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xvii

This book is about the digital logic design of microprocessors, and is intended to 
provide both an understanding of the basic principles of digital logic design, and how 
these fundamental principles are applied in the building of complex microproces-
sor circuits using current technologies. Although the basic principles of digital logic 
design have not changed, the design process and the implementation of the circuits 
have. With the advances in fully integrated modern hardware computer-aided design 
(CAD) tools for logic synthesis, simulation, and the implementation of digital circuits 
in field-programmable gate arrays (FPGAs), it is now possible to design and imple-
ment complex digital circuits very easily and quickly.ment complex digital circuits very easily and quickly.ment complex digital circuits very easily and quickly

Many excellent books on digital logic design have followed the traditional approach 
of introducing the basic principles and theories of digital logic design and the building 
of separate standard combinational and sequential components. However, students 
are left to wonder about the purpose of these individual components and how they 
are used in the building of more complex digital circuits, such as microcontrollers 
and microprocessors that are used in controlling real-world electronic devices. The 
primary goal of this book is to fill in this gap by going beyond the logic principles and 
the building of basic standard components. The book discusses in detail how the basic 
components are combined together to form datapaths, how control units are designed, 
and how these two main components (datapath and control unit) are connected 
together to produce actual dedicated custom microprocessors and general-purpose 
microprocessors. The book ends with an entire chapter containing many examples on 
how microprocessors are interfaced with real-world devices.

Many texts on digital logic design and implementation techniques mainly focus on 
the logic gate level. At this low level, it is difficult to discuss larger and more complex 
circuits that are beyond the standard combinational and sequential circuits. However, 
with the introduction of the register-transfer technique for designing datapaths and 
the concept of a finite-state machine for control units, we can easily design a dedicated 
microprocessor for any arbitrary algorithm and then implement it on a FPGA chip 
to execute that algorithm. The book uses an easy-to-understand ground-up approach 
with complete circuit diagrams, and both Verilog and VHDL codes, starting with the 
building of basic digital components. These components are then used in the build-
ing of more complex components, and finally the building of the complete dedicated 
microprocessor circuit. The construction of a general-purpose microprocessor then 
comes naturally as a generalization of a dedicated microprocessor. At the end, stu-
dents will have a complete understanding of how to design, construct, and implement 
fully working custom microprocessors.

P R E F A C E
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xviii PReFACe

Design of Circuits using Verilog and VHDL
Although this book provides coverage on both Verilog and VHDL for all of the 
circuits, this information can be omitted entirely while gaining an understanding of 
digital circuits and their design. For an introductory course in digital logic design, 
learning the basic principles is more important than learning how to use a hardware 
description language (HDL). In fact, instructors may find that students can get lost 
in learning the principles while trying to learn the language at the same time. With 
this in mind, the Verilog and VHDL code in the text is totally independent of the 
presentation of each topic and may be skipped without any loss of continuity.presentation of each topic and may be skipped without any loss of continuity.presentation of each topic and may be skipped without any loss of continuity

On the other hand, by studying the HDL codes, the student can not only learn 
the use of a hardware description language but also learn how digital circuits can be 
designed automatically using a synthesizer. This book provides an introduction to 
both Verilog and VHDL and uses the “learn-by-examples” approach. In writing either 
Verilog or VHDL code at the dataflow and behavioral levels, the student will see the 
power and usefulness of a state-of-the-art hardware CAD synthesis tool.

New to This Edition
In this newly revised second edition, a new chapter on interfacing microprocessors 
with external devices has been added. Just knowing how to design and implement a 
microprocessor is not sufficient. The main purpose and usage of a microprocessor is 
to control external devices. This entire chapter contains many real-world examples on 
interfacing microprocessors with external devices. Students can use these examples to 
help them in doing their final projects.

Throughout the book, many new examples have been added and old examples 
updated. This new edition also covers the usage of both Verilog and VHDL, the two 
industry standard hardware description languages for describing digital circuits. All 
circuit examples, in addition to having schematic diagrams, also include codes written 
in both VHDL and Verilog.

In addition to the Altera FPGA development software, a new section in the 
Appendix is added for using the Xilinx FPGA development software. Using either 
the Altera or the Xilinx FPGA development software and their respective FPGA 
hardware development boards, students can actually implement these microprocessor 
circuits and see them execute, both in software simulation and in hardware. The book 
contains many interesting examples with complete schematic diagrams and Verilog 
and VHDL codes for implementing them in hardware. With the hands-on exercises, 
students will learn not only the principles of digital logic design but, also in practice, 
how circuits are implemented using current technologies.

To actually see your own microprocessor come to life in real hardware and being 
able to control real-world external devices is an exciting experience. Hopefully, this 
will help students to not only remember what they have learned but will also get them 
interested in the world of microprocessor controllers and digital circuit design.
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Using This Book
This book can be used in either an introductory or a more advanced course in digital 
logic design. For an introductory course with no previous background in digital logic, 
Chapters 1 and 2 are intended to provide the fundamental basic concepts in digital 
logic design, while Chapters 3 and 4 cover the design of combinational circuits and 
standard combinational components. Chapter 5 on the design of sequential circuits 
can be introduced and lightly covered.

An advanced digital logic design course will start with sequential circuits in 
Chapter 5, and the design of finite-state machines in Chapter 6. Chapters 7 and 8 
cover the design of datapaths and control units, and the building of dedicated and 
general-purpose microprocessors. Finally, Chapter 9 concludes with the interfacing of 
microprocessors with the external world.

It is strongly recommended that a lab component be fully integrated with the lecture.
With an integrated lab, students can have a hands-on learning experience alongside the 
theoretical concepts that they have learned in class. In fact, many teachers find that too 
often not enough hours are given to the lab. As we probably know, it is often easier to 
understand the theory, but to actually implement a circuit and to get it to work requires 
much more detail and time. Ready-to-use labs that complement the lecture are available 
for download from the teachers’ resource website at https://login.cengage.com.

Chapter 1—Introduction to Microprocessor Design gives an overview of the var-
ious components of a microprocessor circuit and the different abstraction levels in 
which digital circuits can be designed.

Chapter 2—Fundamentals of Digital Circuits provides the basic principles and 
theories for designing digital logic circuits by introducing binary numbers, the use of 
truth tables, Boolean algebra, and how the theories get translated into logic gates and 
circuit diagrams. Also a brief  introduction to Verilog and VHDL is given.

Chapter 3—Combinational Circuits shows how combinational circuits are ana-
lyzed, synthesized, and optimized.

Chapter 4—Standard Combinational Components discusses the standard combi-
national components that are used as building blocks for larger digital circuits. These 
components include the adder, subtractor, arithmetic logic unit, decoder, multiplexer, 
tri-state buffer, comparator, shifter, and multiplier. In a hierarchical design, these com-
ponents will be used in the building of the datapath used in the microprocessor.

Chapter 5—Sequential Circuits introduces latches and flip-flops as basic storage 
elements and then continues with larger storage components such as registers, register 
files, and memories. Special sequential components such as shift registers and counters 
are also covered.

Chapter 6—Finite-State Machines shows how finite-state machines are analyzed, 
synthesized, and optimized.

Chapter 7—Dedicated Microprocessors first introduces the need for a datapath, 
and then explains how a control unit, in the form of a finite-state machine, is used to 
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control the datapath. The chapter expands further showing how dedicated micropro-
cessors are constructed by connecting the datapath and the control unit together as 
one coherent circuit.

Chapter 8—General-Purpose Microprocessors continues on from Chapter 7 to 
suggest that a general-purpose microprocessor is really a dedicated microprocessor 
that is dedicated to only read, decode, and execute instructions. The chapter discusses 
the complete design and construction of two simple general-purpose microprocessors 
with their own custom instruction set, and how programs written in machine language 
are executed on them. The highlight of this chapter and this book is that these two 
fully-working general-purpose microprocessors can be implemented in hardware and 
have programs executed by them.

Chapter 9—Interfacing Microprocessors provides several complete examples on 
how to interface microprocessors with real-world external devices. Examples include 
interfacing with a real-time clock IC using the I2C protocol, Bluetooth communication 
using RS-232, and drawing graphics on a VGA monitor.

The Appendixes provide tutorials on using both the Altera and Xilinx software 
development tools, and summaries on the Verilog and VHDL hardware description 
languages.

Supplements
Resources for the book can be found at https://login.cengage.com/. The instructor site 
is password protected and requires a verified instructor login to access the site.

Student Resources
 ● Chapter on Implementation Technologies
 ● Labs for each chapter
 ● All of the example codes from the book in VHDL and Verilog
 ● Altera FPGA development software download
 ● Xilinx FPGA development software download

Instructor Resources
 ● Chapter on Implementation Technologies
 ● Labs for each chapter
 ● PowerPoint lecture slides
 ● Solutions to problems at the end of each chapter
 ● All of the example codes from the book in VHDL and Verilog
 ● Altera FPGA development software download
 ● Xilinx FPGA development software download
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2 CHAPTER 1 IntroductIon to MIcroprocessor desIgn

Electronic devices are an integral part of  our lives. Every day and everywhere we 
see and use electronic devices, from cellular telephones to electronic billboards, cars, 
toys, TVs, elevators, musical greeting cards, personal computers, traffic lights, and 
many more. Inside each and every one of them, there is a microprocessor that controls 
their operations. Microprocessors are at the heart of  all of  these “smart” devices. 
Their smartness is a direct result of  the work of the microprocessor, without which 
none of these electronic devices would be able to operate as they do.

There are generally two types of microprocessors: general-purpose microprocessors
and dedicated microprocessors. General-purpose microprocessors, such as the Intel 
Core™ i7 CPU shown in Figure 1.1(a) can perform different tasks under the control 
of different software programs. General-purpose microprocessors typically are much 
more powerful in terms of processing power and speed. However, they usually require 
external components for their memory and supporting input/output (I/O) peripherals. 
They are used in all personal computers.

Dedicated microprocessors, also known as microcontrollers or application-specific 
integrated circuits (ASICs), on the other hand, are designed to perform just one specific 
task. For example, inside your cell phone is a dedicated microcontroller that does noth-
ing else but control its entire operation. Microcontrollers therefore are usually not as 
powerful (because they do not need to perform so many tasks) as a microprocessor and 
are much smaller in size. However, they usually will have the memory and supporting 
I/O peripherals included inside the chip, hence the entire system can be on a single chip. 
For example, the Atmel ATtiny13A microcontroller shown in Figure 1.1(b) has built-in 
flash memory, electrically erasable programmable read-only memory (EEPROM), static 
random-access memory (SRAM), general-purpose I/Os, timers, serial interface, and ana-
log-to-digital converters (ADC). Dedicated microcontrollers are used in almost all smart 
electronic devices. Although the small dedicated microcontrollers are not as powerful 
and are slower in speed as compared to general-purpose microprocessors, they are being 
sold much more and are used in a lot more places than general-purpose microprocessors.

FIGURE 1.1 Microprocessors: (a) General-purpose Intel Core™ i7 CPU; (b) Dedicated 
Atmel ATtiny13A microcontroller.
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1.1 overvIew of MIcroprocessor desIgn 3

In this book, I will show you in detail how to design, implement, and interface a 
microprocessor. At the end, you will be able to design your own custom microproces-
sor and use it to control your own electronic device. I will use a hands-on approach to 
guide you step-by-step through the entire design process with complete circuits that 
you actually can implement in hardware. The exciting part is that at the end, you can 
actually, very easily and inexpensively, implement your own custom microprocessor in 
a real integrated circuit (IC) and see that it really can execute software programs, make 
lights flash, or do whatever you have designed it to do.

We will start with the fundamentals of digital logic circuit design in Chapter 2, which 
will provide you with a good foundation and basic building blocks for creating larger and 
more complex digital circuits. Chapters 3 and 4 will discuss the design of simple digital 
circuits and common circuits that are used as building blocks for larger circuits. Chapter 
5 talks about the design of memory circuits. Typically, an introduction to digital logic 
design course will cover the materials from Chapters 1 to 5 only. Moving on to more 
advanced digital logic design, Chapter 6 talks about control unit circuits. Chapter 7 talks 
about the datapath and how to connect it with the control unit to produce a dedicated 
microcontroller. Chapter 8 extends the dedicated microcontroller from Chapter 7 to 
produce a general-purpose microprocessor. Finally, Chapter 9 concludes with examples 
of how to interface these microprocessors and microcontrollers in the real world.

1.1 Overview of Microprocessor Design
The microprocessor or microcontroller is an electronic digital logic circuit that is imple-
mented inside an IC chip. Any digital electronic circuit at the lowest physical level 
understands only whether there is electricity or no electricity, which is typically rep-
resented by the use of a 1 or a 0. The question is how do we design a microprocessor 
so that it can understand the 1s and 0s, and then do something meaningful with that 
understanding? To design a microprocessor is to design its logic circuit to do whatever 
it is intended to do. To implement the microprocessor is to put the logic circuit of the 
microprocessor onto an IC chip.

Previously, making an IC chip with any circuit was a long and expensive pro-
cess. With the advance of large-capacity field-programmable gate array (FPGA) chips, 
digital circuits of  almost any size can be implemented in a chip easily and quickly. 
Moreover, because FPGA chips are erasable, you can use the same FPGA chip over and 
over again to implement different circuits. If you put an adder circuit in the FPGA chip, 
that chip will be an adder, and if  you put a traffic light controller circuit in the FPGA 
chip, that chip will be a traffic light controller. So implementing any digital circuit in a 
FPGA chip is quite simple. The challenge now is how to design the circuit; how do we 
design the adder circuit or the traffic light controller circuit?

A block diagram of a microprocessor circuit is shown in Figure 1.2. As you can 
see, it is divided into two main parts: the control unit and the datapath. The datap-
ath is responsible for the execution of  all of  the microprocessor’s data operations, 
such as the addition of two numbers inside the arithmetic logic unit (ALU). The dat-
apath also includes registers for the temporary storage of data and comparators for 
testing data values. These and many other functional units are connected together 
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4 CHAPTER 1 IntroductIon to MIcroprocessor desIgn

with multiplexers and data signal lines. The data signal lines are for transferring data 
between two functional units. Sometimes, several data signal lines are grouped together 
to form a bus. The width of the bus (i.e., the number of data signal lines in the group) is 
annotated next to the bus line. In the figure, the bus lines are thicker and are 8-bit wide. 
Multiplexers, also known as MUXs, are for selecting data from two or more sources to 
go to one destination. In the figure, a 2-to-1 multiplexer is used to select between the 
input data and the constant “0” to go to the left operand of the ALU. The output of the 
ALU is connected to the input of the register. The output of the register is connected 
to three different destinations: (1) the right operand of the ALU; (2) an OR gate used 
as a comparator for the test “not equal to 0”; and (3) a tri-state buffer, which is used to 
control the output of the data from the register.

Even though the datapath is capable of performing all of the microprocessor’s data 
operations, it cannot, however, do it on its own. In order for the datapath to execute the 
operations automatically and correctly, a control unit is required. The control unit, also 
known as the controller, controls all of the operations of the datapath and therefore, 
the operations of the entire microprocessor. The control unit is also called a finite-state 
machine (FSM) because it is a machine that executes by going from one state to another, 
and there are only a finite number of states for the machine to go to. The control unit is 
made up of three parts: (1) the next-state logic; (2) the state memory; and (3) the output 
logic. The purpose of the state memory is to remember the current state that the FSM 
is in. The next-state logic is the circuit that determines what the machine’s next state 
should be. The output logic is the circuit that generates the actual control signals for 
controlling the datapath and/or external devices.

Every digital logic circuit, regardless of whether it is part of the control unit or 
the datapath, is categorized as either a combinational circuit or a sequential circuit. 

FIGURE 1.2 Internal parts of a microprocessor.
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1.1 overvIew of MIcroprocessor desIgn 5

A combinational circuit is one where the output of the circuit is dependent only on the 
current inputs to the circuit, and therefore has no memory about what has happened 
before. For example, an adder is a combinational circuit because it will produce a sum 
when given any two input numbers.

A sequential circuit, on the other hand, is dependent not only on the current inputs, 
but also on all of the previous inputs. In other words, a sequential circuit has to remem-
ber its past history. For example, a register is a sequential circuit because it can remember 
a value indefinitely. Because sequential circuits are dependent on the history, they must 
contain memory elements to remember that history. Combinational circuits, on the other 
hand, do not need to remember the history, and so they do not have memory elements.

An analogy of the difference between a combinational circuit and a sequential cir-
cuit is the combination lock that we are familiar with. There are actually two different 
types of combination locks as shown in Figure 1.3. For the lock in Figure 1.3(a), you 
just turn the three number dials in any order you like to the correct number and the lock 
will open. For the lock in Figure 1.3(b), you also have three numbers that you need to 
turn to, but you need to turn to these three numbers in the correct sequence. If  you turn 
to these three numbers in the wrong sequence the lock will not open even if  you have 
the numbers correct. The lock in Figure 1.3(a) is like a combinational circuit where the 
order in which the inputs are entered into the circuit does not matter, whereas, a sequen-
tial circuit is like the lock in Figure 1.3(b) where the sequence of the inputs does matter.

Examples of combinational circuits inside the microprocessor include the ALU, 
multiplexers, tri-state buffers, and comparators in the datapath, and the next-state logic 
and output logic circuits in the control unit. Examples of sequential circuits include 
the register for the state memory in the control unit and the registers in the datapath.

FIGURE 1.3 Two types of combination locks: (a) the order in which you enter the 
numbers does not matter; (b) the order in which you enter the numbers does matter.
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6 CHAPTER 1 IntroductIon to MIcroprocessor desIgn

All digital logic circuits, whether they are combinational or sequential, are made up of 
the three basic logic gates: AND, OR, and NOT gates. From these three basic gates, the most 
powerful computer can be made. Furthermore, these basic gates are built using transis-
tors—the fundamental building blocks for all digital logic circuits. Transistors are simply 
electronic binary switches that can be turned on and off. The 1s and 0s that we, as com-
puter scientists, often talk about are used to represent the on and off states of a transistor.

To summarize, transistors, as the lowest-level building blocks, are used to build 
the basic logic gates. Logic gates are connected together to form either combinational 
circuits or sequential circuits. The difference between these two types of circuits is only 
in the way the logic gates are connected together. Certain combinational circuits and 
sequential circuits are used as standard building blocks for larger circuits and so are 
kept in standard libraries. These standard combinational and sequential components 
are connected together to form either the datapath or the control unit. Finally, com-
bining the datapath and the control unit together will produce the circuit for either a 
dedicated or a general-purpose microprocessor.

1.2 Design Abstraction Levels
Digital circuits can be designed at any one of several abstraction levels. When designing 
a circuit at the transistor level, which is the lowest level, you are dealing with discrete 
transistors and connecting them together to form the circuit. The next level up in the 
abstraction is the gate level. At this level, you are working with logic gates to build the 
circuit. In using logic gates, a designer usually creates standard combinational and 
sequential components for building larger circuits. In this way, a very large circuit, such 
as a microprocessor, can be built in a hierarchical fashion. Design methodologies have 
shown that solving a problem hierarchically is always easier than trying to solve the 
entire problem as a whole from the ground up. These combinational and sequential 
components are used at the register-transfer level to build the datapath and the control 
unit in the microprocessor. At the register-transfer level, we are concerned with how the 
data is transferred between the various registers and functional units to realize or solve 
the problem at hand. Finally, at the highest level, called the behavioral level, we can 
describe the behavior or operation of the circuit using a high-level hardware description 
language, and we can use a synthesizer, which is equivalent to a compiler, to automati-
cally generate the logic circuit for it. Designing at this level does not require knowledge 
of the underlying logic gates and circuits because the synthesizer will automatically 
create the logic circuit for you. This is very similar to writing a computer program 
using a high-level programming language, and then using the compiler to automatically 
translate the program into machine language that the computer can execute.

An important point to realize is that there are many different ways to create 
the same functional circuit. Although they are all functionally equivalent, they are 
different in other respects, such as the actual circuit (how the transistors or gates 
are connected together), size (how big the circuit is or how many transistors or gates 
it uses), speed (how long it takes for the output result to be valid), cost (how much 
it costs to manufacture), and power usage (how much power it uses). Hence, when 
designing a circuit, in addition to being functionally correct, we also should consider 
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1.3 exaMples of a 2-to-1 MultIplexer 7

the economic versus performance tradeoffs. In this book, we will focus mainly on how 
to design a functionally correct circuit with some discussion about how to optimize 
the circuit size.

1.3 Examples of a 2-to-1 Multiplexer
As an introduction example, let us look at the design of the 2-to-1 multiplexer from 
different abstraction levels. At this point, don’t worry too much if you don’t understand 
the details of how all of these circuits are built. This example is intended just to give 
you an idea of what the circuit looks like at the different abstraction levels. We will get 
to the details in the rest of the book.

The multiplexer is a component that is used a lot in the datapath. An analogy for 
the operation of the 2-to-1 multiplexer is similar in principle to a railroad switch in 
which two railroad tracks are to be merged onto one track. The switch controls which 
one of the two trains on the two separate tracks will move onto the one track. Similarly, 
the 2-to-1 multiplexer has two data inputs, d1 and d0d0d , and a select input, s. The select 
input determines which data from the two data inputs will pass to the output, y.

Figure 1.4 shows the graphical symbol, also referred to as the logic symbol, for the 
2-to-1 multiplexer. From looking at the logic symbol, you can tell how many signal lines 
the 2-to-1 multiplexer has, and the name or function designated for each line. For the 
2-to-1 multiplexer, there are two data input signals, d1 and d0d0d , a select input signal, s, 
and an output signal, y.

1.3.1 Behavioral Level
We can describe the operation of the 2-to-1 multiplexer simply 
(using the same names as in the logic symbol) by saying that

if s 5 0 then d0d0d passes to y,

otherwise

d1 passes to y

Or more precisely, the value that is at d0d0d  passes to y if  s 5 0, and the value that is 
at d1 passes to y if  s 5 1.

We use a hardware description language (HDL), which is quite similar to many 
high-level computer programming languages, to describe the circuit at the behavioral
level. When describing a circuit at this level, you would write basically the same thing 
as in the description, except that you have to use the correct syntax required by the 
hardware description language. Figure 1.5 shows the description of  the 2-to-1 multi-
plexer using the hardware description language called Verilog, and Figure 1.6 shows 
the description of  the same 2-to-1 multiplexer using another hardware description 
language called VHDL, which stands for VHSIC Hardware Description Language 
(VHSIC, in turn, stands for Very High Speed Integrated Circuit). Verilog and VHDL 
are two standard hardware description languages used for digital logic design.

FIGURE 1.4 Logic 
symbol for the 
2-to-1 multiplexer.
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8 CHAPTER 1 IntroductIon to MIcroprocessor desIgn

In the Verilog code shown in Figure 1.5, the declaration of the component begins 
with the keyword module followed by the name of the component, which in the exam-
ple, is the user identifier multiplexer. All of the words used in Verilog are case sen-
sitive. The input and output interface signals are listed next using the keywords input
and output. For ease of reference, the user-defined names used for these signals match 
those shown earlier in the logic symbol. The always block is followed by its sensitivity 
list of signals inside the parentheses. The always block is executed each and every time 
when any one of the signals in the sensitivity list changes value. The statements inside 
the always block (bracketed by the begin and end keywords) are executed sequen-
tially. In the example, there is only one if-then-else statement inside the block. 
Like any if statement in other programming languages, the assignment statement y 
= d0 is executed when the condition “s equals to 0” is true, otherwise the assignment 
statement y = d1 is executed. For the two assignment statements, the value for the 
expression on the right side of the equal sign is assigned to the signal on the left side 
of the equal sign. Notice that the output signal y on the left side of the equal sign is 
declared as a reg because assignment statements inside the always block cannot 
drive a wire data type, but can only drive a register or an integer data type. Finally, 
the module is terminated with the keyword endmodule. A summary of the Verilog 
language can be found in Appendix C.

In the VHDL code shown in Figure 1.6, the LIBRARY and USE statements are simi-
lar to the “#include” and “using namespace” preprocessor commands in C11. None 
of the words used in VHDL is case sensitive, however, in the examples, the keywords 
are shown in upper case. The IEEE library contains the definition for the STD_LOGIC

type used in the declaration of signals. The ENTITY section declares the interface for 
the circuit by specifying the input and output signals of the circuit. In this example, 
there are three input signals of  type STD_LOGIC and one output signal also of  type 
STD_LOGIC. Again, the names used for these signals match those shown earlier in the 
logic symbol. The ARCHITECTURE section defines the actual operation of  the circuit. 

module multiplexer (
  input s,
  input d0,
  input d1,
  output reg y
);

  always @ (s or d0 or d1) begin
   if (s == 0) begin
    y = d0;
   end else begin
    y = d1;
   end
  end

endmodule

FIGURE 1.5 Behavioral Verilog code for a 2-to-1 multiplexer.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-202



1.3 exaMples of a 2-to-1 MultIplexer 9

The ARCHITECTURE keyword is followed by a user identifier name and the entity that 
it is for. The PROCESS block with its sensitivity list is like the always block in Verilog. 
The operation of the multiplexer is defined in the conditional IF-THEN-ELSE statement. 
The two signal assignment statements, which use the symbol ,5 to denote the signal 
assignment, in conjunction with the IF-THEN-ELSE statement, says that the signal y gets 
the value of d0d0d  if  s is equal to 0; otherwise, y gets the value of d1. The PROCESS block is 
terminated by the END PROCESS statement, and the ARCHITECTURE block is terminated by 
the END keyword followed by the name of this architecture. A summary of the VHDL 
language can be found in Appendix D.

Having written the behavioral code, either in Verilog or VHDL, we will use a syn-
thesizer to automatically construct the netlist (which is the circuit connections) that 
will operate according to the description of the code. As you can see, when designing 
circuits at the behavioral level, we do not need to know what logic gates are needed or 
how they are connected together. We only need to know their interface and functional 
operation, and then describe it using an HDL.

1.3.2 Gate Level
At the gate level, you can draw a schematic diagram or circuit diagram, which shows 
how the logic gates are connected together. Two different schematic diagrams of  a 
2-to-1 multiplexer circuit are shown in Figures 1.7(a) and (b). In Figure 1.7(a), the 
circuit uses three NOT gates ( ), four 3-input AND gates ( ), and one 4-input OR gate 
( ). In Figure 1.7(b), only one NOT gate, two 2-input AND gates, and one 2-input OR

gate are needed. Although one circuit is larger (in terms of the number of gates needed) 
than the other, both of  these circuits realize the same 2-to-1 multiplexer function. 
Therefore, when we want to actually implement a 2-to-1 multiplexer circuit, we will 
want to use the second, smaller circuit rather than the first.

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY multiplexer IS PORT (
  s, d0, d1: IN STD_LOGIC;
  y: OUT STD_LOGIC);
END multiplexer;

ARCHITECTURE Behavioral OF multiplexer IS
BEGIN
  PROCESS(s, d0, d1)
  BEGIN
   IF (s = '0') THEN
    y <= d0;
   ELSE
    y <= d1;
   END IF;
  END PROCESS;

END Behavioral;

FIGURE 1.6 Behavioral VHDL code for a 2-to-1 multiplexer.
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10 CHAPTER 1 IntroductIon to MIcroprocessor desIgn

At the gate level, you also can describe the 2-to-1 multiplexer using a truth table or 
with a Boolean equation as shown in Figures 1.8(a) and (b), respectively. For the truth 
table, we list all possible combinations of the binary values for the three inputs, s, d0d0d ,
and d1, and then determine what the output value y should be based on the functional 
description of the circuit. We see that for the first four rows of the table when s 5 0,
y has the same values as d0d0d ; whereas, in the last four rows when s 5 1, y has the same 
values as d1.

The Boolean equation in Figure 1.8(b) can be derived from either the schematic 
diagram or the truth table. The first equality in Figure 1.8(b) matches the truth table 
in Figure 1.8(a) and also the schematic diagram in Figure 1.7(a). The second equality 
in Figure 1.8(b) matches the schematic diagram in Figure 1.7(b). To derive the first 
equality equation from the truth table, we look at all of the rows where the output y is 
a 1. Each of these rows results in a term in the equation. For each term, the variable is 
primed 1 r 2  when the value of the variable is a 0, and unprimed when the value of the 
variable is a 1. For example, the first term srd r1 d0d0d  in the equation is obtained from the 
first row in the truth table where y is a 1, since s is a 0, d1 is a 0 and d0d0d  is a 1.

s d1d1d d0d0d y

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

(a)

FIGURE 1.8 Gate level description of the 2-to-1 multiplexer: (a) using a truth table; 
(b) using a Boolean equation.

y 5 srd r1 d0d0d 1 srd1d0d0d 1 sd1d r0d0d 1 sd1d0d0d
5 srd0d0d 1 sd1

(b)

FIGURE 1.7 Gate level circuit diagram for the 2-to-1 multiplexer: (a) circuit using 
eight gates; (b) circuit using four gates.

s d1 d0

y

(a)

s

d1

d0

y

(b)
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FIGURE 1.9 Transistor circuit for the 2-to-1 multiplexer.

s

d1

VccVccV

d0

y

1.3.3 Transistor Level
The 2-to-1 multiplexer circuit at the transistor level is shown in Figure 1.9. It contains 
six transistors, three of which are P-type metal-oxide semiconductor (PMOS) transis-
tors ( ), and three are N-type metal-oxide semiconductor (NMOS) transistors ( ). 
The pair of transistors on the left forms a NOT gate for the signal s, while the two pairs 
of transistors on the right form two transmission gates. The transmission gate allows 
or disallows the data signal d0d0d  or d1 to pass through, depending on the control signal s. 
The top transmission gate is turned on when s is a 0, and the bottom transmission gate 
is turned on when s is a 1. Hence, when s is 0, the value at d0d0d  is passed to y, and when 
s is 1, the value at d1 is passed to y.

A more detailed discussion about how to design digital circuits at the transistor 
level can be found in the online chapter on Implementation Technologies.

1.4 Introduction to Hardware Description Language
The popularity of  using hardware description languages (HDL) to design digital cir-
cuits began in the mid-1990s when commercial synthesis tools became available. Two 
popular HDLs used by many engineers today are VHDL and Verilog. VHDL was 
sponsored and developed jointly by the U.S. Department of  Defense and the Institute 
of Electrical and Electronic Engineers (IEEE) in the mid-1980s. It was standardized by 
the IEEE in 1987 (VHDL-87), and later extended in 1993 (VHDL-93). Verilog, on the 
other hand, was first introduced in 1984, and again later in 1988, as a proprietary hard-
ware description language by two companies: Synopsys and Cadence Design Systems.

Both Verilog and VHDL, in many respects, are similar to a regular computer 
programming language, such as C. For example, it has constructs for variable assign-
ments, conditional statements, loops, and functions (just to name a few). In a computer 
programming language, a compiler is used to translate the high-level source code to 
machine code. In HDL, however, a synthesizer is used to translate the source code 
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12 CHAPTER 1 IntroductIon to MIcroprocessor desIgn

to a description of the actual hardware circuit that implements the code. From this 
description, which we call a netlist, the actual, physical digital device that realizes the 
source code can be made automatically. Accurate functional and timing simulation of 
the code is also possible in order to test the correctness of the circuit.

We saw in the previous section how we used Verilog and VHDL to describe the 
2-to-1 multiplexer at the behavioral level. HDL also can be used to describe a circuit at 
other levels. Figure 1.10 shows the VHDL code for the multiplexer written at the data-
flow level. The main difference between the behavioral VHDL code shown in Figure 1.6 
and the dataflow VHDL code is that, in the behavioral code, there is a PROCESS block 
statement; whereas, in the dataflow code, there is no PROCESS statement. Statements 
within a PROCESS block are executed sequentially as in a computer program, while state-
ments outside a PROCESS block (including the PROCESS block itself) are executed concur-
rently or in parallel. The signal assignment statement, using the symbol <=, is derived 
directly from the Boolean equation for the multiplexer, as shown in Figure 1.8(b), using 
the built-in VHDL operators: AND, OR, and NOT.

The corresponding Verilog version of the 2-to-1 multiplexer written at the dataflow 
level is shown in Figure 1.11. For Verilog, the assign keyword is used for the signal 
assignment, and the symbols &, 0 , and ,  are used for the logical operators AND, OR, 
and NOT, respectively. 

In addition to the behavioral and dataflow levels, we also can write HDL code at 
the structural level. Figure 1.13 shows the Verilog code for the multiplexer written at 
the structural level and Figure 1.14 shows the VHDL code. The code is based on the 
circuit shown in Figure 1.7(b) and duplicated here in Figure 1.12.

module multiplexer (
  input s, d0, d1,
  output y
);

  assign y = ((~s) & d0) | (s & d1);

endmodule

FIGURE 1.11 Dataflow level Verilog description of the 2-to-1 multiplexer.

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY multiplexer IS PORT(
  s, d0, d1: IN STD_LOGIC;
  y: OUT STD_LOGIC);
END multiplexer;

ARCHITECTURE Dataflow OF multiplexer IS
BEGIN
  y <= ((NOT s) AND d0) OR (s AND d1);
END Dataflow;

FIGURE 1.10 Dataflow level VHDL description of the 2-to-1 multiplexer.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-202



1.4 IntroductIon to Hardware descrIptIon language 13

FIGURE 1.12 2-to-1 multiplexer circuit.

s

d1

d0

y

U1U1U
U2U2U

U3U3U

U4U4U

snd0

sd1

sn

module multiplexer (
  input s, d0, d1,
  output y
);

  wire sn,snd0,sd1;

  // first parameter is the output; 
  // remaining parameters are the inputs
  not U1(sn,s);
  and U2(snd0,sn,d0);
  and U3(sd1,s,d1);
  or U4(y,snd0,sd1);

endmodule

FIGURE 1.13 Structural Verilog code for the 2-to-1 multiplexer.

----------------- NOT gate -----------------------
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
ENTITY notgate IS PORT(
  i: IN STD_LOGIC;
  o: OUT STD_LOGIC);
END notgate;

ARCHITECTURE Dataflow OF notgate IS
BEGIN
  o <= NOT i;
END Dataflow;

----------------- 2-input AND gate ---------------
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
ENTITY and2gate IS PORT(
  i1, i2: IN STD_LOGIC;
  o: OUT STD_LOGIC);
END and2gate;

FIGURE 1.14 Structural VHDL code for the 2-to-1 multiplexer.
(continued on next page)
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ARCHITECTURE Dataflow OF and2gate IS
BEGIN
  o <= i1 AND i2;
END Dataflow;

----------------- 2-input OR gate ----------------
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
ENTITY or2gate IS PORT(
  i1, i2: IN STD_LOGIC;
  o: OUT STD_LOGIC);
END or2gate;

ARCHITECTURE Dataflow OF or2gate IS
BEGIN
  o <= i1 OR i2;
END Dataflow;

----------------- 2-to-1 multiplexer ------------
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
ENTITY multiplexer IS PORT(
  s, d0, d1: IN STD_LOGIC;
  y: OUT STD_LOGIC);
END multiplexer;

ARCHITECTURE Structural OF multiplexer IS
  COMPONENT notgate PORT(
    i: IN STD_LOGIC;
    o: OUT STD_LOGIC);
  END COMPONENT;
  COMPONENT and2gate PORT(
    i1, i2: IN STD_LOGIC;
    o: OUT STD_LOGIC);
  END COMPONENT;
  COMPONENT or2gate PORT(
    i1, i2: IN STD_LOGIC;
    o: OUT STD_LOGIC);
  END COMPONENT;

  SIGNAL sn, snd0, sd1: STD_LOGIC;

BEGIN
  U1: notgate PORT MAP(s, sn);
  U2: and2gate PORT MAP(d0, sn, snd0);
  U3: and2gate PORT MAP(d1, s, sd1);
  U4: or2gate PORT MAP(snd0, sd1, y);
END Structural;

FIGURE 1.14 Structural VHDL code for the 2-to-1 multiplexer.

In the structural Verilog code shown in Figure 1.13, the keywords (not, and, or) for 
the various gates are used. The first parameter for these gate statements is the output from 
the gate. The remaining parameters in the statements are the inputs to the gate. The wire
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keyword defines user identifiers using the wire data type for connecting the gates together 
based on the schematic diagram. For example, looking at the schematic diagram, the NOT

gate labeled U1 has s as the input and s as the input and s sn as the output. Hence in the corresponding code, 
we have the statement not U1(sn, s). The user-identifier name U1 in the statement 
is optional, and is added only for easy identification of the gate in the circuit.

The structural VHDL code shown in Figure 1.14 looks more complicated than 
the Verilog code, but it actually does the same thing. The three different gates (notgate, 
and2gate, and or2gate) used in the circuit are declared and defined first using the ENTITY

and ARCHITECTURE statements, respectively. After this, the multiplexer is declared (also 
with the ENTITY statement). The actual, structural definition of the multiplexer is in the 
ARCHITECTURE section for multiplexer. First of all, the COMPONENT statements specify 
what components are used in the circuit. The SIGNAL statement declares the three inter-
nal signals (sn, snd0, and sd1) that will be used in the connection of the circuit. Finally, 
the PORT MAP statements declare the instances of the gates used in the circuit and specify 
how they are connected using the external and internal signals. So if  you ignore all of 
the preliminary declaration stuff, the last few statements in the VHDL code matches 
the statements in the Verilog code.

The focus of this book is not to teach the details of how to write Verilog or VHDL 
codes. Because these two hardware description languages are quite similar to high-level 
computer languages such as C, which you already should be familiar with, we will take the 
approach of learning by examples. Throughout the book, there are Verilog and VHDL 
codes for all of the circuits discussed, and in the appendix there is a syntax summary of the 
two languages for your reference. By looking at the examples and the summary references, 
you should be able to write codes using these languages to describe your digital circuits.

1.5 Synthesis
Given a gate-level circuit diagram, such as the one shown in Figure 1.7, you actually 
can get some discrete logic gates and manually connect them together with wires on 
a breadboard. Traditionally, this is how electronic engineers actually designed and 
implemented digital logic circuits. However, this is not how electronic engineers design 
circuits anymore. They write programs, such as the one in Figure 1.6, just like what 
computer programmers do. The question is how does the program that describes the 
operation of the circuit actually get converted to the physical circuit?

The problem here is similar to translating a computer program written in a high-
level language to machine language for a particular computer to execute. For a computer 
program, we use a compiler to do the translation. For translating a digital logic circuit, 
we use a synthesizer. Instead of using a high-level computer language to describe a 
computer program, we use a hardware description language (HDL) to describe the oper-
ations of a digital logic circuit. Writing a description of a digital logic circuit is similar to 
writing a computer program except that a different language is used. A synthesizer then 
is used to translate the HDL program into the circuit netlist. A netlist is a description of 
how a circuit actually is realized or connected using basic gates. This translation process 
from an HDL description of a circuit to its netlist is referred to as synthesis.

The netlist from the output of the synthesizer can be used directly to implement 
the actual circuit in a FPGA IC chip. With this final step, the creation of  a digital 
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16 CHAPTER 1 IntroductIon to MIcroprocessor desIgn

circuit that is implemented fully in an IC chip can be done easily. The appendices 
give a tutorial of  the complete process: from writing the Verilog or VHDL code to 
synthesizing the circuit and uploading the netlist to a FPGA chip using an FPGA 
development board.

1.6 Going Forward
We will now embark upon a journey that will take you from a simple transistor to the 
construction of a microprocessor. Figure 1.2 will serve as our guide and map. If  you 
get lost on the way, and do not know where a particular component fits in the overall 
picture, just refer to this map. At the end, you will be able to design your own custom 
microprocessor. The exciting part is that this is not just talk and theories. You will be 
able to implement and try out all of the circuits on a real FPGA chip. You will be able 
to make lights flash, motors run, and execute your own software program on your own 
custom microprocessor.

Figure 1.15 is an actual picture of  the circuitry inside an Intel Pentium 4 CPU. 
When you reach the end of  this book, you still may not be able to design the cir-
cuit for the P4 because of  lack of  resources, but you certainly will know how it is 
designed, because you actually will have designed and implemented a real working 
microprocessor yourself.

FIGURE 1.15 The internal circuitry of the Intel Pentium 4 CPU.
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1.1. Find out the approximate number of general-purpose microprocessors 
sold in your country in the most recent year versus the number of dedi-
cated microprocessors sold.

1.2. Compile a list of devices controlled by a microprocessor that you use 
during one regular day.

1.3. Describe what your regular daily routine would be like if  no electrical 
power (including battery power) were available.

1.4. What are the inputs and outputs for the following systems?
a) Traffic light
b) Heart pacemaker
c) Microwave oven
d) Musical greeting card
e) Hard disk drive (not the entire personal computer)

1.5. The speed of a microprocessor is often measured by its clock frequency. 
What is the clock frequency of the fastest general-purpose microprocessor 
available today?

1.6. Compare some typical clock speeds between general-purpose micropro-
cessors and dedicated microprocessors.

1.7. Summarize the mainstream generations of the Intel general-purpose 
microprocessors used in personal computers, starting with the 8086 CPU. 
List the year introduced, the clock speed, and the number of transistors in 
each.

1.8. The first-generation PC uses the Intel 8088 with approximately 29,000 
transistors. Approximately how many transistors are in the Intel Core 
i7 (Quad) CPU? Approximately how many transistors are in the Xilinx 
Virtex-7 FPGA? Approximately how many transistors are in the Altera 
Stratix V FPGA?

1.9. Using Figure 1.11 as a template, write the dataflow Verilog code for the 
2-to-1 multiplexer circuit shown in Figure 1.7(a).

1.10. Using Figure 1.13 as a template, write the structural Verilog code for the 
2-to-1 multiplexer circuit shown in Figure 1.7(a).

1.11. Using Figure 1.10 as a template, write the dataflow VHDL code for the 
2-to-1 multiplexer circuit shown in Figure 1.7(a).

1.12. Using Figure 1.14 as a template, write the structural VHDL code for the 
2-to-1 multiplexer circuit shown in Figure 1.7(a).

1.13. Do the Xilinx ISE tutorial in Appendix A.

1.14. Do the Altera Quartus tutorial in Appendix B.

1.7 probleMs 17
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Our world is an analog world. Measurements that we make of  the physical objects 
around us are never in discrete units, but rather in a continuous range. We talk about 
physical constants such as 2.718281828. . . or 3.141592. . . . To build analog devices 
that can process these values accurately is next to impossible. Even building a simple 
analog radio requires very accurate adjustments of frequencies, voltages, and currents 
at each part of the circuit. If  we were to use voltages to represent the constant 3.14, we 
would have to build a component that will give us exactly 3.14 volts every time. This is 
again impossible because the manufacturing process is imperfect, and each component 
produced will be slightly different from the others. Even if  the manufacturing process 
could be made as perfect as we can get, we still would not be able to get 3.14 volts from 
this component every time we use it. The reason is that the physical elements used in 
producing the component behave differently in different environments, such as tem-
perature, pressure, and gravitational force, just to name a few. Therefore, even if  the 
manufacturing process is perfect, using this component in different environments will 
not give us exactly 3.14 volts every time.

To make things simpler, we work with a digital abstraction of our analog world. 
Instead of working with an infinite continuous range of values, we use just two values, 
1 and 0, to represent the two states, on and off, in a digital electronic circuit. It cer-
tainly is much easier to control and work with two values rather than an infinite range 
of values. We call these two values binary values because there are only two of them. 
A single 0 or a single 1 is a binary digit or bit for short (where “bi” comes from the first 
two letters of the word “binary,” and “t” comes from the last letter of the word “digit”). 
This sounds great, but we have to remember that the underlying building block for our 
digital circuits is still based on an analog world.

This chapter provides the theoretical foundations for building digital logic circuits 
using logic gates, the basic building blocks for all digital circuits. We start with an intro-
duction on working with binary numbers and performing simple arithmetic in binary. 
We then will introduce the basic logic gates for building digital circuits. Next, we cover 
the basic theory of Boolean algebra, Boolean functions, and how to use and manipulate 
them. Many students may find these theories to be boring and difficult to understand, 
but let me encourage you to grind through it patiently. The good news is that I will 
try to keep them as short and simple as possible. You also will find that many of the 
Boolean theorems are very familiar, because they are similar to the algebra theorems 
that you already learned in your high school math class. Finally, we conclude with an 
example of building a simple digital circuit.

2.1 Binary Numbers
Because digital circuits deal with binary values, we will begin with an introduction to 
binary numbers. A bit, having a value of either 0 or 1, can represent only two things 
or two pieces of information. It is, therefore, necessary to group together many bits to 
represent more pieces of information. A string of n bits can represent 2n different pieces 
of information. For example, a string of two bits can represent four different things 
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using the four unique combinations: 00, 01, 10, and 11. By using different encoding 
techniques, a group of bits can be used to represent different information, such as a 
number, a letter of the alphabet, a character symbol, or a command for the micropro-
cessor to execute.

Instead of working with the more familiar decimal numbers that consist of decimal 
digits, we work with binary numbers, which consist of a string of bits. However, the 
use of binary numbers is just a convenient form of representation for a string of bits, 
because we can just as well use octal, decimal, or hexadecimal numbers to represent 
this group of bits. In fact, you will find that hexadecimal numbers often are used as a 
shorthand notation for binary numbers.

2.1.1 Counting in Binary
The decimal number system that we all are familiar with is a positional system. In 
other words, the value of the digit is dependent on the position of the digit within the 
number. For example, in the decimal number 48, the decimal digit 4 has a greater value 
than the decimal digit 8 because it is in the tens position, whereas the digit 8 is in the 
unit position.

The binary number system is also a positional system, with the only difference 
between the two systems being that the binary system is a base-2 system, using only two 
digits, 0 and 1, instead of a base-10 system, using ten digits, 0 to 9. So for the binary 
number 101, the leftmost 1 has a larger value than the rightmost 1.

Counting in binary is just like counting in decimal. When we count in decimal, we 
count from 0 to 9. After reaching 9 (the last digit) we go back to 0, and have a carry of 
a 1 by incrementing the next digit to the left by 1, giving us 10. Doing the same thing in 
binary, we count from 0 to 1 (which is the last digit in the binary system). After reach-
ing 1, we go back to 0, and increment the next bit to the left by 1, giving us 10. Although 
we use the number 10 in both systems, they are different because one is in base ten and 
the other is in base two, and so they have different values. To avoid confusion, we will 
use a subscript to denote what base the number is in, for example, 102 is the number 
10 in base 2, and 1010 is the same number, but in base 10. Continuing with the count in 
binary, the next few numbers in sequence are 11, 100, 101, 110, 111, and 1000.

The binary numbers from 0 to 15 (decimal) are shown in Figure 2.1. The range 
from 0 to 15 has 16 different combinations. We need a 4-bit binary number (i.e., a string 
of four bits) to represent this range because 24 5 16. The count from 0 to 15 in binary 
is shown in the second column. The corresponding octal (base 8) and hexadecimal 
(base 16) numbers also are shown in the figure. We will discuss them further in later 
sections.

2.1.2 Converting between Binary and Decimal
The decimal value of a binary number can be found just like that for a decimal number, 
except that we raise the base number 2 to a power rather than the base number 10 to 
a power. The rightmost digit or bit is raised to the power 0, the next digit or bit to the 
left is raised to the power 1, then the next one to the power 2, and so on. For example, 
the value for the decimal number 658 is
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65810 5 163102 2 1 153101 2 1 183100 2 5 600 1 50 1 8 5 65810

Similarly, the decimal value for the binary number 10110112 is

 10110112 5 11326 21 10325 21 11324 21 11323 21 10322 21 11321 21 11320 2

5 64 1 0 1 16 1 8 1 0 1 2 1 1 5 9110

To get the decimal value of a binary number (which is the same as converting a 
binary number to its equivalent decimal number), the least significant bit (in this case, 
the rightmost 1) is multiplied with 20. The next bit to the left is multiplied with 21, and 
so on. Finally, they are all added together to give the value 9110. This calculation is 
very simple because you are always multiplying with either a 0 or a 1. All the 0 terms 
can be ignored because they will give a 0, and all the 1 terms will just be the number 2 
raised to the power.

Notice also the subscript 10 in the decimal number 65810, and the subscript 2 in 
the binary number 10110112. This subscript is used to denote the base of the number 
whenever there might be confusion as to what base the number is in.

Converting a decimal number to its binary equivalent can be done by successively 
dividing the decimal number by 2 and keeping track of  the remainder at each step. 

Decimal Binary Octal Hexadecimal

0 0000 0 0

1 0001 1 1

2 0010 2 2

3 0011 3 3

4 0100 4 4

5 0101 5 5

6 0110 6 6

7 0111 7 7

8 1000 10 8

9 1001 11 9

10 1010 12 A

11 1011 13 B

12 1100 14 C

13 1101 15 D

14 1110 16 E

15 1111 17 F

FIGURE 2.1 Numbers from 0 to 15 in decimal, binary, octal, and hexadecimal 
number systems.
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Combining the remainders together (starting with the last one) forms the equivalent 
binary number. For example, using the decimal number 91, we divide it by 2 to get 45 
with a remainder of  1. Then we divide 45 by 2 to get 22 with a remainder of  1. We 
continue in this fashion until the end as shown next

2 91 1
2 45 1
2 22 0
2 11 1
2 5 1
2 2 0

1

Least significant bit

5 1011011

Most significant bit

Concatenating the remainders together, starting with the last one (most significant 
bit) results in the binary number 10110112.

EXAMPLE 2.1

Convert the binary number 100101 to its decimal equivalent

To convert the binary number 100101 to its decimal equivalent, we perform the fol-
lowing calculation

 1001012 5 11 3 25 2 1 10 3 24 2 1 10 3 23 2 1 11 3 22 2 1 10 3 21 2 1 11 3 20 2
5 32 1 0 1 0 1 4 1 0 1 1 5 3710

The equivalent decimal number of 1001012, therefore, is 37.

EXAMPLE 2.2

Convert the decimal number 58 to its binary equivalent

To convert the decimal number 58 to its binary equivalent, we perform the following 
calculation

2 58 0
2 29 1
2 14 0
2 7 1
2 3 1

1

Least significant bit

5 111010

Most significant bit

The equivalent binary number of 58, therefore, is 1110102.
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2.1.3 Octal and Hexadecimal Notations
Binary numbers usually consist of a long string of bits, and to write them out as indi-
vidual bits is sometimes tedious. A shorthand notation for writing out a lengthy string 
of  bits is to use either the octal or hexadecimal number systems. Because the octal 
system is base-8 and the hexadecimal system is base-16 (both of which are a power 
of 2), a binary number can be converted easily to an octal or hexadecimal number, and 
vice versa.

Octal numbers only use the digits from 0 to 7 for the eight different combinations. 
When counting in octal, we count from 0 to 7, and then the next number is 108 as shown 
in the third column in Figure 2.1.

To convert a binary number to octal, we simply group the bits into groups of 
threes, starting from the right (least significant bit). The reason for this is because 
8 5 23. For each group of three bits, we write the equivalent octal digit for it using the 
table in Figure 2.1. For example, the conversion of the binary number 11100112 to the 
octal number 1638 is shown next.

001 110 011
1 6 3

Because the original binary number has seven bits, we need to extend it with two 
leading 0s to get three bits for the leftmost group. Note that when we are dealing with 
negative numbers, we may require extending the number with leading 1s instead of 0s. 
This is discussed in more detail in Section 2.2.2, when we talk about sign extending 
negative numbers.

Converting an octal number to its binary equivalent is just as easy. For each octal 
number, we write down the equivalent three bits using the table in Figure 2.1. These 
groups of three bits are concatenated together to form the final binary number. For 
example, the conversion of the octal number 57248 to the binary number 1011110101002
is shown next.

5 7 2 4
101 111 010 100

The decimal value of an octal number can be found just like that for a binary or 
decimal number, except that we raise the base number 8 to a power instead of the base 
number 2 or 10 to a power. For example, the octal number 57248 has the value 302810
as shown in the following calculation.

57248 5 15 3 83 2 1 17 3 82 2 1 12 3 81 2 1 14 3 80 2
5 2560 1 448 1 16 1 4

5 302810
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Hexadecimal numbers are treated basically the same way as octal numbers except 
with the appropriate changes to the base. Hexadecimal (or hex for short) numbers use 
base-16, and thus require 16 different symbols. In addition to the ten symbols from 0 
to 9, we additionally use the first six letters of  the alphabet, A to F. When counting 
in hex, we count from 0 to 9, from 9 we go to A, then B, and so on up to F. After F 
we then go to 1016. The count from 0 to 1510 in hex is shown in the last column in 
Figure 2.1.

Converting binary numbers to hexadecimal numbers involves grouping the bits 
into groups of four because 16 5 24. For each group of four bits, we write the equiv-
alent hex digit for it using the table in Figure 2.1. For example, the conversion of the 
binary number 110110110112 to the hexadecimal number 6DB16 is shown next. Again, 
we need to extend it with a leading 0 to get four bits for the leftmost group.

0110 1101 1011
6 D B

To convert a hex number to a binary number, we write down the equivalent four 
bits for each hex digit using the table in Figure 2.1, and then concatenate them together 
to form the final binary number. For example, the conversion of the hexadecimal num-
ber 5C4A16 to the binary number 01011100010010102 is shown next.

5 C 4 A
0101 1100 0100 1010

The decimal value of a hexadecimal number can be found just like that for a binary 
or decimal number, except that we raise the base number 16 to a power instead of the 
base number 2 or 10 to a power. For example, the hex number 5CF616 has the value 
2379810 as shown in the following calculation.

5CF616 5 15 3 163 2 1 1C 3 162 2 1 1F 3 161 2 1 16 3 160 2
5 15 3 163 2 1 112 3 162 2 1 115 3 161 2 1 16 3 160 2
5 20480 1 3072 1 240 1 6

5 2379810

Notice in the calculation that the hex digits C and F are first converted to their 
decimal values 12 and 15, respectively, before performing the multiplication.

Converting a decimal number to hexadecimal is similar to converting a decimal 
number to binary. The only difference is that we successively divide the decimal number 
by 16 instead of by 2, and keep track of the remainder at each step. The remainder can 
be any number between 0 and F (i.e., 1510). Example 2.4 shows this process.
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2.1.4 Binary Number Arithmetic
Now that you know about binary numbers and how to convert back and forth between 
the different bases, you need to learn how to perform simple additions and subtractions 
with binary numbers. Adding binary numbers is just like adding decimal numbers. We 
just need to keep in mind that when we add, we carry over a 1 when the sum is a two 
or a three.

For example, consider the following addition of  the two 4-bit binary numbers, 
1001 and 0011.

1 0 0 1
1 0 01 11 1

1 1 0 0

NNN NNN

EXAMPLE 2.3

Convert the hexadecimal number C4A16 to its decimal equivalent

To convert a hexadecimal number to decimal, we use the base 16 and raise it to the 
appropriate power.

C4A16 5 1C 3 162 2 1 14 3 161 2 1 1A 3 160 2
5 112 3 162 2 1 14 3 161 2 1 110 3 160 2
5 3072 1 64 1 10

5 314610

The equivalent decimal number is 314610.

EXAMPLE 2.4

Convert the decimal number 768910 to hexadecimal

To convert the decimal number 768910 to its hexadecimal equivalent, we perform the 
following calculation

16 7689 9
16 480 0
16 30 E

1

Least significant bit
5 1E09

Most significant bit

Note in the calculation that when we divide 30 by 16, the remainder is 1110, but it 
is written as E in hex. The equivalent hexadecimal number for 768910 is 1E0916.
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The result of  the addition is 1100. The addition is performed just like that for 
decimal numbers, except that there is a carry whenever the sum is either a 2 or a 3 in 
decimal, because 2 is 10 in binary and 3 is 11. The most significant bit in the 10 or the 
11 is the carry-over bit.

Starting with the rightmost least significant bit, we have 1 1 1 5 2. Instead of 
writing the sum as 2, we write it as 102 with the leading 1 bit being the carry-over bit 
for the next bit position and the sum bit 0. Next, when we add the 0 1 1, we also need 
to add the carry-over 1 bit from before, resulting in 0 1 1 1 1 5 2. Again we write the 2 
as 10 with a carry-over bit of 1 and a sum of 0. Next, we add 0 1 0 1 1 5 1. The result 
is a sum of 1 with no carry. Finally, we add 1 1 0 1 0 5 1. The result of the addition is 
11002. You might want to verify that the result 11002 is correct by converting the two 
operands and final sum to decimal and doing the calculation in decimal.

For subtracting binary numbers, when we need to borrow, we borrow a two instead 
of a ten as shown in the following subtraction of the two 4-bit binary numbers, 1001 
and 0011.

1 0 0 1 5 9
2 0 0 1 1 5 23

0 1 1 0 5 6

2
0

2
0
M 2

0
2
0
M

Starting with the rightmost least significant bit, 1 2 1 5 0. For the next bit position, 
0 2 1 is not enough, so you need to borrow a 2. You now do a 2 2 1 5 1. For the next 
bit, you also need to borrow a 2 because you have given away a 1, leaving you with 
a 1; so you end up with doing a 1 2 0 5 1. Finally, for the leftmost bit, because the 
original 1 has been given away, you are left with a 0, to do a 0 2 0 5 0. The result of 
the subtraction is 01102.

EXAMPLE 2.6

Calculate 11012 2 10112

1 1 0 1 5 13
2 1 0 1 1 5 211

0 0 1 0 5 2

EXAMPLE 2.5

Calculate 11012 1 10112

1 1 0 1 5 13
1 11 01 11 1 5 111

1 1 0 0 0 5 24

NNN NNN NNN

2
0

2
0
M
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2.2 Negative Numbers
So far we have been working only with positive numbers. To work with negative 

numbers, we need to know how negative numbers are represented in binary. Binary 
encoding of numbers can be interpreted as either signed or unsigned. Unsigned  numbers
include only positive numbers and zero, whereas signed numbers include positive, 
negative, and zero. For decimal numbers, we use the minus sign 12 2  in front of  the 
number to denote that it is negative. However, this is not the case for binary numbers. 
Regardless of whether a binary number is positive or negative, it is represented as a 
string of bits such as 1010102. So given this number 1010102, how do we know whether 
it is a positive or a negative number? Well, we don’t know unless someone tells us 
whether to interpret it as a signed or unsigned number.

2.2.1 Two’s Complement Representation
If  we are told that the binary number is an unsigned number, then we simply evaluate 
all of the bits together to form its value as described in the previous section.

Negative or signed binary numbers, on the other hand, are encoded using the 
two’s complement representation. So if  we are told that the binary number is a signed 
number, then we need to use the two’s complement method to evaluate its value. Note 
that we use the two terms “signed number” and “two’s complement number” inter-
changeably to mean the same thing. In the two’s complement representation, the most 
significant bit (MSB) tells whether the number is 
positive or negative. If  the most significant bit 
is a 1, then the number is negative; otherwise, 
the number is positive. With this definition, the 
decimal number 0 also is considered a positive 
number because the leading most significant bit 
for the binary number 0 is a 0. The value of  a 
positive signed number is obtained the same way 
as for unsigned numbers as discussed in the pre-
vious section.

However, to determine the value for a nega-
tive signed number, we need to perform a two-step 
process:

1. Flip all the 1 bits to 0s and all the 0 bits to 1s.
2. Add a 1 to the result obtained from Step 1.

The number obtained from Step 2 is evalu-
ated as an unsigned number for its value, and the 
negative of this resulting number is the value of 
the original negative signed number.

Figure 2.2 shows the two’s complement num-
bers for four bits. The range goes from 28 to 7. 
In general, for an n-bit two’s complement number, 
the range is from 22n21 to 2n21 2 1.

4-bit Binary Two’s Complement

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

1000 28

1001 27

1010 26

1011 25

1100 24

1101 23

1110 22

1111 21

FIGURE 2.2 4-bit two’s comple-
ment numbers.
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EXAMPLE 2.9

Find the value for the signed number 10012

We know that this signed number 10012 is negative because the leading most significant 
bit is a 1. To find the value of this negative signed number, we perform the two-step 
process as follows.

1001 (original number)
(1) 0110 (flip all the bits)
(2) 0111 (add a 1 to the previous number)

The value for the unsigned number 01112 is 11 3 22 2 1 11 3 21 2 1 11 3 20 2 5 7,
therefore, the value for the original number 10012 is negative 7 127 2 .

We will now illustrate with several examples.

EXAMPLE 2.8

Find the value for the signed number 010012

We know that this signed number 010012 is positive because the leading most significant 
bit is a 0. Thus, to get its value we simply evaluate its value just like an unsigned number.

11 3 23 2 1 11 3 20 2 5 8 1 1 5 910.

EXAMPLE 2.7

Find the value for the unsigned number 10012

The value of the unsigned number 10012 is evaluated simply as
11 3 23 2 1 11 3 20 2 5 8 1 1 5 910.

EXAMPLE 2.10

Find the value for the signed number 10002

The signed number 10002 is a negative number because of the leading 1 bit. We apply 
the two-step process to the number as follows.

1000 (original number)
(1) 0111 (flip all the bits)
(2) 1000 (add a 1 to the previous number)

Note that the resulting number 10002 in Step 2 is exactly the same as the original 
number. This, however, should not confuse you if  you follow the instructions for the 
conversion process exactly. We need to interpret the resulting number from Step 2 as 
an unsigned number to determine its value. Interpreting the resulting number 10002

as an unsigned number gives us the value 1 3 23 5 8. Therefore, the original number, 
which is also 10002, is negative 8 128 2 .
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To convert a negative decimal number to its equivalent two’s complement binary 
number, we start with the unsigned binary number for the positive decimal number. 
Then we perform the same two-step process shown above to convert the positive binary 
number to the negative number. This is illustrated in the following example.

EXAMPLE 2.11

Find the two’s complement binary number for the decimal number –58

We start with the positive decimal number 58. Its unsigned binary number equivalent 
is 111010, as calculated next.

2 58 0
2 29 1
2 14 0
2 7 1
2 3 1

1

Least significant bit

5 111010

Most significant bit

We need to make this unsigned positive number 1110102 into a signed positive 
number because to work with negative numbers, we must interpret all numbers as 
signed numbers; therefore, we need to add a leading 0 to make it positive. Otherwise, 
interpreting 1110102 as a signed number will make it negative because of the leading 1. 
Hence, we start with the signed positive number 01110102.

Next, we perform the same two-step process to convert 01110102 to the negative 
number 258.

0111010 (original number)
(1) 1000101 (flip all the bits)
(2) 1000110 (add a 1 to the previous number)

Therefore, 10001102 is the two’s complement (or signed) binary number for 258.

As an exercise, convince yourself  that the signed number 10001102 from the last 
example is indeed 25810 by converting it back to its decimal number.

2.2.2 Sign Extension
There are times when we need to add more bits to a number but without changing its 
value. For unsigned numbers, we simply add as many zeros as necessary to the front of 
the number. Just like for decimal numbers, adding leading zeros does not change the 
value of the number. However, for signed numbers, we cannot just add leading zeros 
because if  the original number is negative (i.e., the most significant bit is a 1), then by 
adding a leading zero, you will make the number positive.

For example, if  the original signed number is 10012 which is 27, and you add a 
leading 0 to make it 01001, then you will have made this new number into 19. On the 
other hand, if  you add a leading 1 to make it 11001, the value for this new number is 
still 27 as shown next.
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11001 (original number)
(1) 00110 (flip all the bits)
(2) 00111 (add a 1 to the previous number)

The resulting number in Step 2 is 17, therefore, the original number is 27. So if  a 
number is negative, (i.e., has a leading 1) then no matter how many leading 1 bits you 
add to it, it still will have the same value.

The conclusion is that to extend unsigned numbers, you always add leading 0s. 
But to extend signed numbers, you need to add leading 0s or 1s, depending on whether 
the original most significant bit is a 0 or a 1. If  the most significant bit is a 0, you sign 
extend the number by adding leading 0s. If  the most significant bit is a 1, you sign 
extend the number by adding leading 1s. In other words, to extend signed numbers, you 
always add whatever the most significant bit is. By performing this sign extension, the 
value of the number is not changed, as shown in the next example.

EXAMPLE 2.12

Performing sign extensions

Given the two signed numbers, 100102 and 01012, sign extend them to 8 bits. For the 
number 10010, because the most significant bit is a 1, we need to add three leading 1s 
to make the number 8 bits long. The resulting number is 11110010. For the number 
0101, because the most significant bit is a 0, we need to add four leading 0s to make 
the number 8 bits long. The resulting number is 00000101. The following calculations 
show that the two resulting numbers have the same value as the two original numbers. 
The first number is negative (because of the leading 1 bit), so we need to perform the 
two-step process to evaluate its value. The second number is positive, so we can evaluate 
its value directly.

Original 
Number

Sign  
Extended

Original 
Number

Sign  
Extended

Flip bits

10010 11110010 0101 00000101

01101 00001101

Add 1 01110 00001110

Value 214 214 5 5

2.2.3 Signed Number Arithmetic
Performing arithmetic with signed numbers is the same as for unsigned numbers. And 
as expected, the result will be correct for both additions and subtractions when we use 
two’s complement to encode the negative numbers.
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EXAMPLE 2.13

Calculate the addition of the two signed numbers 0011 1 1001

0 0 1 1 5 3
1 1 01 01 1 5 1 (27)

1 1 0 0 5 24

NNN

0

N

0

NNN

0

N

0

EXAMPLE 2.14

Calculate the subtraction of the two signed numbers 0011 2 1110

0 0 1 1 5 3
2 1 1 1 0 5 2(22)

0 1 0 1 5 5

2
0

2
0
M 2

0
2
0
M

Note that when we subtract the most significant bit 0 2 1, we can always borrow 
a 2 from the left even though there are no more bits to the left in the 4-bit operand. We 
borrowed a 2, but because we already have given away a 1, we are left with 1 2 1 5 0. 

EXAMPLE 2.15

Calculate the addition 3 1 (23) using 4-bit signed binary numbers

3 5 0 0 1 1
1(23) 5 1 11 11 01 1

0 5 1 0 0 0 01

NNN

0

N

0

NNN

0

N

0

NNN

0

N

0

The result, 10000, has five bits. But because we are using 4-bit arithmetic (i.e., the 
two operands are 4 bits wide) the result also must be in 4 bits. The leading 1 in the result 
is, therefore, an overflow bit and we need to ignore it. By dropping the overflow bit, 
the remaining result 0000 is the correct answer for the problem. Although this addition 
resulted in an overflow bit, we obtained the correct answer by dropping the extra bit.

We will now illustrate with several examples. All of  the binary numbers used in 
these examples are to be interpreted as signed numbers using the two’s complement 
representation.
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EXAMPLE 2.16

Calculate the addition 6 1 3 using 4-bit signed binary numbers

6 5 0 1 1 0
1 3 5 1 01 01 1 1

9 ≠ 1 0 0 1

NNN

0

N

0

NNN

0

N

0

The result 1001 is a 9 if  we interpret it as an unsigned number. However, because 
we are performing signed number arithmetic, we need to be consistent and interpret all 
numbers, including the result, as signed numbers. Interpreting 1001 as a signed number 
gives 27, which, of course, is incorrect. The problem here is that the range for a 4-bit 
signed number is from 28 to 17, and 19 is outside of this range.

Although the addition in Example 2.16 did not result in an overflow bit, the 
answer, however, caused an overflow error. In order to correct this problem, we need 
to add (at least) one extra bit by sign extending the number to prevent the overflow 
error. The range for a 5-bit signed number is from 216 to 115, and 19 is inside of this 
range. The corrected calculation is shown in the next example.

EXAMPLE 2.17

Calculate the addition 6 1 3 using 5-bit signed binary numbers

6 5 0 0 1 1 0
1 3 5 1 0 01 01 1 1

9 5 0 1 0 0 1

NNN

0

N

0

NNN

0

N

0

The result 01001, when interpreted as a signed number, is 9.

2.3 Binary Switch
Besides the fact that we are working only with binary values, digital circuits are easy to 
understand because they are based on one simple idea, and that is to turn a switch on 
or off  to obtain either one of the two binary values. Because the switch can be in either 
one of two states (on or off), we call it a binary switch, or just a switch for short. The 
switch has three connections: an input, an output, and a control for turning the switch 
on or off, as shown in Figure 2.3. When the switch is opened, as in Figure 2.3(a), it is 
turned off, and nothing gets through from the input to the output. When the switch 
is closed, as in Figure 2.3(b), it is turned on, and whatever is presented at the input is 
allowed to pass through to the output.
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Uses of the binary switch idea can be found in many real-world devices. For exam-
ple, the switch can be an electrical switch with the input connected to a power source 
and the output connected to a light L, as shown in Figure 2.4.

When the switch is closed, the light turns on, and when the switch is opened, the 
light turns off. The usual convention is to use a 1 to mean “on” and a 0 to mean “off.” 
Therefore, when the switch is closed, the output is a 1, and the light turns on. We also 
can use a variable, x, to denote the state of the switch. We can let x 5 1 to mean the 
switch is closed, and x 5 0 to mean the switch is opened. Using this convention, we 
can describe the state of the light L in terms of the state of the switch x using a simple 
logic expression. Because L 5 1 if  x 5 1, and L 5 0 if  x 5 0, we can write

L 5 x

This logic expression describes the output L in terms of the input variable x; in other 
words, L is on when x is on.

2.4 Basic Logic Operators and Logic Expressions
Two binary switches can be connected together either in series or in parallel, as shown 
in Figure 2.5. The left side in both of the diagrams is the source input, which is equiv-
alent to the battery in Figure 2.4. For discussion purposes, we will assume that power 
(logic 1) is always available at the source. The right side in both diagrams, labeled F, is F, is F
the output, which is equivalent to the light in Figure 2.4.

If  two switches are connected in series, as in Figure 2.5(a), then both switches have 
to be on in order for the output F to be 1. In other words, F to be 1. In other words, F F 5 1 if  both x 5 1 and 
y 5 1. If  either x or y is off, or both are off, then F 5 0. Translating this into a logic 
expression, we get

F 5 x AND y

FIGURE 2.3 Binary switch: (a) opened or off; (b) closed or on.

FIGURE 2.4 A light controlled by a switch.

Battery Light

Switch

Input

Control

Output

(a) (b)

Input OutputControl
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Hence, two switches connected in series give rise to the logical AND operator. When 
used in a logic expression, the AND operator is denoted either with a dot (?) or no sym-
bol at all. Thus, we can rewrite the above expression as

F 5 x ? y

or simply

F 5 xyxyx

when it is clear that x and y are two individual variables.
If  we connect two switches in parallel, as in Figure 2.5(b), then only one switch 

needs to be on in order for the output F to be 1. In other words, F to be 1. In other words, F F 5 1 if  either x 5 1, 
or y 5 1, or both x and y are 1. This means that F 5 0 only if  both x and y are 0. 
Translating this into a logic expression, we get

F 5 x OR y

and this gives rise to the logical OR operator. When used in a logic expression, the OR

operator is denoted with a plus symbol 11 2 . Thus, we can rewrite the above expression 
as

F 5 x 1 y

In addition to the AND and OR operators, there is another basic logic operator—the 
NOT operator, also known as the INVERTER. Whereas the AND and OR operators have 
multiple inputs, the NOT operator has only one input and one output. The NOT operator 
simply inverts its input, so a 0 input will produce a 1 output, and a 1 becomes a 0. In 
a logic expression, the NOT operator is denoted with either an apostrophe symbol 1 r 2
or a bar on top 1 2  as in

F 5 x r
or

F 5 x

When several operators are used in the same logic expression, the precedence given 
to the operators are (from highest to lowest) NOT, AND, and OR. The order of evaluation 
can be changed by means of using parentheses. For example, the expression

FIGURE 2.5 Connection of two binary switches: (a) in series; (b) in parallel.

F
yx

F

x

y

(b)(a)
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F 5 xyxyx 1 z r

means (x AND y) OR (NOT z), and the expression

F 5x 1y 1z 2 r
means x AND (NOT (y (y ( OR z)).

2.5 Logic Gates
Logic gates are the actual physical devices that implement the logical operators 

discussed in the previous section. Transistors, acting as tiny electronic binary switches, 
are connected together to form these gates. Thus, we have the AND gate, the OR gate, 
and the NOT gate (also called the INVERTER) for the corresponding AND, OR, and NOT

logical operators. These gates form the basic building blocks for all digital logic circuits. 
The name “gate” comes from the fact that these devices operate like a door or gate 
to let or not to let things (in our case, current) through. Refer to the online chapter 
Implementation Technologies for a detail discussion on transistors and how logic gates 
are constructed using transistors.

In drawing digital circuit diagrams (also called schematic diagrams or just 
schematics), we use special logic symbols to denote these gates, as shown in Figure 2.6. 
The AND gate (specifically, the 2-input AND GATE) in Figure 2.6(a) has two input con-
nections coming in from the left and one output connection going out on the right. 
Similarly, the 2-input OR gate in Figure 2.6(b) has two input connections and one out-
put connection. The NOT gate in Figure 2.6(c) has one input coming from the left and 
one output going to the right. The outputs from these gates, of course, are dependent 
on their inputs and are defined by their logical operations.

Sometimes, an AND gate or an OR gate with more than two inputs is needed. So, in 
addition to the 2-input AND and OR gates, there are 3-input, 4-input, or as many inputs 
as are needed, of the AND and OR gates. In practice, however, the number of inputs is 
limited to a small number, such as five. The logic symbols for some of these gates are 
shown in Figures 2.7(a) through (d).

There are several other gates that are variants of the three basic gates that also are 
used often in digital circuits. They are the NAND gate, the NOR gate, the XOR gate, and 
the XNOR gate. The NAND gate is derived from the AND gate and the NOT gate connected 
in series, so that the output of the AND gate is inverted. The name NAND comes from the 
words “Not AND.” Similarly, the NOR gate is the OR gate with its output inverted, and the 
name comes from the words “Not OR” The XOR or eXclusive OR gate is like the OR gate 
except that when both inputs are 1, the output is a 0 instead. The XNOR (or eXclusive 
NOR) gate is just the inverse of the XOR gate for when there are an even number of inputs 

FIGURE 2.6 Logic symbols for the three basic logic gates: (a) 2-input AND; (b) 2-input 
OR; (c) NOT.

(a) (b) (c)
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(like two inputs). However, when there are an odd number of inputs (like three inputs), 
the XOR is the same as the XNOR. The logic symbols for some of these gates are shown 
in Figures 2.7(e) through (j).

In Figures 2.7(e) through (j), notice the use of  the little circle or bubble at the 
output of some of the logic symbols. This bubble is used to denote the inverted value 
of a signal. For example, the NAND gate is the inverse of the AND gate. Thus, the NAND

gate logic symbol is the same as the AND gate logic symbol, except that it has the extra 
bubble at the output.

The notations used for the NAND, NOR, XOR, and XNOR gates in a logic expression 
are: 1xyxyx 2 r for the 2-input NAND gate, 1x 1 y 2 r for the 2-input NOR gate, x ! y for the 
2-input XOR gate, and x( y for the 2-input XNOR gate. We will shortly see that the 
2-input XOR gate is equivalent to the following logic expression

x! y 5 x ry 1 xyxyx r

and the 2-input XNOR gate is equivalent to

x( y 5 x ry r 1 xyxyx

For the 3-input gates, they are 1xyxyx z 2 r for the 3-input NAND gate, 1x 1 y 1 z 2 r for 
the 3-input NOR gate, x! y! z for the 3-input z for the 3-input z XOR gate, and x( y( z for the 3-input z for the 3-input z
XNOR gate. It was noted earlier that the 2-input XOR and XNOR gates are inverses of each 
other, so 1x! y 2 5 1x( y 2 r, but the 3-input XOR and XNOR gates are the same, so 
1x! y! z 2 5 1x( y( z 2 .

2.6 Truth Tables
The operation of the AND, OR, and NOT logic operators can be described formally by using 
a truth table, as shown in Figure 2.8. A truth table is a two-dimensional array with one 
column for each input and one column for each output. Because we are dealing with 
binary values, each input can be either a 0 or a 1. We simply enumerate all possible com-
binations of 0s and 1s for all of the inputs. Usually, we want to write these input values in 
the normal binary counting order. With two inputs, there are 22 combinations giving us 
the four rows in the table. The values in the output column are determined from applying 

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

FIGURE 2.7 Logic symbols for: (a) 3-input AND; (b) 4-input AND; (c) 3-input OR; 
(d) 4-input OR; (e) 2-input NAND; (f) 2-input NOR; (g) 3-input NAND; (h) 3-input NOR; 
(i) 2-input XOR; (j) 2-input XNOR.
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the corresponding input values to the functional operator. For the AND truth table shown 
in Figure 2.8(a), we know from the previous discussion that F 5 1 only when x and y
are both 1, otherwise, F 5 0. Hence, in the F column of the truth table, the first three F column of the truth table, the first three F
rows are 0, and only the last row is a 1. For the OR truth table shown in Figure 2.8(b), 
F 5 1 when either x or y is 1, or both are 1, otherwise F 5 0. Hence, in the F column F column F
of the truth table, the first row is a 0, and the remaining three rows are 1. For the NOT

truth table shown in Figure 2.8(c), the output F is just the inverted value of the input F is just the inverted value of the input F x.
The truth tables for the other 2-input and 3-input gates are shown in Figure 2.9.

Note again that the 2-input XOR gate and the 2-input XNOR gates are inverses of each 
other, whereas, the 3-input XOR and XNOR gates are the same. For larger inputs, XOR is 

FIGURE 2.8 Truth tables for the three basic logic operators: (a) AND; (b) OR; (c) NOT.

x y F

0 0 0

0 1 0

1 0 0

1 1 1

x y F

0 0 0

0 1 1

1 0 1

1 1 1

x F

0 1

1 0

x y
2-NAND

(x ? y)ʹ
2-NOR

(x + y)ʹ
2-XOR

x! y
2-XNOR

x( y

0 0 1 1 0 1

0 1 1 0 1 0

1 0 1 0 1 0

1 1 0 0 0 1

x y z
3-AND

(x ? y ? z)
3-OR

(x + y + z)
3-NAND

(x ? y ? z)ʹ
3-NOR

(x + y + z)ʹ
3-XOR

x! y! z
3-XNOR

x( y( z

0 0 0 0 0 1 1 0 0

0 0 1 0 1 1 0 1 1

0 1 0 0 1 1 0 1 1

0 1 1 0 1 1 0 0 0

1 0 0 0 1 1 0 1 1

1 0 1 0 1 1 0 0 0

1 1 0 0 1 1 0 0 0

1 1 1 1 1 0 0 1 1

FIGURE 2.9 Truth tables for: 2-input NAND; 2-input NOR; 2-input XOR; 2-input XNOR; 3-input AND; 
3-input OR; 3-input NAND; 3-input NOR; 3-input XOR; 3-input XNOR.

(a) (b) (c)
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the inverse of XNOR when they have an even number of inputs, and they are the same 
when they have an odd number of inputs.

Using a truth table is one method to formally describe the operation of a circuit 
or function. The truth table for any given logic expression (no matter how complex it 
is) can always be derived. The use of truth tables to formally describe the operation of 
digital circuits is discussed further in Chapter 3.

2.7 Boolean Algebra and Boolean Equations
Another method to formally describe the operation of  a digital circuit is by using 
Boolean equations.

2.7.1 Boolean Algebra
George Boole, in 1854, developed a system of mathematical logic, which we now call 
Boolean algebra. Based on Boole’s idea, Claude Shannon, in 1938, showed that circuits 
built with binary switches can be described easily using Boolean algebra. The abstrac-
tion from switches being off  and on to the use of Boolean algebra is as follows. Let 
B = {0, 1} be the Boolean algebra whose elements are one of the two values, 0 and 
1. We define the operations AND (?), OR (+), and NOT (r)  for the elements of B by the B by the B
axioms in Figure 2.10(a). These axioms are simply the definitions as previously given 
in the truth tables for the AND, OR, and NOT operators.

FIGURE 2.10 Boolean algebra axioms and theorems: (a) axioms; (b) single-variable theorems; 
(c) two- and three-variable theorems.

1a. 0 ? 0 5 0 1b. 1 1 1 5 1

2a. 1 ? 1 5 1 2b. 0 1 0 5 0

3a. 0 ? 1 5 1 ? 0 5 0 3b. 1 1 0 5 0 1 1 5 1

4a. 0r 5 1 4b. 1r 5 0

(a)

5a. x ? 0 5 0 5b. x 1 1 5 1 Null Element

6a. x ? 1 5 1 ? x 5 x 6b. x 1 0 5 0 1 x 5 x Identity

7a. x ? x 5 x 7b. x 1 x 5 x Idempotent

8a. (xr)r 5 x Double Complement

9a. x ? xr 5 0 9b. x 1 xr 5 1 Inverse

(b)

10a. x ? y 5 y ? x 10b. x 1 y 5 y 1 x Commutative

11a. (x ? y) ? z 5 x ? (y (y ( ? z) 11b. (x 1 y) 1 z 5 x 1 (y (y ( 1 z) Associative

12a. (x ? y) 1 (x ? z) 5 x ? (y  (y  ( 1 z) 12b. (x 1 y) ? (x 1 z) 5 x 1 (y  (y  ( ? z) Distributive

13a. (x ? y)r 5 xr 1 yr 13b. (x 1 y)r 5 xr ? yr DeMorgan’s

(c)
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A variable x is called a Boolean variable if  x takes on only values in B (i.e., either B (i.e., either B
0 or 1). Consequently, we obtain the theorems in Figure 2.10(b) for single variable and 
Figure 2.10(c) for two and three variables.

It is not the intent of this book to dwell on the theoretical aspects of proving theo-
rems. Only because digital circuits can formally be described using Boolean equations, 
and sometimes it is easier to write an equation rather than drawing out the circuit 
diagram, therefore, as a digital circuit designer, we need to have a basic understanding 
of  how to use and manipulate simple Boolean equations based on these theorems. 
Furthermore, we can use the Boolean theorems to help us to reduce the size of  the 
circuit. Therefore, for our purposes, we simply assume that all of the theorems are true, 
and we will use them to simplify circuits.

The single-variable Theorems 5 to 9 can be shown to be true from the truth tables 
for the AND, OR, and NOT gates by substituting either a 0 or a 1 into the variable x. The 
two- and three-variable Theorems 10 to 12 are similar to the commutative, associative 
and distributive properties of basic mathematics.

Theorem 13 is called DeMorgan’s Theorem. Notice in Theorem 13a that the left 
side of the equation contains only the AND and NOT operators, whereas the right side 
of the equation contains only the OR and NOT operators. Because of this, DeMorgan’s 
Theorem is often used in digital circuit design to convert an AND gate circuit to an OR

gate circuit, and vice versa. At first glance, it is not obvious that this equality is true. 
To understand this theorem let us create a circuit from the following truth table having 
two inputs, x and y, and one output F.F.F

x y F

0 0 1

0 1 1

1 0 1

1 1 0

This is the truth table for the 2-input NAND gate, which is an AND gate followed by a 
NOT gate. We saw earlier that the equation for a 2-input NAND gate is F = (x ? y)r. 
Alternatively, F is a 1 when either F is a 1 when either F x or x or x y is a 0, and this translates to F = (xr 1 yr). From 
this, we get the equality equation F = (x ? x ? x y)r = (xr 1 yr) for DeMorgan’s Theorem 13a.

The next example will show that DeMorgan’s Theorem is true by using a truth 
table.

EXAMPLE 2.18

Proof of DeMorgan’s Theorem using a truth table

DeMorgan’s Theorem 13a states that (x ? x ? x y)r = (xr 1 yr). To prove the equation is true 
using a truth table, we need to show that for every combination of values for the two 
variables x and y, the left side of the equation is equal to the right side.

We start with the first two columns labeled x and y, and we enumerate all possible 
combinations of values for these two variables giving us the four rows as shown next.
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It turns out that DeMorgan’s Theorem also can be applied to more than two vari-
ables. Thus, the following two equations for three variables are also true

(x ? y ? z)z)z r 5 xr 1 yr 1 zr

and

(x 1 y 1 z)z)z r 5 xr ? yr ? zr

Examples 2.19 and 2.20 show how Boolean expressions can be simplified using the 
Boolean Theorems.

x y  (x ? x ? x y) (x ? x ? x y)r xr yr xr1 yr

0 0 0 1 1 1 1

0 1 0 1 1 0 1

1 0 0 1 0 1 1

1 1 1 0 0 0 0

For each combination (row), we evaluate first the expression (xFor each combination (row), we evaluate first the expression (xFor each combination (row), we evaluate first the expression (  ? x ? x y), and then (x ? y)
r for the left side of the equation as shown in the next two columns in the table. Then 
we do the same thing for the right side of the equation; first x r, then y r, and finally 
xr 1 yr. Finally, we note that all the values under the two columns, (x ? y)r for the left 
side of the equation, and xr 1 yr for the right side of the equation, are identical for 
every combination of x and y; therefore, we conclude that the theorem is true.

EXAMPLE 2.19

Using Boolean algebra to reduce an expression

Use Boolean algebra to reduce the expression x 1 (x ? y) as much as possible.

x 1 (x ? y) 5 (x ? 1) 1 (x ? y) by Theorem 6a
5 x ? (1 1 y) by Theorem 12a
5 x ? (1) by Theorem 5b
5 x by Theorem 6a

Because the expression x 1 (x ? y) reduces to just x, so when creating a circuit we 
want to implement the circuit based on the latter expression rather than the former 
because the circuit size for the latter is much smaller.

EXAMPLE 2.20

Using Boolean algebra to reduce the equation F 5 (xryz) 1 (xyrz) 1 (xyzr) 1 (xyz) 
as much as possible

We will use the Distributive Theorem 12a to combine terms by factoring out the same 
variables. For example, both 1x ryz 2  and (xyz) have yz in common, therefore, we can 
factor out the two variables yz to give yz to give yz yz(xr 1 x). This further reduces to just yz because  yz because  yz
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2.7.2 Duality Principle
Notice in Figure 2.10 that we have listed the axioms and theorems in pairs. Specifically, 
we define the dual of  a logic expression as one that is obtained by changing all the 
1 operators with the ? operators, and vice versa, and by changing all the 0s with 1s, 
and vice versa. For example, the dual of the logic expression

(x ? x ? x yr ? z) z) z 1 (x ? x ? x y ? zr) 1 (y (y (  ? y ? y z) z) z 1 0

is

(x 1 yr 1 z) z) z ? (x 1 y 1 zr) ? (y (y ( 1 z)z)z  ? 1

The duality principle states that if  a Boolean expression is true, then its dual is also 
true. The duality principle does not say that a Boolean expression is equivalent to its 
dual. For example, Theorem 5a in Figure 2.10(b) says that x ? x ? x 0 = 0 is true, thus by 
the duality principle, its dual, x 1 1 = 1 is also true. However, x ? x ? x 0 = 0 is not equal to 
x 1 1 = 1, because 0 definitely is not equal to 1.

We will see in Section 2.7.3 that the inverse of a Boolean expression can be obtained 
easily by first taking the dual of that expression and then complementing each Boolean 
variable in the resulting dual expression. In this respect, the duality principle often is 
used in digital logic design. Whereas an expression might be complex to implement, its 
inverse might be simpler, thus resulting in a smaller circuit; inverting the final output 
of this circuit will produce the same result as from the original expression.

2.7.3 Boolean Functions and Their Inverses
Any digital circuit can be described by a logic equation, also known as a Boolean 
function. Any Boolean function can be formed from binary variables and the Boolean 
operators ?, 1, and r (for AND, OR, and NOT, respectively). For example, the following 
Boolean function uses the three variables x, y, and z. It has three AND terms (also 
referred to as product terms), and these AND terms are ORed (summed) together. The 
first two AND terms each contain all three variables, while the last AND term contains 

(xr 1 x) = 1 (by Theorem 9b), and w ? 1 5 w (by Theorem 6a). Continuing in a similar 
manner, (xyrz) 1 (xyz) reduces to just xz, and (xyz r) 1 (xyz) reduces to just xy. The 
complete detail steps for the reduction is shown next.

F 5 (xryz) 1 (xyrz)1 (xyzr)1 (xyz)
5 (xryz) 1 (xyrz) 1 (xyzr) 1 (xyz) 1 (xyz) 1 (xyz) by Theorem 7b
5 (xryz) 1 (xyz) 1 (xyrz) 1 (xyz) 1 (xyzr) 1 (xyz) by Theorem 10b
5 [(xryz) 1 (xyz)] 1 [(xyrz) 1 (xyz)] 1 [(xyzr) 1 (xyz)] by Theorem 11b
5 yz(xr 1 x) 1 xz(yr 1 y) 1 xy(zr 1 z) by Theorem 12a
5 yz(1) 1 xz(1) 1 xy(1) by Theorem 9b
5 yz 1 xz 1 xy by Theorem 6a
5 z(y (y ( 1 x) 1 xy by Theorem 12a
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only two variables. By definition, an AND (or product) term is either a single variable 
or two or more variables ANDed together. Quite often, we refer to functions that are in 
this format as a sum-of-products (or or-of-ands).

F(x,y,z) = xy'z 1 xyz' 1 yz

Three AND Terms

3-Variable
AND Terms

2-Variable
AND Term

The value of a function evaluates to either 0 or 1, depending on the given set of 
values for the variables. For example, the above Boolean function evaluates to 1 when 
any one of the three AND terms evaluate to a 1, because 1 OR x is 1 by Theorem 5b. The 
first AND term, xyrz, equals 1 if

x 5 1, y 5 0, and z 5 1

because if  we substitute the values 1, 0, and 1 for the variables x, y, and z, respectively, 
into the first AND term xyrz, we get a 1. Similarly, the second AND term, xyxyx z r, equals 1 if

x 5 1, y 5 1, and z 5 0.

The last AND term, yz, has only two variables. What this means is that the value of this 
term is not dependent on the missing variable x. In other words, x can be either 0 or 1, 
but as long as y = 1 and z = 1, this term will be equal to 1.

Thus, we can summarize by saying that F evaluates to 1 ifF evaluates to 1 ifF

x 5 1, y 5 0, and z 5 1

or

x 5 1, y 5 1, and z 5 0

or

x 5 0, y 5 1, and z 5 1

or

x 5 1, y 5 1, and z 5 1.

Otherwise, F evaluates to 0.F evaluates to 0.F
It is often more convenient to summarize this verbal description of a function with 

a truth table, as shown in Figure 2.11 under the column labeled F. Notice that the four F. Notice that the four F
rows in the table where F = 1 match the four cases in the description above.
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The inverse of a function, denoted by F r, can be obtained easily from the truth 
table for F by simply changing all the 0s to 1s and 1s to 0s, as shown in the truth table in F by simply changing all the 0s to 1s and 1s to 0s, as shown in the truth table in F
Figure 2.11 under the column labeled F r. Therefore, we can write the Boolean function 
for F r in the sum-of-products format, where the AND terms are obtained from those 
rows where F r 5 1. Thus, we get

F r 5 xryrzr 1 xryrz 1 xryzr 1 xyrzr

To deduce F r algebraically from F requires the use of DeMorgan’s Theorem twice F requires the use of DeMorgan’s Theorem twice F
(Theorems 13a and 13b). For example, using the same function

F 5 xyrz 1 xyzr 1 yz

we obtain F r as follows

F r 5 (xyrz 1 xyzr 1 yz)r

5 (xyrz)r ? (xyzr)r ? (yz)r by Theorem 13b

5 (xr 1 y 1 zr) ? (xr 1 yr 1 z) ? (yr 1 zr) by Theorem 13a

There are three things to notice about this equation for F r. First, F r is just the dual 
of F (as defined in Section 2.7.2) but with all of the variables inverted. We call this the F (as defined in Section 2.7.2) but with all of the variables inverted. We call this the F
inverted dual. For example, the first term xyxyx rz becomes xr 1 y 1 zr. Second, instead 
of being in a sum-of-products format, it is in a product-of-sums (or and-of-ors) format 
where three OR terms (also referred to as sum terms) are ANDed together. Third, from the 
same original function F, we obtained two different equations for F, we obtained two different equations for F F r. From the truth 
table in Figure 2.11, we obtain

F r 5 xryrzr 1 xryrz 1 xryzr 1 xyrzr

x y z F F r

0 0 0 0 1

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 0

FIGURE 2.11 Truth table for the function F 5 xyrz 1 xyzr 1 yz, and Fr
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and from applying DeMorgan’s Theorem to F, we obtainF, we obtainF

F r 5 (xr 1 y 1 zr) ? (xr 1 yr 1 z) ? (yr 1 zr)

Hence, we must conclude that these two equations for F r, where one is in the sum-
of-products format and the other is in the product-of-sums format, are equivalent. 
In general, all functions can be expressed in either the sum-of-products format or the 
product-of-sums format.

Thus, we also should be able to express the original function, F 5 xyxyx rz 1 xyxyx z r 1 yz,
in the product-of-sums format. We can derive it using one of two methods. For method 
one, we can start with F r and apply DeMorgan’s Theorem to it just like how we obtained 
F r from F.F.F

F 5 (F r)r by Theorem 8a
5 (xryrzr 1 xryrz 1 xryzr 1 xyrzr)r
5 (xryrzr)r ? (xryrz)r ? (xryzr)r ? (xyrzr)r by Theorem 13b
5 (x 1 y 1 z) ? (x 1 y 1 zr) ? (x 1 yr 1 z) ? (xr 1 y 1 z) by Theorem 13a

For the second method, we start with the original F and convert it to the product-F and convert it to the product-F
of-sums format using the Boolean theorems from Figure 2.10.

F 5 xyxyx rz 1 xyxyx z r 1 yz

5 1x1x1y 2 # 1x1x1z 2 # 1x1y1y 2 # 1x1y1z 2 # 1x1z r1y 2 #

1x1z r1z 2 # 1y r1x1y 2 # 1y r1x1z 2 # 1y r1y1y 2 # 1y r1y1z 2 #

1y r1z r1y 2 # 1y r1z r1z 2 # 1z1x1y 2 # 1z1x1z 2 #

1z1y1y 2 # 1z1y1z 2 # 1z1z r1y 2 # 1z1z r1z 2
5 1x1y 2 # 1x1z 2 # 1x1y 2 # 1x1y1z 2 # 1x1z r1y 2 #

1y r1x1z 2 # 1z1x1y 2 # 1z1x 2 # 1z1y 2 # 1z1y 2
5 1x1y 2 # 1x1z 2 # 1x1y1z 2 # 1x1y1z r 2 # 1x1y r1z 2 # 1y1z 2
5 1x1y1zz r 2 # 1x1yyyyy r1z 2 # 1x1y1z 2 # 1x1y1z r 2 #

1x1y r1z 2 # 1xx r1y1z 2
5 1x1y1z 2 # 1x1y1z r 2 # 1x1y1z 2 # 1x1y r1z 2 # 1x1y1z 2 #

1x1y1z r 2 # 1x1y r1z 2 # 1x1y1z 2 # 1x r1y1z 2
5 1x 1 y 1 z 2 # 1x 1 y 1 z r 2 # 1x 1 y r 1 z 2 # 1x r 1 y 1 z 2

In Step 1, we apply Theorem 12b (Distributive) to get every possible combination 
of the sum terms. For example, the first sum term 1x 1 x 1 y 2  is obtained from getting 
the first x from xyxyx rz, the second x from xyxyx z r, and the y from yz. The second sum term 
1x 1 x 1 z 2  is obtained from getting the first x from xyxyx rz, the second x from xyxyx z r, and 

(Step 1)

(Step 2)

(Step 3)

(Step 4)

(Step 5)
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the z from yz. This is repeated for all combinations. In this step, the sum terms, such as 
1x 1 z r 1 z 2 , where it contains variables of the form v 1 v r, can be eliminated, because 
v 1 v r 5 1 by Theorem 9b, and 1 ? x = x by Theorem 6a.

In Steps 2 and 3, duplicate variables and terms are eliminated. For example, the 
term 1x 1 x 1 y 2  is equal to 1x 1 y 1 y 2 , which is just 1x 1 y 2  by Theorem 7b. 

In Step 4, every sum term with a missing variable will have that variable added back 
in by using Theorems 6b and 9a, which says that x 1 0 5 x and yyyyy r 5 0, therefore, 
x 1 yyyyy r 5 x.

Step 5 uses the Distributive Theorem, and the resulting duplicate terms are again 
eliminated to give us the final format that we want.

Functions that are in the product-of-sums format (such as the one shown below) 
are more difficult to deduce when they evaluate to 1. For example, using

F r 5 1x r 1 y 1 z r 2 # 1x r 1 y r 1 z 2 # 1y r 1 z r 2

F r evaluates to 1 only when all three terms evaluate to 1. For the first term to evaluate 
to 1, x can be 0, y can be 1, or z can be 0. For the second term to evaluate to 1, x can 
be 0, y can be 0, or z can be 1. Finally, for the last term, y can be 0, z can be 0, or x can 
be either 0 or 1. As a result, we end up with many more combinations to consider, even 
though many of the combinations are duplicates.

However, it is easier to determine when a product-of-sums format expression eval-
uates to a 0. For example, using the same expression:

F r 5 1x r 1 y 1 z r 2 # 1x r 1 y r 1 z 2 # 1y r 1 z r 2

F r evaluates to 0 when any one of the three OR terms is 0, because 0 AND x is 0; and 
this happens when

x 5 1, y 5 0, and z 5 1 for the first OR term,

or

x 5 1, y 5 1, and z 5 0 for the second OR term,

or

x 5 0, y 5 1, z 5 1 for the last OR term,

or

x 5 1, y 5 1, z 5 1 also for the last OR term.

So, for example, if we have x 5 1, y 5 0, and z 5 1, the first OR term will be 0, which 
in turn will make the entire expression 0. These four conditions in which F r evaluates 
to 0 match exactly the four rows in the truth table shown in Figure 2.11, where F r 5 0.

For a sum-of-products format expression, it is just the opposite, in that it is easier 
to evaluate when it is a 1, but more difficult to evaluate when it is a 0.
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From this discussion, we can conclude that, in general, the unique algebraic expres-
sion for any Boolean function can be specified by either (1) selecting the rows from 
the truth table where the function is a 1 and using the sum-of-products format, or 
(2) selecting the rows from the truth table where the function is a 0 and using the prod-
uct-of-sums format. Whichever format we decide to use, the one thing to remember is 
that when we create a circuit based on the function, we are always interested in when 
the function (or its inverse) is equal to a 1.

Figure 2.12 summarizes these two formats for the function F 5 xyxyx rz 1 xyxyx z r 1 yz
and its inverse F r. Notice that the sum-of-products format for F is the dual but with its F is the dual but with its F
variables inverted from the product-of-sums format for F r. Similarly, the product-of-
sums format for F is the F is the F inverted dual from the sum-of-products format for F r.

2.8 Minterms and Maxterms
As you recall, a product term is a term with either a single variable or two or more 
variables ANDed together, whereas, a sum term is a term with either a single variable 
or two or more variables ORed together. To differentiate between a term that contains 
any number of  variables with a term that contains all of  the variables used in the all of  the variables used in the all
function, we use the words minterm and maxterm. We are not introducing new ideas 
here; rather, we are just introducing two new words and notations for defining what 
we already have learned.

2.8.1 Minterms
A minterm is a product term that contains all the variables used in a function. For 
a function with n variables, the notation mi, where 0 # i , 2n, is used to denote the 
minterm whose index i is the binary value of the i is the binary value of the i n variables, such that the variable is 
complemented if  the value assigned to it is a 0 and uncomplemented if  it is a 1.

This definition sounds much more complicated than it actually is. Figure 2.13(a) 
shows the eight minterms and their notations for n 5 3 using the three variables x, y, 

FIGURE 2.12 Relationships between the function F 5 xy rz + z + z xyz r 1 yz and its inverse yz and its inverse yz F r, and 
between the sum-of-products and product-of-sums formats. The label “Inverted Dual” means 
applying the duality principle and then inverting the variables.

Product-of-Sums

(x(x( 1 y1 z) ? (x(x( 1 y1 z') ? (x(x( 1 y'1 z) ? (x'(x'( 1 y1 z)

(x(x( 1 y'1 z') ? (x'(x'( 1 y1 z') ? (x'(x'( 1 y'1 z) ? (x'(x'( 1 y'1 z')F'

F

Sum-of-Products

x'yz1 xy'z1 xyz' 1 xyz

x'y'z' 1 x'y'z1 x'yz'1 xy'z'

Inverse

Equal

Equal

Inverted
DualIn
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d
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and z. For example, the minterm notation m3 is used to represent the term in which 
the values for the variables xyz are 011 (for the subscript 3). For minterms, we want to 
complement the variable whose value is a 0 and uncomplement it if  it is a 1, therefore, 
the notation m3 is for the minterm x ryz.

When specifying a function, we usually start with product terms that contain all 
of  the variables used in the function. In other words, we want the sum-of-minterms, 
and more specifically, the sum of the one-minterms (i.e., the minterms for which the 
function is a 1) as opposed to the zero-minterms (i.e., the minterms for which the func-
tion is a 0). We use the notation 1-minterm to denote one-minterm, and 0-minterm to 
denote zero-minterm.

Consider the function from the previous section:

F 5 xyxyx rz 1 xyxyx z r 1 yz

5 x ryz 1 xyxyx rz 1 xyxyx z r 1 xyxyx z

and repeated in the following truth table has the 1-minterms: m3, m5, m6, and m7.

x y z F Minterm Notation

0 0 0 0 x ry rz r m0

0 0 1 0 x ry rz m1

0 1 0 0 x ryz r m2

0 1 1 1 x ryz m3

1 0 0 0 xyxyx rz r m4

1 0 1 1 xyxyx rz m5

1 1 0 1 xyxyx z r m6

1 1 1 1 xyz m7

x y z Minterm Notation

0 0 0 x ry rz r m0

0 0 1 x ry rz m1

0 1 0 x ryz r m2

0 1 1 x ryz m3

1 0 0 xyxyx rz r m4

1 0 1 xyxyx rz m5

1 1 0 xyxyx z r m6

1 1 1 xyz m7

x y z Maxterm Notation

0 0 0 x 1 y 1 z M0M0M

0 0 1 x 1 y 1 z r M1

0 1 0 x 1 y r 1 z M2M2M

0 1 1 x 1 y r 1 z r M3M3M

1 0 0 x r 1 y 1 z M4M4M

1 0 1 x r 1 y 1 z r M5M5M

1 1 0 x r 1 y r 1 z M6M6M

1 1 1 x r 1 y r 1 z r M7M7M

FIGURE 2.13 (a) Minterms for three variables; (b) Maxterms for three variables.

(a) (b)

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-202



48 CHAPTER 2 FUnDAMentALs oF DIGItAL CIRCUIts

Thus, a shorthand notation for the function is

F 1x, y, z 2 5 m3 1 m5 1 m6 1 m7

By using just the minterm notations, we do not know how many variables are in 
the original function. Consequently, we need to specify explicitly the variables used by 
the function, as in F(F(F x, y, z). 

We can further simplify the notation by using the standard algebraic symbol S for 
summation and listing out the minterm index numbers. Therefore, we can rewrite the 
equation as follows

F 1x, y, z 2 5 S 13, 5, 6, 7 2

These are just different ways of expressing the same function.
Because a function is obtained from the sum of the 1-minterms, the inverse of the 

function, therefore, must be the sum of the 0-minterms. This can be obtained easily 
by replacing the set of  indices with those that were excluded from the original set. 
Therefore, the inverse of the above function is

F r 1x, y, z 2 5 S 10, 1, 2, 4 2

EXAMPLE 2.21

Converting a function to the sum-of-minterms format using Boolean algebra

Given the Boolean function F 1x, y, z 2 5 y 1 x rz, use Boolean algebra to convert the 
function to the sum-of-minterms format.

This function has three variables. In a sum-of-minterms format, all product terms 
must have all variables. To change a product term to a minterm, we need to expand 
each product term by ANDing it with 1v 1 v r 2  for every missing variable v in that term. 
Because 1v 1 v r 2 5 1, therefore, ANDing a product term with 1v 1 v r 2  does not change 
the value of the term.

F 5 y 1 x rz

5 y(x 1 x r)(z 1 z r) 1 x rz(y (y ( 1 y r)

5 xyxyx z 1 xyxyx z r 1 x ryz 1 x ryz r
1 x ryz 1 x ry rz

5 m7 1 m6 1 m3 1 m2 1 m1

5 S 11, 2, 3, 6, 7 2 sum of 1-minterms

expand 1st term by ANDing it with (x 1 xr) 
(z 1 zr), and 2nd term with (y), and 2nd term with (y), and 2nd term with ( 1 yr)

by Theorem 12a
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EXAMPLE 2.22

Converting the inverse of a function to the sum-of-minterms format

Given the Boolean function F 1x, y, z 2 5 y 1 x rz, use Boolean algebra to convert the 
inverse of the function to the sum-of-minterms format.

 F r 5 (y (y ( 1 xrz)r inverse

5 yr ? (xrz)r use DeMorgan’s Theorem

5 yr ? (x 1 zr) use DeMorgan’s Theorem

5 yrx 1 yrzr use Distributive Theorem to change to 
sum-of-products format

5 yrx(z 1 zr) 1 yrzr(x 1 xr) expand 1st term by ANDing it with 
(z1zr), and 2nd term with (x1xr)

5 xyxyx rz 1 xyxyx rz r 1 xyxyx rz r 1 x ry rz r

5 m5 1 m4 1 m0

5 ∑(0, 4, 5) sum of 0-minterms

2.8.2 Maxterms
Analogous to a minterm, a maxterm is a sum term that contains all of the variables 
used in the function. For a function with n variables, the notation MiMiM , where 0 # i , 2n,
is used to denote the maxterm whose index i is the binary value of the i is the binary value of the i n variables, such 
that the variable is complemented if  the value assigned to it is a 1 and uncomplemented 
if  it is a 0.

Figure 2.13(b) shows the eight maxterms and their notations for n 5 3 using the 
three variables x, y, and z. For example, the maxterm notation M3M3M  is used to represent 
the term in which the values for the variables xyz are 011 (for the subscript 3). For 
maxterms, we want to complement the variable whose value is a 1 and uncomplement 
it if  it is a 0, therefore, the notation M3M3M  is for the maxterm x 1 y r 1 z r.

We have seen that a function can also be specified as a product-of-maxterms, or 
more specifically, a product of  the zero-maxterms (i.e., the maxterms for which the 
function is a 0). Just like the minterms, we use the notation 1-maxterm to denote 
one-maxterm, and 0-maxterm to denote zero-maxterm. Thus, the function:

F 1x, y, z 2 5 xyxyx rz 1 xyxyx z r 1 yz

5 1x 1 y 1 z 2 # 1x 1 y 1 z r 2 # 1x 1 y r 1 z 2 # 1x r 1 y 1 z 2

which is shown in the following table
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x y z F Maxterm Notation

0 0 0 0 x 1 y 1 z M0M0M

0 0 1 0 x 1 y 1 z r M1

0 1 0 0 x 1 y r 1 z M2M2M

0 1 1 1 x 1 y r 1 z r M3M3M

1 0 0 0 x r 1 y 1 z M4M4M

1 0 1 1 x r 1 y 1 z r M5M5M

1 1 0 1 x r 1 y r 1 z M6M6M

1 1 1 1 x r 1 y r 1 z r M7M7M

can be specified as the product of the 0-maxterms M0M0M , M1, M2M2M , and M4M4M . The shorthand 
notation for the function is

F 1x, y, z 2 5 M0M0M # M1
# M2M2M # M4M4M

By using the standard algebraic symbol P for product and listing out the maxterm 
index numbers, the notation is further simplified to

F 1x, y, z 2 5 P 10, 1, 2, 4 2

The following summarizes these relationships for the function F 5 xyxyx rz 1 xyxyx z r 1 yz
and its inverse. Comparing these equations with those in Figure 2.12, we see that they 
are identical.

F(x, y, z) = x'yz 1 xy'z 1 xyz' 1 xyz
F(x,y,z)   = m3 1 m5 1 m6 1 m7
F(x,y,z)   = S(3, 5, 6, 7)

F(x,y,z)   = (x1y1z)  (x1y 1z' )  (x1y'1z)  (x'1y1z)
F(x,y,z)   = M0M0M ? M1 ? M2M2M ? M4M4M
F(x,y,z)   = P(0, 1, 2, 4)

F'(x, y, z) = x'y'z' 1 x'y'z 1 x'yz' 1 xy'z'
F'(x,y,z)   = m0 1 m1 1 m2 1 m4
F'(x,y,z)   = S(0, 1, 2, 4)

F'(x,y,z)   = (x1y'1z' )  (x'1y1z' )  (x'1y'1z)  (x'1y'1z' )
F'(x,y,z)   = M3M3M ? M5M5M ? M6M6M ? M7M7M
F'(x,y,z)   = P(3, 5, 6, 7)

S 1-minterms

P 0-maxterms

S 0-minterms

P 1-maxterms

Equivalent

Equivalent

Inverse
Inverted
Duals

Notice that it is always the S of  minterms and P of  maxterms; you never have S
of maxterms or P of  minterms.
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EXAMPLE 2.23

Converting a function to the product-of-maxterms format using Boolean 
algebra

Given the Boolean function F 1x, y, z 2 5 y 1 x rz, use Boolean algebra to convert the 
function to the product-of-maxterms format.

In a product-of-maxterms format, all sum terms must have all variables. To change 
a sum term to a maxterm, we need to expand each sum term by ORing it with 1vv r 2  for 
every missing variable v in that term. Because 1vv r 2 5 0, therefore, ORing a sum term 
with 1vv r 2  does not change the value of the term.

F 5 y 1 x rz

5 y 1 1x rz 2
5 1y 1 x r 2 1y 1 z 2 use Distributive Theorem to change

to product-of-sums format

5 1y 1 x r 1 zz r 2 1y 1 z 1 xx r 2 expand 1st term by ORing it with zz r,
and 2nd term with xx r

5 1x r 1 y 1 z 2 1x r 1 y 1 z r 2 1x 1 y 1 z 2 1x r 1 y 1 z 2

5 M4M4M # M5M5M # M0M0M

5 P 10, 4, 5 2 product of 0-maxterms

EXAMPLE 2.24

Converting the inverse of a function to the product-of-maxterms format

Given the Boolean function F 1x, y, z 2 5 y 1 x rz, use Boolean algebra to convert the 
inverse of the function to the product-of-maxterms format.

F r 5 1y 1 x rz 2 r  inverse

5 y r # 1x rz 2 r  use DeMorgan rs Theorem

5 y r # 1x 1 z r 2  use DeMorgan rs Theorem

5 1y r1 xx r1 zz r 2 # 1x 1 z r1 yyyyy r 2  expand 1st term by ORing it with
1xx r 1 zz r 2  and 2nd term with yyyyy r

5 1x 1 y r 1 z 2 1x 1 y r 1 z r 2 1x r 1 y r 1 z 2 1x r 1 y r 1 z r 2 1x 1 y 1 z r 2
1x 1 y r 1 z r 2

5 M2M2M # M3M3M # M6M6M # M7M7M # M1

5 P 11, 2, 3, 6, 7 2                        product of 1-maxterms
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In conclusion, given a function in either the sum-of-minterms or product-of-max-
terms format, we can easily obtain its inverse by either changing the operator S to P or 
vice versa, or changing the set of indices to those that were excluded from the original 
set, regardless of whether it is for minterms or maxterms. Using this fact, we can easily 
reduce the size of a circuit as shown in the next example.

EXAMPLE 2.25

Reducing a function by using the inverse of the function, and the sum-of-min-
terms and product-of-maxterms transformation

Given the function F 1x, y, z 2 5 S 11, 2, 5, 6, 7 2 , reduce its size by finding its inverse 
and using the sum-of-minterms and product-of-maxterms transformation.

To get the inverse of  a function, we simply either change the operator S to P
or vice versa, or change the set of indices to the other set. Hence, the inverse of the 
function F 1x, y, z 2 5 S 11, 2, 5, 6, 7 2  is F r 1x, y, z 2 5 S 10, 3, 4 2  by changing the set of 
indices. To get the original function back, we invert F r by changing the operator to get 
F 5 P 10, 3, 4 2 .

Hence, the function S 11, 2, 5, 6, 7 2  is equivalent to the function P 10, 3, 4 2  in terms 
of functional operation, but in terms of size, the function P 10, 3, 4 2  is smaller. The size 
of an AND gate versus an OR gate is insignificant. Therefore, the size of the circuit is 
determined mainly by the number of terms. Because the latter function contains fewer 
terms, it is, therefore, smaller.

2.9 Canonical, Standard, and Non-Standard Forms
Any Boolean function that is expressed as a sum-of-minterms, or as a product-of-
maxterms is said to be in its canonical form. For example, the following two equations 
are in their canonical forms:

F 5 x ryz 1 xyxyx rz 1 xyxyx z r 1 xyxyx z

F r 5 1x 1 y r 1 z r 2 # 1x r 1 y 1 z r 2 # 1x r 1 y r 1 z 2 # 1x r 1 y r 1 z r 2

As noted from the previous section, to convert a Boolean function from one canon-
ical form to its other equivalent canonical form, simply interchange the symbols S with 
P and list the index numbers that were excluded from the original set. For example, the 
following two equations are functionally equivalent.

F1F1F 1x, y, z 2 5 S 10, 1, 2, 3, 4, 5 2
F2F2F 1x, y, z 2 5 P 16, 7 2

However, in terms of size, F2F2F  is much smaller.
To convert a Boolean function from one canonical form to its inverse, simply 

interchange the symbols S with P and list the same index numbers from the original 
set. For example, the following two equations are inverses.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-202



2.10 DIGItAL CIRCUIts 53

F1F1F 1x, y, z 2 5 S 13, 5, 6 2
F2F2F 1x, y, z 2 5 P 13, 5, 6 2
A Boolean function is said to be in a standard form if  a sum-of-products expres-

sion or a product-of-sums expression has at least one term that is not a minterm or a 
maxterm, respectively. In other words, at least one term in the expression is missing at 
least one variable. For example, the following equation is in a standard form because 
the last term is missing the variable x.

F 5 xyxyx rz 1 xyxyx z r 1 yz

To further reduce the size of an equation, common variables in a standard form 
expression can be factored out using the Distributive Theorem. The resulting expres-
sion is no longer in a sum-of-products or product-of-sums format. These expressions 
are in a non-standard form. For example, starting with the previous equation, if  we fac-
tor out the common variable x from the first two terms, we get the following equation, 
which is in a non-standard form.

F 5 xyxyx rz 1 xyxyx z r 1 yz

5 x 1y rz 1 yz r 2 1 yz

2.10 Digital Circuits
A digital circuit is a connection of two or more logic gates together. Many gates can 
be interconnected to form large and complex circuits called networks. These networks 
can be described either graphically using schematic circuit diagrams, or with Boolean 
equations, or with truth tables.

For example, the following is a schematic diagram of a digital circuit having three 
NOT gates, five 3-input AND gates and one 5-input OR gate.

F

x y z

This circuit also can be described formally with the Boolean equation

F 1x, y, z 2 5 x ry rz 1 x ryz r 1 x ryz 1 xyxyx z r 1 xyxyx z
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Notice the correspondence between the schematic diagram and the equation. The 
five AND gates correspond to the five AND terms in the equation; the three inputs for 
each AND gate correspond to the three variables in each AND term; and the one 5-input 
OR gate corresponds to the ORing of  the five AND terms together. The inputs to the 
AND gates come directly from the three variables x, y, and z (or their inverted values). 
Notice that in the equation, there are six inverted variables. However, in the circuit, we 
do not need six NOT gates. Rather, only three NOT gates are used; one for each variable.

The circuit also can be described formally using a truth table as shown next.

x y z F

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

First, all possible values of the three input variables are enumerated giving us the 
eight rows in the table. Then for each AND gate in the circuit there is a corresponding 
row in the truth table where the F value is a 1. For example, for the first F value is a 1. For example, for the first F AND gate 
where the three inputs are x r, y r, and z, therefore the first row where F 5 1 is when 
x 5 0, y 5 0, and z 5 1.

The process to convert back and forth between the schematic diagram, Boolean 
equation and truth table is discussed in detail in Chapter 3.

2.11 Designing a Car Security System
We will now go through the process of designing a small digital control system that 
we are all familiar with. In a car security system, we usually want to connect the siren 
in such a way that the siren will activate when it is triggered by one or more sensors. 
In addition, there will be a master switch to turn the system on or off. Let us assume 
that there is a car door switch D, a vibration detector switch V, and a master switch V, and a master switch V
M. We will use the convention that when the door is opened, D 5 1, otherwise, D 5 0.
Similarly, when the car is being shaken, V 5 1, otherwise, V 5 0. Thus, we want the 
siren S to turn on (i.e., set S to turn on (i.e., set S S 5 1) when either D 5 1 or V 5 1 or when both D 5 1 and 
V 5 1, but only for when the system is turned on (i.e., when M 5 1). However, when 
we turn off  the system, we do not want the siren to turn on regardless of the state of 
the door switch or the vibration switch. Hence, when M 5 0, it does not matter what 
values D and V have, the siren should remain off  (i.e., set V have, the siren should remain off  (i.e., set V S 5 0).

Given the above description of a car security system, we can build a digital circuit 
that meets our specifications. We start by constructing a truth table, which is basically 
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a precise way of stating the operations for the device. The table will have three input 
columns M, M, M D, and V, and an output column V, and an output column V S, as shown in Figure 2.14(a).

Under the three input columns, we enumerate all possible binary values for the 
three inputs. The values under the S column are obtained from interpreting the descripS column are obtained from interpreting the descripS -
tion of when we want the siren to turn on or off. When M 5 0, we don’t want the siren 
to come on, regardless of what the values for D and V are. When V are. When V M 5 1, we want the 
siren to come on when either D or V is a 1, or both V is a 1, or both V D and V are 1.V are 1.V

The truth table in Figure 2.14(a) can be described formally with a logic equation 
written in words as

S 5 (M AND (NOT D) AND V ) OR (M AND D AND (NOT V )) OR (M AND D AND V ) 

or preferably, using the simpler notation of a Boolean function:

S 5 1MDMDM rV 2V 2V 1 1MDMDM V r 2 1 1MDMDM V 2V 2V

Again, what this equation is saying is that we want the siren to activate (i.e., set S 5 1) 
when:

 ● the master switch is on and the door is not opened and the vibration switch is on, or
 ● the master switch is on and the door is opened and the vibration switch is not on, or
 ● the master switch is on and the door is opened and the vibration switch is on.

Notice that we are interested only in the situations when S 5 1. We ignore the rows 
when S 5 0. When we construct circuits from truth tables, we always use only the rows 
where the output is a 1.

FIGURE 2.14 Car security system: (a) truth table; (b) circuit diagram derived from the 
truth table; (c) simplified circuit diagram.

M D V S

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

(a)

S

M D V

(b)

S
D
V
M

(c)
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Finally, we can translate this equation into a circuit diagram. The translation is 
a simple one-to-one mapping of changing the AND operator into the AND gate, the OR

operator into the OR gate, and the NOT operator into the NOT gate. Thus, we get the 
circuit diagram shown in Figure 2.14(b) for our car security system.

A careful reader might notice that the Boolean equation shown above for specify-
ing when the siren is to be turned on can be simplified to

S 5 M 1D 1 V 2V 2V

This simplified equation says that the siren is to be turned on only when the master 
switch is on and either the door switch or vibration switch is on. The corresponding 
simplified circuit diagram is shown in Figure 2.14(c). Just by using simple reasoning, 
we can see that this simplified circuit will do exactly what the circuit in Figure 2.14(b) 
does. In other words, the two circuits are functionally equivalent.

More formally, we can use the Boolean theorems from Section 2.7.1 to show that 
these two equations (and therefore, the two circuits) are indeed functionally equivalent 
as follows:

S 5 1MDMDM rV 2V 2V 1 1MDMDM V r 2 1 1MDMDM V 2V 2V

5 M 1D rV 1 DV r 1 DV 2V 2V by Distributive Theorem 12a

5 M 1D rV 1 DV r 1 DV 1 DV 2V 2V by Idempotent Theorem 7b

5 M 1D 1V r 1 V 2V 2V 1 V 1V 1V D r 1 D 2 2 by Distributive Theorem 12a

5 M 1D 11 2 1 V 1V 1V 1 2 2 by Inverse Theorem 9b

5 M 1D 1 V 2V 2V by Identity Theorem 6a

Figure 2.15(a) shows a sample simulation trace of the car security system circuit. 
Between times 0 and 200 ns, the master switch M is a 0, so regardless of the values of M is a 0, so regardless of the values of M

FIGURE 2.15 Sample simulation trace of the car security system circuit: (a) functional trace; 
(b) timing trace.

