
This International Student Edition is for use outside of the U.S.

STEPHEN BROWN ZVONKO VRANESIC

Fourth Edition

Fundamentals of

DIGITAL LOGIC
with VHDL DESIGN

ISTUDY

FUNDAMENTALS
OF

DIGITAL LOGIC WITH VHDL DESIGN

FOURTH EDITION

Stephen Brown and Zvonko Vranesic
Department of Electrical and Computer Engineering

University of Toronto

FUNDAMENTALS OF DIGITAL LOGIC WITH VHDL DESIGN

Published by McGraw Hill LLC, 1325 Avenue of the Americas, New York, NY 10019. Copyright c© 2023 by

McGraw Hill LLC. All rights reserved. Printed in the United States of America. No part of this publication may

be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the

prior written consent of McGraw Hill LLC, including, but not limited to, in any network or other electronic

storage or transmission, or broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside the

United States.

This book is printed on acid-free paper.

1 2 3 4 5 6 7 8 9 LCR 27 26 25 24 23 22

ISBN 978-1-260-59778-3

MHID 1-260-59778-4

Cover Image: View Stock/Getty Images

All credits appearing on page or at the end of the book are considered to be an extension of the copyright page.

The Internet addresses listed in the text were accurate at the time of publication. The inclusion of a website does

not indicate an endorsement by the authors or McGraw Hill LLC, and McGraw Hill LLC does not guarantee the

accuracy of the information presented at these sites.

mheducation.com/highered

ISTUDY

To Susan and Anne

ISTUDY

ISTUDY

ABOUT THE AUTHORS

Stephen Brown received the Ph.D. and M.A.Sc. degrees in Electrical Engineering from the

University of Toronto, and his B.A.Sc. degree in Electrical Engineering from the University

of New Brunswick. He joined the University of Toronto faculty in 1992, where he is now a

Professor in the Department of Electrical & Computer Engineering. He is also the Director

of FPGA Academic Programs for Intel Corporation.

His research interests include field-programmable VLSI technology, CAD algorithms,

computer architecture, and applications of machine learning. He won the Canadian Natural

Sciences and Engineering Research Council’s 1992 Doctoral Prize for the best Ph.D. thesis

in Canada, and the New Brunswick Governor-General’s 1985 award for the highest aca-

demic standing in the Faculty of Engineering. He is a coauthor of more than 150 scientific

research papers and two other textbooks: Fundamentals of Digital Logic with Verilog
Design and Field-Programmable Gate Arrays.

He has won many awards for excellence in teaching electrical engineering, computer

engineering, and computer science courses.

Zvonko Vranesic received his B.A.Sc., M.A.Sc., and Ph.D. degrees, all in Electrical Engi-

neering, from the University of Toronto. From 1963 to 1965 he worked as a design engineer

with the Northern Electric Co. Ltd. in Bramalea, Ontario. In 1968 he joined the University

of Toronto, where he is now a Professor Emeritus in the Department of Electrical &

Computer Engineering. During the 1978–79 academic year, he was a Senior Visitor at the

University of Cambridge, England, and during 1984–85 he was at the University of Paris, 6.

From 1995 to 2000 he served as Chair of the Division of Engineering Science at the

University of Toronto.

He is a coauthor of four other books: Computer Organization and Embedded Systems,

6th ed.; Fundamentals of Digital Logic with Verilog Design, 3rd ed.; Microcomputer Struc-
tures; and Field-Programmable Gate Arrays. In 1990, he received the Wighton Fellowship

for “innovative and distinctive contributions to undergraduate laboratory instruction.” In

2004, he received the Faculty Teaching Award from the Faculty of Applied Science and

Engineering at the University of Toronto.

He has represented Canada in numerous chess competitions. He holds the title of

International Master.

v

ISTUDY

PREFACE

This book is intended for an introductory course in digital logic design, which is a basic

course in most electrical and computer engineering programs. A successful designer of digital

logic circuits needs a good understanding of the classical methods of logic design and a firm

grasp of the modern design approach that relies on computer-aided design (CAD) tools.

The main goals of this book are (1) to teach students the fundamental concepts of

classical manual digital design and (2) illustrate clearly the way in which digital circuits

are designed today, using CAD tools. Even though current modern designers very rarely

use manual techniques, our motivation for teaching such techniques is to give students

an intuitive feeling for how digital circuits operate. The manual techniques also provide

an illustration of the types of manipulations performed by CAD tools, giving students an

appreciation of the benefits provided by design automation. Throughout the book, basic con-

cepts are introduced by way of simple design examples, which we perform using both manual

techniques and modern CAD-tool-based methods. After basic concepts are established,

more complex examples are provided using the CAD tools. Thus, to illustrate how digital

design is presently carried out in practice, our emphasis is on modern design methodology.

TECHNOLOGY

This book discusses modern digital circuit implementation technologies. The emphasis is

placed on programmable logic devices (PLDs), which is the most appropriate technology

for use in a textbook for two reasons. First, PLDs are widely used in practice and are suit-

able for almost all types of digital circuit designs. In fact, students are more likely to be

involved in PLD-based designs at some point in their careers than in any other technology.

Second, circuits are implemented in PLDs by end-user programming. Therefore, students

can be provided with the opportunity, in a laboratory setting, to implement this book’s

design examples in actual chips. Students can also simulate the behavior of their designed

circuits on their own computers. We use the two most popular types of PLDs for targeting

of designs: complex programmable logic devices (CPLDs) and field-programmable gate

arrays (FPGAs).

We emphasize the use of a hardware description language (HDL) in specifying the

logic circuits, because an HDL-based approach is the most efficient design method to use

in practice. We describe in detail the IEEE Standard VHDL language and use it extensively

in examples.

SCOPE OF THE BOOK

This edition of the book has been extensively restructured. All of the material that should

be covered in a one-semester course is now included in Chapters 1 to 6. More advanced

material is presented in Chapters 7 to 11.

vi

ISTUDY

PREFACE vii

Chapter 1 provides a general introduction to the process of designing digital systems.

It discusses the key steps in the design process and explains how CAD tools can be used

to automate many of the required tasks. It also introduces the representation of digital

information.

Chapter 2 introduces logic circuits. It shows how Boolean algebra is used to represent

such circuits. It introduces the concepts of logic circuit synthesis and optimization, and

shows how logic gates are used to implement simple circuits. It also gives the reader a first

glimpse at VHDL, as an example of a hardware description language that may be used to

specify the logic circuits.

Chapter 3 concentrates on circuits that perform arithmetic operations. It discusses num-

bers and shows how they can be manipulated using logic circuits. This chapter illustrates

how VHDL can be used to specify a desired functionality and how CAD tools can provide

a mechanism for developing the required circuits.

Chapter 4 presents combinational circuits such as multiplexers, encoders, and decoders

that are used as building blocks in larger circuits. These circuits are very convenient for

illustrating the application of many VHDL constructs, giving the reader the opportunity to

discover more advanced features of VHDL.

Chapter 5 introduces storage elements. The use of flip-flops to realize regular struc-

tures, such as shift registers and counters, is discussed. VHDL-specified designs of these

structures are included.

Chapter 6 gives a detailed presentation of synchronous sequential circuits (finite state

machines). It explains the behavior of these circuits and develops practical techniques for

both manual and automated design.

Chapter 7 is a discussion of a number of issues that arise in the design of digital logic

systems. It reveals and highlights problems that are often encountered in practice, and ex-

plains how they can be overcome. Examples of larger circuits illustrate a hierarchical ap-

proach in designing digital systems. Complete VHDL code for these circuits is presented.

Chapter 8 deals with more advanced methods for optimized implementation of logic

functions. It presents algorithmic techniques for optimization, and also explains how logic

functions can be specified using a cubical representation or binary decision diagrams.

Chapter 9 discusses asynchronous sequential circuits. While this treatment is not ex-

haustive, a clear indication of the main characteristics of such circuits is provided. Even

though asynchronous circuits are not used extensively in practice, they provide an excel-

lent vehicle for gaining a more complete understanding of the operation of digital circuits.

Asynchronous circuits illustrate the importance of clearly understanding how the structure

of a circuit affects the propagation delays of signals, and how these delays can impact a

circuit’s functionality.

Chapter 10 presents a complete CAD flow that a designer experiences when creating,

implementing, and testing a digital circuit.

Chapter 11 introduces the topic of testing. A designer of logic circuits must be aware

of the need to test circuits and should be conversant with at least the most basic aspects of

testing.

Appendix A provides a complete summary of VHDL features. Although use of VHDL

is integrated throughout the book, this appendix provides a convenient reference that the

reader may occasionally consult while writing VHDL code.

ISTUDY

viii PREFACE

Appendix B presents the electronic aspects of digital circuits. This appendix shows

how the basic gates are built using transistors and presents various factors that affect cir-

cuit performance. The most modern technologies are emphasized, with particular focus on

CMOS technology and PLDs.

WHAT CAN BE COVERED IN A COURSE

Much of the material in the book can be covered in 2 one-quarter courses. Thorough cov-

erage of the most important material can be achieved in a single one-semester, or even a

one-quarter, course. This is possible only if the instructor does not spend too much time

discussing the intricacies of VHDL and CAD tools. To make this approach possible, we

organized the VHDL material in a modular style that is conducive to self-study. Our expe-

rience in teaching students at the University of Toronto has shown that the instructor may

only spend a total of three to four lecture hours on VHDL, describing how the code should

be structured (including the use of design hierarchy) using scalar and vector variables, and

the style of code needed to specify sequential circuits. The VHDL examples given in this

book are largely self-explanatory, and students can understand them with ease.

The book is also suitable for a course in logic design that does not include exposure to

VHDL. However, some knowledge of VHDL, even at a rudimentary level, is beneficial to

the students, and is great preparation for a job as a design engineer.

One-Semester Course
The following material should be covered in lectures:

∙ Chapter 1—all sections.

∙ Chapter 2—all sections.

∙ Chapter 3—sections 3.1 to 3.5.

∙ Chapter 4—all sections.

∙ Chapter 5—all sections.

∙ Chapter 6—all sections.

One-Quarter Course
In a one-quarter course the following material can be covered:

∙ Chapter 1—all sections.

∙ Chapter 2—all sections.

∙ Chapter 3—sections 3.1 to 3.3 and section 3.5.

∙ Chapter 4—all sections.

∙ Chapter 5—all sections.

∙ Chapter 6—sections 6.1 to 6.4.

ISTUDY

PREFACE ix

VHDL

VHDL is a complex language that some instructors feel is too hard for beginning students

to grasp. We fully appreciate this issue and have attempted to solve it by presenting only the

most important VHDL constructs that are useful for the design and synthesis of logic cir-

cuits. Many other language constructs, such as those that have meaning only when using the

language for simulation purposes, are omitted. The VHDL material is integrated gradually,

with more advanced features presented only at points where their use can be demonstrated

in the design of relevant circuits.

The book includes more than 150 examples of VHDL code. These examples illustrate

how VHDL is used to describe a wide range of logic circuits, from those that contain only

a few gates to those that represent digital systems such as a simple processor.

CAD TOOLS

All of the examples of VHDL code presented in the book are provided on the authors’

website at

www.eecg.toronto.edu/∼brown

To gain a more thorough understanding of the VHDL code examples, the reader is encour-

aged to compile and simulate the code using a commercially-available simulation CAD tool.

Toward this end each example of VHDL code on the Authors’ website is accompanied by

setup files for the widely-used ModelSim simulator available from Mentor Graphics. A de-

tailed tutorial is provided that includes step-by-step instructions for obtaining, installing,

and using this VHDL simulator.

Modern digital systems are quite large. They contain complex logic circuits that would

be difficult to design without using good CAD tools. Our treatment of VHDL should en-

able the reader to develop VHDL code that specifies logic circuits of varying degrees of

complexity. To gain a proper appreciation of the design process, in addition to simulating

the behavior of VHDL code (as mentioned above) it is highly beneficial to implement the

designs in commercially-available PLDs by using CAD tools.

Some excellent CAD tools are available free of charge, for example, Intel Corporation’s

Quartus CAD software, which is widely used for implementing designs in programmable

logic devices such as FPGAs. The Lite Edition of the Quartus software can be downloaded

from Intel’s website and used free-of-charge. Intel also provides a set of FPGA-based lab-

oratory boards with accompanying tutorials and laboratory exercises that are appropriate

for use with this book in a university setting. This material can be found on the Internet by

searching for “Intel FPGA Academic Program”.

SOLVED PROBLEMS

The chapters include examples of solved problems. They provide typical homework prob-

lems and show how they may be solved.

ISTUDY

x PREFACE

HOMEWORK PROBLEMS

More than 400 homework problems are provided in this book. Answers to selected prob-

lems are given at the back. Full solutions to all problems are available to instructors in the

accompanying Solutions Manual.

POWERPOINT SLIDES AND SOLUTIONS MANUAL

A set of PowerPoint slides that contain all of the figures in the book is available on the

Authors’ website. Instructors can request access to these slides, as well as access to the

Solutions Manual for the book, at:

www.mhhe.com/brownvranesic

ACKNOWLEDGMENTS

We wish to express our thanks to the people who have helped during the preparation of this

book. Dan Vranesic produced a substantial amount of artwork. He and Deshanand Singh

also helped with the preparation of the solutions manual, and Tom Czajkowski helped in

checking the answers to problems. Matthew Brown edited the text to improve readabil-

ity, and Andrew Brown helped to create some examples of VHDL code. The reviewers,

William Barnes, New Jersey Institute of Technology; Thomas Bradicich, North Carolina

State University; James Clark, McGill University; Stephen DeWeerth, Georgia Institute

of Technology; Sander Eller, Cal Poly Pomona; Clay Gloster, Jr., North Carolina State

University (Raleigh); Carl Hamacher, Queen’s University; Vincent Heuring, University of

Colorado; Yu Hen Hu, University of Wisconsin; Wei-Ming Lin, University of Texas (San

Antonio); Wayne Loucks, University of Waterloo; Kartik Mohanram, Rice University; Jane

Morehead, Mississippi State University; Chris Myers, University of Utah; Vojin Oklobdzija,

University of California (Davis); James Palmer, Rochester Institute of Technology; Gandhi

Puvvada, University of Southern California; Teodoro Robles, Milwaukee School of Engi-

neering; Tatyana Roziner, Boston University; Rob Rutenbar, Carnegie Mellon University;

Eric Schwartz, University of Florida; Wen-Tsong Shiue, Oregon State University; Peter

Simko, Miami University; Scott Smith, University of Missouri (Rolla); Arun Somani, Iowa

State University; Bernard Svihel, University of Texas (Arlington); and Zeljko Zilic, McGill

University provided constructive criticism and made numerous suggestions for improvements.

Nicholas Reeder, Sinclair Community College, Dayton, OH, provided excellent proof

reading.

Stephen Brown and Zvonko Vranesic

ISTUDY

CONTENTS

C h a p t e r 1

INTRODUCTION 1
1.1 Digital Hardware 2

1.1.1 Standard Chips 4

1.1.2 Programmable Logic Devices 4

1.1.3 Custom-Designed Chips 5

1.2 The Design Process 5

1.3 Structure of a Computer 7

1.4 Logic Circuit Design in This Book 10

1.5 Digital Representation of Information 10
1.5.1 Binary Numbers 11

1.5.2 Conversion between Decimal and

Binary Systems 13

1.5.3 ASCII Character Code 14

1.5.4 Digital and Analog Information 14

1.6 Theory and Practice 16

Problems 17

C h a p t e r 2

INTRODUCTION TO LOGIC
CIRCUITS 19
2.1 Variables and Functions 20

2.2 Inversion 23

2.3 Truth Tables 24

2.4 Logic Gates and Networks 25
2.4.1 Analysis of a Logic Network 26

2.5 Boolean Algebra 30
2.5.1 The Venn Diagram 34

2.5.2 Notation and Terminology 38

2.5.3 Precedence of Operations 40

2.6 Synthesis Using AND, OR, and NOT

Gates 40
2.6.1 Sum-of-Products and Product-of-Sums

Forms 44

2.7 NAND and NOR Logic Networks 50

2.8 Design Examples 54
2.8.1 Three-Way Light Control 55

2.8.2 Multiplexer Circuit 56

2.8.3 Number Display 58

2.9 Introduction to CAD Tools 59
2.9.1 Design Entry 60

2.9.2 Logic Synthesis 61

2.9.3 Functional Simulation 62

2.9.4 Physical Design 62

2.9.5 Timing Analysis 62

2.9.6 Circuit Implementation 63

2.9.7 Complete Design Flow 63

2.10 Introduction to VHDL 63
2.10.1 Structural Specification of Logic

Circuits 65

2.10.2 Behavioral Specification of Logic

Circuits 69

2.10.3 Hierarchical VHDL Code 70

2.10.4 How not to Write VHDL Code 73

2.11 Minimization and Karnaugh Maps 73

2.12 Strategy for Minimization 81
2.12.1 Terminology 81

2.12.2 Minimization Procedure 83

2.13 Minimization of Product-of-Sums Forms 86

2.14 Incompletely Specified Functions 88

2.15 Multiple-Output Circuits 90

2.16 Concluding Remarks 95

2.17 Examples of Solved Problems 95

Problems 105

References 113

C h a p t e r 3

NUMBER REPRESENTATION AND
ARITHMETIC CIRCUITS 115
3.1 Positional Number Representation 116

3.1.1 Unsigned Integers 116

3.1.2 Octal and Hexadecimal

Representations 116

3.2 Addition of Unsigned Numbers 118
3.2.1 Decomposed Full-Adder 122

3.2.2 Ripple-Carry Adder 122

3.2.3 Design Example 124

3.3 Signed Numbers 124
3.3.1 Negative Numbers 124

3.3.2 Addition and Subtraction 128

xi

ISTUDY

xii CONTENTS

3.3.3 Adder and Subtractor Unit 131

3.3.4 Radix-Complement Schemes∗ 132

3.3.5 Arithmetic Overflow 136

3.3.6 Performance Issues 137

3.4 Fast Adders 138
3.4.1 Carry-Lookahead Adder 138

3.5 Design of Arithmetic Circuits Using CAD

Tools 144
3.5.1 Design of Arithmetic Circuits Using

Schematic Capture 144

3.5.2 Design of Arithmetic Circuits Using

VHDL 144

3.5.3 Representation of Numbers in VHDL

Code 147

3.5.4 Arithmetic Assignment Statements 149

3.6 Multiplication 152
3.6.1 Array Multiplier for Unsigned

Numbers 154

3.6.2 Multiplication of Signed Numbers 154

3.7 Other Number Representations 156
3.7.1 Fixed-Point Numbers 157

3.7.2 Floating-Point Numbers 157

3.7.3 Binary-Coded-Decimal

Representation 159

3.8 Examples of Solved Problems 163

Problems 169

Reference 172

C h a p t e r 4

COMBINATIONAL-CIRCUIT
BUILDING BLOCKS 173
4.1 Multiplexers 174

4.1.1 Synthesis of Logic Functions Using

Multiplexers 177

4.1.2 Multiplexer Synthesis Using Shannon’s

Expansion 180

4.2 Decoders 184
4.2.1 Demultiplexers 188

4.3 Encoders 188
4.3.1 Binary Encoders 189

4.3.2 Priority Encoders 190

4.4 Code Converters 191

4.5 Arithmetic Comparison Circuits 192

4.6 VHDL for Combinational Circuits 193
4.6.1 Assignment Statements 193

4.6.2 Selected Signal Assignment 194

4.6.3 Conditional Signal Assignment 197

4.6.4 Generate Statements 200

4.6.5 Concurrent and Sequential Assignment

Statements 202

4.6.6 Process Statement 203

4.6.7 Case Statement 208

4.6.8 VHDL Operators 210

4.7 Concluding Remarks 215

4.8 Examples of Solved Problems 215

Problems 226

C h a p t e r 5

FLIP-FLOPS, REGISTERS, AND
COUNTERS 231
5.1 Basic Latch 232

5.2 Gated SR Latch 234

5.2.1 Gated SR Latch with NAND Gates 236

5.3 Gated D Latch 237

5.3.1 Effects of Propagation Delays 239

5.4 Edge-Triggered D Flip-Flops 239

5.4.1 M-S D Flip-Flop 240

5.4.2 Other Types of Edge-Triggered D

Flip-Flops 241

5.4.3 D Flip-Flops with Clear and Preset 243

5.4.4 Flip-Flop Timing Parameters 246

5.5 T Flip-Flop 247

5.6 JK Flip-Flop 248

5.7 Summary of Terminology 249

5.8 Registers 249

5.8.1 Shift Register 250

5.8.2 Parallel-Access Shift Register 251

5.9 Counters 252

5.9.1 Asynchronous Counters 252

5.9.2 Synchronous Counters 254

5.9.3 Counters with Parallel Load 258

5.10 Reset Synchronization 260

5.11 Other Types of Counters 261

5.11.1 BCD Counter 261

5.11.2 Ring Counter 262

5.11.3 Johnson Counter 265

5.11.4 Remarks on Counter Design 265

5.12 Using Storage Elements with CAD Tools 265

5.12.1 Including Storage Elements in

Schematics 265

5.12.2 Using VHDL Constructs for Storage

Elements 268

5.13 Using VHDL Sequential Statements for

Registers and Counters 273

ISTUDY

CONTENTS xiii

5.13.1 Flip-Flops and Registers with Enable

Inputs 280

5.13.2 Shift Registers with Enable Inputs 283

5.14 Design Example - Reaction Timer 283
5.14.1 Register Transfer Level (RTL) Code 290

5.15 Timing Analysis of Flip-flop Circuits 292
5.15.1 Timing Analysis with Clock Skew 294

5.16 Concluding Remarks 296

5.17 Examples of Solved Problems 296

Problems 303

C h a p t e r 6

SYNCHRONOUS SEQUENTIAL
CIRCUITS 309
6.1 Basic Design Steps 311

6.1.1 State Diagram 311

6.1.2 State Table 313

6.1.3 State Assignment 313

6.1.4 Choice of Flip-Flops and Derivation of

Next-State and Output Expressions 315

6.1.5 Timing Diagram 316

6.1.6 Summary of Design Steps 318

6.2 State-Assignment Problem 322
6.2.1 One-Hot Encoding 325

6.3 Mealy State Model 327

6.4 Design of Finite State Machines Using CAD

Tools 331
6.4.1 VHDL Code for Moore-Type FSMs 332

6.4.2 Synthesis of VHDL Code 334

6.4.3 Simulating and Testing the Circuit 335

6.4.4 An Alternative Style of VHDL Code 337

6.4.5 Summary of Design Steps When Using

CAD Tools 338

6.4.6 Specifying the State Assignment in

VHDL Code 338

6.4.7 Specification of Mealy FSMs Using

VHDL 341

6.5 Serial Adder Example 343
6.5.1 Mealy-Type FSM for Serial Adder 343

6.5.2 Moore-Type FSM for Serial Adder 345

6.5.3 VHDL Code for the Serial Adder 347

6.6 State Minimization 351
6.6.1 Partitioning Minimization Procedure 353

6.6.2 Incompletely Specified FSMs 360

6.7 Design of a Counter Using the Sequential

Circuit Approach 361
6.7.1 State Diagram and State Table for a

Modulo-8 Counter 362

6.7.2 State Assignment 362

6.7.3 Implementation Using D-Type

Flip-Flops 363

6.7.4 Implementation Using JK-Type

Flip-Flops 365

6.7.5 Example—A Different Counter 368

6.8 FSM as an Arbiter Circuit 371

6.9 Analysis of Synchronous Sequential

Circuits 376

6.10 Algorithmic State Machine (ASM)

Charts 380

6.11 Formal Model for Sequential Circuits 383

6.12 Concluding Remarks 385

6.13 Examples of Solved Problems 385

Problems 394

C h a p t e r 7

DIGITAL SYSTEM DESIGN 399
7.1 Bus Structure 400

7.1.1 Using Tri-State Drivers to Implement a

Bus 400

7.1.2 Using Multiplexers to Implement a

Bus 402

7.1.3 VHDL Code for Specification of Bus

Structures 404

7.2 Simple Processor 408

7.3 A Bit-Counting Circuit 420

7.4 Shift-and-Add Multiplier 425

7.5 Divider 432

7.6 Arithmetic Mean 442

7.7 Sort Operation 445

7.8 Clock Synchronization and Timing

Issues 454

7.8.1 Clock Distribution 456

7.8.2 Flip-Flop Timing Parameters 457

7.8.3 Asynchronous Inputs to Flip-Flops 458

7.8.4 Switch Debouncing 459

7.9 Concluding Remarks 461

Problems 461

C h a p t e r 8

OPTIMIZED IMPLEMENTATION OF
LOGIC FUNCTIONS 465
8.1 Multilevel Synthesis 466

8.1.1 Factoring 467

ISTUDY

xiv CONTENTS

8.1.2 Functional Decomposition 470

8.1.3 Multilevel NAND and NOR Circuits 475

8.2 Analysis of Multilevel Circuits 478

8.3 Alternative Representations of Logic

Functions 483
8.3.1 Cubical Representation 483

8.3.2 Binary Decision Diagrams 487

8.4 Optimization Techniques Based on Cubical

Representation 493
8.4.1 A Tabular Method for Minimization 493

8.4.2 A Cubical Technique for

Minimization 501

8.4.3 Practical Considerations 508

8.5 Concluding Remarks 509

8.6 Examples of Solved Problems 509

Problems 518

C h a p t e r 9

ASYNCHRONOUS SEQUENTIAL
CIRCUITS 521
9.1 Asynchronous Behavior 522

9.2 Analysis of Asynchronous Circuits 525

9.3 Synthesis of Asynchronous Circuits 533

9.4 State Reduction 546

9.5 State Assignment 560
9.5.1 Transition Diagram 563

9.5.2 Exploiting Unspecified Next-State

Entries 566

9.5.3 State Assignment Using Additional

State Variables 569

9.5.4 One-Hot State Assignment 575

9.6 Hazards 576
9.6.1 Static Hazards 576

9.6.2 Dynamic Hazards 581

9.6.3 Significance of Hazards 583

9.7 A Complete Design Example 583
9.7.1 The Vending-Machine Controller 583

9.8 Concluding Remarks 588

9.9 Examples of Solved Problems 590

Problems 598

C h a p t e r 10

COMPUTER AIDED DESIGN
TOOLS 603
10.1 Synthesis 604

10.1.1 Netlist Generation 604

10.1.2 Gate Optimization 604

10.1.3 Technology Mapping 606

10.2 Physical Design 609
10.2.1 Placement 609

10.2.2 Routing 611

10.2.3 Timing Analysis 613

10.3 Concluding Remarks 616

References 616

C h a p t e r 11

TESTING OF LOGIC CIRCUITS 617
11.1 Fault Model 618

11.1.1 Stuck-at Model 618

11.1.2 Single and Multiple Faults 619

11.1.3 CMOS Circuits 619

11.2 Complexity of a Test Set 619

11.3 Path Sensitizing 621
11.3.1 Detection of a Specific Fault 623

11.4 Circuits with Tree Structure 625

11.5 Random Tests 626

11.6 Testing of Sequential Circuits 629
11.6.1 Design for Testability 629

11.7 Built-in Self-Test 633
11.7.1 Built-in Logic Block Observer 637

11.7.2 Signature Analysis 639

11.7.3 Boundary Scan 640

11.8 Printed Circuit Boards 640
11.8.1 Testing of PCBs 642

11.8.2 Instrumentation 643

11.9 Concluding Remarks 644

Problems 644

References 647

A p p e n d i x A

VHDL REFERENCE 649
A.1 Documentation in VHDL Code 650

A.2 Data Objects 650
A.2.1 Data Object Names 650

A.2.2 Data Object Values and Numbers 650

A.2.3 SIGNAL Data Objects 651

A.2.4 BIT and BIT VECTOR Types 651

A.2.5 STD LOGIC and

STD LOGIC VECTOR Types 652

A.2.6 STD ULOGIC Type 652

A.2.7 SIGNED and UNSIGNED Types 653

A.2.8 INTEGER Type 653

A.2.9 BOOLEAN Type 654

ISTUDY

CONTENTS xv

A.2.10 ENUMERATION Type 654

A.2.11 CONSTANT Data Objects 654

A.2.12 VARIABLE Data Objects 655

A.2.13 Type Conversion 655

A.2.14 Arrays 655

A.3 Operators 656

A.4 VHDL Design Entity 657
A.4.1 ENTITY Declaration 657

A.4.2 Architecture 658

A.5 Package 660

A.6 Using Subcircuits 661
A.6.1 Declaring a COMPONENT in a

Package 663

A.7 Concurrent Assignment Statements 664
A.7.1 Simple Signal Assignment 664

A.7.2 Assigning Signal Values Using

OTHERS 665

A.7.3 Selected Signal Assignment 666

A.7.4 Conditional Signal Assignment 667

A.7.5 GENERATE Statement 668

A.8 Defining an Entity with GENERICs 668

A.9 Sequential Assignment Statements 669
A.9.1 PROCESS Statement 671

A.9.2 IF Statement 671

A.9.3 CASE Statement 672

A.9.4 Loop Statements 673

A.9.5 Using a Process for a Combinational

Circuit 673

A.9.6 Statement Ordering 674

A.9.7 Using a VARIABLE in a PROCESS 675

A.10 Sequential Circuits 680
A.10.1 A Gated D Latch 680

A.10.2 D Flip-Flop 681

A.10.3 Using a WAIT UNTIL Statement 681

A.10.4 A Flip-Flop with Asynchronous

Reset 682

A.10.5 Synchronous Reset 682

A.10.6 Registers 684

A.10.7 Shift Registers 686

A.10.8 Counters 688

A.10.9 Using Subcircuits with GENERIC

Parameters 688

A.10.10 A Moore-Type Finite State Machine 692

A.10.11 A Mealy-Type Finite State Machine 696

A.11 Common Errors in VHDL Code 696

A.12 Concluding Remarks 699

References 700

A p p e n d i x B

IMPLEMENTATION
TECHNOLOGY 701
B.1 Transistor Switches 702

B.2 NMOS Logic Gates 704

B.3 CMOS Logic Gates 707
B.3.1 Speed of Logic Gate Circuits 714

B.4 Negative Logic System 715

B.5 Standard Chips 718
B.5.1 7400-Series Standard Chips 718

B.6 Programmable Logic Devices 720
B.6.1 Programmable Logic Array (PLA) 721

B.6.2 Programmable Array Logic (PAL) 723

B.6.3 Programming of PLAs and PALs 725

B.6.4 Complex Programmable Logic Devices

(CPLDs) 727

B.6.5 Field-Programmable Gate Arrays 731

B.7 Custom Chips, Standard Cells, and Gate

Arrays 736

B.8 Practical Aspects 738
B.8.1 MOSFET Fabrication and Behavior 738

B.8.2 MOSFET On-Resistance 742

B.8.3 Voltage Levels in Logic Gates 743

B.8.4 Noise Margin 745

B.8.5 Dynamic Operation of Logic Gates 746

B.8.6 Power Dissipation in Logic Gates 749

B.8.7 Passing 1s and 0s Through Transistor

Switches 751

B.8.8 Transmission Gates 753

B.8.9 Fan-in and Fan-out in Logic Gates 755

B.8.10 Tri-state Drivers 759

B.9 Static Random Access Memory

(SRAM) 761
B.9.1 SRAM Blocks in PLDs 762

B.10 Implementation Details for SPLDs, CPLDs,

and FPGAs 763
B.10.1 Implementation in FPGAs 771

B.11 Concluding Remarks 773

B.12 Examples of Solved Problems 773

Problems 780

References 790

ANSWERS 791
INDEX 805

ISTUDY

added value

Make technology work for you with
LMS integration for single sign-on access,
mobile access to the digital textbook,
and reports to quickly show you how
each of your students is doing. And with
our Inclusive Access program you can
provide all these tools at a discount to
your students. Ask your McGraw Hill
representative for more information.

65%
Less Time
Grading

Checkmark: Jobalou/Getty ImagesPadlock: Jobalou/Getty Images

Instructors: Student Success Starts with You

Laptop: McGraw Hill; Woman/dog: George Doyle/Getty Images

Tools to enhance your unique voice
Want to build your own course? No problem. Prefer to use an
OLC-aligned, prebuilt course? Easy. Want to make changes throughout
the semester? Sure. And you’ll save time with Connect’s auto-grading too.

Solutions for
your challenges

A product isn’t a solution. Real

and come with training and
ongoing support when you need
it and how you want it. Visit www.
supportateverystep.com for videos
and resources both you and your
students can use throughout the
semester.

Study made personal
Incorporate adaptive study resources like
SmartBook® 2.0 into your course and help your
students be better prepared in less time. Learn
more about the powerful personalized learning
experience available in SmartBook 2.0 at
www.mheducation.com/highered/connect/smartbook

ISTUDY

Connect is designed to help you be more productive with simple, flexible, intuitive tools that maximize
your study time and meet your individual learning needs. Get learning that works for you with Connect.

Everything you need in one place
Your Connect course has everything you need—whether reading on
your digital eBook or completing assignments for class, Connect makes
it easy to get your work done.

“I really liked this
app—it made it easy
to study when you
don't have your text-
book in front of you.”

- Jordan Cunningham,
 Eastern Washington University

Study anytime, anywhere
Download the free ReadAnywhere app and access
your online eBook, SmartBook 2.0, or Adaptive
Learning Assignments when it’s convenient, even

syncs with your Connect account, all of your work is
available every time you open it. Find out more at
www.mheducation.com/readanywhere

Top: Jenner Images/Getty Images, Left: Hero Images/Getty Images, Right: Hero Images/Getty Images

Calendar: owattaphotos/Getty Images

Students: Get Learning that Fits You

Learning for everyone
McGraw Hill works directly with Accessibility Services
Departments and faculty to meet the learning needs
of all students. Please contact your Accessibility

accessibility@mheducation.com, or visit
www.mheducation.com/about/accessibility
for more information.

ISTUDY

ISTUDY

1

c h a p t e r

1
INTRODUCTION

CHAPTER OBJECTIVES

In this chapter you will be introduced to:

● Digital hardware components

● An overview of the design process

● Binary numbers

● Digital representation of information

ISTUDY

2 C H A P T E R 1 ● INTRODUCTION

This book is about logic circuits—the circuits from which computers are built. Proper understanding of logic

circuits is vital for today’s electrical and computer engineers. These circuits are the key ingredient of com-

puters and are also used in many other applications. They are found in commonly used products like music

and video players, electronic games, digital watches, cameras, televisions, printers, and many household ap-

pliances, as well as in large systems, such as telephone networks, Internet equipment, television broadcast

equipment, industrial control units, and medical instruments. In short, logic circuits are an important part of

almost all modern products.

The material in this book will introduce the reader to the many issues involved in the design of logic

circuits. It explains the key ideas with simple examples and shows how complex circuits can be derived from

elementary ones. We cover the classical theory used in the design of logic circuits because it provides the

reader with an intuitive understanding of the nature of such circuits. But, throughout the book, we also illus-

trate the modern way of designing logic circuits using sophisticated computer aided design (CAD) software

tools. The CAD methodology adopted in the book is based on the industry-standard design language called

VHDL. Design with VHDL is first introduced in Chapter 2, and usage of VHDL and CAD tools is an integral

part of each chapter in the book.

Logic circuits are implemented electronically, using transistors on an integrated circuit chip. Commonly

available chips that use modern technology may contain more than a billion transistors, as in the case of some

computer processors. The basic building blocks for such circuits are easy to understand, but there is nothing

simple about a circuit that contains billions of transistors. The complexity that comes with large circuits can

be handled successfully only by using highly organized design techniques. We introduce these techniques in

this chapter, but first we briefly describe the hardware technology used to build logic circuits.

1.1 DIGITAL HARDWARE

Logic circuits are used to build computer hardware, as well as many other types of products.

All such products are broadly classified as digital hardware. The reason that the name digital
is used will be explained in Section 1.5—it derives from the way in which information is

represented in computers, as electronic signals that correspond to digits of information.

The technology used to build digital hardware has evolved dramatically over the past

few decades. Until the 1960s logic circuits were constructed with bulky components, such

as transistors and resistors that came as individual parts. The advent of integrated circuits

made it possible to place a number of transistors, and thus an entire circuit, on a single chip.

In the beginning these circuits had only a few transistors, but as the technology improved

they became more complex. Integrated circuit chips are manufactured on a silicon wafer,

such as the one shown in Figure 1.1. The wafer is cut to produce the individual chips,

which are then placed inside a special type of chip package. By 1970 it was possible to

implement all circuitry needed to realize a microprocessor on a single chip. Although early

microprocessors had modest computing capability by today’s standards, they opened the

door for the information processing revolution by providing the means for implementation

of affordable personal computers.

About 30 years ago Gordon Moore, chairman of Intel Corporation, observed that in-

tegrated circuit technology was progressing at an astounding rate, approximately doubling

the number of transistors that could be placed on a chip every two years. This phenomenon

is informally known as Moore’s law. Thus in the early 1990s microprocessors could be

ISTUDY

1.1 DIGITAL HARDWARE 3

Figure 1.1 A silicon wafer.

manufactured with a few million transistors, and by the late 1990s it became possible to

fabricate chips that had tens of millions of transistors. Presently, chips can be manufactured

containing billions of transistors.

Moore’s law is expected to continue to hold true for a number of years. A consortium

of integrated circuit associations produces a forecast of how the technology is expected to

evolve. Known as the International Roadmap for Devices and Systems (IRDS), this forecast

discusses many aspects of technology, including the maximum number of transistors that

can be manufactured in a given chip area. An example of data that can be derived from

the roadmap is given in Figure 1.2. It indicates how the maximum number of transistors

that can be manufactured on a single chip has changed over time—chips with about

10 million transistors could be successfully manufactured in 1995, and this number has steadily

increased, leading to modern chips that have over a billion transistors. The roadmap predicts

that chips with more than 100 billion transistors will be possible by the year 2025. There is

no doubt that this technology will have a huge impact on all aspects of people’s lives.

The designer of digital hardware may be faced with designing logic circuits that can

be implemented on a single chip or designing circuits that involve a number of chips placed

on a printed circuit board (PCB). Frequently, some of the logic circuits can be realized

in existing chips that are readily available. This situation simplifies the design task and

shortens the time needed to develop the final product. Before we discuss the design process

in detail, we should introduce the different types of integrated circuit chips that may be used.

There exists a large variety of chips that implement various functions that are useful in

the design of digital hardware. The chips range from simple ones with low functionality to

extremely complex chips. For example, a digital hardware product may require a micropro-

cessor to perform some arithmetic operations, memory chips to provide storage capability,

ISTUDY

4 C H A P T E R 1 ● INTRODUCTION

Figure 1.2 An estimate of the maximum number of transistors per chip
over time.

and interface chips that allow easy connection to input and output devices. Such chips are

available from various vendors.

For many digital hardware products, it is also necessary to design and build some logic

circuits from scratch. For implementing these circuits, three main types of chips may be used:

standard chips, programmable logic devices, and custom chips. These are discussed next.

1.1.1 STANDARD CHIPS

Numerous chips are available that realize some commonly used logic circuits. We will refer to

these as standard chips, because they usually conform to an agreed-upon standard in terms of

functionality and physical configuration. Each standard chip contains a small amount of circuitry

(usually involving fewer than 100 transistors) and performs a simple function. To build a logic

circuit, the designer chooses the chips that perform whatever functions are needed and then

defines how these chips should be interconnected to realize a larger logic circuit.

Standard chips were popular for building logic circuits until the early 1980s. How-

ever, as integrated circuit technology improved, it became inefficient to use valuable space

on PCBs for chips with low functionality. Another drawback of standard chips is that the

functionality of each chip is fixed and cannot be changed.

1.1.2 PROGRAMMABLE LOGIC DEVICES

In contrast to standard chips that have fixed functionality, it is possible to construct chips

that contain circuitry which can be configured by the user to implement a wide range of

different logic circuits. These chips have a very general structure and include a collection

of programmable switches that allow the internal circuitry in the chip to be configured in

many different ways. The designer can implement whatever functions are required for a

particular application by setting the programmable switches as needed. The switches are

ISTUDY

1.2 THE DESIGN PROCESS 5

programmed by the end user, rather than when the chip is manufactured. Such chips are

known as programmable logic devices (PLDs).
PLDs are available in a wide range of sizes, and can be used to implement very large

logic circuits. The most commonly used type of PLD is known as a field-programmable
gate array (FPGA). The largest FPGAs contain billions of transistors and support the im-

plementation of complex digital systems. An FPGA consists of a large number of small

logic circuit elements, which can be connected together by using programmable switches

in the FPGA. Because of their high capacity, and their capability to be tailored to meet the

requirements of a specific application, FPGAs are widely used today.

1.1.3 CUSTOM-DESIGNED CHIPS

FPGAs are available as off-the-shelf components that can be purchased from different sup-

pliers. Because they are programmable, they can be used to implement most logic circuits

found in digital hardware. However, they also have a drawback in that the programmable

switches consume valuable chip area and limit the speed of operation of implemented cir-

cuits. Thus in some cases FPGAs may not meet the desired performance or cost objectives.

In such situations it is possible to design a chip from scratch; namely, the logic circuitry that

must be included on the chip is designed first and then the chip is manufactured by a com-

pany that has the fabrication facilities. This approach is known as custom or semi-custom
design, and such chips are often called application-specific integrated circuits (ASICs).

The main advantage of a custom chip is that its design can be optimized for a specific

task; hence it usually leads to better performance. It is possible to include a larger amount

of logic circuitry in a custom chip than would be possible in other types of chips. The

cost of producing such chips is high, but if they are used in a product that is sold in large

quantities, then the cost per chip, amortized over the total number of chips fabricated, may

be lower than the total cost of off-the-shelf chips that would be needed to implement the

same function(s). Moreover, if a single chip can be used instead of multiple chips to achieve

the same goal, then a smaller area is needed on a PCB that houses the chips in the final

product. This results in a further reduction in cost.

A disadvantage of the custom-design approach is that manufacturing a custom chip

often takes a considerable amount of time, on the order of months. In contrast, if an FPGA

can be used instead, then the chips are programmed by the end user and no manufacturing

delays are involved.

1.2 THE DESIGN PROCESS

The availability of computer-based tools has greatly influenced the design process in a wide

variety of environments. For example, designing an automobile is similar in the general

approach to designing a furnace or a computer. Certain steps in the development cycle

must be performed if the final product is to meet the specified objectives.

The flowchart in Figure 1.3 depicts a typical development process. We assume that

the process is to develop a product that meets certain expectations. The most obvious

requirements are that the product must function properly, that it must meet an expected

level of performance, and that its cost should not exceed a given target.

ISTUDY

6 C H A P T E R 1 ● INTRODUCTION

Required product

Define specifications

Initial design

Simulation

Design correct?

Redesign

Prototype implementation

Testing

Meets specifications?

Finished product

Minor errors?

Make corrections

No

Yes

No

Yes

Yes

No

Figure 1.3 The development process.

ISTUDY

1.3 STRUCTURE OF A COMPUTER 7

The process begins with the definition of product specifications. The essential features

of the product are identified, and an acceptable method of evaluating the implemented fea-

tures in the final product is established. The specifications must be tight enough to ensure

that the developed product will meet the general expectations, but should not be unneces-

sarily constraining (that is, the specifications should not prevent design choices that may

lead to unforeseen advantages).

From a complete set of specifications, it is necessary to define the general structure of

an initial design of the product. This step is difficult to automate. It is usually performed by

a human designer because there is no clear-cut strategy for developing a product’s overall

structure—it requires considerable design experience and intuition.

After the general structure is established, CAD tools are used to work out the details.

Many types of CAD tools are available, ranging from those that help with the design of

individual parts of the system to those that allow the entire system’s structure to be repre-

sented in a computer. When the initial design is finished, the results must be verified against

the original specifications. Traditionally, before the advent of CAD tools, this step involved

constructing a physical model of the designed product, usually including just the key parts.

Today it is seldom necessary to build a physical model. CAD tools enable designers to

simulate the behavior of incredibly complex products, and such simulations are used to de-

termine whether the obtained design meets the required specifications. If errors are found,

then appropriate changes are made and the verification of the new design is repeated through

simulation. Although some design flaws may escape detection via simulation, usually all

but the most subtle problems are discovered in this way.

When the simulation indicates that the design is correct, a complete physical prototype

of the product is constructed. The prototype is thoroughly tested for conformance with the

specifications. Any errors revealed in the testing must be fixed. The errors may be minor,

and often they can be eliminated by making small corrections directly on the prototype of

the product. In case of large errors, it is necessary to redesign the product and repeat the

steps explained above. When the prototype passes all the tests, then the product is deemed

to be successfully designed and it can go into production.

1.3 STRUCTURE OF A COMPUTER

To understand the role that logic circuits play in digital systems, consider the structure of a typical

computer, as illustrated in Figure 1.4a. The computer case houses a number of printed circuit

boards (PCBs), a power supply, and (not shown in the figure) storage units, like a hard disk and

DVD or CD-ROM drives. Each unit is plugged into a main PCB, called the motherboard. As

indicated on the bottom of the figure, the motherboard holds several integrated circuit chips, and

it provides slots for connecting other PCBs, such as audio, video, and network boards.

Figure 1.4b illustrates the structure of an integrated circuit chip. The chip comprises

a number of subcircuits, which are interconnected to build the complete circuit. Examples

of subcircuits are those that perform arithmetic operations, store data, or control the flow

of data. Each of these subcircuits is a logic circuit. As shown in the middle of the figure, a

logic circuit comprises a network of connected logic gates. Each logic gate performs a very

simple function, and more complex operations are realized by connecting gates together.

Logic gates are built with transistors, which in turn are implemented by fabricating various

layers of material on a silicon chip.

ISTUDY

8 C H A P T E R 1 ● INTRODUCTION

Integrated circuits,
connectors, and
components

Pr inted circuit boards

Power supply

Computer

Motherboard

Motherboard

Figure 1.4 A digital hardware system (Part a).

ISTUDY

1.3 STRUCTURE OF A COMPUTER 9

Transistor circuit

Logic gates

Subcircuits

Transistor

in a chip

on a chip

Figure 1.4 A digital hardware system (Part b).

ISTUDY

10 C H A P T E R 1 ● INTRODUCTION

This book is primarily concerned with the center portion of Figure 1.4b—the design

of logic circuits. We explain how to design circuits that perform important functions, such

as adding, subtracting, or multiplying numbers, counting, storing data, and controlling the

processing of information. We show how the behavior of such circuits is specified, how

the circuits are designed for minimum cost or maximum speed of operation, and how the

circuits can be tested to ensure correct operation. We also briefly explain how transistors

operate, and how they are built on silicon chips.

1.4 LOGIC CIRCUIT DESIGN IN THIS BOOK

In this book we use a modern design approach based on the VHDL hardware description

language and CAD tools to illustrate many aspects of logic circuit design. We selected

this technology because it is widely used in industry and because it enables the readers to

implement their designs in FPGA chips, as discussed below. This technology is particularly

well-suited for educational purposes because many readers have access to facilities for using

CAD tools and programming FPGA devices.

To gain practical experience and a deeper understanding of logic circuits, we advise the

reader to implement the examples in this book using CAD software. Most of the major ven-

dors of CAD systems provide their software at no cost to university students for educational

use. Some examples are Intel, Cadence, Mentor Graphics, Synopsys, and Xilinx. The CAD

systems offered by any of these companies can be used equally well with this book. Two

examples of CAD systems that are particularly well-suited for use with this book are those

provided by Intel and Xilinx. The CAD tools from both of these corporations support all

phases of the design cycle for logic circuits and are powerful and easy to use. The reader is

encouraged to visit the website for these companies, where the software tools and tutorials

that explain their use can be downloaded and installed onto any personal computer.

To facilitate experimentation with logic circuits, some FPGA manufacturers provide

special PCBs that include one or more FPGA chips and an interface to a personal computer.

Once a logic circuit has been designed using the CAD tools, the circuit can be programmed
into an FPGA on the board. Inputs can then be applied to the FPGA by way of switches and

other devices, and the generated outputs can be examined. An example of such a board is

depicted in Figure 1.5. This type of board is an excellent vehicle for learning about logic

circuits, because it provides a collection of simple input and output devices. Many illustra-

tive experiments can be carried out by designing and implementing logic circuits using the

FPGA chip on the board.

1.5 DIGITAL REPRESENTATION OF INFORMATION

In Section 1.1 we mentioned that information is represented in logic circuits as electronic

signals. Each of these signals can be thought of as representing one digit of information. To

make the design of logic circuits easier, each digit is allowed to take on only two possible

values, usually denoted as 0 and 1. These logic values are implemented as voltage levels in

a circuit; the value 0 is usually represented as 0 V (ground), and the value 1 is the voltage

ISTUDY

1.5 DIGITAL REPRESENTATION OF INFORMATION 11

Figure 1.5 An FPGA board.

level of the circuit’s power supply. As we discuss in Appendix B, typical power-supply

voltages in logic circuits range from 1 V DC to 5 V DC.

In general, all information in logic circuits is represented as combinations of 0 and 1

digits. Before beginning our discussion of logic circuits in Chapter 2, it will be helpful to

examine how numbers, alphanumeric data (text), and other information can be represented

using the digits 0 and 1.

1.5.1 BINARY NUMBERS

In the familiar decimal system, a number consists of digits that have 10 possible values,

from 0 to 9, and each digit represents a multiple of a power of 10. For example, the number

8547 represents 8 × 103 + 5 × 102 + 4 × 101 + 7 × 100. We do not normally write the

powers of 10 with the number, because they are implied by the positions of the digits. In

general, a decimal integer is expressed by an n-tuple comprising n decimal digits

D = dn−1dn−2 ⋯ d1d0

which represents the value

V(D) = dn−1 × 10n−1 + dn−2 × 10n−2 +⋯ + d1 × 101 + d0 × 100

This is referred to as the positional number representation.

Because the digits have 10 possible values and each digit is weighted as a power of 10,

we say that decimal numbers are base-10 numbers. Decimal numbers are familiar, conve-

nient, and easy to understand. However, since digital circuits represent information using

only the values 0 and 1, it is not practical to have digits that can assume ten values. In these

circuits it is more appropriate to use the binary, or base-2, system which has only the digits

ISTUDY

12 C H A P T E R 1 ● INTRODUCTION

0 and 1. Each binary digit is called a bit. In the binary number system, the same positional

number representation is used so that

B = bn−1bn−2 ⋯ b1b0

represents an integer that has the value

V(B) = bn−1 × 2n−1 + bn−2 × 2n−2 +⋯ + b1 × 21 + b0 × 20 [1.1]

=
n−1∑

i=0

bi × 2i

For example, the binary number 1101 represents the value

V = 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20

Because a particular digit pattern has different meanings for different bases, we will indicate

the base as a subscript when there is potential for confusion. Thus to specify that 1101 is

a base-2 number, we will write (1101)2. Evaluating the preceding expression for V gives

V = 8 + 4 + 1 = 13. Hence

(1101)2 = (13)10

The range of integers that can be represented by a binary number depends on the number of

bits used. Table 1.1 lists the first 15 positive integers and shows their binary representations

using four bits. An example of a larger number is (10110111)2 = (183)10. In general, using

n bits allows representation of positive integers in the range 0 to 2n − 1.

In a binary number the rightmost bit is usually referred to as the least-significant bit (LSB).
The left-most bit, which has the highest power of 2 associated with it, is called the

Table 1.1 Numbers in decimal
and binary.

Decimal Binary
representation representation

00 0000

01 0001

02 0010

03 0011

04 0100

05 0101

06 0110

07 0111

08 1000

09 1001

10 1010

11 1011

12 1100

13 1101

14 1110

15 1111

ISTUDY

1.5 DIGITAL REPRESENTATION OF INFORMATION 13

most-significant bit (MSB). In digital systems it is often convenient to consider several bits

together as a group. A group of four bits is called a nibble, and a group of eight bits is called

a byte.

1.5.2 CONVERSION BETWEEN DECIMAL AND BINARY SYSTEMS

A binary number is converted into a decimal number simply by applying Equation 1.1 and

evaluating it using decimal arithmetic. Converting a decimal number into a binary number

is not quite as straightforward, because we need to construct the number by using powers

of 2. For example, the number (17)10 is 24 + 20 = (10001)2, and the number (50)10 is 25 +
24 + 21 = (110010)2. In general, the conversion can be performed by successively dividing

the decimal number by 2 as follows. Suppose that a decimal number D = dk−1 ⋯ d1d0, with

a value V , is to be converted into a binary number B = bn−1 ⋯ b2b1b0. Then, we can write

V in the form

V = bn−1 × 2n−1 +⋯ + b2 × 22 + b1 × 21 + b0

If we now divide V by 2, the result is

V
2
= bn−1 × 2n−2 +⋯ + b2 × 21 + b1 +

b0

2

The quotient of this integer division is bn−1 × 2n−2 +⋯ + b2 × 2 + b1, and the remainder

is b0. If the remainder is 0, then b0 = 0; if it is 1, then b0 = 1. Observe that the quotient

is just another binary number, which comprises n − 1 bits, rather than n bits. Dividing this

number by 2 yields the remainder b1. The new quotient is

bn−1 × 2n−3 +⋯ + b2

Continuing the process of dividing the new quotient by 2, and determining one bit in

each step, will produce all bits of the binary number. The process continues until the

quotient becomes 0. Figure 1.6 illustrates the conversion process, using the example

857 ÷ 2 =

428 ÷ 2 =

214 ÷ 2 =

107 ÷ 2 =

53 ÷ 2 =

26 ÷ 2 =

13 ÷ 2 =

6 ÷ 2 =

3 ÷ 2 =

1 ÷ 2 =

428

214

107

53

26

13

6

3

1

0

LSB

MSB

Remainder

1

0

0

1

1

0

1

0

1

1

Convert (857)10

Result is (1101011001)2

Figure 1.6 Conversion from decimal to binary.

ISTUDY

14 C H A P T E R 1 ● INTRODUCTION

(857)10 = (1101011001)2. Note that the least-significant bit (LSB) is generated first and

the most-significant bit (MSB) is generated last.

So far, we have considered only the representation of positive integers. In Chapter 3

we will complete the discussion of number representation by explaining how negative num-

bers are handled and how fixed-point and floating-point numbers may be represented. We

will also explain how arithmetic operations are performed in computers.

1.5.3 ASCII CHARACTER CODE

Alphanumeric information, such as letters and numbers typed on a computer keyboard, is

represented as codes consisting of 0 and 1 digits. The most common code used for this type

of information is known as the ASCII code, which stands for the American Standard Code

for Information Interchange. The code specified by this standard is presented in Table 1.2.

The ASCII code uses seven-bit patterns to denote 128 different characters. Ten of the

characters are decimal digits 0 to 9. As the table shows, the high-order bits have the same

pattern, b6b5b4 = 011, for all 10 digits. Each digit is identified by the low-order four bits,

b3−0, using the binary patterns for these digits. Capital and lowercase letters are encoded

in a way that makes sorting of textual information easy. The codes for A to Z are in as-

cending numerical sequence, which means that the task of sorting letters (or words) can be

accomplished by a simple arithmetic comparison of the codes that represent the letters.

In addition to codes that represent characters and letters, the ASCII code includes punc-

tuation marks such as ! and ?, commonly used symbols such as & and %, and a collection of

control characters. The control characters are those needed in computer systems to handle

and transfer data among various devices. For example, the carriage return character, which

is abbreviated as CR in the table, indicates that the carriage, or cursor position, of an output

device, such as a printer or display, should return to the leftmost column.

The ASCII code is used to encode information that is handled as text. It is not conve-

nient for representation of numbers that are used as operands in arithmetic operations. For

this purpose, it is best to convert ASCII-encoded numbers into a binary representation that

we discussed before.

The ASCII standard uses seven bits to encode a character. In computer systems a more

natural size is eight bits, or one byte. There are two common ways of fitting an ASCII-

encoded character into a byte. One is to set the eighth bit, b7, to 0. Another is to use this bit

to indicate the parity of the other seven bits, which means showing whether the number of

1s in the seven-bit code is even or odd. We discuss parity in Chapter 4.

1.5.4 DIGITAL AND ANALOG INFORMATION

Binary numbers can be used to represent many types of information. For example, they

can represent music that is stored in a personal music player. Figure 1.7 illustrates a music

player, which contains an electronic memory for storing music files. A music file comprises

a sequence of binary numbers that represent tones. To convert these binary numbers into

sound, a digital-to-analog (D/A) converter circuit is used. It converts digital values into

corresponding voltage levels, which create an analog voltage signal that drives the speakers

inside the headphones. The binary values stored in the music player are referred to as digital
information, whereas the voltage signal that drives the speakers is analog information.

ISTUDY

1.5 DIGITAL REPRESENTATION OF INFORMATION 15

Table 1.2 The seven-bit ASCII code.

Bit
positions Bit positions 654

3210 000 001 010 011 100 101 110 111

0000 NUL DLE SPACE 0 @ P ´ p

0001 SOH DC1 ! 1 A Q a q

0010 STX DC2 ” 2 B R b r

0011 ETX DC3 # 3 C S c s

0100 EOT DC4 $ 4 D T d t

0101 ENQ NAK % 5 E U e u

0110 ACK SYN & 6 F V f v

0111 BEL ETB ’ 7 G W g w

1000 BS CAN (8 H X h x

1001 HT EM) 9 I Y i y

1010 LF SUB * : J Z j z

1011 VT ESC + ; K [k {
1100 FF FS , < L ∖ 1 |

1101 CR GS - = M] m }
1110 SO RS . > N ˆ n ˜

1111 SI US / ? O — ◦ DEL

NUL Null/Idle SI Shift in

SOH Start of header DLE Data link escape

STX Start of text DC1-DC4 Device control

ETX End of text NAK Negative acknowledgement

EOT End of transmission SYN Synchronous idle

ENQ Enquiry ETB End of transmitted block

ACQ Acknowledgement CAN Cancel (error in data)

BEL Audible signal EM End of medium

BS Back space SUB Special sequence

HT Horizontal tab ESC Escape

LF Line feed FS File separator

VT Vertical tab GS Group separator

FF Form feed RS Record separator

CR Carriage return US Unit separator

SO Shift out DEL Delete/Idle

Bit positions of code format = 6 5 4 3 2 1 0

ISTUDY

16 C H A P T E R 1 ● INTRODUCTION

11000100110

10010001000

11111000101

00101001010

11001001011

...

Memory

Headphones

D/A

Figure 1.7 Using digital technology to represent music.

1.6 THEORY AND PRACTICE

Modern design of logic circuits depends heavily on CAD tools, but the discipline of logic

design evolved long before CAD tools were invented. This chronology is quite obvious

because the very first computers were built with logic circuits, and there certainly were no

computers available on which to design them!

Numerous manual design techniques have been developed to deal with logic circuits.

Boolean algebra, which we will introduce in Chapter 2, was adopted as a mathematical

means for representing such circuits. An enormous amount of “theory” was developed

showing how certain design issues may be treated. To be successful, a designer had to

apply this knowledge in practice.

CAD tools not only made it possible to design incredibly complex circuits but also

made the design work much simpler in general. They perform many tasks automatically,

which may suggest that today’s designer need not understand the theoretical concepts used

in the tasks performed by CAD tools. An obvious question would then be, Why should one

study the theory that is no longer needed for manual design? Why not simply learn how to

use the CAD tools?

There are three big reasons for learning the relevant theory. First, although the CAD

tools perform the automatic tasks of optimizing a logic circuit to meet particular design ob-

jectives, the designer has to give the original description of the logic circuit. If the designer

specifies a circuit that has inherently bad properties, then the final circuit will also be of

poor quality. Second, the algebraic rules and theorems for design and manipulation of logic

circuits are directly implemented in today’s CAD tools. It is not possible for a user of the

tools to understand what the tools do without grasping the underlying theory. Third, CAD

tools offer many optional processing steps that a user can invoke when working on a design.

ISTUDY

PROBLEMS 17

The designer chooses which options to use by examining the resulting circuit produced by

the CAD tools and deciding whether it meets the required objectives. The only way that the

designer can know whether or not to apply a particular option in a given situation is to know

what the CAD tools will do if that option is invoked—again, this implies that the designer

must be familiar with the underlying theory. We discuss the logic circuit theory extensively

in this book, because it is not possible to become an effective logic circuit designer without

understanding the fundamental concepts.

There is another good reason to learn some logic circuit theory even if it were not

required for CAD tools. Simply put, it is interesting and intellectually challenging. In the

modern world filled with sophisticated automatic machinery, it is tempting to rely on tools as

a substitute for thinking. However, in logic circuit design, as in any type of design process,

computer-based tools are not a substitute for human intuition and innovation. Computer-

based tools can produce good digital hardware designs only when employed by a designer

who thoroughly understands the nature of logic circuits.

PROBLEMS

Answers to problems marked by an asterisk are given at the back of the book.

*1.1 Convert the following decimal numbers into binary, using the method shown in Figure 1.6.

(a) (20)10

(b) (100)10

(c) (129)10

(d) (260)10

(e) (10240)10

1.2 Convert the following decimal numbers into binary, using the method shown in Figure 1.6.

(a) (30)10

(b) (110)10

(c) (259)10

(d) (500)10

(e) (20480)10

1.3 Convert the following decimal numbers into binary, using the method shown in Figure 1.6.

(a) (1000)10

(b) (10000)10

(c) (100000)10

(d) (1000000)10

*1.4 In Figure 1.6 we show how to convert a decimal number into binary by successively dividing

by 2. Another way to derive the answer is to construct the number by using powers of 2.

For example, if we wish to convert the number (23)10, then the largest power of 2 that is

not larger than 23 is 24 = 16. Hence, the binary number will have five bits and the most-

significant bit is b4 = 1. We then perform the subtraction 23 − 16 = 7. Now, the largest

power of 2 that is not larger than 7 is 22 = 4. Hence, b3 = 0 (because 23 = 8 is larger than 7)

ISTUDY

18 C H A P T E R 1 ● INTRODUCTION

and b2 = 1. Continuing this process gives

23 = 16 + 4 + 2 + 1

= 24 + 22 + 21 + 20

= 10000 + 00100 + 00010 + 00001

= 10111

Using this method, convert the following decimal numbers into binary.

(a) (17)10

(b) (33)10

(c) (67)10

(d) (130)10

(e) (2560)10

(f) (51200)10

1.5 Repeat Problem 1.3 using the method described in Problem 1.4.

*1.6 Convert the following binary numbers into decimal.

(a) (1001)2

(b) (11100)2

(c) (111111)2

(d) (101010101010)2

1.7 Convert the following binary numbers into decimal.

(a) (110010)2

(b) (1100100)2

(c) (11001000)2

(d) (110010000)2

*1.8 What is the minimum number of bits needed to represent the following decimal numbers

in binary?

(a) (270)10

(b) (520)10

(c) (780)10

(d) (1029)10

1.9 Repeat Problem 1.8 for the following decimal numbers:

(a) (111)10

(b) (333)10

(c) (555)10

(d) (1111)10

ISTUDY

19

c h a p t e r

2
INTRODUCTION TO LOGIC CIRCUITS

CHAPTER OBJECTIVES

In this chapter you will be introduced to:

● Logic functions and circuits

● Boolean algebra for dealing with logic functions

● Logic gates and synthesis of simple circuits

● CAD tools and the VHDL hardware description language

● Minimization of functions and Karnaugh maps

ISTUDY

20 C H A P T E R 2 ● INTRODUCTION TO LOGIC CIRCUITS

The study of logic circuits is motivated mostly by their use in digital computers. But such circuits also form

the foundation of many other digital systems, such as those that perform control applications or are involved in

digital communications. All such applications are based on some simple logical operations that are performed

on input information.

In Chapter 1 we showed that information in computers is represented as electronic signals that can have

two discrete values. Although these values are implemented as voltage levels in a circuit, we refer to them

simply as logic values, 0 and 1. Any circuit in which the signals are constrained to have only some number of

discrete values is called a logic circuit. Logic circuits can be designed with different numbers of logic values,

such as three, four, or even more, but in this book we deal only with the binary logic circuits that have two

logic values.

Binary logic circuits have the dominant role in digital technology. We hope to provide the reader with

an understanding of how these circuits work, how they are represented in mathematical notation, and how

they are designed using modern design automation techniques. We begin by introducing some basic concepts

pertinent to the binary logic circuits.

2.1 VARIABLES AND FUNCTIONS

The dominance of binary circuits in digital systems is a consequence of their simplicity,

which results from constraining the signals to assume only two possible values. The simplest

binary element is a switch that has two states. If a given switch is controlled by an input

variable x, then we will say that the switch is open if x = 0 and closed if x = 1, as illustrated

in Figure 2.1a. We will use the graphical symbol in Figure 2.1b to represent such switches

in the diagrams that follow. Note that the control input x is shown explicitly in the symbol.

In Appendix B we explain how such switches are implemented with transistors.

Consider a simple application of a switch, where the switch turns a small lightbulb on

or off. This action is accomplished with the circuit in Figure 2.2a. A battery provides the

power source. The lightbulb glows when a sufficient amount of current passes through it.

The current flows when the switch is closed, that is, when x = 1. In this example the input

x = 1x = 0

(a) Two states of a switch

S

x

(b) Symbol for a switch

Figure 2.1 A binary switch.

ISTUDY

2.1 VARIABLES AND FUNCTIONS 21

(a) Simple connection to a battery

S

x

(b) Using a ground connection as the return path

Battery Light

x
Power
supply

S

Light

Figure 2.2 A light controlled by a switch.

that causes changes in the behavior of the circuit is the switch control x. The output is

defined as the state (or condition) of the light, which we will denote by the letter L. If the

light is on, we will say that L = 1. If the light is off, we will say that L = 0. Using this

convention, we can describe the state of the light as a function of the input variable x. Since

L = 1 if x = 1 and L = 0 if x = 0, we can say that

L(x) = x

This simple logic expression describes the output as a function of the input. We say that

L(x) = x is a logic function and that x is an input variable.

The circuit in Figure 2.2a can be found in an ordinary flashlight, where the switch is a

simple mechanical device. In an electronic circuit the switch is implemented as a transistor

and the light may be a light-emitting diode (LED). An electronic circuit is powered by a

power supply of a certain voltage, usually in the range of 1 to 5 volts. One side of the power

supply provides the circuit ground, as illustrated in Figure 2.2b. The circuit ground is a

common reference point for voltages in the circuit. Rather than drawing wires in a circuit

diagram for all nodes that return to the circuit ground, the diagram can be simplified by

showing a connection to a ground symbol, as we have done for the bottom terminal of the

light L in the figure. In the circuit diagrams that follow we will use this convention, because

it makes the diagrams look simpler.

Consider now the possibility of using two switches to control the state of the light. Let

x1 and x2 be the control inputs for these switches. The switches can be connected either

in series or in parallel as shown in Figure 2.3. Using a series connection, the light will be

turned on only if both switches are closed. If either switch is open, the light will be off. This

behavior can be described by the expression

L(x1, x2) = x1 ⋅ x2

where L = 1 if x1 = 1 and x2 = 1,

L = 0 otherwise.

ISTUDY

22 C H A P T E R 2 ● INTRODUCTION TO LOGIC CIRCUITS

(a) The logical AND function (series connection)

S

x1

Power
supply

S

x2

S

x1

Power
supply S

x2

(b) The logical OR function (parallel connection)

Light

Light

Figure 2.3 Two basic functions.

The “⋅” symbol is called the AND operator, and the circuit in Figure 2.3a is said to imple-

ment a logical AND function.

The parallel connection of two switches is given in Figure 2.3b. In this case the light

will be on if either the x1 or x2 switch is closed. The light will also be on if both switches

are closed. The light will be off only if both switches are open. This behavior can be

stated as

L(x1, x2) = x1 + x2

where L = 1 if x1 = 1 or x2 = 1 or if x1 = x2 = 1,

L = 0 if x1 = x2 = 0.

The + symbol is called the OR operator, and the circuit in Figure 2.3b is said to implement

a logical OR function. It is important not to confuse the use of the + symbol with its more

common meaning, which is for arithmetic addition. In this chapter the + symbol represents

the logical OR operation unless otherwise stated. In the above expressions for AND and OR,

the output L(x1, x2) is a logic function with input variables x1 and x2. The AND and OR

functions are two of the most important logic functions. Together with some other simple

functions, they can be used as building blocks for the implementation of all logic circuits.

Figure 2.4 illustrates how three switches can be used to control the light in a more complex

way. This series-parallel connection of switches realizes the logic function

L(x1, x2, x3) = (x1 + x2) ⋅ x3

The light is on if x3 = 1 and, at the same time, at least one of the x1 or x2 inputs is

equal to 1.

ISTUDY

2.2 INVERSION 23

S

x1

Power
supply S

x2

Light

S

x3

Figure 2.4 A series-parallel connection.

2.2 INVERSION

So far we have assumed that some positive action takes place when a switch is closed, such

as turning the light on. It is equally interesting and useful to consider the possibility that a

positive action takes place when a switch is opened. Suppose that we connect the light as

shown in Figure 2.5. In this case the switch is connected in parallel with the light, rather

than in series. Consequently, a closed switch will short-circuit the light and prevent the

current from flowing through it. Note that we have included an extra resistor in this circuit

to ensure that the closed switch does not short-circuit the power supply. The light will be

turned on when the switch is opened. Formally, we express this functional behavior as

L(x) = x
where L = 1 if x = 0,

L = 0 if x = 1

The value of this function is the inverse of the value of the input variable. Instead of using

the word inverse, it is more common to use the term complement. Thus we say that L(x) is

a complement of x in this example. Another frequently used term for the same operation is

the NOT operation. There are several commonly used notations for indicating the comple-

mentation. In the preceding expression, we placed an overbar on top of x. This notation is

probably the best from the visual point of view. However, when complements are needed

in expressions that are typed using a computer keyboard, which is often done when using

CAD tools, it is impractical to use overbars. Instead, either an apostrophe is placed after

the variable, or an exclamation mark (!), the tilde character (∼), or the word NOT is placed

Sx Light

Power
supply

R

Figure 2.5 An inverting circuit.

ISTUDY

24 C H A P T E R 2 ● INTRODUCTION TO LOGIC CIRCUITS

in front of the variable to denote the complementation. Thus the following are equivalent:

x = x′ = !x = ∼x = NOT x

The complement operation can be applied to a single variable or to more complex

operations. For example, if

f (x1, x2) = x1 + x2

then the complement of f is

f (x1, x2) = x1 + x2

This expression yields the logic value 1 only when neither x1 nor x2 is equal to 1, that is,

when x1 = x2 = 0. Again, the following notations are equivalent:

x1 + x2 = (x1 + x2)′ = !(x1 + x2) = ∼(x1 + x2) = NOT (x1 + x2)

2.3 TRUTH TABLES

We have introduced the three most basic logic operations—AND, OR, and complement—

by relating them to simple circuits built with switches. This approach gives these operations

a certain “physical meaning.” The same operations can also be defined in the form of a table,

called a truth table, as shown in Figure 2.6. The first two columns (to the left of the double

vertical line) give all four possible combinations of logic values that the variables x1 and x2

can have. The next column defines the AND operation for each combination of values of x1

and x2, and the last column defines the OR operation. Because we will frequently need to

refer to “combinations of logic values” applied to some variables, we will adopt a shorter

term, valuation, to denote such a combination of logic values.

The truth table is a useful aid for depicting information involving logic functions. We

will use it in this book to define specific functions and to show the validity of certain func-

tional relations. Small truth tables are easy to deal with. However, they grow exponen-

tially in size with the number of variables. A truth table for three input variables has eight

rows because there are eight possible valuations of these variables. Such a table is given in

x1 x2 x1 x2 x1 + x2

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 1

AND OR

·

Figure 2.6 A truth table for the AND and OR operations.

ISTUDY

2.4 LOGIC GATES AND NETWORKS 25

x1 x2 x3 x1 + x2 + x3

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 0 1

1 0 0 0 1

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

x1 x2 x3· ·

Figure 2.7 Three-input AND and OR operations.

Figure 2.7, which defines three-input AND and OR functions. For four input variables the

truth table has 16 rows, and so on. In general, for n input variables the truth table has 2n rows.

The AND and OR operations can be extended to n variables. An AND function of

variables x1, x2,… , xn has the value 1 only if all n variables are equal to 1. An OR function

of variables x1, x2,… , xn has the value 1 if one or more of the variables is equal to 1.

2.4 LOGIC GATES AND NETWORKS

The three basic logic operations introduced in the previous sections can be used to imple-

ment logic functions of any complexity. A complex function may require many of these

basic operations for its implementation. Each logic operation can be implemented electron-

ically with transistors, resulting in a circuit element called a logic gate. A logic gate has

one or more inputs and one output that is a function of its inputs. It is often convenient to

describe a logic circuit by drawing a circuit diagram, or schematic, consisting of graphical

symbols representing the logic gates. The graphical symbols for the AND, OR, and NOT

gates are shown in Figure 2.8. The figure indicates on the left side how the AND and OR

gates are drawn when there are only a few inputs. On the right side it shows how the sym-

bols are augmented to accommodate a greater number of inputs. We show how logic gates

are built using transistors in Appendix B.

A larger circuit is implemented by a network of gates. For example, the logic function

from Figure 2.4 can be implemented by the network in Figure 2.9. The complexity of a

given network has a direct impact on its cost. Because it is always desirable to reduce the

cost of any manufactured product, it is important to find ways for implementing logic cir-

cuits as inexpensively as possible. We will see shortly that a given logic function can be

implemented with a number of different networks. Some of these networks are simpler than

others; hence, searching for the solutions that entail minimum cost is prudent.

In technical jargon, a network of gates is often called a logic network or simply a logic
circuit. We will use these terms interchangeably.

ISTUDY

26 C H A P T E R 2 ● INTRODUCTION TO LOGIC CIRCUITS

(a) AND gates

(b) OR gates

x x

(c) NOT gate

x1

x2

xn

x1 x2 xn+ + +
x1

x2

x1 x2+

x1

x2

xn

x1

x2

x1 x x1 x2 xn· ·

Figure 2.8 The basic gates.

x

x
1

2

x3

f x1 x2+() x3=

Figure 2.9 The function from Figure 2.4.

2.4.1 ANALYSIS OF A LOGIC NETWORK

A designer of digital systems is faced with two basic issues. For an existing logic network, it

must be possible to determine the function performed by the network. This task is referred

to as the analysis process. The reverse task of designing a new network that implements a

desired functional behavior is referred to as the synthesis process. The analysis process is

rather straightforward and much simpler than the synthesis process.

Figure 2.10a shows a simple network consisting of three gates. To analyze its functional

behavior, we can consider what happens if we apply all possible combinations of the input

signals to it. Suppose that we start by making x1 = x2 = 0. This forces the output of the

ISTUDY

2.4 LOGIC GATES AND NETWORKS 27

x
1

x
2

1 1 0 0→ → →

f

0 0 0 1→ → →

1 1 0 1→ → →

0 0 1 1→ → →

0 1 0 1→ → →

(a) Network that implements f x1 x1 x2·+=

x1 x2 f x1 x2,()

0

1

0

1

0

0

1

1

1

1

0

1

(b) Truth table

A

B

1

0

1

0

1

0

1

0

1

0

x1

x2

A

B

f
Time

(c) Timing diagram

1 1 0 0→ → →0 0 1 1→ → →

1 1 0 1→ → →
0 1 0 1→ → → g

x
1

x
2

(d) Network that implements g x1 x2+=

A B

1

1

0

0

0

0

0

1

Figure 2.10 An example of logic networks.

NOT gate to be equal to 1 and the output of the AND gate to be 0. Because one of the

inputs to the OR gate is 1, the output of this gate will be 1. Therefore, f = 1 if x1 = x2 = 0.

If we then let x1 = 0 and x2 = 1, no change in the value of f will take place, because the

outputs of the NOT and AND gates will still be 1 and 0, respectively. Next, if we apply

x1 = 1 and x2 = 0, then the output of the NOT gate changes to 0 while the output of the

ISTUDY

28 C H A P T E R 2 ● INTRODUCTION TO LOGIC CIRCUITS

AND gate remains at 0. Both inputs to the OR gate are then equal to 0; hence the value of

f will be 0. Finally, let x1 = x2 = 1. Then the output of the AND gate goes to 1, which in

turn causes f to be equal to 1. Our verbal explanation can be summarized in the form of the

truth table shown in Figure 2.10b.

Timing Diagram
We have determined the behavior of the network in Figure 2.10a by considering the four

possible valuations of the inputs x1 and x2. Suppose that the signals that correspond to these

valuations are applied to the network in the order of our discussion; that is, (x1, x2) = (0, 0)

followed by (0, 1), (1, 0), and (1, 1). Then changes in the signals at various points in the

network would be as indicated in red in the figure. The same information can be presented

in graphical form, known as a timing diagram, as shown in Figure 2.10c. The time runs from

left to right, and each input valuation is held for some fixed duration. The figure shows the

waveforms for the inputs and output of the network, as well as for the internal signals at the

points labeled A and B.

The timing diagram in Figure 2.10c shows that changes in the waveforms at points A
and B and the output f take place instantaneously when the inputs x1 and x2 change their

values. These idealized waveforms are based on the assumption that logic gates respond

to changes on their inputs in zero time. Such timing diagrams are useful for indicating

the functional behavior of logic circuits. However, practical logic gates are implemented

using electronic circuits which need some time to change their states. Thus, there is a delay

between a change in input values and a corresponding change in the output value of a gate.

In chapters that follow we will use timing diagrams that incorporate such delays.

Timing diagrams are used for many purposes. They depict the behavior of a logic cir-

cuit in a form that can be observed when the circuit is tested using instruments such as

logic analyzers and oscilloscopes. Also, they are often generated by CAD tools to show the

designer how a given circuit is expected to behave before it is actually implemented elec-

tronically. We will introduce the CAD tools later in this chapter and will make use of them

throughout the book.

Functionally Equivalent Networks
Now consider the network in Figure 2.10d. Going through the same analysis procedure,

we find that the output g changes in exactly the same way as f does in part (a) of the figure.

Therefore, g(x1, x2) = f (x1, x2), which indicates that the two networks are functionally

equivalent; the output behavior of both networks is represented by the truth table in Figure

2.10b. Since both networks realize the same function, it makes sense to use the simpler one,

which is less costly to implement.

In general, a logic function can be implemented with a variety of different networks,

probably having different costs. This raises an important question: How does one find the

best implementation for a given function? We will discuss some of the main approaches

for synthesizing logic functions later in this chapter. For now, we should note that some

manipulation is needed to transform the more complex network in Figure 2.10a into the

network in Figure 2.10d. Since f (x1, x2) = x1 + x1 ⋅ x2 and g(x1, x2) = x1 + x2, there must

exist some rules that can be used to show the equivalence

x1 + x1 ⋅ x2 = x1 + x2

ISTUDY

2.4 LOGIC GATES AND NETWORKS 29

We have already established this equivalence through detailed analysis of the two circuits

and construction of the truth table. But the same outcome can be achieved through alge-

braic manipulation of logic expressions. In Section 2.5 we will introduce a mathemati-

cal approach for dealing with logic functions, which provides the basis for modern design

techniques.

Example 2.1As an example of a logic function, consider the diagram in Figure 2.11a. It includes two

toggle switches that control the values of signals x and y. Each toggle switch can be pushed

down to the bottom position or up to the top position. When a toggle switch is in the bottom

position it makes a connection to logic value 0 (ground), and when in the top position it

connects to logic value 1 (power supply level). Thus, these toggle switches can be used to

set x and y to either 0 or 1.

The signals x and y are inputs to a logic circuit that controls a light L. The required

behavior is that the light should be on only if one, but not both, of the toggle switches is

in the top position. This specification leads to the truth table in part (b) of the figure. Since

L = 1 when x = 0 and y = 1 or when x = 1 and y = 0, we can implement this logic function

using the network in Figure 2.11c.

The reader may recognize the behavior of our light as being similar to that over a set of

stairs in a house, where the light is controlled by two switches: one at the top of the stairs,

(a) Two switches that control a light

0

1

0

1

Logic

circuit
L

x

y

L

0

1

1

0

x y

0

0

1

1

0

1

0

1

(b) Truth table

x

y
LL

x

y

(d) XOR gate symbol(c) Logic network

Figure 2.11 An example of a logic circuit.

ISTUDY

30 C H A P T E R 2 ● INTRODUCTION TO LOGIC CIRCUITS

s0s1

s1

(a) Evaluation of S = a + b

0

0

0

1

a b

0

0

1

1

0

1

0

1

a

b

(b) Truth table (c) Logic network

s0

s1

s0

0

1

1

0

0

0+

0

1+

1000

1

0+

10

1

1+

01

a
b+

Figure 2.12 Addition of binary numbers.

and the other at the bottom. The light can be turned on or off by either switch because it

follows the truth table in Figure 2.11b. This logic function, which differs from the OR function

only when both inputs are equal to 1, is useful for other applications as well. It is called

the exclusive-OR (XOR) function and is indicated in logic expressions by the symbol ⊕.

Thus, rather than writing L = x ⋅ y + x ⋅ y, we can write L = x ⊕ y. The XOR function

has the logic-gate symbol illustrated in Figure 2.11d.

Example 2.2 In Chapter 1 we showed how numbers are represented in computers by using binary dig-

its. As another example of logic functions, consider the addition of two one-digit binary

numbers a and b. The four possible valuations of a, b and the resulting sums are given in

Figure 2.12a (in this figure the + operator signifies addition). The sum S = s1s0 has to be

a two-digit binary number, because when a = b = 1 then S = 10.

Figure 2.12b gives a truth table for the logic functions s1 and s0. From this table we

can see that s1 = a ⋅ b and s0 = a ⊕ b. The corresponding logic network is given in part (c)

of the figure. This type of logic circuit, which adds binary numbers, is referred to as an

adder circuit. We discuss circuits of this type in Chapter 3.

2.5 BOOLEAN ALGEBRA

In 1849 George Boole published a scheme for the algebraic description of processes in-

volved in logical thought and reasoning [1]. Subsequently, this scheme and its further re-

finements became known as Boolean algebra. It was almost 100 years later that this algebra

found application in the engineering sense. In the late 1930s, Claude Shannon showed that

Boolean algebra provides an effective means of describing circuits built with switches [2].

ISTUDY

2.5 BOOLEAN ALGEBRA 31

The algebra can, therefore, be used to describe logic circuits. We will show that this algebra

is a powerful tool that can be used for designing and analyzing logic circuits. The reader

will come to appreciate that it provides the foundation for much of our modern digital

technology.

Axioms of Boolean Algebra
Like any algebra, Boolean algebra is based on a set of rules that are derived from a

small number of basic assumptions. These assumptions are called axioms. Let us assume

that Boolean algebra involves elements that take on one of two values, 0 and 1. Assume

that the following axioms are true:

1a. 0 ⋅ 0 = 0

1b. 1 + 1 = 1

2a. 1 ⋅ 1 = 1

2b. 0 + 0 = 0

3a. 0 ⋅ 1 = 1 ⋅ 0 = 0

3b. 1 + 0 = 0 + 1 = 1

4a. If x = 0, then x = 1

4b. If x = 1, then x = 0

Single-Variable Theorems
From the axioms we can define some rules for dealing with single variables. These rules

are often called theorems. If x is a Boolean variable, then the following theorems hold:

5a. x ⋅ 0 = 0

5b. x + 1 = 1

6a. x ⋅ 1 = x
6b. x + 0 = x
7a. x ⋅ x = x
7b. x + x = x
8a. x ⋅ x = 0

8b. x + x = 1

9. x = x

It is easy to prove the validity of these theorems by perfect induction, that is, by substituting

the values x = 0 and x = 1 into the expressions and using the axioms given above. For

example, in theorem 5a, if x = 0, then the theorem states that 0 ⋅ 0 = 0, which is true

according to axiom 1a. Similarly, if x = 1, then theorem 5a states that 1 ⋅ 0 = 0, which

is also true according to axiom 3a. The reader should verify that theorems 5a to 9 can be

proven in this way.

Duality
Notice that we have listed the axioms and the single-variable theorems in pairs. This

is done to reflect the important principle of duality. Given a logic expression, its dual is

obtained by replacing all + operators with ⋅ operators, and vice versa, and by replacing all

ISTUDY

32 C H A P T E R 2 ● INTRODUCTION TO LOGIC CIRCUITS

0s with 1s, and vice versa. The dual of any true statement (axiom or theorem) in Boolean

algebra is also a true statement. At this point in the discussion, the reader might not ap-

preciate why duality is a useful concept. However, this concept will become clear later in

the chapter, when we will show that duality implies that at least two different ways exist to

express every logic function with Boolean algebra. Often, one expression leads to a simpler

physical implementation than the other and is thus preferable.

Two- and Three-Variable Properties
To enable us to deal with a number of variables, it is useful to define some two- and

three-variable algebraic identities. For each identity, its dual version is also given. These

identities are often referred to as properties. They are known by the names indicated below.

If x, y, and z are Boolean variables, then the following properties hold:

10a. x ⋅ y = y ⋅ x Commutative
10b. x + y = y + x
11a. x ⋅ (y ⋅ z) = (x ⋅ y) ⋅ z Associative
11b. x + (y + z) = (x + y) + z
12a. x ⋅ (y + z) = x ⋅ y + x ⋅ z Distributive
12b. x + y ⋅ z = (x + y) ⋅ (x + z)

13a. x + x ⋅ y = x Absorption
13b. x ⋅ (x + y) = x
14a. x ⋅ y + x ⋅ y = x Combining
14b. (x + y) ⋅ (x + y) = x
15a. x ⋅ y = x + y DeMorgan’s theorem
15b. x + y = x ⋅ y
16a. x + x ⋅ y = x + y
16b. x ⋅ (x + y) = x ⋅ y
17a. x ⋅ y + y ⋅ z + x ⋅ z = x ⋅ y + x ⋅ z Consensus
17b. (x + y) ⋅ (y + z) ⋅ (x + z) = (x + y) ⋅ (x + z)

Again, we can prove the validity of these properties either by perfect induction or by per-

forming algebraic manipulation. Figure 2.13 illustrates how perfect induction can be used

x y x y x y x y x + y

0 0 0 1 1 1 1

0 1 0 1 1 0 1

1 0 0 1 0 1 1

1 1 1 0 0 0 0

LHS RHS

· ·

Figure 2.13 Proof of DeMorgan’s theorem in 15a.

ISTUDY

2.5 BOOLEAN ALGEBRA 33

to prove DeMorgan’s theorem, using the format of a truth table. The evaluation of left-hand

and right-hand sides of the identity in 15a gives the same result.

We have listed a number of axioms, theorems, and properties. Not all of these are

necessary to define Boolean algebra. For example, assuming that the + and ⋅ operations

are defined, it is sufficient to include theorems 5 and 8 and properties 10 and 12. These

are sometimes referred to as Huntington’s basic postulates [3]. The other identities can be

derived from these postulates.

The preceding axioms, theorems, and properties provide the information necessary for

performing algebraic manipulation of more complex expressions.

Example 2.3Let us prove the validity of the logic equation

(x1 + x3) ⋅ (x1 + x3) = x1 ⋅ x3 + x1 ⋅ x3

The left-hand side can be manipulated as follows. Using the distributive property, 12a, gives

LHS = (x1 + x3) ⋅ x1 + (x1 + x3) ⋅ x3

Applying the distributive property again yields

LHS = x1 ⋅ x1 + x3 ⋅ x1 + x1 ⋅ x3 + x3 ⋅ x3

Note that the distributive property allows ANDing the terms in parenthesis in a way analo-

gous to multiplication in ordinary algebra. Next, according to theorem 8a, the terms x1 ⋅ x1

and x3 ⋅ x3 are both equal to 0. Therefore,

LHS = 0 + x3 ⋅ x1 + x1 ⋅ x3 + 0

From 6b it follows that

LHS = x3 ⋅ x1 + x1 ⋅ x3

Finally, using the commutative property, 10a and 10b, this becomes

LHS = x1 ⋅ x3 + x1 ⋅ x3

which is the same as the right-hand side of the initial equation.

Example 2.4Consider the logic equation

x1 ⋅ x3 + x2 ⋅ x3 + x1 ⋅ x3 + x2 ⋅ x3 = x1 ⋅ x2 + x1 ⋅ x2 + x1 ⋅ x2

The left-hand side can be manipulated as follows

LHS = x1 ⋅ x3 + x1 ⋅ x3 + x2 ⋅ x3 + x2 ⋅ x3 using 10b
= x1 ⋅ (x3 + x3) + x2 ⋅ (x3 + x3) using 12a
= x1 ⋅ 1 + x2 ⋅ 1 using 8b
= x1 + x2 using 6a

ISTUDY

34 C H A P T E R 2 ● INTRODUCTION TO LOGIC CIRCUITS

The right-hand side can be manipulated as

RHS = x1 ⋅ x2 + x1 ⋅ (x2 + x2) using 12a
= x1 ⋅ x2 + x1 ⋅ 1 using 8b
= x1 ⋅ x2 + x1 using 6a
= x1 + x1 ⋅ x2 using 10b
= x1 + x2 using 16a

Being able to manipulate both sides of the initial equation into identical expressions estab-

lishes the validity of the equation. Note that the same logic function is represented by either

the left- or the right-hand side of the above equation, namely

f (x1, x2, x3) = x1 ⋅ x3 + x2 ⋅ x3 + x1 ⋅ x3 + x2 ⋅ x3

= x1 ⋅ x2 + x1 ⋅ x2 + x1 ⋅ x2

As a result of manipulation, we have found a much simpler expression

f (x1, x2, x3) = x1 + x2

which also represents the same function. This simpler expression would result in a lower-

cost logic circuit that could be used to implement the function.

Examples 2.3 and 2.4 illustrate the purpose of the axioms, theorems, and properties

as a mechanism for algebraic manipulation. Even these simple examples suggest that it is

impractical to deal with highly complex expressions in this way. However, these theorems

and properties provide the basis for automating the synthesis of logic functions in CAD

tools. To understand what can be achieved using these tools, the designer needs to be aware

of the fundamental concepts.

2.5.1 THE VENN DIAGRAM

We have suggested that perfect induction can be used to verify the theorems and proper-

ties. This procedure is quite tedious and not very informative from the conceptual point of

view. A simple visual aid that can be used for this purpose also exists. It is called the Venn

diagram, and the reader is likely to find that it provides for a more intuitive understanding

of how two expressions may be equivalent.

The Venn diagram has traditionally been used in mathematics to provide a graphical

illustration of various operations and relations in the algebra of sets. A set s is a collection

of elements that are said to be the members of s. In the Venn diagram the elements of

a set are represented by the area enclosed by a contour such as a square, a circle, or an

ellipse. For example, in a universe N of integers from 1 to 10, the set of even numbers is

E = {2, 4, 6, 8, 10}. A contour representing E encloses the even numbers. The odd numbers

form the complement of E; hence the area outside the contour represents E = {1, 3, 5, 7, 9}.

Since in Boolean algebra there are only two values (elements) in the universe,

B = {0, 1}, we will say that the area within a contour corresponding to a set s denotes that

s = 1, while the area outside the contour denotes s = 0. In the diagram we will shade

ISTUDY

2.5 BOOLEAN ALGEBRA 35

x y

z

x y

x y x y

x x xx

(a) Constant 1 (b) Constant 0

(c) Variable x (d)

(e) (f)

(g) (h)

x

x y x y+

x y z+x y

·

· ·

Figure 2.14 The Venn diagram representation.

the area where s = 1. The concept of the Venn diagram is illustrated in Figure 2.14. The

universe B is represented by a square. Then the constants 1 and 0 are represented as shown

in parts (a) and (b) of the figure. A variable, say, x, is represented by a circle, such that the

area inside the circle corresponds to x = 1, while the area outside the circle corresponds to

x = 0. This is illustrated in part (c). An expression involving one or more variables is de-

picted by shading the area where the value of the expression is equal to 1. Part (d) indicates

how the complement of x is represented.

To represent two variables, x and y, we draw two overlapping circles. Then the area

where the circles overlap represents the case where x = y = 1, namely, the AND of x and

y, as shown in part (e). Since this common area consists of the intersecting portions of x
and y, the AND operation is often referred to formally as the intersection of x and y. Part (f)

ISTUDY

36 C H A P T E R 2 ● INTRODUCTION TO LOGIC CIRCUITS

x y

z

x y

z

x y

z

x y

z

x y

z

x y

z

x x y

x y x+ zx y z+()

(a) (d)

(c) (f)

x zy z+(b) (e)

·

·

· · ·

Figure 2.15 Verification of the distributive property x ⋅ (y + z) = x ⋅ y + x ⋅ z.

illustrates the OR operation, where x+y represents the total area within both circles, namely,

where at least one of x or y is equal to 1. Since this combines the areas in the circles, the

OR operation is formally often called the union of x and y.

Part (g) depicts the term x ⋅ y, which is represented by the intersection of the area for x
with that for y. Part (h) gives a three-variable example; the expression x ⋅ y + z is the union

of the area for z with that of the intersection of x and y.

To see how we can use Venn diagrams to verify the equivalence of two expressions,

let us demonstrate the validity of the distributive property, 12a, in Section 2.5. Figure 2.15

gives the construction of the left and right sides of the identity that defines the property

x ⋅ (y + z) = x ⋅ y + x ⋅ z

Part (a) shows the area where x = 1. Part (b) indicates the area for y + z. Part (c) gives the

diagram for x ⋅ (y + z), the intersection of shaded areas in parts (a) and (b). The right-hand

side is constructed in parts (d), (e), and (f). Parts (d) and (e) describe the terms x ⋅ y and

x ⋅ z, respectively. The union of the shaded areas in these two diagrams then corresponds to

the expression x ⋅ y + x ⋅ z, as seen in part (f). Since the shaded areas in parts (c) and (f)

are identical, it follows that the distributive property is valid.

As another example, consider the identity

x ⋅ y + x ⋅ z + y ⋅ z = x ⋅ y + x ⋅ z

ISTUDY

2.5 BOOLEAN ALGEBRA 37

x y

z

yx

z

x y

z

x y

y z

x z

x y

z

x y

x y

z

x z

x y x+ z y z+

x y

z

x y

z

· ·

· ·

· x yy + x z· ·

· · ·

Figure 2.16 Verification of x ⋅ y + x ⋅ z + y ⋅ z = x ⋅ y + x ⋅ z.

which is illustrated in Figure 2.16. Notice that this identity states that the term y ⋅ z is fully

covered by the terms x ⋅ y and x ⋅ z; therefore, this term can be omitted. This identity, which

we listed earlier as property 17a, is often referred to as consensus.

The reader should use the Venn diagram to prove some other identities. The examples

below prove the distributive property 12b, and DeMorgan’s theorem, 15a.

Example 2.5The distributive property 12a in Figure 2.15 will look familiar to the reader, because it is

valid both for Boolean variables and for variables that are real numbers. In the case of real-

number variables, the operations involved would be multiplication and addition, rather than

logical AND and OR. However, the dual form 12b of this property, x+y ⋅z = (x+y) ⋅ (x+z),

does not hold for real-number variables involving multiplication and addition operations.

ISTUDY

38 C H A P T E R 2 ● INTRODUCTION TO LOGIC CIRCUITS

(b) y z

(a) x

yx

z

yx

z

(c) x y+ z

yx

z

(e) x + z

(x + y) (x + z)

yx

z

yx

z

(f)

yx

z

·

··

(d) x + y

Figure 2.17 Proof of the distributive property 12b.

To prove that this identity is valid in Boolean algebra, we can use the Venn diagrams in

Figure 2.17. Parts (a) and (b) of the figure depict the terms x and y ⋅ z, respectively, and part

(c) gives the union of parts (a) and (b). Parts (d) and (e) depict the sum terms (x + y) and

(x + z), and part (f) shows the intersection of (d) and (e). Since the diagrams in (c) and (f)

are the same, this proves the identity.

Example 2.6 A proof of DeMorgan’s theorem 15a by using Venn diagrams is illustrated in Figure 2.18. The

diagram in part (b) of the figure, which is the complement of x ⋅ y, is the same as the diagram

in part (e), which is the union of part (c) with part (d), thus proving the theorem. We leave it as

an exercise for the reader to prove the dual form of DeMorgan’s theorem, 15b.

2.5.2 NOTATION AND TERMINOLOGY

Boolean algebra is based on the AND and OR operations, for which we have adopted the

symbols ⋅ and +, respectively. These are also the standard symbols for the familiar arith-

metic multiplication and addition operations. Considerable similarity exists between the

Boolean operations and the arithmetic operations, which is the main reason why the same

ISTUDY

2.5 BOOLEAN ALGEBRA 39

x y

(b) x y·

(e)

x y

x y

(a) x y·

x y

(d) y

x y

(c) x

x + y

Figure 2.18 Proof of DeMorgan’s theorem 15a.

symbols are used. In fact, when single digits are involved there is only one significant dif-

ference; the result of 1 + 1 is equal to 2 in ordinary arithmetic, whereas it is equal to 1 in

Boolean algebra as defined by theorem 7b in Section 2.5.

Because of the similarity with the arithmetic addition and multiplication operations,

the OR and AND operations are often called the logical sum and product operations. Thus

x1 + x2 is the logical sum of x1 and x2, and x1 ⋅ x2 is the logical product of x1 and x2. Instead

of saying “logical product” and “logical sum,” it is customary to say simply “product” and

“sum.” Thus we say that the expression

x1 ⋅ x2 ⋅ x3 + x1 ⋅ x4 + x2 ⋅ x3 ⋅ x4

is a sum of three product terms, whereas the expression

(x1 + x3) ⋅ (x1 + x3) ⋅ (x2 + x3 + x4)

is a product of three sum terms.

ISTUDY

40 C H A P T E R 2 ● INTRODUCTION TO LOGIC CIRCUITS

2.5.3 PRECEDENCE OF OPERATIONS

Using the three basic operations—AND, OR, and NOT—it is possible to construct an infi-

nite number of logic expressions. Parentheses can be used to indicate the order in which the

operations should be performed. However, to avoid an excessive use of parentheses, another

convention defines the precedence of the basic operations. It states that in the absence of

parentheses, operations in a logic expression must be performed in the order: NOT, AND,

and then OR. Thus, in the expression

x1 ⋅ x2 + x1 ⋅ x2

it is first necessary to generate the complements of x1 and x2. Then the product terms x1 ⋅ x2

and x1 ⋅ x2 are formed, followed by the sum of the two product terms. Observe that in the

absence of this convention, we would have to use parentheses to achieve the same effect as

follows:

(x1 ⋅ x2) + ((x1) ⋅ (x2))

Finally, to simplify the appearance of logic expressions, it is customary to omit

the ⋅ operator when there is no ambiguity. Therefore, the preceding expression can be written as

x1x2 + x1x2

We will use this style throughout the book.

2.6 SYNTHESIS USING AND, OR, AND NOT GATES

Armed with some basic ideas, we can now try to implement arbitrary functions using the

AND, OR, and NOT gates. Suppose that we wish to design a logic circuit with two inputs,

x1 and x2. Assume that x1 and x2 represent the states of two switches, either of which may

produce a 0 or 1. The function of the circuit is to continuously monitor the state of the

switches and to produce an output logic value 1 whenever the switches (x1, x2) are in states

(0, 0), (0, 1), or (1, 1). If the state of the switches is (1, 0), the output should be 0. We can

express the required behavior using a truth table, as shown in Figure 2.19.

A possible procedure for designing a logic circuit that implements this truth table is to

create a product term that has a value of 1 for each valuation for which the output function

f has to be 1. Then we can take a logical sum of these product terms to realize f . Let us

begin with the fourth row of the truth table, which corresponds to x1 = x2 = 1. The product

x1 x2 f x1 x2

0 0 1

0 1 1

1 0 0

1 1 1

(,)

Figure 2.19 A function to be synthesized.

ISTUDY

2.6 SYNTHESIS USING AND, OR, AND NOT GATES 41

f

(a) Canonical sum-of-products

f

(b) Minimal-cost realization

x2

x1

x1

x2

Figure 2.20 Two implementations of the function in Figure 2.19.

term that is equal to 1 for this valuation is x1 ⋅ x2, which is just the AND of x1 and x2. Next

consider the first row of the table, for which x1 = x2 = 0. For this valuation the value 1 is

produced by the product term x1 ⋅ x2. Similarly, the second row leads to the term x1 ⋅ x2.

Thus f may be realized as

f (x1, x2) = x1x2 + x1x2 + x1x2

The logic network that corresponds to this expression is shown in Figure 2.20a.

Although this network implements f correctly, it is not the simplest such network. To

find a simpler network, we can manipulate the obtained expression using the theorems and

properties from Section 2.5. According to theorem 7b, we can replicate any term in a logical

sum expression. Replicating the third product term, the above expression becomes

f (x1, x2) = x1x2 + x1x2 + x1x2 + x1x2

Using the commutative property 10b to interchange the second and third product terms

gives

f (x1, x2) = x1x2 + x1x2 + x1x2 + x1x2

Now the distributive property 12a allows us to write

f (x1, x2) = (x1 + x1)x2 + x1(x2 + x2)

Applying theorem 8b we get

f (x1, x2) = 1 ⋅ x2 + x1 ⋅ 1

ISTUDY

42 C H A P T E R 2 ● INTRODUCTION TO LOGIC CIRCUITS

Finally, theorem 6a leads to

f (x1, x2) = x2 + x1

The network described by this expression is given in Figure 2.20b. Obviously, the cost of

this network is much less than the cost of the network in part (a) of the figure.

This simple example illustrates two things. First, a straightforward implementation of a

function can be obtained by using a product term (AND gate) for each row of the truth table

for which the function is equal to 1. Each product term contains all input variables, and it

is formed such that if the input variable xi is equal to 1 in the given row, then xi is entered

in the term; if xi = 0 in that row, then xi is entered. The sum of these product terms realizes

the desired function. Second, there are many different networks that can realize a given

function. Some of these networks may be simpler than others. Algebraic manipulation can

be used to derive simplified logic expressions and thus lower-cost networks.

The process whereby we begin with a description of the desired functional behavior and

then generate a circuit that realizes this behavior is called synthesis. Thus we can say that we

“synthesized” the networks in Figure 2.20 from the truth table in Figure 2.19. Generation of

AND-OR expressions from a truth table is just one of many types of synthesis techniques

that we will encounter in this book.

Example 2.7 Figure 2.21a depicts a part of a factory that makes bubble gumballs. The gumballs travel on

a conveyor that has three associated sensors s1, s2, and s3. The sensor s1 is connected to a

scale that weighs each gumball, and if a gumball is not heavy enough to be acceptable then

the sensor sets s1 = 1. Sensors s2 and s3 examine the diameter of each gumball. If a gumball

is too small to be acceptable, then s2 = 1, and if it is too large, then s3 = 1. If a gumball

is of an acceptable weight and size, then the sensors give s1 = s2 = s3 = 0. The conveyor

pushes the gumballs over a “trap door” that it used to reject the ones that are not properly

formed. A gumball should be rejected if it is too large, or both too small and too light. The

trap door is opened by setting the logic function f to the value 1. By inspection, we can see

that an appropriate logic expression is f = s1s2 + s3. We will use Boolean algebra to derive

this logic expression from the truth table.

The truth table for f is given in Figure 2.21b. It sets f to 1 for each row in the table

where s3 has the value 1 (too large), as well as for each row where s1 = s2 = 1 (too light and

too small). As described previously, a logic expression for f can be formed by including a

product term for each row where f = 1. Thus, we can write

f = s1s2s3 + s1s2s3 + s1s2s3 + s1s2s3 + s1s2s3

We can use algebraic manipulation to simplify this expression in a number of ways. For

example, as shown below, we can first use rule 7b to repeat the term s1s2s3, and then use

the distributive property 12a and rule 8b to simplify the expression

f = s1s2s3 + s1s2s3 + s1s2s3 + s1s2s3 + s1s2s3 + s1s2s3

= s1s3(s2 + s2) + s1s3(s2 + s2) + s1s2(s3 + s3)

= s1s3 + s1s3 + s1s2

ISTUDY

2.6 SYNTHESIS USING AND, OR, AND NOT GATES 43

(a) Conveyor and sensors

0

1

0

1

0

1

1

1

f

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

s1 s2 s3

(b) Truth table

s1

s2 s3

f “reject”=

gumball

Figure 2.21 A bubble gumball factory.

Now, using the combining property 14a on the first two product terms gives

f = s3 + s1s2

The observant reader will notice that using the combining property 14a is really just a short

form of first using the distributive property 12a and then applying rule 8b, as we did in the

previous step. Our simplified expression for f is the same as the one that we determined

earlier, by inspection.

Example 2.8There are different ways in which we can simplify the logic expression produced from the

truth table in Figure 2.21b. Another approach is to first repeat the term s1s2s3, as we did in

Example 2.7, and then proceed as follows:

f = s1s2s3 + s1s2s3 + s1s2s3 + s1s2s3 + s1s2s3 + s1s2s3

= s3(s1s2 + s1s2 + s1s2 + s1s2) + s1s2(s3 + s3)

= s3 ⋅ 1 + s1s2

= s3 + s1s2

Here, we used the distributive property 12a to produce the expression (s1s2 + s1s2 + s1s2 +
s1s2). Since this expression includes all possible valuations of s1, s2, it is equal to 1, leading

to the same expression for f that we derived before.

ISTUDY

44 C H A P T E R 2 ● INTRODUCTION TO LOGIC CIRCUITS

Example 2.9 Yet another way of producing the simplified logic expression is shown below.

f = s1s2s3 + s1s2s3 + s1s2s3 + s1s2s3 + s1s2s3

= s1s2s3 + s1s2s3 + s1s2s3 + s1s2s3 + s1s2s3 + s1s2s3

= s1s3(s2 + s2) + s2s3(s1 + s1) + s1s2(s3 + s3)

= s1s3 + s2s3 + s1s2

= s3(s1 + s2) + s1s2

= s3(s1s2) + s1s2

= s3 + s1s2

In this solution, we first repeat the term s1s2s3 and then simplify to generate the expression

s3(s1 + s2) + s1s2. Using DeMorgan’s theorem 15a, we can replace (s1 + s2) with (s1s2),

which can then be deleted by applying property 16a.

As illustrated by Examples 2.7 to 2.9, there are multiple ways in which a logic expres-

sion can be minimized by using Boolean algebra. This process can be daunting, because it

is not obvious which rules, identities, and properties should be applied, and in what order.

Later in this chapter, in Section 2.11, we will introduce a graphical technique, called the

Karnaugh map, that clarifies this process by providing a systematic way of generating a

minimal-cost logic expression for a function.

2.6.1 SUM-OF-PRODUCTS AND PRODUCT-OF-SUMS FORMS

Having introduced the synthesis process by means of simple examples, we will now present

it in more formal terms using the terminology that is encountered in the technical literature.

We will also show how the principle of duality, which was introduced in Section 2.5, applies

broadly in the synthesis process.

If a function f is specified in the form of a truth table, then an expression that realizes

f can be obtained either by considering the rows in the table for which f = 1, as we have

already done, or by considering the rows for which f = 0, as we will explain shortly.

Minterms
For a function of n variables, a product term in which each of the n variables appears

once is called a minterm. The variables may appear in a minterm in either uncomplemented

or complemented form. For a given row of the truth table, the minterm is formed by includ-

ing xi if xi = 1 and by including xi if xi = 0.

To illustrate this concept, consider the truth table in Figure 2.22. We have numbered

the rows of the table from 0 to 7, so that we can refer to them easily. From the discussion

of the binary number representation in Section 1.5, we can observe that the row numbers

chosen are just the numbers represented by the bit patterns of variables x1, x2, and x3.

The figure shows all minterms for the three-variable table. For example, in the first row the

variables have the values x1 = x2 = x3 = 0, which leads to the minterm x1x2x3. In the

second row x1 = x2 = 0 and x3 = 1, which gives the minterm x1x2x3, and so on. To be

able to refer to the individual minterms easily, it is convenient to identify each minterm by

ISTUDY

2.6 SYNTHESIS USING AND, OR, AND NOT GATES 45

Row

number x1 x2 x3 Minterm Maxterm

0 0 0 0 m0 = x1x2x3 M0 = x1 + x2 + x3

1 0 0 1 m1 = x1x2x3 M1 = x1 + x2 + x3

2 0 1 0 m2 = x1x2x3 M2 = x1 + x2 + x3

3 0 1 1 m3 = x1x2x3 M3 = x1 + x2 + x3

4 1 0 0 m4 = x1x2x3 M4 = x1 + x2 + x3

5 1 0 1 m5 = x1x2x3 M5 = x1 + x2 + x3

6 1 1 0 m6 = x1x2x3 M6 = x1 + x2 + x3

7 1 1 1 m7 = x1x2x3 M7 = x1 + x2 + x3

Figure 2.22 Three-variable minterms and maxterms.

an index that corresponds to the row numbers shown in the figure. We will use the notation

mi to denote the minterm for row number i. Thus, m0 = x1x2x3, m1 = x1x2x3, and so on.

Sum-of-Products Form
A function f can be represented by an expression that is a sum of minterms, where each

minterm is ANDed with the value of f for the corresponding valuation of input variables.

For example, the two-variable minterms are m0 = x1x2, m1 = x1x2, m2 = x1x2, and m3 =
x1x2. The function in Figure 2.19 can be represented as

f = m0 ⋅ 1 + m1 ⋅ 1 + m2 ⋅ 0 + m3 ⋅ 1

= m0 + m1 + m3

= x1x2 + x1x2 + x1x2

which is the form that we derived in the previous section using an intuitive approach. Only

the minterms that correspond to the rows for which f = 1 appear in the resulting expression.

Any function f can be represented by a sum of minterms that correspond to the rows

in the truth table for which f = 1. The resulting implementation is functionally correct and

unique, but it is not necessarily the lowest-cost implementation of f . A logic expression

consisting of product (AND) terms that are summed (ORed) is said to be in the sum-of-
products (SOP) form. If each product term is a minterm, then the expression is called a

canonical sum-of-products for the function f . As we have seen in the example of Figure 2.20,

the first step in the synthesis process is to derive a canonical sum-of-products expression

for the given function. Then we can manipulate this expression, using the theorems and

properties of Section 2.5, with the goal of finding a functionally equivalent sum-of-products

expression that has a lower cost.

As another example, consider the three-variable function f (x1, x2, x3), specified by the

truth table in Figure 2.23. To synthesize this function, we have to include the minterms m1,

m4, m5, and m6. Copying these minterms from Figure 2.22 leads to the following canonical

sum-of-products expression for f :

f (x1, x2, x3) = x1x2x3 + x1x2x3 + x1x2x3 + x1x2x3

ISTUDY

46 C H A P T E R 2 ● INTRODUCTION TO LOGIC CIRCUITS

Row

number x1 x2 x3 f x1 x2 x3

0 0 0 0 0

1 0 0 1 1

2 0 1 0 0

3 0 1 1 0

4 1 0 0 1

5 1 0 1 1

6 1 1 0 1

7 1 1 1 0

(, ,)

Figure 2.23 A three-variable function.

This expression can be manipulated as follows:

f = (x1 + x1)x2x3 + x1(x2 + x2)x3

= 1 ⋅ x2x3 + x1 ⋅ 1 ⋅ x3

= x2x3 + x1x3

This is the minimum-cost sum-of-products expression for f . It describes the circuit shown

in Figure 2.24a. A good indication of the cost of a logic circuit is the total number of gates

plus the total number of inputs to all gates in the circuit. Using this measure, the cost of

the network in Figure 2.24a is 13, because there are five gates and eight inputs to the gates.

By comparison, the network implemented on the basis of the canonical sum-of-products

would have a cost of 27; from the preceding expression, the OR gate has four inputs, each

of the four AND gates has three inputs, and each of the three NOT gates has one input.

Minterms, with their row-number subscripts, can also be used to specify a given func-

tion in a more concise form. For example, the function in Figure 2.23 can be specified as

f (x1, x2, x3) =
∑

(m1,m4,m5,m6)

or even more simply as

f (x1, x2, x3) =
∑

m(1, 4, 5, 6)

The
∑

sign denotes the logical sum operation. This shorthand notation is often used in

practice.

Example 2.10 Consider the function

f (x1, x2, x3) =
∑

m(2, 3, 4, 6, 7)

The canonical SOP expression for the function is derived using minterms

f = m2 + m3 + m4 + m6 + m7

= x1x2x3 + x1x2x3 + x1x2x3 + x1x2x3 + x1x2x3

ISTUDY

2.6 SYNTHESIS USING AND, OR, AND NOT GATES 47

f

(a) A minimal sum-of-products realization

f

x1

x2

x3

x2

x1

x3

(b) A minimal product-of-sums realization

Figure 2.24 Two realizations of the function in Figure 2.23.

This expression can be simplified using the identities in Section 2.5 as follows:

f = x1x2(x3 + x3) + x1(x2 + x2)x3 + x1x2(x3 + x3)

= x1x2 + x1x3 + x1x2

= (x1 + x1)x2 + x1x3

= x2 + x1x3

Example 2.11Suppose that a four-variable function is defined by

f (x1, x2, x3, x4) =
∑

m(3, 7, 9, 12, 13, 14, 15)

The canonical SOP expression for this function is

f = x1x2x3x4 + x1x2x3x4 + x1x2x3x4 + x1x2x3x4 + x1x2x3x4 + x1x2x3x4 + x1x2x3x4

A simpler SOP expression can be obtained as follows:

f = x1(x2 + x2)x3x4 + x1(x2 + x2)x3x4 + x1x2x3(x4 + x4) + x1x2x3(x4 + x4)

= x1x3x4 + x1x3x4 + x1x2x3 + x1x2x3

= x1x3x4 + x1x3x4 + x1x2(x3 + x3)

= x1x3x4 + x1x3x4 + x1x2

ISTUDY

48 C H A P T E R 2 ● INTRODUCTION TO LOGIC CIRCUITS

Maxterms
The principle of duality suggests that if it is possible to synthesize a function f by

considering the rows in the truth table for which f = 1, then it should also be possible to

synthesize f by considering the rows for which f = 0. This alternative approach uses the

complements of minterms, which are called maxterms. All possible maxterms for three-

variable functions are listed in Figure 2.22. We will refer to a maxterm Mj by the same row

number as its corresponding minterm mj as shown in the figure.

Product-of-Sums Form
If a given function f is specified by a truth table, then its complement f can be repre-

sented by a sum of minterms for which f = 1, which are the rows where f = 0. For example,

for the function in Figure 2.19

f (x1, x2) = m2

= x1x2

If we complement this expression using DeMorgan’s theorem, the result is

f = f = x1x2

= x1 + x2

Note that we obtained this expression previously by algebraic manipulation of the canonical

sum-of-products form for the function f . The key point here is that

f = m2 = M2

where M2 is the maxterm for row 2 in the truth table.

As another example, consider again the function in Figure 2.23. The complement of

this function can be represented as

f (x1, x2, x3) = m0 + m2 + m3 + m7

= x1x2x3 + x1x2x3 + x1x2x3 + x1x2x3

Then f can be expressed as

f = m0 + m2 + m3 + m7

= m0 ⋅ m2 ⋅ m3 ⋅ m7

= M0 ⋅ M2 ⋅ M3 ⋅ M7

= (x1 + x2 + x3)(x1 + x2 + x3)(x1 + x2 + x3)(x1 + x2 + x3)

This expression represents f as a product of maxterms.

A logic expression consisting of sum (OR) terms that are the factors of a logical product

(AND) is said to be of the product-of-sums (POS) form. If each sum term is a maxterm, then

the expression is called a canonical product-of-sums for the given function. Any function

f can be synthesized by finding its canonical product-of-sums. This involves taking the

maxterm for each row in the truth table for which f = 0 and forming a product of these

maxterms.

Returning to the preceding example, we can attempt to reduce the complexity of the

derived expression that comprises a product of maxterms. Using the commutative property

ISTUDY

2.6 SYNTHESIS USING AND, OR, AND NOT GATES 49

10b and the associative property 11b from Section 2.5, this expression can be written as

f = ((x1 + x3) + x2)((x1 + x3) + x2)(x1 + (x2 + x3))(x1 + (x2 + x3))

Then, using the combining property 14b, the expression reduces to

f = (x1 + x3)(x2 + x3)

The corresponding network is given in Figure 2.24b. The cost of this network is 13. While

this cost happens to be the same as the cost of the sum-of-products version in Figure 2.24a,

the reader should not assume that the cost of a network derived in the sum-of-products form

will in general be equal to the cost of a corresponding circuit derived in the product-of-sums

form.

Using the shorthand notation, an alternative way of specifying our sample function is

f (x1, x2, x3) = Π(M0,M2,M3,M7)

or more simply

f (x1, x2, x3) = ΠM(0, 2, 3, 7)

The Π sign denotes the logical product operation.

The preceding discussion has shown how logic functions can be realized in the form

of logic circuits, consisting of networks of gates that implement basic functions. A given

function may be realized with various different circuit structures, which usually implies

a difference in cost. An important objective for a designer is to minimize the cost of the

designed circuit. We will discuss strategies for finding minimum-cost implementations in

Section 2.11.

Example 2.12Consider again the function in Example 2.10. Instead of using the minterms, we can specify

this function as a product of maxterms for which f = 0, namely

f (x1, x2, x3) = ΠM(0, 1, 5)

Then, the canonical POS expression is derived as

f = M0 ⋅ M1 ⋅ M5

= (x1 + x2 + x3)(x1 + x2 + x3)(x1 + x2 + x3)

A simplified POS expression can be derived as

f = (x1 + x2 + x3)(x1 + x2 + x3)(x1 + x2 + x3)(x1 + x2 + x3)

= ((x1 + x2) + x3)((x1 + x2) + x3)(x1 + (x2 + x3))(x1 + (x2 + x3))

= ((x1 + x2) + x3x3)(x1x1 + (x2 + x3))

= (x1 + x2)(x2 + x3)

ISTUDY

50 C H A P T E R 2 ● INTRODUCTION TO LOGIC CIRCUITS

Another way of deriving this product-of-sums expression is to use the sum-of-products

form of f . Thus,

f (x1, x2, x3) =
∑

m(0, 1, 5)

= x1x2x3 + x1x2x3 + x1x2x3

= x1x2x3 + x1x2x3 + x1x2x3 + x1x2x3

= x1x2(x3 + x3) + x2x3(x1 + x1)

= x1x2 + x2x3

Now, first applying DeMorgan’s theorem 15b, and then applying 15a (twice) gives

f = f

= (x1x2 + x2x3)

= (x1x2)(x2x3)

= (x1 + x2)(x2 + x3)

To see that this product-of-sums expression for f is equivalent to the sum-of-products ex-

pression that we derived in Example 2.10, we can slightly rearrange our expression as

f = (x2 + x1)(x2 + x3). Now, recognizing that this expression has the form of the right-hand

side of the distributive property 12b, we have the sum-of-products expression f = x2+x1x3.

2.7 NAND AND NOR LOGIC NETWORKS

We have discussed the use of AND, OR, and NOT gates in the synthesis of logic circuits.

There are other basic logic functions, that are also used for this purpose. Particularly useful

are the NAND and NOR functions, which are obtained by complementing the output gener-

ated by AND and OR operations, respectively. These functions are attractive because they

are implemented with simpler electronic circuits than the AND and OR functions, as we

discuss in Appendix B. Figure 2.25 gives the graphical symbols for the NAND and NOR

gates. A bubble is placed on the output side of the AND and OR gate symbols to represent

the complemented output signal.

If NAND and NOR gates are realized with simpler circuits than AND and OR gates,

then we should ask whether these gates can be used directly in the synthesis of logic cir-

cuits. In Section 2.5 we introduced DeMorgan’s theorem. Its logic gate interpretation is

shown in Figure 2.26. Identity 15a is interpreted in part (a) of the figure. It specifies that

a NAND of variables x1 and x2 is equivalent to first complementing each of the variables

and then ORing them. Notice on the far-right side that we have indicated the NOT gates

simply as bubbles, which denote inversion of the logic value at that point. The other half of

DeMorgan’s theorem, identity 15b, appears in part (b) of the figure. It states that the NOR

function is equivalent to first inverting the input variables and then ANDing them.

In Section 2.6 we explained how any logic function can be implemented in either sum-

of-products or product-of-sums form, which leads to logic networks that have either an

AND-OR or an OR-AND structure, respectively. We will now show that such networks can

be implemented using only NAND gates or only NOR gates.

ISTUDY

2.7 NAND AND NOR LOGIC NETWORKS 51

x1

x2

xn

x1 x2 xn+ + +
x1

x2

x1 x2+

x1

x2

xn

x1

x2

x1 x2
x1 x2 xn

(a) NAND gates

(b) NOR gates

· · · · · ·

· · ·

·

Figure 2.25 NAND and NOR gates.

Consider the network in Figure 2.27 as a representative of general AND-OR networks.

This network can be transformed into a network of NAND gates as shown in the figure.

First, each connection between the AND gate and an OR gate is replaced by a connection

that includes two inversions of the signal: one inversion at the output of the AND gate and

the other at the input of the OR gate. Such double inversion has no effect on the behavior

of the network, as stated formally in theorem 9 in Section 2.5. According to Figure 2.26a,

x1

x2

x1

x2

x1

x2

x1

x2

x1

x2

x1

x2

x1 x2 x1 x2+=(a)

x1 x2+ x1 x2=(b)

Figure 2.26 DeMorgan’s theorem in terms of logic gates.

ISTUDY

52 C H A P T E R 2 ● INTRODUCTION TO LOGIC CIRCUITS

x1

x2

x3

x4

x5

x1

x2

x3

x4

x5

x1

x2

x3

x4

x5

Figure 2.27 Using NAND gates to implement a sum-of-products.

the OR gate with inversions at its inputs is equivalent to a NAND gate. Thus we can redraw

the network using only NAND gates, as shown in Figure 2.27. This example shows that

any AND-OR network can be implemented as a NAND-NAND network having the same

topology.

Figure 2.28 gives a similar construction for a product-of-sums network, which can be

transformed into a circuit with only NOR gates. The procedure is exactly the same as the

x1

x2

x3

x4

x5

x1

x2

x3

x4

x5

x1

x2

x3

x4

x5

Figure 2.28 Using NOR gates to implement a product-of-sums.

ISTUDY

2.7 NAND AND NOR LOGIC NETWORKS 53

x1

x2

x3

x1

x2

x3

f

(a) POS implementation

(b) NOR implementation

f

Figure 2.29 NOR-gate realization of the function in Example 2.13.

one described for Figure 2.27 except that now the identity in Figure 2.26b is applied. The

conclusion is that any OR-AND network can be implemented as a NOR-NOR network

having the same topology.

Example 2.13Let us implement the function

f (x1, x2, x3) =
∑

m(2, 3, 4, 6, 7)

using NOR gates only. In Example 2.12 we showed that the function can be represented by

the POS expression

f = (x1 + x2)(x2 + x3)

An OR-AND circuit that corresponds to this expression is shown in Figure 2.29a. Using

the same structure of the circuit, a NOR-gate version is given in Figure 2.29b. Note that x3

is inverted by a NOR gate that has its inputs tied together.

Example 2.14Let us now implement the function

f (x1, x2, x3) =
∑

m(2, 3, 4, 6, 7)

using NAND gates only. In Example 2.10 we derived the SOP expression

f = x2 + x1x3

which is realized using the circuit in Figure 2.30a. We can again use the same structure

to obtain a circuit with NAND gates, but with one difference. The signal x2 passes only

ISTUDY

54 C H A P T E R 2 ● INTRODUCTION TO LOGIC CIRCUITS

x1

x2

x3

x2

x3

f

x1

f

(a) SOP implementation

(b) NAND implementation

Figure 2.30 NAND-gate realization of the function in Example 2.10.

through an OR gate, instead of passing through an AND gate and an OR gate. If we simply

replace the OR gate with a NAND gate, this signal would be inverted, which would result

in a wrong output value. Since x2 must either not be inverted, or it can be inverted twice,

we can pass it through two NAND gates as depicted in Figure 2.30b. Observe that for this

circuit the output f is

f = x2 ⋅ x1x3

Applying DeMorgan’s theorem, this expression becomes

f = x2 + x1x3

2.8 DESIGN EXAMPLES

Logic circuits provide a solution to a problem. They implement functions that are needed

to carry out specific tasks. Within the framework of a computer, logic circuits provide

complete capability for execution of programs and processing of data. Such circuits are

complex and difficult to design. But regardless of the complexity of a given circuit, a de-

signer of logic circuits is always confronted with the same basic issues. First, it is neces-

sary to specify the desired behavior of the circuit. Second, the circuit has to be synthesized

and implemented. Finally, the implemented circuit has to be tested to verify that it meets

the specifications. The desired behavior is often initially described in words, which then

ISTUDY

2.8 DESIGN EXAMPLES 55

must be turned into a formal specification. In this section we give three simple examples of

design.

2.8.1 THREE-WAY LIGHT CONTROL

Assume that a large room has three doors and that a switch near each door controls a light

in the room. It has to be possible to turn the light on or off by changing the state of any one

of the switches.

As a first step, let us turn this word statement into a formal specification using a truth

table. Let x1, x2, and x3 be the input variables that denote the state of each switch. Assume

that the light is off if all switches are open. Closing any one of the switches will turn the

light on. Then turning on a second switch will have to turn off the light. Thus the light will

be on if exactly one switch is closed, and it will be off if two (or no) switches are closed. If

the light is off when two switches are closed, then it must be possible to turn it on by closing

the third switch. If f (x1, x2, x3) represents the state of the light, then the required functional

behavior can be specified as shown in the truth table in Figure 2.31. The canonical sum-of-

products expression for the specified function is

f = m1 + m2 + m4 + m7

= x1x2x3 + x1x2x3 + x1x2x3 + x1x2x3

This expression cannot be simplified into a lower-cost sum-of-products expression. The

resulting circuit is shown in Figure 2.32a.

An alternative realization for this function is in the product-of-sums form. The canon-

ical expression of this type is

f = M0 ⋅ M3 ⋅ M5 ⋅ M6

= (x1 + x2 + x3)(x1 + x2 + x3)(x1 + x2 + x3)(x1 + x2 + x3)

The resulting circuit is depicted in Figure 2.32b. It has the same cost as the circuit in part

(a) of the figure.

x1 x2 x3 f

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

Figure 2.31 Truth table for the three-way light

control.

ISTUDY

56 C H A P T E R 2 ● INTRODUCTION TO LOGIC CIRCUITS

f

(a) Sum-of-products realization

(b) Product-of-sums realization

x1

x2

x3

f

x1

x2

x3

Figure 2.32 Implementation of the function in Figure 2.31.

When the designed circuit is implemented, it can be tested by applying the various

input valuations to the circuit and checking whether the output corresponds to the values

specified in the truth table. A straightforward approach is to check that the correct output

is produced for all eight possible input valuations.

2.8.2 MULTIPLEXER CIRCUIT

In computer systems it is often necessary to choose data from exactly one of a number

of possible sources. Suppose that there are two sources of data, provided as input signals

x1 and x2. The values of these signals change in time, perhaps at regular intervals. Thus

sequences of 0s and 1s are applied on each of the inputs x1 and x2. We want to design a

circuit that produces an output that has the same value as either x1 or x2, dependent on the

ISTUDY

2.8 DESIGN EXAMPLES 57

value of a selection control signal s. Therefore, the circuit should have three inputs: x1, x2,

and s. Assume that the output of the circuit will be the same as the value of input x1 if s = 0,

and it will be the same as x2 if s = 1.

Based on these requirements, we can specify the desired circuit in the form of a truth

table given in Figure 2.33a. From the truth table, we derive the canonical sum of products

f (s, x1, x2) = sx1x2 + sx1x2 + sx1x2 + sx1x2

s f s x1 x2

f s x1 x2

0 x1

1 x2

(d) More compact truth-table representation

s x1 x2

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

(a) Truth table

f

x1

x2

s
f

s

x1

x2

0

1

(c) Graphical symbol(b) Circuit

(, ,)

(, ,)

Figure 2.33 Implementation of a multiplexer.

ISTUDY

58 C H A P T E R 2 ● INTRODUCTION TO LOGIC CIRCUITS

Using the distributive property, this expression can be written as

f = sx1(x2 + x2) + s(x1 + x1)x2

Applying theorem 8b yields

f = sx1 ⋅ 1 + s ⋅ 1 ⋅ x2

Finally, theorem 6a gives

f = sx1 + sx2

A circuit that implements this function is shown in Figure 2.33b. Circuits of this type are

used so extensively that they are given a special name. A circuit that generates an output

that exactly reflects the state of one of a number of data inputs, based on the value of one

or more selection control inputs, is called a multiplexer. We say that a multiplexer circuit

“multiplexes” input signals onto a single output.

In this example we derived a multiplexer with two data inputs, which is referred to

as a “2-to-1 multiplexer.” A commonly used graphical symbol for the 2-to-1 multiplexer

is shown in Figure 2.33c. The same idea can be extended to larger circuits. A 4-to-1 mul-

tiplexer has four data inputs and one output. In this case two selection control inputs are

needed to choose one of the four data inputs that is transmitted as the output signal. An

8-to-1 multiplexer needs eight data inputs and three selection control inputs, and so on.

Note that the statement “f = x1 if s = 0, and f = x2 if s = 1” can be presented in a

more compact form of a truth table, as indicated in Figure 2.33d. In later chapters we will

have occasion to use such representation.

We showed how a multiplexer can be built using AND, OR, and NOT gates. The same

circuit structure can be used to implement the multiplexer using NAND gates, as explained

in Section 2.7. In Appendix B we will show other possibilities for constructing multiplexers.

In Chapter 4 we will discuss the use of multiplexers in considerable detail.

2.8.3 NUMBER DISPLAY

In Example 2.2 we designed an adder circuit that generates the arithmetic sum S = a + b,

where a and b are one-bit numbers and S = s1s0 provides the resulting two-bit sum, which

is either 00, 01, or 10. In this design example, we wish to create a logic circuit that drives a

familiar seven-segment display, as illustrated in Figure 2.34a. This display allows us to show

the value of S as a decimal number, either 0, 1, or 2. The display includes seven segments,

labeled a, b,… , g in the figure, where each segment is a light-emitting diode (LED). Our

logic circuit has the two inputs s1 and s0. It produces seven outputs, one for each segment

in the display. Setting an output to the value 1 illuminates the corresponding segment in

the display. By illuminating specific segments for each valuation of s1s0 we can make the

display’s appearance correspond to the shape of the appropriate decimal digit.

Part (b) of Figure 2.34 shows a truth table for the possible valuations of s1s0 and in-

dicates on the left-hand side how the display should appear in each case. The truth table

specifies the logic values needed for each of the seven functions. For example, segment a
in the 7-segment display needs to be turned on when S has the decimal values 0 or 2, but

has to be off when S has the value 1. Hence, the corresponding logic function is set to 1 for

ISTUDY

2.9 INTRODUCTION TO CAD TOOLS 59

ce

1

0

1

1

1

s0 a

1

b

1

1

0

1

0

0

s1

0

1

0

c

0

1

1

d

1

0

1

e

0

0

1

f

0

0

1

g

(b) Truth table

s1

a

s0

b
c

d
e
f
g

a

g

bf

d

(a) Logic circuit and 7-segment display

Logic

circuit

Figure 2.34 Display of numbers.

minterms m0 and m2, giving a = s1s0 + s1s0 = s0. Logic expressions for each of the seven

functions are

a = d = e = s0

b = 1

c = s1

f = s1s0

g = s1s0

Designers of logic circuits rely heavily on CAD tools. We want to encourage the reader

to become familiar with CAD tools as soon as possible. We have reached a point where an

introduction to these tools is useful. The next section presents some basic concepts that are

needed to use these tools. We will also introduce, in Section 2.10, a special language for

describing logic circuits, called VHDL. This language is used to describe the circuits as an

input to the CAD tools, which then proceed to derive a suitable implementation.

2.9 INTRODUCTION TO CAD TOOLS

The preceding sections introduced a basic approach for synthesis of logic circuits. A de-

signer could use this approach manually for small circuits. However, logic circuits found

in complex systems, such as today’s computers, cannot be designed manually—they are

ISTUDY

60 C H A P T E R 2 ● INTRODUCTION TO LOGIC CIRCUITS

designed using sophisticated CAD tools that automatically implement the synthesis

techniques.

To design a logic circuit, a number of CAD tools are needed. They are usually packaged

together into a CAD system, which typically includes tools for the following tasks: design

entry, logic synthesis and optimization, simulation, and physical design. We will introduce

some of these tools in this section and will provide additional discussion in later chapters.

2.9.1 DESIGN ENTRY

The starting point in the process of designing a logic circuit is the conception of what

the circuit is supposed to do and the formulation of its general structure. This step is done

manually by the designer because it requires design experience and intuition. The rest of the

design process is done with the aid of CAD tools. The first stage of this process involves

entering into the CAD system a description of the circuit being designed. This stage is

called design entry. We will describe two design entry methods: using schematic capture

and writing source code in a hardware description language.

Schematic Capture
A logic circuit can be defined by drawing logic gates and interconnecting them with

wires. A CAD tool for entering a designed circuit in this way is called a schematic capture
tool. The word schematic refers to a diagram of a circuit in which circuit elements, such

as logic gates, are depicted as graphical symbols and connections between circuit elements

are drawn as lines.

A schematic capture tool uses the graphics capabilities of a computer and a computer

mouse to allow the user to draw a schematic diagram. To facilitate inclusion of gates in

the schematic, the tool provides a collection of graphical symbols that represent gates of

various types with different numbers of inputs. This collection of symbols is called a library.

The gates in the library can be imported into the user’s schematic, and the tool provides a

graphical way of interconnecting the gates to create a logic network.

Any subcircuits that have been previously created can be represented as graphical sym-

bols and included in the schematic. In practice it is common for a CAD system user to create

a circuit that includes within it other smaller circuits. This methodology is known as hier-
archical design and provides a good way of dealing with the complexities of large circuits.

The schematic-capture method is simple to use, but becomes awkward when large cir-

cuits are involved. A better method for dealing with large circuits is to write source code

using a hardware description language to represent the circuit.

Hardware Description Languages
A hardware description language (HDL) is similar to a typical computer programming

language except that an HDL is used to describe hardware rather than a program to be exe-

cuted on a computer. Many commercial HDLs are available. Some are proprietary, meaning

that they are provided by a particular company and can be used to implement circuits only

in the technology offered by that company. We will not discuss the proprietary HDLs in

this book. Instead, we will focus on a language that is supported by virtually all vendors

that provide digital hardware technology and is officially endorsed as an Institute of Elec-
trical and Electronics Engineers (IEEE) standard. The IEEE is a worldwide organization

ISTUDY

2.9 INTRODUCTION TO CAD TOOLS 61

that promotes technical activities to the benefit of society in general. One of its activities

involves the development of standards that define how certain technological concepts can

be used in a way that is suitable for a large body of users.

Two HDLs are IEEE standards: Verilog HDL and VHDL (Very High Speed Integrated
Circuit Hardware Description Language). Both languages are in widespread use in the

industry. We use VHDL in this book, but a Verilog version of the book is also available

from the same publisher. Although the two languages differ in many ways, the choice of

using one or the other when studying logic circuits is not particularly important, because

both offer similar features. Concepts illustrated in this book using VHDL can be directly

applied when using Verilog.

In comparison to performing schematic capture, using VHDL offers a number of ad-

vantages. Because it is supported by most organizations that offer digital hardware technol-

ogy, VHDL provides design portability. A circuit specified in VHDL can be implemented

in different types of chips and with CAD tools provided by different companies, without

having to change the VHDL specification. Design portability is an important advantage be-

cause digital circuit technology changes rapidly. By using a standard language, the designer

can focus on the functionality of the desired circuit without being overly concerned about

the details of the technology that will eventually be used for implementation.

Design entry of a logic circuit is done by writing VHDL code. Signals in the circuit

can be represented as variables in the source code, and logic functions are expressed by

assigning values to these variables. VHDL source code is plain text, which makes it easy

for the designer to include within the code documentation that explains how the circuit

works. This feature, coupled with the fact that VHDL is widely used, encourages sharing

and reuse of VHDL-described circuits. This allows faster development of new products in

cases where existing VHDL code can be adapted for use in the design of new circuits.

Similar to the way in which large circuits are handled in schematic capture, VHDL

code can be written in a modular way that facilitates hierarchical design. Both small and

large logic circuit designs can be efficiently represented in VHDL code. We will introduce

VHDL in Section 2.10.

2.9.2 LOGIC SYNTHESIS

Synthesis is the process of generating a logic circuit from an initial specification that may

be given in the form of a schematic diagram or code written in a hardware description

language. Synthesis CAD tools generate efficient implementations of circuits from such

specifications.

The process of translating, or compiling, VHDL code into a network of logic gates is

part of synthesis. The output is a set of logic expressions that describe the logic functions

needed to realize the circuit.

Regardless of what type of design entry is used, the initial logic expressions produced

by the synthesis tools are not likely to be in an optimal form because they reflect the de-

signer’s input to the CAD tools. It is impossible for a designer to manually produce optimal

results for large circuits. So, one of the important tasks of the synthesis tools is to manipulate

the user’s design to automatically generate an equivalent, but better circuit.

The measure of what makes one circuit better than another depends on the particular

needs of a design project and the technology chosen for implementation. Earlier in this

ISTUDY

62 C H A P T E R 2 ● INTRODUCTION TO LOGIC CIRCUITS

chapter we suggested that a good circuit might be one that has the lowest cost. There are

other possible optimization goals, which are motivated by the type of hardware technol-

ogy used for implementation of the circuit. We discuss implementation technologies in

Appendix B.

The performance of a synthesized circuit can be assessed by physically constructing

the circuit and testing it. But, its behavior can also be evaluated by means of simulation.

2.9.3 FUNCTIONAL SIMULATION

A circuit represented in the form of logic expressions can be simulated to verify that it

will function as expected. The tool that performs this task is called a functional simulator.

It uses the logic expressions (often referred to as equations) generated during synthesis,

and assumes that these expressions will be implemented with perfect gates through which

signals propagate instantaneously. The simulator requires the user to specify valuations

of the circuit’s inputs that should be applied during simulation. For each valuation, the

simulator evaluates the outputs produced by the expressions. The results of simulation are

usually provided in the form of a timing diagram which the user can examine to verify that

the circuit operates as required.

2.9.4 PHYSICAL DESIGN

After logic synthesis the next step in the design flow is to determine exactly how to imple-

ment the circuit on a given chip. This step is often called physical design. As we discuss in

Appendix B, there are several different technologies that may be used to implement logic

circuits. The physical design tools map a circuit specified in the form of logic expressions

into a realization that makes use of the resources available on the target chip. They deter-

mine the placement of specific logic elements, which are not necessarily simple gates of

the type we have encountered so far. They also determine the wiring connections that have

to be made between these elements to implement the desired circuit.

2.9.5 TIMING ANALYSIS

Logic gates and other logic elements are implemented with electronic circuits, and these

circuits cannot perform their function with zero delay. When the values of inputs to the

circuit change, it takes a certain amount of time before a corresponding change occurs at

the output. This is called a propagation delay of the circuit. The propagation delay consists

of two kinds of delays. Each logic element needs some time to generate a valid output signal

whenever there are changes in the values of its inputs. In addition to this delay, there is a

delay caused by signals that must propagate along wires that connect various logic elements.

The combined effect is that real circuits exhibit delays, which has a significant impact on

their speed of operation.

A timing analyzer evaluates the expected delays of a designed logic circuit. Its results

can be used to determine if the generated circuit meets the timing requirements of the spec-

ification for the design. If the requirements are not met, the designer can ask the physical

design tools to try again by indicating specific timing constraints that have to be met. If this

ISTUDY

2.10 INTRODUCTION TO VHDL 63

does not succeed, then the designer has to try different optimizations in the synthesis step

or else improve the initial design that is presented to the synthesis tools.

2.9.6 CIRCUIT IMPLEMENTATION

Having ascertained that the designed circuit meets all requirements of the specification, the

circuit is implemented on an actual chip. If a custom-manufactured chip is created for this

design, then this step is called chip fabrication. But if a programmable hardware device

is used, then this step is called chip configuration or programming. Various types of chip

technologies are described in Appendix B.

2.9.7 COMPLETE DESIGN FLOW

The CAD tools discussed above are the essential parts of a CAD system. The complete

design flow that we discussed is illustrated in Figure 2.35. This has been just a brief intro-

ductory discussion. A full presentation of the CAD tools is given in Chapter 10.

At this point the reader should have some appreciation for what is involved when using

CAD tools. However, the tools can be fully appreciated only when they are used firsthand.

We strongly encourage the reader to obtain access to suitable CAD tools and implement

some examples of circuits by using these tools. Two examples of commonly used CAD tools

are the Quartus tools available from Intel Corporation and the ISE tools provided by Xilinx

Corporation. Both of these CAD systems can be obtained free of charge for educational use

from their respective corporations’ websites.

2.10 INTRODUCTION TO VHDL
In the 1980s rapid advances in integrated circuit technology led to efforts to develop stan-

dard design practices for digital circuits. VHDL was developed as a part of that effort and

became an industry standard language for describing digital circuits. In 1987, VHDL was

adopted as an IEEE standard, called IEEE 1076. A revised standard was adopted in 1993

and called IEEE 1164. The standard was subsequently updated in 2000 and 2002.

VHDL was originally intended to serve two main purposes. First, it was used as a doc-

umentation language for describing the structure of complex digital circuits. As an official

IEEE standard, VHDL provided a common way of documenting circuits designed by nu-

merous designers. Second, VHDL provided features for modeling the behavior of a digital

circuit, which allowed its use as input to software programs that were then used to simulate

the circuit’s operation.

In recent years, in addition to its use for documentation and simulation, VHDL has

also become popular for use in design entry in CAD systems. The CAD tools are used to

synthesize the VHDL code into a hardware implementation of the described circuit. In this

book our main use of VHDL will be for synthesis.

VHDL is a complex, sophisticated language. Learning all of its features is a daunting

task. However, for use in synthesis only a subset of these features is important. To simplify

the presentation, we will focus the discussion on the features of VHDL that are actually

ISTUDY

64 C H A P T E R 2 ● INTRODUCTION TO LOGIC CIRCUITS

Design conception

VHDLSchematic capture

DESIGN ENTRY

Design correct?

Functional simulation

No

Yes

No

Figure 2.35 A typical CAD system.

ISTUDY

2.10 INTRODUCTION TO VHDL 65

used in the examples in the book. The material presented should be sufficient to allow the

reader to design a wide range of circuits. The reader who wishes to learn the complete

VHDL language can refer to one of the specialized texts.

VHDL is introduced in several stages throughout the book. Our general approach will

be to introduce particular features only when they are relevant to the design topics covered

in that part of the text. In Appendix A we provide a concise summary of the VHDL features

covered in the book. The reader will find it convenient to refer to that material from time to

time. In the remainder of this chapter, we discuss the most basic concepts needed to write

simple VHDL code.

Representation of Digital Circuits in VHDL
When using CAD tools to synthesize a logic circuit, the designer can provide the initial

description of the circuit in several different ways, as we explained in Section 2.9.1. One

efficient way is to write this description in the form of VHDL source code. The VHDL

compiler translates this code into a logic circuit.

VHDL allows the designer to describe a desired circuit in a number of ways. One

possibility is to use VHDL statements that describe the structure of the circuit using op-

erators corresponding to logic gates, such as AND and OR. A larger circuit is defined by

writing code that connects these logic gates together. This approach is referred to as the

structural representation of logic circuits. Another possibility is to describe a circuit more

abstractly, by using logic expressions and VHDL constructs that define the desired behav-

ior of the circuit, but not its actual structure in terms of gates. This is called the behavioral
representation.

2.10.1 STRUCTURAL SPECIFICATION OF LOGIC CIRCUITS

Each logic signal in the circuit is represented in VHDL code as a data object. Just as the

variables declared in any high-level programming language have associated types, such as

integers or characters, data objects in VHDL can be of various types. The original VHDL

standard, IEEE 1076, includes a data type called BIT. An object of this type is well suited

for representing digital signals because BIT objects can have only two values, 0 and 1. We

will give two examples below that use the BIT type and then introduce another data type

that is commonly used for logic circuits.

We will use an example to illustrate how to write simple VHDL source code. Consider

the multiplexer circuit from Figure 2.33b, which is reproduced in Figure 2.36. If we wish

to write VHDL code to represent this circuit, the first step is to declare the input and output

Figure 2.36 The logic circuit for a multiplexer.

ISTUDY

66 C H A P T E R 2 ● INTRODUCTION TO LOGIC CIRCUITS

ENTITY example1 IS

PORT (x1, x2, s : IN BIT ;

f : OUT BIT) ;

END example1 ;

Figure 2.37 VHDL entity declaration for the circuit in

Figure 2.36.

signals. This is done using a construct called an entity. An appropriate entity for this exam-

ple appears in Figure 2.37. An entity must be assigned a name; we have chosen the name

example1 for this first example. The input and output signals for the entity are called its

ports, and they are identified by the keyword PORT. This name derives from the electrical

jargon in which the word port refers to an input or output connection to an electronic circuit.

Each port has an associated mode that specifies whether it is an input (IN) to the entity or

an output (OUT) from the entity. Each port represents a signal; hence, it has an associated

type. The entity example1 has four ports in total. The first three, x1, x2, and s, are input

signals of type BIT. The port named f is an output of type BIT.

In Figure 2.37 we have used simple signal names x1, x2, s, and f for the entity’s ports.

Similar to most computer programming languages, VHDL has rules that specify which

characters are allowed in signal names. A simple guideline is that signal names can include

any letter or number, as well as the underscore character ‘ ’. There are two caveats: a signal

name must begin with a letter, and a signal name cannot be a VHDL keyword.

An entity specifies the input and output signals for a circuit, but it does not give any

details as to what the circuit represents. The circuit’s functionality must be specified with

a VHDL construct called an architecture. An architecture for our example appears in Fig-

ure 2.38. It must be given a name, and we have chosen the name LogicFunc. Although

the name can be any text string, it is sensible to assign a name that is meaningful to the

designer. In this case we have chosen the name LogicFunc because the architecture spec-

ifies the functionality of the design using a logic expression. VHDL has built-in support

for the following Boolean operators: AND, OR, NOT, NAND, NOR, XOR, and XNOR

(complement of XOR). Following the BEGIN keyword, our architecture specifies, using

the VHDL signal assignment operator <=, that output f should be assigned the result of the

logic expression on the right-hand side of the operator. Because VHDL does not assume

any precedence of logic operators, parentheses are used in the expression. One might expect

that an assignment statement such as

f <= NOT s AND x1 OR s AND x2

would have implied parentheses

f <= (NOT s AND x1) OR (s AND x2)

ARCHITECTURE LogicFunc OF example1 IS

BEGIN

f <= (NOT s AND x1) OR (s AND x2) ;

END LogicFunc ;

Figure 2.38 VHDL architecture for the entity in Figure 2.37.

ISTUDY

2.10 INTRODUCTION TO VHDL 67

ENTITY example1 IS

PORT (x1, x2, s : IN BIT ;

f : OUT BIT) ;

END example1 ;

ARCHITECTURE LogicFunc OF example1 IS

BEGIN

f <= (NOT s AND x1) OR (s AND x2) ;

END LogicFunc ;

Figure 2.39 Complete VHDL code for the circuit in Figure 2.36.

But for VHDL code this assumption is not true. In fact, without the parentheses the VHDL

compiler would produce a compile-time error for this expression.

Complete VHDL code for our example is given in Figure 2.39. This example has illus-

trated that a VHDL source code file has two main sections: an entity and an architecture. A

simple analogy for what each section represents is that the entity is equivalent to a symbol

in a schematic diagram and the architecture specifies the logic circuitry inside the symbol.

A second example of VHDL code is given in Figure 2.40. This circuit has four input

signals, called x1, x2, x3, and x4, and two output signals, named f and g. A logic expression

is assigned to each output. A logic circuit produced by the VHDL compiler for this example

is shown in Figure 2.41.

The preceding two examples indicate that one way to assign a value to a signal in

VHDL code is by means of a logic expression. In VHDL terminology, this type of logic

expression is called a signal assignment statement. VHDL also supports several other types

of assignment statements and many other features that are useful for describing circuits that

are much more complex.

Using VHDL Data Types
In addition to the type BIT, a commonly used VHDL data type for logic circuit design

is called STD LOGIC. As its name implies, STD LOGIC is meant to serve as the standard

data type for representation of logic signals. Figure 2.42 gives the VHDL code from Figure

2.39 modified to use the STD LOGIC type instead of the BIT type.

ENTITY example2 IS

PORT (x1, x2, x3, x4 : IN BIT ;

f, g : OUT BIT) ;

END example2 ;

ARCHITECTURE LogicFunc OF example2 IS

BEGIN

f <= (x1 AND x3) OR (x2 AND x4) ;

g <= (x1 OR NOT x3) AND (NOT x2 OR x4) ;

END LogicFunc ;

Figure 2.40 VHDL code for a four-input function.

ISTUDY

68 C H A P T E R 2 ● INTRODUCTION TO LOGIC CIRCUITS

f

g

x3

x1

x2

x4

Figure 2.41 Logic circuit for the code in Figure 2.40.

To use the STD LOGIC type, VHDL code must include the two lines given at the be-

ginning of the figure. These statements serve as directives to the VHDL compiler. They are

needed because the original VHDL standard, IEEE 1076, did not include the STD LOGIC

type. The way that the new type was added to the language, in the IEEE 1164 standard, was

to provide the definition of STD LOGIC as a set of files that can be included with VHDL

code when compiled. The set of files is called a library. The purpose of the first line in

Figure 2.42 is to declare that the code will make use of the IEEE library.

As we said earlier, signals with the type BIT can only assume the value 0 or 1. Sig-

nals that have the STD LOGIC type can take a number of different values, with the most

useful values for describing logic functions being 0, 1, Z, and −. We show how the logic

value Z, which represents high-impedance, is useful in Appendix B. The − value represents

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

ENTITY example3 IS

PORT (x1, x2, s : IN STD LOGIC ;

f : OUT STD LOGIC) ;

END example3 ;

ARCHITECTURE LogicFunc OF example3 IS

BEGIN

f <= (NOT s AND x1) OR (s AND x2) ;

END LogicFunc ;

Figure 2.42 Modified VHDL code from Figure 2.39 using the

STD LOGIC data type.

ISTUDY

2.10 INTRODUCTION TO VHDL 69

an unspecified logic value, known as a don’t-care condition. We discuss don’t-care condi-

tions later in this chapter.

In Figure 2.42 the second line of code tells the VHDL compiler that we wish to use

the STD LOGIC type. The definition of this type is encapsulated in a special type of file

known as a package. The package is named std logic 1164. It is possible to instruct

the VHDL compiler to use only a subset of the package, but the normal use is to specify the

word all to indicate that the entire package is of interest, as we have done in the figure.

For the examples of VHDL code given in this book, we will almost always declare

signals with the type STD LOGIC.

2.10.2 BEHAVIORAL SPECIFICATION OF LOGIC CIRCUITS

Using logic expressions is a simple approach for writing VHDL code. But higher levels

of abstraction can often be used to advantage. Consider again the multiplexer circuit of

Figure 2.36. The circuit can be described in words by saying that f = x1 if s = 0 and

f = x2 if s = 1. In VHDL, this behavior can be defined with the if-else statement

IF s = '0' THEN

f <= x1 ;

ELSE

f <= x2 ;

END IF ;

The complete code is given in Figure 2.43. The first line illustrates how a comment can

be inserted. The if-else statement is an example of a VHDL sequential assignment

- - Behavioral specification

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

ENTITY example4 IS

PORT (x1, x2, s : IN STD LOGIC ;

f : OUT STD LOGIC) ;

END example4 ;

ARCHITECTURE Behavior OF example4 IS

BEGIN

PROCESS (x1, x2, s)

BEGIN

IF s = '0' THEN

f <= x1 ;

ELSE

f <= x2 ;

END IF ;

END PROCESS ;

END Behavior ;

Figure 2.43 Behavioral specification of the circuit in Figure 2.36.

ISTUDY

70 C H A P T E R 2 ● INTRODUCTION TO LOGIC CIRCUITS

statement. We will introduce other sequential assignment statements, such as loop state-

ments, in Chapters 3 and 4.

VHDL syntax requires that sequential assignment statements, such as the if-else state-

ment, be placed inside a construct called a process. The process begins with the PROCESS

keyword, followed by a parenthesized list of signals, called the sensitivity list. The sensi-

tivity list tells the VHDL compiler which signals can affect the output signals produced by

the process. In Figure 2.43 the sensitivity list comprises the multiplexer data inputs, x1 and

x2, and the select input s.

Behavioral specification of a logic circuit defines only its behavior. CAD synthesis tools

use this specification to construct the actual circuit. The detailed structure of the synthesized

circuit will depend on the technology used.

2.10.3 HIERARCHICAL VHDL CODE

The examples of VHDL code given so far include just a single entity. For larger designs, it is

often convenient to create a hierarchical structure in the VHDL code, in which there is a top-
level entity that includes multiple instances of lower-level entities. To see how hierarchical

VHDL code can be written, consider the circuit in Figure 2.44. This circuit comprises two

lower-level entities: the adder entity that we described in Figure 2.12, and the entity that

drives a 7-segment display which we showed in Figure 2.34. The purpose of the circuit is

to generate the arithmetic sum of the two inputs x and y, using the adder entity, and then to

show the resulting decimal value on the 7-segment display.

VHDL code for the adder entity from Figure 2.12 and the display entity from Figure

2.34 is given in Figures 2.45 and 2.46, respectively. For the adder entity signal assignment

statements are used to specify the two-bit sum s1s0. The code for the display entity includes

signal assignment statements that correspond to the logic expressions for each of the seven

outputs of the display circuit, which are given in Section 2.8.3. The statement

b <= '1' ;

assigns the output b of the display entity to have the constant value 1. We discuss the spec-

ification of numbers in VHDL code in Chapter 3.

s0

a

s1

b
c
d
e
f
g

Adder module Display module

a

b

Top-level module

x

y

s0

s1

w0

w1

a

b
c
d
e
f
g

Figure 2.44 A logic circuit with two entities.

ISTUDY

2.10 INTRODUCTION TO VHDL 71

- - An adder circuit

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

ENTITY adder IS

PORT (a, b : IN STD LOGIC ;

s1, s0 : OUT STD LOGIC) ;

END adder ;

ARCHITECTURE Behavior OF adder IS

BEGIN

s1 <= a AND b ;

s0 <= a XOR b ;

END Behavior ;

Figure 2.45 VHDL specification of the circuit in Figure 2.12.

The top-level VHDL entity, named adder display, is given in Figure 2.47. This entity

has the inputs x and y, and the outputs a,… , g.

The architecture body has the name Structure. We chose this name because the style

of code in which a circuit is described in a hierarchical fashion, by connecting together

subcircuits, is usually called the structural style. In previous examples of VHDL code, all

signals were declared as ports in the entity declaration. As shown in Figure 2.47, signals can

- - A circuit for driving a 7-segment display

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

ENTITY display IS

PORT (s1, s0 : IN STD LOGIC ;

a, b, c, d, e, f, g : OUT STD LOGIC) ;

END display ;

ARCHITECTURE Behavior OF display IS

BEGIN

a <= NOT s0 ;

b <= '1' ;

c <= NOT s1 ;

d <= NOT s0 ;

e <= NOT s0 ;

f <= NOT s1 AND NOT s0 ;

g <= s1 AND NOT s0 ;

END Behavior ;

Figure 2.46 VHDL specification of the circuit in Figure 2.34.

ISTUDY

72 C H A P T E R 2 ● INTRODUCTION TO LOGIC CIRCUITS

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

ENTITY adder display IS

PORT (x, y : IN STD LOGIC ;

a, b, c, d, e, f, g : OUT STD LOGIC) ;

END adder display ;

ARCHITECTURE Structure OF adder display IS

SIGNAL w1, w0 : STD LOGIC ;

COMPONENT adder IS

PORT (a, b : IN STD LOGIC ;

s1, s0 : OUT STD LOGIC) ;

END COMPONENT ;

COMPONENT display IS

PORT (s1, s0 : IN STD LOGIC ;

a, b, c, d, e, f, g : OUT STD LOGIC) ;

END COMPONENT ;

BEGIN

U1: adder PORT MAP (x, y, w1, w0) ;

U2: display PORT MAP (w1, w0, a, b, c, d, e, f, g) ;

END Structure ;

Figure 2.47 Hierarchical VHDL code for the circuit in Figure 2.44.

also be declared preceding the BEGIN keyword in the architecture body. The declaration

SIGNAL w1, w0 : STD LOGIC ;

is needed because the signals w1 and w0 are neither inputs nor outputs of the circuit in

Figure 2.44. Since these signals cannot be declared as input or output ports in the VHDL

code, they have to be declared as (internal) signals.

The next statement in the code is a component declaration statement for the adder
entity. This statement uses syntax similar to that in an entity declaration. It allows the adder
entity to be used as a component (subcircuit) in the architecture body. Similarly, the display
entity is also declared as a component. The statement

U1: adder PORT MAP (x, y, w1, w0) ;

instantiates the adder entity from Figure 2.45 as a subcircuit. The subcircuit is given an

instance name, U1, which can be any valid VHDL name. In this instantiation statement

the signals attached to the ports of the adder component are listed in the same order as

those in Figure 2.45. Thus, the input ports x and y of the top-level entity in Figure 2.47

are connected to the first two ports of adder, which are named a and b. The order in which

signals are listed in the instantiation statement determines which signal is connected to each

port in the component. The instantiation statement also attaches the last two ports of the

adder component, which are its outputs, to the signals w1 and w0 in the top-level entity.

ISTUDY

2.11 MINIMIZATION AND KARNAUGH MAPS 73

The statement

U2: display PORT MAP (w1, w0, a, b, c, d, e, f, g) ;

instantiates the other subcircuit in our circuit. Here, the wires w1 and w0, which have already

been connected to the outputs of the adder component, are attached to the corresponding

input ports of the display component. The display component’s output ports are attached to

the a,… , g output ports of the top-level entity.

2.10.4 HOW NOT TO WRITE VHDL CODE

When learning how to use VHDL or other hardware description languages, the tendency for

the novice is to write code that resembles a computer program, containing many variables

and loops. It is difficult to determine what logic circuit the CAD tools will produce when

synthesizing such code. This book contains more than 100 examples of complete VHDL

code that represent a wide range of logic circuits. In these examples the code is easily

related to the described logic circuit. The reader is advised to adopt the same style of code.

A good general guideline is to assume that if the designer cannot readily determine what

logic circuit is described by the VHDL code, then the CAD tools are not likely to synthesize

the circuit that the designer is trying to model.

Once complete VHDL code is written for a particular design, the reader is encouraged

to analyze the resulting circuit synthesized by the CAD tools. Much can be learned about

VHDL, logic circuits, and logic synthesis through this process.

2.11 MINIMIZATION AND KARNAUGH MAPS

In a number of our examples we have used algebraic manipulation to find a reduced-cost

implementation of a function in either sum-of-products or product-of-sums form. In these

examples, we made use of the rules, theorems, and properties of Boolean algebra that were

introduced in Section 2.5. For example, we often used the distributive property, DeMorgan’s

theorem, and the combining property. In general, it is not obvious when to apply these the-

orems and properties to find a minimum-cost circuit, and it is often tedious and impractical

to do so. This section introduces a more manageable approach, called, the Karnaugh map,

which provides a systematic way of producing a minimum-cost logic expression.

The key to the Karnaugh map approach is that it allows the application of the combining

property 14a, or 14b, as judiciously as possible. To understand how it works, consider

the function f in Figure 2.48. The canonical sum-of-products expression for f consists of

minterms m0, m2, m4, m5, and m6, so that

f = x1x2x3 + x1x2x3 + x1x2x3 + x1x2x3 + x1x2x3

The combining property 14a allows us to replace two minterms that differ in the value of

only one variable with a single product term that does not include that variable at all. For

example, both m0 and m2 include x1 and x3, but they differ in the value of x2 because m0

ISTUDY

74 C H A P T E R 2 ● INTRODUCTION TO LOGIC CIRCUITS

Row

number x1 x2 x3 f

0 0 0 0 1

1 0 0 1 0

2 0 1 0 1

3 0 1 1 0

4 1 0 0 1

5 1 0 1 1

6 1 1 0 1

7 1 1 1 0

Figure 2.48 The function f (x1, x2, x3) =
∑

m(0, 2, 4, 5, 6).

includes x2 while m2 includes x2. Thus

x1x2x3 + x1x2x3 = x1(x2 + x2)x3

= x1 ⋅ 1 ⋅ x3

= x1x3

Hence, m0 and m2 can be replaced by the single product term x1x3. Similarly, m4 and m6

differ only in the value of x2 and can be combined using

x1x2x3 + x1x2x3 = x1(x2 + x2)x3

= x1 ⋅ 1 ⋅ x3

= x1x3

Now the two newly generated terms, x1x3 and x1x3, can be combined further as

x1x3 + x1x3 = (x1 + x1)x3

= 1 ⋅ x3

= x3

These optimization steps indicate that we can replace the four minterms m0, m2, m4, and

m6 with the single product term x3. In other words, the minterms m0, m2, m4, and m6 are

all included in the term x3. The remaining minterm in f is m5. It can be combined with m4,

which gives

x1x2x3 + x1x2x3 = x1x2

Recall that theorem 7b in Section 2.5 indicates that

m4 = m4 + m4

which means that we can use the minterm m4 twice—to combine with minterms m0, m2,

and m6 to yield the term x3 as explained above and also to combine with m5 to yield the

term x1x2.

ISTUDY

2.11 MINIMIZATION AND KARNAUGH MAPS 75

We have now accounted for all the minterms in f ; hence all five input valuations for

which f = 1 are covered by the minimum-cost expression

f = x3 + x1x2

The expression has the product term x3 because f = 1 when x3 = 0 regardless of the values

of x1 and x2. The four minterms m0, m2, m4, and m6 represent all possible minterms for

which x3 = 0; they include all four valuations, 00, 01, 10, and 11, of variables x1 and x2.

Thus if x3 = 0, then it is guaranteed that f = 1. This may not be easy to see directly from

the truth table in Figure 2.48, but it is obvious if we write the corresponding valuations

grouped together:

x1 x2 x3

m0 0 0 0

m2 0 1 0

m4 1 0 0

m6 1 1 0

In a similar way, if we look at m4 and m5 as a group of two

x1 x2 x3

m4 1 0 0

m5 1 0 1

it is clear that when x1 = 1 and x2 = 0, then f = 1 regardless of the value of x3.

The preceding discussion suggests that it would be advantageous to devise a method

that allows easy discovery of groups of minterms for which f = 1 that can be combined

into single terms. The Karnaugh map is a useful vehicle for this purpose.

The Karnaugh map is an alternative to the truth-table form for representing a function.

The map consists of cells that correspond to the rows of the truth table. Consider the two-

variable example in Figure 2.49. Part (a) depicts the truth-table form, where each of the four

rows is identified by a minterm. Part (b) shows the Karnaugh map, which has four cells.

The columns of the map are labeled by the value of x1, and the rows are labeled by x2. This

labeling leads to the locations of minterms as shown in the figure. Compared to the truth

x1
x2

(a) Truth table (b) Karnaugh map

0

1

0 1

m0 m2

m3m1

x1 x2

0 0

0 1

1 0

1 1

m0

m1

m3

m2

Figure 2.49 Location of two-variable minterms.

ISTUDY

76 C H A P T E R 2 ● INTRODUCTION TO LOGIC CIRCUITS

table, the advantage of the Karnaugh map is that it allows easy recognition of minterms

that can be combined using property 14a from Section 2.5. Minterms in any two cells that

are adjacent, either in the same row or the same column, can be combined. For example,

the minterms m2 and m3 can be combined as

m2 + m3 = x1x2 + x1x2

= x1(x2 + x2)

= x1 ⋅ 1

= x1

The Karnaugh map is not just useful for combining pairs of minterms. As we will see in

several larger examples, the Karnaugh map can be used directly to derive a minimum-cost

circuit for a logic function.

Two-Variable Map
A Karnaugh map for a two-variable function is given in Figure 2.50. It corresponds to

the function f of Figure 2.19. The value of f for each valuation of the variables x1 and x2

is indicated in the corresponding cell of the map. Because a 1 appears in both cells of the

bottom row and these cells are adjacent, there exists a single product term that can cause f
to be equal to 1 when the input variables have the values that correspond to either of these

cells. To indicate this fact, we have circled the cell entries in the map. Rather than using the

combining property formally, we can derive the product term intuitively. Both of the cells

are identified by x2 = 1, but x1 = 0 for the left cell and x1 = 1 for the right cell. Thus if

x2 = 1, then f = 1 regardless of whether x1 is equal to 0 or 1. The product term representing

the two cells is simply x2.

Similarly, f = 1 for both cells in the first column. These cells are identified by x1 = 0.

Therefore, they lead to the product term x1. Since this takes care of all instances where

f = 1, it follows that the minimum-cost realization of the function is

f = x2 + x1

Evidently, to find a minimum-cost implementation of a given function, it is necessary

to find the smallest number of product terms that produce a value of 1 for all cases where

f = 1. Moreover, the cost of these product terms should be as low as possible. Note that a

product term that covers two adjacent cells is cheaper to implement than a term that covers

only a single cell. For our example once the two cells in the bottom row have been covered

by the product term x2, only one cell (top left) remains. Although it could be covered by

x1
x2

1 0

1 1

f x2 x1+=
0

1

0 1

Figure 2.50 The function of Figure 2.19.

ISTUDY

2.11 MINIMIZATION AND KARNAUGH MAPS 77

x1 x2
x3 00 01 11 10

0

1

(b) Karnaugh map

x2 x3

0 0

0 1

1 0

1 1

m0

m1

m3

m2

0

0

0

0

0 0

0 1

1 0

1 1

1

1

1

1

m4

m5

m7

m6

x1

(a) Truth table

m0

m1 m3

m2 m6

m7

m4

m5

Figure 2.51 Location of three-variable minterms.

the term x1x2, it is better to combine the two cells in the left column to produce the product

term x1 because this term is cheaper to implement.

Three-Variable Map
A three-variable Karnaugh map is constructed by placing 2 two-variable maps side

by side. Figure 2.51a lists all of the three-variable minterms, and part (b) of the figure

indicates the locations of these minterms in the Karnaugh map. In this case each valuation

of x1 and x2 identifies a column in the map, while the value of x3 distinguishes the two

rows. To ensure that minterms in the adjacent cells in the map can always be combined

into a single product term, the adjacent cells must differ in the value of only one variable.

Thus the columns are identified by the sequence of (x1, x2) values of 00, 01, 11, and 10,

rather than the more obvious 00, 01, 10, and 11. This makes the second and third columns

different only in variable x1. Also, the first and the fourth columns differ only in variable

x1, which means that these columns can be considered as being adjacent. The reader may

find it useful to visualize the map as a rectangle folded into a cylinder where the left and the

right edges in Figure 2.51b are made to touch. (A sequence of codes, or valuations, where

consecutive codes differ in one variable only is known as the Gray code. This code is used

for a variety of purposes, some of which will be encountered later in the book.)

Figure 2.52a represents the function of Figure 2.23 in Karnaugh-map form. To synthe-

size this function, it is necessary to cover the four 1s in the map as efficiently as possible.

It is not difficult to see that two product terms suffice. The first covers the 1s in the top row,

which are represented by the term x1x3. The second term is x2x3, which covers the 1s in the

bottom row. Hence the function is implemented as

f = x1x3 + x2x3

which describes the circuit obtained in Figure 2.24a.

In a three-variable map, it is possible to combine cells to produce product terms that

correspond to a single cell, two adjacent cells, or a group of four adjacent cells. Realiza-

tion of a group of four adjacent cells using a single product term is illustrated in Figure

2.52b, using the function from Figure 2.48. The four cells in the top row correspond to the

(x1, x2, x3) valuations 000, 010, 110, and 100. As we discussed before, this indicates that if

ISTUDY

78 C H A P T E R 2 ● INTRODUCTION TO LOGIC CIRCUITS

x1x2

x3

0 0

1 0

1 1

0 1

x1x2
x3

1 1

0 0

1 1

0 1

(a) The function of Figure 2.23

(b) The function of Figure 2.48

00 01 11 10

0

1

00 01 11 10

0

1

f = x1x3 + x2x3

f = x3 + x1x2

Figure 2.52 Examples of three-variable Karnaugh maps.

x3 = 0, then f = 1 for all four possible valuations of x1 and x2, which means that the only

requirement is that x3 = 0. Therefore, the product term x3 represents these four cells. The

remaining 1, corresponding to minterm m5, is best covered by the term x1x2, obtained by

combining the two cells in the right most column. The complete realization of f is

f = x3 + x1x2

It is also possible to have a group of eight 1s in a three-variable map. This is the trivial case

of a function where f = 1 for all valuations of input variables; in other words, f is equal to

the constant 1.

The Karnaugh map provides a simple mechanism for generating the product terms that

should be used to implement a given function. A product term must include only those

variables that have the same value for all cells in the group represented by this term. If the

variable is equal to 1 in the group, it appears uncomplemented in the product term; if it is

equal to 0, it appears complemented. Each variable that is sometimes 1 and sometimes 0 in

the group does not appear in the product term.

Four-Variable Map
A four-variable map is constructed by placing 2 three-variable maps together to create

four rows in the same fashion as we used 2 two-variable maps to form the four columns

in a three-variable map. Figure 2.53 shows the structure of the four-variable map and the

location of minterms. We have included in this figure another frequently used way of des-

ignating the rows and columns. As shown in red, it is sufficient to indicate the rows and

columns for which a given variable is equal to 1. Thus x1 = 1 for the two right most columns,

ISTUDY

2.11 MINIMIZATION AND KARNAUGH MAPS 79

x1 x2
x3 x4 00 01 11 10

00

01

11

10

x2

x4

x1

x3

m0

m1 m5

m4 m12

m13

m8

m9

m3

m2 m6

m7 m15

m14

m11

m10

Figure 2.53 A four-variable Karnaugh map.

x2 = 1 for the two middle columns, x3 = 1 for the bottom two rows, and x4 = 1 for the two

middle rows.

Figure 2.54 gives four examples of four-variable functions. The function f1 has a group

of four 1s in adjacent cells in the bottom two rows, for which x2 = 0 and x3 = 1—they are

represented by the product term x2x3. This leaves the two 1s in the second row to be covered,

which can be accomplished with the term x1x3x4. Hence the minimum-cost implementation

of the function is

f1 = x2x3 + x1x3x4

The function f2 includes a group of eight 1s that can be implemented by a single term, x3.

Again, the reader should note that if the remaining two 1s were implemented as a group

of two, the result would be the product term x1x3x4. Implementing these 1s as a part of a

group of four 1s, as shown in the figure, gives the less expensive product term x1x4.

Just as the left and the right edges of the map are adjacent in terms of the assignment of

the variables, so are the top and the bottom edges. Indeed, the four corners of the map are

adjacent to each other and thus can form a group of four 1s, which may be implemented by

the product term x2x4. This case is depicted by the function f3. In addition to this group of

1s, there are four other 1s that must be covered to implement f3. This can be done as shown

in the figure.

In all examples that we have considered so far, a unique solution exists that leads to

a minimum-cost circuit. The function f4 provides an example where there is some choice.

The groups of four 1s in the top-left and bottom-right corners of the map are realized by the

terms x1x3 and x1x3, respectively. This leaves the two 1s that correspond to the term x1x2x3.

But these two 1s can be realized more economically by treating them as a part of a group of

four 1s. They can be included in two different groups of four, as shown in the figure. One

choice leads to the product term x1x2, and the other leads to x2x3. Both of these terms have

the same cost; hence it does not matter which one is chosen in the final circuit. Note that

the complement of x3 in the term x2x3 does not imply an increased cost in comparison with

ISTUDY

80 C H A P T E R 2 ● INTRODUCTION TO LOGIC CIRCUITS

x1 x2
x3 x4

1

00 01 11 10

0 0 1

0 0 0 0

1 1 1 0

1 1 0 1

00

01

11

10

x1 x2
x3 x4

1

00 01 11 10

1 1 0

1 1 1 0

0 0 1 1

0 0 1 1

00

01

11

10

x1 x2
x3 x4

0

00 01 11 10

0 0 0

0 0 1 1

1 0 0 1

1 0 0 1

00

01

11

10

x1 x2
x3 x4

0

00 01 11 10

0 0 0

0 0 1 1

1 1 1 1

1 1 1 1

00

01

11

10

f1 x2 x3 x1 x3 x4+= f2 x3 x1 x4+=

f3 x
2

x
4

x
1

x
3

x
2

x
3

x
4

+ += f4 x1 x3 x1 x3+ +=

x1 x2

x2 x3

or

Figure 2.54 Examples of four-variable Karnaugh maps.

x1x2, because this complement must be generated anyway to produce the term x1x3, which

is included in the implementation.

Five-Variable Map
We can use 2 four-variable maps to construct a five-variable map. It is easy to imagine

a structure where one map is directly behind the other, and they are distinguished by x5 = 0

for one map and x5 = 1 for the other map. Since such a structure is awkward to draw, we

can simply place the two maps side by side as shown in Figure 2.55. For the logic function

given in this example, two groups of four 1s appear in the same place in both four-variable

maps; hence their realization does not depend on the value of x5. The same is true for the

two groups of two 1s in the second row. The 1 in the top-right corner appears only in the

right map, where x5 = 1; it is a part of the group of two 1s realized by the term x1x2x3x5.

Note that in this map we left blank those cells for which f = 0, to make the figure more

readable. We will do likewise in a number of maps that follow.

Using a five-variable map is obviously more awkward than using maps with fewer

variables. Extending the Karnaugh map concept to more variables is not useful from the

ISTUDY

2.12 STRATEGY FOR MINIMIZATION 81

x1 x2
x3 x4 00 01 11 10

1 1

1 1

1 1

00

01

11

10

x1 x2
x3 x4 00 01 11 10

1

1 1

1 1

1 1

00

01

11

10

f1 x1 x3 x1 x3 x4 x1 x2 x3 x5+ +=

x5 = 0 x5 = 1

Figure 2.55 A five-variable Karnaugh map.

practical point of view. This is not troublesome, because practical synthesis of logic func-

tions is done with CAD tools that perform the necessary minimization automatically. Al-

though Karnaugh maps are occasionally useful for designing small logic circuits, our main

reason for introducing the Karnaugh maps is to provide a simple vehicle for illustrating the

ideas involved in the minimization process.

2.12 STRATEGY FOR MINIMIZATION

For the examples in the preceding section, we used an intuitive approach to decide how the

1s in a Karnaugh map should be grouped together to obtain the minimum-cost implemen-

tation of a given function. Our intuitive strategy was to find as few as possible and as large

as possible groups of 1s that cover all cases where the function has a value of 1. Each group

of 1s has to comprise cells that can be represented by a single product term. The larger

the group of 1s, the fewer the number of variables in the corresponding product term. This

approach worked well because the Karnaugh maps in our examples were small. For larger

logic functions, which have many variables, such intuitive approach is unsuitable. Instead,

we must have an organized method for deriving a minimum-cost implementation. In this

section we will introduce a possible method, which is similar to the techniques that are

automated in CAD tools. To illustrate the main ideas, we will use Karnaugh maps.

2.12.1 TERMINOLOGY

A huge amount of research work has gone into the development of techniques for synthesis

of logic functions. The results of this research have been published in numerous papers.

To facilitate the presentation of the results, certain terminology has evolved that avoids

the need for using highly descriptive phrases. We define some of this terminology in the

following paragraphs because it is useful for describing the minimization process.

ISTUDY

82 C H A P T E R 2 ● INTRODUCTION TO LOGIC CIRCUITS

x1 x2
x3

1 1

1 1

x1

0 0

1 0

00 01 11 10

0

1

x2 x3

Figure 2.56 Three-variable function f (x1, x2, x3) =∑
m(0, 1, 2, 3, 7).

Literal
A given product term consists of some number of variables, each of which may appear

either in uncomplemented or complemented form. Each appearance of a variable, either

uncomplemented or complemented, is called a literal. For example, the product term x1x2x3

has three literals, and the term x1x3x4x6 has four literals.

Implicant
A product term that indicates the input valuation(s) for which a given function is equal

to 1 is called an implicant of the function. The most basic implicants are the minterms,

which we introduced in Section 2.6.1. For an n-variable function, a minterm is an implicant

that consists of n literals.

Consider the three-variable function in Figure 2.56. There are 11 implicants for this

function. This includes the five minterms: x1x2x3, x1x2x3, x1x2x3, x1x2x3, and x1x2x3. Then

there are the implicants that correspond to all possible pairs of minterms that can be com-

bined, namely, x1x2 (m0 and m1), x1x3 (m0 and m2), x1x3 (m1 and m3), x1x2 (m2 and m3),

and x2x3 (m3 and m7). Finally, there is one implicant that covers a group of four minterms,

which consists of a single literal x1.

Prime Implicant
An implicant is called a prime implicant if it cannot be combined into another implicant

that has fewer literals. Another way of stating this definition is to say that it is impossible

to delete any literal in a prime implicant and still have a valid implicant.

In Figure 2.56 there are two prime implicants: x1 and x2x3. It is not possible to delete

a literal in either of them. Doing so for x1 would make it disappear. For x2x3, deleting

a literal would leave either x2 or x3. But x2 is not an implicant because it includes the

valuation (x1, x2, x3) = 110 for which f = 0, and x3 is not an implicant because it includes

(x1, x2, x3) = 101 for which f = 0. Another way of thinking about prime implicants is that

they represent “the largest groups of 1s” that can be circled in the Karnaugh map.

Cover
A collection of implicants that account for all valuations for which a given function

is equal to 1 is called a cover of that function. A number of different covers exist for most

functions. Obviously, a set of all minterms for which f = 1 is a cover. It is also apparent

that a set of all prime implicants is a cover.

ISTUDY

2.12 STRATEGY FOR MINIMIZATION 83

A cover defines a particular implementation of the function. In Figure 2.56 a cover

consisting of minterms leads to the expression

f = x1x2x3 + x1x2x3 + x1x2x3 + x1x2x3 + x1x2x3

Another valid cover is given by the expression

f = x1x2 + x1x2 + x2x3

The cover comprising the prime implicants is

f = x1 + x2x3

While all of these expressions represent the function f correctly, the cover consisting of

prime implicants leads to the lowest-cost implementation.

Cost
In Section 2.6.1 we suggested that a good indication of the cost of a logic circuit is the

number of gates plus the total number of inputs to all gates in the circuit. We will use this

definition of cost throughout the book. But we will assume that primary inputs, namely, the

input variables, are available in both true and complemented forms at zero cost. Thus the

expression

f = x1x2 + x3x4

has a cost of nine because it can be implemented using two AND gates and one OR gate,

with six inputs to the AND and OR gates.

If an inversion is needed inside a circuit, then the corresponding NOT gate and its input

are included in the cost. For example, the expression

g =
(

x1x2 + x3

)

(x4 + x5)

is implemented using two AND gates, two OR gates, and one NOT gate to complement

(x1x2 + x3), with nine inputs. Hence the total cost is 14.

2.12.2 MINIMIZATION PROCEDURE

We have seen that it is possible to implement a given logic function with various circuits.

These circuits may have different structures and different costs. When designing a logic

circuit, there are usually certain criteria that must be met. One such criterion is likely to be the

cost of the circuit, which we considered in the previous discussion. In general, the larger

the circuit, the more important the cost issue becomes. In this section we will assume that

the main objective is to obtain a minimum-cost circuit.

In the previous subsection we concluded that the lowest-cost implementation is

achieved when the cover of a given function consists of prime implicants. The question

then is how to determine the minimum-cost subset of prime implicants that will cover the

function. Some prime implicants may have to be included in the cover, while for others

there may be a choice. If a prime implicant includes a minterm for which f = 1 that is not

included in any other prime implicant, then it must be included in the cover and is called

ISTUDY

84 C H A P T E R 2 ● INTRODUCTION TO LOGIC CIRCUITS

x1 x2
x3 x4 00 01 11 10

11

1 1

1 1

00

01

11

10

x1 x3

1 1

1

x3 x4

x1 x2 x4

x2 x3

x2 x3 x4

Figure 2.57 Four-variable function f (x1,… , x4) =∑
m(2, 3, 5, 6, 7, 10, 11, 13, 14).

an essential prime implicant. In the example in Figure 2.56, both prime implicants are es-

sential. The term x2x3 is the only prime implicant that covers the minterm m7, and x1 is the

only one that covers the minterms m0,m1, and m2. Notice that the minterm m3 is covered

by both of these prime implicants. The minimum-cost realization of the function is

f = x1 + x2x3

We will now present several examples in which there is a choice as to which prime

implicants to include in the final cover. Consider the four-variable function in Figure 2.57.

There are five prime implicants: x1x3, x2x3, x3x4, x1x2x4, and x2x3x4. The essential ones

(highlighted in red) are x2x3 (because of m11), x3x4 (because of m14), and x2x3x4 (be-

cause of m13). They must be included in the cover. These three prime implicants cover all

minterms for which f = 1 except m7. It is clear that m7 can be covered by either x1x3 or

x1x2x4. Because x1x3 has a lower cost, it is chosen for the cover. Therefore, the minimum-

cost realization is

f = x2x3 + x3x4 + x2x3x4 + x1x3

From the preceding discussion, the process of finding a minimum-cost circuit involves

the following steps:

1. Generate all prime implicants for the given function f .

2. Find the set of essential prime implicants.

3. If the set of essential prime implicants covers all valuations for which f = 1, then this

set is the desired cover of f . Otherwise, determine the nonessential prime implicants

that should be added to form a complete minimum-cost cover.

