just like any other column of a table; however, it would
be represented by a separate icon than what represents a regular column,

indicating that the values of that column are the result of a DAX formula.

Calculated columns work in a row which means the formula 1s evaluated
for each row of a table to which the column is added. The column values
would be recalculated whenever the underlying data or the model is

refreshed.

To open the DAX formula editor for creating a calculated column, both the
Report view and Data view can be used. From the Report view, Modeling |
New column should launch the editor, while from the Data view, Home |
New column can be followed. Figure 3.18 illustrates how to activate the

DAX formula editor for creating a calculated column from the Data view:

File @ Help External Tools
GLhERhEe b B L -f DJHE QAR B &

Get Excel Data 50L Enter Datsverse Recent Trarsform Refresh Manage New Quick | MNew | New Manage View | Sersitvity Publsh
data~ workbock hub~ Server data Sources « aataw relaticnships Measure Measuse] columnl wole roles as -
Cela Quermes Redatorahips Sacunty Fersalaaty Ehare

m X v

@

H

T

x W |1 Colum =

Larmnla cdidne bar cabealated calumans

Figure Enabling DAX formula bar to create a calculated column

Let us now go through some examples to understand the concept further.

Concatenating Fields: In our financials fact table, we have the Month
Name and Year as two separate fields. The requirement is to create a filter
on the report based on a ‘Month-Year’ field, for example, ‘January-2022°.
The table does not have any such field at the moment. A calculated column
can be created here using the DAX ampersand operator to solve the

problem.

After selecting the fact table and enabling the formula editor to create a
calculated column, the desired column name needs to be provided followed
by an equals (=) operator, and then the actual logic needs to be written.
Here we just need to provide the name of the two columns we need to
concatenate, also need to introduce a hyphen (-) as a separator. Once we
start typing the column names, the AutoComplete or IntelliSense should
prompt the available columns which we can then select. Figure 3.19

illustrates the Month-Year calculated column created using DAX:

LW burmrula e coealisgg Do b umelheY v cuboulaled oolums:

L
){ W |[b Menth-Year - financiali[Menth Ness] & °-° & flrancials[¥esr] - Fields
COGS = Profit = Date = | Mosth Num i b 1 = Month Name = | Year = | Mopnih-¥ear - —
, . \ X Search
1518 LEIBE 1 Inrasy mia Ianusry-2014
1321 1321 T Nl anuary-2014 + Bl financiale
17 logsg & June oL Jana-2002 T Sales
A ¥ & lune F T] re-HA = e
LGS
;4700 EEL] & June X014 2004
Ceuntry
I3 380 IELTD O 12 Daiamber ot Dacember-2014
Date
2210 4508 3 Manch 2014 BMarch- 2014
52 3 T Descount Band
; 2056 6 June 10 Juna2004 =
T
s % & June X014 Jard-2014 % Discounts
E Grosg Sales
T Manufacturing Price
Mbunlli Vot alvalabed volusn imaberialioed im O Lilde

Maonth Mame
T Month Mumber
Mr:-n:ﬁ-'l'eer
Product
¥ Brofit

T Sale Price

Caliulabel ol jon 4

Segment
Units Sold

Year

Figure 3.19: Creating a calculated column by concatenating two fields

Tip: In Power BI, columns of a table should be referred using a fully
qualified syntax, which is the table name followed by the column name

enclosed in square brackets.

Creating a referenced calculated column from a related table: Let us say we
have our fact Sales table, related with dim_Customers using the
CustomerKey field (refer Figure 3.8). The cardinality is Many-to-one, from

fact Sales to dim_Customers as expected in a star schema.

We can refer to a column from a table which is in a one-to-many
relationship with the current table, using the RELATED function of DAX.

RELATED: This returns a related value from another table.

Syntax: RELATED()

Parameter: The column that needs to be referred.

For instance, the customer names, which is a field in can be referred from

the fact Sales table as shown in Figure

/|1 Customer Name = RELATED(dim_Customers[Name]) v | Fields
alesAmount | = | TaxAmt = | Freight |~ | RegionMonthiD |~ | BudgetKey | ~| Customer Name @~ -
) ‘ L Search
357827 286.2616 89.4568 Australiaé 201706 Kathleen Rubio
357827 286.2616 859.4568 Australiaé 201706 Marshall Zeng) -
> B dim_Customers
337827 286.2610 85.4508 Australiad 201706 Kristl Serrano E'
dim_distinct_Customers
3578.27 286.2616 85.4568 Australiab 201706 Julio Serrano ? E = =
Y H "
3578.27 286.2616 89.4568 Australiab 201706 Mitchell Xie & dim_Products
357827 286.2616 89.4568 Australiaé 201706 Autumn Ma > B dim_Territory
337499 269.9992 84.3748 Australia 201706 Morgan Johnson 3 ?El Dup_Calendar
3578.27 286.2616 89.4568 Australiaé 201706 Raymand Madan ~ BB fact Sales
699.0982 55.9279 17.4775 Australia 201706 summer Raman ,
. —_ - B BudgetKey
339999 271.5992 84.9958 Australiaé 201706 Deborah Yuan
—— — - = [[F} Customer Name
3578.27 286.2610 85.4508 Australiad 201706 Anna Martin
Customerkey
3578.27 286.2616 85.4568 Australiab 201706 Bonnie Raje = Y
T mieeeaan —

Figure 3.20: Using RELATED to refer a field from another table

The RELATED function is generally used in combination with other
functions. One important downside of using calculated columns in a model
1s that they can increase the model size as each column would be
materialized in the data model itself, resulting increased file size. Hence, it
is recommended to avoid creating calculated columns in fact tables (as they

tend to grow over time), especially for large data models.

Creating a calculated column with conditions: Now, let us see how to
implement some business logic in a calculated column using DAX. Going
back to our fact table financials, let us assume that we have two columns
there, Gross Sales and Discounts. The requirement is that we need to able

to filter the visuals of our reports by discount categories like

High/Medium/Low. The problem here is that we do not actually have any
such column in our model, hence again calculated columns come to the

rescue!

In order to create the discount categories or let us call it discount bucket,
first we need to have an understanding of what the different categories
mean. Let us say Low means transactions for which up to 5% discounts
have been offered, Medium means more than 5% and less than or equal to
10% discount while anything above 10% should be categorized as High.
Time to create the column now! First, we will see how it can be done step

by step and then, we will look at a more efficient way to do the same.

Let us figure out first the percentage of discount that has been offered for
each row of the table, using the DIVIDE function of DAX.

DIVIDE: Performs division and returns the alternate result or BLANK on
division by 0.

Syntax: DIVIDE(, [,result>])

Parameters:

Numerator is the dividend or number to divide.

Denominator is the divisor or number to divide by.

The 3rd parameter is optional. When provided, the value is returned instead

of an error while dividing by 0, else a BLANK is returned.

In the formula editor for calculated columns, the following formula as
shown in Figure 3.21 should create the disc% calculated column in the
table, which should hold the discount percentages for each row of the table

ranging between 0% to 15%:

X W' |1 _disc(X) = divide(financials[Discounts],financials[Gross Sales])*10@ I I “ Fields
Date = | Month Number = | MonthName = Year |~ Segment |~ | Market Size -- | Di ——— -
E 01 1 January 2014 Medium Sof:astencm;
=a - 1 January 2014 Medium Sort descending
85
01 12 Decembe 2014 Medium
o1+ €& Jung 2014 Medium
01- & August 014 Small Business Medium
a1 & Medium
0l Madium Number filters
01- Mediur r . i
o sdum ¥ (Select all)
01-¢ Medium w0
01 siness Medium L
01-1 Large w2
01 Medium s 3
wed W 4
01-1 Aediurm
w5
01-1 Medium B 6
01- Medium w7
o1 Medium L
o1 s Medum v
o1 9 September 2013 Medium = 10
. ™ 11
o1 9 September 2014 s Medium .
W 12
01-1 12 December 2014 Medium w 13
01« 2 February 2014 Medium W 14
014 € June 2014 Medium W 15
or 7 July 2014 Madium
oK
Q. 10 October 2014 arge

Figure 3.21: Creating a calculated column to compute the discount

percentage for each row

Once created, this calculated column can be further used as an input for
another calculated column which we can create to compute the desired
discount bands. To do that, we will use the IF function of DAX.

IF: This validates a condition and returns a value when TRUE, otherwise

returns an alternate value.

Syntax: IF(, [,])

Parameters:

Any expression that returns either TRUE or FALSE.

The value to be returned if a logical test is TRUE.

The value to be returned if a logical test is FALSE. This is optional and if
omitted, BLANK is returned.

Before looking at the formula, let us first try to understand how to
construct it. Firstly, as a logical test, we will check for each row whether
the discount percentage is less than or equal to 5% or not. If that is TRUE,
then we will return the value If for any given row, the first logical test
becomes FALSE (which means the percentage is more than 5%), then we
are going to perform a second logical test using a nested IF function (which
is an IF function inside another IF function), which will check whether the
discount percentage is less than or equal to 10% or not. In case the second
test becomes TRUE, we would return the value Medium for that row. For
everything else, which will include rows where the discount percentage is
more than 10%, the value returned would be Figure 3.22 illustrates the

formula as well as shows the calculated column with different discount
bands:

M W |1 DiscBucket 1l =
2 IF (

financials[disc(%)] <= 5,

Low",
IF { financials[disc(X)] <= 18, "Medium

, "High")

Date = | Month Number |~

~ | Segment |~ | MarketSize [~ disc(%)

Small Business mMedium

Small Busingss Madium

Small Busingss Large

12 High
I4 High
14 High

14 High

14 High
14 High
14 High

14 High

High

14 Migh

14 High

14 High

Fields
£ Search

> BB Append1
» B[l dirm_Country
bl Eﬁ dim_Preduct

Sorl asending

Saort descending

Text filters

& (Seldect all)
High

W Low

& Medium

oK Cancel

Figure Creating a calculated column to compute the discount bucket

Once this column is created, it can be used in a report slicer to filter other

visuals on a report. However, this formula can be improved and can be

made to work more efficiently using a DAX which can be used in a DAX

formula using the VAR keyword.

VAR: This stores the result of an expression in a named variable, which

can be passed as an argument to other expressions, using the RETURN

keyword.

Syntax: VAR =

Parameters:

The name of the variable.

The expression, value of which would be stored in the variable.

Instead of storing the discount percentage values in a separate column, we
can store them in a variable on a row-by-row basis, which would hold the
percentage values on runtime and the calculated column can use that
variable value to compute the discount bucket for each row. Figure 3.23
shows the formula to create the same discount bucket calculated column,

but this time, in one step using a variable:

1 DiscBucket2 =
2 VAR DiscPercent =

3 DIVIDE (financials[Discounts], financials[Gross Sales]) * 100
4 RETURM
5 IF (DiscPercent <= 5, "low", IF { DiscPercent <= 18, "Medium", "High" })

Figure 3.23: Creating a calculated column to compute the discount bucket

using a variable

As seen in the preceding figure, here we are holding the value of discount
percentage in a variable named DiscPercent and later passing the value to
the IF function using the RETURN keyword, to compute the discount

bucket, all in a single formula.

By now, the use of calculated columns should be clear enough to the
readers. We would anyway go through a lot more examples and create

some fairly complicated calculated columns in due course of time.

Tip: DAX code snippets can be formatted to make them more readable and

cleaner, using a free website called DAX Formatter

Measures

As we have seen, calculated columns are to be used only when we want to
evaluate the expression on a row-by-row basis, however, that is not what

we always need.

Measures aggregate values of columns and tables, and return a single scalar
value, working in a filter Filter context means all the filters that would be
considered to evaluate the value of an expression. Let us refer to a Matrix
visual of Power BI, which can be used to create a pivot table, to understand
the concept further. We would not go into detail about how to create visuals
at this stage, as that will be discussed in the upcoming chapter of the book
where we will specifically cover reporting and visualization. Refer to

Figure 3.24 which shows the pivot table:

Product Febary

Al Miay Seplernber Dctobe Mewernber Decernber

Amarilla $20,50¢.2 §522.275 £16312 $1.2624003 £1311739 340020 £602,199.3 $£.36411.19 §57.1728 £5 36540
Carreleaad S5R 3974 §3.A1,577 47 BI0A SIARRAAR $1A%F1R R0, 198 F1043°7 £3,71.529.14 §R41002 Lol B

| 2745874 £337 2055 333516 S35,705 §35,5649 £152,6859 362 TRER2 25290171 SE4 393
5390604335 56,1076 RL8A98 $1.20EEME M0 LES BHHLYe 53 705ELS bibboo28 3LEF3NEL 5 32A20AY I0ZEDS SAzLSTAT
42,300 5704250 SO50EG $I6TA059 E333,006 353,745.2 1525534 $10.60,0027 £05.740.20 515129062
$3.85.255 39,850 55 SLEG2045 $5.733155 597251 431872 454815 §7.57.497.55 $6£,525.8 551105564

Figure Pivot table

The preceding pivot table displays the profit earned by month, for different
products. Here, for instance, the context of the selected cell value
($7,220.82) would be Product = Montana and Month = as those are the
filters based on which Power BI calculated that specific value and hence

can be thought of as the context for that value. In this case, each cell of the

$748,367.935 $10,71.88242 $588,355.36 S7.81434.845 $7,93,664.00 5126146318 $8.19813.64 §7,14.978.38 $16,68,647.94 5323564076 $12,69,0404 5257804472

table would have a different filter context and hence contains different
values. Apart from the visual itself, filters can be applied on various layers
like report level filters, page level filters, and so on. and all of those would
be considered as the filter context for a visual.

Now that we have understood what a filter context is, let us try to
understand by another example why we might need a filter context and
hence a measure, instead of a calculated column in the first place. Here we
have a table having Products, Sales value, Discounts offered and Regions

where the products are sold, as shown in Figure

Region |- |Product |- Sales Value - |Discount -
North A 1900 190
North B 2100 168
North C 700 35
North D 1200 144

Figure 3.25: Sample data for North region

Let us consider the requirement is to display the average discount
percentage value on the report, for each region. In this case, if we calculate
it on a row context (row by row basis) using a calculated column, we need

to create a new column Discount% first, as shown in Figure 3.26 and then

use that column in the visual to show the aggregated value:

Region |- Product - Sales Value - Discount |- |Discount% |-
North A 1900 190 10
North B 2100 168 8
North C 700 35 5
North D 1200 144 12

Figure Discount% calculated for each row

When we use this calculated column in a visual, we need to choose the
aggregation method which should be Average in this case. So, the average
Discount% would result in (10+8+5+12)/4 = for the North region. Now,
this would not be accurate as what we needed is to calculate the average
percentage for the North region, which should be (total discount
offered/total sales)*100 for that region, across all products it has. Hence,
the correct value should be

(190+168+35+144)/(1900+2100+700+1200)* 100 = So, we need to filter
the data for each region first, and then for each subset of data need to
calculate the percentage, then only it will produce correct results if we
filter the value with the region in the report and hence, we need a measure

here.

While in many cases either a measure or a calculated column can be used,
there are important differences that we need to keep in mind while using

one. Below are the most important ones:

Calculated columns are recalculated when the data model is refreshed as
they are materialized in a data model, on the other hand, measures are
recalculated at query refresh time which means, every time we interact

with a visual.

Calculated columns can increase the data model refresh time while
measures can increase the report or visual response time, hence we need to

be mindful about when to use one and not the other.

Calculated columns are to be used when we want to calculate the formula
on a row-by-row basis, but in case we want to calculate based on filter

context, we should go for a measure.

Creating a measure is similar to how we create a calculated table or a
calculated column. To enable the DAX formula editor for creating a
measure, both the Report view and Data view can be used. From the
Report view, Modeling | New measure should launch the editor, while from

the Data view, Home | New measure can be followed.

As always, let us see an example of the use of DAX measures.

Creating a measure computing total sales for a country: Let us continue
with the same financial data that we have referred to multiple times by
now. The requirement is to display the Sales value for Germany on the
report. While there are many ways to do it, as we are discussing measures,
just to illustrate the idea, let us create a measure Sales_Germany for doing
it using a DAX function called CALCULATE.

CALCULATE: This evaluates an expression in a context modified by
filters.

Syntax: CALCULATE([, 1> [, 2>, ...11D)

Parameters:

The expression to be evaluated (should return a single scalar value).

Expression that defines a filter (optional and repeatable).

For this instance, CALCULATE should evaluate the expression
SUM(Sales) in the context of Country =

SUM: This adds all numbers in a column.

Syntax: SUM()

Parameter: Column containing values to sum up.

Figure 3.27 illustrates the DAX formula to create the measure

1 5ales_Germany =
CALCULATE (SUM (fimancials[Sales]), financials[Country] = "Germany”)

P

Lad

Figure 3.27: DAX formula for Sales Germany

The measure outcome would be a single scalar value which unlike
calculated columns, cannot be seen on the Data view. The value of the
measure can only be seen on the report itself. However once created, the
object would be visible on the right-hand side Fields pane, under the table
selecting which the measure is created, with a distinct icon, as shown in

Figure

Fields >

2 Search

Z Discounts

> Gross Sales

> Manufacturing Price
Month Name

2 Month Number

[FX Month-Year
Product

Z Profit

2 Sale Price

Sales_Germany

Segment
Units Sold

Year

Figure 3.28: Measure icon

DAX measures are reusable and once created, can be referred from another
measure, calculated columns and so on. For example, now that we have
created the Sales Germany measure, in case we need the Sales figure for
Germany to use in another measure, we would not require to re-calculate it
in that measure and instead, we can simply refer to Sales Germany in the
formula editor. To see all the measures that are available for the report, in
the formula editor for measures, we just need to type opening square
bracket ([) and the AutoComplete should prompt the list of available

measures from which the required one can be selected, as shown in Figure

1 Measure = [
. . [Sales_Germany]

Figure 3.29: Referring Sales Germany from another measure

As already mentioned, measures by default reside in the table selecting
which they are created. However, they can be moved from one table to
another as they are not materialized in any table. Instead of saving

measures in any of the fact or dimension tables in the model, a separate

Measure Table can be created which can store all the measures in a report.

To create a measure table, first, a local table can be created manually in
Power BI Desktop using the Home | Enter data option, either from the Data

view or the Report view, as shown in Figure

File Home Help External Tools Table tools
[q I = E:« NT o) Create Table
m Copy E [X] _[| | |j
2 Get Excel Data SQL |Enter |Dataverse Column o
datav workbook hubv Server | data -

o 1] S
g = vata

Wl X

luantity ~ | UnitPrice |~ | ExtendedAmount |+ | UnitPriceDiscount
3578.27 3578.27
=t 1 3578.27 3578.27
E 3578.27 3578.27

Figure 3.30: Creating a local table in Power BI Desktop manually

All we need is the table object, so the columns can be left as-is, only name
of the table can be updated as desired. Let us name it as All Measures for
this instance. By default, the table is created with a single column named
Column After that, the measures we want to move to this table need to be
selected on the Fields pane, which should activate the Measure tools option
on the top ribbon. The table under which any measure is saved is called the
Home table for that measure. On Measure the Home table can be switched

by selecting the required table from the dropdown.

For our purpose, all the measures should be moved to the All Measures

table following the process mentioned above. Once done, the default

Column 1 needs to be removed from the All Measures table by selecting

the field on Fields pane and using the Delete from model option from the

right hand side ellipsis of the selected field.

Now, the All Measures table should contain only the measures from the

report, which should qualify it for a Measure also the table icon should get

updated reflecting the change. Figure 3.31 should illustrate the entire

Pprocess:

File Hame Help External Tocls Table tools

C;" marme Sales_Germany ‘3" Format | Whcke number

v
[2 Home tocie | e] $-%28 [0 7|
All_Measues srrasting Eropartisn
W X n Aeedl 4 - Fields
N | financials[Sales]
wim_Couniry y] = ~Gerwan ;
EH i 4 A Sparch
girh Produil
B2 sepmenl Cinension * | Discvunt Band | * || Unils Suld |~ | M T Gross Sules
Suvernene \ Mt 1s1e.s ¥ Manutactunng Frice
=El T ' Nard iz E hsasune
pidmarkgr Pectfinanciale Mo
Month Name
e
e T Month Numbe
Nae [P Monthe"ear
Morm CH Product
Hurw FEIT) Z Fruiil
Hure 1585 3 hale ace
E Sales_Cerrany
Frocus)
Linils Sold
ey ? Yea
Lake Price » B financials riw
Takiel > $ finandials_Gcrmarny
o 1
Toble2 » B8 Merge

a Daza categery | Uncategorized

ﬂF| dimn_Product
» B dimengion
> B tact

Fields b
P Seach

w B Al Messues
Cumn®
Creats

B soegem:
» B Apatadl .
By ction_Coumry

T s !
T coGs Fad e
Zountr omoup
Dale
Pt Raned
Fields »
2 Gaarch

ﬂ Sales_Germany
» B8 Appendi
2 %c m_Country

s EE| dim_Product

Figure 3.31: Creating a Measure Table in Power BI Desktop

Measure tables are very useful for organizing the measures if a report is

going to have a lot of them. However, the number of measures used in a

report can also be reduced using a special table called Calculation which
can be created using an external tool known as Tabular Once Tabular
Editor is installed, it can be integrated into Power BI Desktop and can be

used to view and edit objects in the model.

Calculation Groups can apply specific calculations on top of existing DAX
measures and are specifically useful to create different variations of a base
measure using a placeholder for that measure. DAX time intelligence
functions are good examples to implement Calculation We will explore
some Time Intelligence functions separately in the next chapter as well as
in the DAX Reference Guide.

As we have seen, the value of measures can only be viewed on the report
itself, we are going to explore more examples while we discuss the reports,
however the concept of what measures are and how to use them should be

clear by now for the readers.

Onptimizing models in Power BI

As we already have seen how to create a data model and enhance it further
with the help of DAX, let us see how a data model can be optimized for
best performance following some common best practices for imported
tables:

Remove unnecessary Data models are recommended to be designed with
only the columns required for reporting or to support model relationships,
security columns can significantly increase the refresh time of the model

causing performance issues.

Limit number of Along with columns, care should be taken to avoid
loading unnecessary rows as well to the This can be done by applying
specific filters or parameterizing queries to bring only a subset of data

relevant for reporting.

Optimize Data The data types of columns can play an important role in the
performance of a data model. The key columns of the tables which are used
in relationships should ideally have numeric data type (which provides the
highest optimization) instead of text. This can result in significant
performance improvement, especially for cases where the columns contain

unique values and have high cardinality.

Disable auto For date fields, Power BI by default includes an Auto
date/time option which generates a hidden auto date/timetable to support

grouping, drill-down through date hierarchies etcetera. Disabling this

option can significantly reduce the model size, and hence should be
considered in case the feature is not required. The option to control this can
be found on Power BI Desktop following File | Options and settings |

Options | Data as shown in Figure

Options
GLOBAL S Maximum number of simultaneous evaluations 8 0
Data Load Maximum memory used per simultaneous evaluation (MB) | 432 0]

Power Query Editor

DirectQuery Time intelligence

R scripting ‘v' Auto date/time for new files ()| Learn more

Figure Controlling Auto date/time option

Avoid bi-directional As we already have touched upon this one while
discussing relationships, use of filtering should be minimized in time of
designing a data model as they can negatively impact model queries. Also,
as both tables involved get filtered by one another, it can potentially create

ambiguity in end-user experience.

Apart from the above common best practices, there are various ways to
monitor and optimize a data model further using external tools like Tabular
Editor and DAX We will discuss more about these tools in upcoming
chapters, however, let us have a quick look at them now just to be aware of

the ecosystem.

Both Tabular Editor 2 and DAX Studio are free desktop applications and
do not have any licensing requirements for installation. Once installed,
these tools could be launched from the External Tools ribbon on Power BI

Desktop, as shown in Figure

File Home Insert Modeling View Help External Tools

ol U

ALM | DAX Tabular
Toolkit| Studio Editor

External Tools
0al

=

=8
==

Figure 3.33: External tools in Power BI Desktop

Launching these tools from Power BI Desktop enables them to interact and
edit the underlying data model objects, providing users a seamless

integrated experience.

Monitoring data model using DAX Once DAX Studio is launched, all the
objects of the underlying data model would be visible on the left-hand
panel. The VertiPaq Analyzer can be accessed from the Advanced option
on the top ribbon. VertiPaq Analyzer is useful to analyze the storage
structure of a data model in Power BI. A number of entities and attributes
of a data model like Table Column Hierarchy Size, and so on. can be
analyzed using the View Metrics option, to understand the contributing
factors for the underperformance of a specific data model and take
corrective actions. Figure 3.34 below shows the VertiPaq Analyzer Metrics

available for a Power BI data model:

LI VR DiaaSoadiic - 2473 -] o

R e [eoineed [A
N B .
:
EF Gle|lé b & I
Impoit Expar Varw Exporm Ren SOL Asayre
Mets Mgtnc] | Mesci | Date Beechesk PoSler sl

Gy an X =
Metauna =ax |1
Chapier &
W Model
Q.
T om_BudgesPemod

T eim_Catematar
T damn Cumasins

T i gitine Ciontaerans
T8 i Progucs
T8 aim_Terrincey
) Cup Catencas bt darstudio.orgtutomalsSriting-dax-queries
T tace B
A ey Buiikder
WoK= 4
VertiFg Analyzer Metrice Qo
Tabiei | Codurns | Rebrtionships | Farstions | Summary
Marne Cancinalty Tabbe Sive Col san Dot Ducticmary Hoer S Encodieg Dath Type R Viclatioss. Liuer vier Sie Bl Sice % Table % DB Segments Paniticns Columng
tact Sales GOJSE 3OAT04Z JOTAMIE 825N ISTTIR ATSITIMany - - o 30 7., 1 1 FEI
dim_Curitemners 18,454 20,594,679 2034679 244552 1412967 437,920 Many . . o L] 3B 1 1 16
dimn_distincy Customens 18400 TAA53 Tad503 IGBO0E SE04AT 1AT248Many -] ® "r.. 1 1 2
dirn_Praducts 397 2,973 229573 BT 2,11,40 9552 Many [] [] 36N 1 1 2
Dup Salendar e 52 LY LIt 5T 18,490 Many]] 135% 1 1 ®
dim_Calandar 019 LT (o} VROBE AT 18784 Many L] @ L1 L 1 i
dim_Territsey " 52304 52324 £+ 51,924 368 Many L] L] 0.83% 1 1 5
dirn_BuspetPeriod £ 18,324 18324 112 17,748 424 Mairy L] L] 0.19% 1 1 i
Mezaauts | Funcsand | DAY Crgest | Rty | Cropey Mimery | VertPag Anaberer Metras

Figure VertiPaq Analyzer Metrics in DAX Studio

Optimization or performance tuning of a data model is a broad topic and
many more can be explored and done regarding this, however the topics we
have discussed should provide a reasonably good starting point for the

intended users.

Conclusion

In this chapter, we have seen how we can build a data model in
Power BI to tie up all those individual tables together so that they can
work as a single unit. We have emphasized a star schema data model
and understood the relevance of it in the context of Power BI. We
have seen how relationships can be used in a data model and
explored important properties of a relationship like cardinality, cross-
filter direction etcetera . The readers have been introduced to DAX
and different ways of enhancing a data model by means of Calculated
Tables, Calculated Columns and Measures are explained. Finally, we
have seen few common best practices to optimize a data model for
performance. Data modeling is a vast topic in itself and probably we
have touched just the tip of the iceberg! However, this should enable

readers to try out things hands-on and learn further along the way.

In the next chapter, we will learn about visualization and see how to

create a nice report on top of the data model that we have created.

Knowledge check

If in a Power BI data model, the cross-filter direction between two

tables (having a one-to-many relationship) is that means:

The table on the one side of the relationship should filter the table on

the many side of the relationship.

The table on the many side of the relationship should filter the table

on the one side of the relationship.

Both the tables would filter each other.

Bi-directional filtering is only for many-to-many relationships.

Which of the following statement is not true for a calculated column?

Calculated columns work in row context.

Calculated columns are materialized in the data model.

Calculated columns are refreshed while users interact with the report.

Calculated columns can be referred from a measure.

To calculate an expression in the context of applied filters, what
should be used?

Measure

Calculated Column

Calculated Table

Filter Parameter

Which external tool can be used to view the VertPaq Analyzer

Metrics of a data model?

SQL Server Management Studio (SSMS)

Tabular Editor

ALM Toolkit

DAX Studio

All Knowledge Check answers are provided at the end of the book.

Join our book’s Discord space

Join the book's Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the
Authors:

https://discord.bpbonline.com

C

HAPTER
4

Visualizing Data in Power BI

Introduction

We have advanced a lot in our journey of learning how to create an
end-to-end Power BI reporting solution. We have seen how to
integrate Power BI with different data sources and then shape or
transform the data as required. We have explored how to create a data
model in Power BI which should support the report we want to build.
Now, it is time to leverage all our work so far and create a visually
appealing report that can provide quick and actionable insights to the
report consumers. This chapter will focus on how to create
visualizations in Power BI. Commonly used visuals will be discussed
in detail along with different formatting options, to impart the
knowledge of how to create a positive user experience. We will
discuss the default visuals as well as the custom visuals from the

marketplace, also known as AppSource.

Structure

In this chapter, we will discuss the following topics:

Creating a report template

Creating the first visual in Power BI

Bar charts and column charts

Slicers

Trend analysis

Visualizing geographical data using Maps

Use of cards

Tables

Matrix

Introduction to custom visuals

Bookmarks pane and Selection pane

Report tooltips

Visual interactions in Power BI

Analyzing report performance

Objectives

The objective of this chapter is to impart relevant knowledge to the
readers regarding visualization in Power BI. Look and feel is an
important aspect of any report for providing a positive experience to
the report consumers. Report authors should be aware of which
visual to use for providing specific insights, as well as how to design
a report so that it can tell a story about the underlying data it is built
on. Also, the chapter should help the readers for making optimum use
of the space or real estate available for any report. Along the way, we
would create a functional report using all the visuals discussed in the

chapter.

Creating a report template

We already know what the home screen looks like when someone opens
the Power BI Desktop. We can readily start creating reports on the home
page; however, a template helps to create a nice look and feel as well as

minimizes formatting efforts.

Let us consider we have created a simple image using PowerPoint with the
desired background color and a logo which we want to use as a canvas
background on the Power BI report. The option to import the image can be
found under the Visualizations pane following the Format page | Canvas
background. The image needs to be browsed and opened, and then a few
properties like Image fit and Transparency may need to be configured as

shown in Figure 4.1 to apply it to the page:

= = % Visualizations % Fields b
) ﬁ] Fomat pag -
2 = aarch
B = Meauseiiie
3 A

¥ Page Irformasian

¥ CarvEs SLing

EEEEEE0
SR RN

Build visuals with your data

Sebec: or drag fiekds from che Fields pane onto the report canvas

e

Figure 4.1: Applying an image as a canvas background

The theme or color scheme of a Power BI report can be configured using
View | Themes option. The option allows you to view the theme that has
been presently applied to the report, along with all the available default
themes. The Customize current theme option allows you to modify each
color component used in a default theme, apart from that a custom theme
can also be generated in the JSON format and imported using the Browse
for themes option. Figure 4.2 illustrates all the useful options regarding
themes in the Power BI Desktop:

View Heln Exfteemal Took.

Fke Hom Irsit Moy
.
lilust I| I|I|I|I I|_[I| ul Hlll all (laluanal] P e R
-] Fle Eot Formad View Help

{

Crame™: “Sarnle Theee™,

This repart |
]

A “background”:"arrrrrrT,

"
il Illlll I "foreground™s "N3A6198",
“tableaccent™: “sSe@s10”
if [PowerBl |]
o e N
lalu:lil latualal] lalsalal
Aa ha A Aa
nluatal] (Rulloato0f Ruloul] (Bulustal uild v [T — —
Aa W2 e Ao ;
as iror
Daluatal| (lellusks Hlllulll | T
alualal] [CoBualnl] [fnducdn|

lulo: | TS +
B [Brewse hor Ehemes

Figure 4.2: Themes in Power BI Desktop

In the case of importing a custom theme, for dataColors, the hexadecimal
color codes need to be used while for foreground, and color classes can be
used. The list for dataColors can consist of as many color codes as

required.

Once a theme is applied, the colors would stick to the visuals used in a
report and we would not require to manually update the color every time.
Without a theme, though it takes a little longer to format visuals

individually, it might provide more control and scope for creativity.

“datatelerss [“rSESS19T, TRAGLEET, TEOAIIZT, CERLS2NET, TEETen12", “ebbiTiaT, Criisaes”,

“radceih”],

Creating the first visual on Power Bl

To create a visual on Power BI, the required visual icon under the
Visualizations pane needs to be selected which will create the visual
container on the report canvas. This should also enable the field wells
corresponding to the visual where data can be added from the Fields pane

to populate the visual, as shown in Figure

T2 suecror e b o e o5 =2« Visualizations » Fields
=] Build visual s N
—_— earc
2 A > B) MeasureTable
'HH E [hﬂ E ll]ﬂ » B dim_BudgetPeriod
E > B dim_Calendar
P Q) M B e e
. im_Customers
| | hﬂl G |'— (D @ m > B dim_Products
(6 JR = = > BB dim_Territory
E E @ R PY E > BB fact_Sales
00 WE®
2 dn L W
Y-axis
L . d Add data fields here
A 7 B2 -
~ S X-axis
Visual {:ulnlainm‘ Add data fields here
Legend

Visual fields to add data —_—
’ Add data fields here

Small multiples

Add data fields here

Tooltips

Add data fields here

Figure 4.3: Creating a visual container on Power BI

After data is added to the field, the visual should populate in the visual

container. There is a wide range of formatting options available for each

visual, which can be explored on the Format your visual option under the

same Visualizations pane. The formatting options are categorized as Visual

and The visual-specific settings have options for the visual type which is

currently selected while the general settings have options like visual size,

title, effects, and so on, which are consistent across all visual types. Figure

4.4 illustrates how to access different formatting options for a visual, using

a Stacked bar chart as an example:

€« Vist »

Format your visual
<] Builavisua

Elk E I = B8
= Q) A 3 i 2
HFLEOCOH
Q¥ aEEE
BEERPE
00 R
7% 9 L

B B

General

formatting

options

L 3

Visualizations

Format visual

> Properties

> Title

> Effects

7 Header icons
» Tooltips

> AL et

Visual specific
!’l:rrrl.:'ling
options

=

Visualizations

Format visual

2 Search

Visual |General

&

¥ ¥-ands cD

» N-ands

* Gridlines

> Zoom slider

> Bars

» Data labels

> Plot area background

Figure Formatting options for a Power BI visual

Although the visual-specific options are different based on visual types,
however, most of them should have a few common options to control color,
labels, and so on. Let us now explore a few interesting visuals which are
available by default in Power BI.