(b)

(a)
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D and V, the siren is off  V, the siren is off  V 1Siren 5 0 2 . Between times 200 ns and 600 ns, M 5 1. During 
this time, whenever either D 5 1 or V 5 1, the siren is on.

Figure 2.15(a) is a functional trace of the circuit, so all the signal edges line up exactly, functional trace of the circuit, so all the signal edges line up exactly, functional
that is, the output signal edge changes at exactly the same time (with no delay) as the 
input edge that caused it to change. For a timing trace, on the other hand, the output sig-
nal edge will be delayed slightly after the causing input edge, as shown in Figure 2.15(b).

When building circuits, in addition to having a functionally correct circuit, we also 
want to optimize it in terms of its size, speed, heat dissipation, and power consumption. 
We will see in later sections how circuits are optimized.

2.12 Verilog and VHDL Code for Digital Circuits
A digital circuit that is described with a Boolean function can be converted easily to 
either Verilog or VHDL code using the dataflow model. At the dataflow level, a circuit 
is defined using built-in logic operators such as AND, OR, and NOT. These operators are 
applied to wires or signals using concurrent signal assignment statements.

2.12.1 Verilog Code for a Boolean Function
Figure 2.16 shows the Verilog code for the car security system circuit discussed in 
Section 2.11. The function implemented is S 5 1MDMDM rV 2V 2V 1 1MDMDM V r 2 1 1MDMDM V 2V 2V . This 
also will serve as a basic template for Verilog dataflow codes. Note that Verilog is case 
sensitive. Lines starting with two slashes are comments.

Every component defined in Verilog starts with the keyword module followed 
by the name of the module, which in this example the name Siren is used. Next, a list 
of input and output signals is specified between the open and close parentheses. This 
parameter list is similar to a function declaration in C11 and serves as the interface 
between the component and the outside world. It specifies the data to be passed in and 
out of the component. In this example, there are three input signals called M, M, M D, and 
V and an output signal called V and an output signal called V S.

// this is a Verilog dataflow model of the car security system

module Siren (
  input M,
  input D,
  input V,
  output S
);

  wire term1, term2, term3;

  assign term1 = (M & ~D & V);
  assign term2 = (M & D & ~V);
  assign term3 = (M & D & V);
  assign S = term1 | term2 | term3;

endmodule

FIGURE 2.16 Dataflow Verilog code for the car security system circuit of Section 2.11.
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The wire keyword declares wire signals for connecting to other signals. The next 
four assign statements are the code that realizes the operation of the function. This 
Verilog code is written at the dataflow level because it uses the concurrent assign
statements with the built-in Verilog operators & (for AND), 0  (for OR), and , (for NOT)
to realize the operation of the circuit. Unlike statements in C11 that are executed in 
sequential order, concurrent assign statements in the module body are executed in 
parallel. Thus, the ordering of these statements is irrelevant. The symbol 5 is used for 
assignment. The expression on the right side of the 5 symbol is evaluated when the 
values stored in the variables change (either from 0 to 1 or from 1 to 0), and the result 
is assigned to the signal on the left side. The three wire variables, term1, term2, and 
term3, although unnecessary, are used to store the intermediate results of  the three 
AND terms. The values in the three terms are ORed together and assigned to the output 
signal S. The endmodule keyword is used to terminate the definition of the module.

2.12.2 VHDL Code for a Boolean Function
Figure 2.17 shows the VHDL code for the car security system circuit discussed in 
Section 2.11. The function implemented is S 5 1MDMDM rV 2V 2V 1 1MDMDM V r 2 1 1MDMDM V 2V 2V . This 
also will serve as a basic template for VHDL dataflow codes. Note that VHDL is not 
case sensitive. Lines starting with two hyphens are comments.

The LIBRARY and USE statements specify that the IEEE library is needed and that all 
of the components in that library package can be used. These two statements are equiv-
alent to the “#include” and “using namespace” preprocessor lines in C11. Every com-
ponent defined in VHDL, whether it is a simple gate or a complex microprocessor, has 
two parts: an ENTITY section and an ARCHITECTURE section. The ENTITY section is similar 
to a function declaration in C11 and serves as the interface between the component 
and the outside. It declares all of the input and output signals for a circuit. Every entity 
must have a unique name; in this example, the name Siren is used. The entity contains 

-- this is a VHDL dataflow model of the car security system

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.all;

ENTITY Siren IS PORT (
  M: IN STD_LOGIC;
  D: IN STD_LOGIC;
  V: IN STD_LOGIC;
  S: OUT STD_LOGIC);
END Siren;

ARCHITECTURE Dataflow OF Siren IS
   SIGNAL term1, term2, term3: STD_LOGIC;
BEGIN
   term1 <= M AND (NOT D) AND V;
   term2 <= M AND D AND (NOT V);
   term3 <= M AND D AND V;
   S <= term1 OR term2 OR term3;
END Dataflow;

FIGURE 2.17 Dataflow VHDL code for the car security system circuit of Section 2.11.
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a PORT list, which, like a parameter list, specifies the data to be passed in and out of the 
component. In this example, there are three input signals called M, M, M D, and V of type V of type V
STD_LOGIC and an output signal called S of the same type. The S of the same type. The S STD_LOGIC type is like 
the BIT type, except that it contains the additional values Z and U besides just 0s and 1s.

The ARCHITECTURE section defines the operation of the entity; it contains the code 
that realizes the operation of the component. For every architecture, you need to specify 
its name and which entity it is for. In this example, the name is Dataflow, and it is for the 
entity Siren. This VHDL code is written at the dataflow level not because of the name 
“Dataflow” in the architecture section. Dataflow-level coding uses logic equations to 
describe a circuit, and this is done by using the built-in VHDL operators such as AND, 
OR, and NOT in concurrent signal assignment statements. These concurrent statements 
are written inside the body of  the architecture. Unlike statements in C11 that are 
executed in sequential order, concurrent statements in the architecture body (between 
the BEGIN and END keywords) are executed in parallel. Thus, the ordering of these state-
ments is irrelevant. The symbol ,5 is used for the signal assignment statement. The 
expression on the right side of the ,5 symbol is evaluated when the values stored in 
the variables change (either from 0 to 1 or from 1 to 0), and the result is assigned to 
the signal on the left side. The three signal variables term1, term2, and term3, although 
unnecessary, are used to store the intermediate results of the three AND terms.

2 . 1 3  P R O B L E M S

2.1. Convert the following decimal numbers to binary numbers.
a) 66
b) 49
c) 513
d) 864
e) 1897
f) 2015

2.2. Convert the following unsigned binary numbers to decimal, octal, and 
hexadecimal numbers.
a) 11110
b) 11010
c) 100100011
d) 1011011
e) 1101101110
f) 10111101010

2.3. Convert the following hexadecimal numbers to unsigned binary numbers.
a) 66
b) E3
c) 2FE8
d) 7C2
e) 5A2D
f) E08B

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-202



60 CHAPTER 2 FUnDAMentALs oF DIGItAL CIRCUIts

2.4. Convert the following numbers to 12-bit signed binary numbers using 
two’s complement representation.
a) 23410

b) 223410

c) 2348

d) BC416

e) 247210

2.5. Convert the following two’s complement binary numbers to decimal, 
octal, and hexadecimal formats.
a) 1001011
b) 011110
c) 101101
d) 1101011001
e) 0110101100

2.6. Perform the following 8-bit unsigned binary calculations, and specify the 
resulting decimal number.
a) 10101010 1 00111011
b) 00111101 1 01110100
c) 11100011 1 11110011
d) 11000111 1 10010110

2.7. Perform the following 8-bit signed binary calculations, and specify the 
resulting decimal number.
a) 10101010 1 00111011
b) 00111101 1 01110100
c) 11100011 1 11110011
d) 11000111 1 10010110

2.8. Perform the following 8-bit unsigned binary calculations, and specify the 
resulting decimal number.
a) 10101010 2 00111011
b) 00111101 2 01110100
c) 11100011 2 11110011
d) 01000111 2 10010110

2.9. Perform the following 8-bit signed binary calculations, and specify the 
resulting decimal number.
a) 10101010 2 00111011
b) 00111101 2 01110100
c) 11100011 2 11110011
d) 01000111 2 10010110

2.10. Perform the following 4-bit binary calculations. (The first one has been 
done for you.) Then:
a) Specify whether there is an overflow in the binary calculation.
b) Specify whether there is an overflow error if  the binary numbers are 

interpreted as unsigned decimal numbers.
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c) Specify whether there is an overflow error if  the binary numbers are 
interpreted as signed decimal numbers.

Binary calculations Unsigned decimal 
calculations

Signed decimal 
calculations

1001 1 0011 5 1100
No overflow

9 1 3 5 12
No overflow error

27 1 3 5 24
No overflow error

0110 1 1011 5

0101 1 0110 5

0101 2 0110 5

1011 2 0101 5

2.11. Derive the truth table for the following Boolean functions.
a) F 1x,y,z 2 5 x ry rz r 1 x ryz 1 xyxyx rz r 1 xyxyx z
b) F 1x,y,z 2 5 xyxyx rz 1 x ryz r 1 xyxyx z 1 xyxyx z r
c) F 1w,x,y,z 2 5 w rxyxyx rz 1 w rxyxyx z 1 wxyxyx rz 1 wxyxyx z
d) F 1w,x,y,z 2 5 wxyxyx rz 1 w ryz r 1 wxz 1 xyxyx z r
e) F 1x,y,z 2 5 xyxyx r 1 x ry rz 1 xyxyx z r
f) F 1w,x,y,z 2 5 w rz r 1 w rxyxyx 1 wx rz 1 wxyxyx z
g) F 1x,y,z 2 5 3 1x 1 y r 2 1yz 2 r 4 1xyxyx r 1 x ry 2
h) F 1N3N3N ,N2N2N ,N1,N0N0N 2 5 N3N3N rN2N2N rN1N0N0N r 1 N3N3N rN2N2N rN1N0N0N 1 N3N3N N2N2N rN1N0N0N r

1 N3N3N N2N2N rN1N0N0N 1 N3N3N N2N2N N1 rN0N0N r 1 N3N3N N2N2N N1N0N0N

2.12. Derive the Boolean function for the following truth tables.

a b c F

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 0

a) w x y z F

0 0 0 0 0

0 0 0 1 0

0 0 1 0 1

0 0 1 1 0

0 1 0 0 1

0 1 0 1 1

0 1 1 0 0

0 1 1 1 1

1 0 0 0 0

1 0 0 1 1

1 0 1 0 1

1 0 1 1 0

1 1 0 0 1

1 1 0 1 1

1 1 1 0 0

1 1 1 1 1

b)
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2.13. Use a truth table to show that the following variations of the DeMorgan’s 
Theorem are true.
a) 1x 1 y 2 r 5 x r # y r
b) 1x 1 y 1 z 2 r 5 x r # y r # z r
c) 1x # y # z 2 r 5 x r 1 y r 1 z r
d) 1w # x # y # z 2 r 5 w r 1 x r 1 y r 1 z r

2.14. Use a truth table to show that the following equations are true.
a) w rz r 1 w rxyxyx 1 wx rz 1 wxyxyx z 5 w rz r 1 xyxyx z 1 wx ry rz 1 wywyw z
b) z 1 y r 1 yz r 5 1
c) xyxyx rz r 1 x r 1 xyxyx z r 5 x r 1 z r
d) xyxyx 1 x rz 1 yz 5 xyxyx 1 x rz
e) w rx ryz r 1 w rx ryz 1 wx ryz r 1 wx ryz 1 wxyxyx z 5 y 1x r 1 wz 2
f) w rxyxyx rz 1 w rxyxyx z 1 wxyxyx rz 1 wxyxyx z 5 xz
g) xiyiyi i 1 ci 1xi 1 yi 2 5 xiyiyi ici 1 xiyiyi ici r 1 xiyiyi i rci 1 xi ryici

h) xiyiyi i 1 ci 1xi 1 yi 2 5 xiyiyi i 1 ci 1xi ! yi 2
2.15. Use Boolean algebra to show that x # 1x 1 y 2 5 x is true.

2.16. Use Boolean algebra to show that x 1 1x # y 2 5 x is true.

2.17. Use Boolean algebra to show that 1x # y 2 1 1x # y r 2 5 x is true.

w x y z F1F1F F2F2F

0 0 0 0 1 1

0 0 0 1 0 1

0 0 1 0 0 1

0 0 1 1 1 1

0 1 0 0 0 0

0 1 0 1 1 1

0 1 1 0 1 0

0 1 1 1 0 0

1 0 0 0 0 1

1 0 0 1 1 1

1 0 1 0 1 0

1 0 1 1 0 0

1 1 0 0 1 1

1 1 0 1 0 1

1 1 1 0 0 1

1 1 1 1 1 1

c) N3N3N N2N2N N1N1N N0N0N F

0 0 0 0 0

0 0 0 1 0

0 0 1 0 1

0 0 1 1 1

0 1 0 0 0

0 1 0 1 0

0 1 1 0 1

0 1 1 1 0

1 0 0 0 0

1 0 0 1 0

1 0 1 0 1

1 0 1 1 1

1 1 0 0 1

1 1 0 1 0

1 1 1 0 0

1 1 1 1 1

d)
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2.18. Use Boolean algebra to show that 1x 1 y 2 # 1x 1 y r 2 5 x is true.

2.19. Use Boolean algebra to show that the equations in Problem 2.14 are true.

2.20. Use Boolean algebra to reduce the functions in Problem 2.11 as much as 
possible.

2.21. Use Boolean algebra to reduce the equation 
F 1x, y, z 2 5 1x r 1 y r 1 x ry r 1 xyxyx 2 1x r 1 yz 2  as much as possible.

2.22. Any function can be implemented directly either as specified or as its 
inverted form with a NOT gate added at the final output. Assume that 
the circuit size is proportional to only the number of AND gates and OR

gates (i.e., ignore the number of NOT gates in determining the circuit size). 
Determine which form of the function (the inverted or non-inverted)
will result in a smaller circuit size for the following function. Give your 
reason, and specify how many AND and OR gates are needed to implement 
the smaller circuit.

F 1x,y,z 2 5 x ry rz r 1 x ry rz 1 xyxyx rz 1 xyxyx rz r 1 xyxyx z

2.23. Derive the truth table for the following logic gates.
a) A 4-input AND gate.
b) A 4-input NAND gate.
c) A 4-input NOR gate.
d) A 4-input XOR gate.
e) A 4-input XNOR gate.
f) A 5-input XOR gate.
g) A 5-input XNOR gate.

2.24. Derive the truth table for the following Boolean functions.
a) F 1w,x,y,z 2 5 3 1x( y 2 r 1 1xyxyx z 2 r 4 1w r 1 x 1 z 2
b) F 1x,y,z 2 5 x ! y! z
c) F 1w,x,y,z 2 5 3w rxyxyx rz 1 w rz 1y! x 2 4 r

2.25. Use Boolean algebra to convert the functions in Problem 2.24 to:
a) The sum-of-minterms format
b) The product-of-maxterms format

2.26. Use Boolean algebra to reduce the functions in Problem 2.24 as much as 
possible.

2.27. Use a truth table to show that the following equations are true.
a) 1x! y 2 5 1x( y 2 r
b) x! y r 5 x( y
c) 1w! x 2 ( 1y! z 2 5 1w( x 2 ( 1y( z 2

5 1 1 1w( x 2 ( y 2 ( z 2
d) 3 1 1xyxyx 2 rx 2 r 1 1xyxyx 2 ry 2 r 4 r 5 x! y

2.28. Use Boolean algebra to show that the equations in Problem 2.27 are true.
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2.29. Use Boolean algebra to show that 
x! y! z 5 x ry rz 1 x ryz r 1 xyxyx rz r 1 xyxyx z.

2.30. Use Boolean algebra to show that XOR 5 XNOR for three inputs.

2.31. Express the Boolean functions in Problem 2.11 using:

a) The S notation

b) The P notation

2.32. Write the following equations as a Boolean function in the canonical 
form.

a) F 1x, y, z 2 5 S 11, 3, 7 2
b) F 1w, x, y, z 2 5 S 11, 3, 7 2
c) F 1x, y, z 2 5 P 11, 3, 7 2
d) F 1w, x, y, z 2 5 P 11, 3, 7 2
e) F r 1x, y, z 2 5 S 11, 3, 7 2
f) F r 1x, y, z 2 5 P 11, 3, 7 2

2.33. Given F r 1x, y, z 2 5 S 11, 3, 7 2 , express the function F using a truth table.F using a truth table.F

2.34. Use Boolean algebra to convert the function F 1x, y, z 2 5 S 13, 4, 5 2  to its 
equivalent product-of-sums canonical form.

2.35. Given F 5 xyxyx rz r 1 xyxyx rz 1 xyxyx z r 1 xyxyx z, write the equation for F r using:

a) The product-of-sums format

b) The sum-of-products format

2.36. Use Boolean algebra to convert the equation F 5 w( x( y( z to:z to:z

a) The sum-of-minterms format

b) The product-of-maxterms format

2.37. Write the complete dataflow Verilog code for the Boolean functions in 
Problem 2.24.

2.38. Write the complete dataflow VHDL code for the Boolean functions in 
Problem 2.24.

2.39. Write the complete behavioral Verilog code for the car security system 
circuit discussed in Section 2.11.

2.40. Write the complete behavioral VHDL code for the car security system 
circuit discussed in Section 2.11.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-202



65

Control
Signals

Status
Signals
Status

MUX

'0'

Data
Inputs

Data
Outputs

Datapath

ALU

Register
ff

8

8

8

Output
Logic

Control
Inputs

Control
Outputs

Control Unit

Next-
state
Logic

State
Memory
Register

ff

C H A P T E R  3

Combinational Circuits
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Digital circuits, regardless of whether they are part of the control unit or the datapath, 
are classified as either one of two types: combinational or sequential. Combinational 
circuits are digital circuits where the outputs of the circuit are dependent only on the 
current inputs. In other words, a combinational circuit is able to produce an output 
simply from knowing what the current input values are. Sequential circuits, on the other 
hand, are circuits whose outputs are dependent on not only the current inputs, but 
also on all of the past inputs. Therefore, in order for a sequential circuit to produce an 
output, it must know the current input and all past inputs. Because of their dependency 
on past inputs, sequential circuits must contain memory elements in order to remember 
the history of past input values. Combinational circuits do not need to know about 
past inputs, and therefore, do not require any memory elements to remember its history. 
A “large” digital circuit may contain both combinational circuits and sequential cir-
cuits. However, since both combinational circuits and sequential circuits are digital 
circuits, therefore, they use the same basic building blocks—the AND, OR, and NOT gates. 
What makes them different is in the way the gates are connected.

The car security system from Section 2.11 is an example of a combinational circuit. 
In the example, the siren is turned on when the master switch is on and someone opens 
the door. If  you close the door, then the siren will turn off immediately. With this setup, 
the output, which is the siren, is dependent only on the inputs, which are the master, 
door, and vibration switches. For the security system to be more useful, the siren should 
remain on even after closing the door or when vibration stops after it is first triggered. 
In order to add this new feature to the security system, we need to modify it so that the 
output is dependent not only on the master, door, and vibration switches, but also on 
past inputs such as whether the door has previously been opened. A memory element 
is needed in order to remember whether the door previously was opened, and this 
requires a sequential circuit.

In this chapter and the next, we will look at the design of combinational circuits. 
In this chapter, we will look at the analysis and synthesis of any combinational circuits. 
Chapter 4 will look at the design of specific combinational components that are used 
frequently in building larger digital circuits. The design of sequential circuits will be 
discussed in subsequent chapters.

In addition to being able to design a functionally correct circuit, we also would 
like to be able to optimize the circuit in terms of size, speed, and power consumption. 
Usually, reducing the circuit size will increase the speed and reduce the power usage. 
In this chapter, we will look only at reducing the circuit size. Optimizing the circuit for 
speed and power usage is beyond the scope of this book.

3.1 Analysis of Combinational Circuits
When given a digital logic circuit, one of the first things that we often would like to 
know is its operation. The analysis of combinational circuits is the process in which we 
are given a combinational circuit, and we want to derive a precise description of the 
operation of the circuit. In general, a combinational circuit can be described precisely 
either with a truth table or with a Boolean function.
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3.1.1 Using a Truth Table
For example, given the combinational circuit of Figure 3.1, we want to derive the truth 
table that describes the circuit.

We create the truth table by first listing all of  the inputs found in the circuit, 
one input per column, followed by all of  the outputs found in the circuit, again one 
output per column. For our sample circuit, we start with a table with four columns: 
three columns for the inputs x, y, and z, and one column for the output f, as shown f, as shown f
in Figure 3.2(a).

The next step is to enumerate all possible combinations of 0s and 1s for all of the 
input variables. In general, for a circuit with n inputs, there are 2n combinations, from 
0 to 2n 2 1. Continuing on with the example, the table in Figure 3.2(b) lists the eight 
combinations for the three variables in order.

Now, for each row in the table (i.e., for each combination of  input values), we 
need to determine what the output value is. This is done by substituting the values for 
the input variables and tracing through the circuit to the output. For example, using 
xyxyx z 5 000, the output of the top AND gate is a 0 because one of its inputs is connected 
to z and since z is 0, the output of  this AND gate is 0 (because 0 AND anything is 0). 
Continuing likewise for the remaining AND gates, we find that the outputs for all of 
the AND gates are also 0. The outputs from all of the AND gates are connected to the 
inputs of the OR gate, and ORing all the zeros gives a zero. Therefore, f 5 0 for this set 
of values for x, y, and z. This is shown in the annotated circuit in Figure 3.2(c), and in 
the output column f in the truth table shown in Figure 3.2(e), the value 0 is written in f in the truth table shown in Figure 3.2(e), the value 0 is written in f
the first row where xyxyx z 5 000.

For the second row in the table where xyxyx z 5 001, the output of  the top AND gate 
gives a 1 as shown in the annotated circuit in Figure 3.2(d). Since 1 ORed with any-
thing gives a 1, it is unnecessary to deduce the remaining AND gate outputs in order to 
know that f 5 1. Hence, for this second row where xyxyx z 5 001, we write a 1 under the 
f column in the table shown in Figure 3.2(e).f column in the table shown in Figure 3.2(e).f

Continuing in this fashion for all of  the remaining input combinations, we can 
complete the final truth table for the circuit, as shown in Figure 3.2(e).

A different and sometimes faster way of evaluating the values for the output signals 
is to work backward, that is, to trace the circuit from the output back to the inputs. You 

FIGURE 3.1 Sample combinational circuit.

x y z

f
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FIGURE 3.2 Deriving the truth table for the sample circuit in Figure 3.1: (a) listing 
the input and output columns; (b) enumerating all possible combinations of the 
three input values; (c) circuit annotated with the input values xyzxyzx 5 000; (d) circuit 
annotated with the input values xyzxyzx 5 001; (e) complete truth table for the circuit.

x y

(a)

z fz f

x y z f

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

(b)

x y z

f0

0 0 0

0
1 1

0

0

0

(c)

x y z
0 0 1

1 1

f1

1

(d)

x y z f

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

(e)
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want to ask the question: When is the output a 1? Then trace back to the inputs to see 
what the input values ought to be in order to get the 1 output. Sometimes, it is easier to 
figure out when the output is a 0 instead. You can use whatever method is the easiest. 
For example, using the same circuit in Figure 3.1, f is a 1 when any one of the four f is a 1 when any one of the four f
OR-gate inputs is a 1. For the first input of the OR gate to be a 1, the output of the top 
AND gate must be a 1, which means that the inputs to the top AND gate must be all 1s. 
This means that the values for x, y, and z must be 0, 0, and 1 respectively, since z must be 0, 0, and 1 respectively, since z x and y
are inverted but z is not. So we have a 1 for the second row in the table where z is not. So we have a 1 for the second row in the table where z xyxyx z 5 001.
Repeat this analysis for the remaining three inputs to the OR gate, and what you end up 
with are the four input combinations for which f is a 1 as shown in the truth table in f is a 1 as shown in the truth table in f
Figure 3.2(e). The remaining input combinations, of course, will all be 0s for f, and so f, and so f
need not be worked out manually.

EXAMPLE 3.1

Deriving a truth table from a circuit diagram

Derive the truth table for the following circuit with three inputs A, B, and C, and two 
outputs P and P and P Q.

A B C

P

Q

The truth table will have three columns for the three inputs and two columns for the 
two outputs. Enumerating all possible combinations of the three input values gives eight 
rows in the table. For each combination of input values, we need to evaluate the output 
values for both P and P and P Q. Tracing backward from the output, P is connected to the outP is connected to the outP -
put of an OR gate. So for P to be a 1, either of the P to be a 1, either of the P OR-gate inputs must be a 1. The first 
input to this OR gate is connected to two 2-input AND gates making it a 3-input AND gate. 
The output of the AND gate is a 1 only if  ABC 5 001. Both A and B must be 0 because B must be 0 because B
they both are connected through an inverter. C is a 1 because it is connected directly.C is a 1 because it is connected directly.C

The second input to the OR gate is connected to the output of a 2-input AND gate. 
The output of  this AND gate is a 1 if  AB 5 11 because both inputs are connected 
directly to A and B. Since C is not specified in this case, it means that C is not specified in this case, it means that C C can be either C can be either C
a 0 or a 1. Hence, we get the three input combinations (ABC 5 001, 110, and 111) for 
which P is a 1, as shown in the following truth table under the P is a 1, as shown in the following truth table under the P P column. The rest of P column. The rest of P
the input combinations will produce a 0 for P.
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3.1.2 Using a Boolean Function
The second way to describe a combinational circuit precisely is to use a Boolean 
function. To derive a Boolean function that describes a combinational circuit, we 
simply write down the Boolean logical expression at the output of  each gate as we 
trace through the circuit from the primary input to the primary output. This actually 
is similar to deriving the truth tables, but instead of substituting values of 0s and 1s, 
we write down the logical expressions. You can refer back to Sections 2.4 and 2.5 for 
the notations to use in a logical expression for the various logic gates.

To help keep track of the expressions at the output of each logic gate, we can anno-
tate the outputs of each logic gate with the resulting intermediate logical expression. 
Using the sample combinational circuit shown in Figure 3.3, we note that the logical 

FIGURE 3.3 Sample combinational circuit.

x y z

f

x' y'
x'y'z

x'yz

xy'z

xyz

x'y'z 1 x'yz 1 xy'z 1 xyz

Tracing backward from the output for Q to be a 1, both inputs to the AND gate 
must be a 1. Hence, A must be a 0, and either B is a 0 or B is a 0 or B C is a 1. This gives the three C is a 1. This gives the three C
input combinations (ABC 5 000, 001, and 011) for which Q is a 1, as shown in the 
truth table under the Q column.

A B C P Q

0 0 0 0 1

0 0 1 1 1

0 1 0 0 0

0 1 1 0 1

1 0 0 0 0

1 0 1 0 0

1 1 0 1 0

1 1 1 1 0
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expression for the output of the top AND gate is x ry rz since both the first and second 
inputs come from the inverted values of  x and y, and the last input comes directly 
from z. The logical expressions for the remaining AND gates are x ryz, xyxyx rz, and xyz, 
respectively. Finally, the outputs from these AND gates are all ORed together giving us 
the final Boolean equation f 5 x ry rz 1 x ryz 1 xyxyx rz 1 xyxyx z.

If  we substitute all possible combinations of values for all of the variables in the 
final equation, we should obtain the same truth table as shown in Figure 3.2(e).

If  a circuit has two or more outputs, then there must be one equation for each of 
the outputs. The equations are derived totally independent of each other.

EXAMPLE 3.2

Deriving Boolean functions from a circuit diagram

Derive the Boolean functions for the following circuit with three inputs x, y, and z, 
and two outputs f and f and f g.

x y

f

g

z

y' xy'

y ! z
x'

xy' 1 (y ! z)

(x(y ! z))'

x'(xy' 1 (y ! z))

x y z

f

g

Starting from the primary inputs x, y, and z, we annotate the outputs of  each 
logic gate with the resulting logical expression. Hence, we obtain the annotated circuit 
shown next.
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3.2 Synthesis of Combinational Circuits
Synthesis of combinational circuits is just the reverse procedure of the analysis of com-
binational circuits. In synthesis, we are given a description of the operation of a cir-
cuit, and we want to derive a circuit that realizes it. From the given description, we 
first derive either a truth table or a Boolean function that precisely describes the cir-
cuit's operation. In a real situation, you might not be able to come up with the precise 
truth table because the description might be ambiguous. If  this happens, then you will 
have to clarify with the person who gave you the description until there are no more 
ambiguities. After we have either the truth table or the Boolean function, we easily can 
translate that into a circuit diagram.

For example, let us construct a 3-bit unsigned comparator circuit for the test 
“greater than or equal to five.” This circuit outputs a 1 if  the number is greater than 
or equal to 5, otherwise it outputs a 0. Since we are using a 3-bit unsigned number, 
the input range is from 0 to 7, so the circuit will output a 0 if  the input is a number 
between 0 and 4 (inclusive) and outputs a 1 if  the input is a number between 5 and 7 
(inclusive). We use the three bits, x2, x1, and x0, to represent the 3-bit input value to the 
comparator. From the description, we obtain the following truth table.

Since there are two outputs f and f and f g in the circuit, there will be two corresponding g in the circuit, there will be two corresponding g
Boolean functions for the circuit. These are

f 5 xr 1xyxyx r 1 1y! z 2 2

and

g 5 1x 1y! z 2 2 r

Decimal 
number

Binary number Output

x2 x1 x0 f

0 0 0 0 0

1 0 0 1 0

2 0 1 0 0

3 0 1 1 0

4 1 0 0 0

5 1 0 1 1

6 1 1 0 1

7 1 1 1 1
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It is straightforward to derive the Boolean function and then the circuit once we 
have the truth table. In constructing the circuit, we are interested only in when the out-
put is a 1 (i.e., when the function f is a 1). Thus, we need to consider only the rows in f is a 1). Thus, we need to consider only the rows in f
the truth table where the output function f 5 1. In other words, the Boolean function 
is simply the sum of the 1-minterms that we discussed in Chapter 2.

From the previous truth table, we see that there are three rows where f 5 1. For 
each row where f 5 1, we will AND all of the inputs together. The variables in the AND

terms are such that it is inverted if  its value is a 0, and not inverted if  its value is a 1. 
In the case of the first AND term, we want f 5 1 when x2 5 1 and x1 5 0 and x0 5 1;
and this is satisfied in the expression x2x r1 x0. Similarly, the second and third AND terms 
are satisfied in the expressions x2x1x r0  and x2x1x0, respectively. Finally, we want f 5 1
when any one of these three AND terms is equal to 1. So we ORed the three AND terms 
together, giving us our final expression

f 5 x2x r1 x0 1 x2x1x r0 1 x2x1x0 (3.1)

We also can write the equation using the shorthand sum-of-minterms notation as 
f 1f 1f x2, x1, x0 2 5 S 15, 6, 7 2 .

To draw the schematic diagram from the Boolean function, we simply convert 
the AND operators to AND gates, OR operators to OR gates, and primes to NOT gates. 
The equation is in the sum-of-products format, meaning that it is summing (ORing) 
the product (AND) terms. A sum-of-products equation always translates to a two-level 
circuit with the first level being made up of AND gates and the second level made up of 
one OR gate. Each of the three AND terms contains three variables, so we use a 3-input 
AND gate for each of the three AND terms. The three AND terms are ORed together, so we 
use a 3-input OR gate to connect the output of the three AND gates. For each inverted 
variable, we need an inverter. Note that the maximum number of inverters needed will 
always be the number of variables in the function. The schematic diagram derived from 
Equation 3.1 is shown next.

x2 x1 x0

f

From this discussion, we see that any combinational circuit can be constructed 
using only AND, OR, and NOT gates from either a truth table or a Boolean equation. If  
we construct the circuit based directly on the truth table, then it will be in the canoni-
cal form. Circuits in this form usually can be simplified and reduced to a smaller size 
circuit, as we will see in the next section.
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EXAMPLE 3.3

Synthesizing a combinational circuit from a truth table

Synthesize a combinational circuit from the following truth table. The three variables 
a, b, and c are input signals, and the two variables x and y are output signals.

a b c x y

0 0 0 1 0

0 0 1 0 0

0 1 0 1 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 1

1 1 0 1 0

1 1 1 0 0

We either can derive the Boolean equation from the truth table and then derive 
the circuit from the equation, or we can derive the circuit directly from the truth table. 
For this example, we first will derive the Boolean equation. Since there are two output 
signals, there will be two equations—one for each output signal.

From Section 2.8, we saw that a function is formed by summing its 1-minterms. For 
output x, there are five 1-minterms: m0, m2, m3, m5, and m6. These five 1-minterms rep-
resent the five AND terms, a rb rc r, a rbc r, a rbc, ab rc, and abc r. Hence, the equation for x is

x 5 a rb rc r 1 a rbc r 1 a rbc 1 ab rc 1 abc r

Similarly, the output signal y has three 1-minterms, and they are a rbc r, ab rc r, and 
ab rc. Hence, the equation for y is

y 5 a rbc r 1 ab rc r 1 ab rc

The combinational circuit constructed from these two equations is shown in 
Figure 3.4(a). Each 3-variable AND term is replaced by a 3-input AND gate. The three 
inputs to these AND gates are connected to the three input variables a, b, and c, either 
directly if  the variable is not primed or through a NOT gate if  the variable is primed. 
For output x, a 5-input OR gate is used to connect the outputs of the five AND gates for 
the corresponding five AND terms. For output y, a 3-input OR gate is used to connect 
the outputs of the three AND gates.

Notice that the two AND terms, a rbc r and ab rc, appear in both the x and the y
equations. As a result, we do not need two separate AND gates to generate these two 
signals twice. We can reduce the size of the circuit simply by not duplicating these two 
AND gates, as shown in Figure 3.4(b).
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3.2.1 Using Only NAND Gates
It turns out that for all combinational circuits in the sum-of-products format, instead 
of using one level of AND gates and the second level using one OR gate, all of the AND

and OR gates can be replaced with NAND gates, as shown in the next example. In fact, all 
digital circuits can be built using only NAND gates. In practice, using NAND gates instead 
of AND and OR gates reduces the transistor count in a circuit because a 2-input AND or 
OR gate uses six transistors each, whereas a 2-input NAND gate uses only four transistors. 
Refer to the online chapter on Implementation Technologies, for a detailed discussion 
on using transistors to implement basic gates.

FIGURE 3.4 Combinational circuit for Example 3.3: (a) no reduction; (b) with reduction.

a b c

x

y

a b c

x

y

(a) (b)

EXAMPLE 3.4

Converting a 2-level sum-of-products circuit to use only NAND gates

Convert the following 2-level sum-of-products circuit to use only NAND gates.

a
b
c
d

f
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3.3 Minimization of Combinational Circuits
When constructing digital circuits, in addition to obtaining a functionally correct cir-
cuit, we like to optimize them in terms of circuit size, speed, and power consumption. 
In this section, we will focus on reducing the circuit size, which usually will increase 
the speed and lower the power consumption. We have seen in the previous sections that 
any combinational circuit can be represented using a Boolean function. The size of the 
circuit is directly proportional to the size or complexity of the functional expression. 
In fact, it is a one-to-one correspondence between the functional expression and the 
circuit size. In Section 2.7, we saw how we can transform a Boolean function to another 
equivalent function by using the Boolean algebra theorems. If  the resulting function is 
simpler than the original, then we want to implement the circuit based on the simpler 
function, since that will give us a smaller circuit size.

Using Boolean algebra to transform a function to one that is simpler is not a 
straightforward task, especially for the computer. There is no formula that says which 
is the next Boolean theorem to use. Luckily, there are easier methods for reducing 
Boolean functions. The Karnaugh map method is an easy way for reducing an equation 
manually and is discussed in Section 3.3.2. This method, however, is good only for a 
few variables. The Quine-McCluskey or tabulation method for reducing an equation 
discussed in Section 3.3.4 is ideal for programming the computer and has no limit to 
the number of variables used in the equation.

a
b
c
d

f

First, note that an AND gate can be replaced by a NAND gate followed by a NOT gate. 
Second, using Boolean algebra and DeMorgan’s Theorem, we can obtain the following 
equality for the OR gate.

x 1 y 5 1x 1 y 2 r r
5 1x ry r 2 r

In other words, the OR gate can be replaced by the NAND gate with its two inputs 
inverted. Hence, we get the following equivalent circuit.

a
b
c
d

f==
a
b
c
d

f
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3.3.1 Boolean Algebra
In synthesizing a circuit from a truth table, we usually start with a Boolean equation 
in the canonical sum-of-minterms format that is derived directly from the truth 
table. To minimize a Boolean equation in the sum-of-minterms format, we need 
to reduce the number of  product terms, which usually is done by factoring out the 
common variable(s). In so doing, we also will have reduced the number of  variables 
used in the product terms. For example, given the following 3-variable function with 
two product terms

F 5 xyxyx rz r 1 xyxyx z r

Both product terms in the function have the two common variables x and z r, so we 
can factor them out and reduce the function as follows:

F 5 xyxyx rz r 1 xyxyx z r
5 xz r 1y r 1 y 2
5 xz r1
5 xz r

In other words, two product terms that differ by only one variable, whose value is a 
0 (primed) in one term and a 1 (unprimed) in the other term, can be combined together 
to form just one term with that variable omitted. Thus, we have reduced the number 
of product terms, and the resulting product term has one less variable. By reducing 
the number of product terms, we not only reduce the number of AND gates needed, but 
also reduce the number of OR operators in the expression, which translates to reducing 
the number of inputs to the OR gate. By reducing the number of variables in a product 
term, we reduce the number of AND operators in the expression, which translates to 
reducing the number of inputs to the AND gate.

Sometimes, it may be advantageous to duplicate a product term one or more times 
in an equation. This is because a product term in the same equation can be reused as 
many times as needed so that more product terms can be combined and reduced as 
shown in the next example.

EXAMPLE 3.5

Use Boolean algebra to reduce a Boolean equation

Use Boolean algebra to reduce the 3-variable Boolean equation F 5 x ryz r 1 x ryz 1 xyxyx z r.
We note that in the equation, the first and second product terms have two variables 

x r and y that are the same. Furthermore, the first and third product terms also have two 
variables y and z r that are the same. Since the first product term is needed twice for the 
reduction, once with the second term and once with the third term, we can duplicate 
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3.3.2 Karnaugh Maps
In the previous section, we saw how to reduce a Boolean equation by combining similar 
variables that occur in two or more terms. However, just by looking at a logic function’s 
truth table or equation, sometimes it is difficult to see how the product terms can be 
combined and minimized. A Karnaugh map (or K-map) provides a simple and straight-
forward procedure for combining these product terms. A K-map is just a graphical rep-
resentation of a logic function’s truth table, where the minterms are grouped in such a 
way that it allows one to easily see which of the minterms can be combined. The K-map 
is a two-dimensional array of squares, each representing one minterm in the Boolean 
function. Thus, the K-map for an n-variable function is an array with 2n squares.

Figure 3.5 shows the K-maps for functions with 2, 3, 4, and 5 variables. Notice 
the labeling of the columns and rows are such that any two adjacent columns or rows 
differ in only one bit change. This condition is required because we want minterms 
in adjacent squares to differ in the value of only one variable or one bit, and so these 
minterms can be combined together. This is why the labeling for the third and fourth 
columns, and for the third and fourth rows, are always interchanged. When we read 
K-maps, we need to visualize them as such that the two end columns or rows wrap 
around, so that the first and last columns and the first and last rows are really adjacent 
to each other, because they also differ in only one bit.

In Figure 3.5, the K-map squares are annotated with their minterms and minterm 
numbers for easy reference only. For example, in Figure 3.5(a), for a 2-variable K-map, 
the entry in the first row and second column highlighted in blue is labeled x ry and 

the first term without changing the equation. After that we can factor and reduce the 
equation as follows:

F 5 x ryz r 1 x ryz 1 xyxyx z r
5 x ryz r 1 x ryz 1 xyxyx z r 1 x ryz r duplicate 1st term by

Idempotent Theorem 7b
5 1x ryz r 1 x ryz 2 1 1x ryz r 1 xyxyx z r 2 by Commutative Theorem 10b
5 x ry 1z r 1 z 2 1 yz r 1x r 1 x 2 by Distributive Theorem 12b
5 x ry 1 1 yz r1 by Theorem 9b
5 x ry 1 yz r by Theorem 6a
5 y 1x r 1 z r 2 by Distributive Theorem 12b
5 y 1xz 2 r by DeMorgan’s Theorem 13a

The circuit for the original equation requires three 3-input AND gates, one 3-input 
OR gate, and two NOT gates. The final reduced equation only requires one 2-input AND

gate and one 2-input NAND gate.
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annotated with the number 1. This is because the first row is when the variable x is a 
0, and the second column is when the variable y is a 1. Since, for minterms, we need to 
prime a variable whose value is a 0 and not prime it if  its value is a 1, this entry rep-
resents the minterm x ry, which is minterm number 1. It is important to note that if  we 
label the rows and columns differently, the minterms and the minterm numbers will be 
in different locations. When we use K-maps to minimize an equation, we will not write 
these in the squares. Instead, we will be putting 0s and 1s in the squares.

For a 5-variable K-map, as shown in Figure 3.5(d), we need to visualize the right 
half  of the array (where v 5 1) to be on top of the left half  (where v 5 0). In other 
words, we need to view the map as three dimensional. Hence, although the squares for 
minterms 2 and 16 are located next to each other, they are not considered to be adja-
cent to each other. On the other hand, minterms 0 and 16 are adjacent to each other, 
because one is on top of the other.

FIGURE 3.5 Karnaugh maps for: (a) 2 variables; (b) 3 variables; (c) 4 variables; (d) 5 variables.
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Given a Boolean function, we set the value for each K-map square to either a 0 or 
a 1, depending on whether that minterm for the function is a 0-minterm or a 1-minterm, 
respectively. However, since we are interested only in using the 1-minterms for a function, 
it is unnecessary to write the 0s in the 0-minterm squares.

For example, the K-map for the 2-variable function

F 5 x ry r 1 x ry 1 xyxyx

is

x
0 1 1

0

1

1
0 10 10 10 1

2 32 3
1

F
y

x
0 1 1

0

1

1
0 10 10 1

2 32 3
1

F
y

y

x'

There are three 1-minterms in the function, m0, m1, and m3, which correspond to the 
three squares in the K-map with the 1 labeled in them. Notice that the two 1-minterms, 
m0 1x ry r 2  and m1 1x ry 2 , are in adjacent squares, which means that they differ in the 
value of only one variable. In this case, x is 0 for both minterms, but for y, it is a 0 for 
one minterm and a 1 for the other minterm. Thus, variable y can be dropped, and the 
two terms are combined together giving just x r. The prime in x r is because x is 0 for both 
minterms. This reasoning corresponds to the following equality.

x ry r 1 x ry 5 x r 1y r 1 y 2 5 x r 11 2 5 x r

Similarly, the two 1-minterms, m1 1x ry 2  and m3 1xyxyx 2 , are also adjacent to each 
other, and y is the variable having the same value for both minterms, and so they can 
be combined to give

x ry 1 xyxyx 5 1x r 1 x 2 y 5 11 2 y 5 y

This combining of  1-minterms is shown graphically in the following annotated 
K-map.

We use the term subcube to refer to a rectangle that encloses or covers one or 
more adjacent 1-minterms. In the above 2-variable K-map, there are two subcubes: one 
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labeled with x r and the second labeled with y. Two conditions must be satisfied in order 
for a subcube to be valid:

1. It must be rectangular in shape.
2. The number of 1-minterms that it encloses must be a power of two.

Formally, for an n-variable K-map, an m-subcube is defined as that set of 
2m minterms in which n 2 m of  the variables will have the same value in every 
minterm, while the remaining variables will take on the 2m possible combinations 
of  0s and 1s. Thus, a 1-minterm all by itself  is called a 0-subcube, two adjacent 
1-minterms combined is called a 1-subcube, four adjacent 1-minterms combined is 
called a 2-subcube, and so on. In the previous 2-variable K-map, the two subcubes 
are 1-subcubes.

A 2-subcube will have four adjacent 1-minterms and can be in the shape of any 
one of those shown in Figures 3.6(a) through (e). Notice that Figures 3.6(d) and (e) 
also form 2-subcubes, even though the four 1-minterms are not physically adjacent to 
each other. They are considered to be adjacent because the first and last rows and the 
first and last columns wrap around in a K-map. In Figure 3.6(f), the four 1-minterms 
cannot form a 2-subcube, because even though they are physically adjacent to each 
other, they do not form a rectangle. However, they can be separated to form the three 
1-subcubes—y1-subcubes—y1-subcubes— rz, x ry r, and x rz.

We say that a subcube is characterized by the variables having the same values characterized by the variables having the same values characterized
for all of  the 1-minterms in that subcube. In general, an m-subcube for an n-variable 
K-map will be characterized by n 2 m variables. If  the value that is similar for all 
of  the variables is a 1, that variable is unprimed; whereas, if  the value that is similar 
for all of  the variables is a 0, that variable is primed. In a Boolean expression, this 
is equivalent to the resulting smaller product term when the minterms are combined 
together by factoring.

For example, the 2-subcube in Figure 3.6(d) is characterized by z r, since the value 
of z is 0 for all of the 1-minterms, whereas the values for x and y are not all the same 
for all of  the 1-minterms. Similarly, the 2-subcube in Figure 3.6(e) is characterized 
by x rz r. In Figures 3.6(d) and (e), although they both have four 1-minterms forming 
a 2-subcube, the subcube in Figure 3.6(d) is characterized with only one variable, z r,
whereas the subcube in Figure 3.6(e) is characterized with two variables, x rz r. This is 
because the function in the first K-map has only three variables, whereas the function 
in the second K-map has four variables.

For a 5-variable K-map, as shown in Figure 3.7, we need to visualize the right half  
of the array (where v 5 1) to be on top of the left half (where v 5 0). Thus, for example, 
minterm 20 is adjacent to minterm 4 since one is on top of the other, and they form 
the 1-subcube w rxyxyx rz r. Even though minterm 6 is physically adjacent to minterm 20 on 
the map, they cannot be combined together, because when you visualize the right half  
as being on top of the left half, then they really are not on top of each other. Instead, 
minterm 6 is adjacent to minterm 4 because the columns wrap around, and they form 
the subcube v rw rxz r. Minterms 9, 11, 13, 15, 25, 27, 29, and 31 are all adjacent, and 
together they form the 4-subcube wz. Now that we are viewing this 5-variable K-map 
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in three dimensions, we also need to change the condition of the subcube shape to be 
a three-dimensional rectangle.

You can see that this visualization technique becomes almost impossible to work 
with as we increase the number of variables further. Thus, K-maps are not suitable for 

FIGURE 3.7 A 5-variable K-map with three wraparound subcubes.
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FIGURE 3.6 Examples of K-maps with 2-subcubes for: (a) 3 variables; (b) 3 variables;  
(c) 4 variables; (d) 3 variables with wraparound subcube; (e) 4 variables with wraparound 
subcube; (f) four adjacent minterms that cannot form a 2-subcube.
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use in more realistic designs with many more variables; instead, tabular methods are 
used to reduce the size of equations.

The K-map method reduces a Boolean function from its canonical form to its 
standard form. The goal for the K-map method is to find as few subcubes as possible 
to cover all of  the 1-minterms in the given function. This naturally implies that the 
size of  the subcube should be as big as possible. The reasoning for this is that each 
subcube corresponds to a product term, and all of  the subcubes (or product terms) 
must be ORed together to get the function. Larger subcubes require fewer AND gates 
because of fewer variables in the product term, and fewer subcubes will require fewer 
inputs to the OR gate.

The procedure for using the K-map method is as follows:

1. Draw the appropriate K-map for the given function and place a 1 in the squares 
that correspond to the function’s 1-minterms.

2. For each 1-minterm, find the largest subcube that covers this 1-minterm. This 
largest subcube is known as a prime implicant (PI). By definition, a prime 
implicant is a subcube that is not contained within any other subcube. If  more 
than one subcube is the same size as the largest subcube, then they are all 
prime implicants.

3. Look for 1-minterms that are covered by only one prime implicant. Since this 
prime implicant is the only subcube that covers this particular 1-minterm, this 
prime implicant must be in the final solution. This prime implicant is referred to 
as an essential prime implicant (EPI). By definition, an essential prime implicant 
is a prime implicant that includes a 1-minterm that is not included in any other 
prime implicant.

4. Create a minimal cover list by selecting the smallest possible number of prime 
implicants such that every 1-minterm is contained in at least one prime impli-
cant. This minimal cover list must include all of the essential prime implicants 
plus zero or more of the remaining prime implicants. It is acceptable that a 
particular 1-minterm is covered in more than one prime implicant, but all 
1-minterms must be covered.

5. The final minimized function is obtained by ORing all of the prime implicants 
from the minimal cover list.

Note that the final minimized function obtained by the K-map method may not 
be in its most reduced form. It is only in its most reduced standard form. Sometimes, standard form. Sometimes, standard
it is possible to reduce the standard form further into a non-standard form using 
Boolean algebra.

EXAMPLE 3.6

Using K-map to minimize a 4-variable function

Use the K-map method to minimize a 4-variable (w, x, y, and z) function F with the F with the F
1-minterms: m0, m2, m5, m7, m10, m13, m14, and m15.
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We start with the following 4-variable K-map with a 1 placed in each of the eight 
minterm squares:
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The prime implicants for each of the 1-minterms are shown in the following K-map 
and table:
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For minterm m0, there is only one prime implicant, w rx rz r. For minterm m2, there 
are two 1-subcubes that cover it, and they are the largest. Therefore, m2 has two prime 
implicants, w rx rz r and x ryz r. When we consider m14, again there are two 1-subcubes 
that cover it, and they are the largest. So m14 also has two prime implicants. Minterm 
m15, however, has only one prime implicant, xz. Although the 1-subcube wxy also cov-
ers m15, it is not a prime implicant for m15 because it is smaller than the 2-subcube xz.

From the K-map, we see that there are five prime implicants: w rx rz r, x ryz r, xz, wywyw z r,
and wxy. Of these five prime implicants, w rx rz r and xz are essential prime implicants, 
since m0 is covered only by w rx rz r, and m5, m7, and m13 are covered only by xz.

We start the minimal cover list by including the two essential prime implicants 
w rx rz r and xz. These two subcubes will have covered the minterms m0, m2, m5, m7, m13,
and m15. To cover the remaining two uncovered minterms, m10 and m14, we want to use 
as few prime implicants as possible. Hence, we select the prime implicant wywyw z r, which 
covers both of them.

1-minterm Prime Implicant Essential PI

m0 w rx rz r w rx rz r

m2 w rx rz r, x ryz r

m5 xz xz

m7 xz xz

m10 x ryz r, wywyw z r

m13 xz xz

m14 wywyw z r, wxyxyx

m15 xz
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EXAMPLE 3.7

Using K-map to minimize a 5-variable function

Use the K-map method to minimize a 5-variable function F (F (F v, w, x, y, and z) with 
the 1-minterms: v rw rx ryz r, v rw rx ryz, v rw rxyxyx rz, v rw rxyxyx z, vw rx ryz r, vw rx ryz, vw rxyxyx z r,
vw rxyxyx z, vwx ry rz, vwx ryz, vwxyxyx rz, and vwxyz.

First, we obtain the following K-map.

Finally, the following reduced standard-form equation is obtained by ORing the 
two essential prime implicants and the one prime implicant in the minimal cover list.

F 5 w rx rz r 1 xz 1 wywyw z r

Notice that we can reduce this standard-form equation even further by factoring 
out the z r from the first and the last terms to get the nonstandard-form equation

F 5 z r 1w rx r 1 wywyw 2 1 xz

The list of prime implicants is: v rw rxz, w rx ry, w ryz, vw ry, vyvyv z, and vwz. From this 
list of prime implicants, four of them, v rw rxz, w rx ry, vw ry, and vwz, are essential. These 
four essential prime implicants are able to cover all of  the 1-minterms. Hence, the 
solution in standard form is

F 5 v rw rxz 1 w rx ry 1 vw ry 1 vwz

3.3.3 Don’t-Cares
There are times when a function is not specified fully. In other words, there are some 
minterms for the function where we do not care whether their values are a 0 or a 1. 
When drawing the K-map for these “don’t-care” minterms, we assign an “3” in that 
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square instead of  a 0 or a 1. Usually, a function can be reduced even further if  we 
remember that these 3’s  can be taken as either a 0 or a 1. As you recall when drawing 
K-maps, enlarging a subcube reduces the number of variables for that term. Thus, in 
drawing subcubes, some of them may be enlarged if we treat some of these 3’s as 1s. On 
the other hand, if  some of these 3’s do not help to enlarge a subcube, then we would 
want to treat them as 0s so that we do not need to cover them. It is not necessary to 
treat all of the 3’s to be all 1s or all 0s; some can be taken as 1s and some as 0s.

For example, given a 4-variable function (w, x, y, z) having the following 1-minterms 
and don’t-care minterms:

1-minterms: m0, m1, m2, m3, m4, m7, m8, and m9

3-minterms: m10, m11, m12, m13, m14, and m15

we obtain the following K-map with the prime implicants x r, yz, and y rz r.
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Notice that, in order to get the 4-subcube characterized by x r, the two don’t-care 
minterms m10 and m11 are taken to have the value 1. Similarly, the don’t-care minterms 
m12 and m15 are assigned a 1 for the subcubes y rz r and yz, respectively. On the other 
hand, the don’t-care minterms m13 and m14 are taken to have the value 0, so that they do 
not need to be covered in the solution. The reduced standard form function as obtained 
from the K-map is, therefore,

F 5 x r 1 yz 1 y rz r

This equation can be reduced further by recognizing that yz 1 y rz r 5 y( z. Thus,

F 5 x r 1 1y( z 2

3.3.4 Tabulation Method
K-maps are useful for manually obtaining the minimized standard-form Boolean 
function for maybe up to, at most, five variables. However, for functions with more 
than five variables, it becomes difficult to visualize how the minterms should be com-
bined into subcubes. Moreover, the K-map algorithm is not as straightforward for 

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-202



3.3 MInIMIZAtIon oF CoMBInAtIonAL CIRCUIts 87

converting to a computer program. There are tabulation methods that are better suited 
for programming the computer, and thus, can solve any function given in canonical 
form having any number of  variables. One tabulation method is known as the Quine-
McCluskey method. Example 3.8 illustrates the Quine-McCluskey algorithm.

EXAMPLE 3.8

Illustrating the Quine-McCluskey algorithm

We now illustrate the Quine-McCluskey algorithm using the same 4-variable function 
from Example 3.6 and repeated here.

F 1w, x, y, z 2 5 S 10, 2, 5, 7, 10, 13, 14, 15 2

To construct the initial table, the minterms are grouped according to the number of 1s in 
that minterm number’s binary representation. For example, m0 10000 2 has no 1s; m2 10010 2
has one 1; m5 10101 2  has two 1s; and so on. Thus, the initial table of 0-subcubes (i.e., sub-
cubes having only one minterm) as obtained from the function stated above is as follows.

Group
Subcube 

Minterms

Subcube Value Subcube 
Coveredw x y z

G0G0G m0 0 0 0 0 ✔

G1 m2 0 0 1 0 ✔

G2G2G m5 0 1 0 1 ✔

m10 1 0 1 0 ✔

G3 m7 0 1 1 1 ✔

m13 1 1 0 1 ✔

m14 1 1 1 0 ✔

G4G4G m15 1 1 1 1 ✔

Group G0G0G  contains all the minterms with no 1s 1m0 2 ; group G1 contains all the min-
terms with one 1 1m2 2 ; group G2G2G  contains all the minterms with two 1s (m5 and m10); 
group G3 contains all the minterms with three 1s (m7, m13, and m14); and finally, group 
G4G4G  contains all the minterms with four 1s 1m15 2 . The “Subcube Value” column lists 
the binary values of the variables for each subcube minterm. The “Subcube Covered” 
column is filled in from the next step.

In Step 2, we construct a second table by combining those subcubes (minterms) 
in adjacent groups from the first table that differ in only one bit position, as shown 
next. For example, m0 and m2 differ in only the y bit. Therefore, in the second table, we 
have an entry for the 1-subcube containing the two minterms m0 and m2. A dash (–) 
is used in the bit position that is different in the two minterms. Since this 1-subcube 
covers the two individual minterms m0 and m2, we make a note of it by checking these 
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In Step 3, we perform the same matching process as before, but from the second 
table. We look for subcubes in adjacent groups that differ in only one bit position. In 
the matching, the dash also must match. These subcubes are combined to create the 
next subcube table. The resulting table, however, is a table containing 2-subcubes. From 
the above 1-subcube table, we get the following 2-subcube table.

two minterms in the “Subcube Covered” column in the previous table. This process 
is equivalent to saying that the two minterms m0 1w rx ry rz r 2  and m2 1w rx ryz r 2  can be 
combined together and are reduced to the one term, w rx rz r. The dash under the y
column simply means that y can be either a 0 or a 1, and therefore, y can be discarded. 
Thus, this second table simply lists all of  the 1-subcubes. This matching process to 
find subcubes to be combined must be done for all combinations of subcubes in all 
adjacent groups. Again, the “Subcube Covered” column in this second table will be 
filled in from the third step.

Group
Subcube 

Minterms

Subcube Value Subcube 
Coveredw x y z

G0G0G m0m2 0 0 – 0

G1 m2m10 – 0 1 0

G2G2G m5m7 0 1 – 1 ✔

m5m13 – 1 0 1 ✔

m10m14 1 – 1 0

G3 m7m15 – 1 1 1 ✔

m13m15 1 1 – 1 ✔

m14m15 1 1 1 –

Group
Subcube 

Minterms

Subcube 
Value Subcube 

Covered
w x y z

G2G2G m5m7m13m15 – 1 – 1

From the 1-subcube table, subcubes m5m7 and m13m15 can be combined together to 
form the subcube m5m7m13m15 in the 2-subcube table, since they differ in only the w bit. 
Similarly, subcubes m5m13 and m7m15 from the 1-subcube table can also be combined 
together to form the subcube, m5m7m13m15, because they differ in only the y bit. From 
both of these combinations, the resulting subcube is the same. Therefore, we have the 
four checks in the 1-subcube table, but only one resulting subcube in the 2-subcube 
table. Notice that in the subcube m5m7m13m15, there are two dashes; one that is carried 
over from Step 2, and one for where the bit is different from the current step.
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3.4 Timing Hazards and Glitches
As you probably know, things in practice don’t always work according to what you 
learn in school. Hazards and glitches in circuits are such examples of things that might 
go awry. In our analysis of combinational circuits, we have performed only functional 
analysis. A functional analysis assumes that there is no delay for signals to pass from 
the input to the output of a gate. In other words, we look at a circuit only with respect 
to its logical operation as defined by the Boolean theorems. We have not considered 
the timing of  the circuit. When a circuit is actually implemented, the timing of  the 
circuit (i.e., the time for the signals to pass from the input of a logic gate to the output) 
is critical and must be treated with care. Otherwise, an actual implementation of the 
circuit may not work according to its functional analysis. Timing hazards are problems 
in a circuit as a result of timing issues. These problems can be observed only from a 
timing analysis of the circuit or from an actual implementation of the circuit. A func-
tional analysis of the circuit will not reveal timing hazard problems.

A glitch is when a signal is expected to be stable (from a functional analysis), but 
it changes value for a brief  moment and then goes back to what it is expected to be. 
For example, if  a signal is expected to be at a stable 0, but instead, it goes up to a 1 and 
then quickly drops back to a 0. This sudden, unexpected transition of the signal is a 
glitch, and the circuit having this behavior contains a hazard.

Take, for example, the simple 2-to-1 multiplexer circuit shown in Figure 3.8(a). Let 
us assume that both d0d0d  and d1 are at a constant 1 and that s goes from a 1 to a 0. For a s goes from a 1 to a 0. For a s
functional analysis of the circuit, the output y should remain at a constant 1. However, 
if  we perform a timing analysis of the circuit, we see something different in the timing 
diagram. Let us assume that all of the logic gates in the circuit have a delay of one time 
unit. The resulting timing trace is shown in Figure 3.8(b). At time t0, s drops to a 0. Since s drops to a 0. Since s
it takes one time unit for s to be inverted through the NOT gate, s r changes to a 1 after 
one time unit at time t1. At the same time, it takes the bottom AND gate one time unit 

We continue to repeat the matching step as long as there are adjacent subcubes 
that differ in only one bit position. We stop when there are no more subcubes that 
can be combined. The prime implicants are those subcubes that are not covered, (i.e., 
those without a check mark in the “Subcube Covered” column in all of the tables). In 
the 2-subcube table there is a subcube that does not have a check mark, and it has the 
value x 5 1 and z 5 1; thus, this subcube is characterized by the prime implicant xz. 
The 1-subcube table has four subcubes that do not have a check mark; they are the four 
prime implicants: w rx rz r, x ryz r, wywyw z r, and wxy. Together, these five prime implicants 
(xz, w rx rz r, x ryz r, wywyw z r, and wxy) are exactly the same as those obtained in Example 3.6.

Note that not all of the prime implicants obtained may be necessary in the final 
reduced standard-form equation as we saw in Example 3.6. We still have to find 
the essential prime implicants and the minimal cover list that will cover all of  the 
1-minterms in the original function to arrive at the final minimized standard-form 
equation. Of the five prime implicants, only three of them (w rx rz r, xz, and wywyw z r) are 
needed in the final minimized standard-form equation.
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for the output sd1 to change to a 0 also at time t1. However, the top AND gate will not see 
any input change until time t1, and when it does, it takes another one time unit for its 
output s rd0d0d  to rise to a 1 at time t2. Starting at time t1, both inputs of the OR gate are 0, so 
after one time unit, the OR gate outputs a 0 at time t2. At time t2, when the top AND gate 
outputs a 1, the OR gate will take this 1 input and outputs a 1 after one time unit at t3. So 
between times t2 and t3, output y unexpectedly drops to a 0 for one time unit and then 
rises back to a 1. Hence, the output signal y has a glitch, and the circuit has a hazard.

As you may have noticed, glitches in a signal are caused by multiple sources hav-
ing paths of different delays driving that signal. These types of simple glitches can be 
solved easily using K-maps. A glitch generally occurs if, by simply changing one input, 
we have to go out of one prime implicant in a K-map and into an adjacent one (i.e., 
moving from one subcube to another). The glitch can be eliminated by adding an extra 
prime implicant, so that when going from one prime implicant to the adjacent one, we 
remain inside the third prime implicant.

Figure 3.8(c) shows the K-map with the two original prime implicants s rd0d0d  and sd1
that correspond to the circuit in Figure 3.8(a). When we change s from a 1 to a 0, we s from a 1 to a 0, we s

FIGURE 3.8 Example of a glitch: (a) 2-to-1 multiplexer circuit with glitches; (b) timing trace; 
(c) K-map with glitches; (d) K-map without glitches; (e) 2-to-1 multiplexer circuit without glitches.
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have to go out of the prime implicant sd1 and into the prime implicant s rd0d0d . Figure 3.8(d) 
shows the addition of the extra prime implicant d1d0d0d . This time, when moving from the 
prime implicant sd1 to the prime implicant s rd0d0d , we remain inside the new prime implicant 
d1d0d0d . The 2-to-1 multiplexer circuit with the extra prime implicant d1d0d0d  added, as shown 
in Figure 3.8(e), will prevent the glitch from happening.

3.4.1 Using Glitches
Sometimes, we can use glitches to our advantage, as shown in the following example.

EXAMPLE 3.9

A one-shot circuit using glitches

A circuit that outputs a single, short pulse when given an input of arbitrary time length 
is known as a one-shot. A one-shot circuit is used, for example, to generate a single, 
short 1 pulse when a key is pressed. Sometimes, when a key is pressed, we do not want 
to generate a continuous 1 signal for as long as the key is pressed; instead, we want 
the output signal to be just a single, short pulse, even if  the key is still being pressed.

Since logic gates have an inherent signal delay, we can use this delay to determine 
the desired duration of the short pulse. This short pulse, of course, is really just a glitch 
in the circuit. Figure 3.9(a) shows a sample one-shot circuit using signal delays through 
three NOT gates; Figure 3.9(b) shows a sample timing trace for it.

FIGURE 3.9 A one-shot circuit: (a) using signal delay through three NOT gates; (b) timing trace.

Input

A

(a) (b)

Input

A

Output

Delay through
the AND gate

Delay through
the NOT gates

Output

Initially, assume that the value for Input is a 0, and point A is a 1; therefore, the 
output of the AND gate is 0. When we set Input to a 1 momentarily, both inputs to the 
AND gate will be 1, and so after a delay through the AND gate, Output will be a 1. After 
a delay through the three NOT gates, with Input still at 1, point A will go to a 0, and 
Output will change back to a 0. When we set Input back to a 0, Output will continue 
to be a 0. After the delay through the NOT gates when point A goes back to a 1, Output
remains at 0.
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3.5 BCD to 7-Segment Decoder
We will now design the circuit for a BCD to 7-segment decoder for driving a 7-segment 
LED display. The decoder converts a 4-bit binary coded decimal (BCD) input to seven 
output signals for turning on the seven LEDs in a 7-segment LED display. The 4-bit 
input encodes the binary representation of  a decimal digit. Given the decimal digit 
input, the seven output lines are turned on in such a way so that the 7-segment LED 
displays the corresponding decimal digits from 0 to 9. The 7-segment LED display 
schematic with the names of each segment is shown next.

bbb

aaa

ccc

ddd

eee

fff ggg

As a result, a glitch is created by the signal delay through the three NOT gates. This 
glitch, however, is the short 1 pulse that we wanted, and the length of  this pulse is 
determined by the delay through the NOT gates. With this one-shot circuit, it does not 
matter how long the input key is pressed, the output signal will always be the same 1 
pulse each time when the key is pressed.

The operation of  the BCD to 7-segment decoder is specified in the truth table 
shown in Figure 3.10. The four inputs to the decoder are i3, i2, i1, and i0, and the seven 
outputs for each of the seven LED segments are labeled a, b, c, d, d, d e, f, and f, and f g. For each 
input combination, the corresponding digit to display on the 7-segment LED is shown 
in the “Display” column. The segments that need to be turned on for that digit will 
have a 1, while the segments that need to be turned off  for that digit will have a 0. For 
example, for the 4-bit input 0000, which corresponds to the decimal digit 0, segments 
a, b, c, d, d, d e, and f need to be turned on, while segment f need to be turned on, while segment f g needs to be turned off.g needs to be turned off.g

Notice that the input combinations from 1010 to 1111 are not used, and so don’t-
care values are assigned to all of the segments for these six combinations. Alternatively, 
you can assign 0s to these unused combinations to turn all of  the LEDs off, or to 
decode them for the six hexadecimal digits from A to F.

From the truth table in Figure 3.10, we are able to specify seven equations that are 
dependent on the four inputs for each of the seven segments. For example, the canon-
ical form equation for segment a is

a 5 i r3 i r2 i r1 i r0 1 i r3 i r2 i1i r0 1 i r3 i r2 i1i0 1 i r3 i2i r1 i0 1 i r3 i2i1i r0
1 i r3 i2i1i0 1 i3i r2 i r1 i r0 1 i3i r2 i r1 i0
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Before implementing this equation directly in a circuit, we may want to simplify it 
first using the K-map method. The K-map for the equation for segment a is

FIGURE 3.10 Truth table for the BCD to 7-segment decoder.
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From evaluating the K-map, we derive the simpler equation for segment a as

a 5 i3 1 i1 1 i r2 i r0 1 i2i0 5 i3 1 i1 1 1 i2( i0 2

Proceeding in a similar manner, we get the following remaining six equations.

b 5 i r2 1 1 i1( i0 2
c 5 i2 1 i r1 1 i0

d 5 i1i r0 1 i r2 i r0 1 i r2 i1 1 i2i r1 i0

e 5 i1i r0 1 i r2 i r0

FIGURE 3.11 Circuit for the BCD to 7-segment decoder.
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f 5 i3 1 i2i r1 1 i2i r0 1 i r1 i r0
g 5 i3 1 1 i2 ! i1 2 1 i1i r0

From these seven simplified equations, we can now implement the circuit, as shown 
in Figure 3.11. The labeling of the nodes and gates in the drawing will be explained 
and used in Section 3.6.

3.6 Verilog and VHDL Code for Combinational Circuits
Writing Verilog or VHDL code to describe a digital circuit can be done using any one 
of three coding styles or levels: structural, dataflow, or behavioral. The choice of which 
coding style to use usually depends on what is known about the circuit and how much 
control you would like to have in terms of the final netlist generated by the synthesizer. 
Whereas writing code at the structural and dataflow level requires a good understand-
ing of digital logic circuit design, writing code at the behavioral level requires only an 
understanding of the functionality of the circuit.

At the structural level, which is the lowest level, you first have to design the circuit 
manually. Having drawn the circuit, you use Verilog or VHDL to specify the compo-
nents and gates that are needed by the circuit and how they are connected together by 
following your circuit exactly. Synthesizing a structural HDL description of a circuit 
will produce a netlist exactly like your original circuit. The advantage of working at the 
structural level is that you have full control as to what components are used and how 
they are connected together. The disadvantage, of course, is that you need to come up 
with the circuit manually, and so the full capabilities of the synthesizer are not used.

At the dataflow level, the circuit is defined using the built-in logic operators AND, 
OR, and NOT that are applied to the input signals. To work at this level, you typically need 
to have the Boolean equations for the circuit. Hence, the dataflow level is best suited for 
describing a circuit that already is expressed as a Boolean function. The equations are 
converted easily to the required HDL syntax using signal-assignment statements. All of 
the statements used in the structural and dataflow levels are executed concurrently, as 
opposed to statements in a computer program, which usually are executed in a sequen-
tial manner. In other words, the ordering of the concurrent HDL statements written in 
the structural or dataflow level does not matter—the results would be exactly the same.

Describing a circuit at the behavioral level is similar to writing a computer pro-
gram. You have all of  the standard high-level programming constructs, such as the 
FOR LOOP, WHILE LOOP, IF THEN ELSE, CASE, and variable assignments. The statements are 
enclosed in a sequential block and are executed sequentially.

3.6.1 Structural Verilog Code
Figure 3.12 shows the structural Verilog code for the BCD to 7-segment decoder 
based on the circuit shown in Figure 3.11. All of  the names and labels used in the 
statements correspond to the labels in the circuit diagram shown in Figure 3.11. The 
code starts with declaring the input and output signals to the decoder. The wire
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command declares the internal signal names that will be used for making the connec-
tions between the various gates. Only the standard built-in logic gates are used. For 
each gate statement, the first parameter is the output from the gate, and the remaining 
parameters are the inputs to the gate. As you can see, this list of  gate statements is a 
direct translation from the schematic circuit. For example, the first not gate statement 
in the code has i0 as the input and ip0 as the output. This matches the NOT gate labeled 
U0 in the circuit diagram. The remaining gate statements are connected similarly, 
based on the circuit diagram.

All of the gate statements are executed concurrently, and therefore, the ordering of 
these statements is irrelevant. In other words, changing the ordering of these statements 
will still produce the same result. Any time when an input signal in a gate statement 
changes value (i.e., from a 0 to a 1 or vice versa) that statement is executed to produce 
an output value.

FIGURE 3.12 Structural Verilog code for the BCD to 7-segment decoder.

module bcd (
  input i0, i1, i2, i3,
  output a, b, c, d, e, f, g
);

  wire ip0,ip1,ip2,a1,b1,d1,d2,d3,d4,e1,e2,f1,f2,f3,g1,g2;

  // first parameter is the output
  // remaining parameters are the inputs
  not U0(ip0,i0);
  not U1(ip1,i1);
  not U2(ip2,i2);
  xnor U3(a1,i2,i0);
  or U4(a,i3,i1,a1);
  xnor U5(b1,i1,i0);
  or U6(b,ip2,b1);
  or U7(c,i2,ip1,i0);
  and U8(d1,i1,ip0);
  and U9(d2,ip2,ip0);
  and U10(d3,ip2,i1);
  and U11(d4,i2,ip1,i0);
  or U12(d,d1,d2,d3,d4);
  and U13(e1,i1,ip0);
  and U14(e2,ip2,ip0);
  or U15(e,e1,e2);
  and U16(f1,i2,ip1);
  and U17(f2,i2,ip0);
  and U18(f3,ip1,ip0);
  or U19(f,i3,f1,f2,f3);
  xor U20(g1,i2,i1);
  and U21(g2,i1,ip0);
  or U22(g,i3,g1,g2);

endmodule
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3.6.2 Structural VHDL Code
Figure 3.13 shows the structural VHDL code for the BCD to 7-segment decoder based 
on the circuit shown in Figure 3.11. The code starts with declaring and defining all of the 
components needed in the circuit. For this decoder circuit, only basic gates (such as the NOT

gate, 2-input AND, 3-input AND, and so on) are used. The ENTITY statement is used to declare ENTITY statement is used to declare ENTITY

all of these components, and the ARCHITECTURE statement is used to define the operation of ARCHITECTURE statement is used to define the operation of ARCHITECTURE

these components. Since we are using only simple gates, defining these components using 
the dataflow model is the simplest. For more complex components (as we will see in later 

FIGURE 3.13 Structural VHDL code for the BCD to 7-segment decoder. 
(continued on next page)

----------------- NOT gate -----------------------
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
ENTITY notgate IS PORT(
  i: IN STD_LOGIC;
  o: OUT STD_LOGIC);
END notgate;
ARCHITECTURE Dataflow OF notgate IS
BEGIN
  o <= NOT i;
END Dataflow;

----------------- 2-input AND gate ---------------
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
ENTITY and2gate IS PORT(
  i1, i2: IN STD_LOGIC;
  o: OUT STD_LOGIC);
END and2gate;
ARCHITECTURE Dataflow OF and2gate IS
BEGIN
  o <= i1 AND i2;
END Dataflow;

----------------- 3-input AND gate ---------------
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
ENTITY and3gate IS PORT(
  i1, i2, i3: IN STD_LOGIC;
  o: OUT STD_LOGIC);
END and3gate;
ARCHITECTURE Dataflow OF and3gate IS
BEGIN
  o <= (i1 AND i2 AND i3);
END Dataflow;

----------------- 2-input OR gate ----------------
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
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ENTITY or2gate IS PORT(
  i1, i2: IN STD_LOGIC;
  o: OUT STD_LOGIC);
END or2gate;
ARCHITECTURE Dataflow OF or2gate IS
BEGIN
  o <= i1 OR i2;
END Dataflow;

----------------- 3-input OR gate ----------------
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
ENTITY or3gate IS PORT(
  i1, i2, i3: IN STD_LOGIC;
  o: OUT STD_LOGIC);
END or3gate;
ARCHITECTURE Dataflow OF or3gate IS
BEGIN
  o <= i1 OR i2 OR i3;
END Dataflow;

----------------- 4-input OR gate ----------------
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
ENTITY or4gate IS PORT(
  i1, i2, i3, i4: IN STD_LOGIC;
  o: OUT STD_LOGIC);
END or4gate;
ARCHITECTURE Dataflow OF or4gate IS
BEGIN
  o <= i1 OR i2 OR i3 OR i4;
END Dataflow;

----------------- 2-input XOR gate ---------------
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
ENTITY xor2gate IS PORT(
  i1, i2: IN STD_LOGIC;
  o: OUT STD_LOGIC);
END xor2gate;
ARCHITECTURE Dataflow OF xor2gate IS
BEGIN
  o <= i1 XOR i2;
END Dataflow;

----------------- 2-input XNOR gate --------------
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
ENTITY xnor2gate IS PORT(
  i1, i2: IN STD_LOGIC;
  o: OUT STD_LOGIC);

FIGURE 3.13 Structural VHDL code for the BCD to 7-segment decoder. 
(continued on next page)
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END xnor2gate;
ARCHITECTURE Dataflow OF xnor2gate IS
BEGIN
  o <= NOT(i1 XOR i2);
END Dataflow;

----------------- bcd entity ---------------------
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY bcd IS PORT(
  i0, i1, i2, i3: IN STD_LOGIC;
  a, b, c, d, e, f, g: OUT STD_LOGIC);
END bcd;

ARCHITECTURE Structural OF bcd IS
  COMPONENT notgate PORT(
    i: IN STD_LOGIC;
    o: OUT STD_LOGIC);
  END COMPONENT;
  COMPONENT and2gate PORT(
    i1, i2: IN STD_LOGIC;
    o: OUT STD_LOGIC);
  END COMPONENT;
  COMPONENT and3gate PORT(
    i1, i2, i3: IN STD_LOGIC;
    o: OUT STD_LOGIC);
  END COMPONENT;
  COMPONENT or2gate PORT(
    i1, i2: IN STD_LOGIC;
    o: OUT STD_LOGIC);
  END COMPONENT;
  COMPONENT or3gate PORT(
    i1, i2, i3: IN STD_LOGIC;
    o: OUT STD_LOGIC);
  END COMPONENT;
  COMPONENT or4gate PORT(
    i1, i2, i3, i4: IN STD_LOGIC;
    o: OUT STD_LOGIC);
  END COMPONENT;
  COMPONENT xor2gate PORT(
    i1, i2: IN STD_LOGIC;
    o: OUT STD_LOGIC);
  END COMPONENT;
  COMPONENT xnor2gate PORT(
    i1, i2: IN STD_LOGIC;
    o: OUT STD_LOGIC);
  END COMPONENT;

  SIGNAL ip0,ip1,ip2,a1,b1,d1,d2,d3,d4: STD_LOGIC;
  SIGNAL e1,e2,f1,f2,f3,g1,g2: STD_LOGIC;

FIGURE 3.13 Structural VHDL code for the BCD to 7-segment decoder. 
(continued on next page)
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chapters), we want to choose the model that is best suited for the information that we have 
available for the circuit. The reason why the code shown in Figure 3.13 is structural is not 
because of how these components are defined, but rather on how these components are 
connected together to form the enclosing entity; in this case, the bcd entity. Notice that the bcd entity. Notice that the bcd
LIBRARY and LIBRARY and LIBRARY USE statements need to be repeated for every ENTITY declaration.ENTITY declaration.ENTITY

The actual structural code begins with the bcd ENTITY declaration. The bcd circuit bcd circuit bcd
shown in Figure 3.11 has four input signals: i3, i2, i1, and i0, and seven output signals: 
a, b, c, d, d, d e, f, and f, and f g. These signals are declared in the PORT list using the keyword IN for 
the input signals, and OUT for the output signals; both of which are of type STD_LOGIC.

The ARCHITECTURE section begins by specifying the components needed in the cir-
cuit using the COMPONENT statement. The port list in the COMPONENT statements must 
match exactly the port list in the entity declarations of  the components. They must 
match not only in the number, direction, and type of the signals but also in the names 
given to the signals. Note also that names in the component port list can be the same as 
the names in the bcd entity port list, but they are not the same signals. For example, the bcd entity port list, but they are not the same signals. For example, the bcd
and2gate component port list and the bcd entity port list both have two signals called bcd entity port list both have two signals called bcd
i1 and i2. References to these two signals in the body of the bcd architecture are for the bcd architecture are for the bcd
signals declared in the bcd entity.bcd entity.bcd

BEGIN

  -- last parameter is the output
  -- remaining parameters are the inputs
  U0: notgate PORT MAP(i0,ip0);
  U1: notgate PORT MAP(i1,ip1);
  U2: notgate PORT MAP(i2,ip2);
  U3: xnor2gate PORT MAP(i2, i0, a1);
  U4: or3gate PORT MAP(i3, i1, a1, a);
  U5: xnor2gate PORT MAP(i1, i0, b1);
  U6: or2gate PORT MAP(ip2, b1, b);
  U7: or3gate PORT MAP(i2, ip1, i0, c);
  U8: and2gate PORT MAP(i1, ip0, d1);
  U9: and2gate PORT MAP(ip2, ip0, d2);
  U10: and2gate PORT MAP(ip2, i1, d3);
  U11: and3gate PORT MAP(i2, ip1, i0, d4);
  U12: or4gate PORT MAP(d1, d2, d3, d4, d);
  U13: and2gate PORT MAP(i1, ip0, e1);
  U14: and2gate PORT MAP(ip2, ip0, e2);
  U15: or2gate PORT MAP(e1, e2, e);
  U16: and2gate PORT MAP(i2, ip1, f1);
  U17: and2gate PORT MAP(i2, ip0, f2);
  U18: and2gate PORT MAP(ip1, ip0, f3);
  U19: or4gate PORT MAP(i3, f1, f2, f3, f);
  U20: xor2gate PORT MAP(i2, i1, g1);
  U21: and2gate PORT MAP(i1, ip0, g2);
  U22: or3gate PORT MAP(i3, g1, g2, g);
END Structural;

FIGURE 3.13 Structural VHDL code for the BCD to 7-segment decoder. 
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After the COMPONENT statements, the internal node signals are declared using the 
SIGNAL statement. The names listed are the same as the internal node names used in the 
circuit in Figure 3.11 for easy reference.

Following all of the declarations, the body of the architecture starts with the key-
word BEGIN. For each gate used in the circuit, there is a corresponding PORT MAP state-
ment. Each PORT MAP statement begins with an optional label (i.e., U1, U2, and so on) 
followed by the name of the component (as previously declared with the COMPONENT

statements) to use. Again, the labels used in the PORT MAP statements correspond to the 
labels on the gates in the circuit in Figure 3.11. The parameter list in the PORT MAP state-
ment matches the port list in the component declaration. For example, U0 is instanti-
ated with the component notgate. The first parameter in the PORT MAP statement is the 
input signal i0, and the second parameter is the output signal ipipi 0. U4 is instantiated 
with the 3-input OR gate. The three inputs are i3, i1, and a1, and the output is a. Here, 
a1 is the output from the 2-input XNOR gate of U3. The rest of the PORT MAP statements 
in the program are obtained in a similar manner.

All of the PORT MAP statements are executed concurrently, and therefore, the order-
ing of these statements is irrelevant. In other words, changing the ordering of these state-
ments will still produce the same result. Any time when a signal in a PORT MAP statement 
changes value (i.e., from a 0 to a 1 or vice versa) that PORT MAP statement is executed.

3.6.3 Dataflow Verilog Code
Figure 3.14 shows the dataflow Verilog code for the BCD to 7-segment decoder. This 
code uses the concurrent assign statements to assign values to the output signals 
based on the Boolean equations derived for the circuit in Section 3.5. The built-in 
logical operator symbols &, |, ~, and ^ are used for the corresponding AND, OR, NOT, 
and XOR operators. Seven concurrent assign statements are used: one for each of the 
seven Boolean equations, which corresponds to the seven LED segments a to g. For 
example, the equation for segment a is

a 5 i3 1 i1 1 1 i2 ( i0 2

FIGURE 3.14 Dataflow Verilog code for the BCD to 7-segment decoder.

module bcd (
  input i0, i1, i2, i3,
  output a, b, c, d, e, f, g
);

  // bitwise ~=NOT; &=AND; |=OR; ˆ=XOR
  assign a = i3 | i1 | (i2 ~ˆ i0);
  assign b = ~i2 | ~(i1 ˆ i0);
  assign c = i2 | ~i1 | i0;

assign d = (i1 & ~i0) | (~i2 & ~i0) | (~i2 & i1) |  
           (i2 & ~i1 & i0);

  assign e = (i1 & ~i0) | (~i2 & ~i0);
assign f = i3 | (i2 & ~i1) | (i2 & ~i0) | (~i1 & ~i0) |  
           (i2 & ~i0) | (~i1 & ~i0);

  assign g = i3 | (i2 ˆ i1) | (i1 & ~i0);

endmodule
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This is converted to the statement

assign a 5 i3 0 i1 0 1 i2 ,^ i0 2 ;

Proceeding in a similar manner, we obtain the signal assignment statements in the 
dataflow code for the remaining six equations.

Just like with the gate statement used in the structural level, these concurrent 
assign statements are executed concurrently, and therefore, the ordering of these 
statements is irrelevant. These statements are executed whenever one of its input value 
changes, and the result is assigned to the output signal that is on the left of the equal sign.

3.6.4 Dataflow VHDL Code
Figure 3.15 shows the dataflow VHDL code for the BCD to 7-segment decoder based 
on the Boolean equations derived in Section 3.5. The ENTITY declaration for this data-
flow code is exactly the same as that for the structural code, since the interface for the 
decoder remains the same.

In the ARCHITECTURE section, seven concurrent signal assignment statements are 
used: one for each of the seven Boolean equations, which corresponds to the seven LED 
segments. For example, the equation for segment a is

a 5 i3 1 i1 1 1 i2 ( i0 2

This is converted to the signal assignment statement:

a ,5 i3 OR i1 OR (i2 XNOR i0);

FIGURE 3.15 Dataflow VHDL code for the BCD to 7-segment decoder.

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY bcd IS PORT(
  i0, i1, i2, i3: IN STD_LOGIC;
  a, b, c, d, e, f, g: OUT STD_LOGIC);
END bcd;

ARCHITECTURE Dataflow OF bcd IS
BEGIN
  a <= i3 OR i1 OR (i2 XNOR i0); -- seg a
  b <= (NOT i2) OR NOT (i1 XOR i0); -- seg b
  c <= i2 OR (NOT i1) OR i0; -- seg c
  d <= (i1 AND NOT i0) OR (NOT i2 AND NOT i0) -- seg d
       OR (NOT i2 AND i1) OR (i2 AND NOT i1 AND i0);
  e <= (i1 AND NOT i0) OR (NOT i2 AND NOT i0); -- seg e
  f <= i3 OR (i2 AND NOT i1) -- seg f
       OR (i2 AND NOT i0) OR (NOT i1 AND NOT i0);
  g <= i3 OR (i2 XOR i1) OR (i1 AND NOT i0); -- seg g
END Dataflow;
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Proceeding in a similar manner, we obtain the signal assignment statements in the 
dataflow code for the remaining six equations.

All of the signal assignment statements are executed concurrently, and therefore, 
the ordering of these statements is irrelevant. In other words, changing the ordering of 
these statements will still produce the same result. Any time when a signal on the right 
side of an assignment statement changes value (i.e., from a 0 to a 1 or vice versa) that 
assignment statement is executed.

3.6.5 Behavioral Verilog Code
The behavioral Verilog code for the BCD to 7-segment decoder is shown in Figure 3.16. 
For some variations, the input and output signals are declared slightly different from 
those in the previous sections. Instead of having individual input and output signals, 
they are declared as a vector. The input vector, I, is declared as an array of size 4 with I, is declared as an array of size 4 with I
a range from 3 to 0, whereas the output vector, Segs, is declared as an array of size 
7 with a range from 0 to 6. For the Segs output vector, the leftmost bit with index 0 
corresponds to segment a, the next bit with index 1 corresponds to segment b, and so 
on up to the rightmost bit with index 6 for segment g.

The always statement declares a process block in which the statements inside the 
block are executed sequentially, and therefore, changing the ordering of these state-
ments will produce different results. Although the high-level statements inside this 
block are executed sequentially, the resulting circuit produced from the synthesis of 
this code inherently will operate in parallel. This is because no matter how you connect 
the gates up for a circuit, they all will operate together when power is applied to them.

FIGURE 3.16 Behavioral Verilog code for the BCD to 7-segment decoder.

module bcd (
  input [3:0] I,
  output reg [0:6] Segs
);

  always @ (I) begin
   case (I)
   0: Segs = 7'b1111110;
   1: Segs = 7'b0110000;
   2: Segs = 7'b1101101;
   3: Segs = 7'b1111001;
   4: Segs = 7'b0110011;
   5: Segs = 7'b1011011;
   6: Segs = 7'b1011111;
   7: Segs = 7'b1110000;
   8: Segs = 7'b1111111;
   9: Segs = 7'b1110011;
   default: Segs = 7'b0000000;
   endcase
 end

endmodule
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The sensitivity list in the always statement consists of  the variables listed inside 
the parentheses in the always statement. The always block is executed whenever 
any one of  the variables in the sensitivity list changes value. In the code, only the 
case statement is inside the always block. The ten cases for the ten decimal dig-
its are listed, and for each case a 7-bit value is assigned to the output signal Segs. 
A 1 bit will turn a LED on and a 0 bit will turn it off. For case 0, we want to display 
the decimal digit 0, so all of  the segments are turned on except for segment g, hence 
the bit string 1111110 is assigned to the output signal Segs. To specify that it is a 
7-bit binary value, we use the notation 7'b followed by the actual 7-bit bit string. 
The default case is taken if  I is not a number between 0 and 9, and all of  the I is not a number between 0 and 9, and all of  the I
segments will be turned off.

In Verilog, there are two different assignment statements that can be used inside 
the always block: a blocking assignment statement (using the 5 sign) and a non-
blocking assignment statement (using the ,5 sign). The blocking assignment 15 2
statement should be used when modeling combinational circuits inside an always
block. These two assignment statements are different from the assign statement used 
in the dataflow model.

3.6.6 Behavioral VHDL Code
The behavioral VHDL code for the BCD to 7-segment decoder is shown in 
Figure 3.17. For some variations, the port list for this entity is slightly different 
from the two entities in the previous sections. Instead of  having the four separate 
input signals, i0, i1, i2, and i3, we have declared a vector, I, of  length four. This vecI, of  length four. This vecI -
tor, I, is declared with the type keyword I, is declared with the type keyword I STD_LOGIC_VECTOR, that is, a vector of  type 
STD_LOGIC. The length of  the vector is specified by the range (3 DOWNTO 0).  The 
first number 3 in the range denotes the index of  the most significant bit of  the vec-
tor, and the second number 0 in the range denotes the index of  the least significant 
bit of  the vector. Likewise, the seven output signals, a to g, are replaced with the 
STD_LOGIC_VECTOR Segs of  length 7. This time, however, the keyword TO is used in 
the range to mean that the most significant bit in the vector is index 0 and the least 
significant bit in the vector is index 6.

In the architecture section, a PROCESS statement is used. All of the statements inside 
the process block are executed sequentially, therefore changing the ordering of these 
statements will produce different results. Although the high-level statements inside this 
block are executed sequentially, the resulting circuit produced from the synthesis of 
this code inherently will operate in parallel. This is because no matter how you connect 
the gates up for a circuit, they all will operate together when power is applied to them. 
The process block itself, however, is treated as a single concurrent statement. Thus, the 
architecture section can have two or more process blocks together with other concur-
rent statements, and these all will execute concurrently.

The parenthesized list of  signals after the PROCESS keyword is referred to as the 
sensitivity list. The purpose of  the sensitivity list is that, when a value for any of 
the listed signals changes, the entire process block is executed from the beginning 
to the end.
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In the code, there is a CASE statement inside the process block. Depending on the 
value of I, one of the I, one of the I WHEN parts will be executed. A WHEN part consists of the keyword 
WHEN followed by a constant value for the variable I to match, followed by the symbol I to match, followed by the symbol I
5.. The statement (or statements) after the symbol 5. is executed when I matches I matches I
that corresponding constant. In the code, all of  the WHEN parts contain one signal 
assignment statement. All of the signal assignment statements assign a string of seven 
bits to the output signal Segs. This string of seven bits corresponds to the on-off values 
of the seven segments a to g, as shown in the 7-segment decoder truth table of Figure 
3.10. For example, looking at the truth table, we see that when I 5  “0000” (i.e., for 
the decimal digit 0) we want all of the segments to be on except for segment g. Recall 
that in the declaration of the Segs vector, the most significant bit, which is the leftmost 
bit in the bit string, is index 0, and the least significant bit, which is the rightmost bit, 
is index 6. In VHDL, the notation Segs(n) is used to denote the index n of  the Segs
vector. In the code, we have designated Segs(0) for segment a, Segs(1) for segment b, 
and so on to Segs(6) for segment g. So, in order to display the decimal digit 0, we need 
to assign the bit string “1111110” to Segs.

If  the value of  I does not match any of  the I does not match any of  the I WHEN parts, then the WHEN OTHERS

part will be chosen. In this case, all of  the segments will be turned off. Notice that 

FIGURE 3.17 Behavioral VHDL code for the BCD to 7-segment decoder.

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY bcd IS PORT (
  I: IN STD_LOGIC_VECTOR (3 DOWNTO 0);
  Segs: OUT STD_LOGIC_VECTOR (0 TO 6));
END bcd;

ARCHITECTURE Behavioral OF bcd IS
BEGIN
  PROCESS(I)
  BEGIN
    CASE I IS
    WHEN "0000" => Segs <= "1111110";
    WHEN "0001" => Segs <= "0110000";
    WHEN "0010" => Segs <= "1101101";
    WHEN "0011" => Segs <= "1111001";
    WHEN "0100" => Segs <= "0110011";
    WHEN "0101" => Segs <= "1011011";
    WHEN "0110" => Segs <= "1011111";
    WHEN "0111" => Segs <= "1110000";
    WHEN "1000" => Segs <= "1111111";
    WHEN "1001" => Segs <= "1110011";
    WHEN OTHERS => Segs <= "0000000";
    END CASE;
  END PROCESS;
END Behavioral;
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for both the structural and the dataflow code, the segments are not all turned off  
when I is one of  these values. Instead, a certain combination of  LEDs is turned I is one of  these values. Instead, a certain combination of  LEDs is turned I
on because the K-maps assigned some of  the don’t-cares to 1s. If  we assign all the 
don’t-cares to 0, then all the LEDs will be turned off. An alternative to turning 
all of  the segments off  for the remaining six cases is to display the six letters A, b, 
C, d, E, and F for the six hexadecimal digits. The two letters F for the six hexadecimal digits. The two letters F b and d have to be d have to be d
displayed in lower case, because otherwise, it will be the same as the numbers 8 and 
0, respectively.

3 . 7  P R O B L E M S

3.1. Derive the truth table for the following circuits:

a)

b)

c)

d)

3.2. Derive the Boolean function directly from the circuits in Problem 3.1.

x y z

F

www
xxx
yyy

zzz

FFF

FFF

xxx yyy zzz

a b c

F

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-202



3.7 PRoBLeMs 107

3.3. Draw the circuit diagram that implements the following truth tables.

a) b)

c) d)

a b c F

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 0

w x y z F

0 0 0 0 0

0 0 0 1 0

0 0 1 0 1

0 0 1 1 0

0 1 0 0 1

0 1 0 1 1

0 1 1 0 0

0 1 1 1 1

1 0 0 0 0

1 0 0 1 1

1 0 1 0 1

1 0 1 1 0

1 1 0 0 1

1 1 0 1 1

1 1 1 0 0

1 1 1 1 1

w x y z F1F1F F2F2F

0 0 0 0 1 1

0 0 0 1 0 1

0 0 1 0 0 1

0 0 1 1 1 1

0 1 0 0 0 0

0 1 0 1 1 1

0 1 1 0 1 0

0 1 1 1 0 0

1 0 0 0 0 1

1 0 0 1 1 1

1 0 1 0 1 0

1 0 1 1 0 0

1 1 0 0 1 1

1 1 0 1 0 1

1 1 1 0 0 1

1 1 1 1 1 1

N3N3N N2N2N N1N1N N0N0N F

0 0 0 0 0

0 0 0 1 0

0 0 1 0 1

0 0 1 1 1

0 1 0 0 0

0 1 0 1 0

0 1 1 0 1

0 1 1 1 0

1 0 0 0 0

1 0 0 1 0

1 0 1 0 1

1 0 1 1 1

1 1 0 0 1

1 1 0 1 0

1 1 1 0 0

1 1 1 1 1
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3.4. Draw the circuit diagram that implements the following expressions:
a) F 1x, y, z 2 5 S 10, 1, 6 2
b) F 1w, x, y, z 2 5 S 10, 1, 6 2
c) F 1w, x, y, z 2 5 S 12, 6, 10, 11, 14, 15 2
d) F 1x, y, z 2 5 P 10, 1, 6 2
e) F 1w, x, y, z 2 5 P 10, 1, 6 2
f) F 1w, x, y, z 2 5 P 12, 6, 10, 11, 14, 15 2

3.5. Draw the circuit diagram that implements the following Boolean functions 
using as few basic gates as possible, but without modifying the equation.
a) F 5 xyxyx r 1 x ry rz 1 xyxyx z r
b) F 5 w rz r 1 w rxyxyx 1 wx rz 1 wxyxyx z
c) F 5 w rxyxyx rz 1 w rxyxyx z 1 wxyxyx rz 1 wxyxyx z
d) F 5 N3N3N rN2N2N rN1N0N0N r 1 N3N3N rN2N2N rN1N0N0N 1 N3N3N N2N2N rN1N0N0N r 1 N3N3N N2N2N rN1N0N0N

1 N3N3N N2N2N N1 rN0N0N r 1 N3N3N N2N2N N1N0N0N
e) F 5 3 1x( y 2 r 1 1xyxyx z 2 r 4 1w r 1 x 1 z 2
f) F 5 x! y! z
g) F 5 3w rxyxyx rz 1 w rz 1y! x 2 4 r

3.6. Draw the circuit diagram that implements the Boolean functions in 
Problem 3.5 using only 2-input AND, 2-input OR, and NOT gates.

3.7. Design a circuit that inputs a 4-bit number. The circuit outputs a 1 if  the 
input number is any one of the following numbers: 2, 3, 10, 11, 12, and 15. 
Otherwise, it outputs a 0.

3.8. Design a circuit that inputs a 4-bit number. The circuit outputs a 1 if  the 
input number is greater than or equal to 5. Otherwise, it outputs a 0.

3.9. Design a circuit that inputs a 4-bit number. The circuit outputs a 1 if  the 
input number has an even number of zeros. Otherwise, it outputs a 0.

3.10. Construct the following circuit. The circuit has five input signals and one 
output signal. The five input lines are labeled W, W, W X, X, X Y, Y, Y Z, and E, and the 
output line is labeled F. F. F E is used to enable (turn on) or disable (turn off) E is used to enable (turn on) or disable (turn off) E
the circuit; thus, when E 5 0, the circuit is disabled, and F is always 0. F is always 0. F
When E 5 1, the circuit is enabled, and F is determined by the value of F is determined by the value of F
the four input signals, W, W, W X, X, X Y, and Y, and Y Z, where W is the most significant bit. W is the most significant bit. W
If  the value is odd, then F 5 1, otherwise F 5 0.

3.11. Draw the smallest circuit that inputs two 2-bit numbers. The circuit out-
puts a 2-bit number that represents the count of the number of even num-
bers in the inputs. The number 0 is taken as an even number. For example, 
if  the two input numbers are 0 and 3, then the circuit outputs the number 1 
in binary. If  the two input numbers are 0 and 2, then the circuit outputs the 
number 2 in binary. Show your work by deriving the truth table, the equa-
tion, and finally the circuit. Minimize the equations as much as possible.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-202



3.7 PRoBLeMs 109

3.12. Derive and draw the circuit that inputs two 2-bit unsigned numbers. 
The circuit outputs a 3-bit signed number that represents the difference 
between the two input numbers (i.e., it is the result of the first num-
ber minus the second number). Derive the truth table and equations in 
canonical form.

3.13. Use Boolean algebra to show that the following circuit is equivalent to the 
NOT gate.

3.14. Construct a 4-input NAND gate circuit using only 2-input NAND gates.

3.15. Implement the following circuit using as few NAND gates (with any number 
of inputs) as possible.

3.16. Draw the circuit diagram that implements the Boolean functions in 
Problem 3.5 using only 2-input NAND gates.

3.17. Draw the circuit diagram that implements the Boolean functions in 
Problem 3.5 using only 3-input NAND gates.

3.18. Draw the circuit diagram that implements the Boolean functions in 
Problem 3.5 using only 3-input NOR gates.

3.19. Convert the following circuit as is (i.e., do not reduce it first) to use only 
2-input NOR gates.

N TEEEN TEEENN TNN TTN T A BAA BA BA BBA B

OutOutOut
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3.20. Convert the following full adder circuit to use only eleven 2-input NAND

gates.

3.21. Derive a circuit for the 2-input XOR gate that uses only 2-input NAND gates.

3.22. Use K-maps to reduce the Boolean functions represented by the truth 
tables in Problem 3.3 to standard form.

3.23. Use K-maps to reduce the Boolean functions in Problem 3.4 to standard 
form.

3.24. Use K-maps to reduce the Boolean functions in Problem 3.5 to standard 
form.

3.25. List all of the PIs, EPIs, and all of the minimized standard form solutions 
for the following equation.

F 1v, w, x, y, z 2 5 P 12, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 18, 19, 20, 21, 22,
29, 30, 31 2

3.26. Use K-maps to reduce the following 4-variable Boolean functions F(F(F w, x, 
y, z) to standard form:
a) 1-minterms: m2, m3, m4, m5

Don’t-care minterms: m10, m11, m12, m13, m14, m15

b) 1-minterms: 1, 3, 4, 7, 9
Don’t-care minterms: 0, 2, 13, 14, 15

c) 1-minterms: 2, 3, 8, 9
Don’t-care minterms: 1, 5, 6, 7, 13, 15

3.27. Use K-maps to reduce the following 5-variable Boolean functions F(F(F v, w, 
x, y, z) to standard form:
a) 1-minterms: 1, 3, 4, 7, 9

Don’t-care minterms: 0, 2, 13, 14, 15
b) 1-minterms: 2, 4, 10, 15, 16, 21, 26, 29

Don’t-care minterms: 5, 7, 13, 18, 23, 24, 31

x

cin

cout

y

s
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3.28. Use the Quine-McCluskey method to simplify the function 
f 1f 1f w, x, y, z 2 5 S 10, 2, 5, 7, 13, 15 2 . List all the PIs, EPIs, cover lists, and 
solutions.

3.29. Use the Quine-McCluskey method to reduce the Boolean functions in 
Problem 3.4 to standard form.

3.30. Write the function that eliminates the static hazard(s) in the function 
F 5 w rz 1 xyxyx z r 1 wx ry.

3.31. Write the function that eliminates the static hazard(s) in the function 
F 5 y rz r 1 wz 1 w rx ry.

3.32. Write the complete structural Verilog code for the Boolean functions in 
Problem 3.4.

3.33. Write the complete dataflow Verilog code for the Boolean functions in 
Problem 3.4.

3.34. Write the complete structural VHDL code for the Boolean functions in 
Problem 3.4.

3.35. Write the complete dataflow VHDL code for the Boolean functions in 
Problem 3.4.

3.36. Write the behavioral Verilog code for converting an 8-bit binary number 
to a 3-digit decimal number to be displayed on three 7-segment LEDs. 
Another input signal, signednumber, is used to determine whether to inter-
pret the binary number as a signed or unsigned number. If  signednumber
is a 1, the binary number is interpreted as a signed number, otherwise it is 
interpreted as an unsigned number. An optional negative sign is displayed 
on a fourth 7-segment LED. This circuit is used as the output circuit for 
many designs in later chapters.

3.37. Write the behavioral VHDL code for Problem 3.36.
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As with many construction projects it is often easier to build digital circuits in a hier-
archical fashion. Initially, we use the most basic building blocks to build slightly larger 
building blocks, and then from these larger building blocks, we build yet larger building 
blocks, and so on. Similarly, in constructing large digital circuits, instead of starting 
with the basic logic gates as building blocks each time, we often start with larger build-
ing blocks. Many of these larger building blocks often are used over and over again 
in different digital circuits, and therefore, are considered as standard components for 
large digital circuits. In order to reduce the design time, these standard components 
are often made available in standard libraries so that they do not have to be redesigned 
each time that they are needed. For example, many digital circuits require the addition 
of two numbers, therefore, an adder circuit is considered a standard component and is 
available in most standard libraries.

Standard combinational components are combinational circuits that are available in 
standard libraries. These combinational components are used mainly in the construc-
tion of datapaths. Some standard combinational components that are typically used 
inside a microprocessor include the multiplexers, adders, subtractors, ALUs, compar-
ators, tri-state buffers, and multipliers. Although the next-state logic and output logic 
circuits in the control unit are combinational circuits, they are not considered as stan-
dard combinational components because they are designed uniquely for a particular 
control unit to solve a specific problem and usually are not reused in another design.

In this chapter, we will design some standard combinational components. These 
components will be used in later chapters to build the datapath in the microprocessor.

4.1 Signal Naming Conventions
So far in our discussion, we have often used the words “high” and “low” to mean 1 and 0, 
or “on” and “off,” respectively. However, this is somewhat arbitrary, and there is no reason 
why we can’t say a 0 is a high or a 1 is off. In fact, many standard off-the-shelf compo-
nents use what we call negative logic where 0 is for on and 1 is for off. Using negative logic 
usually is more difficult to understand because we are used to positive logic where 1 is for 
on and 0 is for off. In all of our discussions, we will use the more natural, positive logic.

Nevertheless, in order to prevent any confusion as to whether we are using positive 
logic or negative logic, we often use the words “assert,” “de-assert,” “active-high,” and 
“active-low.” Regardless of whether we are using positive or negative logic, active-high
always means that a 1 (i.e., a high) will cause the signal to be active or enabled and that 
a 0 will cause the signal to be inactive or disabled. For example, if  there is an active-high 
signal called add and we want to enable it (i.e., to make it do what it is intended for, add and we want to enable it (i.e., to make it do what it is intended for, add
which in this case is to add something), then we need to set this signal line to a 1. Setting 
this signal to a 0 will cause this signal to be disabled or inactive. An active-low signal, 
on the other hand, means that a 0 will cause the signal to be active or enabled, and 
that a 1 will cause the signal to be inactive or disabled. So if  the signal add is an active-add is an active-add
low signal, then we need to set it to a 0 to make it add something. When we name an 
active-low signal we typically append the prime 1 r 2  symbol after the name such as addddd r.
This way, just by looking at the name and without needing any further explanation, we 
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will know whether the signal is active high or low. For example, a signal named count
is active-high so a 1 will cause the circuit to count and a 0 will cause the circuit not 
to count. On the other hand, a signal named stoptopto r is active-low because of the prime 
symbol, and so a 0 will cause the circuit to stop and a 1 will cause the circuit to go.

We also use the word assert to mean to make a signal active or to enable the 
signal. To de-assert a signal is to disable the signal or to make it inactive. For exam-
ple, to assert the active-high add signal line means to set the add signal line means to set the add add signal to a 1. To add signal to a 1. To add
de-assert an active-low line also means to set the line to a 1—since a 0 will enable the 
line (active-low)—and we want to disable (de-assert) it.

4.2 Multiplexer
The multiplexer, or mux for short, allows the selection of one input signal among 
n signals, where n . 1 and is a power of two. Select lines connected to the multiplexer 
determine which input signal is selected and passed to the output of the multiplexer. In 
general, an n-to-1 multiplexer has n data input lines, m select lines where 2m 5 n, and one 
output line. For a 2-to-1 multiplexer, there are two data input lines, d0d0d  and d1, and one 
select line (since 21 5 2), s, to select between the two data input lines. When s 5 0, the 
input line d0d0d  is selected, and the data present on d0d0d  is passed to the output y. When s 5 1,
the input line d1 is selected and the data on d1 is passed to y. From this description of the 
2-to-1 mux and from what we have already learned from the previous chapter, we can eas-
ily construct the truth table, followed by the equation, and then the circuit for it as shown 
in Figures 4.1(a), (b), and (c), respectively. The logic symbol for the 2-to-1 mux is shown 
in Figure 4.1(d). When we use this or any other components in a higher-level schematic 
circuit diagram, we simply use the logic symbol instead of drawing the detail circuit for 
the component. This way, the details of the component are hidden at this higher level.

Often, we might need to use a larger multiplexer. Constructing a larger-sized mul-
tiplexer, such as the 8-to-1 multiplexer, can be done similarly. In addition to having the 
eight data input lines, d0d0d  to d7d7d , the 8-to-1 multiplexer has three 123 5 8 2  select lines, 
s0, s1, and s2. Depending on the value of the three select lines, one of the eight data 
input lines will be selected, and the data on that input line will be passed to the output. 
For example, if  the value of the select lines is 101 (which is decimal 5), then the data 
input line d5d5d  is selected, and the data that is present on d5d5d  will be passed to the output.

The truth table, circuit, and logic symbol for the 8-to-1 multiplexer are shown in 
Figure 4.2. The truth table is written in a slightly different format. Instead of including 
the d’s in the input columns and enumerating all 211 5 2048 rows (the eleven variables 
come from the eight d’s and the three s’s), the d’s are written in the entry under the out-
put column. For example, when the select line value is 101, the entry under the output 
column is d5d5d , which means that y takes on the value of the input line d5d5d .

To understand the circuit in Figure 4.2(b), notice that each AND gate acts as a switch 
and is turned on by one unique combination of the three select lines. When a particular 
AND gate is turned on, the data at the corresponding d input are passed through that d input are passed through that d AND

gate. The outputs of the remaining AND gates are all 0s. All of the outputs of the AND
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FIGURE 4.1 A 2-to-1 multiplexer: (a) truth table; (b) equation; (c) circuit; (d) logic 
symbol.

FIGURE 4.2 An 8-to-1 multiplexer: (a) truth table; (b) circuit; (c) logic symbol.

(a)

s2 s1 s0 y

0 0 0 d0d0d

0 0 1 d1

0 1 0 d2d2d

0 1 1 d3d3d

1 0 0 d4d4d

1 0 1 d5d5d

1 1 0 d6d6d

1 1 1 d7d7d

gates are ORed together to produce the final output. Since only one of the AND gates is 
turned on, therefore, only the value from that AND gate will be passed to the final y output.

Larger multiplexers also can be constructed from smaller multiplexers. For exam-
ple, an 8-to-1 multiplexer can be constructed using seven 2-to-1 multiplexers, as shown 
in Figure 4.3. The four top-level 2-to-1 multiplexers provide the eight data inputs and 

s d1d1d d0d0d y

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

(a)

d0d0d

s ys ys ys ys ys ys ys ys ys ys ys ys ys ys y

d1

(c)

y 5 srd1rd0d0d 1 srd1d0d0d 1 sd1d0d0d r 1 sd1d0d0d

5 srd0d0d 1d1r 1 d1 2 1 sd1 1d0d0d r 1 d0d0d 2
5 srd0d0d 1 sd1

(b)

d1 d0d0d
s y

(d)

d7d7d d6d6d d5d5d d4d4d d3 d2d2d
s2

s1

s0

y

d1 d0d0d

(b)

s2
s1

s0 y

d0d0dd1d2d2dd3d4d4dd5d5dd6d6dd7d7d

(c)
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all are switched by the same least significant select line s0. This top level selects one from 
each group of two data inputs. The middle level then groups the four outputs from the 
top level again into groups of two, and selects one from each group using the middle 
select line s1. Finally, the multiplexer at the bottom level uses the most significant select 
line s2 to select one of the two outputs from the middle-level multiplexers.

Verilog Code for a Multiplexer
Figure 4.4 shows the behavioral Verilog code for an 8-bit wide 4-to-1 multiplexer. There 
are two select lines S, and four data input lines each being 8 bits wide. The data output 
line Y is also 8 bits wide. Notice that the data output line Y is also 8 bits wide. Notice that the data output line Y Y is declared with the Y is declared with the Y reg
keyword, whereas the input lines are not. The always statement is executed whenever 
the value for any one of the signals inside the sensitivity list changes. Statements inside 

FIGURE 4.3 An 8-to-1 multiplexer implemented using seven 2-to-1 multiplexers.

01
s y

d0d0dd1d2d2dd3d4d4dd5d5dd6d6dd7d7d

s0

s1

s2

y

01
s y

01
s y

01
s y

01
s y

01
s y

01
s y

FIGURE 4.4 Behavioral Verilog code for an 8-bit wide 4-to-1 multiplexer.

// A 4-to-1 8-bit wide multiplexer
module Multiplexer (
 input [1:0] S,       // 2 select lines
 input [7:0] D0,      // 4 data inputs, each is 8 bits wide
 input [7:0] D1,
 input [7:0] D2,
 input [7:0] D3,
 output reg [7:0] Y   // 8-bit wide output
);
 always @ (S or D0 or D1 or D2 or D3) begin
  case (S)
  0: Y = D0;
  1: Y = D1;
  2: Y = D2;
  default:
    Y = D3;
  endcase
 end
endmodule
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the always block are executed sequentially. The case statement selects the value 
of the S signal and executes one of the four cases. If  none of the cases matches, then S signal and executes one of the four cases. If  none of the cases matches, then S
the default case is selected.

VHDL Code for a Multiplexer
The behavioral level VHDL code for an 8-bit wide 4-to-1 multiplexer is shown in 
Figure 4.5. The PROCESS block is executed whenever one of the signals inside the sensi-
tivity list changes value. Statements inside the PROCESS block are executed sequentially. 
The CASE statement is used to select between the four choices for S. If  S is equal to 00, S is equal to 00, S
then the value D0 is assigned to Y. If  Y. If  Y S does not match any one of the cases, 00, 01, S does not match any one of the cases, 00, 01, S
or 10, then the WHEN OTHERS clause will be selected.

FIGURE 4.5 Behavioral level VHDL code for an 8-bit wide 4-to-1 multiplexer.

-- A 4-to-1 8-bit wide multiplexer
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY Multiplexer IS PORT (
 S: IN STD_LOGIC_VECTOR(1 DOWNTO 0);       -- select lines
 D0: IN STD_LOGIC_VECTOR(7 DOWNTO 0);        -- data bus D0 input
 D1: IN STD_LOGIC_VECTOR(7 DOWNTO 0);        -- data bus D1 input
 D2: IN STD_LOGIC_VECTOR(7 DOWNTO 0);        -- data bus D2 input
 D3: IN STD_LOGIC_VECTOR(7 DOWNTO 0);        -- data bus D3 input
 Y: OUT STD_LOGIC_VECTOR(7 DOWNTO 0));     -- data bus output
END Multiplexer;

-- Behavioral level code
ARCHITECTURE Behavioral OF Multiplexer IS
BEGIN
 PROCESS (S,D0,D1,D2,D3)
 BEGIN
  CASE S IS
   WHEN "00" => Y <= D0;
   WHEN "01" => Y <= D1;
   WHEN "10" => Y <= D2;
   WHEN OTHERS => Y <= D3
  END CASE;
 END PROCESS;
END Behavioral;

4.3 Adder
An adder is for adding two n-bit binary numbers together to produce a sum.

4.3.1 Full Adder
To construct an adder for adding two n-bit binary numbers, X 5 xn21 c x0 and 
Y 5 yn21 c y0, we need to first consider the addition of a single bit slice, xi with yi,
together with the carry-in bit, ci, from the previous bit position on the right. The result 
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The result of the addition is 1100. The addition is performed just like that for dec-
imal numbers, except that there is a carry whenever the sum is either a 2 or a 3 in deci-
mal, since 2 is 10 in binary and 3 is 11. The most significant bit in the 10 or the 11 is the 
carry-out bit. Looking at the bit slice that is highlighted in blue, where x1 5 0, y1 5 1,
and c1 5 1, the addition for this bit slice is x1 1 y1 1 c1 5 0 1 1 1 1 5 10. Therefore, 
the sum bit is s1 5 0, and the carry-out bit is c2 5 1.

The circuit for the addition of  a single bit slice is known as a full adder (FA), 
and its truth table is shown in Figure 4.6(a). For each row in the truth table, 
the combined two output bits ci11si is obtained by adding the three input bits, 
ci11si 5 xi 1 yi 1 ci. The derivation and simplification of  the equations for si and 
ci11 are shown in Figure 4.6(b). From these two equations, we get the circuit for 
the full adder shown in Figure 4.6(c), and the logic symbol shown in Figure 4.6(d). 
The dataflow Verilog and VHDL code for the full adder is shown in Figures 4.7 
and 4.8, respectively.

4.3.2 Ripple-Carry Adder
The full adder is for adding two operands that are only one bit wide. To add two oper-
ands that are, say, four bits wide, we connect four full adders together in series through 
their carry-in and carry-out signals. The resulting circuit, shown in Figure 4.9, is called 
a ripple-carry adder for adding two 4-bit operands.

The input for one carry-in line is connected to the carry-out line from the previ-
ous FA. Since an FA adds the three bits, xi, yi, and ci, together, we need to set the first 
carry-in bit, c0, to 0 in order to perform the addition correctly, otherwise, the sum will 
always be one more than the correct result. Moreover, the output signal cout serves as 
an overflow signal, and is a 1 whenever there is an overflow in the addition.

Verilog Code for a 4-bit Adder
The behavioral Verilog code for the 4-bit adder is shown in Figure 4.10. The syntax [3:0] 
in the signal declaration denotes that the signals are 4 bits wide. Notice on the left side 
of the assign statement, Cout and Sum are concatenated together using the syntax 
{Cout,Sum}, resulting in a 5-bit output.

from this addition is a sum bit, si, and a carry-out bit, ci11, for the next bit position. 
In other words, si 5 xi 1 yi 1 ci, and ci11 5 1 if  there is a carry from the addition to 
the next bit on the left, otherwise, ci11 5 0. Note that the 1 operator in this equation 
is for addition and not the logical OR operation.

For example, consider the following addition of  the two 4-bit binary numbers, 
X 5 1001 and Y 5 0011.

1 0 0 1

1 1001

0011

11

c1c2
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VHDL Code for a 4-bit Adder
The behavioral VHDL code for the 4-bit adder is shown in Figure 4.11. Unlike Verilog, 
VHDL does not provide a concatenation of the result, hence, we need first to zero extend 
the two input operands and then perform a 5-bit addition to store the result in a 5-bit 
vector Temp. The & symbol is used to concatenate a 0 bit to the 4-bit vector A or B, 

FIGURE 4.7 Dataflow Verilog code for a 1-bit full adder.

module fa (
 input ci, xi, yi,
 output ci1, si
);
 // using the equations derived for the FA
 // bitwise &=AND; |=OR; ^=XOR
assign ci1 = (xi & yi) | (ci & (xi ^ yi)); 
 assign si = xi ^ yi ^ ci;
endmodule

FIGURE 4.6 Full adder: (a) truth table; (b) equations for si and si and si cicic
11; (c) circuit;  

(d) logic symbol.

xi yi

ci

ci+1

si

xi yi ci ci11 si

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

(a)

si 5 xi ryi rci 1 xi ryici r 1 xiyiyi i rci r 1 xiyiyi ici

5 1xi ryi 1 xiyiyi i r 2ci r 1 1xi ryi r 1 xiyiyi i 2ci

5 1xi ! yi 2ci r 1 1xi ! yi 2 rci

5 xi ! yi ! ci

ci11 5 xi ryici 1 xiyiyi i rci 1 xiyiyi ici r 1 xiyiyi ici

5 xiyiyi i 1ci r 1 ci 2 1 ci 1xi ryi 1 xiyiyi i r 2
5 xiyiyi i 1 ci 1xi ! yi 2

(b)

(c)

FA

xi yi

cici+1

si

(d)
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thus resulting in a 5-bit vector for the addition. We then extract the most significant 
bit from Temp for Cout, and the last four bits from Temp for Sum.

4.3.3 Carry-Lookahead Adder
The ripple-carry adder is slow because the carry-in signal for each FA is dependent on 
the carry-out signal from the previous FA. So before FAi can output valid data, it must i can output valid data, it must i
wait for FAi21 to have valid data. Hence, the time needed for the adder to output valid 
data is dependent on the number of bits in the adder. In the carry-lookahead adder, each 
bit slice eliminates this dependency on the previous carry-out signal and instead uses the 
values of the two input operands, X and X and X Y, directly to deduce the needed signals. This is Y, directly to deduce the needed signals. This is Y

FIGURE 4.9 Ripple-carry adder.

x1 y1

c1

s1

FA1

x2 y2

c2

s2

FA2

x3 y3

c3

s3

FA3

cout

x0 y0

c0 = 0 = 0 0

s0

FA0

FIGURE 4.10 Behavioral Verilog code for a 4-bit adder.

module Adder4 (
 input [3:0] A, B,
 output [3:0] Sum,
 output Cout
 );
 assign {Cout,Sum} = A + B;
endmodule

FIGURE 4.8 Dataflow VHDL code for a 1-bit full adder.