The choice of nonessential prime implicants to be included in the cover is governed by the

cost considerations. This choice is often not obvious. Indeed, for large functions there may

exist many possibilities, and some heuristic approach (i.e., an approach that considers only

a subset of possibilities but gives good results most of the time) has to be used. One such

approach is to arbitrarily select one nonessential prime implicant and include it in the cover

ISTUDY

2.12 STRATEGY FOR MINIMIZATION 85

x1 x2
x3 x4 00 01 11 10

1

1 111

1

00

01

11

10

x1 x2 x4

1

1

x3 x4

x1 x2 x4

x1 x2 x3

x1 x2 x3

x1 x3 x4

Figure 2.58 The function f (x1,… , x4) =∑
m(0, 4, 8, 10, 11, 12, 13, 15).

and then determine the rest of the cover. Next, another cover is determined assuming that

this prime implicant is not in the cover. The costs of the resulting covers are compared, and

the less-expensive cover is chosen for implementation.

We can illustrate the process by using the function in Figure 2.58. Of the six prime

implicants, only x3x4 is essential. Consider next x1x2x3 and assume first that it will be in-

cluded in the cover. Then the remaining three minterms, m10, m11, and m15, will require

two more prime implicants to be included in the cover. A possible implementation is

f = x3x4 + x1x2x3 + x1x3x4 + x1x2x3

The second possibility is that x1x2x3 is not included in the cover. Then x1x2x4 becomes

essential because there is no other way of covering m13. Because x1x2x4 also covers m15,

only m10 and m11 remain to be covered, which can be achieved with x1x2x3. Therefore, the

alternative implementation is

f = x3x4 + x1x2x4 + x1x2x3

Clearly, this implementation is a better choice.

Sometimes there may not be any essential prime implicants at all. An example is given

in Figure 2.59. Choosing any of the prime implicants and first including it, then excluding

it from the cover leads to two alternatives of equal cost. One includes the prime implicants

indicated in black, which yields

f = x1x3x4 + x2x3x4 + x1x3x4 + x2x3x4

The other includes the prime implicants indicated in red, which yields

f = x1x2x4 + x1x2x3 + x1x2x4 + x1x2x3

This procedure can be used to find minimum-cost implementations of both small and

large logic functions. For our small examples it was convenient to use Karnaugh maps

to determine the prime implicants of a function and then choose the final cover. Other

techniques based on the same principles are much more suitable for use in CAD tools;

we will introduce such techniques in Chapter 8.

ISTUDY

86 C H A P T E R 2 ● INTRODUCTION TO LOGIC CIRCUITS

x1 x2
x3 x4 00 01 11 10

1

1

1

1

1

1

00

01

11

10 1

1

x1x3x4

x2x3x4

x2x3x4

x1x3x4

x1x2x4x1x2x4

x1x2x3 x1x2x3

Figure 2.59 The function f (x1,… , x4) =∑
m(0, 2, 4, 5, 10, 11, 13, 15).

The previous examples have been based on the sum-of-products form. We will next

illustrate that the same concepts apply for the product-of-sums form.

2.13 MINIMIZATION OF PRODUCT-OF-SUMS FORMS

Now that we know how to find the minimum-cost sum-of-products (SOP) implementa-

tions of functions, we can use the same techniques and the principle of duality to obtain

minimum-cost product-of-sums (POS) implementations. In this case it is the maxterms for

which f = 0 that have to be combined into sum terms that are as large as possible. Again, a

sum term is considered larger if it covers more maxterms, and the larger the term, the less

costly it is to implement.

Figure 2.60 depicts the same function as Figure 2.56 depicts. There are three maxterms

that must be covered: M4, M5, and M6. They can be covered by two sum terms shown in

the figure, leading to the following implementation:

f = (x1 + x2)(x1 + x3)

x1 x2
x3

1

00 01 11 10

0

1

1 0 0

1 1 1 0

x1 x2+()

x1 x3+()

Figure 2.60 POS minimization of f (x1, x2, x3) = ΠM(4, 5, 6).

ISTUDY

2.13 MINIMIZATION OF PRODUCT-OF-SUMS FORMS 87

x1 x2
x3 x4

0

00 01 11 10

0 0 0

0 1 1 0

1 1 0 1

1 1 1 1

00

01

11

10

x2 x3+()

x3 x4+()

+ + +()x1 x2 x3 x4

Figure 2.61 POS minimization of f (x1,… , x4) =
ΠM(0, 1, 4, 8, 9, 12, 15).

A circuit corresponding to this expression has two OR gates and one AND gate, with two

inputs for each gate. Its cost is greater than the cost of the equivalent SOP implementation

derived in Figure 2.56, which requires only one OR gate and one AND gate.

The function from Figure 2.57 is reproduced in Figure 2.61. The maxterms for which

f = 0 can be covered as shown, leading to the expression

f = (x2 + x3)(x3 + x4)(x1 + x2 + x3 + x4)

This expression represents a circuit with three OR gates and one AND gate. Two of the

OR gates have two inputs, and the third has four inputs; the AND gate has three inputs.

Assuming that both the complemented and uncomplemented versions of the input variables

x1 to x4 are available at no extra cost, the cost of this circuit is 15. This compares favorably

with the SOP implementation derived from Figure 2.57, which requires five gates and 13

inputs at a total cost of 18.

In general, as we already know from Section 2.6.1, the SOP and POS implementations

of a given function may or may not entail the same cost. The reader is encouraged to find

the POS implementations for the functions in Figures 2.58 and 2.59 and compare the costs

with the SOP forms.

We have shown how to obtain minimum-cost POS implementations by finding the

largest sum terms that cover all maxterms for which f = 0. Another way of obtaining

the same result is by finding a minimum-cost SOP implementation of the complement of

f . Then we can apply DeMorgan’s theorem to this expression to obtain the simplest POS

realization because f = f . For example, the simplest SOP implementation of f in Fig-

ure 2.60 is

f = x1x2 + x1x3

ISTUDY

88 C H A P T E R 2 ● INTRODUCTION TO LOGIC CIRCUITS

Complementing this expression using DeMorgan’s theorem yields

f = f = x1x2 + x1x3

= x1x2 ⋅ x1x3

= (x1 + x2)(x1 + x3)

which is the same result as obtained above.

Using this approach for the function in Figure 2.61 gives

f = x2x3 + x3x4 + x1x2x3x4

Complementing this expression produces

f = f = x2x3 + x3x4 + x1x2x3x4

= x2x3 ⋅ x3x4 ⋅ x1x2x3x4

= (x2 + x3)(x3 + x4)(x1 + x2 + x3 + x4)

which matches the previously derived implementation.

2.14 INCOMPLETELY SPECIFIED FUNCTIONS

In digital systems it often happens that certain input conditions can never occur. For exam-

ple, suppose that x1 and x2 control two interlocked switches such that both switches cannot

be closed at the same time. Thus the only three possible states of the switches are that both

switches are open or that one switch is open and the other switch is closed. Namely, the

input valuations (x1, x2) = 00, 01, and 10 are possible, but 11 is guaranteed not to occur.

Then we say that (x1, x2) = 11 is a don’t-care condition, meaning that a circuit with x1

and x2 as inputs can be designed by ignoring this condition. A function that has don’t-care

condition(s) is said to be incompletely specified.

Don’t-care conditions, or don’t-cares for short, can be used to advantage in the design

of logic circuits. Since these input valuations will never occur, the designer may assume that

the function value for these valuations is either 1 or 0, whichever is more useful in trying to

find a minimum-cost implementation. Figure 2.62 illustrates this idea. The required func-

tion has a value of 1 for minterms m2, m4, m5, m6, and m10. Assuming the above-mentioned

interlocked switches, the x1 and x2 inputs will never be equal to 1 at the same time; hence

the minterms m12, m13, m14, and m15 can all be used as don’t-cares. The don’t-cares are

denoted by the letter d in the map. Using the shorthand notation, the function f is specified as

f (x1,… , x4) =
∑

m(2, 4, 5, 6, 10) + D(12, 13, 14, 15)

where D is the set of don’t-cares.

Part (a) of the figure indicates the best sum-of-products implementation. To form the

largest possible groups of 1s, thus generating the lowest-cost prime implicants, it is nec-

essary to assume that the don’t-cares D12, D13, and D14 (corresponding to minterms m12,

ISTUDY

2.14 INCOMPLETELY SPECIFIED FUNCTIONS 89

x1 x2
x3 x4

0

00 01 11 10

1 d 0

0 1 d 0

0 0 d 0

1 1 d 1

00

01

11

10

x2 x3+()

x3 x4+()

x1 x2
x3 x4

0

00 01 11 10

1 d 0

0 1 d 0

0 0 d 0

1 1 d 1

00

01

11

10

x2x3

x3x4

(a) SOP implementation

(b) POS implementation

Figure 2.62 Two implementations of the function f (x1,… , x4) =∑
m(2, 4, 5, 6, 10) + D(12, 13, 14, 15).

m13, and m14) have the value of 1 while D15 has the value of 0. Then there are only two

prime implicants, which provide a complete cover of f . The resulting implementation is

f = x2x3 + x3x4

Part (b) shows how the best product-of-sums implementation can be obtained. The

same values are assumed for the don’t cares. The result is

f = (x2 + x3)(x3 + x4)

The freedom in choosing the value of don’t-cares leads to greatly simplified realizations. If

we were to naively exclude the don’t-cares from the synthesis of the function, by assuming

that they always have a value of 0, the resulting SOP expression would be

f = x1x2x3 + x1x3x4 + x2x3x4

and the POS expression would be

f = (x2 + x3)(x3 + x4)(x1 + x2)

Both of these expressions have higher costs than the expressions obtained with a more

appropriate assignment of values to don’t-cares.

ISTUDY

90 C H A P T E R 2 ● INTRODUCTION TO LOGIC CIRCUITS

Although don’t-care values can be assigned arbitrarily, an arbitrary assignment may

not lead to a minimum-cost implementation of a given function. If there are k don’t-cares,

then there are 2k possible ways of assigning 0 or 1 values to them. In the Karnaugh map we

can usually see how best to do this assignment to find the simplest implementation.

In the example above, we chose the don’t-cares D12, D13, and D14 to be equal to 1 and

D15 equal to 0 for both the SOP and POS implementations. Thus the derived expressions

represent the same function, which could also be specified as
∑

m(2, 4, 5, 6, 10, 12, 13, 14).

Assigning the same values to the don’t-cares for both SOP and POS implementations is

not always a good choice. Sometimes it may be advantageous to give a particular don’t-

care the value 1 for SOP implementation and the value 0 for POS implementation, or vice

versa. In such cases the optimal SOP and POS expressions will represent different functions,

but these functions will differ only for the valuations that correspond to these don’t-cares.

Example 2.26 in Section 2.17 illustrates this possibility.

Using interlocked switches to illustrate how don’t-care conditions can occur in a real

system may seem to be somewhat contrived. A more practical example is shown below, and

in future chapters we will encounter many examples of don’t-cares that occur in the course

of practical design of digital circuits.

Example 2.15 In Section 2.8.3 we designed a logic circuit that displays the decimal value of a two-bit

number on a seven-segment display. In this example we will design a similar circuit, except

that the input will be a four-bit number X = x3x2x1x0 that represents the decimal values

0, 1,… , 9. Using four bits to represent decimal digits in this way is often referred to as the

binary coded decimal (BCD) representation. We discuss BCD numbers in detail in Chapter

3. The circuit is depicted in Figure 2.63a. Part (b) of the figure gives a truth table for each

of the seven outputs a, b,… , g, that control the display. It also indicates how the display

should appear for each value of X. Since X is restricted to decimal digits, then the values

of X from 1010 to 1111 are not used. These entries are omitted from the truth table in

Figure 2.63b and can be treated as don’t-cares in the design of the circuit.

To derive logic expressions for the outputs a to g, it is useful to draw Karnaugh maps.

Figure 2.63c gives Karnaugh maps for the functions a and e. For the function a, the best

result is obtained by setting all six don’t-care cells in the map to the value of 1, which gives

a = x2x0+x1+x2x0+x3. However, for the function e a better choice is to set only two of the

don’t-care cells, corresponding to x3x2x1x0 = 1010 and x3x2x1x0 = 1110, to 1. The other

don’t-care cells should be set to 0 for this function to yield the minimum-cost expression

e = x2x0 + x1x0.

2.15 MULTIPLE-OUTPUT CIRCUITS

As illustrated in Example 2.15, in practical digital systems it is often necessary to implement

a number of functions that are part of a larger logic circuit. Instead of implementing each

of these functions separately, it may be possible to share some of the gates needed in the

implementation of individual functions. For example, in Figure 2.63 the AND gate that

produces x2x0 could be shared for use in both functions a and e.

ISTUDY

2.15 MULTIPLE-OUTPUT CIRCUITS 91

(a) Logic circuit and 7-segment display

(b) Truth table

1

0

1

1

1

1

1

x0 a

1

b

0 1

1

1

1

0

1

1

0

1

0

0

x1

0

1

1

0

0

x2

0

0

0

0

1

x3

0

0

0

0

0

c

1

0

1

0

0

1

1

0

1

1

1

0

0

0

0

1

1001

1

1

1

1

0

1

1

0

1 1

1

1

1

1

1

0

1

1

1

d

0

1

0

0

1

0

e

1

0

1

1

1

0

1

0

0

1

0

0

0

1

f

1

0

0

1

1

1

g

1

0

1

1

1

1

1

1

0

1

(c) The Karnaugh maps for outputs a and e.

x3

x2

x1

x0

ce

a
b
c

d
e
f
g

a

g

bf

d

Logic

circuit

x3x2
x1x0

1

00 01 11 10

0 d 1

0 1 d 1

1 1 d d

1 1 d d

00

01

11

10

a x2x0 x1 x2x0 x3+ + +=

x3x2
x1x0

1

00 01 11 10

0 d 1

0 0 d 0

0 0 d d

1 1 d d

00

01

11

10

e x2x0 x1x0+=

Figure 2.63 Using don’t-care minterms when displaying BCD numbers.

ISTUDY

92 C H A P T E R 2 ● INTRODUCTION TO LOGIC CIRCUITS

Example 2.16 An example of gate sharing is given in Figure 2.64. Two functions, f1 and f2, of the same

variables are to be implemented. The minimum-cost implementations for these functions

are obtained as shown in parts (a) and (b) of the figure. This results in the expressions

f1 = x1x3 + x1x3 + x2x3x4

f2 = x1x3 + x1x3 + x2x3x4

The cost of f1 is four gates and 10 inputs, for a total of 14. The cost of f2 is the same. Thus

the total cost is 28 if both functions are implemented by separate circuits. A less-expensive

realization is possible if the two circuits are combined into a single circuit with two outputs.

Because the first two product terms are identical in both expressions, the AND gates that

implement them need not be duplicated. The combined circuit is shown in Figure 2.64c. Its

cost is six gates and 16 inputs, for a total of 22.

(a) Function f1 (b) Function f2

x1 x2
x3 x4 00 01 11 10

1 1

1 1

1 1

1 1

00

01

11

10

1

x1 x2
x3 x4 00 01 11 10

1 1

1 1

1 1 1

1 1

00

01

11

10

f1

f2

x2

x3

x4

x1

x3

x1

x3

x2

x3

x4

(c) Combined circuit for f1 and f2

Figure 2.64 An example of multiple-output synthesis.

ISTUDY

2.15 MULTIPLE-OUTPUT CIRCUITS 93

In this example we reduced the overall cost by finding minimum-cost realizations of f1
and f2 and then sharing the gates that implement the common product terms. This strategy

does not necessarily always work the best, as the next example shows.

Example 2.17Figure 2.65 shows two functions to be implemented by a single circuit. Minimum-cost re-

alizations of the individual functions f3 and f4 are obtained from parts (a) and (b) of the

figure.

f3 = x1x4 + x2x4 + x1x2x3

f4 = x1x4 + x2x4 + x1x2x3x4

None of the AND gates can be shared, which means that the cost of the combined circuit

would be six AND gates, two OR gates, and 21 inputs, for a total of 29.

But several alternative realizations are possible. Instead of deriving the expressions for

f3 and f4 using only prime implicants, we can look for other implicants that may be shared

advantageously in the combined realization of the functions. Figure 2.65c shows the best

choice of implicants, which yields the realization

f3 = x1x2x4 + x1x2x3x4 + x1x4

f4 = x1x2x4 + x1x2x3x4 + x2x4

The first two implicants are identical in both expressions. The resulting circuit is given in

Figure 2.65d. It has the cost of six gates and 17 inputs, for a total of 23.

Example 2.18In Example 2.16 we sought the best SOP implementation for the functions f1 and f2 in

Figure 2.64. We will now consider the POS implementation of the same functions. The

minimum-cost POS expressions for f1 and f2 are

f1 = (x1 + x3)(x1 + x2 + x3)(x1 + x3 + x4)

f2 = (x1 + x3)(x1 + x2 + x3)(x1 + x3 + x4)

There are no common sum terms in these expressions that could be shared in the imple-

mentation. Moreover, from the Karnaugh maps in Figure 2.64, it is apparent that there is

no sum term (covering the cells where f1 = f2 = 0) that can be profitably used in realizing

both f1 and f2. Thus the best choice is to implement each function separately, according

to the preceding expressions. Each function requires three OR gates, one AND gate, and

11 inputs. Therefore, the total cost of the circuit that implements both functions is 30. This

realization is costlier than the SOP realization derived in Example 2.16.

Example 2.19Consider now the POS realization of the functions f3 and f4 in Figure 2.65. The minimum-

cost POS expressions for f3 and f4 are

f3 = (x3 + x4)(x2 + x4)(x1 + x4)(x1 + x2)

f4 = (x3 + x4)(x2 + x4)(x1 + x4)(x1 + x2 + x4)

ISTUDY

94 C H A P T E R 2 ● INTRODUCTION TO LOGIC CIRCUITS

(a) Optimal realization of f3 (b) Optimal realization of f4

f3

f4

x1

x4

x3

x4

x1

x1

x2

x2

x4

x4

(d) Combined circuit for f3 and f4

(c) Optimal realization of f3 and f4 together

x1 x2
x3 x4 00 01 11 10

1

1 1

1

00

01

11

10

11

1

x1 x2
x3 x4 00 01 11 10

1

1 1

1

00

01

11

10

11

1

x1 x2
x3 x4 00 01 11 10

1 1

1

1

00

01

11

10

1

1 1

x1 x2
x3 x4 00 01 11 10

1 1

1

1

00

01

11

10

1

1 1

x2

Figure 2.65 Another example of multiple-output synthesis.

ISTUDY

2.17 EXAMPLES OF SOLVED PROBLEMS 95

The first three sum terms are the same in both f3 and f4; they can be shared in a combined

circuit. These terms require three OR gates and six inputs. In addition, one 2-input OR gate

and one 4-input AND gate are needed for f3, and one 3-input OR gate and one 4-input AND

gate are needed for f4. Thus the combined circuit comprises five OR gates, two AND gates,

and 19 inputs, for a total cost of 26. This cost is slightly higher than the cost of the circuit

derived in Example 2.17.

These examples show that the complexities of the best SOP or POS implementations

of given functions may be quite different. For the functions in Figures 2.64 and 2.65, the

SOP form gives better results. But if we are interested in implementing the complements

of the four functions in these figures, then the POS form would be less costly.

Sophisticated CAD tools used to synthesize logic functions will automatically perform

the types of optimizations illustrated in the preceding examples.

2.16 CONCLUDING REMARKS

In this chapter we introduced the concept of logic circuits. We showed that such circuits

can be implemented using logic gates and that they can be described using a mathematical

model called Boolean algebra. Because practical logic circuits are often large, it is important

to have good CAD tools to help the designer. We introduced the VHDL hardware descrip-

tion language that can be used to specify circuits for use in a CAD tool. We urge the reader

to start using CAD software for the design of logic circuits as soon as possible.

This chapter has attempted to provide the reader with an understanding of some aspects

of synthesis and optimization for logic functions. Now that the reader is comfortable with

the fundamental concepts, we can examine digital circuits of a more sophisticated nature.

The next chapter describes circuits that perform arithmetic operations, which are a key part

of computers.

2.17 EXAMPLES OF SOLVED PROBLEMS

This section presents some typical problems that the reader may encounter, and shows how

such problems can be solved.

Example 2.20Problem: Determine if the following equation is valid

x1x3 + x2x3 + x1x2 = x1x2 + x1x3 + x2x3

Solution: The equation is valid if the expressions on the left- and right-hand sides represent

the same function. To perform the comparison, we could construct a truth table for each

side and see if the truth tables are the same. An algebraic approach is to derive a canonical

sum-of-products form for each expression.

ISTUDY

96 C H A P T E R 2 ● INTRODUCTION TO LOGIC CIRCUITS

Using the fact that x + x = 1 (theorem 8b), we can manipulate the left-hand side as

follows:

LHS = x1x3 + x2x3 + x1x2

= x1(x2 + x2)x3 + (x1 + x1)x2x3 + x1x2(x3 + x3)

= x1x2x3 + x1x2x3 + x1x2x3 + x1x2x3 + x1x2x3 + x1x2x3

These product terms represent the minterms 2, 0, 7, 3, 5, and 4, respectively.

For the right-hand side, we have

RHS = x1x2 + x1x3 + x2x3

= x1x2(x3 + x3) + x1(x2 + x2)x3 + (x1 + x1)x2x3

= x1x2x3 + x1x2x3 + x1x2x3 + x1x2x3 + x1x2x3 + x1x2x3

These product terms represent the minterms 3, 2, 7, 5, 4, and 0, respectively. Since both

expressions specify the same minterms, they represent the same function; therefore, the

equation is valid. Another way of representing this function is by
∑

m(0, 2, 3, 4, 5, 7).

Example 2.21 Problem: Design the minimum-cost product-of-sums expression for the function f (x1, x2,

x3, x4) =
∑

m(0, 2, 4, 5, 6, 7, 8, 10, 12, 14, 15).

Solution: The function is defined in terms of its minterms. To find a POS expression we

should start with the definition in terms of maxterms, which is f = ΠM(1, 3, 9, 11, 13).

Thus,

f = M1 ⋅ M3 ⋅ M9 ⋅ M11 ⋅ M13 = (x1 + x2 + x3 + x4)(x1 + x2 + x3 + x4)(x1 + x2 + x3 + x4)

(x1 + x2 + x3 + x4)(x1 + x2 + x3 + x4)

We can rewrite the product of the first two maxterms as

M1 ⋅ M3 = (x1 + x2 + x4 + x3)(x1 + x2 + x4 + x3) using commutative property 10b
= x1 + x2 + x4 using combining property 14b

Similarly, M9 ⋅ M11 = x1 + x2 + x4. Now, we can use M9 again, according to property 7a,

to derive M9 ⋅ M13 = x1 + x3 + x4. Hence

f = (x1 + x2 + x4)(x1 + x2 + x4)(x1 + x3 + x4)

Applying 12b again, we get the final answer

f = (x2 + x4)(x1 + x3 + x4)

Example 2.22 Problem: A circuit that controls a given digital system has three inputs: x1, x2, and x3. It

has to recognize three different conditions:

• Condition A is true if x3 is true and either x1 is true or x2 is false

• Condition B is true if x1 is true and either x2 or x3 is false

• Condition C is true if x2 is true and either x1 is true or x3 is false

ISTUDY

2.17 EXAMPLES OF SOLVED PROBLEMS 97

The control circuit must produce an output of 1 if at least two of the conditions A, B, and C
are true. Design the simplest circuit that can be used for this purpose.

Solution: Using 1 for true and 0 for false, we can express the three conditions as follows:

A = x3(x1 + x2) = x3x1 + x3x2

B = x1(x2 + x3) = x1x2 + x1x3

C = x2(x1 + x3) = x2x1 + x2x3

Then, the desired output of the circuit can be expressed as f = AB+AC+BC. These product

terms can be determined as:

AB = (x3x1 + x3x2)(x1x2 + x1x3)

= x3x1x1x2 + x3x1x1x3 + x3x2x1x2 + x3x2x1x3

= x3x1x2 + 0 + x3x2x1 + 0

= x1x2x3

AC = (x3x1 + x3x2)(x2x1 + x2x3)

= x3x1x2x1 + x3x1x2x3 + x3x2x2x1 + x3x2x2x3

= x3x1x2 + 0 + 0 + 0

= x1x2x3

BC = (x1x2 + x1x3)(x2x1 + x2x3)

= x1x2x2x1 + x1x2x2x3 + x1x3x2x1 + x1x3x2x3

= 0 + 0 + x1x3x2 + x1x3x2

= x1x2x3

Therefore, f can be written as

f = x1x2x3 + x1x2x3 + x1x2x3

= x1(x2 + x2)x3 + x1x2(x3 + x3)

= x1x3 + x1x2

= x1(x3 + x2)

Example 2.23Problem: Solve the problem in Example 2.22 by using Venn diagrams.

Solution: The Venn diagrams for functions A, B, and C in Example 2.22 are shown in parts

a to c of Figure 2.66. Since the function f has to be true when two or more of A, B, and C are

true, then the Venn diagram for f is formed by identifying the common shaded areas in the

Venn diagrams for A, B, and C. Any area that is shaded in two or more of these diagrams

is also shaded in f , as shown in Figure 2.66d. This diagram corresponds to the function

f = x1x2 + x1x3 = x1(x2 + x3)

ISTUDY

98 C H A P T E R 2 ● INTRODUCTION TO LOGIC CIRCUITS

(a) Function A (b) Function B

(c) Function C (d) Function f

x1 x1

x1 x1

x2

x2

x2

x2

x3 x3

x3 x3

Figure 2.66 The Venn diagrams for Example 2.23.

Example 2.24 Problem: Use algebraic manipulation to derive the simplest sum-of-products expression

for the function

f = x2x3x4 + x1x3x4 + x1x2x4

Solution: Applying the consensus property 17a to the first two terms yields

f = x2x3x4 + x1x3x4 + x2x4x1x4 + x1x2x4

= x2x3x4 + x1x3x4 + x1x2x4 + x1x2x4

Now, using the combining property 14a for the last two terms gives

f = x2x3x4 + x1x3x4 + x1x4

Finally, using the absorption property 13a produces

f = x2x3x4 + x1x4

Example 2.25 Problem: Use algebraic manipulation to derive the simplest product-of-sums expression

for the function

f = (x1 + x2 + x3)(x1 + x2 + x4)(x1 + x3 + x4)

Solution: Applying the consensus property 17b to the first two terms yields

f = (x1 + x2 + x3)(x1 + x2 + x4)(x1 + x3 + x1 + x4)(x1 + x3 + x4)

= (x1 + x2 + x3)(x1 + x2 + x4)(x1 + x3 + x4)(x1 + x3 + x4)

ISTUDY

2.17 EXAMPLES OF SOLVED PROBLEMS 99

Now, using the combining property 14b for the last two terms gives

f = (x1 + x2 + x3)(x1 + x2 + x4)(x1 + x3)

Finally, using the absorption property 13b on the first and last terms produces

f = (x1 + x2 + x4)(x1 + x3)

Example 2.26Problem: Determine the minimum-cost SOP and POS expressions for the function

f (x1, x2, x3, x4) =
∑

m(4, 6, 8, 10, 11, 12, 15) + D(3, 5, 7, 9).

Solution: The function can be represented in the form of a Karnaugh map as shown in

Figure 2.67a. Note that the location of minterms in the map is as indicated in Figure 2.53.

To find the minimum-cost SOP expression, it is necessary to find the prime implicants that

cover all 1s in the map. The don’t-cares may be used as desired. Minterm m6 is covered only

by the prime implicant x1x2; hence this prime implicant is essential and it must be included

in the final expression. Similarly, the prime implicants x1x2 and x3x4 are essential because

they are the only ones that cover m10 and m15, respectively. These three prime implicants

cover all minterms for which f = 1 except m12. This minterm can be covered in two ways,

by choosing either x1x3x4 or x2x3x4. Since both of these prime implicants have the same

cost, we can choose either of them. Choosing the former, the desired SOP expression is

f = x1x2 + x1x2 + x3x4 + x1x3x4

These prime implicants are encircled in the map.

The desired POS expression can be found as indicated in Figure 2.67b. In this case,

we have to find the sum terms that cover all 0s in the function. Note that we have written

0s explicitly in the map to emphasize this fact. The term (x1 + x2) is essential to cover the

0s in squares 0 and 2, which correspond to maxterms M0 and M2. The terms (x3 + x4) and

(x1 + x2 + x3 + x4) must be used to cover the 0s in squares 13 and 14, respectively. Since

these three sum terms cover all 0s in the map, the POS expression is

f = (x1 + x2)(x3 + x4)(x1 + x2 + x3 + x4)

The chosen sum terms are encircled in the map.

Observe the use of don’t-cares in this example. To get a minimum-cost SOP expression

we assumed that all four don’t-cares have the value 1. But, the minimum-cost POS expres-

sion becomes possible only if we assume that don’t-cares 3, 5, and 9 have the value 0 while

the don’t-care 7 has the value 1. This means that the resulting SOP and POS expressions are

not identical in terms of the functions they represent. They cover identically all valuations

for which f is specified as 1 or 0, but they differ in the valuations 3, 5, and 9. Of course,

this difference does not matter, because the don’t-care valuations will never be applied as

inputs to the implemented circuits.

ISTUDY

100 C H A P T E R 2 ● INTRODUCTION TO LOGIC CIRCUITS

x1 x2
x3 x4

00 01 11 10

1

d

d

00

01

11

10

1

1

d

d 1 x3 x4

x1 x2 x3 x4+ + +()

x3 x4+()

(a) Determination of the SOP expression

(b) Determination of the POS expression

11

1 x1 x3 x4

x1 x2 x1 x2

x1 x2
x3 x4

00 01 11 10

1

d

d

00

01

11

10

1

0

1

d

d 1

11

10

0

0 0

x1 x2+()

Figure 2.67 Karnaugh maps for Example 2.26.

Example 2.27 Problem: Use Karnaugh maps to find the minimum-cost SOP and POS expressions for the

function

f (x1,… , x4) = x1x3x4 + x3x4 + x1x2x4 + x1x2x3x4

assuming that there are also don’t-cares defined as D =
∑

(9, 12, 14).

Solution: The Karnaugh map that represents this function is shown in Figure 2.68a. The

map is derived by placing 1s that correspond to each product term in the expression used

to specify f . The term x1x3x4 corresponds to minterms 0 and 4. The term x3x4 represents

the third row in the map, comprising minterms 3, 7, 11, and 15. The term x1x2x4 speci-

fies minterms 1 and 3. The fourth product term represents the minterm 13. The map also

includes the three don’t-care conditions.

ISTUDY

2.17 EXAMPLES OF SOLVED PROBLEMS 101

x1 x2
x3 x4 00 01 11 10

1

1 d

1

00

01

11

10 d

1

1

1

d

1 1

x1 x3 x4

x3 x4

x2 x4

x1 x4

x1 x2
x3 x4 00 01 11 10

1

1 d

1

0

00

01

11

10 d

1

1

1

d

1 1

00

0

0

x1 x2 x3 x4+ + +()

x3 x4+()

x1 x4+()

(a) Determination of the SOP expression

(b) Determination of the POS expression

Figure 2.68 Karnaugh maps for Example 2.27.

To find the desired SOP expression, we must find the least-expensive set of prime

implicants that covers all 1s in the map. The term x3x4 is a prime implicant which must

be included because it is the only prime implicant that covers the minterm 7; it also covers

minterms 3, 11, and 15. Minterm 4 can be covered with either x1x3x4 or x2x3x4. Both of

these terms have the same cost; we will choose x1x3x4 because it also covers the minterm 0.

Minterm 1 may be covered with either x1x2x3 or x2x4; we should choose the latter because

its cost is lower. This leaves only the minterm 13 to be covered, which can be done with

either x1x4 or x1x2 at equal costs. Choosing x1x4, the minimum-cost SOP expression is

f = x3x4 + x1x3x4 + x2x4 + x1x4

Figure 2.68b shows how we can find the POS expression. The sum term (x3 + x4)

covers the 0s in the bottom row. To cover the 0 in square 8 we must include (x1 + x4). The

remaining 0, in square 5, must be covered with (x1 + x2 + x3 + x4). Thus, the minimum-cost

POS expression is

f = (x3 + x4)(x1 + x4)(x1 + x2 + x3 + x4)

ISTUDY

102 C H A P T E R 2 ● INTRODUCTION TO LOGIC CIRCUITS

s2s3

s
1
s

2
s

3

1 1

1

1 1

00 01 11 10

0

1

s1s2s1s3

s3

Figure 2.69 A Karnaugh map that represents the function

in Example 2.28.

Example 2.28 Problem: Consider the expression

f = s3(s1 + s2) + s1s2

Derive a minimum-cost SOP expression for f .

Solution: Applying the distributive property 12a we can write

f = s1s3 + s2s3 + s1s2

Now, it is easy to see how f can be represented in the form of a Karnaugh map, as depicted

in Figure 2.69. The figure shows that minterms from each of the above three product terms

cover the bottom row of the Karnaugh map, leading to the minimum-cost expression

f = s3 + s1s2

Example 2.29 Write VHDL code that represents the logic circuit in Figure 2.70. Use only signal assign-

ment statements to specify the required functions.

Solution: An example of the required VHDL code is shown in Figure 2.71.

0

1x

z

y

g

f

k

Figure 2.70 The logic circuit for Example 2.29.

ISTUDY

2.17 EXAMPLES OF SOLVED PROBLEMS 103

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

ENTITY f g IS

PORT (x, y, z : IN STD LOGIC ;

f, g : OUT STD LOGIC) ;

END f g ;

ARCHITECTURE LogicFunc OF f g IS

SIGNAL k : STD LOGIC ;

BEGIN

k <= y XOR z ;

g <= k XOR x ;

f <= (NOT k AND z) OR (k AND x) ;

END LogicFunc ;

Figure 2.71 VHDL code for Example 2.29.

Example 2.30Consider the circuit shown in Figure 2.72. It includes two copies of the 2-to-1 multiplexer

circuit from Figure 2.33, and the adder circuit from Figure 2.12. If the multiplexers’ select

input m = 0, then this circuit produces the sum S = a + b. But if m = 1, then the circuit

produces S = c + d. By using multiplexers, we are able to share one adder for generating

the two different sums a + b and c + d. Sharing a subcircuit for multiple purposes is com-

monly used in practice, although usually with larger subcircuits than our one-bit adder.

Write VHDL code for the circuit in Figure 2.72. Use the hierarchical style of VHDL

code illustrated in Figure 2.47, including two instances of a VHDL entity for the 2-to-1

multiplexer subcircuit and one instance of the adder subcircuit.

b
d

c
a

m

s0

s1

Adder module

a

b

s0

s1

w1

w2

Top-level module

0

1

0

1

Figure 2.72 The circuit for Example 2.30.

ISTUDY

104 C H A P T E R 2 ● INTRODUCTION TO LOGIC CIRCUITS

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

ENTITY example2 30 IS

PORT (a, b, c, d, m : IN STD LOGIC ;

s1, s0 : OUT STD LOGIC) ;

END example2 30 ;

ARCHITECTURE Structure OF example2 30 IS

COMPONENT example3 IS

PORT (x1, x2, s : IN STD LOGIC ;

f : OUT STD LOGIC) ;

END COMPONENT ;

COMPONENT adder IS

PORT (a, b : IN STD LOGIC ;

s1, s0 : OUT STD LOGIC) ;

END COMPONENT ;

SIGNAL w1, w2 : STD LOGIC ;

BEGIN

U1: example3 PORT MAP (a, c, m, w1) ;

U2: example3 PORT MAP (b, d, m, w2) ;

U3: adder PORT MAP (w1, w2, s1, s0) ;

END Structure ;

Figure 2.73 VHDL code for Example 2.30.

Solution: An example of the required VHDL code is shown in Figure 2.73. The VHDL

code for the example3 entity, which represents the 2-to-1 multiplexer subcircuit, is shown

in Figure 2.42, and the adder entity appears in Figure 2.45.

Example 2.31 In Chapter 1 we said that several types of integrated circuit chips are available for imple-

mentation of logic circuits, and that field-programmable gate arrays (FPGAs) are commonly

used. In an FPGA, logic functions are not implemented directly using AND, OR, and NOT

gates. Instead, an FPGA implements logic functions by using a type of circuit element called

lookup tables (LUTs). A LUT can be programmed by the user to implement any logic func-

tion of its inputs. Thus, if a LUT has three inputs, then it can implement any logic function of

these three inputs. We describe FPGAs and lookup tables in detail in Appendix B. Consider

the four-input function

f = x1x2x4 + x2x3x4 + x1x2x3

Show how this function can be implemented in an FPGA that has three-input LUTs.

Solution: A straightforward implementation requires four 3-input LUTs. Three of these

LUTs are used for the three-input AND operations, and the final LUT implements the three-

input OR operation. It is also possible to apply logic synthesis techniques that result in fewer

LUTs. We discuss these techniques in Chapter 8 (see Example 8.19).

ISTUDY

PROBLEMS 105

PROBLEMS

Answers to problems marked by an asterisk are given at the back of the book.

2.1 Use algebraic manipulation to prove that x + yz = (x + y) ⋅ (x + z). Note that this is the

distributive rule, as stated in identity 12b in Section 2.5.

2.2 Use algebraic manipulation to prove that (x + y) ⋅ (x + y) = x.

2.3 Use algebraic manipulation to prove that xy+yz+xz = xy+xz. Note that this is the consensus

property 17a in Section 2.5.

2.4 Use the Venn diagram to prove the identity in Problem 2.3.

2.5 Use the Venn diagram to prove DeMorgan’s theorem, as given in expression 15b in

Section 2.5.

2.6 Use the Venn diagram to prove that

(x1 + x2 + x3) ⋅ (x1 + x2 + x3) = x1 + x2

*2.7 Determine whether or not the following expressions are valid, i.e., whether the left- and

right-hand sides represent the same function.

(a) x1x3 + x1x2x3 + x1x2 + x1x2 = x2x3 + x1x3 + x2x3 + x1x2x3

(b) x1x3 + x2x3 + x2x3 = (x1 + x2 + x3)(x1 + x2 + x3)(x1 + x2 + x3)

(c) (x1 + x3)(x1 + x2 + x3)(x1 + x2) = (x1 + x2)(x2 + x3)(x1 + x3)

2.8 Draw a timing diagram for the circuit in Figure 2.24a. Show the waveforms that can be

observed on all wires in the circuit.

2.9 Repeat Problem 2.8 for the circuit in Figure 2.24b.

2.10 Use algebraic manipulation to show that for three input variables x1, x2, and x3

∑
m(1, 2, 3, 4, 5, 6, 7) = x1 + x2 + x3

2.11 Use algebraic manipulation to show that for three input variables x1, x2, and x3

ΠM(0, 1, 2, 3, 4, 5, 6) = x1x2x3

*2.12 Use algebraic manipulation to find the minimum sum-of-products expression for the func-

tion f = x1x3 + x1x2 + x1x2x3 + x1x2x3.

2.13 Use algebraic manipulation to find the minimum sum-of-products expression for the func-

tion f = x1x2x3 + x1x2x4 + x1x2x3x4.

2.14 Use algebraic manipulation to find the minimum product-of-sums expression for the func-

tion f = (x1 + x3 + x4) ⋅ (x1 + x2 + x3) ⋅ (x1 + x2 + x3 + x4).

*2.15 Use algebraic manipulation to find the minimum product-of-sums expression for the func-

tion f = (x1 + x2 + x3) ⋅ (x1 + x2 + x3) ⋅ (x1 + x2 + x3) ⋅ (x1 + x2 + x3).

ISTUDY

106 C H A P T E R 2 ● INTRODUCTION TO LOGIC CIRCUITS

2.16 (a) Show the location of all minterms in a three-variable Venn diagram.

(b) Show a separate Venn diagram for each product term in the function f = x1x2x3 +
x1x2 + x1x3. Use the Venn diagram to find the minimal sum-of-products form of f.

2.17 Represent the function in Figure 2.23 in the form of a Venn diagram and find its minimal

sum-of-products form.

2.18 Figure P2.1 shows two attempts to draw a Venn diagram for four variables. For parts (a)

and (b) of the figure, explain why the Venn diagram is not correct. (Hint: The Venn diagram

must be able to represent all 16 minterms of the four variables.)

x1 x2

x3

x4

(a)

x1 x2

x3

x4

(b)

Figure P2.1 Two attempts to draw a four-variable Venn diagram.

2.19 Figure P2.2 gives a representation of a four-variable Venn diagram and shows the loca-

tion of minterms m0,m1, and m2. Show the location of the other minterms in the diagram.

Represent the function f = x1x2x3x4 + x1x2x3x4 + x1x2 on this diagram.

x3

x2x1

x4

x3

x2x1

m0

m1m2

Figure P2.2 A four-variable Venn diagram.

*2.20 Design the simplest sum-of-products circuit that implements the function f (x1, x2, x3) =
∑

m(3, 4, 6, 7).

2.21 Design the simplest sum-of-products circuit that implements the function f (x1, x2, x3) =
∑

m(1, 3, 4, 6, 7).

2.22 Design the simplest product-of-sums circuit that implements the function f (x1, x2, x3) =
ΠM(0, 2, 5).

ISTUDY

PROBLEMS 107

*2.23 Design the simplest product-of-sums expression for the function f (x1, x2, x3) = ΠM(0, 1,

5, 7).

2.24 Derive the simplest sum-of-products expression for the function f (x1, x2, x3, x4) =
x1x3x4 + x2x3x4 + x1x2x3.

2.25 Use algebraic manipulation to derive the simplest sum-of-products expression for the

function f (x1, x2, x3, x4, x5) = x1x3x5 + x1x3x4 + x1x4x5 + x1x2x3x5.

(Hint: Use the consensus property 17a.)

2.26 Use algebraic manipulation to derive the simplest product-of-sums expression for the

function f (x1, x2, x3, x4) = (x1 + x3 + x4)(x2 + x3 + x4)(x1 + x2 + x3).

(Hint: Use the consensus property 17b.)

2.27 Use algebraic manipulation to derive the simplest product-of-sums expression for the

function f (x1, x2, x3, x4, x5) = (x2 + x3 + x5)(x1 + x3 + x5)(x1 + x2 + x5)(x1 + x4 + x5).

(Hint: Use the consensus property 17b.)

*2.28 Design the simplest circuit that has three inputs, x1, x2, and x3, which produces an output

value of 1 whenever two or more of the input variables have the value 1; otherwise, the

output has to be 0.

2.29 Design the simplest circuit that has three inputs, x1, x2, and x3, which produces an output

value of 1 whenever exactly one or two of the input variables have the value 1; otherwise,

the output has to be 0.

2.30 Design the simplest circuit that has four inputs, x1, x2, x3, and x4, which produces an output

value of 1 whenever three or more of the input variables have the value 1; otherwise, the

output has to be 0.

2.31 For the timing diagram in Figure P2.3, synthesize the function f (x1, x2, x3) in the simplest

sum-of-products form.

*2.32 For the timing diagram in Figure P2.3, synthesize the function f (x1, x2, x3) in the simplest

product-of-sums form.

1

0

1

0

1

0

1

0

x1

x2

Time

x3

f

Figure P2.3 A timing diagram representing a logic function.

ISTUDY

108 C H A P T E R 2 ● INTRODUCTION TO LOGIC CIRCUITS

*2.33 For the timing diagram in Figure P2.4, synthesize the function f (x1, x2, x3) in the simplest

sum-of-products form.

1

0

1

0

1

0

1

0

x1

x2

Time

x3

f

Figure P2.4 A timing diagram representing a logic function.

2.34 For the timing diagram in Figure P2.4, synthesize the function f (x1, x2, x3) in the simplest

product-of-sums form.

2.35 Design a circuit with output f and inputs x1, x0, y1, and y0. Let X = x1x0 and Y = y1y0

represent two 2-digit binary numbers. The output f should be 1 if the numbers represented

by X and Y are equal. Otherwise, f should be 0.

(a) Show the truth table for f.
(b) Synthesize the simplest possible product-of-sums expression for f.

2.36 Repeat Problem 2.35 for the case where f should be 1 only if X ≥ Y .

(a) Show the truth table for f.
(b) Show the canonical sum-of-products expression for f.
(c) Show the simplest possible sum-of-products expression for f.

*2.37 Find the minimum-cost SOP and POS forms for the function f (x1, x2, x3) =
∑

m(1, 2, 3, 5).

*2.38 Repeat Problem 2.37 for the function f (x1, x2, x3) =
∑

m(1, 4, 7) + D(2, 5).

2.39 Repeat Problem 2.37 for the function f (x1,… , x4) = ΠM(0, 1, 2, 4, 5, 7, 8, 9, 10, 12,

14, 15).

2.40 Repeat Problem 2.37 for the function f (x1,… , x4) =
∑

m(0, 2, 8, 9, 10, 15) + D(1,

3, 6, 7).

*2.41 Repeat Problem 2.37 for the function f (x1,… , x5) = ΠM(1, 4, 6, 7, 9, 12, 15, 17, 20, 21,

22, 23, 28, 31).

2.42 Repeat Problem 2.37 for the function f (x1,… , x5) =
∑

m(0, 1, 3, 4, 6, 8, 9, 11, 13, 14, 16,

19, 20, 21, 22, 24, 25) + D(5, 7, 12, 15, 17, 23).

2.43 Repeat Problem 2.37 for the function f (x1,… , x5) =
∑

m(1, 4, 6, 7, 9, 10, 12, 15, 17, 19,

20, 23, 25, 26, 27, 28, 30, 31) + D(8, 16, 21, 22).

ISTUDY

PROBLEMS 109

2.44 Find 5 three-variable functions for which the product-of-sums form has lower cost than the

sum-of-products form.

*2.45 A four-variable logic function that is equal to 1 if any three or all four of its variables are

equal to 1 is called a majority function. Design a minimum-cost SOP circuit that implements

this majority function.

2.46 Derive a minimum-cost realization of the four-variable function that is equal to 1 if exactly

two or exactly three of its variables are equal to 1; otherwise it is equal to 0.

*2.47 Prove or show a counter-example for the statement: If a function f has a unique minimum-

cost SOP expression, then it also has a unique minimum-cost POS expression.

*2.48 A circuit with two outputs has to implement the following functions:

f (x1,… , x4) =
∑

m(0, 2, 4, 6, 7, 9) + D(10, 11)

g(x1,… , x4) =
∑

m(2, 4, 9, 10, 15) + D(0, 13, 14)

Design the minimum-cost circuit and compare its cost with combined costs of two circuits

that implement f and g separately. Assume that the input variables are available in both

uncomplemented and complemented forms.

2.49 Repeat Problem 2.48 for the following functions:

f (x1,… , x5) =
∑

m(1, 4, 5, 11, 27, 28) + D(10, 12, 14, 15, 20, 31)

g(x1,… , x5) =
∑

m(0, 1, 2, 4, 5, 8, 14, 15, 16, 18, 20, 24, 26, 28, 31) + D(10, 11, 12, 27)

*2.50 Consider the function f = x3x5 + x1x2x4 + x1x2x4 + x1x3x4 + x1x3x4 + x1x2x5 + x1x2x5.

Derive a minimum-cost POS expression for this function.

2.51 Implement the function in Figure 2.31 using only NAND gates.

2.52 Implement the function in Figure 2.31 using only NOR gates.

2.53 Implement the circuit in Figure 2.41 using NAND and NOR gates.

*2.54 Design the simplest circuit that implements the function f (x1, x2, x3) =
∑

m(3, 4, 6, 7) using

NAND gates.

2.55 Design the simplest circuit that implements the function f (x1, x2, x3) =
∑

m(1, 3, 4, 6, 7)

using NAND gates.

*2.56 Repeat Problem 2.54 using NOR gates.

2.57 Repeat Problem 2.55 using NOR gates.

2.58 (a) Use a schematic capture tool (which can be downloaded from the Internet; for example,

from the websites for Intel or Xilinx) to draw schematics for the following functions:

f1 = x2x3x4 + x1x2x4 + x1x2x3 + x1x2x3

f2 = x2x4 + x1x2 + x2x3

(b) Use functional simulation to prove that f1 = f2.

ISTUDY

110 C H A P T E R 2 ● INTRODUCTION TO LOGIC CIRCUITS

2.59 (a) Use a schematic capture tool to draw schematics for the following functions:

f1 = (x1 + x2 + x4) ⋅ (x2 + x3 + x4) ⋅ (x1 + x3 + x4) ⋅ (x1 + x3 + x4)

f2 = (x2 + x4) ⋅ (x3 + x4) ⋅ (x1 + x4)

(b) Use functional simulation to prove that f1 = f2.

2.60 Write VHDL code to implement the circuit in Figure 2.32a using Boolean operators.

2.61 Repeat Problem 2.60 for the circuit in Figure 2.32b.

2.62 Write VHDL code to implement the function f (x1, x2, x3) =
∑

m(1, 2, 3, 4, 5, 6) using

Boolean operators. Ensure that the resulting circuit is as simple as possible.

2.63 Write VHDL code to implement the function f (x1, x2, x3) =
∑

m(0, 1, 3, 4, 5, 6) using signal

assignment.

2.64 (a) Write VHDL code to describe the following functions:

f1 = x1x3 + x2x3 + x3x4 + x1x2 + x1x4

f2 = (x1 + x3) ⋅ (x1 + x2 + x4) ⋅ (x2 + x3 + x4)

(b) Use functional simulation to prove that f1 = f2.

2.65 Consider the following VHDL statements:

f1 <= (x1 AND x3) OR (NOT x1 AND NOT x3) OR (x2 AND x4) OR

(NOT x2 AND NOT x4) ;

f2 <= (x1 AND x2 AND NOT x3 AND NOT x4) OR

(NOT x1 AND NOT x2 AND x3 AND x4) OR

(x1 AND NOT x2 AND NOT x3 AND x4) OR

(NOT x1 AND x2 AND x3 AND NOT x4).

(a) Write complete VHDL code to implement f1 and f2.

(b) Use functional simulation to prove that f1 = f2.

*2.66 Consider the logic expressions:

f = x1x2x5 + x1x2x4x5 + x1x2x4x5 + x1x2x3x4 + x1x2x3x5 + x2x3x4x5 + x1x2x3x4x5

g = x2x3x4 + x2x3x4x5 + x1x3x4x5 + x1x2x4x5 + x1x3x4x5 + x1x2x3x5 + x1x2x3x4x5

Prove or disprove that f = g.

ISTUDY

PROBLEMS 111

2.67 Repeat Problem 2.66 for the following expressions:

f = x1x2x3 + x2x4 + x1x2x4 + x2x3x4 + x1x2x3

g = (x2 + x3 + x4)(x1 + x2 + x4)(x2 + x3 + x4)(x1 + x2 + x3)(x1 + x2 + x4)

2.68 Repeat Problem 2.66 for the following expressions:

f = x2x3x4 + x2x3 + x2x4 + x1x2x4 + x1x2x3x5

g = (x2 + x3 + x4)(x2 + x4 + x5)(x1 + x2 + x3)(x2 + x3 + x4 + x5)

2.69 A circuit with two outputs is defined by the logic functions:

f = x1x2x3 + x2x4 + x2x3x4 + x1x2x3x4

g = x1x3x4 + x1x2x4 + x1x3x4 + x2x3x4

Derive a minimum-cost implementation of this circuit. What is the cost of your circuit?

2.70 Repeat Problem 2.69 for the functions:

f = (x1 + x2 + x3)(x1 + x3 + x4)(x1 + x2 + x3)(x1 + x2 + x4)(x1 + x2 + x4)

g = (x1 + x2 + x3)(x1 + x2 + x4)(x2 + x3 + x4)(x1 + x2 + x3 + x4)

2.71 A given system has four sensors that can produce an output of 0 or 1. The system operates

properly when exactly one of the sensors has its output equal to 1. An alarm must be raised

when two or more sensors have the output of 1. Design the simplest circuit that can be used

to raise the alarm.

2.72 Repeat Problem 2.71 for a system that has seven sensors.

2.73 Find the minimum-cost circuit consisting only of two-input NAND gates for the function

f (x1,… , x4) =
∑

m(0, 1, 2, 3, 4, 6, 8, 9, 12). Assume that the input variables are available

in both uncomplemented and complemented forms. (Hint: Consider the complement of the

function.)

2.74 Repeat Problem 2.73 for the function f (x1,… , x4) =
∑

m(2, 3, 6, 8, 9, 12).

ISTUDY

112 C H A P T E R 2 ● INTRODUCTION TO LOGIC CIRCUITS

2.75 Find the minimum-cost circuit consisting only of two-input NOR gates for the function

f (x1,… , x4) =
∑

m(6, 7, 8, 10, 12, 14, 15). Assume that the input variables are available in

both uncomplemented and complemented forms. (Hint: Consider the complement of the

function.)

2.76 Repeat Problem 2.75 for the function f (x1,… , x4) =
∑

m(2, 3, 4, 5, 9, 10, 11, 12, 13, 15).

2.77 Consider the circuit in Figure P2.5, which implements functions f and g. What is the cost of

this circuit, assuming that the input variables are available in both true and complemented

forms? Redesign the circuit to implement the same functions, but at as low a cost as possible.

What is the cost of your circuit?

f

g

x2

x4

x4

x1

x3

x1

x3

x2

x3

x4

x1

x3

x4

x2

x1

x1

x4

x3

x1

x4

Figure P2.5 Circuit for Problem 2.77.

2.78 Repeat Problem 2.77 for the circuit in Figure P2.6. Use only NAND gates in your circuit.

ISTUDY

REFERENCES 113

x1

x2

x2

x1

x3

x4

x2

x1

x2

x3

x1

x3

x2

g

f

Figure P2.6 Circuit for Problem 2.78.

REFERENCES

1. G. Boole, An Investigation of the Laws of Thought, 1854, reprinted by Dover

Publications, New York, 1954.

2. C. E. Shannon, “A Symbolic Analysis of Relay and Switching Circuits,” Transactions
of AIEE 57 (1938), pp. 713–723.

3. E. V. Huntington, “Sets of Independent Postulates for the Algebra of Logic,”

Transactions of the American Mathematical Society 5 (1904), pp. 288–309.

ISTUDY

ISTUDY

115

c h a p t e r

3
NUMBER REPRESENTATION
AND ARITHMETIC CIRCUITS

CHAPTER OBJECTIVES

In this chapter you will learn about:

● Representation of numbers in computers

● Circuits used to perform arithmetic operations

● Performance issues in large circuits

● Use of VHDL to specify arithmetic circuits

ISTUDY

116 C H A P T E R 3 ● NUMBER REPRESENTATION AND ARITHMETIC CIRCUITS

In this chapter we will discuss logic circuits that perform arithmetic operations. We will explain how numbers

can be added, subtracted, and multiplied. We will also show how to write VHDL code to describe the arith-

metic circuits. These circuits provide an excellent platform for illustrating the power and versatility of VHDL

in specifying complex logic-circuit assemblies. The concepts involved in the design of arithmetic circuits are

easily applied to a wide variety of other circuits.

Before tackling the design of arithmetic circuits, it is necessary to discuss how numbers are represented

in digital systems. In Chapter 1 we introduced binary numbers and showed how they can be expressed using

the positional number representation. We also discussed the conversion process between decimal and binary

number systems. In Chapter 2 we dealt with logic variables in a general way, using variables to represent

either the states of switches or some general conditions. Now we will use the variables to represent numbers.

Several variables are needed to specify a number, with each variable corresponding to one digit of the number.

3.1 POSITIONAL NUMBER REPRESENTATION

When dealing with numbers and arithmetic operations, it is convenient to use standard

symbols. Thus to represent addition we use the plus (+) symbol, and for subtraction we use

the minus (−) symbol. In Chapter 2 we used the + symbol mostly to represent the logical

OR operation. Even though we will now use the same symbols for two different purposes,

the meaning of each symbol will usually be clear from the context of the discussion. In

cases where there may be some ambiguity, the meaning will be stated explicitly.

3.1.1 UNSIGNED INTEGERS

The simplest numbers to consider are the integers. We will begin by considering positive

integers and then expand the discussion to include negative integers. Numbers that are pos-

itive only are called unsigned, and numbers that can also be negative are called signed.

Representation of numbers that include a radix point (real numbers) is discussed later in

the chapter.

As explained in Section 1.5.1, an n-bit unsigned number

B = bn−1bn−2 ⋯ b1b0

represents an integer that has the value

V(B) = bn−1 × 2n−1 + bn−2 × 2n−2 +⋯ + b1 × 21 + b0 × 20 [3.1]

=
n−1∑

i=0

bi × 2i

3.1.2 OCTAL AND HEXADECIMAL REPRESENTATIONS

The positional number representation can be used for any radix. If the radix is r, then the

number

K = kn−1kn−2 ⋯ k1k0

ISTUDY

3.1 POSITIONAL NUMBER REPRESENTATION 117

Table 3.1 Numbers in different systems.

Decimal Binary Octal Hexadecimal

00 00000 00 00

01 00001 01 01

02 00010 02 02

03 00011 03 03

04 00100 04 04

05 00101 05 05

06 00110 06 06

07 00111 07 07

08 01000 10 08

09 01001 11 09

10 01010 12 0A

11 01011 13 0B

12 01100 14 0C

13 01101 15 0D

14 01110 16 0E

15 01111 17 0F

16 10000 20 10

17 10001 21 11

18 10010 22 12

has the value

V(K) =
n−1∑

i=0

ki × ri

Our interest is limited to those radices that are most practical. We will use decimal numbers

because they are used by people, and we will use binary numbers because they are used by

computers. In addition, two other radices are useful—8 and 16. Numbers represented with

radix 8 are called octal numbers, while radix-16 numbers are called hexadecimal numbers.

In octal representation the digit values range from 0 to 7. In hexadecimal representation

(often abbreviated as hex), each digit can have one of 16 values. The first ten are denoted

the same as in the decimal system, namely, 0 to 9. Digits that correspond to the decimal

values 10, 11, 12, 13, 14, and 15 are denoted by the letters, A, B, C, D, E, and F. Table 3.1

gives the first 18 integers in these number systems.

In computers the dominant number system is binary. The reason for using the octal and

hexadecimal systems is that they serve as a useful shorthand notation for binary numbers.

One octal digit represents three bits. Thus a binary number is converted into an octal number

by taking groups of three bits, starting from the least-significant bit, and replacing them with

the corresponding octal digit. For example, 101011010111 is converted as

1 0 1
⏟⏟⏟

0 1 1
⏟⏟⏟

0 1 0
⏟⏟⏟

1 1 1
⏟⏟⏟

5 3 2 7

ISTUDY

118 C H A P T E R 3 ● NUMBER REPRESENTATION AND ARITHMETIC CIRCUITS

which means that (101011010111)2 = (5327)8. If the number of bits is not a multiple of

three, then we add 0s to the left of the most-significant bit. For example, (10111011)2 =
(273)8 because of the grouping

0 1 0
⏟⏟⏟

1 1 1
⏟⏟⏟

0 1 1
⏟⏟⏟

2 7 3

Conversion from octal to binary is just as straightforward; each octal digit is simply replaced

by three bits that denote the same value.

Similarly, a hexadecimal digit represents four bits. For example, a 16-bit number is

represented by four hex digits, as in

(1010111100100101)2 = (AF25)16

using the grouping

1 0 1 0
⏟⏟⏟

1 1 1 1
⏟⏟⏟

0 0 1 0
⏟⏟⏟

0 1 0 1
⏟⏟⏟

A F 2 5

Zeros are added to the left of the most-significant bit if the number of bits is not a multiple

of four. For example, (1101101000)2 = (368)16 because of the grouping

0 0 1 1
⏟⏟⏟

0 1 1 0
⏟⏟⏟

1 0 0 0
⏟⏟⏟

3 6 8

Conversion from hexadecimal to binary involves straightforward substitution of each hex

digit by four bits that denote the same value.

Binary numbers used in modern computers often have 32 or 64 bits. Written as binary

n-tuples (sometimes called bit vectors), such numbers are awkward for people to deal with.

It is much simpler to deal with them in the form of 8- or 16-digit hex numbers. Because the

arithmetic operations in a digital system usually involve binary numbers, we will focus on

circuits that use such numbers. We will sometimes use the hexadecimal representation as a

convenient shorthand description.

We have introduced the simplest numbers—unsigned integers. It is necessary to be able

to deal with several other types of numbers. We will discuss the representation of signed

numbers, fixed-point numbers, and floating-point numbers later in this chapter. But first

we will examine some simple circuits that operate on numbers to give the reader a feeling

for digital circuits that perform arithmetic operations and to provide motivation for further

discussion.

3.2 ADDITION OF UNSIGNED NUMBERS

Binary addition is performed in the same way as decimal addition except that the values of

individual digits can be only 0 or 1. In Chapter 2, we already considered the addition of 2

one-bit numbers, as an example of a simple logic circuit. Now, we will consider this task

in the context of general adder circuits. The one-bit addition entails four possible combina-

tions, as indicated in Figure 3.1a. Two bits are needed to represent the result of the addition.

ISTUDY

3.2 ADDITION OF UNSIGNED NUMBERS 119

Sum

s

0

1

1

0

Carry

c

0

0

0

1

0 0

1000

1

10

1

1+ 1+

01

x
+ y + 0 + 0

sc

SumCarry

(a) The four possible cases

x y

0

0

1

1

0

1

0

1

(b) Truth table

x

y
s

c

HA
x

y

s

c

(c) Circuit (d) Graphical symbol

Figure 3.1 Half-adder.

The rightmost bit is called the sum, s. The leftmost bit, which is produced as a carry-out

when both bits being added are equal to 1, is called the carry, c. The addition operation

is defined in the form of a truth table in part (b) of the figure. The sum bit s is the XOR

function. The carry c is the AND function of inputs x and y. A circuit realization of these

functions is shown in Figure 3.1c. This circuit, which implements the addition of only two

bits, is called a half-adder.

A more interesting case is when larger numbers that have multiple bits are involved.

Then it is still necessary to add each pair of bits, but for each bit position i, the addition

operation may include a carry-in from bit position i − 1.

Figure 3.2a presents an example of the addition operation. The two operands are X =
(01111)2 = (15)10 and Y = (01010)2 = (10)10. Five bits are used to represent X and Y ,

making it possible to represent integers in the range from 0 to 31; hence the sum S = X+Y =
(25)10 can also be denoted as a five-bit integer. Note the labeling of individual bits, such

that X = x4x3x2x1x0 and Y = y4y3y2y1y0. The figure shows, in a red color, the carries

generated during the addition process. For example, a carry of 0 is generated when x0 and

y0 are added, a carry of 1 is produced when x1 and y1 are added, and so on.

ISTUDY

120 C H A P T E R 3 ● NUMBER REPRESENTATION AND ARITHMETIC CIRCUITS

X x4 x3x2 x1x0=

Y+ y4 y3 y2 y1 y0=

Generated carries

S s4 s3 s2 s1s0=

15()10

10()10

25()10

0 1 1 1 1

0 1 0 1 0

1 1 1 0

1 1 0 0 1

++

xi

yi

si

ci

...

...

ci 1+

...

...

...

...

...

...

...... ...

(a) An example of addition (b) Bit position i

Figure 3.2 Addition of multibit numbers.

In Chapter 2 we designed logic circuits by first specifying their behavior in the form

of a truth table. This approach is impractical in designing an adder circuit that can add the

five-bit numbers in Figure 3.2. The required truth table would have 10 input variables, 5 for

each number X and Y . It would have 210 = 1024 rows! A better approach is to consider the

addition of each pair of bits, xi and yi, separately.

For bit position 0, there is no carry-in, and hence the addition is the same as for Fig-

ure 3.1. For each other bit position i, the addition involves bits xi and yi, and a carry-in ci,
as illustrated in Figure 3.2b. This observation leads to the design of a logic circuit that has

three inputs xi, yi, and ci, and produces the two outputs si and ci+1. The required truth table

is shown in Figure 3.3a. The sum bit, si, is the modulo-2 sum of xi, yi, and ci. The carry-out,
ci+1, is equal to 1 if the sum of xi, yi, and ci is equal to either 2 or 3. Karnaugh maps for

these functions are shown in part (b) of the figure. For the carry-out function the optimal

sum-of-products realization is

ci+1 = xiyi + xici + yici

For the si function a sum-of-products realization is

si = xiyici + xiyici + xiyici + xiyici

A more attractive way of implementing this function is by using the XOR gates, as explained

below.

Use of XOR Gates
As shown in Chapter 2, the XOR function of two variables is defined as x1 ⊕ x2 =

x1x2 + x1x2. The preceding expression for the sum bit can be manipulated into a form that

uses only XOR operations as follows

si = (xiyi + xiyi)ci + (xiyi + xiyi)ci

= (xi ⊕ yi)ci + (xi ⊕ yi)ci

= (xi ⊕ yi) ⊕ ci

The XOR operation is associative; hence we can write

si = xi ⊕ yi ⊕ ci

Therefore, a three-input XOR operation can be used to realize si.

ISTUDY

3.2 ADDITION OF UNSIGNED NUMBERS 121

0

0

0

1

0

1

1

1

ci 1+

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

ci xi yi

00 01 11 10

0

1

xi yi

ci

1

1

1

1

si xi yi ci⊕ ⊕=

00 01 11 10

0

1

xi yi

ci

1

1 1 1

ci 1+ xi yi xici yici+ +=

ci

xi

yi si

ci 1+

(a) Truth table

(b) Karnaugh maps

(c) Circuit

0

1

1

0

1

0

0

1

si

Figure 3.3 Full-adder.

The XOR operation generates as an output a modulo-2 sum of its inputs. Thus, the

output is equal to 1 if an odd number of inputs have the value 1, and it is equal to 0 other-

wise. For this reason the XOR is sometimes referred to as the odd function. Observe that

the XOR has no minterms that can be combined into a larger product term, as evident from

the checkerboard pattern for function si in the map in Figure 3.3b. The logic circuit imple-

menting the truth table in Figure 3.3a is given in Figure 3.3c. This circuit is known as a

full-adder.

ISTUDY

122 C H A P T E R 3 ● NUMBER REPRESENTATION AND ARITHMETIC CIRCUITS

Another interesting feature of XOR gates is that a two-input XOR gate can be thought

of as using one input as a control signal that determines whether the true or complemented

value of the other input will be passed through the gate as the output value. This is clear

from the definition of XOR, where xi⊕yi = xy+xy. Consider x to be the control input. Then

if x = 0, the output will be equal to the value of y. But if x = 1, the output will be equal

to the complement of y. In the derivation above, we used algebraic manipulation to derive

si = (xi ⊕yi)⊕ci. We could have obtained the same expression immediately by making the

following observation. In the top half of the truth table in Figure 3.3a, ci is equal to 0, and

the sum function si is the XOR of xi and yi. In the bottom half of the table, ci is equal to 1,

while si is the complemented version of its top half. This observation leads directly to our

expression using 2 two-input XOR operations. We will encounter an important example of

using XOR gates to pass true or complemented signals under the control of another signal

in Section 3.3.3.

In the preceding discussion we encountered the complement of the XOR operation,

which we denoted as x ⊕ y. This operation is used so commonly that it is given the distinct

name XNOR. A special symbol, ⊙, is often used to denote the XNOR operation, namely

x ⊙ y = x ⊕ y

The XNOR is sometimes also referred to as the coincidence operation because it produces

the output of 1 when its inputs coincide in value; that is, they are both 0 or both 1.

3.2.1 DECOMPOSED FULL-ADDER

In view of the names used for the circuits, one can expect that a full-adder can be con-

structed using half-adders. This can be accomplished by creating a multilevel circuit given

in Figure 3.4. It uses two half-adders to form a full-adder. The reader should verify the

functional correctness of this circuit.

3.2.2 RIPPLE-CARRY ADDER

To perform addition by hand, we start from the least-significant digit and add pairs of digits,

progressing to the most-significant digit. If a carry is produced in position i, then this carry

is added to the operands in position i+1. The same arrangement can be used in a logic circuit

that performs addition. For each bit position we can use a full-adder circuit, connected as

shown in Figure 3.5. Note that to be consistent with the customary way of writing numbers,

the least-significant bit position is on the right. Carries that are produced by the full-adders

propagate to the left.

When the operands X and Y are applied as inputs to the adder, it takes some time before

the output sum, S, is valid. Each full-adder introduces a certain delay before its si and ci+1

outputs are valid. Let this delay be denoted as Δt. Thus the carry-out from the first stage,

c1, arrives at the second stage Δt after the application of the x0 and y0 inputs. The carry-out

from the second stage, c2, arrives at the third stage with a 2Δt delay, and so on. The signal

cn−1 is valid after a delay of (n−1)Δt, which means that the complete sum is available after

a delay of nΔt. Because of the way the carry signals “ripple” through the full-adder stages,

the circuit in Figure 3.5 is called a ripple-carry adder.

ISTUDY

3.2 ADDITION OF UNSIGNED NUMBERS 123

HA

HAs

c

s

c
ci

xi

yi

ci 1+

si

ci

xi

yi

ci 1+

si

(a) Block diagram

(b) Detailed diagram

Figure 3.4 A decomposed implementation of the full-adder circuit.

FA

xn 1–

cn cn 1–

yn 1–

sn 1–

FA

x1

c2

y1

s1

FA

c1

x0 y0

s0

c0

MSB position LSB position

Figure 3.5 An n-bit ripple-carry adder.

The delay incurred to produce the final sum and carry-out in a ripple-carry adder de-

pends on the size of the numbers. When 32- or 64-bit numbers are used, this delay may

become unacceptably high. Because the circuit in each full-adder leaves little room for a

drastic reduction in the delay, it may be necessary to seek different structures for imple-

mentation of n-bit adders. We will discuss a technique for building high-speed adders in

Section 3.4.

So far we have dealt with unsigned integers only. The addition of such numbers does

not require a carry-in for stage 0. In Figure 3.5 we included c0 in the diagram so that

the ripple-carry adder can also be used for subtraction of numbers, as we will see in

Section 3.3.

ISTUDY

124 C H A P T E R 3 ● NUMBER REPRESENTATION AND ARITHMETIC CIRCUITS

3.2.3 DESIGN EXAMPLE

Suppose that we need a circuit that multiplies an eight-bit unsigned number by 3. Let A =
a7a6 ⋯ a1a0 denote the number and P = p9p8 ⋯ p1p0 denote the product P = 3A. Note

that 10 bits are needed to represent the product.

A simple approach to design the required circuit is to use two ripple-carry adders to

add three copies of the number A, as illustrated in Figure 3.6a. The symbol that denotes

each adder is a commonly used graphical symbol for adders. The letters xi, yi, si, and ci
indicate the meaning of the inputs and outputs according to Figure 3.5. The first adder

produces A + A = 2A. Its result is represented as eight sum bits and the carry from the

most-significant bit. The second adder produces 2A + A = 3A. It has to be a nine-bit adder

to be able to handle the nine bits of 2A, which are generated by the first adder. Because the

yi inputs have to be driven only by the eight bits of A, the ninth input y8 is connected to a

constant 0.

This approach is straightforward, but not very efficient. Because 3A = 2A + A, we

can observe that 2A can be generated by shifting the bits of A one bit-position to the left,

which gives the bit pattern a7a6a5a4a3a2a1a00. According to Equation 3.1, this pattern is

equal to 2A. Then a single ripple-carry adder suffices for implementing 3A, as shown in

Figure 3.6b. This is essentially the same circuit as the second adder in part (a) of the figure.

Note that the input x0 is connected to a constant 0. Note also that in the second adder in part (a)

of the figure the value of x0 is always 0, even though it is driven by the least-significant bit,

s0, of the sum of the first adder. Because x0 = y0 = a0 in the first adder, the sum bit s0 will

be 0, whether a0 is 0 or 1.

3.3 SIGNED NUMBERS

In the decimal system the sign of a number is indicated by a + or − symbol to the left

of the most-significant digit. In the binary system the sign of a number is denoted by the

leftmost bit. For a positive number the leftmost bit is equal to 0, and for a negative number

it is equal to 1. Therefore, in signed numbers the leftmost bit represents the sign, and the

remaining n − 1 bits represent the magnitude, as illustrated in Figure 3.7. It is important to

note the difference in the location of the most-significant bit (MSB). In unsigned numbers

all bits represent the magnitude of a number; hence all n bits are significant in defining the

magnitude. Therefore, the MSB is the leftmost bit, bn−1. In signed numbers there are n− 1

significant bits, and the MSB is in bit position bn−2.

3.3.1 NEGATIVE NUMBERS

Positive numbers are represented using the positional number representation as explained

in the previous section. Negative numbers can be represented in three different ways: sign-

and-magnitude, 1’s complement, and 2’s complement.

Sign-and-Magnitude Representation
In the familiar decimal representation, the magnitude of both positive and negative

numbers is expressed in the same way. The sign symbol distinguishes a number as being

ISTUDY

3.3 SIGNED NUMBERS 125

x7 x0 y7 y0

x7 x0 y8 y0y7x8

s0s7

c7

0

s0s8

c8

P9 P8 P0P = 3A :

P = 3A :

x1 x0 y8 y0y7x8

s0s8

c8

0 0

a7A :

P9 P8 P0

(a) Naive approach

(b) Efficient design

a0

a7A : a0

Figure 3.6 Circuit that multiplies an eight-bit unsigned number by 3.

positive or negative. This scheme is called the sign-and-magnitude number representation.

The same scheme can be used with binary numbers in which case the sign bit is 0 or 1

for positive or negative numbers, respectively. For example, if we use four-bit numbers,

then +5 = 0101 and −5 = 1101. Because of its similarity to decimal sign-and-magnitude

ISTUDY

126 C H A P T E R 3 ● NUMBER REPRESENTATION AND ARITHMETIC CIRCUITS

bn 1– b1 b0

Magnitude

MSB

(a) Unsigned number

bn 1– b1 b0

Magnitude
Sign

(b) Signed number

bn 2–

0 denotes
1 denotes

+
– MSB

Figure 3.7 Formats for representation of integers.

numbers, this representation is easy to understand. However, as we will see shortly, this

representation is not well suited for use in computers. More suitable representations are

based on complementary systems, explained below.

1’s Complement Representation
In a complementary number system, the negative numbers are defined according to a

subtraction operation involving positive numbers. We will consider two schemes for binary

numbers: the 1’s complement and the 2’s complement. In the 1’s complement scheme, an

n-bit negative number, K, is obtained by subtracting its equivalent positive number, P, from

2n − 1; that is, K = (2n − 1) − P. For example, if n = 4, then K = (24 − 1) − P =
(15)10−P = (1111)2−P. If we convert +5 to a negative, we get −5 = 1111−0101 = 1010.

Similarly, +3 = 0011 and −3 = 1111 − 0011 = 1100. Clearly, the 1’s complement can be

obtained simply by complementing each bit of the number, including the sign bit. While 1’s

complement numbers are easy to derive, they have some drawbacks when used in arithmetic

operations, as we will see in the next section.

2’s Complement Representation
In the 2’s complement scheme, a negative number, K, is obtained by subtracting its

equivalent positive number, P, from 2n; namely, K = 2n − P. Using our four-bit example,

−5 = 10000− 0101 = 1011, and −3 = 10000− 0011 = 1101. Finding 2’s complements in

this manner requires performing a subtraction operation that involves borrows. However,

ISTUDY

3.3 SIGNED NUMBERS 127

we can observe that if K1 is the 1’s complement of P and K2 is the 2’s complement of

P, then

K1 = (2n − 1) − P
K2 = 2n − P

It follows that K2 = K1 + 1. Thus a simpler way of finding a 2’s complement of a number

is to add 1 to its 1’s complement because finding a 1’s complement is trivial. This is how

2’s complement numbers are obtained in logic circuits that perform arithmetic operations.

The reader will need to develop an ability to find 2’s complement numbers quickly.

There is a simple rule that can be used for this purpose.

Rule for Finding 2’s Complements
Given a number B = bn−1bn−2 ⋯ b1b0, its 2’s complement, K = kn−1kn−2 ⋯ k1k0, can

be found by examining the bits of B from right to left and taking the following action: copy

all bits of B that are 0 and the first bit that is 1; then simply complement the rest of the bits.

For example, if B = 0110, then we copy k0 = b0 = 0 and k1 = b1 = 1, and comple-

ment the rest so that k2 = b2 = 0 and k3 = b3 = 1. Hence K = 1010. As another example,

if B = 10110100, then K = 01001100. We leave the proof of this rule as an exercise for the

reader.

Table 3.2 illustrates the interpretation of all 16 four-bit patterns in the three signed-

number representations that we have considered. Note that for both sign-and-magnitude

representation and for 1’s complement representation there are two patterns that represent

the value zero. For 2’s complement there is only one such pattern. Also, observe that the

range of numbers that can be represented with four bits in 2’s complement form is −8 to

+7, while in the other two representations it is −7 to +7.

Table 3.2 Interpretation of four-bit signed integers.

Sign and
b3 b2 b1 b0 magnitude 1’s complement 2’s complement

0111 +7 +7 +7

0110 +6 +6 +6

0101 +5 +5 +5

0100 +4 +4 +4

0011 +3 +3 +3

0010 +2 +2 +2

0001 +1 +1 +1

0000 +0 +0 +0

1000 −0 −7 −8

1001 −1 −6 −7

1010 −2 −5 −6

1011 −3 −4 −5

1100 −4 −3 −4

1101 −5 −2 −3

1110 −6 −1 −2

1111 −7 −0 −1

ISTUDY

128 C H A P T E R 3 ● NUMBER REPRESENTATION AND ARITHMETIC CIRCUITS

Using 2’s-complement representation, an n-bit number B = bn−1bn−2 ⋯ b1b0 repre-

sents the value

V(B) = (−bn−1 × 2n−1) + bn−2 × 2n−2 +⋯ + b1 × 21 + b0 × 20 [3.2]

Thus the largest negative number, 100… 00, has the value −2n−1. The largest positive num-

ber, 011… 11, has the value 2n−1 − 1.

3.3.2 ADDITION AND SUBTRACTION

To assess the suitability of different number representations, it is necessary to investigate

their use in arithmetic operations—particularly in addition and subtraction. We can illus-

trate the good and bad aspects of each representation by considering very small numbers.

We will use four-bit numbers, consisting of a sign bit and three significant bits. Thus the

numbers have to be small enough so that the magnitude of their sum can be expressed in

three bits, which means that the sum cannot exceed the value 7.

Addition of positive numbers is the same for all three number representations. It is

actually the same as the addition of unsigned numbers discussed in Section 3.2. But there

are significant differences when negative numbers are involved. The difficulties that arise

become apparent if we consider operands with different combinations of signs.

Sign-and-Magnitude Addition
If both operands have the same sign, then the addition of sign-and-magnitude numbers

is simple. The magnitudes are added, and the resulting sum is given the sign of the operands.

However, if the operands have opposite signs, the task becomes more complicated. Then

it is necessary to subtract the smaller number from the larger one. This means that logic

circuits that compare and subtract numbers are also needed. We will see shortly that it is

possible to perform subtraction without the need for this circuitry. For this reason, the sign-

and-magnitude representation is not used in computers.

1’s Complement Addition
An obvious advantage of the 1’s complement representation is that a negative num-

ber is generated simply by complementing all bits of the corresponding positive number.

Figure 3.8 shows what happens when two numbers are added. There are four cases to con-

sider in terms of different combinations of signs. As seen in the top half of the figure, the

computation of 5 + 2 = 7 and (−5) + 2 = (−3) is straightforward; a simple addition of

the operands gives the correct result. Such is not the case with the other two possibilities.

Computing 5 + (−2) = 3 produces the bit vector 10010. Because we are dealing with

four-bit numbers, there is a carry-out from the sign-bit position. Also, the four bits of the

result represent the number 2 rather than 3, which is a wrong result. Interestingly, if we take

the carry-out from the sign-bit position and add it to the result in the least-significant bit

position, the new result is the correct sum of 3. This correction is indicated in red in the

figure. A similar situation arises when adding (−5)+ (−2) = (−7). After the initial addition

the result is wrong because the four bits of the sum are 0111, which represents +7 rather

than −7. But again, there is a carry-out from the sign-bit position, which can be used to

correct the result by adding it in the LSB position, as shown in Figure 3.8.

ISTUDY

3.3 SIGNED NUMBERS 129

++

1 1 0 0

1 0 1 0

0 0 1 0

0 1 1 1

0 1 0 1

0 0 1 0

++

0 1 1 1

1 0 1 0

1 1 0 1

0 0 1 0

0 1 0 1

1 1 0 1

1

1

0 0 1 1

1

1

1 0 0 0

2+()

5–()

3–()

+

5–()

7–()

+ 2–()

5+()

2+()

7+()

+

5+()

3+()

+ 2–()

Figure 3.8 Examples of 1’s complement addition.

The conclusion from these examples is that the addition of 1’s complement numbers

may or may not be simple. In some cases a correction is needed, which amounts to an extra

addition that must be performed. Consequently, the time needed to add two 1’s complement

numbers may be twice as long as the time needed to add two unsigned numbers.

2’s Complement Addition
Consider the same combinations of numbers as used in the 1’s complement example.

Figure 3.9 indicates how the addition is performed using 2’s complement numbers. Adding

5+2 = 7 and (−5)+2 = (−3) is straightforward. The computation 5+(−2) = 3 generates the

correct four bits of the result, namely 0011. There is a carry-out from the sign-bit position,

which we can simply ignore. The fourth case is (−5)+ (−2) = (−7). Again, the four bits of

the result, 1001, give the correct sum (−7). In this case also, the carry-out from the sign-bit

position can be ignored.

As illustrated by these examples, the addition of 2’s complement numbers is very

simple. When the numbers are added, the result is always correct. If there is a carry-out

from the sign-bit position, it is simply ignored. Therefore, the addition process is the same,

++

1 1 0 1

1 0 1 1

0 0 1 0

0 1 1 1

0 1 0 1

0 0 1 0

++

1 0 0 1

1 0 1 1

1 1 1 0

0 0 1 1

0 1 0 1

1 1 1 0

11

ignore ignore

5+()

2+()

7+()

+

5+()

3+()

+ 2–()

2+()

5–()

3–()

+

5–()

7–()

+ 2–()

Figure 3.9 Examples of 2’s complement addition.

ISTUDY

130 C H A P T E R 3 ● NUMBER REPRESENTATION AND ARITHMETIC CIRCUITS

regardless of the signs of the operands. It can be performed by an adder circuit, such as the

one shown in Figure 3.5. Hence the 2’s complement notation is highly suitable for the im-

plementation of addition operations. We will now consider its use in subtraction operations.

2’s Complement Subtraction
The easiest way of performing subtraction is to negate the subtrahend and add it to the

minuend. This is done by finding the 2’s complement of the subtrahend and then performing

the addition. Figure 3.10 illustrates the process. The operation 5−(+2) = 3 involves finding

the 2’s complement of +2, which is 1110. When this number is added to 0101, the result is

0011 = (+3) and a carry-out from the sign-bit position occurs, which is ignored. A similar

situation arises for (−5) − (+2) = (−7). In the remaining two cases there is no carry-out,

and the result is correct.

As a graphical aid to visualize the addition and subtraction examples in Figures 3.9

and 3.10, we can place all possible four-bit patterns on a modulo-16 circle given in

Figure 3.11a. If these bit patterns represented unsigned integers, they would be numbers 0

to 15. If they represent 2’s-complement integers, then the numbers range from −8 to +7, as

shown. The addition operation is done by stepping in the clockwise direction by the mag-

nitude of the number to be added. For example, −5 + 2 is determined by starting at 1011

(= −5) and moving clockwise two steps, giving the result 1101 (= −3). Figure 3.11b shows

how subtraction can be performed on the modulo-16 circle, using the example 5 − 2 = 3.

We can start at 0101 (= +5) and move counterclockwise by two steps, which gives 0011

–

0 1 0 1

0 0 1 0

5+()

2+()

3+()

–

1

ignore

+

0 0 1 1

0 1 0 1

1 1 1 0

–

1 0 1 1

0 0 1 0–

1

ignore

+

1 0 0 1

1 0 1 1

1 1 1 0

–

0 1 0 1

1 1 1 0

5+()

7+()

– +

0 1 1 1

0 1 0 1

0 0 1 0

5–()

7–()

2+()

2–()

–

1 0 1 1

1 1 1 0– +

1 1 0 1

1 0 1 1

0 0 1 02–()

5–()

3–()

Figure 3.10 Examples of 2’s complement subtraction.

ISTUDY

3.3 SIGNED NUMBERS 131

0000
0001

0010

0011

0100

0101

0110

0111
1000

1001

1010

1011

1100

1101

1110

1111

1+1–
2+

3+

4+

5+

6+
7+

2–

3–

4–

5–

6–
7– 8–

0

0000
0001

0010

0011

0100

0101

0110

0111
1000

1001

1010

1011

1100

1101

1110

1111

1+1–
2+

3+

4+

5+

6+
7+

2–

3–

4–

5–

6–
7– 8–

0

Subtract 2

Add

(a) The number circle (b) Subtracting 2 by adding its 2’s complement

16 – 2 = 14

Figure 3.11 Graphical interpretation of four-bit 2’s complement numbers.

(= +3). But, we can also use the 2’s complement of 2 and add this value by stepping in the

clockwise direction as shown in the figure. Since there are 16 numbers on the circle, the

value we need to add is 16 − 2 = (14)10 = (1110)2.

The key conclusion of this section is that the subtraction operation can be realized as

the addition operation, using a 2’s complement of the subtrahend, regardless of the signs of

the two operands. Therefore, it should be possible to use the same adder circuit to perform

both addition and subtraction.

3.3.3 ADDER AND SUBTRACTOR UNIT

The only difference between performing addition and subtraction is that for subtraction it

is necessary to use the 2’s complement of one operand. Let X and Y be the two operands,

such that Y serves as the subtrahend in subtraction. From Section 3.3.1 we know that a 2’s

complement can be obtained by adding 1 to the 1’s complement of Y . Adding 1 in the least-

significant bit position can be accomplished simply by setting the carry-in bit c0 to 1. A 1’s

complement of a number is obtained by complementing each of its bits. This could be done

with NOT gates, but we need a more flexible circuit where we can use the true value of Y
for addition and its complement for subtraction.

In Section 3.2 we explained that two-input XOR gates can be used to choose between

true and complemented versions of an input value, under the control of the other input. This

idea can be applied in the design of the adder/subtractor unit as follows. Assume that there

exists a control signal that chooses whether addition or subtraction is to be performed. Let

this signal be called Add/Sub. Also, let its value be 0 for addition and 1 for subtraction. To

indicate this fact, we placed a bar over Add. This is a commonly used convention, where

ISTUDY

132 C H A P T E R 3 ● NUMBER REPRESENTATION AND ARITHMETIC CIRCUITS

s0s1sn 1–

x0x1xn 1–

cn n-bit adder

y0y1yn 1–

c0

Add / Sub
control

Figure 3.12 Adder/subtractor unit.

a bar over a name means that the action specified by the name is to be taken if the control

signal has the value 0. Now let each bit of Y be connected to one input of an XOR gate, with

the other input connected to Add/Sub. The outputs of the XOR gates represent Y if Add/Sub =
0, and they represent the 1’s complement of Y if Add/Sub = 1. This leads to the circuit

in Figure 3.12. The main part of the circuit is an n-bit adder, which can be implemented

using the ripple-carry structure of Figure 3.5. Note that the control signal Add/Sub is also

connected to the carry-in c0. This makes c0 = 1 when subtraction is to be performed, thus

adding the 1 that is needed to form the 2’s complement of Y . When the addition operation

is performed, we will have c0 = 0.

The combined adder/subtractor unit is a good example of an important concept in the

design of logic circuits. It is useful to design circuits to be as flexible as possible and to

exploit common portions of circuits for as many tasks as possible. This approach minimizes

the number of gates needed to implement such circuits, and it reduces the wiring complexity

substantially.

3.3.4 RADIX-COMPLEMENT SCHEMES∗

The 2’s complement scheme is just a special case of radix-complement schemes which we

discuss in this section. This general discussion can be skipped without loss of continuity in

the context of computer technology.

The idea of performing a subtraction operation by addition of a complement of the

subtrahend is not restricted to binary numbers. We can gain some insight into the workings

of the 2’s complement scheme by considering its counterpart in the decimal number system.

Consider the subtraction of two-digit decimal numbers. Computing a result such as 74 −
33 = 41 is simple because each digit of the subtrahend is smaller than the corresponding

digit of the minuend; therefore, no borrow is needed in the computation. But computing

ISTUDY

3.3 SIGNED NUMBERS 133

74−36 = 38 is not as simple because a borrow is needed in subtracting the least-significant

digit. If a borrow occurs, the computation becomes more complicated.

Suppose that we restructure the required computation as follows

74 − 36 = 74 + 100 − 100 − 36

= 74 + (100 − 36) − 100

Now two subtractions are needed. Subtracting 36 from 100 still involves borrows. But not-

ing that 100 = 99 + 1, these borrows can be avoided by writing

74 − 36 = 74 + (99 + 1 − 36) − 100

= 74 + (99 − 36) + 1 − 100

The subtraction in parentheses does not require borrows; it is performed by subtracting each

digit of the subtrahend from 9. We can see a direct correlation between this expression and

the one used for 2’s complement, as reflected in the circuit in Figure 3.12. The operation

(99 − 36) is analogous to complementing the subtrahend Y to find its 1’s complement,

which is the same as subtracting each bit from 1. Using decimal numbers, we find the 9’s
complement of the subtrahend by subtracting each digit from 9. In Figure 3.12 we add

the carry-in of 1 to form the 2’s complement of Y . In our decimal example we perform

(99 − 36) + 1 = 64. Here 64 is the 10’s complement of 36. For an n-digit decimal number,

N, its 10’s complement, K10, is defined as K10 = 10n − N, while its 9’s complement, K9, is

K9 = (10n − 1) − N.

Thus the required subtraction (74− 36) can be performed by addition of the 10’s com-

plement of the subtrahend, as in

74 − 36 = 74 + 64 − 100

= 138 − 100

= 38

The subtraction 138 − 100 is trivial because it means that the leading digit in 138 is sim-

ply deleted. This is analogous to ignoring the carry-out from the circuit in Figure 3.12, as

discussed for the subtraction examples in Figure 3.10.

Example 3.1Suppose that A and B are n-digit decimal numbers. Using the above 10’s-complement ap-

proach, B can be subtracted from A as follows:

A − B = A + (10n − B) − 10n

If A ≥ B, then the operation A + (10n − B) produces a carry-out of 1. This carry is equi-

valent to 10n; hence it can be simply ignored.

But if A < B, then the operation A+ (10n −B) produces a carry-out of 0. Let the result

obtained be M, so that

A − B = M − 10n

We can rewrite this as

10n − (B − A) = M

ISTUDY

134 C H A P T E R 3 ● NUMBER REPRESENTATION AND ARITHMETIC CIRCUITS

The left side of this equation is the 10’s complement of (B − A). The 10’s complement of

a positive number represents a negative number that has the same magnitude. Hence M
correctly represents the negative value obtained from the computation A − B when A < B.

This concept is illustrated in the examples that follow.

Example 3.2 When dealing with binary signed numbers we use 0 in the leftmost bit position to denote

a positive number and 1 to denote a negative number. If we wanted to build hardware that

operates on signed decimal numbers, we could use a similar approach. Let 0 in the leftmost

digit position denote a positive number and let 9 denote a negative number. Note that 9 is

the 9’s complement of 0 in the decimal system, just as 1 is the 1’s complement of 0 in the

binary system.

Thus, using three-digit signed numbers, A = 045 and B = 027 are positive numbers

with magnitudes 45 and 27, respectively. The number B can be subtracted from A as follows

A − B = 045 − 027

= 045 + 1000 − 1000 − 027

= 045 + (999 − 027) + 1 − 1000

= 045 + 972 + 1 − 1000

= 1018 − 1000

= 018

This gives the correct answer of +18.

Next consider the case where the minuend has lower value than the subtrahend. This

is illustrated by the computation

B − A = 027 − 045

= 027 + 1000 − 1000 − 045

= 027 + (999 − 045) + 1 − 1000

= 027 + 954 + 1 − 1000

= 982 − 1000

From this expression it appears that we still need to perform the subtraction 982 − 1000.

But as seen in Example 3.1, this can be rewritten as

982 = 1000 + B − A
= 1000 − (A − B)

Therefore, 982 is the negative number that results when forming the 10’s complement of

(A − B). From the previous computation we know that (A − B) = 018, which denotes +18.

Thus the signed number 982 is the 10’s complement representation of −18, which is the

required result.

These examples illustrate that signed numbers can be subtracted without using a sub-

traction operation that involves borrows. The only subtraction needed is in forming the 9’s

ISTUDY

3.3 SIGNED NUMBERS 135

complement of the subtrahend, in which case each digit is simply subtracted from 9. Thus

a circuit that forms the 9’s complement, combined with a normal adder circuit, will suffice

for both addition and subtraction of decimal signed numbers. A key point is that the hard-

ware needs to deal only with n digits if n-digit numbers are used. Any carry that may be

generated from the leftmost digit position is simply ignored.

The concept of subtracting a number by adding its radix-complement is general. If the

radix is r, then the r’s complement, Kr, of an n-digit number, N, is determined as Kr = rn −
N. The (r−1)’s complement, Kr−1, is defined as Kr−1 = (rn −1)−N; it is computed simply

by subtracting each digit of N from the value (r − 1). The (r − 1)’s complement is referred

to as the diminished-radix complement. Circuits for forming the (r − 1)’s complements are

simpler than those for general subtraction that involves borrows. The circuits are particularly

simple in the binary case, where the 1’s complement requires just inverting each bit.

Example 3.3In Figure 3.10 we illustrated the subtraction operation on binary numbers given in 2’s-

complement representation. Consider the computation (+5) − (+2) = (+3), using the ap-

proach discussed above. Each number is represented by a four-bit pattern. The value 24 is

represented as 10000. Then

0101 − 0010 = 0101 + (10000 − 0010) − 10000

= 0101 + (1111 − 0010) + 1 − 10000

= 0101 + 1101 + 1 − 10000

= 10011 − 10000

= 0011

Because 5 > 2, there is a carry from the fourth bit position. It represents the value 24,

denoted by the pattern 10000.

Example 3.4Consider now the computation (+2) − (+5) = (−3), which gives

0010 − 0101 = 0010 + (10000 − 0101) − 10000

= 0010 + (1111 − 0101) + 1 − 10000

= 0010 + 1010 + 1 − 10000

= 1101 − 10000

Because 2 < 5, there is no carry from the fourth bit position. The answer, 1101, is the

2’s-complement representation of −3. Note that

1101 = 10000 + 0010 − 0101

= 10000 − (0101 − 0010)

= 10000 − 0011

indicating that 1101 is the 2’s complement of 0011 (+3).

ISTUDY

136 C H A P T E R 3 ● NUMBER REPRESENTATION AND ARITHMETIC CIRCUITS

Example 3.5 Finally, consider the case where the subtrahend is a negative number. The computation

(+5) − (−2) = (+7) is done as follows

0101 − 1110 = 0101 + (10000 − 1110) − 10000

= 0101 + (1111 − 1110) + 1 − 10000

= 0101 + 0001 + 1 − 10000

= 0111 − 10000

While 5 > (−2), the pattern 1110 is greater than the pattern 0101 when the patterns are

treated as unsigned numbers. Therefore, there is no carry from the fourth bit position. The

answer 0111 is the 2’s complement representation of +7. Note that

0111 = 10000 + 0101 − 1110

= 10000 − (1110 − 0101)

= 10000 − 1001

and 1001 represents −7.

3.3.5 ARITHMETIC OVERFLOW

The result of addition or subtraction is supposed to fit within the significant bits used to

represent the numbers. If n bits are used to represent signed numbers, then the result must

be in the range −2n−1 to 2n−1 − 1. If the result does not fit in this range, then we say that

arithmetic overflow has occurred. To ensure the correct operation of an arithmetic circuit,

it is important to be able to detect the occurrence of overflow.

Figure 3.13 presents the four cases where 2’s-complement numbers with magnitudes of

7 and 2 are added. Because we are using four-bit numbers, there are three significant bits,

b2−0. When the numbers have opposite signs, there is no overflow. But if both numbers

have the same sign, the magnitude of the result is 9, which cannot be represented with just

three significant bits; therefore, overflow occurs. The key to determining whether overflow

++

1 0 1 1

1 0 0 1

0 0 1 0

1 0 0 1

0 1 1 1

0 0 1 0

7+()

2+()

9+()

+

++

0 1 1 1

1 0 0 1

1 1 1 0

0 1 0 1

0 1 1 1

1 1 1 0

7+()

5+()

+ 2–()

11

c4 0=

c3 1=

c4 0=

c3 0=

c4 1=

c3 1=

c4 1=

c3 0=

2+()

7–()

5–()

+

7–()

9–()

+ 2–()

Figure 3.13 Examples for determination of overflow.

ISTUDY

3.3 SIGNED NUMBERS 137

occurs is the carry-out from the MSB position, called c3 in the figure, and from the sign-bit

position, called c4. The figure indicates that overflow occurs when these carry-outs have

different values, and a correct sum is produced when they have the same value. Indeed, this

is true in general for both addition and subtraction of 2’s-complement numbers. As a quick

check of this statement, consider the examples in Figure 3.9 where the numbers are small

enough so that overflow does not occur in any case. In the top two examples in the figure,

there is a carry-out of 0 from both sign and MSB positions. In the bottom two examples,

there is a carry-out of 1 from both positions. Therefore, for the examples in Figures 3.9 and

3.13, the occurrence of overflow is detected by

Overflow = c3c4 + c3c4

= c3 ⊕ c4

For n-bit numbers we have

Overflow = cn−1 ⊕ cn

Thus the circuit in Figure 3.12 can be modified to include overflow checking with the ad-

dition of one XOR gate.

An alternative and more intuitive way of detecting the arithmetic overflow is to observe

that overflow occurs if both summands have the same sign but the resulting sum has a

different sign. Let X = x3x2x1x0 and Y = y3y2y1y0 represent four-bit 2’s-complement

numbers, and let S = s3s2s1s0 be the sum S = X + Y . Then

Overflow = x3y3s3 + x3y3s3

The carry-out and overflow signals indicate whether the result of a given addition is too

large to fit into the number of bits available to represent the sum. The carry-out is meaningful

only when unsigned numbers are involved, while the overflow is meaningful only in the

case of signed numbers. In a typical computer, it is prudent to use the same adder circuits

for dealing with both unsigned and signed operands, thus reducing the amount of circuitry

required. This means that both the carry-out and overflow signals should be generated, as

we have discussed. Then, a program instruction that specifies unsigned operands can use

the carry-out signal, while an instruction that has signed operands can use the overflow

signal.

3.3.6 PERFORMANCE ISSUES

When buying a digital system, such as a computer, the buyer pays particular attention to

the performance that the system is expected to provide and to the cost of acquiring the

system. Superior performance usually comes at a higher cost. However, a large increase in

performance can often be achieved at a modest increase in cost. A commonly used indicator

of the value of a system is its price/performance ratio.

The addition and subtraction of numbers are fundamental operations that are performed

frequently in the course of a computation. The speed with which these operations are per-

formed has a strong impact on the overall performance of a computer. In light of this, let us

take a closer look at the speed of the adder/subtractor unit in Figure 3.12. We are interested

in the largest delay from the time the operands X and Y are presented as inputs, until the

ISTUDY

138 C H A P T E R 3 ● NUMBER REPRESENTATION AND ARITHMETIC CIRCUITS

time all bits of the sum S and the final carry-out, cn, are valid. Most of this delay is caused by

the n-bit adder circuit. Assume that the adder is implemented using the ripple-carry struc-

ture in Figure 3.5 and that each full-adder stage is the circuit in Figure 3.3c. The delay for

the carry-out signal in this circuit, Δt, is equal to two gate delays. From Section 3.2.2 we

know that the final result of the addition will be valid after a delay of nΔt, which is equal to

2n gate delays. In addition to the delay in the ripple-carry path, there is also a delay in the

XOR gates that feed either the true or complemented value of Y to the adder inputs. If this

delay is equal to one gate delay, then the total delay of the circuit in Figure 3.12 is 2n + 1

gate delays. For a large n, say n = 32 or n = 64, the delay would lead to unacceptably poor

performance. Therefore, it is important to find faster circuits to perform addition.

The speed of any circuit is limited by the longest delay along the paths through the

circuit. In the case of the circuit in Figure 3.12, the longest delay is along the path from

the yi input, through the XOR gate and through the carry circuit of each adder stage. The

longest delay is often referred to as the critical-path delay, and the path that causes this

delay is called the critical path.

3.4 FAST ADDERS

The performance of a large digital system is dependent on the speed of circuits that form

its various functional units. Obviously, better performance can be achieved using faster

circuits. This can be accomplished by using superior (usually newer) technology in which

the delays in basic gates are reduced. But it can also be accomplished by changing the

overall structure of a functional unit, which may lead to even more impressive improvement.

In this section we will discuss an alternative for implementation of an n-bit adder, which

substantially reduces the time needed to add numbers.

3.4.1 CARRY-LOOKAHEAD ADDER

To reduce the delay caused by the effect of carry propagation through the ripple-carry adder,

we can attempt to evaluate quickly for each stage whether the carry-in from the previous

stage will have a value 0 or 1. If a correct evaluation can be made in a relatively short time,

then the performance of the complete adder will be improved.

From Figure 3.3b the carry-out function for stage i can be realized as

ci+1 = xiyi + xici + yici

If we factor this expression as

ci+1 = xiyi + (xi + yi)ci

then it can be written as

ci+1 = gi + pici [3.3]

where

gi = xiyi

pi = xi + yi

ISTUDY

3.4 FAST ADDERS 139

The function gi is equal to 1 when both inputs xi and yi are equal to 1, regardless of the value

of the incoming carry to this stage, ci. Since in this case stage i is guaranteed to generate a

carry-out, g is called the generate function. The function pi is equal to 1 when at least one of

the inputs xi and yi is equal to 1. In this case a carry-out is produced if ci = 1. The effect is

that the carry-in of 1 is propagated through stage i; hence pi is called the propagate function.

Expanding the expression 3.3 in terms of stage i − 1 gives

ci+1 = gi + pi(gi−1 + pi−1ci−1)

= gi + pigi−1 + pipi−1ci−1

The same expansion for other stages, ending with stage 0, gives

ci+1 = gi + pigi−1 + pipi−1gi−2 +⋯ + pipi−1 ⋯ p2p1g0 + pipi−1 ⋯ p1p0c0 [3.4]

This expression represents a two-level AND-OR circuit in which ci+1 is evaluated very

quickly. An adder based on this expression is called a carry-lookahead adder.

To appreciate the physical meaning of expression 3.4, it is instructive to consider its

effect on the construction of a fast adder in comparison with the details of the ripple-carry

adder. We will do so by examining the detailed structure of the two stages that add the

least-significant bits, namely, stages 0 and 1. Figure 3.14 shows the first two stages of a

x1 y1

g1 p1

s1

Stage 1

x0 y0

g0 p0

s0

Stage 0

c0

c1
c2

Figure 3.14 A ripple-carry adder based on expression 3.3.

ISTUDY

140 C H A P T E R 3 ● NUMBER REPRESENTATION AND ARITHMETIC CIRCUITS

ripple-carry adder in which the carry-out functions are implemented as indicated in expres-

sion 3.3. Each stage is essentially the circuit from Figure 3.3c except that an extra OR gate

is used (which produces the pi signal), instead of an AND gate because we factored the

sum-of-products expression for ci+1.

The slow speed of the ripple-carry adder is caused by the long path along which a carry

signal must propagate. In Figure 3.14 the critical path is from inputs x0 and y0 to the output

c2. It passes through five gates, as highlighted in red. The path in other stages of an n-bit

adder is the same as in stage 1. Therefore, the total number of gate delays along the critical

path is 2n + 1.

Figure 3.15 gives the first two stages of the carry-lookahead adder, using expression

3.4 to implement the carry-out functions. Thus

c1 = g0 + p0c0

c2 = g1 + p1g0 + p1p0c0

x1 y1

g1 p1

s1

x0 y0

s0

c2

x0 y0

c0

c1

g0 p0

Figure 3.15 The first two stages of a carry-lookahead adder.

ISTUDY

3.4 FAST ADDERS 141

Block

x31 24–

c32 c24

y31 24–

s31 24–

x15 8–

c16

y15 8–

s15 8–

c8

x7 0– y7 0–

s7 0–

c03
Block

1
Block

0

Figure 3.16 A hierarchical carry-lookahead adder with ripple-carry between blocks.

This circuit does not have the long ripple-carry path that is present in Figure 3.14. Instead,

all carry signals are produced after three gate delays: one gate delay is needed to produce

the generate and propagate signals g0, g1, p0, and p1, and two more gate delays are needed

to produce c1 and c2 concurrently. Extending the circuit to n bits, the final carry-out signal

cn would also be produced after only three gate delays because expression 3.4 is just a large

two-level (AND-OR) circuit.

The total delay in the n-bit carry-lookahead adder is four gate delays. The values of

all gi and pi signals are determined after one gate delay. It takes two more gate delays to

evaluate all carry signals. Finally, it takes one more gate delay (XOR) to generate all sum

bits. The key to the good performance of the adder is quick evaluation of carry signals.

The complexity of an n-bit carry-lookahead adder increases rapidly as n becomes

larger. To reduce the complexity, we can use a hierarchical approach in designing large

adders. Suppose that we want to design a 32-bit adder. We can divide this adder into 4

eight-bit blocks, such that block 0 adds bits 7 … 0, block 1 adds bits 15 … 8, block 2 adds

bits 23 … 16, and block 3 adds bits 31 … 24. Then we can implement each block as an

eight-bit carry-lookahead adder. The carry-out signals from the four blocks are c8, c16, c24,

and c32. Now we have two possibilities. We can connect the four blocks as four stages in a

ripple-carry adder. Thus while carry-lookahead is used within each block, the carries ripple

between the blocks. This circuit is illustrated in Figure 3.16.

Instead of using a ripple-carry approach between blocks, a faster circuit can be de-

signed in which a second-level carry-lookahead is performed to produce quickly the carry

signals between blocks. The structure of this “hierarchical carry-lookahead adder” is shown

in Figure 3.17. Each block in the top row includes an eight-bit carry-lookahead adder, based

on generate and propagate signals for each stage in the block, as discussed before. How-

ever, instead of producing a carry-out signal from the most-significant bit of the block,

each block produces generate and propagate signals for the entire block. Let Gj and Pj de-

note these signals for each block j. Now Gj and Pj can be used as inputs to a second-level

carry-lookahead circuit at the bottom of Figure 3.17, which evaluates all carries between

blocks. We can derive the block generate and propagate signals for block 0 by examining

the expression for c8

c8 = g7 + p7g6 + p7p6g5 + p7p6p5g4 + p7p6p5p4g3 + p7p6p5p4p3g2

+ p7p6p5p4p3p2g1 + p7p6p5p4p3p2p1g0 + p7p6p5p4p3p2p1p0c0

ISTUDY

142 C H A P T E R 3 ● NUMBER REPRESENTATION AND ARITHMETIC CIRCUITS

Block

x15 8– y15 8– x7 0– y7 0–

3
Block

1
Block

0

Second-level lookahead

c0

s7 0–

P0G0P1G1P3G3

s15 8–s31 24–

c8c16c32

x31 24– y31 24–

c24

Figure 3.17 A hierarchical carry-lookahead adder.

The last term in this expression specifies that, if all eight propagate functions are 1, then

the carry-in c0 is propagated through the entire block. Hence

P0 = p7p6p5p4p3p2p1p0

The rest of the terms in the expression for c8 represent all other cases when the block pro-

duces a carry-out. Thus

G0 = g7 + p7g6 + p7p6g5 +⋯ + p7p6p5p4p3p2p1g0

The expression for c8 in the hierarchical adder is given by

c8 = G0 + P0c0

For block 1 the expressions for G1 and P1 have the same form as for G0 and P0 except that

each subscript i is replaced by i + 8. The expressions for G2, P2, G3, and P3 are derived in

the same way. The expression for the carry-out of block 1, c16, is

c16 = G1 + P1c8

= G1 + P1G0 + P1P0c0

ISTUDY

3.4 FAST ADDERS 143

Similarly, the expressions for c24 and c32 are

c24 = G2 + P2G1 + P2P1G0 + P2P1P0c0

c32 = G3 + P3G2 + P3P2G1 + P3P2P1G0 + P3P2P1P0c0

Using this scheme, it takes two more gate delays to produce the carry signals c8, c16, c24,

and c32 than the time needed to generate the Gj and Pj functions. Therefore, since Gj and Pj
require three gate delays, c8, c16, c24, and c32 are available after five gate delays. The time

needed to add two 32-bit numbers involves these five gate delays plus two more to produce

the internal carries in blocks 1, 2, and 3, plus one more gate delay (XOR) to generate each

sum bit. This gives a total of eight gate delays.

In Section 3.3.6 we determined that it takes 2n + 1 gate delays to add two numbers

using a ripple-carry adder. For 32-bit numbers this implies 65 gate delays. It is clear that

the carry-lookahead adder offers a large performance improvement. The trade-off is much

greater complexity of the required circuit.

Technology Considerations
The preceding delay analysis assumes that gates with any number of inputs can be

used. But, the number of gate inputs, referred to as the fan-in of the gate, has to be limited

in practice as we discuss in Appendix B. Therefore the reality of fan-in constraints must

be taken into account. To illustrate this problem, consider the expressions for the first eight

carries:

c1 = g0 + p0c0

c2 = g1 + p1g0 + p1p0c0

⋮

c8 = g7 + p7g6 + p7p6g5 + p7p6p5g4 + p7p6p5p4g3 + p7p6p5p4p3g2

+ p7p6p5p4p3p2g1 + p7p6p5p4p3p2p1g0 + p7p6p5p4p3p2p1p0c0

Suppose that the maximum fan-in of the gates is four inputs. Then it is impossible to im-

plement all of these expressions with a two-level AND-OR circuit. The biggest problem is

c8, where one of the AND gates requires nine inputs; moreover, the OR gate also requires

nine inputs. To meet the fan-in constraint, we can rewrite the expression for c8 as

c8 = (g7 + p7g6 + p7p6g5 + p7p6p5g4) + [(p7p6p5p4)(g3 + p3g2 + p3p2g1 + p3p2p1g0)]

+ (p7p6p5p4)(p3p2p1p0)c0

To implement this expression we need ten AND gates and three OR gates. The propagation

delay in generating c8 consists of one gate delay to develop all gi and pi, two gate delays

to produce the sum-of-products terms in parentheses, one gate delay to form the product

term in square brackets, and one delay for the final ORing of terms. Hence c8 is valid after

five gate delays, rather than the three gate delays that would be needed without the fan-in

constraint.

Because fan-in limitations reduce the speed of the carry-lookahead adder, some devices

that are characterized by low fan-in include dedicated circuitry for implementation of fast

adders. Examples of such devices include FPGAs, which are described in Appendix B.

ISTUDY

144 C H A P T E R 3 ● NUMBER REPRESENTATION AND ARITHMETIC CIRCUITS

3.5 DESIGN OF ARITHMETIC CIRCUITS
USING CAD TOOLS

In this section we show how the arithmetic circuits can be designed by using CAD tools.

3.5.1 DESIGN OF ARITHMETIC CIRCUITS
USING SCHEMATIC CAPTURE

An obvious way to design an arithmetic circuit via schematic capture is to draw a schematic

that contains the necessary logic gates. For example, to create an n-bit adder, we could first

draw a schematic that represents a full-adder. Then an n-bit ripple-carry adder could be

created by drawing a higher-level schematic that connects together n instances of the full-

adder. A hierarchical schematic created in this manner would look like the circuit shown in

Figure 3.5. We could also use this methodology to create an adder/subtractor circuit, such

as the circuit depicted in Figure 3.12.

The main problem with this approach is that it is cumbersome, especially when the

number of bits is large. This issue is even more apparent if we consider creating a schematic

for a carry-lookahead adder. As shown in Section 3.4.1, the carry circuitry in each stage

of the carry-lookahead adder becomes increasingly more complex. Hence it is necessary

to draw a separate schematic for each stage of the adder. A better approach for creating

arithmetic circuits via schematic capture is to use predefined subcircuits.

The schematic capture tools provide a library of graphical symbols that represent basic

logic gates. These gates are used to create schematics of relatively simple circuits. In addi-

tion to basic gates, most schematic capture tools also provide a library of commonly used

circuits, such as adders. Each circuit is provided as a module that can be imported into a

schematic and used as part of a larger circuit.

Different vendors of CAD tools have their specific approaches to how schematic cap-

ture is performed. Instead of dealing with the schematic capture approach, we will concen-

trate on the more convenient and flexible approach of using VHDL to design our circuits.

3.5.2 DESIGN OF ARITHMETIC CIRCUITS USING VHDL

We said in Section 3.5.1 that an obvious way to create an n-bit adder is to draw a hierarchical

schematic that contains n full-adders. This approach can also be followed with VHDL, by

first creating a VHDL entity for a full-adder and then creating a higher-level entity that

uses n instances of the full-adder. As a first attempt at designing arithmetic circuits by

using VHDL, we will show how to write the hierarchical code for a ripple-carry adder.

The complete code for a full-adder entity is given in Figure 3.18. It has the inputs Cin,

x, and y and produces the outputs s and Cout. The sum, s, and carry-out, Cout, are described

by logic equations.

We can now create a separate VHDL entity for the ripple-carry adder, which instanti-

ates the fulladd entity as a subcircuit. One method of doing this is shown in Figure 3.19.

The entity comprises the code for a four-bit ripple-carry adder, named adder4. One of the

four-bit numbers to be added is represented by the four signals x3, x2, x1, x0, and the other

ISTUDY

3.5 DESIGN OF ARITHMETIC CIRCUITS USING CAD TOOLS 145

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

ENTITY fulladd IS

PORT (Cin, x, y : IN STD LOGIC ;

s, Cout : OUT STD LOGIC) ;

END fulladd

fulladd

;

ARCHITECTURE LogicFunc OF IS

BEGIN

s < = x XOR y XOR Cin ;

Cout < = (x AND y) OR (Cin AND x) OR (Cin AND y) ;

END LogicFunc ;

Figure 3.18 VHDL code for the full-adder.

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

ENTITY adder4 IS

PORT (Cin : IN STD LOGIC ;

x3, x2, x1, x0 : IN STD LOGIC ;

y3, y2, y1, y0 : IN STD LOGIC ;

s3, s2, s1, s0 : OUT STD LOGIC ;

Cout : OUT STD LOGIC) ;

END adder4 ;

ARCHITECTURE Structure OF adder4 IS

SIGNAL c1, c2, c3 : STD LOGIC ;

COMPONENT fulladd

PORT (Cin, x, y : IN STD LOGIC ;

s, Cout : OUT STD LOGIC) ;

END COMPONENT ;

BEGIN

stage0: fulladd PORT MAP (Cin, x0, y0, s0, c1) ;

stage1: fulladd PORT MAP (c1, x1, y1, s1, c2) ;

stage2: fulladd PORT MAP (c2, x2, y2, s2, c3) ;

stage3: fulladd PORT MAP (

Cin => =>=> => =>c3, Cout Cout, x x3, y y3, s s3) ;

END Structure ;

Figure 3.19 VHDL code for a four-bit adder.

ISTUDY

146 C H A P T E R 3 ● NUMBER REPRESENTATION AND ARITHMETIC CIRCUITS

number is represented by y3, y2, y1, y0. The sum is represented by s3, s2, s1, s0. The entity

incorporates a carry input, Cin, into the least-significant bit position and a carry output,

Cout, from the most-significant bit position.

As discussed in Section 2.10.3, signals that are needed internally in an entity, but are

not either inputs or outputs, can be declared in the architecture. Three such signals are

declared in Figure 3.19 called c1, c2, and c3, which are used as carry-out signals from

the first three stages of the adder. The COMPONENT declaration statement, introduced

in Section 2.10.3, allows the fulladd entity to be used as a component (subcircuit) in the

architecture body.

The four-bit adder in Figure 3.19 is described using four instantiation statements. Each

statement begins with an instance name, which can be any legal VHDL name, followed by

the colon character. The names must be unique. The least-significant stage in the adder is

named stage0 and the most-significant stage is stage3. Observe that in the first three instan-

tiation statements, the signals are listed in the same order as in the fulladd COMPONENT,

namely, the order Cin, x, y, s, Cout. It is also possible to list the signal names in other orders

by specifying explicitly which signal is to be connected to which port on the component. An

example of this style is shown for the stage3 instance. This style of component instantiation

is known as named association in the VHDL jargon, whereas the style used for the other

three instances is called positional association. Note that for the stage3 instance, the signal

name Cout is used as both the name of the component port and the name of the output

in the adder4 entity. This does not cause a problem for the VHDL compiler, because the

component port name is always the one on the left side of the => designator.

As discussed in Section 2.10.3, the signal names associated with each instance of the

fulladd component implicitly specify how the full-adders are connected together. For exam-

ple, the carry-out of the stage0 instance is connected to the carry-in of the stage1 instance.

The fulladd entity may be included in the same VHDL source-code file as the adder4 en-

tity, or it may comprise a separate file. The circuit that would be synthesized by a VHDL

compiler has the same structure as the one shown in Figure 3.5.

Alternative Style of Code
In Figure 3.19 a component declaration statement for the fulladd entity is included

in the adder4 architecture. An alternative approach is to place the component declaration

statement in a VHDL package. In general, a package allows VHDL constructs to be defined

in one source-code file and then used in other files. Two examples of constructs that are often

placed in a package are data type declarations and component declarations.

We have already seen an example of using a package for a data type. In Chapter 2 we

introduced the package named std logic 1164, which defines the STD LOGIC signal type.

Recall that to access this package, VHDL code must include the statements

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

These statements appear in Figures 3.18 and 3.19 because the STD LOGIC type is used in

the code. The first statement provides access to the library named ieee. As we discussed in

Section 2.10.1, the library represents the location, or directory, in the computer file system

where the std logic 1164 package is stored.

ISTUDY

3.5 DESIGN OF ARITHMETIC CIRCUITS USING CAD TOOLS 147

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

PACKAGE fulladd package IS

COMPONENT fulladd

PORT (Cin, x, y : IN STD LOGIC ;

s, Cout : OUT STD LOGIC) ;

END COMPONENT ;

END fulladd package ;

Figure 3.20 Declaration of a package.

The code in Figure 3.20 defines the package named fulladd package. This code can be

stored in a separate VHDL source-code file, or it can be included in the same file used to

store the code for the fulladd entity. The VHDL syntax requires that the package declaration

have its own LIBRARY and USE clauses; hence they are included in the code. Inside the

package the fulladd entity is declared as a COMPONENT. When this code is compiled, the

fulladd package package is created and stored in the working directory where the code is stored.

Any VHDL entity can then use the fulladd component as a subcircuit by making use

of the fulladd package package. The package is accessed using the two statements

LIBRARY work;

USE work.fulladd package.all ;

The library named work represents the working directory where the VHDL code that defines

the package is stored. This statement is actually not necessary, because the VHDL compiler

always has access to the working directory.

Figure 3.21 shows how the code in Figure 3.19 can be rewritten to make use of the

fulladd package. The code is the same as that in Figure 3.19 with two exceptions: the extra

USE clause is added, and the component declaration statement is deleted in the architecture.

The circuits synthesized from the two versions of the code are identical.

In Figures 3.19 and 3.21, each of the four-bit inputs and the four-bit output of the adder

is represented using single-bit signals. A more convenient style of code is to use multibit

signals to represent the numbers.

3.5.3 REPRESENTATION OF NUMBERS IN VHDL CODE

Just as a number is represented in a logic circuit as signals on multiple wires, a number is

represented in VHDL code as a multibit SIGNAL data object. An example of a multibit

signal is

SIGNAL C : STD LOGIC VECTOR (1 TO 3) ;

The STD LOGIC VECTOR data type represents a linear array of STD LOGIC data

objects. In VHDL jargon the STD LOGIC VECTOR is said to be a subtype of STD LOGIC.

There exists a similar subtype, called BIT VECTOR, corresponding to the BIT type that

was used in Section 2.10. The preceding SIGNAL declaration defines C as a three-bit

ISTUDY

148 C H A P T E R 3 ● NUMBER REPRESENTATION AND ARITHMETIC CIRCUITS

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

USE work.fulladd package.all ;

ENTITY adder4 IS

PORT (Cin : IN STD LOGIC ;

x3, x2, x1, x0 : IN STD LOGIC ;

y3, y2, y1, y0 : IN STD LOGIC ;

s3, s2, s1, s0 : OUT STD LOGIC ;

Cout : OUT STD LOGIC) ;

END adder4 ;

ARCHITECTURE Structure OF adder4 IS

SIGNAL c1, c2, c3 : STD LOGIC ;

BEGIN

stage0: fulladd PORT MAP (Cin, x0, y0, s0, c1) ;

stage1: fulladd PORT MAP (c1, x1, y1, s1, c2) ;

stage2: fulladd PORT MAP (c2, x2, y2, s2, c3) ;

stage3: fulladd PORT MAP (

Cin c3, Cout Cout, x x3, y y3, s s3) ;

END Structure ;

=> => => => =>

Figure 3.21 A different way of specifying a four-bit adder.

STD LOGIC signal. It can be used in VHDL code as a three-bit quantity simply by us-

ing the name C, or else each individual bit can be referred to separately using the names

C(1), C(2), and C(3). The syntax 1 TO 3 in the declaration statement specifies that the left-

most bit in C is called C(1) and the rightmost bit is called C(3). A three-bit signal value can

be assigned to C as follows:

C <= ''100'' ;

The three-bit value is denoted using double quotes, instead of the single quotes used for

one-bit values, as in '1' or '0' . The assignment statement results in C(1) = 1, C(2) = 0,

and C(3) = 0. The numbering of the bits in the signal C, with the highest index used

for the leftmost bit, is a natural way of representing signals that are simply grouped to-

gether for convenience but do not represent a number. For example, this numbering scheme

would be an appropriate way of declaring the three carry signals named c1, c2, and c3 in

Figure 3.21. However, when a multibit signal is used to represent a binary number, it makes

more sense to number the bits in the opposite way, with the highest index used for the left-

most (most-significant) bit. For this purpose VHDL provides a second way to declare a

multibit signal

SIGNAL X : STD LOGIC VECTOR (3 DOWNTO 0) ;

This statement defines X as a four-bit STD LOGIC VECTOR signal. The syntax 3 DOWNTO

0 specifies that the leftmost (most-significant) bit in X is called X(3) and the rightmost (least-

significant) bit is X(0). This scheme is a more natural way of numbering the bits if X is to be

ISTUDY

3.5 DESIGN OF ARITHMETIC CIRCUITS USING CAD TOOLS 149

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

USE work.fulladd package.all ;

ENTITY adder4 IS

PORT (Cin : IN STD LOGIC ;

X, Y : IN STD LOGIC VECTOR(3 DOWNTO 0) ;

S : OUT STD LOGIC VECTOR(3 DOWNTO 0) ;

Cout : OUT STD LOGIC) ;

END adder4 ;

ARCHITECTURE Structure OF adder4 IS

SIGNAL C : STD LOGIC VECTOR(1 TO 3) ;

BEGIN

stage0: fulladd PORT MAP (Cin, X(0), Y(0), S(0), C(1)) ;

stage1: fulladd PORT MAP (C(1), X(1), Y(1), S(1), C(2)) ;

stage2: fulladd PORT MAP (C(2), X(2), Y(2), S(2), C(3)) ;

stage3: fulladd PORT MAP (C(3), X(3), Y(3), S(3), Cout) ;

END Structure ;

Figure 3.22 A four-bit adder defined using multibit signals.

used in VHDL code to represent a binary number because the index of each bit corresponds

to its position in the number. The assignment statement

X <= ''1100'' ;

results in X(3) = 1, X(2) = 1, X(1) = 0, and X(0) = 0.

Figure 3.22 illustrates how the code in Figure 3.21 can be written to use multibit signals.

The data inputs are the four-bit signals X and Y , and the sum output is the four-bit signal S.

The intermediate carry signals are declared in the architecture as the three-bit signal C.

Using hierarchical VHDL code to define large arithmetic circuits can be cumbersome.

For this reason, arithmetic circuits are usually implemented in VHDL in a different way,

using arithmetic assignment statements and multibit signals.

3.5.4 ARITHMETIC ASSIGNMENT STATEMENTS

If the following signals are defined

SIGNAL X, Y, S : STD LOGIC VECTOR (15 DOWNTO 0) ;

then the arithmetic assignment statement

S <= X + Y ;

represents a 16-bit adder.

In addition to the + operator, which is used for addition, VHDL provides other arith-

metic operators. They are listed in Table A.1, in Appendix A. Complete VHDL code that

includes the preceding statement is given in Figure 3.23. The std logic 1164 package does

ISTUDY

150 C H A P T E R 3 ● NUMBER REPRESENTATION AND ARITHMETIC CIRCUITS

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

USE ieee.std logic signed.all ;

ENTITY adder16 IS

PORT (X, Y : IN STD LOGIC VECTOR(15 DOWNTO 0) ;

S : OUT STD LOGIC VECTOR(15 DOWNTO 0)) ;

END adder16 ;

ARCHITECTURE Behavior OF adder16 IS

BEGIN

S <= X + Y ;

END Behavior ;

Figure 3.23 VHDL code for a 16-bit adder.

not specify that STD LOGIC signals can be used with arithmetic operators. The second

package included in the code, named std logic signed, allows the signals to be used in this

way. When the code in the figure is translated by the VHDL compiler, it generates an adder

circuit to implement the + operator.

The code in Figure 3.23 does not include carry-in or carry-out signals. Also, it does

not provide the arithmetic overflow signal. One way in which these signals can be added is

given in Figure 3.24. The 17-bit signal named Sum is defined in the architecture. The extra

bit, Sum(16), is used for the carry-out from bit-position 15 in the adder. The statement used

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

USE ieee.std logic signed.all ;

ENTITY adder16 IS

PORT (Cin : IN STD LOGIC ;

X, Y : IN STD LOGIC VECTOR(15 DOWNTO 0) ;

S : OUT STD LOGIC VECTOR(15 DOWNTO 0) ;

Cout, Overflow : OUT STD LOGIC) ;

END adder16 ;

ARCHITECTURE Behavior OF adder16 IS

SIGNAL Sum : STD LOGIC VECTOR(16 DOWNTO 0) ;

BEGIN

Sum <=('0' '0'& X) + (& Y) +Cin ;

S <=Sum(15 DOWNTO 0) ;

Cout <= Sum(16) ;

Overflow <=Sum(16) XOR X(15) XOR Y(15) XOR Sum(15) ;

END Behavior ;

Figure 3.24 The 16-bit adder from Figure 3.23 with carry and overflow signals.

ISTUDY

3.5 DESIGN OF ARITHMETIC CIRCUITS USING CAD TOOLS 151

to assign the sum of X, Y, and the carry-in, Cin, to the Sum signal has an unusual syntax.

The meaning of the terms in parentheses, ('0' & X) and ('0' & Y), is that a 0 is concatenated

to the left of the 16-bit signals X and Y to create a 17-bit signal. In VHDL the & operator is

called the concatenate operator. The reader should not confuse this meaning with the more

traditional meaning of & in other hardware description languages in which it is the logical

AND operator. The concatenate operator is needed because the VHDL compiler requires

that the X and Y operands of the adder have the same bit-width as the resulting Sum.

Another detail to observe from the figure is the statement

S <= Sum(15 DOWNTO 0) ;

This statement assigns the lower 16 bits of Sum to the output sum S. The next statement

assigns the carry-out from the addition, Sum(16), to the carry-out signal, Cout. The ex-

pression for arithmetic overflow was defined in Section 3.3.5 as cn−1 ⊕ cn. In our case, cn
corresponds to Sum(16), but there is no direct way of accessing cn−1, which is the carry-out

from bit-position 14. The reader should verify that the expression X(15)⊕Y(15)⊕Sum(15)

corresponds to cn−1.

The code in Figure 3.24 uses the package std logic signed to allow the STD LOGIC

signals to be used with arithmetic operators. The std logic signed package actually uses an-

other package, which is named std logic arith. This package defines two data types, called

SIGNED and UNSIGNED, for use in arithmetic circuits that deal with signed or unsigned

numbers. These data types are the same as the STD LOGIC VECTOR type; each one is

an array of STD LOGIC signals. The code in Figure 3.24 can be written to directly use the

std logic arith package as shown in Figure 3.25. The multibit signals X, Y , S, and Sum have

the type SIGNED. The code is otherwise identical to that in Figure 3.24 and results in the

same circuit.

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

USE ieee.std logic arith.all ;

ENTITY adder16 IS

PORT (Cin : IN STD LOGIC ;

X, Y : IN SIGNED(15 DOWNTO 0) ;

S : OUT SIGNED(15 DOWNTO 0) ;

Cout, Overflow : OUT STD LOGIC) ;

END adder16 ;

ARCHITECTURE Behavior OF adder16 IS

SIGNAL Sum : SIGNED(16 DOWNTO 0) ;

BEGIN

S Sum(15 DOWNTO 0) ;

Cout Sum(16);

Overflow Sum(16) XOR X(15) XOR Y(15) XOR Sum(15) ;

END Behavior ;

Sum (& X) + (& Y) + Cin ;<=

<=

<=

<=

'0' '0'

Figure 3.25 Use of the arithmetic package.

ISTUDY

152 C H A P T E R 3 ● NUMBER REPRESENTATION AND ARITHMETIC CIRCUITS

ENTITY adder16 IS

PORT (X, Y : IN INTEGER RANGE -32768 TO 32767 ;

S : OUT INTEGER RANGE -65536 TO 65535) ;

END adder16 ;

ARCHITECTURE Behavior OF adder16 IS

BEGIN

S <= X + Y ;

END Behavior ;

Figure 3.26 The 16-bit adder from Figure 3.23 using INTEGER signals.

It is an arbitrary choice whether to use the std logic signed package and STD LOGIC

VECTOR signals, as in Figure 3.24, or the std logic arith package and SIGNED signals,

as in Figure 3.25. For use with unsigned numbers, there are also two options. We can use

the std logic unsigned package with STD LOGIC VECTOR signals or the std logic arith
package with UNSIGNED signals. For our example code in Figures 3.24 and 3.25, the

same circuit would be generated whether we assume signed or unsigned numbers. But for

unsigned numbers we should not produce a separate Overflow output, because the carry-out

represents the arithmetic overflow for unsigned numbers.

Before leaving our discussion of arithmetic statements in VHDL, we should mention

another signal data type that can be used for arithmetic. The following statement defines

the signal X as an INTEGER

SIGNAL X : INTEGER RANGE −32768 TO 32767 ;

For an INTEGER data object, the number of bits is not specified explicitly. Instead, the

range of numbers to be represented is specified. For a 16-bit signed integer, the range of

representable numbers is −32768 to 32767. An example of using the INTEGER data type

in code corresponding to Figure 3.23 is shown in Figure 3.26. No LIBRARY or USE clause

appears in the code, because the INTEGER type is predefined in standard VHDL. Although

the code in the figure is straightforward, it is more difficult to modify this code to include

carry signals and the overflow output shown in Figures 3.24 and 3.25. The method that we

used, in which the bits from the signal Sum are used to define the carry-out and arithmetic

overflow signals, cannot be used for INTEGER objects. To prevent overflow the sum output

S in Figure 3.26 has a range that is double that of the inputs X and Y.

3.6 MULTIPLICATION

Before we discuss the general issue of multiplication, we should note that a binary number,

B, can be multiplied by 2 simply by adding a zero to the right of its least-significant bit.

This effectively moves all bits of B to the left, and we say that B is shifted left by one bit

position. Thus if B = bn−1bn−2 ⋯ b1b0, then 2 × B = bn−1bn−2 ⋯ b1b00. (We have already

used this fact in Section 3.2.3.) Similarly, a number is multiplied by 2k by shifting it left by

k bit positions. This is true for both unsigned and signed numbers.

ISTUDY

3.6 MULTIPLICATION 153

We should also consider what happens if a binary number is shifted right by k bit

positions. According to the positional number representation, this action divides the number

by 2k. For unsigned numbers the shifting amounts to adding k zeros to the left of the most-

significant bit. For example, if B is an unsigned number, then B ÷ 2 = 0bn−1bn−2 ⋯ b2b1.

Note that bit b0 is lost when shifting to the right. For signed numbers it is necessary to

preserve the sign. This is done by shifting the bits to the right and filling from the left with

the value of the sign bit. Hence if B is a signed number, then B÷2 = bn−1bn−1bn−2 ⋯ b2b1.

For instance, if B = 011000 = (24)10, then B ÷ 2 = 001100 = (12)10 and B ÷ 4 =
000110 = (6)10. Similarly, if B = 101000 = −(24)10, then B ÷ 2 = 110100 = −(12)10 and

B ÷ 4 = 111010 = −(6)10.

Now we can turn our attention to the general task of multiplication. Two binary num-

bers can be multiplied using the same method as we use for decimal numbers. We will focus

our discussion on multiplication of unsigned numbers. Figure 3.27a shows how multiplica-

tion is performed manually, using four-bit numbers. Each multiplier bit is examined from

right to left. If a bit is equal to 1, an appropriately shifted version of the multiplicand is

1 1 1 0

1 1 1 0

1 1 1 0

0 0 0 0

1 1 1 0

1 0 0 1 1 0 1 0

Multiplicand M

Multiplier Q

Product P

(14)

(11)

(154)

1 1 1 0

1 1 1 0

1 0 1 1

1 1 1 0

1 0 0 1 1 0 1 0

Multiplicand M

Multiplier Q

Product P

(14)

(11)

(154)

1 0 1 0 1

0 0 0 0

0 1 0 1 0

1 1 1 0

Partial product 0

Partial product 1

Partial product 2

(a) Multiplication by hand (b) Using multiple adders

q0m0

p0p1p2p3p4p6p7 p5

q0m1q0m2q0m3

q1m0q1m1q1m2q1m3

q2m0q2m1q2m2q2m3

q3m0q3m1q3m2q3m3

(c) Hardware implementation

×

m0m1m2m3

q0q1q2q3

Partial product 1

Partial product 2

Partial product 0

PP11PP12PP13PP14PP15

PP22PP23PP24PP25PP26

+

+

+

+

+

+

×

1 0 1 1×

Product P

Figure 3.27 Multiplication of unsigned numbers.

ISTUDY

154 C H A P T E R 3 ● NUMBER REPRESENTATION AND ARITHMETIC CIRCUITS

added to form a partial product. If the multiplier bit is equal to 0, then nothing is added.

The sum of all shifted versions of the multiplicand is the desired product. Note that the

product occupies eight bits.

3.6.1 ARRAY MULTIPLIER FOR UNSIGNED NUMBERS

Figure 3.27b indicates how multiplication may be performed by using multiple adders. In

each step a four-bit adder is used to compute the new partial product. Note that as the

computation progresses, the least-significant bits are not affected by subsequent additions;

hence they can be passed directly to the final product, as indicated by red arrows. Of course,

these bits are a part of the partial products as well.

The same scheme can be used to design a multiplier circuit. We will stay with four-

bit numbers to keep the discussion simple. Let the multiplicand, multiplier, and product

be denoted as M = m3m2m1m0, Q = q3q2q1q0, and P = p7p6p5p4p3p2p1p0, respectively.

Figure 3.27c shows the required operations. Partial product 0 is obtained by using the AND

of q0 with each bit of M, which produces 0 if q0 = 0 and M if q0 = 1. Thus

PP0 = m3q0 m2q0 m1q0 m0q0

Partial product 1, PP1, is generated by adding PP0 to a shifted version of M that is ANDed

with q1. Similarly, partial product PP2 is generated using the AND of q2 with M shifted by

another bit position and adding to PP1, and so on.

A circuit that implements the preceding operations is arranged in an array, as shown in

Figure 3.28. In this figure the AND gates and full-adders that produce the partial products

are shown in red, in the same way as the red highlighted rows in Figure 3.27c. The full-

adders are connected to form ripple-carry adders. It is possible to design faster multipliers

by using other types of adders.

3.6.2 MULTIPLICATION OF SIGNED NUMBERS

Multiplication of unsigned numbers illustrates the main issues involved in the design of

multiplier circuits. Multiplication of signed numbers is somewhat more complex.

If the multiplier operand is positive, it is possible to use essentially the same scheme as

for unsigned numbers. For each bit of the multiplier operand that is equal to 1, a properly

shifted version of the multiplicand must be added to the partial product. The multiplicand

can be either positive or negative.

Since shifted versions of the multiplicand are added to the partial products, it is impor-

tant to ensure that the numbers involved are represented correctly. For example, if the two

rightmost bits of the multiplier are both equal to 1, then the first addition must produce the

partial product PP1 = M + 2M, where M is the multiplicand. If M = mn−1mn−2 ⋯m1m0,

then PP1 = mn−1mn−2 ⋯m1m0 + mn−1mn−2 ⋯m1m00. The adder that performs this ad-

dition comprises circuitry that adds two operands of equal length. Since shifting the mul-

tiplicand to the left, to generate 2M, results in one of the operands having n + 1 bits, the

required addition has to be performed using the second operand, M, represented also as

an (n + 1)-bit number. An n-bit signed number is represented as an (n + 1)-bit number

by using sign extension, that is, by replicating the sign bit as the new leftmost bit. Thus

M = mn−1mn−2 ⋯m1m0 is represented using (n + 1) bits as M = mn−1mn−1mn−2 ⋯m1m0.

ISTUDY

3.6 MULTIPLICATION 155

q3

q2

q0

m1

FA

FA

m2

m3

q1

m0

FA

m0

FA

FA

m1

m2

0

FA

m0

m1

0

0

m0

m2

FA

FA

m3

m1

FA

0

m3

FA

m2

FA

m3

FA

p0p1p2p3p4p6p7 p5

Figure 3.28 A 4 × 4 multiplier circuit.

When a shifted version of the multiplicand is added to a partial product, overflow has to

be avoided. Hence the new partial product must be larger by one extra bit. Figure 3.29a illus-

trates the process of multiplying two positive numbers. The sign-extended bits are shown in

red. Part (b) of the figure involves a negative multiplicand. Note that the resulting product

has 2n bits in both cases.

For a negative multiplier operand, it is possible to convert both the multiplier and the

multiplicand into their 2’s complements because this will not change the value of the result.

Then the scheme for a positive multiplier can be used.

We have presented a relatively simple scheme for multiplication of signed numbers.

There exist other techniques that are more efficient but also more complex. We will not

pursue these techniques, but an interested reader may consult a variety of specialized texts.

We have discussed circuits that perform addition, subtraction, and multiplication. An-

other arithmetic operation that is needed in computer systems is division. Circuits that

perform division are more complex; we will present an example in Chapter 7. Various

ISTUDY

156 C H A P T E R 3 ● NUMBER REPRESENTATION AND ARITHMETIC CIRCUITS

×

0 0 0 1 1 1 0

0 1 1 1 0

0 1 0 1 1

0 0 1 1 1 0

0 0 1 0 1 0 1

0 0 0 0 0 0

Multiplicand M

Multiplier Q

Product P

(+14)

(+11)

(+154)

+

+

0 0 0 1 0 1 0

0 0 1 1 1 0+

0 0 1 0 0 1 1

0 0 0 0 0 0+

0 0 1 0 0 1 1 0 1 0

Partial product 0

Partial product 1

Partial product 2

Partial product 3

×

1 1 1 0 0 1 0

1 0 0 1 0

0 1 0 1 1

1 1 0 0 1 0

1 1 0 1 0 1 1

0 0 0 0 0 0

Multiplicand M

Multiplier Q

Product P

(–14)

(+11)

(–154)

+

+

1 1 1 0 1 0 1

1 1 0 0 1 0+

1 1 0 1 1 0 0

0 0 0 0 0 0+

1 1 0 1 1 0 0 1 1 0

Partial product 0

Partial product 1

Partial product 2

Partial product 3

(a) Positive multiplicand

(b) Negative multiplicand

Figure 3.29 Multiplication of signed numbers.

techniques for performing division are usually discussed in books on the subject of com-

puter organization.

3.7 OTHER NUMBER REPRESENTATIONS

In the previous sections we dealt with binary integers represented in the positional number

representation. Other types of numbers are also used in digital systems. In this section we

will discuss briefly three other types: fixed-point, floating-point, and binary-coded decimal

numbers.

ISTUDY

3.7 OTHER NUMBER REPRESENTATIONS 157

3.7.1 FIXED-POINT NUMBERS

A fixed-point number consists of integer and fraction parts. It can be written in the positional

number representation as

B = bn−1bn−2 ⋯ b1b0.b−1b−2 ⋯ b−k

The value of the number is

V(B) =
n−1∑

i=−k
bi × 2i

The position of the radix point is assumed to be fixed; hence the name fixed-point number.

If the radix point is not shown, then it is assumed to be to the right of the least-significant

digit, which means that the number is an integer.

Logic circuits that deal with fixed-point numbers are essentially the same as those used

for integers. We will not discuss them separately.

3.7.2 FLOATING-POINT NUMBERS

Fixed-point numbers have a range that is limited by the significant digits used to represent

the number. For example, if we use eight digits and a sign to represent decimal integers,

then the range of values that can be represented is 0 to ±99999999. If eight digits are used

to represent a fraction, then the representable range is 0.00000001 to ±0.99999999. In sci-

entific applications it is often necessary to deal with numbers that are very large or very

small. Instead of using the fixed-point representation, which would require many signifi-

cant digits, it is better to use the floating-point representation in which numbers are repre-

sented by a mantissa comprising the significant digits and an exponent of the radix R. The

format is

Mantissa × RExponent

The numbers are often normalized, such that the radix point is placed to the right of the

first nonzero digit, as in 5.234 × 1043 or 6.31 × 10−28.

Binary floating-point representation has been standardized by the Institute of Electrical

and Electronics Engineers (IEEE) [1]. Two sizes of formats are specified in this standard—

a single-precision 32-bit format and a double-precision 64-bit format. Both formats are

illustrated in Figure 3.30.

Single-Precision Floating-Point Format
Figure 3.30a depicts the single-precision format. The leftmost bit is the sign bit—0

for positive and 1 for negative numbers. There is an 8-bit exponent field, E, and a 23-bit

mantissa field, M. The exponent is with respect to the radix 2. Because it is necessary to

be able to represent both very large and very small numbers, the exponent can be either

positive or negative. Instead of simply using an 8-bit signed number as the exponent, which

would allow exponent values in the range −128 to 127, the IEEE standard specifies the

exponent in the excess-127 format. In this format the value 127 is added to the value of the

ISTUDY

158 C H A P T E R 3 ● NUMBER REPRESENTATION AND ARITHMETIC CIRCUITS

Sign

32 bits

23 bits of mantissa
excess-127
exponent

8-bit

52 bits of mantissa11-bit excess-1023
exponent

64 bits

Sign

S M

S M

(a) Single precision

(b) Double precision

E

+

E

0 denotes
–1 denotes

Figure 3.30 IEEE Standard floating-point formats.

actual exponent so that

Exponent = E − 127

In this way, E becomes a positive integer. This format is convenient for adding and subtract-

ing floating-point numbers because the first step in these operations involves comparing the

exponents to determine whether the mantissas must be appropriately shifted to add/subtract

the significant bits. The range of E is 0 to 255. The extreme values of E = 0 and E = 255

are taken to denote the exact zero and infinity, respectively. Therefore, the normal range of

the exponent is −126 to 127, which is represented by the values of E from 1 to 254.

The mantissa is represented using 23 bits. The IEEE standard calls for a normalized

mantissa, which means that the most-significant bit is always equal to 1. Thus it is not

necessary to include this bit explicitly in the mantissa field. Therefore, if M is the bit vector

in the mantissa field, the actual value of the mantissa is 1.M, which gives a 24-bit mantissa.

Consequently, the floating-point format in Figure 3.30a represents the number

Value = ±1.M × 2E−127

The size of the mantissa field allows the representation of numbers that have the precision

of about seven decimal digits. The exponent field range of 2−126 to 2127 corresponds to

about 10±38.

Double-Precision Floating-Point Format
Figure 3.30b shows the double-precision format, which uses 64 bits. Both the exponent

and mantissa fields are larger. This format allows greater range and precision of numbers.

The exponent field has 11 bits, and it specifies the exponent in the excess-1023 format,

where

Exponent = E − 1023

ISTUDY

3.7 OTHER NUMBER REPRESENTATIONS 159

The range of E is 0 to 2047, but again the values E = 0 and E = 2047 are used to indicate

the exact zero and infinity, respectively. Thus the normal range of the exponent is −1022 to

1023, which is represented by the values of E from 1 to 2046.

The mantissa field has 52 bits. Since the mantissa is assumed to be normalized, its

actual value is again 1.M. Therefore, the value of a floating-point number is

Value = ±1.M × 2E−1023

This format allows representation of numbers that have the precision of about 16 decimal

digits and the range of approximately 10±308.

Arithmetic operations using floating-point operands are significantly more complex

than signed integer operations. Because this is a rather specialized domain, we will not

elaborate on the design of logic circuits that can perform such operations. More complete

discussions of floating-point operations are available in the published literature.

3.7.3 BINARY-CODED-DECIMAL REPRESENTATION

In digital systems it is possible to represent decimal numbers simply by encoding each digit

in binary form. This is called the binary-coded-decimal (BCD) representation. Because

there are 10 digits to encode, it is necessary to use four bits per digit. Each digit is encoded

by the binary pattern that represents its unsigned value, as shown in Table 3.3. Note that

only 10 of the 16 available patterns are used in BCD, which means that the remaining

6 patterns should not occur in logic circuits that operate on BCD operands; these patterns

are usually treated as don’t-care conditions in the design process. BCD representation was

used in some early computers as well as in many handheld calculators. Its main virtue is

that it provides a format that is convenient when numerical information is to be displayed

on a simple digit-oriented display. Its drawbacks are complexity of circuits that perform

arithmetic operations and the fact that six of the possible code patterns are wasted.

Even though the importance of BCD representation has diminished, it is still encoun-

tered. To give the reader an indication of the complexity of the required circuits, we will

consider BCD addition in some detail.

Table 3.3 Binary-coded
decimal digits.

Decimal digit BCD code

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

ISTUDY

160 C H A P T E R 3 ● NUMBER REPRESENTATION AND ARITHMETIC CIRCUITS

BCD Addition
The addition of two BCD digits is complicated by the fact that the sum may exceed 9,

in which case a correction will have to be made. Let X = x3x2x1x0 and Y = y3y2y1y0

represent the two BCD digits and let S = s3s2s1s0 be the desired sum digit, S = X + Y .

Obviously, if X +Y ≤ 9, then the addition is the same as the addition of 2 four-bit unsigned

binary numbers. But, if X + Y > 9, then the result requires two BCD digits. Moreover, the

four-bit sum obtained from the four-bit adder may be incorrect.

There are two cases where some correction has to be made: when the sum is greater

than 9 but no carry-out is generated using four bits, and when the sum is greater than 15 so

that a carry-out is generated using four bits. Figure 3.31 illustrates these cases. In the first

case the four-bit addition yields Z = 7 + 5 = 12. To obtain a correct BCD result, we must

generate S = 2 and a carry-out of 1. The necessary correction is apparent from the fact

that the four-bit addition is a modulo-16 scheme, whereas decimal addition is a modulo-10

scheme. Therefore, a correct decimal digit can be generated by adding 6 to the result of

four-bit addition whenever this result exceeds 9. Thus we can arrange the computation

as follows

Z = X + Y
if Z ≤ 9, then S = Z and carry-out = 0

if Z > 9, then S = Z + 6 and carry-out = 1

The second example in Figure 3.31 shows what happens when X + Y > 15. In this case

Z = 17, which is a five-bit binary number. Note that the four least-significant bits, Z3−0,

represent the value 1, while Z4 represents the value 16. To generate a correct BCD result,

it is again necessary to add 6 to the intermediate sum Z3−0 to produce the value 7. The bit

Z4 is the carry to the next digit position.

+

1 1 0 0

0 1 1 1

0 1 0 1+

X

Y

Z

+

7

5

12

0 1 1 0+

1 0 0 1 0carry

+

1 0 0 0 1

1 0 0 0

1 0 0 1+

X

Y

Z

+

8

9

17

0 1 1 0+

1 0 1 1 1carry

S = 2

S = 7

Figure 3.31 Addition of BCD digits.

ISTUDY

3.7 OTHER NUMBER REPRESENTATIONS 161

4-bit adder

Detect if

MUX

4-bit adder

sum 9>

6 0

X Y

cin
carry-out

Adjust

S

0

cout

Z3 0–Z4

Figure 3.32 Block diagram for a one-digit BCD adder.

Figure 3.32 gives a block diagram of a one-digit BCD adder that is based on this

scheme. The block that detects whether Z > 9 produces an output signal, Adjust, which

controls the multiplexer that provides the correction when needed. A second four-bit adder

generates the corrected sum bits. Since whenever the adjustment of 6 is made there is a

carry to the next digit position, cout is just equal to the Adjust signal.

An implementation of this block diagram using VHDL code is shown in Figure 3.33.

Inputs X and Y are defined as four-bit numbers. The sum output, S, is defined as a five-bit

number, which allows for the carry-out to appear in bit S4, while the sum is produced in bits

S3−0. The intermediate sum Z is also defined as a five-bit number. We have concatenated a

0 to input X in the expression Z <= ('0' & X) + Y because the VHDL compiler requires at

least one of the operands of an arithmetic operation to have the same number of bits as in

the result.

The statement

Adjust <= '1' WHEN Z > 9 ELSE '0' ;

uses a type of VHDL signal assignment statement that we have not seen before. It is called

a conditional signal assignment and is used to assign one of multiple values to a signal,

based on some criterion. In this case the criterion is the condition Z > 9. If this condition is

satisfied, the statement assigns 1 to Adjust; otherwise, it assigns 0 to Adjust. Other examples

of the conditional signal assignment are given in Chapter 4.

ISTUDY

162 C H A P T E R 3 ● NUMBER REPRESENTATION AND ARITHMETIC CIRCUITS

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

USE ieee.std logic unsigned.all ;

ENTITY BCD IS

PORT (X, Y : IN STD LOGIC VECTOR(3 DOWNTO 0) ;

S : OUT STD LOGIC VECTOR(4 DOWNTO 0)) ;

END BCD ;

ARCHITECTURE Behavior OF BCD IS

SIGNAL Z : STD LOGIC VECTOR(4 DOWNTO 0) ;

SIGNAL Adjust : STD LOGIC ;

BEGIN

Z < = ('0' & X) + Y ;

Adjust <= '1' WHEN Z > 9 ELSE '0' ;

S <= Z WHEN (Adjust = '0') ELSE Z + 6 ;

END Behavior ;

Figure 3.33 VHDL code for a one-digit BCD adder.

We should also note that we have included the Adjust signal in the VHDL code only

to be consistent with Figure 3.32. We could just as easily have eliminated the Adjust signal

and written the expression as

S <= Z WHEN Z < 10 ELSE Z + 6 ;

If we wish to derive a circuit to implement the block diagram in Figure 3.32 by hand,

instead of by using VHDL, then the following approach can be used. To define the Adjust
function, we can observe that the intermediate sum will exceed 9 if the carry-out from the

four-bit adder is equal to 1, or if z3 = 1 and either z2 or z1 (or both) are equal to 1. Hence

the logic expression for this function is

Adjust = Carry-out + z3(z2 + z1)

Instead of implementing another complete four-bit adder to perform the correction, we can

use a simpler circuit because the addition of constant 6 does not require the full capability

of a four-bit adder. Note that the least-significant bit of the sum, s0, is not affected at all;

hence s0 = z0. A two-bit adder may be used to develop bits s2 and s1. Bit s3 is the same as

z3 if the carry-out from the two-bit adder is 0, and it is equal to z3 if this carry-out is equal

to 1. A complete circuit that implements this scheme is shown in Figure 3.34. Using the

one-digit BCD adder as a basic block, it is possible to build larger BCD adders in the same

way as a binary full-adder is used to build larger ripple-carry binary adders.

Subtraction of BCD numbers can be handled with the radix-complement approach. Just

as we use 2’s complement representation to deal with negative binary numbers, we can use

10’s complement representation to deal with decimal numbers. We leave the development

of such a scheme as an exercise for the reader (see Problem 3.19).

ISTUDY

3.8 EXAMPLES OF SOLVED PROBLEMS 163

cout

Four-bit adder

Two-bit adder

s3 s2 s1 s0

z3 z2 z1 z0

x3 x2 x1 x0 y3 y2 y1 y0

cin

Figure 3.34 Circuit for a one-digit BCD adder.

3.8 EXAMPLES OF SOLVED PROBLEMS

This section presents some typical problems that the reader may encounter and shows how

such problems can be solved.

Example 3.6Problem: Convert the decimal number 14959 into a hexadecimal number.

Solution: An integer is converted into the hexadecimal representation by successive divi-

sions by 16, such that in each step the remainder is a hex digit. To see why this is true,

consider a four-digit number H = h3h2h1h0. Its value is

V = h3 × 163 + h2 × 162 + h1 × 16 + h0

If we divide this by 16, we obtain

V
16

= h3 × 162 + h2 × 16 + h1 +
h0

16

ISTUDY

164 C H A P T E R 3 ● NUMBER REPRESENTATION AND ARITHMETIC CIRCUITS

Convert (14959)10

Remainder Hex digit

14959 16÷

÷

÷

÷

= 934 15 F LSB

934 16 = 58 6 6

58 16 = 3 10 A

3 16 = 0 3 3 MSB

Result is (3A6F)16

Figure 3.35 Conversion from decimal to hexadecimal.

Thus, the remainder gives h0. Figure 3.35 shows the steps needed to perform the conversion

(14959)10 = (3A6F)16.

Example 3.7 Problem: Convert the decimal fraction 0.8254 into binary representation.

Solution: As indicated in Section 3.7.1, a binary fraction is represented as the bit pattern

B = 0.b−1b−2 ⋯ b−m and its value is

V = b−1 × 2−1 + b−2 × 2−2 +⋯ + b−m × 2−m

Multiplying this expression by 2 gives

b−1 + b−2 × 2−1 +⋯ + b−m × 2−(m−1)

Here, the leftmost term is the first bit to the right of the radix point. The remaining terms

constitute another binary fraction which can be manipulated in the same way. Therefore,

to convert a decimal fraction into a binary fraction, we multiply the decimal number by

2 and set the computed bit to 0 if the product is less than 1 and set it to 1 if the product

is greater than or equal to 1. We repeat this calculation until a sufficient number of bits

are obtained to meet the desired accuracy. Note that it may not be possible to represent a

decimal fraction with a binary fraction that has exactly the same value. Figure 3.36 shows

the required computation that yields (0.8254)10 = (0.11010011…)2.

Example 3.8 Problem: Convert the decimal fixed point number 214.45 into a binary fixed point number.

Solution: For the integer part perform successive division by 2 as illustrated in

Figure 1.6. For the fractional part perform successive multiplication by 2 as described in

Example 3.7. The complete computation is presented in Figure 3.37, producing (214.45)10 =
(11010110.0111001…)2.

Example 3.9 Problem: In computer computations it is often necessary to compare numbers. Two four-bit

signed numbers, X = x3x2x1x0 and Y = y3y2y1y0, can be compared by using the comparator

circuit in Figure 3.38, which performs the operation X − Y . The three outputs denote the

following:

∙ Z = 1 if the result is 0; otherwise Z = 0

ISTUDY

3.8 EXAMPLES OF SOLVED PROBLEMS 165

0.8254 × 2

0.6508 × 2

0.3016 × 2

0.6032 × 2

0.2064 × 2

0.4128 × 2

0.8256 × 2

0.6512 × 2

1.6508=

1.3016=

0.6032=

1.2064=

0.4128=

0.8256=

1.6512=

1 MSB

1

0

1

0

0

Convert

0.8254()
10

0.11010011()
2

=

1.3024= 1 LSB

0.8254()
10

1

Figure 3.36 Conversion of fractions from decimal to binary.

∙ N = 1 if the result is negative; otherwise N = 0

∙ V = 1 if arithmetic overflow occurs; otherwise V = 0

Show how Z, N, and V can be used to determine the cases X = Y , X < Y , X ≤ Y , X > Y ,

and X ≥ Y .

Solution: Consider first the case X < Y , where the following possibilities may arise:

∙ If X and Y have the same sign there will be no overflow, hence V = 0. Then for both

positive and negative X and Y the difference will be negative (N = 1).

∙ If X is negative and Y is positive, the difference will be negative (N = 1) if there is no

overflow (V = 0); but the result will be positive (N = 0) if there is overflow (V = 1).

Therefore, if X < Y then N ⊕ V = 1.

The case X = Y is detected by Z = 1. Then, X ≤ Y is detected by Z + (N⊕V) = 1. The

last two cases are just simple inverses: X > Y if Z + (N ⊕ V) = 1 and X ≥ Y if N ⊕ V = 1.

Example 3.10Problem: Write VHDL code to specify the circuit in Figure 3.38.

Solution: We can specify the circuit using the structural approach as indicated in Figure 3.39.

The full-adder component is defined in a package in Figure 3.20.

ISTUDY

166 C H A P T E R 3 ● NUMBER REPRESENTATION AND ARITHMETIC CIRCUITS

214

2
--------- 107

0

2
---+=

107

2
--------- 53

1

2
---+=

53

2
------ 26

1

2
---+=

26

2
------ 13

0

2
---+=

13

2
------ 6

1

2
---+=

6

2
--- 3

0

2
---+=

3

2
--- 1

1

2
---+=

1

2
--- 0

1

2
---+=

0 LSB

1 MSB

1

1

0

1

0

1

0.45 × 2

0.90 × 2

0.80 × 2

0.60 × 2

0.20 × 2

0.40 × 2

0.80 × 2

0.90=

1.80=

1.60=

1.20=

0.40=

0.80=

1.60=

0 MSB

1 LSB

1

1

1

0

0

Convert

214.45()10 11010110.0111001()2=

214.45()
10

Figure 3.37 Conversion of fixed point numbers from decimal

to binary.

ISTUDY

3.8 EXAMPLES OF SOLVED PROBLEMS 167

FA

x3

y3

FA

x1

y1

s1

FA

c1

x0

y0

s0

c0

FA

c3

x2

y2

s2

1

s3

c2c4

V N Z

(overflow) (negative) (zero)

Figure 3.38 A comparator circuit.

The structural approach becomes awkward when large circuits are involved, as would

be the case if the comparator had 32-bit operands. An alternative is to use a behavioral

specification, as shown in Figure 3.40. Note that we specified directly that Y should be

subtracted from X, so that we don’t have to complement Y explicitly. We have to specify

the overflow signal, V , in terms of the S bits only, because the interstage carry signals are

not accessible as explained in the discussion of Figure 3.24.

Example 3.11Problem: Figure 3.28 depicts a four-bit multiplier circuit. Each row in this circuit consists

of four full-adder (FA) blocks connected in a ripple-carry configuration. The delay caused

by the carry signals rippling through the rows has a significant impact on the time needed to

generate the output product. In an attempt to speed up the circuit, we may use the arrange-

ment in Figure 3.41. Here, the carries in a given row are “saved” and included in the next

row at the correct bit position. Then, in the first row the full-adders can be used to add three

properly shifted bits of the multiplicand as selected by the multiplier bits. For example, in

bit position 2 the three inputs are m2q0, m1q1, and m0q2. In the last row it is still necessary

to use the ripple-carry adder. A circuit that consists of an array of full-adders connected in

this manner is called a carry-save adder array.

What is the total delay of the circuit in Figure 3.41 compared to that of the circuit in

Figure 3.28?

Solution: In the circuit in Figure 3.28 the longest path is through the rightmost two full-

adders in the top row, followed by the two rightmost FAs in the second row, and then through

all four FAs in the bottom row. Hence this delay is eight times the delay through a full-adder

block. In addition, there is the AND-gate delay needed to form the inputs to the first FA in

the top row. These combined delays are the critical delay, which determines the speed of

the multiplier circuit.

ISTUDY

168 C H A P T E R 3 ● NUMBER REPRESENTATION AND ARITHMETIC CIRCUITS

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

USE work.fulladd package.all ;

ENTITY comparator IS

PORT (X, Y : IN STD LOGIC VECTOR(3 DOWNTO 0) ;

V, N, Z : OUT STD LOGIC) ;

END comparator ;

ARCHITECTURE Structure OF comparator IS

SIGNAL Yn, S : STD LOGIC VECTOR(3 DOWNTO 0) ;

SIGNAL C : STD LOGIC VECTOR(1 TO 4) ;

BEGIN

Yn <= NOT Y;

stage0: fulladd PORT MAP (’1’, X(0), Yn(0), S(0), C(1)) ;

stage1: fulladd PORT MAP (C(1), X(1), Yn(1), S(1), C(2)) ;

stage2: fulladd PORT MAP (C(2), X(2), Yn(2), S(2), C(3)) ;

stage3: fulladd PORT MAP (C(3), X(3), Yn(3), S(3), C(4)) ;

V <= C(4) XOR C(3) ;

N <= S(3) ;

Z <= '1' WHEN S(3 DOWNTO 0) = ''0000'' ELSE '0' ;

END Structure ;

Figure 3.39 Structural VHDL code for the comparator circuit.

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

USE ieee.std logic signed.all ;

ENTITY comparator IS

PORT (X, Y : IN STD LOGIC VECTOR(3 DOWNTO 0) ;

V, N, Z : OUT STD LOGIC) ;

END comparator ;

ARCHITECTURE Behavior OF comparator IS

SIGNAL S : STD LOGIC VECTOR(4 DOWNTO 0) ;

BEGIN

S <= ('0' & X) − ('0' & Y) ;

V <= S(4) XOR X(3) XOR Y(3) XOR S(3) ;

N <= S(3) ;

Z <= '1' WHEN S(3 DOWNTO 0) = 0 ELSE '0' ;

END Behavior ;

Figure 3.40 Behavioral VHDL code for the comparator circuit.

ISTUDY

PROBLEMS 169

FA FA FAFA

FA FA FAFA

FA FA FAFA

p7 p6 p5 p4 p3 p1 p0p2

0 m3q0

m3q1 m2q1

m2q0 m1q0

m1q1 m0q1

m2q3 m1q3 m0q3 0

0

0

m2q2 m1q2 m0q2m3q2

m3q3

m0q0

Figure 3.41 Multiplier carry-save array.

In the circuit in Figure 3.41, the longest path is through the rightmost FAs in the first

and second rows, followed by all four FAs in the bottom row. Therefore, the critical delay

is six times the delay through a full-adder block plus the AND-gate delay needed to form

the inputs to the first FA in the top row.

PROBLEMS

Answers to problems marked by an asterisk are given at the back of the book.

*3.1 Determine the decimal values of the following unsigned numbers:

(a) (0111011110)2

(b) (1011100111)2

(c) (3751)8

(d) (A25F)16

(e) (F0F0)16

*3.2 Determine the decimal values of the following 1’s complement numbers:

(a) 0111011110

(b) 1011100111

(c) 1111111110

*3.3 Determine the decimal values of the following 2’s complement numbers:

(a) 0111011110

(b) 1011100111

(c) 1111111110

ISTUDY

170 C H A P T E R 3 ● NUMBER REPRESENTATION AND ARITHMETIC CIRCUITS

*3.4 Convert the decimal numbers 73, 1906, −95, and −1630 into signed 12-bit numbers in the

following representations:

(a) Sign and magnitude

(b) 1’s complement

(c) 2’s complement

3.5 Perform the following operations involving four-bit 2’s complement numbers and indicate

whether arithmetic overflow occurs. Check your answers by converting to decimal sign-

and-magnitude representation.

0110 0101 1111

+ 0101 + 1110 + 1000

0110 0101 0011

− 1011 − 0110 − 1100

3.6 Perform the following operations involving eight-bit 2’s complement numbers and indicate

whether arithmetic overflow occurs. Check your answers by converting to decimal sign-

and-magnitude representation.

00110110 01110101 11011111

+ 01000101 + 11011110 + 10111000

00110110 01110101 11010011

− 00101011 − 11010110 − 11101100

3.7 Prove that the XOR operation is associative, which means that xi⊕ (yi⊕zi) = (xi⊕yi)⊕zi.

3.8 Show that the circuit in Figure 3.4 implements the full-adder specified in Figure 3.3a.

3.9 Prove the validity of the simple rule for finding the 2’s complement of a number, which was

presented in Section 3.3. Recall that the rule states that scanning a number from right to

left, all 0s and the first 1 are copied; then all remaining bits are complemented.

3.10 Prove the validity of the expression Overflow = cn ⊕ cn−1 for addition of n-bit signed

numbers.

3.11 Verify that a carry-out signal, ck, from bit position k−1 of an adder circuit can be generated

as ck = xk ⊕ yk ⊕ sk, where xk and yk are inputs and sk is the sum bit.

*3.12 Determine the number of gates needed to implement an n-bit carry-lookahead adder, as-

suming no fan-in constraints. Use AND, OR, and XOR gates with any number of inputs.

*3.13 Determine the number of gates needed to implement an eight-bit carry-lookahead adder

assuming that the maximum fan-in for the gates is four.

3.14 In Figure 3.17 we presented the structure of a hierarchical carry-lookahead adder. Show the

complete circuit for a four-bit version of this adder, built using 2 two-bit blocks.

ISTUDY

PROBLEMS 171

3.15 What is the critical delay path in the multiplier in Figure 3.28? What is the delay along this

path in terms of the number of gates?

3.16 Write a VHDL module to describe the 4 × 4 multiplier shown in Figure 3.28. Synthesize a

circuit from the code and verify its functional correctness.

*3.17 Consider the VHDL code in Figure P3.1. Given the relationship between the signals Input

and Output, what is the functionality of the circuit described by the code? Comment on

whether or not this code represents a good style to use for the functionality that it represents.

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

ENTITY problem IS

PORT (Input : IN STD LOGIC VECTOR(3 DOWNTO 0) ;

Output : OUT STD LOGIC VECTOR(3 DOWNTO 0)) ;

END problem ;

ARCHITECTURE LogicFunc OF problem IS

BEGIN

WITH Input SELECT

Output< = "0001" WHEN "0101",

"0010" WHEN "0110",

"0011" WHEN "0111",

"0010" WHEN "1001",

"0100" WHEN "1010",

"0110" WHEN "1011",

"0011" WHEN "1101",

"0110" WHEN "1110",

"1001" WHEN "1111",

"0000" WHEN OTHERS ;

END LogicFunc ;

Figure P3.1 The code for Problem 3.17.

3.18 Design a circuit that generates the 9’s complement of a BCD digit. Note that the 9’s com-

plement of d is 9 − d.

3.19 Derive a scheme for performing subtraction using BCD operands. Show a block diagram for

the subtractor circuit. Hint: Subtraction can be performed easily if the operands are in the

10’s complement (radix complement) representation. In this representation the sign digit is

0 for a positive number and 9 for a negative number.

3.20 Write complete VHDL code for the circuit that you derived in Problem 3.19.

*3.21 Suppose that we want to determine how many of the bits in a three-bit unsigned number

are equal to 1. Design the simplest circuit that can accomplish this task.

ISTUDY

172 C H A P T E R 3 ● NUMBER REPRESENTATION AND ARITHMETIC CIRCUITS

3.22 Repeat Problem 3.21 for a six-bit unsigned number.

3.23 Repeat Problem 3.21 for an eight-bit unsigned number.

3.24 Show a graphical interpretation of three-digit decimal numbers, similar to Figure 3.11. The

leftmost digit is 0 for positive numbers and 9 for negative numbers. Verify the validity of

your answer by trying a few examples of addition and subtraction.

3.25 In a ternary number system there are three digits: 0, 1, and 2. Figure P3.2 defines a ternary

half-adder. Design a circuit that implements this half-adder using binary-encoded signals,

such that two bits are used for each ternary digit. Let A = a1a0, B = b1b0, and Sum = s1s0;

note that Carry is just a binary signal. Use the following encoding: 00 = (0)3, 01 = (1)3,

and 10 = (2)3. Minimize the cost of the circuit.

A B Carry Sum

0 0 0 0

0 1 0 1

0 2 0 2

1 0 0 1

1 1 0 2

1 2 1 0

2 0 0 2

2 1 1 0

2 2 1 1

Figure P3.2 Ternary half-adder.

3.26 Design a ternary full-adder circuit, using the approach described in Problem 3.25.

3.27 Consider the subtractions 26 − 27 = 99 and 18 − 34 = 84. Using the concepts presented

in Section 3.3.4, explain how these answers (99 and 84) can be interpreted as the correct

signed results of these subtractions.

REFERENCES

1. Institute of Electrical and Electronic Engineers (IEEE), “A Proposed Standard for

Floating-Point Arithmetic,” Computer 14, no. 3 (March 1981), pp. 51–62.

ISTUDY

173

c h a p t e r

4
COMBINATIONAL-CIRCUIT BUILDING

BLOCKS

CHAPTER OBJECTIVES

In this chapter you will learn about:

● Commonly used combinational subcircuits

● Multiplexers, which can be used for selection of signals

and for implementation of general logic functions

● Circuits used for encoding, decoding, and code-conversion

purposes

● Key VHDL constructs used to define combinational

circuits

ISTUDY

174 C H A P T E R 4 ● COMBINATIONAL-CIRCUIT BUILDING BLOCKS

Previous chapters have introduced the basic techniques for design of logic circuits. In practice, a few types

of logic circuits are often used as building blocks in larger designs. This chapter discusses a number of these

blocks and gives examples of their use. The chapter also includes a major section on VHDL, which describes

several key features of the language.

4.1 MULTIPLEXERS

Multiplexers were introduced briefly in Chapter 2. A multiplexer circuit has a number of

data inputs, one or more select inputs, and one output. It passes the signal value on one

of the data inputs to the output. The data input is selected by the values of the select in-

puts. Figure 4.1 shows a 2-to-1 multiplexer. Part (a) gives the symbol commonly used. The

select input, s, chooses as the output of the multiplexer either input w0 or w1. The multi-

plexer’s functionality can be described in the form of a truth table as shown in part (b) of the

figure. Part (c) gives a sum-of-products implementation of the 2-to-1 multiplexer. Part (d)

illustrates how it can be constructed with transmission gates which are discussed in

Appendix B.

Figure 4.2a depicts a larger multiplexer with four data inputs, w0,… ,w3, and two se-

lect inputs, s1 and s0. As shown in the truth table in part (b) of the figure, the two-bit num-

ber represented by s1s0 selects one of the data inputs as the output of the multiplexer. A

sum-of-products implementation of the 4-to-1 multiplexer appears in Figure 4.2c. It real-

izes the multiplexer function

f = s1s0w0 + s1s0w1 + s1s0w2 + s1s0w3

(a) Graphical symbol

f

s

w0

w1

0

1

(b) Truth table

0

1

f

fs

w0

w1

(c) Sum-of-products circuit

s

w0

w1

f

s

w0

w1

(d) Circuit with transmission gates

Figure 4.1 A 2-to-1 multiplexer.

ISTUDY

4.1 MULTIPLEXERS 175

(a) Graphical symbol

f

s1

w0

w1

00

01

(b) Truth table

w0

w1

s0

w2

w3

10

11

0

0

1

1

1

0

1

fs1

0

s0

w2

w3

f

(c) Circuit

s1

w0

w1

s0

w2

w3

Figure 4.2 A 4-to-1 multiplexer.

It is possible to build larger multiplexers using the same approach. Usually, the num-

ber of data inputs, n, is an integer power of two. A multiplexer that has n data inputs,

w0,… ,wn−1, requires ⌈ log2n ⌉ select inputs. Larger multiplexers can also be constructed

from smaller multiplexers. For example, the 4-to-1 multiplexer can be built using three

2-to-1 multiplexers as illustrated in Figure 4.3. Figure 4.4 shows how a 16-to-1 multiplexer

is constructed with five 4-to-1 multiplexers.

Example 4.1Figure 4.5 shows a circuit that has two inputs, x1 and x2, and two outputs, y1 and y2. As

indicated by the red lines, the function of the circuit is to allow either of its inputs to be

connected to either of its outputs, under the control of another input, s. A circuit that has n
inputs and k outputs, whose sole function is to provide a capability to connect any input to

any output, is usually referred to as an n×k crossbar switch. Crossbars of various sizes can

be created, with different numbers of inputs and outputs. When there are two inputs and

two outputs, it is called a 2×2 crossbar.

ISTUDY

176 C H A P T E R 4 ● COMBINATIONAL-CIRCUIT BUILDING BLOCKS

s0

w0

w1

0

1

w2

w3

0

1

f
0

1

s1

Figure 4.3 Using 2-to-1 multiplexers to build a 4-to-1

multiplexer.

w8

w11

s1

w0

s0

w3

w4

w7

w12

w15

s3

s2

f

Figure 4.4 A 16-to-1 multiplexer.

ISTUDY

4.1 MULTIPLEXERS 177

x1 0

1

x2 0

1

s

y1

y2

(a) A 2x2 crossbar switch

(b) Implementation using multiplexers

x1

x2

y1

y2

s

Figure 4.5 A practical application of multiplexers.

Figure 4.5b shows how the 2×2 crossbar can be implemented using 2-to-1 multiplexers.

The multiplexer select inputs are controlled by the signal s. If s = 0, the crossbar connects

x1 to y1 and x2 to y2, while if s = 1, the crossbar connects x1 to y2 and x2 to y1. Crossbar

switches are useful in many practical applications in which it is necessary to be able to

connect one set of wires to another set of wires, where the connection pattern changes from

time to time.

4.1.1 SYNTHESIS OF LOGIC FUNCTIONS USING MULTIPLEXERS

Multiplexers are useful in many practical applications, such as the one described above.

They can also be used in a more general way to synthesize logic functions. Consider the

example in Figure 4.6a. The truth table defines the function f = w1 ⊕ w2. This function

can be implemented by a 4-to-1 multiplexer in which the values of f in each row of the

truth table are connected as constants to the multiplexer data inputs. The multiplexer select

inputs are driven by w1 and w2. Thus for each valuation of w1w2, the output f is equal to

the function value in the corresponding row of the truth table.

The above implementation is straightforward, but it is not very efficient. A better im-

plementation can be derived by manipulating the truth table as indicated in Figure 4.6b,

which allows f to be implemented by a single 2-to-1 multiplexer. One of the input signals,

w1 in this example, is chosen as the select input of the 2-to-1 multiplexer. The truth table

ISTUDY

178 C H A P T E R 4 ● COMBINATIONAL-CIRCUIT BUILDING BLOCKS

(a) Implementation using a 4-to-1 multiplexer

f

w1

0

1

0

1

w2

1

0

0

0

1

1

1

0

1

fw1

0

w2

1

0

(b) Modified truth table

0

1

0

0

1

1

1

0

1

fw1

0

w2

1

0

f
w2

w1

0

1

fw1

w2

w2

(c) Circuit

Figure 4.6 Synthesis of a logic function using multiplexers.

is redrawn to indicate the value of f for each value of w1. When w1 = 0, f has the same

value as input w2, and when w1 = 1, f has the value of w2. The circuit that implements this

truth table is given in Figure 4.6c. This procedure can be applied to synthesize a circuit that

implements any logic function.

Example 4.2 Figure 4.7a gives the truth table for the three-input majority function, and it shows how the

truth table can be modified to implement the function using a 4-to-1 multiplexer. Any two

of the three inputs may be chosen as the multiplexer select inputs. We have chosen w1 and

w2 for this purpose, resulting in the circuit in Figure 4.7b. Note that the majority function

implements the carry-out from the full-adder introduced in Chapter 3.

Example 4.3 Figure 4.8a indicates how the function f = w1 ⊕w2 ⊕w3 can be implemented using 2-to-1

multiplexers. When w1 = 0, f is equal to the XOR of w2 and w3, and when w1 = 1, f
is the XNOR of w2 and w3. Part (b) of the figure gives a corresponding circuit. The left

multiplexer in the circuit produces w2 ⊕ w3, using the result from Figure 4.6, and the right

ISTUDY

4.1 MULTIPLEXERS 179

w3

w3

f

w1

0

w2

1

(a) Modified truth table

(b) Circuit

00

0

1

1

1

0

1

fw1

0

w2

1

0 0

0 1

1 0

1 1

0

0

0

1

0 0

0 1

1 0

1 1

0

1

1

1

w1 w2 w3 f

0

0

0

0

1

1

1

1

w3

Figure 4.7 Implementation of the three-input majority function

using a 4-to-1 multiplexer.

(a) Truth table

0 0

0 1

1 0

1 1

0

1

1

0

0 0

0 1

1 0

1 1

1

0

0

1

w1 w2 w3 f

0

0

0

0

1

1

1

1

w2 w3⊕

w2 w3⊕

f

w3

w1

(b) Circuit

w2

Figure 4.8 Three-input XOR implemented with 2-to-1 multiplexers.

ISTUDY

180 C H A P T E R 4 ● COMBINATIONAL-CIRCUIT BUILDING BLOCKS

f

w1

w2

(a) Truth table (b) Circuit

0 0

0 1

1 0

1 1

0

1

1

0

0 0

0 1

1 0

1 1

1

0

0

1

w1 w2 w3 f

0

0

0

0

1

1

1

1

w3

w3

w3

w3

w3

Figure 4.9 Three-input XOR implemented with a 4-to-1 multiplexer.

multiplexer uses the value of w1 to select either w2 ⊕ w3 or its complement. Note that we

could have derived this circuit directly by writing the function as f = (w2 ⊕ w3) ⊕ w1.

Figure 4.9 gives an implementation of the three-input XOR function using a 4-to-1

multiplexer. Choosing w1 and w2 for the select inputs results in the circuit shown.

4.1.2 MULTIPLEXER SYNTHESIS USING SHANNON’S EXPANSION

Figures 4.6 through 4.9 illustrate how truth tables can be interpreted to implement logic

functions using multiplexers. In each case the inputs to the multiplexers are the constants 0

and 1, or some variable or its complement. Besides using such simple inputs, it is possible

to connect more complex circuits as inputs to a multiplexer, allowing functions to be syn-

thesized using a combination of multiplexers and other logic gates. Suppose that we want to

implement the three-input majority function in Figure 4.7 using a 2-to-1 multiplexer in this

way. Figure 4.10 shows an intuitive way of realizing this function. The truth table can be

modified as shown on the right. If w1 = 0, then f = w2w3, and if w1 = 1, then f = w2 +w3.

Using w1 as the select input for a 2-to-1 multiplexer leads to the circuit in Figure 4.10b.

This implementation can be derived using algebraic manipulation as follows. The func-

tion in Figure 4.10a is expressed in sum-of-products form as

f = w1w2w3 + w1w2w3 + w1w2w3 + w1w2w3

It can be manipulated into

f = w1(w2w3) + w1(w2w3 + w2w3 + w2w3)

= w1(w2w3) + w1(w2 + w3)

which corresponds to the circuit in Figure 4.10b.

Multiplexer implementations of logic functions require that a given function be decom-

posed in terms of the variables that are used as the select inputs. This can be accomplished

by means of a theorem proposed by the famous mathematician Claude Shannon.

ISTUDY

4.1 MULTIPLEXERS 181

(a) Truth table

(b) Circuit

0 0

0 1

1 0

1 1

0

0

0

1

0 0

0 1

1 0

1 1

0

1

1

1

w1 w2 w3 f

0

0

0

0

1

1

1

1

0

1

fw1

w2w3

w2 w3+

f

w3

w1w2

Figure 4.10 The three-input majority function implemented using

a 2-to-1 multiplexer.

Shannon’s Expansion Theorem
Any Boolean function f (w1,… ,wn) can be written in the form

f (w1,w2,… ,wn) = w1 ⋅ f (0,w2,… ,wn) + w1 ⋅ f (1,w2,… ,wn)

This expansion is done using w1, but in general it can be done in terms of any of the

n variables. We will leave the proof of the theorem as an exercise for the reader (see

Problem 4.9).

To illustrate its use, we can apply the theorem to the three-input majority function,

which can be written as

f (w1,w2,w3) = w1w2 + w1w3 + w2w3

Expanding this function in terms of w1 gives

f = w1(0 ⋅ w2 + 0 ⋅ w3 + w2w3) + w1(1 ⋅ w2 + 1 ⋅ w3 + w2w3)

= w1(w2w3) + w1(w2 + w3)

which is the expression that we derived above.

ISTUDY

182 C H A P T E R 4 ● COMBINATIONAL-CIRCUIT BUILDING BLOCKS

For the three-input XOR function, we have

f = w1 ⊕ w2 ⊕ w3

= w1(0 ⊕ w2 ⊕ w3) + w1(1 ⊕ w2 ⊕ w3)

= w1 ⋅ (w2 ⊕ w3) + w1 ⋅ (w2 ⊕ w3)

which gives the circuit in Figure 4.8b.

In Shannon’s expansion the term f (0,w2,… ,wn) is called the cofactor of f with respect

to w1; it is denoted in shorthand notation as fw1
. Similarly, the term f (1,w2,… ,wn) is called

the cofactor of f with respect to w1, written fw1
. Hence we can write

f = w1fw1
+ w1fw1

In general, if the expansion is done with respect to variable wi, then fwi
denotes

f (w1,… ,wi−1, 0,wi+1,… ,wn), fwi
denotes f (w1,… ,wi−1, 1,wi+1,… ,wn), and

f (w1,… ,wn) = wi fwi
+ wi fwi

The complexity of the logic expression may vary depending on which variable, wi, is used,

as illustrated in Example 4.4.