Bar charts and column charts

Bar and column charts are two of the most popular options when
comparing values by attributes like categories, descriptions, and so on.
Power BI provides multiple variations of bar and column charts, as part of

the default visuals that come out of the box, as shown in Figure

Visualizations »

Build visual

=

EMEMER|«~

ﬁ @ @ m l{m E II\E Different variations of
I]ﬂ] IE'I |_ ® @ S H " bar and column charts
QWA E[EE
SEEBE R PYE
08 WS
2 dw Ui B

Figure Bar and Column chart default options in Power BI

The variations are as follows:

Stacked bar chart

Stacked column chart

Clustered bar chart

Clustered column chart

100% Stacked bar chart

100% Stacked column chart

Figure 4.6 shows how each of these variations looks like while plotting a
value Amount) against different categories, across multiple groups or

regions which are represented as visual legends:

Stacked Bar Chart Clustered Bar Chart 100% Stacked Bar Chart
Group @ Europe @North Amenica @ Pacific Group @ Europe @North Amedica @ Pacific Group @Europe @MNorth Amenca @ Pacific
g g £
& Accessories I & Accessories F £ Accessories _
A 5 5
a g &
(] 20M o 100 0% %6 100%
SakesAmadnt SalesAmaunt SalesAmount
Stacked Column Chart Clustered Column Chart 100% Stacked Column Chart
Group @ Europe @North America @Paafic Group @ Eurcpe @North America @ Pacific Group @ Eurcpe @Morth Amenca @ Paafic
1005
£ zom E oM £
£ E £ -
E E E 50%
a a]
oM — oM — %
B ACCRSEONes Clathing Biles ACCESEOnes Clathing Bakes Accessones Clathing
Catagory Catagory Catagory

Figure 4.6: Variations of different bar and column charts

As seen in the preceding figure, the values are stacked over one another in
a stacked chart while in a clustered chart, data values are displayed side by
side for each legend. However, in both cases, the bar or column lengths are
proportional to the data values. In a 100% stacked chart, the bar or column
lengths are of relative percentages while the total length always

corresponds to 100%.

Let us now start creating a report using the template created as per Figure
based on a star schema data model that we already have seen in the
previous chapter (refer to Figure Let us do a quick recap; the model has a
fact table which stores the sales transaction data, along with five dimension
tables namely dim BudgetPeriod and All dimension tables are related to

the fact table with one-to-many relationships, as illustrated in Figure

To create a Sales Report, we have multiple numeric columns in the fact
table like OrderQuantity, and so on, which can be analyzed by the
attributes present in the dimension tables. Let us first try to see the sales
performance across different product categories using a bar chart. To do
this, we can select the Stacked bar chart from the Visualizations pane, add
SalesAmount from fact Sales to the X axis and Category from
dim_Products to the Y axis of the visual container, to populate the bar chart

as shown in Figure

« Visualizations » Fields
=] Build visual 5
— ' Search
i T
= E O @
5 b ! Fi MazciraTahla
Remove field

E IH.E[E Hhﬂ E l Rename for this visual
aale W N Y R
HFLES

- [4 o
C¥a@mEI

SalesAmount by Category

Average
=
En . = = P Minimum
| EE@ECr Py
- Maximum
(5]] aximum
0B WE<
othing > " mm Count (Distinct
& 1
My Tt W Count
o 4 Y-axis Standard deviation
L _SalesAmount J Variance
Category hed
Median
X-anis Show value as
SalesAmount MNew quick measure
ProductLine
Legend
g ProductName
Add data fields here ProductSubcat...
Small multiples SafetyStockLevel

Add data fields here Size

Figure 4.7: Bar chart showing SalesAmount by different product categories

Clicking on the drop-down button on the SalesAmount field should
populate the options menu for that field; for this instance, the aggregation
logic is Sum which gets applied by default and can be changed to any other
available options by simply selecting the option as required. Also, the

menu can be used to rename a field, remove a field etcetera.

As we have a nice star schema as a data model behind, it allows us to filter
the sum of sales amount from the fact table by the dimension table
attributes (like product category as in this bar chart), and all the tables work
as a single unit as expected. Whenever a visual is created, it triggers a

query to the underlying data to render the values.

>

As sales performance can be analyzed for different product categories

using the bar chart we have just created, let us create another visual to view

the top ten performing products based on the number of orders placed. To

do this, we can select the Stacked column chart from the Visualizations

pane, add OrderQuantity from fact Sales to the X axis and ProductName

from dim_Products to the Y axis of the visual container, to render the

visual. To improve it further, we can add Category from dim_Products as

Legend so that the visual can be displayed across product categories.

Figure 4.8 shows the column chart displaying the number of orders placed

for different products and categories:

Y B2
"OrderQuantity by ProductName and Category 1
Category @ Accessories @ Bikes @ Clothing
25K
=
[1+}
I
E II II I II |
c II
(S
) T
S gE <6, - 3d 93338 o4
5 = Eg £ - £ 3£ ET E =3 s &
ff353¥338388:239:3¢3
T & ZEwmIT oo on = e T = 2 =
ProductName
L — =

SalesAmount by Category

e

=

=] -

O Accessories I

2

[y+]
L]

Clothing |
OM 10M 20M 30M

SalesAmount

N4 A

Visualizations >

Build visual

=}

=k E o E i

P A M B Ik 2
M F L0 O H
Q¥ »EEEH

isEE R PYE
=8 [{3 [I2 ®
2 dw U B
X-axis

ProductName X
¥-axis

OrderQuantity v X
Legend

Category X

Small multiples

Add data fields here

Tooltips

Add data fields here

Figure 4.8: Column chart showing no. of orders by product names and

categories

At this point, the column chart shows all the products that are there in the
dimension table. Now all that remains is to figure out the top ten products
which have been ordered the most. To do this, we can make use of the

Filters pane, located between the report canvas and the Visualizations pane.

The Filters pane enables report authors to apply filters either on the
selected visual, on the active report page, or all pages of the report. The
corresponding options are Filters on this Filters on this page and Filters on
all These options are also commonly known as Visual level Page level
filters and Report level filters respectively. Whenever a visual is created,
all the fields used in the visual are automatically added to the visual level

filter, with a default selection as

For our purpose, we need to apply a visual level filter on the column chart
which should only select the top 10 products based on the number of orders
being placed. To do this, the ProductName field on the visual level filter
needs to be expanded, the Filter type should be selected as Top the Show
items field should be Top 10 and in the By value field, OrderQuantity
needs to be added or dragged from the fact Sales table. After applying the
filter, the visual should show only the top 10 products as expected. All
these configurations are one-time activities; each time the data is refreshed,
the top 10 products would get dynamically populated in the visual based on
the order quantity values we have in the fact table. Figure 4.9 illustrates the

use of the Filters pane as discussed:

Y Filters e » Visualizations »

,O Build visual
Search == I_p_ @
‘OrderQuantity by ProductName and Category L /\
E—— Filters on this visual
o S EHE kSR
: is (All b A W B |k 2
3 e
¥ ! OrderQuantity M =0 H
° HENNEER - C¥aDEE
e \ »'-'-"__:-"_-'.3‘___ ProductName E HERPE
W A o @ o @ o top 10 by OrderQuan... 7
ProductName ’ ’ DE D a m m <8)
L - - Filter type © "y mm
2 du L B -
SalesAmount by Category Top N e
Show items s
< By value
% Accessories I i Y-axis
= OrderQuantity WX
|) OrderQuantity WX
Legend
10M 20M 300 CrderQuantity
SalesAmount is (Al Category X
Filter type () Small multiples
Advanced filtering bl Add data fields here

Figure Top 10 products by order quantity

The visual title can be updated from Format visual | General | Title while
the color of each column can be updated from Format visual | Visual |

Columns |

On hovering any visual, the ellipsis icon on the top right-hand corner opens
More options which enable report authors to take a few additional actions
like exporting data from the visual, sorting axis by ascending or descending
order, and so on. On the left side adjacent to More there is the Focus which
as the name suggests enlarges the visual and fits it to the entire page so that
viewers can have a closer look. Again, on the left adjacent to the Focus
there is the filter icon which can be referred to view the list of all the filters
that are applied to the visual. Figure 4.10 helps to find all these options for
the column chart we have just created:

Focus mode
|

Filters applied " More options

- |

.,

A

Top 10 Products by OrderQuantily

Category @ Accessories @ Clothing

OrderQuantity

K
K- G 4 L) Lol L e n o %
Iy 5, - \ . 3 X . ! r
A Y s W

ap® o T gt &
-

ProductName

Figure 4.10: Visual options

Once a visual is created, it can be dragged anywhere in the report canvas as
required. Let us place these bar and column charts towards the left of the
canvas, after leaving some space from the top ribbon, where the report

slicers can be placed, which, we will discuss next.

Slicers

Slicers are a way of filtering the visuals on a Power BI report, which are
easier to access as they can be placed on the report canvas itself. Slicers
have different settings and orientations which can provide a rich experience
to the end users, besides enabling them to slice and dice the report in a

much more convenient way instead of using the default filter pane.

As in our report, now we already have two visuals for analysing sales
performance by different categories and top-performing products, let us
enhance the report by introducing a couple of slicers for the report
consumers. It would be nice to be able to slice the values over a time
component, hence slicers for Year and Month should make perfect sense.
To create a slicer for a year, we can select the Slicer visual from the
Visualizations pane and add CalendarYear from dim_Calendar to the
container field, to render the visual. The data type of CalendarYear is
Whole and Power BI creates a slider by default for numbers and dates in a
slicer, for conveniently selecting a range, which can of course be disabled

from visual formatting options.

The slicer settings for CalendarYear would have different options like
dropdown etcetera, while list is the default option. Each of these options

represents different styles which are illustrated in Figure

CalondarYoar

2016 CalendarYear
L2017 - All
1 2018 | 2016
2018 - 0 am7
020 —
. | 2018
<021
- g s, 2019
) .
Fobrr o Bl E = W — 2020
- b ob b B Lk be 2021
a7 | NmFLEODE
Calendarvsar] NG i D B om E E] |)
01 2021 i R EEarrye
O O - el — AODLEe
(-t - 4 b W
Diatfarent Slicer settings Cick
Calendarvear St
Calendarfear Calberlar e
2021 > 008

Figure 4.11: Different slicer styles

Apart from the styles, the slicers can also be oriented either vertically or
horizontally as required using the Orientation option. For controlling the
behavior while selecting items in a slicer, the Single select or Multi-select

options can be used. All these options can be seen in Figure

& Visualizations »
=] Format visual
n e
:E (#] @
- i
2
— - w
= - - L Search |
CalendarYear
L12016 Visual | General
] 2017
(] 201 .
L] 2018 v Slicer settings
[] 2019
[] 2020 “ QOptions
L] 2021 Orientation
L — g Vertical W
“~ Selection
Sing le selecl o)
Muilti-select with
CTRL
Show “Sclect all® oc
option

Figure 4.12: Key slicer formatting options

For our report, let us use the drop-down option for the CalendarYear slicer
and place it on the top left, above the bar chart. Similarly, a second slicer
for Month can be created, again using the dim_Calendar table and placed
adjacent to the first slicer. At this point, the report should look like as

shown in Figure

Ub Sales Report

Salesamount by Category Top 10 Procucts by OrderQuantity

SalesAmount PreduciMame

Category ®accessones ®UTinG

Calegory
OrderQuancity

Figure 4.13: Sales report draft 1

If we remember the relationships in our star schema model, the Date
column of dim_Calendar is related to the OrderDate column of by a one-to-
many relationship. Hence whenever a filter is applied on a slicer, the
fact Sales would get filtered by the corresponding values of and the
aggregation of SalesAmount and OrderQuantity would be calculated based

on the subset of data in

As the concept of slicers should be clear by now, let us explore a few other

visuals which can add value to our report.

Tip: To create the report name as Sales Report, a textbox can be used. To

insert a textbox, go to Insert | Text box.

Trend analysis

For analyzing trends, or to see how a value changes over a period, there are
few combo visuals in Power BI which works well. The present default
options are Line and stacked column chart and Line and clustered column
These charts are appropriate choices specifically for plotting two fields
which are very different in terms of the range of values they have, such as
dollar amounts and quantity, making them perfect choices for trend

analysis.

For the report we have been building, it would be interesting to see how
sales amount and order quantity change over time and find out the trend.
To do this, we can select the Line and clustered column chart from the
Visualizations pane, add MonthName from dim_Calendar to the X axis and
SalesAmount from fact Sales to the Y axis of the visual container, to
render the visual. This should create the column chart representing the
sales spreading over months. To add the trend line to it, OrderQuantity can
be added to Line which should populate the trend line on the column chart

as shown in Figure

Ujﬁ Sales Repor't «. ::::Zi:tions

FRalzs imcunt 30d Orda nCuantity by HManthiMame

B2k, B de Qantiy

T hE R
el Ol A e
L O
gHaTED
» BO@OrPE
| Aunpme
g HEEE-R ¥R T
¢ %% £
a z A2
Ptuaillisin w
h — Snlviin e,
LEN bslesirrount e
w/Fe AN
o ™ b i il iy R
Figure 4.14: Trend Chart
The data labels can be turned on or off from Format visual | Data as
required. Apart from that the month names on the X axis may need to be
sorted to maintain a logical order. By default, the visuals are sorted based
on the values which can be changed from More options of the visual, as
shown in Figure
WK
Sales Report al=
e
- — 5 =
D, Export data b})
B2 Show as a table E'
318M X Remove @
i soog =0 Spotlight
v MonthName Sort axis >
SalesAmount
OrderQuantity
I Sort descending
201M v 1 Sort ascending
M 1.83M =
81
. §
000 b
(=]

Figure 4.15: Changing the sort axis for a visual

Selecting MonthName as the Sort axis should sort the X axis by month
names; however, by default, it would sort alphabetically which again
would not make sense here as what we typically need is January should
come at first and December at last. To do that, the MonthName field can be
selected on the dim_Calendar table, then it can be sorted by a field
MonthNumberOf Year following Column tools | Sort by as shown in

Figure

Format Data / Drill Table tools Column tools

o T——— B 4 B
n | Don't summarize v =l L ==
Uncategarizes Sort by Caca MR LT
B | o~ | reitiomios | cokeen

T MonthMName |

P
A
=L
o
Q.
w

CalendarQuarter

Calendaryear

s A

suonez|jensip

Manth IO

NumberOfyear % MonthName I

thiNumberOfn

Figure 4.16: Using Sort by column

The MonthNumberOfYear field that we have in dim_Calendar represents
the month number of a date, starting from 1 as January and going to 12 as
December. Once done, the MonthName field should get sorted by month

numbers, wherever used in the report.

Finally, the trend chart can be resized and placed as required; for our
report, let us place it below the column chart that we created earlier and

move to the next visual we are going to explore.

b

Visualizing geographical data using maps

Power BI has a set of maps to represent geographical data; among them,
the default bubble map is arguably the most popular one. To use it
effectively, all that is needed is a location field in the model using which

Power BI can map the coordinates. A location field can include city, postal

code, state, country and so on.

Power BI uses the location field for geo-coding and creates the map

accordingly. However, a proper categorization of the fields involved can

increase the likelihood of correct geo-coding. After selecting a field,

Column tools | Data category can be followed to categorize it with one of

the available options, as shown in Figure

External Tools Format Data / Drill

v 2. Summarization | Don't summarize

w

E Data category | Wt

Uncategonzed

Br

Sa IeS I Address

Place
City
County
State or Province
Postal code
Country
Continent
Latitude
Longitude
Web URL
mage URL

Barcode

k"|

Table tools | Column tools |

H

Sort by

columin

Sort

?H

Data

groups v

oups

o8

Manage

relationships

Relationships

[]
+
=58
Mew
column
Calculations
« <« Fields
< 5
n 2 £ Search
= =
b E » 8] MeasureTable
E' » B dim_BudgetPericd
w

» BB, dim_Calendar
» B dim_Customers
> BB dim_Products
B dim_Territory
Group
Region
Temritory Key

» BB, fact_Sales

Figure 4.17: Categorizing a field in Power BI

An icon on the field would indicate a successful categorization. The size of

the bubble can be determined by the value that is been placed in the Bubble

size bucket. For our report, a map can be plotted to view the sales amount

for different countries. For doing so, we can select the Map visual from the

Visualizations pane, add Country from dim_Territory to the Location
bucket and SalesAmount from fact Sales to the Bubble size bucket of the

visual container, to render the visual as shown in Figure

ISalasAmount by Country

i
tan

MORTH AMERICA [5] EURGPE
O :
i o Atlantic
. Dedan
AFRICA
SOUTH AMIRICA Indian
cea
AMNTARCTICA

£ 2022 ToriTem, © 2022 Mool Coporafon. = Dpe-Sreeily Temm

=BV
E bl E nE R
P A b B e B2
M F L0 O H
C¥amED
FEBERPE
B8R RS
2 dng L B8
Location

Country WX
Legend

Add data fields here

Latitude

Add data fields here
Longitude

Add data fields here

Bubble size

SalesAmount X

Figure 4.18: Creating a bubble map in Power BI

A= mearch

p |_|j MeasureTable
» B dim_BudgetPeriod
» B dim_Calendar
» BB dim_Customers
» B dim_Products
v BB, dim_Territory

@ @ Country

[| Group
Region
Territory Key

> B fact_Sales

Only adding one location field might not always be enough, for example, if
we add a field for the city as location, it can cause ambiguity as multiple
countries can have cities with the same name. To increase the precision and
help Power BI to accurately geo-code the location, multiple columns can
be used as the location, or additional buckets like Latitude and Longitude

can be used if available in the dataset.

Power BI integrates with Bing Maps to geo-code locations. If Latitude and
Longitude are provided, then no data is sent to Bing, otherwise, any data in

the Location bucket gets sent to Bing.

As always, the visual can be resized and placed wherever required. For our

sales report, let us place it just below the bar chart, and move on.

Use of cards

So far, we have seen how to analyze values across categories; however,
many times what is required is to derive a particular value from the
underlying data and view the report. This is specifically where a card

would be useful as it can be used to display a single scalar value.

For sales reports, time-based calculations like Year to Same period last
Year over year growth percentage etcetera are usually the important key
performance indicators (KPIs) to track. In Power BI, all these can be
calculated conveniently using the time intelligence functions of DAX. Let
us first see how to calculate the required measures and then, we would
focus on visualizing those on the report. The following four measures can
be used in our report to provide us with a comprehensive descriptive

analysis of what is been going on with our sales data:

Total The Total Sales measure should calculate the sum of sales amount in
the context of the report, using the SUM function of DAX, which we
already have explored in the previous chapter. Figure 4.19 shows the DAX

formula involved:

>.< «/ |1 Total Sales = SUM(fact_Sales[SalesAmount])

Figure 4.19: Total Sales measure

As we are already aware, once created, this measure can be reused by

referring to it enclosed within a square bracket.

YTD The year-to-date sales, or YTD Sales measure calculates the running
total for sales, use the TOTALYTD function of DAX.

TOTALYTD: This evaluates the year-to-date value of an expression in the

current context.

SYNTAX: TOTALYTDC, [,] [,])

PARAMETERS:

Expression returning a scalar value.

A date column.

Expression specifying a filter condition (optional).

A string defining the year-end date (optional, default is December

For our report, let us assume we want to compute the YTD sales based on
OrderDate from the fact Sales table. As the Date field of dim Calendar is
related to OrderDate from it perfectly qualifies to be used as a parameter
for our measure. Figure 4.20 illustrates the DAX formula to create the

measure YTD

X «~ |1 YTD Sales = TOTALYTD(|[Total Sales],dim_Calendar[Date])

Figure 4.20: YTD Sales measure

Once used in the report, this measure should calculate the year-to-date

sales in the context of the report, which we will soon see with an example.

Same Period Last Year Sales: The Same Period Last Year Sales measure
calculates the sales amount for the last year, in the current context of the
report, using the SAMEPERIODLASTYEAR function of DAX.

SAMEPERIODLASTYEAR: This returns a date column shifted one year

back in time from the dates that have been specified, in the current context.

SYNTAX: SAMEPERIODLASTYEAR()

PARAMETER: A date column

For our report, the Same Period Last Year Sales measure can be created as

shown in Figure

1 Same Period Last Year Sales = CALCULATE([Total Sales],SAMEPERIODLASTYEAR(dim_Calendar[Date])))

Figure 4.21: Same Period Last Year Sales measure

Again, we will see this measure in work in the upcoming example.

YoY The YoY Growth% measure calculates the percentage of growth of
the sales amount compared to the last year, using the DAX code as shown

in Figure

&) Name YoY Growth% $%|Format | Percentage ~ B Data category | uncategorized v @
. New Quick
m [; 2
(R) Home table | MeasureTable M $+% 9 Rt | V_I measure measure
Structure Fermatting Properties Calculations

gl » /|1 YoY GrowthX¥ = DIVIDE([Total Sales]-[Same Peried Last Year Sales],[Same Period Last Year Sales])

—

Figure 4.22: YoY Growth% measure

As this is a percentage of growth, the measure can be formatted

accordingly as highlighted in the preceding figure.

Let us now refer to an example as shown in Figure 4.23 to understand
further how these measures would work in the context of a report, and also

validate that they are working as expected:

rFen-oc Total Sales YD Sales Sare Period Last Year Sales Yo Growth & visualizations b
701 B9ETAGSE 59674656 . o
w70z [55081668] 114756325 [Towsee :I e
201705 6413520 179165845 VTD Seles N)4 @{
1704 6AIE9229 245530078 g |
101705 6755620 31284554 Secrne Pt Last Yonr Sales
o e sageios L= B b E o E
70T SO03IBSAS 430607574 AT3.388.16 5.70% I I =¥ growttih
201706 54600147 4565207721 50619169 T56% & m & M m E
01709 35046639 5L0254420 ATI04208 -2605% HFE:®E
01710 41539023 561793444 51332987 -19.08%
0171 33509500 595302953 54399341 -35.40% @ E 7 [
201712 57731400 653034353 755527.89 2359 EE ErRPE
201801 [438865.17] 43886517 53674656 453
G080z | 48900034 | [927.95551 0B WMAG
01803 AB55TATS 14.13.530.30 £.44.135.20 “2EE% 7P Nl

| 201808 50639927 191992957 66369229 -2370% gt
01805 SELTTRSE 248270213 673.556.20 -16.45%
201806 55479923 303750136 £76.763.65 -1802% : e
10T BIESEEEL 392417020 500.385.15 77.20% Pariod X
201808 84741351 477158571 54500147 55.20% ;
01809 101025813 578184184 350,466.69 188.26% Total Sales R
01810 108042558 686229142 415,350.23 160.10% YTD Sales v X
21811 119696111 805927253 33509509 25721% i i
201812 173078777 979106030 §77,314.00 199.97% Same Period Last Vear Sales v X
1901 134028435 134024495 43886517 2053%% YoY Growth® WX
201902 145247983 260272478 489.050.34 159.02%
201303 143030518 423362996 asss7a?y 2ndsen Drill through
201504 160875053 589236048 50635027 217.60%
201905 18783751 777068800 §6277286 23876% Cross-report o
201906 194836111 97.20,089.11 55479923 25136% Keep all fiare rva)
201907 5038063 97708597 f86.668.84 34274

201908 97.70.899.74 BATAIZEL -10000% J Aded drill-through fields here

Figure 4.23: Example explaining the time-based measures

In the preceding example, we have used the Table visual and added Period

from dim_Calendar as the first column to create a context for the measures.

Then, we added all four measures as Columns of the table.

Let us consider the context of period 201802 as highlighted. The total sales
amount for the period is 4,89,090.34 which is exactly what we are having
from the Total Sales measure. The running total or the YTD value for sales
should consist of all the periods from the beginning of the year, which is
201801 and 201802. The aggregated sales would be (4,38,865.17 +
4,89,090.34) = 9,27,955.51 which is exactly the value we are getting from
the measure YTD To get the sales value for the same period of the last
year, we should go one year back and refer to the period 201702. Period
201702 has a sales amount of 5,50,816.69 which is the same value we are
getting for the measure Same Period Last Year Sales for period 201802.
Finally, the year-over-year growth for the period 201802 should be (Sales
for 201802 — Sales for 201702), and the percentage would be (Sales for
201802 — Sales for 201702)/ Sales for 201702. If we calculate it, we should
get the result as (4,89,090.34 - 5,50,816.69)/ 5,50,816.69 or -11.21%, again

matching exactly with the outcome of the YoY Growth% measure!

Now that we have created all the measures required, let us visualize those
in our report. To do this, we can select the Card from the Visualizations
pane, and add the measure Total Sales to the Fields bucket, to render the

visual as shown in Figure

&« Visualizations »
=] Build visual

r}

E bl E I E i
px Q) b i Lk 2
M FLE OO H
Q¥ adEE
iEE R PYE
=801 [a2®
2 dn It B o

Fields

2,93.58,677.22

Total Sales

B ==

S
|
=

lotal Sales WX

Drill through
Cross-report [o

Keep all filters on @

Add drill-through fields here

Figure 4.24: Creating a card

The card would display the value of the measure in the context of the
report. As always, the visual can be formatted as required. For example, the

display unit can be configured by following Format visual | Visual | Callout
value | Display

Similarly, we can create cards for the other three measures as well. After

resizing and placing the cards, the sales report should now look as shown
in Figure

[Ib Sales Report

e ven o 97.91.060.30 97.91.060.30 £5.30.343.53 49.93%

208 w an “r
Total Sales YTD Sales Same Period Last V.. oY Growth’

SalesAmount by Category Top 10 Products by OrderQuantity

Category @ Accessorias @CIothing

o _ B
2
- IS
= 3 K
& ACORSIOnES =
] B
fi]
Clgthing I 0K
i P ¥ R,
a“-k 5 i #* \':-\ o 2 -
L A T S s
i . A o o o o @ o o
SalesAmount ProductMame

SalesAmount by Country SalesAmount and OrderQuantity by MonthName

W SueArsUn § OrderChantity

HORTH AMERICA T - A ‘
- Ai 5_5
e Atlantic £ g
Ocean % N]
§
AFRICA “ .

oM 3

s AuERe A i

BMcmschieg 2020 TemTae 2000 Mitrtast Cosserpion § Doguligastiys Tpemy

Figure 4.25: Sales report draft 2

Now with every slicer selection, all the values displayed on the card should

change and show values as per the context of the report!

Let us explore further and see how to best utilize the space that we are left

with on the report page.

Tables

Alongside visualizing data with graphs and charts, we often require
viewing the underlying raw data itself to check the granular level details,
which a table can help us with. A table visual allows us to take a look at the

underlying data in a flat format, without necessarily aggregating.

Let us create a duplicate page of our sales report and rename it by right

clicking as Details while the original report page can be named as shown in

Figure
- AFRICA
Duplicate Page
SOUTH AMERIC Duplicate Page
Rename Page
Rename Page
B Microsoft Bing |
Delete Page I" McciohBing & 2022 TomTom, € 2022} Delete Page
Hide Page Hide Page
Overv , Qverview Duplicatle vi wvervive e s

Figure 4.26: Adding a page in the Sales report

The advantage of creating a duplicate page is that we do not need to
redesign the page and create the theme all over again. We can remove all
the visuals on the duplicated page that are not required and continue with
the rest of it.

For our report, let us remove all the other visuals apart from the Year and
Month slicers. As we intend to create a table on this page to look at the
granular details of the underlying data, it would make sense to introduce a

few more slicers to slice and dice the table with different attributes. Hence

let us add a few more slicers namely Country from ProductName and

ModelName from Occupation, and Yearlylncome from

To create the table, we can select the Table visual from the Visualizations
pane, and add all required categories and values to the Columns bucket of

the visual container to render the visual.

The Table visual has a lot of visual-specific formatting options which can
be accessed following Format visual | Let us select the style Alternating
rows from the Style presets option to apply the style to the table. Now the

report page should look like this as shown in Figure

[I]% Sales Report Details

Year Month Country ProduciName ModelName Occupation Yearlylnceme

Comntiy Catexpiny Coxupation Yearlylnoome SalesAmount DiscountAsamt Freght - OmderGuantity | P

Europe France Al-Purpope Bike Stand Accessores MA Apnl Shan Clerical 40000 159,00 ¢ 38 1 5947 272
Europe France All-Purpose Bike Stand Accessories NA Bonnie Lal Clecical 10000 159.00 o 3.58 1 5547 2.72
Eurepe France All-Purpose Bike Stand Accessores NA Brad Chande Clesizal 0000 159.00 ¢ 35 1 59.47 2.72
Europe France Al-Furpose Dike Stand Accessories NA Curtis Liv Plarual 10000 153.00 0 3.50 1 5547 272
Europe France All-Purpose Bike Stand Accessories MA Damien Sun Management 100000 159.00 o 358 1 5247 2T
Eurcpe France Al-Purpose Bike Stand Accessories MA Desiree Jimenez Clerical 30000 155,00 0 3% 1 5547 1272
Europe Frante All-FPurpose Bike Stand Accessones NA Eljan Ja Clefical 30000 152,00 o 3.58 5047 21
Europé France All-Purposé Bike Stand Actessones NA Frank Gonmez Clenical 30000 159.00 o 3.58 1 5947 2.72
Europe France AN-Purpose Bike Stand Accessodes NA Josus Blancs Mgl 10000 159.00 ¢ 388 1 59.47 272
Eurcpe France Al-Purpose Bike Stand Accessories MA Kevin Bryant Clerical 30000 159,00 0 3.58 1 5047 272
Eurepe France Al-Furpose Bike Stand Accessones NA Liza Cai Prefessional 100000 159.00 o 3.58 1 5947 2,72
Europe France All-Purpose Bike Stand Accessories NA Meil Rubio Marmual 20000 158.00] 3.58 1 5547 2.72
Europe France Al-Purpose Bike Stand Accessories MA Omar Zhou Planual 30000 159.00 o 3.58 i 5247 272
Eurcpe France Al-Furpose Bike Stand Accesscnes NA Rebtecca Hemandsz Manual 20000 159.00 o 358 1 5547 1272
Eurcpe France Al-Furpose Bike Mland Adcessones NA Hoger Leng Pamual TR 1590 v 9

Eurcpe France Al-Purpose Bike Stand Accessonies NA Taylor Russel Maruysl 20000 159.00] 3.98

Europe France All-Furpose Bike Stand Accessories MA Tiffany Zhou Manuy 20000 158,00 o 388 272
Europe France Al-Purpose Bike Stand Accessories NA Tyrone Sang Mlanual 10000 159.00 o 358 1 5847 1272
Europe France All-Furpose Bike Stand Acceszones NA Wille Chander Professional 110000 138,00 o 3.58 1 5847 1272
« »

Figure 4.27: Details page in the Sales report

Let us now go back to the Overview page to explore another form of a
table, which is the Matrix visual.

Matrix

While the Table visual is just a two-dimensional grid containing related
data in rows and columns, the Matrix visual allows you to display data in
multiple dimensions by allowing users to drill down. This can be an ideal

option to replace all those pivot tables created in Excel.

The visual content can be created by selecting Matrix on the Visualizations
pane. The attributes can be placed on either Rows or Columns bucket,
while numeric fields and measures are added as Once multiple fields are
added to Rows or the Matrix creates a hierarchy enabling users to drill
down (and drill up) through the hierarchy levels and analyze data at each

level.

For the report we have been creating, let us add Category and SubCategory
from dim_Products to and SalesAmount and OrderQuantity from

fact Sales to Values bucket. This should enable us to analyze the values by
product categories. We should also be able to go to a more granular level,

which is the product sub category and analyze data, as shown in Figure

Viewing i Matrixom prohn i calegory level

E bl E E B
b oh ba R L B
HFLEO0H
CWUAOE=
E@ErE
fO0B @R
2 N
SubCatogory

Acd data flelds here

OretrCuantity

Drill through

Crova-riport -

Lalegiury Sy

Accessories 29070871
Rile Rackes 1644000
Bikca Stands

BEIEE #0 Sa i

Elear

Fenders
[T

Hydration Facka

ENMEKE N
b 0 e g bk e
HFLEeoH
CEaAa@mEE=E
FEERrPE
OB QRS
bz Bl
Category

i ahalan et bere

Ordenluantity

Dl thiough

Crass-repent

Viewing the Matrix on product sub category level

Figure 4.28: Viewing the same Matrix visual on different granularity

As seen in the preceding figure, the aggregated values for each product

category are exactly the same on both the views; however, on a higher

granularity level, we also get to see the details for individual sub

categories, under different product categories. Similarly, hierarchies can be

created on Columns as well if required.

To navigate through different hierarchies or granular levels, there are a few

ways. By default, a Matrix displays the least granular view unless drilled

down further. Taking the Matrix that we have just created as an example,

expanding the plus (+) icon beside each product category should take us to

the next level of granularity only for that specific category while the other

categories will still remain in the existing granularity level, as shown in

Figure

Category

SalesAmount

OrderQuantity

El Accessories 2,93,709.71 15025
Bike Racks 16.440.00 137

Bike Stands 18.921.00 119
Bottles and Cages 23.280.27 3273
Cleaners 3.044.85 383
Fenders 19,408.34 863
Helmets 92,583.54 2646
Hydration Packs 16,771.95 305

Tires and Tubes 1.03,259.76 7279

(2] Bikes 93,59,102.62 5710
“ Clothing 1,38,247.97 3708
Total 97.91,060.30 24443

Figure 4.29: Moving to the next granular level for a specific category

As expected, collapsing with the minus (-) icon should restore the

granularity of category

Apart from using the icons, right clicking on any category should open the
menu having Drill down as an option, which also can be used to navigate
to the next level of granularity only for that category, while the other
categories would not be visible anymore. The behavior is illustrated in

Figure

Category SalesAmount OrderQuantity

Accessories 362 TH T —
Bikes Expand by
Clothing

Total

@ Drill down

Show as a table
Show next level
Expand to next level
Include

Exclude

Copy

-

F
Category

Accessories
Bike Racks
Bike Stands
Bottles and Cages
Cleaners
Fenders
Helmets
Hydration Packs
Tires and Tubes
Total

SalesAmount OrderQuantity

2,93,709.71
16,440.00
18,921.00
23,280.27
3,044.85
19,408.34
92,583.54
16,771.95
1,03,259.76

2,93,709.71

15025
137
118

3273
383
883

2646
305

7279

15025

Figure 4.30: Drilling down to the next granular level for a specific category

The Drill up option can of course be used to move back to the aggregated

level, by right clicking on any sub category.