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
ENTITY fa IS PORT (
 ci, xi, yi: IN STD_LOGIC;
 ci1, si: OUT STD_LOGIC);
END fa;

ARCHITECTURE Dataflow OF fa IS
BEGIN
 ci1 <= (xi AND yi) OR (ci AND (xi XOR yi));
 si <= xi XOR yi XOR ci;
END Dataflow;
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possible from the following observations regarding the carry-out signal. For each FAi,
the carry-out signal, ci11, is set to a 1 if either one of the following two conditions is true:

xi 5 1 and yi 5 1

or

1xi 5 1 or yi 5 1 2  and ci 5 1

In other words,

ci11 5 xiyiyi i 1 1xi 1 yi 2ci (4.1)

At first glance, this carry-out equation looks different from the carry-out equation

ci11 5 xiyiyi i 1 ci 1xi ! yi 2

deduced in Figure 4.6(b) for the full adder. However, they are functionally equiv-
alent. (See Problem 4.13.)

If  we let

gi 5 xiyiyi i

and

pi 5 xi 1 yi

then Equation 4.1 can be rewritten as

ci11 5 gi 1 pici (4.2)

FIGURE 4.11 Behavioral VHDL code for a 4-bit adder.

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY Adder4 IS PORT (
 A, B: IN STD_LOGIC_VECTOR(3 DOWNTO 0);
 Sum: OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
 Cout: OUT STD_LOGIC);
END Adder4;

ARCHITECTURE Behavioral OF Adder4 IS
 SIGNAL Temp : STD_LOGIC_VECTOR (4 DOWNTO 0);

BEGIN
 Temp <= ('0' & A) + ('0' & B);
 Cout <= Temp(4);
 Sum <= Temp(3 DOWNTO 0);
END Behavioral;
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Using Equation 4.2 for ci11, we can recursively expand it to get the carry-out 
equations for any bit slice, ci, that is dependent only on the two input operands, X and X and X
Y, and the initial carry-in bit, Y, and the initial carry-in bit, Y c0. Using this technique, we get the following carry-out 
equations for the first four bit slices:

c1 5 g0 1 p0c0 (4.3)

c2 5 g1 1 p1c1

5 g1 1 p1 1g0 1 p0c0 2
5 g1 1 p1g0 1 p1p1p1 0c0 (4.4)

c3 5 g2 1 p2c2

5 g2 1 p2 1g1 1 p1g0 1 p1p1p1 0c0 2
5 g2 1 p2g1 1 p2p1g0 1 p2p1p0c0 (4.5)

c4 5 g3 1 p3c3

5 g3 1 p3 1g2 1 p2g1 1 p2p1g0 1 p2p1p0c0 2
5 g3 1 p3g2 1 p3p3p3 2g1 1 p3p3p3 2p1g0 1 p3p3p3 2p1p0c0 (4.6)

Using Equations 4.3 to 4.6, we obtain the circuit for generating the carry-lookahead 
signals for c1 to c4, as shown in Figure 4.12(a). Note that each equation is translated to 
a three-level combinational logic—one level for generating the gi and pi, and two levels 

FIGURE 4.12 (a) Circuit for generating the carry-lookahead signals, c1c1c  to c4c4c ; (b) one 
bit slice of the carry-lookahead adder.
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(for the sum-of-products format) for generating the ci expression. This carry-lookahead i expression. This carry-lookahead i
circuit can be reduced even further because we want c0 to be a 0 when performing 
additions, and this 0 will cancel the rightmost product term in each equation. (See 
Problem 4.14.)

The FA for the carry-lookahead adder also can be made simpler, since it is no 
longer required to generate the carry-out signal for the next bit slice. In other words, the 
carry-in signal for the FA now comes from the new carry-lookahead circuit rather than 
from the carry-out signal of the previous bit slice. Thus, this FA only needs to generate 
the sumi signal. Figure 4.12(b) shows one bit slice of the carry-lookahead adder. For 
an n-bit carry-lookahead adder, we use n bit slices. These n bit slices are not connected 
in series as with the ripple-carry adder; otherwise, it defeats the purpose of having the 
more complicated carry-out circuit.

4.4 Subtractor
We can construct a 1-bit subtractor circuit similar to the method used for constructing 
the full adder. However, instead of the sum bit, si, for the addition, we have a difference 
bit, didid , for the subtraction, and instead of having carry-in and carry-out signals, we have 
borrow-in 1bi 2  and borrow-out 1bi11 2  signals. So, when we subtract the ithithi  bit of the 
two operands xi and yi, we get the difference of didid 5 xi 2 yi. If, however, the previous 
bit on the right has to borrow from this ithithi  bit, then input bi will be set to a 1, and the 
equation for the difference will be didid 5 xi 2 bi 2 yi. On the other hand, if  the ithithi  bit has 
to borrow from the next bit on the left for the subtraction, then the output bi11 will be 
set to a 1. The value borrowed is a 2, and so the resulting equation for the difference 
will be didid 5 xi 2 bi 1 2bi11 2 yi. Note that the symbols 1 and 2 used in this equation 
are for addition and subtraction, and not for logical operations. The term 2bi11 is “2 
multiply by bi11.” Since bi11 is a 1 when we have to borrow and we borrow a 2 each 
time, the equation just adds a 2 when there is a borrow. When there is no borrow, bi11
is 0, and so the term 2bi11 cancels out to 0.

For example, consider the following subtraction of the two 4-bit binary numbers, 
X 5 0100 and Y 5 0011:

0 1 0 0

1 1002

1000

1 1

bibi+1

1 11 11 1

Consider the bit position that is highlighted in blue. Since the subtraction for 
the previous bit on the right has to borrow, therefore bi is a 1. Moreover, bi11 is also 
a 1 because the current bit also has to borrow from the next bit on the left. When it 
borrows, it gets a 2. Therefore, didid 5 xi 2 bi 1 2bi11 2 yi 5 0 2 1 1 2 11 2 2 1 5 0.
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The truth table for the 1-bit subtractor is shown in Figure 4.13(a), from which the 
equations for didid  and i and i bi11, as shown in Figure 4.13(b), are derived. From these two equa-
tions, we get the circuit for the subtractor, as shown in Figure 4.13(c). Figure 4.13(d) 
shows the logic symbol for the subtractor.

Building a subtractor circuit for subtracting an n-bit operand can be done by 
daisy-chaining n 1-bit subtractor circuits together, similar to the ripple-carry adder 

FIGURE 4.13 1-bit subtractor: (a) truth table; (b) equations for di and i and i bi 11; (c) circuit; (d) logic 
symbol.

xi yi bi bi11 didid

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 1 0

1 0 0 0 1

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1

(a) (b)
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5 1xi ryi 1 xiyiyi i r 2bi r 1 1xi ryi r 1 xiyiyi i 2bi

5 1xi ! yi 2bi r 1 1xi ! yi 2 rbi

5 xi ! yi ! bi

bi11 5 xi ryi rbi 1 xi ryibi r 1 xi ryibi 1 xiyiyi ibi

5 xi rbi 1yi r 1 yi 2 1 xi ryi 1bi r 1 bi 2 1 yibi 1xi r 1 xi 2
5 xi rbi 1 xi ryi 1 yibi
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circuit shown in Figure 4.9. Like the adder, the initial borrow bit, b0, should be set to 
0. The input operands are interpreted as unsigned numbers, and the last overflow bit, 
bn, will be asserted when the result of the subtraction is negative. However, there is a 
much better subtractor circuit, as shown in the next section.

4.5 Adder-Subtractor Combination
It turns out that, instead of having to build a separate adder and subtractor units, we 
can modify the ripple-carry adder slightly to perform both operations. The modified 
circuit performs subtraction by adding the negated value of the second operand. In 
other words, instead of  performing the subtraction A 2 B, the addition operation 
A 1 12B 2  is performed.

Recall that in two’s complement representation, to negate a value involves inverting 
all the 0s to 1 and all the 1s to 0, and then adding a 1. Hence, we need to modify the 
adder circuit so that we selectively can do either one of two things: (1) not flip the bits 
and not add an extra 1 for the addition operation, or (2) flip the bits of the B operand B operand B
and then add an extra 1 for the subtraction operation.

For this adder-subtractor combination circuit (in addition to the two input oper-
ands A and B), a select signal, s, is needed to select which operation to perform. The 
assignment of  the two operations to the select signal s is shown in Figure 4.14(a). 
When s 5 0, we want to perform an addition, and when s 5 1, we want to perform a 
subtraction. When s 5 0, B does not need to be modified, and like the adder circuit B does not need to be modified, and like the adder circuit B
from Section 4.3.2, the initial carry-in signal c0 needs to be set to a 0. On the other 
hand, when s 5 1, we need to invert the bits in B and add a 1. The addition of a 1 is B and add a 1. The addition of a 1 is B
accomplished by setting the initial carry-in signal c0 to a 1. Two circuits are needed 
for handling the above situations: one for inverting the bits in B and one for setting B and one for setting B c0.
Both of these circuits are dependent on s.

The truth table for these two circuits is shown in Figure 4.14(b). In this truth table, 
the input variable bi is the ithithi  bit of the B operand. The output variable B operand. The output variable B yi is the output 
from the circuit that either inverts or does not invert the bits in B. So when s is a 0, yi is 
the same as bi, but when s is a 1, yi is the inverse of bi. Furthermore, c0 5 s. From this 
truth table, we can conclude that the circuit for yi is just a 2-input XOR gate, while the 
circuit for c0 is just a direct connection from s. Putting everything together, we obtain 
the adder-subtractor combination circuit (for four bits), as shown in Figure 4.14(c). 
The logic symbol for the circuit is shown in Figure 4.14(d).

Notice that the adder-subtractor circuit in Figure 4.14(c) has two different over-
flow signals, Unsigned_Overflow and Signed_Overflow. This is because the circuit can 
deal with both signed and unsigned numbers. To determine whether there is an overflow 
for unsigned numbers, the Unsigned_Overflow signal is obtained by XORing CoCoC ut with t with t s
because it is equal to CoCoC ut for additions but it is the inverse of CoCoC ut for subtractions. 
However, to determine whether there is an overflow for signed numbers, the Signed_
Overflow signal is obtained by XORing CoCoC ut with t with t c3. The reason for this is explained below.

For example, the valid range for a 4-bit signed number goes from signed number goes from signed 223 to 23 2 1
(i.e., from 28 to 7). Adding the two signed numbers, 4 1 5 5 9 should result in a 
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FIGURE 4.14 Adder-subtractor combination: (a) operation table; (b) truth table for yiyiy  and i and i c0c0c ; 
(c) circuit; (d) logic symbol.

signed number overflow, since 9 is outside the range. However, the valid range for a 
4-bit unsigned number goes from 0 to unsigned number goes from 0 to unsigned 24 2 1 (i.e., 0 to 15). If  we treat the two numbers 
4 and 5 as unsigned numbers, then the result of adding these two unsigned numbers, 9, 
is inside the range. So when adding the two numbers 4 and 5, the Unsigned_Overflow
signal should be de-asserted, while the Signed_Overflow signal should be asserted. 
Performing the addition of 4 1 5 in binary as shown next:

0 1 0
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0

0
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we get 0100 1 0101 5 1001, which produces a 0 for the Unsigned_Overflow signal. 
However, the addition produces a 1 for c3, and XORing these two values, 0 for Unsigned_
Overflow and 1 for c3, results in a 1 for the Signed_Overflow signal.

For another example, adding the two 4-bit signed numbers, 24 1 123 2 5 27
should not result in a signed overflow. Performing the arithmetic in binary, 24 5 1100
and 23 5 1101, as shown next:

1 1 0

1111

101

1

0

0

1 0

1 1

c3

Unsigned
Over�ow

1 XOR 1 5 0
Signed
Over�ow

we get 1100 1 1101 5 11001, which produces a 1 for both Unsigned_Overflow and c3.
XORing these two values together gives a 0 for the Signed_Overflow signal. On the other 
hand, if  we treat the two binary numbers, 1100 and 1101, as unsigned numbers, then 
we are adding 12 1 13 5 25. Since 25 is outside the unsigned number range, and so 
the Unsigned_Overflow signal is correct with a 1.

HDL Code for an Adder-Subtractor Combination
The behavioral Verilog and behavioral VHDL code for the 4-bit adder-subtractor 
combination circuit are shown in Figures 4.15 and 4.16, respectively. The basic 
structure of  the code is similar to that of  the adder shown in Figure 4.11, except 
that there is the if-else statement to check whether to perform the addition or 
the subtraction.

The Unsigned_Overflow bit is obtained by performing the addition or sub-
traction operation using n 1 1 bits. The two input operands A and B are first 
zero extended before the operation is performed. The result of  the operation 
is stored in the n 1 1 bit vector, TempF. The most significant bit of  this vector, 
TempF(TempF(TempF n), is already the correct Unsigned_Overflow signal for both additions and 
subtractions. Notice here that we do not need to XOR this overflow bit with the 
select signal as in the case for the circuit shown in Figure 4.14 because the code 
is actually performing a subtraction and not an addition with a negative number. 
(See Problem 4.8.)

In the circuit shown in Figure 4.14, the Signed_Overflow bit is obtained by XORing 
cout and c3. However, both Verilog and VHDL do not provide a construct that can 
easily extract the carry bit c3 that is in the middle of a bit vector, so we use a different 
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FIGURE 4.15 Behavioral Verilog code for a 4-bit adder-subtractor combination 
component.

module AddSub (
 input S, // select 0=add, 1=subtract
 input [3:0] A, B,
 output reg [3:0] F,
 output reg Unsigned_Overflow,
 output reg Signed_Overflow
);
 reg [4:0] TempF;

 always @ (S or A or B) begin
  if (S == 0) begin // addition
   // zero extend A and B before add

TempF = {1'b0,A} + {1'b0,B}; 
   F = TempF[3:0];
   Unsigned_Overflow = TempF[4];
    // Signed overflow = MSB of A'B'F + ABF'
   Signed_Overflow = ((!A[3]) & (!B[3]) & (TempF[3])) + 
      ((A[3]) & (B[3]) & (!TempF[3]));
  end else begin  // subtract
   // zero extend A and B before subtract

TempF = {1'b0,A} - {1'b0,B}; 
   F = TempF[3:0];
   Unsigned_Overflow = TempF[4];
    // Signed overflow = MSB of AB'F' + A'BF
   Signed_Overflow = ((A[3]) & (!B[3]) & (!TempF[3])) + 
      ((!A[3]) & (B[3]) & (TempF[3]));
  end
 end
endmodule

method. It turns out that for addition, the signed overflow can occur only if  A rn B rn FnFnF
or AnBnFnFnF r is a 1 where An, Bn, and FnFnF  are the most significant bit of  the two input 
operands A and B, and F is the result of the addition. Thus, the Boolean equation for F is the result of the addition. Thus, the Boolean equation for F
the Signed_Overflow bit for addition is

Signed_Overflow 5 1A rn # B rn # FnFnF 2 1 1An
# Bn

# FnFnF r 2

Similarly, for subtraction, the signed overflow can only occur if  AnBnrFnFnF r
or AnrBnFnFnF  is a 1. Thus, the Boolean equation for the Signed_Overflow bit for 
subtraction is

Signed_Overflow 5 1An
# B rn # F rnFnF 2 1 1A rn # Bn

# FnFnF 2
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4.6 Arithmetic Logic Unit
The arithmetic logic unit (ALU) is one of  the main components inside a micropro-
cessor. It is responsible for performing arithmetic and logic operations, such as 
addition, subtraction, logical AND, and logical OR. The ALU, however, is not used to 
perform multiplications or divisions because these operations are much more com-
plex. It turns out that, in constructing the circuit for the ALU, we can use the same 
idea as for constructing the adder-subtractor combination circuit, as discussed in 
the previous section. Again, we will use the ripple-carry adder as the building block 
and then insert some combinational logic circuitry in front of  the two input oper-
ands to each full adder. This way, the primary inputs will be modified accordingly, 

FIGURE 4.16 Behavioral VHDL code for a 4-bit adder-subtractor combination 
component.

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.STD_LOGIC_UNSIGNED.ALL; -- need this to do + and -

ENTITY AddSub IS
PORT(S: IN STD_LOGIC; -- select subtract signal
 A, B: IN STD_LOGIC_VECTOR(3 DOWNTO 0);
 F: OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
 Unsigned_Overflow: OUT STD_LOGIC;
 Signed_Overflow: OUT STD_LOGIC);
END AddSub;

ARCHITECTURE Behavioral OF AddSub IS
 SIGNAL TempF : STD_LOGIC_VECTOR(4 DOWNTO 0);
BEGIN
 PROCESS(S, A, B)
 BEGIN
  IF (S = '0') THEN   -- addition
   TempF <= ('0' & A) + ('0' & B);
   F <= TempF(3 DOWNTO 0);
   Unsigned_Overflow <= TempF(4);
    -- Signed overflow = most significant bit of A'B'F + ABF'

Signed_Overflow <= ((NOT A(3)) AND (NOT B(3)) AND 
(TempF(3))) OR ((A(3)) AND (B(3)) AND (NOT TempF(3)));

  ELSE     -- subtraction
   TempF <= ('0' & A) - ('0' & B);
   F <= TempF(3 DOWNTO 0);
   Unsigned_Overflow <= TempF(4);
    -- Signed overflow = most significant bit of AB'F' + A'BF
   Signed_Overflow <= ((A(3)) AND (NOT B(3)) AND 

(NOT TempF(3))) OR ((NOT A(3)) AND (B(3)) AND 
(TempF(3)));
  END IF;
 END PROCESS;
END Behavioral;
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depending on the operations being performed before being passed to the full adder. 
The general, overall circuit for a 4-bit ALU is shown in Figure 4.17(a) and its logic 
symbol in Figure 4.17(b).

As we can see in Figure 4.17(a), the two combinational circuits above each FA are 
labeled LE and AE. The logic extender (LE) is for manipulating all logical operations; 
whereas, the arithmetic extender (AE) is for manipulating all arithmetic operations. 
The LE performs the actual logical operations on the two primary operands, ai and bi,
before passing the result to the first operand, xi, of the FA. On the other hand, the AE 

FIGURE 4.17 4-bit ALU: (a) circuit; (b) logic symbol.
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modifies only the second operand, bi, and passes it to the second operand, yi, of  the 
FA where the actual arithmetic operation is performed.

We saw from the adder-subtractor circuit that, to perform additions and subtrac-
tions, we need to modify only yi (the second operand to the FA) so that all operations 
can be done with additions. Thus, the AE takes only the second operand of the primary 
input, bi, as its input and modifies the value depending on the operation being per-
formed. Its output is yi, and it is connected to the second operand input of the FA. As 
in the adder-subtractor circuit, the addition is performed in the FA. When arithmetic 
operations are being performed, the LE must pass the first operand unchanged from 
the primary input ai to the output xi for the FA.

Unlike the AE (where it modifies only the B operand), the LE performs the actual B operand), the LE performs the actual B
logical operations. Thus, for example, if  we want to perform the operation A OR B, the 
LE for each bit slice will take the corresponding bits, ai and bi, and OR them together. 
Hence, one bit from both operands, ai and bi, are inputs to the LE. The output of the 
LE is passed to the first operand, xi, of the FA. Since this value is already the result 
of the logical operation, we do not want the FA to modify it but to simply pass it on 
to the primary output, fifif . This is accomplished by setting both the second operand, yi,
of the FA and c0 to 0, since adding a 0 will not change the resulting value.

The combinational circuit labeled CE (for carry extender) is for modifying the pri-
mary carry-in signal, c0, so that arithmetic operations are performed correctly. Logical 
operations do not use the carry signal, so c0 is set to 0 for all logical operations.

In the circuit shown in Figure 4.17, three select lines, s2, s1, and s0, are used to 
select the operations of  the ALU. With these three select lines, the ALU circuit can 
implement up to eight different operations. Suppose that the operations that we want 
to implement in our ALU are as defined in Figure 4.18(a). The xi column shows the 
values that the LE must generate for the different operations. The yi column shows 
the values that the AE must generate. The c0 column shows the carry signals that the 
CE must generate.

For example, for the pass-through operation, the value of  ai is passed through 
without any modifications to xi. For the AND operation, xi gets the result of ai AND bi.
As mentioned before, both yi and i and i c0 are set to 0 for all of the logical operations, because 
we do not want the FA to change the results. The FA is used only to pass the results 
from the LE straight through to the output, F. For the subtraction operation, instead F. For the subtraction operation, instead F
of subtracting B, we want to add 2B. Changing B to B to B 2B in two’s complement format B in two’s complement format B
requires flipping the bits of B and then adding a 1. Thus, B and then adding a 1. Thus, B yi gets the inverse of bi, and 
the 1 is added through the carry-in, c0. To increment A, we set yi to all 0s, and add the 
1 through the carry-in, c0. To decrement A, we add a 21 instead. Negative one in two’s 
complement format is a bit string with all 1s. Hence, we set yi to all 1s and the carry-in 
c0 to 0. For all the arithmetic operations, we need the first operand, A, unchanged for 
the FA. Thus, xi gets the value of ai for all arithmetic operations.

Figures 4.18(b), (c), and (d) show the truth tables for the LE, AE, and CE, respec-
tively. The LE circuit is derived from the xi column of Figure 4.18(b); the AE circuit is 
derived from the yi column of Figure 4.18(c); and the CE circuit is derived from the c0
column of Figure 4.18(d). Notice that xi is dependent on five variables, i is dependent on five variables, i s2, s1, s0, ai, and 
bi; whereas, yi is dependent on only four variables, s2, s1, s0, and bi; and c0 is dependent 
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on only the three select lines, s2, s1, and s0. The K-maps, equations, and schematics for 
these three circuits are shown in Figure 4.19.

The Unsigned_Overflow signal must be XORed correctly with the select lines sim-
ilar to the adder-subtractor combination circuit. In the operational table given in 
Figure 4.18(a), there are three select lines, s2, s1, and s0. We see that the select lines for 
the addition and subtraction operations differ only in the s0 bit. Thus the Unsigned_
Overflow signal is c4 XOR s0. This, of  course, will be different if  you assign different 
operations to the select lines.

The Signed_Overflow signal is obtained exactly like in the adder-subtractor com-
bination where the CoCoC ut bit is XORed with the c3 bit.

FIGURE 4.18 ALU operations: (a) function table; (b) LE truth table; (c) AE truth table; 
(d) CE truth table.

s2 s1 s0 Operation Name Operation xi (LE) yi (AE)i (AE)i c0 (CE)

0 0 0 Pass Pass A to output ai 0 0

0 0 1 AND A AND B ai AND bi 0 0

0 1 0 OR A OR B ai OR bi 0 0

0 1 1 NOT A r air 0 0

1 0 0 Addition A 1 B ai bi 0

1 0 1 Subtraction A 2 B ai bi r 1

1 1 0 Increment A 1 1 ai 0 1

1 1 1 Decrement A 2 1 ai 1 0

(a)

s2 s1 s0 xi

0 0 0 ai

0 0 1 ai bi

0 1 0 ai 1 bi

0 1 1 ai r
1 3 3 ai

(b)

s2 s1 s0 bi yi

0 3 3 3 0
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Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-202



4.6 ARItHMetIC LoGIC UnIt 133

FIGURE 4.19 K-maps, equations, and schematics for: (a) LE; (b) AE; and (c) CE.
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Verilog Code for an ALU
We will write two versions of  the Verilog code for the ALU: the first version at the 
behavioral level and the second version at the dataflow and structural level. The behav-
ioral Verilog code for the ALU is shown in Figure 4.20. This code does not generate 
the overflow signal, so it is very straightforward.

Figure 4.21 lists the second version Verilog code for the ALU. Here, the AE, 
LE, and CE are defined in three separate modules using the dataflow level style. 

FIGURE 4.20 Behavioral Verilog code for a 4-bit ALU.

module alu (
 input [2:0] S,
 input [n-1:0] A, B,
 output reg [n-1:0] F
);
 parameter n = 4;

 always @ (S or A or B) begin
  case (S)
  0: F = A;
  1: F = A & B;
  2: F = A | B;
  3: F = ~A;    // bitwise NOT
  4: F = A + B;
  5: F = A - B;
  6: F = A + 1;
  7: F = A - 1;
  endcase
 end
endmodule

module LE (
 input [2:0] s,
 input ai, bi,
 output xi
);
 // using the equation derived for the LE
 assign xi = (s[2] & ai) | (~s[0] & ai) | (~s[1] & ai & bi) | 
    (~s[2] & s[1] & ~ai & (bi | s[0]));
endmodule

module AE (
 input [2:0] s,
 input bi,
 output yi
);
 // using the equation derived for the AE
 assign yi = (s[2] & s[0] & (s[1] | ~bi)) | (s[2] & ~s[1]  
    & ~s[0] & bi);
endmodule

FIGURE 4.21 Dataflow and structural Verilog code for a 4-bit ALU.  
(continued on next page)
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module CE (
 input [2:0] s,
 output c0
);
 // using the equation derived for the CE
 assign c0 = (s[2] & (s[1] ^ s[0]));
endmodule

module FA (
 input ci, xi, yi,
 output ci1, fi
);
 // using the equations derived for the FA
 // bitwise &=AND; |=OR; ^=XOR
 assign ci1 = (xi & yi) | (ci & (xi ^ yi)); 
 assign fi = xi ^ yi ^ ci;
endmodule

module bitslice (
 input [2:0] s,
 input ai, bi,
 input ci,
 output ci1, fi
);
 wire xi, yi;
 // each bit slice consists of the LE, AE and FA
 LE U2(s, ai, bi, xi);
 AE U1(s, bi, yi);
 FA U0(ci, xi, yi, ci1, fi);
endmodule

module alu (
 input [2:0] S,
 input [n-1:0] A, B,
 output [n-1:0] F,
 output Unsigned_Overflow, Signed_Overflow
);
 parameter n = 4;

 wire [n:0] C;
 // only correct for this one
 assign Unsigned_Overflow = C[4] ^ S[0]; 
 assign Signed_Overflow = C[4] ^ C[3];

 // top level: connect the four bit slices and the CE together
 bitslice U3(S, A[3], B[3], C[3], C[4], F[3]);
 bitslice U2(S, A[2], B[2], C[2], C[3], F[2]);
 bitslice U1(S, A[1], B[1], C[1], C[2], F[1]);
 bitslice U0(S, A[0], B[0], C[0], C[1], F[0]);
 CE U4(S, C[0]);
endmodule

FIGURE 4.21 Dataflow and structural Verilog code for a 4-bit ALU. 
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The equations derived earlier for these three modules are used in the respective assign
statements. The structural level is used for each bit slice to connect the AE, LE, and FA 
together. Finally, four bit slices and the CE are connected together using the structural 
level. The Unsigned_Overflow signal is assigned the value of C[4] XOR S[0]. This is only 
correct for this given set of operations for the ALU as shown in Figure 4.18(a) because 
the add and subtract operations differ only by the S[0] bit.

VHDL Code for an ALU
The behavioral VHDL code for the ALU is shown in Figure 4.22, and a sample 
simulation trace for all the operations using the two inputs 5 and 3 is shown in 
Figure 4.23.

FIGURE 4.22 Behavioral VHDL code for a 4-bit ALU.

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.STD_LOGIC_UNSIGNED.ALL; -- needed for doing + and -

ENTITY alu IS PORT (
 S: IN STD_LOGIC_VECTOR(2 DOWNTO 0); -- select for operations
 A, B: IN STD_LOGIC_VECTOR(3 DOWNTO 0); -- input operands
 F: OUT STD_LOGIC_VECTOR(3 DOWNTO 0)); -- output
END alu;

ARCHITECTURE Behavioral OF alu IS
BEGIN
 PROCESS(S, A, B)
 BEGIN
   CASE S IS
   WHEN "000" =>  -- pass A through
    F <= A;
   WHEN "001" =>  -- AND
    F <= A AND B;
   WHEN "010" =>  -- OR
    F <= A OR B;
   WHEN "011" =>  -- NOT A
    F <= NOT A;
   WHEN "100" =>  -- add
    F <= A + B;
   WHEN "101" =>  -- subtract
    F <= A - B;
   WHEN "110" =>  -- increment
    F <= A + 1;
   WHEN OTHERS => -- decrement
    F <= A - 1;
   END CASE;
 END PROCESS;
END Behavioral;
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4.7 Decoder
A decoder, also known as a demultiplexer, asserts one out of n output lines, depending 
on the value of an m-bit binary input data. In general, an m-to-n decoder has m input 
lines, Am21, c, A0, and n output lines, YnYnY 21, c, Y0Y0Y , where n 5 2m. In addition, 
it has an enable line, E, for enabling the decoder. When the decoder is disabled with 
E set to 0, all of the output lines are de-asserted. When the decoder is enabled, then E set to 0, all of the output lines are de-asserted. When the decoder is enabled, then E
the output line whose index is equal to the value of the input binary data is asserted. 
For example, for a 3-to-8 decoder, if  the input address is 101, then the output line Y5Y5Y
is asserted (set to 1 for active-high), while the rest of the output lines are de-asserted 
(set to 0 for active-high).

A decoder is used in a system having multiple components, and we want only one 
component to be selected or enabled at any one time. For example, in a large memory 
system with multiple memory chips, only one memory chip is enabled at a time. One 
output line from the decoder is connected to the enable input on each memory chip. 
Thus, an address presented to the decoder will enable that corresponding memory chip. 
The truth table, circuit, and logic symbol for a 3-to-8 decoder are shown in Figure 4.24.

FIGURE 4.23 Sample simulation trace with the two input operands, 5 and 3, for all of the eight 
operations.

AND OR NOT A Add Subtract Increment DecrementPass A

E A2 A1 A0 Y7Y7Y Y6Y6Y Y5Y5Y Y4Y4Y Y3Y3Y Y2Y2Y Y1Y1Y Y0Y0Y

0 x x x 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 1

1 0 0 1 0 0 0 0 0 0 1 0

1 0 1 0 0 0 0 0 0 1 0 0

1 0 1 1 0 0 0 0 1 0 0 0

1 1 0 0 0 0 0 1 0 0 0 0

1 1 0 1 0 0 1 0 0 0 0 0

1 1 1 0 0 1 0 0 0 0 0 0

1 1 1 1 1 0 0 0 0 0 0 0

(a)

FIGURE 4.24 A 3-to-8 decoder: (a) truth table; (b) circuit; (c) logic symbol.  
(continued on next page)
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A larger size decoder can be implemented using several smaller decoders. For 
example, Figure 4.25 uses seven 1-to-2 decoders to implement a 3-to-8 decoder. The 
correct operation of this circuit is left as an exercise for the reader.

HDL Code for a Decoder
The behavioral Verilog and VHDL codes for the 3-to-8 decoder are shown in 
Figures 4.26 and 4.27, respectively.

FIGURE 4.25 A 3-to-8 decoder implemented with seven 1-to-2 decoders.
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FIGURE 4.24 A 3-to-8 decoder: (a) truth table; (b) circuit; (c) logic symbol.

A1

A0

E

Y0Y0YY1Y2Y2YY3Y3YY4Y4YY5Y5YY6Y6YY7Y7Y

A2

Y2Y2Y Y1 Y0Y0YY3Y3YY4Y4YY5Y5YY6Y6YY7Y7Y

A2 A1 A0

E

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-202



4.7 DeCoDeR 139

FIGURE 4.26 Behavioral Verilog code for a 3-to-8 decoder.

module Decoder (
 input E,
 input [2:0] A,
 output reg [7:0] Y
);

 always @ (E or A) begin
  if (E) begin
   case (A)
   0: Y = 8'b00000001;
   1: Y = 8'b00000010;
   2: Y = 8'b00000100;
   3: Y = 8'b00001000;
   4: Y = 8'b00010000;
   5: Y = 8'b00100000;
   6: Y = 8'b01000000;
   7: Y = 8'b10000000;
   endcase
  end else begin
   Y = 0;
  end
 end

endmodule

FIGURE 4.27 Behavioral VHDL code for a 3-to-8 decoder. (continued on next page)

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY Decoder IS PORT(
 E: IN STD_LOGIC;      -- enable
 A: IN STD_LOGIC_VECTOR(2 DOWNTO 0);
 Y: OUT STD_LOGIC_VECTOR(7 DOWNTO 0));
END Decoder;

ARCHITECTURE Behavioral OF Decoder IS
BEGIN
 PROCESS (E, A)
 BEGIN
  IF (E = '0') THEN -- disabled
   Y <= (OTHERS => '0');     -- 8-bit vector of 0
  ELSE
   CASE A IS                 -- enabled
    WHEN "000" => Y <= "00000001";
    WHEN "001" => Y <= "00000010";
    WHEN "010" => Y <= "00000100";
    WHEN "011" => Y <= "00001000";
    WHEN "100" => Y <= "00010000";
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    WHEN "101" => Y <= "00100000";
    WHEN "110" => Y <= "01000000";
    WHEN "111" => Y <= "10000000";
    WHEN OTHERS => NULL;
   END CASE;
  END IF;
 END PROCESS;
END Behavioral;

FIGURE 4.28 Tri-state buffer: (a) truth table; (b) logic symbol; (c) circuit; (d) truth table for the 
control portion of the tri-state buffer circuit.
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FIGURE 4.27 Behavioral VHDL code for a 3-to-8 decoder.

4.8 Tri-State Buffer
A tri-state buffer, as the name suggests, has three states: 0, 1, and a third state denoted 
by Z. The value Z represents a high-impedance state, which, for all practical purposes, Z represents a high-impedance state, which, for all practical purposes, Z
acts like a switch that is opened or a wire that is cut. Tri-state buffers are used to con-
nect several devices to the same bus. A bus is one or more wires for transferring signals. 
If  two or more devices are connected directly to a bus without using tri-state buffers, 
signals will get corrupted on the bus because the devices are always outputting either 
a 0 or a 1. However, with a tri-state buffer in between, devices that are not using the 
bus can disable the tri-state buffer so that it acts as if  those devices are physically dis-
connected from the bus. At any one time, only one active device will have its tri-state 
buffers enabled, and thus, use the bus.

The truth table and symbol for the tri-state buffer are shown in Figures 4.28(a) and 
(b). The active-high enable line E turns the buffer on or off. When E turns the buffer on or off. When E E is de-asserted with E is de-asserted with E
a 0, the tri-state buffer is disabled, and the output y is in its high-impedance Z state. Z state. Z
When E is asserted with a 1, the buffer is enabled, and the output E is asserted with a 1, the buffer is enabled, and the output E y follows the input d.

A circuit consisting of only logic gates cannot produce the high-impedance state 
required by the tri-state buffer, since logic gates can output only a 0 or a 1. To provide 
the high-impedance state, the tri-state buffer circuit uses two transistors in conjunction 
with logic gates, as shown in Figure 4.28(c). The top PMOS transistor is enabled with a 
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0 at the node labeled A, and when it is enabled, a 1 signal from Vcc passes down through 
the transistor to y. The bottom NMOS transistor is enabled with a 1 at the node labeled 
B, and when it is enabled, a 0 signal from ground passes up through the transistor to 
y. When the two transistors are disabled (with A 5 1 and B 5 0), they both will out-
put a high impedance Z value; so Z value; so Z y will have a Z value. Refer to the online chapter on Z value. Refer to the online chapter on Z
Implementation Technologies for a detailed discussion on how transistors work.

Having the two transistors, we need a circuit that will control these two transistors 
so that together they realize the tri-state buffer function. The truth table for this control 
circuit is shown in Figure 4.28(d). The truth table is derived as follows: When E 5 0
(it does not matter what the input d is), we want both transistors to be disabled so that d is), we want both transistors to be disabled so that d
the output y has the Z value. The PMOS transistor is disabled when the input Z value. The PMOS transistor is disabled when the input Z A 5 1;
whereas, the NMOS transistor is disabled when the input B 5 0. When E 5 1 and 
d 5 0, we want the output y to be a 0. To get a 0 on y, we need to enable the bottom 
NMOS transistor (setting B to 1) and disable the top PMOS transistor (setting B to 1) and disable the top PMOS transistor (setting B A to 1) 
so that a 0 will pass through the NMOS transistor to y. To get a 1 on y for when E 5 1
and d 5 1, we need to do the reverse by enabling the top PMOS transistor (setting A
to 0) and disabling the bottom NMOS transistor (setting B to 0).B to 0).B

From the truth table, we obtain the resulting circuit shown in Figure 4.28(c). When 
E 5 0, the output of the NAND gate is a 1 regardless of what the other input is, and so 
the top PMOS transistor is turned off. Similarly, the output of the AND gate is a 0, and 
so the bottom NMOS transistor also is turned off. Thus, when E 5 0, both transistors 
are off, so the output y is in the Z state.Z state.Z

When E 5 1, the outputs of both the NAND and AND gates are equal to d r. So if  
d 5 0, the output of the two gates are both 1, so the bottom transistor is turned on 
while the top transistor is turned off. Thus, y will have the value 0, which is equal to d. 
On the other hand, if  d 5 1, the top transistor is turned on while the bottom transistor 
is turned off, and y will have the value 1, which again is equal to d.

HDL Code for a Tri-state Buffer
The Verilog code for a 4-bit wide tri-state buffer is shown in Figure 4.29. A conditional 
assign statement is used to generate the output signal. If  the condition (E) is true, 
that is, E 5 1, then the first value D is assigned to Y, otherwise, the second value  Y, otherwise, the second value  Y
{n{1'bz}} is assigned to Y. The term Y. The term Y {n{1'bz}} means n bits of the z value. The 
parameter statement declares n and initializes it to 4.

FIGURE 4.29 Verilog code for a 4-bit wide tri-state buffer.

module TriState_Buffer
#(parameter n = 4)   // allow n to be changed externally
(
 input E,
 input [n-1:0] D,
 output [n-1:0] Y
);
 assign Y = (E) ? D : {n{1'bz}};
endmodule

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-202



142 CHAPTER 4 stAnDARD CoMBInAtIonAL CoMPonents

The behavioral VHDL code for a 4-bit wide tri-state buffer is shown in Figure 4.30. 
A conditional assignment statement is used to: generate the output signal. If the condition 
1E 5 '1' 2  is true then the value D is assigned to Y, otherwise, the value Y, otherwise, the value Y (OTHERS => 'Z')
in the ELSE part is assigned to Y. The clause Y. The clause Y (OTHERS => 'Z') means a bit vector 
with all Z values. The Z values. The Z GENERIC statement declares n and initializes it to 4.

4.9 Comparator
Quite often, we need to compare two values for their arithmetic relationship (equal, 
greater, less than, etc.). A comparator is a circuit that compares two binary values 
and indicates whether the relationship is true or false. To compare whether a value is 
equal or not equal to a constant value, a simple AND gate can be used. For example, 
to compare a 4-bit variable x with the constant 3, the circuit in Figure 4.31(a) can be 
used. The AND gate outputs a 1 when the input is equal to the value 3. Since 3 is 0011 
in binary, therefore, x3 and x2 must be inverted. A simple NOR gate also can be used 
to test for whether a variable x is equal to 0. The NOR gate outputs a 1 when all of  its 
inputs are 0s.

The XOR and XNOR gates can be used for comparing inequality and equality, 
respectively, between two values. The XOR gate outputs a 1 when its two input values 
are different. Hence, we can use one XOR gate for comparing each bit pair of  the two 
operands. A 4-bit inequality comparator is shown in Figure 4.31(b). Four XOR gates are 
used, with each one comparing the same bit from the two operands. The outputs of the 
XOR gates are ORed together so that if  any bit pair is different, then the two operands 
are different, and the resulting output is a 1. Similarly, an equality comparator can 
be constructed using XNOR gates instead, since the XNOR gate outputs a 1 when its two 
input values are the same.

To compare the greater-than or less-than relationships, we can construct a truth 
table and build the circuit from it. For example, to compare whether a 4-bit value X
is less than five, we get the truth table, equation, and circuit shown in Figure 4.31(c).

FIGURE 4.30 VHDL code for a 4-bit wide tri-state buffer.

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY TriState_Buffer IS
GENERIC (n: INTEGER := 4);
PORT (
 E: IN STD_LOGIC;
 D: IN STD_LOGIC_VECTOR(n-1 DOWNTO 0);
 Y: OUT STD_LOGIC_VECTOR(n-1 DOWNTO 0));
END TriState_Buffer;

ARCHITECTURE Behavioral OF TriState_Buffer IS
BEGIN
 Y <= D WHEN (E = '1') ELSE (OTHERS => 'Z');
END Behavioral;
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Instead of constructing a comparator for a fixed number of bits for the input values, 
we often prefer to construct an iterative circuit by constructing a 1-bit slice comparator 
and then daisy-chaining n of them together to make an n-bit comparator. The 1-bit slice 
comparator will have (in addition to the two input operand bits, xi and i and i yi) a pi bit that i bit that i
keeps track of whether all the previous bit pairs compared so far are true or false for 
that particular relationship. The circuit outputs a 1 if  pi 5 1, and the relationship is true 
for the current bit pair, xi and i and i yi. Figure 4.32(a) shows a 1-bit slice comparator for the 
equal relationship. If  the current bit pair, xi and i and i yi, is equal, the XNOR gate will output 
a 1. Hence, pi11 5 1 if  the current bit pair is equal and the previous bit pair, pi, is a 1. 
To obtain a 4-bit iterative equality comparator, we connect four 1-bit equality compar-
ators in series, as shown in Figure 4.32(b). The initial p0 bit must be set to a 1. Thus, 
if  all four bit pairs are equal, then the last bit, p4, will be a 1; otherwise, p4 will be a 0.

Building an iterative comparator circuit for the greater-than relationship X . Y
is slightly more difficult. The 1-bit slice comparator circuit for the condition xi . yi is 
constructed as follows. In addition to the two operand input bits, xi and yi, there are 
also two status input bits, ginini  and einini . Here, ginini  is a 1 if  the condition xi . yi is true for 
the previous bit slice; otherwise, ginini  is a 0. Furthermore, einini  is a 1 if  the condition xi 5 yi
is true; otherwise, einini  is a 0. The circuit also has two status output bits, gout and eout, hav-
ing the same meaning as the ginini  and einini  signals. These two input and two output status 
bits allow the bit slices to be daisy-chained together. Following the above description of 
the 1-bit slice circuit, we obtain the truth table shown in Figure 4.33(a). The equations 
for eout and gout

FIGURE 4.31 Simple 4-bit comparators for: (a) X53; (b) XuY; (c) X,5.
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FIGURE 4.32 Iterative comparators: (a) 1-bit slice for xi 5 yiyiy ; (b) 4-bit X 5 Y.Y.Y
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FIGURE 4.33 Comparator for X . Y:Y:Y  (a) truth table for 1-bit slice; (b) K-maps and 
equations for gout and out and out eout; (c) circuit for 1-bit slice; (d) 4-bit X . Y  comparator circuit; 
(e) operational table. (continued on next page)
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In order for the bit slices to operate correctly, we need to perform the comparisons 
from the most significant bit to the least significant bit. The complete 4-bit iterative 
comparator circuit for the condition X . Y  is shown in Figure 4.33(d). The initial 
values for ginini  and einini  must be set to ginini 5 0 and einini 5 1.

If X 5 Y,Y,Y  then the last eout is a 1; otherwise, eout is a 0. If  the last eout is a 0, then the 
last gout can be either a 1 or a 0. If  X . Y  then gout is a 1; otherwise, gout is a 0. Notice 
that both eout and gout cannot both be 1s. The operation of this comparator circuit is 
summarized in Figure 4.33(e).

HDL Code for a 4-bit Greater-than Comparator
Figure 4.34 shows the Verilog code for a 4-bit greater-than comparator. The condi-
tional assign statement is used. The syntax 1'b1 means one 1 bit, and 1'b0 means 
one 0 bit.

Figure 4.35 shows the VHDL code for a 4-bit greater-than comparator. The con-
ditional signal assignment statement is used. The value '1' is assigned to G when the G when the G
condition 1X . Y 2Y 2Y  is true, otherwise the value '0' is assigned to G.

Condition eout gogog ut

Invalid 1 1

X 5 Y 1 0

X . Y 0 1

X , Y 0 0
(e)

FIGURE 4.33 Comparator for X . Y:Y:Y  (a) truth table for 1-bit slice; (b) K-maps and 
equations for gout and out and out eout; (c) circuit for 1-bit slice; (d) 4-bit X . Y  comparator circuit; 
(e) operational table.

FIGURE 4.34 Verilog code for a 4-bit greater-than comparator.

module greater (
 input [3:0] X,Y,
 output G
);
 assign G = (X > Y) ? 1'b1 : 1'b0;
endmodule
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4.10 Shifter
The shifter is used for shifting bits in a binary string one position either to the left or to the 
right. The operations for the shifter are referred to either as shifting or rotating, depend-
ing on how the end bits are shifted in or out. For a shift operation, the bit at the end is 
discarded and does not wrap around. For a rotate operation, the bit at the end wraps 
back around to the other end. Figure 4.36 shows six different shift and rotate operations.

For example, for the “Shift left with 0” operation, all of the bits are shifted one 
position to the left. The original leftmost bit is shifted out (i.e., discarded) and the 
rightmost bit is filled with a 0. For the “Rotate left” operation, all of the bits are shifted 
one position to the left. However, instead of discarding the leftmost bit, it is shifted in 
as the rightmost bit (i.e., it rotates around).

For each bit position, a multiplexer is used to move a bit from either the left or 
the right to the current bit position. The size of  the multiplexer will determine the 
number of  operations that can be implemented. For example, we can use a 4-to-1 
multiplexer to implement the four operations, as specified by the operation table 
shown in Figure 4.37(a). Two select lines, s1 and s0, are needed to select between the 
four different operations. For a 4-bit operand, we need to use four 4-to-1 multiplexers, 
as shown in Figure 4.37(b). How the inputs to the multiplexers are connected will 
depend on the given operations.

In this example, when s1 5 s0 5 0, we want to pass the bit straight through without 
shifting (i.e., we want the value from inini i to pass to outi). Given s1 5 s0 5 0, d0d0d  of  the 
multiplexer is selected, hence, inini i is connected to d0d0d  of  MUXi, which outputs to outi.
For s1 5 0 and s0 5 1, we want to shift left (i.e., we want the value from inini i to pass to 
outi11). With s1 5 0 and s0 5 1, d1 of the multiplexer is selected, hence, inini i is connected i is connected i
to d1 of MUXi11, which outputs to outi11. For this selection, we also want to shift in 
a 0 bit, so d1 of MUX0 is connected directly to a 0. The two remaining operations are 
connected in a similar manner.

HDL Code for a Shifter
The behavioral Verilog code for an 8-bit shifter having the functions as defined in 
Figure 4.37(a) is shown in Figure 4.38.

FIGURE 4.35 VHDL code for a 4-bit greater-than comparator.

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.STD_LOGIC_UNSIGNED.ALL;

ENTITY greater IS PORT (
 X, Y: IN STD_LOGIC_VECTOR(3 DOWNTO 0);
 G: OUT STD_LOGIC);
END VHDL;

ARCHITECTURE Dataflow OF greater IS
BEGIN
  G <= '1' WHEN (X > Y) ELSE '0';
END Dataflow;
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FIGURE 4.36 Shifter and rotator operations.

Operation Comment ExamplExamplExam en C

Shift leift leif ft with 0
Shift bits one position to the left. The 
leftmost bit is discarded and the rightmost 
bit is �lled with a 0.

Shift leift leif ft with 1
Same as above, except that the rightmost 
bit is �lled with a 1.

Shift right ift right if with 0
Shift bits one position to the right. The 
rightmost bit is discarded and the leftmost 
bit is �lled with a 0.

Shift right ift right if with 1
Same as above, except that the leftmost bit 
is �lled with a 1.

Rotate left
Shift bits one position to the left. The 
leftmost bit is moved to the rightmost bit 
position.

Rotate right
Shift bits one position to the right. The 
rightmost bit is moved to the leftmost 
bit position.

FIGURE 4.37 A 4-bit shifter: (a) operation table; (b) circuit; (c) logic symbol.
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FIGURE 4.38 Behavioral Verilog code for an 8-bit shifter having the operations as 
defined in Figure 4.37(a).

module shifter (
 input [1:0] S,
 input [7:0] data_in,
 output reg [7:0] data_out
);
 always @ (S or data_in) begin
  case (S)
  0: data_out = data_in;     // pass through
  1: data_out = data_in << 1;   // shift left
  2: data_out = data_in >> 1;   // shift right
  3: data_out = {data_in[0], data_in[7:1]}; // rotate right
  endcase
 end

endmodule

FIGURE 4.39 Behavioral VHDL code for an 8-bit shifter having the operations as 
defined in Figure 4.37(a).

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.STD_LOGIC_UNSIGNED.ALL;

ENTITY shifter IS PORT (
 S: IN STD_LOGIC_VECTOR(1 DOWNTO 0); -- select for operations
 data_in: IN STD_LOGIC_VECTOR(7 DOWNTO 0); -- input
 data_out: OUT STD_LOGIC_VECTOR(7 DOWNTO 0)); -- output
END shifter;

ARCHITECTURE Behavioral OF shifter IS
BEGIN
 PROCESS(S, data_in)
 BEGIN
   CASE S IS
   WHEN "00" =>                             -- pass through
    data_out <= data_in;
   WHEN "01" =>                             -- shift left with 0
    data_out <= data_in(6 DOWNTO 0) & '0';
   WHEN "10" =>                             -- shift right with 0
    data_out <= '0' & data_in(7 DOWNTO 1);
   WHEN OTHERS =>                           -- rotate right
    data_out <= data_in(0) & data_in(7 DOWNTO 1);
   END CASE;
 END PROCESS;
END Behavioral;
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The behavioral VHDL code for an 8-bit shifter having the functions as defined in 
Figure 4.37(a) is shown in Figure 4.39.

4.11 Multiplier
In grade school, we were taught to multiply two numbers using a shift-and-add pro-
cedure. Regardless of  whether the two numbers are in decimal or binary, we use the 
same shift-and-add procedure for multiplying them. In fact, multiplying with binary 
numbers is even easier, because you are always multiplying with either a 0 or a 1. 
Figure 4.40(a) shows the multiplication of  two 4-bit unsigned binary numbers—the 
multiplicand M 1m3m2m1m0 2  with the multiplier Q 1q3q2q1q0 2—to produce the result-
ing product P 1 p7p7p7 6p5p5p5 4p3p2p1p0 2 . The bit width of  the product P is always twice 
the bit width of  the operands. Since we are working with binary numbers, we always 
will be multiplying either with a 1 or a 0, therefore, the intermediate products always 
will either be the same as the multiplicand (if  the multiplier bit is a 1) or zero (if  the 
multiplier bit is a 0).

We can derive a combinational multiplication circuit based on this shift-and-add 
procedure, as shown in Figure 4.40(b). Each intermediate product is obtained by AND-
ing the multiplicand M with one bit of  the multiplier M with one bit of  the multiplier M qi. Since qi is always a 1 or a 
0, the output of the AND gates is always either mi or 0. For example, bit zero of the 
first intermediate product is obtained by ANDing m0 with q0; bit one is obtained by 
ANDing m1 with q0; and so on. Hence, the four bits for the first intermediate product 
are m3q0, m2q0, m1q0, and m0q0; the four bits for the second intermediate product are 
m3q1, m2q1, m1q1, and m0q1; and so on.

Multiple adders are used to sum all of the intermediate products together to give 
the final product. Each intermediate product is shifted over to the correct bit position 
for the addition. For example, p0 is just m0q0; p1 is the sum of m1q0 and m0q1; p2 is the 
sum of m2q0, m1q1, and m0q2; and so on. The four FAs (1-bit adders) in each row are 
connected, as in the ripple-carry adder with each carry-out signal connected to the 
carry-in of the next FA. The carry-out of the last FA is connected to the input of the 
last FA in the row below. The last carry-out from the last row of FAs is the value for 
p7 of the final product. As in the ripple-carry adder, all of the initial carry-in, c0, are 
set to a 0.

HDL Code for a Multiplier
The behavioral Verilog code for a 4-bit multiplier M 3 Q giving the 8-bit product P is P is P
shown in Figure 4.41.
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Multiplicand (M)M)M

{

1 1 0 1

Multiplier (Q) 3 1 0 1 1

1 1 0 1

Intermediate products 1 1 0 1

0 0 0 0

  1 1 1 0 1

Product (P) 1 0 0 0 1 1 1 1

m3 m2 m1 m0

3 q3 q2 q1 q0

m3q0 m2q0 m1q0 m0q0

m3q1 m2q1 m1q1 m0q1

m3q2 m2q2 m1q2 m0q2

1 m3q3 m2q3 m1q3 m0q3

p7 p6 p5 p4 p3 p2 p1 p0

FIGURE 4.40 Multiplication: (a) method; (b) circuit.

p0p1p2p3p4p5p6p7

0

0

FA FA FA FA

FAFAFAFA

FA FA FAFA

0

0

m3 q3 m2 q3 m1 q3 m0 q3

m3 q2 m2 q2 m1 q2 m0 q2

m3 q1 m2 q1 m1 q1 m0 q1

m3 q0 m2 q0 m1 q0 m0 q0

(a)

(b)
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The behavioral VHDL code for a 4-bit multiplier M 3 Q giving the 8-bit product 
P is shown in Figure 4.42.P is shown in Figure 4.42.P

4 . 1 2  P R O B L E M S

4.1. Draw the complete circuit for a 4-bit wide 4-to-1 multiplexer circuit using 
only AND, OR, and NOT gates. 4-bit wide means that each data input signal 
is four bits and the output Y is four bits.Y is four bits.Y

4.2. Draw the circuit for a 16-to-1 multiplexer using only 4-to-1 multiplexers.

4.3. Draw the circuit for a 16-to-1 multiplexer using only 2-to-1 multiplexers.

4.4. Write the complete dataflow Verilog code for an 8-bit wide 4-to-1 multi-
plexer circuit.

4.5. Write the complete dataflow VHDL code for an 8-bit wide 4-to-1 multi-
plexer circuit.

4.6. Write the complete structural Verilog code for the FA circuit shown in 
Figure 4.6(c).

4.7. Write the complete structural VHDL code for the FA circuit shown in 
Figure 4.6(c).

4.8. For the subtractor circuit discussed in Section 4.4, the last overflow bit, bn,
is a 1 when the result of the subtraction is a negative number. This over-
flow bit is correct when the input operands are interpreted as unsigned 

FIGURE 4.41 Behavioral Verilog code for a 4-bit multiplier.

module multiplier (
 input [3:0] M, Q,
 output [7:0] P
);
 assign P = M * Q;

endmodule

FIGURE 4.42 Behavioral VHDL code for a 4-bit multiplier.

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.NUMERIC_STD.ALL; -- needed for UNSIGNED

ENTITY multiplier IS PORT (
 M, Q: IN STD_LOGIC_VECTOR(3 DOWNTO 0);
 P: OUT STD_LOGIC_VECTOR(7 DOWNTO 0));
END multiplier;

ARCHITECTURE Behavioral OF multiplier IS
BEGIN

 P <= STD_LOGIC_VECTOR(UNSIGNED(M) * UNSIGNED(Q));

END Behavioral;
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numbers. Verify that this is true. Using four bits, show examples where 
this overflow bit is not correct when the input operands are interpreted as 
signed numbers.

4.9. The following shows eight different 4-bit binary calculations, and whether 
there is an overflow error if  the binary numbers are interpreted as either 
signed or unsigned numbers.

Signed
Range is 
28 to 7 Unsigned

Range is 
0 to 15

4-bit Calculations Interpretation Overflow Interpretation Overflow

a. 0011 1 0100 5 0111 3 1 4 5 7 ✔ 0 3 1 4 5 7 ✔ 0

b. 1111 1 1110 5 1101 21 1 122 2 5 23 ✔ 0 15 1 14 5 13 ✘ 1

c. 0111 1 0110 5 1101 7 1 6 5 23 ✘ 1 7 1 6 5 13 ✔ 0

d. 1000 1 1001 5 0001 28 1 127 2 5 1 ✘ 1 8 1 9 5 1 ✘ 1

e. 0111 2 0110 5 0001 7 2 6 5 1 ✔ 0 7 2 6 5 1 ✔ 0

f. 0000 2 0111 5 1001 0 2 7 5 27 ✔ 0 0 2 7 5 9 ✘ 1

g. 1000 2 0001 5 0111 128 2 2 11 2 5 7 ✘ 1 8 2 1 5 7 ✔ 0

h. 0001 2 1000 5 1001 1 2 128 2 5 27 ✘ 1 1 2 8 5 9 ✘ 1

1) Zero extend the operands to five bits and perform the same operations. Verify 
that the most significant bit of the result is already the correct unsigned over-
flow bit.

2) Sign extend the operands to five bits and perform the same operations. Verify 
that XORing the two most significant bits of the result is the correct signed
overflow bit.

3) In the 4-bit calculations, verify that the signed overflow bit can be obtained by 
the Boolean equations:

Signed_Overflow 5 1A rn # B rn # FnFnF 2 1 1An
# Bn

# FnFnF r 2  for additions

Signed_Overflow 5 1An
# B rn # F rnFnF 2 1 1A rn # Bn

# FnFnF 2  for subtractions

where An, Bn, and FnFnF  are the most significant bit of A, B, and F.F.F
4) If we perform the same calculations using the adder-subtractor combination cir-

cuit shown in Figure 4.14, the unsigned overflow bit needs to be the XOR of the 
most significant bit of the result with the select signal. Verify that this is correct.

4.10. Show that when adding two n-bit signed numbers, An21 … A0 and Bn21
… B0, producing the result, SnSnS 21 … S0S0S , the Signed_Overflow flag can be 
deduced by the equation:

Sigigi ned_Overflrflr oflofl w 5 An21 XOR Bn21 XOR SnSnS 21 XOR SnSnS

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-202



4.12 PRoBLeMs 153

4.11. To get the Signed_Overflow bit for the 4-bit adder-subtractor combination 
circuit, we need to XOR the Unsigned_Overflow bit with the carry bit, c3,
from the second-to-last bit slice. Write the Verilog code segment to first 
get this c3 bit and then output the Signed_Overflow signal.

4.12. Repeat Problem 4.11, but use VHDL.

4.13. Use a truth table to show that the following equation is true:

xiyiyi i 1 ci 1xi 1 yi 2 5 xiyiyi i 1 ci 1xi ! yi 2

4.14. The carry-lookahead circuit shown in Figure 4.12(a) can be reduced 
because c0 is a 0. Derive the carry-lookahead equations for c1 to c4, and 
draw this simpler circuit for when c0 is a 0.

4.15. Draw the smallest possible complete circuit for a 2-bit carry-lookahead 
adder.

4.16. Draw the complete circuit for a 4-bit carry-lookahead adder.

4.17. Derive the carry-lookahead equation and circuit for c5.

4.18. Draw the complete 4-bit ALU circuit having the following operations. Use 
K-maps to reduce all of the equations to standard form.

4.19. Draw the complete 4-bit ALU circuit having the following operations. 
Don’t-care values are assigned to unused select combinations. Use K-maps 
to reduce all of the equations to standard form.

s2 s1 s0 Operations

0 0 0 B 2 1

0 0 1 A NOR B

0 1 0 A 2 B

0 1 1 A XNOR B

1 0 0 1

1 0 1 A NAND B

1 1 0 A 1 B

1 1 1 A r

s2 s1 s0 Operations

0 0 0 Pass A through the LE

0 0 1 Pass B through the LEB through the LEB

0 1 0 NOT A

0 1 1 NOT B

1 0 0 A 2 B

1 0 1 B 2 A

1 1 0 B 1 1
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4.20. Draw the complete 4-bit ALU circuit having the following operations. Use 
K-maps to reduce all of the equations to standard form.

4.21. Draw the complete 4-bit ALU circuit having the following operations. Use 
K-maps to reduce all of the equations to standard form.

4.22. Given the following K-maps for the LE, AE, and CE of an ALU, deter-
mine the ALU operations assigned to each of the select line combinations.

4.23. A four-function ALU has the following equations for its LE, AE, and CE:

xi 5 ai 1 s1rs0bi

yi 5 s1rs0r 1 s1s0bi r

c0 5 s1s0

s2 s1 s0 Operations

0 0 0 A plus B

0 0 1 Increment A

0 1 0 Increment B

0 1 1 Pass A

1 0 0 A 2 B

1 0 1 A XOR B

1 1 0 A AND B

s2 s1 s0 Operations

0 0 0 Pass A

0 0 1 Pass B through the AEB through the AEB

0 1 0 A plus B

0 1 1 A r

1 0 0 A XOR B

1 0 1 A NAND B

1 1 0 A 2 1

1 1 1 A 2 B

s1s0

aibi
s2 5 1

00

1 1 1

1 1

1 1

01 11 10

00

s2 5 0

1

00

1

1

1 1

1 1

01 11 10

01

11

10

LE
s2bi

s1s0

00 1 1

00

1 1

01 11 10

01

11

10

AE
s1s0

s2

0

00

1

1

01 11 10

1

CE

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-202



4.12 PRoBLeMs 155

Determine the four functions in the correct order that are implemented in 
this ALU. Show all of your work.

4.24. Draw the circuit for the 2-to-4 decoder with enable.

4.25. Derive the truth table for a 3-to-8 decoder with enable where the enable 
and output signals use negative logic, and the address inputs use positive 
logic.

4.26. Draw the circuit for the 4-to-16 decoder using only 2-to-4 decoders.

4.27. Derive the truth table, equation, and circuit for comparing two unsigned 
2-bit operands for the less-than relationship.

4.28. Draw a 4-bit iterative comparator circuit that tests for the greater-than-or-
equal-to relationship.

4.29. Draw a 4-bit shifter circuit for the following operational table.

4.30. Draw a 4-bit shifter circuit for the following operational table. Use only 
the basic gates AND, OR, and NOT (i.e., do not use multiplexers).

4.31. Draw a 4-bit shifter circuit for the following operation table using only six 
2-to-1 multiplexers.

s2 s1 s0 Operation

0 0 0 Pass through

0 0 1 Rotate left

0 1 0 Shift right and fill with 1

0 1 1 Not used

1 0 0 Shift left and fill with 0

1 0 1 Pass through

1 1 0 Rotate right

1 1 1 Shift right and fill with 0

s1 s0 Operation

0 0 Shift left and fill with 0

0 1 Shift right and fill with 0

1 0 Rotate left

1 1 Rotate right

s1 s0 Operation

0 0 Shift left and fill with 0

0 1 Shift right and fill with 0

1 0 Rotate left

1 1 Rotate right
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4.33. A barrel shifter is a shifter that can shift or rotate the data by any number 
of bits in a single operation. The select lines for a barrel shifter are used, 
not to determine what kind of operations (shift or rotate) to perform as 
for the general shifter, but rather, to determine how many bits to move. 
Draw a 4-bit barrel shifter circuit for the rotate left operation according to 
the following operation table: 

When s1s0 5 00, no rotation is performed (i.e., a pass through). When 
s1s0 5 01, the data bits are rotated one position to the left. When 
s1s0 5 10, the data bits are rotated two positions to the left.

4.34. Draw a 4-bit barrel shifter circuit as in Problem 4.33, but for the rotate 
right operation.

4.35. Implement the 4-bit multiplier circuit shown in Figure 4.40(b) and verify 
that it works correctly.

Select
s1 s0

Operation
Output

out3 out2 out1 out0

00 No rotation inini 3 inini 2 inini 1 inini 0

01 Rotate left by 1 bit position inini 2 inini 1 inini 0 inini 3

10 Rotate left by 2 bit positions inini 1 inini 0 inini 3 inini 2

11 Rotate left by 3 bit positions inini 0 inini 3 inini 2 inini 1

 4.32. Derive the truth table for the following combinational circuit. Write also 
the operation name for each row in the table.

02
s1s1s
s0s0s y

13

y3 y2 y1 y0

d3 d2d2d d1 d0d0d

s1

s0

01
s y

0

01
s y

1

s2

02

y

13 02

y

13 02

y

13
s1s1s
s0s0s

s1s1s
s0s0s

s1s1s
s0s0s
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C H A P T E R  5

Sequential Circuits

Control
Signals

Status
Signals

MUX

'0'

Data
Inputs

Data
Outputs

Datapath

ALU

Register
ff

8

8

8

Output
Logic

Next-
state
Logic

Control
Inputs

Control
Outputs

State
Memory
Register

Control Unit

ff
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So far, we have been looking at the design of combinational circuits. We will now turn 
our attention to the design of sequential circuits. Recall that the outputs of sequential 
circuits are dependent not only on their current inputs (as in combinational circuits), 
but also on all their past inputs. Because of  their need to remember the history of 
inputs, sequential circuits must contain memory elements.

The car security system from Section 2.11 is an example of  a combinational cir-
cuit. In that example, the siren is turned on when the master switch is on and someone 
opens the door. If  you close the door afterward, then the siren will turn off  immedi-
ately. For a more realistic car security system, we would like the siren to remain on even 
if  you close the door after it was first triggered. In order for this modified system to 
work correctly, the siren must be dependent not only on the master, door, and vibra-
tion switches, but also on whether the siren is currently on or off. In other words, this 
modified system is a sequential circuit that is dependent on both the current and the 
past inputs to the system.

In order to remember this history of inputs, sequential circuits must have memory 
elements. Memory elements, however, are just like combinational circuits in the sense 
that they are made up of the same basic logic gates. What makes them different is in 
the way these logic gates are connected together. In order for a circuit to “remember” 
its current value, we have to connect the output of  a logic gate either directly or indi-
rectly back to the input of  that same gate. We call this a feedback loop circuit, and 
it forms the basis for all memory elements. Combinational circuits do not have any 
feedback loops.

Latches and flip-flops are the basic memory elements for storing information. 
Hence, they are the fundamental building blocks for all sequential circuits. A single 
latch or flip-flop can store only one bit of information. This bit of information that is 
stored in a latch or flip-flop is referred to as the state of  the latch or flip-flop. Hence, 
a single latch or flip-flop can be in either one of two states: 0 or 1. We say that a latch 
or a flip-flop changes state when its content changes from a 0 to a 1 or vice versa. This 
state value is always available at the output. Consequently, the content of a latch or a 
flip-flop is the state value, and is always equal to its output value.

The main difference between a latch and a flip-flop is that for a latch, its state or 
output is constantly affected by its input as long as its enable signal is asserted. In other 
words, when a latch is enabled, its state changes immediately when its input changes. 
When a latch is disabled, its state remains constant, thereby, remembering its previous 
value. On the other hand, a flip-flop changes state only at the active edge of its enable 
signal, that is, at precisely the moment when its enable signal changes either from a 0 
to a 1 (referred to as the rising edge of the signal), or from a 1 to a 0 (the falling edge). 
However, after the rising or falling edge of the enable signal, and during the time when the 
enable signal is at a constant 1 or 0, the flip-flop’s state remains constant, even if  
the input changes.

In a microprocessor system, we usually want changes to occur at precisely the same 
moment. Hence, flip-flops are used more often than latches, because they all can be 
synchronized to change only at the active edge of the enable signal. This enable signal 
for the flip-flops is usually the global controlling clock signal. As a result, all flip-flops 
in the system will change state synchronously at the active edge of the clock.
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Historically, there are four main types of flip-flops: SR, D, JK, and T. The main 
differences between them are the number of inputs they have and how their contents 
change based on their inputs. Any given sequential circuit can be built using any of these 
types of flip-flops (or combinations of them). However, selecting one type of flip-flop 
over another type to use in a particular sequential circuit can affect the overall size of 
the circuit. Today, sequential circuits are designed mainly with D flip-flops because of 
their ease of use. This is simply a tradeoff issue between ease of circuit design versus 
circuit size. With the much larger capacity FPGAs (field-programmable gate arrays) 
available today, the small circuit size reduction is insignificant and does not justify the 
unnecessary increase in complexity in the circuit design process. Thus, we will focus only 
on the D flip-flop and how it is used in building larger sequential circuits.

In this chapter, we will look at how latches and flip-flops are designed and how 
they work. Because flip-flops are at the heart of  all sequential circuits, a good under-
standing of their design and operation is very important in the design of microproces-
sors. We then will use the flip-flops to build larger components, such as the registers 
and counters.

5.1 Bistable Element
Let us look at the inverter. If  you provide the inverter input with a 1, the inverter will 
output a 0. If  you do not provide the inverter with an input (i.e., neither a 0 nor a 1), the 
inverter will not have a value to output. If you want to construct a memory circuit using 
the inverter, you would want the inverter to continue to output the 0 (i.e., to remember 
the 0) even after you remove the 1 input. In order for the inverter to continue to output 
a 0, you need the inverter to self-provide its own input. In other words, you want the 
output to feed back the 0 to the input. However, you cannot connect the output of 
the inverter directly back to its input, because you will have a 0 connected to a 1, and 
therefore would create a short circuit.

The solution is to connect two inverters in series in a loop, as shown in Figure 5.1. 
This circuit is called a bistable element, and it is the simplest memory circuit. The bistable 
element has two symmetrical nodes labeled Q and Q and Q Q r, both of which can be viewed as 
either an input or an output signal. Because Q and Q and Q Q r are symmetrical, we can arbitrarily 
use Q as the state variable, so that the state of the circuit is the value at Q as the state variable, so that the state of the circuit is the value at Q Q. Let us assume 
that Q originally has the value 0 when power is first applied to the circuit. Because Q originally has the value 0 when power is first applied to the circuit. Because Q Q is the Q is the Q
input to the bottom inverter, therefore, Q r is a 1. A 1 going to the input of the top inverter 
will produce a 0 at the output Q, which is what we started off with. Hence, the value at 
Q will remain at a 0 indefinitely. Similarly, if we power up the circuit with Q will remain at a 0 indefinitely. Similarly, if we power up the circuit with Q Q 5 1, we will 

FIGURE 5.1 Bistable element circuit.

Q

Q'
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get Q r 5 0, and again, we get a stable situation with Q remaining at a 1 indefinitely. Thus, 
the circuit has two stable states: Q 5 0 and Q 5 1; hence, the name “bistable.”

We say that the bistable element has memory because it can remember its state (i.e., 
keep the value at Q constant) indefinitely. Unfortunately, we cannot change its state 
(i.e., cannot change the value at Q). We cannot just input a different value to Q, because 
it will create a short circuit by connecting a 0 to a 1. For example, let us assume that Q
is currently 0. If  we want to change the state, we need to set Q to a 1, but in so doing 
we will be connecting a 1 to a 0, thus creating a short. Another way of looking at this 
problem is that we can think of both Q and Q r as being the primary outputs, which 
means that the circuit does not have any external inputs. Therefore, there is no way for 
us to input a different value.

5.2 SR Latch
In order to change the state for the bistable element, we need to add external inputs to 
the circuit. The simplest way to add extra inputs is to replace the two inverters with two 
NAND gates, as shown in Figure 5.2(a). This circuit is called an SR latch. In addition 
to the two outputs Q and Q r, there are two inputs S r and R r for set and reset, respec-
tively. Just like the bistable element, the SR latch can be in one of two states: a set state 
when Q 5 1, or a reset state when Q 5 0. Following the signal naming convention, the 

FIGURE 5.2 SR latch: (a) circuit using NAND gates; (b) truth table; (c) logic symbol;  
(d) sample trace.

Q

Q'

S'

R'

(a)

S r R r Q QnQnQ ext QnQnQ ext r

0 0 3 1 1

0 1 3 1 0

1 0 3 0 1

1 1 0 0 1

1 1 1 1 0

(b)

Q

Q'

S'

R'

(c)

S'

R'

Q

Q'

t0t0t t1 t2 t3 t4t4t t5

Unde�ned

Unde�ned

t6

(d)

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-202



5.2 sR LAtCH 161

primes in S and S and S R denote that these inputs are active-low (i.e., a 0 asserts them, and a 
1 de-asserts them).

To make the SR latch go to the set state (i.e., set Q to a 1), we simply assert the 
S r input by setting it to 0 (and de-asserting R r). It doesn’t matter what the other 
input to the top NAND gate is, because 0 NAND anything gives a 1, hence Q 5 1, and 
the latch is set. If  S r remains at 0 so that Q (which is connected to one input of  the 
bottom NAND gate) remains at 1, and if  we now de-assert R r (i.e., set R r to a 1), then 
the output of  the bottom NAND gate will be 0, and so, Q r 5 0. This situation is shown 
in Figure 5.2(d) at time t0. From this current situation, if  we now de-assert S r so that 
S r 5 R r 5 1, the latch will remain in the set state because Q r (the second input to the 
top NAND gate) is 0, which will keep Q 5 1, as shown at time t1. At time t2, we reset 
the latch by making R r 5 0 (and S r remains at a 1). With R r being a 0, Q r will go to 
a 1. At the top NAND gate, 1 NAND 1 is 0, thus forcing Q to go to 0. If  we de-assert R r
next so that, again, we have S r 5 R r 5 1, this time the latch will remain in the reset 
state, as shown at time t3.

Notice the two times (at t1 and t3) when both S r and R r are de-asserted (i.e., 
S r 5 R r 5 1). At t1, Q is at a 1; whereas, at t3, Q is at a 0. Why is this so? What is dif- is at a 0. Why is this so? What is dif- is at a 0. Why is this so? What is dif
ferent between these two times? The difference is in the value of Q immediately before 
those times. The value of Q right before t1 is 1; whereas, the value of Q right before 
t3 is 0. When both inputs are de-asserted, the SR latch remembers its previous state. 
Previous to t1, Q has the value 1, so at t1, Q remains at a 1. Similarly, previous to t3, Q
has the value 0, so at t3, Q remains at a 0.

If  both S r and R r are asserted (i.e., S r 5 R r 5 0), then both Q and Q r are equal to 
a 1, as shown at time t4, because 0 NAND anything gives a 1. Note that there is nothing 
wrong with having Q equal to Q r. Because we named these two points Q and Q r, we 
like them to be inverses of each other, however, we could have used another name say, 
P instead of P instead of P Q r.

After time t4, if  one of the input signals is de-asserted earlier than the other, the 
latch will end up in the state forced by the signal that is de-asserted later, as shown at 
time t5. At t5, R r is de-asserted first, so the latch goes into the set state with Q 5 1,
and Q r 5 0.

A problem exists if  both S r and R r are de-asserted at exactly the same time, as 
shown at time t6. Let us assume for a moment that both gates have exactly the same 
delay and that the two wire connections between the output of one gate to the input of 
the other gate also have exactly the same delay. Immediately before time t6, both Q and 
Q r are at a 1. If  at time t6 we set S r and R r to a 1 at exactly the same time, then both 
NAND gates will perform a 1 NAND 1 and will both output a 0 at exactly the same time. 
The two 0s will be fed back to the two gate inputs at exactly the same time, because 
the two wire connections have the same delay. This time around, the two NAND gates 
will perform a 1 NAND 0 and will both produce a 1, again at exactly the same time. This 
time, two 1s will be fed back to the inputs, which again will produce a 0 at the outputs, 
and so on. This oscillating behavior, called the critical race, will continue indefinitely 
until one outpaces the other. If  the two gates or the two connecting wires do not have 
exactly the same delay, then the situation is similar to de-asserting one input before the 
other, and so, the latch will go into one state or the other. However, because we do not 
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know which gate or wire has a shorter delay, therefore we do not know which state the 
latch will end up in. Thus, the latch’s next state is undefined.

Of course, in practice, it is next to impossible to manufacture two gates and make 
the two connections with precisely the same delay. Furthermore, both S r and R r need 
to be de-asserted at exactly the same time. Nevertheless, if  this circuit is used to control 
some mission-critical device, we don’t want even this slim chance to happen.

In order to avoid this non-deterministic behavior, we must make sure that the two 
inputs are never de-asserted at the same time. However, we do want the situation when 
both of them are de-asserted, as in times t1 and t3, so that the circuit can remember its 
current content. We want to de-assert one input after de-asserting the other, but just 
not de-asserting both of them at exactly the same time. In practice, it is very difficult to 
guarantee that these two signals are never de-asserted at the same time, so we relax the 
condition slightly by not having both of them to be asserted together. In other words, 
if  one is asserted, then the other one cannot be asserted. Therefore, if  both of them 
are never asserted at the same time, then they cannot be de-asserted at the same time. 
A minor side benefit for not having both of them asserted together is that Q and Q r
are never equal to each other. Recall that, from the names that we have given these two 
nodes, we do want them to be inverses of each other.

From the above analysis, we obtain the truth table in Figure 5.2(b) for the NAND

implementation of the SR latch. In the truth table, Q and Qnext actually represent the 
same point in the circuit. The difference is that Q is the current value at that point, while 
Qnext is the new value to be updated in the next time period. Another way of looking 
at it is that Q is the input to a gate, and Qnext is the output from a gate. In other words, 
the signal Q goes into a gate, propagates through the two gates, and arrives back at Q
as the new signal Qnext. Figure 5.2(c) shows the logic symbol for the SR latch.

The SR latch also can be implemented using NOR gates, as shown in Figure 5.3(a). 
The truth table for this implementation is shown in Figure 5.3(b). From the truth table, 
we see that the main difference between this implementation and the NAND implemen-
tation is that, for the NOR implementation, the S and S and S R inputs are active-high, so that 
setting S to 1 will set the latch, and setting S to 1 will set the latch, and setting S R to 1 will reset the latch. However, just like 
the NAND implementation, the latch is set when Q 5 1 and reset when Q 5 0. The latch 
remembers its previous state when S 5 R 5 0. When S 5 R 5 1, both Q and Q r are 0. 

FIGURE 5.3 SR latch: (a) circuit using NOR gates; (b) truth table; (c) logic symbol.
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The logic symbol for the SR latch using NOR implementation is shown in Figure 5.3(c). 
The only difference in this symbol is that neither S nor S nor S R has a prime in its name.

5.3 Car Security System—Version 2
In Section 2.11, we designed a combinational circuit for a car security system in which 
the siren will turn on when the master switch is on and either the door switch or 
the vibration switch is also on. However, as soon as both the door and the vibration 
switches are off, the siren will turn off  immediately, even though the master switch is 
still on. In reality, what we really want is for the siren to remain on after it has been 
turned on, even after both the door and vibration switches are off. In order to do so, 
we need to remember the state of the siren. In other words, for the siren to remain on, 
it should be dependent not only on whether the door or the vibration switch is on, but 
also on the fact that the siren is currently on.

We can use the state of a SR latch to remember the state of the siren (i.e., the out-
put of the latch will drive the siren). The state of the latch is driven by the conditions 
of the input switches. The modified circuit, as shown in Figure 5.4, has an SR latch, in 
addition to its original combinational circuit, in order to remember the current state 
of the siren. The latch is set from the output of the combinational circuit at S. Because 
S, the output from the combinational circuit, is active-high and the latch’s set signal 
S r is active-low, therefore an inverter is needed to connect between these two points. 
The latch’s reset is connected to the master switch so that the siren can be turned off  
immediately by the master switch. The siren is now connected to the output of the latch 
at Q instead of from the output of the combinational circuit at S.

A sample timing trace for the operation of  this circuit is shown in Figure 5.5. At 
time 0, the siren is off, even though the door switch is on, because the master switch 
is off. At time 200 ns, the master switch is turned on, but the siren remains off. At 
time 300 ns, the siren is turned on by the door switch because the master switch is 
also on. At time 500 ns, both the door and the vibration switches are off, but the siren 
remains on because it remembers that it was turned on previously and the master 
switch is still on. Finally, the siren is turned off  by the master switch at time 600 ns.

FIGURE 5.4 Modified car security system circuit with memory.
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5.4 SR Latch with Enable
The SR latch is sensitive to its inputs all the time. In other words, Q will always change 
when either S or S or S R is asserted. It is sometimes useful to be able to disable the inputs 
so that asserting them will not cause the latch to change state, but to keep its current 
state. Because this is achieved by de-asserting both S and S and S R, so what we want is just 
one enable signal that will de-assert them both. The SR latch with enable (also known 
as a gated SR latch) shown in Figure 5.6(a) accomplishes this goal by adding two 
extra NAND gates to the original NAND-gate implementation of  the latch. These two 
new NAND gates are controlled by the enable input, E, which determines whether the 
latch is enabled or disabled. When E 5 1, the latch is enabled and the circuit behaves 
like the normal NAND-gate implementation of the SR latch, except that the new S and S and S
R inputs are active-high rather than active-low. When E 5 0, the latch is disabled 
because S r 5 R r 5 1, and the latch will remain in its previous state, regardless of the 
S and S and S R inputs. The truth table and the logic symbol for the SR latch with enable are 
shown in Figures 5.6(b) and (c), respectively.

A typical operation of  the latch is shown in the sample trace in Figure 5.6(d). 
Between t0 and t1, E 5 0, so changing the S and S and S R inputs does not affect the output. 
Between t1 and t2, E 5 1, and the trace is similar to the trace of Figure 5.2(d), except 
that the input signals are inverted.

5.5 D Latch
Recall from Section 5.2 that the disadvantage with the SR latch is that we need to ensure 
that the two inputs S r and R r, are never de-asserted at exactly the same time, and we 
said that we can guarantee this by not having both of them asserted at the same time. 
This situation is prevented in the D latch by adding an inverter between the original S r
and R r inputs. This way, S r and R r will always be inverses of each other, and so, they 
will never be asserted together. The circuit using NAND gates and the inverter is shown in 
Figure 5.7(a). There is now only one input D (for data). When D 5 0, then S r 5 1 and 
R r 5 0, so this is similar to resetting the SR latch by making Q 5 0. Similarly, when 
D 5 1, then S r 5 0 and R r 5 1, and Q will be set to 1. From this observation, we see 

FIGURE 5.5 Sample timing trace for the modified car security system circuit with memory.
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that Qnext always gets the same value as the input D and is independent of the current 
value of Q. Hence, we obtain the truth table for the D latch, as shown in Figure 5.7(b).

Comparing the truth table for the D latch shown in Figure 5.7(b) with the truth 
table for the SR latch shown in Figure 5.2(b), it is obvious that we have eliminated 
not just one, but three rows, where S r 5 R r. The reason for adding the inverter to the 
SR-latch circuit was to eliminate the row where S r 5 R r 5 0. However, we still need 
to have the other two rows where S r 5 R r 5 1 in order for the circuit to remember its 

FIGURE 5.6 SR latch with enable: (a) circuit using NAND gates; (b) truth table; (c) logic 
symbol; (d) sample trace.
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FIGURE 5.7 D latch: (a) circuit using NAND gates; (b) truth table; (c) logic symbol.
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current value. By not being able to set both S r and R r to 1, this D-latch circuit has now 
lost its ability to remember. Qnext cannot remember the current value of Q, instead, 
it will always follow D. The result is like having a piece of wire with no memory—the 
output is always the same as the input.

5.6 D Latch with Enable
In order to make the D latch remember the current value, we need to connect Q
(the current state value) back to the input D, thus creating another feedback loop. 
Furthermore, we need to be able to select whether to loop Q back to D or input a new 
value for D. Otherwise, like the bistable element, we will not be able to change the state 
of the circuit. We could do something similar to what we did with the SR latch, but 
we will do something different. One way to achieve this is to use a 2-input multiplexer 
to select whether to feedback the current value of Q or pass an external input back to 
D. The circuit for the D latch with enable (also known as a gated D latch) is shown in 
Figure 5.8(a). The external input becomes the new D input, the output of the multi-
plexer is connected to the original D input, and the select line of the multiplexer is the 
enable signal E.

When the enable signal E is asserted E is asserted E 1E 5 1 2 , the external D input passes through 
the multiplexer, and so Qnext (i.e., the output Q) follows the D input. On the other hand, 
when E is de-asserted E is de-asserted E 1E 5 0 2 , the current value of Q loops back as the input to the 
circuit, and so Qnext retains its last value independent of the D input.

When the latch is enabled, the latch is said to be opened, and the path from the 
input D to the output Q is transparent. In other words, Q follows D. Because of  this 
characteristic, the D latch with enable circuit is often referred to as a transparent 
latch. When the latch is disabled, it is closed, and the latch remembers its current 
state. The truth table and the logic symbol for the D latch with enable are shown in 
Figures 5.8(b) and (c). A sample trace for the operation of  the D latch with enable 
is shown in Figure 5.8(d). Between t0 and t1, the latch is enabled with E 5 1, so the 
output Q follows the input D. Between t1 and t2, the latch is disabled, so Q remains 
stable even when D changes.

An alternative way to construct the D latch with enable circuit is shown in 
Figure 5.9. Instead of  using a 2-input multiplexer, as shown in Figure 5.8(a), we 
start with the SR latch with enable circuit of  Figure 5.6(a), and connect the S and S and S
R inputs together with an inverter. The functional operations of  these two circuits 
(Figures 5.8(a) and 5.9) are identical.

5.7 Verilog and VHDL Code for Memory Elements
Neither Verilog nor VHDL has any explicit object for defining a memory element. 
Instead, the semantics of the language provide for signals to be interpreted as a mem-
ory element. In other words, the memory element is declared depending on how these 
signals are assigned.
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Consider the VHDL code in Figure 5.10. If  Enable is 1, then Q gets the value of 
D; otherwise, Q gets a 0. In this code, Q is assigned a value for all possible outcomes 
of the test in the IF statement. With this construct, a combinational circuit (a 2-to-1 
mux) is produced.

If  we remove the ELSE and the statement in the ELSE part, as shown in Figure 5.11, 
then we have a situation where no value is assigned to Q if  Enable is not 1. The key 
point here is that VHDL semantics stipulate that, in cases where the code does not 
specify a value for a signal, the signal should retain its current value. In other words, 
the signal must remember its current value, and in order to do so, a memory element 
is implied.

FIGURE 5.9 D latch with enable circuit using four NAND gates.
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FIGURE 5.10 Sample VHDL description of a combinational circuit.

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY no_memory_element IS PORT (
  D, Enable: IN STD_LOGIC;
  Q: OUT STD_LOGIC);
END no_memory_element;

ARCHITECTURE Behavior OF no_memory_element IS
BEGIN
  PROCESS(D, Enable)
  BEGIN
    IF (Enable = '1') THEN
      Q <= D;      
    ELSE
      Q <= '0';
    END IF;
  END PROCESS;
END Behavior;

FIGURE 5.11 VHDL code for a D latch with enable.

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY D_latch_with_enable IS PORT (
  D, Enable: IN STD_LOGIC;
  Q: OUT STD_LOGIC);
END D_latch_with_enable;

ARCHITECTURE Behavior OF D_latch_with_enable IS
BEGIN
  PROCESS(D, Enable)
  BEGIN
    IF (Enable = '1') THEN
      Q <= D;
    END IF;
  END PROCESS;
END Behavior;

5.7.1 VHDL Code for a D Latch with Enable
Figure 5.11 shows the VHDL code for a D latch with enable. If  Enable is 1, then Q gets 
the value of D. However, if  Enable is not 1, the code does not specify what Q should be, 
therefore, Q retains its current value by using a memory element. The process sensitivity 
list includes both D and Enable, because either one of these signals can cause a change 
in the value of the Q output.
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5.7.2 Verilog Code for a D Latch with Enable
Figure 5.12 shows the Verilog code for a D latch with enable. The sensitivity list 
in the always statement includes both D and Enable, because either one of  these 
signals can cause a change in the value of  the Q output. Just like VHDL, Verilog 
does not have any explicit object for defining a memory element. The statement 
Q ,5 D assigns the value of  D to Q. Because of  the if statement, this assignment 
is done only if  the Enable signal is a 1. If  Enable is 0 then no value is assigned to Q, 
and this implies that a memory element (a latch in this case) is needed to remember 
the current value of  Q.

On the other hand, if  there is an else part to the if statement, and Q is also 
assigned a value in the else part, then a combination circuit (a 2-to-1 mux, in this 
case) will be used for Q. Signals that are driven from inside an always block must be 
of type reg. So the use of the reg keyword in the declaration of the Q signal does not 
always mean that Q will use a memory element. Whether Q will use a memory element 
depends only on the structure of the if statement.

Note also the use of the non-blocking assignment 1,1,1 52  statement, which is used 
when modeling sequential circuits inside an always block.

5.8 Clock
Latches are known as level-sensitive because their outputs are affected by their inputs 
as long as they are enabled. Their memory state can change during this entire time 
when the enable signal is asserted. In a computer circuit, however, we do not want the 
memory state to change at different times when the enable signal is asserted. Instead, we 
like to synchronize all of the state changes to happen at precisely the same moment and 
at regular intervals. In order to achieve this, two things are needed: (1) a synchronizing 
signal, and (2) a memory circuit that is not level-sensitive. The synchronizing signal, of 
course, is the clock, and the non-level-sensitive memory circuit is the flip-flop.

The clock is simply a very regular square wave signal, as shown in Figure 5.13. We 
call the edge of the clock signal when it changes from 0 to 1 the rising edge. Conversely, 

FIGURE 5.12 Verilog code for a D latch with enable.

module D_latch_with_enable (
  input D,
  input Enable,
  output reg Q
  );

  always @(D or Enable)
    if (Enable == 1'b1) begin
     Q <= D;// assign value from D to Q
    end
endmodule
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the falling edge of  the clock is the edge when the signal changes from 1 to 0. We will 
use the symbol c  to denote the rising edge and T  for the falling edge. In a computer 
circuit, either the rising edge or the falling edge of the clock can be used as the synchro-
nizing signal for writing data into a memory element, and this edge signal is referred 
to as the active edge of  the clock. In all of our examples, we will use the rising clock 
edge as the active edge. Therefore, at every rising edge, data will be clocked or stored 
into the memory element.

A clock cycle is the time from one rising edge to the next rising edge or from one 
falling edge to the next falling edge. The speed of  the clock, measured in hertz (Hz), is 
the number of clock cycles per second. Typically, the clock speed for a microprocessor 
in an embedded system runs around 50 MHz, while the microprocessor in a personal 
computer runs upward of 2 GHz and higher. A clock period is the time for one clock 
cycle (seconds per cycle), so it is just the inverse of the clock speed.

The maximum speed of the clock is determined by how fast a circuit can produce 
valid results. For example, a 2-to-1 mux will have valid results at its output much sooner 
than, say, an ALU can. Of course, we want the clock speed to be as fast as possible, 
but it can only be as fast as the slowest circuit in the entire system. We want the clock 
period to be the time it takes for the slowest data manipulation circuit (such as the 
ALU) to get its input from a memory element, operate on the data, and then write the 
data back into a memory element as depicted in Figure 5.14.

Because data is written into memory elements at the rising clock edge, therefore, 
all data manipulations must be completed before the rising clock edge so that the 
correct results are stored. Furthermore, shortly after the data is written at the ris-
ing clock edge, it will be available for reading soon after the rising clock edge. This 

FIGURE 5.14 Relationship between the clock period and the time to operate on the 
data.
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FIGURE 5.15 Behavioral Verilog description of a clock divider circuit.

module clock_divider
// 50M/8 = 4 Hz output clock
#(parameter [24:0] half = 25'd6250000)
(
  input clock_in,      // 50MHz input clock
  output reg clock
  );

  reg [24:0] count;

  always @(posedge clock_in) begin
    if (count == half) begin
      count <= 25'd0;
      clock <= ~clock;
      end
    else begin
      count <= count+1;
      end
  end  
endmodule

sequence of  events is referred to as a register transfer because data read from a regis-
ter (or memory element) is operated on and then written back to a register. This will 
be covered in more detail in later sections.

Verilog Code for a Clock Divider
Figure 5.15 shows a behavioral Verilog description of a clock divider circuit that slows 
down a 50 MHz input clock signal to 4 Hz.

VHDL Code for a Clock Divider
Figure 5.16 shows the same clock divider circuit but written in behavioral VHDL.

5.9 D Flip-Flop
We mentioned in the last section that in a computer system, we need to synchronize all 
memory state changes to happen at precisely the same moment. A flip-flop can do just 
that. Unlike the latch, a flip-flop is not level-sensitive, but rather edge-triggered. In other 
words, data gets stored into a flip-flop only at the active edge of the clock. An edge-trig-
gered D flip-flop achieves this by combining in series a pair of D latches. Figure 5.17(a) 
shows a positive edge-triggered D flip-flop where two D latches are connected in series. 
A clock signal Clk is connected to the Clk is connected to the Clk E input of the two latches: one directly, and one E input of the two latches: one directly, and one E
through an inverter.

The first latch is called the master latch. The master latch is enabled when ClClC klkl 5 0
because of the inverter, and so QM follows the primary input QM follows the primary input QM D. However, the signal 
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at QM cannot pass over to the primary output QM cannot pass over to the primary output QM Q, because the second latch (called the slave 
latch) is disabled when ClClC klkl 5 0. When ClClC klkl 5 1, the master latch is disabled, but the slave 
latch is enabled so that the output from the master latch, QM, is transferred to the primary QM, is transferred to the primary QM
output Q. The slave latch is enabled all the while that ClClC klkl 5 1, but its content changes only 
at the rising edge of the clock, because once Clk is 1, the master latch is disabled, and the Clk is 1, the master latch is disabled, and the Clk
input to the slave latch, QM, will be constant. Therefore, when QM, will be constant. Therefore, when QM ClClC klkl 5 1 and the slave latch 
is enabled, the primary output Q will not change because the input Q will not change because the input Q QM is not changing.QM is not changing.QM

The circuit shown in Figure 5.17(a) is called a positive edge-triggered D flip-flop 
because the primary output Q on the slave latch changes only at the rising edge of the 
clock. If  the slave latch is enabled when the clock is low (i.e., with the inverter output 
connected to the E of  the slave latch), then it is referred to as a E of  the slave latch), then it is referred to as a E negative edge-triggered
flip-flop. The circuit is also referred to as a master-slave D flip-flop because of the two 
D latches used in the circuit.

Figure 5.17(b) shows the operation table for the D flip-flop. The c symbol signi-
fies the rising edge of the clock. When Clk is at either 0 or 1, the flip-flop retains its Clk is at either 0 or 1, the flip-flop retains its Clk
current value (i.e., Qnext 5 Q). Qnext changes and follows the primary input D only at 
the rising edge of the clock. The logic symbol for the positive edge-triggered D flip-
flop is shown in Figure 5.17(c). The small triangle at the clock input indicates that the 
circuit is triggered by the edge of the signal, and so it is a flip-flop. Without the small 
triangle, the symbol would be that for a latch. If  there is a circle in front of the clock 

FIGURE 5.16 Behavioral VHDL description of a clock divider circuit.

LIBRARY IEEE;
USE  IEEE.STD_LOGIC_1164.ALL;

ENTITY clock_divider IS
-- 50M/8 = 4 Hz output clock
GENERIC (half: INTEGER := 50000000/8);  
PORT (
  clock_in: IN STD_LOGIC;    -- 50MHz input clock
  clock: BUFFER STD_LOGIC);
END clock_divider;

ARCHITECTURE Behavior OF clock_divider IS
  SIGNAL count: INTEGER RANGE 0 TO half;
BEGIN
  PROCESS
  BEGIN
    WAIT UNTIL clock_in'EVENT and clock_in = '1';
    IF (count = half) THEN
      count <= 0;
      clock <= NOT clock;  -- toggle the clock
    ELSE
      count <= count + 1;
    END IF;
  END PROCESS;
END Behavior;
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line, then the flip-flop is triggered by the falling edge of the clock, making it a negative 
edge-triggered flip-flop. Figure 5.17(d) shows a sample trace for the D flip-flop. Notice 
that when ClClC klkl 5 0, QM follows QM follows QM D, and the output of the slave latch, Q, remains con-
stant. On the other hand, when ClClC klkl 5 1, Q follows QM, and the output of the master QM, and the output of the master QM
latch, QM, remains constant.QM, remains constant.QM

Verilog Code for a D Flip-Flop
Figure 5.18 shows the behavioral Verilog code for a positive edge-triggered D flip-flop. 
To be a positive edge-triggered D flip-flop, Q must follow D only at the rising edge of 
the clock as specified here by the always @ (posedge Clock) statement. The 
posedge keyword means at the rising edge of  the Clock signal. All the statements Clock signal. All the statements Clock
inside the body of this always statement are executed at every rising edge of the clock. 
There is only one statement inside this always block, and that is to assign the value 
from the D input to the Q output.

VHDL Code for a D Flip-Flop
Figure 5.19 shows the behavioral VHDL code for a positive edge-triggered D flip-flop. 
To be a positive edge-triggered D flip-flop, Q must follow D only at the rising edge of 
the clock, as specified here by the condition “Clock' EVENT AND ClClC olol ck 5 '1'.” The 'EVENT

attribute refers to any changes in the qualifying Clock signal. Therefore, when this hapClock signal. Therefore, when this hapClock -
pens and the resulting Clock value is a 1, we have, in effect, a condition for a positive Clock value is a 1, we have, in effect, a condition for a positive Clock

FIGURE 5.17 Master-slave positive edge-triggered D flip-flop: (a) circuit using  
D latches; (b) operation table; (c) logic symbol; (d) sample trace.

D

Clk

Q

Q'

QM

Master Slave

Q

Q'

D

E

Q

Q'

D

E

(a)

Clk

D

QM

Q

t1 t2 t3t0t0t

(d)

Q

Q'

D

Clk

(c)

(b)

Clk D Q QnQnQ ext QnQnQ ext r

0 3 0 0 1

0 3 1 1 0

1 3 0 0 1

1 3 1 1 0

c 0 3 0 1

c 1 3 1 0

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-202



174 CHAPTER 5 seQUentIAL CIRCUIts

or rising clock edge. Again, the code does not specify what is assigned to Q when the 
condition in the IF statement is false, so it implies the use of a memory element. Note 
also that the process sensitivity list contains only the clock signal, because it is the only 
signal that can cause a change in the Q output.

Figure 5.20 compares the different operations between a latch and a flip-flop. In 
Figure 5.20(a), we have a D latch with enable, a positive edge-triggered D flip-flop, and 
a negative edge-triggered D flip-flop, all having the same D input and controlled by 
the same clock signal. Figure 5.20(b) shows a sample trace of the circuit’s operations. 
Notice that the gated D latch, Qa, follows the D input as long as the clock is high 
(between times t0 and t1, and times t2 and t3). The positive edge-triggered flip-flop, Qb,
follows the D input only at the rising edge of the clock at time t2, while the negative 
edge-triggered flip-flop, Qc, follows the D input only at the falling edge of the clock at 
times t1 and t3.

FIGURE 5.18 Behavioral Verilog code for a D flip-flop.

module D_flipflop (
  input Clock,
  input D,
  output reg Q
);

  // execute on rising clock edge
  always @(posedge Clock) begin
      // assign value from D to Q at every rising clock edge
      Q <= D;
  end

endmodule

FIGURE 5.19 Behavioral VHDL code for a positive edge-triggered D flip-flop.

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY D_flipflop IS PORT (
  Clock: IN STD_LOGIC;
  D: IN STD_LOGIC;
  Q: OUT STD_LOGIC);
END D_flipflop;

ARCHITECTURE Behavior OF D_flipflop IS
BEGIN
  PROCESS(Clock)                    -- sensitivity list is used
  BEGIN
    IF (Clock'EVENT AND Clock = '1') THEN
      Q <= D;
    END IF;
  END PROCESS;
END Behavior;
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5.9.1 Alternative Smaller Circuit
Not all master-slave flip-flops are edge-triggered. For instance, using two SR latches to 
construct a master-slave flip-flop results in a flip-flop that is level-sensitive. Conversely, 
an edged-triggered D flip-flop can be constructed using SR latches instead of the mas-
ter-slave D latches.

The circuit shown in Figure 5.21 shows how a positive edge-triggered D flip-flop 
can be constructed using three interconnected SR latches. The advantage of this circuit 
is that it uses only six NAND gates as opposed to eleven gates for the master-slave D flip-
flop shown in Figure 5.17(a). The operation of the circuit is as follows. When ClClC klkl 5 0,
the outputs of  Gates 2 and 3 will be 1 (because 0 NAND x 5 1). With n2 5 n3 5 1,
this will keep the output latch (composed of Gates 5 and 6) in its current state. At the 
same time, n4 5 D r because one input to Gate 4 is n3, which is a 1 (1 NAND x 5 x r). 
Similarly, n1 5 D because n2 5 1, and the other input to Gate 1 is n4, which is D r (again 
1 NAND x 5 x r).

When Clk changes to 1, Clk changes to 1, Clk n2 will be equal to D r because 1 NAND n1 5 n1 r, and n1 5 D.
Similarly, n3 will be equal to D when Clk changes to 1 because the other two inputs to Clk changes to 1 because the other two inputs to Clk
Gate 3 are both D r. Therefore, if  ClClC klkl 5 1 and D 5 0, then n2 (which is equal to D r) will 
be 1, and n3 (which is equal to D) will be 0. With n2 5 1 and n3 5 0, this will de-assert 
S r and assert R r, thus resetting the output latch Q to 0. On the other hand, if  ClClC klkl 5 1
and D 5 1, then n2 (which is equal to D r) will be 0 and n3 (which is equal to D) will 
be 1. This will assert S r and de-assert R r, thus setting the output latch Q to 1. So at the 
rising edge of the Clk signal, Clk signal, Clk Q will follow D.

The setting and resetting of the output latch occurs only at the rising edge of the 
Clk signal, because when Clk signal, because when Clk Clk is at a 1 and remains at a 1, changing Clk is at a 1 and remains at a 1, changing Clk D will not change 

FIGURE 5.20 Comparison of a gated latch, a positive edge-triggered flip-flop, and a 
negative edge-triggered flip-flop: (a) circuit; (b) sample trace.
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n2 or n3. The reason, as noted in the previous paragraph, is that n2 and n3 are always 
inverses of each other. Furthermore, the following argument shows that both n2 and 
n3 will remain constant even if  D changes. Let us first assume that n2 is a 0. If  n2 5 0,
then n3 (the output of Gate 3) will always be a 1 (because 0 NAND x 5 1), regardless of 
what n4 (the third input to Gate 3) may be. Hence, if  n4 (the output of Gate 4) cannot 
affect n3, then D (the input to Gate 4) also cannot affect either n2 or n3. On the other 
hand, if  n2 5 1, then n3 5 0 1n3 5 n2 r 2 . With a 0 from n3 going to the input of Gate 4, 
the output of Gate 4 at n4 will always be a 1 (0 NAND x 5 1), regardless of what D is. 
With the three inputs to Gate 3 being all 1s, n3 will continue to be 0. Therefore, as long 
as ClClC klkl 5 1, changing D will not change n2 or n3. And if  n2 and n3 remain stable, then 
Q also will remain stable for the entire time that Clk is 1.Clk is 1.Clk

5.10 D Flip-Flop with Enable
So far, with the construction of the different memory elements, it seems like every time 
we add a new feature we also lose a feature that we need. The careful reader will have 
noticed that, in building the D flip-flop, we have again lost the most important prop-
erty of a memory element—it can no longer remember its current content. At every 
active edge of the clock, the D flip-flop will load in a new value. So how do we get it 
to remember its current value and not load in a new value?

The answer, of  course, is exactly the same as what we did with the D latch, 
and that is by adding an enable input, E, through a 2-input multiplexer, as shown 
in Figure 5.22(a). When E 5 1, the primary input D signal will pass to the D input 
of  the flip-flop, thus updating the content of  the flip-flop at the active edge. When 
E 5 0, the current content of  the flip-flop at Q is passed back to the D input of  the 

FIGURE 5.21 Positive edge-triggered D flip-flop using SR latches.
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flip-flop, thus keeping its current value. Notice that changes to the flip-flop value 
occur only at the active edge of  the clock. Here, we use the rising clock edge as the 
active edge. The operation table and the logic symbol for the D flip-flop with enable 
are shown in Figures 5.22(b) and (c), respectively.

5.10.1 Asynchronous Inputs
Flip-flops (as we have seen so far) change states only at the rising or falling edge of 
a synchronizing clock signal. Many circuits require the initialization of  flip-flops 
to a known state that is independent of  the clock signal. Sequential circuits that 
change states whenever a change in input values occurs that is independent of  the 
clock are referred to as asynchronous sequential circuits. Synchronous sequential 
circuits, on the other hand, change states only at the active edge of  the clock signal. 
Asynchronous inputs usually are available for both flip-flops and latches, and they 
are used to either set or clear the storage element’s content that is independent of 
the clock.

Figure 5.23(a) shows a gated D latch with asynchronous active-low Set r and ClClC elel ar r
inputs, and (b) is its logic symbol. Figure 5.23(c) is the circuit for the edge-triggered 
D flip-flop with asynchronous Set r and ClClC elel ar r inputs, and (d) is its logic symbol. When 
Set r is asserted (set to 0) the content of the storage element is set to 1 immediately (i.e., 
without having to wait for the next rising clock edge), and when ClClC elel ar r is asserted (set 
to 0) the content of the storage element is set to 0 immediately.

Verilog Code for a D Flip-Flop with Enable and Clear
Figure 5.24 shows the behavioral Verilog code for a positive edge-triggered D flip-flop 
with synchronous Enable and asynchronous active-high Clear. The reason why the 
Clear signal is asynchronous is because it is included in the sensitivity list, whereas 
the Enable signal is synchronous because it is not included in the sensitivity list. When 

FIGURE 5.22 D flip-flop with enable: (a) circuit; (b) operation table; (c) logic symbol.
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the Clear signal changes value, the always block will execute immediately with the 
assignment statement to clear Q. On the other hand, when the Enable signal changes 
value, the always block will not execute immediately, rather, it will execute at the 
rising clock edge. Hence, the assignment of D into Q happens only at the rising clock 
edge and Enable is asserted.

VHDL Code for a D Flip-Flop with Enable and Clear
Figure 5.25 shows the behavioral VHDL code for a positive edge-triggered D flip-
flop with synchronous Enable and asynchronous active-high Clear. The asynchro-
nous Clear input is checked independently of  the clock event. When the Clear input 
is asserted with a 1 (active-high) Q is reset to 0 immediately. If  Enable is asserted 
with a 1, then Q follows D at the rising edge of  the clock; otherwise, Q keeps its 
previous content.

FIGURE 5.23 Storage elements with asynchronous inputs: (a) D latch with active-low 
Set’ and Set’ and Set’ Clear’ (b) logic symbol for (a); (c) edge-triggered D flip-flop with active-low Clear’ (b) logic symbol for (a); (c) edge-triggered D flip-flop with active-low Clear’
Set’ and Set’ and Set’ Clear’ (d) logic symbol for (c).Clear’ (d) logic symbol for (c).Clear’
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FIGURE 5.24 Behavioral Verilog code for a D flip-flop with synchronous active-high 
Enable and asynchronous Clear inputs.

module D_flipflop (
  input Clock,
  input Clear,
  input Enable,
  input D,
  output reg Q
);

  // execute on rising clock edge or Clear
  always @(posedge Clock or posedge Clear) begin
    if (Clear) begin
      Q <= 0;     // assign 0 to Q on clear
    end else if (Enable) begin
      // assign value from D to Q only if Enable is asserted
      Q <= D;        
    end
  end

endmodule

FIGURE 5.25 Behavioral VHDL code for a positive edge-triggered D flip-flop with 
synchronous active-high Enable and asynchronous Clear inputs.Clear inputs.Clear

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY D_flipflop IS PORT (
  Clock: IN STD_LOGIC;
  Clear: IN STD_LOGIC;
  Enable: IN STD_LOGIC;
  D: IN STD_LOGIC;
  Q: OUT STD_LOGIC);
END D_flipflop;

ARCHITECTURE Behavioral OF D_flipflop IS
BEGIN
  PROCESS(Clock,Clear)
  BEGIN
    IF (Clear = '1') THEN
      Q <= '0';
    ELSIF (Clock'EVENT AND Clock = '1') THEN
      IF (Enable = '1') THEN
        Q <= D;
      END IF;
    END IF;
  END PROCESS;
END Behavioral;
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5.11 Description of a Flip-Flop
Combinational circuits can be described with either a truth table or a Boolean equa-
tion. To describe the operation of a flip-flop or any sequential circuit in general, we 
use a characteristic table, a characteristic equation, or a state diagram, as discussed in 
the following subsections.

5.11.1 Characteristic Table
The characteristic table specifies the functional behavior of the flip-flop. It is a simpli-
fied version of the flip-flop’s operational table by listing only how the state changes 
at the active clock edge as shown in Figure 5.26(a). The table has the flip-flop’s input 
signal D, and current state Q listed in the input columns, and the next state Qnext listed 
in the output column. Qnext r is always assumed to be the inverse of Qnext, so it is not 
necessary to include this output column. The clock signal is not included in the table 
either, because it is an automatic signal that we do not modify. Nevertheless, the clock 
signal is always assumed to exist. Furthermore, because all state changes for a flip-flop 
(i.e., changes to Qnext) occur at the active edge of the clock, it is therefore not necessary 
to list the situations from the operation table for when the clock is at a constant value. 
From the operation table for the D flip-flop shown in Figure 5.17(b), we see that there 
are only two rows where Qnext is affected during the rising clock edge. Hence, these are 
the only two rows inserted into the characteristic table.

The characteristic table is used in the analysis of sequential circuits to answer the 
question of  what is the next state, Qnext, when given the current state Q, and input 
signal D (for the D flip-flop).

5.11.2 Characteristic Equation
The characteristic equation is simply the Boolean equation that is derived directly from 
the characteristic table. Like the characteristic table, the characteristic equation spec-
ifies the flip-flop’s next state Qnext, as a function of  its current state Q, and input 
signal D. The D flip-flop characteristic table has only one 1-minterm, which results 
in the simple characteristic equation for the D flip-flop shown in Figure 5.26(b). This 
equation does not include the variable Q because Q contains only “don’t care” values.

5.11.3 State Diagram
A state diagram is a graph with nodes and directed edges connecting the nodes, as 
shown in Figure 5.26(c). The state diagram graphically portrays the operation of the 
flip-flop. The nodes are labeled with the states of  the flip-flop, and the directed edges 
are labeled with the input signals that cause the transition to go from one state of  the 
flip-flop to the next. The state diagram for the D flip-flop has two states, Q 5 0 and 
Q 5 1, which correspond to the two values that the flip-flop can contain. The opera-
tion of the D flip-flop is such that when it is in state 0, it will change to state 1 if  the 
input D is a 1; otherwise, if  the input D is a 0, then it will remain in state 0. Hence, 
there is an edge labeled D 5 1 that goes from state Q 5 0 to Q 5 1, and a second edge 
labeled D 5 0 that goes from state Q 5 0 back to itself. Similarly, when the flip-flop 
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is in state 1, it will change to state 0 if  the input D is a 0; otherwise, it will remain in 
state 1. These two conditions correspond to the remaining two edges that go out from 
state Q 5 1 in the state diagram; one edge going to state Q 5 0 with the label D 5 0, 
and the other edge going back to itself  with the label D 5 1.

5.12 Register
A flip-flop can store only one bit of data. When we want to store a byte of data, we 
need to combine eight flip-flops together and have them work together as a unit. A 
register is just a circuit with two or more D flip-flops connected together in such a way 
that they all work together as one unit and are synchronized by the same clock and 
enable signals. The only difference is that each flip-flop in the group is used to store a 
different bit of the data.

Figure 5.27(a) shows a 4-bit register with synchronous Load and asynchronous Load and asynchronous Load
Clear. Four D flip-flops with active-high enable and asynchronous clear are used. 
Notice in the circuit that the control inputs Clk, E, and Clear for all of the flip-flops 
are connected in common to Clock, Load, and Clear, respectively, of  the register 
signals; so that when a particular input is asserted, all of the flip-flops will behave in 
exactly the same way. The 4-bit input data is connected to D0 through D3, while Q0
through Q3 serve as the 4-bit output data for the register. When the active-high Load
signal is asserted (i.e., Load 5 1), the data presented on the D lines are stored into the 
register (the four flip-flops) at the next rising edge of the clock signal. When Load is Load is Load
de-asserted, the content of the register remains unchanged. The register can be cleared 
asynchronously (i.e., setting all of the Qis to 0 immediately, without having to wait for 
the next active clock edge) by asserting the Clear line. The content of the register is 
always available on the Q output lines, so no control line is required for reading the 
data from the register. Figures 5.27(b) and (c) show the operation table and the logic 
symbol, respectively, for this 4-bit register.

FIGURE 5.26 Description of a D flip-flop: (a) characteristic table; (b) characteristic 
equation; (c) state diagram.
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Verilog Code for a Register
Figure 5.28 shows the Verilog code for the 4-bit register with active-high synchro-
nous Load and asynchronous Load and asynchronous Load Clear signals. Notice that the coding is similar to that 
for the single D flip-flop; the main difference is that the data inputs and outputs are 
4 bits wide.

VHDL Code for a Register
Figure 5.29 shows the VHDL code for the 4-bit register with active-high synchronous 
Load and asynchronous Load and asynchronous Load Clear signals.

5.13 Register File
When we want to store several numbers concurrently in a digital circuit, we can use 
several individual registers in the circuit. However, there are times when we want to 
treat these registers as a unit, similar to addressing the individual locations of an array 

FIGURE 5.27 A 4-bit register with synchronous Load and asynchronous Load and asynchronous Load Clear: (a) circuit;  
(b) operation table; (c) logic symbol.
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FIGURE 5.28 Behavioral Verilog code for a 4-bit register.

module register
#(parameter n = 4)     // allow n to be changed
(
  input Clock, Clear, Load,
  input [n-1:0] D,
  output reg [n-1:0] Q
);

  always @ (posedge Clock or posedge Clear) begin
    if (Clear == 1) begin
      Q <= {n {1'b0 } };  // n bits of 0
    end else if (Load) begin
      Q <= D;
    end
  end

endmodule

FIGURE 5.29 Behavioral VHDL code for a 4-bit register.

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY Reg IS
GENERIC (n: INTEGER := 4);
PORT (
  Clock, Clear, Load: IN STD_LOGIC;
  D: IN STD_LOGIC_VECTOR(n-1 DOWNTO 0);
  Q: OUT STD_LOGIC_VECTOR(n-1 DOWNTO 0));
END Reg;

ARCHITECTURE Behavior OF Reg IS
BEGIN
  PROCESS(Clock, Clear)
  BEGIN

IF (Clear = '1') THEN
     Q <= (OTHERS => '0');

ELSIF (Clock'EVENT AND Clock = '1') THEN
      IF (Load = '1') THEN
        Q <= D;
      END IF;

END IF;
  END PROCESS;
END Behavior;

or memory. So, instead of having several individual registers, we want to have an array 
of  registers. This array of  registers is known as a register file. In a register file, all 
the respective control signals for the individual registers are connected in common. 
Furthermore, all of the respective data input and output lines for all of the registers 
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also are connected in common. For example, the Load lines for all of the registers are Load lines for all of the registers are Load
connected together, and all of the D3 data lines for all of the registers are connected 
together. So the register file has only one set of input lines and one set of output lines 
for all of the registers. In addition, address lines are used to specify which register in 
the register file is to be accessed.

In a microprocessor circuit requiring an ALU, the register file usually is used for the 
source operands of the ALU. Because the ALU usually takes two input operands, we 
like the register file to be able to output two values from possibly two different locations 
of the register file at the same time. So, a typical register file will have one write port 
and two read ports. All three ports will have their own enable and address lines. When 
the read enable line is de-asserted, the read port will output a 0. On the other hand, 
when the read enable line is asserted, the content of the register specified by the read 
address lines is passed to the output port. The write enable line is used to load a value 
into the register specified by the write address lines.

The logic symbol for a 4 3 8 register file (four registers, each being 8 bits wide) is 
shown in Figure 5.30. The 8-bit write port is labeled In, and the two 8-bit read ports 
are labeled Port A and Port B. WE is the active-high write enable line. To write a value WE is the active-high write enable line. To write a value WE
into the register file, this line must be asserted. The WAWAW 1 and WAWAW 0 are the two address 
lines for selecting the write location. Because there are four locations in this register 
file, two address lines are needed. The RAE line is the read enable line for RAE line is the read enable line for RAE Port A. The 
two read address lines for Port A are RAA1 and RAA0. For Port B, we have the Port B
enable line, RBE, and the two address lines, RBA1 and RBA0.

The register circuit from Figure 5.27 does not have any control for the reading of 
the data to the output port. In order to control the output of data, we can use a 2-input 
AND gate to enable or disable each of the data output lines, Qi. We want to control all 
the data output lines together, therefore, one input from all of the 2-input AND gates are 
connected in common. When this common input is set to a 0, all of the AND gates will 
output a 0. When this common input is set to a 1, the output for all the AND gates 
will be the value from the other input. An alternative to using AND gates to control 
the read ports is to use tri-state buffers. Instead of outputting a 0 when disabled, the 
tri-state buffers will have a high impedance and output the Z value.Z value.Z

FIGURE 5.30 Logic symbol for a 4 3 8 register file.
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Our register file has two read ports, that is, two output controls for each register. 
So, instead of having just one 2-input AND gate per output line, Qi, we need to connect 
two AND gates to each output line: one for Port A, and one for Port B. An 8-bit wide 
register file cell circuit will have eight AND gates for Port A, and another eight AND gates 
for Port B, as shown in Figure 5.31. AE and AE and AE BE are the read enable signals for BE are the read enable signals for BE Port 
A and Port B, respectively. For each read port, the read enable signal is connected in 
common to one input of all of the eight AND gates. The second input from each of the 
eight AND gates connects to the eight output lines, Q0 to Q7.

For a 4 3 8 register file, we need to use four 8-bit register file cells. In order to 
select which register file cell we want to access, three decoders are used to decode the 
addresses: WAWAW 1, WAWAW 0, RAA1, RAA0, RBA1, and RBA0. One decoder is used for the 
write addresses, WAWAW 1 and WAWAW 0; one for the Port A read addresses, RAA1 and RAA0;
and one for the Port B read addresses, Port B read addresses, Port B RBA1 and RBA0. The decoders’ outputs are used 
to assert the individual register file cell’s write line, Load, and read enable lines, Load, and read enable lines, Load AE, 
and BE. The complete circuit for the 4 3 8 register file is shown in Figure 5.32. The 
respective read ports from each register file cell are connected to the external read port 
through a 4-input 3 8-bit OR gate.

For example, to read from Register 3 through Port B, the RBE line has to be asserted, RBE line has to be asserted, RBE
and the Port B address lines Port B address lines Port B RBA1 and RBA0 have to be set to 11 (for Register 3). The data 
from Register 3 will be available immediately on Port B. To write a value to Register 2, 
the write address lines WAWAW 1 and WAWAW 0 are set to 10, and then the write enable line WE is WE is WE
asserted. The data at input D is then written into Register 2 at the next active (rising) clock 
edge. Because all three decoders can be enabled at the same time, the two read operations 
and the write operation can occur simultaneously.

In terms of the timing issues, the data on the read ports is available immediately 
after the read enable line is asserted, whereas, the write occurs at the next active (rising) 
edge of the clock. Because of this, the same register can be accessed for both reading 
and writing at the same time; in other words, the read and write enable lines can be 
asserted at the same time using the same read and write address. When this happens, 
the value that is currently in the register is read through the read port, and a new value 
will be written into the register at the next rising clock edge. This timing is shown in 
Figure 5.33. The important point to remember is that when the read and write oper-
ations are asserted in the same clock cycle on the same register, the read operation 

FIGURE 5.31 An 8-bit wide register file cell with one write port and two read ports.
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FIGURE 5.32 A 4 3 8 register file circuit with one write port and two read ports.
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always reads the current value stored in the register and never the new value that is to 
be written in by the write operation. The new value written in is available only after 
the next rising clock edge.

Verilog Code for a Register File
The Verilog code for the 4 3 8 register file is shown in Figure 5.34. Four internal reg-
isters are used to save the contents of the four register file locations. The main code is 
composed of three always blocks: two for the two read ports and one for the write 

FIGURE 5.34 Verilog code for a 4 3 8 register file with one write port and two read 
ports. (continued on next page)

// a 4-location x 8-bit register file
module regfile (
  input Clock,
  input WE,
  input [1:0] WA,
  input [7:0] D,
  input RAE, RBE,
  input [1:0] RAA, RBA,
  output reg [7:0] PortA,
  output reg [7:0] PortB
);

  reg [7:0]    reg0, reg1, reg2, reg3;

  // write
  always @ (posedge clock) begin
    if (WE)
      case (WA)
        0: reg0 <= D;
        1: reg1 <= D;
        2: reg2 <= D;
        3: reg3 <= D;
      endcase
  end

  // continuously output Port A
  always @ (RAA, RAE) begin
    if (RAE) begin
      case (RAA)
        0: PortA <= reg0;
        1: PortA <= reg1;
        2: PortA <= reg2;
        3: PortA <= reg3;
        default: PortA <= 8'h00;
      endcase
    end else begin
      PortA <= 8'h00;
    end
  end
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port. These three always blocks are similar to three concurrent statements in that they 
are executed in parallel.