Example 4.4 For the function f = w1w3 + w2w3, decomposition using w1 gives

f = w1fw1
+ w1fw1

= w1(w3 + w2) + w1(w2w3)

Using w2 instead of w1 produces

f = w2 fw2
+ w2 fw2

= w2(w1w3) + w2(w1w3 + w3)

= w2(w1w3) + w2(w1 + w3)

Finally, using w3 gives

f = w3 fw3
+ w3 fw3

= w3(w2) + w3(w1)

The results generated using w1 and w2 have the same cost, but the expression produced

using w3 has a lower cost. In practice, when performing decompositions of this type it is

useful to try a number of alternatives and choose the one that produces the best result.

Shannon’s expansion can be done in terms of more than one variable. For example,

expanding a function in terms of w1 and w2 gives

f (w1,… ,wn) = w1w2 ⋅ f (0, 0,w3,… ,wn) + w1w2 ⋅ f (0, 1,w3,… ,wn)

+ w1w2 ⋅ f (1, 0,w3,… ,wn) + w1w2 ⋅ f (1, 1,w3,… ,wn)

ISTUDY

4.1 MULTIPLEXERS 183

This expansion gives a form that can be implemented using a 4-to-1 multiplexer. If Shannon’s

expansion is done in terms of all n variables, then the result is the canonical sum-of-products

form, which was defined in Section 2.6.1.

Example 4.5Assume that we wish to implement the function

f = w1w3 + w1w2 + w1w3

using a 2-to-1 multiplexer and any other necessary gates. Shannon’s expansion using w1

gives

f = w1fw1
+ w1fw1

= w1(w3) + w1(w2 + w3)

The corresponding circuit is shown in Figure 4.11a. Assume now that we wish to use a

4-to-1 multiplexer instead. Further decomposition using w2 gives

f = w1w2 fw1w2
+ w1w2 fw1w2

+ w1w2 fw1w2
+ w1w2 fw1w2

= w1w2(w3) + w1w2(w3) + w1w2(w3) + w1w2(1)

The circuit is shown in Figure 4.11b.

(a) Using a 2-to-1 multiplexer

f

w2

w1

w3

f

w1

w2

w3

(b) Using a 4-to-1 multiplexer

1

Figure 4.11 The circuits synthesized in Example 4.5.

ISTUDY

184 C H A P T E R 4 ● COMBINATIONAL-CIRCUIT BUILDING BLOCKS

w2

0

w3

1

f

w1

Figure 4.12 The circuit synthesized in Example 4.6.

Example 4.6 Consider the three-input majority function

f = w1w2 + w1w3 + w2w3

We wish to implement this function using only 2-to-1 multiplexers. Shannon’s expansion

using w1 yields

f = w1(w2w3) + w1(w2 + w3 + w2w3)

= w1(w2w3) + w1(w2 + w3)

Let g = w2w3 and h = w2 + w3. Expansion of both g and h using w2 gives

g = w2(0) + w2(w3)

h = w2(w3) + w2(1)

The corresponding circuit is shown in Figure 4.12. It is equivalent to the 4-to-1 multiplexer

circuit derived using a truth table in Figure 4.7.

4.2 DECODERS

Consider the logic circuit in Figure 4.13. It has two inputs, w1 and w0, and four outputs,

y0, y1, y2, and y3. As shown in the truth table, only one of the outputs is asserted at a time,

and each output corresponds to one valuation of the inputs. Setting the inputs w1w0 to 00,

01, 10, or 11 causes the output y0, y1, y2, or y3 to be set to 1, respectively. This type of

circuit is called a binary decoder. Its inputs represent a binary number, which is decoded

to assert the corresponding output. A circuit symbol and logic circuit for this decoder are

shown in parts (b) and (c) of the figure. Each output is driven by an AND gate that decodes

the corresponding valuation of w1w0.

It is useful to include an enable input, En, in a decoder circuit, as illustrated in Figure 4.14.

When enabled by setting En = 1 the decoder behaves as presented in Figure 4.13.

ISTUDY

4.2 DECODERS 185

(b) Graphical symbol(a) Truth table

0

0

1

1

1

0

1

y0w1

0

w0

(c) Logic circuit

w1

w0

0

0

0

1

y1

1

0

0

0

y2

0

1

0

0

y3

0

0

1

0

y0

y1

y2

y3

w0

y0

w1

y1

y2

y3

Figure 4.13 A 2-to-4 decoder.

But, if it is disabled by setting En = 0, then none of the outputs are asserted. Note that

only five rows are shown in the truth table, because if En = 0 then all outputs are equal to

0 regardless of the values of w1 and w0. The truth table indicates this by showing x when it

does not matter whether the variable in question has the value 0 or 1. A graphical symbol

for this decoder is given in Figure 4.14b. Part (c) of the figure shows how the enable capa-

bility can be included in the decoder of Figure 4.13c. A binary decoder with n inputs has

2n outputs. A graphical symbol for an n-to-2n decoder is shown in Figure 4.14d.

A k-bit binary code in which exactly one of the bits is set to 1 at a time is referred to

as one-hot encoded, meaning that the single bit that is set to 1 is deemed to be “hot.” The

outputs of an enabled binary decoder are one-hot encoded.

We should also note that decoders can be designed to have either active-high or active-

low outputs. In our discussion, we have assumed that active-high outputs are needed.

Larger decoders can be built using the sum-of-products structure in Figure 4.14c, or

else they can be constructed from smaller decoders. Figure 4.15 shows how a 3-to-8 decoder

is built with two 2-to-4 decoders. The w2 input drives the enable inputs of the two decoders.

ISTUDY

186 C H A P T E R 4 ● COMBINATIONAL-CIRCUIT BUILDING BLOCKS

(b) Graphical symbol(a) Truth table

0

0

1

1

1

0

1

y0w1

0

w0

(c) Logic circuit

w1

w0

x x

1

1

0

1

1

En

0

0

0

1

0

y1

1

0

0

0

0

y2

0

1

0

0

0

y3

0

0

1

0

0

y0

y1

y2

y3

En

w0

En

y0

w1 y1

y2

y3

w0

wn 1–

n
inputs

EnEnable

2n

outputs

y0

y
2n 1–

(d) An n-to-2n decoder

Figure 4.14 Binary decoder.

The top decoder is enabled if w2 = 0, and the bottom decoder is enabled if w2 = 1. This

concept can be applied for decoders of any size. Figure 4.16 shows how five 2-to-4 decoders

can be used to construct a 4-to-16 decoder. Because of its treelike structure, this type of

circuit is often referred to as a decoder tree.

ISTUDY

4.2 DECODERS 187

w2

w0 y0

y1

y2

y3

w0

En

y0

w1 y1

y2

y3

w0

En

y0

w1 y1

y2

y3

y4

y5

y6

y7

w1

En

Figure 4.15 A 3-to-8 decoder using two 2-to-4 decoders.

w0

En

y0

w1 y1

y2

y3

y8

y9

y10

y11

w2

w0 y0

y1

y2

y3

w0

En

y0

w1 y1

y2

y3

w0

En

y0

w1 y1

y2

y3

y4

y5

y6

y7

w1

w0

En

y0

w1 y1

y2

y3

y12

y13

y14

y15

w0

En

y0

w1 y1

y2

y3

w3

En

Figure 4.16 A 4-to-16 decoder built using a decoder tree.

ISTUDY

188 C H A P T E R 4 ● COMBINATIONAL-CIRCUIT BUILDING BLOCKS

w1

w0

w0

En

y0

w1 y1

y2

y3

w2

w3

f

s0

s1

1

Figure 4.17 A 4-to-1 multiplexer built using a decoder.

Example 4.7 Decoders are useful for many practical purposes. In Figure 4.2c we showed the sum-of-

products implementation of the 4-to-1 multiplexer, which requires AND gates to distinguish

the four different valuations of the select inputs s1 and s0. Since a decoder evaluates the

values on its inputs, it can be used to build a multiplexer as illustrated in Figure 4.17. The

enable input of the decoder is not needed in this case, and it is set to 1. The four outputs of

the decoder represent the four valuations of the select inputs.

4.2.1 DEMULTIPLEXERS

We showed in Section 4.1 that a multiplexer has one output, n data inputs, and ⌈ log2n ⌉

select inputs. The purpose of the multiplexer circuit is to multiplex the n data inputs onto the

single data output under control of the select inputs. A circuit that performs the opposite

function, namely, placing the value of a single data input onto multiple data outputs, is

called a demultiplexer. The demultiplexer can be implemented using a decoder circuit. For

example, the 2-to-4 decoder in Figure 4.14 can be used as a 1-to-4 demultiplexer. In this

case the En input serves as the data input for the demultiplexer, and the y0 to y3 outputs

are the data outputs. The valuation of w1w0 determines which of the outputs is set to the

value of En. To see how the circuit works, consider the truth table in Figure 4.14a. When

En = 0, all the outputs are set to 0, including the one selected by the valuation of w1w0.

When En = 1, the valuation of w1w0 sets the appropriate output to 1.

In general, an n-to-2n decoder circuit can be used as a 1-to-n demultiplexer. How-

ever, in practice decoder circuits are used much more often as decoders rather than as

demultiplexers.

4.3 ENCODERS

An encoder performs the opposite function of a decoder. It encodes given information into

a more compact form.

ISTUDY

4.3 ENCODERS 189

4.3.1 BINARY ENCODERS

A binary encoder encodes information from 2n inputs into an n-bit code, as indicated in

Figure 4.18. Exactly one of the input signals should have a value of 1, and the outputs

present the binary number that identifies which input is equal to 1. The truth table for a 4-

to-2 encoder is provided in Figure 4.19a. Observe that the output y0 is 1 when either input

w1 or w3 is 1, and output y1 is 1 when input w2 or w3 is 1. Hence these outputs can be

generated by the circuit in Figure 4.19b. Note that we assume that the inputs are one-hot

encoded. All input patterns that have multiple inputs set to 1 are not shown in the truth

table, and they are treated as don’t-care conditions.

Encoders are used to reduce the number of bits needed to represent given information.

A practical use of encoders is for transmitting information in a digital system. Encoding

the information allows the transmission link to be built using fewer wires. Encoding is also

useful if information is to be stored for later use because fewer bits need to be stored.

2n

inputs

w0

w
2n 1–

y0

yn 1–

n
outputs

Figure 4.18 A 2n-to-n binary encoder.

(a) Truth table

0

0

1

1

1

0

1

w3 y1

0

y0

(b) Circuit

w1

w0

0

0

1

0

w2

0

1

0

0

w1

1

0

0

0

w0

0

0

0

1

y0

w2

w3

y1

Figure 4.19 A 4-to-2 binary encoder.

ISTUDY

190 C H A P T E R 4 ● COMBINATIONAL-CIRCUIT BUILDING BLOCKS

d

0

0

1

0

1

0

w0 y1

d

y0

1 1

0

1

1

1

1

z

1

x

x

0

x

w1

0

1

x

0

x

w2

0

0

1

0

x

w3

0

0

0

0

1

Figure 4.20 Truth table for a 4-to-2 priority encoder.

4.3.2 PRIORITY ENCODERS

Another useful class of encoders is based on the priority of input signals. In a priority
encoder each input has a priority level associated with it. The encoder outputs indicate the

active input that has the highest priority. When an input with a high priority is asserted, the

other inputs with lower priority are ignored. The truth table for a 4-to-2 priority encoder is

shown in Figure 4.20. It assumes that w0 has the lowest priority and w3 the highest. The

outputs y1 and y0 represent the binary number that identifies the highest priority input set

to 1. Since it is possible that none of the inputs is equal to 1, an output, z, is provided to

indicate this condition. It is set to 1 when at least one of the inputs is equal to 1. It is set to

0 when all inputs are equal to 0. The outputs y1 and y0 are not meaningful in this case, and

hence the first row of the truth table can be treated as a don’t-care condition for y1 and y0.

The behavior of the priority encoder is most easily understood by first considering

the last row in the truth table. It specifies that if input w3 is 1, then the outputs are set to

y1y0 = 11. Because w3 has the highest priority level, the values of inputs w2, w1, and w0

do not matter. To reflect the fact that their values are irrelevant, w2,w1, and w0 are denoted

by the symbol x in the truth table. The second-last row in the truth table stipulates that if

w2 = 1, then the outputs are set to y1y0 = 10, but only if w3 = 0. Similarly, input w1 causes

the outputs to be set to y1y0 = 01 only if both w3 and w2 are 0. Input w0 produces the

outputs y1y0 = 00 only if w0 is the only input that is asserted.

A logic circuit that implements the truth table can be synthesized by using the tech-

niques developed in Chapter 2. However, a more convenient way to derive the circuit is to

define a set of intermediate signals, i0,… , i3, based on the observations above. Each signal,

ik, is equal to 1 only if the input with the same index, wk, represents the highest-priority

input that is set to 1. The logic expressions for i0,… , i3 are

i0 = w3w2w1w0

i1 = w3w2w1

i2 = w3w2

i3 = w3

Using the intermediate signals, the rest of the circuit for the priority encoder has the same

structure as the binary encoder in Figure 4.19, namely

y0 = i1 + i3
y1 = i2 + i3

The output z is given by

z = i0 + i1 + i2 + i3
ISTUDY

4.4 CODE CONVERTERS 191

4.4 CODE CONVERTERS

The purpose of the decoder and encoder circuits is to convert from one type of input en-

coding to a different output encoding. For example, a 3-to-8 binary decoder converts from

a binary number on the input to a one-hot encoding at the output. An 8-to-3 binary en-

coder performs the opposite conversion. There are many other possible types of code con-

verters. One common example is a BCD-to-7-segment decoder, which was introduced in

Section 2.14. A similar decoder is often used to display hexadecimal information on seven-

segment displays. As explained in Section 3.1.2, long binary numbers are easier to deal

with visually if they are represented in the hexadecimal form. A hex-to-7-segment de-

coder can be implemented as shown in Figure 4.21. Digits 0 to 9 are displayed the same

ce

1

0

1

1

1

1

1

w0 a

1

b

0 1

1

1

1

0

1

1

0

1

0

0

w1

0

1

1

0

0

w2

0

0

0

0

1

w3

0

0

0

0

0

c

1

0

1

0

0

1

1

0

1

1

1

0

0

0

0

1

1001

1

1

1

1

0

1

1

0

1 1

1

1

1

1

1

0

1

1

1

d

0

1

0

0

1

0

e

1

0

1

1

1

0

1

0

0

1

0

0

0

1

f

1

0

0

1

1

1

g

1

0

1

1

1

1

1

1

0

1

(c) Truth table

(a) Code converter

w0

a

w1

b
c
d

w2

w3

e
f
g

a

g

bf

d

(b) 7-segment display

1 1 10101

1

0

1

0

1

0

0

1

0

1

1

1

1

1

1

1

1111

0

1

0

1

0

1

0

0

1 0

1

0

0

1

0

0 1

1

1

1

1

0

1

1

1

1

1

1 1

1

0

1

1

1

1

0

1

1

1

Figure 4.21 A hex-to-7-segment display code converter.

ISTUDY

192 C H A P T E R 4 ● COMBINATIONAL-CIRCUIT BUILDING BLOCKS

as in the case of the BCD-to-7-segment decoder. Digits 10 to 15 are displayed as A, b,

C, d, E, and F.

We should note that although the word decoder is traditionally used for such circuits, a

more appropriate term is code converter. The term decoder is more appropriate for circuits

that produce one-hot encoded outputs.

4.5 ARITHMETIC COMPARISON CIRCUITS

Chapter 3 presented arithmetic circuits that perform addition, subtraction, and multiplica-

tion of binary numbers. Another useful type of arithmetic circuit compares the relative sizes

of two binary numbers. Such a circuit is called a comparator. This section considers the de-

sign of a comparator that has two n-bit inputs, A and B, which represent unsigned binary

numbers. The comparator produces three outputs, called AeqB, AgtB, and AltB. The AeqB
output is set to 1 if A and B are equal. The AgtB output is 1 if A is greater than B, and the

AltB output is 1 if A is less than B.

The desired comparator can be designed by creating a truth table that specifies the three

outputs as functions of A and B. However, even for moderate values of n, the truth table is

large. A better approach is to derive the comparator circuit by considering the bits of A and

B in pairs. We can illustrate this by a small example, where n = 4.

Let A = a3a2a1a0 and B = b3b2b1b0. Define a set of intermediate signals called

i3, i2, i1, and i0. Each signal, ik, is 1 if the bits of A and B with the same index are equal.

That is, ik = ak ⊕ bk. The comparator’s AeqB output is then given by

AeqB = i3i2i1i0

An expression for the AgtB output can be derived by considering the bits of A and B in the

order from the most-significant bit to the least-significant bit. The first bit-position, k, at

which ak and bk differ determines whether A is less than or greater than B. If ak = 0 and

bk = 1, then A < B. But if ak = 1 and bk = 0, then A > B. The AgtB output is defined by

AgtB = a3b3 + i3a2b2 + i3i2a1b1 + i3i2i1a0b0

The ik signals ensure that only the first bits, considered from the left to the right, of A and

B that differ determine the value of AgtB.

The AltB output can be derived by using the other two outputs as

AltB = AeqB + AgtB

A logic circuit that implements the four-bit comparator circuit is shown in Figure 4.22. This

approach can be used to design a comparator for any value of n.

Comparator circuits, like most logic circuits, can be designed in different ways. Another

approach for designing a comparator circuit is presented in Example 3.10 in Chapter 3.

ISTUDY

4.6 VHDL FOR COMBINATIONAL CIRCUITS 193

i0

i1

i2

i3

b0

a0

b1

a1

b2

a2

b3

a3

AeqB

AgtB

AltB

Figure 4.22 A four-bit comparator circuit.

4.6 VHDL FOR COMBINATIONAL CIRCUITS

Having presented a number of useful circuits that can be used as building blocks in larger

circuits, we will now consider how such circuits can be described in VHDL. Rather than re-

lying on the simple VHDL statements used in previous examples, such as logic expressions,

we will specify the circuits in terms of their behavior. We will also introduce a number of

new VHDL constructs.

4.6.1 ASSIGNMENT STATEMENTS

VHDL provides several types of statements that can be used to assign logic values to signals.

In the examples of VHDL code given so far, we have mostly relied on simple assignment

statements, either for logic or arithmetic expressions. This section discusses other types

of assignment statements, which are called selected signal assignments, conditional signal

assignments, generate statements, if-then-else statements, and case statements.

ISTUDY

194 C H A P T E R 4 ● COMBINATIONAL-CIRCUIT BUILDING BLOCKS

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

ENTITY mux2to1 IS

PORT (w0, w1, s : IN STD LOGIC ;

f : OUT STD LOGIC) ;

END mux2to1 ;

ARCHITECTURE Behavior OF mux2to1 IS

BEGIN

WITH s SELECT

f <= w0 WHEN ,

w1 WHEN OTHERS ;

END Behavior ;

'0'

Figure 4.23 VHDL code for a 2-to-1 multiplexer.

4.6.2 SELECTED SIGNAL ASSIGNMENT

A selected signal assignment allows a signal to be assigned one of several values, based on

a selection criterion. Figure 4.23 shows how it can be used to describe a 2-to-1 multiplexer.

The entity, named mux2to1, has the inputs w0, w1, and s, and the output f . The selected

signal assignment begins with the keyword WITH, which specifies that s is to be used for

the selection criterion. The two WHEN clauses state that f is assigned the value of w0 when

s = 0; otherwise, f is assigned the value of w1. The WHEN clause that selects w1 uses the

word OTHERS, instead of the value 1. This is required because the VHDL syntax specifies

that a WHEN clause must be included for every possible value of the selection signal s.

Since it has the STD LOGIC type, discussed in Section 2.10.1, s can take the values 0, 1,

Z, −, and others. The keyword OTHERS provides a convenient way of accounting for all

logic values that are not explicitly listed in a WHEN clause.

Example 4.8 A 4-to-1 multiplexer is described by the entity named mux4to1 in Figure 4.24. The two select

inputs, which are called s1 and s0 in Figure 4.2, are represented by the two-bit STD LOGIC

VECTOR signal s. The selected signal assignment sets f to the value of one of the inputs

w0,… ,w3, depending on the valuation of s. Compiling the code results in the circuit shown

in Figure 4.2c. At the end of Figure 4.24, the mux4to1 entity is defined as a component

in the package named mux4to1 package. We showed in Section 3.5.2 that declaring the

component inside a package makes it convenient to use the entity as a subcircuit in other

VHDL code.

Example 4.9 Figure 4.4 shows how a 16-to-1 multiplexer is built using five 4-to-1 multiplexers. Figure 4.25

presents VHDL code for this circuit, using the mux4to1 component. The lines of code are

numbered so that we can easily refer to them. The mux4to1 package is included in the code,

because it provides the component declaration for mux4to1.

ISTUDY

4.6 VHDL FOR COMBINATIONAL CIRCUITS 195

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

ENTITY mux4to1 IS

PORT (w0, w1, w2, w3 : IN STD LOGIC ;

s : IN STD LOGIC VECTOR(1 DOWNTO 0) ;

f : OUT STD LOGIC) ;

END mux4to1 ;

ARCHITECTURE Behavior OF mux4to1 IS

BEGIN

WITH s SELECT

f <= w0 WHEN "00",

w1 WHEN "01",

w2 WHEN "10",

w3 WHEN OTHERS ;

END Behavior ;

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

PACKAGE mux4to1 package IS

COMPONENT mux4to1

PORT (w0, w1, w2, w3 : IN STD LOGIC ;

s : IN STD LOGIC VECTOR(1 DOWNTO 0) ;

f : OUT STD LOGIC) ;

END COMPONENT ;

END mux4to1 package ;

Figure 4.24 VHDL code for a 4-to-1 multiplexer.

The data inputs to the mux16to1 entity are the 16-bit signal named w, and the se-

lect inputs are the four-bit signal named s. In the VHDL code signal names are needed

for the outputs of the four 4-to-1 multiplexers on the left of Figure 4.4. Line 11 defines

a four-bit signal named m for this purpose, and lines 13 to 16 instantiate the four multi-

plexers. For instance, line 13 corresponds to the multiplexer at the top left of Figure 4.4.

Its first four ports, which correspond to w0,… ,w3 in Figure 4.24, are driven by the signals

w(0),… ,w(3). The syntax s(1 DOWNTO 0) is used to attach the signals s(1) and s(0) to the

two-bit s port of the mux4to1 component. The m(0) signal is connected to the multiplexer’s

output port.

Line 17 instantiates the multiplexer on the right of Figure 4.4. The signals m(0),… ,

m(3) are connected to its data inputs, and bits s(3) and s(2), which are specified by the

syntax s(3 DOWNTO 2), are attached to the select inputs. The output port generates

the mux16to1 output f . Compiling the code results in the multiplexer function

f = s3s2s1s0w0 + s3s2s1s0w1 + s3s2s1s0w2 +⋯ + s3s2s1s0w14 + s3s2s1s0w15

ISTUDY

196 C H A P T E R 4 ● COMBINATIONAL-CIRCUIT BUILDING BLOCKS

1 LIBRARY ieee ;

2 USE ieee.std logic 1164.all ;

3 LIBRARY work ;

4 USE work.mux4to1 package.all ;

5 ENTITY mux16to1 IS

6 PORT (w : IN STD LOGIC VECTOR(0 TO 15) ;

7 s : IN STD LOGIC VECTOR(3 DOWNTO 0) ;

8 f : OUT STD LOGIC) ;

9 END mux16to1 ;

10 ARCHITECTURE Structure OF mux16to1 IS

11 SIGNAL m : STD LOGIC VECTOR(0 TO 3) ;

12 BEGIN

13 Mux1: mux4to1 PORT MAP

(w(0), w(1), w(2), w(3), s(1 DOWNTO 0), m(0)) ;

14 Mux2: mux4to1 PORT MAP

(w(4), w(5), w(6), w(7), s(1 DOWNTO 0), m(1)) ;

15 Mux3: mux4to1 PORT MAP

(w(8), w(9), w(10), w(11), s(1 DOWNTO 0), m(2)) ;

16 Mux4: mux4to1 PORT MAP

(w(12), w(13), w(14), w(15), s(1 DOWNTO 0), m(3)) ;

17 Mux5: mux4to1 PORT MAP

(m(0), m(1), m(2), m(3), s(3 DOWNTO 2), f) ;

18 END Structure ;

Figure 4.25 Hierarchical code for a 16-to-1 multiplexer.

Example 4.10 The selected signal assignment can also be used to describe other types of circuits. Figure 4.26

shows how a selected signal assignment can be used to describe the truth table for

a 2-to-4 binary decoder. The entity is called dec2to4. The data inputs are the two-bit sig-

nal named w, and the enable input is En. The four outputs are represented by the four-bit

signal y.

In the truth table for the decoder in Figure 4.14a, the inputs are listed in the order

En w1w0. To represent these three signals, the VHDL code defines the three-bit signal

named Enw. The statement Enw <= En & w uses the VHDL concatenate operator, which

was discussed in Section 3.5.4, to combine the En and w signals into the Enw signal.

Hence Enw(2) = En, Enw(1) = w1, and Enw(0) = w0. The Enw signal is used as the

selection signal in the selected signal assignment statement. It describes the truth table in

Figure 4.14a. In the first four WHEN clauses, En = 1, and the decoder outputs have the

same patterns as in the first four rows of the truth table. The last WHEN clause uses the

OTHERS keyword and sets the decoder outputs to 0000, because it represents the cases

where En = 0.

ISTUDY

4.6 VHDL FOR COMBINATIONAL CIRCUITS 197

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

ENTITY dec2to4 IS

PORT (w : IN STD LOGIC VECTOR(1 DOWNTO 0) ;

En : IN STD LOGIC ;

y : OUT STD LOGIC VECTOR(0 TO 3)) ;

END dec2to4 ;

ARCHITECTURE Behavior OF dec2to4 IS

SIGNAL Enw : STD LOGIC VECTOR(2 DOWNTO 0) ;

BEGIN

Enw <= En & w ;

WITH Enw SELECT

y <= "1000" WHEN "100",

"0100" WHEN "101",

"0010" WHEN "110",

"0001" WHEN "111",

"0000" WHEN OTHERS ;

END Behavior ;

Figure 4.26 VHDL code for a 2-to-4 binary decoder.

4.6.3 CONDITIONAL SIGNAL ASSIGNMENT

Similar to the selected signal assignment, a conditional signal assignment allows a signal

to be set to one of several values. Figure 4.27 shows a modified version of the 2-to-1 mul-

tiplexer entity from Figure 4.23. It uses a conditional signal assignment to specify that f is

assigned the value of w0 when s = 0, or else f is assigned the value of w1. Compiling

the code generates the same circuit as the code in Figure 4.23. In this small example the

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

ENTITY mux2to1 IS

PORT (w0, w1, s : IN STD LOGIC ;

f : OUT STD LOGIC) ;

END mux2to1 ;

ARCHITECTURE Behavior OF mux2to1 IS

BEGIN

f <= w0 WHEN s = ELSE w1 ;

END Behavior ;

'0'

Figure 4.27 Specification of a 2-to-1 multiplexer using a

conditional signal assignment.

ISTUDY

198 C H A P T E R 4 ● COMBINATIONAL-CIRCUIT BUILDING BLOCKS

conditional signal assignment has only one WHEN clause. A more complex example, which

better illustrates the features of the conditional signal assignment, is given in Example 4.11.

Example 4.11 Figure 4.20 gives the truth table for a 4-to-2 priority encoder. VHDL code that describes

this truth table is shown in Figure 4.28. The inputs to the encoder are represented by the

four-bit signal named w. The encoder has the outputs y, which is a two-bit signal, and z.

The conditional signal assignment specifies that y is assigned the value 11 when input

w(3) = 1. If this condition is true, then the other WHEN clauses that follow the ELSE

keyword do not affect the value of y. Hence the values of w(2),w(1), and w(0) do not matter,

which implements the desired priority scheme. The second WHEN clause states that when

w(2) = 1, then y is assigned the value 10. This can occur only if w(3) = 0. Each successive

WHEN clause can affect y only if none of the conditions associated with the preceding

WHEN clauses are true. Figure 4.28 includes a second conditional signal assignment for

the output z. It states that when all four inputs are 0, z is assigned the value 0; else z is

assigned the value 1.

The priority level associated with each WHEN clause in the conditional signal assign-

ment is a key difference from the selected signal assignment, which has no such priority

scheme. It is possible to describe the priority encoder using a selected signal assignment,

but the code is more awkward. One possibility is shown by the architecture in Figure 4.29.

The first WHEN clause sets y to 00 when w0 is the only input that is 1. The next two clauses

state that y should be 01 when w3 = w2 = 0 and w1 = 1. The next four clauses specify that

y should be 10 if w3 = 0 and w2 = 1. Finally, the last WHEN clause states that y should be

1 for all other input valuations, which includes all valuations for which w3 is 1. Note that

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

ENTITY priority IS

PORT (w : IN STD LOGIC VECTOR(3 DOWNTO 0) ;

y : OUT STD LOGIC VECTOR(1 DOWNTO 0) ;

z : OUT STD LOGIC) ;

END priority ;

ARCHITECTURE Behavior OF priority IS

BEGIN

y <= "11" WHEN w(3) = ELSE

"10" WHEN w(2) =

'1'

'1'

'1'

'1'

ELSE

"01" WHEN w(1) = ELSE

"00" ;

z <= WHEN w = "0000" ELSE ;

END Behavior ;

'0'

Figure 4.28 VHDL code for a priority encoder.

ISTUDY

4.6 VHDL FOR COMBINATIONAL CIRCUITS 199

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

ENTITY priority IS

PORT (w : IN STD LOGIC VECTOR(3 DOWNTO 0) ;

y : OUT STD LOGIC VECTOR(1 DOWNTO 0) ;

z : OUT STD LOGIC) ;

END priority ;

ARCHITECTURE Behavior OF priority IS

BEGIN

WITH w SELECT

y <= "00" WHEN "0001",

"01" WHEN "0010",

"01" WHEN "0011",

"10" WHEN "0100",

"10" WHEN "0101",

"10" WHEN "0110",

"10" WHEN "0111",

"11" WHEN OTHERS ;

WITH w SELECT

z <= WHEN "0000",

WHEN OTHERS ;

END Behavior ;

'1'

'0'

Figure 4.29 Less efficient code for a priority encoder.

the OTHERS clause includes the input valuation 0000. This pattern results in z = 0, and

the value of y does not matter in this case.

Example 4.12We derived the circuit for a comparator in Figure 4.22. Figure 4.30 shows how this circuit

can be described with VHDL code. Each of the three conditional signal assignments deter-

mines the value of one of the comparator outputs. The package named std logic unsigned
is included in the code because it specifies that STD LOGIC VECTOR signals, namely,

A and B, can be used as unsigned binary numbers with VHDL relational operators. The

relational operators provide a convenient way of specifying the desired functionality.

The circuit generated from the code in Figure 4.30 is similar, but not identical, to the

circuit in Figure 4.22. The VHDL compiler instantiates a predefined module to implement

each of the comparison operations.

Instead of using the std logic unsigned library, another way to specify that the gener-

ated circuit should use unsigned numbers is to include the library named std logic arith.
In this case the signals A and B should be defined with the type UNSIGNED, rather than

STD LOGIC VECTOR. If we want the circuit to work with signed numbers, signals A and

B should be defined with the type SIGNED. This code is given in Figure 4.31.

ISTUDY

200 C H A P T E R 4 ● COMBINATIONAL-CIRCUIT BUILDING BLOCKS

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

USE ieee.std logic unsigned.all ;

ENTITY compare IS

PORT (A, B : IN STD LOGIC VECTOR(3 DOWNTO 0) ;

AeqB, AgtB, AltB : OUT STD LOGIC) ;

END compare ;

ARCHITECTURE Behavior OF compare IS

BEGIN

AeqB <= WHEN A = B ELSE ;

AgtB <= WHEN A > B ELSE ;

AltB <= WHEN A < B ELSE ;

END Behavior ;

'1'

'1'

'1'

'0'

'0'

'0'

Figure 4.30 VHDL code for a four-bit comparator.

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

USE ieee.std logic arith.all ;

ENTITY compare IS

PORT (A, B : IN SIGNED(3 DOWNTO 0) ;

AeqB, AgtB, AltB : OUT STD LOGIC) ;

END compare ;

ARCHITECTURE Behavior OF compare IS

BEGIN

AeqB <= WHEN A = B ELSE ;

AgtB <= WHEN A > B ELSE ;

AltB <= WHEN A < B ELSE ;

END Behavior ;

'1'

'1'

'1'

'0'

'0'

'0'

Figure 4.31 The code from Figure 4.30 for signed numbers.

4.6.4 GENERATE STATEMENTS

Figure 4.25 gives VHDL code for a 16-to-1 multiplexer using five instances of a 4-to-1

multiplexer subcircuit. The regular structure of the code suggests that it could be written in

a more compact form using a loop. VHDL provides a feature called the FOR GENERATE

statement for describing regularly structured hierarchical code.

Figure 4.32 shows the code from Figure 4.25 rewritten using a FOR GENERATE state-

ment. The generate statement must have a label, so we have used the label G1 in the code.

The loop instantiates four copies of the mux4to1 component, using the loop index i in the

ISTUDY

4.6 VHDL FOR COMBINATIONAL CIRCUITS 201

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

USE work.mux4to1 package.all ;

ENTITY mux16to1 IS

PORT (w : IN STD LOGIC VECTOR(0 TO 15) ;

s : IN STD LOGIC VECTOR(3 DOWNTO 0) ;

f : OUT STD LOGIC) ;

END mux16to1 ;

ARCHITECTURE Structure OF mux16to1 IS

SIGNAL m : STD LOGIC VECTOR(0 TO 3) ;

BEGIN

G1: FOR i IN 0 TO 3 GENERATE

Muxes: mux4to1 PORT MAP (

w(4*i), w(4*i+1), w(4*i+2), w(4*i+3), s(1 DOWNTO 0), m(i)) ;

END GENERATE ;

Mux5: mux4to1 PORT MAP (m(0), m(1), m(2), m(3), s(3 DOWNTO 2), f) ;

END Structure ;

Figure 4.32 Code for a 16-to-1 multiplexer using a generate statement.

range from 0 to 3. The variable i is not explicitly declared in the code; it is automatically

defined as a local variable whose scope is limited to the FOR GENERATE statement. The

first loop iteration corresponds to the instantiation statement labeled Mux1 in Figure 4.25.

The * operator represents multiplication; hence for the first loop iteration the VHDL com-

piler translates the signal names w(4 ∗ i),w(4 ∗ i + 1),w(4 ∗ i + 2), and w(4 ∗ i + 3) into

signal names w(0), w(1), w(2), and w(3). The loop iterations for i = 1, i = 2, and i = 3

correspond to the statements labeled Mux2, Mux3, and Mux4 in Figure 4.25. The statement

labeled Mux5 in Figure 4.25 does not fit within the loop, so it is included as a separate

statement in Figure 4.32. The circuit generated from the code in Figure 4.32 is identical to

the circuit produced by using the code in Figure 4.25.

Example 4.13In addition to the FOR GENERATE statement, VHDL provides another type of generate

statement called IF GENERATE. Figure 4.33 illustrates the use of both types of generate

statements. The code shown is a hierarchical description of the 4-to-16 decoder given in

Figure 4.16, using five instances of the dec2to4 component defined in Figure 4.26. The

decoder data inputs are the four-bit signal w, the enable is En, and the outputs are the 16-bit

signal y.

Following the component declaration for the dec2to4 subcircuit, the architecture de-

fines the signal m, which represents the outputs of the 2-to-4 decoder on the left of Figure

4.16. The five copies of the dec2to4 component are instantiated by the FOR GENERATE

statement. In each iteration of the loop, the statement labeled Dec ri instantiates a dec2to4
component that corresponds to one of the 2-to-4 decoders on the right side of Figure 4.16.

The first loop iteration generates the dec2to4 component with data inputs w1 and w0, enable

ISTUDY

202 C H A P T E R 4 ● COMBINATIONAL-CIRCUIT BUILDING BLOCKS

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

ENTITY dec4to16 IS

PORT (w : IN STD LOGIC VECTOR(3 DOWNTO 0) ;

En : IN STD LOGIC ;

y : OUT STD LOGIC VECTOR(0 TO 15)) ;

END dec4to16 ;

ARCHITECTURE Structure OF dec4to16 IS

COMPONENT dec2to4

PORT (w : IN STD LOGIC VECTOR(1 DOWNTO 0) ;

En : IN STD LOGIC ;

y : OUT STD LOGIC VECTOR(0 TO 3)) ;

END COMPONENT ;

SIGNAL m : STD LOGIC VECTOR(0 TO 3) ;

BEGIN

G1: FOR i IN 0 TO 3 GENERATE

Dec ri: dec2to4 PORT MAP (w(1 DOWNTO 0), m(i), y(4*i TO 4*i+3));

G2: IF i=3 GENERATE

Dec left: dec2to4 PORT MAP (w(i DOWNTO i-1), En, m) ;

END GENERATE ;

END GENERATE ;

END Structure ;

Figure 4.33 Hierarchical code for a 4-to-16 binary decoder.

input m0, and outputs y0, y1, y2, y3. The other loop iterations also use data inputs w1w0, but

use different bits of m and y.

The IF GENERATE statement, labeled G2, instantiates a dec2to4 component in the last

loop iteration, for which the condition i = 3 is true. This component represents the 2-to-4

decoder on the left of Figure 4.16. It has the two-bit data inputs w3 and w2, the enable En, and

the outputs m0,m1,m2, and m3. Note that instead of using the IF GENERATE statement, we

could have instantiated this component outside the FOR GENERATE statement. We have

written the code as shown simply to give an example of the IF GENERATE statement.

The generate statements in Figures 4.32 and 4.33 are used to instantiate components.

Another use of generate statements is to generate a set of logic equations. An example of

this use will be given in Figure 7.13.

4.6.5 CONCURRENT AND SEQUENTIAL ASSIGNMENT STATEMENTS

We have introduced several types of assignment statements: simple assignment statements,

which involve logic or arithmetic expressions, selected assignment statements, and condi-

tional assignment statements. All of these statements share the property that the order in

ISTUDY

4.6 VHDL FOR COMBINATIONAL CIRCUITS 203

which they appear in VHDL code does not affect the meaning of the code. Because of this

property, these statements are called the concurrent assignment statements.

VHDL also provides a second category of statements, called sequential assignment
statements, for which the ordering of the statements may affect the meaning of the code.

We will discuss two types of sequential assignment statements: if-then-else statements, in-

troduced in Section 2.10.2, and case statements. As mentioned in Section 2.10.2, VHDL

requires that the sequential assignment statements be placed inside another type of state-

ment, called a process statement.

4.6.6 PROCESS STATEMENT

Figures 4.23 and 4.27 show two ways of describing a 2-to-1 multiplexer, using the selected

and conditional signal assignments. The same circuit can also be described using the if-

then-else statement in Figure 4.34. The process statement, or simply process, that begins

with the PROCESS keyword is followed by the parenthesized list of signals in the sensitivity
list. For a combinational circuit like the multiplexer, the sensitivity list includes all input

signals that are used inside the process. The process statement is translated by the VHDL

compiler into logic expressions. In the figure the process consists of the single if-then-else

statement that describes the multiplexer function. Thus the sensitivity list comprises the

data inputs, w0 and w1, and the select input s.

In general, there can be a number of statements inside a process. These statements are

considered as follows. Using VHDL jargon, we say that when there is a change in the value

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

ENTITY mux2to1 IS

PORT (w0, w1, s : IN STD LOGIC ;

f : OUT STD LOGIC) ;

END mux2to1 ;

ARCHITECTURE Behavior OF mux2to1 IS

BEGIN

PROCESS (w0, w1, s)

BEGIN

IF s = THEN

f <= w0 ;

ELSE

f <= w1 ;

END IF ;

END PROCESS ;

END Behavior ;

'0'

Figure 4.34 A 2-to-1 multiplexer specified using the if-then-else

statement.

ISTUDY

204 C H A P T E R 4 ● COMBINATIONAL-CIRCUIT BUILDING BLOCKS

of any signal in the process’s sensitivity list, then the process becomes active. Once active,

the statements inside the process are evaluated in sequential order. Any assignments made

to signals inside the process are not visible outside the process until all of the statements

in the process have been evaluated. If there are multiple assignments to the same signal,

only the last one has any visible effect. This is illustrated in Example 4.14.

Example 4.14 The code in Figure 4.35 is equivalent to the code in Figure 4.34. The first statement in the

process assigns the value of w0 to f . This provides a default value for f but the assignment

does not actually take place until the end of the process. In VHDL jargon we say that the as-

signment is scheduled to occur after all of the statements in the process have been evaluated.

If another assignment to f takes place while the process is active, the default assignment

will be overridden. The second statement in the process assigns the value of w1 to f if the

value of s is equal to 1. If this condition is true, then the default assignment is overridden.

Thus if s = 0, then f = w0, and if s = 1, then f = w1, which defines the 2-to-1 multiplexer.

Compiling this code results in the same circuit as for Figures 4.23, 4.27, and 4.34, namely,

f = sw0 + sw1.

The process statement in Figure 4.35 illustrates that the ordering of the statements

in a process can affect the meaning of the code. Consider reversing the order of the two

statements so that the if-then-else statement is evaluated first. If s = 1, f is assigned the

value of w1. This assignment is scheduled and does not take place until the end of the

process. However, the statement f <= w0 is evaluated last. It overrides the first assignment,

and f is assigned the value of w0 regardless of the value of s. Hence instead of describing

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

ENTITY mux2to1 IS

PORT (w0, w1, s : IN STD LOGIC ;

f : OUT STD LOGIC) ;

END mux2to1 ;

ARCHITECTURE Behavior OF mux2to1 IS

BEGIN

PROCESS (w0, w1, s)

BEGIN

f <= w0 ;

IF s = THEN

f <= w1 ;

END IF ;

END PROCESS ;

END Behavior ;

'1'

Figure 4.35 Alternative code for the 2-to-1 multiplexer using

an if statement.

ISTUDY

4.6 VHDL FOR COMBINATIONAL CIRCUITS 205

a multiplexer, when the statements inside the process are reversed, the code represents the

trivial circuit f = w0.

Example 4.15Figure 4.36 gives an example that contains both a concurrent assignment statement and a

process statement. It describes a priority encoder and is equivalent to the code in Figure

4.28. The process describes the desired priority scheme using an if-then-else statement. It

specifies that if the input w3 is 1, then the output is set to y = 11. This assignment does not

depend on the values of inputs w2,w1, or w0; hence their values do not matter. The other

clauses in the if-then-else statement are evaluated only if w3 = 0. The first ELSIF clause

states that if w2 is 1, then y = 10. If w2 = 0, then the next ELSIF clause results in y = 01

if w1 = 1. If w3 = w2 = w1 = 0, then the ELSE clause results in y = 00. This assignment

is done whether or not w0 is 1; Figure 4.24 indicates that y can be set to any pattern when

w = 0000 because z will be set to 0 in this case.

The priority encoder’s output z must be set to 1 whenever at least one of the data inputs

is 1. This output is defined by the conditional assignment statement at the end of Figure

4.36. The VHDL syntax does not allow a conditional assignment statement (or a selected

assignment statement) to appear inside a process. An alternative would be to specify the

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

ENTITY priority IS

PORT (w : IN STD LOGIC VECTOR(3 DOWNTO 0) ;

y : OUT STD LOGIC VECTOR(1 DOWNTO 0) ;

z : OUT STD LOGIC) ;

END priority ;

ARCHITECTURE Behavior OF priority IS

BEGIN

PROCESS (w)

BEGIN

IF w(3) = THEN

y <= "11" ;

ELSIF w(2) = THEN

y <= "10" ;

ELSIF w(1) = THEN

y <= "01" ;

ELSE

y <= "00" ;

END IF ;

END PROCESS ;

z <= WHEN w = "0000" ELSE ;

END Behavior ;

'1'

'1'

'1'

'1'

'0'

Figure 4.36 A priority encoder specified using the if-then-else statement.

ISTUDY

206 C H A P T E R 4 ● COMBINATIONAL-CIRCUIT BUILDING BLOCKS

value of z by using an if-then-else statement inside the process. The reason that we have

written the code as given in the figure is to illustrate that concurrent assignment statements

can be used in conjunction with process statements. The process statement serves the pur-

pose of separating the sequential statements from the concurrent statements. Note that the

ordering of the process statement and the conditional assignment statement does not matter.

VHDL stipulates that while the statements inside a process are sequential statements, the

process statement itself is a concurrent statement.

Example 4.16 Figure 4.37 shows an alternative style of code for the priority encoder, using if-then-else

statements. The first statement in the process provides the default value of 00 for y1y0.

The second statement overrides this if w1 is 1, and sets y1y0 to 01. Similarly, the third and

fourth statements override the previous ones if w2 or w3 are 1, and set y1y0 to 10 and 11,

respectively. These four statements are equivalent to the single if-then-else statement in

Figure 4.36 that describes the priority scheme. The value of z is specified using a default

assignment statement, followed by an if-then-else statement that overrides the default if

w = 0000. Although the examples in Figures 4.36 and 4.37 are equivalent, the meaning of

the code in Figure 4.36 is probably easier to understand.

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

ENTITY priority IS

PORT (w : IN STD LOGIC VECTOR(3 DOWNTO 0) ;

y : OUT STD LOGIC VECTOR(1 DOWNTO 0) ;

z : OUT STD LOGIC) ;

END priority ;

ARCHITECTURE Behavior OF priority IS

BEGIN

PROCESS (w)

BEGIN

y <= "00" ;

IF w(1) = THEN y <= "01" ; END IF ;

IF w(2) = THEN y <= "10" ; END IF ;

IF w(3) = THEN y <= "11" ; END IF ;

z <= ;

IF w = "0000" THEN z <= ; END IF ;

END PROCESS ;

END Behavior ;

'1'

'1'

'1'

'1'

'0'

Figure 4.37 Alternative code for the priority encoder.

ISTUDY

4.6 VHDL FOR COMBINATIONAL CIRCUITS 207

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

ENTITY compare1 IS

PORT (A, B : IN STD LOGIC ;

AeqB : OUT STD LOGIC) ;

END compare1 ;

ARCHITECTURE Behavior OF compare1 IS

BEGIN

PROCESS (A, B)

BEGIN

AeqB <= ;

IF A = B THEN

AeqB <= ;

END IF ;

END PROCESS ;

END Behavior ;

'1'

'0'

Figure 4.38 Code for a one-bit equality comparator.

Example 4.17Figure 4.30 specifies a four-bit comparator that produces the three outputs AeqB, AgtB, and

AltB. Figure 4.38 shows how such specification can be written using if-then-else statements.

For simplicity, one-bit numbers are used for the inputs A and B, and only the code for the

AeqB output is shown. The process assigns the default value of 0 to AeqB and then the

if-then-else statement changes AeqB to 1 if A and B are equal. It is instructive to consider

the effect on the semantics of the code if the default assignment statement is removed, as

illustrated in Figure 4.39.

With only the if-then-else statement, the code does not specify what value AeqB should

have if the condition A = B is not true. The VHDL semantics stipulate that in cases where

the code does not specify the value of a signal, the signal should retain its current value.

For the code in Figure 4.39, once A and B are equal, resulting in AeqB = 1, then AeqB will

remain set to 1 indefinitely, even if A and B are no longer equal. In the VHDL jargon, the

AeqB output is said to have implied memory because the circuit synthesized from the code

will “remember,” or store the value AeqB = 1. Figure 4.40 shows the circuit synthesized

from the code. The XOR gate produces a 1 when A and B are equal, and the OR gate ensures

that AeqB remains set to 1 indefinitely.

The implied memory that results from the code in Figure 4.39 is not useful, because

it generates a comparator circuit that does not function correctly. However, we will show

in Chapter 5 that the semantics of implied memory are useful for other types of circuits,

which have the capability to store logic signal values in memory elements.

ISTUDY

208 C H A P T E R 4 ● COMBINATIONAL-CIRCUIT BUILDING BLOCKS

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

ENTITY implied IS

PORT (A, B : IN STD LOGIC ;

AeqB : OUT STD LOGIC) ;

END implied ;

ARCHITECTURE Behavior OF implied IS

BEGIN

PROCESS (A, B)

BEGIN

IF A = B THEN

AeqB <= ;

END IF ;

END PROCESS ;

END Behavior ;

'1'

Figure 4.39 An example of code that results in implied memory.

A

B AeqB

Figure 4.40 The circuit generated from the code in Figure 4.39.

4.6.7 CASE STATEMENT

A case statement is similar to a selected signal assignment in that the case statement has a

selection signal and includes WHEN clauses for various valuations of this selection signal.

Figure 4.41 shows how the case statement can be used as yet another way of describing the

2-to-1 multiplexer circuit. The case statement begins with the CASE keyword, which spec-

ifies that s is to be used as the selection signal. The first WHEN clause specifies, following

the => designator, the statements that should be evaluated when s = 0. In this example

the only statement evaluated when s = 0 is f <= w0. The case statement must include a

WHEN clause for all possible valuations of the selection signal. Hence the second WHEN

clause, which contains f <= w1, uses the OTHERS keyword.

Example 4.18 Figure 4.26 gives the code for a 2-to-4 decoder. A different way of describing this circuit,

using sequential assignment statements, is shown in Figure 4.42. The process first uses an

if-then-else statement to check the value of the decoder enable signal En. If En = 1, the

case statement sets the output y to the appropriate value based on the input w. The case

ISTUDY

4.6 VHDL FOR COMBINATIONAL CIRCUITS 209

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

ENTITY mux2to1 IS

PORT (w0, w1, s : IN STD LOGIC ;

f : OUT STD LOGIC) ;

END mux2to1 ;

ARCHITECTURE Behavior OF mux2to1 IS

BEGIN

PROCESS (w0, w1, s)

BEGIN

CASE s IS

WHEN =>

f <= w0 ;

WHEN OTHERS =>

f <= w1 ;

END CASE ;

END PROCESS ;

END Behavior ;

'0'

Figure 4.41 A case statement that represents a 2-to-1 multiplexer.

statement represents the first four rows of the truth table in Figure 4.14a. If En = 0, the

ELSE clause sets y to 0000, as specified in the bottom row of the truth table.

Example 4.19Another example of a case statement is given in Figure 4.43. The entity is named seg7,

and it represents the hex-to-7-segment decoder in Figure 4.21. The hexadecimal input is

represented by the four-bit signal named hex, and the seven outputs are the seven-bit signal

named leds. The case statement is formatted so that it resembles the truth table in Figure

4.21c. Note that there is a comment to the right of the case statement, which labels the

seven outputs with the letters from a to g. These labels indicate the correlation between the

seven-bit leds signal in the VHDL code and the seven segments in Figure 4.21b.

Example 4.20An arithmetic logic unit (ALU) is a logic circuit that performs various Boolean and arith-

metic operations on n-bit operands. Table 4.1 specifies the functionality of a simple ALU,

known as the 74381 chip, which has been available in the form of a standard chip in the

family called the 7400-series. Such chips are discussed in Appendix B. This ALU has 2

four-bit data inputs, A and B, a three-bit select input, S, and a four-bit output, F. As the

table shows, F is defined by various arithmetic or Boolean operations on the inputs A and

B. In this table + means arithmetic addition, and − means arithmetic subtraction. To avoid

confusion, the table uses the words XOR, OR, and AND for the Boolean operations. Each

Boolean operation is done in a bit-wise fashion. For example, F = A AND B produces the

four-bit result f0 = a0b0, f1 = a1b1, f2 = a2b2, and f3 = a3b3.

ISTUDY

210 C H A P T E R 4 ● COMBINATIONAL-CIRCUIT BUILDING BLOCKS

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

ENTITY dec2to4 IS

PORT (w : IN STD LOGIC VECTOR(1 DOWNTO 0) ;

En : IN STD LOGIC ;

y : OUT STD LOGIC VECTOR(0 TO 3)) ;

END dec2to4 ;

ARCHITECTURE Behavior OF dec2to4 IS

BEGIN

PROCESS (w, En)

BEGIN

IF En = THEN

CASE w IS

WHEN "00" =>

y "1000" ;

WHEN "01" =>

y "0100" ;

WHEN "10" =>

y "0010" ;

WHEN OTHERS =>

y

<=

<=

<=

<= "0001" ;

END CASE ;

ELSE

y <= "0000" ;

END IF ;

END PROCESS ;

END Behavior ;

'1'

Figure 4.42 A process statement that describes a 2-to-4 binary decoder.

Figure 4.44 shows how the functionality of the 74381 ALU can be described using

VHDL code. The std logic unsigned package, introduced in Section 3.5.4, is included so

that the STD LOGIC VECTOR signals A and B can be used in unsigned arithmetic oper-

ations. The case statement shown corresponds directly to Table 4.1.

4.6.8 VHDL OPERATORS

In this section we discuss the VHDL operators that are useful for synthesizing logic circuits.

Table 4.2 lists these operators in groups that reflect the type of operation performed.

To illustrate the results produced by the various operators, we will use three-bit vectors

A(2 DOWNTO 0), B(2 DOWNTO 0), and C(2 DOWNTO 0).

ISTUDY

4.6 VHDL FOR COMBINATIONAL CIRCUITS 211

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

ENTITY seg7 IS

PORT (hex : IN STD LOGIC VECTOR(3 DOWNTO 0) ;

leds : OUT STD LOGIC VECTOR(1 TO 7)) ;

END seg7 ;

ARCHITECTURE Behavior OF seg7 IS

BEGIN

PROCESS (hex)

BEGIN

CASE hex IS - - abcdef g

WHEN ''0000'' => leds <= ''1111110'' ;

WHEN ''0001'' => leds <= ''0110000'' ;

WHEN ''0010'' => leds <= ''1101101'' ;

WHEN ''0011'' => leds <= ''1111001'' ;

WHEN ''0100'' => leds <= ''0110011'' ;

WHEN ''0101'' => leds <= ''1011011'' ;

WHEN ''0110'' => leds <= ''1011111'' ;

WHEN ''0111'' => leds <= ''1110000'' ;

WHEN ''1000'' => leds <= ''1111111'' ;

WHEN ''1001'' => leds <= ''1111011'' ;

WHEN ''1010'' => leds <= ''1110111'' ;

WHEN ''1011'' => leds <= ''0011111'' ;

WHEN ''1100'' => leds <= ''1001110'' ;

WHEN ''1101'' => leds <= ''0111101'' ;

WHEN ''1110'' => leds <= ''1001111'' ;

WHEN OTHERS => leds <= ''1000111'' ;

END CASE ;

END PROCESS ;

END Behavior ;

Figure 4.43 Code that represents a hex-to-7-segment decoder.

Logical Operators
The logical operators can be used with bit and boolean types of operands. The operands

can be either single-bit scalars or multibit vectors. For example, the statement

C <= NOT A;

produces the result c2 = a2, c1 = a1, and c0 = a0, where ai and ci are the bits of the vectors

A and C.

The statement

C <= A AND B;

ISTUDY

212 C H A P T E R 4 ● COMBINATIONAL-CIRCUIT BUILDING BLOCKS

Table 4.1 The functionality of
the 74381 ALU.

Inputs Outputs
Operation s2 s1 s0 F

Clear 0 0 0 0 0 0 0

B−A 0 0 1 B − A
A−B 0 1 0 A − B
ADD 0 1 1 A + B
XOR 1 0 0 A XOR B
OR 1 0 1 A OR B
AND 1 1 0 A AND B
Preset 1 1 1 1 1 1 1

generates c2 = a2 ⋅ b2, c1 = a1 ⋅ b1, and c0 = a0 ⋅ b0. The other operators lead to similar

evaluations.

Relational Operators
The relational operators are used to compare expressions. The result of the comparison

is TRUE or FALSE. The expressions that are compared must be of the same type. For

example, if A = 011 and B = 010 then A > B evaluates to TRUE, and B ∕= ''010'' evaluates

to FALSE.

Arithmetic Operators
We have already encountered the arithmetic operators in Chapter 3. They perform stan-

dard arithmetic operations. Thus

C <= A + B;

puts the three-bit sum of A plus B into C, while

C <= A − B;

puts the difference of A and B into C. The operation

C <= −A;

places the 2’s complement of A into C.

The addition, subtraction, and multiplication operations are supported by most CAD

synthesis tools. However, the division operation is often not supported. When the VHDL

compiler encounters an arithmetic operator, it usually synthesizes it by using an appropriate

module from a library.

Concatenate Operator
This operator concatenates two or more vectors to create a larger vector. For example,

D <= A & B;

defines the six-bit vector D = a2a1a0b2b1b0. Similarly, the concatenation

E <= ''111'' & A & ''00'' ;

produces the eight-bit vector E = 111a2a1a000.

ISTUDY

4.6 VHDL FOR COMBINATIONAL CIRCUITS 213

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

USE ieee.std logic unsigned.all ;

ENTITY alu IS

PORT (s : IN STD LOGIC VECTOR(2 DOWNTO 0) ;

A, B : IN STD LOGIC VECTOR(3 DOWNTO 0) ;

F : OUT STD LOGIC VECTOR(3 DOWNTO 0)) ;

END alu ;

ARCHITECTURE Behavior OF alu IS

BEGIN

PROCESS (s, A, B)

BEGIN

CASE s IS

WHEN =>

F <= "0000" ;

WHEN =>

F <= B A ;

WHEN =>

F <= A B ;

WHEN =>

F <= A +

−

B ;

WHEN =>

F <= A XOR B ;

WHEN =>

F <= A OR B ;

WHEN

"000"

"001"

"010"

"011"

"100"

"101"

"110" =>

F <= A AND B ;

WHEN OTHERS =>

F <= "1111" ;

END CASE ;

END PROCESS ;

END Behavior ;

−

Figure 4.44 Code that represents the functionality of the 74381 ALU chip.

Shift and Rotate Operators
A vector operand can be shifted to the right or left by a number of bits specified as a

constant. When bits are shifted, the vacant bit positions are filled with 0s. For example,

B <= A SLL 1;

results in b2 = a1, b1 = a0, and b0 = 0. Similarly,

B <= A SRL 2;

yields b2 = b1 = 0 and b0 = a2.

ISTUDY

214 C H A P T E R 4 ● COMBINATIONAL-CIRCUIT BUILDING BLOCKS

Table 4.2 VHDL operators (used for synthesis).

Operator category Operator symbol Operation performed

Logical AND AND

OR OR

NAND Not AND

NOR Not OR

XOR XOR

XNOR Not XOR

NOT NOT

Relational = Equality

∕= Inequality

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

Arithmetic + Addition

− Subtraction

∗ Multiplication

∕ Division

Concatenation & Concatenation

Shift and Rotate SLL Shift left logical

SRL Shift right logical

SLA Shift left arithmetic

SRA Shift right arithmetic

ROL Rotate left

ROR Rotate right

The arithmetic shift left, SLA, has the same effect as SLL. But, the arithmetic shift

right, SRA, performs the sign extension by replicating the sign bit into the positions left

vacant after shifting. Hence

B <= A SRA 1;

gives b2 = a2, b1 = a2, and b0 = a1.

An operand can also be rotated, in which case the bits shifted out from one end are

placed into the vacated positions at the other end. For example,

B <= A ROR 2;

produces b2 = a1, b1 = a0, and b0 = a2.

Operator Precedence
Operators in different categories have different precedence. Operators in the same cat-

egory have the same precedence, and are evaluated from left to right in a given expression.

It is a good practice to use parentheses to indicate the desired order of operations in the

ISTUDY

4.8 EXAMPLES OF SOLVED PROBLEMS 215

expression. To illustrate this point, consider the statement

S <= A + B + C + D;

which defines the addition of four vector operands. The VHDL compiler will synthesize a

circuit as if the expression was written in the form ((A+B)+C)+D, which gives a cascade

of three adders so that the final sum will be available after a propagation delay through three

adders. By writing the statement as

S <= (A + B) + (C + D);

the synthesized circuit will still have three adders, but since the sums A + B and C + D are

generated in parallel, the final sum will be available after a propagation delay through only

two adders.

Table 4.2 groups the operators informally according to their functionality. It shows

only those operators that are used to synthesize logic circuits. The VHDL Standard speci-

fies additional operators, which are useful for simulation and documentation purposes. All

operators are grouped into different classes, with a defined precedence ordering between

classes. We discuss this issue in Appendix A, Section A.3.

4.7 CONCLUDING REMARKS

This chapter has introduced a number of circuit building blocks. Examples using these

blocks to construct larger circuits will be presented in later chapters. To describe the build-

ing block circuits efficiently, several VHDL constructs have been introduced. In many cases

a given circuit can be described in various ways, using different constructs. A circuit that

can be described using a selected signal assignment can also be described using a case

statement. Circuits that fit well with conditional signal assignments are also well-suited to

if-then-else statements. In general, there are no clear rules that dictate when one type of

assignment statement should be preferred over another. With experience the user develops

a sense for which types of statements work well in a particular design situation. Personal

preference also influences how the code is written.

VHDL is not a programming language, and VHDL code should not be written as if it

were a computer program. The concurrent and sequential assignment statements discussed

in this chapter can be used to create large, complex circuits. A good way to design such

circuits is to construct them using well-defined modules, in the manner that we illustrated

for the multiplexers, decoders, encoders, and so on. Additional examples using the VHDL

statements introduced in this chapter are given in Chapters 5 and 6. In Chapter 7 we provide

a number of examples of using VHDL code to describe larger digital systems. For more

information on VHDL, the reader can consult more specialized books.

4.8 EXAMPLES OF SOLVED PROBLEMS

This section presents some typical problems that the reader may encounter, and shows how

such problems can be solved.

ISTUDY

216 C H A P T E R 4 ● COMBINATIONAL-CIRCUIT BUILDING BLOCKS

w0

En

y0

w1 y1

y2

y3

y7

y6

y5

y4

w2

f

1

w1

w2

w3

Figure 4.45 Circuit for Example 4.21.

Example 4.21 Problem: Implement the function f (w1,w2,w3) =
∑

m(0, 1, 3, 4, 6, 7) by using a 3-to-8

binary decoder and an OR gate.

Solution: The decoder generates a separate output for each minterm of the required func-

tion. These outputs are then combined in the OR gate, giving the circuit in Figure 4.45.

Example 4.22 Problem: Derive a circuit that implements an 8-to-3 binary encoder.

Solution: The truth table for the encoder is shown in Figure 4.46. Only those rows for which

a single input variable is equal to 1 are shown; the other rows can be treated as don’t care

cases. From the truth table it is seen that the desired circuit is defined by the equations

y2 = w4 + w5 + w6 + w7

y1 = w2 + w3 + w6 + w7

y0 = w1 + w3 + w5 + w7

Example 4.23 Problem: Implement the function

f (w1,w2,w3,w4,w5) = w1w2w4w5 + w1w2 + w1w3 + w1w4 + w3w4w5

by using a 4-to-1 multiplexer and as few other gates as possible. Assume that only the

uncomplemented inputs w1, w2, w3, w4, and w5 are available.

0

0

0

0

0

1

1

w0 y2

0

y1

0

1

0

1

0

0

0

1

w1

1

0

0

0

w2

0

1

0

0

w3

0

0

1

0

w4

0

0

0

0

w5

0

0

0

0

w6

0

0

0

0

w7

0

0

0

0

y0

1

1

1

1

0

1

1

0 0

1

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

0

1

0

0

0

0

1

0

Figure 4.46 Truth table for an 8-to-3 binary encoder.

ISTUDY

4.8 EXAMPLES OF SOLVED PROBLEMS 217

f

w2w5

w3 w5

w2 w3+

w1 w4

w2

w5

w3

1

Figure 4.47 Circuit for Example 4.23.

Solution: Since variables w1 and w4 appear in more product terms in the expression for f
than the other three variables, let us perform Shannon’s expansion with respect to these two

variables. The expansion gives

f = w1w4fw1w4
+ w1w4fw1w4

+ w1w4fw1w4
+ w1w4fw1w4

= w1w4(w2w5) + w1w4(w3w5) + w1w4(w2 + w3) + w1w4(1)

We can use a NOR gate to implement w2w5 = w2 + w5. We also need an AND gate and an

OR gate. The complete circuit is presented in Figure 4.47.

Example 4.24Problem: In Chapter 2 we pointed out that the rows and columns of a Karnaugh map are la-

beled using Gray code. This is a code in which consecutive valuations differ in one variable

only. Figure 4.48 depicts the conversion between three-bit binary and Gray codes. Design

a circuit that can convert a binary code into Gray code according to the figure.

0

0

0

0

0

1

1

b0 g2

0

g1

0

1

1

0

b1b2 g0

1

1

1

1

1

0

0

1 0

1

1

0

0

0

0

0

0

1

1

0 0

1

0

1

1

1

1

1

0

1

1

0 0

1

0

1

Figure 4.48 Binary to Gray code conversion.

ISTUDY

218 C H A P T E R 4 ● COMBINATIONAL-CIRCUIT BUILDING BLOCKS

Solution: From the figure it follows that

g2 = b2

g1 = b1b2 + b1b2

= b1 ⊕ b2

g0 = b0b1 + b0b1

= b0 ⊕ b1

Example 4.25 Problem: In Section 4.1.2 we showed that any logic function can be decomposed using

Shannon’s expansion theorem. For a four-variable function, f (w1,… ,w4), the expansion

with respect to w1 is

f (w1,… ,w4) = w1fw1
+ w1fw1

A circuit that implements this expression is given in Figure 4.49a.

f

w1

w2

w3

w4

f w1

fw1

0

1

(a) Shannon’s expansion of the function f.

fw1

w1

w2

w3

w4

f

(b) Solution for part a.

w1

w2

w3

w4

f
f w1

(c) Solution for part b.

Figure 4.49 Circuits for Example 4.25.

ISTUDY

4.8 EXAMPLES OF SOLVED PROBLEMS 219

(a) If the decomposition yields fw1
= 0, then the multiplexer in the figure can be replaced

by a single logic gate. Show this circuit.

(b) Repeat part (a) for the case where fw1
= 1.

Solution: The desired circuits are shown in parts (b) and (c) of Figure 4.49.

Example 4.26Problem: In Section 2.17 we said that field-programmable gate arrays (FPGAs) contain

lookup tables (LUTs) that are used to implement logic functions. Each LUT can be pro-

grammed to implement any logic function of its inputs. FPGAs are discussed in detail in

Appendix B. Many commercial FPGAs contain four-input lookup tables (4-LUTs). What is

the minimum number of 4-LUTs needed to construct a 4-to-1 multiplexer with select inputs

s1 and s0 and data inputs w3, w2, w1, and w0?

Solution: A straightforward attempt is to use directly the expression that defines the 4-to-1

multiplexer

f = s1s0w0 + s1s0w1 + s1s0w2 + s1s0w3

Let g = s1s0w0 + s1s0w1 and h = s1s0w2 + s1s0w3, so that f = g + h. This decomposition

leads to the circuit in Figure 4.50a, which requires three LUTs.

When designing logic circuits, one can sometimes come up with a clever idea which

leads to a superior implementation. Figure 4.50b shows how it is possible to implement

the multiplexer with just two LUTs, based on the following observation. The truth table in

Figure 4.2b indicates that when s1 = 0 the output must be either w0 or w1, as determined

by the value of s0. This can be generated by the first LUT, with the output k. The second

LUT must make the choice between w2 and w3 when s1 = 1. But, the choice can be made

only by knowing the value of s0. Since it is impossible to have five inputs in the LUT, more

information has to be passed from the first to the second LUT. Observe that when s1 = 1

the output f will be equal to either w2 or w3, in which case it is not necessary to know the

values of w0 and w1. Hence, in this case we can pass on the value of s0 through the first

LUT, rather than w0 or w1. This can be done by making the function of this LUT

k = s1(s0w0 + s0w1) + s1s0

Then, the second LUT performs the function

f = s1k + s1(kw2 + kw3)

Example 4.27Problem: In digital systems it is often necessary to have circuits that can shift the bits of

a vector by one or more bit positions to the left or right. Design a circuit that can shift a

four-bit vector W = w3w2w1w0 one bit position to the right when a control signal Shift is

equal to 1. Let the outputs of the circuit be a four-bit vector Y = y3y2y1y0 and a signal k,

such that if Shift = 1 then y3 = 0, y2 = w3, y1 = w2, y0 = w1, and k = w0. If Shift = 0 then

Y = W and k = 0.

Solution: The required circuit can be implemented with five 2-to-1 multiplexers as shown

in Figure 4.51. The Shift signal is used as the select input to each multiplexer.

ISTUDY

220 C H A P T E R 4 ● COMBINATIONAL-CIRCUIT BUILDING BLOCKS

w0

w1

s0

s1

w2

w3

f

k

(b) Using two LUTs

(a) Using three LUTs

s0

s1

w0

w1

w2

w3

f
0

0

g

h

LUT

LUT

LUT

LUT

LUT

Figure 4.50 Circuits for Example 4.26.

w3 w2 w1 w00

Shift

y3 y2 y1 y0 k

1 0 1 0 1 0 1 0 1 0

0

Figure 4.51 A shifter circuit.

Example 4.28 Problem: The shifter circuit in Example 4.30 shifts the bits of an input vector by one bit

position to the right. It fills the vacated bit on the left side with 0. A more versatile shifter

circuit may be able to shift by more bit positions at a time. If the bits that are shifted out are

placed into the vacated positions on the left, then the circuit effectively rotates the bits of

the input vector by a specified number of bit positions. Such a circuit is often called a barrel

ISTUDY

4.8 EXAMPLES OF SOLVED PROBLEMS 221

w3 w2 w1 w0

y3 y2 y1 y0

s1

s0

0

0

1

1

1

0

1

y3s1

0

s0 y2 y1 y0

w3 w2 w1 w0

w0 w3 w2 w1

w1 w0 w3 w2

w2 w1 w0 w3

(a) Truth table

(b) Circuit

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Figure 4.52 A barrel shifter circuit.

shifter. Design a four-bit barrel shifter that rotates the bits by 0, 1, 2, or 3 bit positions as

determined by the valuation of two control signals s1 and s0.

Solution: The required action is given in Figure 4.52a. The barrel shifter can be imple-

mented with four 4-to-1 multiplexers as shown in Figure 4.52b. The control signals s1 and

s0 are used as the select inputs to the multiplexers.

Example 4.29Problem: Write VHDL code that represents the circuit in Figure 4.17. Use the dec2to4
entity in Figure 4.26 as a subcircuit in your code.

Solution: The code is shown in Figure 4.53. Note that the dec2to4 entity can be included in

the same file as we have done in the figure, but it can also be in a separate file in the project

directory.

Example 4.30Problem: Write VHDL code that represents the shifter circuit in Figure 4.51.

Solution: There are two possible approaches: structural and behavioral. A structural de-

scription is given in Figure 4.54. The IF construct is used to define the desired shifting of

individual bits. A typical VHDL compiler will implement this code with 2-to-1 multiplexers

as depicted in Figure 4.51.

ISTUDY

222 C H A P T E R 4 ● COMBINATIONAL-CIRCUIT BUILDING BLOCKS

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

ENTITY mux4to1 IS

PORT (s : IN STD LOGIC VECTOR(1 DOWNTO 0) ;

w : IN STD LOGIC VECTOR(3 DOWNTO 0) ;

f : OUT STD LOGIC) ;

END mux4to1 ;

ARCHITECTURE Structure OF mux4to1 IS

COMPONENT dec2to4

PORT (w : IN STD LOGIC VECTOR(1 DOWNTO 0) ;

En : IN STD LOGIC ;

y : OUT STD LOGIC VECTOR(0 TO 3));

END COMPONENT;

SIGNAL y : STD LOGIC VECTOR(0 TO 3) ;

BEGIN

decoder: dec2to4 PORT MAP (s, '1' , y) ;

f <= (w(0) AND y(0)) OR (w(1) AND y(1)) OR (w(2) AND y(2)) OR (w(3) AND y(3)) ;

END Structure ;

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

ENTITY dec2to4 IS

PORT (w : IN STD LOGIC VECTOR(1 DOWNTO 0) ;

En : IN STD LOGIC ;

y : OUT STD LOGIC VECTOR(0 TO 3)) ;

END dec2to4 ;

ARCHITECTURE Behavior OF dec2to4 IS

SIGNAL Enw : STD LOGIC VECTOR(2 DOWNTO 0) ;

BEGIN

Enw <= En & w ;

WITH Enw SELECT

y <= ''1000'' WHEN ''100'' ,

''0100'' WHEN ''101'' ,

''0010'' WHEN ''110'' ,

''0001'' WHEN ''111'' ,

''0000'' WHEN OTHERS ;

END Behavior ;

Figure 4.53 VHDL code for Example 4.29.

ISTUDY

4.8 EXAMPLES OF SOLVED PROBLEMS 223

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

ENTITY shifter IS

PORT (w : IN STD LOGIC VECTOR(3 DOWNTO 0) ;

IN STD LOGIC

y : OUT STD LOGIC VECTOR(3 DOWNTO 0) ;

;Shift :

k : OUT STD LOGIC) ;

END shifter ;

ARCHITECTURE Behavior OF shifter IS

BEGIN

PROCESS (Shift, w)

BEGIN

IF Shift = THEN

y(3) <= ;

y(2 DOWNTO 0) <= w(3 DOWNTO 1) ;

k <= w(0) ;

ELSE

y <= w ;

k <= ;

END IF ;

END PROCESS ;

END Behavior ;

'1'

'0'

'0'

Figure 4.54 Structural VHDL code for the circuit in Figure 4.51.

A behavioral specification is given in Figure 4.55. It makes use of the shift operator

SRL. Since the shift and rotate operators are supported in the ieee.numeric std.all library,

this library must be included in the code. Note that the vectors w and y are defined to be of

UNSIGNED type.

Example 4.31Problem: Write VHDL code that defines the barrel shifter in Figure 4.52.

Solution: An easy way to specify the barrel shifter is by using the VHDL rotate operator.

The complete code is presented in Figure 4.56.

Example 4.32The concept of parity is widely used in digital systems for error-checking purposes. When

digital information is transmitted from one point to another, perhaps by long wires, it is

possible for some bits to become corrupted during the transmission process. For example,

ISTUDY

224 C H A P T E R 4 ● COMBINATIONAL-CIRCUIT BUILDING BLOCKS

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

USE ieee.numeric std.all ;

ENTITY shifter IS

PORT (w : IN UNSIGNED(3 DOWNTO 0) ;

Shift : IN STD LOGIC ;

y : OUT UNSIGNED(3 DOWNTO 0) ;

k : OUT STD LOGIC) ;

END shifter ;

ARCHITECTURE Behavior OF shifter IS

BEGIN

PROCESS (Shift, w)

BEGIN

IF Shift = '1' THEN

y <= w SRL 1 ;

k <= w(0) ;

ELSE

y <= w ;

k <= '0' ;

END IF ;

END PROCESS ;

END Behavior ;

Figure 4.55 Behavioral VHDL code for the circuit in Figure 4.51.

the sender may transmit a bit whose value is equal to 1, but the receiver observes a bit whose

value is 0. Suppose that a data item consists of n bits. A simple error-checking mechanism

can be implemented by including an extra bit, p, which indicates the parity of the n-bit item.

Two kinds of parity can be used. For even parity the p bit is given the value such that the

total number of 1s in the n + 1 transmitted bits (comprising the n-bit data and the parity

bit p) is even. For odd parity the p bit is given the value that makes the total number of 1s

odd. The sender generates the p bit based on the n-bit data item that is to be transmitted.

The receiver checks whether the parity of the received item is correct.

Parity generating and checking circuits can be realized with XOR gates. For example,

for a four-bit data item consisting of bits x3x2x1x0, the even parity bit can be generated as

p = x3 ⊕ x2 ⊕ x1 ⊕ x0

At the receiving end the checking is done using

c = p ⊕ x3 ⊕ x2 ⊕ x1 ⊕ x0

ISTUDY

4.8 EXAMPLES OF SOLVED PROBLEMS 225

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

USE ieee.numeric std.all ;

ENTITY barrel IS

PORT (w : IN UNSIGNED(3 DOWNTO 0) ;

s : IN UNSIGNED(1 DOWNTO 0) ;

y : OUT UNSIGNED(3 DOWNTO 0)) ;

END barrel ;

ARCHITECTURE Behavior OF barrel IS

BEGIN

PROCESS (s, w)

BEGIN

CASE s IS

WHEN ''00'' =>

y <= w ;

WHEN ''01'' =>

y <= w ROR 1 ;

WHEN ''10'' =>

y <= w ROR 2 ;

WHEN OTHERS =>

y <= w ROR 3 ;

END CASE ;

END PROCESS ;

END Behavior ;

Figure 4.56 VHDL code for the barrel shifter.

If c = 0, then the received item shows the correct parity. If c = 1, then an error has occurred.

Note that observing c = 0 is not a guarantee that the received item is correct. If two or any

even number of bits have their values inverted during the transmission, the parity of the

data item will not be changed; hence the error will not be detected. But if an odd number

of bits are corrupted, then the error will be detected.

Problem: The ASCII code, discussed in Section 1.5.3, uses seven-bit patterns to represent

characters. In computer applications it is common to use one byte per character. The eighth

bit, b7, is usually set to 0 for use in digital processing. But, if the character data is to be

transmitted from one digital system to another, it may be prudent to use bit b7 as a parity

bit. Write VHDL code that specifies a circuit that accepts an input byte (where b7 = 0) and

produces an output byte where b7 is the even parity bit.

Solution: Let X and Y be the input and output bytes, respectively. Then, the desired solution

is given in Figure 4.57.

ISTUDY

226 C H A P T E R 4 ● COMBINATIONAL-CIRCUIT BUILDING BLOCKS

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

ENTITY parity IS

PORT (X : IN STD LOGIC VECTOR(7 DOWNTO 0) ;

Y : OUT STD LOGIC VECTOR(7 DOWNTO 0)) ;

END parity ;

ARCHITECTURE Behavior OF parity IS

SIGNAL p : STD LOGIC;

BEGIN

p <= X(0) XOR X(1) XOR X(2) XOR X(3) XOR X(4) XOR X(5) XOR X(6) ;

Y <= p & X(6 DOWNTO 0) ;

END Behavior ;

Figure 4.57 VHDL code for Example 4.32.

PROBLEMS

Answers to problems marked by an asterisk are given at the back of the book.

4.1 Show how the function f (w1,w2,w3) =
∑

m(0, 2, 3, 4, 5, 7) can be implemented using a

3-to-8 binary decoder and an OR gate.

4.2 Show how the function f (w1,w2,w3) =
∑

m(1, 2, 3, 5, 6) can be implemented using a 3-to-8

binary decoder and an OR gate.

*4.3 Consider the function f = w1w3 + w2w3 + w1w2. Use the truth table to derive a circuit for

f that uses a 2-to-1 multiplexer.

4.4 Repeat Problem 4.3 for the function f = w2w3 + w1w2.

*4.5 For the function f (w1,w2,w3) =
∑

m(0, 2, 3, 6), use Shannon’s expansion to derive an

implementation using a 2-to-1 multiplexer and any other necessary gates.

4.6 Repeat Problem 4.5 for the function f (w1,w2,w3) =
∑

m(0, 4, 6, 7).

4.7 Consider the function f = w2+w1w3+w1w3. Show how repeated application of Shannon’s

expansion can be used to derive the minterms of f .

4.8 Repeat Problem 4.7 for f = w2 + w1w3.

4.9 Prove Shannon’s expansion theorem presented in Section 4.1.2.

*4.10 Section 4.1.2 shows Shannon’s expansion in sum-of-products form. Using the principle of

duality, derive the equivalent expression in product-of-sums form.

*4.11 Consider the function f = w1w2 +w2w3 +w1w2w3. The cost of this minimal sum-of-products

expression is 14, which includes four gates and 10 inputs to the gates. Use Shannon’s ex-

pansion to derive a multilevel circuit that has a lower cost and give the cost of your circuit.

ISTUDY

PROBLEMS 227

4.12 Use multiplexers to implement the circuit for stage 0 of the carry-lookahead adder in

Figure 3.15 (included in the right-most shaded area).

*4.13 Derive minimal sum-of-products expressions for the outputs a, b, and c of the 7-segment

display in Figure 4.21.

4.14 Derive minimal sum-of-products expressions for the outputs d, e, f , and g of the 7-segment

display in Figure 4.21.

4.15 For the function, f , in Example 4.23 perform Shannon’s expansion with respect to variables

w1 and w2, rather than w1 and w4. How does the resulting circuit compare with the circuit

in Figure 4.47?

4.16 Consider the multiplexer-based circuit illustrated in Figure P4.1. Show how the function

f = w2w3 + w1w3 + w2w3 can be implemented using only one instance of this circuit.

i3

i4

i5

i8

f

i2

i6

i1

i7

Figure P4.1 A multiplexer-based circuit.

4.17 Show how the function f = w1w3+w1w3+w2w3+w1w2 can be realized using one or more

instances of the circuit in Figure P4.1. Note that there are no NOT gates in the circuit; hence

complements of signals have to be generated using the multiplexers in the logic block.

*4.18 Consider the VHDL code in Figure P4.2. What type of circuit does the code represent?

Comment on whether or not the style of code used is a good choice for the circuit that it

represents.

4.19 Write VHDL code that represents the function in Problem 6.1, using one selected signal

assignment.

4.20 Write VHDL code that represents the function in Problem 6.2, using one selected signal

assignment.

4.21 Using a selected signal assignment, write VHDL code for a 4-to-2 binary encoder.

4.22 Using a conditional signal assignment, write VHDL code for an 8-to-3 binary encoder.

ISTUDY

228 C H A P T E R 4 ● COMBINATIONAL-CIRCUIT BUILDING BLOCKS

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

ENTITY problem IS

PORT (w : IN STD LOGIC VECTOR(1 DOWNTO 0) ;

En : IN STD LOGIC ;

y0, y1, y2, y3 : OUT STD LOGIC) ;

END problem ;

ARCHITECTURE Behavior OF problem IS

BEGIN

PROCESS (w, En)

BEGIN

y0 ; y1 <=<= ; y2 <= ; y3 <= ;

IF En = THEN

IF w = "00" THEN y0 <= ;

ELSIF w = "01" THEN y1 <= ;

ELSIF w = "10" THEN y2 <= ;

ELSE y3 <= ;

END IF ;

END IF ;

END PROCESS ;

END Behavior ;

'1'

'1'

'1'

'1'

'1'

'0''0' '0' '0'

Figure P4.2 Code for Problem 4.18.

4.23 Derive the circuit for an 8-to-3 priority encoder.

4.24 Using a conditional signal assignment, write VHDL code for an 8-to-3 priority encoder.

4.25 Repeat problem 6.24, using an if-then-else statement.

4.26 Create a VHDL entity named if2to4 that represents a 2-to-4 binary decoder using an

if-then-else statement. Create a second entity named h3to8 that represents the 3-to-8 binary

decoder in Figure 4.15, using two instances of the if2to4 entity.

4.27 Create a VHDL module named h6to64 that represents a 6-to-64 binary decoder. Use the

treelike structure in Figure 4.16, in which the 6-to-64 decoder is built using nine instances

of the h3to8 decoder created in Problem 4.26.

4.28 Write VHDL code for a BCD-to-7-segment code converter, using a selected signal

assignment.

4.29 Design a shifter circuit, similar to the one in Figure 4.51, which can shift a four-bit in-

put vector, W = w3w2w1w0, one bit-position to the right when the control signal Right is

equal to 1, and one bit-position to the left when the control signal Left is equal to 1. When

Right = Left = 0, the output of the circuit should be the same as the input vector. Assume

that the condition Right = Left = 1 will never occur.

ISTUDY

PROBLEMS 229

4.30 Design a circuit that can multiply an eight-bit number, A = a7,… , a0, by 1, 2, 3, or 4 to

produce the result A, 2A, 3A, or 4A, respectively.

4.31 Write VHDL code that implements the task in Problem 4.30.

4.32 Figure 4.48 depicts the relationship between the binary and Gray codes. Design a circuit

that can convert Gray code into binary code.

4.33 Example 4.32 and Figure 4.57 show how a circuit that generates an ASCII byte suitable for

sending over a communications link may be defined. Write VHDL code for its counterpart

at the receiving end, where byte Y (which includes the parity bit) has to be converted into

byte X in which the bit x7 has to be 0. An error signal has to be produced, which is set to

0 or 1 depending on whether the parity check indicates correct or erroneous transmission,

respectively.

ISTUDY

ISTUDY

231

c h a p t e r

5
FLIP-FLOPS, REGISTERS, AND

COUNTERS

CHAPTER OBJECTIVES

In this chapter you will learn about:

● Logic circuits that can store information

● Flip-flops, which store a single bit

● Registers, which store multiple bits

● Shift registers, which shift the contents of the register

● Counters of various types

● VHDL constructs used to implement storage elements

ISTUDY

232 C H A P T E R 5 ● FLIP-FLOPS, REGISTERS, AND COUNTERS

In previous chapters we considered combinational circuits where the value of each output depends solely on the

values of signals applied to the inputs. There exists another class of logic circuits in which the values of the outputs

depend not only on the present values of the inputs but also on the past behavior of the circuit. Such circuits include

storage elements that store the values of logic signals. The contents of the storage elements are said to represent

the state of the circuit. When the circuit’s inputs change values, the new input values either leave the circuit in the

same state or cause it to change into a new state. Over time the circuit changes through a sequence of states as a

result of changes in the inputs. Circuits that behave in this way are referred to as sequential circuits.

In this chapter we will introduce circuits that can be used as storage elements. But first, we will motivate

the need for such circuits by means of a simple example. Suppose that we wish to control an alarm system,

as shown in Figure 5.1. The alarm mechanism responds to the control input On /Off . It is turned on when

On /Off = 1, and it is off when On /Off = 0. The desired operation is that the alarm turns on when the sensor

generates a positive voltage signal, Set, in response to some undesirable event. Once the alarm is triggered,

it must remain active even if the sensor output goes back to zero. The alarm is turned off manually by means

of a Reset input. The circuit requires a memory element to remember that the alarm has to be active until the

Reset signal arrives.

Figure 5.2 gives a rudimentary memory element, consisting of a loop that has two inverters. If we assume

that A = 0, then B = 1. The circuit will maintain these values indefinitely because of the feedback loop. We

say that the circuit is in the state defined by these values. If we assume that A = 1, then B = 0, and the

circuit will remain in this second state indefinitely. Thus the circuit has two possible states. This circuit is not

useful, because it lacks some practical means for changing its state. Useful circuits that exhibit such memory

behavior can be constructed with logic gates.

5.1 BASIC LATCH

Figure 5.3 presents a memory element built with NOR gates. Its inputs, Set and Reset,
provide the means for changing the state, Q, of the circuit. A more usual way of drawing

this circuit is given in Figure 5.4a, where the two NOR gates are said to be connected in

cross-coupled style. The circuit is referred to as a basic latch. Its behavior is described by

the table in Figure 5.4b. When both inputs R and S are equal to 0 the latch maintains its

existing state because of the feedback loop. This state may be either Qa = 0 and Qb = 1,

or Qa = 1 and Qb = 0, which is indicated in the table by stating that the Qa and Qb outputs

Memory

element
Alarm

Sensor

Reset

Set

On Off/

Figure 5.1 Control of an alarm system.

A B

Figure 5.2 A simple memory element.

ISTUDY

5.1 BASIC LATCH 233

Reset

Set Q

Figure 5.3 A memory element with NOR gates.

have values 0/1 and 1/0, respectively. Observe that Qa and Qb are complements of each

other in this case. When R = 1 and S = 0, the latch is reset into a state where Qa = 0 and

Qb = 1. When R = 0 and S = 1, the latch is set into a state where Qa = 1 and Qb = 0. The

fourth possibility is to have R = S = 1. In this case both Qa and Qb will be 0. The table in

Figure 5.4b resembles a truth table. However, since it does not represent a combinational

circuit in which the values of the outputs are determined solely by the current values of the

inputs, it is often called a characteristic table rather than a truth table.

S R Qa Qb

0 0

0 1

1 0

1 1

0/1 1/0

0 1

1 0

0 0

(a) Circuit (b) Characteristic table

Time

1

0

1

0

1

0

1

0

R

S

Qa

Qb

Qa

Qb

?

?

(c) Timing diagram

R

S

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

(no change)

Figure 5.4 A basic latch built with NOR gates.

ISTUDY

234 C H A P T E R 5 ● FLIP-FLOPS, REGISTERS, AND COUNTERS

Figure 5.4c gives a timing diagram for the latch, assuming that the propagation delay

through the NOR gates is negligible. Of course, in a real circuit the changes in the wave-

forms would be delayed according to the propagation delays of the gates. We initially reset

the latch by applying R = 1 and S = 0, so that Qa = 0 and Qb = 1. The state of the

latch remains unchanged until time t2, when S becomes equal to 1, causing Qb to change

to 0, which in turn causes Qa to change to 1 because R + Qb = 1. The causality relationship

is indicated by the arrows in the diagram. When S goes to 0 at t3, there is no change in the

state because both S and R are then equal to 0. At t4 we have R = 1, which causes Qa to go to

0, which in turn causes Qb to go to 1 because S + Qa = 1. At t5 both S and R are equal to 1,

which forces both Qa and Qb to be equal to 0. As soon as S returns to 0, at t6, Qb becomes

equal to 1 again. At t8 we have S = 1 and R = 0, which causes Qb = 0 and Qa = 1. An

interesting situation occurs at t10. From t9 to t10 we have Qa = Qb = 0 because R = S = 1.

Now if both R and S change to 0 at t10, both Qa and Qb will go to 1. But having both Qa and

Qb equal to 1 will immediately force Qa = Qb = 0. There will be an oscillation between

Qa = Qb = 0 and Qa = Qb = 1. If the delays through the two NOR gates are exactly

the same, the oscillation will continue indefinitely. In a real circuit there will invariably be

some difference in the delays through these gates, and the latch will eventually settle into

one of its two stable states, but we don’t know which state it will be. This uncertainty is

indicated in the waveforms by dashed lines.

The oscillations discussed above illustrate that even though the basic latch is a simple

circuit, careful analysis has to be done to fully appreciate its behavior. In general, any circuit

that contains one or more feedback paths, such that the state of the circuit depends on the

propagation delays through logic gates, has to be designed carefully. We analyze some of the

timing issues related to sequential circuits later in this chapter, and provide more detailed

discussions in Chapters 7 and 9.

The latch in Figure 5.4a can perform the functions needed for the memory element in

Figure 5.1, by connecting the Set signal to the S input and Reset to the R input. The Qa
output provides the desired On /Off signal. To initialize the operation of the alarm system,

the latch is reset. Thus the alarm is off. When the sensor generates the logic value 1, the

latch is set and Qa becomes equal to 1. This turns on the alarm mechanism. If the sensor

output returns to 0, the latch retains its state where Qa = 1; hence the alarm remains turned

on. The only way to turn off the alarm is by resetting the latch, which is accomplished by

making the Reset input equal to 1.

5.2 GATED SR LATCH

In Section 5.1 we saw that the basic SR latch can serve as a useful memory element. It

remembers its state when both the S and R inputs are 0. It changes its state in response to

changes in the signals on these inputs. The state changes occur at the time when the changes

in the signals occur. If we cannot control the time of such changes, then we don’t know when

the latch may change its state.

In the alarm system of Figure 5.1, it may be desirable to be able to enable or disable

the entire system by means of a control input, Enable. Thus when enabled, the system

would function as described above. In the disabled mode, changing the Set input from 0 to 1

ISTUDY

5.2 GATED SR LATCH 235

(a) Circuit

Q

Q

R′

S′

R

S

R

Clk

Q

Q

S

1

0

1

0

1

0

1

0

1

0

Time

(c) Timing diagram

Clk

?

?

S R

x x

0 0

0 1

1 0

Q(t) (no change)

0

1

Clk

0

1

1

1

1 11

Q t 1+()

Q(t) (no change)

x

S Q

Q

Clk

R

(d) Graphical symbol

(b) Characteristic table

Figure 5.5 Gated SR latch.

would not cause the alarm to turn on. The latch in Figure 5.4a cannot provide the desired

operation. But the latch circuit can be modified to respond to the input signals S and R only

when Enable = 1. Otherwise, it would maintain its state.

The modified circuit is depicted in Figure 5.5a. It includes two AND gates that provide

the desired control. When the control signal Clk is equal to 0, the S′ and R′ inputs to the

latch will be 0, regardless of the values of signals S and R. Hence the latch will maintain its

ISTUDY

236 C H A P T E R 5 ● FLIP-FLOPS, REGISTERS, AND COUNTERS

existing state as long as Clk = 0. When Clk changes to 1, the S′ and R′ signals will be the

same as the S and R signals, respectively. Therefore, in this mode the latch will behave as

we described in Section 5.1. Note that we have used the name Clk for the control signal that

allows the latch to be set or reset, rather than call it the Enable signal. The reason is that

such circuits are often used in digital systems where it is desirable to allow the changes in

the states of memory elements to occur only at well-defined time intervals, as if they were

controlled by a clock. The control signal that defines these time intervals is usually called

the clock signal. The name Clk is meant to reflect this nature of the signal.

Circuits of this type, which use a control signal, are called gated latches. Because our

circuit exhibits set and reset capability, it is called a gated SR latch. Figure 5.5b describes

its behavior. It defines the state of the Q output at time t+ 1, namely, Q(t+ 1), as a function

of the inputs S, R, and Clk. When Clk = 0, the latch will remain in the state it is in at time t,
that is, Q(t), regardless of the values of inputs S and R. This is indicated by specifying S = x

and R = x, where x means that it does not matter if the signal value is 0 or 1. When Clk = 1,

the circuit behaves as the basic latch in Figure 5.4. It is set by S = 1 and reset by R = 1. The

last row of the table, where S = R = 1, shows that the state Q(t+1) is undefined because we

don’t know whether it will be 0 or 1. This corresponds to the situation described in Section 5.1

in conjunction with the timing diagram in Figure 5.4 at time t10. At this time both S and R
inputs go from 1 to 0, which causes the oscillatory behavior that we discussed. If S = R = 1,

this situation will occur as soon as Clk goes from 1 to 0. To ensure a meaningful operation

of the gated SR latch, it is essential to avoid the possibility of having both the S and R inputs

equal to 1 when Clk changes from 1 to 0.

A timing diagram for the gated SR latch is given in Figure 5.5c. It shows Clk as a peri-

odic signal that is equal to 1 at regular time intervals to suggest that this is how the clock sig-

nal usually appears in a real system. The diagram presents the effect of several combinations

of signal values. Observe that we have labeled one output as Q and the other as its comple-

ment Q, rather than Qa and Qb as in Figure 5.4. Since the undefined mode, where S = R = 1,

must be avoided in practice, the normal operation of the latch will have the outputs as com-

plements of each other. Moreover, we will often say that the latch is set when Q = 1, and

it is reset when Q = 0. A graphical symbol for the gated SR latch is given in Figure 5.5d.

5.2.1 GATED SR LATCH WITH NAND GATES

So far we have implemented the basic latch with cross-coupled NOR gates. We can also

construct the latch with NAND gates. Using this approach, we can implement the gated

SR latch as depicted in Figure 5.6. The behavior of this circuit is described by the table

S

R

Clk

Q

Q

Figure 5.6 Gated SR latch with NAND gates.

ISTUDY

5.3 GATED D LATCH 237

in Figure 5.5b. Note that in this circuit, the clock is gated by NAND gates, rather than by

AND gates. Note also that the S and R inputs are reversed in comparison with the circuit in

Figure 5.5a.

5.3 GATED D LATCH

In Section 5.2 we presented the gated SR latch and showed how it can be used as the memory

element in the alarm system of Figure 5.1. This latch is useful for many other applications.

In this section we describe another gated latch that is even more useful in practice. It has a

single data input, called D, and it stores the value on this input, under the control of a clock

signal. It is called a gated D latch.

To motivate the need for a gated D latch, consider the adder/subtractor unit discussed

in Chapter 3 (Figure 3.12). When we described how that circuit is used to add numbers, we

did not discuss what is likely to happen with the sum bits that are produced by the adder.

Adder/subtractor units are often used as part of a computer. The result of an addition or

subtraction operation is often used as an operand in a subsequent operation. Therefore, it

is necessary to be able to remember the values of the sum bits generated by the adder until

they are needed again. We might think of using the basic latches to remember these bits,

one bit per latch. In this context, instead of saying that a latch remembers the value of a bit,

it is more illuminating to say that the latch stores the value of the bit or simply “stores the

bit.” We should think of the latch as a storage element.

But can we obtain the desired operation using the basic latches? We can certainly reset

all latches before the addition operation begins. Then we would expect that by connecting a

sum bit to the S input of a latch, the latch would be set to 1 if the sum bit has the value 1; oth-

erwise, the latch would remain in the 0 state. This would work fine if all sum bits are 0 at the

start of the addition operation and, after some propagation delay through the adder, some of

these bits become equal to 1 to give the desired sum. Unfortunately, the propagation delays

that exist in the adder circuit cause a big problem in this arrangement. Suppose that we use

a ripple-carry adder. When the X and Y inputs are applied to the adder, the sum outputs may

alternate between 0 and 1 a number of times as the carries ripple through the circuit. The

problem is that if we connect a sum bit to the S input of a latch, then if the sum bit is tem-

porarily a 1 and then settles to 0 in the final result, the latch will remain set to 1 erroneously.

The problem caused by the alternating values of the sum bits in the adder could be

solved by using the gated SR latches, instead of the basic latches. Then we could arrange

that the clock signal is 0 during the time needed by the adder to produce a correct sum. After

allowing for the maximum propagation delay in the adder circuit, the clock should go to 1 to

store the values of the sum bits in the gated latches. As soon as the values have been stored,

the clock can return to 0, which ensures that the stored values will be retained until the next

time the clock goes to 1. To achieve the desired operation, we would also have to reset all

latches to 0 prior to loading the sum-bit values into these latches. This is an awkward way

of dealing with the problem, and it is preferable to use the gated D latches instead.

Figure 5.7a shows the circuit for a gated D latch. It is based on the gated SR latch, but

instead of using the S and R inputs separately, it has just one data input, D. For convenience

we have labeled the points in the circuit that are equivalent to the S and R inputs. If D = 1,

then S = 1 and R = 0, which forces the latch into the state Q = 1. If D = 0, then S = 0 and

R = 1, which causes Q = 0. Of course, the changes in state occur only when Clk = 1.

ISTUDY

238 C H A P T E R 5 ● FLIP-FLOPS, REGISTERS, AND COUNTERS

Q

S

R

Clk

D

(Data)

D Q

QClk

Clk D

0

1

1

x

0

1

Q t 1+()

0

1

Q t()

(a) Circuit

(b) Characteristic table (c) Graphical symbol

t1 t2 t3 t4

Time

Clk

D

Q

(d) Timing diagram

Q

Figure 5.7 Gated D latch.

In this circuit it is impossible to have the troublesome situation where S = R = 1. In

the gated D latch, the output Q merely tracks the value of the input D while Clk = 1. As

soon as Clk goes to 0, the state of the latch is frozen until the next time the clock signal goes

to 1. Therefore, the gated D latch stores the value of the D input seen at the time the clock

changes from 1 to 0. Figure 5.7 also gives the characteristic table, the graphical symbol,

and a timing diagram for the gated D latch.

The timing diagram illustrates what happens if the D signal changes while Clk = 1.

During the third clock pulse, starting at t3, the output Q changes to 1 because D = 1. But

midway through the pulse D goes to 0, which causes Q to go to 0. This value of Q is stored

when Clk changes to 0. Now no further change in the state of the latch occurs until the

next clock pulse, at t4. The key point to observe is that as long as the clock has the value 1,

ISTUDY

5.4 EDGE-TRIGGERED D FLIP-FLOPS 239

tsu

th

Clk

D

Q

Figure 5.8 Setup and hold times.

the Q output follows the D input. But when the clock has the value 0, the Q output cannot

change. The logic values are implemented as low and high voltage levels, as explained in

detail in Appendix B. Since the output of the gated D latch is controlled by the level of the

clock input, the latch is said to be level sensitive. The circuits in Figures 5.5 through 5.7 are

level sensitive. We will show in Section 5.4 that it is possible to design storage elements for

which the output changes only at the point in time when the clock changes from one value

to the other. Such circuits are said to be edge triggered.

5.3.1 EFFECTS OF PROPAGATION DELAYS

In the previous discussion we ignored the effects of propagation delays. In practical circuits

it is essential to take these delays into account. Consider the gated D latch in Figure 5.7a.

It stores the value of the D input that is present at the time the clock signal changes from

1 to 0. It operates properly if the D signal is stable (that is, not changing) at the time Clk
goes from 1 to 0. But it may lead to unpredictable results if the D signal also changes at this

time. Therefore, the designer of a logic circuit that generates the D signal must ensure that

this signal is stable when the critical change in the clock signal takes place.

Figure 5.8 illustrates the critical timing region. The minimum time that the D signal

must be stable prior to the negative edge of the Clk signal is called the setup time, tsu, of

the latch. The minimum time that the D signal must remain stable after the negative edge

of the Clk signal is called the hold time, th, of the latch. The values of tsu and th depend on

the technology used. Manufacturers of integrated circuit chips provide this information on

the data sheets that describe their chips. Typical values for a modern technology may be

tsu = 0.3 ns and th = 0.2 ns. We will give examples of how setup and hold times affect the

speed of operation of circuits in Section 5.15. The behavior of storage elements when setup

or hold times are violated is discussed in Chapter 7.

5.4 EDGE-TRIGGERED D FLIP-FLOPS

In the level-sensitive latches, the state of the latch keeps changing according to the values of

input signals during the period when the clock signal is active (equal to 1 in our examples).

As we will see in Sections 5.8 and 5.9, there is also a need for storage elements that can

ISTUDY

240 C H A P T E R 5 ● FLIP-FLOPS, REGISTERS, AND COUNTERS

change their states no more than once during one clock cycle. We will now discuss circuits

that exhibit such behavior.

5.4.1 M-S D FLIP-FLOP

Consider the circuit given in Figure 5.9a, which consists of two gated D latches. The first,

called the M-stage, changes its state while Clock = 1. The second, called the S-stage

changes its state while Clock = 0. The operation of the circuit is such that when the clock

Figure 5.9 M-S D flip-flop.

ISTUDY

5.4 EDGE-TRIGGERED D FLIP-FLOPS 241

is high, the M-stage tracks the value of the D input signal and the S-stage does not change.

Thus the value of Qm follows any changes in D, and the value of Qs remains constant. When

the clock signal changes to 0, the M-stage stops following the changes in the D input. At

the same time, the S-stage responds to the value of the signal Qm and changes state accord-

ingly. Since Qm does not change while Clock = 0, the S-stage can undergo at most one

change of state during a clock cycle. The S-stage of the M-S circuit changes its state only at

the negative-going edge of the clock. The negative edge is the edge where the clock signal

changes from 1 to 0. Regardless of the number of changes in the D input to the M-stage

stage during one clock cycle, an observer of the Qs signal will see only the change that

corresponds to the D input at the negative edge of the clock.

The circuit in Figure 5.9 is called an M-S D flip-flop. The term flip-flop denotes a storage

element that changes its output state at the edge of a controlling clock signal. The timing

diagram for this flip-flop is shown in Figure 5.9b. A graphical symbol is given in Figure 5.9c.

In the symbol we use the > mark to denote that the flip-flop responds to the “active edge”

of the clock. We place a bubble on the clock input to indicate that the active edge for this

particular circuit is the negative edge.

We can augment the circuit in Figure 5.9a by reversing the connections of the clock

signal to the M and S stages. That is, include an inverter in the clock input to the M-stage

and connect the uncomplemented clock signal to the S-stage. Now, the state of the M-stage

will be transferred into the S-stage when the clock signal changes from 0 to 1. This circuit

behaves as a positive-edge-triggered M-S D flip-flop. It can be represented by the graphical

symbol in Figure 5.9c where the bubble on the clock input is removed.

Level-Sensitive versus Edge-Triggered Storage Elements
At this point it is useful to compare the timing in the various storage elements that

we have discussed. Figure 5.10 shows three different types of storage elements that are

driven by the same data and clock inputs. The first element is a gated D latch, which is

level sensitive. The second one is a positive-edge-triggered D flip-flop, and the third one is

a negative-edge-triggered D flip-flop. To accentuate the differences between these storage

elements, the D input changes its values more than once during each half of the clock cycle.

Observe that the gated D latch follows the D input as long as the clock is high. The positive-

edge-triggered flip-flop responds only to the value of D when the clock changes from 0 to 1.

The negative-edge-triggered flip-flop responds only to the value of D when the clock changes

from 1 to 0.

5.4.2 OTHER TYPES OF EDGE-TRIGGERED D FLIP-FLOPS

M-S flip-flops illustrate the concept of edge triggering very clearly. Other circuits have

been used to accomplish the same task. Consider the circuit presented in Figure 5.11a. It

requires only six NAND gates and, hence, has a lower cost than the M-S circuit. The operation

of the circuit is as follows. When Clock = 0, the outputs of gates 2 and 3 are high. Thus

P1 = P2 = 1, which maintains the output latch, comprising gates 5 and 6, in its present

state. At the same time, the signal P3 is equal to D, and P4 is equal to its complement D.

When Clock changes to 1, the following changes take place. The values of P3 and P4 are

transmitted through gates 2 and 3 to cause P1 = D and P2 = D, which sets Q = D and

Q = D. To operate reliably, P3 and P4 must be stable when Clock changes from 0 to 1.

Hence the setup time of the flip-flop is equal to the delay from the D input through gates 4

ISTUDY

242 C H A P T E R 5 ● FLIP-FLOPS, REGISTERS, AND COUNTERS

D

Clock

Qa

Qb

D Q

Q

(b) Timing diagram

D Q

Q

D Q

Q

D

Clock Qa

Qb

Qc

Qc

Qb

Qa

(a) Circuit

Clk

Qc

Figure 5.10 Comparison of level-sensitive and edge-triggered D storage elements.

and 1 to P3. The hold time is given by the delay through gate 3 because once P2 is stable,

the changes in D no longer matter.

For proper operation it is necessary to show that after Clock changes to 1 any further

changes in D will not affect the output latch as long as Clock = 1. We have to consider two

cases. Suppose first that D = 0 at the positive edge of the clock. Then P2 = 0, which will

keep the output of gate 4 equal to 1 as long as Clock = 1, regardless of the value of the

D input. The second case is if D = 1 at the positive edge of the clock. Then P1 = 0, which

forces the outputs of gates 1 and 3 to be equal to 1, regardless of the D input. Therefore, the

flip-flop ignores changes in the D input while Clock = 1.

ISTUDY

5.4 EDGE-TRIGGERED D FLIP-FLOPS 243

(a) Circuit

(b) Graphical symbol

D Q

QClock

D

Clock

P4

P3

P1

P2

5

6

1

2

3

4

Q

Q

Figure 5.11 A positive-edge-triggered D flip-flop.

This circuit behaves as a positive-edge-triggered D flip-flop. A similar circuit, con-

structed with NOR gates, can be used as a negative-edge-triggered flip-flop.

5.4.3 D FLIP-FLOPS WITH CLEAR AND PRESET

Flip-flops are often used for implementation of circuits that can have many possible states,

where the response of the circuit depends not only on the present values of the circuit’s

inputs but also on the particular state that the circuit is in at that time. We will discuss a

general form of such circuits in Chapter 6. A simple example is a counter circuit that counts

the number of occurrences of some event, perhaps the passage of time. We will discuss

counters in detail in Section 5.9. A counter comprises a number of flip-flops, whose outputs

are interpreted as a number. The counter circuit has to be able to increment or decrement the

number. It is also important to be able to force the counter into a known initial state (count).

Obviously, it must be possible to clear the count to zero, which means that all flip-flops must

have Q = 0. It is equally useful to be able to preset each flip-flop to Q = 1, to insert some

ISTUDY

244 C H A P T E R 5 ● FLIP-FLOPS, REGISTERS, AND COUNTERS

(a) Circuit

(b) Graphical symbol

D Q

Q

Clear_n

Preset_n

Q

Q

D

Clock

Preset_n

Clear_n

Figure 5.12 M-S D flip-flop with Clear and Preset.

specific count as the initial value in the counter. These features can be incorporated into the

circuits of Figures 5.9 and 5.11 as follows.

Figure 5.12a shows an implementation of the circuit in Figure 5.9a using NAND gates.

The M-stage is just the gated D latch of Figure 5.7a. Instead of using another latch of the

same type for the S-stage, we can use the slightly simpler gated SR latch of Figure 5.6. This

eliminates one NOT gate from the circuit.

A simple way of providing the clear and preset capability is to add an extra input to each

NAND gate in the cross-coupled latches, as indicated in red. Placing a 0 on the Clear n
input will force the flip-flop into the state Q = 0. If Clear n = 1, then this input will have no

effect on the NAND gates. Similarly, Preset n = 0 forces the flip-flop into the state Q = 1,

while Preset n = 1 has no effect. To denote that the Clear n and Preset n inputs are active

when their value is 0, we appended the letter n (for “negative”) to these names. We should

note that the circuit that uses this flip-flop should not try to force both Clear n and Preset n
to 0 at the same time. A graphical symbol for this flip-flop is shown in Figure 5.12b.

A similar modification can be done on the edge-triggered flip-flop of Figure 5.11a, as

indicated in Figure 5.13a. Again, both Clear n and Preset n inputs are active low. They do

not disturb the flip-flop when they are equal to 1.

ISTUDY

5.4 EDGE-TRIGGERED D FLIP-FLOPS 245

Preset_n

Clear_n

D

Clock

(a) Circuit

(b) Graphical symbol

Q

Q

D Q

Q

(c) Adding a synchronous clear

D

Clock Q

QD Q

Q

Preset_n

Clear_n

Clear_n

Figure 5.13 Positive-edge-triggered D flip-flop with Clear and Preset.

In the circuits in Figures 5.12a and 5.13a, the effect of a low signal on either the Clear n
or Preset n input is immediate. For example, if Clear n = 0 then the flip-flop goes into the

state Q = 0 immediately, regardless of the value of the clock signal. In such a circuit, where

the Clear n signal is used to clear a flip-flop without regard to the clock signal, we say that

the flip-flop has an asynchronous clear. In practice, it is often preferable to clear the flip-

flops on the active edge of the clock. Such synchronous clear can be accomplished as shown

in Figure 5.13c. The flip-flop operates normally when the Clear n input is equal to 1. But

if Clear n goes to 0, then on the next positive edge of the clock the flip-flop will be cleared

to 0. We will examine the clearing of flip-flops in more detail in Section 5.10.

ISTUDY

246 C H A P T E R 5 ● FLIP-FLOPS, REGISTERS, AND COUNTERS

5.4.4 FLIP-FLOP TIMING PARAMETERS

In section 5.3.1 we discussed timing issues related to latch circuits. In practice such is-

sues are equally important for circuits with flip-flops. Figure 5.14a shows a positive-edge

triggered flip-flop with asynchronous clear, and part (b) of the figure illustrates some im-

portant timing parameters for this flip-flop. Data is loaded into the D input of the flip-flop

on a positive clock edge, and this logic value must be stable during the setup time, tsu, be-

fore the clock edge occurs. The data must remain stable during the hold time, th, after the

edge. If the setup or hold requirements are not adhered to in a circuit that uses this flip-flop,

then it may enter an unstable condition known as metastability; we discuss this concept in

Chapter 7.

As indicated in Figure 5.14, a clock-to-Q propagation delay, tcQ, is incurred before the

value of Q changes after a positive clock edge. In general, the delay may not be exactly

the same for the cases when Q changes from 1 to 0 or 0 to 1, but we assume for simplicity

that these delays are equal. For the flip-flops in a commercial chip, two values are usually

specified for tcQ, representing the maximum and minimum delays that may occur in prac-

tice. Specifying a range of values when estimating the delays in a chip is a common prac-

tice due to many sources of variation in delay that are caused by the chip manufacturing

tsu

th

tc Q

D Q

Q

Q

Clear_n

Clock

D

(a) D flip-flop with asynchronous clear

tsu

th

Clock

D

Q

tc Q

(b) Timing diagram

Figure 5.14 Flip-flop timing parameters.

ISTUDY

5.5 T FLIP-FLOP 247

process. In Section 5.15 we provide some examples that illustrate the effects of flip-flop

timing parameters on the operation of circuits.

5.5 T FLIP-FLOP

The D flip-flop is a versatile storage element that can be used for many purposes. By in-

cluding some simple logic circuitry to drive its input, the D flip-flop may appear to be a

different type of storage element. An interesting modification is presented in Figure 5.15a.

D Q

Q

Q

Q
T

Clock

(a) Circuit

Clock

T

Q

(d) Timing diagram

T

0

1

Q t 1+()

Q t()

Q t()

T Q

Q

(b) Characteristic table (c) Graphical symbol

Figure 5.15 T flip-flop.

ISTUDY

248 C H A P T E R 5 ● FLIP-FLOPS, REGISTERS, AND COUNTERS

This circuit uses a positive-edge-triggered D flip-flop. The feedback connections make the

input signal D equal to either the value of Q or Q under the control of the signal that is

labeled T . On each positive edge of the clock, the flip-flop may change its state Q(t). If

T = 0, then D = Q and the state will remain the same, that is, Q(t+1) = Q(t). But if T = 1,

then D = Q and the new state will be Q(t + 1) = Q(t). Therefore, the overall operation of

the circuit is that it retains its present state if T = 0, and it inverts its present state if T = 1.

The operation of the circuit is specified in the form of a characteristic table in Figure 5.15b.

Any circuit that implements this table is called a T flip-flop. The name T flip-flop derives

from the behavior of the circuit, which “toggles” its state when T = 1. The toggle fea-

ture makes the T flip-flop a useful element for building counter circuits, as we will see

in Section 5.9.

5.6 JK FLIP-FLOP

Another interesting circuit can be derived from Figure 5.15a. Instead of using a single

control input, T , we can use two inputs, J and K, as indicated in Figure 5.16a. For this

circuit the input D is defined as

D = JQ + KQ

D Q

Q

Q

Q

J

Clock

(a) Circuit

J Q

Q

K

0

1

Q t 1+()

(b) Characteristic table (c) Graphical symbol

K

J

0

0

01

1

Q t()

0

1

Q t()1

K

Figure 5.16 JK flip-flop.

ISTUDY

5.8 REGISTERS 249

A corresponding characteristic table is given in Figure 5.16b. The circuit is called a JK
flip-flop. It combines the behaviors of SR and T flip-flops in a useful way. It behaves as the

SR flip-flop, where J = S and K = R, for all input values except J = K = 1. For the latter

case, which has to be avoided in the SR flip-flop, the JK flip-flop toggles its state like the

T flip-flop.

The JK flip-flop is a versatile circuit. It can be used for straight storage purposes, just

like the D and SR flip-flops. But it can also serve as a T flip-flop by connecting the J and

K inputs together.

5.7 SUMMARY OF TERMINOLOGY

We have used the terminology that is quite common. But the reader should be aware that

different interpretations of the terms latch and flip-flop can be found in the literature. Our

terminology can be summarized as follows:

Basic latch is a feedback connection of two NOR gates or two NAND gates, which

can store one bit of information. It can be set to 1 using the S input and reset to 0

using the R input.

Gated latch is a basic latch that includes input gating and a control input signal. The

latch retains its existing state when the control input is equal to 0. Its state may be

changed when the control signal is equal to 1. In our discussion we referred to the

control input as the clock. We considered two types of gated latches:

∙ Gated SR latch uses the S and R inputs to set the latch to 1 or reset it to 0,

respectively.

∙ Gated D latch uses the D input to force the latch into a state that has the same

logic value as the D input.

Flip-flop is a storage element that can have its output state changed only on the edge

of the controlling clock signal. If the state changes when the clock signal goes from 0

to 1, we say that the flip-flop is positive-edge triggered. If the state changes when the

clock signal goes from 1 to 0, we say that the flip-flop is negative-edge triggered.

5.8 REGISTERS

A flip-flop stores one bit of information. When a set of n flip-flops is used to store n bits of

information, such as an n-bit number, we refer to these flip-flops as a register. A common

clock is used for each flip-flop in a register, and each flip-flop operates as described in the

previous sections. The term register is merely a convenience for referring to n-bit structures

consisting of flip-flops.

ISTUDY

250 C H A P T E R 5 ● FLIP-FLOPS, REGISTERS, AND COUNTERS

5.8.1 SHIFT REGISTER

In Section 3.6 we explained that a given number is multiplied by 2 if its bits are shifted

one bit position to the left and a 0 is inserted as the new least-significant bit. Similarly, the

number is divided by 2 if the bits are shifted one bit-position to the right. A register that

provides the ability to shift its contents is called a shift register.

Figure 5.17a shows a four-bit shift register that is used to shift its contents one bit-

position to the right. The data bits are loaded into the shift register in a serial fashion using

the In input. The contents of each flip-flop are transferred to the next flip-flop at each positive

edge of the clock. An illustration of the transfer is given in Figure 5.17b, which shows what

happens when the signal values at In during eight consecutive clock cycles are 1, 0, 1, 1, 1,

0, 0, and 0, assuming that the initial state of all flip-flops is 0.

To implement a shift register it is necessary to use flip-flops. The level-sensitive gated

latches are not suitable, because a change in the value of In would propagate through more

than one latch during the time when the clock is equal to 1.

D Q

QClock

D Q

Q

D Q

Q

D Q

Q

In Out

t0

t1

t2

t3

t4

t5

t6

t7

1

0

1

1

1

0

0

0

0

1

0

1

1

1

0

0

0

0

1

0

1

1

1

0

0

0

0

1

0

1

1

1

0

0

0

0

1

0

1

1

Q1 Q2 Q3 Q4 Out=In

(b) A sample sequence

(a) Circuit

Q1 Q2 Q3 Q4

Figure 5.17 A simple shift register.

ISTUDY

5.8 REGISTERS 251

5.8.2 PARALLEL-ACCESS SHIFT REGISTER

In computer systems it is often necessary to transfer n-bit data items from one location to

another. This may be done by transmitting all bits at once using n separate wires, in which

case we say that the transfer is performed in parallel. But it is also possible to transfer all

bits using a single wire, by performing the transfer one bit at a time, in n consecutive clock

cycles. We refer to this scheme as serial transfer. To transfer an n-bit data item serially, we

can use a shift register that can be loaded with all n bits in parallel (in one clock cycle).

Then during the next n clock cycles, the contents of the register can be shifted out for serial

transfer. The reverse operation is also needed. If bits are received serially, then after n clock

cycles the contents of the register can be accessed in parallel as an n-bit item.

Figure 5.18 shows a four-bit shift register that provides the parallel access. A 2-to-1

multiplexer on its D input allows each flip-flop to be connected to two different sources.

One source is the preceding flip-flop, which is needed for the shift-register operation. The

other source is the external input that corresponds to the bit that is to be loaded into the

flip-flop as a part of the parallel-load operation. The control signal Shift /Load is used to

select the mode of operation. If Shift /Load = 0, then the circuit operates as a shift register.

If Shift /Load = 1, then the parallel input data are loaded into the register. In both cases the

action takes place on the positive edge of the clock.

In Figure 5.18 we have chosen to label the flip-flops’ outputs as Q3,… ,Q0 because

shift registers are often used to hold binary numbers. The contents of the register can

be accessed in parallel by observing the outputs of all flip-flops. The flip-flops can also be

accessed serially, by observing the values of Q0 during consecutive clock cycles while the

Q3 Q2 Q1 Q0

Clock

Parallel input

Parallel output

Shift/Load

Serial
input D Q

Q

D Q

Q

D Q

Q

0

1

D Q

Q

0

1

0

1

0

1

Figure 5.18 Parallel-access shift register.

ISTUDY

252 C H A P T E R 5 ● FLIP-FLOPS, REGISTERS, AND COUNTERS

contents are being shifted. A circuit in which data can be loaded in series and then accessed

in parallel is called a series-to-parallel converter. Similarly, the opposite type of circuit is a

parallel-to-series converter. The circuit in Figure 5.18 can perform both of these functions.

5.9 COUNTERS

In Chapter 3 we dealt with circuits that perform arithmetic operations. We showed how

adder/subtractor circuits can be designed, either using a simple cascaded (ripple-carry)

structure that is inexpensive but slow or using a more complex carry-lookahead structure

that is both more expensive and faster. In this section we examine special types of addition

and subtraction operations, which are used for the purpose of counting. In particular, we

want to design circuits that can increment or decrement a count by 1. Counter circuits are

used in digital systems for many purposes. They may count the number of occurrences of

certain events, generate timing intervals for control of various tasks in a system, keep track

of time elapsed between specific events, and so on.

Counters can be implemented using the adder/subtractor circuits discussed in Chapter 3

and the registers discussed in Section 5.8. However, since we only need to change the con-

tents of a counter by 1, it is not necessary to use such elaborate circuits. Instead, we can use

much simpler circuits that have a significantly lower cost. We will show how the counter

circuits can be designed using T and D flip-flops.

5.9.1 ASYNCHRONOUS COUNTERS

The simplest counter circuits can be built using T flip-flops because the toggle feature is

naturally suited for the implementation of a counting operation.

Up-Counter with T Flip-Flops
Figure 5.19a gives a three-bit counter capable of counting from 0 to 7. The clock inputs

of the three flip-flops are connected in cascade. The T input of each flip-flop is connected

to a constant 1, which means that the state of the flip-flop will be reversed (toggled) at each

positive edge of its clock. We are assuming that the purpose of this circuit is to count the

number of pulses that occur on the primary input called Clock. Thus the clock input of

the first flip-flop is connected to the Clock signal. The other two flip-flops have their clock

inputs driven by the Q output of the preceding flip-flop. Therefore, they toggle their state

whenever the preceding flip-flop changes its state from Q = 1 to Q = 0, which results in a

positive edge of the Q signal.

Figure 5.19b shows a timing diagram for the counter. The value of Q0 toggles once

each clock cycle. The change takes place after a short delay following the positive edge of

the Clock signal. The delay is caused by the propagation time through the flip-flop. Since

the second flip-flop is clocked by Q0, the value of Q1 changes shortly after the negative

edge of the Q0 signal. Similarly, the value of Q2 changes shortly after the negative edge

of the Q1 signal. If we look at the values Q2Q1Q0 as the count, then the timing diagram

indicates that the counting sequence is 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, and so on. This circuit is a

modulo-8 counter. Because it counts in the upward direction, we call it an up-counter.

ISTUDY

5.9 COUNTERS 253

T Q

QClock

T Q

Q

T Q

Q

1

Q0 Q1 Q2

Clock

Q0

Q1

Q2

Count 0 1 2 3 4 5 6 7 0

(b) Timing diagram

(a) Circuit

Figure 5.19 A three-bit up-counter.

The counter in Figure 5.19a has three stages, each comprising a single flip-flop. Only

the first stage responds directly to the Clock signal; we say that this stage is synchronized to the

clock. The other two stages respond after an additional delay. For example, when Count = 3,

the next clock pulse will cause the Count to go to 4. As indicated by the arrows in the

timing diagram in Figure 5.19b, this change requires the toggling of the states of all three

flip-flops. The change in Q0 is observed only after a propagation delay from the positive

edge of Clock. The Q1 and Q2 flip-flops have not yet changed; hence for a brief time the

count is Q2Q1Q0 = 010. The change in Q1 appears after a second propagation delay, at

which point the count is 000. Finally, the change in Q2 occurs after a third delay, at which

point the stable state of the circuit is reached and the count is 100. This behavior is similar

to the rippling of carries in the ripple-carry adder circuit of Figure 3.5. The circuit in Figure 5.19a
is an asynchronous counter, or a ripple counter.

Down-Counter with T Flip-Flops
A slight modification of the circuit in Figure 5.19a is presented in Figure 5.20a. The only

difference is that in Figure 5.20a the clock inputs of the second and third flip-flops are driven by

the Q outputs of the preceding stages, rather than by the Q outputs. The timing diagram, given

in Figure 5.20b, shows that this circuit counts in the sequence 0, 7, 6, 5, 4, 3, 2, 1, 0, 7, and so

on. Because it counts in the downward direction, we say that it is a down-counter.

ISTUDY

254 C H A P T E R 5 ● FLIP-FLOPS, REGISTERS, AND COUNTERS

T Q

QClock

T Q

Q

T Q

Q

1

Q0 Q1 Q2

(a) Circuit

Clock

Q0

Q1

Q2

Count 0 7 6 5 4 3 2 1 0

(b) Timing diagram

Figure 5.20 A three-bit down-counter.

It is possible to combine the functionality of the circuits in Figures 5.19a and 5.20a
to form a counter that can count either up or down. Such a counter is called an up/down-
counter. We leave the derivation of this counter as an exercise for the reader (Problem 5.15).

5.9.2 SYNCHRONOUS COUNTERS

The asynchronous counters in Figures 5.19a and 5.20a are simple, but not very fast. If a

counter with a larger number of bits is constructed in this manner, then the delays caused

by the cascaded clocking scheme may become too long to meet the desired performance

requirements. We can build a faster counter by clocking all flip-flops at the same time, using

the approach described below.

Synchronous Counter with T Flip-Flops
Table 5.1 shows the contents of a three-bit up-counter for eight consecutive clock cy-

cles, assuming that the count is initially 0. Observing the pattern of bits in each row of the

table, it is apparent that bit Q0 changes on each clock cycle. Bit Q1 changes only when

Q0 = 1. For example, Q1 changes in clock cycle 2 because Q0 = 1 in clock cycle 1. Bit Q2

changes only when both Q1 and Q0 are equal to 1. For instance, Q2 changes in clock cycle 4

because Q1 = Q0 = 1 in clock cycle 3. In general, for an n-bit up-counter, a given flip-flop

ISTUDY

5.9 COUNTERS 255

Table 5.1 Derivation of the synchronous
up-counter.

0

0

1

1

0

1

0

1

0

1

2

3

0

0

1

0

1

0

4

5

6

1 17

0

0

0

0

1

1

1

1

Clock cycle

0 08 0

Q2 Q1 Q0

Q1 changes

Q2 changes

changes its state only when all the preceding flip-flops are in the state Q = 1. Therefore, if

we use T flip-flops to realize the counter, then the T inputs are defined as

T0 = 1

T1 = Q0

T2 = Q0Q1

T3 = Q0Q1Q2

⋅

⋅

⋅

Tn = Q0Q1 ⋯Qn−1

An example of a four-bit counter based on these expressions is given in Figure 5.21a. Instead

of using AND gates of increased size for each stage, we use a factored arrangement as shown

in the figure. This arrangement does not slow down the response of the counter, because all

flip-flops change their states after a propagation delay from the positive edge of the clock.

Note that a change in the value of Q0 may have to propagate through several AND gates to

reach the flip-flops in the higher stages of the counter, which requires a certain amount of

time. This time must not exceed the clock period. Actually, it must be less than the clock

period minus the setup time for the flip-flops.

Figure 5.21b gives a timing diagram. It shows that the circuit behaves as a modulo-16

up-counter. Since all changes take place with the same delay after the active edge of the

Clock signal, the circuit is called a synchronous counter.

Enable and Clear Capability
The counters in Figures 5.19 through 5.21 change their contents in response to each

clock pulse. Often it is desirable to be able to inhibit counting, so that the count remains

in its present state. This may be accomplished by including an Enable control signal, as

indicated in Figure 5.22. The circuit is the counter of Figure 5.21, where the Enable signal

ISTUDY

256 C H A P T E R 5 ● FLIP-FLOPS, REGISTERS, AND COUNTERS

T Q

QClock

T Q

Q

T Q

Q

1
Q0 Q1 Q2

(a) Circuit

Clock

Q0

Q1

Q2

Count 0 1 2 3 5 9 12 14 0

(b) Timing diagram

T Q

Q

Q3

Q3

4 6 87 10 11 13 15 1

Figure 5.21 A four-bit synchronous up-counter.

controls directly the T input of the first flip-flop. Connecting the Enable also to the AND-

gate chain means that if Enable = 0, then all T inputs will be equal to 0. If Enable = 1,

then the counter operates as explained previously.

In many applications it is necessary to start with the count equal to zero. This is easily

achieved if the flip-flops can be cleared, as explained in Section 5.4.3. The clear inputs on

all flip-flops can be tied together and driven by a Clear n control input.

T Q

QClock

T Q

Q

Enable

Clear_n

T Q

Q

T Q

Q

Figure 5.22 Inclusion of Enable and Clear capability.

ISTUDY

5.9 COUNTERS 257

Synchronous Counter with D Flip-Flops
While the toggle feature makes T flip-flops a natural choice for the implementation of

counters, it is also possible to build counters using other types of flip-flops. The JK flip-flops

can be used in exactly the same way as the T flip-flops because if the J and K inputs are

tied together, a JK flip-flop becomes a T flip-flop. We will now consider using D flip-flops

for this purpose.

It is not obvious how D flip-flops can be used to implement a counter. We will present

a formal method for deriving such circuits in Chapter 6. Here we will present a circuit

structure that meets the requirements but will leave the derivation for Chapter 6. Figure 5.23

gives a four-bit up-counter that counts in the sequence 0, 1, 2, … , 14, 15, 0, 1, and so on.

The count is indicated by the flip-flop outputs Q3Q2Q1Q0. If we assume that Enable = 1,

Clock

Enable
D Q

Q

D Q

Q

D Q

Q

D Q

Q

Q0

Q1

Q2

Q3

Z

Figure 5.23 A four-bit counter with D flip-flops.

ISTUDY

258 C H A P T E R 5 ● FLIP-FLOPS, REGISTERS, AND COUNTERS

then the D inputs of the flip-flops are defined by the expressions

D0 = Q0 ⊕ 1 = Q0

D1 = Q1 ⊕ Q0

D2 = Q2 ⊕ Q1Q0

D3 = Q3 ⊕ Q2Q1Q0

For a larger counter the ith stage is defined by

Di = Qi ⊕ Qi−1Qi−2 ⋯Q1Q0

We will show how to derive these equations in Chapter 6.

We have included the Enable control signal in Figure 5.23 so that the counter counts the

clock pulses only if Enable = 1. In effect, the above equations are modified to implement

the circuit in the figure as follows

D0 = Q0 ⊕ Enable
D1 = Q1 ⊕ Q0 ⋅ Enable
D2 = Q2 ⊕ Q1 ⋅ Q0 ⋅ Enable
D3 = Q3 ⊕ Q2 ⋅ Q1 ⋅ Q0 ⋅ Enable

The operation of the counter is based on our observation for Table 5.1 that the state of

the flip-flop in stage i changes only if all preceding flip-flops are in the state Q = 1. This

makes the output of the AND gate that feeds stage i equal to 1, which causes the output

of the XOR gate connected to Di to be equal to Qi. Otherwise, the output of the XOR gate

provides Di = Qi, and the flip-flop remains in the same state.

We have included an extra AND gate that produces the output Z. This signal makes it

easy to concatenate two such counters to create a larger counter. It is also useful in appli-

cations where it is necessary to detect the state where the count has reached its maximum

value (all 1s) and will go to 0 in the next clock cycle.

The counter in Figure 5.23 is essentially the same as the circuit in Figure 5.22. We

showed in Figure 5.15a that a T flip-flop can be formed from a D flip-flop by providing the

extra gating that gives

D = QT + QT
= Q ⊕ T

Thus in each stage in Figure 5.23, the D flip-flop and the associated XOR gate implement

the functionality of a T flip-flop.

5.9.3 COUNTERS WITH PARALLEL LOAD

Often it is necessary to start counting with the initial count being equal to 0. This state can be

achieved by using the capability to clear the flip-flops as indicated in Figure 5.22. But sometimes

it is desirable to start with a different count. To allow this mode of operation, a counter circuit

must have some inputs through which the initial count can be loaded. Using the Clear and

Preset inputs for this purpose is a possibility, but a better approach is discussed below.

The circuit of Figure 5.23 can be modified to provide the parallel-load capability as

shown in Figure 5.24. A two-input multiplexer is inserted before each D input. One input to

ISTUDY

5.9 COUNTERS 259

Enable
D Q

Q

Q0

D Q

Q

Q1

D Q

Q

Q2

D Q

Q

Q3

D0

D1

D2

D3

Load

Clock

0

1

0

1

0

1

0

1

Z

Figure 5.24 A counter with parallel-load capability.

ISTUDY

260 C H A P T E R 5 ● FLIP-FLOPS, REGISTERS, AND COUNTERS

the multiplexer is used to provide the normal counting operation. The other input is a data

bit that can be loaded directly into the flip-flop. A control input, Load, is used to choose the

mode of operation. The circuit counts when Load = 0. A new initial value, D3D2D1D0, is

loaded into the counter when Load = 1.

5.10 RESET SYNCHRONIZATION

We have already mentioned that it is important to be able to clear, or reset, the contents

of a counter prior to commencing a counting operation. This can be done using the clear

capability of the individual flip-flops. But we may also be interested in resetting the count to

0 during the normal counting process. An n-bit up-counter functions naturally as a modulo-2n

counter. Suppose that we wish to have a counter that counts modulo some base that is not a

power of 2. For example, we may want to design a modulo-6 counter, for which the counting

sequence is 0, 1, 2, 3, 4, 5, 0, 1, and so on.

The most straightforward approach is to recognize when the count reaches 5 and then

reset the counter. An AND gate can be used to detect the occurrence of the count of 5.

Actually, it is sufficient to ascertain that Q2 = Q0 = 1, which is true only for 5 in our

desired counting sequence. A circuit based on this approach is given in Figure 5.25a. It

uses a three-bit synchronous counter of the type depicted in Figure 5.24. The parallel-load

feature of the counter is used to reset its contents when the count reaches 5. The resetting

action takes place at the positive clock edge after the count has reached 5. It involves loading

D2D1D0 = 000 into the flip-flops. As seen in the timing diagram in Figure 5.25b, the desired

counting sequence is achieved, with each value of the count being established for one full

clock cycle. Because the counter is reset on the active edge of the clock, we say that this

type of counter has a synchronous reset.
Consider now the possibility of using the clear feature of individual flip-flops, shown

in Figures 5.12a and 5.13a, rather than the parallel-load approach. The circuit in Figure 5.26a
illustrates one possibility. It uses the counter structure of Figure 5.21a. Since the clear

inputs are active when low, a NAND gate is used to detect the occurrence of the count

of 5 and cause the clearing of all three flip-flops. Conceptually, this seems to work fine,

but closer examination reveals a potential problem. The timing diagram for this circuit is

given in Figure 5.26b. It shows a difficulty that arises when the count is equal to 5. As

soon as the count reaches this value, the NAND gate triggers the resetting action. The

flip-flops are cleared to 0 a short time after the NAND gate has detected the count of 5.

This time depends on the gate delays in the circuit, but not on the clock. Therefore, sig-

nal values Q2Q1Q0 = 101 are maintained for a time that is much less than a clock cy-

cle. Depending on a particular application of such a counter, this may be adequate, but

it may also be completely unacceptable. For example, if the counter is used in a digi-

tal system where all operations in the system are synchronized by the same clock, then

this narrow pulse denoting Count = 5 would not be seen by the rest of the system. This

is not a good way of designing circuits, because pulses of short length often cause un-

foreseen difficulties in practice. The approach employed in Figure 5.26a is said to use

asynchronous reset.
The timing diagrams in Figures 5.25b and 5.26b suggest that synchronous reset is a

better choice than asynchronous reset. The same observation is true if the natural counting

sequence has to be broken by loading some value other than zero. The new value of the

ISTUDY

5.11 OTHER TYPES OF COUNTERS 261

Enable

Q0

Q1

Q2

D0

D1

D2

Load

Clock

1

0

0

0

Clock

0 1 2 3 4 5 0 1

Clock

Count

Q0

Q1

Q2

(a) Circuit

(b) Timing diagram

Figure 5.25 A modulo-6 counter with synchronous reset.

count can be established cleanly using the parallel-load feature. The alternative of using

the clear and preset capability of individual flip-flops to set their states to reflect the desired

count has the same problems as discussed in conjunction with the asynchronous reset.

5.11 OTHER TYPES OF COUNTERS

In this section we discuss three other types of counters that can be found in practical appli-

cations. The first uses the decimal counting sequence, and the other two generate sequences

of codes that do not represent binary numbers.

5.11.1 BCD COUNTER

Binary-coded-decimal (BCD) counters can be designed using the approach explained in

Section 5.10. A two-digit BCD counter is presented in Figure 5.27. It consists of two

modulo-10 counters, one for each BCD digit, which we implemented using the parallel-load

ISTUDY

262 C H A P T E R 5 ● FLIP-FLOPS, REGISTERS, AND COUNTERS

T Q

QClock

T Q

Q

T Q

Q

1
Q0 Q1 Q2

(a) Circuit

Clock

Q0

Q1

Q2

Count

(b) Timing diagram

0 1 2 3 4 5 0 1 2

Figure 5.26 A modulo-6 counter with asynchronous reset.

four-bit counter of Figure 5.24. Note that in a modulo-10 counter it is necessary to reset

the four flip-flops after the count of 9 has been obtained. Thus the Load input to each stage

is equal to 1 when Q3 = Q0 = 1, which causes 0s to be loaded into the flip-flops at the

next positive edge of the clock signal. Whenever the count in stage 0, BCD0, reaches 9 it

is necessary to enable the second stage so that it will be incremented when the next clock

pulse arrives. This is accomplished by keeping the Enable signal for BCD1 low at all times

except when BCD0 = 9.

In practice, it has to be possible to clear the contents of the counter by activating some

control signal. Two OR gates are included in the circuit for this purpose. The control input

Clear can be used to load 0s into the counter. Observe that in this case Clear is active

when high.

5.11.2 RING COUNTER

In the preceding counters the count is indicated by the state of the flip-flops in the counter.

In all cases the count is a binary number. Using such counters, if an action is to be taken

as a result of a particular count, then it is necessary to detect the occurrence of this count.

This may be done using AND gates, as illustrated in Figures 5.25 through 5.27.

ISTUDY

5.11 OTHER TYPES OF COUNTERS 263

Enable

Q0

Q1

Q2

D0

D1

D2

Load

Clock

1

0

0

0

Clock

Q30 D3

Enable

Q0

Q1

Q2

D0

D1

D2

Load

Clock

0

0

0

Q30 D3

BCD0

BCD1

Clear

Figure 5.27 A two-digit BCD counter.

It is possible to devise a counterlike circuit in which each flip-flop reaches the state

Qi = 1 for exactly one count, while for all other counts Qi = 0. Then Qi indicates directly

an occurrence of the corresponding count. Actually, since this does not represent binary

numbers, it is better to say that the outputs of the flips-flops represent a code. Such a

circuit can be constructed from a simple shift register, as indicated in Figure 5.28a. The

Q output of the last stage in the shift register is fed back as the input to the first stage, which

creates a ringlike structure. If a single 1 is injected into the ring, this 1 will be shifted

through the ring at successive clock cycles. For example, in a four-bit structure, the pos-

sible codes Q0Q1Q2Q3 will be 1000, 0100, 0010, and 0001. As we said in Section 4.2,

such encoding, where there is a single 1 and the rest of the code variables are 0, is called a

one-hot code.

The circuit in Figure 5.28a is referred to as a ring counter. Its operation has to be

initialized by injecting a 1 into the first stage. This is achieved by using the Start control

signal, which presets the leftmost flip-flop to 1 and clears the others to 0. We assume that

all changes in the value of the Start signal occur shortly after an active clock edge so that

the flip-flop timing parameters are not violated.

ISTUDY

264 C H A P T E R 5 ● FLIP-FLOPS, REGISTERS, AND COUNTERS

D Q

Q

Clock

D Q

Q

D Q

Q

Start

Q0 Q1 Qn 1–

Clock

Q0

Start

Two-bit up-counter

w0 En

y0

w1

y1 y2 y3

1

Q1 Q2 Q3

2-to-4 decoder

Q1 Q0

(a) An n-bit ring counter

Clock

Clear_n

(b) A four-bit ring counter

Figure 5.28 Ring counter.

The circuit in Figure 5.28a can be used to build a ring counter with any number of

bits, n. For the specific case of n = 4, part (b) of the figure shows how a ring counter

can be constructed using a two-bit up-counter and a decoder. When Start is set to 1, the

counter is reset to 00. After Start changes back to 0, the counter increments its value in the

normal way. The 2-to-4 decoder, described in Section 4.2, changes the counter output into

a one-hot code. For the count values 00, 01, 10, 11, 00, and so on, the decoder produces

Q0Q1Q2Q3 = 1000, 0100, 0010, 0001, 1000, and so on. This circuit structure can be used

for larger ring counters, as long as the number of bits is a power of two.

ISTUDY

5.12 USING STORAGE ELEMENTS WITH CAD TOOLS 265

D Q

Q

Clock

D Q

Q

D Q

Q

Q0 Q1 Qn 1–

Reset_n

Figure 5.29 Johnson counter.

5.11.3 JOHNSON COUNTER

An interesting variation of the ring counter is obtained if, instead of the Q output, we take

the Q output of the last stage and feed it back to the first stage, as shown in Figure 5.29. This

circuit is known as a Johnson counter. An n-bit counter of this type generates a counting

sequence of length 2n. For example, a four-bit counter produces the sequence 0000, 1000,

1100, 1110, 1111, 0111, 0011, 0001, 0000, and so on. Note that in this sequence, only a

single bit has a different value for two consecutive codes.

To initialize the operation of the Johnson counter, it is necessary to reset all flip-flops,

as shown in the figure. Observe that neither the Johnson nor the ring counter will generate

the desired counting sequence if not initialized properly.

5.11.4 REMARKS ON COUNTER DESIGN

The sequential circuits presented in this chapter, namely, registers and counters, have a reg-

ular structure that allows the circuits to be designed using an intuitive approach. In Chapter

6 we will present a more formal approach to design of sequential circuits and show how the

circuits presented in this chapter can be derived using this approach.

5.12 USING STORAGE ELEMENTS WITH CAD TOOLS

This section shows how circuits with storage elements can be designed using either schematic

capture or VHDL code.

5.12.1 INCLUDING STORAGE ELEMENTS IN SCHEMATICS

One way to create a circuit is to draw a schematic that builds latches and flip-flops from logic

gates. Because these storage elements are used in many applications, most CAD systems

provide them as prebuilt modules. Figure 5.30 shows a schematic created with a schematic

ISTUDY

266 C H A P T E R 5 ● FLIP-FLOPS, REGISTERS, AND COUNTERS

Figure 5.30 Three types of storage elements in a schematic.

capture tool, which includes three types of storage elements that are imported from a library

provided as part of the CAD system. The top element is a gated D latch, the middle element

is a positive-edge-triggered D flip-flop, and the bottom one is a positive-edge-triggered T

flip-flop. The D and T flip-flops have asynchronous, active-low clear and preset inputs. If

these inputs are not connected in a schematic, then the CAD tool makes them inactive by

connecting them to the default value of 1.

When the gated D latch is synthesized for implementation in a chip, the CAD tool may

not generate the cross-coupled NOR or NAND gates shown in Section 5.2. In some chips

the AND-OR circuit depicted in Figure 5.31 may be preferable. This circuit is functionally

equivalent to the cross-coupled version in Section 5.2. One aspect of this circuit should be

mentioned. From the functional point of view, it appears that the circuit can be simplified by

removing the AND gate with the inputs Data and Latch. Without this gate, the top AND gate

sets the value stored in the latch when the clock is 1, and the bottom AND gate maintains

Data

Clock

Latch

Figure 5.31 Gated D latch generated by CAD tools.

ISTUDY

5.12 USING STORAGE ELEMENTS WITH CAD TOOLS 267

D Q

D Q

D Q

T Q

Data

Latch

Flip-flop

Toggle

Clock

0

1

1

1

0

0

0

0

1

1

PAL-like block

Interconnection wires

(Other macrocells not shown)

Figure 5.32 Implementation of the schematic in Figure 5.30 in a CPLD.

the stored value when the clock is 0. But without this gate, the circuit has a timing problem

known as a static hazard. A detailed explanation of hazards will be given in Chapter 9.

The circuit in Figure 5.30 can be implemented in a CPLD as shown in Figure 5.32.

The D and T flip-flops are realized using the flip-flops on the chip that are configurable as

either D or T types. The figure depicts in red the gates and wires needed to implement the

circuit in Figure 5.30.

ISTUDY

268 C H A P T E R 5 ● FLIP-FLOPS, REGISTERS, AND COUNTERS

Figure 5.33 Timing simulation for the storage elements in Figure 5.30.

The results of a timing simulation for the implementation in Figure 5.32 are given in

Figure 5.33. The Latch signal, which is the output of the gated D latch implemented as

indicated in Figure 5.31, follows the Data input whenever the Clock signal is 1. Because

of propagation delays in the chip, the Latch signal is delayed in time with respect to the

Data signal. Since the Flipflop signal is the output of the D flip-flop, it changes only after

a positive clock edge. Similarly, the output of the T flip-flop, called Toggle in the figure,

toggles when Data = 1 and a positive clock edge occurs. The timing diagram illustrates the

delay from when the positive clock edge occurs at the input pin of the chip until a change

in the flip-flop output appears at the output pin of the chip. This time is called the clock-to-
output time, tco.

5.12.2 USING VHDL CONSTRUCTS FOR STORAGE ELEMENTS

In Section 4.6 we described a number of VHDL assignment statements. The IF and CASE

statements were introduced as two types of sequential assignment statements. In this section

we show how these statements can be used to describe storage elements.

Figure 4.39, which is repeated in Figure 5.34, gives an example of VHDL code that

has implied memory. Because the code does not specify what value the AeqB signal should

have when the condition for the IF statement is not satisfied, the semantics specify that in

this case AeqB should retain its current value. The implied memory is the key concept used

for describing sequential circuit elements, which we will illustrate using several examples.

Example 5.1 CODE FOR A GATED D LATCH The code in Figure 5.35 defines an entity named latch, which

has the inputs D and Clk and the output Q. The process uses an if-then-else statement to

define the value of the Q output. When Clk = 1, Q takes the value of D. For the case when

Clk is not 1, the code does not specify what value Q should have. Hence Q will retain its

current value in this case, and the code describes a gated D latch. The process sensitivity

list includes both Clk and D because these signals can cause a change in the value of the

Q output.

ISTUDY

5.12 USING STORAGE ELEMENTS WITH CAD TOOLS 269

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

ENTITY implied IS

PORT (A, B : IN STD LOGIC ;

AeqB : OUT STD LOGIC) ;

END implied ;

ARCHITECTURE Behavior OF implied IS

BEGIN

PROCESS (A, B)

BEGIN

IF A = B THEN

AeqB <= ;

END IF ;

END PROCESS ;

END Behavior ;

'1'

Figure 5.34 The code from Figure 4.39, illustrating implied
memory.

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

ENTITY latch IS

PORT (D, Clk : IN STD LOGIC ;

Q : OUT STD LOGIC) ;

END latch ;

ARCHITECTURE Behavior OF latch IS

BEGIN

PROCESS (D, Clk)

BEGIN

IF Clk = THEN

Q <= D ;

END IF ;

END PROCESS ;

END Behavior ;

'1'

Figure 5.35 Code for a gated D latch.

ISTUDY

270 C H A P T E R 5 ● FLIP-FLOPS, REGISTERS, AND COUNTERS

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

ENTITY flipflop IS

PORT (D, Clock : IN STD LOGIC ;

Q : OUT STD LOGIC) ;

END flipflop ;

ARCHITECTURE Behavior OF flipflop IS

BEGIN

PROCESS (Clock)

BEGIN

IF Clock’EVENT AND Clock = THEN

Q <= D ;

END IF ;

END PROCESS ;

END Behavior ;

'1'

Figure 5.36 Code for a D flip-flop.

Example 5.2 CODE FOR A D FLIP-FLOP Figure 5.36 defines an entity named flipflop, which is a positive-

edge-triggered D flip-flop. The code is identical to Figure 5.35 with two exceptions. First,

the process sensitivity list contains only the clock signal because it is the only signal that

can cause a change in the Q output. Second, the IF statement uses a different condition

from the one used in the latch. The syntax Clock’EVENT uses a VHDL construct called

an attribute. An attribute refers to a property of an object, such as a signal. In this case the

’EVENT attribute refers to any change in the Clock signal. Combining the Clock’EVENT

condition with the condition Clock = 1 means that “the value of the Clock signal has just

changed, and the value is now equal to 1.” Hence the condition refers to a positive clock

edge. Because the Q output changes only as a result of a positive clock edge, the code

describes a positive-edge-triggered D flip-flop.

Example 5.3 ALTERNATIVE CODE FOR A D FLIP-FLOP The process in Figure 5.37 uses a different syn-

tax from that in Figure 5.36 to describe a D flip-flop. It uses the statement WAIT UNTIL

Clock’EVENT AND Clock = '1' . This statement has the same effect as the IF statement

in Figure 5.36. A process that uses a WAIT UNTIL statement is a special case because

the sensitivity list is omitted. The WAIT UNTIL construct implies that the sensitivity list

includes only the Clock signal. In our use of VHDL, which is for synthesis of circuits, a

process can use a WAIT UNTIL statement only if this is the first statement in the process.

Actually, the attribute ’EVENT is redundant in the WAIT UNTIL statement. We can

write simply

WAIT UNTIL Clock = '1' ;

ISTUDY

5.12 USING STORAGE ELEMENTS WITH CAD TOOLS 271

LIBRARY ieee;

USE ieee.std logic 1164.all;

ENTITY flipflop IS

PORT (D, Clock : IN STD LOGIC ;

Q : OUT STD LOGIC) ;

END flipflop ;

ARCHITECTURE Behavior OF flipflop IS

BEGIN

PROCESS

BEGIN

WAIT UNTIL Clock’EVENT AND Clock = ;

Q <= D ;

END PROCESS ;

END Behavior ;

'1'

Figure 5.37 Equivalent code to Figure 5.36, using a WAIT UNTIL
statement.

which also implies that the action occurs when the Clock signal becomes equal to 1, namely,

at the edge when the signal changes from 0 to 1. However, some CAD synthesis tools

require the inclusion of the ’EVENT attribute, which is the reason why we use this style in

the book.

In general, whenever it is desired to include in VHDL code flip-flops that are clocked

by the positive clock edge, the condition Clock’EVENT AND Clock '1' is used. When this

condition appears in an IF statement, any signals that are assigned values inside the IF state-

ment are implemented as the outputs of flip-flops. When the condition is used in a WAIT

UNTIL statement, any signal that is assigned a value in the entire process is implemented

as the output of a flip-flop.

The differences in using the IF and WAIT UNTIL statements are discussed in more

detail in Appendix A, Section A.10.3.

Example 5.4ASYNCHRONOUS CLEAR Figure 5.38 gives a process that is similar to the one in Figure

5.36. It describes a D flip-flop with an asynchronous active-low reset (clear) input. When

Resetn, the reset input, is equal to 0, the flip-flop’s Q output is set to 0.

Example 5.5SYNCHRONOUS CLEAR Figure 5.39 shows how a D flip-flop with a synchronous reset input

can be described. In this case the reset signal is acted upon only when a positive clock edge

arrives. The code generates the circuit in Figure 5.13c, which has an AND gate connected

to the flip-flop’s D input.

ISTUDY

272 C H A P T E R 5 ● FLIP-FLOPS, REGISTERS, AND COUNTERS

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

ENTITY flipflop IS

PORT (D, Resetn, Clock : IN STD LOGIC ;

Q : OUT STD LOGIC) ;

END flipflop ;

ARCHITECTURE Behavior OF flipflop IS

BEGIN

PROCESS (Resetn, Clock)

BEGIN

IF Resetn = THEN

Q <= ;

ELSIF Clock’EVENT AND Clock = THEN

Q <= D ;

END IF ;

END PROCESS ;

END Behavior ;

'1'

'0'

'0'

Figure 5.38 D flip-flop with asynchronous reset.

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

ENTITY flipflop IS

PORT (D, Resetn, Clock : IN STD LOGIC ;

Q : OUT STD LOGIC) ;

END flipflop ;

ARCHITECTURE Behavior OF flipflop IS

BEGIN

PROCESS

BEGIN

WAIT UNTIL Clock’EVENT AND Clock = ;

IF Resetn = THEN

Q <= ;

ELSE

Q <= D ;

END IF ;

END PROCESS ;

END Behavior ;

'1'

'0'

'0'

Figure 5.39 D flip-flop with synchronous reset.

ISTUDY

5.13 USING VHDL SEQUENTIAL STATEMENTS FOR REGISTERS AND COUNTERS 273

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

ENTITY flipflop IS

PORT (D, Resetn, Clock : IN STD LOGIC ;

Q : OUT STD LOGIC) ;

END flipflop ;

ARCHITECTURE Behavior OF flipflop IS

BEGIN

PROCESS (Clock) IS

BEGIN

IF RISING EDGE (Clock) THEN

IF Resetn = '0' THEN

Q <= '0' ;

ELSE

Q <= D ;

END IF ;

END IF ;

END PROCESS ;

END Behavior ;

Figure 5.40 An alternative specification of a D flip-flop with
synchronous reset.

So far, we have specified the active edge of the clock signal as Clock’EVENT AND

Clock = '1' , which corresponds to the time when this signal changes from 0 to 1, namely

its rising edge. Instead, we can state simply RISING EDGE (Clock). Then, a D flip-flop

can be specified as shown in Figure 5.40.

5.13 USING VHDL SEQUENTIAL STATEMENTS FOR
REGISTERS AND COUNTERS

In this section we show how registers and counters can be specified in VHDL code using

sequential statements. Figure 5.38 gives code for a D flip-flop. One way to describe an n-bit

register is to write hierarchical code that includes n instances of the D flip-flop subcircuit. A

simpler approach is shown in Figure 5.41. It uses the same code as in Figure 5.38 except that

the D input and Q output are defined as multibit signals. The code represents an eight-bit

register with asynchronous clear.

ISTUDY

274 C H A P T E R 5 ● FLIP-FLOPS, REGISTERS, AND COUNTERS

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

ENTITY reg8 IS

PORT (D : IN STD LOGIC VECTOR(7 DOWNTO 0) ;

Resetn, Clock : IN STD LOGIC ;

Q : OUT STD LOGIC VECTOR(7 DOWNTO 0)) ;

END reg8 ;

ARCHITECTURE Behavior OF reg8 IS

BEGIN

PROCESS (Resetn, Clock)

BEGIN

IF Resetn = THEN

Q <= "00000000" ;

ELSIF Clock’EVENT AND Clock = THEN

Q <= D ;

END IF ;

END PROCESS ;

END Behavior ;

'1'

'0'

Figure 5.41 Code for an eight-bit register with asynchronous clear.

Example 5.6 AN N-BIT REGISTER Since registers of different sizes are often needed in logic circuits, it is

advantageous to define a register entity for which the number of flip-flops can be easily changed.

Figure 5.42 shows how the code in Figure 5.41 can be extended to include a parameter that sets

the number of flip-flops. The parameter is an integer, N, which is defined using the VHDL

construct called GENERIC. The value of N is set to 16 using the := assignment operator. By

changing this parameter, the code can represent a register of any size. If the register is declared

as a component, then it can be used as a subcircuit in other code. That code can either use the

default value of the GENERIC parameter or else specify a different value.

The D and Q signals in Figure 5.42 are defined in terms of N. The statement that resets

all the bits of Q to 0 uses the odd-looking syntax Q <= (OTHERS => '0'). For the default

value of N = 16, this statement is equivalent to writing Q <= ''0000000000000000'' . The

(OTHERS => '0') syntax results in a '0' digit being assigned to each bit of Q, regardless

of how many bits Q has. It allows the code to be used for any value of N, rather than only

for N = 16.

Example 5.7 A FOUR-BIT SHIFT REGISTER Assume that we wish to write VHDL code that represents

the four-bit shift register in Figure 5.18. One approach is to write hierarchical code that

uses four subcircuits. Each subcircuit consists of a D flip-flop with a 2-to-1 multiplexer

connected to the D input. Figure 5.43 defines the entity named muxdff, which represents

this subcircuit. The two data inputs are named D0 and D1, and they are selected using the

Sel input. The process statement specifies that on the positive clock edge if Sel = 0, then Q

is assigned the value of D0; otherwise, Q is assigned the value of D1.

ISTUDY

5.13 USING VHDL SEQUENTIAL STATEMENTS FOR REGISTERS AND COUNTERS 275

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

ENTITY regn IS

GENERIC (N : INTEGER := 16) ;

PORT (D : IN STD LOGIC VECTOR(N 1– DOWNTO 0) ;

Resetn, Clock : IN STD LOGIC ;

Q : OUT STD LOGIC VECTOR(N 1– DOWNTO 0)) ;

END regn ;

ARCHITECTURE Behavior OF regn IS

BEGIN

PROCESS (Resetn, Clock)

BEGIN

IF Resetn = THEN

Q <= (OTHERS =>) ;

ELSIF Clock’EVENT AND Clock = THEN

Q <= D ;

END IF ;

END PROCESS ;

END Behavior ;

'1'

'0'

'0'

Figure 5.42 Code for an n-bit register with asynchronous clear.

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

ENTITY muxdff IS

PORT (D0, D1, Sel, Clock : IN STD LOGIC ;

Q : OUT STD LOGIC) ;

END muxdff ;

ARCHITECTURE Behavior OF muxdff IS

BEGIN

PROCESS

BEGIN

WAIT UNTIL Clock’EVENT AND Clock = ;

IF Sel = THEN

Q <= D0 ;

ELSE

Q <= D1 ;

END IF ;

END PROCESS ;

END Behavior ;

'1'

'0'

Figure 5.43 Code for a D flip-flop with a 2-to-1 multiplexer on the D input.

ISTUDY

276 C H A P T E R 5 ● FLIP-FLOPS, REGISTERS, AND COUNTERS

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

ENTITY shift4 IS

PORT (R : IN STD LOGIC VECTOR(3 DOWNTO 0) ;

Clock : IN STD LOGIC ;

L, w : IN STD LOGIC ;

Q : BUFFER STD LOGIC VECTOR(3 DOWNTO 0)) ;

END shift4 ;

ARCHITECTURE Structure OF shift4 IS

COMPONENT muxdff

PORT (D0, D1, Sel, Clock : IN STD LOGIC ;

Q : OUT STD LOGIC) ;

END COMPONENT ;

BEGIN

Stage3: muxdff PORT MAP (w, R(3), L, Clock, Q(3)) ;

Stage2: muxdff PORT MAP (Q(3), R(2), L, Clock, Q(2)) ;

Stage1: muxdff PORT MAP (Q(2), R(1), L, Clock, Q(1)) ;

Stage0: muxdff PORT MAP (Q(1), R(0), L, Clock, Q(0)) ;

END Structure ;

Figure 5.44 Hierarchical code for a four-bit shift register.

Figure 5.44 defines the four-bit shift register. The statement labeled Stage3 instantiates

the leftmost flip-flop, which has the output Q3, and the statement labeled Stage0 instantiates

the rightmost flip-flop, Q0. When L = 1, it is loaded in parallel from the R input, and when

L = 0, shifting takes place in the left to right direction. Serial data is shifted into the most-

significant bit, Q3, from the w input.

Example 5.8 ALTERNATIVE CODE FOR A FOUR-BIT SHIFT REGISTER A different style of code for the four-

bit shift register is given in Figure 5.45. The lines of code are numbered for ease of reference.

Instead of using subcircuits, the shift register is described using sequential statements. Due

to the WAIT UNTIL statement in line 13, any signal that is assigned a value inside the

process has to be implemented as the output of a flip-flop. Lines 14 and 15 specify the

parallel loading of the shift register when L = 1. The ELSE clause in lines 16 to 20 specifies

the shifting operation. Line 17 shifts the value of Q1 into the flip-flop with the output Q0.

Lines 18 and 19 shift the values of Q2 and Q3 into the flip-flops with the outputs Q1 and

Q2, respectively. Finally, line 20 shifts the value of w into the leftmost flip-flop, which has

the output Q3. Note that the process semantics, described in Section 4.6.6, stipulate that the

four assignments in lines 17 to 20 are scheduled to occur only after all of the statements in

the process have been evaluated. Hence all four flip-flops change their values at the same

time, as required in the shift register. The code generates the same shift-register circuit as

the code in Figure 5.44.

ISTUDY

5.13 USING VHDL SEQUENTIAL STATEMENTS FOR REGISTERS AND COUNTERS 277

1 LIBRARY ieee ;

2 USE ieee.std logic 1164.all ;

3 ENTITY shift4 IS

4 PORT (R : IN STD LOGIC VECTOR(3 DOWNTO 0) ;

5 Clock : IN STD LOGIC ;

6 L, w : IN STD LOGIC ;

7 Q : BUFFER STD LOGIC VECTOR(3 DOWNTO 0)) ;

8 END shift4 ;

9 ARCHITECTURE Behavior OF shift4 IS

10 BEGIN

11 PROCESS

12 BEGIN

13 WAIT UNTIL Clock’EVENT AND Clock = ;

14 IF L = THEN

15 Q R ;

16 ELSE

17 Q(0) <= Q(1) ;

18 Q(1) <= Q(2);

19 Q(2) <= Q(3) ;

20 Q(3) <= w ;

21 END IF ;

22 END PROCESS ;

23 END Behavior ;

<=

'1'

'1'

Figure 5.45 Alternative code for a shift register.

It is instructive to consider the effect of reversing the ordering of lines 17 through 20

in Figure 5.45, as indicated in Figure 5.46. In this case the first shift operation specified in

the code, in line 17, shifts the value of w into the leftmost flip-flop with the output Q3. Due

to the semantics of the process statement, the assignment to Q3 does not take effect until

all of the subsequent statements inside the process are evaluated. Hence line 18 shifts the

present value of Q3, before it is changed as a result of line 17, into the flip-flop with the

output Q2. Similarly, lines 19 and 20 shift the present values of Q2 and Q1 into the flip-flops

with the outputs Q1 and Q0, respectively. The code produces the same circuit as it did with

the ordering of the statements in Figure 5.45.

Example 5.9N-BIT SHIFT REGISTER Figure 5.47 shows code that can be used to represent shift

registers of any size. The GENERIC parameter N, which has the default value 8 in the

figure, sets the number of flip-flops. The code is identical to that in Figure 5.45

with two exceptions. First, R and Q are defined in terms of N. Second, the ELSE

ISTUDY

278 C H A P T E R 5 ● FLIP-FLOPS, REGISTERS, AND COUNTERS

1 LIBRARY ieee ;

2 USE ieee.std logic 1164.all ;

3 ENTITY shift4 IS

4 PORT (R : IN STD LOGIC VECTOR(3 DOWNTO 0) ;

5 Clock : IN STD LOGIC ;

6 L, w : IN STD LOGIC ;

7 Q : BUFFER STD LOGIC VECTOR(3 DOWNTO 0)) ;

8 END shift4 ;

9 ARCHITECTURE Behavior OF shift4 IS

10 BEGIN

11 PROCESS

12 BEGIN

13 WAIT UNTIL Clock’EVENT AND Clock = ;

14 IF L = THEN

15 Q <= R ;

16 ELSE

17 Q(3) <= w ;

18 Q(2) <= Q(3) ;

19 Q(1) <= Q(2);

20 Q(0) <= Q(1) ;

21 END IF ;

22 END PROCESS ;

23 END Behavior ;

'1'

'1'

Figure 5.46 Code that reverses the ordering of statements in Figure 5.45.

clause that describes the shifting operation is generalized to work for any number of

flip-flops.

Lines 18 to 20 specify the shifting operation for the right-most N − 1 flip-flops, which

have the outputs QN−2 to Q0. The construct used is called a FOR LOOP. It is similar to the

FOR GENERATE statement, introduced in Section 4.6.4, which is used to generate a set of

concurrent statements. The FOR LOOP is used to generate a set of sequential statements.

The first loop iteration shifts the present value of Q1 into the flip-flop with the output Q0.

The next loop iteration shifts Q2 into the flip-flop with the output Q1, and so on, with the

final iteration shifting QN−1 into the flip-flop with the output QN−2. Line 21 completes the

shift operation by shifting the value of the serial input w into the leftmost flip-flop with

the output QN−1.

Example 5.10 UP-COUNTER Figure 5.48 shows the code for a four-bit up-counter that has a reset input,

Resetn, and an enable input, E. In the architecture body the flip-flops in the counter are

represented by the signal named Count. The process statement specifies an asynchronous

ISTUDY

5.13 USING VHDL SEQUENTIAL STATEMENTS FOR REGISTERS AND COUNTERS 279

1 LIBRARY ieee ;

2 USE ieee.std logic 1164.all ;

3 ENTITY shiftn IS

4 GENERIC (N : INTEGER := 8) ;

5 PORT (R : IN STD LOGIC VECTOR(N 1 DOWNTO 0) ;

6 Clock : IN STD LOGIC ;

7 L, w : IN STD LOGIC ;

8 Q : BUFFER STD LOGIC VECTOR(N 1 DOWNTO 0)) ;

9 END shiftn ;

10 ARCHITECTURE Behavior OF shiftn IS

11 BEGIN

12 PROCESS

13 BEGIN

14 WAIT UNTIL Clock’EVENT AND Clock = ;

15 IF L = THEN

16 Q <= R ;

17 ELSE

18 Genbits: FOR i IN 0 TO N-2 LOOP

19 Q(i) <= Q(i + 1) ;

20 END LOOP ;

21 Q(N-1) <= w ;

22 END IF ;

23 END PROCESS ;

24 END Behavior ;

'1'

'1'

Figure 5.47 Code for an n-bit left-to-right shift register.

reset of Count if Resetn = 0. The ELSIF clause specifies that on the positive clock edge, if

E = 1, the count is incremented. If E = 0, the code explicitly assigns Count <= Count. This

statement is not required to correctly describe the counter, because of the implied memory

semantics, but it may be included for clarity. The Q outputs are assigned the value of Count
at the end of the code. The code produces the circuit shown in Figure 5.22 if the VHDL

compiler opts to use T flip-flops, and it generates the circuit in Figure 5.23 (with the reset

input added) if the compiler chooses D flip-flops.

Example 5.11USING INTEGER SIGNALS IN A COUNTER Counters are often defined in VHDL using the

INTEGER type, which was introduced in Section 3.5.4. The code in Figure 5.49 defines an

up-counter that has a parallel-load input in addition to a reset input. The parallel data, R, as

well as the counter’s output, Q, are defined using the INTEGER type. Since they have the

range from 0 to 15, both of these signals represent four-bit quantities. In Figure 5.48 the

signal Count is defined to represent the flip-flops in the counter. This signal is not needed if

ISTUDY

280 C H A P T E R 5 ● FLIP-FLOPS, REGISTERS, AND COUNTERS

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

USE ieee.std logic unsigned.all ;

ENTITY upcount IS

PORT (Clock, Resetn, E : IN STD LOGIC ;

Q : OUT STD LOGIC VECTOR (3 DOWNTO 0)) ;

END upcount ;

ARCHITECTURE Behavior OF upcount IS

SIGNAL Count : STD LOGIC VECTOR (3 DOWNTO 0) ;

BEGIN

PROCESS (Clock, Resetn)

BEGIN

IF Resetn = THEN

Count <= ;

ELSIF (Clock’EVENT AND Clock =) THEN

IF E = THEN

Count <= Count + 1 ;

ELSE

Count <= Count ;

END IF ;

END IF ;

END PROCESS ;

Q <= Count ;

END Behavior ;

'1'

'1'

"0000"

'0'

Figure 5.48 Code for a four-bit up-counter.

the Q outputs have the BUFFER mode, as shown in Figure 5.49. The if-then-else statement

at the beginning of the process includes the asynchronous reset. The ELSIF clause specifies

that on the positive clock edge, if L = 1, the flip-flops in the counter are loaded in parallel

from the R inputs. If L = 0, the count is incremented.

Example 5.12 DOWN-COUNTER Figure 5.50 shows the code for a down-counter named downcnt. To

make it easy to change the starting count, it is defined as a GENERIC parameter named modulus.

On the positive clock edge, if L = 1, the counter is loaded with the value modulus−1, and

if L = 0, the count is decremented. The counter also includes an enable input, E. Setting

E = 1 allows the count to be decremented when an active clock edge occurs.

5.13.1 FLIP-FLOPS AND REGISTERS WITH ENABLE INPUTS

We showed in Figures 5.22 and 5.23 how an enable input can be used in counter circuits to

be able to prevent the flip-flops from toggling when an active clock edge occurs. It is also

ISTUDY

5.13 USING VHDL SEQUENTIAL STATEMENTS FOR REGISTERS AND COUNTERS 281

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

ENTITY upcount IS

PORT (R : IN INTEGER RANGE 0 TO 15 ;

Clock, Resetn, L : IN STD LOGIC ;

Q : BUFFER INTEGER RANGE 0 TO 15) ;

END upcount ;

ARCHITECTURE Behavior OF upcount IS

BEGIN

PROCESS (Clock, Resetn)

BEGIN

IF Resetn = THEN

Q <= 0 ;

ELSIF (Clock’EVENT AND Clock =) THEN

IF L = THEN

Q <= R ;

ELSE

Q <= Q + 1 ;

END IF;

END IF;

END PROCESS;

END Behavior;

'1'

'1'

'0'

Figure 5.49 A four-bit counter with parallel load, using INTEGER signals.

useful in many other types of circuits to be able to prevent the data stored in flip-flops from

changing when an active clock edge occurs. For D flip-flops, this capability can be provided

by adding a multiplexer to the flip-flop, as shown in Figure 5.51a. When E = 0, the flip-flop

output cannot change, because the multiplexer connects Q to the input of the flip-flop. But

if E = 1, then the multiplexer allows new data to be loaded into the flip-flop from the

D input. Instead of using the multiplexer shown in the figure, another way to implement the

enable feature is to use a two-input AND gate as illustrated in Figure 5.51b. Then setting

E = 0 prevents the clock signal from reaching the flip-flop’s clock input. This method seems

simpler than the multiplexer approach, but we will show in Section 5.15 that it can cause

problems in practical operation. We will prefer the multiplexer-based approach over gating

the clock with an AND gate.

VHDL code for a D flip-flop with an asynchronous reset input and an enable input

is given in Figure 5.52. After first specifying the reset condition, the PROCESS uses an

IF-THEN-ELSE statement to ensure that the data stored in the flip-flop can change only

when E = 1. We can extend the enable capability to registers with n bits by using n 2-to-1

multiplexers controlled by E, as shown in Figure 5.53. The multiplexer for each flip-flop, i,
selects either the external data bit, Ri, or the flip-flop’s output, Qi.

ISTUDY

282 C H A P T E R 5 ● FLIP-FLOPS, REGISTERS, AND COUNTERS

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

ENTITY downcnt IS

GENERIC (modulus : INTEGER := 8) ;

PORT (Clock, L, E : IN STD LOGIC ;

Q : OUT INTEGER RANGE 0 TO modulus 1–) ;

END downcnt ;

ARCHITECTURE Behavior OF downcnt IS

SIGNAL Count : INTEGER RANGE 0 TO modulus 1– ;

BEGIN

PROCESS

BEGIN

WAIT UNTIL (Clock’EVENT AND Clock =) ;

IF L = THEN

Count <= modulus 1– ;

ELSE

IF E = THEN

Count <= Count 1– ;

END IF ;

END IF ;

END PROCESS;

Q <= Count ;

END Behavior ;

'1'

'1'

'1'

Figure 5.50 Code for a down-counter.

D Q

Q

Q
D

Clock

E

0

1
D Q

Q
Clock

E

D Q

(b) Clock gating(a) Using a multiplexer

Figure 5.51 Providing an enable input for a D flip-flop.

ISTUDY

5.14 DESIGN EXAMPLE - REACTION TIMER 283

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

ENTITY rege IS

PORT (R, Resetn, E, Clock : IN STD LOGIC ;

Q : BUFFER STD LOGIC) ;

END rege ;

ARCHITECTURE Behavior OF rege IS

BEGIN

PROCESS (Resetn, Clock)

BEGIN

IF Resetn = '0' THEN

Q <= '0' ;

ELSIF Clock’EVENT AND Clock = '1' THEN

IF E = '1' THEN

Q <= R ;

ELSE

Q <= Q ;

END IF ;

END IF ;

END PROCESS ;

END Behavior ;

Figure 5.52 Code for a D flip-flop with enable.

5.13.2 SHIFT REGISTERS WITH ENABLE INPUTS

It is useful to be able to inhibit the shifting operation in a shift register by using an enable in-

put, E. We showed in Figure 5.18 that shift registers can be constructed with a parallel-load

capability, which is implemented using a multiplexer. Figure 5.54 shows how the enable

feature can be added by using an additional multiplexer. If the parallel-load control input,

L, is 1, the flip-flops are loaded in parallel. If L = 0, the additional multiplexer selects new

data to be loaded into the flip-flops only if the enable E is 1.

VHDL code that represents the circuit in Figure 5.54 is given in Figure 5.55. When

L = 1, the register is loaded in parallel from the R input. When L = 0 and E = 1, the data

in the shift register is shifted in a left-to-right direction.

5.14 DESIGN EXAMPLE - REACTION TIMER

This section presents an example of a digital system that makes use of some of the building

blocks described in this chapter and in Chapter 4.

Electronic devices operate at remarkably fast speeds, with the typical delay through a

logic gate being less than 1 ns. In this example we use a logic circuit to measure the speed

of a much slower type of device—a person. We will design a circuit that can be used to

ISTUDY

284 C H A P T E R 5 ● FLIP-FLOPS, REGISTERS, AND COUNTERS

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

ENTITY regne IS

GENERIC (N : INTEGER := 8) ;

PORT (R : IN STD LOGIC VECTOR(N−1 DOWNTO 0) ;

Resetn : IN STD LOGIC ;

E, Clock : IN STD LOGIC ;

Q : OUT STD LOGIC VECTOR(N−1 DOWNTO 0)) ;

END regne ;

ARCHITECTURE Behavior OF regne IS

BEGIN

PROCESS (Resetn, Clock)

BEGIN

IF Resetn = '0' THEN

Q <= (OTHERS => '0') ;

ELSIF Clock’EVENT AND Clock = '1' THEN

IF E = '1' THEN

Q <= R ;

END IF ;

END IF ;

END PROCESS ;

END Behavior ;

Figure 5.53 An n-bit register with an enable input.

measure the reaction time of a person to a specific event. The circuit turns on a small light,

called a light-emitting diode (LED). In response to the LED being turned on, the person

attempts to press a switch as quickly as possible. The circuit measures the elapsed time

from when the LED is turned on until the switch is pressed.

To measure the reaction time, a clock signal with an appropriate frequency is needed.

In this example we use a 100 Hz clock, which measures time at a resolution of 1/100 of a

second. The reaction time can then be displayed using two digits that represent fractions of

a second from 00/100 to 99/100.

Digital systems often include high-frequency clock signals to control various subsys-

tems. In this case assume the existence of an input clock signal with the frequency 102.4 kHz.

From this signal we can derive the required 100 Hz signal by using a counter as a clock
divider. A timing diagram for a four-bit counter is given in Figure 5.21. It shows that the

least-significant bit output, Q0, of the counter is a periodic signal with half the frequency of

the clock input. Hence we can view Q0 as dividing the clock frequency by two. Similarly,

the Q1 output divides the clock frequency by four. In general, output Qi in an n-bit counter

divides the clock frequency by 2i+1. In the case of our 102.4 kHz clock signal, we can use

a 10-bit counter, as shown in Figure 5.56a. The counter output c9 has the required 100 Hz

frequency because 102400 Hz∕1024 = 100 Hz.

ISTUDY

285

D
Q Q

Q
n–

1

R
n–

1

C
lo

ck

L 0 1
w

E 0 1
D

Q Q

Q
1

R
1

0 1

0 1
D

Q Q

Q
0

R
0

0 1

0 1

Fi
gu

re
5

.5
4

A
sh

ift
re

gi
st

er
w

ith
pa

ra
lle

l-l
oa

d
an

d
en

ab
le

co
nt

ro
li

np
ut

s.

ISTUDY

286 C H A P T E R 5 ● FLIP-FLOPS, REGISTERS, AND COUNTERS

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

- - left-to-right shift register with parallel load and enable

ENTITY shiftrne IS

GENERIC (N : INTEGER := 4) ;

PORT(R : IN STD LOGIC VECTOR(N−1 DOWNTO 0) ;

L, E, w : IN STD LOGIC ;

Clock : IN STD LOGIC ;

Q : BUFFER STD LOGIC VECTOR(N−1 DOWNTO 0)) ;

END shiftrne ;

ARCHITECTURE Behavior OF shiftrne IS

BEGIN

PROCESS

BEGIN

WAIT UNTIL Clock’EVENT AND Clock = '1' ;

IF L = '1' THEN

Q <= R ;

ELSIF E = '1' THEN

Q(N-1) <= w ;

Genbits: FOR i IN N-2 DOWNTO 0 LOOP

Q(i) <= Q(i+1) ;

END LOOP ;

END IF ;

END PROCESS ;

END Behavior ;

Figure 5.55 A left-to-right shift register with an enable input.

The reaction timer circuit has to be able to turn an LED on and off. The graphical symbol

for an LED is shown in red in Figure 5.56b. Small red arrows in the symbol represent the light

that is emitted when the LED is turned on. The LED has two terminals: the one on the left in

the figure is the cathode, and the terminal on the right is the anode. To turn the LED on, the

cathode has to be set to a sufficiently lower voltage than the anode, which causes a current to

flow through the LED. If the voltages on its two terminals are equal, the LED is off.

Figure 5.56b shows one way to control the LED. The two transistors in this diagram

implement an inverter as explained in Appendix B. If the input voltage to this inverter

VLED = 0, then the voltage at the cathode is equal to VDD; hence the LED is off. But

if VLED = VDD, the cathode voltage is 0 V and the LED is on. The amount of current

that flows is limited by the value of the resistor RL. This current flows through the LED

and the NMOS transistor in the inverter. Since the current flows into the inverter, we say

that the inverter sinks the current. The maximum current that a logic gate can sink without

sustaining permanent damage is usually called IOL, which stands for the “maximum current

when the output is low.” The value of RL is chosen such that the current is less than IOL. As

an example assume that the inverter is implemented inside a chip for which the value of IOL

ISTUDY

5.14 DESIGN EXAMPLE - REACTION TIMER 287

D Q

Q

(a) Clock divider

10-bit counter
Clock

c0c1c9

Two-digit BCD counter

w3

a

w2

b

w1 w0

g

w3

a

w2

b

w1 w0

g

BCD0BCD1
E

Converter Converter

c9

VDD

R

w

VDD

RL

(c) Push-button switch, LED, and 7-segment displays

Reset Clear

VDD

RL

VDD

V LED

1

0

1

(b) LED circuit

Clock

Figure 5.56 A reaction-timer circuit.

ISTUDY

288 C H A P T E R 5 ● FLIP-FLOPS, REGISTERS, AND COUNTERS

specified in the data sheet for the chip is 12 mA. For VDD = 5 V, this leads to RL ≈ 450 Ω
because 5 V∕450 Ω = 11 mA (there is actually a small voltage drop across the LED when

it is turned on, but we ignore this for simplicity). The amount of light emitted by the LED

is proportional to the current flow. If 11 mA is insufficient, then the inverter should be

implemented in a driver chip, like those described in Appendix B, because drivers provide

a higher value of IOL.

The complete reaction-timer circuit is illustrated in Figure 5.56c, with the inverter from

part (b) shaded in a red color. The graphical symbol for a push-button switch is shown in the top

left of the diagram. The switch normally makes contact with the top terminals, as depicted in the

figure. When depressed, the switch makes contact with the bottom terminals; when released, it

automatically springs back to the top position. In the figure the switch is connected such that it

normally produces a logic value of 1, and it produces a 0 pulse when pressed.

When depressed, the push-button switch causes the D flip-flop to be synchronously re-

set. The output of this flip-flop determines whether the LED is on or off, and it also provides

the count enable input to a two-digit BCD counter. As discussed in Section 5.11, each digit

in a BCD counter has four bits that take the values 0000 to 1001. Thus the counting sequence

can be viewed as decimal numbers from 00 to 99. A circuit for the BCD counter is given in

Figure 5.27. Each digit in the counter is connected through a code converter to a 7-segment

display. The counter is clocked by the c9 output of the clock divider in part (a) of the figure.

The intended use of the reaction-timer circuit is to first assert the Reset input to clear the

flip-flop and thus turn off the LED and disable the counter. Asserting the Reset input also

clears the contents of the counter to 00. The input w normally has the value 0, which keeps

the flip-flop cleared and prevents the count value from changing. The reaction test is initi-

ated by setting w = 1 for one c9 clock cycle. After the next positive edge of the clock, the

flip-flop output becomes a 1, which turns on the LED. We assume that w returns to 0 after

one c9 clock cycle, but the flip-flop output remains at 1 because of the 2-to-1 multiplexer

connected to the D input. The counter is then incremented every 1∕100 of a second. When

the user depresses the switch, the flip-flop is cleared, which turns off the LED and stops the

counter. The two-digit display shows the elapsed time to the nearest 1∕100 of a second from

when the LED was turned on until the user was able to respond by depressing the switch.

VHDL Code
To describe the circuit in Figure 5.56c using VHDL code, we can make use of subcir-

cuits for the BCD counter and the 7-segment code converter. Code for the BCD counter,

which represents the circuit in Figure 5.27, is shown in Figure 5.57. The two-digit BCD

output is represented by the 2 four-bit signals BCD1 and BCD0. The Clear input is used

to provide a synchronous reset for both digits in the counter. If E = 1, the count value is

incremented on the positive clock edge, and if E = 0, the count value is unchanged. Each

digit can take the values from 0000 to 1001. Figure 5.58 gives the code for the BCD-to-7-

segment decoder.

Figure 5.59 gives the code for the reaction timer. The input signal Pushn represents the

value produced by the push-button switch. The output signal LEDn represents the output

of the inverter that is used to control the LED. The two 7-segment displays are controlled

by the seven-bit signals Digit1 and Digit 0.