Hovering over or selecting any Matrix visual should also display the

navigation arrows on the top right corner of the visual. The pitchfork

button on the extreme right would expand all categories down one level in

the hierarchy while the downward double arrow should take us to the next

level of the hierarchy, displaying all the subcategories. Figure 4.31 should

help to illustrate the different behaviors:

~ L4 BT

rCategc f Salesamount Crdq'rcuantit;,- ».\
Accessories 2,93,709.71 : 15025 Y
Bikes 93,59,102.62 .I 5710)
Clothing 1,38,247.97 3708 | = -l v
Total 97,01,060.30 } 24443 Categery SalesAameount OrderQuantity
/ \ Accessories 2,93,709.71 15025
~ A . Bike Racks 16,440.00 137
Bike Stands 18,921.00 119
> Bottles and Cages 23,280.27 3273
Cleaners 3,044.85 383
Fenders 19,408,324 883
Helmets 9258354 2646
! Hydration Packs 16,771.85 305
| Tires and Tubes 1,03,259.76 7279
v = Bikes 93,59,102.62 5710
Mountain Bikes 39,89,638.48 2088
| Road Bikes 39,52,029.21 2797
u ¥ u = Touring Bikes 14,17,434.93 825
r_SubCategor;,- Salesamount CrderQuantity k = Clothing 1,38,247.97 3708
Caps 7.956.15 885
Bike Racks 15,440.00 137 Gloves 14,228.69 581
Bike Stands 18921.00 119 Jarsays 70,370.48 1354
Bottles and Cages 23,280.27 3273 Shorts 3044565 435
Caps ?.956-1 5 885 Socks 2,229.52 248
Cleaners 3,044.85 383 Eesiy IS i
Total 97.,91,060.30 24443
Fenders 19,408.34 883
Gloves 14,228.69 581
Helmets 92,583.54 2646
Hydration Packs 16,771.95 305 L —
Jerseys T70,370.46 1354
Mountain Bikes 39,89,638.48 2088
| Road Bikes 39,52,029.21 2797
Shorts 30,445.65 435
Socks 2,229.52 248
Tires and Tubes 1,03,259.76 7279
Touring Bikes 14,17,434.93 825
Vests 13,017.50 205
Total 97,91,060.30 24443

Figure 4.31: Drilling down on the visual

The single down arrow can be used to enable the drill mode, which allows
drilling down by simply clicking a data point. Lastly, the up arrow can be
used to drill up through the hierarchy levels.

By default, the Matrix visual indents subcategories in a hierarchy beneath
the parent; this property is known as Stepped layout and can be controlled
from the visual formatting by following Format visual | Row headers |
Options | Stepped Figure 4.32 shows how the visual looks like when the

Stepped layout is enabled versus when it is disabled:

A g @ k i > ¥ | -
Catagery Salsplenount Orderdusntity Visual General Casegory SubCategory SaletArsoust OrderCuantity visual General

T Accessories 2,93,709.M 15028 Aecstnrst Sics Hacke Tb. A48, .
Bidor Racks 1£.440.00 137 ¥ Values Bk Stands 1892100 13 * values
Dike Seands BEE21.00 L] Sokes awd Cages £3.280.27 EFEE]
Eottis and Cagas 2328027 2178 Clasnan ELTVES 163
Cleaners 104485 . % Colurmn headers ferders 44580 3 ¥ Column headers
Féner 15,405.34 a%3 gimety 9258354 2648
Hermas 2582 2548 ~~ Row headers Hydratiza Packs 1677195 305 Row headers
Hydration Packs 305 Tires and Tubes 1.03.259.76 nm"
Tires and Tubes 03, 255.76 e Tatal 15025 Text
Bilees 95,59, 102.62 ETi8 > Text Eikwa it i Hikst anés ? Tex
Mountain Eiles 08563548 2088 333: SH.BH 2:'.‘5 I
Road Bikes Sa52028.21 27T 3+ itons LG S, i & B /- lcons [ore]
Touring Bikes 14.17.434.93 825 @ - #3.59,102.62 LA
9 Clothing 1,38.247.97 3708 Clothing Caps A:: .; :H
- e Cloves 14,2285 1
Caps 795608 a8t ~ Optlons — S e w Optons
Gloves 14,226.69 581 AN e - p—— .o
lerseys 7637046 1354 Stappad layout ao ihorts 0.445.65 35 Stepped 5o 0
Sods 221952 240
n 50,445, 4 [T — don
: 0:“ "E'“; :5 ‘:; Stepned lagout indentation Vests 1300750 108 Stepped layout Incermiasion
ocks 222052 2 Tetal 1.38247.97 e w0 'S
Mty 1750 2 10 0 Tatal 57.81,060.30 24443 &>
Tetal 07,01,060.30 24443

£ Reset to defauls

= Fesst to default

Figure 4.32: Stepped layout On vs. Off

The Matrix visual has a wide range of formatting options that can be
explored. For our report, let us apply a few conditional formatting for the
SalesAmount field. On the Visualizations pane, clicking on the drop-down
button on the SalesAmount field opens the menu where under Conditional
all available options can be explored. Using the Data bars option, each cell
of the SalesAmount can be formatted with divergent bar colors based on

the values, as shown in Figure

« Visualizations » Fields »
=] Build visual o
— Search
b P
T E d @
Remove field > B MeasureTable
Rename for this visual ! l!lﬂ » B dim_BudgetPeriod
Mave > [ke » BB dim_Calendar
Mave to b » BB dim_Customers

Add a sparkline

) B

Conditional formatting

> BB dim_Products

1
> | Background color

Remove conditional formatting > Font color

< Sum | Data bars
A\-erage lcans
Minimum Web URL
Maximum
Count (Distinet) X
Count v X

Standard deviation

Variance

Median

Show value as 2

Mew quick measure X
OrderQuantity K
Drill through

4

Crosg-report [om

Keep all fillers [one]

Data bars - SalesAmount

Format cells with bars based on their values.

: | Show bar only

Minimum Maximum
Lowest value v | | Highest value V|
Enter a value l [l‘l'!\'.‘ avalue |
Positive bar Bar direction
n - | Left to right V|
Megative bar Axis

oK

Figure 4.33: Applying Data bars to SalesAmount

Also, the Icons option just after Data bars can be used to conditionally add

indicative icons for each value representing how the specific item is

performing. Let us add the following configuration for Icons as shown in

Figure

Cancel

Icons - SalesAmount

Format style Apply to

‘ Rules ~ Values only W

What field should we base this on? Summarization

‘ Sum of SalesAmount ~ ‘ Sum e

Icon layout con alignment Style

‘ Right of data W ‘Top w | ¥ > P M |
Rules | 1l Reverse icon order | + New rule |
I"value | >= VHJ Number v |and| < ~ 5000 || Mumber - | then Jo K
IFvalue | 5= v‘ 5000 | Mumber v |and| < v |25000| Mumker » |then |'> - T X

Ir value and

- v ‘@| Humber =] 10000 | Numker v then Iﬂ'_-‘ 1 "

L=arn more about conditional formatting 0K] ‘ Cancel

Figure 4.34: Applying Icons to SalesAmount

After applying these conditional formatting configurations, the Matrix
should look like as shown in Figure

Category SalesAmount OrderQuantity

= Accessories 2,93,709.71 15025
Bike Racks 16.440,00 =@ 137
Bike Stands 18,921.00 =¥ 19
Bottles and Cages 23.280.27 =@ 3273
Cleaners 3.044.85 383
Fenders 19,406.34 =¥ 883
Helmets 92.583.54 2646
Hydration Packs 16,771.95 =9 305
Tires and Tubes | 1,03,259.76 4+ 7279

= Bikes 93,59,102.62 5710

Mountain Bikes | TERSEESN 2088
Road Bikes 395202921 2797

Touring Bikes TR 825

= Clething 1.38,247.97 3708
Caps | 795615 = 88s
Gloves 14.228.69 =9 551
Jerseys 70.370.46 P 1354
Shorts | 3044565 4 435
Socks 222952 & 248
Vests | 130750 % 205
Total 97,91,060.30 24443

Figure 4.35: Matrix with conditional formatting

All these different configuration options make the Matrix as one of the
most powerful and popular visuals of Power BI. Let us resize the Matrix as
required and place it on the empty space that is available on the Overview

page, after leaving some space from the top ribbon.

Tip: For tables and matrices, the Total field is not always the addition of
the rows displayed in the visual, rather it is evaluated on the underlying
data and displayed in the context of the report. If not required, the option of

displaying Total can be disabled from the visual formatting options.

Introduction to custom visuals

At this point of authoring the report, the Overview page should look like

Figure

[I]a Sales Report

Wear Month

97.91.060.30 97.91.060.30

o v Al
lotal sales YL ales

SalesAmount by Category

o _
HILO0HES I

Clothing I

Categery
o
OrderGuantity

SalesAmount
SalesAmount by Country
@ Salesamount @ Orde
HORTH AMERICA a‘m asia
&
@ Atlantic £,
Oeean 3
AFRICA 4
SOUTH AMERICA ind
Geean AV

L e L) o 2532 TeemToem i 2321 Weezut Cormorwien § Oogniryetinn Dy

65,30.343.53
Same Fenod Last ¥...

roantity

£9.93%
YOY Lot

Top 10 Products by OrderQuantity
Category ®Accessories @ Clothing

e P L L S SRR
R & PR o
& A A L LT R g

L L A I

SalesAmount and OrderQuantity by MonthName

® »
OrcerGuantity

Figure 4.36: Sales report draft 3

Though the report already seems able to provide a lot of information and

Category

Accessories
Eike Racks
Bike Stands

Botties and Cages ||

Cleaners

Fenders

Helmets

Hydration Facks

Tires and Tubes
= Blkes

Mountain Bikes

Road Bices

Touring Bikes
= Clothing

Caps

Gloves

Jercays

Sharts

Socks

Vests

Total

SalesArmount

2,92,700.71
1644000 =
1862100
2328027
500455

| 1940834

5258354 P
16.771.55 =
| 10325975 A
93,59,102.62

Baszoza |
I 52 53
1,38,247.97
745615 =¥
| 1422869
| 7a370us 4
| 3042565 4
232952
| 13om7s0=>
97,91,060.30

insight about the data it is built on; however, in terms of comparing with

the last year’s data, all we have is scalar values represented by cards. It

would have been really nice to see the month by month comparison in a
single chart. To do this, the default Line chart under the Visualizations pane

OrdenQuantity

15028
137
119

3273
343
843

2648
305

728

Ll

2088

imn
g5

3708
£85
581

1354
435
248
205

24443

can be utilized, however, there is an even more powerful option to explore.

Power BI has a rich set of visuals available at the fingertip, however, only a
few selected commonly used visuals are pre-packaged and come out of the
box. Apart from the default ones, many more certified custom visuals are
available in the Microsoft which can also be utilized. AppSource can be

considered as a marketplace where Microsoft and partners publish custom
visuals, certified to be used in Power BI.

To go to the the Get more visuals option can be accessed from the ellipsis

icon of the Visualizations pane, as shown in Figure

% Visualizations b

=] Build visual
B hE S Oplei et
o e o s s
HFEEO0SH I
CP2OEA

EHEEEr PYE .Y
=E ORRREe - —_— Power ()N N
[:‘ B] L .. L '.\.'-..\:.- 1. Lt] ¥y L=

Impot adaalfromafle ST

Femawve a visual

Festore default visuals

— = aB .= = e 123

Figure 4.37: Microsoft AppSource for Power BI visuals

On the clicking on any visual redirects to that visual page, where the visual
overview and sample reports using those visuals are available. The user can
navigate through the AppSource visuals to find out the suitable one, or any
specific visual can also be searched for using the search box on the top
right. Many AppSource visuals are free to use in Power BI, while some
additional licenses are required. The pricing information for a visual can
also be found on the visual page itself.

We are interested in using a free visual named Power after locating the

visual on AppSource and entering the visual page, the visual can be added

using the Add button to the Visualizations pane of Power BI, as shown in

Figure
Powed 31 vesialy
| Power KPI| Power <F|
- e bulghs e
v | o . - —— \,"'_..
» =
P
= ~° = -
—_— 1 at il — . -
— ni - o [
¢ Visualizations A
Bl vhed
TE o
Import successful
EblE ME R
b O b R e
w HFLEODE
gEaEBE™
EO@rmwE
AO0DRES
phGE

Figure 4.38: Adding a custom visual to Power BI

Once added, the visual appears as a new icon in the Visualizations pane for
the current report. To make the visual available for all reports, the Pin to

visualizations pane option can be used after right clicking the visual.

Now that we have added the custom visual as we want, let us proceed with
rendering the visual by selecting it on the Visualizations pane and then
adding MonthName from dim_Calendar as Axis and the measures Total
Same Period Last Year Sales as as we want to compare the sales values

between the current and previous year, in the report context.

Once created it can be seen that not only it populates the comparison lines
between the present and last year as expected, but it also displays the value

for the last month in the filter context of the report, as well as the variance

of it with respect to the last year, as labels on the top! Figure 4.39 shows
the Power KPI visual we have just created:

| RHEmEMN
' Selected Year Vs, Last Year Sales B P QA M B Wk 2
December 1.731,787.77 +199.97 % IH] ﬁ E ® @ Eﬂ
QW ADEE
EEERPE

¥
o

S cas
3 =f 18 [a 2B
Lo "1 W=
= 2 ﬂ. Log W
129 ' age
F E]Y & =
010
e Axis
P I
:uu MonthName WX
0.9
Qe Series
.75
:; Add data fields here
cEE Values
::i Total Sales WX
0.39)
034 Same Period Last Year... ™ X
JANUAT = Ju Ocober
@78 Sz @ Same Periog Lant Vear Sales Secondary Values
L - -

Add data fields here

Figure 4.39: Custom visual Power KPI

As always, properties like visual header, data color, and so on can be

controlled from the visual formatting options.

Though we have created the visual now, there is no space available on the

Overview page to place it anymore. For similar scenarios, we may aim to

toggle between two or more visuals with the help of the Selection pane and

Bookmarks which we are going to discuss next.

Bookmarks pane and Selection pane

The Power KPI visual that we created, let us resize it with the exact same
dimensions as the Matrix visual and then place it on the top of the Matrix

so that the two visuals overlap with each other.

Tip: To adjust the dimension of any visual, select the visual and then go to

Format visual | General | Properties | Size.

The idea of toggling between visuals is, when one visual is displayed, the
other will be hidden and vice versa. This can be achieved by assigning

different actions to two buttons, as shown in Table

Table 4.1: The concept of toggling using bookmarks

As seen in the preceding figure, only one visual would be visible at any
given point in time. The properties of hiding or displaying a visual can be
controlled using the Selection which can be activated following View | The
Selection pane would have all the objects that have been used in the active
report page, with the icon to show/hide every available object, as shown in

Figure

Selection » X

Layer order Tab order
S Show Hide
Card FA o
Card o +a
Card SN ees
Card o wa
Text box T e
Slicer o ran
Slicer P
Bookmark navigator fon o

Selected Year Vs. Last ...| @[-
Matrix |-
SalesAmount and Ord... @ -
SalesAmount by Coun... = **°
Top 10 Products by Or... @ -~

SalesAmount by Cate... @

Figure 4.40: Selection pane in Power BI

As shown in Figure the Matrix is hidden while the Power KPI visual is
shown; in this state of the report, only the Power KPI visual would be
displayed. Here comes the Bookmarks pane using which we can capture a
specific state of the report.

To open the Bookmarks pane, click on View | For our purpose, we need to
create two bookmarks capturing two different states of the report. For one
state, the Power KPI would be visible, and the Matrix would be hidden,

while it should be the other way round for another state. To create a
bookmark, we just need to update the report in the state which we want to
capture, and then bookmark that state using the Add button under the
Bookmarks pane by simply providing a name for the bookmark. Figure
4.41 shows the two bookmarks that we need, along with the report states

that they are assigned to:

Selection » X Bookmarks » X Selection » X Bookmarks » X
Layer order Tab order _,'u View Layer arder Tab order L_'p View
e Show Hide | Compare with Last Year | ** A W Show Hide COMpare with Last Year
o o Salas Matrix Card P Sales Matrix
Card Card oo
Card (ke Card o)
Card rgy == Card o
Text box FgN aes Text box o
Shicer rgy === Slicer =
Slicer (eX == Slicer o
Bookmark navigator fon == Bookmark navigator o
Selected Year Vs. Last .. = Selected Year Vs, Last ... & |-
Matrix O Matrix (ol
salesAmount and Ord... & - SalesAmount and Ord... B
g e SalesAmount by Coun... @

SalesAmount by Coun...

Top 10 Praducts by Or... & Top 10 Products by Or... &

é)

SalesAmount by Cate... & = SalesAmount by Cate... °

Figure 4.41: Bookmarks capturing different states of the report

Now, whenever the bookmark named Compare with Last Year would be
selected, the report will display the Power KPI visual while the Matrix
would be hidden. On the other hand, Selecting the Sales Matrix bookmark

will cause the report to display the Matrix visual and hide the Power

What is left now is to create a mechanism for the report users to access
those bookmarks from the report itself. There is more than one way to do
that, for instance, a blank button can be inserted into the report and a

bookmark can be selected as an Action for that button, however, the easiest

way for us would be to use the Bookmark which can be found by following
Insert | Buttons | Navigator | Bookmark Once added, it will create a group
of navigation buttons for all the bookmarks available in the report. The
buttons can be selected and formatted just like any other visual using the
Format navigator options. Let us choose the button shape as Chevron arrow

by following Format navigator | Visual | as illustrated in Figure

fuet | Mastg Vow Hop Bl ies ¥ | Fommmnturee
- - - = -). o= BB W LA T e <
U €D RAe 2
s nommer | wpor dpo P : ._....-
-
e
N
o
]
o —> =
i
st
O oat -
Build visuals with your = ..., -
Sekect or drag fickls frem the Flelds pone of [s 5
BB o | 3 e megm

]

Figure 4.42: Creating bookmark navigator

Let us resize the navigator and place it to the obvious location; just above
the Matrix or Power KPI visual. Now, we can toggle between the two
visuals using the navigator buttons, only one visual being displayed at any

given time as illustrated in Figure

el LLUEE EEAEE " — [LITT T TTERE sLmuas o
el oo i Caap Tt Prevwes by S oerGuinsty Selreharant by Gty T 7 Penctn i O Oty
Gty e o ey e v e st LALERE mar
i
] 1 | 1 :
- | [T | : HNRENN -
) e [- =T e P py
Sawusm st iy Comry Satm e g D e DLme Mo e . sl = Sevian hemran ey Ci il P i=
g L = Fud
Sl b ™ tem - ., B -, - 2 I
=~ 5w . - - - - i 3 M _
o b . § J = !
i ! J, saa e o] i i ~/—._. \,\ Fi
- i i - — L \ {
PO b . e s x AP
£ = -
= ’ = r - - L ;
L T A R e o s Faad R .
4

Displaying Matris in the report using toggles Displaving Power KPL in the report asing loggler

Figure 4.43: Toggling between visuals using bookmark navigator

If needed, the bookmarks can be updated to capture a new state, using the
Update option accessible from the ellipsis icon available for every

bookmark in the Bookmarks as shown in Figure

Bookmarks » X
[1Add [p view

Compare with Last Year

A

sield A

Lalas Matriv
Update

Rename
Delete
Group
Data
~ Display
~ Current page
~ Al visuals

Selected visuals

Figure 4.44: Updating a bookmark

Tip: The Data option should generally remain not selected, unless we want
to capture the state of present data as well in the bookmark, along with the

present report structure.

Report tooltips

Now that we are almost there with what we wanted to accomplish with our
sales report, let us explore a bit about how the report can be further
enhanced. One usual challenge is how to effectively provide additional

information in the report, where Report tooltips can help.

When we hover over a visual, the default tooltip comes into play and
provides us with information in the context of the visual. Whenever a
visual is created, the Tooltips property is enabled by default, which can be
controlled from the visual formatting options. Figure 4.45 shows the
default tooltip on the Map visual of our Overview page, as well as the

option to control the tooltip properties:

SalesAmount by Country

Visualizations »
Format visual
— rl_l_ Country United States ASIA
j @ SalesAmount 2838512.35499999
Ocean
‘ O Search ‘ T
1 AFRICA

Visual General o SQUTH AMERICA Indian

/ Ocean

B Microsoft Bing] };{{22 TomTom. & 2022 Microsoft Corporation. & OpenStreetMap | JTerms

> Praperties

> Title (one)]

> Effects

> Header icons

> Tooltips

> Alt text

@S‘

Figure 4.45: Default tooltip

Instead of the default tooltips, Report tooltips can be used to provide
additional information about the visual. Few configurations are required to
use a custom tooltip on a visual. First of which is of course, we need to

create the tooltip.

A separate page can be added and renamed as to create the tooltip we want
to use for the Map visual of the Overview page. Let us use the Area chart
from the Visualizations pane and add Category from dim_Products to the X
axis and SalesAmount from fact Sales to the Y axis of the visual. The Area
chart should then render and display the total sales amount across different
product categories. Then, we need to go to the Format page options and
turn on the Always use as tooltip option under Page This should allow the
Tooltip page to be used for displaying tooltips. Then, under the Canvas
settings option, the Type needs to be selected as which should resize the
Area chart in accordance with a tooltip. Finally, the Tooltip page can be
hidden so that once published, it does not get displayed for the report
consumers. Figure 4.46 illustrates the configurations required on the tooltip

page along with the Area chart that has been created:

:SalesAmount by Category | «

SR
U]

Visualizations »

Format page

sild A
2

2 Search

SalesAmount

v Page information

Name

Bikes Accessories Tosltip
Category :
N Allow use as toaltip m‘
\ Allow Q&A oo

Area chart displaying sales amount across product categories

 Canvas settings

Type

Tooitip ~

Vertical alignment

Top e

Figure 4.46: Creating a tooltip page

As we want to use this tooltip on the Map visual, we need to go back to the
Overview page and select the Then, following Format visual | General |
Tooltips | the Type needs to be selected as Report page and the page name
needs to be selected as well, which in this case, would be Once done, then
hovering over the map bubbles should display the new tooltip that we have

just created instead of the default one, as shown in Figure

Visualizations »

SalesAmount by Category
'-IJ‘? @ M 2.68M

Format visual

P Search

P
=
=

Visual General

> Effects - SalesAmount

» Header icons [one]

SalesAmount

™

NORTH AMERI oM

~ Tooltips Bikes Accessories Clothing
O * Category
v Options Ocean
Type AFRICA
Report page ~
= SOUTH AMERICA Indian A
Page Ocean U@l
Tooltip e
B Microseht Bing © 2022 TomTom, © 2022 Microsoft Corporation, & OpenStreetMap Terms

Figure 4.47: Displaying report tooltips

If we compare the values with the default tooltip, it can be seen that the

values exactly match for the United combining all categories on the custom

tooltip.

Let us now explore how to effectively use the report as Power BI reports

are highly interactive. We shall also look at an option for controlling the

behaviors during interactions.

Visual interactions in Power Bl

When we say Power Bl reports are interactive, what that essentially means
is, visuals on a report page cross-filter or cross-highlight other visuals on
the same page by default. As an example, Figure 4.48 illustrates the
behavior for the year 2018 (as selected on the Year slicer), when we click
on the bubble for the United States on the Map visual:

!]iyj Sales Report

e T Sy S 5 b T O R D -
S e
- s
i =t
[i w4
| " ll e
Tony el " A
- o —)
..... ot S
53 ol by CowT, ST Aot 3 (P50 Y S .;n“' - -1;.'.-..- L. Visual g\‘l'--ln;; cross-filbered
E—u = s C : _ : .' . '% ‘: Visnal gelling eross-highlightia
- R = e ——
Taba b Tus - .'-’ .".
[E—} / Sales Report
oo my) |
Sl gy~ by Cwiego
Cli kihg imi i Babble Tar US |

Figure 4.48: Cross-highlighting and cross-filtering visuals

This behavior can be controlled for any visual, using the Edit interactions
feature which can be accessed after selecting the visual and following

Format | Edit as shown in Figure

File Home Insert Modeling View Help External Tools Format Data / Drill

: o
Apply drill down filters to LI___|—| —
2 | L O E
Edit | Bring Send Selection Align
interactions forward~ backward v v

Interactions Arrange

Figure 4.49: Edit interactions option

For example, in case we want to change the interactions for the Map with
other visuals in the report, after selecting clicking on Edit interactions
should allow us to see the existing interactions as well as update them. The

existing interactions of all the visuals with the Map is shown in Figure

Tﬁ Sales Report

| 5 w5 [e | & it

) - i - -
Yomr Meanh . e ™ .
£8.38.51235 2BIB51235 21.26.4%6.55 33.47% Comparz with
FoT) - all w _ ~ R . - ; Last Year
ol Sales _ VTD Sules Sarne Period Last ... W Carnwthi
il = | Em 2y N
Salesimount by Category Top 10 Products hy OrderCuantil p Catagrory Salestenioundl Dideruantsly
Py
Cabegory ®iczgissries @Clething Accessories 258.708.71 15028
e : ke Rk | teaaon 137
. = Bikcs Srancis | 1en2n00 <p "%
by = Bottlaz snd Coges || 23.280.27 < 3273
g " I & ¥ Chaaners Leaaas EL
;] = Fenders | 15a0e3a P a3
s l . . uuuuu | srsnnca 2k
n ® enEnlnn Hydation Facks || 1677195 - 305
ARl A LRl lires 30 Tutes || Lud2ss e L
) : T S o o Bikes 03,50,102 62 570
. I ' N) Mewntsin Bikees 2082
SalesAmaunt 7 @ e Py N —— —_ Ruad Bikes _ 2797
"EalesAmount by Country 1 SalesAmount and DrderQuantity by MoninFame ™ Teuring Biigs. -0 0%
| ", = Clothing 13824797 08
@ Sasaimeunt @OrdendEntity = T 7acs -
,. i Y Caps [, 195615 =9 83
NORTH AMERICK o AsiA ! \ taloves | Tz ¥ £l
Lo - e larsays | redvcse 1354
@ e H g Shors | 3044565 435
kit L ¥ . S
firnan 3 - Soika s HE
APRICA & Vests | 107 063
Tatnl q?m,ns\nan 24443
SOUTH AMERICA
nd
Gogaa B
Wdeochiey 0007 Secin @ MR Moot Cemraden § Cra-foreNaT S ’ sdonchiane T —» None
Cverview Drtails 5 Tonltip +
—# Highligh!
—» Filter

Figure 4.50: Existing interactions of all visuals to the Map

As seen in the preceding figure, there are three available interaction options
for the trend chart, while for a few other specific visual types, there are

only two. The options are:

This can be used to disable the interaction. Once selected, for our example,

the trend chart would not interact with the Map anymore.

This can be used to cross-highlight the visual. As this is selected by
default; the trend chart is getting cross-highlighted by the

This can be used to cross-filter the visual. In our example, the Matrix and

the getting cross-filtered by the Map by default.

If we update the interaction on the trend chart as Filter with respect to the
then if we select the bubble for the United States on the Map again, it will

filter the trend chart, instead of cross-highlighting it, as shown in Figure

o
SalesAmount by Country ' SalesAmount and OrderQuantity by MonthName

W 3dbeshmount B OrderDuantit
HORTH AMERICA EURDPE Ll B . » Cross-highlighted with the Map selection
@ 3 i
i E St .8
O ear L :
AFRICA ! I “
. (111 .
SOUTH AheRich Incliar AUE e i g o o
Choean L St
Wcresht g € 133 Tor My & 2532 Wierzoe® Compemie £ Sox-rresine Do | WaninMame
Salestmount by Country T SalesAmount and OrderQuantity by Mn-‘ﬂhJame
L] rourt I UrdirCuanty
NORTH AMERICA Asia # Croeaclillered will e Map seledion
[. P
N f oo :
Atlannis Iy K A
Ocean 13 5
3 z
- I l I I L
SOUTH AMERICA ot o o R :
Oqean o ° ¥ ¥ p ’
Pttt oy iamian eut reparerar! Grerr e e e R

Figure 4.51: Highlight vs. Filter

To turn off editing interactions, it needs to be clicked again. Edit

interactions can be extremely useful to control how a visual would respond

to other visuals, using only the user interface instead of writing

complicated DAX expressions.

After all the work we have done so far, the report is now complete and

ready to be published!

To refresh the report with updated data, the Refresh button under the Home
tab can be clicked. Before publishing, let us check how the report actually

performs using a tool integrated with Power BI Desktop itself.

report performance

Analyzing report

Using the Performance analyzer tool in Power BI Desktop, the
performance of the report and the individual elements can be measured. To

display the Performance analyzer pane, View | Performance analyzer can

be followed as shown in Figure

b

et Modeling Help Externa Teols

i i : e = | i =
i“lllll |‘ i;lll' || u |E: ul i;l [|”‘|: nlall] - [C |J=[:I: ':'“‘:: z ml:-.n_- :.e.-‘E};--‘x::EL::v :g
; = At e L e o .
¢ [l}) Sales Report <
- 2
g ™ [3

RERA R FI91.06030 8530 24353

Sarshmoun: by Categery Teg 10 Produta by OrderQuantsy

Canepary @ 2 B0
-
J I ! I I I
" " : ’ v B
S e PradesHime B
Sabershe o ant by £ 3 Salwstmount 37 OvdurSuan iy by Monkhbame Toyring B
* - =
AT L -I T At . lll.'_-._
LN i i froe
canar i i e
. Tot
ST AMLA .
e
T = 1 e i B S e e —
Ararrne Fawne e +

Ferformance analyzer
Sl iy
S FCnIOrng U HepOTL 0 Dee Detallz 33001 Tre ime

AP Py 44" il B LIS I 9 CAASA Al PRI TR
s

&

SUOLEDRL,

LGRSt S AT QYR TPER | AeTEEm R B
LS000r 1 Find i Suming your repat Bom Bpesiie?

Poae b cartners on fpoSource.

Figure 4.52: Performance analyzer in Power BI Desktop

A Performance analyzer can be used to measure the processing time for the

entire report page, as well as for individual visuals. Apart from that it can

record user interactions, such as changing a Slicer selection and measuring

the processing time for the report page in the new context.

To begin recording, the Start recording button needs to be clicked on the

Performance analyzer pane and then any interaction with the report gets

»

R A

recorded, with the duration time for each operation to complete. Once the
recording is started, the Refresh visuals button can be clicked to refresh all
visuals on the report page and measure corresponding durations, while the

Stop button can be used to stop the recording.

Figure 4.53 displays the performance for our sales report Overview page
using the Refresh visuals option:

Performance analyzer » X

() Refresh visuals|| @ Stop

& Clear [Export

|Durati0n (ms) 1 |
Recording started (06-11-2022 ... =

=
o
3
(]

(ch

“a
-

Refreshed visual -

L

F Text box 49
Card 352
& Card 324
H Card 484
& Card 502
[Slicer 106
® Slicer 105
] Bookmark navigator 41
[SalesAmount by Category 459
& Top 10 Products by OrderQuanti... 593
SalesAmount and OrderQuantit... 400
F Matrix 495
B SalesAmount by Country 431

Figure 4.53: Performance analyzer log

While the Performance analyzer is running, hovering over any visual
displays the option Analyze this which can be used to measure

performance for that specific visual or element as shown in Figure

Analyze this visual

[E]v &

SalesAmount and OrderQuantity by MonthName

& o o o o
Gl

“-3"‘%.' S
Y - S
> J

®5alesimount @ OrderQuantity

SalesAmount
OrderQuantity

MonlhMName

Figure 4.54: Analyzing individual visual

If we expand the elements under the Performance analyzer pane, we can
see different categories for each element like DAX Visual display etcetera.
There is an option to copy the DAX query which is getting triggered to the
underlying dataset to render the visual as well. The DAX query can be
analyzed further using external tools like DAX Figure 4.55 shows the

options available for each element in the Performance analyzer pane:

Performance analyzer » X

() Refresh visuals ® Stop

& Clear [Export

Name Duration (ms) *
(0 Refreshed visual -
[SalesAmount by Country 028588
Text box 42
® Card 286
® Card 267
® Card 361
® Card 345
® Slicer 92
& Slicer 92
& Bookmark navigator 38
& SalesAmount by Category 426
] Top 10 Products by OrderQu... 398
SalesAmount and OrderQua... 322
El Matrix 444
DAX query 10
Visual display 77
Other 357
[y Copy query

Figure 4.55: Available categories for each element in Performance analyzer

along with the Copy query option

Performance analyzer can be an extremely useful tool for identifying the
visuals that take a long time to load, or time-consuming operations, which

can then be optimized for performance.

Conclusion

In this chapter, we saw how to create visualizations in Power BI
besides thoroughly exploring a number of useful visuals that are
available. We explored the AppSource and saw how to import a
custom visual to Power BI Desktop if required. Concepts like
bookmarking were discussed in detail which will help to make
optimum use of the report real-estate. We also saw how to enhance
the reports using tooltips, how to control interactions between
visuals, and even how to measure the report performance. Along the
way, we created a fully functional report as a project, ready to be
published! This should give readers enough confidence to start
building their own reports, and further explore the diverse

visualization options that they have with Power BI.

In the next chapter, we will explore the final component of the
framework, which is Power BI Service, and learn how to manage the

reports and collaborate with others, all in the Azure cloud.

Knowledge check

What is the preferred out-of-the-box visual in Power BI for trend

analysis?

Area chart

Donut chart

Slicer

Line and clustered column chart

What is the preferred out-of-the-box visual in Power BI for

displaying a single scalar value?

Matrix

Slicer

Card

Python visual

The Bookmarks pane can help to capture the state of a report:

True

False

By default, Power BI visuals are interactive:

True

False

All Knowledge Check answers are provided at the end of the book.

C

HAPTER
S

Managing Reports in Power BI Service

Introduction

After discussing integration, data transformation, data modeling and
visualization, now we are about to discuss the final component of
Power BI which 1s the Power BI Service. So far, we have done all the
work in the Power BI Desktop, which is a local application installed
on our respective workstations. Now is the time to publish the report
and share it with others. One of the key features of Power Bl is easy
collaboration, and there can hardly be a better way to be able to
collaborate online using a cloud-based platform, which is centrally
hosted, and subscription-based. This chapter would focus on
managing reports on the Power BI Service, including important
topics like access control and security. We would learn how to keep
our reports up to date and also would explore what data gateways are
and why we need them. We will discuss concepts like when using
Dataflows makes sense or how Apps can provide a better user

experience!

Structure

In this chapter, we will discuss the following topics:

Workspaces in Power BI Service

Publishing reports

Working with reports on Power BI Service

Exporting data from a report

Admin portal

Workspace user roles

Managing security

Dashboards and alerts

Refreshing data and data gateways

Apps

Dataflows

Objectives

The objective of this chapter is to familiarize readers with Power BI
Service, which is a Software as a Service platform hosted on the
Azure cloud. By the end of this chapter, readers should be able to
take key decisions like how the reports should be distributed, which
access role needs to be assigned to their report consumers, and so on.
Content can be shared on Power BI Service in more than one way,
and the readers will be introduced to multiple options that are
available today. They should be able to schedule refreshes for the
reports on their own, and if required would be able to work with data
gateways as well. Apart from that, concepts like Dataflows should
equip the readers with more options while taking design-related
decisions for their projects. The chapter should help the readers to
attain proficiency with Power BI Service and make them ready to be

able to deploy an end-to-end business intelligence solution.