VHDL Code for a Register File
The VHDL code for the 4 3 8 register file is shown in Figure 5.35. The main code is 
composed of three processes: the write process and the two read port processes. These 
three processes are similar to three concurrent statements in that they are executed in 
parallel. The write process is sensitive to the clock, and because of the IF clock stateclock stateclock -
ment in the process, a write occurs only at the rising edge of the clock signal. The two 
read port processes are not sensitive to the clock but only to the read enable and read 
address signals. So the read data is available immediately when these lines are asserted. 
The function CONV_INTEGER(WA) converts the STD_LOGIC_VECTOR WA to an integer so 
that the address can be used as an index into the RF array.RF array.RF

5.14 Memories
Memories are large storage areas used in a computer system to store both data and 
instructions. They are usually separate components located external to the microproces-
sor. Registers and register files, on the other hand, are usually much smaller in capacity 
and are incorporated as part of  the datapath inside the microprocessor. There are 
basically two types of memories, volatile and nonvolatile. Volatile memories are those 
that will lose their contents when power is removed, whereas nonvolatile memories 
will retain their contents even without power. Some common nonvolatile memories 
include read only memory (ROM), electrically erasable programmable read only mem-
ory (EEPROM), and flash memory. Common volatile memories include static and 

  // output Port B
  always @ (RBA, RBE) begin
    if (RBE) begin
      case (RBA)
        0: PortB <= reg0;
        1: PortB <= reg1;
        2: PortB <= reg2;
        3: PortB <= reg3;
        default: PortB <= 8'h00;
      endcase
    end else begin
      PortB <= 8'h00;
    end
  end

endmodule

FIGURE 5.34 Verilog code for a 4 3 8 register file with one write port and two read 
ports. 

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-202



5.14 MeMoRIes 189

FIGURE 5.35 VHDL code for a 4 3 8 register file with one write port and two read 
ports. (continued on next page)

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.STD_LOGIC_UNSIGNED.ALL; -- needed for CONV_INTEGER()

ENTITY regfile IS PORT(
  Clock: IN STD_LOGIC;                         --clock
  WE: IN STD_LOGIC;                            --write enable
  WA: IN STD_LOGIC_VECTOR(1 DOWNTO 0);         --write address
  D: IN STD_LOGIC_VECTOR(7 DOWNTO 0);          --input
  RAE, RBE: IN STD_LOGIC;             --read enable ports A & B
                                      --read address ports A & B
  RAA, RBA: IN STD_LOGIC_VECTOR(1 DOWNTO 0);
  --output ports A & B
  PortA, PortB: OUT STD_LOGIC_VECTOR(7 DOWNTO 0));
END regfile;

ARCHITECTURE Behavioral OF regfile IS
  SUBTYPE reg  IS STD_LOGIC_VECTOR(7 DOWNTO 0);
  TYPE  regArray IS ARRAY(0 TO 3) OF reg;
  SIGNAL  RF: regArray;               --register file contents
BEGIN
  WritePort: PROCESS (clock)
  BEGIN
    IF (clock'EVENT AND clock = '1') THEN
      IF (WE = '1') THEN
        -- fn to convert from vector to integer
        RF(CONV_INTEGER(WA)) <= D;  
      END IF;
    END IF;
  END PROCESS;

  ReadPortA: PROCESS (RAA, RAE)
  BEGIN
   -- Read Port A
   IF (RAE = '1') THEN
      -- fn to convert from vector to integer
      PortA <= RF(CONV_INTEGER(RAA)); 
   ELSE
      PortA <= (OTHERS => '0');
    END IF;
  END PROCESS;

  ReadPortB: PROCESS (RBE, RBA)
  BEGIN
    -- Read Port B
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dynamic random access memory (RAM.) Both types of memories are usually needed 
in a computer system.

We can make memory the same way we make the register file but with more stor-
age locations. However, there are several reasons why we do not want to. One reason 
is that we usually want a lot of memory and we want it to be inexpensive, so we need 
to make each memory cell as small as possible. The tradeoff for this is that memory 
access is usually much slower than register access. Another reason is that we want to 
use a common bidirectional data bus both to read data from and to write data to the 
memory. This implies that the memory circuit should have just one data port (and not 
two or three like the register file) for both reading and writing of data.

5.14.1 ROM
ROM is nonvolatile. Because ROM retains its memory contents even when power is 
removed, it typically is used to store the boot loader for the operating system, or the 
entire operating system if  it is small enough. When a computer system is first turned 
on, it needs to already have instructions to execute, and therefore, the computer system 
needs to have nonvolatile memory containing the initial instructions for it to execute. 

    IF (RBE = '1') THEN
      -- fn to convert from vector to integer
      PortB <= RF(CONV_INTEGER(RBA)); 
    ELSE
      PortB <= (OTHERS => '0');
    END IF;
  END PROCESS;
END Behavioral;

FIGURE 5.35 VHDL code for a 4 3 8 register file with one write port and two read 
ports. 

FIGURE 5.36 A 2n 3 m ROM chip: (a) logic symbol; (b) operation table.
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The address of this memory needs to start at zero because this is the value in the pro-
gram counter (PC) when it is reset or initialized. ROM can only be read from; no write 
operations can be performed on it.

The logic symbol for a typical ROM chip is shown in Figure 5.36(a). It has a set 
of data lines, Di, and a set of address lines, Ai. The number of data lines is dependent 
on how many bits are used for storing data in each memory location. The number of 
address lines is dependent on how many locations are in the memory chip. For example, 
a 512-byte memory chip will have eight data lines 18 bits 5 1 byte 2  and nine address 
lines 129 5 512 2 .

The data lines output the data from the memory location that is specified by the 
address lines. In addition to the data and address lines, there is also an output enable, 
OE, control line. Data from a memory location is available on the data lines only when 
OE is asserted. There is no clock signal, so the output of the data is not synchronized OE is asserted. There is no clock signal, so the output of the data is not synchronized OE
to the clock.

HDL Code for ROM
The behavioral Verilog and VHDL descriptions of a ROM chip are shown in Figures 5.37 
and 5.38, respectively. At the behavioral level, the HDL code simply uses a two-dimensional 
array to construct the ROM and to specify its size. In the two figures, a 16-location 3
8-bit wide ROM is created. Assignment statements are used to initialize each of the 
memory locations with an 8-bit bit string. In this ROM description, we have initialized 
the ROM with the instructions that will be executed by our EC-1 microprocessor to be 
discussed in Chapter 8.

FIGURE 5.37 Verilog code for a 16 3 8 ROM.

module rom
#(parameter size=4)
(
  input [size-1:0] Address,
  input OE,
  output [7:0] Data
);

  reg [7:0] mem[0:2**size-1];

  // initialize ROM with EC-1 countdown program
  initial begin
    mem[0] <= 8'b01100000;  // IN A
    mem[1] <= 8'b10000000;  // OUT A
    mem[2] <= 8'b10100000;  // DEC A
    mem[3] <= 8'b11000001;  // JNZ 0001
    mem[4] <= 8'b11111111;  // HALT
  end

  assign Data = (OE) ? mem[Address] : 8'bz;

endmodule
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5.14.2 RAM
Unlike ROM, RAM is volatile, and capable of both reading and writing data. The logic 
symbol, showing all of the connections for a typical RAM chip is shown in Figure 5.39(a). 
There is a set of data lines, Di, and a set of address lines, Ai. The bidirectional data lines 
serve for both input and output of the data to the location that is specified by the address 
lines. The number of data lines is dependent on how many bits are used for storing data in 
each memory location. The number of address lines is dependent on how many locations 
are in the memory chip. For example, a 512-byte memory chip will have eight data lines 
18 bits 5 1 byte 2  and nine address lines 129 5 512 2 .

The operation of the RAM chip is shown in Figure 5.39(b). In addition to the 
data and address lines, there are usually two control lines: chip enable CE, and write 
enable WR. In order for a microprocessor to access memory, either with the read oper-
ation or with the write operation, the CE line must first be asserted. Asserting the CE line must first be asserted. Asserting the CE CE
line enables the entire memory chip. The active-high WR line selects which of the two WR line selects which of the two WR

FIGURE 5.38 VHDL code for a 16 3 8 ROM.

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.STD_LOGIC_UNSIGNED.ALL;   -- needed for CONV_INTEGER()

ENTITY rom IS
GENERIC (size: INTEGER := 4);
PORT(
  Address: IN STD_LOGIC_VECTOR(size-1 DOWNTO 0);
  OE: IN STD_LOGIC;
  Data: OUT STD_LOGIC_VECTOR(7 DOWNTO 0));
END rom;

ARCHITECTURE Behavioral OF rom IS
  TYPE mem_array IS ARRAY(0 TO (2**size)-1)OF 
    STD_LOGIC_VECTOR(7 DOWNTO 0);
  -- initialize ROM with EC-1 countdown program
  CONSTANT mem: mem_array := (
        "01100000",  -- IN A
        "10000000",  -- OUT A
        "10100000",  -- DEC A
        "11000001",  -- JNZ 0001
        "11111111",  -- HALT
        "00000000","00000000","00000000","00000000","00000000",

"00000000","00000000","00000000","00000000","00000000",
"00000000"

        );
BEGIN

Data <= mem(CONV_INTEGER(Address)) WHEN OE = '1' ELSE 
(OTHERS => 'Z');

END Behavioral;
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memory operations is to be performed. Setting WR to a 0 selects the read operation, 
and data from the memory is retrieved. Setting WR to a 1 selects the write operation, WR to a 1 selects the write operation, WR
and data from the microprocessor is written into the memory. The memory location in 
which the read and write operations are to take place, of course, is selected by the value 
of the address lines.

Notice in Figure 5.39(a) that the RAM chip does not require a clock signal, because 
neither the read operation nor the write operation is synchronized to the global system 
clock. Instead, the data operations are synchronized to the two control lines, CE and CE and CE
WR. Figure 5.40(a) shows the timing diagram for a memory write operation. The write 
operation begins with a valid address on the address lines, followed immediately by the 
CE line being asserted. Shortly after, valid data must be present on the data lines, and CE line being asserted. Shortly after, valid data must be present on the data lines, and CE
then the WR line is asserted. As soon as the WR line is asserted, the data that is on the 
data lines is written into the memory location that is addressed by the address lines.

A memory read operation also begins with setting a valid address on the address 
lines, followed by CE going high. The CE going high. The CE WR line then is pulled low, and shortly after, valid 
data from the addressed memory location are available on the data lines. The timing 
diagram for the read operation is shown in Figure 5.40(b).

Each bit in a static RAM chip is stored in a memory cell similar to the circuit 
shown in Figure 5.41(a). The main component in the cell is a D latch with enable. A 
tri-state buffer is connected to the output of the D latch so that it can be read from 
selectively. The Cell enable signal is used to enable the memory cell for both reading 
and writing. For reading, the Cell enable signal is used to enable the tri-state buffer. 
For writing, the Cell enable and Write enable signals are used together to enable the 
D latch so that the data on the Input line is latched into the cell. The logic symbol for 
the memory cell is shown in Figure 5.41(b).

To create a 4 3 4 static RAM chip, we need 16 memory cells forming a 4 3 4 grid, 
as shown in Figure 5.42. Each row forms a single storage location, and the number of 
memory cells in a row determines the bit width of each location. So all of the memory 
cells in a row are enabled with the same address. Again, a decoder is used to decode the 
address lines, A0 and A1. In this example, a 2-to-4 decoder is used to decode the four 
address locations. The CE signal is for enabling the chip, specifically to enable the read CE signal is for enabling the chip, specifically to enable the read CE

FIGURE 5.39 A 2n 3 m RAM chip: (a) logic symbol; (b) operation table.
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FIGURE 5.40 Memory timing diagram: (a) write operation; (b) read operation.
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FIGURE 5.41 Memory cell: (a) circuit; (b) logic symbol.

and write functions through the two AND gates. The internal WE signal, asserted when WE signal, asserted when WE
both the CE and CE and CE WR signals are asserted, is used to assert the Write enable signals 
for all of the memory cells. The data comes in from the external data bus, Di, through 
the input buffer and to the Input line of each memory cell. An input buffer is used for 
each data line so that the external signal coming in needs to drive only one device (the 
buffer) rather than having to drive several devices (i.e., all of the memory cells in the 
same column). The row of memory cells into which data are actually written depend 
on the given address. The read operation requires CE to be asserted and CE to be asserted and CE WR to be 
de-asserted. Which will assert the internal RE signal, which in turn will enable the four RE signal, which in turn will enable the four RE
output tri-state buffers at the bottom of the circuit diagram. Again, the location that 
is read from is selected by the address lines.

HDL Code for RAM
The behavioral Verilog and VHDL code for a typical RAM with a single bidirectional 
data bus are shown in Figures 5.43 and 5.44, respectively. The bidirectional data bus is 
declared as inout. The bidirectional data bus is tri-stated when the RAM is disabled 
with CECEC 5 0.
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FIGURE 5.42 A 4 3 4 RAM chip circuit.
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FIGURE 5.43 Verilog code for a typical RAM. (continued on next page)

module ram
#(parameter size=5)
(
  input CE, WR, OE,  // chip enable; write; output enable
  input [size-1:0] Address,
  inout [7:0] Data  // bi-directional data bus
);

  reg [7:0] mem[0:2**size-1];
  reg [7:0] data_out;  // internal data

  // Tri-state buffer control
  assign Data = (CE && OE && ~WR) ? data_out : 8'bz;

  // write block
  always @(CE or WR or Data or Address) begin
    if (CE && WR) begin
      mem[Address] = Data;
    end
  end
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  // read
  always @(CE or WR or OE or Address) begin
    if (CE && ~WR && OE) begin
      data_out = mem[Address];
    end
  end
endmodule

FIGURE 5.43 Verilog code for a typical RAM. 

FIGURE 5.44 VHDL code for a typical RAM.

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.STD_LOGIC_unsigned.ALL;  -- needed for CONV_INTEGER()

ENTITY ram IS
GENERIC (size: INTEGER := 5);
PORT (
  CE, WR:  IN STD_LOGIC;
  Address: IN STD_LOGIC_VECTOR(size-1 DOWNTO 0);
  Data: INOUT STD_LOGIC_VECTOR(7 DOWNTO 0));
END ram;

ARCHITECTURE Behavioral OF ram IS
  TYPE memtype IS ARRAY(0 TO 2**size-1) OF 
    STD_LOGIC_VECTOR(7 DOWNTO 0);
  -- initialize all bits to 0
  SIGNAL mem: memtype := (OTHERS => (OTHERS => '0'));  

BEGIN
  PROCESS(CE,WR,Address)
  BEGIN
    IF (CE = '0') THEN
      Data <= (OTHERS => 'Z');
    ELSE
      IF (WR'EVENT AND WR = '0') THEN
        mem(CONV_INTEGER(Address)) <= Data;  -- write
      END IF;
      IF (WR = '0') THEN
        Data <= mem(CONV_INTEGER(Address));  -- read
      ELSE
        Data <= (OTHERS => 'Z');
      END IF;
    END IF;
  END PROCESS;
END Behavioral;

A computer system with an operating system allows the user to enter program 
instructions into the RAM, and then run the program. Our EC-2 computer system to 
be discussed in Chapter 8, however, does not have an operating system, so our RAM 
needs to be initialized with our program instructions on reset. Furthermore, to simplify 
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the construction of our EC-2 microprocessor, we will use a RAM with separate read 
and write data ports. The behavioral Verilog and VHDL description of the RAM used 
in our EC-2 are shown in Figures 5.45 and 5.46, respectively.

5.15 Shift Registers
Similar to the combinational shifter and rotator circuits, there are the equivalent 
sequential shifter and rotator circuits. The circuits for the shift and rotate operations 
are constructed exactly the same. The only difference in the sequential version is that 
the operations are performed on the value that is stored in a register rather than directly 

FIGURE 5.45 Verilog code for the 32 3 8 RAM used in the EC-2 microprocessor.

module ram(
#(parameter size=5)
  input Clock,
  input Reset,
  input WE,
  input [size-1:0] Address,
  input [7:0] D,
  output reg [7:0] Q
);

  reg [7:0] mem[2**size-1:0];

  always @(posedge Clock or posedge Reset) begin
    // this reset block and the Reset signal
    // is only needed to initialize the RAM locations
    if (Reset) begin
      // initialize RAM with EC-2 countdown program
      mem[0] <= 8'b10000000;  // IN A
      mem[1] <= 8'b01111111;  // SUB A,11111
      mem[2] <= 8'b10100100;  // JZ 00100
      mem[3] <= 8'b11000001;  // JPOS 00001
      mem[4] <= 8'b11111111;  // HALT
      mem[31]<= 8'b00000001;  // storage for the constant 1
    end else begin
      // write
      if (WE)
        mem[Address] <= D;  
    end
  end  // always

  // read
  always @ (Address) begin
    Q <= mem[Address];
  end
endmodule

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-202



198 CHAPTER 5 seQUentIAL CIRCUIts

FIGURE 5.46 VHDL code for the 32 3 8 RAM used in the EC-2 microprocessor.

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.STD_LOGIC_UNSIGNED.ALL;   -- needed for CONV_INTEGER()

ENTITY ram IS
GENERIC (size: INTEGER := 5);
PORT(
  Clock: IN STD_LOGIC;
  Reset: IN STD_LOGIC;
  WE: IN STD_LOGIC;
  Address: IN STD_LOGIC_VECTOR(size-1 DOWNTO 0);
  D: IN STD_LOGIC_VECTOR(7 DOWNTO 0);
  Q: OUT STD_LOGIC_VECTOR(7 DOWNTO 0));
END ram;

ARCHITECTURE Behavioral OF ram IS
  TYPE mem_type IS ARRAY(0 to (2**size)-1) OF 
    STD_LOGIC_VECTOR(7 DOWNTO 0);
  SIGNAL mem: mem_type;
BEGIN
  PROCESS (Clock, Reset) IS
  BEGIN
    -- this reset block and the Reset signal
    -- is only needed to initialize the RAM locations
    IF (Reset = '1') THEN
      -- initialize RAM with EC-2 countdown program
      mem(0) <= "10000000";   -- IN A
      mem(1) <= "01111111";   -- SUB A, 11111
      mem(2) <= "10100100";   -- JZ 00100
      mem(3) <= "11000001";   -- JPOS 00001
      mem(4) <= "11111111";   -- HALT
      mem(31) <= "00000001";  -- storage for the constant 1
    ELSIF RISING_EDGE(Clock) THEN
      -- write
      IF (WE = '1') THEN
        mem(CONV_INTEGER(Address)) <= D;
      END IF;
    END IF;
  END PROCESS;

  -- read
  Q <= mem(CONV_INTEGER(Address));
END Behavioral;

on the input value. The main usage for a shift register is to convert a serial-data input 
stream to a parallel-data output or vice versa. For a serial-to-parallel data conversion, 
the bits are shifted into the register at each clock cycle, and when all the bits (usually 
eight bits) are shifted in, the 8-bit register can be read to produce the 8-bit parallel 
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output. For a parallel-to-serial conversion, the 8-bit register is first loaded with the 
input data. The bits are then shifted out individually, one bit per clock cycle, on the 
serial output line.

5.15.1 Serial-to-Parallel Shift Register
Figure 5.47(a) shows a 4-bit serial-to-parallel shift register. The input data bits come 
in on the Serial_inSerial_inSerial_i  line at a rate of one bit per clock cycle. When Shift is asserted, the 
data bits are loaded in one bit at a time. In the first clock cycle, the first bit from the 
serial input stream, Serial_inSerial_inSerial_i , gets loaded into Q3, while the original bit in Q3 is loaded 
into Q2, Q2 is loaded into Q1, and so on. In the second clock cycle, the bit that is in Q3
(i.e., the first bit from the Serial_inSerial_inSerial_i  line) gets loaded into Q2, while Q3 is loaded with the 
second bit from the Serial_inSerial_inSerial_i  line. This continues for four clock cycles until four bits are 
shifted into the four flip-flops, with the first bit in Q0, second bit in Q1, and so on. These 
four bits then are available for parallel reading through the output Q. Figures 5.47(b) 
and (c) show the operation table and the logic symbol, respectively, for this shift register.

HDL Code for a Shift Register
The behavioral Verilog code for a 4-bit right-shift register is shown in Figure 5.48. 
The code for the actual shifting is performed in the concatenation operation 
5 Serial_inini , Q 33:1 4 6 where the most significant bit, Serial_in, is concatenated with the 
three upper bits of Q. The least significant bit of Q is discarded.

FIGURE 5.47 A 4-bit serial-to-parallel shift register: (a) circuit; (b) operation table;  
(c) logic symbol.
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The structural VHDL code for a 4-bit serial-to-parallel shift register is shown in 
Figure 5.49. The code is written at the structural level. The operation of a D flip-flop 
with enable is first defined. The ARCHITECTURE section for the ShiftReg entity uses four ShiftReg entity uses four ShiftReg
PORT MAP statements to instantiate four D flip-flops. These four flip-flops then are con-
nected together using the internal signal N0N0N , N1, N2N2N , and N3N3N  such that the output of one 
flip-flop is connected to the input of the next flip-flop. These four internal signals also 
connect to the four output signals Q0 to Q3 for the register output. We cannot use the 
output signals Q0 to Q3 to connect the four flip-flops together directly, because output 
signals cannot be read.

A sample simulation trace of  the serial-to-parallel shift register is shown in 
Figure 5.50. At the first rising clock edge at time 100 ns, the Serial_in bit is a 0, so there 
is no change in the 4 bits of Q, because they are initialized to 0. At the next rising clock 
edge at time 300 ns, the Serial_in bit is a 1, and it is shifted into the leftmost bit of Q. 
Hence, Q has the value of 1000. At time 500 ns, another 1 bit is shifted in, giving Q the Q the Q
value of 1100. At time 700 ns, a 0 bit is shifted in, giving Q the value of 0110. Notice that Q the value of 0110. Notice that Q
as bits are shifted in, the rightmost bits are lost. At time 900 ns, Shift is de-asserted, so the Shift is de-asserted, so the Shift
1 bit in the Serial_in line is not shifted in. Finally, at time 1.1 μs, another 1 bit is shifted in.

5.15.2 Serial-to-Parallel and Parallel-to-Serial Shift Register
For both the serial-to-parallel and parallel-to-serial operations, we perform the same left-
to-right shifting of bits through the register. The only difference between the two oper-
ations is whether we want to perform a parallel read after the shifting or a parallel write 
before the shifting. For the serial-to-parallel operation, we want to perform a parallel read 
after the bits have been shifted in. On the other hand, for the parallel-to-serial operation, 
we want to perform a parallel write first and then shift the bits out as a serial stream.

We can implement both operations into the serial-to-parallel circuit from the 
previous section simply by adding a parallel load function to the circuit, as shown 
in Figure 5.51(a). The four multiplexers work together to select whether we want the 
flip-flops to retain the current value, load in a new value, or shift the bits to the right 
by one bit position. The operation of this circuit is dependent on the two select lines, 

FIGURE 5.48 Behavioral Verilog code for a 4-bit right-shift register.

module ShiftReg (
  input Serial_in,
  input Clock,
  input Shift,
  output reg [3:0] Q
);

  always @(posedge Clock) begin
    if (Shift) begin
      Q <= { Serial_in, Q[3:1] };
    end
  end  // always

endmodule

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-202



5.15 sHIFt ReGIsteRs 201

FIGURE 5.49 Structural VHDL code for a 4-bit serial-to-parallel shift register.

-- D flip-flop with enable
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY D_flipflop IS
  PORT(D, Clock, E : IN STD_LOGIC;
      Q : OUT STD_LOGIC);
END D_flipflop;

ARCHITECTURE Behavior OF D_flipflop IS
BEGIN
  PROCESS(Clock)
  BEGIN
    IF (Clock'EVENT AND Clock = '1') THEN
      IF (E = '1') THEN
        Q <= D;
      END IF;
    END IF;
  END PROCESS;
END Behavior;

-- 4-bit shift register
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY ShiftReg IS
  PORT(Serial_in, Clock, Shift : IN STD_LOGIC;
    Q : OUT STD_LOGIC_VECTOR(3 DOWNTO 0));
END ShiftReg;

ARCHITECTURE Structural OF ShiftReg IS
  SIGNAL N0, N1, N2, N3 : STD_LOGIC;
  COMPONENT D_flipflop PORT (D, Clock, E : IN STD_LOGIC;
      Q : OUT STD_LOGIC);
  END COMPONENT;

BEGIN
  U1: D_flipflop PORT MAP (Serial_in, Clock, Shift, N3);
  U2: D_flipflop PORT MAP (N3, Clock, Shift, N2);
  U3: D_flipflop PORT MAP (N2, Clock, Shift, N1);
  U4: D_flipflop PORT MAP (N1, Clock, Shift, N0);
  Q(3) <= N3;
  Q(2) <= N2;
  Q(1) <= N1;
  Q(0) <= N0;
END Structural;

SHSHS SHSH el1 and SHSHS SHSH el0l0l , that control which input of  the multiplexers is selected. The 
operation table and logic symbol are shown in Figures 5.51(b) and (c), respectively. 
The behavioral VHDL code and a sample simulation trace for this shift register are 
shown in Figures 5.52 and 5.53, respectively.
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FIGURE 5.50 Sample simulation trace for the 4-bit serial-in-parallel-out shift register.

5.15.3 Linear Feedback Shift Register
A linear feedback shift register (LFSR) is a special type of  shift register where the 
input value to be shifted in is dependent on the register’s current value. The LFSR is 
commonly used for generating pseudorandom numbers in digital circuits. The initial 
value in the register is called the seed, and it should be a non-zero number. The input 

FIGURE 5.51 A 4-bit serial-to-parallel and parallel-to-serial shift register: (a) circuit;  
(b) operational table; (c) logic symbol.
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FIGURE 5.52 Behavioral VHDL code for a 4-bit serial-to-parallel and parallel-to-serial 
shift register.

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY shiftreg IS PORT (
  Clock: IN STD_LOGIC;
  SHSel: IN STD_LOGIC_VECTOR(1 DOWNTO 0);
  Serial_in: IN STD_LOGIC;
  D: IN STD_LOGIC_VECTOR(3 DOWNTO 0);
  Serial_out: OUT STD_LOGIC;
  Q: OUT STD_LOGIC_VECTOR(3 DOWNTO 0));
END shiftreg;

ARCHITECTURE Behavioral OF shiftreg IS
  SIGNAL content: STD_LOGIC_VECTOR(3 DOWNTO 0);
BEGIN
  PROCESS(Clock)
  BEGIN
    IF (Clock'EVENT AND Clock='1') THEN
      CASE SHSel IS
      WHEN "01" =>  -- load
        content <= D;
      WHEN "10" =>  -- shift right, pad with bit from Serial_in
        content <= Serial_in & content(3 DOWNTO 1);
      WHEN OTHERS =>
        NULL;
      END CASE;
    END IF;
  END PROCESS;

  Q <= content;
  Serial_out <= content(0);
END Behavioral;

FIGURE 5.53 Sample trace for the 4-bit serial-to-parallel and parallel-to-serial shift register.
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bit to shift in is driven by the XOR of  some bits in the overall shift register value. The 
bits to be XORed must be well chosen in order to produce a sequence of numbers that 
appears random and has a very long cycle. An n-bit LFSR will have a maximum cycle 
length of 2n 2 1 different combinations unless it contains all zeros, in which case it will 
never change because 0 XOR 0 is a 0.

The circuit for a 4-bit LFSR and an 8-bit LFSR are shown in Figures 5.54(a) and 
(b), respectively. To get the maximum cycle length, the bits to be XORed for the 4-bit 
LFSR must be bits 3 and 4, whereas for the 8-bit LFSR, the bits to be XORed must be 
bits 4, 5, 6, and 8. Notice that the bit numbering starts counting from 1 on the left and 
moving to the right, but reading the value from the register is still the same as before 
where the rightmost bit is the least significant.

Given an initial seed of  0101 for the 4-bit LFSR, the sequence of  numbers 
produced by the 4-bit LFSR is:

0101, 1010, 1101, 1110, 1111, 0111, 0011, 0001, 1000, 0100, 0010, 1001, 1100, 
0110, and 1011.

After 1011, the sequence repeats with 0101 as the next number. This sequence has 
the maximum cycle length of 15 numbers. If  different bits are XORed, the circuit will 
produce a different sequence and it may not have the maximum cycle length.

FIGURE 5.54 Linear feedback shift register circuits: (a) 4-bit LFSR; (b) 8-bit LFSR.
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The following table shows the terms to be XORed to get the maximum cycle lengths 
for higher bit lengths,

Bit length Terms to XOR

8 4, 5, 6, and 8

9 5 and 9

10 7 and 10

11 9 and 11

12 4, 10, 11, and 12

13 8, 11, 12, and 13

Bit length Terms to XOR

14 2, 12, 13, and 14

15 14 and 15

16 11, 13, 14, and 16

17 14 and 17

18 11 and 18

19 14, 17, 18, and 19

5.16 Counters
Counters, as the name suggests, are for counting a sequence of values. However, there 
are many different types of counters, depending on the total number of count values, 
the sequence of values that it outputs, whether it counts up or down, and so on. The 
simplest is a modulo-n counter that counts the decimal sequence 0, 1, 2, . . . up to n-1 
and back to 0.

5.16.1 Binary Up Counter
An n-bit binary up counter can be constructed using a modified n-bit register in 
which the data inputs for the register come from an adder. To get to the next up-count 
sequence from the value that is stored in a register, we simply have to add a 1 to it. We 
can use the full adder discussed in Section 4.2.1 as the input to the register, but we can 
do better by making it smaller. The full adder adds two operands plus the carry. But 
what we want is just to add a 1, so the second operand to the full adder is always a 1. 
Because the 1 also can be added in via the carry-in signal of the adder, we really do 
not need the second operand input. This modified adder that adds only one operand 
with the carry-in is called a half adder (HA); its truth table is shown in Figure 5.55(a). 
We have a as the only input operand, cinini  and cout are the carry-in and carry-out signals, 
respectively, and s is the sum of the addition. In the truth table, we are simply adding a
plus cinini  to give the sum s and possibly a carry-out, cout. From the truth table, we obtain 
the two equations for cout and s shown in Figure 5.55(b). The HA circuit is shown in 
Figure 5.55(c) and its logic symbol in (d).

Several HAs can be daisy-chained together, just like with the full adders to form 
an n-bit adder. The single operand input a comes from the register. The initial carry-in 
signal c0 is used as the count enable signal, because a 1 on c0 will result in incrementing 
a 1 to the register value, and a 0 will not. The resulting 4-bit binary up-counter circuit is 
shown in Figure 5.56(a), along with its operation table and logic symbol in (b) and (c), 
respectively. As long as Count is asserted, the counter will increment by 1 on each clock 
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FIGURE 5.55 Half adder: (a) truth table; (b) equations; (c) circuit; (d) logic symbol.
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FIGURE 5.56 A 4-bit binary up counter with asynchronous Clear: (a) circuit; (b) operation table; 
(c) logic symbol.
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pulse until Count is de-asserted. When the count reaches 2n 2 1 (which is equivalent 
to the binary number with all 1s), the next count will go back to 0, because adding a 
1 to a binary number with all 1s will result in an overflow on the Overflow bit, and all 
the counter bits will reset to 0. The Clear signal allows an asynchronous reset of the 
counter to 0.

5.16.2 Binary Up Counter with Parallel Load
To make the binary counter more versatile, we need to be able to start the count sequence 
with any number other than zero. This is accomplished easily by modifying our counter 
circuit to allow it to load in an initial value. With the value loaded into the register, we 
can now count starting from this new value. The modified counter circuit is shown 
in Figure 5.57(a). The only difference between this circuit and the up counter circuit 

FIGURE 5.57 A 4-bit binary up counter with parallel Load and asynchronous Load and asynchronous Load Clear: (a) circuit; 
(b) operation table; (c) logic symbol.
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shown in Figure 5.56(a) is that a 2-input multiplexer is added between the s output of 
the HA and the Di input of the flip-flop. By doing this, the i input of the flip-flop. By doing this, the i Di input of the flip-flop can i input of the flip-flop can i
be selected from either an external input value (if  Load is asserted) or the next count Load is asserted) or the next count Load
value from the HA output (if Load is de-asserted). If the HA output is selected, then the Load is de-asserted). If the HA output is selected, then the Load
circuit works exactly like before. If  the external input is selected, then whatever value is 
presented on the input data lines will be loaded into the register. The operational table 
and logic symbol for this circuit are shown in Figures 5.57(b) and (c), respectively.

We have kept the Clear line, so that the counter still can be initialized to 0 at anytime. Clear line, so that the counter still can be initialized to 0 at anytime. Clear
There is, however, a timing difference between asserting the Clear line to reset the counter Clear line to reset the counter Clear
to 0, as opposed to loading in a 0 by asserting the Load line and setting the data input to Load line and setting the data input to Load
0. In the first case, the counter is reset to 0 immediately after the Clear is asserted, while 
the latter case will reset the counter to 0 at the next rising edge of the clock.

This counter can start with whatever value is loaded into the register, but it will 
always count up to 2n 2 1, where n is the number of bits for the register. This is when 
the register contains all 1s. When the counter reaches the end of the count sequence, 
it will always cycle back to 0, and not to the initial value that was loaded in. However, 
we can add a simple comparator to the Qi output of this counter circuit so that the 
count sequence can start or end with any number in between, and cycle back to the 
new starting value.

HDL Code for a Counter
The behavioral Verilog code for a 4-bit binary up-down counter is shown in Figure 5.58. 
This counter will count continuously either up or down depending on the Up input 
signal. The actual count of the counter is stored in the internal register value. On every 
positive edge of the clock, the counter value either will be incremented or decremented 
by one. The internal counter value is then assigned to the output signal, Q. The counter 
value is also reset to zero when the asynchronous Clear signal is asserted.

FIGURE 5.58 Behavioral Verilog code for a 4-bit binary up-down counter.

module counter(
  input Clock,
  input Clear,
  input Up,
  output [3:0] Q
);

  reg [3:0] value = 0;

  always @(posedge Clock or posedge Clear) begin
    if (Clear)
      value <= 0;
    else if (Up)
      value <= value + 1;
    else
      value <= value - 1;
  end

  assign Q = value;

endmodule
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The behavioral VHDL code for a 4-bit binary up counter is shown in Figure 5.59. 
The statement USE IEEE.STD_LOGIC_UNSIGNED.ALL is needed in order to perform additions 
on STD_LOGIC_VECTORs. The internal signal value is used to store the current count. When 
Clear is asserted, value is assigned the value “0000” using the expression OTHERS 5. '0'.
Otherwise, if  Count is asserted, then value will be incremented by 1 on the next rising 
clock edge. Furthermore, the count in value is assigned to the counter output Q, using 
the concurrent statement Q ,5 valulul e, because it is outside the PROCESS block. A sample 
simulation trace is shown in Figure 5.60.

FIGURE 5.59 Behavioral VHDL code for a 4-bit binary up counter.

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
-- need this to add STD_LOGIC_VECTORs
USE IEEE.STD_LOGIC_UNSIGNED.ALL;  

ENTITY counter IS PORT (
  Clock: IN STD_LOGIC;
  Clear: IN STD_LOGIC;
  Count: IN STD_LOGIC;
  Q  : OUT STD_LOGIC_VECTOR(3 DOWNTO 0));
END counter;

ARCHITECTURE Behavioral OF counter IS
  SIGNAL value: STD_LOGIC_VECTOR(3 DOWNTO 0);
BEGIN
  PROCESS (Clock, Clear)
  BEGIN
    IF (Clear = '1') THEN
      -- 4-bit vector of 0, same as "0000"
      value <= (OTHERS => '0');
    ELSIF (Clock'EVENT AND Clock='1') THEN
      IF (Count = '1') THEN
        value <= value + 1;
      END IF;
    END IF;
  END PROCESS;

  Q <= value;
END Behavioral;

FIGURE 5.60 Simulation trace for the 4-bit binary up counter.
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5.17 Timing Issues
So far in our discussion of latches and flip-flops, we have ignored timing issues and 
the effects of propagation delays. In practice, timing issues are very important in the 
correct design of sequential circuits. Considering the D latch with enable circuit from 
Section 5.6 the circuit is redrawn as shown in Figure 5.61(a). Signals from the inputs 
require some delay to propagate through the gates and finally to reach the outputs.

Assuming that the propagation delay for the inverter is 1 nanosecond (ns), and 
2 ns for the NAND gates, the timing trace diagram would look like Figure 5.61(b) with 
the signal delays taken into consideration. The arrows denote which signal edge causes 
another signal edge. The number next to an arrow denotes the number of nanoseconds 
in delay for the resulting signal to change.

At time t1, signal D drops to 0. This causes R to rise to 1 after a 1 ns delay through 
the inverter. The D edge also causes S r to rise to 1, but after a delay of 2 ns through the 
NAND gate. After that, R r drops to 0 at 2 ns after R rises to 1. This in turn causes Q r to 
rise to 1 after 2 ns, followed by Q dropping to 0.

At time t2, signal E drops to 0, disabling the circuit. As a result, when E drops to 0, disabling the circuit. As a result, when E D rises to 1 
at time t3, neither Q nor Q r is affected.

At time t4, signal E rises to 1 and re-enables the circuit. This causes E rises to 1 and re-enables the circuit. This causes E S r to drop 
to 0 after 2 ns. R r remains unchanged at 1 because the two inputs to the NAND gate, 
E and E and E R, are 1 and 0, respectively. With S r asserted and R r de-asserted, the latch is 
set with Q rising to 1 at 2 ns after S r drops to a 0. This is followed by Q r dropping 
to 0 after another 2 ns.

Furthermore, for the D-latch circuit to latch in the data from input D correctly, 
there is a critical window of  time right before and right after the falling edge of  the 

FIGURE 5.61 D latch with enable: (a) circuit; (b) timing diagram with delays.
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enable signal, E, that must be observed. Within this time frame, the input signal, D, 
must not change. As shown in Figure 5.62, the time before the falling edge of  E is E is E
referred to as the setup time, tsetuptuptu , and the time after the falling edge of  E is referred E is referred E
to as the hold time, tholdldl . The length of  these two times is dependent on the imple-
mentation and manufacturing process and can be obtained from the component 
data sheet.

5 . 1 8  P R O B L E M S

5.1. Draw an SR latch with enable similar to that shown in Figure 5.6, but 
using NOR gates to implement the SR latch. Derive the truth table for this 
circuit.

5.2. Draw the D latch using NOR gates.

5.3. Draw the master-slave negative edge-triggered D flip-flop circuit.

5.4. Derive the truth table for a negative edge-triggered D flip-flop.

5.5. In the clock divider HDL code shown in Section 5.8, what should the 
value for half be in order to generate:half be in order to generate:half
a) A 4 Hz output clock from the 50 MHz input clock source?
b) A 1 MHz output clock from the 50 MHz input clock source?

5.6. Complete the following truth table for the D latch with asynchronous Setr
and Clearr circuit shown in Figure 5.23(a).

ClClC elel ar r Set r E D Q Q r

1 0 0 3

0 1 0 3

1 0 1 0

0 1 1 1

1 1 1 0

1 1 1 1

0 0 3 3

FIGURE 5.62 Setup and hold times for the gated D latch.D latch.D

E

D

tsetuptsetupt tholdtholdt
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5.7. Complete the following timing diagram for the following circuit. Assume 
that the signal delay through the NOR gates is 3 ns, and the delay through 
the NOT gate is 1 ns.

5.8. Traditionally, in addition to the D flip-flop, there are also three other 
types of  flip-flops: SR, JK, and T. These names are given based on 
the input signals that they have. For example, the JK flip-flop has 
two inputs, J and J and J K. The characteristic table, equation, and state 
diagram for these flip-flops are shown on the next page. They differ 
only in how D changes, that is, the input(s) to the D signal of  the 
D flip-flop based on their respective characteristic equations. Draw 
the circuits for each of  these three flip-flops. They all will use the D 
flip-flop with an extra combinational circuit (based on their respec-
tive characteristic equations) that generates the correct input signal 
for D. Hint: the characteristic equation for the D flip-flop is just 
Qnext 5 D, so the external D input connects directly to the D signal 
of  the D flip-flop.

Q

Q'D

D'

D

D'

Q

0 1 2 3 4 5 6Time (ns) 7 8

Q'
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SR flip-flop

JK flip-flop

T flip-flop

5.9. Modify the 4-bit binary up counter circuit shown in Figure 5.56 so that 
it can count either up or down. Instead of a half  adder, you will need to 
derive a half  adder/subtractor (HAS) circuit.

5.10. A binary coded decimal (BCD) up counter uses four bits to count the deci-
mal digits from 0 to 9 and then cycles back to 0.

S R Q QnQnQ ext QnQnQ ext r

0 0 0 0 1

0 0 1 1 0

0 1 0 0 1

0 1 1 0 1

1 0 0 1 0

1 0 1 1 0

1 1 0 3 3

1 1 1 3 3

J K Q QnQnQ ext QnQnQ ext r

0 0 0 0 1

0 0 1 1 0

0 1 0 0 1

0 1 1 0 1

1 0 0 1 0

1 0 1 1 0

1 1 0 1 0

1 1 1 0 1

T Q QnQnQ ext QnQnQ ext r

0 0 0 1

0 1 1 0

1 0 1 0

1 1 0 1

Q = 0 Q = 1

T = T = T 1

T = T = T 0

T = T = T 0

T = T = T 1

Qnext = TQ' + T'Q = T  +  next = TQ' + T'Q = T  +  next Q = TQ' + T'Q = T  +  

Q = 0 Q = 1

SR = 10

SR = 00 or 10

SR = 00 or 01

SR

Qnext = S + R'Qnext = S + R'Qnext

 = 01

Q = 0 Q = 1

JK = 10 or 11JK = 10 or 11JK

JK = 00 or 10JK = 00 or 10JK

JKJKJ  = 00 or 01K = 00 or 01K

JK = 01 or 11JK = 01 or 11JK

Qnext = K'Q + JQ'next = K'Q + JQ'next
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a) Start with the 4-bit binary up counter with parallel load circuit shown in 
Figure 5.57, and then add extra circuitry to it so that it is a BCD counter.

b) What is the difference between using the Clear signal and the Load
signal?

5.11. Construct a BCD counter that counts from 3 to 8, and back to 3.

5.12. Implement the Verilog code for the RAM shown in Figure 5.43 and verify 
that it works correctly.

5.13. Implement the VHDL code for the RAM shown in Figure 5.44 and verify 
that it works correctly.
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In Chapter 5, we looked at the design and operation of flip-flops—the most funda-
mental memory element used in microprocessor circuits. We saw that a single flip-flop 
is capable of remembering only one bit of information or one bit of history. In order 
for a microprocessor circuit to remember more inputs and a longer history, it must 
contain more flip-flops. This collection of (D) flip-flops used to remember the complete 
history of past inputs is referred to as the state memory. The entire content of the state 
memory at a particular instance of time forms a unique binary encoding that represents 
the complete history of inputs up to that time. We refer to this binary encoding at any 
instance of time as the state of  the system at that time; different encodings, therefore, 
represent different states.

The state memory is one of the three main components in the controller circuit inside 
all microprocessors. Because the size of the state memory is finite, the total number of 
different states that it can represent is also finite; hence, this controller circuit is called 
a finite-state machine (FSM). A general overview of an FSM is shown in Figure 6.1. 
The FSM is at the heart of every microprocessor because it is this circuit that controls 
the entire operation of the microprocessor, and it is the microprocessor that controls the 
entire operation of a computer system.

The FSM operates by continuously stepping through a sequence of  states. In 
each state, the FSM performs the operation that was assigned to that state. Although 
there is only a finite number of  states, the FSM can go to any of  these states more 
than once, and so the sequence of  states that the FSM can go through can be 
infinitely long.

If  we want the FSM to perform, say, four different operations, then we will need 
four states—one operation per state. We can reduce the number of states by assigning 
more than one operation to a state if  the operations can be performed in parallel. 
However, to keep things simple for now, we simply will assign one operation per state. 
On the other hand, there might be an operation where we may want to repeat it for, 
say, a hundred times. Instead of assigning this same operation to one hundred different 
states, we will want to use just one state and have some form of looping capabilities to 
repeat that state a hundred times.

The operations that an FSM performs are realized by the output signals that the 
output logic circuit generates. Recall that the outputs of sequential circuits are dependent 

FIGURE 6.1 Finite-state machine overview.
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on their past and current inputs, and because all of the inputs are remembered in the 
form of  states in the state memory, we can say that the outputs are dependent on 
the content of the state memory. Therefore, the output logic circuit is dependent on 
the content of  the state memory, and may or may not be dependent on the current 
inputs. The output logic circuit is a combinational circuit, and the output signals that 
it generates constitute the actions or operations that are performed by the FSM. Hence, 
an FSM can perform different operations in different states simply by generating dif-an FSM can perform different operations in different states simply by generating dif-an FSM can perform different operations in different states simply by generating dif
ferent output signals.

Thus, an FSM operates by transitioning from one state to the next, generating 
different output signals in each state. The next-state logic circuit inside the FSM is 
responsible for determining what the next state to go to is. Based on the current state 
that the FSM is in (i.e., the past inputs) and the current inputs, the next-state logic will 
determine what the next state should be. This statement, in fact, is equivalent to saying 
that the outputs are dependent on the past and current inputs, since a state is used 
to remember the past inputs, and it also determines the outputs to be generated. The 
next-state logic circuit is a combinational circuit that takes the contents of the state 
memory flip-flops and the current inputs as its inputs. The outputs from the next-state 
logic circuit are used to change the contents of the state memory flip-flops. The FSM 
changes state when the contents of the state memory change, and this happens at the 
active (rising) edge of every clock cycle, since values are written into a flip-flop at the 
active clock edge.

The speed at which an FSM sequences through the states is determined by the 
speed of the clock signal. The state memory flip-flops are always enabled, so at every 
active edge of the clock, a new value is stored into the flip-flops. The limiting factor 
for the clock speed is in the time that it takes to perform all of the operations that are 
assigned to a particular state. All data operations assigned to a state must finish their 
operations within one clock period so that the results can be written into registers at 
the next active clock edge.

FSMs are the key to understanding how microprocessors are capable of  con-
trolling so many different things. They are responsible for determining when various 
data manipulations are to be performed, when control signals are to be generated, 
and the sequence in which the operations are to be performed. In order to be able 
to design and construct a microprocessor, it is important that we understand the 
operation and construction of  FSMs. In this chapter, we will first look at how to 
describe precisely the operation of  FSMs using state diagrams. Next, we will look at 
the analysis and synthesis of  FSMs. Finally, we will give several complete examples 
of  FSM constructions.

6.1 Finite-State Machine Models
In the introduction, we mentioned that the output logic circuit is dependent on the 
content of the state memory, and may or may not be dependent on the current inputs. 
The fact that the output logic may or may not be dependent on the current inputs gives 
rise to two different FSM models as shown in Figure 6.2.
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Figure 6.2(a) shows the block diagram for the Moore FSM, where its outputs 
are dependent only on its current state (i.e., on the content of  the state memory). 
Figure 6.2(b) shows the block diagram for the Mealy FSM, where its outputs are 
dependent on both the current state of the machine and the current inputs. The only 
difference between these two figures is that, for the Moore FSM, the output logic circuit 
only has the current state as its input; whereas, for the Mealy FSM, the output logic 
circuit has both the current state and the input signals as its inputs.

In both models, there are the three components: the next-state logic circuit, the 
state memory, and the output logic circuit. Both the next-state logic circuit and the out-
put logic circuit are combinational circuits, whereas, the state memory is a sequential 
circuit composed of one or more D flip-flops.

The inputs to the next-state logic circuit are the primary input signals and the 
current state of  the FSM. The next-state logic circuit generates values to change the 
contents of  the state memory. Because the state memory is made up of  one or more 
D flip-flops, and the content of  the D flip-flop changes to whatever value is at its 
D input, in order to change a state, the next-state logic circuit simply has to generate 
values for all of  the D inputs for all of  the flip-flops. These D input values are referred 
to as the excitation values, since they “excite” or cause the D flip-flops to change states.

Recall that the D flip-flop stores a new value at every active edge of the clock sig-
nal, therefore, the contents stored in the state memory will change at every active clock 
edge. This means that the FSM will change to a new state at the beginning of every 

FIGURE 6.2 Finite-state machine models: (a) Moore FSM; (b) Mealy FSM.
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clock cycle. The state of the D flip-flop is just the value at its Q output, therefore, the 
binary encoding for the current state of the FSM is composed of all of the Q values 
from all of the D flip-flops.

Given just the current state information for the Moore model, or both the current 
state and input signals for the Mealy model, the output logic circuit will generate the 
appropriate control output signals to control the various operations intended by the 
FSM for that state.

Figures 6.3(a) and (b) show a sample circuit of a Moore FSM and a Mealy FSM, 
respectively. The two circuits are identical except for their outputs. For the Moore FSM, 
the output circuit is a 2-input AND gate that gets its input values from the outputs of the 
two D flip-flops. Remember that the state of the FSM is represented by the content of 
the state memory, which is the content of the D flip-flops as represented by the value 
at the Q (and Qr) output. Hence, this output circuit is dependent only on the current 
state of the FSM.

For the Mealy FSM, the output circuit is a 3-input AND gate. In addition to 
getting its two inputs from the D flip-flops, the third input to this AND gate is con-
nected to the primary input, C. With this one extra connection, this output circuit 

FIGURE 6.3 Sample finite-state machine circuits: (a) Moore FSM; (b) Mealy FSM. (continued on 
next page)
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is dependent on both the current state and the primary input, thus making it a 
Mealy FSM.

For both circuits, the state memory consists of the two D flip-flops. With two flip-
flops, four different combinations of values can be represented. Hence, this FSM can be 
in any one of four different states. The state that this FSM will go to next depends on 
the value at the D inputs of the flip-flops because whatever values are at the D inputs 
will be stored into the flip-flops at the next active clock edge, and are made available at 
the Q outputs as the new state value.

Every D flip-flop in the state memory requires a combinational next-state circuit 
to generate a next-state value for its D input. Because we have two D flip-flops (each 
having a D input), the next-state logic circuit will consist of two combinational circuits: 
one for input D0 and one for D1. The inputs to these two combinational circuits are the 
Q outputs from the flip-flops, which represent the current state of the flip-flops, and 
the primary input C. Notice that it is not necessary for the input C to be an input to all C to be an input to all C
of the combinational next-state circuits. In this sample circuit, only the bottom com-
binational circuit is dependent on the input C. Just like with any other combinational 
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Input

Output

Next-state Logic State Memory Output Logic
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Q09

Q0

Clear
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Q19
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FIGURE 6.3 Sample finite-state machine circuits: (a) Moore FSM; (b) Mealy FSM.
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circuit as discussed in Chapter 3, the next-state and output logic circuits are derived 
from either a truth table or a Boolean equation.

At this point, it is not obvious why we have this distinction between Moore and 
Mealy FSMs. It turns out that these two models provide a tradeoff between the size 
of the state memory and next-state logic circuit with that of the output logic circuit. 
Comparing the two FSMs, a Moore FSM typically will have a larger state memory 
and therefore a larger next-state logic circuit, whereas, a Mealy FSM typically will have 
a larger output logic circuit. We will show examples of this tradeoff later in Sections 
6.6.5 and 6.6.6.

6.2 State Diagrams
State diagrams are used to describe precisely the operation of FSMs. A state diagram 
is a deterministic graph with nodes and directed edges for connecting the nodes. There 
is one node for every state of the FSM, and each node is labeled with either its state 
name or its state encoding. Every state transition of  the FSM has a directed edge 
connecting two nodes. The directed edge originates from the node for the current 
state that the FSM is transitioning from and goes to the node for the next state that 
the FSM is transitioning to. Edges may or may not have labels on them. Edges for 
unconditional transitions from one state to another will not have a label. In this case, 
only one edge can originate from that node. Conditional transitions from a state will 
have two outgoing edges for each input signal condition. The two edges from this 
node must be labeled with the corresponding input signal conditions: one edge with 
the label for when the condition is true, and the other edge with the label for when the 
condition is false. If  there is more than one input signal, then all of  the possible input 
conditions must be labeled on the outgoing edges from the node. The state diagram is 
deterministic because from any node, it should show exactly which node to go to next 
for any input combination.

Figure 6.4(a) shows a sample state diagram having four states, one input signal C, 
and one output signal Y. The four states are labeled with the four encoded binary values Y. The four states are labeled with the four encoded binary values Y
00, 01, 10, and 11. There are three unconditional transitions (i.e., edges with no labels) 
from state 00 to 01, 10 to 00, and 11 to 00. There is one conditional transition from 
state 01 to either 10 or 11 depending on the input condition C. In this book, we use the 
notation of a conditional test enclosed in parentheses to denote a conditional label for 
an edge. The edge going from state 01 to 10 in Figure 6.4(a), has the conditional label 
1C 5 0 2  on it. This means that if  the input condition 1C 5 0 2  is true, then the transi-
tion from state 01 to 10 is made. Otherwise, if  1C 5 0 2  is false, that is, 1C 5 1 2  is true, 
then the transition from 01 to 11 is made. Note that the conditional labels 1C 5 0 2 r
and 1C 5 1 2  mean the same thing and can be used interchangeably.

The output signal Y in Figure 6.4(a) is labeled inside or next to each node denoting Y in Figure 6.4(a) is labeled inside or next to each node denoting Y
that the output is dependent only on the current state. For example, when the FSM is 
in state 01, the output Y is set to 1; whereas, in state 11, Y is set to 1; whereas, in state 11, Y Y is set to 0.Y is set to 0.Y

The operation of the FSM based on the state diagram in Figure 6.4(a) goes as fol-
lows. After reset, the FSM starts from state 00. In this book, we will always use state 0 
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as the starting or reset state unless stated otherwise. When it is in state 00, it outputs 
a 0 for Y. At the next active clock edge, the FSM unconditionally transitions to state 01 Y. At the next active clock edge, the FSM unconditionally transitions to state 01 Y
and outputs a 1 for Y. Next, the FSM goes either to state 10 or 11 at the next active Y. Next, the FSM goes either to state 10 or 11 at the next active Y
clock edge, depending on the condition 1C 5 0 2 . If  the condition 1C 5 0 2  is true, then 
the FSM will go to state 10 and outputs a 0 for Y; otherwise, it will go to state 11 and Y; otherwise, it will go to state 11 and Y
also outputs a 0 for Y. From either state 10 or 11, the FSM unconditionally transitions Y. From either state 10 or 11, the FSM unconditionally transitions Y
back to state 00 at the next clock cycle. The FSM always goes to a new state at the 
beginning of the next active clock edge.

Figure 6.4(b) shows a slightly different state diagram from the one in Figure 6.4(a). 
Instead of labeling the output signal Y inside or next to a node, it is labeled on the Y inside or next to a node, it is labeled on the Y

FIGURE 6.4 Sample state diagrams: (a) a Moore FSM with four states, one input sig-
nal C, and one output signal C, and one output signal C Y; (b) a Mealy FSM with four states, one input signal Y; (b) a Mealy FSM with four states, one input signal Y
C, and one output signal C, and one output signal C Y; (c) an FSM with five states and two input signals Y; (c) an FSM with five states and two input signals Y
A and A and A B.
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edges. What this means is that the output is dependent on both the current state 
(i.e., the state from which the edge originates) and the input signal C. For example, 
when the FSM is in state 01, if  the FSM takes the left edge for the condition 1C 5 0 2
to state 10, then it will output a 0 for Y. However, if  the FSM takes the right edge for Y. However, if  the FSM takes the right edge for Y
the condition 1C 5 1 2  to state 11, then it will output a 1 for Y.Y.Y

Figure 6.4(c) shows a state diagram having five states, two input signals, and no 
output signals. In practice, all FSMs should have output signals; otherwise, they don’t 
do anything useful. The five states in this state diagram are given the symbolic state 
names of s0, s1, s2, s3, and s4. The two input signals are A and B. Again, we use the 
state name with subscript 0, namely s0, as the starting state. From state s0, there is one 
unconditional edge going to state s1. This unlabeled edge is equivalent to having the 
label AB 5 33, where the 3 denotes “don’t-care.” This means that A can either be a 
0 or a 1, and B also can be either a 0 or a 1; so this edge is taken for any combination B also can be either a 0 or a 1; so this edge is taken for any combination B
of the two input signals. From state s1, there are four outgoing edges labeled with the 
four different combinations of the two input signals. For example, when in state s1, if  
the input signals AB are 11 (i.e., AB are 11 (i.e., AB A 5 1 and B 5 1), then the FSM will go to state s2 in 
the next clock cycle. State s2 has only two outgoing edges. However, the two labels on 
them cover the four possible input conditions, because B is a don’t-care (denoted by B is a don’t-care (denoted by B
the 3) in both cases. State s3 has three outgoing edges, but again, the labels on them 
cover all four input conditions.

As you can see, a state diagram is similar to a computer program flowchart in 
which the nodes are for the statements or data operations, and the edges are for the con-
trol of the program sequence. Because of this similarity, we should be able to convert 
any program to a state diagram. Example 6.1 shows how to convert a simple C-style 
pseudocode to a state diagram.

EXAMPLE 6.1

Converting pseudocode to a state diagram

Derive the state diagram based on the following pseudocode.

x = 5x = 5x
WHILE (x ≠ 0){x ≠ 0){x

OUTPUT x
x = x = x x – 1x – 1x
}

The pseudocode has three data-operation statements and one conditional test. 
Each data-operation statement is assigned to a node (state), as shown in Figure 6.5(a). 
Each node is given a symbolic name for the state and is annotated with the statement 
to be executed in that state. At this point, instead of labeling the nodes with the actual 
binary encoding for the state, it is better to just give it a name. The actual encoding of 
the state can be done later during the synthesis process.
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Next, we assign directional edges to the diagram based on the sequence of  exe-
cution. Starting from state s0 (where the statement x 5 5 is executed), the program 
then tests for the condition 1x 2 0 2 . If  the condition is true, then the output state-
ment is executed; otherwise, the loop (and the program) is terminated. Referring 
to Figure 6.5(b), there are two outgoing edges from state s0. The edge from s0 to s1
has the label 1x 2 0 2 , which means that if  the condition 1x 2 0 2  is true, then this 
edge is taken, and so it will go to state s1 to execute the output statement. On the 
other hand, if  the condition is false, the loop will be terminated. Because there is no 
statement after the loop, we have to add an extra no-operation state, s3, to the state 
diagram for it to go to. The edge from s0 to s3 is labeled 1x 2 0 2 r, meaning that the 
edge is taken when the condition 1x 2 0 2  is false.

After executing the output statement in state s1, the decrement statement is exe-
cuted. This sequence is reflected in the unconditional edge going from state s1 to s2.
After executing the decrement statement in s2, the condition 1x 2 0 2  in the WHILE loop 
is tested again. If  the condition is true, it will take the edge with the label 1x 2 0 2  back 
to state s1 to repeat the loop. If  the condition is false, it will take the edge with the label 
1x 2 0 2 r to state s3. From state s3, it unconditionally loops back to itself; thus, going 
nowhere and doing nothing to represent that the program has halted. 

FIGURE 6.5 State diagram for Example 6.1: (a) data operations assigned to nodes; (b) complete 
state diagram with the transitional edges.
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6.3 Analysis of Finite-State Machines
We often are given an FSM circuit and need to know its operation. The analysis of finite-
state machines is the process in which we are given an FSM circuit (such as the ones in 
Figure 6.3), and we want to obtain a precise description of the operation of the circuit by 
deriving the state diagram for it. The steps for the analysis of FSM circuits are as follows:

1. Derive the next-state equations from the combinational next-state logic circuit.
2. Derive the next-state table from the next-state equations.
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3. Derive the output equations from the combinational output logic circuit.
4. Derive the output table from the output equations.
5. Draw the state diagram from the next-state table and the output table.

The following subsections explain these steps in detail.

6.3.1 Next-State Equations
The next-state equations are the equations derived from the next-state logic circuit in 
the FSM. Because the next-state logic circuit is a combinational circuit, deriving the 
next-state equations is simply an analysis of a combinational circuit, as discussed in 
Chapter 3. These equations provide the values to the D input signals of the D flip-flops, 
and are dependent on the current state and the primary inputs of the FSM. The cur-
rent state is determined by the current contents of the D flip-flops (i.e., the flip-flops’ 
output signals Q and Q r). Because the D flip-flop has only one data input D, there is 
one equation for each D flip-flop in the state memory.

Given the FSM circuit shown in Figure 6.6, we obtain the following two next-state 
equations as derived from the next-state logic circuit for the two D flip-flops used in the 
circuit. Equation 6.1 is from the next-state logic circuit for the D1 input of flip-flop 1 

FIGURE 6.6 Sample finite-state machine circuit.

C

Y

Input

Output

Next-state Logic State Memory Output Logic

Clk

D0

Q09

Q0

Clear

Clk

D1

Q19

Q1

Clear

Clock
Reset

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-202



226 CHAPTER 6 FInIte-stAte MACHInes

(the flip-flop on the top), and Equation 6.2 is from the next-state circuit for the D0 input 
of flip-flop 0 (the flip-flop on the bottom).

D1 5 Q1rQ0 (6.1)

D0 5 Q1rQ0r 1 CQ1r (6.2)

Recall from Chapter 5 that the characteristic equation for the D flip-flop is

Qnext 5 D

therefore, by substitution, we get the two final next-state equations as follows:

Q1next 5 D1 5 Q1rQ0 (6.3)

Q0next 5 D0 5 Q1rQ0r 1 CQ1r (6.4)

6.3.2 Next-State Table
The next-state table is simply the truth table as derived from the next-state equations. 
For every combination of the current state values (Q) and input values, it lists what the 
next-state values 1Qnext 2  should be. These next-state values are obtained by substituting 
the current state and input values into the appropriate next-state equations.

Figure 6.7(a) shows the truth table as obtained from the two next-state equations 6.3 
and 6.4. There are three input variables C, Q1, and Q0, and two output variables Q1next
and Q0next. For the next-state table, we want to use a slightly different format of the 
truth table as shown in Figure 6.7(b). This new format allows us to more easily see what 

FIGURE 6.7 A next-state truth table with four states and one input signal C:  
(a) original format; (b) new format.

(b)

Current State
Q1Q0Q0Q

Next State
Q1nextQ0Q0Q next

C 5 0 C 5 1

00 01 01

01 10 11

10 00 00

11 00 00

(a)

CQ1Q0Q0Q Q1nextQ0Q0Q next

000 01

001 10

010 00

011 00

100 01

101 11

110 00

111 00
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the next state is, given the current state and input values. Both tables show the same 
information, but we have just rearranged the rows and columns in the truth table to get 
the next-state table. The rows in the next-state table are labeled with the current states, 
the columns are labeled with the inputs, and the entries in the table are the next-state 
values. We will use this new format to show the next-state table.

Having two flip-flops, Q1 and Q0 in the state memory of  the FSM, there will be 
four different encodings, 00, 01, 10, and 11, for the current state. There is one input 
signal, C, with the two possible values, 0 and 1. Thus, with three input variables 
(Q1, Q0, and C), there will be a total of  eight C), there will be a total of  eight C 123 2  entries in the table. Each entry 
in the table is composed of  two bits: the leftmost bit, Q1next, is the next value for 
the Q1 flip-flop, and the rightmost bit, Q0next, is the next value for the Q0 flip-flop. 
Writing these two bits together for each entry is equivalent to having two separate 
truth tables. It is easier to see the next-state encodings by combining them together. 
Together, the two bits, Q1nextQ0next, in each of  the entries in the table denote the 
next-state values for the two flip-flops. These next-state values are obtained from 
substituting the current state values, Q1Q0, and the input value, C, into the next-state 
equations 6.3 and 6.4.

For example, to get the Q1next value for the top-left entry (the left bit in the color 
entry), we substitute the current state values, Q1 5 0 and Q0 5 0, and the input value 
C 5 0 into Equation 6.3, which gives

Q1next 5 Q1rQ0
5 0r # 0
5 1 # 0
5 0

Similarly, substituting the same values for Q1, Q0, and C into Equation 6.4 will give C into Equation 6.4 will give C
us the Q0next value for that same top-left entry.

Q0next 5 Q1rQ0r 1 CQ1r
5 0r # 0r 1 0 # 0r
5 1 1 0
5 1

Therefore, the top-left entry has the next-state value 01 for Q1nextQ0next. The rest of 
the entries in the next-state table are obtained in the same manner by substituting the 
corresponding values for Q1, Q0, and C into the two next-state equations 6.3 and 6.4.C into the two next-state equations 6.3 and 6.4.C

The top-left entry tells us that if  the current state Q1Q0 is 00 and the input signal C
is 0, then the next state Q1nextQ0next that the FSM will go to is 01. The top-right entry 
tells us that if  the current state is 00 and the input signal C is 1, then the next state C is 1, then the next state C
is also 01. This means that the transition from state 00 to 01 does not depend on the 
input condition C, so this is an unconditional transition. From state 01, there are two 
conditional transitions: the FSM will transition to state 10 if  the condition 1C 5 0 2  is 
true; otherwise, if  1C 5 1 2  is true, then it will transition to state 11. From either state 
10 or 11, the FSM will go to state 00 unconditionally.
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6.3.3 Output Equations
The output equations are the equations derived from the combinational output logic 
circuit in the FSM. Depending on the type of  FSM (Moore or Mealy), the output 
equations can be dependent on just the current state, or on both the current state and 
the inputs.

For the Moore circuit of Figure 6.3(a), the output equation is

Y 5 Q1rQ0 (6.5)

For the Mealy circuit of Figure 6.3(b), the output equation is

Y 5 CQ1rQ0 (6.6)

A typical FSM will have many output signals, and every output signal will have 
one equation for it.

6.3.4 Output Table
The output table is the truth table that is derived from the output equations. The out-
put tables for the Moore and Mealy FSMs are slightly different from each other. For 
the Moore FSM, the output table lists the output values for every combination of the 
current state. For the Mealy FSM, however, the output table lists the output values 
for every combination of the current state and input values. These output values are 
obtained by substituting the current state and input values into the appropriate output 
equations.

Figures 6.8(a) and (b) show the output tables for the Moore and Mealy FSMs 
as derived from the output equations 6.5 and 6.6, respectively. For the Moore FSM, 
the output signal Y is dependent only on the current state value Y is dependent only on the current state value Y Q1Q0; whereas, for 
the Mealy FSM, the output signal Y is dependent on both the current state and Y is dependent on both the current state and Y
input C.

Current State
Q1Q0Q0Q

Output
Y

C 5 0 C 5 1

00 0 0

01 0 1

10 0 0

11 0 0

(b)

Current State
Q1Q0Q0Q

Output
Y

00 0

01 1

10 0

11 0

(a)

FIGURE 6.8 Output table: (a) for a Moore FSM; (b) for a Mealy FSM.
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6.3.5 State Diagram
The last step in the analysis of an FSM circuit is to derive the state diagram. The state 
diagram is obtained directly from interpreting the next-state table and the output table.

The FSM circuit from Figure 6.6 uses two flip-flops for its state memory. Two 
flip-flops can have four different state encodings; therefore, the state diagram will have 
four nodes. We start by drawing the four nodes and labeling them with the four different 
combinations of the state encodings as shown in Figure 6.9(a).

Next, we draw the edges based on the information in the next-state table. For each 
next-state entry in the next-state table shown in Figure 6.7(b), there is a corresponding 
directed edge pointing from that current state to that next state. The corresponding 
input condition for that transition is labeled on that edge. For example, when the cur-
rent state Q1Q0 is 01, the next state Q1nextQ0next is 10 when C is 0, therefore, there is C is 0, therefore, there is C
a directed edge going from the node labeled 01 to the node labeled 10. Because this 

FIGURE 6.9 Construction of the state diagram: (a) initial diagram with only the 
nodes; (b) diagram with the edges added; (c) final state diagram for the Moore FSM; 
(d) final state diagram for the Mealy FSM.

(C = 0) (C = 1)

00

01

10 11

(b)

00

01

10 11

(a)

00

01

10 11

Y = 0
Y = 0 Y = 0

Y = 0 Y = 1
(C = 0) (C = 1)

(d)

(C = 0) (C = 1)

00
Y = 0

01
Y = 1

10
Y = 0

11
Y = 0

(c)
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transition occurs only when the input signal C is a 0, the edge is labeled with the conC is a 0, the edge is labeled with the conC -
dition 1C 5 0 2  as shown in Figure 6.9(b).

If  the same transition from a current state to a next state occurs for all possible 
input conditions, then it is an unconditional transition. For this, only one edge is drawn 
and no label is needed on that edge. For example, from the current state 00, the next 
state is 01 for all possible values of C, making it an unconditional transition. Thus, 
there is only one edge going from state 00 to state 01, and it has no conditional label 
on it.

For the Moore FSM, the output signals are labeled inside the node or next to 
the node based on the output table. For example, looking at the output table from 
Figure 6.8(a), we see that the output signal Y is a 0 when the FSM is in state 00. Y is a 0 when the FSM is in state 00. Y
Therefore, we add the output signal label Y 5 0 inside the node 00 as shown in 
Figure 6.9(c). This is repeated for all of  the entries in the output table. For the Mealy 
FSM, the output signals are labeled on an edge because it is also dependent on the 
input condition signal. For example, the output signal Y is a 1 when the current state Y is a 1 when the current state Y
is 01 and the condition C is a 1; therefore, the edge going from 01 to 11 has the output C is a 1; therefore, the edge going from 01 to 11 has the output C
signal Y 5 1 labeled on it as shown in Figure 6.9(d).

The complete Moore state diagram shown in Figure 6.9(c) is derived from the 
next-state table from Figure 6.7(b) and the Moore output table from Figure 6.8(a). In 
this state diagram, the output values are labeled inside or next to a state because the 
output signals are dependent only on the current state. The Mealy state diagram shown 
in Figure 6.9(d) is derived from the same next-state table from Figure 6.7(b), but using 
the Mealy output table from Figure 6.8(b). In this state diagram, the output values are 
labeled next to the edges because the output signals are dependent on both the current 
state and the input condition.

6.3.6 Example
Example 6.2 illustrates the complete process of analyzing an FSM.

EXAMPLE 6.2

Analysis of an FSM

We will follow the steps described earlier to do a detailed analysis of the FSM circuit 
shown in Figure 6.10. This FSM contains two D flip-flops for its state memory, one 
input signal C, and two output signals X and X and X Y. The output signal Y. The output signal Y X is dependent on X is dependent on X
both the current state Q1Q0, and the input signal C, whereas the output signal Y is Y is Y
dependent only on the current state Q1Q0. The dependency of the X output signal on X output signal on X
the input signal C makes this a Mealy FSM. Before starting the analysis process, we C makes this a Mealy FSM. Before starting the analysis process, we C
already can conclude that the state diagram will have four nodes because the FSM has 
two flip-flops.

Step 1 of  the analysis is to derive the next-state equations, which are derived from 
the combinational next-state logic circuit. These equations are dependent on the cur-
rent state of the flip-flops, Q1 and Q0, and the input, C. One equation is needed for 
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FIGURE 6.10 A sample FSM.
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every data input of all of  the flip-flops in the state memory. Our sample circuit has 
two flip-flops having the two data inputs D1 and D0, so we will have two next-state 
equations. Analyzing the top combinational next-state circuit that outputs a value to 
D1 gives us the following next-state equation.

Q1next 5 D1 5 CrQ1 1 Q1Q r0 1 CQ1rQ0

Analyzing the bottom combinational next-state circuit that outputs a value to D0
gives us the following next-state equation.

Q0next 5 D0 5 CrQ0 1 CQ0r

Step 2 is to derive the next-state table from the next-state equations. The number 
of current states in the next-state table is deduced from the number of flip-flops in the 
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state memory of the FSM circuit. In our sample FSM circuit, there are two flip-flops 
Q1 and Q0, thus giving four different combinations for the four different states. The 
next-state values Q1nextQ0next in the next-state table are obtained by substituting every 
combination of the current state Q1Q0, and input values C into the next-state equaC into the next-state equaC -
tions obtained in Step 1. Because there are three variables, Q1, Q0, and C the next-state C the next-state C
table will have eight next-state entries. Each entry will have two bits—the first bit is for 
Q1next, and the second bit is for Q0next. Writing these two bits together for each entry is 
equivalent to having two separate truth tables. By combining them together, it makes 
it easier to see the state encoding. The resulting next-state table is shown next.

For example, to find the Q1next value for the current state Q1Q0 5 00 and C 5 1
(the color entry in the table), we substitute the values Q1 5 0, Q0 5 0, and C 5 1 into 
the equation Q1next 5 CrQ1 1 Q1Q0r 1 CQ1rQ0 5 11r # 0 2 1 10 # 0r 2 1 11 # 0r # 0 2  to 
get the value of 0. Similarly, we get Q0next by substituting the same values for Q1, Q0,
and C into the equation C into the equation C Q0next 5 CrQ0 1 CQ r0 5 11r # 0 2 1 11 # 0r 2  to get the value 
of 1. Therefore, Q1nextQ0next 5 01.

Step 3 is to derive the output equations from the combinational output logic 
circuit. One output equation is needed for every output signal. For this example, there 
are two output signals X and X and X Y. The output signal Y. The output signal Y X is dependent on both the current X is dependent on both the current X
state Q1Q0 and the input signal C. The output signal Y is dependent only on the current Y is dependent only on the current Y
state Q1Q0. By performing a combinational analysis of the output logic circuit for the 
output signals X and X and X Y, we obtain the following two output equations.Y, we obtain the following two output equations.Y

X 5 C rQ1Q0

Y 5 Q1Q0

Step 4 is to derive the output table. Just like the next-state table, the output table 
is obtained by substituting all possible combinations of  the current state and input 
signal values into the output equations. The output table for this example is shown 
next. Because output X is dependent on both the current state X is dependent on both the current state X Q1Q0 and the input C, 
it has two columns, one for C 5 0 and one for C 5 1. Output Y is dependent only on Y is dependent only on Y
the current state Q1Q0, so it has only one column. The resulting output table for both 
X and X and X Y is shown next.Y is shown next.Y

Current State
Q1Q0Q0Q

Next State
Q1nextQ0Q0Q next

C 5 0 C 5 1

00 00 01

01 01 10

10 10 11

11 11 00
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Step 5 is to draw the state diagram, which is derived directly from the next-state 
and output tables. Every current state in the next-state table will have a corresponding 
node in the state diagram labeled with that current state’s encoding. For this example, 
our state diagram will have four nodes. For every next-state entry in the next-state table, 
there will be a corresponding directed edge. This edge originates from the node labeled 
with the current state and ends at the node labeled with the next-state entry. The edge 
is labeled with the corresponding input condition.

For example, in the next-state table, when the current state Q1Q0 is 00, the next 
state Q1nextQ0next is 01 for the input C 5 1. Hence, in the state diagram, there is a 
directed edge from node 00 to node 01 with the label 1C 5 1 2 . The output signal Y
is labeled inside the nodes because it is dependent only on the current state, whereas, 
the output signal X is labeled on the edges because it is also dependent on the input X is labeled on the edges because it is also dependent on the input X
condition. The complete state diagram for this example is shown next.

Current State
Q1Q0Q0Q

Output X
Output Y

C 5 0 C 5 1

00 0 0 0

01 0 0 0

10 0 0 0

11 1 0 1

Q1Q0 = 10Q1Q0 = 11

Q1Q0 = 00 Q1Q0 = 01
Y = 0

Y = 1

Y = 0

Y = 0

(C = 0)C = 0)C
X = 0

(C = 0)C = 0)C
X = 0

(C = 0)C = 0)C
X = X = X 0

(C = 1)C = 1)C
X = 0

(C = 1)C = 1)C
X = 0

(C = 1)C = 1)C
X = 0

(C = 1)C = 1)C
X = 0

(C = 0)C = 0)C
X = 1

C

Q1

X

Clock

Q0

t1 t4t4t t5 t8t0t0t t2 t3 t7t7t

Y

t6

The following is a sample timing diagram for the execution of this FSM circuit.
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6.4 Synthesis of Finite-State Machines
The synthesis of finite-state machines is just the reverse of the analysis of FSMs. In syn-
thesis, we start with what is usually an ambiguous functional description of the circuit 
that we want. From this description, we need to come up with the precise operation 
of the circuit using a state diagram. The state diagram allows us to construct the next-
state and output tables. From these two tables, we can derive the next-state and output 
equations, and finally, the complete FSM circuit.

During the synthesis process, many possible circuit optimizations in terms of the 
circuit size, speed, and power consumption can be performed. Circuit optimization is 
discussed in a later section. In this section, we will focus only on synthesizing a func-
tionally correct FSM.

The steps for the synthesis of FSM circuits are as follows:

1. Produce a state diagram from the functional description of the circuit.
2. Derive the next-state table from the state diagram.
3. Derive the next-state equations from the next-state table.
4. Derive the output table from the state diagram.
5. Derive the output equations from the output table.
6. Draw the FSM circuit from the next-state and output equations.

The following subsections explain these steps in detail.

On reset, both flip-flop values are set to 0, so the FSM starts execution from state 00. 
The two D flip-flops used in the circuit are positive edge-triggered flip-flops, so they will 
change their states at every rising edge of the clock. The first rising clock edge is at time 
t0. Normally, the flip-flops will change state at this time, however, because C is at 0, the C is at 0, the C
flip-flops’ values will remain at 0. At time t1, the input C changes to a 1, so that, at the C changes to a 1, so that, at the C
next rising clock edge at time t2, the flip-flop value Q1Q0 changes to 01. At the next two 
rising clock edges at t3 and t4, with C still at a 1, the value for C still at a 1, the value for C Q1Q0 changes to 10, and then 
to 11, respectively. At time t4, when Q1Q0 5 11, the output Y also changes to a 1 because Y also changes to a 1 because Y
Y 5 Q1Q0. The output X at time X at time X t4, however, remains at a 0 because it is dependent not 
only on the current state but also on the input C. At time t5, input C changes to a 0, but C changes to a 0, but C
the output Y remains at a 1 because Y remains at a 1 because Y Y is not dependent on Y is not dependent on Y C. However, output X will X will X
change to a 1 because X 5 C rQ1Q0. At time t5, Q1Q0 remains the same at 11 through 
the next rising clock edge at t6 because C is still at a 0. At time C is still at a 0. At time C t7, C changes back to a C changes back to a C
1, which results in output X changing back to a 0. Furthermore, it will cause the state X changing back to a 0. Furthermore, it will cause the state X
memory Q1Q0 to change to the next state, which is back to 00 at the next rising clock edge 
at time t8, and the cycle repeats.

When C 5 1, the FSM cycles through the four states in order repeatedly. When 
C 5 0, the FSM stops at the current state until C is asserted again. If  we interpret the C is asserted again. If  we interpret the C
four state encodings as a decimal number, then we can conclude that the circuit of 
Figure 6.10 is for a modulo-4 up-counter that cycles through the four values 0, 1, 2, 
and 3. The input C enables or disables the counting.C enables or disables the counting.C
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6.4.1 State Diagram
The first step in the synthesis of  an FSM is to derive the state diagram for it. We 
might be given an ambiguous or incomplete functional description of a circuit, which 
occurs when not all possible situations of an event or behavior are specified. In order 
to translate an ambiguous description into a precise state diagram, the designer must 
have a full understanding of  the functional behavior of  the circuit in question. In 
addition, the designer might need some ingenuity and creativity to fill in the missing 
gaps. Meaningful assumptions need to be made and stated clearly, and ambiguous 
situations need to be clarified. This is the one step in the design process that has no 
clear-cut answer. In this step, we rely on the knowledge and expertise of the designer 
to come up with a correct and meaningful state diagram.

We will demonstrate the synthesis of an FSM circuit based on the C-style pseudo-
code shown in Figure 6.11. Do not try to interpret the logical execution of the code, 
because it does not perform anything meaningful. Furthermore, this section is not 
about optimizing the code by modifying it to make it shorter, although optimizing 
the code this way might produce a smaller FSM circuit. In this section, the focus is on 
learning how to convert any given pseudocode to an FSM circuit that realizes it.

Section 6.2 already has discussed in detail how to create a state diagram based on 
any given pseudocode. Each unconditional data manipulation is assigned to a node 
in the state diagram. Conditional data manipulations can be assigned either to a node 
or to a conditional edge (resulting in either a Moore or a Mealy FSM). If  two data 
manipulations can be performed in parallel at the same time, then both of them can 
be assigned to the same node to reduce the total number of nodes in the state diagram. 
If  two data manipulations must be performed sequentially (one after the other), then 
they need to be assigned to two different nodes.

The pseudocode shown in Figure 6.11 contains four signal assignment 
statements—two Y 5 0 and two Y 5 1. We assign one state to each of the four signal 
assignment statements. The first Y 5 0 is assigned to state s0, the second Y 5 0 is 
assigned to state s1, and so on, as shown by the comments in the pseudocode.

After the first Y 5 0 statement, the IF statement conditionally determines whether 
to execute the second Y 5 0 statement or the Y 5 1 statement. Therefore, from state 
s0, one edge goes to state s1, and one edge goes to state s2. The labels on these two edges 
are the conditions for the IF statement. The edge going to state s1 has the label 1B 5 0 2 ,

FIGURE 6.11 Functional description using C-style pseudocode for synthesizing an FSM.

REPEAT {
Y = 0Y = 0Y // s

0

IF (B = 0) THEN
Y = 0Y = 0Y // s

1

ELSE
Y = 1Y = 1Y // s

2

END IF
Y = 1Y = 1Y // s

3

}
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and the edge going to state s2 has the label 1B 5 1 2 . Remember that all possible out-
comes of all the conditional tests must be labeled on the outgoing edges from the node 
in order to make it deterministic. In other words, for any condition outcome, you need 
to know exactly which node to go to next. The operation Y 5 0 is performed in state s1
and the operation Y 5 1 is performed in state s2. After executing state s1 or state s2,
state s3 is executed, so both states s1 and s2 have an unconditional edge going from these 
two states to s3. Finally, because of the unconditional REPEAT loop, there is an uncondi-
tional edge that goes from s3 back to state s0. The resulting state diagram is shown next.

6.4.2 Next-State Table
Having derived the state diagram, it is easy to derive both the next-state and output 
tables from it. Because the next-state and output tables, and the state diagram portray 
the same information but depicted in different formats, it requires only a straightfor-
ward translation from one to the other.

The resulting next-state table derived from the state diagram is shown next.

(B = 0)

s0

Y = 0

(B = 1)

s1

Y = 0

s2

Y = 1

s3

Y = 1

Current State 
Q1Q0Q0Q

Next State
Q1nextQ0Q0Q next

B 5 0 B 5 1

s0 00 s1 01 s2 10

s1 01 s3 11 s3 11

s2 10 s3 11 s3 11

s3 11 s0 00 s0 00

The row labels are the current state Q1Q0 and the column labels are the input con-
ditions for B. The table entries are the next states Q1nextQ0next. Translating directly from 
the state diagram, from the current state s0, if  the input condition 1B 5 0 2  is true, then 
the next state is s1. Correspondingly, in the next-state table, the entry for the intersection 
of the current state s0 and the input B 5 0 (the color entry in the table) is s1.
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In the next-state table, the actual encodings for the states also are given. To encode 
the four states, two flip-flops Q1 and Q0 are required. In the example, the encodings 
given to the four states s0, s1, s2, and s3 are just the four different combinations of the 
two flip-flop values 00, 01, 10, and 11, respectively. This encoding assignment, however, 
does not need to be. Using different encoding schemes can give different results in terms 
of circuit size, speed, and power consumption. This optimization technique is further 
discussed in Section 6.5.2.

6.4.3 Next-State Equations
The next-state equations are derived from the next-state table. Because we needed two 
D flip-flops to encode the four states in our state diagram, we will have two next-state 
equations, one for each of the D input to the D flip-flop. Each entry in the next-state 
table has two bits Q1nextQ0next. When deriving the next-state equations, we need to 
separate these two bits and look at them individually as two separate truth tables. 
Extracting the leftmost bit in every entry in the table will give us the truth table for the 
Q1next equation, and extracting the rightmost bit in every entry in the table will give us 
the truth table for the Q0next equation. Remember that the characteristic equation for 
the D flip-flop is Qnext 5 D, so the values for Qnext and D are the same. The separated 
truth tables, in the form of a K-map, and their corresponding next-state equations for 
Q1next and Q0next are shown next.

1

1

1

1 1

0

00

01

1

11

10

B
Q1Q0

Q1next

Q19Q0

BQ19

Q1Q09

Q1next = D1 = (Q1 Q0) + BQ19

1

1

1

1 1

0

00

01

1

11

10

B
Q1Q0

Q0next

Q19Q0

B9Q19

Q1Q09

Q0next = D0 = (Q1 Q0) + B9Q19

These two equations allow us to construct the combinational next-state logic circuit 
for the D inputs to the two D flip-flops in our state memory.

6.4.4 Output Table and Output Equations
The output table and output equations are used to derive the output logic circuit in 
the FSM. The output table is obtained directly from the state diagram. From this state 
diagram, we see that the output signal Y is dependent only on the state. In states Y is dependent only on the state. In states Y s0 and 
s1, Y is assigned the value 0 and in states Y is assigned the value 0 and in states Y s2 and s3, Y is assigned the value 1. Hence, we Y is assigned the value 1. Hence, we Y
get the resulting output table shown next.
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B

Clock

Y

Reset

Clk

D0

Q09

Q0

Clear

Clk

D1

Q19

Q1

Clear

Current State
Q1Q0Q0Q

Output
Y

s0 00 0

s1 01 0

s2 10 1

s3 11 1

The output equation as derived from the output truth table is simply

Y 5 Q1

6.4.5 FSM Circuit
We will use the sample FSM circuit shown in Figure 6.3 as a template. The number of 
D flip-flops to use for our state memory was determined when the states were encoded. 
As noted before, our FSM circuit requires two D flip-flops for its state memory. The 
two Clk signals to the two flip-flops are connected together to the main Clk signals to the two flip-flops are connected together to the main Clk Clock input Clock input Clock
signal. The two Clear signals to the two flip-flops are connected together to the main 
Reset input signal. The next-state logic circuit is drawn from the two next-state equa-
tions obtained in Section 6.4.3, and the output logic circuit is drawn from the output 
equation obtained in Section 6.4.4. Connecting these three parts, next-state circuit, 
state memory, and output circuit together produce the final FSM circuit shown next.
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6.5 Optimizations for FSMs
In designing any digital circuit, in addition to getting a functionally correct circuit, 
we like to optimize it for size, speed, and power consumption. In this section, we will 
discuss briefly some of the issues involved in optimizing the size of the FSM circuit. 
In general, reducing the size of a circuit also will make it run faster and use less power.

Because FSM circuits contain the next-state logic and the output logic combina-
tional circuits, we can optimize the FSM by reducing the size of  these combinational 
circuits using the methods as described in Chapter 3. For optimizing the state mem-
ory, we can reduce the number of  states needed by the FSM or use different state 
encoding schemes.

6.5.1 State Reduction
FSM circuits with fewer states most likely will result in a smaller circuit, because the 
number of states directly translates to the number of flip-flops needed. Fewer flip-flops 
imply a smaller state memory for the FSM, which also means fewer flip-flop inputs. 
Fewer flip-flop inputs will require fewer next-state equations and so the next-state logic 
circuit also is reduced.

There are two levels in which we can reduce the number of states. At the pseudo-
code description level, we can try to optimize the code by shortening it, if  possible. We 
also can reduce the number of states needed by assigning two or more data operations 
to the same state if  these data operations can be performed in parallel. Whether two 
operations can be performed in parallel is determined by two factors: data dependency 
and availability of functional units. In the obvious case, if  we have two addition instruc-
tions, and the second addition is dependent on the result from the first instruction, 
then these two instructions cannot be performed in parallel. However, if  we have two 
additions that are totally independent of each other, such as

x 5 a 1 b
y 5 c 1 d

we still cannot perform these two instructions in parallel if  we only have one adder 
available to use. The choice of what and how many functional units to include in the 
microprocessor is discussed in Chapter 7.

After obtaining a state diagram, we still might be able to reduce the number of 
states by removing equivalent states. Two states are said to be equivalent if  the following 
two conditions are true:
1. Both states produce the same output for every input.
2. Both states have the same next state for every input.

If  two states are equivalent, we can remove one of them and use instead the other 
equivalent state. The resulting FSM still will be functionally equivalent.

Another way to reduce the number of states is to use the Mealy FSM model instead 
of the Moore FSM model. The reason is that if  outputs are dependent on both the 
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current state and input conditions, then we do not need to use a separate state to do 
the outputs. The tradeoff  is that the output logic circuit most likely will be larger. 
Sections 6.6.5 and 6.6.6 will show examples of this tradeoff.

6.5.2 State Encoding
When initially drawing the state diagram for an FSM circuit, it is preferred to use 
symbolic state names. However, these state names eventually must be encoded with 
a unique binary bit string. The process of state encoding is to determine how many 
flip-flops are required to represent the states in the next-state table or state diagram, 
and then to assign a unique binary bit string to each of the states. In all of the examples 
presented so far, we have used the straight binary encoding scheme, where n flip-flops 
are needed to encode 2n states. For example, for four states, state s0 gets the encoding 
00, s1 gets the encoding 01, s2 gets 10, and s3 gets the encoding 11. However, there is no 
reason why we cannot use a different encoding for the states. In fact, we do want to use 
a different encoding if  it will result in a smaller circuit. This straight binary encoding 
scheme does not always lead to the smallest FSM circuit. Other encoding schemes, 
such as the minimum bit change, minimize 1-bit, prioritized adjacency, and one-hot 
encoding, might result in a smaller circuit.

For the minimum bit change scheme, binary encodings are assigned to the states in 
such a way that the total number of bit changes for all state transitions is minimized. 
In other words, if  every edge in the state diagram is assigned a weight that is equal to 
the number of bit changes between the source encoding and the destination encoding 
of that edge, this scheme would select the one that minimizes the sum of all of these 
edge weights.

For example, given the state diagram with four states shown in Figure 6.12(a), the 
minimum bit change scheme would use the encoding shown in (b) and not the encod-
ing shown in (c). In both Figures 6.12(b) and (c), the number of  bit changes between 
the encodings of  two states joined by an edge is labeled on that edge. For example, 
in Figure 6.12(b), the number of  bit changes between state s1 5 01 and s2 5 11 is 1. 
The encoding used in Figure 6.12(b) has a smaller sum of all of  the edge weights than 
the encoding used in (c).

Notice that, even though the encoding of  Figure 6.12(b) produces the smallest 
total edge weight, there are several other ways to encode these four states that also will 
produce the same total edge weight (e.g., assigning 00 to s1 instead of to s0, 01 to s2
instead of to s1, 11 to s3, and 10 to s0).

For the minimize 1-bit scheme, the state with the most incoming edges is encoded 
with the least number of 1 bits. In Figure 6.13, (b) uses the straight binary encoding 
and (c) uses the minimize 1-bit encoding. Their corresponding next-state tables and 
equations are shown in Figures 6.13(d) and (e), respectively. In most situations, the 
next-state table with fewer 1 bits will result in a smaller next-state circuit.

For the prioritized adjacency scheme, adjacent states to any state s are given cer-
tain priorities. Encodings are assigned to these adjacent states such that those with a 
higher priority will have an encoding that has fewer bit changes from the encoding of 
state s than those adjacent states with a lower priority. The minimize 1-bit scheme is 
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FIGURE 6.12 Minimum bit change encoding: (a) a state diagram with four states;  
(b) encoding with a total weight of four; (c) encoding with a total weight of six.

1

1

1 1

s0

00
s1

01

s3

10
s2

11

(b)

s0 s1

s2s3

(a)

1

1

2 2

s0

00
s1

01

s2

10
s3

11

(c)

FIGURE 6.13 Minimize 1-bit encoding comparison: (a) state diagram with four states; 
(b) using straight binary encoding; (c) using the minimize 1-bit encoding; (d) next-
state table for the straight binary encoding; (e) next-state table for the minimize 
1-bit encoding.

11

(C = 0)

10

00

01

(C = 1)

(b)

(C = 0) (C = 1)
s0

s1 s2

s3

(a)

00

(C = 0)

11

01

10

(C = 1)

(c)

Q1next 5 Q1rQ0

Q0next 5 CQ1rQ0

Current State
Q1Q0Q0Q

Next State
Q1nextQ0Q0Q next

C 5 0 C 5 1

00 00 00

01 10 11

10 00 00

11 00 00

(e)

Q1next 5 C 1 Q1 1 Q0

Q0next 5 C r 1 Q1 1 Q0

Current State
Q1Q0Q0Q

Next State
Q1nextQ0Q0Q next

C 5 0 C 5 1

00 01 10

01 11 11

10 11 11

11 11 11

(d)
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FIGURE 6.14 Prioritized adjacency encoding.

(CC  = 0)9
(C = 0)

s0

00

s1

01

s2

11
s3

10

continue

C = 10

CC  = C–1

output C

FIGURE 6.15 One-hot encoding.

0001 0010

01001000

a special case of this in which the priority is the number of incoming edges to a state. 
Another prioritization might be the number of times a state is traversed. For example, 
Figure 6.14 shows a state diagram for a loop that counts from 10 down to 0. The state-
ments to be executed for the loop are annotated next to the states in the diagram. In 
state s0 the variable C is initialized to 10 (decimal). In state C is initialized to 10 (decimal). In state C s1, C is decremented by 1. C is decremented by 1. C
Next, the condition 1C 5 0 2  is tested, and if  it is true then it will go to state s3, oth-
erwise it will go to state s2. Because of the nature of the loop, we know that the edge 
going from state s1 to s2 will be traversed many more times than the edge going from 
state s1 to s3. Therefore, if  state s1 is encoded with 01, then we will want to encode state 
s2 with 11 and state s3 with 10 because changing from 01 to 11 requires only one bit 
change, but changing from 01 to 10 requires two bit changes. This particular prioritized 
adjacency scheme might be good for reducing power consumption because the amount 
of power used in a circuit is related to the number of bit changes.

For the one-hot encoding scheme, each state is assigned one flip-flop. A state is 
encoded with its flip-flop having a 1 value, while all of the other flip-flops have a 0 value. 
For example, the one-hot encoding for four states would be 0001, 0010, 0100, and 1000, as 
shown in Figure 6.15. The advantage of this scheme is that we are minimizing the number 
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of 1 bits needed to encode a state, and there will be at most two bit changes needed to 
go between any two states. The disadvantage is that many more flip-flops are needed.

6.5.3 Unused States
In a real-world situation, the number of states used in the state diagram is most likely 
not a power of two. For example, a modulo-6 up-counter will have six states. To encode 
six states, we need at least three flip-flops, because two flip-flops can encode only four 
different combinations. However, three flip-flops give eight different combinations, and 
so two combinations are not used. The questions are: What do we do with these unused 
encodings? In the next-state table, what next state values do we assign to these unused 
states? Do we just ignore them?

If the FSM can never be in any of the unused states, then it does not matter what 
their next states are. In this case, we can put don’t-care values for their next states. The 
resulting next-state circuit might be smaller because of the don’t-care values.

But what if, by chance, the FSM enters one of these unused states? The operation 
of the FSM will be unpredictable because we do not know what the next state is. Well, 
this is not exactly true because, even though we started with the don’t-cares, we have 
mapped them to a fixed next-state equation. So, these unused states do have definite next 
states. It is just that these next states are not what we wanted. Therefore, the resulting 
FSM operation will be incorrect if  it ever enters one of the unused states. If  this FSM is 
used in a mission-critical control unit, we do not want even this slight chance to occur.

One solution is to use the initialization or starting state as the next state for these 
unused state encodings. This way, the FSM will restart from the beginning if  it ever 
enters one of these unused states.

6.6 FSM Construction Examples
We will now provide several examples to illustrate the complete process of synthesizing 
FSMs.

6.6.1 Car Security System—Version 3
Let us revisit the car security system example from Chapters 2 and 6. Recall that in 
the first version (Chapter 2) the circuit is a combinational circuit. The problem with 
a combinational circuit is that after the alarm is triggered, by opening the door, for 
example, the alarm can be turned off  immediately by closing the door again. However, 
what we want is that after the alarm is triggered, it should remain on even after the 
door is closed again, and the only way to turn it off  is to turn off  the master switch.

This requirement suggests that we need a sequential circuit in which the output is 
dependent not only on the current input switch settings, but also on the current state of 
the alarm. Version 2 of the car security system in Chapter 6 used an ad hoc approach 
to resolve this issue by adding a SR latch. In this section, we will use a more formal 
approach by designing an FSM for the car security system.

We start by deriving the state diagram for the system, as shown in Figure 6.16(a). 
In addition to the three input switches M, M, M D, and V (for V (for V Master, Door, and Vibration), 
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FIGURE 6.16 Car security system—Version 3: (a) state diagram; (b) next-state table; 
(c) K-map and next-state equation; (d) circuit.
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we need two states 1 and 0 to represent whether the siren is on or off, respectively. If  
the siren is on (i.e., in state 1), then it will remain in that state as long as the master 
switch is still on, so it doesn’t matter whether the door is now closed or open. This is 
represented by the edge that goes from state 1 and loops back to state 1 with the label 
1MDMDM V 5 133 2 . From the on (1) state, the only way to turn off  the siren is to turn off  
the master switch. This is represented by the edge going from state 1 to state 0 with 
the label 1MDMDM V 5 033 2 . If  the siren is off  (i.e., in state 0), it is turned on when the 
master switch is on, and either the door switch or the vibration switch is on. This is 
represented by the edge going from state 0 to state 1 with the labels (MDMDM V 5 101, 110, 
or 111). Finally, from the off  state, the siren will remain off  when either the master 
switch remains off  or if  the master switch is on but none of the other two switches is 
on. This is represented by the edge from state 0 looping back to state 0 with the labels 
1MDMDM V 5 033, 100 2 .

The state diagram is translated to the corresponding next-state table using one D 
flip-flop for the state memory, as shown in Figure 6.16(b). Doing a 4-variable K-map 
on the next-state table gives us the next-state equation shown in Figure 6.16(c). The 
final circuit for this car security system is shown in Figure 6.16(d). The circuit uses 
one D flip-flop. The next-state circuit is derived from the next-state equation, which 
produces the signal for the D0 input of the flip-flop. No extra output signal is needed 
because the Q0 output of the flip-flop directly drives the siren.

6.6.2 Modulo-6 Up-Counter
In this example, we will design a modulo-6 up-counter with a count enable input C, 
and an output signal Y. The count is to be represented directly by the contents of the Y. The count is to be represented directly by the contents of the Y
state memory flip-flops. When the input C is asserted, the FSM will transition to the C is asserted, the FSM will transition to the C
next state, once per clock cycle. The output Y is asserted when the count is equal to Y is asserted when the count is equal to Y
five. We will follow the steps described earlier to synthesize an FSM circuit for this 
modulo-6 up-counter.

Step 1 of  the synthesis process is to construct the state diagram. From the 
above functional description, we need to construct a state diagram that will show 
the precise operation of  the circuit. A modulo-6 up-counter counts from zero to 
five, and then back to zero. Because the count is represented by the state memory 
flip-flop values and we have six different counts (from zero to five), we will need 
three flip-flops Q2, Q1, and Q0 that will produce the sequence 000, 001, 010, 011, 
100, 101, 000, 001, … when C is asserted; otherwise, when C is asserted; otherwise, when C C is de-asserted, the C is de-asserted, the C
counting stops. The remaining two states, 110 and 111, are not used. From state 
000, which is the count zero, there will be an edge that goes to state 001 with the 
label 1C 5 1 2 . From state 001, there is an edge that goes to state 010 with the label 
1C 5 1 2 , and so on. For the counting to stop at each count, there will be edges at 
each state that loop back to itself  with the label 1C 5 0 2 . Furthermore, we want to 
assert Y when the count is five, which is state 101, so in this state, we set Y when the count is five, which is state 101, so in this state, we set Y Y to a 1. Y to a 1. Y
For the rest of  the states, Y is set to a 0. Hence, we obtain the state diagram shown Y is set to a 0. Hence, we obtain the state diagram shown Y
next for a modulo-6 up-counter.
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Step 2 is to derive the next-state table, which is a direct translation from the state 
diagram. We have three flip-flops Q2, Q1, and Q0, and one primary input C. The cur-
rent states for the flip-flops are listed down the rows of  the table, while the input 
conditions are listed across the columns. The entries in the table are the next-state val-
ues. Each next-state value is composed of the three flip-flop values Q2next, Q1next, and 
Q0next. We follow the edges in the state diagram to determine the three flip-flop values 
Q2nextQ1nextQ0next, for each entry. For example, if  the current state Q2Q1Q0 is 010 and 
the input is 1C 5 1 2 , then the next state Q2nextQ1nextQ0next is 011. This transition is 
highlighted by the color edge in the state diagram and the corresponding color entry 
in the next-state table shown next.

For the two unused states, we have given the don’t-care values for their next states.

(C = 1)C = 1)CQQ2Q1Q0 = 000 = 000
Y = Y = Y 0

 = 001
Y = Y = Y 0

 = 0100
Y = Y = Y 0

 = 011
Y = Y = Y 0

 = 1000
Y = Y = Y 0

 = 101
Y = Y = Y 1

(C = 1)C = 1)C

(C = 1)C = 1)C

(C = 1)C = 1)C(C = 1)C = 1)C

(C = 1)C = 1)C

(C = 0)C = 0)C

(C = 0)C = 0)C

(C = 0)C = 0)C (C = 0)C = 0)C

(C = 0)C = 0)C

(C = 0)C = 0)C

QQ2Q1Q0

Q2Q1Q0 = 100 = 10 QQ2Q1Q0

QQ2Q1Q0

QQ2Q1Q0

Current State 
Q2Q2Q Q1Q0Q0Q

Next State
Q2Q2Q nextQ1nextQ0Q0Q next

(C 5 0) (C 5 1)

000 000 001

001 001 010

010 010 011

011 011 100

100 100 101

101 101 000

110 333 333

111 333 333
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Step 3 is to derive the next-state equations for all of the flip-flop inputs in terms 
of the current state and the primary input. These equations are obtained directly from 
the next-state table. To derive each next-state equation, we need to visualize the three 
next-state bits Q2nextQ1nextQ0next as three separate truth tables and look at them indi-
vidually. If  you find it difficult to visualize them as separate tables, then you first might 
want to actually separate these three bits into three separate truth tables. For the Q2next
equation, we consider just the leftmost bit in each entry in the truth table. Looking at 
all of the leftmost bits, there are four 1-minterms, giving the equation

Q2next 5 C rQ2Q1rQ0r 1 C rQ2Q1rQ0 1 CQ2rQ1Q0 1 CQ2Q1rQ0r

Note in the equation that we have replaced the condition 1C 5 0 2  with C r, and 
1C 5 1 2  with C. This is just another way of writing it, and it is shorter.

The equation for Q1next is derived from considering just the middle bit for all of 
the entries in the next-state table, and the equation for Q0next is derived from just the 
rightmost bit, giving us the following two equations:

Q1next 5 CrQ r2 Q1Q r0 1 CrQ r2 Q1Q0 1 CQ r2 Q r1 Q0 1 CQ r2 Q1Q r0
Q0next 5 CrQ2rQ1rQ0 1 CrQ r2 Q1Q0 1 CrQ2Q r1 Q0 1 CQ2rQ1rQ0r 1 CQ2rQ1Q0r

1 CQ2Q1rQ0r

Because these next-state equations will be used to construct the next-state circuit, 
they should be simplified to make the circuit smaller. The three K-maps and simplified 
next-state equations for Q2next, Q1next, and Q0next are shown next. In the K-maps, don’t-t are shown next. In the K-maps, don’t-t
care values are used for the next-state values for the two unused state encodings 110 
and 111. However, in the final simplified next-state equations, these don’t-care values 
are replaced with actual values, so these two unused states do have an actual next state. 
(See Problem 6.10.)
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Steps 4 and 5 are to derive the output table and equations. There is one equation for 
every output signal. Because the value of Y is labeled next to each node, it is dependent Y is labeled next to each node, it is dependent Y
only on the current state. From the state diagram, Y is asserted only in state 101, so Y is asserted only in state 101, so Y Y
has a 1 only in that current-state entry, while the rest of them are 0s. The output table 
and equation are shown next.

Y 5 Q2Q1rQ0

Step 6 is to draw the FSM circuit. Our state memory consists of  three D flip-
flops with the three inputs D2, D1, and D0. The values given to these three D inputs 
are directly from the three next-state equations because the characteristic equation 
for the D flip-flop is Qnext 5 D. Thus, we use the three previously derived next-state 
equations

Q2next 5 D2 5 CrQ2 1 Q2Q0r 1 CQ1Q0

Q1next 5 D1 5 CrQ1 1 Q1Q0r 1 CQ2rQ1rQ0

Q0next 5 D0 5 CrQ0 1 CQ0r 5 C! Q0

to construct our next-state circuit. The output circuit is constructed from the output 
equation

Y 5 Q2Q1rQ0

The complete FSM circuit is shown next. Following the template FSM circuit, the 
Clk signals to the two flip-flops are connected together to the main Clk signals to the two flip-flops are connected together to the main Clk Clock input signal, Clock input signal, Clock
and the Clear signals to the two flip-flops are connected together to the main Reset
input signal.

Current State
Q2Q2Q Q1Q0Q0Q

Output
Y

000 0

001 0

010 0

011 0

100 0

101 1
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6.6.3 One-Shot Circuit
In this example, we will synthesize an FSM for a one-shot circuit, which outputs a 
single short pulse when given an input of arbitrary time length. In this FSM circuit, 
the length of the single short pulse will be one clock cycle. The state diagram for this 
circuit is shown in Figure 6.17(a).

State s0, encoded as 00, is the reset state, and the FSM waits for a key press in this 
state. When a switch is pressed, the FSM goes to state s1 (encoded as 01), and outputs 
a single short pulse. From s1, the FSM unconditionally goes to state s2 (encoded as 11), 
and turns off  the one-shot pulse. Therefore, the pulse lasts only for one clock cycle, 
regardless of how long the key is pressed. To break the loop and wait for another key 
press, the FSM has to wait for the release of the key in state s2. When the key is released, 
the FSM goes back to state s0 to wait for another key press.

C

Clock

Y

Clk

D0 Q0

Clear

Clk

D1

Q19

Q1

Clear

Clk

D2 Q2

Clear

Reset

Q29

Q09
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FIGURE 6.17 FSM for one-shot circuit: (a) state diagram; (b) next-state table;  
(c) next-state equations and K-maps; (d) output table and output equation; (e) FSM 
circuit. (continued on next page)

1

1 1

0

00

01

111

10

Keypressed
Q1Q0

Q1next

Q19Q0

Q0 Keypressed

1

1

1 1

0

00

01

111

10

Keypressed
Q1Q0

Q0next

Q0 Keypressed

Q19Keypressed

Q19Q0

s0

00
s1

01

s2

11

KeypresseKeypressed9

Keypressed

KeypressedKeypressed9

Output Oneshot

Unused
10

(a)

Current State 
Q1Q0Q0Q

Next State
Q1nextQ0Q0Q next

Keypressed

0 1

00 00 01

01 11 11

11 00 11

10 Unused 00 00

(b)

(c)

Q1next 5 Q1rQ0 1 Q0KeKeK yeye pypy ressed Q0next 5 Q1rKeKeK yeye pypy ressed 1 Q1rQ0 1 Q0KeKeK yeye pypy ressed

This state diagram uses two bits to encode the three states; state encoding 10 is not 
used. The state diagram shows that, if  the FSM somehow gets to state 10, it uncondi-
tionally will go to the reset state 00 in the next clock cycle.
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The corresponding next-state table and next-state equations are shown in Figures 
6.17(b) and (c), respectively. The output table and output equation are shown in Figure 
6.17(d) and finally, the complete FSM circuit in Figure 6.17(e).

6.6.4 Simple Microprocessor Control Unit
In this example, we will synthesize an FSM that illustrates what a simple control unit 
of a microprocessor is like. We start with the state diagram as shown in Figure 6.18(a). 
Each state is labeled with a state name s0, s1, s2, and s3, and has two output signals x
and y. There are also two conditional status signals, Start and 1n 5 9 2  labeled on four 
of the edges, while the rest of the edges do not have any conditions. From state s0, the 
conditional edge labeled Start is taken when Start 5 1; otherwise, the edge labeled 
Start′ is taken. Similarly, from state s2, the edge with the label 1n 5 9 2  is taken when 
the condition is true (i.e., when the value of variable n is equal to nine). If  n is not equal 
to nine, then the edge with the label 1n 5 9 2r is taken.

Current State
Q1Q0Q0Q

Output
Oneshot

00 0

01 1

11 0

10 0

(d)

Clk
D0

Q09

Q0

Clear

Clk
D1

Q19

Q1

Clear

Reset
Clock

Keypressed

Oneshot

(e)

FIGURE 6.17 FSM for one-shot circuit: (a) state diagram; (b) next-state table;  
(c) next-state equations and K-maps; (d) output table and output equation; (e) FSM 
circuit.

Oneshot 5 Q1rQ0
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FIGURE 6.18 Synthesis of a simple microprocessor control unit FSM: (a) state diagram;  
(b) next-state table; (c) K-maps and next-state equations for Q1next and Q0next; (d) output table; 
(e) K-maps and output equations; (f) FSM circuit. (continued on next page)

Start9

Start

(n = 9)

s0

x = 0
y = 1

s1

x = 1
y = 1

s2

x = 1
y = 1

s3

x = 1
y =0

(n = 9)9

(a)

Current State
Q1Q0Q0Q

Next State
Q1nextQ0Q0Q next

Start, (n 5 9)

00 01 10 11

s0 00 s0 00 s0 00 s1 01 s1 01

s1 01 s2 10 s2 10 s2 10 s2 10

s2 10 s1 01 s3 11 s1 01 s3 11

s3 11 s0 00 s0 00 s0 00 s0 00

(b)

01

1 1

00

00

01

1011

1 1

1 1

11

10

Start, (n = 9)
Q1Q0 Q1Q0

Q1next Q0next

Q19Q0 Q1Q09Q1Q09(9(9 n = 9)

1

0100

00

01

1011

1 1

1 1 1

11

10

Start, (n = 9)

StartQ09

Q1next = D1 = Q19Q0 + Q1Q09(9(9 n = 9) Q0next = D0 = Q1Q09+ StartQ09

(c)

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-202



6.6 FsM ConstRUCtIon eXAMPLes 253

Two flip-flops Q0 and Q1 are needed in order to encode the four states. For sim-
plicity, we will use the binary value of the index of the state name to be the encoding 
for that state, so the encoding for state s0 is Q1Q0 5 00 and the encoding for state s1 is 
Q1Q0 5 01, and so on.

From the above interpretation, we are able to derive the next-state table, as shown in Figure 
6.18(b). The four current states for Q1Q0 are listed down the four rows. The four columns are 0 are listed down the four rows. The four columns are 0
for the four combinations of the two conditional input signals Start and Start and Start 1n 5 9 2 . For exam-
ple, the column with the value Start, 1n 5 9 2 5 10 means Start 5 1 and 1n 5 9 2 5 0. The 
condition 1n 5 9 2 5 0 means that the condition 1n 5 9 2 is false, which means 1n 5 9 2r is 
true. The entries in the table are the next states Q1nextQ0next for the two flip-flops.t for the two flip-flops.t

Current State
Q1Q0Q0Q

Output
xy

00 01

01 11

10 11

11 10

(d)

Q1

0 0 1
0

1 1

1

1

x Q0

Q1

0 1 1
0

1 0

1

1

y Q0

x = Q1 + Q0 y = (Q1Q0)9

(e)

Start (n = 9)

x

y

Input
signals

Output
signals

Next-state logic State memory Output logic

Clk

D0

Q09

Q0

Clear

Clk

D1

Q19

Q1

Clear

Clock
Reset

(f)

FIGURE 6.18 Synthesis of a simple microprocessor control unit FSM: (a) state diagram; 
(b) next-state table; (c) K-maps and next-state equations for Q1next and t and t Q0next; (d) output table; 
(e) K-maps and output equations; (f) FSM circuit.
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For example, looking at the state diagram, from state s2, we go back to state s1
when the condition 1n 5 9 2r is true and independent of  the Start condition. Hence, 
in the next-state table, for the current state row s2 (10), the two next-state entries for 
when the condition 1n 5 9 2r is true is s1 (01). The condition “ 1n 5 9 2r is true” means 
1n 5 9 2 5 0. This corresponds to the two columns with the labels 00 and 10, that is, 
Start can be either 0 or 1, while 1n 5 9 2  is 0.

The next-state equations are derived from the next-state table. There is one next-
state equation for every D input of every flip-flop used. Because we have two D flip-
flops, we have two equations: one for Q1next and the second for Q0next. The equations 
are dependent on the four variables Q1, Q0, Start, and 1n 5 9 2 . We look at the next-
state table as one having two truth tables merged together: one truth table for Q1next and t and t
one for Q0next. We look at only the leftmost bit in each entry for the Q1next truth table, 
and only the rightmost bit for the Q0next truth table. Extracting the two truth tables 
from the next-state table in this manner, we obtain the two K-maps and corresponding 
next-state equations for Q1next and Q0next, as shown in Figure 6.18(c). The next-state 
equations allow us to derive the next-state logic combinational circuit.

The output table is obtained from the output signals given in the state diagram. 
The output table is just the truth table for the two output signals, x and y. The output 
signal equations derived from the output table are dependent on the current state, 
Q1Q0. The output table, K-maps, and output equations are shown in Figures 6.18(d) 
and (e).

From the next-state and output equations, we can easily produce the next-state and 
output logic circuits, and the resulting FSM circuit is shown in Figure 6.18(f).

6.6.5 Elevator Controller Using a Moore FSM
A new building with two floors will have an elevator, and you have been asked to 
design the FSM controller circuit for the elevator. On each floor of  the building, there 
is a button for a person to press to call the elevator. Button f1f1f  is located on floor 1, and 
button f2f2f  is located on floor 2. Inside the elevator, there are two buttons (e1 and e2) to 
tell the elevator which floor to go to. When e1 is pressed, the elevator is to go to floor 
1 if  it is not already there, and when e2 is pressed, the elevator is to go to floor 2 if  it 
is not already there. Finally, there are two input signals at1 and at2 that are asserted 
automatically by the elevator mechanism when it reaches that particular floor. at1
is asserted when the elevator is at floor 1, and at2 is asserted when the elevator is at 
floor 2.

A 2-bit output signal go1-0 controls the elevator motor to turn on and off, and 
which floor to go to. The elevator motor is turned on when go1 is asserted with a 1, 
and turned off  when go1 is de-asserted. The output signal go0 specifies which floor to 
go to: the elevator goes to floor 1 if  go0 5 0, and floor 2 if  go0 5 1. There are also two 
LEDs on each of the two floors to show the elevator’s location. The output signal lelel d1
is turned on if  the elevator is at floor 1, and lelel d2d2d  is turned on if  the elevator is at floor 2. 
Both LEDs are turned off when the elevator is moving between floors. A picture of the 
elevator setup and a summary of the I/O signals are shown next.
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at2

floor 2
f2f2f

at1

floor 1
f1f1f

led2-1d2-1d

led2-1d2-1d

e1 e2

go1-0

Inputs:

 ● f1f1f , f2f2f : Buttons at each floor to call the elevator. f1f1f  is on floor 1, f2f2f  is on floor 2.
 ● e1, e2: Buttons inside the elevator to tell the elevator which floor to go to.
 ● at1, at2: Signals from the elevator mechanism that get asserted depending on the 

elevator’s current location.

Outputs:

 ● go1: 0 to turn off  the elevator motor, and 1 to turn on the motor.
 ● go0: 0 to go to floor 1, and 1 to go to floor 2.
 ● lelel d1, lelel d2d2d : LEDs on each of the two floors to show the elevator’s current 

location.

Although there are two sets of button inputs, fifif  and ei, they serve the same func-
tion, in that when pressed, they will call the elevator to go to a particular floor. So we 
can reduce the number of inputs by combining the corresponding fifif  and ei signals into 
one signal fifif . We will assume that if  both buttons ( f2f2f  and f1f1f ) are pressed at the same 
time, then nothing will change and the FSM will remain in the current state.

From the description of the elevator system, we can derive the state diagram for a 
Moore FSM as shown in Figure 6.19(a). There are two states for when the elevator is at a 
particular floor, and two intermediate states for when the elevator is moving to the other 
floor. Starting at state 00 (floor 1), we wait for f2f2f  to be pressed. Any other combinations 
of button presses will not change states. When f2f2f  is asserted, we go to the intermediate 
state 11 in which the elevator is going to floor 2. In this state, we set go1-0 to 11 to turn 
on the elevator motor to go to floor 2, and turn off both LEDs. We continue in state 11 
until at2 is asserted, telling us that the elevator has arrived at floor 2, and we transition 
to state 10 (floor 2). In state 10, we turn off the motor by setting go1-0 to 0x, and turning 
on lelel d2d2d . Going down from floor 2 to floor 1 is similar with the corresponding changes.

There are a total of four inputs f1f1f , f2f2f , at1, and at2, and if  we enumerate all possible 
combinations of these four inputs, our next-state table would have 16 columns. However, 
notice that the fifif ’s and the ati’s are mutually exclusive, in that the fifif ’s are used only in 
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FIGURE 6.19 Elevator controller using Moore model: (a) state diagram; (b) next-state table; 
(c) next-state equations; (d) output table; (e) output equations; (f) FSM circuit.  
(continued on next page)

1110

0100

(( ff2-1f2-1f  = 10)

at floor 2 g2 g2 going to
floor 2

at floor 1 going to
floor 1

2 g(2 gf2 gf2 g2 gf2 g  2 g2 g2-12 g2 gf2 g2-12 gf2 g2 g = 012 g2 g)2 g

( ff2-1f2-1f  = 00, 01, 11)

( f2-1f2-1f  = 00, 10, 11)

(at1 = 1)

(at2 = 1)

(at2 = 0)

go1-0 = 11

(at1 = 0)

go1-0 = 10

led2-1d2-1d = 00

led2-1d2-1d  = 00led2-1d2-1d  = 01

led2-1d2-1d  = 10
go1-0 = 0

go1-0 = 0

(a)

Current State
Q1Q0Q0Q

Next State
Q1nextQ0Q0Q next

f2f2f -1 5 ati 5

00 01 10 11 0 1

00 00 00 11 00

01 01 1at1r 2 00 1at1 2
10 10 01 10 10

11 11 1at2r 2 10 1at2 2
(b)

Q1next 5 D1 5 Q1rQ0r 1 f2f2f f1f1f r2 1 Q1Q0r 1 f1f1f r1 f2f2f 2 1 Q1Q0

Q0next 5 D0 5 Q1rQ0r 1 f2f2f f1f1f r2 1 Q1rQ0 1at1r 2 1 Q1Q0r 1 f2f2f r f1f1f 2 1 Q1Q0 1at2r 2
(c)
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Current State
Q1Q0Q0Q

Output

led2-1led2-1led go1-0

00 01 03

01 00 10

10 10 03

11 00 11

(d)

lelel d2d2d 5 Q1Q0r

lelel d1 5 Q1rQ0r

go1 5 Q0

go0 5 Q1

(e)

Clk

D0 Q0

Clear

f1f1f

Clock
Reset

Clk

D1 Q1

Clear
led2d2d

f2f2fat1at2

led1

go1

go0

Q09

Q19

(f)

FIGURE 6.19 Elevator controller using Moore model: (a) state diagram; (b) next-state table; 
(c) next-state equations; (d) output table; (e) output equations; (f) FSM circuit.

states 00 and 10, and the ati’s are used only in states 01 and 11. Therefore, they can be 
separated to reduce the number of columns needed. The two ati’s are also mutually 
exclusive, so in the table we just have one column for ati, but we need to remember to 
replace it with either at1 or at2 depending on which state we are checking. All of these 
changes are just to make the next-state table smaller and more manageable, but this 
can cause confusion if  we are not careful when deriving the next-state equations. The 
next-state table is shown in Figure 6.19(b), and the next-state equations are shown in 
Figure 6.19(c).