The flip-flop in Figure 5.56c is loaded with the value 1 if w = 1, but if w = 0 the

stored value in the flip-flop is not changed. This circuit is described by the process labeled

ISTUDY

5.14 DESIGN EXAMPLE - REACTION TIMER 289

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

USE ieee.std logic unsigned.all ;

ENTITY BCDcount IS

PORT (CountClock : IN STD LOGIC ;

Clear, E : IN STD LOGIC ;

BCD1, BCD0 : BUFFER STD LOGIC VECTOR(3 DOWNTO 0)) ;

END BCDcount ;

ARCHITECTURE Behavior OF BCDcount IS

BEGIN

PROCESS (CountClock)

BEGIN

IF RISING EDGE (CountClock) THEN

IF Clear = '1' THEN

BCD1 <= ''0000'' ; BCD0 <= ''0000'' ;

ELSIF E = '1' THEN

IF BCD0 = ''1001'' THEN

BCD0 <= ''0000'' ;

IF BCD1 = ''1001'' THEN

BCD1 <= ''0000'' ;

ELSE

BCD1 <= BCD1 + '1' ;

END IF ;

ELSE

BCD0 <= BCD0 + '1' ;

END IF ;

END IF ;

END IF;

END PROCESS;

END Behavior ;

Figure 5.57 Code for the two-digit BCD counter in Figure 5.27.

flipflop in Figure 5.59, which also includes a synchronous reset input. We have chosen to

use a synchronous reset because the flip-flop output is connected to the enable input E on

the BCD counter. As we know from the discussion in Section 5.3, it is important that all

signals connected to flip-flops meet the required setup and hold times. The push-button

switch can be pressed at any time and is not synchronized to the c9 clock signal. By using

a synchronous reset for the flip-flop in Figure 5.56, we avoid possible timing problems in

the counter. Of course, the setup time of the flip-flop itself may become violated due to the

asynchronous operation of the push-button switch. We show in Chapter 7 how this type of

problem can be alleviated by adding extra flip-flops that are used to synchronize signals.

ISTUDY

290 C H A P T E R 5 ● FLIP-FLOPS, REGISTERS, AND COUNTERS

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

ENTITY seg7 IS

PORT (bcd : IN STD LOGIC VECTOR(3 DOWNTO 0) ;

leds : OUT STD LOGIC VECTOR(1 TO 7)) ;

END seg7 ;

ARCHITECTURE Behavior OF seg7 IS

BEGIN

PROCESS (bcd)

BEGIN

CASE bcd IS - - abcdef g

WHEN ''0000'' => leds <= ''1111110'' ;

WHEN ''0001'' => leds <= ''0110000'' ;

WHEN ''0010'' => leds <= ''1101101'' ;

WHEN ''0011'' => leds <= ''1111001'' ;

WHEN ''0100'' => leds <= ''0110011'' ;

WHEN ''0101'' => leds <= ''1011011'' ;

WHEN ''0110'' => leds <= ''1011111'' ;

WHEN ''0111'' => leds <= ''1110000'' ;

WHEN ''1000'' => leds <= ''1111111'' ;

WHEN ''1001'' => leds <= ''1111011'' ;

WHEN OTHERS => leds <= ''- - - - - - - '' ;

END CASE ;

END PROCESS ;

END Behavior ;

Figure 5.58 Code for the BCD-to-7-segment decoder.

A simulation result for the reaction-timer circuit is shown in Figure 5.60. Initially, Reset
is asserted to clear the flip-flop and counter. When w changes to 1, the circuit sets LEDn
to 0, which represents the LED being turned on. After some amount of time, the switch

will be depressed. In the simulation we arbitrarily set Pushn to 0 after 16 c9 clock cycles.

Thus this choice represents the case when the person’s reaction time is about 0.16 seconds.

In human terms this duration is a very short time; for electronic circuits it is a very long

time. An inexpensive personal computer can perform tens of millions of operations in

0.16 seconds!

5.14.1 REGISTER TRANSFER LEVEL (RTL) CODE

At this point, we have introduced many of the VHDL constructs that are needed for syn-

thesis. Most of our examples give behavioral code, utilizing IF-THEN-ELSE statements,

CASE statements, FOR loops, and so on. It is possible to write behavioral code in a style

that resembles a computer program, in which there is a complex flow of control with many

ISTUDY

5.14 DESIGN EXAMPLE - REACTION TIMER 291

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

ENTITY reaction IS

PORT (Clock, c9, Reset : IN STD LOGIC ;

w, Pushn : IN STD LOGIC ;

LEDn : OUT STD LOGIC ;

Digit1, Digit0 : BUFFER STD LOGIC VECTOR(1 TO 7)) ;

END reaction ;

ARCHITECTURE Behavior OF reaction IS

COMPONENT BCDcount

PORT (CountClock : IN STD LOGIC ;

Clear, E : IN STD LOGIC ;

BCD1, BCD0 : BUFFER STD LOGIC VECTOR(3 DOWNTO 0)) ;

END COMPONENT ;

COMPONENT seg7

PORT (bcd : IN STD LOGIC VECTOR(3 DOWNTO 0) ;

leds : OUT STD LOGIC VECTOR(1 TO 7)) ;

END COMPONENT ;

SIGNAL LED : STD LOGIC ;

SIGNAL BCD1, BCD0 : STD LOGIC VECTOR(3 DOWNTO 0) ;

BEGIN

flipflop: PROCESS

BEGIN

WAIT UNTIL Clock’EVENT AND Clock = '1' ;

IF Pushn = '0' OR Reset = '1' THEN

LED <= '0' ;

ELSIF w = '1' THEN

LED <= '1' ;

END IF ;

END PROCESS ;

LEDn <= NOT LED ;

counter: BCDcount PORT MAP (c9, Reset, LED, BCD1, BCD0) ;

seg1 : seg7 PORT MAP (BCD1, Digit1) ;

seg0 : seg7 PORT MAP (BCD0, Digit0) ;

END Behavior ;

Figure 5.59 Code for the reaction timer.

loops and branches. With such code, sometimes called high-level behavioral code, it is dif-

ficult to relate the code to the final hardware implementation; it may even be difficult to

predict what circuit a high-level synthesis tool will produce. In this book we do not use the

high-level style of code. Instead, we present VHDL code in such a way that the code can

be easily related to the circuit that is being described. Most design modules presented are

ISTUDY

292 C H A P T E R 5 ● FLIP-FLOPS, REGISTERS, AND COUNTERS

Figure 5.60 Simulation of the reaction timer circuit.

fairly small, to facilitate simple descriptions. Larger designs are built by interconnecting the

smaller modules. This approach is usually referred to as the register-transfer level (RTL)

style of code. It is the most popular design method used in practice. RTL code is charac-

terized by a straightforward flow of control through the code; it comprises well-understood

subcircuits that are connected together in a simple way.

5.15 TIMING ANALYSIS OF FLIP-FLOP CIRCUITS

In Figure 5.14 we showed the timing parameters associated with a D flip-flop. A simple

circuit that uses this flip-flop is given in Figure 5.61. We wish to calculate the maximum

clock frequency, Fmax, for which this circuit will operate properly, and also determine if the

circuit suffers from any hold time violations. In the literature, this type of analysis of circuits

is usually called timing analysis. We will assume that the flip-flop timing parameters have

the values tsu = 0.6 ns, th = 0.4 ns, and 0.8 ns ≤ tcQ ≤ 1.0 ns. A range of minimum and

maximum values is given for tcQ because, as we mentioned in Section 5.4.4, this is the usual

way of dealing with variations in delay that exist in integrated circuit chips.

To calculate the minimum period of the clock signal, Tmin = 1∕Fmax, we need to con-

sider all paths in the circuit that start and end at flip-flops. In this simple circuit there is only

one such path, which starts when data is loaded into the flip-flop by a positive clock edge,

propagates to the Q output after the tcQ delay, propagates through the NOT gate, and finally

must meet the setup requirement at the D input. Therefore

Tmin = tcQ + tNOT + tsu

D Q

Q

Q

Clear

Clock

Figure 5.61 A simple flip-flop circuit.

ISTUDY

5.15 TIMING ANALYSIS OF FLIP-FLOP CIRCUITS 293

Since we are interested in the longest delay for this calculation, the maximum value of

tcQ should be used. For the calculation of tNOT we will assume that the delay through any

logic gate can be calculated as 1 + 0.1k, where k is the number of inputs to the gate. For a

NOT gate this gives 1.1 ns, which leads to

Tmin = 1.0 + 1.1 + 0.6 = 2.7 ns

Fmax = 1∕2.7 ns = 370.37 MHz

It is also necessary to check if there are any hold time violations in the circuit. In this

case we need to examine the shortest possible delay from a positive clock edge to a change

in the value of the D input. The delay is given by tcQ + tNOT = 0.8 + 1.1 = 1.9 ns. Since

1.9 ns > th = 0.4 ns there is no hold time violation.

As another example of timing analysis of flip-flop circuits, consider the counter circuit

shown in Figure 5.62. We wish to calculate the maximum clock frequency for which this

circuit will operate properly assuming the same flip-flop timing parameters as we did for

Clock

Enable
D Q

Q

D Q

Q

D Q

Q

D Q

Q

Q0

Q1

Q2

Q3

Figure 5.62 A four-bit counter.

ISTUDY

294 C H A P T E R 5 ● FLIP-FLOPS, REGISTERS, AND COUNTERS

Figure 5.61. We will again assume that the propagation delay through a logic gate can be

calculated as 1 + 0.1k.

There are many paths in this circuit that start and end at flip-flops. The longest such

path starts at flip-flop Q0 and ends at flip-flop Q3. The longest path in a circuit is often called

a critical path. The delay of the critical path includes the clock-to-Q delay of flip-flop Q0,

the propagation delay through three AND gates, and one XOR-gate delay. We must also

account for the setup time of flip-flop Q3. This gives

Tmin = tcQ + 3(tAND) + tXOR + tsu

Using the maximum value of tcQ gives

Tmin = 1.0 + 3(1.2) + 1.2 + 0.6 ns = 6.4 ns

Fmax = 1∕6.4 ns = 156.25 MHz

The shortest paths through the circuit are from each flip-flop to itself, through an XOR

gate. The minimum delay along each such path is tcQ + tXOR = 0.8 + 1.2 = 2.0 ns. Since

2.0 ns > th = 0.4 ns, there are no hold time violations.

5.15.1 TIMING ANALYSIS WITH CLOCK SKEW

In the above analysis we assumed that the clock signal arrived at exactly the same time at all

four flip-flops. We will now repeat this analysis assuming that the clock signal still arrives

at flip-flops Q0, Q1, and Q2 simultaneously, but that there is a delay in the arrival of the

clock signal at flip-flop Q3. Such a variation in the arrival time of a clock signal at different

flip-flops is called clock skew, tskew, and can be caused by a number of factors.

In Figure 5.62 the critical path through the circuit is from flip-flop Q0 to Q3. However,

the clock skew at Q3 has the effect of “reducing” this delay, because it provides additional

time before data is loaded into this flip-flop. Taking a clock skew of 1.5 ns into account, the

delay of the path from flip-flop Q0 to Q3 is given by tcQ + 3(tAND) + tXOR + tsu − tskew =
6.4− 1.5 ns = 4.9 ns. There is now a different critical path through the circuit, which starts

at flip-flop Q0 and ends at Q2. The delay of this path gives

Tmin = tcQ + 2(tAND) + tXOR + tsu

= 1.0 + 2(1.2) + 1.2 + 0.6 ns

= 5.2 ns

Fmax = 1∕5.2 ns = 192.31 MHz

In this case the clock skew results in an increase in the circuit’s maximum clock frequency.

But if the clock skew had been negative, which would be the case if the clock signal arrived

earlier at flip-flop Q3 than at other flip-flops, then the result would have been a reduced

Fmax.

Since the loading of data into flip-flop Q3 is delayed by the clock skew, it has the effect

of increasing the hold time requirement of this flip-flop to th + tskew, for all paths that end at

Q3 but start at Q0, Q1, or Q2. The shortest such path in the circuit is from flip-flop Q2 to Q3 and

has the delay tcQ + tAND + tXOR = 0.8+1.2+1.2 = 3.2 ns. Since 3.2 ns > th + tskew = 1.9 ns

there is no hold time violation.

ISTUDY

5.15 TIMING ANALYSIS OF FLIP-FLOP CIRCUITS 295

If we repeat the above hold time analysis for clock skew values tskew ≥ 3.2 − th = 2.8 ns,

then hold time violations will exist. Thus, if tskew ≥ 2.8 ns the circuit will not work reliably

at any clock frequency.

Example 5.13Consider the circuit in Figure 5.63. In this circuit, there is a path that starts at flip-flop Q1,

passes through some network of logic gates, and ends at the D input of flip-flop Q2. As

indicated in the figure, different delays may be incurred before the clock signal reaches the

flip-flops. Let Δ1 and Δ2 be the clock-signal delays for flip-flops Q1 and Q2, respectively.

The clock skew between these two flip-flops is then defined as

tskew = Δ2 − Δ1

Let the longest delay along the paths through the logic gates in the circuit be tL. Then,

the minimum allowable clock period for these two flip-flops is

Tmin = tcQ + tL + tsu − tskew

Thus, if Δ2 > Δ1, then tskew allows for an increased value of Fmax, but if Δ2 < Δ1, then the

clock skew requires a decrease in Fmax.

To calculate whether a hold time violation exists at flip-flop Q2 we need to determine

the delay along the shortest path between the flip-flops. If the minimum delay through the

logic gates in the circuit is tl, then a hold time violation occurs if

tcQ + tl < th + tskew

Here, the hold-time constraint is more difficult to meet if Δ2−Δ1 > 0, and it is less difficult

to meet if Δ2 − Δ1 < 0.

The techniques described above for Fmax and hold time analysis can be applied to any

circuit in which the same, or related, clock signals are connected to all flip-flops. Consider

again the reaction-timer circuit in Figure 5.56. The clock divider in part (a) of the figure

D Q

Q

Clock

D Q

Q

Q1 Q2
Logic gates

Δ2Δ1

Figure 5.63 A general example of clock skew.

ISTUDY

296 C H A P T E R 5 ● FLIP-FLOPS, REGISTERS, AND COUNTERS

D Q

Q

Two-digit BCD counter

w3

a

w2

b

w1 w0

g

w3

a

w2

b

w1 w0

g

BCD0BCD1E

Converter Converter

w

Reset Clear

1

0

1

c0
c1

c9

Clock

Figure 5.64 A modified version of the reaction-timer circuit.

generates the c9 signal, which drives the clock inputs of the flip-flops in the BCD counter.

Since these paths start at the Q output of the c9 flip-flop but end at the clock inputs of

other flip-flops, rather than at D inputs, the above timing analysis method cannot be applied.

However, we could restructure the reaction-timer circuit as indicated in Figure 5.64. Instead

of using c9 directly as a clock for the BCD counter, a ten-input AND gate is used to generate

a signal that has the value 1 for only one of the 1024 count values from the clock divider.

This signal is then ANDed with the control flip-flop output to cause the BCD counter to be

incremented at the desired rate of 100 times per second.

In the circuit of Figure 5.64 all flip-flops are clocked directly by the Clock signal. There-

fore, the Fmax and hold time analysis can now be applied. In general, it is a good design

approach for sequential circuits to connect the clock inputs of all flip-flops to a common

clock. We discuss such issues in detail in Chapter 7.

5.16 CONCLUDING REMARKS

In this chapter we have presented circuits that serve as basic storage elements in digital

systems. These elements are used to build larger units such as registers, shift registers, and

counters. We have illustrated how circuits with flip-flops can be described using VHDL

code. In the next chapter a more formal method for designing circuits with flip-flops will

be presented.

5.17 EXAMPLES OF SOLVED PROBLEMS

This section presents some typical problems that the reader may encounter, and shows how

such problems can be solved.

ISTUDY

5.17 EXAMPLES OF SOLVED PROBLEMS 297

(a) Circuit

(b) Timing diagram

Figure 5.65 Circuit for Example 5.14.

Example 5.14Problem: Consider the circuit in Figure 5.65a. Assume that the input C is driven by a square

wave signal with a 50% duty cycle. Draw a timing diagram that shows the waveforms at

points A and B. Assume that the propagation delay through each gate is Δ seconds.

Solution: The timing diagram is shown in Figure 5.65b.

Example 5.15Problem: Determine the functional behavior of the circuit in Figure 5.66. Assume that

input w is driven by a square wave signal.

J Q

QK

J Q

QK 11

w

Q0
Q1

Clear

FF0 FF1

Figure 5.66 Circuit for Example 5.15.

ISTUDY

298 C H A P T E R 5 ● FLIP-FLOPS, REGISTERS, AND COUNTERS

Time FF0 FF1

interval J0 K 0 Q0 J1 K 1 Q1

Clear 1 1 0 0 1 0

t1 1 1 1 1 1 0

t2 0 1 0 0 1 1

t3 1 1 0 0 1 0

t4 1 1 1 1 1 0

Figure 5.67 Summary of the behavior of the circuit in Figure 5.66.

Solution: When both flip-flops are cleared, their outputs are Q0 = Q1 = 0. After the Clear
input goes high, each pulse on the w input will cause a change in the flip-flops as indicated

in Figure 5.67. Note that the figure shows the state of the signals after the changes caused

by the rising edge of a pulse have taken place.

In consecutive time intervals the values of Q1Q0 are 00, 01, 10, 00, 01, and so on.

Therefore, the circuit generates the counting sequence: 0, 1, 2, 0, 1, and so on. Hence, the

circuit is a modulo-3 counter.

Example 5.16 Problem: Design a circuit that can be used to control a vending machine. The circuit has

five inputs: Q (quarter), D (dime), N (nickel), Coin, and Resetn. When a coin is deposited in

the machine, a coin-sensing mechanism generates a pulse on the appropriate input (Q, D, or N).

To signify the occurrence of the event, the mechanism also generates a pulse on the line

Coin. The circuit is reset by using the Resetn signal (active low). When at least 30 cents has

been deposited, the circuit activates its output, Z. No change is given if the amount exceeds

30 cents.

Design the required circuit by using the following components: a six-bit adder, a six-bit

register, and any number of AND, OR, and NOT gates.

Solution: Figure 5.68 gives a possible circuit. The value of each coin is represented by a

corresponding five-bit number. It is added to the current total, which is held in register S.

The required output is

Z = s5 + s4s3s2s1

The register is clocked by the negative edge of the Coin signal. This allows for a propagation

delay through the adder, and ensures that a correct sum will be placed into the register.

In Chapter 9 we will show how this type of control circuit can be designed using a

more structured approach.

Example 5.17 Problem: Write VHDL code to implement the circuit in Figure 5.68.

Solution: Figure 5.69 gives the desired code.

ISTUDY

5.17 EXAMPLES OF SOLVED PROBLEMS 299

Adder

Register S

Z

s
5 0–

s
5

s
4

s
3

s
2

s
1

Coin

Resetn

0

N

D

Q

Figure 5.68 Circuit for Example 5.16.

Example 5.18Problem: In Section 5.15 we presented a timing analysis for the counter circuit in Figure 5.62.

Redesign this circuit to reduce the logic delay between flip-flops, so that the circuit can

operate at a higher maximum clock frequency.

Solution: As we showed in Section 5.15, the performance of the counter circuit is limited

by the delay through its cascaded AND gates. To increase the circuit’s performance we can

refactor the AND gates as illustrated in Figure 5.70. We assume that the delay through a

logic gate is 1 + 0.1k, where k is the number gate inputs. The longest delay path in this

redesigned circuit, which starts at flip-flop Q0 and ends at Q3, provides the minimum clock

period

Tmin = tcQ + tAND + tXOR + tsu

= 1.0 + 1.4 + 1.2 + 0.6 ns = 4.2 ns

ISTUDY

300 C H A P T E R 5 ● FLIP-FLOPS, REGISTERS, AND COUNTERS

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

USE ieee.std logic signed.all ;

ENTITY vend IS

PORT (N, D, Q, Resetn, Coin : IN STD LOGIC ;

Z : OUT STD LOGIC) ;

END vend ;

ARCHITECTURE Behavior OF vend IS

SIGNAL X: STD LOGIC VECTOR(4 DOWNTO 0) ;

SIGNAL S: STD LOGIC VECTOR(5 DOWNTO 0) ;

BEGIN

X(0) <= N OR Q ;

X(1) <= D ;

X(2) <= N ;

X(3) <= D OR Q ;

X(4) <= Q ;

PROCESS (Resetn, Coin)

BEGIN

IF Resetn = THEN

S <= "000000" ;

ELSIF Coin’EVENT AND Coin = THEN

S <= (& X) + S ;

END IF ;

END PROCESS ;

Z <= S(5) OR (S(4) AND S(3) AND S(2) AND S(1)) ;

END Behavior ;

'0'

'0'

'0'

Figure 5.69 Code for Example 5.17.

The redesigned counter has a maximum clock frequency of Fmax = 1∕4.2 ns = 238.1 MHz,

compared to the result for the original counter, which was 156.25 MHz.

Example 5.19 Problem: In Section 5.15 we showed how to perform timing analysis when there may be

different delays associated with the clock signal at each of the flip-flops in a circuit. The

circuit in Figure 5.71 includes three flip-flops, Q1, Q2, and Q3, with corresponding clock

delays Δ1,Δ2, and Δ3. The flip-flop timing parameters are tsu = 0.6 ns, th = 0.4 ns, and

0.8 ≤ tcQ ≤ 1 ns. Also, the delay through a k-input logic gate is 1 + 0.1k.

Calculate the Fmax for the circuit for the following sets of clock delays: Δ1 = Δ2 =
Δ3 = 0 ns; Δ1 = Δ3 = 0 ns and Δ2 = 0.7 ns; Δ1 = 1 ns, Δ2 = 0, and Δ3 = 0.5 ns. Also,

determine if there are any hold time violations in the circuit for the sets of clock delays

Δ1 = Δ2 = Δ3 = 0 ns, and Δ1 = 1 ns, Δ2 = 0, Δ3 = 0.5 ns.

ISTUDY

5.17 EXAMPLES OF SOLVED PROBLEMS 301

Clock

Enable
D Q

Q

D Q

Q

D Q

Q

D Q

Q

Q0

Q1

Q2

Q3

Q2

Q2

Figure 5.70 A faster 4-bit counter.

Solution: For the values Δ1 = Δ2 = Δ3 = 0, there is no clock skew. Let the path delay

between two flip-flops, Qi and Qj, be TQi→Qj
. The longest path delays are calculated by

including the maximum value of tcQ at flip-flop Qi, and the setup time at flip-flop Qj, as

follows

TQ1→Q2
= tcQ + tXOR + tAND + tsu = 1 + 1.2 + 1.2 + 0.6 = 4 ns

TQ2→Q2
= tcQ + tAND + tsu = 1 + 1.2 + 0.6 = 2.8 ns

TQ2→Q3
= tcQ + tNOT + tsu = 1 + 1.1 + 0.6 = 2.7 ns

TQ3→Q1
= tcQ + tsu = 1 + 0.6 = 1.6 ns

TQ3→Q2
= tcQ + tXOR + tAND + tsu = 1 + 1.2 + 1.2 + 0.6 = 4 ns

Since the critical path delay TQ1→Q2
= TQ3→Q2

= 4 ns, then Fmax = 1∕(4 × 10−9) =
250 MHz.

ISTUDY

302 C H A P T E R 5 ● FLIP-FLOPS, REGISTERS, AND COUNTERS

Figure 5.71 A circuit with clock skews.

For the values Δ1 = Δ3 = 0, and Δ2 = 0.7 ns, there is clock skew for the paths between

flip-flops Q1 and Q2, as well as Q3 and Q2. Adjusting the longest delays calculated above

to account for clock skew, we have

TQ1→Q2
= 4 − tskew = 4 − (Δ2 − Δ1) = 4 − 0.7 = 3.3 ns

TQ2→Q3
= 2.7 − tskew = 2.7 − (Δ3 − Δ2) = 2.7 − (0 − 0.7) = 3.4 ns

TQ3→Q2
= 4 − tskew = 4 − (Δ2 − Δ3) = 4 − 0.7 = 3.3 ns

The critical path delay now starts at flip-flop Q2 and ends at flip-flop Q3. Since TQ2→Q3
=

3.4 ns, then Fmax = 1∕(3.4 × 10−9) = 294 MHz.

For the values Δ1 = 1,Δ2 = 0, and Δ3 = 0.5 ns, there is clock skew for the paths

between all flip-flops. Adjusting the longest delays calculated for the case with no clock

skew, we have

TQ1→Q2
= 4 − tskew = 4 − (Δ2 − Δ1) = 4 − (0 − 1) = 5 ns

TQ2→Q3
= 2.7 − tskew = 2.7 − (Δ3 − Δ2) = 2.7 − (0.5) = 2.2 ns

TQ3→Q1
= 1.6 − tskew = 1.6 − (Δ1 − Δ3) = 1.6 − (1 − 0.5) = 1.1 ns

TQ3→Q2
= 4 − tskew = 4 − (Δ2 − Δ3) = 4 − (0 − 0.5) = 4.5 ns

The critical path delay is from flip-flop Q1 to flip-flop Q2. Since TQ1→Q2
= 5 ns, then

Fmax = 1∕(5 × 10−9) = 200 MHz.

To determine whether any hold time violations exist, we need to calculate the shortest

path delays, using the minimum value of tcQ. For Δ1 = Δ2 = Δ3 = 0, we have

TQ1→Q2
= tcQ + tXOR + tAND = 0.8 + 1.2 + 1.2 = 3.2 ns

TQ2→Q2
= tcQ + tAND = 0.8 + 1.2 = 2 ns

TQ2→Q3
= tcQ + tNOT = 0.8 + 1.1 = 1.9 ns

TQ3→Q1
= tcQ = 0.8 ns

TQ3→Q2
= tcQ + tXOR + tAND = 0.8 + 1.2 + 1.2 = 3.2 ns

Since the shortest path delay TQ3→Q1
= 0.8 ns > th, there is no hold time violation in the

circuit.

ISTUDY

PROBLEMS 303

We showed in Section 5.15 that if the shortest path delay through a circuit is called

Tl, then a hold time violation occurs if Tl − tskew < th. Adjusting the shortest path delays

calculated above for the values Δ1 = 1,Δ2 = 0, and Δ3 = 0.5 gives

TQ1→Q2
= 3.2 − tskew = 3.2 − (Δ2 − Δ1) = 3.2 − (0 − 1) = 4.2 ns

TQ2→Q3
= 1.9 − tskew = 1.9 − (Δ3 − Δ2) = 1.9 − 0.5 = 1.4 ns

TQ3→Q1
= 0.8 − tskew = 0.8 − (Δ1 − Δ3) = 0.8 − (1 − 0.5) = 0.3 ns

TQ3→Q2
= 3.2 − tskew = 3.2 − (Δ2 − Δ3) = 3.2 − (0 − 0.5) = 3.7 ns

The shortest path delay is TQ3→Q1
= 0.3 ns < th, which represents a hold time violation.

Hence, the circuit may not function reliably regardless of the frequency of the clock signal.

PROBLEMS

Answers to problems marked by an asterisk are given at the back of the book.

5.1 Consider the timing diagram in Figure P5.1. Assuming that the D and Clock inputs shown

are applied to the circuit in Figure 5.10, draw waveforms for the Qa, Qb, and Qc signals.

D

Clock

Figure P5.1 Timing diagram for Problem 5.1.

5.2 Figure 5.4 shows a latch built with NOR gates. Draw a similar latch using NAND gates.

Derive its characteristic table and show its timing diagram.

*5.3 Show a circuit that implements the gated SR latch using NAND gates only.

5.4 Given a 100-MHz clock signal, derive a circuit using D flip-flops to generate 50-MHz and

25-MHz clock signals. Draw a timing diagram for all three clock signals, assuming reason-

able delays.

*5.5 An SR flip-flop is a flip-flop that has set and reset inputs like a gated SR latch. Show how

an SR flip-flop can be constructed using a D flip-flop and other logic gates.

5.6 The gated SR latch in Figure 5.5a has unpredictable behavior if the S and R inputs are both

equal to 1 when the Clk changes to 0. One way to solve this problem is to create a set-
dominant gated SR latch in which the condition S = R = 1 causes the latch to be set to 1.

Design a set-dominant gated SR latch and show the circuit.

5.7 Show how a JK flip-flop can be constructed using a T flip-flop and other logic gates.

ISTUDY

304 C H A P T E R 5 ● FLIP-FLOPS, REGISTERS, AND COUNTERS

*5.8 Consider the circuit in Figure P5.2. Assume that the two NAND gates have much longer

(about four times) propagation delay than the other gates in the circuit. How does this circuit

compare with the circuits that we discussed in this chapter?

A

B

C

D

E

Figure P5.2 Circuit for Problem 5.8.

5.9 Write VHDL code that represents a T flip-flop with an asynchronous clear input. Use

behavioral code, rather than structural code.

5.10 Write VHDL code that represents a JK flip-flop. Use behavioral code, rather than structural

code.

5.11 Synthesize a circuit for the code written for Problem 5.10 by using your CAD tools. Simu-

late the circuit and show a timing diagram that verifies the desired functionality.

5.12 A universal shift register can shift in both the left-to-right and right-to-left directions, and

it has parallel-load capability. Draw a circuit for such a shift register.

5.13 Write VHDL code for a universal shift register with n bits.

5.14 Design a four-bit synchronous counter with parallel load. Use T flip-flops, instead of the

D flip-flops used in Section 5.9.3.

*5.15 Design a three-bit up/down counter using T flip-flops. It should include a control input

called Up∕Down. If Up∕Down = 0, then the circuit should behave as an up-counter. If

Up∕Down = 1, then the circuit should behave as a down-counter.

5.16 Repeat Problem 5.15 using D flip-flops.

*5.17 The circuit in Figure P5.3 looks like a counter. What is the counting sequence of this circuit?

ISTUDY

PROBLEMS 305

T Q

Q

1 T Q

Q

T Q

Q

Q0 Q1 Q2

Clock

Figure P5.3 Circuit for Problem 5.17.

5.18 Consider the circuit in Figure P5.4. How does this circuit compare with the circuit in

Figure 5.16? Can the circuits be used for the same purposes? If not, what is the key dif-

ference between them?

Clock

S Q

Q

Clk

R

S Q

Q

Clk

R

Q

Q

J

K

Figure P5.4 Circuit for Problem 5.18.

5.19 Construct a NOR-gate circuit, similar to the one in Figure 5.11a, which implements a

negative-edge-triggered D flip-flop.

5.20 Write behavioral VHDL code that represents a 24-bit up/down-counter with parallel load

and asynchronous reset.

5.21 Modify the VHDL code in Figure 5.48 by adding a parameter that sets the number of flip-

flops in the counter.

5.22 Write behavioral VHDL code that represents a modulo-12 up-counter with synchronous

reset.

*5.23 For the flip-flops in the counter in Figure 5.24, assume that tsu = 3 ns, th = 1 ns, and the

propagation delay through a flip-flop is 1 ns. Assume that each AND gate, XOR gate, and

2-to-1 multiplexer has the propagation delay equal to 1 ns. What is the maximum clock

frequency for which the circuit will operate correctly?

ISTUDY

306 C H A P T E R 5 ● FLIP-FLOPS, REGISTERS, AND COUNTERS

5.24 Write hierarchical code (structural) for the circuit in Figure 5.27. Use the counter in Figure 5.24

as a subcircuit.

5.25 Write VHDL code that represents an eight-bit Johnson counter. Use a simulation tool to

verify the counting sequence.

5.26 Write behavioral VHDL code in the style shown in Figure 5.47 that represents a ring

counter. Your code should have a parameter N that sets the number of flip-flops in the

counter.

5.27 A ring oscillator is a circuit that has an odd number, n, of inverters connected in a ringlike

structure, as shown in Figure P5.5. The output of each inverter is a periodic signal with a

certain period.

(a) Assume that all the inverters are identical; hence they all have the same delay, called

tp. Let the output of one of the inverters be named f . Give an equation that expresses the

period of the signal f in terms of n and tp.

(b) For this part you are to design a circuit that can be used to experimentally measure the

delay tp through one of the inverters in the ring oscillator. Assume the existence of an input

called Reset and another called Interval. The timing of these two signals is shown in Figure P5.6.

The length of time for which Interval has the value 1 is known. Assume that this length of

time is 100 ns. Design a circuit that uses the Reset and Interval signals and the signal f
from part (a) to experimentally measure tp. In your design you may use logic gates and

subcircuits such as adders, flip-flops, counters, registers, and so on.

f

Figure P5.5 A ring oscillator.

Reset

Interval

100 ns

Figure P5.6 Timing signals for Problem 5.27.

5.28 A circuit for a gated D latch is shown in Figure P5.7. Assume that the propagation delay

through either a NAND gate or an inverter is 1 ns. Complete the timing diagram given in

the figure, which shows the signal values with 1 ns resolution.

ISTUDY

PROBLEMS 307

Q

Clock

D

Q

A

1
0

1
0

1
0

1
0

A

D

Clock

Q

Figure P5.7 Circuit and timing diagram for Problem 5.28.

*5.29 A logic circuit has two inputs, Clock and Start, and two outputs, f and g. The behavior of

the circuit is described by the timing diagram in Figure P5.8. When a pulse is received on

the Start input, the circuit produces pulses on the f and g outputs as shown in the timing

diagram. Design a suitable circuit using only the following components: a three-bit reset-

table positive-edge-triggered synchronous counter and basic logic gates. For your answer

assume that the delays through all logic gates and the counter are negligible.

1

0

1

0

1

0

1

0
g

f

Start

Clock

Figure P5.8 Timing diagram for Problem 5.29.

ISTUDY

308 C H A P T E R 5 ● FLIP-FLOPS, REGISTERS, AND COUNTERS

5.30 Write behavioral VHDL code for a four-digit BCD counter.

5.31 Determine the maximum clock frequency that can be used for the circuit in Figure 5.24.

Use the timing parameters given in Section 5.15.

5.32 (a) Draw a circuit that could be synthesized from the VHDL code in Figure P5.9.

(b) How would you modify this code to specify a crossbar switch? In the crossbar switch

each output yj can be driven by either input xi.

LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

ENTITY problem IS

PORT (x1, x2, s: IN STD_LOGIC ;

y1, y2 : OUT STD_LOGIC) ;

END problem ;

ARCHITECTURE Behavior OF problem IS

BEGIN

PROCESS (x1, x2, s)

BEGIN

IF s = THEN

y1 <= x1 ;

y2 <= x2 ;

ELSIF s = THEN

y1 <= x2 ;

END IF ;

END PROCESS ;

END Behavior ;

'1'

'0'

Figure P5.9 Code for Problem 5.32.

5.33 A digital control circuit has three inputs: Start, Stop, and Clock, as well as an output signal

Run. The Start and Stop signals are of indeterminate duration and may span many clock

cycles. When the Start signal goes to 1, the circuit must generate Run = 1. The Run signal

must remain high until the Stop signal goes to 1, at which time it has to return to 0. All

changes in the Run signal must be synchronized with the Clock signal.

(a) Design the desired control circuit.

(b) Write VHDL code that specifies the desired circuit.

ISTUDY

309

c h a p t e r

6
SYNCHRONOUS SEQUENTIAL CIRCUITS

CHAPTER OBJECTIVES

In this chapter you will learn about:

● Design techniques for circuits that use flip-flops

● The concept of states and their implementation with

flip-flops

● Synchronous control by using a clock signal

● Sequential behavior of digital circuits

● A complete procedure for designing synchronous sequential

circuits

● VHDL specification of sequential circuits

● The concept of finite state machines

ISTUDY

310 C H A P T E R 6 ● SYNCHRONOUS SEQUENTIAL CIRCUITS

In preceding chapters we considered combinational logic circuits in which outputs are determined fully by

the present values of inputs. We also discussed how simple storage elements can be implemented in the form

of flip-flops. The output of a flip-flop depends on the state of the flip-flop rather than the value of its inputs at

any given time; the inputs cause changes in the state.

In this chapter we deal with a general class of circuits in which the outputs depend on the past behavior

of the circuit, as well as on the present values of inputs. They are called sequential circuits. In most cases

a clock signal is used to control the operation of a sequential circuit; such a circuit is called a synchronous
sequential circuit. The alternative, in which no clock signal is used, is called an asynchronous sequential
circuit. Synchronous circuits are easier to design and are used in a vast majority of practical applications;

they are the topic of this chapter. Asynchronous circuits will be discussed in Chapter 9.

Synchronous sequential circuits are realized using combinational logic and one or more flip-flops. The

general structure of such a circuit is shown in Figure 6.1. The circuit has a set of primary inputs, W, and

produces a set of outputs, Z. The stored values in the flip-flops are referred to as the state, Q, of the circuit.

Under control of the clock signal, the flip-flops change their state as determined by the combinational logic

that feeds the inputs of these flip-flops. Only one transition from one state to another can take place during a

single clock cycle because of the edge-triggered nature of the flip-flops. They can be triggered either by the

positive (0 to 1 transition) or by the negative (1 to 0 transition) edge of the clock. We will use the term active
clock edge to refer to the clock edge that causes the change in state.

The combinational logic that provides the input signals to the flip-flops has two sources: the primary

inputs, W, and the present (current) state of the flip-flops, Q. Thus changes in state depend on both the present

state and the values of the primary inputs.

Figure 6.1 indicates that the outputs of the sequential circuit are generated by another combinational

circuit, such that the outputs are a function of the present state of the flip-flops and of the primary inputs.

Although the outputs always depend on the present state, they do not necessarily have to depend directly on

the primary inputs. Thus the connection shown in red in the figure may or may not exist. To distinguish

between these two possibilities, it is customary to say that sequential circuits whose outputs depend only on

the state of the circuit are of Moore type, while those whose outputs depend on both the state and the primary

inputs are of Mealy type. These names are in honor of Edward Moore and George Mealy, who investigated

the behavior of such circuits in the 1950s.

Sequential circuits are also called finite state machines (FSMs), which is a more formal name that is often

found in technical literature. The name derives from the fact that the functional behavior of these circuits can

be represented using a finite number of states. In this chapter we will often use the term finite state machine,

or simply machine, when referring to sequential circuits.

circuit circuit

Figure 6.1 The general form of a sequential circuit.

ISTUDY

6.1 BASIC DESIGN STEPS 311

6.1 BASIC DESIGN STEPS

Sequential circuits are often used to control the operation of physical systems. We will

introduce the techniques for designing such circuits by means of a simple example.

Consider an application where the speed of an automatically controlled vehicle has

to be regulated as follows. The vehicle is designed to run at some predetermined speed.

However, due to some operational conditions the speed may exceed the desirable limit, in

which case the vehicle has to be slowed down. To determine when such action is needed,

the speed is measured at regular intervals. Let a binary signal w indicate whether the speed

exceeds the required limit, such that w = 0 means that the speed is within an acceptable

range and w = 1 indicates excessive speed. The desired control strategy is that if w = 1

during two or more consecutive measurements, a control signal z must be asserted to cause

the vehicle to slow down. Thus, z = 0 allows the current speed to be maintained, while

z = 1 reduces the speed. Let a signal Clock define the required timing intervals, such that

the speed is measured once during each clock cycle. Therefore, we wish to design a circuit

that meets the following specification:

1. The circuit has one input, w, and one output, z.

2. All changes in the circuit occur on the positive edge of the clock signal.

3. The output z is equal to 1 if during two immediately preceding clock cycles the input

w was equal to 1. Otherwise, the value of z is equal to 0.

From this specification it is apparent that the output z depends on both present and past

values of w. Consider the sequence of values of the w and z signals for the clock cycles

shown in Figure 6.2. The values of w are assumed to be generated by the vehicle being

controlled; the values of z correspond to our specification. Since w = 1 in clock cycle t3
and remains equal to 1 in cycle t4, then z should be set to 1 in cycle t5. Similarly, z should be

set to 1 in cycle t8 because w = 1 in cycles t6 and t7, and it should also be set to 1 in t9
because w = 1 in t7 and t8. As seen in the figure, for a given value of w the output z may

be either 0 or 1. For example, w = 0 during clock cycles t2 and t5, but z = 0 during t2 and

z = 1 during t5. Similarly, w = 1 during t1 and t8, but z = 0 during t1 and z = 1 during

t8. This means that z is not determined only by the present value of w, so there must exist

different states in the circuit that determine the value of z.

6.1.1 STATE DIAGRAM

The first step in designing a finite state machine is to determine how many states are needed

and which transitions are possible from one state to another. There is no set procedure for

this task. The designer must think carefully about what the machine has to accomplish.

Clock cycle: t0 t1 t2 t3 t4 t5 t6 t7 t8 t9
w: 0 1 0 1 1 0 1 1 1 0 1

z: 0 0 0 0 0 1 0 0 1 1 0

t10

Figure 6.2 Sequences of input and output signals.

ISTUDY

312 C H A P T E R 6 ● SYNCHRONOUS SEQUENTIAL CIRCUITS

A good way to begin is to select one particular state as a starting state; this is the state that

the circuit should enter when power is first turned on or when a reset signal is applied. For

our example let us assume that the starting state is called state A. As long as the input w is

0, the circuit need not do anything, and so each active clock edge should result in the circuit

remaining in state A. When w becomes equal to 1, the machine should recognize this and

move to a different state, which we will call state B. This transition takes place on the next

active clock edge after w has become equal to 1. In state B, as in state A, the circuit should

keep the value of output z at 0, because it has not yet seen w = 1 for two consecutive clock

cycles. When in state B, if w is 0 at the next active clock edge, the circuit should move back

to state A. However, if w = 1 when in state B, the circuit should change at the next active

clock edge to a third state, called C, and it should then generate an output z = 1. The circuit

should remain in state C as long as w = 1 and should continue to maintain z = 1. When

w becomes 0, the machine should move back to state A. Since the preceding description

handles all possible values of the input w that the machine can encounter in its various

states, we can conclude that three states are needed to implement the desired machine.

Now that we have determined in an informal way the possible transitions between

states, we will describe a more formal procedure that can be used to design the correspond-

ing sequential circuit. Behavior of a sequential circuit can be described in several different

ways. The conceptually simplest method is to use a pictorial representation in the form of a

state diagram, which is a graph that depicts states of the circuit as nodes (circles) and tran-

sitions between states as directed arcs. The state diagram in Figure 6.3 defines the behavior

that corresponds to our specification. States A, B, and C appear as nodes in the diagram.

Node A represents the starting state, and it is also the state that the circuit will reach after an

input w = 0 is applied. In this state the output z should be 0, which is indicated as A∕z = 0

in the node. The circuit should remain in state A as long as w = 0, which is indicated by

an arc with a label w = 0 that originates and terminates at this node. The first occurrence

of w = 1 (following the condition w = 0) is recorded by moving from state A to state B.

C z 1=/

Reset

B z 0=/A z 0=/w 0=

w 1=

w 1=

w 0=

w 0= w 1=

Figure 6.3 State diagram of a simple sequential circuit.

ISTUDY

6.1 BASIC DESIGN STEPS 313

This transition is indicated on the graph by an arc originating at A and terminating at B.

The label w = 1 on this arc denotes the input value that causes the transition. In state B the

output remains at 0, which is indicated as B∕z = 0 in the node.

When the circuit is in state B, it will change to state C if w is still equal to 1 at the

next active clock edge. In state C the output z becomes equal to 1. If w stays at 1 during

subsequent clock cycles, the circuit will remain in state C maintaining z = 1. However, if

w becomes 0 when the circuit is either in state B or in state C, the next active clock edge

will cause a transition to state A.

In the diagram we indicated that the Reset input is used to force the circuit into state A.

We could treat Reset as just another input to the circuit, and show a transition from each state

to the starting state A under control of the input Reset. This would complicate the diagram

unnecessarily. Instead, we use a single arrow with the Reset label, as shown in Figure 6.3,

to indicate that regardless of what state the circuit happens to be in the Reset input causes

a change to the starting state.

6.1.2 STATE TABLE

Although the state diagram provides a description of the behavior of a sequential circuit

that is easy to understand, to proceed with the implementation of the circuit it is convenient

to translate the information contained in the state diagram into a tabular form. Figure 6.4

shows the state table for our sequential circuit. The table indicates all transitions from each

present state to the next state for different values of the input signal. Note that the output

z is specified with respect to the present state, namely, the state that the circuit is in at

present time. Note also that we did not include the Reset input; instead, we made an implicit

assumption that the first state in the table is the starting state.

We now show the design steps that will produce the final circuit. To explain the basic

design concepts, we first go through a traditional process of manually performing each

design step. This is followed by a discussion of automated design techniques that use modern

computer aided design (CAD) tools.

6.1.3 STATE ASSIGNMENT

The state table in Figure 6.4 defines the three states in terms of letters A, B, and C. When

implemented in a logic circuit, each state is represented by a particular valuation (combina-

tion of values) of state variables. Each state variable may be implemented using a flip-flop.

Present Next state Output

state w = 0 w = 1 z

A A B 0

B A C 0

C A C 1

Figure 6.4 State table corresponding to Figure 6.3.

ISTUDY

314 C H A P T E R 6 ● SYNCHRONOUS SEQUENTIAL CIRCUITS

Combinational
circuit

Combinational
circuit

Clock

y2

z

w
y1Y1

Y2

Figure 6.5 A sequential circuit with input w, output z, and two state flip-flops.

Since three states have to be realized, it is sufficient to use two state variables. Let these

variables be y1 and y2.

Now we can adapt the general block diagram in Figure 6.1 to our example as shown in

Figure 6.5, to indicate the structure of the circuit that implements the required finite state

machine. Two flip-flops represent the state variables. In the figure we have not specified

the type of flip-flops to be used; this issue is addressed in the next subsection. From the

specification in Figures 6.3 and 6.4, the output z is determined only by the present state of

the circuit. Thus the block diagram in Figure 6.5 shows that z is a function of only y1 and

y2; our circuit is of Moore type. We need to design a combinational circuit that uses y1 and

y2 as input signals and generates a correct output signal z for all possible valuations of these

inputs.

The signals y1 and y2 are also fed back to the combinational circuit that determines

the next state of the FSM. This circuit also uses the primary input signal w. Its outputs are

two signals, Y1 and Y2, which are used to set the state of the flip-flops. Each active edge

of the clock will cause the flip-flops to change their state according to the values of Y1 and

Y2 at that time. Therefore, Y1 and Y2 are called the next-state variables, and y1 and y2 are

called the present-state variables. We need to design a combinational circuit with inputs

w, y1, and y2, such that for all valuations of these inputs the outputs Y1 and Y2 will cause

the machine to move to the next state that satisfies our specification. The next step in the

design process is to create a truth table that defines this circuit, as well as the circuit that

generates z.

To produce the desired truth table, we assign a specific valuation of variables y1 and

y2 to each state. One possible assignment is given in Figure 6.6, where the states A, B, and

C are represented by y2y1 = 00, 01, and 10, respectively. The fourth valuation, y2y1 = 11,

is not needed in this case.

The type of table given in Figure 6.6 is usually called a state-assigned table. This table

can serve directly as a truth table for the output z with the inputs y1 and y2. Although for

the next-state functions Y1 and Y2 the table does not have the appearance of a normal truth

ISTUDY

6.1 BASIC DESIGN STEPS 315

Present
Next state

state w = 0 w = 1 Output

y2 y1 Y2Y1 Y2Y1

z

A 00 00 01 0

B 01 00 10 0

C 10 00 10 1

11 dd dd d

Figure 6.6 State-assigned table corresponding to Figure 6.4.

table, because there are two separate columns in the table for each value of w, it is obvious

that the table includes all of the information that defines Y1 and Y2 in terms of valuations

of inputs w, y1, and y2.

6.1.4 CHOICE OF FLIP-FLOPS AND DERIVATION OF NEXT-STATE
AND OUTPUT EXPRESSIONS

From the state-assigned table in Figure 6.6, we can derive the logic expressions for the

next-state and output functions. But first we have to decide on the type of flip-flops that

will be used in the circuit. The most straightforward choice is to use D-type flip-flops,

because in this case the values of Y1 and Y2 are simply clocked into the flip-flops to become

the new values of y1 and y2. In other words, if the inputs to the flip-flops are called D1

and D2, then these signals are the same as Y1 and Y2. Note that the diagram in Figure 6.5

corresponds exactly to this use of D-type flip-flops. For other types of flip-flops, such as

JK type, the relationship between the next-state variable and inputs to a flip-flop is not as

straightforward; we will consider this situation in Section 6.7.

The required logic expressions can be derived as shown in Figure 6.7. We use Karnaugh

maps to make it easy for the reader to verify the validity of the expressions. Recall that in

Figure 6.6 we needed only three of the four possible binary valuations to represent the

states. The fourth valuation, y2y1 = 11, will not occur in the circuit because the circuit is

constrained to move only within states A, B, and C; therefore, we may choose to treat this

valuation as a don’t-care condition. The resulting don’t-care squares in the Karnaugh maps

are denoted by d’s. Using the don’t cares to simplify the expressions, we obtain

Y1 = wy1y2

Y2 = w(y1 + y2)

z = y2

If we do not use don’t cares, then the resulting expressions are slightly more complex; they

are shown in the gray-shaded area of Figure 6.7.

ISTUDY

316 C H A P T E R 6 ● SYNCHRONOUS SEQUENTIAL CIRCUITS

w
00 01 11 10

0

1

0

1 0

y2 y1

Y 1 w y1 y2=

w
00 01 11 10

0

1

0 d

1 d

y2 y1

Y 2 wy1 y2 w y1 y2+=

d

d

0

0

0

0

0

0

1

0 1

0

1

0

d

y1

z y1 y
2

=
0

1

y2

Y 1 w y1 y2=

Y 2 wy1 w y2+=

z y2=

w y1 y2+()=

Ignoring don’t cares Using don’t cares

Figure 6.7 Derivation of logic expressions for the table in Figure 6.6.

Since D1 = Y1 and D2 = Y2, the logic circuit that corresponds to the preceding expres-

sions is implemented as shown in Figure 6.8. Observe that a clock signal is included, and

the circuit is provided with an active-low reset capability. Connecting the clear input on the

flip-flops to an external Resetn signal, as shown in the figure, provides a simple means for

forcing the circuit into a known state. If we apply the signal Resetn = 0 to the circuit, then

both flip-flops will be cleared to 0, placing the FSM into the state y2y1 = 00.

6.1.5 TIMING DIAGRAM

To understand fully the operation of the circuit in Figure 6.8, let us consider its timing

diagram presented in Figure 6.9. The diagram depicts the signal waveforms that correspond

to the sequences of values in Figure 6.2.

Because we are using positive-edge-triggered flip-flops, all changes in the signals occur

shortly after the positive edge of the clock. The amount of delay from the clock edge depends

on the propagation delays through the flip-flops. Note that the input signal w is also shown

to change slightly after the active edge of the clock. This is a good assumption because in

a typical digital system an input such as w would be just an output of another circuit that is

synchronized by the same clock. We discuss the synchronization of input signals with the

clock signal in Chapter 7.

ISTUDY

6.1 BASIC DESIGN STEPS 317

D Q

Q

D Q

Q

Y2

Y1
w

Clock

z

y1

y2

Resetn

Figure 6.8 Final implementation of the sequential circuit.

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

1

0

1

0

1

0

1

0

Clock

w

y1

y2

1

0
z

Figure 6.9 Timing diagram for the circuit in Figure 6.8.

ISTUDY

318 C H A P T E R 6 ● SYNCHRONOUS SEQUENTIAL CIRCUITS

A key point to observe is that even though w changes slightly after the active clock edge,

and thus the value of w is equal to 1 (or 0) for almost the entire clock cycle, no change in

the circuit will occur until the beginning of the next clock cycle when the positive edge

causes the flip-flops to change their state. Thus the value of w must be equal to 1 for two

clock cycles if the circuit is to reach state C and generate the output z = 1.

6.1.6 SUMMARY OF DESIGN STEPS

We can summarize the steps involved in designing a synchronous sequential circuit as

follows:

1. Obtain the specification of the desired circuit.

2. Derive the states for the machine by first selecting a starting state. Then, given the

specification of the circuit, consider all valuations of the inputs to the circuit and

create new states as needed for the machine to respond to these inputs. To keep track

of the states as they are visited, create a state diagram. When completed, the state

diagram shows all states in the machine and gives the conditions under which the

circuit moves from one state to another.

3. Create a state table from the state diagram. Alternatively, it may be convenient to

directly create the state table in step 2, rather than first creating a state diagram.

4. In our sequential circuit example, there were only three states; hence it was a simple

matter to create the state table that does not contain more states than necessary.

However, in practice it is common to deal with circuits that have a large number of

states. In such cases it is unlikely that the first attempt at deriving a state table will

produce optimal results, so that we may have more states than is really necessary.

This can be corrected by a procedure that minimizes the number of states. We will

discuss the process of state minimization in Section 6.6.

5. Decide on the number of state variables needed to represent all states and perform

the state assignment. There are many different state assignments possible for a given

sequential circuit. Some assignments may be better than others. In the preceding

example we used what seemed to be a natural state assignment. We will return to this

example in Section 6.2 and show that a different assignment may lead to a simpler

circuit.

6. Choose the type of flip-flops to be used in the circuit. Derive the next-state logic

expressions to control the inputs to all flip-flops and then derive logic expressions for

the outputs of the circuit. So far we have used only D-type flip-flops. We will consider

other types of flip-flops in Section 6.7.

7. Implement the circuit as indicated by the logic expressions.

We introduced the steps used in the design of sequential circuits by using an example

of a simple controller for a vehicle. In this case the value of w reflected the speed of the

vehicle. But, we could consider this example in a more general sense, in that the value of

w in each clock cycle provides a sequence of symbols over time, where each symbol has

the value 0 or 1. Our circuit can detect sequences of symbols that consist of consecutive

1s, and indicate this by generating z = 1 following each occurrence of two consecutive 1s.

ISTUDY

6.1 BASIC DESIGN STEPS 319

Control
circuit

w

Clock

Done

R1out

R2out

R1in

R2in

R3out

R3in

Interconnection
network

R1

R2

R3

Figure 6.10 System for Example 6.1.

Since the circuit detects a specific sequence of symbols, we can say that it acts as a sequence
detector. Similar circuits can be designed to detect a variety of different sequences.

Example 6.1We have illustrated the design steps using a very simple sequential circuit. We will now consider

a slightly more complex example that is closely tied to application in computer systems.

A computer system usually contains a number of registers that hold data during various

operations. Sometimes it is necessary to swap the contents of two registers. Typically, this is

done by using a temporary location, which is usually a third register. For example, suppose

that we want to swap the contents of registers R1 and R2. We can achieve this by first

transferring the contents of R2 into the third register, say R3. Next, we transfer the contents

of R1 into R2. Finally, we transfer the contents of R3 into R1.

Registers in a computer system are connected via an interconnection network, as shown

in Figure 6.10. In addition to the wires that connect to the network, each register has two

control signals. The Rkout signal causes the contents of register Rk to be placed into the

interconnection network. The Rkin signal causes the data from the network to be loaded

into Rk. The Rkout and Rkin signals are generated by a control circuit, which is a finite state

machine. For our example, we will design a control circuit that swaps the contents of R1 and

R2, in response to an input w = 1. Therefore, the inputs to the control circuit will be w and

Clock. The outputs will be R1out, R1in, R2out, R2in, R3out, R3in, and Done which indicates

the completion of the required transfers.

The desired swapping operation will be performed as follows. The contents of R2 are

first loaded into R3, using the control signals R2out = 1 and R3in = 1. Then the contents of

R1 are transferred into R2, using R1out = 1 and R2in = 1. Finally, the contents of R3 (which

are the previous contents of R2) are transferred into R1, using R3out = 1 and R1in = 1.

Since this step completes the required swap, we will set the signal Done = 1. Assume that

the swapping is performed in response to a pulse on the input w, which has a duration of

one clock cycle. Figure 6.11 gives a state diagram for a sequential circuit that generates the

output control signals in the required sequence. Note that to keep the diagram simple, we

ISTUDY

320 C H A P T E R 6 ● SYNCHRONOUS SEQUENTIAL CIRCUITS

D R3out 1= R1in 1= Done 1=, ,/

w 0=
w 1=

C R1out 1= R2in 1=,/

B R2out 1= R3in 1=,/

w 1=

A No/

w 0=
w 1=

transfer

w 0=
w 1=

Reset

w 0=

Figure 6.11 State diagram for Example 6.1.

have indicated the output signals only when they are equal to 1. In all other cases the output

signals are equal to 0.

In the starting state, A, no transfer is indicated, and all output signals are 0. The circuit

remains in this state until a request to swap arrives in the form of w changing to 1. In state

B the signals required to transfer the contents of R2 into R3 are asserted. The next active

clock edge places these contents into R3. This clock edge also causes the circuit to change

to state C, regardless of whether w is equal to 0 or 1. In this state the signals for transferring

R1 into R2 are asserted. The transfer takes place at the next active clock edge, and the

circuit changes to state D regardless of the value of w. The final transfer, from R3 to R1, is

performed on the clock edge that leaves state D, which also causes the circuit to return to

state A.

Figure 6.12 presents the same information in a state table. Since there are four states,

we can use two state variables, y2 and y1. A straightforward state assignment where the

Present Next state Outputs

state w = 0 w = 1 R1out R1in R2out R2in R3out R3in Done

A A B 0 0 0 0 0 0 0

B C C 0 0 1 0 0 1 0

C D D 1 0 0 1 0 0 0

D A A 0 1 0 0 1 0 1

Figure 6.12 State table for Example 6.1.

ISTUDY

6.1 BASIC DESIGN STEPS 321

Present Next state

state w = 0 w = 1
Outputs

y
2
y

1 Y2Y1 Y2Y1 R1out R1in R2out R2in R3out R3in Done

A 0 0 0 0 0 1 0 0 0 0 0 0 0

B 0 1 1 0 1 0 0 0 1 0 0 1 0

C 1 0 1 1 1 1 1 0 0 1 0 0 0

D 1 1 0 0 0 0 0 1 0 0 1 0 1

Figure 6.13 State-assigned table corresponding to Figure 6.12.

w
00 01 11 10

0

1

1

1 1

y2 y1

Y 1 w y1 y1 y2+=

w
00 01 11 10

0

1

1 1

1 1

y2 y1

Y 2 y1 y2 y1 y2+=

Figure 6.14 Derivation of next-state expressions for Figure 6.13.

states A, B, C, and D are assigned the valuations y2y1 = 00, 01, 10, and 11, respectively,

leads to the state-assigned table in Figure 6.13. Using this assignment and D-type flip-flops,

the next-state expressions can be derived as shown in Figure 6.14. They are

Y1 = wy1 + y1y2

Y2 = y1y2 + y1y2

The output control signals are derived as

R1out = R2in = y1y2

R1in = R3out = Done = y1y2

R2out = R3in = y1y2

These expressions lead to the circuit in Figure 6.15.

ISTUDY

322 C H A P T E R 6 ● SYNCHRONOUS SEQUENTIAL CIRCUITS

D Q

Q

D Q

Q

Done

w

Clock

Y2

Y1

y2

y1

y2

y1

R1in

R3out

R1out

R2in

R2out

R3in

Figure 6.15 Final implementation of the sequential circuit for Example 6.1.

6.2 STATE-ASSIGNMENT PROBLEM

Having introduced the basic concepts involved in the design of sequential circuits, we

should revisit some details where alternative choices are possible. In Section 6.1.6 we sug-

gested that some state assignments may be better than others. To illustrate this we can

reconsider the example in Figure 6.4. We already know that the state assignment in Fig-

ure 6.6 leads to a simple-looking circuit in Figure 6.8. But can the FSM of Figure 6.4 be

implemented with an even simpler circuit by using a different state assignment?

Figure 6.16 gives one possible alternative. In this case we represent the states A, B,

and C with the valuations y2y1 = 00, 01, and 11, respectively. The remaining valuation,

y2y1 = 10, is not needed, and we will treat it as a don’t-care condition. The next-state and

output expressions derived from the figure will be

Y1 = D1 = w
Y2 = D2 = wy1

z = y2

ISTUDY

6.2 STATE-ASSIGNMENT PROBLEM 323

Present
Next state

state w = 0 w = 1 Output

y2 y1 Y2Y1 Y2Y1

z

A 00 00 01 0

B 01 00 11 0

C 11 00 11 1

10 dd dd d

Figure 6.16 Improved state assignment for the state table in

Figure 6.4.

D Q

Q

D Q

Q

Y2

Y1
w

Clock

z

y1

y2

Resetn

Figure 6.17 Final circuit for the improved state assignment in Figure 6.16.

These expressions define the circuit shown in Figure 6.17. Comparing this circuit with the

one in Figure 6.8, we see that the cost of the new circuit is lower because it requires fewer

gates.

In general, circuits are much larger than our example, and different state assignments

can have a substantial effect on the cost of the final implementation. While highly desirable,

it is often impossible to find the best state assignment for a large circuit. The exhaustive

approach of trying all possible state assignments is not practical because the number of

available state assignments is huge. CAD tools usually perform the state assignment using

heuristic techniques. These techniques are usually proprietary, and their details are seldom

published.

Example 6.2In Figure 6.13 we used a straightforward state assignment for the sequential circuit in Fig-

ure 6.12. Consider now the effect of interchanging the valuations assigned to states C and D,

ISTUDY

324 C H A P T E R 6 ● SYNCHRONOUS SEQUENTIAL CIRCUITS

Present Next state

state w = 0 w = 1
Outputs

y
2
y

1 Y2Y1 Y2Y1 R1out R1in R2out R2in R3out R3in Done

A 0 0 0 0 0 1 0 0 0 0 0 0 0

B 0 1 1 1 1 1 0 0 1 0 0 1 0

C 1 1 1 0 1 0 1 0 0 1 0 0 0

D 1 0 0 0 0 0 0 1 0 0 1 0 1

Figure 6.18 Improved state assignment for the state table in Figure 6.12.

w
00 01 11 10

0

1

1

1 1

y2 y1

Y 1 w y2 y1 y2+=

w
00 01 11 10

0

1

1 1

1 1

y2 y1

Y 2 y1=

Figure 6.19 Derivation of next-state expressions for Figure 6.18.

as shown in Figure 6.18. Then the next-state expressions are

Y1 = wy2 + y1y2

Y2 = y1

as derived in Figure 6.19. The output expressions are

R1out = R2in = y1y2

R1in = R3out = Done = y1y2

R2out = R3in = y1y2

These expressions lead to a slightly simpler circuit than the one given in Figure 6.15.

ISTUDY

6.2 STATE-ASSIGNMENT PROBLEM 325

Present Next state

state w = 0 w = 1 Output

y
3
y

2
y

1 Y3Y2Y1 Y3Y2Y1

z

A 0 0 1 0 0 1 0 1 0 0

B 0 1 0 0 0 1 1 0 0 0

C 1 0 0 0 0 1 1 0 0 1

Figure 6.20 One-hot state assignment for the state table in

Figure 6.4.

6.2.1 ONE-HOT ENCODING

In previous examples we used the minimum number of flip-flops to represent the states of the

FSM. Another interesting possibility is to use as many state variables as there are states. In this

method, for each state all but one of the state variables are equal to 0. The variable whose value

is 1 is deemed to be ‘‘hot.’’ The approach is known as the one-hot encoding method.

Figure 6.20 shows how one-hot state assignment can be applied to the sequential circuit

of Figure 6.4. Because there are three states, it is necessary to use three state variables. The

chosen assignment is to represent the states A, B, and C using the valuations y3y2y1 = 001,

010, and 100, respectively. The remaining five valuations of the state variables are not used.

They can be treated as don’t cares in the derivation of the next-state and output expressions.

Using this assignment, the resulting expressions are

Y1 = w
Y2 = wy1

Y3 = wy1

z = y3

Note that none of the next-state variables depends on the present-state variable y2. This suggests

that the second flip-flop and the expression Y2 = wy1 are not needed. (CAD tools detect and

eliminate such redundancies!) But even then, the derived expressions are not simpler than those

obtained using the state assignment in Figure 6.16. Although in this case the one-hot assignment

is not advantageous, there are many cases where this approach is attractive.

Example 6.3The one-hot state assignment can be applied to the sequential circuit of Figure 6.12 as in-

dicated in Figure 6.21. Four state variables are needed, and the states A, B, C, and D are

encoded as y4y3y2y1 = 0001, 0010, 0100, and 1000, respectively. Treating the remaining

12 valuations of the state variables as don’t cares, the next-state expressions are

Y1 = wy1 + y4

Y2 = wy1

Y3 = y2

Y4 = y3

ISTUDY

326 C H A P T E R 6 ● SYNCHRONOUS SEQUENTIAL CIRCUITS

Present Next state

state w = 0 w = 1
Outputs

y
4
y

3
y

2
y

1 Y4Y3Y2Y1 Y4Y3Y2Y1 R1out R1in R2out R2in R3out R3in Done

A 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0

B 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0

C 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0

D 1 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 1

Figure 6.21 One-hot state assignment for the state table in Figure 6.12.

It is instructive to note that we can derive these expressions simply by inspecting the state

diagram in Figure 6.11. There are two arcs leading to state A (not including the arc for the

Reset signal). These arcs mean that flip-flop y1 should be set to 1 if the FSM is already in

state A and w = 0, or if the FSM is in state D; hence Y1 = wy1 + y4. Similarly, flip-flop y2

should be set to 1 if the present state is A and w = 1; hence Y2 = wy1. Flip-flops y3 and y4

should be set to 1 if the FSM is presently in state B or C, respectively; hence Y3 = y2 and

Y4 = y3.

The output expressions are just the outputs of the flip-flops, such that

R1out = R2in = y3

R1in = R3out = Done = y4

R2out = R3in = y2

These expressions are simpler than those derived in Example 6.2, but four flip-flops are

needed, rather than two.

An important feature of the one-hot state assignment is that it often leads to simpler

output expressions than do assignments with the minimal number of state variables.

Simpler output expressions may lead to a faster circuit. For instance, if the outputs of

the sequential circuit are just the outputs of the flip-flops, as is the case in our example,

then these output signals are valid as soon as the flip-flops change their states. If more

complex output expressions are involved, then the propagation delay through the gates

that implement these expressions must be taken into account. We will consider this

issue in Section 6.8.2.

The examples considered to this point show that there are many ways to implement a

given finite state machine as a sequential circuit. Each implementation is likely to have a

different cost and different timing characteristics. In the next section we introduce another

way of modeling FSMs that leads to even more possibilities.

ISTUDY

6.3 MEALY STATE MODEL 327

6.3 MEALY STATE MODEL

Our introductory examples were sequential circuits in which each state had specific values

of the output signals associated with it. As we explained at the beginning of the chapter,

such finite state machines are said to be of Moore type. We will now explore the concept

of Mealy-type machines in which the output values are generated based on both the state

of the circuit and the present values of its inputs. This provides additional flexibility in the

design of sequential circuits. We will introduce the Mealy-type machines, using a slightly

altered version of a previous example.

The essence of the first sequential circuit in Section 6.1 is to generate an output z = 1

whenever a second occurrence of the input w = 1 is detected in consecutive clock cycles.

The specification requires that the output z be equal to 1 in the clock cycle that follows

the detection of the second occurrence of w = 1. Suppose now that we eliminate this latter

requirement and specify instead that the output z should be equal to 1 in the same clock cycle

when the second occurrence of w = 1 is detected. Then a suitable input-output sequence

may be as shown in Figure 6.22. To see how we can realize the behavior given in this table,

we begin by selecting a starting state, A. As long as w = 0, the machine should remain

in state A, producing an output z = 0. When w = 1, the machine has to move to a new

state, B, to record the fact that an input of 1 has occurred. If w remains equal to 1 when the

machine is in state B, which happens if w = 1 for at least two consecutive clock cycles, the

machine should remain in state B and produce an output z = 1. As soon as w becomes 0,

z should immediately become 0 and the machine should move back to state A at the next

active edge of the clock. Thus the behavior specified in Figure 6.22 can be achieved with

a two-state machine, which has a state diagram shown in Figure 6.23. Only two states are

needed because we have allowed the output value to depend on the present value of the

input as well as the present state of the machine. The diagram indicates that if the machine

Clock cycle:

w: 0 1 0 1 1 0 1 1 1 0 1

z: 0 0 0 0 1 0 0 1 1 0 0

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

Figure 6.22 Sequences of input and output signals.

A

w 0= z 0=/

w 1= z 1=/Bw 0= z 0=/

Reset

w 1= z 0=/

Figure 6.23 State diagram of an FSM that realizes the task in Figure 6.22.

ISTUDY

328 C H A P T E R 6 ● SYNCHRONOUS SEQUENTIAL CIRCUITS

Present Next state Output z

state w = 0 w = 1 w = 0 w = 1

A A B 0 0

B A B 0 1

Figure 6.24 State table for the FSM in Figure 6.23.

Present Next state Output

state w = 0 w = 1 w = 0 w = 1

y Y Y z z

A 0 0 1 0 0

B 1 0 1 0 1

Figure 6.25 State-assigned table for the FSM in Figure 6.24.

is in state A, it will remain in state A if w = 0 and the output will be 0. This is indicated

by an arc with the label w = 0∕z = 0. When w becomes 1, the output stays at 0 until the

machine moves to state B at the next active clock edge. This is denoted by the arc from A
to B with the label w = 1∕z = 0. In state B the output will be 1 if w = 1, and the machine

will remain in state B, as indicated by the label w = 1∕z = 1 on the corresponding arc.

However, if w = 0 in state B, then the output will be 0 and a transition to state A will take

place at the next active clock edge. A key point to understand is that during the present clock

cycle the output value corresponds to the label on the arc emanating from the present-state

node.

We can implement the FSM in Figure 6.23, using the same design steps as in

Section 6.1. The state table is shown in Figure 6.24. The table shows that the output z
depends on the present value of input w and not just on the present state. Figure 6.25 gives

the state-assigned table. Because there are only two states, it is sufficient to use a single

state variable, y. Assuming that y is realized as a D-type flip-flop, the required next-state

and output expressions are

Y = D = w
z = wy

The resulting circuit is presented in Figure 6.26 along with a timing diagram. The timing

diagram corresponds to the input-output sequences in Figure 6.22.

The greater flexibility of Mealy-type FSMs often leads to simpler circuit realiza-

tions. This certainly seems to be the case in our examples that produced the circuits in

ISTUDY

6.3 MEALY STATE MODEL 329

Clock

Resetn

D Q

Q

w

z

(a) Circuit

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

1

0

1

0

1

0

1

0

Clock

y

w

z

y

(b) Timing diagram

Figure 6.26 Implementation of the FSM in Figure 6.25.

Figures 6.8, 6.17, and 6.26, assuming that the design requirement is only to detect two con-

secutive occurrences of input w being equal to 1. We should note, however, that the circuit

in Figure 6.26 is not the same in terms of output behavior as the circuits in Figures 6.8 and

6.17. The difference is a shift of one clock cycle in the output signal in Figure 6.26b. If we

wanted to produce exactly the same output behavior using the Mealy approach, we could

modify the circuit in Figure 6.26a by adding another flip-flop as shown in Figure 6.27. This

flip-flop merely delays the output signal, Z, by one clock cycle with respect to z, as indicated

in the timing diagram. By making this change, we effectively turn the Mealy-type circuit

into a Moore-type circuit with output Z. Note that the circuit in Figure 6.27 is essentially

the same as the circuit in Figure 6.17.

Example 6.4In Example 6.1 we considered the control circuit needed to swap the contents of two reg-

isters, implemented as a Moore-type finite state machine. The same task can be achieved

ISTUDY

330 C H A P T E R 6 ● SYNCHRONOUS SEQUENTIAL CIRCUITS

Clock

Resetn

D Q

Q

w

z

(a) Circuit

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

1

0

1

0

1

0

1

0

Clock

y

w

z

y

(b) Timing diagram

D Q

Q

Z

1

0
Z

Figure 6.27 Circuit that implements the specification in Figure 6.2.

using a Mealy-type FSM, as indicated in Figure 6.28. State A still serves as the reset state.

But as soon as w changes from 0 to 1, the output control signals R2out and R3in are asserted.

They remain asserted until the beginning of the next clock cycle, when the circuit will leave

state A and change to B. In state B the outputs R1out and R2in are asserted for both w = 0

and w = 1. Finally, in state C the swap is completed by asserting R3out and R1in.

The Mealy-type realization of the control circuit requires three states. This does not

necessarily imply a simpler circuit because two flip-flops are still needed to implement the

state variables. The most important difference in comparison with the Moore-type real-

ization is the timing of output signals. A circuit that implements the FSM in Figure 6.28

generates the output control signals one clock cycle sooner than the circuits derived in

Examples 6.1 and 6.2.

Note also that using the FSM in Figure 6.28, the entire process of swapping the contents

of R1 and R2 takes three clock cycles, starting and finishing in state A. Using the Moore-

ISTUDY

6.4 DESIGN OF FINITE STATE MACHINES USING CAD TOOLS 331

R3out 1= R1in 1= Done 1=, ,
w 0=
w 1=

R1out 1= R2in 1=,

w 1= R/ 2out 1= R3in 1=,

A

w 0=
w 1=

Reset

w 0=

B

C

Figure 6.28 State diagram for Example 6.4.

type FSM in Example 6.1, the swapping process involves four clock cycles before the circuit

returns to state A.

Suppose that we wish to implement this FSM using one-hot encoding. Then three flip-

flops are needed, and the states A, B, and C may be assigned the valuations y3y2y1 =
001, 010, and 100, respectively. Examining the state diagram in Figure 6.28, we can de-

rive the next-state equations by inspection. The input to flip-flop y1 should have the value 1

if the FSM is in state A and w = 0 or if the FSM is in state C; hence Y1 = wy1+y3. Flip-flop

y2 should be set to 1 if the FSM is in state A and w = 1; hence Y2 = wy1. Flip-flop y3 should

be set to 1 if the present state is B; hence Y3 = y2. The derivation of the output expressions,

which we leave as an exercise for the reader, can also be done by inspection.

The preceding discussion deals with the basic principles involved in the design of se-

quential circuits. Although it is essential to understand these principles, the manual ap-

proach used in the examples is difficult and tedious when large circuits are involved. We

will now show how CAD tools are used to greatly simplify the design task.

6.4 DESIGN OF FINITE STATE MACHINES
USING CAD TOOLS

Sophisticated CAD tools are available for finite state machine design, and we introduce them in

this section. A rudimentary way of using CAD tools for FSM design could be as follows: The

designer employs the manual techniques described previously to derive a circuit that contains

flip-flops and logic gates from a state diagram. This circuit is entered into the CAD system by

drawing a schematic diagram or by writing structural hardware description language (HDL)

code. The designer then uses the CAD system to simulate the behavior of the circuit and uses

the CAD tools to automatically implement the circuit in a chip.

ISTUDY

332 C H A P T E R 6 ● SYNCHRONOUS SEQUENTIAL CIRCUITS

It is tedious to manually synthesize a circuit from a state diagram. Since CAD tools

are meant to obviate this type of task, more attractive ways of utilizing CAD tools for FSM

design have been developed. A better approach is to directly enter the state diagram into the

CAD system and perform the entire synthesis process automatically. CAD tools support this

approach in two main ways. One method is to allow the designer to draw the state diagram

using a graphical tool similar to the schematic capture tool. The designer draws circles

to represent states and arcs to represent state transitions and indicates the outputs that the

machine should generate. Another and more popular approach is to write HDL code that

represents the state diagram, as described below.

Many HDLs provide constructs that allow the designer to represent a state diagram.

To show how this is done, we will provide VHDL code that represents the simple machine

designed manually as the first example in Section 6.1. Then we will use the CAD tools to

synthesize a circuit that implements the machine in a chip.

6.4.1 VHDL CODE FOR MOORE-TYPE FSMS

VHDL does not define a standard way of describing a finite state machine. Hence while

adhering to the required VHDL syntax, there is more than one way to describe a given

FSM. An example of VHDL code for the FSM of Figure 6.3 is given in Figure 6.29. For

the convenience of discussion, the lines of code are numbered on the left side. Lines 3 to

6 declare an entity named simple, which has input ports Clock, Resetn, and w, and output

port z. In line 7 we have used the name Behavior for the architecture body, but of course,

any valid VHDL name could be used instead.

Line 8 introduces the TYPE keyword, which is a feature of VHDL that we have not

used previously. The TYPE keyword allows us to create a user-defined signal type. The new

signal type is named State type, and the code specifies that a signal of this type can have

three possible values: A, B, or C. Line 9 defines a signal named y that is of the State type

type. The y signal is used in the architecture body to represent the flip-flops that implement

the states in the FSM. The code does not specify the number of bits represented by y. Instead,

it specifies that y can have the three symbolic values A, B, and C. This means that we have

not specified the number of state flip-flops that should be used for the FSM. As we will see

below, the VHDL compiler automatically chooses an appropriate number of state flip-flops

when synthesizing a circuit to implement the machine. It also chooses the state assignment

for states A, B, and C. Some CAD systems assume that the first state listed in the TYPE

statement (line 8) is the reset state for the machine. The state assignment that has all flip-

flop outputs equal to 0 is used for this state. Later in this section, we will show how it is

possible to manually specify the state encoding in the VHDL code if so desired.

Having defined a signal to represent the state flip-flops, the next step is to specify the

transitions between states. Figure 6.29 gives one way to describe the state diagram. It is

represented by the process in lines 11 to 37. The PROCESS statement describes the finite

state machine as a sequential circuit. It is based on the approach we used to describe an

edge-triggered D flip-flop in Section 5.12.2. The signals used by the process are Resetn,

Clock, w, and y, and the only signal modified by the process is y. The input signals that

can cause the process to change y are Resetn and Clock; hence these signals appear in the

sensitivity list. The input w is not included in the sensitivity list because a change in the

value of w cannot affect y until a change occurs in the Clock signal.

ISTUDY

6.4 DESIGN OF FINITE STATE MACHINES USING CAD TOOLS 333

1 LIBRARY ieee ;

2 USE ieee.std logic 1164.all ;

3 ENTITY simple IS

4 PORT (Clock, Resetn, w : IN STD LOGIC ;

5 z : OUT STD LOGIC) ;

6 END simple ;

7 ARCHITECTURE Behavior OF simple IS

8 TYPE State type IS (A, B, C) ;

9 SIGNAL y : State type ;

10 BEGIN

11 PROCESS (Resetn, Clock)

12 BEGIN

13 IF Resetn = THEN

14 y <= A ;

15 ELSIF (Clock’EVENT AND Clock = THEN

16 CASE y IS

17 WHEN A =>

18 IF w = THEN

19 y <= A ;

20 ELSE

21 y <= B ;

22 END IF ;

23 WHEN B =>

24 IF w = THEN

25 y A ;

26 ELSE

27 y <= C ;

28 END IF ;

29 WHEN C =>

30 IF w = THEN

31 y <= A ;

32 ELSE

33 y <= C ;

34 END IF ;

35 END CASE ;

36 END IF ;

37 END PROCESS ;

38 z <= WHEN y = C ELSE ;

39 END Behavior ;

<=

'1'

'1')

'0'

'0'

'0'

'0'

'0'

Figure 6.29 VHDL code for the FSM in Figure 6.3.

ISTUDY

334 C H A P T E R 6 ● SYNCHRONOUS SEQUENTIAL CIRCUITS

Lines 13 and 14 specify that the machine should enter state A, the reset state, if Resetn = 0.

Since the condition for the IF statement does not depend on the clock signal, the reset is

asynchronous, which is why Resetn is included in the sensitivity list in line 11.

When the reset signal is not asserted, the ELSIF statement in line 15 specifies that the

circuit depends on the positive edge of the clock signal. Observe that the ELSIF condition is

the same as the condition we used to describe a positive-edge-triggered D flip-flop in Figure 5.38.

The behavior of y is defined by the CASE statement in lines 16 to 35. It corresponds

to the state diagram in Figure 6.3. Since the CASE statement is inside the ELSIF condition,

any change in y can take place only as a result of a positive clock edge. In other words,

the ELSIF condition implies that y must be implemented as the output of one or more flip-

flops. Each WHEN clause in the CASE statement represents one state of the machine. For

example, the WHEN clause in lines 17 to 22 describes the machine’s behavior when it is in

state A. According to the IF statement beginning in line 18, when the FSM is in state A, if

w = 0, the machine should remain in state A; but if w = 1, the machine should change to

state B. The WHEN clauses in the CASE statement correspond exactly to the state diagram

in Figure 6.3.

The final part of the state machine description appears in line 38. It specifies that if the

machine is in state C, then the output z should be 1; otherwise, z should be 0.

6.4.2 SYNTHESIS OF VHDL CODE

To give an example of the circuit produced by a synthesis tool, we synthesized the code in

Figure 6.29 for implementation in a chip. The synthesis resulted in two flip-flops, with in-

puts Y1 and Y2, and outputs y1 and y2. The next-state expressions generated by the synthesis

tool are

Y1 = wy1y2

Y2 = wy1 + wy2

The output expression is

z = y2

These expressions correspond to the case in Figure 6.7 when the unused state pattern y2y1 =
11 is treated as don’t-cares in the Karnaugh maps for Y1, Y2, and z.

Figure 6.30 depicts a part of the FSM circuit implemented in a CPLD device. This type

of device is described in Appendix B; it is a programmable chip that contains flip-flops and

logic gates that can be interconnected in various ways by using programmable switches.

Each of these switches is indicated in the figure by an ×. To keep the figure simple, only

the logic resources in the chip used to implement y1, y2, and z are shown. The parts of the

chip used for the circuit are highlighted in red.

The w input to the circuit is shown connected to one of the interconnection wires in

the CPLD. The source node in the chip that generates w is not shown. It could be either an

input pin, or else w might be the output of another macrocell, assuming that the CPLD may

contain other circuitry that is connected to our FSM. The Clock signal is assigned to a pin

on the chip that is dedicated for use by clock signals. From this dedicated pin a global wire
distributes the clock signal to all of the flip-flops in the chip. The global wire distributes

ISTUDY

6.4 DESIGN OF FINITE STATE MACHINES USING CAD TOOLS 335

y1D Q

D Q

Clock

1

1
1

PAL-like block

Interconnection wires

(Other macrocells are not shown)

1

0

0

z

w

Resetn

y2

Figure 6.30 Implementation of the FSM of Figure 6.3 in a CPLD.

the clock signal to the flip-flops such that the difference in the arrival time, or clock skew,

of the clock signal at each flip-flop is minimized. The concept of clock skew is discussed

in Chapter 5. A global wire is also used for the reset signal.

Figure 6.31 illustrates how the circuit might be assigned to the pins on a small CPLD.

The figure is drawn with a part of the top of the chip package cut away, revealing a concep-

tual view of the two macrocells from Figure 6.30, which are indicated in red. Our simple

circuit uses only a small portion of the device.

6.4.3 SIMULATING AND TESTING THE CIRCUIT

The behavior of the circuit implemented in the CPLD chip can be tested using simulation,

as depicted in Figure 6.32. The figure gives the waveforms that correspond to the timing

diagram in Figure 6.9, assuming that a 100 ns clock period is used. The Resetn signal is set

ISTUDY

336 C H A P T E R 6 ● SYNCHRONOUS SEQUENTIAL CIRCUITS

EPM7032

z

R
e
se

tn

w C
lo

ck

G
n
d

V
D

D

147

10

13

16

19 22 25 28

44 39

36

Figure 6.31 The circuit from Figure 6.30 in a small CPLD.

to 0 at the beginning of the simulation and then set to 1. The circuit produces the output

z = 1 for one clock cycle after w has been equal to 1 for two successive clock cycles. When

w is 1 for three clock cycles, z becomes 1 for two clock cycles, as it should be. We show the

changes in state by using the letters A, B, and C for readability purposes.

Having examined the simulation output, we should consider the question of whether

we can conclude that the circuit functions correctly and satisfies all requirements. For our

simple example it is not difficult to answer this question because the circuit has only one

input and its behavior is straightforward. It is easy to see that the circuit works properly.

However, in general it is difficult to ascertain with a high degree of confidence whether a

sequential circuit will work properly for all possible input sequences, because a very large

number of input patterns may be possible. For large finite state machines, the designer must

think carefully about patterns of inputs that may be used in simulation for testing purposes.

Figure 6.32 Simulation results for the circuit in Figure 6.30.

ISTUDY

6.4 DESIGN OF FINITE STATE MACHINES USING CAD TOOLS 337

6.4.4 AN ALTERNATIVE STYLE OF VHDL CODE

We mentioned earlier in this section that VHDL does not specify a standard way for writ-

ing code that represents a finite state machine. The code given in Figure 6.29 is only one

possibility. A second example of code for our simple machine is given in Figure 6.33. Only

ARCHITECTURE Behavior OF simple IS

TYPE State type IS (A, B, C) ;

SIGNAL y present, y next : State type ;

BEGIN

PROCESS (w, y present)

BEGIN

CASE y present IS

WHEN A =>

IF w = THEN

y next <= A ;

ELSE

y next <= B ;

END IF ;

WHEN B =>

IF w = THEN

y next <= A ;

ELSE

y next <= C ;

END IF ;

WHEN C =>

IF w = THEN

y next <= A ;

ELSE

y next <= C ;

END IF ;

END CASE ;

END PROCESS ;

PROCESS (Clock, Resetn)

BEGIN

IF Resetn = THEN

y present <= A ;

ELSIF (Clock’EVENT AND Clock = THEN

y present <= y next ;

END IF ;

END PROCESS ;

z <= WHEN y present = C ELSE ;

END Behavior ;

'1')

'1'

'0'

'0'

'0'

'0'

'0'

Figure 6.33 Alternative style of VHDL code for the FSM in Figure 6.3.

ISTUDY

338 C H A P T E R 6 ● SYNCHRONOUS SEQUENTIAL CIRCUITS

the architecture body is shown because the entity declaration is the same as in Figure 6.29.

Two signals are used to represent the state of the machine. The signal named y present
corresponds to the present state, and y next corresponds to the next state. In terms of the

notation used in Section 6.1.3, y present is the same as y, and y next is Y . We cannot use

y to denote the present state and Y for the next state in the code, because VHDL does not

distinguish between lowercase and uppercase letters. Both the y present and y next signals

are of the State type type.

The machine is specified by two separate processes. The first process describes the

state table as a combinational circuit. It uses a CASE statement to give the value of y next
for each value of y present and w. The code can be related to the general form of FSMs

in Figure 6.5. The process corresponds to the combinational circuit on the left side of

the figure.

The second process introduces flip-flops into the circuit. It stipulates that after each

positive clock edge the y present signal should take the value of the y next signal. The pro-

cess also specifies that y present should take the value A when Resetn = 0, which provides

the asynchronous reset.

We have shown two styles of VHDL code for our FSM example. The circuit produced

by the VHDL compiler for each version of the code is likely to be somewhat different

because, as the reader is well aware by this point, there are many ways to implement a

given logic function. However, the circuits produced from the two versions of the code

provide identical functionality.

6.4.5 SUMMARY OF DESIGN STEPS WHEN USING CAD TOOLS

In Section 6.1.6 we summarized the design steps needed to derive sequential circuits man-

ually. We have now seen that CAD tools can automatically perform much of the work.

However, it is important to realize that the CAD tools have not replaced all manual steps.

With reference to the list given in Section 6.1.6, the first two steps, in which the machine

specification is obtained and a state diagram is derived, still have to be done manually.

Given the state diagram information as input, the CAD tools then automatically perform

the tasks needed to generate a circuit with logic gates and flip-flops. In addition to the de-

sign steps given in Section 6.1.6, we should add the testing and simulation stage. We will

defer detailed discussion of this issue until Chapter 11.

6.4.6 SPECIFYING THE STATE ASSIGNMENT IN VHDL CODE

In Section 6.2 we saw that the state assignment may have an impact on the complexity of

the designed circuit. An obvious objective of the state-assignment process is to minimize

the cost of implementation. The cost function that should be optimized may be simply the

number of gates and flip-flops. But it could also be based on other considerations that may

be representative of the type of chip used to implement the design.

In VHDL code it is possible to specify the state assignment that should be used, but

there is no standardized way of doing so. Hence while adhering to VHDL syntax, each CAD

system permits a slightly different method of specifying the state assignment. One way of

ISTUDY

6.4 DESIGN OF FINITE STATE MACHINES USING CAD TOOLS 339

ARCHITECTURE Behavior OF simple IS

TYPE State TYPE IS (A, B, C) ;

ATTRIBUTE ENUM ENCODING : STRING ;

ATTRIBUTE ENUM ENCODING OF State type : TYPE IS ;

SIGNAL y present, y next : State type ;

BEGIN

"00 01 11"

Figure 6.34 A user-defined attribute for manual state assignment.

performing state assignment is to use the attribute feature of VHDL. An attribute refers to

some type of information about an object in VHDL code. All signals automatically have

a number of associated predefined attributes. An example is the EVENT attribute that we

use to specify a clock edge, as in Clock’EVENT.

In addition to the predefined attributes, it is possible to create a user-defined attribute.

The user-defined attribute can be used to associate some desired type of information with an

object in VHDL code. Using this method, manual state assignment can be done by creating

a user-defined attribute associated with the State type type. This is illustrated in Figure 6.34,

which shows the first few lines of the architecture from Figure 6.33 with the addition of a

user-defined attribute. We first define the new attribute called ENUM ENCODING, which

has the type STRING. The next line associates ENUM ENCODING with the State type

type and specifies that the attribute has the value ”00 01 11”. When translating the VHDL

code, a CAD tool could use the value of ENUM ENCODING to make the state assignment

A = 00,B = 01, and C = 11.

The ENUM ENCODING attribute is one method of specifying state codes, but this

method may not be supported in some CAD systems. A different way of giving the state

assignment, which will work with any CAD system, is shown in Figure 6.35.

Instead of using the State type type as in previous examples, y present and y next are

defined as two-bit STD LOGIC VECTOR signals. Each of the symbolic names for the three

states, A, B, and C, are defined as constants, with the value of each constant corresponding

to the desired encoding. Note that the syntax for assigning a value to a constant uses the :=
assignment operator, rather than the <= operator that is used for signals. When the code is

translated, the VHDL compiler replaces the symbolic names A, B, and C with their assigned

constant values.

The CASE statement that defines the state diagram is identical to that in Figure 6.33

with one exception. VHDL requires that the CASE statement for y present include a WHEN

clause for all possible values of y present. In Figure 6.33 y present can have only the three

values A, B, and C because it has the State type type. But since y present is a STD LOGIC

VECTOR signal in Figure 6.35, we must provide a WHEN OTHERS clause, as shown. In

practice, the machine should never enter the unused state, which corresponds to y present =
10. As we said earlier, there is a slight possibility that this could occur due to erroneous

behavior of the circuit. As a pragmatic choice, we have specified that the FSM should change

back to the reset state if such an error occurs.

ISTUDY

340 C H A P T E R 6 ● SYNCHRONOUS SEQUENTIAL CIRCUITS

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

ENTITY simple IS

PORT (Clock, Resetn, w : IN STD LOGIC ;

z : OUT STD LOGIC) ;

END simple ;

ARCHITECTURE Behavior OF simple IS

SIGNAL y present, y next : STD LOGIC VECTOR(1 DOWNTO 0);

CONSTANT A : STD LOGIC VECTOR(1 DOWNTO 0) "00" ;

"01" ;

"11" ;

CONSTANT B : STD LOGIC VECTOR(1 DOWNTO 0)

CONSTANT C : STD LOGIC VECTOR(1 DOWNTO 0)

BEGIN

PROCESS (w, y present)

BEGIN

CASE y present IS

WHEN A =>

IF w = THEN y next <= A ;

ELSE y next <= B ;

END IF ;

WHEN B = >

IF w = THEN y next <= A ;

ELSE y next <= C ;

END IF ;

WHEN C =>

IF w = THEN y next <= A ;

ELSE y next <= C ;

END IF ;

WHEN OTHERS =>

y next <= A ;

END CASE ;

END PROCESS ;

PROCESS (Clock, Resetn)

BEGIN

IF Resetn = THEN

y present <= A ;

ELSIF (Clock’EVENT AND Clock = THEN

y present <= y next ;

END IF ;

END PROCESS ;

z <= WHEN y present = C ELSE ;

END Behavior ;

:=

:=

:=

'1')

'1'

'0'

'0'

'0'

'0'

'0'

Figure 6.35 Using constants for manual state assignment.

ISTUDY

6.4 DESIGN OF FINITE STATE MACHINES USING CAD TOOLS 341

6.4.7 SPECIFICATION OF MEALY FSMS USING VHDL

A Mealy-type FSM can be specified in a similar manner as a Moore-type FSM. Figure 6.36

gives complete VHDL code for the FSM in Figure 6.23. The state transitions are described

in the same way as in our original VHDL example in Figure 6.29. The signal y represents

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

ENTITY mealy IS

PORT (Clock, Resetn, w : IN STD LOGIC ;

z : OUT STD LOGIC) ;

END mealy ;

ARCHITECTURE Behavior OF mealy IS

TYPE State type IS (A, B) ;

SIGNAL y : State type ;

BEGIN

PROCESS (Resetn, Clock)

BEGIN

IF Resetn = THEN

y <= A ;

ELSIF (Clock’EVENT AND Clock = THEN

CASE y IS

WHEN A =>

IF w = THEN y <= A ;

ELSE y <= B ;

END IF ;

WHEN B =>

IF w = THEN y <= A ;

ELSE y <= B ;

END IF ;

END CASE ;

END IF ;

END PROCESS ;

PROCESS (y, w)

BEGIN

CASE y IS

WHEN A =>

z <= ;

WHEN B =>

z <= w ;

END CASE ;

END PROCESS ;

END Behavior ;

'1')

'0'

'0'

'0'

'0'

Figure 6.36 VHDL code for the Mealy machine in Figure 6.23.

ISTUDY

342 C H A P T E R 6 ● SYNCHRONOUS SEQUENTIAL CIRCUITS

Figure 6.37 Simulation results for the Mealy machine.

the state flip-flops, and State type specifies that y can have the values A and B. Compared to

the code in Figure 6.29, the major difference in the case of a Mealy-type FSM is the way in

which the code for the output is written. In Figure 6.36 the output z is defined using a CASE

statement. It states that when the FSM is in state A, z should be 0, but when in state B, z
should take the value of w. This CASE statement properly describes the logic needed for z,

but it may not be obvious why we have used a second CASE statement in the code, rather

than specifying the value of z inside the CASE statement that defines the state transitions.

The reason is that the CASE statement for the state transitions is nested inside the ELSIF

clause that depends on the clock edge. Hence if we placed the code for z inside this CASE

statement, then the value of z could change only as a result of a clock edge. This does not

meet the requirements of the Mealy-type FSM, because the value of z must depend not only

on the state of the machine but also on the input w.

Implementing the FSM specified in Figure 6.36 in a chip yields the same equations as

we derived manually in Section 6.3. Simulation results for the synthesized circuit appear in

Figure 6.37. The input waveform for w is the same as the one we used for the Moore-type

machine in Figure 6.32. Our Mealy-type machine behaves correctly, with z becoming 1 just

after the start of the second consecutive clock cycle in which w is 1.

In the simulation results we have given in this section, all changes in the input w occur

immediately following a positive clock edge. This is based on the assumption stated in

Section 6.1.5 that in a real circuit w would be synchronized with respect to the clock that

controls the FSM. In Figure 6.38 we illustrate a problem that may arise if w does not meet

this specification. In this case we have assumed that the changes in w take place at the

Figure 6.38 Potential problem with asynchronous inputs to a Mealy FSM.

ISTUDY

6.5 SERIAL ADDER EXAMPLE 343

negative edge of the clock, rather than at the positive edge when the FSM changes its state.

The first pulse on the w input is 100 ns long. This should not cause the output z to become

equal to 1. But the circuit does not behave in this manner. After the signal w becomes equal

to 1, the first positive edge of the clock causes the FSM to change from state A to state B. As

soon as the circuit reaches the state B, the w input is still equal to 1 for another 50 ns, which

causes z to go to 1. When w returns to 0, the z signal does likewise. Thus an erroneous 50-ns

pulse is generated on the output z.

We should pursue the consequences of this problem a little further. If z is used to drive

another circuit that is not controlled by the same clock, then the extraneous pulse is likely

to cause big problems. But if z is used as an input to a circuit (perhaps another FSM) that

is controlled by the same clock, then the 50-ns pulse will be ignored by this circuit if z = 0

before the next positive edge of the clock (accounting for the setup time).

6.5 SERIAL ADDER EXAMPLE

We will now present another simple example that illustrates the complete design process.

In Chapter 3 we discussed the addition of binary numbers in detail. We explained several

schemes that can be used to add two n-bit numbers in parallel, ranging from carry-ripple to

carry-lookahead adders. In these schemes the speed of the adder unit is an important design

parameter. Fast adders are more complex and thus more expensive. If speed is not of great

importance, then a cost-effective option is to use a serial adder, in which bits are added a

pair at a time.

6.5.1 MEALY-TYPE FSM FOR SERIAL ADDER

Let A = an−1an−2 ⋯ a0 and B = bn−1bn−2 ⋯ b0 be two unsigned numbers that have to be

added to produce Sum = sn−1sn−2 ⋯ s0. Our task is to design a circuit that will perform

serial addition, dealing with a pair of bits in one clock cycle. The process starts by adding

bits a0 and b0. In the next clock cycle, bits a1 and b1 are added, including a possible carry

from the bit-position 0, and so on. Figure 6.39 shows a block diagram of a possible im-

plementation. It includes three shift registers that are used to hold A, B, and Sum as the

Sum = A + B

Shift register

Shift register

Adder

FSM Shift register

B

A

a

b

s

Clock

Figure 6.39 Block diagram for the serial adder.

ISTUDY

344 C H A P T E R 6 ● SYNCHRONOUS SEQUENTIAL CIRCUITS

G

00/1

11/1
10/0

01/0

H
10/1
01/1

00/0

carry-in 0=

carry-in 1=

G:

H:

Reset

11/0

(ab/s)

Figure 6.40 State diagram for the serial adder FSM.

computation proceeds. Assuming that the input shift registers have parallel-load capability,

as depicted in Figure 5.18, the addition task begins by loading the values of A and B into

these registers. Then in each clock cycle, a pair of bits is added by the adder FSM, and at the

end of the cycle the resulting sum bit is shifted into the Sum register. We will use positive-

edge-triggered flip-flops, in which case all changes take place soon after the positive edge

of the clock, depending on the propagation delays within the various flip-flops. At this time

the contents of all three shift registers are shifted to the right; this shifts the existing sum

bit into Sum, and it presents the next pair of input bits ai and bi to the adder FSM.

Now we are ready to design the required FSM. This cannot be a combinational circuit

because different actions will have to be taken, depending on the value of the carry from the

previous bit position. Hence two states are needed: let G and H denote the states where the

carry-in values are 0 and 1, respectively. Figure 6.40 gives a suitable state diagram, defined

as a Mealy model. The output value, s, depends on both the state and the present value of

the inputs a and b. Each transition is labeled using the notation ab∕s, which indicates the

value of s for a given valuation ab. In state G the input valuation 00 will produce s = 0,

and the FSM will remain in the same state. For input valuations 01 and 10, the output will

be s = 1, and the FSM will remain in G. But for 11, s = 0 is generated, and the machine

moves to state H. In state H valuations 01 and 10 cause s = 0, while 11 causes s = 1. In

all three of these cases, the machine remains in H. However, when the valuation 00 occurs,

the output of 1 is produced and a change into state G takes place.

The corresponding state table is presented in Figure 6.41. A single flip-flop is needed

to represent the two states. The state assignment can be done as indicated in Figure 6.42.

Present Next state Output s

state ab = 00 01 10 11 00 01 10 11

G G G G H 0 1 1 0

H G H H H 1 0 0 1

Figure 6.41 State table for the serial adder FSM.

ISTUDY

6.5 SERIAL ADDER EXAMPLE 345

Present
Next state Output

state ab = 00 01 10 11 00 01 10 11

y Y s

0 0 0 0 1 0 1 1 0

1 0 1 1 1 1 0 0 1

Figure 6.42 State-assigned table for Figure 6.41.

Figure 6.43 Circuit for the adder FSM in Figure 6.39.

This assignment leads to the following next-state and output equations

Y = ab + ay + by
s = a ⊕ b ⊕ y

Comparing these expressions with those for the full-adder in Section 3.2, it is obvious that

y is the carry-in, Y is the carry-out, and s is the sum of the full-adder. Therefore, the adder

FSM box in Figure 6.39 consists of the circuit shown in Figure 6.43. The flip-flop can be

cleared by the active-high Reset signal at the start of the addition operation.

The serial adder is a simple circuit that can be used to add numbers of any length. The

structure in Figure 6.39 is limited in length only by the size of the shift registers.

6.5.2 MOORE-TYPE FSM FOR SERIAL ADDER

In the preceding example we saw that a Mealy-type FSM nicely meets the requirement

for implementing the serial adder. Now we will try to achieve the same objective using a

Moore-type FSM. A good starting point is the state diagram in Figure 6.40. In a Moore-type

FSM, the output must depend only on the state of the machine. Since in both states, G and

H, it is possible to produce two different outputs depending on the valuations of the inputs

a and b, a Moore-type FSM will need more than two states. We can derive a suitable state

diagram by splitting both G and H into two states. Instead of G, we will use G0 and G1 to

denote the fact that the carry is 0 and that the sum is either 0 or 1, respectively. Similarly,

instead of H, we will use H0 and H1. Then the information in Figure 6.40 can be mapped

into the Moore-type state diagram in Figure 6.44 in a straightforward manner.

ISTUDY

346 C H A P T E R 6 ● SYNCHRONOUS SEQUENTIAL CIRCUITS

Reset

01
10

11

11

01
10

H0 /s = 0

H1 /s = 1

G0 /s = 0

G1 /s = 1

01
10

00

01

00

10

11

00

00

11

Figure 6.44 State diagram for the Moore-type serial adder FSM.

The corresponding state table is given in Figure 6.45 and the state-assigned table in

Figure 6.46. The next-state and output expressions are

Y1 = a ⊕ b ⊕ y2

Y2 = ab + ay2 + by2

s = y1

Present Next state Output

state ab = 00 01 10 11 s

G0 G0 G1 G1 H0 0

G1 G0 G1 G1 H0 1

H0 G1 H0 H0 H1 0

H1 G1 H0 H0 H1 1

Figure 6.45 State table for the Moore-type serial adder FSM.

Present
Next state

state ab = 00 01 10 11 Output

y2 y1 Y2Y1
s

0 0 0 0 0 1 0 1 1 0 0

0 1 0 0 0 1 0 1 1 0 1

1 0 0 1 1 0 1 0 1 1 0

1 1 0 1 1 0 1 0 1 1 1

Figure 6.46 State-assigned table for Figure 6.45.

ISTUDY

6.5 SERIAL ADDER EXAMPLE 347

Figure 6.47 Circuit for the Moore-type serial adder FSM.

The expressions for Y1 and Y2 correspond to the sum and carry-out expressions in the

full-adder circuit. The FSM is implemented as shown in Figure 6.47. It is interesting to

observe that this circuit is very similar to the circuit in Figure 6.43. The only difference is

that in the Moore-type circuit, the output signal, s, is passed through an extra flip-flop and

thus delayed by one clock cycle with respect to the Mealy-type sequential circuit. Recall

that we observed the same difference in our previous example, as depicted in Figures 6.26

and 6.27.

A key difference between the Mealy and Moore types of FSMs is that in the former a

change in inputs reflects itself immediately in the outputs, while in the latter the outputs do

not change until the change in inputs forces the machine into a new state, which takes place

one clock cycle later. We encourage the reader to draw the timing diagrams for the circuits

in Figures 6.43 and 6.47, which will exemplify further this key difference between the two

types of FSMs.

6.5.3 VHDL CODE FOR THE SERIAL ADDER

The serial adder can be described in VHDL by writing code for the shift registers and

the adder FSM. We will first design the shift register and then use it as a subcircuit in the

serial adder.

Shift Register Subcircuit
Figure 5.47 gives VHDL code for an n-bit shift register. In the serial adder it is benefi-

cial to have the ability to prevent the shift register contents from changing when an active

clock edge occurs. Figure 6.48 gives the code for a shift register named shiftrne, which has

an enable input, E. When E = 1, the contents of the register are shifted left-to-right on the

positive edge of the clock. Setting E = 0 prevents the contents of the shift register from

changing.

ISTUDY

348 C H A P T E R 6 ● SYNCHRONOUS SEQUENTIAL CIRCUITS

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

- - left-to-right shift register with parallel load and enable

ENTITY shiftrne IS

GENERIC (N : INTEGER := 4) ;

PORT (R : IN STD LOGIC VECTOR(N−1 DOWNTO 0) ;

L, E, w : IN STD LOGIC ;

Clock : IN STD LOGIC ;

Q : BUFFER STD LOGIC VECTOR(N−1 DOWNTO 0)) ;

END shiftrne ;

ARCHITECTURE Behavior OF shiftrne IS

BEGIN

PROCESS

BEGIN

WAIT UNTIL Clock’EVENT AND Clock = '1' ;

IF L = '1' THEN

Q <= R ;

ELSIF E = '1' THEN

Genbits: FOR i IN 0 TO N−2 LOOP

Q(i) <= Q(i+1) ;

END LOOP ;

Q(N−1) <= w ;

END IF ;

END PROCESS ;

END Behavior ;

Figure 6.48 Code for a left-to-right shift register with an enable input.

Complete Code
The code for the serial adder is shown in Figure 6.49. It instantiates three shift registers

for the inputs A and B and the output Sum. The shift registers are loaded with parallel data

when the circuit is reset. The state diagram for the adder FSM is described by a single

process, using the style of code in Figure 6.29. In addition to the components of the serial

adder shown in Figure 6.39, the VHDL code includes a down-counter to determine when

the adder should be halted because all n bits of the required sum are present in the output

shift register. When the circuit is reset, the counter is loaded with the number of bits in the

serial adder, n. The counter counts down to 0, and then stops and disables further changes

in the output shift register.

The lines of code in Figure 6.49 are numbered on the left for reference. The GENERIC

parameter length sets the number of bits in the serial adder. Since the value of length is

equal to 8, the code represents a serial adder for eight-bit numbers. By changing the value

of length, the same code can be used to synthesize a serial adder circuit for any number

of bits.

ISTUDY

6.5 SERIAL ADDER EXAMPLE 349

Lines 18 to 22 define several signals used in the code. The signals QA and QB corre-

spond to the parallel outputs of the shift registers with inputs A and B in Figure 6.39. The

signal named s represents the output of the adder FSM. The other signals will be described

along with the lines of code where they are used.

In Figure 6.39 the shift registers for inputs A and B do not use a serial input or an

enable input. However, the shiftrne component, which is used for all three shift registers,

includes these ports and so signals must be connected to them. The enable input for the

two shift registers can be connected to logic value 1. The value shifted into the serial input

does not matter, so it can be connected to either 1 or 0. In lines 26 and 28, the enable input

is connected to the signal named High, which is set to 1, and the serial inputs are tied to

the signal Low, which is 0. These signals are needed because the VHDL syntax does not

allow the constants 0 or 1 to be attached to the ports of a component. The N parameter

for each shift register is set to length using GENERIC MAP. If the GENERIC MAP were

not provided, then the default value of N = 4 given in the code in Figure 6.48 would be

used. The shift registers are loaded in parallel by the Reset signal. We have chosen to use

an active-high reset signal for the circuit.

1 LIBRARY ieee ;

2 USE ieee.std logic 1164.all ;

3 ENTITY serial IS

4 GENERIC (length : INTEGER := 8) ;

5 PORT (Clock : IN STD LOGIC ;

6 Reset : IN STD LOGIC ;

7 A, B : IN STD LOGIC VECTOR(length 1 DOWNTO 0) ;

8 Sum : BUFFER STD LOGIC VECTOR(length 1 DOWNTO 0));

9 END serial ;

10 ARCHITECTURE Behavior OF serial IS

11 COMPONENT shiftrne

12 GENERIC (N : INTEGER := 4) ;

13 PORT(R : IN STD LOGIC VECTOR(N 1 DOWNTO 0) ;

14 L, E, w : IN STD LOGIC ;

15 Clock : IN STD LOGIC ;

16 Q : BUFFER STD LOGIC VECTOR(N 1 DOWNTO 0)) ;

17 END COMPONENT ;

18 SIGNAL QA, QB, Null in : STD LOGIC VECTOR(length 1 DOWNTO 0) ;

19 SIGNAL s, Low, High, Run : STD LOGIC ;

20 SIGNAL Count : INTEGER RANGE 0 TO length ;

21 TYPE State type IS (G, H) ;

22 SIGNAL y : State type ;

 continued in Part b

Figure 6.49 VHDL code for the serial adder (Part a).

ISTUDY

350 C H A P T E R 6 ● SYNCHRONOUS SEQUENTIAL CIRCUITS

23 BEGIN

24 Low <= ; High <= ;

25 ShiftA: shiftrne GENERIC MAP (N => length)

26 PORT MAP (A, Reset, High, Low, Clock, QA) ;

27 ShiftB: shiftrne GENERIC MAP (N => length)

28 PORT MAP (B, Reset, High, Low, Clock, QB) ;

29 AdderFSM: PROCESS (Reset, Clock)

30 BEGIN

31 IF Reset = THEN

32 y <= G ;

33 ELSIF Clock’EVENT AND Clock = THEN

34 CASE y IS

35 WHEN G =>

36 IF QA(0) = AND QB(0) = THEN y <= H ;

37 ELSE y <= G ;

38 END IF ;

39 WHEN H =>

40 IF QA(0) = AND QB(0) = THEN y <= G ;

41 ELSE y <= H ;

42 END IF ;

43 END CASE ;

44 END IF ;

45 END PROCESS AdderFSM ;

46 WITH y SELECT

47 s <= QA(0) XOR QB(0) WHEN G,

48 NOT (QA(0) XOR QB(0)) WHEN H ;

49 Null in <= (OTHERS => ;

50 ShiftSum: shiftrne GENERIC MAP (N => length)

51 PORT MAP (Null in, Reset, Run, s, Clock, Sum) ;

52 Stop: PROCESS

53 BEGIN

54 WAIT UNTIL (Clock’EVENT AND Clock = ;

55 IF Reset = THEN

56 Count <= length ;

57 ELSIF Run = THEN

58 Count <= Count 1 ;

59 END IF ;

60 END PROCESS ;

61 Run <= WHEN Count = 0 ELSE ; - - stops counter and ShiftSum

62 END Behavior ;

'1'

'1'

'1'

'1' '1'

'1'

'1')

'1'

'1'

'0'

'0'

'0')

'0'

'0'

Figure 6.49 VHDL code for the serial adder (Part b).

ISTUDY

6.6 STATE MINIMIZATION 351

The adder FSM is specified in lines 29 to 45, which describes the state transitions in

Figure 6.41. Lines 46 to 48 define the output, s, of the adder FSM. This statement results

from observing in Figure 6.41 that when the FSM is in state G, the sum is s = a ⊕ b, and

when in state H, the sum is s = a ⊕ b.

The output shift register does not need a parallel data input. But since the shiftrne
component has this port, a signal must be connected to it. The signal named Null in is used

for this purpose. Line 49 sets Null in, which is a STD LOGIC VECTOR signal, to all 0s.

The number of bits in this signal is defined by the length parameter. Hence we cannot use

the normal VHDL syntax, namely, a string of 0s inside double quotes, to set all of its bits to

0. A solution to this problem is to use the syntax (OTHERS => '0'), which we explained

in the discussion regarding Figure 5.42. The enable input for the shift register is named

Run. It is derived from the outputs of the down-counter described in lines 52 to 60. When

Reset = 1, Count is initialized to the value of length. Then as long as Run = 1, Count is

decremented in each clock cycle. In line 61 Run is set to 0 when Count is equal to 0. Note

that no quotes are used in the condition Count = 0, because the 0 without quotes has the

integer type.

Synthesis and Simulation of the VHDL Code
The results of synthesizing a circuit from the code in Figure 6.49 are illustrated in

Figure 6.50a. The outputs of the counter are ORed to provide the Run signal, which enables

clocking of both the output shift register and the counter. A sample of a simulation for the

circuit is shown in Figure 6.50b. The circuit is first reset, resulting in the values of A and

B being loaded into the input shift registers, and the value of length (8) loaded into the

down-counter. After each clock cycle one pair of bits of the input numbers is added by the

adder FSM, and the sum bit is shifted into the output shift register. After eight clock cycles

the output shift register contains the correct sum, and shifting is halted by the Run signal

becoming equal to 0.

6.6 STATE MINIMIZATION

Our introductory examples of finite state machines were so simple that it was easy to see

that the number of states that we used was the minimum possible to perform the required

function. When a designer has to design a more complex FSM, it is likely that the initial

attempt will result in a machine that has more states than is actually required. Minimizing

the number of states is of interest because fewer flips-flops may be needed to represent the

states and the complexity of the combinational circuit needed in the FSM may be reduced.

If the number of states in an FSM can be reduced, then some states in the original

design must be equivalent to other states in their contribution to the overall behavior of the

FSM. We can express this more formally in the following definition.

Definition 6.1 – Two states Si and Sj are said to be equivalent if and only if for every possible
input sequence, the same output sequence will be produced regardless of whether Si or Sj
is the initial state.

It is possible to define a minimization procedure that searches for any states that are equiv-

alent. Such a procedure is very tedious to perform manually, but it can be automated for

ISTUDY

352 C H A P T E R 6 ● SYNCHRONOUS SEQUENTIAL CIRCUITS

Adder
FSM

Clock

E

w

L

E

w

L

b7 b0

a7 a0

E

w

L

E

L

Q3 Q2 Q1 Q0

D3 D2 D1 D0

1 0 0 0

Counter

0 0

Reset

Sum7 Sum0

0

1

0

1

(a) Circuit

(b) Simulation Results

Run

Figure 6.50 Synthesized serial adder.

ISTUDY

6.6 STATE MINIMIZATION 353

use in CAD tools. We will not pursue it here, because of its tediousness. However, to pro-

vide some appreciation of the impact of state minimization, we will present an alternative

approach, which is much more efficient but not quite as broad in scope.

Instead of trying to show that some states in a given FSM are equivalent, it is often

easier to show that some states are definitely not equivalent. This idea can be exploited to

define a simple minimization procedure.

6.6.1 PARTITIONING MINIMIZATION PROCEDURE

Suppose that a state machine has a single input w. Then if the input signal w = 0 is applied

to this machine in state Si and the result is that the machine moves to state Su, we will say

that Su is a 0-successor of Si. Similarly, if w = 1 is applied in the state Si and it causes the

machine to move to state Sv, we will say that Sv is a 1-successor of Si. In general, we will

refer to the successors of Si as its k-successors. When the FSM has only one input, k can

be either 0 or 1. But if there are multiple inputs to the FSM, then k represents the set of all

possible combinations (valuations) of the inputs.

From Definition 6.1 it follows that if the states Si and Sj are equivalent, then their

corresponding k-successors (for all k) are also equivalent. Using this fact, we can formulate

a minimization procedure that involves considering the states of the machine as a set and

then breaking the set into partitions that comprise subsets that are definitely not equivalent.

Definition 6.2 – A partition consists of one or more blocks, where each block comprises
a subset of states that may be equivalent, but the states in a given block are definitely not
equivalent to the states in other blocks.

Let us assume initially that all states are equivalent; this forms the initial partition, P1, in

which all states are in the same block. As the next step, we will form the partition P2 in

which the set of states is partitioned into blocks such that the states in each block generate

the same output values. Obviously, the states that generate different outputs cannot pos-

sibly be equivalent. Then we will continue to form new partitions by testing whether the

k-successors of the states in each block are contained in one block. Those states whose k-

successors are in different blocks cannot be in one block. Thus new blocks are formed in

each new partition. The process ends when a new partition is the same as the previous par-

tition. Then all states in any one block are equivalent. To illustrate the procedure, consider

Example 6.5.

Example 6.5Figure 6.51 shows a state table for a particular FSM. In an attempt to minimize the number

of states, let us apply the partitioning procedure. The initial partition contains all states in

a single block

P1 = (ABCDEFG)

The next partition separates the states that have different outputs (note that this FSM is of

Moore type), which means that the states A, B, and D must be different from the states C,

ISTUDY

354 C H A P T E R 6 ● SYNCHRONOUS SEQUENTIAL CIRCUITS

Present Next state Output

state w = 0 w = 1 z

A B C 1

B D F 1

C F E 0

D B G 1

E F C 0

F E D 0

G F G 0

Figure 6.51 State table for Example 6.5.

E, F, and G. Thus the new partition has two blocks

P2 = (ABD)(CEFG)

Now we must consider all 0- and 1-successors of the states in each block. For the block

(ABD), the 0-successors are (BDB), respectively. Since all of these successor states are in

the same block in P2, we should still assume that the states A, B, and D may be equivalent.

The 1-successors for these states are (CFG). Since these successors are also in the same

block in P2, we conclude that (ABD) should remain in one block of P3. Next consider the

block (CEFG). Its 0-successors are (FFEF), respectively. They are in the same block in

P2. The 1-successors are (ECDG). Since these states are not in the same block in P2, it

means that at least one of the states in the block (CEFG) is not equivalent to the others. In

particular, the state F must be different from the states C, E, and G because its 1-successor

is D, which is in a different block than C, E, and G. Hence

P3 = (ABD)(CEG)(F)

Repeating the process yields the following. The 0-successors of (ABD) are (BDB), which

are in the same block of P3. The 1-successors are (CFG), which are not in the same block.

Since F is in a different block than C and G, it follows that the state B cannot be equivalent

to states A and D. The 0- and 1-successors of (CEG) are (FFF) and (ECG), respectively.

Both of these subsets are accommodated in the blocks of P3. Therefore

P4 = (AD)(B)(CEG)(F)

If we follow the same approach to check the 0- and 1-successors of the blocks (AD) and

(CEG), we find that

P5 = (AD)(B)(CEG)(F)

Since P5 = P4 and no new blocks are generated, it follows that states in each block are

equivalent. If the states in some block were not equivalent, then their k-successors would

have to be in different blocks. Therefore, states A and D are equivalent, and C, E, and G
are equivalent. Since each block can be represented by a single state, only four states are

needed to implement the FSM defined by the state table in Figure 6.51. If we let the symbol A

ISTUDY

6.6 STATE MINIMIZATION 355

Present Next state Output

state w = 0 w = 1 z

A B C 1

B A F 1

C F C 0

F C A 0

Figure 6.52 Minimized state table for Example 6.5.

represent both the states A and D in the figure and the symbol C represent the states C, E,

and G, then the state table reduces to the state table in Figure 6.52.

The effect of the minimization is that we have found a solution that requires only two

flip-flops to realize the four states of the minimized state table, instead of needing three

flip-flops for the original design. The expectation is that the FSM with fewer states will be

simpler to implement, although this is not always the case.

The state minimization concept is based on the fact that two different FSMs may exhibit

identical behavior in terms of the outputs produced in response to all possible inputs. Such

machines are functionally equivalent, even though they are implemented with circuits that

may be vastly different. In general, it is not easy to determine whether or not two arbitrary

FSMs are equivalent. Our minimization procedure ensures that a simplified FSM is func-

tionally equivalent to the original one. We encourage the reader to get an intuitive feeling

that the FSMs in Figures 6.51 and 6.52 are indeed functionally equivalent by implementing

both machines and simulating their behavior using the CAD tools.

Example 6.6As another example of minimization, we will consider the design of a sequential circuit that

could control a vending machine. Suppose that a coin-operated vending machine dispenses

candy under the following conditions:

∙ The machine accepts nickels and dimes.

∙ It takes 15 cents for a piece of candy to be released from the machine.

∙ If 20 cents is deposited, the machine will not return the change, but it will credit the

buyer with 5 cents and wait for the buyer to make a second purchase.

All electronic signals in the vending machine are synchronized to the positive edge of a

clock signal, named Clock. The exact frequency of the clock signal is not important for

our example, but we will assume a clock period of 100 ns. The vending machine’s coin-

receptor mechanism generates two signals, senseD and senseN , which are asserted when

a dime or a nickel is detected. Since the coin receptor is a mechanical device and thus

very slow compared to an electronic circuit, inserting a coin causes senseD or senseN to

be set to 1 for a large number of clock cycles. We will assume that the coin receptor also

generates two other signals, named D and N. The D signal is set to 1 for one clock cycle

after senseD becomes 1, and N is set to 1 for one clock cycle after senseN becomes 1. The

timing relationships between Clock, senseD, senseN , D, and N are illustrated in Figure 6.53a.

ISTUDY

356 C H A P T E R 6 ● SYNCHRONOUS SEQUENTIAL CIRCUITS

D Q

Q

senseN D Q

QClock

N

senseN

senseD

Clock

N

D

(a) Timing diagram

(b) Circuit that generates N

Figure 6.53 Signals for the vending machine.

The hash marks on the waveforms indicate that senseD or senseN may be 1 for many clock

cycles. Also, there may be an arbitrarily long time between the insertion of two consecutive

coins. Note that since the coin receptor can accept only one coin at a time, it is not possible

to have both D and N set to 1 at once. Figure 6.53b illustrates how the N signal may be

generated from the senseN signal.

Based on these assumptions, we can develop an initial state diagram in a fairly straight-

forward manner, as indicated in Figure 6.54. The inputs to the FSM are D and N, and the

starting state is S1. As long as D = N = 0, the machine remains in state S1, which is in-

dicated by the arc labeled D ⋅ N = 1. Inserting a dime leads to state S2, while inserting a

nickel leads to state S3. In both cases the deposited amount is less than 15 cents, which is

not sufficient to release the candy. This is indicated by the output, z, being equal to 0, as in

S2∕0 and S3∕0. The machine will remain in state S2 or S3 until another coin is deposited

because D = N = 0. In state S2 a nickel will cause a transition to S4 and a dime to S5. In

both of these states, sufficient money is deposited to activate the output mechanism that re-

leases the candy; hence the state nodes have the labels S4∕1 and S5∕1. In S4 the deposited

ISTUDY

6.6 STATE MINIMIZATION 357

S1 / 0

S4 / 1 S2 / 0

S5 / 1 S6 / 0

S3 / 0

S9 / 1S8 / 1

S7 / 1

DN

D N

DNDN

DNDN

DN

DN

DN

D

D N

DN

DN

N

Reset

Figure 6.54 State diagram for Example 6.6.

amount is 15 cents, which means that on the next active clock edge the machine should

return to the reset state S1. The condition D ⋅ N on the arc leaving S4 is guaranteed to be

true because the machine remains in state S4 for only 100 ns, which is far too short a time

for a new coin to have been deposited.

The state S5 denotes that an amount of 20 cents has been deposited. The candy is

released, and on the next clock edge the FSM makes a transition to state S3, which represents

a credit of 5 cents. A similar reasoning when the machine is in state S3 leads to states S6

through S9. This completes the state diagram for the desired FSM. A state table version of

the same information is given in Figure 6.55.

Note that the condition D = N = 1 is denoted as don’t care in the table. Note also other

don’t cares in states S4, S5, S7, S8, and S9. They correspond to cases where there is no need

to check the D and N signals because the machine changes to another state in an amount of

time that is too short for a new coin to have been inserted.

Using the minimization procedure, we obtain the following partitions

P1 = (S1, S2, S3, S4, S5, S6, S7, S8, S9)

P2 = (S1, S2, S3, S6)(S4, S5, S7, S8, S9)

P3 = (S1)(S3)(S2, S6)(S4, S5, S7, S8, S9)

P4 = (S1)(S3)(S2, S6)(S4, S7, S8)(S5, S9)

P5 = (S1)(S3)(S2, S6)(S4, S7, S8)(S5, S9)

The final partition has five blocks. Let S2 denote its equivalence to S6, let S4 denote the same

with respect to S7 and S8, and let S5 represent S9. This leads to the minimized state table

ISTUDY

358 C H A P T E R 6 ● SYNCHRONOUS SEQUENTIAL CIRCUITS

Present Next state Output

state D N = 00 01 10 11 z

S1 S1 S3 S2 – 0

S2 S2 S4 S5 – 0

S3 S3 S6 S7 – 0

S4 S1 – – – 1

S5 S3 – – – 1

S6 S6 S8 S9 – 0

S7 S1 – – – 1

S8 S1 – – – 1

S9 S3 – – – 1

Figure 6.55 State table for Example 6.6.

Present Next state Output

state DN = 00 01 10 11 z

S1 S1 S3 S2 0

S2 S2 S4 S5 0

S3 S3 S2 S4 0

S4 S1 1

S5 S3 1

Figure 6.56 Minimized state table for Example 6.6.

in Figure 6.56. The actual circuit that implements this table can be designed as explained

in the previous sections.

In this example we used a straightforward approach to derive the original state dia-

gram, which we then minimized using the partitioning procedure. Figure 6.57 presents the

information in the state table of Figure 6.56 in the form of a state diagram. Looking at this

diagram, the reader can probably see that it may have been quite feasible to derive the opti-

mized diagram directly, using the following reasoning. Suppose that the states correspond

to the various amounts of money deposited. In particular, the states, S1, S3, S2, S4, and S5

correspond to the amounts of 0, 5, 10, 15, and 20 cents, respectively. With this interpreta-

tion of the states, it is not difficult to derive the transition arcs that define the desired FSM.

In practice, the designer can often produce initial designs that do not have a large number

of superfluous states.

We have found a solution that requires five states, which is the minimum number of

states for a Moore-type FSM that realizes the desired vending control task. From Section 6.3

we know that Mealy-type FSMs may need fewer states than Moore-type machines,

although they do not necessarily lead to simpler overall implementations. If we use the

Mealy model, we can eliminate states S4 and S5 in Figure 6.57. The result is shown in

Figure 6.58. This version requires only three states, but the output functions become more

ISTUDY

6.6 STATE MINIMIZATION 359

S3 / 0

S2 / 0

S4 / 1

S1 / 0

S5 / 1

DNDN

DN

DN

DN

D

D

D

N

N

N

Figure 6.57 Minimized state diagram for Example 6.6.

S3

S2

D / 0

S1

D / 1

D / 1

N / 1

N / 0

N / 0

DN / 0

DN / 0

DN / 0

Figure 6.58 Mealy-type FSM for Example 6.6.

ISTUDY

360 C H A P T E R 6 ● SYNCHRONOUS SEQUENTIAL CIRCUITS

complicated. The reader is encouraged to compare the complexity of implementations by

completing the design steps for the FSMs in Figures 6.57 and 6.58.

6.6.2 INCOMPLETELY SPECIFIED FSMS

The partitioning scheme for minimization of states works well when all entries in the state

table are specified. Such is the case for the FSM defined in Figure 6.51. FSMs of this type

are said to be completely specified. If one or more entries in the state table are not specified,

corresponding to don’t-care conditions, then the FSM is said to be incompletely specified.

An example of such an FSM is given in Figure 6.55. As seen in Example 6.6, the partitioning

scheme works well for this FSM also. But in general, the partitioning scheme is less useful

when incompletely specified FSMs are involved, as illustrated by Example 6.7.

Example 6.7 Consider the FSM in Figure 6.59 which has four unspecified entries, because we have as-

sumed that the input w = 1 will not occur when the machine is in states B or G. Accordingly,

neither a state transition nor an output value is specified for these two cases. An important

difference between this FSM and the one in Figure 6.55 is that some outputs in this FSM

are unspecified, whereas in the other FSM all outputs are specified.

The partitioning minimization procedure can be applied to Mealy-type FSMs in the

same way as for Moore-type FSMs illustrated in Examples 6.5 and 6.6. Two states are

considered equivalent, and are thus placed in the same block of a partition, if their outputs

are equal for all corresponding input valuations. To perform the partitioning process, we

can assume that the unspecified outputs have a specific value. Not knowing whether these

values should be 0 or 1, let us first assume that both unspecified outputs have a value of 0.

Then the first two partitions are

P1 = (ABCDEFG)

P2 = (ABDG)(CEF)

Present Next state Output z

state w = 0 w = 1 w = 0 w = 1

A B C 0 0

B D 0

C F E 0 1

D B G 0 0

E F C 0 1

F E D 0 1

G F 0

Figure 6.59 Incompletely specified state table for Example 6.7.

ISTUDY

6.7 DESIGN OF A COUNTER USING THE SEQUENTIAL CIRCUIT APPROACH 361

Note that the states A, B, D, and G are in the same block because their outputs are equal to

0 for both w = 0 and w = 1. Also, the states C, E, and F are in one block because they have

the same output behavior; they all generate z = 0 if w = 0, and z = 1 if w = 1. Continuing

the partitioning procedure gives the remaining partitions

P3 = (AB)(D)(G)(CE)(F)

P4 = (A)(B)(D)(G)(CE)(F)

P5 = P4

The result is an FSM that is specified by six states.

Next consider the alternative of assuming that both unspecified outputs in Figure 6.59

have a value of 1. This would lead to the partitions

P1 = (ABCDEFG)

P2 = (AD)(BCEFG)

P3 = (AD)(B)(CEFG)

P4 = (AD)(B)(CEG)(F)

P5 = P4

This solution involves four states. Evidently, the choice of values assigned to unspecified

outputs is of considerable importance.

We will not pursue the issue of state minimization of incompletely specified FSMs any

further. As we already mentioned, it is possible to develop a minimization technique that

searches for equivalent states based directly on Definition 6.1.

Finally, it is important to mention that reducing the number of states in a given FSM

will not necessarily lead to a simpler implementation. Interestingly, the effect of state as-

signment, discussed in Section 6.2, may have a greater influence on the simplicity of imple-

mentation than does the state minimization. In a modern design environment, the designer

relies on the CAD tools to implement state machines efficiently

6.7 DESIGN OF A COUNTER USING THE SEQUENTIAL
CIRCUIT APPROACH

In this section we discuss the design of a counter circuit as a finite state machine. From

Chapter 5 we already know that counters can be realized as cascaded stages of flip-flops

and some gating logic, where each stage divides the number of incoming pulses by two. To

keep our example simple, we choose a counter of small size but also show how the design

can be extended to larger sizes. The specification for the counter is

∙ The counting sequence is 0, 1, 2,… , 6, 7, 0, 1,…
∙ There exists an input signal w. The value of this signal is considered during each clock

cycle. If w = 0, the present count remains the same; if w = 1, the count is incremented.

ISTUDY

362 C H A P T E R 6 ● SYNCHRONOUS SEQUENTIAL CIRCUITS

w 0=

w 1=

w 0=

w 1=

w 0=

w 1=

w 0=

w 1=

w 0=

w 1=

w 0=

w 1=

w 0=

w 1=

w 0=

w 1=

A / 0 B / 1 C / 2 D / 3

E / 4F / 5G / 6H / 7

Figure 6.60 State diagram for the counter.

The counter can be designed as a synchronous sequential circuit using the design techniques

introduced in the previous sections.

6.7.1 STATE DIAGRAM AND STATE TABLE FOR
A MODULO-8 COUNTER

Figure 6.60 gives a state diagram for the desired counter. There is a state associated with

each count. In the diagram state A corresponds to count 0, state B to count 1, and so on. We

show the transitions between the states needed to implement the counting sequence. Note

that the output signals are specified as depending only on the state of the counter at a given

time, which is the Moore model of sequential circuits.

The state diagram may be represented in the state-table form as shown in Figure 6.61.

6.7.2 STATE ASSIGNMENT

Three state variables are needed to represent the eight states. Let these variables, denoting

the present state, be called y2, y1, and y0. Let Y2, Y1, and Y0 denote the corresponding next-

state functions. The most convenient (and simplest) state assignment is to encode each state

with the binary number that the counter should give as output in that state. Then the required

output signals will be the same as the signals that represent the state variables. This leads

to the state-assigned table in Figure 6.62.

The final step in the design is to choose the type of flip-flops and derive the expressions

that control the flip-flop inputs. The most straightforward choice is to use D-type flip-flops.

We pursue this approach first. Then we show the alternative of using JK-type flip-flops.

ISTUDY

6.7 DESIGN OF A COUNTER USING THE SEQUENTIAL CIRCUIT APPROACH 363

Present Next state
Output

state w = 0 w = 1

A A B 0

B B C 1

C C D 2

D D E 3

E E F 4

F F G 5

G G H 6

H H A 7

Figure 6.61 State table for the counter.

Present
Next state

state w = 0 w = 1
Count

y
2
y

1
y

0 Y2Y1Y0 Y2Y1Y0

z
2
z

1
z

0

A 000 000 001 000

B 001 001 010 001

C 010 010 011 010

D 011 011 100 011

E 100 100 101 100

F 101 101 110 101

G 110 110 111 110

H 111 111 000 111

Figure 6.62 State-assigned table for the counter.

6.7.3 IMPLEMENTATION USING D-TYPE FLIP-FLOPS

When using D-type flip-flops to realize the finite state machine, each next-state function, Yi,
is connected to the D input of the flip-flop that implements the state variable yi. The next-

state functions are derived from the information in Figure 6.62. Using Karnaugh maps in

Figure 6.63, we obtain the following implementation

D0 = Y0 = wy0 + wy0

D1 = Y1 = wy1 + y1y0 + wy0y1

D2 = Y2 = wy2 + y0y2 + y1y2 + wy0y1y2

ISTUDY

364 C H A P T E R 6 ● SYNCHRONOUS SEQUENTIAL CIRCUITS

00 01 11 10

00

01

1

0 1

1

1

0

0

0

0

1 0

0

0

1

1

111

10

y1 y0

w y2
00 01 11 10

00

01

0

0 0

1

1

1

1

0

1

0 1

0

0

1

1

011

10

y1 y0

w y2

00 01 11 10

00

01

0

1 1

0

1

0

1

0

1

0 0

0

1

1

0

111

10

y1 y0

w y2

Y 2 w y2 y0 y2 y1 y2 w+ + + y0 y1 y2=

Y 0 w y0 w y0+= Y 1 w y1 y1 y0 w y0 y
1

+ +=

Figure 6.63 Karnaugh maps for D flip-flops for the counter.

The resulting circuit is given in Figure 6.64. It is not obvious how to extend this circuit to

implement a larger counter, because no clear pattern is discernible in the expressions for

D0, D1, and D2. However, we can rewrite these expressions as follows

D0 = wy0 + wy0

= w ⊕ y0

D1 = wy1 + y1y0 + wy0y1

= (w + y0)y1 + wy0y1

= wy0y1 + wy0y1

= wy0 ⊕ y1

D2 = wy2 + y0y2 + y1y2 + wy0y1y2

= (w + y0 + y1)y2 + wy0y1y2

= wy0y1y2 + wy0y1y2

= wy0y1 ⊕ y2

Then an obvious pattern emerges, which leads to the circuit in Figure 5.23.

ISTUDY

6.7 DESIGN OF A COUNTER USING THE SEQUENTIAL CIRCUIT APPROACH 365

D Q

Q

D Q

Q

Clock

y0

w

y1

y2

Y0

Y1

Y2

Resetn

D Q

Q

Figure 6.64 Circuit diagram for the counter implemented with D flip-flops.

6.7.4 IMPLEMENTATION USING JK-TYPE FLIP-FLOPS

JK-type flip-flops provide an attractive alternative. Using these flip-flops to implement the

sequential circuit specified in Figure 6.62 requires derivation of J and K inputs for each

flip-flop. The following control is needed:

∙ If a flip-flop in state 0 is to remain in state 0, then J = 0 and K = d (where d means

that K can be equal to either 0 or 1).

ISTUDY

366 C H A P T E R 6 ● SYNCHRONOUS SEQUENTIAL CIRCUITS

Present
Flip-flop inputs

state w = 0 w = 1
Count

y
2
y

1
y

0 Y2Y1Y0 J2 K2 J1 K1 J0 K0 Y2Y1Y0 J2 K2 J1 K1 J0 K0

z
2
z

1
z

0

A 000 000 0d 0d 0d 001 0d 0d 1d 000

B 001 001 0d 0d d0 010 0d 1d d1 001

C 010 010 0d d0 0d 011 0d d0 1d 010

D 011 011 0d d0 d0 100 1d d1 d1 011

E 100 100 d0 0d 0d 101 d0 0d 1d 100

F 101 101 d0 0d d0 110 d0 1d d1 101

G 110 110 d0 d0 0d 111 d0 d0 1d 110

H 111 111 d0 d0 d0 000 d1 d1 d1 111

Figure 6.65 Excitation table for the counter with JK flip-flops.

∙ If a flip-flop in state 0 is to change to state 1, then J = 1 and K = d.

∙ If a flip-flop in state 1 is to remain in state 1, then J = d and K = 0.

∙ If a flip-flop in state 1 is to change to state 0, then J = d and K = 1.

Following these guidelines, we can create a truth table that specifies the required values

of the J and K inputs for the three flip-flops in our design. Figure 6.65 shows a modified

version of the state-assigned table in Figure 6.62, with the J and K input functions included.

To see how this table is derived, consider the first row in which the present state is y2y1y0 =
000. If w = 0, then the next state is also Y2Y1Y0 = 000. Thus the present value of each flip-

flop is 0, and it should remain 0. This implies the control J = 0 and K = d for all three

flip-flops. Continuing with the first row, if w = 1, the next state will be Y2Y1Y0 = 001.

Thus flip-flops y2 and y1 still remain at 0 and have the control J = 0 and K = d. However,

flip-flop y0 must change from 0 to 1, which is accomplished with J = 1 and K = d. The

rest of the table is derived in the same manner by considering each present state y2y1y0 and

providing the necessary control signals to reach the new state Y2Y1Y0.

A state-assigned table is essentially the state table in which each state is encoded using

the state variables. When D flip-flops are used to implement an FSM, the next-state entries

in the state-assigned table correspond directly to the signals that must be applied to the D
inputs. This is not the case if some other type of flip-flops is used. A table that gives the state

information in the form of the flip-flop inputs that must be “excited” to cause the transitions

to the next states is usually called an excitation table. The excitation table in Figure 6.65

indicates how JK flip-flops can be used. In many books the term excitation table is used even

when D flip-flops are involved, in which case it is synonymous with the state-assigned table.

Once the table in Figure 6.65 has been derived, it provides a truth table with inputs y2,

y1, y0, and w, and outputs J2, K2, J1, K1, J0, and K0. We can then derive expressions for

these outputs as shown in Figure 6.66. The resulting expressions are

J0 = K0 = w
J1 = K1 = wy0

J2 = K2 = wy0y1

ISTUDY

6.7 DESIGN OF A COUNTER USING THE SEQUENTIAL CIRCUIT APPROACH 367

00 01 11 10

00

01

d

0 d

d

d

0

0

0

d

1 d

d

d

1

1

111

10

y1 y0

w y2
00 01 11 10

00

01

0

d 0

0

0

d

d

d

1

d 1

1

1

d

d

d11

10

y1 y0

w y2

00 01 11 10

00

01

0

0 0

d

d

d

d

0

1

0 1

d

d

d

d

011

10

y1 y0

w y2
00 01 11 10

00

01

d

d d

0

0

0

0

d

d

d d

1

1

0

0

d11

10

y1 y0

w y2

00 01 11 10

00

01

0

d d

0

d

0

d

0

d

0 0

d

1

d

0

d11

10

y1 y0

w y2
00 01 11 10

00

01

d

0 0

d

0

d

0

d

0

d d

1

d

0

d

011

10

y1 y0

w y2

J 1 w y0=

J 0 w=

J 2 w y0 y1=

K1 w y0=

K0 w=

K2 w y0 y1=

Figure 6.66 Karnaugh maps for JK flip-flops in the counter.

This leads to the circuit shown in Figure 6.67. It is apparent that this design can be extended

easily to larger counters. The pattern Jn = Kn = wy0y1 ⋯ yn−1 defines the circuit for each

stage in the counter. Note that the size of the AND gate that implements the product term

y0y1 ⋯ yn−1 grows with successive stages. A circuit with a more regular structure can be

obtained by factoring out the previously needed terms as we progress through the stages of

ISTUDY

368 C H A P T E R 6 ● SYNCHRONOUS SEQUENTIAL CIRCUITS

Clock

Resetn

w J Q

QK

y0

y1

y2

J Q

QK

J Q

QK

Figure 6.67 Circuit diagram using JK flip-flops.

the counter. This gives

J2 = K2 = (wy0)y1 = J1y1

Jn = Kn = (wy0 ⋯ yn−2)yn−1 = Jn−1yn−1

Using the factored form, the counter circuit can be realized as indicated in Figure 6.68. In

this circuit all stages (except the first) look the same. Note that this circuit has the same

structure as the circuit in Figure 5.22 because connecting the J and K inputs of a flip-flop

together turns the flip-flop into a T flip-flop.

6.7.5 EXAMPLE—A DIFFERENT COUNTER

Having considered the design of an ordinary counter, we will now apply this knowledge

to design a slightly different counterlike circuit. Suppose that we wish to derive a three-bit

counter that counts the pulses on an input line, w. But instead of displaying the count as

0, 1, 2, 3, 4, 5, 6, 7, 0, 1,… , this counter must display the count in the sequence 0, 4, 2, 6, 1, 5,

ISTUDY

6.7 DESIGN OF A COUNTER USING THE SEQUENTIAL CIRCUIT APPROACH 369

Clock

Resetn

w y0

y1

y2

J Q

QK

J Q

QK

J Q

QK

Figure 6.68 Factored form implementation of the counter.

3, 7, 0, 4, and so on. The count is to be represented directly by the flip-flop values them-

selves, without using any extra gates. Namely, Count = Q2Q1Q0.

Since we wish to count the pulses on the input line w, it makes sense to use w as the

clock input to the flip-flops. Thus the counter circuit should always be enabled, and it should

change its state whenever the next pulse on the w line appears. The desired counter can be

designed in a straightforward manner using the FSM approach. Figures 6.69 and 6.70 give

the required state table and a suitable state assignment. Using D flip-flops, we obtain the

next-state equations

D2 = Y2 = y2

D1 = Y1 = y1 ⊕ y2

D0 = Y0 = y0y1 + y0y2 + y0y1y2

= y0(y1 + y2) + y0y1y2

= y0 ⊕ y1y2

This leads to the circuit in Figure 6.71.

ISTUDY

370 C H A P T E R 6 ● SYNCHRONOUS SEQUENTIAL CIRCUITS

Present Next Output

state state z2z1z0

A B 0 0 0

B C 1 0 0

C D 0 1 0

D E 1 1 0

E F 0 0 1

F G 1 0 1

G H 0 1 1

H A 1 1 1

Figure 6.69 State table for the counterlike example.

Present Next Output

state state

y2 y1 y0 Y2Y1Y0 z2z1z0

0 0 0 1 0 0 0 0 0

1 0 0 0 1 0 1 0 0

0 1 0 1 1 0 0 1 0

1 1 0 0 0 1 1 1 0

0 0 1 1 0 1 0 0 1

1 0 1 0 1 1 1 0 1

0 1 1 1 1 1 0 1 1

1 1 1 0 0 0 1 1 1

Figure 6.70 State-assigned table for Figure 6.69.

The reader should compare this circuit with the normal up-counter in Figure 5.23.

Take the first three stages of that counter, set the Enable input to 1, and let Clock = w.

Then the two circuits are essentially the same with one small difference in the order of

bits in the count. In Figure 5.23 the top flip-flop corresponds to the least-significant bit of

the count, whereas in Figure 6.71 the top flip-flop corresponds to the most-significant bit

of the count. This is not just a coincidence. In Figure 6.70 the required count is defined

as Count = y2y1y0. However, if the bit patterns that define the states are viewed in the

reverse order and interpreted as binary numbers, such that Count = y0y1y2, then the states

A,B,C,… ,H have the values 0, 1, 2,… , 7. These values are the same as the values that are

associated with the normal three-bit up-counter.

ISTUDY

6.8 FSM AS AN ARBITER CIRCUIT 371

D Q

Q

z0

D Q

Q

D Q

Q

z1

z2

w

Figure 6.71 Circuit for Figure 6.70.

6.8 FSM AS AN ARBITER CIRCUIT

In this section we present the design of an FSM that is slightly more complex than the

previous examples. The purpose of the machine is to control access by various devices to a

shared resource in a given system. Only one device can use the resource at a time. Assume

that all signals in the system can change values only following the positive edge of the clock

signal. Each device provides one input to the FSM, called a request, and the FSM produces

a separate output for each device, called a grant. A device indicates its need to use the

resource by asserting its request signal. Whenever the shared resource is not already in use,

the FSM considers all requests that are active. Based on a priority scheme, it selects one

of the requesting devices and asserts its grant signal. When the device is finished using the

resource, it deasserts its request signal.

We will assume that there are three devices in the system, called device 1, device 2,

and device 3. It is easy to see how the FSM can be extended to handle more devices. The

request signals are named r1, r2, and r3, and the grant signals are called g1, g2, and g3. The

devices are assigned a priority level such that device 1 has the highest priority, device 2 has

the next highest, and device 3 has the lowest priority. Thus if more than one request signal

is asserted when the FSM assigns a grant, the grant is given to the requesting device that

has the highest priority.

ISTUDY

372 C H A P T E R 6 ● SYNCHRONOUS SEQUENTIAL CIRCUITS

Idle

000

1xx

Reset

gnt1 g1/ 1=

x1x

gnt2 g2/ 1=

xx1

gnt3 g3/ 1=

0xx 1xx

01xx0x

001xx0

Figure 6.72 State diagram for the arbiter.

A state diagram for the desired FSM, designed as a Moore-type machine, is depicted

in Figure 6.72. Initially, on reset the machine is in the state called Idle. No grant signals

are asserted, and the shared resource is not in use. There are three other states, called gnt1,

gnt2, and gnt3. Each of these states asserts the grant signal for one of the devices.

The FSM remains in the Idle state as long as all of the request signals are 0. In the

state diagram the condition r1r2r3 = 000 is indicated by the arc labeled 000. When one

or more request signals become 1, the machine moves to one of the grant states, according

to the priority scheme. If r1 is asserted, then device 1 will receive the grant because it has

the highest priority. This is indicated by the arc labeled 1xx that leads to state gnt1, which

sets g1 = 1. The meaning of 1xx is that the request signal r1 is 1, and the values of signals

r2 and r3 are irrelevant because of the priority scheme. As before, we use the symbol x to

indicate that the value of the corresponding variable can be either 0 or 1. The machine stays

in state gnt1 as long as r1 is 1. When r1 = 0, the arc labeled 0xx causes a change on the

next positive clock edge back to state Idle, and g1 is deasserted. If other requests are active

at this time, then the FSM will change to a new grant state after the next clock edge.

The arc that causes a change to state gnt2 is labeled 01x. This label adheres to the

priority scheme because it represents the condition that r2 = 1, but r1 = 0. Similarly, the

condition for entering state gnt3 is given as 001, which indicates that the only request signal

asserted is r3.

ISTUDY

6.8 FSM AS AN ARBITER CIRCUIT 373

r1r2

r1r2 r3

Idle

Reset

gnt1 g1/ 1=

gnt2 g2/ 1=

gnt3 g3/ 1=

r1r1

r1

r2

r3

r2

r3

r1r2 r3

Figure 6.73 Alternative style of state diagram for the arbiter.

The state diagram is repeated in Figure 6.73. The only difference between this diagram

and Figure 6.72 is the way in which the arcs are labeled. Figure 6.73 uses a simpler labeling

scheme that is more intuitive. For the condition that leads from state Idle to state gnt1, the

arc is labeled as r1, instead of 1xx. This label means that if r1 = 1, the FSM changes to

state gnt1, regardless of the other inputs. The arc with the label r1r2 that leads from state

Idle to gnt2 represents the condition r1r2 = 01, while the value of r3 is irrelevant. There is

no standardized scheme for labeling the arcs in state diagrams. Some designers prefer the

style of Figure 6.72, while others prefer a style more similar to Figure 6.73.

Figure 6.74 gives the VHDL code for the machine. The three request and grant signals

are specified as three-bit STD LOGIC VECTOR signals. The FSM is described using a

CASE statement in the style used for Figure 6.29. As shown in the WHEN clause for state

Idle, it is easy to describe the required priority scheme. The IF statement specifies that if

r1 = 1, then the next state for the machine is gnt1. If r1 is not asserted, then the ELSIF

condition is evaluated, which stipulates that if r2 = 1, then the next state will be gnt2.

Each successive ELSIF clause considers a lower-priority request signal only if all of the

higher-priority request signals are not asserted.

The WHEN clause for each grant state is straightforward. For state gnt1 it specifies

that as long as r1 = 1, the next state remains gnt1. When r1 = 0, the next state is Idle. The

other grant states have the same structure.

ISTUDY

374 C H A P T E R 6 ● SYNCHRONOUS SEQUENTIAL CIRCUITS

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

ENTITY arbiter IS

PORT (Clock, Resetn : IN STD LOGIC ;

r : IN STD LOGIC VECTOR(1 TO 3) ;

g : OUT STD LOGIC VECTOR(1 TO 3)) ;

END arbiter ;

ARCHITECTURE Behavior OF arbiter IS

TYPE State type IS (Idle, gnt1, gnt2, gnt3) ;

SIGNAL y : State type ;

BEGIN

PROCESS (Resetn, Clock)

BEGIN

IF Resetn = THEN y <= Idle ;

ELSIF (Clock’EVENT AND Clock = THEN

CASE y IS

WHEN Idle =>

IF r(1) = THEN y <= gnt1 ;

ELSIF r(2) = THEN y <= gnt2 ;

ELSIF r(3) = THEN y <= gnt3 ;

ELSE y <= Idle ;

END IF ;

WHEN gnt1 =>

IF r(1) = THEN y <= gnt1 ;

ELSE y <= Idle ;

END IF ;

WHEN gnt2 =>

IF r(2) = THEN y <= gnt2 ;

ELSE y Idle ;

END IF ;

WHEN gnt3 =>

IF r(3) = THEN y <= gnt3 ;

ELSE y <= Idle ;

END IF ;

END CASE ;

END IF ;

END OCESS ;

g(1) WHEN y gnt1 ELSE ;

g(2) WHEN y gnt2 ELSE ;

g(3)

PR

=

<

<

<

=

= WHEN y

=

=

= gnt3 ELSE ;

END Behavior ;

<=

'1'

'1'

'1'

'1'

'1'

'1'

'1'

'1'

'1'

'1')

'0'

'0'

'0'

'0'

Figure 6.74 VHDL code for the arbiter.

ISTUDY

6.8 FSM AS AN ARBITER CIRCUIT 375

PROCESS(y)

BEGIN

IF y = gnt1 THEN g(1) <= ;

ELSIF y = gnt2 THEN g(2) <= ;

ELSIF y = gnt3 THEN g(3) <= ;

END IF ;

END PROCESS ;

END Behavior ;

'1'

'1'

'1'

Figure 6.75 Incorrect VHDL code for the grant signals.

The code for the grant signals, g1, g2, and g3 is given at the end. It sets g1 to 1 when

the machine is in state gnt1, and otherwise g1 is set to 0. Similarly, each of the other grant

signals is 1 only in the appropriate grant state.

Instead of the three conditional assignment statements used for g1, g2, and g3, it may

seem reasonable to substitute the process shown in Figure 6.75, which contains an IF state-

ment. This code is incorrect, but the reason is not obvious. Recall from the discussion con-

cerning Figure 4.43 that when using an IF statement, if there is no ELSE clause or default

value for a signal, then that signal retains its value when the IF condition is not met. This

is called implied memory. In Figure 6.75 the signal g1 is set to 1 when the FSM first en-

ters state gnt1, and then g1 will retain the value 1 no matter what state the FSM changes

to. Similarly, the code for g2 and g3 is also incorrect. If we wish to write the code using

an IF statement, then it should be structured as shown in Figure 6.76. Each grant signal is

assigned a default value of 0, which avoids the problem of implied memory.

PROCESS(y)

BEGIN

g(1) ;

g(2) ;

g(3)

<=

<=

<= ;

IF y = gnt1 THEN g(1) <= ;

ELSIF y = gnt2 THEN g(2) ;

ELSIF y = gnt3 THEN g(3)

<=

<= ;

END IF ;

END PROCESS ;

END Behavior ;

'1'

'1'

'1'

'0'

'0'

'0'

Figure 6.76 Correct VHDL code for the grant signals.

ISTUDY

376 C H A P T E R 6 ● SYNCHRONOUS SEQUENTIAL CIRCUITS

6.9 ANALYSIS OF SYNCHRONOUS SEQUENTIAL CIRCUITS

In addition to knowing how to design a synchronous sequential circuit, the designer has to

be able to analyze the behavior of an existing circuit. The analysis task is much simpler than

the synthesis task. In this section we will show how analysis may be performed.

To analyze a circuit, we simply reverse the steps of the synthesis process. The outputs

of the flip-flops represent the present-state variables. Their inputs determine the next state

that the circuit will enter. From this information we can construct the state-assigned table

for the circuit. This table leads to a state table and the corresponding state diagram by giving

a name to each state. The type of flip-flops used in the circuit is a factor, as we will see in

the examples that follow.

Example 6.8 D-TYPE FLIP-FLOPS Figure 6.77 gives an FSM that has two D flip-flops. Let y1 and y2 be

the present-state variables and Y1 and Y2 the next-state variables. The next-state and output

expressions are

Y1 = wy1 + wy2

Y2 = wy1 + wy2

z = y1y2

Since there are two flip-flops, the FSM has at most four states. A good starting point in the

analysis is to assume an initial state of the flip-flops such as y1 = y2 = 0. From the expres-

sions for Y1 and Y2, we can derive the state-assigned table in Figure 6.78a. For example,

in the first row of the table y1 = y2 = 0. Then w = 0 causes Y1 = Y2 = 0, and w = 1

D Q

Q

D Q

Q

Clock

Resetn

y2

y1

Y 2

Y 1

w

z

Figure 6.77 Circuit for Example 6.8.

ISTUDY

6.9 ANALYSIS OF SYNCHRONOUS SEQUENTIAL CIRCUITS 377

Present
Next state

state w = 0 w = 1
Output

y
2
y

1 Y2Y1 Y2Y1

z

0 0 0 0 0 1 0

0 1 0 0 1 0 0

1 0 0 0 1 1 0

1 1 0 0 1 1 1

(a) State-assigned table

Present Next state Output

state w = 0 w = 1 z

A A B 0

B A C 0

C A D 0

D A D 1

(b) State table

Figure 6.78 Tables for the circuit in Figure 6.77.

causes Y1 = 1 and Y2 = 0. The output for this state is z = 0. The other rows are derived

in the same manner. Labeling the states as A, B, C, and D yields the state table in Figure 6.78b.

From this table it is apparent that following the reset condition the FSM produces the output

z = 1 whenever three consecutive 1s occur on the input w. Therefore, the FSM acts as a

sequence detector for this pattern.

Example 6.9JK-TYPE FLIP-FLOPS Now consider the circuit in Figure 6.79, which has two JK flip-flops.

The expressions for the inputs to the flip-flops are

J1 = w

K1 = w + y2

J2 = wy1

K2 = w

The output is given by z = y1y2.

From these expressions we can derive the excitation table in Figure 6.80. Interpreting

the entries in this table, we can construct the state-assigned table. For example, consider

y2y1 = 00 and w = 0. Then, since J2 = J1 = 0 and K2 = K1 = 1, both flip-flops will

remain in the 0 state; hence Y2 = Y1 = 0. If y2y1 = 00 and w = 1, then J2 = K2 = 0 and

J1 = K1 = 1, which leaves the y2 flip-flop unchanged and sets the y1 flip-flop to 1; hence

ISTUDY

378 C H A P T E R 6 ● SYNCHRONOUS SEQUENTIAL CIRCUITS

J Q

Q

Clock

Resetn

y2

y1

J 2

J 1
w

z

K

J Q

QK
K2

K1

Figure 6.79 Circuit for Example 6.9.

Present Flip-flop inputs

state w = 0 w = 1 Output

y
2
y

1 J2 K2 J1 K1 J2 K2 J1 K1
z

0 0 0 1 0 1 0 0 1 1 0

0 1 0 1 0 1 1 0 1 1 0

1 0 0 1 0 1 0 0 1 0 0

1 1 0 1 0 1 1 0 1 0 1

Figure 6.80 The excitation table for the circuit in Figure 6.79.

Y2 = 0 and Y1 = 1. If y2y1 = 01 and w = 0, then J2 = J1 = 0 and K2 = K1 = 1, which

resets the y1 flip-flop and results in the state y2y1 = 00; hence Y2 = Y1 = 0. Similarly, if

y2y1 = 01 and w = 1, then J2 = 1 and K2 = 0 sets y2 to 1; hence Y2 = 1, while J1 = K1 = 1

toggles y1; hence Y1 = 0. This leads to the state y2y1 = 10. Completing this process, we find

that the resulting state-assigned table is the same as the one in Figure 6.78a. The conclusion

is that the circuits in Figures 6.77 and 6.79 implement the same FSM.

Example 6.10 MIXED FLIP-FLOPS There is no reason why one cannot use a mixture of flip-flop types in

one circuit. Figure 6.81 shows a circuit with one D and one T flip-flop. The expressions for

this circuit are

D1 = w(y1 + y2)

T2 = wy2 + wy1y2

z = y1y2

ISTUDY

6.9 ANALYSIS OF SYNCHRONOUS SEQUENTIAL CIRCUITS 379

Clock

Resetn

y2

y1w

z

T2

D1
D Q

Q

T Q

Q

Figure 6.81 Circuit for Example 6.10.

From these expressions we derive the excitation table in Figure 6.82. Since it is a T flip-

flop, y2 changes its state only when T2 = 1. Thus if y2y1 = 00 and w = 0, then because

T2 = D1 = 0 the state of the circuit will not change. An example of where T2 = 1 is when

y2y1 = 01 and w = 1, which causes y2 to change to 1; D1 = 0 makes y1 = 0, hence Y2 = 1

and Y1 = 0. The other cases where T2 = 1 occur when w = 0 and y2y1 = 10 or 11. In

both of these cases D1 = 0. Hence the T flip-flop changes its state from 1 to 0, while the D

flip-flop is cleared, which means that the next state is Y2Y1 = 00. Completing this analysis

we again obtain the state-assigned table in Figure 6.78a. Thus this circuit is yet another

implementation of the FSM represented by the state table in Figure 6.78b.

Present Flip-flop inputs

state w = 0 w = 1
Output

y
2
y

1 T2 D1 T2 D1

z

0 0 0 0 0 1 0

0 1 0 0 1 0 0

1 0 1 0 0 1 0

1 1 1 0 0 1 1

Figure 6.82 The excitation table for the circuit in Figure 6.81.

ISTUDY

380 C H A P T E R 6 ● SYNCHRONOUS SEQUENTIAL CIRCUITS

6.10 ALGORITHMIC STATE MACHINE (ASM) CHARTS

The state diagrams and tables used in this chapter are convenient for describing the behavior

of FSMs that have only a few inputs and outputs. For larger machines the designers often

use a different form of representation, called the algorithmic state machine (ASM) chart.
An ASM chart is a type of flowchart that can be used to represent the state transitions

and generated outputs for an FSM. The three types of elements used in ASM charts are

depicted in Figure 6.83.

∙ State box A rectangle represents a state of the FSM. It is equivalent to a node in

the state diagram or a row in the state table. The name of the state is indicated out-

side the box in the top-left corner. The Moore-type outputs are listed inside the box.

These are the outputs that depend only on the values of the state variables that define

the state; we will refer to them simply as Moore outputs. It is customary to write

only the name of the signal that has to be asserted. Thus it is sufficient to write z,

rather than z = 1, to indicate that the output z must have the value 1. Also, it may be

useful to indicate an action that must be taken; for example, Count ← Count+1 speci-

fies that the contents of a counter have to be incremented by 1. Of course, this is just a

simple way of saying that the control signal that causes the counter to be incremented

must be asserted. We will use this way of specifying actions in larger systems that are

discussed in Chapter 7.

Output signals

or actions

(Moore type)

State name

Condition
expression

0 (False) 1 (True)

Conditional outputs
or actions (Mealy type)

(a) State box (b) Decision box

(c) Conditional output box

Figure 6.83 Elements used in ASM charts.

ISTUDY

6.10 ALGORITHMIC STATE MACHINE (ASM) CHARTS 381

w

w

w
0 1

0

1

0

1

A

B

C

z

Reset

Figure 6.84 ASM chart for the FSM in Figure 6.3.

∙ Decision box A diamond indicates that the stated condition expression is to be tested

and the exit path is to be chosen accordingly. The condition expression consists of one

or more inputs to the FSM. For example, w indicates that the decision is based on the

value of the input w, whereas w1 ⋅w2 indicates that the true path is taken if w1 = w2 = 1

and the false path is taken otherwise.

∙ Conditional output box An oval denotes the output signals that are of Mealy type.

These outputs depend on the values of the state variables and the inputs of the FSM;

we will refer to these outputs simply as Mealy outputs. The condition that determines

whether such outputs are generated is specified in a decision box.

Figure 6.84 gives the ASM chart that represents the FSM in Figure 6.3. The transitions

between state boxes depend on the decisions made by testing the value of the input variable w.

In each case if w = 0, the exit path from a decision box leads to state A. If w = 1, then

a transition from A to B or from B to C takes place. If w = 1 in state C, then the FSM

ISTUDY

382 C H A P T E R 6 ● SYNCHRONOUS SEQUENTIAL CIRCUITS

w

w
0 1

0

1

A

B

Reset

z

Figure 6.85 ASM chart for the FSM in Figure 6.23.

stays in that state. The chart specifies a Moore output z, which is asserted only in state C,

as indicated in the state box. In states A and B, the value of z is 0 (not asserted), which is

implied by leaving the corresponding state boxes blank.

Figure 6.85 provides an example with Mealy outputs. This chart represents the FSM

in Figure 6.23. The output, z, is equal to 1 when the machine is in state B and w = 1. This

is indicated using the conditional output box. In all other cases the value of z is 0, which

is implied by not specifying z as an output of state B for w = 0 and state A for w equal

to 0 or 1.

Figure 6.86 gives the ASM chart for the arbiter FSM in Figure 6.73. The decision box

drawn below the state box for Idle specifies that if r1 = 1, then the FSM changes to state

gnt1. In this state the FSM asserts the output signal g1. The decision box to the right of

the state box for gnt1 specifies that as long as r1 = 1, the machine stays in state gnt1, and

when r1 = 0, it changes to state Idle. The decision box labeled r2 that is drawn below the

state box for Idle specifies that if r2 = 1, then the FSM changes to state gnt2. This decision

box can be reached only after first checking the value of r1 and following the arrow that

corresponds to r1 = 0. Similarly, the decision box labeled r3 can be reached only if both r1

and r2 have the value 0. Hence the ASM chart describes the required priority scheme for

the arbiter.

ASM charts are similar to traditional flowcharts. Unlike a traditional flowchart, the

ASM chart includes timing information because it implicitly specifies that the FSM changes

(flows) from one state to another only after each active clock edge. The examples of ASM

charts presented here are quite simple. We have used them to introduce the ASM chart

ISTUDY

6.11 FORMAL MODEL FOR SEQUENTIAL CIRCUITS 383

r1

r3
0 1

1

Idle

Reset

r2

r1

r3

r2

gnt1

gnt2

gnt3

1

1

1

0

0

0

g1

g2

g3

0

0

1

Figure 6.86 ASM chart for the arbiter FSM in Figure 6.73.

terminology by giving examples of state, decision, and conditional-output boxes. Another

term sometimes applied to ASM charts is ASM block, which refers to a single state box and

any decision and conditional-output boxes that the state box may be connected to. The ASM

charts can be used to describe complex circuits that include one or more finite state machines

and other circuitry such as registers, shift registers, counters, adders, and multipliers. We

will use ASM charts as an aid for designing more complex circuits in Chapter 7.

6.11 FORMAL MODEL FOR SEQUENTIAL CIRCUITS

This chapter has presented the synchronous sequential circuits using a rather informal ap-

proach because this is the easiest way to grasp the concepts that are essential in designing

such circuits. The same topics can also be presented in a more formal manner, which has

been the style adopted in many books that emphasize the switching theory aspects rather

than the design using CAD tools. A formal model often gives a concise specification that

is difficult to match in a more descriptive presentation. In this section we will describe a

ISTUDY

384 C H A P T E R 6 ● SYNCHRONOUS SEQUENTIAL CIRCUITS

Combinational

circuit

Yk

Y1

yk

y1

w1

wn

z1

zm

Outputs

Next-state
variables

Present-state
variables

Inputs

Figure 6.87 The general model for a sequential circuit.

formal model that represents a general class of sequential circuits, including those of the

synchronous type.

Figure 6.87 represents a general sequential circuit. The circuit has W = {w1,w2,… ,wn}
inputs, Z = {z1, z2,… , zm} outputs, y = {y1, y2,… , yk} present-state variables, and Y =
{Y1,Y2,… ,Yk} next-state variables. It can have up to 2k states, S = {S1, S2,… , S2k}. There

are delay elements in the feedback paths for the state-variables which ensure that y will

take the values of Y after a time delay Δ. In the case of synchronous sequential circuits, the

delay elements are flip-flops, which change their state on the active edge of a clock signal.

Thus the delay Δ is determined by the clock period. The clock period must be long enough

to allow for the propagation delay in the combinational circuit, in addition to the setup and

hold parameters of the flip-flops.

Using the model in Figure 6.87, a synchronous sequential circuit, M, can be defined

formally as a quintuple

M = (W,Z, S, 𝜑, 𝜆)

where

∙ W, Z, and S are finite, nonempty sets of inputs, outputs, and states, respectively.

∙ 𝜑 is the state transition function, such that S(t + 1) = 𝜑[W(t), S(t)].
∙ 𝜆 is the output function, such that Z(t) = 𝜆[S(t)] for the Moore model and Z(t) =

𝜆[W(t), S(t)] for the Mealy model.

This definition assumes that the time between t and t + 1 is one clock cycle.

We will see in Chapter 9 that the delay Δ need not be controlled by a clock. In asyn-

chronous sequential circuits the delays are due solely to the propagation delays through

various gates.

ISTUDY

6.13 EXAMPLES OF SOLVED PROBLEMS 385

6.12 CONCLUDING REMARKS

The existence of closed loops and delays in a sequential circuit leads to a behavior that is

characterized by the set of states that the circuit can reach. The present values of the inputs

are not the sole determining factor in this behavior, because a given valuation of inputs may

cause the circuit to behave differently in different states.

The propagation delays through a sequential circuit must be taken into account. The

design techniques presented in this chapter are based on the assumption that all changes in

the circuit are triggered by the active edge of a clock signal. Such circuits work correctly

only if all internal signals are stable when the clock signal arrives. Thus the clock period

must be longer than the longest propagation delay in the circuit.

Synchronous sequential circuits are used extensively in practical designs. They are

supported by the commonly used CAD tools.

In Chapter 9 we will present a different class of sequential circuits, which do not use

flip-flops to represent the states of the circuit and do not use clock pulses to trigger changes

in the states.

6.13 EXAMPLES OF SOLVED PROBLEMS

This section presents some typical problems that the reader may encounter, and shows how

such problems can be solved.

Example 6.11Problem: Design an FSM that has an input w and an output z. The machine is a sequence

detector that produces z = 1 when the previous two values of w were 00 or 11; otherwise

z = 0.

Solution: Section 6.1 presents the design of an FSM that detects the occurrence of consecu-

tive 1s. Using the same approach, the desired FSM can be specified using the state diagram

in Figure 6.88. State C denotes the occurrence of two or more 0s, and state E denotes two

or more 1s. The corresponding state table is shown in Figure 6.89.

A straightforward state assignment leads to the state-assigned table in Figure 6.90. The

codes y3y2y1 = 101, 110, 111 can be treated as don’t-care conditions. Then the next-state

expressions are

Y1 = wy1y3 + wy2y3 + wy1y2 + wy1y2

Y2 = y1y2 + y1y2 + wy2y3

Y3 = wy3 + wy1y2

The output expression is

z = y3 + y1y2

ISTUDY

386 C H A P T E R 6 ● SYNCHRONOUS SEQUENTIAL CIRCUITS

A / 0 B / 0 C / 1

D / 0 E / 1

Reset

0 0
0

1

0

1

0

1

1

1

Figure 6.88 State diagram for Example 6.11.

Present Next state Output

state w = 0 w = 1 z

A B D 0

B C D 0

C C D 1

D B E 0

E B E 1

Figure 6.89 State table for the FSM in Figure 6.88.

Present
Next state

state w = 0 w = 1
Output

y
3
y

2
y

1 Y3Y2Y1 Y3Y2Y1

z

A 000 001 011 0

B 001 010 011 0

C 010 010 011 1

D 011 001 100 0

E 100 001 100 1

Figure 6.90 State-assigned table for the FSM in Figure 6.89.

ISTUDY

6.13 EXAMPLES OF SOLVED PROBLEMS 387

Present
Next state

state w = 0 w = 1
Output

y
3
y

2
y

1 Y3Y2Y1 Y3Y2Y1

z

A 000 100 110 0

B 100 101 110 0

C 101 101 110 1

D 110 100 111 0

E 111 100 111 1

Figure 6.91 An improved state assignment for the FSM

in Figure 6.89.

These expressions seem to be unnecessarily complex, suggesting that we may attempt to

find a better state assignment. Observe that state A is reached only when the machine is

reset by means of the Reset input. So, it may be advantageous to assign the four codes

in which y3 = 1 to the states B, C, D, and E. The result is the state-assigned table in

Figure 6.91. From it, the next-state and output expressions are

Y1 = wy2 + wy3y2

Y2 = w
Y3 = 1

z = y1

Since Y3 = 1, we do not need the flip-flop y3, and the expression for Y1 simplifies to w ⊕ y2.

This is a much better solution.

Example 6.12Problem: Implement the sequence detector of Example 6.11 by using two FSMs. One FSM

detects the occurrence of consecutive 1s, while the other detects consecutive 0s.

Solution: A good realization of the FSM that detects consecutive 1s is given in Figure 6.17.

The next-state and output expressions are

Y1 = w
Y2 = wy1

zones = y2

A similar FSM that detects consecutive 0s is defined in Figure 6.92. Its expressions are

Y3 = w
Y4 = wy3

zzeros = y4

The output of the combined circuit is

z = zones + zzeros

ISTUDY

388 C H A P T E R 6 ● SYNCHRONOUS SEQUENTIAL CIRCUITS

Present Output

state w = 0 w = 1 zzeros

D E D 0

E F D 0

F F D 1

(a) State table

Present
Next state

state w = 0 w = 1 Output

y4 y3 Y4Y3 Y4Y3

zzeros

D 00 01 00 0

E 01 11 00 0

F 11 11 00 1

10 dd dd d

(b) State-assigned table

Next state

Figure 6.92 FSM that detects a sequence of two zeros.

Example 6.13 Problem: Derive a Mealy-type FSM that can act as a sequence detector described in

Example 6.11.

Solution: A state diagram for the desired FSM is depicted in Figure 6.93. The correspond-

ing state table is presented in Figure 6.94. Two flip-flops are needed to implement this FSM.

Reset

0/0

1/0

0/0

0/1

1/0

1/1

A B

C

Figure 6.93 State diagram for Example 6.13.

ISTUDY

6.13 EXAMPLES OF SOLVED PROBLEMS 389

Present Next state Output z

state w = 0 w = 1 w = 0 w = 1

A B C 0 0

B B C 1 0

C B C 0 1

Figure 6.94 State table for the FSM in Figure 6.93.

Present Next state Output

state w = 0 w = 1 w = 0 w = 1

y2 y1 Y2Y1 Y2Y1 z z

A 00 01 11 0 0

B 01 01 11 1 0

C 11 01 11 0 1

Figure 6.95 State-assigned table for the FSM in Figure 6.94.

A state-assigned table is given in Figure 6.95, which leads to the next-state and output

expressions

Y1 = 1

Y2 = w
z = wy1y2 + wy2

Example 6.14Problem: Implement the state-assigned table in Figure 6.91 using JK-type flip-flops.

Solution: Figure 6.96 shows the excitation table. It results in the following next-state and

output expressions

J1 = wy2 + wy3y2

K1 = wy2 + wy1y2

J2 = w

K2 = w

J3 = 1

K3 = 0

z = y1

ISTUDY

390 C H A P T E R 6 ● SYNCHRONOUS SEQUENTIAL CIRCUITS

Present
Flip-flop inputs

state w = 0 w = 1
Output

y3y2y1 Y3Y2Y1 J3K3 J2K2 J1K1 Y3Y2Y1 J3K3 J2K2 J1K1
z

A 000 100 1d 0d 0d 110 1d 1d 0d 0

B 100 101 d0 0d 1d 110 d0 1d 0d 0

C 101 101 d0 0d d0 110 d0 1d d1 1

D 110 100 d0 d1 0d 111 d0 d0 1d 0

E 111 100 d0 d1 d1 111 d0 d0 d0 1

Figure 6.96 Excitation table for the FSM in Figure 6.91 with JK flip-flops.

Example 6.15 Problem: Write VHDL code to implement the FSM in Figure 6.88.

Solution: Using the style of code given in Figure 6.29, the required FSM can be specified

as shown in Figure 6.97.

Example 6.16 Problem: Write VHDL code to implement the FSM in Figure 6.93.

Solution: Using the style of code given in Figure 6.36, the Mealy-type FSM can be specified

as shown in Figure 6.98.

Example 6.17 Problem: In computer systems it is often desirable to transmit data serially, namely, one

bit at a time, to save on the cost of interconnecting cables. This means that parallel data at

one end must be transmitted serially, and at the other end the received serial data has to be

turned back into parallel form. Suppose that we wish to transmit ASCII characters in this

manner. As explained in Chapter 1, the standard ASCII code uses seven bits to define each

character. Usually, a character occupies one byte, in which case the eighth bit can either be

set to 0 or it can be used to indicate the parity of the other bits to ensure a more reliable

transmission.

Parallel-to-serial conversion can be done by means of a shift register. Assume that a

circuit accepts parallel data, B = b7, b6,… , b0, representing ASCII characters. Assume also

that bit b7 is set to 0. The circuit is supposed to generate a parity bit, p, and send it instead

ISTUDY

6.13 EXAMPLES OF SOLVED PROBLEMS 391

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

ENTITY sequence IS

PORT (Clock, Resetn, w : IN STD LOGIC ;

z : OUT STD LOGIC) ;

END sequence ;

ARCHITECTURE Behavior OF sequence IS

TYPE State type IS (A, B, C, D, E) ;

SIGNAL y : State type ;

BEGIN

PROCESS (Resetn, Clock)

BEGIN

IF Resetn = THEN y <= A ;

ELSIF (Clock’EVENT AND Clock = THEN

CASE y IS

WHEN A =>

IF w = THEN y <= B ;

ELSE y <= D ;

END IF ;

WHEN B =>

IF w = THEN y <= C ;

ELSE y <= D ;

END IF ;

WHEN C =>

IF w = THEN y <= C ;

ELSE y <= D ;

END IF ;

WHEN D =>

IF w = THEN y <= B ;

ELSE y <= E ;

END IF ;

WHEN E =>

IF w = THEN y <= B ;

ELSE y <= E ;

END IF ;

END CASE ;

END IF ;

END PROCESS ;

z <= WHEN (y = C OR y = E) ELSE ;

END Behavior ;

'1'

'1')

'0'

'0'

'0'

'0'

'0'

'0'

'0'

Figure 6.97 VHDL code for the FSM in Figure 6.88.

ISTUDY

392 C H A P T E R 6 ● SYNCHRONOUS SEQUENTIAL CIRCUITS

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

ENTITY seqmealy IS

PORT (Clock, Resetn, w : IN STD LOGIC ;

z : OUT STD LOGIC) ;

END seqmealy ;

ARCHITECTURE Behavior OF seqmealy IS

TYPE State type IS (A, B, C) ;

SIGNAL y : State type ;

BEGIN

PROCESS (Resetn, Clock)

BEGIN

IF Resetn = THEN y <= A ;

ELSIF (Clock’EVENT AND Clock = THEN

CASE y IS

WHEN A =>

IF w = THEN y <= B ;

ELSE y <= C ;

END IF ;

WHEN B =>

IF w = THEN y <= B ;

ELSE y <= C ;

END IF ;

WHEN C =>

IF w = THEN y <= B ;

ELSE y <= C ;

END IF ;

END CASE ;

END IF ;

END PROCESS ;

PROCESS (y, w)

BEGIN

CASE y IS

WHEN A =>

z <= ;

WHEN B =>

z <= NOT w ;

WHEN C =>

z <= w ;

END CASE ;

END PROCESS ;

END Behavior ;

'1')

'0'

'0'

'0'

'0'

'0'

Figure 6.98 VHDL code for the FSM in Figure 6.93.

ISTUDY

6.13 EXAMPLES OF SOLVED PROBLEMS 393

D Q

Q

output
Serial

Load

Clock

0

1

Shift register

FSM

Counter

b0b6b7

Parallel input

Reset

c0

c2

c1

p

w

Clear Sel

Figure 6.99 Parallel-to-serial converter.

of b7 as a part of the serial transfer. Figure 6.99 gives a possible circuit. An FSM is used

to generate the parity bit, which is included in the output stream by using a multiplexer. A

three-bit counter is used to determine when the p bit is transmitted, which happens when

the count reaches 7. Design the desired FSM.

Solution: As the bits are shifted out of the shift register, the FSM examines the bits and

keeps track of whether there has been an even or odd number of 1s. It sets p to 1 if there is

odd parity. Hence, the FSM must have two states. Figure 6.100 presents the state table, the

state-assigned table, and the resulting circuit. The next state expression is

Y = wy + wy

The output p is just equal to y.

ISTUDY

394 C H A P T E R 6 ● SYNCHRONOUS SEQUENTIAL CIRCUITS

Present Next state Output

state w = 0 w = 1 p

Seven Seven Sodd 0

Sodd Sodd Seven 1

(a) State table

Present
Next state

state w = 0 w = 1 Output

y Y Y
p

0 0 1 0

1 1 0 1

(b) State-assigned table

(c) Circuit

D Q

QClock

Reset

p
yY

w

Figure 6.100 FSM for parity generation.

PROBLEMS

Answers to problems marked by an asterisk are given at the back of the book.

*6.1 An FSM is defined by the state-assigned table in Figure P6.1. Derive a circuit that realizes

this FSM using D flip-flops.

*6.2 Derive a circuit that realizes the FSM defined by the state-assigned table in Figure P6.1

using JK flip-flops.

6.3 Derive the state diagram for an FSM that has an input w and an output z. The machine has

to generate z = 1 when the previous four values of w were 1001 or 1111; otherwise, z = 0.

ISTUDY

PROBLEMS 395

Present Next state

state w = 0 w = 1
Output

y
2

y
1 Y2Y1 Y2Y1

z

0 0 1 0 1 1 0

0 1 0 1 0 0 0

1 0 1 1 0 0 0

1 1 1 0 0 1 1

Figure P6.1 State-assigned table for Problems 6.1 and 6.2.

Overlapping input patterns are allowed. An example of the desired behavior is

w : 010111100110011111

z : 000000100100010011

6.4 Write VHDL code for the FSM described in Problem 6.3.

*6.5 Derive a minimal state table for a single-input and single-output Moore-type FSM that

produces an output of 1 if in the input sequence it detects either 110 or 101 patterns. Over-

lapping sequences should be detected.

*6.6 Repeat Problem 6.5 for a Mealy-type FSM.

6.7 Derive the circuits that implement the state tables in Figures 6.51 and 6.52. What is the

effect of state minimization on the cost of implementation?

6.8 Derive the circuits that implement the state tables in Figures 6.55 and 6.56. Compare the

costs of these circuits.

6.9 A sequential circuit has two inputs, w1 and w2, and an output, z. Its function is to compare

the input sequences on the two inputs. If w1 = w2 during any four consecutive clock cycles,

the circuit produces z = 1; otherwise, z = 0. For example

w1 : 0110111000110

w2 : 1110101000111

z : 0000100001110

Derive a suitable circuit.

6.10 Write VHDL code for the FSM described in Problem 6.9.

6.11 A given FSM has an input, w, and an output, z. During four consecutive clock pulses, a

sequence of four values of the w signal is applied. Derive a state table for the FSM that

produces z = 1 when it detects that either the sequence w : 0010 or w : 1110 has been

applied; otherwise, z = 0. After the fourth clock pulse, the machine has to be again in the

reset state, ready for the next sequence. Minimize the number of states needed.

*6.12 Derive a minimal state table for an FSM that acts as a three-bit parity generator. For every

three bits that are observed on the input w during three consecutive clock cycles, the FSM

ISTUDY

396 C H A P T E R 6 ● SYNCHRONOUS SEQUENTIAL CIRCUITS

generates the parity bit p = 1 if and only if the number of 1s in the three-bit sequence

is odd.

6.13 Write VHDL code for the FSM described in Problem 6.12.

6.14 Draw timing diagrams for the circuits in Figures 6.43 and 6.47, assuming the same changes

in a and b signals for both circuits. Account for propagation delays.

*6.15 Show a state table for the state-assigned table in Figure P6.1, using A,B,C,D for the four

rows in the table. Give a new state-assigned table using a one-hot encoding. For A use the

code y4y3y2y1 = 0001. For states B,C,D use the codes 0010, 0100, and 1000, respectively.

Synthesize a circuit using D flip-flops.

6.16 Show how the circuit derived in Problem 6.15 can be modified such that the code y4y3y2y1 =
0000 is used for the reset state, A, and the other codes for state B,C,D are changed as needed.

(Hint: You do not have to resynthesize the circuit!)

*6.17 In Figure 6.59 assume that the unspecified outputs in states B and G are 0 and 1, respectively.

Derive the minimized state table for this FSM.

6.18 In Figure 6.59 assume that the unspecified outputs in states B and G are 1 and 0, respectively.

Derive the minimized state table for this FSM.

6.19 Derive circuits that implement the FSMs defined in Figures 6.57 and 6.58. Can you draw

any conclusions about the complexity of circuits that implement Moore and Mealy types

of machines?