Workspaces in Power BI Service

While we touched upon the Power BI Service in the introduction of the

book, let us dive deeper now to understand how things work here.

The root URL of Power BI Service is where users can log in by
authenticating using their organizational account. Once logged in, on the
welcome page, the navigation pane can be found on the left. On the

navigation all the elements of Power BI Service are listed, including

workspaces, as shown in Figure

o Good afternoon, Rishiraj + mewrpen 2.
} Home
Finel @nd shase actionasie nsigh's (e make data dinien deasions

= I Re<ommended

R) Germing smareed whth Povere 81 Ve trecutesy £pan i You taverhod 13 T — g ——
B apps
M L I e 1] u
T o n |m

. il Q » B

Try ovi a7 interactive repect My worapme Halen frnabnnt Expicne 2acic Pove: B conuepts

) B
- l7 g

IioonA -
E B

Figure 5.1: Power BI Service home page

Workspaces are containers for artefacts like reports, datasets, dashboards,
dataflows, etc. By default, workspaces are created on shared capacity.
There are two types of workspaces, My workspace and workspace

(previously known as App workspace).

My This is a personal playground or sandbox for any Power BI user, be it a
free user or a pro user. Every Power BI user account would have a My

workspace by default.

Workspaces are for collaboration and sharing content with others. To create
a Workspace, either a Power BI Pro or a Premium Per User license is
required. To create a go to Workspaces | Create a workspace as shown in

Figure

My workspace

{1 Home

.
i, Search

-~ Create
Workspaces

B3 Browse : :
: Power Bl Learning Project

B8 Datahub
Create a workspace

am Apps
[0 vLearn

@ Workspaces <

My workspace 4

Figure Creating a workspace

A free user should be prompted with the Upgrade to Pro message while
trying to create a workspace. Alternatively, a free user can opt for a free

60-day individual trial period, to explore and experience the paid features.

For a Pro or PPU user once clicked on the Create a workspace button, a
window will open requesting inputs like Workspace name and Description
(optional). Once provided, the workspace will be created, as shown in

Figure

Sedl Sevvie Avalptics wih Poree B

Create 2 workspace

Figure Power BI workspace

Once created, the workspace would become ready to host all the published

Power BI content.

Publishing reports

Let us now discuss how to publish reports to the workspace we just
created. Going back to the Sales Report in the Power BI Desktop, if
already not signed in, the report author should sign in using the same

organizational account used for Power BI Service. Figure 5.4 shows the

Sign in option in the Power BI Desktop:

Figure Signing-in to Power BI from the desktop version

Once signed in, clicking on the Publish button under the Home tab would
open the Publish to Power Bl window. All the Power BI workspaces that
the user has access to would be displayed. We can search for workspaces
that we wish to host our report and click on which should publish the report
with a success message. Figure 5.5 illustrates the process of publishing the

Sales Report to the workspace Self Service Analytics with Power

S R A — . -
- T e
rabhEe i P2 4l B8 E

]
mé Sales Report Publish 15 Dewer B1
- o 4 #155882 (ELITET) it Ll ", = i hireg 1 Power DI
¥ b S i T) |l -
ksl vy Tuageny T by Bttty “am s I
[. = = I -
‘: ' I [rat
] g E . —
-' i s o
- EBLITHSH e et 1 o g B el e e e
e ot ey Salsabmme s Ordseloanidy by Marcehams 0 o TR

= = gl e
et = o L
. anes i i = =
T |

Figure Publishing report from Power BI Desktop to Power BI Service

The success message contains a direct link to the report which can be
utilized, or one can navigate to the workspace itself from Power BI Service

to access the published content, as shown in Figure

My workspace

{1 Home
Q self
-+ Create
Workspaces
O3 Browse Self Service Analytics with Powe...
£ Datahub
Create a workspace

@ Metrics
B Apps u Human Resources Sample
&/ Deployment pipelines E Human Resources Sample
[} Learn

u IT Spend Analysis Sample
=l Workspaces < 1

IT Spend Analysis Sample
My workspace v

Figure 5.6: Navigating to a workspace in Power BI Service

Note: Only a Pro or PPU user would be able to publish content to or
consume content from, a workspace other than My workspace. For a free
user to consume content, the workspace hosting the content must be backed
by premium capacity. All the concepts discussed involving Power BI

Service from now on would be valid only for a paid license.

The Power BI Desktop or .pbix file contains both the definition of the
Power BI model, as well as the report connected to it. However, once
published to the service, the file is split up and the Power BI model/dataset

and report get stored as separate entities in the workspace.

Once entered in the workspace, all the published elements are visible under
the All tab. The Content tab would have a list of all the reports and
dashboards, while all the Power BI models and dataflows would be visible

under the Datasets + dataflows tab, as shown in Figure

Self Service Analytics with Power BI Self Service Analytics with Power BI
This is & workspece created for demonstraling Uhe Power Bl sevvice featunes This is & workspace created for demonstrating the Power Dl senvice features.
= M 7 Create deployment pipeline .
' New & Create deployment pipeling
Al Content Datasers - datablows
All Content Datasets + dataflows
O Name
0 MName Type
B oseren
n Salec Regort
a -
E Sales Report.phix Cashboard
E Sales Mepartphic

Self Service Analytics with Power Bl

This is a workspace created for demonstrating the Pawer Bl service features,

b Mew & Create deployment pipeline
All Content Datasets + dataflows
™ Name Type

E Sales Report Dataset

Figure Different tabs in a workspace

It can be observed that whenever a new report is published in the service, a
blank dashboard gets created by default with the same name as the report,
where visuals from individual reports can be pinned; we will discuss more

about the dashboard later in the chapter.

Each of these elements or artefacts have additional options or properties
that can be configured by hovering over and clicking on the ellipsis or
More options towards the right side. We will explore a few of those options

in detail as we move forward.

Working with reports on Power BI Service

From the workspace, we can open the report by simply clicking on it.
Different report pages are displayed by default on the left-hand side Pages
pane. The report will open in the same state it has been saved in the Power
BI Desktop before publishing and will be fully functional as configured.
On the right-hand side of the report, the Filters pane would also be visible,
if that is not explicitly hidden on the Power BI Desktop before publishing.

Figure 5.8 shows how the report looks on the service:

Power Bl Self Sennce Analylics wilh Fower Bl Sales Report | Dana updated 11710022 w & 0
Pages & [flle~ 1 Bpon v B Share § Getinsighs [Subscrive | 2 Edit I D A~ O I O L
I erview -l «
o Sales Report
= dales mepo <
Petails u =
-1
e Bt . -
RIVL0E030 279106030 453034353 49.93%
a
d ntal Sabos ¥ Sales S Period |ast ¥ oY Growthe
SalesAmount by Calegory Top 10 Preducts by OrderQuantity Catsgury Sabmanounl OnderCusnt
Categery ®Acaicra @ 3 ErrT—— ERLTERLTY 15083
. B Rancics 1545000 % ur
- Biw Saards 152100 = s
- = Dotties and Cagas | 213507 = 32Ty
3. I - Prer § s
3 £ Fendets EA0RM 11
a e ks gasune P FL
3 Cietheng | o Hycration Padks 1877135 E
P L P Toes aimi Tubes 1W6LL58N6 P PETH
- N T A S = Bikes 9,359,152 62 T8
s, thain Baer 208
Saleshmeant PreduciName Anad Skns [T i 2707
Salesfmount by Country SalesAmeunt and DreerGuantity by Monthiame Tewing Bkes s =3
L . Clathing 15824757 e
WA SO Caps 755615 = L
0TI AMDBER . At) ez TR 55
3 WIROPE p " r ey TEATA0 s
@ At H] Shars 3042565 35
Oeran i i ,\._ -,;.f‘ ‘t __4:
AVRIEA - 5 v 750 v
B Total BTH.060I0 4443
e I e o e] [
* o

Figure Sales report on Power BI Service

Besides accessing the report, workspace users having edit permission are
also allowed to edit the report online using the Edit button on the top of the
report, as highlighted in Figure Clicking on the Edit button opens the

Fields pane and the Visualizations pane for the users, and all the underlying

tables and columns get exposed. However, users can only interact with the
fields and use them for visualization; it is not allowed to edit or update the

data model in any way from the report, as of now. Figure 5.9 illustrates the

editing view of the report:

Power Bl Self Service Analytics with Power BI St Rl | ik ekl 1171002
Rl View> Readngview Mokile byoer [daenquerrion B3 Frpler &) Teher B Sapes~ E Bamom [veuni iraeeantions i webesh [Duglernrbinpage [Sow 3 Bnmadmhbeard oo
nl S I R rt @ [v.;wﬁ;n\iun;))"liclds. »|
P ales Repo N -
g = £2 Sumrh
- . F = brg B
- acr ", - 5 UV
- - #75.06030 .791.060.30 £530.343 53 A1.93% ™ trmpenn y ¥ S
SalesAmount by Category Too 13 Progucts by OrderCuantity T T > Cwstermas
Catepory Wcsorics @Ckibry T . g - s [l e Prosiaen
- = | [
: - EEar W
L 5 A 7
o] { s | Bea@me
3 = I 268
coesy | . b [
. ’ ; g i 510 =
~ ' 2083 \
LAl ProduciName i f—
¥ SalesAmcurt by Coury Salesamocnt and Orderduantity by MenthName ML s Add s fikd hara
1324787 e
L. e T, TE5815 = rt Sinll B cwach
acalT AACRCA W o s ! ::-’3!"'9‘} i Creasaepon (I
[H § 3 s <esp o s f-s]
3 m & 2
H & a . a5 b
4 g a4 Al - Umurgh Mrebs B
- | 111 w5
SOUTH AMIEEA s e y "
& e A o 2 T S [ro—
[= o]

Figure Editing view of Sales report on Power BI Service

The key functionalities that can be performed from the editing view
include adding or deleting visualizations, formatting visualizations, adding
or deleting report pages, updating filters using the Filters pane, etc. The list
of capabilities that can be performed online is getting extended with almost
every new update of Power BI Service, however, the Power BI Desktop is
still usually preferred as the primary development environment as it

provides better flexibility and overall experience.

After performing any change on the editing view, the report can be saved
using the Save button and we can exit the editing view by selecting the

Reading as shown in Figure

Power Bl sell Senvice Anadytics wath Power 1 Sales Report | Data updated 11/10/22

Figure Saving changes on editing view and going back to the Reading view

The Power BI Desktop file can be downloaded from the reading view of a
report by following File | Download this file option, by any user who has
edit permission of the report. However, there are a few limitations
associated with downloading the .pbix file. For example, reports that are
originally created on Power BI Service cannot be downloaded, and datasets
configured with incremental refresh policy cannot be downloaded as well.
Apart from that the ability to download, the .pbix file can also be disabled
by the tenant administrator. The option for downloading the .pbix file is

shown in Figure

Pages & [N File > > Export ™

By Save a copy
Overview

« Download this file

Details
% Manage permissions
-

e Print this page

83 Settings

Figure Downloading the .pbix file from the published report

Once downloaded, the local copy of the report, that is, the .pbix file can be
further updated for performing any additional changes required. The
changes can be done on any of the layers, including the Power Query
editor, the underlying data model or the report itself, and the updated file

can be re-published to Power BI Service, as many times as required.

In time of republishing a file, the dataset on Power BI Service is replaced
or overwritten with the updated dataset of the Power BI Desktop file only
if the .pbix file has the same name as the published dataset. Otherwise, the
.pbix file gets published as a new report and dataset. Figure 5.12 displays
the message which gets prompted while overwriting a dataset on Power BI

Service:

Replace this dataset?

You already have a dataset named "Sales Report’ in Power Bl.

Replacing this dataset may impact:

dh 1 report

View the impact of this change on the content in the Power BI

service,

View impact A Replace Cancel

Figure Warning message while overwriting a dataset

There are many ways to share a Power BI report, and one is there right on

the top of the reading view of a report, as highlighted in Figure

Power Bl self Service Analytics with Power BI Sales Report | Data updated 11/10/22 ~

Pages <& | [File v 1> Export {} Getinsights [Subscribe & Edit ---

Figure Sharing a report, option 1

Once the Share button is clicked, it opens the Send link dialog which

allows you to create report links and share with a selected group of people

for whom the links would work, as illustrated in Figure

Send link e X Send link X
Sales Report Sales Report
Who would you like the link to work for? Learn more

f:}_\l People in your organization with the link 5

can view and share f_\]
= i izati v
\5=, People in your organization
7 () People with existing access
\fs) Peop e g
Add a message (optional) Specific people
Settings
~" Allow recipients to share this report
Allow recipients to build content with the
@ | %3 @ data associated with this report
Copy link Mail Teams PowerPoint Apply Cancel

Figure Options while sharing a report

The available options for creating the links are:

People in your organization: be used to generate a shareable link for people
inside the organization; the link would not work for external users or guest
users. The link can be copied using the Copy link option and shared
manually, or the email addresses of the intended recipients can be typed in
and the Send button can be clicked. Once sent, recipients receive a mail

notification with the direct report link.

People with existing access: a URL to the report, which can be accessed by

the workspace users or someone who already has access.

Specific people: This allows specific individuals or groups to access the
link, including guest users of the organization’s Azure Active Directory
Again, the link can be copied or sent using the Send button which triggers

a mail notification with the link attached.

Apart from controlling who can access the link, the Send link dialog can
also be used to control what further actions can be taken with the link using
The recipients can be allowed to re-share the report, as well as build

content with the associated data, as highlighted in Figure

To view additional information about the report, the report name can be

clicked on the top ribbon, as shown in Figure

Power Bl a¥ senics nnstie with Bewer & Sales Repoin | e updated 1171022 w0

O
0
1
%

i Report

- .
353 £9.93% M, Compacwth
- [FRe— S e S

UMY & &

Figure Details information about the report

The detailed information includes the Data updated timestamp, which is
useful in terms of understanding when the underlying dataset last
refreshed.

The Contact header by default should show the person who creates or
publishes the report. If someone gets a report link that they do not have
access to, they can request access to the report which routes to the report
contact for approval. The default report contact can be altered from the

Report Settings as shown in Figure

Name

Sales Report

Sales Report

Sales Report.pbix

BEaAr-

In case we remove all users or groups from the report contact list, then the
workspace contact list is shown and in the absence of the workspace
contact list, the workspace admins are shown as the report contact. We will

discuss the workspace user roles in detail in the upcoming sections of this

Delee
Quick insights

Save a copy

Settings

View lineage
Create paginated report

Manage permissions

=

Settings for Sales Report

* Required

Endorsement

Figure Updating report contact

chapter. The workspace contact list can be accessed by following

workspace Settings | as shown in Figure

Self Service Analytics with Power Bl

el B+ et aiing L

¥ Thas & & v ket Covs

-¢ & Traste depboyreen ipetie
A Ll LUstasets 218

M Name

[.

B -

-

et s Hefreshed

Heext refresh

W Filtens

endosserment

v
@ Settings
Sell Service Analytlics wilh Power BI

Mot

er st oAty

A Seamch

Canicel

Crente app

Include in app

Figure Updating workspace contact

While being on the reading view of the report, to navigate back to the
workspace home page, we can simply click on the workspace name, either
on the top ribbon or on the left side navigation pane. The report can also be
shared from the workspace’s All or Content tab as the Share button

becomes visible when we hover over the report, as shown in Figure

Prower Bl 5 crwce Aewiticn with bower 18

- Pages R Bxpor B Shar ' Geilnsighs 3 Subsolbe 27 & 1 | (=} =0 -3
© Wore —I o
=
T femo= ' I Sales Report -4
Sreabe s | ?
- (- o 2.791.060.30 3951060.30 553043.53 wrove Ny comamaen
O Ratebt - - Total Sl VT Sk Sarv Parivd Ll ¥ Ve Gl r/ Latem ’
| i
T ety i Balec Amosnt by Eateanry Tas 10 Predusis by OrdarCusntitg Pa— [— [T ——
P oangs \ Extegary @acriizn: @Cict-n; = oz
W lem | | E- I £ =
! 0
' | ks
" i o t o 5T
T k=t Froducitare Lar b
Self Service Analytics with Power Bl
- — WY This 3awarkspace sreated fas demaensteating the Pouwer B asedes leatimes
Conminng bk 1 workspaes
F Mew A Craste daploymert pipslice
All Content Dataseqs + datalloes Sh"’.e bu‘tm appears on 11.0\'@1'
M Mame "' Type Cwnier Refreshed

E Sales Regnen Datasct SEI7 FEPVIRE ANDVICS

Figure Sharing a report, option 2

By now, we should be familiar enough regarding working with reports in
Power BI Service, let us explore a few different ways to export data or

information out of the report.

Exporting data from a report

There is more than one way to get information out of a Power Bl report.
While the availability of all these options can depend on the tenant settings
as well as the permissions granted to the user, the most common options

can be categorized as follows:

Exporting images: It is possible to export images of the entire report as
well as specific visuals. To export the report itself, from the reading view

of the report, go to Export | PowerPoint or Export | as shown in Figure

Power Bl Self Service Analytics with Power BI Sales Report | 1
Pages 4 D File ~ = Export & Share Q Get insights [Subscrik
X2
I Overview —_l
J @ PowerPoint > | @ Embed an image
Details .
PDF [Embed live data

Figure Exporting report images

In case we are exporting the report to PowerPoint, we can either choose to
save the report as an image snapshot or embed the live report in a
PowerPoint presentation. For embedding live data, users who have access
to the Power BI report would be able to interact with the report from inside
PowerPoint. Different report page gets exported as different PowerPoint
presentation pages. The different behaviours and options while exporting a

report to PowerPoint are illustrated in Figure

Export & Embed live data in PowerPoint (Preview)

Copy the repert URL and pasts i1 into your existing presentation, Sr dick Open in

new presentation

he data fiters you selected
~ Fx F 1
O art current pag hetosfiapp powerticomigroups/Ge3TE335-7004-4226- a1 Copy
Export Cancel Open in PowerPoint Cancel
Expurling reporl image Einbedding live neporl

Figure Exporting report to PowerPoint

In the case of exporting the report to PDF, again the report snapshot gets
exported in PDF format, with different report pages.

Apart from exporting the entire report, individual visuals can also be
copied to a clipboard from Power BI Service using the Copy as image with

caption option, and pasted to an external application, as shown in Figure

Copy as image with caption

, <

Eategow SalesAmount OrderQuantity
E Accessories 293,709.71 15025
Bike Racks 16.440.00 =» 137

Bike Stands || 18921.00 =p 119
Bottles and Cages || 23,280.27 =) 3273
Cleaners | 304485 4 383
Fenders || 19.40834 = 883
Helmets || 9258354 4 2646
Hydration Packs || 16,771.95 =9 305
Tires and Tubes || 103,250.76 4 7279

= Bikes | 9,359,102.62 5710
Mountain Bikes | RGOSR 2088
Road Bikes | 2797
Touring Bikes | 43493 825

= Clothing | 138,247.97 3708
Caps | 795615=) 885
Gloves || 1422869 = 581
Jerseys || 7037046 4 1354
Shorts 3044565 P 435
Socks 222952 ¥ 248
Vests | 13.01750 =) 205
Total | 9,791,060.30 24443

Figure Copying an individual visual

Note: While exporting image snapshots, visuals with scrollbars are
exported in their default state and will display all possible rows starting
from the first. Any attempt to scroll down the rows or axis would not work

and the visual should retain the original state.

Exporting data from visuals: Power BI Service also allows users to export
the summarized or underlying data from visuals. The available options for
the end users can be controlled from the Power BI Desktop file, by
following File | Options and settings | Options | Report settings
(CURRENT The Export data section has options to control what would be

available to the users when they want to export the data. For our sales
report, we allowed the users to export both the summarized and underlying

data, as shown in Figure

Options

DirectQuery

R scripting
Python scripting
Security

Privacy

Regional Settings
Updates

Usage Data
Diagnostics
Preview features
Auto recovery

Report settings

CURRENT FILE

Data Load
Regional Settings
Privacy

Auto recovery

Published dataset set...

Query reduction

Report settings

Persistent filters

[0 Don't allow end user to save filters on this file in the Power Bl service
Visual options

[Hide the visual header in reading view

¥ Use the modern visual header with updated styling options

[Change default visual interaction from cross highlighting to cross
filtering

Export data

Q Allow end users to export data with current layout and summarized
data from the Power Bl service or Power Bl Report Server

¢ Allow end users to export data with current layout, summarized data
and underlying data from the service or Report Server

© Don't allow end users to export any data from the service or Report
Server

Filtering experience

¥ Allow users to change filter types
¥ Enable search for the filter pane

Cross-report drillthrough

[0 Allow visuals in this report to use drillthrough targets from other

reports

0K Cancel

Figure Export data configuration options in Power BI Desktop

Back to Power BI Service, data can be exported from a visual by clicking
on More options or the ellipsis icon. We can export Data with the current
which is applicable only for table and matrix visuals, and retains the layout
as created in Power BI after exporting it to an Excel file having the .xIsx

format. Summarized data can be exported to get the aggregated data in the

context of the visual, in either an Excel or a CSV file. The Underlying data

option allows you to export the raw data that is used to calculate the data of

the visual to an Excel file.

Difterent options for exporting data are illustrated in Figure

SalesAmount by Categ

Category

SalesAmount

Export data *

Dot your data i the fomnat that suits your needs. if you have & lot of dats, the number of
romt yums el mighl e Brmslen) chepeiliog o W e ey sebell L e sl

File format:
€

] A B c 3 F G
1| Applied filtes ¢ slradastons i auts |
F
FprsT— 119 C3-07-2008 5051217 10-07-2018 Awitrnia? 301807
5 Accessores 2129 C4-07-2008 5051231 11-C7-2018 Southweu? ':Jl!.:l?
§ Asceysories L CR07-MNE 051241 11052008 Sousttuan? 'd)'l'ﬁ.'-'
I Mimwsw 220 CA-07-2018 051284 12072008 Gy 20807
& Acceiandicn 220 €407 M8 %1282 17 67 3018 Narthwait? ik
£ Acceisoran L CAO73018 505136 1407 20Y8 Amnitrnia i ANEW
10 Accevsories 13 (7072008 8031343 14672008 Awmaraiia? 201807
11 Arceiuns sy EFO ORT-MNR 051 206 15072008 Lited KingdamT ') N AT
[FjrTmmem—— 139 03972018 5051288 15072018 Gormmny? 0807
13 Areoesnricn 170 €207 2018 WIS1280 15 @7 2008 ManhwsT 201837 -
1 Acceiseraen LB CEO7NE MN1EM 130 1= 002G Amritrnlia g
15 Awwise s 119 C5-07-208 1051306 16-67-2018 Unived Kingdom? 201807
15 Arceinidsa 1P 0S-O7-MNA LN WA TH-EI- 20U St 7 Eaalhr
1 Aceisones L 11073018 5051341 18073018 France? 087
15 Arcecsorics 22 1107 2008 5051340 18 Q7 2008 Aeuraia? ';!:u;r
19 Arerannssn PR VLALANH A [ET PR nr— T

Figure 5.23: Different export data options in Power BI Service

In case of Excel, the maximum number of records allowed to export is
1,50,000 while for CSV the limit is 30,000 as of now. For a report created

using DirectQuery, the maximum amount of data that can be exported is 16

MB of uncompressed data.

Connecting live to the underlying dataset: Other than exporting data,

Power BI Service also allows external applications like Excel to connect

live to the underlying dataset, or directly create a live connected Excel file

from the report using the Analyze in Excel feature. We will explore this in

detail in one of our use cases, later in the book.

Admin Portal

The Admin portal allows to govern Power BI for an entire
organization or tenant. To administer Power BI from an
organizational perspective, either Power BI admin or Power Platform
admin or Microsoft 365 global admin role is required. Microsoft 365
user management administrators can assign the Power Bl admin or
Power Platform admin roles to the users, using Microsoft 365 admin

or by using PowerShell scripts.

The Admin portal can be accessed by following Settings | Admin

from the Power BI Service home page as shown in Figure

Admin porta

Manage gateways
Settings

d % 7 Faay = - P o
Manage embed codes

Figure Navigating to the Admin portal on Power BI Service

A few important controls available in the Admin portal are as

follows:

Tenant This can be used to control the features made available for the

Power BI users across the organization.

Usage This can be used to view the report usage across the tenant.

Audit This can be used to track user activities in Power BI.

Capacity This can be used to manage Power BI premium capacities.

Organizational This can be used to control the types of visuals users

can acccss.

This can be used for viewing and managing workspaces across the

organization.

Custom This can be used to customize the look and feel of Power BI

Service.

While users having the Power BI admin or Power Platform admin
roles can use the Admin portal for governance, these roles do not

have specific capabilities like modifying users and licenses. After
procuring Power BI pro licenses, users can be assigned to either

Microsoft 365 admin center or the Azure

In Microsoft 365 admin only Global admin or License admin or User
admin roles can assign licenses. In the case of the Azure to assign
licenses, the user must be an owner of the Azure subscription that

Power BI uses for Azure Active Directory lookups.

Workspace user roles

User roles determine who can do what in a workspace. Roles can be
assigned to individual users as well as user groups such as security groups,
Microsoft 365 groups or distribution lists. Once entered in the workspace,
selecting the Access button opens the Access window, where available
roles can be selected and assigned to individual users or user groups, as

shown in Figure

Self Service Analytics with Power Bl

This B & workspase creansd for demonitrating the Povwer BI 2erAne Tealine. S
+ Do & Creste dephoymen: pioeline = View W Fites D Sestings £ Search
¥
A Access
Self Service Analytics with Power Bl
Add admins, members, or contributors. Leam more
Enter email addresses
Member b

Membe
Contributar

Search
MAME PERMISSION
Rishiraj Deb () Almin

Figure Selecting user roles from the Access menu

The available roles in a Power BI workspace are as follows:

Viewer: The most basic role; provides read-only access to different

workspace items. Viewers can view as well as interact with the visuals.

Contributor: Contributors have more privileges than viewers and can
create, edit, copy or delete content in a workspace, in addition to

publishing reports, schedule refreshes etcetera.

Member: Apart from having all the privileges that contributors have,
additional capabilities like managing dataset permissions, publishing and
updating Apps, and adding members/contributors/viewers to workspaces

come with this role.

Admin: Workspace administrators have full access to the available

functionalities.

In a workspace, if we explore the More options for any report, the Manage
permissions option should take us to a page where permissions granted for

each role can be viewed for different workspace items.

Let us add one user group to each of the four different roles that we have in

our Self-Service Analytics with Power BI workspace, as shown in Figure

Search

NAME

User group 1 ()

User group 2 (D

User group 3 (i)

User group 4 ()

Figure Assigned roles to different user groups

PERMISSION

Admin

Member

Contributor

Viewer

Now for our sales report, upon selecting Manage permissions and

navigating to the Direct access tab, permission details for all the user

groups will be visible, as illustrated in Figure

ey

-
u Salii Hepert

n Sales Report
Related contont
Cashboards
0O vontocks

ﬂ Liatatete

Iz

Anabers i Faes

Dedte

it eciahis

Savn o0y

Setrgs

view Ui mev epor
View Bussge

Ermath i ased rpeet

¥

-+ Add uier T fiters
ks pording Sharedviews
Peaple and groups with aceess Email Address Fermissions
e User group 1 targraup @ om Wiackapace Adein, Al pa
@ vsce groap2 gl com Workigace Mierrbas, A - =ed
© v oo s N ,
@ v gioapa p—— -

B search

Figure 5.27: Detailed view of granted permissions in a workspace

Roles should be assigned on a need-to-have basis for the users in a

workspace depending on the requirement.

Managing security

Data security is an extremely important aspect today, and there are multiple
approaches available in Power BI in this regard to explore and implement.
We have already discussed the authentication requirement for Power Bl
Service, the ability to restrict features across a tenant using the admin
portal, providing workspace roles to intended users and so on, all of which

play parts in terms of creating a secure environment.

However, a common business requirement is to implement security at the
data level, so that different people viewing the same report can see
different subsets of data. For example, in our sales report, we have multiple
countries like the USA, Canada, Germany, etc. The requirement can be to
restrict users from one country from viewing data that belongs to other
countries. In Power BI, this can be achieved using a feature known as Row
Level Security or which enables to apply security, down to each record or

row in the dataset.

RLS needs to be configured in both Power BI Desktop and Power BI
Service; in Power BI Desktop roles need to be defined and then in Power
BI Service, users need to be added to the roles. Let us go back to our Sales

Report.pbix file to create a security role.

On Power BI Desktop, the Manage roles wizard can be opened by

following Modeling | Manage as shown in Figure

File Horme Insert Wiew Help External Tools
=
o5 E d@ BE &R
Manags Mew Cuick Mew Mew k
relaticnships measure measure column table

]
Manage roles

Figure 5.28: Launching the wizard for managing roles

The Create button can be used to create a new role. A meaningful name
should be provided for each role as later in the service, we need to add
relevant users to the roles. Once the role is created, all available tables in
the model become visible under the Tables section. Within each role, filters
can be applied using a DAX expression to the required table, which will

eventually restrict data access for intended users.

Let us now create a role for US Users which filters the dim_Territory table

with the United as illustrated in Figure

Manage reles

0 e - dien_Budger™rod
o Cawr i

e rreemses

len "oy

Manage roles

Figure Creating a role

When applied, the expression should be evaluated against each row of
dim_Territory and filters the table displaying all the records for which the
expression comes as As dim_Territory filters this security filter should
propagate and filter fact Sales as well, with United States data.

Once the role is created, it can be validated in Power BI Desktop using the
View as an option under the Modeling tab. Using this option, any of the
available roles can be selected and the report can be viewed with the role,

as shown in Figure

File Home Insert View Help External Tools

B &8 HE

54

B A é
Manage MNew Quick New New Mew Manage | View e
relationships medsune measure column table election parameter robes a5 setup
Eslationships Caloulations #age refresh what if Security
L .
]9 View as roles
B
O Mone
@E e Henth O Other user
2018 e all
¥ US Users
SalesAm
bl
% AOOERSONES I
8
Clothing I
oM o cancel |

Figure Validating a role

Viewing the report with the role of US shows only the data relevant for

United as illustrated in Figure

- e st 15 e

o LIF QT VG L
¢ I
[o r o
s = FEEELAEEL] EETT AT
r Lo M Tkl i Saamen Pt | g1 ¥ TR Liowti
Viewing as US Users — Salk meum By Caezery Tap 10 Proguss &y dosorGuantcy
Cacagary # Sccmor aa B Uty
5 T
RS- 4
il o ([T
i : INEEEE
2 # el
: [[
Bubble map displayd Sulmabioman by Cour ey i«dnﬂrw:--d(l;vﬂlml by by Y bblarn
ISplayIng — g e il
only US =
| i,
—_— v -
—_— H
Poiks
ms i
Faa s —— ——
Denview Deidh ek [

& 3

FF s

FLTRN T
R e |

Report is filtered with US ,
dala -

2B sssBsa0ssEsEsssas

"
1
e
[t
m
1%
m
I
it}
vah
e
™
i
2
m
™
am
[

o
war
war
st
nar
WAy

nar
war
ar
war
T}
wur
saar
47
wmar
e
war

Zop weming

ErE

s L

g 4

Figure Viewing report with US Users role

Now as the role is validated and working as expected, the file can be
published to Power BI Service. In our case, we need to overwrite the
existing dataset as we already published the report. While publishing, the
role definitions also flow to Power BI Service, where we can now add

users to the available security roles.

In Power BI Service, from the More options menu of the dataset, selecting
Security should take us to the Row-Level Security page, where the roles
created in Power BI Desktop would be visible and users can be added as

the security role members, as illustrated in Figure

Self Service Analytics with Power BI

B@ano-

Figure Adding members to the US Users role

Only workspace contributors or higher access level users can add members
to a security role. Both individual users, as well as user groups (distribution
lists or security groups), can be added as members of a security role. Like

the Power BI Desktop, a role can be validated in Power BI Service as well

using the Test as role feature, which is available on the More options menu

of the security role in the Row-Level Security page, as shown in Figure

Row-Level Security

US Users [0) viembers

4 Bock 1o Row Lovel Secuity How viewing as: LS Usors
Pages O File s Export o Share Q) Getinsights [Subseribe - feln | (m | (=0 -
3 1 «
e Ik Sales Report o
sholt E:
e Maren 3
283851235 283851235 2126696.55 3347%
218
SalesAmount by Category Tap 10 Products by DrderOuantity
Category $hmmncne $lihng
I
- R
i I]
oo 3
’ ; IIIIlIII]
l &
 ssbestemount Praductiame ke = =
SalesAmount by Country SalesAmount and OrderOuantity by MonthNama v 085,25
- - cae -
) Cag: zamaz
- Gy a0 03
e . o — 20430 a
£ o i shors 4557 32 208
£ 0 d . aaton 5
E— ' 3 : veutn s52a50 F @
Curan oy Toast 2851235 8511
F ey B L T ——

[resvae.

Figure Validating roles in Power BI Service

The Row Level Security only works for workspace Viewers or users who
have read-only access to the report. All the other workspace user roles like
Members and Admins have edit permission to the dataset and hence RLS is

not applicable to them.

The security option that we just discussed is also known as Static due to its
not-so-flexible nature. We need to create new roles to the Power BI

Desktop file whenever required, and then again add members to that role.

Also, in this way, we can end up with a large number of security roles,

having different filters or rules defined as per business needs.

An alternate approach, known as Dynamic RLS, is also available in case
the data model has user email addresses in it, along with information about
the relevant data the users should have access to. Here, we need to create
only one role using the DAX USERPRINCIPALNAME() function, which
essentially returns the email address of the logged-in user in the Power BI
Service. Whenever a user tries to access the report on the service, the email
address gets passed to the underlying dataset and filters the user email
address field of the data model, hence rendering the report with relevant

data for the logged-in user.

Although RLS is an excellent option to implement data level security in
Power BI, implementing it to maintain a good performance, especially for
large data volumes can sometimes be tricky. Another simple option can be
workspace-level security, where we can split the dataset (and hence the
report) in the Power Query editor for different countries, and publish
country-specific reports to different workspaces. Then, we can add, for
example, United States users to the workspace where the US-specific
report has been published and so on, hence restricting users from viewing
reports for other countries. Figure 5.34 illustrates a workspace-level

security implementation:

phix file Publish Workspace for
for US *| United States
o
I 4
/ | pbix file Publish Workspace for
£ for »/ Canada
" | Canada
Data N
Source
ix [i Workspace for
bix [ile i P
9 E:nr Publish »| Mexico
Mexico

Figure Workspace level security option

Access N 3 ° a
()
US Users
Access : ° a
C)
Canada Users

Access
- 328
()

Mexico Users

Note: RLS can be implemented for imported data as well as for selected

DirectQuery connections like SQL Server, however, is not available to be

implemented in Power BI for live connections like while working with

Analysis Services.