The output table and output equations, shown in Figures 6.19(d) and (e), respec-
tively, can easily be obtained from the state diagram. The final FSM circuit, as derived 
from the next-state and output equations, is shown in Figure 6.19(f).
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6.6.6 Elevator Controller Using a Mealy FSM
We noted in Section 6.1 that the Moore and Mealy FSM models provide a tradeoff 
between the size of the state memory and next-state logic circuit with that of the output 
logic circuit. To illustrate this difference, we will design the same elevator controller 
from Section 6.6.5, but using a Mealy FSM instead.

First, we note that we can remove the two intermediate states (01 and 11) from the 
Moore state diagram shown in Figure 6.19(a), and still get the same functionality based 
on the description of the problem. The original two intermediate states in the Moore state 
diagram were used to turn on the motor and turn off the LEDs. Without the two interme-
diate states, we need to decide when and where in the state diagram to turn on the motor 
and turn off the LEDs. It is obvious that we cannot do this in either of the two remaining 
states when the elevator is at a floor. For example, we cannot set go1-0 5 11 (to turn on the 
motor to go to floor 2) in state 00 (at floor 1) because, if we do, then as soon as the elevator 
arrives at floor 1, it will immediately go back to floor 2. We also cannot set go1-0 5 03 (to 
turn off the motor) in state 00 because then the motor will never be turned on when the 
elevator is at floor 1, and so it will never move to floor 2. From this observation, we see 
that we will have to put the actions, that is, setting the go and led signals on a conditional led signals on a conditional led
edge in the state diagram.

Thus, we have our new Mealy state diagram with two states as shown in 
Figure 6.20(a). From state 0 (floor 1), the only transition to state 1 (floor 2) is when 
f2f2f -1at2 5 101. In other words, the transition from state 0 to state 1 occurs only when f2f2f
is pressed 1 f1 f1 2f2f -1 5 10 2  and the elevator has reached floor 2 1at2 5 1 2 . On this transition, 
we will turn off the motor (set go1-0 5 03) and turn on lelel d2d2d  (set lelel d2d2d -1 5 10) because the 
elevator has reached floor 2. Additionally, there are two other edges that go from state 
0 back to itself. The reason for needing these two edges is that we have different output 
signals depending on the input conditions. We turn on the motor to go to floor 2 and turn 
off all the LEDs, that is, set go1-0 5 11 and lelel d2d2d -1 5 00, only when f2f2f  is pressed 1 f1 f1 2f2f -1 5 10 2
and the elevator has not reached floor 2 (at2 5 0) yet. For the remaining conditions, we do 
not want to change anything, so we keep the motor off with go1-0 5 03, and lelel d2d2d -1 5 01.
Going down from floor 2 to floor 1 is similar, with the corresponding changes.

The fifif  and ati signals are not mutually exclusive as in the Moore state diagram, 
but the two ati signals are still mutually exclusive. Therefore, for the next-state table, 
it will be clearer to enumerate all possible combinations of these three bits, f2f2f , f1f1f , and 
ati. We still use just ati to denote both of the at signals, and then replace them with the 
appropriate index when we derive the next-state equations. The next-state table and 
next-state equations are shown in Figures 6.20(b) and (c), respectively.

All of the output signals are now dependent not only on the current state, but also 
on the input signals. In the output table shown in Figure 6.20(d), we have enumerated 
all possible input conditions. The 4-bit output signal entries in the table are listed in the 
order lelel d2d2d , lelel d1, go1, and go0. The values for each entry are obtained directly from the 
state diagram. For example, for the edge going from state 0 to state 1 labeled with the 
condition 1 f1 f1 2f2f -1at2 5 101 2 , the output signals assigned to this edge are lelel d2d2d -1 5 10 and 
go1-0 5 03, so the entry in the output table for when Q 5 0 and f2f2f -1at2 5 101 is 1003.
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FIGURE 6.20 Elevator controller using Mealy model: (a) state diagram; (b) next-state 
table; (c) next-state equations; (d) output table; (e) output equations; (f) FSM circuit. 
(continued on next page)

0

led2-1d2-1d = 01

at floor 1

( f2-1f2-1f at2 = 101)

1

led2-1d2-1d = 10

at floor 2

(f(f( 2-1f2-1f at1 = 011)

go1-0 = 0 go1-0 = 0

(( f2-1f2-1f at2 = 100)

led2-1d2-1d = 00
go1-0 = 11

( f2-1 f2-1 f at1 = 00  , 10  , 11  )( f2-1f2-1f at1 = 010)

led2-1d2-1d = 00
go1-0 = 10

led2-1d2-1d = 10
go1-0 = 0

led2-1d2-1d = 01
go1-0 = 0

00  , 10  , 11  )

( f2-1 f2-1 f at1 = 00  , 01  , 11 )00  , 01  

(a)

Current 
State

Q0Q0Q

Next State
Q0Q0Q next

f2f2f -1ati 5

000 001 010 011 100 101 110 111

0 0 0 0 0 0 1 0 0

1 1 1 1 0 1 1 1 1

(b)

Q0next 5 D0 5 Q0r 1 f2f2f f1f1f rat2 2 1 Q0 1 f2f2f rfrfr 1f1f at1 2r
(c)

From the output table, we derive the output equations shown in Figure 6.20(e). 
The final FSM circuit is shown in Figure 6.20(f).
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Current State
Q0Q0Q

Outputs
lelel d2d2d -1gog 1-0

f2f2f -1ati 5

000 001 010 011 100 101 110 111

0 0103 0103 0103 0103 0011 1003 0103 0103

1 1003 1003 0010 0103 1003 1003 1003 1003

(d)

lelel d2d2d 5 Q0r 1 f2f2f f1f1f rat2 2 1 Q0 1 f 2rfrfr 1f1f r1 f2f2f 2
lelel d1 5 Q0r 1 f2f2f r1 f2f2f f1f1f 2 1 Q0 1 f2f2f rfrfr 1f1f at1 2
go1 5 Q0r 1 f2f2f f1f1f rat2r 2 1 Q0 1 f2f2f rfrfr 1f1f at1r 2
go0 5 Q0r 1 f2f2f f1f1f rat2r 2

(e)

Clk

D0

Q09

Q0

Clear

f1f1f

Clock
Reset

led2d2d

f2f2fat1at2

led1

go1

go0

(f)

FIGURE 6.20 Elevator controller using Mealy model: (a) state diagram; (b) next-state table; 
(c) next-state equations; (d) output table; (e) output equations; (f) FSM circuit.
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Comparing the Moore and Mealy FSM circuits for the elevator controller shown 
in Figures 6.19(f) and 6.20(f), respectively, it is obvious that the state memory and the 
next-state logic circuit for the Mealy FSM is much smaller, whereas the output logic 
circuit for the Moore FSM is much smaller. In general, we can conclude that Mealy 
FSMs typically will have a smaller state memory and next-state logic circuit, but a 
larger output logic circuit; whereas, Moore FSMs are just the opposite.

The observant reader might have noticed, however, that there is a slight difference 
in the actual operation of  the two elevator controllers. For the Moore version, if  a 
person is on floor 1 (state 00) and presses f2f2f , the FSM will immediately go to the inter-
mediate state 11. In this intermediate state, the FSM remembers the fact that f2f2f  has 
been pressed, and changing any of the fifif  signals while in this state will not do anything. i signals while in this state will not do anything. i
Only asserting at2 while in this state will cause the FSM to go to floor 2 (state 10). On 
the other hand, for the Mealy version, if  a person is on floor 1 (state 0) and presses f2f2f ,
the FSM does not change state, therefore, it does not remember the fact that f2f2f  has 
been pressed. Therefore, if  f2f2f  is de-asserted before asserting at2, it will not cause the 
FSM to go to floor 2 (state 1). In order for the FSM to go to floor 2 (state 1), both f2f2f
and at2 must be asserted, and f1f1f  also must be de-asserted.

6.7 Verilog and VHDL Code for FSM Circuits
Writing HDL code for FSM circuits usually is done at the behavioral level. The advan-
tage of writing behavioral HDL code is that we do not need to synthesize the circuit 
manually. The synthesizer automatically will produce the netlist for the complete cir-
cuit from the behavioral code. The only information that we need to know is the state 
diagram for the FSM.

The states in the state diagram are implemented using a case statement. Each case
in the case statement corresponds to a state in the state diagram. Because the HDL 
synthesizer automatically takes care of the state encoding, the states need only to be 
labeled with their logical names. A state variable is used to remember the current state 
of the FSM. Unconditional edges are implemented simply as an assignment of a new 
state value to the state variable. Conditional edges will have a conditional if statement 
to test for the condition before the state variable assignment. The output signal infor-
mation in the state diagram is used to derive the output logic, and is implemented with 
assignment statements to assign the given values to the output signals.

The remaining subsections illustrate the behavioral Verilog and VHDL code for 
both the Moore and Mealy FSM state diagrams based on the two elevator controller 
examples discussed in Sections 6.6.5 and 6.6.6. The two state diagrams are repeated 
here in Figure 6.21 for convenience.

6.7.1 Behavioral Verilog Code for a Moore FSM
The Moore FSM Verilog code shown in Figure 6.22 is based on the Moore FSM 
state diagram shown in Figure 6.21(a). The main portion of the Verilog code contains 
two always blocks: one for the next-state logic and the other for the output logic. 
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FIGURE 6.21 State diagrams: (a) for a Moore FSM; (b) for a Mealy FSM.
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FIGURE 6.22 Behavioral Verilog code for a Moore FSM. (continued on next page)

module MooreFSM (
  input Clock, Reset,
  input [2:1] f, at,
  output reg [1:0] go,
  output reg [2:1] led,
  output [1:0] debug_state
);
  reg [1:0] state;
  parameter s00 = 2'b00, s01 = 2'b01, s10 = 2'b10, s11 = 2'b11;

  assign debug_state = state;

  // next-state logic
  always @ (posedge Clock or posedge Reset) begin
    if (Reset) begin
      state <= s00;
    end else
      case (state)
      s00: begin // floor 1
        if (f == 2'b10)
          state <= s11;
        else
          state <= s00;
        end
      s01: begin
        if (at[1])
          state <= s00;
        else
          state <= s01;
        end
      s10: begin // floor 2
        if (f == 2'b01)
          state <= s01;
        else
          state <= s10;
        end
      s11: begin
        if (at[2])
          state <= s10;
        else
          state <= s11;
        end
      endcase
  end

  // output logic - depends only on the state
  always @ (state) begin
    case (state)
      s00: begin // floor 1
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The module first declares all of the input and output signals for the circuit. The Clock
input signal determines the speed in which the FSM will transition from one state to the 
next, and the Reset signal will be used to initialize all of the state memory flip-flops to 
zero. Based on the state diagram, two 2-bit input signals f and f and f at, and two 2-bit output 
signals go and led are also declared. For debugging purposes, we have added an extra led are also declared. For debugging purposes, we have added an extra led
output signal debug_state to show the current state of the FSM.

The state variable and the symbolic names for the four states s00, s01, s10, and s11
are declared next. The symbolic state names also are assigned with their actual encod-
ings. Alternatively, we do not need to declare and use the symbolic state names. Instead, 
we can just use the binary encodings in the state assignments and case statement as 
shown later in the Mealy FSM code.

The two always blocks are executed concurrently: the first block defines the 
next-state logic circuit inside the control unit, and the second defines the output logic 
circuit inside the control unit. The main statement inside these two blocks is the case
statement that determines the current state of the FSM.

In the next-state logic block, the current state of  the FSM is initialized to s00
on reset. The case statement is executed only at the rising clock edge because of 
the posedge Clock in the sensitivity list. Therefore, the Clock in the sensitivity list. Therefore, the Clock state signal is assigned a new 
state value at every rising clock edge. The new state value is, of course, dependent on 
the current state and input signals. For example, if  the current state is s00, then the 
case for s00 is selected. From the state diagram, we see that when in state s00, the next 
state is dependent on the 2-bit input signal f2f2f -1. Therefore, an if statement is used in 
the code. If  f2f2f -1 is 2'b10 (i.e., 10) then the new state s11 is assigned to the state variable, 
otherwise, the current state s00 is assigned to state. For the latter case, even though 

        led = 2'b01;
        go = 2'b00;
        end
      s01: begin
        led = 2'b00;
        go = 2'b10;
        end
      s10: begin  // floor 2
        led = 2'b10;
        go = 2'b00;
        end
      s11: begin
        led = 2'b00;
        go = 2'b11;
        end
    endcase
  end
endmodule

FIGURE 6.22 Behavioral Verilog code for a Moore FSM. 
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we are not changing the state value s00, we still need to make that assignment to prevent 
the synthesizer from using a memory element for the state signal. Recall from Section 
5.7 that a memory element is used for a signal if the signal is not assigned a value for all 
possible cases. The rest of the cases in the case statement are written similarly based on 
the remaining edges in the state diagram.

In the output logic always block, all of  the output signals must be assigned a 
value in every case because the output circuit is a combinational circuit, and so we do 
not want memory elements to be created for these output signals. For each state in the 
case statement, the values assigned to each of the output signals are obtained directly 
from the state diagram. For this example, we have two 2-bit output signals lelel d2d2d -1 and 
go1-0. For debugging purposes, the state variable is assigned to the debug_state output 
signal so that we can see the current state of the FSM.

6.7.2 Behavioral Verilog Code for a Mealy FSM
The Mealy FSM Verilog code shown in Figure 6.23 is based on the Mealy FSM state 
diagram shown in Figure 6.21(b). This Mealy FSM code basically follows the same 
format as the Moore FSM code. The main difference is in the output logic block, where 

FIGURE 6.23 Behavioral Verilog code for a Mealy FSM. (continued on next page)

module MealyFSM (
  input Clock, Reset,
  input [2:1] f, at,
  output reg [1:0] go,
  output reg [2:1] led,
  output debug_state
);
  reg  state;

  assign debug_state = state;

  // next-state logic
  always @ (posedge Clock or posedge Reset) begin
    if (Reset) begin
      state <= 1'b0;
    end else
      case (state)
      1'b0: // floor 1
        if ({f,at[2]} == 3'b101)
          state <= 1'b1;
      1'b1:  // floor 2
        if ({f,at[1]} == 3'b011)
          state <= 1'b0;
      endcase
  end
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if statements are used to test for the input conditions before assigning appropriate 
values to the output signals. The transitioning of  the states and the assignment of 
output signals follow the state diagram directly.

6.7.3 Behavioral VHDL Code for a Moore FSM
The behavioral VHDL code for a Moore FSM shown in Figure 6.24 is based on the 
Moore FSM state diagram shown in Figure 6.21(a). Except for the syntactical differ-
ences, the structure of this VHDL code is similar to the Verilog code. The main portion 
of the VHDL code contains two processes: a next-state logic process and an output 
logic process. The ENTITY section declares all of the input and output signals for the 
circuit. The Clock input signal determines the speed in which the FSM will transition Clock input signal determines the speed in which the FSM will transition Clock
from one state to the next, and the Reset input signal will be used to initialize all of the 
state memory flip-flops to zero. Based on the state diagram, two 2-bit input signals f
and at, and two 2-bit output signals go and led are also declared.led are also declared.led

  // output logic - depends on the state and inputs
  always @ (state) begin
    case (state)
      1'b0: begin // floor 1
        if ((f == 2'b00) | (f == 2'b01) | (f == 2'b11)) begin
          led = 2'b01;
          go =  2'b00;
        end else if ({f,at[2]} == 3'b100) begin
          led = 2'b00;
          go =  2'b11;
        end else if ({f,at[2]} == 3'b101) begin
          led = 2'b10;
          go =  2'b00;
          end
        end
      1'b1: begin // floor 2
        if ((f == 2'b00) | (f == 2'b10) | (f == 2'b11)) begin
          led = 2'b10;
          go =  2'b00;
        end else if ({f,at[1]} == 3'b010) begin
          led = 2'b00;
          go =  2'b10;
        end else if ({f,at[1]} == 3'b011) begin
          led = 2'b01;
          go =  2'b00;
          end
        end
    endcase
  end // always
endmodule

FIGURE 6.23 Behavioral Verilog code for a Mealy FSM. 
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FIGURE 6.24 Behavioral VHDL code for a Moore FSM. (continued on next page)

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY MooreFSM IS PORT(
  Clock, Reset: IN STD_LOGIC;
  f, at: IN STD_LOGIC_VECTOR(2 DOWNTO 1);
  go: OUT STD_LOGIC_VECTOR(1 DOWNTO 0);
  led: OUT STD_LOGIC_VECTOR(2 DOWNTO 1)
  );
END MooreFSM;

ARCHITECTURE Behavioral OF MooreFSM IS
  TYPE state_type IS (s00, s01, s10, s11);
  SIGNAL state: state_type;
BEGIN

  -- next-state logic
  next_state_logic: PROCESS (Clock, Reset)
  BEGIN
    IF (Reset = '1') THEN
      state <= s00;
    ELSIF (RISING_EDGE(Clock)) THEN
      CASE state IS
        WHEN s00 =>
          IF (f = "10") THEN
            state <= s11;
          ELSE
            state <= s00;
          END IF;
        WHEN s01 =>
          IF (at(1) = '1') THEN
            state <= s00;
          ELSE
            state <= s01;
          END IF;
        WHEN s10 =>
          IF (f = "01") THEN
            state <= s01;
          ELSE
            state <= s0;
          END IF;
        WHEN s11 =>
          IF (at(2) = '1') THEN
            state <= s10;
          ELSE
            state <= s11;
          END IF;
      END CASE;
    END IF;
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The ARCHITECTURE section starts out with using the TYPE statement to define the 
symbolic names for the four states s00, s01, s10, and s11, as used in the state diagram. 
The actual encoding of the states is done automatically by the synthesizer. The SIGNAL

statement declares the signal state to store the current state of the FSM. Two processes in 
the ARCHITECTURE section execute concurrently: the next_state_logic PROCESS, and the 
output_logic PROCESS. As the name suggests, the next_state_logic PROCESS defines the next-
state logic circuit inside the control unit, and the output_logic PROCESS defines the output 
logic circuit inside the control unit. The main statement within these two processes is the 
CASE statement that determines the current state of the FSM.

In the next_state_logic PROCESS, the current state of the FSM is initialized to s00
on reset. The CASE statement is executed only at the rising clock edge because of the 
conditional test (RISING_EDGE(Clock)) in the IF statement. Therefore, the state signal is 
assigned a new state value at every rising clock edge. The new state value is, of course, 
dependent on the current state and input signals, if  any. For example, if  the current 
state is s00, the case for s00 is selected. From the state diagram, we see that when in 
state s00, the next state is dependent on the 2-bit input signal f2f2f -1. Therefore, an IF

statement is used in the code. If f2f2f -1 is "10" then the new state s11 is assigned to the state
variable, otherwise, the current state s00 is assigned to state. For the latter case, even 
though we are not changing the state value s00, we still need to make that assignment 
to prevent the synthesizer from using a memory element for the state signal. Recall 
from Section 5.7 that a memory element is used for a signal if  the signal is not assigned 
a value for all possible cases. The rest of  the cases in the CASE statement are written 
similarly based on the remaining edges in the state diagram.

  END PROCESS;

  -- output logic - depends only on the state
  output_logic: PROCESS (state)
  BEGIN
    CASE state is
      WHEN s00 =>
        led <= "01";
        go <= "00";
      WHEN s01 =>
        led <= "00";
        go <= "10";
      WHEN s10 =>
        led <= "10";
        go <= "00";
      WHEN s11 =>
        led <= "00";
        go <= "11";
    END CASE;
  END PROCESS;
END Behavioral;

FIGURE 6.24 Behavioral VHDL code for a Moore FSM. 
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In the output_logic PROCESS, all of the output signals must be assigned a value in 
every case because the output circuit is a combinational circuit, and so we do not want 
memory elements to be created for these output signals. For each state in the CASE state-
ment in the output_logic PROCESS, the values assigned to each of the output signals are 
obtained directly from the state diagram. For this example, we have two 2-bit output 
signals lelel d2d2d -1 and go1-0.

6.7.4 Behavioral VHDL Code for a Mealy FSM
The behavioral VHDL code for a Mealy FSM shown in Figure 6.25 is based on the 
Mealy FSM state diagram shown in Figure 6.21(b). This Mealy FSM code basically 
follows the same format as the Moore FSM code. The transitioning of the states and 
the assignment of output signals follow the state diagram directly. The main difference 
is in the output logic block, where IF statements are used to test for the input conditions 
before assigning appropriate values to the output signals.

FIGURE 6.25 Behavioral VHDL code for a Mealy FSM. (continued on next page)

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY MealyFSM IS PORT(
  Clock, Reset: IN STD_LOGIC;
  f, at: IN STD_LOGIC_VECTOR(2 DOWNTO 1);
  go: OUT STD_LOGIC_VECTOR(1 DOWNTO 0);
  led: OUT STD_LOGIC_VECTOR(2 DOWNTO 1);
  debug_state: OUT STD_LOGIC
  );
END MealyFSM;

ARCHITECTURE Behavioral OF MealyFSM IS
  SIGNAL state: STD_LOGIC;
BEGIN
  debug_state <= state;

  -- next-state logic
  next_state_logic: PROCESS (Clock, Reset)
  BEGIN
    IF (Reset = '1') THEN
      state <= '0';
    ELSIF (RISING_EDGE(Clock)) THEN
      CASE state IS
        WHEN '0' =>
          IF ((f = "10") AND (at(2) = '1')) THEN
            state <= '1';
          END IF;
        WHEN '1' =>
          IF ((f = "01") AND (at(1) = '1')) THEN
            state <= '0';
          END IF;
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6 . 8  P R O B L E M S

6.1. Analyze and derive the state diagram for each of the following FSMs:

      END CASE;
    END IF;
  END PROCESS;

  -- output logic - depends on the state and inputs
  output_logic: PROCESS (state)
  BEGIN
    CASE state is
      WHEN '0' =>
        IF ((f = "00") OR (f = "01") OR (f = "11")) THEN
          led <= "01";
          go <= "00";
        ELSIF ((f = "10") AND (at(2) = '0')) THEN
          led <= "00";
          go <= "11";
        ELSIF ((f = "10") AND (at(2) = '1')) THEN
          led <= "10";
          go <= "00";
        END IF;
      WHEN '1' =>
        IF ((f = "00") OR (f = "10") OR (f = "11")) THEN
          led <= "10";
          go <= "00";
        ELSIF ((f = "01") AND (at(1) = '0')) THEN
          led <= "00";
          go <= "10";
        ELSIF ((f = "01") AND (at(1) = '1')) THEN
          led <= "01";
          go <= "00";
        END IF;
    END CASE;
  END PROCESS;
END Behavioral;

FIGURE 6.25 Behavioral VHDL code for a Mealy FSM. 
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a) C is an input, and C is an input, and C a and b are outputs.

b) C is an input, and C is an input, and C a and b are outputs.
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c) A and B are inputs, and B are inputs, and B X and X and X Y are outputs.Y are outputs.Y
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d) 1Z 2 0 2  is an input, and ClrX, ClrX, ClrX LoadY, LoadY, LoadY inZ, LoadX, LoadX, LoadX stat1, LoadZ, and 
subtract are outputs.
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e) Start is an input, and LoadN and LoadN and LoadN LoadM are outputs.LoadM are outputs.LoadM
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f) Yes and No are inputs, and a, b, and c are outputs.
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6.2. Analyze and derive the state diagram for each of the following FSMs:
a) C is an input, and C is an input, and C a and b are outputs.
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b) C is an input, and C is an input, and C a and b are outputs.
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c) C is an input, and C is an input, and C a and b are outputs.

d) C is an input, and C is an input, and C a and b are outputs.
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6.3. Synthesize an FSM circuit using D flip-flops for the following state 
diagrams:
a) A is an input.

b) J and J and J K are inputs, and K are inputs, and K Q is an output. (This is the JK flip-flop.)

c) T is an input, and T is an input, and T Q is an output. (This is the T flip-flop.)

d) S and S and S R are inputs, and Q is an output. (This is the SR flip-flop.)
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e) 1Z 2 0 2  is an input, and YLoad, YLoad, YLoad Xload, Xload, Xload Zmux, and out are outputs.

f) C is an input, and C is an input, and C X is an output.X is an output.X

00 01
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(Z 0)

(Z 0)9

YLoad = YLoad = YLoad 1
XLoadXLoadX  = Load = Load 0
Zmux = 1
out = 0

YLoad = YLoad = YLoad 0
XLoad = d = d 1
Zmux = Zmux = Zmux 0
out = out = out 0

YLoad = YLoad = YLoad 0
XLoad = d = d 0
Zmux = Zmux = Zmux 0
out = out = out 1

YLoad = YLoad = YLoad 0
XLoad = XLoad = XLoad 0
Zmux = Zmux = Zmux 0
out = out = out 0
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(Z 0)9
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g) 1x 5 0 2  and 1x 5 y 2  are inputs, and A is an output.

6.4. Design an FSM for a modulo-4 up/down-counter using D flip-flops. 
The count is represented by the content of the flip-flops. The circuit 
has a Count signal and an Up signal. The counter counts when Count is 
asserted, and stops when Count is de-asserted. The Up signal determines 
the direction of the count. When Up is asserted, the count increments by 
one at each clock cycle. When Up is de-asserted, the count decrements by 
one at each clock cycle.

6.5. Design an FSM for a modulo-5 up-counter using D flip-flops similar to 
Problem 6.4, but without the Up signal.

6.6. Design an FSM for a modulo-5 up/down-counter using D flip-flops simi-
lar to Problem 6.4.

6.7. Design an FSM counter that counts the following decimal sequence.

3, 7, 2, 6, 3, 7, 2, 6, …

The count is to be represented directly by the contents of the D flip-flops. 
The counting starts when the control input C is asserted and stops when-C is asserted and stops when-C
ever C is de-asserted. Assume that the next state from all unused states is C is de-asserted. Assume that the next state from all unused states is C
the state for the first count in the sequence (i.e., the state for 3).

6.8. Design an FSM counter that counts the following decimal sequence.

1, 4, 6, 7, 1, 4, 6, 7, ….

The count is to be represented directly by the contents of three D flip-
flops. The counter is enabled by the input C. The count stops when C 5 0.
The next state from all unused states are undefined.

s0

s1 s2

s3

(x = 0) (x = 0)9

(x = y)

(x = y)9

A A = 1

A = 0A = 1

A = 0

A = 0

A = 1
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6.9. Repeat the construction of the One-Shot FSM circuit from Section 6.6.3 
but with the following state encoding changes. Which encoding results in 
the smallest FSM circuit?
a) Encode state s2 as 10 instead of 11, and encode the unused state as 11.
b) Encode state s0 as 0001, s1 as 0010, s2 as 0100, and the unused state as 1000. 

All remaining combinations are unused and their next state is undefined.

6.10. In Section 6.6.2, we designed a modulo-6 counter where two of the state 
encodings have unknown values for their next states. In the final simplified 
equations, actual values were assigned to the don’t-care values. Determine 
the next states for the two unused states 110 and 111 for that modulo-6 
FSM circuit.

6.11. Manually design and implement on an FPGA the following FSM circuit. 
Make the LEDs in the 7-segment display move in a clockwise direction 
around in a circle (i.e., turn on and off  the LED segments in this order: 
segment a, b, c, d, e, f, a, b, and etc).

6.12. Manually design and implement on an FPGA the following FSM circuit. 
This is similar to Problem 6.11, but make one 7-segment LED display in a 
clockwise direction and the other in a counterclockwise direction.

6.13. Manually design and implement on an FPGA the following FSM circuit. 
This is similar to Problem 6.11, but make it so that each time a push- 
button switch is pressed, the display changes directions.

6.14. Manually design and implement on an FPGA the following FSM circuit. 
Input from the eight DIP switches. Output on the 7-segment the decimal 
number that represents the number of DIP switches that are in the on 
position.

6.15. Manually design and implement on an FPGA an FSM circuit for con-
trolling three switches T1T1T , T2T2T , and T3T3T , and three lights L1, L2, and L3. Each 
light is turned on by the corresponding switch (e.g., T1T1T  turns on L1).  
Initially, all switches are off. The first switch that is pressed will turn on its 
corresponding light. When the first light is turned on, it will remain on, 
while the other two lights remain off, and they are unaffected by subse-
quent switch presses until reset.

6.16. In Section 6.6.5, we created an elevator controller for two floors. Modify 
the controller to work for four floors. Use the same inputs and outputs as 
in the two-floor building but add more to extend it for four floors. The I/O 
signals are summarized next.

Inputs:

 ● f1f1f , f2f2f , f3f3f , and f4f4f : Buttons at each floor to call the elevator. f1f1f  is on floor 
1, f2f2f  is on floor 2, and so on.

 ● e1, e2, e3, and e4: Buttons inside the elevator to tell the elevator which 
floor to go to.

 ● at1, at2, at3, and at4: Signals from the elevator mechanism to say which 
floor the elevator is currently at.
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Outputs:

 ● go2: 1 to turn on the elevator motor, and 0 to turn off  the motor.
 ● go1-0: 00 to go to floor 1, 01 to go to floor 2, 10 to go to floor 3, and 11 

to go to floor 4.
 ● lelel d1, lelel d2d2d , lelel d3d3d , and lelel d4d4d : LEDs on each of the four floors to show which 

floor the elevator is currently at.

6.17. Design an FSM circuit for controlling a simple home security system. The 
operation of the system is as follows.

Inputs:

 ● Front gate switch (FS)FS)FS
 ● Motion detector switch (MS)MS)MS
 ● Asynchronous Reset switch (R)
 ● Clear switch (C)C)C

Outputs:

 ● Front gate melody (FM)FM)FM
 ● Motion detector melody (MM)MM)MM
 ● When the reset switch (R) is asserted, the FSM goes to the initialization 

state (S_init) immediately. The encoding for the initialization state is 
zeros for all the flip-flops.

 ● From state S_init, the FSM unconditionally goes to the wait state (S_wait).
 ● From state S_wait, the FSM waits for one of the four switches to be 

activated. All the switches are active-high, so when a switch is pressed 

e1 e2
e3 e4

at4at4at

floor 4
f4f4f

at3

floor 3
f3f3f

at2

floor 2
f2f2f

at1

floor 1
f1f1f

go2-0

led4-1d4-1d

led4-1d4-1d

led4-1d4-1d

led4-1d4-1d
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or activated, it sends out a 1. The following actions are taken when a 
switch is pressed:

 ● When FS is pressed, the FSM goes to state FS is pressed, the FSM goes to state FS S_front. In state S_front, the 
front gate melody is turned on by setting FMFMF 5 1. The FSM remains 
in state S_frontS_frontS_  until the clear switch is pressed. Once the clear switch is 
pressed, the FSM goes back to S_wait.

 ● When MS is activated, the FSM goes to state MS is activated, the FSM goes to state MS S_motion. In state 
S_motion, MM is turned on with a 1. MM is turned on with a 1. MM MM will remain on for two more MM will remain on for two more MM
clock periods and then it will go back to S_wait.

 ● From any state, as soon as R is pressed, the FSM immediately goes 
back to state S_init.

 ● Pressing the C switch only affects the FSM when it is in state  C switch only affects the FSM when it is in state  C
S_frontS_frontS_ . The C switch has no effect on the FSM when it is in any other C switch has no effect on the FSM when it is in any other C
states.

 ● Any unused state encoding will have S_init as their next state.
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All microprocessors can be divided into two main categories: dedicated microprocessors
and general-purpose microprocessors. General-purpose microprocessors are capable of 
performing a variety of computations. In order to achieve this goal, each computa-
tion is not hardwired into the processor, but rather it is represented by a sequence of 
instructions in the form of a program that is stored in the memory and executed by 
the microprocessor. The program in the memory can be changed easily so that another 
computation can be performed. Because of the general nature of the processor, it is 
likely that in performing a specific computation not all of the resources available inside 
the general-purpose microprocessor are used.

Dedicated microprocessors, also known as application-specific integrated circuits
(ASICs), on the other hand, are dedicated to performing only one task. The instruc-
tions for performing that one task are hardwired into the processor. In other words, no 
memory is required to store the program because the program is built into the micro-
processor circuit itself. If  the dedicated microprocessor is customized completely, then 
only those resources that are required by the computation are included in the micro-
processor, so no resources are wasted. Another advantage of  building the program 
instructions directly into the microprocessor circuit itself  is that the execution speed of 
the program is many times faster than if  the instructions are stored in memory, because 
memory access is typically many times slower than the microprocessor operation speed.

The design of  a microprocessor, whether it is a dedicated microprocessor or a 
general-purpose microprocessor, can be divided into two main parts: the datapath and 
the control unit, as shown in Figure 7.1.

The datapath is responsible for all of the operations to be performed on the data by 
the microprocessor. It includes: (1) functional units such as adders, shifters, multipliers, 
ALUs, and comparators for the actual manipulation of the data; (2) registers and other 

FIGURE 7.1 Block diagram of a microprocessor.
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memory elements for the temporary storage of data; and (3) buses, multiplexers, and 
tri-state buffers for the transfer of data among the different components in the datap-
ath. External data can enter the datapath through the data input lines, and results from 
the computation can be returned through the data output lines. These signals serve as 
the primary input and output data ports for the microprocessor.

In order for the datapath to function correctly, appropriate control signals must be 
asserted at the right time. Control signals are needed for all of the select and control 
lines for all of  the components used in the datapath. These include all of  the select 
lines for multiplexers, ALUs, and other functional units having multiple operations; 
all of the read and write enable signals for registers and register files; address lines for 
register files; and enable signals for tri-state buffers. Thus, the operation of the datapath 
is determined by which control signals are asserted or de-asserted and at what time. 
For the datapath to operate automatically, these control signals must be generated by 
the control unit.

The control unit (or controller) is responsible for controlling all of the operations of 
the datapath by providing appropriate control signals to the datapath at the appropriate 
times. Sometimes, the control unit requires the datapath to provide information in the 
form of status signals in order to determine what to do next. These status signals are 
usually from the output of comparators. The comparator tests for a given logical con-
dition between two data values in the datapath. These values are obtained either from 
memory elements or directly from the output of functional units, or are hardwired as 
constants. For example, in a conditional loop situation, the status signal provides the 
result of the condition being tested, and using this information, the control unit then 
can decide whether to repeat or exit the loop.

The control inputs are the primary external input signals to the control unit. These 
are the external signals for controlling the operation of the microprocessor. For exam-
ple, a Start signal will tell the microprocessor to start executing, or a Reset signal will 
reset the state memory to the initialization state. The control outputs are the primary 
output signals from the microprocessor to the external world. For example, when a 
microprocessor is finished executing an algorithm, it can output a Done signal to let 
the user know that it is done, and that the data being output by the datapath is valid.

The control unit itself  is a finite-state machine (FSM), and the circuit for it is 
derived exactly as discussed in Chapter 6 having the next-state logic circuit, the state 
memory register, and the output logic circuit. As we saw in Chapter 6, the FSM oper-
ates by transitioning from one state to another at the rate of one state per clock cycle. 
By stepping through a sequence of states, the control unit automatically controls the 
operations of the datapath. The state that the FSM is in is determined by the content 
of the state memory. In every state, the output logic in the FSM will generate all of 
the appropriate control signals for controlling the datapath. The datapath, in return, 
provides status signals for the next-state logic.

The FSM circuits from Chapter 6 simply show that the FSM has input and output 
signals. For an FSM to be a control unit for a microprocessor, we need to connect the 
corresponding control and status signals together between the control unit and the dat-
apath. After we have made the connections between the control unit and the datapath, 
the resulting circuit is a complete microprocessor.
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This method of manually constructing a dedicated microprocessor is referred to as 
the FSM1D (FSM plus datapath) model because the control unit and the datapath are 
designed and constructed separately, and then they are connected together using the 
control and status signals. In this chapter, we start with a detailed discussion about the 
manual construction of dedicated microprocessors using the FSM1D model. Then in 
Section 7.6, we will show how dedicated microprocessors can be constructed automat-
ically with HDL code using the FSMD (FSM with datapath) and behavioral models.

There are situations in which a dedicated microprocessor is used only to control 
external devices and does not need to perform any data manipulations at all. If  this 
is the case, then the datapath is not needed and the microprocessor will only have a 
control unit. The output signals from the control unit will be used directly to con-
trol the external devices. Normally we would not call this a microprocessor, but a 
microcontroller or just controller. And because a control unit is just a FSM, these 
microcontrollers are just FSMs as discussed in Chapter 6. We saw an example of this 
in the elevator controller discussed in Sections 6.6.5 and 6.6.6.

7.1 Need for a Datapath
In Chapter 4, we learned how to design functional units to perform single, simple data 
operations, such as the adder for adding two numbers or the comparator for comparing 
two values. The next logical question to ask is how do we design a circuit to perform 
more complex data operations or operations that involve multiple steps? For example, 
how do we design a circuit for adding four numbers or a circuit for adding a million 
numbers? For adding four numbers, we can connect three adders together, as shown in 
Figure 7.2(a). However, for adding a million numbers, we really don’t want to connect 
a million minus one adders together in a similar fashion. Instead, we want a circuit with 
just one adder and to use it a million times. A datapath circuit allows us to do just that, 
and that is to perform many operations involving multiple steps. Figure 7.2(b) shows a 
simple datapath using one adder to add as many numbers as we want. In order for this 
to be possible, a register is needed to store the temporary result after each addition. 
The temporary result from the register is fed back to the input of the adder so that the 
next number can be added to the current sum.

Because the datapath is responsible for performing all of the functional operations 
of a microprocessor and the microprocessor is for solving problems, therefore, the dat-
apath must be able to perform all of the operations that are required to solve the given 
problem. For example, if  the problem requires the addition of two numbers, then the 
datapath must contain an adder. If the problem requires the storage of three temporary 
variables, then the datapath must have three registers. However, even with these require-
ments, there are still many options as to what actually is implemented in the datapath. 
For example, an adder can be implemented as a single adder circuit, or as part of the 
ALU. These functional units can be used many times. Registers can be separate register 
units or combined in a register file. Furthermore, two temporary variables can share 
the same register if  they are not needed at the same time.
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7.2 Constructing the Datapath
The datapath is responsible for performing all of  the data operations specified by a 
given problem. The goal for designing a dedicated datapath, therefore, is to build a cir-
cuit that is able to perform all of these data operations. Datapath design also is referred 
to as register-transfer level (RTL) design. In a RTL design, we look at how data are 
transferred from one register to another, or back to the same register. If  the same data 
are written back to a register without any modifications, then no meaningful work has 
been done. Therefore, before writing the data to a register, the data usually pass through 
one or more functional units, and get modified.

The sequence of RTL operations—read data from a register, modify data by func-
tional units, and write result to a register—is referred to as a register-transfer operation. 
Every register-transfer operation must complete within one clock cycle (which is equiv-
alent to one state of the FSM, because the FSM changes state at every clock cycle). 
Furthermore, in a single register-transfer operation, a functional unit cannot be used 
more than once unless it is used by different register-transfer operations in different 
clock cycles. In other words, a functional unit can be used only once in the same clock 
cycle, but can be used again in a different clock cycle.

When designing a datapath for a problem, we will specify the problem in the form 
of an algorithm written in C-style pseudocodes. The logical interpretation of the algo-
rithm is irrelevant in what we are trying to do at this point, so when given a certain 
segment of code, we will just take the code as is and will not optimize it in any manner.

In a RTL design, we focus on how data move from register to register via some 
functional units where they are modified. In the design process, we need to decide on 
the following issues:

 ● What kind of registers to use, and how many are needed?
 ● What kind of functional units to use, and how many are needed?

FIGURE 7.2 Circuits to add several numbers: (a) combinational circuit to add four 
numbers; (b) datapath to add one million numbers.

Number 1 Number 2 Number umber um 3 Number umber um 4

+

+

+

(a)

+

Register

Numbers from 1
to 1 Million

(b)

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-202



288 CHAPTER 7 DeDICAteD MICRoPRoCessoRs

 ● Can a register be shared for storing more than one piece of data?
 ● Can a functional unit be shared between two or more operations?
 ● How are the registers and functional units connected together so that all of the 

data movements specified by the algorithm can be realized?

Because the datapath is responsible for performing all of the data operations, it 
must be able to perform all of the data manipulation statements and conditional tests 
specified by the algorithm. For example, the assignment statement

A 5 A 1 3

takes the value that is stored in the variable A, adds the constant 3 to it, and stores the 
result back into A. Note that the initial value of A is irrelevant here because that is a 
logical issue. In order for the datapath to perform the data operation specified by this 
statement, the datapath must have a register for storing the value A. Furthermore, there 
must be an adder for performing the addition. The constant 3 can be hardwired into 
the circuit as a binary value.

The next question to ask is how do we connect the register, the adder, and the 
constant 3 together so that the execution of the assignment statement can be realized. 
Recall from Section 5.11 that the operation of a register is such that a value stored in the 
register is available at the Q output of the register. Because we want to add A 1 3, we 
connect the Q output of the register to the first operand input of the adder, and connect 
the constant 3 to the second operand input of the adder. We want to store the result 
of the addition back into A (i.e., back into the same register), therefore, we connect 
the output of the adder to the D input of the same register, as shown in Figure 7.3(a).

The storing of  the adder result into the register is accomplished by asserting the 
Load signal of  the register, which is connected to the external Load signal of  the register, which is connected to the external Load Aload signal in the Aload signal in the Aload
circuit diagram. This ALoad signal is an example of  what we have been referring to ALoad signal is an example of  what we have been referring to ALoad
as the datapath control signal. This control signal controls the operation of  this dat-
apath. The control unit will control this signal by either asserting or de-asserting it.

The actual storing of the value into the register, however, does not occur immedi-
ately when ALoad is asserted. Because the register is synchronous to the clock signal, ALoad is asserted. Because the register is synchronous to the clock signal, ALoad
the actual storing of the value occurs at the next active clock edge. As a result, the new 
value of A is not available at the Q output of the register during the current clock cycle, 
but is available at the beginning of the next clock cycle.

As another example, the datapath shown in Figure 7.3(b) can perform the execu-
tion of the statement:

A 5 B 1 C

where B and B and B C are two different variables stored in two separate registers, thus providC are two different variables stored in two separate registers, thus providC -
ing the two operand inputs to the adder. The output of the adder is connected to the 
D input of the A register for storing the result of the adder.

The execution of the statement is realized simply by asserting the ALoad signal, and ALoad signal, and ALoad
the actual storing of the value for A occurs at the next active edge of the clock. During 
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the current clock cycle, the adder will perform the addition of B and B and B C, and the result 
from the adder must be ready and available at its output before the end of the current 
clock cycle so that, at the beginning of the next clock cycle (i.e., the next active clock 
edge), the correct value will be written into A. Because we are not writing any values to 
register B or B or B C, we do not need to control the two Load signals for these two registers.Load signals for these two registers.Load

If  we want a single datapath that can perform both of the statements:

A 5 B 1 C

FIGURE 7.3 Sample datapaths: (a) for performing A 5 A 1 3 (b) for performing  
A 5 B 1 C.
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and

A 5 A 1 3

we will need to combine the two datapaths in Figure 7.3 together.
Because A is the same variable in the two statements, only one register for A is 

needed. However, both statements assign a value to A, therefore register A now has 
two different data sources: one from the output of the first adder for B 1 C, and the 
second from the output of  the second adder for A 1 3. The problem is that two or 
more data sources cannot be connected directly together to one destination, as shown 
in Figure 7.4(a) because their signals will collide, resulting in incorrect values. In the 
circuit diagram, the outputs from the two adders cannot be connected together to go 

FIGURE 7.4 Datapath for performing A 5 A 1 3 and A 5 B 1 C: (a) without  
multiplexer—wrong; (b) with multiplexer—correct. (continued on next page)
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to the D input of register A at the blue highlighted point. The solution is to use a mul-
tiplexer to select which of the two sources to pass to register A. The correct datapath 
using the multiplexer is shown in Figure 7.4(b).

Both statements assign a value to A, so ALoad must be asserted for the execution ALoad must be asserted for the execution ALoad
of both statements. The actual value that is written into A, however, depends on the 
selection of the multiplexer. If  Amux is asserted, then input 1 of the mux is selected 
and so the result from the bottom adder (i.e., the result from A 1 3) passes through the 
mux and is stored into A; otherwise, input 0 of the mux is selected and the result from 
the top adder is stored into A. Because the two adders are combinational circuits and 
the value from a register is always available at its output Q, the results from the two 
additions are always available at the two inputs of the multiplexer. But depending on the 
Amux control signal, only one value will pass through to the D input of the A register.

FIGURE 7.4 Datapath for performing A 5 A 1 3 and A 5 B 1 C: (a) without  
multiplexer—wrong; (b) with multiplexer—correct.
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EXAMPLE 7.1

Designing a dedicated datapath

Design a datapath that can execute the two statements:

A 5 B 1 C

and

A 5 A 1 3

using only one adder.
The only difference between this datapath and the one in Figure 7.4(b) is that it 

should use only one adder. So starting with this one adder, in order to execute the 
first statement, the first operand input to the adder is from register B, and the second 
operand input to the adder is from register C. However, to execute the second state-
ment, the two input operands to the adder are register A and the constant 3. Because 
both input operands to the adder have two different sources, again we must use a 
multiplexer for each of them. The output of the two multiplexers will connect to the 
two adder input operands, as shown in Figure 7.5. For both statements, the result of 
the addition is stored in register A, therefore, the output of the adder connects to the 
input of register A.

Note that the two select lines for the two multiplexers can be connected together. 
This is possible because the two operands B and B and B C for the first statement are connected C for the first statement are connected C
to input 0 of the two multiplexers, respectively, and the two operands A and 3 for the 
second statement are connected to input 1 of the two multiplexers, respectively. Thus, 
de-asserting the Mux select signal will pass the two correct operands for the first state-
ment, and likewise, asserting the Mux select signal will pass the two correct operands 
for the second statement. We want to reduce the number of  control signals for the 
datapath as much as possible, because minimizing the number of control signals will 
minimize the size of the output circuit in the control unit. 

Notice that the datapath does not show which statement is going to be executed first. 
The sequence in which these two statements are executed depends on whether the signal 
Amux is asserted first or de-asserted first. If this datapath is part of a microprocessor, 
then the control unit would determine when to assert or de-assert this Amux control 
signal, because it is the control unit that performs the sequencing of datapath operations.

Furthermore, notice that these two statements cannot be executed within the same 
clock cycle. Because both statements write to the same register and a register can latch 
in only one value at an active clock edge, only one result from one adder can be written 
into the register in one clock cycle. The other statement will have to be performed in 
another clock cycle, but not necessarily the next cycle.

Example 7.1 shows the construction of a datapath for the same two instructions 
shown above but using only one adder.
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7.2.1 Selecting Registers
In most situations, one register is needed for each variable used by the algorithm. 
However, if  two variables are not used at the same time, then they can share the same 
register. If  two or more variables share the same register, then the data transfer connec-
tions leading to the register and out from the register usually are made more complex, 
because the register now has more than one source and destination. Having multiple 
destinations is not too big of a problem, because we can connect all of  the destina-
tions to the same source.1 However, having multiple sources will require a multiplexer 
to select one of the several sources to transfer to the destination. Figure 7.6 shows a 
circuit with a register having two sources—one from an external input and one from 
the output of an adder. A multiplexer is needed in order to select which of these two 
sources is to be the input to the register.

After deciding how many registers are needed, we still need to determine whether 
to use a single register file containing enough register locations, separate individual 
registers, or a combination of both for storing the variables in. Furthermore, registers 
with built-in special functions, such as shift registers and counters, also can be used. 
For example, if  the algorithm has a FOR loop statement, a single counter register can 
be used not only to store the count variable but also to increment the count. This way, 

1 This is true only theoretically. In practice, there are fan-in (multiple sources with one destination) and 
fan-out (one source with multiple destinations) maximum limits that must be observed.

FIGURE 7.5 Datapath for performing A 5 A 1 3 and A 5 B 1 C using only one adder.C using only one adder.C
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we reduce not only the number of components, but also the number of datapath con-
nections between the components. Decisions for selecting the type of registers to use 
will affect how the data transfer connections between the registers and the functional 
units are connected.

7.2.2 Selecting Functional Units
It is fairly straightforward to decide what kind of  functional units is required. For 
example, if  the algorithm requires the addition of  two numbers, then the datapath 
must include an adder. However, we still need to decide whether to use a dedicated 
adder, an adder–subtractor combination, or an ALU (which has the addition operation 
implemented). Of course, these questions can be answered by knowing what other data 
operations the algorithm needs. If  the algorithm has only an addition and a subtrac-
tion, then you might want to use the adder–subtractor combination unit. On the other 
hand, if  the algorithm requires several addition operations, do we use just one adder 
or several adders?

Using one adder might decrease the datapath size in terms of the number of func-
tional units, but it also might increase the datapath size because more complex data 
transfer paths are needed. For example, if  the algorithm contains the following two 
addition operations

a 5 b 1 c
d 5 e 1 f

Using two separate adders will result in the datapath shown in Figure 7.7(a); whereas, 
using one adder will require the use of two extra 2–to–1 multiplexers to select which 
register will supply the input to the adder operands, as shown in Figure 7.7(b). 
Furthermore, this second datapath requires two extra control signals for the two 
multiplexers. In terms of execution speed, the datapath in Figure 7.7(a) can execute 
both addition statements simultaneously within the same clock cycle because they 
are independent of  each other. However, the datapath in Figure 7.7(b) will have to 
execute these two additions sequentially in two different clock cycles because only 
one adder is available. This is a tradeoff issue between speed versus size, and the final 
decision on which datapath to use is up to the designer.

FIGURE 7.6 Circuit of a register with two sources.
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7.2.3 Data Transfer Methods
There are several methods in which the registers and the functional units can be con-
nected together so that the correct data transfers between the different units can be made.

Multiple Sources
If  the input to a unit has more than one source, then a multiplexer must be used to 
select which one of  the multiple sources to use. The sources can be from registers, 
constant values, or outputs from other functional units. Figure 7.8 shows two such 
examples. In Figure 7.8(a), the left operand of the adder has four sources: two from 
two different registers, one from the constant 8, and one from the output of an ALU. 
In Figure 7.8(b), register a has two sources: one from the constant 8 and one from the 
output of an adder. The multiplexer select lines (Muxselect), will be controlled by the 
control unit to determine which of the sources will be passed to the destination.

(a)

+

cb

a

+

fe

d

+

b e c f

a d

0101

(b)

FIGURE 7.7 Datapaths for realizing two addition operations: (a) using two separate adders; 
(b) using one adder.
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Muxselect

FIGURE 7.8 Examples of multiple sources using multiplexers: (a) an adder operand 
having four sources; (b) a register having two sources.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-202



296 CHAPTER 7 DeDICAteD MICRoPRoCessoRs

Multiple Destinations
A source having multiple destinations does not require any extra circuitry. The one 
source can be connected directly to the different destinations, and all of the destina-
tions where the data are not needed would simply ignore the data source. For example, 
in Figure 7.9(a), the output of the adder has two register destinations: register a, and 
register d. If  the output of the adder is intended for register a then the Load line for Load line for Load
register a is asserted, while the Load line for register Load line for register Load d is de-asserted; and if  the output d is de-asserted; and if  the output d
of the adder is for register d, then the d, then the d Load line for register Load line for register Load d is asserted, while the d is asserted, while the d Load
line for register a is not. In either case, only the register that the data is intended for will 
have its Load line asserted while the other units simply ignore the data by not asserting Load line asserted while the other units simply ignore the data by not asserting Load
their Load lines. Again it is up to the control unit to assert the correct load signal in a Load lines. Again it is up to the control unit to assert the correct load signal in a Load
particular clock cycle.

Connecting two or more combinational functional units as destinations from the 
same source as shown in Figure 7.9(b) also is correct. In this case, register a pro-
vides the source to both the adder and the subtractor, from which they will take the 
data, manipulate it, and output their respective results. However, only the register 
that is connected to the output of  the needed functional unit will have its Load signal Load signal Load
asserted. The output from the other functional unit will not be stored and so its result 
is ignored. For example, if  we need to perform the addition and not the subtraction, 
then only the Load signal for register Load signal for register Load c, which is connected to the output of  the adder, 
is asserted. Note that the outputs from both the adder and the subtractor should be 
connected to a register, otherwise, the result is not saved and so there is no need for 
that functional unit.

Functionally, it does not matter that both functional units operate on the source, 
because only the needed result is stored. However, it does require power for the func-
tional units to manipulate the data, so if  we want to reduce the power consumption, 
we would want only the functional unit that is needed to manipulate the data. This, 
however, is a power optimization issue that is beyond the scope of this book.

Tri-state Bus
Another scheme where multiple sources and destinations can be connected to the same 
data bus is through the use of tri-state buffers. The point to note here is that, when 
multiple sources are connected to the same bus, only one source can output at any one 

FIGURE 7.9 Examples of multiple destinations: (a) two register destinations; (b) two 
combinational circuit destinations.
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time. If  two or more sources output to the same bus at the same time, then there will be 
data conflicts. This occurs when one source outputs a 0 while another source outputs 
a 1. By using tri-state buffers to connect between the various sources and the common 
data bus, we want to make sure that only one tri-state buffer is enabled at any one time, 
while the rest are all disabled. Tri-state buffers that are disabled output high-impedance 
Z values, so no data conflicts can occur.Z values, so no data conflicts can occur.Z

Figure 7.10 shows a common tri-state data bus with five components (three regis-
ters, an ALU, and an adder) connected to it. An advantage of using a common tri-state 
data bus is that the bus is bidirectional, so that data can travel in both directions on 
the bus. Connections for data going from a component to the bus need to be tri-stated 
by using a tri-state buffer in between (such as from registers a, b, and c, and the ALU), 
while connections for data going from the bus to a component need not be (such as 
data from the bus going to the registers and the adder). Note also that data input and 
output of a register both can be connected to the same tri-state bus; whereas, the input 
and output from the same functional unit (such as the adder and the ALU) cannot be 
connected to the same tri-state bus.

7.2.4 Generating Status Signals
Although the control unit is responsible for the sequencing of statement execution, but 
in situations where a conditional test is involved, the datapath must supply the result 
of the conditional test for the control unit so that the control unit can determine what 
statement to execute next. Status signals are the results of  the conditional tests that 
the datapath supplies to the control unit. Every conditional test that the algorithm has 
requires a corresponding status signal. These status signals usually are generated by 
comparators.

For example, if  the algorithm has the following IF statement

IF 1A 5 0 2 THEN  . . .

the datapath must have an equality comparator that compares the value in the A
register with the constant 0, as shown in Figure 7.11(a). The output of the comparator 

FIGURE 7.10 Multiple sources using tri-state buffers to share a common data bus.
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is the status signal for the conditional test 1A 5 0 2 .  This status signal is a 1 when the 
condition 1A 5 0 2  is true; otherwise, it is a 0. Recall from Section 4.9 that the circuit 
for the equality comparator with the constant 0 is simply a NOR gate, so we can replace 
the box for the comparator with just an 8-input NOR gate as shown in Figure 7.11(b). 
The thick bus line that goes to the input of the NOR gate is another way to show a multi-
input gate. Since the bus width is 8 bits wide, it must be an 8-input NOR gate.

There are times when an actual comparator is not needed for generating a status 
signal. For example, if  we want a status signal to test whether a number is an odd 
number, as in the following IF statement

IF (A is an odd number) THEN ...

we can simply use the A0  bit of the 8-bit number from register A as the status signal for 
this condition, because all odd numbers have a 1 in the zero bit position. The generation 
of this status signal is shown in Figure 7.12.

We will now show the complete process on how to construct a datapath with two 
examples. Example 7.2 shows the construction of  a datapath for solving a simple 
IF-THEN-ELSE problem. Example 7.3 shows the construction of a datapath for a sum-
mation problem to generate and sum the numbers from 1 to 10.

FIGURE 7.11 Comparator for generating the status signal (A 5 0): (a) using an 
“equal to zero” circuit; (b) using a NOR gate.
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FIGURE 7.12 Comparator for generating the status signal (A is an odd number).
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EXAMPLE 7.2

Datapath for a simple IF-THEN-ELSE problem

In this example, we want to construct a 4-bit-wide dedicated datapath to solve the 
simple IF-THEN-ELSE problem shown in Figure 7.13(a). To create a datapath for this 
algorithm, we need to look at all of the data manipulation statements in the algorithm, 
because the datapath is responsible for manipulating the data. These data manipulation 
instructions are the register-transfer operations. In most cases, one data manipulation 
instruction is equivalent to one register-transfer operation. However, some data manip-
ulation instructions might require two or more register-transfer operations to realize.

The algorithm uses two variables, A and B; therefore, the datapath should have two 
4-bit registers—one for each variable. Line 1 of the algorithm inputs a value into A. 
In order to realize this operation, we need to connect the data input signal Input to the 
D input of register A, as shown in Figure 7.13(b). By asserting the ALoad signal, the ALoad signal, the ALoad
data input value will be loaded into register A at the next active clock edge.

Line 2 of the algorithm tests the value of A with the constant 5. The datapath in 
Figure 7.13(b) uses a 4-input AND gate for the equality comparator with the four input 
bits connected as 0101 to the four output bits of register A. Because 5 in decimal is 
0101 in binary, bits 0 and 2 are not inverted for the two 1s in the bit string, while bits 1 
and 3 are inverted for the two 0s. With this connection, the AND gate will output a 1 
when the input is a 5. The output of this comparator is the 1-bit status signal for the 
condition 1A 5 5 2  that the datapath sends to the control unit.

Given the status signal for the comparison 1A 5 5 2 , the control unit will decide 
whether to execute line 3 or line 5 of the algorithm. This sequencing decision is done 
by the control unit and not by the datapath. The datapath is responsible only for the 
register-transfer operations. Lines 3 and 5 require loading either an 8 or a 13 into reg-
ister B. In order to select which one gets loaded, a 2-to-1 multiplexer is needed. One 
input of the multiplexer is connected to the constant 8 and the other to the constant 
13. The output of  the multiplexer is connected to the D input of  register B, so that 
one of the two constants can be loaded into the register. Again, which constant is to 
be loaded into the register is dependent on the condition in line 2. Knowing the result 
of the test from the status signal, the control unit will generate the correct signal for 
the multiplexer select line, Muxsel. The actual loading of the value into register B is B is B
accomplished by asserting the BLoad signal.BLoad signal.BLoad

Finally, the algorithm outputs the value from register B in line 7. This is accomB in line 7. This is accomB -
plished by connecting a tri-state buffer to the output of the B register. To output the B register. To output the B
value, the control unit asserts the enable line, Out, connected to the tri-state buffer, and 
the value from the B register will be passed to the data output lines.B register will be passed to the data output lines.B

Note that the complete datapath shown in Figure 7.13(b) consists of two separate 
circuits. This is because the algorithm does not require the values of A and B to be used B to be used B
together. A question we might ask is whether we can connect the output of the compar-
ator to the multiplexer select signal so that the status signal 1A 5 5 2  directly controls 
Muxsel. Logically, this is all right, because if  the condition 1A 5 5 2  is true, then the 
status signal is a 1. Assigning a 1 to Muxsel will select the 1 input of the multiplexer, Muxsel will select the 1 input of the multiplexer, Muxsel
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thus passing the constant 8 to register B. Otherwise, if  the condition 1A 5 5 2  is false, 
then Muxsel will get a 0 from the comparator, and the constant 13 will pass through Muxsel will get a 0 from the comparator, and the constant 13 will pass through Muxsel
the multiplexer. The advantage of doing this is that the datapath will generate one less 
status signal and requires one less control signal from the control unit. However, in 
some situations, we need to be careful with the timing when we use status signals from 
the datapath to directly control the control signals. So it is best to have the control unit 
take the 1A 5 5 2  status signal from the datapath and then decide how to generate the 
Muxsel control signal. Muxsel control signal. Muxsel

FIGURE 7.13 A simple IF-THEN-ELSE problem: (a) algorithm; (b) datapath.
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EXAMPLE 7.3

Datapath for a summation problem to generate and sum the numbers from 1 to 10

In this example, we want to construct an 8-bit-wide dedicated datapath to solve 
a summation problem to generate and sum the numbers from 1 to 10. The algo-
rithm shown in Figure 7.14(a) for solving this summation problem has five data 
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1 sum = 0sum = 0sum
2 i = 1
3 DO {
4 sum = sum = sum sum + sum + sum i
5 i = i + 1
6 } WHILE (i ≠ 11)
7 OUTPUT sum

(a)

FIGURE 7.14 Summation problem to generate and sum the numbers from 1 to 10: (a) algorithm; 
(b) datapath.
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manipulation statements (1, 2, 4, 5, and 7). The datapath for solving this problem is 
shown in Figure 7.14(b). Two 8-bit registers are needed for the two variables sum and i. 
Two separate multiplexers are needed for the input to the two registers since both 
variables have two different sources. For register i, line 2 assigns the constant 1, and 
line 5 assigns the result of  the addition to it. For register sum, line 1 assigns the con-
stant 0, and line 4 assigns the result of  the addition to it. One adder is used for the 
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7.3 Constructing the Control Unit
In order for the datapath to operate correctly and automatically according to the given 
algorithm, the control unit has to generate correctly the control signals at the appropri-
ate time. The correct operation of the datapath involves the correct assertion or de-as-
sertion of all of the control signals as a group. All of the control signals taken together 
as a group are called a control word. Therefore, all data manipulation instructions in 
the algorithm are converted to control words, and each control word is executed in 
one clock cycle to perform one register-transfer operation. A control unit is used to 
generate the appropriate control signals in the control words so that the datapath can 
perform all of  the required register-transfer operations automatically according to the 
sequence specified in the algorithm. The control unit is just an FSM and the control 
signals are the output signals from the output logic circuit that is inside the FSM.

In addition to generating the control signals, the control unit also is needed to 
control the sequencing of the instructions in the algorithm. The datapath is responsible 
only for the manipulation of the data; it performs only the register-transfer operations. 
It is the control unit that determines when each register-transfer operation is to be exe-
cuted and in what order. The sequencing done by the control unit is established during 
the derivation of the state diagram for the FSM.

The state diagram shows what register-transfer operation is executed in what state 
and the sequencing of the execution of these operations. A state is created for each 
control word, and each state is executed in one clock cycle. The edges in the state dia-
gram are determined by the sequence in which the instructions in the algorithm are 
executed. The sequential execution of instructions is represented by unconditional tran-
sitions between states (i.e., edges with no labels). Execution branches in the algorithm 
are represented by conditional transitions from a state with two outgoing edges: one 
with the label for when the condition is true and the other with the label for when the 
condition is false. If  a particular state has more than one condition then all possible 
combinations of  these conditions must be labeled on the outgoing edges from that 
state. These conditions are the status signals generated by the datapath, and passed to 
the next-state logic in the FSM.

Once the state diagram is derived, the actual construction of the control unit is 
accomplished by following the same procedure for constructing an FSM as discussed 
in Chapter 6.

two addition operations in lines 4 and 5. One operand for the adder is from register i
for both additions. The second operand for the adder is from either the sum register 
(for line 4) or the constant 1 (from line 5), therefore, a 2-to-1 multiplexer is needed. A 
tri-state buffer is used for the output line 7. Finally, an 8-input NAND gate is used for 
generating the status signal for the conditional test 1 i 2 11 2 . The data connections 
between the various components are all 8 bits wide. 
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7.3.1 Deriving the Control Signals
Any given datapath will have a number of control signals for controlling its operations. 
By asserting or de-asserting these control signals at different times, the datapath can 
perform different register-transfer operations. Because the execution of an operation 
requires the correct assertion or de-assertion of all of the control signals together, we 
would like to think of  them as a group rather than as individual signals. All of  the 
control signals for a datapath, when grouped together, are referred to as a control word. 
Hence, a control word will have one bit for each control signal in the datapath. One 
register-transfer operation of a datapath, therefore, is determined by the values set in 
one control word, and so, we can specify the datapath operation simply by specifying 
the bit string for the control word. Each control word operation will take one clock 
cycle to perform. By combining multiple control words together in a certain sequence, 
the datapath will perform the specified operations in the order given.

We will now show the derivation of control words with three examples. Example 7.4 
shows the derivation of the control words for executing the two statements A 5 A 1 3
and A 5 B 1 C. Example 7.5 shows the derivation of the control words for executing the 
statements for the simple IF-THEN-ELSE problem. Example 7.6 shows the derivation of the 
control words for the summation problem to generate and sum the numbers from 1 to 10.

EXAMPLE 7.4

Deriving the control words for a datapath

The datapath for Example 7.1 and repeated here in Figure 7.15 was designed to execute 
the two statements A 5 A 1 3 and A 5 B 1 C using only one adder. This datap-
ath has two control signals, ALoad and ALoad and ALoad Mux. The control word for this datapath, 

FIGURE 7.15 Datapath for performing A 5 A 1 3 and A 5 B 1 C using only one adder.C using only one adder.C
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therefore, has two bits—one for each of the two control signals. The ordering of these 
two bits at this point is arbitrary; however, once decided, we should be consistent 
with the order. The two control words for performing the two statements are shown 
in Figure 7.16.

Control word 1 specifies the control word bit string for executing the statement, 
A 5 A 1 3. This is accomplished by asserting both the ALoad and the ALoad and the ALoad Mux signals. 
When Mux is asserted, the output from register A and the constant 3 are passed 
through the two multiplexers to the adder. By asserting ALoad, the result from the 
adder is stored into register A. Similarly, control word 2 is for executing the statement, 
A 5 B 1 C, by asserting ALoad but de-asserting ALoad but de-asserting ALoad Mux. 

Control
Word

Instruction ALoad Mux

1 A 5 A 1 3 1 1

2 A 5 B 1 C 1 0

FIGURE 7.16 Control words for the datapath in Figure 7.15 for performing the two 
statements: A 5 A 1 3 and A 5 B 1 C.

EXAMPLE 7.5

Control words for the simple IF-THEN-ELSE problem

Figure 7.17 shows the control words for performing the statements in the IF-THEN-ELSE

algorithm shown in Figure 7.13(a), and using the datapath shown in Figure 7.13(b). 
Control word 1 executes the instruction INPUT A. To do this, the ALoad signal is ALoad signal is ALoad
asserted, and the data value at the input port will be loaded into register A at the next 
active clock edge. For this instruction, we do not need to load a value into the B register; B register; B
therefore, BLoad is de-asserted for this control word. Furthermore, because of  this, BLoad is de-asserted for this control word. Furthermore, because of  this, BLoad
it does not matter what the multiplexer, which supplies a value for the B register, 
outputs, so Muxsel can be a don’t-care value. Muxsel can be a don’t-care value. Muxsel Out is de-asserted because we are not 
doing outputs in this control word. For control words 2 and 3, we want to load one of 
the two constants into B; therefore, BLoad is asserted for both of these control words, BLoad is asserted for both of these control words, BLoad
and the value for Muxsel determines which constant is loaded into Muxsel determines which constant is loaded into Muxsel B. When Muxsel
is asserted, the constant 8 is passed to the input of the B register, and when it is de-B register, and when it is de-B
asserted, the constant 13 is passed to the register. Both ALoad and ALoad and ALoad Out are de-asserted 
because we are neither writing into the A register nor outputting a value. Control word 
4 asserts the Out signal to enable the tri-state buffer, thus outputting the value from the 
B register. Again, B register. Again, B Muxsel has a don’t-care value because we are not loading a value Muxsel has a don’t-care value because we are not loading a value Muxsel
into the B register. The status signal (B register. The status signal (B A 5 5) is not used anywhere in the control words.
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Control
Word

Instruction ALoad Muxsel BLoad Out

1 INPUT A 1 3 0 0

2 B 5 8 0 1 1 0

3 B 5 13 0 0 1 0

4 OUTPUT B 0 3 0 1

FIGURE 7.17 Control words for solving the simple IF-THEN-ELSE problem.

EXAMPLE 7.6

Control words for the summation problem to generate and sum the numbers 
from 1 to 10

Figure 7.18 shows the control words for performing the data manipulation statements 
in the algorithm to generate and sum the numbers from 1 to 10 shown in Figure 7.14(a), 
and using the datapath shown in Figure 7.14(b). Control words 1 and 3 load a new value 
into sum by asserting sumLoad; the actual value that is loaded in is determined by the sumLoad; the actual value that is loaded in is determined by the sumLoad
select line sumMux for the multiplexer. For these two control words, both iLoad and iLoad and iLoad OE
are disabled because they are not used, and iMux can have a don’t-care value. For control iMux can have a don’t-care value. For control iMux
word 3, addMux needs to be de-asserted for the adder to use sum as the second operand.

Control words 2 and 4 load a new value into i by asserting i by asserting i iLoad and selecting the iLoad and selecting the iLoad
corresponding source with the iMux enable line on the multiplexer. For control word 
4, iMux is asserted for the correct addition operation. Finally, for control word 5, OE
is asserted to output the sum value. 

Control
Word

Instruction sumMux sumLoad iMux iLoad addMux OE

1 sum 5 0 1 1 3 0 3 0

2 i 5 1 3 0 1 1 3 0

3 sum 5 sum 1 i 0 1 3 0 0 0

4 i 5 i 1 1 3 0 0 1 1 0

5 OUTPUT sum 3 0 3 0 3 1

FIGURE 7.18 Control words for the summation problem to generate and sum the 
numbers from 1 to 10.

7.3.2 Deriving the State Diagram
In constructing an FSM, the first step is to derive its state diagram. The state dia-
gram shows what control word is executed in what state, and the sequencing of  these 
states. A state is created for each control word. The edges in the state diagram are 
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determined by the sequence in which the instructions in the algorithm are executed. 
The sequential execution of  instructions is represented by unconditional transitions 
between states (i.e., edges with no labels). Execution branches in the algorithm are 
represented by conditional transitions from a state with two outgoing edges: one 
with the label for when the condition is true and the other with the label for when the 
condition is false. If  there is more than one condition from a particular state, then 
all possible combinations of  these conditions must be labeled on the outgoing edges 
from that state.

When deriving the state diagram for the control unit, we have to be careful with the 
timings of the register-transfer operations. The issue here is that when we write a value 
into a register, this new value is not available at the Q output of the register until the 
beginning of the next clock cycle. Therefore, if  we read from the register in the current 
clock cycle, we would be reading the old value rather than the new value. When we 
were designing the FSMs in Chapter 6, this timing issue was not so much of a problem, 
because we were not using the FSMs to control register-transfer operations in a data-
path. They were stand-alone FSMs, and so their input and output signals are indepen-
dent of each other. However, the FSMs that we are designing here are for controlling 
the register-transfer operations in a datapath. The output signals from these FSMs are 
control signals for the datapath, and some of them are used to load registers with new 
values. These new register values might be used by comparators for testing conditions. 
The results of these conditional tests are the status signals used by the control unit to 
determine what next state to go to. Finally, from the different states, different control sig-
nals are generated. Therefore, the status (input) signals and the control (output) signals 
of a control unit are dependent on each other. Thus, when status signals are generated, 
we need to make sure that they are from tests of the intended register value. Because 
of these timing issues, extra states might be needed in order to get the correct timing.

We will now construct the state diagram for controlling the dedicated datapath for 
the simple IF-THEN-ELSE problem from Example 7.2. The algorithm, dedicated datap-
ath, and control words from Examples 7.2 and 7.5 are repeated here in Figure 7.19 for 
convenience. Example 7.7 shows the naive way of creating the state diagram by simply 
assigning one state for each control word. However, we will see from the example that 
the state diagram created this way is incorrect for this problem, because the status signal 
generated is wrong. Example 7.8 shows the derivation of the corrected state diagram 
for the IF-THEN-ELSE problem.

EXAMPLE 7.7

Deriving an incorrect state diagram for the simple IF-THEN-ELSE problem

In this example, we will derive the state diagram for the control unit to control the ded-
icated datapath from Example 7.2 for solving the IF-THEN-ELSE problem. The algorithm 
for the problem is shown in Figure 7.19(a). The dedicated datapath for this algorithm 
already has been derived and is shown again in Figure 7.19(b). The algorithm shows 
that there are four data manipulation instructions: lines 1, 3, 5, and 7. Line 2 is not a 
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FIGURE 7.19 The simple IF-THEN-ELSE problem: (a) algorithm; (b) dedicated datapath; 
(c) control words.

1 INPUT A
2 IF (A = 5) THENA = 5) THENA
3 B = 8
4 ELSE
5 B = 13
6 END IF
7 OUTPUT B

(a)

Load 4-bit Register
D3-0

A
Q3-0Clock

ALoad

4

Input

4
A3

(A (A ( = 5)

Load 4-bit Register
D3-0

B
Q3-0Clock

BLoad

Out

01

'8' '13'

4

4

Muxsel

Clock

A0

Output
(b)

Control
Word

Instruction ALoad Muxsel BLoad Out

1 INPUT A 1 3 0 0

2 B 5 8 0 1 1 0

3 B 5 13 0 0 1 0

4 OUTPUT B 0 3 0 1

(c)

data manipulation instruction, but rather, it is a control statement. From these four 
data manipulation instructions, we already have derived the four corresponding control 
words shown in Figure 7.19(c) to control this dedicated datapath.

The next step in the construction of  the control unit is to derive the state dia-
gram for the FSM. We start by assigning these four control words to four separate 
states in the state diagram, as shown in Figure 7.20(a). These four states are given 
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the symbolic names s_input, s_equal, s_notequal, and s_output, and are annotated 
with the control word and instruction that is assigned to them. For example, in state 
s_input, we want the control unit to generate the control signals for control word 1 
to execute the INPUT A instruction.

After the INPUT A instruction, the execution of  the following two instructions, 
B 5 8 and B 5 13, in states s_equal and s_equal and s_equal s_notequal, respectively, depends on the condi-
tion 1A 5 5 2  of the IF statement. The outcome of the condition 1A 5 5 2  will determine 
which of the two states the FSM will transition to next. This conditional execution 
is represented by the two outgoing edges from state s_input: one edge going to state 
s_equal with the label s_equal with the label s_equal 1A 5 5 2  for when the condition is true, and the second edge going 
to state s_notequal with the label s_notequal with the label s_notequal 1A 5 5 2 r for when the condition is false. Finally, the 
instruction, OUTPUT B, is executed unconditionally after executing either of  the two 
instructions, B 5 8 or B 5 13; therefore, from either state s_equal or s_equal or s_equal s_notequal, there 
is an unconditional edge going to state s_output. The algorithm halts after executing 
OUTPUT B, so we make the FSM halt in state s_output by having an unconditional edge 
going back to itself.

According to the algorithm, after inputting a value for A in state s_input, we need 
to test for the condition 1A 5 5 2 . If  the condition is true, we go to state s_equal to exeequal to exeequal -
cute the instruction B 5 8; otherwise, we go to state s_notequal to execute the instrucs_notequal to execute the instrucs_notequal -
tion B 5 13. From either state s_equal or s_equal or s_equal s_notequal, the next and final state is s_output. 
Let us assume that state s_input is executed in clock cycle 1. In clock cycle 2, either 
state s_equal or s_equal or s_equal s_notequal is executed. State s_notequal is executed. State s_notequal s_output is then executed in clock cycle 3.

There are two important points to understand and remember here:

1. At a rising clock edge, a register is loaded with a new value if  its load signal is 
asserted.

2. At every rising clock edge, the FSM enters a new state—the next state.

As with all of our other examples, we use the rising clock edge as the active edge. 
The reason for point 1 above is because we are using positive edge-triggered D flip-flops 
with enable (see Section 5.10) in our registers. So if  the flip-flop is enabled by asserting 
the load signal, then the input data will be stored into the flip-flop at the next rising 
clock edge. Point 2 is because we also are using positive edge-triggered D flip-flops (see 
Section 5.9) in the state memory register inside the FSM. However, these flip-flops are 
always enabled without the need of an enable signal. Therefore, at every rising clock 
edge, a new value from the next-state logic circuit will be stored into the state memory 
register, and so, the FSM enters a new state at every rising clock edge.

If we construct the control unit based on the state diagram shown in Figure 7.20(a), 
then the following scenario can occur. At the first rising clock edge, the FSM enters 
state s_input. Shortly after entering state s_input, the FSM asserts the control signal 
ALoad to load in a value for variable ALoad to load in a value for variable ALoad A. Because a register is loaded at a rising clock 
edge, and the first rising clock edge has passed, therefore, the value for A will be stored 
into the register at the next rising clock edge (i.e., at the beginning of clock cycle 2). 
However, the FSM also needs to go to the next state (either s_equal or s_equal or s_equal s_notequal) at s_notequal) at s_notequal
the beginning of clock cycle 2. In order for the FSM to know which of the two states 
to go to, the FSM must know the result of the test condition 1A 5 5 2  while it is still 
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in state s_input. The dilemma here is that the status signal generated by the comparator 
for the test 1A 5 5 2  is needed in state s_input, and the test uses the input value of A. 
However, this new input value of A is not available at the Q output of the register until Q output of the register until Q
the beginning of the next clock cycle. Therefore, what the comparator is reading from 
the Q output of the register in clock cycle 1 is the old (or current) value of Q output of the register in clock cycle 1 is the old (or current) value of Q A and not the 
new input value.

Figure 7.20(b) shows the timing diagram for this state diagram with the incorrect 
result. At time 0, the user inputs a 5. However, the diagram shows that the value 5 is 
not loaded into register A until at time 200 ns (the beginning of clock cycle 2). Because 
the input is a 5, the test for 1A 5 5 2  should be true, and the next state for the FSM to 
go to should be s_equal. However, in the timing diagram, we see that the state changes 
to s_notequal at time 200 ns. This is because the conditional test being performed in s_notequal at time 200 ns. This is because the conditional test being performed in s_notequal
clock cycle 1 is reading A with the old value of 0 rather than the new value of 5. Hence, 
at time 400 ns, the output of 13 is incorrect. 

FIGURE 7.20 Example 7.7: (a) incorrect state diagram; (b) incorrect timing diagram.
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EXAMPLE 7.8

Deriving a correct state diagram and the control unit for the simple IF-THEN-ELSE

problem

In Example 7.7, even though the comparator is testing for the condition 1A 5 5 2 , it 
is not getting the correct value for A in the clock cycle that the test result is needed. 
In order for the comparator to get the correct value for A, it needs to wait until the 
value is loaded into the register at the next clock cycle. One simple way to resolve this 
timing error is to add an extra state after inputting the value for A so that the value 
can be written into the register before it is read back out for the test. This extra new 
state, called s_extra, follows immediately after state s_input, and has no control word 
assigned to it. Figure 7.21(a) shows this modified state diagram. At the beginning of 
this s_extra state, the input value will have been stored into register A, so when the 
condition 1A 5 5 2  is performed, it will get the correct value for A.

The timing diagram for this new state diagram is shown in Figure 7.21(b). The 
same input value of 5 is loaded into the register at time 200 ns at the beginning of clock 
cycle 2. However, the reading of the register for the conditional test does not occur 
until shortly after time 200 ns. Hence, the test result is equal, and the FSM goes to state 
s_equal and outputs the correct value of 8.s_equal and outputs the correct value of 8.s_equal

FIGURE 7.21 Example 7.8: (a) correct state diagram; (b) correct timing diagram. 
(continued on next page)
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Clock Cycle 1 Clock Cycle 3 Clock Cycle 4Clock Cycle 2

(b)

FIGURE 7.21 Example 7.8: (a) correct state diagram; (b) correct timing diagram.

Adding this one extra state is not the only solution to this timing problem. Another 
way to solve the problem is to connect the comparator for 1A 5 5 2  directly to the input 
signal rather than to the output of the A register, as shown in Figure 7.22. This way, we 
won’t have to wait one extra clock cycle for the input value to be latched into the register 
before we can test it. We will get the same functional result for both cases, however, in 
the second case, we will actually be performing the conditional test 1InInI pnpn ut 5 5 2  instead 
of 1A 5 5 2  as specified in the algorithm. In other words, the test is performed directly 
with the input value rather than with the value from the A register. 

FIGURE 7.22 Alternative datapath for the simple IF-THEN-ELSE problem.
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7.3.3 Timing Issues
From the last section, we saw that to get a correct state diagram for the microprocessor 
control unit, we need to be careful with the timing of the register-transfer operations 
in the datapath. There are two important points that we need to understand regarding 
the timing of register-transfer operations:

1. Read before write. If  we first perform a read operation and then follow it by a 
write operation on the same register in the same clock cycle, then it is all right. 
An example of this is executing the statement i 5 i 1 1 in a state.

2. Write before read. If  we first perform a write operation and then follow it by a 
read operation on the same register in the same clock cycle, then we will be read-
ing the value before the write. An example of this is updating a register and then 
testing the value in the same register.

To better understand these two register-transfer timing issues, we will illustrate 
with the following example to derive the state diagram for the summation problem to 
generate and sum the numbers from 1 to 10.

EXAMPLE 7.9

State diagram for the summation problem

Figure 7.23(a) shows the algorithm for the summation problem to generate and 
sum the numbers from 1 to 10. The state diagram for this algorithm is shown in 
Figure 7.23(b). The states in the state diagram are annotated with the instruction that 
is executed in it.

FIGURE 7.23 Summation problem to generate and sum the numbers from 1 to 10:  
(a) algorithm; (b) state diagram.

1 sum = 0sum = 0sum
2 i = 1
3 DO {
4 sum = sum = sum sum + sum + sum i
5  i = i + 1
6 } WHILE (i ≠ 11)
7 OUTPUT sum

(a)

s0 s1 s2 s3

sum = 0 i = i + 1
i = 1

sum = sum + i

s4

OUTPUT sum

(i 11)

(i 11)'

(b)
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The two initialization statements, 1 and 2, are independent of each other, there-
fore we can assign both of them to be executed in the same initialization state s0. State 
s1 performs statement 4 to sum i, while state s2 performs statement 5 to increment 
i. An extra state s3 is added that does not perform any operation. This extra state is 
needed because of timing reasons for testing the condition 1 i 2 11 2  as explained below. 
Depending on the result of the conditional test, the FSM either loops back to state 
s1 or goes to state s4 to output the sum. The FSM halts in state s4 by looping back to 
itself  unconditionally.

For the first read-before-write timing issue, let us look at the execution of  the 
instruction i 5 i 1 1 in state s2. The instruction i 5 i 1 1 requires both a read and a 
write of the same register i. The read is for the i that is on the right side of the equal i that is on the right side of the equal i
sign, and the write is for the same i that is on the left side of the equal sign. To execute i that is on the left side of the equal sign. To execute i
the instruction i 5 i 1 1 in the datapath, the iLoad signal for register iLoad signal for register iLoad i is asserted in i is asserted in i
state s2.

The FSM enters state s2 at the active (rising) edge of the clock in the current clock 
cycle as shown in the timing diagram in Figure 7.24. The execution of  the instruction 
i 5 i 1 1 begins with first reading from register i and then performing the addition i and then performing the addition i
i 1 1. The current value of  i is available for reading from the i is available for reading from the i Q output of  the register 
at the beginning of  the current clock cycle for state s2 because the value of  the regis-
ter is always available at its output. The iLoad signal also is asserted shortly after the iLoad signal also is asserted shortly after the iLoad
rising clock edge when the FSM enters state s2. However, the actual writing of  the 
register does not occur until the next rising clock edge at the start of  the next clock 
cycle in state s3 because values are written into registers only at the active (rising) clock 
edge, and the current rising clock edge already has passed. Therefore, even though the 
iLoad signal is asserted in the current clock cycle, it has to wait until the next rising iLoad signal is asserted in the current clock cycle, it has to wait until the next rising iLoad
clock edge before a value gets written in. Meanwhile, the adder performs the addition 
using the current value of  i, and the result from the addition will be available shortly 
before the beginning of  the next rising clock edge. Therefore, it is the result of  the 
addition that is written back into register i at the beginning of  the next clock cycle i at the beginning of  the next clock cycle i
when the FSM enters state s3.

FIGURE 7.24 Read-before-write timings.
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A question to ask is what happens if the adder takes longer than a clock period to 
output the valid result? In other words, what happens if, at the next rising clock edge at the 
beginning of state s3, the adder is not yet finished with its calculations and still outputting 
invalid results? The answer is that the datapath will write the wrong result from the adder 
into the register. The solution to this problem is to either make a faster adder that will 
finish in time, or make the clock period longer by slowing down the clock.

From the above analysis, we see that performing a read before a write to the same 
register in the same clock cycle does not create any data conflict because the reading 
occurs at the beginning of the current clock cycle. The value that is available at the 
output of the register in the current clock cycle is still the value before the write back, 
which is the value before the addition of i 1 1. Although the iLoad signal is asserted in iLoad signal is asserted in iLoad
the current clock cycle, the actual writing, however, does not occur until the beginning 
of the next clock cycle, which happens after the reading and the addition operation 
has completed.

For the second write-before-read timing issue, let us look at the execution of the 
same instruction i 5 i 1 1 in state s2. According to the algorithm in Figure 7.23(a), 
we want to test the condition (i Z 11) immediately after executing the instruction 
i 5 i 1 1. In other words, after writing the result of the addition into register i, we want 
to read the new value of i for the conditional test. Because the conditional test is not i for the conditional test. Because the conditional test is not i
a datapath operation, it does not require a state in the state diagram where the test is 
performed, but rather just a label on a conditional edge. Therefore, we incorrectly might 
draw the following state diagram with the two conditional edges going out from state s2.

The problem with this is that the conditional test requires the reading of the regis-
ter i in the same clock cycle that the instruction i in the same clock cycle that the instruction i i 5 i 1 1 is performed. Further, from 
the natural sequential execution of the algorithm, we expect the conditional test to be 
performed is for the incremented value of i, that is, after the writing back of the result 
from the addition. However, from the previous timing issue discussion, we know that 
i is not going to be updated until the next rising clock edge in the next clock cycle, i is not going to be updated until the next rising clock edge in the next clock cycle, i
so reading the register in the current clock cycle will get the old value of i, and not 
the incremented value of i. By adding the extra state s3 in the state diagram shown in 
Figure 7.23(b) and doing the conditional test in that state, we will be testing the correct 
incremented value of i.

Note that we also can get the same functional result without having to add the 
extra state by either changing the conditional test from (i Z 11) to (i Z 10), 
or connecting the conditional test circuit to the output of the adder instead of to the 
register. The only issue with these alternative solutions is that we are not following the 
original algorithm exactly. 

s0 s1 s2

sum = 0 i = i + 1
i = 1

sum = sum + i

s4

OUTPUT sum

(i 11)

(i 11)'
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7.3.4 Deriving the FSM Circuit
Constructing the FSM circuit here for the microprocessor follows exactly the proce-
dure discussed in Chapter 6 for synthesizing FSMs. After we have derived the correct 
state diagram, the next step is to convert the state diagram into the next-state table, 
and then from the next-state table we can construct the next-state logic circuit for the 
FSM. The total number of states in the state diagram will determine the number of 
D flip-flops needed for the state memory to give a unique encoding for each of the 
states. The output logic circuit for the FSM is derived from the control signals in the 
control words and the states to which the control words are assigned. Finally, combin-
ing the next-state logic circuit, the state memory, and the output logic circuit together 
produces the complete FSM control unit circuit.

We will now show the complete process on how to derive an FSM circuit with 
two examples. Example 7.10 shows the construction of the FSM circuit for the simple 
IF-THEN-ELSE problem. Example 7.11 shows the construction of the FSM circuit for the 
summation problem to generate and sum the numbers from 1 to 10.

EXAMPLE 7.10

Construction of the FSM for the simple IF-THEN-ELSE problem

In this example, we start with the given state diagram shown in Figure 7.25(a). The 
next-state table shown in Figure 7.25(b) is obtained directly from the state diagram. 
Since there is a total of  five states, three flip-flops are needed to encode them using 
the straight binary encoding scheme. State s_input is encoded as Q2Q1Q0 5 000, state 
s_extra is encoded as Q2Q1Q0 5 001, and so on. The three remaining encodings (101, 
110, and 111) are not used. In normal circumstances, the control unit should never get 
to one of the unused states. However, because of noise or glitches in the circuit, the 
FSM might end up in one of these unused states, so it is a good idea to set the next state 
for all of the unused states to the reset state. In our next-state table, we have added three 
more rows for these three unused states. Their next state for all input conditions is the 
reset state, 000. The next-state table is a direct translation from the state diagram but 
written in a table format. From state 000 (s_input) we go to state 001 (s_extra) uncon-
ditionally. From state 001 (s_extra) we go to either 010 (s_notequal) or 011 (s_notequal) or 011 (s_notequal s_equal) s_equal) s_equal
depending on the outcome of the condition 1A 5 5 2 .

The next-state equations shown in Figure 7.25(c) are derived from the next-state 
table. There is one equation for each of the three flip-flops, and because we are using 
D flip-flops, Qnext 5 D. In the next-state table, the values for the three flip-flops are 
grouped together. When deriving the next-state equations, we need to look at them 
separately as three truth tables—one for Q2next, one for Q1next, and one for Q0next. These 
equations are dependent on the four variables Q2, Q1, Q0, and 1A 5 5 2 .

The control words also serve as the output table. The output logic circuit for the 
FSM is derived from the control signals in the control words and the states to which 
the control words are assigned. Each control signal has one output equation, and these 
equations are dependent only on the states Q2, Q1, and Q0 of the FSM. We derive the 
truth tables for these output equations by taking the control word table and replacing 
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all of  the control word numbers with the actual encoding of the state to which that 
control word is assigned. Having the output table, the output equations can be derived 
easily, as shown in Figures 7.25(d) and (e), respectively.

After deriving the next-state and output equations, we can draw the control unit 
circuit as shown in Figure 7.25(f). The state memory simply consists of  the three 
D flip-flops. Both the next-state logic circuit and the output logic circuit are combina-
tional circuits, and are constructed from the next-state equations and output equations, 
respectively. Combining the next-state logic circuit, the state memory, and the output 
logic circuit together produces the final FSM control unit circuit. 

s_
extraextraextr

s_not
equal

s_
equal

s_
outpuoutpuoutput

(A(A(  = 5)' (A(A(  = 5)

Control Word 2
B = 8

Control Word 3
B = 13

(a)

Control Word 4
OUTPUT B

s_
input

Control Word 1
INPUT A

Current State
Q2Q2Q Q1Q0Q0Q

Next State
Q2Q2Q nextQ1nextQ0Q0Q next

(A 5 5)9 (A 5 5)

s_input 000 s_extra 001 s_extra 001

s_extra 001 s_notequal 010s_notequal 010s_notequal s_equal 011s_equal 011s_equal

s_notequal 010s_notequal 010s_notequal s_output 100 s_output 100

s_equal 011s_equal 011s_equal s_output 100 s_output 100

s_output 100 s_output 100 s_output 100

Unused 101 000 000

Unused 110 000 000

Unused 111 000 000

(b)

FIGURE 7.25 Construction of the FSM for the simple IF-THEN-ELSE problem: (a) state diagram; 
(b) next-state table; (c) next-state equations; (d) output table; (e) output equations for the four 
control signals; (f) circuit. (continued on next page)

Q2next 5 D2 5 Q r2 Q1 1 Q2Q r1 Q r0
Q1next 5 D1 5 Q r2 Q r1 Q0

Q0next 5 D0 5 Q r2 Q r1 Q r0 1 Q r2 Q r1 1A 5 5 2
(c)
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Q2Q2Q Q1Q0Q0Q Instruction ALoad Muxsel BLoad Out

000 INPUT A 1 3 0 0
001 No operation 0 3 0 0
010 B 5 8 0 1 1 0
011 B 5 13 0 0 1 0
100 OUTPUT B 0 3 0 1
101 No operation 0 3 0 0
110 No operation 0 3 0 0
111 No operation 0 3 0 0

(d)

ALoad 5 Q r2 Q r1 Q r0
MuMuM xsel 5 Q r2 Q1Q r0
BLoad 5 Q r2 Q1

Out 5 Q2Q r1 Q r0
(e)

(f)

Output Logic and
Control Signals to the Datapath

State
Memory

Next-state
Logic

ALoad

Status Signal from
the Datapath

Clk

D0

Q09

Q0

Clear

Clk

D1

Q19

Q1

Clear

Clk

D2

Q29

Q2

Clear

Clock
Reset

(A(A(  = 5)

Muxsel

BLoad

Out

FIGURE 7.25 Construction of the FSM for the simple IF-THEN-ELSE problem: (a) state diagram; 
(b) next-state table; (c) next-state equations; (d) output table; (e) output equations for the four 
control signals; (f) circuit.
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EXAMPLE 7.11

Construction of the FSM for the summation problem

In this example, we will construct the FSM for the summation problem to gener-
ate and sum the numbers from 1 to 10. We already have derived the state diagram 
for this problem in Example 7.9. Starting with this state diagram shown again here 
in Figure 7.26(a), we obtain the next-state table and next-state equations shown in 
Figures 7.26(b) and (c), respectively. The output table, obtained from the control 
words shown in Figure 7.18, and the output equations are shown in Figures 7.26(d) 
and (e), respectively. Finally, the complete FSM circuit is shown in Figure 7.26(f).

FIGURE 7.26 Construction of the FSM for the summation problem: (a) state diagram; 
(b) next-state table; (c) next-state equations; (d) output table; (e) output equations; 
(f) circuit. (continued on next page)

s0 s1 s2 s3

sum = 0 i = i + 1
i = 1

sum = sum + i

s4

OUTPUT sum

(i 11)

(i 11)'

Current State
Q2Q2Q Q1Q0Q0Q

Next State
Q2Q2Q nextQ1nextQ0Q0Q next

(i u 11)r (i u 11)

s0 000 s1 001 s1 001

s1 001 s2 010 s2 010

s2 010 s3 011 s3 011

s3 011 s4 100 s1 001

s4 100 s4 100 s4 100

Unused 101 000 000

Unused 110 000 000

Unused 111 000 000

(b)

Q2next 5 D2 5 Q r2 Q1Q0 1 i 2 11 2 r 1 Q2Q r1 Q r0
Q1next 5 D1 5 Q r2 Q r1 Q0 1 Q r2 Q1Q r0
Q0next 5 D0 5 Q r2 Q r0 1 Q r2 Q1Q0 1 i 2 11 2

(c)

(a)
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Current State
Q2Q2Q Q1Q0Q0Q

Instruction iMux sumMux sumLoad iLoad addMux OE

s0 000 sum 5 0; i 5 1 1 1 1 1 3 0
s1 001 sum 5 sum 1 i 3 0 1 0 0 0
s2 010 i 5 i 1 1 0 3 0 1 1 0
s4 100 OUTPUT sum 3 3 0 0 3 1

(d)

iMuMuM x 5 Q r2 Q r1 Q r0
sumMuMuM x 5 Q r2 Q r1 Q r0
sumLoad 5 Q r2 Q r1

iLiLi oad 5 Q r2 Q r0
addddd MdMd uMuM x 5 Q r2 Q1Q r0

OE 5 Q2Q r1 Q r0
(e)

Output Logic and
Control Signals to the Datapath

State
Memory

Next-state
Logic

iMux
sumMux

sumLoad

iLoad

Status Signal from
the Datapath

Clk
D0

Q09

Q0

Clear

Clk
D1

Q19

Q1

Clear

Clk
D2

Q29

Q2

Clear

Clock
Reset

addMux

OE

(i  11)
(f)

FIGURE 7.26 Construction of the FSM for the summation problem: (a) state diagram; 
(b) next-state table; (c) next-state equations; (d) output table; (e) output equations; 
(f) circuit.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-202



320 CHAPTER 7 DeDICAteD MICRoPRoCessoRs

7.4 Constructing the Complete Microprocessor
Having constructed both the datapath and the control unit circuits, we now can con-
nect these two components together to produce the complete dedicated micropro-
cessor. Figure 7.27 shows how these two components are connected together using 
the corresponding control signals and status signals. Recall that the control signals 
are generated by the control unit to control the operations of  the datapath, while 
the status signals are generated by the datapath to inform the next-state logic in the 
control unit as to what the next state should be in the execution of  the algorithm. 
The remaining four sets of  input/output signals (control inputs, control outputs, data 
inputs, and data outputs) that interface with external devices are hardware dependant. 
An example of  a control input is the reset signal to reset the microprocessor. A halt 
signal to notify the external world that the microprocessor has halted execution is an 
example of  a control output. For testing purposes, we will simply connect them to 
LEDs and switches.

This method of manually constructing a dedicated microprocessor is referred to 
as the FSM1D (FSM plus datapath) model because the control unit and the datap-
ath are constructed separately, and then they are connected together using the con-
trol and status signals. Example 7.12 shows this manual construction of a dedicated 
microprocessor for the simple IF-THEN-ELSE problem. Example 7.13 shows this manual 
construction of a dedicated microprocessor for the problem to generate and sum the 
numbers from 1 to 10.

FIGURE 7.27 Block diagram of a microprocessor.
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EXAMPLE 7.12

Construction of the complete dedicated microprocessor for the simple 
IF-THEN-ELSE problem

In the last two sections, we constructed the datapath and the control unit for the simple 
IF-THEN-ELSE problem as separate circuits. We will now connect them together to form 
the dedicated microprocessor for executing the given algorithm. The control unit circuit 
constructed for this microprocessor from Example 7.10 and shown in Figure 7.25(f) is 
represented by the symbol shown in Figure 7.28(a). The datapath circuit constructed 
for this microprocessor from Example 7.2 and shown in Figure 7.13(b) is represented 
by the symbol shown in Figure 7.28(b).

Connecting the datapath and the control unit together forms the complete dedicated 
microprocessor circuit shown in Figure 7.28(c). The four control signals and the one 
status signal between the two components are connected together. The data inputs are 
connected to external switches; the data outputs are connected to external LEDs; the reset 
signal is connected to an external push button; and the clock signal is connected to an 

FIGURE 7.28 Complete dedicated microprocessor circuit for the simple IF-THEN-ELSE

problem: (a) symbol for the control unit circuit; (b) symbol for the datapath circuit;  
(c) complete dedicated microprocessor.
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external clock source. This dedicated microprocessor will operate according to the simple
IF-THEN-ELSE algorithm shown in Figure 7.13(a). The LEDs will show either the number 8 
or 13 in binary depending on whether the input from the switches is equal to 5 in binary. 

EXAMPLE 7.13

Construction of the complete dedicated microprocessor for the summation 
problem

The control unit and the datapath for the summation problem to generate and sum the 
numbers from 1 to 10 already have been derived in Figures 7.26(f) and 7.14(b), respec-
tively. The two symbols representing these two circuits are shown in Figures 7.29(a) and 
(b), respectively. Connecting the datapath and the control unit together through their 
corresponding control and status signals forms the complete dedicated microprocessor 
circuit shown in Figure 7.29(c). 

8

Clock

Datapath

Output

iMux
sumMux
sumLoad
iLoad
addMux
OE

(i  11)

(b)

Clock
Reset

Control
Unit

iMux
sumMux

sumLoad
iLoad

addMux
OE

(i  11)

(a)

FIGURE 7.29 Complete dedicated microprocessor circuit for the summation  
problem: (a) symbol for the control unit circuit; (b) symbol for the datapath circuit;  
(c) complete dedicated microprocessor.
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7.5 Dedicated Microprocessor Construction Examples
We now will illustrate the manual design of  dedicated microprocessors using the 
FSM1D method with several examples. The microprocessor circuits produced in these 
examples are by no means the only correct circuits for solving each of the problems. 
Just like writing a computer program, there are many ways of doing it. In Section 7.5.1, 
we show an example of designing a dedicated microprocessor for finding the greatest 
common divisor (GCD) of two numbers. In Section 7.5.2, we create a dedicated micro-
processor for playing the high-low number guessing game. Finally, in Section 7.5.3, we 
will design a dedicated traffic light controller.

7.5.1 Greatest Common Divisor
Example 7.14 shows the manual construction of a dedicated microprocessor for finding 
the GCD of two numbers.

EXAMPLE 7.14

Designing a dedicated microprocessor to evaluate the GCD

In this example, we will design a complete dedicated microprocessor to evaluate the 
GCD of two 8-bit positive numbers X and X and X Y, using the Euclidean algorithm. The GCD Y, using the Euclidean algorithm. The GCD Y
of two positive integers is defined as the largest integer that divides both of them with-
out leaving a remainder. For example, the GCD of 8 and 12 is 4, and the GCD of 3 and 
5 is 1. The Euclidean algorithm for solving the GCD problem is shown in Figure 7.30. 
We first will design a dedicated datapath for the algorithm. Next, we will design the 
control unit for the datapath. Finally, we will combine these two components together 
to produce our complete dedicated microprocessor.

The algorithm shown in Figure 7.30 has five data manipulation statements in lines 
1, 2, 5, 7, and 10. There are two conditional tests in lines 3 and 4. The dedicated data-
path derived for this algorithm is shown in Figure 7.31. Two 8-bit registers are needed 
to store the two variables X and X and X Y. One subtractor is used to perform the two subtracY. One subtractor is used to perform the two subtracY -
tions in lines 5 and 7. Two 2-to-1 multiplexers are needed for the input to each of the 

FIGURE 7.30 Euclidean algorithm for solving the GCD problem.

1 INPUT X
2 INPUT Y
3 WHILE (X ≠ X ≠ X Y){
4   IF (X > X > X Y) THEN
5 X = X = X X - X - X Y
6 ELSE
7 Y = Y = Y Y - Y - Y X
8 END IF
9 }
10 OUTPUT X
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two registers, because we initially need to load each register with an input number and 
subsequently with the result from the subtractor. The two multiplexer select control 
signals In_X and In_X and In_X In_Y select which of the two sources is to be loaded into the registers In_Y select which of the two sources is to be loaded into the registers In_Y
X and X and X Y, respectively. The two register load control signals Y, respectively. The two register load control signals Y XLoad and XLoad and XLoad YLoad load a YLoad load a YLoad
value into the respective register.

The bottom two 2-to-1 multiplexers, selected by the same XY signal, determine XY signal, determine XY
the source to the two operands for the subtractor. When XY is asserted, the value from XY is asserted, the value from XY
register X will go to the left operand of the subtractor, and the value from register X will go to the left operand of the subtractor, and the value from register X Y will Y will Y
go to the right operand. On the other hand, when XY is de-asserted, XY is de-asserted, XY Y will go to the Y will go to the Y
left operand, and X will go to the right operand. Thus, this allows the selection of one X will go to the right operand. Thus, this allows the selection of one X

FIGURE 7.31 Dedicated datapath for solving the GCD problem.
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of the two subtraction operations, X 2 Y  or Y  or Y Y 2 X,X,X  to be performed. The Out control 
signal is used to enable the tri-state buffer for outputting the result from register X.X.X

One comparator is used to generate the two conditional status signals, equal to and 
greater than. The inputs to the comparator are directly from the two X and X and X Y registers. Y registers. Y
There are two output signals 1X 5 Y 2Y 2Y  and 1X . Y 2Y 2Y  from the comparator. 1X 5 Y 2Y 2Y  is 
asserted if  X is equal to X is equal to X Y, and Y, and Y 1X . Y 2Y 2Y  is asserted if  X is greater than X is greater than X Y.Y.Y

This dedicated datapath for solving the GCD problem requires six control signals, 
In_X, In_X, In_X In_Y, In_Y, In_Y XLoad, XLoad, XLoad YLoad, YLoad, YLoad XY, and XY, and XY Out, and generates two status signals, 1X 5 Y 2Y 2Y
and 1X . Y 2Y 2Y . The control words for this datapath are shown in Figure 7.32(d).

The state diagram for the GCD algorithm requires five states, as shown in 
Figure 7.32(a). The two input statements are independent of each other, and therefore, 
can be executed at the same time in the same state (000). An extra “no-operation” state 
is needed for the correct conditional testing of the updated values of X and X and X Y. If  we Y. If  we Y
were to read the result from the conditional test in state 000 (i.e., with the two outgoing 
conditional edges in 000), we would be reading the old values of X and X and X Y, and not the Y, and not the Y
new updated values because the new values are not written into the registers until the 
next rising clock edge, which also is when the FSM goes to state 001.

In state 001, we test for the two conditions, 1X 5 Y 2Y 2Y  and 1X . Y 2Y 2Y . If  1X 5 Y 2Y 2Y
is true, then the next state is 100, and the FSM stops in this state by looping endlessly 
back to itself. If  1X 5 Y 2Y 2Y  is false, then the next state is either 010 or 011, depending 
on whether the condition 1X . Y 2Y 2Y  is true or false, respectively. In states 010 and 011, 
the respective subtraction is performed, and then unconditionally they both go back 
to state 001 to test the conditions again.

This state diagram does not have a Start signal, so in order for the resulting micro-
processor to read the inputs correctly, we first must set up the input numbers and then 
assert the Reset signal to clear the state memory flip-flops to 0. This way, when the 
FSM starts executing from state 000, the two input numbers are ready to be read in.

The next-state table, as derived from the state diagram, is shown in Figure 7.32(b). 
The table requires five variables: three to encode the five states, Q2, Q1, and Q0, and two 
for the status signals, 1X 5 Y 2Y 2Y  and 1X . Y 2Y 2Y . There are three unused state encodings, 
101, 110, and 111, which will unconditionally go back to state 000.

The K-maps for the next-state equations and the next-state equations for 
Q2next, Q1next, and Q0next are shown in Figure 7.32(c). For the next-state equations, 
Qnext 5 D because we are using D flip-flops to implement the state memory.

The control words and output table, having the six control signals, are shown in 
Figure 7.32(d). State 000 performs both inputs of X and X and X Y. The two multiplexer select Y. The two multiplexer select Y
lines In_X and In_X and In_X In_Y must be asserted so that the data comes from the two primary In_Y must be asserted so that the data comes from the two primary In_Y
inputs. The two numbers are loaded into the two corresponding registers by asserting 
the XLoad and XLoad and XLoad YLoad lines. State 001 is for testing the two conditions, so no operations YLoad lines. State 001 is for testing the two conditions, so no operations YLoad
are performed. The no-op is accomplished by not loading the two registers and not out-
putting a value. For states 010 and 011, the XY multiplexer select line is used to select XY multiplexer select line is used to select XY
which of the two subtraction operations is to be performed. Asserting XY performs XY performs XY
the operation X 2 Y;Y;Y  whereas, de-asserting XY performs the operation XY performs the operation XY Y 2 X.X.X  The 
corresponding In_X or In_X or In_X In_Y line is de-asserted to route the result from the subtractor In_Y line is de-asserted to route the result from the subtractor In_Y
back to the input of the register. The corresponding XLoad or XLoad or XLoad YLoad line is asserted to YLoad line is asserted to YLoad
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store the result of the subtraction into the correct register. State 100 outputs the result 
from X by asserting the X by asserting the X Out line.

The output equations, as derived from the output table, are shown in Figure 7.32(e). 
There is one equation for each of the six control signals, and each one is dependent only 
on the current state (i.e., the current values in Q2, Q1, and Q0). We have assumed that 
the control signals have don’t-care values in all of the unused states.

The complete control unit circuit is shown in Figure 7.32(f). The state memory con-
sists of three D flip-flops. The inputs to the flip-flops are the next-state circuits derived 
from the three next-state equations. The output circuits for the six control signals are 
derived from the six output equations. The two status signals 1X 5 Y 2Y 2Y  and 1X . Y 2Y 2Y
come from the comparator in the datapath.

FIGURE 7.32 Control unit for solving the GCD problem: (a) state diagram; (b) next-
state (implementation) table; (c) K-maps and next-state equations; (d) control words 
and output table; (e) output equations; (f) circuit. (continued on next page)
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110 Unused 000 000 000 000

111 Unused 000 000 000 000
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FIGURE 7.32 Control unit for solving the GCD problem: (a) state diagram; (b) next-
state (implementation) table; (c) K-maps and next-state equations; (d) control words 
and output table; (e) output equations; (f) circuit. (continued on next page)

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-202



328 CHAPTER 7 DeDICAteD MICRoPRoCessoRs

(f)
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No 
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FIGURE 7.32 Control unit for solving the GCD problem: (a) state diagram; (b) next-state 
(implementation) table; (c) K-maps and next-state equations; (d) control words and output table; 
(e) output equations; (f) circuit. 
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The final microprocessor can now be formed easily by connecting the control unit 
and the datapath together using the designated control and status signals, as shown 
in Figure 7.33. To implement and test this circuit on an FPGA development board, 
you will need to map the two 8-bit inputs for X and X and X Y to two sets of 8 switches, the Y to two sets of 8 switches, the Y
output to 8 LEDs, a push button to the Reset, and a clock source to the Clock signal. Clock signal. Clock
A simulation trace of the microprocessor calculating the GCD of the two numbers 12 
and 4 is shown in Figure 7.34. 

FIGURE 7.33 Microprocessor for solving the GCD problem.
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FIGURE 7.34 Sample simulation for the GCD problem for the two input numbers 4 and 12. 
The GCD of these two numbers is 4.
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7.5.2 High-Low Number Guessing Game
Example 7.15 shows the manual construction of a dedicated microprocessor to play 
the high-low number guessing game.

EXAMPLE 7.15

Designing a dedicated microprocessor to play the high-low number guessing 
game

In this example, we will design a complete dedicated microprocessor to play the high-
low number guessing game. The user picks a number between 0 and 99, and the com-
puter will use the binary search algorithm to guess the number. After each guess, the 
user tells the computer whether the guess is high or low compared to the picked num-
ber. Two push buttons hi_button and lo_button are used by the user to tell the computer 
whether the guess is too high, too low, or correct. The hi_button is pressed if  the guess 
is too high, and the lo_button is pressed if  the guess is too low. If  the guess is correct, 
both buttons are pressed at the same time.

The algorithm for this high-low guessing game is shown in Figure 7.35. The two 
boundary variables Low and High are initialized to 0 and 100, respectively. The loop 
between lines 3 to 11 will keep repeating until both buttons, hi_button and lo_button, are 
pressed. Inside the loop, line 4 calculates the next guess by finding the middle number 

FIGURE 7.35 Algorithm for the high-low number guessing game.

1 Low = 0Low = 0Low // initialize Low
2 High = 100 // initialize High

// repeat until both buttons are pressed
3 REPEAT {

// calculate guess using binary search
4   Guess = (Low + Low + Low High) / 2
5   OUTPUT Guess
6   IF (lo_button = '1' AND hi_button = '0') THEN 

// low button pressed
7 Low = Low = Low Guess
8 ELSE IF (lo_button = '0' AND hi_button = '1') THEN 

// hi button pressed
9 High = Guess
10 END IF
11 } UNTIL (lo_button = '1' AND hi_button = '1') 
12  WHILE (lo_button = '0' AND hi_button = '0')

// blink correct guess
13  OUTPUT Guess
14  turn off display
15  END WHILE
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between the lower and upper boundaries and assigns it to the variable Guess. Line 5 
outputs this new Guess. Lines 6 to 10 checks which button is pressed. If  the lo_button is 
pressed, that means the guess is too low, so line 7 changes the Low boundary to the cur-
rent Guess. Otherwise, if  the hi_button is pressed, that means the guess is too high, and 
line 9 changes the High boundary to the current Guess. The loop is then repeated with 
the calculation of the new Guess in line 4. When both buttons are pressed, the condition 
in line 11 is true, and the loop is exited. Lines 12 to 15 simply cause the display to blink 
the correct guess by turning it on and off until either one of the buttons is pressed again.

The algorithm shown in Figure 7.35 has eight data manipulation operations in 
lines 1, 2, 4, 5, 7, 9, 13, and 14. The dedicated datapath for realizing this algorithm is 
shown in Figure 7.36. It requires three 8-bit registers (Low, High, and Guess) to store 
the low and high range boundary values and the guess, respectively. Two 2-to-1 mul-
tiplexers are used for the inputs to the Low and High registers to select between the 
initialization values for lines 1 and 2, and the new Guess values for lines 7 and 9.

The only arithmetic operations needed are the addition and division-by-2 in line 4. 
Hence, the outputs from the two registers Low and High go to the inputs of an adder 
for the addition, and the output of  the adder goes to a shifter. The division-by-2 is 
performed by doing a right shift of 1 bit. The result from the shifter is stored in the 
register Guess. Depending on the condition in line 6, the value in the Guess register 
is loaded into either the Low or the High register by asserting the corresponding load 
signal for that register.

Eight 2-input AND gates are used to control the output of the Guess number. One 
input from each of the eight AND gates are connected to the 8-bit output of the Guess
register. The other input from each of the eight AND gates are connected together in 
common to the output enable Out signal. By asserting Out, the data from the Guess
register is passed to the output port. To blink the output display in lines 13 and 14, we 
just toggle the Out line.

The datapath shown in Figure 7.36 requires five control signals, Init, LowLoad, 
HighLoad, HighLoad, HighLoad GuessLoad, and GuessLoad, and GuessLoad Out. Together, these five control signals form the control 
word for this datapath. The Init signal controls the two multiplexers to determine 
whether to load in the initialization values or the new guess. The three load signals 
LowLoad, LowLoad, LowLoad HighLoad, and HighLoad, and HighLoad GuessLoad control the writing of the three respective regis-GuessLoad control the writing of the three respective regis-GuessLoad
ters. Finally, Out controls the output of the guess value.

Note that for this datapath, no comparator is used and no status signal is generated 
by the datapath. The conditional tests for the loop at line 11, and the high/low guess at 
lines 6 and 8, are provided by the two external push buttons, hi_button and lo_button. The 
input signals provided by these two push buttons will control the sequencing of the FSM.

The state diagram for this algorithm requires six states, as shown in Figure 7.37(a). 
State 000 is the starting initialization state. State 001 executes lines 4 and 5 by calcu-
lating the new guess and outputting it. State 001 also waits for the user keypress. If  
only the lo_button is pressed, then the FSM goes to state 010 to assign the guess as 
the new low value. If  only the hi_button is pressed, then the FSM goes to state 011 
to assign the guess as the new high value. If  both buttons are pressed, then the FSM 
goes to state 100 to output the guess. From state 100, the FSM turns on and off  the 
output by cycling between states 100 and 101 until a button is pressed. When a button 
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is pressed from either state 100 or 101, the FSM goes back to the initialization state 
for a new game.

The output table showing the five output signals, Init, LowLoad, HighLoad, 
GuessLoad, and Out, to be generated in each state is shown in Figure 7.37(d). 

FIGURE 7.36 Dedicated datapath for the high-low number guessing game.
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Low = 0
High = 100
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011
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FIGURE 7.37 Control unit for the high-low number guessing game: (a) state diagram; 
(b) next-state (implementation) table; (c) K-maps and next-state equations; (d) control 
words and output table; (e) output equations; (f) circuit. (continued on next page)
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111 Unused 000 000 000 000

(b)
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FIGURE 7.37 Control unit for the high-low number guessing game: (a) state diagram; (b) next-
state (implementation) table; (c) K-maps and next-state equations; (d) control words and output 
table; (e) output equations; (f) circuit. (continued on next page)
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Control
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FIGURE 7.37 Control unit for the high-low number guessing game: (a) state diagram; (b) next-
state (implementation) table; (c) K-maps and next-state equations; (d) control words and output 
table; (e) output equations; (f) circuit. 
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The corresponding output equations derived from the output table are shown in 
Figure 7.37(e).

Three D flip-flops are used to implement the state memory with only six of the 
encodings used for the six states. The next-state table is shown in Figure 7.37(b). The 
three K-maps and next-state equations are shown in Figure 7.37(c).

Using the three next-state equations to derive the next-state logic circuit, the three 
D flip-flops for the state memory, and the five output equations to derive the output 
logic circuit, we get the complete control unit circuit for the high-low number guessing 
game, as shown in Figure 7.37(f).

Connecting the datapath circuit shown in Figure 7.36 and the control unit circuit 
shown in Figure 7.37(f) together using the respective control signals produces the final 
microprocessor shown in Figure 7.38. Note that there are no status signals needed 
for this microprocessor, instead there are the two control input signals, hi_button and 
lo_button.

Figure 7.39 shows the interface needed to test this high-low number guessing game 
dedicated microprocessor on an FPGA development board. In order for the hi_button
and lo_button to work correctly, they must be de-bounced with a one-shot circuit. 
Recall that the one-shot circuit outputs a one-cycle clock pulse when given an input of 
arbitrary time length. (See Section 6.6.3 for a detail description of the one-shot circuit.) 
If  we do not use the one-shot circuit, then when the user presses, say, the hi_button, 
the FSM will cycle through the two states 001 and 011 many times before stopping 
in state 001 when the user finally releases the button. This is because the clock speed 
is very fast, so even though the user presses and releases the button immediately, the 
FSM would have gone through many clock cycles. Furthermore, the clock speed must 
be slow enough (around 4 Hz) for the FSM to be able to distinguish the difference 

FIGURE 7.38 Microprocessor for the high-low number guessing game.
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FIGURE 7.39 Interface to the high-low number guessing game microprocessor.
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between a two-button press as opposed to just one button press after another. If  the 
clock speed is too fast, then the FSM will never see the two-button press. The push 
buttons are assumed to be active-low, so an inverter is added to each of them to change 
the signals to active-high. To see the output Guess as a decimal number, a Binary-to-
Decimal number converter is used, and the output from the converter is connected to 
two 7-segment LED displays.

7.5.3 Traffic Light Controller
Example 7.16 shows the manual construction of  a dedicated traffic light 
microcontroller.

EXAMPLE 7.16

Designing a dedicated traffic light microcontroller

In this example, we will design the complete dedicated microprocessor to control a 
traffic light system at an intersection. For our traffic light system, we will have two sets 
of lights with each consisting of the red, yellow, and green lights. The sequence for the 
lights to turn on in both sets is shown next.

Set 1 Set 2 Time Delay State

Yellow1 Red2 1 second s0

Red1 Green2 16 seconds s1

Red1 Yellow2 1 second s2

Green1 Red2 16 seconds s3

Yellow1 Red2 1 second s0

etc. etc. etc. etc.
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There is a short delay for each light before it changes to the next light. The green 
light remains on for 16 seconds before switching to the yellow light, and the yellow light 
remains on for 1 second before switching to the red light.

The system also has two crosswalk push buttons (matching the two sets of lights) for 
people to cross the street. When a button is pressed, we want that matching set of lights 
to turn red immediately if it is not already red, that is, if that set of lights is at green, then 
we want it to immediately go to yellow without completing the 16 seconds delay. If it is 
already at red, then it should remain at red. It will remain at red (while the other set is at 
green) for 16 seconds for the people to cross the street, after which the normal cycle repeats.

No data manipulation operations are needed for this microcontroller, so no data-
path is required. However, a 4-bit counter is used for timing purposes, as discussed below.

The state diagram for our traffic light controller is shown in Figure 7.40(a). Notice 
that the state diagram has no reference to any timing except that the FSM will tran-
sition to the next state on every active clock edge. If  the clock frequency is very high, 
then the FSM will cycle through the states so fast that you wouldn’t see the lights step-
ping through the sequence. In the description, there are two situations where we want 
the lights to pause for 1 second, and this can be accomplished by using a 1 Hz clock 
frequency, because after 1 second, the FSM will move on to the next state and so the 
lights will change. However, when we want the green lights to pause for 16 seconds, 
we can either designate 16 states for keeping the same lights on for 16 seconds, or have 
only one state but use a counter to count 16 times for the FSM to stay in that one state 
before moving on to the next state. In our design, we have used the latter solution. 
A 4-bit binary counter is used to count from 0 to 15, after which it will cycle back to 0 
and signify the overflow by asserting the CountOverflow bit.

On reset, the FSM will start in state s0 with YeYeY llolol w1 and Red2d2d  turned on, and the 
4-bit counter is reset to zero by setting ClearCount to a 1. After 1 second at the next 
clock cycle, the FSM transitions to state s1 turning on Red1 and Green2. At this point, 
the counter will increment at a rate of 1 second. The FSM will remain in state s1 until 
either the counter overflows by asserting the CountOverflow bit, which means that the 
time is up for the 16 seconds, or a pedestrian has pushed PB2 and so we want the light 
to change immediately. These situations are covered by the three combinations of the 
three bits PB2PB1CoCoC untOverflrflr oflofl w 5 001, 100, and 101, and is labeled on the edge going 
from state s1 to s2. If  PB1 is pressed when the FSM is in state s1, the FSM will loop 
back to s1 (disregarding the other two control signals PB2 and CountOverflow) and 
clears the counter. This essentially gives PB1 priority over the other two signals, and 
it is an implementation decision that the designer makes, which depends on how you 
want the traffic light to operate.