6.20 Design a counter that counts pulses on line w and displays the count in the sequence 0, 2, 1, 3,

0, 2,… . Use D flip-flops in your circuit.

*6.21 Repeat Problem 6.20 using JK flip-flops.

*6.22 Repeat Problem 6.20 using T flip-flops.

6.23 Design a modulo-6 counter, which counts in the sequence 0, 1, 2, 3, 4, 5, 0, 1,… . The counter

counts the clock pulses if its enable input, w, is equal to 1. Use D flip-flops in your circuit.

6.24 Repeat Problem 6.23 using JK flip-flops.

6.25 Repeat Problem 6.23 using T flip-flops.

6.26 Design a three-bit counterlike circuit controlled by the input w. If w = 1, then the counter

adds 2 to its contents, wrapping around if the count reaches 8 or 9. Thus if the present state

is 8 or 9, then the next state becomes 0 or 1, respectively. If w = 0, then the counter subtracts

1 from its contents, acting as a normal down-counter. Use D flip-flops in your circuit.

6.27 Repeat Problem 6.26 using JK flip-flops.

6.28 Repeat Problem 6.26 using T flip-flops.

*6.29 Derive the state table for the circuit in Figure P6.2. What sequence of input values on wire

w is detected by this circuit?

6.30 Write VHDL code for the FSM shown in Figure 6.57, using the style of code in Figure 6.29.

6.31 Repeat Problem 6.30, using the style of code in Figure 6.33.

6.32 Write VHDL code for the FSM shown in Figure 6.58, using the style of code in Figure 6.29.

ISTUDY

PROBLEMS 397

D Q

Q

w
D Q

QClock

z

Figure P6.2 Circuit for Problem 6.29.

6.33 Repeat Problem 6.32, using the style of code in Figure 6.33.

6.34 Write VHDL code for the FSM shown in Figure P6.1.

6.35 Represent the FSM in Figure 6.57 in form of an ASM chart.

6.36 Represent the FSM in Figure 6.58 in form of an ASM chart.

6.37 The arbiter FSM defined in Section 6.8 (Figure 6.72) may cause device 3 to never get ser-

viced if devices 1 and 2 continuously keep raising requests, so that in the Idle state it always

happens that either device 1 or device 2 has an outstanding request. Modify the proposed

FSM to ensure that device 3 will get serviced, such that if it raises a request, the devices 1

and 2 will be serviced only once before the device 3 is granted its request.

6.38 Write VHDL code for the FSM designed in Problem 6.37.

6.39 Write VHDL code to specify the circuit in Figure 6.99.

6.40 Section 6.5 presents a design for the serial adder. Derive a similar circuit that functions as

a serial subtractor which produces the difference of operands A and B. (Hint: Use the rule

for finding 2’s complements in Section 3.3.1 to generate the 2’s complement of B.)

6.41 Write VHDL code that defines the serial subtractor designed in Problem 6.40.

6.42 In Section 6.2 we stated that trying all possible state assignments in order to find the best

one is impractical. Determine the number of possible state assignments for an FSM that has

n states and for which k = log2n state variables are used.

ISTUDY

ISTUDY

399

c h a p t e r

7
DIGITAL SYSTEM DESIGN

CHAPTER OBJECTIVES

In this chapter you will learn about aspects of digital system design, including:

● Bus structure

● A simple processor

● Usage of ASM charts

● Clock synchronization and timing issues

● Flip-flop timing at the chip level

ISTUDY

400 C H A P T E R 7 ● DIGITAL SYSTEM DESIGN

In the previous chapters we showed how to design many types of simple circuits, such as multiplexers, de-

coders, flip-flops, registers, and counters, which can be used as building blocks. In this chapter we provide

examples of more complex circuits that can be constructed using the building blocks as subcircuits. Such

larger circuits form a digital system. For practical reasons our examples of digital systems will not be large,

but the design techniques presented are applicable to systems of any size.

A digital system consists of two main parts, called the datapath circuit and the control circuit. The data-
path circuit is used to store and manipulate data and to transfer data from one part of the system to another.

Datapath circuits comprise building blocks such as registers, shift registers, counters, multiplexers, decoders,

adders, and so on. The control circuit controls the operation of the datapath circuit. In Chapter 6 we referred

to the control circuits as finite state machines. We will give several examples of digital systems and show how

to design their datapath and control circuits.

7.1 BUS STRUCTURE

Digital systems often contain a set of registers used to store data. As already discussed in

Chapter 6, such registers can be interconnected via an interconnection network as illustrated

in Figure 6.10. There are many ways of implementing an interconnection network. In this

section we will present one of the commonly used schemes.

Suppose that a digital system has a number of n-bit registers, and that it must be possible

to transfer data from any register to any other register. A simple way of providing the desired

interconnectivity may be to connect each register to a common set of n wires, which are

used to transfer data into and out of the registers. This common set of wires is usually

called a bus. If common paths are used to transfer data from multiple sources to multiple

destinations, it is necessary to ensure that only one register acts as a source at any given

time and other registers do not interfere. We will present two plausible arrangements for

implementing the bus structure.

7.1.1 USING TRI-STATE DRIVERS TO IMPLEMENT A BUS

Outputs of two ordinary logic gates cannot be connected together, because a short circuit

would result if one gate forces the output value 1 while the other gate forces the value 0.

Therefore, some special gates are needed if the outputs of two registers are to be connected

to a common set of wires. A commonly used circuit element for this purpose is shown

in Figure 7.1a. It has a data input w, an output f, and an enable input e. Its operation is

illustrated by the equivalent circuit in part (b). The triangular symbol in the figure represents

a noninverting driver, which is a circuit that performs no logic operation and its output

simply replicates the input signal. Its purpose is to provide additional electrical driving

capability. In conjunction with the output switch, it behaves as indicated in Figure 7.1c.

When e = 1, the output reflects the logic value on the data input. But, when e = 0, the output

is electrically disconnected from the data input, which is referred to as a high impedance
state and it is usually denoted by the letter Z (or z). Because this circuit element exhibits

three distinct states, 0, 1, and Z, it is called a tri-state driver (or buffer). Appendix B explains

how it can be implemented with transistors.

ISTUDY

7.1 BUS STRUCTURE 401

(b) Equivalent circuit (c) Truth table

w f

e

(a) Symbol

0

0

1

1

0

1

0

1

Z

Z

0

1

fe ww f

e = 0

e = 1

w f

Figure 7.1 Tri-state driver.

Consider a system that contains k n-bit registers, R1 to Rk. Figure 7.2 shows how these

registers can be connected using tri-state drivers to implement the bus structure. The data

outputs of each register are connected to tri-state drivers. When selected by their enable

signals, the drivers place the contents of the corresponding register onto the bus wires. We

showed in Figure 5.51 how an enable input can be added to a register. If the enable input

is set to 1, then the contents of the register will be changed on the next active edge of the

clock. In Figure 7.2 the enable input on each register is labeled L, which stands for load.

R1in Rkin

Bus

Clock

R1out R2in R2out Rkout

Control circuit
Function

R1 R2 Rk

Data

Extern

L L L

Figure 7.2 A digital system with k registers.

ISTUDY

402 C H A P T E R 7 ● DIGITAL SYSTEM DESIGN

The signal that controls the load input for a register Rj is denoted as Rjin, while the signal

that controls the associated tri-state driver is called Rjout. These signals are generated by a

control circuit.

In addition to registers, in a real system other types of circuit blocks would be connected

to the bus. The figure shows how n bits of data from an external source can be placed on

the bus, using the signal Extern. This signal is also generated by the control circuit.

It is essential to ensure that only one circuit block attempts to place data onto the bus

wires at any given time. The control circuit must ensure that only one of the tri-state driver

enable signals, R1out,… ,Rkout, is asserted at once. The control circuit also produces the

signals R1in,… ,Rkin, which determine when data is loaded into each register. In general,

the control circuit could perform a number of functions, such as transferring the data stored

in one register into another register and controlling the processing of data in various func-

tional units of the system. Figure 7.2 shows an input signal named Function that instructs

the control circuit to perform a particular task. The control circuit is synchronized by a

clock input, which is the same clock signal that controls the k registers.

Figure 7.3 provides a more detailed view of how the registers from Figure 7.2 can be

connected to a bus. To keep the picture simple, 2 two-bit registers are shown, but the same

scheme can be used for larger registers. For register R1, two tri-state drivers enabled by

R1out are used to connect each flip-flop output to a wire in the bus. The D input on each

flip-flop is connected to a 2-to-1 multiplexer, whose select input is controlled by R1in. If

R1in = 0, the flip-flops are loaded from their Q outputs; hence the stored data does not

change. But if R1in = 1, data is loaded into the flip-flops from the bus.

The system in Figure 7.2 can be used in many different ways, depending on the design

of the control circuit and on how many registers and other circuit blocks are connected to

the bus. As a simple example, consider a system that has three registers, R1, R2, and R3.

We will specify a control circuit that performs a single function—it swaps the contents of

registers R1 and R2, using R3 for temporary storage.

The required swapping is done in three steps, each needing one clock cycle. In the first

step the contents of R2 are transferred into R3. Then the contents of R1 are transferred into

R2. Finally, the contents of R3, which are the original contents of R2, are transferred into

R1. We have already designed the control circuit for this task in Example 6.1, in the form

of a finite state machine.

Note that we say that the contents of one register, Ri, are “transferred” into another

register, Rj. This jargon is commonly used to indicate that the new contents of Rj will be

a copy of the contents of Ri. The contents of Ri are not changed as a result of the transfer.

Therefore, it would be more precise to say that the contents of Ri are “copied” into Rj.

7.1.2 USING MULTIPLEXERS TO IMPLEMENT A BUS

In Figure 7.2 we used tri-state drivers to control access to the bus. An alternative approach

is to use multiplexers, as depicted in Figure 7.4. The outputs of each register are connected

to a multiplexer. This multiplexer’s output is connected to the inputs of the registers, thus

realizing the bus. The multiplexer select inputs determine which register’s contents appear

on the bus. Although the figure shows just one multiplexer symbol, we actually need one

multiplexer for each bit in the registers. For example, assume that there are 3 eight-bit

ISTUDY

403

D
Q Q

C
lo

c
k

D
Q Q

R
1

in

R
1

o
u

t

D
Q Q

D
Q Q

R
2

in

R
2

o
u

t

B
u
s

R
1

R
2

Fi
gu

re
7

.3
D

e
ta

il
s

fo
r

c
o

n
n

e
c
ti

n
g

re
g

is
te

rs
to

a
b

u
s
.

ISTUDY

404 C H A P T E R 7 ● DIGITAL SYSTEM DESIGN

Data

R1in

Multiplexers

R2in Rkin

Bus

Clock

S j 1–

S0

R1 R2 Rk

Figure 7.4 Using multiplexers to implement a bus.

registers, R1 to R3, plus the externally-supplied eight-bit Data. To interconnect them, we

need eight 4-to-1 multiplexers.

The control circuit can be designed as a finite state machine as mentioned in the pre-

vious subsection. However, instead of using the control signals Rjout to place the contents

of register Rj onto the bus, we have to generate the select inputs for the multiplexers.

The tri-state driver and multiplexer approaches for implementing a bus are both equally

valid. However, some types of chips do not contain a sufficient number of tri-state drivers

to realize even moderately large buses. In such chips the multiplexer-based approach is the

only practical alternative. In practice, circuits are designed with CAD tools. If the designer

describes the circuit using tri-state drivers, but there are not enough such drivers in the

target device, then the CAD tools may automatically produce an equivalent circuit that uses

multiplexers.

7.1.3 VHDL CODE FOR SPECIFICATION OF BUS STRUCTURES

This section presents VHDL code for our circuit example that swaps the contents of two

registers. We first give the code for the style of circuit in Figure 7.2 that uses tri-state drivers

to implement the bus and then give the code for the style of circuit in Figure 7.4 that uses

multiplexers. Figure 7.5 gives the code for an n-bit register of the type in Figure 7.3. The

number of bits in the register is set by the parameter N, which has the default value of 8.

The register is specified such that if the input L = 1, then the flip-flops are loaded from the

n-bit input R. Otherwise, the flip-flops retain their presently stored values.

Figure 7.6 gives the code for a subcircuit that represents n tri-state drivers, each enabled

by the input E. The number of drivers is set by the generic parameter N. The inputs to the

drivers are the n-bit signal X, and the outputs are the n-bit signal F. The architecture uses

the syntax (OTHERS => 'Z') to specify that the output of each driver is set to the value Z

if E = 0; otherwise, the output is set to F = X.

ISTUDY

7.1 BUS STRUCTURE 405

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

ENTITY regn IS

GENERIC (N : INTEGER := 8) ;

PORT (R : IN STD LOGIC VECTOR(N−1 DOWNTO 0) ;

L, Clock : IN STD LOGIC ;

Q : OUT STD LOGIC VECTOR(N−1 DOWNTO 0)) ;

END regn ;

ARCHITECTURE Behavior OF regn IS

BEGIN

PROCESS

BEGIN

WAIT UNTIL Clock’EVENT AND Clock = '1' ;

IF L = '1' THEN

Q <= R ;

END IF ;

END PROCESS ;

END Behavior ;

Figure 7.5 Code for an n-bit register of the type in Figure 7.3.

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

ENTITY trin IS

GENERIC (N : INTEGER := 8) ;

PORT (X : IN STD LOGIC VECTOR(N−1 DOWNTO 0) ;

E : IN STD LOGIC ;

F : OUT STD LOGIC VECTOR(N−1 DOWNTO 0)) ;

END trin ;

ARCHITECTURE Behavior OF trin IS

BEGIN

F <= (OTHERS => 'Z') WHEN E = '0' ELSE X ;

END Behavior ;

Figure 7.6 Code for an n-bit tri-state driver.

The code in Figure 7.7 represents a digital system like the one in Figure 7.2, with 3

eight-bit registers, R1, R2, and R3. Part (a) of the figure shows the control circuit, and part

(b) provides the datapath. The circuit in Figure 7.2 includes tri-state drivers that are used

to place n bits of externally supplied Data on the bus. In the datapath circuit specified in

Figure 7.7b, these drivers are instantiated in the component labeled tri ext. Each of the eight

drivers is enabled by the signal Extern, and the data inputs on the drivers are attached to the

ISTUDY

406 C H A P T E R 7 ● DIGITAL SYSTEM DESIGN

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

USE work.components.all ;

ENTITY swap IS

PORT (Data : IN STD LOGIC VECTOR(7 DOWNTO 0) ;

Resetn, w : IN STD LOGIC ;

Clock : IN STD LOGIC ;

RinExt : IN STD LOGIC VECTOR(1 TO 3) ;

BusWires : INOUT STD LOGIC VECTOR(7 DOWNTO 0) ;

Done : OUT STD LOGIC) ;

END swap ;

ARCHITECTURE Behavior OF swap IS

TYPE State type IS (A, B, C, D) ;

SIGNAL y : State type ;

SIGNAL RRin, Rin, Rout : STD LOGIC VECTOR(1 TO 3) ;

SIGNAL R1, R2, R3 : STD LOGIC VECTOR(7 DOWNTO 0) ;

SIGNAL Extern : STD LOGIC;

BEGIN

PROCESS (Resetn, Clock)

BEGIN

IF Resetn = '0' THEN

y <= A ;

ELSIF (Clock’EVENT AND Clock = '1') THEN

CASE y IS

WHEN A =>

IF w = '1' THEN

y <= B ;

ELSE

y <= A ;

END IF ;

WHEN B =>

y <= C ;

WHEN C =>

y <= D ;

WHEN D =>

y <= A ;

END CASE ;

END IF ;

END PROCESS ;

… continued in Part b

Figure 7.7 A digital system like the one in Figure 7.2 (Part a).

ISTUDY

7.1 BUS STRUCTURE 407

Extern <= '1' WHEN y = A ELSE '0' ;

Rout(2) <= '1' WHEN y = B ELSE '0' ;

RRin(3) <= '1' WHEN y = B ELSE '0' ;

Rout(1) <= '1' WHEN y = C ELSE '0' ;

RRin(2) <= '1' WHEN y = C ELSE '0' ;

Rout(3) <= '1' WHEN y = D ELSE '0' ;

RRin(1) <= '1' WHEN y = D ELSE '0' ;

Done <= '1' WHEN y = D ELSE '0' ;

Rin(1) <= RinExt(1) OR RRin(1) ;

Rin(2) <= RinExt(2) OR RRin(2) ;

Rin(3) <= RinExt(3) OR RRin(3) ;

– instantiate registers

reg1: regn PORT MAP (BusWires, Rin(1), Clock, R1) ;

reg2: regn PORT MAP (BusWires, Rin(2), Clock, R2) ;

reg3: regn PORT MAP (BusWires, Rin(3), Clock, R3) ;

– instantiate tri-state drivers

tri ext: trin PORT MAP (Data, Extern, BusWires) ;

tri1: trin PORT MAP (R1, Rout(1), BusWires) ;

tri2: trin PORT MAP (R2, Rout(2), BusWires) ;

tri3: trin PORT MAP (R3, Rout(3), BusWires) ;

END Behavior ;

Figure 7.7 A digital system like the one in Figure 7.2 (Part b).

eight-bit signal Data. When Extern = 1, the value of Data is placed on the bus, which is

represented by the signal BusWires. The BusWires signal is declared with the type INOUT,

because it represents the circuit’s output as well as the internal bus wiring.

We assume that a three-bit input named RinExt exists, which allows the externally

supplied data to be loaded from the bus into register R1, R2, or R3. This signal is not shown

in Figure 7.2, to keep the figure simple, but it would be generated by the same external

circuit block that produces Data. When RinExt(1) = 1, the data on the bus is loaded into

register R1; when RinExt(2) = 1, the data is loaded into R2; and when RinExt(3) = 1, the

data is loaded into R3.

The FSM in Figure 7.7a that implements the control circuit for our swapping task performs

only one operation, hence we have not included the Function input from Figure 7.2. We have

assumed that an input signal named w exists, which is set to 1 for one clock cycle to start the

swapping task. We have also assumed that at the end of the swapping task, which is indicated

by the Done signal being asserted, the control circuit returns to the starting state.

VHDL Code Using Multiplexers
Figure 7.8 shows how the code in Figure 7.7 can be modified to use multiplexers instead

of tri-state drivers. Only the datapath circuit is shown, because the rest of the code is the same

as that displayed in Figure 7.7a. Using the circuit structure shown in Figure 7.4, the bus is

implemented with eight 4-to-1 multiplexers. Three of the data inputs on each 4-to-1 multiplexer

are connected to one bit from registers R1, R2, and R3. The fourth data input is connected to one

ISTUDY

408 C H A P T E R 7 ● DIGITAL SYSTEM DESIGN

Rout(2) <= '1' WHEN y = B ELSE '0' ;

RRin(3) <= '1' WHEN y = B ELSE '0' ;

Rout(1) <= '1' WHEN y = C ELSE '0' ;

RRin(2) <= '1' WHEN y = C ELSE '0' ;

Rout(3) <= '1' WHEN y = D ELSE '0' ;

RRin(1) <= '1' WHEN y = D ELSE '0' ;

Done <= '1' WHEN y = D ELSE '0' ;

Rin(1) <= RinExt(1) OR RRin(1) ;

Rin(2) <= RinExt(2) OR RRin(2) ;

Rin(3) <= RinExt(3) OR RRin(3) ;

– instantiate registers

reg1: regn PORT MAP (BusWires, Rin(1), Clock, R1) ;

reg2: regn PORT MAP (BusWires, Rin(2), Clock, R2) ;

reg3: regn PORT MAP (BusWires, Rin(3), Clock, R3) ;

– define the bus

PROCESS (y, Data, R1, R2, R3)

BEGIN

IF (y = B) THEN

BusWires <= R2 ;

ELSIF (y = C) THEN

BusWires <= R1 ;

ELSIF (y = D) THEN

BusWires <= R3 ;

ELSE

BusWires <= Data ;

END IF ;

END PROCESS ;

END Behavior ;

Figure 7.8 Using multiplexers to implement the bus structure.

bit of the Data input signal to allow externally supplied data to be written into the registers. In

the VHDL code of Figure 7.8 the bus is described by using an IF-THEN-ELSE statement; other

approaches could also be taken, such as using a CASE statement.

Although the same FSM control circuit is used, the control signals Extern and Rout
are not needed because tri-state drivers are not used. Instead, the required multiplexers are

defined in the IF-THEN-ELSE statement by specifying the source of data based on the state

of the FSM. When the FSM is in state B, the selected input to the multiplexers is R2. When

the state is C, the register R1 provides the input data to the multiplexers, and so on.

7.2 SIMPLE PROCESSOR

A second example of a digital system like the one in Figure 7.2 is shown in Figure 7.9. It has

four n-bit registers, R0,… ,R3, that are connected to the bus with tri-state drivers. External

data can be loaded into the registers from the n-bit Data input, which is connected to the

ISTUDY

409

R
3

in

B
u
s

C
lo

c
k

R
0

in
R

0
o

u
t

R
3

o
u

t

C
o
n
tr

o
l

c
ir

c
u
it

F
u
n
c
ti

o
n

G

R
0

R
3

A A
d
d
S

u
b

A
in

G
in

G
o

u
t

E
x
te

rn

D
a
ta

w

D
o
n
e

B

Fi
gu

re
7

.9
A

d
ig

it
a

l
s
y
s
te

m
th

a
t

im
p

le
m

e
n

ts
a

s
im

p
le

p
ro

c
e

s
s
o

r.

ISTUDY

410 C H A P T E R 7 ● DIGITAL SYSTEM DESIGN

Table 7.1 Operations performed in
the processor.

Operation Function performed

Load Rx, Data Rx ← Data
Move Rx,Ry Rx ← [Ry]

Add Rx,Ry Rx ← [Rx] + [Ry]

Sub Rx,Ry Rx ← [Rx] − [Ry]

bus using tri-state drivers enabled by the Extern control signal. The system also includes

an adder/subtractor module. One of its data inputs is provided by an n-bit register, A, that

is attached to the bus, while the other data input, B, is directly connected to the bus. If

the AddSub signal has the value 0, the module generates the sum A + B; if AddSub = 1,

the module generates the difference A − B. To perform the subtraction, we assume that the

adder/subtractor includes the required XOR gates to form the 2’s complement of B, as

discussed in Section 3.3. The register G stores the output produced by the adder/subtractor.

The A and G registers are controlled by the signals Ain, Gin, and Gout.
The system in Figure 7.9 can perform various functions, depending on the design of

the control circuit. As an example, we will design a control circuit that can perform the four

operations listed in Table 7.1. The left column in the table shows the name of an opera-

tion and its operands; the right column indicates the function performed in the operation.

For the Load operation the meaning of Rx ← Data is that the data on the external Data
input is transferred across the bus into any register, Rx, where Rx can be R0 to R3. The

Move operation copies the data stored in register Ry into register Rx. In the table the square

brackets, as in [Rx], refer to the contents of a register. Since only a single transfer across

the bus is needed, both the Load and Move operations require only one step (clock cycle) to

be completed. The Add and Sub operations require three steps, as follows: In the first step

the contents of Rx are transferred across the bus into register A. Then in the next step, the

contents of Ry are placed onto the bus. The adder/subtractor module performs the required

function, and the results are stored in register G. Finally, in the third step the contents of G
are transferred into Rx.

A digital system that performs the types of operations listed in Table 7.1 is usually

called a processor. The specific operation to be performed at any given time is indicated

using the control circuit input named Function. The operation is initiated by setting the w
input to 1, and the control circuit asserts the Done output when the operation is completed.

The control circuit in Figure 7.9 can be implemented by using an FSM. But to illus-

trate another approach, we will base the design of the control circuit on a counter. This

circuit has to generate the required control signals in each step of each operation. Since the

longest operations (Add and Sub) need three steps (clock cycles), a two-bit counter can be

used. Figure 7.10 shows a two-bit up-counter connected to a 2-to-4 decoder. Decoders are

discussed in Chapter 4. The decoder is enabled at all times by setting its enable (En) input

permanently to the value 1. Each of the decoder outputs represents a step in an operation.

When no operation is currently being performed, the count value is 00; hence the T0 output

of the decoder is asserted. In the first step of an operation, the count value is 01, and T1 is

ISTUDY

7.2 SIMPLE PROCESSOR 411

Clock

T 0

Reset

Up-counter

Clear

w0 En

y0

w1

1 y2 y3

1

T 1 T 2 T 3

2-to-4 decoder

Q1 Q0

y

Figure 7.10 A part of the control circuit for the processor.

asserted. During the second and third steps of the Add and Sub operations, T2 and T3 are

asserted, respectively.

In each of steps T0 to T3, various control signal values have to be generated by the

control circuit, depending on the operation being performed. Figure 7.11 shows that the

operation is specified with six bits, which form the Function input. The two leftmost bits,

F = f1 f0, are used as a two-bit number that identifies the operation. To represent Load,

Clock

X0

w0 En

y0

w1

y1 y2 y3

1

X1 X2 X3

2-to-4 decoder

Function register

Y 0

w0 En

y0

w1

y1 y2 y3

1

Y 1 Y 2 Y 3

2-to-4 decoder

I0

En

y0 y1 y2 y3

1

I1 I2 I3

2-to-4 decoder

FRin

f 1 f 0 Rx1 Rx0 Ry1 Ry0

w0w1

Function

Figure 7.11 The function register and decoders.

ISTUDY

412 C H A P T E R 7 ● DIGITAL SYSTEM DESIGN

Move, Add, and Sub, we use the codes f1 f0 = 00, 01, 10, and 11, respectively. The inputs

Rx1Rx0 are a binary number that identifies the Rx operand, while Ry1Ry0 identifies the Ry
operand. The Function inputs are stored in a six-bit Function register when the FRin signal

is asserted.

Figure 7.11 also shows three 2-to-4 decoders that are used to decode the information

encoded in the F, Rx, and Ry inputs. We will see shortly that these decoders are included

as a convenience because their outputs provide simple-looking logic expressions for the

various control signals.

The circuits in Figures 7.10 and 7.11 form a part of the control circuit. Using the input

w and the signals T0,… ,T3, I0,… , I3, X0,… ,X3, and Y0,… ,Y3, we will show how to

derive the rest of the control circuit. It has to generate the outputs Extern, Done, Ain, Gin,

Gout, AddSub, R0in,… ,R3in, and R0out,… ,R3out. The control circuit also has to generate

the Clear and FRin signals used in Figures 7.10 and 7.11.

Clear and FRin are defined in the same way for all operations. Clear is used to ensure

that the count value remains at 00 as long as w = 0 and no operation is being executed. Also,

it is used to clear the count value to 00 at the end of each operation. Hence an appropriate

logic expression is

Clear = w T0 + Done

The FRin signal is used to load the values on the Function inputs into the Function register

when w changes to 1. Hence

FRin = wT0

The rest of the outputs from the control circuit depend on the specific step being per-

formed in each operation. The values that have to be generated for each signal are shown in

Table 7.2. Each row in the table corresponds to a specific operation, and each column repre-

sents one time step. The Extern signal is asserted only in the first step of the Load operation.

Therefore, the logic expression that implements this signal is

Extern = I0T1

Done is asserted in the first step of Load and Move, as well as in the third step of Add and

Sub. Hence

Done = (I0 + I1)T1 + (I2 + I3)T3

The Ain, Gin, and Gout signals are asserted in the Add and Sub operations. Ain is asserted in

step T1, Gin is asserted in T2, and Gout is asserted in T3. The AddSub signal has to be set

to 0 in the Add operation and to 1 in the Sub operation. This is achieved with the following

logic expressions

Ain = (I2 + I3)T1

Gin = (I2 + I3)T2

Gout = (I2 + I3)T3

AddSub = I3

ISTUDY

7.2 SIMPLE PROCESSOR 413

Table 7.2 Control signals asserted in each operation/time step.

T1 T2 T3

(Load): I0 Extern, Rin = X,
Done

(Move): I1 Rin = X,Rout = Y ,
Done

(Add): I2 Rout = X,Ain Rout = Y ,Gin, Gout ,Rin = X,
AddSub = 0 Done

(Sub): I3 Rout = X,Ain Rout = Y ,Gin, Gout ,Rin = X,
AddSub = 1 Done

The values of R0in,… ,R3in are determined using either the X0,… ,X3 signals or the

Y0,… ,Y3 signals. In Table 7.2 these actions are indicated by writing either Rin = X or

Rin = Y . The meaning of Rin = X is that R0in = X0, R1in = X1, and so on. Similarly, the

values of R0out,… ,R3out are specified using either Rout = X or Rout = Y .

We will develop the expressions for R0in and R0out by examining Table 7.2 and then

show how to derive the expressions for the other register control signals. The table shows

that R0in is set to the value of X0 in the first step of both the Load and Move operations and

in the third step of both the Add and Sub operations, which leads to the expression

R0in = (I0 + I1)T1X0 + (I2 + I3)T3X0

Similarly, R0out is set to the value of Y0 in the first step of Move. It is set to X0 in the first

step of Add and Sub and to Y0 in the second step of these operations, which gives

R0out = I1T1Y0 + (I2 + I3)(T1X0 + T2Y0)

The expressions for R1in and R1out are the same as those for R0in and R0out except that X1

and Y1 are used in place of X0 and Y0. The expressions for R2in, R2out, R3in, and R3out are

derived in the same way.

The circuits shown in Figures 7.10 and 7.11, combined with the circuits represented

by the above expressions, implement the control circuit in Figure 7.9.

Processors are extremely useful circuits that are widely used. We have presented only

the most basic aspects of processor design. However, the techniques presented can be

extended to design realistic processors, such as modern microprocessors. The interested reader

can refer to books on computer organization for more details on processor design.

VHDL Code
In this section we give two different styles of VHDL code for describing the system in

Figure 7.9. The first style uses tri-state drivers to represent the bus, and it gives the logic

expressions shown above for the outputs of the control circuit. The second style of code uses

ISTUDY

414 C H A P T E R 7 ● DIGITAL SYSTEM DESIGN

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

USE ieee.std logic unsigned.all ;

ENTITY upcount IS

PORT (Clear, Clock : IN STD LOGIC ;

Q : BUFFER STD LOGIC VECTOR(1 DOWNTO 0)) ;

END upcount ;

ARCHITECTURE Behavior OF upcount IS

BEGIN

upcount: PROCESS (Clock)

BEGIN

IF (Clock’EVENT AND Clock = '1') THEN

IF Clear = '1' THEN

Q <= ''00'' ;

ELSE

Q <= Q + '1' ;

END IF ;

END IF;

END PROCESS;

END Behavior ;

Figure 7.12 A two-bit up-counter with synchronous reset.

multiplexers to represent the bus, and it uses CASE statements that correspond to Table 7.2

to describe the outputs of the control circuit.

VHDL code for a two-bit up-counter is shown in Figure 7.12. It has a synchronous reset

input, which is active high. For use with the processor, we created a VHDL package called

subccts. The code is not shown here, but it includes component declarations for upcount,
regn (Figure 7.5), trin (Figure 7.6), and dec2to4 (Figure 4.26).

Complete code for the processor is given in Figure 7.13. In the architecture body, the

statements labeled counter and decT instantiate the subcircuits in Figure 7.10. Note that we

have assumed that the circuit has an active-high reset input, Reset, which is used to initialize

the counter to 00. The statement Func <= F & Rx & Ry uses the concatenate operator to

create the six-bit signal Func, which represents the inputs to the Function register in Fig-

ure 7.11. The next statement instantiates the Function register with the data inputs Func
and the outputs FuncReg. The statements labeled decI, decX, and decY instantiate the de-

coders in Figure 7.11. Following these statements the previously derived logic expressions

for the outputs of the control circuit are given. For R0in,… ,R3in and R0out,… ,R3out, a

GENERATE statement is used to produce the expressions.

At the end of the code, the tri-state drivers and registers in the processor are instantiated,

and the adder/subtractor module is described using a selected signal assignment.

ISTUDY

7.2 SIMPLE PROCESSOR 415

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

USE ieee.std logic signed.all ;

USE work.subccts.all ;

ENTITY proc IS

PORT (Data : IN STD LOGIC VECTOR(7 DOWNTO 0) ;

Reset, w : IN STD LOGIC ;

Clock : IN STD LOGIC ;

F, Rx, Ry : IN STD LOGIC VECTOR(1 DOWNTO 0) ;

Done : BUFFER STD LOGIC ;

BusWires : INOUT STD LOGIC VECTOR(7 DOWNTO 0)) ;

END proc ;

ARCHITECTURE Behavior OF proc IS

SIGNAL Rin, Rout : STD LOGIC VECTOR(0 TO 3) ;

SIGNAL Clear, High, AddSub : STD LOGIC ;

SIGNAL Extern, Ain, Gin, Gout, FRin : STD LOGIC ;

SIGNAL Count, Zero : STD LOGIC VECTOR(1 DOWNTO 0) ;

SIGNAL T, I, X, Y : STD LOGIC VECTOR(0 TO 3) ;

SIGNAL R0, R1, R2, R3 : STD LOGIC VECTOR(7 DOWNTO 0) ;

SIGNAL A, Sum, G : STD LOGIC VECTOR(7 DOWNTO 0) ;

SIGNAL Func, FuncReg : STD LOGIC VECTOR(1 TO 6) ;

BEGIN

Zero <= ''00'' ; High <= '1' ;

Clear <= Reset OR Done OR (NOT w AND T(0)) ;

counter: upcount PORT MAP (Clear, Clock, Count) ;

decT: dec2to4 PORT MAP (Count, High, T);

Func <= F & Rx & Ry ;

FRin <= w AND T(0) ;

functionreg: regn GENERIC MAP (N => 6)

PORT MAP (Func, FRin, Clock, FuncReg) ;

decI: dec2to4 PORT MAP (FuncReg(1 TO 2), High, I) ;

decX: dec2to4 PORT MAP (FuncReg(3 TO 4), High, X) ;

decY: dec2to4 PORT MAP (FuncReg(5 TO 6), High, Y) ;

Extern <= I(0) AND T(1) ;

Done <= ((I(0) OR I(1)) AND T(1)) OR ((I(2) OR I(3)) AND T(3)) ;

Ain <= (I(2) OR I(3)) AND T(1) ;

Gin <= (I(2) OR I(3)) AND T(2) ;

Gout <= (I(2) OR I(3)) AND T(3) ;

AddSub <= I(3) ;

… continued in Part b.

Figure 7.13 Code for the processor (Part a).

ISTUDY

416 C H A P T E R 7 ● DIGITAL SYSTEM DESIGN

RegCntl:

FOR k IN 0 TO 3 GENERATE

Rin(k) <= ((I(0) OR I(1)) AND T(1) AND X(k)) OR

((I(2) OR I(3)) AND T(3) AND X(k)) ;

Rout(k) <= (I(1) AND T(1) AND Y(k)) OR

((I(2) OR I(3)) AND ((T(1) AND X(k)) OR (T(2) AND Y(k)))) ;

END GENERATE RegCntl ;

tri extern: trin PORT MAP (Data, Extern, BusWires) ;

reg0: regn PORT MAP (BusWires, Rin(0), Clock, R0) ;

reg1: regn PORT MAP (BusWires, Rin(1), Clock, R1) ;

reg2: regn PORT MAP (BusWires, Rin(2), Clock, R2) ;

reg3: regn PORT MAP (BusWires, Rin(3), Clock, R3) ;

tri0: trin PORT MAP (R0, Rout(0), BusWires) ;

tri1: trin PORT MAP (R1, Rout(1), BusWires) ;

tri2: trin PORT MAP (R2, Rout(2), BusWires) ;

tri3: trin PORT MAP (R3, Rout(3), BusWires) ;

regA: regn PORT MAP (BusWires, Ain, Clock, A) ;

alu:

WITH AddSub SELECT

Sum <= A + BusWires WHEN '0' ,

A − BusWires WHEN OTHERS ;

regG: regn PORT MAP (Sum, Gin, Clock, G) ;

triG: trin PORT MAP (G, Gout, BusWires) ;

END Behavior ;

Figure 7.13 Code for the processor (Part b).

Using Multiplexers and Case Statements
We showed in Figure 7.4 that a bus can be implemented using multiplexers, rather than

tri-state drivers. VHDL code that describes the processor using this approach is shown in

Figure 7.14. The same entity declaration given in Figure 7.13 can be used and is not shown

in Figure 7.14. The code illustrates a different way of describing the control circuit in the

processor. It does not give logic expressions for the signals Extern, Done, and so on, as we

did in Figure 7.13. Instead, CASE statements are used to represent the information shown

in Table 7.2. These statements are provided inside the process labeled controlsignals. Each

control signal is first assigned the value 0, as a default. This is required because the CASE

statements specify the values of the control signals only when they should be asserted, as

we did in Table 7.2. As explained for Figure 4.39, when the value of a signal is not specified,

the signal retains its current value. This implied memory results in a feedback connection

in the synthesized circuit. We avoid this problem by providing the default value of 0 for

each of the control signals involved in the CASE statements.

In Figure 7.13 the statements labeled decT and decI are used to decode the Count
signal and the stored values of the F input, respectively. The decT decoder has the outputs

T0,… ,T3, and decI produces I0,… , I3. In Figure 7.14 these two decoders are not used,

because they do not serve a useful purpose in this code. Instead, the signals T and I are

ISTUDY

7.2 SIMPLE PROCESSOR 417

ARCHITECTURE Behavior OF proc IS

SIGNAL X, Y, Rin, Rout : STD LOGIC VECTOR(0 TO 3) ;

SIGNAL Clear, High, AddSub : STD LOGIC ;

SIGNAL Extern, Ain, Gin, Gout, FRin : STD LOGIC ;

SIGNAL Count, Zero, T, I : STD LOGIC VECTOR(1 DOWNTO 0) ;

SIGNAL R0, R1, R2, R3 : STD LOGIC VECTOR(7 DOWNTO 0) ;

SIGNAL A, Sum, G : STD LOGIC VECTOR(7 DOWNTO 0) ;

SIGNAL Func, FuncReg, Sel : STD LOGIC VECTOR(1 TO 6) ;

BEGIN

Zero <= ''00'' ; High <= '1' ;

Clear <= Reset OR Done OR (NOT w AND NOT T(1) AND NOT T(0)) ;

counter: upcount PORT MAP (Clear, Clock, Count) ;

T <= Count ;

Func <= F & Rx & Ry ;

FRin <= w AND NOT T(1) AND NOT T(0) ;

functionreg: regn GENERIC MAP (N => 6)

PORT MAP (Func, FRin, Clock, FuncReg) ;

I <= FuncReg(1 TO 2) ;

decX: dec2to4 PORT MAP (FuncReg(3 TO 4), High, X) ;

decY: dec2to4 PORT MAP (FuncReg(5 TO 6), High, Y) ;

controlsignals: PROCESS (T, I, X, Y)

BEGIN

Extern <= '0' ; Done <= '0' ; Ain <= '0' ; Gin <= '0' ;

Gout <= '0' ; AddSub <= '0' ; Rin <= ''0000'' ; Rout <= ''0000'' ;

CASE T IS WHEN ''00'' => - - no signals asserted in time step T0

WHEN ''01'' => - - define signals asserted in time step T1

CASE I IS

WHEN ''00'' => - - Load

Extern <= '1' ; Rin <= X ; Done <= '1' ;

WHEN ''01'' => - - Move

Rout <= Y ; Rin <= X ; Done <= '1' ;

WHEN OTHERS => - - Add, Sub

Rout <= X ; Ain <= '1' ;

END CASE ;

… continued in Part b

Figure 7.14 Alternative code for the processor (Part a).

defined as two-bit signals, which are used in the CASE statements. The code sets T to the

value of Count, while I is set to the value of the two leftmost bits in the Function Register,

which correspond to the stored values of the input F.

There are two nested levels of CASE statements. The first one enumerates the possible

values of T . For each WHEN clause in this CASE statement, which represents a column

in Table 7.2, there is a nested CASE statement that enumerates the four values of I. As

ISTUDY

418 C H A P T E R 7 ● DIGITAL SYSTEM DESIGN

WHEN ''10'' => - - define signals asserted in time step T2

CASE I IS

WHEN ''10'' => - - Add

Rout <= Y ; Gin <= '1' ;

WHEN ''11'' => - - Sub

Rout <= Y ; AddSub <= '1' ; Gin <= '1' ;

WHEN OTHERS => - - Load, Move

END CASE ;

WHEN OTHERS => - - define signals asserted in time step T3

CASE I IS

WHEN ''00'' => - - Load

WHEN ''01'' => - - Move

WHEN OTHERS => - - Add, Sub

Gout <= '1' ; Rin <= X ; Done <= '1' ;

END CASE ;

END CASE ;

END PROCESS ;

reg0: regn PORT MAP (BusWires, Rin(0), Clock, R0) ;

reg1: regn PORT MAP (BusWires, Rin(1), Clock, R1) ;

reg2: regn PORT MAP (BusWires, Rin(2), Clock, R2) ;

reg3: regn PORT MAP (BusWires, Rin(3), Clock, R3) ;

regA: regn PORT MAP (BusWires, Ain, Clock, A) ;

alu: WITH AddSub SELECT

Sum <= A + BusWires WHEN '0' ,

A − BusWires WHEN OTHERS ;

regG: regn PORT MAP (Sum, Gin, Clock, G) ;

Sel <= Rout & Gout & Extern ;

WITH Sel SELECT

BusWires <= R0 WHEN ''100000'' ,

R1 WHEN ''010000'' ,

R2 WHEN ''001000'' ,

R3 WHEN ''000100'' ,

G WHEN ''000010'' ,

Data WHEN OTHERS ;

END Behavior ;

Figure 7.14 Alternative code for the processor (Part b).

indicated by the comments in the code, the nested CASE statements correspond exactly to

the information given in Table 7.2.

At the end of Figure 7.14, the bus is described using a selected signal assignment. This

statement represents multiplexers that place the appropriate data onto BusWires, depending

on the values of Rout, Gout, and Extern.

The circuits synthesized from the code in Figures 7.13 and 7.14 are functionally equiv-

alent. The style of code in Figure 7.14 has the advantage that it does not require the manual

effort of analyzing Table 7.2 to generate the logic expressions for the control signals used

ISTUDY

7.2 SIMPLE PROCESSOR 419

Figure 7.15 Simulation for the VHDL code in Figure 7.14.

for Figure 7.13. By using the style of code in Figure 7.14, these expressions are produced

automatically by the VHDL compiler as a result of analyzing the CASE statements. The

style of code in Figure 7.14 is less prone to careless errors. Also, using this style of code it

would be straightforward to provide additional capabilities in the processor, such as adding

other operations.

Figure 7.15 gives an example of the results of a simulation of the code in Figure 7.14.

Each clock cycle in which w = 1 in the simulation waveforms indicates the start of an

operation. In the first such operation, at 250 ns in the simulation time, the values of both

inputs F and Rx are 00. Hence the operation corresponds to “Load R0, Data.” The value

of Data is 2A, which is loaded into R0 on the next positive clock edge. The next operation

loads 55 into register R1, and the subsequent operation loads 22 into R2. At 850 ns the value

of the input F is 10, while Rx = 01 and Ry = 00. This operation is “Add R1, R0.” In the

following clock cycle, the contents of R1 (55) appear on the bus. This data is loaded into

register A by the clock edge at 950 ns, which also results in the contents of R0 (2A) being

placed on the bus. The adder/subtractor module generates the correct sum (7F), which is

loaded into register G at 1050 ns. After this clock edge the new contents of G (7F) are

placed on the bus and loaded into register R1 at 1150 ns. Two more operations are shown

in the timing diagram. The one at 1250 ns (“Move R3, R1”) copies the contents of R1 (7F)

into R3. Finally, the operation starting at 1450 ns (“Sub R3, R2”) subtracts the contents of

R2 (22) from the contents of R3 (7F), producing the correct result, 7F − 22 = 5D.

ISTUDY

420 C H A P T E R 7 ● DIGITAL SYSTEM DESIGN

7.3 A BIT-COUNTING CIRCUIT

We introduced algorithmic state machine (ASM) charts in Section 6.10 and showed how

they can be used to describe finite state machines. ASM charts can also be used to describe

digital systems that include both datapath and control circuits. We will illustrate how the

ASM charts can be used as an aid in designing digital systems by using them in the remain-

ing examples in this chapter.

Suppose that we wish to count the number of bits in a register, A, that have the value 1.

Figure 7.16 shows pseudo-code for a step-by-step procedure, or algorithm, that can be used

to perform the required task. It assumes that A is stored in a register that can shift its contents

in the left-to-right direction. The answer produced by the algorithm is stored in the variable

named B. The algorithm terminates when A does not contain any more 1s, that is when

A = 0. In each iteration of the while loop, if the least-significant bit (LSB) of A is 1, then

B is incremented by 1; otherwise, B is not changed. The contents of A are shifted one bit to

the right at the end of each loop iteration.

Figure 7.17 gives an ASM chart that represents the algorithm in Figure 7.16. The state

box for the starting state, S1, specifies that B is initialized to 0. We assume that an input

signal, s, exists, which is used to indicate when the data to be processed has been loaded

into A, so that the machine can start. The decision box labeled s stipulates that the machine

remains in state S1 as long as s = 0. The conditional output box with Load A written inside

it indicates that A is loaded from external data inputs if s = 0 in state S1.

When s becomes 1, the machine changes to state S2. The decision box below the state

box for S2 checks whether A = 0. If so, the bit-counting operation is complete; hence the

machine should change to state S3. If not, the FSM remains in state S2. The decision box

at the bottom of the chart checks the value of a0. If a0 = 1, B is incremented, which is

indicated in the chart as B ← B+1. If a0 = 0, then B is not changed. In state S3, B contains

the result, which is the number of bits in A that were 1. An output signal, Done, is set to 1

to indicate that the algorithm is finished; the FSM stays in S3 until s goes back to 0.

ASM Chart Implied Timing Information
In Chapter 6 we said that ASM charts are similar to traditional flowcharts, except that

the ASM chart implies timing information. We can use the bit-counting example to illustrate

this concept. Consider the ASM block for state S2, which is shaded in red in Figure 7.17.

In a traditional flowchart, when state S2 is entered, the value of A would first be shifted to

the right. Then we would examine the value of A and if A’s LSB is 1, we would immediately

B = 0;

while A 0 do

if a0 = 1 then

B = B +1;

end if;

Right-shift A;

end while;

≠

Figure 7.16 Pseudo-code for the bit counter.

ISTUDY

7.3 A BIT-COUNTING CIRCUIT 421

Shift right A Done

B ← 0

s

Load A

Reset

S3

0

1

0

1

0

1
s

S1

S2

1

0

A 0= ?

a0

B ← B + 1

Figure 7.17 ASM chart for the pseudo-code in Figure 7.16.

add 1 to B. But, since the ASM chart represents a sequential circuit, changes in A and B,

which represent the outputs of flip-flops, take place after the active clock edge. The same

clock signal that controls changes in the state of the machine also controls changes in A and

B. When the machine is in state S1, the next active clock edge will only perform the action

specified inside the state box for S1, which is B ← 0. Hence in state S2, the decision box that

tests whether A = 0, as well as the box that checks the value of a0, check the bits in A before

they are shifted. If A = 0, then the FSM will change to state S3 on the next clock edge (this

clock edge also shifts A, which has no effect because A is already 0 in this case.) On the

other hand, if A ≠ 0, then the FSM does not change to S3, but remains in S2. At the same

time, A is still shifted, and B is incremented if a0 has the value 1. These timing issues are

illustrated in Figure 7.21, which represents a simulation result for a circuit that implements

the ASM chart. We show how the circuit is designed in the following discussion.

Datapath Circuit
By examining the ASM chart for the bit-counting circuit, we can infer the type of circuit

elements needed to implement its datapath. We need a shift register that shifts left-to-right

to implement A. It must have the parallel-load capability because of the conditional output

ISTUDY

422 C H A P T E R 7 ● DIGITAL SYSTEM DESIGN

L

E Counter

w

L

E
Shift register

LB

EBLA

EA

0

Clock

0

Bz a0

Data

n

A

n

log2 n

log2 n

Figure 7.18 Datapath for the ASM chart in Figure 7.17.

box in state S1 that loads data into the register. An enable input is also required because

shifting should occur only in state S2. A counter is needed for B, and it needs a parallel-load

capability to initialize the count to 0 in state S1. It is not wise to rely on the counter’s reset

input to clear B to 0 in state S1. In practice, the reset signal is used in a digital system for

only two purposes: to initialize the circuit when power is first applied, or to recover from

an error. The machine changes from state S3 to S1 as a result of s = 0; hence we should not

assume that the reset signal is used to clear the counter.

The datapath circuit is depicted in Figure 7.18. The serial input to the shift register, w,

is connected to 0, because it is not needed. The load and enable inputs on the shift register

are driven by the signals LA and EA. The parallel input to the shift register is named Data,

and its parallel output is A. An n-input NOR gate is used to test whether A = 0. The output

of this gate, z, is 1 when A = 0. Note that the figure indicates the n-input NOR gate by

showing a single input connection to the gate, with the label n attached to it. The counter

has log2(n) bits, with parallel inputs connected to 0 and parallel outputs named B. It also

has a parallel-load input LB and enable input EB control signals.

Control Circuit
For convenience we can draw a second ASM chart that represents only the FSM needed

for the control circuit, as shown in Figure 7.19. The FSM has the inputs s, a0, and z and

generates the outputs EA, LB, EB, and Done. In state S1, LB is asserted, so that 0 is loaded

in parallel into the counter. Note that for the control signals, like LB, instead of writing

LB = 1, we simply write LB to indicate that the signal is asserted. We assume that external

circuitry drives LA to 1 when valid data is present at the parallel inputs of the shift register,

ISTUDY

7.3 A BIT-COUNTING CIRCUIT 423

EA

EB z

LB

s

a0

Reset

S3

0

1

0

1

0

1
s

S2

S1

0

1

Done

Figure 7.19 ASM chart for the bit counter control circuit.

so that the shift register contents are initialized before s changes to 1. In state S2, EA is

asserted to cause a shift operation, and the count enable for B is asserted only if a0 = 1.

VHDL Code
The bit-counting circuit can be described in VHDL code as shown in Figure 7.20. We

have chosen to define A as an eight-bit STD LOGIC VECTOR signal and B as an integer

signal. The ASM chart in Figure 7.19 can be directly translated into code that describes

the required control circuit. The signal named y is used to represent the state flip-flops, and

the process labeled FSM transitions, at the top of the architecture body, specifies the state

transitions. The process labeled FSM outputs specifies the generated outputs in each state.

A default value is specified at the beginning of this process for all output signals, and then

individual output values are specified in the case statement.

The process labeled upcount defines the up-counter that implements B. The shift regis-

ter for A is instantiated at the end of the code, and the z signal is defined using a conditional

signal assignment.

We performed a simulation of the code in Figure 7.20. Figure 7.21 gives the results

of the simulation for A = 00111011. After the circuit is reset, the input signal LA is set

to 1, and the desired data, (3B)16, is placed on the Data input. When s changes to 1, the

next active clock edge causes the FSM to change to state S2. In this state each active clock

ISTUDY

424 C H A P T E R 7 ● DIGITAL SYSTEM DESIGN

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

LIBRARY work ;

USE work.components.shiftrne ;

ENTITY bitcount IS

PORT(Clock, Resetn : IN STD LOGIC ;

LA, s : IN STD LOGIC ;

Data : IN STD LOGIC VECTOR(7 DOWNTO 0) ;

B : BUFFER INTEGER RANGE 0 to 8 ;

Done : OUT STD LOGIC) ;

END bitcount ;

ARCHITECTURE Behavior OF bitcount IS

TYPE State type IS (S1, S2, S3) ;

SIGNAL y : State type ;

SIGNAL A : STD LOGIC VECTOR(7 DOWNTO 0) ;

SIGNAL z, EA, LB, EB, low : STD LOGIC ;

BEGIN

FSM transitions: PROCESS (Resetn, Clock)

BEGIN

IF Resetn = '0' THEN

y <= S1 ;

ELSIF (Clock’EVENT AND Clock = '1') THEN

CASE y IS

WHEN S1 =>

IF s = '0' THEN y <= S1 ; ELSE y <= S2 ; END IF ;

WHEN S2 =>

IF z = '0' THEN y <= S2 ; ELSE y <= S3 ; END IF ;

WHEN S3 =>

IF s = '1' THEN y <= S3 ; ELSE y <= S1 ; END IF ;

END CASE ;

END IF ;

END PROCESS ;

… continued in Part b

Figure 7.20 VHDL code for the bit-counting circuit (Part a).

edge increments B if a0 is 1, and shifts A. When A = 0, the next clock edge causes the

FSM to change to state S3, where Done is set to 1 and B has the correct result, B = 5. To

check more thoroughly that the circuit is designed correctly, we should try different values

of input data.

ISTUDY

7.4 SHIFT-AND-ADD MULTIPLIER 425

FSM outputs: PROCESS (y, s, A(0), z)

BEGIN

EA <= '0' ; LB <= '0' ; EB <= '0' ; Done <= '0' ;

CASE y IS

WHEN S1 =>

LB <= '1' ;

WHEN S2 =>

EA <= '1' ;

IF A(0) = '1' THEN EB <= '1' ; ELSE EB <= '0' ; END IF ;

WHEN S3 =>

Done <= '1' ;

END CASE ;

END PROCESS ;

- - The datapath circuit is described below

upcount: PROCESS (Resetn, Clock)

BEGIN

IF Resetn = '0' THEN

B <= 0 ;

ELSIF (Clock’EVENT AND Clock = '1') THEN

IF LB = '1' THEN

B <= 0 ;

ELSIF EB = '1' THEN

B <= B + 1 ;

END IF ;

END IF;

END PROCESS;

low <= '0' ;

ShiftA: shiftrne GENERIC MAP (N => 8)

PORT MAP (Data, LA, EA, low, Clock, A) ;

z <= '1' WHEN A = ''00000000'' ELSE '0' ;

END Behavior ;

Figure 7.20 VHDL code for the bit-counting circuit (Part b).

7.4 SHIFT-AND-ADD MULTIPLIER

We presented a circuit that multiplies two unsigned binary numbers in Figure 3.28. The

circuit uses a two-dimensional array of identical subcircuits, each of which contains a full-

adder and an AND gate. For larger n-bit numbers, this approach may not be appropriate

because of the large number of gates needed. Another approach is to use a shift register

in combination with an adder to implement the traditional method of multiplication that

ISTUDY

426 C H A P T E R 7 ● DIGITAL SYSTEM DESIGN

Figure 7.21 Simulation results for the bit-counting circuit.

is done by “hand.” Figure 7.22a illustrates the manual process of multiplying two binary

numbers. The product is formed by a series of addition operations. For each bit i in the

multiplier that is 1, we add to the product the value of the multiplicand shifted to the left

i times. This algorithm can be described in pseudo-code as shown in Figure 7.22b, where

A is the multiplicand, B is the multiplier, and P is the product.

Multiplicand1

1

Product

Multiplier1

0

0

1

× 1

1

1 1 0 1

1011

0000

1011

01 0 0 1 1 1 1

Binary

13

 × 11

13

13

143

Decimal

(a) Manual method

P = 0;

for i = 0 to n 1 do

if bi = 1 then

P = P + A;

end if ;

Left-shift A;

end for ;

(b) Pseudo-code

Figure 7.22 An algorithm for multiplication.

ISTUDY

7.4 SHIFT-AND-ADD MULTIPLIER 427

Shift left A, Shift right B Done

P ← P + A B 0= ?

P ← 0

s

Load A

b0

Reset

S3

0

1

0

1

0

1
s

S1

S2

1

0

Load B

Figure 7.23 ASM chart for the multiplier.

An ASM chart that represents the algorithm in Figure 7.22b is given in Figure 7.23.

We assume that an input s is used to control when the machine begins the multiplication

process. As long as s is 0, the machine stays in state S1 and the data for A and B can be

loaded from external inputs. In state S2 we test the value of the LSB of B, and if it is 1, we

add A to P. Otherwise, P is not changed. The machine moves to state S3 when B contains

0, because P has the final product in this case. For each clock cycle in which the machine

is in state S2, we shift the value of A to the left, as specified in the pseudo-code in Fig-

ure 7.22b. We shift the contents of B to the right so that in each clock cycle b0 can be used

to decide whether or not A should be added to P.

Datapath Circuit
We can now define the datapath circuit. To implement A we need a right-to-left shift

register that has 2n bits. A 2n-bit register is needed for P, and it must have an enable input

because the assignment P ← P + A in state S2 is inside a conditional output box. A 2n-bit

adder is needed to produce P + A. Note that P is loaded with 0 in state S1, and P is loaded

from the output of the adder in state S2. We cannot assume that the reset input is used to

clear P, because the machine changes from state S3 back to S1 based on the s input, not the

reset input. Hence a 2-to-1 multiplexer is needed for each input to P, to select either 0 or

ISTUDY

428 C H A P T E R 7 ● DIGITAL SYSTEM DESIGN

E

L

E

L

E

0 DataALA

EA

A

Clock

P

DataP

Register
EP

Sum

0

z

B

b0

DataBLB

EB

+

2n

n n

Shift-left

register

Shift-right

register

n

n

2n 2n

Psel 1 0

2n

2n

Figure 7.24 Datapath circuit for the multiplier.

the appropriate sum bit from the adder. An n-bit left-to-right shift register is needed for B,

and an n-input NOR gate can be used to test whether B = 0.

Figure 7.24 shows the datapath circuit and labels the control signals for the shift reg-

isters. The input data for the shift register that holds A is named DataA. Since the shift

register has 2n bits, the most-significant n data inputs are connected to 0. A single multi-

plexer symbol is shown connected to the register that holds P. This symbol represents 2n
2-to-1 multiplexers that are each controlled by the Psel signal.

Control Circuit
An ASM chart that represents only the control signals needed for the multiplier is given

in Figure 7.25. In state S1, Psel is set to 0 and EP is asserted, so that register P is cleared.

ISTUDY

7.4 SHIFT-AND-ADD MULTIPLIER 429

EP z

b0

Reset

S3

0

1

0

1
s

0

1

Done

Psel 0= EP,

s

0

1

S1

S2

Psel 1= EA EB, ,

Figure 7.25 ASM chart for the multiplier control circuit.

When s = 0, parallel data can be loaded into shift registers A and B by an external circuit

that controls their parallel-load inputs LA and LB. When s = 1, the machine changes to

state S2, where Psel is set to 1 and shifting of A and B is enabled. If b0 = 1, the enable for

P is asserted. The machine changes to state S3 when z = 1, and then remains in S3 and sets

Done to the value 1 as long as s = 1.

VHDL Code
VHDL code for the multiplier is given in Figure 7.26. The number of bits in A and B

is set by the generic parameter N. Since some registers are 2n bits wide, a second generic

parameter NN is defined to represent 2×N. By changing the value of the generic parameters,

the code can be used for numbers of any size. The processes labeled FSM transitions and

FSM outputs define the state transitions and generated outputs, respectively, in the control

circuit. The parallel data input on the shift register A is 2N bits wide, but DataA is only N
bits wide. The signal N Zeros is used to generate n zero bits, and the signal Ain prepends

these bits with DataA for loading into the shift register. The multiplexer needed for register

ISTUDY

430 C H A P T E R 7 ● DIGITAL SYSTEM DESIGN

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

USE ieee.std logic unsigned.all ;

USE work.components.all ;

ENTITY multiply IS

GENERIC (N : INTEGER := 8; NN : INTEGER := 16) ;

PORT (Clock : IN STD LOGIC ;

Resetn : IN STD LOGIC ;

LA, LB, s : IN STD LOGIC ;

DataA : IN STD LOGIC VECTOR(N−1 DOWNTO 0) ;

DataB : IN STD LOGIC VECTOR(N−1 DOWNTO 0) ;

P : BUFFER STD LOGIC VECTOR(NN−1 DOWNTO 0) ;

Done : OUT STD LOGIC) ;

END multiply ;

ARCHITECTURE Behavior OF multiply IS

TYPE State type IS (S1, S2, S3) ;

SIGNAL y : State type ;

SIGNAL Psel, z, EA, EB, EP, Zero : STD LOGIC ;

SIGNAL B, N Zeros : STD LOGIC VECTOR(N−1 DOWNTO 0) ;

SIGNAL A, Ain, DataP, Sum : STD LOGIC VECTOR(NN−1 DOWNTO 0) ;

BEGIN

FSM transitions: PROCESS (Resetn, Clock)

BEGIN

IF Resetn = '0' THEN

y <= S1 ;

ELSIF (Clock’EVENT AND Clock = '1') THEN

CASE y IS

WHEN S1 =>

IF s = '0' THEN y <= S1 ; ELSE y <= S2 ; END IF ;

WHEN S2 =>

IF z = '0' THEN y <= S2 ; ELSE y <= S3 ; END IF ;

WHEN S3 =>

IF s = '1' THEN y <= S3 ; ELSE y <= S1 ; END IF ;

END CASE ;

END IF ;

END PROCESS ;

… continued in Part b

Figure 7.26 VHDL code for the multiplier circuit (Part a).

ISTUDY

7.4 SHIFT-AND-ADD MULTIPLIER 431

FSM outputs: PROCESS (y, s, LA, LB, B(0))

BEGIN

EP <= '0' ; EA <= '0' ; EB <= '0' ; Done <= '0' ; Psel <= '0' ;

CASE y IS

WHEN S1 =>

EP <= '1' ;

WHEN S2 =>

EA <= '1' ; EB <= '1' ; Psel <= '1' ;

IF B(0) = '1' THEN EP <= '1' ; ELSE EP <= '0' ; END IF ;

WHEN S3 =>

Done <= '1' ;

END CASE ;

END PROCESS ;

- - Define the datapath circuit

Zero <= '0' ;

N Zeros <= (OTHERS => '0') ;

Ain <= N Zeros & DataA ;

ShiftA: shiftlne GENERIC MAP (N => NN)

PORT MAP (Ain, LA, EA, Zero, Clock, A) ;

ShiftB: shiftrne GENERIC MAP (N => N)

PORT MAP (DataB, LB, EB, Zero, Clock, B) ;

z <= '1' WHEN B = N Zeros ELSE '0' ;

Sum <= A + P ;

- - Define the 2n 2-to-1 multiplexers for DataP

GenMUX: FOR i IN 0 TO NN-1 GENERATE

Muxi: mux2to1 PORT MAP (Zero, Sum(i), Psel, DataP(i)) ;

END GENERATE;

RegP: regne GENERIC MAP (N => NN)

PORT MAP (DataP, Resetn, EP, Clock, P) ;

END Behavior ;

Figure 7.26 VHDL code for the multiplier circuit (Part b).

P is defined using a FOR GENERATE statement that instantiates 2N 2-to-1 multiplexers.

Figure 7.27 gives a simulation result for the circuit generated from the code. After the circuit

is reset, LA and LB are set to 1, and the numbers to be multiplied are placed on the DataA
and DataB inputs. After s is set to 1, the FSM (y) changes to state S2, where it remains until

B = 0. For each clock cycle in state S2, A is shifted to the left, and B is shifted to the right.

In three of the clock cycles in state S2, the contents of A are added to P, corresponding to

the three bits in B that have the value 1. When B = 0, the FSM changes to state S3 and P
contains the correct product, which is (64)16 × (19)16 = (9C4)16. The decimal equivalent

of this result is 100 × 25 = 2500.

ISTUDY

432 C H A P T E R 7 ● DIGITAL SYSTEM DESIGN

Figure 7.27 Simulation results for the multiplier circuit.

The number of clock cycles that the circuit requires to generate the final product is

determined by the leftmost digit in B that is 1. It is possible to reduce the number of clock

cycles needed by using more complex shift registers for A and B. If the two rightmost bits

in B are both 0, then both A and B could be shifted by two bit positions in one clock cycle.

Similarly, if the three lowest digits in B are 0, then a three bit-position shift can be done,

and so on. A shift register that can shift by multiple bit positions at once can be built using

a barrel shifter. We leave it as an exercise for the reader to modify the multiplier to make

use of a barrel shifter.

7.5 DIVIDER

The preceding example implements the traditional method of performing multiplication

by hand. In this example we will design a circuit that implements the traditional long-

hand division. Figure 7.28a gives an example of long-hand division. The first step is to

try to divide the divisor 9 into the first digit of the dividend 1, which does not work. Next,

we try to divide 9 into 14, and determine that 1 is the first digit in the quotient. We per-

form the subtraction 14 − 9 = 5, bring down the last digit from the dividend to form 50,

and then determine that the next digit in the quotient is 5. The remainder is 50 − 45 = 5,

and the quotient is 15. Using binary numbers, as illustrated in Figure 7.28b, involves the

same process, with the simplification that each digit of the quotient can be only 0 or 1.

ISTUDY

7.5 DIVIDER 433

9 1 4 0

9

5 0
4 5

5

1 5

1 0 0

1 0
1 0

0 1 1 0 01 0 0 1

0 0 0 0 1 1 1 1

1 0 0 1

0 0 1
0 1

1 0 0 0 0
1 0 0 1

1 1 1 0
1 0 0 1

1 0 1

Q

AB

R

(a) An example using decimal numbers (b) Using binary numbers

R = 0;

for i = 0 to n 1 do

Left-shift R || A;

if R ≥ B then

qi 1;

R R B ;

else

qi

=

=

= 0 ;

end if;

end for;

(c) Pseudo-code

n

R

Figure 7.28 An algorithm for division.

Given two unsigned n-bit numbers A and B, we wish to design a circuit that produces

two n-bit outputs Q and R, where Q is the quotient A∕B and R is the remainder. The proce-

dure illustrated in Figure 7.28b can be implemented by shifting the digits in A to the left,

one digit at a time, into a shift register R. After each shift operation, we compare R with B.

If R ≥ B, a 1 is placed in the appropriate bit position in the quotient and B is subtracted from

R. Otherwise, a 0 bit is placed in the quotient. This algorithm is described using pseudo-

code in Figure 7.28c. The notation R||A is used to represent a 2n-bit shift register formed

using R as the leftmost n bits and A as the rightmost n bits.

In the long-division pseudo-code, each loop iteration results in setting a digit qi to either

1 or 0. A straightforward way to accomplish this is to shift 1 or 0 into the least-significant

bit of Q in each loop iteration. An ASM chart that represents the divider circuit is shown

in Figure 7.29. The signal C represents a counter that is initialized to n − 1 in the starting

state S1. In state S2, both R and A are shifted to the left, and then in state S3, B is subtracted

from R if R ≥ B. The machine changes to state S4 when C = 0.

ISTUDY

434 C H A P T E R 7 ● DIGITAL SYSTEM DESIGN

R ≥ B ?

R ← 0, C n 1–←

s
0 1

S1

S2

0

Load A

Load B

Shift left R||A

C C 1–←

Shift 0 into Q Shift 1 into Q

R R B–←

C = 0 ?

1

1 0

S3

Reset

Done

S4

0

1
s

Figure 7.29 ASM chart for the divider.

Datapath Circuit
We need n-bit shift registers that shift right to left for A, R, and Q. An n-bit register is

needed for B, and a subtractor is needed to produce R − B. We can use an adder module in

which the carry-in is set to 1 and B is complemented. The carry-out, cout, of this module

has the value 1 if the condition R ≥ B is true. Hence the carry-out can be connected to the

serial input of the shift register that holds Q, so that it is shifted into Q in state S3. Since

R is loaded with 0 in state S1 and from the outputs of the adder in state S3, a multiplexer

is needed for the parallel data inputs on R. The datapath circuit is depicted in Figure 7.30.

ISTUDY

7.5 DIVIDER 435

E
L

E

L

E

DataB

LR

ER

EQ

Clock

Q

Register

EB

0

R

DataALA

EA

+
E cout cin 1

B

w

Rsel

n

Left-shift
register

n

Left-shift
register

n n

nn

nn

Left-shift
register

an 1–
A

w

01

Figure 7.30 Datapath circuit for the divider.

Note that the down-counter needed to implement C and the NOR gate that outputs a 1 when

C = 0 are not shown in the figure.

Control Circuit
An ASM chart that shows only the control signals needed for the divider is given in

Figure 7.31. In state S3 the value of cout determines whether or not the sum output of the

adder is loaded into R. The shift enable on Q is asserted in state S3. We do not have to

specify whether 1 or 0 is loaded into Q, because cout is connected to Q’s serial input in the

datapath circuit. We leave it as an exercise for the reader to write VHDL code that represents

the ASM chart in Figure 7.31 and the datapath circuit in Figure 7.30.

Enhancements to the Divider Circuit
Using the ASM chart in Figure 7.31 causes the circuit to loop through states S2 and

S3 for 2n clock cycles. If these states can be merged into a single state, then the number of

clock cycles needed can be reduced to n. In state S3, if cout = 1, we load the sum output

(result of the subtraction) from the adder into R, and (assuming z = 0) change to state S2.

In state S2 we then shift R (and A) to the left. To combine S2 and S3 into a new state, called

ISTUDY

436 C H A P T E R 7 ● DIGITAL SYSTEM DESIGN

Rsel = 0, LR, LC

s

0 1

S1

S2

Done

s

EQ, Rsel = 1, EC

LR

1 0

S4

S3

Reset

ER EA,

cout

z

1

010

Figure 7.31 ASM chart for the divider control circuit.

S2, we need to be able to place the sum into the leftmost bits of R while at the same time

shifting the MSB of A into the LSB of R. This step can be accomplished by using a separate

flip-flop for the LSB of R. Let the output of this flip-flop be called rr0. It is initialized to 0

when s = 0 in state S1. Otherwise, the flip-flop is loaded from the MSB of A. In state S2,

if cout = 0, R is shifted left and rr0 is shifted into R. But if cout = 1, R is loaded in parallel

from the sum outputs of the adder.

Figure 7.32 illustrates how the division example from Figure 7.28b can be performed

using n clock cycles. The table in the figure shows the values of R, rr0, A, and Q in each step

ISTUDY

7.5 DIVIDER 437

Load A, B 0

0

0

1

0

0

1

1

0

1

2

3 1

0

0

0

0

0

4

5

6 0 0

7

1

0

0

0

1

1

0

0

Clock cycle

0 0

8

0

A/Q

0

1

1

0

1

1

0

0

0

0

0

0

0

0

0 0

0 0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0 1

1 1

0

0

0

0

0

0

1

1

1

0 00 0 1 1 1 1

rr0R

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0

0

0

0

0

0

0

0

0

0 00

0

0

0

0

0

0

0

0

0

1

1

1

0

0

1 0

0 1

0

0

0

1

0

0

1

0

0

0

0

0

0

0

0 0

1 1

0

1

0

0

0

1

1

0

0

0 00 0 1 0 1 0

0

0

0

0

0

0

0

0

0

0

1 0 0 0 1 1 0 01 0 0 1 AB

Shift left

Subtract, Q0 1

Shift left, Q0 0

Shift left, Q0 0

Shift left, Q0 0

Subtract, Q0 1

Subtract, Q0 1

Subtract, Q0 1

Shift left, Q0 0

←

←

←

←

←

←

←

←

Figure 7.32 An example of division using n = 8 clock cycles.

of the division. In the datapath circuit in Figure 7.30, we use a separate shift register for Q.

This register is not actually needed, because the digits in the quotient can be shifted into the

least-significant bit of the register used for A. In Figure 7.32 the digits of Q that are shifted

into A are shown in red. The first row in the table represents loading of initial data into

registers A (and B) and clearing R and rr0 to 0. In the second row of the table, labeled clock

cycle 0, the diagonal red arrow shows that the leftmost bit of A (1) is shifted into rr0. The

number in R||rr0 is now 000000001, which is smaller than B (1001). In clock cycle 1, rr0 is

shifted into R, and the MSB of A is shifted into rr0. Also, as shown in red, a 0 is shifted into

the LSB of Q (A). The number in R||rr0 is now 000000010, which is still smaller than B.

Hence, in clock cycle 2 the same actions are performed as for clock cycle 1. These actions

are also performed in clock cycles 3 and 4, at which point R||rr0 = 000010001. Since this is

larger than B, in clock cycle 5 the result of the subtraction 000010001 − 1001 = 00001000

is loaded into R. The MSB of A (1) is still shifted into rr0, and a 1 is shifted into Q. In clock

cycles 6, 7, and 8, the number in R||rr0 is larger than B; hence in each of these cycles the

result of the subtraction R||rr0 − B is loaded into R, and a 1 is loaded into Q. After clock

cycle 8 the correct result, Q = 00001111 and R = 00000101, is obtained. The bit rr0 is not

a part of the final result.

An ASM chart that shows the values of the required control signals for the enhanced

divider is depicted in Figure 7.33. The signal ER0 is used in conjunction with the flip-flop

that has the output rr0. When ER0 = 0, the value 0 is loaded into the flip-flop. When ER0

is set to 1, the MSB of shift register A is loaded into the flip-flop. In state S1, if s = 0, then

LR is asserted to initialize R to 0. Registers A and B can be loaded with data from external

inputs. When s changes to 1, the machine makes a transition to state S2 and at the same

time shifts R||R0||A to the left. In state S2, if cout = 1, then R is loaded in parallel from

ISTUDY

438 C H A P T E R 7 ● DIGITAL SYSTEM DESIGN

Rsel = 0, LC, ER

s
0 1

S1

S2

LR

1 0

Reset

EA, ER0

cout

z

1

0

ER, ER0, EA, Rsel = 1

LR ECDone

s

S3

10

Figure 7.33 ASM chart for the enhanced divider control circuit.

the sum outputs of the adder. At the same time, R0||A is shifted left (rr0 is not shifted into

R in this case). If cout = 0, then R||R0||A is shifted left. The ASM chart shows how the

parallel-load and enable inputs on the registers have to be controlled to achieve the desired

operation.

The datapath circuit for the enhanced divider is illustrated in Figure 7.34. As discussed

for Figure 7.32, the digits of the quotient Q are shifted into register A. Note that one of

the n-bit data inputs on the adder module is composed of the n − 1 least-significant bits in

register R concatenated with bit rr0 on the right.

ISTUDY

7.5 DIVIDER 439

E

L

E

L

E

DataB

LR

ER

Clock

Register

EB

0

R

DataALA

EA

+cout cin 1

B

w

Rsel

n

Left-shift
register

n

Left-shift
register

n n

nn

n

qn 1–

Q

01

DQ

Q

ER0

0

1

0

n 1–

n

rn 2– r0

w

n n

rr0

Figure 7.34 Datapath circuit for the enhanced divider.

VHDL Code
Figure 7.35 shows VHDL code that represents the enhanced divider. The generic pa-

rameter N sets the number of bits in the operands. The FSM transitions and FSM outputs
processes describe the control circuit, as in the previous examples. The shift registers and

counters in the datapath circuit are instantiated at the bottom of the code. The signal rr0 in

ISTUDY

440 C H A P T E R 7 ● DIGITAL SYSTEM DESIGN

LIBRARY ieee;

USE ieee.std logic 1164.all;

USE ieee.std logic unsigned.all ;

USE work.components.all ;

ENTITY divider IS

GENERIC (N : INTEGER := 8) ;

PORT(Clock : IN STD LOGIC ;

Resetn : IN STD LOGIC ;

s, LA, EB : IN STD LOGIC ;

DataA : IN STD LOGIC VECTOR(N−1 DOWNTO 0) ;

DataB : IN STD LOGIC VECTOR(N−1 DOWNTO 0) ;

R, Q : BUFFER STD LOGIC VECTOR(N−1 DOWNTO 0) ;

Done : OUT STD LOGIC) ;

END divider ;

ARCHITECTURE Behavior OF divider IS

TYPE State type IS (S1, S2, S3) ;

SIGNAL y : State type ;

SIGNAL Zero, Cout, z : STD LOGIC ;

SIGNAL EA, Rsel, LR, ER, ER0, LC, EC, R0 : STD LOGIC ;

SIGNAL A, B, DataR : STD LOGIC VECTOR(N−1 DOWNTO 0) ;

SIGNAL Sum : STD LOGIC VECTOR(N DOWNTO 0) ; - - adder outputs

SIGNAL Count : INTEGER RANGE 0 TO N−1 ;

BEGIN

FSM transitions: PROCESS (Resetn, Clock)

BEGIN

IF Resetn = '0' THEN y <= S1 ;

ELSIF (Clock’EVENT AND Clock = '1') THEN

CASE y IS

WHEN S1 =>

IF s = '0' THEN y <= S1 ; ELSE y <= S2 ; END IF ;

WHEN S2 =>

IF z = '0' THEN y <= S2 ; ELSE y <= S3 ; END IF ;

WHEN S3 =>

IF s = '1' THEN y <= S3 ; ELSE y <= S1 ; END IF ;

END CASE ;

END IF ;

END PROCESS ;

… continued in Part b

Figure 7.35 VHDL code for the divider circuit (Part a).

ISTUDY

7.5 DIVIDER 441

FSM outputs: PROCESS (s, y, Cout, z)

BEGIN

LR <= '0' ; ER <= '0' ; ER0 <= '0' ;

LC <= '0' ; EC <= '0' ; EA <= '0' ; Done <= '0' ;

Rsel <= '0' ;

CASE y IS

WHEN S1 =>

LC <= '1' ; EC <= '1' ; ER <= '1' ;

IF s = '0' THEN

LR <= '1' ;

ELSE

EA <= '1' ; ER0 <= '1' ;

END IF ;

WHEN S2 =>

Rsel <= '1' ; ER <= '1' ; ER0 <= '1' ; EA <= '1' ;

IF Cout = '1' THEN LR <= '1' ; ELSE LR <= '0' ; END IF ;

IF z = '0' THEN EC <= '1' ; ELSE EC <= '0' ; END IF ;

WHEN S3 =>

Done <= '1' ;

END CASE ;

END PROCESS ;

- - define the datapath circuit

Zero <= '0' ;

RegB: regne GENERIC MAP (N => N)

PORT MAP (DataB, Resetn, EB, Clock, B) ;

ShiftR: shiftlne GENERIC MAP (N => N)

PORT MAP (DataR, LR, ER, R0, Clock, R) ;

FF R0: muxdff PORT MAP (Zero, A(N−1), ER0, Clock, R0) ;

ShiftA: shiftlne GENERIC MAP (N => N)

PORT MAP (DataA, LA, EA, Cout, Clock, A) ;

Q <= A ;

Counter: downcnt GENERIC MAP (modulus => N)

PORT MAP (Clock, EC, LC, Count) ;

z <= '1' WHEN Count = 0 ELSE '0' ;

Sum <= R & R0 + (NOT B +1) ;

Cout <= Sum(N) ;

DataR <= (OTHERS => '0') WHEN Rsel = '0' ELSE Sum ;

END Behavior ;

Figure 7.35 VHDL code for the divider circuit (Part b).

Figure 7.32 is represented in the code by the signal R0. This signal is implemented as the

output of the muxdff component; the code for this subcircuit is shown in Figure 5.43. Note

that the adder that produces the Sum signal has one input defined as the concatenation of R
with R0. The multiplexer needed for the input to R is represented by the DataR signal.

ISTUDY

442 C H A P T E R 7 ● DIGITAL SYSTEM DESIGN

Figure 7.36 Simulation results for the divider circuit.

Instead of describing this multiplexer using a FOR GENERATE statement as in the pre-

vious examples, we have used the conditional signal assignment shown at the end of

the code.

A simulation result for the circuit produced from the code is given in Figure 7.36. The

data A = A6 and B = 8 is loaded, and then s is set to 1. The circuit changes to state S2 and

concurrently shifts R, R0, and A to the left. The output of the shift register that holds A is

labeled Q in the simulation results because this shift register contains the quotient when the

division operation is complete. On the first three active clock edges in state S2, the number

represented by R||R0 is less than the number in B (8); hence R||R0||A is shifted left on

each clock edge, and 0 is shifted into Q. In the fourth consecutive clock cycle for which

the FSM has been in state S2, the contents of R are 00000101 = (5)10, and R0 is 0; hence

R||R0 = 000001010 = (10)10. On the next active clock edge, the output of the adder, which

is 10 − 8 = 2, is loaded into R, and 1 is shifted into Q. After n clock cycles in state S2, the

circuit changes to state S3, and the correct result, Q = 14 = (20)10 and R = 6, is obtained.

7.6 ARITHMETIC MEAN

Assume that k n-bit numbers are stored in a set of registers R0,… ,Rk−1. We wish to design

a circuit that computes the mean M of the numbers in the registers. The pseudo-code for a

suitable algorithm is shown in Figure 7.37a. Each iteration of the loop adds the contents of

one of the registers, denoted Ri, to a Sum variable. After the sum is computed, M is obtained

as Sum∕k. We assume that integer division is used, so a remainder R, not shown in the code,

is produced as well.

ISTUDY

7.6 ARITHMETIC MEAN 443

Sum = 0;

for i = k − 1 down to 0 do

Sum = Sum + R i

end for ;

M = Sum k ;

(a) Pseudo-code

Sum 0← C k 1–←,

s
0

1

S1

S2

Done

s

Reset

1

0

Sum ← Sum + Ri

S4

C 0= ?

M ←

C C 1–←

0

1

S3

Load registers

(b) ASM chart

Sum k⁄

Figure 7.37 An algorithm for finding the mean of k numbers.

An ASM chart is given in Figure 7.37b. While the start input, s, is 0, the registers can

be loaded from external inputs. When s becomes 1, the machine changes to state S2, where

it remains while C ≠ 0, and computes the summation (C is a counter that represents i in

Figure 7.37a). When C = 0, the machine changes to state S3 and computes M = Sum∕k.

From the previous example, we know that the division operation requires multiple clock

cycles, but we have chosen not to indicate this in the ASM chart. After computing the

division operation, state S4 is entered and Done is set to 1.

ISTUDY

444 C H A P T E R 7 ● DIGITAL SYSTEM DESIGN

Datapath Circuit
The datapath circuit for this task is more complex than in our previous examples. It is

depicted in Figure 7.38. We need a register with an enable input to hold Sum. For simplicity,

assume that the sum can be represented in n bits without overflowing. A multiplexer is

E
Register

+

E
Register

E
Register

E
Register

ERRAdd

E

L Down-counterE
Register

B EB A LA

R Q Done

s
Divider

ES

0

Ssel

EC

LC

Div

k EB

LA

zz

Sum

M

Data

Clock

z

k 1–

n

n

n

nn

n

n

w0 En

y0

w1

y1 y2 y3

2-to-4

Figure 7.38 Datapath circuit for the mean operation.

ISTUDY

7.7 SORT OPERATION 445

required on the data inputs on the Sum register, to select 0 in state S1 and the sum outputs

of an adder in state S2. The Sum register provides one of the data inputs to the adder. The

other input has to be selected from the data outputs of one of the k registers. One way

to select among the registers is to connect them to the data inputs of a k-to-1 multiplexer

that is connected to the adder. The select lines on the multiplexer can be controlled by the

counter C. To compute the division operation, we can use the divider circuit designed in

the previous section.

The circuit in Figure 7.38 is based on k = 4, but the same circuit structure can be

used for larger values of k. Note that the enable inputs on the registers R0 through R3 are

connected to the outputs of a 2-to-4 decoder that has the two-bit input RAdd, which stands

for “register address.” The decoder enable input is driven by the ER signal. All registers

are loaded from the same input lines, Data. Since k = 4, we could perform the division

operation simply by shifting Sum two bits to the right, which can be done in one clock

cycle with a shift register that shifts by two digits. To obtain a more general circuit that

works for any value of k, we use the divider circuit designed in Section 7.5.

Control Circuit
Figure 7.39 gives an ASM chart for the FSM needed to control the circuit in Figure 7.38.

While in state S1, data can be loaded into registers R0,… ,Rk−1. But no control signals have

to be asserted for this purpose, because the registers are loaded under control of the ER and

RAdd inputs, as discussed above. When s = 1, the FSM changes to state S2, where it asserts

the enable ES on the Sum register and allows C to decrement. When the counter reaches 0

(z = 1), the machine enters state S3, where it asserts the LA and EB signals to load the Sum
and k into the A and B inputs of the divider circuit, respectively. The FSM then enters state

S4 and asserts the Div signal to start the division operation. When it is finished, the divider

circuit sets zz = 1, and the FSM moves to state S5. The mean M appears on the Q and R
outputs of the divider circuit. The Div signal must still be asserted in state S5 to prevent the

divider circuit from reinitializing its registers. Note that in the ASM chart in Figure 7.37b,

only one state is shown for computing M = Sum∕k, but in Figure 7.39, states S3 and S4 are

used for this purpose. It is possible to combine states S3 and S4, which we will leave as an

exercise for the reader (Problem 7.10).

7.7 SORT OPERATION

Given a list of k unsigned n-bit numbers stored in a set of registers R0,… ,Rk−1, we wish to

design a circuit that can sort the list (contents of the registers) in ascending order. Pseudo-

code for a simple sorting algorithm is shown in Figure 7.40. It is based on finding the small-

est number in the sublist Ri,… ,Rk−1 and moving that number into Ri, for i = 1, 2,… , k−2.

Each iteration of the outer loop places the number in Ri into A. Each iteration of the inner

loop compares this number to the contents of another register Rj. If the number in Rj is

smaller than A, the contents of Ri and Rj are swapped and A is changed to hold the new

contents of Ri.
An ASM chart that represents the sorting algorithm is shown in Figure 7.41. In the

initial state S1, while s = 0 the registers are loaded from external data inputs and a counter

Ci that represents i in the outer loop is cleared. When the machine changes to state S2, A
ISTUDY

446

s
0

1

S1

S2

Div, Done

s

Reset

1

0

Ssel = 1, ES

LC, Ssel = 0, ES

S5

LA EB,

EC

0

1
S3

z

Div

zz

S4

0 1

Figure 7.39 ASM chart for the mean operation control circuit.

for i = 0 to k 2 do

A = Ri ;

for j = i C 1 to k 1 do

B = R j ;

if B A then

Ri = B ;

R j = A;

A = Ri ;

end if;

end for;

end for;

<

Figure 7.40 Pseudo-code for the sort operation.

ISTUDY

7.7 SORT OPERATION 447

B A< ?

Ci 0←

s
0

1

S1

S2

Done s

Reset

A Ri← C j Ci←,

Ci Ci 1+←

S4

S5

0

1

S3

C j C j 1+←

B R j←

R j A←

Ri B←

A Ri←

C j k 1–= ?

C j C j 1+←

Ci k 2–= ?
0 1

0

1

Load registers

0

1

S9

S7

S6

S8

Figure 7.41 ASM chart for the sort operation.

ISTUDY

448 C H A P T E R 7 ● DIGITAL SYSTEM DESIGN

is loaded with the contents of Ri. Also, Cj, which represents j in the inner loop, is initialized

to the value of i. State S3 is used to initialize j to the value i+1, and state S4 loads the value

of Rj into B. In state S5, A and B are compared, and if B < A, the machine moves to state S6.

States S6 and S7 swap the values of Ri and Rj. State S8 loads A from Ri. Although this step

is necessary only for the case where B < A, the flow of control is simpler if this operation

is performed in both cases. If Cj is not equal to k − 1, the machine changes from S8 to S4,

thus remaining in the inner loop. If Cj = k−1 and Ci is not equal to k−2, then the machine

stays in the outer loop by changing to state S2.

Datapath Circuit
There are many ways to implement a datapath circuit that meets the requirements of the

ASM chart in Figure 7.41. One possibility is illustrated in Figures 7.42 and 7.43. Figure 7.42

shows how the registers R0,… ,Rk−1 can be connected to registers A and B using 4-to-1

E E E E

Clock

DataIn

WrInit

Rin3Rin2Rin1Rin0

E EBinAin

DataOut

Rd

ABData

Imux

<Bout

BltA

1 0
A B

0 1

RData

R0 R1 R2 R3

0 1 2 3

ABmux n

n

n

Figure 7.42 A part of the datapath circuit for the sort operation.

ISTUDY

7.7 SORT OPERATION 449

L

E

L

E

10

10

k 2–=

k 1–=

LJ

EJ

LI

EI

2-to-4 decoder

WrInit

Wr

RAdd

Clock

Csel

Int

Imux

2

Ci C j

zi

z j
Cmux

Rin0

Rin1

Rin2

Rin3

0

2

2

2

2

2

retnuoCretnuoC

R

QQ

R

w0 w1,

En

y0

y1

y2

y3

2

Figure 7.43 A part of the datapath circuit for the sort operation.

multiplexers. We assume the value k = 4 for simplicity. Registers A and B are connected

to a comparator subcircuit and, through multiplexers, back to the inputs of the registers

R0,… ,Rk−1. The registers can be loaded with initial (unsorted) data using the DataIn lines.

The data is written (loaded) into each register by asserting the WrInit control signal and

placing the address of the register on the RAdd input. The tri-state driver driven by the Rd
control signal is used to output the contents of the registers on the DataOut output.

The signals Rin0,… ,Rink−1 are controlled by the 2-to-4 decoder shown in Figure 7.43.

If Int = 1, the decoder is driven by one of the counters Ci or Cj. If Int = 0, then the decoder

is driven by the external input RAdd. The signals zi and zj are set to 1 if Ci = k − 2 and

Cj = k − 1, respectively. An ASM chart that shows the control signals used in the datapath

circuit is given in Figure 7.44.

VHDL Code
VHDL code for the sorting operation is presented in Figure 7.45. Instead of defining

separate signals called R0,… ,R3 for the register outputs, we have chosen to specify the

registers as an array. This approach allows the registers to be referred to as R(i) in a FOR

GENERATE statement that instantiates each register. The array of registers is defined in two

ISTUDY

450 C H A P T E R 7 ● DIGITAL SYSTEM DESIGN

Csel = 0, Int = 1, Ain

Csel = 0, Int = 1, Wr, Bout

Csel = 1, Int = 1, Wr, Aout

Bin, Csel = 1, Int = 1

s
0

1

S1

S2

Done s

Reset

S4

S5

0

1

S3

1

0

1

S9

S7

S6

S8

LI, Int = 0

Int = 1, Csel = 0, Ain, LJ

EJ

BltAEJ

EI

0

1

0

zj

z i

Figure 7.44 ASM chart for the control circuit.

ISTUDY

7.7 SORT OPERATION 451

LIBRARY ieee;

USE ieee.std logic 1164.all;

USE work.components.all ;

ENTITY sort IS

GENERIC (N : INTEGER := 4) ;

PORT (Clock, Resetn : IN STD LOGIC ;

s, WrInit, Rd : IN STD LOGIC ;

DataIn : IN STD LOGIC VECTOR(N−1 DOWNTO 0) ;

RAdd : IN INTEGER RANGE 0 TO 3 ;

DataOut : BUFFER STD LOGIC VECTOR(N−1 DOWNTO 0) ;

Done : BUFFER STD LOGIC) ;

END sort ;

ARCHITECTURE Behavior OF sort IS

TYPE State type IS (S1, S2, S3, S4, S5, S6, S7, S8, S9) ;

SIGNAL y : State type ;

SIGNAL Ci, Cj : INTEGER RANGE 0 TO 3 ;

SIGNAL Rin : STD LOGIC VECTOR(3 DOWNTO 0) ;

TYPE RegArray IS

ARRAY(3 DOWNTO 0) OF STD LOGIC VECTOR(N−1 DOWNTO 0) ;

SIGNAL R : RegArray ;

SIGNAL RData, ABMux : STD LOGIC VECTOR(N−1 DOWNTO 0) ;

SIGNAL Int, Csel, Wr, BltA : STD LOGIC ;

SIGNAL CMux, IMux : INTEGER RANGE 0 TO 3 ;

SIGNAL Ain, Bin, Aout, Bout : STD LOGIC ;

SIGNAL LI, LJ, EI, EJ, zi, zj : STD LOGIC ;

SIGNAL Zero : INTEGER RANGE 3 DOWNTO 0 ; - - parallel data for Ci = 0

SIGNAL A, B, ABData : STD LOGIC VECTOR(N-1 DOWNTO 0) ;

BEGIN

FSM transitions: PROCESS (Resetn, Clock)

BEGIN

IF Resetn = '0' THEN

y <= S1 ;

ELSIF (Clock’EVENT AND Clock = '1') THEN

CASE y IS

WHEN S1 => IF S = '0' THEN y <= S1 ;

ELSE y <= S2 ; END IF ;

WHEN S2 => y <= S3 ;

WHEN S3 => y <= S4 ;

WHEN S4 => y <= S5 ;

… continued in Part b

Figure 7.45 VHDL code for the sorting circuit (Part a).

ISTUDY

452 C H A P T E R 7 ● DIGITAL SYSTEM DESIGN

WHEN S5 => IF BltA = '1' THEN y <= S6 ;

ELSE y <= S8 ; END IF ;

WHEN S6 => y <= S7 ;

WHEN S7 => y <= S8 ;

WHEN S8 =>

IF zj = '0' THEN y <= S4 ;

ELSIF zi = '0' THEN y <= S2 ;

ELSE y <= S9 ;

END IF ;

WHEN S9 => IF s = '1' THEN y <= S9 ; ELSE y <= S1 ; END IF ;

END CASE ;

END IF ;

END PROCESS ;

- - define the outputs generated by the FSM

Int <= '0' WHEN y = S1 ELSE '1' ;

Done <= '1' WHEN y = S9 ELSE '0' ;

FSM outputs: PROCESS (y, zi, zj)

BEGIN

LI <= '0' ; LJ <= '0' ; EI <= '0' ; EJ <= '0' ; Csel <= '0' ;

Wr <= '0' ; Ain <= '0' ; Bin <= '0' ; Aout <= '0' ; Bout <= '0' ;

CASE y IS

WHEN S1 => LI <= '1' ; EI <= '1' ;

WHEN S2 => Ain <= '1' ; LJ <= '1' ; EJ <= '1' ;

WHEN S3 => EJ <= '1' ;

WHEN S4 => Bin <= '1' ; Csel <= '1' ;

WHEN S5 => - - no outputs asserted in this state

WHEN S6 => Csel <= '1' ; Wr <= '1' ; Aout <= '1' ;

WHEN S7 => Wr <= '1' ; Bout <= '1' ;

WHEN S8 => Ain <= '1' ;

IF zj = '0' THEN

EJ <= '1' ;

ELSE

EJ <= '0' ;

IF zi = '0' THEN

EI <= '1' ;

ELSE

EI <= '0' ;

END IF;

END IF ;

WHEN S9 => - - Done is assigned 1 by conditional signal assignment

END CASE ;

END PROCESS ;

… continued in Part c

Figure 7.45 VHDL code for the sorting circuit (Part b).

ISTUDY

7.7 SORT OPERATION 453

- - define the datapath circuit

Zero <= 0 ;

GenReg: FOR i IN 0 TO 3 GENERATE

Reg: regne GENERIC MAP (N => N)

PORT MAP (RData, Resetn, Rin(i), Clock, R(i)) ;

END GENERATE ;

RegA: regne GENERIC MAP (N => N)

PORT MAP (ABData, Resetn, Ain, Clock, A) ;

RegB: regne GENERIC MAP (N => N)

PORT MAP (ABData, Resetn, Bin, Clock, B) ;

BltA <= '1' WHEN B < A ELSE '0' ;

ABMux <= A WHEN Bout = '0' ELSE B ;

RData <= ABMux WHEN WrInit = '0' ELSE DataIn ;

OuterLoop: upcount GENERIC MAP (modulus => 4)

PORT MAP (Resetn, Clock, EI, LI, Zero, Ci) ;

InnerLoop: upcount GENERIC MAP (modulus => 4)

PORT MAP (Resetn, Clock, EJ, LJ, Ci, Cj) ;

CMux <= Ci WHEN Csel = '0' ELSE Cj ;

IMux <= Cmux WHEN Int = '1' ELSE Radd ;

WITH IMux Select

ABData <= R(0) WHEN 0,

R(1) WHEN 1,

R(2) WHEN 2,

R(3) WHEN OTHERS ;

RinDec: PROCESS (WrInit, Wr, IMux)

BEGIN

IF (WrInit OR Wr) = '1' THEN

CASE IMux IS

WHEN 0 => Rin <= ''0001'' ;

WHEN 1 => Rin <= ''0010'' ;

WHEN 2 => Rin <= ''0100'' ;

WHEN OTHERS => Rin <= ''1000'' ;

END CASE ;

ELSE Rin <= ''0000'' ;

END IF ;

END PROCESS ;

Zi <= '1' WHEN Ci = 2 ELSE '0' ;

Zj <= '1' WHEN Cj = 3 ELSE '0' ;

DataOut <= (OTHERS => 'Z') WHEN Rd = '0' ELSE ABData ;

END Behavior ;

Figure 7.45 VHDL code for the sorting circuit (Part c).

ISTUDY

454 C H A P T E R 7 ● DIGITAL SYSTEM DESIGN

steps. First, a user-defined type, for which we have chosen the name RegArray, is defined

in the statement

TYPE RegArray IS ARRAY(3 DOWNTO 0) OF STD LOGIC VECTOR(N-1 DOWNTO 0)

This statement specifies that the type RegArray represents an array of four STD LOGIC

VECTOR signals. The STD LOGIC VECTOR type is also defined as an array in the IEEE

standard; it is an array of STD LOGIC signals. The R signal is defined as an array with four

elements of the RegArray type.

The FSM that controls the sort operation is described in the same way as in previous ex-

amples, using the processes FSM transitions and FSM outputs. Following these processes,

the code instantiates the registers R0 to R3, as well as A and B. The counters Ci and Cj
are instantiated by the two statements labeled OuterLoop and InnerLoop, respectively. The

multiplexers with the outputs CMux and IMux are specified using conditional signal assign-

ments. The 4-to-1 multiplexer in Figure 7.42 is defined by the selected signal assignment

that specifies the value of the ABData signal for each value of IMux. The 2-to-4 decoder

in Figure 7.43 with the outputs Rin0,… ,Rin3 is defined by the process statement labeled

RinDec. Finally, the zi and zj signals and the DataOut output are specified using conditional

signal assignments.

Figure 7.46 gives an example of a simulation result for the sorting example. Part (a) of

the figure shows the first half of the simulation, from 0 to 1.25 𝜇s, and part (b) shows the

second half, from 1.25 𝜇s to 2.5 𝜇s. After resetting the circuit, WrInit is set to 1 for four

clock cycles, and unsorted data is written into the four registers using the DataIn and RAdd
inputs. After s is changed to 1, the FSM changes to state S2. States S2 to S4 load A with

the contents of R0 (3) and B with the contents of R1 (2). State S5 compares B with A, and

since B < A, the FSM uses states S6 and S7 to swap the contents of registers R0 and R1.

In state S8, A is reloaded from R0, which now contains 2. Since zj is not asserted, the FSM

increments the counter Cj and changes back to state S4. Register B is now loaded with the

contents of R2 (4), and the FSM changes to state S5. Since B = 4 is not less than A = 2,

the machine changes to S8 and then back to S4. Register B is now loaded with the contents

of R3 (1), which is then compared against A = 2 in state S5. The contents of R0 and R3 are

swapped, and the machine changes to S8. At this point, the register contents are R0 = 1,

R1 = 3, R2 = 4, and R3 = 2. Since zj = 1 and zi = 0, the FSM performs the next iteration

of the outer loop by changing to state S2. Jumping forward in the simulation time, in Fig-

ure 7.46b the circuit reaches the state in which Ci = 2, Cj = 3, and the FSM is in state S8.

The FSM then changes to state S9 and sets Done to the value 1. The correctly sorted data

is read out of the registers by setting the signal Rd = 1 and using the RAdd inputs to select

each of the registers.

7.8 CLOCK SYNCHRONIZATION AND TIMING ISSUES

In previous sections we presented several examples of logic circuits that illustrate how a

designer may approach the task of designing larger systems. In this section we will examine

some timing aspects of such systems.

ISTUDY

7.8 CLOCK SYNCHRONIZATION AND TIMING ISSUES 455

(a) Loading the registers and starting the sort operation

(b) Completing the sort operation and reading the registers

Figure 7.46 Simulation results for the sort operation.

ISTUDY

456 C H A P T E R 7 ● DIGITAL SYSTEM DESIGN

7.8.1 CLOCK DISTRIBUTION

In Chapter 5 we discussed the need to deal with the clock skew problem. For proper opera-

tion of synchronous sequential circuits, it is essential to minimize the clock skew as much as

possible. Chips that contain many flip-flops use carefully designed networks of wires to dis-

tribute the clock signal to the flip-flops. Figure 7.47 gives an example of a clock-distribution

network. Each node labeled ff represents the clock input of a flip-flop; for clarity, the flip-

flops are not shown. The driver on the left of the figure produces the clock signal. This

signal is distributed to the flip-flops such that the length of the wire between each flip-flop

and the clock source is the same. Due to the appearance of sections of the wires, which

resemble the letter H, the clock distribution network is known as an H tree. In chips the

term global clock refers to the clock network. A chip usually provides one or more global

clocks that can be connected to all flip-flops. When designing a circuit to be implemented

in such a chip, a good design practice is to connect all the flip-flops in the circuit to a single

global clock.

Clock

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

Figure 7.47 An H tree clock distribution network.

ISTUDY

7.8 CLOCK SYNCHRONIZATION AND TIMING ISSUES 457

It is useful to be able to ensure that a sequential circuit is reset into a known state when

power is first applied to the circuit. A good design practice is to connect the asynchronous

reset (clear) inputs of all flip-flops to a wiring network that provides a low-skew reset signal.

Chips usually provide a global reset wiring network for this purpose.

7.8.2 FLIP-FLOP TIMING PARAMETERS

We discussed the timing parameters for storage elements in Chapter 5. Data to be clocked

into a flip-flop must be stable tsu before the active clock edge and must remain stable th after

the clock edge. A change in the value of the output Q appears after the clock-to-Q delay,

tcQ. An output delay time, tod, is required for the change in Q to propagate to an output

pin on the chip. These timing parameters account for the behavior of an individual flip-flop

without considering how the flip-flop is connected to other circuitry in an integrated

circuit chip.

Figure 7.48 depicts a flip-flop as part of an integrated circuit. Connections are shown

from the flip-flop’s clock, D, and Q terminals to pins on the chip package. There is an input

driver associated with each pin on the chip. Other circuitry may also be connected to the

flip-flop; the shaded box represents a combinational circuit connected to D. The propagation

delays between the pins on the chip package and the flip-flop are labeled in the figure as

tData, tClock, and tod.

In digital systems the output signals from one chip are used as the input signals to

another chip. Often the flip-flops in all chips are driven by a common clock that has low

skew. The signals must propagate from the Q outputs of flip-flops in one chip to the D inputs

of flip-flops in another chip. To ensure that all timing specifications are met, it is necessary

to consider the output delays in one chip and the input delays in another.

The tco delay determines how long it takes from when an active clock edge occurs at

the clock pin on the chip package until a change in the output of a flip-flop appears at an

output pin on the chip. This delay consists of three main parts. The clock signal must first

propagate from its input pin on the chip to the flip-flop’s Clock input. This delay is labeled

tClock in Figure 7.48. After the clock-to-Q delay tcQ, the flip-flop produces a new output,

D Q

Data

Clock

Chip package pin

A

B

tClock

tData

Out

tod

Figure 7.48 A flip-flop in an integrated circuit chip.

ISTUDY

458 C H A P T E R 7 ● DIGITAL SYSTEM DESIGN

Data

Clock

A

3 ns

4.5 ns

1.5 ns

B

Figure 7.49 Flip-flop timing in a chip.

which takes tod to propagate to the output pin. An example of timing parameters taken from

a commercial chip is tClock = 1.5 ns, tcQ = 1 ns, and tod = 2 ns. These parameters give the

delay from the active clock edge to the change on the output pin as tco = 4.5 ns.

If chips are separated by a large distance, the propagation delays between them must

be taken into consideration. But in most cases the distance between chips is small, and the

propagation time of signals between the chips is negligible. Once a signal reaches the input

pin on a chip, the relative values of tData and tClock (see Figure 7.48) must be considered.

For example, in Figure 7.49 we assume that tData = 4.5 ns and tClock = 1.5 ns. The setup

time for the flip-flops in the chip is specified as tsu = 3 ns. In the figure the Data signal

changes from low to high 3 ns before the positive clock edge, which should meet the setup

requirements. The Data signal takes 4.5 ns to reach the flip-flop, whereas the Clock signal

takes only 1.5 ns. The signal labeled A and the clock signal labeled B reach the flip-flop

at the same time. The setup time requirement is violated, and the flip-flop may become

unstable. To avoid this condition, it is necessary to increase the setup time as seen from

outside the chip.

The hold time for flip-flops is also affected by chip-level delays. The result is usually a

reduction in the hold time, rather than an increase. For example, with the timing parameters

in Figure 7.49 assume that the hold time is th = 2 ns. Assume that the signal at the Data pin

on the chip changes value at exactly the same time that an active edge occurs at the Clock
pin. The change in the Clock signal will reach node B 4.5 − 1.5 = 3 ns before the change

in Data reaches node A. Hence even though the external change in Data is coincident with

the clock edge, the required hold time of 2 ns is not violated.

For large circuits, ensuring that flip-flop timing parameters are properly adhered to is

a challenge. Both the timing parameters of the flip-flops themselves and the relative delays

incurred by the clock and data signals must be considered. CAD systems provide tools that

can check the setup and hold times at all flip-flops automatically. This task is done using

timing simulation, as well as special-purpose timing-analysis tools.

7.8.3 ASYNCHRONOUS INPUTS TO FLIP-FLOPS

In our examples of synchronous sequential circuits, we have assumed that changes in all

input signals occur shortly after an active clock edge. The rationale for this assumption is

that the inputs to one circuit are produced as the outputs of another circuit, and the same

clock signal is used for both circuits. In practice, some of the inputs to a circuit may be

ISTUDY

7.8 CLOCK SYNCHRONIZATION AND TIMING ISSUES 459

D Q

Q

Data

Clock

(asynchronous)
D Q

Q

Data

(synchronous)

Figure 7.50 Asynchronous inputs.

generated asynchronously with respect to the clock signal. If these signals are connected to

the D input of a flip-flop, then the setup or hold times may be violated.

When a flip-flop’s setup or hold times are violated, the flip-flop’s output may assume a

voltage level that does not correspond to either logic value 0 or 1. We say that the flip-flop is

in a metastable state. The flip-flop eventually settles in one of the stable states, 0 or 1, but the

time required to recover from the metastable state is not predictable. A common approach

for dealing with asynchronous inputs is illustrated in Figure 7.50. The asynchronous data

input is connected to a two-bit shift register. The output of the first flip-flop, labeled A in

the figure, will sometimes become metastable. But if the clock period is sufficiently long,

then A will recover to a stable logic value before the next clock pulse occurs. Hence the

output of the second flip-flop will not become metastable and can safely be connected to

other parts of the circuit. The synchronization circuit introduces a delay of one clock cycle

before the signal can be used by the rest of the circuit.

Commercial chips specify the minimum allowable clock period that has to be used for

the circuit in Figure 7.50 to solve the metastability problem. In practice, it is not possible

to guarantee that node A will always be stable before a clock edge occurs. The data sheets

specify a probability of node A being stable, as a function of the clock period. We will not

pursue this issue further; the interested reader can refer to specialized books for a more

detailed discussion.

7.8.4 SWITCH DEBOUNCING

Inputs to a logic circuit are sometimes generated by mechanical switches. A problem with such

switches is that they bounce away from their contact points when changed from one position to

the other. Figure 7.51a shows a single-pole single-throw switch that provides an input to a logic

circuit. If the switch is open, then the Data signal has the value 1. When the switch is thrown

to the closed position, Data becomes 0, but the switch bounces for some time, causing Data
to oscillate between 1 and 0. The bouncing typically persists for about 10 ms.

One approach to deal with this problem is to add a capacitor, C, between the Data node

and ground. When the switch is open, C is charged to the voltage VDD. When the switch is

thrown to the closed position, C is quickly discharged to 0 V (ground) through the switch

which has a resistance close to zero ohm. Now, when the switch contact bounces away from

its closed position, C will start to charge toward VDD again. But, this charging will be slower

due to the resistor R. By choosing the right sizes of R and C, it is possible to prevent the

Data node from significantly changing its voltage during bouncing.

Another possible solution is to use a circuit, such as a counter, to measure an appropri-

ately long delay to wait for the bouncing to stop (see Problem 7.20).

ISTUDY

460 C H A P T E R 7 ● DIGITAL SYSTEM DESIGN

(a) Single-pole single-throw switch

Data

VDD

R

Data

S

R

VDD

R

VDD

R

(b) Single-pole double-throw switch with a basic SR latch

Figure 7.51 Switch debouncing circuit.

A good approach for dealing with switch bouncing is depicted in Figure 7.51b. It uses a

single-pole double-throw switch and a basic SR latch to generate an input to a logic circuit.

When the switch is in the bottom position, the R input on the latch is 0 and Data = 0. When

the switch is thrown to the top position, the S input on the latch becomes 0, which sets

Data to 1. If the switch bounces away from the top position, the inputs to the latch become

R = S = 1 and the value Data = 1 is stored by the latch. When the switch is thrown to the

ISTUDY

PROBLEMS 461

bottom position, Data changes to 0 and this value is stored in the latch if the switch bounces.

Note that when a switch bounces, it cannot bounce fully between the S and R terminals; it

only bounces slightly away from one of the terminals and then back to it.

7.9 CONCLUDING REMARKS

This chapter has provided several examples of digital systems that include one or more

FSMs as well as building blocks like adders, registers, shift registers, and counters. We

have shown how ASM charts can be used as an aid for designing a digital system, and we

have shown how the circuits can be described using VHDL code. A number of practical

issues have been discussed, such as clock distribution, synchronization of asynchronous

inputs, and switch debouncing.

PROBLEMS

7.1 In Section 7.1 we showed a digital system with three registers, R1 to R3, and we designed

a control circuit that can be used to swap the contents of registers R1 and R2. Give an ASM

chart that represents this digital system and the swap operation.

7.2 (a) For the ASM chart derived in Problem 7.1, show another ASM chart that specifies the

required control signals to control the datapath circuit. Assume that multiplexers are used

to implement the bus that connects the registers, as shown in Figure 7.4.

(b) Write complete VHDL code for the system in Problem 7.1, including the control circuit

described in part (a).

(c) Synthesize a circuit from the VHDL code written in part (b) and show a timing simula-

tion that illustrates correct functionality of the circuit.

7.3 In Section 7.2 we designed a processor that performs the operations listed in Table 7.1.

Design a modified circuit that performs an additional operation Swap Rx, Ry. This operation

swaps the contents of registers Rx and Ry. Use three bits f2 f1 f0 to represent the input F
shown in Figure 7.11 because there are now five operations, rather than four. Add a new

register, named Tmp, into the system, to be used for temporary storage during the swap

operation. Show logic expressions for the outputs of the control circuit, as was done in

Section 7.2.

7.4 In Section 7.2 we gave the design for a circuit that works as a processor. Give an ASM chart

that describes the functionality of this processor.

7.5 (a) For the ASM chart derived in Problem 7.4, show another ASM chart that specifies the

required control signals to control the datapath circuit in the processor. Assume that multiplexers

are used to implement the bus that connects the registers, R0 to R3, in the processor.

(b) Write complete VHDL code for the system in Problem 7.4, including the control circuit

described in part (a).

(c) Synthesize a circuit from the VHDL code written in part (b) and show a timing simula-

tion that illustrates correct functionality of the circuit.

ISTUDY

462 C H A P T E R 7 ● DIGITAL SYSTEM DESIGN

7.6 The ASM chart in Figure 7.17, which describes the bit-counting circuit, includes Moore-

type outputs in states S1, S2, and S3, and it has a Mealy-type output in state S2.

(a) Show how the ASM chart can be modified such that it has only Moore-type outputs in

state S2.

(b) Give the ASM chart for the control circuit corresponding to part (a).

(c) Give VHDL code that represents the modified control circuit.

7.7 Figure 7.24 shows the datapath circuit for the shift-and-add multiplier. It uses a shift register

for B so that b0 can be used to decide whether or not A should be added to P. A different

approach is to use a normal register to hold operand B and to use a counter and multiplexer

to select bit bi in each stage of the multiplication operation.

(a) Show the ASM chart that uses a normal register for B, instead of a shift register.

(b) Show the datapath circuit corresponding to part (a).

(c) Give the ASM chart for the control circuit corresponding to part (b).

(d) Give VHDL code that represents the multiplier circuit.

7.8 Write VHDL code for the divider circuit that has the datapath in Figure 7.30 and the control

circuit represented by the ASM chart in Figure 7.31.

7.9 Section 7.5 shows how to implement the traditional long division that is done by “hand.”

A different approach for implementing integer division is to perform repeated subtraction

as indicated in the pseudo-code in Figure P7.1.

(a) Give an ASM chart that represents the pseudo-code in Figure P7.1.

(b) Show the datapath circuit corresponding to part (a).

(c) Give the ASM chart for the control circuit corresponding to part (b).

(d) Give VHDL code that represents the divider circuit.

(e) Discuss the relative merits and drawbacks of your circuit in comparison with the circuit

designed in Section 7.5.

Q = 0;

R = A;

while ((R B) > 0) do

R = R B ;

Q = Q + 1;

end while;

Figure P7.1 Pseudo-code for integer division.

7.10 In the ASM chart in Figure 7.39, the two states S3 and S4 are used to compute the mean

M = Sum∕k. Show a modified ASM chart that combines states S3 and S4 into a single state,

called S3.

7.11 Write VHDL code for the FSM represented by your ASM chart defined in Problem 7.10.

7.12 In the ASM chart in Figure 7.41, we specify the assignment Cj ← Ci in state S2, and

then in state S3 we increment Cj by 1. Is it possible to eliminate state S3 if the assignment

Cj ← Ci+1 is performed in S2? Explain any implications that this change has on the control

and datapath circuits.

ISTUDY

PROBLEMS 463

7.13 Figure 7.40 gives pseudo-code for the sorting operation in which the registers being sorted

are indexed using variables i and j. In the ASM chart in Figure 7.41, variables i and j are

implemented using the counters Ci and Cj. A different approach is to implement i and j
using two shift registers.

(a) Redesign the circuit for the sorting operation using the shift registers instead of the

counters to index registers R0,… ,R3.

(b) Give VHDL code for the circuit designed in part (a).

(c) Discuss the relative merits and drawbacks of your circuit in comparison with the circuit

that uses the counters Ci and Cj.

7.14 Design a circuit that finds the log2 of an operand that is stored in an n-bit register. Show all

steps in the design process and state any assumptions made. Give VHDL code that describes

your circuit.

7.15 The circuit designed in Section 7.6 uses an adder to compute the sum of the contents of

the registers. The divider subcircuit used to compute M = Sum∕k also includes an adder.

Show how the circuit can be redesigned so that it contains only a single adder subcircuit

that is used both for the summation operation and the division operation. Show only the

extra circuitry needed to connect to the adder; and explain its operation.

7.16 Give VHDL code for the circuit designed in Problem 7.15, including both the datapath and

control circuits.

7.17 The pseudo-code for the sorting operation given in Figure 7.40 uses registers A and B to

hold the contents of the registers being sorted. Show pseudo-code for the sorting opera-

tion that uses only register A to hold temporary data during the sorting operation. Give

a corresponding ASM chart that represents the datapath and control circuits needed. Use

multiplexers to interconnect the registers, in the style shown in Figure 7.42. Give a separate

ASM chart that represents the control circuit.

7.18 Give VHDL code for the sorting circuit designed in Problem 7.17.

7.19 Consider the design of a circuit that controls the traffic lights at the intersection of two roads.

The circuit generates the outputs G1, Y1, R1 and G2, Y2, R2. These outputs represent the

states of the green, yellow, and red lights, respectively, on each road. A light is turned on

if the corresponding output signal has the value 1. The lights have to be controlled in the

following manner: when G1 is turned on it must remain on for a time period called t1 and

then be turned off. Turning off G1 must result in Y1 being immediately turned on; it should

remain on for a time period called t2 and then be turned off. When either G1 or Y1 is on, R2

must be on and G2 and Y2 must be off. Turning off Y1 must result in G2 being immediately

turned on for the t1 time period. When G2 is turned off, Y2 is turned on for the t2 time

period. Of course, when either G2 or Y2 is turned on, R1 must be turned on and G1 and Y1

must be off.

(a) Give an ASM chart that describes the traffic-light controller. Assume that two down-

counters exist, one that is used to measure the t1 delay and another that is used to measure

t2. Each counter has parallel-load and enable inputs. These inputs are used to load an ap-

propriate value representing either the t1 or t2 delay and then allow the counter to count

down to 0.

(b) Give an ASM chart for the control circuit for the traffic-light controller.

ISTUDY

464 C H A P T E R 7 ● DIGITAL SYSTEM DESIGN

(c) Write complete VHDL code for the traffic-light controller, including the control circuit

from part (a) and counters to represent t1 and t2. Use any convenient clock frequency to

clock the circuit and assume convenient count values to represent t1 and t2. Give simulation

results that illustrate the operation of your circuit.

7.20 Assume that you need to use a single-pole single-throw switch as shown in Figure 7.51a.

Show how a counter can be used as a means of debouncing the Data signal produced by the

switch. (Hint: Design an FSM that has Data as an input and produces the output z, which is

the debounced version of Data. Assume that you have access to a Clock input signal with

the frequency 102.4 kHz, which can be used as needed.)

7.21 Clock signals can be generated using special purpose chips. One example of such a chip

is the 555 programmable timer, which is depicted in Figure P7.2. By choosing particular

values for the resistors Ra and Rb and the capacitor C1, the 555 timer can be used to produce

a desired clock signal. It is possible to choose both the period of the clock signal and its

duty cycle. The term duty cycle refers to the percentage of the clock period for which the

signal is high. The following equations define the clock signal produced by the chip

Clock period = 0.7(Ra + 2Rb)C1

Duty cycle =
Ra + Rb

Ra + 2Rb

(a) Determine the values of Ra, Rb, and C1 needed to produce a clock signal with a

50 percent duty cycle and a frequency of about 500 kHz.

(b) Repeat part (a) for a duty cycle of 75 percent.

5 V

Rb

Ra

555

Timer

8

7

6

51

2

3

4

C1

0.01𝜇F

Clock
(output)

Figure P7.2 The 555 programmable timer chip.

ISTUDY

465

c h a p t e r

8
OPTIMIZED IMPLEMENTATION OF

LOGIC FUNCTIONS

CHAPTER OBJECTIVES

In this chapter you will learn about:

● Synthesis of logic functions

● Analysis of logic circuits

● Algorithmic techniques for the optimization of logic functions

● Cubical representation of logic functions

● Representation of logic functions using binary decision diagrams

ISTUDY

466 C H A P T E R 8 ● OPTIMIZED IMPLEMENTATION OF LOGIC FUNCTIONS

In Chapter 2 we showed how to find the lowest-cost implementations of logic functions by using either

algebraic manipulation or Karnaugh maps. The reader is probably convinced that it is not at all obvious how

to apply the theorems of Boolean algebra to find a minimum-cost circuit. Karnaugh maps provide a system-

atic way of manually deriving minimum-cost implementations of simple logic functions, but they become

impractical for functions of many variables.

If CAD tools are used to design logic circuits, the task of minimizing the cost of implementation does

not fall to the designer; the tools perform the necessary optimizations automatically. Even so, it is important

to know something about this process. Most CAD tools have many features and options that are under control

of the user. To know when and how to apply these options, the user must have an understanding of what the

tools do.

In this chapter we will introduce some of the optimization techniques implemented in CAD tools and

show how these techniques can be automated. We first discuss synthesis techniques that can be used to produce

multilevel logic circuits, rather than just the two-level sum-of-products and product-of-sums forms that we

studied in Chapter 2. Then we will describe a cubical representation of logic functions, as well as a graphical

representation called binary decision diagrams (BDDs). We will discuss some algorithmic approaches for

circuit optimization that are based on these representations.

8.1 MULTILEVEL SYNTHESIS

In the previous chapters we have usually implemented logic functions in the sum-of-products

or product-of-sums form. Logic circuits of this type have two levels of gates. In the sum-

of-products form, the first level comprises AND gates that are connected to a second-level

OR gate. In the product-of-sums form, the first-level OR gates feed the second-level AND

gate. We have assumed that both true and complemented versions of the input variables are

available so that NOT gates are not needed to complement the variables.

A two-level realization is usually efficient for functions of a few variables. However,

as the number of inputs increases, a two-level circuit may result in logic gates that have too

many inputs. Whether or not this is an issue depends on the type of technology that is used

to implement the circuit. For example, consider the following function:

f (x1,… , x7) = x1x3x6 + x1x4x5x6 + x2x3x7 + x2x4x5x7

This is a minimum-cost SOP expression. Now consider implementing f in two types of

chips: a CPLD and an FPGA. Figure 8.1 shows a logic element in a typical CPLD, like

those shown in Appendix B. The figure indicates in red the circuitry used to realize the

function f . The CPLD architecture is well-suited for SOP implementations.

Next, consider implementing f in an FPGA. For this example we will assume an FPGA

in which the logic elements are four-input lookup tables (LUTs). As discussed in Appendix B,

a four-input LUT can implement any logic function that has up to four inputs. Since the

SOP expression for f requires three- and four-input AND operations and a four-input OR,

each of these logic operations could be realized in a separate LUT. Four LUTs would be

needed for the AND operations, plus one additional LUT for the OR operation, giving five

LUTs in total.

A more efficient implementation in the FPGA architecture can be obtained if f is ex-

pressed in a form that has more than two levels of logic operations. Such a form is called

ISTUDY

8.1 MULTILEVEL SYNTHESIS 467

Part of a logic element

(from interconnection wires)

x1 x2 x3 x4 x5 x6 x7 unused

f

Figure 8.1 Implementation in a CPLD.

a multilevel logic expression. There are several different approaches for synthesis of multi-

level circuits. We will discuss two important techniques known as factoring and functional
decomposition.

8.1.1 FACTORING

The distributive property of Boolean algebra allows us to factor the preceding expression

for f as follows

f = x1x6(x3 + x4x5) + x2x7(x3 + x4x5)

= (x1x6 + x2x7)(x3 + x4x5)

The corresponding circuit can be realized using only two LUTs, as shown in Figure 8.2.

The first LUT implements the expression g = (x1x6 + x2x7), and the second LUT

implements f = g ⋅ (x3 + x4x5).

Fan-in Problem
In the preceding example, the number of inputs, or fan-in, of each LUT is restricted

to four because of the FPGA architecture. But even if we were to make a custom chip to

implement a circuit it would still be necessary to limit the fan-in of gates. This limit is

x1

x2

f

g

x6

x7

x3

x4

x5

Figure 8.2 Using three LUTs after factoring.

ISTUDY

468 C H A P T E R 8 ● OPTIMIZED IMPLEMENTATION OF LOGIC FUNCTIONS

7 inputs

Figure 8.3 Using four-input AND gates to realize a seven-input
product term.

caused by practical issues related to transistor technology, which is discussed in Appen-

dix B. Suppose that the available AND and OR gates in a custom chip have a maximum

fan-in of four. Then, if we need to implement a logic expression that has (for example) a

seven-input product term, then we would have to use 2 four-input AND gates, as indicated

in Figure 8.3.

Factoring can be used to deal with the fan-in problem. As an example, consider the

function

f = x1x2x3x4x5x6 + x1x2x3x4x5x6

This is a minimal sum-of-products expression. Using the approach of Figure 8.3, we will

need four AND gates and one OR gate to implement this expression. Another solution is to

factor the expression as follows

f = x1x4x6(x2x3x5 + x2x3x5)

Then three AND gates and one OR gate suffice for realization of the required function, as

depicted in Figure 8.4.

Example 8.1 In practical situations a designer of logic circuits often encounters specifications that natu-

rally lead to an initial design where the logic expressions are in a factored form. Suppose

we need a circuit that meets the following requirements. There are four inputs: x1, x2, x3,

x6

x4

x1

x5

x2

x3

x2

x3

x5

Figure 8.4 A factored circuit.

ISTUDY

8.1 MULTILEVEL SYNTHESIS 469

and x4. An output, f1, must have the value 1 if at least one of the inputs x1 and x2 is equal

to 1 and both x3 and x4 are equal to 1; it must also be 1 if x1 = x2 = 0 and either x3 or x4

is 1. In all other cases f1 = 0. A different output, f2, is to be equal to 1 in all cases except

when both x1 and x2 are equal to 0 or when both x3 and x4 are equal to 0.

From this specification, the function f1 can be expressed as

f1 = (x1 + x2)x3x4 + x1x2(x3 + x4)

This expression can be simplified to

f1 = x3x4 + x1x2(x3 + x4)

which the reader can verify by using a Karnaugh map.

The second function, f2, is most easily defined in terms of its complement, such that

f 2 = x1x2 + x3x4

Then using DeMorgan’s theorem gives

f2 = (x1 + x2)(x3 + x4)

which is the minimum-cost expression for f2; the cost increases significantly if the SOP

form is used.

Because our objective is to design the lowest-cost combined circuit that implements f1
and f2, it seems that the best result can be achieved if we use the factored forms for both

functions, in which case the sum term (x3 + x4) can be shared. Moreover, observing that

x1x2 = x1 + x2, the sum term (x1 + x2) can also be shared if we express f1 in the form

f1 = x3x4 + x1 + x2(x3 + x4)

Then the combined circuit, shown in Figure 8.5, comprises three OR gates, three AND

gates, one NOT gate, and 13 inputs, for a total cost of 20. This cost includes the total number

of gates in the circuit (7) plus the total number of gate-inputs (13).

x1

x2

x3

x4

f1

f2

Figure 8.5 Circuit for Example 8.1.

ISTUDY

470 C H A P T E R 8 ● OPTIMIZED IMPLEMENTATION OF LOGIC FUNCTIONS

8.1.2 FUNCTIONAL DECOMPOSITION

In the preceding examples, which illustrate the factoring approach, multilevel circuits are

used to deal with fan-in limitations. However, such circuits may be preferable to their two-

level equivalents even if fan-in is not a problem. In some cases the multilevel circuits may

reduce the cost of implementation. On the other hand, they usually imply longer propagation

delays, because they use multiple stages of logic gates. We will explore these issues by

means of illustrative examples.

Complexity of a logic circuit can often be reduced by decomposing a two-level circuit

into subcircuits, where one or more subcircuits implement functions that may be used in

several places to construct the final circuit. To achieve this objective, a two-level logic

expression is replaced by two or more new expressions, which are then combined to define

a multilevel circuit. We can illustrate this idea by a simple example.

Example 8.2 Consider the four-variable function f shown in the Karnaugh map in Figure 8.6a. The

map indicates how the function f can be realized in minimum SOP form, leading to the

expression

f = x1x3x4 + x1x3x4 + x2x3x4 + x2x3x4

This expression has five gates and 16 inputs to gates, for a total cost of 21. We have assumed

that the primary inputs are available in both their true and complemented forms, and have

therefore not included the cost of NOT gates needed to complement x3 and x4.

To perform functional decomposition we need to find one or more subfunctions that

depend on only a subset of the input variables. In this example we will attempt to find a

subfunction that depends only on the inputs x3 and x4. Factoring x1 from the first two terms

and x2 from the last two terms, we have

f = x1(x3x4 + x3x4) + x2(x3x4 + x3x4)

0

00 01 11 10

1 1 0

0 0 1 1

0 1 1 0

0 0 1 1

00

01

11

10

(b) Multilevel circuit

x4 f

x3
g

x2

x1
x1x2

x3 x4

x1 x3 x4

x2x3 x4

x
2
x

3
x

4

x1x3x4

(a) Product terms

Figure 8.6 The function for Example 8.2.

ISTUDY

8.1 MULTILEVEL SYNTHESIS 471

Now let g(x3, x4) = x3x4 + x3x4 and observe that g = x3x4 + x3x4. The decomposed func-

tion f can be written as

f = x1g + x2g

Observing that g = x3 ⊕ x4 leads to the circuit shown in Figure 8.6b. It has five logic gates

plus nine inputs to gates, leading to a total cost of 13. The cost of this multilevel circuit is

significantly lower than that of the SOP implementation of f . The trade-off is an increased

propagation delay because the circuit has an extra level of logic.

Instead of using algebraic manipulation to find subfunctions, a more systematic ap-

proach can be followed by examining the Karnaugh map. Figure 8.7a highlights subfunc-

tion g in red. This subfunction depends only on the variables that define the rows of the

Karnaugh map, namely x3 and x4. We have

g = x3x4 + x3x4

= x3 ⊕ x4

Since g is in the rightmost column of the map, where x1 = 1 and x2 = 0, the part of f defined

by g is given by (x1x2) ⋅ g. Now, we can observe that the second column in the Karnaugh

map represents the subfunction g, and the third column is a subfunction equal to 1. Thus, f

x1 x2
x3 x4

0

00 01 11 10

1 1 0

0 0 1 1

0 1 1 0

0 0 1 1

00

01

11

10

(a) Subfunctions

g g1

(c) Karnaugh map for h(x1, x2, g)

x3

x4

x1

x2

f

g

h

(b) The structure of decomposition

x1 x2
g

0

00 01 11 10

1 1 0

0 0 1 1

0

1
x1g

x2g

Figure 8.7 Subfunctions used in decomposition.

ISTUDY

472 C H A P T E R 8 ● OPTIMIZED IMPLEMENTATION OF LOGIC FUNCTIONS

can be implemented using a three-variable function h(x1, x2, g) such that

f (x1, x2, x3, x4) = h[x1, x2, g(x3, x4)]

= (x1x2) ⋅ g + (x1x2) ⋅ g + (x1x2) ⋅ 1

The structure of this decomposition is illustrated in Figure 8.7b. We can optimize the

expression for h as shown in Figure 8.7c. The result is

h = x1g + x2g

which is the same decomposition that we derived above by using algebraic manipulation.

In Figure 8.7a we identified subfunctions by first looking at the columns of the map.

Decomposition can also be derived by first examining the rows of a map, which is the

approach that we explore in the following example.

Example 8.3 Figure 8.8a defines a five-variable function f in the form of a Karnaugh map. Examining

the rows of the map, we can see that there are only two distinct patterns, which means

that only two subfunctions are needed to implement the rows. The second and fourth rows

have one pattern, highlighted in red, while the first and third rows have the other pattern.

1 11 1

1 11 1

x1 x2
x3 x4 00 01 11 10

00

01

11

10

x1 x2
x3 x4 00 01 11 10

1 1

1 1

1

1

1

00

01

11

10

1

x5 0= x5 1=

(a) Karnaugh map for the function f

x1

x2

x5

f

g

k

(b) Circuit obtained using decomposition

x4

x3

Figure 8.8 Decomposition for Example 8.3.

ISTUDY

8.1 MULTILEVEL SYNTHESIS 473

Consider the second row. It depends only on the variables that define columns in each row,

namely, x1, x2, and x5. Let a subfunction g(x1, x2, x5) represent the pattern in this row. This

subfunction is just

g = x1 + x2 + x5

because the pattern has a 1 wherever any of these variables is equal to 1. To specify the

location of rows where the pattern g occurs, which is in rows 2 and 4, we use the variables

x3 and x4. The terms x3x4 and x3x4 identify the second and fourth rows, respectively. Thus

the expression (x3x4 + x3x4) ⋅ g represents the part of f that is defined in rows 2 and 4.

Next, we have to find a realization for the pattern in rows 1 and 3. This pattern has a 1

only in the cell where x1 = x2 = x5 = 0, which corresponds to the term x1x2x5. But we can

make a useful observation that this term is just a complement of g. The location of rows 1

and 3 is identified by terms x3x4 and x3x4, respectively. Thus the expression (x3x4+x3x4) ⋅g
represents f in rows 1 and 3.

We can make one other useful observation. The expressions (x3x4 + x3x4) and (x3x4 +
x3x4) are complements of each other. Therefore, if we let k(x3, x4) = x3x4 + x3x4, the com-

plete decomposition of f can be stated as

f (x1, x2, x3, x4, x5) = h[g(x1, x2, x5), k(x3, x4)]

= kg + kg = k ⊕ g
where g = x1 + x2 + x5

k = x3x4 + x3x4 = x3 ⊕ x4

The resulting circuit is given in Figure 8.8b. It requires a total of three gates and seven

inputs to gates, for a total cost of 10. The largest fan-in of any gate is three.

For comparison, a minimum-cost sum-of-products expression for f is

f = x1x3x4 + x1x3x4 + x2x3x4 + x2x3x4 + x3x4x5 + x3x4x5 + x1x2x3x4x5 + x1x2x3x4x5

The corresponding circuit requires a total of 9 gates (excluding the five NOT gates to com-

plement the primary inputs) and 36 inputs, giving a total cost of 45. The fan-in for the

output OR gate is eight. Obviously, functional decomposition results in a much simpler

implementation of this function.

In the two preceding examples, the decomposition is such that a decomposed subfunc-

tion depends on some primary input variables, whereas the remainder of the implementation

depends on the rest of the variables. Such decompositions are called disjoint decomposi-
tions in the technical literature. It is possible to have a non-disjoint decomposition, where

the variables of the subfunction are also used in realizing the remainder of the circuit. The

following example illustrates this possibility.

Example 8.4Suppose that we wish to implement the XOR function using only NAND gates. Figure 8.9a
shows a SOP implementation of this function, and part (b) of the figure gives a NAND-

NAND circuit that has the same structure.

Let us now try to exploit functional decomposition to find a better implementation of

XOR using only NAND gates. Let the symbol ↑ represent the NAND operation so that

ISTUDY

474 C H A P T E R 8 ● OPTIMIZED IMPLEMENTATION OF LOGIC FUNCTIONS

x2

x1

x1 x2⊕

x2

x1

x2

x1

g

x1 x2⊕

x1 x2⊕

(a) Sum-of-products implementation

(b) NAND gate implementation

(c) Optimal NAND gate implementation

Figure 8.9 Implementation of XOR.

x1 ↑ x2 = x1 ⋅ x2. A sum-of-products expression for the XOR function is

x1 ⊕ x2 = x1x2 + x1x2

From the discussion in Section 2.7, this expression can be written in terms of NAND oper-

ations as

x1 ⊕ x2 = (x1 ↑ x2) ↑ (x1 ↑ x2)

ISTUDY

8.1 MULTILEVEL SYNTHESIS 475

This expression requires five NAND gates, and it is implemented by the circuit in Fig-

ure 8.9b. Observe that an inverter is implemented using a two-input NAND gate by tying

the two inputs together.

To find a decomposition, we can manipulate the term (x1 ↑ x2) as follows:

(x1 ↑ x2) = (x1x2) = (x1(x1 + x2)) = (x1 ↑ (x1 + x2))

We can perform a similar manipulation for (x1 ↑ x2) to generate

x1 ⊕ x2 = (x1 ↑ (x1 + x2)) ↑ ((x1 + x2) ↑ x2)

DeMorgan’s theorem states that x1 + x2 = x1 ↑ x2; hence we can write

x1 ⊕ x2 = (x1 ↑ (x1 ↑ x2)) ↑ ((x1 ↑ x2) ↑ x2)

Now we have a decomposition

x1 ⊕ x2 = (x1 ↑ g) ↑ (g ↑ x2)

g = x1 ↑ x2

The corresponding circuit, which requires only four NAND gates, is given in Figure 8.9c.

Practical Issues
Functional decomposition is a powerful technique for reducing the complexity of

circuits. A big problem in functional decomposition is finding the possible subfunctions.

For functions of many variables, an enormous number of possibilities should be tried. This

situation precludes attempts at finding optimal solutions. Instead, heuristic approaches that

lead to acceptable solutions are used.

Full discussion of functional decomposition and factoring is beyond the scope of this

book. An interested reader may consult more specialized texts on the topic of logic synthesis

or switching theory. Modern CAD tools use the concept of decomposition extensively.

8.1.3 MULTILEVEL NAND AND NOR CIRCUITS

In Section 2.7 we showed that two-level circuits consisting of AND and OR gates can be

easily converted into circuits that can be realized with NAND and NOR gates, using the

same gate arrangement. In particular, an AND-OR (sum-of-products) circuit can be realized

as a NAND-NAND circuit, while an OR-AND (product-of-sums) circuit becomes a NOR-

NOR circuit. The same conversion approach can be used for multilevel circuits. We will

illustrate this approach by an example.

Example 8.5Figure 8.10a gives a four-level circuit consisting of AND and OR gates. Let us first de-

rive a functionally equivalent circuit that comprises only NAND gates. Each AND gate is

converted to a NAND by inverting its output. Each OR gate is converted to a NAND by

inverting its inputs. This is just an application of DeMorgan’s theorem, as illustrated in Fig-

ure 2.26. Figure 8.10b shows the necessary inversions in red. Note that an inversion is applied

ISTUDY

476 C H A P T E R 8 ● OPTIMIZED IMPLEMENTATION OF LOGIC FUNCTIONS

x2

x1

x3

x4

x5

x6

x7

x2

x1

x3

x4

x5

x6

x7

x2

x1

x3

x4

x5

x6

x7

f

f

f

(a) Circuit with AND and OR gates

(b) Inversions needed to convert to NANDs

(c) NAND-gate circuit

Figure 8.10 Conversion to a NAND-gate circuit.

ISTUDY

8.1 MULTILEVEL SYNTHESIS 477

(a) Inversions needed to convert to NORs

(b) NOR-gate circuit

x2

x1

x3

x4

x5

x6

x7

f

x2

x1

x3

x4

x5

x6 x7

f

Figure 8.11 Conversion to a NOR-gate circuit.

at both ends of a given wire. Now each gate becomes a NAND gate. This accounts for most

of the inversions added to the original circuit. But, there are still five inversions that are not

a part of any gate; therefore, they must be implemented separately. These inversions are at

inputs x1, x5, x6, and x7 and at the output f . They can be implemented as two-input NAND

gates, where the inputs are tied together. The resulting circuit is shown in Figure 8.10c.

A similar approach can be used to convert the circuit in Figure 8.10a into a circuit that

comprises only NOR gates. An OR gate is converted to a NOR gate by inverting its output.

An AND becomes a NOR if its inputs are inverted, as indicated in Figure 2.26. Using this

approach, the inversions needed for our sample circuit are shown in red in Figure 8.11a.

Then each gate becomes a NOR gate. The three inversions at inputs x2, x3, and x4 can be

realized as two-input NOR gates, where the inputs are tied together. The resulting circuit is

presented in Figure 8.11b.

ISTUDY

478 C H A P T E R 8 ● OPTIMIZED IMPLEMENTATION OF LOGIC FUNCTIONS

It is evident that the basic topology of a circuit does not change substantially when

converting from AND and OR gates to either NAND or NOR gates. However, it may be

necessary to insert additional gates to serve as NOT gates that implement inversions not

absorbed as a part of other gates in the circuit.

8.2 ANALYSIS OF MULTILEVEL CIRCUITS

The preceding section showed that it may be advantageous to implement logic functions

using multilevel circuits. It also presented the most commonly used approaches for synthe-

sizing functions in this way. In this section we will consider the task of analyzing an existing

circuit to determine the function that it implements.

For two-level circuits the analysis process is simple. If a circuit has an AND-OR (NAND-

NAND) structure, then its output function can be written in the SOP form by inspection.

Similarly, it is easy to derive a POS expression for an OR-AND (NOR-NOR) circuit. The

analysis task is more complicated for multilevel circuits because it is difficult to write an ex-

pression for the function by inspection. We have to derive the desired expression by tracing

the circuit and determining its functionality. The tracing can be done either starting from

the input side and working towards the output, or by starting at the output side and working

back towards the inputs. At intermediate points in the circuit, it is necessary to evaluate the

subfunctions realized by the logic gates.

Example 8.6 Figure 8.12 replicates the circuit from Figure 8.10a. To determine the function f imple-

mented by this circuit, we can consider the functionality at internal points that are the out-

puts of various gates. These points are labeled P1 to P5 in the figure. The functions realized

at these points are

P1 = x2x3

P2 = x5 + x6

P3 = x1 + P1 = x1 + x2x3

P4 = x4P2 = x4(x5 + x6)

P5 = P4 + x7 = x4(x5 + x6) + x7

x2

x1

x3

x4

x5

x6

x7

f

P3

P1

P4

P5
P2

Figure 8.12 Circuit for Example 8.6.

ISTUDY

8.2 ANALYSIS OF MULTILEVEL CIRCUITS 479

Then f can be evaluated as

f = P3P5

= (x1 + x2x3)(x4(x5 + x6) + x7)

Applying the distributive property to eliminate the parentheses gives

f = x1x4x5 + x1x4x6 + x1x7 + x2x3x4x5 + x2x3x4x6 + x2x3x7

Note that the expression represents a circuit comprising six AND gates, one OR gate,

and 25 inputs. The cost of this two-level circuit is higher than the cost of the circuit in

Figure 8.12, but the circuit has lower propagation delay.

Example 8.7In Example 8.3 we derived the circuit in Figure 8.8b. This circuit is reproduced in Fig-

ure 8.13, except that we have replaced the XOR and XNOR gates from Figure 8.8b with

their equivalent SOP form. The internal points in Figure 8.13 are labeled from P1 to P10 as

shown. The following subfunctions occur

P1 = x1 + x2 + x5

P2 = x4

P3 = x3

P4 = x3P2

P5 = x4P3

P6 = P4 + P5

P7 = P1

P8 = P6

P9 = P1P6

P10 = P7P8

x1

x2

x5

x4

fx3

P1

P4

P5

P6 P8

P2

P3

P9

P10

P7

Figure 8.13 Circuit for Example 8.7.

ISTUDY

480 C H A P T E R 8 ● OPTIMIZED IMPLEMENTATION OF LOGIC FUNCTIONS

We can derive f by tracing the circuit from the output towards the inputs as follows

f = P9 + P10

= P1P6 + P7P8

= (x1 + x2 + x5)(P4 + P5) + P1P6

= (x1 + x2 + x5)(x3P2 + x4P3) + x1x2x5P4P5

= (x1 + x2 + x5)(x3x4 + x4x3) + x1x2x5(x3 + P2)(x4 + P3)

= (x1 + x2 + x5)(x3x4 + x3x4) + x1x2x5(x3 + x4)(x4 + x3)

= x1x3x4 + x1x3x4 + x2x3x4 + x2x3x4 + x5x3x4 + x5x3x4

+ x1x2x5x3x4 + x1x2x5x4x3

This is the same expression as stated in Example 8.3.

Example 8.8 Circuits based on NAND and NOR gates are slightly more difficult to analyze because each

gate involves an inversion. Figure 8.14a depicts a simple NAND-gate circuit that illustrates

the effect of inversions. We can convert this circuit into a circuit with AND and OR gates

using the reverse of the approach described in Example 8.5. Bubbles that denote inversions

can be moved, according to DeMorgan’s theorem, as indicated in Figure 8.14b. Then the

circuit can be converted into the circuit in part (c) of the figure, which consists of AND and

OR gates. Observe that in the converted circuit, the inputs x3 and x5 are complemented.

From this circuit the function f is determined as

f = (x1x2 + x3)x4 + x5

= x1x2x4 + x3x4 + x5

It is not necessary to convert a NAND circuit into a circuit with AND and OR gates to

determine its functionality. We can use the approach from Examples 8.6 and 8.7 to derive

f as follows. Let P1, P2, and P3 label the internal points as shown in Figure 8.14a. Then

P1 = x1x2

P2 = P1x3

P3 = P2x4

f = P3x5 = P3 + x5

= P2x4 + x5 = P2x4 + x5

ISTUDY

8.2 ANALYSIS OF MULTILEVEL CIRCUITS 481

= P1x3x4 + x5 = (P1 + x3)x4 + x5

= (x1x2 + x3)x4 + x5

= (x1x2 + x3)x4 + x5

= x1x2x4 + x3x4 + x5

x1

x2

x3

x4

x5

f

P1

P2

P3

x1

x2

x3

x4

x5

f

(c) Circuit with AND and OR gates

(b) Moving bubbles to convert to ANDs and ORs

(a) NAND-gate circuit

x1

x2

x4

f
x5

x3

Figure 8.14 Circuit for Example 8.8.

ISTUDY

482 C H A P T E R 8 ● OPTIMIZED IMPLEMENTATION OF LOGIC FUNCTIONS

x2

x3

x1

x4

x5

f

P3

P1

P2

P4

Figure 8.15 Circuit for Example 8.9.

Example 8.9 The circuit in Figure 8.15 consists of NAND and NOR gates. It can be analyzed as follows.

P1 = x2x3

P2 = x1P1 = x1 + P1

P3 = x3x4 = x3 + x4

P4 = P2 + P3

f = P4 + x5 = P4x5

= P2 + P3 ⋅ x5

= (P2 + P3)x5

= (x1 + P1 + x3 + x4)x5

= (x1 + x2x3 + x3 + x4)x5

= (x1 + x2 + x3 + x4)x5

= x1x5 + x2x5 + x3x5 + x4x5

Note that in deriving the second to the last line, we used property 16a in Section 2.5

to simplify x2x3 + x3 into x2 + x3.

Analysis of circuits is much simpler than synthesis. With a little practice one can

develop an ability to easily analyze even fairly complex circuits.

We have now covered a considerable amount of material on synthesis and analysis of

logic functions. We have used the Karnaugh map as a vehicle for illustrating the concepts

involved in finding optimal implementations of logic functions. We have also shown that

logic functions can be realized in a variety of forms, both with two levels of logic and with

multiple levels. In a modern design environment, logic circuits are synthesized using CAD

tools, rather than by hand. The concepts that we have discussed in this chapter are quite

ISTUDY

8.3 ALTERNATIVE REPRESENTATIONS OF LOGIC FUNCTIONS 483

general; they are representative of the strategies implemented in CAD algorithms. As we

have said before, the Karnaugh map scheme for representing logic functions is not appro-

priate for use in CAD tools. In the next section we discuss two alternative representations

of logic functions, which are suitable for use in CAD algorithms.

8.3 ALTERNATIVE REPRESENTATIONS OF
LOGIC FUNCTIONS

So far in this book, we have encountered four different forms for representing logic func-

tions: truth tables, algebraic expressions, Venn diagrams, and Karnaugh maps. Two other

possibilities are introduced in this section, called cubical notation and binary decision

diagrams.

8.3.1 CUBICAL REPRESENTATION

Cubical notation represents an n-variable logic function by mapping it onto an n-dimensional

cube. We can illustrate this representation by first introducing some simple examples

of cubes.

Two-Dimensional Cube
A two-dimensional cube is shown in Figure 8.16. The four corners in the cube are

called vertices, which correspond to the four rows of a truth table. Each vertex is identified

by two coordinates. The horizontal coordinate is assumed to correspond to variable x1, and

vertical coordinate to x2. Thus vertex 00 is the bottom-left corner, which corresponds to

row 0 in the truth table. Vertex 01 is the top-left corner, where x1 = 0 and x2 = 1, which

corresponds to row 1 in the truth table, and so on for the other two vertices.

We will map a function onto the cube by indicating with red circles those vertices for

which f = 1. In Figure 8.16 f = 1 for vertices 01, 10, and 11. We can express the function

as a set of vertices, using the notation f = {01, 10, 11}. The function f is also shown in the

form of a truth table in the figure.

An edge joins two vertices for which the labels differ in the value of only one variable.

Therefore, if two vertices for which f = 1 are joined by an edge, then this edge represents

that portion of the function just as well as the two individual vertices. For example, f = 1

for vertices 10 and 11. They are joined by the edge that is labeled 1x. It is customary to use

x2x1

0

0

1

1

0

1

0

1

f

0

1

1

1

01

00

11

10

x2

x1

x1

1x

Figure 8.16 Representation of f (x1, x2) =
∑

m(1, 2, 3).

ISTUDY

484 C H A P T E R 8 ● OPTIMIZED IMPLEMENTATION OF LOGIC FUNCTIONS

the letter x to denote the fact that the corresponding variable can be either 0 or 1. Hence 1x

means that x1 = 1, while x2 can be either 0 or 1. Similarly, vertices 01 and 11 are joined by

the edge labeled x1, indicating that x1 can be either 0 or 1, but x2 = 1. The reader must not

confuse the use of the letter x for this purpose, in contrast to the subscripted use where x1

and x2 refer to the variables.

Two vertices being represented by a single edge is the embodiment of the combining

property 14a from Section 2.5. The edge 1x is the logical OR of vertices 10 and 11. It

essentially defines the term x1, which is the sum of minterms x1x2 and x1x2. The property

14a indicates that

x1x2 + x1x2 = x1

Therefore, finding edges for which f = 1 is equivalent to applying the combining property.

Of course, this is also analogous to finding pairs of adjacent cells in a Karnaugh map for

which f = 1.

The edges 1x and x1 define fully the function in Figure 8.16; hence we can represent

the function as f = {1x, x1}. This corresponds to the logic expression

f = x1 + x2

which is also obvious from the truth table in the figure.

Three-Dimensional Cube
Figure 8.17 illustrates a three-dimensional cube. The x1, x2, and x3 coordinates are as

shown on the left. Each vertex is identified by a specific valuation of the three variables.

The function f mapped onto the cube is the function from Figure 2.48, which was used

in Figure 2.52b. There are five vertices for which f = 1, namely, 000, 010, 100, 101, and

110. These vertices are joined by the five edges shown in red, namely, x00, 0x0, x10, 1x0,

and 10x. Because the vertices 000, 010, 100, and 110 include all valuations of x1 and x2,

when x3 is 0, they can be specified by the term xx0. This term means that f = 1 if x3 = 0,

regardless of the values of x1 and x2. Notice that xx0 represents the front side of the cube,

which is shaded in red.

x2

x1

x3

000

001

010

011

110

101

100

111

x10

1x00x0

x00

10x

xx0

Figure 8.17 Representation of f (x1, x2, x3) =
∑

m(0, 2, 4, 5, 6).

ISTUDY

8.3 ALTERNATIVE REPRESENTATIONS OF LOGIC FUNCTIONS 485

From the preceding discussion it is evident that the function f can be represented in

several ways. Some of the possibilities are

f = {000, 010, 100, 101, 110}
= {0x0, 1x0, 101}
= {x00, x10, 101}
= {x00, x10, 10x}
= {xx0, 10x}

In a physical realization each of the above terms is a product term implemented by an AND

gate. Obviously, the minimum-cost circuit is obtained if f = {xx0, 10x}, which is equivalent

to the logic expression

f = x3 + x1x2

This is the expression that we derived using the Karnaugh map in Figure 2.52b.

Four-Dimensional Cube
Graphical images of two- and three-dimensional cubes are easy to draw. A four–

dimensional cube is more difficult. It consists of 2 three-dimensional cubes with their

corners connected. A simple way to visualize a four-dimensional cube is to have one

cube placed inside the other cube, as depicted in Figure 8.18. We have assumed that the

0000 1000

1010

0110

0011

0010

0111 1111

0x1x

x0x0

x111

Figure 8.18 Representation of function f3 from Figure 2.54.

ISTUDY

486 C H A P T E R 8 ● OPTIMIZED IMPLEMENTATION OF LOGIC FUNCTIONS

x1, x2, and x3 coordinates are the same as in Figure 8.17, while x4 = 0 defines the outer

cube and x4 = 1 defines the inner cube. Figure 8.18 indicates how the function f3 of

Figure 2.54 is mapped onto the four-dimensional cube. To avoid cluttering the figure with

too many labels, we have labeled only those vertices for which f3 = 1. Again, all edges that

connect these vertices are highlighted in red.

There are two groups of four adjacent vertices for which f3 = 1 that can be represented

as planes. The group comprising 0000, 0010, 1000, and 1010 is represented by x0x0. The

group 0010, 0011, 0110, and 0111 is represented by 0x1x. These planes are shaded in the

figure. The function f3 can be represented in several ways, for example

f3 = {0000, 0010, 0011, 0110, 0111, 1000, 1010, 1111}
= {00x0, 10x0, 0x10, 0x11, x111}
= {x0x0, 0x1x, x111}

Since each x indicates that the corresponding variable can be ignored, because it can be

either 0 or 1, the simplest circuit is obtained if f = {x0x0, 0x1x, x111}, which is equivalent

to the expression

f3 = x2x4 + x1x3 + x2x3x4

We derived the same expression in Figure 2.54.

n-Dimensional Cube
A function that has n variables can be mapped onto an n-dimensional cube. Although

it is impractical to draw graphical images of cubes that have more than four variables, it

is not difficult to extend the ideas introduced above to a general n-variable case. Because

visual interpretation is not possible and because we normally use the word cube only for

a three-dimensional structure, many people use the word hypercube to refer to structures

with more than three dimensions. We will continue to use the word cube in our discussion.

It is convenient to refer to a cube as being of a certain size that reflects the number of

vertices in the cube. Vertices have the smallest size. Each variable has a value of 0 or 1 in

a vertex. A cube that has an x in one variable position is larger because it consists of two

vertices. For example, the cube 1x01 consists of vertices 1001 and 1101. A cube that has

two x’s consists of four vertices, and so on. A cube that has k x’s consists of 2k vertices.

An n-dimensional cube has 2n vertices. Two vertices are adjacent if they differ in the

value of only one coordinate. Because there are n coordinates (axes in the n-dimensional

cube), each vertex is adjacent to n other vertices. The n-dimensional cube contains cubes of

lower dimensionality. Cubes of the lowest dimension are vertices. Because their dimension

is zero, we will call them 0-cubes. Edges are cubes of dimension 1; hence we will call them

1-cubes. A side of a three-dimensional cube is a 2-cube. An entire three-dimensional cube

is a 3-cube, and so on. In general, we will refer to a set of 2k adjacent vertices as a k-cube.

From the examples in Figures 8.17 and 8.18, it is apparent that the largest possible

k-cubes that exist for a given function are equivalent to its prime implicants. In Section 8.4

we will discuss minimization techniques that use the cubical representation of functions.

ISTUDY

8.3 ALTERNATIVE REPRESENTATIONS OF LOGIC FUNCTIONS 487

8.3.2 BINARY DECISION DIAGRAMS

Binary decision diagrams (BDDs) represent logic functions in the form of a graph. BDDs

are attractive for use in CAD tools because a logic function can be represented as a BDD

without requiring a lot of memory space. To illustrate how we can derive a BDD for a

function f , consider the two-variable truth table shown in Figure 8.19a. A graph that corre-

sponds to this truth table is given in part (b) of the figure in the form of a decision tree. The

circular nodes in this tree represent the input variables x1 and x2. The node x1 is the root of

the tree. Each node has two associated edges. For a node xi the edge labeled 0 represents

xi = 0, and the edge labeled 1 corresponds to xi = 1. The square nodes are the terminal
nodes of the tree. Each terminal node specifies whether f = 0 or f = 1. Each path from the

root node to a terminal node corresponds to a row in the truth table. For example, the top

row of the truth table in Figure 8.19a has x1 = x2 = 0 and f = 1. In the decision tree the

corresponding path starts at the node x1, follows the edge labeled 0 to the subsequent node

x2, and then follows the edge labeled 0 to the terminal node 1.

0

1

1

x2

0

x1

x2

1

0 1

1

0

1

x2

1

0

x1

x2

0 1

0 1

0 1

x2

1
0

x1

0 1

0 1

f

1

0

1

1

0

0

1

1

0

1

0

1

(a) Truth table (b) Decision tree

x1 x2

(d) BDD(c) Reducing nodes

Figure 8.19 Derivation of a binary decision diagram (BDD).

ISTUDY

488 C H A P T E R 8 ● OPTIMIZED IMPLEMENTATION OF LOGIC FUNCTIONS

x2

0
1

x1

0 1

0 1

(a) AND (b) OR

x2

1
0

x1

10

10

Figure 8.20 BDDs for the AND and OR functions.

The decision tree is not an efficient way of representing a logic function, because the

size of the tree doubles with each input variable. But we can reduce the number of nodes

in the tree as illustrated in Figure 8.19c. Here, we have merged identical terminal nodes

such that there is only one terminal node representing each of the values 0 and 1. We can

then recognize that the node x2 on the right-hand side of the tree is redundant and can be

removed, because both of its edges lead to the same subsequent node. After all identical

nodes and redundant nodes have been removed from the decision tree, the resulting tree is

referred to in the technical literature as a binary decision diagram (BDD). A BDD for the

truth table in Figure 8.19a is given in Figure 8.19d. It provides a compact representation

of the logic function, and can also be used to provide a low-cost implementation. In Fig-

ure 8.19d we can see that f has the value 1 if x1 = 1 or if x1 = 0 and x2 = 0. Hence, we can write

f = x1 + x1x2 = x1 + x2. In general, a BDD can be used to provide various implementations

of a function, which may be in either two-level or multilevel form.

Examples of BDDs for the logical AND and OR functions are given in Figure 8.20.

Part (a) of the figure represents the function f = x1x2 and part (b) represents f = x1 + x2. It

is easy to extend these BDDs to represent larger AND and OR functions. Figure 8.21 shows

how we can derive BDDs for XOR functions. Part (a) gives a decision tree for the function

f = x1 ⊕ x2. When identical terminal nodes in the decision tree are merged, no redundant

nodes are created. The resulting BDD is shown in part (b) of the figure. Part (c) shows how

this BDD can be extended to represent the three-input XOR function f = x1⊕x2⊕x3. Note

that the terminal node 1 is reached from the root node x1 by following paths on which the

total number of edges labeled 1 is odd, as required for the XOR function.

Derivation of BDDs using Shannon’s Expansion
As shown in Figures 8.19 and 8.21, it is possible to derive a BDD by removing

redundant nodes and merging identical nodes in a decision tree. Although this method can

be used for any logic function, it is tedious when the function has more than a few input

variables. Another way of deriving a BDD is to make use of Shannon’s expansion theo-

rem, which we introduced in Section 4.1.2. Recall that Shannon’s expansion states that any

ISTUDY

8.3 ALTERNATIVE REPRESENTATIONS OF LOGIC FUNCTIONS 489

(b) BDD

x2

x1

x2

0 1

0

0

1 1

0

11

1

0

x2

0

x1

x2

1

0 1

0

0

1

(a) Decision tree

x2

0

1

x1

x2

1

0

0 1

0

x3

0

1

x3

1

0

1

(c) 3-input BDD

Figure 8.21 Derivation of BDDs for XOR functions.

Boolean function f (x1, x2,… , xi,… , xn) can be written in the form

f (x1, x2,… , xi,… , xn) = xi fxi
+ xi fxi

where fxi
= f (x1, x2,… , 0,… , xn) and fxi

= f (x1, x2,… , 1,… , xn).

Consider the function f = x1 + x2x3. Shannon’s expansion with respect to the input

x1 gives f = x1fx1
+ x1fx1

, which can be represented using the graph in Figure 8.22a. The

cofactors fx1
and fx1

can be evaluated as follows:

fx1
= 0 + x2x3 = x2x3

fx1
= 1 + x2x3 = 1

ISTUDY

490 C H A P T E R 8 ● OPTIMIZED IMPLEMENTATION OF LOGIC FUNCTIONS

fx1

x1

fx1

0 1

(b) BDD ordered x1, x2, x3

(c) Expansion using x2

(a) Expansion using x1

(d) BDD ordered x2, x1, x3

x1

0 1

1

x3

10

x2

10

0

x1

1
0

x2

x1

1
0

0 1

1

x3

1

0

0

fx2

x2

fx2

0 1

Figure 8.22 Derivation of BDDs for f = x1 + x2x3.

We can now derive our BDD as shown in Figure 8.22b. The subfunction fx1
= x2x3, which

is highlighted in a red color, uses the BDD for the two-input AND function that we showed

in Figure 8.20a.

A useful property of BDDs is that for a given order of the input variables there is only

one possible BDD. Using the terminology from Chapter 2, this means that for a given order

of the inputs a BDD is a canonical representation of the function. However, we should

consider the effect on a BDD if we change the order of variables. Figure 8.22c corresponds

to the Shannon’s expansion of f using the order x2, x1, x3. Now, node x2 is the root of the

ISTUDY

8.3 ALTERNATIVE REPRESENTATIONS OF LOGIC FUNCTIONS 491

tree and its edges point to the cofactors of f with respect to x2. We have

fx2
= x1 + 0 ⋅ x3 = x1

fx2
= x1 + 1 ⋅ x3 = x1 + x3

These expressions lead to the BDD in Figure 8.22d. The edge labeled 0 from node x2 points

to the subfunction x1. The edge labeled 1 from node x2 points to the subfunction x1 + x3,

which is highlighted in red. This subfunction uses the same BDD that we showed for the

two-input OR function in Figure 8.20b.

Comparing the BDDs in parts (b) and (d) of Figure 8.22, we see that the complexity

of a BDD for a given function can be affected by the order of variables. In Figure 8.22b
there are five nodes in the BDD, while in Figure 8.22d there are six nodes. CAD tools that

implement BDDs usually employ heuristic techniques which attempt to find a good order

of the input variables when deriving BDDs.

Example 8.10Assume that we are given the BDD in Figure 8.22d, and that we wish to determine the effect

on this BDD of swapping the positions of nodes x1 and x2, so that x1 becomes the root of

the BDD. The swapping operation can be performed as indicated in Figure 8.23. The first

step is to isolate the nodes x1 and x2 from the rest of the BDD, as shown by the dotted red

line in Figure 8.23a. Then, we enumerate the valuations of the inputs x1 and x2 on each path

that crosses this boundary, and determine which successor node is reached. The truth table

in Figure 8.23b provides the required information. It shows that the path with x1x2 = 00

leads to the terminal node 0, the path with x1x2 = 01 leads to node x3, and the remaining

paths lead to the terminal node 1. We can now create the diagram shown in part (c) of the

figure, ensuring that all combinations of x1x2 lead to the correct successor nodes. We now

remove the redundant node x2 on the right-hand side of the diagram, leading to the BDD

in Figure 8.22b.

1

(a) BDD ordered x2 , x1 , x3

x1

1
0

x2

x1

1
0

0 1

1

x3

1

0

0

Node

0

1

1

0

0

1

1

0

1

0

1

(b) Truth table

x1 x2

x3
x3

1

1

x2

0

x1

x2

1

0 1

0

0

x3x3

0

(c) Order x1, x2, x3

Figure 8.23 Reordering the nodes in a BDD.

ISTUDY

492 C H A P T E R 8 ● OPTIMIZED IMPLEMENTATION OF LOGIC FUNCTIONS

Example 8.11 Consider the SOP expression f = x1x3 + x1x4 + x2x4 + x2x3 + x1x2x3x4. We wish to create

a BDD for this function with the input order x1, x2, x3, x4. The first step is to use Shannon’s

expansion with respect to input x1, which is f = x1fx1
+ x1fx1

. The cofactors are

fx1
= 0 ⋅ x3 + 0 ⋅ x4 + x2x4 + x2x3 + 1 ⋅ x2x3x4

= x2x4 + x2x3 + x2x3x4

fx1
= 1 ⋅ x3 + 1 ⋅ x4 + x2x4 + x2x3 + 0 ⋅ x2x3x4

= x3 + x4 + x2x4 + x2x3 = x3 + x4

For the cofactor fx1
= x3 + x4 we can use the BDD from Figure 8.20b. But for the cofactor

fx1
= x2x4 + x2x3 + x2x3x4 it is useful to apply Shannon’s expansion again, with respect to

input x2. This gives

fx1x2
= 0 ⋅ x4 + 0 ⋅ x3 + 1 ⋅ x3x4 = x3x4

fx1x2
= 1 ⋅ x4 + 1 ⋅ x3 + 0 ⋅ x3x4 = x3 + x4

Now, we can use the BDDs in parts (a) and (b) of Figure 8.20 for the cofactors fx1x2
and

fx1x2
, respectively. The above steps lead to the diagram in Figure 8.24a, where the BDD for

the subfunction x3 + x4 is highlighted in red. This subfunction is used for both the cofactor

x2

0 1

x1

0 1

x4

0
1

x3

0 1

0

x4

1
0

x3

10

10 1

x2

0 1

x1

0 1

1

x3

0
1

x4

0

x3

1
0

0 1

(b) BDD(a) Diagram

Figure 8.24 Derivation of a BDD for the function in Example 8.11.

ISTUDY

8.4 OPTIMIZATION TECHNIQUES BASED ON CUBICAL REPRESENTATION 493

fx1
, which is reached when x1 = 1, and the cofactor fx1x2

, which is reached when x1 = 0 and

x2 = 1. The BDD for the subfunction x3x4 is shown on the left-hand side of Figure 8.24a.

This subfunction is used for the cofactor fx1x2
and is reached when x1 = x2 = 0.

Merging the identical terminal nodes in the graph in Figure 8.24a, and also merging

the two identical copies of node x4, lead to the BDD shown in Figure 8.24b. Since this BDD

specifies that f is defined by the subfunction x3 +x4 when x1 = 1 or x2 = 1, and f is defined

by the subfunction x3x4 when x1 = x2 = 0, then we can write the multilevel expression

f = (x1 + x2) ⋅ (x3 + x4) + x1x2(x3x4)

It is easy to see how this expression relates to the SOP form above.

Practical use of BDDs
We have presented only a few introductory concepts related to BDDs, in an attempt

to give the reader an appreciation for this method of representing logic functions. More

detailed information can be found in various forms of literature. The BDD concept has

been implemented in a number of software programs that are available through the inter-

net. These programs are often referred to as BDD packages. They provide many useful

functions, including the ability to create BDDs for logic functions, reorder the inputs to

optimize these BDDs, and perform logical operations using BDDs. Although a detailed

discussion of these BDD packages is beyond the scope of this book, the user is encouraged

to search for available packages and experiment with the provided functionality. Two pop-

ular packages that are often included as part of CAD tools for logic synthesis are called

BuDDy and CUDD.

8.4 OPTIMIZATION TECHNIQUES BASED ON
CUBICAL REPRESENTATION

In this section we introduce optimization techniques that utilize the cubical representation

for logic functions. Cubical representation is well suited for implementation of minimiza-

tion algorithms that can be programmed and run efficiently on computers. Such algorithms

are included in modern CAD tools. While the CAD tools can be used effectively without

detailed knowledge of how their minimization algorithms are implemented, the reader may

find it interesting to gain some insight into how this may be accomplished.

8.4.1 A TABULAR METHOD FOR MINIMIZATION

A tabular approach for minimization was proposed in the 1950s by Willard Quine and

Edward McCluskey. It became popular under the name Quine-McCluskey method. While it

is not efficient enough to be used in modern CAD tools, it is a simple method that illustrates

the key issues. We will present it using the cubical notation discussed in Section 8.3.

ISTUDY

494 C H A P T E R 8 ● OPTIMIZED IMPLEMENTATION OF LOGIC FUNCTIONS

Generation of Prime Implicants
As mentioned in Section 8.3, the prime implicants of a given logic function f are the

largest possible k-cubes for which f = 1. For incompletely specified functions, which in-

clude a set of don’t-care vertices, the prime implicants are the largest k-cubes for which

either f = 1 or f is unspecified.

Assume that the initial specification of f is given in terms of minterms for which f = 1.

Also, let the don’t-cares be specified as minterms. This allows us to create a list of vertices

for which either f = 1 or it is a don’t-care condition. We can compare these vertices in

pairwise fashion to see if they can be combined into larger cubes. Then we can attempt to

combine these new cubes into still larger cubes and continue the process until we find the

prime implicants.

The basis of the method is the combining property of Boolean algebra

xixj + xixj = xi

If we have two cubes that are identical in all variables (coordinates) except one, for which

one cube has the value 0 and the other has 1, then these cubes can be combined into a larger

cube. For example, consider f (x1,… , x4) = {1000, 1001, 1010, 1011}. The cubes 1000 and

1001 differ only in variable x4; they can be combined into a new cube 100x. Similarly, 1010

and 1011 can be combined into 101x. Then we can combine 100x and 101x into a larger

cube 10xx, which means that the function can be expressed simply as f = x1x2.

Figure 8.25 shows how we can generate the prime implicants of the function, f , in

Figure 2.58. The function is defined as

f (x1,… , x4) =
∑

m(0, 4, 8, 10, 11, 12, 13, 15)

There are no don’t-care conditions. Since larger cubes can be generated only from the

minterms that differ in just one variable, we can reduce the number of pairwise compar-

isons by placing the minterms into groups such that the cubes in each group have the same

number of 1s, and sort the groups by the number of 1s. Thus, it will be necessary to com-

pare each cube in a given group only with all cubes in the immediately preceding group. In

Figure 8.25, the minterms are ordered in this way in list 1. (Note that we indicated the deci-

mal equivalents of the minterms as well, to facilitate our discussion.) The minterms, which

are also called 0-cubes as explained in Section 8.3, can be combined into 1-cubes shown in

0 0 0 0 0

0 1 0 0
1 0 0 0

1 0 1 0
1 1 0 0

1 0 1 1
1 1 0 1

1 1 1 1

4
8

10
12

11
13

15

0,4 0 x 0 0

x 0 0 0

1 0 x 0

x 1 0 0
1 x 0 0

1 0 1 x
1 1 0 x

1 1 x 1

0,8

8,10

4,12
8,12

10,11
12,13

13,15

1 x 1 111,15

0,4,8,12 x x 0 0

List 1 List 2 List 3

Figure 8.25 Generation of prime implicants for the function in Figure 2.58.

ISTUDY

8.4 OPTIMIZATION TECHNIQUES BASED ON CUBICAL REPRESENTATION 495

list 2. To make the entries easily understood we indicated the minterms that are combined

to form each 1-cube. Next, we check if the 0-cubes are included in the 1-cubes and place a

check mark beside each cube that is included. We now generate 2-cubes from the 1-cubes

in list 2. The only 2-cube that can be generated is xx00, which is placed in list 3. Again, the

check marks are placed against the 1-cubes that are included in the 2-cube. Since there ex-

ists just one 2-cube, there can be no 3-cubes for this function. The cubes in each list without

a check mark are the prime implicants of f . Therefore, the set, P, of prime implicants is

P = {10x0, 101x, 110x, 1x11, 11x1, xx00}
= {p1, p2, p3, p4, p5, p6}

Determination of a Minimum Cover
Having generated the set of all prime implicants, it is necessary to choose a minimum-

cost subset that covers all minterms for which f = 1. As a simple measure we will assume

that the cost is directly proportional to the number of inputs to all gates, which means to

the number of literals in the prime implicants chosen to implement the function.

To find a minimum-cost cover, we construct a prime implicant cover table in which

there is a row for each prime implicant and a column for each minterm that must be covered.

Then we place check marks to indicate the minterms covered by each prime implicant.

Figure 8.26a shows the table for the prime implicants derived in Figure 8.25. If there is a

single check mark in some column of the cover table, then the prime implicant that covers

the minterm of this column is essential and it must be included in the final cover. Such is the

case with p6, which is the only prime implicant that covers minterms 0 and 4. The next step

is to remove the row(s) corresponding to the essential prime implicants and the column(s)

covered by them. Hence we remove p6 and columns 0, 4, 8, and 12, which leads to the table

in Figure 8.26b.

Now, we can use the concept of row dominance to reduce the cover table. Observe that

p1 covers only minterm 10 while p2 covers both 10 and 11. We say that p2 dominates p1.

Since the cost of p2 is the same as the cost of p1, it is prudent to choose p2 rather than

p1, so we will remove p1 from the table. Similarly, p5 dominates p3, hence we will remove

p3 from the table. Thus, we obtain the table in Figure 8.26c. This table indicates that we

must choose p2 to cover minterm 10 and p5 to cover minterm 13, which also takes care of

covering minterms 11 and 15. Therefore, the final cover is

C = {p2, p5, p6}
= {101x, 11x1, xx00}

which means that the minimum-cost implementation of the function is

f = x1x2x3 + x1x2x4 + x3x4

This is the same expression as the one derived from Figure 2.58.

ISTUDY

496 C H A P T E R 8 ● OPTIMIZED IMPLEMENTATION OF LOGIC FUNCTIONS

1 0 x 0

1 0 1 x

1 1 0 x

1 1 x 1

1 x 1 1

p1

p2

p3

p4

p5

p6 x x 0 0

Prime

implicant

Minterm

0 4 8 10 11 12 13 15

p1

p2

p3

p4

p5

Prime

implicant

Minterm

10 11 13 15

p2

p4

p5

Prime

implicant

Minterm

10 11 13 15

(c) After the removal of dominated rows

(b) After the removal of essential prime implicants

(a) Initial prime implicant cover table

Figure 8.26 Selection of a cover for the function in Figure 2.58.

In this example we used the concept of row dominance to reduce the cover table. We

removed the dominated rows because they cover fewer minterms and the cost of their prime

implicants is the same as the cost of the prime implicants of the dominating rows. However,

a dominated row should not be removed if the cost of its prime implicant is less than the

cost of the dominating row’s prime implicant.

The tabular method can be used with don’t-care conditions as illustrated in the follow-

ing example.

ISTUDY

8.4 OPTIMIZATION TECHNIQUES BASED ON CUBICAL REPRESENTATION 497

0 0 0 0 0

0 0 0 1

0 0 1 0

1 0 0 0

0 1 0 1

0 1 1 1
1 1 0 1

1 1 1 1

1

2

8

5

7
13

15

0,1 0 0 0 x

0 0 x 0
x 0 0 0

0 x 0 1

0 x 1 0

x 0 0 1

1 0 0 x

1 1 x 1

0,2
0,8

1,5

2,6

1,9

8,9

13,15

x 1 1 17,15

0,1,8,9 x 0 0 x

List 1 List 2 List 3

0 1 1 0

1 0 0 1

1 1 0 0

6

9

12
1 x 0 08,12

0 1 x 1

0 1 1 x

x 1 0 1

1 x 0 1

5,7

6,7

5,13

9,13

1 1 0 x12,13

1,5,9,13 x x 0 1

8,9,12,13 1 x 0 x

5,7,13,15 x 1 x 1

Figure 8.27 Generation of prime implicants for the function in Example 8.12.

Example 8.12The don’t-care minterms are included in the initial list in the same way as the minterms for

which f = 1. Consider the function

f (x1,… , x4) =
∑

m(0, 2, 5, 6, 7, 8, 9, 13) + D(1, 12, 15)

We encourage the reader to derive a Karnaugh map for this function as an aid in visual-

izing the derivation that follows. Figure 8.27 depicts the generation of prime implicants,

producing the result

P = {00x0, 0x10, 011x, x00x, xx01, 1x0x, x1x1}
= {p1, p2, p3, p4, p5, p6, p7}

The initial prime implicant cover table is shown in Figure 8.28a. The don’t-care minterms

are not included in the table because they do not have to be covered. There are no essential

prime implicants. Examining this table, we see that column 8 has check marks in the same

rows as column 9. Moreover, column 9 has an additional check mark in row p5. Hence

column 9 dominates column 8. We refer to this as the concept of column dominance. When

one column dominates another, we can remove the dominating column, which is column 9

in this case. Note that this is in contrast to rows where we remove dominated (rather

than dominating) rows. The reason is that when we choose a prime implicant to cover the

minterm that corresponds to the dominated column, this prime implicant will also cover the

minterm corresponding to the dominating column. In our example, choosing either p4 or

p6 covers both minterms 8 and 9. Similarly, column 13 dominates column 5, hence column 13

can be deleted.

ISTUDY

498 C H A P T E R 8 ● OPTIMIZED IMPLEMENTATION OF LOGIC FUNCTIONS

0 0 x 0

0 x 1 0

0 1 1 x

x x 0 1

x 0 0 x

p1

p2

p3

p4

p5

p6 1 x 0 x

Prime

implicant

Minterm

0 2 5 6 7 8 9

(a) Initial prime implicant cover table

(b) After the removal of columns 9 and 13

(c) After the removal of rows p5 and p6

(d) After including p4 and p7

 in the cover

p1

p2

p3

p4

p7

Prime

implicant

Minterm

p2

p3

Prime

implicant

Minterm

2 6

p7 x 1 x 1

0 2 5 6 7 8

p1

13

0 0 x 0

0 x 1 0

0 1 1 x

x x 0 1

x 0 0 x

p1

p2

p3

p4

p5

p6 1 x 0 x

Prime

implicant

Minterm

0 2 5 6 7 8

p7 x 1 x 1

Figure 8.28 Selection of a cover for the function in Example 8.12.

ISTUDY

8.4 OPTIMIZATION TECHNIQUES BASED ON CUBICAL REPRESENTATION 499

After removing columns 9 and 13, we obtain the reduced table in Figure 8.28b. In this

table row p4 dominates p6 and row p7 dominates p5. This means that p5 and p6 can be

removed, giving the table in Figure 8.28c. Now, p4 and p7 are essential to cover minterms

8 and 5, respectively. Thus, the table in Figure 8.28d is obtained, from which it is obvious

that p2 covers the remaining minterms 2 and 6. Note that row p2 dominates both rows p1

and p3.

The final cover is

C = {p2, p4, p7}
= {0x10, x00x, x1x1}

and the function is implemented as

f = x1x3x4 + x2x3 + x2x4

In Figures 8.26 and 8.28, we used the concept of row and column dominance to reduce

the cover table. This is not always possible, as illustrated in the following example.

Example 8.13Consider the function

f (x1,… , x4) =
∑

m(0, 3, 10, 15) + D(1, 2, 7, 8, 11, 14)

The prime implicants for this function are

P = {00xx, x0x0, x01x, xx11, 1x1x}
= {p1, p2, p3, p4, p5}

The initial prime implicant cover table is shown in Figure 8.29a. There are no essential

prime implicants. Also, there are no dominant rows or columns. Moreover, all prime impli-

cants have the same cost because each of them is implemented with two literals. Thus, the

table does not provide any clues that can be used to select a minimum-cost cover.

A good practical approach is to use the concept of branching. We can choose any prime

implicant, say p3, and first choose to include this prime implicant in the final cover. Then

we can determine the rest of the final cover in the usual way and compute its cost. Next we

try the other possibility by excluding p3 from the final cover and determine the resulting

cost. We compare the costs and choose the less expensive alternative.

Figure 8.29b gives the cover table that is left if p3 is included in the final cover. The

table does not include minterms 3 and 10 because they are covered by p3. The table indicates

that a complete cover must include either p1 or p2 to cover minterm 0 and either p4 or p5 to

cover minterm 15. Therefore, a complete cover can be

C = {p1, p3, p4}

The alternative of excluding p3 leads to the cover table in Figure 8.29c. Here, we see that

a minimum-cost cover requires only two prime implicants. One possibility is to choose p1

ISTUDY

500 C H A P T E R 8 ● OPTIMIZED IMPLEMENTATION OF LOGIC FUNCTIONS

0 0 x x

x 0 x 0

x x 1 1

1 x 1 x

p1

p2

p4

p5

Prime

implicant

Minterm

0 3 10 15

(a) Initial prime implicant cover table

p1

p2

p4

p5

Prime

implicant

Minterm

(b) After including

(c) After excluding

0 15

p3

p3 from the cover

x 0 1 xp3

in the cover

p1

p2

p4

p5

Prime

implicant

Minterm

0 3 10 15

Figure 8.29 Selection of a cover for the function in
Example 8.13.

and p5. The other possibility is to choose p2 and p4. Hence a minimum-cost cover is just

Cmin = {p1, p5}
= {00xx, 1x1x}

The function is realized as

f = x1x2 + x1x3

ISTUDY

8.4 OPTIMIZATION TECHNIQUES BASED ON CUBICAL REPRESENTATION 501

Summary of the Tabular Method
The tabular method can be summarized as follows:

1. Starting with a list of cubes that represent the minterms where f = 1 or a don’t-care

condition, generate the prime implicants by successive pairwise comparisons of

the cubes.

2. Derive a cover table which indicates the minterms where f = 1 that are covered by

each prime implicant.

3. Include the essential prime implicants (if any) in the final cover and reduce the table

by removing both these prime implicants and the covered minterms.

4. Use the concept of row and column dominance to reduce the cover table further. A

dominated row is removed only if the cost of its prime implicant is greater than or

equal to the cost of the dominating row’s prime implicant.

5. Repeat steps 3 and 4 until the cover table is either empty or no further reduction of

the table is possible.

6. If the reduced cover table is not empty, then use the branching approach to determine

the remaining prime implicants that should be included in a minimum cost cover.

The tabular method illustrates how an algebraic technique can be used to generate the

prime implicants. It also shows a simple approach for dealing with the covering problem,

to find a minimum-cost cover. The method has some practical limitations. In practice, func-

tions are seldom defined in the form of minterms. They are usually given either in the form

of algebraic expressions or as sets of cubes. The need to start the minimization process with

a list of minterms means that the expressions or sets have to be expanded into this form. This

list may be very large. As larger cubes are generated, there will be numerous comparisons

performed and the computation will be slow. Using the cover table to select the optimal set

of prime implicants is also computationally intensive when large functions are involved.

Many algebraic techniques have been developed, which aim to reduce the time that it

takes to generate the optimal covers. While most of these techniques are beyond the scope

of this book, we will briefly discuss one possible approach in the next section. A reader who

intends to use the CAD tools, but is not interested in the details of automated minimization,

may skip this section without loss of continuity.

8.4.2 A CUBICAL TECHNIQUE FOR MINIMIZATION

Assume that the initial specification of a function f is given in terms of implicants that

are not necessarily either minterms or prime implicants. Then it is convenient to define

an operation that will generate other implicants that are not given explicitly in the initial

specification, but which will eventually lead to the prime implicants of f . One such possi-

bility is known as the ∗-product operation, which is usually pronounced the “star-product”

operation. We will refer to it simply as the ∗-operation.

∗-Operation
The ∗-operation provides a simple way of deriving a new cube by combining two cubes

that differ in the value of only one variable. Let A = A1A2 ⋯An and B = B1B2 ⋯Bn be

two cubes that are implicants of an n-variable function. Thus each coordinate Ai and Bi

ISTUDY

502 C H A P T E R 8 ● OPTIMIZED IMPLEMENTATION OF LOGIC FUNCTIONS

𝜙
𝜙0 0

1 1

10 x

10 x
BiAi

0

1

x

Ai Bi*

Figure 8.30 The coordinate ∗-operation.

is specified as having the value 0, 1, or x. There are two distinct steps in the ∗-operation.