Dashboards and alerts

So far, we discussed reports in Power BI. Reports are usually created for
specific functions, for example, Sales Inventory Report, and so on. On the
other hand, dashboards can provide a holistic view of what is happening in
an organization across a spectrum of reports, all in a single page.
Dashboards can bring together visuals or tiles from multiple reports of a

workspace in a single, scrollable page, to tell a story.

Whoever has edit permission of a report can pin a visual to a dashboard,
using the Pin visual option which appears on hovering over a visual in the
report. The visual can be pinned to an existing dashboard, or to a new

dashboard which gets created along the way. The process is illustrated in

Figure

Saleshl Pin to dashboard

SalesAmount by Country Sabat an guisting dashboand of ¢

Where would you like to pin to?
NORTH AMERICA - ore I Ol rn @ riew dashboare
°
D Atlantic ‘ Y 1:::-1-_.'_“.C-lr ey Dashboard name
AFRICA
SOUTH AMERICA ndia
Glean AUgH Pin

el 2502 TowTem, B 200 Mool Conatien. § Covireetie Te

Self Service Analytics with Power BI

o crested emarstrating the Powsr Bl sendce feature

Mamse Type vy

36 & rew O

Figure Pinning a visual to a dashboard

The dashboard can be found under both the All and Content tab of the
workspace. We can open the dashboard by simply selecting it and all the
visuals that have been pinned on it from different reports would be visible
on a single page. Pinned visuals in a dashboard are set with the filter
context at the time of pin. If the filter context of the underlying visual
changes, the dashboard tile needs to be updated as well to reflect the
change. At present, slicers and filters cannot be pinned to a dashboard

individually.

To pin more than one visual at a time, an entire report page can be pinned

to a dashboard using the Pin to a dashboard option, under the More options

menu, as shown in Figure

Power Bl Self Service Analytics with Power BI Sales Report | Data updated 11,30/22 ~
Pages < [File ¥ > Export ~ & Share Q' Getinsights [Subscribe 47 Edit |I|
=f Seerelated content
Overview -l ;
J &2 Open lineage view Jort
Details
& Pi lashboard
ear Menih
9,791.060.30 9.791.060.30 £9.93%
e ' = Total Sales YTD Sales — YoY Growth
SalesAmount by Category Top 10 Products by OrderQuantity
Category @Accesscries @ lothing

_ = =

Figure Pinning a report page to a dashboard

In the case of pinning an entire page, the tiles or the visuals of the page are
live in the dashboard, which means they can be interacted with in the
dashboard itself. Selecting any tile on the dashboard should re-direct the

user to the report from which the tile has been pinned.

Another interesting feature of a dashboard is the ability to create data-
driven notification alerts. As of now, alerts can be created only on KPI and
Card visuals. To create an alert, Manage alerts can be selected from the

More options menu of the tile, as shown in Figure

Total Sales

(=] Add a comment

l?_‘] Copy visual as image

9.791.060.30

Jli Go to report
B2 Open in focus mode

@ Manage alerts

E Export to .csv

£ tdit details
57 Pintile

[a Delete tule

Figure Managing alerts on a dashboard

On the Manage alerts window, an alert rule needs to be configured with a
threshold value. Whenever the value of the tile changes and goes beyond
the threshold limit, a notification gets triggered depending on the frequency
that has been chosen. Figure 5.38 shows a sample alert created for the Total

Sales card that has been pinned to the dashboard from our sales report:

TOTAL SALES "

Manage alerts
+ Add alert rule
~ Total Sales [}
Active
On
Alert title
Total 5ales

Set alerts rule for

Total Sales
Condition Threshold
Above | [1000000

Maximum notification frequency
(®) At most every 24 hours
O At most once an hour

Alerts are only sent if your data changes.

By default, you'll receive notifications on the service in
the notification center.

» Send me email, too

Use Microsoft Power Automate to trigger additional actions

Save and close Cancel

Figure Sample alert configuration

By default, Power BI sends notifications to the notification centre of the
service, and optionally to the mailbox in case opted for an email. A sample

notification is shown in Figure

HOTIFICATION CENTER

All Notifications

Total Sales x
2 minutss 3g0

Total Sales on Sales Dashbeard is

DIF06029 7 M, wiwch & above the thresheold

of 1000000

Go o tile

Figure Sample notification in the notification centre

Alerts only work on refreshed data. During the data refresh if the threshold

limit for an alert is crossed, only then notifications are sent.

Refreshing data and data gateways

Now that we have created our report, published it on Power BI Service,
and configured the environment as required, the only remaining part is
setting up a refresh mechanism for the report to keep it up to date with the
latest data.

In the case data is imported in a Power BI dataset, refreshing data means
querying the underlying data source and loading the data into the dataset
overwriting any existing data. Once data is updated in the dataset, all the
visuals in the reports that are created using the dataset also get updated.
However, in the case of a DirectQuery mode, no data is imported to the
Power BI model, instead, every report interaction sends a query back to the
data source and returns the result. Hence for a DirectQuery mode, the

dataset or data model does not require to be refreshed separately.

Once a report 1s published to Power BI Service, then the cloud service
needs to establish a connection to the underlying data source, for the
refresh to happen. If a dataset connects to a data source that Power BI
cannot access over a direct network connection, such as on-premises data
sources, a data gateway needs to be configured to be able to refresh the

dataset from Power BI Service.

A data gateway is software that acts as a bridge between the cloud service
and the on-premise data source. Two types of data gateways are available

to be used in Power BI, as follows:

Enterprise data gateway: This can be used by multiple users to refresh data
from an on-premise data source. All required data source definitions like
server addresses, authentication modes, credentials, etc. need to be added
to the enterprise gateway. Only gateway admins have right to add data
sources to an enterprise gateway. Gateway admins can also add a list of
users as gateway users, who would have permission to use the gateway and

assign the gateway to a Power BI dataset.

Personal data gateway: A personal data gateway can be used by a single
person only. For a personal gateway, it is not required to add the data
source definitions to the gateway; the data source configurations are
managed by the Data source credentials section in the dataset settings,
which can be accessed using the More options menu of a dataset, as shown

in Figure

Self Service Analytics with Power BI
it i1 B werlespar e =rear el o s v ie the Newes R 5ndse fo i

o Datasets = dataflcws Sales Fepont

|
a3

o ; S

a

Figure Data source credentials section of a dataset

On Power BI Service, by following Download | Data Gateway redirects to

the Microsoft’s webpage for Power BI gateways, which has options to

download either the Standard mode (enterprise mode) or the Personal mode

data gateway, as shown in Figure

Power Bl - Self Senvice Anshytics with Pose B

Selt Service Analytics with Power Bl

EE -

This s & woe eeted for der Bl se-vice fea
- Mew T wolcad 55 Create deploy o T Fibe f
Dacasets « dataflows
0D Hame Type Crvner Redreshed Mext refresh Endorsement Sens ity Inchade in app
B o
v
B Microsoft | Power BI ovenew « Prdin « Baceg Selmher « Paas o Besere « Commanty Seach D Signin Tytee m

Connect to on-premises data sources with a
Power Bl gateway
Keep your dashbozrcs and reperts up to date by connecting to your on-premises data sources without

the nead 1o move the data, Query large datasets and take advantage of your existing invesiments. Get the
flexibility you need to meet indnidual needs, anc the needs of your organization

Droowriiad standard mode » Drevwnioad personal mode 3

Learn more >

Figure Downloading data gateway

For our sales report, we have imported the data from an Excel file saved on
a local PC, hence, to be able to refresh it, we will need a personal gateway.
Let us download the personal mode data gateway and install it. During
installation, we need to register it with the Power BI Service account, as

shown in Figure

&) Y On-premises data gateway (personal mode)

Ingsallatieon was successhu

Emall 33rEsS 13 U3 Vilth TRIS Daneway

Need to negister with Paver Bl service accomnt |

Shan in eotinng '

et you mead to sign in 1o registes your gateway.

{;SCn premises data gateway (personal mode)

_ < The gateway is online and ready to be used.

Serive bettings
Diagmostics
Hetwerk

Cunawilons

FRamrsey sl Saimbr TV LC Y (R 3033,

the on . poemises data gateway {perioeal mede) by sending

4

Figure Registering a personal mode data gateway

Once registered against the tenant, the gateway should be discoverable in

Power BI Service on the On-premises data gateways tab by following

Settings | Manage connections and as illustrated in Figure

Admin portal Data {preview)

Azure Analysis Senvices migrations s | Contart infs

. - Decanwaivn | Onpiemive cobagabrmays | ikl retos & b oy
Manage connections and gateway
p laka gbevay acts 45 4 briige, providing quick and secure data transber et

Figure Personal gateway available in Power BI Service

For any published dataset, the gateway can be assigned using the Gateway

connection section, from the More options menu of the dataset, as shown in

Figure

4 Gateway connection

To use a data gateway. make sure the computer is online and the data source is added in Manage Gatoways. If you're using an On-premises data
gateway (standard mode). please select the corresponding data sources and then click apply.

Usze an On-premisec or Vhlet data gateway

Gateway Department Contact information Status Actions
® (P Personal Gateway nning on 0]

Figure Gateway assigned to the dataset

Datasets created out of cloud services do not usually require any gateway,
provided Power BI can establish a direct network connection to the data
source. However, any restriction for a direct network access like a firewall

rule, can force Power BI to refresh data via a data gateway only.

Once a refresh mechanism is established, the Power BI dataset can be
refreshed based on a schedule or on-demand. To configure a scheduled
refresh, we need to go to the dataset settings first using either the Schedule
refresh option which appears on hovering the dataset, or from the More
options menu of the dataset. Then, the Scheduled refresh section of the

dataset settings can be used to schedule a refresh, as shown in Figure

D Hame Type
E Sales Regart [AR
iy dataser # Schedu led refrash
-
Balirueh bierory & dets B g i i e dat
FDataset description
Rufrash feequency
T e & f— rGateway connection Py
»>
- N e 7m0
m Sales Reon 4w e Fin Flrala source credenilials
C=03 K v v
FParamelers .
—
- Fachaduled refresh e
" L Sened vefirash fallure notificatiows w
ane g nathe ep YQEA
C—

.

»Feamured Qfeh quections Thete oeeipn
e

rEndorsement
FRioquest accoss Apply | Coard

)

FURRASET Idge

FExtemal sharing

Figure Scheduling a dataset refresh on Power BI Service

A pro workspace which is on shared capacity supports a maximum of eight
scheduled refreshes per day, while for a dedicated capacity or premium
workspace, we can schedule as many as forty-eight refreshes daily. Apart
from setting up the refresh frequency, the scheduler can also be used to
send refresh failure notifications to dataset owners and/or other key
stakeholders.

A dataset can be refreshed on-demand as many times as required without
any limitation, using the Refresh now option which appears upon hovering

over the dataset, as shown in Figure

Self Service Analytics with Power Bl
. . Create spp

& ealed for demonstia

(k] Hamig Type (=0 Refreshed Mean refresh Erdorsement Sensimidty nelude In app

Figure Refreshing on-demand using Refresh now option

Apart from scheduled and on-demand refreshes, a Power BI dataset refresh
can be automated programmatically to make it event-based, using the
Power BI REST as well.

The refresh the history of a dataset can be accessed from dataset settings,
and contains information like refresh type, refresh start and end time,

refresh status, failure message, etc. as shown in Figure

» Refresh history

Thia tiaout hay e corligrured by Scheduled Onelrive
" o % y L

rDataset description

sy el & LL20RE 200 n progrens
roateway connection

1 A Compleed
#Data source credentlals

o i Completed
rParameters

Vi A TMIVIES VSR e AIVINL B R pm Comphtsd

Vi dipi WNFHEE TRE W e SAVENR 25E20pm Completed
wOpA

Via il SN2 1 2am BILENR 10 I2pm Completed
Freatured QA questhons . - " " - o

Cademand TP EXN0pm FAVERE X2Hpm Complited

wEndosement and dive ey
slarge dataset storage format
FLIATASHT IPA0»

»Eteraal eharing

Figure Refresh history of a Power BI dataset

For a dataset with import mode, an ongoing refresh can be cancelled in
case the dataset resides in a premium or dedicated capacity, using the
Cancel refresh option that appears upon hovering over the dataset, as

shown in Figure

MName Type
YP

E Sales Report QO 5] - Dataset
{_Cancel refresh__

Figure Cancelling an ongoing dataset refresh

For a pro dataset, the maximum refresh duration is two hours while for a

premium dataset, the duration is five hours before timeout.

Note: Every dataset has one owner who can only perform certain activities

like updating credentials, schedule refreshes etcetera, for the dataset.

Anyone who is not the owner needs to take over the dataset first, using the
Take over button on the dataset settings page, to have full control over the

dataset.

Apps

Apps are an easy and convenient way to package multiple Power BI
content together from a workspace and distribute it to a large audience.
Apps can be created from a workspace which hosts the Power BI contents,

using the Create app button, as shown in Figure

Self Service Analytics with Power BI
Thiz iy o veutkspion s tiales! fur dherhonsttoliog e Puset Bl szrvive Features

Hsre Tri= Evemer Redreshed Rt redres Prcdorsement Semsh shviry Inchile in app

Figure Creating an App from Workspace

Once you click on the Create app button, the app creator opens which has

three tabs, namely Content, and

The Setup tab allows you to configure the App in terms of setting up
themes, pushing the app automatically to the Power BI account of business
users eliminating the need to install the App separately. The Content tab
allows the App creators to include content from the workspace and bundle
in the App using the Add content option. Figure 5.50 illustrates both the

Setup as well as Content tab usage while creating an App:

e P A
(1) Setup \2) Content \2) Audience

App name*

Description®
Selt Sernce Analytics with Fower B
TT\.I e IJ:‘
App logo
Sales App
T Upload
+ Add content
App theme color i Sales Report

i Sales Dashboard

Contact Information

I groups

Global App Settings
nstall this app automatically.
Hide app navigation pane.

Allow users to make a copy of the reports in this app

Figure Setting up an App and adding content

Power BI supports publishing only one App per workspace, hence we
should include all contents that we intend to distribute to the end users in
the Content tab. However, it is possible that we do not want everyone to
access everything that we have included in the App, and this is where the

Audience section comes into play.

Using the Audience tab, different items of the App can be distributed to
different groups of people or audiences, based on persona or roles.
Hovering over any item on the Audience tab displays the hide button using
which specific items can be excluded from the present view of the App,
and then the view can be distributed to a specific user group. The New
Audience option is essentially a different view of the same App with all the
original items by default, where again specific items can be excluded, and
the view can be distributed to a separate user group than before. The

Audience tab is illustrated in Figure

Audience

(1) setup (3) Comtenr | (3) Audserxe

Audienee

Subentivey shom i ke apro Lonbeni (1 et sudienie Ly toguing 1 sy icon B al sppwans on hover, Then sl up pernisaion ko e sadivece o distribe i sebeted conbei,

Sales App M f enee T Mew audisnee

-l Marage Audicnoe Access
.n, DJ_) Sales Report S o

Gramt access to

" o
Sales Repn m v = Ly 19,541 940,04 9,770,899 74 16,321,403 83 19.85% -

W) Spechi usen of groupd
Sales Dasnboard

oty @ Bcorics s 1N

_ o

-

I I °\v:o-k.-p:teusm 10}
o o 348 T o Vo Pl

Dplisn Ly wclude iban

Puldish app Cance!

Figure Audience option of an App

Although it is the same app that gets published from the workspace, the
Audience option thus provides a way to provide different users access to
different contents based on the user group or distribution list they belong
to.

Finally, the App can be deployed using the Publish app button, which also
generates a direct link to the App, as shown in Figure

) Successfully published X
Sales App

Give people the link below, or direct them to Apps > Get apps in the Power Bl service.

https://app.powerbi.com/Redirect?action=0pendppBappld= Copy

Go to app Close

Figure App direct link

Alternatively, the App can be installed and accessed using the Apps section
of Power BI Service. The Get apps option in the Apps section launches the
App finder or Power BI apps where all Apps that the user 1s allowed to
access would be listed. The Sales App can be searched and then installed

using the Get it now option, as illustrated in Figure

w Hewe » Apps

Power Bl apps
& Deploymen: pipelne
il

bl die et irmighis o i Brusiness ol s

Figure Installing an App

Once installed, the App would be available under the same Apps section,
ready to be used. Depending on the access, different items of the App can
be viewed and navigated conveniently using the left hand navigation panel.

Figure 5.54 displays how the Sales App looks like once published:

Sales Report

5 0t 960004 FITORYETL 14321 40083 17.85%

Salewh oot by Categery Y S S ——

Carvgrmy & . -
' ‘ I
’ ¢ Illllll
) | : [| |
i N

Soleshmcur: by Dounry Saleadmeyn: and Ordcoluz ity by bomhMame

- -

et poe
® AN 1 1 iy
L T[] | et

Figure Sales App

To exit from the App experience, the Go back button on the bottom left can

be used.

Publishing an App is not mandatory for distributing contents to end users,
as access can be given on the workspace itself serving the same purpose.
However, in case of working with a large number of report consumers, it is
recommended to use an App instead. With an App, we can provide users
access to specific items, without exposing other workspace artifacts like
datasets, dataflows, and so on. Apps also can provide better user

experience and ease of navigation between items.

Once an App is published, it can be further modified using the Update app
option which would be available on the workspace itself, as shown in

Figure

Self Service Analytics with Power Bl
hit ie & wowkepace crpates fior demnndratiog 1he Foms. Ay ce foatimed
+ hew ¥ al F Cieate dephoyrient pEpsling s (0F Setlons S decess oo O Seach

Name Tipe e Refreshod Mext refresh Endersemem Senslivity

Figure Updating an App

Apps need to be updated only in case of any structural change of the
reports or App items. From a data perspective, all App items would be
automatically updated once the underlying dataset gets updated with latest
data. In case of any structural change, Apps also provide an opportunity to
validate the changes on the workspace first, before making it available for

the end report consumers.

Incluce In opp

Dataflows

Dataflows are collections of tables or entities that are created and managed
inside Power BI Service. From a report authoring perspective, dataflows
can be considered as an online version of Power Query where after
connecting data from various data sources, ETL transformations can be
performed on individual entities and then saved, to be further consumed in
Power BI datasets.

In a workspace, to create a dataflow, the Dataflow option needs to be
selected from the New button menu. The following page would have
different options to work with Dataflows; let us add a new table from the
Define new tables section. Selecting Add new tables should open the
Power Query editor, from where the required data source can be searched

for, as shown in Figure

Self Service Analytics with Power Bl

Iis b & wirhepate ceatid bo demunstating U Power 3| seivive lealues

=]
-+ New T uphad & creare deployment pipelire B
Ranor
. e u
J - Tvpe
- - Start creating your dataflow
=
Defirin navs tablas Link tabiles frem Ienpert Madsl Astach n Coeamen
wiher dataflows . i icds Dt Modl Fukdur
- - [previen)
Cianasat o
o Dats #
e - ok
mport rada LrOEte T aTam

o Cumery

Choose data source

Scin @ SoneITEE o ey orag @ e fom o compLter

S010 Sarver cntabuse AT daksann Potgeeicl. drtshass [~ R et () AoueSyeapse Anstyecs 0l

Figure Creating a Dataflow

Let us select an Azure SQL database to connect and provide the required
connection parameters like server address and credentials. If the connection
string matches with a pre-configured data gateway, a gateway user would
be able to assign the data gateway on the connection configuration window,
if required. Once the connection is established, all the database schemas
and tables that the user has access should be visible and ready to be
selected and loaded to the Power Query editor, using the Transform data

option, as shown in Figure

Ehooss dats

B o e Cannastizn stangs

Figure Connecting to an Azure SQL database from Dataflow

Once any table is loaded in the Power Query editor, all transformation
options would be available to perform, and gets recorded under Applied
steps in Query Selecting Save & close validates the query and saves the

Dataflow in the workspace, as shown in Figure

Save your dataflow

Sabes Sutallow

Desergninn

i

Figure Saving a Dataflow

After saving the Dataflow, it needs to be refreshed to load data into the
entities it contains. All available entities in a Dataflow can be viewed upon
entering the Dataflow by selecting it in the workspace. Once we are inside
the Dataflow, the Edit tables option can be used to modify an existing
query, the Add tables option can help to add a new query and the Close
option helps to exit the Dataflow back to the workspace items, as

illustrated in Figure

]F)m--ahlm] |IF:L:|1umH| | X e |

TABLE NAME TABLE TYPE ACTIONS

v Ty samplefiranca ustom BSO0R

Figure Dataflow entities

Hovering over any Dataflow displays the option to and the More options
menu can be used to view the Refresh history as well as navigate to the
Dataflow Settings from where the refreshes can be scheduled, similar to a

dataset.

Once a Dataflow is ready in the service, the entities of it can be imported

from a Power BI Desktop file just like any other data source as shown in

Figure eliminating the need for Power BI Desktop to directly connect to the

underlying data source:

Home Insert

@B aBDbEH® [B [Rk

Modeling View Help External Tools

Excel Data SQL Enter Dataverse Recent Transform Refresh New Text Mare New Quick
c:ata ~ workbook hub~ Server data SOUMCes ~ data~ visual box visualsw measurg measure
sboard Cueries rsert Caleulations

Common data sources

e
&

Exicel workbook

Power Bl datasets

(e

Power Bl dataflows mport data from a Power Bl dataflow

®
&
&
&
B
R
(&
B

Dataverse

5QL Server
Analysis Services
— Build visuals with your data

Web Select or drag fields from the Fields pane onto the report canvas.

OData feed

Blank query =

X

Power Bl Template Apps

More...

Figure Consuming data from a Dataflow in Power BI Desktop

Using a Dataflow, we can separate the Power Query or the ETL layer from

the Power BI dataset or data model. This is particularly useful to perform

common reusable transformations for multiple datasets. Instead of

performing the transformations repeatedly on individual dataset tables, we

can do it once on a Dataflow entity and then consume it from different

datasets maintaining a single point of truth.

Another great use case of Dataflows is to enable authoring reports without
having to provide reports authors access to the underlying data source. A
Dataflow can be configured with all the required entities from a data source
and then can be exposed to the report authors by providing them with
appropriate workspace accesses. However, whether to use a Dataflow or
not is a design decision that needs to be made considering the business use

case that we have in hand.

Conclusion

In this chapter, we explored the concepts involving Power BI Service
in terms of managing Power BI contents in cloud. We understood
how reports are stored as well as how to effectively work with them
from a business user perspective. We touched upon the administrative
capabilities of the service besides going through multiple security
approaches like Row-level security and workspace-level security. We
need data gateways to refresh data, mostly for on-premises data
sources, and we have seen how to install and configure a personal
data gateway. Finally, we saw how features like Apps and Dataflows
enable report authors to choose from multiple design options and

implement the one that fits best for the project!

In the next chapter, we will see how to work with large data volumes
in Power BI, which is otherwise difficult to manage with the skills

we have acquired.

Knowledge check

Which of the following activities is allowed to perform with a free

license?

Create a workspace

Publish a report to My workspace

Assign a data gateway to a dataset

Adding a workspace viewer

Which of the following option is not available while exporting data

from a visual?

Export summarized data

Export selected data

Export data with current layout

Export underlying data

Which of the following DAX function is used to implement a
dynamic RLS?

USERPRINCIPALNAME()

CALCULATE()

SUMMARIZE()

HASONEFILTER()

An App can be distributed to different audience groups:

True

False

All Knowledge Check answers are provided at the end of the book.

C

HAPTER
6

Working with Large Data Volumes

Introduction

We have already discussed the core concepts of Power BI in the
previous chapters. In this chapter, we will focus on a very specialized
topic, which 1s how to work with large data volumes in Power BI.
Big data reporting is a pressing need across many industries these
days, although whether a dataset can be termed as Big Data or not
can be a topic of debate! In this chapter, we will learn about tools and
techniques which can be used to process large amounts of data which
otherwise is difficult using the concepts we have learnt so far. The
concepts that will be discussed in this chapter are going to be crucial
to be able to handle huge data volumes which is often the crux of
reporting requirements nowadays. We will avoid technical jargons as
much as possible and instead focus on applying the concepts hands-

on, as we did throughout the book.

Structure

In this chapter, we will discuss the following topics:

Power BI Premium features

Table partitioning

Configuring incremental refresh

Refresh management using SSMS

Managing datasets using the Tabular Editor

Metadata deployment using the ALM Toolkit

Objectives

The objective of this chapter is to enable users to work with large
data volumes themselves. This chapter illustrates the concept of delta
load or incremental load which enables to refresh only a subset of
data that is updating over time, instead of a full load or refreshing the
entire historical static data that is present in the data source, during
each and every refresh. This approach not only allows us to work
with data warehouses where millions and billions of records are
saved historically, but it also helps to bring down the data refresh
time even for small to medium datasets by refreshing only what is

needed as per the refresh schedule.

While we already discussed DirectQuery which eliminates the need
of importing data in the first place, however, that only works well for
non-interactive reports where we do not need to slice and dice the
report too often. Otherwise, applying DirectQuery on a large data
volume can have a negative impact on the report responsiveness and
hence on the user experience. Using incremental an alternate solution
can be devised for similar scenarios and by end of this chapter,
readers should be able to configure an efficient incremental refresh

policy for the Power BI datasets on their own!

Power BI premium features

Although incremental refresh for a Power Bl dataset can work on a pro
workspace as well; however, for large data refreshes, it is recommended to
have premium capacity which brings in a lot of flexibility in terms of

maintaining the data models on Power BI Service.

Once a workspace is assigned to a premium capacity, a diamond icon

appears just beside the workspace name, as shown in Figure

Self Service Analytics with Power BI[?]

This is a workspace created for demonstrating the Power Bl service features.
+ New T Upload
All Content Datasets + dataflows
B Name Type Owner Refreshed

a Sales Dashboard Dashboard Self Service Analytics —_
m Sales Report

Figure Power BI Premium workspace

In a premium workspace, enabling a Large dataset storage format ensures
that the dataset size would be limited only by the premium capacity size or
by the maximum size allowed by the administrator. The large dataset
storage format can be enabled for all datasets in a premium workspace by

following Settings | Premium | Default storage as illustrated in Figure

Self Service Analytics with Power 81 ©

This s 8 worispace created for demanmtrating the Power B sendce features

+ Mew ¥ uplcad

Al Comtent Dutadets - datafiows

View « ¥ Fltens 8 Access

v
@ Settings

Self Service Analytics with Power Bl

Default stonage format

O fearch

Senall dataset at
Large dataset stoeage format

Workepace Connection

S— .. |

Figure Storage format for workspace

Alternatively, the storage format can be configured for individual datasets
as well, from dataset settings by following More options | Settings | Large

dataset storage where the option can be turned off or turned on, as shown in

Figure

Self Servize Anafytics with Power Bl =

"R 5 WONHI0E CEChED 21 Semaesirt ng the Power Bl s fotures
ren P gl
Al Samert Dutaneis - daabows
[y (= X

_— o @ A

0 Faeslunnised A cpueshinns
0 Dndersement and discovery

B Restjuest acoess

& Large datanet storage format

Foi mos! Prsmiuam capacitios, ueing [angs datset stotag e fammat can im prove performance. L i

o o

B Ciotliassal limnagye

¢ extemal sharing

Figure Storage format for the individual dataset

Probably the most important feature that comes with Power BI Premium in
terms of working with large amounts of data is the accessibility of XML
for Analysis An XMLA endpoint allows client applications to connect to
the underlying Microsoft Analysis Services engine of the platform that

manages Power BI datasets and workspaces.

By default, XMLA endpoints are enabled for read-only operations which
means external applications can only query a dataset. For external
applications to perform write operations, the XMLA endpoint property

must be set to Read Write using the Admin portal of Power BI Service.

Few most common external applications that can access Power BI
Premium datasets through XMLA endpoints are SQL Server Management
Studio SQL Server Tabular DAX ALM Toolkit etcetera.

Just like the Storage format settings, XMLA endpoint connection details
for a premium workspace or a Premium Per User license can be copied by
following the workspace Settings | Premium | Workspace as shown in

Figure

@ Settings

Self Service Analytics with Power Bl

About Premium Azure connections

Lic@rnse mosde

Default storage format

mall dataset stora je Tormat b

Learn more about dataset storage formats

Workspace Connection

powerbiz//fapi.powerbicom/v1.0/myorg/Selfl205ervice%e20Analytics %2 0with3%e20Power

Delete workspace Cancel

Figure XMLA endpoint for a workspace

Once we have the connection URL, the underlying analysis services engine
can be connected using any application which supports connecting Power
BI workspaces and datasets, after successful authentication. When
connected, the Power BI workspace can be considered as the server and the
individual datasets as databases. Using XMLA many critical actions can be
performed, including refresh management, source code maintenance and so

on, which we will explore throughout the rest of the chapter.

Table partitioning

When a Power BI dataset gets published to the service, each table in
the model has only one partition by default, which holds all the
records for that table. If the table grows over time, like a fact table of
a star schema, the table can eventually have a very large number of

records stored.

During data refresh, this entire data gets truncated and re-loaded
every time for the table, which can be extremely resource heavy and
causes inefficiency. Using an incremental refresh policy, a table can
be partitioned, and the daily refresh can import data only for the
recent partitions as configured in the policy, while the rest of the old
partitions’ data can be archived. This ensures a faster data refresh
while including the latest changes at the data source in the query

results.

Power BI Service dynamically creates partitions in a table based on
the incremental refresh policy that has been configured for it, during
the first refresh of the model. However, these partitions are not
visible on Power BI Service and can only be managed through the
XMLA endpoint using external tools. After publishing a Power Bl
dataset having an incremental refresh policy to Power BI Service,
when the dataset is refreshed for the first time, based on the
Date/Time parameters RangeStart and the partitions are created
automatically. We will explore the use of these parameters in detail in

the next section of the chapter.

Partitions are created and named based on period granularities like
Months, and So, first daily partitions are created; once a full month is
completed, then monthly partitions are created, and so on. For
example, if we create an incremental refresh policy for our fact table
to refresh the last 2 days’ data on a daily basis and store or archive
the last 2 years’ data then 4 daily partitions will be created along with
2 yearly partitions in case we refresh the model today January 2023),

as shown in Figure

i | |
P RAT) (11]1%] Foi kA1) (1] 1R A 10102 P kA 8] (1)) 2 Eo ik |

Refresh Penvod

Histerical Period

Figure Partitions created based on incremental refresh policy

The latest partition named 2023Q10104 represents January 2023,
where 2023 is the year, Q1 is the first quarter, 01 is the month and 04
is the day. No quarterly or monthly partition would get created as per

the period granularity, as no full quarter or month has been completed
yet in 2023.

As whole periods are complete, partitions are merged. For example,

on the first day of a new month, all daily partitions of the previous

month are merged into a monthly partition. On the first day of a new
quarter, all three previous monthly partitions are merged into a
quarterly partition. Likewise, on the first day of a new year, all four

previous quarterly partitions are merged into a yearly partition.

Once partitions are created, with each subsequent refresh, only the
partitions belonging to the Refresh period would be refreshed with
updated data. Both the Refresh period and the Historical period
follow a rolling window pattern. With every new daily partition
created, the partitions which no longer are part of the Refresh period
become part of the Historical period and are archived. When a
partition is no longer part of the Historical period as defined by the
policy, that partition gets removed from the Power BI dataset. Over
time, historical partitions become less granular as they get merged.
At any given point in time, a dataset always retains the total number
of partitions in accordance with the refresh policy defined for an

incremental refresh.

Now that we have understood what table partitions are and how they
are created based on the incremental refresh policy defined for the
table, let us explore the steps involved to configure an effective

incremental refresh policy.

Configuring an incremental refresh

For the incremental refresh to take effect, at first, we should be aware of a

few key considerations:

An incremental refresh only works for data sources which support query

folding.

The incremental refresh policy needs to be based on a Date/Time field
which should ideally be an operational field the value of which does not
change over time. Otherwise, it can cause issues like duplicating the same
record in different partitions, as the partitions for an incremental refresh are
created based on the Date/Time field which has been used in the policy. We
would understand this in detail once we actually configure a policy and go

through an example.

Once a dataset with an incremental refresh policy is published to the
service, the .pbix file cannot be downloaded back. This makes sense
because the published dataset can grow so big that it might not be practical

to download it in the first place.

If we republish the original Power BI Desktop file, it will remove the

existing partitions along with the data stored in them.

Although a dataset with incremental refresh can be published to a pro
workspace, it is advisable to use premium capacity when implementing

incremental refresh, especially for the above two reasons. Using XMLA

endpoints available with a premium, the published datasets can be
maintained on the server itself using Tabular Model Scripting Language
scripts, as well as any schema-related change can be deployed directly to
the server using external tools like ALM Toolkit and Tabular All these

features we would explore briefly in the upcoming sections of the chapter.

Let us now implement an incremental refresh policy on the same

fact Sales table that we have been using. Only this time, the table is
imported separately in a blank Power BI Desktop file named fact Sales
from a SQL-based source which supports query folding.

For incremental refresh to work, the data needs to be filtered dynamically
to include only the records that are required. To do this, first, we need to
create two parameters with the reserved keywords RangeStart and as
parameter names. The parameters need to have the data type and initially,
we would load just some sample data to Power BI Desktop for configuring

the policy.

The parameters can be created on the query editor by following Manage

Parameters | New as shown in Figure

SGhE B B [LEe

Close & MNew Recent Enter Data source Manage Refresh E- "
Apply * Source * Sources ™ Data settings Parameters ~ Preview~ — &
Close Mew Query Cata Sources Manage Parameters i
A arae (21 < Edit Parameters
WMETISS |2 A
Mew Parameter
¥
Manage Parameters Manage Parameters

Descripzon Fangefnd * Descnipbicn

C2-00-2022 00 0000

=3

Figure Creating parameters for an incremental refresh

While the parameter Name and Type would always be the same, we can
choose any Date/Time value for RangeStart and RangeEnd in the Current
Value field. However, it is recommended to choose a small date range to
initially load sample data to Power BI Desktop as eventually, these

parameters would be used to filter data in the fact table.

After creating the parameters, the next step is to apply custom date filters
on a Date/Time field of the fact table. This field is the one based on which
the table would ultimately get partitioned in Power BI Service. At this
point, the applied filter would select a subset of data which will be loaded
to the Power BI Desktop.

We have the OrderDate column in our fact Sales table, which is
representing the date on which an order has been placed. This date is
unlikely to change through the lifecycle of the record, even if the record
gets updated for some other attribute, and hence qualifies for an
incremental refresh. As this was originally a Date field, the data type has

been updated to Date/Time to have the time component in it.

After selecting the field, following Date/Time Filters | Custom the Filter

Rows wizard can be launched, as shown in Figure

Filter Rows

bl R S

Figure Applying a custom filter

To specify the first condition in Filter we have to select is after or is after or
equal to in the first drop-down, Parameter in the second drop-down and

finally need to select the RangeStart parameter.