States s2 and s3 are mirror images of states s0 and s1 for the other set of lights, and 
they work in a similar fashion.

The next-state table as derived from the state diagram is shown in Figure 7.40(b), 
and the two next-state equations as derived from the next-state table are shown in 
Figure 7.40(c).

The output table is shown in Figure 7.40(d). There are two sets of  Red, Red, Red Yellow, 
and Green signals to turn on and off  the corresponding color lights, and a ClearCount
signal to zero the 4-bit counter. Notice that for the ClearCount signal, it is set to a 1 on 
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FIGURE 7.40 Control unit for the traffic light controller: (a) state diagram; (b) next-state 
(implementation) table; (c) next-state equations; (d) output table; (e) output equations; (f) circuit. 
(continued on next page)
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FIGURE 7.40 Control unit for the traffic light controller: (a) state diagram; (b) next-state (imple-
mentation) table; (c) next-state equations; (d) output table; (e) output equations; (f) circuit.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-202



7.6 VeRILoG AnD VHDL CoDe FoR DeDICAteD MICRoPRoCessoRs 341

an edge instead of in a state, that is, it is dependent on both the current state and an 
input signal, making it a Mealy machine. For example, in state s1, ClearCount is set to 
a 1 only when PB1 also is a 1. The seven output equations as derived from the output 
table are shown in Figure 7.40(e).

As mentioned previously, a 4-bit binary up counter is needed to support the count 
delay. The ClearCount signal will assert the Clear input signal to zero the counter, and 
the CountOverflow output signal is connected to the counter’s Overflow output bit. This 
counter is the only component needed for the datapath, so instead of drawing it as a 
separate circuit, it is combined with the controller circuit. The complete traffic light 
microcontroller circuit is shown in Figure 7.40(f).

7.6  Verilog and VHDL Code for Dedicated 
Microprocessors

Having manually designed the circuit for a dedicated microprocessor, we can implement 
it with a hardware development tool by either drawing the schematic circuit or writing 
the HDL code using the FSM1D (FSM plus Datapath) model. However, in so doing, 
we will not be using the full power of  the HDL synthesizer. To use the automatic 
synthesis capability of a hardware development tool, we can design a microprocessor 
by writing HDL code at a higher level either using the FSMD (FSM with Datapath) 
model or the algorithmic model. Given a high-level description of a microprocessor, 
the synthesis tool can automatically synthesize the circuit for the microprocessor.

Designing a microprocessor using the FSM1D model involves separately writing 
behavioral HDL code to describe the FSM, and structural HDL code to construct the 
datapath. You start with the state diagram for the FSM, and in each state the FSM 
will generate the appropriate control signals to control the datapath. The FSM and the 
datapath are then connected together via the control and status signals using structural 
HDL code.

Designing a microprocessor using the FSMD model involves writing behavioral 
HDL code to describe both the FSM and the datapath together as one unit. You start 
with the state diagram for the FSM and the data operations that are to be executed in 
each state. The state diagram is translated into HDL statements, and the data opera-
tions are performed with the built-in HDL operators. During the synthesis process, the 
synthesizer will generate a separate FSM unit and a datapath unit automatically, and 
then connects these two units together as a complete microprocessor. The advantage of 
this model is that you do not have to design the FSM or the datapath manually, but you 
still have full control as to what datapath operation is executed in what state or in what 
clock cycle. In other words, you have full control over the timing of the FSM circuit.

A microprocessor also can be described algorithmically at the behavioral level using 
HDL. Using this model, the operation of the complete microprocessor is described 
algorithmically, and there is no need to know about the control unit or the datapath. 
The HDL synthesizer will synthesize the complete microprocessor automatically, with 
its control unit and datapath together. The advantage of designing microprocessors 
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this way is that you do not need to know how to manually design a microprocessor. In 
other words, you do not need to know most of the materials presented in this book. 
Instead, you only need to know how to write HDL codes and the operations to be 
implemented in the microprocessor. The disadvantage is that you do not have control 
over the timing of the circuit. You can no longer specify what datapath operation is 
executed in what clock cycle.

The following subsections list the complete Verilog and VHDL code for the ded-
icated microprocessor for the summation problem to generate and sum the numbers 
from 1 to 10. This summation problem was first introduced in Example 7.3. The algo-
rithm, state diagram, and datapath for this summation problem are repeated here in 
Figure 7.41 for convenience.

7.6.1 FSM1D Model
We will now create the dedicated microprocessor to generate and sum the numbers from 
1 to 10 using the FSM1D model. For the FSM1D model, we first create a separate 
datapath and control unit. The microprocessor is then formed by combining these two 
units together using the respective control signals and status signals. The datapath 
circuit needs first to be designed manually as shown in Figure 7.41(c). Based on the 
circuit, the datapath is then constructed by connecting the components together using 
structural HDL coding. All of the components used in the datapath must, of course, 
already have been defined in separate files. The components needed in this example are 
Mux21, Register, Add, and TriState_Buffer.

FIGURE 7.41 Summation problem to generate and sum the numbers from 1 to 10:  
(a) algorithm; (b) state diagram; (c) datapath. (continued on next page)

1 sum = 0sum = 0sum
2 i = 1
3 DO {
4 sum = sum = sum sum + sum + sum i
5 i = i + 1
6 } WHILE (i ≠ 11)
7 OUTPUT sum

(a)

s0 s1 s2 s3

sum = 0 i = i + 1
i = 1

sum = sum + i

s4

OUTPUT sum

(i 11)

(i 11)'

(b)
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FIGURE 7.41 Summation problem to generate and sum the numbers from 1 to 10: (a) algorithm; 
(b) state diagram; (c) datapath.

+

Load 8-bit Register
D7-0

i
Q7-0Clock

'1'

Output

OE
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iLoad
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(i 11)
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Load 8-bit Register
D7-0

sum
Q7-0Clock

01
s y

sumLoad

addMux

01
s yysumMux

01
s yiMux

'0'

'1'

(c)

The control unit is based on the state diagram derived for the FSM. For Verilog 
there are two always blocks, and for VHDL there are two PROCESS blocks, one for 
the next-state logic and one for the output logic. The main code in both logic blocks 
consists of a case statement to select the current state that the FSM is in. For each 
current state in the next-state logic block, a new state value is assigned to the state 
variable based on the transitions in the state diagram. In the output logic block, all of 
the datapath control signals are generated for every state based on the output table.

Finally, again using structural HDL coding, the control unit and the datapath 
are combined together to form the complete microprocessor. The Verilog codes for 
these three components, datapath, control unit, and microprocessor, are shown in 
Figures 7.42, 7.43, and 7.44, respectively. The VHDL codes for these three components 
are shown in Figures 7.45, 7.46, and 7.47, respectively.
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FIGURE 7.42 Verilog code for the datapath for the FSM1D model of the summation 
problem.

module DP (
input Clock, Reset,
input iMux, sumMux, sumLoad, iLoad, addMux, OE,
output ine11,
output [n-1:0] Output,
output [3:0] debug

);
parameter n = 8;
wire [n-1:0] dp_iMux, dp_sumMux, dp_i, dp_sum, dp_addMux,  

dp_add;

assign debug = dp_i[3:0];

Mux21 U0_iMux(.S(iMux), .D1(8'd1), .D0(dp_add), .Y(dp_iMux));
Mux21 U1_sumMux(.S(sumMux), .D1(8’d0), .D0(dp_add),  

.Y(dp_sumMux));
Register #(8) U2_iReg(.Clock(Clock), .Clear(Reset),  

.Write(iLoad), .D(dp_iMux), .Q(dp_i));
Register #(8) U3_sumReg(.Clock(Clock), .Clear(Reset),  

.Write(sumLoad), .D(dp_sumMux), .Q(dp_sum));
Mux21 U4_addMux(.S(addMux), .D1(8'd1), .D0(dp_sum),  

.Y(dp_addMux));
Add U5_Add(.A(dp_i), .B(dp_addMux), .F(dp_add));
TriState_Buffer #(8) U6_Tri(.E(OE), .D(dp_sum), .Y(Output));

nand(ine11,~dp_i[7],~dp_i[6],~dp_i[5],~dp_i[4],dp_i[3],
~dp_i[2],dp_i[1],dp_i[0]);

endmodule

FIGURE 7.43 Verilog code for the control unit for the FSM1D model of the summation 
problem. (continued on next page)

module CU (
input Clock, Reset,
output reg iMux, sumMux, sumLoad, iLoad, addMux, OE,
input ine11,
output [2:0] debug

);

// Declare state encodings
parameter s0=0, s1=1, s2=2, s3=3, s4=4; 

reg [2:0] state;

assign debug = state;
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// next-state logic
always @ (posedge Clock or posedge Reset) begin

if (Reset == 1) begin
state <= s0;
end

else begin
case (state)
s0: begin

state <= s1;
end

s1: begin
state <= s2;
end

s2: begin
state <= s3;
end

s3: begin
if (ine11 = 1)

 state <= s1;
else

 state <= s4;
end

s4: begin
state <= s4;
end

default: begin
state <= s0;
end

endcase
end

end // always

// output logic
always @ (state) begin

  case (state)
s0: begin

iMux = 1;
sumMux = 1;
sumLoad = 1;
iLoad = 1;
addMux = 0;
OE = 1;
end

FIGURE 7.43 Verilog code for the control unit for the FSM1D model of the summation 
problem. (continued on next page)
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s1: begin
iMux = 0;
sumMux = 0;
sumLoad = 1;
iLoad = 0;
addMux = 0;
OE = 1;
end

  s2: begin
iMux = 0;
sumMux = 0;
sumLoad = 0;
iLoad = 1;
addMux = 1;
OE = 1;
end

s3: begin
iMux = 0;
sumMux = 0;
sumLoad = 0;
iLoad = 0;
addMux = 0;
OE = 1;
end

  s4: begin
iMux = 0;
sumMux = 0;
sumLoad = 0;
iLoad = 0;
addMux = 0;
OE = 1;
end

default: begin
iMux = 0;
sumMux = 0;
sumLoad = 0;
iLoad = 0;
addMux = 0;
OE = 1;
end

endcase
end // always

endmodule

FIGURE 7.43 Verilog code for the control unit for the FSM1D model of the summation 
problem. 
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FIGURE 7.44 Verilog code for the microprocessor for the FSM1D model of the  
summation problem.

module MP (
input Clock, Reset,
output [n-1:0] Output,
output [2:0] debug_cu,
output [3:0] debug_dp

);
parameter n = 8;
wire mp_iMux, mp_sumMux, mp_sumLoad, mp_iLoad, mp_addMux,  

mp_ine11, mp_OE;

DP U0(Clock, Reset, mp_iMux, mp_sumMux, mp_sumLoad, mp_iLoad, 
mp_addMux, mp_OE, mp_ine11, Output, debug_dp);

CU U1(Clock, Reset, mp_iMux, mp_sumMux, mp_sumLoad, mp_iLoad, 
mp_addMux, mp_OE, mp_ine11, debug_cu);

endmodule

FIGURE 7.45 VHDL code for the datapath for the FSM1D model of the summation 
problem. (continued on next page)

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY DP IS
GENERIC (n: INTEGER := 8);
PORT(

Clock, Reset: IN STD_LOGIC;
iMux, sumMux, sumLoad, iLoad, addMux, OE: IN STD_LOGIC;
ine11: OUT STD_LOGIC;
Output: OUT STD_LOGIC_VECTOR(n-1 DOWNTO 0);
debug: OUT STD_LOGIC_VECTOR(3 DOWNTO 0));

END DP;

ARCHITECTURE Structural OF DP IS
COMPONENT Mux21 IS PORT(

S: IN STD_LOGIC;
D1, D0: IN STD_LOGIC_VECTOR(n-1 DOWNTO 0);
Y: OUT STD_LOGIC_VECTOR(n-1 DOWNTO 0));

END COMPONENT;

COMPONENT Reg IS PORT (
Clock, Clear, Load: IN STD_LOGIC;
D: IN STD_LOGIC_VECTOR(n-1 DOWNTO 0);
Q: OUT STD_LOGIC_VECTOR(n-1 DOWNTO 0));

END COMPONENT;
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COMPONENT Add IS PORT(
A, B: IN STD_LOGIC_VECTOR(n-1 DOWNTO 0);
F: OUT STD_LOGIC_VECTOR(n-1 DOWNTO 0);

  Unsigned_Overflow: OUT STD_LOGIC);
END COMPONENT;

COMPONENT TriState_Buffer IS
  GENERIC (n: INTEGER := 8);

PORT (
   E: IN STD_LOGIC;
   D: IN STD_LOGIC_VECTOR(n-1 DOWNTO 0);

Y: OUT STD_LOGIC_VECTOR(n-1 DOWNTO 0));
END COMPONENT;

SIGNAL dp_iMux, dp_sumMux, dp_i, dp_sum, dp_addMux, dp_add:  
STD_LOGIC_VECTOR(n-1 DOWNTO 0);

BEGIN
debug <= dp_i(3 DOWNTO 0);

U0: Mux21 PORT MAP(S=>iMux, D1=>"00000001", D0=>dp_add,  
Y=>dp_iMux);

U1: Mux21 PORT MAP(S=>sumMux, D1=>"00000000", D0=>dp_add,  
Y=>dp_sumMux);

U2: Reg GENERIC MAP(8) PORT MAP(Clock=>Clock, Clear=>Reset,  
Load=>iLoad, D=>dp_iMux, Q=>dp_i);

U3: Reg GENERIC MAP(8) PORT MAP(Clock=>Clock, Clear=>Reset,  
Load=>sumLoad, D=>dp_sumMux, Q=>dp_sum);

U4: Mux21 PORT MAP(S=>addMux, D1=>"00000001", D0=>dp_sum,  
    Y=>dp_addMux);

U5: Add PORT MAP(A=>dp_i, B=>dp_addMux, F=>dp_add);
U6: TriState_Buffer GENERIC MAP(8) PORT MAP(E=>OE, D=>dp_sum, 

Y=>Output);

ine11 <= NOT ((NOT dp_i(7)) AND (NOT dp_i(6)) AND  
(NOT dp_i(5)) AND (NOT dp_i(4)) AND (dp_i(3)) AND  
(NOT dp_i(2)) AND (dp_i(1)) AND (dp_i(0)));

END Structural;

FIGURE 7.45 VHDL code for the datapath for the FSM1D model of the summation 
problem.

FIGURE 7.46 VHDL code for the control unit for the FSM1D model of the  
summation problem. (continued on next page)

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY CU IS PORT(
Clock, Reset: IN STD_LOGIC;
iMux, sumMux, sumLoad, iLoad, addMux, OE: OUT STD_LOGIC;
ine11: IN STD_LOGIC;
debug: OUT STD_LOGIC_VECTOR(2 DOWNTO 0));

END CU;
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ARCHITECTURE Behavioral OF CU IS
TYPE state_type IS (s0, s1, s2, s3, s4);
SIGNAL state: state_type;

BEGIN
-- next-state logic
PROCESS (Clock, Reset)
BEGIN

IF (Reset = '1') THEN
state <= s0;

ELSIF (Clock'EVENT AND Clock = '1') THEN
CASE state IS
WHEN s0 =>

debug <= "000";
state <= s1;

WHEN s1 =>
debug <= "001";
state <= s2;

WHEN s2 =>
debug <= "010";
state <= s3;

WHEN s3 =>
debug <= "011";
IF (ine11 = '1') THEN

state <= s1;
ELSE

state <= s4;
END IF;

WHEN s4 =>
debug <= "100";
state <= s4;

WHEN OTHERS =>
debug <= "111";
state <= s0;

END CASE;
END IF;

END PROCESS;

-- output logic
PROCESS (state)
BEGIN

CASE state IS
WHEN s0 =>

iMux <= '1';
sumMux <= '1';
sumLoad <= '1';

FIGURE 7.46 VHDL code for the control unit for the FSM1D model of the  
summation problem. (continued on next page)
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iLoad <= '1';
addMux <= '0';
OE <= '1';

WHEN s1 =>
iMux <= '0';
sumMux <= '0';
sumLoad <= '1';
iLoad <= '0';
addMux <= '0';
OE <= '1';

WHEN s2 =>
iMux <= '0';
sumMux <= '0';
sumLoad <= '0';
iLoad <= '1';
addMux <= '1';
OE <= '1';

WHEN s3 =>
iMux <= '0';
sumMux <= '0';
sumLoad <= '0';
iLoad <= '0';
addMux <= '0';
OE <= '1';

WHEN s4 =>
iMux <= '0';
sumMux <= '0';
sumLoad <= '0';
iLoad <= '0';
addMux <= '0';
OE <= '1';

WHEN OTHERS =>
iMux <= '0';
sumMux <= '0';
sumLoad <= '0';
iLoad <= '0';
addMux <= '0';
OE <= '1';

END CASE;
END PROCESS;

END Behavioral;

FIGURE 7.46 VHDL code for the control unit for the FSM1D model of the  
summation problem.
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FIGURE 7.47 VHDL code for the microprocessor for the FSM1D model of the  
summation problem.

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY MP IS
GENERIC (n: INTEGER := 8);
PORT(

Clock, Reset: IN STD_LOGIC;
Output: OUT STD_LOGIC_VECTOR(n-1 DOWNTO 0);
debug_cu: OUT STD_LOGIC_VECTOR(2 DOWNTO 0);
debug_dp: OUT STD_LOGIC_VECTOR(3 DOWNTO 0));

END MP;

ARCHITECTURE Structural OF MP IS
COMPONENT DP IS PORT(

Clock, Reset: IN STD_LOGIC;
iMux, sumMux, sumLoad, iLoad, addMux, OE: IN STD_LOGIC;
ine11: OUT STD_LOGIC;
Output: OUT STD_LOGIC_VECTOR(n-1 DOWNTO 0);
debug: OUT STD_LOGIC_VECTOR(3 DOWNTO 0));

END COMPONENT;

COMPONENT CU IS PORT(
Clock, Reset: IN STD_LOGIC;
iMux, sumMux, sumLoad, iLoad, addMux, OE: OUT STD_LOGIC;
ine11: IN STD_LOGIC;
debug: OUT STD_LOGIC_VECTOR(2 DOWNTO 0));

END COMPONENT;

SIGNAL mp_iMux, mp_sumMux, mp_sumLoad, mp_iLoad, mp_addMux,  
mp_OE, mp_ine11: STD_LOGIC;

BEGIN
U0: DP PORT MAP(Clock, Reset, mp_iMux, mp_sumMux, mp_sumLoad, 

mp_iLoad, mp_addMux, mp_OE, mp_ine11, Output, debug_dp);
U1: CU PORT MAP(Clock, Reset, mp_iMux, mp_sumMux, mp_sumLoad, 

mp_iLoad, mp_addMux, mp_OE, mp_ine11, debug_cu);
END Structural;

7.6.2 FSMD Model
The construction of a microprocessor using the FSMD model does not require us to 
construct the circuit for the control unit and the datapath manually. We only need to 
derive the state diagram for the FSM and know what data operations are performed in 
each state. We can then write the high-level HDL code based on the state diagram and 
the data operations. The translation process from the state diagram to HDL code is 
quite straightforward. The FSM state diagram is translated into a HDL case statement 
with one case for each state. The data operations are embedded within the FSM code 
using built-in HDL operators. As a result, no control signals or status signals needs 
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to be connected between the control unit and the datapath. From the HDL code, the 
HDL synthesizer automatically generates the circuit for the complete microprocessor.

Figures 7.48 and 7.49 show the Verilog and VHDL codes, respectively, for the com-
plete dedicated microprocessor using the FSMD model for the summation problem. 
The format of this code follows very closely to that of the FSM code as discussed in 
Chapter 6. Here, we have one always/PROCESS block, which contains not only the state 
transition assignment statements, but also the data manipulation statements. Because 
the control unit and the datapath are combined into one module, the control signals 
and status signals are no longer needed to join them together.

FIGURE 7.48 Verilog code for the FSMD model of the summation problem.  
(continued on next page)

module Summation (
input Clock, Reset,
output reg [7:0] Output

);

// Declare state encodings
parameter s0=0, s1=1, s2=2, s3=3, s4=4; 
reg [2:0]state;
reg [7:0]sum;
reg [7:0]i;

always @ (posedge Clock or posedge Reset) begin
if (Reset == 1) begin

Output <= 0;
state <= s0;
end

else begin
case (state)

s0: begin
sum <= 0;
i <= 1;
Output <= 0;
state <= s1;
end

s1: begin
sum <= sum + i;
Output <= 0;
state <= s2;
end

s2: begin
// outputs 55=1+2+3+4+5+6+7+8+9+10
i <= i + 1;
Output <= 0;
state <= s3;
end

s3: begin
//outputs 66=1+2+3+4+5+6+7+8+9+10+11
//i <= i + 1; 
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//outputs 55=1+2+3+4+5+6+7+8+9+10
//i = i + 1; 
Output <= 0;
if (i != 11)

state <= s1;
else

state <= s4;
end

s4: begin
Output <= sum;
state <= s4;
end

default: begin
Output <= 0;
state <= s0;
end

endcase
end

end
endmodule

FIGURE 7.48 Verilog code for the FSMD model of the summation problem.

FIGURE 7.49 VHDL code for the FSMD model of the summation problem.  
(continued on next page)

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.STD_LOGIC_UNSIGNED.ALL;

ENTITY Summation IS PORT (
Clock: IN STD_LOGIC;
Reset: IN STD_LOGIC;
Output: OUT STD_LOGIC_VECTOR(7 DOWNTO 0));

END Summation;

ARCHITECTURE FSMD OF Summation IS
TYPE state_type IS (s0, s1, s2, s3, s4);
SIGNAL state: state_type;
SIGNAL sum: STD_LOGIC_VECTOR(7 DOWNTO 0);
SIGNAL i: STD_LOGIC_VECTOR(7 DOWNTO 0);

BEGIN
PROCESS (Clock, Reset)
BEGIN

IF (Reset = '1') THEN
state <= s0;
Output <= (OTHERS => '0');

ELSIF (Clock'EVENT AND Clock = '1') THEN
CASE state IS
WHEN s0 =>

sum <= (OTHERS => '0');
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i <= "00000001";
Output <= (OTHERS => '0');
state <= s1;

WHEN s1 =>
sum <= sum + i;
Output <= (OTHERS => '0');
state <= s2;

WHEN s2 =>
i <= i + 1;
Output <= (OTHERS => '0');
state <= s3;

WHEN s3 =>
Output <= (OTHERS => '0');
IF (i /= 11) THEN

state <= s1;
ELSE

state <= s4;
END IF;

WHEN s4 =>
Output <= sum;
state <= s4;

WHEN OTHERS =>
Output <= (OTHERS => '0');
state <= s0;

END CASE;
END IF;

END PROCESS;
END FSMD;

FIGURE 7.49 VHDL code for the FSMD model of the summation problem.

7.6.3 Algorithmic Model
The complete microprocessor also can be designed by writing HDL code in a truly 
algorithmic behavioral style that has no reference to either the control unit or the dat-
apath. Using the algorithmic model to design a circuit is similar to writing computer 
programs using a high-level language. It offers all of the basic language constructs that 
are available in most high-level computer programming languages, such as variable 
assignments, loops, and conditional tests. The HDL synthesizer, like the compiler, will 
translate the HDL algorithmic description of  the circuit automatically to a netlist, 
which then can be programmed directly onto an FPGA chip. Using this model to 
design a microprocessor is very simple and powerful, but it has its limitations.

One limitation is with the use of loops. The synthesizer can synthesize loops only 
when the number of times to repeat the loop is fixed at compile time. In other words, 
you cannot have a loop where a variable is used in the testing of the ending condition 
and the value of that variable is not known at compile time. For example, we would 
not be able to write algorithmic HDL code to implement a microprocessor to sum 
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the numbers from 1 to n, where n is a user input number, and therefore is not known 
before the run.

Another problem is that because the synthesizer will construct both the FSM and 
the datapath from the algorithmic code automatically, you do not need to specify the 
states for the FSM. Furthermore, you have no control over what components are used 
in the datapath, and what control words are executed in what state of the FSM. Not 
being able to decide what components are used in the datapath is not too big of a prob-
lem, because the synthesizer does do a good job in deciding that for you. The issue is 
with not being able to specify the states and what control words are executed in what 
state of  the FSM. This is purely a timing issue. In some timing-critical applications 
(such as communication protocols and real-time controls) we need to control exactly 
in what clock cycle a certain register-transfer operation is performed. In other words, 
we need to be able to assign a control word to a specific state of the FSM.

Figures 7.50 and 7.51 show the Verilog and VHDL code, respectively, for the 
complete dedicated microprocessor using the algorithmic model for the summation 
problem.

FIGURE 7.50 Verilog code for the algorithmic model of the summation problem.

module Summation (
input Reset,
output reg [7:0] Output

);

reg [7:0]sum;
reg [3:0]i;

always @ (Reset) begin
// Must use blocking assignment =
sum = 0;
for (i=1; i<=10; i=i+1) begin
sum = sum + i;

end
Output = sum;

end
endmodule

FIGURE 7.51 VHDL code for the algorithmic model of the summation problem.  
(continued on next page)

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.STD_LOGIC_UNSIGNED.ALL;

ENTITY Summation IS PORT (
Reset: IN STD_LOGIC;
Output: OUT STD_LOGIC_VECTOR(7 DOWNTO 0));

END Summation;
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7 . 7  P R O B L E M S

7.1. Derive the truth table for the datapath circuit shown next. The truth table 
should have columns only for the control signal inputs A0, E, Subtract, 
and OutE, and the output signal Output. The data inputs, D0 to D3, are 
written in the table entries.

7.2. Implement on an FPGA the dedicated microprocessor for the GCD pro-
gram from Section 7.5.1.

7.3. Implement on an FPGA the dedicated microprocessor for the high-low 
number guessing game from Section 7.5.2.

7.4. Implement on an FPGA the dedicated microprocessor for the traffic light 
controller from Section 7.5.3.

1-to-2
Decoder

01
s y

01
s y

+ / –

A0

E

Subtract

OutE

Output

D0D1D2D3

Y0Y0Y

Y1

ARCHITECTURE Algorithmic OF Summation IS
BEGIN

PROCESS (Reset)
VARIABLE sum: STD_LOGIC_VECTOR(7 DOWNTO 0);
VARIABLE i: STD_LOGIC_VECTOR(7 DOWNTO 0);

BEGIN
sum := "00000000";
FOR i IN 1 TO 10 LOOP
sum := sum + i;

END LOOP;
Output <= sum;

END PROCESS;
END Algorithmic;

FIGURE 7.51 VHDL code for the algorithmic model of the summation problem.
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7.5. This question refers to the FSMD code listed in Section 7.6.2 for solving 
the summation of the numbers from 1 to 10 problem.

a)  What is the total number of clock cycles required for this microproces-
sor to complete execution?

b)  Modify the FSMD code to optimize this microprocessor so that it will 
require the least number of clock cycles to generate and sum the num-
bers from 1 to 10. You can change anything you like as long as it can 
generate and sum the numbers correctly. How many clock cycles does it 
require?

7.6. Manually design and implement on an FPGA a dedicated microprocessor 
to count from 1 to 10.

7.7. Manually design and implement on an FPGA a dedicated microprocessor 
using the following datapath to enter an 8-bit number n, and then output 

15

Data Input

WE
WA 4 x 8

RFRAE
RAARAARA

RBE
RBA

14
13-12

11
10-9

8
7-6

Clock

5
4
3

0

IE

OE

Shifter
SH1

SH0SH0SH
2
1

ALU0U0U
ALU1

ALU2U2U
ALUALUAL

A B

A B

Data Output

01

(n  0)

Status Signal to the
Control Unit

8
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the sum of all the numbers from n down to 1. The operations of the ALU 
and the shifter are defined in Chapter 4. The operation of the register file 
is defined in Chapter 5.

7.8. Manually design and implement on an FPGA a dedicated microprocessor 
to enter two 8-bit numbers, and output the larger of the two numbers. The 
two numbers are entered through one input port.

7.9. Manually design and implement on an FPGA a dedicated microprocessor 
to enter one 8-bit number. Output a 1 if  the number has five 1 bits; other-
wise, output a 0.

7.10. Manually design and implement on an FPGA a dedicated microprocessor 
to enter two 8-bit numbers. Output a 1 if  the two numbers together have 
five 1 bits; otherwise, output a 0.

7.11. Manually design and implement on an FPGA a dedicated microprocessor 
to enter two 8-bit numbers, and output the product of these two numbers.

7.12. Manually design and implement on an FPGA a dedicated microprocessor 
to enter two 8-bit numbers. Output a 1 if  the first number is divisible by 
the second number; otherwise, output a 0.

7.13. Manually design and implement on an FPGA a dedicated microprocessor 
to enter three numbers, and output the larger of the three numbers.

7.14. Manually design and implement on an FPGA a dedicated microprocessor 
to enter three numbers. Output the three numbers in ascending order.

7.15. Manually design and implement on an FPGA a dedicated microprocessor 
to evaluate the factorial of n. The algorithm is shown next.

product = 1
INPUT n
WHILE (n > 1){

product = product * n
n = n - 1
}

OUTPUT product

7.16. Manually design and implement on an FPGA a dedicated microprocessor 
to enter several numbers until a 0 is entered. Output the largest and sec-
ond largest of the numbers entered.

7.17. Manually design and implement on an FPGA a dedicated microprocessor 
to read from eight input DIP switches. Output on the 7-segment the deci-
mal number that represents the number of DIP switches that are in the on 
position.

7.18. Manually design and implement on an FPGA a dedicated micropro-
cessor to input one 8-bit value, and then determine whether the input 
value has an equal number of  0 and 1 bits. The microprocessor outputs 
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a 1 if  the input value has the same number of  0’s and 1’s; otherwise, it 
outputs a 0. For example, the number 10111011 will produce a 0 output; 
whereas, the number 00110011 will produce a 1 output. The algorithm 
is shown next.

Clk

D0

Q09

Q0

Clear

(Z  0)

Clock
Reset

Clk

D1

Q19

Q1

Clear

ClrX

LoadY

inZ

LoadX

LoadZ

stat1

subtract

1 Count = 0   // for counting the number of 1 bits
2 INPUT N
3 WHILE (N ≠ 0){N ≠ 0){N
4 IF (N(0) = 1) THEN // least significant bit of N
5 Count = Count + 1
6 END IF
7 N = N = N N >> 1N >> 1N // shift N right one bitN right one bitN
8 }

// output 1 if the test (Count = 4) is true
9  OUTPUT (Count = 4)

 7.19. Assume that the control unit and datapath circuits shown next are used to 
construct a dedicated microprocessor. Determine the instructions being 
executed in each state of the FSM. Write out the complete algorithm that 
the resulting microprocessor will execute. In other words, write out the 
pseudocode for the algorithm. Briefly describe what the algorithm does.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-202



360 CHAPTER 7 DeDICAteD MICRoPRoCessoRs

Load 8-bit Register
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Q7-0Clock

Load 8-bit Register
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Q7-0Clock
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LoadX
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8

 7.20. Manually design and implement on an FPGA a dedicated microprocessor 
for executing the algorithm shown next. Use only one adder-subtractor 
unit for all of the addition and subtraction operations. Label clearly all of 
the control and status signals.

w = 0w = 0w
x = 0x = 0x
y = 0y = 0y
INPUT z
WHILE (z ≠ 0) {

w = w = w w - 2w - 2w
IF (z is an odd number) THEN

x = x = x x + 2x + 2x
ELSE

  y = y = y y + 1y + 1y
END IF
z = z - 1
}
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7.21. Manually design and implement on an FPGA a dedicated microproces-
sor for executing the algorithm shown next. Use only one adder (i.e., no 
adder-subtractor and no ALU) for all of the arithmetic operations. The 
datapath is 4 bits wide.

s1 = 0;
s2 = 0;
FOR(i=0; i ≠ 10; i++){

INPUT j;
IF (j is even) THEN

s1++;
ELSE

s2++;
END IF
}

OUTPUT s1;
OUTPUT s2;

7.22. Manually design and implement on an FPGA a dedicated microprocessor 
for implementing a stack of size 10. When the Push signal is asserted, the 
input value is pushed onto the stack. When the Pop signal is asserted, the 
value at the top of the stack is output.

7.23. Manually design and implement on an FPGA a dedicated microprocessor 
to execute the Bubble Sort algorithm shown next.

int A[10]; // A is an integer array of size 10
// you need to store A in 10 memory locations

// assume that A is initialized with random numbers

// this is the Bubble Sort routine to sort A to ascending order
repeat {

swapped = false;
for (j=1; j<10; j++) {

if (A[j-1] > A[j]) {
temp = A[j];
A[j] = A[j-1];
A[j-1] = temp;
swapped = true;

}
}

until (!swapped);
}
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7.24. Write the Verilog code for the above problems using the FSM1D
model.

7.25. Write the Verilog code for the above problems using the FSMD model.
7.26. Write the VHDL code for the above problems using the FSM1D

model.
7.27. Write the VHDL code for the above problems using the FSMD model.
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Unlike a dedicated or custom microprocessor that is capable of performing only one 
function, a general-purpose microprocessor, such as the Intel Core™i7 CPU, is capable 
of performing many different functions under the direction of program instructions. 
Given a different instruction set or program, the general-purpose microprocessor will 
perform a different function. However, a general-purpose microprocessor also can be 
viewed as a dedicated microprocessor, because it is made to perform only one func-
tion, and that is to execute the program instructions. In this sense, we can design and 
construct a general-purpose microprocessor in the same way that we constructed the 
dedicated microprocessors as discussed in Chapter 7.

8.1 Overview of the CPU Design
A general-purpose microprocessor is often referred to as the central processing unit
(CPU). The CPU is simply a dedicated microprocessor that executes only software 
instructions. Figure 8.1 shows an overview of a general-purpose microprocessor. The 
following discussion references this diagram.

In designing a CPU, we must first define its instruction set and how the instructions 
are encoded and executed. We need to answer questions such as:

 ● How many instructions do we want?
 ● What are the instructions?
 ● What binary encoding (normally referred to as the operation code or opcode) do 

we assign to each of the instructions?

FIGURE 8.1 Overview of a general-purpose microprocessor.
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 ● What are the operands in the instruction?
 ● How are the operands encoded?
 ● How many bits do we use to encode an instruction?

After we have decided on the instruction set, we can proceed to design a datapath 
that can execute all of the instructions in the instruction set. In this step, we are creating 
a custom datapath, so we need to answer questions such as:

 ● What functional units do we need?
 ● How many registers do we need?
 ● Do we use a single register file or separate registers?
 ● How are the different units connected together?

Creating the datapath for a general-purpose microprocessor is exactly the same as 
creating the datapath for a dedicated microprocessor. However, in addition to being 
able to perform all of the instructions in the instruction set, other data operations and 
registers must be included in the datapath for the general-purpose microprocessor. 
These data operations and registers deal with how the general-purpose microprocessor 
fetches the instructions from memory and executes them. In particular, the program 
counter (PC) register contains the memory location of where the next instruction is PC) register contains the memory location of where the next instruction is PC
stored, and the instruction register (IR) stores the instruction being fetched from the 
memory. Usually after an instruction is fetched from the memory location pointed 
to by the PC, the PC is incremented to the next memory location, ready for the next PC is incremented to the next memory location, ready for the next PC
instruction fetch. However, if  the instruction is a jump instruction, the PC is loaded PC is loaded PC
with the new memory address for the jump.

The control unit for a general-purpose microprocessor basically cycles through 
three main steps, usually referred to as the instruction cycle:

Step 1 fetches an instruction.
Step 2 decodes the instruction.
Step 3 executes the instruction.

Steps 1 and 2 are each executed in one state of the finite-state machine (FSM). For 
Step 3, most instructions will execute in one clock cycle, although some memory access 
instructions might require two or more clock cycles to complete. Therefore, they might 
require several states for correct timing.

For fetching the instruction in Step 1, the control unit simply reads the memory 
location specified by the PC and copies the content of  that memory location into PC and copies the content of  that memory location into PC
the IR. The PC is then incremented by 1 (assuming that each instruction occupies one PC is then incremented by 1 (assuming that each instruction occupies one PC
memory location). For decoding the instruction in Step 2, the control unit extracts the 
opcode bits (which uniquely identifies the instruction) from the instruction register 
and determines what the current instruction is by jumping to the state that is assigned 
for executing that instruction. Once in that particular state, the control unit performs 
Step 3 simply by asserting the appropriate control signals to control the datapath to 
execute that instruction.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-202



366 CHAPTER 8 GeneRAL-PURPose MICRoPRoCessoRs

Instructions for the program usually are stored in external memory, so in addition 
to the CPU, external memory is connected to the CPU via an address bus and a data 
bus. Therefore, Step 1 (fetch an instruction) usually involves the control unit setting 
up a memory address on the address bus and telling the external memory to output 
the instruction from that memory location onto the data bus. The control unit then 
reads the instruction from the data bus. To keep our design simple, instead of having 
an external memory, we will include the memory as part of the datapath so that we 
do not have to worry about the handshaking and timing issues involved for accessing 
external memory.

8.2 The EC-1 General-Purpose Microprocessor
This first version of  the EC1 computer is extremely small and very limited as to what 
it can do, and therefore, its general-purpose microprocessor is very “EC”2 to design 
manually. In order to keep the manual design of  the microprocessor manageable, we 
have to keep the number of  variables small. Because these variables determine the 
number of  states and input signals for the finite-state machine, these factors have to 
be kept to the bare minimum. Nevertheless, the manual building of  this computer 
demonstrates how a general-purpose microprocessor is designed and how the differ-
ent components are put together. After this exercise, you will appreciate the power 
of  designing with HDL at a higher abstraction level and the use of  an automatic 
HDL synthesizer.

We first will manually design the general-purpose microprocessor for our EC-1 
computer. Then we will interface this microprocessor to external I/Os, and implement 
the complete computer in an FPGA (field-programmable gate array) chip on a develop-
ment board to make it into a real-working general-purpose microprocessor. Using the 
few instructions available in its instruction set, we then will write a program in machine 
language to execute on the EC-1 and see that it actually works.

8.2.1 Instruction Set
The instructions that our EC-1 general-purpose microprocessor can execute and the 
corresponding encodings for them are defined in Figure 8.2. The Instruction column 
shows the syntax and mnemonic to use for the instruction when writing a program in 
assembly language. The Encoding column shows the binary encoding defined for the Encoding column shows the binary encoding defined for the Encoding
instruction, and the Operation column shows the operation of the instruction.

As we can see from Figure 8.2, our EC-1’s instruction set has only five instructions. 
To encode five instructions, the operation code (or opcode) will require three bits—
giving us eight different combinations. As shown in the Encoding column, the first three Encoding column, the first three Encoding
most significant bits is the opcode given to the instruction. For example, the opcode for 

1 “EC” is the acronym for Enoch’s Computer
2 “EC” sounds like “easy”
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the IN A instruction is 011, the opcode for OUT A is 100, and so on. The three encodings, 
000, 001, and 010, are not defined and so can be used as a “no-operation” (NOP) instruc-
tion. Because the width of each instruction is fixed at 8 bits, the last 5 bits are not used 
by all of the instructions, except for the JNZ (Jump Not Zero) instruction. Normally, for 
a more extensive instruction set, these extra bits are used as operand bits to specify what 
registers or other resources to use. In our case, only the JNZ instruction uses the last 
4 bits, designated as aaaa, to specify an address in the memory to jump to.

The IN A instruction inputs an 8-bit value from the data input port, Input, and 
stores it into the accumulator (A). The accumulator is an 8-bit register for performing 
data operations. The OUT A instruction enables a tri-state buffer to output the content 
of the accumulator to the output port, Output. The DEC A instruction decrements the 
content of A by 1 and stores the result back into A. The JNZ instruction tests to see if  
the value in A is equal to 0 or not. If  A is equal to 0, then nothing is done, but if  A is 
not equal to 0, then the last 4 bits (aaaa) of the instruction are loaded into the PC. 
When this value is loaded into the PC, we essentially are performing a jump to this new 
memory address, because the value stored in the PC is the memory location for the next PC is the memory location for the next PC
fetch operation. Finally, the HALT instruction halts the CPU by having the control unit 
stay in the Halt state indefinitely until reset.

8.2.2 Datapath
Having defined the instruction set for the EC-1 general-purpose microprocessor, we 
now are ready to design the custom datapath that will execute all of  the operations 
as defined by all of  the instructions. The custom datapath for the EC-1 is shown 
in Figure 8.3.

Instruction Encoding Operation Comment

IN A 011 33333 A d InInI pnpn ut Input to A

OUT A 100 33333 Outptpt ut d A Output from A

DEC A 101 33333 A d A 2 1 Decrement A

JNZ address 110 3aaaa IF 1A ! 5 0 2 THEN PC 5 aaaa
Jump to address if  A is 
not zero

HALT 111 33333 Halt Halt execution

Notations:
A 5 accumulator

PC 5 program counter

aaaa 5 four bits for specifying a memory address

3 5 don’t-cares

FIGURE 8.2 Instruction set for the EC-1.
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The datapath can be viewed as having three separate parts: (1) the portion that 
performs the instruction cycle operations of fetching an instruction and either incre-
menting or loading the PC, (2) the memory, and (3) the portion that performs the data 
operations for all of the instructions in the instruction set.

The portion of the datapath that performs the instruction cycle operations basi-
cally contains the instruction register (IR) and the program counter (PC). The bit width PC). The bit width PC
of the instructions determines the size of the IR; whereas, the number of addressable 
memory locations determines the size of the PC. For this datapath, we want a mem-
ory with 16 locations, each being 8 bits wide, so we need a 4-bit 124 5 16 2  address. 
Therefore, the PC is 4 bits wide, and the PC is 4 bits wide, and the PC IR is 8 bits wide. A 4-bit increment unit is 
used to increment the PC by 1. The PC by 1. The PC PC needs to be loaded with either the result of PC needs to be loaded with either the result of PC
the increment unit for the next instruction in memory or the 4-bit address from the 
JNZ instruction; therefore, a 2-to-1 multiplexer is needed for this purpose. One input of 
the multiplexer is from the increment unit, and the other input is from the four least 
significant bits of the IR, IR3-0.

Instead of  having external memory, we have included the memory as part of 
the datapath in order to keep our first design simple. In this design, the memory is a 
16-location 3 8-bit wide read-only memory (ROM). We use a ROM here instead of a 
RAM because the instruction set does not have an instruction that writes to memory. 
The output of the PC is connected directly to the 4-bit memory address lines, because PC is connected directly to the 4-bit memory address lines, because PC

FIGURE 8.3 Datapath for the EC-1.
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the memory location always is determined by the content of the PC. The 8-bit memory 
output, Q7-0, is connected to the input of the IR to execute the instruction fetch opera-
tion (Step 1 of the instruction cycle). The construction of this memory was discussed 
in Section 5.14.1.

The portion of the datapath that performs the instruction set operations includes 
the 8-bit register for the accumulator A, and an 8-bit decrement unit. A 2-to-1 multi-
plexer is used to select the input to the accumulator. For the IN A instruction, the input 
to the accumulator is from the data input port, Input; whereas for the DEC A instruction, 
the input is from the output of the decrement unit, which performs the decrement of 
A. The output of the accumulator is connected via a tri-state buffer to the data output 
port, Output. The JNZ instruction requires an 8-input OR gate connected to the output 
of the accumulator to test for the condition 1A 2 0 2 . The actual operation required by 
the JNZ instruction is to load the PC with the four least significant bits of the PC with the four least significant bits of the PC IR. The 
HALT instruction also does not require any specific datapath actions. It simply asserts a 
Halt signal to notify the external world that the program has halted.

The control word for this custom datapath has six control signals: IRload, IRload, IRload PCload, PCload, PCload
INmux, Aload, Aload, Aload JNZmux, and OutE. The datapath provides two status signals, IR7-5 and 
1A 2 0 2 , to the control unit. The three IR bits, IR7-5, which forms the opcode, are sent 
to the control unit for the instruction decode operation (Step 2 of the instruction cycle). 
The control words for executing the instruction cycle operations and the instruction set 
operations are discussed in the next section.

8.2.3 Control Unit
The state diagram for the control unit is shown in Figure 8.4(a), and the actions that 
are executed, specifically the control signals that are asserted in each state, are shown 
in Figure 8.4(d).

In the Fetch state, 000, the IR is loaded with the memory content from the location 
specified by the PC by asserting the PC by asserting the PC IRload signal. Also in this state, the IRload signal. Also in this state, the IRload PC is increPC is increPC -
mented by 1, and the result is loaded back into the PC by asserting the PC by asserting the PC PCload signal. PCload signal. PCload
In the output table shown in Figure 8.4(d), these two assertions are denoted by the two 
1s under the IRload and IRload and IRload PCload columns for control word 1. There is no timing conPCload columns for control word 1. There is no timing conPCload -
flict in asserting both the IRload and IRload and IRload PCload signals together in the same clock cycle PCload signals together in the same clock cycle PCload
because the PC will not be updated with the incremented value until the next clock PC will not be updated with the incremented value until the next clock PC
cycle, and at that time, the IR already will have been written with the newly fetched 
instruction. This is correct only if  the memory can be accessed in one clock cycle.

After fetching, the FSM goes to the Decode state unconditionally. In the Decode
state, the FSM tests the three most significant bits of the IR, IRIRI 7-5, and goes to the cor-
responding state as encoded by the 3-bit opcode for executing the instruction. Testing 
of the opcode bits does not involve any datapath operations and so the control word 
in the output table for this state contains all 0s.

In the five instruction execute states corresponding to the five instructions, the 
appropriate control signals for the datapath are asserted to execute that instruction. 
For example, the IN A instruction requires setting the INmux signal to a 1 for the input 
multiplexer, and setting the Aload signal to a 1 to load the input value into Aload signal to a 1 to load the input value into Aload A. In order 

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-202



370 CHAPTER 8 GeneRAL-PURPose MICRoPRoCessoRs

FIGURE 8.4 Control unit for the EC-1: (a) state diagram; (b) next-state (implementation) table; 
(c) next-state equations; (d) control words and output table; (e) output equations; (f) circuit. 
(continued on next page)
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000 Fetch 001 001 001 001 001 001 001 001

001 Decode 000 000 000 011 100 101 110 111

011 Input 000 000 000 000 000 000 000 000

100 Output 000 000 000 000 000 000 000 000

101 Dec 000 000 000 000 000 000 000 000

110 Jnz 000 000 000 000 000 000 000 000

111 Halt 111 111 111 111 111 111 111 111

(b)
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Q2next 5 D2 5 Q2rQ1rQ0IRIRI 7 1 Q2Q1Q0

Q1next 5 D1 5 Q2rQ1rQ0 1IRIRI 6IRIRI 5 1 IRIRI 7IRIRI 6 2 1 Q2Q1Q0

Q0next 5 D0 5 Q2rQ1rQ0r 1 Q2rQ1rQ0 1IRIRI 6IRIRI 5 1 IRIRI 7IRIRI 5 2 1 Q2Q1Q0

(c)

Control
Word

State
Q2Q2Q Q1Q0Q0Q

IRload PCload INmux Aload JNZmux OutE Halt

1 000 Fetch 1 1 0 0 0 0 0

2 001 Decode 0 0 0 0 0 0 0

3 011 Input 0 0 1 1 0 0 0

4 100 Output 0 0 0 0 0 1 0

5 101 Dec 0 0 0 1 0 0 0

6 110 Jnz 0 IF 1A 2 0 2  THEN 1 ELSE 0 0 0 1 0 0

7 111 Halt 0 0 0 0 0 0 1

(d)

IRIRI lolol ad 5 Q2rQ1rQ0r

PClClC olol ad 5 Q2rQ1rQ0r 1 Q2Q1Q0r 1A 2 0 2
ININI mNmN ux 5 Q2rQ1Q0

Alolol ad 5 Q2rQ1Q0 1 Q2Q1rQ0

JNJNJ ZNZN mZmZ ux 5 Q2Q1Q0r

OutE 5 Q2Q1rQ0r

HaHaH lt 5 Q2Q1Q0

(e)

FIGURE 8.4 Control unit for the EC-1: (a) state diagram; (b) next-state (implementation) table; 
(c) next-state equations; (d) control words and output table; (e) output equations; (f) circuit. 
(continued on next page)
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Clk

D1

Q19

Q1

Clear

IR7

Clock
Reset

Clk

D2

Q29

Q2

Clear

IR6
IR5

(A (A ( ≠ 0)

Clk

D0

Q09

Q0

Clear

OutE

JNZmux

Aload

INmuxINmuxINmu

PCload

IRload

Halt

(f)

FIGURE 8.4 Control unit for the EC-1: (a) state diagram; (b) next-state (implementation) table;  
(c) next-state equations; (d) control words and output table; (e) output equations; (f) circuit. 

for the input instruction to read in the correct value, the input value must be set up 
first before resetting the CPU. Furthermore, because the Input state does not wait for 
an Enter key signal, only one value can be read in, even if  there are multiple input 
statements. The reason for these limitations is because the FSM clock speed is very 
fast and so there is not enough time for the user to change the input value between 
input statements. The OUT A instruction simply asserts the enable signal on the output 
tri-state buffer. The DEC A instruction requires setting INmux to 0 and Aload to 1, so Aload to 1, so Aload
the output from the decrement unit is routed back to the accumulator and gets loaded 
in. Control words 3 to 5 in the output table shown in Figure 8.4(d) show the assertions 
of these control signals.

The JNZ instruction asserts the JNZmux signal to route the four address bits from 
the IR, IR3-0, to the PC. Whether the PC actually gets loaded with this new address PC actually gets loaded with this new address PC
depends on the condition of the 1A 2 0 2  status signal. Therefore, the PCload control PCload control PCload
signal is asserted only if  1A 2 0 2  is a 1. If  we use the Moore FSM model, the FSM will 
require two states for the JNZ instruction: one state for asserting the PCload signal when PCload signal when PCload
1A 2 0 2  is true, and one state for de-asserting the PCload signal when PCload signal when PCload 1A 2 0 2  is false. 
However, if  we use the Mealy FSM model by asserting the PCload signal conditionally PCload signal conditionally PCload
based on the status signal 1A 2 0 2 , that is, asserting the PCload signal on an edge rather PCload signal on an edge rather PCload
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than in a state, then only one state is needed to execute the JNZ instruction. To do this, 
we see that in the output table shown in Figure 8.4(d), control word 6 for executing the 
JNZ instruction has a conditional value under the PCload control signal column showing PCload control signal column showing PCload
that PCload gets a 1 only if  the condition PCload gets a 1 only if  the condition PCload 1A 2 0 2  is true, otherwise, it gets a 0.

Once the FSM enters the Halt state, it unconditionally loops back to itself, giving 
the impression that the CPU has halted. In this state, we also assert the Halt signal to 
notify the external world that execution has stopped.

With seven states, three flip-flops are needed for the state memory of the control 
unit. The next-state table shown in Figure 8.4(b) lists the current state with the three 
flip-flops Q2, Q1, and Q0. The entries in the table are the next-state values Q2next, Q1next,
and Q0next. By using D flip-flops for the state memory, the next-state values 1Qnext 2  will 
be the same as the implementation values (D) because the characteristic equation for the 
D flip-flop is Qnext 5 D. Notice that the next-state entries in the table are quite simple 
to follow because almost all of them are unconditional, that is, the same value across 
each row. Only the Decode state has conditional edges that depend on the opcode bits.

There is one next-state equation for each of the three D flip-flops used. The three 
next-state equations, as derived from the next-state table, are shown in Figure 8.4(c). 
The derivation of the next-state equations is fairly easy, because most of the entries 
in the next-state table are 0s. The output equations shown in Figure 8.4(e) are derived 
directly from the output table shown in Figure 8.4(d).

Finally, we can derive the circuit for the control unit based on the next-state equations 
and the output equations. The complete control unit circuit for the EC-1 general-purpose 
microprocessor is shown in Figure 8.4(f).

8.2.4 Complete Circuit
The complete circuit for the EC-1 general-purpose microprocessor shown in Figure 8.5 
is constructed by connecting the datapath from Figure 8.3 and the control unit from 
Figure 8.4(f) together using the designated control and status signals. The complete 
schematic circuit and HDL code for the EC-1 microprocessor can be downloaded from 
the book website.

8.2.5 Sample Program
Dedicated microprocessors, as discussed in Chapter 7, have the algorithm built into the 
hardware circuit of the microprocessor. General-purpose microprocessors, on the other 
hand, do not have a built-in algorithm. They are designed only to execute program 
instructions fetched from the memory. Therefore, in order to test the EC-1 computer, 
we need to write a program using the instructions available in the instruction set, and 
have this program loaded into the memory.

Only five instructions are defined in the EC-1 instruction set, as shown in 
Figure 8.2. For our sample program, we will use these five instructions to write a 
countdown program to input a number and then count down from this input number 
to 0. The program is shown in Figure 8.6(a).

Because we do not have a compiler for the EC-1, we need to manually compile 
this program. The binary executable code for this program is shown in Figure 8.6(b). 
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FIGURE 8.5 Complete circuit for the EC-1 general-purpose microprocessor.
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Clock
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FIGURE 8.6 Countdown program to run on the EC-1: (a) assembly code; (b) binary 
executable code.

IN AIN A -- input a value into the A register 
loop: OUT AOUT A -- output the value from the A register

DEC ADEC A -- decrement A by one
JNZ loop -- go back to loop if A is not zero
HALT -- halt

The binary code is obtained by replacing each instruction with its corresponding 3-bit 
opcode, as listed in Figure 8.2, followed by five bits for the operand. None of  the 
instructions, except for the JNZ instruction, uses these five operand bits, so either a 0 
or a 1 can be used. From Figure 8.2, we find that the opcode for the IN A instruction is 
011; therefore, the encoding for this first instruction is 01100000. Similarly, the opcode 
for the OUT A instruction is 100; therefore, the encoding used is 10000000.

memory  instruction
address encoding
0000 01100000; -- IN A
0001 10000000; -- OUT A
0010 10100000; -- DEC A
0011 11000001; -- JNZ 0001
0100 11111111; -- HALT

(a)

(b)
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For the JNZ instruction, the four least significant bits represent the memory address 
to jump to if  the condition is true. In the example, we have put the first instruction, IN

A, in memory location 0000. Because the JNZ instruction jumps to the second instruc-
tion, OUT A, which is stored in memory location 0001, therefore, the four address bits 
for the JNZ instruction are 0001. The opcode for the JNZ instruction is 110, therefore, 
the encoding for the complete JNZ instruction is 11000001.

Typically, with the memory being external to the CPU, the computer (with the 
help of  the operating system) will provide means to independently load the program 
instructions into the memory. However, to keep our design simple, we have included 
the memory as part of  the CPU inside the datapath. Furthermore, we do not have 
an operating system for loading the instructions into the memory separately. In our 
EC-1 design, we have chosen to use a simple ROM for the memory that already has 
been initialized with the countdown program instructions. Refer to Section 5.14.1 for 
a full discussion and HDL code of  the ROM with the program instructions built in. 
Because the program is synthesized together with the ROM, each time you change the 
program, you will have to re-synthesize the whole system.

8.2.6 Simulation
Figure 8.7 shows a sample simulation of the EC-1, showing the countdown from the 
input 3 on the Output signal.

8.2.7 Hardware Implementation
A complete computer system includes not only the microprocessor but also the mem-
ory, input, and output devices. So far, we have constructed the general-purpose micro-
processor with the built-in memory, as shown in Figure 8.5. To see our own EC-1 
microprocessor work, we need to connect it to input and output devices.

Figure 8.8 shows the interface between the EC-1 microprocessor with the input 
and output devices on an FPGA development board. The input device consists of 
eight switches, and the output device is three 7-segment LED displays. Because the 
microprocessor outputs an 8-bit binary number, we need a converter to convert the 

FIGURE 8.7 A sample simulation trace of the countdown program running on the EC-1 starting 
at the input 3.
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8-bit binary number to three BCD (binary coded decimal) digits. With this converter, 
we will be able to see the output as a 3-digit decimal number. See Problem 3.36 for the 
HDL code for this BCD converter. The HDL code for this converter is also available 
from the book website. A single LED is connected to the Halt signal to show when the 
microprocessor has finished running the program. A push button is connected to the 
Reset signal to reset the microprocessor. A clock divider circuit is used to slow down 
the clock frequency so that we can see the program being executed, that is, to actually 
see the numbers counting down. Otherwise, the countdown will finish so quickly that 
we will see only the last number, zero, on the display. To run the program, first set up 
the binary input number on the eight switches, and then press the Reset button. The 
countdown will begin with the input number. When the countdown reaches zero, the 
program stops and the Halt light turns on.

8.3 The EC-2 General-Purpose Microprocessor
For our next example, we will design the general-purpose microprocessor for a second 
version of the EC computer, the EC-2. In this second version, we have added a few 
more instructions, and we will be able to load and store data to the memory.

8.3.1 Instruction Set
The instruction set for the EC-2 general-purpose microprocessor has eight instructions, 
as shown in Figure 8.9. We keep this number at eight so that we can still use only three 
bits to encode them.

The LOAD instruction loads the content of  the memory at the specified address 
into the accumulator A. The address is specified by the five least significant bits of 
the instruction. The STORE instruction is similar to the LOAD instruction, except that it 
stores the value in A to the memory at the specified address. The ADD and SUB instruc-
tions, respectively, add and subtract the content of  A with the content in a memory 

FIGURE 8.8 Hardware implementation of the EC-1 computer.
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Instruction Encoding Operation Comment

LOAD A, address 000 aaaaa A d M 3aaaaa 4 Load A with content of  
memory location aaaaa

STORE A, address 001 aaaaa M 3aaaaa 4 d A Store A into memory location 
aaaaa

ADD A, address 010 aaaaa A d A 1 M 3aaaaa 4 Add A with M[aaaaa] and 
store result back into A

SUB A, address 011 aaaaa A d A 2 M 3aaaaa 4 Subtract A with M[aaaaa] and M[aaaaa] and M
store result back into A

IN A 100 33333 A d InInI pnpn ut Input to A

JZ address 101 aaaaa IF 1A 5 0 2 THEN PC 5 aaaaa Jump to address if  A is zero

JPOS address 110 aaaaa IF 1A $ 0 2 THEN PC 5 aaaaa Jump to address if  A is zero or 
a positive number

HALT 111 33333 Halt Halt execution

FIGURE 8.9 Instruction set for the EC-2.

Notations:
A 5 accumulator

M 5 memory

PC 5 program counter

aaaaa 5 five bits for specifying a memory address

3 5 don’t cares

location and store the result back into A. The IN instruction inputs a value from the 
data input port, Input, and stores it into A. The JZ (Jump if  Zero) instruction loads the 
PC with the specified address if  PC with the specified address if  PC A is zero. Loading the PC with a new address causes PC with a new address causes PC
the CPU to jump to this new memory location. The JPOS (Jump if  Positive) instruction 
loads the PC with the specified address if  PC with the specified address if  PC A is zero or a positive number. The value in 
A is taken as a two’s complement signed number, so a positive number is one where 
the most significant bit of  the number is a 0, which includes the number zero. Finally, 
the HALT instruction halts the CPU. The value in the accumulator A is continually sent 
to the output so no output instruction is necessary.

8.3.2 Datapath
The custom datapath for the EC-2 is shown in Figure 8.10. The portion of the datap-
ath for performing the instruction cycle operations is similar to that of the EC-1, with 
the instruction register (IR), the program counter (PC), and the increment unit for PC), and the increment unit for PC
incrementing the PC. The minor differences between the two are in the size of the PC
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and the increment unit. For the EC-2, we want a memory with 32 locations, therefore, 
the memory address, the size of the PC, and the increment unit must all be 5 bits wide.

The main modification to this portion of the datapath is the addition of a second 
2-to-1 multiplexer that is connected between the output of the PC and the memory PC and the memory PC
address input. One input of this multiplexer comes from the PC, and the other input 
comes from the five least significant bits of the IR, IR4-0. The reason for this is because 
there are now two different types of operations that can access the memory. The first 
is still for the fetch operation, where the memory address is given by the content of 
the PC. The second type is for the four instructions, LOAD, STORE, ADD, and SUB, where 
they use the memory as an operand. The memory address for these four instructions is 
from the five least significant bits of the IR, IR4-0. The select signal for this multiplexer 
is Meminst.

The memory size for the EC-2 is increased to 32 locations, thus requiring five 
address bits. The memory is still included as part of  the datapath rather than as an 
independent external unit to the CPU. The memory also has separate read and write 
data ports so that a bidirectional data bus is not required. In order to accommodate 
the STORE instruction for storing the value of  A into the memory, we need to use 

FIGURE 8.10 Datapath for the EC-2.
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a RAM instead of  a ROM as in the EC-1. To realize this operation, the output of 
the accumulator A is connected to the memory data input, D7-0. The signal MemWr, 
when asserted, causes the memory to write the value from register A into the location 
specified by the address in the instruction.

The output of the memory at Q7-0 is connected to both the input of the IR and 
to the input of the accumulator, A, through a 4-to-1 multiplexer. The connection to 
the IR is for the fetch operation just like in the EC-1 design. The connection to the 
accumulator is to perform the LOAD instruction, where the content of the memory is 
loaded into A. Because the memory is only one source among two other sources that 
are loaded into A, the multiplexer is needed. The construction of this RAM was dis-
cussed in Section 5.14.2.

The portion of the datapath for performing the instruction set operations includes 
the 8-bit accumulator A, an 8-bit adder-subtractor combination unit, and a 4-to-1 
multiplexer. The adder-subtractor unit performs the ADD and SUB instructions. The 
Sub signal, when asserted, selects the subtraction operation, and when de-asserted, it 
selects the addition operation. The 4-to-1 multiplexer allows the accumulator input to 
come from one of three sources. For the ADD and SUB instructions, the A input comes 
from the output of the adder-subtractor unit. For the IN instruction, the A input comes 
from the data input port, Input. For the LOAD instruction, the A input comes from the 
output of the memory, Q7-0. The selection of this multiplexer is through the two signal 
lines, Asel1-0. The fourth input of the multiplexer is not used.

The output of  the accumulator is connected directly to the output port, so the 
value of the accumulator is always available at the output port. Therefore, no specific 
output instruction is necessary to output the value in A.

For the two conditional jump instructions JZ and JPOS, the datapath provides the 
two status signals 1A 5 0 2  and 1A $ 0 2 , respectively, that are generated from two 
comparators. The 1A 5 0 2  status signal outputs a 1 if  the value in A is a 0, so an 
8-input NOR gate is used. The 1A $ 0 2  status signal outputs a 1 if  the value in A, which 
is treated as a two’s complement signed number, is a zero or positive number. Because 
for a two’s complement signed number, a leading 0 means positive and a leading 1 
means negative, the condition 1A $ 0 2  is simply the negated value of bit A7 (the most 
significant bit of A).

The control word for this custom datapath has eight control signals, IRload, 
JMPmux, PCload, PCload, PCload Meminst, MemWr, Asel1-0, Aload, and Aload, and Aload Sub, but requires nine bits 
because Asel1-0 has two bits. The datapath provides three status signals IRIRI 7-5, 1A 5 0 2 ,
and 1A $ 0 2  to the control unit. The three IR bits, IR7-5, which forms the opcode, are 
sent to the control unit for the instruction decode operation (Step 2 of the instruction 
cycle). The control words for executing the instruction cycle operations and the instruc-
tion set operations are discussed in the next section.

8.3.3 Control Unit
The state diagram for the control unit is shown in Figure 8.11(a), and the actions that 
are executed, specifically the control signals that are asserted in each state, are shown 
in Figure 8.11(d). States for executing the instructions are given the same name as the 
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FIGURE 8.11 Control unit for the EC-2: (a) state diagram; (b) next-state (implementation)  
table; (c) next-state equations; (d) control word and output table; (e) output equations; (f) circuit.
(continued on next page)
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Current 
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Q3Q3Q Q2Q2Q Q1Q0Q0Q

Next State (Implementation)
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LOAD

001
STORE

010
ADD

011
SUB

100
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101
JZ

110
JPOS

111
HALT

0 1

0000 Start 0001 0001 0001 0001 0001 0001 0001 0001

0001 Fetch 0010 0010 0010 0010 0010 0010 0010 0010

0010 Decode 1000 1001 1010 1011 1100 1101 1110 1111

1000 Load 0000 0000 0000 0000 0000 0000 0000 0000

1001 Store 0000 0000 0000 0000 0000 0000 0000 0000

1010 Add 0000 0000 0000 0000 0000 0000 0000 0000

1011 Sub 0000 0000 0000 0000 0000 0000 0000 0000

1100 Input 1100 0000

1101 Jz 0000 0000 0000 0000 0000 0000 0000 0000

1110 Jpos 0000 0000 0000 0000 0000 0000 0000 0000

1111 Halt 1111 1111 1111 1111 1111 1111 1111 1111

(b)
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Q3next 5 D3 5 Q3rQ2rQ1Q0r 1 Q3Q2Q1rQ0rEnEnE ter r 1 Q3Q2Q1Q0

Q2next 5 D2 5 Q3rQ2rQ1Q0rIRIRI 7 1 Q3Q2Q1rQ0rEnEnE ter r 1 Q3Q2Q1Q0

Q1next 5 D1 5 Q3rQ2rQ1rQ0 1 Q3rQ2rQ1Q0rIRIRI 6 1 Q3Q2Q1Q0

Q0next 5 D0 5 Q3rQ2rQ1rQ0r 1 Q3rQ2rQ1Q0rIRIRI 5 1 Q3Q2Q1Q0

(c)

State
Q3Q3Q Q2Q2Q Q1Q0Q0Q

IRload JMPmux PCload Meminst MemWr Asel1-0Asel1-0Asel Aload Sub Halt

0000 Start 0 0 0 0 0 00 0 0 0

0001 Fetch 1 0 1 0 0 00 0 0 0

0010 Decode 0 0 0 1 0 00 0 0 0

1000 Load 0 0 0 1 0 10 1 0 0

1001 Store 0 0 0 1 1 00 0 0 0

1010 Add 0 0 0 1 0 00 1 0 0

1011 Sub 0 0 0 1 0 00 1 1 0

1100 Input 0 0 0 0 0 01 1 0 0

1101 Jz 0 1 1A 5 0 2 0 0 00 0 0 0

1110 Jpos 0 1 1A $ 0 2 0 0 00 0 0 0

1111 Halt 0 0 0 0 0 00 0 0 1

(d)

IRIRI lolol ad 5 Q3rQ2rQ1rQ0

JMJMJ PMPM mux 5 Q3Q2Q1rQ0 1 Q3Q2Q1Q0r

PClClC olol ad 5 Q3rQ2rQ1rQ0 1 Q3Q2Q1rQ0 1A 5 0 2 1 Q3Q2Q1Q0r 1A $ 0 2
MeMeM minini st 5 Q3rQ2rQ1Q0r 1 Q3Q2rQ1rQ0r 1 Q3Q2rQ1rQ0 1 Q3Q2rQ1

MeMeM mWrWrW 5 Q3Q2rQ1rQ0

Asel1 5 Q3Q2rQ1rQ0r

Asel0l0l 5 Q3Q2Q1rQ0r

Alolol ad 5 Q3Q1rQ0r 1 Q3Q2rQ1

Sub 5 Q3Q2rQ1Q0

HaHaH lt 5 Q3Q2Q1Q0

(e)

FIGURE 8.11 Control unit for the EC-2: (a) state diagram; (b) next-state (implementation)  
table; (c) next-state equations; (d) control word and output table; (e) output equations; (f) circuit. 
(continued on next page)
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instruction mnemonics. An extra Start state is added for timing purposes. The Decode
state for this design needs to decode eight opcodes by branching to eight different 
states to execute the corresponding eight instructions. Like before, the decoding of the 
opcodes depends on the three most significant bits of the IR, IR7-5.

An important timing issue for this control unit has to do with the memory accesses 
of  the four instructions, LOAD, STORE, ADD, and SUB. The problem is that only after 
fetching these instructions will the address of the memory location for these instruc-
tions be available. Furthermore, only after decoding the instruction will the control 
unit know that the memory needs to be read. If  we change the memory address during 
the Execute state, the memory will not have enough time to output the value for the 
instruction to operate on.

Usually, when instructions require a memory access for one of its operands, an 
extra memory read state will be inserted between the Decode state and the Execute state. 
This way, the memory will have one clock cycle to output the data for the instruction 
to operate on in the following clock cycle. This assumes that the memory requires only 
one clock cycle for a read operation. If  the memory is slower, then more clock cycles 
must be inserted.

FIGURE 8.11 Control unit for the EC-2: (a) state diagram; (b) next-state (implementation)  
table; (c) next-state equations; (d) control word and output table; (e) output equations; (f) circuit. 
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To minimize the number of states in our design, we use the Decode state to also 
perform the memory read. This way, when the control unit gets to the Execute state, 
the memory already will have the data ready. Whether the data from the memory actu-
ally is used will depend on the instruction being executed. If  the instruction does not 
require the data from the memory, then it is simply ignored. On the other hand, if  the 
instruction needs the data, then the data is there and ready to be used. This solution 
works in this design because it does not conflict with the operations for the rest of 
the instructions in our instruction set. The memory read operation performed in the 
Decode state is accomplished by asserting the Meminst signal from this state. Looking 
at the output table in Figure 8.11(d), this is reflected by the 1 under the Meminst col-
umn for the Decode state. By asserting Meminst, IR4-0 will provide the address for the 
memory, and the value from that memory location will be read and made available for 
use in the next clock cycle.

The actual execution of each instruction is accomplished by asserting the correct 
control signals to control the operation of the datapath, as shown by the assignments 
made for the respective rows in the output table in Figure 8.11(d). At this point, you 
should be able to understand why each assignment is made by looking at the operation 
of the datapath. For example, to execute the LOAD instruction, Meminst is asserted in 
order to read from the memory location addressed by IR4-0. The Asel1 signal is asserted 
and the Asel0l0l  signal is de-asserted in order to select input 2 of the multiplexer so that 
the output from the memory can pass to the input of the accumulator A. The actual 
loading of A is done by asserting the Aload signal. To perform the Aload signal. To perform the Aload STORE instruction, 
the memory address is taken from IR4-0 by asserting Meminst. The writing into memory 
takes place when MemWr is asserted.

The Input state for this state diagram waits for the Enter key signal before looping 
back to the Start state. In so doing, we can read in several values by having multiple 
input statements in the program. After the Enter signal is asserted, there is no state 
that waits for the Enter signal to be de-asserted (i.e., for the Enter key to be released). 
Therefore, in order for this controller to work correctly, the user must release the Enter 
key before the execution of  the next input instruction. This is almost impossible to 
do if  the clock speed is very fast, so we need to slow down the clock to give the user 
enough time to release the Enter key. Ideally, there should be another state to wait for 
the release of the Enter key before continuing.

The next-state (implementation) table for the state diagram and the four next-state 
equations, as derived from the next-state table, are shown in Figures 8.11(b) and (c), 
respectively. To keep the table reasonably small, all of  the possible combinations of 
the input signals are not listed. All of the states, except the Input state, depend only on 
the three IR bits, IR7-5; whereas, the Input state depends only on the Enter signal. The 
blank entries in the table, therefore, can be viewed as having all 0s. With 11 states, four 
D flip-flops are used to implement the state memory for the control unit circuit. The 
output equations shown in Figure 8.11(e) are derived directly from the output table in 
Figure 8.11(d).

Finally, we can derive the circuit for the control unit based on the next-state equations 
and the output equations. The complete control unit circuit for the EC-2 general-purpose 
microprocessor is shown in Figure 8.11(f).
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8.3.4 Complete Circuit
The complete circuit for the EC-2 general-purpose microprocessor is constructed by 
connecting the datapath from Figure 8.10 and the control unit from Figure 8.11(f) 
together using the designated control and status signals as shown in Figure 8.12. The 
complete schematic circuit and HDL code for the EC-2 microprocessor can be down-
loaded from the book website.

8.3.5 Sample Program
The EC-2 uses an internal RAM for its memory. Refer to Section 5.14.2 for a full dis-
cussion and HDL code of the RAM. The Verilog code for the RAM, including three 
EC-2 programs, is repeated in Figure 8.13. On reset, the RAM is initialized with the 
instructions for the program to be executed. The three programs included in the code 
are: (1) COUNT, which displays the count from input n down to 0; (2) SUM, which 
evaluates the sum of all of  the numbers between an input number n and 1; and (3) 
GCD, which calculates the greatest common divisor of two input numbers. The last 
two programs have been commented out in the code. To try out any one of the three 

FIGURE 8.12 Complete circuit for the EC-2 general-purpose microprocessor.
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FIGURE 8.13 Verilog description of the RAM including three programs with which to 
initialize the RAM. (continued on next page)

module ram(
#(parameter size=5)

input Clock,
input Reset,
input WE,
input [size-1:0] Address,
input [7:0] D,
output reg [7:0] Q

);

reg [7:0] ram1[2**size-1:0];

always @(posedge Clock or posedge Reset) begin
// this reset block and the Reset signal
// is only needed to initialize the RAM locations
if (Reset) begin
// initialize RAM with EC-2 program

////////////////////////////////////////////////////////
// COUNT
// Program to countdown from input n to 0
ram1[0] = 8'b10000000; // IN A
ram1[1] = 8'b01111111; // SUB A,11111
ram1[2] = 8'b10100100; // JZ 00100
ram1[3] = 8'b11000001; // JPOS 00001
ram1[4] = 8'b11111111; // HALT
ram1[31] = 8'b00000001; // storage for the constant 1

/////////////////////////////////////////////////
// SUM
// Program to sum n downto 1 where n is an input number

// ram1[0] = 8'b00011101; // LOAD A,one   // to zero sum
// ram1[1] = 8'b01111101; // SUB A,one   // by doing 1 - 1
// ram1[2] = 8'b00111110; // STORE A,sum
// 
// ram1[3] = 8'b10000000; // IN A
// ram1[4] = 8'b00111111; // STORE A,n
// 
//   ram1[5] = 8'b00011111; // loop: LOAD A,n   // n + sum
//  ram1[6] = 8'b01011110; // ADD A,sum
// ram1[7] = 8'b00111110; // STORE A,sum
// ram1[8] = 8'b00011111; // LOAD A,n         // decrement A
// ram1[9] = 8'b01111101; // SUB A,one
// ram1[10]= 8'b00111111; // STORE A,n
//  
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//  ram1[11] = 8'b10101101;  // JZ out
// ram1[12] = 8'b11000101;  // JPOS loop
//  ram1[13] = 8'b00011110;  // out: LOAD A,sum
// ram1[14] = 8'b11111111;  // HALT
//
// ram1[29] = 8'b00000001;  // storage for the constant 1
// ram1[30] = 8'b00000000;  // storage for variable sum
// ram1[31] = 8'b00000000;  // storage for variable n

////////////////////////////////////////////////////////
// GCD
// Program to calculate the GCD of two input  
// numbers, x and y

// ram1[0] = 8'b10000000;  // IN A              // input x
// ram1[1] = 8'b00111110;  // STORE A,x
// ram1[2] = 8'b10000000;  // IN A             // input y
// ram1[3] = 8'b00111111;  // STORE A,y
//
// ram1[4] = 8'b00011110;  // loop: LOAD A,x    // x=y?
// ram1[5] = 8'b01111111;  // SUB A,y
// ram1[6] = 8'b10110000;  // JZ out            // x=y
// ram1[7] = 8'b11001100;  // JPOS xgty         // x>y
//   
//  ram1[8] = 8'b00011111;  // LOAD A,y          // y>x
// ram1[9] = 8'b01111110;  // SUB A,x           // y-x
//  ram1[10] = 8'b00111111; // STORE A,y
//  ram1[11] = 8'b11000100; // JPOS loop
//
// ram1[12] = 8'b00011110; // xgty: LOAD A,x    // x>y
// ram1[13] = 8'b01111111; // SUB A,y           // x-y
// ram1[14] = 8'b00111110; // STORE A,x
// ram1[15] = 8'b11000100; // JPOS loop
//
// ram1[16] = 8'b00011110; // out: LOAD A,x
// ram1[17] = 8'b11111111; // HALT
//
// ram1[30] = 8'b00000000; // storage for variable x
// ram1[31] = 8'b00000000; // storage for variable y

FIGURE 8.13 Verilog description of the RAM including three programs with which to 
initialize the RAM. (continued on next page)
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  end else begin
   if (WE)
    ram1[Address] = D;

end
end // always

always @ (Address) begin
Q = ram1[Address];
end

endmodule

FIGURE 8.13 Verilog description of the RAM including three programs with which to 
initialize the RAM.

programs, simply uncomment the program that you want to execute and re-synthesize 
the entire microprocessor circuit.

It is assumed that you already are familiar with writing computer programs using 
either machine language or assembly language, so we will not go into details here. The 
comments annotated throughout the three sample programs should be sufficient for 
you to understand what the programs are doing.

8.3.6 Hardware Implementation
Figure 8.14 shows the interface between the EC-2 microprocessor and the input and 
output devices on an FPGA development board. The input device consists of  eight 
switches, and the output device is three 7-segment LED displays. Because the micro-
processor outputs an 8-bit binary number, we need a converter to convert the 8-bit 
binary number to three BCD (binary coded decimal) digits. With this converter, we 
will be able to see the output as a 3-digit decimal number. See Problem 3.36 for the 
HDL code for this BCD converter. The HDL code for this converter is also available 
from the book website. A single LED is connected to the Halt signal to show when the 

FIGURE 8.14 Hardware implementation of the EC-2.
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microprocessor has finished running the program. A push button is connected to the 
Reset signal to reset the microprocessor, and a second push button is used as the Enter 
key. A clock divider circuit is used to slow down the clock frequency to approximately 
1 Hz for the correct operation of the Enter key, and to see the program being executed. 
When executing the IN A instruction, the processor will stay in the Input state, allowing 
the user to set up the input number on the input switches. When the input number has 
been set up, the Enter push button needs to be pressed for the processor to read in the 
input number and then continue execution of the program.

8.4 Extending the EC-2 Instruction Set
The instruction set for the EC-2 is quite limited, so to make the EC-2 a bit more use-
ful, we will add a few more instructions. To still keep our design simple, we will try to 
minimize the number of changes needed for the datapath and the control unit. In the 
original design, three bits are used to encode the opcode, giving only eight different 
combinations to encode the eight different instructions that we already have. So is it 
possible to add more instructions without having to add another bit for the opcode? 
The answer will depend on how many more instructions we want to add, what the 
instruction operations are that we want to add, and whether there are any unused bits 
in our current instruction encodings.

We can see that both the HALT and IN A instructions have unused bits, so we can 
use them to encode more instructions. We can combine the HALT and IN A instructions 
to use the same 3-bit opcode, and use a fourth bit to distinguish between them. 
Because there are still unused bits, we can continue with this encoding scheme to add 
another instruction, the OUT A instruction to output the value from the accumulator. 
This new encoding scheme will work because the execution of these three instructions 
does not require any additional operands. The revised opcode encodings for these 
three instructions are shown next.

Now that we have freed up opcode 100 that originally was assigned to the IN A

instruction, we can use it for another new instruction that requires the use of  the 
remaining five bits for its operand. A useful instruction to have is the AND instruction, 
which performs the logical AND operation, and typically is used to extract individual 
bits out from several other bits. This instruction will perform the logical AND of  the 
value in the accumulator A with the content in a memory location that is specified by 
the five least significant bits of the instruction encoding. The result from the operation 
is stored back into the accumulator. The complete revised instruction set for the EC-2 
is shown in Figure 8.15.

Instruction Encoding Operation Comment

IN A 111 00333 A d InInI pnpn ut Input to A

OUT A 111 01333 Outptpt ut d A Output from A

HALT 111 13333 Halt Halt execution
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The modified datapath for the revised instruction set is shown in Figure 8.16. 
No changes in the datapath are necessary to perform the HALT and IN A instructions. 
A tri-state buffer is added between the accumulator and the output port for controlling 
the OUT A instruction. To realize the new AND instruction, we need to add a logical AND

functional unit. The inputs to this functional unit are from the accumulator and the 
memory, and its output is connected to the currently unused input, input 3, of  the 
4-input multiplexer that goes to the accumulator. Finally, to decode the IN A, OUT A, 
and HALT instructions, we need to send five bits, IR7-3, to the control unit instead of the 
original three opcode bits. These changes are highlighted in the datapath figure.

The modified state diagram is shown in Figure 8.17 with the changes highlighted. 
The final construction of the complete control unit circuit is left as an exercise for the 
reader. (See Problem 8.5.)

FIGURE 8.15 Revised instruction set for the EC-2.

Instruction Encoding Operation Comment

LOAD A, address 000 aaaaa A d M 3aaaaa 4 Load A with content of 
memory location aaaaa

STORE A, address 001 aaaaa M 3aaaaa 4 d A Store A into memory loca-
tion aaaaa

ADD A, address 010 aaaaa A d A 1 M 3aaaaa 4 Add A with M[aaaaa] and 
store result back into A

SUB A, address 011 aaaaa A d A 2 M 3aaaaa 4 Subtract A with M[aaaaa] 
and store result back into A

AND A, address 100 aaaaa A d A AND M[aaaaa]M[aaaaa]M AND A with M[aaaaa] and 
store result back into A

JZ address 101 aaaaa IF 1A 5 0 2 THEN PC 5 aaaaa Jump to address if  A is zero

JPOS address 110 aaaaa IF 1A $ 0 2 THEN PC 5 aaaaa Jump to address if  A is zero 
or a positive number

IN A 111 00333 A d InInI pnpn ut Input to A

OUT A 111 01333 Outptpt ut d A Output from A

HALT 111 13333 Halt Halt execution

Notations:

A 5 accumulator

M 5 memory

PC 5 program counter

aaaaa 5 five bits for specifying a memory address

3 5 don’t cares
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FIGURE 8.16 Modified datapath for the EC-2.
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FIGURE 8.17 Modified state diagram for the EC-2.
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8.5 Using and Interfacing the EC-2
We saw in Section 8.3.5 how we can use the EC-2 to run simple machine language pro-
grams. Three sample programs were given in that section: (1) COUNT, which displays 
the count from input n down to 0; (2) SUM, which evaluates the sum of all of  the 
numbers between an input number n and 1; and (3) GCD, which calculates the greatest 
common divisor of two input numbers. In this section, we will look at how to interface 
the EC-2 to control external devices. Specifically, we will use the EC-2 to control the 
elevator problem introduced in Section 6.6.5.

Interfacing a general-purpose microprocessor to external devices requires a full 
understanding of the operations of the external device with which you want to inter-
face, the resources available on your microprocessor, both hardware and the instruction 
set, and how the external device is connected to your microprocessor. There are usually 
many different ways of connecting the external device to the microprocessor, and the 
software program for controlling the device can be very different depending on how 
they are connected. The software program for controlling the device is usually referred 
to as the device driver for that device.

The elevator problem controls an elevator moving between two floors. A picture 
of the elevator setup and a summary of the I/O signals are shown next.

Inputs:

 ● f1f1f , f2f2f : Buttons at each floor to call the elevator. f1f1f  is on floor 1 and f2f2f  is on floor 2.
 ● e1, e2: Buttons inside the elevator to tell the elevator which floor to go to.
 ● at1, at2: Signals from the elevator mechanism to say which floor the elevator is on.

Outputs:

 ● go1: 0 to turn off  the elevator motor and 1 to turn on the motor.
 ● go0: 0 to go to floor 1 and 1 to go to floor 2.
 ● lelel d1, lelel d2d2d : LEDs on each of the two floors to show which floor the elevator is on.

at2

floor 2
f2f2f

at1

floor 1
f1f1f

led2-1d2-1d

led2-1d2-1d

e1 e2

go1-0

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-202



392 CHAPTER 8 GeneRAL-PURPose MICRoPRoCessoRs

We noted that the corresponding fifif  and ei input signals are basically the same and 
therefore can be combined into one signal, fifif .

The first thing we must do is to decide how to connect the I/O signals from the 
elevator to the EC-2 microprocessor. The EC-2 already has eight input lines and eight 
output lines via the Input and Output ports, respectively, so we can connect the elevator 
I/O signals to these two I/O ports on the microprocessor. Originally, these two I/O ports 
were connected to eight switches and eight LEDs for the user to enter numbers and 
to see the results from the accumulator. By changing these connections, we will not be 
able to enter numbers or see the results. If  we still need this functionality, then we will 
have to modify the datapath and add another input port and output port to our EC-2 
microprocessor. We also will need to modify the control unit and the instruction set so 
that we can access the second I/O port. For the current problem, this modification is 
not necessary. We will connect the four input signals from the elevator, f2f2f , f1f1f , at2, and 
at1, to the first four bits, InInI pnpn ut3-0, of  the Input port of  the EC-2 in this given order. 
So f2f2f  is connected to InInI pnpn ut3, f1f1f  is connected to InInI pnpn ut2, at2 is connected to InInI pnpn ut1, and 
at1 is connected to InInI pnpn ut0. Similarly, we will connect the four output signals from the 
elevator, go1, go0, lelel d2d2d , and lelel d1, to the first four bits, Output3-0, of the Output port in 
this given order.

Having decided on the connections between the microprocessor and the elevator, 
we are now ready to write the machine language program to control the elevator. We 
will use the extended instruction set for the modified EC-2 microprocessor as discussed 
in Section 8.4.

The operation of the elevator is based on the state diagram derived in Section 6.6.5 
and repeated here in Figure 8.18 for convenience. The complete machine language 
program listing for controlling the elevator is shown in Figure 8.19. The logical pro-
gression of the program basically follows the state diagram. One difficulty in writing 
the program is to know how to send out the correct output signals, and how to test for 
the conditions of the input signals.

To send out the correct output signals, we have defined four constant values stored 
in memory locations 24 to 27 (in decimal). Only the four least significant bits of these 
constants are used because the four output signals from the elevator go1, go0, lelel d2d2d , 
and lelel d1 are connected to Output3-0. For example, when we are in state 00, we want to 
turn on lelel d1 and turn off  the remaining three outputs, therefore, we need to output the 
binary value 3333 03 03 001. Because lelel d1 is connected to Output0, sending a 1 to Output0
will turn on lelel d1. The other outputs are turned off. This constant value, 00000001, is 
stored in memory location 24, and the two instructions

LOAD A, $24
OUT A

are executed in state 00 to turn on only lelel d1.
To test the conditions of the input signals, after executing the IN A instruction, we 

need to mask out the bit that we are interested in by performing the AND operation and 
then executing the conditional jump. The four constants for the four masks that we need 
are stored in memory locations 28 to 31 (in decimal). Only the four least significant bits 
of these constants are used because the four input signals from the elevator f2f2f , f1f1f , at2,
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FIGURE 8.18 State diagram for the elevator problem.
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FIGURE 8.19 Program for controlling the elevator using the EC-2 general-purpose 
microprocessor. (continued on next page)

memory instruction instruction Comments
address                      encoding   
// state 00 – at floor 1
0 00000 LOAD A, 11000 00011000 // load value to output led1
1 00001 OUT A 11101000
2 00010 IN A 11100000 // input
3 00011 AND A, 11100 10011100 // extract value for f2
4 00100 JZ 00000 10100000 // repeat if f2 is not asserted

// else go to next state 11
// state 11 – going to floor 2
5 00101 LOAD A, 11001 00011001 // load value to output go1 and go0
6 00110 OUT A 11101000
7 00111 IN A 11100000 // input
8 01000 AND A, 11101 10011101 // extract value for at2
9 01001 JZ 00101 10100101 // repeat if at2 is not asserted

// else go to next state 10
// state 10 – at floor 2
10 01010 LOAD A, 11010 00011010 // load value to output led2
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and at1 are connected to InInI pnpn ut3-0. So for example, when we are in state 00, we want 
to test whether f2f2f  is asserted, therefore, we need to AND the input value with the mask 
00001000. This constant mask value, 00001000, is stored in memory location 11100, 
and the three instructions

IN A
AND A, 11100
JZ 00000

are executed in state 00 to test for the input signal f2f2f .
The result after the AND operation will extract bit 3 of the input, which is the f2f2f

input signal. If  f2f2f  is a 0, then the entire result after the AND operation will be 0. On the 
other hand, if  f2f2f  is a 1, then the result after the AND operation will not be a 0. Thus, after 
the AND operation, we can execute the JZ conditional jump instruction either to stay 
in the current state or go to the next state. If  the result is 0, then we need to loop back 
to the current state with the instruction JZ 00000. Otherwise, the jump is not performed 
and the program continues with the next instruction, which is to go to the next state 11.

This elevator problem does not have any strict timing issues, so it is not necessary 
to consider the time that it takes to execute each instruction. In other problems where 
the timing for sending and receiving signals is critical, we will need to be more precise. 
For example, if  we use the EC-2 to control an RS232 protocol communication, then 
we need to know exactly how long it takes to execute the instructions needed to output 

11 01011 OUT A 11101000
12 01100 IN A 11100000 // input
13 01101 AND A, 11110 10011110 // extract value for f1
14 01110 JZ 01010 10101010 // repeat if f1 is not asserted

// else go to next state 01
// state 01 – going to floor 1
15 01111 LOAD A, 11011 00011011 // load value to output go1 and go0
16 10000 OUT A 11101000
17 10001 IN A 11100000 // input
18 10010 AND A, 11111 10011111 // extract value for at1
19 10011 JZ 01111 10101111 // repeat if at1 is not asserted

// else go to next state 00
20 10100 JPOS 00000 11000000 // unconditional jump to state 00

// output values, bits 3 to 0 = go1, go0, led2, led1
24 11000 00000001 // output for state 00
25 11001 00001100 // output for state 11
26 11010 00000010 // output for state 10
27 11011 00001000 // output for state 01
// input values, bits 3 to 0 = f2, f1, at2, at1
28 11100 00001000 // input for state 00
29 11101 00000010 // input for state 11
30 11110 00000100 // input for state 10
31 11111 00000001 // input for state 01

FIGURE 8.19 Program for controlling the elevator using the EC-2 general-purpose 
microprocessor.
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a bit because the RS232 protocol requires a certain predetermined speed or baud rate 
to send out each bit.

8.6 Pipelining
Today’s general-purpose microprocessors, such as the Intel Core™i7 CPU, are designed 
to execute more instructions over a shorter period of time by using a technique known 
as pipelining. This is an implementation technique in which multiple instructions are 
overlapped in execution, similar to the production of  devices in a factory assembly 
line. The computer pipeline is divided into stages, and each stage will perform a part 
of the instruction execution. Instructions pass through the stages as they get executed. 
As one instruction completes in one stage and moves down to the next stage, another 
instruction will move in to take its place. Because multiple instructions are in the 
pipeline at any one time, concurrent execution of  instructions is achieved.

Pipelining does not decrease the time to execute one instruction—the time from 
when an instruction first enters the pipeline until it exits the pipeline. In fact, it takes a 
little more time to execute one instruction as compared with a nonpipelined processor 
because of the overhead needed to implement pipelining. Pipelining, however, increases 
the instruction throughput rate, which is measured by how fast instructions exit the 
pipeline. With an increase in instruction throughput, a program will run faster and will 
have a lower total execution time.

In order for pipelining to work efficiently, all of  the stages must be balanced in 
terms of the time needed for each stage. If  all of  the stages are balanced, then they 
all can be synchronized and ready to proceed at the same time as instructions move 
from one stage to the next. If  this is the case, then the time between instructions on the 
pipelined machine—assuming ideal conditions—is equal to

Time between instructionspipelined 5
Time between instructionsnonpipelined

Number of pipeline stages

In other words, the speedup from pipelining under ideal conditions is equal to the 
number of  pipeline stages; so a five-stage pipeline is five times faster. However, the 
actual time per instruction in the pipelined processor will be greater than the mini-
mum possible, and the speedup will be less than the number of pipeline stages because 
the stages usually are not balanced and overheads are involved with the addition of 
pipeline stages.

8.6.1 Basic Pipelined Processor
Based on the MIPS architecture model proposed by Hennessy and Patterson,3 the 
general steps for executing an instruction can be divided into five pipeline stages: (1) 
instruction fetch (IF); (2) instruction decode (ID); (3) execute or effective address 

3 Computer Organization & Design: The Hardware/Software Interface, D. Patterson and J. Hennessy.
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calculation (EX); (4) memory access (MEM); and (5) write back (WB) of  result. 
Instructions are fetched from memory in the IF stage. In the ID stage, besides decoding 
of the instruction, the register file is accessed to read in the instruction operands. The 
reading of registers and decoding occur simultaneously. In the EX stage, the instruc-
tion is either executed, or if  it is a memory access instruction, then the address of the 
memory location is calculated. If  an instruction requires memory access, then after 
calculating the memory address in the EX stage, the data from that memory location 
is accessed in the MEM stage. Finally, in the WB stage, the result from executing the 
instruction is written back into a register.

Instructions entering the pipeline start in the IF stage. At the end of  the first 
clock cycle, as the instruction moves from the IF to the ID stage, a new instruction 
enters the pipeline and fills the IF stage. After five clock cycles, all of  the stages will 
have a different instruction, and the first instruction will now be in the final WB stage. 
This basic pipeline execution of  instructions is shown graphically in Figure 8.20. The 
clock cycles are listed across the top of  the table. The sequence of  instructions enter-
ing the pipeline is listed down the rows of  the table. The entries in the table show the 
stage that an instruction is in during a particular clock cycle. For example, in clock 
cycle 5, instruction i12 is in the EX stage. The table clearly shows that each instruc-
tion requires five clock cycles to execute (because of  the five stages), but because of 
the overlapping of  instruction executions, every clock cycle starting from clock cycle 
5 will have a new instruction completing. So the throughput is one instruction per 
cycle under ideal situations.

Because of  the overlapping operations, the datapath for the pipelined machine 
needs to have enough resources to handle the parallel execution of  instructions. 
Several issues need to be considered. First, note that starting from clock cycle 4 in 
Figure 8.20, every clock cycle will have both an instruction fetch (IF) and a memory 
access (MEM). If  there is only a single memory, a conflict will occur between the 
instruction fetch and data memory access because both of  these operations require 
the use of  the memory. Thus, to resolve this problem, the datapath needs to have a 
separate instruction and data memory.

A second issue, similar to the first, is that in every clock cycle starting from clock 
cycle 5 onward, the register file is used in two stages; first in the ID stage where a regis-
ter is read, and second in the WB stage where a register is written. We need to make sure 
that the register file can handle both reading and writing within the same clock cycle.

Clock Cycle 1 2 3 4 5 6 7 8 9

Instruction i IF ID EX MEM WB

Instruction i11 IF ID EX MEM WB

Instruction i12 IF ID EX MEM WB

Instruction i13 IF ID EX MEM WB

Instruction i14 IF ID EX MEM WB

FIGURE 8.20 Execution of instructions in a pipelined machine.
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A more serious problem is that a new instruction is fetched in every clock cycle. In 
order for this to be possible, the program counter (PC) needs to be incremented and 
written back in every clock cycle during the IF stage in preparation for the next instruc-
tion. The problem arises when we consider the effect of  branches, which also might 
change the PC. The PC changes when a conditional branch is taken, but whether the 
condition is true or not is not known until the EX stage, and the new branch address 
is not known until the MEM stage. As a result, the PC will not have the correct value 
in the next clock cycle.

Finally, pipelining the datapath requires that values passed from one pipe stage to 
the next be placed in registers. These registers, known as pipeline registers, carry both 
data and control signals from one pipeline stage to the next. Any instruction is active 
in exactly one stage of the pipeline at a time; therefore, any action taken on behalf  of 
an instruction occurs between a pair of pipeline registers.

8.6.2 Pipeline Hazards
In a pipelined machine, situations called hazards prevent the next instruction in the 
instruction stream from being executed in the following clock cycle. There are three 
types of hazards: (1) structural hazards; (2) data hazards; and (3) control hazards.

When a machine is pipelined, the overlapped execution of instructions requires 
pipelining of  functional units and duplication of  resources to allow for all possible 
combinations of instructions in the pipeline. Structural hazards occur when instructions 
in the pipeline cannot execute because the hardware cannot support the combination 
of instructions that we want to execute in the same clock cycle. An example would be 
if  two instructions in the pipeline need to use an adder to add numbers but the data-
path has only one adder available. In order to resolve a structural hazard, either more 
hardware is added to the datapath, or stalls are inserted into the pipeline to delay the 
execution of the conflicting instruction by one clock cycle. A structural hazard also 
occurs if  there is only one memory for storing both data and instructions. This is 
resolved, as discussed previously, by having two separate memories.

Data hazards occur when an instruction depends on the result of  a previous 
instruction that is still being executed in the pipeline. An example would be if  an 
ADD instruction is followed immediately by a SUBTRACT instruction, and the 
SUBTRACT instruction requires, as one of  its operands, the result from the ADD 
instruction. Because the ADD instruction is still being executed in the pipeline, its result 
is not yet available for the SUBTRACT instruction to use as shown in Figure 8.21(a).

The result of the ADD instruction is not written into the destination register R1 until 
the WB stage in clock cycle 5. However, the value in register R1 is needed as an operand 
by the SUBTRACT instruction at the beginning of the EX stage in clock cycle 4. A naive 
solution would be to simply stall the pipeline for two clock cycles so that the SUBTRACT 
instruction does not start until clock cycle 4, as shown in Figure 8.21(b). By doing this, 
the EX stage for the SUBTRACT instruction will occur in clock cycle 6, which is after 
the WB stage for the ADD instruction in clock cycle 5.

A better solution to resolve data hazards is a technique known as forwarding. This 
technique involves forwarding the result from the first functional unit (in this case the 
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adder) directly to the input of the second functional unit (in this case the subtractor) 
without going through any registers. With forwarding, no stalls are required to remove 
the data hazard as shown by the arrow in Figure 8.21(c). The result from the adder 
is available at the end of the ADD instruction’s EX stage (cycle 3), and this value is 
needed by the subtractor at the beginning of the SUBTRACT instruction’s EX stage 
(cycle 4). Therefore, the output from the adder can be routed directly to the input of 
the subtractor, and the subtraction can continue without any stalls.

Another technique known as pipeline scheduling can also be used to remove data 
hazards. In this case, the compiler can rearrange the instructions so that two dependent 
instructions are not scheduled one after the other. This way, no data hazards will occur.

Typically, the PC is incremented by one (assuming that each instruction occupies 
one memory location) after each instruction fetch. However, this might not be the 
case for a branch instruction. When executing a branch instruction, if  the condition 
is true and the branch is taken, a new address for fetching the next instruction must 
be calculated and stored into the PC; but this new address is not known until later in 
the EX stage. In the meantime, several new instructions immediately after the branch 
instruction already will have entered the pipeline. When the branch is taken, these 
instructions (which should not have been executed) already have entered the pipeline 
and are being partially executed. Thus, they must be removed from the pipeline and 
the operations that they already have performed must be undone.

This problem is a control hazard, and its effect creates the greatest performance 
loss for a pipelined machine. Even if  we add extra hardware so that we can calculate 
the branch address and update the PC during the second ID stage, we still need to 

Clock Cycle 1 2 3 4 5 6

ADD R1 d R2 1 R3 IF ID EX MEM WB

SUB R4 d R1 2 R5 IF ID EX MEM WB

Clock Cycle 1 2 3 4 5 6 7 8

ADD R1 d R2 1 R3 IF ID EX MEM WB

SUB R4 d R1 2 R5 stall stall IF ID EX MEM WB

Clock Cycle 1 2 3 4 5 6

ADD R1 d R2 1 R3 IF ID EX MEM WB

SUB R4 d R1 2 R5 IF ID EX MEM WB

➞➞➞➞➞➞

FIGURE 8.21 Data hazard: (a) source register R1 for the subtraction does not have 
the correct value ready in clock cycle 4; (b) delaying the subtraction instruction by 
inserting two stalls; (c) the connection shows the forwarding of the result directly 
from the EX stage of the addition to the EX stage of the subtraction.

(a)

(b)

(c)
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add one stall in the pipeline. The cost for stalls from branch instructions is too high, 
and so various branch prediction techniques have been suggested to improve on the 
performance of  branch instructions. Using branch prediction techniques, if  the pre-
diction of  a branch is correct, then the pipeline can proceed normally at full speed. 
The pipeline is stalled and some operations need to be undone only if  the prediction 
is wrong.

8.7  Verilog and VHDL Code for General-Purpose 
Microprocessors

This section presents the Verilog and VHDL codes for the EC-2 general-purpose micro-
processor using both the structural FSM1D model and the behavioral FSMD model. 
When writing HDL code using the FSM1D model, the microprocessor with its sep-
arate control unit and datapath circuits first must be designed manually, as we did in 
Section 8.3. These two separate circuits are translated to HDL code, and then combined 
together using structural level coding to form the microprocessor. In practice, we sel-
dom want to create a microprocessor using the FSM1D model. This exercise is just to 
show how the complete HDL code is written. Section 8.7.1 lists the Verilog code using 
the FSM1D model of the EC-2 microprocessor.

Section 8.7.2 lists both the Verilog and VHDL behavioral level code that defines 
the EC-2 microprocessor using the FSMD model. Using this model, we need to manu-
ally derive only the state diagram. From the state diagram, we easily can write the HDL 
code for the control unit at the behavioral level so that the control unit circuit can be 
generated by the synthesizer automatically. The datapath operations are embedded as 
HDL instructions within the FSM code, therefore, the name FSMD. Comparing the 
FSMD code with the FSM1D code, we can see how easier it is to construct a micro-
processor circuit using the behavioral FSMD model and quickly appreciate the power 
of the HDL synthesizer.

8.7.1 FSM1D Model
Figures 8.22, 8.23, and 8.24 show the Verilog code for the EC-2 microprocessor, 
datapath, and control unit, respectively, using the FSM1D model. Figure 8.22 shows 
the structural Verilog code for connecting the datapath and the control unit to form 
the microprocessor. Figure 8.23 shows the structural Verilog code for the data-path. 
This code is based on the datapath circuit derived in Section 8.3.2 and shown in 
Figure 8.10. The code for the individual components used in the datapath can be found 
in Chapters 4 and 5. Figure 8.24 shows the behavioral Verilog code for the control unit 
as derived in Section 8.3.3. This control unit behavioral code follows the template for 
writing an FSM sequential circuit, as discussed in Section 6.7. The next-state logic 
portion of this code is based on the state diagram shown in Figure 8.11(a), and the 
output logic portion of this code is based on the output table shown in Figure 8.11(d). 
The complete FSM1D code for the EC-2 microprocessor for both Verilog and VHDL 
can be downloaded from the book website.
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FIGURE 8.22 Structural Verilog code for the EC-2 microprocessor.

module mp (
input Clock, Reset, Enter,
input [7:0] Input,
output [7:0] Output,
output Halt,
output [3:0] debug
);

wire [2:0] IR75;
wire PCload, Meminst, MemWr, Aload;
wire IRload, JMPmux, Sub, Aeq0, Apos;
wire [1:0] Asel;

dp U1(.Clock(Clock), .Reset(Reset), .IRload(IRload), 
.JMPmux(JMPmux), .PCload(PCload), .Meminst(Meminst), 
.MemWr(MemWr), .Asel(Asel), .Aload(Aload), .Sub(Sub), 
.IR75(IR75), .Apos(Apos), .Aeq0(Aeq0), .Input(Input), 
.Output(Output));

cu U2(.Clock(Clock), .Reset(Reset), .Enter(Enter), 
.IRload(IRload), .JMPmux(JMPmux), .PCload(PCload), 
.Meminst(Meminst), .MemWr(MemWr), .Asel(Asel), 
.Aload(Aload), .Sub(Sub), .IR75(IR75), .Apos(Apos), 
.Aeq0(Aeq0), .Halt(Halt), .debug(debug));

endmodule

FIGURE 8.23 Structural Verilog code for the EC-2 datapath. (continued on next page)

module dp (
input   Clock, Reset,
input   IRload, JMPmux, PCload, Meminst, MemWr,
input  [1:0] Asel,
input   Aload, Sub,
output [2:0] IR75,
output  Apos, Aeq0,
input  [7:0] Input,
output [7:0] Output
);

wire [7:0] dp_IR, dp_RAMQ;
wire [4:0] dp_JMPmux, dp_PC, dp_increment, dp_meminst;
wire [7:0] dp_Amux, dp_addsub, dp_A;

register #(8) U0_IR(.Clock(Clock), .Clear(Reset),  
.Load(IRload), .D(dp_RAMQ), .Q(dp_IR));

mux2 #(5) U1_JMPmux(.S(JMPmux), .D1(dp_IR[4:0]),  
.D0(dp_increment), .Y(dp_JMPmux));

register #(5) U2_PC(.Clock(Clock), .Clear(Reset),  
.Load(PCload), .D(dp_JMPmux), .Q(dp_PC));

mux2 #(5) U3_meminst(.S(Meminst), .D1(dp_IR[4:0]),  
.D0(dp_PC), .Y(dp_meminst));
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FIGURE 8.24 Behavioral Verilog code for the EC-2 control unit. (continued on next 
page)

module cu (
input Clock, Reset, Enter,
output reg IRload, JMPmux, PCload, Meminst, MemWr,
output reg [1:0] Asel,
output reg Aload, Sub,
input [2:0] IR75,
input Apos, Aeq0,
output reg Halt,
output [3:0] debug
);

reg [3:0] state;

// next state logic
always @ (posedge Clock, posedge Reset) begin
if (Reset) begin
state<=4'b0000;
end

else
case (state)
4'b0000: begin // Start
state<=4'b0001;
end

4'b0001: begin // Fetch
state<=4'b0010;
end

4'b0010: begin // Decode
case (IR75)
3'b000: state<=4'b1000; // Load
3'b001: state<=4'b1001; // Store
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increment U4_inc(.A(dp_PC), .F(dp_increment));
ram U5_ram(.Clock(Clock), .Reset(Reset), .WE(MemWr),  

  .Address(dp_meminst), .D(dp_A), .Q(dp_RAMQ));
mux4 #(8) U6_Amux(.S(Asel), .D3(8'b00000000), .D2(dp_RAMQ),  

.D1(Input), .D0(dp_addsub), .Y(dp_Amux));
register #(8) U7_A(.Clock(Clock), .Clear(Reset),  

  .Load(Aload), .D(dp_Amux), .Q(dp_A));
addsub #(8) U8_addsub(.S(Sub), .A(dp_A), .B(dp_RAMQ),  

  .F(dp_addsub));

assign IR75 = dp_IR[7:5];
assign Aeq0 = (dp_A == 0)? 1:0;
assign Apos = ~dp_A[7];
assign Output = dp_A;

endmodule
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3'b010: state<=4'b1010; // Add
3'b011: state<=4'b1011; // Sub
3'b100: state<=4'b1100; // Input
3'b101: state<=4'b1101; // Jz
3'b110: state<=4'b1110; // Jpos
3'b111: state<=4'b1111; // Halt
default:state<=4'b0000; // Start

endcase
end

4'b1000: begin // Load
state<=4'b0000;
end

4'b1001: begin // Store
state<=4'b0000;
end

4'b1010: begin // Add
state<=4'b0000;
end

4'b1011: begin // Sub
state<=4'b0000;
end

4'b1100: begin // Input
if (Enter) begin
state<=4'b0000;
end

else begin
state<=4'b1100;
end

end
4'b1101: begin // Jz
state<=4'b0000;
end

4'b1110: begin // Jpos
state<=4'b0000;
end

4'b1111: begin // Halt
state<=4'b1111;
end

default: begin
state<=4'b0000;
end

endcase
end // always

// output logic
always @ (state) begin
case (state)
4'b0001: begin // Fetch

FIGURE 8.24 Behavioral Verilog code for the EC-2 control unit. (continued on next 
page)
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   IRload<=1;
   JMPmux<=0;
   PCload<=1;

Meminst<=0;
MemWr<=0;

   Asel<=2'b00;
Aload<=0;
Sub<=0;
Halt<=0;
end

4'b0010: begin // Decode
IRload<=0;
JMPmux<=0;
PCload<=0;
Meminst<=1;
MemWr<=0;

   Asel<=2'b00;
   Aload<=0;
   Sub<=0;
   Halt<=0;

end
4'b1000: begin // Load
IRload<=0;
JMPmux<=0;
PCload<=0;
Meminst<=1;
MemWr<=0;
Asel<=2'b10;
Aload<=1;
Sub<=0;
Halt<=0;
end

4'b1001: begin // Store
IRload<=0;
JMPmux<=0;

   PCload<=0;
   Meminst<=1;

MemWr<=1;
Asel<=2'b00;
Aload<=0;
Sub<=0;
Halt<=0;
end

4'b1010: begin // Add
IRload<=0;
JMPmux<=0;
PCload<=0;

FIGURE 8.24 Behavioral Verilog code for the EC-2 control unit. (continued on next 
page)
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Meminst<=1;
MemWr<=0;
Asel<=2'b00;
Aload<=1;
Sub<=0;
Halt<=0;
end

4'b1011: begin // Sub
IRload<=0;
JMPmux<=0;
PCload<=0;
Meminst<=1;
MemWr<=0;
Asel<=2'b00;
Aload<=1;
Sub<=1;
Halt<=0;
end

4'b1100: begin // Input
IRload<=0;
JMPmux<=0;
PCload<=0;
Meminst<=0;
MemWr<=0;
Asel<=2'b01;
Aload<=1;
Sub<=0;
Halt<=0;
end

4'b1101: begin // Jz
IRload<=0;
JMPmux<=1;
PCload<=Aeq0; // load PC if condition is true
Meminst<=0;
MemWr<=0;
Asel<=2'b00;
Aload<=0;
Sub<=0;
Halt<=0;
end

4'b1110: begin // Jpos
IRload<=0;
JMPmux<=1;
PCload<=Apos; // load PC if condition is true
Meminst<=0;
MemWr<=0;
Asel<=2'b00;

FIGURE 8.24 Behavioral Verilog code for the EC-2 control unit. (continued on next 
page)
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Aload<=0;
Sub<=0;
Halt<=0;
end

4'b1111: begin // Halt
IRload<=0;
JMPmux<=0;
PCload<=0;
Meminst<=0;
MemWr<=0;
Asel<=2'b00;
Aload<=0;
Sub<=0;
Halt<=1;
end

default: begin
IRload<=0;
JMPmux<=0;
PCload<=0;
Meminst<=0;
MemWr<=0;
Asel<=2'b00;
Aload<=0;
Sub<=0;
Halt<=0;
end

endcase
end

assign debug = state;

endmodule

FIGURE 8.24 Behavioral Verilog code for the EC-2 control unit.

8.7.2 FSMD Model
Figures 8.25 and 8.26 show the complete behavioral FSMD Verilog and VHDL code, 
respectively, for the EC-2 general-purpose microprocessor. The RAM used is the same 
component as shown in Figure 8.13. The three registers IR, PC, and A are declared as 
reg/SIGNAL. The always/PROCESS block is structured just like a regular FSM following 
the state diagram from Figure 8.11(a). The Decode state uses the case statement to 
check the opcode, which is the first three bits of the IR. From there, the FSM jumps 
to the state for executing the corresponding instruction. The actual execution of an 
instruction simply uses built-in operators such as A <= A + memory_data to per-
form the addition command. The complete FSMD code for the EC-2 general-purpose 
microprocessor written in both Verilog and VHDL can be downloaded from the book 
website.
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FIGURE 8.25 Behavioral FSMD Verilog code for the EC-2 general-purpose 
microprocessor. (continued on next page)

module mp (
input Clock, Reset, Enter,
input [7:0] Input,
output [7:0] Output,
output reg Halt,
output [3:0] debug
);

reg [3:0] state;
reg [7:0] IR;
reg [4:0] PC;
reg [7:0] A;
reg [4:0] memory_address;
wire [7:0] memory_data;
reg MemWr;

ram U5_ram(.Clock(Clock), .Reset(Reset), .WE(MemWr), 
.Address(memory_address), .D(A), .Q(memory_data));

always @ (posedge Clock, posedge Reset) begin
 if (Reset) begin
  PC <= 5'b00000;
  IR <= 8'b00000000;
  A  <= 8'b00000000;
  MemWr <= 1'b0;
  Halt <= 1'b0;
  state<=4'b0000;
  end
 else
  case (state)

    4'b0000: begin // Start
    memory_address <= PC;
    MemWr <= 1'b0;
    state <= 4'b0001;
    end

    4'b0001: begin // Fetch
    IR <= memory_data;
    PC <= PC + 1;
    state<=4'b0010;
    end
  4'b0010: begin // Decode 
    // memory access using last 5 bits of IR

memory_address <= IR[4:0];  
    case (IR[7:5])
      3'b000: state<=4'b1000; // Load
      3'b001: state<=4'b1001; // Store
      3'b010: state<=4'b1010; // Add
      3'b011: state<=4'b1011; // Sub
      3'b100: state<=4'b1100; // Input
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      3'b101: state<=4'b1101; // Jz
      3'b110: state<=4'b1110; // Jpos
      3'b111: state<=4'b1111; // Halt
      default:state<=4'b0000; // Start

endcase
end

    4'b1000: begin // Load
    A <= memory_data;
    state<=4'b0000;
    end

    4'b1001: begin // Store
    MemWr <= 1'b1;
    state<=4'b0000;
    end

    4'b1010: begin // Add
    A <= A + memory_data;
    state<=4'b0000;
    end

    4'b1011: begin // Sub
    A <= A - memory_data;
    state<=4'b0000;
    end

    4'b1100: begin // Input
    A <= Input;
    if (Enter) begin
      state<=4'b0000;
      end
    else begin
      state<=4'b1100;
      end
    end

     4'b1101: begin // Jz
    if (A == 0)
      PC <= IR[4:0];
    state<=4'b0000;
    end

      4'b1110: begin // Jpos
     if (A[7] == 1'b0)

  PC <= IR[4:0];
    state<=4'b0000;
    end

      4'b1111: begin // Halt
     Halt <= 1'b1;
     state<=4'b1111;
     end

FIGURE 8.25 Behavioral FSMD Verilog code for the EC-2 general-purpose 
microprocessor. (continued on next page)
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      default: begin
     state<=4'b0000;

end
   endcase
end // always

assign Output = A; // send value of Accumulator to the output
assign debug = state;

endmodule

FIGURE 8.25 Behavioral FSMD Verilog code for the EC-2 general-purpose 
microprocessor. 

FIGURE 8.26 Behavioral FSMD VHDL code for the EC-2 general-purpose 
microprocessor. (continued on next page)

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.STD_LOGIC_ARITH.ALL;
USE IEEE.STD_LOGIC_UNSIGNED.ALL;

ENTITY mp IS PORT (
Clock, Reset: IN STD_LOGIC;
Enter: IN STD_LOGIC;
Input: IN STD_LOGIC_VECTOR(7 DOWNTO 0);
Output: OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
Halt: OUT STD_LOGIC;
debug: OUT STD_LOGIC_VECTOR(3 DOWNTO 0));

END mp;

ARCHITECTURE FSMD OF mp IS
SIGNAL state: STD_LOGIC_VECTOR(3 DOWNTO 0);
SIGNAL IR: STD_LOGIC_VECTOR(7 DOWNTO 0); 
SIGNAL PC: STD_LOGIC_VECTOR(4 DOWNTO 0); 
SIGNAL A: STD_LOGIC_VECTOR(7 DOWNTO 0); 
SIGNAL memory_address: STD_LOGIC_VECTOR(4 DOWNTO 0); 
SIGNAL memory_data: STD_LOGIC_VECTOR(7 DOWNTO 0); 
SIGNAL MemWr: STD_LOGIC;

COMPONENT ram
GENERIC (size: INTEGER := 5);
PORT (
Clock: IN STD_LOGIC;
Reset: IN STD_LOGIC;
WE: IN STD_LOGIC;
Address: IN STD_LOGIC_VECTOR(size-1 DOWNTO 0);
D: IN STD_LOGIC_VECTOR(7 DOWNTO 0);
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Q: OUT STD_LOGIC_VECTOR(7 DOWNTO 0));
END COMPONENT;

BEGIN
U5_RAM: ram
GENERIC MAP(5)
PORT MAP (
Clock   => Clock,
Reset   => Reset,
WE      => MemWr,
Address => memory_address,
D       => A,
Q       => memory_data
);

PROCESS(Clock, Reset)
BEGIN
IF(Reset = '1') THEN
PC <= "00000";
IR <= "00000000";
A <= "00000000";
MemWr <= '0';
Halt <= '0';
state <= "0000";

ELSIF(Clock'EVENT AND Clock = '1') THEN
CASE state IS
WHEN "0000" => -- reset, start
memory_address <= PC;
MemWr <= '0';
state <= "0001";

WHEN  "0001" => -- fetch
IR <= memory_data;
PC <= PC + 1;
state <= "0010";

WHEN "0010" => -- decode
-- using last 5 bits of IR
memory_address <= IR(4 DOWNTO 0);
CASE IR(7 DOWNTO 5) IS
WHEN "000" => state <= "1000"; -- s_load;
WHEN "001" => state <= "1001"; -- s_store;
WHEN "010" => state <= "1010"; -- s_add;
WHEN "011" => state <= "1011"; -- s_sub;
WHEN "100" => state <= "1100"; -- s_in;
WHEN "101" => state <= "1101"; -- s_jz;
WHEN "110" => state <= "1110"; -- s_jpos;
WHEN "111" => state <= "1111"; -- s_halt;

FIGURE 8.26 Behavioral FSMD VHDL code for the EC-2 general-purpose 
microprocessor. (continued on next page)
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WHEN OTHERS => state <= "0000";  -- s_start;
END CASE;

WHEN "1000" => -- load A from memory
A <= memory_data;
state <= "0000";

WHEN "1001" => -- store A to memory
MemWr <= '1';
state <= "0000";

WHEN "1010" => -- add
A <= A + memory_data;
state <= "0000";

WHEN "1011" => -- subtract
A <= A - memory_data;
state <= "0000";

WHEN "1100" =>
A <= input;
IF (Enter = '0') THEN -- wait for Enter key
state <= "1100";

ELSE
state <= "0000";

END IF;
WHEN "1101" =>
IF (A = 0) THEN -- jump if A is 0
PC <= IR(4 DOWNTO 0);

END IF;
state <= "0000";

WHEN "1110" =>
IF (A(7) = '0') THEN -- jump if MSB(A) is 0
PC <= IR(4 DOWNTO 0);

END IF;
state <= "0000";

WHEN "1111" =>
halt <= '1';
state <= "1111";

WHEN OTHERS =>
state <= "0000";

END CASE;
END IF;

END PROCESS;

Output <= A; -- send value of Accumulator to the output
debug <= state;

END FSMD;

FIGURE 8.26 Behavioral FSMD VHDL code for the EC-2 general-purpose 
microprocessor.
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8 . 8  P R O B L E M S

8.1. Manually redesign the EC-1 microprocessor to accommodate each of the 
following changes. The changes are to be done separately.
a) Replace the INPUT instruction with a LOAD constant instruction. The 

encoding for this instruction is 011ccccc. The operation for this instruc-
tion is A d ccccc, where ccccc is the five least significant bits from the 
instruction encoding. These five bits are zero extended to eight bits and 
then loaded into the accumulator.

b) Modify the INPUT instruction so that it will wait for an external Enter key 
signal before continuing to the next instruction.

c) Add an extra INC instruction, using the opcode 000, to the EC-1 instruc-
tion set. The INC instruction increments the accumulator.

d) Add an extra LOAD instruction, using the opcode 001, to the EC-1 instruc-
tion set. The LOAD instruction loads the accumulator with the content of 
memory location aaaa, where aaaa are the four least significant bits of 
the instruction encoding.