First, the ∗-operation is evaluated for each pair Ai and Bi, in coordinates i = 1, 2,… , n,

according to the table in Figure 8.30. Then based on the results of using the table, a set

of rules is applied to determine the overall result of the ∗-operation. The table in Figure 8.30

defines the coordinate ∗-operation, Ai ∗ Bi. It specifies the result of Ai ∗ Bi for each

possible combination of values of Ai and Bi. This result is the intersection (i.e., the common

part) of A and B in this coordinate. Note that when Ai and Bi have the opposite values (0

and 1, or vice versa), the result of the coordinate ∗-operation is indicated by the symbol ø.

We say that the intersection of Ai and Bi is empty. Using the table, the complete ∗-operation

for A and B is defined as follows:

C = A ∗ B, such that

1. C = ø if Ai ∗ Bi = ø for more than one i.
2. Otherwise, Ci = Ai ∗ Bi when Ai ∗ Bi ≠ ø, and Ci = x for the coordinate where

Ai ∗ Bi = ø.

For example, let A = {0x0} and B = {111}. Then A1 ∗ B1 = 0 ∗ 1 = ø, A2 ∗ B2 = x ∗
1 = 1, and A3 ∗ B3 = 0 ∗ 1 = ø. Because the result is ø in two coordinates, it follows

from condition 1 that A ∗ B = ø. In other words, these two cubes cannot be combined into

another cube, because they differ in two coordinates.

As another example, consider A = {11x} and B = {10x}. In this case A1 ∗ B1 = 1 ∗
1 = 1, A2 ∗ B2 = 1 ∗ 0 = ø, and A3 ∗ B3 = x ∗ x = x. According to condition 2 above,

C1 = 1, C2 = x, and C3 = x, which gives C = A ∗ B = {1xx}. A larger 2-cube is created

from two 1-cubes that differ in one coordinate only.

The result of the ∗-operation may be a smaller cube than the two cubes involved in the

operation. Consider A = {1x1} and B = {11x}. Then C = A ∗ B = {111}. Notice that C
is included in both A and B, which means that this cube will not be useful in searching for

prime implicants. Therefore, it should be discarded by the minimization algorithm.

As a final example, consider A = {x10} and B = {0x1}. Then C = A ∗ B = {01x}.

All three of these cubes are the same size, but C is not included in either A or B. Hence C
has to be considered in the search for prime implicants. The reader may find it helpful to

draw a Karnaugh map to see how cube C is related to cubes A and B.

Using the ∗-Operation to Find Prime Implicants
The essence of the ∗-operation is to find new cubes from pairs of existing cubes. In

particular, it is of interest to find new cubes that are not included in the existing cubes. A

procedure for finding the prime implicants may be organized as follows.

ISTUDY

8.4 OPTIMIZATION TECHNIQUES BASED ON CUBICAL REPRESENTATION 503

Suppose that a function f is specified by means of a set of implicants that are repre-

sented as cubes. Let this set be denoted as the cover Ck of f . Let ci and cj be any two cubes

in Ck. Then apply the ∗-operation to all pairs of cubes in Ck; let Gk+1 be the set of newly

generated cubes. Hence

Gk+1 = ci ∗ cj for all ci
, cj

𝜖 Ck

Now a new cover for f may be formed by using the cubes in Ck and Gk+1. Some of these

cubes may be redundant because they are included in other cubes; they should be removed.

Let the new cover be

Ck+1 = Ck ∪ Gk+1 − redundant cubes

where ∪ denotes the logical union of two sets, and the minus sign (−) denotes the removal

of elements of a set. If Ck+1 ≠ Ck, then a new cover Ck+2 is generated using the same

process. If Ck+1 = Ck, then the cubes in the cover are the prime implicants of f . For an

n-variable function, it is necessary to repeat the step at most n times.

Redundant cubes that have to be removed are identified through pairwise comparison

of cubes. Cube A = A1A2 ⋯An should be removed if it is included in some cube B =
B1B2 ⋯Bn, which is the case if Ai = Bi or Bi = x for every coordinate i.

Example 8.14Consider the function f (x1, x2, x3) of Figure 2.56. Assume that f is initially specified as a

set of vertices that correspond to the minterms, m0, m1, m2, m3, and m7. Hence let the initial

cover be C0 = {000, 001, 010, 011, 111}. Using the ∗-operation to generate a new set of

cubes, we obtain G1 = {00x, 0x0, 0x1, 01x, x11}. Then C1 = C0 ∪ G1 – redundant cubes.

Observe that each cube in C0 is included in one of the cubes in G1; therefore, all cubes in

C0 are redundant. Thus C1 = G1.

The next step is to apply the ∗-operation to the cubes in C1, which yields G2 = {000,

001, 0xx, 0x1, 010, 01x, 011}. Note that all of these cubes are included in the cube 0xx;

therefore, all but 0xx are redundant. Now it is easy to see that

C2 = C1 ∪ G2 – redundant terms

= {x11, 0xx}

since all cubes of C1, except x11, are redundant because they are covered by 0xx.

Applying the ∗-operation to C2 yields G3 = {011} and

C3 = C2 ∪ G3 – redundant terms

= {x11, 0xx}

Since C3 = C2, the conclusion is that the prime implicants of f are the cubes {x11, 0xx},

which represent the product terms x2x3 and x1. This is the same set of prime implicants that

we derived using a Karnaugh map in Figure 2.56.

Observe that the derivation of prime implicants in this example is similar to the tabular

method explained in Section 8.4.1 because the starting point was a function, f , given as a

set of minterms.

ISTUDY

504 C H A P T E R 8 ● OPTIMIZED IMPLEMENTATION OF LOGIC FUNCTIONS

Example 8.15 As another example, consider the four-variable function of Figure 2.57. Assume that this

function is initially specified as the cover C0 = {0101, 1101, 1110, 011x, x01x}. Then

successive applications of the ∗-operation and removing the redundant terms gives

C1 = {x01x, x101, 01x1, x110, 1x10, 0x1x}
C2 = {x01x, x101, 01x1, 0x1x, xx10}
C3 = C2

Therefore, the prime implicants are x2x3, x2x3x4, x1x2x4, x1x3, and x3x4.

Determination of Essential Prime Implicants
From a cover that consists of all prime implicants, it is necessary to extract a minimal

cover. As we saw in Section 2.12.2, all essential prime implicants must be included in the

minimal cover. To find the essential prime implicants, it is useful to define an operation

that determines a part of a cube (implicant) that is not covered by another cube. One such

operation is called the #-operation (pronounced the “sharp operation”), which is defined

as follows.

#-Operation
Again, let A = A1A2 ⋯An and B = B1B2 ⋯Bn be two cubes (implicants) of an n-

variable function. The sharp operation A#B leaves as a result “that part of A that is not

covered by B.” Similar to the ∗-operation, the #-operation has two steps: Ai#Bi is evaluated

for each coordinate i, and then a set of rules is applied to determine the overall result.

The sharp operation for each coordinate is defined in Figure 8.31. After this operation is

performed for all pairs (Ai,Bi), the complete #-operation is defined as follows:

C = A#B, such that

1. C = A if Ai#Bi = ø for some i.
2. C = ø if Ai#Bi = 𝜀 for all i.
3. Otherwise, C =

⋃
i(A1,A2,… ,Bi,… ,An) where the union is for all i for which Ai = x

and Bi ≠ x.

The first condition corresponds to the case where cubes A and B do not intersect at all;

namely, A and B differ in the value of at least one variable, which means that no part of

A is covered by B. For example, let A = 0x1 and B = 11x. The coordinate #-products are

A1#B1 = ø, A2#B2 = 0, and A3#B3 = 𝜀. Then from rule 1 it follows that 0x1 # 11x = 0x1.

𝜙

01

10 x
BiAi

0

1

x

Ai Bi#
𝜖 𝜖

𝜖 𝜖
𝜖

𝜙

Figure 8.31 The coordinate #-operation.

ISTUDY

8.4 OPTIMIZATION TECHNIQUES BASED ON CUBICAL REPRESENTATION 505

The second condition reflects the case where A is fully covered by B. For example, 0x1 #

0xx = ø. The third condition is for the case where only a part of A is covered by B. In this

case the #-operation generates one or more cubes. Specifically, it generates one cube for

each coordinate i that is x in Ai, but is not x in Bi. Each cube generated is identical to A,

except that Ai is replaced by Bi. For example, 0xx # 01x = 00x, and 0xx # 010 ={00x, 0x1}.

We will now show how the #-operation can be used to find the essential prime impli-

cants. Let P be the set of all prime implicants of a given function f . Let pi denote one prime

implicant in the set P and let DC denote the don’t-care vertices for f . (We use superscripts

to refer to different prime implicants in this section because we are using subscripts to refer

to coordinate positions in cubes.) Then pi is an essential prime implicant if and only if

pi # (P − pi) # DC ≠ ø

This means that pi is essential if there exists at least one vertex for which f = 1 that is

covered by pi, but not by any other prime implicant. The #-operation is also performed with

the set of don’t-care cubes because vertices in pi that correspond to don’t-care conditions

are not essential to cover. The meaning of pi # (P − pi) is that the #-operation is applied

successively to each prime implicant in P. For example, consider P = {p1
, p2

, p3
, p4} and

DC = {d1
, d2}. To check whether p3 is essential, we evaluate

((((p3 # p1) # p2) # p4) # d1) # d2

If the result of this expression is not ø, then p3 is essential.

Example 8.16In Example 8.14 we determined that the cubes x11 and 0xx are the prime implicants of

the function f in Figure 2.56. We can discover whether each of these prime implicants is

essential as follows

x11 # 0xx = 111 ≠ ø

0xx # x11 = {00x, 0x0} ≠ ø

The cube x11 is essential because it is the only prime implicant that covers the vertex 111,

for which f = 1. The prime implicant 0xx is essential because it is the only one that covers

the vertices 000, 001, and 010. This can be seen in the Karnaugh map in Figure 2.56.

Example 8.17In Example 8.15 we found that the prime implicants of the function in Figure 2.57 are

P = {x01x, x101, 01x1, 0x1x, xx10}. Because this function has no don’t-cares, we compute

x01x # (P – x01x) = 1011 ≠ ø

This is computed in the following steps: x01x # x101 = x01x, then x01x # 01x1 = x01x,

then x01x # 0x1x = 101x, and finally 101x # xx10 = 1011. Similarly, we obtain

x101 # (P – x101) = 1101 ≠ ø

01x1 # (P – 01x1) = ø

0x1x # (P – 0x1x) = ø

xx10 # (P – xx10) = 1110 ≠ ø

ISTUDY

506 C H A P T E R 8 ● OPTIMIZED IMPLEMENTATION OF LOGIC FUNCTIONS

Therefore, the essential prime implicants are x01x, x101, and xx10 because they are the

only ones that cover the vertices 1011, 1101, and 1110, respectively. This is obvious from

the Karnaugh map in Figure 2.57.

When checking whether a cube A is essential, the #-operation with one of the cubes in

P − A may generate multiple cubes. If so, then each of these cubes has to be checked using

the #-operation with all of the remaining cubes in P − A.

Complete Procedure for Finding a Minimal Cover
Having introduced the ∗- and #-operations, we can now outline a complete procedure

for finding a minimal cover for any n-variable function. Assume that the function f is spec-

ified in terms of vertices for which f = 1; these vertices are often referred to as the ON-set
of the function. Also, assume that the don’t-care conditions are specified as a DC-set. Then

the initial cover for f is a union of the ON and DC sets.

Prime implicants of f can be generated using the ∗-operation, and the #-operation can

be used to find the essential prime implicants. If the essential prime implicants cover the

entire ON-set, then they form the minimum-cost cover for f . Otherwise, it is necessary to

include other prime implicants until all vertices in the ON-set are covered.

A nonessential prime implicant pi should be deleted if there exists a less-expensive

prime implicant pj that covers all vertices of the ON-set that are covered by pi. If the remain-

ing nonessential prime implicants have the same cost, then a possible heuristic approach is

to arbitrarily select one of them, include it in the cover, and determine the rest of the cover.

Then an alternative cover is generated by excluding this prime implicant, and the lower-cost

cover is chosen for implementation. We already used this approach, which is often referred

to as the branching heuristic, in Sections 2.12.2 and 8.4.1.

The preceding discussion can be summarized in the form of the following minimization

procedure:

1. Let C0 = ON ∪ DC be the initial cover of function f and its don’t-care conditions.

2. Find all prime implicants of C0 using the ∗-operation; let P be this set of prime

implicants.

3. Find the essential prime implicants using the #-operation. A prime implicant pi is

essential if pi # (P − pi) # DC ≠ ø. If the essential prime implicants cover all vertices

of the ON-set, then these implicants form the minimum-cost cover.

4. Delete any nonessential pi that is more expensive (i.e., a smaller cube) than some

other prime implicant pj if pi # DC # pj = ø.

5. Choose the lowest-cost prime implicants to cover the remaining vertices of the

ON-set. Use the branching heuristic on the prime implicants of equal cost and retain

the cover with the lowest cost.

Example 8.18 To illustrate the minimization procedure, we will use the function

f (x1, x2, x3, x4, x5) =
∑

m(0, 1, 4, 8, 13, 15, 20, 21, 23, 26, 31) + D(5, 10, 24, 28)

To help the reader follow the discussion, this function is also shown in the form of a

Karnaugh map in Figure 8.32.

ISTUDY

8.4 OPTIMIZATION TECHNIQUES BASED ON CUBICAL REPRESENTATION 507

x1 x2
x3 x4 00 01 11 10

1

11 1

11

00

01

11

10

x1 x2
x3 x4 00 01 11 10

d1

1

d

d

1 1

00

01

11

10

1

x5 0= x5 1=

d

Figure 8.32 The function for Example 8.18.

Instead of f being specified in terms of minterms, let us assume that f is given as the

following SOP expression

f = x1x3x4x5 + x1x2x3x4x5 + x1x2x3x4x5 + x1x2x3x5 + x1x2x3x5 + x1x3x4x5 + x2x3x4x5

Also, we will assume that don’t-cares are specified using the expression

DC = x1x2x4x5 + x1x2x3x4x5 + x1x2x3x4x5

Thus, the ON-set expressed as cubes is

ON = {0x000, 11010, 00001, 011x1, 101x1, 1x111, x0100}

and the don’t-care set is

DC = {11x00, 01010, 00101}

The initial cover C0 consists of the ON-set and the DC-set:

C0 = {0x000, 11010, 00001, 011x1, 101x1, 1x111, x0100, 11x00, 01010, 00101}

Using the ∗-operation, the subsequent covers obtained are

C1 = {0x000, 011x1, 101x1, 1x111, x0100, 11x00, 0000x, 00x00, x1000, 010x0, 110x0,

x1010, 00x01, x1111, 0x101, 1010x, x0101, 1x100, 0010x}
C2 = {0x000, 011x1, 101x1, 1x111, 11x00, x1111, 0x101, 1x100, x010x, 00x0x, x10x0}
C3 = C2

Therefore, P = C2.

Using the #-operation, we find that there are two essential prime implicants: 00x0x

(because it is the only one that covers the vertex 00001) and x10x0 (because it is the only

one that covers the vertex 11010). The minterms of f covered by these two prime implicants

are m(0, 1, 4, 8, 26).

Next, we find that 1x100 can be deleted because the only ON-set vertex that it covers is

10100 (m20), which is also covered by x010x and the cost of this prime implicant is lower.

Note that having removed 1x100, the prime implicant x010x becomes essential because

ISTUDY

508 C H A P T E R 8 ● OPTIMIZED IMPLEMENTATION OF LOGIC FUNCTIONS

none of the other remaining prime implicants covers the vertex 10100. Therefore, x010x

has to be included in the final cover. It covers m(20, 21).

There remains to find prime implicants to cover m(13, 15, 23, 31). Using the branching

heuristic, the lowest-cost cover is obtained by including the prime implicants 011x1 and

1x111. Thus the final cover is

Cminimum = {00x0x, x10x0, x010x, 011x1, 1x111}

The corresponding sum-of-products expression is

f = x1x2x4 + x2x3x5 + x2x3x4 + x1x2x3x5 + x1x3x4x5

Although this procedure is tedious when performed by hand, it is not difficult to write

a computer program to implement the algorithm automatically. The reader should check

the validity of our solution by finding the optimal realization from the Karnaugh map in

Figure 8.32.

8.4.3 PRACTICAL CONSIDERATIONS

The purpose of the above discussion was to give the reader some idea about how mini-

mization of logic functions may be automated for use in CAD tools. We chose a scheme

that is not too difficult to explain. From the practical point of view, this scheme has some

drawbacks. The main difficulty is that the number of cubes that must be considered in the

process can be extremely large.

If the goal of minimization is relaxed so that it is not imperative to find a minimum-cost

implementation, then it is possible to derive heuristic techniques that produce good results

in reasonable time. A technique of this type forms the basis of the widely used Espresso

program, which is available on the Internet from the University of California at Berkeley.

Espresso is a two-level optimization program. Both input to the program and its output

are specified in the format of cubes. Instead of using the ∗-operation to find the prime

implicants, one of the methods used in Espresso is an implicant-expansion technique. (See

Problem 8.25 for an illustration of the expansion of implicants.) Many publications that

explain the details used in the Espresso tool can be found in the technical literature.

The University of California at Berkeley has provided software programs that can be

used for design of multilevel circuits, called MIS, SIS, and ABC. They allow a user to apply

various multilevel optimization techniques to a logic circuit. The user can experiment with

different optimization strategies by applying techniques such as factoring and decomposi-

tion to all or part of a circuit.

Numerous commercial CAD systems are on the market. Some companies whose prod-

ucts are widely used are Intel, Cadence Design Systems, Mentor Graphics, Synopsys, and

Xilinx. Information on their products is available on the World Wide Web. Each company

provides logic synthesis software that can be used to target various types of chips, such

as FPGAs, gate arrays, standard cells, and custom chips. Because there are many possible

ways to synthesize a given circuit, as we saw in the previous sections, each commercial

product uses a proprietary logic optimization strategy based on heuristic methods.

ISTUDY

8.6 EXAMPLES OF SOLVED PROBLEMS 509

To describe CAD tools, some new terminology has been invented. In particular, we

should mention two terms that are widely used in industry: technology-independent logic
synthesis and technology mapping. The first term refers to techniques that are applied when

optimizing a circuit without considering the resources available in the target chip. Most

of the techniques presented in this chapter are of this type. The second term, technology

mapping, refers to techniques that are used to ensure that the circuit produced by logic

synthesis can be realized using the logic resources available in the target chip. A good

example of technology mapping is the transformation from a circuit in the form of logic

operations such as AND and OR into a circuit that consists of only NAND operations. This

type of technology mapping is done when targeting a circuit to a gate array that contains only

NAND gates. Another example is the translation from logic operations to lookup tables,

which is done when targeting a design to an FPGA.

Chapter 10 discusses the CAD tools in detail. It presents a typical design flow that a

designer may use to implement a digital system.

8.5 CONCLUDING REMARKS

This chapter has attempted to provide the reader with an understanding of various aspects

of synthesis for logic functions. In the next chapter we discuss asynchronous sequential

circuits. In the design of these circuits we will make use of many of the synthesis techniques

covered in the previous chapters, as well as the cubical notation that we introduced in this

chapter.

8.6 EXAMPLES OF SOLVED PROBLEMS

This section presents some typical problems that the reader may encounter, and shows how

such problems can be solved.

Example 8.19Problem: Consider the four-input logic function

f = x1x2x4 + x2x3x4 + x1x2x3

Show how this function can be implemented in an FPGA that has three-input LUTs.

Solution: A straightforward implementation requires 4 three-input LUTs. Three of these

LUTs are used for the AND operations, and the final LUT implements the OR operation.

But, if the function is synthesized as

f = x2 ⋅ (x1x4 + x3x4) + x2 ⋅ (x1x3)

then only three LUTs are needed, as illustrated in Figure 8.33. The first LUT produces

the subfunction g = x1x4 + x3x4, the second LUT generates h = x1x3, and the final LUT

produces f = x2 ⋅ g + x2 ⋅ h.

ISTUDY

510 C H A P T E R 8 ● OPTIMIZED IMPLEMENTATION OF LOGIC FUNCTIONS

x1

x3

f
0

x4

x1

x3

g

h

x2

Figure 8.33 The function in Example 8.19.

Example 8.20 Problem: In Example 8.11 we created a BDD for the function f = x1x3 + x1x4 + x2x4 +
x2x3 + x1x2x3x4. Use functional decomposition to derive a multilevel implementation of f .

Consider subfunctions of the inputs x3 and x4.

Solution: Figure 8.34 shows f in the form of a Karnaugh map. It has the subfunction h =
x3x4 in the first column, and the subfunction g = x3 + x4 in the second, third, and fourth

columns. Hence

f = (x1x2) ⋅ h + (x1x2 + x1x2 + x1x2) ⋅ g
= (x1x2) ⋅ x3x4 + (x1 + x2) ⋅ (x3 + x4)

This is the same expression that was derived from the BDD in Example 8.11. It is possible

to simplify this expression. Let k = (x1 + x2), so that

f = k ⋅ x3x4 + k ⋅ (x3 + x4)

= k ⋅ x3x4 + k ⋅ x3 + k ⋅ x4

= k ⋅ x3x4 + k ⋅ x3x4 + k ⋅ x3 + k ⋅ x4

= (k + k) ⋅ x3x4 + k ⋅ (x3 + x4)

= x3x4 + k ⋅ (x3 + x4)

x1 x2
x3 x4

0

00 01 11 10

0 0 0

0 1 1 1

1 1 1 1

0 1 1 1

00

01

11

10

gh

Figure 8.34 The function for Example 8.20.

ISTUDY

8.6 EXAMPLES OF SOLVED PROBLEMS 511

Here, we have used the absorption rule 13a from Section 2.5 to expand k ⋅ x3 into the two

terms k ⋅ x3x4 + k ⋅ x3, which then leads to a simplification. Resubstituting k = (x1 + x2)

gives

f = x3x4 + (x1 + x2) ⋅ (x3 + x4)

We can also derive this decomposition of f by examining the rows of the Karnaugh map

in Figure 8.34 and identifying subfunctions of variables x1 and x2. The second and fourth

rows are the subfunction k = x1 + x2, and the third row is the subfunction equal to 1. Thus

f = (x3x4 + x3x4) ⋅ k + (x3x4) ⋅ 1

= (x3x4) ⋅ k + (x3x4) ⋅ k + (x3x4) ⋅ k + x3x4

= (x3x4 + x3x4 + x3x4) ⋅ k + x3x4

= (x3 + x4) ⋅ k + x3x4

= (x3 + x4) ⋅ (x1 + x2) + x3x4

Example 8.21Problem: Show how Shannon’s expansion can be used to create a BDD for the function

f = x1x3 + x2x4, with the input order x1, x2, x3, x4.

Solution: Shannon’s expansion with respect to x1 gives f = x1fx1
+ x1fx1

. The cofactors are

fx1
= 0 ⋅ x3 + x2x4 = x2x4

fx1
= 1 ⋅ x3 + x2x4 = x3 + x2x4

For the cofactor fx1
= x3+x2x4 it is useful to apply Shannon’s expansion again, with respect

to input x2. This gives

fx1x2
= x3 + 0 ⋅ x4 = x3

fx1x2
= x3 + 1 ⋅ x4 = x3 + x4

The resulting BDD is shown in Figure 8.35. The BDD for fx1
= x2x4 is highlighted in red.

The BDD for fx1
is on the right-hand side of the figure, with the subfunction fx1x2

= x3

on the 0-edge from node x2 and the subfunction for fx1x2
= x3 + x4 on the 1-edge from

node x2.

Example 8.22Problem: Create a BDD for the function used in Example 8.21 with the input order x1,

x3, x2, x4.

Solution: We can derive the BDD by swapping the inputs x2 and x3 in the BDD of Figure

8.35. The first step is to isolate the part of the BDD that contains nodes x2 and x3, as shown

by the dotted lines in Figure 8.36a. There are two edges, labeled E1 and E2, that enter this

part of the BDD. There is no reordering needed for edge E1, because it does not depend

on node x3. But for edge E2, it is useful to create the truth table shown in Figure 8.36b to

enumerate the paths in the BDD that start at E2. The path representing x2x3 = 00 leads to

ISTUDY

512 C H A P T E R 8 ● OPTIMIZED IMPLEMENTATION OF LOGIC FUNCTIONS

x2

1

1

x1

10

0

x2

10

1

0
1

0

x3 x3

0

0

x4

1

Figure 8.35 The BDD for Example 8.21.

x2

1

1

x1

10

0

x2

10

x4
1

0
1

10

x3 x3

0

0

E1 E2

0

0

1

1

0

1

0

1

(b) Truth table

x2 x3

(a) Isolating x2 and x3

0

1

1

E2

x4

Figure 8.36 Reordering the BDD in Figure 8.35.

ISTUDY

8.6 EXAMPLES OF SOLVED PROBLEMS 513

x3

0

1

x1

10

0
x4

1

x3

0 1

10

x2 x2

1

0

E1 E2

(a) Reordered tree

1
x2

0

x3
0

1

x1

10

0

x4

1

10

1

0

(b) Order x1, x3, x2, x4

x2

Figure 8.37 The BDD for Example 8.22.

the terminal node 0, the path for x2x3 = 10 leads to node x4, and the remaining two paths

lead to the terminal node 1.

We can now create the graph shown in Figure 8.37a, ensuring that all paths from edge

E2 reach the correct destination nodes shown in the truth table. Removing the redundant

node x2 on the right-hand side of this graph, and also merging the two remaining identical

copies of node x2, results in the BDD in Figure 8.37b. This BDD is simpler than the one in

Figure 8.35.

Example 8.23Problem: Use the tabular method of Section 8.4.1 to derive a minimum-cost SOP expres-

sion for the function

f (x1,… , x4) = x1x3x4 + x3x4 + x1x2x4 + x1x2x3x4

assuming that there are also don’t-cares defined as D =
∑

(9, 12, 14).

Solution: The tabular method requires that we start with the function defined in the form

of minterms. As found in Figure 2.68, the function f can also be represented as

f (x1,… , x4) =
∑

m(0, 1, 3, 4, 7, 11, 13, 15) + D(9, 12, 14)

The corresponding eleven 0-cubes are placed in list 1 in Figure 8.38.

ISTUDY

514 C H A P T E R 8 ● OPTIMIZED IMPLEMENTATION OF LOGIC FUNCTIONS

0 0 0 0 0

0 0 0 1

0 1 0 0

0 0 1 1

1 0 1 1

1 1 0 1

1 1 1 1

1

4

3

11

13

15

0,1 0 0 0 x

0 x 0 0

0 0 x 1

x 0 0 1

x 1 0 0

1 1 x 1

0,4

1,3

1,9

4,12

13,15

x 1 1 17,15

List 1 List 2 List 3

1 0 0 1

1 1 0 0

0 1 1 1

9

12

7

0 x 1 13,7

x 0 1 1

1 0 x 1

1 x 0 1

1 1 0 x

3,11

9,11

9,13

12,13

1 1 x 012,14

1,3,9,11 x 0 x 1

3,7,11,15 x x 1 1

9,11,13,15 1 x x 1

1 1 1 014

1 1 1 x14,15

1 x 1 111,15

12,13,14,15 1 1 x x

Figure 8.38 Generation of prime implicants for the function in Example 8.23.

Now, we perform a pairwise comparison of all 0-cubes to determine the 1-cubes shown

in list 2, which are obtained by combining pairs of 0-cubes. Note that all 0-cubes are in-

cluded in the 1-cubes, as indicated by the checkmarks in list 1. Next, perform a pairwise

comparison of all 1-cubes to obtain the 2-cubes in list 3. Some of these 2-cubes can be

generated in multiple ways, but it is not useful to list a 2-cube more than once (for example,

x0x1 in list 3 can be obtained by combining from list 2 the cubes 1,3 and 9,11 or by using

the cubes 1,9 and 3,11). Note that all but three 1-cubes are included in the 2-cubes. It is not

possible to generate any 3-cubes, hence all terms that are not included in some other term

(the unchecked terms in list 2 and all terms in list 3) are the prime implicants of f . The set

of prime implicants is

P = {000x, 0x00, x100, x0x1, xx11, 1xx1, 11xx}
= {p1, p2, p3, p4, p5, p6, p7}

To find the minimum-cost cover for f , construct the table in Figure 8.39a which shows

all prime implicants and the minterms that must be covered, namely those for which f = 1.

A checkmark is placed to indicate that a minterm is covered by a particular prime implicant.

Since minterm 7 is covered only by p5, this prime implicant must be included in the final

cover. Observe that row p2 dominates row p3, hence the latter can be removed. Similarly,

row p6 dominates row p7. Removing rows p5, p3, and p7, as well as columns 3, 7, 11, and 15

(which are covered by p5), leads to the reduced table in Figure 8.39b. In this table, p2 and

p6 are essential. They cover minterms 0, 4, and 13. Thus, it remains only to cover minterm

1, which can be done by choosing either p1 or p4. Since p4 has a lower cost, it should be

chosen. Therefore, the final cover is

C = {p2, p4, p5, p6}
= {0x00, x0x1, xx11, 1xx1}

ISTUDY

8.6 EXAMPLES OF SOLVED PROBLEMS 515

0 0 0 x

0 x 0 0

x 1 0 0

x x 1 1

x 0 x 1

p1

p2

p3

p4

p5

p6 1 x x 1

Prime

implicant

Minterm

0 1 3 4 7 11 13

(a) Initial prime implicant cover table

p7 1 1 x x

15

0 0 0 x

0 x 0 0

x 0 x 1

1 x x 1

p1

p2

p4

p6

Prime

implicant

Minterm

0 1 4 13

(b) After the removal of rows p3, p5 and p7 and columns 3, 7, 11 and 15

Figure 8.39 Selection of a cover for the function in Example 8.23.

and the function is implemented as

f = x1x3x4 + x2x4 + x3x4 + x1x4

Example 8.24Problem: Use the ∗-product operation to find all prime implicants of the function

f (x1,… , x4) = x1x3x4 + x3x4 + x1x2x4 + x1x2x3x4

assuming that there are also don’t-cares defined as D =
∑

(9, 12, 14).

Solution: The ON-set for this function is

ON = {0x00, xx11, 00x1, 1101}

The initial cover, consisting of the ON-set and the don’t-cares, is

C0 = {0x00, xx11, 00x1, 1101, 1001, 1100, 1110}
ISTUDY

516 C H A P T E R 8 ● OPTIMIZED IMPLEMENTATION OF LOGIC FUNCTIONS

Using the ∗-operation, the subsequent covers obtained are

C1 = {0x00, xx11, 00x1, 000x, x100, 11x1, 10x1, 111x, x001, 1x01, 110x, 11x0}
C2 = {0x00, xx11, 000x, x100, x0x1, 1xx1, 11xx}
C3 = C2

Therefore, the set of all prime implicants is

P = {x1x3x4, x3x4, x1x2x3, x2x3x4, x2x4, x1x4, x1x2}

Example 8.25 Problem: Find the minimum-cost implementation for the function

f (x1,… , x4) = x1x3x4 + x3x4 + x1x2x4 + x1x2x3x4

assuming that there are also don’t-cares defined as D =
∑

(9, 12, 14).

Solution: This is the same function as used in Examples 8.23 and 8.24. In those examples,

we found that the minimum-cost SOP implementation is

f = x3x4 + x1x3x4 + x2x4 + x1x4

which requires four AND gates, one OR gate, and 13 inputs to the gates, for a total cost

of 18.

The minimum-cost POS implementation is

f = (x3 + x4)(x1 + x4)(x1 + x2 + x3 + x4)

which requires three OR gates, one AND gate, and 11 inputs to the gates, for a total cost

of 15.

We can also consider a multilevel realization for the function. Applying the factoring

concept to the above SOP expression yields

f = (x1 + x2 + x3)x4 + x1x3x4

This implementation requires two AND gates, two OR gates, and 10 inputs to the gates, for

a total cost of 14. Compared to the SOP and POS implementations, this has the lowest cost

in terms of gates and inputs, but it results in a slower circuit because there are three levels

of gates through which the signals must propagate.

Example 8.26 Problem: In several commercial FPGAs the logic blocks are four-input LUTs. Two such

LUTs, connected as shown in Figure 8.40, can be used to implement functions of seven

variables by using the decomposition

f (x1,… , x7) = f [g(x1,… , x4), x5, x6, x7]

It is easy to see that functions such as f = x1x2x3x4x5x6x7 and f = x1 + x2 + x3 + x4 + x5 +
x6 + x7 can be implemented in this form. Show that there exist other seven-variable func-

tions that cannot be implemented with 2 four-input LUTs.

ISTUDY

8.6 EXAMPLES OF SOLVED PROBLEMS 517

x3

x4

x1

x2

x6

x7

f

g

x5

LUT

LUT

Figure 8.40 Circuit for Example 8.26.

x7x5

0 0

0 1

1 0

1 1

m0

m1

m3

m2

0

0

0

0

0 0

0 1

1 0

1 1

1

1

1

1

m4

m5

m7

m6

x6

x2 x3x1 x4

m8

m9

m11

m10

m12

m13

m15

m14

m112

m113

m115

m114

m116

m117

m119

m118

m120

m121

m123

m122

m124

m125

m127

m126

00 00 00 10 11 01 11 11

Figure 8.41 A possible format for truth tables of seven-variable
functions.

Solution: The truth table for a seven-variable function can be arranged as depicted in Fig-

ure 8.41. There are 27 = 128 minterms. Each valuation of the variables x1, x2, x3, and x4

selects one of the 16 columns in the truth table, while each valuation of x5, x6, and x7 selects

one of 8 rows. Since we have to use the circuit in Figure 8.40, the truth table for f can also be

defined in terms of the subfunction g. In this case, it is g that selects one of the 16 columns

in the truth table, instead of x1, x2, x3, and x4. Since g can have only two possible values,

0 and 1, we can have only two columns in the truth table. This is possible if there exist

only two distinct patterns of 1s and 0s in the 16 columns in Figure 8.40. Therefore, only a

relatively small subset of seven-variable functions can be realized with just two LUTs.

ISTUDY

518 C H A P T E R 8 ● OPTIMIZED IMPLEMENTATION OF LOGIC FUNCTIONS

PROBLEMS

Answers to problems marked by an asterisk are given at the back of the book.

*8.1 Implement the logic circuit in Figure 8.6b using NAND gates only.

*8.2 Implement the logic circuit in Figure 8.6b using NOR gates only.

8.3 Implement the logic circuit in Figure 8.8b using NAND gates only.

8.4 Implement the logic circuit in Figure 8.8b using NOR gates only.

*8.5 Consider the function f = x3x5 + x1x2x4 + x1x2x4 + x1x3x4 + x1x3x4 + x1x2x5 + x1x2x5.

Derive a minimum-cost circuit that implements this function using NOT, AND, and

OR gates.

8.6 Derive a minimum-cost circuit that implements the function f (x1,… , x4) =
∑

m(4, 7, 8,

11) + D(12, 15).

8.7 Find the simplest realization of the function f (x1,… , x4) =
∑

m(0, 3, 4, 7, 9, 10, 13, 14),

assuming that the logic gates have a maximum fan-in of two.

*8.8 Find the minimum-cost circuit for the function f (x1,… , x4) =
∑

m(0, 4, 8, 13, 14, 15).

Assume that the input variables are available in uncomplemented form only. (Hint: Use

functional decomposition.)

8.9 Use functional decomposition to find the best implementation of the function f (x1,… , x5) =
∑

m(1, 2, 7, 9, 10, 18, 19, 25, 31) + D(0, 15, 20, 26). How does your implementation com-

pare with the lowest-cost SOP implementation? Give the costs.

8.10 In Figure 8.7 we decomposed the function f by first identifying subfunctions in the columns

of the Karnaugh map. Repeat this decomposition by first identifying subfunctions in the

rows of the Karnaugh map.

8.11 In Figure 8.8 we decomposed the function f by first identifying subfunctions in the rows

of the Karnaugh map. Repeat this decomposition by first identifying subfunctions in the

columns of the Karnaugh map.

*8.12 Create a BDD for the function in Figure 8.6 using the input order x1, x2, x3, x4.

8.13 Repeat Problem 8.12 using the input order x4, x3, x2, x1.

8.14 Create a BDD for the function in Figure 8.8 using the input order x1, x2, x3, x4, x5.

8.15 Repeat Problem 8.14 using the input order x5, x4, x3, x2, x1.

8.16 For the function f = x1x3 + x2x4 in Example 8.21 show how to use Shannon’s expansion

to derive the BDD in Figure 8.37b.

8.17 Show how to swap the variables x2 and x3 in the BDD in Figure 8.37b to derive the BDD

in Figure 8.35.

*8.18 Use the tabular method discussed in Section 8.4.1 to find a minimum cost SOP realization

for the function

f (x1,… , x4) =
∑

m(0, 2, 4, 5, 7, 8, 9, 15)

ISTUDY

PROBLEMS 519

8.19 Repeat Problem 8.18 for the function

f (x1,… , x4) =
∑

m(0, 4, 6, 8, 9, 15) + D(3, 7, 11, 13)

8.20 Repeat Problem 8.18 for the function

f (x1,… , x4) =
∑

m(0, 3, 4, 5, 7, 9, 11) + D(8, 12, 13, 14)

8.21 Show that the following distributive-like rules are valid

(A ⋅ B)#C = (A#C) ⋅ (B#C)

(A + B)#C = (A#C) + (B#C)

8.22 Use the cubical representation and the method discussed in Section 8.4.2 to find a minimum-

cost SOP realization of the function f (x1,… , x4) =
∑

m(0, 2, 4, 5, 7, 8, 9, 15).

8.23 Repeat Problem 8.22 for the function f (x1,… , x5) = x1x3x5 + x1x2x3 + x2x3x4x5 +
x1x2x3x4 + x1x2x3x4x5 + x1x2x4x5 + x1x3x4x5.

8.24 Use the cubical representation and the method discussed in Section 8.4.2 to find a minimum-

cost SOP realization of the function f (x1,… , x4) defined by the ON-set ON = {00x0, 100x,

x010, 1111} and the don’t-care set DC = {00x1, 011x}.

8.25 In Section 8.4.2 we showed how the ∗-product operation can be used to find the prime

implicants of a given function f . Another possibility is to find the prime implicants by

expanding the implicants in the initial cover of the function. An implicant is expanded
by removing one literal to create a larger implicant (in terms of the number of vertices

covered). A larger implicant is valid only if it does not include any vertices for which f = 0.

The largest valid implicants obtained in the process of expansion are the prime implicants.

Figure P8.1 illustrates the expansion of the minterm x1x2x3 of the function used in Example

8.14. Note from Figure 2.56 that

f = x1x2x3 + x1x2x3 + x1x2x3

x2x3 x1x3 x1x2

x3 x2 x3 x1 x x2 1

x1x2x3

NONONONO

Figure P8.1 Expansion of implicant x1x2x3.

ISTUDY

520 C H A P T E R 8 ● OPTIMIZED IMPLEMENTATION OF LOGIC FUNCTIONS

In Figure P8.1 the word NO is used to indicate that the expanded term is not valid, be-

cause it includes one or more vertices from f . From the graph it is clear that the

largest valid implicants that arise from this expansion are x2x3 and x1; they are prime

implicants of f .

Expand the other four minterms given in the initial cover in Example 8.14 to find all

prime implicants of f . What is the relative complexity of this procedure compared to the

∗-product technique?

8.26 Repeat Problem 8.25 for the function in Example 8.15. Expand the implicants given in the

initial cover C0.

8.27 Find the minimum-cost circuit consisting only of two-input NAND gates for the function

f (x1,… , x4) =
∑

m(0, 1, 2, 3, 4, 6, 8, 9, 12). Assume that the input variables are available

in both uncomplemented and complemented forms. (Hint: Consider the complement of

the function.)

8.28 Repeat Problem 8.27 for the function f (x1,… , x4) =
∑

m(2, 3, 6, 8, 9, 12).

8.29 Find the minimum-cost circuit consisting only of two-input NOR gates for the function

f (x1,… , x4) =
∑

m(6, 7, 8, 10, 12, 14, 15). Assume that the input variables are available in

both uncomplemented and complemented forms. (Hint: Consider the complement of the

function.)

8.30 Repeat Problem 8.29 for the function f (x1,… , x4) =
∑

m(2, 3, 4, 5, 9, 10, 11, 12, 13, 15).

ISTUDY

521

c h a p t e r

9
ASYNCHRONOUS SEQUENTIAL CIRCUITS

CHAPTER OBJECTIVES

In this chapter you will learn about:

● Sequential circuits that are not synchronized by a clock

● Analysis of asynchronous sequential circuits

● Synthesis of asynchronous sequential circuits

● The concept of stable and unstable states

● Hazards that cause incorrect behavior of a circuit

● Timing issues in digital circuits

ISTUDY

522 C H A P T E R 9 ● ASYNCHRONOUS SEQUENTIAL CIRCUITS

In Chapter 6 we covered the design of synchronous sequential circuits in which the state variables are rep-

resented by flip-flops that are controlled by a clock. The clock is a periodic signal that consists of pulses.

Changes in state can occur on the positive or negative edge of each clock pulse. Since they are controlled by

pulses, synchronous sequential circuits are said to operate in pulse mode. In this chapter we present sequential

circuits that do not operate in pulse mode and do not use flip-flops to represent state variables. These circuits

are called asynchronous sequential circuits.

In an asynchronous sequential circuit, changes in state are not triggered by clock pulses. Instead, changes

in state are dependent on whether each of the inputs to the circuit has the logic level 0 or 1 at any given time.

To achieve reliable operation, the inputs to the circuit must change in a specific manner. In this introductory

discussion we will concentrate on the simplest case in which a constraint is imposed that the inputs must

change one at a time. Moreover, there must be sufficient time between the changes in input signals to allow

the circuit to reach a stable state, which is achieved when all internal signals stop changing. A circuit that

adheres to these constraints is said to operate in the fundamental mode.

Asynchronous circuits are much more difficult to design than synchronous circuits. Specialized techniques,

which are beyond the scope of this book, have been developed for dealing with large asynchronous circuits. Our

main reason for the discussion in this chapter is the fact that the asynchronous circuits, even in their simplest

form, provide an excellent vehicle for gaining a deeper understanding of the operation of digital circuits in

general. In particular, they illustrate the timing issues caused by propagation delays in logic circuits.

The design approaches presented in this chapter are classical techniques that are suitable only for very

small circuits. They are easy to understand and they demonstrate the problems that arise from timing con-

straints. In synchronous circuits these problems are avoided by using a clock as a synchronizing mechanism.

9.1 ASYNCHRONOUS BEHAVIOR

To introduce asynchronous sequential circuits, we will reconsider the basic latch circuit in

Figure 5.3. This Set-Reset (SR) latch is redrawn in Figure 9.1a. The feedback loop gives

rise to the sequential nature of the circuit. It is an asynchronous circuit because changes in

the value of the output, Q, occur without having to wait for a synchronizing clock pulse.

In response to a change in either the S (Set) or R (Reset) input, the value of Q will change

after a short propagation time through the NOR gates. In Figure 9.1a the combined prop-

agation delay through the two NOR gates is represented by the box labeled Δ. Then, the

NOR gate symbols represent ideal gates with zero delay. Using the notation in Chapter 6,

Q corresponds to the present state of the circuit, represented by the present-state variable, y.

The value of y is fed back through the circuit to generate the value of the next-state variable,

Y , which represents the next state of the circuit. After the Δ time delay, y takes the value of

Y . Observe that we have drawn the circuit in a style that conforms to the general model for

sequential circuits presented in Figure 6.87.

By analyzing the SR latch, we can derive a state-assigned table, as illustrated in

Figure 9.1b. When the present state is y = 0 and the inputs are S = R = 0, the circuit

produces Y = 0. Since y = Y , the state of the circuit will not change. We say that the circuit

is stable under these input conditions. Now assume that R changes to 1 while S remains at

0. The circuit still generates Y = 0 and remains stable. Assume next that S changes to 1 and

R remains at 1. The value of Y is unchanged, and the circuit is stable. Then let R change to

0 while S remains at 1. This input valuation, SR = 10, causes the circuit to generate Y = 1.

Since y ≠ Y , the circuit is not stable. After the Δ time delay, the circuit changes to the new

ISTUDY

9.1 ASYNCHRONOUS BEHAVIOR 523

R

S Q

Y y

(a) Circuit with modeled gate delay

(b) State-assigned table

Present
Next state

state 0100=SR

Yy Y Y Y

10 11

0 0 0 1 0

1 1 0 1 0

Figure 9.1 Analysis of the SR latch.

present state y = 1. Once this new state is reached, the value of Y remains equal to 1 as

long as SR = 10. Hence the circuit is again stable. The analysis for the present state y = 1

can be completed using similar reasoning.

The concept of stable states is very important in the context of asynchronous sequential

circuits. For a given valuation of inputs, if a circuit reaches a particular state and remains in this

state, then the state is said to be stable. To clearly indicate the conditions under which the circuit

is stable, it is customary to encircle the stable states in the table, as illustrated in Figure 9.1b.

From the state-assigned table, we can derive the state table in Figure 9.2a. The state

names A and B represent the present states y = 0 and y = 1, respectively. Since the output

Q depends only on the present state, the circuit is a Moore-type FSM. The state diagram

that represents the behavior of this FSM is shown in Figure 9.2b.

The preceding analysis shows that the behavior of an asynchronous sequential circuit can

be represented as an FSM in a similar way as the synchronous sequential circuits in Chapter 6.

Consider now performing the opposite task. That is, given the state table in Figure 9.2a, we can

synthesize an asynchronous circuit as follows: After performing the state assignment, we have

the state-assigned table in Figure 9.1b. This table represents a truth table for Y, with the inputs

y, S, and R. Deriving a minimal product-of-sums expression yields

Y = R ⋅ (S + y)

If we were deriving a synchronous sequential circuit using the methods in Chapter 6, then

Y would be connected to the D input of a flip-flop and a clock signal would be used to

control the time when the changes in state take place. But since we are synthesizing an

asynchronous circuit, we do not insert a flip-flop in the feedback path. Instead, we create a

circuit that realizes the preceding expression using the necessary logic gates, and we feed

back the output signal as the present-state input y. Implementation using NOR gates results

ISTUDY

524 C H A P T E R 9 ● ASYNCHRONOUS SEQUENTIAL CIRCUITS

Present Next state Output

state S R = 00 01 10 11 Q

A A A B A 0

B B A B A 1

(a) State table

10

00

11
01

00

10

A 0/ B 1/

11

01

SR

(b) State diagram

Figure 9.2 FSM model for the SR latch.

in the circuit in Figure 9.1a. This simple example suggests that asynchronous circuits and

synchronous circuits can be synthesized using similar techniques. However, we will see

shortly that for more complex asynchronous circuits, the design task is considerably more

difficult.

To further explore the nature of asynchronous circuits, it is interesting to consider how

the behavior of the SR latch can be represented in the form of a Mealy model. As depicted

in Figure 9.3, the outputs produced when the circuit is in a stable state are the same as

in the Moore model, namely 0 in state A and 1 in state B. Consider now what happens

when the state of the circuit changes. Suppose that the present state is A and that the input

valuation SR changes from 00 to 10. As the state table specifies, the next state of the FSM

is B. When the circuit reaches state B, the output Q will be 1. But in the Mealy model, the

output is supposed to be affected immediately by a change in the input signals. Thus while

still in state A, the change in SR to 10 should result in Q = 1. We could have written a 1

in the corresponding entry in the top row of the state table, but we have chosen to leave

this entry unspecified instead. The reason is that since Q will change to 1 as soon as the

circuit reaches state B, there is little to be gained in trying to make Q go to 1 a little sooner.

Leaving the entry unspecified allows us to assign either 0 or 1 to it, which may make the

circuit that implements the state table somewhat simpler. A similar reasoning leads to the

conclusion that the two output entries where a change from B to A takes place can also be

left unspecified.

Using the state assignment y = 0 for A and y = 1 for B, the state-assigned table

represents a truth table for both Y and Q. The minimal expression for Y is the same as for

the Moore model. To derive an expression for Q, we need to set the unspecified entries to

0 or 1. Assigning a 0 to the unspecified entry in the first row and 1 to the two unspecified

entries in the second row produces Q = y and results in the circuit in Figure 9.1a.
ISTUDY

9.2 ANALYSIS OF ASYNCHRONOUS CIRCUITS 525

Present Next state Output, Q

state SR = 00 01 10 11 00 01 10 11

A A A B A 0 0 – 0

B B A B A 1 – 1 –

(a) State table

10 1/

00 1/

11 0/
01 0/

00 0/

10 –/

A B

01 –/

11 –/

SR/Q

(b) State diagram

Figure 9.3 Mealy representation of the SR latch.

Terminology
In the preceding discussion we used the same terminology as in the previous chapter

on synchronous sequential circuits. However, when dealing with asynchronous sequential

circuits, it is customary to use two different terms. Instead of a “state table,” it is more

common to speak of a flow table, which indicates how the changes in state flow as a result

of the changes in the input signals. Instead of a “state-assigned table,” it is usual to refer

to a transition table or an excitation table. We will use the terms flow table and excitation
table in this chapter. A flow table will define the state changes and outputs that must be

generated. An excitation table will depict the transitions in terms of the state variables. The

term excitation table derives from the fact that a change from a stable state is performed by

“exciting” the next-state variables to start changing towards a new state.

9.2 ANALYSIS OF ASYNCHRONOUS CIRCUITS

To gain familiarity with asynchronous circuits, it is useful to analyze a few examples. We

will keep in mind the general model in Figure 6.87, assuming that the delays in the feedback

paths are a representation of the propagation delays in the circuit. Then each gate symbol

will represent an ideal gate with zero delay.

Example 9.1GATED D LATCH In Chapters 5 and 6, we used the gated D latch as a key component in

circuits that are controlled by a synchronizing clock. It is instructive to analyze this latch as

an asynchronous circuit, where the clock is just one of the inputs. It is reasonable to assume

that the signals on the D and clock inputs do not change at the same time, thus meeting the

basic requirement of asynchronous circuits.

ISTUDY

526 C H A P T E R 9 ● ASYNCHRONOUS SEQUENTIAL CIRCUITS

Figure 9.4a shows the gated D latch drawn in the style of the model of Figure 6.87. This

circuit was introduced in Figure 5.7 and discussed in Section 5.3. The next-state expression

for this circuit is
Y = (C ↑ D) ↑ ((C ↑ D) ↑ y)

= CD + Cy + Dy

D

C

Q

Y y

(a) Circuit

Present Next state

state C D = 00 01 10 11

y Y Y Y Y Q

0 0 0 0 1 0

1 1 1 0 1 1

(b) Excitation table

Present Next state

state C D = 00 01 10 11 Q

A A A A B 0

B B B A B 1

(c) Flow table

x1

0x
x0
0x

11

A 0/ B 1/

10

CD

(d) State diagram

Figure 9.4 The gated D latch.

ISTUDY

9.2 ANALYSIS OF ASYNCHRONOUS CIRCUITS 527

The term Dy in this expression is redundant and could be deleted without changing the logic

function of Y . Hence the minimal expression is

Y = CD + Cy

The reason that the circuit implements the redundant term Dy is that this term solves a race

condition known as a hazard; we will discuss hazards in detail in Section 9.6.

Evaluating the expression for Y for all valuations of C, D, and y leads to the excitation

table in Figure 9.4b. Note that the circuit changes its state only when C = 1 and D is

different from the present state, y. In all other cases the circuit is stable. Using the symbols

A and B to represent the states y = 0 and y = 1, we obtain the flow table and the state

diagram shown in parts (c) and (d).

Example 9.2M-S D FLIP-FLOP In Example 9.1 we analyzed the gated D latch as an asynchronous circuit.

Actually, all practical circuits are asynchronous. However, if the circuit’s behavior is tightly

controlled by a clock signal, then simpler operating assumptions can be used, as we did

in Chapter 6. Recall that in a synchronous sequential circuit all signals change values in

synchronization with the clock signal. Now we will analyze another synchronous circuit as

if it were an asynchronous circuit.

Two gated D latches are used to implement the M-S D flip-flop, as illustrated in Figure 5.9.

This circuit is reproduced in Figure 9.5. We can analyze the circuit by treating it as a series

connection of two gated D latches. Using the results from Example 9.1, the simplified next-

state expressions can be written as

Ym = CD + Cym

Ys = Cym + Cys

where the subscripts m and s refer to the M- and S- stages of the flip-flop. These expressions

lead to the excitation table in Figure 9.6a. Labeling the four states as S1 through S4, we

derive the flow table in Figure 9.6b. A state-diagram form of this information is given in

Figure 9.7.

Let us consider the behavior of this FSM in more detail. The state S1, where ymys = 00,

is stable for all input valuations except CD = 11. When C = 1, the value of D is stored in

the M-stage; hence CD = 11 causes the flip-flop to change to S3, where ym = 1 and ys = 0.

If the D input now changes back to 0, while the clock remains at 1, the flip-flop moves back

Figure 9.5 Circuit for the M-S D flip-flop.

ISTUDY

528 C H A P T E R 9 ● ASYNCHRONOUS SEQUENTIAL CIRCUITS

Present Next state

state C D = 00 01 10 11 Output

ym ys YmYs
Q

00 00 00 00 10 0

01 00 00 01 11 1

10 11 11 00 10 0

11 11 11 01 11 1

(a) Excitation table

Present Next state Output

state C D = 00 01 10 11 Q

S1 S1 S1 S1 S3 0

S2 S1 S1 S2 S4 1

S3 S4 S4 S1 S3 0

S4 S4 S4 S2 S4 1

(b) Flow table

Present Next state Output

state C D = 00 01 10 11 Q

S1 S1 S1 S1 S3 0

S2 S1 S2 S4 1

S3 S4 S1 S3 0

S4 S4 S4 S2 S4 1

(c) Flow table with unspecified entries

Figure 9.6 Excitation and flow tables for Example 9.2.

to the state S1. The transitions between S1 and S3 indicate that if C = 1, the output of the

M-stage, Qm = ym, tracks the changes in the D input signal without affecting the S-stage.

From S3 the circuit changes to S4 when the clock goes to 0. In S4 both M- and S- stages

are set to 1 because the information from the M-stage is transferred to the S-stage on the

negative edge of the clock. Now the flip-flop remains in S4 until the clock goes to 1 and

the D input changes to 0, which causes a change to S2. In S2 the M-stage is cleared to 0,

but the S-stage remains at 1. Again the flip-flop may change between S2 and S4 because

ISTUDY

9.2 ANALYSIS OF ASYNCHRONOUS CIRCUITS 529

x1

0x
10

11

S2 1/ S4 1/
10

11
x0

0x

11

S1 0/ S3 0/
10

0x0x

CD

Figure 9.7 State diagram for the M-S D flip-flop.

the M-stage will track the changes in the D input signal while C = 1. From S2 the circuit

changes to S1 when the clock goes low.

In Figures 9.6 and 9.7, we indicated that the flip-flop has only one output Q, which one

sees when the circuit is viewed as a negative-edge-triggered flip-flop. From the observer’s

point of view, the flip-flop has only two states, 0 and 1. But internally, the flip-flop consists

of the M- and S- parts, which gives rise to the four states described above.

We should also examine the basic assumption that the inputs must change one at a time.

If the circuit is stable in state S2, for which CD = 10, it is impossible to go from this state

to S1 under the influence of the input valuation CD = 01 because this simultaneous change

in both inputs cannot occur. Thus in the second row of the flow table, instead of showing

S2 changing to S1 under CD = 01, this entry can be labeled as unspecified. The change

from S2 to S1 can be caused only by CD changing from 10 to 00. Similarly, if the circuit is

in state S3, where CD = 11, it cannot change to S4 by having CD = 00. This entry can also

be left unspecified in the table. The resulting flow table is shown in Figure 9.6c.

If we reverse the analysis procedure and, using the state assignment in Figure 9.6a,

synthesize logic expressions for Ym and Ys, we get

Ym = CD + Cym + ymD
Ys = Cym + Cys + ymys

The terms ymD and ymys in these expressions are redundant. As mentioned earlier, they are

included in the circuit to avoid race conditions, which are discussed in Section 9.6.

Example 9.3Consider the circuit in Figure 9.8. It is represented by the following expressions

Y1 = y1y2 + w1y2 + w1w2y1

Y2 = y1y2 + w1y2 + w2 + w1w2y1

z = y1y2

The corresponding excitation and flow tables are given in Figure 9.9.

ISTUDY

530 C H A P T E R 9 ● ASYNCHRONOUS SEQUENTIAL CIRCUITS

zy1

y2

Y 1

Y 2

w1

w2

Figure 9.8 Circuit for Example 9.3.

Some transitions in the flow table will not occur in practice because of the assumption

that both w1 and w2 cannot change simultaneously. In state A the circuit is stable under the

valuation w2w1 = 00. Its inputs cannot change to 11 without passing through the valuations

01 or 10, in which case the new state would be B or C, respectively. Thus the transition from

A under w2w1 = 11 can be left unspecified. Similarly, if the circuit is stable in state B, in

which case w2w1 = 01, it is impossible to force a change to state D by changing the inputs

to w2w1 = 10. This entry should also be unspecified. If the circuit is stable in state C under

w2w1 = 11, it is not possible to go to A by changing the inputs directly to w2w1 = 00.

However, the transition to A is possible by changing the inputs one at a time because the

circuit remains stable in C for both w2w1 = 01 and w2w1 = 10.

A different situation arises if the circuit is stable in state D under w2w1 = 00. It may

seem that the entry under w2w1 = 11 should be unspecified because this input change

cannot be made from the stable state D. But suppose that the circuit is stable in state B
under w2w1 = 01. Now let the inputs change to w2w1 = 11. This causes a change to state D.

The circuit indeed changes to D, but it is not stable in this state for this input condition. As

soon as it arrives into state D, the circuit proceeds to change to state C as required by

w2w1 = 11. It is then stable in state C as long as both inputs remain at 1. The conclusion

is that the entry that specifies the change from D to C under w2w1 = 11 is meaningful and

should not be omitted. The transition from the stable state B to the stable state C, which

passes through state D, illustrates that it is not imperative that all transitions be directly

from one stable state to another. A state through which a circuit passes en route from one

stable state to another is called an unstable state. Transitions that involve passing through an

unstable state are not harmful as long as the unstable state does not generate an undesirable

output signal. For example, if a transition is between two stable states for which the output

ISTUDY

9.2 ANALYSIS OF ASYNCHRONOUS CIRCUITS 531

Present Next state

state w2w1 = 00 01 10 11 Output

y2 y1 Y2Y1 Y2Y1 Y2Y1 Y2Y1
z

00 00 01 10 11 0

01 11 01 11 11 0

10 00 10 10 10 1

11 11 10 10 10 0

(a) Excitation table

(b) Flow table

Present Next state Output

state w2w1 = 00 01 10 11 z

A A B C D 0

B D B D D 0

C A C C C 1

D D C C C 0

Figure 9.9 Excitation and flow tables for the circuit in Figure 9.8.

signal should be 0, it would be unacceptable to pass through an unstable state that causes

the output to be 1. Even though the circuit changes through the unstable state very quickly,

the short glitch in the output signal is likely to be troublesome. This is not a problem in our

example. When the circuit is stable in B, the output is z = 0. When the inputs change to

w2w1 = 11, the transition to state D maintains the output at 0. It is only when the circuit

finally changes into state C that z will change to 1. Therefore, the change from z = 0 to

z = 1 occurs only once during the course of these transitions.

A modified flow table, showing the unspecified transitions, is presented in Figure 9.10.

The table indicates the behavior of the circuit in Figure 9.8 in terms of state transitions. If

we don’t know what the circuit is supposed to do, it may be difficult to discover the practical

application for a given circuit. Fortunately, in practice the purpose of the circuit is known,

and the analysis is done by the designer to ascertain that the circuit performs as desired. In

our example it is apparent that the circuit generates the output z = 1 in state C, which it

reaches as a result of some input patterns that are detected using the other three states. The

state diagram derived from Figure 9.10 is shown in Figure 9.11.

This diagram actually implements a control mechanism for a simple vending machine

that accepts two types of coins, say, dimes and nickels, and dispenses merchandise such as

candy. If w1 represents a nickel and w2 represents a dime, then a total of 10 cents must be

deposited to get the FSM into state C where the candy is released. The coin mechanism

accepts only one coin at a time, which means that w2w1 = 11 can never occur. Therefore,

ISTUDY

532 C H A P T E R 9 ● ASYNCHRONOUS SEQUENTIAL CIRCUITS

Present Next state Output

state w2w1 = 00 01 10 11 z

A A B C 0

B D B D 0

C A C C C 1

D D C C C 0

Figure 9.10 Modified flow table for Example 9.3.

01

x1

1x

10

w2w1

A 0/

C 1/

B 0/

D 0/ 00

00

00
00

11

x1

1x

01

Figure 9.11 State diagram for Example 9.3.

the transition discussed above, from B to C, through the unstable state D would not occur.

Observe that both states B and D indicate that 5 cents has been deposited. State B indicates

that a nickel is presently being sensed by the coin receptor, while D indicates that 5 cents has

been deposited and the coin receptor is presently empty. In state D it is possible to deposit

either a nickel or a dime, both leading to state C. No distinction is made between the two

types of coins in state D; hence the machine would not give change if 15 cents is deposited.

From state A a dime leads directly to state C. Knowing that the condition w2w1 = 11 will not

occur allows the flow table to be specified as shown in Figure 9.12. If we were to synthesize

the sum-of-products logic expressions for Y1 and Y2, using the state assignment in Figure 9.9a,

we would end up with the circuit in Figure 9.8.

Steps in the Analysis Process
We have demonstrated the analysis process using illustrative examples. The required

steps can be stated as follows:

∙ A given circuit is interpreted in the form of the general model in Figure 6.87. That is,

each feedback path is cut, and a delay element is inserted at the point where the cut

ISTUDY

9.3 SYNTHESIS OF ASYNCHRONOUS CIRCUITS 533

Present Next state Output

state w2w1 = 00 01 10 11 z

A A B C 0

B D B 0

C A C C 1

D D C C 0

w2 dime w1 nickel

Figure 9.12 Flow table for a simple vending machine.

is made. The input signal to the delay element represents a corresponding next-state

variable, Yi, while the output signal is the present-state variable, yi. A cut can be made

anywhere in a particular loop formed by the feedback connection, as long as there is

only one cut per (state variable) loop. Thus the number of cuts that should be made

is the smallest number that results in there being no feedback anywhere in the circuit

except from the output of a delay element. This minimal number of cuts is sometimes

referred to as the cut set. Note that the analysis based on a cut made at one point in a

given loop may not produce the same flow table as an analysis on a cut made at some

other point in this loop. But both flow tables would reflect the same functional behavior

in terms of the applied inputs and generated outputs.

∙ Next-state and output expressions are derived from the circuit.

∙ The excitation table corresponding to the next-state and output expressions is derived.

∙ A flow table is obtained, associating some (arbitrary) names with the particular en-

coded states.

∙ A corresponding state diagram is derived from the flow table if desired.

9.3 SYNTHESIS OF ASYNCHRONOUS CIRCUITS

Synthesis of asynchronous sequential circuits follows the same basic steps used to synthe-

size the synchronous circuits, which were discussed in Chapter 6. There are some differ-

ences due to the asynchronous nature, which make the asynchronous circuits more difficult

to design. We will explain the differences by investigating a few design examples. The basic

steps are

∙ Devise a state diagram for an FSM that realizes the required functional behavior.

∙ Derive the flow table and reduce the number of states if possible.

∙ Perform the state assignment and derive the excitation table.

∙ Obtain the next-state and output expressions.

∙ Construct a circuit that implements these expressions.

ISTUDY

534 C H A P T E R 9 ● ASYNCHRONOUS SEQUENTIAL CIRCUITS

When devising a state diagram, or perhaps the flow table directly, it is essential to ensure

that when the circuit is in a stable state, the correct output signals are generated. Should it

be necessary to pass through an unstable state, this state must not produce an undesirable

output signal. Minimization of states is not straightforward. A minimization procedure is

described in Section 9.4.

State assignment is not done with the sole purpose of reducing the cost of the final cir-

cuit. In asynchronous circuits some state assignments may cause the circuit to be unreliable.

We will explain this problem using the examples that follow.

Example 9.4 SERIAL PARITY GENERATOR Suppose that we want to design a circuit that has an input w
and an output z, such that when pulses are applied to w, the output z is equal to 0 if the

number of previously applied pulses is even and z is equal to 1 if the number of pulses is

odd. Hence the circuit acts as a serial parity generator.

Let A be the state that indicates that an even number of pulses has been received. Using

the Moore model, the output z will be equal to 0 when the circuit is in state A. As long as

w = 0, the circuit should remain in A, which is specified by a transition arc that both

originates and terminates in state A. Thus A is stable when w = 0. When the next pulse

arrives, the input w = 1 should cause the FSM to move to a new state, say, B, which

produces the output z = 1. When the FSM reaches B, it must remain stable in this state as

long as w = 1. This is specified by a transition arc that originates and terminates in B. The

next input change occurs when w goes to 0. In response the FSM must change to a state

where z = 1 and which corresponds to the fact that a complete pulse has been observed,

namely, that w has changed from 1 to 0. Let this state be C; it must be stable under the input

condition w = 0. The arrival of the next pulse makes w = 1, and the FSM must change

to a state, D, that indicates that an even number of pulses has been observed and that the

last pulse is still present. The state D is stable under w = 1, and it causes the output to be

z = 0. Finally, when w returns to 0 at the end of the pulse, the FSM returns to state A, which

indicates an even number of pulses and w equal to 0 at the present time. The resulting state

diagram is shown in Figure 9.13a.

A key point to understand is why it is necessary to have four states rather than just two,

considering that we are merely trying to distinguish between the even and odd number of

input pulses. States B and C cannot be combined into a single state even though they both

indicate that an odd number of pulses has been observed. Suppose we had simply tried to

use state B alone for this purpose. Then it would have been necessary to add an arc with a

label 0 that originates and terminates in state B, which is fine. The problem is that without

state C, there would have to be a transition from state B directly to D if the input is w = 1

to respond to the next change in the input when a new pulse arrives. It would be impossible

to have B both stable under w = 1 and have a change to D effected for the same input

condition. Similarly, we can show that the states A and D cannot be combined into a single

state.

Figure 9.13b gives the flow table that corresponds directly to the state diagram. In many

cases the designer can derive a flow table directly. We are using the state diagram mostly

because it provides a simpler visual picture of the effect of the transitions in an FSM.

The next step is to assign values to the states in terms of the state variables. Since there

are four states in our FSM, there have to be at least two state variables. Let these variables

ISTUDY

9.3 SYNTHESIS OF ASYNCHRONOUS CIRCUITS 535

1

1

0

A 0/

D 0/

B 1/

C 1/ 0

0

0

1

1

(a) State diagram

Present Next state Output

state w = 0 w = 1 z

A A B 0

B C B 1

C C D 1

D A D 0

(b) Flow table

Figure 9.13 Parity-generating asynchronous FSM.

be y1 and y2. As a first attempt at the state assignment, let the states A, B, C, and D be

encoded as y2y1 = 00, 01, 10, and 11, respectively. This assignment leads to the excitation

table in Figure 9.14a. Unfortunately, it has a major flaw. The circuit that implements this

table is stable in state D = 11 under the input condition w = 1. But consider what happens

next if the input changes to w = 0. According to the excitation table, the circuit should

change to state A = 00 and remain stable in this state. The problem is that in going from

y2y1 = 11 to y2y1 = 00 both state variables must change their values. This is unlikely

to occur at exactly the same time. In an asynchronous circuit the values of the next-state

variables are determined by networks of logic gates with varying propagation delays. Thus

we should expect that one state variable will change slightly before the other, which could

put the circuit into a state where it may react to the input in an undesirable way. Suppose

that y1 changes first. Then the circuit goes from y2y1 = 11 to y2y1 = 10. As soon as it

reaches this state, C, it will attempt to remain there if w = 0, which is a wrong outcome. On

the other hand, suppose that y2 changes first. Then there will be a change from y2y1 = 11

to y2y1 = 01, which corresponds to state B. Since w = 0, the circuit will now try to change

to y2y1 = 10. This again requires that both y1 and y2 change; assuming that y1 changes first

in the transition from y2y1 = 01, the circuit will find itself in the state y2y1 = 00, which is

the correct destination state, A. This discussion indicates that the required transition from

ISTUDY

536 C H A P T E R 9 ● ASYNCHRONOUS SEQUENTIAL CIRCUITS

Present Next state

state w = 0 w = 1 Output

y2 y1 Y2Y1
z

00 00 01 0

01 10 01 1

10 10 11 1

11 00 11 0

(a) Poor state assignment

Present Next state

state w = 0 w = 1 Output

y2 y1 Y2Y1
z

00 00 01 0

01 11 01 1

11 11 10 1

10 00 10 0

(b) Good state assignment

Figure 9.14 State assignment for Figure 9.13b.

D to A will be performed correctly if y2 changes before y1, but it will not work if y1 changes

before y2. The result depends on the outcome of the “race” to change between the signals

y1 and y2.

The uncertainty caused by multiple changes in the state variables in response to an

input that should lead to a predictable change from one stable state to another has to be

eliminated. The term race condition is used to refer to such unpredictable behavior. We

will discuss this issue in detail in Section 9.5.

Race conditions can be eliminated by treating the present-state variables as if they were

inputs to the circuit, meaning that only one state variable is allowed to change at a time. For

our example the assignment A = 00, B = 01, C = 11, and D = 10 achieves this objective.

The resulting excitation table is presented in Figure 9.14b. The reader should verify that all

transitions involve changing a single state variable.

From Figure 9.14b the next-state and output expressions are

Y1 = wy2 + wy1 + y1y2

Y2 = wy2 + wy1 + y1y2

z = y1

ISTUDY

9.3 SYNTHESIS OF ASYNCHRONOUS CIRCUITS 537

y1

y2

w

z

Figure 9.15 Circuit that implements the FSM in Figure 9.13b.

The last product term in the expressions for Y1 and Y2 is included to deal with possi-

ble hazards, which are discussed in Section 9.6. The corresponding circuit is shown in

Figure 9.15.

It is interesting to consider how the serial parity generator could be implemented using

a synchronous approach. All that is needed is a single flip-flop that changes its state with the

arrival of each input pulse. The positive-edge-triggered D flip-flop in Figure 9.16 accom-

plishes the task, assuming that the flip-flop is initially set to Q = 0. The logic complexity of

the flip-flop is exactly the same as the circuit in Figure 9.15. Indeed, if we use the preceding

expressions for Y1 and Y2 and substitute C for w, D for y2, ym for y1, and ys for y2, we end up

with the excitation expressions shown for the M-S D flip-flop in Example 9.2. The circuit

in Figure 9.15 is actually a negative-edge-triggered M-S flip-flop, with the complement of

its Q output (y2) connected to its D input. The output z is connected to the output of the

M-stage of the flip-flop.

w

zD Q

Q

Figure 9.16 Synchronous solution for Example 9.4.

ISTUDY

538 C H A P T E R 9 ● ASYNCHRONOUS SEQUENTIAL CIRCUITS

1

1

0

A 0/

H 0/

B 1/

G 3/

0

0

1

1
C 1/

F 3/

D 2/

E 2/

1

0 1

0

0

1

1

0

0

Figure 9.17 State diagram for a modulo-4 counter.

Example 9.5 MODULO-4 COUNTER Chapters 5 and 6 described how counters can be implemented using

flip-flops. Now we will synthesize a counter as an asynchronous sequential circuit. Fig-

ure 9.17 depicts a state diagram for a modulo-4 up-counter, which counts the number of

pulses on an input line, w. The circuit must be able to react to all changes in the input

signal; thus it must take specific actions at both the positive and negative edges of each

pulse. Therefore, eight states are needed to deal with the edges in four consecutive pulses.

The counter begins in state A and stays in this state as long as w = 0. When w changes to 1,

a transition to state B is made and the circuit remains stable in this state as long as w = 1.

When w goes back to 0, the circuit moves to state C and remains stable until w becomes 1

again, which causes a transition to state D, and so on. Using the Moore model, the states

correspond to specific counts. There are two states for each particular count: the state that

the FSM enters when w changes from 0 to 1 at the start of a pulse and the state that the FSM

enters when w goes back to 0 at the end of the pulse. States B and C correspond to the count

of 1, states D and E to 2, and states F and G to 3. States A and H represent the count of 0.

Figure 9.18 shows the flow and excitation tables for the counter. The state assignment is

chosen such that all transitions between states require changing the value of only one state

variable to eliminate the possibility of race conditions. In part b of the figure the output

is encoded as a binary number, using variables z2 and z1. From the excitation table the

next-state and output expressions are

Y1 = wy1 + wy2y3 + wy2y3 + y1y2y3 + y1y2y3

= wy1 + (w + y1)(y2y3 + y2y3)

Y2 = wy2 + wy1y3 + y1y2 + y2y3

Y3 = wy3 + y1y3 + y1y2w + y2y3

z1 = y1

z2 = y1y3 + y1y2

These expressions define the circuit that implements the required modulo-4 pulse counter.

ISTUDY

9.3 SYNTHESIS OF ASYNCHRONOUS CIRCUITS 539

Present Next state Output

state w = 0 w = 1 z

A A B 0

B C B 1

C C D 1

D E D 2

E E F 2

F G F 3

G G H 3

H A H 0

(a) Flow table

Present Next state

state w = 0 w = 1 Output Mod-8 output

y3 y2 y1 Y3Y2Y1
z2z1 z3z2z1

000 000 001 00 000

001 011 001 01 001

011 011 010 01 010

010 110 010 10 011

110 110 111 10 100

111 101 111 11 101

101 101 100 11 110

100 000 100 00 111

(b) Excitation table (c) Output for counting
the edges

Figure 9.18 Flow and excitation tables for a modulo-4 counter.

ISTUDY

540 C H A P T E R 9 ● ASYNCHRONOUS SEQUENTIAL CIRCUITS

In the preceding derivation we designed a circuit that changes its state on every edge

of the input signal w, requiring a total of eight states. Since the circuit is supposed to count

the number of complete pulses, which contain a rising and a falling edge, the output count

z2z1 changes its value only in every second state. This FSM behaves like a synchronous

sequential circuit in which the output count changes only as a result of w changing from

0 to 1.

Suppose now that we want to count the number of times the signal w changes its value,

that is, the number of its edges. The state transitions specified in Figures 9.17 and 9.18

define an FSM that can operate as a modulo-8 counter for this purpose. We only need to

specify a distinct output in each state, which can be done as shown in Figure 9.18c. The

values of z3z2z1 indicate the counting sequence 0, 1, 2,… , 7, 0. Using this specification of

the output and the state assignment in Figure 9.18b, the resulting output expressions are

z1 = y1 ⊕ y2 ⊕ y3

z2 = y2 ⊕ y3

z3 = y3

Example 9.6 A SIMPLE ARBITER In computer systems it is often useful to have some resource shared

by a number of different devices. Usually, the resource can be used by only one device at a

time. When various devices need to use the resource, they have to request to do so. These

requests are handled by an arbiter circuit. When there are two or more outstanding requests,

the arbiter may use some priority scheme to choose one of them, as already discussed in

Section 6.8.

We will now consider an example of a simple arbiter implemented as an asynchronous

sequential circuit. To keep the example small, suppose that two devices are competing for

the shared resource, as indicated in Figure 9.19a. Each device communicates with the ar-

biter by means of two signals: Request and Grant. When a device needs to use the shared

resource, it raises its request signal to 1. Then it waits until the arbiter responds with the

grant signal.

Figure 9.19b illustrates a commonly used scheme for communication between two en-

tities in the asynchronous environment, known as handshake signaling. Two signals are

used to provide the handshake. A device initiates the activity by raising a request, r = 1.

When the shared resource is available, the arbiter responds by issuing a grant, g = 1. When

the device receives the grant signal, it proceeds to use the requested shared resource. When

it completes its use of the resource, it drops its request by setting r = 0. When the arbiter

sees that r = 0, it deactivates the grant signal, making g = 0. The arrows in the figure indi-

cate the cause-effect relationships in this signaling scheme; a change in one signal causes a

change in the other signal. The time elapsed between the changes in the cause-effect signals

depends on the specific implementation of the circuit. A key point is that there is no need

for a synchronizing clock.

A state diagram for our simple arbiter is given in Figure 9.20. There are two inputs, the

request signals r1 and r2, and two outputs, the grant signals g1 and g2. The diagram depicts

the Moore model of the required FSM, where the arcs are labeled as r2r1 and the state

outputs as g2g1. The quiescent state is A, where there are no requests. State B represents the

situation in which Device 1 is given permission to use the resource, and state C denotes the

same for Device 2. Thus B is stable if r2r1 = 01, and C is stable if r2r1 = 10. To conform to

ISTUDY

9.3 SYNTHESIS OF ASYNCHRONOUS CIRCUITS 541

Arbiter

Request1

Grant1

Request2

Grant2

Device 1

Device 2

Shared
resource

(a) Arbitration structure

Request (r)

Grant (g)

(b) Handshake signaling

Figure 9.19 Arbitration example.

01
A 0/ 0 B 01/

C 10/

00
11

00

00

10

01

10

01

10

11

r2r1

Figure 9.20 State diagram for the arbiter.

ISTUDY

542 C H A P T E R 9 ● ASYNCHRONOUS SEQUENTIAL CIRCUITS

Present Next state Output

state r2r1 = 00 01 10 11 g2g1

A A B C – 00

B A B C B 01

C A B C C 10

(a) Flow table

(b) Excitation table

Present Next state

state r2r1 = 00 01 10 11 Output

y2 y1 Y2Y1
g2g1

A 00 00 01 10 – 00

B 01 00 01 10 01 01

C 10 00 01 10 10 10

D 11 – 01 10 – dd

Figure 9.21 Implementation of the arbiter.

the rules of asynchronous circuit design, we will assume that the inputs r1 and r2 become

activated one at a time. Hence, in state A it is impossible to have a change from r2r1 = 00

to r2r1 = 11. The situation where r2r1 = 11 occurs only when a second request is raised

before the device that has the grant signal completes its use of the shared resource, which

can happen in states B and C. If the FSM is stable in either state B or C, it will remain in

this state if both r1 and r2 go to 1.

The flow table is given in Figure 9.21a, and the excitation table is presented in Fig-

ure 9.21b. It is impossible to choose a state assignment such that all changes between states

A, B, and C involve a change in a single state variable only. In the chosen assignment the

transitions to or from state A are handled properly, but the transitions between states B
and C involve changes in the values of both state variables y1 and y2. Suppose that the

circuit is stable in state B under input valuation r2r1 = 11. Now let the inputs change to

r2r1 = 10. This should cause a change to state C, which means that the state variables must

change from y2y1 = 01 to 10. If y1 changes faster than y2, then the circuit will find itself

momentarily in state y2y1 = 00, which leads to the desired final state because from state

A there is a specified transition to C under the input valuation 10. But if y2 changes faster

than y1, the circuit will reach the state y2y1 = 11, which is not defined in the flow table. To

make sure that even in this case the circuit will proceed to the required destination C, we

ISTUDY

9.3 SYNTHESIS OF ASYNCHRONOUS CIRCUITS 543

can include the state y2y1 = 11, labeled D, in the excitation table and specify the required

transition as shown in the figure. A similar situation arises when the circuit is stable in C
under r2r1 = 11, and it has to change to B when r2 changes from 1 to 0.

The output values for the extra state D are indicated as don’t cares. Whenever a specific

output is changing from 0 to 1 or from 1 to 0, exactly when this change takes place is not

important if the correct value is produced when the circuit is in a stable state. The don’t-

care specification may lead to a simpler realization of the output functions. It is important to

ensure that unspecified outputs will not result in a value that may cause erroneous behavior.

From Figure 9.21b it is possible that during the short time when the circuit passes through

the unstable state D the outputs become g2g1 = 11. This is harmless in our example because

the device that has just finished using the shared resource will not try to use it again until its

grant signal has returned to 0 to indicate the end of the handshake with the arbiter. Observe

that if this condition occurs when changing from B to C, then g1 remains 1 slightly longer

and g2 becomes 1 slightly earlier. Similarly, if the transition is from C to B, then the change

in g1 from 0 to 1 happens slightly earlier and g2 changes to 0 slightly later. In both of these

cases there is no glitch on either g1 or g2.

From the excitation table the following next-state and output expressions are derived

Y1 = r2r1 + r1y2

Y2 = r2r1 + r2y2

g1 = y1

g2 = y2

Rewriting the first two expressions as

Y1 = r1(r2 + y2)

= r1r2y2

Y2 = r2(r1 + y2)

produces the circuit in Figure 9.22. Observe that this circuit responds very quickly to the

changes in the input signals. This behavior is in sharp contrast to the arbiter discussed in

Section 6.8 in which the synchronizing clock determines the minimum response time.

y2

g1

g2

r1

r2

Figure 9.22 The arbiter circuit.

ISTUDY

544 C H A P T E R 9 ● ASYNCHRONOUS SEQUENTIAL CIRCUITS

Present Next state Output

state r2r1 = 00 01 10 11
g2g1

A A B C – 00

B A B A B 01

C A A C C 10

(a) Modified flow table

Present Next state

state r2r1 = 00 01 10 11
Output

y2 y1 Y2Y1

g2g1

00 00 01 10 – 00

01 00 01 00 01 01

10 00 00 10 10 10

(b) Modified excitation table

Figure 9.23 An alternative for avoiding a critical race in

Figure 9.21a.

The difficulty with the race condition that arises in state changes between B and C can

be resolved in another way. We can simply prevent the circuit from reaching an unspecified

state. Figure 9.23a shows a modified flow table in which transitions between states B and

C are made via state A. If the circuit is stable in B and the input valuation changes from

r2r1 = 11 to 10, a change to A will occur first. As soon as the circuit reaches A, which is not

stable for the input valuation 10, it will proceed to the stable state C. The detour through

the unstable state A is acceptable because in this state the output is g2g1 = 00, which is

consistent with the desired operation of the arbiter. The change from C to B is handled

using the same approach. From the modified excitation table in Figure 9.23b, the following

next-state expressions are derived

Y1 = r1y2

Y2 = r1r2y1 + r2y2

These expressions give rise to a circuit different from the one in Figure 9.22. However, both

circuits implement the functionality required in the arbiter.

Next we will attempt to design the same arbiter using the Mealy model specification.

From Figure 9.20 it is apparent that the states B and C are fundamentally different because

for the input r2r1 = 11 they must produce two different outputs. But state A is unique only

to the extent that it generates the output g2g1 = 00 whenever r2r1 = 00. This condition

ISTUDY

9.3 SYNTHESIS OF ASYNCHRONOUS CIRCUITS 545

1x 10/

00 00/

x1 01/

00 00/

10 0–/

B C

01 0 –/

Figure 9.24 Mealy model for the arbiter FSM.

could be specified in both B and C if the Mealy model is used. Figure 9.24 gives a suitable

state diagram. The flow and excitation tables are presented in Figure 9.25, which lead to

the following expressions

Y = r2r1 + r1y + r2y
g1 = r1y
g2 = r2y

Despite needing a single state variable, this circuit requires more gates for implementation

than does the Moore version in Figure 9.22.

An important notion in the above examples is that it is necessary to pay careful atten-

tion to the state assignment, to avoid races in changing of the values of the state variables.

Section 9.5 deals with this issue in more detail.

We made the basic assumption that the request inputs to the arbiter FSM change their

values one at a time, which allows the circuit to reach a stable state before the next change

takes place. If the devices are totally independent, they can raise their requests at any time.

Present Next state Output g2g1

state r2r1 = 00 01 10 11 00 01 10 11

B B B C B 00 01 – 0 01

C C B C C 00 0– 10 10

(a) Flow diagram

Present Next state Output

state r2r1 = 00 01 10 11 00 01 10 11

y Y g2g1

0 0 0 1 0 00 01 d0 01

1 1 0 1 1 00 0d 10 10

(b) Excitation table

Figure 9.25 Mealy model implementation of the arbiter FSM.

ISTUDY

546 C H A P T E R 9 ● ASYNCHRONOUS SEQUENTIAL CIRCUITS

Suppose that each device raises a request every few seconds. Since the arbiter circuit needs

only a few nanoseconds to change from one stable state to another, it is quite unlikely that

both devices will raise their requests so close to each other that the arbiter circuit will pro-

duce erroneous outputs. However, while the probability of an error caused by the simulta-

neous arrival of requests is extremely low, it is not zero. If this small possibility of an error

cannot be tolerated, then it is possible to feed the request signals through a special circuit

called the mutual exclusion (ME) element. This circuit has two inputs and two outputs. If

both inputs are 0, then both outputs are 0. If only one input is 1, then the corresponding

output is 1. If both inputs are 1, the circuit makes one output go to 1 and keeps the other

at 0. Using the ME element would change the design of the arbiter slightly; because the

valuation r2r1 = 11 would never occur, all entries in the corresponding column in Figure 9.21

would be don’t cares. The ME element and the issue of simultaneous changes in input sig-

nals are discussed in detail in reference. Finally, we should note that a similar problem arises

in synchronous circuits in which one or more inputs are generated by a circuit that is not

controlled by a common clock, as discussed in Section 7.8.3.

9.4 STATE REDUCTION

In Chapter 6 we saw that reducing the number of states needed to realize the functionality

of a given FSM usually leads to fewer state variables, which means that fewer flip-flops are

required in the corresponding synchronous sequential circuit. In asynchronous sequential

circuits it is also useful to try to reduce the number of states because this usually results in

simpler implementations.

When designing an asynchronous FSM, the initial flow table is likely to have many

unspecified (don’t-care) entries, because the designer has to obey the restriction that only

one input variable can change its value at a time. For example, suppose that we want to

design the FSM for the simple vending machine considered in Example 9.3. Recall that

the machine accepts nickels and dimes and dispenses candy when 10 cents is deposited;

the machine does not give change if 15 cents is deposited. An initial state diagram for

this FSM can be derived in straightforward fashion by enumerating all possible sequences

of depositing the coins to give a sum of at least 10 cents. Figure 9.26a shows a possible

diagram, defined as a Moore model. Starting in a reset state, A, the FSM remains in this

state as long as no coin is deposited. This is denoted by an arc labeled 0 to indicate that

N = D = 0. Now let an arc with the label N denote that the coin-sensing mechanism has

detected a nickel and has generated a signal N = 1. Similarly, let D denote that a dime has

been deposited. If N = 1, then the FSM has to move to a new state, say, B, and it must

remain stable in this state as long as N has the value of 1. Since B corresponds to 5 cents

being deposited, the output in this state has to be 0. If a dime is deposited in state A, then

the FSM must move to a different state, say, C. The machine should stay in C as long as

D = 1, and it should release the candy by generating the output of 1. These are the only

possible transitions from state A, because it is impossible to insert two coins at the same

time, which means that DN = 11 can be treated as a don’t-care condition. Next, in state

B there must be a return to the condition DN = 00 because the coin-sensing mechanism

ISTUDY

9.4 STATE REDUCTION 547

A 0/

B 0/ C 1/

D 0/

E 1/ F 1/

0
0

0

0 0

0

D

N

N

N

N

D

D

0

D

(a) Initial state diagram

Present Next state Output

state D N = 00 01 10 11 z

A A B C – 0

B D B – – 0

C A – C – 1

D D E F – 0

E A E – – 1

F A – F – 1

(b) Initial flow table

Figure 9.26 Derivation of an FSM for the simple vending machine.

will detect the second coin some time after the first coin has cleared the mechanism. This

behavior is consistent with the requirement that only one input variable can change at a

time; hence it is not allowed to go from DN = 01 to DN = 10. The input DN = 10 cannot

occur in state B and should be treated as a don’t care. The input DN = 00 takes the FSM

to a new state, D, which indicates that 5 cents has been deposited and that there is no coin

in the sensing mechanism. In state D it is possible to deposit either a nickel or a dime. If

DN = 01, the machine moves to state E, which denotes that 10 cents has been deposited and

ISTUDY

548 C H A P T E R 9 ● ASYNCHRONOUS SEQUENTIAL CIRCUITS

generates the output of 1. If DN = 10, the machine moves to state F, which also generates

the output of 1. Finally, when the FSM is in any of the states C, E, or F, the only possible

input is DN = 00, which returns the machine to state A.

The flow table for this FSM is given in Figure 9.26b. It shows explicitly all don’t-care

entries. Such unspecified entries provide a certain amount of flexibility that can be exploited

in reducing the number of states. Note that in each row of this table there is only one stable

state. Such tables, where there is only one stable state for each row, are often referred to as

primitive flow tables.

Several techniques have been developed for state reduction. In this section we will

describe a two-step process. In the first step we will apply the partitioning procedure from

Section 6.6.1, assuming that the potentially equivalent rows in a flow table must produce

the same outputs. As an additional constraint, for two rows to be potentially equivalent any

unspecified entries must be in the same next-state columns. Thus combining the equivalent

states into a single state will not remove the don’t cares and the flexibility that they provide.

In the second step, the rows are merged exploiting the unspecified entries. Two rows can be

merged if they have no conflicting next-state entries. This means that their next-state entries

for any given valuation of inputs are either the same, or one of them is unspecified, or both

rows indicate a stable state. If the Moore model is used, then the two rows (states) must

produce the same outputs. If the Mealy model is used, then the two states must produce the

same outputs for any input valuations for which both states are stable.

Example 9.7 We will now show how the flow diagram in Figure 9.26b can be reduced to the optimized

form in Figure 9.12. The first step in the state-reduction process is the partitioning procedure

from Section 6.6.1. States A and D are stable under the input valuation DN = 00, producing

the output of 0; they also have the unspecified entries in the same position. States C and F
are stable under DN = 10, generating z = 1, and they have the same unspecified entries.

States B and E have the same unspecified entries, but when they are stable under DN = 01

the state B produces z = 0 while E generates z = 1; they are not equivalent. Therefore, the

initial partition is

P1 = (AD)(B)(CF)(E)

The successors of A and D are (A,D) for DN = 00, (B,E) for 01, and (C,F) for 10. Since

the (B,E) pair is not in the same block of P1, it follows that A and D are not equivalent.

The successors of C and F are (A,A) for 00 and (C,F) for 10; each pair is in a single block.

Thus the second partition is

P2 = (A)(D)(B)(CF)(E)

The successors of C and F in P2 are in the same block of P2, which means that

P3 = P2

The conclusion is that rows C and F are equivalent. Combining them into a single row and

changing all Fs into Cs gives the flow table in Figure 9.27.

Next we can try to merge some rows in the flow table by exploiting the existence of

unspecified entries. The only row that can be merged with others is C. It can be merged

with either A or E, but not both. Merging C with A would mean that the new state has to

ISTUDY

9.4 STATE REDUCTION 549

Present Next state Output

state DN = 00 01 10 11 z

A A B C – 0

B D B – –

– –

0

C A – C – 1

D D E C – 0

E A E 1

Figure 9.27 First-step reduction of the FSM in Figure 9.26b.

generate z = 0 when it is stable under the input valuation 00 and has to produce z = 1 when

stable under 10. This can be achieved only by using the Mealy model. The alternative is to

merge C and E, in which case the new state is stable under DN = 01 and 10, producing the

output of 1. This can be achieved with the Moore model. Merging C and E into a single

state C and changing all Es into Cs yields the reduced flow table in Figure 9.12. Observe

that when C and E are merged, the new row C must include all specifications in both rows

C and E. Both rows specify A as the next state if DN = 00. Row E specifies a stable state

for DN = 01; hence the new row (called C) must also specify a stable state for the same

valuation. Similarly, row C specifies a stable state for DN = 10, which must be reflected

in the new row. Therefore, the next-state entries in the new row are A, C , and C for the

input valuations 00, 01, and 10, respectively.

Merging Procedure
In Example 9.7 it was easy to decide which rows should be merged because the only

possibilities are to merge row C with either A or E. We chose to merge C and E because this

can be done preserving the Moore model, which is likely to lead to a simpler expression

that realizes the output z.

In general, there can be many possibilities for merging rows in larger flow tables. In

such cases it is necessary to have a more structured procedure for making the choice. A

useful procedure can be defined using the concept of compatibility of states.

Definition 9.1 – Two states (rows in a flow table), Si and Sj, are said to be compatible if
there are no state conflicts for any input valuation. Thus for each input valuation, one of
the following conditions must be true:

∙ both Si and Sj have the same successor, or
∙ both Si and Sj are stable, or
∙ the successor of Si or Sj, or both, is unspecified.

Moreover, both Si and Sj must have the same output whenever specified.

Consider the primitive flow table in Figure 9.28. Let us examine the compatibility

between different states, assuming that we would like to retain the Moore-type specification

ISTUDY

550 C H A P T E R 9 ● ASYNCHRONOUS SEQUENTIAL CIRCUITS

Present Next state Output

state w2w1 = 00 01 10 11 z

A A H B – 0

B F – B C 0

C – H –

– –

C 1

D A D – E 1

E – D G E 1

F F D – – 0

G F – G – 0

H H E 0

Figure 9.28 A primitive flow table.

of outputs for this FSM. State A is compatible only with state H. State B is compatible with

states F and G. State C is not compatible with any other state. State D is compatible with

state E; so are state F with G and state G with H. In other words, the following compatible

pairs exist: (A,H), (B,F), (B,G), (D,E), (F,G), and (G,H). The compatibility relationship

among various states can be represented conveniently in the form of a merger diagram,

as follows:

∙ Each row of the flow table is represented as a point, labeled by the name of the row.

∙ A line is drawn connecting any two points that correspond to compatible states (rows).

From the merger diagram the best merging possibility can be chosen, and the reduced flow

table can be derived.

Figure 9.29 gives the merger diagram for the primitive flow table in Figure 9.28. The

diagram indicates that row A can be merged with H, but only if H is not merged with G,

because there is no line joining A and G. Row B can be merged with rows F and G. Since it

is also possible to merge F and G, it follows that B, F, and G are pairwise compatible. Any

set of rows that are pairwise compatible for all pairs in the set can be merged into a single

state. Thus states B, F, and G can be merged into a single state, but only if states G and H are

not merged. State C cannot be merged with any other state. States D and E can be merged.

A prudent strategy is to merge the states so that the resulting flow table has as few states

as possible. In our example the best choice is to merge the compatibles (A,H), (B,F,G),

and (D,E), which leads to the reduced flow table in Figure 9.30. When a new row is created

by merging two or more rows, all entries in the new row have to be specified to cover the

individual requirements of the constituent rows. Replacing rows A and H with a new row A
requires making A stable for both w2w1 = 00 and 01, because the old A has to be stable for

00 and H has to be stable for 01. It also requires specifying B as the next-state for w2w1 = 10

and E as the next state for w2w1 = 11. Since the old state E becomes D, after merging D
and E, the new row A must have the next-state entries A , A , B, and D for the input

valuations 00, 01, 10, and 11, respectively. Replacing rows B, F, and G with a new row B

ISTUDY

9.4 STATE REDUCTION 551

EG

B

F

C

H

A D

Figure 9.29 Merger diagram for the flow table in Figure 9.28, which

preserves the Moore model.

Present Next state Output

state w2w1 = 00 01 10 11 z

A A A B D 0

B B D B C 0

C – A – C 1

D A D B D 1

Figure 9.30 Reduced Moore-type flow table for the FSM in

Figure 9.28.

requires making B stable for w2w1 = 00 and 10. The next-state entry for w2w1 = 01 has to

be D to satisfy the requirement of the old state F. The next-state entry for w2w1 = 11 has to

be C, as dictated by the old state B. Observe that the old state G imposes no requirements

for transitions under w2w1 = 01 and 11, because its corresponding next-state entries are

unspecified. Row C remains the same as before except that the name of the next-state entry

for w2w1 = 01 has to be changed from H to A. Rows D and E are replaced by a new row D,

using similar reasoning. Note that the flow table in Figure 9.30 is still of Moore type.

So far we considered merging only those rows that would allow us to retain the Moore-

type specification of the FSM in Figure 9.28. If we are willing to change to the Mealy model,

then other possibilities exist for merging. Figure 9.31 shows the complete merger diagram

for the FSM of Figure 9.28. Black lines connect the compatible states that can be merged

into a new state that has a Moore-type output; this corresponds to the merger diagram

in Figure 9.29. Red lines connect the states that can be merged only if Mealy-type outputs

are used.

In this case going to the Mealy model is unlikely to result in a simpler circuit. Although

several merger possibilities exist, they all require at least four states in the reduced flow

table, which is not any better than the solution obtained in Figure 9.30. For example,

one possibility is to perform the merge based on the partition (A,H), (B,C,G) (D,E) (F).

ISTUDY

552 C H A P T E R 9 ● ASYNCHRONOUS SEQUENTIAL CIRCUITS

G

A

F

C

H

B

D

E

Figure 9.31 Complete merger diagram for Figure 9.28.

Another possibility is to use (A,C) (B,F) (D,E) (G,H). We will not pursue these possibilities

and will discuss the issues involved in specifying the Mealy-type outputs in Example 9.9.

State Reduction Procedure
We can summarize the steps needed to generate the reduced flow table from a primitive

flow table as follows:

1. Use the partitioning procedure to eliminate the equivalent states in a primitive flow

table.

2. Construct a merger diagram for the resulting flow table.

3. Choose subsets of compatible states that can be merged, trying to minimize the

number of subsets needed to cover all states. Each state must be included in only one

of the chosen subsets.

4. Derive the reduced flow table by merging the rows in chosen subsets.

5. Repeat steps 2 to 4 to see whether further reductions are possible.

Choosing an optimal subset of compatible states for merging can be a very complicated

task because for large FSMs there may be many possibilities that should be investigated. A

trial-and-error approach is a reasonable way to tackle this problem.

Example 9.8 Consider the initial flow table in Figure 9.32. To apply the partitioning procedure, we iden-

tify state pairs (A,G), (B,L), and (H,K) as being potentially equivalent rows, because both

rows in each pair have the same outputs and their don’t-care entries are in the same column.

The remaining rows are distinct in this respect. Therefore, the first partition is

P1 = (AG)(BL)(C)(D)(E)(F)(HK)(J)

ISTUDY

9.4 STATE REDUCTION 553

Present Next state Output

state w2w1 = 00 01 10 11 z

A A F C – 0

B A B – H 1

C G – C D 0

D – F – D 1

E G – E D 1

F – F –

–

K 0

G G B J – 0

H – L E H 1

J G – J – 0

K – B E K 1

L A L K 1

Figure 9.32 Flow table for Example 9.8.

Now the successors of (A,G) are (A,G) for w2w1 = 00, (F,B) for 01, and (C, J) for 10.

Since F and B, as well as C and J, are not in the same block, it follows that A and G are not

equivalent. The successors of (B,L) are (A,A), (B,L), and (H,K), respectively. All are in

single blocks. The successors of (H,K) are (L,B), (E,E), and (H,K), which are all contained

in single blocks. Therefore, the second partition is

P2 = (A)(G)(BL)(C)(D)(E)(F)(HK)(J)

Repeating the successor test shows that the successors of (B,L) and (H,K) are still in single

blocks; hence

P3 = P2

Combining rows B and L under the name B and rows H and K under the name H leads to

the flow table in Figure 9.33.

A merger diagram for this flow table is given in Figure 9.34. It indicates that rows B
and H should be merged into one row, which we will label as B. The merger diagram also

suggests that rows D and E should be merged; we will call the new row D. The remaining

rows present more than one choice for merging. Rows A and F can be merged, but in that

case F and J cannot be merged. Rows C and J can be merged, or G and J can be merged.

We will choose to merge the rows A and F into a new row called A and rows G and J into

a new row G. The merger choice is indicated in red in the diagram. The resultant flow

table is shown in Figure 9.35. To see whether this table offers any further opportunities

ISTUDY

554 C H A P T E R 9 ● ASYNCHRONOUS SEQUENTIAL CIRCUITS

Present Next state Output

state w2w1 = 00 01 10 11 z

A A F C – 0

B A B – H 1

C G – C D 0

D – F – D 1

E G – E D 1

F – F – H 0

G G B J – 0

H –

– –

B E H 1

J G J 0

Figure 9.33 Reduction obtained by using the partitioning

procedure.

GF

A

J

C

E

D

H

B

Figure 9.34 Merger diagram for Figure 9.33.

Present Next state Output

state w2w1 = 00 01 10 11 z

A A A C B 0

B A B D B 1

C G –

–

C D 0

D G A D D 1

G G B G 0

Figure 9.35 Reduction obtained from the merger diagram in

Figure 9.34.

ISTUDY

9.4 STATE REDUCTION 555

CB D GA

Figure 9.36 Merger diagram for Figure 9.35.

Present Next state Output

state w2w1 = 00 01 10 11 z

A A A C B 0

B A B D B 1

C C B C D 0

D C A D D 1

Figure 9.37 Reduced flow table for Example 9.8.

for merging, we can construct the merger diagram in Figure 9.36. From this diagram it is

apparent that rows C and G can be merged; let the new row be called C. This leads to the

flow table in Figure 9.37, which cannot be reduced any more.

Example 9.9Consider the flow table in Figure 9.38. Applying the partitioning procedure to this table gives

P1 = (AFK)(BJ)(CG)(D)(E)(H)

P2 = (A)(FK)(BJ)(C)(G)(D)(E)(H)

P3 = P2

Present Next state Output

state w2w1 = 00 01 10 11 z

A A G E – 0

B K – B D 0

C F C – H 1

D – C E D 0

E A – E D 1

F F C J –

–

0

G K G – D 1

H – – E H 1

J F – J D 0

K K C B 0

Figure 9.38 Flow table for Example 9.9.

ISTUDY

556 C H A P T E R 9 ● ASYNCHRONOUS SEQUENTIAL CIRCUITS

Present Next state Output

state w2w1 = 00 01 10 11 z

A A G E – 0

B F – B D 0

C F C – H 1

D –

–

C E D 0

E A –

–

E D 1

F F C B – 0

G F G – D 1

H E H 1

Figure 9.39 Reduction resulting from the partitioning procedure.

Combining B and J into a new state B, and F and K into F, gives the flow table in

Figure 9.39.

Figure 9.40a gives a merger diagram for this flow table, indicating the possibilities for

merger if the Moore model of the FSM is to be preserved. In this case B and F can be

merged, as well as C and H, resulting in a six-row flow table.

Next we should consider the merging possibilities if we are willing to change to the

Mealy model. When going from the Moore model to the Mealy model, a stable state in

the Mealy model must generate the same output as it had in the Moore model. It is also

important to ensure that transitions in the Mealy model will not produce undesirable glitches

in the output signal.

Figure 9.41 indicates how the FSM of Figure 9.39 can be represented in the Mealy

form. The next-state entries are unchanged. In Figure 9.41, for each stable state the output

value must be the same as for the corresponding row of the Moore-type table. For example,

z = 0 when the state A is stable under w2w1 = 00. Also, z = 0 when the states B, D, and F
are stable under w2w1 = 10, 11, and 00, respectively. Similarly, z = 1 when C, E, G, and

H are stable under w2w1 = 01, 10, 01, and 11, respectively. If a transition from one stable

state to another requires the output to change from 0 to 1, or from 1 to 0, then the exact

time when the change takes place is not important, as we explained in Section 9.1 when

discussing Figure 9.3. For instance, suppose that the FSM is stable in A under w2w1 = 00,

producing z = 0. If the inputs then change to w2w1 = 01, a transition to state G must be

made, where z = 1. Since it is not essential that z becomes 1 before the circuit reaches the

state G, the output entry in row A that corresponds to this transition can be treated as a don’t

care; therefore, it is left unspecified in the table. From the stable state A, it is also possible

to change to E, which allows specifying another don’t care because z changes from 0 to 1. A

different situation arises in row B. Suppose that the circuit is stable in B under w2w1 = 10

and that the inputs change to 11. This has to cause a change to stable state D, and z must

remain at 0 throughout the change in states. Hence the output in row B under w2w1 = 11 is

specified as 0. If it were left unspecified, to be used as a don’t care, then it is possible that

in the implementation of the circuit this don’t care may be treated as a 1. This would cause

ISTUDY

9.4 STATE REDUCTION 557

DB CA

EF HG

(a) Preserving the Moore model

(b) Complete merger diagram

GH CA

BD FE

Figure 9.40 Merger diagram for Figure 9.39.

Present Next state Output z

state w2w1 = 00 01 10 11 00 01 10 11

A A G E – 0 – – –

B F – B D 0 – 0 0

C F C – H – 1 – 1

D –

–

C E D – – – 0

E A – E D – –

– – –

1 –

F F C B – 0 – 0 –

G F G – D – 1 – –

H E H 1 1

Figure 9.41 The FSM of Figure 9.39 specified in the form of the Mealy

model.

ISTUDY

558 C H A P T E R 9 ● ASYNCHRONOUS SEQUENTIAL CIRCUITS

Present Next state Output z

state w2w1 = 00 01 10 11 00 01 10 11

A A B D A 0 –

––

1 1

B C B B D 0 1 0 0

C C C B A 0 1 0 1

D A C D D 1 0

Figure 9.42 Reduced flow table for Example 9.9.

a glitch in z, which would change 0 → 1 → 0 as the circuit moves from B to D when the

inputs change from 10 to 11. The same situation occurs for the transition from B to F when

the inputs change from 10 to 00. We can use the same reasoning to determine other output

entries in Figure 9.41.

From Figure 9.41 we can derive the merger diagram in Figure 9.40b. The red lines

connect the rows that can be merged only by specifying the output in the Mealy style. The

black lines connect the rows that can be merged even if the outputs are of Moore type; they

correspond to the diagram in Figure 9.40a. Choosing the subsets of compatible states (A,H),

(B,G), (C,F), and (D,E), the FSM can be represented using only four states. Merging the

states A and H into a new state A, states B and G into B, states C and F into C, and D and E
into D, we obtain the reduced flow table in Figure 9.42. Each entry in this table meets the

requirements specified in the corresponding rows that were merged.

Example 9.10 As another example consider the flow table in Figure 9.43. The partitioning procedure gives

P1 = (AF)(BEG)(C)(D)(H)

P2 = (AF)(BE)(G)(C)(D)(H)

P3 = P2

Present Next state Output

state w2w1 = 00 01 10 11 z

A A B C – 0

B F B – H 0

C F – C H 0

D D G C – 1

E A E – H 0

F F E C – 0

G D G –

–

H 0

H G C H 1

Figure 9.43 Flow table for Example 9.10.

ISTUDY

9.4 STATE REDUCTION 559

Present Next state Output

state w2w1 = 00 01 10 11 z

A A B C – 0

B A B – H 0

C A – C H 0

D D G C – 1

G D G –

–

H 0

H G C H 1

Figure 9.44 Reduction after the partitioning procedure.

H

B

C

G

D

A

Figure 9.45 Merger diagram for Figure 9.44.

Present Next state Output z

state w2w1 = 00 01 10 11 00 01 10 11

A A A A D 0 0 0 –

–D D D A D 1 0 1

Figure 9.46 Reduced flow diagram for Example 9.10.

Replacing state F with A, and state E with B, results in the flow table in Figure 9.44. The

corresponding merger diagram is presented in Figure 9.45. It is apparent that states A, B,

and C can be merged and replaced with a new state A. Also D, G, and H can be merged

into a new state D. The result is the reduced flow table in Figure 9.46, which has only two

rows. Again we have used the Mealy model because the merged stable states D and H have

z = 1 while G has z = 0.

ISTUDY

560 C H A P T E R 9 ● ASYNCHRONOUS SEQUENTIAL CIRCUITS

9.5 STATE ASSIGNMENT

The examples in Section 9.3 illustrate that the state assignment task for asynchronous FSMs

is complex. The time needed to change the value of a state variable depends on the propa-

gation delays in the circuit. Thus it is impossible to ensure that a change in the values of two

or more variables will take place at exactly the same time. To achieve reliable operation of

the circuit, the state variables should change their values one at a time in controlled fashion.

This is accomplished by designing the circuit such that a change from one state to another

entails a change in one state variable only.

States in FSMs are encoded as bit strings that represent different valuations of the state

variables. The number of bit positions in which two given bit strings differ is called the

Hamming distance between the strings. For example, for bit strings 0110 and 0100 the

Hamming distance is 1, while for 0110 and 1101 it is 3. Using this terminology, an ideal

state assignment has a Hamming distance of 1 for all transitions from one stable state to

another. When the ideal state assignment is not possible, an alternative that makes use of

unspecified states and/or transitions through unstable states must be sought. Sometimes it

is necessary to increase the number of state variables to provide the needed flexibility.

Example 9.11 Consider the parity-generating FSM in Figure 9.13. Two possible state assignments for this

FSM are given in Figure 9.14. The transitions between states, as specified in Figure 9.13b,

can be described in pictorial form as shown in Figure 9.47. Each row of the flow table is

represented by a point. The four points needed to represent the rows are placed as vertices

of a square. Each vertex has an associated code that represents a valuation of the state

variables, y2y1. The codes shown in the figure, with y2y1 = 00 in the lower-left corner

and so on, correspond to the coordinates of the two-dimensional cube presented in Sec-

tion 8.3.1. Figure 9.47a shows what happens if the state assignment in Figure 9.14a is used;

namely, if A = 00, B = 01, C = 10, and D = 11. There is a transition from A to B if w = 1,

which requires a change in y1 only. A transition from C to D occurs if w = 1, which also

requires a change in y1 only. However, a transition from B to C caused by w = 0 involves a

change in the values of both y2 and y1. Similarly, both state variables must change in going

from D to A if w = 0. A change in both variables corresponds to a diagonal path in the

diagram.

Figure 9.47b shows the effect of the state assignment in Figure 9.14b, which reverses

the valuations assigned to C and D. In this case all four transitions are along the edges of

the two-dimensional cube, and they involve a change in only one of the state variables. This

is the desirable state assignment.

Example 9.12 The flow table for an arbiter FSM is given in Figure 9.21a. Transitions for this FSM are

shown in Figure 9.48a, using the state assignment A = 00, B = 01, and C = 10. In this case

multiple transitions are possible between the states. For example, there are two transitions

between A and B: from B to A if r2r1 = 00 and from A to B if r2r1 = 01. Again there is

a diagonal path, corresponding to transitions between B and C, which should be avoided.

A possible solution is to introduce a fourth state, D, as indicated in Figure 9.48b. Now the

ISTUDY

9.5 STATE ASSIGNMENT 561

(a) Corresponding to Figure 9.14a

(b) Corresponding to Figure 9.14b

C 10= D 11=

A 00= B 01=

w 0= w 0=

w 1=

w 1=

D 10= C 11=

A 00= B 01=

w 0= w 0=

w 1=

w 1=

Figure 9.47 Transitions in Figure 9.13.

transitions between B and C can take place via the unstable state D. Thus instead of going

directly from B to C when r2r1 = 10, the circuit will go first from B to D and then from

D to C.

Using the arrangement in Figure 9.48b requires modifying the flow table as shown

in Figure 9.49. The state D is not stable for any input valuation. It cannot be reached if

r2r1 = 00 or 11; hence these entries are left unspecified in the table. Also observe that we

have specified the output g2g1 = 10 for state D, rather than leaving it unspecified. When

a transition from one stable state to another takes place via an unstable state, the output of

the unstable state must be the same as the output of one of the two stable states involved

in the transition to ensure that a wrong output is not generated while passing through the

unstable state.

It is interesting to compare this flow table with the excitation table in Figure 9.21b,

which is also based on using the extra state D. In Figure 9.21b the state D specifies the

necessary transitions should the circuit accidentally find itself in this state as a result of a

race in changing the values of both state variables. In Figure 9.49 the state D is used in

orderly transitions, which are not susceptible to any race conditions.

ISTUDY

562 C H A P T E R 9 ● ASYNCHRONOUS SEQUENTIAL CIRCUITS

(a) Transitions in Figure 9.21a

(b) Using the extra state D

C 10=

A 00= B 01=

00
10

01

01

C 10= D 11=

A 00= B 01=

00 10

10

01

01

0110

10

00

00

Figure 9.48 Transitions for the arbiter FSM in Figure 9.21.

Present Next state Output

state r2r1 = 00 01 10 11 g2g1

A A B C –

––

00

B A B D B 01

C A D C C 10

D B C 10

Figure 9.49 Modified flow table based on the transitions in

Figure 9.48b.

ISTUDY

9.5 STATE ASSIGNMENT 563

Present Next state Output

state r2r1 = 00 01 10 11 g2g1

A 1 2 4 – 00

B 1 2 4 3 01

C 1 2 4 5 10

Figure 9.50 Relabeled flow table of Figure 9.21a.

9.5.1 TRANSITION DIAGRAM

A diagram that illustrates the transitions specified in a flow table is called a transition dia-
gram. In some books such diagrams are called state-adjacency diagrams. These diagrams

provide a convenient aid in searching for a suitable state assignment.

A good state assignment results if the transition diagram does not have any diagonal

paths. A general way of stating this requirement is to say that it must be possible to embed
the transition diagram onto a k-dimensional cube, because in a cube all transitions between

adjacent vertices involve the Hamming distance of 1. Ideally, a transition diagram for an

FSM with n state variables can be embedded onto an n-dimensional cube, as is the case in

the examples in Figures 9.47b and 9.48b. If this is not possible, then it becomes necessary

to introduce additional state variables, as we will see in later examples.

The diagrams in Figures 9.47 and 9.48 present all information pertinent to transitions

between the states in the given FSMs. For larger FSMs such diagrams take on a cluttered

appearance. A simpler form can be used instead, as described below.

A transition diagram has to show the state transitions for each valuation of the input

variables. The direction of a transition, for example from A to B or from B to A, is not impor-

tant, because it is only necessary to ensure that all transitions involve the Hamming distance

of 1. The transition diagram has to show the effect of individual transitions into each stable

state, which may involve passing through unstable states. For a given row of a flow table, it

is possible to have two or more stable-state entries for different input valuations. It is useful

to identify the transitions leading into these stable states with distinct labels in a transition

diagram. To give each stable-state entry a distinct label, we will denote the stable-state en-

tries with numbers 1, 2, 3, … . Thus if state A is stable for two input valuations, we will

replace the label A with 1 for one input valuation and with 2 for the other valuation.

Figure 9.50 shows a relabeled version of the flow table in Figure 9.21a. We have ar-

bitrarily chosen to label A as 1, the two appearances of B as 2 and 3, and the two

appearances of C as 4 and 5. All entries in each next-state column are labeled using this

scheme. The transitions identified by these labels are presented in Figure 9.51a. The same

information is given in Figure 9.48a. Actually, the diagram in Figure 9.48a contains more

information because arrowheads show the direction of each transition. Note also that the

edges in that diagram are labeled with input values r2r1, whereas the edges in Figure 9.51a
are labeled with numerical stable-state labels as explained above.

Figure 9.50 indicates that the stable state 2, which is one instance of the stable state

B, can be reached either from state A or from state C. There is a corresponding label 2 on

the paths connecting the vertices in the diagram in Figure 9.51a. The difficulty from the

ISTUDY

564 C H A P T E R 9 ● ASYNCHRONOUS SEQUENTIAL CIRCUITS

(a) Transitions in Figure 9.50

(b) Complete transition diagram

C 10=

A 00= B 01=1 2,

1 4, 2 4,

C 10=

A 00= B 01=1 2 4, ,

1 4 2, , 2 4 1, ,

(c) Selected transition diagram

C 10=

A 00= B 01=1 2 4, ,

1 4 2, ,

Figure 9.51 Transition diagrams for Figure 9.50.

state-assignment point of view is that the path from C to B is diagonal. In Example 9.12

this problem was resolved by introducing a new state D. By examining the flow table in

Figure 9.50 more closely, we can see that the functional behavior of the required arbiter

FSM can be achieved if the transition from C to B takes place via state A. Namely, if the

circuit is stable in C, then the input r2r1 = 01 can cause the change to A, from which the

circuit immediately proceeds to state B. We can indicate the possibility of using this path

by placing the label 2 on the edge that connects C and A in Figure 9.51a.

A similar situation exists for the transition from B to C, which is labeled 4. An alterna-

tive path can be realized by causing the circuit to go from state B to state A if r2r1 = 10 and

ISTUDY

9.5 STATE ASSIGNMENT 565

then immediately proceed to C. This can be indicated by placing the label 4 on the edge

that connects B and A in Figure 9.51a.

A possibility of having an alternative path for a transition exists whenever two states

have the same uncircled label in the relabeled flow diagram. In Figure 9.50 there is a third

such possibility if r2r1 = 00, using the label 1. This possibility is not useful because chang-

ing from either B or C to A involves a change in only one state variable using the state

assignment in Figure 9.51a. Hence there would be no benefit in having a transition between

B and C for this input valuation.

To depict the possibility of having alternative paths, we will indicate in red the cor-

responding transitions on the diagram. Thus a complete transition diagram will show all

direct transitions to stable states in black and possible indirect transitions through unsta-

ble states in red. Figure 9.51b shows the complete transition diagram for the flow table in

Figure 9.21a.

The transition diagram in Figure 9.51b cannot be embedded on the two-dimensional

cube, because some transitions require a diagonal path. The red label 1 on the path between

B and C is of no concern, because it represents only an alternative path that does not have

to be used. But the transitions between B and C labeled 2 and 4 are required. The diagram

shows an alternative path, through A, having the labels 2 and 4. Therefore, the alternative

path can be used, and the diagonal connection in the diagram can be eliminated. This leads

to the transition diagram in Figure 9.51c, which can be embedded on the two-dimensional

cube. The conclusion is that the state assignment A = 00, B = 01, and C = 10 is good,

but the flow table must be modified to specify the transitions through alternative paths. The

modified table is the same as the flow table designed earlier using an ad hoc approach,

shown in Figure 9.23a.

As a final comment on this example, note the impact of alternative paths on the outputs

produced by the FSM. If r2r1 = 01, then a change from a stable state C through unstable A
to stable B generates the outputs g2g1 = 10 → 00 → 01, rather than 10 → 01 as specified

in Figure 9.21a. For the arbiter FSM this presents no problem, as explained in Example 9.6.

Procedure for Deriving Transition Diagrams
The transition diagram is derived from a flow table as follows:

∙ Derive the relabeled flow table as explained above. For a given input valuation, all tran-

sitions that lead to the same stable state are labeled with the same number. Transitions

through unstable states that eventually lead to a stable state are given the same number

as the stable-state entry.

∙ Represent each row of the flow table by a vertex.

∙ Join two vertices, Vi and Vj, by an edge if they have the same number in any column

of the relabeled flow table.

∙ For each column in which Vi and Vj have the same number, label the edge between

Vi and Vj with that number. We will use black labels for direct transitions to circled

(stable) states and red labels when the next-state entries for both Vi and Vj in the flow

table are uncircled.

Note that the first point says that in the relabeled flow table the transitions through unstable

states are given the label of the stable state to which they lead for a given input valuation.

For example, to derive a transition diagram starting from the flow table in Figure 9.23a,

ISTUDY

566 C H A P T E R 9 ● ASYNCHRONOUS SEQUENTIAL CIRCUITS

the table would be relabeled to give the table in Figure 9.50. The transition from stable A
to stable B, when r2r1 = 01, has the label 2. The same label is given to the transition from

stable C to unstable A because this transition ultimately leads to stable B.

9.5.2 EXPLOITING UNSPECIFIED NEXT-STATE ENTRIES

Unspecified entries in a flow table provide some flexibility in finding good state assign-

ments. The following example presents a possible approach. The example also illustrates

all steps in the derivation of a transition diagram.

Example 9.13 Consider the flow table in Figure 9.52a. This FSM has seven stable-state entries. Labeling

these entries in order, from 1 to 7, results in the table in part (b) of the figure. In this case

states 1 and 2 correspond to state A, 3 and 4 to state B, 5 and 6 to state C, and 7 to state D.

In the column w2w1 = 00 there is a transition from C to A, which is labeled 1, and a

transition from D to B, which is labeled 3, because 1 and 3 are the successor stable states

in these transitions. Similarly, in column 11 there are transitions from B to C and from D
to A, which are labeled 6 and 2, respectively. In column 01 there is a transition from A to B,

which is labeled 4. State C is stable for this input valuation; it is labeled 5. There is no

Present Next state Output

state w2w1 = 00 01 10 11 z2z1

A A B C A 00

B B B D C 01

C A C D C 10

D B – D A 11

(a) Flow table

Present Next state Output

state w2w1 = 00 01 10 11 z2z1

A 1 4 7 2 00

B 3 4 7 6 01

C 1 5 7 6 10

D 3 – 7 2 11

(b) Relabeled flow table

Figure 9.52 Flow tables for Example 9.13.

ISTUDY

9.5 STATE ASSIGNMENT 567

transition specified that leads to this stable state. The state can be reached only if C is stable

under w2w1 = 11, which is labeled 6, and then the inputs change to w2w1 = 01. Note that

the FSM remains stable in C if the inputs change from 11 to 01, or vice versa. Column

10 illustrates how unstable states are treated. From the stable state A, a transition to the

unstable state C is specified. As soon as the FSM reaches state C, it proceeds to change to

the stable state D, which is labeled 7. Thus 7 is used as the label for the entire transition

sequence from A to C to D.

Taking rows A, B, C, and D as the four vertices, a first attempt at drawing the transition

diagram is given in Figure 9.53a. The diagram shows transitions between all pairs of states,

(a) First transition diagram

(b) Second transition diagram

D 10=

A 00= B 01=4 7,

2 7, 6 7,

(c) Augmented transition diagram

C 11=

1 7,

3 7,

7

D 10=

A 00= C 01=1 7,

2 7, 6 7,

B 11=

4 7,

7

3 7,

D 10=

A 00= C 01=1 7,

2 7 4, , 6 7,

B 11=3 7 4, ,

Figure 9.53 Transition diagrams for Figure 9.52.

ISTUDY

568 C H A P T E R 9 ● ASYNCHRONOUS SEQUENTIAL CIRCUITS

which seems to suggest that it is impossible to have a state assignment where all transitions

are characterized by a Hamming distance of 1. If the state assignment A = 00, B = 01,

C = 11, and D = 10 is used, then the diagonal transition between A and C, or B and D,

requires both state variables to change their values. The diagonal path from B to D with

the label 7 is not needed, because an alternative path from B to D exists under label 7 that

passes either through state A or through state C. Unfortunately, the diagonal paths labeled

1 and 3 cannot be removed, because there are no alternative paths for these transitions.

As the next attempt at finding a suitable state assignment, we will reverse the codes

given to B and C, which yields the transition diagram in Figure 9.53b. Now the same ar-

gument about the alternative paths labeled 7 indicates that the diagonal from C to D can

be omitted. Also, the label 7 on the diagonal between A and B can be omitted. However,

this diagonal must remain because of the label 4 for which there is no alternative path be-

tween A and B. Looking at the flow table in Figure 9.52b, we see an unspecified entry in

the column w2w1 = 01. This entry can be exploited by replacing it with the label 4, in

which case the transition graph would show the label 4 on the edges connecting A and D,

as well as B and D. Thus the diagonal between A and B could be removed, producing the

transition diagram in Figure 9.53c. This diagram can be embedded on a two-dimensional

cube, which means that the state assignment A = 00, B = 11, C = 01, and D = 10 can

be used.

For the transition diagram in Figure 9.53c to be applicable, the flow table for the FSM

must be modified as shown in Figure 9.54a. The unspecified entry in Figure 9.52a now

specifies a transition to state B. According to Figure 9.53c, the change from state A to B
under input valuation w2w1 = 01 must pass through state D; hence the corresponding entry

in the first row is modified to ensure that this will take place. Also, when w2w1 = 10, the

FSM must go to state D. If it happens to be in state C, then this change has to occur either

via state A or state B. We have chosen the path via state B in Figure 9.54a.

The original flow table in Figure 9.52a is defined in the form of the Moore model.

The modified flow table in Figure 9.54a requires the use of the Mealy model because the

previously described transitions through unstable states must produce correct outputs. Con-

sider first the change from A if w2w1 = 01. While stable in state A, the circuit must pro-

duce the output z2z1 = 00. Upon reaching the stable state B, the output must become 01.

The problem is that this transition requires a short visit to state D, which in the Moore

model would produce z2z1 = 11. Thus a glitch would be generated on the output sig-

nal z2, which would undergo the change 0 → 1 → 0. To avoid this undesirable glitch,

the output in state D must be z2 = 0 for this input valuation, which requires the use of

the Mealy model as shown in the Figure 9.54a. Observe that while z2 must be 0 in D
for w2w1 = 01, z1 can be either 0 or 1 because it is changing from 0 in state A to 1 in

state B. Therefore, z1 can be left unspecified so that this case can be treated as a don’t-

care condition. A similar situation arises when the circuit changes from C to D via B if

w2w1 = 10. The output must change from 10 to 11, which means that z2 must remain at 1

throughout this change, including the short time in state B where the Moore model output

would be 01.

The modified flow table and the chosen state assignment lead to the excitation table in

Figure 9.54b. From this table the next-state and output expressions are derived, as in the

examples in Section 9.3.

ISTUDY

9.5 STATE ASSIGNMENT 569

Present Next state Output z2z1

state w2w1 = 00 01 10 11 00 01 10 11

A A D D A 00 00 11 00

B B B D C 01 01 11 01

C A C B C – 0 10 1– 10

D B B D A – 1 0– 11 00

(a) Modified flow table

Present Next state Output

state w2w1 = 00 01 10 11 00 01 10 11

y2y1 Y2Y1 z2z1

A 00 00 10 10 00 00 00 11 00

B 11 11 11 10 01 01 01 11 01

C 01 00 01 11 01 – 0 10 1– 10

D 10 11 11 10 00 – 1 0– 11 00

(b) Excitation table

Figure 9.54 Realization of the FSM in Figure 9.52a.

9.5.3 STATE ASSIGNMENT USING ADDITIONAL STATE VARIABLES

In Figure 9.52a there is an unspecified transition that can be exploited to find a suitable

state assignment, as shown in Section 9.5.2. In general, such flexibility may not exist. It

may be impossible to find a race-free state assignment using log2n state variables for a flow

table that has n rows. The problem can be solved by adding extra state variables. This can

be done in three ways, as illustrated in the examples that follow.

Example 9.14USING EXTRA UNSTABLE STATES Consider the FSM specified by the flow table in Fig-

ure 9.55a. The flow table is relabeled in part (b) of the figure. A corresponding transition

diagram is depicted in Figure 9.56a. It indicates that there are transitions between all pairs

of vertices (rows). No rearrangement of the existing vertices would allow mapping of the

transition diagram onto a two-dimensional cube.

Let us now introduce one more state variable so that we can look for a way to map the

transition diagram onto a three-dimensional cube. With three state variables the assignment

ISTUDY

570 C H A P T E R 9 ● ASYNCHRONOUS SEQUENTIAL CIRCUITS

Present Next state Output

state w2w1 = 00 01 10 11 z2z1

A A A C B 00

B A B D B 01

C C B C D 10

D C A D D 11

(a) Flow table

Present Next state Output

state w2w1 = 00 01 10 11 z2z1

A 1 2 6 4 00

B 1 3 7 4 01

C 5 3 6 8 10

D 5 2 7 8 11

(b) Relabeled flow table

Figure 9.55 FSM for Example 9.14.

for state A can be a Hamming distance of 1 different from the assignments for B, C, and D.

For example, we could have A = 000, B = 001, C = 100, and D = 010. But it would then

be impossible to have the pairs (B,C), (B,D), and (C,D) within the Hamming distance of 1.

The solution here is to insert extra vertices in the transition paths, as shown in Figure 9.56b.

Vertex E separates B from D, while vertices F and G break the paths (B,C) and (C,D). The

labels associated with the transitions are attached to both segments of a broken path. The

resulting transition diagram can be embedded onto a three-dimensional cube as indicated

in Figure 9.56c, where the black portion of the cube comprises the desired paths. Now the

transition from B to D takes place via vertex E if w2w1 = 10 (label 7). The transition from

C to B occurs via F if w2w1 = 01 (label 3). The transition from C to D goes through G
if w2w1 = 11 (label 8), and the transition from D to C goes via G if w2w1 = 00 (label 5).

Therefore, the flow table has to be modified as shown in Figure 9.57a. The three extra

states are unstable because the circuit will not remain in these states for any valuation of

the inputs. The circuit will merely pass through these states in the process of changing from

one stable state to another. Observe that each of the states E, F, and G is needed to facilitate

the transitions caused by only one or two valuations of inputs. Thus it is not necessary to

specify the actions that might be caused by other input valuations, because such situations

will never occur in a properly functioning circuit.

ISTUDY

9.5 STATE ASSIGNMENT 571

(a) Transition diagram

(b) Augmented transition diagram

A

D C5 8,

2 3

(c) Embedded transition diagram

B

76

1 4,

A

D C5 8,

2

3

B

76

1 4,

5 8,

3

7

G

E

D

A B

E

FC

G

7

5 8,

1 4,

3

3
2

7

y2

y3

y1

F

6

5 8,

Figure 9.56 Transition diagrams for Figure 9.55.

The outputs in Figure 9.57a can be specified using the Mealy model. It is essential

that a proper output is generated when passing through unstable states, to avoid undesirable

glitches in the output signals.

If we assign the state variables as shown on the right of Figure 9.56c, the modified flow

table leads to the excitation table in Figure 9.57b. From this table, deriving the next-state

and output expressions is a straightforward task.

ISTUDY

572 C H A P T E R 9 ● ASYNCHRONOUS SEQUENTIAL CIRCUITS

Present Next state Output

state w2w1 = 00 01 10 11 z2z1

A A A C B 00

B A B E B 01

C C F C G 10

D G A D D 11

E – – D – – 1

F – B – – 01

G C – – D 1–

(a) Modified flow table

Present Next state

state w2w1 = 00 01 10 11 Output

y3 y2 y1 Y3Y2Y1
z2z1

A 000 000 000 100 001 00

B 001 000 001 011 001 01

C 100 100 101 100 110 10

D 010 110 000 010 010 11

E 011 – – 010 – – 1

F 101 – 001 – – 01

G 110 100 – – 010 1–

(b) Excitation table

Figure 9.57 Modified tables for Example 9.14.

Example 9.15 USING PAIRS OF EQUIVALENT STATES Another approach is to increase the flexibility in state

assignment by introducing an equivalent new state for each existing state. Thus state A can

be replaced with two states A1 and A2 such that the final circuit produces the same outputs

for A1 and A2 as it would for A. Similarly, other states can be replaced by equivalent pairs

of states. Figure 9.58 shows how a three-dimensional cube can be used to find a good state

ISTUDY

9.5 STATE ASSIGNMENT 573

B1

A1 A2

B2

D1C1

C2

1 4,

5 8,

2

5 8,
1 4,

7

y2

y3

y1

D2

6

3

Figure 9.58 Embedded transition diagram if two nodes per row are

used.

assignment for a four-row flow table. The four equivalent pairs are arranged so that the

minimum Hamming distance of 1 exists between all pairs. For example, the pair (B1,B2)

has the Hamming distance of 1 with respect to A1 (or A2), C2, and D2.

The transition diagram in Figure 9.56a can be embedded onto the three-dimensional

cube as shown in Figure 9.58. Since there is a choice of two vertices on the cube for each

vertex in the transition diagram in Figure 9.56a, the embedded transition diagram does not

involve any diagonal paths. Using this assignment of states, the flow table in Figure 9.55a
has to be modified as presented in Figure 9.59a. The entries in the table are made to

allow each transition in the original flow table to be realized using a transition between

the corresponding pairs of equivalent states. Both states in an equivalent pair are stable

for the input valuations for which the original state is stable. Thus A1 and A2 are sta-

ble if w2w1 = 00 or 01, B1 and B2 are stable if w2w1 = 01 or 11, and so on. At any

given time the FSM may be in either of the two equivalent states that represent an origi-

nal state. Then a change to another state must be possible from either of these states. For

example, Figure 9.55a specifies that the FSM must change from the stable state A to state

B if the input is w2w1 = 11. The equivalent transition in the modified flow table is the

change from state A1 to B1 or from state A2 to B2. If the FSM is stable in A and the in-

put changes from 00 to 10, then a change to C is required. The equivalent transition in the

modified flow table is from state A1 to C1; if the FSM happens to be in state A2, it will first

have to change to A1. The remaining entries in Figure 9.59a are derived using the same

reasoning.

The outputs are specified using the Moore model, because the only unstable states are

those involved in changing from one member of the equivalent pair to another, and both

members generate the same outputs. For instance, in the previously described transition

from A to C, if the starting point is A2, it is necessary to go first to A1 and then to C1. Even

though A1 is unstable for w2w1 = 10, there is no problem because its output is the same as

that of A2. Therefore, if the original flow table is defined using the Moore model, then the

modified flow table can also be done using the Moore model.

Using the assignment of the state variables in Figure 9.58 gives the excitation table in

Figure 9.59b.

ISTUDY

574 C H A P T E R 9 ● ASYNCHRONOUS SEQUENTIAL CIRCUITS

Present Next state Output

state w2w1 = 00 01 10 11 z2z1

A1 A1 A1 C1 B1 00

A2 A2 A2 A1 B2 00

B1 A1 B1 B2 B1 01

B2 A2 B2 D2 B2 01

C1 C1 C2 C1 D1 10

C2 C2 B1 C2 D2 11

D1 C1 A2 D1 D1 11

D2 C2 D1 D2 D2 11

Present Next state

state w2w1 = 00 01 10 11 Output

y3 y2 y1 Y3Y2Y1
z2z1

A1 000 000 000 100 010 00

A2 001 001 001 000 011 00

B1 010 000 010 011 010 01

B2 011 001 011 111 011 01

C1 100 100 110 100 101 10

C2 110 110 010 110 111 10

D1 101 100 001 101 101 11

D2 111 110 101 111 111 11

(a) Modified flow table

(b) Excitation table

Figure 9.59 Modified flow and excitation tables for Example 9.15.

ISTUDY

9.5 STATE ASSIGNMENT 575

9.5.4 ONE-HOT STATE ASSIGNMENT

The previously described schemes based on embedding the flow table in a cube may lead

to an optimal state assignment, but they require a trial-and-error approach that becomes

awkward for large machines. A straightforward, but more expensive, alternative is to use

one-hot codes. If each row in the flow table of an FSM is assigned a one-hot code, then

race-free state transitions can be achieved by passing through unstable states that are at a

Hamming distance of 1 from the two stable states involved in the transition. For example,

suppose that state A is assigned the code 0001 and state B the code 0010. Then a race-free

transition from A to B can pass through an unstable state 0011. Similarly, if C is assigned

the code 0100, then a transition from A to C can be done via the unstable state 0101.

Using this approach, the flow table in Figure 9.55a can be modified as illustrated in

Figure 9.60. The four states, A, B, C, and D, are assigned one-hot codes. As seen in the

figure, it is necessary to introduce six unstable states, E through J, to handle the neces-

sary transitions. These unstable states have to be specified only for the specific transitions,

whereas for other input valuations they may be treated as don’t cares.

The outputs can be specified using the Moore model. In some cases it does not matter

when a particular output signal changes its value. For instance, state E is used to facilitate

the transition from state A to C. Since z2z1 = 00 in A and 10 in C, it is not important if z2

changes when passing through state E.

While straightforward to implement, the one-hot encoding is expensive because it re-

quires n state variables to implement an n-row flow table. Simplicity of design and the cost

of implementation often provide a challenging trade-off in designing logic circuits!

State Present Next state Output

assignment state w2w1 = 00 01 10 11 z2z1

0001 A A A E F 00

0010 B F B G B 01

0100 C C H C I 10

1000 D I J D D 11

0101 E – – C – – 0

0011 F A – – B 0 –

1010 G – – D – – 1

0110 H – B – –

– – –

01

1100 I C – – D 1 –

1001 J A 00

Figure 9.60 State assignment with one-hot encoding.

ISTUDY

576 C H A P T E R 9 ● ASYNCHRONOUS SEQUENTIAL CIRCUITS

9.6 HAZARDS

In asynchronous sequential circuits it is important that undesirable glitches on signals should

not occur. The designer must be aware of the possible sources of glitches and ensure that

the transitions in a circuit will be glitch free. The glitches caused by the structure of a given

circuit and propagation delays in the circuit are referred to as hazards. Two types of hazards

are illustrated in Figure 9.61.

A static hazard exists if a signal is supposed to remain at a particular logic value when

an input variable changes its value, but instead the signal undergoes a momentary change

in its required value. As shown in Figure 9.61a, one type of static hazard is when the signal

at level 1 is supposed to remain at 1 but dips to 0 for a short time. Another type is when the

signal is supposed to remain at level 0 but rises momentarily to 1, thus producing a glitch.

A different type of hazard may occur when a signal is supposed to change from 1 to 0

or from 0 to 1. If such a change involves a short oscillation before the signal settles into its

new level, as illustrated in Figure 9.61b, then a dynamic hazard is said to exist.

9.6.1 STATIC HAZARDS

Figure 9.62a shows a circuit with a static hazard. Suppose that the circuit is in the state

where x1 = x2 = x3 = 1, in which case f = 1. Now let x1 change from 1 to 0. Then the

circuit is supposed to maintain f = 1. But consider what happens when the propagation

delays through the gates are taken into account. The change in x1 will probably be observed

at point p before it will be seen at point q because the path from x1 to q has an extra gate

(NOT) in it. Thus the signal at p will become 0 before the signal at q becomes equal to 1.

For a short time both p and q will be 0, causing f to drop to 0 before it recovers back to 1.

This gives rise to the signal depicted on the left side of Figure 9.61a.

The glitch on f can be prevented as follows. The circuit implements the function

f = x1x2 + x1x3

The corresponding Karnaugh map is given in Figure 9.62b. The two product terms realize

the prime implicants encircled in black. The hazard explained above occurs when there is

1 1 0 0

1 0 0 1

(a) Static hazard

(b) Dynamic hazard

1

0

1

0

Figure 9.61 Definition of hazards.

ISTUDY

9.6 HAZARDS 577

x1 x2
x3 00 01 11 10

1

0

1

(b) Karnaugh map

1

f

x3

(a) Circuit with a hazard

1

1

x1

x2 p

q

x3

x1

x2

f

(c) Hazard-free circuit

Figure 9.62 An example of a static hazard.

a transition from the prime implicant x1x2 to the prime implicant x1x3. The hazard can be

eliminated by including the third prime implicant, encircled in red. (This is the consensus

term, defined in Property 17a in Section 2.5.) Then the function would be implemented as

f = x1x2 + x1x3 + x2x3

Now the change in x1 from 1 to 0 would have no effect on the output f because the product

term x2x3 would be equal to 1 if x2 = x3 = 1, regardless of the value of x1. The resulting

hazard-free circuit is depicted in Figure 9.62c.

ISTUDY

578 C H A P T E R 9 ● ASYNCHRONOUS SEQUENTIAL CIRCUITS

A potential hazard exists wherever two adjacent 1s in a Karnaugh map are not covered

by a single product term. Therefore, a technique for removing hazards is to find a cover in

which some product term includes each pair of adjacent 1s. Then, since a change in an input

variable causes a transition between two adjacent 1s, no glitch can occur because both 1s

are included in a product term.

In asynchronous sequential circuits a hazard can cause the circuit to change to an in-

correct stable state. Example 9.16 illustrates this situation.

Example 9.16 In Example 9.2 we analyzed the circuit that realizes a M-S D flip-flop. From the excitation

table in Figure 9.6a, one could attempt to synthesize a minimum-cost circuit that realizes

the required functions, Ym and Ys. This would give

Ym = CD + Cym

= (C ↑ D) ↑ (C ↑ ym)

Ys = Cym + Cys

= (C ↑ ym) ↑ (C ↑ ys)

The corresponding circuit is presented in Figure 9.63a. At first glance this circuit may seem

more attractive than the flip-flops discussed in Chapter 5 because it is less expensive. The

problem is that the circuit contains a static hazard.

Figure 9.63b shows the Karnaugh maps for the functions Ym and Ys. The minimum-cost

implementation is based on the prime implicants encircled in black. To see how this circuit

is affected by static hazards, assume that presently Ys = 1 and C = D = 1. The circuit

generates Ym = 1. Now let C change from 1 to 0. For the flip-flop to behave properly, Ys
must remain equal to 1. In Figure 9.63a, when C changes to 0, both p and r become 1.

Due to the delay through the NOT gate, q may still be 1, causing the circuit to generate

Ym = Ys = 0. The feedback from Ym will maintain q = 1. Hence the circuit remains in an

incorrect stable state with Ys = 0.

To avoid the hazards, it is necessary to also include the terms encircled in red, which

gives rise to the expressions

Ym = CD + Cym + Dym

Ys = Cym + Cys + ymys

The resulting circuit, implemented with NAND gates, is shown in Figure 9.63c.

Note that we can obtain another NAND-gate implementation by rewriting the expres-

sions for Ym and Ys as

Ym = CD + (C + D)ym

= (C ↑ D) ↑ ((C + D) ↑ ym)

= (C ↑ D) ↑ ((C ↑ D) ↑ ym)

Ys = Cym + (C + ym)ys

= (C ↑ ym) ↑ ((C ↑ ym) ↑ ys)

ISTUDY

9.6 HAZARDS 579

00 01 11 10

1

1 1

00

01

11

10

(b) Karnaugh maps for Ym and Ys in Figure 9.6a

11

1

ym ys

CD

1

1

00 01 11 10

1

1 1

00

01

11

10

11 1

ym ys

CD

11

D

C

Y m

Y s

ym

ys

p

q

r

D

C

Y m

Y s

ym

ys

(a) Minimum-cost circuit

(c) Hazard-free circuit

Q

Q

Figure 9.63 Two-level implementation of M-S flip-flop.

ISTUDY

580 C H A P T E R 9 ● ASYNCHRONOUS SEQUENTIAL CIRCUITS

x1 x2
x3 x4 00 01 11 10

1

1 11

00

01

11

10

11

1 1

dd

d

Figure 9.64 Function for Example 9.17.

These expressions correspond exactly to the circuit in Figure 5.12 (without the clear and

preset inputs).

Example 9.17 From the previous examples, it seems that static hazards can be avoided by including all

prime implicants in a sum-of-products circuit that realizes a given function. This is indeed

true. But it is not always necessary to include all prime implicants. It is only necessary

to include product terms that cover the adjacent pairs of 1s. There is no need to cover the

don’t-care vertices.

Consider the function in Figure 9.64. A hazard-free circuit that implements this func-

tion should include the encircled terms, which gives

f = x1x3 + x2x3 + x3x4

The prime implicant x1x2 is not needed to prevent hazards, because it would account only

for the two 1s in the left-most column. These 1s are already covered by x1x3.

Example 9.18 Static hazards can also occur in other types of circuits. Figure 9.65a depicts a product-of-

sums circuit that contains a hazard. If x1 = x3 = 0 and x2 changes from 0 to 1, then f should

remain at 0. However, if the signal at p changes earlier than the signal at q, then p and q
will both be equal to 1 for a short time, causing a glitch 0 → 1 → 0 on f .

In a POS circuit, it is the transitions between adjacent 0s that may lead to hazards. Thus

to design a hazard-free circuit, it is necessary to include sum terms that cover all pairs of

adjacent 0s. In this example the term in red in the Karnaugh map must be included, giving

f = (x1 + x2)(x2 + x3)(x1 + x3)

The circuit is shown in Figure 9.65c.

ISTUDY

9.6 HAZARDS 581

x1 x2
x3 00 01 11 10

1

0

1

(b) Karnaugh map

1

f

x3

(a) Circuit with a hazard

0

0

x2

x1 p

q

x3

x2

x1

f

(c) Hazard-free circuit

00

1

1

Figure 9.65 Static hazard in a POS circuit.

9.6.2 DYNAMIC HAZARDS

A dynamic hazard causes glitches on 0 → 1 or 1 → 0 transitions of an output signal.

An example is given in Figure 9.66. Assuming that all NAND gates have equal delays, a

timing diagram can be constructed as shown. The time elapsed between two vertical lines

corresponds to a gate delay. The output f exhibits a glitch that should be avoided.

It is interesting to consider the function implemented by this circuit, which is

f = x1x2 + x3x4 + x1x4

ISTUDY

582 C H A P T E R 9 ● ASYNCHRONOUS SEQUENTIAL CIRCUITS

(a) Circuit

x2

x1

x3

x4

b

a

c
d

f

x2 x3 x4, ,

x1

b

a

c

d

f

One gate delay

(b) Timing diagram

Figure 9.66 Circuit with a dynamic hazard.

This is the minimum-cost sum-of-products expression for the function. If implemented in

this form, the circuit would not have either a static or a dynamic hazard.

A dynamic hazard is caused by the structure of the circuit, where there exist multiple

paths for a given signal change to propagate along. If the output signal changes its value

three times, 0 → 1 → 0 → 1 in the example, then there must be at least three paths along

which a change from a primary input can propagate. A circuit that has a dynamic hazard

must also have a static hazard in some part of it. As seen in Figure 9.66b, there is a static

hazard involving the signal on wire b.

Dynamic hazards are encountered in multilevel circuits obtained using factoring or

decomposition techniques, which were discussed in Chapter 8. Such hazards are neither

ISTUDY

9.7 A COMPLETE DESIGN EXAMPLE 583

easy to detect nor easy to deal with. The designer can avoid dynamic hazards simply by

using two-level circuits and ensuring that there are no static hazards.

9.6.3 SIGNIFICANCE OF HAZARDS

A glitch in an asynchronous sequential circuit can cause the circuit to enter an incorrect

state and possibly become stable in that state. Therefore, the circuitry that generates the

next-state variables must be hazard free. It is sufficient to eliminate hazards due to changes

in the value of a single variable because the basic premise in an asynchronous sequential

circuit is that the values of both the primary inputs and the state variables must change one

at a time.

In combinational circuits, discussed in Chapters 3 and 4, we did not worry about haz-

ards, because the output of a circuit depends solely on the values of the inputs. In syn-

chronous sequential circuits the input signals must be stable within the setup and hold times

of flip-flops. It does not matter whether glitches occur outside the setup and hold times with

respect to the clock signal.

9.7 A COMPLETE DESIGN EXAMPLE

In the previous sections we examined the various design aspects of asynchronous sequential

circuits. In this section we give a complete design example, which covers all necessary steps.

9.7.1 THE VENDING-MACHINE CONTROLLER

The control mechanism of a vending machine is a good vehicle for illustrating a possible

application of a digital circuit. We used it in the synchronous environment in Chapter 6. A

small example of a vending machine served as an object of analysis in Section 9.2. Now we

will consider a vending-machine controller similar to the one in Example 6.6 to see how

it can be implemented using an asynchronous sequential circuit. The specification for the

controller is:

∙ It accepts nickels and dimes.

∙ A total of 15 cents is needed to release the candy from the machine.

∙ No change is given if 20 cents is deposited.

Coins are deposited one at a time. The coin-sensing mechanism generates signals N = 1

and D = 1 when it sees a nickel or a dime, respectively. It is impossible to have N = D = 1

at the same time. Following the insertion of a coin for which the sum equals or exceeds

15 cents, the machine releases the candy and resets to the initial state.

Figure 9.67 shows a state diagram for the required FSM. It is derived using a straight-

forward approach in which all possible sequences of depositing nickels and dimes are enu-

merated in a treelike structure. To keep the diagram uncluttered, the labels D and N denote

ISTUDY

584 C H A P T E R 9 ● ASYNCHRONOUS SEQUENTIAL CIRCUITS

A 0/

B 0/

0

D

N

N

N

D
D

C 0/

J 0/

K 1/ L 1/N

N

D

D 0/

E 0/ F 1/

G 0/

H 1/ I 1/

0

N

N

N

0

0

000
D

D

0

D

D

0

0

0

0

0

Figure 9.67 Initial state diagram for the vending-machine controller.

the input conditions DN = 10 and DN = 01, respectively. The condition DN = 00 is

labeled simply as 0. The candy is released in states F, H, and K, which are reached after

15 cents has been deposited, and in states I and L, upon a deposit of 20 cents.

The corresponding flow table is given in Figure 9.68. It can be reduced using the par-

titioning procedure as follows

P1 = (ADGJ)(BE)(C)(FIL)(HK)

P2 = (A)(D)(GJ)(B)(E)(C)(FIL)(HK)

P3 = P2

Using G to represent the equivalent states G and J, F to represent F, I, and L, and H to

represent H and K yields a partially reduced flow table in Figure 9.69. The merger diagram

ISTUDY

9.7 A COMPLETE DESIGN EXAMPLE 585

Present Next state Output

state DN = 00 01 10 11 z

A A B C – 0

B D B – – 0

C J – C – 0

D D E F – 0

E G E – – 0

F A – F – 1

G G H I – 0

H A H – – 1

I A – I –

– –

1

J J K L – 0

K A K – – 1

L A L 1

Figure 9.68 Initial flow table for the vending-machine controller.

Present Next state Output

state DN = 00 01 10 11 z

A A B C – 0

B D B – – 0

C G – C – 0

D D E F – 0

E G E – –

– –

0

F A – F – 1

G G H F – 0

H A H 1

Figure 9.69 First step in state minimization.

for this table is presented in Figure 9.70. It indicates that states C and E can be merged, as

well as F and H. Thus the reduced flow table is obtained as shown in Figure 9.71a. The

same information is depicted in the form of a state diagram in Figure 9.72.

Next a suitable state assignment must be found. The flow table is relabeled in

Figure 9.71b to associate a unique number with each stable state. Then the transition

diagram in Figure 9.73a is obtained. Since we wish to try to embed the diagram onto a

ISTUDY

586 C H A P T E R 9 ● ASYNCHRONOUS SEQUENTIAL CIRCUITS

B

H

A

F

D

G

C

E

Figure 9.70 Merger diagram for Figure 9.69.

Present Next state Output

state DN = 00 01 10 11 z

A A B C – 0

B D B – – 0

C G C C – 0

D D C F – 0

F A F F – 1

G G F F – 0

(a) Minimized flow table

Present Next state Output

state DN = 00 01 10 11 z

A 1 2 4 – 0

B 5 2 – – 0

C 8 3 4 – 0

D 5 3 7 – 0

F 1 6 7 – 1

G 8 6 7 – 0

(b) Relabeled flow table

Figure 9.71 Reduced flow tables.

ISTUDY

9.7 A COMPLETE DESIGN EXAMPLE 587

A 0/

F 1/

B 0/

G 0/

D 0/

C 0/

00 01 00

00 01

01 00

00

00 01
10

01
10

01
10

DN

10 10

Figure 9.72 State diagram for the vending-machine controller.

B

A F

D

G100

110

7

4

1

6 7,

111

2

3

C

4

001000

101

5

011010 8

B

A F

D

G

C

7

1

2

5

4

6 7,

3

7
8

(a) Transition diagram (b) Embedded on the cube

4

Figure 9.73 Determination of the state assignment.

three-dimensional cube, eight vertices are shown in the figure. The diagram shows two di-

agonal transitions. The transition between D and G (label 7) does not matter, because it is

only an alternative path. The transition from A to C (label 4) is required, and it can be real-

ized via unused states as indicated in red in Figure 9.73b. Therefore, the transition diagram

can be embedded onto a three-dimensional cube as shown. Using the state assignment from

this figure, the excitation table in Figure 9.74 is derived.

ISTUDY

588 C H A P T E R 9 ● ASYNCHRONOUS SEQUENTIAL CIRCUITS

Present Next state

state DN = 00 01 10 11 Output

y3 y2 y1 Y3Y2Y1
z

A 000 000 010 100 – 0

B 010 011 010 –– 0

C 111 101 111 111 – 0

D 011 011 111 001 – 0

F 001 000 001 001 – 1

G 101 101 001 001 – 0

100 – – 110 –

– – –

0

110 111 0

Figure 9.74 Excitation table based on the state assignment in

Figure 9.73b.

The Karnaugh maps for the next-state functions are given in Figure 9.75. From these

maps the following hazard-free expressions are obtained

Y1 = Ny2 + Ny1 + Dy1 + y1y3 + y1y2

Y2 = Ny1 + Ny2 + y1y3 + Dy2y3 + Dy2y3

Y3 = Dy1 + y2y3 + Ny1y2 + Dy3N

All product terms in these expressions are needed for a minimum-cost POS implementation

except for y1y2, which is included to prevent hazards in the expression for Y1. The output

expression is

z = y1y2y3

9.8 CONCLUDING REMARKS

Asynchronous sequential circuits are more difficult to design than the synchronous sequential

circuits. The difficulties with race conditions present a problem that must be handled carefully.

At the present time there is little CAD support for designing asynchronous circuits. For these

reasons, most designers resort to synchronous sequential circuits in practical applications.

An important advantage of asynchronous circuits is their speed of operation. Since

there is no clock involved, the speed of operation depends only on the propagation delays

in the circuit. In an asynchronous system that comprises several circuits, some circuits may

operate faster than others, thus potentially improving the overall performance of the system.

In contrast, in synchronous systems the clock period has to be long enough to accommodate

the slowest circuit, and it has a large effect on the performance.

ISTUDY

9.8 CONCLUDING REMARKS 589

00 01 11 10

d

11

00

01

11

10

11

d 1

1

y1 y2

DN

d

d

1

d

00 01 11 10

d

1 1

00

01

11

10

11

d 1

d

d

y1 y2

DN

d

d

d

d

1

1

00 01 11 10

d

00

01

11

10

11

d

1

y1 y2

DN

d

1

1

d d

00 01 11 10

d

00

01

11

10

1

d

1d

d

y1 y2

DN

d

d

d

d

1

1

00 01 11 10

d

00

01

11

10

1

d

1

y1 y2

DN

d

d d

00 01 11 10

d

1

00

01

11

10

11

d

1d

d

y1 y2

DN

d

d

d

d

1

1

y3 0= y3 1=

y3 1=y3 0=

y3 1=y3 0=
(a) Map for Y 1

(b) Map for Y2

(c) Map for Y 3

Figure 9.75 Karnaugh maps for the function in Figure 9.74.

ISTUDY

590 C H A P T E R 9 ● ASYNCHRONOUS SEQUENTIAL CIRCUITS

Asynchronous circuit techniques are also useful in designing systems that consist of

two or more synchronous circuits that operate under the control of different clocks. The

signals exchanged between such circuits often appear to be asynchronous in nature.

From the reader’s point of view, it is useful to view asynchronous circuits as an excellent

vehicle for gaining a deeper understanding of the operation of digital circuits in general.

These circuits illustrate the consequences of propagation delays and race conditions that

may be inherent in the structure of a circuit. They also illustrate the concept of stability,

demonstrated through the existence of stable and unstable states.

9.9 EXAMPLES OF SOLVED PROBLEMS

This section presents some typical problems that the reader may encounter, and shows how

such problems can be solved.

Example 9.19 Problem: Derive a flow table that describes the behavior of the circuit in Figure 9.76.

Solution: Modeling the propagation delay in the gates of the circuit as shown in Figure 9.8,

the circuit in Figure 9.76 can be described by the following next-state and output expressions

Y1 = w1w2 + w2y1 + w1y1y2

Y2 = w2 + w1y1 + w1y2

z = y2

y1

y2
z

w1

w2

Figure 9.76 Circuit for Example 9.19.

ISTUDY

9.9 EXAMPLES OF SOLVED PROBLEMS 591

Present Next state

state w2w1 = 00 01 10 11 Output

y2 y1 Y2Y1 Y2Y1 Y2Y1 Y2Y1
z

00 00 01 10 10 0

01 11 01 10 10 0

10 00 11 10 10 1

11 11 11 11 10 1

(a) Excitation table

Present Next state Output

state w2w1 = 00 01 10 11 z

A A B C C 0

B D B C C 0

C A D C C 1

D D D D C 1

(b) Flow table implemented by the circuit

(c) Final flow table

Present Next state Output

state w2w1 = 00 01 10 11 z

A A B C C 0

B D B – C 0

C A D C C 1

D D D D C 1

Figure 9.77 Excitation and flow tables for the circuit in Figure 9.76.

These expressions lead to the excitation table in Figure 9.77a. Assuming the state assign-

ment A = 00, B = 01, C = 10, and D = 11, yields the flow table in Figure 9.77b.

Since in a given stable state, inputs to the circuit can only change one at a time, some

entries in the flow table may be designated as unspecified. Such is the case when the circuit

is stable in state B and input values are w2w1 = 01. Now, both inputs cannot change simul-

taneously, which means that the corresponding entry in the flow table should be designated

ISTUDY

592 C H A P T E R 9 ● ASYNCHRONOUS SEQUENTIAL CIRCUITS

y
1

y
2 00 01 11 10

1 1

1 1 1

1 1 1 1

1 1 1

00

01

11

10

00 01 11 10

1

1

1 1 1

1 1

00

01

11

10

Y1 Y2

w
1

w
2

y
1

y
2

w
1

w
2

Figure 9.78 Karnaugh maps for the circuit in Figure 9.76.

as unspecified. However, a different situation arises when the circuit is stable in state A
and input values are w2w1 = 00. In this case, we cannot indicate the transition in column

w2w1 = 11 as unspecified. The reason is that if the circuit is in stable state B, it has to be

able to change to state C when w2 changes from 0 to 1. States B and C are implemented as

y2y1 = 01 and y2y1 = 10, respectively. Since both state variables must change their values,

the route from 01 to 10 will take place either via 11 or 00, depending on the delays in dif-

ferent paths in the circuit. If y2 changes first, the circuit will pass through unstable state D
and then settle in the stable state C. But, if w1 changes first, the circuit has to pass through

unstable state A before reaching state C. Hence, the transition to state C in the first row

must be specified. This is an example of a safe race, where the circuit reaches the correct

destination state regardless of propagation delays in different paths of the circuit. The final

flow table is presented in Figure 9.77c.

Example 9.20 Problem: Are there any hazards in the circuit in Figure 9.76?

Solution: Figure 9.78 gives Karnaugh maps for the next-state expressions derived in Exam-

ple 9.19. As seen from the maps, all prime implicants are included in the expression for Y1.

But, the expression for Y2 includes only three of the four available prime implicants. There

is a static hazard when w2y2y1 = 011 and w1 changes from 0 to 1 (or 1 to 0). This hazard

can be removed by adding the fourth prime implicant, y1y2, to the expression for Y2.

Example 9.21 Problem: A circuit has an input w and an output z. A sequence of pulses is applied on input

w. The output has to replicate every second pulse, as illustrated in Figure 9.79. Design a

suitable circuit.

w

z

Figure 9.79 Waveforms for Example 9.21.

ISTUDY

9.9 EXAMPLES OF SOLVED PROBLEMS 593

A / 0 B / 1

C / 0D / 0

w = 1
0 1

0

0

1

0

1

Present Next state Output

state w = 0 w = 1 z

A A B 0

B C B 1

C C D 0

D A D 0

(a) State diagram

(b) Flow table

Figure 9.80 State diagram and flow table for Example 9.21.

Solution: Figure 9.80 shows a possible state diagram and the corresponding flow table.

Compare this with the FSM defined in Example 9.4 in Figure 9.13, which specifies a serial

parity generator. The only difference is in the output signal. In our case, z = 1 only in

state B. Therefore, the next-state expressions are the same as in Example 9.4. The output

expression is

z = y1y2

Example 9.22Problem: Consider the flow table in Figure 9.81. Reduce this flow table and find a state

assignment that allows this FSM to be realized as simply as possible, preserving the Moore

model. Derive an excitation table.

Solution: Using the partioning procedure on the flow table in Figure 9.81 gives

P1 = (ACEFG)(BDH)

P2 = (AG)(B)(C)(D)(E)(F)(H)

P3 = P2

ISTUDY

594 C H A P T E R 9 ● ASYNCHRONOUS SEQUENTIAL CIRCUITS

Present Next state Output

state w2w1 = 00 01 10 11 z

A A E C – 0

B – E H B 1

C G –

–

C F 0

D A D – B 1

E G E – B 0

F – D C F 0

G G E C – 0

H A H B 1

Figure 9.81 Flow table for Example 9.22.

Present Next state Output

state w2w1 = 00 01 10 11 z

A A E C – 0

B – E H B 1

C A –

–

C F 0

D A D – B 1

E A E – B 0

F – D C F 0

H A H B 1

Figure 9.82 Reduction after the partitioning procedure.

Combining A and G produces the flow table in Figure 9.82. A merger diagram for this table

is shown in Figure 9.83. Merging the states (A,E), (C,F), and (D,H) leads to the reduced

ISTUDY

9.9 EXAMPLES OF SOLVED PROBLEMS 595

F

C

H

D

E

A B

Figure 9.83 Merger diagram for the flow table in Figure 9.82.

Present Next state Output

state w2w1 = 00 01 10 11 z

A A A C B 0

B – A D B 1

C A D C C 0

D A D D B 1

Figure 9.84 Reduced flow table for the FSM in Figure 9.82.

Present Next state Output

state w2w1 = 00 01 10 11 z

A 1 2 4 3 0

B – 2 7 3 1

C 1 6 4 5 0

D 1 6 7 3 1

Figure 9.85 Relabeled flow table of Figure 9.84.

flow table in Figure 9.84. To find a good state assignment, we relabel this flow table as

indicated in Figure 9.85, and construct the transition diagram in Figure 9.86a. The only

problem in this diagram is the transition from state D to state A, labeled as 1. A change

from D to A can be made via state C if we specify so in the flow table. Then, a direct

ISTUDY

596 C H A P T E R 9 ● ASYNCHRONOUS SEQUENTIAL CIRCUITS

(a) Initial transition diagram

(b) Augmented transition diagram

C = 10

A = 00 B = 01

D = 111, 6

3, 7

2, 3

1, 4
1, 3

C = 10

A = 00 B = 01

D = 111, 6

3, 7

2, 3

1, 4

Figure 9.86 Transition diagrams for Figure 9.85.

transition from D to A is not needed, as depicted in Figure 9.86b. The resulting flow table

and the corresponding excitation table are shown in Figure 9.87.

Example 9.23 Problem: Derive a hazard-free minimum-cost SOP implementation for the function

f (x1,… , x5) =
∑

m(2, 3, 14, 17, 19, 25, 26, 30) + D(10, 23, 27, 31)

Solution: The Karnaugh map for the function is given in Figure 9.88. From it, the required

expression is derived as

f = x1x3x5 + x2x4x5 + x1x2x3x4 + x2x3x4x5

The first three product terms cover all 1s in the map. The fourth term is needed to avoid

having a hazard when x2x3x4x5 = 0011 and x1 changes from 0 to 1 (or 1 to 0). Thus, each

pair of adjacent 1s is covered by some prime implicant in the expression.

ISTUDY

9.9 EXAMPLES OF SOLVED PROBLEMS 597

Present Next state Output

state w2w1 = 00 01 10 11 z

A A A C B 0

B – A D B 1

C A D C C 0

D C D D B 1

(a) Final flow table

Present Next state

state w2w1 = 00 01 10 11 Output

y2 y1 Y2Y1 Y2Y1 Y2Y1 Y2Y1
z

00 00 00 10 01 0

01 – 00 11 01 1

10 00 11 10 10 0

11 10 11 11 01 1

(b) Excitation table

Figure 9.87 Excitation and flow tables for Example 9.22.

x1 x2
x3 x4 00 01 11 10

11

1

00

01

11

10

x1 x2
x3 x4 00 01 11 10

11

11

00

01

11

10

x5 1=x5 0=

d

1

d

d d

Figure 9.88 Karnaugh map for Example 9.23.

ISTUDY

598 C H A P T E R 9 ● ASYNCHRONOUS SEQUENTIAL CIRCUITS

PROBLEMS

Answers to problems marked by an asterisk are given at the back of the book.

*9.1 Derive a flow table that describes the behavior of the circuit in Figure P9.1. Compare your

solution with the tables in Figure 9.21. Is there any similarity?

w1

w2

z1

z2

y1

y2

Figure P9.1 Circuit for Problem 9.1.

9.2 Consider the circuit in Figure P9.2. Draw the waveforms for the signals C, z1, and z2.

Assume that C is a square-wave clock signal and that each gate has a propagation delay Δ.

Express the behavior of the circuit in the form of a flow table that would produce the desired

signals. (Hint: Use the Mealy model.)

z1

z2

C

Figure P9.2 Circuit for Problem 9.2.

9.3 Derive the minimal flow table that specifies the same functional behavior as the flow table

in Figure P9.3.

ISTUDY

PROBLEMS 599

Present Next state Output

state w2w1 = 00 01 10 11 z

A A B C – 0

B D B – – 0

C P – C – 0

D D E F – 0

E G E – – 0

F M – F – 0

G G H I – 0

H J H – – 0

I A – I – 1

J J K L – 0

K A K – – 1

L A – L – 1

M M N O – 0

N A N – – 1

O A – O – 1

P P R S – 0

R T R – – 0

S A – S –

– –

1

T T U V – 0

U A U – – 1

V A V 1

Figure P9.3 Flow table for Problem 9.3.

9.4 Derive the minimal Moore-type flow table that specifies the same functional behavior as

the flow table in Figure P9.4.

9.5 Find a suitable state assignment using as few states as possible and derive the next-state

and output expressions for the flow table in Figure 9.42.

9.6 Find a suitable state assignment for the flow table in Figure 9.42, using pairs of equivalent

states, as explained in Example 9.15. Derive the next-state and output expressions.

9.7 Find a state assignment for the flow table in Figure 9.42, using one-hot encoding. Derive

the next-state and output expressions.

ISTUDY

600 C H A P T E R 9 ● ASYNCHRONOUS SEQUENTIAL CIRCUITS

Present Next state Output

state w2w1 = 00 01 10 11
z

A A B C – 0

B K B – H 0

C F – C M 0

D D E J – 1

E A E – M 0

F F L J – 0

G D G – H 0

H –

–

G J H 1

J F – J H 0

K K L C – 1

L A L – H 0

M G C M 1

Figure P9.4 Flow table for Problem 9.4.

*9.8 Implement the FSM specified in Figure 9.39, using the merger diagram in Figure 9.40a.

9.9 Find a suitable state assignment for the FSM defined by the flow table in Figure P9.5. Derive

the next-state and output expressions for the FSM using this state assignment.

Present Next state Output

state w2w1 = 00 01 10 11 z

A A B C – 0

B D B – G 0

C F – C G 0

D D E C – 1

E A E – G 0

F F E C –

–

0

G B C G 1

Figure P9.5 Flow table for Problem 9.9.

*9.10 Find a hazard-free minimum-cost implementation of the function

f (x1,… , x4) =
∑

m(0, 4, 11, 13, 15) + D(2, 3, 5, 10)

ISTUDY

PROBLEMS 601

9.11 Repeat Problem 9.10 for the function

f (x1,… , x5) =
∑

m(0, 4, 5, 24, 25, 29) + D(8, 13, 16, 21)

*9.12 Find a hazard-free minimum-cost POS implementation of the function

f (x1,… , x4) = ΠM(0, 2, 3, 7, 10) + D(5, 13, 15)

9.13 Repeat Problem 9.12 for the function

f (x1,… , x5) = ΠM(2, 6, 7, 25, 28, 29) + D(0, 8, 9, 10, 11, 21, 24, 26, 27, 30)

*9.14 Consider the circuit in Figure P9.6. Does this circuit exhibit any hazards?

A
B

C

D

E

f

g

Figure P9.6 Circuit for Problem 9.14.

9.15 Design an original circuit that exhibits a dynamic hazard.

9.16 A control mechanism for a vending machine accepts nickels and dimes. It dispenses mer-

chandise when 20 cents is deposited; it does not give change if 25 cents is deposited. Design

the FSM that implements the required control, using as few states as possible. Find a suit-

able state assignment and derive the next-state and output expressions.

*9.17 Design an asynchronous circuit that meets the following specifications. The circuit has two

inputs: a clock input c and a control input w. The output, z, replicates the clock pulses when

w = 1; otherwise, z = 0. The pulses appearing on z must be full pulses. Consequently, if

c = 1 when w changes from 0 to 1, then the circuit will not produce a partial pulse on z, but

will wait until the next clock pulse to generate z = 1. If c = 1 when w changes from 1 to 0,

then a full pulse must be generated; that is, z = 1 as long as c = 1. Figure P9.7 illustrates

the desired operation.

9.18 Repeat Problem 9.17 but with the following change in the specification. While w = 1, the

output z should have only one pulse; if several pulses occur on c, only the first one should

be reproduced on z.

ISTUDY

602 C H A P T E R 9 ● ASYNCHRONOUS SEQUENTIAL CIRCUITS

c

w

z

Figure P9.7 Waveforms for Problem 9.17.

9.19 Example 9.6 describes a simple arbiter for two devices contending for a shared resource.

Design a similar arbiter for three devices that use a shared resource. In case of simultaneous

requests, namely, if one device has been granted access to the shared resource and before it

releases its request the other two devices make requests of their own, let the priority of the

devices be Device 1 > Device 2 > Device 3.

9.20 In the discussion of Example 9.6, we mentioned a possible use of the mutual exclusion

element (ME) to prevent both request inputs to the FSM being equal to 1 at the same time.

Design an arbiter circuit for this case.

9.21 In Example 9.21 we designed a circuit that replicates every second pulse on input w as a

pulse on output z. Design a similar circuit that replicates every third pulse.

9.22 In Example 9.22 we merged states D and H to implement the FSM in Figure 9.82. An

alternative was to merge states B and H, according to the merger diagram in Figure 9.83.

Derive an implementation using this choice. Derive the resulting excitation table.

ISTUDY

603

c h a p t e r

10
COMPUTER AIDED DESIGN TOOLS

CHAPTER OBJECTIVES

In this chapter you will learn how CAD tools can be used to design

and implement a logic circuit. The discussion deals with the synthesis

and physical design stages in a typical CAD system, including:

● Netlist extraction

● Technology mapping

● Placement

● Routing

● Timing analysis

ISTUDY

604 C H A P T E R 10 ● COMPUTER AIDED DESIGN TOOLS

We introduced CAD tools in Section 2.9, and have discussed them briefly in other chapters. The word tool
in this context means a software program that allows a user to perform a particular task. In this chapter we

describe some of the tools in a typical CAD system in more detail, by showing how a small design example

is processed and optimized as it passes through different stages in the CAD flow.

10.1 SYNTHESIS

Figure 10.1, which is reproduced from Figure 2.35, gives an overview of a CAD system. A

description of the desired circuit is prepared, usually in the form of a hardware description

language like VHDL. The VHDL code is then processed by the synthesis stage of the CAD

system. Synthesis is the process of generating a logic circuit from the user’s specification.

Figure 10.2 shows three typical phases that are found in the synthesis process.

10.1.1 NETLIST GENERATION

The netlist generation phase checks the syntax of the code, and reports any errors such as

undefined signals, missing parentheses, and wrong keywords. Once all errors are fixed a

circuit netlist is generated as determined by the semantics of the VHDL code. The netlist

uses logic expressions to describe the circuit, and includes components such as adders,

flip-flops, and finite state machines.

10.1.2 GATE OPTIMIZATION

The next phase is gate optimization, which performs the kinds of logic optimizations de-

scribed in the preceding chapters. These optimizations manipulate the netlist to obtain an

equivalent, but better circuit according to the optimization goals. As we said previously, the

measurement of what makes one circuit better than another may be based on the cost of the

circuit, its speed of operation, or a combination of both.

As an example of results produced by the synthesis phases discussed so far, consider

the VHDL code for the addersubtractor entity in Figure 10.3, which specifies a circuit that

can add or subtract n-bit numbers and accumulate the result in a register. From this code

the synthesis tool produces a netlist that corresponds to the circuit in Figure 10.4. The input

numbers, A = an−1,… , a0 and B = bn−1,… , b0, are placed into registers Areg and Breg
prior to being used in addition or subtraction operations. These registers synchronize the

operation of the circuit if A and B are externally provided asynchronous inputs. The control

input Sel determines the mode of operation. If Sel = 0, then A is selected as an input to

the adder; if Sel = 1, then the result register Zreg is selected. The control input AddSub
determines whether the operation is addition or subtraction. The flip-flops in Figure 10.4

for registers A, B, Sel, AddSub, and Overflow are inferred from the code at the bottom of

Figure 10.3a. Multiplexers are produced from the mux2to1 entity, and an adder is generated

from the adderk entity in Figure 10.3c. The exclusive-OR gates connected to register B, and

the XOR function for the Overflow output are generated from the code near the end of the

addersubtractor entity.

ISTUDY

10.1 SYNTHESIS 605

Design conception

VHDLSchematic capture

DESIGN ENTRY

Design correct?

Functional simulation

No

Yes

Timing Analysis

No

Figure 10.1 A typical CAD system.

ISTUDY

606 C H A P T E R 10 ● COMPUTER AIDED DESIGN TOOLS

Netlist Generation

Gate Optimization

Synthesis

Technology Mapping

Figure 10.2 The stages included in a synthesis tool.

10.1.3 TECHNOLOGY MAPPING

The final phase of synthesis is technology mapping. This phase determines how each com-

ponent in the netlist can be realized in the resources available in the target chip, such as an

FPGA. A logic block for a typical FPGA is depicted in Figure 10.5a. It contains a four-input

lookup-table (LUT) and a flip-flop, and has two outputs. A multiplexer is provided to allow

loading of the flip-flop from the LUT or directly from input In3. Another multiplexer allows

the stored value in the flip-flop to be fed back to one input of the LUT. There are a number

of different ways, or modes, in which this logic block can be used. The most straightforward

choice is to implement a function of up to four inputs in the LUT, and store this function’s

value in the flip-flop; both the LUT and flip-flop can provide outputs from the logic block.

Parts (b) to (e) of the figure illustrate four other modes of using the block. In parts (b) and

(c) only the LUT or the flip-flop is used, but not both. In part (d) only the LUT provides an

output of the logic block, and one of the LUT’s inputs is connected to the flip-flop.

FPGAs often contain dedicated circuitry for implementation of adder circuits. Figure

10.5e shows one way in which such circuitry can be realized. The LUT is used in two halves,

where one half produces the sum function of three LUT inputs and the other half produces

the carry function of these inputs. The sum function can provide an output of the block or

be stored in the flip-flop, and the carry function provides a special output signal. This carry

output connects directly to a neighboring logic block that uses it as a carry input. This block

in turn generates the next stage of carry output, and so on. In this way, direct connections

between neighboring logic blocks are used to form carry chains.

Figure 10.6 shows a part of the results of technology mapping for the netlist generated

for Figure 10.4. Each logic block is highlighted with a red square, and has a label on the

lower left corner that indicates which mode in Figure 10.5 is being used. The figure shows

bit h0 from Figure 10.4, which is produced by a logic block in mode d. This block uses

a flip-flop to store the value of primary input b0, and implements an XOR function in its

ISTUDY

10.1 SYNTHESIS 607

LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY addersubtractor IS
GENERIC (n : INTEGER 16) ;
PORT (A, B : IN STD LOGIC VECTOR(n–1 DOWNTO 0) ;

Clock, Reset, Sel, AddSub : IN STD LOGIC ;
DTSREFFUB:Z LOGIC VECTOR(n–1 DOWNTO 0) ;

–

Overflow : OUT STD LOGIC) ;
END addersubtractor ;

ARCHITECTURE Behavior OF addersubtractor IS
SIGNAL G, H, M, Areg, Breg, Zreg, AddSubR n : STD LOGIC VECTOR(n–1 DOWNTO 0) ;
SIGNAL SelR, AddSubR, carryout, over flow : STD LOGIC ;
COMPONENT mux2to1

GENERIC (k : INTEGER 8) ;
PORT (V, W : IN STD LOGIC VECTOR(k–1 DOWNTO 0) ;

Sel : IN STD LOGIC ;
F : OUT STD LOGIC VECTOR(k–1 DOWNTO 0)) ;

END COMPONENT ;
COMPONENT adderk

GENERIC (k : INTEGER 8) ;
PORT (carryin : IN STD LOGIC ;

X, Y : IN STD LOGIC VECTOR(k–1 DOWNTO 0) ;
S : OUT STD LOGIC VECTOR(k–1 DOWNTO 0) ;
carryout : OUT STD LOGIC) ;

END COMPONENT ;
BEGIN

PROCESS (Reset, Clock)
BEGIN

IF Reset
Areg (OTHERS); Breg < (OTHERS >);
Zreg

<
< (OTHERS

>
>); SelR < ’0’; AddSubR < ; Overflow < ;

ELSIF Clock’EVENT AND Clock
Areg A; Breg < B; Zreg < M;
SelR

<
< Sel; AddSubR < AddSub; Overflow < over flow;

END IF ;
END PROCESS ;

continued in Part b

:

:

:

'1' THEN
'0' '0'

'0' '0''0'
'1' THEN

Figure 10.3 VHDL code for an accumulator circuit (Part a).

LUT, which is needed in subtraction operations to complement the number B. One input of

the XOR is provided by the logic block in mode c that stores in a flip-flop the value of the

AddSub input. This flip-flop also drives 15 other logic blocks that implement h1,… , h15,

but these blocks are not shown in the figure.

The AddSub flip-flop is connected to the carry-in of the first logic block in the adder.

This block uses mode e to produce sum and carry outputs. The sum is stored in a flip-flop

that produces z0, and the carry feeds the next stage of the adder. The figure shows the carry

function in the form

c1 = (c0 ⊕ h0) ⋅ h0 + (c0 ⊕ h0) ⋅ g0

ISTUDY

608 C H A P T E R 10 ● COMPUTER AIDED DESIGN TOOLS

nbit adder: adderk
GENERIC MAP (k > n)
PORT MAP (AddSubR, G, H, M, carryout) ;

multiplexer: mux2to1
GENERIC MAP (k > n)
PORT MAP (Areg, Z, SelR, G) ;

AddSubR n < (OTHERS > AddSubR) ;
H < Breg XOR AddSubR n ;
over flow < carryout XOR G(n–1) XOR H(n–1) XOR M(n–1) ;
Z < Zreg ;

END Behavior;

LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY mux2to1 IS
GENERIC (k : INTEGER 8) ;

PORT (V, W : IN STD LOGIC VECTOR(k–1 DOWNTO 0) ;
Sel : IN STD LOGIC ;
F : OUT STD LOGIC VECTOR(k–1 DOWNTO 0));

END mux2to1 ;

ARCHITECTURE Behavior OF mux2to1 IS
BEGIN

PROCESS (V, W, Sel)
BEGIN

IF Sel
F < V ;

ELSE
F < W ;

END IF ;
END PROCESS ;

END Behavior ;

continued in Part c

:

'0' THEN

Figure 10.3 VHDL code for an accumulator circuit (Part b).

This expression is functionally equivalent to the one used in Chapter 3, which has the form

c1 = c0h0 + c0g0 + h0g0, but it represents more closely how the carry chain is built in an

FPGA. The last logic block of the adder in Figure 10.6 does not use its flip-flop, because

the sum output has to be connected directly to the logic block that implements the Overflow
signal. Although not shown in Figure 10.5, we assume that the sum output can be provided

in either combinational or registered form, but not both; so a separate logic block in mode

c is needed for the z15 signal.

Figure 10.6 shows only a few of the logic blocks that a technology mapping tool would

create for implementing our circuit. In general, there are many different ways in which

technology mapping can be done, and each method will lead to equivalent, but different

circuits. The reader can consult references [1–3] for a detailed discussion of technology

mapping approaches.

ISTUDY

10.2 PHYSICAL DESIGN 609

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

USE ieee.std logic signed.all ;

ENTITY adderk IS

GENERIC (k : INTEGER : 8) ;

PORT (carryin : IN STD LOGIC ;

X, Y : IN STD LOGIC VECTOR(k–1 DOWNTO 0) ;

S : OUT STD LOGIC VECTOR(k–1 DOWNTO 0) ;

carryout : OUT STD LOGIC) ;

END adderk ;

ARCHITECTURE Behavior OF adderk IS

SIGNAL Sum : STD LOGIC VECTOR(k DOWNTO 0) ;

BEGIN

Sum < (& X) + Y + carryin ;

S < Sum(k–1 DOWNTO 0) ;

carryout < Sum(k) ;

END Behavior ;

'0'

Figure 10.3 VHDL code for an accumulator circuit (Part c).

10.2 PHYSICAL DESIGN

The next stages following synthesis in Figure 10.1 are functional simulation and physical

design. As we said in Section 2.9, functional simulation involves applying test patterns to

the synthesized netlist and checking to see if it produces the correct outputs. The simulation

assumes that there are no propagation delays in the circuit, because the intent is to evaluate

the basic functionality rather than timing. The netlist used by a functional simulator could

be either the version before technology mapping, or after.

Once the netlist produced by synthesis is functionally correct, the physical design stage

can be performed. This stage determines exactly how the synthesized netlist will be imple-

mented in the target chip. As illustrated in Figure 10.7, three phases are involved: placement,

routing, and timing analysis.

10.2.1 PLACEMENT

The placement phase chooses a location in the target device for each logic block in the

technology-mapped netlist. An example of a placement result is given in Figure 10.8. It

shows an array of logic blocks in a small portion of an FPGA chip. The white squares

represent unoccupied blocks and the gray squares show the placement of blocks that imple-

ment the circuit of Figure 10.4. There is a total of 53 logic blocks in this circuit, including

the ones shown in Figure 10.6. Also shown in Figure 10.8 is the placement of some of the

primary inputs to the circuit, which are assigned to pins around the chip periphery.

ISTUDY

610 C H A P T E R 10 ● COMPUTER AIDED DESIGN TOOLS

m0mn 1–

a0an 1–

n-bit adder

n-bit register

F/F

n-bit register

F/F

areg0aregn 1–

n-bit register

z0zn 1–

g0gn 1–

n-bit 2-to-1 MUX

A =

G =

M =

Z =

Areg = breg0bregn 1–
Breg =

SelR

carryin

b0bn 1–B =

h0hn 1–H =

Sel AddSub

hn 1–

carryout

F/F

Overflow

AddSubR

Zreg

zreg0zregn 1–
Zreg =over_ flow

Figure 10.4 Circuit specified by the code in Figure 10.3.