For specifying the second condition, if is after is selected in the first
condition, then we need to select is before or equal In case we have
selected is after or equal to in the first condition, then we need to select is

for the first dropdown. After that we need to select the Parameter in the

second dropdown and finally the RangeEnd parameter in the third

dropdown.

Figure 6.8 shows the filter conditions for the OrderDate column of the
fact Sales table:

Filter Rows

rowes in this table.

(=14

= Table.SelectRows{#"Changed Type™, each [OrderDate] >= RangeStart and [OrderDate] < RangeEnd)

Figure Custom filter conditions

After applying the filters, the query loads data based on the date range as
specified in the RangeStart and RangeEnd parameters. As we have
configured the required steps in the query editor, let us now load the
sample data to Power BI Desktop and proceed with configuring the refresh

policy.

In Power BI Desktop, from More options of a table, selecting Incremental
refresh launches the context menu for an incremental refresh, as shown in

Figure

Fields bl i
Incremental refresh and real-time data

Refresh |arge tables faster with incremental refresh. Plus. get the latest data in real time
with DirectQuery (Fremium onby). Learn mora

(T These setlings will apgly vihien you pubded e dalase]
= that youwon't be able to download it back to Power Bl Desktop. Leam miore

Power Bl service. (nce: yom i

1. Select table

" faci_Sales w

neremental refrésh

“lanage aggregations [2. Set import and refresh ranges

Incremenitally refresh this table

pl
bl
'S_' Remwarnie
b

Delete from model

" Archive data sterting | Enter value Select valuew | before refresh date
de =
% Mark as date table ncrementally refresh data starting Cnter value Select value™ | before refresh date
O ¥ View hidden
3. Choose optional settings
T Collapse all Get the latest data in real time with DirectQuery (Premium anly) Learn more
SR Onlly refresh complete periods Learm more
3 TaxAmt
7 TotalProductCost Detact data changes Learn mon
E LinitPrice
= nPriceD - 4. Review and apply
LI SRS OuniEy
Anchhaed Incremental Refresh
Arshival A rerementsl Aefrein dits
¥ Jam Liang
Cancel

Figure Launching an incremental refresh menu in the Power BI Desktop

From the Select table dropdown, the table for which we want to configure
an incremental refresh needs to be selected first, in this case, which is
Then, from Set import and refresh the toggle for Incrementally refresh this
table needs to be turned on. For archiving, the historical period needs to be
selected in the Archive data starting section. Finally, the refresh period
needs to be specified in the Incrementally refresh data starting section. This
should conclude the mandatory configuration requirements for the policy,

as shown in Figure 6.10 (the policy has been configured on January 2023):

Incremental refresh and real-time data

= that, you won't be able to downlcad it back to Power Bl Desktop. Learn more

1. Select table

fact_Sales w ‘

2. Set import and refresh ranges

Incrementally refresh this table

Archive data starting |2 | Years ~ | before refresh date

Data imported from 1/1/2021 to 1/10/2023 (inclusive)

Incrementally refresh data starting |2 Days v | before refresh date

Data will be incrementally refreshed from 1/11/2023 to 1/12/2023 (inclusive)

3. Choose optional settings

|_| Get the latest data in real time with DirectQuery (Fremium only) Learn more
|_| Only refresh complete days Learn more
|:| Detect data changes Learn more

4. Review and apply
Archived Incremental Refrash

2 years hefors 2 days hafore Refresh date
refrach date rafrach date

Apply ‘ Cancel ‘

Figure Incremental refresh policy in Power BI Desktop

This policy would be applied overwriting the current Date/Time values that
have been specified in the RangeStart and RangeEnd parameters, only after
this model gets published to Power BI Service and an initial refresh

operation is performed.

All records that fall under the historical period (here 2 years, as well as the
refresh period (here 2 days), will be loaded into the model during the initial
full refresh, while only the records belonging to the refresh period will the

re-loaded and updated for each subsequent refresh, on an incremental basis.

There are a few optional configurations available for incremental refresh,

as seen under the Choose optional settings section in Figure

The Get the latest data in real time with DirectQuery (Premium only)
option can be used to configure an incremental refresh policy for a

DirectQuery partition.

The Only refresh complete days option can ensure we refresh for full days
only. If a whole day is not completed at the time of refresh, the data
belonging to the day would not get refreshed.

The Detect data changes feature can make the refreshes faster by
identifying the partitions for which the data has actually been updated since
the last refresh and refreshing only those partitions. To implement this
feature, we need another Date/Time column (not the one that has been used
to configure incremental refresh) like an audit column the value of which
updates whenever there is any change for the record. During each refresh,
the maximum value for this column is evaluated for each partition. In case
the value has not changed since the last refresh, that signifies no record for
that partition is changed since the last refresh and hence the partition is
skipped, or Power BI does not refresh that partition. This feature can
potentially reduce the dataset or model refresh time significantly for

suitable use cases.

Now that we have created the incremental refresh policy for the fact Sales

table, let us now save the .pbix file and publish the model to a premium

workspace in Power BI Service. After establishing the refresh mechanism,
let us perform an initial on-demand refresh on the dataset. With this initial
refresh performed on January 2023, we can expect Power BI Service to
create all the required partitions in the table as per our incremental refresh
policy and load data for both the historical period as well as the refresh For
each subsequent refresh, only the refresh period should get processed. In
the next section, we will validate whether it is working as expected or not,
after connecting this dataset in Power BI Service, through the XMLA

endpoint of the premium workspace.

Note: The Power BI Desktop file should be saved safely, as we would not
be able to download the file anymore from Power BI Service for having an

incremental refresh policy defined in it.

Refresh management using SSMS

The SQL Server Management popularly known as SSMS, is an Integrated
Development Environment to manage SQL infrastructures as well as
Analysis services. SSMS is free to download from the official Microsoft
webpage on the Internet and does not have any licensing requirements for
installation and normal usage. To connect a Power Bl Premium workspace
from SSMS, we need SSMS version 18.9 or higher. The following
Microsoft Learn page can be referred to for additional information about

downloading and installing SSMS.

https://learn.microsoft.com/en-us/sql/ssms/download-sql-server-

management-studio-ssms?view=sql-server-verl6

Once SSMS is installed and launched, we need to select Analysis Services
as the Server type and provide the XMLA endpoint of the premium
workspace as the Server We already discussed how to get the XMLA
endpoint for a premium workspace earlier in this chapter (refer to Figure
The Authentication has to be Azure Active Directory - Universal with
MFA while the User name should be the user with which we sign in to
Power BI Service. The user needs to have read-write access to the
workspace. Figure 6.11 shows the properties while connecting to the

Analysis service:

ohe MLCIORCT SOL Serw ManaqeTen 5010

r——— e & o=
e Ed4 Ve Too Window Help
Bro-LWd Reewary FOIER ~C-lB - TR A

Cerjeer P ey
oo §

=X

o Cernagtip e

SQL Server

Acshys u Servcen

(ST A ————
Farws Aty Qimciory - Unvem wih MPA
|

Figure Connecting Power BI Premium workspace using SSMS

Tip: In case of connectivity issues, try using the Options button as

highlighted in Figure to search for a specific dataset in the workspace and
connect to it, as shown in Figure

SQL Server

Login Connection Properties Always Encrypled Additional Conneclicn Parameters

Type or select the name of the database for the connection.

Connact to database: <Browse server >

- " -
Connection time-out: 30 v | seconds

-

v

Execution time-out: 0 seconds

Reset All

Browse for Databases

Browsing the avaiable databases on the server requires connecting to the server. This may take a few
moments. Would you ke to continue?

43 Copy message e

Options <<

Figure Browsing for a dataset in the workspace using SSMS

Once connected, the workspace would get displayed as the server and the
datasets belonging to the workspace would be listed as on the Object
Explorer of SSMS. Expanding each dataset allows you to view all the
tables that are present in the model, after expanding The Object Explorer

for the workspace we have connected to is shown in Figure

:5: Microsoft SQL Server Management Studio

File Edit View Tools Window Help

(0 0B Ut By BERRP| ¥

Ad |

Execute WM iT B

Object Explorer
Connect~ ¥ >¥ = 7 ¢ &

= . powerbi://api.powerbi.com/v1.0/myorg/
= ¥ Databases
B2U
20U
= | fact Sales Incremental
& ¥ Connections
= = Tables

i fact_Sales
© Roles
@ L d fact Sales Incremental test

Figure Object Explorer in SSMS

Coming back to the incremental refresh, to validate the data loaded during
the initial refresh of fact Sales we need to select the fact Sales table in the
Object right click and select which should display details of all the

partitions available for the table as shown in Figure

& Partitions -
Rt N page: 0 Sl = @ Hulp
& Genacal
Use partons bo dmd a tabie inta logical parts that can be processed indepardently.
= — Table tacl Sled vl | Policsh
oA Ml SO Serves Mg e Sl
Portises
File Gdit View Tools Window Help
t & ey e dreh Pl Ny
P00 Bru-2 Bl Brway BOREH| VE X G wq s ,.]
R | b Execme W o FE S T Parition Hiae
Oyt Expiover * @
Cemect- ¥ °F 8 7 6 - zann o0 12072029 1 0742
= B pOWRrD(/ aph povverti.com, vl ymyoeg/ 2000010002 138 12-01-2023 140742
0 ™ Databases 2023010703 142 12-01-2023 140742
W 2023010104 140 12+01-2023 140742
' ::M'S.n'nlumlm'l 20231 152 124012023 14.07.40
@ 8 Connections A0S 15 12013023 1407 41
& o Tables Conmoction HBIUNET 188 112012023 140742
-H . ALY IR |1 12012 14742
@ ™ Roles - - 03y 122 12072023 14.02.43
U csee e STt)~ 2003010010 0 124012023 10743
[P, —- anzsanoim a8 1201 2023 140743
Reporn U ¥ Ve conrecton peocemes 203010112 12+01-2023 14:07:43
Retresh
Properties

Figure Partitions created for fact Sales during the initial refresh

As the model first refreshed on January 2023, we can see 12 daily
partitions for January 2023, along with 2 yearly partitions for 2021 and
2022 created, per the incremental refresh policy defined for the table. Also,
data has been loaded for all the partitions. In the Partitions window, the
first column represents the name of the partition, the column has the
number of records loaded for each partition, and the column indicates the

last processing timestamp.

Let us now refresh the model again to check which partitions update for
subsequent refreshes. If we have a closer look at the last processing
timestamp of the existing partitions in Figure it can be seen that all the
partitions were refreshed around the hour or 2 PM. After a successful
refresh operation is performed at the hour, Figure 6.15 shows the Partitions

window with the updated details:

Ready

(@ Partitions -] by
Select a page IT Seript @ Help
& Genaral
Use partitions to divide & table into logical parts that can be processed independently.
Table: v| Refresh
Pertitions
G X Gl M |':$earm Partiion Names el
Partition Name # Rows Last Processed
12-01-2023 14:.07-38
2022 24443 12-01-2023 14:07.43
20231010 29 | 12-01-2023 14:.07:42
2023Q10102 138 12-01-2023 14:07-42
2023Q10103 142 12-01-2023 14:07:42
2023010104 140 | 12-01-2023 14:.07:42
2023Q10105 152 12-01-2023 14:07:40
2023010106 151 12-01-2023 140741
Eonnaciion 2023Q10107 158 |12-01-2023 14:07:42
Server 2023010108 176 12-01-2023 14:07:42
powerbi/api. powerbi.com/v 1. Omy 2023010109 122 12-01-2023 14:07:43
Connection 2023410110 192 12-01-2023 14:.07:43
ishiraj.deb@bp.com 202210111 165 12-01-2023 15:18:25
w View connection properties 2023a10112 121 12-01-2023 15:18:26

ok ||

Cancel

Figure Partition details after the second refresh

As we can see by the refresh timestamp, only the last two partitions
2023Q10112 and 2023Q10111 have been updated as these two fall under

the Refresh as per our incremental refresh policy. The rest of the partitions

have not been refreshed and hence, became archived; just as we expected.

We have already mentioned earlier that the field on which incremental

refresh has been configured, which in our case is should not ideally change

throughout the lifecycle of the record. Let us now understand the reason

behind this in a bit more detail. Suppose there is an existing record having

an OrderDate of January 2023. That record would come under the
2023Q10111 partition, and any change of that record would get updated if
we refresh the report today January 2023), as that partition falls under the
Refresh period as of now. However, in case we refresh the report in future,
that record would have already moved to a historical partition as per our
refresh policy and become archived, hence, would not update anymore. So
down the line, hypothetically, if OrderDate for that record changes, for
example, to January 2023, the partition 2023Q10123 would have the same
record again, just with an updated OrderDate value. This can cause
duplication of the key fields for the same record in different partitions and

eventually contradict the underlying model.

Apart from viewing the partition details, we can manually process
individual partitions using the same Partitions window. Selecting any
partition, and clicking on the Process button opens the Process Partition(s)
window where we can select the processing The Process Data mode loads
data into selected partitions. After selecting the processing clicking on OK
launches the Data Processing window where the processing status can be
monitored. Figure 6.16 illustrates the steps of processing individual

partitions:

o P - n ® o Prsens Bastition’s - a 4

Skl n g 0 S+ b Eaketanion e = @ btz
oy -
LS ATINE W (0 8 L0 TVID IODACN o 1 D0 D PROCAE 0 I DO D ST T SIOCHEE ™ TG B T RS 0 PrIRR.
- Lase | |_Bofrch | O] =
e 30 Fil
varx o fE4 e = =
Az
Pendoritlorn . [NE [Esr— W
v === a2z e e e o e —

2032 34440 1302023 1 0743 | iz
T 3 TR HRE 1 0T AT
202300033 1w 13002023 e 0742 T e
[t scabhee 18 13402020 e 07 T e
3t acabics 8 el 220 4 740 O |memzionm
3c 0106 [3 i3 1 A1 T | mescinie
Lrmmsctes 36d3CnaT 15 Tdelr i3 e iFAT Eomection (e =S
3 200 3C 0106 % Tar a3 1e 0T AT O s
BT RE: 1303023 16 074D O e
[3easzn0nnn wa 5003003 94 0D [
¥ cor 20z3ch0nn1 163 1300202215 1835 gy T |mamginn
[L B 2023z 00012 130 023 15 18:36 o e conseion ioperies C |20amzi01i2
Proges Lo
Hrnsy Flocaty
o[cmm B e [
. = r
.G § Vi
Eeheclo po Joow ~ Bimp 7
& i | J’
I
‘1o Precass Duta] > |
et Preaming ? 1
Frocaseing Progrosn !
e Lt
o /
s
v
-
-

Figure Processing individual partitions

In case we process data for an individual partition of a dataset, we might
need to recalculate the dataset to update the hierarchies, relationships and
calculated columns, for the report to function properly. To recalculate a
dataset, we need to right click on it and select Process then select Process

Recalc as the Mode and click on as shown in Figure

Object Explorer -8 x
Comnect- ¥ "H m T & »

= B powerbiy/api.powerbi.com/inl.0fmyang/
= Databaces

- — 3 Protess Catabase - C .
m i Sehizt o poge .Esﬂ. -) Holp
= / »
BT oo Y v -
® [fact Sales Increment W—:‘ Swlest the processing made ond the dbjects 1o process.
Lty | [o [Frocess Rucaic <]
Btk Up.
Reslome,, Updobes ond columng for the model.
Reestone brom RowerFrot.. .
Browse. 2 o
_
Repes »
Rename
Dedere
Retresh
Prispestbies

Figure Recalculating a dataset

The ability to load data manually into individual partitions is a huge help
for processing large amounts of data. In the case of dealing with really
large datasets, we may not be able to load all the data during the initial
refresh after publishing the model, as premium datasets get timed out after

five hours.

For similar scenarios, we can apply an additional filter to the Power Query
editor in the Power BI Desktop, which will initially filter out all the records
from the fact table. We can then publish the model and perform the initial
full refresh just to create the partitions, without loading any data into them.
After that, using Tabular Model Scripting Language scripts, we can remove
the filter from the dataset and process individual partitions separately. Once
we load all data in the partitions, from subsequent refreshes the model
anyway would only process the data belonging to the refresh This
technique, also known as allows us to work with big datasets in Power BI
using SSMS.

To access the TMSL script for any dataset, after right clicking on the
dataset, follow Script | Script Database as | CREATE OR REPLACE To |

New Query Editor as shown in Figure

Obgec: Bxploner -0
L - § ¥ [VES
pomrbi/fanl powsrnlcom v Dampoeg
~i M Dutabases
iy
H L

+ U (AR '
1 [et Sales inerany

Sari: | oot atatase a8 & CREATE T2 "
Pinia D alirin CRIATEORRIMACTE0 8 [T ew Lo b o Wieione
BakUp DELFTE T e fie

5 Oeoad

Figure Accessing the TMSL script for a Power BI model

Once we make any changes to the script and execute it, the changes would
directly get applied to the model published on Power BI Service. This way
we can maintain a published model on the service itself, without having to
use the Power BI Desktop file at all. We will explore a few alternate
options as well for maintaining Power BI datasets in the upcoming

sections.

Managing datasets using the Tabular Editor

The Tabular Editor is an open-source tool for managing tabular models
which include Power BI datasets. Similar to SSMS, we can connect to
underlying Power BI datasets using XMLA from the Tabular To perform
any changes to the model or dataset published to the service, we would
require read-write access to the hosting premium workspace. The tabular
editor can be downloaded from the Internet for free, and once installed can
be accessed from the External Tools section of the Power BI Desktop, as

shown in Figure

fact Sales Incremental - Power Bl Desktop

File Horme Insert Modeling View Help External Tools

D

ALM DAX Tabular
Tooldr Studio Egitor

External Tooks
Lol

ug

Figure 6.19: External Tools in Power BI Desktop

Just like the Tabular there are other tools that can be launched from the
External Tools section of the Power BI Desktop after installation like ALM
Toolkit and DAX as highlighted in Figure If we launch any of these tools
from the Power BI Desktop, by default, they will be connected to the local

Power BI model from which they are being launched. Alternatively, we can

launch the standalone tools separately and connect to a local Power BI

model or a Power BI Service workspace using an XMLA

To connect to the server, after launching the Tabular we can use the Open a
Tabular Model from an existing database button, provide the XMLA
endpoint as the Server and authenticate using the Windows Integrated or

Azure AD login option, as shown in Figure

w
File Edit WView Model Toeoks

- Perspective = Translation:

] | [|/ =] l | L (SR Expreesion Edier Advanced Scacting

Name . Propemy:

L

Cennect to Tabular Server

Loca nstance
Aethentication: (@) Windows Integrated or Azure AD login

) Usamame and Passwoed —
Usesmame

Paggword

< »

(Mo model loaded)

Figure Connecting Power BI workspace from the Tabular Editor

After successful authentication, we can choose a dataset from a list of
available datasets in the workspace, using the Choose Database window.
Once connected to the dataset, the metadata of the model would be visible

on the left-hand pane, as shown in Figure

Choe DRLEDEGE

1 Anct Salet incremental - Tabadar Ecitor 2165

Fle Edit Yew DModd Table Tgols

20 @ Peipective (AN okpecty = Tesnsletions (Mo transistion)
LB [&]%][Q]F] [[]§s Ewmmm bt Advanced Sccang
[=5 Property Defaukt Detud Rewt Exprenmtn =
=i Madel “fact_Sales”.DefaultDetailRewsExpression ==
Dt Soures b
Fersgectiies
Festonares
Foss
b Shared Expresaens
- Tablen
T
» i Pattorn
B OnieDate
H OrserDate Koy
H Productiey
ge
H SeeaTemonyiey
i SseaCuertiumber A
f Snotue !
H Sesslmierlrebomber [+ Bosc
H Orertuannty Descrigion
H Untfece et Faise
H Ecendedimont ey e _Saies
[uerasiscsstPe | v Motadebs
H Dseourtamers Srotiord 3 arrclifcors
0 ProductStedardCon x . et
H TosFrdcton --
g Ssmirort Extendied Propesies D etended properes
B Tete 2 Taii b
Fragit
B Regoriortil ~ Opbions
Trarmlations AN Ty See—
Mama:
Tirwe: rume: of tres: cbyect Waring: Chargng e name Can bk fomuls loge #f Automaetc Formuls Faup s desbied
< »

Figure Metadata of Power BI model in Tabular Editor

The Tabular Editor is an excellent tool in terms of maintaining Power Bl
datasets. For example, let us just hide the key fields of our model on the
service, so that those do not remain visible anymore for the end users on
the report. To do this, we can select a field after expanding the fact Sales
table, then from the properties of the field, the property Hidden can be set

to True as shown in Figure

File Edit Yiew Model Column Tgols

¢ 11) Perspective: (All objects) « | Translation: (Mo translation) = | Filter T —D
M EIFAE @]EL Expression Edtor Advanced Scrpting
Name N, v X B-5 28 75 | Propenty: - o9
~ (D Model 1
Data Sources
P-spocum - |
Relationshes T Saves the changes to the connected database
Roles
» Shared Expressons
v i Tables
v B fact_Sales
B OrderDate Key
B Productkey
B Customeriey
B SalesTemtorykey
| ==
B ShipDate e | £
B SslesOrderlineMumber |+~ Bamic -
B OrderGuantty Data Type Integer / Whole Number (nt64)
B UnitPrice Descrption
B ExtendedAmount Display Folder
B UnePrceDiscountPat Format Siring 0
B DescountAmount False -
H ProductStandandCost Name
B TotalProductCost Sont By Column False
B SelesAmourt Source Column o
B Tacm Summanze By Court
B Freght v Metadata
B RegonMorthiD > Arnotatons 1 annotation
» Translations DAY Lebarifan Eaet Sonbnn Wi Dhniin, bt
Hidden
A boolean value that indicates whether a column is treated as hidden by chent visualzation tools. True f the column is treated a3 hidden; otherwise faise

Figure Updating a field property in Tabular Editor

After performing the required changes for all the fields, selecting Saves the
changes to the connected database will deploy the changes directly to the

dataset in Power BI Service.

If we now edit the report on Power BI Service, the key fields would not be

visible anymore under the Fields as shown in Figure

Before hiding I-ce:;ar fields

Fields

|p

~ B sales

) Z Customerkey

[Z DiscountAmount

[l ¥ FxtendedAmount
] X Freight

OrderDate

[¥ OrderDate Key

[Z OrderQuantity

Z Productkey

) ¥ ProductStandardCost

RegionMonthID

) X SalesAmount
[0 X salesOrderLineNumber

SalesOrderMumber

[Z salesTerritoryKey

ShipDate

L[] ¥ TaxAmt

[X TotalProductCost

) £ unitPrice

[Z unitPriceDiscountPct

After hiding key fields

Fields

‘ “'D Search

v @ fact_sales
(] 2 DiscountAmount
| Z ExtendedAmount
() Z Freight
] OrderDate
) Z OrderQuantity
| X ProductStandardCost
() RegionMonthID
() Z SalesAmount
_J ¥ SalesOrderLineMumber
() SalesOrderNumber
(J ShipDate
] 2 TaxAmt
() Z TotalProductCost
(] Z UnitPrice
(J Z UnitPriceDiscountPct

Figure Changes deployed using Tabular Editor reflecting in Power BI

Service

The Tabular Editor is an extremely powerful tool to update the properties

of objects and build, maintain and conveniently manage tabular models.

Metadata deployment using the ALM Toolkit

Another free external tool, which can make deployment easier by enabling
schema-only The ALM Toolkit is a schema comparison tool, using which

we can deploy any change performed on the local Power BI Desktop file to
the dataset published on the service, by comparing the metadata or schema

of the two models.

Let us understand how it works with an example. As we have the fact Sales
Incremental report published on the service, in case we want to create a
new measure like we can create the measure on the local copy of the Power
BI Desktop file that we initially published and then deploy the change
directly to the service without having to republish the file, using ALM
Toolkit.

If we launch the ALM Toolkit from the External Tools section of a Power
BI Desktop file, by default the .pbix file from which it has been launched is
selected as We need to select the which should be the dataset to which we
want to deploy the changes. As always, the XMLA endpoint of the
workspace needs to be provided and the dataset needs to be selected to

connect to it, as shown in Figure

] Perwe

(=]
Compare Options

B

MAQ Software § Power BI

(®) Power Bl Desktop lact Sabes Incremental ol

o]

(®) Dotaset
Workspace pormrerbe/'/api powerks comev 1 Qimyorg.” w
PR - Siies ncremartal «]
(O Power Bl Deskicp fact Salen Incremental

O Fie

Figure Connecting Source and Target from the ALM Toolkit

Once we click on the ALM Toolkit performs a schema comparison and
displays the schema definitions of both the Source and the Target model,

on the left-hand and right-hand side, respectively, as shown in Figure

T A1M Tanlkit - (] b4

3 q
& V] Q _ﬂ=| ‘ MAQ Software |j Power Bl
Compare Select _ Validate Optons Repart
Actions | Selection Cufferem:
Souce [Fi Deskiop locahost 57332 act Sake Incromertal Target [Distavet. powerbi.// s powedi comv] Dimyorg.
Type Source Name [Stanss Target Name Action
Zame Delimitson
Expression | Same Dafinitinn Hangefnd
Expression RangeStart Same Definrbon RangeStart
il Tasle fact Seles | Same Definition fact_Sales
B Measure TotalSales | Missing im Target | | + Create

Figure Comparison results in ALM Toolkit

We can click on Select Actions and select Hide Skip Objects with Same
Definition to view only the differences. By doing that, in our case, we can
see the only difference between the Source and the Target is the TotalSales
measure in the fact Sales table which we created in the local .pbix file and
1s missing in the If we do not want to deploy a specific change in
definition, the record can be skipped on the Action drop-down on the right-
hand side. To deploy any change, the selected line item(s) need to be
validated first using the Validate Selection option and then can be deployed

using the Update option. The process is illustrated in Figure

- e
N seiecion) s B @ oom MAQ Softvare] Power BI
I | L e o s, wam oo fapet
Hicia 5 — scncme” Sawner Ot
E I Hide Skop Ofjeets with Same Defirison S P i B LI e P B T Ty

e i Dhjecn

\ 4

T I
‘Skip all objects Missing in Source LI e S Bt o Sk

5 Delete a1l objects Missing in Source
Seip 3ll eibjerts Miszing In Target

h Create o objects Migcng i Taeger

1 Seipail ebjeers with Eieeen: Definitiens

Update all chyects with Defferent Cefewtiong

Figure Deploying metadata using ALM Toolkit

If we edit the report on Power BI Service, we would be able to see the

measure now under fact Sales as shown in Figure

Fields »

o

~ B fact Sales
DiscountAmount

FxtendedAmeount

M MM

Freight

CrderDate
CrderQuantity

L ProdudStandardCost

™~

RagionMonthiD
L SalesAmount
1 ¥ SzlesCirderlineMumber
SalesOrderflumber
ShipDate
2 TaxAmt
Z TetalProductCost
I Bl TotalSales
| T UnitPrice
T UnitPriceDistount Pct

Figure Measure TotalSales successfully deployed using ALM Toolkit

Note: If we want to just deploy metadata and do not want to process any
data while deploying, we need to make sure to select Do Not Process as the

Processing which is available under as shown in Figure

=

“ Higrme Felp

Compare Sslect | ‘alidate Optionz| Repon
Artinet eleches NFferene 4

Souce R i 4
Campansnn Cptons
Type | L] holude perssectives

Ex
Ex

m
g O noude s

1 bchcde cultures

| Corsder pattions when sompadg tables
L] Comsidler LinzageTag when compadng
[Far Lebie udates, rebain paribom

[Fur lobin uodates, colan e wal pedecy
[Fortabie undmes rtan somoe node

H Diapary warrga for mefsre Sepencences [DAR
relererce Lo missng Festums column)

Database Deploymeant
Processing Opton. Do Mot Pocess i

[Prcew ooy afiestos tazies

ok] conos

Figure Different options in ALM Toolkit

There are multiple comparison and deployment options available under
Options in the ALM Toolkit, which can be used for different deployment

requirements.

Conclusion

In this chapter, we learned how to work with really large datasets in
Power BI, using an incremental refresh. We explored in detail how
concepts like table partitioning work and the key considerations that
we need to keep in mind in the time of configuring an incremental
refresh policy. The table partitions are not visible on Power BI
Service and can only be viewed and managed using the XMLA
endpoint of a premium workspace from tools like SSMS. We have
gone through the refresh management process in SSMS as well as
discussed how to access the TMSL script of a Power BI dataset.
Finally, we saw how external tools like the Tabular Editor and ALM
Toolkit can help to manage reports directly on Power BI Service.
This knowledge should help readers to deploy an end-to-end

enterprise solution using Power BI.

Knowledge Check

Which of the following tools allows us to compare schemas between

two Power BI models?

Tabular Editor

ALM Toolkit

SQL Server Management Studio

Partitions in a table get created during the initial refresh of the Power
BI model:

True

False

Using XMLA endpoint, we can connect a Power BI workspace from

external tools:

True

False

All Knowledge Check answers are provided at the end of the book.

C

HAPTER
7

DAX Reference Guide

Introduction

In this chapter, we are going to explore some of the most commonly
used Data Analysis Expressions that are available in Power BI. As
we already have seen, DAX is extremely useful in enhancing the data
model by introducing calculated tables, columns and measures, and
this chapter should provide enough information about the common
DAX functions including the syntax, parameters and return values
with suitable examples. Apart from that, the functions would also be
categorized based on their usage for easy navigation. The functions
that we already have discussed in earlier chapters, would also be
listed here with the syntax just for reference, however, we would not
go into further details about them, as the applicability of those

functions has already been demonstrated.

Structure

In this chapter, we will discuss the following topics:

Aggregation functions

Date-Time functions

Filter functions

Information functions

Logical functions

Relationship management functions

Text functions

Table-specific functions

Time intelligence functions

Other functions

Objectives

DAX has hundreds of functions, and the objective of this chapter is
not to discuss each one of them, but rather to introduce readers to
some selective functions which they can apply for building logic in
common reporting scenarios. The Epilogue section of the book
would have a link to the official documentation from Microsoft for
DAX functions, which should be referred to for a complete list with
detailed information. The expectation from the readers is that after
going through the examples of this chapter, they would implement
similar logic with their own set of data to get more familiarized and
confident about DAX, and then explore other functions and
variations themselves. Hopefully, this reference guide would help
readers to derive much more insights about their data using DAX for

the Power BI projects they are working on.

Aggregation functions

Aggregation functions aggregate values for rows in a column or table
and return a single scalar value. A few commonly used aggregation

functions in DAX are:

SUM: Adds all numbers in a column

Syntax: SUM()

Parameter: Column containing values to sum up.

Refer to Chapter Data Modeling in Power BI for more details.

AVERAGE: Returns the average value or mean value of all numbers

in a column

Syntax: AVERAGE()

Parameter: Column containing values to compute the average.

For example, for the fact Sales table that we have used in the Sales
the following DAX code computes the average value of

SalesAmount for the measure

AvgSales =

COUNT: Counts the number of non-blank rows in the specified
column. Supported data types: Number, Date, String.

Syntax: COUNT()

Parameter: Column containing values to be counted.

For example, the following DAX code calculates the total number of

sales orders present in the fact Sales table, for measure

SalesOrderCountl =

COUNTA: Counts the number of non-blank rows in the specified

column. Supported data types: Number, Date, String and Boolean.

Syntax: COUNTA()

Parameter: Column containing values to be counted.

COUNT and COUNTA should produce the same result for columns
with the supported data types, except for Boolean or True/False

columns that only COUNTA supports.

Similar to the measure SalesOrderCount2 also calculates the total

number of sales orders in

SalesOrderCount2 =

COUNTBLANK: Counts the number of blank records in a column

Syntax: COUNTBLANK()

Parameter: Column containing the blank values to be counted.

To find if there are any blank records in the SalesOrderNumber

column, the following expression can be used to measure

BlankOrders =

If no record meets the criteria, the function returns blank.

COUNTROWS: Counts the number of records in a table

Syntax: COUNTROW S(

)

Parameter: The table containing the records or rows to be counted.

The following expression counts the total number of records in the

fact_Sales table for the measure

RowCount = COUNTROWS(fact_Sales)

DISTINCTCOUNT: Counts the number of distinct or unique values in a

column

Syntax: DISTINCTCOUNT()

Parameter: Column containing the values to be counted.

The following expression counts the number of distinct orders in the

fact_Sales table, for measure

DistinctOrders = distinctcount(fact Sales[SalesOrderNumber])

MAX: Returns the largest value in a column, or between two scalar

expressions

Syntax: MAX() or MAX(,)

Parameter: Either of the below:

Column containing the values to find the maximum.

returning single scalar values.

To find the largest order values in the following expression can be

used in

MaxOrder = MAX(fact Sales[SalesAmount])

MIN: Returns the smallest value in a column, or between two scalar

expressions

Syntax: MIN() or MIN(,)

Parameter: Either of the below:

Column containing the values to find the minimum.

Expressions returning single scalar values.

To find the smallest order values in the following expression can be

used to measure

MinOrder = MIN(fact Sales[SalesAmount])

SUMX: Returns the sum of an expression, evaluated in a row context

Syntax: SUMX(

y

Parameters:

Table containing rows for which the expression would be evaluated.

Expression to be evaluated for each row.

In the fact Sales table, we have two fields OrderQuantity and If we
want to calculate the total price for all orders, we need to multiply
OrderQuantity and UnitPrice for each row or in a row context, and
then aggregate. The following expression computes the total price for

the TotalPrice measure:

TotalPrice =
SUMX(fact_Sales,fact Sales[OrderQuantity]*fact Sales[UnitPrice])

Date-Time functions

Date-Time functions help to create calculations based on date and

time. A few commonly used Date-Time functions are:

DATE: Returns a date in datetime format

Syntax: DATE(,,)

Parameters:

A number representing the year (a valid year should be more than or
equal to 1900).

A number representing the month (valid values are 1 to 12, 1

represents January while 12 represents December).

A number representing the day (valid values are 1 to 31).

For example, the following DAX formula represents March 2023, as

used in measure

MsDate = DATE(2023,3,7)

DATEDIFF: Returns the number of intervals between two dates

Syntax: DATEDIFF(,,)

Parameters:

The first date value.

The second date value.

The interval used when comparing dates. Valid values are:

SECOND

MINUTE

HOUR

DAY

WEEK

MONTH

QUARTER

YEAR

To find the difference of date (for example, March 2023) with the last

year, the following expression can be used to measure

MSDateDiff =

VAR datel =

DATE (2023, 3,8)

VAR date2 =

DATE (2022, 3, 8)

RETURN

DATEDIFF (datel, date2, YEAR)

The function returns a positive value if Date2 is larger than
otherwise, it returns a negative value. Here, the output of
MSDateDiff should be -1.

EDATE: Returns a date that is the indicated number of months before
or after the start date

Syntax: EDATE(,)

Parameters:

A date representing the Start Date.