8.2. Write the behavioral Verilog/VHDL code for the EC-1 microprocessor.

8.3. Rewrite the behavioral Verilog/VHDL code for the EC-1 microprocessor 
with each of the changes from Problem 8.1.

8.4. Write and run the following programs on the EC-2 microprocessor:
a) Input two numbers, and output the sum of these two numbers.
b) Input two numbers, and output the larger of the two numbers.
c) Input two numbers, and output the product of these two numbers.
d) Keep inputting numbers until a 0. Output the total number of numbers 

entered.
e) Keep inputting numbers until a 0. Output the sum of these numbers.
f) Keep inputting numbers until a 0. Output the largest of  these 

numbers.
g) Keep inputting numbers until a 0. Output the largest and second largest 

of these numbers.
h) Input three numbers, and output these numbers in ascending order.

8.5. Finish the manual construction of the modified EC-2 microprocessor cir-
cuit as discussed in Section 8.4.

8.6. Manually redesign the original EC-2 microprocessor to accommo-
date each of  the following changes. The changes are to be done 
separately.
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a) Replace the SUB instruction in the EC-2 instruction set with a LSHIFT

instruction. The LSHIFT instruction shifts the content of the accumulator 
left by one bit and the rightmost bit is filled with a 0. The result of the 
shift operation is written back into the accumulator.

b) Replace the SUB instruction in the EC-2 instruction set with an OUTPUT

instruction. The OUTPUT instruction outputs the content of the accumu-
lator to the output port. The output port should not show anything when 
the OUTPUT instruction is not being executed.

c) Add an extra LSHIFT instruction to the EC-2 instruction set. The LSHIFT

instruction is defined in part (a) above. You need to use four bits for the 
opcode.

d) Add two instructions, LSHIFT and RSHIFT, to the EC-2 instruction set. The 
LSHIFT instruction is defined in part (a) above. The RSHIFT instruction is 
similar but shifts to the right instead. You need to use four bits for the 
opcode.

e) Add an extra NOT A instruction that performs the logical NOT operation 
on the accumulator A. The result is written back into A.

f) The IN A instruction has five bits that are not used. Therefore, we can 
use bit 4 to differentiate between two different instructions. If  bit 4 is 
a 0, then it is the original IN A instruction, otherwise it is a LOAD con-
stant instruction where the first four bits, bit 0 to bit 3, are first signed 
extended to eight bits and then loaded into A. The encoding for this new 
LOAD instruction is 100 1cccc, and the operation is A d sssscccc, where 
ssss is the sign extension of the constant cccc.

g) Use separate instruction and data memories. The program instructions 
are hardwired and stored in a ROM. All data memory accesses (i.e., all 
load, store, add, and sub instructions) are from a RAM.

h) Use an external RAM with a single bidirectional data bus instead of the 
internal RAM.

8.7. Rewrite the behavioral FSMD Verilog/VHDL code for the EC-2 micro-
processor with each of the changes from Problem 8.6.

8.8. Given the instruction set as defined below, manually design and imple-
ment a general-purpose microprocessor that can execute this instruction 
set.
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Instruction Encoding Operation Comment

Data Movement Instructions

LDA A,rrr 0001 0rrr A d R 3rrr 4 Load accumulator from register rrr

STA rrr,A 0010 0rrr R 3rrr 4 d A Load register rrr from accumulator

LDM A,aaaaaa 0011 0000
00aaaaaa

A d M 3aaaaaa 4 Load accumulator from memory 
location aaaaaa

STM aaaaaa, A 0100 0000
00 aaaaaa

M 3aaaaaa 4 d A Load memory location aaaaaa from 
accumulator

LDI A,iiiiiiii 0101 0000
iiiiiiii

A d iiiiiiii Load accumulator with immediate value 
(iiiiiiii is a signed number)

Jump Instructions

JMP absolute 0110 0000
00 aaaaaa

PC 5 aaaaaa Absolute unconditional jump to address 
aaaaaa

JMPR relative 0110 mmmm PC 5 PC 1 mmmm Relative unconditional jump (mmmm is 
two’s complement offset from PC)

JZ absolute 0111 0000
00 aaaaaa

IF 1A 5 0 2 THEN
PCPCP 5aaaaaa

Absolute jump to address aaaaaa if  A 
is zero

JZR relative 0111 mmmm IF 1A 5 0 2 THEN
PCPCP 5PCPCP 1mmmm

Relative jump if  A is zero (mmmm is 
two’s complement offset from PC)

JNZ absolute 1000 0000
00 aaaaaa

IF 1A !5 0 2 THEN
PCPCP 5aaaaaa

Absolute jump to address aaaaaa if  A is 
not zero

JNZR relative 1000 mmmm IF 1A !5 0 2 THEN
PCPCP 5PCPCP 1mmmm

Relative jump if  A is not zero (mmmm 
is two’s complement offset from PC)

JP absolute 1001 0000
00 aaaaaa

IF 1A 5 positive 2 THEN
PCPCP 5aaaaaa

Absolute jump to address aaaaaa if  A is 
positive

JPR relative 1001 mmmm IF 1A 5 positive 2 THEN
PC 5PC 1mmmm

Relative jump if  A is positive (mmmm is 
two’s complement offset from PC)

Arithmetic and Logical Instructions

AND A,rrr 1010 0rrr A d A AND R[rrr] Accumulator AND register

OR A,rrr 1011 0rrr A d A OR R[rrr] Accumulator OR register

ADD A,rrr 1100 0rrr A d A 1 R 3rrr 4 Accumulator 1 register

SUB A,rrr 1101 0rrr A d A 2 R 3rrr 4 Accumulator 2 register

NOT A 1110 0000 A d NOT A Invert accumulator

INC A 1110 0001 A d A 1 1 Increment accumulator

DEC A 1110 0010 A d A 2 1 Decrement accumulator

SHFL A 1110 0011 A d A V 1 Shift accumulator left, pad with 0

SHFR A 1110 0100 A d A W 1 Shift accumulator right, pad with 0

ROTR A 1110 0101 A d Rotate_right 1A 2 Rotate accumulator right

(Continued)Continued)Continued
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Instruction Encoding Operation Comment

Input/Output and Miscellaneous

In A 1111 0000 A d Input Input to accumulator

Out A 1111 0001 Output d A Output from accumulator

HALT 1111 0010 Halt Halt execution

NOP 0000 0000 No operation No operation

Notations:
A 5 accumulator

R 5 general register

M 5 memory

PC 5 program counter

rrr 5 three bits for specifying the general register number (0 – 7)

aaaaaa 5 six bits for specifying the absolute memory address

iiiiiiii 5 an 8-bit signed number

mmmm 5 four bits for specifying the relative jump offset in two’s complement  
format. The offset is relative to the current PC location.

8.9. Write the behavioral FSMD Verilog/VHDL code for a microprocessor that 
can execute the instructions in the instruction set defined in Problem 8.8.
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For microprocessors to be useful, there must be an interface between the microproces-
sor and the human; between the electronic world and the real world. Measurements 
made in the real world usually are analog and in a continuous range of values, whereas 
information stored inside the microprocessor is in discrete digital values. Furthermore, 
for microprocessors to communicate with other electronic components there must be a 
standard communication protocol between them. In this chapter, we will look at some 
common human I/O interfaces and standard communication protocols, and see how 
microprocessors interface with them.

9.1 Multiplexing 7-segment LED Display
So far, we have worked with discrete LEDs and individual 7-segment LED displays. 
Typically, two or more 7-segment displays are combined together in a package so that 
a larger decimal number can be displayed, as shown in Figure 9.1.

9.1.1 Theory of Operation
Individually, each 7-segment display requires seven connections for the seven LEDs 
(not including ground and the decimal point), so eight 7-segment displays would 
require 56 18 3 7 2  connections. To reduce the number of  connections, the eight 
7-segment displays are connected together in such a way that fewer connections are 
needed. Internally, all of  the same segments for each display are connected together 
in common. In other words, segment a for all of the displays are connected together, 
segment b for all of  the displays are connected together, and so on. As a result, no 
matter how many digits are in a package, there will be only seven connections for the 
seven segments. Furthermore, either the negative or the positive ends for all of the LED 
segments in a 7-segment display are connected together, resulting in either a common 
cathode or common anode display, respectively.

Figure 9.2 shows the internal connections of a three-digit 7-segment display with 
a common cathode. For a common cathode display, when a digit connection is set to 
a 1, then that entire corresponding digit is turned off. A particular LED is turned on 
by setting the digit connection to a 0 and the segment connection to a 1. Because all 
of the same segments for all of the digits are connected together, if  you connect, for 
example, segment a to a 1 and the three digit connections to a 0, then segment a for 
all three digits will be turned on. The problem is how to turn on a particular segment 
on one digit and turn off  the same segment on another digit. For example, to display 
the number 45, we need to turn off  segment a of  digit 1 for the number 4, and turn on 

FIGURE 9.1 An eight-digit 7-segment display showing the number 3.1415.
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segment a of  digit 0 for the number 5. But in order to turn on both digits, the two digit 
connections must be connected to 0. But if  they are both connected to 0 then segment 
a on both digits will be either turned on or off  together.

The solution to this problem is known as time multiplexing. Time multiplexing 
turns on only one digit at a time for only a short period of time. This turning on of one 
digit at a time will cycle continuously through all of the digits in the display. Although 
the digits are being turned on one at a time, we will get the impression that they are all 
turned on at the same time because they are cycling through so quickly. The tradeoff 
is that the digits will be slightly dimmer than if  they are on continuously.

9.1.2 Controller Design
The state diagram, shown in Figure 9.3, for a three-digit 7-segment LED display con-
troller to display the decimal number 123 is extremely simple. It continuously cycles 
through the three states turning on and off  the appropriate Digit and Segment connec-
tions. The Digit connection has 3 bits where the left-most bit is connected to digit 2. 
The Segment connection has 7 bits where the left-most bit is connected to segment a.

State 00 displays the decimal number 1 on digit 2, state 01 displays the decimal 
number 2 on digit 1, and state 10 displays the decimal number 3 on digit 0. In state 

FIGURE 9.2 Internal connections for a three-digit 7-segment display with common 
cathode.
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00, digit 2 is turned on while the other two digits are turned off  by setting Digigi it 5 011
(because a 0 turns on a digit). For showing the decimal number 1, segments b and c are 
turned on by setting Segmgmg ent 5 0110000 (because a 1 turns on a segment). Similarly in 
state 01, digit 1 is turned on by setting Digigi it 5 101, and the segments for the number 
2 are turned on by setting Segmgmg ent 5 1101101.

The main issue to consider is how fast the FSM cycles through the three states 
because of the multiplexing of the digits. If  the clock speed is too slow, then you will 
see only one digit at a time. As you slowly increase the clock speed, you will start to 
see all three digits, but they will have a flicker. Increasing the clock speed a little more 
will cause the flicker to go away, and you will see all of the digits on. If  you continue to 
increase the clock speed, then the digits will begin to get dimmer.

Figures 9.4 and 9.5 show the Verilog and VHDL code, respectively, of this simple 
three-digit 7-segment LED display controller to display the decimal number 123.

FIGURE 9.3 State diagram for a three-digit 7-segment display controller to display 
the number 123.

Segment = 0110000
Digit = 011Digit = 011Digit

00 01 10

Segment = 1101101
Digit = 101t = 101t

Segment = 111100t = 111100t 1
Digit = 11t = 11t 0

FIGURE 9.4 Behavioral Verilog code for a three-digit 7-segment display controller. 
(continued on next page)

module fsm (
  input Clock, Reset,
  output reg [2:0] Digit,
  output reg [0:6] Segment
    );

  reg [1:0] state;

  always @ (posedge Clock, posedge Reset) begin
    if (Reset) begin
      Digit <= 3'b111;       // off
      Segment <= 7'b0000000; // off
      state <= 2'b00;
      end
    else
      case (state)
      2'b00: begin
        // display the number 1 on digit 2
        Segment <= 7'b0110000; // 1
        Digit <= 3'b011;       // D2
        state <= 2'b01;
        end
      2'b01: begin
        // display the number 2 on digit 1
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        Segment <= 7'b1101101; // 2
        Digit <= 3'b101;       // D1
        state <= 2'b10;
        end
      2'b10: begin
        // display the number 3 on digit 0
        Segment <= 7'b1111001; // 3
        Digit <= 3'b110;       // D0
        state <= 2'b00;
        end
      default: begin
        state <= 2'b00;
        end
      endcase
  end // always
endmodule

FIGURE 9.4 Behavioral Verilog code for a three-digit 7-segment display controller.

FIGURE 9.5 Behavioral VHDL code for a three-digit 7-segment display controller. 
(continued on next page)

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY fsm IS PORT (
  Clock, Reset: IN STD_LOGIC;
  Digit: OUT    STD_LOGIC_VECTOR (2 DOWNTO 0);
  Segment: OUT  STD_LOGIC_VECTOR (0 TO 6));
END fsm;

ARCHITECTURE Behavioral OF fsm IS
  SIGNAL state: STD_LOGIC_VECTOR(1 DOWNTO 0);
BEGIN
    PROCESS(Clock, Reset)
    BEGIN
    IF(Reset = '1') THEN
      Digit <= "111";
      Segment <= "0000000";
      state <= "00";
    ELSIF(Clock'EVENT AND Clock = '1') THEN
      CASE state IS
      WHEN "00" =>
      -- display the number 1 on digit 2
      Segment <= "0110000";  -- 1
      Digit <= "011";        -- D2
      state <= "01";
    WHEN "01" =>
      -- display the number 2 on digit 1
      Segment <= "1101101";  -- 2
      Digit <= "101";        -- D1
      state <= "10";
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9.2 Issues with Interfacing Switches
Switches are common, simple input devices, and should be very easy to interface with 
a microprocessor. If  the timing in the control unit is not done correctly, however, these 
simple input devices might not function as expected. In this section, we will look at 
some problems that might occur when interfacing with switches.

To illustrate the problems, we will design a dedicated microprocessor for inputting 
many 8-bit unsigned numbers through one input port and then output the sum of these 
numbers. The algorithm continues to input numbers as long as the number entered 
is not a 0. Each number entered also is displayed on the output. When the number 
entered is a 0, the algorithm stops and outputs the sum of all of the numbers entered. 
The algorithm for solving this problem is shown in Figure 9.6.

The algorithm shown in Figure 9.6 has five data manipulation statements in lines 1, 
3, 4, 8, and 10. There is one conditional test in line 5. The algorithm requires an adder 
and two 8-bit registers: one for variable X and one for variable X and one for variable X sum. The dedicated 
datapath is shown in Figure 9.7.

Line 1 in the algorithm is performed by asserting the Reset signal to initialize both 
registers to zero so no control word is needed. Line 3 is performed by asserting the 
XLoad signal. The input operands to the adder are from the two registers, and line 4 XLoad signal. The input operands to the adder are from the two registers, and line 4 XLoad
is performed by asserting the sumLoad signal. The sumLoad signal. The sumLoad OutSelect signal selects the 2-to-1 
multiplexer for one of  the two sources, register X or register X or register X sum, to output. The Out

FIGURE 9.6 Algorithm for solving the summing input numbers problem.

1 sum = 0sum = 0sum
2   BEGIN LOOP
3     INPUT X
4 sum = sum = sum sum + sum + sum X
5     IF (X = 0) THENX = 0) THENX
6       EXIT LOOP
7    END IF
8    OUTPUT X
9   END LOOP
10   OUTPUT sum

    WHEN "10" =>
      -- display the number 3 on digit 0
      Segment <= "1111001"; -- 3
      Digit <= "110";       -- D0
      state <= "00";
    WHEN OTHERS =>
      state <= "00";
    END CASE;
   END IF;
  END PROCESS;
END Behavioral;

FIGURE 9.5 Behavioral VHDL code for a three-digit 7-segment display controller.
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FIGURE 9.7 Dedicated datapath for solving the summing input numbers problem.
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Control Word Instruction XLoad sumLoad OutSelect Out

0 INPUT X 1 0 3 0

1 sum 5 sum 1 X 0 1 3 0

2 OUTPUT X 0 0 0 1

3 OUTPUT sum 0 0 1 1

FIGURE 9.8 Control words for solving the summing input numbers problem.

control signal is used to enable the tri-state buffer to output the value from the selected 
source. The conditional test 1X 5 0 2  is generated by the 8-input NOR gate that is con-
nected to the output of  the X register.X register.X

This dedicated datapath for solving the summing input numbers problem requires 
four control signals, sumLoad, sumLoad, sumLoad XLoad, XLoad, XLoad OutSelect, and Out, and generates one status 
signal, 1X 5 0 2 . The control words are shown in Figure 9.8.

At first glance, this algorithm seems very simple and straightforward. Because of 
the requirements of  this problem, however, the actual hardware implementation of 
this microprocessor is a bit tricky. Specifically, the requirement that many different 
numbers be input through one input port requires careful timing considerations and an 
understanding about how mechanical switches behave. Also, the timing for outputting 
the value in register X needs some careful thought.X needs some careful thought.X
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As a first try, we begin with the state diagram shown in Figure 9.9(a). Line 1 of 
the algorithm is performed by the asynchronous Reset, so it does not require a state 
to execute. Line 3 is performed in state 00, which is followed unconditionally by line 4 
in state 01. The condition 1X 5 0 2  is then tested. If  the condition is true, the loop is 
exited, and the FSM goes to state 11 to output the value for Sum and stays in that state 
until reset. If  the condition is false, the FSM goes to state 10 to output X, and the loop X, and the loop X
repeats back to state 00.

However, if  you implement this circuit in hardware using, for example, a 50 MHz 
clock speed, it will not work correctly. The reason is that the FSM cycles through the 
three loop states (00, 01, and 10) at 20 ns per state (i.e., 1/50000000 seconds/cycle). 
As a result, the FSM will have gone through state 00 to input a number many times 
before you can change the input to another number. Therefore, the same number will 
be summed many times.

To resolve this problem, we need to add another input signal that acts like the 
Enter switch. This way, the FSM will stay in state 00, waiting for the Enter signal to 
be asserted. This will give the user time to set up the input number before pressing the 
Enter switch. When the Enter signal is asserted, the FSM will exit state 00 with the 
new number to be processed. This modified state diagram is shown in Figure 9.9(b).

This modified state diagram still has a timing problem because of  the fast clock 
speed. Starting from state 00, the FSM waits for the Enter switch to be pressed. After 
entering a nonzero number and pressing the Enter switch, the FSM goes to state 01, 
but before you have time to release it, the FSM will again have cycled through the 
complete loop and is back at state 00 in 60 ns. Since you have not yet released the 
switch, the FSM will continue on another loop with the same input number. We need 
to break the loop by waiting for the Enter switch to be released. This is shown in the 
state diagram in Figure 9.10(a). State 10 will wait for the Enter switch to be released 
before continuing on and looping back to state 00.

FIGURE 9.9 Incorrect state diagrams for solving the summing input numbers problem.
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FIGURE 9.10 Control unit for solving the summing input numbers problem: (a) state diagram; 
(b) next-state (implementation) table; (c) K-maps and next-state equations; (d) control words and 
output table; (e) output equations; (f) circuit. (continued on next page)
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Theoretically, this last state diagram is correct. In practice, however, there still 
might be a problem with the operation of the mechanical switch used for the Enter
signal. When a mechanical switch is pressed, it usually goes on and off  several times 
before settling down in the on position. This is referred to as the “debounce” problem. 
When the switch is mechanically fluctuating between the on and the off  positions after 
it is pressed, the FSM again can go through the loop many times. We need to debounce 
the switch. This, however, is not done in the FSM circuit itself  but in the interface 
circuit between the FSM and the switch. We will address this problem when we build 
the interface circuit.

Another timing issue has to do with outputting X in state 10. The FSM stays in X in state 10. The FSM stays in X
state 10 only for as long as the Enter key is still pressed. As soon as the user releases the 
Enter key, which normally will occur in less than a second, the FSM will exit state 10. 
Therefore, the X value will be displayed only for a fraction of  a second, which is too X value will be displayed only for a fraction of  a second, which is too X
short to be seen. A better solution is to output X in all of  the three states inside the X in all of  the three states inside the X

XLXLX oad 5 Q r1 Q r0
sumLoad 5 Q r1 Q0

OutSelelel ct 5 Q1Q0

(e)

(X = 0)X = 0)X

Clock

XLoad

Reset

Enter

sumLoad

OutSelect

Clk

D1

Q19

Q1

Clr

Clk

D0

Q09

Q0

Clr

(f)

FIGURE 9.10 Control unit for solving the summing input numbers problem: (a) state 
diagram; (b) next-state (implementation) table; (c) K-maps and next-state equations; 
(d) control words and output table; (e) output equations; (f) circuit.
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loop, and to output Sum when the loop exits as shown in Figure 9.10(a) with the four 
OUTPUT operations. In making this change, we no longer need the tri-state buffer 
along with the Out control signal in the datapath because we are always outputting 
a value.

We now will construct the control unit circuit based on the state diagram shown 
in Figure 9.10(a). Four states are used for the five data manipulation statements. All 
of  the states except for 11 will output X. State 00 inputs X. State 00 inputs X X and waits for the X and waits for the X Enter
signal. This allows the user to set up the input number and then press the Enter switch. 
When the Enter switch is pressed, the FSM goes to state 01, to sum X, and tests for X, and tests for X
the condition 1X 5 0 2 . If  the condition is true, the FSM terminates in state 11 and 
outputs sum; otherwise, it goes to state 10 to wait for the Enter signal to be de-asserted 
when the user releases the Enter switch. After exiting state 10, the FSM continues on 
to repeat the loop in state 00.

The next-state table, as derived from the state diagram, is shown in Figure 9.10(b). 
The table requires four variables: two to encode the four states, Q1 and Q0, and two for 
the status signals, Enter and 1X 5 0 2 .

Using D flip-flops to implement the state memory, the implementation table 
is the same as the next-state table, except that the values in the table entries are 
the inputs to the flip-flops, D1 and D0, instead of  the flip-flops outputs, Q1next and 
Q0next. The K-maps and the next-state equations for Q1next and Q0next are shown in 
Figure 9.10(c).

The modified control words and output table for the three control signals are shown 
in Figure 9.10(d). State 00 performs line 3 of the algorithm in Figure 9.6 by asserting 
XLoad, and line 8 by de-asserting XLoad, and line 8 by de-asserting XLoad OutSelect. When OutSelect is de-asserted, X is passed X is passed X
to the output. State 01 performs line 4 and line 8. Line 4 is executed by asserting sum-
Load, and line 8 is executed by de-asserting Load, and line 8 is executed by de-asserting Load OutSelect. State 10 again performs line 8 
by de-asserting OutSelect. Finally, state 11 performs line 10 by asserting OutSelect.

The output equations, as derived from the output table, are shown in Figure 9.10(e). 
There is one equation for each of the three control signals. Each equation is dependent 
only on the current state (i.e., the current values in Q1 and Q0).

The complete control unit circuit is shown in Figure 9.10(f). The state memory con-
sists of two D flip-flops. The inputs to the flip-flops are the next-state circuits derived 
from the two next-state equations. The output circuits for the three control signals are 
derived from the three output equations. The status signal 1X 5 0 2  comes from the 
comparator in the datapath.

The final microprocessor is formed by connecting the control unit and the datapath 
together using the designated control and status signals, as shown in Figure 9.11.

In order to implement the circuit onto the FPGA development board, we need to 
connect the microprocessor’s I/Os to the switches, LEDs, and clock source. The most 
important interface circuit for this problem is to debounce the Enter switch. A simple 
circuit to debounce a switch is to use a D flip-flop, as shown in Figure 9.12. The clock 
frequency for the D flip-flop clock input must be slow enough for the switch bounce to 
settle, so that the flip-flop will latch in a single value. The exact clock frequency is not 
too critical. The clock divider circuit used in the example slows down a 50 MHz clock 
to approximately 4 Hz. Figure 9.13 shows a simulation trace of  the microprocessor 
executing the summing input numbers problem with the two inputs 3 and 5.
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FIGURE 9.11 Microprocessor for solving the summing input numbers problem.
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FIGURE 9.13 Sample simulation for the summing input numbers problem.

FIGURE 9.12 External I/O interface to the summing input numbers microprocessor.
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FIGURE 9.14 Keypad: (a) picture; (b) schematic diagram.
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9.3 3 3 4 Keypad Controller
Keypads are just like push buttons, but with several packaged together into one unit. 
Figure 9.14(a) shows a picture of a typical 12-key keypad arranged in a 3 3 4 grid. 
Normally-opened push buttons usually are used for the keys.

9.3.1 Theory of Operation
Twelve discreet push buttons usually will have 24 connections because each push button 
requires two connections. In order to reduce the number of connections, the keys in a 
keypad are connected such that those in the same row will have one connection point 
connected in common, and those in the same column will have the other connection 
point connected in common. The internal connections of  a 3 3 4 keypad is shown 
in Figure 9.14(b). This connection configuration has only seven connections for the 
12 keys: three connections for the three columns and four connections for the four rows.

Using normally-opened push buttons, the intersections for each column and row 
are normally disconnected when not pressed. When a particular key is pressed, it will 
connect between the column and the row where that key is located. For example, when 
key 1 is pressed, it will connect row 0 with column 2; when key 8 is pressed, it will con-
nect row 2 with column 1.

We will look at how we can connect a keypad so that we can distinguish which 
key has been pressed. Again we need to keep in mind that regardless of whether a key 
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FIGURE 9.15 Keypad connection: (a) incorrect connection; (b) correct connection.
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is pressed, we cannot have undefined logic values, that is, a high-impedance Z value. 
As a first attempt, we might be tempted to connect the circuit shown in Figure 9.15(a) 
with all of the row inputs connected to Vcc, and all of the columns are pulled down to 
ground via a 22K V resistor. We first note that at the three column connection points, 
no undefined logic value is possible. For example, at column 2, when none of the keys 
in that column is pressed, then the signal is a logic 0 because of the pull-down resistor, 
and when any one of the keys in that column is pressed, then column 2 will have a logic 
1 because of the row connection to Vcc. The problem, however, is that we would not be 
able to distinguish which of the four keys in that column (1, 4, 7, or *) has been pressed.

In order to distinguish which of the four keys in the same column has been pressed, 
we cannot have all of the rows connected to Vcc at the same time. Just like multiplexing 
several 7-segment digits, we need to be able to selectively set one row at a time to the 
logic 1 value (i.e., Vcc) while the rest of the rows are set to a logic 0. With any multi-
plexing scheme, this need to cycle at a relatively fast speed with respect to the time it 
takes to press and release a key. To achieve this, we need to modify the circuit to be like 
that shown in Figure 9.15(b). Replacing the Vcc connections for the four rows with just 
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an input connection, these four inputs can now either be set to a logic 0 or a logic 1 by 
the microprocessor. So, for example, when key 0 is pressed, a logic 1 will be seen at the 
column 1 connection point only if  the row 3 connection is a logic 1. At this point, you 
might wonder how is this different from the original circuit in which all of the rows are 
connected to a logic 1? For both cases, you see a logic 1 at the column connection point 
when any one of the four column keys is pressed. The important difference is that if  we 
set row 3 to a logic 0, column 1 will have a logic 0 regardless of whether key 0 is pressed 
or not. In other words, because we know to which row we are sending a logic 1, if  we 
get a logic 1 at column 1, then we will know which intersection point in that column 
got connected by a key press.

For this multiplexing scheme to work, we need to be able to send either a logic 1 
or a logic 0 to each of the rows at a fast speed and then read the column connection 
values to see if  it is a 1 or a 0. A controller is used to repeatedly cycle through each of 
the four rows by sending a logic 1 value to one row while sending a logic 0 to the rest 
of the rows. After sending a logic 1 to a row, it will read the three column signals to see 
if  any of them has a logic 1 value. If  there is a logic 1 value for a particular column, 
then the key at that intersection of the grid has been pressed.

9.3.2 Controller Design
The state diagram for a 3 3 4 keypad controller is shown in Figure 9.16. It continuously 
cycles through the eight states, which are grouped in pairs. The first state in the pair will 
send out the Row value and the second state in the pair will test for the three Column val-
ues. For example, state 000 sets row 0 to a 1, and then state 001 tests which of the three 
columns has a 1. If  column 0 has a 1 then the value 3 in binary is assigned to the output 
Key. Figure 9.17 shows the behavioral Verilog code for a 3 3 4 keypad controller.

FIGURE 9.16 State diagram for a 3 3 4 keypad controller.

Row = 0001w = 0001w

000 001 010

if (Column[0] == 1'b1)
Key <= 8'b00000011;

else if (Column[1] == 1'b1)
Key <= 8'b00000010;

else if (Column[2] == 1'b1)
Key <= 8'b00000001;

011 100 101 110 111

Row = 0010w = 0010w Row = 0100w = 0100w Row = 1000w = 1000wif (Column[0] == 1'b1)
Key <= 8'b00000110;

else if (Column[1] == 1'b1)
   Key <= 8'b00000101;

else if (Column[2] == 1'b1)
Key <= 8'b00000100;

if (Column[0] == 1'b1)
Key <= 8'b00001001;

else if (Column[1] == 1'b1)
Key <= 8'b00001000;

else if (Column[2] == 1'b1)
Key <= 8'b00000111;

if (Column[0] == 1'b1)
Key <= 8'b00001100;

else if (Column[1] == 1'b1)
Key <= 8'b00000000;

else if (Column[2] == 1'b1)
Key <= 8'b00001011;

FIGURE 9.17 Behavioral Verilog code for a 3 3 4 keypad controller. (continued on 
next page)

module fsm (
  input Clock, Reset,
  input [2:0] Column,
  output reg [3:0] Row,
  output reg [7:0] Key
    );
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  reg [2:0] state;

  always @ (posedge Clock, posedge Reset) begin
    if (Reset) begin
      state <= 3'b000;
      end
    else
      case (state)
      3'b000: begin
        // set row0 to 1
        Row <= 4'b0001;
        state <= 3'b001;
        end
      3'b001: begin
        // check key press
        if (Column[0] == 1'b1) Key <= 8'b00000011;
        else if (Column[1] == 1'b1) Key <= 8'b00000010;
        else if (Column[2] == 1'b1) Key <= 8'b00000001;
        state <= 3'b010;
        end
      3'b010: begin
        // set row1 to 1
        Row <= 4'b0010;
        state <= 3'b011;
        end
      3'b011: begin
        // check key press
        if (Column[0] == 1'b1) Key <= 8'b00000110;
        else if (Column[1] == 1'b1) Key <= 8'b00000101;
        else if (Column[2] == 1'b1) Key <= 8'b00000100;
        state <= 3'b100;
        end
      3'b100: begin
        // set row2 to 1
        Row <= 4'b0100;
        state <= 3'b101;
        end
      3'b101: begin
        // check key press
        if (Column[0] == 1'b1) Key <= 8'b00001001;
        else if (Column[1] == 1'b1) Key <= 8'b00001000;
        else if (Column[2] == 1'b1) Key <= 8'b00000111;
        state <= 3'b110;
        end
      3'b110: begin
        // set row3 to 1
        Row <= 4'b1000;
        state <= 3'b111;
        end

FIGURE 9.17 Behavioral Verilog code for a 3 3 4 keypad controller. (continued on 
next page)
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9.4 PS2 Keyboard and Mouse
Older computer keyboards and mice use the PS2 protocol and connector to communi-
cate with the computer. Although this is an old technology, it is a good example of how 
a serial communication protocol works. Although the keyboard and the mouse both 
use the PS2 protocol, the controller for the mouse is slightly more difficult because it 
requires an initialization sequence and a bidirectional communication channel, whereas 
the keyboard does not. In this section, we will construct controllers for both.

9.4.1 Theory of Operation—PS2 Keyboard
The communication between the PS2 keyboard and the controller (which will be imple-
mented on an FPGA chip) uses two signals, KeyboardClock and KeyboardClock and KeyboardClock KeyboardData. When 
there is no activity, that is, when no key is pressed on the keyboard, both KeyboardClock
and KeyboardData are at a 1. When a key is pressed (or released), the keyboard sends a 
unique code for that key to the controller serially over the KeyboardData line. The serial 
data on the KeyboardData line is synchronized between the keyboard and the controller 
by clock pulses that the keyboard sends over the KeyboardClock line.KeyboardClock line.KeyboardClock

The data for each key that is sent over the KeyboardData line consists of eleven 
bits. These eleven bits are: a 0 for the start bit, eight data bits for the key code starting 
with the least significant bit to the most significant bit, an odd parity bit, and lastly, a 
1 for the stop bit. Figure 9.18 lists some of the key codes generated by the keyboard 
when the corresponding key is pressed. When a key is released, a different code is gen-
erated. The odd parity bit is set such that the total number of 1 bits in the eight data 
bits plus the parity bit is an odd number.

Figure 9.19 shows a sample timing diagram for the data transmission of the key 
code 4E (01001110 in binary) for the hyphen key. Starting from the inactive state, where 
both the KeyboardData and KeyboardClock lines are at a 1, the transmission begins KeyboardClock lines are at a 1, the transmission begins KeyboardClock
by setting the KeyboardData line to a 0 for the start bit. The keyboard then sends out 
the data and parity bit on the KeyboardData line at a rate of one bit per clock cycle on 
the KeyboardClock line. The clock pulses on the KeyboardClock line. The clock pulses on the KeyboardClock KeyboardClock line are generated by KeyboardClock line are generated by KeyboardClock

      3'b111: begin
        // check key press
        if (Column[0] == 1'b1) Key <= 8'b00001100;
        else if (Column[1] == 1'b1) Key <= 8'b00000000;
        else if (Column[2] == 1'b1) Key <= 8'b00001011;
        state <= 3'b000;
        end
      default: begin
        state <= 3'b000;
        end
      endcase
  end // always
endmodule

FIGURE 9.17 Behavioral Verilog code for a 3 3 4 keypad controller.
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FIGURE 9.19 Sample timing diagram for the data transmission of the key code 4E.
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Esc 76

BS 66

CR 5A

Ctrl 14

FIGURE 9.18 A partial list of key codes generated by the keyboard.

the keyboard. The parity bit for the key code 4E is a 1, because the eight data bits have 
four (an even number) 1 bits, therefore, to make the parity odd, the parity bit must be a 1. 
Finally, a 1 stop bit is sent.

9.4.2 Controller Design—PS2 Keyboard
The state diagram for our PS2 keyboard controller shown in Figure 9.20(a) is derived 
by following the timing diagram shown in Figure 9.19. In each of the eight data states, 
d0, d1, . . . , d7, we will get one corresponding data bit from the KeyboardData input 
line. For example, suppose we use an 8-bit register named Keycode to store the eight 
data bits. Then in state d0, we will assign KeyboardData to KeKeK yeye codeded 0 (i.e., the 0th bit 
of  Keycode), and in state d1, we will assign KeyboardData to KeKeK yeye codeded 1, and so on 
for all eight data bits. This is possible because the transition of  the FSM from one 
state to the next is synchronized by the keyboard clock signal KeyboardClock. For 
simplicity, we will not check for the start bit, parity bit, nor the stop bit, but will just 
skip over them.

Note that in the state diagram there is not a wait state for waiting for the initial 
start bit. This might seem incorrect at first because without an initial wait state to wait 
for the start bit, the FSM is seen to be continuously going through all of the states even 
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FIGURE 9.20 Controller for PS2 keyboard: (a) state diagram; (b) next-state (imple-
mentation) table; (c) K-maps and next-state equations; (d) output table; (e) output 
equations; (f) controller circuit; (g) interface circuit. (continued on next page)

start paritystop

d0 d1 d2 d3 d4 d5

d6d7

(a)

Current State  
Q3Q3Q Q2Q2Q Q1Q0Q0Q

Next State (Implementation) 
Q3Q3Q nextQ2Q2Q nextQ1nextQ0Q0Q next (D3D2D1D0)

0000 start 0001

0001 d0 0010

0010 d1 0011

0011 d2 0100

0100 d3 0101

0101 d4 0110

0110 d5 0111

0111 d6 1000

1000 d7 1001

1001 parity 1010

1010 stop 0000

(b)

when no key is pressed. However, this is not the case because the clock for driving the 
FSM is not running continuously. We use the keyboard clock signal KeyboardClock to KeyboardClock to KeyboardClock
drive our FSM clock (see Figure 9.20(f) for the FSM clock connection), and this signal 
is at a constant 1 when there is no activity, so our FSM will remain at the start state 
waiting for a key to be pressed. When a key is pressed, the KeyboardClock will begin to KeyboardClock will begin to KeyboardClock
toggle, thus activating the FSM and clocking in the data bits.

The next-state table using four D flip-flops to encode the eleven states is shown in 
Figure 9.20(b). The K-maps and next-state equations derived from the next-state table 
are shown in Figure 9.20(c).
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FIGURE 9.20 Controller for PS2 keyboard: (a) state diagram; (b) next-state (implementation) 
table; (c) K-maps and next-state equations; (d) output table; (e) output equations; (f) controller 
circuit; (g) interface circuit. (continued on next page)

Current State  
Q3Q3Q Q2Q2Q Q1Q0Q0Q

Output  
KeKeK yeye codeded 7-0

0000 start
0001 d0 – – – – – – – KeyboardData
0010 d1 – – – – – – KeyboardData –
0011 d2 – – – – – KeyboardData – –
0100 d3 – – – – KeyboardData – – –
0101 d4 – – – KeyboardData – – – –
0110 d5 – – KeyboardData – – – – –
0111 d6 – KeyboardData – – – – – –
1000 d7 KeyboardData – – – – – – –
1001 parity
1010 stop

A dash (–) means no change to that Keycode bit.

(d)

KeKeK yeye codeded 7 5 Q3Q r2 Q r1 Q r0 KeKeK yeye boardDdDd ata

KeKeK yeye codeded 6 5 Q r3 Q2Q1Q0 KeKeK yeye boardDdDd ata

KeKeK yeye codeded 5 5 Q r3 Q2Q1Q r0 KeKeK yeye boardDdDd ata

KeKeK yeye codeded 4 5 Q r3 Q2Q r1 Q0 KeKeK yeye boardDdDd ata

KeKeK yeye codeded 3 5 Q r3 Q2Q r1 Q r0 KeKeK yeye boardDdDd ata

KeKeK yeye codeded 2 5 Q r3 Q r2 Q1Q0 KeKeK yeye boardDdDd ata

KeKeK yeye codeded 1 5 Q r3 Q r2 Q1Q r0 KeKeK yeye boardDdDd ata

KeKeK yeye codeded 0 5 Q r3 Q r2 Q r1 Q0 KeKeK yeye boardDdDd ata

(e)

Q3next = D3 = Q3 Q29Q19+ Q39Q2Q2QQ  Q2  2Q2Q  Q2Q Q1  Q  Q1  1Q0Q0Q

Q1next = D1 = Q39Q19Q0Q0Q + Q29Q19Q0 + Q39Q1Q1Q09

Q2next = D2 = Q39Q2Q2QQ2Q2Q  2Q Q19+ Q39Q2Q2QQ2Q2Q  2Q Q09+ Q39Q29Q1Q0Q0Q

Q0next = D0 = Q39Q09+ Q29Q19Q09

Q3Q2
Q1Q0

00

00
1

1

1

01 11 10

01

11

10

Q3next
Q3Q2

Q1Q0

00 1

00

1

1

01 11 10

01

11

10

Q2next

Q3Q2
Q1Q0

00

00

1 1 1

1 1

01 11 10

01

11

10

Q1next
Q3Q2

Q1Q0

00 1 1

00
1

1 1

01 11 10

01

11

10

Q0next

1

(c)
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a

b

c

d

e

f g
Keyboard
Controller

Keycode3-0

KeyboardDataKeyboardDataKeyboardDat

Reset

KeyboardDataKeyboardDataKeyboardDat

PB1
Reset

KeyboardClockKeyboardClock

Keycode7-4

BCD

BCD

a

b

c

d

e

f g

PS2 port

4

4

(g)

Clk

D0

Q09

Q0

Clear

Clk

D1

Q19

Q1

Clear

KeyboardClock
Reset

Clk

D2

Q29

Q2

Clear

Clk

D3

Q39

Q3

Clear
Keycode5

Keycode4

Keycode3

Keycode2

Keycode1

Keycode0

Keycode6

Keycode7

KeyboardData

Clk
D Q
E

Clk
D Q
E

Clk
D Q
E

Clk
D Q
E

Clk
D Q
E

Clk
D Q
E

Clk
D Q
E

Clk
D Q
E

(f)

FIGURE 9.20 Controller for PS2 keyboard: (a) state diagram; (b) next-state (implementation) 
table; (c) K-maps and next-state equations; (d) output table; (e) output equations; (f) controller 
circuit; (g) interface circuit.
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This controller circuit actually does not control the operation of the keyboard 
because it does not generate any control signals for it. Instead, it receives the serial data 
signals from the keyboard, and packages it into data bytes. The output of this controller is 
simply the data bytes, which represent the key code of the keys being pressed. The output 
table is shown in Figure 9.20(d) and the corresponding output equations in (e). In state d0, 
the bit on the KeyboardData line is loaded into bit 0 of the Keycode register; in state d1, 
the bit on the KeyboardData line is loaded into bit 1 of the Keycode register; and so on. 
Each bit of the Keycode register must, therefore, be able to load into the KeyboardData
independently, and each load enable line is asserted by the corresponding state encoding. 
Therefore, each of the output equations shown in Figure 9.20(e) is not implemented sim-
ply as a 5-input AND gate. Instead, a D flip-flop with enable is used for each output signal. 
The D input to the flip-flop is connected to the KeyboardData line. The load enable, E, 
on the flip-flop is asserted by ANDing the four Q values for that state.Q values for that state.Q

Using the next-state equations for the next-state circuit, four D flip-flops for the 
state memory, and the output equations for the output circuit, we obtain the complete 
controller circuit, as shown in Figure 9.20(f). The implementation and interface of this 
controller circuit is shown in Figure 9.20(g).

This controller design is not the only way to receive data from the PS2 keyboard. 
In fact, a simple shift register can be used instead.

9.4.3 Theory of Operation—PS2 Mouse
The PS2 mouse uses the same PS2 connections and protocol as for the PS2 keyboard. 
However, the design of the PS2 mouse controller is a little bit more interesting than the 
keyboard because the mouse requires an initialization command from the controller, 
and the signals on both the data and clock lines are bidirectional.

On power up, the keyboard will immediately send data bytes to the controller when 
a key is pressed. The mouse, on the other hand, needs an initialization command to 
tell it what to do before it will send data bytes to the controller. After initialization, the 
mouse will send data serially to the controller over the MouseData line and clocked by 
the MouseClock line just like the keyboard. Here, we use different names for the data and MouseClock line just like the keyboard. Here, we use different names for the data and MouseClock
clock lines, but they are actually the same signal lines on the PS2 connector. Both the 
controller and the mouse use the same MouseData and MouseClock lines to send signals MouseClock lines to send signals MouseClock
to each other, therefore, these two lines must be bidirectional, making the controller more 
complicated to design. Furthermore, because the controller has to control the MouseClock
line, the FSM cannot be clocked by the MouseClock line, but needs a separate clock.MouseClock line, but needs a separate clock.MouseClock

When the controller wants to send data to the mouse, which is the case for the 
initialization command on power up, the controller first must put the MouseClock and MouseClock and MouseClock
MouseData lines in a request-to-send state by pulling both MouseClock and MouseClock and MouseClock MouseData
low for at least 100 μs to inhibit communication, and then releasing MouseClock by setMouseClock by setMouseClock -
ting it to high impedance. After releasing the MouseClock line, the controller must wait MouseClock line, the controller must wait MouseClock
for the mouse to bring this line high, signifying that it has taken control of the clock 
line. At this point, the mouse will generate a clock signal on the MouseClock line, and MouseClock line, and MouseClock
the controller will send out the initialization command F4 on the MouseData line, one 
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bit per clock pulse, starting with the least significant bit. Just like with the keyboard, 
each byte sent must be followed by an odd parity bit and finally a 1 stop bit. For the 
command F4, the odd parity bit is a 0, and the stop bit is always a 1.

After sending the stop bit, the mouse controller will release the MouseData line by 
setting it to high impedance. The mouse then will take control of the MouseData line 
and will send the acknowledge byte FA to the controller. Again, the acknowledge byte 
is sent out with least significant bit first, then followed by an odd parity bit and a stop 
bit. This concludes the initialization sequence for the mouse.

After the mouse is initialized, it will continuously send out data to the controller 
on the MouseData line clocked by the MouseClock line. The data bits are grouped into MouseClock line. The data bits are grouped into MouseClock
frames of three packets each, and each packet consists of eleven bits (a 0 start bit, eight 
data bits, an odd parity bit, and a 1 stop bit). The three bytes of data bits in each frame 
are interpreted as follows:

where: 

 ● M, R, and L are the status of the Middle, Right, and Left mouse buttons, 
respectively 11 5 pressed; 0 5 released 2 ,

 ● Yo and Xo are the overflow bits in the Y and X directions,
 ● Ys is the sign bit in the Y direction 11 5 moving  down; 0 5 moving up 2
 ● Xs is the sign bit in the X direction 11 5 moving  left; 0 5 moving up 2
 ● X7 2 X0 is the horizontal moving distance of X in two’s complement 
1negative 5 moving left; positive 5 moving right 2

 ● Y7 2 Y0 is the vertical moving distance of Y in two’s complement 
1negative 5 moving down; positive 5 moving up 2

The following table shows the three bytes received for each operation of the mouse.

Bit 7 6 5 4 3 2 1 0

Byte 1 Yo Xo Ys Xs 1 M R L

Byte 2 X7 X6 X5 X4 X3 X2 X1 X0

Byte 3 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0

Operation Byte 3 Byte 2 Byte 1

Middle mouse button click 00 00 0C

Right mouse button click 00 00 0A

Left mouse button click 00 00 09

Move left 00 FF 18

Move right 00 01 08

Move down FF 00 28

Move up 01 00 08
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The steps for the controller to take, as described above, are summarized next. The 
step numbers are also annotated as comments in the code listing shown in Figure 9.22.

1. Bring the clock and data line low for at least 100 μs.
2. Release the clock line.
3. Wait for the clock line to be released (high).
4. Send initialization command byte F4 hex, least significant bit first.
5. Wait for the mouse to bring clock low.
6. Wait for the mouse to bring clock high.
7. Repeat steps 5–7 for the remaining seven data bits, the odd parity bit, and the 

stop bit.
8. Release the data line.
9. Receive acknowledge byte FA.

10. Receive 3-packet data of 11 bits each.
11. Repeat steps 10 and 11.

9.4.4 Controller Design—PS2 Mouse
The dedicated microcontroller for controlling the PS2 mouse does not require a 
datapath. The FSM, written in behavioral Verilog and VHDL code are shown in 
Figures 9.21 and 9.22, respectively. Note that the MouseClock and MouseData sig-
nals are declared as inout/INOUT for the bidirectional signal. The mouse controller 
FSM state transitions follow exactly the steps as described above. In all of  the states 
where we check for the MouseClock signal, instead of  checking it directly, we check 
the FilteredMouseClock signal, which follows the original MouseClock signal by a 
slight time delay. A second process in the code assigns the MouseClock signal to the 
FilteredMouseClock signal at the next rising clock edge, thus adding a slight time 
delay. This is needed to correct slight timing differences.

FIGURE 9.21 Behavioral Verilog code for a PS2 mouse controller. (continued on next 
page)

module MouseController (
  input Clock, Reset,
  inout reg MouseClock, MouseData,
  output LeftButton, RightButton, MidButton,
  output [7:0] Byte1, Byte2, Byte3,
  output reg [7:0] Debug
);

  reg [43:0] packet;
  reg [5:0] count;
  reg [9:0] command;
  reg FilteredMouseClock;

  reg [3:0]state;
  parameter s_init1=0, s_init2=1, s_init3=2,
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        s_cmd1=3, s_cmd2=4,
        s_cmd20=5, s_cmd21=6,
        s_ack1=7, s_ack2=8,
        s_recv1=9, s_recv2=10,
        s_end=11;

  assign LeftButton = packet[1];
  assign RightButton = packet[2];
  assign MidButton = packet[3];
  assign Byte1 = packet[8:1];
  assign Byte2 = packet[19:12];
  assign Byte3 = packet[30:23];

  // Next-state logic
  always @ (posedge Clock or posedge Reset) begin
    if (Reset) begin
      MouseClock <= 1'b0; // 1)
      MouseData <= 1'b0;
      packet <= {44{1'b0}}; // 44 0's
      command <= 10'b1011110100;  // stop, odd parity, F4
      count <= 0;
      state <= s_init1;
      Debug <= 8'b00000000;
    end else
      case (state)
      s_init1: begin // 2)
        MouseClock <= 1'b0;
        MouseData <= 1'b0;
        state <= s_init2;
        end
      s_init2: begin // 3)
        MouseClock <= 1'bz;
        MouseData <= 1'b0;
        state <= s_init3;
        end
      s_init3: begin // 4) wait for clock to go hi
        if (FilteredMouseClock == 1'b1) begin
          count <= 0;
          state <= s_cmd1;
          end
        end
      s_cmd1: begin // 5) send out command F4, LSB first
        MouseData <= command[count];
        if (FilteredMouseClock == 1'b0) begin // 6)
          if (count < 10) begin
            count <= count + 1;
            state <= s_cmd2;

FIGURE 9.21 Behavioral Verilog code for a PS2 mouse controller. (continued on next 
page)
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            end
          else
            state <= s_cmd21;
          end
        end
      s_cmd2: begin // 7)
        if (FilteredMouseClock == 1'b1) begin
          state <= s_cmd1;
          end
        end
      s_cmd21: begin // 9)
        Debug <= 8'b00000001;
        MouseData <= 1'bZ; // release the data line
        if (FilteredMouseClock == 1'b1) begin
          count <= 0;
          state <= s_ack1;
          end
        end
      // at this point, if you have a mouse with an IR instead
      // of a mechanical ball, the LED on the bottom should be on

      // get acknowledge message FA
      s_ack1: begin
        Debug <= 8'b00000010;
        packet[count+22] <= MouseData;
        if (FilteredMouseClock == 1'b0) begin
          if (count < 11) begin
            count <= count + 1;
            state <= s_ack2;
            end
          else begin
            count <= 0;
            state <= s_recv1;
            end
          end
        end
      s_ack2: begin
        Debug <= 8'b00000011;
        if (FilteredMouseClock == 1'b1) begin
          state <= s_ack1;
          end
        end
      // Receive data from mouse
      s_recv1: begin
        Debug <= 8'b00000100;
        packet[count] <= MouseData;

FIGURE 9.21 Behavioral Verilog code for a PS2 mouse controller. (continued on next 
page)
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        if (FilteredMouseClock == 1'b0) begin
          if (count < 33) begin
            count <= count + 1;
            state <= s_recv2;
            end
          else begin
            count <= 0;
            state <= s_recv1;
            end
          end
        end
      s_recv2: begin
        Debug <= 8'b00000101;
        if (FilteredMouseClock == 1'b1) begin
          state <= s_recv1;
          end
        end
      default: begin
        Debug <= 8'b11111111;
        end
      endcase
  end // always

// slight delay for the mouse clock
  always @ (posedge Clock) begin
    FilteredMouseClock <= MouseClock;
    end

endmodule

FIGURE 9.21 Behavioral Verilog code for a PS2 mouse controller.

FIGURE 9.22 Behavioral VHDL code for a PS2 mouse controller. (continued on next 
page)

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY MouseController IS PORT (
  Reset: IN STD_LOGIC;
  Clock: IN STD_LOGIC;
  MouseClock: INOUT STD_LOGIC;
  MouseData: INOUT STD_LOGIC;
  LeftButton,RightButton,MidButton: OUT STD_LOGIC;
  Byte1: OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
  Byte2: OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
  Byte3: OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
  Debug: OUT STD_LOGIC_VECTOR(7 DOWNTO 0)
  );
END MouseController;
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ARCHITECTURE Behavioral OF MouseController IS
  TYPE state_type IS (
      s_init1,s_init2,s_init3,
      s_cmd1,s_cmd2,
      s_cmd20,s_cmd21,
      s_ack1,s_ack2,
      s_recv1,s_recv2,
      s_end);
  SIGNAL state: state_type;

  SIGNAL packet: STD_LOGIC_VECTOR(43 DOWNTO 0);
  SIGNAL count: INTEGER RANGE 0 TO 64;
  SIGNAL command: STD_LOGIC_VECTOR(9 DOWNTO 0);
  SIGNAL FilteredMouseClock: STD_LOGIC;

BEGIN

  LeftButton <= packet(1);
  RightButton <= packet(2);
  MidButton <= packet(3);
  Byte1 <= packet(8 DOWNTO 1);
  Byte2 <= packet(19 DOWNTO 12);
  Byte3 <= packet(30 DOWNTO 23);

  FSM: PROCESS(Clock, Reset)
  BEGIN
    IF (Reset = '1') THEN
      MouseClock <= '0'; -- 1)
      MouseData <= '0';
      packet <= (OTHERS => '0');
      command <= "1011110100";  -- stop, odd parity, F4
      count <= 0;
      state <= s_init1;
      Debug <= "00000000";
    -- this FSM is driven by the DE2 clock signal
    ELSIF (Clock'EVENT AND Clock = '1') THEN
      CASE state is
      WHEN s_init1 => -- 2)
        MouseClock <= '0';
        MouseData <= '0';
        state <= s_init2;
      WHEN s_init2 => -- 3)
        MouseClock <= 'Z';
        MouseData <= '0';
        state <= s_init3;
      WHEN s_init3 => -- 4) wait for clock to go hi
        IF (FilteredMouseClock = '1') THEN
          count <= 0;
          state <= s_cmd1;
        END IF;

FIGURE 9.22 Behavioral VHDL code for a PS2 mouse controller. (continued on next 
page)
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      WHEN s_cmd1 => -- 5) send out command F4, LSB first
        MouseData <= command(count);
        IF (FilteredMouseClock = '0') THEN -- 6)
          IF (count < 10) THEN
            count <= count + 1;
            state <= s_cmd2;
          ELSE
            state <= s_cmd21;
          END IF;
        END IF;
      WHEN s_cmd2 => -- 7)
        IF (FilteredMouseClock = '1') THEN
          state <= s_cmd1;
        END IF;

      WHEN s_cmd21 => -- 9)
        Debug <= "00000001";
        MouseData <= 'Z'; -- release the data line
        IF (FilteredMouseClock = '1') THEN
          count <= 0;
          state <= s_ack1;
        END IF;

-- at this point, if you have a mouse with an IR instead 
-- of a mechanical ball, the LED on the bottom should be on

      -- get acknowledge message FA
      WHEN s_ack1 =>
        Debug <= "00000010";
        packet(count+22) <= MouseData;
        IF (FilteredMouseClock = '0') THEN
          IF (count < 11) THEN
            count <= count + 1;
            state <= s_ack2;
          ELSE
            count <= 0;
            state <= s_recv1;
          END IF;
        END IF;
      WHEN s_ack2 =>
        Debug <= "00000011";
        IF (FilteredMouseClock = '1') THEN
          state <= s_ack1;
        END IF;
      -- Receive data from mouse
      WHEN s_recv1 =>
        Debug <= "00000100";
        packet(count) <= MouseData;
        IF (FilteredMouseClock = '0') THEN

FIGURE 9.22 Behavioral VHDL code for a PS2 mouse controller. (continued on next 
page)
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9.5 RS-232 Controller for Bluetooth Communication
A Bluetooth connection often is used for wireless communication between two 
devices within a short range. For example, mobile phones often use a Bluetooth 
connection to wireless speakers and headphones. We will use the HC-06 Slave 
Bluetooth module to communicate wirelessly between a dedicated microprocessor 
controller that we will design, and a master Bluetooth host on a computer or a 
mobile phone. The Bluetooth module works like a RS-232 serial modem using a 
transmit and a receive lines, so in order to work with it, we need to understand how 
the RS-232 serial protocol works.

The RS-232 serial port was once a standard feature on personal computers to con-
nect peripheral devices, such as modem, mouse, and printers to the computer. In mod-
ern personal computers, the USB connection has replaced the RS-232. Nevertheless, 
because of its simplicity over the USB protocol, many RS-232 devices are still used, 

          IF (count < 33) THEN
            count <= count + 1;
            state <= s_recv2;
          ELSE
            count <= 0;
            state <= s_recv1;
          END IF;
        END IF;
      WHEN s_recv2 =>
        Debug <= "00000101";
        IF (FilteredMouseClock = '1') THEN
          state <= s_recv1;
        END IF;

      WHEN OTHERS =>
        Debug <= "11111111";
      END CASE;
    END IF;
  END PROCESS;

-- slight delay for the mouse clock
  PROCESS
  BEGIN
    WAIT UNTIL Clock'event and Clock = '1';
    FilteredMouseClock <= MouseClock;
  END PROCESS;

END Behavioral;

FIGURE 9.22 Behavioral VHDL code for a PS2 mouse controller.
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especially in industrial machines, scientific instruments, telecommunication equip-
ments, and, in our case, the Bluetooth module.

9.5.1 Theory of Operation—RS-232
The RS-232 protocol defines the communication between two devices. The main device, 
such as a computer, is referred to as the DTE (data terminal equipment), and the sec-
ondary peripheral device, such as a scientific instrument, is referred to as the DCE (data 
circuit-terminating equipment or originally defined as data communication equipment). 
The physical connector for the RS-232 has either 9 (DB-9) or 25 (DB-25) pins, but 
typically only three pins (pins 2, 3, and 5) are used to connect between the two com-
municating devices. Pins 2 and 3 are the data transmit and receive signals, and pin 5 is 
the ground. The designation of whether pin 2 is the transmit or receive signal depends 
on whether it is at the DTE or at the DCE end. On the DTE end, pin 2 is the receive 
(RxD) signal and pin 3 is the transmit (TxD) signal. On the DCE end, they are reversed. 
A typical connection between a computer or controller with a peripheral device is to 
connect pin 2 on one end with pin 3 on the other end, and vice versa. Pin 5 on both ends 
are connected together.

Unlike the PS2 connection, the RS-232 has no clock line to synchronize between 
the two devices. Instead, a fixed clock speed (referred to as the baud rate) must be 
predetermined and agreed upon between the two devices. Typical baud rates are: 9600, 
38400, and 115200. The baud rate is often thought of as the number of bits per second, 
but this is not always the case. Furthermore, the parity bit and the number of stop bits 
also must be predetermined and agreed upon between the two devices.

The parity bit is used for error checking. The RS-232 protocol allows for either 
even parity, odd parity, or no parity. For even and odd parity, the parity bit is set or 
reset depending on the total number of 1 bits in the 8-bit data. For an even parity, the 
total number of 1 bits in the 8-bit data plus the parity bit must be an even number. 
While for the odd parity, the total number of 1 bits must be an odd number. For exam-
ple, if  the eight data bits are 01001011 (which has four 1s), then the parity bit must be 
reset for even parity (to make the total number of 1 bits an even number), but set for 
odd parity (to make the total number of 1 bits an odd number). By checking the parity 
bit, the receiver can detect when some bits in the data transmission have been flipped. 
The careful reader might see that some errors are not detected. No parity simply means 
that a parity bit is not included in the transmission.

The RS-232 data transmission always begins with a start bit, and then is followed by 
eight data bits (with the least significant bit sent out first). After the last data bit (which 
is the most significant bit) is sent out, there will optionally be a parity bit, and one or 
more stop bits. Whether there is a parity bit or how many stop bits to use is predeter-
mined on and set up between the two communicating devices. The normal configuration 
used for RS-232 communication is reflected in the frequently used acronym “N81,” 
which refers to “no parity bit, 8 data bits, and 1 stop bit.” With this setup configuration, 
10 bits (one start bit, eight data bits, and one stop bit) are used per byte of data sent. 
The waveform for the eight data bits, 01001011 using N81, is shown in Figure 9.23.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-202



446 CHAPTER 9 InteRFACInG MICRoPRoCessoRs

9.5.2 Controller Design—RS-232
The RS-232 sender controller code written in Verilog is shown in Figure 9.24. The 
sender is basically a parallel-to-serial converter. When there is data to be sent, the 8-bit 
data is loaded into the data register and the start signal is asserted. The FSM, seeing the 
start signal asserted, will go to the s_start state to send out the start signal on the trans-
mit TxD line. It then goes to the s_send state to send out the eight data bits from the s_send state to send out the eight data bits from the s_send
8-bit data register at one bit per clock cycle starting with the least significant bit. For this 
to work correctly, the clock speed of the FSM must be running at the correct baud rate.

FIGURE 9.24 RS-232 sender controller code written in Verilog. (continued on next 
page)

// RS232 Sender
// Using N81
// The input clock must be set to the correct baud rate  
module RS232Send (
   input clk,
   input reset,
   input [7:0] data,   // 8-bit input data
   input start,        // start transmission
   output reg TxD,     // serial transmit output signal
   output reg done
);

   parameter s_idle=0, s_start=1, s_send=2, s_stop=3;
   reg [1:0] state;
   reg [3:0] count;

   always @(posedge clk, posedge reset) begin
    if (reset) begin
      TxD = 1;
      done = 0;
      state = s_idle;
    end else
      case (state)
      s_idle: begin    // idle

FIGURE 9.23 RS-232 waveform for the eight data bits 01001011 using the N81 setup.
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        TxD = 1;
        done = 0;
        count = 0;
        if (start) state = s_start;
        end
      s_start: begin   // Start bit
        TxD = 0;
        done = 0;
        count = 0;
        state = s_send;
        end

s_send: begin    
        // 8 data bits (least significant bit first)
        TxD = data[count];
        done = 0;
        // blocking assignment, so ordering matters
        count = count + 1;
        // test is AFTER the count increment
        if (count > 7) state = s_stop; 
        end
      default: begin   // Stop bit
        TxD = 1;
        done = 1;
        state = s_idle;
        end
    endcase
  end
endmodule

FIGURE 9.24 RS-232 sender controller code written in Verilog. 

The RS-232 receiver controller code written in VHDL is shown in Figure 9.25. 
Unlike the sender, the receiver is a simple serial-to-parallel converter. Initially, the FSM 
waits in state s_init for the start bit on the RxD line. The start bit is a transition from a 
1 to a 0. After receiving the start bit, the FSM enters the data receiving state s_receive
to receive the eight data bits. The incoming data is a serial bit stream coming in at the 
predetermined baud rate. If  the FSM clock is set at the correct baud rate, then all that 
the FSM has to do is to simply shift the incoming bits into the output register data at 
one bit per clock cycle. One important implementation note is that because the sender 
is sending out the bits on the rising edge of the clock, and if  the receiver receives the 
bits also on the rising edge of the clock, the receiver might get the previous bit value 
from before the rising edge because the two clocks might be slightly off. To safeguard 
this problem, it is best to receive the bit in the middle of the clock cycle instead of at 
the start of the clock cycle. One easy way to implement this is to receive the bits at the 
falling edge of the clock, which occurs in the middle of the clock cycle. After receiving 
the last data bit and the stop bit, a done signal is asserted to inform the controller that 
it has received a byte of data.
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FIGURE 9.25 RS-232 receiver controller code written in VHDL. (continued on next 
page)

-- RS232 Receiver
-- Using N81
-- The input clock must be set to the correct baud rate
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

Entity RS232Receive IS PORT (
  clk: IN STD_LOGIC;
  reset: IN STD_LOGIC;
  RxD: IN STD_LOGIC;  -- serial receive input signal
  data: OUT STD_LOGIC_VECTOR(7 DOWNTO 0);  -- 8-bit output data
  done: OUT STD_LOGIC);
END RS232Receive;

ARCHITECTURE Behavioral OF RS232Receive IS
  TYPE state_type IS (s_idle, s_receive, s_stop);
  SIGNAL state: state_type;
  SIGNAL count: INTEGER RANGE 0 TO 7;
BEGIN
  PROCESS(clk, reset)
  BEGIN
    IF (reset = '1') THEN
      data <= "00000000";
      done <= '0';
      state <= s_idle;
    -- receive bits at the falling clock edge
    ELSIF (clk'EVENT AND clk = '0') THEN
      CASE state IS
        WHEN s_idle =>
          IF (RxD = '0') THEN  -- wait for start bit
            data <= "00000000";
            done <= '0';
            count <= 0;
            state <= s_receive;
          END IF;
        WHEN s_receive =>
          data(count) <= RxD;
          done <= '0';
          -- non-blocking assignment, 
          -- so ordering doesn't matter
          count <= count + 1;
          -- test is BEFORE the count increment
          IF (count > 6) THEN  
            state <= s_stop;
          END IF;
        WHEN OTHERS =>  -- Stop bit
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          done <= '1';
          state <= s_idle;
      END CASE;
    END IF;
  END PROCESS;
END Behavioral;

FIGURE 9.25 RS-232 receiver controller code written in VHDL. 

9.5.3 Implementation
The HC-06 Bluetooth slave module can be paired with any Bluetooth master, such as 
a personal computer or a mobile phone. The maximum distance between the master 
and the slave is about 50 feet. The detailed operation of the Bluetooth communication 
is incorporated inside the module so there is no need for a user to understand how the 
actual Bluetooth communication works. The user needs to know only how to interface 
with the module using the RS-232 protocol because the module operates like a RS-232 
DCE device. The connection setup between a PC acting as the Bluetooth master, the 
HC-06 Bluetooth slave module, and the RS-232 controller is shown in Figure 9.26.

The default settings for the HC-06 Bluetooth module are as follows:

Baud: 9600

Protocol: N81 (no parity, eight data bits, and one stop bit)

Pairing name: linvor

Password: 1234

The module can be paired easily with a Windows PC by going to the Devices and 
Printers option in the Control Panel. Select Add a device. After a moment, your Bluetooth 
device (with the default name “linvor”) should show up. Select your device and continue. 
Enter the default password 1234 when it asks for it. Your Bluetooth device should now be 
in the list of installed devices. Bring up the Properties window for the device and note the 
COM port that is assigned to it. Before a connection is made, a LED on the Bluetooth 
module blinks, and after a connection is made, the LED stops blinking and stays on.

On the PC, a terminal emulator such as PuTTY1 can be used to communicate with 
the Bluetooth module. In the PuTTY configuration screen, select the Serial connection 
type and enter the correct COM port and baud speed. Characters sent from PuTTY 
should be seen on the 8-bit data out lines from the RS-232 receiver controller, while 
data sent from the RS-232 sender controller should be seen on the PuTTY terminal 
screen.

1 PuTTY is a free SSH and telnet client for Windows that you can download from the Web.
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9.6 Liquid-Crystal Display Controller
The 16 3 2 liquid-crystal display (LCD) shown in Figure 9.27 is a common display 
module that can be interfaced easily to a microcontroller. In this section, we will 
describe its basic operation, and design a dedicated microprocessor to control and 
display some sample characters on it. This discussion does not cover the full opera-
tion of the module. Refer to the manufacturer’s datasheet for the complete and detail 
description and operation of this LCD module.

9.6.1 Theory of Operation
The 16 3 2 LCD can display 16 characters on 2 lines, with each character being made 
up of a 5 3 7 dot matrix format. An internal IC controls its operations, such as how to 
turn on and off  the individual dots in each character matrix to form the various char-
acters, where to display the character, whether to show a cursor, whether to shift the 
characters, and other functions. Interfacing the LCD to a microprocessor is a matter of 
understanding the commands needed to communicate correctly with this internal IC. 

FIGURE 9.26 Connection setup between a PC acting as the Bluetooth master, the HC-06 
Bluetooth slave module, and the RS-232 controller.
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FIGURE 9.27 A 16 3 2 liquid-crystal display.
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Besides the power and ground connections, there are three control signals, RS, R/W, 
and Enable, and either eight or four data lines. If  only four data lines are used, then 
only the four upper bits (D7 to D4) are connected. That means each byte will be sent 
as two separate hex digits, one after the other, with the most significant hex digit sent 
first. The RS signal determines whether the subsequent data bits are to be interpreted 
as a command or data. If  RS 5 0, then the bits are a command, and if  RS 5 1, then 
the bits are data. The R/W signal is for read or write. It is a read operation if  R/W 5 1,
and a write operation if  R/W 5 0. The RS, R/W, and Data signals are latched into 
internal registers at the falling edge of the Enable signal.

The physical connections between the LCD and our dedicated microprocessor 
are shown in Figure 9.28. The connections are straightforward, with the three control 
signals and the eight data lines. If  the 4-bit data option is used, then the lower four 
bits (D3 to D0) are not connected. Now it is just a matter of designing our dedicated 
microprocessor to communicate correctly with the LCD and to send to it the necessary 
commands.

On power up, the LCD needs to be initialized with a sequence of commands as 
shown in Figure 9.29. This initialization procedure consists of a sequence of hex codes 
to tell the LCD whether the 4-bit or 8-bit data will be used, the size format of the LCD, 
whether to turn the display, cursor, increment mode, shifting and blinking on or off, 
and then to clear the display. The initial hex code of 38 is sent two or more times to 
ensure that the LCD module enters the 4-bit or 8-bit data mode successfully. This is 
followed by 0E hex to set up the display, 06 hex to set up the entry mode, and finally 
01 hex to clear the display.

After the initialization sequence, another command is sent to the LCD to position 
the cursor, and then the characters to be displayed are sent. In the HDL code shown 
in the next section, the words “HELLO WORLD” are displayed.

FIGURE 9.28 Connections between the LCD and our dedicated microprocessor.
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9.6.2 Controller Design
The dedicated microcontroller for controlling the LCD does not require a datapath. 
The FSM, written in behavioral Verilog and VHDL code are described in Figures 9.30 
and 9.31, respectively. The initial sequence of the FSM states follows exactly the ini-
tialization steps shown in Figure 9.29. Two states are needed for each hex code sent 
because the RS, R/W, and Data signals are latched on the falling edge of the Enable 
signal, so we need to toggle the Enable line each time. After the initialization sequence, 
the characters for the two words, “HELLO WORLD” are sent.

FIGURE 9.29 Sequence of initialization commands for the LCD.

Hex Code D7 D6 D5 D4 D3 D2 D1 D0 Instruction

38 0 0 1 1 1 0 0 0

38 0 0 1 1 1 0 0 0

Step

1

2

0 0 0 0 0 0 0 1

Clear Display

015

0 0 0 0 0 1 1 0

Entry Mode Set
Increment
No Shift

064

0 0 0 0 1 1 1 0

Display Control
Display On
Cursor On
Blinking Off

0E3

Function Set
8-bit Data Width
2 Line
537 Dot Matrix Format

38 0 0 1 1 1 0 0 00

Function Set

Function Set
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FIGURE 9.30 Behavioral Verilog code for a 16 3 2 LCD controller. (continued on next 
page)

module lcd_controller (
  input Clock, Reset,
  output reg [7:0] LCD_DATA,
  output reg LCD_RW, LCD_EN, LCD_RS,
  output LCD_ON, LCD_BLON
    );

  reg [3:0] state;
  reg [7:0] initcode[0:5];
  reg [7:0] line1[0:15];
  integer count;

  initial begin
    // LCD initialization sequence codes
    initcode[0] = 8'h38;  // Init three times
    initcode[1] = 8'h38;
    initcode[2] = 8'h38;
    //Display control: Display ON; Cursor ON; Blink OFF

initcode[3] = 8'h0E; 
    // Entry mode set: Increment One; No Shift

initcode[4] = 8'h06;  
    initcode[5] = 8'h01;  // Display clear
    // HELLO WORLD
    line1[0] = 8'h20;
    line1[1] = 8'h20;
    line1[2] = 8'h48;
    line1[3] = 8'h45;
    line1[4] = 8'h4C;
    line1[5] = 8'h4C;
    line1[6] = 8'h4F;
    line1[7] = 8'h20;
    line1[8] = 8'h20;
    line1[9] = 8'h57;
    line1[10] = 8'h4F;
    line1[11] = 8'h52;
    line1[12] = 8'h4C;
    line1[13] = 8'h44;
    line1[14] = 8'h20;
    line1[15] = 8'h20;
  end

  assign LCD_ON = 1'b1;
  assign LCD_BLON = 1'b0;

  always @ (posedge Clock, posedge Reset) begin
    if (Reset) begin
      count <= 0;
      state <= 4'b0000;
      end
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    else
      case (state)
      // LCD initialization sequence

// The LCD_DATA is written to the LCD  
// at the falling edge of the E line
// therefore we need to toggle the E  
// line for each data write

      4'b0000: begin
        LCD_DATA <= initcode[count];
        LCD_EN <= 1'b1;  // EN=1;
        LCD_RS <= 1'b0;  // RS=0; an instruction
        LCD_RW <= 1'b0;  // R/W'=0; write
        state <= 4'b0001;
        end
      4'b0001: begin
        LCD_EN <= 1'b0;  // set EN=0;
        count <= count + 1;
        if (count+1 < 6)
          state <= 4'b0000;
        else
          state <= 4'b0010;
        end
      // move cursor to first line of display
      4'b0010: begin
        // x80 is address of 1st position on first line

LCD_DATA <= 8'h80;  
      // xBF is address of 1st position on second line

//LCD_DATA <= 8'hBF;  
        LCD_EN <= 1'b1;  // EN=1;
        LCD_RS <= 1'b0;  // RS=0; an instruction
        LCD_RW <= 1'b0;  // R/W'=0; write
        state <= 4'b0011;
        end
      4'b0011: begin
        LCD_EN <= 1'b0;  // EN=0; toggle EN
        count <= 0;
        state <= 4'b0100;
        end
      // write 1st line text
      4'b0100: begin
        LCD_DATA <= line1[count];
        LCD_EN <= 1'b1;  // EN=1;
        LCD_RS <= 1'b1;  // RS=1; data
        LCD_RW <= 1'b0;  // R/W'=0; write
        state <= 4'b0101;
        end

FIGURE 9.30 Behavioral Verilog code for a 16 3 2 LCD controller. (continued on next 
page)
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      4'b0101: begin
        LCD_EN <= 1'b0;  // EN=0; toggle EN
        count <= count + 1;
        if (count+1 < 16)
          state <= 4'b0100;
        else
          state <= 4'b1010;
        end
      4'b1010: begin
        state <= 4'b1010;
        end
      default: begin
        state <= 4'b1010;
        end
      endcase
  end // always
endmodule

FIGURE 9.30 Behavioral Verilog code for a 16 3 2 LCD controller. 

FIGURE 9.31 Behavioral VHDL code for a 16 3 2 LCD controller. (continued on next 
page)

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY lcd_controller IS
PORT (
  Clock, Reset: IN STD_LOGIC;
  LCD_DATA: OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
  LCD_RW, LCD_EN, LCD_RS: OUT STD_LOGIC;
  LCD_ON, LCD_BLON: OUT STD_LOGIC);
END lcd_controller;

ARCHITECTURE FSMD OF lcd_controller IS
  TYPE state_type IS (s1,s2,s3,s4,s10,s11,s12,s13,s20,s21,s22, 
    s23,s24);
  SIGNAL state: state_type;
  SUBTYPE ascii IS STD_LOGIC_VECTOR(7 DOWNTO 0);
  TYPE charArray IS array(0 to 15) OF ascii;
  TYPE initArray IS array(0 to 5) OF ascii;
  CONSTANT initcode: initArray := (x"38",x"38",x"38",x"0E", 
    x"06",x"01");
  -- HELLO WORLD
  CONSTANT line1: charArray := (x"20",x"20",x"48",x"45",  
    x"4C",x"4C",x"4F",x"20",x"20",x"57",x"4F",x"52",x"4C",  
    x"44",x"20",x"20");
  SIGNAL count: INTEGER;

BEGIN

  LCD_ON <= '1';
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  LCD_BLON <= '0';

  lcd_control: PROCESS(Clock, Reset)
  BEGIN
    IF (Reset = '1') THEN
      count <= 0;
      state <= s1;
    ELSIF (Clock'EVENT AND Clock = '1') THEN
      CASE state IS
      -- LCD initialization sequence

-- The LCD_DATA is written to the LCD  
-- at the falling edge of the E line
-- therefore we need to toggle the E  
-- line for each data write

      WHEN s1 =>
        LCD_DATA <= initcode(count);
        LCD_EN <= '1';  -- EN=1;
        LCD_RS <= '0';  -- RS=0; an instruction
        LCD_RW <= '0';  -- R/W'=0; write
        state <= s2;
      WHEN s2 =>
        LCD_EN <= '0';  -- set EN=0;
        count <= count + 1;
        IF (count + 1 < 6) THEN
          state <= s1;
        ELSE
          state <= s10;
        END IF;

      -- move cursor to first line of display
      WHEN s10 =>

LCD_DATA <= x"80";  -- x80 is address of 1st position  
-- on first line

--LCD_DATA <= x"BF";  -- xBF is address of 1st position  
--on second line

        LCD_EN <= '1';  -- EN=1;
        LCD_RS <= '0';  -- RS=0; an instruction
        LCD_RW <= '0';  -- R/W'=0; write
        state <= s11;
      WHEN s11 =>
        LCD_EN <= '0';  -- EN=0; toggle EN
        count <= 0;
        state <= s12;

      -- write 1st line text
      WHEN s12 =>
        LCD_DATA <= line1(count);
        LCD_EN <= '1';  -- EN=1;
        LCD_RS <= '1';  -- RS=1; data

FIGURE 9.31 Behavioral VHDL code for a 16 3 2 LCD controller. (continued on next 
page)
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        LCD_RW <= '0';  -- R/W'=0; write
        state <= s13;
      WHEN s13 =>
        LCD_EN <= '0';  -- EN=0; toggle EN
        count <= count + 1;
        IF (count + 1 < 16) THEN
          state <= s12;
        ELSE
          state <= s20;
        END IF;
      WHEN s20 =>
        state <= s20;
      WHEN OTHERS =>
        state <= s20;
      END CASE;
    END IF;
  END PROCESS;
END FSMD;

FIGURE 9.31 Behavioral VHDL code for a 16 3 2 LCD controller. 

9.7 VGA Monitor Controller
In this section, we will design and implement a microcontroller to control a VGA mon-
itor. This controller will allow simple graphics to be displayed on the VGA monitor.

9.7.1 Theory of Operation
The monitor screen for a low-resolution standard VGA format contains 
640 columns 3 480 rows of  picture elements called pixels, as shown in Figure 9.32. 
VGA monitors with higher resolutions have more columns and rows, but the idea is 
the same. An image is displayed on the screen by turning on or off  individual pixels. 
Turning on just one pixel doesn’t represent much, but when many pixels are turned 
on at the same time, the combined pixels portray an image. The monitor continuously 
scans through the entire screen turning on or off  one pixel at a time very quickly. 
Although only one pixel is turned on at any one time, you get the impression that all of 
the pixels are on at the same time because the monitor is scanning through the screen 
very fast.

Figure 9.32 shows that the scanning starts from row 0, column 0 at the top left 
corner and moves to the right until it reaches the last column in the row. When the 
scan reaches the end of a row, it retraces to the beginning of the next row. This repeats 
until the scan reaches the bottom row. When the scan reaches the last pixel at the bot-
tom-right corner of the screen, it retraces back to the top-left corner of the screen and 
repeats the scanning process again. In order to reduce flicker on the screen, the entire 
screen must be scanned 60 times per second or higher. During the horizontal and the 
vertical retraces, all of the pixels are turned off.
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The VGA monitor is controlled by five signals: red, green, blue, horizontal syn-
chronization, and vertical synchronization. The three color signals, referred to collec-
tively as the RGB signal, are used to control the color of a pixel at a given location 
on the screen. These three color signals can be turned on or off  individually, therefore 
each pixel can display only one of eight colors. Newer VGA monitors use more bits 
per color signal, thus resulting in many more color combinations. The horizontal and 
vertical synchronization signals are used to control the timing of the scan rate. The 
horizontal synchronization signal determines the time to scan a row, while the vertical 
synchronization signal determines the time to scan the entire screen. By manipulating 
these five signals, images are formed on the monitor screen.

The horizontal and vertical synchronization signals timing diagram is shown in 
Figure 9.33. When inactive, both synchronization signals are at a 1. The start of a row 
scan begins with the horizontal synchronization signal going low for 3.77 ms, as shown 
in region B in Figure 9.33. This is followed by a B in Figure 9.33. This is followed by a B 1.79 ms high on the signal, as shown 
in region C. Next, the data for the three color signals are sent (one pixel at a time) for 
the 640 columns while the horizontal signal remains high, as shown in region D for 
25.42 ms. Finally, after the last column pixel, there is another 0.79 ms of inactivity on 
the RGB signal lines while the horizontal signal continues at a high, as shown in region 
E, before the horizontal synchronization signal goes low again for the next row scan. 
The total time to complete one row scan is 31.77 ms.

The timing for the vertical synchronization signal is analogous to the horizontal 
synchronization signal. The 64 ms active-low vertical synchronization signal resets the 
scan to the top-left corner of the screen, as shown in region P, followed by a 1020 ms

FIGURE 9.32 VGA monitor with 640 columns 3 480 rows. The scan starts from 
row 0, column 0 and moves to the right and down until row 479, column 639.
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high on the signal as shown in region Q. Next, there are the 480 row scans of 31.77 ms
each, giving a total of 15250 ms, as shown in region R. Finally, after the last row scan, 
there is another 450 ms, as shown in region S, before the vertical synchronization signal 
goes low again to start another complete screen scan starting at the top-left corner. The 
total time to complete one complete scan of the screen is 16784 ms.

In order to get the monitor to operate properly, we simply have to get the hori-
zontal and vertical synchronization signals timing correct, and then send out the RGB 
data for each pixel at the given column and row position. It turns out that it is fairly 
simple to get the correct timing for the two synchronization signals if  we use the cor-
rect clock frequency of 25.175 MHz. (A faster clock frequency needs to be used for 
higher resolution monitors.) For the 25.175 MHz clock frequency, the clock period is 
1 / 25.175 3 106, which is about 0.0397 ms per clock cycle. For region B in the horizonB in the horizonB -
tal synchronization signal, we need 3.77 ms, which is about 3.77 / 0.0397 5 95 clock 
cycles. For region C, we need 1.79 ms, which is about 45 clock cycles. Similarly, we 
need 640 clock cycles for region D for the 640 columns of pixels, and 20 clock cycles 
for region E. The total number of  clock cycles needed for each row scan is, there-
fore, 800 clock cycles. Notice that with a 25.175 MHz clock, region D requires exactly 
640 cycles, giving us the 640 columns per row that we want. Therefore, for higher 
resolution monitors, a faster clock speed will be needed because the total time for 
region D remains fixed at 25.42 ms.

The vertical timings are multiples of the horizontal cycles. For example, region P
is 64 ms, which is about two horizontal cycles 12 3 31.77 2 , and region Q is 32 (1020 / 
31.77) cycles. The calculation for region R is 15250 ms / 31.77 ms 5 480. Of course, it 
has to be exactly 480 times, because we need to have the 480 rows per screen. Finally, 
region S requires 14 cycles.S requires 14 cycles.S

FIGURE 9.33 Horizontal and vertical synchronization signals timing diagram.
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In addition to generating the correct horizontal and vertical synchronization sig-
nals, the circuit needs to keep track of the current column within the D region, and the 
current row within the R region of the scan in order to know when to turn on or off  a 
specific pixel. To make a particular pixel green, for example, you need to test the values 
of the column and row counts. If  they are equal to the location of the pixel that you 
want to turn on, then you assert the green signal, and that pixel will be green.

9.7.2 Controller Design
To get the horizontal and vertical synchronization timing correct, we can design a 
FSM with 800 states running at a clock speed of 25.175 MHz. For the first 95 states, 
we will output a 0 for the horizontal synchronization signal H_Sync. For the next 
45 1 640 1 20 5 705 states, we will output a 1 for H_Sync. The problem with this, 
however, is that it is difficult to manually derive the circuit for an 800-state FSM. A 
simple solution around this difficulty is to use just two states: one for when H_Sync is 
a 0 in region B and one for when it is a 1 in regions B and one for when it is a 1 in regions B C, D, and E. We then use a counter 
that runs at the same clock speed as the FSM to keep count of how many times we 
have been in a state. For the first state, we will stay there for 95 counts before going to 
the next state, and for the second state, we will stay there for 705 counts before going 
back to the first state. In the first state, we will output a 0 for H_Sync, and in the second 
state, we will output a 1 for H_Sync.

To help keep track of when the three color signals can be enabled, we will generate 
an additional H_Data_on signal the same way we generated the H_Sync signal. The 
H_Data_on signal is asserted in region D, and de-asserted in regions B, C, and E. Thus, 
for 640 counts of repeating in one state for region D, we will set H_Data_on to a 1 and 
to a 0 in a second state for the remaining 160 counts for regions B, C, and E.

Combining the two states for H_Sync and two states for H_Data_on together results 
in the final state diagram for the horizontal synchronization timing, as shown in Figure 
9.34(a). This FSM has four states corresponding to the four regions B, C, D, and E. The 
counter initially is set to 0 and increments by 1 at every clock cycle. In state H_B for H_B for H_B
region B, the FSM outputs a 0 for both H_Data_on and H_Sync. The FSM will stay in 
state H_B for 95 counts. The condition H_B for 95 counts. The condition H_B 1H_cnt 5 B 2  checks to see whether the counter 
is equal to B, where B is equal to 95. When the count is equal to 95, the FSM goes to state B is equal to 95. When the count is equal to 95, the FSM goes to state B
H_C, which corresponds to region C. In state H_C, the FSM outputs a 0 for H_Data_on
and a 1 for H_Sync for 45 counts (i.e., until H_cnt is B 1 C 5 95 1 45 5 140). When 
H_cnt reaches 140, the FSM goes to state H_cnt reaches 140, the FSM goes to state H_cnt H_D, and outputs a 1 for both H_Data_on and 
H_Sync. When H_cnt reaches B 1 C 1 D 5 95 1 45 1 640 5 780, the FSM goes to 
state H_E, and outputs a 0 for H_Data_on and a 1 for H_Sync. The FSM stays in state 
H_E for 20 more counts until H_E for 20 more counts until H_E H_cnt 5 B 1 C 1 D 1 E 5 95 1 45 1 640 1 20 5 800,
and then it goes back to state H_B. When the FSM goes back to state H_B, H_cnt is 
reset back to 0, and the process starts over again for the next row scan.

The vertical synchronization timing is analogous to the horizontal synchroniza-
tion timing, so we can do the same thing using a second counter and a second FSM. 
This second vertical FSM is identical to the horizontal FSM. The only difference is 
in the timing of the clock speed. Looking at the times for each region in the vertical 
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FIGURE 9.34 Controller for the VGA monitor: (a) state diagram for horizontal 
synchronization; (b) state diagram for vertical synchronization; (c) next-state table 
for horizontal synchronization; (d) next-state table for vertical synchronization; (e) 
output table; (f) FSM circuit for both the horizontal and vertical synchronization; (g) 
horizontal synchronization counter; (h) vertical synchronization counter; (i) complete 
circuit for the VGA controller. (continued on next page)
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FIGURE 9.34 Controller for the VGA monitor: (a) state diagram for horizontal synchronization; 
(b) state diagram for vertical synchronization; (c) next-state table for horizontal synchronization; 
(d) next-state table for vertical synchronization; (e) output table; (f) FSM circuit for both the  
horizontal and vertical synchronization; (g) horizontal synchronization counter; (h) vertical  
synchronization counter; (i) complete circuit for the VGA controller. (continued on next page)
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FIGURE 9.34 Controller for the VGA monitor: (a) state diagram for horizontal synchronization; 
(b) state diagram for vertical synchronization; (c) next-state table for horizontal synchronization; 
(d) next-state table for vertical synchronization; (e) output table; (f) FSM circuit for both the  
horizontal and vertical synchronization; (g) horizontal synchronization counter; (h) vertical  
synchronization counter; (i) complete circuit for the VGA controller. (continued on next page)
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FIGURE 9.34 Controller for the VGA monitor: (a) state diagram for horizontal synchronization; 
(b) state diagram for vertical synchronization; (c) next-state table for horizontal synchronization; 
(d) next-state table for vertical synchronization; (e) output table; (f) FSM circuit for both the  

synchronization counter; (i) complete circuit for the VGA controller.
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synchronization signal in Figure 9.33, we see that the 64 ms for region P is approxiP is approxiP -
mately two times the total horizontal scan time of 31.77 ms each. The 1020 ms for region 
Q is approximately 32 horizontal scan time 11020/31.77 < 32 2 . For region R, it is 480 
horizontal cycles, and for region S, it is approximately 14 horizontal cycles. Therefore, 
the clock for both the vertical counter and the vertical FSM can be derived from the 
horizontal counter. The vertical clock ticks once for every 800 counts of the horizontal 
clock. The state diagram for the vertical timing is shown in Figure 9.34(b).

The next-state tables and next-state equations for the horizontal FSM and the 
vertical FSM are shown in Figures 9.34(c) and (d), respectively. Note that except for 
the four count conditions, the two tables are the same. Therefore, we can use the same 
circuit for both FSMs. The only difference is that their status signal inputs for the four 
count conditions come from different counter comparators. The output table is also the 
same for both FSMs and is shown in Figure 9.34(e). There are only two output signals 
to be generated: H_Data_on and H_Sync for the horizontal FSM, and V_Data_on and 
V_Sync for the vertical FSM. Finally, the FSM circuit is shown in Figure 9.34(f). We 
will need to use two instances of this FSM circuit: one for the horizontal FSM and one 
for the vertical FSM. The clock for the horizontal FSM is the 25.175 MHz clock, while 
the clock for the vertical FSM is derived from the Rollover signal from the horizontal 
FSM counter.

The four status signals for the FSM, BorP, BCorPQ, BCDorPQR, and 
BCDEorPQRS, are generated from two counters: a horizontal counter and a ver-
tical counter. The horizontal counter, HCount, with the four comparators for 
1H_cnt 5 B 2 , 1H_cnt 5 B 1 C 2 , 1H_cnt 5 B 1 C 1 D 2 , and 1H_cnt 5 B 1 C 1 D
1 E 2 ,  is shown in Figure 9.34(g). A 10-bit counter is needed to count from 0 up to 800. 
A 10-input AND gate is used for each of the four comparators. The inputs to each AND

gate is set to the equivalent binary value for B 5 95, B 1 C 5 95 1 45 5 140, B 1
C 1 D 5 95 1 45 1 640 5 780, and B 1 C 1 D 1 E 5 95 1 45 1 640 1 20 5 800,
respectively. The counter cycles back to 0 by asserting the Load line when the count Load line when the count Load
reaches 800 and loading in the value 0. The clock signal for this horizontal counter is 
the 25.175 MHz clock. The output from the comparator 1H_cnt 5 800 2  is the counter 
rollover signal Rollover, and is used as the vertical clock signal for the vertical counter, 
the vertical FSM, and the row counter.

The vertical counter, VCount, with the four comparators for 1V_cnt 5 P 2 ,
1V_cnt 5 P 1 Q 2 , 1V_cnt 5 P 1 Q 1 R 2 , and 1V_cnt 5 P 1 Q 1 R 1 S 2 , is  shown 

in Figure 9.34(h). The circuit for this counter is just like the horizontal counter, except 
that the comparator values are different, and we do not need to output a rollover clock 
signal. The clock for this counter is the Rollover signal from the horizontal counter.

The complete VGA monitor controller circuit is shown in Figure 9.34(i). To make 
sure that the three RGB signals to the monitor are valid, they have to be turned on (if  
needed) only in regions D and R. Therefore, the three color output signals Red_out, 
Green_out, and Blue_out are ANDed with H_Data_on and V_Data_on. For example, if  
the input Red signal is a 1, the output Red signal is a 1, the output Red Red_out signal is a 1 only when the scan is within 
the regions D and R.

Finally, in order to turn on a specific pixel, the circuit needs to keep track of the 
current column within the D region and the current row within the R region of the scan. 
Two additional counters, Column and Row, are used for this purpose. Because they 
need to count only when the scan is in regions D and R, respectively, the Count input 
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for the Column counter is asserted by the H_Data_on signal, while the Count input for 
the Row counter is asserted by the V_Data_on signal. Once the counts reach 640 and 
480, respectively, they will have gone passed these two regions, and so the counters will 
not count. They will have to be reset to 0 anytime before the scan reaches the begin-
ning of these two regions again. In the circuit, the two Load lines are asserted when Load lines are asserted when Load
the two respective counters roll back to 0. Finally, the Column counter clock is from 
the 25.175 MHz source, and the Row counter clock is from the Rollover clock signal 
derived from the horizontal counter.

9.7.3 Implementation
To display something on the screen, you simply have to check the current column and 
row values that the scan is at, and then assert the RGB signal if  you want the pixel at 
that location to be turned on. For example, if  you simply assert the Red signal continRed signal continRed -
uously, all of the pixels will be red, and you will see the entire screen being red. On the 
other hand, if  you just want the first row of pixels to be red, then you need to assert 
the Red signal only when the Red signal only when the Red Row counter is 0. To get a red border around the screen, 
you would assert the Red signal when Red signal when Red Row 5 0, or Row 5 639, or CoCoC lulul mn 5 0, or 
CoCoC lulul mn 5 479. Figure 9.35 shows the circuit to draw a red border around the entire 
screen using the VGA controller circuit from Figure 9.34(i).

Typically, a two-dimensional video memory stores the RGB color data for every 
pixel. The column and row counts then are used as the address to this video memory. 
The content of the memory location is the value to be set for the RGB signals.

To get more colors per pixel, more bits are used for each of the three color signals. 
For example, on the Altera DE1 FPGA development board, four bits are used for each 

FIGURE 9.35 Circuit using the VGA controller to generate a red border around the entire screen.
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of the three colors, while on the DE2 board, 10 bits are used. On the Xilinx Spartan 
3E board only one bit is used for each of the three colors, while on the XUP Virtex-II 
Pro board, eight bits are used. Regardless of how many bits are used for each of the 
three colors, there are always only three lines connecting to the monitor because the 
three RGB color signals are actually analog signals. So a digital-to-analog converter is 
needed between the output of the controller to the VGA input.

For higher resolution monitors, a faster clock speed is needed. The following table 
shows the timing specifications for two other standard VGA resolutions.

Resolution 
H 3 V

Pixel 
clock 

(MHz)

B
(ms/ 

clocks)

C
(ms/ 

clocks)

D
(ms/ 

clocks)

E
(ms/ 

clocks)

PP
(ms/
lines)

Q
(ms/
lines)

R 
(ms/ 
lines)

SS
(ms/
lines)

8003600 40 3.2/128 2.2/88 20/800 1/40 0.11/4 0.61/23 15.84/600 0.03/1

10243768 65 2.09/136 2.46/160 15.75/1024 0.37/24 0.12/6 0.60/29 15.88/768 0.06/3

9.8 A/D Controller for Temperature Sensor
Many sensory devices such as the light sensor, temperature sensor, and pressure sensor 
output an analog signal rather than a digital signal. In order for a microprocessor to 
process analog signals, an analog-to-digital (A/D) converter must be used to convert 
the analog signal to digital signal. In this section, we will design a microcontroller to 
interface with an A/D converter to read values from an analog temperature sensor.

Different A/D converter chips have different functions, precisions, packaging, 
and interface. The A/D converter chip that we will use is the National Semiconductor 
ADC0832, which is an 8-bit A/D converter chip that interfaces with a microcontroller 
using a serial data link. Because of this, the A/D converter can be located at the analog 
signal source and through just a few wires can communicate with the microprocessor 
with a highly noise immune serial bit stream. This greatly minimizes circuitry to main-
tain accuracy of the analog signal, which otherwise is most susceptible to noise pickup.

9.8.1 Theory of Operation
The ADC0832 8-bit A/D converter chip interfaces with a microcontroller using a serial 
data link. Either three or four lines are necessary to connect and communicate between 
the microcontroller and the ADC chip. For our example, we will use four lines, of 
which three are inputs: clock (CLK), chip select (CSN), and data input (DI), and one 
is output: data out (DO).

The active-low CSN signal line enables the ADC chip. Commands from the con-
troller are sent to the ADC via the DI signal line, and the converted digital data from 
the ADC is sent to the controller via the DO signal line. The clock synchronizes the 
data transmission on both the DI and DO lines. The interface between the microcon-
troller and the ADC chip is shown in Figure 9.36.
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An analog to digital conversion is initiated by first pulling the chip select (CSN) 
line low, and remains low for the entire conversion process. The ADC chip then waits 
for the start bit and command. A clock is generated by the microcontroller (if  not exter-
nally provided continuously as shown by the dotted line connection in Figure 9.36) on 
the clock (CLK) input line. A 1 start bit followed by a 2-bit MUX address command 
is sent to the ADC on the data in (DI) line on each rising edge of the clock. The first 
MUX address command bit selects between the single-ended or differential analog input 
options. A 1 bit selects the single-ended option, which uses a ground referenced input. 
After selecting the single-ended option, the second bit selects which of the chip’s two 
input channels to use. A 0 selects channel 0 on the chip, and a 1 selects channel 1. The 
data out (DO) line now comes out of tri-state, and the converted digital data, starting 
with the most significant bit, is sent out on this line to the microcontroller. After this, 
the same converted digital data, this time starting with the least significant bit, is sent 
to the microcontroller on the DO line. At the end of the data transmission, the CSN 
line needs to be de-asserted before starting another conversion. The timing diagram for 
the communication between the microcontroller and the A/D converter chip is shown 
in Figure 9.37.

FIGURE 9.36 Serial data link between the microcontroller implemented in an FPGA and the A/D 
converter chip.
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FIGURE 9.37 Timing diagram for communicating between the microcontroller and the A/D  
converter chip.
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9.8.2 Controller Design
We will write HDL code using the FSMD model to describe the controller for the A/D 
converter chip. Figure 9.38 shows the Verilog code for this FSM controller. The state 
transitions and output signals generated in the FSM code follow very closely to the 
timing diagram shown in Figure 9.37.

The input clock speed for this FSM is not critical. The FSM generates the output 
clock (CLK) signal by toggling CLK at each state transition to synchronize the data 
transmission between it and the ADC chip.

Figure 9.39 shows the VHDL code for the A/D converter controller. It is quite 
similar to the Verilog version shown in Figure 9.38, except that instead of having the 
FSM generate a separate synchronizing CLK signal, it uses the same external clock 
signal to drive both the FSM and the ADC chip. Therefore, this FSM does not need 
to output a second CLK signal. The clock connection for this FSM is the dotted line 
shown in Figure 9.36. The sending of the command and the receiving of the converted 
data is done on the falling edge of the clock.

FIGURE 9.38 Behavioral Verilog code for the A/D converter controller. (continued on 
next page)

module ADC_FSM
(
  input Clock, Reset,
  input DO,
  output reg CLK, CSN, DI,
  output reg [7:0] DataOut,
  output reg DataReady
);
  reg [7:0] MSBF_Buffer, LSBF_Buffer;
  reg [2:0] index;
  reg [3:0] state;

  always @ (posedge Clock or posedge Reset) begin
    if (Reset) begin
      CSN <= 1;
      CLK <= 0;
      DI <= 1; // don't care
      DataReady <= 0;
      state <= 4'b0000;
    end else begin
      case (state)
        4'b0000: begin
          CSN <= 0;
          CLK <= 0;
          DI <= 1; // start bit
          DataReady <= 0;
          state <= 4'b0001;
          end
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        4'b0001: begin
          CSN <= 0;
          CLK <= 1;
          DI <= 1;
          DataReady <= 0;
          state <= 4'b0010;
          end
        4'b0010: begin
          CLK <= 0;
          DI <= 1; // set SGL/DIF'
          state <= 4'b0011;
          end
        4'b0011: begin
          CLK <= 1;
          state <= 4'b0100;
          end
        4'b0100: begin
          CLK <= 0;
          DI <= 0; // set ODD/SGN'; 0 = channel 0, 1 = channel 1
          state <= 4'b0101;
          end
        4'b0101: begin
          CLK <= 1;
          state <= 4'b0110;
          end
        4'b0110: begin
          CLK <= 0; // MUX settling time
          state <= 4'b0111;
          end
        4'b0111: begin
          CLK <= 1;
          index <= 7;
          state <= 4'b1000;
          end
        4'b1000: begin
          CLK <= 0;
          state <= 4'b1001;
          end
        4'b1001: begin
          CLK <= 1;
          // receive 8 data bits, MSB first
          MSBF_Buffer[index] <= DO;        
          if (index > 0) begin

FIGURE 9.38 Behavioral Verilog code for the A/D converter controller. (continued on 
next page)
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            index <= index - 1;
            state <= 4'b1000;
          end else begin
            // receive 8 data bits, LSB first
            LSBF_Buffer[index] <= DO;
            index <= index + 1;
            state <= 4'b1010;
            end
          end
        4'b1010: begin
          CLK <= 0;
          state <= 4'b1011;
          end
        4'b1011: begin
          CLK <= 1;
          LSBF_Buffer[index] <= DO;
          if (index < 7) begin
            index <= index + 1;
            state <= 4'b1010;
          end else
            state <= 4'b1100;
          end
        4'b1100: begin
          CLK <= 1;
          CSN <= 1;
          if (MSBF_Buffer == LSBF_Buffer) begin
            DataOut <= MSBF_Buffer;
            DataReady <= 1;
          end else begin
            DataOut <= 8'b00000000;
            DataReady <= 0;
            end
          state <= 4'b0000;
          end
        default: begin
          state <= 4'b0000;
        end
      endcase
    end // else
  end // always
endmodule

FIGURE 9.38 Behavioral Verilog code for the A/D converter controller. 
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LIBRARY IEEE; 
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY ADC_FSM IS PORT (
    Clock   : IN STD_LOGIC;
    Reset   : IN STD_LOGIC;
    DO      : IN STD_LOGIC;
    CSN     : OUT STD_LOGIC;
    DI      : OUT STD_LOGIC;
    DataOut : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
    DataReady : OUT STD_LOGIC
  );
END ENTITY;

ARCHITECTURE FSM OF ADC_FSM IS
  TYPE state_type IS (s0, s1, s2, s3, s4, s5, s6, s7);
  SIGNAL state : state_type;

  SIGNAL MSBF_Buffer: STD_LOGIC_VECTOR(7 DOWNTO 0);
  SIGNAL LSBF_Buffer: STD_LOGIC_VECTOR(7 DOWNTO 0);
  SIGNAL index: INTEGER;

BEGIN
  PROCESS (Clock, Reset)
  BEGIN
    IF (Reset = '1') THEN
      CSN <= '1';
      DataReady <= '0';
      index <= 0;
      state <= s0;
    ELSIF (Clock'EVENT AND Clock = '0') THEN
      CASE state IS
        WHEN s0 =>
          CSN <= '0';
          DI <= '1'; -- start bit
          DataReady <= '0';
          state <= s1;
        WHEN s1 =>
          CSN <= '0';
          DI <= '1'; -- set SGL/DIF'
          DataReady <= '0';
          state <= s2;
        WHEN s2 =>
          CSN <= '0';

DI <= '0'; -- set ODD/SIGN; 0 = channel 0, 1 = channel 1
          DataReady <= '0';
          state <= s3;
        WHEN s3 => -- wait for one clock for Mux setting
          CSN <= '0';

FIGURE 9.39 Behavioral VHDL code for the A/D converter controller. (continued on 
next page)
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          DataReady <= '0';
          state <= s4;
        WHEN s4=> -- wait for one clock for Mux setting
          CSN <= '0';
          DataReady <= '0';
          index <= 7;
          state <= s5;
        WHEN s5 =>
          CSN <= '0';
          DataReady <= '0';
          IF (index > 0) THEN
            MSBF_Buffer(index) <= DO;
            index <= index - 1;
            state <= s5;
          ELSE
            MSBF_Buffer(index) <= DO;
            LSBF_Buffer(index) <= DO;
            index <= 1;
            state <= s6;
          END IF ;
        WHEN s6 =>
          CSN <= '0';
          DataReady <= '0';
          IF (index <= 7) THEN
            LSBF_Buffer(index) <= DO;
            index <= index + 1;
            state <= s6;
          ELSE
            state <= s7;
          END IF ;
        WHEN s7 =>
          CSN <= '1';
          DataReady <= '1';

          DataOut(0) <= MSBF_Buffer(0);
          DataOut(1) <= MSBF_Buffer(1);
          DataOut(2) <= MSBF_Buffer(2);
          DataOut(3) <= MSBF_Buffer(3);
          DataOut(4) <= MSBF_Buffer(4);
          DataOut(5) <= MSBF_Buffer(5);
          DataOut(6) <= MSBF_Buffer(6);
          DataOut(7) <= MSBF_Buffer(7);
          state <= s0;
        WHEN OTHERS =>
      END case;
    END IF ;
  END PROCESS;
END FSM;

FIGURE 9.39 Behavioral VHDL code for the A/D converter controller. 
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9.8.3 Implementation
One way to test the FSM controller code simply is to connect an adjustable 10K Ω 
resistor to the channel 0 analog input of the ADC chip, as shown in Figure 9.40(a). One 
side of the potentiometer is connected to 15 V and the other side to ground. The center 
connection of the potentiometer connects to channel 0 of the ADC chip. Because the 
ADC0832 is an 8-bit A/D converter, the digital value output should range from 0 to 
255. When the potentiometer is turned all the way to one side, it should give a reading 
of 0, and when turned all the way to the other side, it should give a reading of 255.

Different analog sensors can be used as inputs to the ADC chip. Figure 9.40(b) 
shows the connections of  a thermistor temperature sensor, and Figure 9.40(c) shows 

FIGURE 9.40 Analog sensor interface to the ADC chip: (a) potentiometer for testing; 
(b) thermistor temperature sensor; (c) a pressure sensor using a MCP601 Op Amp.

Pressure sensor

+

3.3K

+

-

Vcc

1.5 V
battery

2

34

6 77

MCP601
Op Amp

8 LEDs
8

ADC0832
A/D Converter

Controller
in

FPGA

DO

DI

CSN

CLK

CH0

Clock

(c)

8 LEDs

8

22K

+5 V

Thermistor
ADC0832

A/D Converter

Controller
in

FPGA

DO

DI

CSN

CLK

CH0

Clock

(b)

ADC0832
A/D Converter

Controller
in

FPGA

DO

DI

CSN

CLK

CH0

+5 V

10K

Clock

DataOut

8 LEDs
8

(a)

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-202



9.9 I2C BUs ContRoLLeR FoR ReAL-tIMe CLoCK 475

the connections for a pressure sensor. The pressure sensor requires an op amp to 
amplify the signal.

9.9 I2C Bus Controller for Real-Time Clock
In this section, we will design and implement a microcontroller to control the DS3232 
real-time clock chip. The real-time clock chip is connected to the microcontroller using 
the standard I2C bus protocol. The microcontroller is connected on the I2C bus as the 
master and the real-time clock chip is connected as a slave. Using the I2C bus as the 
communication channel, the master controller will be able to send and receive data to 
and from the slave.

9.9.1 Theory of Operation
The I2C (Inter IC) bus is a simple bidirectional serial bus that supports multiple mas-
ters and slaves. It consists of only two lines; a serial bidirectional data line (SDA) and 
a serial bidirectional clock line (SCL). Within the I2C bus specifications, a standard 
mode with a maximum clock rate of 100 kHz and a fast mode with a maximum clock 
rate of 400 kHz are defined.

Each device connected to the I2C bus is software addressable by a unique address, 
and a simple master/slave relationship exists at all times among the devices. The device 
that controls the sending and receiving of  messages by controlling the bus access is 
the master. Devices that are controlled by the master are the slaves. Both the master 
and the slave can send and receive messages. A device that sends data onto the bus is 
referred to as the transmitter and a device receiving data is referred to as the receiver.

More than one master and more than one slave can coexist on the same I2C bus. 
The bus, however, is always controlled by a single master at any one time, and is respon-
sible for generating the serial clock (SCL) and controlling the bus access by initiating 
and terminating a message transfer.

Our system consists of only one master (the microcontroller that is implemented 
on an FPGA) and one slave (the Maxim DS3232 real-time clock chip) as shown in 
Figure 9.41. Both the SDA and SCL lines connecting between the master and the slave 
are open-drained, and must be pulled up to Vcc with a 5.6K V resistor. Regardless of 
how many devices are connected to the bus, only one pull-up resister is needed per line. 
This implementation of the master controller does not follow the full specifications of 
the I2C protocol, so if  you use this for other I2C connections, the master controller 
might halt in the error state.

The I2C bus is idle when both SCL and SDA are at a logic 1 level. The master 
initiates a data transfer by issuing a START condition, which is a high to low transi-
tion on the SDA line while the SCL line is high, as shown in Figure 9.42(a). The bus is 
considered to be busy after the START condition. After the START condition, a slave 
address is sent out on the bus by the master, as shown in Figure 9.43. This address is 
7 bits long followed by an eighth bit that is a data direction bit 1R/W 2 , where a 0 indi-
cates a write from the master to the slave, and a 1 indicates a read from the slave to the 
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FIGURE 9.41 I2C bus system with the I2C master controller implemented in an FPGA 
and a real-time clock chip acting as the slave.
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FIGURE 9.42 The START (a) and STOP (b) conditions on the I2C bus.
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master. The master, who is controlling the SCL line, will send out the bits on the SDA 
line, one bit per clock cycle of the SCL line, with the most significant bit sent out first. 
The value on the SDA line can be changed only when the SCL line is at a low.

The slave device whose address matches the address that is being sent out by the 
master will respond with an acknowledgment (ACK) bit on the SDA line by pulling 
the SDA line low during the ninth clock cycle of the SCL line. The direction bit 1R/W 2
determines whether the master or the slave will be the transmitter in the subsequent 
data transmission after the sending of the slave address.
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Every byte put on the SDA line for transmission must be 8 bits long with the most 
significant bit first. Except for the START and STOP conditions, the SDA line must 
not change when the SCL line is high. The number of bytes that can be transmitted is 
unrestricted. Each byte has to be followed by an acknowledge bit. The master generates 
the acknowledge-related clock pulse. The transmitter releases the SDA line (sets it to 
high impedance) during the acknowledge clock pulse, and the receiver must pull down 
the SDA line during the acknowledge clock pulse to acknowledge the receipt of the 
byte. The one exception is when a master-receiver is involved in a transfer. In this case 
the master-receiver must signal the end of data to the slave-transmitter by not gener-
ating an acknowledgment on the last byte clocked out of the slave.

To signal the end of data transfer, the master sends a STOP condition by pulling the 
SDA line from low to high, while the SCL line is at a high, as shown in Figure 9.42(b). 
Alternatively, instead of sending a STOP condition, the master can send a repeated 
START condition so that it can change the direction of the data transmission without 
having to release the bus.

Figure 9.44(a) shows the scenario in which the master writes 1 byte of data to the 
slave (i.e., the master is the transmitter and the slave is the receiver). The master initi-
ates the data transfer by first issuing the START condition followed by the 7-bit slave 
address plus the write (0) bit. After receiving an acknowledgment from the slave, the 
master sends the register number to let the slave know which register the following data 
should be written into. The slave responds with an acknowledgment, and the master 
sends the data byte to the slave. After the slave acknowledges receipt of the data byte, 
the master sends the STOP condition.

Figure 9.44(b) shows the scenario in which the master reads 1 byte of data from 
the slave (i.e., the master is the receiver and the slave is the transmitter). The master 
initiates the data transfer by issuing the START condition followed by the 7-bit slave 
address plus the write (0) bit. Although the master wants to receive a byte, it first needs 
to send the register address byte to let the slave know which register the master wants 
to read from. After receiving an acknowledgment from the slave, the master sends the 

FIGURE 9.43 Timing diagram for communicating between the master and the slave on the 
I2C bus.
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register number to the slave, and the slave responds again with an acknowledgment. 
This time the master has to do a repeated START condition because it needs to change 
the data direction from a write to a read. The repeated START is followed by the slave 
address again, but this time with the read (1) bit instead. The slave acknowledges and 
then sends the data byte from the addressed register to the master. This time, because 
the master is the receiver, the master has to acknowledge receipt of the data byte. If  the 
master wants to receive more data bytes from the slave, it sends a 0 to acknowledge it. 
If  the master doesn’t want to receive any more bytes, it won’t acknowledge by keeping 
SDA at a high. Finally, the master sends the STOP condition.

To summarize the master-transmitter and master-receiver scenarios, for both cases, 
the master first sends the 7-bit slave address and the write bit, followed by the register 
number to access. In the master-transmitter scenario, the master can immediately send 
out the data byte because the data direction is still a write. For the master-receiver 
scenario, the master has to do a repeated START and resend the slave address with 
the read bit in order to change the direction of the data transmission from a write to 
a read. After this, the master can receive a byte of data from the slave from the given 
register number.

9.9.2 Controller Design

Following the I2C protocol specification as described above, we can derive the state 
diagram for our I2C master controller. This state diagram will require many states, 
but many of them are identical and follow the same pattern. Figure 9.45(a) shows the 
initial portion of the state diagram. Starting from the idle state x00, the FSM goes to 
state x01 to send out the START condition, followed by the 7-bit slave address, and 
the write bit. The slave address and the write bit are previously stored in the 8-bit 
SlaveAddress_Write array, and is shifted out one bit at a time onto the SDA line in 
the two states x02 and x03. Two states are needed because the SCL line must toggle 

FIGURE 9.44 (a) The master transmits 1 byte of data to the slave. (b) The master receives 1 byte 
of data from the slave.
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FIGURE 9.45 Portions of the state diagram for the I2C master controller: (a) sending the START
condition and the slave address; (b) receiving a byte from the slave, and then sending the STOP
condition.
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between 0 and 1 for each bit. After sending out these eight bits, the FSM sets the SDA
line to high-impedance Z in state x12 to receive the acknowledge signal from the slave 
in state x13. If  the acknowledge signal is invalid (1), then the FSM goes to the error 
state xEE and terminates there, otherwise, the FSM continues to state x20 to send the 
register number to the slave.
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The states for sending the register number to the slave are identical to the two states 
(x02 and x03) for sending the slave address. The only difference is in assigning different 
bit values to the SDA line; in this case the register number instead of the slave address.

Figure 9.45(b) shows the portion of the state diagram for receiving a byte from 
the slave and then sending the STOP condition. After receiving an acknowledgment 
from the slave in state x93, the FSM prepares the receiving of the 8-bit data by setting 
bitcount to 7. The FSM cycles through states xC0 and xC1 eight times to receive the 
eight bits of data, each time assigning the incoming data from the SDA line to the Data
array. After receiving the data, the FSM then sends out a not acknowledge signal in 
states xD0 and xD2 followed by the STOP condition in the last three states.

We will write HDL code using the FSMD model to describe this I2C master con-
troller. Figures 9.46(a) and (b) show the code segment in VHDL corresponding to the 
two portions of the state diagram from Figure 9.45, respectively. The complete source 
code for both Verilog and VHDL can be downloaded from the book website.

FIGURE 9.46 Portions of the VHDL code corresponding to the two partial state 
diagrams shown in Figure 9.45: (a) sending the START condition and the slave 
address; (b) receiving a byte from the slave, and then sending the STOP condition. 
(continued on next page)

output: PROCESS(CLK_200k_Hz, Go)
BEGIN
    IF(Go = '0') THEN
      -- when idle, both SDA and SCL = 1
      SCL <= '1';
      SDA01 <= '1';
      Ready <= '0';
      state <= x"00";
    ELSIF(CLK_200k_Hz'EVENT and CLK_200k_Hz = '1') THEN
      CASE state IS
      WHEN x"00" => -- Idle
        -- when idle, both SDA and SCL = 1
        SCL <= '1'; -- SCL = 1
        SDA01 <= '1'; -- SDA = 1
        Ready <= '0';
        state <= x"01";
      -- send start condition and slave address
      WHEN x"01" => -- Start
        SCL <= '1';  -- SCL stays at 1 while
        SDA01 <= '0'; -- SDA changes from 1 to 0
        Ready <= '0';
        bitcount <= 7; -- starting bit count
        state <= x"02";
      -- send 7-bit slave address followed by R/W' bit
      WHEN x"02" =>
        SCL <= '0';
        SDA01 <= SlaveAddress_Write(bitcount);
        state <= x"03";
      WHEN x"03" =>
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        SCL <= '1';
        IF (bitcount - 1) >= 0 THEN
          bitcount <= bitcount - 1;
          state <= x"02";
        ELSE
          bitcount <= 7;
          state <= x"12";
        END IF;
      -- get acknowledgment' from slave
      WHEN x"12" =>
        SCL <= '0';
        SDA01 <= '1';
        state <= x"13";
      WHEN x"13" =>
        SCL <= '1';
        IF SDA = '1' THEN
          state <= x"EE"; -- acknowledge error
        ELSE
          state <= x"20"; -- send register address
        END IF;

      -- send 8-bit register address to slave
      WHEN x"20" =>

(a)

      -- get acknowledge signal from slave
      WHEN x"93" =>
        SCL <= '1';
        IF SDA = '1' THEN
          state <= x"EE"; -- acknowledge error
        ELSE
          bitcount <= 7;
          state <= x"C0"; -- go to receive data byte
        END IF;
      -- receive byte from RTC slave
      WHEN x"C0" =>
        SCL <= '0';
        SDA01 <= '1';
        state <= x"C1";
      WHEN x"C1" =>
        SCL <= '1';
        Data(bitcount) <= SDA; -- MSB of data read in
        IF (bitcount - 1) >= 0 THEN
          bitcount <= bitcount - 1;
          state <= x"C0";
        ELSE

FIGURE 9.46 Portions of the VHDL code corresponding to the two partial state 
diagrams shown in Figure 9.45: (a) sending the START condition and the slave 
address; (b) receiving a byte from the slave, and then sending the STOP condition. 
(continued on next page)
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Assigning values to the SDA signal requires some special attention. You might have 
noticed in the code listing that for all of the assignments to the SDA signal, it instead 
uses the signal named SDA01. Recall that the SDA line in the I2C bus is bidirectional 
so that it is capable of doing both input and output. Furthermore, the SDA line in the 
I2C bus is open-drained and is pulled up by a 5.6K V resistor. So to output a logic 1 
on this line, you need to set the line to a high impedance. To get a high impedance, you 
need to use a tri-state output and assign to it a Z value. The actual conversion from the Z value. The actual conversion from the Z
internal SDA01 signal to the SDA signal is done in the following assignment statement.

  SDA <= 'Z' WHEN SDA01 = '1' ELSE '0';

This statement assigns a high-impedance value Z to the Z to the Z SDA signal when the internal 
signal SDA01 has a logic 1 value; otherwise, the SDA signal gets the logic value 0. 
Therefore, to assign the logic value 0 or 1 to the SDA signal, the code instead assigns 
the value 0 or 1 to the internal signal SDA01, which in turn sets the SDA signal to 0 
or Z, respectively.

          bitcount <= 7;
          state <= x"D0";
        END IF;
      WHEN x"D0" =>
        SCL <= '0';
        SDA01 <= '1'; -- send a not acknowledge' (1) signal
        state <= x"D2";
        DataOut <= Data;
      -- send a not acknowledge' (1) signal
      WHEN x"D2" =>
        SCL <= '1';
        state <= x"D3";
      -- send stop condition
      -- SDA goes from 0 to 1 while SCL is 1
      WHEN x"D3" =>
        SCL <= '0';
        -- SDA starts at 0 to prepare for the 0 to 1 transition
        SDA01 <= '0'; 
        state <= x"D4";
      WHEN x"D4" =>
        SCL <= '1';  -- SCL goes to 1
        SDA01 <= '0'; -- SDA starts from 0
        state <= x"D5";
      WHEN x"D5" =>
        SCL <= '1';  -- SCL stays at 1 while
        SDA01 <= '1'; -- SDA goes to 1
        Ready <= '1';
        state <= x"D5";

(b)

FIGURE 9.46 Portions of the VHDL code corresponding to the two partial state 
diagrams shown in Figure 9.45: (a) sending the START condition and the slave 
address; (b) receiving a byte from the slave, and then sending the STOP condition. 
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The I2C bus protocol specifies that the maximum clock rate for standard mode is 
100 kHz. Therefore, we need to make sure that the SCL signal has this frequency. The 
SCL signal is generated in the FSM process by going back and forth between two states: 
the first state sets SCL to a 0 and the second state sets it to a 1. Therefore, for every SCL
cycle, the FSM must go through two states or two cycles. Therefore, to get a 100 kHz speed 
for the SCL signal, the FSM clock speed must run two times faster or at 200 kHz. If the 
main clock speed is 50 MHz, then we will need a clock divider to count the 50 MHz clock 
ticks from 0 to 250 (i.e., 50,000,000/200,000). To get a 50% duty cycle for the 200 kHz 
clock, the clock signal CLK_200k_Hz toggles after every 125 counts (i.e., 250/2).