To find a good placement solution a number of different locations have to be considered

for each logic block. For a large circuit, which may contain tens of thousands of blocks,

this is a hard problem to solve. To appreciate the complexity involved, consider how many

different placement solutions are possible for a given circuit. Assume that the circuit has

N logic blocks, and it is to be placed in an FPGA that also contains exactly N blocks. A

placement tool has N choices for the location of the first block that it selects. There remain

N − 1 choices for the second block, N − 2 choices for the third, and so on. Multiplying

these choices gives a total of (N)(N − 1)⋯ (1) = N! possible placement solutions. For

even moderate values, N! is a huge number, which means that heuristic techniques must be

used to find a good solution while considering only a small fraction of the total number of

ISTUDY

10.2 PHYSICAL DESIGN 611

In1

In2

In3

LUT

In4

(a) An FPGA logic element.

(b) Combinational mode (c) Synchronous mode

(d) Synchronous feedback mode (e) Arithmetic (synchronous) mode

D Q

Out1

Out2

Figure 10.5 Different modes of an FPGA logic block.

choices. A typical commercial placement tool operates by constructing an initial placement

configuration and then moving logic blocks to different locations in an iterative manner. For

each iteration the quality of the solution is assessed by using metrics that estimate the speed

of operation of the implemented circuit, or its cost. The placement problem has been studied

extensively and is described in detail in references [4–7].

10.2.2 ROUTING

Once a location in the chip is chosen for each logic block in a circuit, the routing phase

connects the blocks together by using the wires that exist in the chip. An example of a

routing solution for the placement in Figure 10.8 is given in Figure 10.9. In addition to

showing the logic blocks, this figure also displays some of the wires in the chip. Wires that

ISTUDY

612

0 1

z 0

h
0

0 1

z 1

h
1

g
1

0 1

z 1
5

h
1
5

g
1
5

A
dd

Su
b

O
ve

rf
lo

w
b

0

(d
)

(e
)

(c
)

(e
)

(e
)

(c
)

c 0
c 1

c 1
5

g 0

(a
)

Fi
gu

re
1

0
.6

A
p

a
rt

o
f

th
e

c
ir

c
u

it
in

F
ig

u
re

1
0

.4
a

ft
e

r
te

c
h

n
o

lo
g

y
m

a
p

p
in

g
.

ISTUDY

10.2 PHYSICAL DESIGN 613

Placement

Routing

Physical Design

Timing Analysis

Figure 10.7 Phases in physical design.

are being used by the implemented circuit are shaded in gray. The figure depicts both indi-

vidual wires, which may be of various lengths, and bundles of wires, which are shown as

gray rectangles. The routing CAD tool tries to make the best use of various kinds of wires,

such as efficient connections for carry chains. Figure 10.9 shows an example of the carry

chain path from Figure 10.6. Black lines highlight the carry chain wires, which connect

through the stages of the adder, ending at the Overflow register. A detailed discussion of

routing tools can be found in references [3], [5–6], and [8].

10.2.3 TIMING ANALYSIS

After routing is complete the timing delays for the implemented circuit are known, because

the CAD system computes the timing delays of all blocks and wires in the chip. A timing

analysis tool examines this delay information and produces a set of tables that quantify

the circuit’s performance. An example of a timing analysis result is given in Table 10.1,

which lists four parameters: Fmax, tsu, tco, and th. The Fmax value specifies the maximum

operating frequency of the circuit’s clock. This value is determined by the path with the

Table 10.1 A summary of timing analysis results.

Parameter Actual Required Slack From To

Fmax 261.1 MHz 200 MHz 1.17 ns AddSub Overflow
tsu 2.356 ns 10.0 ns 7.644 ns b0 breg0

tco 6.772 ns 10.0 ns 3.228 ns zreg0 z0

th 0.240 ns N/A N/A b1 breg1

ISTUDY

614 C H A P T E R 10 ● COMPUTER AIDED DESIGN TOOLS

Figure 10.8 Placement of the circuit in Figure 10.6.

longest propagation delay, often called the critical path, between any two flip-flops in the

circuit. As shown in Sections 5.15 and 7.8, the path delay must account for the delays

through logic blocks and wires, as well as the flip-flop clock-to-Q delay (tcQ) and setup (tsu)

parameters. In our example the critical path delay is 1∕261.1× 106 = 3.83 ns. The last two

columns in the Fmax row show that the path starts at the AddSub flip-flop and ends at the

Overflow flip-flop shown in Figure 10.6.

Most CAD systems allow users to specify the timing constraints for their circuit. In

Table 10.1 we assume the user has specified that the circuit clock has to operate correctly

up to a frequency of 200 MHz. The difference between this requirement and the result that

is obtained by the CAD tools is referred to as slack. In the table, the requirement is that the

propagation delays must not exceed 1∕200 × 106 = 5 ns; the result is 3.83 ns, which gives

a slack value of 1.17 ns. This positive slack means that the constraints have been met with

some room to spare. If the obtained result had a negative slack, then the user’s requirements

ISTUDY

10.2 PHYSICAL DESIGN 615

Figure 10.9 Routing for the placement in Figure 10.8.

would not have been met, and it would be necessary to modify the VHDL code or settings

used in the CAD tool to try to meet the constraints.

The other rows in Table 10.1 show the timing results for the design’s primary inputs

and outputs. The tsu result indicates the worst-case setup requirement is 2.356 ns, from

pin b0 to flip-flop breg0. This parameter means that the b0 signal must have a stable value

at least 2.356 ns before each active edge of the clock signal at its assigned pin. Since the

designer specified a worst-case setup constraint of 10 ns, the obtained result means that

the implemented circuit exceeds (meets) the requirement by a slack value of 7.644 ns. The

worst-case clock-to-output delay for our circuit is 6.772 ns, from flip-flop zreg0 to pin z0.

This means that the propagation delay from an active edge of the clock signal at its pin to a

corresponding change in the z0 signal at its pin is 6.772 ns. Since the designer’s constraint

specifies that a 10 ns tco is allowed, the available slack is 3.228 ns.

The last row in Table 10.1 gives a maximum hold time of 0.24 ns, for the path from

pin b1 to flip-flop breg1. Hence, the signal at pin b1 must maintain a stable value for at least

ISTUDY

616 C H A P T E R 10 ● COMPUTER AIDED DESIGN TOOLS

0.24 ns after each active edge at the clock pin. We assume that no constraint was set for this

parameter, thus no slack value is shown.

Table 10.1 lists only the worst-case paths for Fmax, tsu, tco, and th. The implemented

circuit will have a number of other paths that have smaller delays and greater slack values.

A timing analysis tool typically provides additional tables for each parameter, which list

more paths.

10.3 CONCLUDING REMARKS

In this chapter we explained briefly a typical design flow made possible by the existence of

powerful CAD tools. We considered only the most important subset of the tools available

in commercial CAD systems. To learn more the reader can consult the literature or visit the

web sites of CAD tool suppliers. Some of the major vendors of CAD tools include: Cadence

Design Systems, Mentor Graphics, Microchip, Synopsys, Intel, and Xilinx.

REFERENCES

1. R. Murgai, R. Brayton, A. Sangiovanni-Vincentelli, Logic Synthesis for Field-
Programmable Gate Arrays (Kluwer Academic Publishers, 1995).

2. J. Cong and Y. Ding, FlowMap: An Optimal Technology Mapping Algorithm for
Delay Optimization in Lookup-Table Based FPGA Designs (in IEEE Transactions on

Computer-aided Design 13 (1), January 1994).

3. S. Brown, R. Francis, J. Rose, Z. Vranesic, Field-Programmable Gate Arrays,

(Kluwer Academic Publishers, 1995).

4. M. Breuer, A Class of Min-cut Placement Algorithms, (in Design Automation

Conference, pages 284–290, IEEE/ACM, 1977).

5. Carl Sechen, VLSI Placement and Global Routing Using Simulated Annealing,

(Kluwer Academic Publishers, 1988).

6. V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for Deep-Submicron
FPGAs, (Kluwer Academic Publishers, 1999).

7. M. Sarrafzadeh, M. Wang, and X. Yang, Modern Placement Techniques, (Kluwer

Academic Publishers, 2003).

8. L. McMurchie and C. Ebeling, PathFinder: A Negotiation-Based Performance-
Driven Router for FPGAs, (in International Symposium on Field Programmable Gate

Arrays, Monterey, Ca., Feb. 1995).

ISTUDY

617

c h a p t e r

11
TESTING OF LOGIC CIRCUITS

CHAPTER OBJECTIVES

In this chapter you will be introduced to:

● Various techniques for testing of digital circuits

● Representation of typical faults in a circuit

● Derivation of tests needed to test the behavior of a circuit

● Design of circuits for easy testability

ISTUDY

618 C H A P T E R 11 ● TESTING OF LOGIC CIRCUITS

In the previous chapters we have discussed the design of logic circuits. Following a sound design procedure,

we expect that the designed circuit will perform as required. But how does one verify that the final circuit

indeed achieves the design objectives? It is essential to ascertain that the circuit exhibits the required functional

behavior and that it meets any timing constraints that are imposed on the design. We have discussed the timing

issues in several places in the book. In this chapter we will discuss some testing techniques that can be used

to verify the functionality of a given circuit.

There are several reasons for testing a logic circuit. When the circuit is first developed, it is necessary

to verify that the designed circuit meets the required functional and timing specifications. When multiple

copies of a correctly designed circuit are being manufactured, it is essential to test each copy to ensure that

the manufacturing process has not introduced any flaws. It is also necessary to test circuits used in equipment

that is installed in the field when it is suspected that there may be something wrong.

The basis of all testing techniques is to apply predefined sets of inputs, called tests, to a circuit and

compare the outputs observed with the patterns that a correctly functioning circuit is supposed to produce.

The challenge is to derive a relatively small number of tests that provide an adequate indication that the circuit

is correct. The exhaustive approach of applying all possible tests is impractical for large circuits because there

are too many possible tests.

11.1 FAULT MODEL

A circuit functions incorrectly when there is something wrong with it, such as a transistor

fault or an interconnection wiring fault. Many things can go wrong, leading to a variety of

faults. A transistor switch can break so that it is permanently either closed or open. A wire

in the circuit can be shorted to VDD or to ground, or it can be simply broken. There can be an

unwanted connection between two wires. A logic gate may generate a wrong output signal

because of a fault in the circuitry that implements the gate. Dealing with many different

types of faults is cumbersome. Fortunately, it is possible to restrict the testing process to

some simple faults, and obtain generally satisfactory results.

11.1.1 STUCK-AT MODEL

Most circuits discussed in this text use logic gates as the basic building blocks. A good

model for representing faults in such circuits is to assume that all faults manifest themselves

as some wires (inputs or outputs of gates) being permanently stuck at logic value 0 or 1. We

indicate that a wire, w, has an undesirable signal that always corresponds to the logic value

0 by saying that w is stuck-at-0, which is denoted as w∕0. If w has an undesirable signal that

is always equal to logic 1, then w is stuck-at-1, which is denoted as w∕1.

An obvious example of a stuck-at fault is when an input to a gate is incorrectly con-

nected to a power supply, either VDD or ground. But the stuck-at model is also useful for

dealing with faults of other types, which often cause the same problems as if a wire were

stuck at a particular logic value. The exact impact of a fault in the circuitry that implements

a logic gate depends on the particular technology used. We will restrict our attention to the

stuck-at faults and will examine the testing process assuming that these are the only faults

that can occur.

ISTUDY

11.2 COMPLEXITY OF A TEST SET 619

11.1.2 SINGLE AND MULTIPLE FAULTS

A circuit can be faulty because it has either a single fault or possibly many faults. Deal-

ing with multiple faults is difficult because each fault can occur in many different ways.

A pragmatic approach is to consider single faults only. Practice has shown that a set of

tests that can detect all single faults in a given circuit can also detect the vast majority of

multiple faults.

A fault is detected if the output value produced by the faulty circuit is different from

the value produced by the good circuit when an appropriate test is applied as input. Each

test is supposed to be able to detect the occurrence of one or more faults. A complete set of

tests used for a given circuit is referred to as the test set.

11.1.3 CMOS CIRCUITS

CMOS logic circuits present some special problems in terms of faulty behavior. The tran-

sistors may fail in permanently open or shorted (closed) state. Many such failures manifest

themselves as stuck-at faults. But some produce entirely different behavior. For example,

transistors that fail in the shorted state may cause a continuous flow of current from VDD
to ground, which can create an intermediate output voltage that may not be determined

as either logic 0 or 1. Transistors failing in the open state may lead to conditions where

the output capacitor retains its charge level because the switch that is supposed to discharge

it is broken. The effect is that a combinational CMOS circuit starts behaving as a

sequential circuit.

Specific techniques for testing of CMOS circuits are beyond the scope of this book.

We will assume that a test set developed using the stuck-at model will provide an adequate

coverage of faults in all circuits.

11.2 COMPLEXITY OF A TEST SET

There is large difference in testing combinational and sequential circuits. Combinational

circuits can be tested adequately regardless of their design. Sequential circuits present a

much greater challenge because the behavior of a circuit under test is influenced not only

by the tests that are applied to the external inputs but also by the states that the circuit is

in when the tests are applied. It is very difficult to test a sequential circuit designed by a

designer who does not take its testability into account. However, it is possible to design

such circuits to make them more easily testable, as we will discuss in Section 11.6. We will

start by considering the testing of combinational circuits.

An obvious way to test a combinational circuit is to apply a test set that comprises all

possible input valuations. Then it is only necessary to check if the output values produced

by the circuit are the same as specified in a truth table that defines the circuit. This approach

works well for small circuits, where the test set is not large, but it becomes totally impractical

for large circuits with many input variables. Fortunately, it is not necessary to apply all 2n

ISTUDY

620 C H A P T E R 11 ● TESTING OF LOGIC CIRCUITS

valuations as tests for an n-input circuit. A complete test set, capable of detecting all single

faults, usually comprises a much smaller number of tests.

Figure 11.1a gives a simple three-input circuit for which we want to determine the

smallest test set. An exhaustive test set would include all eight input valuations. This circuit

involves five wires, labeled a, b, c, d, and f in the figure. Using our fault model, each wire

can be stuck either at 0 or 1.

Figure 11.1b enumerates the utility of the eight input valuations as possible tests for

the circuit. The valuation w1w2w3 = 000 can detect the occurrence of a stuck-at-1 fault on

wires a, d, and f . In a good circuit this test results in the output f = 0. However, if any

of the faults a∕1, d∕1, or f∕1 occurs, then the circuit will produce f = 1 when the input

valuation 000 is applied. The test 001 causes f = 0 in the good circuit, and it results in

f

a

b

c
d

w1

w2

w3

(a) Circuit

Test Fault detected

000

001

010

011

100

101

110

111

(b) Faults detected by the various input valuations

Figure 11.1 Fault detection in a simple circuit.

ISTUDY

11.3 PATH SENSITIZING 621

f = 1 if any of the faults a∕1, b∕1, d∕1, or f∕1 occurs. This test can detect the occurrence

of four different faults. We say that it covers these faults. The last test, 111, can detect only

one fault, f∕0.

A minimal test set that covers all faults in the circuit can be derived from the table by

inspection. Some faults are covered by only one test, which means that these tests must be

included in the test set. The fault b∕1 is covered only by 001. The fault c∕1 is covered only

by 010. The faults b∕0, c∕0, and d∕0 are covered only by 011. Therefore, these three tests

are essential. For the remaining faults there is a choice of tests that can be used. Selecting

the tests 001, 010, and 011 covers all faults except a∕0. This fault can be covered by three

different tests. Choosing 100 arbitrarily, a complete test set for the circuit is

Test set = {001, 010, 011, 100}

The conclusion is that all possible stuck-at faults in this circuit can be detected using four

tests, rather than the eight tests that would be used if we simply tried to test the circuit using

its complete truth table.

The size of the complete test set for a given n-input circuit is generally much smaller

than 2n. But this size may still be unacceptably large in practical terms. Moreover, deriv-

ing the minimal test set is likely to be a daunting task for even moderately sized circuits.

Certainly, the simple approach of Figure 11.1 is not practical. In the next section we will

explore a more interesting approach.

11.3 PATH SENSITIZING

Deriving a test set by considering the individual faults on all wires in a circuit, as done in

Section 11.2, is not attractive from the practical point of view. There are too many wires

and too many faults to consider. A better alternative is to deal with several wires that form

a path as an entity that can be tested for several faults using a single test. It is possible to

activate a path so that the changes in the signal that propagates along the path have a direct

impact on the output signal.

Figure 11.2 illustrates a path from input w1 to output f , through three gates, which

consists of wires a, b, c, and f . The path is activated by ensuring that other paths in the

circuit do not determine the value of the output f . Thus the input w2 must be set to 1 so

f

a
b

c

w1

w2 1=

w3 0=

w4 1=

Figure 11.2 A sensitized path.

ISTUDY

622 C H A P T E R 11 ● TESTING OF LOGIC CIRCUITS

that the signal at b depends only on the value at a. The input w3 must be 0 so that it does

not affect the NOR gate, and w4 must be 1 to not affect the AND gate. Then if w1 = 0 the

output will be f = 1, whereas w1 = 1 will cause f = 0. Instead of saying that the path from

w1 to f is activated, a more specific term is used in technical literature, which says that the

path is sensitized.

To sensitize a path through an input of an AND or NAND gate, all other inputs must

be set to 1. To sensitize a path through an input of an OR or NOR gate, all other inputs

must be 0.

Consider now the effect of faults along a sensitized path. The fault a∕0 in Figure 11.2

will cause f = 1 even if w1 = 1. The same effect occurs if the faults b∕0 or c∕1 are

present. Thus the test w1w2w3w4 = 1101 detects the occurrence of faults a∕0, b∕0, and

c∕1. Similarly, if w1 = 0, the output should be f = 1. But if any of the faults a∕1, b∕1,

or c∕0 is present, the output will be f = 0. Hence these three faults are detectable using

the test 0101. The presence of any stuck-at fault along the sensitized path is detectable by

applying only two tests.

The number of paths in a given circuit is likely to be much smaller than the number

of individual wires. This suggests that it may be attractive to derive a test set based on the

sensitized paths. This possibility is illustrated in the next example.

Example 11.1 PATH-SENSITIZED TESTS Consider the circuit in Figure 11.3. This circuit has five paths.

The path w1−c− f is sensitized by setting w2 = 1 and w4 = 0. It doesn’t matter whether w3

is 0 or 1, because w2 = 1 causes the signal on wire b to be equal to 0, which forces d = 0

regardless of the value of w3. Thus the path is sensitized by setting w2w3w4 = 1x0, where

the symbol x means that the value of w3 does not matter. Now the tests w1w2w3w4 = 01x0

and 11x0 detect all faults along this path. The second path, w2 − c− f , is tested using 1000

and 1100. The path w2 − b − d − f is tested using 0010 and 0110. The tests for the path

w3 − d − f are x000 and x010. The fifth path, w4 − f , is tested with 0x00 and 0x01. Instead

of using all ten of these tests, we can observe that the test 0110 serves also as the test 01x0,

the test 1100 serves also as 11x0, the test 1000 serves also as x000, and the test 0010 serves

also as x010. Therefore, the complete test set is

Test set = {0110, 1100, 1000, 0010, 0x00, 0x01}

f

b

c

d

w1

w2

w3

w4

Figure 11.3 Circuit for Example 11.1.

ISTUDY

11.3 PATH SENSITIZING 623

While this approach is simpler, it is still impractical for large circuits. But the concept of

path sensitizing is very useful, as we will see in the discussion that follows.

11.3.1 DETECTION OF A SPECIFIC FAULT

Suppose that we suspect that the circuit in Figure 11.3 has a fault where the wire b is stuck-

at-1. A test that determines the presence of this fault can be obtained by sensitizing a path

that propagates the effect of the fault to the output, f , where it can be observed. The path

goes from b to d to f . It is necessary to set w3 = 1, w4 = 0, and c = 0. The latter can be

accomplished by setting w1 = 0. If b is stuck-at-1, then it is necessary to apply an input that

would normally produce the value of 0 on the wire b, so that the output values in good and

faulty circuits would be different. Hence w2 must be set to 1. Therefore, the test that detects

the b∕1 fault is w1w2w3w4 = 0110.

In general, the fault on a given wire can be detected by propagating the effect of the

fault to the output, sensitizing an appropriate path. This involves assigning values to other

inputs of the gates along the path. These values must be obtainable by assigning specific

values to the primary inputs, which may not always be possible. Example 11.2 illustrates

the process.

Example 11.2FAULT PROPAGATION As the effect of a fault propagates through the gates along a sensi-

tized path, the polarity of the signal will change when passing through an inverting gate.

Let the symbol D denote a stuck-at-0 fault in general. The effect of the stuck-at-0 fault will

be unaltered when passed through an AND or OR gate. If D is on an input of an AND (OR)

gate and the other inputs are set to 1 (0), then the output of the gate will behave as having

D on it. But if D is on an input of a NOT, NAND, or NOR gate, then the output will appear

to be stuck-at-1, which is denoted as D.

Figure 11.4 shows how the effect of a fault can be propagated using the D and D
symbols. Suppose first that there is a stuck-at-0 fault on wire b; that is, b∕0. We want to

propagate the effect of this fault along the path b − h − f . This can be done as indicated in

Figure 11.4b. Setting g = 1 propagates the fault to the wire h. Then h appears to be stuck-

at-1, denoted by D. Next the effect is propagated to f by setting k = 1. Since the last NAND

also inverts the signal, the output becomes equal to D, which is equivalent to f∕0. Thus

in a good circuit the output should be 1, but in a faulty circuit it will be 0. Next we must

ascertain that it is possible to have g = 1 and k = 1 by assigning the appropriate values to

the primary input variables. This is called the consistency check. By setting c = 0, both g
and k will be forced to 1, which can be achieved with w3 = w4 = 1. Finally, to cause the

propagation of the fault D on wire b, it is necessary to apply a signal that causes b to have

the value 1, which means that either w1 or w2 has to be 0. Then the test w1w2w3w4 = 0011

detects the fault b∕0.

Suppose next that the wire g is stuck-at-1, denoted by D. We can try to propagate the

effect of this fault through the path g − h − f by setting b = 1 and k = 1. To make b = 1,

ISTUDY

624 C H A P T E R 11 ● TESTING OF LOGIC CIRCUITS

b

c

g

k

h

f

w1

w2

w3

w4

(a) Circuit

D

0

1

1

D

f

w1

w2

w3

w4

(b) Detection of

f

w1

w2

w3

w4

D

D

0

0

1

1

1

1
D

D

0

0

0

0

D

b 0⁄ fault

(c) Detection of g 1⁄ fault

Figure 11.4 Detection of faults.

we set w1 = w2 = 0. To make k = 1, we have to make c = 0. But it is also necessary to

cause the propagation of the D fault on g by means of a signal that makes g = 0 in the good

circuit. This can be done only if b = c = 1. The problem is that at the same time we need

c = 0, to make k = 1. Therefore, the consistency check fails, and the fault g∕1 cannot be

propagated in this way.

Another possibility is to propagate the effect of the fault along two paths simultane-

ously, as shown in Figure 11.4c. In this case the fault is propagated along the paths g−h− f

ISTUDY

11.4 CIRCUITS WITH TREE STRUCTURE 625

and g− k− f . This requires setting b = 1 and c = 1, which also happens to be the condition

needed to cause the propagation as explained above. The test 0000 achieves the desired ob-

jective of detecting g∕1. Observe that if D (or D) appears on both inputs of a NAND gate,

the output value will be D (or D).

The idea of propagating the effect of faults using path sensitizing has been exploited in

a number of methods for derivation of test sets for fault detection. The scheme illustrated

in Figure 11.4 indicates the essence of the D-algorithm, which was one of the first practical

schemes developed for fault detection purposes [1]. Other techniques have grown from this

basic approach.

11.4 CIRCUITS WITH TREE STRUCTURE

Circuits with a treelike structure, where each gate has a fan-out of 1, are particularly easy

to test. The most common forms of such circuits are the sum-of-products or product-of-

sums. Since there is a unique path from each primary input to the output of the circuit, it is

sufficient to derive the tests for faults on the primary inputs. We will illustrate this concept

by means of the sum-of-products circuit in Figure 11.5.

If any input of an AND gate is stuck-at-0, this condition can be detected by setting all

inputs of the gate to 1 and ensuring that the other AND gates produce 0. This makes f = 1

in the good circuit, and f = 0 in the faulty circuit. Three such tests are needed because there

are three AND gates.

Testing for stuck-at-1 faults is slightly more involved. An input of an AND gate is tested

for the stuck-at-1 fault by driving it with the logic value 0, while the other inputs of the gate

have the logic value 1. Thus a good gate produces the output of 0, and a faulty gate generates 1.

f

w1

w3

w4

w2

w3

w4

w1

w2

w3

Figure 11.5 Circuit with a tree structure.

ISTUDY

626 C H A P T E R 11 ● TESTING OF LOGIC CIRCUITS

Product term Test

No. w1w3w4 w2w3w4 w1w2w3 w1w2w3w4

1 1 1 1 0 1 0 0 0 0 1 0 0 0

Stuck-at-0
2 0 1 0 1 1 1 1 1 0 0 1 0 1

tests
3 0 0 0 1 0 1 1 1 1 0 1 1 1

4 0 1 1 1 1 0 1 1 0 0 1 0 0

5 1 0 1 1 0 0 0 1 1 1 1 1 0

Stuck-at-1
6 1 1 0 0 1 1 0 0 0 1 0 0 1

tests
7 1 0 0 1 0 1 0 1 1 1 1 1 1

8 0 0 0 0 0 1 1 0 1 0 0 1 1

Figure 11.6 Derivation of tests for the circuit in Figure 11.5.

At the same time, the other AND gates must have the output of 0, which is accomplished

by making at least one input of these gates equal to 0.

Figure 11.6 shows the derivation of the necessary tests. The first three tests are for

the stuck-at-0 faults. Test 4 detects a stuck-at-1 fault on either the first input of the top

AND gate or the third inputs of the other two gates. Observe that in each case the tested

input is driven by logic 0, while the other inputs are equal to 1. This yields the test vector

w1w2w3w4 = 0100. Clearly, it is useful to test inputs on as many gates as possible using

a single test vector. Test 5 detects a fault on either the second input of the top gate or the

first input of the bottom gate; it does not test any inputs of the middle gate. The required

test pattern is 1110. Three more tests are needed to detect stuck-at-1 faults on the remaining

inputs of the AND gates. Therefore, the complete test set is

Test set = {1000, 0101, 0111, 0100, 1110, 1001, 1111, 0011}

11.5 RANDOM TESTS

So far we have considered the task of deriving a deterministic test set for a given circuit,

primarily relying on the path-sensitizing concept. In general, it is difficult to generate such

test sets when circuits become larger. A useful alternative is to choose the tests at random,

which we will explore in this section.

Figure 11.7 gives all functions of two variables. For an n-variable function, there are

22n
possible functions; hence there are 222 = 16 two-variable functions. Consider the XOR

function, implemented as shown in Figure 11.8. Let us consider the possible stuck-at-0 and

stuck-at-1 faults on wires b, c, d, h, and k in this circuit. Each fault transforms the circuit

ISTUDY

11.5 RANDOM TESTS 627

w1w2 f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15

00 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

01 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

10 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

11 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Figure 11.7 All two-variable functions.

into a faulty circuit that implements a function other than XOR, as indicated in Figure 11.9.

To test the circuit, we can apply one or more input valuations to distinguish the good circuit

from the possible faulty circuits listed in Figure 11.9. Choose arbitrarily w1w2 = 01 as the

first test. This test will distinguish the good circuit, which must generate f = 1, from the

faulty circuits that realize f0, f2, f3, and f10, because each of these would generate f = 0.

Next, arbitrarily choose the test w1w2 = 11. This test distinguishes the good circuit from the

faulty circuits that realize f5, f7, and f15, in addition to f3, which we have already tested for

using w1w2 = 01. Let the third test be w1w2 = 10; it will distinguish the good circuit from

f4 and f12. These three tests, chosen in a seemingly random way, detect all faulty circuits that

involve the faults in Figure 11.9. Moreover, note that the first two tests distinguish seven of

the nine possible faulty circuits.

This example suggests that it may be possible to derive a suitable test set by selecting

the tests randomly. How effective can random testing be? Looking at Figure 11.7, we see

that any of the four possible tests distinguishes the correct function from eight faulty func-

tions, because they produce different output values for this input valuation. These eight

faulty functions detectable by a single test are one-half of the total number of possible

functions (222−1 for the two-variable case). The test cannot distinguish between the correct

function and the seven faulty functions that produce the same output value. The application

of the second test distinguishes four of the remaining seven functions because they produce

w1

w2

d
b

c

h

k

f

Figure 11.8 The XOR circuit.

ISTUDY

628 C H A P T E R 11 ● TESTING OF LOGIC CIRCUITS

Fault Circuit implements

b /0 f5 = w2

b /1 f10 = w2

c /0 f3 = w1

c /1 f12 = w1

d /0 f0 = 0

d /1 f7 = w1 + w2

h / 0 f15 = 1

h / 1 f4 = w1w2

k /0 f15 = 1

k /1 f2 = w1w2

Figure 11.9 The effect of various faults.

an output value that is different from the correct function. Thus each application of a new

test essentially cuts in half the number of faulty functions that have not been detected. Con-

sequently, the probability that the first few tests will detect a large portion of all possible

faults is high. More specifically, the probability that each faulty circuit can be detected by

the first test is

P1 = 1

222 − 1
⋅ 222−1 = 8

15
= 0.53

This is the ratio of the number of faulty circuits that produce an output value different from

the good circuit, to the total number of faulty circuits.

This reasoning is readily extended to n-variable functions. In this case the first test

detects 22n−1 out of a total of 22n − 1 possible faulty functions. Therefore, if m tests are

applied, the probability that a faulty circuit will be detected is

Pm = 1

22n − 1
⋅

m∑

i=1

22n−i

This expression is depicted in graphical form in Figure 11.10. The conclusion is that random

testing is very effective and that after a few tens of tests the existence of a fault is likely to

be detected even in very large circuits.

Random testing works particularly well for circuits that do not have high fan-in. If

fan-in is high, then it may be necessary to resort to other testing schemes. For example,

suppose that an AND gate has a large number of inputs. Then there is a problem with

detecting stuck-at-1 faults on its inputs, which may not be covered by random tests. But it

is possible to test for these faults using the approach described in Section 11.4.

The simplicity of random testing is a very attractive feature. For this reason, coupled

with good effectiveness of tests, this technique is often used in practice.

ISTUDY

11.6 TESTING OF SEQUENTIAL CIRCUITS 629

Percent

faults

detected

Number of tests

Figure 11.10 Effectiveness of random testing.

11.6 TESTING OF SEQUENTIAL CIRCUITS

As seen in the previous sections, combinational circuits can be tested effectively, using

either deterministic or random test sets. It is much more difficult to test sequential cir-

cuits. The presence of memory elements allows a sequential circuit to be in various states,

and the response of the circuit to externally applied test inputs depends on the state of

the circuit.

A combinational circuit can be tested by comparing its behavior with the functionality

specified in the truth table. An equivalent attempt would be to test a sequential circuit by

comparing its behavior with the functionality specified in the state table. This entails check-

ing that the circuit performs correctly all transitions between states and that it produces a

correct output. This approach may seem easy, but in reality it is extremely difficult. A big

problem is that it is difficult to ascertain that the circuit is in a specific state if the state

variables are not observable on the external pins of the circuit, which is usually the case.

Yet for each transition to be tested, it is necessary to verify with complete certainty that the

correct destination state was reached. Such an approach may work for very small sequential

circuits, but it is not feasible for practical-size circuits. A much better approach is to design

the sequential circuits so that they are easily testable.

11.6.1 DESIGN FOR TESTABILITY

A synchronous sequential circuit comprises the combinational circuit that implements the

output and next-state functions, as well as the flip-flops that hold the state information dur-

ing a clock cycle. A general model for the sequential circuits is shown in Figure 6.87. The

inputs to the combinational network are the primary inputs, w1 through wn, and the present

ISTUDY

630 C H A P T E R 11 ● TESTING OF LOGIC CIRCUITS

state variables, y1 through yk. The outputs of the network are the primary outputs, z1 through

zm, and the next-state variables, Y1 through Yk. The combinational network could be tested

using the techniques presented in the previous sections if it were possible to apply tests on

all of its inputs and observe the results on all of its outputs. Applying the test vectors to

the primary inputs poses no difficulty. Also, it is easy to observe the values on the primary

outputs. The question is how to apply the test vectors on the present-state inputs and how

to observe the values on the next-state outputs.

A possible approach is to include a two-way multiplexer in the path of each present-

state variable so that the input to the combinational network can be either the value of the

state variable (obtained from the output of the corresponding flip-flop) or the value that is

a part of the test vector. A significant drawback of this approach is that the second input

of each multiplexer must be directly accessible through external pins, which requires many

pins if there are many state variables. An attractive alternative is to provide a connection

that allows shifting the test vector into the circuit one bit at a time, thus trading off pin re-

quirements for the time it takes to perform a test. Several such schemes have been proposed,

one of which is described below.

Scan-Path Technique
A popular technique, called the scan path, uses multiplexers on flip-flop inputs to allow

the flip-flops to be used either independently during normal operation of the sequential

circuit, or as a part of a shift register for testing purposes. Figure 11.11 presents the general

scan-path structure for a circuit with three flip-flops. A 2-to-1 multiplexer connects the D
input of each flip-flop either to the corresponding next-state variable or to the serial path

that connects all flip-flops into a shift register. The control signal Normal∕Scan selects the

active input of the multiplexer. During the normal operation the flip-flop inputs are driven

by the next-state variables, Y1, Y2, and Y3.

For testing purposes the shift-register connection is used to scan in the portion of each

test vector that involves the present-state variables, y1, y2, and y3. This connection has Qi
connected to Di+1. The input to the first flip-flop is the externally accessible pin Scan-in.

The output comes from the last flip-flop, which is provided on the Scan-out pin.

The scan-path technique involves the following steps:

1. The operation of the flip-flops is tested by scanning into them a pattern of 0s and 1s,

for example, 01011001, in consecutive clock cycles, and observing whether the same

pattern is scanned out.

2. The combinational circuit is tested by applying test vectors on w1w2 ⋯wny1y2y3 and

observing the values generated on z1z2 ⋯ zmY1Y2Y3. This is done as follows:

∙ The y1y2y3 portion of the test vector is scanned into the flip-flops during three

clock cycles, using Normal∕Scan = 1.

∙ The w1w2 ⋯wn portion of the test vector is applied as usual and the normal

operation of the sequential circuit is performed for one clock cycle, by setting

Normal∕Scan = 0. The outputs z1z2 ⋯ zm are observed. The generated values of

Y1Y2Y3 are loaded into the flip-flops at this time.

ISTUDY

11.6 TESTING OF SEQUENTIAL CIRCUITS 631

0

1

0

1

0

1

Combinational

circuit

z1

zk

w1

wn

y3

y2

y1

Y 3

Y 2

Y 1

Clock Scan-in Normal Scan⁄

Scan-out

DQ

DQ

DQ

Figure 11.11 Scan-path arrangement.

∙ The select input is changed to Normal∕Scan = 1, and the contents of the

flip-flops are scanned out during the next three clock cycles, which makes the

Y1Y2Y3 portion of the test result observable externally. At the same time, the next

test vector can be scanned in to reduce the total time needed to test the circuit.

The next example shows a specific circuit that is designed for scan-path testing.

Example 11.3Figure 6.77 shows a circuit that recognizes a specific input sequence, which was discussed

in Section 6.9. The circuit can be made easily testable by modifying it for scan path as

shown in Figure 11.12. The combinational part, consisting of four AND and two OR gates,

is the same in both figures.

ISTUDY

632 C H A P T E R 11 ● TESTING OF LOGIC CIRCUITS

0

1

0

1

w

y1

y2

z

Y 1

Y 2

Resetn

Scan-out

Normal Scan⁄

Scan-in

Clock

DQ

Q

DQ

Q

Figure 11.12 Circuit for Example 11.3.

The flip-flops can be tested by scanning through them a sequence of 0s and 1s as

explained above. The combinational circuit can be tested by applying test vectors on w,

y1, and y2. Let us use the random-testing approach, choosing arbitrarily four test vectors

wy1y2 = 001, 110, 100, and 111. To apply the first test vector, the pattern y1y2 = 01 is

scanned into the flip-flops during two clock cycles. Then for one clock cycle, the circuit

is made to operate in the normal mode with w = 0. This essentially applies the vector

wy1y2 = 001 to the AND-OR circuit. The result of this test should be z = 0, Y1 = 0, and

Y2 = 0. The value of z can be observed directly. The values of Y1 and Y2 are loaded into the

respective flip-flops, and they are scanned out during the next two clock cycles. As these

values are being scanned out, the next test pattern y1y2 = 10 can be scanned in. Thus it

takes five cycles to perform one test, but the last two cycles are overlapped with the second

ISTUDY

11.7 BUILT-IN SELF-TEST 633

test. The third and fourth tests are performed in the same way. The total time needed to

perform all four tests is 14 clock cycles.

The preceding approach is based on testing a sequential circuit by testing its combina-

tional part using the techniques developed in the previous sections. The scan-path facility

makes it also possible to test the sequential circuit by making it go through all transitions

specified in the state table. The circuit can be placed into a given state simply by scanning

into the flip-flops the valuation of the state variables that denotes this state. The result of

the transition can be checked by observing the primary outputs and by scanning out the

valuation that presents the destination state. We leave it to the reader to develop the details

of this approach (see Problem 11.16).

One limitation of the scan-path technique is that it does not work well if the asyn-

chronous preset and reset features of the flip-flops are used during normal operation. We

have already suggested that it is better to use synchronous preset and reset. If the designer

wishes to use the asynchronous preset and reset capability, then a testable circuit can be

designed using techniques such as the level-sensitive scan design [2, 3]. The reader can

consult the references for a description of this technique.

11.7 BUILT-IN SELF-TEST

Until now we have assumed that testing of logic circuits is done by externally applying the

test inputs and comparing the results with the expected behavior of the circuit. This requires

connecting external equipment to the circuit under test. An interesting question is whether

it is possible to incorporate the testing capability within the circuit itself so that no external

equipment is needed. Such built-in capability would allow the circuit to be self-testable.

This section presents a scheme that provides the built-in self-test (BIST) capability.

Figure 11.13 shows a possible BIST arrangement in which a test vector generator

produces the test vectors that must be applied to the circuit under test. In Section 11.5

we explained that randomly chosen test vectors give good results, with the fault coverage

depending on the number of tests performed. For each test vector applied to the circuit, it is

x0

Test

vector

generator

Circuit

under

test

Test

result

compressor

Signature

xn 1–

p0

pm 1–

Figure 11.13 The testing arrangement.

ISTUDY

634 C H A P T E R 11 ● TESTING OF LOGIC CIRCUITS

necessary to determine the required response of the circuit. The response of a good circuit

may be determined using the simulator tool of a CAD system. The expected responses to

the applied tests must be stored on the chip so that a comparison can be made when the

circuit is being tested.

A practical approach for generating the test vectors on-chip is to use pseudorandom
tests, which have the same characteristics as random tests but are produced deterministically

and can be repeated at will. The generator for pseudorandom tests is easily constructed using

a feedback shift-register circuit. A small example of a possible generator is given in Fig-

ure 11.14. A four-bit shift register, with the signals from the first and fourth stages fed

back through an XOR gate, generates 15 different patterns during successive clock cycles.

If the shift register is set at the beginning to x3x2x1x0 = 1000, then the generated patterns

are as shown in part (b) of the figure. Observe that the pattern 0000 cannot be used,

because the circuit would be locked in this pattern indefinitely.

The circuit in Figure 11.14 is representative of a class of circuits known as linear
feedback shift registers (LFSRs). Using feedback from the various stages of an n-bit shift

x3 x2 x1 x0

Clock

f

PRBS

D Q

Q

D Q

Q

D Q

Q

D Q

Q

(a) Circuit

1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1

0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0

0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0

0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0

1 1 1 0 1 0 1 1 0 0 1 0 0 0 1 1

(b) Generated sequence

Figure 11.14 Pseudorandom binary sequence generator (PRBSG).

ISTUDY

11.7 BUILT-IN SELF-TEST 635

register, connected to the first stage by means of XOR gates, it is possible to generate a

sequence of 2n − 1 patterns that have the characteristics of randomly generated numbers.

Such circuits are used extensively in error-correcting codes.

The pseudorandom binary sequence generator (PRBSG) gives a simple method of gen-

erating tests. The required response of the circuit under test can be determined by using the

simulator tool of the CAD system. The remaining question is how to check whether the

circuit indeed produces the required response. It is not attractive to have to store a large

number of responses to the tests on a chip that also includes the main circuit. A practical

solution is to compress the results of the tests into a single pattern. This can be done using

an LFSR circuit. Instead of just providing the feedback signals as the input, a compressor

circuit includes the output signals produced by the circuit under test. Figure 11.15 shows

a single-input compressor circuit (SIC), which uses the same feedback connections as the

PRBSG of Figure 11.14. The input p is the output of a circuit under test. After applying a

number of test vectors, the resulting values of p drive the SIC and, coupled with the LFSR

functionality, produce a four-bit pattern. The pattern generated by the SIC is called a sig-
nature of the tested circuit for the given sequence of tests. The signature represents a single

pattern that may be interpreted as a result of all the applied tests. It can be compared against

a predetermined pattern to see if the tested circuit is working properly. Storing a single n-bit

pattern for comparison purposes presents only a small overhead. The randomizing nature

of the compressor circuits based on LFSRs provides a good coverage of patterns that may

result from a faulty circuit.

If the circuit under test has more than one output, then an LSFR with multiple inputs

can be used. Figure 11.16 illustrates how four inputs, p0 through p3, can be added to the

basic circuit of Figure 11.14. Again the four-bit signature provides a good mechanism for

distinguishing among different sequences of four-bit patterns that may appear on the inputs

of this multiple-input compressor circuit (MIC).

A complete BIST scheme for a sequential circuit may be implemented as indicated in

Figure 11.17. The scan-path approach is used to provide a testable circuit. The test pat-

terns that would normally be applied on the primary inputs W = w1w2 ⋯wn are generated

p

Clock

Signature

D Q

Q

D Q

Q

D Q

Q

D Q

Q

Figure 11.15 Single-input compressor circuit (SIC).

ISTUDY

636 C H A P T E R 11 ● TESTING OF LOGIC CIRCUITS

Clock

Signature

p
3

p
2

p
1

p
0

D Q

Q

D Q

Q

D Q

Q

D Q

Q

Figure 11.16 Multiple-input compressor circuit (MIC).

internally as the patterns on X = x1x2 ⋯ xn. Multiplexers are needed to allow switching

from W to X, as inputs to the combinational circuit. A pseudorandom binary sequence gen-

erator, PRBSG-X, generates the test patterns for X. The portion of the tests applied via the

Combinational
circuit

W

Flip-flops

and
multiplexers

SIC

MIC

X

0

1

Normal Test⁄

y Y

Z-signature

Y-signature

Scan-out

Scan-in

Z

PRBSG-X

PRBSG-y

Figure 11.17 BIST in a sequential circuit.

ISTUDY

11.7 BUILT-IN SELF-TEST 637

next-state signals, y, is generated by the second PRBS generator, PRBSG-y. These patterns

are scanned into the flip-flops as explained in Section 11.6.

The test outputs are compressed using the two compressor circuits. The patterns on

the primary outputs, Z = z1z2 ⋯ zm, are compressed using the MIC circuit, and those

on the next-state wires Y = Y1Y2 ⋯Yk, by the SIC circuit. These circuits produce the

Z-signature and Y-signature, respectively. The testing procedure is the same as given in

Example 11.3 except that the comparison with the test result that a good circuit is supposed

to give is done only once; at the end of the testing process the two signatures are com-

pared with the stored patterns. Figure 11.17 does not show the circuitry needed to store

these patterns and perform the comparison. Instead of storing the signature patterns of the

required results as a part of the designed circuit, it is possible to shift out the contents of

MIC and SIC shift registers onto two output pins and to perform the necessary compari-

son with the expected signatures externally. Note that using signature testing in this way

reduces the testing time significantly, compared to the time it would take to test the cir-

cuit by scanning out the results of individual tests and comparing them with predetermined

patterns.

The effectiveness of the BIST approach depends on the length of the LFSR generator

and compressor circuits. Longer shift registers give better results. One reason for failing to

detect that the circuit under test may be faulty is that the pseudorandomly generated tests do

not have perfect coverage of all possible faults. Another reason is that a signature generated

by compressing the outputs of a faulty circuit may coincidentally end up being the same as

the signature of the good circuit. This can occur because the compression process results in

a loss of some information, such that two distinct output patterns may be compressed into

the same signature. This is known as the aliasing problem.

11.7.1 BUILT-IN LOGIC BLOCK OBSERVER

The essence of BIST is to have internal capability for generation of tests and for compression

of the results. Instead of using separate circuits for these two functions, it is possible to

design a single circuit that serves both purposes. Figure 11.18 shows the structure of a

possible circuit, known as the built-in logic block observer (BILBO) [4]. This four-bit circuit

has the same feedback connections as the circuit of Figure 11.14.

The BILBO circuit has four modes of operation, which are controlled by the mode bits,

M1 and M2. The modes are as follows:

∙ M1M2 = 11 — Normal system mode in which all flip-flops are independently con-

trolled by the signals on inputs p0 through p3. In this mode each flip-flop may be used

to implement a state variable of a finite state machine by using p0 to p3 as y0 to y3.

∙ M1M2 = 00 — Shift-register mode in which the flip-flops are connected into a shift

register. This mode allows test vectors to be scanned in, and the results of applied tests

to be scanned out, if the control input G∕S is equal to 1. If G∕S = 0, then the circuit

acts as the PRBS generator.

∙ M1M2 = 10 — Signature mode in which a series of patterns applied on inputs p0

through p3 are compressed into a signature available as a pattern on q0 through q3.

∙ M1M2 = 01 — Reset mode in which all flip-flops are reset to 0.

ISTUDY

638

D
Q Q

D
Q Q

D
Q Q

D
Q Q

01

M
2

M
1

S
in

G
S⁄

C
lo

ck

p
2

p
3

p
0

p
1

q
2

q
3

q
0

q
1

S
o

u
t

Fi
gu

re
1

1
.1

8
A

fo
u

r-
b

it
b

u
il
t-

in
lo

g
ic

b
lo

c
k

o
b

s
e

rv
e

r
(B

IL
B

O
).

ISTUDY

11.7 BUILT-IN SELF-TEST 639

An efficient way of using BILBO circuits is presented in Figure 11.19. A combinational

circuit can be tested by partitioning it into two (or more) parts. A BILBO circuit is used

to provide inputs to one part and to accept outputs from the other part. The testing process

involves a two-phase approach. First, BILBO1 is used as a PRBS generator that provides test

patterns for combinational network 1 (CN1). During this time BILBO2 acts as a compressor

and produces a signature for the test. The signature is shifted out by placing BILBO2 into the

shift-register mode. Next, the roles of BILBO1 and BILBO2 are reversed, and the process

is repeated to test CN2.

The detailed steps in the testing process are

1. Scan the initial test pattern into BILBO1 and reset all flip-flops in BILBO2.

2. Use BILBO1 as the PRBS generator for a given number of clock cycles and use

BILBO2 to produce a signature.

3. Scan out the contents of BILBO2 and externally compare the signature; then scan

into it the initial test pattern for testing CN2. Reset the flip-flops in BILBO1.

4. Use BILBO2 as the PRBS generator for a given number of clock cycles and use

BILBO1 to produce a signature.

5. Scan out the signature in BILBO1 and externally compare it with the required pattern.

The BILBO circuits are used in this way for testing purposes. At other times the normal

system mode is used.

11.7.2 SIGNATURE ANALYSIS

We have explained the use of signatures in the context of implementing an efficient built-

in testing mechanism. The main idea of compressing a long sequence of test results into

a single signature was originally developed as the basis for an instrument manufactured

by Hewlett-Packard in the 1970s, known as the Signature Analyzer [5]. Thus the name

signature analysis was coined to refer to the testing schemes that use signatures to represent

the results of applied tests.

Combinational
network

Scan-out

Scan-in

B
IL

B
O

1

CN1

B
IL

B
O

2

Combinational
network

CN2

Figure 11.19 Using BILBO circuits for testing.

ISTUDY

640 C H A P T E R 11 ● TESTING OF LOGIC CIRCUITS

Signature analysis is particularly suitable for digital systems that naturally include

an ability to generate the desired test patterns. Such is the case with computer systems in

which various parts of the system can be stimulated by test patterns produced under

software control.

11.7.3 BOUNDARY SCAN

The testing techniques discussed in the previous sections are equally applicable to circuits

that are implemented on single chips or on printed circuit boards that contain a number of

chips. A circuit can be tested only if it is possible to apply the tests to it and observe the

outputs produced. This involves having access to the primary inputs and outputs.

When chips are soldered onto a printed circuit board, it often becomes impossible

to attach test probes to pins. This hinders the testing process unless some indirect access

to the pins is provided. The scan-path concept can be extended to the board level to deal

with the problem. Suppose that each primary input or output pin on a chip is connected

through a D flip-flop and that a provision is made for a test mode in which all flip-flops can

be connected into a shift register. Then the test information can be scanned in and scanned

out using the shift-register path, via two pins that serve as serial input and output. Connect-

ing the serial output pin of one chip to the serial input pin of another chip results in the

pins of all chips being connected into a board-wide shift register for testing purposes. This

approach has become popular in practice and has been embodied into the IEEE Standard

1149.1 [6].

11.8 PRINTED CIRCUIT BOARDS

Design and testing techniques presented in this book can be applied to any logic circuit,

whether the circuit is realized on a single chip or its implementation involves a number

of chips placed on a printed circuit board (PCB). In this section we discuss some practical

issues that arise when one or more circuits that form a larger digital system are implemented

on a PCB.

A typical PCB contains multiple layers of wiring. When the board is manufactured, the

wiring pattern on each layer is generated. The layers are separated by insulating material and

pressed together in sandwichlike fashion to form the board. Connections between different

wiring levels are made through holes that are provided for this purpose. Chips and other

components are then soldered to the top and possibly to the bottom layers.

In preceding chapters we have discussed in considerable detail the CAD tools used

for designing circuits that can be implemented on a single chip, such as an FPGA. For a

multiple-chip implementation, we need a different set of CAD tools to design a PCB that

incorporates the chips and connections needed to realize the complete digital system. Such

tools are available from a number of companies, for example, Cadence Design Systems

and Mentor Graphics. These tools can automatically determine where each chip should be

placed on the PCB, but the designer can also specify the location of particular chips. This

is called the placement process. Given a specific placement of chips and other components

(such as connectors and capacitors), the tools generate a layout for each layer of wiring

ISTUDY

11.8 PRINTED CIRCUIT BOARDS 641

traces that provide the required connections on the board. This process is referred to as

routing. Again the designer can intervene and manually route some connections. However,

since the number of connections can be in the tens of thousands, it is crucial to obtain a

good automated solution.

In addition to the design issues discussed in the previous chapters, a large circuit im-

plemented on a PCB is subject to some other constraints. Signals on the wiring traces may

be affected by noise problems caused by crosstalk, spikes in the power supply voltage, and

reflections from the end points of long traces.

Crosstalk
Two closely spaced wires that run parallel to each other are capacitively coupled, and

a pulse on one wire can induce a similar (but usually much smaller) pulse on the adjoining

wire. This is referred to as crosstalk. Its existence is undesirable because it contributes to

noise problems.

When drawing timing diagrams, we usually draw ideal waveforms with sharp edges,

which have well-defined voltage levels for the logic values 0 and 1. In an actual circuit the

corresponding signals may depart significantly from the desired behavior. As explained in

Appendix B, noise in a circuit can affect voltage levels, which can be troublesome. For

example, if at some point in time the noise diminishes the value of a signal that should be

at logic 1 to a level where this signal is interpreted by the next gate as being logic 0, then a

malfunction in the circuit is likely to occur. Since the noise effects tend to be random, they

are often difficult to detect.

To minimize crosstalk, it is prudent to avoid having long wires running parallel in close

proximity to each other. This may be difficult to achieve because of limited space on a PCB

and the need to provide a large number of wires. Using additional layers (planes) of wiring

helps in coping with crosstalk problems.

Power Supply Noise
When a CMOS circuit changes its state, there is a momentary flow of current in the

circuit, which is manifested as a current pulse on the power supply (VDD and Ground) wires.

Since a wiring trace on a PCB has a small “line inductance,” such a current pulse causes a

voltage spike (short pulse) on these lines. The cumulative effect of such voltage spikes can

cause a malfunction of the circuit.

The induced voltage spikes can be reduced significantly by connecting a small capacitor

between the VDD and Ground wires, in close proximity to the chip that causes the spikes

to occur. Since these spikes have the characteristic of a very high frequency signal, the

path through the capacitor is essentially a short circuit for them. Thus the voltage spikes

“bypass” the power supply lines and do not affect other chips connected to the same lines.

Such capacitors are called bypass capacitors. They do not affect the DC voltage on the

power supply lines.

Reflections and Terminations
Wiring traces on a PCB act as simple wires in circuits when the clock frequency is

low. However, at higher clock frequencies it becomes necessary to worry about so-called

transmission-line effects. When a signal propagates along a long wire, it is attenuated due

to the small resistance of the wire, it picks up crosstalk that manifests itself as noise, and it

may be reflected when it reaches the end of the wire. The reflection causes a problem if its

ISTUDY

642 C H A P T E R 11 ● TESTING OF LOGIC CIRCUITS

effect does not die down before the next active clock edge. The discussion of transmission-

line effects is beyond the scope of this book. We will only mention that the reflection of

signals can be prevented by placing a suitable “termination” component on the line. This

termination can be as simple as a resistor whose resistance matches the apparent resistance

of the line, known as the characteristic impedance of the line. Other forms of termination

are also possible.

11.8.1 TESTING OF PCBS

The manufactured PCB has to be tested thoroughly. Flaws in the manufacturing process

may cause some connections to be broken and others to be shorted by a solder blob that

touches two adjacent wires. There may be problems caused by design errors that were not

discovered during the design process. Finally, some chips and other components on the

PCB may be defective.

Power Up
The first step is to turn on the power supply. In the worst case this may cause some chip

to be destroyed because of a fatal short-circuit condition (in an extreme case a chip package

may actually blow apart). Assuming that this is not the case, it is essential to check if any

of the chips is becoming inordinately hot. Overheating is a symptom of a serious problem

that must be corrected.

It is also necessary to check that the power and ground connections are properly made

on each chip and that the voltage level is as specified.

Reset
The next step is to reset all circuitry on the PCB to reach a predetermined starting

point. This typically implies resetting the flip-flops, which is usually achieved by asserting

a common reset line. It is important to verify that the starting state is correctly established.

Low-Level Functional Testing
Since practical circuits can be extremely complex, it is prudent to test the basic func-

tionality first. A key test is to verify that the control signals are working correctly.

Using the divide-and-conquer approach, simple functions are tested first, followed by

the more complex ones.

Full Functional Testing
Having verified the operation of smaller subcircuits, it is necessary to test the function-

ality of the entire system on the PCB. The number of errors often depends on the thorough-

ness of the simulation done during the design process. In general, it is difficult to simulate

large digital systems fully, so some errors are likely to be found on the PCB. Typical errors

are due to

∙ Manufacturing errors, such as wrong wiring traces, blown components, or incorrect

power supply voltage.

∙ Incorrect specifications.

∙ Designer’s misinterpretation of information on the data sheets that describe some chips.

∙ Incorrect information on the data sheets provided by the chip manufacturer.

ISTUDY

11.8 PRINTED CIRCUIT BOARDS 643

As mentioned earlier, PCBs contain multiple layers of wiring. Each layer may have several

thousands of wires in it. Finding and fixing errors can be a difficult and time-consuming task,

especially if errors involve wires in internal (as opposed to the top or bottom) wiring layers.

Timing
It is next necessary to verify the timing of the circuit. A good strategy is to start with

a slow clock. If the circuit works properly, then the clock frequency is gradually increased

until the required operating frequency is reached.

Timing problems arise because of propagation delays through various paths in a circuit.

These delays are caused by the logic gates and the wiring that interconnects them. It is

essential to ensure that all data inputs to flip-flops in the circuit are stable before the active

edge of the clock signal arrives, as required by the setup time.

Reliability
A digital system is expected to operate reliably for a long time. Its reliability may be

affected by several factors, such as timing, noise, and crosstalk problems.

The timing of signals has to provide some safety margin to allow for small changes in

propagation delays. If the timing is too tight, then it is likely that the circuit will operate

correctly for some period of time, but will eventually fail because of a timing error. The

timing of chips may change with temperature, so failures can occur if thermal constraints

are not adhered to. Cooling is usually provided by means of fans.

11.8.2 INSTRUMENTATION

Testing of circuits implemented in PCBs requires some specialized instruments.

Oscilloscope
The details of individual signals can be examined using an oscilloscope. This instru-

ment displays the voltage waveform of a signal, showing the potential problems with respect

to propagation delay and noise. The waveform displayed on an oscilloscope shows the ac-

tual voltage levels of the signal; it does not depict the simplified view of ideal waveforms

that have perfectly square edges. If the user wants to see only the logic values of a signal (0

or 1), then a different type of instrument called a logic analyzer can be used.

Logic Analyzer
While an oscilloscope allows simultaneous examination of a few signals, a logic an-

alyzer allows examination of tens or even hundreds of signals at the same time. It takes

inputs from a set of points in the circuit, by means of probes attached to these points, and

digitizes and displays the detected signals in the form of waveforms on a screen. A powerful

feature of the logic analyzer is that it has internal storage capable of recording a sequence

of changes in the signals over a substantial period of time. Then any segment of this infor-

mation can be displayed as desired by the operator. Typically, it is possible to record a few

milliseconds’ worth of events, which involves many cycles of a normal digital clock.

Looking at the waveforms taken when the circuit under test is working properly is

not helpful in the debugging process. It is essential to see the waveforms generated when a

malfunction takes place. The logic analyzer can be “triggered” to record a window of events

that occurred before and after the trigger event. The user must specify the trigger event. For

ISTUDY

644 C H A P T E R 11 ● TESTING OF LOGIC CIRCUITS

example, suppose that a malfunction is suspected to be caused by two control signals, A and

B, being asserted at the same time, even though the design specification requires that these

signals be mutually exclusive. A useful trigger point can then be established as the time

when the AND of A and B has the value 1. Finding suitable trigger events can be difficult,

and the user must rely on intuition and experience.

To use a logic analyzer effectively, it must be possible to connect the probes to some

useful (for testing purposes) points in the circuit. Thus it is important to provide such “test”

points when a PCB is being designed.

11.9 CONCLUDING REMARKS

Manufactured products must be tested to ensure that they perform as expected. All of the

techniques discussed in this chapter are relevant for this type of testing. The development

of tests and the required responses is based on the assumption that the circuits are designed

correctly. Thus it is the validity of the physical implementation that is being tested.

Another aspect of testing occurs during the design process. The designer has to ascer-

tain that the designed circuit meets the specifications. From the testing point of view, this

poses a significant problem because there exists no provably good circuit that can be used to

generate the desired tests. CAD tools are helpful in deriving tests for a designed circuit, but

they cannot determine whether the circuit is indeed what the designer intended to achieve

in terms of its functionality. A design error usually results in a circuit that has somewhat

different functionality than required by the specification.

Small circuits can be tested fully to verify their functionality. A combinational circuit

can be tested to see if it performs according to its truth table. A sequential circuit can be

tested by checking the transitions specified in the state table. This is much easier to do if

the circuit is designed for testability, as explained in Section 11.6.1. Large circuits cannot

be tested exhaustively, because a vast number of tests would have to be applied. In this case

the designer’s ingenuity is needed to determine a manageable set of tests that will hopefully

demonstrate the correctness of the circuit.

PROBLEMS

Answers to problems marked by an asterisk are given at the back of the book.

*11.1 Derive a table similar to Figure 11.1b for the circuit in Figure P11.1 to show the coverage

of the various stuck-at-0 and stuck-at-1 faults by the eight possible tests. Find a minimal

test set for this circuit.

w1

w2

f
w3

Figure P11.1 Circuit for Problem 11.1.

ISTUDY

PROBLEMS 645

11.2 Repeat Problem 11.1 for the circuit in Figure P11.2.

w1

w2

f

w3

w4

Figure P11.2 Circuit for Problem 11.2.

*11.3 Devise a test to distinguish between two circuits that implement the following expressions

f = x1x2x3 + x2x3x4 + x1x2x4 + x1x3x4

g = (x1 + x2)(x3 + x4)

11.4 Consider the circuit in Figure P11.3. Sensitize each path in this circuit to obtain a complete

test set that comprises a minimum number of tests.

w1

w2

f

w3

w4 w5

Figure P11.3 Circuit for Problem 11.4.

*11.5 For the circuit of Figure 11.4a, show the tests that can detect each of the faults: w1∕0, w4∕1,

g∕0, and c∕1.

11.6 Suppose that the tests w1w2w3w4 = 0100, 1010, 0011, 1111, and 0110 are chosen randomly

to test the circuit in Figure 11.3. What percentage of single faults are detected using these

tests?

11.7 Repeat Problem 11.6 for the circuit in Figure 11.4a.

11.8 Repeat Problem 11.6 for the circuit in Figure 11.5.

ISTUDY

646 C H A P T E R 11 ● TESTING OF LOGIC CIRCUITS

*11.9 Consider the circuit in Figure P11.4. Are all single stuck-at-0 and stuck-at-1 faults in this

circuit detectable? If not, explain why.

w1

w2 f

w3

Figure P11.4 Circuit for Problem 11.9.

11.10 Prove that in a circuit in which all gates have a fan-out of 1, any set of tests that detects all

single faults on the input wires detects all single faults in the entire circuit.

*11.11 The circuit in Figure P11.5 determines the parity of a four-bit data unit. Derive a minimal

test set that can detect all single stuck-at-0 and stuck-at-1 faults in this circuit. Would your

test set work if the XOR gates are implemented using the circuit in Figure 8.9c? Can your

result be extended to a general case that involves n-bit data units?

w1

w2

p

w3

w4

Figure P11.5 Circuit for Problem 11.11.

*11.12 Derive a test set that can detect all single faults in the decoder circuit in Figure 4.14c.

11.13 List all single faults in the circuit in Figure 11.4a that can be detected using each of the tests

w1w2w3w4 = 1100, 0010, and 0110.

11.14 Sensitize each path in the combinational part of the circuit in Figure 11.12 to obtain

a complete test set that comprises as few tests as possible. Show how your test set can

be applied to test this circuit. How many clock cycles are needed to perform the

necessary tests?

11.15 Derive an ASM chart that represents the flow of control needed to test the circuit in

Figure 11.12.

ISTUDY

REFERENCES 647

11.16 The circuit in Figure 11.12 provides an easily testable implementation of the FSM in

Figure 6.76. In Example 11.3 we showed how this circuit may be tested by testing the

combinational part using randomly chosen tests. A different approach to testing may be to

attempt to determine whether the circuit actually realizes the functionality specified in the

state table in Figure 6.76b. This can be done by making the circuit go through all transi-

tions given in the state table. For example, after applying the Resetn = 0 signal, the circuit

begins in state A. It must be verified that the circuit is indeed forced into state A by scanning

out the expected valuation y2y1 = 00. Next each transition must be checked. To verify the

transition A → A if w = 0, it is necessary to make the input w equal to 0 and allow the

normal operation to take place for one clock cycle by making Normal∕Scan = 0. The value

of the output z must be observed. This is followed by scanning out the values of y2 and y1

to see if y2y1 = 00. At the same time, the valuation for the next test should be scanned in.

If this test involves verifying that B → A if w = 0, then the valuation y2y1 = 01 is scanned

in. This process continues until all transitions have been verified.

Indicate in the form of a table the values of the signals Normal∕Scan, Scan-in, Scan-out, w,

and z, as well as the transition tested, for each clock cycle necessary to perform the complete

test for this circuit.

11.17 Write VHDL code that represents the circuit in Figure 11.12.

11.18 Derive an ASM chart that describes the control needed to test a digital system that uses the

BILBO structure in Figures 11.18 and 11.19.

REFERENCES

1. J. P. Roth et al., “Programmed Algorithms to Compute Tests to Detect and

Distinguish Between Failures in Logic Circuits,” IEEE Transactions on Computers
EC-16, no. 5 (October 1967), pp. 567–80.

2. A. Miczo, Digital Logic Testing and Simulation (Wiley: New York, 1986).

3. T. W. Williams and K. P. Parker, “Design for Testability—a Survey,” IEEE
Transactions on Computers C-31 (January 1982), pp. 2–15.

4. B. Koenemann, J. Mucha, and G. Zwiehoff, “Built-In Logic Block Observation

Techniques,” Proceedings 1977 Test Conference, IEEE Pub. 79CH1609-9C, October

1979, pp. 37–41.

5. A. Y. Chan, “Easy-to-Use Signature Analyzer Accurately Troubleshoots Complex

Logic Circuits,” Hewlett-Packard Journal, May 1997, pp. 9–14.

6. Test Access Port and Boundary-Scan Architecture, IEEE Standard 1149.1, May 1990.

ISTUDY

ISTUDY

649

a p p e n d i x

A
VHDL REFERENCE

This appendix describes the features of VHDL that are used in this book. It is meant to

serve as a convenient reference for the reader. Hence only brief descriptions are provided,

along with examples. The reader is encouraged to first study the introduction to VHDL in

Sections 2.10, 3.5, and 4.6.

In some ways VHDL has an unusual syntax for describing logic circuits. The prime

reason is that VHDL was originally intended to be a language for documenting and simulat-

ing circuits, rather than for describing circuits for synthesis. This appendix is not meant to

be a comprehensive VHDL manual. While we discuss almost all the features of VHDL that

are useful in the synthesis of logic circuits, we do not discuss any of the features that are

useful only for simulation of circuits or for other purposes. Although the omitted features

are not needed for any of the examples used in this book, a reader who wishes to learn more

about using VHDL can refer to specialized books [1–8].

How Not to Write VHDL Code
In Section 2.10 we mentioned the most common problem encountered by designers

who are just beginning to write VHDL code. The tendency for the novice is to write code

that resembles a computer program, containing many variables and loops. It is difficult

to determine what logic circuit the CAD tools will produce when synthesizing such code.

This book contains more than 150 examples of complete VHDL code that represents a wide

range of logic circuits. In all of these examples, the code is easily related to the described

logic circuit. The reader is encouraged to adopt the same style of code. A good general

guideline is to assume that if the designer cannot readily determine what logic circuit is

described by the VHDL code, then the CAD tools are not likely to synthesize the circuit

that the designer is trying to describe.

Since VHDL is a complex language, errors in syntax and usage are quite common.

Some problems encountered by our students, as novice designers, are listed at the end of

this appendix in Section A.11. The reader may find it useful to examine these errors in an

effort to avoid them when writing code.

Once complete VHDL code is written for a particular design, it is useful to analyze the

resulting circuit synthesized by the CAD tools. Much can be learned about VHDL, logic

circuits, and logic synthesis by studying the circuits that are produced automatically by the

CAD tools.

ISTUDY

650 A P P E N D I X A ∙ VHDL REFERENCE

A.1 DOCUMENTATION IN VHDL CODE

Documentation can be included in VHDL code by writing a comment. The two characters

'-' , '-' denote the beginning of the comment. The VHDL compiler ignores any text on a line

after the '- -' .

Example A.1
- - this is a VHDL comment

A.2 DATA OBJECTS

Information is represented in VHDL code as data objects. Three kinds of data objects are

provided: signals, constants, and variables. For describing logic circuits, the most important

data objects are signals. They represent the logic signals (wires) in the circuit. The constants

and variables are also sometimes useful for describing logic circuits, but they are used

infrequently.

A.2.1 DATA OBJECT NAMES

The rules for specifying data object names are simple: any alphanumeric character may be

used in the name, as well as the ' ' underscore character. There are four caveats. A name

cannot be a VHDL keyword, it must begin with a letter, it cannot end with an ' ' underscore,

and it cannot have two successive ' ' underscores. Thus examples of legal names are x, x1,

x y, and Byte. Some examples of illegal names are 1x, y, x y, and entity. The latter name

is not allowed because it is a VHDL keyword. VHDL is not case sensitive. Hence x is the

same as X, and ENTITY is the same as entity. To make the examples of VHDL code in this

book more readable, we use uppercase letters in all keywords.

To avoid confusion when using the word signal, which can mean either a VHDL data

object or a logic signal in a circuit, we sometimes write the VHDL data object as SIGNAL.

A.2.2 DATA OBJECT VALUES AND NUMBERS

We use SIGNAL data objects to represent individual logic signals in a circuit, multibit-

logic signals (vectors), and integers. The value of an individual SIGNAL is specified using

apostrophes, as in '0' or '1' . The value of a multibit SIGNAL is given with double quotes.

An example of a four-bit SIGNAL value is ''1001'' , and an eight-bit value is ''10011000'' .

The default number radix is binary, but a different radix can be specified explicitly, such

as X''5A'' (hexadecimal) or O''35'' (octal). For a signal of the INTEGER type a value can

be specified in decimal by not using quotes, as in 9 or 152. The values of CONSTANT or

VARIABLE data objects are specified in the same way as for SIGNAL data objects.

ISTUDY

A.2 DATA OBJECTS 651

A.2.3 SIGNAL DATA OBJECTS

SIGNAL data objects represent the logic signals, or wires, in a circuit. There are three places

in which signals can be declared in VHDL code: in an entity declaration (see Section A.4.1),

in the declarative section of an architecture (see Section A.4.2), and in the declarative sec-

tion of a package (see Section A.5). A signal has to be declared with an associated type, as

follows:

SIGNAL signal name : type name ;

The signal’s type name determines the legal values that the signal can have and its legal

uses in VHDL code. In this section we describe 10 signal types: BIT, BIT VECTOR,

STD LOGIC, STD LOGIC VECTOR, STD ULOGIC, SIGNED, UNSIGNED, INTEGER,

ENUMERATION, and BOOLEAN.

A.2.4 BIT AND BIT VECTOR TYPES

These types are predefined in the VHDL Standards IEEE 1076 and IEEE 1164. Hence no

library is needed to use these types in the code. Objects of BIT type can have the values '0'

or '1' . An object of BIT VECTOR type is a linear array of BIT objects.

Example A.2
SIGNAL x1 : BIT ;

SIGNAL C : BIT VECTOR (1 TO 4) ;

SIGNAL Byte : BIT VECTOR (7 DOWNTO 0) ;

The signals C and Byte illustrate the two possible ways of defining a multibit data object.

The syntax “lowest index TO highest index” is useful for a multibit signal that is simply

an array of bits. In the signal C the most-significant (left-most) bit is referenced using

lowest index, and the least-significant (right-most) bit is referenced using highest index.

The syntax “highest index DOWNTO lowest index” is useful if the signal represents a

binary number. In this case the most-significant (left-most) bit has the index highest index,

and the least-significant (right-most) bit has the index lowest index.

The multibit signal C represents four BIT objects. It can be used as a single four-bit

quantity, or each bit can be referred to individually. The syntax for referring to the signals

individually is C (1), C (2), C (3), or C (4). An assignment statement such as

C <= ''1010'' ;

results in C (1) = 1, C (2) = 0, C (3) = 1, and C (4) = 0.

The signal Byte comprises eight BIT objects. The assignment statement

Byte <= ''10011000'' ;

results in Byte(7) = 1, Byte(6) = 0, and so on to Byte(0) = 0.

ISTUDY

652 A P P E N D I X A ∙ VHDL REFERENCE

A.2.5 STD LOGIC AND STD LOGIC VECTOR TYPES

The STD LOGIC type was added to the VHDL Standard in IEEE 1164. It provides more

flexibility than the BIT type. To use this type, we must include the two statements

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

These statements provide access to the std logic 1164 package, which defines the STD

LOGIC type. We describe VHDL packages in Section A.5. In general, they are used as a

place to store VHDL code, such as the code that defines a type, which can then be used

in other source-code files. The following values are legal for a STD LOGIC data object:

0, 1, Z, −, L, H, U, X, and W. Only the first four are useful for synthesis of logic circuits.

The value Z represents high impedance, and − stands for “don’t care.” The value L means

“weak 0,” H is “weak 1,” U is “uninitialized,” X is “unknown,” and W is “weak unknown.”

The STD LOGIC VECTOR type represents an array of STD LOGIC objects.

Example A.3
SIGNAL x1, x2, Cin, Cout, Sel : STD LOGIC ;

SIGNAL C : STD LOGIC VECTOR (1 TO 4) ;

SIGNAL X, Y, S : STD LOGIC VECTOR (3 DOWNTO 0) ;

STD LOGIC objects are often used in logic expressions in VHDL code. A related

package is

USE ieee.std logic signed.all ;

The std logic signed package specifies that it is legal to use the STD LOGIC VECTOR

signals with arithmetic operators, like + (see Section A.7.1). The VHDL compiler should

generate a circuit that works for signed numbers. An alternative is to use the package

std logic unsigned. In this case the compiler should generate a circuit that works for un-

signed numbers.

A.2.6 STD ULOGIC TYPE

In this book we use the STD LOGIC type in most examples of VHDL code. This type is

actually a subtype of the STD ULOGIC type. Signals that have the STD ULOGIC type can

take the same values as the STD LOGIC signals that we have been using. The only differ-

ence between STD ULOGIC and STD LOGIC has to do with the concept of a resolution
function. In VHDL a resolution function is used to determine what value a signal should

take if there are two sources for that signal. For example, two tri-state drivers could both

have their outputs connected to a signal, x. At some given time one driver might produce

the output value ‘Z’ and the other driver might produce the value 1. A resolution function is

used to determine that the value of x should be 1 in this case. The STD LOGIC type allows

ISTUDY

A.2 DATA OBJECTS 653

multiple sources for a signal; it resolves the correct value using a resolution function that

is provided as part of the std logic 1164 package. The STD ULOGIC type does not permit

signals to have multiple sources. We have introduced STD ULOGIC for completeness only;

it is not used in this book.

A.2.7 SIGNED AND UNSIGNED TYPES

The std logic signed and std logic unsigned packages mentioned in Section A.2.5 make

use of another package, called std logic arith. This package defines the type of circuit that

should be used to implement the arithmetic operators, such as +. The std logic arith pack-

age defines two signal types, SIGNED and UNSIGNED. These types are identical to the

STD LOGIC VECTOR type because they represent an array of STD LOGIC signals. The

purpose of the SIGNED and UNSIGNED types is to allow the user to indicate in the VHDL

code what kind of number representation is being used. The SIGNED type is used in code

for circuits that deal with signed (2’s complement) numbers, and the UNSIGNED type is

used in code that deals with unsigned numbers.

Example A.4Assume that A and B are signals with the SIGNED type. Assume that A is assigned the

value ''1000'' , and B is assigned the value ''0001'' . VHDL provides relational operators (see

Table A.1 in Section A.3) that can be used to compare the values of two signals. The com-

parison A < B evaluates to true because the signed values are A = −8 and B = 1. On the

other hand, if A and B are defined with the UNSIGNED type, then A < B evaluates to false

because the unsigned values are A = 8 and B = 1.

The std logic signed package specifies that STD LOGIC VECTOR signals should be

treated like SIGNED signals. Similarly, the std logic unsigned package specifies that STD

LOGIC VECTOR signals should be treated like UNSIGNED signals. It is an arbitrary

choice whether code is written using STD LOGIC VECTOR signals in conjunction with

the std logic signed or std logic unsigned packages or using SIGNED and UNSIGNED

signals with the std logic arith package.

A.2.8 INTEGER TYPE

The VHDL standard defines the INTEGER type for use with arithmetic operators. In this

book the STD LOGIC VECTOR type is usually preferred in code for arithmetic circuits,

but the INTEGER type is used occasionally. An INTEGER signal represents a binary num-

ber. The code does not specifically give the number of bits in the signal, as it does for

STD LOGIC VECTOR signals. By default, an INTEGER signal has 32 bits and can rep-

resent numbers from −(231 − 1) to 231 − 1. This is one number less than the normal 2’s

complement range; the reason is simply that the VHDL standard specifies an equal number

of negative and positive numbers. Integers with fewer bits can also be declared, using the

RANGE keyword.

ISTUDY

654 A P P E N D I X A ∙ VHDL REFERENCE

Example A.5
SIGNAL X : INTEGER RANGE −127 TO 127 ;

This statement defines X as an eight-bit signed number.

A.2.9 BOOLEAN TYPE

An object of type BOOLEAN can have the values TRUE or FALSE, where TRUE is equiv-

alent to 1 and FALSE is 0.

Example A.6
SIGNAL Flag : Boolean ;

A.2.10 ENUMERATION TYPE

A SIGNAL of ENUMERATION type is one for which the possible values that the signal

can have are user specified. The general form of an ENUMERATION type is

TYPE enumerated type name IS (name {, name}) ;

The curly brackets indicate that one or more additional items can be included. We use these

brackets in this manner in several places in the appendix. The most common example of

using the ENUMERATION type is for specifying the states for a finite-state machine.

Example A.7
TYPE State type IS (stateA, stateB, stateC) ;

SIGNAL y : State type ;

This code declares the signal y, for which the legal values are stateA, stateB, and stateC.

The VHDL compiler assigns bit patterns (codes) to represent stateA, stateB, and stateC.

A.2.11 CONSTANT DATA OBJECTS

A CONSTANT is a data object whose value cannot be changed. Unlike a SIGNAL, a CON-

STANT does not represent a wire in a circuit. The general form of a CONSTANT declara-

tion is

CONSTANT constant name : type name := constant value ;

The purpose of a constant is to improve the readability of code, by using the name of the

constant in place of a value or number.

ISTUDY

A.2 DATA OBJECTS 655

Example A.8
CONSTANT Zero : STD LOGIC VECTOR (3 DOWNTO 0) := ''0000'' ;

Then the word Zero can be used in the code to indicate the constant value ''0000'' .

A.2.12 VARIABLE DATA OBJECTS

A VARIABLE, unlike a SIGNAL, does not necessarily represent a wire in a circuit.

VARIABLE data objects are sometimes used to hold the results of computations and for

the index variables in loops. We will give some examples in Section A.9.7.

A.2.13 TYPE CONVERSION

VHDL is a strongly type-checked language, which means that it does not permit the assign-

ment of the value of a signal of one type to another signal that has a different type. Even for

signals that intuitively seem compatible, such as BIT and STD LOGIC, using the two types

together is not permitted. To avoid this problem, we generally use only the STD LOGIC

and STD LOGIC VECTOR types in this book. When it is necessary to use code that has

a mixture of types, type-conversion functions can be used to convert from one type to

another.

Assume that X is defined as an eight-bit STD LOGIC VECTOR signal and Y is an

INTEGER signal defined with the range from 0 to 255. An example of a conversion function

that allows the value of Y to be assigned to X is

X <= CONV STD LOGIC VECTOR(Y, 8) ;

This conversion function has two parameters: the name of the signal to be converted and

the number of bits in X. The function is provided as part of the std logic arith package;

hence that package must be included in the code using the appropriate LIBRARY and USE

clauses.

A.2.14 ARRAYS

We said above that the BIT VECTOR and STD LOGIC VECTOR types are arrays of BIT

and STD LOGIC signals, respectively. The definitions of these arrays, which are provided

as part of the VHDL standards, are

TYPE BIT VECTOR IS ARRAY (NATURAL RANGE <>) OF BIT ;

TYPE STD LOGIC VECTOR IS ARRAY (NATURAL RANGE <>) OF STD LOGIC ;

The sizes of the arrays are not set in the definitions; the syntax (NATURAL RANGE <>)

has the effect of allowing the user to set the size of the array when a data object of either

type is declared. Arrays of any type can be defined by the user. For example

ISTUDY

656 A P P E N D I X A ∙ VHDL REFERENCE

TYPE Byte IS ARRAY (7 DOWNTO 0) OF STD LOGIC ;

SIGNAL X : Byte ;

declares the signal X with the type Byte, which is an eight-element array of STD LOGIC

data objects.

An example that defines a two-dimensional array is

TYPE RegArray IS ARRAY(3 DOWNTO 0) OF STD LOGIC VECTOR(7 DOWNTO 0) ;

SIGNAL R : RegArray ;

This code defines R as an array with four elements. Each element is an eight-bit STD

LOGIC VECTOR signal. The syntax R(i), where 3 ≥ i ≥ 0, is used to refer to element i
of the array. The syntax R(i)(j), where 7 ≥ j ≥ 0, is used to refer to one bit in the array

R(i). This bit has the type STD LOGIC. An example using the RegArray type is given in

Section 7.7.

A.3 OPERATORS

VHDL provides a number of operators that are useful for synthesizing, simulating, and

documenting logic circuits. In Section 4.6.8 we discussed the operators that are used for

synthesis purposes. We listed them according to their functionality. The VHDL Standard

groups all operators into formal classes as shown in Table A.1. Operators in a given class

have the same precedence. The precedence of classes is indicated in the table. Observe that

the NOT operator is in the Miscellaneous class rather than Logical class. Hence, NOT has

higher precedence than AND and OR.

In a logic expression, the operators of the same class are evaluated from left to right.

Parentheses should always be used to ensure the correct interpretation of the expression.

For example, the expression

x1 AND x2 OR x3 AND x4

Table A.1 The VHDL operators.

Operator Class Operator

Highest precedence Miscellaneous ∗∗, ABS, NOT

Multiplying ∗, ∕, MOD, REM

Sign +, −

Adding +, −, &

Relational =, ∕ =, <, <=, >, >=

Lowest precedence Logical AND, OR, NAND, NOR, XOR, XNOR

ISTUDY

A.4 VHDL DESIGN ENTITY 657

does not have the x1x2 + x3x4 meaning that would be expected because AND does not have

precedence over OR. To have the desired meaning, it must be written as

(x1 AND x2) OR (x3 AND x4)

A.4 VHDL DESIGN ENTITY

A circuit or subcircuit described with VHDL code is called a design entity, or just entity.

Figure A.1 shows the general structure of an entity. It has two main parts: the entity dec-
laration, which specifies the input and output signals for the entity, and the architecture,

which gives the circuit details.

A.4.1 ENTITY DECLARATION

The input and output signals in an entity are specified using the ENTITY declaration, as

indicated in Figure A.2. The name of the entity can be any legal VHDL name. The square

Entity declaration

Architecture

Entity

Figure A.1 The general structure of a VHDL design entity.

ENTITY entity name IS

PORT ([SIGNAL] signal name {, signal name} : [mode] type name {;

[SIGNAL] signal name {, signal name} : [mode] type name }) ;

END entity name ;

Figure A.2 The general form of an entity.

ISTUDY

658 A P P E N D I X A ∙ VHDL REFERENCE

Table A.2 The possible modes for signals that are entity ports.

Mode Purpose

IN Used for a signal that is an input to an entity.

OUT Used for a signal that is an output from an entity. The value of the signal can not be used

inside the entity. This means that in an assignment statement, the signal can appear only

to the left of the <= operator.

INOUT Used for a signal that is both an input to an entity and an output from the entity.

BUFFER Used for a signal that is an output from an entity. The value of the signal can be used inside

the entity, which means that in an assignment statement, the signal can appear both on the

left and right sides of the <= operator.

brackets indicate an optional item. The input and output signals are specified using the

keyword PORT. Whether each port is an input, output, or bidirectional signal is specified

by the mode of the port. The available modes are summarized in Table A.2. If the mode of

a port is not specified, it is assumed to have the mode IN.

A.4.2 ARCHITECTURE

An ARCHITECTURE provides the circuit details for an entity. The general structure of an

architecture is shown in Figure A.3. It has two main parts: the declarative region and the

architecture body. The declarative region appears preceding the BEGIN keyword. It can

be used to declare signals, user-defined types, and constants. It can also be used to declare

ARCHITECTURE architecture_name OF entity_name IS

[SIGNAL declarations]

[CONSTANT declarations]

[TYPE declarations]

[COMPONENT declarations]

[ATTRIBUTE specifications]

BEGIN

{COMPONENT instantiation statement ;}

{CONCURRENT ASSIGNMENT statement ;}

{PROCESS statement ;}

{GENERATE statement ;}

END [architecture_name] ;

Figure A.3 The general form of an architecture.

ISTUDY

A.4 VHDL DESIGN ENTITY 659

components and to specify attributes; we discuss the COMPONENT and ATTRIBUTE

keywords in Sections A.6 and A.10.13, respectively.

The functionality of the entity is specified in the architecture body, which follows the

BEGIN keyword. This specification involves statements that define the logic functions in

the circuit, which can be given in a variety of ways. We will discuss a number of possibilities

in the sections that follow.

Example A.9Figure A.4 gives the VHDL code for an entity named fulladd, which represents a full-adder

circuit. (The full-adder is discussed in Section 3.2.) The entity declaration specifies the

input and output signals. The input port Cin is the carry-in, and the bits to be added are

the input ports x and y. The output ports are the sum, s, and the carry-out, Cout. The input

and output signals are called the ports of the entity. This term is adopted from the electrical

jargon in which it refers to an input or output connection in an electrical circuit.

The architecture defines the functionality of the full-adder using logic equations. The

name of the architecture can be any legal VHDL name. We chose the name LogicFunc for

this simple example. In terms of the general form of the architecture in Figure A.3, a logic

equation is a type of concurrent assignment statement. These statements are described in

Section A.7.

A second example of an entity is given in Figure A.5, which gives the code for a four-bit

ripple-carry adder. The X and Y inputs, as well as the output sum S are declared as four-bit

vectors. Three signals, C1, C2, and C3 are declared for use as internal carry signals. These

signals are declared in the architecture, rather than in the entity declaration, because they

are used internally in the circuit and are not input or output ports.

LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

ENTITY fulladd IS

PORT (Cin, x, y : IN STD_LOGIC ;

s, Cout : OUT STD_LOGIC) ;

END fulladd ;

ARCHITECTURE LogicFunc OF fulladd IS

BEGIN

s <= x XOR y XOR Cin ;

Cout <= (x AND y) OR (x AND Cin) OR (y AND Cin) ;

END LogicFunc ;

Figure A.4 Code for a full-adder.

ISTUDY

660 A P P E N D I X A ∙ VHDL REFERENCE

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

ENTITY adder4 IS

PORT (Cin : IN STD LOGIC ;

X, Y : IN STD LOGIC VECTOR(3 DOWNTO 0) ;

S : OUT STD LOGIC VECTOR(3 DOWNTO 0) ;

Cout : OUT STD LOGIC) ;

END adder4 ;

ARCHITECTURE LogicFunc OF adder4 IS

SIGNAL C1, C2, C3 : STD LOGIC;

BEGIN

S(0) <= X(0) XOR Y(0) XOR Cin ;

C1 <= (X(0) AND Y(0)) OR (X(0) AND Cin) OR (Y(0) AND Cin) ;

S(1) <= X(1) XOR Y(1) XOR C1 ;

C2 <= (X(1) AND Y(1)) OR (X(1) AND C1) OR (Y(1) AND C1) ;

S(2) <= X(2) XOR Y(2) XOR C2 ;

C3 <= (X(2) AND Y(2)) OR (X(2) AND C2) OR (Y(2) AND C2) ;

S(3) <= X(3) XOR Y(3) XOR C3 ;

Cout <= (X(3) AND Y(3)) OR (X(3) AND C3) OR (Y(3) AND C3) ;

END LogicFunc ;

Figure A.5 Code for a four-bit adder.

A.5 PACKAGE

A VHDL package serves as a repository. It is used to hold VHDL code that is of general

use, like the code that defines a type. The package can be included for use in any number of

other source-code files, which can then use the definitions provided in the package. Like an

architecture, introduced in Section A.4.2, a package can have two main parts: the package
declaration and the package body. The package body is an optional part, which we do

not use in this book; one use of a package body is to define VHDL functions, such as the

conversion functions introduced in Section A.2.13.

The general form of a package declaration is depicted in Figure A.6. Definitions pro-

vided in the package, such as the definition of a type, can be used in any source-code file

that includes the statements

LIBRARY library name ;

USE library name.package name.all ;

The library name represents the location in the computer file system where the package is

stored. A library can either be provided as part of a CAD system, in which case it is termed

a system library, or be created by the user, in which case it is called a user library. An

ISTUDY

A.6 USING SUBCIRCUITS 661

PACKAGE package_name IS

[TYPE declarations]

[SIGNAL declarations]

[COMPONENT declarations]

END package_name ;

Figure A.6 The general form of a PACKAGE declaration.

example of a system library is the ieee library. We discussed four packages in that library

in Section A.2: std logic 1164, std logic signed, std logic unsigned, and std logic arith.

A special case of a user library is represented by the file-system directory where the

VHDL source-code file that declares a package is stored. This directory can be referred

to by the library name work, which stands for working directory. Hence, if a source-code

file that contains a package declaration called user package name is compiled, then the

package can be used in another source-code file (which is stored in the same file-system

directory) by including the statements

LIBRARY work ;

USE work.user package name.all ;

Actually, for the special case of the work library, the LIBRARY clause is not required,

because the work library is always accessible.

Figure A.6 shows that the package declaration can be used to declare signals and com-

ponents. Components are discussed in the next section. A signal declared in a package can

be used by any design entity that accesses the package. Such signals are similar in concept

to global variables used in computer programming languages. In contrast, a signal declared

in an architecture can be used only inside that architecture. Such signals are analogous to

local variables in a programming language.

A.6 USING SUBCIRCUITS

A VHDL entity defined in one source-code file can be used as a subcircuit in another source-

code file. In VHDL jargon the subcircuit is called a component. A subcircuit must be de-

clared using a component declaration. This statement specifies the name of the subcircuit

and gives the names of its input and output ports. The component declaration can appear

either in the declaration region of an architecture or in a package declaration. The general

form of the statement is shown in Figure A.7. The syntax used is similar to the syntax in an

entity declaration.

Once a component declaration is given, the component can be instantiated as a subcir-

cuit. This is done using a component instantiation statement. It has the general form

instance name : component name PORT MAP (

[formal name =>] actual name {, [formal name =>] actual name}) ;

ISTUDY

662 A P P E N D I X A ∙ VHDL REFERENCE

COMPONENT component name

[GENERIC (parameter name : integer := default value {;

parameter name : integer := default value}) ;]

PORT ([SIGNAL] signal name {, signal name} : [mode] type name {;

[SIGNAL] signal name {, signal name} : [mode] type name }) ;

END COMPONENT ;

Figure A.7 The general form of a component declaration.

Each formal name is the name of a port in the subcircuit. Each actual name is the name

of a signal in the code that instantiates the subcircuit. The syntax “formal name =>” is

provided so that the order of the signals listed after the PORT MAP keywords does not have

to be the same as the order of the ports in the corresponding COMPONENT declaration.

In VHDL jargon this is called the named association. If the signal names following the

PORT MAP keywords are given in the same order as in the COMPONENT declaration,

then “formal name =>” is not needed. This is called the positional association.

An example using a component (subcircuit) is shown in Figure A.8. It gives the code

for a four-bit ripple-carry adder built using four instances of the fulladd subcircuit. The

LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

ENTITY adder IS

PORT (Cin : IN STD_LOGIC ;

X, Y : IN STD_LOGIC_VECTOR(3 DOWNTO 0) ;

S : OUT STD_LOGIC_VECTOR(3 DOWNTO 0) ;

Cout : OUT STD_LOGIC) ;

END adder ;

ARCHITECTURE Structure OF adder IS

SIGNAL C : STD_LOGIC_VECTOR(1 TO 3) ;

COMPONENT fulladd

PORT (Cin, x, y : IN STD_LOGIC ;

s, Cout : OUT STD_LOGIC) ;

END COMPONENT ;

BEGIN

stage0: fulladd PORT MAP (Cin, X(0), Y(0), S(0), C(1)) ;

stage1: fulladd PORT MAP (C(1), X(1), Y(1), S(1), C(2)) ;

stage2: fulladd PORT MAP (C(2), X(2), Y(2), S(2), C(3)) ;

stage3: fulladd PORT MAP (

x => X(3), y => Y(3), Cin => C(3), s => S(3), Cout => Cout) ;

END Structure ;

Figure A.8 Code for a four-bit adder, using component instantiation.

ISTUDY

A.6 USING SUBCIRCUITS 663

inputs to the adder are the carry-in, Cin, and the 2 four-bit numbers X and Y . The output

is the four-bit sum, S, and the carry-out, Cout. We have chosen the name Structure in the

architecture because the hierarchical style of code that uses subcircuits is often called the

structural style. A three-bit signal, C, is declared to represent the carry-outs from stages 0,

1, and 2.

The next statement in the architecture gives the component declaration for the fulladd
subcircuit. The architecture body instantiates four copies of the full-adder subcircuit. In the

first three instantiation statements, we have used positional association because the signals

are listed in the same order as given in the declaration for the fulladd component in Figure A.4.

The last instantiation statement gives an example of named association. Note that it is legal

to use the same name for a signal in the architecture that is used for a port name in a com-

ponent. An example of this is the Cout signal. The signal names used in the instantiation

statements implicitly specify how the component instances are interconnected to create the

adder entity.

A.6.1 DECLARING A COMPONENT IN A PACKAGE

Figure A.6 shows that a component declaration can be given in a package. An example

is shown in Figure A.9. It defines the package named fulladd package, which provides

the component declaration for the fulladd entity. This package can be stored in a separate

source-code file or can be included at the end of the file that defines the fulladd entity (see

Figure A.4). Any source-code that includes the statement “USE work.fulladd package.all”

can use the fulladd component as a subcircuit. Figure A.10 shows how a four-bit ripple-

carry adder entity can be written to use the package. The code is the same as that in Figure A.8

except that it includes the extra USE clause for the package and deletes the component

declaration statement from the architecture.

LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

PACKAGE fulladd_package IS

 COMPONENT fulladd

 PORT (Cin, x, y : IN STD_LOGIC ;

 s, Cout : OUT STD_LOGIC) ;

 END COMPONENT ;

END fulladd_package ;

Figure A.9 An example of a package declaration.

ISTUDY

664 A P P E N D I X A ∙ VHDL REFERENCE

LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

USE work.fulladd_package.all ;

ENTITY adder IS

END adder ;

ARCHITECTURE Structure OF adder IS

SIGNAL C : STD_LOGIC_VECTOR(1 TO 3) ;

BEGIN

END Structure ;

stage0: fulladd PORT MAP (Cin, X(0), Y(0), S(0), C(1)) ;

stage1: fulladd PORT MAP (C(1), X(1), Y(1), S(1), C(2)) ;

stage2: fulladd PORT MAP (C(2), X(2), Y(2), S(2), C(3)) ;

stage3: fulladd PORT MAP (C(3), X(3), Y(3), S(3), Cout) ;

PORT (Cin : IN STD_LOGIC ;

 X, Y : IN STD_LOGIC_VECTOR(3 DOWNTO 0) ;

 S : OUT STD_LOGIC_VECTOR(3 DOWNTO 0) ;

 Cout : OUT STD_LOGIC) ;

Figure A.10 Using a component defined in a package.

A.7 CONCURRENT ASSIGNMENT STATEMENTS

A concurrent assignment statement is used to assign a value to a signal in an architecture

body. An example was given in Figure A.4, in which the logic expressions illustrate one

type of concurrent assignment statement. VHDL provides four different types of concurrent

assignment statements: simple signal assignment, selected signal assignment, conditional

signal assignment, and generate statements.

A.7.1 SIMPLE SIGNAL ASSIGNMENT

A simple signal assignment statement is used for a logic or an arithmetic expression. The

general form is

signal name <= expression ;

where <= is the VHDL assignment operator. The following examples illustrate its use.

SIGNAL x1, x2, x3, f : STD LOGIC ;

⋅
⋅
⋅

f <= (x1 AND x2) OR x3 ;

ISTUDY

A.7 CONCURRENT ASSIGNMENT STATEMENTS 665

This code defines f in a logic expression, which involves single-bit quantities. VHDL also

supports multibit logic expressions, as in

SIGNAL A, B, C : STD LOGIC VECTOR (1 TO 3) ;

⋅
⋅
⋅

C <= A AND B ;

This results in C(1) = A(1) ⋅ B(1), C(2) = A(2) ⋅ B(2), and C(3) = A(3) ⋅ B(3).

An example of an arithmetic expression is

SIGNAL X, Y, S : STD LOGIC VECTOR (3 DOWNTO 0) ;

⋅
⋅
⋅

S <= X + Y ;

This represents a four-bit adder, without carry-in and carry-out. We can alternatively declare

a carry-in signal, Cin, and a five-bit signal, Sum, as follows

SIGNAL Cin : STD LOGIC ;

SIGNAL Sum : STD LOGIC VECTOR (4 DOWNTO 0) ;

Then the statement

Sum <= ('0' & X) + ('0' & Y) + Cin ;

represents the four-bit adder with carry-in and carry-out. The four sum bits are Sum(3) to

Sum(0), while the carry-out is the bit Sum(4). The syntax ('0' & X) uses the VHDL con-
catenate operator, &, to put a 0 on the left end of the signal X. The reader should not con-

fuse this use of the & symbol with the logical AND operation, which is the usual meaning

of this symbol; in VHDL the logical AND is indicated by the word AND, and & means

concatenate. The concatenate operation prepends a 0 digit onto X, creating a five-bit num-

ber. VHDL requires at least one of the operands of an arithmetic expression to have the

same number of bits as the signal used to hold the result. The complete code for the four-bit

adder with carry signals is given in Figure A.11. We should note that this is a different way

(it is actually a better way) to describe a four-bit adder, in comparison with the structural

code in Figure A.8. Observe that the statement “S <= Sum(3 DOWNTO 0)” assigns the

lower four bits of the Sum signal, which are the four sum bits, to the output S.

A.7.2 ASSIGNING SIGNAL VALUES USING OTHERS

Assume that we wish to set all bits in the signal S to 0. As we already know, one way to do

so is to write “S <= ''0000'' ;”. If the number of bits in S is large, a more convenient way of

expressing the assignment statement is to use the OTHERS keyword, as in

S <= (OTHERS => '0') ;

ISTUDY

666 A P P E N D I X A ∙ VHDL REFERENCE

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

USE ieee.std logic signed.all ;

ENTITY adder IS

PORT (Cin : IN STD LOGIC ;

X, Y : IN STD LOGIC VECTOR(3 DOWNTO 0) ;

S : OUT STD LOGIC VECTOR(3 DOWNTO 0) ;

Cout : OUT STD LOGIC) ;

END adder ;

ARCHITECTURE Behavior OF adder IS

SIGNAL Sum : STD LOGIC VECTOR(4 DOWNTO 0) ;

BEGIN

Sum <= ('0' & X) + ('0' & Y) + Cin ;

S <= Sum(3 DOWNTO 0) ;

Cout <= Sum(4) ;

END Behavior ;

Figure A.11 Code for a four-bit adder, using arithmetic expressions.

This statement also sets all bits in S to 0. But it has the benefit of working for any number

of bits, not just four. In general, the meaning of (OTHERS => Value) is to set each bit of

the destination operand to Value. An example of code that uses this construct is shown in

Figure A.28.

A.7.3 SELECTED SIGNAL ASSIGNMENT

A selected signal assignment statement is used to set the value of a signal to one of several

alternatives based on a selection criterion. The general form is

[label:] - - an optional label can be placed here

WITH expression SELECT

signal name <= expression WHEN constant value{,

expression WHEN constant value} ;

Example A.10 The code below describes a 2-to-1 multiplexer with Sel as the select input. In a selected

signal assignment, all possible values of the select input, Sel in this case, must be explicitly

listed in the code. The word OTHERS provides an easy way to meet this requirement.

OTHERS represents all possible values not already listed. In this case the other possible

values are 1, Z, −, and so on. Another requirement for the selected signal assignment is that

each WHEN clause must specify a criterion that is mutually exclusive of the criteria in all

other WHEN clauses.

ISTUDY

A.7 CONCURRENT ASSIGNMENT STATEMENTS 667

SIGNAL x1, x2, Sel, f : STD LOGIC ;

⋅
⋅
⋅

WITH Sel SELECT

f <= x1 WHEN '0' ,

x2 WHEN OTHERS ;

A.7.4 CONDITIONAL SIGNAL ASSIGNMENT

Similar to the selected signal assignment, the conditional signal assignment is used to set a

signal to one of several alternative values. The general form is

[label:]

signal name <= expression WHEN logical condition ELSE

{expression WHEN logical condition ELSE}
expression ;

An example is

f <= '1' WHEN x1 = x2 ELSE '0' ;

One key difference in comparison with the selected signal assignment has to be noted. The

logical conditions listed after each WHEN clause need not be mutually exclusive, because

the conditions are given a priority from the first listed to the last listed. This is illustrated by

the example in Figure A.12. The code represents a priority encoder in which the highest-priority

LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

ENTITY priority IS

END priority ;

ARCHITECTURE Behavior OF priority IS

BEGIN

END Behavior;

f <= "01" WHEN req1 = '1' ELSE

 "10" WHEN req2 = '1' ELSE

 "11" WHEN req3 = '1' ELSE

 "00" ;

PORT (req1, req2, req3 : IN STD_LOGIC ;

f : OUT STD_LOGIC_VECTOR(1 DOWNTO 0)) ;

Figure A.12 A priority encoder described with a conditional signal assignment.

ISTUDY

668 A P P E N D I X A ∙ VHDL REFERENCE

generate_label:

FOR index_variable IN range GENERATE

statement ;

{statement ;}

END GENERATE ;

generate_label:

IF expression GENERATE

statement ;

{statement ;}

END GENERATE ;

Figure A.13 The general forms of the GENERATE statement.

request is indicated as the output of the circuit. (Encoder circuits are described in Chapter 4.)

The output, f, of the priority encoder comprises two bits whose values depend on the three

inputs, req1, req2, and req3. If req1 is 1, then f is set to 01. If req2 is 1, then f is set to

10, but only if req1 is not also 1. Hence req1 has higher priority than req2. Similarly, req1

and req2 have higher priority than req3. Thus if req3 is 1, then f is 11, but only if neither

req1 nor req2 is also 1. For this priority encoder, if none of the three inputs is 1, then f is

assigned the value 00.

A.7.5 GENERATE STATEMENT

There are two variants of the GENERATE statement: the FOR GENERATE and the IF

GENERATE. The general form of both types is shown in Figure A.13. The IF GENERATE

statement is seldom needed, but FOR GENERATE is often used in practice. It provides a

convenient way of repeating either a logic expression or a component instantiation. Figure A.14

illustrates its use for component instantiation. The code in the figure is equivalent to the

code given in Figure A.8.

A.8 DEFINING AN ENTITY WITH GENERICS

The code in Figure A.14 represents an adder for four-bit numbers. It is possible to make

this code more general by introducing a parameter in the code that represents the number

of bits in the adder. In VHDL jargon such a parameter is called a GENERIC. Part (a) of

ISTUDY

A.9 SEQUENTIAL ASSIGNMENT STATEMENTS 669

LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

USE work.fulladd_package.all ;

ENTITY adder IS

END adder ;

ARCHITECTURE Structure OF adder IS

SIGNAL C : STD_LOGIC_VECTOR(0 TO 4) ;

BEGIN

C(0) <= Cin ;

Generate_label:

FOR i IN 0 TO 3 GENERATE

bit: fulladd PORT MAP (C(i), X(i), Y(i), S(i), C(i+1)) ;

END GENERATE ;

Cout <= C(4) ;

END Structure ;

PORT (Cin : IN STD_LOGIC ;

 X, Y : IN STD_LOGIC_VECTOR(3 DOWNTO 0) ;

 S : OUT STD_LOGIC_VECTOR(3 DOWNTO 0) ;

 Cout : OUT STD_LOGIC) ;

Figure A.14 An example of component instantiation with FOR GENERATE.

Figure A.15 augments the code from Figure A.14 to describe an n-bit adder entity, named

addern. The GENERIC keyword is used to define the number of bits, n, to be added. This

parameter is used in the code, both in the definitions of the signals X, Y , and S and in the

FOR GENERATE statement that instantiates the n full-adders.

Part (b) of Figure A.15 shows how the adder described with arithmetic assignment

statements in Figure A.11 can be modified to represent an n-bit adder. The Sum signal is

declared to have n + 1 bits. The lower n bits of this signal provide the sum output S of the

adder, and the most-significant bit Sum(n) gives the carry-out.

It is possible to use the GENERIC feature with components that are instantiated as

subcircuits in other code. In Section A.10.9 we give an example that uses the addern entity

as a subcircuit.

A.9 SEQUENTIAL ASSIGNMENT STATEMENTS

The order in which the concurrent assignment statements in an architecture body appear

does not affect the meaning of the code. Many types of logic circuits can be described using

these statements. However, VHDL also provides another type of statements, called sequen-
tial assignment statements, for which the order of the statements in the code can affect the

semantics of the code. There are three variants of the sequential assignment statements: IF

statement, CASE statement, and LOOP statements.

ISTUDY

670 A P P E N D I X A ∙ VHDL REFERENCE

LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

USE work.fulladd_package.all ;

ENTITY addern IS

END addern ;

ARCHITECTURE Structure OF addern IS

SIGNAL C : STD_LOGIC_VECTOR(0 TO n) ;

BEGINBEGIN

END GENERATE ;

Cout <= C(4) ;

END Structure ;

C(0) <= Cin ;

Generate_label:

FOR i IN 0 TO n−1 GENERATE

 stage: fulladd PORT MAP (C(i), X(i), Y(i), S(i), C(i+1)) ;

GENERIC (n : INTEGER := 4) ;

PORT (Cin : IN STD_LOGIC ;

 X, Y : IN STD_LOGIC_VECTOR(n−1 DOWNTO 0) ;

 S : OUT STD_LOGIC_VECTOR(n−1 DOWNTO 0) ;

 Cout : OUT STD_LOGIC) ;

Figure A.15 An n-bit adder (Part a).

LIBRARY ieee ;

USE ieee.std logic 1164.all ;

USE ieee.std logic signed.all ;

ENTITY addern IS

GENERIC (n : INTEGER := 4) ;

PORT (Cin : IN STD LOGIC ;

X, Y : IN STD LOGIC VECTOR(n-1 DOWNTO 0) ;

S : OUT STD LOGIC VECTOR(n-1 DOWNTO 0) ;

Cout : OUT STD LOGIC) ;

END addern ;

ARCHITECTURE Behavior OF addern IS

SIGNAL Sum : STD LOGIC VECTOR(n DOWNTO 0) ;

BEGIN

Sum <= ('0' & X) + ('0' & Y) + Cin ;

S <= Sum(n-1 DOWNTO 0) ;

Cout <= Sum(n) ;

END Behavior ;

Figure A.15 An n-bit adder (Part b).

ISTUDY

A.9 SEQUENTIAL ASSIGNMENT STATEMENTS 671

[process_label:]

PROCESS [(signal name {, signal name})]

 [VARIABLE declarations]

BEGIN

 [WAIT statement]

 [Simple Signal Assignment Statements]

 [Variable Assignment Statements]

 [IF Statements]

 [CASE Statements]

 [LOOP Statements]

END PROCESS [process_label] ;

Figure A.16 The general form of a PROCESS statement.

A.9.1 PROCESS STATEMENT

Since the order in which the sequential statements appear in VHDL code is significant,

whereas the ordering of concurrent statements is not, the sequential statements must be

separated from the concurrent statements. This is accomplished using a PROCESS state-

ment. The PROCESS statement appears inside an architecture body, and it encloses other

statements within it. The IF, CASE, and LOOP statements can appear only inside a pro-

cess. The general form of a PROCESS statement is shown in Figure A.16. Its structure is

somewhat similar to an architecture. VARIABLE data objects can be declared (only) inside

the process. Any variable declared can be used only by the code within the process; we say

that the scope of the variable is limited to the process. To use the value of such a variable

outside the process, the variable’s value can be assigned to a signal. The various elements

of the process are best explained by giving some examples. But first we need to introduce

the IF, CASE, and LOOP statements.

The IF, CASE, and LOOP statements can be used to describe either combinational or

sequential circuits. We will introduce these statements by giving some examples of combi-

national circuits because they are easier to understand. Sequential circuits are described in

Section A.10.

A.9.2 IF STATEMENT

The general form of an IF statement is given in Figure A.17. An example using an IF state-

ment for combinational logic is

IF Sel = '0' THEN

f <= x1 ;

ELSE

f <= x2 ;

END IF ;

ISTUDY

672 A P P E N D I X A ∙ VHDL REFERENCE

IF expression THEN

 statement ;

 {statement ;}

ELSIF expression THEN

 statement ;

 {statement ;}

ELSE

 statement ;

 {statement ;}

END IF ;

Figure A.17 The general form of an IF statement.

This code defines a 2-to-1 multiplexer. Examples of sequential logic described with IF state-

ments are given in Section A.10.

A.9.3 CASE STATEMENT

The general form of a CASE statement is shown in Figure A.18. The constant value can

be a single value, such as 2, a list of values separated by the | pipe, such as 2|3, or a range,

such as 2 to 4. An example of a CASE statement used to describe combinational logic is

CASE Sel IS

WHEN '0' =>
f <= x1 ;

WHEN OTHERS =>
f <= x2 ;

END CASE ;

This code represents the same 2-to-1 multiplexer described in Section A.9.2 using the IF

statement. Similar to a selected signal assignment, all possible valuations of the expression

CASE expression IS

 WHEN constant_value =>

 statement ;

 {statement ;}

 WHEN constant_value =>

 statement ;

 {statement ;}

 WHEN OTHERS =>

 statement ;

 {statement ;}

END CASE ;

Figure A.18 The general form of a CASE statement.

ISTUDY

A.9 SEQUENTIAL ASSIGNMENT STATEMENTS 673

[loop_label:]

FOR variable_name IN range LOOP

 statement ;

 {statement ;}

END LOOP [loop_label] ;

[loop_label:]

WHILE boolean_expression LOOP

 statement ;

 {statement ;}

END LOOP [loop_label] ;

Figure A.19 The general forms of FOR-LOOP and

WHILE-LOOP statements.

used for the WHEN clauses must be listed; hence the OTHERS keyword is needed. Also, all

WHEN clauses in the CASE statement must be mutually exclusive. Examples of sequential

circuits described with the CASE statement are given in Section A.10.10.

A.9.4 LOOP STATEMENTS

VHDL provides two types of loop statements: the FOR-LOOP statement and the WHILE-

LOOP statement. Their general forms are shown in Figure A.19. These statements are used

to repeat one or more sequential assignment statements in much the same way as a FOR

GENERATE statement is used to repeat concurrent assignment statements. Examples of

the FOR-LOOP are given in Section A.9.7.

A.9.5 USING A PROCESS FOR A COMBINATIONAL CIRCUIT

An example of a PROCESS statement is shown in Figure A.20. It includes the code for the

IF statement from Section A.9.2. The signals Sel, x1, and x2 are shown in parentheses after

the PROCESS keyword. They indicate which signals the process depends on and are called

the sensitivity list of the process. For a process that describes combinational logic, as in this

example, the sensitivity list includes all input signals used inside the process.

PROCESS (Sel, x1, x2)

BEGIN

ELSE

END IF ;

END PROCESS ;

IF Sel = '0' THEN

f <= x1 ;

f <= x2 ;

Figure A.20 A PROCESS statement.

ISTUDY

674 A P P E N D I X A ∙ VHDL REFERENCE

In VHDL jargon a process is described as follows. When the value of a signal in the

sensitivity list changes, the process becomes active. Once active, the statements inside the

process are “evaluated” in sequential order. Any signal assignments made in the process

take effect only after all the statements inside the process have been evaluated. We say that

the signal assignments performed inside the process are scheduled and will take effect at

the end of the process.

The process describes a logic circuit and is translated into logic expressions in the same

manner as the concurrent assignment statements in an architecture body. The concept of the

process statements being evaluated in sequence provides a convenient way of understanding

the semantics of the code inside a process. In particular, a key concept is that if multiple

assignments are made to a signal inside a process, only the last one to be evaluated has any

effect. This is illustrated in the next example.

A.9.6 STATEMENT ORDERING

The IF statement in Figure A.20 describes a multiplexer that assigns either of two inputs,

x1 or x2, to the output f. Another way of describing the multiplexer with an IF statement is

shown in Figure A.21. The statement “f<= x1 ;” is evaluated first. However, the signal f may

not actually be changed to the value of x1, because there may be a subsequent assignment

to f in the code inside the process statement. At this point in the process, x1 represents the

default value for f if no other assignment to f is evaluated. If we assume that Sel = 1, then

the statement “f <= x2 ;” will be evaluated. The effect of this second assignment to f is to

override the default assignment. Hence the result of the process is that f is set to the value

x2 when Sel = 1. If we assume that Sel = 0, then the IF condition fails and f is assigned its

default value, x1.

This example illustrates the effect of the ordering of statements inside a process. If the

two statements were reversed in order, then the IF statement would be evaluated first and

the statement “f <= x1 ;” would be evaluated last. Hence the process would always result

in f being set to the value of x1.

Implied Memory
Consider the process in Figure A.22. It is the same as the process in Figure A.21 except

that the default assignment statement “f <= x1 ;” has been removed. Because the process

does not specify a default value for f, and there is no ELSE clause in the IF statement, the

meaning of the process is that f should retain its present value when the IF condition is not

PROCESS (Sel, x1, x2)

BEGIN

IF Sel = 1 THEN

END IF ;

END PROCESS ;

f <= x1 ;

f <= x2 ;

Figure A.21 An example illustrating the ordering

of statements within a PROCESS.

ISTUDY

A.9 SEQUENTIAL ASSIGNMENT STATEMENTS 675

PROCESS (Sel, x2)

BEGIN

IF Sel = 1 THEN

f <= x2 ;

END IF ;

END PROCESS ;

Figure A.22 An example of implied memory.

satisfied. The following expression is generated by the VHDL compiler for this process

f = Sel ⋅ x2 + Sel ⋅ f

Hence when Sel= 0, the value of x2 is “remembered” at the output f. In VHDL jargon this is

called implied memory or implicit memory. Although it is rarely useful for combinational

circuits, we will show shortly that implied memory is the key concept used to describe

sequential circuits.

A.9.7 USING A VARIABLE IN A PROCESS

We mentioned earlier that VHDL provides VARIABLE data objects, in addition to SIGNAL

data objects. Unlike a signal, a variable data object does not represent a wire in a cir-

cuit. Therefore, a variable can be used to describe the functionality of a logic circuit in

ways that are not possible using a signal. This concept is illustrated in Figure A.23. The

LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

END numbits ;

ARCHITECTURE Behavior OF numbits IS

BEGIN

PROCESS (X) - - count the number of bits in X with the value 1

BEGIN

Count <= 0 ; - - the 0 with no quotes is a decimal number

FOR i IN 1 TO 3 LOOP

IF X(i) = '1' THEN

Count <= Count + 1 ;

END IF ;

END LOOP ;

END PROCESS ;

END Behavior ;

ENTITY numbits IS

PORT (X : IN STD_LOGIC_VECTOR(1 TO 3) ;

 Count : BUFFER INTEGER RANGE 0 TO 3) ;

Figure A.23 A FOR-LOOP that does not represent a sensible circuit.

ISTUDY

676 A P P E N D I X A ∙ VHDL REFERENCE

intent of the code is to describe a logic circuit that counts the number of bits in the three-bit

signal X that are equal to 1. The count is output using the signal called Count, which is a

two-bit unsigned integer. Notice that Count is declared with the mode Buffer because it is

used in the architecture body on both the left and right sides of an assignment operator.

Table A.2 explains the meaning of the Buffer mode.

Inside the process, Count is initially set to 0. No quotes are used for the number 0 in this

case, because VHDL allows a decimal number, which we said in Section A.2.2 is denoted

with no quotes, to be assigned to an INTEGER signal. The code gives a FOR-LOOP with

the loop index variable i. For the values of i from 1 to 3, the IF statement inside the

FOR-LOOP checks the value of bit X(i); if it is 1, then the value of Count is incremented.

The code given in the figure is legal VHDL code and can be compiled without generating

any errors. However, it will not work as intended, and it does not represent a sensible logic

circuit.

There are two reasons why the code in Figure A.23 will not work as intended. First,

there are multiple assignment statements for the signal Count within the process. As ex-

plained for the previous example, only the last of these assignments will have any effect.

Hence if any bit in X is 1, then the statement “Count <= '0' ;” will not have the desired

effect of initializing Count to 0, because it will be overridden by the assignment statement

in the FOR-LOOP. Also, the FOR-LOOP will not work as desired, because each iteration

for which X (1) is 1 will override the effect of the previous iteration. The second reason why

the code is not sensible is that the statement “Count <= Count + '1' ;” describes a circuit

with feedback. Since the circuit is combinational, such feedback will result in oscillations

and the circuit will not be stable.

The desired behavior of the VHDL code in Figure A.23 can be achieved using a vari-

able, instead of a signal. This is illustrated in Figure A.24, in which the variable Tmp is

used instead of the signal Count inside the process. The value of Tmp is assigned to Count
at the end of the process. Observe that the assignment statements to Tmp are indicated with

the := operator, as opposed to the <= operator. The := is called the variable assignment
operator. Unlike <=, it does not result in the assignment being scheduled until the end of

the process. The variable assignment takes place immediately. This immediate assignment

solves the first of the two problems with the code in Figure A.23. The second problem is also

solved by using a variable instead of a signal. Because the variable does not represent a wire

in a circuit, the FOR-LOOP need not be literally interpreted as a circuit with feedback. By

using the variable, the FOR-LOOP represents only a desired behavior, or functionality, of

the circuit. When the code is translated, the VHDL compiler will generate a combinational

circuit that implements the functionality expressed in the FOR-LOOP.

When the code in Figure A.24 is translated by the VHDL compiler, it produces the

circuit with 2 two-bit adders shown in Figure A.25. It is possible to see how this circuit

corresponds to the FOR-LOOP in the code. The result of the first iteration of the loop

is that Count is set to the value of X (1). The second iteration then adds X (1) to X (2).

This is realized by the top adder in the figure. The third iteration adds X (3) to the sum

produced from the second iteration. This corresponds to the bottom adder. When this circuit

is optimized by the logic synthesis algorithms, the resulting expressions for Count are

Count(1) = X(1)X(2) + X(1)X(3) + X(2)X(3)

Count(0) = X(1) ⊕ X(2) ⊕ X(3)

ISTUDY

A.9 SEQUENTIAL ASSIGNMENT STATEMENTS 677

LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

ENTITY Numbits IS

PORT (X : IN STD_LOGIC_VECTOR(1 TO 3) ;

Count : OUT INTEGER RANGE 0 TO 3) ;

END Numbits ;

ARCHITECTURE Behavior OF Numbits IS

BEGIN

PROCESS (X) - - count the number of bits in X equal to 1

VARIABLE Tmp : INTEGER ;

BEGIN

Tmp := 0 ;

FOR i IN 1 TO 3 LOOP

IF X(i) = '1' THEN

Tmp := Tmp + 1 ;

END IF ;

END LOOP ;

Count <= Tmp ;

END PROCESS ;

END Behavior ;

Figure A.24 The FOR-LOOP from Figure A.23 using a variable.

x1 x0 y1 y0

x1 x0 y1 y0

s1 s0

s1 s0

0

Two-bit adder

X(2) 0 X(1)

Two-bit adder

0 X(3)

Count (0)Count (1)

Figure A.25 The circuit generated from the code in

Figure A.24.

ISTUDY

678 A P P E N D I X A ∙ VHDL REFERENCE

LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

END NANDn ;

ARCHITECTURE Behavior OF NANDn IS

BEGIN

PROCESS (X)

VARIABLE Tmp : STD_LOGIC ;

BEGIN

Tmp := X(1) ;

AND_bits: FOR i IN 2 TO n LOOP

Tmp := Tmp AND X(i) ;

END LOOP AND_bits ;

f <= NOT Tmp ;

END PROCESS ;

END Behavior ;

ENTITY NANDn IS

GENERIC (n : INTEGER := 4) ;

PORT (X : IN STD_LOGIC_VECTOR(1 TO n) ;

 f : OUT STD_LOGIC) ;

Figure A.26 Using a variable to describe an n-input NAND gate.

These expressions represent a full-adder circuit, with Count(0) as the sum output and Count(1)

as the carry-out. It is interesting to note that even though the VHDL code describes the

desired behavior of the circuit in an abstract way, using a FOR-LOOP, in this example the

logic synthesis algorithms produce the most efficient circuit, which is the full-adder. As we

said at the beginning of this appendix and in Section 2.10, the style of code in Figure A.24

should be avoided, because it is often difficult for the designer to envisage what logic circuit

the code represents.

As another example of the use of a variable, Figure A.26 gives the code for an n-bit

NAND gate entity, named NANDn. The number of inputs to the NAND gate is set by the

GENERIC parameter n. The inputs are the n-bit signal X, and the output is f . The variable

Tmp is defined in the architecture and originally set to the value of the input signal X (1). In

the FOR LOOP, Tmp is ANDed successively with input signals X(2) to X(n). Since Tmp is a

variable data object, assignments to it take effect immediately; they are not scheduled to take

effect at the end of the process. The complement of Tmp is assigned to f , thus completing

the description of the n-input NAND operation.

Figure A.27 shows the same code given in Figure A.26 but with the data object Tmp
defined as a signal, instead of as a variable. This code gives a wrong result, because only the

last statement included in the process has any effect on Tmp. The code results in

Tmp = Tmp ⋅X(4), as determined by the last iteration of the FOR LOOP. Also, since Tmp is

never initialized, its value is unknown. Hence the value of the output f = Tmp is unknown.

ISTUDY

A.9 SEQUENTIAL ASSIGNMENT STATEMENTS 679

LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

ENTITY NANDn IS

GENERIC (n : INTEGER := 4) ;

PORT (X : IN STD_LOGIC_VECTOR(1 TO n) ;

 f : OUT STD_LOGIC) ;

END NANDn ;

ARCHITECTURE Behavior OF NANDn IS

SIGNAL Tmp : STD_LOGIC ;

BEGIN

PROCESS (X)

BEGIN

Tmp <= X(1) ;

AND_bits: FOR i IN 2 TO n LOOP

Tmp <= Tmp AND X(i) ;

END LOOP AND_bits ;

f <= NOT Tmp ;

END PROCESS ;

END Behavior ;

Figure A.27 The code from Figure A.26 using a signal.

Figure A.28 shows one way to describe the n-input NAND gate using signals. Here

Tmp is defined as an n-bit signal, which is set to contain n 1s using the (OTHERS => '1')

construct. The conditional signal assignment specifies that f is 0 only if all bits in the input

X are 1, thus describing the NAND operation.

LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

END NANDn ;

ARCHITECTURE Behavior OF NANDn IS

SIGNAL Tmp : STD_LOGIC_VECTOR(1 TO n) ;

BEGIN

END Behavior ;

Tmp <= (OTHERS => '1') ;

f <= '0' WHEN X = Tmp ELSE '1' ;

ENTITY NANDn IS

GENERIC (n : INTEGER := 4) ;

PORT (X : IN STD_LOGIC_VECTOR(1 TO n) ;

 f : OUT STD_LOGIC) ;

Figure A.28 Using a signal to describe an n-input NAND gate.

ISTUDY

680 A P P E N D I X A ∙ VHDL REFERENCE

A final example of variables used in a sequential circuit is given in Section A.10.7. In

general, using both variables and signals in VHDL code can lead to confusion because they

imply different semantics. Since variables do not necessarily represent wires in a circuit,

the meaning of code that uses variables is sometimes ill defined. To avoid confusion, in

this book we use variables only for the loop indices in FOR GENERATE and FOR LOOP

statements. Except for similar purposes, the reader should avoid using variables because

they are not needed for describing logic circuits.

A.10 SEQUENTIAL CIRCUITS

Although combinational circuits can be described using either concurrent or sequential

assignment statements, sequential circuits can be described only with sequential assignment

statements. We now give some representative examples of sequential circuits.

A.10.1 A GATED D LATCH

Figure A.29 gives the code for a gated D latch. The process sensitivity list includes both

the latch’s data input, D, and clock, clk. Hence whenever a change occurs in the value of

either D or clk, the process becomes active. The IF statement specifies that Q should be set

to the value of D whenever the clock is 1. There is no ELSE clause in the IF statement. As

we explained for Figure A.22, this implies that Q should retain its present value when the

IF condition is not met.

LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

ENTITY latch IS

END latch ;

ARCHITECTURE Behavior OF latch IS

BEGIN

PROCESS (D, clk)

BEGIN

IF clk = '1' THEN

Q <= D ;

END IF ;

END PROCESS ;

END Behavior ;

PORT (D, clk : IN STD_LOGIC ;

 Q : OUT STD_LOGIC) ;

Figure A.29 A gated D Latch.

ISTUDY

A.10 SEQUENTIAL CIRCUITS 681

LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

END flipflop ;

ARCHITECTURE Behavior OF flipflop IS

BEGIN

PROCESS (Clock)

BEGIN

IF Clock’EVENT AND Clock = '1' THEN

Q <= D ;

END IF ;

END PROCESS ;

END Behavior ;

ENTITY flipflop IS

 PORT (D, Clock : IN STD_LOGIC ;

 Q : OUT STD_LOGIC) ;

Figure A.30 D flip-flop.

A.10.2 D FLIP-FLOP

Figure A.30 gives a process that is slightly different from the one in Figure A.29. The

sensitivity list includes only the Clock signal, which means that the process is active only

when the value of Clock changes. The condition in the IF statement looks unusual. The

syntax Clock’EVENT represents a change in the value of the clock signal. In VHDL

jargon ’EVENT is called an attribute, and combining ’EVENT with a signal name, such as

Clock, yields a logical condition. The combination in the IF statement of the two conditions

Clock’EVENT and Clock = '1' specifies that Q should be assigned the value of D when

“a change occurs in the value of Clock, and Clock is now 1”. This describes a low-to-high

transition of the clock signal; hence the code describes a positive-edge-triggered D flip-flop.

The std logic 1164 packagedefines thetwofunctionsnamed rising edge and falling edge.

They can be used as a short-form notation for the condition that checks for the occurrence of

a clock edge. In Figure A.30 we could replace the line “IF Clock’EVENT AND Clock =
'1' THEN” with the equivalent line “IF RISING EDGE(Clock) THEN”. We do not use

rising edge or falling edge in this book; they are mentioned for completeness.

A.10.3 USING A WAIT UNTIL STATEMENT

The process in Figure A.31 uses a different syntax to describe a D flip-flop. Synchronization

with the clock edge is specified by using the statement “WAIT UNTIL Clock’EVENT AND

Clock = '1' ;”. A process that uses a WAIT UNTIL statement is a special case because the

sensitivity list is omitted. Use of this WAIT UNTIL statement implicitly specifies that the

sensitivity list includes only Clock. For our purposes, which is using VHDL for synthesis

of circuits, a process can include a WAIT UNTIL statement only if it is the first statement

in the process.

ISTUDY

682 A P P E N D I X A ∙ VHDL REFERENCE

LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

END flipflop ;

ARCHITECTURE Behavior OF flipflop IS

BEGIN

PROCESS

BEGIN

WAIT UNTIL Clock’EVENT AND Clock = '1' ;

Q <= D ;

END PROCESS ;

END Behavior ;

ENTITY flipflop IS

PORT (D, Clock : IN STD_LOGIC ;

 Q : OUT STD_LOGIC) ;

Figure A.31 Equivalent code to Figure A.30, using a WAIT UNTIL

statement.

The WAIT UNTIL statement above can be written more simply as

WAIT UNTIL Clock = '1' ;

which means “wait for the next positive edge of the Clock signal”. But, since some CAD

synthesis tools require the inclusion of the ’EVENT attribute, we include the attribute in

our examples.

As seen in Figures A.30 and A.31, both IF and WAIT UNTIL statements can be used

to describe flip-flops. If a process only defines flip-flops, then it makes no difference which

construct is used. However, in practical designs a process often includes many statements.

If one or more of these statements specify a combinational subcircuit, then it is necessary to

use IF statements to infer flip-flops where desired. If the WAIT UNTIL statement is used,

which has to be the first statement in the process, then there will be flip-flops inferred for

all statements in the process. For this reason, designers prefer using the IF statement.

A.10.4 A FLIP-FLOP WITH ASYNCHRONOUS RESET

Figure A.32 gives a process that is similar to the one in Figure A.30. It describes a D flip-

flop with an asynchronous reset, or clear, input. The reset signal has the name Resetn. When

Resetn = 0, the flip-flop output Q is set to 0. Appending the letter n to a signal name is a

widely used convention to denote an active-low signal.

A.10.5 SYNCHRONOUS RESET

Figure A.33 shows how a flip-flop with a synchronous reset input can be described by using

the IF statement. Figure A.34 presents a specification based on the WAIT UNTIL statement.

ISTUDY

A.10 SEQUENTIAL CIRCUITS 683

LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

ARCHITECTURE Behavior OF flipflop IS

BEGIN

PROCESS (Resetn, Clock)

BEGIN

IF Resetn = '0' THEN

Q <= '0' ;

ELSIF Clock’EVENT AND Clock = '1' THEN

Q <= D ;

END IF ;

END PROCESS ;

END Behavior ;

END flipflop ;

ENTITY flipflop IS

PORT (D, Resetn, Clock : IN STD_LOGIC ;

 Q : OUT STD_LOGIC) ;

Figure A.32 D flip-flop with asynchronous reset.

LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

END flipflop ;

ARCHITECTURE Behavior OF flipflop IS

BEGIN

PROCESS (Resetn, Clock)

BEGIN

IF Clock’EVENT AND Clock = '1' THEN

 IF Resetn = '0' THEN

Q <= '0' ;

ELSE

Q <= D ;

END IF ;

END IF ;

END PROCESS ;

END Behavior ;

ENTITY flipflop IS

PORT (D, Resetn, Clock : IN STD_LOGIC ;

 Q : OUT STD_LOGIC) ;

Figure A.33 D flip-flop with synchronous reset, using an IF statement.

ISTUDY

684 A P P E N D I X A ∙ VHDL REFERENCE

LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

ENTITY flipflop IS

END flipflop ;

ARCHITECTURE Behavior OF flipflop IS

BEGIN

PROCESS

BEGIN

ELSE

END IF ;

END PROCESS ;

END Behavior ;

WAIT UNTIL Clock’EVENT AND Clock = '1' ;

IF Resetn = '0' THEN

Q <= '0' ;

Q <= D ;

PORT (D, Resetn, Clock : IN STD_LOGIC ;

Q : OUT STD_LOGIC) ;

Figure A.34 D flip-flop with synchronous reset, using a WAIT UNTIL

statement.

A.10.6 REGISTERS

One possible approach for describing a multibit register is to create an entity that instantiates

multiple flip-flops. A more convenient method is illustrated in Figure A.35. It gives the same

code shown in Figure A.32 but using the four-bit STD LOGIC VECTOR input D and the

four-bit output Q. The code describes a four-bit register with asynchronous clear.

Figure A.36 gives the code for an entity named regn. It shows how the code in Figure A.35

can be extended to represent an n-bit register. The number of flip-flops is set by the generic

parameter n.

The code in Figure A.37 shows how an enable input can be added to the n-bit register

from Figure A.36. When the active clock edge occurs, the flip-flops in the register cannot

change their stored values if the enable E is 0. If E = 1, the register responds to the active

clock edge in the normal way.

ISTUDY

A.10 SEQUENTIAL CIRCUITS 685

LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

ENTITY reg4 IS

END reg4 ;

ARCHITECTURE Behavior OF reg4 IS

BEGIN

PROCESS (Resetn, Clock)

BEGIN

IF Resetn = '0' THEN

Q <= "0000" ;

ELSIF Clock’EVENT AND Clock = '1' THEN

Q <= D ;

END IF ;

END PROCESS ;

END Behavior ;

PORT (D : IN STD_LOGIC_VECTOR(3 DOWNTO 0) ;

 Resetn, Clock : IN STD_LOGIC ;

 Q : OUT STD_LOGIC_VECTOR(3 DOWNTO 0)) ;

Figure A.35 Code for a four-bit register with asynchronous clear.

LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

END regn ;

ARCHITECTURE Behavior OF regn IS

BEGIN

PROCESS (Resetn, Clock)

BEGIN

IF Resetn = '0' THEN

Q <= (OTHERS => '0') ;

Q <= D ;

ELSIF Clock’EVENT AND Clock = '1' THEN

END IF ;

END PROCESS ;

END Behavior ;

ENTITY regn IS

GENERIC (n : INTEGER := 4) ;

PORT (D : IN STD_LOGIC_VECTOR(n−1 DOWNTO 0) ;

 Resetn, Clock : IN STD_LOGIC ;

 Q : OUT STD_LOGIC_VECTOR(n−1 DOWNTO 0)) ;

Figure A.36 Code for an n-bit register with asynchronous clear.

ISTUDY

686 A P P E N D I X A ∙ VHDL REFERENCE

LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

END regne ;

ARCHITECTURE Behavior OF regne IS

BEGIN

PROCESS (Resetn, Clock)

BEGIN

IF Resetn = '0' THEN

Q <= (OTHERS => '0') ;

ELSIF Clock’EVENT AND Clock = '1' THEN

IF E = '1' THEN

Q <= D ;

END IF ;

END IF ;

END PROCESS ;

END Behavior ;

ENTITY regne IS

GENERIC (n : INTEGER := 4) ;

PORT (D : IN STD_LOGIC_VECTOR(n−1 DOWNTO 0) ;

 Resetn : IN STD_LOGIC ;

 E, Clock : IN STD_LOGIC ;

 Q : OUT STD_LOGIC_VECTOR(n−1 DOWNTO 0)) ;

Figure A.37 VHDL code for an n-bit register with an enable input.

A.10.7 SHIFT REGISTERS

An example of code that defines a four-bit shift register is shown in Figure A.38. The lines of

code are numbered for ease of reference. The shift register has a serial input, w, and parallel

outputs, Q. The right-most bit in the register is Q(4), and the left-most bit is Q(1); shifting is

performed in the right-to-left direction. The architecture declares the signal Sreg, which is

used to describe the shift operation. All assignments to Sreg are synchronized to the clock

edge by the IF condition; hence Sreg represents the outputs of flip-flops. The statement in

line 13 specifies that Sreg(4) is assigned the value of w. As we explained previously, this

assignment does not take effect immediately but is scheduled to occur at the end of the

process. In line 14 the current value of Sreg(4), before it is shifted as a result of line 13, is

assigned to Sreg(3). Lines 15 and 16 complete the shift operation. They assign the current

values of Sreg(3) and Sreg(2), before they are changed as a result of lines 14 and 15, to

Sreg(2) and Sreg(1), respectively. Finally, Sreg is assigned to the Q outputs.

The key point that has to be appreciated in the code in Figure A.38 is that the assign-

ment statements in lines 13 to 16 do not take effect until the end of the process. Hence all

ISTUDY

A.10 SEQUENTIAL CIRCUITS 687

1 LIBRARY ieee ;

2 USE ieee.std_logic_1164.all ;

3 ENTITY shift4 IS

4 PORT (w, Clock : IN STD_LOGIC ;

5 Q : OUT STD_LOGIC_VECTOR(1 TO 4)) ;

6 END shift4 ;

7 ARCHITECTURE Behavior OF shift4 IS

8 SIGNAL Sreg : STD_LOGIC_VECTOR(1 TO 4) ;

9 BEGIN

10 PROCESS (Clock)

11 BEGIN

12 IF Clock’EVENT AND Clock = '1' THEN

13 Sreg(4) <= w ;

14 Sreg(3) <= Sreg(4) ;

15 Sreg(2) <= Sreg(3) ;

16 Sreg(1) <= Sreg(2) ;

17 END IF ;

18 END PROCESS ;

19 Q <= Sreg ;

20 END Behavior ;

Figure A.38 Code for a four-bit shift register.

flip-flops change their values at the same time, as required in the shift register. We could

write the statements in lines 13 to 16 in any order without changing the meaning of

the code.

In Section A.9.7 we introduced variables and showed how they differ from signals.

As another example of the semantics involved using variables, Figure A.39 gives the code

from Figure A.38 but with Sreg declared as a variable, instead of as a signal. The statement

in line 13 assigns the value of w to Sreg (4). Since Sreg is a variable, the assignment takes

effect immediately. In line 14 the value of Sreg (4), which has already been changed to w,

is assigned to Sreg (3). Hence line 14 results in Sreg (3) = w. Similarly, lines 15 and 16 set

Sreg (2) and Sreg (1) to the value of w. The code does not describe the desired shift register,

but rather loads all flip-flops with the value on the input w.

For the code in Figure A.39 to correctly describe a shift register, the ordering of lines

13 to 16 has to be reversed. Then the first assignment sets Sreg (1) to the value of Sreg (2),

the second sets Sreg (2) to the value of Sreg (3), and so on. Each successive assignment is

not affected by the one that precedes it; hence the semantics of using variables does not

cause a problem. As we said in Section A.9.7, it can be confusing to use both signals and

variables at the same time because they imply different semantics.

ISTUDY

688 A P P E N D I X A ∙ VHDL REFERENCE

1 LIBRARY ieee ;

2 USE ieee.std_logic_1164.all ;

3 ENTITY shift4 IS

4 PORT (w, Clock : IN STD_LOGIC ;

5 Q : OUT STD_LOGIC_VECTOR(1 TO 4)) ;

6 END shift4 ;

7 ARCHITECTURE Behavior OF shift4 IS

8 BEGIN

9 PROCESS (Clock)

10 VARIABLE Sreg : STD_LOGIC_VECTOR(1 TO 4) ;

11 BEGIN

12 IF Clock’EVENT AND Clock = '1' THEN

13 Sreg(4) := w ;

14 Sreg(3) := Sreg(4) ;

15 Sreg(2) := Sreg(3) ;

16 Sreg(1) := Sreg(2) ;

17 END IF ;

18 Q <= Sreg ;

19 END PROCESS ;

20 END Behavior ;

Figure A.39 The code from Figure A.38, using a variable.

A.10.8 COUNTERS

Figure A.40 shows the code for a four-bit counter with an asynchronous reset input. The

counter also has an enable input. On the positive clock edge, if the enable E is 1, the count

is incremented. If E = 0, the counter holds its current value.

A.10.9 USING SUBCIRCUITS WITH GENERIC PARAMETERS

We have shown several examples of VHDL entities that include generic parameters. When

these subcircuits are used as components in other code, the generic parameters can be set to

whatever values are needed. To give an example of component instantiation using generics,

ISTUDY

A.10 SEQUENTIAL CIRCUITS 689

LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

USE ieee.std_logic_unsigned.all ;

ENTITY count4 IS

END count4 ;

BEGIN

PROCESS (Clock, Resetn)

BEGIN

IF Resetn = '0' THEN

Count <= "0000" ;

ELSIF (Clock’EVENT AND Clock = '1') THEN

IF E = '1' THEN

Count <= Count + 1 ;

END IF ;

END IF ;

END PROCESS ;

END Behavior ;

Q <= Count ;

ARCHITECTURE Behavior OF count4 IS

 SIGNAL Count : STD_LOGIC_VECTOR (3 DOWNTO 0) ;

PORT (Resetn : IN STD_LOGIC ;

 E, Clock : IN STD_LOGIC ;

 Q : OUT STD_LOGIC_VECTOR (3 DOWNTO 0)) ;

Figure A.40 An example of a counter.

consider the circuit shown in Figure A.41. The circuit adds the binary number represented

by the k-bit input X to itself a number of times. Such a circuit is often called an accumula-
tor. To store the result of each addition operation, the circuit includes a k-bit register. The

register has an asynchronous reset input, Resetn. It also has an enable input, E, which is

controlled by a four-bit counter. The counter has an asynchronous clear input and a count

enable input. The circuit operates by first clearing all bits in the register and counter to 0.

Then in each clock cycle, the counter is incremented, and the sum outputs from the adder

are stored in the register. When the counter reaches the value 1111, the enable inputs on

both the register and counter are set to 0 by the NAND gate. Hence the circuit remains in

this state until it is reset again. The final value stored in the register is equal to 15X.

We can represent the accumulator circuit using several subcircuits described in this

appendix: addern (Figure A.15), NANDn (Figure A.28), regne (Figure A.37), and count4

ISTUDY

690 A P P E N D I X A ∙ VHDL REFERENCE

+

E

Resetn Counter

k
Sum

X

k

Result

E

Resetn Register

ClockResetn

Figure A.41 The accumulator circuit.

(Figure A.40). We placed the component declaration statements for all of these subcircuits

in one package, named components, which is shown in Figure A.42.

Complete code for the accumulator is given in Figure A.43. It uses the generic param-

eter k to represent the number of bits in the input X. Using this parameter in the code makes

it easy to change the bit-width at a later time if desired. The architecture defines the signal

Sum to represent the outputs of the adder; for simplicity, we ignore the possibility of arith-

metic overflow and assume that the sum can be represented using k bits. The four-bit signal

C represents the outputs from the counter. The Stop signal is connected to the enable inputs

on the register and counter.

The statement labeled adder instantiates the addern subcircuit. The GENERIC MAP

keywords are used to specify the value of the adder’s generic parameter, n. The syntax

(n => k) sets the number of bits in the adder to k. We do not need the carry-in port on

the adder, but a signal must be connected to it. The signal Zero bit, which is set to '0' in

the code, is used as a placeholder for the carry-in port (some versions of VHDL compilers

do not permit a constant value, such as '1' , to be associated directly with a port; hence we

define a signal for this purpose). One of the k-bit data inputs to the adder is the primary

input X, and the other input to the adder is the Q output of the register, which is named

Result. The sum output from the adder is named Sum, and the carry-out, which is not used

in the circuit, is named Cout.

ISTUDY

A.10 SEQUENTIAL CIRCUITS 691

LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

PACKAGE components IS

COMPONENT addern - - n-bit adder

 GENERIC (n : INTEGER := 4) ;

 PORT (Cin : IN STD_LOGIC ;

 X, Y : IN STD_LOGIC_VECTOR(n−1 DOWNTO 0) ;

 S : OUT STD_LOGIC_VECTOR(n−1 DOWNTO 0) ;

 Cout : OUT STD_LOGIC) ;

END COMPONENT ;

COMPONENT regne - - n-bit register with enable

 GENERIC (n : INTEGER := 4) ;

 PORT (D : IN STD_LOGIC_VECTOR(n−1 DOWNTO 0) ;

 Resetn : IN STD_LOGIC ;

 E, Clock : IN STD_LOGIC ;

 Q : OUT STD_LOGIC_VECTOR(n−1 DOWNTO 0)) ;

END COMPONENT ;

COMPONENT count4 - - 4-bit counter with enable

 PORT (Resetn : IN STD_LOGIC ;

 E, Clock : IN STD_LOGIC ;

 Q : OUT STD_LOGIC_VECTOR (3 DOWNTO 0)) ;

END COMPONENT ;

END components ;

COMPONENT NANDn - - n-bit AND gate

 GENERIC (n : INTEGER := 4) ;

 PORT (X : IN STD_LOGIC_VECTOR(1 TO n) ;

 f : OUT STD_LOGIC) ;

END COMPONENT ;

Figure A.42 Component declarations for the accumulator circuit.

The regne subcircuit is instantiated in the statement labeled reg. GENERIC MAP is

used to set the number of bits in the register to k. The k-bit register input is provided by the

Sum output from the adder. The register’s output is named Result; this signal represents the

output of the accumulator circuit. It has the mode BUFFER in the entity declaration. This

is required in the VHDL syntax for the signal to be connected to a port on an instantiated

component.

ISTUDY

692 A P P E N D I X A ∙ VHDL REFERENCE

LIBRARLIBRARY ieee ;

USE ieee.std_logic_1164.all ;

USE work.components.all ;

END accum ;

BEGIN

Zero_bit <= '0' ;

adder: addern

GENERIC MAP (n => k)

PORT MAP (Zero_bit, X, Result, Sum, Cout) ;

reg: regne

Counter: count4

PORT MAP (Clock, Resetn, Stop, C) ;

NANDgate: NANDn

PORT MAP (C, Stop) ;

END Structure ;

GENERIC MAP (n => k)

PORT MAP (Sum, Resetn, Stop, Clock, Result) ;

ARCHITECTURE Structure OF accum IS

 SIGNAL Sum : STD_LOGIC_VECTOR(k–1 DOWNTO 0) ;

 SIGNAL C : STD_LOGIC_VECTOR(3 DOWNTO 0) ;

 SIGNAL Zero_bit, Cout, Stop : STD_LOGIC ;

ENTITY accum IS

 GENERIC (k : INTEGER := 8) ;

 PORT (Resetn, Clock : IN STD_LOGIC ;

 X : IN STD_LOGIC_VECTOR(k–1 DOWNTO 0) ;

 Result : BUFFER STD_LOGIC_VECTOR(k–1 DOWNTO 0)) ;

Figure A.43 Code for the accumulator circuit.

The count4 and NANDn components are instantiated in the statements labeled Counter
and NANDgate. We do not have to use the GENERIC MAP keyword for NANDn, because

the default value of its generic parameter is 4, which is the value needed in this application.

A.10.10 A MOORE-TYPE FINITE STATE MACHINE

Figure A.44 shows the state diagram of a simple Moore machine. The code for this ma-

chine is shown in Figure A.45. The signal named y represents the state of the machine. It is

declared with an enumerated type, State type, that has the three possible values A, B, and C.

ISTUDY

A.10 SEQUENTIAL CIRCUITS 693

Reset

B/z = 0

C /z = 1

A /z = 0

w = 0

w = 0

w = 0

w = 1

w = 1

w = 1

Figure A.44 State diagram of a simple Moore-type FSM.

When the code is compiled, the VHDL compiler automatically performs a state assignment

to select appropriate bit patterns for the three states. The behavior of the machine is defined

by the process with the sensitivity list that comprises the reset and clock signals.

The VHDL code includes an asynchronous reset input that puts the machine in state A.

The state table for the machine is defined using a CASE statement. Each WHEN

clause corresponds to a present state of the machine, and the IF statement inside the WHEN

clause specifies the next state to be reached after the next positive edge of the clock signal.

Since the machine is of the Moore type, the output z can be defined as a separate concurrent

assignment statement that depends only on the present state of the machine. Alternatively,

the appropriate value for z could have been specified within each WHEN clause of the

CASE statement.

An alternative way to describe a Moore-type finite state machine is given in the archi-

tecture in Figure A.46. Two signals are used to describe how the machine moves from one

state to another state. The signal y present represents the outputs of the state flip-flops, and

the signal y next represents the inputs to the flip-flops. The code has two processes. The top

process describes a combinational circuit. It uses a CASE statement to specify the values

that y next should have for each value of y present. The other process represents a sequen-

tial circuit, which specifies that y present is assigned the value of y next on the positive

clock edge. The process also specifies that y present should take the value A when Resetn
is 0, which provides the asynchronous reset.

ISTUDY

694 A P P E N D I X A ∙ VHDL REFERENCE

LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

END moore ;

ARCHITECTURE Behavior OF moore IS

 TYPE State_type IS (A, B, C) ;

 SIGNAL y : State_type ;

BEGIN

PROCESS (Resetn, Clock)

BEGIN

IF Resetn = '0' THEN

CASE y IS

WHEN A =>

ELSE

ELSE

ELSE

END IF ;

END IF ;

END IF ;

END CASE ;

END PROCESS ;

END Behavior ;

END IF ;

WHEN B =>

WHEN C =>

IF w = '0' THEN

IF w = '0' THEN

IF w = '0' THEN

y <= A ;

y <= A ;

y <= A ;

y <= C ;

z <= '1' WHEN y = C ELSE '0' ;

y <= C ;

y <= B ;

y <= A ;

ELSIF (Clock’EVENT AND Clock = '1') THEN

ENTITY moore IS

 PORT (Clock : IN STD_LOGIC ;

 w : IN STD_LOGIC ;

 Resetn : IN STD_LOGIC ;

 z : OUT STD_LOGIC) ;

Figure A.45 An example of a Moore-type finite state machine.

ISTUDY

A.10 SEQUENTIAL CIRCUITS 695

ARCHITECTURE Behavior OF moore IS

 TYPE State_type IS (A, B, C) ;

 SIGNAL y_present, y_next : State_type ;

BEGIN

PROCESS (w, y_present)

BEGIN

CASE y_present IS

y_next <= A ;

y_next <= B ;

y_next <= C ;

y_next <= C ;

y_next <= A ;

y_next <= A ;

WHEN A =>

IF w = '0' THEN

BEGIN

IF Resetn = '0' THEN

IF w = '0' THEN

IF w = '0' THEN

WHEN B =>

WHEN C =>

ELSE

ELSE

ELSIF (Clock’EVENT AND Clock = '1') THEN

ELSE

END IF ;

END IF ;

END IF ;

PROCESS (Clock, Resetn)

END CASE ;

END PROCESS ;

END PROCESS ;

END Behavior ;

END IF ;

y_present <= y_next ;

y_present <= A ;

z <= '1' WHEN y_present = C ELSE '0' ;

Figure A.46 Code equivalent to Figure A.45, using two processes.

ISTUDY

696 A P P E N D I X A ∙ VHDL REFERENCE

A w = 1/z = 1

w = 0 /z = 0

w = 0 /z = 0

w = 1/z = 0

B

Reset

Figure A.47 State diagram of a Mealy-type FSM.

A.10.11 A MEALY-TYPE FINITE STATE MACHINE

A state diagram for a simple Mealy machine is shown in Figure A.47. The corresponding

code is given in Figure A.48. The code is the same as in Figure A.45 except that the output

z is specified using a separate CASE statement. The CASE statement states that when the

FSM is in state A, z should be 0, but when in state B, z should take the value of w. This CASE

statement properly describes the logic needed for z. However, it is not obvious why we have

used a second CASE statement in the code, rather than specify the value of z inside the

CASE statement that defines the state table for the machine. This approach would not work

properly because the CASE statement for the state table is nested inside the IF statement

that waits for a clock edge to occur. Hence if we placed the code for z inside this CASE

statement, then the value of z could change only as a result of a clock edge. This does not

meet the requirements of the Mealy-type FSM, because the value of z depends not only on

the state of the machine but also on the value of the input w.

A.11 COMMON ERRORS IN VHDL CODE

This section lists some common errors that our students have made when writing VHDL

code.

ENTITY and ARCHITECTURE Names
The name used in an ENTITY declaration and the corresponding ARCHITECTURE

must be identical. The code

ENTITY adder IS

⋮
END adder ;

ARCHITECTURE Structure OF adder4 IS

⋮
END Structure ;

is erroneous because the ENTITY declaration uses the name adder, whereas the architecture

uses the name adder4.

ISTUDY

A.11 COMMON ERRORS IN VHDL CODE 697

LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

END mealy ;

ARCHITECTURE Behavior OF mealy IS

 TYPE State_type IS (A, B) ;

 SIGNAL y : State_type ;

BEGIN

PROCESS (Resetn, Clock)

BEGIN

IF Resetn = '0' THEN

CASE y IS

WHEN A =>

WHEN B =>

END IF ;

END CASE ;

END CASE ;

END PROCESS ;

END PROCESS ;

PROCESS (y, w)

BEGIN

CASE y IS

END Behavior ;

WHEN A =>

WHEN B =>

IF w = '0' THEN y <= A ;

ELSE y <= B ;

END IF ;

IF w = '0' THEN y <= A ;

ELSE y <= B ;

END IF ;

z <= w ;

z <= '0' ;

y <= A ;

ELSIF (Clock’EVENT AND Clock = '1') THEN

ENTITY mealy IS

 PORT (Clock, Resetn : IN STD_LOGIC ;

 w : IN STD_LOGIC ;

 z : OUT STD_LOGIC) ;

Figure A.48 An example of a Mealy-type machine.

ISTUDY

698 A P P E N D I X A ∙ VHDL REFERENCE

Missing Semicolon
Every VHDL statement must end with a semicolon.

Use of Quotes
Single quotes are used for single-bit data, double quotes for multibit data, and no quotes

are used for integer data. Examples are given in Section A.2.

Combinational versus Sequential Statements
Combinational statements include simple signal assignments, selected signal assign-

ments, conditional signal assignments, and generate statements. Simple signal assignments

can be used either outside or inside a PROCESS statement. The other types of combina-

tional statements can be used only outside a PROCESS statement.

Sequential statements include IF, CASE, and LOOP statements. Each of these types of

statements can be used only inside a process statement.

Component Instantiation
The following statement contains two potential errors

control: shiftr GENERIC MAP (K => 3) ;

PORT MAP ('1' , Clock, w, Q) ;

There should be no semicolon at the end of the first line, because the two lines represent a

single VHDL statement. Also, some VHDL compilers do not support the use of a constant

value ('1') with a port on a component. The following code shows how the two errors can

be fixed

SIGNAL High ;

⋮
High <= '1' ;

control: shiftr GENERIC MAP (K => 3)

PORT MAP (High, Clock, w, Q) ;

Label, Signal, and Variable Names
It is illegal to use any VHDL keyword as a label, signal, or variable name. For example,

it is illegal to name a signal In or Out. Also, it is illegal to use the same name multiple times

for any label, signal, or variable in a given VHDL design. A common error is to use the

same name for a signal and a variable used as the index in a generate or loop statement. For

instance, if the code uses the generate statement

Generate label:

FOR i IN 0 TO 3 GENERATE

bit: fulladd PORT MAP (C(i), X(i), Y(i), S(i), C(i+1)) ;

END GENERATE ;

then it is illegal to define a signal named i (or I, because VHDL does not distinguish between

lower and uppercase letters).

ISTUDY

A.12 CONCLUDING REMARKS 699

Implied Memory
As shown in Section A.10, implied memory is used to describe storage elements. Care

must be taken to avoid unintentional implied memory. The code

IF LA = '1' THEN

EA <= '1' ;

END IF ;

results in implied memory for the EA signal. If this is not desired, then the code can be fixed

by writing

IF LA = '1' THEN

EA <= '1' ;

ELSE

EA <= '0' ;

END IF ;

Implied memory also applies to CASE statements. The statement

CASE y IS

WHEN S1 =>
EA <= '1' ;

WHEN S2 =>
EB <= '1' ;

END CASE ;

does not specify the value of the EA signal when y is not equal to S1, and it does not specify

the value of EB when y is not equal to S2. To avoid having implied memory for both EA
and EB, these signals should be assigned default values, as in the code

EA <= '0' ; EB <= '0' ;

CASE y IS

WHEN S1 =>
EA <= '1' ;

WHEN S2 =>
EB <= '1' ;

END CASE ;

A.12 CONCLUDING REMARKS

This appendix describes all the important VHDL constructs that are useful for the synthesis

of logic circuits. As mentioned earlier, we do not discuss any features of VHDL that are

useful only for simulation of circuits, or for other purposes. A reader who wishes to learn

more about using VHDL can refer to specialized books [1–8].

ISTUDY

700 A P P E N D I X A ∙ VHDL REFERENCE

REFERENCES

1. Institute of Electrical and Electronics Engineers, “1076-1993 IEEE Standard VHDL

Language Reference Manual,” 1993.

2. D. L. Perry, VHDL, 3rd ed. (McGraw-Hill: New York, 1998).

3. Z. Navabi, VHDL—Analysis and Modeling of Digital Systems, 2nd ed.

(McGraw-Hill: New York, 1998).

4. J. Bhasker, A VHDL Primer, 3rd ed. (Prentice-Hall: Englewood Cliffs, NJ, 1998).

5. K. Skahill, VHDL for Programmable Logic (Addison-Wesley: Menlo Park, CA,

1996).

6. A. Dewey, Analysis and Design of Digital Systems with VHDL (PWS Publishing Co.:

Boston, MA, 1997).

7. S. Yalamanchili, VHDL Starter’s Guide (Prentice-Hall: Upper Saddle River, NJ,

1998).

8. P. Ashenden, The Designer’s Guide to VHDL, 2nd ed. (Morgan Kaufmann: San

Francisco, CA, 2001).

ISTUDY

701

a p p e n d i x

B
IMPLEMENTATION TECHNOLOGY

This appendix provides a detailed discussion of integrated circuit technology. We show

how transistors operate as simple switches, and how logic gates are built using transistors.

We also describe the structure of integrated circuit chips that are used to implement logic

circuits, including programmable logic devices, gate arrays, and memory chips. Finally, we

study some fundamental properties of electronic circuits, including current flow and power

dissipation.

Let us first consider how logic variables can be physically represented as signals in

electronic circuits. Our discussion will be restricted to binary variables, which can take

on only the values 0 and 1. In a circuit these values can be represented either as levels of

voltage or current. Both alternatives are used in different technologies. We will focus on

the simplest and most popular representation, using voltage levels.

The most obvious way of representing two logic values as voltage levels is to define a

threshold voltage; any voltage below the threshold represents one logic value, and voltages

above the threshold correspond to the other logic value. It is an arbitrary choice as to which

logic value is associated with the low and high voltage levels. Usually, logic 0 is represented

by the low voltage levels and logic 1 by the high voltages. This is known as a positive logic
system. The opposite choice, in which the low voltage levels are used to represent logic 1

and the higher voltages are used for logic 0 is known as a negative logic system. In this book

we use only the positive logic system, but negative logic is discussed briefly in Section B.4.

Using the positive logic system, the logic values 0 and 1 are referred to simply as

“low” and “high.” To implement the threshold-voltage concept, a range of low and high

voltage levels is defined, as shown in Figure B.1. The figure gives the minimum voltage,

called VSS, and the maximum voltage, called VDD, that can exist in the circuit. We will

assume that VSS is 0 volts, corresponding to electrical ground, denoted Gnd. The voltage

VDD represents the power supply voltage. In some technologies VDD may be as large as

5 volts, while in others it could be as small as 1 volt, or even less. In this appendix we will

mostly use the value VDD = 5 V. Figure B.1 indicates that voltages in the range Gnd to

V0,max represent logic value 0. The name V0,max means the maximum voltage level that a

logic circuit must recognize as low. Similarly, the range from V1,min to VDD corresponds

to logic value 1, and V1,min is the minimum voltage level that a logic circuit must interpret

as high. The exact levels of V0,max and V1,min depend on the particular technology used; a

typical example might set V0,max to 40 percent of VDD and V1,min to 60 percent of VDD. The

range of voltages between V0,max and V1,min is undefined. Logic signals do not normally

ISTUDY

702 A P P E N D I X B ∙ IMPLEMENTATION TECHNOLOGY

Logic value 1

Undefined

Logic value 0

Voltage

VDD

V1,min

V0,max

VSS (Gnd)

Figure B.1 Representation of logic values by voltage levels.

assume voltages in this range except in transition from one logic value to the other. We will

discuss the voltage levels used in logic circuits in more depth in Section B.8.3.

B.1 TRANSISTOR SWITCHES

Logic circuits are built with transistors. A full treatment of transistor behavior is beyond

the scope of this text; it can be found in electronics textbooks, such as [1] and [2]. For the

purpose of understanding how logic circuits are built, we can assume that a transistor oper-

ates as a simple switch. Figure B.2a shows a switch controlled by a logic signal, x. When x
is low, the switch is open, and when x is high, the switch is closed. The most popular type

of transistor for implementing a simple switch is the metal oxide semiconductor field-effect
transistor (MOSFET). There are two different types of MOSFETs, known as n-channel,
abbreviated NMOS, and p-channel, denoted PMOS.

Figure B.2b gives a graphical symbol for an NMOS transistor. It has four electrical

terminals, called the source, drain, gate, and substrate. In logic circuits the substrate (also

called body) terminal is connected to Gnd. We will use the simplified graphical symbol in

Figure B.2c, which omits the substrate node. There is no physical difference between the

source and drain terminals. They are distinguished in practice by the voltage levels applied

to the transistor; by convention, the terminal with the lower voltage level is deemed to be

the source.

ISTUDY

B.1 TRANSISTOR SWITCHES 703

DrainSource

x = “low” x = “high”

(a) A simple switch controlled by the input x

VD

VG

VS

(b) NMOS transistor

Gate

(c) Simplified symbol for an NMOS transistor

Substrate (Body)

Figure B.2 NMOS transistor as a switch.

A detailed explanation of how the transistor operates will be presented in Section B.8.1.

For now it is sufficient to know that it is controlled by the voltage VG at the gate terminal.

If VG is low, then there is no connection between the source and drain, and we say that

the transistor is turned off. If VG is high, then the transistor is turned on and acts as a

closed switch that connects the source and drain terminals. In Section B.8.2 we show how

to calculate the resistance between the source and drain terminals when the transistor is

turned on, but for now assume that the resistance is 0 Ω.

PMOS transistors have the opposite behavior of NMOS transistors. The former are

used to realize the type of switch illustrated in Figure B.3a, where the switch is open when

the control input x is high and closed when x is low. A symbol is shown in Figure B.3b.

In logic circuits the substrate of the PMOS transistor is connected to VDD, leading to the

simplified symbol in Figure B.3c. If VG is high, then the PMOS transistor is turned off and

acts like an open switch. When VG is low, the transistor is turned on and acts as a closed

switch that connects the source and drain. In the PMOS transistor the source is the node

with the higher voltage.

Figure B.4 summarizes the typical use of NMOS and PMOS transistors in logic cir-

cuits. An NMOS transistor is turned on when its gate terminal is high, while a PMOS

ISTUDY

704 A P P E N D I X B ∙ IMPLEMENTATION TECHNOLOGY

(a) A switch with the opposite behavior of Figure 3.2a

(b) PMOS transistor

(c) Simplified symbol for an PMOS transistor

VG

VS VD

x = “high” x = “low”

Gate

VDD

Drain Source

Substrate (Body)

Figure B.3 PMOS transistor as a switch.

transistor is turned on when its gate is low. When the NMOS transistor is turned on, its

drain is pulled down to Gnd, and when the PMOS transistor is turned on, its drain is pulled
up to VDD. Because of the way the transistors operate, an NMOS transistor cannot be used

to pull its drain terminal completely up to VDD. Similarly, a PMOS transistor cannot be used

to pull its drain terminal completely down to Gnd. We discuss the operation of MOSFETs

in considerable detail in Section B.8.

B.2 NMOS LOGIC GATES

The first schemes for building logic gates with MOSFETs became popular in the 1970s and

relied on either PMOS or NMOS transistors, but not both. Since the early 1980s, a combi-

nation of both NMOS and PMOS transistors has been used. We will first describe how logic

circuits can be built using NMOS transistors because these circuits are easier to understand.

Such circuits are known as NMOS circuits. Then we will show how NMOS and PMOS tran-

sistors are combined in the presently popular technology known as complementary MOS,

or CMOS.

ISTUDY

B.2 NMOS LOGIC GATES 705

(a) NMOS transistor

(b) PMOS transistor

VD

VG

VS = 0 V

Closed switch

when VG = VDD when VG = 0 V

Open switch

VDVD = 0 V

VG

VD

VDDVS = VDD

VD = VDD

when VG = VDD

Open switch

when VG = 0 V

Closed switch

VDD

VD

Figure B.4 NMOS and PMOS transistors in logic circuits.

In the circuit in Figure B.5a, when Vx = 0 V the NMOS transistor is turned off. No

current flows through the resistor R, and Vf = 5 V. On the other hand, when Vx = 5 V, the

transistor is turned on and pulls Vf to a low voltage level. The exact voltage level of Vf in

this case depends on the amount of current that flows through the resistor and transistor.

Typically, Vf is about 0.2 V (see Section B.8.3). If Vf is viewed as a function of Vx, then the

circuit is an NMOS implementation of a NOT gate. In logic terms this circuit implements

the function f = x. Figure B.5b gives a simplified circuit diagram in which the connection

to the positive terminal on the power supply is indicated by an arrow labeled VDD and the

connection to the negative power-supply terminal is indicated by the Gnd symbol. We will

use this simplified style of circuit diagram for the figures that follow.

The purpose of the resistor in the NOT gate circuit is to limit the amount of current that

flows when Vx = 5 V. Rather than using a resistor for this purpose, a transistor is normally

used. We will discuss this issue in more detail in Section B.8.3. In subsequent diagrams

a dashed box is drawn around the resistor R as a reminder that it is implemented using a

transistor.

ISTUDY

706 A P P E N D I X B ∙ IMPLEMENTATION TECHNOLOGY

(b) Simplified circuit diagram

(c) Graphical symbols

x f x f

Vx

Vf

VDD

R

(a) Circuit diagram

Vx

Vf

R

+

−
5 V

Figure B.5 A NOT gate built using NMOS technology.

Figure B.5c presents the graphical symbols for a NOT gate. The symbol on the left

shows the input, output, power, and ground terminals, and the symbol on the right is sim-

plified to show only the input and output terminals. In practice only the simplified symbol

is used. Another name often used for the NOT gate is inverter. We use both names inter-

changeably in this book.

In Section 2.1 we saw that a series connection of switches corresponds to the logic AND

function, while a parallel connection represents the OR function. Using NMOS transistors,

we can implement the series connection as depicted in Figure B.6a. If Vx1
= Vx2

= 5 V,

both transistors will be on and Vf will be close to 0 V. But if either Vx1
or Vx2

is 0, then no

current will flow through the series-connected transistors and Vf will be pulled up to

5 V. The resulting truth table for f , provided in terms of logic values, is given in

Figure B.6b. The circuit realizes a NAND gate. Its graphical symbols are shown in part

(c) of the figure.

The parallel connection of NMOS transistors is given in Figure B.7a. Here, if either

Vx1
= 5 V or Vx2

= 5 V, then Vf will be close to 0 V. Only if both Vx1
and Vx2

are 0 will Vf
be pulled up to 5 V. A corresponding truth table is given in Figure B.7b, which shows that

the circuit realizes the NOR function. The graphical symbols for the NOR gate appear in

part (c) of the figure.

ISTUDY

B.3 CMOS LOGIC GATES 707

(a) Circuit

(c) Graphical symbols

(b) Truth table

f f
x1 x1

x2x2

0

0

1

1

0

1

0

1

1

1

1

0

x1 x2 f

Vf

VDD

Vx1

Vx2

Figure B.6 NMOS realization of a NAND gate.

Figure B.8 indicates how an AND gate is built in NMOS technology by following a

NAND gate with an inverter. Node A realizes the NAND of inputs x1 and x2, and f represents

the AND function. In a similar fashion an OR gate is realized as a NOR gate followed by

an inverter, as depicted in Figure B.9.

B.3 CMOS LOGIC GATES

So far we have considered the implementation of logic gates using NMOS transistors. For

each of the circuits that has been presented, it is possible to derive an equivalent circuit

that uses PMOS transistors. However, it is more interesting to consider how both NMOS

and PMOS transistors can be used together. The most popular such approach is known as

CMOS technology. We will see in Section B.8 that CMOS technology offers some attractive

practical advantages in comparison to NMOS technology.

ISTUDY

708 A P P E N D I X B ∙ IMPLEMENTATION TECHNOLOGY

(a) Circuit

(c) Graphical symbols

(b) Truth table

0

0

1

1

0

1

0

1

1

0

0

0

x1
x2 f

f
x1

x2

x1

x2
f

Vx1
Vx2

Vf

VDD

Figure B.7 NMOS realization of a NOR gate.

In NMOS circuits the logic functions are realized by arrangements of NMOS transis-

tors, combined with a pull-up device that acts as a resistor. We will refer to the part of the

circuit that involves NMOS transistors as the pull-down network (PDN). Then the structure

of the circuits in Figures B.5 through B.9 can be characterized by the block diagram in

Figure B.10. The concept of CMOS circuits is based on replacing the pull-up device with a

pull-up network (PUN) that is built using PMOS transistors, such that the functions realized

by the PDN and PUN networks are complements of each other. Then a logic circuit, such

as a typical logic gate, is implemented as indicated in Figure B.11. For any given valuation

of the input signals, either the PDN pulls Vf down to Gnd or the PUN pulls Vf up to VDD.

The PDN and the PUN have equal numbers of transistors, which are arranged so that the

two networks are duals of one another. Wherever the PDN has NMOS transistors in series,

the PUN has PMOS transistors in parallel, and vice versa.

The simplest example of a CMOS circuit, a NOT gate, is shown in Figure B.12. When

Vx = 0 V, transistor T2 is off and transistor T1 is on. This makes Vf = 5 V, and since T2 is

off, no current flows through the transistors. When Vx = 5 V, T2 is on and T1 is off. Thus

Vf = 0 V, and no current flows because T1 is off.

A key point is that no current flows in a CMOS inverter when the input is either low or

high. This is true for all CMOS circuits; no current flows, and hence no power is dissipated

ISTUDY

B.3 CMOS LOGIC GATES 709

(a) Circuit

(c) Graphical symbols

(b) Truth table

A

Vx1

Vx2

Vf

VDD VDD

0

0

1

1

0

1

0

1

0

0

0

1

fx1 x2

f f
x1

x2

x1

x2

Figure B.8 NMOS realization of an AND gate.

under steady state conditions. This property has led to CMOS becoming the most popular

technology in use today for building logic circuits. We will discuss current flow and power

dissipation in detail in Section B.8.6.

Figure B.13 provides a circuit diagram of a CMOS NAND gate. It is similar to the

NMOS circuit presented in Figure B.6 except that the pull-up device has been replaced by

the PUN with two PMOS transistors connected in parallel. The truth table in the figure

specifies the state of each of the four transistors for each logic valuation of inputs x1 and x2.

The reader can verify that the circuit properly implements the NAND function. Under static

conditions no path exists for current flow from VDD to Gnd.

The circuit in Figure B.13 can be derived from the logic expression that defines the

NAND operation, f = x1x2. This expression specifies the conditions for which f = 1;

hence it defines the PUN. Since the PUN consists of PMOS transistors, which are turned

on when their control (gate) inputs are set to 0, an input variable xi turns on a transistor if

ISTUDY

710 A P P E N D I X B ∙ IMPLEMENTATION TECHNOLOGY

(a) Circuit

(c) Graphical symbols

(b) Truth table

Vx1
Vx2

Vf

VDD VDD

0

0

1

1

0

1

0

1

0

1

1

1

fx1 x2

f f
x1

x2

x1

x2

Figure B.9 NMOS realization of an OR gate.

xi = 0. From DeMorgan’s law, we have

f = x1x2 = x1 + x2

Thus f = 1 when either input x1 or x2 has the value 0, which means that the PUN must have

two PMOS transistors connected in parallel. The PDN must implement the complement of

f , which is

f = x1x2

Since f = 1 when both x1 and x2 are 1, it follows that the PDN must have two NMOS

transistors connected in series.

The circuit for a CMOS NOR gate is derived from the logic expression that defines the

NOR operation

f = x1 + x2 = x1x2

Since f = 1 only if both x1 and x2 have the value 0, then the PUN consists of two PMOS

transistors connected in series. The PDN, which realizes f = x1 + x2, has two NMOS

transistors in parallel, leading to the circuit shown in Figure B.14.

ISTUDY

B.3 CMOS LOGIC GATES 711

Pull-down network

(PDN)

Vx1

Vxn

VDD

Vf

Figure B.10 Structure of an NMOS circuit.

Pull-up network

(PUN)

Pull-down network

(PDN)

Vx1

Vxn

VDD

Vf

Figure B.11 Structure of a CMOS circuit.

A CMOS AND gate is built by connecting a NAND gate to an inverter, as illustrated

in Figure B.15. Similarly, an OR gate is constructed with a NOR gate followed by a NOT

gate.

The above procedure for deriving a CMOS circuit can be applied to more general logic

functions to create complex gates. This process is illustrated in the following two examples.

ISTUDY

712 A P P E N D I X B ∙ IMPLEMENTATION TECHNOLOGY

(a) Circuit (b) Truth table and transistor states

on

off

off

on

1

0

0

1

fx T1 T2

VfVx

T1

T2

VDD

Figure B.12 CMOS realization of a NOT gate.

(a) Circuit (b) Truth table and transistor states

Vf

VDD

Vx1

Vx2

T2

T3

T4

T1

0

1

0

0

1

1

0

1

f

1

1

1

0

x1 x2

on

on

on

off

off

off

on

off

off

on

off

on

off

off

on

on

T2 T3 T4T1

Figure B.13 CMOS realization of a NAND gate.

Example B.1 Consider the function

f = x1 + x2x3

Since all variables appear in their complemented form, we can directly derive the PUN.

It consists of a PMOS transistor controlled by x1 in parallel with a series combination of

ISTUDY

B.3 CMOS LOGIC GATES 713

(a) Circuit (b) Truth table and transistor states

0

1

0

0

1

1

0

1

f

1

0

0

0

x1 x2

on

on

on

off

off

off

on

off

off

on

off

on

off

off

on

on

T2 T3 T4T1Vf

VDD

Vx1

Vx2

T1

T2

T3 T4

Figure B.14 CMOS realization of a NOR gate.

VDD VDD

Vf

Vx1

Vx2

Figure B.15 CMOS realization of an AND gate.

PMOS transistors controlled by x2 and x3. For the PDN we have

f = x1 + x2x3 = x1(x2 + x3)

This expression gives the PDN that has an NMOS transistor controlled by x1 in series with

a parallel combination of NMOS transistors controlled by x2 and x3. The circuit is shown

in Figure B.16.

ISTUDY

714 A P P E N D I X B ∙ IMPLEMENTATION TECHNOLOGY

VDD

Vf

Vx1

Vx2

Vx3

Figure B.16 The circuit for Example B.1.

Example B.2 Consider the function

f = x1 + (x2 + x3)x4

Then

f = x1(x2x3 + x4)

These expressions lead directly to the circuit in Figure B.17.

The circuits in Figures B.16 and B.17 show that it is possible to implement fairly com-

plex logic functions using combinations of series and parallel connections of transistors

(acting as switches), without implementing each series or parallel connection as a complete

AND (using the structure introduced in Figure B.15) or OR gate.

B.3.1 SPEED OF LOGIC GATE CIRCUITS

In the preceding sections we have assumed that transistors operate as ideal switches that

present no resistance to current flow. Hence, while we have derived circuits that realize the

functionality needed in logic gates, we have ignored the important issue of the speed of

operation of the circuits. In reality transistor switches have a significant resistance when

turned on. Also, transistor circuits include capacitors, which are created as a side effect

ISTUDY

B.4 NEGATIVE LOGIC SYSTEM 715

VDD

Vf

Vx1

Vx2

Vx3

Vx4

Figure B.17 The circuit for Example B.2.

of the manufacturing process. These factors affect the amount of time required for signal

values to propagate through logic gates. We provide a detailed discussion of the speed of

logic circuits, as well as a number of other practical issues, in Section B.8.

B.4 NEGATIVE LOGIC SYSTEM

In the discussion for Figure B.1, we said that logic values are represented as two distinct

ranges of voltage levels. We are using the convention that the higher voltage levels represent

logic value 1 and the lower voltages represent logic value 0. This convention is known as the

positive logic system, and it is the one used in most practical applications. In this section we

briefly consider the negative logic system in which the association between voltage levels

and logic values is reversed.

Let us reconsider the CMOS circuit in Figure B.13, which is reproduced in Figure B.18a.

Part (b) of the figure gives a truth table for the circuit, but the table shows voltage levels

instead of logic values. In this table, L refers to the low voltage level in the circuit, which is

0 V, and H represents the high voltage level, which is VDD. This is the style of truth table that

ISTUDY

716 A P P E N D I X B ∙ IMPLEMENTATION TECHNOLOGY

(a) Circuit (b) Voltage levels

VDD

Vx1

Vx2

Vf

L

H

L

L

H

H

L

H

H

H

H

L

Vx1
Vx2

Vf

Figure B.18 Voltage levels in the circuit in Figure B.13.

manufacturers of integrated circuits often use in data sheets to describe the functionality of

the chips. It is entirely up to the user of the chip as to whether L and H are interpreted in

terms of logic values such that L = 0 and H = 1, or L = 1 and H = 0.

Figure B.19a illustrates the positive logic interpretation in which L = 0 and H = 1.

As we already know from the discussions of Figure B.13, the circuit represents a NAND

(a) Positive logic truth table and gate symbol

f
0

0

1

1

0

1

0

1

1

1

1

0

x1

x1

x2

x2

f

(b) Negative logic truth table and gate symbol

x1 x2

x1

x2

1

1

0

0

1

0

1

0

0

0

0

1

f

f

Figure B.19 Interpretation of the circuit in Figure B.18.

ISTUDY

B.4 NEGATIVE LOGIC SYSTEM 717

(b) Positive logic

(c) Negative logic

(a) Voltage levels

f
0

0

1

1

0

1

0

1

0

0

0

1

fx1

x1

x2

x2

1

1

0

0

1

0

1

0

1

1

1

0

f

f

x1 x2

x1

x2

L

H

L

L

H

H

L

H

L

L

L

H

Vx1
Vx2

Vf

Figure B.20 Interpretation of the circuit in Figure B.15.

gate under this interpretation. The opposite interpretation is shown in Figure B.19b. Here

negative logic is used so that L = 1 and H = 0. The truth table specifies that the circuit

represents a NOR gate in this case. Note that the truth table rows are listed in the opposite

order from what we normally use, to be consistent with the L and H values in Figure B.18b.

Figure B.19b also gives the logic gate symbol for the NOR gate, which includes small

triangles on the gate’s terminals to indicate that the negative logic system is used.

As another example, consider again the circuit in Figure B.15. Its truth table, in terms

of voltage levels, is given in Figure B.20a. Using the positive logic system, this circuit

represents an AND gate, as indicated in Figure B.20b. But using the negative logic system,

the circuit represents an OR gate, as depicted in Figure B.20c.

It is possible to use a mixture of positive and negative logic in a single circuit, which

is known as a mixed logic system. In practice, the positive logic system is used in most

applications. We do not consider the negative logic system in the main body of the book.

ISTUDY

718 A P P E N D I X B ∙ IMPLEMENTATION TECHNOLOGY

B.5 STANDARD CHIPS

In Chapter 1 we mentioned that several different types of integrated circuit chips are available

for implementation of logic circuits. We now discuss the available choices in some detail.

B.5.1 7400-SERIES STANDARD CHIPS

An approach used widely until the mid-1980s was to connect together multiple chips, each

containing only a few logic gates. A wide assortment of chips, with different types of logic

gates, is available for this purpose. They are known as 7400-series parts because the chip

part numbers always begin with the digits 74. An example of a 7400-series part is given

in Figure B.21. Part (a) of the figure shows a type of package that the chip is provided in,

called a dual-inline package (DIP). Part (b) illustrates the 7404 chip, which comprises six

NOT gates. The chip’s external connections are called pins or leads. Two pins are used to

connect to VDD and Gnd, and other pins provide connections to the NOT gates. Many 7400-

series chips exist, and they are described in the data books produced by manufacturers of

these chips [3–7]. Diagrams of some of the chips are also included in several textbooks,

such as [8–12].

The 7400-series chips are produced in standard forms by a number of integrated circuit

manufacturers, using agreed-upon specifications. Competition among various manufacturers

works to the designer’s advantage because it tends to lower the price of chips and ensures

that parts are always readily available. For each specific 7400-series chip, several variants

are built with different technologies. For instance, the part called 74LS00 is built with a

(a) Dual-inline package

(b) Structure of 7404 chip

VDD

Gnd

Figure B.21 A 7400-series chip.

ISTUDY

B.5 STANDARD CHIPS 719

VDD

f

7404

7408 7432

x1

x2

x3

Figure B.22 An implementation of f = x1x2 + x2x3.

technology called transistor-transistor logic (TTL), which is described in [1], whereas the

74HC00 is fabricated using CMOS technology. In general, the most popular chips used

today are the CMOS variants.

As an example of how a logic circuit can be implemented using 7400-series chips,

consider the function f = x1x2 + x2x3. A NOT gate is required to produce x2, as well as 2

two-input AND gates and a two-input OR gate. Figure B.22 shows three 7400-series chips

that can be used to implement the function. We assume that the three input signals x1, x2,

and x3 are produced as outputs by some other circuitry that can be connected by wires to

the three chips. Notice that power and ground connections are included for all three chips.

This example makes use of only a portion of the gates available in the three chips, hence

the remaining gates can be used to realize other functions.

Because of their low logic capacity, the standard chips are seldom used in practice

today, with one exception. Many modern products include standard chips that contain drivers.

Drivers (also sometimes called buffers) are logic gates that are usually used to improve the

speed of circuits. An example of a driver chip is depicted in Figure B.23. It is the 74244 chip,

which comprises eight tri-state drivers. We describe how tri-state drivers work in Section 7.1.1.

Rather than showing how the drivers are arranged inside the chip package, as we did for

the NOT gates in Figure B.21, we show only the pin numbers of the package pins that are

connected to the drivers. The package has 20 pins, and they are numbered with pin 1 in the

lower-left corner, and pin 20 in the upper-left corner. The Gnd and VDD connections are

ISTUDY

720 A P P E N D I X B ∙ IMPLEMENTATION TECHNOLOGY

Pin 2

Pin 4

Pin 6

Pin 8

Pin 1

Pin 12

Pin 14

Pin 16

Pin 18

Pin 11

Pin 13

Pin 15

Pin 17

Pin 19

Pin 3

Pin 5

Pin 7

Pin 9

Figure B.23 The 74244 driver chip.

provided on pins 10 and 20, respectively, similar to the arrangement shown in Figure B.21.

Many other driver chips also exist. For example, the 162244 chip has 16 tri-state drivers.