An integer representing the number of months we want to move

forward or backward.

The following expression as used in measure 3MonthsA fter returns
June 2023, which is a 3-month future date from March 2023:

3MonthsAfter = EDATE(date(2023,3,8),3)

CALENDAR: Returns a table with a single column named ‘Date’
containing a contiguous set of dates ranging between the start date

and end date as specified, inclusive of the two dates.

Syntax: CALENDAR(,)

Parameters:

DAX expression representing the start date.

DAX expression representing the end date.

The following expression returns a single columned table having all
dates of 2023:

DateTable = CALENDAR(date(2023,1,1),date(2023,12,31))

TODAY: Returns the current date, in a datetime format

Syntax: TODAY()

Parameter: No argument required.

The following expression returns the current date for the measure

CurrDate = Today()

UTCNOW: Returns the current date and time in UTC

Syntax: UTCNOW()

Parameter: No argument required.

The following expression returns the current date and time in UTC,

for the measure

UTCDateTime = UTCNOW()

Filter functions

The Filter functions help to implement dynamic calculations by

manipulating the filter context. A few commonly used filter functions are:

CALCULATE: Evaluates an expression in a context modified by filters.

Syntax: CALCULATE([, 1>, 2> [, ...11)

Parameters:

The expression to be evaluated (should return a single scalar value).

Expression that defines a filter (optional and repeatable).

Refer to Chapter Data Modeling in Power BI for more details.

FILTER: Returns a table that represents a subset of another table or

expression.

Syntax:)

Parameters:

The table (or expression returning a table) to be filtered.

An expression that is to be evaluated for each row of the table.

Refer to Chapter Data Modeling in Power BI for more details.

ALL: Returns all rows in a table, or all values from a column, ignoring any
filter that might have been applied to the table or column respectively. ALL
is mostly used as an intermediate function while performing other

calculations.

Syntax: ALL(

or)

Parameters (optional):

Table for which the applied filters would be ignored.

Column for which the applied filters be ignored.

Let us understand it further in the context of a report. The following measure
TotalSalesAcrossCat computes the total sales amount for ignoring any filter that
might have been applied for the Category column of dim_Products filters

fact Sales on the ProductKey field):

TotalSalesAcrossCat =
CALCULATE([TotalSales],ALL(dim_Products[Category]))

The TotalSales measure is just summing up the sales amount in

TotalSales = SUM(fact Sales[SalesAmount])

In case we display both the TotalSales and the TotalSalesAcrossCat
measures in a report using cards, with a slicer for Category created from
the dim_Products table, the two measures should show the same value
when we do not select anything on the slicer. However, if we select a
specific category on the slicer, the value of TotalSales should be filtered as
per the slicer selection, while the TotalSalesAcrossCat measure should
ignore the applied category filter and show the same value as before, as

shown in Figure

Bives "
Clothing B Clothing

29.36M 29.36M 339.77K 29.36M

TotalSales TotalSalesd croesUnt Totalhales Todalbalesd croes Cat

Figure Ignoring context filter using ALL

When no argument is passed to it ignores all filters that may have been

applied across the model, for the calculation involved.

ALLEXCEPT: Removes all context filters in the table except for filters that

have been applied to the specified columns.

Syntax: ALLEXCEPT(

’)

Parameters:

The table for which all context filters are removed.

The column(s) for which the context filters must be preserved.

ALLEXCEPT is used as an intermediate function while performing other
calculations. For example, the following expression retains all filters that
have been applied on the Country column of table while ignoring all other

context filters for the rest of the columns in the table:

TotalSalesFilterCountry =

CALCULATE ([TotalSales], ALLEXCEPT (dim_Territory,
dim_Territory[Country]))

SELECTEDVALUE: Returns the value when the context for the specified
column has been filtered down to only one distinct value, otherwise returns

the alternate result as specified.

Syntax: SELECTEDVALUE(,)

Parameters:

The name of an existing column cannot be an expression.

(Optional) The value to be returned when the context of the specified

column has been filtered down to zero or more than one distinct value. If
not provided, BLANK() is returned by default.

One common use of SELECTEDVALUE is to capture the value that has
been selected in a report slicer. For example, as we have created the slicer

for Category from the dim_Products table (refer to Figure the following

expression as used in measure returns the value that has been selected in
the Category slicer:

SlicerSelection = SELECTEDVALUE(dim_Products[Category])

Figure 7.2 shows the value of SlicerSelection using a card, in the context of

the report:

Category

__| Accessories

_ o Clothing

B Clothing

— SlicerSelection
L_| Components

Figure Capturing the selection of a slicer using SELECTEDVALUE

CALCULATETABLE: Evaluates an expression in a context modified by
filters

Syntax: CALCULATETABLE(

y

Parameters:
The table expression to be evaluated.

(Optional and repeatable) expressions that define filters.

The following expression returns a table containing only the customers

having Management as the filtering the dim_Customers table:

CustomersMgmt =

CALCULATETABLE (dim_Customers, dim_Customers[Occupation] =

"Management")

CALCULATETABLE is similar to except for the fact that it returns a table

instead of a scalar value.

Information functions

The information functions look at the argument reference and provide
information about whether the value matches the expected type. A few

commonly used information functions are:

ISBLANK: Checks whether a value is blank, and returns either True or

False

Syntax: ISBLANK()

Parameter: The value or expression to be tested.

For example, the following expression used in the calculated column
returns a True whenever it encounters a blank value for and returns a False

for all non-blank values:

BlankOrNot = ISBLANK('DAX TEST'[Column1])

Figure 7.3 shows the outcome of applying ISBLANK in

1 BlankOrhot = ISBLANK('DAX TEST'[Columnl])

Columnl | = | EIELLG T ~

True False
True

False Faise
True

Figure ISBLANK returning True or False

ISERROR: Checks whether a value is an error, and returns either True or

False

Syntax: ISERROR()

Parameter: The value to be tested.

The ISERROR function is used to check for errors, such as division by
zero. For example, the following expression computes the cost-to-sales
ratio for the measure Cost:Sales in fact Sales and returns blank for any

error. Otherwise, the ratio is returned:

Cost:Sales =

VAR ratio =

SUM (fact Sales[TotalProductCost]) / SUM (
fact Sales[SalesAmount])

RETURN

IF (ISERROR (ratio), BLANK (), ratio)

ISFILTERED: Returns True if the specified table or column is being
filtered directly

Syntax: ISFILTERED(

or)

Parameter: The name of an existing table or column.

For example, the expression used in the measure FilteredOrNot returns a True in
case we select a value in the Category slicer. If nothing is selected, which means
no filters are applied to the category, then the measure returns as shown in

Figure

FilteredOrNot = ISFILTERED(dim_Products[Category])

Category Category

Accessories > Accessories >

False W ok

Bikes

Clothing Clothing

True

Components o) Components

No filter applied for category Category = 'Bikes’

Figure ISFILTERED returning True when the specified column is filtered

ISNUMBER: Checks whether the specified value is a number or not, and

returns True or False

Syntax: ISNUMBER()

Parameter: The value to be tested.

For example, the following expression, as used in measure returns True for

123 being a number:

NumberOrNot = ISNUMBER(123)

ISTEXT: Checks whether the specified value is text or not, and returns

True or False

Syntax: ISTEXT()

Parameter: The value to be tested.

For example, the following expression, as used in measure returns True for
ABC is a text:

TextOrNot = ISTEXT("ABC")

USERNAME: Returns the domain name and username from the

credentials provided to the system at the connection time

Syntax: USERNAME()

Parameter: No argument required.

In Power BI Desktop, USERNAME returns the user information in the

format of

USERPRINCIPALNAME: Returns the user principal name

Syntax: USERPRINCIPALNAME()

Parameter: No argument required.

In Power BI Desktop, USERPRINCIPALNAME returns the user

information in the format of User@domain.com

USERNAME and USERPRINCIPALNAME functions are mostly used

while configuring row-level security or RLS in Power BI.

Logical functions

Logical functions act upon an expression and return information
about the values or sets in the expression. A few commonly used

logical functions are:

AND: Returns True when both arguments are True, otherwise returns

False

Syntax: AND(,)

Parameters: The logical values to be tested.

The following expression as used in measure returns True as both the

arguments > 1 and 3 > are True in nature:

UseOfAND = AND(2>1,3>2)

The AND function in DAX accepts only two arguments. If needed
for multiple arguments, the AND function can be nested, or the AND

operator can be used.

OR: Returns True when any one of the arguments 1s True, returns

False when both arguments are False

Syntax: OR(,)

Parameters: The logical values to be tested.

The following expression as used in measure returns True as the first

argument > 1) is True in nature, while the second (3 <2) is

UseOfOR = OR(2>1,3<2)

The OR function in DAX accepts only two arguments. If needed for
multiple arguments, the OR function can be nested, or the OR

operator (||) can be used.

NOT: Changes False to True, or True to False

Syntax: NOT()

Parameter: A value or expression that can be evaluated as True or

False.

In the following expression, as used in measure the logical test 2 > 3
is False in nature. Hence the test NOT(2 > 3) becomes True, and the

result Expression is True is returned:

UseOfNOT = IF(NOT(2>3), "Expression is True","Expression is
False")

IF: Validates a condition and returns a value when TRUE, otherwise

returns an alternate value.

Syntax: IF(, [,])

Parameters:

Any expression that returns either TRUE or FALSE.

The value to be returned if a logical test is TRUE.

The value to be returned if a logical test is FALSE. This is optional

and 1f omitted, BLANK is returned.

Refer to Chapter Data Modeling in Power BI for more details.

SWITCH: Evaluates an expression against a list of values and returns

result expressions as specified

Syntax: SWITCHG,, [,,]...[,])

Parameters:

DAX expression returning a single scalar value.

Constant value to be matched with the results of the expression.

The result expression in case of a match.

Optional, the alternate result.

In case, we have a column representing month numbers in a table, the
following expression used is calculated column MonthName should

return the corresponding month names (starting from 1 for January to
12 for December):

MonthName =

SWITCH (

'Month'[MonthNumber],

1, "January",

2, "February",

3, "March",

4, "April",

5’ '!May"’

6, "June",

7, "Jlllyn,

8, "August",

9, "September",

10, "October",

11, "November",

12, "December",

"Not Valid")

Also, in case of any invalid month number, the alternate result Not

Valid would be returned.

TRUE: Returns the logical value True

Syntax: TRUE()

Parameter: No argument required.

The function always returns the word True is also interpreted as

logical value True.

FALSE: Returns the logical value False

Syntax: FALSE()

Parameter: No argument required.

The function always returns the word False is also interpreted as

logical value False.

Relationship management functions

Relationship functions help to manage and utilize relationships

between tables. A few commonly used relationship functions are:

RELATED: Returns a related value from another table.

Syntax: RELATED()

Parameter: Column that needs to be referred.

Refer to Chapter Data Modeling in Power BI for more details.

USERELATIONSHIP: Specifies the relationship to be used in a
calculation. Though Power BI supports only one active relationship,
there can exist multiple inactive relationships between two tables.
USERELATIONSHIP can enable the indicated inactive relationship
for the duration of the calculation. The function itself does not return

any value.

Syntax: USERELATIONSHIP(,)

Parameters:

The name of an existing column, that usually represents the many (*)

side of the relationship to be used.

The name of an existing column, that usually represents the one (1)

side of the relationship to be

In our Sales Report data model, there is an active relationship
between fact Sales and If we want to slice a measure (for example,
sum of using ShipDate instead of the default an inactive relationship
can be created between fact Sales and Then, the following
expression as used in measuring SalesByShipDate can be used to
override the default active relationship with the newly created

1nactive one:

SalesByShipDate =

CALCULATE (

SUM (fact Sales[SalesAmount]),

USERELATIONSHIP (fact Sales[ShipDate], dim Calendar[Date]
)

Text functions

The Text functions help to perform string operations in DAX. A few

commonly used Text functions are:

CONCATENATE: The CONCATENATE function joins two text

strings into one text string

Syntax: CONCATENATE(,)

Parameters:

The first text string (the string can include both texts and numbers).

The second text string (the string can include both texts and

numbers).

In the dim_Customers table of the Sales we have AddressLinel and
The following expression as used in the calculated column combines
the two parts of the address into a single complete address, separated

by a space:

FullAddress =

CONCATENATE (dim_Customers[AddressLinel | & " ",
dim_Customers[AddressLine2])

FIXED: Rounds a number to the specified number of decimals and

returns the result as text.

Syntax: FIXED(, ,)

Parameters:

The number 1s to be rounded and converted to text.

Optional, the number of decimal places to be shown (2 decimals by
default).

Optional, if 1, commas are not displayed in the returned text while

for 0, commas are displayed.

The following expression returns 0.7 as a text, as used in measure

UseOfFIXED = FIXED(2/3,1)

This is because the result of 2 divided by 3 is 0.67; as we are
showing a single decimal place in the measure, the value is rounded

up to 0.7.

FORMAT: Converts a value to text according to the specified format

Syntax: FORMAT(,)

Parameters:

The value to be converted to text.

A string with the formatting template.

The following expression as used in measure UseOfFORMAT

converts the date March 2023 to the text

UseOfFORMAT = FORMAT(DATE(2023,3,22), MMM/YYYY")

LEN: Returns the number of characters in a text string

Syntax: LEN()

Parameter: The text for which the length is to be determined. Spaces

count as

For example, the following expression as used in measure returns 8

for the text Power

TextLength = LEN("Power BI")

LEFT: Returns the specified number of characters from the start of a

string

Syntax: LEFT(,)

Parameters:

The text string containing the characters to be extracted.

Optional, the number of characters to be extracted; the default value

1s 1.

For example, the following expression as used in measure

ExtractLeft returns Self (4 characters from the left):

ExtractLeft = left("Self Service Analytics",4)

RIGHT: Returns the specified number of characters from the end of a

string

Syntax: RIGHT(,)

Parameters:

The text string containing the characters to be extracted.

Optional, the number of characters to be extracted; the default value

1s 1.

For example, the following expression as used in measure

ExtractRight returns Analytics (9 characters from the end):

ExtractRight = right("Self Service Analytics",9)

MID: Returns a string of characters from the middle of a text string,

for the specified starting position and length

Syntax: MID(, ,)

Parameters:

The text string containing the characters to be extracted.

The position of the first character to be extracted; the position starts

from 1.

The number of characters to be extracted.

For example, the following expression as used in measure
ExtractMid returns Service (extracting 7 characters starting from

position

ExtractMid = Mid("Self Service Analytics",6,7)

SUBSTITUTE: Replaces existing text with new text in a text string

Syntax: SUBSTITUTE, , ,)

Parameters:

The text string containing the characters to be substituted.

The existing text is to be replaced.

The new text will replace the existing text.

Optional, the occurrence of existing text to be replaced; if omitted, by

default every instance of the existing text is replaced.

For example, the following expression as used in the measure returns

Self Service Analytics with Power

SubstituteText =

SUBSTITUTE ("Self Service Analytics", "Analytics", "Analytics
with Power BI")

Table specific functions

Table-specific functions help to manipulate existing tables or return

new tables. A few commonly used table-specific functions are:

ADDCOLUMNS: Adds calculated columns to the specified table or

table expression

Syntax: ADDCOLUMNS(

oo [1)

Parameters:

Table where the column is to be added.

Name of the new column, enclosed in double quotes.

DAX expression evaluated for each row of the table.

For example, the following expression returns a calculated table based on
the original dim_Customers table with an added column Income following

the logic as defined in the expression:

CustomerTable =

ADDCOLUMNS (

dim_Customers,

"Income Group",

IF (

dim_Customers[Yearlylncome] >= 100000,

"High'l,

[F (dim_Customers| Yearlylncome] >= 50000, "Medium",

"LOW")

DISTINCT: Returns a one-column table containing distinct values

from the column which is passed as a parameter to this function.

Syntax: DISTINCTY()

Parameter: The column from which unique values are to be returned.

Refer to Chapter Data Modeling in Power BI for more details.

SUMMARIZE: Returns a summary table for the specified expression

over a set of groups

Syntax: SUMMARIZE(

9 [9 9]"')

Parameters:

Table to summarize data.

Optional, existing column(s) to create summary groups.

The name of the summarized column; enclosed in double quotes

DAX expression evaluated for each row.

In the fact Sales table, we have the sales transactions where the
SalesAmount represents the sales quantity for an individual
transaction. The dim_Territory table stores geographical information
like Country, and so on. The dim_Territory table filters fact Sales on
the SalesTerritoryKey field. The following expression groups the
SalesAmount in fact Sales by different countries of and creates the

new calculated table GroupByCountry as shown in Figure

GroupByCountry =

SUMMARIZE (

fact Sales,

dim_Territory[Country],

"Country Sales", SUM (fact Sales[SalesAmount])

)

X «~ |1 GroupByCountry =
2 SUMMARIZE (
3 fact Sales,
4 dim_ Territory[Country],
5 "Country Sales™, SUM (fact_Sales[SalesAmount])
65)

Country = | Country Sales | =

United States 0389789.51

Canada 1877844.86

France 264401771

Germany 2894312.34

Australia 9061000.58

United Kingdom 3391712.21

Figure Using SUMMARIZE to group by

UNION: Create a combined table from a pair of tables having the

same number of columns.

Syntax: UNION(,)

Parameter: Any DAX expression that returns a table.

Refer to Chapter Data Modeling in Power BI for more details.

Time intelligence functions

Time intelligence functions help to manipulate data using time
periods including days, months, quarters and years. A few commonly

used time intelligence functions are:

DATEADD: Returns a column of dates, shifted either forward or
backward in time by the specified number of intervals from the dates

in the current context

Syntax: DATEADD(, ,)

Parameters:

Column containing dates.

An integer specifying the number of intervals.

The interval by which to shift the dates. Valid values are:

year

quarter

month

day

For example, the following expression as used in the calculated
column LastYearOrderDate returns dates that are one year before the

OrderDate in the current context:

LastYearOrderDate = DATEADD(fact Sales[OrderDate],-1,YEAR)

FIRSTDATE: Returns the first date or the earliest date in the current

context for the specified column of dates

Syntax: FIRSTDATE()

Parameter: Column containing dates

The expression as used in measure FirstNonBlankOrderDate returns

the earliest order date in the context of the report:

FirstNonBlankOrderDate = FIRSTDATE(fact_Sales[OrderDate])

LASTDATE: Returns the last date or the latest date in the current

context for the specified column of dates

Syntax: LASTDATE()

Parameter: Column containing dates.

The expression as used in measure LastNonBlankOrderDate returns

the latest order date in the context of the report:

LastNonBlankOrderDate = LASTDATE(fact Sales[OrderDate])

SAMEPERIODLASTYEAR: Returns a date column shifted one year

back in time from the dates that have been specified, in the current

context.

Syntax: SAMEPERIODLASTYEAR()

Parameter: A date column.

Refer to Chapter Visualizing Data in Power BI for more details.

TOTALYTD: Evaluates the year-to-date value of an expression in the

current context.

Syntax: TOTALYTD([,] [,])

Parameters:

Expression returning a scalar value.

A date column.

Expression specifying a filter condition (optional).

A string defining the year-end date (optional, default is December
31).

Refer to Chapter Visualizing Data in Power BI for more details.

Other functions

Miscellaneous functions to perform specific actions. A few commonly used

functions in this category are:

BLANK: Returns a blank. Blanks and nulls or empty strings (‘“’’) are not

always equivalent, however, some operations may treat them as such

Syntax: BLANK()

Parameter: No argument required.

For example, while discussing the ISERROR function, we have created the

Cost:Sales measure as below:

1 CostiSales =
2 WAR ratioc =
M (fact_Sales[TotalProductCost])} / SUM { fact_Sales[Salesfmount])
i RETURM
5 IF || ISERROR (ratio), BLANK (), ratio [}

Figure Cost:Sales measure

In the measure, if the variable ratio returns an error (for example, if the
denominator is zero), then the measure would return a blank, otherwise the

ratio itself is returned.

ERROR: Raises a user-specified error. When triggered, this function stops

the execution raising an error with the description as provided in the error

text.

Syntax: ERROR()

Parameter: The error message as a text string.

For example, the following expression raises an error instead of a blank

when the denominator is zero for the Cost:Sales WithError measure, as

shown in Figure

Cost:Sales WithError =

VAR ratio =

SUM (fact Sales[TotalProductCost]) / SUM (fact Sales[SalesAmount]
)

RETURN

IF (

SUM (fact Sales[SalesAmount]) =0,

ERROR ("No sales for this period"),

ratio

Couldn’t load the data for this visual

MdxScript(Model) (66, 27) Calculation error in measure
® ‘DAXFunctions'[Cost:Sales TEST]:|No sales for this period|
A

Can't display the visual. See details
|

/
| Copy details to clipboard /f

___1_ /
e— / Send a Frown Close
—— f

Figure Cost:Sales WithError measure

Conclusion

In this chapter, we went through different categories of DAX
functions and explored a few commonly used ones from each
category. As already mentioned, this i1s not an exclusive list of all
DAX functions, but instead a collection of selected functions which
have high usability besides being easy to understand, especially for
business users. By the end of the chapter, readers should be able to
build their custom logic using DAX as per the reporting requirements

they have and eventually gain expertise over the time!

Knowledge Check

Which of the following functions evaluate an expression in a row

context?

SUMX

CALCULATE

FILTER

Which of the following functions can be used to round a decimal

number and return it as text?

ROUND

FIXED

UP

To count the number of non-blank rows in a Boolean column, which

function can be used?

COUNTNONBLANK

COUNTA

COUNT

All Knowledge Check answers are provided at the end of the book.

Join our book’s Discord space

Join the book's Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the
Authors:

https://discord.bpbonline.com

C

HAPTER
8

Use Case - Creating a Risk Report in Power Bl

Introduction

You have now reached the final chapter of the book! Now that we
have a solid understanding of the subject, time to face some real-
world business problems and see how Power BI can provide an
efficient solution. In this chapter, we are going to create a solution for
a problem that is extremely common across different industries. In
any project, from a management perspective, it is required to identify,
analyze and mitigate potential risks throughout the lifecycle of the
project. Besides that, risks need to be categorized as well to identify
which one needs the earliest attention for the project to remain on
track. Usually, this problem is handled manually using Excel files
which can be a tedious job to carry out regularly. Let us see how
Power BI can come to the rescue to create an automated solution, in
the form of a self-service risk report, which immediately can enable
capabilities like live project risk monitoring without any or minimum

manual interventions.

Structure

In this chapter, we will discuss the following topics:

The reporting requirements

Creating the design

Performing transformations

Modeling data

Creating the report

Publishing reports and scheduling refreshes

Creating a cross-workspace design

Report personalization

Analyze in Excel

Objectives

The objective of this chapter is focused towards enabling readers to
apply the concepts learnt throughout the book with a business use
case. Developing a business intelligence report demands creativity
besides technical knowledge, and this chapter shall aim to
demonstrate how an outside-the-box solution can be developed, even
for an extremely common problem. Apart from that, readers would
also be introduced to new concepts like cross-workspace design,
personalizing reports for the end users to self-serve and so on. We
would also explore how to integrate Power BI datasets with Excel.
By the end of this final chapter, readers would, not only have more
tools at their disposal but should also become more exploratory while

designing a solution using Power BI.

The reporting requirements

The project records information involving potential risks like failed
deadlines, delayed delivery, out-of-the-scope requirements, and so on.
Every risk is assigned to a unique identifier called Risk A risk record
captures information like a description of the risk, record creation date, the
status of the risk, the severity of the risk, the likelihood of the risk, any

mitigation plan, and so on.

Severity and Likelihood are the parameters based on which risk is assessed.
Severity implies the impact that the risk can pose to the project or business,
while the Likelihood of risk means the probability of the risk to happen. In
the project, Severity is categorized as Medium, or High while the
categories for Likelihood are Very Medium or For example, in the case of a
mission-critical database for business, the Severity of failure would be
High while the Likelihood of failure should be Low or Very as usually

mission-critical systems are configured to be fault tolerant.

Figure 8.1 shows a snapshot of the risk data that is being maintained for the

project:

[Riskid Title

'! Sample Risk:4
£ Sample Risk:52
:3 Sample Risk:30
'4 Sample Risk:67
5 Samplhe Rishil
& Sample Risk:ST
7 Sample Risk:35
:8 Sample Risk:63
-] Sample Risk:2
Em Sample Risk:27
11 Sample Risk:37
2 Sample Risk:63
M3 sample Risk:19
fa Sample Risk:14
f1s Sample Risk:07
N6 Sample Risk:30
:1? Sample Risk:35
18 Sample Risk:29
Mo Sample Risk:49
20 Sample Risk:69
IE3} Sample Risk:46
:zz Sample Rish. G0
23 Sample Risk:77
f2e Sample Risk:55

Dare Modifie Date Created Description

22-May-12
27-0ct-21
27-0ct-21
22-May-22
22 May 22
03-Feb-21
27-May-37
22-May-22
18-Jan-21
17-Jan-22
23-May-22
03-Aug-22
03-Aug-il
22-May-23
27-0c1-21
03-Aug-22
22 May 22
22-May-22
22-May-22
22-May-37
22-May-22
27-On-21
22-May-22
01-Aug-22

12-Mov-20 Risk Description:4

15-Mov-20 Risk Cescription:52
23-Nov-20 Risk Description:80
23-Mov-20 Risk Description:67
23 Mov 20 Risk Deseriptioni1

23-Mev-20 Risk Description:S7
?3-Nov=201 Risk NDescriprion:35
01-0ec-20 Risk Description: 68
01-Dec-20 Risk Description:2

02-0ec-20 Risk Description:27
06-Jan-21 Risk Description:37
20-Jan-21 Risk Description:63
20-Jan-21 Risk Description:19
20-lan-21 Risk Description: 14
09-Fel-21 Risk Description:97
14-Teb-21 Risk Descrintion:30
14 Feb 21 Risk Description: 36
14-Feb-21 Risk Description:29
14-Feb-21 Risk Description:49
14-Feb-21 Risk Description:69
18-Feb-21 Risk Description:46
28-Fel-21 Rish Descriptiv .G
05-O¢t-21 Risk Description: 77
05-Oct-21 Risk Description:55

Closed
Closed
Closed
Closed
Closed
Closed
Closed
Closed
Closed
Clazed
Closed
Clased
Closed
Closed
Closed
Closed
Closed
Closed
Closed
Closed
Closed
Cluzed
Closed
Closed

Category Severity
Scope High
Scope High
Scope Medium
Scope Medium
Scope Low
Scope High
Technical Medium
Scupe Medium
Scope High
Scope Medium
Scope Low
Scope High
Quality High
Scope Low
Technical High
Resource Wigh
Technical High
Scope High
Technizal High
Scape High
Technical Low
Technical High
Scope High
Scope Medium

Figure Mock-up risk data

Likefihoed Action

Medium
High
Low
Low
Lowe
High
Medium
High
Medium
Low
Very Low
Medium
Very Low
Medium
High
Medium
Medium
Low
High
High
Medium
Medium
Medium
Low

Action:4

Aclion:52
Action:80
Action:67
Mctioni1

Action:ST
Action:35
Action:63
Action:2

Action: 27
Action:37
Action:63
Action:1%
Action:14
Aclion: 97
Action:30
Action: 36
Action:29
Action:a9
Action:6%
Action:45
Axtivar. GO
Action: 77
Action:55

Comments

Comment:4

Comment:52
Comment:80
Comment:67
Commentil

Comment:57
Comment:35
Comment:58
Comment:2

Comment:27
Comment:37
Comment:63
Comment:13
Comment: 14
Comment: 97
Comment:30
Comment: 35
Comment:29
Comment:49
Comment:53
Comment:45
Conmmnent. G0
Comment:77
Comment:55

The data is used to assess the status of every risk record as per the mapping

shown in Figure

Low
Low
Low

Low

Medium

Very Low

Low

Very Low

Low Risk
Low Risk
Medium Risk
Medium Risk
Low Risk
Medium Risk
Medium Risk
High Risk
Medium Risk
Medium Risk
High Risk
High Risk

Figure Mapping for assessing the status of risks in a project

Depending on the risk status, the priority of the action or mitigation plan is
determined. Hence the primary requirement is to have an automated way of
computing and visualizing the risk status for every risk at a glance. The
report users should also be able to view additional information associated
with a specific risk. Apart from that, the report should be interactive
enough and also users would ideally be able to self-serve in terms of
creating their own views using the underlying data, to cater to individual

visualization requirements maintaining a single point of truth.

Let us now explore how a solution can be created using Power BI,

delivering all the requirement specifications that have been presented.

Creating the design

The source file of the risk data is a CSV file, that gets generated from a
custom application daily and saved in a SharePoint online folder. Power BI
will consume the data from SharePoint. After performing the required
transformations, the data will be modeled, and the report will be created in
Power BI Desktop. Once the report is published to Power BI Service,
having SharePoint online as the data source, the dataset should directly
refresh using the data source credentials without the need for any data

gateway.

As we need to create a self-service model, we will publish a copy of the
live connected report to a separate workspace. The workspace having the
dataset would be restricted to only the report authors or developers who
will be maintaining the dataset. The workspace containing the live
connected report can be accessed by the Super who would be able to
update or alter the report if required. Finally, the live connected report will
be distributed to the end user group via an app, who would be able to

personalize the report as per their own need as well as create custom views.

Figure 8.3 illustrates the architectural design that we will implement for

this requirement:

e = o
s //' \\ P ,./.f’
o . 251 Ty Py e
T i Feovrer Bl dasliop 4 i) teesctil seemics
Seld', Sed'
(] [)
-_ -. : Rapart suhasideenks e SapT s
i 4 iurrhongrann oo Tk Rhdarns Tiorizpace jar Ruck Report
cLiTTLIInn ool e
KRR . Lire dismibudl an
Larpeaer Ll Tl sdiveh Y - Liva i Rids
Lepanba | Ri-aRipus e Ay — -
LR, and Lataier :
L Abaw 4
Paiint
haba 3ol
1IN
NG
ASAELE

Figure Architectural design diagram

The design should support all the requirement specifications that have been
provided. However, we need to also think about the best possible way to
design the report itself, so that risk status across the spectrum can be
visualized intuitively. Looking at the mappings as shown in Figure every
record in the dataset would fall into either of the three possible risk
statuses, depending on its severity and likelihood categories. There are 3
severity categories and 4 likelihood categories. Hence, if we create a 3 by 4
matrix, that should accommodate every risk that we have in the data. If we

plot it, the chart should look somewhat like Figure

S = Severity
L = Likelihood
.--‘"'---_
4 S(1), L(4) S(2), L(4) S(3), L(4)
3 5(1), L(3) 5(2), L(3) S(3), L(3)
2 S(1), L(2) 5(2), L(2) S(3), L(2)
1 S(1), L(1) 5(2), L(1) S(3), L(1)
- L S
1 2 3

Figure Visualizing a risk matrix

Now that we have a design in place alongside a plan regarding how to
proceed with developing the solution, let us try to implement it hands-on

and see the outcome!

Performing transformations

In Power BI Desktop, once the risk data is loaded into Query Editor
connecting SharePoint, let us first try to apply all the transformations that
we foresee would be required to shape the data. If any further
transformation is required at any later stage, we can always come back to

perform those in the Query Editor.

Just looking at the Severity and Likelihood columns, it seems that there is a
leading space for all the values which might cause issues later while
computing the risk matrix. After trimming those two text fields, the

cleaned data can be seen in Figure

(i v | #% status | A% catogory * MB severity * | 4B Likelihood = | 8B Action ~ A Comments
1 Closed Scopa High Medium Actign:d Commant:d
Clased Scope High High Actiemsl Commaent:52
3 Closed Scooe Mediumn Law Action:30 Cormment80
4 Cloted Scone raedium Lo AEUOMET Comments67
-] Closed Scooe Low Low Bction:1 Commant:l
(] Closad Seome High High Aetien:sT Commant:57
7 Closed Techaica tedium Iedium Action:3% Comment:35
8 Closed Scope KMedium High Action:6s Comment53
9 Closed Scone High Kedium Action:2 Comment=2
10 Closed 5¢o04 Madiurn Low Aitien:27 Commant:27
Flocad Sroae Lo Slaculow Sctinn-4T = ch
5 1 Cuery Sattirgs
= Table.Transforalalumns({i Changed Type® {{"“Severity™, Taut.Trin, type temt}, {“Likelihood®; Tewt.Trim, type text}}) w || SO SIS
o =| A% status = | M8 cabegory = | A8 severity = | A Likslinocd | A astion =| Wb Commeats = 4 PROPERTIES
1 Chesad Semps High [rve— Astiered Comeraen=d Harne
- ~ Rkl
Uesed seope High High AIngred LOVETEITE
Chesed Seope Medism Lew AsticrcdO Comvrant=0 All Propertie:
Clexsd Seaps s Lewe ArticrekT CrmernissT
4 APPLIED STEPS
5 el T L [Aalre] Cuareramizl
eded Seape High High ActicrctT T Soure
Clemad Terhnica hsdiim Madien Ertiercis Cnmmentzit Mwdgation
8 [- Suope R High Aclicres Fam— Promoted Heede:s
Shanged Tvps
] Cezed Seope High Medim Actiercd Comment:2 =
I # Tuirmuwed Tesl
w Cesed Soope gdim Lew Acticre]7 Comrentzl7
Oesed Scope L ey Lo Acugrel? Comemantzy
Flened Eramn ik e PR Frmernning?

Figure Cleaning data in Query Editor

Apart from this, it would be good if we include a data refresh timestamp on
the report itself, which should indicate when the Power BI dataset is
refreshed from the source. To do this, in the Query Editor, we can make use
of a Blank Query and search for the function which returns the present date
and time in Coordinated Universal Time Then we can convert the query
into a table, and finally rename the table as well as the only field as
TimeStamp and update the data type of the field as The process is

illustrated in Figure

D Dt Dl Lo b LU M
o el

o T3 Takls Unafinedrhas ol unee

COuts feed tuenes [4) < A T T S

RirdTizea D02502.1074C 0107 52 THE 0000

e

T na LT menang = = FROFIRTIES
T v

Figure 8.6: Creating a data refresh timestamp table

As we have now performed all the required transformations in Query
Editor, let us Close & Apply the changes to Power BI Desktop, and

proceed with modeling the data.

Modeling data

In the data model, we have two unrelated tables now. The RiskData table

has all the risk-related records imported from SharePoint, while the

TimeStamp table holds a single value which is the dataset refresh
timestamp in UTC and gets updated during each data refresh. There is no
need to create any relationship between them and hence no additional work

is required from a star schema creation perspective.

However, the existing data model would not support us to create the risk
matrix (refer to Figure that we intend to create and hence, we need to
enhance the data model. As the risk co-ordinates need to be calculated for
each record, that means the computation has to work on a per row basis
and for that, we need a calculated column. Let us create a calculated
column following the mappings as mentioned in Figure Here is the DAX

code snippet that we are going to use:

RiskMatrix =

SWITCH (

TRUE (),

AND (RiskData[Severity] = "Low", RiskData[Likelihood] = "Very
LOWH)’ Hl’l")

AND (RiskData[Severity] = "Medium", RiskData|Likelihood] = "Very
LOWH)’ '!2’1H,

AND (RiskData[Severity] = "High", RiskData[Likelihood] = "Very
LOWH)’ '!3’1"’

AND (RiskData[Severity] = "Low", RiskData[Likelithood] = "Low"),
" 1 ’2"’

AND (RiskData[Severity] = "Medium", RiskData[Likelithood] = "Low"
)’ "2’2",

AND (RiskData[Severity] = "High", RiskData[Likelthood] = "Low"),
H3,2H’

AND (RiskData[Severity] = "Low", RiskData[Likelihood] = "Medium"

)’ "1’3"’

AND (RiskData[Severity] = "Medium", RiskData|Likelithood] =

"Medium"), "2,3",

AND (RiskData[Severity] = "High", RiskData[Likelthood] = "Medium"
)’ '!3,3",

AND (RiskData[Severity] = "Low", RiskData[Likelihood] = "High"),
" 1 ’4"’

AND (RiskData[Severity] = "Medium", RiskData[Likelihood] = "High"
)’ '!2’4",

AND (RiskData[Severity] = "High", RiskData[Likelithood] = "High"),
"3’4"

Once committed, this should create the RiskMatrix calculated column with

the required risk co-ordinates, as shown in Figure

Sort ascending

Sort descending

RiskMatrin
3.3 Text filters »
3A
2,2
2,2 ,
W (Select 2l
1.2 R
34 « 1.7
23 w13
.
24 » 21
) 22
33 -
w o
r
—— v 24
11 W 21
3,3 o 12
31 LR
1.3 w o=
34

Figure Calculated column with risk co-ordinates

Now, this column can be used to filter the Risk For instance, filtering by
should display all the risks for which the Severity is Low and Likelihood is
Very The only thing left is to create another column for the status of the
risks (again, refer to Figure which we can use for slicing the report. To

create the calculated column the following DAX code snippet can be used:

RiskStatus =

SWITCH (
TRUE (),
RiskData[RiskMatrix] ="1,1"

|| RiskData[RiskMatrix] = "2,1"

|| RiskData[RiskMatrix] = "1,2", "Low Risk",
RiskData[RiskMatrix] = "2,4"

|| RiskData[RiskMatrix] = "3,3"

|| RiskData[RiskMatrix] = "3,4", "High Risk",
"Medium Risk"

Once created, the column should contain all the relevant risk statuses, as

shown in Figure

RiskStatus -~
High Risk Sort ascending

High Risk Sort descending
Medium Risl
Medium Risl
Low Risk |
High Risk -
Medium Ris| Text filters y
High Risk
High Risk
Medium Risl & (Select all)
Low Risk & High Risk
& Low Risk

High Risk))
» Medium Risk

Medium Risl
Medium Risl oK Cancel
High Risk

Figure Calculated column with risk status

The model should now be ready for creating the risk report, which we will

explore in the next section.

Creating the report

This report is not going to be heavy in terms of the number of visuals, and
the risk matrix would be the key one here. However, there is no default
visual that we can use straight away for the purpose. Instead, what we can
do is create an image of the risk matrix (refer to Figure which should have
placeholders for each possible Severity-Likelihood combination. As we
have 3 Severity categories and 4 Likelihood categories, the matrix should
have 12 cells to accommodate all possible risk statuses Medium Risk, or
High

Once we do that, the idea 1s to filter each cell of the matrix by the
corresponding risk co-ordinates, starting from (1,1) to Also, the image
should have color codes for each risk status, Reddish for High Yellowish

for Medium Risk and Greenish for Low Figure 8.9 shows the PowerPoint

image of the risk matrix that we will use in the report:

Likelihood @ righ i

O Medhum Kisk
@
High
Medium
Low
Very Low
Severity

Low Medium High

Figure Risk matrix image created in PowerPoint

As seen in the preceding figure, the X axis is representing Severity while
the Y axis is representing Also, the cells are color coded according to the

risk status they are representing based on the risk co-ordinates.

In the canvas of Power BI Desktop, let us first apply the same theme that
we used in our Sales Report earlier, and name the report as Risk After that,
the PowerPoint image of the risk matrix can be inserted in the canvas
following Insert | and then resized and placed towards the left-hand side of

the page as shown in Figure

File Home Modeling View Help Extemal Tools
DﬂltﬂzL—lE £ B b® 2 EH=DE

Mew Mew More Key Decomposition Smart Paginated Power Power Automate Text Buttons Shaped Image
page v viswil visuaksw infkeencens lree narrative eport Apps (ipreview] [- -
Pagit Viguak N vigusls Pewir Platferm Eliemasrits Sparired
U 7 Risk Report
Likelihood [

.(‘:j Lo Bk
High

Wy Luw

Figure Inserting an image into the risk report

Now, we need to show the Risk which is unique for any risk, in the
respective cell that it belongs to. We will use a slicer for displaying the
Risk to make it interactive. However, instead of using the standard slicer,
we will use a custom visual from named Chiclet After adding the Chiclet
Slicer to the report and pinning it to the Visualizations pane, it should be

ready to be used as shown in Figure

AppSource . Apps for Power Bl visuals

< Apps

Download Sample

Sample Instructions

Chiclet Slicer
£ P8I Certified

Overview Ratings + reviews

Display image and/or text buttons that act as an in-canvas filter on
other visuals

The Chiclet Slicer was inspired by the great slicer control found in Excel since 2000,
but with much greater customization options. Chiclet are a slicers made of buttons,
that can also be arranged horizontally for a very efficient real estate use, or arranged

»

Visualizations o

Build visual

=

EMEMENR

b= o b B L B2
HFLEO0OH
CEapmE=
RMmMmg Py

ChicletSlicer 1.6.3 -
— AR

Pricing ix for ompact form. Chiclet slicer al oss highlighting. = .

Free as. a _rnatrn(for a Slll'.!.ef c pa.ct orm lC iclet sl I.c.erla 50 supporFs c.r s highlighting ?,H 1 "'k s
That's not all - they can even contain images! This is an open source visual, Get the

Products code from GitHub: https://github.com/Microsoft/PowerBl-visuals-chicletslicer L

Power Bl visuals

Publisher

Micrasoft Corporation Visual capabilities

This visual is certified by Power B
Leann more about centified Power Bl visuals

Acquire Using
Work of $Chool soooum

Figure Adding Chiclet slicer to the report

Once added, let us select the Chiclet Slicer and add Risk to the Category
field of the visual container. At this point, all the available Risk would be
visible in the slicer. The only formatting that would be required to perform
is to disable the background by following Format visual | General | Effects |
Background as well as the header following Format visual | Visual | Now,
the slicer would have a transparent background and can be resized and

placed on a cell of the image of the risk matrix, as shown in Figure

& VE B T ™ e
Ll w I 7 | g pEm O e . &
F—=—5 | ravweae ° &
L= J =] HTZ00HE | e T
— 1= =1 GEARAEFEEBE 0 v
| Jw I =] EEErRFPE LI Desengair
: }#ET': A0E QEe Motiam
.l—l'—‘[—‘u Il SRR
|_-_{) I[_ — "~ -
(e | =) = -
 w |T =) =] voles
w | = [= | i eisen s e e e :"": |
S I | — R
.l;- | FETH PYR- e Boaillun W

Figure Formatting Chiclet slicer and placing to the matrix cell

As seen in Figure we have placed the slicer on the cell having co-ordinate
which represents Low for Severity and Very Low for Likelihood (refer
Figure and hence would have the status of Low Risk (greenish Now what
is left is to apply the risk matrix co-ordinate as a filter on the slicer using
the Filters pane so that it only displays the Risk which have a Low Severity
and Very Low Figure 8.13 illustrates the process:

H} Risk Report W Filters 2 B

AZ Search

s on this v
llh:]llwtd @
@ Metionbi
{0 N

) O}

%

S

T ORI

£

e I T
o o= MwE 2 OE
e - £

I W W

7] Require single sehection

i 7
(I | T | T | 23 E
| =

— — * Sqverity B data fslcs haa
Low Medium High

Figure Filtering Chiclet slicer with corresponding risk co-ordinate

As can be seen, only five Risk 29, 34, 35, qualify to be in that cell. If we
validate the result on the Data view of Power BI Desktop by filtering the
RiskMatrix column by we should get the same five records having the Risk
as mentioned above. Next is the tedious part of repeating the same process
for all the rest of the cells. The easy way of doing it should be to just copy
the slicer of co-ordinate paste it to another cell and finally change the risk
matrix co-ordinate on the Filters pane. Once completed, the risk matrix

should look like Figure

Likelihood e

' D Metn
D Tasr Rk
High
B) | 1
udium
| =
l““
Lo 2 J = J |
Very Low [‘_: 43
Severily
Lo Sl Lligh

Figure The final risk matrix

As per the requirement specifications, this visual does provide an

automated way of visualizing different risk statuses at a glance.

To provide additional information about the risks, let us now create a Table
and place it just to the right side of the report page, having information like
risk title, description, and comment. By default, the table should display
information about all the risks that we have in our dataset, however, if we
select any specific Risk Id on the risk matrix, the table would be filtered
and display only relevant data. To format the table, Alternating rows is
selected as style, following Format visual | Visual | Style The background
color for the column headers can be selected following Format visual |

Visual | Column headers | Background

After that, to provide the report users with some more interactivity, let us
create a regular slicer with the calculated column RiskStatus so that users
can filter the report for Low or Medium or High risks. Let us keep the

orientation of the slicer following Format visual | Visual | Slicer settings |

Finally, the data refresh timestamp can be displayed on a Card from the

TimeStamp table, and placed on the right side of the top ribbon. The

background of the visual should be disabled so that it becomes transparent,

and the field is renamed as Last The value of the timestamp is updated

whenever the dataset is refreshed and hence represents the last refreshed

time for the report. Figure 8.15 shows how the final risk report looks like:

[I]e Risk Report

Likelihood .n.pa.u
Dwm
() NowRisk
High
Medium
L
Lo e Jl s J 2 L=)i 3 J
Vary Lo
Severity

Law Medium High

Figure The completed risk report

07-02- 2023 005707
Last Refreshed
High Risk Lew Risk Medum Risk

Risk Id :Ilh Description Cor
H Sample Risici Rigk Description:1 Coa
45 Sample Risic100 Risk Description: 100 Con
14 Sarmple Rigic14 Risk Descriptionc1d Con
42 Sample Rigic16 Rigk Dwscription:18 Cou
43 Sample Risic17 Risk Description:17 Cow
13 Sample Risic19 Risk Description:19 Cou
] Sample Rigke2 Risk Description:2 Con
26 Sample Risic23 Risk Description:23 Con
10 Sample Risk27 Risk Description:27 Cou
-] Sample Kisicdy Hisk Uesinptionedd Lon
39 Sample Riskz3 Risk Deseviption:3 Co
16 Sample Risic30 Rigk Description:30 Con
0 Sample Risic31 Risk Description:31 Con
T Sample Risic35 Risk Description:35 Con
17 Sample Rigke38 Risk Deseription:36 Con
1 Sample Risic37T Rigk Description: 37 Con
1 Sample Risicd Risk Description:d ~ Con
33 Sarnple Risicd? Risk Deseription:42 Con
3(1 Sample Risicdd Risk Description:43 C’ol"

The report is completely interactive, and can be cross-filtered by both the

Risk of the risk matrix and the risk as shown in Figure

AR D ARER . [——
U}) Risk Repart et ﬂ}) Risk Report Pt
Lkl LRy e Ubana LT e
0 it [agaarn
= L Hrwrrin e =
T e ey g O s
e € ratnm D i . = =
- - o ‘ .. :
.
EE i
Sy iy
. e _ = -
T *
Rish repezl Lllewed willi Rask 18 s 40 Rlisk repusl Gillezesd will High Risk

Figure Interacting with and cross-filtering the risk report

As we have created our risk report now, let us further explore how to create

a self-service model for the report once it is published to Power BI Service.

Publishing reports and scheduling refreshes

The risk report is created from a SharePoint online folder, using the Web
connector which we have discussed in detail in Chapter Data Discovery
Using Power Once published to the workspace Self Service Analytics with
Power the report would not require any gateway for data refresh. However,
before initiating a refresh, we need to configure the credentials for data

source authentication.

From the dataset Settings of the report, the option for Edit credentials can
be found under the Data source credentials section. Selecting Edit
credentials prompts the configuration window where properties like
Authentication method and Privacy level settings can be maintained.

Figure 8.17 illustrates the configurations:

Settings for Risk Report

datazel @
This dataset has been configured by fishirajden®
Betresh hstory

Configure Risk Report

4 Dataset description

Authentication methad
- AASTOUS
500 eharsehers et Ancnymous
Basic
COAuth

. Skip test connection
bGateway connection

4 Data source credentizls m

& Failed to test the connection to your data source.-Pléase retry your credentials. Leaen more

Figure 8.17: Setting up credentials in Power BI Service

Cancel

This is a one-time activity and once successfully signed in, the report

should subsequently refresh using the credentials maintained.

Once the refresh mechanism is established, the next required action is to
assign a refresh schedule for the report to keep it up-to-date with the
source, eliminating the need to manually refresh the report every day.
Again, from dataset the Scheduled refresh toggle can be enabled, and then
after selecting the Refresh frequency and Time the refresh times can be
added. In case multiple refreshes are required daily, additional time slots
can be added using the Add another time option. The refresh schedule for

the risk report is shown in Figure

| 4 5cheduled refresh
Keep your data up to date

Cc}nfigure a data refresh schedule to import data from the data source into the dataset. Learn more
@ -

Refresh frequency
Daily w
Time zone

(UTC+05:30) Chennai, Kolkata, Muml +

Time

9 v |00 v|AM v |X
10 v|00 +|AM v X

5 w|00 v|PMm v |x

|a"-.d|:| another time

Send refresh failure notifications to

Dataset owner

These contacts:

Discard

Figure Scheduled refresh configurations

In the next section, let us explore how to create a cross-workspace design

for our report.

Creating a cross-workspace design

Now that we have published the risk report and scheduled refreshes for it,
we can separate out the report from the model. Though once the report is
published to the service, the report and the dataset get stored in the
workspace separately by default, however, both of the entities reside in the
same workspace. Here separating out means publishing the live connected
report to a separate workspace, which is an optional approach that can be

considered based on the design we are trying to implement.

If we have another look at the architectural design diagram (refer to Figure
the Super Users should have access to the report to perform any report-
level alterations if required, however, the dataset or model access should be
restricted only to the report authors or developers. To implement that,
isolating the report workspace and the dataset workspace should be a good

1dea.

The easiest way to do it would be to download the live connected report (a
feature introduced of late) and publish it back to a new workspace. To
download the live connected report, after opening the published report on
Power BI Service, the Download this file option can be selected from That
should prompt a dialog box asking whether we want to download the report
with data or a live-connected version of it. Choosing A copy of your report
with a live connection to data online (.pbix) and selecting Download

should download the live connected report on the local machine.

Once downloaded, when we open the report in Power BI Desktop, the

bottom right of the report page should have a message indicating that it is

indeed a live connected report with the dataset we published in the

workspace Self Service Analytics with Power

Figure 8.19 illustrates the process of downloading the live connected report
from Power BI Service:

=+ Exsort ~ 2 Share) ChatinTeams @ Getinsighs [Subscribe &° fcn -
IE-: il b OOpy .
Risk Report
1 Prist this page
<> Emied repot L3
. Llhfillwd @ npra
me Generaiea QR code C Wedi s Tk
B Setings [
H"ll'.;h
v
What do you want to download?
(. & copy of your report and data (phix)
ll & copy of your report with a live connection to data online (phix) |
Learn more Cancel
¥
Risk Dashbcard 4+
1 B Genessl Conrected Ine o the Power 0 dataset sk Repon in Seif Sesvice Analytics with Power EIL'_'\: changes to this mode

Figure Downloading a live connected report

Let us now rename this report as Risk Report Live and publish it to a
newly created workspace named Reports: Self Service Analytics with
Power Once published, the live connected report would be the only entity
for this new workspace. We can check the lineage of the report from More

options of the Risk Report Live and selecting View as shown in Figure

Reports: Self Serviee Analyties with Power BRI
Reports: Self Service Analytics with Power Bl
e ot + new ~ T Upload ~ & Create deployment pipeline

e I £l Risk Report «

I o) FRisk Report Live o

Figure Viewing lineage of a report

As can be seen on the lineage diagram, the Risk Report Live is connected
to the dataset published in the workspace Self Service Analytics with

Power maintaining a single point of truth.

Similarly, the lineage for a dataset can also be checked from More options
of the dataset itself.

Now, we can add the Developer distribution list or group to the Self
Service Analytics with Power BI workspace, the Super User distribution
list to the Reports: Self Service Analytics with Power BI workspace (with a
higher role than and then publish the App from the report workspace,
adding both the Super User and End User distribution lists as the App This
way every user group would have clear ownership and responsibilities,
which should in turn reduce ambiguity and compliance concerns while

working in a large, cross-functional team environment.

Note: In a cross-workspace design, the App Audience need to have access
to the underlying dataset as the dataset resides in a separate workspace

from the one from which the App is published.

The permission for a dataset can be managed from the dataset More Users

can be given access by selecting Manage permissions and then the Add

user button, as shown in Figure

Self Service Analytics with Power BI
+ HNew F uplosd ~ A Create dephoyment pipeine

Al Contend Natasses o dotafionne

0 kame Type

E Fisk Repert (&} :¢I:|

E Ealea Bapant Anahize im Exctl
Create report
AAD-C'eae TEDOTT
Create paginated report
Dielets
GH quick MEignis
Saxurity
Renamns
Sedlings
Download i fic

Vierwr lime acpe

Risk Report
Related content
" m Dashboards
Links Dircect access
Reparts —
E Wiarkhooks

Peaple and groups with accass

Figure Managing dataset permissions

All users of any workspace having roles above Viewer (which means

Members and would have build permission to all the datasets in that

workspace by default.

Time to see now how the end users can personalize the risk report that is

shared with them via an App and create content on their own using the

underlying data.

Report personalization

The primary aspect of a self-service model is to enable end users to
perform basic maintenance activities themselves like adding additional
columns, introducing new visuals etcetera, to fulfil individual aspirations,
without actually altering the original report that has been provided by the
developers. In our risk report, the end users would access the report via the
Risk and would not be able to make changes to the original report itself
(only Super Users who have access to the report workspace would be able
to edit and save the original report and update the However, for the end
users to be able to create their own customized views in the a few

additional configurations need to be done.

We talked about providing the end users or the App Audience access to the
underlying dataset in the last section. While adding users to the risk
dataset, we would also provide them with build permission which enables
creating content using the data associated with the dataset. From the
Manage permissions option of a dataset, selecting Add user opens the

window for granting access and providing build as highlighted in Figure

Grant people access X

Q, Enter a name or email address

n Allow recipients to modify this dataset

n Allow recipients to share this dataset

n Allow recipients to build content with the

data associated with this dataset

. Send an email notification

Cancel

Figure Providing build permission to the End User distribution list

Apart from that, we would enable the option for personalizing visuals from
the report settings. Let us go back to the Reports: Self Service Analytics
with Power BI workspace and from More options of the Risk Report select
The Settings window has multiple options for report level configurations,
of which, let us turn on the Personalize visuals toggle and save, as shown

in Figure

Reports: Self Service Analytics with Power Bl
Settings for Risk Report Live

+ 1 — = w :S" | i i
Mew Upload Create deployment pipeline Commants

Al & o fatafl Allow wiers bo add comments 1o this neport
Ontent BLASEts + datafiows

Perscnalize visuals
] MName Type
Al report readers 1o personalize visuals 8o st their needs,
m Rizk Rcport Live = - T—)

Anahyze in Excel Madern visual tooltips

* (sc mosdom winsl toohtips with dill actions snd updated ayling

Delete

L]
Quick insights

Insights (preview)
Save & Co)

Ry Allew uiers to get natfied when key insights ane availabile for this repen.

Settings L]
View usage metrics report Default summarizations
View lineage For aggiegated fickds, Always show the delault sumenaization type

[]
Create paginated report

Manage permissions Cancel

Figure Enabling personalization for visuals

To reflect the changes for the Risk the App needs to be updated from the
report workspace. Once done, this should allow the App users new
exploration capabilities along with capturing and sharing their personalized

Views.

If we go to the Risk App now, hovering over the default visuals like Table
and Slicer should show the Personalize this visual option. Once selected,
the Personalize window opens which allows customizations like changing

the Visualization adding new columns using the plus icon etcetera.

Figure 8.24 illustrates how to add a new column Action in the Table that

we have in our risk report, for the App

High ik oL T

g = I 3
0 E P T L Rakid Tite Description o
(2 1D L= = Mensslization fype v -'m m?. h_k Fu:-\::--:nf = . -m i

9 Sarypde Risk< Bk Descipiond Cog o e 3 * Samnke Rick 7 Bek Mewrandirni2 Cod . =
7 Saryde RakA? Rie Nescoiguins®? O e — - Columns nEQ Cox * Ak Deription'S? Comment S ArioeS?
3 vample skl Re¢ Uesonphontill Cod Coumns EI — nET Qe b ORIk Demphon3t COmWEntEl AchonS)
4 Sampho Riské7 Rise Deamipioni7 Gt) — | m o © gk Deseriplions7 Comment &7 Aclions?

g o [el = - nE! Cu Figk Deseription! Commentl Achonc!
: j—i ::::17 :: ;:::::,-:,.‘.5? x Thlo _ ’ = r.s-,::n: N5 Co e 7 ik DeeriplionST Comeesd ST iomST
T oSaepie REKIS Rse Descmponds ool Dezcription < Catagany L T® 5 Gisk Destription:2s Commert3S Actiors?s
I Sample Rgkdd B DesowponEll o _' Dy :’_ Cemmants L 3 Figk Deseriplion®2 Commentdd Action®d

 SapleRizks BseDesmipond o Pl mmes fiedd Dk Crmated nil Con Fisk Description:? Comwent2 ActionE
10 Saryde Risk? Misk Descipion?? Cos Do Bod o nE? O 7 fisk Deseription?7 Comment2? Action?T
11 Sample RekEF Rsq Descapoond? Co Desaiptinn més Co T Ride Deeviptien:3? Cromrerd 3 artinee?
11 Sampls Riskdd Risk Desofpdontd o Bl 9 e 3 liisk Dosnption's) Comvonted Actionesd
T4 haepha MskiW Kk escapanal Cot I Mok nla - L } Bk Description:1® Comment 10 Actinecid
14 Sarple Rzki14 Rk Desvipdion’d Co [Iprr e ne L B Rigk Disrption 14 Comment 1 Acteici4
15 fGarple Riskd? Rosi NescipondT Cou [nEd G ? Bisk Drscriplion:37 Comment$? Actions?
16 Sample Risk30 Fisa Descipiondl G = nif Co 1 Figk Deeriplion30 ComTentan Ao
17 Sarqde Rakh R esopensdfh ol e s e wsaeefldd Co 5 Fish Drseriplion26 Comment 36 Action25
18 Samplo Ruka9 Rink Dessiptiondd o o —— o) Mgk Desriplion:20 Commemt2 Achomd)

¥ Rigk Deseriptiond% CommentSd Actionedd -

Figure Adding a new column to the table visual in Risk App

However, this change would not persist automatically unless saved as a
bookmark. An App bookmark captures the current state of the report. To

save a bookmark in the the Bookmarks option on the top right ribbon can

be selected followed by selecting Add a personal as shown in Figure

Bockmarks' Personal bookmarks
2/7 Y09 AM

Last Refreshed Capture this report’s current state

[? Add a personal bookmark

[¥ Show more bookmarks

Figure Adding a personal bookmark

Once added, the bookmark can be used to access the personalized view
(here the table with an added column) while the default view would not
display any personalization unless the bookmark is chosen as the default

view.

Apart from personalizing reports in the App users should also be able to
make a copy of the report as they already have build permission to the
underlying dataset. The other pre-requisite for this capability is to select the
option Allow users to make a copy of the reports in this app under the

Setup section while publishing the as shown in Figure

@ coment @) Avcience
==
T Upload
W Delete

App theme color & [3 File ~ |+ [.'{Fli'.\ﬂ. +
u :
(mm]

H @ Save a copy
Contact Information :

®) Show app publisher

Risk APP & Print this page

& Show iterns contacts fram the workspace
Show specific indhviduals of groups

«» Embed report
Q

Risk Report Live

&= Generate a QR code
Global App Settings

Hide app navigation pane.

n Allow users 1o make a copy of the reparts in this app.

Suppert site

(==

Figure Allowing App users to create copies of reports

Inside the following File | Save a a copy of the report can be created and
saved in any workspace the user has access to. The report copy can then
also be edited and personalized by the App All of these options help to

create a sustainable self-service model in Power BI for a large user base.

Analyze in Excel

In the previous sections of the chapter, we have seen how the Risk App that
we created fulfils all the requirement specifications that we initially
discussed. We have provided end users permission to build content on top
of the underlying data along the way, which apart from helping to create a
self-service model, also helps in terms of live connecting Excel workbooks
to the underlying dataset. However, this feature can be enabled or disabled

from the tenant settings.

In the Risk following Export | Analyze in a live connected Excel workbook
can be generated. This workbook would have the entire data of the dataset

and can be used for quick analysis using pivot tables and other Excel

features. Figure 8.27 illustrates the process:

o Your Excel file is ready

1z ey The ik i Frooed Do ther wwsh,

Open in Bxcel for the web

Figure Analyze in Excel option in Power BI Service

The live connected file would have the same name as the report and by
default gets saved in the OneDrive account. In the absence of a OneDrive
account, it gets saved on the local computer. The file can also be accessed
directly on the web. Once the file is opened, all the tables, columns and
measures of the Power BI dataset would be available under the PivotTable
ready to be dragged and dropped for building pivot tables in Excel, as

shown in Figure

Freel ke sicesshally created an OneDrive, Click below

Bwal Table Fields

Rl .o budd & repet, choce Gelds
Bl From the BaotTable Fueld List

" LEE L

Figure Live connected Excel on a local computer

Alternatively, a Power BI dataset can be connected live directly from an
Excel desktop application, following Data | Get Data | From Power
Platform | From Power BI in Excel, provided that the user is signed in to
Excel with the same organizational account as used for Power BI Service.
Once connected, all the datasets that the user has permission to use, should

be visible and can be accessed via a live connection, directly from Excel.

The Excel workbooks are refreshable and can be refreshed directly from
inside the workbook following Data | Refresh ensuring that users are
always working with up-to-date data. While accessed in Excel, properties
like dataset endorsement labels and sensitivity labels are inherited, making

sure that the data always remains secure.

Conclusion

In this chapter, we have developed an end-to-end solution for a
business problem from scratch and deployed it enabling a self-service
model for the end business users. Along the way we have learnt new
concepts like cross workspace design, analyzing data in Excel and
report personalization. Besides that, many concepts that we have
learnt throughout the book have been applied in the solution which
should also help readers to understand how to make best use of the
learnings in real-life business use cases. Hopefully, this should help
the readers of the book to become more confident in their Power BI
journey and encourage them to embrace the technology at their

workplaces to create an enhanced data culture.

Knowledge Check

If a report and the dataset are published in separate workspaces, then
the audience of the App which is created from the report workspace
must have which permission (following the principle of least

privilege):

Access permission to the underlying dataset

The report workspace Member access

The report workspace Contributor access

To refresh data in an Excel file connected live with a Power BI

dataset, the file needs to be re-generated from Power BI Service:

True

False

Report personalization option only allows to add new columns in a
Table or

True

False

All Knowledge Check answers are provided at the end of the book.

Join our book’s Discord space

Join the book's Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the
Authors:

https://discord.bpbonline.com

Epilogue

Congratulations readers for finishing all the chapters of the book!
Hope it helped you in the journey of becoming a Power BI expert!
Learning is a continuous process and although in the book, we have
discussed all aspects of Power BI in detail, this part of the book will
have additional information about official documentations which can
be referred further to remain up to date in the ever evolving
landscape of Power BI. Apart from that, Power BI has an active
online community for seeking help, the details of which has also

been provided. Best of luck!

Official DAX function reference:

https://learn.microsoft.com/en-us/dax/dax-function-reference

Power BI

https://powerbi.microsoft.com/en-au/blog/

Power BI

https://community.fabric.microsoft.com/tS/Microsoft-Power-BI-

Community/ct-p/powerbi

Knowledge Check Answers

Chapter 1

l.a2.b3.

c4.b

.a4.b

.a4.d

.a4.a

.b3.a4.a

|O
3
=
=
(@
=
~

l.a2.b3.b

|O
=
o
=)
[l
Q
-
(e

1.a2.b3.b

Index

Admin portal 150

accessing 151

aggregation functions

alerts

managing 162

ALM Toolkit

used, for metadata deployment

Amazon Redshift Database connector 24

Apps 168

installing 172

setting up 170

Azure Active Directory (Azure AD) 144

Azure SQL Database connector 23

bar charts

Bookmark navigator 123

creating 124

Bookmarks pane

bubble map

creating 105

building blocks, Power Bl

dashboards 6

datasets 5

pictorial representation 6

reports 6

tiles 6

visualizations 6

calculated columns 72

creating

creating, by concatenating fields 73

creating, with conditions 75

referenced calculated column, creating 74

calculated tables 68

combined table, creating 70

creating 68

duplicate table, creating 69

lookup table, creating 70

subset table, creating 72

Calculation Groups 83

cards

creating 109

using

charts

trend analysis 102

column charts

Coordinated Universal Time (UTC) 234

custom filter conditions

custom visuals

dashboard 161

data

appending 46

exporting, from report

merging

Data Analysis Expressions (DAX) 203

aggregation functions

data types 67

Date-Time functions

Filter functions

formula 66

functions 67

information functions

ISBLANK 213

logical functions

operators 67/

relationship functions 218

table specific functions

Text functions

Time intelligence functions

data cleansing, in query editor

data quality, managing 45

extra spaces, removing 45

missing values, managing

non-printable characters, removing 46

data connectivity modes

Composite mode 29

DirectQuery mode 28

import mode 28

Live Connection mode 28
dataflows 172

creating 173

saving 175

data gateway 163

assigning 166

downloading 164

enterprise data gateway 163

personal data gateway 163

personal gateway, registering 165

refreshing 168

data, Power BI report

refreshing 163

data security 154

managing

Row-Level Security 157

datasets

managing, with Tabular Editor

Data Source Name (DSN) 27

data sources

connecting

data transformation 33

transformation options

data transformation, in Query editor 36

case transformation, performing 38

columns, unpivoting

conditional columns, adding 41

custom columns, adding
data types, changing 37
Date-Time functions 207
CALENDAR 208

DATE 207

DATEDIFF 208

EDATE 208

DAX measures

usage example 81

dimension key column 57

dimension tables 54

Dynamic RLS 158

enterprise data gateway 163

ERROR function 22

fact table 55

filter context 78

FILTER function 72

Filter functions 209

ALL 210

ALLEXCEPT 211

CALCULATE 209

CALCULATETABLE 212
FILTER 210

SELECTEDVALUE 212

Format navigator 123

G

geographical data

visualizing, with maps 105

Get Data Window 17

incremental refresh

configuring 183

implementing

information functions 212

ISERROR 21

ISFILTERED 21

ISNUMBER 21

ISTEXT 21

installation

Power BI /

Integrated Development Environment (IDE) 189

ISERROR function 225

ISNUMBER function 21

ISTEXT function 214
logical functions
AND function 21

OR function 21

many-to-many relationship 60

many-to-one relationship 60

maps

using, for visualizing geographical data 105

Mashup language

Matrix visual

measures 79

creating 81

measure table

creating 83

metadata deployment

ALM Toolkit, using

Q)

ODBC connector 2

one-to-many relationship 60

one-to-one relationship 60

performance analyzer

performance tuning, Power Bl model

best practices

personal data gateway 163

Power BI 4

building blocks 6

components 8

data connectivity modes 29

data modeling 5

data sources, connecting

distribution 5

installing 7

integration 4

licensing details 13

licensing options 5

models, optimizing

premium workspace 18

relationships 58

security 5

star schema, implementing

support framework 5

transformation 4

user friendly 5

visual, creating 93

visual interactions

visualization 5

workflow 12

Power BI Dataflow 25

Power BI Desktop

common functionalities 10

home screen 9

Power BI ODBC connector 27

Power BI Premium

Power BI report

alerts 161

alerts, managing 162

dashboards 16

data, exporting

data gateways, refreshing

data, refreshing 163

performance, analyzing

publishing

theme 91

Power BI Service 8

elements 11

home screen 11

reports, working with

workspaces

Power BI Web connector 26

Power KPI visual 12

PowerPoint 147

Power Query 8

parameters 51

transformation options 9
Premium Per User (PPU) license 181
Process Data mode 193

processing mode 193

Q

query folding 30

determining 31

folded query, viewing 32

R

RangeEnd 184

RangeStart 184

refresh management

SSMS, using

RELATED function 74

relationship cardinalities

many to many (*:*) 60

many to one (*:1) 60

one to many (1:*) 60

one to one (1:1) 60

relationships, Power BI data model

active/inactive relationships 61

autodetecting 59

cardinalities 60

creating, manually 59

cross-filter direction 61

report template

creating 91

report tooltips 125

displaying 127

tooltip page, creating 126

Risk Report use case 229

analyzing, in Excel 251

cross-workspace design, creating

data modeling

design, creating 233

personalization, enabling

refreshes, scheduling 244

report, creating

report, publishing 244

requirements 23 |

transformations, performing

row context 72

Row Level Security (RLS)

schema-only deployment 198

Selection pane 121

slicers 99

creating 100

formatting options

102

styles 100

Software as a Service (SaaS) 5

SQL Server Management Studio (SSMS) 189

used, for refresh management

star schema

fact tables

implementing, in Power BI

overview 55

table partitioning

table specific functions

ADDCOLUMNS 222

DISTINCT 222

SUMMARIZE 222

UNION 223
table visual 111

Tabular Editor 83

used, for managing datasets

Tabular Model Scripting Language (TMSL) scripts 194
Time intelligence functions
DATEADD 22

FIRSTDATE 224
LASTDATE 224
TOTALYTD 225

trend analysis 102

trend chart

user-based licenses

free license 13

premium per user license 13

Pro license 13

USERNAME function 21

View Native Query option 32

visual

creating, on Power BI 93

visual interactions, Power Bl

visualization

importance

visual options 99

W

workspaces, Power BI Service

reports, publishing

workspace user roles 152

admin 152

assigning 153

contributors 152

member 152

viewer 15

XML for Analysis (XMLA) endpoints 180

	Start