9.9.3 Implementation

Now that we have an I2C master controller that can communicate with the real-time 
clock slave, we still need a user interface that will allow us to set the time on the real-
time clock chip and to display the time on a 7-segment LED display. The top level 
interface is shown in Figure 9.47.

The user interface FSM has two functions: (1) to repeatedly send commands to the 
I2C controller to read the date and time information from the real-time clock chip. The 
date and time information then is displayed on the six 7-segment LED display; (2) it 
waits for user inputs through the switches and push buttons. When a switch or push but-
ton is asserted, the FSM sends the appropriate command to the I2C controller through 
the four control signal lines Go, Read_WriteN, Read_WriteN, Read_WriteN DataOut[7..0], and AddressOut[7..0] to 
set the corresponding date and time registers in the real-time clock chip. The DataIn
and Ready input signals are for reading the date and time information from the real-
time clock chip. The four output signals Hour_Month, Minute_Day, Second_Year, and 
Temperature_Day will output the appropriate values to the BCD to 7-segment decoder 
for displaying the date and time information.

The user inputs consist of  the Date_TimeN switch for selecting whether to disDate_TimeN switch for selecting whether to disDate_TimeN -
play the date or the time, the Hour12_24N switch for selecting whether to display Hour12_24N switch for selecting whether to display Hour12_24N
the time in 12- or 24-hour format, and the SetHour_MonthN, SetMinute_DateN, 

FIGURE 9.47 Top level block diagram for the real-time clock.
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SetSecond_YearN, SetSecond_YearN, SetSecond_YearN SetDayN, and SetDayN, and SetDayN SetAlarm push buttons and switches for setting the 
date and time information.

9 .1 0  P R O B L E M S

9.1. Experiment with different clock speeds for the three-digit 7-segment LED 
display controller and see its effects.

9.2. Write an HDL program to convert an 8-bit unsigned binary number to 
its decimal equivalent, and display the decimal number on the three-digit 
7-segment LED display.

9.3. Implement the controller circuit for the incorrect state diagram for solving 
the summing input numbers problem shown in Figure 9.9(a) to verify that 
the Enter push button will not work.

9.4. Implement the controller circuit for the incorrect state diagram for solving 
the summing input numbers problem shown in Figure 9.9(b) to verify that 
the Enter push button will not work.

9.5. Implement the controller circuit for the correct state diagram for solving 
the summing input numbers problem shown in Figure 9.10 to verify that 
the Enter push button will now work.

9.6. Design and implement a microcontroller to combine the 3 3 4 keypad 
controller with the three-digit 7-segment LED display controller so that 
when a numeric key is pressed on the keypad the corresponding digit is 
displayed on the 7-segment LED display.

9.7. Design and implement a microcontroller to combine the 3 3 4 keypad 
controller with the three-digit 7-segment LED display controller so that 
any decimal number having at most three digits can be entered and dis-
played on the 7-segment LED display. Use the # key on the keypad as the 
enter key.

9.8. Design and implement a combination lock where a user has to enter the 
correct 3-digit code to open a lock. Use the 3 3 4 keypad for input. The 
correct code is 427. Use an LED to display the status of the lock. Turn on 
the LED when the lock is opened, and turn off  when the lock is closed.

9.9. Design and implement a door entry alarm shut-off  controller. An on-off 
switch is mounted on a door. When the door is opened, the switch 
sends out a 1 signal. The person now has 30 seconds to enter the correct 
three-digit code on a 3 3 4 keypad. If  the correct code is entered within 
30 seconds, the alarm is disabled, otherwise, the alarm will sound. Use an 
LED to show the status of the alarm, and another LED to show whether 
the alarm is enabled or disabled.

9.10. Implement the VHDL code for the PS2 mouse controller to see that it 
works.
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9.11. Manually design the controller circuit for the PS2 mouse. Implement 
your circuit on an FPGA development board to make sure that it works 
correctly.

9.12. Drive the 16 3 2 LCD FSM controller with a 5 MHz clock speed and see 
what happens to the display. What is the fastest clock speed for the LCD 
controller in which the LCD will still display correctly?

9.13. Modify the behavioral HDL code for the 16 3 2 LCD FSM controller to 
use the 4-bit data format instead of the 8-bit data format.

9.14. Implement a microcontroller to input characters from a PS2 keyboard and 
display the characters on the LCD screen.

9.15. Implement the VGA monitor controller to see that it works.

9.16. Modify the VGA controller to drive a 1024 columns 3 768 rows resolu-
tion VGA monitor.

9.17. Design and implement a microcontroller to input characters from a PS2 
keyboard and display the characters on a VGA monitor.

9.18. Implement the A/D controller to see that it works.

9.19. Implement the I2C controller for the real-time clock to see that it works.
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A P P E N D I X  A

Xilinx Development Tutorial

The Xilinx ISE Design Suite and a Xilinx FPGA (field-programmable gate array) 
development board provide all of  the necessary tools for implementing and trying 
out all of the circuits presented in this book, including building the final general-pur-
pose microprocessor. The ISE Design Suite software offers a completely integrated 
development tool and graphical-user interface for the design and synthesis of digital 
logic circuits. Together with the FPGA development board, these circuits actually can 
be implemented in hardware. The main component on the development board is an 
FPGA chip, which is capable of implementing very complex digital logic circuits. After 
synthesizing a circuit and downloading it onto the FPGA, you can see the operation 
of the circuit in hardware.

The WebPACK Edition of the ISE Design Suite software can be downloaded for 
free from the Xilinx website at http://www.xilinx.com/products/design-tools/ise-design-
suite/ise-webpack.htm. You also will need to register and obtain a free license for the 
program from Xilinx’s licensing support website.

This lab assumes that you are familiar with the Windows environment, and that 
the ISE Design Suite software already has been installed on your computer. The rest 
of this lab will provide a step-by-step instruction for the schematic and HDL entry of 
a 2-input AND gate circuit.

A.1 Starting ISE
After the successful installation of  the ISE software, there should be a link to the 
program named Project Navigator under the Windows’ Start button in the 
Xilinx Design Tools 7 ISE Design Tools’ folder. Click on this link to start the pro-
gram. You should see the main ISE Project Navigator window similar to Figure A.1.

A.1.1 Creating a New Project
Each circuit design in ISE is called a project. Each project should be placed in its own 
folder, because the program creates many associated working files for each project. 
Perform the following steps to create a new project and a new folder for storing the 
project files.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-202



A.1 stARtInG Ise 487

From the ISE menu, select File . New Project, or just click on the New Project
button. You should see the New Project Wizard: Create New Project window as 
shown in Figure A.2.

Type in the name of your project.

● For this lab, type in the project name, myAndGate.

Type in the directory location for storing your project. You also can click on the  
 icon next to it to browse to the directory. If  the directory does not already exist,  icon next to it to browse to the directory. If  the directory does not already exist, 

then ISE will create it.

FIGURE A.1 Xilinx ISE Project Navigator main window.
source: Xilinx
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● For this lab, type in c:\myAndGate to create a folder named myAndGate in 
the root directory of the C drive.

Typically, you want the project location to be the same as the working directory.
Your project can contain many source files, and they can be written in different types—

Schematic or HDL. You need to specify the source type for your project’s top-level file.

● For this lab, select Schematic as the top-level source type.

FIGURE A.2 The New Project Wizard: Create New Project window with the project name, 
location, working directory, and the top-level source type filled in.
source: Xilinx
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A.1.2 Specifying the FPGA
Click Next to continue to the next window. In the next New Project Wizard: Project 
Settings window, you need to select the correct target FPGA device on which you 
will implement your circuit. If  your development board is listed in the Evaluation 
Development Board drop-down list, then simply select it, and the remaining nec-
essary information about your FPGA will be filled in automatically and disabled. 
In Figure A.3, the Spartan-3E Starter Board is selected, and the Family, Device, 
Package, and Speed for the FPGA on that board are filled in automatically.

FIGURE A.3 The New Project Wizard: Project Settings window with the Spartan-3E Starter Board 
selected.
source: Xilinx
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In the picture, the family for this FPGA chip is Spartan3E, the device for 
this  FPGA  chip is XC3S500E, the package is FG320, and the speed is 24. This 
is the FPGA chip used on the Spartan-3E development board. After you have obtained 
the information for your FPGA chip, you can fill in the information as shown in 
Figure A.4.

 ● In the Evaluation Development Board drop-down list, select None Specified.
 ● In the Family drop-down list, select Spartan3E or the one that matches your 

FPGA chip.
 ● In the Devices drop-down list, select the device XC3S500E or the one that 

matches your FPGA chip.
 ● In the Package drop-down list, select the device FG320 or the one that 

matches your FPGA chip.
 ● In the Speed drop-down list, select the speed 24 or the one that matches your 

FPGA chip.

Do not change the remaining default selections.
Click Next to continue to the next window. The final window is a summary of 

the choices that you have just made. Review the information and then click Finish to 
create your new project.

You now will see the main ISE Project Navigator window as shown in 
Figure A.5. The window contains three sections. The left section shows the various 

If  your development board is not listed in the Evaluation Development Board
drop-down list, then you will first need to find the device, package and speed of the 
FPGA chip that is used on your development board. The FPGA chip will look similar 
to the following.

Package

Speed

Device

E
no

ch
 H

w
an

g
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operations that you can perform on your project and the files in your project. Notice 
the many tabs at the bottom of  this section. Various operations can be performed, 
depending on which tab you select. The main tab is the Design tab, which allows 
you to see your overall project files. At the top of  this section, you can select between 
one of  two views: Implementation or Simulation. Selecting the Implementation
view allows you to perform the necessary operations needed to implement your 
project onto an FPGA.

FIGURE A.4 The New Project Wizard: Project Settings window with the Spartan3E family, 
XC3S500E device, FG320 package and 24 speed selected.
source: Xilinx
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A.2 Creating a New Schematic Source File
After creating a new project, we are ready to add a new schematic source file to our 
project. The schematic editor allows you to manually draw a schematic circuit.

The steps to create a new schematic source file are as follows and also shown in 
Figure A.6:

1. From the ISE Project Navigator menu, select Project . New Source, or click 
the New Source toolbar button .

2. In the New Source Wizard window as shown in Figure A.6, select Schematic
as the source type.

3. Type in the file name myAndGate for this file.
4. Make sure that the Location is your project’s location.
5. Make sure that the Add to project option is checked.
6. Click Next.

FIGURE A.5 The main ISE Project Navigator window.
source: Xilinx
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Verify the information in the Summary window and then click Finish.

A.2.1 Drawing Your Schematic Circuit
You should see the Schematic Editor window similar to the one shown in Figure A.7. 
Any schematic circuit diagram can be drawn in this Schematic Editor window. In the 
figure, the Symbols tab has been selected and a list of all of the available symbols from 
the library is listed.

Drawing Tools
In Figure A.7, the tools for drawing schematic circuits in the Schematic Editor are shown Schematic Editor are shown Schematic Editor
in the toolbar in the middle. The Selection tool allows you to select and move objects, 
such as logic symbols and connection wires. The Add Symbol tool allows you to add 
logic symbols from the library or from your own design files into your schematic drawing. 
The Add I/O Marker tool allows you to add input and output pins to your schematic 
drawing. The Add Wire tool allows you to make connections between logic symbols.

FIGURE A.6 Creating a new schematic source file.
source: Xilinx

2.

3.

5.

4.
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Inserting Logic Symbols
To insert a logic symbol, either click on the Add Symbol button  in the toolbar 
or select the Symbols tab. All of the available symbols will be listed and grouped by 
categories. Most of the basic logic symbols that we will use are listed under the Logic
category. You also can type in the first few letters of the symbol name in the Symbol 
Name Filter box to narrow down the search.

After you have found and selected the symbol that you want, move your mouse 
to the schematic drawing. Your mouse will change to a crosshair with an outline of 

FIGURE A.7 The Schematic Editor window with the Symbols tab selected and the schematic 
toolbar being shown.
source: Xilinx
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You can rename the I/O markers by right-clicking on the marker and then select 
Rename Port. For this lab, perform the following operations:

● Rename the two input connectors to A and A and A B.
● Rename the output connector to Output.

A.2.2 Creating and Using a Schematic Symbol
Complex circuits usually are designed in a hierarchical fashion. To do this, we first 
create a schematic symbol for a low-level circuit, and then that symbol is used in the 
next level circuit above it. Schematic symbols are like black boxes that hide the details 
of a circuit. Only the input and output signals for the circuit are shown. The input and 
output signals for the schematic symbol are obtained directly from the input and output 
signal markers that are connected in the circuit.

The steps to create a schematic symbol for a circuit are as follows and also shown 
in Figure A.8:

1. In the View pane of the Design panel, select Implementation.
2. In the Hierarchy pane, select the source file that contains the design module for 

which you want to create a logic symbol.
3. In the Processes pane, expand Design Utilities, and double-click Create 

Schematic Symbol. If  a symbol already has been created for this circuit, then 

the symbol. Click on a spot in the schematic drawing to place the symbol in the sche-
matic. You can add multiple instances of the same symbol by clicking continually on 
the schematic drawing. Press the Esc key when you have finished adding that symbol.

For this lab, insert the following symbol to the schematic drawing:

 ● A 2-input AND gate (and2) found in the logic category.

Notice the small square connection points at the end of each line attached to the 
AND gate symbol in Figure A.7. You will make connections to other symbols and wires 
by clicking on these connection points.

Inserting I/O Markers
All I/O signals in your circuit must have I/O markers attached. Click on the Add I/O 
Marker button in the toolbar. Now click on the three small square connection points 
from the AND gate. An I/O marker will attach automatically to that connection point 
as shown next.
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you will need to right-click on Create Schematic Symbol and select ReRun
from the pop-up menu. If  you get an error message saying that you cannot over-
write the existing symbol file, then you will first need to turn on this property by 
selecting from the ISE main menu Process . Process Properties, and check 
the Overwrite Existing Symbol property.

A green check mark will be shown next to the Create Schematic Symbol item 
after the symbol has been created successfully.

To see the detail circuit for your symbol, right-click on the symbol and select 
Symbol . Push into Symbol from the pop-up menu.

The steps to use a schematic symbol that you have created for a circuit in the cur-
rent project are exactly the same as using a symbol from the library. The only difference 
is that you select your symbol instead. Symbols that you have created will be listed in 
a separate category in the Symbols pane as shown in Figure A.9.

For this lab, create another new schematic source file and give it the name Top. We 
will use this as our higher-level schematic source file. Insert the myAndGate schematic 
symbol to this schematic drawing. Add I/O markers to the three input and output 
signals. Rename the three I/O markers to InputA, InputB, and Output as shown 
in Figure A.9.

FIGURE A.8 Steps to create a schematic symbol from a source file.
source: Xilinx

1.

2.

3.
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A.2.3 Editing a Schematic Symbol
You can edit the schematic symbol by right-clicking on the symbol and then select 
Symbol . Edit Symbol from the pop-up menu. The symbol editor appears as shown 
in Figure A.10.

In the Symbol Editor, click the Add Pin toolbar button to add a new connection 
pin. In the Add Pin Options that appear in the Options panel, set the pin name and 
direction polarity. For bus names, use the format such as data(0:7). Click in the 
symbol window to place the pin.

FIGURE A.9 Selecting and placing the myAndGate schematic symbol into another schematic 
drawing.
source: Xilinx
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Click on the Add Line toolbar button to draw a connection line from the center 
of the square connection pin to the symbol outline. The line must be either horizontal 
or vertical. Click on the Check Symbol toolbar button to make sure that there are no 
errors. You will get an error message if  either the connection line is neither horizontal 
nor vertical, or it does not terminate in the center of the square pin as shown next.

FIGURE A.10 Symbol editor showing the myAndGate symbol.
source: Xilinx
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After you have made some changes to the symbol, you will need to update the 
symbol in the higher-level schematic drawing that uses that symbol. Otherwise, when 
you synthesize the project you likely will get an error message saying that the symbol is 
out of date. To update the symbol in the higher-level schematic drawing, first close the 
schematic drawing file, and then re-open it. The Open Schematic File Errors window 
will come up as shown next. Select the symbol that is out of date and click the Update 
Instances button. Then click OK to close the window.OK to close the window.OK

source: Xilinx
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A.2.4 Using a Schematic Symbol in Another Project
To use a circuit and its associated schematic symbol in another project, select 
Project . Add Source, or click the Add File toolbar button. In the Add Source
dialog box, browse to the source file and select it. Click Open. In the Adding Source 
Files dialog box, select the Implementation Design View.

A.3 Creating a New Verilog or VHDL Source File
A project typically will have many design source files, which can be of different types. 
Some might be schematic drawings, and some might be Verilog and/or VHDL source 
files. Adding a new Verilog or VHDL source file to your project is similar to adding 
a new schematic source file, except in the New Source Wizard window, you select 
Verilog Module or VHDL Module instead of Schematic as the source type.

The steps are as follows:

1. From the ISE Project Navigator menu, select Project . New Source, or click 
the New Source toolbar button .

2. In the New Source Wizard window, select either Verilog Module or VHDL 
Module as the source type.

3. Type in the file name.
4. Make sure that the Location is your project’s location.
5. Make sure that the Add to project option is checked.
6. Click Next.
7. Verify the information in the Summary window and then click Finish.

A.4 Setting the Top-Level Module Design File
To make a particular file your top module file for the project, right-click on the file 
name listed in the Design section. In the pop-up list, select Set as Top Module. 
Alternatively, you can select the file and click on the Set Module as Top icon . This 
option is disabled if  the file is already set to be the top module file.

A.5 Mapping the I/O Signals
Because we want to implement the circuit on an FPGA, we need to assign or map 
all of the I/O signals from our circuit to the actual pins on the FPGA. The following 
instructions are for mapping the I/O signals to the Spartan XC3S500E FPGA on the 
Spartan3E development board. If  you are using a different FPGA development board, 
then you will need to refer to the documentations for your specific development board 
for the correct pin assignments.
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3. You also might see the message window shown in Figure A.12 saying that 
another editor is already editing constraints for this project. If  you are sure that 
you do not have another PlanAhead editor running, then you can click Yes to 
continue opening PlanAhead.

A.5.1 Using PlanAhead for Mapping the Pins
We will use the I/O Pin Planning (PlanAhead) tool to map each of the I/O signals from 
our circuit to the pins on the Spartan 3E chip. The steps to start the PlanAhead tool 
are as follows:

1. From the Project Navigator menu, select Project Navigator menu, select Project Navigator Tools . PlanAhead . I/O Pin
Planning 1PlanAhead 2 2 Pre-Synthesis to start the PlanAhead tool. 
Alternatively, in the Processes pane of the Design panel, expand User Constraints, 
and double-click on I/O Pin Planning 1PlanAhead 2 2 Pre-Synthesis.

2. The first time that you do this, the message window shown in Figure A.11 will 
pop up saying that you need an Implementation Constraint File (UCF) added to 
the project. Click Yes to create this file.

FIGURE A.11 Message window saying that an Implementation Constraint File needs to be added 
to your project.
source: Xilinx

FIGURE A.12 Message window saying that another editor is editing constraints for this project.
source: Xilinx
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FIGURE A.13 The PlanAhead tool showing the pin assignments for the Spartan 3E development 
board.
source: Xilinx

Pin mappings
I/O signals

Save

Node Name (I/O Signal) Location (Pin)

InputA L14

InputB L13

Output F12

4. When the PlanAhead tool opens, you will see the PlanAhead window similar to 
Figure A.13.

5. All of the available I/O signals from the circuit will be listed in the I/O Ports
pane. Expand the Scalar ports, and you will see the I/O signal names for your 
circuit.

6. For each I/O signal name, single-click on the cell next to the signal name 
under the Site column to bring up a pop-up list of all the assignable pins from 
the FPGA. Select the pin number that you want to assign to that I/O signal. 
Figure A.13 shows that Pin L14 is assigned to the signal InputA.

7. Alternatively, instead of using the pop-up list to select the pin, you can type in 
the pin number such as L14.

8. Perform the following signal-to-pin mapping for the FPGA chip.

9. Make sure you save your work after you are done by clicking on the Save 
Constraints button.
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A.5.2 Faster Alternative Method for Mapping the Pins
A much faster pin mapping method is to directly edit the pin mapping file. The name 
of this file is <project name>.ucf located in your project directory. Use any text 
editor such as Windows Notepad to open and edit this file. There is a NET line for 
each pin mapping. To change the pin mapping, simply type in a new pin location for 
that node name, for example, change the Output net from F12 to E11. Do not modify 
or delete any other lines in the file. For our project’s pin mappings, we will have the 
following three lines in the file.

NET "InputA" LOC = L13;

NET "InputB" LOC = L14;

NET "Output" LOC = F12;

After you save this file, the new pin mappings will be changed.

A.6 Synthesis and Implementation
After drawing your circuit and mapping the pins, the next step is to synthesize it. 
During this step, ISE collects all of the necessary information about your circuit, and 
produces a netlist for it. This step is hardware independent. The steps to synthesize a 
design are as follows:

1. In the View pane of the Design panel, select Implementation.
2. In the Hierarchy pane, select the top module.
3. In the Processes pane, double-click the Synthesize line.

A green check mark will be shown next to the Synthesize 2 XST line after the 
design has been synthesized successfully as shown in Figure A.14. If  there are errors, 
then you will have to go back and fix them first and then synthesize the design again.

After the successful synthesis of your design, the next step is to implement it. In 
this step, ISE will map and place the netlist generated from the previous step to fit on 
your FPGA chip. This and the succeeding steps are hardware dependent. So if  you 
remap the hardware pins, you will have to redo from this step forward. The steps to 
implement a design are as follows:

4. In the Processes pane, double-click the Implement Design line.

A green check mark will be shown next to the Implement Design line after the 
design has been implemented successfully as shown in Figure A.14.

Instead of  performing the above two steps one at a time, you can click on the 
Implement Top Module button  to perform them at once.
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After the successful implementation of your design, the next step is to generate 
the programming file.

5. In the Processes pane, double-click the Generate Programming File line.

A green check mark will be shown next to the Generate Programming File
line after the programming file has been generated successfully as shown in 
Figure A.14.

FIGURE A.14 Successful synthesis and implementation of the circuit.
source: Xilinx

1.

2.

3.
4.

5.
6.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-202



A.7 PRoGRAMMInG tHe CIRCUIt to tHe FPGA 505

The ISE iMPACT window as shown in Figure A.15 opens up.

3. Under the iMPACT Flows pane, double-click on the Boundary Scan line.
4. Right-click on the message line Right click to Add Device or Initialize JTAG 

chain.
5. From the pop-up menu, select Initialize Chain. If  you get a warning message 

about not finding the cable, then make sure that the board is connected properly 
using the USB cable and that the power is turned on.

6. The Assign New Configuration File window as shown in Figure A.16 is dis-
played. Select the file to configure the FPGA with. The name of this file is the 
name of your project and with the extension bit. In our case it is top.bit. 
Click Open after selecting the file.

7. You will next see the Attach SPI or BPI PROM window as shown next. Select 
No.

8. Because there are three configuration devices on the Spartan-3E board, the same 
Assign New Configuration File window as shown in Figure A.16 will come 
up a second and third time. Click on the Bypass button for both the second and 
third time that this window comes up.

9. Click OK in the next OK in the next OK Device Programming Properties window as shown in 
Figure A.18.

A.7 Programming the Circuit to the FPGA
After you have generated the programming file successfully, you are ready to configure 
the FPGA. The steps are as follows:

1. Plug in the Xilinx Spartan-3E board to the computer using the USB cable, and 
turn on the power to the board.

2. In the Processes pane, double-click the Configure Target Device line.

Click OK if  you see the following warning message window.OK if  you see the following warning message window.OK

source: Xilinx
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FIGURE A.15 The ISE iMPACT FPGA programming window.
source: Xilinx

FIGURE A.16 The Assign New Configuration File window with the programming file selected.
source: Xilinx
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10. You are back at the original ISE iMPACT window showing the three FPGA 
chips with the first one having been assigned the file top.bit and the last two 
bypassed. Make sure that the first chip is selected and is green.

11. In the iMPACT Processes pane under the Available Operations, double-click 
on the Program line. After a few seconds you will see the Program Succeeded
message as shown in Figure A.19 if  the FPGA chip is programmed successfully.

Perform Experiment 1 to verify the operation of your circuit running in hardware.

FIGURE A.17 The Attach SPI or BPI PROM window.
source: Xilinx

FIGURE A.18 The Device Programming Properties window with the first device selected.
source: Xilinx
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A . 8  P R O B L E M S

A.1. A switch is on when it is in the up position, and off  when it is in the down 
position. Set the two switches (SW0 and SW1) to be either on or off, and 
observe whether the LED (LD0) output is on or off. Write down your 
observation in the table below. This table that you have derived is the truth 
table for the 2-input AND gate.

FIGURE A.19 The Programmer window showing that the chip was programmed successfully with 
your circuit.
source: Xilinx

A B Output

0 (off) 0 (off)

0 (off) 1 (on)

1 (on) 0 (off)

1 (on) 1 (on)
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A.2. Replace the 2-input AND gate in your circuit with a 2-input OR gate. Derive 
the truth table for the 2-input OR gate by filling in the table below.

A B Output

0 0

0 1

1 0

1 1

A Output

0

1

A.3. Replace your circuit with a NOT (inverter) gate. You’ll have to remove one 
of the input pins. Derive the truth table for the NOT (inverter) gate by fill-
ing in the table below.

A.4. Replace your circuit with a 3-input AND gate. You will need to have three 
input pins. Refer to your board’s pin mapping to find the pin number for 
the third switch (SW2). Derive the truth table for the 3-input AND gate by 
filling in the table below.

A B C Output

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1
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d0

d1

s y

 A.6. Draw and implement the following circuit. This circuit is known as the 
Multiplexor or Mux for short. Derive the truth table for this circuit. 
Describe the operation of this circuit in as few words as possible. What do 
you think the letter s for one of the inputs stands for?

s d1d1d d0d0d y (Output)

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

A B C Output

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

 A.5. Replace your circuit with a 3-input OR gate. Derive the truth table for the 
3-input OR gate by filling in the table below.
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A.7. Repeat Problem A.1 but use two push buttons (BTN West and BTN East) 
instead of the two switches. What do you notice about the operation of 
the push buttons?

A.8. Connect a circuit having one switch and one LED. Make the LED turn on 
when the switch is on, and off  otherwise.

A.9. Draw a random circuit having three inputs and one output. Randomly 
connect several AND gates, OR gates, and NOT gates together between the 
inputs and output. Connect the three inputs to the switches and the out-
put to a LED. Derive the truth table for it.
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A P P E N D I X  B

Altera Development Tutorial

The Altera Quartus II development software and an Altera FPGA (field-programmable 
gate array) development board, such as the DE1 development board, provide all of 
the necessary tools to implement and try out all of the circuits, including building the 
final general-purpose microprocessor. The Quartus II software offers a completely 
integrated development tool and easy-to-use graphical-user interface for the design, 
and synthesis of digital logic circuits. Together with the DE1 development board, these 
circuits actually can be implemented in hardware. The main component on the DE1 
development board is an FPGA chip that is capable of  implementing very complex 
digital logic circuits. After synthesizing a circuit and downloading it onto the FPGA, 
you can see the operation of the circuit in hardware.

The Web Edition version of the Quartus II software can be downloaded for free 
from the Altera website at www.altera.com. This lab assumes that you are familiar with 
the Windows environment, and that the Quartus II software already has been installed 
on your computer. The rest of this lab will provide a step-by-step instruction for the 
schematic entry of a 2-input AND gate circuit.

B.1 Starting Quartus
After the successful installation of  the Quartus II software, a link to the program, 
named Quartus II 12.1 Web Edition, should be under the Windows’ Start button. 
Click on this link to start the program. You should see the main Quartus II window 
similar to Figure B.1.

B.1.1 Creating a New Project
Each circuit design in Quartus II is called a project. Each project should be placed in 
its own folder, because the program creates many associated working files for a proj-
ect. Perform the following steps to create a new project and a new folder to store the 
project files.
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From the Quartus II menu, select File . New Project Wizard. If  the New 
Project Wizard Introduction screen appears and you don’t want to see it again the 
next time you start the new project wizard, you can select the check box that says Don’t 
show me this introduction again, and then click Next to go to the next screen. You 
should see the New Project Wizard: Directory, Name, Top-Level Entity [page 1 
of 5] window as shown in Figure B.2.

Type in the directory for storing your project. You can also click on the  icon  icon 
next to it to browse to the directory.

 ● For this lab, type in c:\myAndGate to create a folder named myAndGate in 
the root directory of the C drive.

You also need to give the project a name.

 ● For this lab, type in the project name myAndGate.

A project might have more than one design file. Whether your project has one or 
more files, you need to specify which design file is the top-level design entity. The default 
name given is the same as the project name. However, you can use a different name.

FIGURE B.1 The Quartus II main window.
source: Altera
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 ● For this lab, leave the top-level file name as myAndGate, and click Next to 
continue to the next window.

Since the directory c:\myAndGate does not yet exist, Quartus II will inform you 
of that and will ask whether you want to create this new directory. Click Yes to create 
the directory.

In the New Project Wizard: Add Files [page 2 of 5] window, you can add exist-
ing circuit source files associated with your project. For example, if  you have a source 
file created in another project and want to use it in this project, you can specify that here. 

 ● Click Next to continue to the next window because we are starting a new proj-
ect and do not yet have any source files to add.

B.1.2 Specifying the FPGA
In the New Project Wizard: Family & Device Settings [page 3 of 5] window as 
shown in Figure B.3, we select the target FPGA device on which we will implement 
the circuit. You need to find the device family and name of  the FPGA chip that is 

FIGURE B.2 The New Project Wizard: Directory, Name, Top-Level Entity window with the 
working directory, the project name, and the top-level entity name filled in.
source: Altera
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used on your development board. The FPGA chip will look similar to the following. 
The device family for the FPGA chip in the picture is Cyclone II and the name is 
EP2C20F484C7N.

Device name

Device family

FIGURE B.3 The New Project Wizard: Family & Device Settings window with the device 
EP2C20F484C7 selected.
source: Altera

E
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w
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The DE1 development board uses the Cyclone II EP2C20F484C7N FPGA chip. If  
you are using a different FPGA chip, then you need to make the appropriate changes 
in the following instructions.

 ● In the Device Family drop-down box, select Cyclone II or the one that matches 
your FPGA chip.

 ● In the Available devices list, select the device EP2C20F484C7 or the one that 
matches your FPGA chip. If  this device is not listed, then you need to reinstall 
the Quartus II program with the Cyclone II device family option checked.

 ● Click Next to continue to the next window.

In the next New Project Wizard: EDA Tool Settings [page 4 of 5] window, 
we do not have any EDA tools to use for this project, so click Next to continue to the 
next window.

The final window is a summary of the choices that you have just made. Click Finish
to create your new project.

B.2 Using the Graphic Editor
After creating a new project, we are ready to start the Schematic Block Editor for 
manually drawing the schematic circuit.

B.2.1 Starting the Graphic Editor
From the Quartus II menu, select File . New. Under Design Files, select Block 
Diagram/Schematic File, and then click OK. You should see the Graphic Editor
window similar to the one shown in Figure B.4. Any circuit diagram can be drawn in 
this Graphic Editor window.

B.2.2 Drawing Tools
In Figure B.4, the tools for drawing circuits in the Block Editor are shown in the toolbar 
on the left side. The default location for this tool bar is at the top. There are the stan-
dard tools such as text writing, zoom, flip and rotate, and line and shape drawing. The 
main tool that you will use is the Selection tool. This tool allows you to perform many 
different operations, depending on the context in which it is used. Two main operations 
performed by this tool are selecting objects and making connections between logic 
symbols. The Symbol tool allows you to select and use logic symbols from the library 
or from your own design files. The six Node, Bus, and Conduit tools allow you to draw 
connection lines that are not connected to another object. The Partial Line Selection 
and Rubberbanding buttons turn on or off  these functions. When rubberbanding is 
turned on, connection lines are adjusted automatically when symbols are moved from 
one location to another. When rubberbanding is turned off, moving a symbol will not 
affect the lines connected to it.
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B.2.3 Inserting Logic Symbols
To insert a logic symbol, first select the Selection tool, and then double-click on an 
empty spot in the Block Editor window. You should see the Symbol window as shown 
in Figure B.5.

 ● Alternatively, you can click on the Symbol tool icon in the toolbar to bring up 
the Symbol window.

Available symbol libraries are listed in the Libraries box. These libraries include 
the standard primitive gates, standard combinational and sequential components, and 
your own logic symbols located in the current project directory.

All of the basic logic gates, latches, flip-flops, and input and output connectors that 
you need are located in the primitives folder. If  this folder is not listed, then click on 
the plus 11 2  sign to expand the libraries folder. Within the primitives folder are several 
subfolders. The basic gates are in the logic subfolder; the latches and flip-flops are in 

FIGURE B.4 The Graphic Editor window with the graphics toolbar on the left.
source: Altera

Selection Tool

Node, Bus, and
Conduit Tool

Rubberbanding

Partial Line Selection

Symbol Toolymbol Toolym

I/O Pin Tool
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the storage subfolder; and the input and output connectors are in the pin subfolder. 
Your own circuits, if  there are any that you want to reuse in building larger circuits, 
will be listed in the Project folder.

Expand the logic subfolder by clicking on the plus sign next to it to see a list of 
logic gate symbols available in that library. The logic symbols are sorted in alphabetical 
order. Select the logic symbol name that you want to use, or alternatively, you can type 
in the name of the logic symbol in the Name field. Click on the OK button to insert OK button to insert OK
the symbol in the Graphic Editor. If  the Repeat-insert mode box is checked, then you 
can insert several instances of the same symbol until you press the Esc key.

For this lab, insert the following symbols into the Graphic Editor:

 ● A 2-input AND gate (and2) found in the logic subfolder.
 ● An input signal connector (input) found in the pin subfolder.
 ● An output signal connector (output) found in the pin subfolder.

A unique number is assigned to each instance of a symbol and is written at the lower-left 
corner of the symbol. This number is used only as a reference number in the output netlist 
and report files. The numbers that you see might be different from those in the examples.

B.2.4 Selecting, Moving, Copying, and Deleting Logic Symbols
To select a logic symbol in the Block Editor, click on the symbol using the Selection 
tool. To select multiple symbols, you can hold down the Ctrl key and select each one 
individually, or you can draw a rectangle around the objects that you want to select. 
All objects inside the rectangle will be selected.

FIGURE B.5 The Symbol selector window.
source: Altera
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To de-select a symbol, click on an empty spot in the Block Editor.
To move a symbol, select it and drag it to a different location.
To copy a symbol, select it and then perform the Copy and Paste operations, or 

hold down the Ctrl key while you drag the symbol to a different location.
To delete a symbol, select it and then press the Delete key.
To rotate a symbol, right-click on it, select Rotate by Degrees from the pop-up 

menu, and select the angle to rotate the symbol. Alternatively, you can first select the 
symbol and then click on one of the Flip or Rotate buttons on the tool bar.

Perform the following operations for this lab:

● Make a copy of the 2-input AND gate.
● Make two more copies of the input signal connector.
● Position the symbols similar to Figure B.6.

B.2.5 Making and Naming Connections
To make a connection between two connection points, use the Selection tool and drag 
from one connection point to the other connection point. Note that when you position 
the pointer on a connection point, the arrow pointer changes to a crosshair.

To change the direction of a connection line while dragging the line, simply release 
and press the mouse button again, and then continue to drag the connection line.

You also can make a connection between two connection points by moving a sym-
bol so that its connection point touches the connection point of the second symbol. 
With rubberbanding turned on, you now can move one symbol away from the second 
symbol, and a connection line is drawn between them automatically.

If  you want to make a connection line that does not start from a symbol connec-
tion point, you will need to use either the Orthogonal Node tool or the Diagonal Node 
tool instead of the Selection tool.

FIGURE B.6 Symbol placements for the AND circuit.
source: Altera
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Do not use the Line tool to make connections; this tool is only for drawing lines 
and does not actually make a connection.

After a connection is made to a symbol, you can move the symbol to another 
location, and, if  the rubberbanding function is turned on, the connection line will 
be adjusted automatically. However, if  the rubberbanding function is turned off, the 
connection will be broken when the symbol is moved.

To make a connection between two lines that cross each other as shown in 
Figure B.7, you need to use the Selection tool. Right-click on the junction point (i.e., 
the point where the two lines cross) and then select from the pop-up menu Toggle 
Connection Dot. You can repeat the same process to remove the connection point.

To select a line segment, single-click on it. To select the entire line (with several line 
segments connected in different directions), you double-click on it.

Use the Orthogonal Bus tool to draw a bus connection.
To change a single node line to a bus line, right-click on the line and select Bus 

Line from the pop-up menu. Select Node Line from the pop-up menu to change it 
back to a node line.

A bus must have a name and a width. To name a connection line, right-click on 
the line that you want to name. In the pop-up menu, select Properties and then type 
in the name and the width for the bus in the Name box. For example, data[7..0] is 
an 8-bit bus with the name data, as shown in Figure B.8.

To change the name, double-click on the name and edit it.
To connect one line to a bus, connect a single line to the bus, and then give it the 

same name as the bus, with the line index appended to it. For example, data[2] is bit 
two of the data bus, as shown in Figure B.8.

To check whether a name is attached to a line correctly, select the line, and the 
name that is attached to the line also will be selected.

All input and output signals in a circuit must be connected to input and output 
signal connectors, respectively. To name an input or output signal connector, select its 
name label by single-clicking it, and then double-clicking it. You can now type in the 

FIGURE B.7 Making or deleting a connection point.

FIGURE B.8 A single line connected to an 8-bit bus with the name data.
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new name. Pressing the Enter key will move the text entry cursor to the name label for 
the symbol below the current symbol. Alternatively, you can select the input or output 
connector and then double-click it. The Properties window for that pin will open up, 
allowing you to enter the pin name, among other things.

A bus line connected to an input or output connector must have the same bus 
width as the connector.

For this lab, perform the following operations to look like Figure B.9:

 ● Name the two input connectors A and A and A B.
 ● Name the output connector Output.

Select File . Save to save the design file. Type in myAndGate for the file name. 
The default file extension is .bdf (block design file). Recall that when we created the 
project, we had specified myAndGate as the top-level file name. We now will use this 
file as the top-level source file.

B.2.6 Selecting, Moving, and Deleting Connection Lines
To select a straight connection line segment, single-click on it.

To select an entire connection line with horizontal and vertical segments, 
double-click on it.

To select a portion of a line segment, turn on the Use Partial Line Selection button, 
and then drag a rectangle around the line segment. Only the portion of the line segment 
that is inside the rectangle will be selected.

After a line is selected, it can be moved by dragging.
After a line is selected, it can be deleted by pressing the Delete key.

B.3 Managing Files in a Project
A project typically will have many design source files, which can be of different types. 
Some might be schematic drawings, and some might be Verilog and/or VHDL source files.

FIGURE B.9 Connections and names for the myAndGate circuit.
source: Altera
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B.3.2 Creating a New Verilog or VHDL Source File
The steps to create a new schematic drawing, Verilog or VHDL design file are the same. 
Select File . New from the Quartus II menu. In the New window under the Device 
Design Files tab, select the type of design file that you want to create: Block Diagram/
Schematic File, Verilog HDL File, or VHDL File. After you save this file, it is added 
automatically to the project.

B.3.3 Opening a Design File
To open a design file, double-click on the file that is listed in the Project Navigator 
window. Depending on the type of file, the associated editor will be used. The Block 
Editor is used to edit a Block Diagram/Schematic File, and a text editor is used to edit 
a VHDL or Verilog text file.

B.3.1 Design Files in a Project
To see the files that are associated with a project, click on the Files tab in the Project 
Navigator window. The Project Navigator shown in Figure B.10 shows that this project 
has only one file named myAndGate.bdf.

FIGURE B.10 Files associated with a project as shown in the Project Navigator window.
source: Altera
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B.3.4 Adding Design Files to a Project
To add an existing design file to the current project, select Project . Add/Remove
Files in Project from the Quartus II menu. Alternatively, you can right-click on the 
folder icon labeled Files in the Project Navigator window, and then select Add/
Remove Files in Project from the pop-up menu.

This will bring up the Files Category under the Settings window. From this 
window, you can choose additional files to be added into the project by either manually 
typing in the file name or browsing to the directory and then selecting it. Click on the 
Add button to add individual files, or click on the Add All button to add all of the 
files in the selected directory.

B.3.5 Deleting Design Files from a Project
To delete a design file from a project, select it in the Project Navigator window, and 
then press the Delete key. Alternatively, you can right-click on the file that you want 
to delete, and then select Remove File from Project from the pop-up menu.

B.3.6 Setting the Top-Level Entity Design File
When you created a new project, you had to specify the name of the top-level design 
file. If  you want to change the top-level entity to another design file, you can do so 
by right-clicking on the file that you want to be the top-level entity in the Project 
Navigator window. From the pop-up menu, select Set as Top-Level Entity.

B.3.7 Saving the Project
Select File . Save Project to save the project and all of its associated files.

B.4 Analysis and Synthesis
After drawing your circuit with the Graphic Editor, the next step is to analyze and syn-
thesize it. During this step, Quartus II collects all of the necessary information about 
your circuit, and produces a netlist for it.

 ● From the Quartus II menu, select Processing . Start . Start Analysis &
Synthesis to synthesize the circuit. Alternatively, you can click on the icon .

 ● If  there are no errors in your circuit, you should see the message “Quartus II 
Analysis & Synthesis was successful” in the Message window at the bottom.

Errors found in the circuit will be reported in the Message window and high-
lighted in red. You can double-click on the error message to see where the error is in 
the circuit. Go back and double-check your circuit with the one shown in Figure B.9 
to correct all of the errors.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-202



524 APPENDIX B ALteRA DeVeLoPMent tUtoRIAL

The placements of the input and output signals can be moved to different locations by 
dragging the signal connection line around the symbol box. The signal label also will 
be moved. You can then drag the label to another location if  you wish. The size of the 
symbol also can be changed by dragging the edges of the symbol box.

B.5 Creating and Using a Logic Symbol
If  you want to use a circuit as part of another circuit in a schematic drawing, you can 
create a logic symbol for this circuit. Logic symbols are like black boxes that hide the 
details of a circuit. Only the input and output signals for the circuit are shown. The 
input and output signals for the logic symbol are obtained directly from the input and 
output signal connectors that are connected in the circuit.

To create a logic symbol for a circuit, select the Block Editor window containing 
the circuit that you want as the active window. Select File . Create/Update . Create
Symbol Files for Current File. The name of this symbol file will be the same as the 
name of  the current active circuit diagram in the Graphic Editor, but with the file 
extension .bsf (block symbol file).

You can view and edit the logic symbol by first opening the .bsf file. Select 
File . Open and type in the file name. Click on the Open button. A window similar 
to Figure B.11 will open showing the logic symbol.

FIGURE B.11 Logic symbol of the myAndGate circuit.
source: Altera
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This new symbol can now be used in the Block Editor. It will show up in the 
Symbol window under the Project folder as shown in Figure B.12. You can follow the 
same steps as discussed earlier for inserting built-in logic symbols to insert this logic 
symbol into another schematic circuit design.

To use a circuit that is represented by its logic symbol in another project, you need 
to first copy the .bsf symbol file and the corresponding .bdf circuit design file to 
the other project’s directory. It then will be available in the Symbol window inside the 
Project folder as shown in Figure B.12.

You now can select and use this component just like the standard components 
from the library.

B.6 Mapping the I/O Signals
Because we want to implement the circuit on an FPGA, we need to assign or map 
all of the I/O signals from our circuit to the actual pins on the FPGA. The following 
instructions are for mapping the I/O signals to the Cyclone II EP2C20F484C7 FPGA 
on the DE1 development board. If you are using a different FPGA development board, 
then you will need to refer to the documentation for your development board for the 
correct pin assignments.

FIGURE B.12 Selecting the myAndGate logic symbol to be inserted into another circuit design.
source: Altera
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We will use the Pin Planner to map each of the I/O signals from our circuit to the pins 
on the Cyclone II chip. From the Quartus II menu, select Assignments . Pin Planner
to bring up the Pin Planner similar to Figure B.13.

1. Alternatively, you can click on the Pin Planner icon .
2. All of the available I/O signals from the circuit will be listed under the Node 

Name column. If  the I/O signals are not listed, then you need to go back and do 
the Analysis and Synthesis step in Section B.4.

3. For each I/O signal name, double-click on the cell next to the signal name under 
the Location column to bring up a pop-up list of all the assignable pins from 
the FPGA. Select the pin number that you want to assign to that I/O signal. 

FIGURE B.13 The Pin Planner showing the pin assignments of the EP2C20F484C7 chip.
source: Altera
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set_location_assignment PIN_L22 -to A
set_location_assignment PIN_L21 -to B
set_location_assignment PIN_U22 -to Output

Node Name (I/O Signal) Location (Pin)

A L22

B L21

Output U22

Figure B.13 shows that Pin L22 is assigned to signal A. Instead of using the 
pop-up list, you can type in the pin number such as L22.

 ● Perform the following signal-to-pin mapping for the FPGA chip.

B.6.1 Faster Alternative Method for Mapping the Pins
A much faster pin mapping method is to directly edit the pin mapping file. The 
name of  this file is <project name>.qsf located in your project directory. 
Use any text editor such as Windows Notepad to open and edit this file. There is 
a set_location_assignment line for each pin mapping. To change the pin 
mapping, simply type in a new pin location for that node name. Do not modify or 
delete any other lines in the file. For our project’s pin mappings, we will have the 
following three lines in the file.

After you save this file, the new pin mappings will be changed.

B.7 Fitting the Netlist and Pins to the FPGA
Now that we have created the netlist for the circuit (from Section B.4), and have mapped 
all of the I/O signals to the actual pins on the FPGA (from Section B.6), the next step 
is to fit the netlist and the pin assignments to the FPGA. This requires a full compila-
tion of the circuit, which involves four individual steps: Analysis & Synthesis, Fitter, 
Assembler, and Timing Analyzer.

1. From the Quartus II menu, select Processing . Start Compilation to start 
the full compilation of the circuit, or click on the Start Compilation icon . 
The full compilation will go through the four steps automatically. If  your design 
has no errors, you should see the message “Full Compilation was successful” 
at the end of the message listing with 0 errors and many warnings as shown in 
Figure B.14. It is normal to have many warnings, and in most cases, they can 
safely be ignored.
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B.8 Programming the Circuit to the FPGA

1. Plug the DE1 board into the computer using the USB cable, and turn on the 
DE1 board.

2. From the Quartus II menu, select Tools . Programmer to bring up the r to bring up the r
Programmer window as shown in Figure B.15, or click on the Programmer icon Programmer icon Programmer .

3. The device listed next to the Hardware Setup button should be USB-Blaster. 
If  it is not, then click on the Hardware Setup button and change it.

4. Click on the Start button  to start the programming of your circuit, and  to start the programming of your circuit, and 
watch the progress bar.

5. When the progress bar reaches 100%, the programming is completed, and the 
Message window should contain a message saying the operation was performed 
successfully.

FIGURE B.14 Successful compilation of the circuit.
source: Altera
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B . 9  P R O B L E M S

B.1. There are ten switches on the DE1 board. A switch is on when it is in the up 
position, and off when it is in the down position. Set the two switches (SW0 
and SW1) to be either on or off, and note whether the green output LED 
(LEDG0) is on or off. Write down your observation in the table below. This 
table that you have derived is the truth table for the 2-input AND gate.

FIGURE B.15 The Programmer window showing that the chip was programmed successfully with 
your circuit.
source: Altera

A B Output

0 (off) 0 (off)

0 (off) 1 (on)

1 (on) 0 (off)

1 (on) 1 (on)
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B.3. Replace your circuit with a NOT (inverter) gate. You’ll have to remove one 
of the input pins. Derive the truth table for the NOT (inverter) gate by fill-
ing in the table below.

B.2. Replace the 2-input AND gate in your circuit with a 2-input OR gate. Derive 
the truth table for the 2-input OR gate by filling in the table below.

A B Output

0 0

0 1

1 0

1 1

A Output

0

1

A B C Output

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

B.4. Replace your circuit with a 3-input AND gate. You will need to have three 
input pins. Refer to the DE1 pin mappings document to find the pin num-
ber for your third switch (SW2). Derive the truth table for the 3-input AND

gate by filling in the table below.
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 B.6. Draw and implement the following circuit. This circuit is known as the 
Multiplexor or Mux for short. Derive the truth table for this circuit. 
Describe the operation of this circuit in as few words as possible. What do 
you think the letter s for one of the inputs stands for?

A B C Output

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

d0

d1

s y

s d1d1d d0d0d y (Output)

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

 B.5. Replace your circuit with a 3-input OR gate. Derive the truth table for the 
3-input OR gate by filling in the table below.
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The LEDs in the seven-segment displays are turned on with a 0 rather 
than a 1 as in the discrete LEDs. The rightmost digit is named HEX0 on 
the development board.

B.10. Draw some random circuit having three inputs and one output. Randomly 
connect several AND gates, OR gates, and NOT gates together between the 
inputs and output. Derive the truth table for it.

B.7. Repeat Problem B.1 but use two push buttons (PB0 and PB1) instead of 
the two switches. What do you notice about the operation of the push 
buttons?

B.8. Connect a circuit having one switch and one LED. Make the LED turn on 
when the switch is on, and off  otherwise.

B.9. Make the seven-segment (HEX) displays to display the number 256 by 
turning on the appropriate LEDs for each digit. The seven LEDs for each 
digit is named as follows:

1

0

2

3

4

5 6
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A P P E N D I X  C

Verilog Summary

The Verilog language is a hardware description language (HDL) for modeling digital 
circuits that can range from the simple connection of gates to complex systems. Verilog 
originally was designed as a proprietary verification and simulation tool. Later, logic 
and behavioral synthesis tools were added. The language was standardized in 1995 by 
IEEE, followed by a revision in 2001. This appendix gives a brief summary of the basic 
Verilog elements and its syntax. Many advanced features of the language are omitted. 
Interested readers should refer to other references for detailed coverage.

C.1 Basic Language Elements

C.1.1 Keywords
The Verilog language is case sensitive, and all of  the keywords are in lower case. 
Figure C.1 shows a partial list of the Verilog keywords.

always and assign automatic begin buf

bufif0 bufif1 case casex casez default

defparam else end endcase endfunction endgenerate

endmodule endtask event for forever function

generate genvar if include initial inout

input integer library module nand negedge

nor not notif0 notif1 or output

parameter posedge reg signed supply0 supply1

task tri tri0 tri1 unsigned wand

while wire wor xnor xor @

FIGURE C.1 Partial list of Verilog keywords.
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C.1.2 Comments
Single-line comments are preceded by two consecutive slashes ( // ) and are terminated 
at the end of the line.

EXAMPLE

// This is a single line comment

Multiple-line comments begin with the two characters /* and end with the two 
characters */.

EXAMPLE

/* This is a
   multiple line comment
*/

C.1.3 Identifiers
Verilog identifiers are user-given names. Verilog identifiers must use the following syntax:

 ● A sequence of one or more uppercase letters, lowercase letters, digits, and the 
underscore ( _ ).

 ● Upper and lowercase letters are treated differently (i.e., case sensitive).
 ● The first character must be a letter or the underscore.
 ● The length of the identifier must be 1024 characters or less.

C.1.4 Signals
Signals in Verilog have one of four values. These are:

 ● 0 for the logic 0.
 ● 1 for the logic 1.
 ● ?, X, or x for don’t-care or unknown.
 ● Z or z for high-impedance tri-state.

C.1.5 Numbers and Strings
Numbers
Number constants can be specified in any one of the four bases: decimal, hexadecimal, 
octal, or binary. An unsized decimal number can also be specified using just the digits 
from 0 to 9.

Syntax:

a rsfnsfns
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where:
a is the number of bits (specified as an unsigned decimal number) of the 

constant.
s optionally specifies that the value is to be considered as a signed 

number.
ff specifies the base of the number. It is replaced by one of the letters: d 

(decimal), h (hexadecimal), o (octal), or b (binary).
n is the value of the constant specified in the given base.

EXAMPLE

48 // an unsized decimal number 48
4'b 1001 // a 4-bit binary number 1001
8'd 28 // an 8-bit decimal number 28
'o 537 // an unsized octal number 537
12'h 7e9 // a 12-bit hexadecimal number 7e9

Strings
String constants are enclosed within double quotes.

EXAMPLE

reg [1:8] MyString;
MyString = "This is a string";

C.1.6 Constants
Identifiers can be defined with a constant value. After it is defined, the identifier then 
can be used in place of the constant. The compiler directive starting with the single 
opening quote ('), followed by the word define is used to define the identifier. When 
using the identifier, the single opening quote must always precede the identifier name.

Syntax: definition:

'define identifier constant

Syntax: usage:

'identifier

EXAMPLE

'define buswidth 'd8  // define buswidth to be constant 8
wire ['buswidth-1:0] databus; // using buswidth
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C.1.7 Data Types
Nets and registers are two main kinds of data types.

 ● Nets, defined with the wire keyword, are used to model electrical connections 
between components. They are used to connect instances together to transmit 
logic values between them. Nets do not store values and have to be driven con-
tinuously. An optional range [start:end] can be given for the bit width.

 ● Registers, defined with the reg keyword, are used to represent storage elements. 
Registers can store their values from one assignment to the next. An optional 
range [start:end] can be given for the bit width. Furthermore, the optional 
signed keyword can be used to denote that the data in the register is to be 
treated as a signed (two’s complement) number.

Syntax:

wire [range] identifier1, identifier2, …;
reg [signed] [range] identifier1, identifier2, …;

EXAMPLE

wire x, y;  // two 1-bit wire
wire [1:4] bus; // a 4-bit wire with bit 1 being the most  

// significant
reg z;   // a 1-bit register
reg [7:0] s; // an 8-bit register with bit 7 being the most 

// significant

C.1.8 Data Operators
Some of the more commonly used Verilog operators are listed in Figure C.2.

FIGURE C.2 Verilog built-in data operators. (continued on next page)

Logical Operators Operation Example
&& Logical AND if  1 1a . b 2 && 1c , d 2 2
0 0 Logical OR if  1 1a . b 2 0 0 1c , d 2 2
! Logical NOT if  ! 1a . b 2
& Bitwise AND of  individual bits n 5 a & b

0 Bitwise OR of  individual bits n 5 a 0 b
, Bitwise NOT of  individual bits n 5 ,a
` Bitwise XOR of  individual bits n 5 a ` b

Arithmetic Operators Operation Example
1 Addition n 5 a 1 b

2 Subtraction n 5 a 2 b

* Multiplication (integer or floating 
point)

n 5 a * b
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C.1.9 Module
In Verilog, a module represents a logical component in a digital system. Each module 
has an interface to specify the signals for communication with other modules. These 
port signals are declared within parenthesis, and can be of types input, output, or inout
(for bidirectional communication). A module’s body contains statements that describe 
the actual operation of the logical component.

The operational description of  the module can be written using one of  three 
different models: behavioral, dataflow, or structural. Behavioral modeling describes 
the abstract operation of  the circuit using a high-level construct, and does not take 
into consideration how the circuit is actually implemented. Dataflow modeling spec-
ifies the circuit in a form that is closely related to a Boolean equation. Structural 
modeling describes a circuit in terms of  how the primitive gates are interconnected 
together.

Arithmetic Operators Operation Example
/ Division (integer or floating point) n 5 a / b

% Modulus; remainder (integer) n 5 a % b

** Power n 5 a ** 2

Relational Operators Operation Example

55 Logical equal if  (a 55 b)

!5 Logical not equal if  (a !5 b)

, Less than if  (a , b)

,5 Less than or equal if  (a ,5 b)

. Greater than if  (a . b)

.5 Greater than or equal if  (a .5 b)

555 Bitwise equal. All bits must match. 
Can include x and z values.

if  (a 555 b)

!55 Bitwise not equal. True if  only one 
bit is different. Can include x and z
values.

if  (a !55 b)

Shift and Other Operators Operation Example
,, Logical left shift. Pad with zero n 5 7'b1001010 ,, 2

.. Logical right shift. Pad with zero n 5 a .. 1

,,, Arithmetic left shift. Pad with zero n 5 a ,,, 3

... Arithmetic right shift. Pad with sign 
bit

n 5 a ... 2

5, 6 String concatenation n 5 5a, b, c6
5m5 66 Repetition where m is repetition 

number
n 5 535a66

FIGURE C.2 Verilog built-in data operators. 
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Syntax:

module module_name
    (input port_name_list,

output port_name_list,
inout port_name_list);

    statements;
endmodule

EXAMPLE: BEHAVIORAL MODEL

// a 4-bit wide 2-to-1 multiplexer written in behavioral model
module multiplexer (
input s,
input [3:0] d0,
input [3:0] d1,
output reg [3:0] y

);

always @(s, d0, d1) begin
if (~s)
y = d0; // assign d0 to y

else
y = d1;

end

endmodule

EXAMPLE: DATAFLOW MODEL

// a 1-bit wide 2-to-1 multiplexer written in dataflow model
module multiplexer (
input s,
input d0,
input d1,
output reg y

);

assign y = (~s & d0) | (s & d1);

endmodule

EXAMPLE: STRUCTURAL MODEL

// a 1-bit wide 2-to-1 multiplexer written in structural model
module multiplexer (
input s, d0, d1,
output y

);
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wire sn, snd0, sd1; // define 3 nets for connecting the components
not U1(sn,s);     // an instance of the NOT gate. sn is the output
and U2(snd0,d0,sn); // an AND gate. snd0 is the output
and U3(sd1,d1,s);
or U4(y,snd0,sd1);

endmodule

C.1.10 Module Parameter
A module can have an optional parameter list. This list of parameters, with optional 
default values, allows us to define generic information about the module. The parameter
keyword is used to specify identifiers with optional default values assigned to them. The 
identifier is assigned an external value when the module is instantiated, or is assigned 
the default value when no external value is given. The identifier can then be used in 
placed of a constant.

Syntax: Declaration:

module module_name
#(parameter identifier 5 default_value, identifier 5 default_value)

   (input port_name_list,
output port_name_list,
inout port_name_list);

   statements;
endmodule

Syntax: Instantiation:

module_name #(constant) instance_name (parameter_list);

EXAMPLE: DECLARATION

// a default 8-bit 2-to-1 multiplexer written in dataflow model
module multiplexer
#(parameter width = 8)  // a parameter constant with a default 

value of 8

(input [width-1:0] d0, d1,
input s,
output [width-1:0] y);

assign y = (~s) ? d0:d1;    // assigns d0 to y if s is 0,
// otherwise assigns d1 to y

endmodule

EXAMPLE: INSTANTIATION

// instantiating a 4-bit 2-to-1 multiplexer
multiplexer #(4) U1(input1, input2, select, output);
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C.2 Behavioral Model
The behavioral model allows statements to be executed sequentially similar to a regular 
computer program. An always block, containing one or more sequential statements, 
forms the basis of  the behavioral model. The always block is like a process with its 
independent thread of control, and continuously executes all the statements that are 
inside it. All sequential statements, including many of the standard constructs, such as 
variable assignments, if-then-else, and loops, must be written inside an always block.

C.2.1 Assignment
Signal assignments are performed using the symbol 5 for blocking, or ,5 for non-
blocking. These assignment statements are different from the assign keyword used for 
assignments in the dataflow model.

Syntax:

register_identififif er 5 expression; // blocking (immediate) assignment

register_identififif er ,5 expression; // non-blocking (concurrent) assignment

These assignment statements must be used inside an always block or an initial
block. The identifier on the left side of the equal sign must be of type reg, but this does 
not mean that a memory element will always be used for the identifier.

EXAMPLE: BLOCKING

reg a, c;

always begin
a = b;
c = a;

end

Blocking assignment statements are executed sequentially, so the ordering of the 
assignment statements does matter. The register variable on the left side is assigned with 
the value from the right side immediately before continuing to the next statement. In 
the above example, the result of the two blocking assignment statements is that both 
variables a and c will take on the same value of b.

EXAMPLE: NON-BLOCKING

reg a, c;

always begin
a <= b;
c <= a;

end
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Non-blocking assignment statements are executed in parallel, so the ordering of 
the assignment statements does not matter. In the above example, the first statement 
will make a take on the value of  b, but in the second statement, c will take on the 
original value that a has as if  the first statement never occurred. In other words, all of 
the right side expressions in the non-blocking assignment statements will be evaluated 
before any of the left side registers are updated. Hence, the ordering of these statements 
does not affect the resulting output.

Below is a list of general guidelines that you should follow as to when to use the 
blocking assignment and when to use the non-blocking assignment statements.

 ● Use blocking assignments 15 2  when modeling combinational logic inside an 
always block.

 ● Use non-blocking assignments 1,5 2  when modeling sequential logic inside an 
always block.

 ● Use non-blocking assignments 1,5 2  when there is a posedge or negedge clause 
in the always sensitivity list or modeling latches.

 ● Use non-blocking assignments 1,5 2  when modeling both sequential and com-
binational logic within the same always block.

 ● Do not mix blocking and non-blocking assignments in the same always block.
 ● Do not make assignments to the same variable from more than one always

block.

Your code still will synthesize if  you do not follow these guidelines, but your sim-
ulation might be wrong.

C.2.2 initial
The initial block is executed only once at the beginning and terminates after executing 
all of the statements inside it. The sequential behavioral statements inside the block are 
executed sequentially. Non-blocking 1,5 2  assignments still will be executed in parallel.

Syntax:

initial
statement;

EXAMPLE

reg [7:0] rom[2**4-1:0];

initial begin
rom[0] <= 8'b01100000;
rom[1] <= 8'b10000000;
rom[2] <= 8'b10100000;
rom[3] <= 8'b11000001;
rom[4] <= 8'b11111111;

end
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C.2.3 always
The always block is similar to the initial block, but repeats continuously, executing 
the statements that are inside it similar to an endless loop. The always block itself  is a 
concurrent statement, so a behavioral module might contain multiple always blocks, 
and they all will be executed concurrently. The sequential behavioral statements inside 
the block are executed sequentially. Non-blocking 1,5 2  assignments still will be exe-
cuted in parallel.

Syntax:

always
statement;

EXAMPLE

always begin
term_1 = D | V;

  S = term_1 & M;
end

An always construct usually is used in conjunction with an event control ( @ ) to 
create either a combinational or sequential logic.

C.2.4 Event Control
The event control statement, which uses the @ symbol, waits for the specified event to 
occur and then executes the statement associated with it. The event is specified in the 
form of a sensitivity list, which is a comma-separated list of nets. Whenever a signal in 
the sensitivity list changes value, the associated statement will be executed.

Syntax:

@ (sensitivity_list)
statement;

EXAMPLE

// synthesizes to a combinational logic

module Siren (
input M, D, V,
output reg S

);

reg term_1;

always @(M, D, V) begin
term_1 = D | V;
S = term_1 & M;

end

endmodule
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If  the sensitivity list contains every variable on the right side of  an assignment 
statement or the condition in an if statement, then a combinational logic is created. if statement, then a combinational logic is created. if
The asterisk ( * ) symbol can be used as a shorthand notation to denote all of  the 
variables.

Syntax:

@ (*)
statement;

EXAMPLE

// synthesizes to a combinational logic
always @(*) // equivalent to always @(a, b, c)
if (a == 1)
x = b;

else
x = c;

The nets specified in the sensitivity list might be qualified with the keywords 
posedge or negedge so that the control statement watches only for the positive or nega-
tive transition, respectively, of the given signal before it executes the statement. In this 
case, non-blocking assignment 1,5 2  statements should be used inside the always block 
and a sequential logic is created.

Syntax:

@ (posedge signal)
statement;

@ (negedge signal)
statement;

Note that the sensitivity list cannot contain both edge triggered signals (with either 
posedge or negedge qualifiers) and level sensitive signals (with no posedge or negedge
qualifiers).

EXAMPLE OF A BASIC D FLIP-FLOP

module D_flipflop (
input clock, data,
output reg q

);

always @(posedge clock)
q <= data; // q gets the value of data at next rising clock edge

endmodule;
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EXAMPLE OF A D FLIP-FLOP WITH SYNCHRONOUS ACTIVE-HIGH ENABLE AND   
ASYNCHRONOUS ACTIVE-HIGH CLEAR SIGNALS

module D_flipflop (
input D,
input Clock,
input Enable,
input Clear,
output reg Q

);

// execute on rising clock edge or Clear
always @(posedge Clock or posedge Clear) begin
if (Clear) begin
Q <= 1'b0;     // assign 0 to Q on clear

end else if (Enable) begin
Q <= D; // assign value from D to Q only if Enable is asserted

end
end

endmodule

C.2.5 begin-end
A block of sequential statements can be grouped together to form a single block with 
the use of the begin and end keywords.

Syntax:

begin
statement1;
statement2;
…

end

EXAMPLE

if (a == 1) begin
x = 1'b0;
y = 1'b1;

end
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C.2.6 if-then-else
Syntax:

if (condition)if (condition)if
statement1;

else
statement2;

or

if (condition)if (condition)if
statement1;

else if (condition)else if (condition)else if
statement2;

else
statement3;

EXAMPLE

if (count != 10) // not equal
count = count + 1;

else
count = 0;

C.2.7 case, casex, casez
Syntax:

case (expression)
constant1: statement1;
constant2: statement2;
…
default: statement3;

endcase

The casex, and casez statements have the same syntax as the case statement, except 
for the replaced keyword. The casez statement allows for z values to be treated as don’t-
care values, while the casex statement allows for both x and z values to be treated as 
don’t-cares.

EXAMPLE

module mux4
#(parameter width = 8)
(input [1:0] s,
input [width-1:0] d3, d2, d1, d0,
output reg [width-1:0] y);
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always @(s, d0, d1, d2, d3) begin
case (s)
2'b00: begin
y = d0;
end

2'b01: begin
y = d1;
end

2'b10: begin
y = d2;
end

default: begin
y = d3;
end

endcase
end

endmodule

C.2.8 for
Syntax:

for 1 id 5 low_range; id , high_range; id 5 id 1 step 2
statement;

EXAMPLE

module TestFOR
(sum);

inout reg [7:0] sum = 'd0;  // initialize with decimal 0
reg [3:0] i;

  
always
begin
for (i = 0; i < 10; i = i + 1)
begin
sum = sum + i;

end
end

endmodule
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C.2.9 while
Syntax:

while (condition)
statement;

EXAMPLE

module TestWHILE
(sum);

inout reg [7:0] sum = 'd0;
reg [3:0] i;

  
always
begin

  i = 0;
while (i < 10)

   begin
sum = sum + i;
i = i + 1;
end

end

endmodule

C.2.10 function
Syntax: Function definition:

function function_name (parameter_list);
// register declarations
// wire declarations
begin
statement;
…
end

endfunction

Syntax: Function call:

function_name (parameters);

EXAMPLE

module TestFunction
(input [7:0] bitstring,
output [7:0] result);
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assign result = Shiftright(bitstring); // function call

// function to perform a shift right
function [7:0] Shiftright
(input [7:0] string);

Shiftright = {1'b0,string[7:1]};
endfunction

endmodule

C.2.11 Behavioral Model Example
The following example shows the behavioral code for a binary coded decimal to 
7-segment LED decoder.

EXAMPLE: BEHAVIORAL CODE FOR A BCD TO 7-SEGMENT DECODER

module decoder
(input [3:0] I,
output reg a,b,c,d,e,f,g);

always @(*) begin
  case(I)

4'b0000: {a,b,c,d,e,f,g} = 7'b1111110; // 0
  4'b0001: {a,b,c,d,e,f,g} = 7'b0110000;  // 1

4'b0010: {a,b,c,d,e,f,g} = 7'b1101101; // 2
4'b0011: {a,b,c,d,e,f,g} = 7'b1111001; // 3
4'b0100: {a,b,c,d,e,f,g} = 7'b0110011; // 4
4'b0101: {a,b,c,d,e,f,g} = 7'b1011011; // 5
4'b0110: {a,b,c,d,e,f,g} = 7'b1011111; // 6
4'b0111: {a,b,c,d,e,f,g} = 7'b1110000; // 7
4'b1000: {a,b,c,d,e,f,g} = 7'b1111111; // 8
4'b1001: {a,b,c,d,e,f,g} = 7'b1110011; // 9
4'b1010: {a,b,c,d,e,f,g} = 7'b1110111; // A
4'b1011: {a,b,c,d,e,f,g} = 7'b0011111; // b
4'b1100: {a,b,c,d,e,f,g} = 7'b1001110; // C
4'b1101: {a,b,c,d,e,f,g} = 7'b0111101; // d
4'b1110: {a,b,c,d,e,f,g} = 7'b1001111; // E
4'b1111: {a,b,c,d,e,f,g} = 7'b1000111; // F
default: {a,b,c,d,e,f,g} = 7'b0000000; // all off

  endcase
end

endmodule

C.3 Dataflow Model
The dataflow model specifies the circuit in a form similar to Boolean algebra. Hence, 
this model is best suited for describing a circuit when given a set of Boolean equations.
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C.3.1 Continuous Assignment
The assign statement is used to provide continuous assignment of values to nets out-
side of an always block. The assign statement is evaluated whenever any of its inputs 
changes value and the result of the evaluation is assigned to the output net. Continuous 
assignment statements and conditional assignment statements are executed in parallel, 
so the ordering of the statements does not matter.

Syntax

assign net_identififif er 5 expression; // assign statement

wire net_identififif er 5 expression; // declaration and initialization of net

The net identifier on the left side of the equal sign must be of type wire. The expres-
sion on the right side can be either a logical or arithmetic expression.

EXAMPLE

module logic (
input a, b, c,
output f

);

wire w = a & b;

assign f = w | c;

endmodule

C.3.2 Conditional Assignment
The conditional signal assignment statement selects one of  two different values to 
assign to a net. This statement is executed whenever an input in any one of the expres-
sions or condition changes. Continuous assignment statements and conditional assign-
ment statements are executed in parallel, so the ordering of the statements does not 
matter.

Syntax:

assign net_identifier 5 1condition 2  ? expression1:expression2;

If  the condition is true, then the result of expression1 is assigned to the net, oth-
erwise the result of expression2 is assigned to the net.

EXAMPLE

// assigns in to out if enable is true otherwise assigns a z to out
assign out = (enable) ? in:1'bz;
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C.3.3 Dataflow Model Example
This example describes a full adder (FA) circuit using the dataflow model. The Boolean 
equations for describing the full adder circuit are:

cout 5 xyxyx 1 cinini 1x! y 2
sum 5 x! y! cinini

The following example translates the above two equations into the corresponding 
two assign statements.

EXAMPLE: DATAFLOW CODE FOR A FULL ADDER

module fa
(input x, y, cin,
output cout, sum); 

assign cout = (x & y) | (cin & (x ˆ y));
assign sum = x ˆ y ˆ cin;

endmodule

C.4 Structural Model
The structural model allows the manual connection of  primitive gates and module 
components together using nets to build larger modules. This model is best suited if  
you already have the schematic drawing for a component and you want to recreate the 
component based exactly on the schematic diagram.

C.4.1 Built-in Gates
All of the basic gates are built in to the Verilog language. Furthermore, you can use the 
same syntax for instantiating a user-defined module. This way, you can define a module 
at a lower level and then use this module at a higher level.

Syntax:

and instance_name (parameter_list); // implements the primitive logic function

nand instance_name (parameter_list);

nor instance_name (parameter_list);

or instance_name (parameter_list);

xor instance_name (parameter_list);

xnor instance_name (parameter_list);

buf instance_name (output, input); // implements the noninverting buffer

not instance_name (output, input); // implements the inverter
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Each instance of a gate can have an optional instance name. The parameter list 
consists of comma-separated input and output signals. All of the input/output signals 
are nets of type wire. For the predefined primitive gates, the first parameter specified 
is always the output signal, followed by as many input nets as needed.

EXAMPLE

and U1(out, in1, in2, in3, in4);  // a 4-input AND gate  
or U2(out, in1, in2);          // a 2-input OR gate

C.4.2 User-Defined Module
User-defined module can be used to build circuits in a hierarchical fashion.

The syntax for using a user-defined module is the same as for a primitive gate. 
For the user-defined module, the inputs and outputs in the parameter list depend on 
how the parameter list in the module definition is specified. The parameter list can be 
specified using either the positional or named method. The constant number used here 
will override the number specified in the parameter clause in the module definition.

Syntax:

user_defined_module_name instance_name (parameter_list);

or

user_defined_module_name #(constant) instance_name (parameter_list);

EXAMPLE: POSITIONAL ASSOCIATION

fa U2(X[0], Y[0], c[0], c[1], S[0]);

EXAMPLE: NAMED ASSOCIATION

fa U3(.x(X[0]), .y(Y[0]), .cin(c[0]), .cout(c[1]), .sum(S[0]));

EXAMPLE: CONSTANT PARAMETER

TriState_Buffer #(8) U4(.E(OE), .D(dp_sum), .Y(Output));

bufif0 instance_name (output, input, enableN); // implements the tri-state buffer with active-low enable

bufif1 instance_name (output, input, enable); // implements the tri-state buffer with active-high enable

notif0 instance_name (output, input, enableN); // implements the tri-state inverter with active-low enable

notif1 instance_name (output, input, enable); // implements the tri-state inverter with active-high enable
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C.4.3 Structural Model Example
This structural model example is for the 4-bit ripple-carry adder based on the following 
circuit. It requires the full adder (fa) module that is defined in Section C.3.3.

x1 y1

c1

s1

FA1

x2 y2

c2

s2

FA2

x3 y3

c3

s3

FA3

cout

x0 y0

c0 = 0

s0

FA0

EXAMPLE: STRUCTURAL CODE FOR A 4-BIT ADDER

module adder (
input [3:0] X, Y,
output [3:0] S,
output Cout

);
wire [3:0] c;

assign c[0] = 1'b0;
  
fa U0(.x(X[0]), .y(Y[0]), .cin(c[0]), .cout(c[1]),  

          .sum(S[0]));
fa U1(.x(X[1]), .y(Y[1]), .cin(c[1]), .cout(c[2]),  

.sum(S[1]));
fa U2(.x(X[2]), .y(Y[2]), .cin(c[2]), .cout(c[3]),  

.sum(S[2]));
fa U3(.x(X[3]), .y(Y[3]), .cin(c[3]), .cout(Cout),  

.sum(S[3]));

endmodule
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A P P E N D I X  D

VHDL Summary

VHDL is a hardware description language for modeling digital circuits that can range 
from the simple connection of  gates to complex systems. VHDL is an acronym for 
VHSIC Hardware Description Language, and VHSIC in turn is an acronym for Very 
High Speed Integrated Circuits. This appendix gives a brief  summary of  the basic 
VHDL elements and their syntax. Many advanced features of the language are omit-
ted. Interested readers should refer to other references for detailed coverage.

D.1 Basic Language Elements

D.1.1 Keywords
The VHDL language is not case sensitive, so the keywords can be in either uppercase 
or lowercase. In this book, the VHDL keywords are written in uppercase. Figure D.1 
shows a partial list of the VHDL keywords.

ABS AND ARCHITECTURE ARRAY BEGIN BIT

BIT_VECTOR BODY BOOLEAN CASE COMPONENT CONSTANT

DOWNTO ELSE ELSIF END ENTITY EXIT

FOR FUNCTION GENERIC IF IN INTEGER

IS LIBRARY LOOP MAP MOD NAND

NATURAL NEXT NOR NOT OF OR

OTHERS PACKAGE PORT POSITIVE PROCEDURE PROCESS

RANGE REM RETURN ROL ROR SELECT

SIGNAL SLA SLL SRA SRL STD_LOGIC

STD_LOGIC_VECTOR USE

FIGURE D.1 Partial list of VHDL keywords.
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D.1.2 Comments
Comments are preceded by two consecutive hyphens ( -- ) and are terminated at the 
end of the line.

EXAMPLE

-- This is a comment

D.1.3 Identifiers
VHDL identifier syntax:

 ● A sequence of one or more uppercase letters, lowercase letters, digits, and the 
underscore ( _ ).

 ● Upper and lowercase letters are treated the same (i.e., case insensitive).
 ● The first character must be a letter.
 ● The last character cannot be an underscore.
 ● Two underscores cannot be together.

D.1.4 Data Objects
There are three kinds of data objects: signals, variables, and constants.

 ● The data object SIGNAL represents logic signals on a wire in the circuit. A signal 
does not have memory; thus, if  the source of the signal is removed, the signal 
will not have a value.

 ● A VARIABLE object remembers its content and is used for computations in a 
behavioral model.

 ● A CONSTANT object must be initialized with a value when declared, and this 
value cannot be changed.

EXAMPLE

SIGNAL x: BIT;
VARIABLE y: INTEGER;
CONSTANT one: STD_LOGIC_VECTOR(3 DOWNTO 0) := "0001";

D.1.5 Data Types
BIT and BIT_VECTOR
The BIT and BIT_VECTOR types are predefined in VHDL. Objects of these types can have 
the values 0 or 1. The BIT_VECTOR type is simply a vector of type BIT. A vector with all 
bits having the same value can be obtained using the OTHERS keyword.
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EXAMPLE

SIGNAL x: BIT;
SIGNAL y: BIT_VECTOR(7 DOWNTO 0);
x <= '1';
y <= "00000010";
y <= (OTHERS => '0'); -- same as "00000000"

STD_LOGIC and STD_LOGIC_VECTOR
The STD_LOGIC and STD_LOGIC_VECTOR types provide more values than the BIT type for 
modeling a real circuit more accurately. Objects of these types can have the following 
values:

'0' – normal 0

'1' – normal 1

'Z' – high impedance

'-' – don’t-care

'L' – weak 0

'H' – weak 1

'U' – uninitialized

'X' – unknown

'W' – weak unknown

The STD_LOGIC and STD_LOGIC_VECTOR types are not predefined, and so the follow-
ing two library statements must be included in order to use these types.

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

If  objects of  type STD_LOGIC_VECTOR are to be used as binary numbers in arith-
metic manipulations, then either one of the following two USE statements also must be 
included:

USE IEEE.STD_LOGIC_SIGNED.ALL;

for signed number arithmetic, or

USE IEEE.STD_LOGIC_UNSIGNED.ALL;

for unsigned number arithmetic. A vector with all bits having the same value can be 
obtained using the OTHERS keyword, as shown in the next example.
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EXAMPLE

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

SIGNAL x: STD_LOGIC;
SIGNAL y: STD_LOGIC_VECTOR(7 DOWNTO 0);

x <= 'Z';
y <= "0000001Z";
y <= (OTHERS => '0'); -- same as "00000000"

INTEGER
The predefined INTEGER type defines binary number objects for use with arithmetic 
operators. By default, an INTEGER signal uses 32 bits to represent a signed number. 
Integers using fewer bits can be declared with the RANGE keyword.

EXAMPLE

SIGNAL x: INTEGER;
SIGNAL y: INTEGER RANGE –64 TO 64;

BOOLEAN
The predefined BOOLEAN type defines objects having the two values TRUE and FALSE.

EXAMPLE

SIGNAL x: BOOLEAN;

Enumeration TYPE
An enumeration type allows the user to specify the values that the data object can have.

Syntax:

TYPE identifier IS (value1, value2, … );

EXAMPLE

TYPE state_type IS (S1, S2, S3);
SIGNAL state: state_type;
state <= S1;

ARRAY
The ARRAY type groups single data objects of the same type together into a one-dimen-
sional or multi-dimensional array.
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Syntax:

TYPE identifier IS ARRAY (range) OF type;

EXAMPLE

TYPE byte IS ARRAY(7 DOWNTO 0) OF BIT;
TYPE memory_type IS ARRAY(1 TO 128) OF byte;
SIGNAL memory: memory_type;
memory(3) <= "00101101";

SUBTYPE
A SUBTYPE is a subset of a type, that is, a type with a range constraint.

Syntax:

SUBTYPE identifier IS type RANGE range;

EXAMPLE

SUBTYPE integer4 IS INTEGER RANGE –8 TO 7;

SUBTYPE cell IS STD_LOGIC_VECTOR(3 DOWNTO 0);
TYPE memArray IS ARRAY(0 TO 15) OF cell;

Some standard subtypes include:
 ● NATURAL—an integer in the range 0 to INTEGER'HIGH

 ● POSITIVE—an integer in the range 1 to INTEGER'HIGH

D.1.6 Data Operators
The VHDL built-in operators are listed in Figure D.2.

Logical Operators Operation Example

AND AND n ,5 a AND b

OR OR n ,5 a OR b

NOT NOT n ,5 NOT a

NAND NAND n ,5 a NAND b

NOR NOR n ,5 a NOR b

XOR XOR n ,5 a XOR b

XNOR XNOR n ,5 a XNOR b

FIGURE D.2 VHDL built-in data operators. (continued on next page)
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D.1.7 ENTITY
An ENTITY declaration declares the external or user interface of the module similar to 
the declaration of a function. It specifies the name of the entity and its interface. The 
interface consists of the signals to be passed into the entity or out from it using the two 
keywords IN and OUT, respectively.

Syntax:

ENTITY entity-name IS
PORT (list-of-port-names-and-types);

END entity-name;

Arithmetic Operators Operation Example

1 Addition n ,5 a 1 b

2 Subtraction n ,5 a 2 b

* Multiplication (integer or floating 
point)

n ,5 a * b

/ Division (integer or floating point) n ,5 a / b

MOD Modulus (integer) n ,5 a MOD b

REM Remainder (integer) n ,5 a REM b

** Exponentiation n ,5 a ** 2

& Concatenation n ,5 'a' & 'b'

ABS Absolute

Relational Operators Operation Example

5 Equal IF 1n 5 10 2 THEN

/5 Not equal IF 1n /5 10 2 THEN

, Less than IF 1n , 10 2 THEN

,5 Less than or equal IF 1n ,5 10 2 THEN

. Greater than IF 1n . 10 2 THEN

.5 Greater than or equal IF 1n .5 10 2 THEN

Shift Operators Operation Example

SLL Shift left logical n ,5 "1001010" SLL 2

SRL Shift right logical n ,5 "1001010" SRL 1

SLA Shift left arithmetic n ,5 "1001010" SLA 2

SRA Shift right arithmetic n ,5 "1001010" SRA 1

ROL Rotate left n ,5 "1001010" ROL 2

ROR Rotate right n ,5 "1001010" ROR 3

FIGURE D.2 VHDL built-in data operators.
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EXAMPLE

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY Siren IS PORT (
M: IN STD_LOGIC;
D: IN STD_LOGIC;
V: IN STD_LOGIC;
S: OUT STD_LOGIC);

END Siren;

D.1.8 ARCHITECTURE
The ARCHITECTURE body defines the actual implementation of the functionality of the 
entity. This is similar to the definition or implementation of a function. The syntax for the 
architecture varies, depending on the model (dataflow, behavioral, or structural) you use.

Syntax: Dataflow model:

ARCHITECTURE architecture-name OF entity-name IS
signal-declarations;

BEGIN
concurrent-statements;

END architecture-name;

The concurrent statements are executed concurrently.

EXAMPLE

ARCHITECTURE Siren_Dataflow OF Siren IS
SIGNAL term_1: STD_LOGIC;

BEGIN
term_1 <= D OR V;
S <= term_1 AND M;

END Siren_Dataflow;

Syntax: Behavioral model:

ARCHITECTURE architecture-name OF entity-name IS
signal-declarations;
function-definitions;
procedure-definitions;

BEGIN
PROCESS-blocks;
concurrent-statements;

END architecture-name;
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Statements within the PROCESS block are executed sequentially. However, the 
PROCESS block itself  is a concurrent statement.

EXAMPLE

ARCHITECTURE Siren_Behavioral OF Siren IS
SIGNAL term_1: STD_LOGIC;

BEGIN
PROCESS (D, V, M)
BEGIN
term_1 <= D OR V;
S <= term_1 AND M;

END PROCESS;
END Siren_Behavioral;

Syntax: Structural model:

ARCHITECTURE architecture-name OF entity-name IS
component-declarations;
signal-declarations;

BEGIN
instance-name: PORT MAP-statements;
concurrent-statements;

END architecture-name;
Every component declaration used must have a corresponding entity and architec-

ture. The PORT MAP statements are concurrent statements.

EXAMPLE

ARCHITECTURE Siren_Structural OF Siren IS
COMPONENT myOR PORT (
in1, in2: IN STD_LOGIC;
out1: OUT STD_LOGIC);

END COMPONENT;

SIGNAL term1: STD_LOGIC;

BEGIN
U0: myOR PORT MAP (D, V, term1);
S <= term1 AND M;

END Siren_Structural;

D.1.9 GENERIC
Generics allow information to be passed into an entity so that, for example, the size of 
a vector in the PORT list does not have to be known until elaboration time. Generics of 
an entity are declared with the GENERIC keyword before the PORT list declaration for the 
entity. An identifier that is declared as GENERIC is a constant that can be only read. The 
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identifier then can be used in the entity declaration and its corresponding architectures 
wherever a constant is expected.

Syntax: In an ENTITY declaration:ENTITY declaration:ENTITY

ENTITY entity-name IS
GENERIC (identifier: type);   -- with no default value
…

or

ENTITY entity-name IS
GENERIC (identifier: type :5 constant); -- with a default value given by 

-- the constant
…

EXAMPLE

ENTITY Adder IS
-- declares the generic identifier n having a default value 4
GENERIC (n: INTEGER := 4);
PORT (
-- the vector size is 3 downto 0 since n is 4
A, B: IN STD_LOGIC_VECTOR(n-1 DOWNTO 0);
Cout: OUT STD_LOGIC;
SUM: OUT STD_LOGIC_VECTOR(n-1 DOWNTO 0));
S: OUT STD_LOGIC);

END Adder;

The value for a generic constant also can be specified in a component declaration 
or a component instantiation statement.

Syntax: In a component declaration:

COMPONENT component-name
GENERIC (identifier: type :5 constant); -- with an optional value given 

-- by the constant
PORT (list-of-port-names-and-types);

END COMPONENT;

Syntax: In a component instantiation:

label: component-name GENERIC MAP (constant) PORT MAP (association-list);

EXAMPLE

ARCHITECTURE ...

COMPONENT mux2 IS
-- declares the generic identifier n having a default value 4
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GENERIC (n: INTEGER := 4);
PORT (
S: IN STD_LOGIC; -- select line
D1, D0: IN STD_LOGIC_VECTOR(n-1 DOWNTO 0);-- data bus input
Y: OUT STD_LOGIC_VECTOR(n-1 DOWNTO 0)); -- data bus output

END COMPONENT;

...

BEGIN

U0: mux2 GENERIC MAP (8) PORT MAP (mux_select, A, B, mux_out);
-- change vector to size 8

...

D.1.10 PACKAGE
A PACKAGE provides a mechanism to group declarations together and share them 
between several entity units. A package itself  includes a declaration and, optionally, 
a body. The PACKAGE declaration and body usually are stored together in a separate 
file from the rest of the design units. The file name given for this file must be the same 
as the package name. In order for the complete design to synthesize correctly using 
Quartus II, you first must synthesize the package as a separate unit. After that, you 
can synthesize the unit that uses that package.

PACKAGE Declaration and Body
The PACKAGE declaration contains declarations that may be shared between different 
entity units. It provides the interface, that is, items that are visible to the other entity 
units. The optional PACKAGE BODY contains the implementations of the functions and 
procedures that are declared in the PACKAGE declaration.

Syntax: PACKAGE declarationPACKAGE declarationPACKAGE

PACKAGE package-name IS
type-declarations;
subtype-declarations;
signal-declarations;
variable-declarations;
constant-declarations;
component-declarations;
function-declarations;
procedure-declarations;

END package-name;

Syntax: PACKAGE BODY declarationBODY declarationBODY

PACKAGE BODY package-name IS
function-definitions; -- for functions declared in the package  

-- declaration
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procedure-definitions;   -- for procedures declared in the package  
-- declaration

END package-name;

EXAMPLE

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

PACKAGE my_package IS
SUBTYPE bit4 IS STD_LOGIC_VECTOR(3 DOWNTO 0);
-- declare a function
FUNCTION Shiftright (input: IN bit4) RETURN bit4;
SIGNAL mysignal: bit4; -- a global signal

END my_package;

PACKAGE BODY my_package IS
-- implementation of the Shiftright function
FUNCTION Shiftright (input: IN bit4) RETURN bit4 IS
BEGIN
RETURN '0' & input(3 DOWNTO 1);

END shiftright;
END my_package;

Using a PACKAGE
To use a package, you simply include a LIBRARY and USE statement for that package. 
Before synthesizing the module that uses the package, you need to first synthesize the 
package by itself  as a top-level entity.

Syntax:

LIBRARY WORK;
USE WORK.package-name.ALL;

EXAMPLE

LIBRARY WORK;
USE WORK.my_package.ALL;

ENTITY test_package IS PORT (
x: IN bit4;
z: OUT bit4);

END test_package;

ARCHITECTURE Behavioral OF test_package IS
BEGIN
mysignal <= x;
z <= Shiftright(mysignal);

END Behavioral;
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D.2 Behavioral Model—Sequential Statements
The behavioral model allows statements to be executed sequentially as in a regular 
computer program. Sequential statements include many of the standard constructs, 
such as variable assignments, if-then-else statements, and loops.

D.2.1 PROCESS
The PROCESS block contains statements that are executed sequentially. However, the 
PROCESS statement itself  is a concurrent statement and so multiple PROCESS blocks in an 
architecture will be executed simultaneously. These process blocks can be combined 
together with other concurrent statements.

Syntax:

process-name: PROCESS (sensitivity-list)
variable-declarations;

BEGIN
sequential-statements;

END PROCESS process-name;

The sensitivity list is a comma-separated list of  signals, to which the process is 
sensitive. In other words, whenever a signal in the list changes value, the process will 
be executed (i.e., all of  the statements in the sequential order listed). After the last 
statement has been executed, the process will be suspended until the next time that a 
signal in the sensitivity list changes value, when it is executed again.

EXAMPLE

Siren: PROCESS (D, V, M)
BEGIN
term_1 <= D OR V;
S <= term_1 AND M;

END PROCESS;

D.2.2 Sequential Signal Assignment
The sequential signal assignment statement assigns a value to a signal. This statement 
is just like its concurrent counterpart, except that it is executed sequentially (i.e., only 
when execution reaches it).

Syntax:

signal ,5 expression;
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EXAMPLE

y <= '1';
z <= y AND (NOT x);

D.2.3 Variable Assignment
The variable assignment statement assigns a value or the result of evaluating an expres-
sion to a variable. The value always is assigned to the variable as soon as this statement 
is executed.

Variables are declared only within a PROCESS block.

Syntax:

signal :5 expression;

EXAMPLE

y := '1';
yn := NOT y;

D.2.4 WAIT
When a process has a sensitivity list, the process always suspends after executing the 
last statement. An alternative to using a sensitivity list to suspend a process is to use a 
WAIT statement, which also must be the first statement in a process.
Syntax:

WAIT UNTIL condition;

EXAMPLE

-- suspend until a rising clock edge
WAIT UNTIL clock'EVENT AND clock = '1';

D.2.5 IF-THEN-ELSE
Syntax:

IF condition THEN
sequential-statements1;

ELSE
sequential-statements2;

END IF;
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or

IF condition1 THEN
sequential-statements1;

ELSIF condition2 THEN
sequential-statements2;

…
ELSE

sequential-statements3;
END IF;

EXAMPLE

IF count /= 10 THEN -- not equal
count := count + 1;

ELSE
count := 0;

END IF;

D.2.6 CASE
Syntax:

CASE expression IS
WHEN choices 5. sequential-statements;
WHEN choices 5. sequential-statements;
…
WHEN OTHERS 5. sequential-statements;
END CASE;

EXAMPLE

CASE sel IS
WHEN "00" => z <= in0;
WHEN "01" => z <= in1;
WHEN "10" => z <= in2;
WHEN OTHERS => z <= in3;
END CASE;

D.2.7 NULL
The NULL statement does not perform any actions.

Syntax:

NULL;
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D.2.8 FOR
Syntax:

FOR identifier IN start 3TO 0  DOWNTO 4 stop LOOP
sequential-statements;

END LOOP;

Loop statements must have locally static bounds. The identifier is implicitly 
declared, so no explicit declaration of the variable is needed.

EXAMPLE

sum := 0;
FOR count IN 1 TO 10 LOOP
sum := sum + count;

END LOOP;

D.2.9 WHILE
Syntax:

WHILE condition LOOP
sequential-statements;

END LOOP;

D.2.10 LOOP
Syntax:

LOOP
sequential-statements;
EXIT WHEN condition;

END LOOP;

D.2.11 EXIT
The EXIT statement can be used only inside a loop. It causes execution to jump out of 
the innermost loop and usually is used in conjunction with the LOOP statement.

Syntax:

EXIT WHEN condition;

D.2.12 NEXT
The NEXT statement can be used only inside a loop. It causes execution to skip to the 
end of the current iteration and continue with the beginning of the next iteration. It 
usually is used in conjunction with the FOR statement.
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Syntax:

NEXT WHEN condition;

EXAMPLE

sum := 0;
FOR count IN 1 TO 10 LOOP
NEXT WHEN count = 3;
sum := sum + count;

END LOOP;

D.2.13 FUNCTION
Syntax: Function declaration:

FUNCTION function-name (parameter-list) RETURN return-type;

Syntax: Function definition:

FUNCTION function-name (parameter-list) RETURN return-type IS
BEGIN

sequential-statements;
END function-name;

Syntax: Function call:

function-name (actuals);

Parameters in the parameter list can be either signals or variables of mode IN only.

EXAMPLE

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY test_function IS PORT (
x: IN STD_LOGIC_VECTOR(3 DOWNTO 0);
z: OUT STD_LOGIC_VECTOR(3 DOWNTO 0));

END test_function;

ARCHITECTURE Behavioral OF test_function IS

SUBTYPE bit4 IS STD_LOGIC_VECTOR(3 DOWNTO 0);

FUNCTION Shiftright (input: IN bit4) RETURN bit4 IS
BEGIN
RETURN '0' & input(3 DOWNTO 1);

END shiftright;
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SIGNAL mysignal: bit4;

BEGIN
PROCESS
BEGIN
mysignal <= x;
z <= Shiftright(mysignal);

END PROCESS;
END Behavioral;

D.2.14 PROCEDURE
Syntax: Procedure declaration:

PROCEDURE procedure-name (parameter-list);

Syntax: Procedure definition:

PROCEDURE procedure-name (parameter-list) IS
BEGIN

sequential-statements;
END procedure-name;

Syntax: Procedure call:

procedure-name (actuals);

Parameters in the parameter-list are variables of modes IN, OUT, or INOUT.

EXAMPLE

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY test_procedure IS PORT (
x: IN STD_LOGIC_VECTOR(3 DOWNTO 0);
z: OUT STD_LOGIC_VECTOR(3 DOWNTO 0));

END test_procedure;

ARCHITECTURE Behavioral OF test_procedure IS

SUBTYPE bit4 IS STD_LOGIC_VECTOR(3 DOWNTO 0);

PROCEDURE Shiftright (input: IN bit4; output: OUT bit4) IS
BEGIN
output := '0' & input(3 DOWNTO 1);

END shiftright;

BEGIN
PROCESS
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VARIABLE mysignal: bit4;
BEGIN
Shiftright(x, mysignal);
z <= mysignal;

END PROCESS;
END Behavioral;

D.2.15 Behavioral Model Example

EXAMPLE: BEHAVIORAL CODE FOR A BCD TO 7-SEGMENT DECODER

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY bcd IS PORT (
I: IN STD_LOGIC_VECTOR(3 DOWNTO 0);
Segs: OUT STD_LOGIC_VECTOR(1 TO 7));

END bcd;

ARCHITECTURE Behavioral OF bcd IS
BEGIN
PROCESS(I)
BEGIN
CASE I IS
WHEN "0000" => Segs <= "1111110";
WHEN "0001" => Segs <= "0110000";
WHEN "0010" => Segs <= "1101101";

  WHEN "0011" => Segs <= "1111001";
WHEN "0100" => Segs <= "0110011";

  WHEN "0101" => Segs <= "1011011";
  WHEN "0110" => Segs <= "1011111";

WHEN "0111" => Segs <= "1110000";
WHEN "1000" => Segs <= "1111111";
WHEN "1001" => Segs <= "1110011";
WHEN OTHERS => Segs <= "0000000";
END CASE;

END PROCESS;
END Behavioral;

D.3 Dataflow Model—Concurrent Statements
Concurrent statements used in the dataflow model are executed concurrently, so their 
order does not affect the resulting output.

D.3.1 Concurrent Signal Assignment
The concurrent signal assignment statement assigns a value or the result of evaluating 
an expression to a signal. This statement is executed whenever a signal in its expression 
changes value. The actual assignment of the value to the signal, however, takes place 
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after a certain delay and not instantaneously as for variable assignments. The expres-
sion can be any logical or arithmetical expressions.

Syntax:

signal ,5 expression;

EXAMPLE

y <= '1';
z <= y AND (NOT x);

A vector with all bits having the same value can be obtained using the OTHERS

keyword as shown next.

EXAMPLE

SIGNAL x: STD_LOGIC_VECTOR(7 DOWNTO 0);
x <= (OTHERS => '0'); -- 8-bit vector of 0, same as "00000000"

D.3.2 Conditional Signal Assignment
The conditional signal assignment statement selects one of several different values to 
assign to a signal based on different conditions. This statement is executed whenever a 
signal in any one of the values or conditions changes.

Syntax:

signal ,5 value1 WHEN condition ELSE
value2 WHEN condition ELSE
…
value3;

EXAMPLE

z <= in0 WHEN sel = "00" ELSE
    in1 WHEN sel = "01" ELSE
    in2 WHEN sel = "10" ELSE
    in3;

D.3.3 Selected Signal Assignment
The selected signal assignment statement selects one of several different values to assign 
to a signal based on the value of a select expression. All possible choices for the expres-
sion must be given. The keyword OTHERS can be used to denote all remaining choices. 
This statement is executed whenever a signal in the expression or any one of the values 
changes.
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Syntax:

WITH expression SELECT
signal ,5 value1 WHEN choice1,

value2 WHEN choice2 0  choice3,
…
value4 WHEN OTHERS;

In the above syntax, if  expression is equal to choice1, then value1 is assigned to 
signal. Otherwise, if  expression is equal to choice2 or choice3, then value2 is assigned 
to signal. If  expression does not match any of  the above choices, then value4 in the 
optional WHEN OTHERS clause is assigned to signal.

EXAMPLE

WITH sel SELECT
z <= in0 WHEN "00",
    in1 WHEN "01",

      in2 WHEN "10",
      in3 WHEN OTHERS;

D.3.4 Dataflow Model Example
This example describes a full adder (FA) circuit using the dataflow model. The Boolean 
equations for describing the full adder circuit are:

cout 5 xyxyx 1 cinini 1x! y 2
sum 5 x! y! cinini

The following example translates the above two equations into the corresponding 
two concurrent signal assignment statements.

EXAMPLE: DATAFLOW CODE FOR A FULL ADDER

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY fa IS PORT (
x, y, cin: IN STD_LOGIC;
cout, sum: OUT STD_LOGIC);

END fa;

ARCHITECTURE Dataflow OF fa IS
BEGIN
cout <= (x AND y) OR (cin AND (x XOR y));
sum <= x XOR y XOR cin;

END Dataflow;
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D.4 Structural Model—Concurrent Statements
The structural model allows the manual connection of several components together 
using signals. All components used must first be defined with their respective ENTITY

and ARCHITECTURE sections, which can be in the same file or can be in separate files.
In the topmost module, each component used in the netlist is declared first using 

the COMPONENT statement. The declared components then are instantiated with the 
actual components in the circuit using the PORT MAP statement. SIGNALs are then used 
to connect the components together based on the schematic diagram.

D.4.1 COMPONENT Declaration
The COMPONENT declaration statement declares the name and the interface of a com-
ponent that is used in the circuit description. For each COMPONENT declaration used, 
there must be a corresponding ENTITY and ARCHITECTURE. The declaration name and the 
interface in the COMPONENT must match exactly the name and interface that is specified 
in its ENTITY section.

Syntax:

COMPONENT component-name IS
PORT (list-of-port-names-and-types);

END COMPONENT;

or

COMPONENT component-name IS
GENERIC (identifier: type :5 constant);
PORT (list-of-port-names-and-types);

END COMPONENT;

The keyword IS is optional.

EXAMPLE

COMPONENT fa IS PORT (
xi, yi, cin: IN STD_LOGIC;
cout, si: OUT STD_LOGIC);

END COMPONENT;

EXAMPLE: USING GENERIC

COMPONENT TriState_Buffer IS
GENERIC (n: INTEGER := 4);
PORT (
E: IN STD_LOGIC;
D: IN STD_LOGIC_VECTOR(n-1 DOWNTO 0);
Y: OUT STD_LOGIC_VECTOR(n-1 DOWNTO 0));

END COMPONENT;
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D.4.2 PORT MAP
The PORT MAP statement instantiates a declared component with an actual component 
in the circuit by specifying how the connections to this instance of the component are 
to be made.

Syntax:

label: component-name PORT MAP (association-list);

or

label: component-name GENERIC MAP (constant) PORT MAP 
(association-list);

The association list can be specified using either the positional or named method. 
The constant number used here in the GENERIC MAP will override the number specified 
in the GENERIC clause in the COMPONENT declaration.

EXAMPLE: POSITIONAL ASSOCIATION

SIGNAL x0, x1, y0, y1, c0, c1, c2, s0, s1: STD_LOGIC;
U1: fa PORT MAP (x0, y0, c0, c1, s0);

EXAMPLE: NAMED ASSOCIATION

SIGNAL x0, x1, y0, y1, c0, c1, c2, s0, s1: STD_LOGIC;
U1: fa PORT MAP (cout=>c1, si=>s0, cin=>c0, xi=>x0, yi=>y0);

EXAMPLE: USING GENERIC MAP

U1: TriState_Buffer GENERIC MAP(8) PORT MAP(E=>OE, D=>dp_sum, 
Y=>Output);

D.4.3 OPEN
The OPEN keyword is used in the PORT MAP association list to signify that a particular 
output port is not connected or used. It cannot be used for an input port.

EXAMPLE

U1: fa PORT MAP (x0, y0, c0, OPEN, s0);
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D.4.4 GENERATE
The GENERATE statement works like a macro expansion. It provides a simple way to 
duplicate similar components.

Syntax:

label: FOR identifier IN start 3TO 0  DOWNTO 4 stop GENERATE
port-map-statements;

END GENERATE label;

EXAMPLE

-- using a FOR-GENERATE statement to generate four instances of the
-- full adder component for a 4-bit adder
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY Adder4 IS PORT (
Cin: IN STD_LOGIC;
A, B: IN STD_LOGIC_VECTOR(3 DOWNTO 0);
Cout: OUT STD_LOGIC;
SUM: OUT STD_LOGIC_VECTOR(3 DOWNTO 0));

END Adder4;

ARCHITECTURE Structural OF Adder4 IS
COMPONENT fa IS PORT (
ci, xi, yi: IN STD_LOGIC;
co, si: OUT STD_LOGIC);

END COMPONENT;

SIGNAL Carryv: STD_LOGIC_VECTOR(4 DOWNTO 0);

BEGIN
Carryv(0) <= Cin;

Adder: FOR k IN 3 DOWNTO 0 GENERATE
FullAdder: fa PORT MAP (Carryv(k), A(k), B(k), Carryv(k+1), 

SUM(k));
END GENERATE Adder;

Cout <= Carryv(4);
END Structural;

D.4.5 Structural Model Example
This structural model example is for the 4-bit ripple-carry adder based on the following 
circuit. It requires the full adder (fa) module that is defined in Section D.3.4.
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EXAMPLE: STRUCTURAL CODE FOR A 4-BIT ADDER

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY adder IS
GENERIC (n: INTEGER := 4);
PORT(
X, Y: IN STD_LOGIC_VECTOR(n-1 DOWNTO 0);
S: OUT STD_LOGIC_VECTOR(n-1 DOWNTO 0);
Cout: OUT STD_LOGIC);

END adder;

ARCHITECTURE Structural OF adder IS
COMPONENT fa IS PORT (
x, y, cin: IN STD_LOGIC;
cout, sum: OUT STD_LOGIC);

END COMPONENT;

SIGNAL c: STD_LOGIC_VECTOR(n-1 DOWNTO 0);

BEGIN
U0: fa PORT MAP (x=>X(0), y=>Y(0), cin=>c(0), cout=>c(1), 

sum=>S(0));
U1: fa PORT MAP (x=>X(1), y=>Y(1), cin=>c(1), cout=>c(2), 

sum=>S(1));
U2: fa PORT MAP (x=>X(2), y=>Y(2), cin=>c(2), cout=>c(3), 

sum=>S(2));
U3: fa PORT MAP (x=>X(3), y=>Y(3), cin=>c(3), cout=>Cout, 

sum=>S(3));
END Structural;

D.5 Conversion Routines

D.5.1 CONV_INTEGER(  )
The CONV_INTEGER(  ) routine converts a STD_LOGIC_VECTOR type to an INTEGER type. 
Its use requires the inclusion of the following library.

LIBRARY IEEE;

USE IEEE.STD_LOGIC_UNSIGNED.ALL;

x1 y1

c1

s1

FA1

x2 y2

c2

s2

FA2

x3 y3

c3

s3

FA3

cout

x0 y0

c0 = 0

s0

FA0
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Syntax:

CONV_INTEGER(std_logic_vector)

EXAMPLE

LIBRARY IEEE;
USE IEEE.STD_LOGIC_UNSIGNED.ALL;

SIGNAL four_bit: STD_LOGIC_VECTOR(3 DOWNTO 0);
SIGNAL n: INTEGER;

n := CONV_INTEGER(four_bit);

D.5.2 CONV_STD_LOGIC_VECTOR( , )
The CONV_STD_LOGIC_VECTOR( , ) routine converts an INTEGER type to a 
STD_LOGIC_VECTOR type. Its use requires the inclusion of the following library.

LIBRARY IEEE;

USE IEEE.STD_LOGIC_ARITH.ALL;

Syntax:

CONV_STD_LOGIC_VECTOR (integer, number_of_bits)

EXAMPLE

LIBRARY IEEE;
USE IEEE.STD_LOGIC_ARITH.ALL;

SIGNAL four_bit: STD_LOGIC_VECTOR(3 DOWNTO 0);
SIGNAL n: INTEGER;

four_bit := CONV_STD_LOGIC_VECTOR(n, 4);
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¯, 34
?, 34
1, 34
9, 34
!, 36
(, 36
S, 48
P, 50
3, 85
0-maxterm, 49
0-minterm, 47
1-maxterm, 49
1-minterm, 47, 74
7-segment decoder, 92
7-segment LED display, 375, 387, 416

A
Abstraction level, 6
Accumulator, 367
Active edge, 170
Active-high, 113
Active-low, 113
Adder, 117

carry-lookahead adder, 120
full adder, 117
half  adder, 205
ripple-carry adder, 118

Adder-subtractor, 125
Algebra, 38
Algorithmic model, 354
Altera development, 512, see Quartus II software
Analog to digital (A/D) converter, 467
Analysis

combinational circuits, 66
�nite-state machine (FSM), 224

AND, 6, 34, 35, 37
And-of-ors, 43
Application-speci�c integrated circuits (ASICs), 2, 284

see also Dedicated microprocessors
Arithmetic logic unit (ALU), 129
Assert, 114
Asynchronous inputs, 177
Ative-high, 113
Axioms, 38

B
Barrel shifter, 156
Behavioral level, 6, 7

see also Design abstraction levels
Behavioral model, 286, 540, 548, 564, 569
Binary coded decimal (BCD), 92
Binary digit (BIT), 19
Binary numbers, 19
Binary switch, 32
Binary up counter, 205

with parallel load, 207
Bistable element, 159
Bluetooth, 444
Boolean, 38

algebra, 38, 77
function, 41, 70, 72
theorems, 38

Bus, 4, 285, 296

C
Canonical form, 52
Carry-lookahead adder, 120
Car security system

version 1, 54
version 2, 163 
version 3, 243

Central processing unit (CPU) 
see General-purpose microprocessors

Characteristic equation, 180
Characteristic table, 180
Circuit diagram, 9, 53
Clock, 169

divider, 171
Combinational circuit, 4 , 65

analysis, 66
minimization, 76
synthesis, 72
Verilog code

behavioral, 103
data�ow, 101
structural, 95

VHDL code
behavioral, 104

I N D E X
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data�ow, 102
structural, 97

Combinational components, 113
Comparator, 4, 72, 142
Control input, 4, 285
Control signals, 285, 303
Control unit, 3, 285, 302, 364

control signals, 285, 303
control word, 302, 304, 305
FSM Circuit, 315
state diagram, 305, 310
status signals, 285, 297
timing issue, 312
see also Finite-state machine

Controller, 2, 286
Control word, 302
Counters

binary up counter, 205
binary up counter with parallel load, 207

Critical race, 161

D
Data�ow level, 12, 57

see also Design abstraction levels
Data�ow model, 57, 101, 102, 548, 570
Datapath, 284, 287

control signals, 285
construction, 287
data transfer methods, 295
functional units, 294
registers, 293
need for a datapath, 286
register-transfer level (RTL) design, 287
status signals, 297

Data transfer methods, 295
multiple destinations, 296
multiple sources, 295
tri-state bus, 296

De-assert, 114
Decoder, 137
Dedicated microprocessor, 2, 283

algorithmic model, 354
Verilog, 355
VHDL, 355

control inputs, 285
control outputs, 285
control signals, 285, 303
control unit, 285, 302
data inputs, 285
data outputs, 285
datapath, 284, 286, 287, see also Datapath
examples

greatest common divisor, 323

high-low number guessing game, 330
traf�c light microcontroller, 337

FSMD Model, 341, 351
Verilog code, 352
VHDL code, 353

FSM1D Model, 341, 342
Verilog code, 344
VHDL code, 347

status signals, 285, 297
DeMorgan’s Theorem, 39
Demultiplexer, 137
Design abstraction levels

behavioral level, 6, 7
data�ow level, 12
gate level, 6, 9
register-transfer level, 6
structural level, 12
transistor level, 6, 11

D Flip-Flop, 171
smaller circuit, 175
edge-triggered, 171
with enable, 176

Digital circuits, 53
D latch, 164

with enable, 166, 168
Don’t-cares, 85
Dual, 41
Duality principle, 41

E
EC-1, 366

complete circuit, 373
control unit, 369
datapath, 367
hardware implementation, 375
instruction set, 366
memory, 368
sample program, 373
simulation, 375

EC-2, 376
complete circuit, 384
control unit, 379
datapath, 377
hardware implementation, 387
instruction set, 376, 388
memory, 385
sample program, 384
using and interfacing, 391

Edge-triggered D �ip-�op, 171
Elevator controller, 254, 258, 261
EEPROM, 2, 188
Essential prime implicant (EPI), 83
Excitation equation, 370
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Excitation values, 218
Execute, 364, 365, 382

F
FA, 117, see Full adder
Falling edge, 170
Feedback loop, 158
Fetch, 365, 369
Field-programmable gate array (FPGA),  

3, 15
Altera development, 512, 514, 525, 528
Xilinx development, 486, 489, 500, 505

Finite-state machine (FSM), 216
analysis, 224

examples, 230
next-state equations, 225
next-state table, 226
output equations, 228
output table, 228
state diagram, 229

Mealy, 218, 219
behavioral Verilog code, 265
behavioral VHDL code, 269
elevator controller, 258

Moore, 218, 220
behavioral Verilog code, 261
behavioral VHDL code, 266
elevator controller, 254

next-state logic, 217 
optimizations

state encoding, 240
state reduction, 239
unused states, 243

output logic, 216
state diagrams, 221, 229, 235
state memory, 216
synthesis, 234

circuit, 238
next-state equation, 237
next-state table, 236
output equation, 237
output table, 237
state diagram, 235

Flip-�op, 158
FPGA, 3, 

see Field-programmable gate array
FSM, 215, see Finite-state machine
FSMD model, 341, 351

Verilog code, 352
VHDL code, 353

FSM1D Model, 341, 342
Verilog code, 341
VHDL code, 347

Full adder, 117, 118, 126, 130
Function, see Boolean function

G
Gate, 6, 35

AND, 35
inverter, 35
NAND, 35
NOR, 35
NOT, 35
OR, 35
XNOR, 35
XOR, 35

Gated D latch, 166
Gated SR latch, 164
Gate level, 6, 9, see also Design abstraction levels
General-purpose microprocessors, 284

EC-1, 366
complete circuit, 373
control unit, 369
datapath, 367
hardware implementation, 375
instruction set, 366
memory, 368
sample program, 373
simulation, 375

EC-2, 376
complete circuit, 384
control unit, 379
datapath, 377
hardware implementation, 387
instruction set, 376, 388
memory, 385
sample program, 384
using and interfacing, 391

FSMD model
behavioral FSMD Verilog code, 406
behavioral FSMD VHDL code, 408

FSM1D Model
behavioral Verilog code, 401
structural Verilog code, 400

instruction cycle, 365
overview, 364
program, 373, 384
program counter, 365, 367, 368, 377

Generating status signal, 297
Glitch, 89, 91
Greatest common divisor (GCD), 323

H
Half adder, 205
Half adder-subtractor, 213
Hardware description languages (HDL), 11, 533, 553
Hazards, 397
Hexadecimal number, 24
Hex number, 24
High impedance, 140

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-202



InDeX 581

High-low number guessing game, 330
Hold time, 211

I
I2C bus controller, 475
Implementation table, 383
Instruction cycle, 365
Instruction encoding

EC-1, 366
EC-2, 376
EC-2 extension, 388

Instruction register, 365
Instruction set

EC-1, 366
EC-2, 376
EC-2 extension, 388

Intel Pentium 4 CPU, 16
Inverse, 41
Inverter, 34
IR, 365
ISE Design Suite software

create new project, 486
FPGA speci�cation, 489
new schematic source �le, 491
top-level module design �le, 500
Verilog/VHDL source �le, 500

Iterative circuit, 143

J
JK �ip-�op, 213

K
Karnaugh map, 78
Keypad controller, 427
Keywords

Verilog language, 533
VHDL, 553

K-map, 78

L
Latch, 158
Level-sensitive, 169
Linear feedback shift register, 202
Liquid-crystal display (LCD), 450
Logic expression, 33
Logic gates, 35, see also Gate
Logic operator, 33
Logic symbol, 7, 35, 495, 524

M
Master-slave D �ip-�op, 172
Maxterm, 46, 49

Mealy FSM, 217, 258
Memories

RAM, 192
ROM, 190

Microcontrollers, 2, 286
Microprocessor, 2

control unit, 285, 302
datapath, 284, 286, 287
dedicated, 2, 284
design overview, 3
general-purpose, 2, 284, 364

Minimization of combinational circuits, 76
Boolean algebra, 77
K-map, 78
Quine-McCluskey, 87
tabulation, 86

Minimize 1-bit scheme, 240
Minimum bit change scheme, 240
Minterm, 46
Modulo-6 up-counter, 245
Monitor, 457
Moore FSM, 217, 254
Multiplexer, 7, 114, 538
Multiplier, 149
MUX see Multiplexer

N
NAND gate, 35, 75
Negative edge-triggered �ip-�op, 172
Negative logic, 113
Negative numbers, 27

signed number arithmetic, 30
sign extension, 29
two’s complement representation, 27

Netlist, 12, 15
Networks, 53
Next-state equations, 225, 237
Next-state logic circuit, 4, 217, 218, 285
Next-state table, 226, 236
NMOS, 139, 141
Nonstandard form, 53
NOR gate, 35
NOT gate, 6, 34, 35, 37

O
Octal numbers, 23
One-hot encoding scheme, 242
One-shot circuit, 91, 249
Opcode, 364
Optimization of FSM circuits, 239

state encoding, 240
state reduction, 239
unused states, 243

OR, 6, 34, 35, 37
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Or-of-ands, 42
Output equations, 228, 237
Output logic circuit, 4, 216, 218, 285
Output table, 228, 237

P
Parallel-to-serial shift register, 200
Period, clock, 170
Pipelining

basic pipelined processor, 395
hazards, 397

PMOS, 138, 141
Positive edge-triggered D �ip-�op, 171
Positive logic, 113
Prime implicant (PI), 83
Prioritized adjacency scheme, 240
Product-of-maxterms, 49
Product-of-sums, 43
Product term, 41, 46, 77
Program counter (PC), 365, 368, 377
PS2 keyboard, 431
PS2 mouse, 436

Q
Quartus II software, 512

analysis and synthesis, 523, 527
create new project, 512
FPGA speci�cation, 514
graphic editor, 516
logic symbol, 516, 524
managing �les, 521
pin  mapping, 525, 527
programming the FPGA, 528
setting top level entity, 523

Quine-McCluskey method, 76, 87

R
RAM, 192
Random numbers, 202
Real-time clock, 475
Register, 181
Register �le, 182
Register transfer, 6, 171, 287, 312
Ripple-carry adder, 118
Rising edge, 169
ROM, 190
Rotator, 147
RS-232, 444
RTL, see Register transfer

S
Schematic diagram, 9, 35, 53
Sequential circuits, 66, 157

bistable element, 159

characteristic equation, 180
characteristic table, 180
clock, 169
Flop-�op, 171 
latch, 160
memories, 188
register, 181
register �le, 182
shift registers, 197
state, 216
state diagram, 180
timing issues, 210

Serial communication, 431, 444, 475
Serial-to-parallel shift register, 199, 200
Setup time, 211
Shifter, 146
Shift registers, 197

linear feedback, 202
serial-to-parallel and parallel-to-serial, 200
serial-to-parallel, 199

Signal naming conventions, 113
Signed numbers, 27
Sign extension, 29
Simulation trace, 56
SR latch, 160
Standard combinational components

adder
carry-lookahead adder, 120
full adder, 117
ripple-carry adder, 118

adder-subtractor combination, 125
arithmetic logic unit (ALU), 129
comparator, 142
decoder, 137
multiplexer, 114
multiplier, 149
shifter, 146
subtractor, 123
tri-state buffer, 140

Standard form, 53
State, 158, 216
State diagram, 221, 229, 235
State encoding, 240
State memory, 4, 216, 218
State reduction, 239
Status signals, 285, 297
Structural level, 12

see also Design abstraction levels 
Structural model

Verilog, 550
VHDL, 573

Subcube, 80
Subtractor, 123, 125
Sum of minterms, 47
Sum-of-products, 42
Sum term, 43
Switch, 32, 420
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Synthesis, 15
Altera development, 523, 527
combinational circuits, 72
�nite-state machines, 234
Xilinx development, 503

Synthesizer, 6, 11, 15

T
Tabulation method, 76, 86
Temperature sensor, 467
Theorems, 38
Timing hazards, 89
Timing issues, 210, 306, 312
Timing trace, 57
Traf�c light controller, 337
Transistor, 6, 11
Transistor level, 6, 11
Transmission gate, 11
Transparent latch, 166
Tri-state buffer, 140
Tri-state bus, 296
Truth table, 36, 67, 72
Two’s complement representation, 27

U
Unsigned numbers, 19, 27
Unused states, 243, 246

V
Verilog, 7, 11

algorithmic model, 341, 354

behavioral, 8, 95, 103, 261, 263, 265
data�ow, 95, 101
dedicated microprocessor, 341, 344, 352
FSM+D, 342, 344, 399
FSMD, 351, 352, 405
general-purpose microprocessor, 399
memory element, 169
structural level, 95
syntax summary, 533

VGA monitor controller, 457
VHDL, 7, 11

algorithmic, 341, 354
behavioral, 9, 95, 104, 261, 266, 269
data�ow, 95, 102
dedicated microprocessor, 341, 347, 353
FSM+D, 342, 347, 399
FSMD, 351, 353, 405, 408
general-purpose microprocessor, 399
memory element, 168
structural, 95, 97
syntax summary, 553

X
Xilinx development, 486, see ISE Design  

Suite software
XNOR gate, 35
XOR gate, 35

Z
Z, 137, 296, 534, 545, 549, 555
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