It is part of a family of devices that are similar to the 7400-series chips but with twice as

many gates in each chip. These chips are available in multiple types of packages, with the

most popular being a small-outline integrated circuit (SOIC) package. An SOIC package

has a similar shape to a DIP, but the SOIC is considerably smaller in physical size.

As integrated circuit technology has improved over time, a system of classifying chips

according to their size has evolved. The earliest chips produced, such as the 7400-series,

comprise only a few logic gates. The technology used to produce these chips is referred to

as small-scale integration (SSI). Chips that include slightly more logic circuitry, typically

about 10 to 100 gates, represent medium-scale integration (MSI). Until the mid-1980s chips

that were too large to qualify as MSI were classified as large-scale integration (LSI). In

recent years the concept of classifying circuits according to their size has become of little

practical use. Most integrated circuits today contain millions, or even billions, of transistors.

Regardless of their exact size, these large chips are said to be made with very large scale
integration (VLSI) technology. The trend in digital hardware products is to integrate as much

circuitry as possible onto a single chip. Thus most of the chips used today are built with

VLSI technology, and the older types of chips are used rarely.

B.6 PROGRAMMABLE LOGIC DEVICES

The function provided by each of the 7400-series parts is fixed and cannot be tailored to suit

a particular design situation. This fact, coupled with the limitation that each chip contains

only a few logic gates, makes these chips inefficient for building large logic circuits. It is

ISTUDY

B.6 PROGRAMMABLE LOGIC DEVICES 721

Logic gates

and

programmable

switches

Inputs

(logic variables)

Outputs

(logic functions)

Figure B.24 Programmable logic device as a black box.

possible to manufacture chips that contain relatively large amounts of logic circuitry with

a structure that is not fixed. Such chips were first introduced in the 1970s and are called

programmable logic devices (PLDs).
A PLD is a general-purpose chip for implementing logic circuits. It contains a collec-

tion of logic circuit elements that can be customized in different ways. A PLD can be viewed

as a “black box” that contains logic gates and programmable switches, as illustrated in

Figure B.24. The programmable switches allow the logic gates inside the PLD to be con-

nected together to implement whatever logic circuit is needed.

B.6.1 PROGRAMMABLE LOGIC ARRAY (PLA)

Several types of PLDs are commercially available. The first developed was the programmable
logic array (PLA). The general structure of a PLA is depicted in Figure B.25. Based on

the idea that logic functions can be realized in sum-of-products form, a PLA comprises a

collection of AND gates that feeds a set of OR gates. As shown in the figure, the PLA’s

inputs x1,… , xn pass through a set of drivers (which provide both the true value and com-

plement of each input) into a circuit block called an AND plane, or AND array. The AND

plane produces a set of product terms P1,… ,Pk. Each of these terms can be configured to

implement any AND function of x1,… , xn. The product terms serve as the inputs to an OR
plane, which produces the outputs f1,… , fm. Each output can be configured to realize any

sum of P1,… ,Pk and hence any sum-of-products function of the PLA inputs.

A more detailed diagram of a small PLA is given in Figure B.26, which shows a PLA

with three inputs, four product terms, and two outputs. Each AND gate in the AND plane

has six inputs, corresponding to the true and complemented versions of the three input

signals. Each connection to an AND gate is programmable; a signal that is connected to an

AND gate is indicated with a wavy line, and a signal that is not connected to the gate is

shown with a broken line. The circuitry is designed such that any unconnected AND-gate

ISTUDY

722 A P P E N D I X B ∙ IMPLEMENTATION TECHNOLOGY

AND plane OR plane

Input drivers

inverters

and

x1

x1

P1

f1 fm

Pk

x1

x2 xn

xnxn

Figure B.25 General structure of a PLA.

inputs do not affect the output of the AND gate. In commercially available PLAs, several

methods of realizing the programmable connections exist. Detailed explanation of how a

PLA can be built using transistors is given in Section B.10.

In Figure B.26 the AND gate that produces P1 is shown connected to the inputs x1 and

x2. Hence P1 = x1x2. Similarly, P2 = x1x3, P3 = x1x2x3, and P4 = x1x3. Programmable

connections also exist for the OR plane. Output f1 is connected to product terms P1, P2,

and P3. It therefore realizes the function f1 = x1x2 + x1x3 + x1x2x3. Similarly, output

f2 = x1x2 + x1x2x3 + x1x3. Although Figure B.26 depicts the PLA programmed to imple-

ment the functions described above, by programming the AND and OR planes differently,

each of the outputs f1 and f2 could implement various functions of x1, x2, and x3. The only

constraint on the functions that can be implemented is the size of the AND plane because it

produces only four product terms. Commercially available PLAs come in larger sizes than

we have shown here. Typical parameters are 16 inputs, 32 product terms, and eight outputs.

Although Figure B.26 illustrates clearly the functional structure of a PLA, this style of

drawing is awkward for larger chips. Instead, it has become customary in technical literature

to use the style shown in Figure B.27. Each AND gate is depicted as a single horizontal

line attached to an AND-gate symbol. The possible inputs to the AND gate are drawn as

vertical lines that cross the horizontal line. At any crossing of a vertical and horizontal

line, a programmable connection, indicated by an X, can be made. Figure B.27 shows the

programmable connections needed to implement the product terms in Figure B.26. Each

OR gate is drawn in a similar manner, with a vertical line attached to an OR-gate symbol.

ISTUDY

B.6 PROGRAMMABLE LOGIC DEVICES 723

f1 f2

x1 x2 x3

P1

P2

P3

P4

OR plane

Programmable

AND plane

connections

Figure B.26 Gate-level diagram of a PLA.

The AND-gate outputs cross these lines, and corresponding programmable connections can

be formed. The figure illustrates the programmable connections that produce the functions

f1 and f2 from Figure B.26.

The PLA is efficient in terms of the area needed for its implementation on an inte-

grated circuit chip. For this reason, PLAs are often included as part of larger chips, such as

microprocessors. In this case a PLA is created so that the connections to the AND and OR

gates are fixed, rather than programmable. In Section B.10 we will show that both fixed and

programmable PLAs can be created with similar structures.

B.6.2 PROGRAMMABLE ARRAY LOGIC (PAL)

In a PLA both the AND and OR planes are programmable. Historically, the programmable

switches presented two difficulties for manufacturers of these devices: they were hard to

fabricate correctly, and they reduced the speed-performance of circuits implemented in the

ISTUDY

724 A P P E N D I X B ∙ IMPLEMENTATION TECHNOLOGY

x1 x2 x3

P1

P2

P3

P4

f1 f2

OR plane

AND plane

Figure B.27 Customary schematic for the PLA in Figure B.26.

PLAs. These drawbacks led to the development of a similar device in which the AND plane

is programmable, but the OR plane is fixed. Such a chip is known as a programmable array
logic (PAL) device.

An example of a PAL with three inputs, four product terms, and two outputs is given

in Figure B.28. The product terms P1 and P2 are hardwired to one OR gate, and P3 and

P4 are hardwired to the other OR gate. The PAL is shown programmed to realize the two

logic functions f1 = x1x2x3 + x1x2x3 and f2 = x1x2 + x1x2x3. In comparison to the PLA in

Figure B.27, the PAL offers less flexibility; the PLA allows up to four product terms per OR

gate, whereas the OR gates in the PAL have only two inputs. To compensate for the reduced

flexibility, PALs are manufactured in a range of sizes, with various numbers of inputs and

outputs, and different numbers of inputs to the OR gates.

An example of a commonly used PAL is called the 22V10 [13], which is depicted

in Figure B.29. There are 11 input pins that feed the AND plane, and an additional input

that can also serve as a clock input. The OR gates are of variable size, ranging from 8 to

16 inputs.

Each output pin has a tri-state driver, which allows the pin to optionally be used as an

input pin. Extra circuitry is connected to each OR gate and is referred to as a macrocell.

ISTUDY

B.6 PROGRAMMABLE LOGIC DEVICES 725

f1

f2

P1

P2

P3

P4

x1 x2 x3

AND plane

Figure B.28 An example of a PAL.

Figure B.30 shows one of the macrocells in the 22V10 PAL. It connects the OR gate

to one input on an XOR gate, which feeds a D flip-flop. Since the other input to the XOR

gate can be programmed to be 0 or 1, it can be used to complement the OR-gate output.

A 2-to-1 multiplexer allows bypassing of the flip-flop, and the tri-state driver can be either

permanently enabled or connected to a product term from the AND plane. Either the Q

output from the flip-flop or the output of the tri-state driver can be connected to the AND

plane. If the tri-state driver is disabled, then the corresponding pin can be used as an input.

PLAs, PALs, and other similar types of simple PLDs (SPLDs), are manufactured by

Microchip Technology. An interested reader can examine the information that this company

provides on its web site.

B.6.3 PROGRAMMING OF PLAS AND PALS

In Figures B.27 and B.28, each connection between a logic signal in a PLA or PAL and the

AND/OR gates is shown as an X. We describe how these switches are implemented using

transistors in Section B.10. Users’ circuits are implemented in the devices by configuring,

or programming, these switches. Commercial chips contain a few thousand programmable

switches, hence it is not feasible for a user of these chips to specify manually the desired

programming state of each switch. Instead, CAD systems are employed for this purpose.

CAD systems that support targeting of circuits to PLDs have the capability to automatically

ISTUDY

726 A P P E N D I X B ∙ IMPLEMENTATION TECHNOLOGY

In/outMacrocell

8

#1

Inputs
11

In/outMacrocell

10

#2

In/outMacrocell

12

#3

In/outMacrocell

8

#10

Preset

Reset

Clock

AND-plane

Figure B.29 The 22V10 PAL device.

produce the necessary information for programming each of the switches in the device. A

computer system that runs the CAD tools may be connected by a cable to a dedicated pro-
gramming unit. Once the user has completed the design of a circuit, the CAD tools generate

a file, often called a programming file or fuse map, that specifies the state that each switch

in the PLD should have, to realize correctly the designed circuit. The PLD is placed into the

programming unit, and the programming file is transferred from the computer system. The

programming unit places the chip into a special programming mode and configures each

switch individually.

ISTUDY

B.6 PROGRAMMABLE LOGIC DEVICES 727

To

D Q

Clock

0/1

0/1

Q
R

P

Preset

Reset

Pin

0/1

0/1

AND plane

From

AND plane

1

8

Figure B.30 The 22V10 macrocell.

PLAs or PALs used as part of a logic circuit usually reside with other chips on a printed

circuit board (PCB). The procedure described above assumes that the chip can be removed

from the circuit board for programming in the programming unit. Removal is made possible

by using a socket on the PCB, as illustrated in Figure B.31. Although PLAs and PALs are

available in the DIP packages shown in Figure B.21a, they are also available in another

popular type of package, called a plastic-leaded chip carrier (PLCC), which is depicted in

Figure B.31. On all four of its sides, the PLCC package has pins that “wrap around” the

edges of the chip, rather than extending straight down as in the case of a DIP. The socket

that houses the PLCC is attached by solder to the circuit board, and the PLCC is held in the

socket by friction.

Instead of relying on a programming unit to configure a chip, it would be advantageous

to be able to perform the programming while the chip is still attached to its circuit board.

This method of programming is called in-system programming (ISP). It is not usually pro-

vided for PLAs or PALs, but is available for the more sophisticated chips that are described

below.

B.6.4 COMPLEX PROGRAMMABLE LOGIC DEVICES (CPLDS)

PLAs and PALs are useful for implementing a wide variety of small digital circuits. Each

device can be used to implement circuits that do not require more than the number of inputs,

product terms, and outputs that are provided in the particular chip. These chips are limited

ISTUDY

728 A P P E N D I X B ∙ IMPLEMENTATION TECHNOLOGY

Prin
ted circ

uit b
oard

Figure B.31 A PLCC package with socket.

to fairly modest sizes, typically supporting a combined number of inputs plus outputs of not

more than 32. For implementation of circuits that require more inputs and outputs, either

multiple PLAs or PALs can be employed or else a more sophisticated type of chip, called

a complex programmable logic device (CPLD), can be used.

A CPLD comprises multiple circuit blocks on a single chip, with internal wiring

resources to connect the circuit blocks. Each circuit block is similar to a PLA or a PAL;

we will refer to the circuit blocks as PAL-like blocks. An example of a CPLD is given in

Figure B.32. It includes four PAL-like blocks that are connected to a set of interconnection
wires. Each PAL-like block is also connected to a subcircuit labeled I/O block, which is

attached to a number of the chip’s input and output pins.

Figure B.33 shows an example of the wiring structure and the connections to a PAL-

like block in a CPLD. The PAL-like block includes 3 macrocells (real CPLDs typically

have about 16 macrocells in a PAL-like block), each consisting of a four-input OR gate (real

CPLDs usually provide between 5 and 20 inputs to each OR gate). The OR-gate output is

connected to an XOR gate; the other input to this gate can be programmably connected to

1 or 0; if 1, then the XOR gate complements the OR-gate output, and if 0, then the XOR gate

has no effect. The macrocell also includes a flip-flop, a multiplexer, and a tri-state driver.

Each tri-state driver is connected to a pin on the CPLD package. The tri-state driver allows

each pin to be used either as an output from the CPLD or as an input.

The interconnection wiring contains programmable switches that are used to connect

the PAL-like blocks. Each of the horizontal wires can be connected to some of the vertical

wires that it crosses. One detail to note is that when a pin is used as an input, the macrocell

ISTUDY

B.6 PROGRAMMABLE LOGIC DEVICES 729

PAL-like

block

I/
O

 b
lo

ck

PAL-like

block

I/O
 b

lo
ck

PAL-like

block

I/
O

 b
lo

ck

PAL-like

block

I/O
 b

lo
ck

Interconnection wires

Figure B.32 Structure of a complex programmable logic device (CPLD).

associated with that pin cannot be used and is therefore wasted. Some CPLDs include

additional connections between the macrocells and the interconnection wiring that avoids

wasting macrocells in such situations.

Commercial CPLDs range in size from only 2 PAL-like blocks to more than 100 PAL-

like blocks. They are available in a variety of packages, including the PLCC package that

is shown in Figure B.31. Figure B.34a shows another type of package used to house CPLD

chips, called a quad flat pack (QFP). Like a PLCC package, the QFP package has pins on all

four sides, but whereas the PLCC’s pins wrap around the edges of the package, the QFP’s

pins extend outward from the package, with a downward-curving shape. The QFP’s pins

are much thinner than those on a PLCC, which means that the package can support a larger

number of pins; QFPs are available with more than 200 pins, whereas PLCCs are limited

to fewer than 100 pins.

Most CPLDs contain the same type of programmable switches that are used in SPLDs,

which are described in Section B.10. Programming of the switches may be accomplished

using the same technique described in Section B.6.3, in which the chip is placed into a

special-purpose programming unit. However, this programming method is rather inconve-

nient for large CPLDs for two reasons. First, large CPLDs may have more than 200 pins

on the chip package, and these pins are often fragile and easily bent. Second, to be pro-

grammed in a programming unit, a socket is required to hold the chip. Sockets for large

QFP packages are very expensive; they may cost more than the CPLD device itself. For

these reasons, CPLD devices usually support the ISP technique. A small connector is

included on the PCB that houses the CPLD, and a cable is connected between that con-

nector and a computer system. The CPLD is programmed by transferring the programming

information generated by a CAD system through the cable, from the computer into the

CPLD. The circuitry on the CPLD that allows this type of programming has been standard-

ized by the IEEE and is usually called a JTAG port. It uses four wires to transfer information

ISTUDY

730 A P P E N D I X B ∙ IMPLEMENTATION TECHNOLOGY

D Q

D Q

D Q

PAL-like block (details not shown)

PAL-like block

Figure B.33 A section of the CPLD in Figure B.32.

between the computer and the device being programmed. The term JTAG stands for Joint

Test Action Group. Figure B.34b illustrates the use of a JTAG port for programming two

CPLDs on a circuit board. The CPLDs are connected together so that both can be pro-

grammed using the same connection to the computer system. Once a CPLD is programmed,

it retains the programmed state permanently, even when the power supply for the chip is

turned off. This property is called nonvolatile programming.

CPLDs are used for the implementation of many types of digital circuits. In industrial

designs that employ some type of PLD device, CPLDs are used often, while SPLDs are

becoming less common. A number of companies offer CPLDs, including Intel, Lattice,

Microchip, and Xilinx. Information about these products is available on the internet.

ISTUDY

B.6 PROGRAMMABLE LOGIC DEVICES 731

(a) CPLD in a Quad Flat Pack (QFP) package

Printed

circuit board

To computer

(b) JTAG programming

Figure B.34 CPLD packaging and programming.

B.6.5 FIELD-PROGRAMMABLE GATE ARRAYS

The types of chips described above, 7400 series, SPLDs, and CPLDs, are useful for imple-

mentation of small or moderately-sized logic circuits. One way to quantify a circuit’s size
is to assume that the circuit is to be built using only simple logic gates and then estimate

how many of these gates are needed. A commonly used measure is the total number of two-

input NAND gates that would be needed to build the circuit; this measure is often called

the number of equivalent gates.

Using the equivalent-gates metric, the size of a 7400-series chip is simple to measure

because each chip contains only simple gates. For SPLDs and CPLDs the typical measure used

is that each macrocell represents about 20 equivalent gates. Thus a typical PAL that has eight

macrocells can accommodate a circuit that needs up to about 160 gates, and a large CPLD that

has 500 macrocells can implement circuits of up to about 10,000 equivalent gates.

By modern standards, a logic circuit with 10,000 gates is not large. To implement

larger circuits, it is convenient to use a different type of chip that has a larger logic capacity.

A field-programmable gate array (FPGA) is a programmable logic device that supports

implementation of relatively large logic circuits. FPGAs are quite different from SPLDs and

CPLDs because FPGAs do not contain AND or OR planes. Instead, FPGAs provide logic
elements for implementation of the required functions. The general structure of an FPGA

ISTUDY

732 A P P E N D I X B ∙ IMPLEMENTATION TECHNOLOGY

(b) Pin grid array (PGA) package (bottom view)

Logic block Interconnection switches

(a) General structure of an FPGA

I/
O

 b
lo

ck

I/O
 b

lo
ck

I/O block

I/O block

Figure B.35 A field-programmable gate array (FPGA).

is illustrated in Figure B.35a. It contains three main types of resources: logic elements, I/O

blocks for connecting to the pins of the package, and interconnection wires and switches.

The logic elements are arranged in a two-dimensional array, and the interconnection wires

are organized as horizontal and vertical routing channels between rows and columns of

logic blocks. The routing channels contain wires and programmable switches that allow

the logic elements to be interconnected in many ways. Figure B.35a shows two locations

for programmable switches; the red boxes adjacent to logic elements hold switches that

ISTUDY

B.6 PROGRAMMABLE LOGIC DEVICES 733

connect the logic element input and output terminals to the interconnection wires, and the

red boxes that are diagonally between logic elements connect one interconnection wire to

another (such as a vertical wire to a horizontal wire). Programmable connections also exist

between the I/O blocks and the interconnection wires. The actual number of programmable

switches and wires in an FPGA varies in commercially available chips.

FPGAs can be used to implement logic circuits that comprise millions of equivalent

logic gates. Examples of commercial FPGA products can be found on the websites provided

by Intel, Microchip, Lattice, and Xilinx, which are the leading providers of these chips.

FPGA chips are available in a variety of packages, including the PLCC and QFP packages

described earlier. Figure B.35b depicts another type of package, called a pin grid array
(PGA). A PGA package may have up to a few hundred pins in total, which extend straight

outward from the bottom of the package, in a grid pattern. Another version of this packaging

technology is known as the ball grid array (BGA). In a BGA the pins are small round balls,

instead of posts. The advantage of BGA packages is that the pins are very small; hence

more pins can be provided on a relatively small package.

Each logic element in an FPGA typically has a small number of inputs and outputs.

A variety of FPGA products are on the market, featuring different types of logic elements.

The most commonly used logic element is a lookup table (LUT), which contains storage
cells that are used to store the truth table of a logic function. Each cell is capable of holding

a single logic value, either 0 or 1. LUTs of various sizes may be created, where the size

is defined by the number of inputs. Figure B.36as shows the structure of a small LUT.

It has two inputs, x1 and x2, and one output, f . It is capable of implementing any logic

function of two variables. Because a two-variable truth table has four rows, this LUT has

four storage cells. One cell corresponds to the output value in each row of the truth table.

The input variables x1 and x2 are used as the select inputs of three multiplexers that provide

the content of one of the four storage cells as the output of the LUT. We discuss storage

cells in Section B.9.

To see how a logic function can be realized in the two-input LUT, consider the truth

table in Figure B.36b. The function f1 from this table can be stored in the LUT as illustrated

in Figure B.36c. The arrangement of multiplexers in the LUT correctly realizes the function

f1. When x1 = x2 = 0, the output of the LUT is driven by the top storage cell, which

represents the entry in the truth table for x1x2 = 00. Similarly, for all valuations of x1 and

x2, the logic value stored in the storage cell corresponding to the entry in the truth table

chosen by the particular valuation appears on the LUT output.

Figure B.37 shows a three-input LUT. It has eight storage cells because a three-variable

truth table has eight rows. In commercial FPGA chips, LUTs usually have between four and

six inputs, which require 16 and 64 storage cells, respectively. In addition to a LUT, FPGA

logic elements usually include a flip-flop as indicated in Figure B.38.

For a logic circuit to be realized in an FPGA, each logic function in the circuit must be

small enough to fit within a single logic element. In practice, a user’s circuit is automati-

cally translated into the required form by using CAD tools (see Chapter 10). When a circuit

is implemented in an FPGA, the logic elements are programmed to realize the necessary

functions and the routing channels are programmed to make the required interconnections

between logic elements. FPGAs are configured by using the ISP method, which we ex-

plained in Section B.6.4. The storage cells in the LUTs in an FPGA are volatile, which

means that they lose their stored contents whenever the power supply for the chip is turned

off. Hence the FPGA has to be programmed every time power is applied. Often a small

ISTUDY

734 A P P E N D I X B ∙ IMPLEMENTATION TECHNOLOGY

(a) Circuit for a two-input LUT

x1

x2

f

0/1

0/1

0/1

0/1

x1 x2 f1

0

0

1

1

0

1

0

1

1

0

0

1

(b) f1 = x1 x2 + x1 x2

(c) Storage cell contents in the LUT

x1

f1

x2

1

0

0

1

Figure B.36 A two-input lookup table (LUT).

x1

x2

x3

f

0/1

0/1

0/1

0/1

0/1

0/1

0/1

0/1

Figure B.37 A three-input LUT.

ISTUDY

B.6 PROGRAMMABLE LOGIC DEVICES 735

Out

D Q

Clock

Select

Flip-flop
In1

In2

In3

LUT

Figure B.38 Inclusion of a flip-flop in an FPGA logic element.

memory chip that holds its data permanently, called a programmable read-only memory
(PROM), is included on the circuit board that houses the FPGA. The storage cells in the

FPGA are loaded automatically from the PROM when power is applied to the chips.

A small FPGA that has been programmed to implement a circuit is depicted in

Figure B.39. The FPGA has two-input LUTs, and there are four wires in each routing

0

1

0

0

0

1

1

1

0

0

0

1

f

x1

x1

x2 x3

x2

f1 f2

f1

f2

x3

x2

f

Figure B.39 A section of a programmed FPGA.

ISTUDY

736 A P P E N D I X B ∙ IMPLEMENTATION TECHNOLOGY

channel. The figure shows the programmed states of both the logic elements and wiring

switches in a section of the FPGA. Programmable wiring switches are indicated by an X.

Each switch shown in red is turned on and makes a connection between a horizontal and

vertical wire. The switches shown in black are turned off. We describe how the switches

are implemented by using transistors in Section B.10.1. The truth tables programmed into

the logic elements in the top row of the FPGA correspond to the functions f1 = x1x2 and

f2 = x2x3. The logic element in the bottom right of the figure is programmed to produce

f = f1 + f2 = x1x2 + x2x3.

B.7 CUSTOM CHIPS, STANDARD CELLS, AND
GATE ARRAYS

The programmable switches in a PLD provide the important benefit of user programma-

bility, but they consume a significant amount of space on the chip and lead to increased

cost. They also result in a reduction in the speed of operation of circuits, and an increase in

power consumption. In this section we will introduce some high-capacity integrated circuit

technologies that do not contain programmable switches.

To provide the largest number of logic gates, highest circuit speed, or lowest power,

a so-called custom chip can be manufactured. Whereas a PLD is prefabricated, containing

logic gates and programmable switches that are programmed to realize a user’s circuit, a

custom chip is created from scratch. The designer of a custom chip has complete flexibility

to decide the size of the chip, the number of transistors the chip contains, the placement of

each transistor on the chip, and the way the transistors are connected together. The process

of defining exactly where on the chip each transistor and wire is situated is called chip
layout. For a custom chip the designer may create any layout that is desired. A custom chip

requires a large amount of design effort and is therefore expensive. Consequently, such

chips are produced only when standard parts like FPGAs do not meet the requirements. To

justify the expense of a custom chip, the product being designed must be expected to sell in

sufficient quantities to recoup the cost. Two examples of products that are usually realized

with custom chips are microprocessors and memory chips.

In situations where the chip designer does not need complete flexibility for the layout

of each individual transistor in a custom chip, some of the design effort can be avoided by

using a technology known as standard cells. Chips made using this technology are often

called application-specific integrated circuits (ASICs). An example of a small section of an

ASIC is depicted in Figure B.40. CAD tools are used to automatically place the standard

cells into rows and to create interconnecting wires in the routing channels between the rows.

Many variants of standard cells are usually provided, including basic logic gates, latches,

flip-flops, and so on. The available standard cells are prebuilt and are stored in a library

that can be accessed by the designer. In Figure B.40 the interconnection wires are drawn in

two colors. This scheme is used because metal wires can be created on integrated circuits in

multiple layers, which makes it possible for two wires to cross one another without creating

a short circuit. The red wires represent one layer of metal wires, and the black wires are a

different layer. Each red square represents a hard-wired connection (called a via) between a

wire on one layer and a wire on the other layer. In current technology it is possible to have

ISTUDY

B.7 CUSTOM CHIPS, STANDARD CELLS, AND GATE ARRAYS 737

x1

f1

f2

x2

x3

Figure B.40 A section of two rows in a standard-cell chip.

ten or more layers of metal wiring. Some of the metal layers can be placed on top of the

transistors in the logic gates, resulting in a more efficient chip layout.

Like a custom chip, a standard-cell chip is created from scratch according to a user’s

specifications. The circuitry shown in Figure B.40 implements the two logic functions that

we realized in a PLA in Figure B.26, namely, f1 = x1x2 + x1x3 + x1x2x3 and f2 = x1x2 +
x1x2x3+x1x3. Because of the expense involved, a standard-cell chip would never be created

for a small circuit such as this one, and thus the figure shows only a portion of a much

larger chip. The layout of individual gates (standard cells) is predesigned and fixed. The

chip layout can be created automatically by CAD tools because of the regular arrangement

of the logic gates (cells) in rows. A typical chip has many long rows of logic gates with

a large number of wires between each pair of rows. The I/O blocks around the periphery

connect to the pins of the chip package, such as a QFP, PGA, or BGA package.

Another technology, similar to standard cells, is the gate-array technology. In a gate

array parts of the chip are prefabricated, and other parts are custom fabricated for a partic-

ular user’s circuit. This concept exploits the fact that integrated circuits are fabricated in a

sequence of steps, some steps to create transistors and other steps to create wires to connect

the transistors together. In gate-array technology, the manufacturer performs most of the

fabrication steps, typically those involved in the creation of the transistors, without consid-

ering the requirements of a user’s circuit. This process results in a silicon wafer of partially

finished chips, called the gate-array template. Later the template is modified, usually by fab-

ricating wires that connect the transistors together, to create a user’s circuit in each finished

chip. The gate-array approach provides cost savings in comparison to the custom-chip

approach because the gate-array manufacturer can amortize the cost of chip fabrication

over a large number of template wafers, all of which are identical. Many variants of gate-

array technology exist. Some have relatively large logic cells, while others are configurable

at the level of a single transistor.

An example of a gate-array template is given in Figure B.41. The gate array contains a

two-dimensional array of logic cells. The chip’s general structure is similar to a standard-

cell chip except that in the gate array all logic cells are identical. Although the types of

logic cells used in gate arrays vary, one common example is a two- or three-input NAND

gate. In some gate arrays empty spaces exist between the rows of logic cells to accommo-

date the wires that will be added later to connect the logic cells together. However, most

ISTUDY

738 A P P E N D I X B ∙ IMPLEMENTATION TECHNOLOGY

Figure B.41 A sea-of-gates gate array.

gate arrays do not have spaces between rows of logic cells, and the interconnection wires

are fabricated on top of the logic cells. This design is possible because, as discussed for

Figure B.40, metal wires can be created on a chip in multiple layers. This approach is known

as the sea-of-gates technology. Figure B.42 depicts a small section of a gate array that has

been customized to implement the logic function f = x2x3+x1x3. As we showed in Section 2.7,

it is easy to verify that this circuit with only NAND gates is equivalent to the AND-OR form

of the circuit.

B.8 PRACTICAL ASPECTS

In this section we provide more detailed information on several aspects of digital circuits.

We describe how transistors are fabricated in silicon and give a detailed explanation of how

transistors operate. We discuss the robustness of logic circuits and discuss the important

issues of signal propagation delays and power dissipation in logic gates.

B.8.1 MOSFET FABRICATION AND BEHAVIOR

To understand the operation of NMOS and PMOS transistors, we need to consider how

they are built in an integrated circuit. Integrated circuits are fabricated on silicon wafers. A

silicon wafer is usually 6, 8, or 12 inches in diameter and is somewhat similar in appearance

to an audio compact disc (CD). Many integrated circuit chips are fabricated on one wafer,

and the wafer is then cut to provide the individual chips.

ISTUDY

B.8 PRACTICAL ASPECTS 739

x1

f1

x2

x3

Figure B.42 The logic function f1 = x2x3 + x1x3 in the gate array of Figure B.41.

Silicon is an electrical semiconductor, which means that it can be manipulated such

that it sometimes conducts electrical current and at other times does not. A transistor is

fabricated by creating areas in the silicon substrate that have an excess of either positive or

negative electrical charge. Negatively charged areas are called type n, and positively charged

areas are type p. Figure B.43 illustrates the structure of an NMOS transistor. It has type n
silicon for both the source and drain terminals, and type p for the substrate terminal. Metal

wiring is used to make electrical connections to the source and drain terminals.

When MOSFETs were invented, the gate terminal was made of metal. Now a material

known as polysilicon is used. Like metal, polysilicon is a conductor. The gate is electrically

isolated from the rest of the transistor by a layer of silicon dioxide (SiO2), which is a type

of glass that acts as an electrical insulator between the gate terminal and the substrate of

the transistor. The transistor’s operation is governed by electrical fields caused by voltages

applied to its terminals, as discussed below.

In Figure B.43 the voltage levels applied at the source, gate, and drain terminals are

labeled VS, VG, and VD, respectively. Consider first the situation depicted in Figure B.43a
in which both the source and gate are connected to Gnd (VS = VG = 0 V). The type n
source and type n drain are isolated from one another by the type p substrate. In electrical

terms two diodes exist between the source and drain. One diode is formed by the p–n junc-

tion between the substrate and source, and the other diode is formed by the p–n junction

between the substrate and drain. These back-to-back diodes represent a very high resistance

ISTUDY

740 A P P E N D I X B ∙ IMPLEMENTATION TECHNOLOGY

++++++ ++++ ++++++ +++ ++++++
++++++ ++++++ ++++++

+++++++++ +++++++++
+++++++++++ +++++++++++

Drain (type n)Source (type n)

Substrate (type p)

SiO2

(a) When VGS = 0 V, the transistor is off

−
−

−
−

−
−

−
−

−
−

−
−

(b) When VGS = 5 V, the transistor is on

VS = 0 V

VG = 0 V

VD

SiO2

++++++ ++++ +++ ++++++
++++++ ++++++

+++++++++ ++++++++++
++++++++++

−
−

−
−

−
−

−
−

− − − −
−
−
−

−
−

−
−

−
−

−
−

−
−

−
−

+ +++++++++++++++++

Channel (n-type)

VDD

++ +++++++

VG = 5 V

VD = 0 V
VS = 0 V

++++++

Figure B.43 Physical structure of an NMOS transistor.

(about 1012 Ω [1]) between the drain and source that prevents current flow. We say that the

transistor is turned off, or cut off, in this state.

Next consider the effect of increasing the voltage at the gate terminal with respect to the

voltage at the source. Let VGS represent the gate-to-source voltage. If VGS is greater than

a certain minimum positive voltage, called the threshold voltage VT , then the transistor

changes from an open switch to a closed switch, as explained below. The exact level of VT
depends on many factors, but it is typically about 0.2 VDD.

The transistor’s state when VGS > VT is illustrated in Figure B.43b. The gate terminal

is connected to VDD, resulting in VGS = 5 V. The positive voltage on the gate attracts free

ISTUDY

B.8 PRACTICAL ASPECTS 741

electrons that exist in the type n source terminal, as well as in other areas of the transistor,

toward the gate. Because the electrons cannot pass through the layer of glass under the gate,

they gather in the region of the substrate between the source and drain, which is called the

channel. This concentration of electrons inverts the silicon in the area of the channel from

type p to type n, which effectively connects the source and the drain. The size of the channel

is determined by the length and width of the gate. The channel length L is the dimension

of the gate between the source and drain, and the channel width W is the other dimension.

The channel can also be thought of as having a depth, which is dependent on the applied

voltages at the source, gate, and drain.

No current can flow through the gate node of the transistor, due to the layer of glass

that insulates the gate from the substrate. A current ID may flow from the drain node to

the source. For a fixed value of VGS > VT , the value of ID depends on the voltage applied

across the channel VDS. If VDS = 0 V, then no current flows. As VDS is increased, ID increases

approximately linearly with the applied VDS, as long as VD is sufficiently small to provide at

least VT volts across the drain end of the channel, that is VGD > VT . In this range of voltages,

namely, 0 < VDS < (VGS − VT), the transistor is said to operate in the triode region, also

called the linear region. The relationship between voltage and current is approximated by

the equation

ID = k′n
W
L

[

(VGS − VT)VDS −
1

2
V2

DS

]
[B.1]

The symbol k′n is called the process transconductance parameter. It is a constant that

depends on the technology being used and has the units A∕V2.

As VD is increased, the current flow through the transistor increases, as given by Equa-

tion B.1, but only to a certain point. When VDS = VGS − VT , the current reaches its maximum

value. For larger values of VDS, the transistor is no longer operating in the triode region.

Since the current is at its saturated (maximum) value, we say that the transistor is in the

saturation region. The current is now independent of VDS and is given by the expression

ID = 1

2
k′n

W
L

(VGS − VT)2 [B.2]

Figure B.44 shows the shape of the current-voltage relationship in the NMOS transistor

for a fixed value of VGS > VT . The figure indicates the point at which the transistor leaves

the triode region and enters the saturation region, which occurs at VDS = VGS − VT .

Example B.3Assume the values k′n = 60 𝜇A∕V2, W∕L = 2.0 𝜇m∕0.5 𝜇m, VS = 0 V, VG = 5 V, and

VT = 1 V. If VD = 2.5 V, the current in the transistor is given by Equation B.1 as ID ≈ 1.7 mA.

If VD = 5 V, the saturation current is calculated using Equation B.2 as ID ≈ 2 mA.

The PMOS Transistor
The behavior of PMOS transistors is the same as for NMOS except that all voltages

and currents are reversed. The source terminal of the PMOS transistor is the terminal with

the higher voltage level (recall that for an NMOS transistor the source terminal is the one

ISTUDY

742 A P P E N D I X B ∙ IMPLEMENTATION TECHNOLOGY

ID

0

Triode

VDS
VGS − VT

Saturation

Figure B.44 The current-voltage relationship in the NMOS transistor.

with the lower voltage level), and the threshold voltage required to turn the transistor on has

a negative value. PMOS transistors have the same physical construction as NMOS transis-

tors except that wherever the NMOS transistor has type n silicon, the PMOS transistor has

type p, and vice versa. For a PMOS transistor the equivalent of Figure B.43a is to connect

both the source and gate nodes to VDD, in which case the transistor is turned off. To turn

the PMOS transistor on, equivalent to Figure B.43b, we would set the gate node to Gnd,

resulting in VGS = −5 V.

Because the channel is type p silicon, instead of type n, the physical mechanism for cur-

rent conduction in PMOS transistors is different from that in NMOS transistors. A detailed

discussion of this concept is beyond the scope of this book, but one implication has to be

mentioned. Equations B.1 and B.2 use the parameter k′n. The corresponding parameter for

a PMOS transistor is k′p, but current flows more readily in type n silicon than in type p, with

the result that in a typical technology k′p ≈ 0.4 × k′n. For a PMOS transistor to have current

capacity equal to that of an NMOS transistor, we must use W∕L of about two to three times

larger in the PMOS transistor. In logic gates the sizes of NMOS and PMOS transistors are

usually chosen to account for this factor.

B.8.2 MOSFET ON-RESISTANCE

In Section B.1 we considered MOSFETs as ideal switches that have infinite resistance when

turned off and zero resistance when on. The actual resistance in the channel when the tran-

sistor is turned on, referred to as the on-resistance, is given by VDS∕ID. Using Equation B.1

we can calculate the on-resistance in the triode region, as shown below.

ISTUDY

B.8 PRACTICAL ASPECTS 743

Example B.4Consider a CMOS inverter in which the input voltage Vx is equal to 5 V. The NMOS tran-

sistor is turned on, and the output voltage Vf is close to 0 V. Hence VDS for the NMOS

transistor is close to zero and the transistor is operating in the triode region. In the curve

in Figure B.44, the transistor is operating at a point very close to the origin. Although the

value of VDS is small, it is not exactly zero. In the next section we explain that VDS would

typically be about 0.1 mV. Hence the current ID is not exactly zero; it is defined by Equation B.1.

In this equation we can ignore the term involving V2
DS because VDS is small. In this case the

on-resistance is approximated by

RDS = VDS∕ID = 1∕
[

k′n
W
L

(VGS − VT)
]

[B.3]

Assuming the values k′n = 60 𝜇A∕V2, W∕L = 2.0 𝜇m∕0.5 𝜇m, VGS = 5 V, and VT = 1 V,

we get RDS ≈ 1 kΩ.

B.8.3 VOLTAGE LEVELS IN LOGIC GATES

In Figure B.1 we showed that the logic values are represented by a range of voltage levels.

We now consider the issue of voltage levels more carefully.

The high and low voltage levels in a logic family can be characterized by the operation

of its basic inverter. Figure B.45a reproduces the circuit in Figure B.5 for an inverter built

with NMOS technology. When Vx = 0 V, the NMOS transistor is turned off. No current

flows; hence Vf = 5 V. When Vx = VDD, the NMOS transistor is turned on. To calculate

the value of Vf , we can represent the NMOS transistor by a resistor with the value RDS, as

(b) Vx = 5 V(a) NMOS NOT gate

Istat

R

RDS

VDD

Vf = VOL

VDD

Vx

Vf

Figure B.45 Voltage levels in the NMOS inverter.

ISTUDY

744 A P P E N D I X B ∙ IMPLEMENTATION TECHNOLOGY

illustrated in Figure B.45b. Then Vf is given by the voltage divider

Vf = VDD
RDS

RDS + R

Example B.5 Assume that R = 25 kΩ. Using the result from Example B.4, RDS = 1 kΩ, which gives

Vf ≈ 0.2 V.

As indicated in Figure B.45b, a current Istat flows through the NMOS inverter under

the static condition Vx = VDD. This current is given by

Istat = Vf ∕RDS = 0.2 V∕1 kΩ = 0.2 mA

This static current has important implications, which we discuss in Section B.8.6.

In practice, the pull-up device R is usually implemented using a PMOS transistor. Such

circuits are referred to as pseudo-NMOS circuits. They are fully compatible with CMOS

circuits; hence a single chip may contain both CMOS and pseudo-NMOS gates. Example B.17

discusses a circuit for a pseudo-NMOS inverter and shows how to calculate its output volt-

age levels.

The CMOS Inverter
It is customary to use the symbols VOH and VOL to characterize the voltage levels in a

logic circuit. The meaning of VOH is the voltage produced when the output is high. Similarly,

VOL refers to the voltage produced when the output is low. As discussed above, in the NMOS

inverter VOH = VDD and VOL is about 0.2 V.

Consider again the CMOS inverter in Figure B.12a. Its output-input voltage relation-

ship is summarized by the voltage transfer characteristic shown in Figure B.46. The curve

gives the steady-state value of Vf for each value of Vx. When Vx = 0 V, the NMOS transistor

is off. No current flows; hence Vf = VOH = VDD. When Vx = VDD, the PMOS transistor

is off, no current flows, and Vf = VOL = 0 V. For completeness we should mention that

even when a transistor is turned off, a small current, called the leakage current, may flow

through it. This current has a slight effect on VOH and VOL. For example, a typical value of

VOL is 0.1 mV, rather than 0 V [1].

Figure B.46 includes labels at the points where the output voltage begins to change

from high to low, and vice versa. The voltage VIL represents the point where the output

voltage is high and the slope of the curve equals −1. This voltage level is defined as the

maximum input voltage level that the inverter will interpret as low, hence producing a high

output. Similarly, the voltage VIH , which is the other point on the curve where the slope

equals −1, is the minimum input voltage level that the inverter will interpret as high, hence

producing a low output. The parameters VOH ,VOL,VIL, and VIH are important for quantify-

ing the robustness of a logic family, as discussed below.

ISTUDY

B.8 PRACTICAL ASPECTS 745

Vf

Vx

VOH = VDD

(VDD − VT) VDD

VDD

VOL = 0 V

VT VIL VIH

2

Slope = −1

Figure B.46 The voltage transfer characteristic for the CMOS inverter.

B.8.4 NOISE MARGIN

Consider the two NOT gates shown in Figure B.47a. Let us refer to the gates on the left

and right as N1 and N2, respectively. Electronic circuits are constantly subjected to random

perturbations, called noise, which can alter the output voltage levels produced by the gate

N1. It is essential that this noise not cause the gate N2 to misinterpret a low logic value as a

high one, or vice versa. Consider the case where N1 produces its low voltage level VOL. The

presence of noise may alter the voltage level, but as long as it remains less than VIL, it will

be interpreted correctly by N2. The ability to tolerate noise without affecting the correct

operation of the circuit is known as noise margin. For the low output voltage, we define the

low noise margin as

NML = VIL − VOL

A similar situation exists when N1 produces its high output voltage VOH . Any existing

noise in the circuit may alter the voltage level, but it will be interpreted correctly by N2 as

long as the voltage is greater than VIH . The high noise margin is defined as

NMH = VOH − VIH

ISTUDY

746 A P P E N D I X B ∙ IMPLEMENTATION TECHNOLOGY

(b) The capacitive load at node A

(a) A NOT gate driving another NOT gate

VDD VDD

Vx Vf

C

VA

x f
A

N1 N2

Figure B.47 Parasitic capacitance in integrated circuits.

Example B.6 For a given technology the voltage transfer characteristic of the basic inverter determines the

levels VOH , VOL, VIL, and VIH . For CMOS we showed in Figure B.46 that VOH = VDD and

VOL = 0 V. By finding the two points where the slope of the voltage transfer characteristic

is equal to −1, it can be shown [1] that VIL ≅ 1

8
(3VDD + 2VT) and VIH ≅ 1

8
(5VDD − 2VT).

For the typical value VT = 0.2 VDD, this gives

NML = NMH = 0.425 × VDD

Hence the available noise margin depends on the power supply voltage level. For VDD = 5 V,

the noise margin is 2.1 V, and for VDD = 3.3 V, the noise margin is 1.4 V.

B.8.5 DYNAMIC OPERATION OF LOGIC GATES

In Figure B.47a the node between the two gates is labeled A. Because of the way in which

transistors are constructed in silicon, N2 has the effect of contributing to a capacitive load

at node A. Figure B.43 shows that transistors are constructed by using several layers of

different materials. Wherever two types of material meet or overlap inside the transistor, a

capacitor may be effectively created. This capacitance is called parasitic, or stray, capaci-

tance because it results as an undesired side effect of transistor fabrication. In Figure B.47

we are interested in the capacitance that exists at node A. A number of parasitic capacitors

are attached to this node, somes caused by N1 and others caused by N2. One significant

ISTUDY

B.8 PRACTICAL ASPECTS 747

parasitic capacitor exists between the input of inverter N2 and ground. The value of this

capacitor depends on the sizes of the transistors in N2. Each transistor contributes a gate
capacitance, Cg = W × L × Cox. The parameter Cox, called the oxide capacitance, is a

constant for the technology being used and has the units fF∕𝜇m2. Additional capacitance

is caused by the transistors in N1 and by the metal wiring that is attached to node A. It

is possible to represent all of the parasitic capacitance by a single equivalent capacitance

between node A and ground [2]. In Figure B.47b this equivalent capacitance is labeled C.

The existence of stray capacitance has a negative effect on the speed of operation of

logic circuits. Voltage across a capacitor cannot change instantaneously. The time needed to

charge or discharge a capacitor depends on the size of the capacitance C and on the amount

of current through the capacitor. In the circuit of Figure B.47b, when the PMOS transistor in

N1 is turned on, the capacitor is charged to VDD; it is discharged when the NMOS transistor

is turned on. In each case the current flow ID through the involved transistor and the value

of C determine the rate of charging and discharging the capacitor.

Chapter 2 introduced the concept of a timing diagram, and Figure 2.10 shows a tim-

ing diagram in which waveforms have perfectly-vertical edges in transition from one logic

level to the other. In real circuits, waveforms do not have this “ideal” shape, but instead

have the appearance of those in Figure B.48. The figure gives a waveform for the input Vx
in Figure B.47b and shows the resulting waveform at node A. We assume that Vx is initially

at the voltage level VDD and then makes a transition to 0. Once Vx reaches a sufficiently

low voltage, N1 begins to drive voltage VA toward VDD. Because of the parasitic capaci-

tance, VA cannot change instantaneously and a waveform with the shape indicated in the

figure results. The time needed for VA to change from low to high is called the rise time, tr,

which is defined as the time elapsed from when VA is at 10 percent of VDD until it reaches

Propagation delay

VDD

VDD

VA

Vx

Gnd

Gnd

50% 50%

90%

Propagation delay

10%

50%

90%

50%

10%

tftr

Figure B.48 Voltage waveforms for logic gates.

ISTUDY

748 A P P E N D I X B ∙ IMPLEMENTATION TECHNOLOGY

90 percent of VDD. Figure B.48 also defines the total amount of time needed for the change

at Vx to cause a change in VA. This interval is called the propagation delay, often written

tp, of the inverter. It is the time from when Vx reaches 50 percent of VDD until VA reaches

the same level.

After remaining at 0 V for some time, Vx then changes back to VDD, causing N1 to

discharge C to Gnd. In this case the transition time at node A pertains to a change from high

to low, which is referred to as the fall time, tf , from 90 percent of VDD to 10 percent of VDD.

As indicated in the figure, there is a corresponding propagation delay for the new change in

Vx to affect VA. In a given logic gate, the relative sizes of the PMOS and NMOS transistors

are usually chosen such that tr and tf have about the same value.

Equations B.1 and B.2 specify the amount of current flow through an NMOS transistor.

Given the value of C in Figure B.47, it is possible to calculate the propagation delay for a

change in VA from high to low. For simplicity, assume that Vx is initially 0 V; hence the

PMOS transistor is turned on, and VA = 5 V. Then Vx changes to VDD at time 0, causing the

PMOS transistor to turn off and the NMOS to turn on. The propagation delay is defined as

the time required to discharge C through the NMOS transistor to the voltage VDD∕2. When

Vx first changes to VDD, VA = 5 V; hence the NMOS transistor will have VDS = VDD and

will be in the saturation region. The current ID is given by Equation B.2. Once VA drops

below VDD − VT , the NMOS transistor will enter the triode region where ID is given by

Equation B.1. For our purposes, we can approximate the current flow as VA changes from

VDD to VDD∕2 by finding the average of the values given by Equation B.2 with VDS = VDD
and Equation B.1 with VDS = VDD∕2. Using the basic expression for the time needed to

charge a capacitor (see Example B.15), we have

tp = CΔV
ID

=
CVDD∕2

ID

Substituting for the average value of ID as discussed above, yields [1]

tp ≅ 1.7 C
k′n

W
L VDD

[B.4]

This expression specifies that the speed of the circuit depends both on the value of C and

on the dimensions of the transistor. The delay can be reduced by making C smaller or by

making the ratio W∕L larger. The expression shows the propagation time when the output

changes from a high level to a low level. The low-to-high propagation time is given by the

same expression but using k′p and W∕L of the PMOS transistor.

In logic circuits, L is usually set to the minimum value that is permitted according to

the specifications of the fabrication technology used. The value of W is chosen depending

on the amount of current flow, hence propagation delay, that is desired. Figure B.49 illus-

trates two sizes of transistors. Part (a) depicts a minimum-size transistor, which would be

used in a circuit wherever capacitive loading is small or where speed of operation is not

critical. Figure B.49b shows a larger transistor, which has the same length as the transis-

tor in part (a) but a larger width. There is a trade-off involved in choosing transistor sizes,

because a larger transistor takes more space on a chip than a smaller one. Also, increasing W
not only increases the amount of current flow in the transistor but also results in an increase

in the parasitic capacitance (recall that the capacitance Cg between the gate terminal and

ground is proportional to W × L), which tends to offset some of the expected improvement

ISTUDY

B.8 PRACTICAL ASPECTS 749

+

(a) Small transistor

L

W1

W2

L

(b) Larger transistor

Figure B.49 Transistor sizes.

in performance. In logic circuits large transistors are used where high capacitive loads must

be driven and where signal propagation delays must be minimized.

Example B.7In the circuit in Figure B.47, assume that C = 70 fF and that W∕L = 2.0 𝜇m∕0.5 𝜇m. Also,

k′n = 60 𝜇A∕V2 and VDD = 5 V. Using Equation B.4, the high-to-low propagation delay of

the inverter is tp ≈ 0.1 ns.

B.8.6 POWER DISSIPATION IN LOGIC GATES

In an electronic circuit it is important to consider the amount of electrical power consumed

by the transistors. Integrated circuit technology allows fabrication of billions of transistors

on a single chip; hence the amount of power used by an individual transistor must be small.

Power dissipation is an important consideration in all applications of logic circuits, but it

is crucial in situations that involve battery-operated equipment, such as portable computers

and the like.

Consider again the NMOS inverter in Figure B.45. When Vx = 0, no current flows and

hence no power is used. But when Vx = 5 V, power is consumed because of the current

Istat. The power consumed in the steady state is given by PS = IstatVDD. In Example B.5

we calculated Istat = 0.2 mA. The power consumed is then PS = 0.2 mA × 5 V = 1.0 mW.

If we assume that a chip contains, say, the equivalent of 10,000 inverters, then the total

power consumption is 10 W! Because of this large power consumption, NMOS-style gates

are used only in special-purpose applications, which we discuss in Section B.8.9.

To distinguish between power consumed during steady-state conditions and power con-

sumed when signals are changing, it is customary to define two types of power. Static power
is dissipated by the current that flows in the steady state, and dynamic power is consumed

when the current flows because of changes in signal levels. NMOS circuits consume static

power as well as dynamic power, while CMOS circuits consume mostly dynamic power.

Note that we mentioned in Section B.8.3 that a small amount of current, called leakage

ISTUDY

750 A P P E N D I X B ∙ IMPLEMENTATION TECHNOLOGY

Vx

Vf

ID

VDD

Vx

Vf

ID

(a) Current flow when input Vx

changes from 0 V to 5 V

(b) Current flow when input Vx

changes from 5 V to 0 V

Figure B.50 Dynamic current flow in CMOS circuits.

current, flows through transistors that are turned off. Although this leakage current causes

static power dissipation even when using CMOS circuits, we do not consider this effect

further in our discussion.

Consider the CMOS inverter presented in Figure B.12a. When the input Vx is low, no

current flows because the NMOS transistor is off. When Vx is high, the PMOS transistor is

off and again no current flows. Hence no current flows in a CMOS circuit under steady-state

conditions. Current does flow in CMOS circuits, however, for a short time when signals

change from one voltage level to another.

Figure B.50a depicts the following situation. Assume that Vx has been at 0 V for some

time; hence Vf = 5 V. Now let Vx change to 5 V. The NMOS transistor turns on, and it

pulls Vf toward Gnd. Because of the parasitic capacitance C at node f , voltage Vf does not

change instantaneously, and current ID flows through the NMOS transistor for a short time

while the capacitor is being discharged. A similar situation occurs when Vx changes from

5 V to 0, as illustrated in Figure B.50b. Here the capacitor C initially has 0 volts across it

and is then charged to 5 V by the PMOS transistor. Current flows from the power supply

through the PMOS transistor while the capacitor is being charged.

The voltage transfer characteristic for the CMOS inverter, shown in Figure B.46,

indicates that a range of input voltage Vx exists for which both transistors in the inverter are

turned on. Within this voltage range, specifically VT < Vx < (VDD−VT), current flows from

VDD to Gnd through both transistors. This current is often referred to as the short-circuit
current in the gate. In comparison to the amount of current used to (dis)charge the capacitor

C, the short-circuit current is negligible in most cases.

The power used by a single CMOS inverter is extremely small. Consider again the sit-

uation in Figure B.50a when Vf = VDD. The amount of energy stored in the capacitor is

equal to CV2
DD∕2 (see Example B.12). When the capacitor is discharged to 0 V, this stored

energy is dissipated in the NMOS transistor. Similarly, for the situation in Figure B.50b, the

energy CV2
DD∕2 is dissipated in the PMOS transistor when C is charged up to VDD. Thus

for each cycle in which the inverter charges and discharges C, the amount of energy

ISTUDY

B.8 PRACTICAL ASPECTS 751

dissipated is equal to CV2
DD. Since power is defined as energy used per unit time, the power

dissipated in the inverter is the product of the energy used in one discharge/charge cycle

times the number of such cycles per second, f . Hence the dynamic power consumed is

PD = fCV2
DD

In practice, the total amount of dynamic power used in CMOS circuits is significantly lower

than the total power needed in other technologies, such as NMOS. For this reason, virtually

all large integrated circuits fabricated today are based on CMOS technology.

Example B.8For a CMOS inverter, assume that C = 70 fF and f = 100 MHz. The dynamic power

consumed by the gate is PD = 175 𝜇W. If we assume that a chip contains the equivalent

of 10,000 inverters and that, on average, 20 percent of the gates change values at any given

time, then the total amount of dynamic power used in the chip is PD = 0.2 × 10,000 ×
175 𝜇W = 0.35 W.

B.8.7 PASSING 1S AND 0S THROUGH TRANSISTOR SWITCHES

In Figure B.4 we showed that NMOS transistors are used as pull-down devices and PMOS

transistors are used as pull-up devices. We now consider using the transistors in the opposite

way, that is, using an NMOS transistor to drive an output high and using a PMOS transistor

to drive an output low.

Figure B.51a illustrates the case of an NMOS transistor for which both the gate terminal

and one side of the switch are driven to VDD. Let us assume initially that both VG and node

A are at 0 V, and we then change VG to 5 V. Node A is the transistor’s source terminal

because it has the lowest voltage. Since VGS = VDD, the transistor is turned on and drives

node A toward VDD. When the voltage at node A rises, VGS decreases until the point when

(a) NMOS transistor (b) PMOS transistor

VDD

VDD

A B

Figure B.51 NMOS and PMOS transistors used in the opposite way

from Figure B.4.

ISTUDY

752 A P P E N D I X B ∙ IMPLEMENTATION TECHNOLOGY

VGS is no longer greater than VT . At this point the transistor turns off. Thus in the steady

state VA = VDD − VT , which means that an NMOS transistor can only partially pass a high

voltage signal.

A similar situation occurs when a PMOS transistor is used to pass a low voltage level,

as depicted in Figure B.51b. Here assume that initially both VG and node B are at 5 V. Then

we change VG to 0 V so that the transistor turns on and drives the source node (node B)

toward 0 V. When node B is decreased to VT , the transistor turns off; hence the steady-state

voltage is equal to VT .

In Section B.1 we said that for an NMOS transistor the substrate (body) terminal is

connected to Gnd and for a PMOS transistor the substrate is connected to VDD. The voltage

between the source and substrate terminals, VSB, which is called the substrate bias voltage,

is normally equal to 0 V in a logic circuit. But in Figure B.51 both the NMOS and PMOS

transistors have VSB = VDD. The bias voltage has the effect of increasing the threshold

voltage in the transistor VT by a factor of about 1.5 or higher [2, 1]. This issue is known as

the body effect.
Consider the logic gate shown in Figure B.52. In this circuit the VDD and Gnd con-

nections are reversed from the way in which they were used in previously discussed cir-

cuits. When both Vx1
and Vx2

are high, then Vf is pulled up to the high output voltage,

VOH = VDD − 1.5VT . If VDD = 5 V and VT = 1 V, then VOH = 3.5 V. When either Vx1
or

Vx2
is low, then Vf is pulled down to the low output voltage, VOL = 1.5VT , or about 1.5 V.

As shown by the truth table in the figure, the circuit represents an AND gate. In compari-

son to the normal AND gate shown in Figure B.15, the circuit in Figure B.52 appears to be

better because it requires fewer transistors. But a drawback of this circuit is that it offers a

lower noise margin because of the poor levels of VOH and VOL.

Another important weakness of the circuit in Figure B.52 is that it causes static power

dissipation, unlike a normal CMOS AND gate. Assume that the output of such an AND

(a) An AND gate circuit (b) Truth table and voltage levels

Vf

VDD

Vx1

Vx2

1.5 V

1.5 V

0

1

0

0

1

1

0

1

1.5 V

3.5 V

f

0

0

0

1

x1 x2 Vf

Voltage
Logic

value
Logic

value

Figure B.52 A poor implementation of a CMOS AND gate.

ISTUDY

B.8 PRACTICAL ASPECTS 753

gate drives the input of a CMOS inverter. When Vf = 3.5 V, the NMOS transistor in the

inverter is turned on and the inverter output has a low voltage level. But the PMOS tran-

sistor in the inverter is not turned off, because its gate-to-source voltage is −1.5 V, which

is larger than VT . Static current flows from VDD to Gnd through the inverter. A similar sit-

uation occurs when the AND gate produces the low output Vf = 1.5 V. Here the PMOS

transistor in the inverter is turned on, but the NMOS transistor is not turned off. The AND

gate implementation in Figure B.52 is not used in practice.

B.8.8 TRANSMISSION GATES

In Section B.8.7 we showed that an NMOS transistor passes 0 well and 1 poorly, while

a PMOS transistor passes 1 well and 0 poorly. It is possible to combine an NMOS and a

PMOS transistor into a single switch that is capable of driving its output terminal either to

a low or high voltage equally well. Figure B.53a gives the circuit for a transmission gate.

As indicated in parts (b) and (c) of the figure, it acts as a switch that connects x to f . Switch

control is provided by the select input s and its complement s. The switch is turned on by

setting Vs = 5 V and Vs = 0. When Vx is 0, the NMOS transistor will be turned on (because

VGS = Vs −Vx = 5 V) and Vf will be 0. On the other hand, when Vx is 5 V, then the PMOS

transistor will be on (VGS = Vs − Vx = −5 V) and Vf will be 5 V. A graphical symbol for

the transmission gate is given in Figure B.53d.

Transmission gates can be used in a variety of applications. The examples below show

how they can be used to implement multiplexers, XOR gates, and latch circuits.

(a) Circuit (b) Truth table

s = 0

s = 1

x

x

f = Z

f = x

(c) Equivalent circuit (d) Graphical symbol

fx

s

s

Z

x

0

1

fs

fx

s

s

Figure B.53 A transmission gate.

ISTUDY

754 A P P E N D I X B ∙ IMPLEMENTATION TECHNOLOGY

w1

w2 f

s

Figure B.54 A 2-to-1 multiplexer built using transmission

gates.

Example B.9 We showed a circuit that uses transmission gates to implement a multiplexer in Figure 4.1d,

which is reproduced in Figure B.54. The select input s is used to choose whether the output

f should have the value of input w1 or w2. If s = 0, then f = w1; if s = 1, then f = w2.

Example B.10 The XOR function in sum-of-products form is

x1 ⊕ x2 = x1x2 + x1x2

which leads to a circuit with two NOT gates, 2 two-input AND gates, and a two-input

OR gate. We know from Section B.3 that each AND and OR gate requires six transistors,

while a NOT gate needs two transistors. Hence 22 transistors are required to implement

this circuit in CMOS technology. It is possible to greatly reduce the number of transistors

needed by making use of transmission gates. Figure B.55 gives a circuit for an XOR gate

that uses the multiplexer structure shown in Figure B.54. The output f is set to the value of

x2 when x1 = 0 by the top transmission gate. The bottom transmission gate sets f to x2 when

x1 = 1. This circuit needs only six transistors. We discuss the notion of using multiplexers

to implement logic functions in Section 4.1.

x2

x1

f = x1 ⊕ x2

Figure B.55 Implementation of an XOR gate.

ISTUDY

B.8 PRACTICAL ASPECTS 755

A B
OutputData

Load

TG1

TG2

Figure B.56 Using transmission gates to implement a gated D latch.

Example B.11Consider the circuit in Figure B.56, which includes two transmission gates. One transmis-

sion gate, TG1, is used to connect the Data input terminal to point A in the circuit. The

second, TG2, is used as a switch in the feedback loop that maintains the state of the cir-

cuit. The transmission gates are controlled by the Load signal. If Load = 1, then TG1 is

on and the point A will have the same value as the Data input. Since the value presently

stored at Output may not be the same value as Data, the feedback loop is broken by having

TG2 turned off when Load = 1. When Load changes to 0, then TG1 turns off and TG2

turns on. The feedback path is closed and the memory element will retain its state as long

as Load = 0. This circuit implements a gated D latch. It is equivalent to the circuit with

NAND gates shown in Figure 5.7, with the Load input in Figure B.56 acting as the Clk
input.

B.8.9 FAN-IN AND FAN-OUT IN LOGIC GATES

The fan-in of a logic gate is defined as the number of inputs to the gate. Depending on

how a logic gate is constructed, it may be impractical to increase the number of inputs

beyond a small value. For example, consider the NMOS NAND gate in Figure B.57, which

has k inputs. We wish to consider the effect of k on the propagation delay tp through the

gate. Assume that all k NMOS transistors have the same width W and length L. Because

the transistors are connected in series, we can consider them to be equivalent to one long

transistor with length k×L and width W. Using Equation B.4 (which can be applied to both

CMOS and NMOS gates), the propagation delay is given by

tp ≅ 1.7 C
k′n

W
L VDD

× k

Here C is the equivalent capacitance at the output of the gate, including the parasitic capac-

itance contributed by each of the k transistors. The performance of the gate can be improved

ISTUDY

756 A P P E N D I X B ∙ IMPLEMENTATION TECHNOLOGY

Vf

Vx1

Vx2

Vx3

Vxk

VDD

Figure B.57 High fan-in NMOS NAND gate.

somewhat by increasing W for each NMOS transistor. But this change further increases C
and comes at the expense of chip area. Another drawback of the circuit is that each NMOS

transistor has the effect of increasing VOL, hence reducing the noise margin. It is practical

to build NAND gates in this manner only if the fan-in is small.

As another example of fan-in, Figure B.58 shows an NMOS k-input NOR gate. In this

case the k NMOS transistors connected in parallel can be viewed as one large transistor

with width k × W and length L. According to Equation B.4, the propagation delay should

be decreased by the factor k. However, the parallel-connected transistors increase the load

capacitance C at the gate’s output and, more importantly, it is extremely unlikely that all of

the transistors would be turned on when Vf is changing from a high to low level. It is thus

practical to build high fan-in NOR gates in NMOS technology. We should note, however,

that in an NMOS gate the low-to-high propagation delay may be slower than the high-to-

low delay as a result of the current-limiting effect of the pull-up device (see Examples B.13

and B.14).

High fan-in CMOS logic gates always require either k NMOS or k PMOS transistors

in series and are therefore never practical. In CMOS the only reasonable way to construct a

high fan-in gate is to use two or more lower fan-in gates. For example, one way to realize a

six-input AND gate is as 2 three-input AND gates that connect to a two-input AND gate. It

ISTUDY

B.8 PRACTICAL ASPECTS 757

Vxk
Vx2

Vx1

Vf

VDD

Figure B.58 High fan-in NMOS NOR gate.

is possible to build a six-input CMOS AND gate using fewer transistors than needed with

this approach, but we leave this as an exercise for the reader (see Problem B.4).

Fan-out
Figure B.48 illustrated timing delays for one NOT gate driving another. In real circuits

each logic gate may be required to drive several others. The number of other gates that a

specific gate drives is called its fan-out. An example of fan-out is depicted in Figure B.59a,

which shows an inverter N1 that drives the inputs of n other inverters. Each of the other

inverters contributes to the total capacitive loading on node f . In part (b) of the figure, the n
inverters are represented by one large capacitor Cn. For simplicity, assume that each inverter

contributes a capacitance C and that Cn = n × C. Equation B.4 shows that the propagation

delay increases in direct proportion to n.

Figure B.59c illustrates how n affects the propagation delay. It assumes that a change

from logic value 1 to 0 on signal x occurs at time 0. One curve represents the case where

n = 1, and the other curve corresponds to n = 4. Using the parameters from Example B.7,

when n = 1, we have tp = 0.1 ns. Then for n = 4, tp ≈ 0.4 ns. It is possible to reduce tp by

increasing the W∕L ratios of the transistors in N1.

Drivers
In circuits in which a logic gate has to drive a large capacitive load, drivers are often used

to improve performance. A driver is a logic gate with one input, x, and one output, f , which

produces f = x. The simplest implementation of a driver uses two inverters, as shown in

Figure B.60a. Drivers can be created with different amounts of drive capability, depending

on the sizes of the transistors (see Figure B.49). In general, because they are used for driving

higher-than-normal capacitive loads, drivers have transistors that are larger than those in

typical logic gates. The graphical symbol for a non-inverting driver is given in Figure B.60b.

Another type of driver is the inverting driver. It produces the same output as an inverter,

f = x, but is built with relatively large transistors. The graphical symbol for the inverting

driver is the same as for the NOT gate; an inverting driver is just a NOT gate that is capable

of driving large capacitive loads. In Figure B.59 for large values of n an inverting driver

could be used for the inverter labeled N1.

ISTUDY

758 A P P E N D I X B ∙ IMPLEMENTATION TECHNOLOGY

(b) Equivalent circuit for timing purposes

(c) Propagation times for dif ferent values of n

Vf for n = 1

Vf for n = 4

VDD

Gnd

Time
0

x
f

(a) Inverter that drives n other inverters

To inputs of

n other inverters

To inputs of

n other inverters

Cn

x
Vf

N1

Figure B.59 The effect of fan-out on propagation delay.

In addition to their use for improving the speed performance of circuits, drivers are

also used when high current flow is needed to drive external devices. Drivers can handle

relatively large amounts of current flow because they are built with large transistors. A com-

mon example of this use of drivers is to control a light-emitting diode (LED). We describe

an example of this application of drivers in Section 5.14.

In general, fan-out, capacitive loading, and current flow are important issues that the

designer of a digital circuit must consider carefully. In practice, the decision as to whether

or not drivers are needed in a circuit is made with the aid of CAD tools.

ISTUDY

B.8 PRACTICAL ASPECTS 759

(a) Implementation of a driver

x f

(b) Graphical symbol

Vf

VDD

Vx

Figure B.60 A non-inverting driver.

B.8.10 TRI-STATE DRIVERS

As we showed in Figure 7.1, a tri-state driver has one input, w, one output, f , and a control

input, called enable, e. When e = 0, the driver is completely disconnected from the output

f , but when e = 1, the driver provides the value of w on the output f . Figure B.61 shows a

possible implementation of a tri-state driver using NOT gates and a transmission gate.

Figure B.62 depicts several types of tri-state drivers. The driver in part (b) has the same

behavior as the driver in part (a), except that when e = 1, it produces f = w. Part (c) of the

figure gives a tri-state driver for which the enable signal has the opposite behavior; that is,

when e = 0, f = w, and when e = 1, f = Z. The term often used to describe this type of

w f

e

(a) A tri-state driver

fw

e

(b) Implementation

Figure B.61 Tri-state driver.

ISTUDY

760 A P P E N D I X B ∙ IMPLEMENTATION TECHNOLOGY

w f

e

(b)

w f

e

(a)

w f

e

(c)

w f

e

(d)

Figure B.62 Four types of tri-state drivers.

behavior is to say that the enable is active low. The driver in Figure B.62d also features an

active-low enable, and it produces f = w when e = 0.

As a small example of how tri-state drivers can be used, consider the circuit in

Figure B.63. In this circuit the output f is equal to either w1 or w2, depending on the value

of s. When s = 0, f = w1, and when s = 1, f = w2. Thus, this circuit implements a 2-to-1

multiplexer.

In the circuit of Figure B.63, the outputs of the tri-state drivers are wired together. This

connection is possible because the control input s is connected so that one of the two drivers

is guaranteed to be in the high-impedance state. The w1 driver is active only when s = 0,

and the w2 driver is active only when s = 1. It would be disastrous to allow both drivers

to be active at the same time. Doing so would create a short circuit between VDD and Gnd
as soon as the two drivers produce different values. For example, assume that w1 = 1 and

w2 = 0. The w1 driver produces the output VDD, and the w2 driver produces Gnd. A short

circuit is formed between VDD and Gnd, through the transistors in the tri-state drivers. The

amount of current that flows through such a short circuit is usually sufficient to destroy the

circuit.

The kind of wired connection used for the tri-state drivers is not possible with ordinary

logic gates, because their outputs are always active; hence a short circuit would occur. As

fw1

w2

s

Figure B.63 An application of tri-state drivers.

ISTUDY

B.9 STATIC RANDOM ACCESS MEMORY (SRAM) 761

we already know, for normal logic circuits the equivalent result of the wired connection is

achieved by using an OR gate to combine signals, as is done in the sum-of-products form.

B.9 STATIC RANDOM ACCESS MEMORY (SRAM)
In Chapter 5 we introduced several types of circuits that can be used to store data. Assume

that we need to store a large number, m, of data items, each of which consists of n bits. One

possibility is to use an n-bit register that consists of n D flip-flops for each data item. We

would need to design circuitry to control access to each register, both for loading (writing)

data into it and for reading data out.

When m is large, it is awkward to use individual registers to store the data. A better

approach is to make use of a static random access memory (SRAM) block. An SRAM block

is a two-dimensional array of SRAM cells, where each cell can store one bit of information.

If we need to store m items with n bits each, we can use an array of m× n SRAM cells. The

dimensions of the SRAM array are called its aspect ratio.

An SRAM block may contain a large number of SRAM cells, so it is important for

each cell to take as little space on an integrated circuit chip as possible. For this reason,

the storage cell should use as few transistors as possible. One popular storage cell used in

practice is depicted in Figure B.64. It operates as follows. To store data into the cell, the

Sel input is set to 1, and the data value to be stored is placed on the Data input. The SRAM

cell may include a separate input for the complement of the data, indicated by the transistor

shown in red in the figure. For simplicity we assume that this transistor is not included

in the cell. After waiting long enough for the data to propagate through the feedback path

formed by the two NOT gates, Sel is changed to 0. The stored data then remains in the

feedback loop indefinitely. A possible problem is that when Sel = 1, the value of Data may

not be the same as the value being driven by the small NOT gate in the feedback path. Hence

the transistor controlled by Sel may attempt to drive the stored data to one logic value while

the output of the small NOT gate has the opposite logic value. To resolve this problem, the

NOT gate in the feedback path is built using small (weak) transistors, so that its output can

be overridden with new data.

To read data stored in the cell, we simply set Sel to 1. In this case the Data node would

not be driven to any value by external circuitry, so that the SRAM cell can place the stored

Sel

DataData

Figure B.64 An SRAM cell.

ISTUDY

762 A P P E N D I X B ∙ IMPLEMENTATION TECHNOLOGY

Sel0

Sel1

Data0Data1

Figure B.65 A 2 × 2 array of SRAM cells.

data on this node. The Data signal is passed through a driver, not shown in the figure, and

provided as an output of the SRAM block.

An SRAM block contains an array of SRAM cells. Figure B.65 shows an array with

two rows of two cells each. In each column of the array, the Data nodes of the cells are

connected together. Each row, i, has a separate select input, Seli, that is used to read or

write the contents of the cells in that row. Larger arrays are formed by connecting more

cells to Seli in each row and by adding more rows. The SRAM block must also contain

circuitry that controls access to each row in the array. Figure B.66 depicts a 2m × n array of

the type in Figure B.65, with a decoder that drives the Sel inputs in each row of the array.

The inputs to the decoder are called Address inputs. This term derives from the notion

that the location of a row in the array can be thought of as the “address” of the row. The

decoder has m Address inputs and produces 2m select outputs. If the Write control input is 1,

then the tri-state drivers at the top of the figure are enabled and the data bits on the inputs

dn−1,… , d0 are stored in the cells of the row selected by the Address inputs. If the Read
control input is 1, then the tri-state drivers at the bottom of Figure B.66 are enabled and the

data stored in the row selected by the Address inputs appears on the qn−1,… , q0 outputs. In

many practical applications the data inputs and data outputs are connected together. Thus

the Write and Read inputs must never have the value 1 at the same time.

The design of memory blocks has been the subject of intensive research and develop-

ment. We have described only the basic operation of one type of memory block. The reader

can refer to books on computer organization for more information [14, 15].

B.9.1 SRAM BLOCKS IN PLDS

Most FPGA chips contain SRAM blocks that can be used as part of logic circuits imple-

mented in the chips. One popular chip has a number of SRAM blocks, each of which con-

tains 4096 SRAM cells. The SRAM blocks can be configured to provide different aspect

ISTUDY

B.10 IMPLEMENTATION DETAILS FOR SPLDS, CPLDS, AND FPGAS 763

Sel0

Sel1

Sel2

Sel2m − 1

Read

Write

q0

d0

qn − 1 qn − 2

dn − 1 dn − 2

m
-t

o
-2

m
 d

e
c
o
d
e
r

Address

a0

a1

am − 1

Data outputs

Data inputs

Figure B.66 A 2m × n SRAM block.

ratios, depending on the needs of the design being implemented. Aspect ratios from

512× 8 to 4096× 1 can be realized using a single SRAM block, and multiple blocks can be

combined to form larger memory arrays. To include SRAM blocks in a circuit, designers

use prebuilt modules that are provided in a library as part of the CAD tools, or they write

VHDL code from which synthesis tools can infer memory blocks.

B.10 IMPLEMENTATION DETAILS FOR SPLDS, CPLDS,
AND FPGAS

We introduced PLDs in Section B.6. In the chip diagrams shown in that section, the pro-

grammable switches are represented using the symbol X. We now show how these switches

are implemented using transistors.

ISTUDY

764 A P P E N D I X B ∙ IMPLEMENTATION TECHNOLOGY

In commercial SPLDs two main technologies are used to manufacture the programmable

switches. The oldest technology is based on using metal-alloy fuses as programmable links.

In this technology each pair of horizontal and vertical wires that cross is connected by a

small metal fuse. When the chip is programmed, for every connection that is not wanted

in the circuit being implemented, the associated fuse is melted. The programming process

is not reversible, because the melted fuses are destroyed. We will not elaborate on this

technology, because it has mostly been replaced by another method.

In currently produced PLAs and PALs, programmable switches are implemented using

a special type of programmable transistor. Because CPLDs comprise PAL-like blocks, the

technology used in SPLDs is also applicable to CPLDs. We will illustrate the main ideas

by first describing PLAs. For a PLA to be useful for implementing a wide range of logic

functions, it should support both functions of only a few variables and functions of many

variables. In Section B.8.9 we discussed the issue of fan-in of logic gates. We showed that

when the fan-in is high, the best type of gate to use is the NMOS NOR gate. Hence PLAs

are usually based on this type of gate.

As a small example of PLA implementation, consider the circuit in Figure B.67. The

horizontal wire labeled S1 is the output of an NMOS NOR gate with the inputs x2 and x3.

VDD VDD VDD

VDD

VDD

S1

S2

S3

f1 f2NOR plane

NOR plane

x1 x2
x3

Figure B.67 An example of a NOR-NOR PLA.

ISTUDY

B.10 IMPLEMENTATION DETAILS FOR SPLDS, CPLDS, AND FPGAS 765

Thus S1 = x2 + x3. Similarly, S2 and S3 are the outputs of NOR gates that produce S2 =
x1 + x3 and S3 = x1 + x2 + x3. The three NOR gates that produce S1, S2, and S3 are arranged

in a regular structure that is efficient to create on an integrated circuit. This structure is called

a NOR plane. The NOR plane is extended to larger sizes by adding columns for additional

inputs and adding rows for more NOR gates.

The signals S1, S2, and S3 serve as inputs to a second NOR plane. This NOR plane is

turned 90 degrees clockwise with respect to the first NOR plane to make the diagram easier

to draw. The NOR gate that produces the output f1 has the inputs S1 and S2. Thus

f1 = S1 + S2 = (x2 + x3) + (x1 + x3)

Using DeMorgan’s theorem, this expression is equivalent to the product-of-sums expression

f1 = S1S2 = (x2 + x3)(x1 + x3)

Similarly, the NOR gate with output f2 has inputs S1 and S3. Therefore,

f2 = S1 + S3 = (x2 + x3) + (x1 + x2 + x3)

which is equivalent to

f2 = S1S3 = (x2 + x3)(x1 + x2 + x3)

The style of PLA illustrated in Figure B.67 is called a NOR-NOR PLA. Alternative

implementations also exist, but because of its simplicity, the NOR-NOR style is the most

popular choice. The reader should note that the PLA in Figure B.67 is not programmable—

with the transistors connected as shown, it realizes only the two specific logic functions f1
and f2. But the NOR-NOR structure can be used in a programmable version of the PLA, as

explained below.

Strictly speaking, the term PLA should be used only for the fixed type of PLA

depicted in Figure B.67. The proper technical term for a programmable type of PLA is field-
programmable logic array (FPLA). However, it is common usage to omit the F.

Figure B.68a shows a programmable version of a NOR plane. It has n inputs, x1,… , xn,

and k outputs, S1,… , Sk. At each crossing point of a horizontal and vertical wire there

exists a programmable switch. The switch comprises two transistors connected in series,

an NMOS transistor and an electrically erasable programmable read-only memory
(EEPROM) transistor.

The programmable switch is based on the behavior of the EEPROM transistor. Elec-

tronics textbooks, such as [1, 2], give detailed explanations of how EEPROM transistors

operate. Here we will provide only a brief description. A programmable switch is depicted

in Figure B.68b, and the structure of the EEPROM transistor is given in Figure B.68c. The

EEPROM transistor has the same general appearance as the NMOS transistor (see Fig-

ure B.43) with one major difference. The EEPROM transistor has two gates: the normal

gate that an NMOS transistor has and a second floating gate. The floating gate is so named

ISTUDY

766 A P P E N D I X B ∙ IMPLEMENTATION TECHNOLOGY

VDD

VDD

VDD

S1

S2

Sk

x1 x2 xn

(a) Programmable NOR-plane

=

Ve

(b) A programmable switch (c) EEPROM transistor

Ve

+−
−

−
−

−
−

−
−

−
−

−
−+++

+++++
+ ++++++ ++++++++ +

Figure B.68 Using EEPROM transistors to create a programmable NOR plane.

ISTUDY

B.10 IMPLEMENTATION DETAILS FOR SPLDS, CPLDS, AND FPGAS 767

because it is surrounded by insulating glass and is not connected to any part of the transistor.

When the transistor is in the original unprogrammed state, the floating gate has no effect

on the transistor’s operation and it works as a normal NMOS transistor. During normal use

of the PLA, the voltage on the floating gate Ve is set to VDD by circuitry not shown in the

figure, and the EEPROM transistor is turned on.

Programming of the EEPROM transistor is accomplished by turning on the transis-

tor with a higher-than-normal voltage level (typically, Ve = 12 V), which causes a large

amount of current to flow through the transistor’s channel. Figure B.68c shows that a part

of the floating gate extends downward so that it is very close to the top surface of the channel.

A high current flowing through the channel causes an effect, known as Fowler-Nordheim
tunneling, in which some of the electrons in the channel “tunnel” through the insulating

glass at its thinnest point and become trapped under the floating gate. After the program-

ming process is completed, the trapped electrons repel other electrons from entering the

channel. When the voltage Ve = VDD is applied to the EEPROM transistor, which would

normally cause it to turn on, the trapped electrons keep the transistor turned off. Hence

in the NOR plane in Figure B.68a, programming is used to “disconnect” inputs from the

NOR gates. For the inputs that should be connected to each NOR gate, the corresponding

EEPROM transistors are left in the unprogrammed state.

Once an EEPROM transistor is programmed, it retains the programmed state perma-

nently. However, the programming process can be reversed. This step is called erasing, and

it is done by using voltages that are of the opposite polarity to those used for programming.

In this case, the applied voltage causes the electrons that are trapped under the floating gate

to tunnel back to the channel. The EEPROM transistor returns to its original state and again

acts like a normal NMOS transistor.

For completeness, we should also mention another technology that is similar to EEP-

ROM, called erasable PROM (EPROM). This type of transistor, which was actually created

as the predecessor of EEPROM, is programmed in a similar fashion to EEPROM. However,

erasing is done differently: to erase an EPROM transistor, it must be exposed to light energy

of specific wavelengths. To facilitate this process, chips based on EPROM technology are

housed in packages with a clear glass window through which the chip is visible. To erase

a chip, it is placed under an ultraviolet light source for several minutes. Because erasure

of EPROM transistors is more awkward than the electrical process used to erase EEPROM

transistors, EPROM technology has essentially been replaced by EEPROM technology in

practice.

A complete NOR-NOR PLA using EEPROM technology, with four inputs, six sum

terms in the first NOR plane, and two outputs, is depicted in Figure B.69. Each

programmable switch that is programmed to the off state is shown as X in black, and each

switch that is left unprogrammed is shown in red. With the programming states shown in

the figure, the PLA realizes the logic functions f1 = (x1 + x3)(x1 + x2)(x1 + x2 + x3) and

f2 = (x1 + x3)(x1 + x2)(x1 + x2).

Rather than implementing logic functions in product-of-sums form, a PLA can also

be used to realize the sum-of-products form. For sum-of-products we need to implement

AND gates in the first NOR plane of the PLA. If we first complement the inputs to the

NOR plane, then according to DeMorgan’s theorem, this is equivalent to creating an AND

plane. We can generate the complements at no cost in the PLA because each input is already

provided in both true and complemented forms. An example that illustrates implementation

ISTUDY

768 A P P E N D I X B ∙ IMPLEMENTATION TECHNOLOGY

S1

S2

S3

S4

S5

S6

f1 f2

x1 x2 x3 x4 NOR plane

NOR plane

VDD

VDD

Figure B.69 Programmable version of the NOR-NOR PLA.

of the sum-of-products form is given in Figure B.70. The outputs from the first NOR plane

are labeled P1,… ,P6 to reflect our interpretation of them as product terms. The signal

P1 is programmed to realize x1 + x2 = x1x2. Similarly, P2 = x1x3, P3 = x1x2x3, and

P4 = x1x2x3. Having generated the desired product terms, we now need to OR them. This

operation can be accomplished by complementing the outputs of the second NOR plane.

Figure B.70 includes NOT gates for this purpose. The states indicated for the programmable

switches in the OR plane (the second NOR plane) in the figure yield the following outputs:

f1 = P1 + P2 + P3 = x1x2 + x1x3 + x1x2x3, and f2 = P1 + P4 = x1x2 + x1x2x3.

The concepts described above for PLAs can also be used in PALs. Figure B.71 shows a

PAL with four inputs and two outputs. Let us assume that the first NOR plane is programmed

to realize product terms in the manner described above. Notice in the figure that the product

terms are hardwired in groups of three to OR gates that produce the outputs of the PAL.

As we illustrated in Figure B.29, the PAL may also contain extra circuitry between the OR

gates and the output pins, which is not shown in Figure B.71. The PAL is programmed to

realize the same logic functions, f1 and f2, that were generated in the PLA in Figure B.70.

Observe that the product term x1x2 is implemented twice in the PAL, on both P1 and P4.

ISTUDY

B.10 IMPLEMENTATION DETAILS FOR SPLDS, CPLDS, AND FPGAS 769

NOR plane

NOR plane

P1

P2

P3

P4

P5

P6

x1 x2 x3 x4

VDD

VDD

f1 f2

Figure B.70 A NOR-NOR PLA used for sum-of-products.

Duplication is necessary because in a PAL product terms cannot be shared by multiple

outputs, as they can be in a PLA. Another detail to observe in Figure B.71 is that although

the function f2 requires only two product terms, each OR gate is hardwired to three product

terms. The extra product term P6 must be set to logic value 0, so that it has no effect. This

is accomplished by programming P6 so that it produces the product of an input and that

input’s complement, which always results in 0. In the figure, P6 = x1x1 = 0, but any other

input could also be used for this purpose.

The PAL-like blocks contained in CPLDs are usually implemented using the tech-

niques discussed in this section. In a typical CPLD, the AND plane is built using NMOS

NOR gates, with appropriate complementing of the inputs. The OR plane is hardwired as it

is in a PAL, rather than being fully programmable as in a PLA. However, some flexibility

exists in the number of product terms that feed each OR gate. This flexibility is accom-

plished by using a programmable circuit that can allocate the product terms to whichever

OR gates the user desires.

ISTUDY

770 A P P E N D I X B ∙ IMPLEMENTATION TECHNOLOGY

NOR plane

P1

P2

P3

P4

P5

P6

x1 x2 x3 x4

VDD

f1

f2

Figure B.71 PAL programmed to implement the functions in Figure B.70.

Example B.12 In Section B.9 we described static random access memory. This type of memory is useful

when it is necessary to support both reading and writing of data. In many situations it is

also useful to be able to write data into a memory and then use this stored data permanently

without further modification. A read-only memory (ROM) is suitable for such applications.

In a ROM the storage cells are built using EEPROM (or EPROM) transistors, arranged in a

structure similar to that shown in Figure B.68. Each data bit in the ROM normally provides

a 1 if its corresponding EEPROM cell is programmed to be “off”, but this data bit is pulled

down to 0 if the EEPROM cell is programmed to be “ON”.

Figure B.72 shows an example of a ROM block. The storage cells are arranged in 2m

rows with n cells per row. Thus each row stores n bits of information. The location of each

row in the ROM is identified by its address. In the figure the row at the top has address 0,

and the row at the bottom has address 2m − 1. The information stored in the rows can be

accessed by asserting the select lines, Sel0 to Sel2m−1. As shown in the figure, a decoder

with m inputs and 2m outputs is used to generate the signals on the select lines. Figure B.72

shows that each data line has an associated tri-state driver that is enabled by the ROM input

named Read. To access, or read, data from the ROM, the address of the desired row is

placed on the address lines and Read is set to 1.

ISTUDY

B.10 IMPLEMENTATION DETAILS FOR SPLDS, CPLDS, AND FPGAS 771

Address

Read

m
-t

o
-2

m
 d

e
c
o
d
e
r

0/1 0/1 0/1

0/10/10/1

0/1 0/1 0/1

0/10/10/1

Data

Sel0

Sel1

Sel2

Sel2m − 1

d0dn − 1 dn − 2

a0

a1

am − 1

Figure B.72 A 2m × n read-only memory (ROM) block.

B.10.1 IMPLEMENTATION IN FPGAS

FPGAs do not use EEPROM technology to implement the programmable switches. Instead,

the programming information is stored in SRAM cells. An SRAM cell is used for each truth-

table value stored in a LUT. SRAM cells are also used to configure the interconnection wires

in an FPGA.

Figure B.73 depicts a small section of the FPGA from Figure B.39. The logic element

shown produces the output f1, which is driven onto the horizontal wire drawn in red. This

wire can be connected to some of the vertical wires that it crosses, using programmable

switches. Each switch is implemented using an NMOS transistor, with its gate terminal

controlled by an SRAM cell. Such a switch is known as a pass-transistor switch. If a 0 is

stored in an SRAM cell, then the associated NMOS transistor is turned off. But if a 1 is

stored in the SRAM cell, as shown for the switch drawn in red, then the NMOS transistor

is turned on. This switch forms a connection between the two wires attached to its source

and drain terminals. The number of switches that are provided in the FPGA depends on the

specific chip architecture.

In Section B.8.7 we showed that an NMOS transistor can only partially pass a high

logic value. Hence in Figure B.73 if Vf1 is a high voltage level, then VA is only partially

high. Using the values from Section B.8.7, if Vf1 = 5 V, then VA = 3.5 V. As we explained

in Section B.8.7, this degraded voltage level has the result of causing static power to be

ISTUDY

772 A P P E N D I X B ∙ IMPLEMENTATION TECHNOLOGY

1 0 0

0

0

0

1

x1

x2

f1

VA

Vf1

SRAM SRAM SRAM

(to other wires)

Figure B.73 Pass-transistor switches in FPGAs.

consumed (see Example B.19). One solution to this problem [1] is illustrated in Figure B.74.

We assume that the signal VA passes through another pass-transistor switch before reaching

its destination at another logic element. The signal VB has the same value as VA because the

threshold voltage drop occurs only when passing through the first pass-transistor switch. To

restore the level of VB, it is driven with an inverter. A PMOS transistor is connected between

the input of this inverter and VDD, and that transistor is controlled by the inverter’s output.

The PMOS transistor has no effect on the inverter’s output voltage level when VB = 0 V.

But when VB = 3.5 V, then the inverter output is low, which turns on the PMOS transistor.

This transistor quickly restores VB to the proper level of VDD, thus preventing current from

flowing in the steady state. Instead of using this pull-up transistor solution, another possible

approach is to alter the threshold voltage of the PMOS transistor (during the integrated

circuit manufacturing process) in the inverter in Figure B.74, such that the magnitude of

its threshold voltage is large enough to keep the transistor turned off when VB = 3.5 V. In

commercial FPGAs both of these solutions are used in different chips.

An alternative to using a single NMOS transistor as a switch is to use a transmission

gate, described in Section B.8.8. While this approach solves the voltage-level problem, it has

VDD

To logic block

1

SRAM

VB
VA

Figure B.74 Restoring a high voltage level.

ISTUDY

B.12 EXAMPLES OF SOLVED PROBLEMS 773

two drawbacks. First, having both an NMOS and PMOS transistor in the switch increases

the capacitive loading on the interconnection wires, which increases the propagation delays

and power consumption. Second, the transmission gate takes more chip area than does a

single NMOS transistor. For these reasons, commercial FPGA chips do not usually use

transmission-gate switches.

B.11 CONCLUDING REMARKS

We have described the most important concepts that are needed to understand how logic

gates are built using transistors. Our discussions of transistor fabrication, voltage levels,

propagation delays, power dissipation, and the like are meant to give the reader an appre-

ciation of the practical issues that have to be considered when designing and using logic

circuits.

We have introduced several types of integrated circuit chips. Each type of chip is

appropriate for different applications. The standard chips, such as the 7400 series, con-

tain only a few simple gates and are rarely used today. Exceptions to this are the driver

chips, which are employed when large amounts of current are needed. The various types of

PLDs are widely used in many types of applications. Simple PLDs, like PLAs and PALs,

are appropriate for implementation of small logic circuits. The SPLDs offer low cost and

high speed. CPLDs can be used for the same applications as SPLDs, but CPLDs are also

well suited for implementation of larger circuits, up to about 10,000 to 20,000 gates. Many

of the applications that can be targeted to CPLDs can alternatively be realized with FPGAs.

Which of these two types of chips are used in a specific design situation depends on many

factors. Following the trend of putting as much circuitry as possible into a single chip,

FPGAs are more widely used than other PLDs. Most digital designs created in the industry

today contain some type of FPGA.

The gate-array, standard-cell, and custom-chip technologies are used in cases where

PLDs are not appropriate. Typical applications are those that entail very large circuits,

require extremely high speed-of-operation, need low power consumption, and where the

designed product is expected to sell in large volume.

B.12 EXAMPLES OF SOLVED PROBLEMS

This section presents some typical problems that the reader may encounter, and shows how

such problems can be solved.

Example B.13Problem: We introduced standard cell technology in Section B.7. In this technology, cir-

cuits are built by interconnecting building-block cells that implement simple functions, like

basic logic gates. A commonly used type of standard cell are the and-or-invert (AOI) cells,

which can be efficiently built as CMOS complex gates. Consider the AOI cell shown in

Figure B.75. This cell implements the function f = x1x2 + x3x4 + x5. Derive the CMOS

complex gate that implements this cell.

ISTUDY

774 A P P E N D I X B ∙ IMPLEMENTATION TECHNOLOGY

x1

x2

x3

x4

f

x5

Figure B.75 The AOI cell for Example B.13.

Solution: Applying Demorgan’s theorem in two steps gives

f = x1x2 ⋅ x3x4 ⋅ x5

= (x1 + x2) ⋅ (x3 + x4) ⋅ x5

Since all input variables are complemented in this expression, we can directly derive

the pull-up network as having parallel-connected PMOS transistors controlled by x1 and

x2, in series with parallel-connected transistors controlled by x3 and x4, in series with a

transistor controlled by x5. This circuit, along with the corresponding pull-down network,

is shown in Figure B.76.

VDD

Vx5

Vx4

Vx1

Vx3

Vx2

Vf

Figure B.76 Circuit for Examples B.13 and B.14.

ISTUDY

B.12 EXAMPLES OF SOLVED PROBLEMS 775

Example B.14Problem: For the CMOS complex gate in Figure B.76, determine the sizes of transistors

that should be used such that the speed performance of this gate is similar to that of an

inverter.

Solution: Recall from Section B.8.5 that a transistor with length L and width W has a drive

strength proportional to the ratio W∕L. Also recall that when transistors are connected in

parallel their widths are effectively added, leading to an increase in drive strength. Similarly,

when transistors are connected in series, their lengths are added, leading to a decrease in

drive strength. Let us assume that all NMOS and PMOS transistors have the same length,

Ln = Lp = L. In Figure B.76 the NMOS transistor connected to input Vx5
can have the

same width as in an inverter, Wn. But the worst-case path through the pull-down network

in this circuit involves two NMOS transistors in series. For these NMOS transistors, which

are connected to inputs Vx1
,… ,Vx4

, we should make the widths equal to 2 × Wn. For the

pull-up network, the worst-case path involves three transistors in series. Since, as we said

in Section B.8.1, PMOS transistors have about half the drive strength of NMOS transistors,

we should make the effective width of the PMOS transistors

Wp = 3 × Wn × 2 = 6Wn

Example B.15Problem: In Section B.8.5, we said that the time needed to charge a capacitor is given by

tp = CΔV
I

Derive this expression.

Solution: As we stated in Section B.8.5, the voltage across a capacitor cannot change instan-

taneously. In Figure B.50b, as Vf is charged from 0 volts toward VDD, the voltage changes

according to the equation

Vf =
1

C

∞

∫

0

i(t) dt

In this expression, the independent variable t is time, and i(t) represents the instantaneous

current flow through the capacitor at time t. Differentiating both sides of this expression

with respect to time, and rearranging gives

i(t) = C
dVf

dt

For the case where I is constant, we have

I
C

= ΔV
Δt

Therefore,

Δt = tp = CΔV
I

ISTUDY

776 A P P E N D I X B ∙ IMPLEMENTATION TECHNOLOGY

Example B.16 Problem: In our discussion of Figure B.50a, in Section B.8.6, we said that a capacitor, C,

that has been charged to the voltage Vf = VDD, stores an amount of energy equal to CV2
DD∕2.

Derive this expression.

Solution: As shown in Example B.15, the current flow through a charging capacitor, C, is

related to the rate of change of voltage across the capacitor, according to

i(t) = C
dVf

dt
The instantaneous power dissipated in the capacitor is

P = i(t) × Vf

Since energy is defined as the power used over a time period, we can calculate the energy,

EC, stored in the capacitor as Vf changes from 0 to VDD by integrating the instantaneous

power over time, as follows

EC =

∞

∫

0

i(t)Vf dt

Substituting the above expression for i(t) gives

EC =

∞

∫

0

C
dVf

dt
Vf dt

= C

VDD

∫

0

Vf dVf

= 1

2
CV2

DD

Example B.17 Problem: In the original NMOS technology, the pull-up device was an n-channel MOSFET.

But most integrated circuits fabricated today use CMOS technology. Hence it is convenient

to implement the pull-up resistor using a PMOS transistor, as shown in Figure B.77. Such

a circuit is referred to as a pseudo-NMOS circuit. The pull-up device is called a “weak”

PMOS transistor because it has a small W∕L ratio.

When Vx = VDD, Vf has a low value. The NMOS transistor is operating in the triode

region, while the PMOS transistor limits the current flow because it is operating in the

saturation region. The current through the NMOS and PMOS transistors has to be equal

and is given by Equations B.1 and B.2. Show that the low-output voltage, Vf = VOL is

given by

Vf = (VDD − VT)

⎡
⎢
⎢
⎣

1 −

√

1 −
kp

kn

⎤
⎥
⎥
⎦

ISTUDY

B.12 EXAMPLES OF SOLVED PROBLEMS 777

Vf

VDD

Vx

Figure B.77 The pseudo-NMOS inverter.

where kp and kn, called the gain factors, depend on the sizes of the PMOS and NMOS

transistors, respectively. They are defined by kp = k′pWp∕Lp and kn = k′nWn∕Ln.

Solution: For simplicity we will assume that the magnitude of the threshold voltages for

both the NMOS and PMOS transistors are equal, so that

VT = VT N = −VT P

The PMOS transistor is operating in the saturation region, so the current flowing through

it is given by

ID = 1

2
k′p

Wp

Lp
(−VDD − VT P)2

= 1

2
kp(−VDD − VT P)2

= 1

2
kp(VDD − VT)2

Similarly, the NMOS transistor is operating in the triode region, and its current flow is

defined by

ID = k′n
Wn
Ln

[

(Vx − VT N)Vf −
1

2
V2

f

]

= kn

[

(Vx − VT N)Vf −
1

2
V2

f

]

= kn

[

(VDD − VT)Vf −
1

2
V2

f

]

Since there is only one path for current to flow, we can equate the currents flowing through

the NMOS and PMOS transistors and solve for the voltage Vf .

kp(VDD − VT)2 = 2kn

[

(VDD − VT)Vf −
1

2
V2

f

]

kp(VDD − VT)2 − 2kn(VDD − VT)Vf + knV2
f = 0

ISTUDY

778 A P P E N D I X B ∙ IMPLEMENTATION TECHNOLOGY

This quadratic equation can be solved using the standard formula, with the parameters

a = kn, b = −2kn(VDD − VT), c = kp(VDD − VT)2

which gives

Vf =
−b
2a

±
√

b2

4a2
− c

a

= (VDD − VT) ±

√

(VDD − VT)2 −
kp

kn
(VDD − VT)2

= (VDD − VT)

⎡
⎢
⎢
⎣

1 ±

√

1 −
kp

kn

⎤
⎥
⎥
⎦

Only one of these two solutions is valid, because we started with the assumption that the

NMOS transistor is in the triode region while the PMOS is in the saturation region. Thus

Vf = (VDD − VT)

⎡
⎢
⎢
⎣

1 −

√

1 −
kp

kn

⎤
⎥
⎥
⎦

Example B.18 Problem: For the circuit in Figure B.77, assume the values k′n = 60 𝜇A∕V2, k′p = 0.4 k′n,

Wn∕Ln = 2.0 𝜇m∕0.5 𝜇m, Wp∕Lp = 0.5 𝜇m∕0.5 𝜇m, VDD = 5 V, and VT = 1 V. When

Vx = VDD, calculate the following:

(a) The static current, Istat.
(b) The on-resistance of the NMOS transistor.

(c) VOL.

(d) The static power dissipated in the inverter.

(e) The on-resistance of the PMOS transistor.

(f) Assume that the inverter is used to drive a capacitive load of 70 fF. Using Equation B.4,

calculate the low-to-high and high-to-low propagation delays.

Solution: (a) The PMOS transistor is saturated, therefore

Istat =
1

2
k′p

Wp

Lp
(VDD − VT)2

= 12
𝜇A

V2
× 1 × (5 V − 1 V)2 = 192 𝜇A

(b) Using Equation B.3,

RDS = 1∕
[

k′n
Wn
Ln

(VGS − VT)

]

= 1∕
[

0.060
mA

V2
× 4 × (5 V − 1 V)

]

= 1.04 kΩ

ISTUDY

B.12 EXAMPLES OF SOLVED PROBLEMS 779

(c) Using the expression derived in Example B.17 we have

kp = k′p
Wp

Lp
= 24

𝜇A

V2

kn = k′n
Wn
Ln

= 240
𝜇A

V2

VOL = Vf = (5 V − 1 V)

[

1 −
√

1 − 24

240

]

= 0.21 V

(d)

PD = Istat × VDD

= 192 𝜇A × 5 V = 960 𝜇W ≈ 1 mW

(e)

RSDP = VSD∕ISD

= (VDD − Vf)∕Istat

= (5 V − 0.21 V)∕0.192 mA = 24.9 kΩ

(f) The low-to-high propagation delay is

tpLH
= 1.7C

k′p
Wp
Lp

VDD

= 1.7 × 70 fF

24
𝜇A

V2 × 1 × 5 V
= 0.99 ns

The high-to-low propagation delay is

tpHL
= 1.7C

k′n
Wn
Ln

VDD

= 1.7 × 70 fF

60
𝜇A

V2 × 4 × 5 V
= 0.1 ns

Example B.19Problem: In Figure B.74 we showed a solution to the static power dissipation problem

when NMOS pass transistors are used. Assume that the PMOS pull-up transistor is re-

moved from this circuit. Assume the parameters k′n = 60 𝜇A∕V2, k′p = 0.5 × k′n, Wn∕Ln =
2.0 𝜇m∕0.5 𝜇m, Wp∕Lp = 4.0 𝜇m∕0.5 𝜇m, VDD = 5 V, and VT = 1 V. For VB = 3.5 V,

calculate the following:

ISTUDY

780 A P P E N D I X B ∙ IMPLEMENTATION TECHNOLOGY

(a) The static current Istat.
(b) The voltage Vf at the output of the inverter.

(c) The static power dissipation in the inverter.

(d) If a chip contains 250,000 inverters used in this manner, find the total static power

dissipation.

Solution: (a) If we assume that the PMOS transistor is operating in the saturation region,

then the current flow through the inverter is defined by

Istat =
1

2
k′p

Wp

Lp
(VGS − VTp)2

= 120
𝜇A

V2
× ((3.5 V − 5 V) + 1 V)2 = 30 𝜇A

(b) Since the static current, Istat, flowing through the PMOS transistor also flows through

the NMOS transistor, then assuming that the NMOS transistor is operating in the triode

region, we have

Istat = k′n
Wn
Ln

[

(VGS − VTn)VDS −
1

2
V2

DS

]

30 𝜇A = 240
𝜇A

V2
×
[

2.5 V × Vf −
1

2
V2

f

]

1 = 20Vf − 4V2
f

Solving this quadratic equation yields Vf = 0.05 V. Note that the output voltage Vf satisfies

the assumption that the PMOS transistor is operating in the saturation region while the

NMOS transistor is operating in the triode region.

(c) The static power dissipated in the inverter is

PS = Istat × VDD = 30 𝜇A × 5 V = 150 𝜇W

(d) The static power dissipated by 250,000 inverters is

250,000 × PS = 37.5 W

PROBLEMS

Answers to problems marked by an asterisk are given at the back of the book.

B.1 Consider the circuit shown in Figure PB.1.

(a) Show the truth table for the logic function f.
(b) If each gate in the circuit is implemented as a CMOS gate, how many transistors are

needed?

ISTUDY

PROBLEMS 781

x1

x2

x3

f

Figure PB.1 A sum-of-products CMOS circuit.

B.2 (a) Show that the circuit in Figure PB.2 is functionally equivalent to the circuit in Figure

PB.1.

(b) How many transistors are needed to build this CMOS circuit?

x1

x2

x3 g

Figure PB.2 A CMOS circuit built with multiplexers.

B.3 (a) Show that the circuit in Figure PB.3 is functionally equivalent to the circuit in Figure

PB.2.

(b) How many transistors are needed to build this CMOS circuit if each XOR gate is im-

plemented using the circuit in Figure B.55?

h

x1

x2

x3

A

Figure PB.3 Circuit for Problem B.3.

ISTUDY

782 A P P E N D I X B ∙ IMPLEMENTATION TECHNOLOGY

*B.4 In Section B.8.9 we said that a six-input CMOS AND gate can be constructed using two

three-input AND gates and a two-input AND gate. This approach requires 22 transistors.

Show how you can use only CMOS NAND and NOR gates to build the six-input AND

gate, and calculate the number of transistors needed. (Hint: Use DeMorgan’s theorem.)

B.5 Repeat Problem B.4 for an eight-input CMOS OR gate.

B.6 (a) Give the truth table for the CMOS circuit in Figure PB.4.

(b) Derive a canonical sum-of-products expression for the truth table from part (a). How

many transistors are needed to build a circuit representing the canonical form if only AND,

OR, and NOT gates are used?

Vf

VDD

Vx1

Vx2

Vx3

Figure PB.4 A three-input CMOS circuit.

B.7 (a) Give the truth table for the CMOS circuit in Figure PB.5.

(b) Derive the simplest sum-of-products expression for the truth table in part (a). How

many transistors are needed to build the sum-of-products circuit using CMOS AND, OR,

and NOT gates?

ISTUDY

PROBLEMS 783

Vf

VDD

Vx1

Vx2

Vx3

Vx4

Figure PB.5 A four-input CMOS circuit.

*B.8 Figure PB.6 shows half of a CMOS circuit. Derive the other half that contains the PMOS

transistors.

Vx1

Vx2

Vx3

Vf

Figure PB.6 The PDN in a CMOS circuit.

ISTUDY

784 A P P E N D I X B ∙ IMPLEMENTATION TECHNOLOGY

B.9 Figure PB.7 shows half of a CMOS circuit. Derive the other half that contains the NMOS

transistors.

Vf

VDD

Vx1

Vx2

Vx3

Vx4

Figure PB.7 The PUN in a CMOS circuit.

B.10 Derive a CMOS complex gate for the logic function f (x1, x2, x3, x4) =
∑

m(0, 1, 2, 4, 5, 6,

8, 9, 10).

B.11 Derive a CMOS complex gate for the logic function f (x1, x2, x3, x4) =
∑

m(0, 1, 2, 4, 6, 8,

10, 12, 14).

*B.12 Derive a CMOS complex gate for the logic function f = xy + xz. Use as few transistors as

possible (Hint: Consider f).

B.13 Derive a CMOS complex gate for the logic function f = xy+ xz+ yz. Use as few transistors

as possible (Hint: Consider f).

*B.14 For an NMOS transistor, assume that k′n = 20 𝜇A∕V2, W∕L = 2.5 𝜇m∕0.5 𝜇m, VGS = 5 V,

and VT = 1 V. Calculate

(a) ID when VDS = 5 V

(b) ID when VDS = 0.2 V

B.15 For a PMOS transistor, assume that k′p = 10 𝜇A∕V2, W∕L = 2.5 𝜇m∕0.5 𝜇m, VGS = −5 V,

and VT = −1 V. Calculate

(a) ID when VDS = −5 V

(b) ID when VDS = −0.2 V

B.16 For an NMOS transistor, assume that k′n = 20 𝜇A∕V2, W∕L = 5.0 𝜇m∕0.5 𝜇m, VGS = 5 V,

and VT = 1 V. For small VDS, calculate RDS.

*B.17 For an NMOS transistor, assume that k′n = 40 𝜇A∕V2, W∕L = 3.5 𝜇m∕0.35 𝜇m,

VGS = 3.3 V, and VT = 0.66 V. For small VDS, calculate RDS.

B.18 For a PMOS transistor, assume that k′p = 10 𝜇A∕V2, W∕L = 5.0 𝜇m∕0.5 𝜇m, VGS = −5 V,

and VT = −1 V. For VDS = −4.8 V, calculate RDS.

ISTUDY

PROBLEMS 785

B.19 For a PMOS transistor, assume that k′p = 16 𝜇A∕V2, W∕L = 3.5 𝜇m∕0.35 𝜇m, VGS =
−3.3 V, and VT = −0.66 V. For VDS = −3.2 V, calculate RDS.

B.20 In Example B.17 we showed how to calculate voltage levels in a pseudo-NMOS inverter.

Figure PB.8 depicts a pseudo-PMOS inverter. In this technology, a weak NMOS transistor

is used to implement a pull-down resistor.

When Vx = 0, Vf has a high value. The PMOS transistor is operating in the triode

region, while the NMOS transistor limits the current flow, because it is operating in the

saturation region. The current through the PMOS and NMOS transistors has to be the same

and is given by Equations B.1 and B.2. Find an expression for the high-output voltage,

Vf = VOH , in terms of VDD, VT , kp, and kn, where kp and kn are gain factors as defined in

Example B.17.

Vf

VDD

Vx

VDD

Figure PB.8 The pseudo-PMOS inverter.

B.21 For the circuit in Figure PB.8, assume the values k′n = 60 𝜇A∕V2, k′p = 0.4 k′n, Wn∕Ln =
0.5 𝜇m∕0.5 𝜇m, Wp∕Lp = 4.0 𝜇m∕0.5 𝜇m, VDD = 5 V and VT = 1 V. When Vx = 0,

calculate the following:

(a) The static current, Istat
(b) The on-resistance of the PMOS transistor

(c) VOH
(d) The static power dissipated in the inverter

(e) The on-resistance of the NMOS transistor

(f) Assume that the inverter is used to drive a capacitive load of 70 fF. Using Equation B.4,

calculate the low-to-high and high-to-low propagation delays.

B.22 Repeat Problem B.21 assuming that the size of the NMOS transistor is changed to Wn∕Ln =
4.0 𝜇m∕0.5 𝜇m.

B.23 Example B.17 (see Figure B.77) shows that in the pseudo-NMOS technology the pull-up

device is implemented using a PMOS transistor. Repeat this problem for a NAND gate built

with pseudo-NMOS technology. Assume that both of the NMOS transistors in the gate have

the same parameters, as given in Example B.18.

ISTUDY

786 A P P E N D I X B ∙ IMPLEMENTATION TECHNOLOGY

B.24 Repeat Problem B.23 for a pseudo-NMOS NOR gate.

*B.25 (a) For VIH = 4 V, VOH = 4.5 V, VIL = 1 V, VOL = 0.3 V, and VDD = 5 V, calculate the

noise margins NMH and NML.

(b) Consider an eight-input NAND gate built using NMOS technology. If the voltage drop

across each transistor is 0.1 V, what is VOL? What is the corresponding NML using the other

parameters from part (a).

B.26 Under steady-state conditions, for an n-input CMOS NAND gate, what are the voltage levels

of VOL and VOH? Explain.

B.27 For a CMOS inverter, assume that the load capacitance is C = 150 fF and VDD = 5 V. The

inverter is cycled through the low and high voltage levels at an average rate of f = 75 MHz.

(a) Calculate the dynamic power dissipated in the inverter.

(b) For a chip that contains the equivalent of 250,000 inverters, calculate the total dynamic

power dissipated if 20 percent of the gates change values at any given time.

*B.28 Repeat Problem B.27 for C = 120 fF, VDD = 3.3 V, and f = 125 MHz.

B.29 In a CMOS inverter, assume that k′n = 20 𝜇A∕V2, k′p = 0.4×k′n, Wn∕Ln = 5.0 𝜇m∕0.5 𝜇m,

Wp∕Lp = 5.0 𝜇m∕0.5 𝜇m, and VDD = 5 V. The inverter drives a load capacitance of

150 fF.

(a) Find the high-to-low propagation delay.

(b) Find the low-to-high low propagation delay.

(c) What should be the dimensions of the PMOS transistor such that the low-to-high and

high-to-low propagation delays are equal? Ignore the effect of the PMOS transistor’s size

on the load capacitance of the inverter.

B.30 Repeat Problem B.29 for the parameters k′n = 40 𝜇A∕V2, k′p = 0.4 × k′n, Wn∕Ln = Wp∕
Lp = 3.5 𝜇m∕0.35 𝜇m, and VDD = 3.3 V.

B.31 In a CMOS inverter, assume that Wn∕Ln = 2 and Wp∕Lp = 4. For a CMOS NAND gate,

calculate the required W/L ratios of the NMOS and PMOS transistors such that the available

current in the gate to drive the output both low and high is equal to that in the inverter.

*B.32 Repeat Problem B.31 for a CMOS NOR gate.

B.33 Repeat Problem B.31 for the CMOS complex gate in Figure B.16. The transistor sizes

should be chosen such that in the worst case the available current is at least as large as

in the inverter.

B.34 Repeat Problem B.31 for the CMOS complex gate in Figure B.17.

B.35 In Figure B.74 we showed a solution to the static power dissipation problem when NMOS

pass transistors are used. Assume that the PMOS pull-up transistor is removed from this

circuit. Assume the parameters k′n = 60 𝜇A∕V2, k′p = 0.4× k′n, Wn∕Ln = 1.0 𝜇m∕0.25 𝜇m,

Wp∕Lp = 2.0 𝜇m∕0.25 𝜇m, VDD = 2.5 V, and VT = 0.6 V. For VB = 1.6 V, calculate the

following:

(a) the static current, Istat
(b) the voltage, Vf , at the output of the inverter

ISTUDY

PROBLEMS 787

(c) the static power dissipation in the inverter

(d) If a chip contains 500,000 inverters used in this manner, find the total static power

dissipation.

B.36 Using the style of drawing in Figure B.70, draw a picture of a PLA programmed to imple-

ment f1(x1, x2, x3) =
∑

m(1, 2, 4, 7). The PLA should have the inputs x1,… , x3; the product

terms P1,… ,P4; and the outputs f1 and f2.

B.37 Using the style of drawing in Figure B.70, draw a picture of a PLA programmed to imple-

ment f1(x1, x2, x3) =
∑

m(0, 3, 5, 6). The PLA should have the inputs x1,… , x3; the product

terms P1,… ,P4; and the outputs f1 and f2.

B.38 Show how the function f1 from Problem B.36 can be realized in a PLA of the type shown in

Figure B.71. Draw a picture of such a PLA programmed to implement f1. The PLA should

have the inputs x1,… , x3; the sum terms S1,… , S4; and the outputs f1 and f2.

B.39 Show how the function f1 from Problem B.37 can be realized in a PLA of the type shown in

Figure B.71. Draw a picture of such a PLA programmed to implement f1. The PLA should

have the inputs x1,… , x3; the sum terms S1,… , S4; and the outputs f1 and f2.

B.40 Repeat Problem B.38 using the style of PLA drawing shown in Figure B.67.

B.41 Repeat Problem B.39 using the style of PLA drawing shown in Figure B.67.

B.42 Given that f1 is implemented as described in Problem B.36, list all of the other possible

logic functions that can be realized using output f2 in the PLA.

B.43 Given that f1 is implemented as described in Problem B.37, list all of the other possible

logic functions that can be realized using output f2 in the PLA.

B.44 Consider the function f (x1, x2, x3) = x1x2 + x1x3 + x2x3. Show a circuit using 5 two-input

lookup-tables (LUTs) to implement this expression. As shown in Figure B.39, give the truth

table implemented in each LUT. You do not need to show the wires in the FPGA.

*B.45 Consider the function f (x1, x2, x3) =
∑

m(2, 3, 4, 6, 7). Show how it can be realized using

two two-input LUTs. As shown in Figure B.39, give the truth table implemented in each

LUT. You do not need to show the wires in the FPGA.

B.46 Given the function f = x1x2x4 + x2x3x4 + x1x2x3, a straightforward implementation in an

FPGA with three-input LUTs requires four LUTs. Show how it can be done using only 3

three-input LUTs. Label the output of each LUT with an expression representing the logic

function that it implements.

B.47 For f in Problem B.46, show a circuit of two-input LUTs that realizes the function. You

are to use exactly seven two-input LUTs. Label the output of each LUT with an expression

representing the logic function that it implements.

B.48 Figure B.39 shows an FPGA programmed to implement a function. The figure shows one

pin used for function f, and several pins that are unused. Without changing the programming

of any switch that is turned on in the FPGA in the figure, list 10 other logic functions, in

addition to f, that can be implemented on the unused pins.

ISTUDY

788 A P P E N D I X B ∙ IMPLEMENTATION TECHNOLOGY

B.49 Assume that a gate array contains the type of logic cell depicted in Figure PB.9. The inputs

in1,… , in7 can be connected to either 1 or 0, or to any logic signal.

(a) Show how the logic cell can be used to realize f = x1x2 + x3.

(b) Show how the logic cell can be used to realize f = x1x3 + x2x3.

out

in1 in2 in3

in4 in5 in6 in7

Figure PB.9 A gate-array logic cell.

B.50 Assume that a gate array exists in which the logic cell used is a three-input NAND gate. The

inputs to each NAND gate can be connected to either 1 or 0, or to any logic signal. Show

how the following logic functions can be realized in the gate array. (Hint: Use DeMorgan’s

theorem.)

(a) f = x1x2 + x3

(b) f = x1x2x4 + x2x3x4 + x1

B.51 What logic gate is realized by the circuit in Figure PB.10? Does this circuit suffer from any

major drawbacks?

Vf

Vx1

Vx2

Figure PB.10 Circuit for Problem B.51.

ISTUDY

PROBLEMS 789

*B.52 What logic gate is realized by the circuit in Figure PB.11? Does this circuit suffer from any

major drawbacks?

Vf

Vx1

Vx2

Figure PB.11 Circuit for Problem B.52.

*B.53 Consider the circuit in Figure BP.12. Can this circuit be used as one stage in a ripple-carry

adder? Discuss the pros and cons.

ci

ci + 1

sipixi

yi gi

VDD

Figure PB.12 Circuit for Problem B.53.

ISTUDY

790 A P P E N D I X B ∙ IMPLEMENTATION TECHNOLOGY

REFERENCES

1. A. S. Sedra and K. C. Smith, Microelectronic Circuits, 5th ed. (Oxford University

Press: New York, 2003).

2. J. M. Rabaey, Digital Integrated Circuits, (Prentice-Hall: Englewood Cliffs, NJ,

1996).

3. Texas Instruments, Logic Products Selection Guide and Databook CD-ROM, 1997.

4. National Semiconductor, VHC/VHCT Advanced CMOS Logic Databook, 1993.

5. Motorola, CMOS Logic Databook, 1996.

6. Toshiba America Electronic Components, TC74VHC/VHCT Series CMOS Logic
Databook, 1994.

7. Integrated Devices Technology, High Performance Logic Databook, 1994.

8. J. F. Wakerly, Digital Design Principles and Practices 3rd ed. (Prentice-Hall:

Englewood Cliffs, NJ, 1999).

9. M. M. Mano, Digital Design 3rd ed. (Prentice-Hall: Upper Saddle River, NJ, 2002).

10. R. H. Katz, Contemporary Logic Design (Benjamin/Cummings: Redwood City, CA,

1994).

11. J. P. Hayes, Introduction to Logic Design (Addison-Wesley: Reading, MA, 1993).

12. D. D. Gajski, Principles of Digital Design (Prentice-Hall: Upper Saddle River, NJ,

1997).

13. Lattice Semiconductor, Simple PLDs Data Sheets, http://www.latticesemi.com

14. V. C. Hamacher, Z. G. Vranesic, S. G. Zaky, and N. Manjikian, Computer
Organization and Embedded Systems, 6th ed. (McGraw-Hill: New York, 2011).

15. D. A. Patterson and J. L. Hennessy, Computer Organization and Design—The
Hardware/Software Interface, 3rd ed. (Morgan Kaufmann: San Francisco, CA, 2004).

ISTUDY

791

a n s w e r s

CHAPTER 1

1.1. (a) 10100 (b) 1100100 (c) 10000001 (d) 100000100 (e) 10100000000000

1.4. (a) 10001 (b) 100001 (c) 1000011 (d) 10000010 (e) 101000000000

(f) 1100100000000000

1.6. (a) 9 (b) 28 (c) 63 (d) 2730

1.8. (a) 9 (b) 10 (c) 10 (d) 11

CHAPTER 2

2.7. (a) Yes (b) Yes (c) No

2.12. f = x1x3 + x2x3 + x2x3

2.15. f = (x1 + x2)(x2 + x3)

2.20. f = x2x3 + x1x3

2.23. f = (x1 + x2)(x1 + x3)

2.28. f = x1x2 + x1x3 + x2x3

2.32. f = (x1 + x2 + x3)(x1 + x2 + x3)(x1 + x2 + x3)(x1 + x2 + x3)

2.33. f = x1x3 + x1x2 + x2x3 + x1x2x3

2.37. SOP form: f = x1x2 + x2x3

POS form: f = (x1 + x2)(x2 + x3)

2.38. SOP form: f = x1x2 + x1x3 + x2x3

POS form: f = (x1 + x3)(x1 + x2)(x2 + x3)

2.41. SOP form: f = x3x5 + x3x4 + x2x4x5 + x1x3x4x5 + x1x2x4x5

POS form: f = (x3 + x4 + x5)(x3 + x4 + x5)(x2 + x3 + x4)(x1 + x3 + x4 + x5)(x1 + x2 + x4 + x5)

2.45. f = x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4

2.47. The statement is false. As a counter example consider f (x1, x2, x3) =
∑

m(0, 5, 7). Then,

the minimum-cost SOP form f = x1x3 +x1x2x3 is unique. But, there are two minimum-cost

POS forms:

f = (x1 + x3)(x1 + x3)(x1 + x2) and

f = (x1 + x3)(x1 + x3)(x2 + x3)

ISTUDY

792 ANSWERS

2.48. In a combined circuit:

f = x2x3x4 + x1x3x4 + x1x2x3x4 + x1x2x3

g = x2x3x4 + x1x3x4 + x1x2x3x4 + x1x2x4

The first 3 product terms are shared; hence the total cost is 31.

2.50. f = (x1 + x4 + x5) ⋅ (x1 + x2 + x3) ⋅ (x1 + x2 + x3) ⋅ (x1 + x4 + x5)

2.54. The circuit is

f

x1

x2

x3

2.56. The circuit is

f

x1

x2

x3

2.66. Representing both functions in the form of Karnaugh map, it is easy to show that f = g.

CHAPTER 3

3.1. (a) 478 (b) 743 (c) 2025 (d) 41567 (e) 61680

3.2. (a) 478 (b) −280 (c) −1

3.3. (a) 478 (b) −281 (c) −2

3.4. The numbers are represented as follows:

Decimal Sign and Magnitude 1’s Complement 2’s Complement

73 000001001001 000001001001 000001001001

1906 011101110010 011101110010 011101110010

−95 100001011111 111110100000 111110100001

−1630 111001011110 100110100001 100110100010

3.12. From Equation 3.4, each ci requires i AND gates and one OR gate. Therefore, to determine

all ci signals we need
∑n

i=1
(i+ 1) = (n2 + 3n)∕2 gates. In addition to this, we need 3n gates

to generate all g, p, and s functions. Therefore, a total of (n2 + 9n)∕2 gates are needed.

ISTUDY

ANSWERS 793

3.13. 84 gates

3.17. The code in Figure P3.2 represents a multiplier. It multiplies the lower two bits of Input by

the upper two bits of Input, producing the four-bit Output.

3.21. A full-adder circuit can be used, such that two of the bits of the number are connected as

inputs x and y, while the third bit is connected as the carry-in. Then, the carry-out and sum

bits will indicate how many input bits are equal to 1. The circuit is

z0

z1z2

cout cin

yx

s

Result

CHAPTER 4

4.3.

0 0

0 1

1 0

1 1

1

0

1

1

0 0

0 1

1 0

1 1

0

0

1

0

w1 w2 w3 f

0

0

0

0

1

1

1

1

0

1

fw1

w2 + w3

w2w3

f

w3

w1w2

ISTUDY

794 ANSWERS

4.5. The derived circuit is

f

w2

w1

w3

4.10. f (w1,w2,… ,wn) = [w1 + f (0,w2,… ,wn)] ⋅ [w1 + f (1,w2,… ,wn)]

4.11. Expansion of f in terms of w2 gives

f = w2(w1 + w3) + w2(w1w3)

= w2 ⊕ (w1 + w3)

= w2 ⊕ w1w3

The cost of this circuit is 2 gates + 4 inputs = 6.

4.13. a = w3 + w2w0 + w1 + w2w0

b = w1w0 + w1w0 + w2

c = w2 + w1 + w0

4.18. The code in Figure P4.2 is a 2-to-4 decoder with an enable input. It is not a good style

for defining this decoder. The code is not easy to read. Moreover, the VHDL compiler

often turns IF statements into multiplexers, in which case the resulting decoder may have

multiplexers controlled by the En signal on the output side.

CHAPTER 5

5.3. The circuit is

S

R

Clk

Q

Q

ISTUDY

ANSWERS 795

5.5. A possible circuit is

D Q

Q

Q

Q

S

Clock

S Q

Q

R

0

1

Q(t + 1)

Q(t)

0

S

0

0

0 11

1 01

R

R

5.8. The circuit acts as a negative-edge-triggered JK flip-flop, in which J = A, K = B,

Clock = C, Q = D, and Q = E.

5.15. The following circuit implements the desired counter

T Q

QClock

T Q

Q

T Q

Q

1
Q0

Q1 Q2

0

1

0

1

Up/down

5.17. The counting sequence is 000, 001, 010, 111.

ISTUDY

796 ANSWERS

5.23. The longest delay in the circuit is the from the output of FF0 to the input of FF3. This delay

totals 5 ns. Thus the minimum period for which the circuit will operate reliably is

Tmin = 5 + 3 + 1 = 9 ns

The maximum frequency is

Fmax = 1∕Tmin = 111 MHz

5.29. A suitable circuit is

ResetStart

3-bit counter

gf

Clock

CHAPTER 6

6.1. The expressions for the inputs of the flip-flops are

D2 = Y2 = wy2 + y1y2

D1 = Y1 = w ⊕ y1 ⊕ y2

The output equation is z = y1y2.

6.2. The expressions for the inputs of the flip-flops are

J2 = y1

K2 = w
J1 = wy2 + wy2

K1 = J1

The output equation is z = y1y2.

ISTUDY

ANSWERS 797

6.5. Minimal state table is

Present Next state Output
state

w = 0 w = 1
z

A A B 0

B E C 0

C D C 0

D A F 1

E A F 0

F E C 1

6.6. Minimal state table is

Present Next state Output z
state w = 0 w = 1 w = 0 w = 1

A A B 0 0

B D C 0 0

C D C 1 0

D A B 0 1

6.12. Minimal state table is

Present Next state Output
state w = 0 w = 1 p

A B C 0

B D E 0

C E D 0

D A F 0

E F A 0

F B C 1

6.15. The next-state expressions are

D4 = Y4 = wy3 + wy1

D3 = Y3 = w(y1 + y4)

D2 = Y2 = wy2 + wy4

D1 = Y1 = w(y2 + y1)

The output is given by z = y4.

ISTUDY

798 ANSWERS

6.17. Minimal state table is

Present Next state Output z
state w = 0 w = 1 w = 0 w = 1

A A C 0 0

C F C 0 1

F C A 0 1

6.21. The desired circuit is

J Q

QK

J Q

QK

z1 z0

1

w

6.22. The desired circuit is

T Q

Q

T Q

Q

z1 z0

1

w

6.29. The state table is

Present Next state Output
state w = 0 w = 1 z

A A C 0

B A D 1

C A D 0

D A B 0

The circuit produces z = 1 whenever the input sequence on w comprises a 0 followed by

an even number of 1s.

ISTUDY

ANSWERS 799

CHAPTER 8

8.1. f = (x3 ↑ g) ↑ ((g ↑ g) ↑ x4) where g = (x1 ↑ (x2 ↑ x2)) ↑ ((x1 ↑ x1) ↑ x2)

8.2. f = ((x3 ↓ x3) ↓ g) ↓ ((g ↓ g) ↓ (x4 ↓ x4)), where

g = ((x1 ↓ x1) ↓ x2) ↓ (x1 ↓ (x2 ↓ x2)). Then, f = f ↓ f .

8.5. f = x1(x2 + x3)(x4 + x5) + x1(x2 + x3)(x4 + x5)

8.8. f = g ⋅ h + g ⋅ h, where g = x1x2 and h = x3 + x4

8.12. The BDD is

x3

1
0

x3

0
1

0

x4

0

1

x4

1

0

1

x2

1

1

1

x1

x2

0

0

0

8.18. f = x1x2x4 + x1x2x3 + x1x2x3 + x2x3x4

ISTUDY

800 ANSWERS

CHAPTER 9

9.1. The flow table is

Present Next state
state w2w1 = 00 01 10 11 z2z1

A D C D C 11

B D D B� B� 10

C D C� D C� 01

D D� C B C 00

The behavior is the same as described in the flow table in Figure 9.21a, if the state

interchanges A ↔ D and B ↔ C are made.

9.8. Using the merger diagram in Figure 9.40a, the FSM in Figure 9.39 becomes

Present Next state Output
state

w2w1 = 00 01 10 11
z

A A� G E − 0

B B� C B� D 0

C B C� E C� 1

D − C E D� 0

E A − E� D 1

G B G� − D 1

9.10. The minimum-cost hazard-free implementation is

f = x1x3x4 + x1x2x4 + x1x3x4

9.12. The minimum-cost hazard-free POS implementation is

f = (x1 + x2 + x4)(x1 + x2 + x3)(x1 + x3 + x4)(x2 + x3 + x4)

9.14. If A = B = D = E = 1 and C changes from 0 to 1, then f changes 0 → 1 → 0 and g changes

0 → 1 → 0 → 1. Therefore, there is a static hazard on f and a dynamic hazard on g.

ISTUDY

ANSWERS 801

9.17. The excitation table is

Present
Next state Output

state wc = 00 01 10 11 00 01 10 11
y

Y z

0 0� 0� 1 0� 0 0 0 0

1 0 1� 1� 1� 0 1 0 1

The next-state expression is Y = wc+ cy+wy. Note that the term wy is included to prevent

a static hazard. The output expression is z = cy.

CHAPTER 11

11.1. A minimal test set must include the tests w1w2w3 = 011, 101, and 111, as well as one of

000, 010, or 100.

11.3. The two functions differ only in the vertex x1x2x3x4 = 0111. Therefore, the circuits can be

distinguished by applying this input valuation.

11.5. The tests are w1w2w3w4 = 1111, 1110, 0111, and 1111.

11.9. Cannot detect if the input wire w1 is stuck-at-1. The reason is that this circuit is highly

redundant. It realizes the function f = w3(w1 + w2), which can be implemented with a

simpler circuit.

11.11. Test set = {0000, 0111, 1111, 1000}. It would work with XORs implemented as shown in

Figure 4.26c. For n bits, the same patterns can be used; thus

Test set = {00… 00, 011… 1, 11… 1, 100… 0}.

11.12. In the decoder circuit in Figure 6.16c the four AND gates are enabled only if the En signal is

active. The required test set has to include all four valuations of w1 and w2 when En = 1. It

is also necessary to test if the En wire is stuck at 1, which can be accomplished with the test

w1w2En = 000. Therefore, a complete test set comprises w1w2En = 000, 001, 011, 101,

and 111.

ISTUDY

802 ANSWERS

APPENDIX B

B.4. Using the circuit

The number of transistors needed is 16.

B.8. The complete circuit is

VDD

Vx1

Vx1

Vx2

Vx3

Vx2

Vx3

Vf

ISTUDY

ANSWERS 803

B.12. The required circuit is

VDD

Vy

Vz

Vf

Vx

VDD

B.14. (a) ID = 800 𝜇A (b) ID = 78 𝜇A

B.17. RDS = 947 Ω

B.25. (a) NMH = 0.5 V NML = 0.7 V (b) VOL = 0.8 V NML = 0.2 V

B.28. (a) PNOT gate = 163 𝜇W (b) Ptotal = 8.2 W

B.32. The two NMOS transistors in a CMOS NOR gate are connected in parallel. The worst case

current to drive the output low happens when only one of these transistors is turned “ON”.

Thus each transistor has to have the same dimensions as the NMOS transistor in the inverter,

namely Wn∕Ln = 2.

The two PMOS transistors are connected in series. If each of these transistors had the

ratio Wp∕Lp, then the two transistors could be thought of as one transistor with a Wp∕2Lp
ratio. Thus each PMOS transistor must be made twice as wide as that in the inverter, namely

Wn∕Ln = 8.

ISTUDY

804 ANSWERS

B.45. f = x2 + x1x3. The corresponding circuit is

0

0

1

0
x3

x1

0

1

1

1
x2

x1x3

x2 + x1x3

B.52. The circuit in Figure PB.11 is a two-input XOR gate. This circuit has two drawbacks: when

both inputs are 0 the PMOS transistor must drive f to 0, resulting in f = VT volts. Also,

when x1 = 1 and x2 = 0, the NMOS transistor must drive the output high, resulting in

f = VDD − VT .

B.53. Yes, it works. The NOT gate that produces ci is not needed in stages where i > 0. The draw-

back is “poor” propagation of ci = 1 through the topmost NMOS transistor. The positive

aspect is fewer transistors needed to produce ci+1.

ISTUDY

805

I N D E X

A

Absorption property, 32

Accumulator, 690

Active clock edge, 310

Active-low signal, 760

Adder:

BCD, 162–163

carry-lookahead, 138–143

full-adder, 121, 122

half-adder, 119

ripple-carry, 122–123

serial, 343

in VHDL code, 144–147

Adder/subtractor unit,

131–132

Addition:

BCD, 160–163

carry, 119

generate function, 139

1’s complement, 128–129

overflow, 136–137

propagate function, 139

sign-and-magnitude, 128

sum, 119

2’s complement, 129–130

of unsigned numbers,

118–124

VHDL, 149

Algorithm, 420

for division, 433

for multiplication, 426

Algorithmic state machine

(ASM):

ASM block, 383

ASM charts, 380–383, 427,

434, 443

conditional output box, 381

decision box, 381

implied timing, 420–421

state box, 380

Aliasing problem, 637

Analysis, 376

multilevel circuits, 478–483

AND gate. See Logic gates

Anode, 286

Application-specific integrated

circuits (ASICs), 5, 736

Arbiter circuit, 371–375,

540–546

Architecture (VHDL), 66,

658–660

body, 658

declarative part, 658

Arithmetic:

floating-point. See
Floating-point numbers

mean, 442–445

operators (VHDL), 212

overflow, 136–137

See also Addition; Division;

Multiplication;

Subtraction

Arithmetic and logic unit

(ALU), 209

Arithmetic assignment (VHDL),

149–152

Arithmetic circuits, design of:

schematic capture, 144

VHDL, 144–147

Array (VHDL), 655–656

Array multiplier, for unsigned

numbers, 154

ASCII code, 14, 15

ASICs (application-specific

integrated circuits), 5, 736

ASM block, 383

ASM chart, 380–383, 427,

435, 443

Aspect ratio, 761

Associative property, 32

Asynchronous clear (in VHDL),

271, 682

Asynchronous clear (reset), 245

Asynchronous counters,

252–254

Asynchronous reset, 260

Asynchronous sequential

circuits, 522–597

analysis of, 525–533

modulo-4 counter, 538–540

synthesis of, 533–546

Attribute (VHDL), 270, 681

enum encoding, 339

EVENT, 270

Axioms of Boolean

algebra, 31

B

Ball grid array (BGA), 733

Barrel shifter, 221, 432

Basic latch, 232–234

BCD. See Binary-coded

decimal (BCD)

BCD-to-7-segment decoder,

191–192, 211

Behavioral VHDL code,

193–194, 291

BILBO (built-in logic block

observer), 637–639

Binary-coded decimal (BCD),

159–163

additon, 160–163

counters, 261–262

digits, 159

Binary decision diagrams

(BDDs), 466, 487–493

derivation, using Shannon’s

expansion, 488–493

packages, 493

practical use of, 493

Binary decoder. See Decoder

Binary encoder. See Encoder

ISTUDY

806 INDEX

Binary numbers, 11–13

conversion to decimal

number, 13–14

in VHDL code, 650

BIST (built-in self-test), 633–637

Bit, 12

BIT (data type), 65, 67, 651

Bit-counting circuit, 420–425

BIT VECTOR type, 651

Body effect, 752

Boole, George, 30

Boolean algebra, 30–31

axioms of, 31

notation and terminology,

38–39

properties of, 32–34, 494

BOOLEAN type, 654

Boundary scan, 640

Branching, 499, 506

Buffer, 719, 757–759

inverting, 757

tri-state, 400–402, 759–761

VHDL (port mode), 280

Built-in logic block observer

(BILBO), 637–639

Built-in self-test (BIST), 633–637

Bus, 400

multiplexers to implement,

402–404

structures, VHDL code for,

404–408

Bypass capacitors, 641

C

CAD. See Computer-aided

design (CAD)

Canonical expressions:

canonical product-of-sums,

48–50

canonical sum-of-products,

45–47

Canonical sum-of-products,

45–47

Capacitance, 746

Carry, 119

carry-in, 120

carry-out, 120

Carry-lookahead adder, 138–143

CASE statement, 208, 416–419,

672–673

Cathode, 286

Channel (in MOSFET), 741

Characteristic impedance, 642

Characteristic table, 233

Chip configuration, 63

Chip fabrication, 63

Chip layout, 736

Circuit ground, 21

Clear input, 243–245,

255–256

Clock distribution, 456–457

Clock divider, 284

Clock signal, 236

Clock skew, 294–296

Clock synchronization, 253,

454–461

Clock-to-output time (tco), 268

Clock-to-Q propagation delay

(tcq), 246, 457

CMOS logic circuits, 619

Code:

BCD. See Binary-coded

decimal

converter, 191–192

Gray, 217

Cofactor, 182

Coincidence operation, 122

Column dominance, 497

Combinational circuits, 173–229,

619, 629

Combining property, 32,

73–74, 494

Comment (VHDL), 650

Commutative property, 32

Comparator, 192

Compatible states, 549

Complement:

diminished-radix, 135

of logic variable, 23

9’s, 133

1’s, 126

radix-complement schemes,

132–136

10’s, 133

2’s, 126–128

Complementary MOS (CMOS)

technology, 704, 707–715

inverter, 744–745

Completely specified FSM, 360

Complex gate (CMOS), 711

Complex programmable logic

device (CPLD), 727–731

Component (VHDL), 661

COMPONENT declaration

statement (VHDL), 146,

661–663

Computer, structure of, 7–10

Computer-aided design (CAD), 7

complete design flow, 63

design entry, 60–61

functional simulation, 62

physical design, 62

synthesis, 604–609

technology mapping, 606–609

timing analysis, 62–63,

292–296

tools. See Tools, CAD

typical system, 605

Concatenate operator, 151

Concatenation (VHDL), 212–213

Concurrent assignment statement

(VHDL), 202–203, 664–668

Conditional signal assignment

(VHDL), 161, 197–198,

667–668

Consensus, 37

Consensus property, 32

Consistency check, 623

Constant (VHDL), 650, 654–655

Control circuit, 400, 422–423,

428–429, 435

Conversion of types (VHDL),

655

Cost, of logic circuit, 83

Counters, 252

asynchronous, 252–254

asynchronous sequential

circuits, 538–540

binary-coded-decimal,

261–262

design, 265

down-counter, 253–254, 280

Johnson, 265

ISTUDY

INDEX 807

Counters (cont...)
modulo-n, 362

with parallel load, 258–260

reset, 260–261

ring, 262–264

ripple, 253

synchronous, 254–258, 362

up-counter, 252–253,

278–279, 414

VHDL code, 279–280, 688

VHDL sequential statements

for, 273–283

Cover, of function, 82–83

Critical path, 294, 614

Critical-path delay, 138

Crossbar, 175

Crosstalk, 641

Cubical notation, 483–486

optimization techniques based

on, 493–509

Current flow:

dynamic, 749

leakage, 744, 749–750

short-circuit, 750

static, 749

Custom chips, 736–738

Custom-designed chips, 5

Cut off region, 740

Cut set, 533

D

D-algorithm, 625

Datapath circuit, 400, 421–422,

427–428, 434–435, 439,

444–445

Data types (VHDL), 67–69

DC-set, 506

Decimal numbers, 11

binary number conversion to,

13–14

Decision tree, 487

Decoder, 184–188, 411

tree, 186

Decomposed full-adder, 122

Default value (VHDL), 416,

423, 674

Delay. See Propagation delays

DeMorgan’s theorem, 32–33, 51

Demultiplexer, 188

Design entry, 60–61

Design for testability, 629–633

Design process, 5–7

D flip-flops, 239–247, 681

alternative code for, 270–271

with clear and preset, 243–245

code for, 270

edge-triggered, 239–240

synchronous counters with,

257–258

Digital hardware, 2–4

Digital representation of

information, 10–16

Digital system, 400

Digital-to-analog (D/A)

converter, 14

Diminished-radix

complement, 135

DIP (dual-inline package), 718

Disjoint decomposition, 473

Distributive property, 32, 37–38

Divider, 432–442

ASM chart for, 434

circuit, enhancements to,

435–439

VHDL, 439–442

Division, 433

Don’t-care conditions, 88–90

Double precision. See
Floating-point numbers

Double-precision floating-point

numbers, 158–159

Down-counter, 253–254, 280

Drain (in MOSFET

transistor), 702

Drive capability, 757

Dual-inline package (DIP), 718

Duality, 31–32

Dynamic hazards, 581–583

Dynamic power, 749

E

Edge triggered, 239, 241

Electrically-erasable

programmable read-only

memory (EEPROM),

765–767

Electrical semiconductor, 739

1149.1 [6] Standard, IEEE, 640

Enable inputs, 255–256, 347

flip-flops and registers with,

280–283

shift registers with, 283

Encoder:

binary, 189–190

priority, 190

Entity, 66, 657–660

enum encoding, 339

ENUMERATION type, 654

Equivalence:

of logic networks, 28–29

of states, 351, 353

Equivalent gates, 731

Erasable PROM (EPROM), 767

Errors in VHDL code, 696–699

Essential prime implicant, 84

EVENT attribute, 270

Excitation table, 366, 525

Exclusive-NOR (XNOR) gate.

See Logic gates

Exclusive-OR (XOR) gate. See
Logic gates

Expansion theorem (Shannon’s),

181–182

Exponent, 157

Extern signal, 402

F

Factoring, 467–469

Fall time, 748

Fan-in, 143, 467–469, 755–757

Fan-out, 757

Fast adders, 138–143

Fault:

detection of specific, 623–625

model, 618–619

multiple, 619

propagation, 623–625

single, 619

stuck-at model, 618

Feedback, 232, 248

Feedback loop, 755

ISTUDY

808 INDEX

Field-programmable gate array

(FPGA), 5, 10, 731–736

Field-programmable logic array

(FPLA), 765

Finite state machine (FSM), 310

incompletely specified, 360

summary of design procedure,

318–319

Fixed-point numbers, 157

Flip-flops:

asynchronous inputs to,

458–459

edge-triggered D. See D

flip-flops

with enable inputs, 280–283

JK, 248–249, 365–368

M-S D, 240–241, 527–532

T, 247–248

timing parameters, 246–247,

457–458

VHDL code for, 681

Floating gate, 765

Floating-point numbers,

157–159

double-precision, 158–159

exponent, 157

IEEE standard, 157–158

mantissa, 157

normalized, 157

single-precision, 157–158

Flow table, 525

primitive, 548

state reduction, 546–559

Fmax (maximum clock frequency), 292

FOR GENERATE statement,

200–201, 278, 668

FOR LOOP statement, 278, 673

Fowler-Nordheim tunneling, 767

FPGA (field-programmable gate

array), 5, 10

FSM. See Finite state machine

Full-adder, 121, 122

Functional behavior, 28

Functional decomposition,

470–475

Functional equivalence, 28–29

Functional simulation, 62

Fundamental mode, 522

G

Gate (in MOSFET transistor),

702

Gate arrays, 736–738

Gate capacitance, 747

Gated D latch, 237–239,

526–528, 680–681

Gate delay. See Propagation

delays

Gated SR latch, 234–237

Gate optimization, 604

Gates. See Logic gates

GENERATE statement,

200–201, 668

GENERIC, 274, 668–669

GENERIC MAP, 691

Glitch, 576

Global signals, 334–335

Gray code, 217

H

Half-adder, 119

Hamming distance, 560

Handshake signaling, 540

Hardware description language

(HDL), 60–61

Hazards, 527, 576–583

dynamic, 581–583

significance of, 583

static, 576–581

Heuristic approach, 84

Hexadecimal numbers, 116–118

Hierarchical design, 60

Hierarchical VHDL code,

70–73, 196

High impedance state, 400

Hold time (th), 239

H tree, 456

Huntington’s basic

postulates, 33

Hypercube, 486

I

IEEE (Institute of Electrical and

Electronics Engineers),

60–61

IEEE Standards, 60–61

1076, 63

1149.1 [6], 640

1164, 63

floating-point numbers, 157

Verilog, 61

IF GENERATE statement,

201, 668

IF statement, 202, 671–672

IF-THEN-ELSE statement, 408

Implicant, of function, 82

Implied memory (VHDL), 207,

416, 674–675

Incompletely specified FSM, 360

Incompletely specified functions,

88–90

Information, digital

representation of, 10–16

Input variable, 21

Instantiation (of VHDL

components), 146,

661–663

Instrumentation, 643–644

In-system programming

(ISP), 727

Integer:

signed, 124–138

unsigned, 116, 118–124

in VHDL, 152, 279–280,

653–654

INTEGER type (VHDL), 152,

279, 653–654

Integrated circuit technology,

701–773

International Roadmap for

Devices and Systems

(IRDS), 3

Intersection, 35–36

Inversion, 23–24

Inverter, 706

CMOS, 744–745

J

JK flip-flop, 248–249,

365–368

Johnson counters, 265

JTAG port, 729–730

ISTUDY

INDEX 809

K

Karnaugh maps, 73–81

five-variable, 80–81

four-variable, 78–80

three-variable, 77–78

two-variable, 76–77

k-cube, 486

k-successor, 353

L

Large-scale integration (LSI), 720

Last-significant bit (LSB), 12

Latch:

basic, 232–234

basic SR, 523

gated D, 237–239, 526–528,

680–681

gated SR, 234–237

VHDL code, 268–273

Leakage current, 744, 749–750

LED (light-emitting diode),

284–288

Level sensitive element, 239, 241

Level-sensitive scan design, 633

LFSRs (linear feedback shift

registers), 634–635, 637

Libraries:

VHDL, 146–147

work, 147, 661

Light-emitting diode (LED),

284–288

Linear feedback shift registers

(LFSRs), 634–635, 637

Linear region, 741

Literal, 82

Logical operators (VHDL),

211–212

Logical product (AND), 39

Logical sum (OR), 39

Logic analyzer, 643–644

Logic circuits, 20

behavioral specification of,

69–70

CMOS, 619

design examples, 54–59

structural specification of,

65–69

testing, 618–644

Logic expression, 21

Logic function, 21

AND, 22

alternative representations of,

483–493

NAND, 50–54, 236–237

NOR, 50–54

NOT, 23–24

OR, 22

synthesis, 40–44

XNOR, 122

XOR, 120–122

Logic gates, 7, 25–26

AND, 26, 709, 713

circuits, speed of, 714–715

drivers, 757–759

dynamic operation of,

746–749

Fall time, 748

fan-in, 755–757

fan-out, 757

NAND, 50–54, 236–237,

706–707, 712

NOR, 50–54, 708

NOT, 26, 705–706, 712

OR, 26, 710

power dissipation in, 749–751

propagation delay, 747

rise time, 747

voltage levels in, 743–744

XNOR, 122

XOR, 120–122

Logic network, 25

analysis of, 26–30

Logic values, 20

Lookup-table (LUT), 606–607,

733, 734

Loop statements. See FOR LOOP

statement

LSB (last-significant bit), 12

LUT (lookup-table), 606–607,

733, 734

M

Macrocell, 724

Mantissa, 157

Maxterms, 48

McCluskey, Edward, 493

Mealy FSM, 310, 327–329

VHDL code, 332–334,

341–343, 696

Mealy output, 381

Mean, arithmetic, 442–445

control circuit, 445

datapath circuit, 444–445

Medium-scale integration

(MSI), 720

Memory:

implied memory (VHDL),

207, 416, 674–675

static random access, 761–763

Merger diagram, 550

Merging, 548

procedure, 549–552

Metastability, 246

Metastable state

MIC (multiple-input compressor

circuit), 635, 636

Minimization:

cubical technique for,

501–509

of POS form, 86–88

procedure, 83–86

of states, 351–355, 585

tabular method for, 493–501

terminology, 81–83

Minimum-cost cover, 495–500

procedure for finding,

506–508

Minterms, 44–45

Mixed logic system, 717

Moore FSM, 310

VHDL code, 692–696

Moore output, 380

Moore’s law, 2–3

MOSFET transistor, 702–704

on-resistance, 742–743

Most-significant bit (MSB),

13, 124

Motherboard, 7

MSB (most-significant bit), 13

M-S D flip-flops, 240–241,

527–532

Multilevel synthesis, 466–478

Multiple faults, 619

ISTUDY

810 INDEX

Multiple-input compressor circuit

(MIC), 635, 636

Multiple-output circuits, 90–95

Multiplexer, 56–58, 174–175

to implement bus, 402–404

VHDL code, 194, 195,

407–408

Multiplication, 152–156

algorithm for, 426

partial product, 154

of signed numbers, 154–156

of unsigned numbers, 153–154

Multiplier:

array, for unsigned

numbers, 154

ASM chart for, 427

control circuit for, 428–429

datapath circuit for, 427–428

shift-and-add, 425–432

VHDL code for, 429–432

Mutual exclusion element

(ME), 546

N

Named association (VHDL), 146

Names (VHDL), 650

NAND circuits, 475–478

NAND gate. See Logic gates

n-cube, 486

Negative edge M-S D

flip-flop, 241

Negative logic system, 701,

715–717

Negative numbers, 124–128

Netlist generation, 604

Network, of gates, 25–26

Next state, 313

variables, 313

Next-state variable, 522

Nibble, 13

9’s complement, 133

NMOS transistor, 702–704

Noise, 745

margin, 745–746

power supply, 641

Non-disjoint decomposition, 473

Nonvolatile programming, 730

NOR circuits, 475–478

NOR gate. See Logic gates

NOR-NOR PLA, 765, 767

NOR plane, 765

NOT gate. See Logic gates

Number conversion, 118

Number display, 58–59

Number representation:

binary-coded-decimal,

159–163

fixed-point, 157

floating-point, 157–159

hexadecimal, 116–118

9’s complement, 133

octal, 116–118

1’s complement, 126

sign-and-magnitude,

124–126

signed numbers, 124–138

10’s complement, 133

2’s complement, 126–128

unsigned integer, 116

unsigned numbers, 116,

118–124

in VHDL code, 147–149

Numbers (in VHDL), 650

O

Octal numbers, 116–118

Odd function, 121

One-hot encoding, 185,

325, 575

1’s complement

addition, 128–129

representation, 126

On-resistance, 742–743

ON-set, 506

#–Operation, 504–506

*–operation, 501–502

usage to find prime

implicants, 502–504

Operations. See Logic function

Operators (VHDL), 210–211,

656–657

Optimization. See Minimization

Ordering of statements (VHDL),

204, 277, 674–675

OR gate. See Logic gates

Oscilloscope, 643

OTHERS (VHDL), 194,

665–666

Output delay time (tod), 457

Oxide capacitance, 747

P

Package (VHDL), 146–147,

660–661

Packages (physical):

ball grid array (BGA), 733

pin grid array (PGA), 733

quad flat pack, 729

PAL (programmable array logic),

723–725

PAL-like blocks, 728

Parallel-access shift register,

251–252

Parallel-to-serial converter, 393

Parasitic capacitance, 746

Partial product, 154

Pass-transistor switch, 771

Path sensitizing, 621–623

PCB. See Printed circuit board

Physical design, 62, 609–616

Pin grid array (PGA), 733

Pins, 718

PLA (programmable logic array),

721–723, 725–727

Placement phase, 609–611

Placement process, 640

Plastic-leaded chip carrier

(PLCC), 727

PLDs (programmable logic

devices), 4–5, 720–721

PMOS transistors, 703–704,

741–742

p-n junction, 739

Polysilicon, 739

Port (VHDL), 66, 658

Portability, 61

PORT MAP, 662

Positional association (VHDL),

146, 662

Positional number

representation, 11

ISTUDY

INDEX 811

Positive-edge-triggered M-S D

flip-flop, 241

Positive logic system, 701, 715

Power dissipation, 749–751

dynamic, 749

static, 749

Power supply, 641

PRBSG (pseudorandom binary

sequence generator), 635, 637

Precedence of operations, 40,

214–215

Present state, 313

variables, 313, 522

Preset input, 243–245

Price/performance ratio, 137–138

Prime implicant, 82, 494–495

essential, determination

of, 504

*–operation to find, 502–504

Primitive flow table, 548

Principle of duality, 31–32

Printed circuit board (PCB), 3,

640–642

testing of, 642–643

Priority

encoder, 190

in VHDL code, 198, 205, 206

Processor, simple, 408–419

PROCESS statement (VHDL),

203, 671, 673–674

Process transconductance

parameter, 741

Product-of-sums (POS) form,

48–50

minimization of, 86–88

Programmable array logic (PAL),

723–727

Programmable logic array (PLA),

721–723, 725–727

Programmable logic devices

(PLDs), 4–5, 720–721

SRAM blocks in, 762–763

Programmable read-only

memory (PROM), 735

Programmable switches, 4

Programmable transistor, 764

PROM (programmable read-only

memory), 735

Propagation, fault, 623–625

Propagation delays, 62,

239, 748

Properties, of Boolean algebra,

32–34

Pseudo-NMOS circuits, 744

Pseudorandom binary sequence

generator (PRBSG),

635, 637

Pseudorandom tests, 634

Pull-down network (PDN), 708

Pull-up network (PUN), 708

Pulse mode, 522

Q

QFP (quad flat pack)

package, 729

Quine, Willard, 493

Quine-McCluskey method, 493

R

Random tests, 626–629

Reflections, 641–642

Registers, 249

with enable inputs, 280–283

shift. See Shift register

VHDL code, 684–686

VHDL sequential statements

for, 273–283

Register transfer level (RTL)

code, 290–292

Relational operators

(VHDL), 212

Reliability, digital system, 643

Reset input, 232, 313

Reset state, 312

Resolution function, 652

Ring counter, 262–264

Ripple-carry adder, 122–123

Ripple counter, 253

Rise time, 747

Rotate operators (VHDL),

213–214

Routing, 611–613, 641

channels, 732, 736

Row dominance, 497

S

Saturation region, 741

Scan-path technique, 630–633

Schematic, circuit, 25

Schematic capture tool, 60, 144

Sea-of-gates technology, 736

7-segment display, 191

BCD-to-7-segment

decoder, 191

Selected signal assignment

(VHDL), 194, 666–667

Semiconductor, 739

Sensitivity list (VHDL), 203

Sequential assignment statement

(VHDL), 69–70, 202–203,

669–671

Sequential circuits, 232, 310,

619, 680–696

analysis, 376

asynchronous. See
Asynchronous sequential

circuits

definition of, 310

finite state machine, 310

formal model, 384

merger diagram, 550

state assignment, 313–315,

322–323

state diagram, 312

state minimization, 351–355,

546–559

state table, 313

synchronous, 309–397

testing of, 629–633

Serial adder, 343

Serial parity generator, 534–538

Series-to-parallel converter, 252

Setup time (tsu), 239

7-segment displays, 287

7400-series standard chips,

718–720

Shannon, Claude, 30

Shannon’s expansion, 181–182

Shannon’s expansion, derivation

of BDDs using,

488–493

Shift-and-add multiplier,

425–432

ISTUDY

812 INDEX

Shift operators (VHDL),

213–214

Shift register, 250

with enable inputs, 283

four-bit, 274–276

parallel-access, 251–252

VHDL code, 686–688

Short-circuit current, 750

SIC (single-input compressor

circuit), 635

Signal assignment statement, 67

SIGNAL data objects, 651

Sign-and-magnitude

addition, 128

Sign-and-magnitude

representation, 124–126

Signature analysis, 639–640

Signature pattern, 635

Signed numbers, 116, 124–138

multiplication of, 154–156

SIGNED type, 653

Simple processor, 408–419

Simple signal assignment,

664–665

Simplification. See Minimization

Simulation:

functional, 62

Simulator, 62

Single faults, 619

Single-input compressor circuit

(SIC), 635

Single-precision floating-point

format, 157–158

Single-variable theorems, 31

Slack, 614

Small-outline integrated circuit

(SOIC) package, 720

Small-scale integration

(SSI), 720

Socket, 727

Sort operation, 445–454

Source (in MOSFET

transistor), 702

SRAM. See Static random

access memory

Stable state, 522, 523

Standard cells, 736–738

Standard chips, 4, 718–720

Standards. See IEEE Standards

Starting state, 312

State, 232

assignment. See State

assignment

assignment in VHDL,

338–340

compatibility, 549

definition of, 310

diagram, 312

equivalence, 351, 353

minimization, 351–355,

546–559

table, 313

variables, 313

State-adjacency diagrams, 563

State-assigned table, 314, 315

State assignment, 313–315,

322–323, 560–575

one-hot, 575

transition diagram, 563–566

unspecified entries, 566–569

using additional state

variables, 569–574

State machine. See Finite state

machine

Statement ordering (VHDL),

203, 277, 674–675

Static hazards, 267, 576–581

Static power, 749

Static random access memory

(SRAM), 761–763

blocks in PLDs, 762–763

STD LOGIC type, 652

STD ULOGIC type, 652–653

Storage cells, 733

Storage elements

with CAD tools, 265–273

inclusion in schematics,

265–268

VHDL constructs for,

268–273

Stuck-at fault model, 618

Subcircuits (VHDL), 661–663,

688–692

Substrate (in MOSFET

transistor), 702

Substrate bias voltage, 752

Subtraction, 128

Subtype (VHDL), 652

Sum, 119

Sum-of-products (SOP) form,

45–47

Switch, transistor, 702–704

Switch debouncing, 459–461

Synchronous clear, 245

Synchronous clear (in VHDL),

271–273, 682–684

Synchronous counters,

254–258, 362

with D flip-flops, 257–258

enable and clear capability,

255–256

with T flip-flops, 254–255

Synchronous reset, 260–261

Synthesis, 177–178

of asynchronous circuits,

533–546

CAD, 61–62, 604–609

logic function, 40–44

multilevel, 466–478

process, 26

System library, 660

T

Technology. See Integrated

circuit technology

Technology mapping, 606–609

Template, gate-array, 736

10’s complement, 133

Terminal nodes, 487

Terminations, 641–642

Test set, 619

complexity of, 619–621

deterministic, 626

Test/testing, 335–336, 618

of logic circuits, 618–644

T flip-flops, 247–248

down-counter with,

253–254

synchronous counter with,

254–255

up-counter with, 252–253

Theorems of Boolean Algebra, 31

Three-way light control, 55–56

ISTUDY

INDEX 813

Threshold voltage, 701, 740

Timing analysis, 62–63,

292–296, 613–616

with clock skew, 294–296

Timing diagram, 27, 28,

316–318

Timing issues, clock

synchronization and,

454–461

Toggle, 268

Tools, CAD, 16–17, 59–60,

604–616

storage elements with,

265–273

Transistor:

EEPROM, 765–767

EPROM, 767

MOSFET, 702–704

NMOS, 702–704

PMOS, 703–704, 741–742

programmable, 764

sizes, 749

Transistor-transistor logic

(TTL), 719

Transition diagram, 563–566

Transition table, 525

Transmission gates, 753–755

Transmission-line effects, 641

Tree structure, circuits with,

625–626

Triode region, 741

Tri-state:

buffer, 400–402, 719,

759–761

Truth tables, 24–25

Turned off region, 740

2’s complement

addition, 130–131

representation, 126–128

Type (VHDL), 332–334

U

Union, 36

Unsigned numbers, 116

addition of, 118–124

array multiplier for, 154

multiplication of, 153–154

UNSIGNED type, 653

Unspecified entries, 566–569

Unstable state, 530

Up-counter, 252–253,

278–279, 414

Up/down-counter, 254

User library, 660

V

Valuation, 24

Variable assignment

operator, 676

VARIABLE data objects, 655,

675–680

Variables, 20–23

Vending-machine controller,

583–588

Venn diagram, 34–38

Verilog HDL, 61

Vertices, 483

Very large scale integration

(VLSI), 720

VHDL (Very High Speed

Integrated Circuit Hardware

Description Language), 61,

63–65, 649–699

architecture, 66, 658–660

arithmetic assignment,

149–152

array, 655–656

asynchronous clear, 271, 682

attribute, 270, 339

bit-counting circuit, 423–425

BIT VECTOR type, 651

BUFFER, 280

bus structures, 404–408

CASE statement, 208,

416–419, 672–673

comment, 650

component, 661

COMPONENT declaration

statement, 146

concatenate operator, 151

concatenation, 212–213

conditional signal assignment,

161, 197–198, 667–668

constant, 650

data types, 67–69

default value, 416, 423, 674

design of arithmetic circuits

using, 144–147

divider, 439–442

entity, 66, 657–660

GENERATE, 200–201, 668

hierarchical code, 70–73

IF statement, 201, 671–672

implied memory, 207, 416,

674–675

instantiation statements, 146,

661–663

libraries, 146–147, 660–661

multiplexer, 194, 407–408

named association, 146

names, 650

number representation,

147–149, 650

operators, 210–211, 656–657

ordering of statements, 204,

277, 674–675

package, 146–147, 660–661

port, 66, 658

positional association, 146

precedence, 214–215

process, 203–204

PROCESS statement, 671,

673–674

representation of digital

circuits in, 65

selected signal assignment,

194, 666–667

sensitivity list, 203

sequential assignment

statement, 69–70,

202–203, 669–671

sequential statements for

registers and counters,

273–283

SIGNAL data objects, 651

SIGNED type, 151

subcircuits, 661–663

synchronous clear, 271–273,

682–684

VARIABLE data objects, 655,

675–680

WHILE LOOP statement, 673

ISTUDY

814 INDEX

Via, 736

Volatile programming, 733

Voltage levels

high, low, 701

in logic gates,

743–744

substrate bias, 752

VIH and VIL, 745

VOH and VOL, 745

Voltage transfer characteristic,

744, 745

W

WAIT UNTIL statement,

270–271, 681–682

WHEN clause (VHDL), 194,

667, 673

WHILE LOOP

statement, 673

X

XNOR (Exclusive-NOR) gate.

See Logic gates

XOR (Exclusive-OR) gate. See
Logic gates

ISTUDY

	Cover
	Title Page
	Copyright Page
	Dedication
	About The Authors
	Preface
	Contents
	Chapter 1 INTRODUCTION
	1.1 Digital Hardware���������������������������
	1.1.1 Standard Chips���������������������������
	1.1.2 Programmable Logic Devices���������������������������������������
	1.1.3 Custom-Designed Chips����������������������������������

	1.2 The Design Process�����������������������������
	1.3 Structure of a Computer����������������������������������
	1.4 Logic Circuit Design in This Book��
	1.5 Digital Representation of Information��
	1.5.1 Binary Numbers���������������������������
	1.5.2 Conversion between Decimal and Binary Systems���
	1.5.3 ASCII Character Code���������������������������������
	1.5.4 Digital and Analog Information���

	1.6 Theory and Practice������������������������������
	Problems���������������

	Chapter 2 INTRODUCTION TO LOGIC CIRCUITS
	2.1 Variables and Functions����������������������������������
	2.2 Inversion��������������������
	2.3 Truth Tables�����������������������
	2.4 Logic Gates and Networks�����������������������������������
	2.4.1 Analysis of a Logic Network��

	2.5 Boolean Algebra��������������������������
	2.5.1 The Venn Diagram�����������������������������
	2.5.2 Notation and Terminology�������������������������������������
	2.5.3 Precedence of Operations�������������������������������������

	2.6 Synthesis Using AND, OR, and NOT Gates��
	2.6.1 Sum-of-Products and Product-of-Sums Forms���

	2.7 NAND and NOR Logic Networks��������������������������������������
	2.8 Design Examples��������������������������
	2.8.1 Three-Way Light Control������������������������������������
	2.8.2 Multiplexer Circuit��������������������������������
	2.8.3 Number Display���������������������������

	2.9 Introduction to CAD Tools������������������������������������
	2.9.1 Design Entry�������������������������
	2.9.2 Logic Synthesis����������������������������
	2.9.3 Functional Simulation����������������������������������
	2.9.4 Physical Design����������������������������
	2.9.5 Timing Analysis����������������������������
	2.9.6 Circuit Implementation�����������������������������������
	2.9.7 Complete Design Flow���������������������������������

	2.10 Introduction to VHDL��������������������������������
	2.10.1 Structural Specification of Logic Circuits���
	2.10.2 Behavioral Specification of Logic Circuits���
	2.10.3 Hierarchical VHDL Code������������������������������������
	2.10.4 How not to Write VHDL Code��

	2.11 Minimization and Karnaugh Maps��
	2.12 Strategy for Minimization�������������������������������������
	2.12.1 Terminology�������������������������
	2.12.2 Minimization Procedure������������������������������������

	2.13 Minimization of Product-of-Sums Forms���
	2.14 Incompletely Specified Functions��
	2.15 Multiple-Output Circuits������������������������������������
	2.16 Concluding Remarks������������������������������
	2.17 Examples of Solved Problems���������������������������������������
	Problems���������������
	References�����������������

	Chapter 3 NUMBER REPRESENTATION AND ARITHMETIC CIRCUITS
	3.1 Positional Number Representation���
	3.1.1 Unsigned Integers������������������������������
	3.1.2 Octal and Hexadecimal Representations���

	3.2 Addition of Unsigned Numbers���������������������������������������
	3.2.1 Decomposed Full-Adder����������������������������������
	3.2.2 Ripple-Carry Adder�������������������������������
	3.2.3 Design Example���������������������������

	3.3 Signed Numbers�������������������������
	3.3.1 Negative Numbers�����������������������������
	3.3.2 Addition and Subtraction�������������������������������������
	3.3.3 Adder and Subtractor Unit��������������������������������������
	3.3.4 Radix-Complement Schemes�������������������������������������
	3.3.5 Arithmetic Overflow��������������������������������
	3.3.6 Performance Issues�������������������������������

	3.4 Fast Adders����������������������
	3.4.1 Carry-Lookahead Adder����������������������������������

	3.5 Design of Arithmetic Circuits Using CAD Tools���
	3.5.1 Design of Arithmetic Circuits Using Schematic Capture���
	3.5.2 Design of Arithmetic Circuits Using VHDL��
	3.5.3 Representation of Numbers in VHDL Code��
	3.5.4 Arithmetic Assignment Statements���

	3.6 Multiplication�������������������������
	3.6.1 Array Multiplier for Unsigned Numbers���
	3.6.2 Multiplication of Signed Numbers���

	3.7 Other Number Representations���������������������������������������
	3.7.1 Fixed-Point Numbers��������������������������������
	3.7.2 Floating-Point Numbers�����������������������������������
	3.7.3 Binary-Coded-Decimal Representation���

	3.8 Examples of Solved Problems��������������������������������������
	Problems���������������
	Reference����������������

	Chapter 4 COMBINATIONAL-CIRCUIT BUILDING BLOCKS
	4.1 Multiplexers�����������������������
	4.1.1 Synthesis of Logic Functions Using Multiplexers���
	4.1.2 Multiplexer Synthesis Using Shannon’s Expansion���

	4.2 Decoders�������������������
	4.2.1 Demultiplexers���������������������������

	4.3 Encoders�������������������
	4.3.1 Binary Encoders����������������������������
	4.3.2 Priority Encoders������������������������������

	4.4 Code Converters��������������������������
	4.5 Arithmetic Comparison Circuits���
	4.6 VHDL for Combinational Circuits��
	4.6.1 Assignment Statements����������������������������������
	4.6.2 Selected Signal Assignment���������������������������������������
	4.6.3 Conditional Signal Assignment��
	4.6.4 Generate Statements��������������������������������
	4.6.5 Concurrent and Sequential Assignment Statements���
	4.6.6 Process Statement������������������������������
	4.6.7 Case Statement���������������������������
	4.6.8 VHDL Operators���������������������������

	4.7 Concluding Remarks�����������������������������
	4.8 Examples of Solved Problems��������������������������������������
	Problems���������������

	Chapter 5 FLIP-FLOPS, REGISTERS, AND COUNTERS
	5.1 Basic Latch����������������������
	5.2 Gated SR Latch�������������������������
	5.2.1 Gated SR Latch with NAND Gates���

	5.3 Gated D Latch������������������������
	5.3.1 Effects of Propagation Delays��

	5.4 Edge-Triggered D Flip-Flops��������������������������������������
	5.4.1 M-S D Flip-Flop����������������������������
	5.4.2 Other Types of Edge-Triggered D Flip-Flops��
	5.4.3 D Flip-Flops with Clear and Preset���
	5.4.4 Flip-Flop Timing Parameters��

	5.5 T Flip-Flop����������������������
	5.6 JK Flip-Flop�����������������������
	5.7 Summary of Terminology���������������������������������
	5.8 Registers��������������������
	5.8.1 Shift Register���������������������������
	5.8.2 Parallel-Access Shift Register���

	5.9 Counters�������������������
	5.9.1 Asynchronous Counters����������������������������������
	5.9.2 Synchronous Counters���������������������������������
	5.9.3 Counters with Parallel Load��

	5.10 Reset Synchronization���������������������������������
	5.11 Other Types of Counters�����������������������������������
	5.11.1 BCD Counter�������������������������
	5.11.2 Ring Counter��������������������������
	5.11.3 Johnson Counter�����������������������������
	5.11.4 Remarks on Counter Design���������������������������������������

	5.12 Using Storage Elements with CAD Tools���
	5.12.1 Including Storage Elements in Schematics���
	5.12.2 Using VHDL Constructs for Storage Elements���

	5.13 Using VHDL Sequential Statements for Registers and Counters��
	5.13.1 Flip-Flops and Registers with Enable Inputs��
	5.13.2 Shift Registers with Enable Inputs��

	5.14 Design Example - Reaction Timer���
	5.14.1 Register Transfer Level (RTL) Code��

	5.15 Timing Analysis of Flip-flop Circuits���
	5.15.1 Timing Analysis with Clock Skew���

	5.16 Concluding Remarks������������������������������
	5.17 Examples of Solved Problems���������������������������������������
	Problems���������������

	Chapter 6 SYNCHRONOUS SEQUENTIAL CIRCUITS
	6.1 Basic Design Steps�����������������������������
	6.1.1 State Diagram��������������������������
	6.1.2 State Table������������������������
	6.1.3 State Assignment�����������������������������
	6.1.4 Choice of Flip-Flops and Derivation of Next-State and Output Expressions��
	6.1.5 Timing Diagram���������������������������
	6.1.6 Summary of Design Steps������������������������������������

	6.2 State-Assignment Problem�����������������������������������
	6.2.1 One-Hot Encoding�����������������������������

	6.3 Mealy State Model����������������������������
	6.4 Design of Finite State Machines Using CAD Tools���
	6.4.1 VHDL Code for Moore-Type FSMs��
	6.4.2 Synthesis of VHDL Code�����������������������������������
	6.4.3 Simulating and Testing the Circuit���
	6.4.4 An Alternative Style of VHDL Code��
	6.4.5 Summary of Design Steps When Using CAD Tools��
	6.4.6 Specifying the State Assignment in VHDL Code��
	6.4.7 Specification of Mealy FSMs Using VHDL��

	6.5 Serial Adder Example�������������������������������
	6.5.1 Mealy-Type FSM for Serial Adder��
	6.5.2 Moore-Type FSM for Serial Adder��
	6.5.3 VHDL Code for the Serial Adder���

	6.6 State Minimization�����������������������������
	6.6.1 Partitioning Minimization Procedure��
	6.6.2 Incompletely Specified FSMs��

	6.7 Design of a Counter Using the Sequential Circuit Approach���
	6.7.1 State Diagram and State Table for a Modulo-8 Counter��
	6.7.2 State Assignment�����������������������������
	6.7.3 Implementation Using D-Type Flip-Flops��
	6.7.4 Implementation Using JK-Type Flip-Flops���
	6.7.5 Example—A Different Counter��

	6.8 FSM as an Arbiter Circuit������������������������������������
	6.9 Analysis of Synchronous Sequential Circuits���
	6.10 Algorithmic State Machine (ASM) Charts���
	6.11 Formal Model for Sequential Circuits��
	6.12 Concluding Remarks������������������������������
	6.13 Examples of Solved Problems���������������������������������������
	Problems���������������

	Chapter 7 DIGITAL SYSTEM DESIGN
	7.1 Bus Structure������������������������
	7.1.1 Using Tri-State Drivers to Implement a Bus��
	7.1.2 Using Multiplexers to Implement a Bus���
	7.1.3 VHDL Code for Specification of Bus Structures���

	7.2 Simple Processor���������������������������
	7.3 A Bit-Counting Circuit���������������������������������
	7.4 Shift-and-Add Multiplier�����������������������������������
	7.5 Divider������������������
	7.6 Arithmetic Mean��������������������������
	7.7 Sort Operation�������������������������
	7.8 Clock Synchronization and Timing Issues���
	7.8.1 Clock Distribution�������������������������������
	7.8.2 Flip-Flop Timing Parameters��
	7.8.3 Asynchronous Inputs to Flip-Flops��
	7.8.4 Switch Debouncing������������������������������

	7.9 Concluding Remarks�����������������������������
	Problems���������������

	Chapter 8 OPTIMIZED IMPLEMENTATION OF LOGIC FUNCTIONS
	8.1 Multilevel Synthesis�������������������������������
	8.1.1 Factoring����������������������
	8.1.2 Functional Decomposition�������������������������������������
	8.1.3 Multilevel NAND and NOR Circuits���

	8.2 Analysis of Multilevel Circuits��
	8.3 Alternative Representations of Logic Functions��
	8.3.1 Cubical Representation�����������������������������������
	8.3.2 Binary Decision Diagrams�������������������������������������

	8.4 Optimization Techniques Based on Cubical Representation���
	8.4.1 A Tabular Method for Minimization��
	8.4.2 A Cubical Technique for Minimization��
	8.4.3 Practical Considerations�������������������������������������

	8.5 Concluding Remarks�����������������������������
	8.6 Examples of Solved Problems��������������������������������������
	Problems���������������

	Chapter 9 ASYNCHRONOUS SEQUENTIAL CIRCUITS
	9.1 Asynchronous Behavior��������������������������������
	9.2 Analysis of Asynchronous Circuits��
	9.3 Synthesis of Asynchronous Circuits���
	9.4 State Reduction��������������������������
	9.5 State Assignment���������������������������
	9.5.1 Transition Diagram�������������������������������
	9.5.2 Exploiting Unspecified Next-State Entries���
	9.5.3 State Assignment Using Additional State Variables���
	9.5.4 One-Hot State Assignment�������������������������������������

	9.6 Hazards������������������
	9.6.1 Static Hazards���������������������������
	9.6.2 Dynamic Hazards����������������������������
	9.6.3 Significance of Hazards������������������������������������

	9.7 A Complete Design Example������������������������������������
	9.7.1 The Vending-Machine Controller���

	9.8 Concluding Remarks�����������������������������
	9.9 Examples of Solved Problems��������������������������������������
	Problems���������������

	Chapter 10 COMPUTER AIDED DESIGN TOOLS
	10.1 Synthesis���������������������
	10.1.1 Netlist Generation��������������������������������
	10.1.2 Gate Optimization�������������������������������
	10.1.3 Technology Mapping��������������������������������
	10.2 Physical Design���������������������������
	10.2.1 Placement�����������������������
	10.2.2 Routing���������������������
	10.2.3 Timing Analysis�����������������������������
	10.3 Concluding Remarks������������������������������
	References�����������������

	Chapter 11 TESTING OF LOGIC CIRCUITS
	11.1 Fault Model�����������������������
	11.1.1 Stuck-at Model����������������������������
	11.1.2 Single and Multiple Faults��
	11.1.3 CMOS Circuits���������������������������

	11.2 Complexity of a Test Set������������������������������������
	11.3 Path Sensitizing����������������������������
	11.3.1 Detection of a Specific Fault���

	11.4 Circuits with Tree Structure��
	11.5 Random Tests������������������������
	11.6 Testing of Sequential Circuits��
	11.6.1 Design for Testability������������������������������������

	11.7 Built-in Self-Test������������������������������
	11.7.1 Built-in Logic Block Observer���
	11.7.2 Signature Analysis��������������������������������
	11.7.3 Boundary Scan���������������������������

	11.8 Printed Circuit Boards����������������������������������
	11.8.1 Testing of PCBs�����������������������������
	11.8.2 Instrumentation�����������������������������

	11.9 Concluding Remarks������������������������������
	Problems���������������
	References�����������������

	Appendix A VHDL REFERENCE
	A.1 Documentation in VHDL Code�������������������������������������
	A.2 Data Objects�����������������������
	A.2.1 Data Object Names������������������������������
	A.2.2 Data Object Values and Numbers���
	A.2.3 SIGNAL Data Objects��������������������������������
	A.2.4 BIT and BIT VECTOR Types�������������������������������������
	A.2.5 STD LOGIC and STD LOGIC VECTOR Types��
	A.2.6 STD ULOGIC Type����������������������������
	A.2.7 SIGNED and UNSIGNED Types��������������������������������������
	A.2.8 INTEGER Type�������������������������
	A.2.9 BOOLEAN Type
	A.2.10 ENUMERATION Type������������������������������
	A.2.11 CONSTANT Data Objects�����������������������������������
	A.2.12 VARIABLE Data Objects�����������������������������������
	A.2.13 Type Conversion�����������������������������
	A.2.14 Arrays��������������������

	A.3 Operators��������������������
	A.4 VHDL Design Entity�����������������������������
	A.4.1 ENTITY Declaration�������������������������������
	A.4.2 Architecture�������������������������

	A.5 Package������������������
	A.6 Using Subcircuits����������������������������
	A.6.1 Declaring a COMPONENT in a Package��

	A.7 Concurrent Assignment Statements���
	A.7.1 Simple Signal Assignment�������������������������������������
	A.7.2 Assigning Signal Values Using OTHERS��
	A.7.3 Selected Signal Assignment���������������������������������������
	A.7.4 Conditional Signal Assignment��
	A.7.5 GENERATE Statement�������������������������������

	A.8 Defining an Entity with GENERICs���
	A.9 Sequential Assignment Statements���
	A.9.1 PROCESS Statement������������������������������
	A.9.2 IF Statement�������������������������
	A.9.3 CASE Statement���������������������������
	A.9.4 Loop Statements����������������������������
	A.9.5 Using a Process for a Combinational Circuit���
	A.9.6 Statement Ordering�������������������������������
	A.9.7 Using a VARIABLE in a PROCESS��

	A.10 Sequential Circuits�������������������������������
	A.10.1 A Gated D Latch�����������������������������
	A.10.2 D Flip-Flop�������������������������
	A.10.3 Using a WAIT UNTIL Statement��
	A.10.4 A Flip-Flop with Asynchronous Reset��
	A.10.5 Synchronous Reset�������������������������������
	A.10.6 Registers�����������������������
	A.10.7 Shift Registers�����������������������������
	A.10.8 Counters����������������������
	A.10.9 Using Subcircuits with GENERIC Parameters��
	A.10.10 A Moore-Type Finite State Machine��
	A.10.11 A Mealy-Type Finite State Machine��

	A.11 Common Errors in VHDL Code��������������������������������������
	A.12 Concluding Remarks������������������������������
	References�����������������

	Appendix B IMPLEMENTATION TECHNOLOGY
	B.1 Transistor Switches������������������������������
	B.2 NMOS Logic Gates���������������������������
	B.3 CMOS Logic Gates���������������������������
	B.3.1 Speed of Logic Gate Circuits���

	B.4 Negative Logic System��������������������������������
	B.5 Standard Chips�������������������������
	B.5.1 7400-Series Standard Chips���������������������������������������

	B.6 Programmable Logic Devices�������������������������������������
	B.6.1 Programmable Logic Array (PLA��
	B.6.2 Programmable Array Logic (PAL��
	B.6.3 Programming of PLAs and PALs���
	B.6.4 Complex Programmable Logic Devices (CPLDs���
	B.6.5 Field-Programmable Gate Arrays���

	B.7 Custom Chips, Standard Cells, and Gate Arrays���
	B.8 Practical Aspects����������������������������
	B.8.1 MOSFET Fabrication and Behavior��
	B.8.2 MOSFET On-Resistance���������������������������������
	B.8.3 Voltage Levels in Logic Gates��
	B.8.4 Noise Margin�������������������������
	B.8.5 Dynamic Operation of Logic Gates���
	B.8.6 Power Dissipation in Logic Gates���
	B.8.7 Passing 1s and 0s Through Transistor Switches���
	B.8.8 Transmission Gates�������������������������������
	B.8.9 Fan-in and Fan-out in Logic Gates��
	B.8.10 Tri-state Drivers�������������������������������

	B.9 Static Random Access Memory (SRAM���
	B.9.1 SRAM Blocks in PLDs��������������������������������

	B.10 Implementation Details for SPLDs, CPLDs, and FPGAs���
	B.10.1 Implementation in FPGAs�������������������������������������

	B.11 Concluding Remarks������������������������������
	B.12 Examples of Solved Problems���������������������������������������
	Problems���������������
	References�����������������

	ANSWERS��������������
	INDEX������������

